PYROLYSIS-GC/MS DATA BOOK OF SYNTHETIC POLYMERS Pyrograms, Thermograms and MS of Pyrolyzates
TSUGE Shin, OHTANI Hajime,...
66 downloads
1748 Views
30MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
PYROLYSIS-GC/MS DATA BOOK OF SYNTHETIC POLYMERS Pyrograms, Thermograms and MS of Pyrolyzates
TSUGE Shin, OHTANI Hajime, WATANABE Chuichi
Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo
Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands First edition 2011 Copyright Ó 2011 Elsevier B.V. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@ elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN: 978-0-444-53892-5 For information on all Elsevier publications visit our web site at elsevierdirect.com
Printed and bound in Great Britain 11 12 13 10 9 8 7 6 5 4 3 2 1
PREFACE
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) as evidenced by ever increasing numbers of publications in various fields is a rapidly growing scientific area. Especially, in the field of polymer characterization, it is now widely recognized as one of the most promising and practical techniques. Among important factors enabling the rapid advancement of the modern analytical pyrolysis technique are the developments of: a) Various specific pyrolyzers such as the resistively heated self-sensing Pt filaments, the Curie point devices and the functional micro-furnace ones, b) Highly efficient and specific capillary columns such as fused-silica and deactivated stainless steel capillary ones enabling separation of up to fairly polar compounds with higher boiling points to yield high-resolution pyrolysis-gas chromatogram (pyrogram) characteristic of the sample, c) Specific on-line identification techniques for separated components on the pyrograms by means of GC/MS, GC/AED (atomic emission detector), GC/IR (infrared spectrometer), etc. among which GC/MS has played the most important role, d) On-line chemolysis combined with thermal decomposition of condensation polymers in the pyrolysis chamber, typically in the presence of an organic alkaline such as tetramethylammonium hydroxide (TMAH), and e) Sophisticated data searching and handling systems aided by modern computer with abundant memory capacity and processing speed. However, not a few scientists have been skeptical to some extent against the reported data of modern analytical pyrolysis, especially concerning to interlaboratory specificity and reproducibility of the resulting data. Therefore, the standardization of the analytical conditions by use of well characterized samples, and the publication of well qualified data compilation for a series of standard samples have been eagerly requested for a long time. In the end of the 1980’s, the authors published a trial standard database for the pyrograms of 135 typical synthetic polymer samples taken under the same conditions for Py-GC with flame ionization detector (FID) (Tsuge S, Ohtani H. “Pyrolysis-gas chromatography of polymers - fundamentals and data compilations”. Techno System Co., Tokyo, 1989). Recently, we launched a revised database for the pyrograms of 165 typical standard polymers by use of Py-GC/MS together with those for 33 condensation polymers taken by reactive pyrolysis (RP) in the presence of TMAH, where all pyrograms were monitored by total ion current of MS rather than by FID (Tsuge S, Ohtani H, Watanabe C. “Pyrolysis-GC/MS of high polymers - fundamentals and pyrogram compilations”. Techno System Co., Tokyo, 2006). Both of the above mentioned data books, however, were written in Japanese. xiii
j
xiv
Preface
Therefore, the authors have been frequently requested to publish their English editions. In this new data book, the authors compiled the comprehensive pyrolysis data for representative synthetic polymers along with some natural polymers, not only pyrograms taken by conventional Py-GC/MS and RP, but also thermograms and mass spectra taken by evolved gas analysis (EGA) under programmed degradation temperatures. Furthermore, the mass spectra of the up to top 10 major pyrolyzates observed on each pyrogram, and the retention index data for each peak on a given pyrogram were also compiled, for the sake of users’ convenience and promotion of interlaboratory reproducibility and reliability. The authors would be in supreme bliss if this data book could contribute to move up the status of Py-GC/MS in the field of polymer characterization through overcoming its potential skepticism.
ACKNOWLEDGMENTS The authors wish to acknowledge with thanks so many suppliers of the standard polymer samples used for the data measurements of this compilation. We wish to extend our sincere gratitude to Frontier Laboratories Ltd (FLL) and Nagoya Institute of Technology (NIT) for their instrumental and scientific contribution, especially to Ms. MATSUI Kazuko, Mr. HOSAKA Akihiko and Ms. KUNII Sayuri (FLL), and Ms. AOI Hiromi and Ms. KATO Shino (NIT), for collecting, interpreting and compiling huge pyrolysis data properly with patience. TSUGE Shin Nagoya University
OHTANI Hajime Nagoya Institute of Technology
WATANABE Chuichi Frontier Laboratories Ltd
October 1, 2010
PART 1
Introduction In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials, and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymer samples.
1.1 HISTORY AND SCOPE OF ANALYTICAL PYROLYSIS Figure 1.1 shows a brief chronological diagram of modern analytical pyrolysis after the advent of organic MS with an electron impact (EI) ion source followed by the appearance of GC, together with various developments in related techniques and the associated international conferences.1–3 In 1948, the first reports on the off-line pyrolysis-MS (Py-MS) of polymers were published by Madorsky and Straus, and Wall. In 1953, Bradt et al. described on-line Py-MS for which pyrolysis of polymer samples was affected within the instrument in vacuo. Thus valuable structural information about the samples became obtainable. Two years after the introduction of GC by James and Martin in 1952, Davison et al. reported the first work on off-line Py-GC of polymers. These workers demonstrated that Py-GC was quite effective for the characterization of polymeric materials. In 1959, online Py-GC systems and their applications to polymer analysis were reported independently by three research groups: Lehrle and Robb, Radell and Strutz, and Martin. These achievements triggered a boom in Py-GC. Moreover, the dissemination of GC–MS after 1965 strongly accelerated the development of Py-GC. In 1966, Simon and co-workers reported the first directly coupled Py-GC/MS system using a rapid scanning MS. The high-resolution capillary columns introduced by Golay in 1958 had a strong impact on Py-GC. However, general application of their effectiveness was held back until the advent of the chemically inert fused silica capillary columns in 1979, since the earlier metal capillary columns were not suitable for the separation of polar and/or higher boiling point compounds. The chemical inertness and thermal stability of capillary separation columns are among the most important factors in achieving highresolution pyrograms of polymer samples by Py-GC/MS since the thermal degradation products of polymers usually consist of compounds with a wide range of boiling points Pyrolysis-GC/MS Data Book of Synthetic Polymers/Tsuge ISBN 978-0-444-53892-5, Doi:10.1016/B978-0-444-53892-5.10001-X
Ó 2011 Elsevier B.V. All rights reserved.
1
j
2
Tsuge, Ohtani and Watanabe
[Analytical pyrolysis]
[Related techniques] 1945
Madorsky, et al., and Wall, et al., (1948)
Organic MS (EI) 1950
Bradt, et al., (1953)
GC (1952)
Davison, et al., (1954) Lehrle, et al., Radell, et al. and 1960 Martin (1959) Simon (1964)
Capillary GC/FID (1959)
[Intl. Symposium] 1st (1965) Paris
Simon (1966) Hummel, et al., (1968)
GC/MS (1965-1970) 1970
Meuzelaar, et al., (1973)
3rd (1976) Amsterdam
Tsuge (1973) <Micro-furnace pyrolyzer> J. Anal. Appl. Pyrol. <Elsevier>
2nd (1972) Paris
1980
4th (1979) Budapest th
Fused-silica capillary for GC (1979)
5 (1982) Vail, CO 6th (1984) Weisbaden
GC/FT-IR (1980-1990)
7th (1986) Reading
Tsuge, Ohtani (1989)
1990
8th (1988) Lund
GC/AED (1989)
9th (1990) Noordwijkerhout
Deactivated stainless steel capillary GC (1991)
10th (1992) Hamburg 11th (1994) Nagoya 12th (1996) Venice 2000
13th (1998) Munich 14th (2000) Seville 15th (2002) Leoben
Tsuge, Ohtani, Watanabe (2006)
16th (2004) Alicante 17th (2006) Budapest 18th (2008) Canary Islands
2010
Figure 1.1 Chronicle of analytical pyrolysis.
which often contain fairly polar compounds such as carboxylic acids, amines, nitriles, epoxides, and so on. Modern fused silica capillary columns and recently developed metal capillary ones with deactivated inner walls have drastically improved the situation of Py-GC/MS. During such developments in analytical pyrolysis, a number of books and commentaries have been released (most of these are listed in Appendix). In recent years, comprehensive monographs of analytical pyrolysis by Moldoveanu were published by focusing on natural4 and synthetic polymers,5 respectively. These books systematically discuss the latest trends in theory and techniques in analytical pyrolysis with featuring the representative applications. On the other hand, standardization and reliable compilation of
3
Introduction
a standard database for various series of standard samples have been left among the important factors to promote interlaboratory data comparison in Py-GC. In the early stage of Py-GC, however, significant interlaboratory discrepancies between pyrolysis data (pyrograms) were reported even for the same polymer types. This was mainly caused by a diversity of pyrolysis devices operated under varied conditions. Owing to continued improvement of pyrolyzers and fundamental studies to control the operating conditions and obtain reproducible and characteristic degradation of the studied materials, most of the commercially available pyrolyzers (flash filament-, furnace-, and Curie-point types) have made the interlaboratory discrepancies, a minor problem. In this situation, a trial standard database for 136 kinds of typical synthetic polymers compiled under the same refined conditions using Py-GC was published by the authors in 1989,6 and its expanded revision was then issued in 2006.7 These data books, however, were written in Japanese. In order to respond to the international request, the authors have compiled a new English version Py-GC/MS data book covering most of the typical synthetic polymers.
1.2 EXPANDED APPLICABILITY OF GC/MS BY COMBINING WITH PYROLYSIS Modern GC/MS is widely recognized as one of the most powerful methodologies, where mass resolving and mass determining capabilities of MS are synergistically enhanced through direct combination with high-resolution ability of GC even for complex mixture samples provided that they might have moderate volatility. However, we have to comprehend that the ordinary limitation of GC/MS lies in the volatility of given samples. Generally speaking the samples to be fed on GC/MS analysis should have vapor pressure (volatility) at least in order of a few mmHg at the maximum GC column temperatures around 300 C. Here, you should notice that ordinary high polymers in the category of non-volatiles should be out of GC/MS application. Figure 1.2 illustrates the situations of Py-GC (Py-GC/MS) together with ordinary GC (GC/MS) and LC (LC/MS) as a function of hypothetical volatility [molecular weight (MW) or polarity]. As shown at the top, the substances around us exist at ambient temperature as either gas, liquid or solid, mostly depending on their MW. Although, the substances called “molecules” are in the range between A and B have some solvents, and are in the applicability of either GC or LC depending on their volatility or solubility in given solvents. Roughly speaking among the whole molecules (100%), about 30% of them could be treated with GC, including those formed through derivatization to enhance volatility or thermal stability, while LC can be applied about 85% of them provided that some proper solvents can be found even for polymers. However, the insoluble substances between the ranges above B cannot be treated by any chromatographic techniques.
4
Tsuge, Ohtani and Watanabe
Molecules
Insoluble substances [+α]
[ 100 % ]
Infinitive MW
MW / Polarity
Gas Liquid
[at ambient temp.]
Solid
Application range of LC, GC and Py-GC
LC (LC/MS)
[ 85 % ]
GC (GC/MS)
Non accessible by GC and LC
[ 30 % ] by derivatization
Py-GC (Py-GC/MS)
A
B
C
Figure 1.2 How “Pyrolysis” expanded the applicability of GC/MS for material characterization.
Three-dimensional polymeric materials, coal, lignin, soil, and most of biomass would be included in these category substances. However, the applicability of GC (GC/MS) combined with pyrolysis, Py-GC (Py-GC/MS) ranges the entire area of the organic substances if they could yield fragment by thermal energy or chemically assisted thermolysis. Thus, the modern Py-GC (Py-GC/ MS) is on the new horizon for the polymer characterization including intractable materials by conventional methodologies.
1.3 PY-GC/MS MEASURING PROCESS FOR POLYMER CHARACTERIZATION Figure 1.3 illustrates the flow diagram in Py-GC/MS and its complementary evolved gas analysis (EGA)–MS for polymer characterization. In Py-GC/MS measurements, usually a given polymer sample weighing about 10–100 mg is instantaneously pyrolyzed at about 400–600 C with or without catalytic and/or reactive reagents under a flow of N2 or He carrier gas. The resulting decomposition products transferred into the separation column are separated to yield a pyrogram. The pyrolysis products of a given polymer sample are usually composed of very complex components each of which might reflect the original structures. Even for these conditions, Py-GC/ MS utilizing a chemically inert capillary column often provides highly efficient
5
Introduction
Polymer sample
Pyrolysis (with/without reagent)
Decomposition products
Vaporization and thermal decomposition by programmed heating
Evolved compounds
EGA-MS
Py-GC/MS
Separative analysis by GC/MS
On-line monitoring by MS
Specific pyrogram
Thermogram
Compositional and structural characterization, and thermal behaviors of polymer
Figure 1.3 Flow diagram for polymer characterization by Py-GC/MS and EGA/MS.
separation. The individual components on the pyrogram are continuously identified by use of the observed mass spectra. In addition, total ion monitoring (TIM) and selected ion monitoring (SIM) often provide supplemental and/or complement information of peak identification on the pyrogram. On the other hand, in EGA–MS, evolved gases formed during the programmed heating of the sample are directly transferred into MS to achieve on-line monitoring of the components. For the EGA–MS measurements, the separation column in Py-GC/ MS is replaced with a deactivated open transfer line connecting directly between a temperature programmable pyrolyzer and an ion source of MS. The resulting thermogram monitored by MS during the programmed heating reflects the evolved gas profile of the sample as a function of temperature. The observed specific pyrograms and/ or thermograms often provide valuable information regarding the composition and/or chemical structures of the original polymer sample as well as on the degradation mechanisms and related kinetics.
6
Tsuge, Ohtani and Watanabe
REFERENCES 1. Tsuge S. J Anal Appl Pyrol 1995;32:1–6. 2. Tsuge S, Ohtani H. Polym Degrad Stab 1997;58:109–30. 3. Tsuge S, Ohtani H. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). In: Montaudo G, Lattimer RP, editors. Mass spectrometry of polymers. Boca Raton: CRC Press; 2002. 4. Moldoveanu SC. Analytical pyrolysis of natural organic polymers. Amsterdam: Elsevier; 1998. 5. Moldoveanu SC. Analytical pyrolysis of synthetic organic polymers. Amsterdam: Elsevier; 2005. 6. Tsuge S, Ohtani H. Pyrolysis-gas chromatography of polymers - fundamentals and data compilations. Tokyo: Techno System Co; 1989. 7. Tsuge S, Ohtani H, Watanabe C. Pyrolysis-GC/MS of high polymers - fundamentals and pyrogram compilations. Tokyo: Techno System Co; 2006.
PART 2
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates 2.1 EXPERIMENTAL CONDITIONS FOR MEASURING PYROGRAMS AND THERMOGRAMS OF HIGH POLYMERS, AND MS DATA FOR THE MAJOR PYROLYZATES BY MEANS OF PYROLYSIS-GC/MS AND EVOLVED GAS ANALYSIS (EGA)–MS TECHNIQUES 2.1.1 Polymer samples In the following data acquisition, the same 163 standard polymer samples used in the former editiony were adopted as a set of representative ones utilized in versatile fields, which include representative synthetic polymers [a) polyolefins (homopolymers) (001– 007), b) vinyl polymers with ethylene units (copolymers) (008–015), c) vinyl polymers with styrene units (016–028), d) vinyl polymers with styrene derivatives (029–035), e) acrylate-type polymers (036–049), f) chlorine-containing vinyl polymers (050–059), g) fluorine-containing vinyl polymers (060–066), h) the other vinyl polymers (067–070), i) diene-type elastomers (071–081), j) polyamides (082–090), k) polyacetals and polyethers (091–095), l) thermosetting polymers (096–106), m) polyimides and polyamide-type engineering plastics (107–114), n) polyesters (115–126), o) the other engineering plastics with phenylene skeletons (127–138), p) silicone polymers (139–143), and q) polyurethanes (144–147)] along with some natural polymers [r) cellulose-type polymers (148–155) and s) the other some natural polymers (156–163)].
2.1.2 Measuring conditions for the pyrograms of the polymers and the MS data of the major peaks on each pyrogram, and the thermograms of the polymers Figures 2.1 and 2.2 illustrate the schematic flow diagrams of the measuring systems of the pyrolysis (Py)-GC/MS and evolved gas analysis (EGA)–MS, respectively. In both systems, the vertical micro-furnace pyrolyzer (Frontier Lab., PY-2020iD) mounted on y Tsuge S, Ohtani H, Watanabe C. “Pyrolysis-GC/MS of high polymers - fundamentals and pyrogram compilations”. Techno System Co., Tokyo, 2006.
Pyrolysis-GC/MS Data Book of Synthetic Polymers/Tsuge ISBN 978-0-444-53892-5, Doi:10.1016/B978-0-444-53892-5.10002-1
Ó 2011 Elsevier B.V. All rights reserved.
7
j
8
Tsuge, Ohtani and Watanabe
He
Pyrolyzer
pyrolysis tube micro furnace
He
interface heater sample cup GC splitter vent separation column
separation column GC/MS adaptor
GC Oven
Q-MS
Figure 2.1 Schematic flow diagram of Py-GC/MS System (from the upper to the lower flow). (a) Carrier gas: 100 ml/min of He flow at the pyrolyzer, 1 ml/min at the separation column through a splitter (1/ 100); (b) pyrolyzer: a micro-furnace pyrolyzer (Frontier Lab., PY-2020iD) at 600 C; (c) pyrolyzer/GC interface temp.: 320 C; (d) GC injection temp.: 320 C; (e) sample size: ca. 0.2 mg of a sample cup (ECO cup-L: o.d. 4.2 i.d. 4 8 mm height, deactivated stainless steel cup); (f) GC separation column: Ultra ALLOY-5 (0.25 mm 30 m; 0.25 mm film of 5%diphenyl–95%dimethylpolysiloxane); (g) GC oven temp. programmed from 40 C (2 min hold) – (20 C/min) – 320 C (13 min hold); (h) GC/MS adapter (Frontier Lab, Vent-free adapter); (i) GC/MS interface temp.: 320 C; (j) EI source (70 eV) temp.: 230 C; (k) MS, scan range: 29–600 (m/z) at 2000 amu/sec.
either a Shimadzu GCMS-QP2010 or an Agilent 6890 GC & 5975 MS was used under a flow of He carrier gas, and data search libraries of Frontier Lab., F-search (pyrolyzates MS08) and NIST/EPA/NIH (version 2.0f) were mostly used for the peak identification of the pyrolyzates together with their retention index (RI) data. However, any other GC/MS systems equipped with any type of pyrolyzers such as resistively heated filament devices and inductively heated ones could provide basically the same tendency data as those in this compilation. Pyrograms and MS data measurements The measurements of the pyrograms for the 163 polymer samples were carried out by the Py-GC/MS system shown in Figure 2.1. The flash pyrolysis temperature was fixed at 600 C throughout the entire data acquisition, and the resulting pyrolyzates of the
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
He
Pyrolyzer
sample cup vent
transfer tube
GC Oven
GC/MS adaptor
Q-MS
Figure 2.2 Schematic Flow Diagram of EGA/MS System (from the upper to the lower flow). (a) Carrier gas: 50 ml/min at the pyrolyzer, 1 ml/min in the interface through a splitter (1/50); (b) pyrolyzer: the same pyrolyzer as in Figure 2.1, its temperature programmed from 100 to 700 C at a rate of 20 C/ min; (c) sample size: ca. 0.2 mg weighed into the same sample cup as in Figure 2.1; (d) deactivated and uncoated stainless steel transfer tube (i.d. 0.15 mm 2 m length); (e) GC/MS adapter/MS interface temp.: 300 C; (f) MS scan range: 29–600 (m/z) at 70 amu/sec.
polymer sample weighing ca. 0.2 mg were separated by a stainless steel capillary column (Frontier Lab. Ultra ALLOY-5) coated with 5%diphenyl–95%dimethylpolysiloxane liquid phase under a programming temperature condition; 40 C (2 min hold) – (20 C/ min) – 320 C (13 min hold). The other experimental conditions are supplemented at the bottom of the figure. The resulting mass spectrometric data for all the peaks on the pyrograms stored as the total ion chromatogram (TIC), and the selected mass spectra for the top 10 major peaks at most were compiled on this data book, together with the RI data of the main peaks on the pyrograms. Here, the RI data for the components were estimated by comparison of the retention data for a series of hydrocarbon peaks with known carbon numbers appearing on the pyrogram of polyethylene observed under the same condition. As shown in Figure 2.2, the measurements of the EGA–MS thermograms for the polymer samples weighing ca. 0.2 mg were carried out separately by replacing the separation column with a deactivated and uncoated stainless steel transfer tube (i.d. 0.15 mm 2 m length), where the column oven temperature was maintained at 300 C to prevent condensations of less-volatile pyrolyzates in the transfer tube, and the temperature of the pyrolyzer was programmed from 100 to 700 C at a rate of
9
10
Tsuge, Ohtani and Watanabe
20 C/min to obtain the thermogram as a function of temperature. Here, in the mode change from the Py-GC/MS system to the EGA/MS system, the Vent-free adapter (Frontier Lab) played an important practical role enabling the rapid replacement of the separation column with the transfer tube without venting the working Q-MS under a high vacuum.y Thus obtained thermogram data of the polymer samples by monitoring the total ion current of MS are compiled in the upper right corner of the averaged mass spectrum for each thermogram as a function of the programmed temperature from 100 to 700 C.
2.1.3 Data descriptions for the pyrograms and the MS data of the major peaks on the pyrograms, and the thermograms for 163 polymer samples In the following Chapter 2.2, two facing pages were allocated for each polymer sample. For example, two facing pages (pp. 12–13) are accommodated for polyethylene. On the left hand page (p. 12), you can find at the top:
001 Polyethylene (high density); PE(HDPE) CH2CH2
n
where the sample number, 001 is followed by the full name with its abbreviation, and then its chemical structure is given. The upper display is its pyrogram at 600 C separated by the capillary separation column followed by TIC monitoring mentioned in Chapter 2.1.2 where C10, for example, designates hydrocarbons containing ten carbon atoms. The horizontal retention time scale can easily be converted into temperature axis by knowing the programmed temperature conditions for the separation column [from 40 C (2 min hold) – (20 C/min) – 320 C (13 min hold)]. In the bottom, you can see the peak identification table for the pyrogram together with molecular weight, relative peak intensity, and retention index data. As the footnote, related references in which the concerned pyrolysis information is included were listed. On the right hand page (p. 13), its EGA thermogram taken as a function of temperature from 100 to 700 C at a rate of 20 C/min is shown at the right hand shoulder of its averaged mass spectrum for the temperature range (4) shown above the thermogram monitored by its TIC between 29 and 600 (m/z). By the thermogram profile, you can easily understand the whole thermal behavior, that the thermal decomposition of PE(HD) starting at ca. 400 C passes through the peak top at ca. 480 C, finishing at ca. 530 C, which also tells us useful information to determine the y http://www.frontier-lab.com/product/catalogue/Vent-free_adapter.pdf.
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
optimum pyrolysis temperature to measure its pyrogram. Furthermore, by use of the average mass spectrum data search mentioned above, you could often make rapid identification of the polymeric materials. At the bottom on the right hand page, the selected mass spectra for the top 10 major peaks are compiled. (In some cases, where only a few significant pyrolyzates are observed, typically for depolymerizing polymers, the number of the mass spectra should be less than 10.)
11
12
Tsuge, Ohtani and Watanabe
2.2 DATA COMPILATION OF PYROGRAMS, THERMOGRAMS AND MS DATA OF MAJOR PYROLYZATES FOR 163 TYPICAL POLYMER SAMPLES 2.2.1 Polyolefins (homopolymers) 001 Polyethylene (high density); PE(HDPE) CH2CH2
n
C10 C28 C26
C22 C11
C14 C15 C12
C18 C20
C16
C13
C24
C30 C32 C34
C9
C36
C6 LB
C7
C8
C40
C41
TIC
0
10
Peak Notation LB C6 C7
C8
C9
C10
C11
C14
C20 C30 C40 C41
30 [min]
20
Assignment of Main Peaks
Molecular Weight
propylene + propane CH2=CH(CH2)3CH3 CH2=CH(CH2)4CH3 CH3(CH2)5CH3 CH2=CH(CH2)4CH=CH2 CH2=CH(CH2)5CH3 CH3(CH2)6CH3 CH2=CH(CH2)5CH=CH2 CH2=CH(CH2)6CH3 CH3(CH2)7CH3 CH2=CH(CH2)6CH=CH2 CH2=CH(CH2)7CH3 CH3(CH2)8CH3 CH2=CH(CH2)7CH=CH2 CH2=CH(CH2)8CH3 CH3(CH2)9CH3 CH2=CH(CH2)10CH=CH2 CH2=CH(CH2)11CH3 CH3(CH2)12CH3 CH2=CH(CH2)16CH=CH2 CH2=CH(CH2)17CH3 CH3(CH2)18CH7 CH2=CH(CH2)27CH3 CH2=CH(CH2)37CH3 CH2=CH(CH2)38CH3
42; 44 84 98 100 110 112 114 124 126 128 138 140 142 152 154 156 194 196 198 278 280 282 420 560 574
[ Related References ] 1) Michajlov, L.; Zugenmaier, P.; Cantow, H.-J. Polymer 1968, 9, 325. 2) Sugimura, Y.; Tsuge, S. Anal. Chem. 1978, 50, 1968. 3) Sugimura, Y.; Tsuge, S. Macromolecules 1979, 12, 512. 4) Ohtani, H.; Tsuge, S.; Usami, T. Macromolecules 1984, 17, 2557. 5) Duc, S.; Lopez, N. Polymer 1999, 40, 6723.
Retention Relative Intensity Index 300 583 689 700 782 791 800 883 892 900 983 991 1000 1083 1092 1100 1385 1392 1400 1985 1993 2000 2993 3997 4096
43.7 91.8 42.4 19.3 2.1 25.1 14.3 5.8 30.4 10.3 6.6 64.2 10.4 7.1 49.8 16.1 12.3 49.2 13.5 25.3 38.0 16.2 100.0 94.1 82.8
13
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates 001
EGA thermogram
Averaged mass spectrum 41
55
83
69
100
200
300
400
500
97
600
700 ºC
programming rate: 20ºC/min
111 125
30 50
139
100
154
168
182
196
150
200
250 [m/z]
( m/z range : 29 - 600 amu )
C7 : 1-heptene
C10 : 1,9-decadiene 41
55
56 41
67 81
70
29
95
29
98
83
110 123
C10 : n-decane
C10 : 1-decene 41
57
43
56 70
29
71
83 111
98
140
C11 : 1-undecene 41
85
29
97
113
142
C14 : 1-tetradecene 41
55
55
70
69
83 97
83 29
29
97
111 111 126
125
154
140 153 168
196
C30 : 1-triacontene C20 : 1-eicosene
(mixed with 1,29-triacontadiene and n-triacontane) 57
43 55
83
43
97
69
97 69
111 29
111 125 139
168
196
224
252
418
C41 : 1-hentetracontene
(mixed with 1,39-tetracontadiene and n-tetracontane)
(mixed with1,40-hentetracontadiene and n-hentetracontane)
57
57
71
43 71 97
97
29
153
280
C40 : 1-tetracontene
43
125
29
111 125
153
559
29
111 125
153
572
14
Tsuge, Ohtani and Watanabe
002 Polypropylene(isotactic); iso-PP CH2CH(CH3 )
n
C15 C9
C12 C’13 C13
C’34 C16 C21 C18 C’25 C’28 C’31 C’37 C’22 C’16 C’19 C’40 C24
C’43
C11 C3 C10 C’10
C5 TIC
10
C’46
C’49
20
C6
0
10
Peak Notation
Assignment of Main Peaks
C3 C5 C6 C9 C10 C10’ C11
propylene n-pentane 2-methyl-1-pentene 2,4-dimethyl-1-heptene 2, 4, 6-trimethyl-1-heptene 2, 4, 6-trimethyl-1, 6-heptadiene 4, 6-dimethyl-2-nonene (meso form) 2, 4, 6-trimethyl-1-nonene (meso form) 2, 4, 6-trimethyl -1-nonene (racemic form) 2, 4, 6, 8-tetramethyl-1-nonene (meso form) 2, 4, 6, 8-tetramethyl-1, 8-nonadiene (meso form) 2, 4, 6, 8-tetramethyl-1-undecene (isotactic) 2, 4, 6, 8- tetramethyl-1-undecene (heterotactic) 2, 4, 6, 8- tetramethyl-1-undecene (syndiotactic) 2, 4, 6, 8, 10-pentamethyl-1-undecene (isotactic) 2, 4, 6, 8, 10-pentamethyl-1, 10-undecadiene (isotactic) 2, 4, 6, 8, 10-pentamethyl-1-tridecene (isotactic) 2, 4, 6, 8, 10, 12-hexamethyl-1, 12-tridecadiene (isotactic) 2,4,6,8,10,12,14,16,18,20,22-undecamethyl-1,22tricosadiene (isotactic)
C12 C13 C13’ C15 C16 C16’ C18 C19’ C34’
30 [min]
20
Molecular Retention Index Weight 42 72 84 126 140 138 154 168 168 182 180 210 210 210 224 222 252 264 476
295 500 584 844 895 916 996 1083 1087 1132 1156 1312 1320 1329 1356 1385 1531 1605 3397
[ Related References ] 1) Michajlov, L.; Zugenmaier, P.; Cantow, H.-J. Polymer 1968, 9, 325. 2) Tsuchiya, Y.; Sumi, K. J. Polym. Sci., Part-A1 1969, 7, 1599. 3) Seeger, M.; Cantow, H. -J. Makromol. Chem. 1975, 176, 2059. 4) Kiran, E.; Gillham, J. K. J. Appl. Polym. Sci. 1976, 20, 2045. 5) Kiang, J. K. Y.; Uden, P. C.; Chien, J. C. W. Polym. Degrad. Stab. 1980, 2, 113. 6) Sugimura, Y.; Nagaya, T.; Tsuge, S.; Murata, T.; Takeda, T. Macromolecules 1980, 2, 113. 7) de Amorim, M. T. S. P.; Comel, C.; Vermande, P. J. Anal. Appl. Pyrolysis 1982, 4, 73. 8) Ishiwatari, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 83. 9) Ohtani, H.; Tsuge, S.; Ogawa, T.; Elias, H. -G. Macromolecules 1984, 17, 465.
Relative Intensity 14.6 10.0 8.1 100.0 6.8 2.6 2.9 9.5 3.3 4.0 4.1 18.5 2.6 10.6 3.4 3.9 6.4 5.4 9.7
15
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
002
EGA thermogram
Averaged mass spectrum 41 69
55
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83 111
97
125
30 50
137
100
154
167
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
C5 : n-pentane
C6 : 2-methyl-1-pentene 43
39 56 84
69
29 29 55
72
C10 : 2,4,6-trimethyl-1-heptene
C9 : 2,4-dimethyl-1-heptene 43
41
70
83
55
69 55
29
29 83 126 111
91
97
C12 : 2,4,6-trimethyl-1-nonene (meso form)
125
140
C12 : 2,4,6-trimethyl-1-nonene (racemic form)
41
41 55
69 55
29
83
111
69 83
29
112
125
97
C15 : 2,4,6,8-tetramethyl-1-undecene (isotactic)
125
97
153 168
168
C15 : 2,4,6,8-tetramethyl-1-undecene (heterotactic)
43 55 69
43 55 69 83
111 111
83
29
29 125
97
154 140
97 167
125
154
210
C34’ : 2,4,6,8,10,12,14,16,18,20,22-undecamethyl C15 : 2,4,6,8-tetramethyl-1-undecene (syndiotactic)
-1,22-tricosadiene (isotactic)
43 55
69 69 111
85
55
29
43 97
125
154 139
167
83 125 97111 153 139 165 179
283
313 327 355
16
Tsuge, Ohtani and Watanabe
003 Polypropylene(atactic); at-PP CH2CH(CH3 )
n
C15 C9 C12
C’13 C13
C18
C21
C’16
10
C3 C5
TIC
0
10
Assignment of Main Peaks
C3 C5 C6 C9 C10 C10’
propylene n-pentane 2-methyl-1-pentene 2,4-dimethyl-1-heptene 2, 4, 6-trimethyl-1-heptene 2, 4, 6-trimethyl-1, 6-heptadiene 2, 4, 6-trimethyl-1-nonene (meso form) 2, 4, 6-trimethyl-1-nonene (racemic form) 2, 4, 6, 8-tetramethyl-1-nonene (meso form) 2, 4, 6, 8-tetramethyl-1-nonene (racemic form) 2, 4, 6, 8-tetramethyl-1, 8-nonadiene (meso form) 2, 4, 6, 8-tetramethyl-1, 8-nonadiene (racemic form) 2, 4, 6, 8-tetramethyl-1-undecene (isotactic) 2, 4, 6, 8-tetramethyl-1-undecene (heterotactic) 2, 4, 6, 8-tetramethyl-1-undecene (syndiotactic) 2, 4, 6, 8, 10-pentamethyl-1, 10-undecadiene (isotactic) 2, 4, 6, 8, 10-pentamethyl-1, 10-undecadiene (heterotactic) 2, 4, 6, 8, 10-pentamethyl-1, 10-undecadiene (syndiotactic)
C13 C13’
C15
C16’
30 [min]
20
Peak Notation
C12
20
15
C10 C’10
C6
Molecular Retention Index Weight 42 72 84 126 140 138 168 168 182 182 180 180 210 210 210 222 222 222
295 500 584 845 896 916 1083 1087 1132 1138 1156 1159 1311 1320 1329 1385 1392 1401
[ Related References ] 1) Seeger, M.; Cantow, H. -J. Makromol. Chem. 1975, 176, 2059. 2) Sugimura, Y.; Nagaya, T.; Tsuge, S.; Murata, T.; Takeda, T. Macromolecules 1980, 13, 928. 3) de Amorim, M. T. S. P.; Comel, C.; Vermande, P. J. Anal. Appl. Pyrolysis 1982, 4, 73. 4) Ishiwatari, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 83. 5) Ohtani, H.; Tsuge, S.; Ogawa, T.; Elias, H. -G. Macromolecules 1984, 17, 465.
Relative Intensity 19.5 13.7 11.6 100.0 7.2 2.7 7.3 7.6 2.1 2.6 2.3 1.9 11.0 11.1 8.8 1.5 1.7 1.8
17
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
003
EGA thermogram
Averaged mass spectrum 43
69 55 100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83 111 97
125
153
139 50
100
200 [m/z]
150
( m/z range : 29 - 600 amu )
C5 : n-pentane
C3 : propylene 39
41
29 55
72
29
131
C9 : 2,4-dimethyl-1-heptene
C6 : 2-methyl-1-pentene 39
70
43 56
55
69 84
29
29
83
221
C12 : 2,4,6-trimethyl-1-nonene (meso form)
C10 : 2,4,6-trimethyl-1-heptene 41
41
69
55
83
69
55
83
29
29 91
109
125
111 125
97
140
C12 : 2,4,6-trimethyl-1-nonene (racemic form)
139 153 168
C15 : 2,4,6,8-tetramethyl-1-undecene (isotactic)
41
43 55
126 111
97
55
69
69
29
83
83 111 97
125 132
125
97 168
C15 : 2,4,6,8-tetramethyl-1-undecene (heterotactic)
139
154
167
210
C15 : 2,4,6,8-tetramethyl-1-undecene (syndiotactic) 43
43 55 69
55 69
85
111
83
111
29
111
29
29 97
97
125
154 139
167
210
125
154 139
167
210
18
Tsuge, Ohtani and Watanabe
004 Polypropylene (syndiotactic); syn-PP CH2CH(CH3 )
n
C15 C9 C12
C11
C’13 C13
C’16 C18 C16 C’19
C21 C’22
C’25 C24
C’28
C3 C5 TIC
10
C10
0
10
Assignment of Main Peaks
C3 C5 C6 C9 C10 C10’ C11
propylene n-pentane 2-methyl-1-pentene 2,4-dimethyl-1-heptene 2, 4, 6-trimethyl-1-heptene 2, 4, 6-trimethyl-1, 6-heptadiene 4, 6-dimethyl-2-nonene (racemic form) 2, 4, 6-trimethyl-1-nonene (meso form) 2, 4, 6-trimethyl-1-nonene(racemic form) 2, 4, 6, 8-tetramethyl-1-nonene (racemic form) 2, 4, 6, 8-tetramethyl-1, 8-nonadiene(racemic form) 2, 4, 6, 8-tetramethyl-1-undecene (isotactic) 2, 4, 6, 8-tetramethyl-1-undecene (heterotactic) 2, 4, 6, 8-tetramethyl-1-undecene (syndiotactic) 2, 4, 6, 8, 10-pentamethyl-1-undecene (syndiotactic) 2, 4, 6, 8, 10-pentamethyl -1, 10-undecadiene (syndiotactic) 2, 4, 6, 8, 10-pentamethyl -1-tridecene (syndiotactic) 2, 4, 6, 8, 10, 12-hexamethyl-1, 12-tridecadiene (syndiotactic)
C15 C16 C16’ C18 C19’
20
30 [min]
20
Peak Notation
C13 C13’
C’34
C’10
C6
C12
C’31
15
Molecular Retention Index Weight 42 72 84 126 140 138 154 168 168 182 180 210 210 210 224 222 252 264
295 500 586 844 895 916 1000 1081 1086 1138 1159 1312 1318 1327 1377 1399 1568 1641
[ Related References ] 1) Seeger, M.; Cantow, H. -J. Makromol. Chem. 1975, 176, 2059. 2) Sugimura, Y.; Nagaya, T.; Tsuge, S.; Murata, T.; Takeda, T. Macromolecules 1980, 13, 928. 3) Ohtani, H.; Tsuge, S.; Ogawa, T.; Elias, H. -G. Macromolecules 1984, 17, 465.
Relative Intensity 59.5 32.5 18.5 100.0 10.0 1.9 1.8 3.3 8.7 2.0 1.5 9.0 2.1 11.4 1.0 1.2 2.6 1.1
19
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
004
EGA thermogram
Averaged mass spectrum 41 55
69
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83 111 97
125 137
30 50
100
153
167
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
C5 : n-pentane
C3 : propylene
43
41
55 29
72
29
C6 : 2-methyl-1-pentene
C9 : 2,4-dimethyl-1-heptene 43
56
70 55
41 84 69
83
29 29
126 91
C10 : 2,4,6-trimethyl-1-heptene
111
C12 : 2,4,6-trimethyl-1-nonene (meso form) 43
43
55 69
69
84 84
55
111 91
29
140
106
C12 : 2,4,6-trimethyl-1-nonene (racemic form) 43
168
193
C15 : 2,4,6,8-tetramethyl-1-undecene (isotactic)
69
69
43
55
55 85
84
111
112 97
29
125 132
168
C15 : 2,4,6,8-tetramethyl-1-undecene (heterotactic)
97
125
30
154
C15 : 2,4,6,8-tetramethyl-1-undecene (syndiotactic) 43
43
69 55
69
55 85 111
85 111
154 97
126
154 160
97 30
125 160
195 210
20
Tsuge, Ohtani and Watanabe
005 Polybutene-1 (isotactic) CH2CH(CH2CH3)
n
C20
C12 C16
C29 C25 C28
C24 C17
C15
C19
C33
C37
C32
C41 C45
10
C4 TIC C3
C21
C5
C7
C8
C6
20
C13 C9
C11
0
10
Peak Notation
Assignment of Main Peaks
C3 C4 C5 C6 C7 C8
propane + propylene 1-butene (monomer) 2-methyl-1-butene 1-hexene n-heptane 2-ethyl-1-hexene (dimer) 2-ethyl-4-methyl-1-hexene 2, 4-diethyl-1, 4-pentadiene 5-ethylnonene 5-ethylnonane 2, 4-diethyl-1-octene (trimer) 2, 4-diethyl-6-methyl-1-octene 2, 4, 6-triethyl-1, 6-heptadiene 2, 4, 6-triethyl-1-decene (meso form) 2, 4, 6-triethyl-1-decene (racemic form) 2, 4, 6, 8-tetraethyl-1-dodecene (isotactic) 2, 4, 6, 8-tetraethyl-1-dodecene (syndiotactic) 2, 4, 6, 8, 10-pentaethyl-1-tetradecene (isotactic) 2, 4, 6, 8, 10, 12-hexaethyl-1, 12-tridecadiene (isotactic)
C9 C11 C12 C13 C16 C20 C24 C25
C49
[ Related Reference ] 1) Seeger, M.; Cantow, H. -J. Makromol. Chem. 1975, 176, 2059.
30 [min]
20
Molecular Retention Index Weight 44; 42 56 70 84 100 112 126 124 154 156 168 182 180 224 224 280 280 336 348
300 385 480 585 700 790 853 858 1024 1056 1124 1176 1190 1424 1428 1707 1725 1983 2053
Relative Intensity 0.9 36.0 15.5 3.2 21.3 19.4 5.9 3.7 3.3 4.5 100.0 14.9 3.7 17.7 5.5 21.4 16.1 22.4 15.7
21
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
005
EGA thermogram
Averaged mass spectrum 55 41 100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
69 83
97 111
125
30 50
100
139
153
168
181
195
150
207 250 [m/z]
200
( m/z range : 29 - 600 amu )
C7 : n-heptane
C4 : 1-butene (monomer) 41
43
71 57
56 29 29
100 85
C8 : 2-ethyl-1-hexene (dimer)
C12 : 2,4-diethyl-1-octene (trimer)
70
55
57 70
41
98
41 29 29
83
112 83
111
95
95
83 57 71 81
41 55 29
151 126 137
153
29 166
123 137
182
166
C16 : 2,4,6-triethyl-1-decene (racemic form)
C16 : 2,4,6-triethyl-1-decene (meso form)
57
57 41
41
69
69 83
83
97 112
29
125
97
112
29
154 139
167
195
125
154 137
224
C20 : 2,4,6,8-tetraethyl-1-dodecene (isotactic)
167
57
41
97
69 83
97
69 83
111 153 125139
112 181 167
29 210
251
280
195
C20 : 2,4,6,8-tetraethyl-1-dodecene (syndiotactic)
57
29
110
69
112 97
41
168
C13 : 2,4,6-triethyl-1,6-heptadiene
C13 : 2,4-diethyl-6-methyl-1-octene 41
139 125
153 125139
181 167
210
251
22
Tsuge, Ohtani and Watanabe
006 Poly(4-methyl-1-pentene); PMP CH2CH(CH2CH(CH3)CH3)
n
C18
C4 C3 TIC
C20 C24 C19
C12 C6
C7
C8
C10 C’10
C11 C13 C14
0
C30
C36
C43 C37
10
Peak Notation
Assignment of Main Peaks
C3 C4 C6 C7 C8 C10’ C10
propane + propylene 1-butene 4-methyl-1-pentene 2, 4-dimethyl-1-pentene 6-methyl-1-heptene 2-isobutyl-4-methyl-1-pentene ? 8-methyl-1-nonene ? 2, 8-dimethyl-4-nonene ? 2, 8-dimethyl-3-nonene ? 2, 8-dimethylnonane 2-isobutyl-6-methyl-1-heptene (dimer) 2-isobutyl-4, 6-dimethyl-1-heptene 2-isobutyl-8-methyl-1-nonene ? 2, 4-diisobutyl-8-methyl-1-nonene (trimer) 2, 4-diisobutyl-6, 8-dimethyl-1-nonene C20H40 2, 4, 6-triisobutyl-10-methyl-1-undecene 2, 4, 6, 8-tetraisobutyl-12-methyl-1-tridecene
C11 C12 C13 C14 C18 C19 C20 C24 C30
C49
C55
C61 30 [min]
20
Molecular Retention Index Weight
[ Related Reference ] 1) Shimono, T.; Tanaka, M.; Shono, T. J. Anal. Apply. Pyrolysis 1980, 1, 189.
44; 42 56 84 98 112 140 ? 140 ? 154 ? 154 ? 156 168 182 194 ? 252 266 280 336 420
300 388 548 638 756 886 960 1016 1023 1031 1088 1119 1288 1497 1523 1693 1861 2194
Relative Intensity 20.0 100.0 29.5 19.6 15.4 6.6 6.3 3.3 5.9 4.7 18.4 6.7 5.3 79.8 13.7 21.4 15.1 10.8
23
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
006
EGA thermogram
Averaged mass spectrum 41 57 69
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83 111
97
123 50
137
100
154
182 193
167
150
207 250 [m/z]
200
( m/z range : 29 - 600 amu )
C4 : 1-butene
C6 : 4-methyl-1-pentene 41
41
56 56 69
84
C8 : 6-methyl-1-heptene
C7 : 2,4-dimethyl-1-pentene 56
55
41
69
41
70 83
30
C12 : 2-isobutyl-6-methyl-1-heptene (dimer)
30
112
C18 : 2,4-diisobutyl-8-methyl-1-nonene (trimer) 57
56 43
41
97
84
98
69 111
83
83
69
97 29
126
57 69
167
195
252
C20 : C20H40
111
83
126 139
154 168
C19 : 2,4-diisobutyl-6,8-dimethyl-1-nonene 43
154
29
97 111
43
57 69 111 83
97
29
97
125
182
168 137 153
29
139
C24 : 2,4,6-triisobutyl-10-methyl-1-undecene
197
223
280
C30 : 2,4,6,8-tetraisobutyl-12-methyl-1-tridecene
57 43
154167
125
205
57 69
43
111 83 97
69
111 85 97
182
125 139
154168
238 251
279
29
154 168 125 139 182 210 196
237 265 251
322
24
Tsuge, Ohtani and Watanabe
007 Isobutylene-isoprene rubber; IIR CH2 C(CH3)2
CH2C(CH3)
CHCH2
n
C12 C4 C16 C8 C7
C20
C24 C28
C10 C9
C11
C13
C19
C15
C23
C27
C32 C31
C36 C35
C39
C40 20
10
TIC
0
10
Peak Notation
Assignment of Main Peaks
C4 C7
1-butene 2, 4-dimethyl-1, 3-pentadiene 2, 4, 4-trimethyl-1-pentene (dimer) 2, 4, 4-trimethyl-2-pentene 2, 2, 4, 4-tetramethylpentane 2, 2, 4, 4-tetramethyl-1-pentene 2, 4, 6-trimethyl-1, 3-heptadiene 2, 4, 4, 6-tetramethyl-1-heptene 2, 4, 4, 6-tetramethyl-2-heptene 2, 4, 4, 6, 6-pentamethyl-1-heptene (trimer) 2, 4, 4, 6, 6-pentamethyl-2-heptene C13H24 ? 2, 4, 4, 6, 6, 8-hexamethyl-1-nonene 2, 4, 4, 6, 6, 8-hexamethyl-2-nonene 2, 4, 4, 6, 6, 8, 8-heptamethyl-1-nonene (tetramer) 2, 4, 4, 6, 6, 8, 8-heptamethyl-2-nonene
C8 C9 C10 C11 C12 C13 C15 C16 C 20
30 [min]
20
2,4,4,6,6,8,8,10,10-nonamethyl-1-undecene 2,4,4,6,6,8,8,10,10-nonamethyl-2-undecene
[ Related References ] 1) Tsuchiya, Y.; Sumi, K. J. Polym. Sci., Part A1 1969, 7, 813. 2) Warren, D.; Gates, S.; Driscoll, L. J. Polym. Sci., Part A1 1971, 9, 717. 3) Seeger, M.; Cantow, H. -J. Makromol. Chem. 1975, 176, 2059. 4) Kiran, E.; Gillham, J. K. J. Appl. Polym. Sci. 1976, 20, 2045. 5) Smith, D. A.; Youren, J. W. Br. Polym. J. 1976, 8, 101. 6) Grimbley, M. R.; Lehrle, R. S. Polym. Degrad. Stab. 1995, 49, 223. 7) Grimbley, M. R.; Lehrle, R. S. Polym. Degrad. Stab. 1995, 48, 441.
Molecular Retention Index Weight 56 96 112 112 128 126 138 154 154 168 168 180 ? 210 210 224 224 280 280
398 702 710 726 769 774 873 970 984 1040 1065 1190 1289 1320 1368 1403 1703 1741
Relative Intensity 100.0 5.9 8.5 6.1 1.7 3.1 4.7 2.3 1.8 18.9 4.2 3.2 3.6 3.0 9.2 5.8 8.2 3.8
25
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
007
EGA thermogram
Averaged mass spectrum 97 41 57
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
69
83
50
113
123
137
100
155
168
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
C4 : 1-butene
C8 : 2,4,4-trimethyl-1-pentene 41
57 56 41 29
29
C8 : 2,4,4-trimethyl-2-pentene
112
97
69
81
C10 : 2,4,6-trimethyl-1,3-heptadiene 95
97 55
110
67
41
112
69
41
79
30
C12 : 2,4,4,6,6-pentamethyl-1-heptene (trimer)
57
55 41
41 69 81
112
69
97
41 111
224
C20 : 2,4,4,6,6,8,8,10,10-nonamethyl-1-undecene
69
29
169
57
97 41 69 81
153
C20 : 2,4,4,6,6,8,8,10,10-nonamethyl-2-undecene
57 41
113
83 125 137
97
29
168
57
57 69 81
113
83
C16 : 2,4,4,6,6,8,8-heptamethyl-2-nonene (tetramer)
97
29
97
29
168
C16 : 2,4,4,6,6,8,8-heptamethyl-1-nonene (tetramer)
41
77
C12 : 2,4,4,6,6-pentamethyl-2-heptene (trimer)
97
29
55
30
111
153
280
29
69
113
83 123 137 153
169
224
26
Tsuge, Ohtani and Watanabe
2.2.2 Vinyl polymers with ethylene units (copolymers) 008 Ethylene-propylene copolymer; P(E-P) CH2CH2 C10
C’9
C11
C’12
C12
C’11
C’14 C’15 C15 C14 C16
C’10
CH2CH(CH3)
n
C18 C20 C22 C24 C26 C28 C30 C32 C34
C3 C4 TIC
C36
C8 C5 C6
10
20
C9
C7
0
10
Peak Notation
Assignment of Main Peaks
C3 C4 C5 C6 C7 C8 C9’
propylene 1-butene 1-pentene 1-hexene 1-heptene 2-methylheptene 2, 4-dimethyl-1-heptene (P trimer) 1-nonene 2, 4, 6-trimethyl-1-heptene n-nonane 4-methylnonane 2-methyl-1-nonene 1-decene dimethylnonene dimethylnonene 2, 4, 6-trimethyl-1-nonene (P tetramer; meso form) 1-undecene 2-methyl-1-undecene 1-dodecene n-dodecane 2, 6, 8-trimethyl-1-undecene 2, 4, 6, 8-tetramethyl-1-undecene (isotactic) (P pentamer) 2, 4, 6, 8-tetramethyl-1-undecene (syndiotactic) 1-tetradecene
C9 C10’ C10 C11’ C12’ C11 C12 C14’ C15’ C14
30 [min]
20
Molecular Retention Weight Index 42 56 70 84 98 112 126 126 140 128 142 140 140 154 154 168 154 168 168 170 196 210 210 196
295 385 492 585 690 787 844 893 896 900 964 987 992 1037 1047 1083 1092 1186 1192 1200 1290 1311 1329 1394
[ Related References ] 1) Michajlov, L.; Zugenmaier, P.; Cantow, H.-J. Polymer 1968, 9, 325. 2) Michajlov, L.; Cantow, H. -J.; Zugenmaier, P. Polymer, 1971, 12, 70. 3) Tsuge, S.; Sugimura, Y.; Nagaya, T. J. Anal. Appl. Pyrolysis 1980, 1, 221. 4) Wampler, T.; Zawodny, C.; Mancini, L.; Wampler, J. J. Anal. Appl. Pyrolysis 2003, 68-69, 25
Relative Intensity 100.0 60.3 43.6 25.5 39.9 90.7 9.8 8.6 6.3 5.9 3.7 17.3 7.0 7.3 11.9 14.9 7.1 10.7 8.7 15.0 13.4 5.2 11.8
27
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
008
EGA thermogram
Averaged mass spectrum 41 55 69 100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83 97
111
30 50
125
139
100
154 165
182
196
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
C5 : 1-pentene
C6 : 1-hexene 39
39
56 55
29
84
69
29
70
C9’ : 2,4-dimethyl-1-heptene (P-trimer)
C8 : 2-methylheptene 56
43
41
70 55
29
29
83
69
126
112 84
97
111
91
C9 : 1-nonene
C10’ : 4-methylnonane 41
41
57
29
55
29
70
98
69 83
97 81
126
104
112
127
C12’ : 2,4,6-trimethyl-1-nonene (P-tetramer; meso form)
C10 : 1-decene 41
41
55
29
55
69
29
70 83
83
97 111
111 125
97
168
139
140
C15’ : 2,4,6,8-tetramethyl-1-undecene (isotactic) C14’ : 2,6,8-trimethyl-1-undecene 41
29
142
(P-pentamer) 43 55
55
69
83
97
69
83
111
29 97
140 109
125
196
125 141
154
28
Tsuge, Ohtani and Watanabe
009 Ethylene-propylene-diene rubber; EPDM CH2CH2
C3
C5
CH2CH(CH3)
X
n
C4
C6 C7
C10
C8
C11 C9
C12 C13
C15 C17
C20
C25
TIC
0
10
Peak Notation
Assignment of Main Peaks
C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
propylene 1-butene 1-pentene 1-hexene 1-heptene 2-methyl-1-heptene 1-nonene 1-decene 1-undecene 2-methyl-1-undecene 1-tridecene
30 [min]
20
Molecular Retention Weight Index 42 56 70 84 98 112 126 140 154 168 182
[ Related References ] 1) Smith, D. A.; Youren, J. W. Br. Polym. J. 1976, 8, 101. 2) Tsuge, S.; Sugimura, Y.; Nagaya, T. J. Anal. Appl. Pyrolysis 1980, 1, 221. 3) Kretzschmar, H. -J.; Tobisch, K.; Gross, D. Kautsch. Gummi Kunstst. 1987, 40, 447. 4) Yamada, T.; Okumoto, T.; Ohtani, H.; Tsuge, S. Rubber Chem. Technol. 1990, 63, 191. 5) Yamada, T.; Okumoto, T.; Ohtani, H.; Tsuge, S. Rubber Chem. Technol. 1991, 64, 708.
295 382 492 592 693 788 892 992 1091 1186 1292
Relative Intensity 100.0 41.1 32.8 34.4 17.3 7.7 11.1 8.8 7.7 4.2
29
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
009
EGA thermogram
Averaged mass spectrum 55
41
69 100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83
97 111 125
50
137
151
100
168 200 [m/z]
150
( m/z range : 29 - 600 amu )
C3 : propylene
C4 : 1-butene 41
41
56
29
29
C5 : 1-pentene
C6 : 1-hexene 56
42 41
55
70 69
84
104
126
29 29
C8 : 2-methyl-1-heptene
C9 : 1-nonene 41
56
56
69 41 84
29
69
29
97
112 84
97
C10 : 1-decene
C11 : 1-undecene 41
41
55
55
70
70
83 83
29
97 29
97 111
111
140
126
154
125
140 154
C13 : 1-tridecene
C12 : 2-methyl-1-undecene
41
56
55 69
83 97
41 29
69 83
97
112 125
140 153 168
29
111 182
30
Tsuge, Ohtani and Watanabe
010 Ethylene-methyl methacrylate copolymer; P(E-MMA) CH2CH2
CH2C(CH3 )(COOCH3)
n
C10 C11
C14 C15
C12 C6
C9
MMA
C18
C16
C13
C22
LB C7 b TIC
C26
C30 C32
C8
a
C28
C24
C20
c
C34 C36
d
0
C39 10
Peak Notation LB C6 C7 MMA a C8
C9 b C10 c C11 d C14 C20 C30 C39
30 [min]
20
Assignment of Main Peaks
Molecular Weight
propylene, isobutene 1-butene CH2=CH(CH2)3CH3 CH2=CH(CH2)4CH3 CH3(CH2)5CH3 CH2=C(CH3)COOCH3 unidentified* CH2=CH(CH2)5CH3 CH3(CH2)6CH3 CH2=CH(CH2)5CH=CH2 CH2=CH(CH2)6CH3 CH3(CH2)7CH3 unidentified* CH2=CH(CH2)7CH3 CH3(CH2)8CH3 2-methyloctanoic acid methylester CH2=CH(CH2)7CH=CH2 CH2=CH(CH2)8CH3 CH3(CH2)9CH3 unidentified* CH2=CH(CH2)10CH=CH2 CH2=CH(CH2)11CH3 CH3(CH2)12CH3 CH2=CH(CH2)17CH3 CH2=CH(CH2)27CH3 CH2=CH(CH2)36CH3
42, 56 56 84 98 100 100 112 114 124 126 128 140 142 172 152 154 156 194 196 198 280 420 546
* bonding in MMA and C1-C5 alkyls.
[ Related Reference ] 1) Sugimura, Y.; Tsuge, S.; Takeuchi, T. Anal. Chem. 1978, 50, 1173.
Retention Relative Intensity Index 298 385 591 693 700 710 777 790 800 882 895 900 982 991 1000 1054 1085 1092 1100 1151 1385 1392 1400 1993 2995 3895
100.0 76.1 35.6 8.2 45.8 8.1 26.5 8.3 4.9 25.4 4.7 7.5 47.6 5.1 13.9 7.9 35.7 7.0 6.5 12.2 31.9 5.4 16.9 33.1 18.6
31
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
010
EGA thermogram
Averaged mass spectrum 41 55 100
69
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
88 97 111 30 50
125
139
157
100
200 [m/z]
150
( m/z range : 29 - 600 amu )
C7 : 1-heptene
C6 : 1-hexene 41
56
56
41
70
29
29
84
69
98 83
MMA : methyl methacrylate
C8 : 1-octene
41
55
41 69
70
O
O
100 59
29
83
29
112
85
97
C11: 1-undecene
C10 : 1-decene 41
41
55
55
70
70 83 83
29
29
97 111
111
140
C14 : 1-tetradecene 41
97 154
C20 : 1-eicosene
55
83 97
43 57 69
126
83 69
97
111 29
111
125
29 125
140 154 168
280
57
83 97
69 43 111
29
252
(mixed with 1,38-nonatriacontadiene and n-nonacosane)
(mixed with 1,29-triacontadiene and n-triacontane) 43
153168182
C39 : 1-nonatriacontene
C30 : 1-triacontene 57
139
196
125 153 167
418
29
71 97
111 125 139 153 167
504
545 552
32
Tsuge, Ohtani and Watanabe
011 Ethylene-acrylic acid copolymer; P(E-AA) CH2CH2
CH2CH(COOH)
n
C10
C11
C14 C15
C12 C13
C16 C18
C9
C20
C22
C24 C28 C26
C30 C32
LB C6
C7
C8
C34
C36
TIC
0
10
Peak Notation LB C6 C7 C8
C9
C10
C11
C13
C14
C18 C34
30 [min]
20
Assignment of Main Peaks
Molecular Retention Weight Index
propylene + propane 1-butene CH2=CH(CH2)3CH3 CH2=CH(CH2)4CH3 CH3(CH2)5CH3 CH2=CH(CH2)5CH3 CH3(CH2)6CH3 CH2=CH(CH2)5CH=CH2 CH2=CH(CH2)6CH3 CH3(CH2)7CH3 CH2=CH(CH2)6CH=CH2 CH2=CH(CH2)7CH3 CH3(CH2)8CH3 CH2=CH(CH2)7CH=CH2 CH2=CH(CH2)8CH3 CH3(CH2)9CH3 CH2=CH(CH2)9CH=CH2 CH2=CH(CH2)10CH3 CH3(CH2)11CH3 CH2=CH(CH2)10CH=CH2 CH2=CH(CH2)11CH3 CH3(CH2)12CH3 CH2=CH(CH2)14CH=CH2 CH2=CH(CH2)15CH3 CH3(CH2)16CH3 CH2=CH(CH2)31CH3
42; 44 56 84 98 100 112 114 124 126 128 138 140 142 152 154 156 180 182 184 194 196 198 250 252 254 476
300 385 597 694 700 794 800 882 893 900 984 993 1000 1084 1093 1100 1285 1293 1300 1386 1393 1400 1787 1794 1800 3398
Relative Intensity 100.0 84.5 38.3 16.7 36.2 13.4 5.2 36.7 9.5 8.2 68.8 8.1 8.4 50.5 10.8 10.8 35.9 8.5 10.5 47.6 8.3 14.7 34.4 8.4 41.1
33
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
011
EGA thermogram
Averaged mass spectrum 41 55 100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
71 83
97 111
30 50
125
138
152
100
165 200 [m/z]
150
( m/z range : 29 - 600 amu )
C7 : 1-heptene
C6 : 1-hexene 41
41
56
29 56
29
70 84
69
83
C8 : 1-octene
98
C9 : 1-nonene 41
41
55
29
55
29 70
69 83 97
83
112
C10 : 1-decene
97
104
126
C11 : 1-undecene
41
41
55
55
29
29
70
69 83
97
111
83 97 111
140
126
154
125
140 154 168
C14 : 1-tetradecene
C13 : 1-tridecene 41
41 55 55
29
69
83
29
69
97
83
97 111
111 125 139
154
182
196
C34 : 1-tetratriacontene (mixed with 1,33-tetratriacontadiene and n-tetratriacontane)
C18 : 1-octadecene 41
43
57
55 69 69 83 97 29
111 125
29 139 153 168
224
97 83 111 125 153 195 139 165 207
269 282
343 356
405 429
34
Tsuge, Ohtani and Watanabe
012 Ethylene-vinyl acetate copolymer; EVA CH2CH2
CH2CH(OCOCH3)
n
C10 C11
LB
C14 C15
C12 C13
C16 C18
C6 C9
AC
C20
C24 C26 C22 C28
C7
C30
C8
C32 C34
TIC
0
10
Peak Notation LB C6 AC C7
C8
C9 C10
C11
C12
C14
C16
C19 C21
C36
30 [min]
20
Assignment of Main Peaks
Molecular Retention Index Weight
propylene, butane etc. CH2=CH(CH2)3CH3 CH3COOH CH2=CH(CH2)4CH3 CH3(CH2)5CH3 CH2=C(CH2)4CH=CH2 CH2=CH(CH2)5CH3 CH3(CH2)6CH3 CH2=CH(CH2)6CH3 CH3(CH2)7CH3 CH2=CH(CH2)6CH=CH2 CH2=CH(CH2)7CH3 CH3(CH2)8CH3 CH2=CH(CH2)7CH=CH2 CH2=CH(CH2)8CH3 CH3(CH2)9CH3 CH2=CH(CH2)8CH=CH2 CH2=CH(CH2)9CH3 CH3(CH2)10CH3 CH2=CH(CH2)10CH=CH2 CH2=CH(CH2)11CH3 CH3(CH2)12CH3 CH2=CH(CH2)12CH=CH2 CH2=CH(CH2)13CH3 CH3(CH2)14CH3 CH2=CH(CH2)15CH=CH2 CH2=CH(CH2)16CH3 CH3(CH2)17CH3 CH2=CH(CH2)19CH3
42, 58 84 60 98 100 110 112 114 126 128 138 140 142 152 154 156 166 168 170 194 196 198 222 224 226 264 266 268 294
[ Related Reference ] 1) Haeussler, L.; Pompe, G.; Albrecht, V.; Voigt, D. J. Thermal Anal. 1998, 52, 131.
298 595 606 689 700 782 792 800 894 900 986 994 1000 1087 1095 1100 1188 1195 1200 1388 1396 1400 1590 1593 1600 1892 1898 1900 2094
Relative Intensity 81.8 51.4 100.0 27.7 8.9 4.0 23.5 10.7 25.2 7.6 6.5 44.8 8.3 7.1 33.9 8.3 6.1 24.4 9.7 5.8 27.7 7.7 6.4 21.6 10.3 7.7 21.3 9.8 35.7
35
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
012
EGA thermogram
Averaged mass spectrum 43 55 100
69
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83
97
29
111 50
123
135
149
100
165 200 [m/z]
150
( m/z range : 29 - 600 amu )
AC : acetic acid
C8 : 1-octene 43
43
O
55
60
70
OH 29
83
29 67
112
97
82
C9 : 1-nonene
C10 : 1-decene 43
41
56
56
70 69
29
29 83
83 97
97
111
126
108
C12 : 1-dodecene
C11 : 1-undecene
43
43 55
55 70
69 83 29
97 111
111 126 134
125
154
140
168
C16 : 1-hexadecene
C14 : 1-tetradecene
43
43 55
55 83 97
83 69
69
97
29
111
29
111 125
125 140 154 168
139 154 168
196
196
224
C21 : 1-heneicosene
C19 : 1-nonadecene
43
57
97
83
83 69
69 111
29
83 97
29
43 57
140
125 139 154168182
29 238
266
97
111
125 139 153 168 182 196
36
Tsuge, Ohtani and Watanabe
013 Ethylene-ethyl acrylate copolymer; P(E-EA) CH2CH2
CH2 CH(COOC2H5)
n
C10 C14 C11
C15 C12
C16 C13
C28 C18 C20
C9
C26 C22 C24
C30 C32
LB C6 TIC
C8 C7
C34 a
C36
b
0
10
30 [min]
20
Peak Notation
Assignment of Main Peaks
LB C6
propylene, 1-butene 42, 56 CH2=CH(CH2)3CH3 84 CH2=CH(CH2)4CH3 98 CH3(CH2)5CH3 100 CH2=CH(CH2)4CH=CH2 110 CH2=CH(CH2)5CH3 112 CH3(CH2)6CH3 114 ethyl (2E)-2-methyl-2-butenoate CH3CH=C(COOC2H5)CH3 128 CH2=CH(CH2)4CH=CH2 124 CH2=CH(CH2)6CH3 126 CH3(CH2)7CH3 128 CH2=CH(CH2)6CH=CH2 138 CH2=CH(CH2)7CH3 140 CH3(CH2)8CH3 142 unidentified* CH2=CH(CH2)7CH=CH2 152 CH2=CH(CH2)8CH3 154 CH3(CH2)9CH3 156 CH2=CH(CH2)8CH=CH2 166 CH2=CH(CH2)9CH3 168 CH3(CH2)10CH3 170 CH2=CH(CH2)9CH=CH2 180 CH2=CH(CH2)10CH3 182 CH3(CH2)11CH3 184 CH2=CH(CH2)11CH=CH2 208 CH2=CH(CH2)12CH3 210 CH3(CH2)13CH3 212 *bonding in ethyl acrylate and alkyls
C7
C8 a C9
C10 b C11
C12
C13
C15
[ Related Reference ] 1) McNeil, I. C.; Mohammed, M. H. Polym. Degrad. Stab. 1995, 48, 175.
Molecular Retention Weight Index 300 593 694 700 782 794 800 876 885 893 900 984 993 1000 1056 1084 1093 1100 1185 1193 1200 1286 1294 1300 1486 1494 1500
Relative Intensity 100.0 74.9 33.6 14.9 5.4 32.4 16.0 5.1 5.0 30.7 10.7 5.6 61.4 7.5 6.7 11.7 48.2 9.6 10.1 38.0 9.7 11.8 35.3 8.0 12.9 40.3 9.3
37
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
013
EGA thermogram
Averaged mass spectrum 41 55 100
83
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
69 97 111
125
31 50
100
139
152
169 179
194
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
C6 : 1-hexene
C8 : 1-octene 41
41
56
55
29
70
29 69
84
83 112
97
a : ethyl(2E)-2-methyl-2-butenoate
C9 : 1-nonene O
55 29
41
O
83
55
39
29
113 100
69 83
67
97
128
104
C10 : 1-decene
126
b : unidentified 29 39
41
87
55
55
111
70
29
69 83
128
99
97 111 125
156 141
140
C12 : 1-dodecene
C11 : 1-undecene
41
41
55
55 29
69
69
29
83
83
97 111
126
97 111
154
C13 : 1-tridecene
125
140
168
C15 : 1-pentadecene 41
41
55 55 29
69
83
69 83 97 29
97
111
111 125
141 154
182
125
140 154 169 182
210
38
Tsuge, Ohtani and Watanabe
014 Ethylene-vinyl alcohol copolymer; P(E-VA) CH2CH2
CH2CH(OH)
n
c
A
a
d e
b B
DF TIC
C
20
10
H DP
0
10
Peak Notation
Assignment of Main Peaks
A B DF C DP H a b c d e
acetaldehyde acetone 2,5-dihydrofuran crotonaldehyde 6-methyl-3,4-dihydro-2H-pyran 3-hexene-2,5-diol
kinds of aldehyde?
30 [min]
20
Molecular Retention Weight Index 44 58 70 70 98 116 -
408 465 571 637 772 997 1183 1200 1269 1388 2010
Relative Intensity 39.6 20.6 2.6 4.6 2.9 100.0 10.9 5.3 11.5 15.8 7.3
39
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
014
EGA thermogram
Averaged mass spectrum 43
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
55
29
69 81
98
50
105
123
139
149
100
200 [m/z]
150
( m/z range : 29 - 600 amu )
A : acetaldehyde
B : acetone 43
44
O
O
58 30
30
C : crotonaldehyde
DF : 2,5-dihydrofuran 39
39
O
70
O
70 50
30
DP : 6-methyl-3,4-dihydro-2H-pyran 43
50
30
H : 3-hexene-2,5-diol 43
55
O
OH
98 OH
83
58 31
70
30
71
98 83
112
c : unidentified
a : unidentified 69
41
43
55 58 31 84 68
31 97
83
112
43
55
126
95
71 55
71 97
31
111
e : unidentified
d : unidentified 41
97
81
81
111
31 111
170 125 137 152
129 133
151 169 185197
224
40
Tsuge, Ohtani and Watanabe
015 Polyethylene ionomer; IO CH2CH2
CH2C(CH3 )(COO)
n
Zn OCO C10
C11 C12
C14 C15 C13
C16 C18 C20 C22 C26 C28 C24
C9
LB C6 C7
C30
C8
C32 C34 C36
TIC
0
10
Peak Notation LB C6 C7
C8
C9
C10
C11
C12
C13
C14
C18 C22
30 [min]
20
Assignment of Main Peaks
Molecular Retention Weight Index
propylene, 1-butene 2-butene CH2=CH(CH2)3CH3 CH2=CH(CH2)4CH3 CH3(CH2)5CH3 CH2=CH(CH2)4CH=CH2 CH2=CH(CH2)5CH3 CH3(CH2)6CH3 CH2=CH(CH2)5CH=CH2 CH2=CH(CH2)6CH3 CH3(CH2)7CH3 CH2=CH(CH2)6CH=CH2 CH2=CH(CH2)7CH3 CH3(CH2)8CH3 CH2=CH(CH2)7CH=CH2 CH2=CH(CH2)8CH3 CH3(CH2)9CH3 CH2=CH(CH2)8CH=CH2 CH2=CH(CH2)9CH3 CH3(CH2)10CH3 CH2=CH(CH2)9CH=CH2 CH2=CH(CH2)10CH3 CH3(CH2)11CH3 CH2=CH(CH2)10CH=CH2 CH2=CH(CH2)11CH3 CH3(CH2)12CH3 CH2=CH(CH2)14CH=CH2 CH2=CH(CH2)15CH3 CH3(CH2)16CH3 CH2=CH(CH2)19CH3
42, 56 56 84 98 100 110 112 114 124 126 128 138 140 142 152 154 156 166 168 170 180 182 184 194 196 198 250 252 254 308
300 385 593 693 700 783 792 800 884 892 900 983 992 1000 1083 1091 1100 1184 1192 1200 1284 1292 1300 1384 1392 1400 1786 1793 1800 2194
Relative Intensity 100.0 60.5 29.4 18.0 4.7 26.5 12.3 4.2 22.0 7.9 8.0 36.3 8.9 9.0 30.7 10.0 8.6 25.8 12.4 10.3 25.9 7.2 10.0 30.8 10.7 13.5 25.5 7.9 40.1
41
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
015
EGA thermogram
Averaged mass spectrum 41 55 100
69
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
83
97 111
30 50
124
100
139
155 165
180
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
C8 : 1-octene
C6 : 1-hexene 56
41
41
55 70
84
69
83
29
29
112 97
C10 : 1-decene
C9 : 1-nonene 56
41
41 55
70
69
83
29
97 111
126
104
125
140
C12 : 1-dodecene
C11 : 1-undecene 41
83
29
97
41
55
55
70
69 83
83
97 97
29
29 111
111 126
154
125
C13 : 1-tridecene 41
140
168
C14 : 1-tetradecene 41
55 69
55 69
83
83 97
97
29
125
140 154
125
182
C18 : 1-octadecene
97 55 83 43 69
43 69 111
29
196
139 153 168
C22 : 1-docosene
83 97
55
111
29
111
111 125 139153168
224
252
29
125 139 153 182 167196
308
403
553
42
Tsuge, Ohtani and Watanabe
2.2.3 Vinyl polymers with styrene units 016 Polystyrene; PS CH2CH(C6 H5)
n
SSS
SS S AB
D4
D2 D3 D1
αS
D5 D7 D6
10
20
TIC
T 0
10
30 [min]
20
Molecular Retention Index Weight
Peak Notation
Assignment of Main Peaks
T S AB αS D1 D2 D3 D4 SS D5 D6 D7 SSS
toluene 92 styrene 104 allylbenzene 118 α methylstyrene 118 C(Ph)-C-Ph 182 C-C(Ph)-C-Ph 196 C=C-C(Ph)-C-Ph 208 C(Ph)-C-C-Ph 196 C=C(Ph)-C-C-Ph (dimer) 208 C=C(Ph)-C-C(Ph)-C 222 C(Ph)=C-C-C-Ph 208 C=C(Ph)-C-C-C(Ph)=C 234 C=C(Ph)-C-C(Ph)-C-C-Ph (trimer) 312 * bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
765 898 952 988 1542 1579 1647 1678 1749 1759 1851 1924 2488
Relative Intensity 1.9 100.0 0.3 0.7 0.6 0.3 0.2 0.3 10.2 0.9 1.2 1.0 26.7
[ Related References ] 1) Tsuge, S.; Okumoto, T.; Takeuchi, T. J. Chromatogr. Sci. 1969, 7, 250. 2) Sugimura, Y.; Tsuge, S. Anal. Chem. 1978, 50, 1968. 3) de Amorim, M. T. S. P.; Bouster, C.; Vermande, P.; Veron, J. J. Anal. Appl. Pyrolysis 1981, 3, 19. 4) Sugimura, Y.; Nagaya, T.; Tsuge, S. Macromolecules 1981, 14, 520. 5) Schroeder, U. K. O.; Ebert, K. H. Makromol. Chem. 1984, 185, 991. 6) Dean, L.; Groves, S.; Hancox, R.; Lamb, G.; Lehrle, R. S. Polym. Degrad. Stab. 1989, 25, 143. 7) Ohtani, H.; Yuyama, T.; Tsuge, S.; Plage, B.; Schulten, R. -H. Eur. Polym. J. 1990, 26, 893. 8) Atkinson, D. J.; Lehrle, R. S. J. Anal. Appl. Pyrolysis 1991, 19, 319. 9) Gardner, P.; Lehrle, R. Eur. Polym. J. 1993, 29, 425. 10) Ito, Y.; Ohtani, H.; Ueda, S.; Nakashima, Y.; Tsuge, S. J. Polym. Sci., Part A 1994, 32, 383. 11) Nonobe, T.; Ohtani, H.; Usami, T.; Mori, T.; Fukumori, H.; Hirata, Y.; Tsuge, S. J. Anal. Appl. Pyrolysis 1995, 33, 121. 12) Yang, M.; Shibasaki, Y. J. Polym. Sci. A, Polym. Chem. 1998, 36, 2315. 13) Liu,Y.; Guo, S.; Qian, J. Petrol. Sci. Technol. 1999, 17, 1089.
43
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
016
EGA thermogram
Averaged mass spectrum 104
91 78
100
200
300
400
500
39
600
700 ºC
programming rate: 20ºC/min
51 117
63
130 143 50
100
165 179 194 207 221
150
200
250
350 [m/z]
300
( m/z range : 29 - 600 amu )
S : styrene
T : toluene
104
91
103
78 51 39
65
51
63
39
89
αS : α-methylstyrene
D1 : 1,2-diphenylethane 91
118 117 103 78
182
51
39
65
63
39
D2 : propane-1,2-diyldibenzene
51
77
39
51
65
77
91
91 152 165 178
39 51
196
104
65 77
141152 165 180
105
91
208
130 193
D6 : (E)-1-butene-1,4-diyldibenzene
D5 : 1-pentene-2,4-diyldibenzen
77
128 141 152 165
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
105
32
104
117
91
115
115
194
39 51 65
144 165 152
179 205
222
D7 : hexa-1,5-diene-2,5-diyldibenzene
39 51 65 77
208 139 152 165 178 189
SSS : 5-hexene-1,3,5-triyltribenzene (styrene trimer) 91
130
115 117
91 77 39
51 65
194 207
143 234 156 178 165 189 205 219
39
51 6577
115
221
297 312
44
Tsuge, Ohtani and Watanabe
017 Styrene-methyl acrylate copolymer; P(S-MA) CH2CH(C6H5)
CH2CH(COOCH3)
n
SMS
S
SMM MMS MSM SM MS
MM MM’
SS
SSM
MMM
SSS
MS’ 20
10
TIC
M T
αS 10
0
30 [min]
20
Peak Notation
Assignment of Main Peaks
M T S αS MM’ MM MS’ MS SM MMM SS MSM MMS SMM
methyl acrylate 86 toluene 92 styrene 104 α-methylstyrene 118 C(COOC)-C-C-COOC 160 C=C(COOC)-C-C-COOC (M dimer) 172 C(COOC)-C-C-Ph 178 C=C(COOC)-C-C-Ph (hybrid dimer) 190 C=C(Ph)-C-C-COOC 190 C=C(COOC)-C-C(COOC)-C-C-COOC (M trimer) 258 C=C(Ph)-C-C-Ph (S dimer) 208 C=C(COOC)-C-C(Ph)-C-C(COOC) 276 C=C(COOC)-C-C(COOC)-C-C-Ph 276 C=C(Ph)-C-C(COOC)-C-C-COOC (hybrid trimer) 276 C=C(Ph)-C-C(Ph)-C-C-COOC 294 + C=C(COOC)-C-C(Ph)-C-C-Ph 294 C=C(Ph)-C-C(COOC)-C-C-Ph 312 C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer) * bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
SSM SMS SSS
Molecular Retention Weight Index
Relative Intensity
610 766 892 987 1118 1189 1386 1438 1465 1659 1737 1913 1925 1932
12.6 1.6 100.0 1.7 1.1 2.1 2.0 5.4 7.4 6.1 0.5 11.5 10.8 20.1
2191
8.1
2213 2482
25.1 0.7
[ Related References ] 1) Tsuge, S.; Hiramitsu, S.; Horibe, T.; Yamaoka, M.; Takeuchi, T. Macromolecules 1975, 8, 721. 2) Blazso, M.; Varhegyi, G. Eur. Polym. J. 1978, 14, 625. 3) Tsuge, S.; Kobayashi, T.; Sugimura, Y.; Nagaya, T.; Takeuchi, T. Macromolecules 1979, 12, 988. 4) Blazso, M.; Ujszaszi, K.; Jakab, E. Chromatographia 1980, 13, 151.
45
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
017
EGA thermogram
Averaged mass spectrum 91 104 117 78
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
129
51
65
39
143
31 50
100
212 216
177 190 157 170
150
244
200
263
294 300 [m/z]
250
( m/z range : 29 - 600 amu )
M : methyl acrylate
S : styrene 55
104
O
O 42
29
103
78
85
51 74
39
68
MMM : trimethyl hex-5-ene-1,3,5-tricarboxylate SM : methyl 4-phenylpent-4-enoate
(M trimer)
131
O
59
O 91
115
O
O
O
167
190 132
63
O
194
106
O
77 51
29 39
O
134
79
125
39
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
227
97
67
29
160 176 159
153
MSM : dimethyl 2-methylene-4-phenylheptanedioate
91
117 O
O
O
O
177 39 51
115 130
65 77
91
208 165 180 193
39
MMS : dimethyl 2-methylene-4-phenethylpentanedioate
129
59 77 65
145
216
157 171
244
SMM : dimethyl 2-(2-phenylallyl)pentanedioate
112
142 O
91
O
O
O
O
O
O
O
129
212
115 140
170
77 91 39
65 59 77
129
157
244
213
185 172
29
39
157
59 65
184 244
276
SSM :methyl 4,6-diphenylhept-6-enoate SMS : methyl 2-phenethyl-4-phenylpent-4-enoate
+ methyl 2-methylene-4,6-diphenylhexanoate
91
117 O
O
O
131
O
+
115 O
91
O
115 39 51 65
77
145
177 189
65 207220
262
294
39 51
77
176 190 143 158 171
203
263
294
46
Tsuge, Ohtani and Watanabe
018 Styrene-methyl acrylate alternating copolymer CH2 CH(C6H5 )
CH2CH(COOCH3)
n
SMS S MSM MS SM MM
SS SSM
MS’
20
10
TIC
M T
αS
0
10
30 [min]
20
Peak Notation
Assignment of Main Peaks
M T S αS MM MS’ MS SM SS MSM
methyl acrylate 86 toluene 92 styrene 104 α-methylstyrene 118 C=C(COOC)-C-C-COOC (M dimer) 172 C(COOC)-C-C-Ph 178 C=C(COOC)-C-C-Ph (hybrid dimer) 190 C=C(Ph)-C-C-COOC 190 C=C(Ph)-C-C-Ph (S dimer) 208 C=C(COOC)-C-C(Ph)-C-C-COOC 276 C=C(Ph)-C-C(Ph)-C-C-COOC (hybrid trimer) 294 + C=C(COOC)-C-C(Ph)-C-C-Ph 294 C=C(Ph)-C-C(COOC)-C-C-Ph * bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
SSM SMS
Molecular Retention Weight Index
Relative Intensity
615 766 892 983 1189 1385 1438 1465 1737 1913
15.9 3.0 100.0 4.2 1.7 3.1 8.9 7.2 5.6 14.4
2191
0.7
2212
27.8
[ Related Reference ] 1) Tsuge, S.; Kobayashi, T.; Sugimura, Y.; Nagaya, T.; Takeuchi, T. Macromolecules 1979, 12, 988.
47
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
018
EGA thermogram
Averaged mass spectrum 117 91 104 100
78
300
400
500
600
700 ºC
programming rate: 20ºC/min
129
55 39
200
65
177
143 157
31 50
100
171
150
190
203 216
244
200
263 300 [m/z]
250
( m/z range : 29 - 600 amu )
M : methyl acrylate
T : toluene 55
91
O
O 85
42
29
39 68
65
51
89
32
αS : α-methylstyrene
S : styrene
118 117
104
103 103
78
78
51
51
39
63
39
MS' : methyl 4-phenylbutanoate 91
63
MS : methyl 2-methylene-4-phenylbutanoate 91
O
O
O
104
O
74
147 29
43 51
130
178
117
78
29
39
65 51
77
158
115
190
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
SM : methyl 4-phenylpent-4-enoate 131
91
O O
115
91
190
77 29 39
51
159
63
39 51
176
MSM : dimethyl 2-methylene-4-phenylheptanedioate
115 130
65 77
208 180 193
SMS : methyl 2-phenethyl-4-phenylpent-4-enoate 91
117 O
O
O
O
O
O
131 115 177 91 39
59 65 77
129 145
157 171
216 212 230 244
65 39 51
77
143 158
176 190 203 234
263
294
48
Tsuge, Ohtani and Watanabe
019 Styrene-methyl methacrylate copolymer; P(S-MMA) CH2 CH(C6H5)
CH2 C(CH3)(COOCH3 )
SS
S
SMS
n
SSS
SSM SM M
MS’ MS 20
TIC
0
10
30 [min]
20
Peak Notation
Assignment of Main Peaks
M S MS’ MS SM SS
methyl methacrylate 100 styrene 104 C(COOC)=C-C-Ph 176 C=C(COOC)-C-C-Ph (hybrid dimer) 190 C=C(Ph)-C-C(COOC)-C 204 C=C(Ph)-C-C-Ph (S dimer) 208 C=C(Ph)-C-C(Ph)-C-C(COOC)-C 308 (diastereoisomer) C=C(Ph)-C-C(Ph)-C-C(COOC)-C 308 C=C(Ph)-C-C(C)(COOC)-C-C-Ph 308 C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer) 312 * bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
SSM SMS SSS
Molecular Retention Weight Index 709 892 1338 1438 1483 1737 2166 2195 2294 2482
[ Related References ] 1) Shimono, T.; Tanaka, M.; Shono, T. J. Anal. Appl. Pyrolysis 1979, 1, 77. 2) Tsuge, S.; Kobayashi, T.; Nagaya, T.; Takeuchi, T J. Anal. Appl. Pyrolysis 1979, 1, 133. 3) Tsuge, S.; Kobayashi, T.; Sugimura, Y.; Nagaya, T.; Takeuchi, T. Macromolecules 1979, 12, 988. 4) Shadrina, N. E.; Dmitrenko, A. V.; Pavlova, V. F.; Ivanchev, S. S. J. Chromatogr. 1987, 404, 183. 5) Dean, L.; Groves, S. ; Hancox, R. ; Lamb, G. ; Lehrle, R. S. Polym. Degrad. Stab. 1989, 25, 143. 6) Atkinson, D. J.; Lehrle, R. S. J. Anal. Appl. Pyrolysis 1991, 19, 319. 7) Wang, F. C.-Y. ; Smith, P. B. Anal. Chem. 1996, 68, 3033. 8) Ohtani, H.; Suzuki, A.; Tsuge, S. J. Polym. Sci., A, Polym. Chem. 2000, 38, 1880. 9) Wang, F. C.-Y. J. Anal. Appl. Pyrolysis 2004, 71, 83.
Relative Intensity 50.1 100.0 0.5 0.3 0.9 1.9 1.3 1.1 1.9 1.8
49
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
019
EGA thermogram
Averaged mass spectrum 104
78
100
103
39
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
69
50
91
131
30 50
145
100
172179
191
221
208
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
M : methylmethacrylate
S : styrene
41
104 O
69
O
100
103
78 51
29
59
85
63
39
MS' : (E)-methyl 4-phenylbut-2-enoate
MS : methyl 2-methylene-4-phenylbutanoate 91
116
O
O
O O
91 31
39
51
176
144
89
65
39
161
51
115 130
65
SM : methyl 2-methyl-4-phenylpent-4-enoate
145
89
32
158
176 190
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
145
91 O
O
117129 77 91
204
39 51 63
39 51
173
115
65 77
130
208 151 165 180 193
SMS : methyl 2-methyl-2-phenethyl-4-phenylpent SSM : methyl 2-methyl-4,6-diphenyl hept-6-enoate
-4-enoate 91
131 O
145 O
O
O
91 118 115
44
65
77
191
115 159
221 208
65 248
276
SSS : 5-hexene-1,3,5-triyltribenzene (styrene trimer) 91
117 3951
6577
129
178
194 207 221
297312
39 51
190
77
204
158172 217
277
50
Tsuge, Ohtani and Watanabe
020 Styrene-methyl methacrylate alternating copolymer CH2CH(C6H5 )
CH2C(CH3)(COOCH3)
n
SMS S
SS
MS SM MS’
M
SSM
SSS
10
20
TIC
T 0
10
30 [min]
20
Peak Notation
Assignment of Main Peaks
M T S MS’ MS SM SS
methyl methacrylate 100 toluene 92 styrene 104 C(COOC)=C-C-Ph 176 C=C(COOC)-C-C-Ph (mixture of dimer) 190 C=C(Ph)-C-C(COOC)-C 204 C=C(Ph)-C-C-Ph (S dimer) 208 C=C(Ph)-C-C(Ph)-C-C(COOC)-C 308 (diastereoisomer) C=C(Ph)-C-C(Ph)-C-C(COOC)-C 308 C=C(Ph)-C-C(C)(COOC)-C-C-Ph 308 C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer) 312 * bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
SSM SMS SSS
Molecular Retention Weight Index 711 766 892 1338 1437 1482 1736 2166 2194 2294 2480
[ Related Reference ] 1) Tsuge, S.; Kobayashi, T.; Sugimura, Y.; Nagaya, T.; Takeuchi, T. Macromolecules 1979, 12, 988.
Relative Intensity 47.3 0.4 100.0 0.6 0.4 0.4 2.6 0.2 0.2 4.7 0.1
51
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
020
EGA thermogram
Averaged mass spectrum 104
78
100
103
39
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
69
51
91 131
30 50
145
100
158
190
172
204
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
M : methyl methacrylate
S : styrene 104
41
O
69
O
100
103
78 51
29
59
85
63
39
MS' : (E)-methyl 4-phenylbut-2-enoate
MS : methyl 2-methylene-4-phenylbutanoate 91
115
O
O
O O 176
91 39
51
32
65
144
89
161
32
39
51
115
65
145 158
176 190
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
SM : methyl 2-methyl-4-phenylpent-4-enoate 145
91 O
O
115 129 39 51 63 29
130
77
77 91
204
39 51
173
SSM : methyl 2-methyl-4,6-diphenyl hept-6-enoate
65
115 130 77
165 180 193
208
SMS : methyl 2-phenylethyl-4-phenylpent-4-enoate
131
91 O
145
O
O
O
91 118 115 32
65 77
115
44 59
77
159
191
221
41 51
SSS : 5-hexene-1,3,5-triyltribenzene (styrene trimer) 91
117 44 32 51 6977
129
165178 194
281
190 204 158172
277
52
Tsuge, Ohtani and Watanabe
021 Methyl methacrylate-butadiene-styrene copolymer; MBS CH2 C(CH3)(COOCH3 )
CH2CH
CHCH2
CH2 CH(C6 H5)
n
SSS S
SS M
D 20
10
EB TIC B
T 0
V
αS 10
Peak Notation
Assignment of Main Peaks
B M T V EB S αS D SS SSS
1,3-butadiene methyl methacrylate toluene 4-vinylcyclohexene ethylbenzene styrene α -methylstyrene C(Ph)-C-C-Ph C=C(Ph)-C-C-Ph (S dimer) C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer)
30 [min]
20
Molecular Retention Weight Index 54 100 92 108 106 104 118 196 208 312
*bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
395 710 766 835 866 892 983 1668 1736 2482
Relative Intensity 5.0 59.1 2.7 3.4 0.9 100.0 2.5 0.9 3.2 9.3
53
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
021
EGA thermogram
Averaged mass spectrum 91 104 39 78
100
200
300
400
500
69
600
700 ºC
programming rate: 20ºC/min
117
51
129 30 50
143
100
165
150
194 207 221
312
200
250
350 [m/z]
300
( m/z range : 29 - 600 amu )
M : methyl methacrylate
B : 1,3-butadiene 39
41 O
69 54 O
100 29
59
85
31
V : 4-vinylcyclohexene
T : toluene
79
91
39
54 93
66 39
65
51
89
108
29
S : styrene
EB : ethylbenzene 91
104
103
78 106 51 39
51
65
78
63
39
32
αS : α−methylstyrene
D : 1,3-diphenylpropane 118 117
92
103 105 39
196
65 77
78
51 63
41 51
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
128 141 152
170
SSS : 5-hexene-1,3,5-triyltribenzene (styrene trimer)
91
91
117 39 51
65
115 130 77
208 180 193
51
6577
129
194207 178
297 312
54
Tsuge, Ohtani and Watanabe
022 Acrylonitrile-styrene copolymer; AS CH2CH(C6H5)
CH2CH(CN)
ASA
S
AS SA
n
SAS
AAS SAA SSA
SA’ αS
SS
AA
ASS
20
10
TIC
A
T
0
10
30 [min]
20
Peak Notation
Assignment of Main Peaks
Molecular Retention Weight Index
A T S αS AA AS SA SA’ SS AAS ASA SAA ASS SSA SAS
acrylonitrile 53 toluene 92 styrene 104 α-methylstyrene 118 C=C(CN)-C-C-CN (A dimer) 106 C=C(CN)-C-C-Ph 157 C=C(Ph)-C-C-CN (hybrid dimer) 157 C-C(Ph)-C-C-CN 159 C=C(Ph)-C-C-Ph (S dimer) 208 C=C(CN)-C-C(CN)-C-C-Ph 210 C=C(CN)-C-C(Ph)-C-C-CN 210 C=C(Ph)-C-C(CN)-C-C-CN (hybrid trimer) 210 C=C(CN)-C-C(Ph)-C-C-Ph 261 C=C(Ph)-C-C(Ph)-C-C-CN 261 C=C(Ph)-C-C(CN)-C-C-Ph 261 * bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
565 766 892 983 1059 1342 1424 1435 1737 1812 1846 1866 2129 2175 2200
[ Related References ] 1) Vukovic, R. ; Gnjatovic, V. J. Polym. Sci. A-1 1970, 8, 139. 2) Tsuge, S.; Kobayashi, T.; Sugimura, Y.; Nagaya, T.; Takeuchi, T. Macromolecules 1979, 12, 988. 3) Blazso, M.; Varhegyi, G.; Jakab, E. J. Anal. Appl. Pyrolysis 1980, 2, 177. 4) Blazso, M.; Ujszaszi, K.; Jakab, E. Chromatographia 1980, 13, 151. 5) Nagaya, T.; Sugimura, Y.; Tsuge, S. Macromolecules 1980, 13, 353. 6) Shadrina, N. E.; Dmitrenko, A. V.; Pavlova, V. F.; Ivanchev, S. S. J. Chromatogr. 1987, 404, 183.
Relative Intensity 5.6 1.0 100.0 1.2 2.7 9.3 8.4 2.5 2.9 7.2 19.1 7.4 3.1 2.9 15.1
55
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
022
EGA thermogram
Averaged mass spectrum 91
104
78
100
39
65
129
300
400
500
170
156
100
600
700 ºC
programming rate: 20ºC/min
150
261 255
210 220
182 193 50
200
144
115
51
200
300 [m/z]
250
( m/z range : 29 - 600 amu )
A : acrylonitrile
S : styrene 104
53
N 103
78 38
51 63
39
SA : 4-phenylpent-4-enenitrile
AS : 2-methylene-4-phenylbutanenitrile 91
115
N
N
157
91 103
77
130
51 39
51
65 77
128
AAS : 2-methylene-4-phenethylpentanedinitrile 91
ASA : 2-methylene-4-phenylheptanedinitrile 144
N
N
65 51
91 104 117
77
119
143
156 195
118 115
77
77
39 51
209
N
103
129
210
170
39 51
182
210
N
65 77
128
156169
91
N
261
N 170
115 118
91 115 118
65 220 233 205
195
SAS : 2-phenethyl-4-phenylpent-4-enenitrile
144
77
182
117 142 156
SSA : 4,6-diphenylhept-6-enenitrile
39 51 65
157
91
N
91
65
127
ASS : 2-methylene-4,6-diphenylhexanenitrile
SAA : 2-(2-phenylallyl)pentanedinitrile
39 51
N
N
105 39
142
63
39
157
261
39 51
77
105
156 142 246261
56
Tsuge, Ohtani and Watanabe
023 Acrylonitrile-styrene alternating copolymer CH2CH(CN)
CH2CH(C6H5)
S
ASA
AS SA SA’ αS
AA
AAS SAA SS
n SAS
SSA ASS 20
10
TIC
A
T
0
10
Peak Notation
Assignment of Main Peaks
A T S αS AA AS SA SA’ SS AAS ASA SAA ASS SSA SAS
acrylonitrile toluene styrene α-methylstyrene C=C(CN)-C-C-CN (A dimer) C=C(CN)-C-C-Ph C=C(Ph)-C-C-CN (hybrid dimer) C-C(Ph)-C-C-CN C=C(Ph)-C-C-Ph (S dimer) C=C(CN)-C-C(CN)-C-C-Ph C=C(CN)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-CN (hybrid trimer) C=C(CN)-C-C(Ph)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-Ph
30 [min]
20
Molecular Retention Weight Index 53 92 104 118 106 157 157 159 208 210 210 210 261 261 261
566 765 892 983 1058 1341 1422 1434 1734 1809 1844 1863 2126 2172 2199
* bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group) [ Related Reference ] 1) Tsuge, S.; Kobayashi, T.; Sugimura, Y.; Nagaya, T.; Takeuchi, T. Macromolecules 1979, 12, 988.
Relative Intensity 5.5 1.1 100.0 0.9 2.0 8.8 7.4 2.0 2.8 1.2 19.2 0.9 1.7 1.6 18.2
57
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
023
EGA thermogram
Averaged mass spectrum 104
91
78
100
200
300
400
500
144
51
600
700 ºC
programming rate: 20ºC/min
117 39
65
156
129
50
170 210
182 193
100
150
261
200
300 [m/z]
250
( m/z range : 29 - 600 amu )
S : styrene
A : acrylonitrile
104
53
N 103
78 51
38 39
AS : 2-methylene-4-phenylbutanenitrile
AA : 2-methylpentanedinitrile (A dimer) 66
N
39
63
91
N
N
106
52 79
39
92
51
65 77
157
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
SA : 4-phenylpent-4-enenitrile 115
N
128 140
91 157
77
51 39
91 103 129 142
63
39 51
165 180 193
91
N
N
115 130 104
77
208
ASS : 2-methylene-4,6-diphenylhexanenitrile
ASA : 2-methylene-4-phenylheptanedinitrile 144
65
91
N
117 117
39 51 63
77
128
157
182
65 77 39 51
210
SSA : 4,6-diphenylhept-6-enenitrile
156169
91
N
115 77
65 205
220233
261
N 170
115 118
91
118
195
SAS : 2-phenethyl-4-phenylpent-4-enenitrile
144
39 51 65
128
260
39 51
77
105
156 142 246261
58
Tsuge, Ohtani and Watanabe
024 Acrylonitrile-butadiene-styrene copolymer; ABS CH2CH
CHCH2
m
+
CH2CH(CN)
CH2 CH(C6 H5)
n
SAS
S
AS
SA
AAS ASA
SS
SA’
SSA ASS
SAA SSS
AA 10
TIC
B A
T
0
V
20
S 10
Peak Notation
Assignment of Main Peaks
B A T V S S AA AS SA SA’ SS AAS ASA SAA ASS SSA SAS SSS
1,3-butadiene acrylonitrile toluene 4-vinylcyclohexene styrene -methylstyrene C=C(CN)-C-C-CN (A dimer) C=C(CN)-C-C-Ph C=C(Ph)-C-C-CN (hybrid dimer) C-C(Ph)-C-C-CN C=C(Ph)-C-C-Ph (S dimer) C=C(CN)-C-C(CN)-C-C-Ph C=C(CN)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-CN (hybrid trimer) C=C(CN)-C-C(Ph)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer)
30 [min]
20
Molecular Retention Weight Index 54 53 92 108 104 118 106 157 157 159 208 210 210 210 261 261 261 312
* bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
395 560 766 835 892 983 1058 1342 1424. 1435 1736 1811 1843 1865 2129 2175 2200 2479
Relative Intensity 0.7 3.4 1.9 0.4 100.0 1.8 1.0 7.6 5.7 1.5 5.1 1.5 6.2 1.7 4.3 3.6 10.1 0.7
59
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
024
EGA thermogram
Averaged mass spectrum 104
91
78
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
51 39
117
144
65
156
129
50
100
170
150
182 193
261 255
210 220 233 200
300 [m/z]
250
( m/z range : 29 - 600 amu )
A : acrylonitrile
S : styrene 104
53
N 103
78 51
38
63
39
68
AS : 2-methylene-4-phenylbutanenitrile 91
SA : 4-phenylpent-4-enenitrile 115
N
N
157
39
51
77
39
157
115 128 140
129 142
63
32
SA' : 4-phenylpentanenitrile
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
103
91
N 169
77 39
103
77
51 65
154 115
51
141
63
128
39 51
ASA : 2-methylene-4-phenylheptanedinitrile 144
65
180 193
208
ASS : 2-methylene-4,6-diphenylhexanenitrile 91
N
N
115 130 104 77
N
91 117
104 39 51
77
128
66
157 170182
194 210
39 51
SSA : 4,6-diphenylhept-6-enenitrile 144
65 77
77
156 169
91
65 260 202220233244
261
N 115 118
115 118 157 170
195
SAS : 2-phenethyl-4-phenylpent-4-enenitrile N
91
39 51 65
128
39 51
77
105
170 156 142 178
246 261
60
Tsuge, Ohtani and Watanabe
025 Acrylonitrile-acrylate-styrene copolymer; AAS CH2CH(COOC4 H9 )
m
+
CH2CH(CN)
CH2CH(C6H5 )
n
SAS
S
SSA AS αS AA
SA
AAS SS
SA’
ASA ASS SAA SSS 20
10
TIC
B A
BO T
0
10
Peak Notation
Assignment of Main Peaks
B A BO T S αS AA AS SA SA’ SS AAS ASA SAA ASS SSA SAS SSS
1-butene acrylonitrile 1-butanol toluene styrene α-methylstyrene C=C(CN)-C-C-CN (A dimer) C=C(CN)-C-C-Ph C=C(Ph)-C-C-CN (hybrid dimer) C-C(Ph)-C-C-CN C=C(Ph)-C-C-Ph (S dimer) C=C(CN)-C-C(CN)-C-C-Ph C=C(CN)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-CN (hybrid of trimer) C=C(CN)-C-C(Ph)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer)
30 [min]
20
Molecular Retention Weight Index 56 53 74 92 104 118 106 157 157 159 208 210 210 210 261 261 261 312
* bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
383 568 657 765 892 982 1057 1341 1422 1434 1734 1809 1842 1864 2128 2172 2199 2478
Relative Intensity 1.6 3.3 1.1 1.6 100.0 1.6 0.9 6.4 5.4 1.1 5.1 1.5 7.0 1.7 6.0 5.1 11.1 1.0
61
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
025
EGA thermogram
Averaged mass spectrum 104
91 78
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
51
117
39
144
65
129
50
100
170
156
31
150
193
208 220 233 246 200
260 300 [m/z]
250
( m/z range : 29 - 600 amu )
B : 1-butene
A : acrylonitrile 39
53
N
56 38 29
S : styrene
AS : 2-methylene-4-phenylbutanenitrile 91
104
103
78 51 39
39
63
SA : 4-phenylpent-4-enenitrile
51
65
157
77
115 128 140
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
115
N
N
91 157
103 77
51
129
63
39
142
39 51
91 39 51
91
N
N
N
117 128
66
157
182
210
39 51
65 77
128
156 169
195
261
SAS : 2-phenethyl-4-phenylpent-4-enenitrile
144
91
N
N 115 118
91
77
208
104 117
77
SSA : 4,6-diphenylhept-6-enenitrile
39 51 65
165 178 193
ASS : 2-methylene-4,6-diphenylhexanenitrile
ASA : 2-methylene-4-phenylheptanedinitrile 144
115 130
65 77
105
115 118
170 156
77 65 170
203
220 233
260
39 51
142 246261
62
Tsuge, Ohtani and Watanabe
026 Acrylonitrile-EPDM-styrene copolymer; AES CH2CH2
CH2CH(CH3)
X
m
+
CH2CH(CN)
CH2CH(C6H5 )
n
SAS S ASA AS SA
AAS SS
SSA SAA ASS
SA’ S AA
SSS 10
20
TIC
A
T
0
10
Peak Notation
Assignment of Main Peaks
A T S S AA AS SA SA’ SS AAS ASA SAA ASS SSA SAS SSS
acrylonitrile toluene styrene -methylstyrene C=C(CN)-C-C-CN (A dimer) C=C(CN)-C-C-Ph C=C(Ph)-C-C-CN (mixture of dimer) C-C(Ph)-C-C-CN C=C(Ph)-C-C-Ph (S dimer) C=C(CN)-C-C(CN)-C-C-Ph C=C(CN)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-CN (mixture of trimer) C=C(CN)-C-C(Ph)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-CN C=C(Ph)-C-C(CN)-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer)
30 [min]
20
Molecular Retention Weight Index 53 92 104 118 106 157 157 159 208 210 210 210 261 261 261 312
* bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group)
563 766 891 982 1057 1341 1422 1434 1734 1809 1842 1864 2126 2172 2197 2478
Relative Intensity 3.9 1.9 100.0 1.4 1.7 8.8 7.5 1.8 4.8 2.9 9.3 3.4 4.6 4.1 12.2 0.5
63
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
026
EGA thermogram
Averaged mass spectrum 91
104
78 100
200
300
400
500
117
39
65
144 129
50
156
100
600
700 ºC
programming rate: 20ºC/min
51 170
150
261 255
210 220
182 193 200
300 [m/z]
250
( m/z range : 29 - 600 amu )
S : styrene
A : acrylonitrile 53
104
N 103
78 38
51 39
SA : 4-phenylpent-4-enenitrile
AS : 2-methylene-4-phenylbutanenitrile 91
63
N
115
N
157
91 103
77
130
51 39
51
65 77
157
128
104
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
142
63
39
AAS : 2-methylene-4-phenethylpentanedinitrile
91
91
N
N
105 39 51
65
104115 130
77
39
208 180 193
ASA : 2-methylene-4-phenylheptanedinitrile 144
65 77
51
91
91
66
128
157168 182
210
39 51
SSA : 4,6-diphenylhept-6-enenitrile
182
209
N
65 77
128
169
91
N
N 115 118
91
105
115 104
65
77 220233
261
SAS : 2-phenethyl-4-phenylpent-4-enenitrile
144
39 51 65
156
117
104 117 39 51
77
143
ASS : 2-methylene-4,6-diphenylhexanenitrile N
N
119
260
39 51
77
170 156
142 129
246261
64
Tsuge, Ohtani and Watanabe
027 Styrene-maleic anhydride copolymer; P(S-Mah) CH2 CH(C6H5)
CH(CO) CH(CO)
n
O S
SSS
SS
D1
D5 D2 MS D6
MA
TIC
T
20
10
αS AB
0
10
Peak Notation
Assignment of Main Peaks
T MA S AB αS D1 D2 MS SS D5 D6 SSS
toluene maleic anhydride styrene allyl benzene α-methylstyrene C(Ph)-C-Ph C-C(Ph)-C-Ph (hybrid dimer) C=C(Ph)-C-C-Ph (S dimer) C=C(Ph)-C-C(Ph)-C C(Ph)=C-C-C-Ph C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer)
30 [min]
20
Molecular Retention Weight Index 92 98 104 118 118 182 196 202 208 222 208 312
* bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group) [ Related References ] 1) Yamaguchi, S. ; Hirano, J. ; Isoda, Y. J. Anal. Appl. Pyrolysis 1989, 16, 159 2) Wang, F. C.-Y. J. Chromatogr. A 1997, 765, 279. 3) Wang, F. C.-Y. J. Anal. Appl. Pyrolysis 2004, 71, 83.
764 848 892 947 982 1536 1568 1661 1735 1746 1837 2181
Relative Intensity 2.0 1.3 100.0 0.7 1.8 2.1 1.9 1.5 7.1 1.2 1.6 8.1
65
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
027
EGA thermogram
Averaged mass spectrum 104 91
78
100
200
300
400
500
39
600
700 ºC
programming rate: 20ºC/min
51 117
63
129 50
141 153 165 179 194 207 221
100
150
200
312 250
350 [m/z]
300
( m/z range : 29 - 600 amu )
MA : maleic anhydride
S : styrene 54
O
O
104
O 103
78 51 98
44
29
αS : α-methylstyrene
39
63
D1 : 1,2-diphenylethan 91
118 117 103 78 51
39
91
182
65
63
39
D2 : propane-1,2-diyldibenzene
89
51
104
128 139 152 165
MS : (hybrid dimer) 129
105 115
202 174
51 39
51
65
77
39
91 165 178
63 77
SS : 3-butene-1,3-diyldibenzene (styrene dimer)
D5 : 1-pentene-2,4-diylbenzen
91
39 51
105
115
115 130 104
65 77
208 180 193
77
115
179
194 222
117
65 77
165
91
117
39 51
91
39 51 65
SSS : 5-hexene-1,3,5-triyltribenzene (styrene trimer)
D6 : (E)-1-butene-1,4-diyldibenzene
91
145 156
102
196
152
178190
208
39 51
6577
129
194207 221
297312
66
Tsuge, Ohtani and Watanabe
028 Styrene-divinylbenzene copolymer; P(S-DVB) CH2CH(C6H5 )
CH2CH(C6 H4)
CH2CH(C6 H4 CH2CH3)
n
CHCH2 SS
S
SSS ES DV D5 αS MS
DS D7
D1 D4
TS
D6
10
20
TIC
T 0
10
Peak Notation
Assignment of Main Peaks
T S αS
D1 D4 SS D5 D6 D7
toluene styrene α-methylstyrene m-methylstyrene p-methylstyrene m-ethylstyrene p-ethylstyrene m-divinylbenzene p-divinylbenzene C(Ph)-C-Ph C(Ph)-C-C-Ph C=C(Ph)-C-C-Ph (S dimer) C=C(Ph)-C-C(Ph)-C C(Ph)=C-C-C-Ph C=C(Ph)-C-C-C(Ph)=C
DS
(hybrid dimer)
SSS TS
C=C(Ph)-C-C(Ph)-C-C-Ph (S trimer) C=C(Ph)-C-C(Ph)-C-C-Ph (hybrid trimer)
MS ES DV
30 [min]
20
Molecular Retention Index Weight 92 104 118 118 118 132 132 130 130 182 196 208 222 208 234 248 234 312 312
* bonding hydrogen is omitted ; Ph represents C6H5 (phenyl group) [ Related References ] 1) Nakagawa, H.; Tsuge, S. Macromolecules 1985, 18, 2068. 2) Nakagawa, H.; Matsushita, Y.; Tsuge, S. Polymer 1987, 28, 1512.
766 892 983 944 998 1087 1104 1116 1129 1536 1666 1735 1747 1836 1910 1940 1947 2487 2582
Relative Intensity 1.2 100.0 1.1 0.5 0.1 4.8 1.4 4.1 1.6 1.2 0.2 7.1 0.7 0.5 1.3 0.8 0.8 6.5 0.4
67
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
028
EGA thermogram
Averaged mass spectrum 104 78
91 100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
51 117
39
63
130
50
152 165 178 193 207
100
150
200
234
312 250
350 [m/z]
300
( m/z range : 29 - 600 amu )
ES : m-ethylstyrene
S : styrene
117
104
103
78
132 115
51 39
63
51
39
ES : p-ethylstyrene
91
77
63
DV : m-divinylbenzene 117
130
132
115
115 51
39
91
77
63
51
39
DV : p-divinylbenzene
102
91
115 51
63
SS : 3-butene-1,3-diyldibenzene (styrene dimer) 130
39
77
77
63
103
39 51
DS : (hybrid dimer)
104115 130
65 77
208 193
DS : (hybrid dimer)
91
117 131
115 65 39 51
130
91
77
234 141
234 205 248 220
SSS : 5-hexene-1,3,5-triyltribenzene (styrene trimer)
77
39 51 65
143 156
TS : (hybrid trimer) 129
91 91
207 117 6577 39 51
65 77
129
178
194207 221
297 312
32 39 51
105 143
178 191 165
219
254
312
68
Tsuge, Ohtani and Watanabe
2.2.4 Vinyl polymers with styrene units’ derivatives 029 Poly(α α-methylstyrene); P-α-MS CH2C(CH3)(C6H5)
n
αS S PX
PP
T BA
B
2
3
4
5
6
7
8
9
TIC
0
10
Peak Notation
Assignment of Main Peaks
B T PX S BA αS PP
benzene toluene p-xylene styrene benzaldehyde α-methylstyrene 2-phenylpropenal [ Related Reference ] 1) Okumoto, T.; Takeuchi, T. Bull. Chem. Soc. Jpn 1973, 46, 1717.
30 [min]
20
Molecular Retention Weight Index 78 92 106 104 106 118 132
658 764 869 890 961 985 1158
Relative Intensity 0.02 0.02 0.03 0.03 0.02 100.0 0.03
69
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
029
EGA thermogram
Averaged mass spectrum 118 117 103 100
78
51
200
300
400
500
39
600
700 ºC
programming rate: 20ºC/min
91
63
50
100
200 [m/z]
150
( m/z range : 29 - 600 amu )
B : benzene
T : toluene 78
91
39 51
63 32
PX : p-xylene
S : styrene 104
91
106 78 103
77
39
51
50
65 38
63
αS : α-methylstyrene
BA : benzaldehyde 105
118
O
77
117 103
51
78 39
PP : 2-phenylpropenal 103
O
104 77 51 44
63
132
51
63
91
70
Tsuge, Ohtani and Watanabe
030 Polydivinylbenzene; PDVB CH2CH(C6H4) CHCH2 ES
CH2CH(C6H4CH2CH3)
n
dimer D2
DV D1
MS 10
EB
20
PS
S
TIC
PB
0
DD 10
Peak Notation
Assignment of Main Peaks
EB S PB
ethylbenzene styrene isopropylbenzene m-methylstyrene p-methylstyrene m-ethylstyrene p-ethylstyrene m-divinylbenzene p-divinylbenzene m-isopropenylstyrene 1-dodecanol dimer (DVB) dimer (DVB)
MS ES DV PS DD D1 D2
[ Related Reference ] 1) Nakagawa, H.; Tsuge, S. Macromolecules 1985, 18, 2068.
30 [min]
20
Molecular Retention Weight Index 106 866 104 896 120 969 118 999 118 1006 132 1097 132 1104 130 1120 130 1140 144 1210 186 1478 264 2083 262 2124
Relative Intensity 3.3 2.8 7.6 21.6 9.5 100.0 36.6 61.2 27.4 12.7 5.8 1.9 9.0
71
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
030
EGA thermogram
Averaged mass spectrum 117
100
39
51
77
63
300
400
500
600
700 ºC
programming rate: 20ºC/min
103
50
200
132 130
91
144
100
169
150
205
236 248
200
262 300 [m/z]
250
( m/z range : 29 - 600 amu )
EB : ethylbenzene
S : styrene 104
91
106
103
78 51
51
39
63
77
63
39
MS : m-methylstyrene
PB : isopropylbenzene
117 118
105
120 39
51
65
77
91
91
39
ES : m-ethylstyrene
51
63
77
DV : m-divinylbenzene 130
117
132 115
115 91 51
39
63
51
77
39
PS : m-isopropenylstyrene
77
63
102
DD : 1-dodecanol 144
55 41
OH
69 83
128
97 29
104 51
39
63
77
111
103
125
D1 : dimer (DVB)
91 41 51 65
155 168
D2 : dimer (DVB) 117
119
77
140
91 117 132
235 158
219
248
264
248 262
130 39 51 65
77
156
233
72
Tsuge, Ohtani and Watanabe
031 Poly(p-chlorostyrene) CH2CH(C6 H4Cl)
n
CC
C
CCC CB
IC
d
b a
c 20
10
TIC
CT
C’
0
10
Peak Notation
Assignment of Main Peaks
CT C’ C CB IC a b CC c d CCC
p-chlorotoluene chlorostyrene ( m- and o- ) p-chlorostyrene p-chlorobenzaldehyde 4-chloroisopropenylbenzene C(Ph)=C-C-PhCl ? C(PhCl)-C-PhCl C=C(PhCl)-C-C-PhCl (dimer) C(PhCl)=C-C-C-PhCl C=C(PhCl)-C-C-C(PhCl)=C C=C(PhCl)-C-C(PhCl)-C-C-PhCl (trimer)
30 [min]
20
Molecular Retention Weight Index 126 138 138 140 152 228 ? 250 276 276 302 414
958 1071 1080 1130 1170 1906 1975 2168 2288 2328 3150
* bonding hydrogen is omitted ; PhCl represents C6H4Cl (4-chlorophenyl group) ; Ph represents C6H5 (phenyl group) [ Related References ] 1) Okumoto, T.; Takeuchi, T.; Tsuge, S. Macromolecules 1973, 6. 922. 2) Okumoto, T.; Tsuge, S.; Yamamoto, Y.; Takeuchi, T. Macromolecules 1974, 7, 376. 3) Bertini, F.; Audisio, G.; Kiji, J. J. Anal. Appl. Pyrolysis 1994, 28, 205. 4) Zuev, V. V.; Bertini, F ; Audisio, G. Polym. Degrad. Stab. 2001, 71, 213.
Relative Intensity 0.8 1.7 100.0 0.3 0.5 0.4 1.3 9.4 0.6 1.4 5.6
73
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
031
EGA thermogram
Averaged mass spectrum 138
103
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
77 51 63
39
112125 151164
50
100
241
150
200
250
276
414 300
350
450 [m/z]
400
( m/z range : 29 - 600 amu )
CT : p-chlorotoluene
C' : m-chlorostyrene and o-chlorostyrene 91
103
138
Cl + Cl 126 63 39
Cl
77 75
51
89
50
39
C : p-chlorostyrene
CB : p-chlorobenzaldehyde 138
139
O
103 111
Cl 51
75
50
77 75
Cl
77
112
39
38
123
a : 1-chloro-4-cinnamylbenzene ? 165 178
b : 1,2-bis(4-chlorophenyl)ethane 125
228
193
Cl Cl
Cl 115 125
75 89
39 51 32
139
89
152 39 51 63
99
139
250
178
CC : 4,4'-(but-3-ene-1,3-diyl)bis(chlorobenzene) (dimer)
c : (E)-4,4'-(but-1-ene-1,4-diyl)bis(chlorobenzene) Cl
125
Cl
151
Cl
115 Cl 125
51
75
89
115 89 101
138
39 51 63
276
241
101
276
202
CCC : 4,4',4''-(hex-5-ene-1,3,5-triyl) d : 4,4'-(hexa-1,5-diene-2,5-diyl)bis(chlorobenzene) 129
tris(chlorobenzene) (trimer) 125
Cl
Cl
Cl
Cl
115 138
3951
101 75 89
164 151 177
Cl 202
302
89 115 138 51 75
275 262
416
74
Tsuge, Ohtani and Watanabe
032 Poly(p-methylstyrene); PMS CH2CH(C6 H4 CH3)
n
MMM
M
MM c IP
a
d
b
20
10
S
TIC
X
ET
0
10
Peak Notation
Assignment of Main Peaks
X S ET M IP
p-xylene styrene p-ethyltoluene p-methylstyrene p-isopropenyltoluene C(PhC)-C-C-PhC C(PhC)=C-C-PhC C=C(PhC)-C-C-PhC (dimer) C(PhC)=C-C-C-PhC ? C=C(PhC)-C-C(PhC)=C C=C(Ph)-C-C(PhC)-C-C-PhC C=C(PhC)-C-C(PhC)-C-C-PhC (trimer)
a MM b c d MMM
30 [min]
20
Molecular Retention Weight Index 106 104 120 118 132 224 222 236 236 248 340 354
870 890 964 1000 1090 1877 1882 1946 2295 2084 2663 2745
* bonding hydrogen is omitted ; PhC represents C6H4CH3 (p-tolyl group) ; Ph represents C6H5 (phenyl group)
[ Related References ] 1) Schroeder, U. K. O.; Ederer, H. J.; Ebert, K. H. Makromol. Chem. 1987, 188, 561. 2) Nakagawa, H.; Tsuge, S.; Mohanraj, S.; Ford, W. T. Macromolecules 1988, 21, 930. 3) Luda, M. P.; Guaita, M.; Chiantore, O. Makromol. Chem., Macromol. Symp. 1989, 25, 101. 4) Zuev, V. V. ; Bertini, F. ; Audisio, G. Polym. Degrad. Stab. 2001, 71, 213.
Relative Intensity 2.1 6.2 0.1 100.0 0.6 0.4 0.4 2.8 0.3 2.1 0.6 6.8
75
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
032
EGA thermogram
Averaged mass spectrum 117
100
200
300
400
500
91
600
700 ºC
programming rate: 20ºC/min
105 39 51 63 77 144156 50
100
207 221 236248
178
150
200
354
250
300
400 [m/z]
350
( m/z range : 29 - 600 amu )
X : p-xylene
S : styrene 91
104
106
51
39
78
77
65
63
39
M : p-methylstyrene
a : 1,3-bis(4-tolyl)propane 106
117 118
91
51
119
224
77
91 39
103
51
65
63
39 51 32
89
132
MM : 4,4'-(but-3-ene-1,3-diyl)bis(methylbenzene) (dimer)
a : 1,3-bis(4-tolyl)-1-propene 117
105
105
40 50 64 89
222 130
255
327
405
b : (E)-4,4'-(but-1-ene-1,4-diyl)bis(methylbenzene)
39 51 65
77 91
236 91
77 144
51 65
248 233
MMM : (Z)-4,4',4''-(hex-5-ene-1,3,5-triyl)tris
(methylbenzene)
(methylbenzene) (trimer)
105
115 131 143
130 156 141
3951 65 77
d : 4,4''-(5-phenylhex-5-ene-1,3-diyl)bis
91
221
117
91 106
77 65
144
105
207221 193
340
403
236
c : 4,4'-(penta-1,4-diene-2,4-diyl)bis(methylbenzene)
117
39
118
91 6577
131 143
222235
354
76
Tsuge, Ohtani and Watanabe
033 Poly(2-vinylpyridine) CH2CH(C5 H4N)
n
VV
V
IP
VVV
c b d
a
e
10
TIC
20
MP
0
10
Peak Notation
Assignment of Main Peaks
MP V IP a VV b c d e VVV
2-methylpyridine 2-vinylpyridine 2-isopropenylpyridine C(C5N)-C-C-C5N C=C(C5N)-C-C-C5N (dimer) C=C-C(C5N)=C-C-C5N C(C5N)=C-C-C-C5N C=C(C5N)-C=C-C5N C=C(C5N)-C-C(C5N)=C C(C5N)=C-C(C5N)-C-C-C5N (trimer)
30 [min]
20
Molecular Retention Weight Index 93 105 119 198 210 222 210 208 222 301
811 933 1023 1613 1832 1921 1935 1988 2101 2619
Relative Intensity 1.9 100.0 1.9 1.8 29.1 1.2 0.6 2.4 0.7 27.1
* bonding hydrogen is omitted ; C5N represents 2-pyridyl group [ Related Reference ] 1) Ohtani, H. ; Kotsuji, ; H. Momose, H. ; Matsushita, Y. ; Noda, I. ; Tsuge, S. Macromolecules 1999, 32, 6541.
77
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
033
EGA thermogram
Averaged mass spectrum 79 105 51
100
93
200
300
210
65
144 154
50
500
600
700 ºC
programming rate: 20ºC/min
132
39
400
118
100
169
223
195
182
150
250 [m/z]
200
( m/z range : 29 - 600 amu )
V : 2-vinylpyridine
MP : 2-methylpyridine 93
N
105
N 79
66 51
39
78
51
39
74
a : 1,3-bis(4-pyridyl)propane
IP : 2-isopropenylpyridine 118
106
N N
N 184
79
51
39
93
63
N
65
92
N
51 39
169
N
130
118 117 78
130 141 154
b : (Z)-4,4-(penta-2,4-diene-1,3-diyl)dipyridine
VV : 4,4'-(but-3-ene-1,3-diyl)dipyridine (dimer) 132
78
51
39
N
117 144
78
195 209
93
51
65
39
154 169181
c : 1,4-di(pyridin-4-yl)butane
195
104 93
65
221 210
168
d : (Z)-4,4-(buta-1,3-diene-1,3-diyl)dipyridine
93
N
N
193
N
117 132 N 130 39
51 65 78
195 210
106
51 63 78 39
96
140
208
165
VVV : (Z)-4,4',4''-(pent-1-ene-1,3,5-triyl)tripyridine e : 4,4'-(penta-1,4-diene-2,4-diyl)dipyridine N
N
(trimer) 210
144
223
N
N
N
118 93 130
39
51
78 63
90
78
222
117 130 105 167
194206
39
51 65
106
144
195 169 286
315
78
Tsuge, Ohtani and Watanabe
034 Acrylonitrile-p-chlorostyrene copolymer CH2CH(CN)
CH2 CH(C6H4Cl)
n
CAC
C ACA AC CA’ AAC
CAA CC
CCA ACC
AC’ CB
IC
CCC
A
S
20
10
AA TIC
CT
0
10
Peak Notation
Assignment of Main Peaks
A S CT AA C CB IC AC AC’ CA’ AAC ACA CAA CC ACC CCA CAC CCC
acrylonitrile styrene p-chlorotoluene C=C(CN)-C-C-CN (A dimer) p-chlorostyrene p-chlorobenzaldehyde 4-chloroisopropenylbenzene C=C(CN)-C-C-PhCl C(PhCl)-C-C-CN (hybrid dimer) C=C(PhCl)-C-C(CN)-C C=C(CN)-C-C(CN)-C-C-PhCl C=C(CN)-C-C(PhCl)-C-C-CN (hybrid trimer) C=C(PhCl)-C-C(CN)-C-C-CN C=C(PhCl)-C-C-PhCl (C dimer) C=C(CN)-C-C(PhCl)-C-C-PhCl C=C(PhCl)-C-C(PhCl)-C-C-CN (hybrid trimer) C=C(PhCl)-C-C(CN)-C-C-PhCl C=C(PhCl)-C-C(PhCl)-C-C-PhCl (C trimer)
30 [min]
20
Molecular Retention Weight Index 53 104 126 106 138 140 152 191 179 205 244 244 244 276 329 329 329 414
570 889 957 1056 1081 1128 1168 1562 1558 1644 2051 2075 2101 2179 2597 2629 2657 3144
* bonding hydrogen is omitted ; PhCl represents C6H4Cl (4-chlorophenyl group) [ Related Reference ] 1) Okumoto, T.; Tsuge, S.; Yamamoto, Y.; Takeuchi, T. Macromolecules 1974, 7, 376.
Relative Intensity 2.1 0.1 1.2 1.1 100.0 0.7 1.0 6.3 0.7 7.5 4.1 8.2 3.3 4.2 2.9 2.4 9.7 0.4
79
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
034
EGA thermogram
Averaged mass spectrum 138 103 125 100
200
300
400
500
600
77 75
51
700 ºC
programming rate: 20ºC/min
178
115
39 50
152 165
100
190
150
244
202 216 200
276
329
250
350 [m/z]
300
( m/z range : 29 - 600 amu )
C : p-chlorostyrene
A : acrylonitrile
138
53
N 103
38
Cl
77 75
51
112
39
AC : 4-(4-chlorophenyl)-2-methylenebutanenitrile 125
CA' : 4-(4-chlorophenyl)-2-methylpent-4-enenitrile
N
Cl
115 N
75 39
89
51 63
99
115
138
39 51 63
191
156
191
129 151 137
Cl 101 89
168 176
203
AAC : 2-(4-chlorophenethyl)ACA : 4-(4-chlorophenyl)-2-methyleneheptanedinitrile
4-methylenepentanedinitrile 125
N
N
178
Cl N
Cl 89 39 51 63
77
139
106 103
156
244
190
125 103115
N 77
39 51
138 151 244
CC : 4,4'-(but-3-ene-1,3-diyl)bis(chlorobenzene) CAA : 2-(2-(4-chlorophenyl)allyl)pentanedinitrile 115
152
(C dimer)
Cl
Cl
125 N
39 51
75 89
102
127137
163
177 190 204
N 244
75
39 51
ACC : 4,6-bis(4-chlorophenyl)-
115 89 101
Cl 138
164
241
276
CAC : 2-(4-chlorophenethyl)-4-
2-methylenehexanenitrile
(4-chlorophenyl)pent-4-enenitrile
125
125
Cl
Cl
115
N
N 152
75 39 51 75
89103 115 138
263
329 355
Cl
39 51
89 101
139 204 190 177
Cl 329
80
Tsuge, Ohtani and Watanabe
035 Chloromethylated styrene-divinylbenzene copolymer CH2CH(C6H5)
CH2CH(C6H4)
CS
S
X
TIC
LB B
T
S EB
CH2CH(C6H4CH2Cl)
n
CHCH2
MS ET ME DE DM ES
0
D dimers
10
Peak Notation
Assignment of Main Peaks
LB B T EB X S ET S MS ME DE DM ES CS D
hydrogen chloride etc. benzene toluene ethylbenzene p-xylene styrene p-ethyltoluene -methylstyrene p-methylstyrene p-isopropyltoluene p-diethylbenzene ,p-dimethylstyrene p-ethylstyrene p-chloromethylstyrene unidentified
30 [min]
20
Molecular Retention Weight Index 36 78 92 106 106 104 120 118 118 134 134 132 132 152 210
[ Related References ] 1) Nakagawa, H.; Tsuge, S.; Mohanraj, S.; Ford, W. T. Macromolecules 1988, 21, 930. 2) Boinon, B.; Ainad-Tabet, D.; Montheard, J. P. J. Anal. Appl. Pyrolysis 1988, 13, 171. 3) Mao, S.; Tsuge, S.; Ohtani, H ; Uchijima, S.; Kiyokawa, A. Polymer 1998, 39, 143.
655 767 866 875 895 968 989 1005 1033 1065 1098 1102 1265 1767
Relative Intensity 43.6 1.7 42.9 30.0 81.6 107.7 78.8 7.7 100.0 8.7 11.2 8.5 15.9 161.8 13.0
81
Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates
035
EGA thermogram
Averaged mass spectrum 91
105117
100
200
300
400
500
600
700 ºC
programming rate: 20ºC/min
39 51 63
77 152
132 50
100
165 178 195
150
232 246 265 279 296 310 324 338
200
250
300
400 [m/z]
350
( m/z range : 29 - 600 amu )
LB : hydrogenchloride
T : toluene
36
H
91
Cl
39
65
51
89
X : p-xylene
EB : ethylbenzene 91
91
106 106 39
51
65
77
51
39
65
77
ET : p-ethyltoluene
S : styrene
105
104
103
78
120 51 63
39
39
MS : p-methylstyrene
51
65
77
91
ES : p-ethylstyrene 117
117 118
132
91 39
51
63
89
39
CS : p-chloromethylstyrene
51
77
63
91
D : unidentified 181
117
210
152 39
51 63
165
Cl
91 39 51 63
77
105
118
141152
195
82
Tsuge, Ohtani and Watanabe
2.2.5 Acrylate-type polymers 036 Poly(methyl methacrylate); PMMA CH2C(CH3)(COOCH3)
n
M T D2 D1 D3 D4 d2 d4
5
10
15
20
TIC
0
10
Peak Notation M d2 d4 D1 D2 D3 D4 T
Assignment of Main Peaks methyl methacrylate C=C(C)-C-C(C)(COOC)-C ? C=C(C)-C=C(COOC)-C ? C=C(COOC)-C-C(C)(COOC)-C ? C-C(COOC)=C-C(COOC)-C ? C-C(COOC)=C-C(C)(COOC)-C C11H18O4 ? C-C(COOC)=C-C(C)(COOC)-C-C(C)(COOC)-C * bonding hydrogen is omitted
30 [min]
20
Molecular Retention Weight Index 100 156 140 200 186 200 214 300
? ? ? ? ? ?
710 1035 1090 1256 1274 1310 1332 1830
Relative Intensity 100.0