G. Grioli • C. Truesdell ( E ds.)
Non-linear Continuum Theories Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.), held in Bressanone (Bolzano), Italy, May 31-June 9, 1965
C.I.M.E. Foundation c/o Dipartimento di Matematica “U. Dini” Viale Morgagni n. 67/a 50134 Firenze Italy
[email protected] ISBN 978-3-642-11032-0 e-ISBN: 978-3-642-11033-7 DOI:10.1007/978-3-642-11033-7 Springer Heidelberg Dordrecht London New York
©Springer-Verlag Berlin Heidelberg 2011 st Reprint of the 1 ed. C.I.M.E., Ed. Cremonese, Roma 1966 With kind permission of C.I.M.E.
Printed on acid-free paper
Springer.com
CENTRO INTERNAZIONALE MATEMATICO ESTIVO (C. I. M. E. )
lo Ciclo
- Bressanone - dal 31 maggio
a1 9 giugno 1965
"NOX-LINEAR CONTINUUM THEORIESn
Prof, C, Truardell eoordiReteri: prof, et, orieli
B. COLEMAN-M. E . GURTIN : Thermodinamics and wave propagation in E l a s t i c and Viscoelastic media
Pag. 1
L.DE VITO : Sui fondamenti della Meccanica d i s i s t e m i Continui (11)
pag. 19
G. FICHERA : P r o b l e m i elastostatici con a1 contorno
pag. 107
ambigue condizioni
G. GRIOLI : Sistemi a trasformazioni r e v e r s i b i l i
109
W. NOLL : The foundations of Mechanics
11
159
R. A. TOUPIN : Elasticity and Electro-magnetic
11
203
CHAO-CHENG WANG : Subfluids
It
345
CEWTlZO I N T E R N A Z I O X A L E M A T E M A T I C O E S T I V O ('2. I. M. E. )
B. C O L E M A N M.E. GURTIN
T H E R M O D Y N A M I C S A N D W A V E P R O P A G A T I O N IN E L A S T I C -AND V I S C O E L A S T I C
MEDIA
Corso tenuto a Brecsanone dal 31 maggio a1 9 giugno 1965
THERMODYNAMICS AND WAVE PROPAGATION IN ELASTIC AND VISCOELASTIC MEDIA by
D. Coleman
Bernadrd
Mellon Institute, Pittsburgh Morton E . Gurtin Brown University Providence
In continuum physics the word wave is used with s e v e r a l distinct to s o m e it is
meanings. To s o m e a wave i s a sinusoidal disturbance, any
m e m b e r of a c e r t a i n c l a s s
and t o
of solutions t o a hyperbolic equation,
o t h e r s it is a propagating singuiar s u r f a c e .
(Christoffel,
Here we follow
Hugoniot, Hadamard, and Duhem and use the word in the
l a s t sense; thus, r e s p e c t to the
e t o be a s u r f a c e , moving with
we define a z
m a t e r i a l , a c r o s s which s o m e kinematical variable, such
a s the acceleration o r the velocity, s u f f e r s a jump discontinuity. In the present age of sonic booms and nuclear explosions , even the layman is f a m i l i a r
with "shock wavesn
.
To find, howe~rer, applications f o r a
general theory of
propagating singuiar surfaces, one does not have to
t u r n to the l a t e s t
accomplishments of physics ; it suffices t o think c a r e -
fully of the
motion of an object s t r u c k with a h a m m e r .
Here we review s o m e a s p e c t s of the c l a s s i c a l theory of propagation
in elastic m a t e r i a l s
and discuss recent extensions
wave of
the c l a s s i c a i theory to m a t e r i a l s with m e m o r y .
Let xi(Xj, t ) give r i a l point which occupies
*we
the spatial position a t time the position
use Cartesian t e n s o r notation.
X. in J
t
of the mate-
the r e f e r e n c e configuration.
- 4 -
-
B. Coleman
According t o (t)
=
the
M. E. Gurtin
Duhem-Hadamard c l a s s i f i c a t i o n s c h e m e , a s u r f a c e
is a
wave of o r d e r
if
N
the
N1 t h - o r d e r d e r i v a t i v e s
Z , but all l o w e r d e r i x.(X., t ) exhibit jump discontinuities a t 1 J v a t i v e s a r e continuous a c r o s s , I A s h o c k i s a wave of o r d e r 1;
of
.
that t)
is,
a -
xi(X., t ) i s continuous , but the velocity x . = xi(X., J at J a X . ( X t ) show jumps the d e f o r m a t i o n g r a d i e n t F . . = IJ ax; 1 k'
and
.
across 1
At
an
. acceleration
J
wave
second
derivatives, such
C)
0
a s the
acceleration
L
x . = q?;xi(x., t ) , a r e t h e f i r s t t o s u f f e r jumps; 1 J at hence , a n a c c e l e r a t i o n wave i s a s i n g u l a r s u r f a c e of o r d e r two. O u r i n t e r e s t h e r e is in waves
with
In the t e r m i n o l o g y
N
the s p e e d
the r a t e
Z
particles
along
instantaneously s i t u a t e d
t h e amplitude
of wave of
order
;
and Toupin [1960, 2 1 and
of T r u e s d e l l
T r u e s d e l l [1961, 2 1 , of advance of
22
of propagation i t s unit on
Z
V
normal
.
A
N i s a vector
of
a wave 1 i s
relative t o the
convenient m e - a s u r e of s . defined by 1
Let formula*
.
the Piola
- Kirchboff
s t r e s s tensor
S . . be defined 1J
by t h e
Whenever a n index i s r e p e a t e d in a product of two t e r m s , s u m mation o v e r that index i s understood.
- 5 -
B. Coleman- M. E , Gurtin
SikFjk = T . . 1J
P
where
T . . i s the familiar s t r e s s t e n s o r of Cauchy
r
and
1J
sent
mass
density. F o r an elastic material,
influences
a r e ignored,
S is ij
i s the p r e -
when thermodynamic
a function
of
the deformation g r a -
dient : S . . = S. . ( F ) 1J 1J ki
(3) The c l a s s i c a l
Fresnel-Hadamard theorem
asserts
that for
any
s
and speed of propagation V i of an acceleration wave traveling in the direction n must obey k the propagation condition m a t e r i a l obeying
where the t e n s o r
Ericksen
[ 1953
(2) the amplitude
Qij(nk), called the acoustic
, 11 ,
condition
of
(4)
Even incluences
21 ,
[ 1961,
of compressible elastic m a t e r i a l s , have
elastic waves
order
with
and
allow
N
> 2
Qij(nk)
in elasticity S ij
is
*x
given
by
working in the theory of isotropic incompres-
sible hyperelastic m a t e r i a l s , and Truesdell t h e theory
tensor,
must given
theory one to depend
a l s o obey by
(5)
should not
working in
shown that
all -
the propagation
. include thermodynamic
only
on
Fkl
but
also
-
F o r the mos t general statement of the Fresnel-Hadamard Theo r e m , and for a detailed discussion of i t s consequences, s e e Trusdell 11961, 21
- 6 -
on a thermodynamic variable such cific ,
1'
F. ., 0 ,
and
1J
(6),
one
Onthe
then
waves
a
a r e taken
a
a s the t e m p e r a t u r e
t o be continuous
0
o r the spe-
a c r o s s t h e wave;
homothermal if , in
wave i s said to be
hand,
the wave of
M. E. Gurtin
addition to
has
other
theorem
-
q. In the thermodynamic theory of acceleration waves,
entropy
An acceleration to
B. Coleman
if,
in
place
i s called homentropic
of
.
(7)
,
It is the content
-
of the f i r s t
Duhem, that homothermal (homentropic) acceleration
in
elastic
in
(5)
sae Fdnh c n theorem
materials
is taken of
(4) , proveded that the derivative
obey
a t constant
Duhem
temperature
(entropy)
.
The
gives the physical circumstances in which
acceleration waves a r e homothermal o r homentropic : Every a c c e l e r a tion wave in an e l a s t i c m a t e r i a l obeying F o u r i e r ' s law of heat conduction ry
with positive-definite t h e r m a l conductivity i s homothermal: eveacceleration wave in
heat i s
Y
homentropic
an elastic material which
does not conduct
.
* The two t h e o r e m s of Duhem a r e explained and given proofs by Truesdell [ 1961 , 2 1
.
modern
- ,[
An elastic m a t e r i a l s t r a i n function function @ ;
of
i. e . ,
(3)
B. Coleman
-
M. E. Gurtin
i s said to be hyperelastic if the s t r e s s -
i s obtained by
differentiating a s t o r e d energy
if Sij(FkL ) =
It i s a f a m i l i a r a s s e r t i o n
6 (Fkz, 1.
a F 1~ ..
of c l a s s i c a l thermodynamics that e v e r y ela-
s t i c material i s hyperelastic in the sense that
s.1J.(Fu
(11)
where and
i s the E
the
A theorem m a t e r i a l the
It follows from
enternal
this
tensor
result
the classical equations (10) of an
elastic m a t e r i a l
tropic waves.
Helmoltz
of Hadamard
acoustic
(Fkt ,771
2
1J
specific
specific
a a F..
,771 =
free
.
energy asserts
, then and
that
must
(5)
for
IL = a
E
-8
TJ
,
hyperelastic
be s y m m e t r i c :
first
(ll),
energy
theorem
that
the
of
Duhem, and
acoustic
tensor
must be s y m m e t r i c in homothermal and homeri-
B. Coleman
-
M . E . Gurtin 4
The recent y e a r s
have s e e n t h e development of general t h e o r i e s
of non-linear m a t e r i a l s with memorye
.
In these studies it i s a s s u m e d
that the present s t r e s s depends not only on the p r e s e n t value of the s t r a i n but
also
on the past history of the s t r a i n ,
and one a t t e m p t s
t o solve problems without specializing the functional expressing this deLet us
pendence.
.
val
a,
[o,
define a function
) a s follows;
dt) k1
over
the half-closed inter-
n< s < a,. This
function
tion
gradient
i s just
i s called
.
equivalent and -
to
the
define a
The past history
the r e s t r i c t i o n
F") (s) a g r e e s (r)kL fined f o r s=O.
the historv ur, t o t i m e of
F;
Obviously,
past history
all
of t h e p r e s e n t to b e
Following a
t i s given i s determined when F k0) can
the deforma-
s
\
0 but i s
left
unde-
a knowledge of the history
F(r)ke.
material
of
F ( ~ ) of the deformation gradient (r)kE t o the open interval (0, a) ; i. e . ,
F Ice ( ~ )(s) f o r
with
a knowledge
simple
,+,
t
value No11
material
.
For
F ( ~ ) is kc ,*, F k g ( t ) = :F : (0)
11958,
1] ,
we
for which the s t r e s s
such
a material
we
write
' s e e , for example, r h e works of Green and Rivlin [1957, 1 1 , No11 0958, 1,l C o l e m a n a n d N o l l 6960, 11[1961, 1 1 , and Wang [1965, 7 1, which a r e s u m m a r i z e d and extended in the exposition of Truesdell and No11 l.1965, 6 1.
- 9 -
Here
S..
that f o r
a general
t h e p r e s e n t value
gradient,
we w r i t e (14)
in
and
(15),
we s e e
history
1J
depends on 1J of the d e f o r m a t i o n S,.
the f o r m *
(t) S- l J. . (F(r)kl
1J
for short,
simple material
and t h e p a s t
S. = where,
M. E . Gurtin
a functional ; i. e . . a function whose a r g u m e n t i s a ( t ) , and whose value is a t e n s o r , Fkl S . . . When we wish
emphasize
both
-
is
-1J
function, to
B. Coleman
. .FkL
,
= F ( ~ )(0). On c o m p a r i n g ( 3 ) Fkl kl t h e e l a s t i c m a t e r i a l s c o n s i d e r e d in t h e p r e -
we put that
~ i o u ss e c t i o n a r e t h o s e s i m p l e m a t e r i a l s f o r which t h e dependence (t) Sij(F(r)w; Fkc ) on the p a s t h i s t o r y F (( r~) i)j i s negligible. H e r e we do not a s s u m e that influence of F ( ~ ) on S c a n be (r) ij neglected; we a s s u m e m e r e l y that t h i s influence i; compatible with t h e p r i n c i p l e of fading m e m o r y ; used
by
Coleman
and
t h e m a t i c a l t h e intuitive r y distant
Let
us
h here
a s m o o t h n e s s postulate 1 1 to
11 [1961,
that s t r a i n s
occurred
denote
by
by differentiating
value of deformation
(16).
idea
[ 196C,
with
render ma-
which o c c u r r e d in t h e ve-
p a s t should have a s m a l l e r influence on the p r e s e n t s t r e s s
than S t r a i n s which
obtained
No11
i.e.,
is no
in
S. .(F.(t . ) t h e f o u r t h - o r d e r t e n s o r - 1 ~ kt mn the s t r e s s with r e s p e c t to t h e p r e s e n t DF
gradient
summation
the r e c e n t p a s t .
holding fixed the p a s t h i s t o r y :
over
k
and
I
in equations
(15) and
- 10 This tensor sponse t o s m a l l Equation
role
(16)
defines into
the thermodynamics of The theory under
a linear
functionals
in the theory
memory is
the moduli f o r
s t r a i n impulses superimposed
mapping functionals tral
1 , 2 1 gives
11964,
B. Coleman
of
instantaneous r e (t) Flee
on
at time
11965,
D~
1-41 and in
1964, 1, 2 1
memory
.
s u r f a c e s propagating in m a t e r i a l s with
not an empty subject. Among the m a t e r i a l s subsumed
the c l a s s of simple m a t e r i a l s
with
fading
memory a r e t h e
materials
of
the theory of l i n e a r viscoelasticity. In that theory, Sips
[1951,
,
Lee
11
and
Kanter
1 1 have exhibited explicit
solutions
others showing acceleration
acceleration that
gives r i s e t o Recently
general gation
11965.
materials
theorems given
o r greater
in
material
- Truesdell
traveling with
I,
1-4
in
Chu
we
to construct
waves. F u r t h e r , showing shock and
.
have been able
with
[1962,
equations
simple fluid with fading
nonlinear field equations
non-linear
Ericksen
exact solutions
a special
have the following extension and
elementary e x e r c i s e
1 1 has obtained
waves for
and
the dynamical
from
11966,
an
of
,
It
these solutions
is
2 1
11953,
showing shock waves. Pipkin
t.
mn o p e r a t o r plays a cen-
this
wave propagation
of singular
Gurtin
differential operator
;
m a t e r i a l s with
- M. E.
to
memory
extend
memory the c l a s s i c a l
to
propa-
the previous section. F o r example, we [1965,
4 ] of
the
Fresnel-Hadamard
t h e o r e m s . Consider a wave of o r d e r
the direction
fading memory
;
such
n a
k
in
a general
wave o b e p
2
simple
the propaga-
B. Coleman
tion condition
, and
(4)
the t e n s o r
of
Q. .(nk) , now called the instan-
i s given by the following remarkably
simple
(5) :
F o r the validity of this in front
>' E. I. Gurtin
1J
taneous acoustic t e n s o r , generalization
-
theorem
the past history of the m a t e r i a l just
of the wave may be a r b i t r a r y , subject only to c e r t a i n natural
.
t a m e n e s s hypotheses
Of course, we know that the s t r e s s in a general m a t e r i a l with
memory depends not only on the history of the deformation gradient but a l s o on the history of a thermodynamic variable. Hence, (14) should be replaced by e i t h e r
S.. = 1J
where the function tion
(20)
7
e(t) i s
5. . ( F(kt L) , J t ) -lJ
the history
) ,
of the temperature a d the func-
( t ) the history of the specific entropy
(s) = e ( t - s ) ,
(t) (s) = v ( t - s )
o < s < w .
* Propagation conditions of the type (4) a r e known for acceleration waves in s e v e r a l special m a t e r i a l s ; for elastic m a t e r i a l s (2. 18) was derived by Hadamard [1901, 1 1 and for the theory of linear viscoelasticity by H e r r e r a and Gurtin 6965, 5 1. We have recently seen a manuscript by Varley p965, 7 1 in which he a r r i v e s at (4) for acceleration waves in m a t e r i a l s of integral type.
- 12 -
-
B. Coleman
is a s s u m e d , it is a l s o
When (18)
c i f i c Helmholtz the histories
free (t) Fk2 ,
and
heat
that
sent
the
temperature
*
energy
M. E. Gurtin
r e a s o n a b l e t o a s s u m e that t h e s p e i s given
by
a functional
e
of
&t)
and
flux v e c t o r gradient
q, depends
=a
gm
not
only on the p r e -
I
but a l s o
axm
on
F ( ~ ) and k1
e(t)
When
(19)
is
assumed,
it
is r e a s o n a b l e
s p e c i f i c i n t e r n a l e n e r g y i s given
Starting from man
assumptions 1 ] has
[1964,
compatible with
by a functional
shown
only
if
and
relations,
fading
t h e s e functionals
s.( F k( tL) ,d t ) ) =
c
1J
D
F.. 1J
where
is t h e o p e r a t o r
with
memory
defined in
memory
'
FtL and n ( t ) ,.
of
$. .
that the functionals
t h e p r i n c i p l e of the
postulate that the
s o m e w h a t m o r e g e n e r a l than
of t h e r m o d y n a m i c s
g- through
to
-1J
these, and
$,
Cole,
- 1J
are
a n d the s e c o n d law
a r e d e t e r m i n e d by p-
p ( d t ) , e ( t ) ),
- kZ
(16). T h e s e
the classical
relations
gene-
r e l a t i o n s (10) and
- 13 and
(11) for e l a s t i c Even
brought
when the history
ma1 and homentropic
by
(17)
ction
tive
(4) s t i l l
holds f o r homother-
[ 1965,
-Sij F(:
I.
3,4
replaced
by
For
Q; ; i s
ir.sl:antaneous acoustic thensor
(~ib))
of the wave,
to
condition
is
'J
, G'~)) ,
and
given the fun-
is
held fixed in the computation
homectropic acceleration
of the derivais
waves
D~ 7, (t' , pq
$.-1JF
, T ' ~ ) ) and the function Prl of the entropy at the wave, is held fixed in
ap-
the histo-
(16) and
(17).
These observations extend to m a t e r i a l s with m e m o r y the f i r s t of
Iluhem. The second theorem of Duhem
zation
[1965,
I:
3, 4
In
wave i s h o m e n t ~ o p i c . Here; aq: t e r i a l f o r which - 2 ,
a
-
of heat, e v e r y accele-
a non-conductor , evevy acceieration
by a definite condcctor,
we mean a ma-
computed
is always
using
(22),
definite t e n s e r . The
with
lations
q
*
,
po-
procf cf the theorem i s straightforward
uses
a generalization
i.e., 11
[ 1964,
a mate-
of t h e r e -
(24;. We should like
t h e following e x t e n s ~ o n tion
a
m
for a definite c c ~ d u c t o r, the proof for a non-conductcr, rial
theorem
a l s o has a d i r e c t gencrali-
a definite conductcr
ration wave i s homothermal ; in
sitive
ho-
the history of the t e m p e r a t u r e rip to the moment of
(16). F o r
plied ry
-lJ
,
0
arrival
5..
of a t h e r m o d y ~ a m i c variable
acceleration waves
waves the
with
Gurtin
materials
in, the propagation
mothermal
- X'I. E.
13. Coleman
(12) :
to
bring
i1965,
The relations
(24)
t o the a t t e ~ t i o n of 4 1 of the c l a s s i c a l imply thar,
and homentropic
s y m m e t r y condi-
even in
m e m o r y , the i n s t a n ~ a n e c u sa c o u s ~ i ct e n s o x f o r
experimenters
a m a t e r i a l with
both
waves a r e always s y m m e t r i c t e n s c r s in
homothermal ?he s e n s e
B.Coleman of equation
(12)
. This
ing t h e physical Truesdell materials,
[1961,
theorem
3,l
(24). F o r t u n a t e l y ,
working in the t h e o r y of e l a s t i c
h a s found s i t u a t i o n s in which
city can test the symmetry
M . E. Gurtin
a p p e a r s t o supply a method of t e s t -
a p p r o p r i a t e n e s s of the r e l a t i o n s 2 1[1964,
-
m e a s u r e m e n t s of wave velo-
of t h e a c o u s t i c t e n s o r . His a n a l y s e s
can
be applied with s m a l l modifications t o the theory d a c c e l e r a t i o n w a v e s e n t e r i n g a g e n e r a l m a t e r i a l with m e m o r y of t h e wave had a l w a y s been a t r e s t in
which
previous to a r r i v a l
a fixed configuration.
REFERENCES
,
,J. H a d a m a r d , Bull. Soc. Math. F r a n c e
R . Sips,
.J. P o l y m e r
J. L. E r i c k s e n ,
Sci.
2
,
5C-68.
285-293.
J. R a t i o n a l Mech. Anal.
2, 329-337.
E. H. L e e % L. K a n t e r , J. Appl. P h y s . 24, 1115-1122. u w
A. E. G r e e n 1
& R . S. Rivlin,
Arch. Rational
Mech. Anal.
1-21.
wJ
W. Noll,
Arch. Rational Mech
B. D. C o l e m a n br W. No11 C. T r u e s d e l l
. In :
ries
5,
. Anal.
z,
197-226
355-370.
& R . A. Toupin,
The classical
Fliiggets Encyclopedia of Physics,
B.D. Coleman
6
C. T r u e s d e l l ,
.
311,
'L
Mech. Anal.
B. -T. Chu, X a r c h 1962, A R P A r e p o r t
239-249.
$,
from
225-793.
Y
,?:
W. ~ 0 1 1 , R e v . Mod. P h y s .
Arch. Rational
field theo-
263-296. t h e Division
of E n g i n e e r ~ n g , B r o w n U n i v e r s i t y . B. D.
Coleman, Arch. Rational
B. D. C o l e m a n , C. T r u e s d e l l , Haifa,
Arch. Rational
&9Y, 1, 1-19
C o l e m a n , ck M. E.
. A%,
B. D.
,l7;
23 '-254
1962, pp. 187-199.
R a t i o n a l Mech. Anal.
nal
NIech. Anal.
Internat. Sympos. Second-Order Effects,
B. D. C o l e m a n , & M . E . ~ u r t i n ,
B. D.
Mech. Anal. ,I> 1-46.
.
Gurtin.
Arch. Rational
M e c h . A-
M.E. Gurtin ,
Arch. Rational
Mech.
4
Coleman
Anal. 19.5
I. H e r r e r a , R . , A r c h .
1965
4
B. D. C o l e m a n 19 5
.vJ
5
.
I.H e r r e r a ,
h
M. E. G u r t i n , A r c h . R a t i o n a l M e c h . Anal.
R . b M. E. G u r t i n , Q u a r t . Appl. Math.
?2
360-364. 6
C. T r u e s d e l l b, W. Noll, mechanics,
The
n o n - l i n e a r field t h e o r i e s
In : F 1 6 g g e t s E n c y c l o p e d i a of P h y s i c s ,
212 ,
in p r e s s .
1966
Arch. Rational
Mech. Anal.
Ll, L8,
7
E. V a r l e y ,
8
C. -C. Wang,
1
A. C. P i p k i n , Q u a r t . Appl. Math. , in p r e s s .
A r c h . R a t i o n a l Mech. Anal.
of
3, 215-225. 117-126.
C E N T R O INTERNAZIONALE MATEMATICO E S T I V O
(C.J. M. El )
..L. D E VITO
SUI FONDAMENTI D E L L A MECCANICA D E I S I S T E M I CONTINUI (11)
C o r s o tenuto a Bressanone da13 lmaggio a1 9 giugno 1965
SUI FONDAMENTI DELLA
MECCANICA DEI
SISTEMI CONTINUI (11) di Luciano De Vito Universitb- Roma In un recente Mazzaroli ordine di fa
- in
lo scrivente, ( I ) 81 6
e idee,
uno
lavoro, in collaborazione
dei
proposto dal Suoi c o r s i
tra
il
cominciato
dott,Innocente
a sviluppare un
Prof. Gaetano F i c h e r a giB alcuni alllIstituto
Nazionale
di
anni
Alta Matems-
tica -relative all~introduzione di un punto di vista "globaleIt nella teor i a della
"Meccanica dei s i s t e m i c o n t i n ~ i ' ~ in . luogo del punto d i
vista
"puntualen che pih
vista
"globaleU,
rappresentate benst
da
s p e s s o viene adottato
volume e di s u p e r f i c i e non aaranno pih
integrali
(in s e n s o ordinario) di funzioni continue,
da funzioni di
a110
studio
continuiu , p e r il
insieme affatto a r b i t r a r i e
delle
B
caso dei c o r p i
.
numerabil-
alltimpostazione
della I1Statica d e i s i s t - m i
indefinitamente e s t e s i . VerrA o r a qui
limitati (includendovi anche il c a s o dei c o r -
Strumento essenziale p e r tale studio B l a tore
purchb
pervenuti
equazioni cardinali
esposto il c a s o d e i corpi pi "fluidit1 )
Secondo tale punto di
l e f o r z e di
mente additive. Nel sucitato lavoro s i ed
.
nozione
di
"vet-
dotato di divergenza in s e n s o debole (o in senso integrale) " ,
che r i e n t r a , come c a s o particolarissimo, nella pih generale nozione di
k - m i s u r a dotata di
differenziale
in
s e n s o debole1$ introdotta
L. De Vito e I. Mazzar01i:~Suifondamenti della Meccanica s t e m i coritinuiw , Memorie Acc. Naz. Lincei , v. VII , 1965
.
dei s i -
L. De Vito da G. F i c h e r a (2)
. Alla
considerazione
-
"Staticatl p e r corpi limitati ne quindi quello
premettere
delle equazioni cardinali della
second0 llattuale
lo studio dei vettori
sono, appunto, dedicati
i primi
vista
-
convie-
a divergenza debole e a gradiente debole. A ta-
(strettamente connesso) delle funzioni
l e studio
punto di
.
paragrafi
1 . Notazioni In tutto
quel
c3
che segue, ci
nel quale penseremo introdotto un
euclideo
il
punto
denoteremo siano
2
,x
xi=
del
in
,x , con 1%; (avendo
0
si
di
Con
il
la
3)
detto
a1
%'
con
a
(a,& )
la
gli
intervalli ( s u p e r i o r -
fissato
s i s t e m a cartesiano
di
x
, oppure,
I
su1 piano ove gli
delltaggiunzione di un mult'i-
llintervallo
a co lo,
9 p e r ogni
NE
q,CQ')
che, in
ove pensiamo
Allora tinuo r u tutto
FD'
(11) e , p e r ogni talchb di
(9),
pub F,l
imbolo
q,(D'),\,&
forza di
d Q i ~, p)e r
ogni VC%(D>~ ha:
= u d u . d ~ =- {Dl u, Avv dx
{ D l ~ xy Da
in
il
limite:
d r =-IDl a c ~ w dx r t 5' (Y)
r4
funzionale lineare
1k7,jJ
e continuo sulla varieta
di a v e r introdotto la norma :
11
riesce :
essere
,&?D')
che e s i s t e finito
prolungato
(che seguiteremo
in un funzionale l i n e a r e e cona denotare con il medesimo
) tale che :
11 D' I\AacDIJ*
q,(D'),
risulta
FD, Lm3, wet2
the 6 inclusa nella
.
XVI
"Cu 9
/LI~V(()-J)~~) una m i s u r a assolutamente continua con densitj. ,
/
,/e k91(0) esistono infiniti vettori K F & t ~ ) c h e hanno s u D-)JD eriesce: ddbol; /U
p e r divergenza
(24)9,1t
; 4 < 3 ' < ~ . 23, ,I(?< (ove s i convenga che, p e r q, ficato e
specificato
71
sono
Segue
dal
per /v
ie su
genza
D
esiste
le
migliori possibili
.
s i ha
un
IAl=[wD7" D{dr su
con
migliorare
N
) ;
2
ha
il s igni-
per
.
ye
5D f! d r =
A ~ D 'he) {B
i(
l e limitazioni
per
per
perfettamente
del t e o r . XIV
.
ha
Allora, p e r i i
p e r divergenza d ~ b o -
.
la misura e
.
aUdx= l i t U 1 ~ & y D )
Allora, il vettore
D-&D
un ragionamento
strazione
49;u)e
?I
vettore
r a r e l e limitazioni p e r di
,j
t e o r . XVI, in b a s e alla seguente osservazione. Posto -
la m i s u r a p ( ~ ) =
debole
; P 2 ( i ( < t @j+ , 3I-c9r b i . < t
di(?&+a
, =a&
*q 9 t e o r e m a precedente. L e limitazioni
nel
C=/?-(WDJ~~+ dx
t e o r . XIV
:4
Sia r('~~*~~‘$i;ilec I ~ r ha per d i r r r -
/1L . L1impossibilitB di rniglio-
q'
segue da quella e
/r'
analog0
in relazione ad un
- nota -
alla (19),
r+
fatto nella dimo-
L. De Vito
8. T r a c c i a s u l contorno p e r funzioni dotate di g r a d i e n t e debole
su I>-$D. Sussiste
teorema :
.Se M ~ & ' ( ~ha) g r a d i e n t e debole s u I)-PD r a p p r e s e n -
XVII tat0
il seguente
dalla m i s u r a
r-
e s i s t e una ed una s o l a funzione
ode delle s e e u e n t i ~ r o ~ r i e :t a
1) r i e s c e :
ove i l i m i t i devono p e n s a r s i fztti prescindendo da un i n s i e m e di m i s u r a nulla 2)
per
O V ~ Ke 3 ) s i ha :
(27)
) di
'I.'x'1i4G3D)
+
un conveniente
ed
ove
in
i n s i e m e di m i s u r a nulla ;
/1@ljd_l~4D~o
a c o n s i d e r a r e il
caso
in
, riesce :
r
h\r.
u4(y)
cui
piano. P o s s i a m o quindi s u p p o r r e che
sia
sia con-
- 40 tenuta nel
piano
1O -
tervallo
~
1
di
tale
(, x l + ~ < p 'kitkl;t24 J tenga llintervallo 1='
come v e r s o r e
Y(X)
e
s i0a
~
piano
&;+a
~ ix Ji
dalla chiusura
(definito dalle limitazioni anche che
delltin-
~''2 .
D
con-
~;;%(~kl'tO) . Assurneremo v e r s o r e normale interno . Con l e con
;
per-)"r
notazioni introdotte in
costituita
. Supporremo
) 0
L. De Vito
il
-
1 , s i t r a t t a allora
di mostrare
che
esiste
g4(1;;) tale che : L((T$)M*($)JdjL=o,L 4(f,2+j=u*($d.j
una 14X(2;)sM X ( X ' + $ i * ~ ~
C->oS. P. ~111i.i prescindendo da un conveniente insie-
fatti m e di m i s u r a
nulla
per
/U ; e a %; ( n e l piano 1 '= 0
positiva e negativa di
4 10
rispetto
la:
vallo riesce :
del
I,i
. Indicate con
delltasse reale
con
X'
~(9. E)
l a derivata parziale di
senso
p e r ogni interval-
contenuto
in
Io2;
e per
ogni inter-
contenuto, con la s u a chiusura, in ( Q;O ),
2 $ ! ~ ~ ~ ~ ~ ;. ~ l ) ~ ~
4,ui(~-~;%i~:)=$ Post0
le variazioni
a:
, con 4i(f
s*P' ~@,?oo)
dalla p a r t i c o l a r e s c e l t a del v e r s o r e
propriamente regolare, & di verific?
immediata. L a funzione masi traccia di
k* ,
K
P e r l a funzione
su
d i cui si & provata l l e s i s t e n z a e ltunicitA, chia-
C)r)
(20)
t r a c c i a s u s s i s t o n o anche i seguenti t e o r e m i .
- d A ( ~ha) p e r
XVIII. Se K E
&
,
&a s u a t r a c c i a s u
ove
/('
2
@p
.
gradiente debole
appartiene a
gp2(~)
su
D-&D
la a i s u r a
e, indicata con 4 4k
, riesce :
una costante dipendente s o l o da
D.
( 2 0 ) ~ a l nozione e d i t r a c c i a 6 s t a t a data da G. F i c h e r a nel 1949(cfr. G. Ficher a , llSulllesistenza e s u l calcolo delle soluzioni dei problemi a1 contorno rel.ativi alltequilibrio di un coppo elastico", Ann. Sc. Norm. Sup. P i s a , 1950, Pubblicazione dell1INAC n. 248, 1949) e r i p r e s a , pih t a r d i , da Stampacchia ( c f r . G. Stampacchia, llProblemi a1 contorno p e r equazioni di tip0 ellettico a derivate p a r z i a l i e questioni di calcolo delle variazioni connesse", Ann, di Mat. pura e appl., 1952)
L. De Vito
L a ( 3 1 ) si deduce immediatamente applicando il gia pi0 esistenziale e di dualith di
G. F i c h e r a alltequazione
ePGV(b,qD) e ltincognita e 4 E$~'~(D)o&'(QJ)) spazio L3Y~))nr(J3j)) e normalizzato mediante la norma )I 11 s
ove il t e r m i n e
60
citato princi-
noto
lkqo)
I1 flgq,, +I XIX . L( E Irz_p€Y(D-T)D),e Se /Cc QE. &?(D) , la t r a c c i a u*
ha p e r gradiente debole su 6
D- .;'D
assolutamente continua con densith
di
U
su
~
~
appartiene a
e riesce :
&(I) u+eaA.ll&
(33kl\+4
=
rpl~',?~
f
n
~
limitazioni
4
non
con
il t e r m i n e densith
essere
f.
noto ,&
&T[D)
@ ;
una
migliorate.
Se o r a si tiene p r e s e n t e
g"('3D )
dette., come segue
perb,
m i s u r a assolutamente continua
Itincognita
spazio $(b)(~&f'(&~)nOrmalioeato
tenente a
~
.I