Pseudodifferentialoperatoren (2+0)-stu ¨ ndige Vorlesung im Wintersemester 2006/2007 ¨ JORG SEILER
Inhaltsverzeichnis 1...
8 downloads
475 Views
391KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Pseudodifferentialoperatoren (2+0)-stu ¨ ndige Vorlesung im Wintersemester 2006/2007 ¨ JORG SEILER
Inhaltsverzeichnis 1 Fouriertransformation und Distributionen
3
2 Symbole und Pseudodifferentialoperatoren
6
3 Oszillator-Integrale
11
4 Doppelsymbole, Algebraeigenschaft und Elliptizit¨ at
16
5 Stetigkeit in Sobolevr¨ aumen
22
6 Elliptizit¨ at und Fredholm-Eigenschaft
26
7 Parameterabh¨ angige ψdo
35
8 Resolventen und H∞ -Funktionalkalk¨ ul
38
9 Wiederholung: Fredholm-Operatoren
44
10 Wiederholung: Unbeschr¨ ankte Operatoren
45
2
1
Fouriertransformation und Distributionen
Definition 1.1 Eine Funktion u : Rn → C heißt schnell fallend, falls sie unendlich oft partiell stetig differenzierbar ist und o n kukk := sup |xα ∂xβ u(x)| | x ∈ Rn , |α| + |β| ≤ k < ∞ ∀ k ∈ N0 . (1.1) Den Vektorraum aller solcher Funktionen bezeichnen wir mit S(Rn ). Mit den (Halb)normen aus (1.1) ist S(Rn ) ein Fr`echetraum. Definition 1.2 Eine linerare Abbildung T : S(Rn ) → C heißt eine temperierte Distribution, falls eine der folgenden ¨ aquivalenten Eigenschaften gilt: a) T ist stetig. b) T ist folgenstetig. c) Es gibt eine Konstante C ≥ 0 und ein k ∈ N0 , sodass |T (u)| ≤ Ckukk
∀ u ∈ S(Rn ).
Wir schreiben oft hT, ui = T (u). Den Vektorraum aller temperierten Distribution bezeichnen wir mit S 0 (Rn ). Er ist ein lokalkonvexer Raum mit den Halbnormen u ∈ S 0 (Rn ).1
kT ku = |hT, ui|
Beispiel 1.3 a) Regul¨ are Distributionen: Sei f : Rn → C meßbar mit (1+|x|)−N f (x) ∈ L1 (Rn ) und Z hTf , ui :=
f (x)u(x) dx
∀ u ∈ S(Rn ).
Rn
Die sogenannte Dichte f von Tf ist durch Tf eindeutig bestimmt.2 Die Abbildung f 7→ Tf : Lp (Rn ) −→ S 0 (Rn )
(1 ≤ p ≤ ∞)
ist also injektiv; in diesem Sinne gilt Lp (Rn ) ⊂ S 0 (Rn ). b) δ-Distribution(en): F¨ ur festes y ∈ Rn ist hδy , ui := u(y)
∀ u ∈ S(Rn ).
c) Der Cauchysche Hauptwert:3 D
1 E p.v. , u := lim ε→0+ x
Z |x|≥ε
u(x) dx x
∀ u ∈ S(R).
S 0 (Rn ) ist also der Dualraum von S(Rn ) versehen mit der schwach-∗-Topologie. d.h. Tf = 0 impliziert f = 0 fast u ¨berall 3 englisch: pricipal value
1
2
3
Z Wegen ε≤|x|≤1
1 dx = 0 gilt x D
1 E p.v. , u = x
Z |x|≤1
u(x) − u(0) dx + x
Z |x|≥1
u(x) dx. x
Definition 1.4 Es sei T ∈ S 0 (Rn ). Die α-te partielle Ableitung ∂ α T ∈ S 0 (Rn ) ist definiert durch h∂ α T, ui := (−1)|α| hT, ∂ α ui ∀ u ∈ S(Rn ). Ist a ∈ C ∞ (Rn ) von temperiertem Wachstum, d.h. ∀ α ∈ Nn0
|∂ α a(x)| ≤ C(1 + |x|)N
∃ C ≥ 0, N ∈ N :
∀ x ∈ Rn ,
so ist aT ∈ S 0 (Rn ) definiert durch ∀ u ∈ S(Rn ).
haT, ui := hT, aui
T 7→ ∂ α T und T 7→ aT sind stetige Abbildungen S 0 (Rn ) → S 0 (Rn ). ( 1 x≥0 4 Beispiel 1.5 Sei T ∈ S 0 (R) die regul¨are Distribution mit Dichte h(x) = . 0 x n. 7 dann ist C0 (Rn ) ein Banachraum 8 Lemma von Riemann-Lebesgue
6
5
Beispiel 1.9 Fouriertransformation der δ-Distribution: Z b hδy , ui = u b(y) = e−ixy u(x) dx = he−iy· , ui. Rn
Satz 1.10 Es sei
Z
eixξ u(ξ) d¯ξ,
u ˇ(x) =
1 dξ. (2π)n
d¯ξ =
Rn
Dann ist u ˇ : S(Rn ) → S(Rn ) stetig und es gilt F(ˇ u) = u,
∀ u ∈ S(Rn ).
(Fu)ˇ= u
Also ist F : S(Rn ) → S(Rn ) bijektiv mit Inverse F −1 =ˇ. Durch ∀ T ∈ S 0 (Rn )
hTˇ, ui := hT, u ˇi
∀ u ∈ S(Rn )
erh¨ alt man die Inverse F −1 von F : S 0 (Rn ) → S 0 (Rn ). Satz 1.11 (Plancherel) F schr¨ ankt sich ein zu einer bijektiven Abbildung F : L2 (Rn ) → n L2 (R ) mit (b u, vb)L2 (Rn ) = (2π)n (u, v)L2 (Rn ) ∀ u ∈ L2 (Rn ).
2
Symbole und Pseudodifferentialoperatoren
Notation:
F¨ ur y ∈ Rm schreiben wir hyi :=
p
1 + |y|2 .
Dies ist eine glatte9 Funktion in y und es gilt √ hyi ≤ (1 + |y|) ≤ 2 hyi
∀ y ∈ Rm .
Definition 2.1 Es sei µ ∈ R. Mit S µ (Rn ) bezeichnen wir denjenigen Unterraum von C ∞ (Rn × Rn )10 , dessen Elemente folgende Eigenschaft haben: F¨ ur alle k ∈ N0 ist (µ) kpkk := sup ∂xβ ∂ξα p(x, ξ) hξi|α|−µ < ∞. (2.1) x,ξ∈R, |α|+|β|≤k
Wir nennen solche p ein (Links-)Symbol der Ordnung µ. Setze S −∞ (Rn ) =
∩
µ∈R
S µ (Rn ).
Beispiel 2.2 Es sei µ ∈ N0 und p(x, ξ) =
P
aα (x)ξ α ,
aα ∈ Cb∞ (Rn ).
|α|≤µ
Dann ist p ∈ S µ (Rn ) ein Linkssymbol der Ordnung µ. 9 10
d.h. unendlich oft stetig partiell differenzierbare dies ist der Raum aller glatten Funktionen Rn × Rn → C
6
(2.2)
Beispiel 2.3 F¨ ur µ ∈ R ist hξiµ ∈ S µ (Rn ) ein von x unabh¨angiges Symbol. Denn per Induktion zeigt man: ∂ξα hξiµ ist eine endliche Linearkombination von Termen der Form pk (ξ)hξiµ−2l mit Polynomen pk vom Grad ≤ k und 2l − k ≥ |α|. Also |∂ξα hξiµ | ≤ Chξiµ−(2l−k) ≤ Chξiµ−|α| . Beispiel 2.4 Es sei µ ∈ R und p ∈ C ∞ (Rn × Rn ) erf¨ ulle p(x, tξ) = tµ p(x, ξ)
∀ x ∈ Rn
∀ |ξ| ≥ 1
∀t≥1
ur große ξ) und (man sagt p ist positiv homogen vom Grad µ f¨ sup x∈Rn , |ξ|≤1
|∂ξα ∂xβ p(x, ξ)| < ∞
∀ α, β ∈ Nn0 .
Dann ist p ∈ S µ (Rn ) ein Linkssymbol der Ordnung µ. Lemma 2.5 (Einfache Eigenschaften) Im folgenden seien µ, µ e ∈ R. a) S µ (Rn ) ist ein Fr`echetraum mit den (Halb-)Normen aus (2.1). b) p 7→ ∂ξα ∂xβ p : S µ (Rn ) → S µ−|α| (Rn ) ist linear und stetig. c) (p, pe) 7→ pe p : S µ (Rn ) × S µe (Rn ) → S µ+eµ (Rn ) ist bilinear und stetig. d) S µe (Rn ) ,→ S µ (Rn ),11 falls µ e ≤ µ. Beispiel 2.6 Es sei p(x, ξ) wie in (2.2) und P : S(Rn ) → S(Rn ) der Differentialoperator gegeben durch P (P u)(x) = aα (x)Dxα u(x). |α|≤µ
Wegen Satz 1.8.a) ist −1
α
α
ξ u b(ξ) (x) = aα (x)
aα (x)D u(x) = aα (x) F Z = eixξ aα (x)ξ α u b(ξ) d¯ξ.
Z Rn
eixξ ξ α u b(ξ) d¯ξ
Rn
Also erh¨ alt man Z (P u)(x) =
eixξ p(x, ξ)b u(ξ) d¯ξ
∀ u ∈ S(Rn ).
(2.3)
Rn
Definition 2.7 F¨ ur ein Linkssymbol p ∈ S µ (Rn ) und u ∈ S(Rn ) definiere Z [p(x, D)u](x) = [op(p)u](x) = eixξ p(x, ξ)b u(ξ) d¯ξ, x ∈ Rn . Rn
p(x, D) = op(p) heißt der Pseudodifferentialoperator (kurz: ψdo) mit Symbol p(x, ξ). 11
X ,→ Y meint hier, dass X ⊆ Y und dass x 7→ x : X → Y stetig ist, also dass die Topologie von X st¨ arker ist als die Spurtopologie von X bzgl. Y .
7
Beispiel 2.8 Jeder Differentialoperator mit Koeffizienten aus Cb∞ (Rn ) ist ein ψdo, vgl. Beispiel 2.6. Insbesondere gilt f¨ ur den Laplace-Operatoren: ∆ = ∂x21 + . . . + ∂x2n = −Dx21 − . . . − Dx2n = p(D),
p(ξ) = −ξ12 − . . . − ξn2 = −|ξ|2 .
Satz 2.9 Es sei p ∈ S µ (Rn ) ein Linkssymbol. Dann ist p(x, D) : S(Rn ) −→ S(Rn ) stetig und linear. Genauer: Zu jedem k ∈ N0 gibt es ein C ≥ 0 derart, dass (µ)
∀ u ∈ S(Rn )
kp(x, D)ukk ≤ Ckpkk kukk+2n+2+[µ]
∀ p ∈ S µ (Rn ),
wobei [µ] die kleinste nat¨ urliche Zahl mit max(µ, 0) ≤ [µ] bezeichnet. Beweis: Der Einfachheit halber sei µ ∈ N0 . Zun¨achst haben wir f¨ ur beliebiges q ∈ S µ (Rn ) und v ∈ S(Rn ), dass Z
hξi−n−1 |hξi−µ q(x, ξ)| |hξiµ+n+1 vb(ξ)| d¯ξ Z (µ) µ+n+1 ≤ kqk0 khξi vbk∞ hξi−n−1 d¯ξ
sup |[op(q)v](x)| ≤ sup x∈Rn
x∈Rn
Rn
Rn
1.7
(µ)
(µ)
≤ C kqk0 kb v kµ+n+1 ≤ C kqk0 kvkµ+2n+2 . F¨ ur α, β ∈ Nn0 und u ∈ S(Rn ) gilt nun xα ∂xβ [op(p)u](x)
α
P
=
Z
Cβ1 ,β2 x
β1 +β2 =β
Rn
b(ξ) d¯ξ. eixξ (∂xβ2 p)(x, ξ)ξ β1 u
Verwendet man nun Satz 1.8.a), dass xα eixξ = Dξα eixξ und partielle Integration, so folgt xα ∂xβ [op(p)u](x)
=
Z
P
Cβ1 ,β2 ,α1 ,α2
Rn
β1 +β2 =β α1 +α2 =α
=
P β1 +β2 =β α1 +α2 =α
eixξ (∂xβ2 ∂ξα2 p)(x, ξ)F xα1 ∂xβ1 u (ξ) d¯ξ
Cβ1 ,β2 ,α1 ,α2 op ∂xβ2 ∂ξα2 p (xα1 ∂xβ1 u) (x).
Anwenden obiger Absch¨ atzung liefert sup |xα ∂xβ [op(p)u](x)| ≤
x∈Rn
(µ−|α2 |)
P β1 +β2 =β α1 +α2 =α
Cβ1 ,β2 ,α1 ,α2 k∂xβ2 ∂ξα2 pk0
(µ)
≤ Cα,β kpk|α|+|β| kukµ+2n+2+|α|+|β| . Summation u ¨ber alle |α| + |β| ≤ k ergibt die Behauptung. 8
kxα1 ∂xβ1 ukµ+2n+2
Definition 2.10 Es sei µ ∈ R und pj ∈ S µj (Rn ) f¨ ur j ∈ N0 , wobei j→∞
µ = µ0 ≥ µ1 ≥ µ2 ≥ . . . −−−→ −∞. Wir sagen, dass p ∈ S µ (Rn ) die asymptotische Summe der pj ist und schreiben p ∼
∞ P
pj ,
j=0
falls p−
NP −1
pj ∈ S µN (Rn )
∀ N ∈ N.
j=0
( 0 Notation: χ ∈ C ∞ (Rn ) heißt eine 0-Ausschneidefunktion, falls χ(ξ) = 1
: |ξ| ≤ 1 12 . : |ξ| ≥ 2
Satz 2.11 Es sei µ0 ∈ R und pj ∈ S µj (Rn ), j ∈ N0 , mit µj & −∞. Dann gibt es ein ∞ P p ∈ S µ0 (Rn ) derart, dass p ∼ pj . Dieses p ist modulo S −∞ (Rn ) eindeutig bestimmt. j=0
Beweis: |α| ≥ 1
Existenz: Sei χ eine 0-Ausschneidefunktion und 0 < ε ≤ 1. Dann ist f¨ ur |∂ξα χ(εξ)|
( Cα ε|α| ≤ 0
: ξ ∈ Rn . : |ξ| ≤ ε−1 oder 2ε−1 ≤ |ξ|
Da ε ≤ 2|ξ|−1 ≤ 4hξi−1 f¨ ur ε−1 ≤ |ξ| ≤ 2ε−1 ,13 folgt |∂ξα χ(εξ)| ≤ Cα hξi−|α|
∀ 0 < ε ≤ 1 ∀ ξ ∈ Rn
f¨ ur alle α ∈ Nn0 .14 Es folgt α β ∂ξ ∂x [χ(εξ)pj (x, ξ)] ≤ Cj,α,β hξiµj −|α| = (Cj,α,β hξi−1 )hξiµj +1−|α|
(2.4)
j→∞
Jetzt w¨ ahle eine Folge 1 ≥ ε0 > ε1 > . . . > εj −−−→ 0 mit Cj,α,β εj ≤ 2−j
∀ |α| + |β| ≤ j.
Da hξi−1 ≤ |ξ|−1 und χ(εj ξ) = 0 f¨ ur alle ξ mit |ξ|−1 ≥ εj ,15 folgt aus (2.4), dass α β ∀ (x, ξ) ∀ |α| + |β| ≤ j. ∂ξ ∂x [χ(εj ξ)pj (x, ξ)] ≤ 2−j hξiµj +1−|α| Jetzt definiere p(x, ξ) =
∞ P
χ(εj ξ)pj (x, ξ).
j=0 12
Statt 1 bzw. 2 kann man auch beliebige Konstanten √ 0 < c1 < c2 verwenden. F¨ ur |ξ| ≥ 1 ist hξi2 = 1 + |ξ|2 ≤ |ξ|2 , also |ξ|−1 ≤ 2hξi−1 . 14 d.h. {χ(εξ) | 0 < ε ≤ 1} ist eine beschr¨ ankte Teilmenge in S 0 (Rn ). −1 15 −1 also auch f¨ ur alle ξ mit hξi ≥ εj 13
9
(2.5)
Dies ist eine lokal endliche Summe, insbesondere p ∈ C ∞ (Rn × Rn ). F¨ ur beliebig gegebenes N ∈ N ist p−
NP −1
NP −1
pj =
j=0
(χ(εj ξ) − 1)pj
∞ P
+
j=0
χ(εj ξ)pj .
j=N
|
{z
}
|
∈S −∞ (Rn ), da ≡ 0 f¨ ur |ξ| ≥ 2ε−1 N −1
{z
=:qN (x,ξ)
}
Wir m¨ ussen zeigen, dass qN ∈ S µN (Rn ) ist. Seien dazu α, β ∈ Nn0 beliebig vorgegeben. W¨ahle j0 ∈ N mit j0 ≥ max(N, |α| + |β|) und µj0 + 1 ≤ µN . Dann ist qN (x, ξ) =
jP 0 −1
χ(εj ξ)pj +qj0 (x, ξ).
j=N
|
{z
∈S µN (Rn )
}
Nach Wahl von j0 und wegen (2.5) gilt P ∞ |∂ξα ∂xβ qj0 (x, ξ)| ≤ 2−j hξiµN −|α| ≤ hξiµN −|α| . j=j0
Daher ist |∂ξα ∂xβ qN (x, ξ)| ≤ Cα,β hξiµN −|α| . Eindeutigkeit: Seien p(1) , p(2) ∈ S µ0 (Rn ) und p(k) ∼
P
pj . Dann ist
NP −1 NP −1 pj ∈ S µN (Rn ). p(1) − p(2) = p(1) − pj + p(2) − j=0
j=0
Also p(1) − p(2) ∈ ∩ S µN (Rn ) = S −∞ (Rn ). N ∈N
Definition 2.12 Das Symbol p ∈ S µ (Rn ), µ ∈ R, heißt ein klassisches oder polyhomogenes Symbol, falls es pj ∈ S µ−j (Rn ), j ∈ N0 , gibt mit pj (x, tξ) = tµ−j pj (x, ξ) und p ∼
P
j
∀x
∀ |ξ| ≥ 1
∀t≥1
µ pj . Den Raum aller solcher Symbole nennen wir Scl (Rn )
Beispiel 2.13 a) p(x, ξ) =
aα (x)ξ α =
P |α|≤µ
b) Es sei p(ξ) =
hξi−2
=
1 . 1+|ξ|2
µ P
pj (x, ξ) mit pj (x, ξ) =
j=0
Dann ist p ∈
S −2 (Rn )
|α|=µ−j
und
NP −1 (−1)j 1 1 1 − = (−1)N 2N 2 2(j+1) 1 + |ξ| |ξ| 1 + |ξ|2 |ξ| j=0
Sei χ eine 0-Ausschneidefunktion. Nach Beispiel 2.4 ist dann pj (ξ) = χ(2ξ) 16
(−1)j ∈ S −2(1+j) (Rn ). |ξ|2(j+1)
Induktion!
10
P
∀ ξ 6= 0.16
aα (x)ξ α .
∞ P
Dann ist p ∼
pj , da wegen oben und Lemma 2.5.c)
j=0
p(ξ) −
NP −1 j=0
3
pj (ξ) =
χ(2ξ) (−1)N + (1 − χ)(2ξ)p(ξ) | {z } |ξ|2N (1 + |ξ|2 )
∈ S −2(N +1) (Rn ).
∞ ∈Ccomp (Rn )⊂S −∞ (Rn )
Oszillator-Integrale
Bemerkung 3.1 Seien pj ∈ S µj (Rn ) und u, v ∈ S(Rn ). Dann Z Z 0 [op(pj )v](x) = ei(x−x )ξ pj (x, ξ)v(x0 ) dx0 d¯ξ. Wir f¨ uhren jetzt eine formale (und tats¨achlich falsche) Rechnung zur Komposition zweier ψdo durch. ZZ ZZ 0 i(x−x0 )ξ 0 0 op(p1 ) op(p2 )u (x) = e p1 (x, ξ ) ei(x −z)ξ p2 (x0 , ξ)u(z) dzd¯ξ dx0 d¯ξ 0 ZZZZ 0 0 = ei(x−z)ξ e−i(x−x )(ξ−ξ ) p1 (x, ξ 0 )p2 (x0 , ξ)u(z) dx0 d¯ξ 0 dzd¯ξ. Nach Variablensubstitution y = x − x0 und η = ξ − ξ 0 folgt ZZ ZZ i(x−z)ξ = e e−iyη p1 (x, ξ + η)p2 (x + y, ξ) dyd¯η u(z) dzd¯ξ | {z } =:p(x,ξ)
= [op(p)u](x) Problem: Der Integrand in der Definition von p ist im allgemeinen nicht integrierbar. L¨osung: Verallgemeinerter Integralbegriff! Definition 3.2 (und Lemma) Am,τ (Rn ) (m, τ ∈ R) sei der Raum aller glatter Funktionen a : Rn × Rn → C mit n o α β −τ −m kakm,τ := sup |∂ ∂ a(y, η)|hyi hηi < ∞. η y k |α|+|β|≤k y,η∈Rn
Die Elemente von Am,τ (Rn ) heißen Amplitudenfunktionen. Dann ist Am,τ (Rn ) ein Fr`echetraum und S m (Rn ) ,→ Am,0 (Rn ). Satz 3.3 Es sei a ∈ Am,τ (Rn ) und χ ∈ S(Rn × Rn ) mit χ(0) = 1. Dann existiert der Grenzwert ZZ ZZ Os[a] = Os − e−iyη a(y, η) dyd¯η := lim e−iyη χ(εy, εη)a(y, η) dyd¯η. (3.1) ε→0
F¨ ur beliebige l, l0 ∈ N0 mit 2l > n + m und 2l0 > n + τ ist ZZ h i 0 0 Os[a] = e−iyη hyi−2l (1 − ∆η )l hηi−2l (1 − ∆y )l a(y, η) dyd¯η.
11
Beweis:
1. Schritt: Setze χε (y, η) = χ(εy, εη). Dann gilt
i) χε ∈ S(R2n ) f¨ ur alle ε > 0, n o ii) sup |∂ηα ∂yβ χε (y, η)| | 0 < ε ≤ 1, (y, η) ∈ R2n < ∞ f¨ ur alle α, β ∈ Nn0 , ( 1 iii) ∂ηα ∂yβ χε (y, η) −−−→ 0 ε→0
: |α| + |β| = 0 punktweise auf R2n . : sonst
1. Schritt: Es gilt 0
0
hyi−2l (1 − ∆η )l e−iyη = e−iyη = hηi−2l (1 − ∆y )l e−iyη . Bezeichnet Iε die rechte Seite von (3.1), so folgt durch partielle Integration ZZ
e−iyη hηi−2l (1 − ∆y )l (χε (y, η)a(y, η)) dyd¯η ZZ h i 0 0 = e−iyη hyi−2l (1 − ∆η )l hηi−2l (1 − ∆y )l (χε (y, η)a(y, η)) dyd¯η. | {z }
Iε =
gε (y,η)
Wegen h·ir ∈ S r (Rn ), ii) und Produktregel gilt 0
τ −2l |gε (y, η)| ≤ Cl,l0 kakm,τ hηim−2l . 2l+2l0 hyi
(3.2)
Also hat gε eine gleichm¨ aßige L1 -Majorante. Wegen iii) ist h i 0 0 ε→0 gε (y, η) −−−→ hyi−2l (1 − ∆η )l hηi−2l (1 − ∆y )l a(y, η) . Die Behauptung folgt aus dem Satz von Lebesgue u ¨ber dominierte Konvergenz. Folgerung 3.4 (3.1) h¨ angt nicht von der Wahl von χ ∈ S(R2n ) ab. Die Abbildung a 7→ Os[a] : Am,τ (Rn ) −→ C. ist stetig (beachte (3.2)). Ist a ∈ L1 (R2q ), so ist ZZ Os[a] =
e−iyη a(y, η) dyd¯η.
Satz 3.5 (Dominierte Konvergenz) Sei (aj )j∈N ⊂ Am,τ (Rn ) eine beschr¨ ankte Folge, die punktweise auf R2n gegen die Funktion a konvergiere. Dann ist a ∈ Am,τ (Rn ) und lim Os[aj ] = Os[a].
j→∞
12
Beweis:
Ein funktionalanalytisches Argument zeigt, dass a ∈ C ∞ (R2n ) und dass ∂ηα ∂yβ aj
j→∞
−−−→ ∂ηα ∂yβ a gleichm¨ aßig auf beschr¨ankten Mengen.17 Insbesondere gilt dann, dass h i j→∞ h i 0 0 0 0 hyi−2l (1 − ∆η )l hηi−2l (1 − ∆y )l aj (y, η) −−−→ hyi−2l (1 − ∆η )l hηi−2l (1 − ∆y )l a(y, η) punktweise auf R2n . Da (aj ) eine beschr¨ankte Folge ist, liefert (3.2) eine gleichm¨aßige L1 Majorante. Die Behauptung folgt aus dem Satz von Lebesgue u ¨ber dominierte Konvergenz. Lemma 3.6 Es sei a ∈ Am,τ (Rn ). Dann gelten: a) Partielle Integration: Os[y α a] = Os[Dηα a],
Os[η β a] = Os[Dyβ a].
b) Translationsinvarianz: Os[a] = Os[e−i(yη0 +y0 η+y0 η0 ) a(y + y0 , η + η0 )]. c) Ist a(y, η) = a(y), so ist Os[eixη a] = a(x). a) Wegen y α e−iyη = (−Dη )α und partieller Integration ist ZZ α Os[y a] = lim e−iyη Dηα χ(εy, εη)a(y, η) dyd¯η = lim Os[Dηα χ(εy, εη)a(y, η) ].
Beweis:
ε→0
ε→0
Nun ist aber {Dηα χ(εy, εη)a(y, η) | 0 < ε ≤ 1} eine beschr¨ankte Teilmenge von Am,τ (Rn ) und ε→0 Dηα χ(εy, εη)a(y, η) −−−→ Dηα a(y, η) punktweise auf R2n . Jetzt verwende Satz 3.5. c) W¨ahle χ ∈ S(Rn ) mit χ(0) = 1. Dann Z ZZ Z ixη i(x−y)η ei(x−y)η χ(εη) d¯η dy Os[e a] = Os − e a(y) dyd¯η = lim χ(εy)a(y) ε→0 Z dy = lim ε−n χ(εy)a(y)(F −1 χ) x−y ε ε→0 Z = lim χ(ε(x − εz))a(x − εz)(F −1 χ)(z) dz ε→0 Z = a(x) (F −1 χ)(z) dz = a(x)χ(0) = a(x).
Lemma 3.7 Es sei 0 ≤ f ∈ L1 (Rn ), a ∈ Am,τ (Rn ) und χ ∈ S(Rn ) mit χ(0) = 1. a) Ist |a(y, η)| ≤
Cf (y) hηim ,
ZZ so gilt Os[a] = lim
ε→0
e−iyη χ(εη)a(y, η) dyd¯η.
Zun¨ achst ist (aj ) eine beschr¨ ankte Folge in C ∞ (R2n ). Da C ∞ (R2n ) montelsch ist, hat jede Teilfolge von (aj ) eine konvergente Teilfolge. Wegen der punktweisen Konvergenz gegen a, muss der Grenzwert immer a sein. Somit konvergiert (aj ) selbst in C ∞ (R2n ) gegen a. Die Absch¨ atzungen f¨ ur eine Amplitudenfunktion bleiben unter dem Grenzwert erhalten. 17
13
b) Ist |a(y, η)| ≤ Chyiτ f (η), so gilt Os[a] = lim
ε→0
Z c) Gilt in a) zus¨ atzlich, dass
d) Gilt in b) zus¨ atzlich, dass
Z Z
e−iyη a(y, η) dy d¯η.
e−iyη a(y, η) d¯η ∈ L1 (Rny ), so ist
Os[a] =
Beweis:
e−iyη χ(εy)a(y, η) dyd¯η.
e−iyη a(y, η) dy ∈ L1 (Rnη ), so ist
Os[a] = Z
ZZ
Z Z
e−iyη a(y, η) d¯η dy.
Siehe Kumano-go, Theorem 6.9 in Chapter 1.
Lemma 3.8 (Ungleichung von Peetre) Es sei s ∈ R. Dann gilt hξ + ηis ≤ 2|s| hξis hηi|s| Beweis:
bzw.
hξis ≤ 2|s| hξ − ηis hηi|s|
∀ ξ, η ∈ Rn .
Zun¨ achst gilt hyi ≤ (1 + |y|) ≤
√
2hyi
∀ y ∈ Rn .18
Sei nun s ≥ 0. Dann 1 + |ξ + η| ≤ 1 + |ξ| + |η| ≤ (1 + |ξ|)(1 + |η|) =⇒ hξ + ηis ≤ (1 + |ξ|)s (1 + |η|)s ≤ 2s hξis hηis . F¨ ur s ≤ 0 gilt analog hξi−s ≤ 2−s hξ + ηi−s h−ηi−s ⇐⇒ hξ + ηis ≤ 2−s hξis hηi−s . Satz 3.9 (Fubini) Es sei a = a(y, y 0 , η, η 0 ) ∈ Am,τ (Rn+k ). Dann ist ZZ 0 0 b(y, η) = Os − e−iy η a(y, y 0 , η, η 0 ) dy 0 d¯η 0 ∈ Am,τ (Rn ) und ∂ηα ∂yβ b(y, η)
ZZ 0 0 = Os − e−iy η ∂ηα ∂yβ a(y, y 0 , η, η 0 ) dy 0 d¯η 0 .
Weiterhin gilt ZZ 0 0 Os − e−i(y,y )(η,η ) a(y, y 0 , η, η 0 ) d(y, y 0 )d¯(η, η 0 ) ZZ ZZ 0 0 −iyη = Os − e Os − e−iy η a(y, y 0 , η, η 0 )dy 0 d¯η 0 dyd¯η. 18
Sieht man leicht durch Quadrieren.
14
Beweis:
OBdA τ, m ≥ 0. Wegen der Ungleichung von Peetre ist h(y, y 0 )iτ h(η, η 0 )im ≤ 2m+τ hyiτ hy 0 iτ hηim hη 0 im .19
Daher ist ∂ηα ∂yβ a(y, ·, η, ·) ∈ Am,τ (Rk ) mit τ m k∂ηα ∂yβ a(y, ·, η, ·)km,τ ≤ Ck,m kakm,τ k k+|α|+|β| hyi hηi
f¨ ur alle k ∈ N0 . Aus Folgerung 3.4 (und (3.2)) folgt m,τ Os[∂ηα ∂yβ a(y, ·, η, ·)] ≤ Ckak2(l+l0 )+|α|+|β| hyiτ hηim , wobei 2l > n + k + m und 2l0 > n + k + τ . Wegen der zweiten Darstellung des OszillatorIntegrals in Satz 3.3 und des Satzes von Lebesgue u ¨ber Differenzierbarkeit von Parameterintegralen gilt Os[∂ηα ∂yβ a(y, ·, η, ·)] = ∂ηα ∂yβ Os[a(y, ·, η, ·)]. Weiterhin folgt, dass ZZ Os − e−iyη b(y, η) dyd¯η Z 0 0 0 0 3.3 = e−i(y,y )(η,η ) (hyihy 0 i)−2l ((1 − ∆η )(1 − ∆η0 ))l d(y, y 0 , η, η 0 ) (hηihη 0 i)−2l ((1 − ∆y )(1 − ∆y0 ))l a(y, y 0 , η, η 0 ) (2π)n+k ZZ 0 0 = Os − e−i(y,y )(η,η ) (hηihη 0 i)−2l ((1 − ∆y )(1 − ∆y0 ))l a(y, y 0 , η, η 0 ) d(y, y 0 )d¯(η, η 0 ) ZZ 0 0 = Os − e−i(y,y )(η,η ) a(y, y 0 , η, η 0 ) d(y, y 0 )d¯(η, η 0 ), wobei die letzten beiden Gleichungen wegen Lemma 3.6.a) gelten. Satz 3.10 Es sei p ∈ S µ (Rn ). Dann definiert ZZ [P u](x) := Os − e−iyη p(x, η)u(x + y) dyd¯η, eine stetige Abbildung P : Cb∞ (Rn ) → Cb∞ (Rn ) mit ∀ u ∈ S(Rn ).
P u = op(p)u Schreibe daher wieder op(p) := P . Beweis:
F¨ ur festes x und u ∈ Cb∞ (Rn ) ist a(y, η) := p(x, η)u(x + y) ∈ Aµ,0 (Rn ).
19
Schreibe (y, y 0 ) = (y, 0) + (0, y 0 ).
15
u ∈ Cb∞ (Rn ),
Also ist P wohldefiniert. Die Abbildungseigenschaft folgt dann mit der Darstellung aus Satz 3.3 a¨hnlich wie in Satz 2.9. F¨ ur u ∈ S(Rn ) ist Z Z Z Z i(x−y)η [op(p)u](x) = e p(x, η)u(y) dy d¯η = e−iyη p(x, η)u(x + y) dy d¯η | {z } ∈S(Rn η)
3.7.c)
= Os[p(x, η)u(x + y)]
Folgerung 3.11 Es sei p ∈ S µ (Rn ). Dann gilt p(x, ξ) = e−ixξ [op(p)eiξ· ](x)
∀ x, ξ ∈ Rn .
Insbesondere hat jeder ψdo ein eindeutig bestimmtes Linkssymbol. Beweis:
Es ist eiξ· ∈ Cb∞ (Rn ). Wegen Satz 3.10 gilt also ZZ e−ixξ [op(p)eiξ· ](x) = Os − e−iyη eiyξ p(x, η) dyd¯η ZZ 3.6.b) = Os − e−iyη p(x, ξ + η) dyd¯η Z Z e−iyη χ(εy) dy χ(εη)p(x, ξ + η) d¯η = lim ε→0 Z b(η/ε)χ(εη)p(x, ξ + η) d¯η = lim ε−n χ ε→0 Z b(η)χ(ε2 η)p(x, ξ + εη) d¯η = lim χ ε→0 Z = p(x, ξ) χ b(η) d¯η = p(x, ξ)χ(0) = p(x, ξ),
wobei χ ∈ S(Rn ) mit χ(0) = 1.
4
Doppelsymbole, Algebraeigenschaft und Elliptizit¨ at 0
Definition 4.1 Es seien µ, µ0 ∈ R. Dann bezeichnet S µ,µ (Rn ×Rn ) den Raum aller glatten Funktionen p : Rn × Rn × Rn × Rn → C mit 0 α β α0 β 0 0 0 ∂ p(x, ξ, x , ξ ) ∂ ∂ ∂ kpkµ,µ := sup 0 mit Z |u(x)|p dx < ε
∀ u ∈ A.
|x|≥R
Satz 6.3 F¨ ur s ≥ s0 und δ ≥ δ 0 ist 0
0
H s,δ (Rn ) ,→ H s ,δ (Rn ). Die Einbettung ist kompakt, falls s > s0 und δ > δ 0 . 25
d.h. ∆u = 0
26
∀ u ∈ A.
Beweis:
Wir beweisen die Aussage f¨ ur s0 = δ 0 = 0.26 Wegen H s (Rn ) ,→ L2 (Rn ) ist 5.3
kukL2 ≤ Cs kuks = Cs kh·i−δ h·iδ uks ≤ Cs,δ kh·iδ uks = Cs,δ kuks,δ
∀ u ∈ H s,δ (Rn ).
Wir m¨ ussen jetzt zeigen, dass A := {u ∈ H s,δ | kuks,δ ≤ 1} relativ kompakt in L2 (Rn ) ist. Eigenschaft 6.2.i) ist klar, und Z |u(x)|2 dx ≤ kh·iδ uk2L2 sup hxi−2δ ≤ Cs2 (1 + R2 )−δ |x|≥R
∀u∈A
|x|≥R
zeigt Eigenschaft 6.2.iii). Nach dem Satz von Plancherel gilt Z Z ihξ 2 2 2 2n e u |u(x + h) − u(x)| dx = (2π) b(ξ) − u b(ξ) dξ ≤ Cs,δ sup eihξ − 1 hξi−2s . ξ∈Rn
Zu gegebenem ε > 0 gibt es offenbar ein R ≥ 0 mit ihξ e − 1 2 hξi−2s ≤ 4hξi−2s < ε
∀ |ξ| ≥ R
Nach Taylorformel ist ihξ e − 1 2 hξi−2s ≤ C |hξ| sup |eihy | ≤ CR|h|
∀ h.
∀ |ξ| ≤ R
∀ h.
y∈Rn
Also gilt Eigenschaft 6.2.ii). Satz 6.4 Es seien µ, m ∈ R. Wir definieren S µ,m (Rn ) als Raum aller C ∞ -Funktionen mit kpkµ,m := k
sup x,ξ∈Rn |α|+|β|≤k
|∂ξα ∂xβ p(x, ξ)|hxi|β|−m hξi|α|−µ < ∞
f¨ ur alle k ∈ N0 . Dann verallgemeinern“ sich alle bisherigen Resultate entsprechend: ” a) F¨ ur p ∈ S µ,m (Rn ) ist op(p) : S(Rn ) → S(Rn ), op(p) : S 0 (Rn ) → S 0 (Rn ) und op(p) : H s,δ (Rn ) −→ H s−µ,δ−m (Rn )
∀ s, δ ∈ R.
b) F¨ ur pj ∈ S µj ,mj (Rn ) ist op(p1 )op(p2 ) = op(p1 #p2 )
p1 #p2 ∈ S µ1 +µ2 ,m1 +m2 (Rn ),
mit
mit der asymptotischen Entwicklung p1 #p2 ∼
∞ 1 P
(∂ξα p1 )(Dxα p2 ) | {z }
|α|=0 α!
,
∈S µ1 +µ2 −|α|,m1 +m2 −|α| (Rn )
d.h. f¨ ur alle N ∈ N0 ist p1 #p2 − 26
NP −1
1 α (∂ξ p1 )(Dxα p2 ) ∈ S µ1 +µ2 −N,m1 +m2 −N (Rn ). α! |α|=0
Der allgemeine Fall ben¨ otigt unten folgende Resultate.
27
c) p ∈ S µ,m (Rn ) heißt elliptisch, falls es C, R ≥ 0 gibt mit 1 ∀ |(x, ξ)| ≥ R. ≤ C hxi−m hξi−µ p(x, ξ) Dann (und nur dann!) hat p eine Parametrix q ∈ S −µ,−m (Rn ), d.h. p#q − 1, q#p − 1 ∈ S −∞,−∞ (Rn ). Beispiel 6.5 P = 1 − ∆ = op(hξi2 ) ist ein elliptischer Operator in S 2,0 (Rn ). Folgerung 6.6
a) Satz 6.3 gilt f¨ ur beliebige s0 , δ 0 .
b) p ∈ S µ−ε,m−ε (Rn ) mit ε > 0 induziert kompakte Operatoren op(p) : H s,δ (Rn ) −→ H s−µ,δ−m (Rn ) Beweis:
∀ s, δ ∈ R.
a) Das folgende Diagramm ist kommutativ: 0
id
0
H s−s ,δ−δ (Rn ) −−−−→ x 0 0 op(hξis )op(hxiδ ) id
H s,δ (Rn )
L2 (Rn ) yop(hxi−δ0 )op(hξis0 ) 0
0
−−−−→ H s ,δ (Rn )
Die Einbettung in der oberen Zeile ist kompakt. Jetzt verwende Satz 9.1.ii). op(p)
b) Nach a) ist H s,δ (Rn ) −−−→ H s−µ+ε,δ−m+ε (Rn ) ,→ H s−µ,δ−m (Rn ) kompakt. Satz 6.7 Es sei p ∈ S µ,m (Rn ) elliptisch und Ps,δ := op(p) : H s,δ (Rn ) → H s−µ,δ−m (Rn ),
s, δ ∈ R.
Dann gelten: a) Ps,δ sind Fredholm-Operatoren. b) Kern Ps,δ ⊂ S(Rn ) und ind Ps,δ sind unabh¨ angig von s, δ. Beweis: a) Eine Parametrix q ∈ S −µ,−m (Rn ) liefert eine Inverse von Ps,δ modulo Operatoren aus S −∞,−∞ (Rn ). Diese sind kompakt. b) Nach Elliptischer Regularit¨ at gilt Kern Ps,δ ⊂
∩
t,ρ∈R
H t,ρ (Rn ) = S(Rn ).
Da mit p auch p∗ ∈ S µ,m (Rn ) elliptisch ist, ist V := Kern(op(p∗ ) H s,δ ) ⊂ S(Rn ) unabh¨angig von s, δ und endlichdimensional. 28
Sei nun Js,δ : H s,δ (Rn ) → H −s,−δ (Rn ) derjenige Isomorphismus mit ∀ u, v ∈ H s,δ (Rn ).27
(u, v)s,δ = (u, Jv)L2
Dann gilt f¨ ur alle u ∈ H s,δ (Rn ) und v ∈ H s−µ,δ−µ (Rn ) (op(p)u, v)s−µ,δ−µ =(op(p)u, Js−µ,δ−m v)L2 = (u, op(p∗ )(Js−µ,δ−m v))L2 . Also ist v ∈ (Bild Ps,δ )⊥ ⇐⇒ Js−µ,δ−m v ∈ V. Insbesondere ist codim Bild Ps,δ = dim (Bild Ps,δ )⊥ = dim V unabh¨ angig von s, δ. Lemma 6.8 (und Definition) Es sei 0 < τ
0 setze
[I(s, y, η)u](x) = sτ n/2 eisxη u(sτ (x − y)),
u ∈ L2 (Rn ).
Dann ist I(s, y, η) ∈ L(L2 (Rn )) eine Isometrie mit Inverse [I(s, y, η)−1 u](x) = s−τ n/2 e−is(y+s
−τ x)η
u(y + s−τ x).
F¨ ur p ∈ S 0,0 (Rn ) ist I(s, y, η)−1 op(p) I(s, y, η) = op(p(s, y, η)) mit p(x, ξ; s, y, η) := p(y + s−τ x, sη + sτ ξ) ∈ S 0,0 (Rn ). F¨ ur alle α, β ∈ Nn0 gelten die Absch¨ atzungen |∂ξα ∂xβ p(x, ξ; s, y, η)| ≤ 2|α| kpk0,0 |α|+|β|
hξi|α| −τ |β| −(1−2τ )|α| s s , |η||α|
gleichm¨ aßig f¨ ur s ≥ 1 und x, ξ, y, η ∈ Rn . Beweis:
Die ersten Aussagen sind elementar. Wegen der Kettenregel ist τ −|α| −τ |β| τ |α| |∂ξα ∂xβ p(x, ξ; s, y, η)| ≤ kpk0,0 s s . |α|+|β| hsη + s ξi
Mit der Peetreschen Ungleichung folgt hsη + sτ ξi−|α| sτ |α| ≤ 2|α| hsηi−|α| hsτ ξisτ
|α|
≤ 2|α|
s2τ (1 + s2τ |ξ|2 ) |α|/2 s2 |η|2
.
Schließlich ist, f¨ ur λ ≥ 1, s2τ (1 + s2τ |ξ|2 ) = s4τ (s−2τ + |ξ|2 ) ≤ s4τ (1 + |ξ|2 ) = s4τ hξi2 . Einsetzen liefert die Absch¨ atzung. 27
Nach dem Darstellungssatz von Riesz jedes Funktional auf einem Hilbertraum H von der Form x 7→ (x, y) mit y ∈ H.
29
Satz 6.9 Es seien p ∈ S µ,m (Rn ), s0 , δ0 ∈ R und P := op(p) : H s0 ,δ0 (Rn ) → H s0 −µ,δ0 −m (Rn ) sei ein Fredholm-Operator. Dann ist p elliptisch (der Ordnung µ, m). Beweis:
1. Schritt: Wir definieren pe ∈ S 0,0 durch pe(x, ξ) = (hxiδ0 −m hξis0 −µ )#p(x, ξ)#(hxi−δ0 hξi−s0 ).
das Diagramm op(p)
H s0 ,δ0 (Rn ) −−−−→ H s0 −µ,δ0 −m (Rn ) x op(hxi−δ0 hξi−s0 ) yop(hxiδ0 −m hξis0 −µ ) op(e p)
L2 (Rn )
L2 (Rn )
−−−−→
kommutativ und die vertikalen Abbildungen sind Isomorphismen. Also ist op(e p) : L2 (Rn ) → 2 n L (R ) fredholmsch. Ist pe elliptisch, so auch p, da pe(x, ξ) = p(x, ξ)hxi−m hξi−µ
mod S −1,−1 (Rn ).
In anderen Worten: OBdA ist µ = m = s0 = δ0 = 0 und wir m¨ ussen zeigen, dass |p(x, ξ)| ≥ C > 0
∀ |(x, ξ)| ≥ R.
2. Schritt: Es sei Q ∈ L(L2 (Rn )) derart, dass K := 1 − QP kompakt ist. Wir zeigen, dass es ein R ≥ 0 gibt mit |p(x, ξ)| ≥
1 2kQk
∀ x ∈ Rn
∀ |ξ| ≥ R.
(6.1)
Angenommen nicht. Dann ∃ ((xk , ξk ))k ⊂ Rn × Rn : OBdA ist
k→∞
|ξk | −−−→ ∞ und |p(xk , ξk )| ≤
k→∞
p(xk , ξk ) −−−→ p∗
mit |p∗ | ≤
1 2kQk
1 . 2kQk
.
Wir setzen dann sk := |ξk |,
Ik := I sk , xk , |ξξkk | ,
pk (x, ξ) := p x, ξ; sk , xk , |ξξkk | .
Sei nun 0 6= u ∈ S(Rn ) fest gew¨ ahlt. Wir werden unten zeigen, dass k→∞
Ik−1 op(p)Ik u = op(pk )u −−−→ p∗ u
in L2 (Rn ).
Ist v ∈ S(Rn ), so gilt Z τ n/2 |(Ik u, v)L2 | = sk eixk ξk u(sτk (x − xk ))v(x) dx Z k→∞ −τ n/2 −τ n/2 ≤ sk |u(y)||v(xk + s−τ kvkL∞ kukL1 −−−→ 0. k y)| dy ≤ sk 30
(6.2)
Da Ik Isometrien sind und S(Rn ) dicht in L2 (Rn ), folgt k→∞
∀ v ∈ L2 (Rn )
|(Ik u, v)L2 | −−−→ 0
(6.3)
(d.h. (Ik u)k konvergiert schwach gegen 0 in L2 (Rn )). Jetzt folgt kuk = k(QP + K)Ik uk ≤ kQIk k kIk−1 op(p)Ik uk + kKIk uk k→∞
= kQk kop(pk )uk + kKIk uk −−−→ kQk |p∗ | kuk wegen (6.2), (6.3) und Satz 9.1.i). Dies steht im Widerspruch zu |p∗ | ≤ (6.1).
1 2kQk .
Also gilt
3. Schritt: Mit op(p) ist auch F op(p) F −1 : L2 (Rn ) −→ L2 (Rn ) ein Fredholm-Operator. Wir werden unten zeigen, dass F op(p) F −1 = op(e p)
mit pe(x, ξ) = p(−ξ, x) mod S −1,−1 (Rn ).
(6.4)
(6.1) gilt f¨ ur pe und es folgt, dass |p(x, ξ)| ≥
1 4kQk
∀ ξ ∈ Rn
∀ |x| ≥ R
f¨ ur ein hinreichen großes R ≥ 0. Also ist p elliptisch. Beweis (von (6.2)): Nach Lemma 6.8 mit η = ξk /|ξk | gilt insbesondere α ∂ (pk (x, ξ) − p∗ ) ≤ 2|α|+1 kpk0,0 hξi|α| ∀ x, ξ, k. ξ |α| Zusammen mit partieller Integration folgt Z 2l ∗ u(ξ) d¯ξ ≤ Cl,u . hxi [op(pk )u](x) − p u(x) = eixξ (1 − ∆ξ )l (pk (x, ξ) − p∗ )b Daher ist [op(pk )u](x) − p∗ u(x) 2 ≤ C 2 hxi−4l ∈ L1 (Rnx ), l,u wenn man l > n/4 w¨ ahlt. Nach dominierter Konvergenz gen¨ ugt es also zu zeigen, dass k→∞
[op(pk )u](x) − p∗ u(x) −−−→ 0 Da ∗
Z
[op(pk )u](x) − p u(x) =
∀ x ∈ Rn .
eixξ (pk (x, ξ) − p∗ )b u(ξ) d¯ξ
gilt dies, falls k→∞
pk (x, ξ) − p∗ −−−→ 0 31
∀ x, ξ ∈ Rn .
Mit Taylor-Formel ist τ |pk (x, ξ) − p(xk , ξk )| = |pk (xk + s−τ k x, ξk + sk ξ) − p(xk , ξk )| −τ Z 1 s x −τ τ = (∇(x,ξ) p)(xk + θsk x, ξk + θsk ξ) kτ dθ sk ξ 0 Z 1 √ −τ τ τ −1 ≤ nkpk0,0 s |x| + s |ξ| hξ + θs ξi dθ k k k | {z 1 } k 0 =:c
Z 1 τ τ −1 ≤ c s−τ |x| + s |ξ| |ξ + θs ξ| dθ k k k k 0 Z 1 ξ −1 ξ6=0 ξk + θ = c s−τ |x| + dθ k sτk |ξ| |ξ| 0 Z 1 1−τ ξ −1 ξk sk + θ = c s−τ |x| + dθ k |ξk | |ξ| |ξ| 0 Z 1 1−τ −1 ξk sk −τ ≤ c sk |x| + dθ −1 |ξk | |ξ| 0 −1 s1−τ k→∞ k − 1 −−−→ 0, = c s−τ |x| + k |ξ| k→∞
da sk −−−→ ∞ (f¨ ur ξ = 0 ist man nach der zweiten Zeilen fertig). Also k→∞
pk (x, ξ) − p∗ = (pk (x, ξ) − p(xk , ξk )) + (p(xk , ξk ) − p∗ ) −−−→ 0. Beweis (von (6.4)): Es ist Z [op(p)u](ξ) =
0
eiξx p(ξ, x0 )b u(x0 ) d¯x0 ,
also Z (Fξ→x [op(p)ˇ u])(x) =
−iξx
e
Z
0 eiξx p(ξ, x0 )u(x0 ) d¯x0 dξ
ZZ 0 = Os − ei(x−x )ξ p(−ξ, x0 )u(x0 ) dx0 d¯ξ. Also ist Fop(p)F −1 der ψdo mit Doppelsymbol p(−ξ, x0 ). Die asymptotische Entwicklung in Satz 4.528 liefert die Behauptung. Lemma 6.10 Es sei R : S(Rn ) → S 0 (Rn ). Dann sind ¨ aquivalent: a) R = op(r) f¨ ur ein r ∈ S −∞,−∞ (Rn ). 28
0
in der Version f¨ ur Doppelsymbolklassen S m,µ,m 0
,µ0
0
(Rn × Rn ), die definiert sind durch 0
|∂ξα ∂xβ ∂ξα0 ∂xβ0 p(x, ξ, x0 , ξ 0 | ≤ Chxim−|β| hξiµ−|α| hx0 im
32
−|β 0 |
0
hξ 0 iµ
−|α0 |
.
b) Es gibt ein k ∈ S(R2n ) mit (Ru)(x) =
Z
k(x, y)u(y) dy f¨ ur alle u ∈ S(Rn ).
a)⇒b): Da S −∞,−∞ (Rn ) = S(R2n (x,ξ) ), ist
Beweis:
Z e k(x, z) :=
eizξ r(x, ξ) d¯ξ ∈ S(R2n (x,z) ).
Wegen der Peetreschen Ungleichung ist also auch k(x, y) := e k(x, x − y) ∈ S(R2n (x,y) ). Offenbar ist [op(r)u](x) =
Z Z
i(x−y)ξ
e
Z
r(x, ξ) d¯ξ u(y) dy =
k(x, y)u(y) dy.
b)⇒a): Es ist Z (Ru)(x) =
Z Z Z iyξ ixξ k(x, y) e u b(ξ) d¯ξ dy = e ei(y−x)ξ k(x, y) dy u b(ξ) d¯ξ. | {z } =:r(x,ξ)
Es ist r ∈ S −∞,−∞ (Rn ). Satz 6.11 (Spektralinvarianz) Es sei p ∈ S µ,m (Rn ) und op(p) : H s,δ (Rn ) −→ H s−µ,δ−m (Rn ) ein Isomorphismus f¨ ur ein s = s0 und δ = δ0 . Dann ist op(p) ein Isomorphismus f¨ ur alle s, δ ∈ R und op(p)−1 = op(p(−1) ) f¨ ur ein p(−1) ∈ S −µ,−m (Rn ). Beweis: Wie im Beweis von Satz 6.9 k¨onnen wir oBdA annehmen, dass µ = m = 0 ∼ = und op(p) : L2 (Rn ) − → L2 (Rn ). 1. Schritt: Nach Satz 6.9 ist p elliptisch. Also gibt es eine Parametrix q ∈ S 0,0 (Rn ), also r0 := q#p − 1, r1 := p#q − 1 ∈ S −∞,−∞ (Rn ). Auf L2 (Rn ) gilt daher op(p)−1 = op(q) − op(r0 )op(p)−1 ,
op(p)−1 = op(q) − op(p)−1 op(r1 ).
Setzt man die erste in die zweite Gleichung ein, so folgt op(p)−1 = op(q) − op(q)op(r1 ) + op(r0 )op(p)−1 op(r1 ) =: op(q − q#r1 ) + R. Offenbar ist q − q#r1 ∈ S 0,0 (Rn ). 33
2. Schritt: Seien kj (x, y) ∈ S(R2n ) die Integralkerne von op(rj ), vgl. Lemma 6.10. Betrachte kj als k0 (x, y) ∈ S(Rnx , L2 (Rny )),
k1 (x, y) ∈ S(Rny , L2 (Rnx )).
Dann hat op(p)−1 op(r1 ) den Integralkern e k1 (x, y) = op(p)−1 k1 (·, y) (x) ∈ S(Rny , L2 (Rnx )) und R hat den Integralkern Z k(x, y) =
k0 (x, z)e k1 (z, y) dz ∈ S(R2n (x,y) ).
Also ist R = op(r) mit r ∈ S −∞,−∞ . 3. Schritt: Es ist p(−1) := q − q#r1 + r ∈ S 0,0 (Rn ) und op(p)−1 = op(p(−1) ) auf L2 (Rn ). Offenbar op(p), op(p(−1) ) ∈ L(H s,δ (Rn )) ∀ s, δ ∈ R. k→∞
Zu u ∈ H s,δ (Rn ) gibt es Folge (uk )k ⊂ S(Rn ) mit uk −−−→ u in H s,δ (Rn ). Dann ist k→∞
k→∞
op(p)op(p(−1) )u = op(p#p(−1) )u ←−−− op(p#p(−1) )uk = op(p)op(p(−1) )uk = uk −−−→ u (Konvergenz in H s,δ (Rn )) und analog op(p(−1) )op(p)u = u. Dies zeigt die Behauptung. Satz 6.12 Es sei p ∈ S µ (Rn ) elliptisch und µ > 0. Es sei s ∈ R. Dann gibt es genau einen abgeschlossenen Operatoren P : D(P ) ⊂ H s (Rn ) −→ H s (Rn ) mit S(Rn ) ⊂ D(P ) und P = op(p) auf D(P ). Dieser ist gegeben durch D(P ) = H s+µ (Rn ), Beweis:
P u = op(p)u.29
1. Schritt: Definiere Pmax durch Pmax = op(p)
auf
D(Pmax ) := {u ∈ H s (Rn ) | op(p)u ∈ H s (Rn )} .
Dann ist Pmax abgeschlossen: Sei dazu (uk )k ⊂ D(Pmax ) mit k→∞
uk −−−→ u
k→∞
und Pmax uk −−−→ v
in H s (Rn ).
k→∞
Aus Satz 5.3 folgt, dass Pmax uk = op(p)uk −−−→ op(p)u in H s−µ (Rn ). Wegen der Eindeutigkeit des Grenzwertes muss also op(p)u = v ∈ H s (Rn ) sein, d.h. u ∈ D(Pmax ) und Pmax u = v. 29
die analoge Aussage gilt f¨ ur p ∈ S µ,m mit µ, m ≥ 0. Dann ist D(P ) = H s+µ,δ+m (Rn ) ⊂ H s,δ (Rn ).
34
2. Schritt: Sei nun P irgendeine abgeschlossener Operator mit P = op(p) auf D(P ). Sei q ∈ S −µ (Rn ) eine Parametrix zu p und r := q#p − 1. Dann ist r ∈ S −∞ (Rn ) und f¨ ur u ∈ D(P ) gilt u = op(q#p)u − op(r)u = op(q)(P u) − op(r)u ∈ H s+µ (Rn ). Also ist D(P ) ⊂ H s+µ (Rn ). 3. Schritt: Nach dem ersten Schritt ist op(p) : S(Rn ) ⊂ H s (Rn ) −→ H s (Rn ) abschließbar. Bezeichne mit Pmin den Abschluß. Dieser ist gegeben durch D(Pmin ) = u ∈ H s (Rn ) | ∃ (uk )k ⊂ S(Rn ) ∃ v ∈ H s (Rn ) : k→∞ k→∞ uk −−−→ u und op(p)uk −−−→ v in H s (Rn ) , Pmin u = v. Aus Satz 5.3 folgt, dass Pmin = op(p) auf D(Pmin ). Wegen der Dichtheit von S(Rn ) in H s+µ (Rn ) ist offenbar H s+µ (Rn ) ⊂ D(Pmin ). 4. Schritt: F¨ ur irgendeine abgeschlossenen Operatoren mit P = op(p) auf D(P ) gilt also H s+µ (Rn ) ⊂ D(Pmin ) ⊂ D(P ) ⊂ H s+µ (Rn ). Dies zeigt offenbar die Behauptung.
7
Parameterabh¨ angige ψdo
ur ein l ∈ N. Im folgenden sei Σ eine offene Teilmenge von Rl f¨ Definition 7.1 Es sei µ ∈ R. Wir definieren S µ (Rn ; Σ) als Raum aller C ∞ -Funktionen p : Rn × Rn × Σ → C mit kpkµk :=
sup x,ξ∈Rn , η∈Σ,
α |∂(ξ,η) ∂xβ p(x, ξ; η)|hξ, ηi|α|−µ < ∞
|α|+|β|≤k
f¨ ur alle k ∈ N0 , wobei hξ, ηi := h(ξ, η)i = (1 + |ξ|2 + |η|2 )1/2 . Wir sprechen von parameter-abh¨ angigen Symbolen. Weiterhin definiert Z [op(p)(η)u](x) =
eixξ p(x, ξ; η) d¯ξ,
eine Familie von ψdo mit Parameter η. 35
u ∈ S(Rn ),
Beispiel 7.2
P
a) Es sei a(x, ξ) =
|α|≤m
aα (x)ξ α mit aα ∈ Cb∞ (Rn ) und b(η) ein Polynom
in η vom Grad m0 . Dann ist p(x, ξ; η) := a(x, ξ) + b(η) ∈ S µ (Rn ; Rl ) f¨ ur µ := max(m, m0 ), da p ein Polynom vom Grad µ in (ξ, η) ist. b) F¨ ur Symbole a(x, ξ) ∈ S m (Rn ) ist die Aussage von a) im allgemeinen falsch! Satz 7.3 Es sei ν ≥ µ und s ∈ R. Dann gibt es ein k ∈ N0 und ein C ≥ 0 mit kop(p)(η)kL(H s (Rn ),H s−ν (Rn )) ≤ C kpkµk hηiµ−ν− ,
ν− := min(ν, 0),
f¨ ur alle p ∈ S µ (Rn ; Σ). Ist µ ≤ 0, so gilt insbesondere kop(p)(η)kL(H s (Rn )) ≤ C kpkµk hηiµ . Beweis: F¨ ur festes η ist pe(x, ξ) := p(x, ξ; η) ∈ S ν (Rn ) Nach Satz 5.3 ist op(p)(η) ∈ s n s−ν L(H (R ), H (Rn )) und kop(p)(η)kL(H s (Rn ),H s−ν (Rn )) ≤ Cs,ν
sup x,ξ∈Rn , |α|+|β|≤k
|∂ξα ∂xβ p(x, ξ; η)|hξi|α|−ν
mit einem k = k(s, ν). Nun ist aber |∂ξα ∂xβ p(x, ξ; η)|hξi|α|−ν ≤ kpkµk hξ, ηiµ−|α| hξi|α|−ν ≤ kpkµk hξ, ηiµ hξi−ν . F¨ ur µ ≥ 0 ist ν− = 0 und hξ, ηiµ hξi−ν ≤ 2µ hξiµ−ν hηiµ ≤ 2µ hηiµ
(da ν ≥ µ).30
F¨ ur µ ≤ 0 ist hξ, ηiµ hξi−ν ≤ hξ, ηiµ−ν− hξiν− −ν ≤ hξ, ηiµ−ν− ≤ hηiµ−ν− .31 Dies liefert offenbar die Behauptung. Satz 7.4 F¨ ur pj ∈ S µj (Rn ; Σ) ist op(p1 )(η) op(p2 )(η) = op(p1 #p2 )(η), wobei p1 #p2 ∼
P∞
1 α α |α|=0 α! (∂ξ p1 )(Dx p2 ),
(p1 #p2 )(x, ξ; η) − 30 31
d.h. f¨ ur alle N ∈ N0 ist
NP −1
1 α (∂ξ p1 )(x, ξ; η)(Dxα p2 )(x, ξ; η) ∈ S µ1 +µ2 −N (Rn ; Σ). α! |α|=0
schreibe hξ, ηi = h(ξ, 0) + (0, η)i und verwende die Peetresche Ungleichung die erste Ungleichung gilt, da ν− ≤ 0 ist, die letzte wegen µ − ν− ≤ 0
36
Satz 7.5 p ∈ S µ (Rn ; Σ) heißt (parameter-)elliptisch, falls es C, R ≥ 0 gibt mit
1 ≤ C hξ, ηi−µ p(x, ξ; η)
∀x
∀ |(ξ, η)| ≥ R.
Dann (und nur dann!) hat p eine Parametrix q ∈ S −µ (Rn ; Σ), d.h. (p#q)(x, ξ; η) − 1, (q#p)(x, ξ; η) − 1 ∈ S −∞,−∞ (Rn ; Σ). Notation: F¨ ur ein offenes U und einen Fr´echetraum E setze S(U, E) = a ∈ C ∞ (U, E) | sup k∂ α a(x)khxiN < ∞ x∈U
f¨ ur alle α, N und jede Halbnorm k · k von E . Satz 7.6 Es sei p ∈ S µ (Rn ; Σ) elliptisch. Dann gibt es ein R ≥ 0 derart, dass op(p)(η) : H s+µ (Rn ) −→ H s (Rn ) ein Isomorphismus ist f¨ ur alle s ∈ R und f¨ ur alle η ∈ ΣR := {η ∈ Σ | |η| > R}. Weiterhin ist f¨ ur jede Parametrix q ∈ S −µ (Rn ; Σ) von p 0 op(p)(η)−1 − op(q)(η) ∈ S ΣR , L(H t (Rn ), H t (Rn ))
∀ t, t0 ∈ R.
Insbesondere: Ist µ ≥ 0, so gilt kop(p)(η)−1 kL(H s (Rn )) ≤ Cs hηi−µ
∀ |η| > R.
(7.1)
Beweis: Sei zun¨ achst s = s0 fixiert. Nach Wahl von q ist op(q)(η) : H s0 (Rn ) → H s0 +µ (Rn ) und r ∈ S −∞ (Rn ; Σ) = S(Σ, S −∞ (Rn )).
op(p)(η)op(q)(η) = 1 − op(r)(η), Insbesondere ist nach Satz 5.3
0 op(r)(η) ∈ S Σ, L(H t (Rn ), H t (Rn ))
∀ t, t0 ∈ R.
(7.2)
Also gibt es ein Rr ≥ 0 mit kop(r)(η)kL(H s0 (Rn )) ≤ Daher ist
1 2
∀ |η| ≥ Rr .
−1 op(p)(η)op(q)(η) 1 − op(r)(η) =1
∀ |η| ≥ Rr .
Analog konstruiert man eine Linksinverse von op(p)(η) f¨ ur |η| ≥ Rl . Also ist op(p)(η) invertierbar mit −1 op(p)(η)−1 = op(q)(η) 1 − op(r)(η) ∀ |η| ≥ R := max(Rl , Rr ). 37
Weiterhin ist −1 −1 = 1 + op(r)(η) − op(r)(η) 1 − op(r)(η) op(r)(η). 1 − op(r)(η) Setze nun
−1 S(η) = op(q#r)(η) − op(q#r)(η) 1 − op(r)(η) op(r)(η).
Wegen (7.2) ist 0 S(η) ∈ S ΣR , L(H t (Rn ), H t (Rn ))
∀ t, t0 ∈ R
und, als Operator H s0 (Rn ) → H s0 +µ (Rn ), op(p)(η)−1 = op(q)(η) + S(η)
∀ |η| ≥ R.
F¨ ur beliebiges s ∈ R ist As (η) := op(q)(η) + S(η) ∈ L(H s (Rn ), H s+µ (Rn )). Da As (η) = As0 (η) auf S(Rn ) und op(p)(η) : S(Rn ) → S(Rn ) gilt op(p)(η)As (η)u = u,
∀ |η| ≥ R
As (η)op(p)(η)v = v
f¨ ur alle u, v ∈ S(Rn ). Per Dichtheitsargument gelten diese Identit¨aten dann auch f¨ ur s n s+µ n u ∈ H (R ) und v ∈ H (R ). (7.1) folgt aus Satz 7.3 angewendet auf q.
8
Resolventen und H∞ -Funktionalkalku ¨l
Im folgenden sei Λθ = {reiϕ | r > 0 und θ < ϕ < 2π − θ} ⊂ C \ {0},
0 < θ < π.
(8.1)
Satz 8.1 (Erzeuger analytischer Halbgruppen) Es sei A : D(A) ⊂ X → X ein abgeschlossener, dicht definierter Operator im Banachraum X. Es gebe ein λ0 ∈ R und ein ε > 0 derart, dass λ0 + Λ π2 −ε ⊂ ρ(A) und k(λ − A)−1 kL(X) ≤ Dann ist e−zA :=
1 2πi
Z
C |λ − λ0 |
∀ λ ∈ λ0 + Λ π2 −ε .32
e−zλ (λ − A)−1 dλ ∈ L(X)
Γ
∀ z ∈ C \ Λ π2 −ε
holomorph in z und f¨ ur u(t) := e−tA u0 , u0 ∈ X, ist u ∈ C([0, ∞[, X) ∩ C ∞ (]0, ∞[, X) mit u(t) ˙ + Au(t) = 0
∀ t > 0,
Dabei ist Γ der Rand von (λ0 + Λ π2 −ε ) \ {λ | |λ| < 1}. 32
u(0) = u0 . 33
Beachte: Wegen Satz 10.4.c) ist dann auch λ0 + Λ π2 −ε \ {λ0 } ⊂ ρ(A) und es gilt dort diesselbe Absch¨ atzung. 33 von unten nach oben“ durchlaufen ”
38
Definition 8.2 Es sei Λ wie in (8.1) und A = op(a) mit a(x, ξ) = aα ∈ Cb∞ (Rn ). Weiterhin sei Σ ein Sektor derart, dass
P
|α|≤µ aα (x)ξ
α
und
η 7→ η µ : Σ −→ Λ eine Bijektion ist.34 A heißt Λ-elliptisch, falls p(x, ξ; η) := η µ − a(x, ξ) ∈ S µ (Rn ; Σ) elliptisch ist.35 Satz 8.3 Es sei A ein Λ π2 −ε -elliptischer Differentialoperator der Ordnung µ. Dann erf¨ ullt s n s+µ n A die Voraussetzungen von Satz 8.1 mit X = H (R ) und D(A) = H (R ) f¨ ur beliebiges s ∈ R. Beweis: Da p(x, ξ; 0) = −a(x, ξ), impliziert die Elliptizit¨at von p die von a. Nach Satz 6.12 ist A mit D(A) = H s+µ (Rn ) abgeschlossen in H s (Rn ). F¨ ur λ = η µ ist nach Satz 7.3 C C = µ |η| |λ|
k(λ − A)−1 k = kop(p)(η)−1 k ≤
falls |η| > R, d.h. |λ| > Rµ , mit einem geeigneten R ≥ 0. W¨ahle nun λ0 ∈ R derart, dass λ0 + Λ π2 −ε ⊂ Λ π2 −ε \ {λ | |λ| ≤ Rµ }. Dann gilt die gew¨ unschte Resolventenabsch¨atzung. Satz 8.4 Es sei Λ wie in (8.1) und A = op(a) mit a(x, ξ) = Cb∞ (Rn ). Dann sind ¨ aquivalent:
P
|α|≤µ aα (x)ξ
α
und aα ∈
a) A ist Λ-elliptisch. b) F¨ ur das sogenannte Hauptsymbol σ(A)(x, ξ) =
P
|α|=µ aα (x)ξ
α
von A gilt
D := {σ(A)(x, ξ) | x ∈ Rn , |ξ| = 1} ⊂ C \ Λ. Beweis:
Sei Σ zu Λ gew¨ ahlt wie in Definition 8.2.
Vorbemerkung: Wegen η µ − a(x, ξ) = η µ − σ(A)(x, ξ) + σ(A)(x, ξ) − a(x, ξ) ≡ η µ − σ(A)(x, ξ) mod S µ−1 (Rn ; R2 ) ist A genau dann Λ-elliptisch, wenn es σ(A)(x, D) ist. Wir k¨onnen also oBdA annehmen, dass a = σ(A) ist. b) ⇒ a): Setze p(x, ξ; η) = η µ − a(x, ξ). Da f¨ ur ξ 6= 0 a(x, ξ) = |ξ|−µ a(x, ξ/|ξ|) ∈ |ξ|−µ D ⊂ C \ Λ 34 35
F¨ ur Λδ w¨ ahle zum Beispiel Σ = {seiα | s > 0, fasse dabei η µ als Polynom in η ∈ R2 auf
δ µ
0 |ηkµ − a(xk , ξk )| ≥ dist(D,
∀ k ≥ k0
und somit auch m > 0. Aus (8.2) und (8.3) folgt offenbar, dass |p(x, ξ; η)−1 | ≤ C hξ, ηi−µ
∀ |(ξ, η)| ≥ 1.
¨ a) ⇒ b): Ahnlich. Beispiel 8.5 Es sei b ∈ Cb∞ (Rn , Rn×n ) punktweise symmetrisch mit (b(x)ξ, ξ)Rn ≥ c > 0
∀ x ∈ Rn
∀ |ξ| = 1.36
Ist dann A ein Differentialoperator wie oben mit µ = 2 und σ(A)(x, ξ) = (b(x)ξ, ξ), so ist A Λ-elliptisch f¨ ur jedes Λ mit Λ ⊂ C \ ]0, ∞[. Insbesondere ist A = −∆ ein solcher Operator. Definition 8.6 Es sei Λ wie in (8.1). Mit H = H(Λ) bezeichne den Raum aller holomorphen, beschr¨ ankten Funktionen f : C \ Λ → C f¨ ur die ein s = s(f ) > 0 existiert derart, dass sup (|λ|−s + |λ|s )|f (λ)| < ∞. λ∈C\Λ 36
d.h. b ist gleichm¨ aßig positiv definit
40
Bemerkung 8.7 Es sei f ∈ H(Λ). Dann existieren die nicht-tangentialen Grenzwerte f (z) = lim f (λ) Λ3λ→z
f.f.a. z ∈ ∂Λ
und man kann f ∂Λ ∈ L∞ (∂Λ) definieren. Ist A : D(A) ⊂ X → X wie in Satz 8.1 mit λ0 = 0, so existiert also Z 1 f (λ)(λ − A)−1 dλ ∈ L(X). (8.4) f (A) := 2πi ∂Λ Definition 8.8 Es sei A : D(A) ⊂ X → X wie in Satz 8.1 mit λ0 = 0. A besitzt einen beschr¨ ankten H∞ -Kalk¨ ul bez¨ uglich C \ Λ, falls es eine Konstante M ≥ 0 gibt mit kf (A)kL(X) ≤ M kf k∞
∀ f ∈ H(Λ),
wobei kf k∞ = supλ∈C\Λ |f (λ)|. Bemerkung 8.9 Besitzt A : D(A) ⊂ X → X einen beschr¨ankten H∞ -Kalk¨ ul und hat zus¨atzlich dichtes Bild, so kann man durch geeignete Approximation f¨ ur jedes beschr¨ankte, holomorphe F : C \ Λ → C ein F (A) ∈ L(X) definieren, f¨ ur den wieder gilt kF (A)kL(X) ≤ M kF k∞ . Zum Beispiel mit F (λ) = λit mit t ∈ R folgt F (A) = Ait ∈ L(X),
kAit kL(X) ≤ M eθ|t|
∀ t ∈ R,
(8.5)
wobei Λ = Λθ wie in (8.1). Man sagt, dass A beschr¨ankte imagin¨are Potenzen besitzt. Satz 8.10 (Dore-Venni) A : D(A) ⊂ X → X habe beschr¨ ankte imagin¨ are Potenzen und in (8.5) sei θ < π2 . Dann hat u(t) ˙ + Au(t) = f (t) f¨ ur 0 < t < T ,
u(0) = 0
f¨ ur jedes f ∈ Lp ([0, T ], X) mit 1 < p < ∞ genau eine L¨ osung u ∈ Wp1 ([0, T ], X) ∩ Lp ([0, 1], D(A)). P Satz 8.11 Es sei A = aα (x)Dxα mit aα ∈ Cb∞ (Rn ) Λ-elliptisch. Dann gibt es ein |α|≤µ
λ0 ≥ 0 derart, dass λ0 + A : H s+µ (Rn ) ⊂ H s (Rn ) −→ H s (Rn )
(s ∈ R beliebig )
einen beschr¨ ankten H∞ -Kalk¨ ul bzgl. C \ Λ besitzt. Lemma 8.12 Es seien die Voraussetzungen und Bezeichnungen wie in Satz 8.11 und at (x, ξ) := t +
aα (x)ξ α ,
P
t ∈ R.
|α|≤µ
Dann gibt es ein t ≥ 0 derart, dass f¨ ur jedes t ≥ t0 gilt: −1 sup λ − at (x, ξ) (hξiµ + |λ|) < ∞. (ξ,λ) ∈ Rn ×Λ, x ∈ Rn
41
Beweis von Satz 8.11: e := 1. Schritt: Nach Lemma 8.12 und Satz 7.6 k¨onnen wir λ0 ≥ 0 so w¨ahlen, dass A λ0 + A folgende Eigenschaften hat: −1 µ ∀ x ∈ Rn ∀ (ξ, η) ∈ Rn × Σ a(x, ξ) ≤ Chξ, ηi η −e e bezeichnet) und (wobei e a(x, ξ) das Symbol von A e −1 = op(q)(η) + S(η) (η µ − A)
∀η∈Σ
mit q(x, ξ; η) ∈ S −µ (Rn ; Σ),
S(η) ∈ ∩ S Rn , L(H r (Rn ), H t (Rn )) . r,t∈R
Insbesondere gilt e −1 kL(H s (Rn )) ≤ C 1 k(λ − A) |λ|
∀ 0 6= λ ∈ Λ.
Nach Konstruktion der Parametrix ist −1 r(x, ξ; η) := q(x, ξ; η) − η µ − e a(x, ξ) ∈ S −µ−1 (Rn ; Σ).
(8.6)
2. Schritt:
Nach Definition ist Z Z 1 1 −1 e e −1 η µ−1 dη e f (λ)(λ − A) dλ = f (η µ )(η µ − A) f (A) = 2πi ∂Λ 2πi ∂Σ
f¨ ur f ∈ H(Λ). Wir wollen zeigen: Es gibt ein M ≥ 0 mit e L(H s (Rn )) ≤ M kf k∞ kf (A)k 3. Schritt: Offenbar ist
Z
µ µ−1 f (η )S(η)η dη
Z
L(H s (Rn ))
∂Σ
≤ kf k∞
∀ f ∈ H(Λ).
kS(η)kkL(H s (Rn )) |η|µ−1 dη = M kf k∞
∂Σ
mit M = M (S). 4. Schritt:
F¨ ur f ∈ H(Λ) setze rf (x, ξ) =
1 2πi
Z
f (η µ )r(x, ξ; η)η µ−1 dη
∂Σ
mit r aus (8.6). Bis auf Orientierung haben die beiden Teile von ∂Σ eine Parametrisierung der Form t 7→ teiϕ : [0, ∞[ → C. Es folgt, dass Z ∞ α β |∂ξ ∂x rf (x, ξ)| ≤ Cαβ kf k∞ hξ, ti−µ−1−|α| tµ−1 dt 0 Z ∞ t=shξi = Cαβ kf k∞ hξ, shξii−µ−1−|α| hξiµ sµ−1 ds. 0
42
Nun ist aber hξ, shξii2 = 1 + |ξ|2 + s2 (1 + |ξ|2 ) = (1 + |ξ|2 )(1 + s2 ) = hξi2 hsi2 . Wir erhalten also |∂ξα ∂xβ rf (x, ξ)|
Z
∞
hξi−µ−1−|α| hsi−µ−1−|α| hξiµ sµ−1 ds 0 Z ∞ −1−|α| 0 ≤ Cαβ kf k∞ hξi hsi−2 ds = Cαβ kf k∞ hξi−1−|α| . ≤ Cαβ kf k∞
0
n
Also ist kf1k∞ rf | 0 6= f ∈ H(Λ) 5.3 gibt es also ein M ≥ 0 mit
o
eine beschr¨ankte Teilmenge von S −1 (Rn ). Nach Satz
kop(rf )kL(H s (Rn )) ≤ M kf k∞ 5. Schritt:
∀ f ∈ H(Λ).
F¨ ur f ∈ H(Λ) setze 1 pf (x, ξ) = 2πi
Z ∂Λ
f (λ)(λ − e a(x, ξ))−1 dλ.
Sei nun (x, ξ) fixiert. Dann ist der Integrand außerhalb der Menge Λ ∪ {λ ∈ C | |λ| ≤ ke akµ0 hξiµ } holomorph und ist dort O(|λ|−1−ε ) f¨ ur ein ε = ε(f ) > 0 (beachte das Abfallverhalten von Funktionen aus H(Λ)). Es folgt, dass Z 1 pf (x, ξ) = f (λ)(λ − e a(x, ξ))−1 dλ 2πi Cξ mit dem in Abbildung 1 dargestellten Integrationsweg Cξ . Auf dem Kreisanteil von Cξ gilt die Absch¨ atzung −1 1 a(x, ξ) ≤ hξi−µ , λ−e ke akµ0 auf den radialen Teilen ist (insbesondere) −1 a(x, ξ) ≤ C hξi−µ . λ−e Es folgt, dass |pf (x, ξ)| ≤ C kf k∞ L¨ ange(Cξ )hξi−µ ≤ 4C(π + 1) ke akµ0 kf k∞
∀ x, ξ ∈ Rn .
Unter Ber¨ ucksichtigung der Kettenregel kann man analog zeigen, dass |∂ξα ∂xβ pf (x, ξ)| ≤ Cαβ kf k∞ hξi−|α| ∀ x, ξ ∈ Rn . n o Also ist kf1k∞ pf | 0 6= f ∈ H(Λ) eine beschr¨ankte Teilmenge von S 0 (Rn ). Wieder nach Satz 5.3 gibt es ein M ≥ 0 mit kop(pf )kL(H s (Rn )) ≤ M kf k∞ 6. Schritt:
∀ f ∈ H(Λ).
Die Behauptung folgt nun aus e = op(pf ) + op(rf ) + 1 f (A) 2πi
43
Z ∂Σ
f (η µ )S(η)η µ−1 dη.
Abbildung 1: Der im Uhrzeiger Sinn zu durchlaufende Weg Cξ (blau)
9
Wiederholung: Fredholm-Operatoren
Satz 9.1 Es seien X0 , X1 Banachr¨ aume. Ein Operator K ∈ L(X0 , X1 ) heißt kompakt, wenn eine der folgenden ¨ aquivalenten Eigenschaften gilt: a) K bildet beschr¨ ankte in relativ kompakte Mengen ab. b) Ist (xn )n∈N eine beschr¨ ankte Folge, so hat (Kxn )n∈N eine konvergente Teilfolge. Sind X0 , X1 Hilbertr¨ aume, so sind a) und b) ¨ aquivalent zu n→∞
c) Es gibt (Kn )n∈N mit dim Bild Kn < ∞ und Kn −−−→ K in L(X0 , X1 ). Die Menge K(X0 , X1 ) := {K ∈ L(X0 , X1 ) | K kompakt} bildet einen abgeschlossenen Unterraum von L(X0 , X1 ). Es gelten folgende Aussagen: i) Ist (xn )n∈N schwach konvergent gegen x,37 so ist (Kxn )n∈N konvergent gegen Kx. ii) Sind P0 ∈ L(X, X0 ), P1 ∈ L(X1 , X), so sind KP0 ∈ K(X, X0 ) und P1 K ∈ K(X0 , X). Satz 9.2 Es seien X0 , X1 Banachr¨ aume. Ein P ∈ L(X0 , X1 ) heißt ein Fredholm-Operator, falls eine der folgenden ¨ aquivalenten Eigenschaften gilt: 37
n→∞
d.h. (y, xn ) −−−−→ (y, x) f¨ ur alle y ∈ X
44
a) Es ist dim Kern P < ∞
und
codim Bild P := dim X1 /Bild P < ∞.
b) P ist invertierbar modulo kompakter Operatoren, d.h. es gibt Q ∈ L(X1 , X0 ) mit QP − 1 ∈ K(X0 )
und
P Q − 1 ∈ K(X1 ).
In diesem Fall ist Bild P abgeschlossen in X1 und wir setzen ind P := dim Kern P − codim Bild P. Es gelten folgende Aussagen: i) Sind P ∈ F(X0 , X1 ) und K ∈ K(X0 , X1 ), so ist P + K ∈ F(X0 , X1 ) und ind (P + K) = ind P. ii) Sind Pj ∈ F(Xj , Xj+1 ) f¨ ur j = 0, 1, so ist P1 P0 ∈ F(X0 , X2 ) und ind P1 P0 = ind P0 + ind P1 . iii) F(X0 , X1 ) ist eine offene Teilmenge von L(X0 , X1 ) und ind : F(X0 , X1 ) → C ist lokal konstant.38
10
Wiederholung: Unbeschr¨ ankte Operatoren
Im folgenden sei X ein Banachraum mit Norm k · k. Definition 10.1 (und Satz) Eine linerare Abbildung A : D(A) ⊂ X → X heißt ein abgeschlossener Operator in X, falls gilt: i) Ist (xn )n ⊂ D(A) mit xn → x und Axn → y in X, so ist x ∈ D(A) und Ax = y. Dies ist ¨ aquivalent zu jeder der folgenden Eigenschaften: ii) Graph(A) := {(x, Ax)| x ∈ D(A)} ist ein abgeschlossener Unterraum von X ⊕ X. iii) D(A) versehen mit der Norm |kxk| := kxk + kAxk,
x ∈ D(A),
ist ein Banachraum. Satz 10.2 (vom abgeschlossenen Graphen) Es sei A : X → X linear. Dann: A ∈ L(X) ⇐⇒ A : D(A) = X → X abgeschlossen. 38
Insbesondere ist ind konstant auf den Zusammenhangskomponenten von F (X0 , X1 ).
45
Definition 10.3 (und Satz) Es sei A : D(A) ⊂ X → X abgeschlossen. Die Resolventenmenge von A ist ρ(A) := {λ ∈ C| λ − A : D(A) → X ist bijektiv} (wir identifizieren λ ∈ C mit der Abbildung x 7→ λx ∈ L(X)). Das Spektrum von A ist σ(A) := C \ ρ(A). F¨ ur jedes λ ∈ %(A) ist automatisch (λ − A)−1 ∈ L(X). Satz 10.4 Es sei A : D(A) ⊂ X → X abgeschlossen. Dann gelten: a) ρ(A) ist offen in C (und damit σ(A) abgeschlossen). Ist λ0 ∈ ρ(A), so ist (λ − A)−1 =
∞ X
(λ0 − λ)n (λ0 − A)−(n+1)
∀ |λ − λ0 |