HANDBOOK OF
OPTICAL MATERIALS
The CRC Press Laser and Optical Science and Technology Series Editor-in-Chief: Marvin J...
378 downloads
4460 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
HANDBOOK OF
OPTICAL MATERIALS
The CRC Press Laser and Optical Science and Technology Series Editor-in-Chief: Marvin J. Weber A.V. Dotsenko, L.B. Glebov, and V.A. Tsekhomsky
Physics and Chemistry of Photochromic Glasses Andrei M. Efimov
Optical Constants of Inorganic Glasses Alexander A. Kaminskii
Crystalline Lasers: Physical Processes and Operating Schemes Valentina F. Kokorina
Glasses for Infrared Optics Sergei V. Nemilov
Thermodynamic and Kinetic Aspects of the Vitreous State Piotr A. Rodnyi
Physical Processes in Inorganic Scintillators Michael C. Roggemann and Byron M. Welsh
Imaging Through Turbulence Shigeo Shionoya and William M. Yen
Phosphor Handbook Hiroyuki Yokoyama and Kikuo Ujihara
Spontaneous Emission and Laser Oscillation in Microcavities Marvin J. Weber, Editor
Handbook of Laser Science and Technology Volume I: Lasers and Masers Volume II: Gas Lasers Volume III: Optical Materials, Part 1 Volume IV: Optical Materials, Part 2 Volume V: Optical Materials, Part 3 Supplement I: Lasers Supplement II: Optical Materials Marvin J. Weber
Handbook of Laser Wavelengths Handbook of Lasers
HANDBOOK OF
OPTICAL MATERIALS Marvin J. Weber, Ph.D. Lawrence Berkeley National Laboratory University of California Berkeley, California
CRC PR E S S Boca Raton London New York Washington, D.C.
3512 disclaimer Page 1 Thursday, August 8, 2002 11:14 AM
Library of Congress Cataloging-in-Publication Data Weber, Marvin J., 1932Handbook of optical materials / Marvin J. Weber. p. cm. Includes bibliographical references and index. ISBN 0-8493-3512-4 (alk. paper) 1. Optical materials—Handbooks, manuals, etc. 2. Lasers—Handbooks, manuals, etc. 3. Electrooptics—Handbooks, manuals, etc. I. Title. QC374 .W43 2002 621.36—dc21
2002073628
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com © 2003 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-3512-4 Library of Congress Card Number 2002073628 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
Preface The Handbook of Optical Materials is a compilation of the physical properties of optical materials used in optical systems and lasers. It contains extensive data tabulations but with a minimum of narration, in a style similar to that of the CRC Handbook of Chemistry and Physics. References to original or secondary sources of the data are included throughout. The objective of the handbook is to provide a convenient, reliable source of information on the properties of optical materials. Data in a handbook of optical materials can be presented by material (e.g., SiO2, CaF2, Ge), by property (e.g., refractive index, thermal expansion, hardness), by wavelength region (e.g., infrared, visible, ultraviolet), or by application (e.g., transmitting optics, laser hosts, polarizers). In this handbook data are grouped by material properties. Thereby one can compare different materials with respect to their properties and suitability for a particular application. The volume is divided into sections devoted to various forms of condensed matter (crystals, glasses, polymers, metals), liquids, and gases. Within each section physical properties, linear and nonlinear optical properties, and many special properties such as electrooptic, magnetoopic, and elastooptic properties of the materials are tabulated. The optical solids included are mainly inorganic materials; optical liquids are mainly organic substances. If by an optical material one means a material that exhibits some optical property such as transmission, absorption, reflection, refraction, scattering, etc., the number of materials to be considered becomes unmanageable. Thus the inclusion of materials in this volume is selective rather than exhaustive. In the case of commercial optical glasses, for example, properties of representative types of glasses are given but not properties for all compositional variations. Glasses with special properties or for special applications are included, however. Bulk materials rather than thin films and multilayer structures are considered. Although optical glasses epitomizes an engineered material, other engineered optical materials such as nanomaterials, quantum wells, or photonic crystals are also not included (although one of the last is listed in Appendix II). Although today optics can encompass x-ray and millimeterwave optics, coverage is limited to materials for the spectral range from the vacuum ultraviolet (~100 nm) to the infrared (up to 100 µm) portion of the electromagnetic spectrum. Among optical materials and properties not treated explicitly are photorefractive materials, liquid crystals, optical fibers, phase-change optical recording materials, luminescent materials (phosphors, scintillators), optical damage, and materials preparation and fabrication. Much of the numerical data in this handbook is from Volumes III, IV, V, and Supplement 2 of the CRC Handbook of Laser Science and Technology. These volumes should be consulted for more detailed descriptions of properties and their measurement (the contents of the volumes and the contributors are given in the following pages). In many instances the data in these volumes have been reformatted and combined with additions and recent developments. Several new sections have been added. For example, gases can play various roles as © 2003 by CRC Press LLC
an optical material—as transmitting media, active media for Faraday rotation, frequency conversion, filter, and phase conjugation. Physical and optical properties of a selected number of gases are therefore included in a final section. The discovery of new optical materials has been accompanied by a somewhat bewildering and befuddling proliferation of abbreviations and acronyms. An appendix has been added to decode several hundred of these terms. Common or mineralogical names for optical materials are also included. Methods of preparing optical materials and thin films have developed their own terminology; many of these abbreviations are given in another appendix. This volume has benefited from the efforts of many contributors to the CRC Handbook of Laser Science and Technology series. I am indebted to them for what in many cases have been very extensive compilations. In the course of preparing this volume I have also benefited from other input provided by Mark Davis, Alexander Marker, Lisa Moore, John Myers, and Charlene Smith; these are gratefully acknowledged. Finally, I appreciate the excellent help provided by Project Editors Samar Haddad and Joette Lynch, Production Supervisor Helena Redshaw, and the staff of the CRC Press in the process of preparing this handbook. Marvin J. Weber Danville, California
© 2003 by CRC Press LLC
The Author Marvin John Weber received his education at the University of California, Berkeley, and was awarded the A.B., M.A., and Ph.D. degrees in physics. After graduation, Dr. Weber continued as a postdoctoral Research Associate and then joined the Research Division of the Raytheon Company where he was a Principal Scientist working in the areas of spectroscopy and quantum electronics. As Manager of Solid State Lasers, his group developed many new laser materials including rare-earth-doped yttrium orthoaluminate. While at Raytheon, he also discovered luminescence in bismuth germanate, a scintillator crystal widely used for the detection of high energy particles and radiation. During 1966 to 1967, Dr. Weber was a Visiting Research Associate with Professor Arthur Schawlow’s group in the Department of Physics, Stanford University. In 1973, Dr. Weber joined the Laser Program at the Lawrence Livermore National Laboratory. As Head of Basic Materials Research and Assistant Program Leader, he was responsible for the physics and characterization of optical materials for high-power laser systems used in inertial confinement fusion research. From 1983 to 1985, he accepted a transfer assignment with the Office of Basic Energy Sciences of the U.S. Department of Energy in Washington, DC, where he was involved with planning for advanced synchrotron radiation facilities and for atomistic computer simulations of materials. Dr. Weber returned to the Chemistry and Materials Science Department at LLNL in 1986 and served as Associate Division Leader for condensed matter research and as spokesperson for the University of California/National Laboratories research facilities at the Stanford Synchrotron Radiation Laboratory. He retired from LLNL in 1993 and is at present a staff scientist in the Department of Nuclear Medicine and Functional Imaging of the Life Sciences Division at the Lawrence Berkeley National Laboratory. Dr. Weber is Editor-in-Chief of the multi-volume CRC Handbook Series of Laser Science and Technology. He has also served as Regional Editor for the Journal of Non-Crystalline Solids, as Associate Editor for the Journal of Luminescence and the Journal of Optical Materials, and as a member of the International Editorial Advisory Boards of the Russian journals Fizika i Khimiya Stekla (Glass Physics and Chemistry) and Kvantovaya Elektronika (Quantum Electronics). Among several honors he has received are an Industrial Research IR-100 Award for research and development of fluorophosphate laser glass, the George W. Morey Award of the American Ceramics Society for his basic studies of fluorescence, stimulated emission, and the atomic structure of glass, and the International Conference on Luminescence Prize for his research on the dynamic processes affecting luminescence efficiency and the application of this knowledge to laser and scintillator materials. Dr. Weber is a Fellow of the American Physical Society, the Optical Society of America, and the American Ceramics Society and a member of the Materials Research Society.
© 2003 by CRC Press LLC
Contributors Stanley S. Ballard, Ph.D. University of Florida Gainesville, Florida
Larry G. DeShazer, Ph.D. Spectra Technology, Inc. Bellevue, Washington
Lee L. Blyler, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey
Marilyn J. Dodge, Ph.D. National Bureau of Standards Washington, DC
James S. Browder, Ph.D. Jacksonville University Jacksonville, Florida
Albert Feldman, Ph.D. National Institute of Standards and Technology Washington, DC
Allan J. Bruce, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Hans Brusselbach, Ph.D. Hughes Research Laboratory Malibu, California Bruce H. T. Chai, Ph.D. Center for Research in Electro-Optics and Lasers University of Central Florida Orlando, Florida Lloyd Chase, Ph.D. Lawrence Livermore National Laboratory Livermore, California Di Chen, Ph.D. Honeywell Corporate Research Center Hopkins, Minnesota Lee M. Cook, Ph.D. Galileo Electro-Optic Corp. Sturbridge, Massachusetts
James W. Fleming, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Anthony F. Garito, Ph.D. Department of Physics University of Pennsylvania Philadelphia, Pennsylvania Milton Gottlieb, Ph.D. Westinghouse Science and Technology Center Pittsburgh, Pennsylvania William R. Holland, Ph.D. AT&T Bell Laboratories Princeton, New Jersey Ivan P. Kaminow, Ph.D. AT&T Bell Laboratories Holmdel, New Jersey Donald Keyes U.S. Precision Lens, Inc. Cincinnati, Ohio
Gordon W. Day, Ph.D. National Institute of Standards and Technology Boulder, Colorado
Marvin Klein, Ph.D. Hughes Research Laboratory Malibu, California
Merritt N. Deeter, Ph.D. National Institute of Standards and Technology Boulder, Colorado
Mark Kuzyk, Ph.D. Department of Physics Washington State University Pullman, Washington
© 2003 by CRC Press LLC
David W. Lynch, Ph.D. Iowa State University Ames, Iowa
Robert Sacher R. P. Cargille Laboratories, Inc. Cedar Grove, New Jersey
Fred Milanovich, Ph.D. Lawrence Livermore National Laboratory Livermore, California
William Sacher R. P. Cargille Laboratories, Inc. Cedar Grove, New Jersey
Monica Minden, Ph.D. Hughes Research Laboratory Malibu, California
N. B. Singh, Ph.D. Westinghouse Science and Technology Center Pittsburgh, Pennsylvania
Duncan T. Moore, Ph.D. University of Rochester Rochester, New York Lisa A. Moore, Ph.D. Corning, Inc. Corning, New York Egberto Munin, Ph.D. Universidade de Campinas Campinas, Brazil David M. Pepper, Ph.D. Hughes Research Laboratory Malibu, California Stephen C. Rand, Ph.D. Hughes Research Laboratory Malibu, California Charles F. Rapp, Ph.D. Owens Corning Fiberglass Granville, Ohio John F. Reintjes, Ph.D. Naval Research Laboratory Washington, DC Allen H. Rose, Ph.D. National Institute of Standards and Technology Boulder, Colorado
© 2003 by CRC Press LLC
Shobha Singh, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey, and Polaroid Corporation Cambridge, Massachusetts Charlene M. Smith, Ph.D. Corning, Inc. Corning, New York Stanley Stokowski, Ph.D. Lawrence Livermore National Laboratory Livermore, California David S. Sumida, Ph.D. Hughes Research Laboratory Malibu, California Eric W. Van Stryland, Ph.D. Center for Research in Electro-Optics and Lasers University of Central Florida Orlando, Florida Barry A. Wechsler, Ph.D. Hughes Research Laboratory Malibu, California
Contents of previous volumes on optical materials from the CRC HANDBOOK OF LASER SCIENCE AND TECHNOLOGY VOLUME III: OPTICAL MATERIALS PART 1: NONLINEAR OPTICAL PROPERTIES/RADIATION DAMAGE SECTION 1: NONLINEAR OPTICAL PROPERTIES 1.1 Nonlinear and Harmonic Generation Materials — Shobha Singh 1.2 Two-Photon Absorption — Walter L. Smith 1.3 Nonlinear Refractive Index — Walter L. Smith 1.4 Stimulated Raman Scattering — Fred Milanovich SECTION 2: RADIATION DAMAGE 2.1 Introduction — Richard T. Williams and E. Joseph Friebele 2.2 Crystals — Richard T. Williams 2.3 Glasses — E. Joseph Friebele VOLUME IV: OPTICAL MATERIALS PART 2: PROPERTIES SECTION 1: FUNDAMENTAL PROPERTIES 1.1 Transmitting Materials 1.1. 1 Crystals — Perry A. Miles, Marilyn J. Dodge, Stanley S. Ballard, James S. Browder, Albert Feldman, and Marvin J. Weber 1.1. 2 Glasses — James W. Fleming 1.1.3 Plastics — Monis Manning 1.2 Filter Materials — Lee M. Cook and Stanley E. Stokowski 1.3 Mirror and Reflector Materials — David W. Lynch 1.4 Polarizer Materials — Jean M. Bennett and Ann T. Glassman SECTION 2: SPECIAL PROPERTIES 2.1 Linear Electro-Optic Materials — Ivan P. Kaminow 2.2 Magneto-Optic Materials — Di Chen 2.3 Elasto-Optic Materials — Milton Gottlieb 2.4 Photorefractive Materials — Peter Günter 2.5 Liquid Crystals — Stephen D. Jacobs VOLUME V: OPTICAL MATERIALS PART 3: APPLICATIONS, COATINGS, AND FABRICATION SECTION 1: APPLICATIONS 1.1 Optical Waveguide Materials — Peter L. Bocko and John R. Gannon 1.2 Materials for High Density Optical Data Storage — Alan E. Bell 1.3 Holographic Parameters and Recording Materials — K. S. Pennington 1.4 Phase Conjugation Materials — Robert A. Fisher 1.5 Laser Crystals — Charles F. Rapp 1.7 Infrared Quantum Counter Materials — Leon Esterowitz SECTION 2: THIN FILMS AND COATINGS 2.1 Multilayer Dielectric Coatings — Verne R. Costich 2.2 Graded-Index Surfaces and Films — W. Howard Lowdermilk SECTION 3: OPTICAL MATERIALS FABRICATION 3.1 Fabrications Techniques — G. M. Sanger and S. D. Fantone 3.2 Fabrication Procedures for Specific Materials — G. M. Sanger and S. D. Fantone © 2003 by CRC Press LLC
SUPPLEMENT 2: OPTICAL MATERIALS SECTION 1. OPTICAL CRYSTALS — Bruce H. T. Chai SECTION 2. OPTICAL GLASSES — James W Fleming SECTION 3. OPTICAL PLASTICS — Donald Keyes SECTION 4. OPTICAL LIQUIDS — Robert Sacher and William Sacher SECTION 5. FILTER MATERIALS — Lee M. Cook SECTION 6. LINEAR ELECTROOPTIC MATERIALS — William R. Holland and Ivan P. Kaminow SECTION 7. NONLINEAR OPTICAL MATERIALS 7.1 Crystals — Shobha Singh 7.2 Cluster-Insulator Composite Materials — Joseph H. Simmons, Barrett G. Potter, Jr., and O. Romulo Ochoa SECTION 8. NONLINEAR OPTICAL PROPERTIES 8.1 Nonlinear Refractive Index : Inorganic Materials — Lloyd Chase and Eric W. Van Stryland Organic Materials — Anthony F. Garito and Mark Kuzyk 8.2 Two-Photon Absorption: Inorganic Materials — Lloyd Chase and Eric W. Van Stryland Organic Materials — Anthony F. Garito and Mark Kuzyk 8.3 Stimulated Raman and Brillouin Scattering — John F. Reintjes SECTION 9. MAGNETOOPTIC MATERIALS 9.1 Crystals and Glasses — Merritt N. Deeter, Gordon W. Day, and Allen H. Rose 9.2 Organic and Inorganic Liquids — Egberto Munin SECTION 10. ELASTOOPTIC MATERIALS — M. Gottlieb and N. B. Singh SECTION 11. PHOTOREFRACTIVE MATERIALS — Carolina Medrano and Peter Günter SECTION 12. OPTICAL PHASE CONJUGATION MATERIALS — David M. Pepper, Marvin Klein, Monica Minden, Hans Brusselbach SECTION 13. GRADIENT INDEX MATERIALS — Duncan T. Moore SECTION 14. LIQUID CRYSTALS — Stephen D. Jacobs, Kenneth L. Marshall, and Ansgar Schmid SECTION 15. DIAMOND OPTICS — Albert Feldman SECTION 16. LASER CRYSTALS — David S. Sumida and Barry A. Wechsler SECTION 17. LASER GLASSES 17.1 Bulk Glasses — Charles F. Rapp 17.2 Waveguide Glasses — Steven T. Davey, B. James Ainslie, and Richard Wyatt
© 2003 by CRC Press LLC
SECTION 18. OPTICAL WAVEGUIDE MATERIALS 18.1 Crystals — Patricia A. Morris Hotsenpiller 18.2 Glasses — Allen J. Bruce 18.3 Plastic Optical Fibers — Lee L. Blyler, Jr. SECTION 19. OPTICAL COATINGS FOR HIGH POWER LASERS — Mark R. Kozlowski, Robert Chow, and Ian M. Thomas APPENDIX 1. ABBREVIATIONS, ACRONYMS, INITIALISMS, AND MINERALOGICAL OR COMMON NAMES FOR OPTICAL MATERIALS APPENDIX 2. ABBREVIATIONS FOR METHODS OF PREPARING OPTICAL MATERIALS APPENDIX 3. DESIGNATIONS OF RUSSIAN OPTICAL GLASSES Leonid B. Glebov and Mikhail N. Tolstoi
© 2003 by CRC Press LLC
Table of Contents SECTION 1: CRYSTALLINE MATERIALS 1.1 Introduction 1.2 Physical Properties 1.2.1 Isotropic Crystals 1.2.2 Uniaxial Crystals 1.2.3 Biaxial Crystals 1.3 Optical Properties 1.3.1 Isotropic Crystals 1.3.2 Uniaxial Crystals 1.3.3 Biaxial Crystals 1.3.4 Dispersion Formulas for Refractive Index 1.3.5 Thermooptic Coefficients 1.4 Mechanical Properties 1.4.1 Elastic Constants 1.4.2 Elastic Moduli 1.4.3 Engineering Data 1.5 Thermal Properties 1.5.1 Melting Point, Heat Capacity, Thermal Expansion, Conductivity 1.5.2 Temperature Dependence of Heat Capacity for Selected Solids 1.5.3 Debye Temperature 1.6 Magnetooptic Properties 1.6.1 Diamagnetic Crystals 1.6.2 Paramagnetic Crystals 1.6.3 Ferromagnetic, Antiferromagnetic, and Ferrimagnetic Crystals 1.7 Electrooptic Properties 1.7.1 Linear Electrooptic Coefficients 1.7.2 Quadratic Electrooptic Materials 1.8 Elastrooptic Properties 1.8.1 Elastooptic Coefficients 1.8.2 Acoustooptic Materials 1.9 Nonlinear Optical Properties 1.9.1 Nonlinear Refractive Index 1.9.2 Two-Photon Absorption 1.9.3 Second Harmonic Generation Coefficients 1.9.4 Third-Order Nonlinear Optical Coefficients 1.9.5 Optical Phase Conjugation Materials SECTION 2: GLASSES 2.1 Introduction 2.2 Commercial Optical Glasses 2.2.1 Optical Properties 2.2.2 Internal Transmittance 2.2.3 Mechanical Properties 2.2.4 Thermal Properties 2.3 Specialty Optical Glasses © 2003 by CRC Press LLC
2.3.1 Optical Properties 2.3.2 Mechanical Properties 2.3.3 Thermal Properties 2.4 Fused Silica 2.5 Fluoride Glasses 2.5.1 Fluorozirconate Glasses 2.5.2 Fluorohafnate Glasses 2.5.3 Other Fluoride Glasses 2.6 Chalcogenide Glasses 2.7 Magnetooptic Properties 2.7.1 Diamagnetic Glasses 2.7.2 Paramagnetic Glasses 2.8 Electrooptic Properties 2.9 Elastooptic Properties 2.10 Nonlinear Optical Properties 2.10.1 Nonlinear Refractive Index 2.10.2 Two-Photon Absorption 2.10.3 Third-Order Nonlinear Optical Coefficients 2.10.4 Brillouin Phase Conjugation 2.11 Special Glasses 2.11.1 Filter Glasses 2.11.2 Laser Glasses 2.11.3 Faraday Rotator Glasses 2.11.4 Gradient-Index Glasses 2.11.5 Mirror Substrate Glasses 2.11.6 Athermal Glasses 2.11.7 Acoustooptic Glasses 2.11.8 Abnormal Dispersion Glasses SECTION 3: POLYMERIC MATERIALS 3.1 Optical Plastics 3.2 Index of Refraction 3.3 Nonlinear Optical Properties 3.4 Thermal Properties 3.5 Engineering Data SECTION 4: METALS 4.1 Physical Properties of Selected Metals 4.2 Optical Properties 4.3 Mechanical Properties 4.4 Thermal Properties 4.5 Mirror Substrate Materials SECTION 5: LIQUIDS 5.1 Introduction 5.2 Water 5.2.1 Physical Properties 5.2.2 Absorption © 2003 by CRC Press LLC
5.3
5.4
5.5
5.6
5.7
5.2.3 Index of Refraction Physical Properties of Selected Liquids 5.3.1 Thermal Conductivity 5.3.2 Viscosity 5.3.3 Surface Tension 5.3.4 Absorption Index of Refraction 5.4.1 Organic Liquids 5.4.2 Inorganic Liquids 5.4.3 Calibration Liquids 5.4.4 Abnormal Dispersion Liquids Nonlinear Optical Properties 5.5.1 Two-Photon Absorption Cross Sections 5.5.2 Nonlinear Refraction 5.5.3 Kerr Constants 5.5.4 Third-Order Nonlinear Optical Coefficients 5.5.5 Stimulated Raman Scattering 5.5.6 Stimulated Brillouin Scattering Magnetooptic Properties 5.6.1 Verdet Constants of Inorganic Liquids 5.6.2 Verdet Constants of Organic Liquids 5.6.3 Dispersion of Verdet Constants Commercial Optical Liquids
SECTION 6: GASES 6.1 Introduction 6.2 Physical Properties of Selected Gases 6.3 Index of Refraction 6.4 Nonlinear Optical Properties 6.4.1 Nonlinear Refractive Index 6.4.2 Two-Photon Absorption 6.4.3 Third-Order Nonlinear Optical Coefficients 6.4.4 Stimulated Raman Scattering 6.4.5 Brillouin Phase Conjugation 6.5 Magnetooptic Properties 6.6 Atomic Resonance Filters APPENDICES Appendix I Appendix II
Safe Handling of Optical Materials Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials Appendix III Abbreviations for Methods of Preparing Optical Materials and Thin Films Appendix IV Fundamental Physical Constants Appendix V Units and Conversion Factors
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Introduction Physical Properties Optical Properties Mechanical Properties Thermal Properties Magnetooptic Properties Electrooptic Properties Elastooptic Properties Nonlinear Optical Properties
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
3
Section 1 CRYSTALLINE MATERIALS 1.1 Introduction* Crystalline materials included in this section are insulators and semiconductors that have a transparent region within the range from the vacuum ultraviolet (from ~100 nm) to the infrared (up to 100 µm) portion of the electromagnetic spectrum. Crystals with wide band gaps are transparent from the ultraviolet through the visible region; crystals with a narrower band gap may appear opaque but are transparent in the infrared region. Using this broad transparency definition of optical crystals, virtually all known crystals can be included. Coverage, however, is limited to those crystals which either occur in nature or are produced in the laboratory for optical use or with potential for such use. For this reason hydrate or hydroxide crystals are generally excluded because they are thermally less stable and have limited tranmission range due to OH absorption. Highly hygroscopic materials are also excluded because of the obvious difficulty of handling, unless they have already been used, such as urea, KDP, CD*A, etc. Only pure compounds are considered. Compounds containing elements having intrinsic absorptions due to incompletely filled d or f shell electrons are also avoided. Other critical issues for the use of optical crystals are solid-state phase transitions that occur as a function of both temperature and pressure and polymorphism. Compounds that have a very small stability field or serious phase transition problems have limited use as optical materials. Phase change and decomposition temperatures of crystals are noted in Section 1.5 on thermal properties. Generally only the thermodynamically stable structure at room temperature and pressure are listed in this section. Compounds that have naturally occurring polymorphic forms are included, however, e.g., CaCO3, TiO2, and aluminum silicate Al2SiO5. In other cases, only the stable phase is listed, e.g., quartz (α-SiO2). Many compounds were considered appropriate as entries of optical crystals in Sections 1.1–1.3 regardless of the amount of information available. As Chai* has noted, merely showing the existence of a compound with its chemical constituents can help to estimate the stability of its isomorphs and the structural tolerance of doping or other modifications. Most of the basic material properties such as optical transparency and refractive indices of an unstudied compound can be estimated with reasonable accuracy based on its better studied isomorphs that have measured properties listed in the tables. Optical crystals in Sections 1.1–1.3 are classified into three categories: Isotropic crystals include materials through which monochromatic light travels with the same speed, regardless of the direction of vibration, and the vibration direction of a light ray is always perpendicular to the ray path. Whereas amorphous materials such as glasses and plastics are isotropic, only those crystals with cubic symmetry are isotropic.
* This section was adapted from “Optical crystals” by B. H. T. Chai, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 3 ff (with additions). © 2003 by CRC Press LLC
Anisotropic crystals include materials through which a light ray may travel with different speeds for different directions of vibration and in which the angle between the vibration directions and ray path may not always be 90°. The index of refraction of such crystals varies according to the vibration direction of the light; the optical indicatrix is no longer a sphere but an ellipsoid. Depending on the geometry of the ellipsoid, it is necessary to divide the class of the anisotropic materials further into two subgroups. Crystals with tetragonal, hexagonal, and trigonal (or rhombohedral) symmetry exhibit a unique index of refraction (symbolized as e or ε) when light vibrates parallel to the c-axis (the extraordinary ray). For light vibrating at 90° to the c-axis (the ordinary ray), the refractive indices are the same (symbolized as o or ω) in all 360° directions. Crystals with these types of optical properties are called uniaxial crystals. Crystals with orthorhombic, monoclinic, and triclinic symmetry possess three significant indices of refraction, commonly symbolized as x, y, and z or α, β, and γ in the order from smallest to largest. The shape of the indicatrix is a three-dimensional ellipsoid with all central sections being ellipses, except for two. These two are circular sections with a radius of β. The normal of the two circular sections are called the optical axes. Crystals with these types of optical properties are called biaxial crystals. In Sections 1.2 and 1.3 crystals are grouped as isotropic, uniaxial, and biaxial. Crystal symmetry plays a critical role in the selection of material for optical applications. Optically isotropic crystals are used most frequently for windows and lenses although a uniaxial single crystal (such as sapphire) precisely oriented along the optical axis can be used as a window material. Faraday rotator crystals for optical isolators based must be cubic or uniaxial, not biaxial. Anisotropic single crystals are widely used for other specific optical applications such as the polarizers, optical wave plates, and wedges. In nonlinear frequency conversion, all the optical materials used at present must not only be crystalline but also highly anisotropic and noncentrosymmetric. For simplicity of crystal orientation and fabrication, materials with highest symmetry are preferred. It is easy to orient crystals with cubic (isometric), tetragonal, and hexagonal (uniaxial) symmetries. For the biaxial crystals, orthorhombic symmetry is still relatively easy to orient because all the crystallographic axes are still orthogonal and in alignment with the optical indicatrix axes. In monoclinic crystals, the crystallographic a- and c-axes are no longer orthogonal. With the exception of the b-axis, two of the optical indicatrix axes are no longer aligned with the crystallographic ones. With a few exceptions, crystals with triclinic symmetry are not listed because they are difficult to orient and have too many parameters to define (no degeneracy at all). The preceding symmetry properties of a crystal structure refer to space group operations. For measured macroscopic properties the point group (the group of operations under which the property remains unchanged) is of interest. Eleven of the 32 point groups are centrosymmetric. Except for cubic 432, the remaining groups exhibit polarization when the crystal is subject to an applied stress (piezoelectric). Ten of these latter groups possess a unique polar axis and are pyroelectric, i.e., spontaneous polarize in the absence of stress. Crystallographic point groups and related properties are listed in the following table.
© 2003 by CRC Press LLC
Crystallographic Point Groups and Properties Crystal system Cubic
Hexagonal
Tetragonal
Trigonal
Orthorhombic
Monoclinic
Triclinic
© 2003 by CRC Press LLC
International symbol m3m
Schoenflies symbol Oh
−43m
Td
432
O
m3
Th
23
T
6/mmm
D6h
−6m2
D3h
6mm
C6v
622
D6
6/m
C6h
−6
C3h
6
C6
4/mmm
D4h
−42m
D2d
4mm
C4v
422
D4
4/m
C4h
−4
S4
4
C4
−3m
D3d
3m
C3v
32
D3
−3
S6
3
C3
mmm
D2h
mm2
C2v
222
D2
2/m
C2h
m
Cs
2
C2
−1
Ci
1
C1
Centrosymmetric
Piezoelectric
Pyroelectric
Crystals in the following table are listed alphabetically by chemical name (with mineral name* and acronym in parentheses) and include the chemical formula, crystal system, and space group. In the space group notation, a negative number indicates inversion symmetry.
* A mineralogy database containing names, physical properties, and an audio pronunciation guide for a very large number of materials is available at www.webmineral.com. Name, Formula, Crystal System, and Space Group for Optical Crystals Name Aluminum antimonide Aluminum arsenate Aluminum arsenide Aluminum borate Aluminum borate Aluminum fluoride Aluminum fluorosilicate (topaz) Aluminum gallate Aluminum germanate Aluminum germanate Aluminum germanate Aluminum hafnium tantalate Aluminum molybdate Aluminum niobate Aluminum nitride Aluminum oxide (corundum, sapphire, alumina) Aluminum oxynitrate (ALON) Aluminum phosphate (berlinite) Aluminum phosphide Aluminum silicate (andalusite) Aluminum silicate (kyanite) Aluminum silicate (mullite) Aluminum silicate (sillimanite) Aluminum tantalate (alumotantite) Aluminum titanium tantalate Aluminum tungstate Amino carbonyl (urea) Ammonium aluminum selenate Ammonium aluminum sulfate Ammonium dihydrogen phosphate (ADP) Ammonium gallium selenate Ammonium gallium sulfate Ammonium pentaborate Antimony niobate (stibiocolumbite) Antimony oxide (senarmontite)
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
AlSb AlAsO4 AlAs AlBO3 Al4B2O9 AlF3 Al2SiO4F2 AlGaO3 Al2Ge2O7 Al6Ge2O13 Al6Ge2O13 AlHfTaO6 Al2(MoO4)3 AlNbO4 AlN Al2O3 Al23O27N5 AlPO4 AlP Al2SiO5 Al2SiO5 Al6Si2O13 Al2SiO5 AlTaO4 AlTiTaO6 Al2(WO4)3 (NH2)2CO NH4Al(SeO4)2 NH4Al(SO4)2 NH4H2PO4 NH4Ga(SeO4)2 NH4Ga(SO4)2 NH4B5O8•4H2O SbNbO4 Sb2O3
Cubic (F−43m) Trigonal (P312) Cubic (F−43m) Trigonal (R − 3 c) Orthorhombic (Pbam) Rhombohedral (R32) Orthorhombic (Pbnm) Hexagonal (P63mmc) Monoclinic (C2/c) Orthorhombic (Pbnm) Orthorhombic (Pbnm) Orthorhombic (Pbcn) Monoclinic (P21/a) Monoclinic (C2/m) Hexagonal (6 3mc) Trigonal (R − 3 c) Cubic (F d 3m) Trigonal (P312) Hexagonal (6 3mc) Orthorhombic (Pmam) Triclinic (P − 1 ) Orthorhombic (Pbnm) Orthorhombic (Pbnm) Orthorhombic (Pc21n) Tetragonal (P42/mmm) Orthorhombic (Pcna) Tetragonal (I−42m) Trigonal (P321) Trigonal (P321) Tetragonal (I−42m) Trigonal (P321) Trigonal (P321) Orthorhombic (Aba2) Orthorhombic (Pna21) Cubic (Fd3m)
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Antimony oxide (valentinite) Antimony tantalate (stibiotantalite) Arsenic antimony sulfide (getchellite) Arsenic oxide (arsenolite) Arsenic sulfide (orpiment) Arsenic sulfide (realgar) Barium aluminate Barium aluminate Barium aluminum borate Barium aluminum fluoride Barium aluminum germanate Barium aluminum silicate (celsian) Barium antimonate Barium beryllium fluorophosphate (babefphite) Barium beryllium silicate (barylite) Barium tetraborate Barium borate Barium cadmium aluminum fluoride Barium cadmium gallium fluoride Barium cadmium magnesium aluminum fluoride Barium calcium magnesium aluminum fluoride Barium calcium magnesium silicate Barium calcium silicate (walstromite) Barium carbonate (witherite) Barium chloroarsenate (movelandite) Barium chloroborate Barium chlorophosphate (alforsite) Barium chlorovanadate Barium fluoride-calcium fluoride (T-12) Barium fluoride (frankdicksonite) Barium fluoroarsenate Barium fluorophosphate Barium fluorovanadate Barium gallium fluoride Barium germanate Barium germanate Barium germanate Barium germanium aluminate Barium germanium gallate Barium hexa-aluminate Barium lithium niobate Barium lutetium borate Barium magnesium aluminum fluoride
© 2003 by CRC Press LLC
Formula Sb2O3 SbTaO4 AsSbS3 As2O3 As2S3 AsS BaAl2O4 Ba3Al2O6 BaAl2B2O7 Ba3Al2F12 BaAl2Ge2O8 BaAl2Si2O8 BaSb2O6 BaBe(PO4)F BaBe2Si2O7 BaB4O7 ß-BaB2O4 BaCdAlF7 BaCdGaF7 Ba2CdMgAl2F14 Ba2CaMgAl2F14 BaCa2Mg(SiO4)2 BaCa2Si3O9 BaCO3 Ba5(AsO4)3Cl Ba2B5O9Cl Ba5(PO4)3Cl Ba5(VO4)3Cl BaF2-CaF2 BaF2 Ba5(AsO4)3F Ba5(PO4)3F Ba5(VO4)3F BaGaF5 BaGeO3 BaGe2O5 BaGe4O9 BaGeAl6O12 BaGeGa6O12 BaAl12O19 Ba2LiNb5O15 Ba3Lu(BO3)3 Ba2MgAlF9
Crystal system (Space group) Orthorhombic (Pccn) Orthorhombic (Pc21n) Monoclinic (P21/a) Cubic (Fd3m) Monoclinic (P21n) Monoclinic (P21n) Hexagonal (P6322) Cubic (Pa3) Monoclinic (P2/c) Orthorhombic (Pnnm) Monoclinic (P21/a) Monoclinic (I2/a) Triclinic (P − 3 1m) Hexagonal(P –6c2) Orthorhombic (Pnma) Monoclinic (P21/c) Trigonal (R3c) Monoclinic (C2/c) Monoclinic (C2/c) Monoclinic (C2/c) Monoclinic (C2/c) Orthorhombic Triclinic(P−1) Orthorhombic (Pnam) Hexagonal(P63/m) Tetragonal (P4221 –2) Hexagonal(P63/m) Hexagonal(P63/m) Cubic (Fm3m) Cubic (Fm3m) Hexagonal(P63/m) Hexagonal(P63/m) Hexagonal(P63/m) Orthorhombic (P212121) Orthorhombic Monoclinic (P21/a) Hexagonal(P –6c2) Orthorhombic (Pnnm) Othorhombic (Pnnm) Hexagonal (P63/mmc) Orthorhombic (Im2a) Hexagonal(P63cm) Tetragonal (P4)
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Barium magnesium fluoride Barium magnesium fluoride Barium magnesium germanate Barium magnesium silicate Barium magnesium tantalate Barium magnesium vanadate Barium molybdate Barium niobate Barium nitrate (nitrobarite) Barium scandate Barium scandate Barium scandate Barium silicate (sabbornite) Barium sodium niobate Barium sodium phosphate Barium strontium niobate Barium strontium tantalate Barium sulfate (barite) Barium tantalate Barium tantalate Barium tin borate Barium tin silicate (pabstite) Barium titanate Barium titanate Barium titanium aluminate Barium titanium aluminate Barium titanium borate Barium titanium gallate Barium titanium oxide Barium titanium silicate (benitoite) Barium titanium silicate (fresnoite) Barium tungstate Barium vanadate Barium yttrium borate Barium yttrium fluoride Barium yttrium oxide Barium zinc aluminum fluoride Barium zinc fluoride Barium zinc fluoride Barium zinc fluoride Barium zinc gallium fluoride Barium zinc germanate Barium zinc germanate
© 2003 by CRC Press LLC
Formula BaMgF4 Ba2MgF6 Ba2MgGe2O7 Ba2MgSi2O7 Ba3MgTa2O9 BaMg2(VO4)2 BaMoO4 BaNb2O6 Ba(NO3)2 Ba2Sc4O9 BaSc2O4 Ba6Sc6O15 β-BaSi2O5 Ba2NaNb5O15 Ba2Na(PO5)5 Ba3SrNb2O9 Ba3SrTa2O9 BaSO4 BaTa2O6 BaTa2O6 BaSnB2O6 BaSnSi3O9 BaTiO3 BaTiO3 BaTiAl6O12 Ba3TiAl10O20 BaTiB2O6 BaTiGa6O12 BaTi4O9 BaTiSi3O9 Ba2TiSi2O8 BaWO4 Ba3(VO4)2 Ba3Lu(BO3)3 BaY2F8 BaY2O4 Ba2ZnAlF9 BaZnF4 Ba2Zn3F10 Ba2ZnF6 Ba2ZnGaF9 BaZnGeO4 Ba2ZnGe2O7
Crystal system (Space group) Orthorhombic (A21am) Tetragonal (I422) Tetragonal (P421m) Tetragonal (P421m) Cubic (Fm3m) Tetragonal (I41/acd) Tetragonal (I41/a) Orthorhombic (Pcan) Cubic (P213) Trigonal(R−3) Monoclinic (C2/c) Tetragonal Orthorhombic (Pmnb) Orthorhombic (Im2a) Orthorhombic (P212121)) Hexagonal (P63/mmc) Hexagonal (P63/mmc) Orthorhombic (Pbnm) Orthorhombic (Pcan) Orthorhombic (Pcan) Trigonal(R−3) Hexagonal (P − 6 c2) Cubic (Fm3m) Tetragonal (Pm3m) Orthorhombic (Pnnm) Monoclinic (C2/m) Trigonal(R−3) Orthorhombic (Pnnm) Orthorhombic (Pnmm) Hexagonal (P − 6 c2) Tetragonal (P4bm) Tetragonal (I41/a) Rhombohedral (R − 3 m) Hexagonal(P63cm) Monoclinic (C2/m) Orthorhombic (Pnab) Orthorhombic (Pnma) Othorhombic (C222) Monoclinic (C2/m) Tetragonal (I422) Monoclinic (P21/n) Hexagonal (P63) Tetragonal (P421m)
Section 1: Crystalline Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Barium zinc silicate Barium zinc silicate Barium zirconium silicate Barium zirconium silicate Barium zirconium silicate (bazirite) Beryllium aluminate Beryllium aluminate (chrysoberyl) Beryllium aluminum silicate (beryl) Beryllium fluoroborate (hambergite) Beryllium germanate Beryllium magnesium aluminate (taaffeite) Beryllium oxide (bormellite) Beryllium scandium silicate (bazzite) Beryllium silicate (phenakite) Bismuth aluminate Bismuth antimonate Bismuth borate Bismuth germanate Bismuth germanate Bismuth germanate Bismuth germanate (BGO) Bismuth metaborate Bismuth molybdate Bismuth molybdate Bismuth niobate Bismuth oxide (bismite) Bismuth oxymolybdate (koechlinite) Bismuth oxytungstate (rusellite) Bismuth silicate Bismuth silicate (eulytite) Bismuth silicate (sillenite, BSO) Bismuth tantalate Bismuth tin oxide Bismuth titanate Bismuth titanium niobate Bismuth titanium oxide Bismuth vanadate (clinobisvanite) Bismuth vanadate (dreyerite) Bismuth vanadate (pucherite) Boron nitride Boron phosphide Cadmium antimonade Cadmium borate
© 2003 by CRC Press LLC
Formula Ba2ZnSi2O7 BaZnSiO4 Ba2ZrSi2O8 Ba2Zr2Si3O12 BaZrSi3O9 BeAl6O10 BeAl2O4 Be3Al2Si6O18 Be2BO3F Be2GeO4 BeMg3Al8O16 BeO Be3Sc2Si6O18 Be2SiO4 Bi2Al4O9 BiSbO4 Bi4B2O9 Bi2Ge3O9 Bi2GeO5 Bi12GeO20 Bi4Ge3O12 BiB3O6 Bi2Mo2O9 Bi2Mo3O12 BiNbO4 Bi2O3 γ-Bi2MoO6 Bi2WO6 Bi2SiO5 Bi4Si3O12 Bi12SiO20 BiTaO4 Bi2Sn2O7 Bi4Ti3O12 Bi3TiNbO9 Bi12TiO20 BiVO4 BiVO4 BiVO4 BN BP Cd2Sb2O7 CdB4O7
Crystal system (Space group) Tetragonal (P421m) Hexagonal (P63) Tetragonal (P4bm) Cubic (P213) Hexagonal (P6322) Orthorhombic (Pca2) Orthorhombic (Pnma) Hexagonal (P6/mcc) Monoclinic (C21) Trigonal(R−3) Hexagonal Hexagonal (P63/mc) Hexagonal (P6/mcc) Trigonal(R−3) Orthorhombic (Pbam) Monoclinic (P21/c) Monoclinic (P21/c) Hexagonal (P63/m) Orthorhombic (Cmc21) Cubic (I23) Cubic (I43d) Monoclinic (2/m) Monoclinic (P21/m) Monoclinic (P21/m) Orthorhombic (Pann) Monoclinic (P21/c) Orthorhombic (Pba2) Orthorhombic (Pba2) Orthorhombic (Cmc21) Cubic (I43d) Cubic (I23) Orthorhombic (Pnna) Hexagonal (P63/m) Orthorhombic (B2cb) Orthorhombic (A21am) Cubic (I23) Monoclinic (I2/a) Tetragonal (I41/amd) Orthorhombic (Pnca) Cubic (F−43m) Cubic (F−43m) Cubic (Fd3m) Orthorhombic (Pbca)
9
10
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Cadmium borate Cadmium borate Cadmium borate Cadmium carbonate (otavite) Cadmium chloride Cadmium chloroarsenate Cadmium chlorophosphate Cadmium chlorovanadate Cadmium fluoride Cadmium fluorophosphate Cadmium gallate Cadmium germanate Cadmium germanium arsenide Cadmium germanium phosphide Cadmium indium oxide spinel Cadmium iodide Cadmium niobate Cadmium oxide (monteponite) Cadmium scandium germanate Cadmium selenide (cadmoselite) Cadmium silicon arsenide Cadmium silicon phosphide Cadmium sulfide (greenockite) Cadmium tellurite (Irtran 6) Cadmium tin arsenide Cadmium tin borate Cadmium tin phosphide Cadmium titanate Cadmium tungstate Cadmium vanadate Cadmium vanadate Calcium aluminate Calcium aluminate Calcium aluminate Calcium aluminate Calcium aluminate (brownmillerite) Calcium aluminate (mayenite) Calcium aluminum borate Calcium aluminum borate Calcium aluminum borate (johachidolite) Calcium aluminum fluoride Calcium aluminum fluoride Calcium aluminum fluoride (prosopite)
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
Cd2B2O5 Cd2B6O11 CdB2O4 CdCO3 CdCl2 Cd5(AsO4)3Cl Cd5(PO4)3Cl Cd5(VO4)3Cl CdF2 Cd5(PO4)3F CdGa2O4 Cd2GeO4 CdGeAs2 CdGeP2 CdIn2O4 CdI2 Cd2Nb2O7 CdO Cd3Sc2Ge3O12 CdSe CdSiAs2 CdSiP2 CdS CdTe CdSnAs2 CdSnB2O6 CdSnP2 CdTiO3 CdWO4 CdV2O6 Cd2V2O7 CaAl2O4 Ca3Al2O6 CaAl4O7 Ca5Al6O14 Ca2Al2O5 Ca12Al14O33 CaAlBO4 CaAl2B2O7 CaAlB3O7 CaAlF5 Ca2AlF7 CaAl2F8
Triclinic (P1) Monoclinic (P21/b) Cubic (P –43m) Rhombohedral (R − 3 c ) Rhombohedral (R−3m) Hexagonal (P63/m) Hexagonal(P63/m) Hexagonal (P63/m) Cubic (Fm3m) Hexagonal (P63/m) Cubic (Fd3m) Orthorhombic (Pbnm) Tetragonal (I−42d) Tetragonal (I−42d) Cubic (Fd3m) Hexagonal (P63mc) Cubic (Fd3m) Cubic (Fm3m) Cubic (Ia3d) Hexagonal (P6mm) Tetragonal (I−42d) Tetragonal (I−42d) Hexagonal (6mm) Cubic (Fm3m) Tetragonal (I−42d) Rhombohedral (R−3c) Tetragonal (I−42d) Rhombohedral(R−3) Monoclinic (P2/c) Monoclinic (C2/m) Monoclinic (C2/m) Monoclinic (P21/n) Cubic (Pa−3) Monoclinic (C2/c) Orthorhombic (C222) Orthorhombic Cubic (I43d) Otthorhombic (Pnam) Hexagonal (P6322) Orthorhombic (Cmma) Monoclinic (C2/c) Orthorhombic (Pnma) Monoclinic
Section 1: Crystalline Materials
11
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Crystal system (Space group)
Calcium aluminum germanate Calcium aluminum germanate Calcium aluminum oxyfluoride Calcium aluminum silicate (anorthite) Calcium aluminum silicate (gehlenite, CAS) Calcium aluminum silicate (grossularite) Calcium antimonate Calcium antimonate Calcium barium carbonate (alstonite) Calcium beryllium fluorophosphate (herderite) Calcium beryllium phosphate (hurlbutite) Calcium beryllium silicate (gugiaite) Calcium borate Calcium borate Calcium borate Calcium borate Calcium borate (calciborite) Calcium boron silicate (danburite) Calcium carbonate (aragonite) Calcium carbonate (calcite) Calcium carbonate (vaterite) Calcium chloroarsenate Calcium chloroarsenate Calcium chloroborate Calcium chloroborate Calcium chlorophosphate Calcium chlorophosphate (chlorapatite) Calcium chlorovanadate Calcium chlorovanadate Calcium fluoride (fluorite, fluorspar, Irtran 3) Calcium fluoroarsenate (svabite, CAAP) Calcium fluoroborate (fabianite) Calcium fluorophosphate (apatite, FAP) Calcium fluorophosphate (spodiosite) Calcium fluorovanadate (VAP) Calcium gadolinium aluminate Calcium gadolinium double borate Calcium gadolinium oxysilicate Calcium gadolinium phosphate Calcium gallate Calcium gallate Calcium gallate Calcium gallium germanate
Ca2Al2GeO7 Ca3Al2Ge3O12 Ca2Al3O6F CaAl2Si2O8 Ca2Al2SiO7 Ca3Al2Si3O12 Ca2Sb2O7 Ca2Sb2O7 CaBa(CO3)2 CaBe(PO4)F CaBe2(PO4)2 Ca2BeSi2O7 Ca2B2O5 Ca2B6O11 CaB4O7 Ca3B2O6 CaB2O4 CaB2Si2O8 CaCO3 CaCO3 CaCO3 Ca2AsO4Cl Ca5(AsO4)3Cl Ca2BO3Cl Ca2B5O9Cl Ca2PO4Cl Ca5(PO4)3Cl Ca2VO4Cl Ca5(VO4)3Cl CaF2 Ca5(AsO4)3F CaB3O5F Ca5(PO4)3F Ca2(PO4)F Ca5(VO4)3F CaGaAlO4 Ca3Gd2(BO3)4 CaGd4(SiO4)3O Ca3Gd(PO4)3 CaGa2O4 Ca3Ga4O9 Ca5Ga6O14 Ca2Ga2GeO7
Tetragonal (P421m) Cubic (Ia3d) Hexagonal Triclinic(P−1) Tetragonal (P421m) Cubic (Ia3d) Orthorhombic (Imm2) Cubic (Fd3m) Orthorhombic (Pnam) Monoclinic Monoclinic (P21/a) Tetragonal (P421m) Monoclinic (P21/a) Monoclinic (P21/b) Monoclinic (P21/c) Rhombohedral (R−3c) Orthorhombic (Pnca) Orthorhombic (Pmam) Orthorhombic (Pnam) Rhombohedral (R−3c)) Hexagonal (P63/mmc) Orthorhombic (Pbcm) Hexagonal(P63/m) Monoclinic (P21/c) Tetragonal (P42212) Orthorhombic (Pbcm) Hexagonal(P63/m) Orthorhombic (Pbcm) Hexagonal(P63/m) Cubic (Fm3m) Hexagonal(P63/m) Orthorhombic (Pbn21) Hexagonal(P63/m) Orthorhombic (Pbcm) Hexagonal(P63/m) Hexagonal (P63/m) Orthorhombic (Pc21n) Tetragonal (I4/mmm) Cubic (I–43d) Monoclinic (P21/c) Orthorhombic (Cmm2) Orthorhombic (Cmc21) Tetragonal (P421m)
© 2003 by CRC Press LLC
12
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Calcium gallium germanate Calcium gallium germanium garnet Calcium gallium silicate (CGS) Calcium germanate Calcium germanate Calcium hexa-aluminate Calcium indate Calcium indium germanate Calcium indium oxide Calcium iodate (lautarite) Calcium lanthanum aluminate Calcium lanthanum borate Calcium lanthanum oxyphosphate Calcium lanthanum oxysilicate Calcium lanthanum phosphate Calcium lanthanum sulfide Calcium lithium magnesium vanadate Calcium lithium magnesium vanadate Calcium lithium zinc vanadate Calcium lithium zinc vanadate Calcium lutetium germanate Calcium magnesium borate (kurchatovite) Calcium magnesium carbonate (dolomite) Calcium magnesium carbonate (huntite) Calcium magnesium fluoroarsenate (tilasite) Calcium magnesium fluorophosphate (isokite) Calcium magnesium germanate Calcium magnesium silicate (akermanite) Calcium magnesium silicate (diopside) Calcium magnesium silicate (merwinite) Calcium magnesium silicate (monticellite) Calcium magnesium vanadate Calcium molybdate Calcium niobate Calcium niobate (rynersonite) Calcium niobium gallium garnet Calcium oxide (lime) Calcium phosphate Calcium phosphate Calcium scandate Calcium scandium germanate Calcium scandium silicate Calcium silicate (larnite)
© 2003 by CRC Press LLC
Formula Ca3Ga2Ge4O14 Ca3Ga2Ge3O12 Ca2Ga2SiO7 CaGe2O5 CaGe4O9 CaAl12O19 CaIn2O4 Ca3In2Ge3O12 Ca3In2O6 Ca(IO3)2 CaLaAlO4 CaLaBO4 Ca4La(PO4)3O CaLa4(SiO4)3O Ca3La(PO4)3 CaLa2S4 Ca2LiMg2V3O12 Ca3LiMgV3O12 Ca2LiZn2V3O12 Ca3LiZnV3O12 Ca3Lu2Ge3O12 CaMgB2O5 CaMg(CO3)2 CaMg3(CO3)4 CaMgAsO4F CaMgPO4F CaMgGe2O6 Ca2MgSi2O7 CaMgSi2O6 Ca3MgSi2O8 CaMgSiO4 CaMg2(VO4)2 CaMoO4 Ca2Nb2O7 CaNb2O6 Ca3(Nb,Ga)2Ga3O12 CaO β-CaP2O7 β-CaP2O7 CaSc2O4 Ca3Sc2Ge3O12 Ca3Sc2Si3O12 b-Ca2SiO4
Crystal system (Space group) Trigonal (P321) Cubic (Ia3d) Tetragonal (P421m) Monoclinic (P21/a) Hexagonal (P –6c2) Hexagonal (P63/mmc) Orthorhombic (Pbcm) Cubic (Ia3d) Orthorhombic (Pbam) Monoclinic Tetragonal (I4/mmm) Hexagonal (P6322) Hexagonal (P63/m) Hexagonal (P63/m) Cubic (I –43d) Cubic (I –43d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic Rhombohedral (R−3c) Rhombohedral (R32) Orthorhombic Monoclinic (C2/c) Monoclinic (C2/c) Tetragonal (P421m) Monoclinic (C2/c) Monoclinic (P21/a) Orthorhombic (Pmnb) Tetragonal (I41/acd) Tetragonal (I41/a) Orthorhombic (Pn21a) Orthorhombic (Pcan) Cubic (Ia3d) Cubic (Fm3m) Hexagonal (P − 6 c2) Tetragonal (P41) Orthorhombic (Pnam) Cubic (Ia3d) Cubic (Ia3d) Monoclionic (P21/n)
Section 1: Crystalline Materials
13
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Calcium silicate (rankinite) Calcium silicate (wollastonite) Calcium sodium magnesium vanadate Calcium sodium zinc vanadate Calcium sulfate (anhydrite) Calcium tantalate Calcium tellurate (denningite) Calcium tin borate (nordenskiöldine) Calcium tin oxide Calcium tin silicate (malayaite) Calcium titanate (perovskite) Calcium titanium germanate Calcium titanium silicate (sphene) Calcium tungstate (scheelite) Calcium vanadate Calcium vanadate Calcium vanadate Calcium yttrium aluminate Calcium yttrium borate Calcium gadolinium double borate Calcium yttrium magnesium germanium garnet Calcium yttrium oxysilicate Calcium yttrium oxysilicate (SOAP) Calcium zinc fluoride Calcium zinc germanate Calcium zinc silicate (esperite) Calcium zinc silicate (hardystonite) Calcium zirconium boron aluminate (painite) Calcium zirconium silicate (gittinsite) Calcium zirconium titanate (zirkelite) Calcium zirconium titanium silicate Carbon (diamond) Cesium aluminum sulfate Cesium beryllium fluoride Cesium borate (CBO) Cesium bromide Cesium cadmium bromide Cesium cadmium bromide Cesium cadmium chloride Cesium cadmium fluoride Cesium cadmium zinc fluoride Cesium calcium fluoride Cesium chloride
Ca3Si2O7 CaSiO3 Ca2NaMg2V3O12 Ca2NaZn2V3O12 CaSO4 CaTa2O6 Ca2Te2O5 CaSnB2O6 CaSnO3 CaSnSiO5 CaTiO3 CaTiGeO4 CaTiSiO5 CaWO4 CaV2O6 Ca2V2O7 Ca3(VO4)2 CaYAlO4 CaYBO4 Ca3Y2(BO3)4 CaY2Mg2Ge3O12 Ca4Y6(SiO4)6 CaY4(SiO4)3O CaZnF4 CaZnGe2O6 CaZnSiO4 Ca2ZnSi2O7 CaZrBAl9O18 CaZrSi2O7 CaZrTi2O7 Ca3(Zr,Ti)Si2O9 C CsAl(SO4)2 Cs2BeF4 CsB3O5 CsBr Cs2CdBr4 CsCdBr3 Cs2CdCl4 CsCdF3 Cs2CdZnF6 CsCaF3 CsCl
© 2003 by CRC Press LLC
Crystal system (Space group) Monoclinic Triclinic(P−1) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic (Bbmm) Orthorhombic (Pcan) Tetragonal Trigonal (R − 3 m ) Orthorhombic (P212121) Monoclinic (P21/a) Cubic (Pm3m) Monoclinic (P21/a) Monoclinic (P21/a) Tetragonal (I41/a) Monoclinic (C2/m) Monoclinic (C2/m) Trigonal (R3c) Tetragonal (I4/mmm) Orthorhombic (Pnam) Orthorhombic (Pc21n) Cubic (Ia3d) Hexagonal (P63/m) Hexagonal (P63/m) Tetragonal (I41/a) Monoclinic (C2/c) Tetragonal (P−421m) Tetragonal (P−421m) Hexagonal (P63) Monoclinic (C2/m) Monoclinic (C2/m) Monoclinic Cubic (F−43m) Trigonal (P321) Orthorhombic (Pna21) Orthorhombic (P212121) Cubic (Fm3m) Orthorhombic (Pnma) Cubic (Pm3m) Tetragonal (I4/mmm) Cubic (Pm3m) Rhombohedral (R–3m) Cubic (Pm3m) Cubic (Fm3m)
14
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Cesium dideuterium arsenate Cesium dideuterium phosphate Cesium dihydrogen arsenate Cesium dihydrogen phosphate Cesium fluoride Cesium gadolinium molybdate Cesium gallium sulfate Cesium germanate Cesium iodide Cesium lanthanum tungstate Cesium lithium aluminum fluoride Cesium lithium aluminum fluoride Cesium lithium beryllium fluoride Cesium lithium borate (CLBO) Cesium lithium gallium fluoride Cesium lithium gallium fluoride Cesium lithium sulfate Cesium magnesium chloride Cesium mercury iodide Cesium niobium borate (CNB) Cesium niobium sulfate Cesium potassium aluminum fluoride Cesium potassium lanthanum fluoride Cesium scandium molybdate Cesium scandium tungstate Cesium silver fluoride Cesium sodium aluminum fluoride Cesium sodium aluminum fluoride Cesium sodium gallium fluoride Cesium sodium yttrium fluoride Cesium strontium fluoride Cesium tin germanate Cesium titanium germanate Cesium titano arsenate (CTA) Cesium zinc aluminum fluoride Cesium zinc bromide Cesium zinc chloride Copper bromide (cuprous) Copper chloride (cuprous, nantokite) Copper iodide (cuprous, marshite) Cuprous oxide (cuprite) Gadolinium aluminate Gadolinium aluminate
© 2003 by CRC Press LLC
Formula CsD2AsO4 CsD2PO4 CsH2AsO4 CsH2PO4 CsF CsGd(MoO4)2 CsGa(SO4)2 Ga2GeO5 CsI CsLa(WO4)2 Cs2LiAl3F12 Cs2LiAlF6 CsLiBeF4 CsLiB6O10 Cs2LiGa3F12 Cs2LiGaF6 CsLiSO4 Cs2MgCl4 Cs2HgI4 CsNbB2O6 CsNbO(SO4)2 Cs2KAl3F12 Cs2KLaF6 CsSc(MoO4)2 CsSc(WO4)2 Cs2AgF4 Cs2NaAl3F12 Cs2NaAlF6 Cs2NaGaF6 Cs2NaYF6 CsSrF3 Cs2SnGe3O9 Cs2TiGe3O9 CsTiOAsO4 CsZnAlF6 Cs2ZnBr4 Cs2ZnCl4 CuBr CuCl CuI Cu2O Gd4Al2O9 GdAlO3
Crystal system (Space group) Tetragonal (I−42m) Tetragonal (I−42m) Tetragonal (I−42m) Tetragonal (I−42m) Cubic (Fm3m) Orthorhombic (Pnma) Trigonal (P321) Orthorhombic (Pnnm) Cubic (Fm3m) Tetragonal (P42/nmc) Rhombohedral (R–3m) Hexagonal (P63/mmc) Monoclinic (P21/n) Tetragonal (I−42d) Rhombohedral (R–3m) Hexagonal (P63/mmc) Orthorhombic (Pc2) Orthorhombic (Pnma) Monoclinic (P21) Orthorhombic (Pn21m) Orthorhombic Rhombohedral (R–3m) Cubic (Fm3m) Trigonal (P−3m1) Trigonal (P−3m1) Tetragonal (I4/mmm) Rhombohedral (R–3m) Rhombohedral (R–3m) Rhombohedral (R–3m) Cubic (Fm3m) Cubic (Pm3m) Hexagonal (P63/m) Hexagonal (P63/m) Orthorhombic (P21nb) Orthorhombic Orthorhombic (Pnma) Orthorhombic (Pnma) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Pm3m) Monoclinic (P21/a) Orthorhombic (Pbnm)
Section 1: Crystalline Materials
15
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Gadolinium aluminum borate Gadolinium aluminum germanate Gadolinium borate Gadolinium borate Gadolinium calcium oxyborate Gadolinium gallium borate Gadolinium gallium garnet (GGG) Gadolinium gallium germanate Gadolinium germanate Gadolinium germanium beryllate Gadolinium indate Gadolinium magnesium borate Gadolinium molybdate Gadolinium niobate Gadolinium niobate Gadolinium orthosilicate Gadolinium oxide Gadolinium oxymolybdate Gadolinium oxysulfate Gadolinium oxytungstate Gadolinium pentaphosphate Gadolinium phosphate Gadolinium scandate Gadolinium scandium aluminum garnet (GSAG) Gadolinium scandium gallium garnet (GSGG) Gadolinium strontium borate Gadolinium tantalate Gadolinium titanate Gadolinium tungstate Gadolinium vanadate Gallium antimonide Gallium arsenide Gallium germanate Gallium molybdate Gallium niobate Gallium nitride - wurtzite Gallium nitride - zincblende Gallium oxide Gallium phosphate Gallium phosphide Gallium selenide Gallium sulfide Gallium tungstate
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
GdAl3(BO3)4 GdAlGe2O7 Gd(BO2)3 GdBO3 GdCa4O(BO3)3 GdGa3(BO3)4 Gd3Ga5O12 GdGaGe2O7 Gd2GeO5 Gd2GeBe2O7 GdInO3 GdMgB5O10 Gd2(MoO4)3 GdNbO4 Gd3NbO7 Gd2SiO5 Gd2O3 Gd2MoO6 Gd2O2SO4 Gd2WO6 GdP5O14 GdPO4 GdScO3 Gd3Sc2Al3O12 Gd3Sc2Ga3O12 Gd2Sr3(BO3)4 Gd3TaO7 Gd2Ti2O7 Gd2(WO4)3 GdVO4 GaSb GaAs α-Ga4GeO8 Ga2(MoO4)3 GaNbO4 α-GaN β-GaN β-Ga2O3 GaPO4 GaP GaSe GaS Ga2(WO4)3
Trigonal (R32) Monoclinic (P21/c) Monoclinic (I2/a) Hexagonal (P63/mmc) Monoclinic (Cm) Trigonal (R32) Cubic (Ia3d) Monoclinic (P21/c) Monoclinic (P21/c) Tetragonal (P421m) Hexagonal (P63cm) Monoclinic (P21/c) Orthorhombic (Pba2) Monoclinic (I2/a) Orthorhombic (C2221) Monoclinic (P21/c) Monoclinic (C2/m) Monoclinic (I2/c) Orthorhombic Monoclinic (I2/c) Monoclinic (P21/c) Monoclinic (P21/n) Orthorhombic (Pbnm) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic (P21cn) Orthorhombic (C2221) Cubic (Fd3m) Monoclinic (C2/c) Tetragonal (I41/amd) Cubic (F−43m) Cubic (F−43m) Monoclinic (C2/m) Monoclinic (P21/a) Monoclinic (C2) Hexagonal(P 63m c ) Cubic (F−43m) Monoclinic (A2/m) Trigonal (P312) Cubic (F−43m) Hexagonal(P –62m) Hexagonal(P –62m) Orthorhombic (Pcna)
16
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Germanium Germanium oxide (argutite) Hafnium oxide Hafnium silicate (hafnon) Indium antimonide Indium arsenide Indium borate Indium cadmium borate Indium calcium borate Indium gallate Indium molybdate Indium niobate Indium nitride Indium oxide Indium phosphate Indium phosphide Indium tantalate Indium tungstate Indium vanadate Iodic acid Lanthanum aluminate Lanthanum aluminum germanate Lanthanum aluminum germanate Lanthanum antimonade Lanthanum antimonade Lanthanum barium borate Lanthanum barium gallate Lanthanum barium germanate Lanthanum beryllate (BEL) Lanthanum borate Lanthanum boron germanate Lanthanum boron molybdate Lanthanum boron silicate (stillwellite) Lanthanum boron tungstate Lanthanum calcium aluminate Lanthanum calcium borate Lanthanum calcium gallate Lanthanum chloride Lanthanum fluoride (tysonite) Lanthanum gallate Lanthanum gallium germanate Lanthanum gallium germanate Lanthanum gallium silicate
© 2003 by CRC Press LLC
Formula Ge GeO2 HfO2 HfSiO4 InSb InAs InBO3 InCdBO4 InCaBO4 InGaO3 In2(MoO4)3 InNbO4 InN In2O3 InPO4 InP InTaO4 In2(WO4)3 InVO4 HIO3 LaAlO3 LaAlGe2O7 LaAlGe2O7 LaSbO4 La3SbO7 La2Ba3(BO3)4 BaLaGa3O7 LaBaGa3O7 La2Be2O5 LaBO3 LaBGeO5 LaBMoO6 LaBSiO5 LaBWO6 LaCaAl3O7 La2Ca3(BO3)4 LaCaGa3O7 LaCl3 LaF3 LaGaO3 LaGaGe2O7 La3Ga5GeO14 La3Ga5SiO14
Crystal system (Space group) Cubic (F−43m) Tetragonal (P42/mnm) Monoclinic (P21/c) Tetragonal (I41/amd) Cubic (F−43m) Cubic (F−43m) Rhombohedral (R−3c) Orthorhombic (Pnam) Orthorhombic (Pnam) Monoclinic (C2/m) Monoclinic (P21/a) Monoclinic (P2/c) Hexagonal(P 63m c ) Rhombohedral (R3c) Orthorhombic (Cmcm) Cubic (F−43m) Monoclinic (P2/c) Orthorhombic (Pcna) Monoclinic (C2/m) Orthorhombic (P212121) Trigonal (R –3m) Monoclinic (P21/c) Monoclinic (P21/c) Monoclinic (P21/c) Orthorhombic (Cmcm) Orthorhombic (P21cn) Tetragonal (P421m) Tetragonal (P421m) Monoclinic (C2/c) Orthorhombic (Pnam) Trigonal (C3m) Monoclinic (P21) Trigonal (C3m) Monoclinic (P21) Tetragonal (P421m) Orthorhombic (P21cn) Tetragonal (P421m) Hexagonal (P63/m) Trigonal (P−3c1) Orthorhombic (Pbnm) Monoclinic (P21/c) Trigonal (P321) Trigonal (P321)
Section 1: Crystalline Materials
17
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Lanthanum germanium beryllate Lanthanum indate Lanthanum lutetium gallium garnet (LLGG) Lanthanum magnesium borate Lanthanum magnesium hexa-aluminate (LMA) Lanthanum metaborate Lanthanum molbydate Lanthanum molybdate Lanthanum niobate Lanthanum niobate Lanthanum niobate Lanthanum niobogallate Lanthanum oxide Lanthanum oxybromide Lanthanum oxymolybdate Lanthanum oxysulfate Lanthanum oxysulfide Lanthanum oxytungstate Lanthanum pentaphosphate Lanthanum phosphate (monazite) Lanthanum scandate Lanthanum scandium borate Lanthanum silicate Lanthanum strontium borate Lanthanum strontium gallate Lanthanum tantalate Lanthanum tantalogallate Lanthanum titanate Lanthanum titanate Lanthanum tungstate Lanthanum yttrium tungstate Lathanium vanadate Lead antimonade Lead bismuth niobate Lead bromide Lead cadmium niobate Lead calcium chloroarsenate (hedyphane) Lead carbonate (cerussite) Lead chloride (cotunnite) Lead chloroarsenate (mimetite) Lead chlorophosphate (pyromorphite) Lead chlorovanadate (vanadinite) Lead fluoride
© 2003 by CRC Press LLC
Formula La2GeBe2O7 LaInO3 La3Lu2Ga3O12 LaMgB5O10 LaMgAl11O19 LaB3O6 La2(MoO4)3 La2(MoO4)3 LaNbO4 LaNb5O14 La3NbO7 La3Nb0.5Ga5.5O14 La2O3 LaOBr La2MoO6 La2O2SO4 La2O2S La2WO6 LaP5O14 LaPO4 LaScO3 LaSc3(BO3)4 La2SiO5 La2Sr3(BO3)4 LaSrGa3O7 La3TaO7 La3Ta0.5Ga5.5O14 La2TiO5 La2Ti2O7 La2(WO4)3 LaY(WO4)3 LaVO4 Pb2Sb2O7 PbBi2Nb2O9 PbBr2 Pb3CdNb2O9 Pb3Ca2(AsO4)3Cl PbCO3 PbCl2 Pb5(AsO4)3Cl Pb5(PO4)3Cl Pb5(VO4)3Cl PbF2
Crystal system (Space group) Tetragonal (P421m) Orthorhombic (Pbnm) Cubic (Ia3d) Monoclinic (P21/c) Hexagonal (P63/mmc) Monoclinic (I2/a) Monoclinic (C2/c) Tetragonal (I−42m) Monoclinic (I2/a) Orthorhombic (Pnam) Othorhombic (Cmcm) Trigonal (P321) Trigonal (P−3m1) Tetragonal (P4/nmm) Tetragonal (I−42m) Orthorhombic Trigonal (P−3m) Hexagonal (P63/mmc) Orthorhombic (Pcmn) Monoclinic (P21/n) Orthorhombic (Pbnm) Monoclinic Monoclinic Orthorhombic (P21cn) Tetragonal (P421m) Orthorhombic (Cmcm) Trigonal (P321) Orthorhombic (Pnam) Monoclinic (P21/c) Monoclinic (C2/c) Monoclinic (C2/c) Monoclinic (P21/c) Cubic (Fd3m) Othorhombic (Fmm2) Othorhombic (Pnma) Orthorhombic Hexagonal (P63/m) Orthorhombic (Pnam) Orthorhombic (Pnam) Hexagonal (P63/m) Hexagonal (P63/m) Hexagonal (P63/m) Cubic (Fm3m)
18
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Lead fluoroarsenate Lead fluorophosphate Lead fluorovanadate Lead germanate Lead germanate Lead germanate Lead germanate Lead hafnate Lead hexa-aluminate (magnetoplumbite) Lead indium niobate Lead iodide Lead magnesium niobate Lead molybdate (wulfenite) Lead niobate (changbaiite) Lead nitrate Lead oxide (litharge) Lead oxide (massicot) Lead phosphate Lead potassium niobate Lead scandium niobate Lead selenate (kerstenite) Lead selenide (clausthalite) Lead selenite (molybdomenite) Lead silicate (alamosite) Lead sodium niobate Lead sulfate (anglesite) Lead sulfide (galena) Lead tantalate Lead telluride (altaite) Lead titanate (macedonite) Lead titanium phosphate Lead tungstate (stolzite) Lead vanadate Lead vanadate (chervetite) Lead zinc niobate Lead zinc silicate Lead zinc silicate (larsenite) Lithium aluminate Lithium aluminate Lithium aluminate spinel Lithium aluminum borate Lithium aluminum fluorophosphate (amblygonite) Lithium aluminum germanate
© 2003 by CRC Press LLC
Formula Pb5(AsO4)3F Pb5(PO4)3F Pb5(VO4)3F PbGeO3 Pb3GeO5 Pb3Ge3O11 Pb5Ge2O7 PbHfO3 PbAl12O19 Pb2InNbO6 2H-PbI2 Pb3MgNb2O9 PbMoO4 PbNb2O6 Pb(NO3)2 PbO PbO Pb3(PO4)2 Pb2KNb5O15 Pb2ScNbO6 PbSeO4 PbSe PbSeO3 PbSiO3 PbNaNb5O15 PbSO4 PbS PbTa2O6 PbTe PbTiO3 PbTiP2O8 PbWO4 Pb3(VO4)2 Pb2V2O7 Pb3ZnNb2O9 Pb2ZnSi2O7 PbZnSiO4 Li5AlO4 γ-LiAlO2 LiAl5O8 Li6Al2(BO3)4 LiAl(PO4)F LiAlGe2O6
Crystal system (Space group) Hexagonal (P63/m) Hexagonal (P63/m) Hexagonal (P63/m) Monoclinic (P21/a) Monoclinic (P12) Trigonal (P3) Hexagonal Orthorhombic (Pbam) Hexagonal (P63/mmc) Rhombohedral Trigonal (P3m1) Orthorhombic Tetragonal (I41/a) Orthorhombic (Cm2m) Cubic (Pa3) Tetragonal (P4/nmm) Orthorhombic (Pbcm) Monoclinic (PC2/c) Orthorhombic (Im2m) Rhombohedral Orthorhombic (Pnma) Cubic (Fm3m) Monoclinic Monoclinic (Pn) Orthorhombic (Im2a) Orthorhombic (Pnma) Cubic (Fm3m) Orthorhombic (Cm2m) Cubic (Fm3m) Tetragonal (P4mm) Orthorhombic Tetragonal (I41/a) Monoclinic (P2/c) Monoclinic (P21/a) Orthorhombic Tetragonal (P421m) Orthorhombic (Pnam) Orthorhombic (Pbca) Tetragonal (P41212) Cubic (P4132) Triclinic(P−1) Triclinic(P−1) Monoclinic (P21/n)
Section 1: Crystalline Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Lithium aluminum germanate Lithium aluminum molybdate Lithium aluminum silicate Lithium aluminum silicate Lithium aluminum silicate (eucryptite) Lithium aluminum silicate (petalite) Lithium aluminum silicate (spodumene) Lithium barium aluminum fluoride (LiBAF) Lithium barium fluoride Lithium barium gallium fluoride Lithium beryllium fluoride Lithium beryllium silicate (liberite) Lithium borate Lithium borate Lithium bromide Lithium cadmium borate Lithium cadmium chloride Lithium cadmium indium fluoride Lithium calcium aluminum fluoride (LiCAF) Lithium calcium gallium fluoride (LiCGaF) Lithium calcium germanate Lithium calcium indium fluoride Lithium calcium silicate Lithium carbonate (zabuyelite) Lithium chloride Lithium fluoride (griceite) Lithium gadolinium borate Lithium gadolinium borate Lithium gadolinium molybdate Lithium gadolinium molybdate Lithium gadolinium oxide Lithium gadolinium tetrafluoride (GLF) Lithium gadolinium tetraphosphate Lithium gadolinium tungstate Lithium gallate Lithium gallate Lithium gallate spinel Lithium gallium germanate Lithium gallium germanate Lithium gallium germanate Lithium gallium silicate Lithium gallium silicate Lithium gallium tungstate
© 2003 by CRC Press LLC
Formula LiAlGeO4 LiAl(MoO4)2 LiAlSi2O6 LiAlSi4O10 LiAlSiO4 LiAlSi4O10 LiAlSi2O6 LiBaAlF6 LiBaF3 LiBaGaF6 Li2BeF4 Li2BeSiO4 LiBO2 LiB3O5 LiBr LiCdBO3 Li2CdCl4 LiCdInF6 LiCaAlF6 LiCaGaF6 Li2CaGeO4 LiCaInF6 Li2CaSiO4 Li2CO3 LiCl LiF Li3Gd2(BO3)3 Li6Gd(BO3)3 LiGd(MoO4)2 LiGd(MoO4)2 LiGdO2 LiGdF4 LiGdP4O12 LiGd(WO4)2 LiGaO2 Li5GaO4 LiGa5O8 LiGaGe2O6 LiGaGe2O6 LiGaGeO4 LiGaSi2O6 LiGaSiO4 LiGa(WO4)2
Crystal system (Space group) Trigonal(R−3) Triclinic(P−1) Monoclinic (C2/c) Monoclinic (P21/n) Rhombohedral(R−3) Monoclinic (P21/n) Rhombohedral(R−3) Monoclinic (P21/a) Cubic (Pm3m) Monoclinic (P21/a) Cubic (Fd3m) Monoclinic (Pn) Monoclinic (P21/c) Orthorhombic (Pna21) Cubic (Fm3m) Hexagonal (P –6) Cubic (Fd3m) Trigonal (P321) Trigonal(P−31c) Trigonal(P−31c) Tetragonal (I−42m) Trigonal (P321) Tetragonal (I−42m) Monoclinic (C2/c) Cubic (Fm3m) Cubic (Fm3m) Monoclinic (P21/n) Monoclinic (P21/b) Tetragonal (I41/a) Tetragonal (I41/a) Orthorhombic (Pnma) Tetragonal (I41/a) Monoclinic (I2/c) Tetragonal (I41/a) Orthorhombic (Pna21) Orthorhombic (Pnam) Cubic (P4132) Monoclinic (P21/c) Monoclinic (P21/c) Trigonal(R−3) Monoclinic (C2/c) Rhombohedral(R−3) Monoclinic (P2/c)
19
20
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Lithium germanate Lithium indium germanate Lithium indium molybdate Lithium indium oxide Lithium indium oxide Lithium indium silicate Lithium indium silicate Lithium indium tungstate Lithium iodate Lithium iodide Lithium lanthanum borate Lithium lanthanum molybdate Lithium lanthanum oxide Lithium lanthanum tetraphosphate Lithium lanthanum tungstate Lithium lutetium borate Lithium lutetium fluoride Lithium lutetium germanate Lithium lutetium oxide Lithium lutetium silicate Lithium lutetium tetraphosphate Lithium lutetium tungstate Lithium magnesium aluminum fluoride Lithium magnesium borate Lithium magnesium borate Lithium magnesium chloride Lithium magnesium gallium fluoride Lithium magnesium germanate Lithium magnesium indium fluoride Lithium niobate Lithium phosphate (lithiophosphate) Lithium scandate Lithium scandium germanate Lithium scandium germanate Lithium scandium silicate Lithium scandium silicate Lithium scandium tungstate Lithium silicate Lithium strontium aluminum fluoride (LiSAF) Lithium strontium gallium fluoride (LiSGF) Lithium tantalate (LT) Lithium tetraborate (diomignite) Lithium triborate (LBO)
© 2003 by CRC Press LLC
Formula Li2GeO3 LiInGe2O6 LiIn(MoO4)2 Li3InO3 LiInO2 LiInSiO4 LiInSi2O6 LiIn(WO4)2 α-LiIO3 LiI Li3La2(BO3)3 LiLa(MoO4)2 LiLaO2 LiLaP4O12 LiLa(WO4)2 Li6Lu(BO3)3 LiLuF4 LiLuGeO4 LiLuO2 LiLuSiO4 LiLuP4O12 LiLu(WO4)2 LiMgAlF6 LiMgBO3 Li2MgB2O5 Li2MgCl4 LiMgGaF6 Li2MgGeO4 LiMgInF6 LiNbO3 Li3PO4 LiScO2 LiScGeO4 LiScGe2O6 LiScSiO4 LiScSi2O6 LiSc(WO4)2 Li2SiO3 LiSrAlF6 LiSrGaF6 LiTaO3 Li2B4O7 LiB3O5
Crystal system (Space group) Orthorhombic (Cmc21) Orhtorhimbic (Pbca) Monoclinic (P21/c) Trigonal (P−3c1) Tetragonal(I41/amd) Orthorhombic (Pnma) Monoclinic (C2/c) Monoclinic (P2/c) Hexagonal (P63) Cubic (Fm3m) Monoclinic (P21/n) Orthorhombic (Pbca) Orthorhombic (Pbmm) Monoclinic (I2/c) Tetragonal (I41/a) Monoclinic (P21/b) Tetragonal (I41/a) Orthorhombic (Pbcn) Tetragonal (I41/amd) Orthorhombic (Pbcn) Monoclinic (I2/c) Monoclinic (P2/c) Trigonal (P321) Monoclinic (C2/c) Monoclinic Cubic (Fd3m) Tetragonal (P42/mmm) Orthorhombic (Pmn21) Trigonal (P321) Trigonal (R3c) Orthorhombic Tetragonal(I41/amd) Orthorhombic (Pbnm) Orthorhombic (Pbca) Orthorhombic (Pbnm) Monoclinic (C2/c) Monoclinic (P2/c) Orthorhombic (Ccm21) Trigonal(P−31c) Trigonal(P−31c) Trigonal (R3c) Tetragonal (I41cd) Orthorhombic (Pn21a)
Section 1: Crystalline Materials
21
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Lithium vanadate Lithium vanadate Lithium yttrium borate Lithium yttrium borate Lithium yttrium fluoride (YLF) Lithium yttrium germanate Lithium yttrium oxide Lithium yttrium silicate Lithium yttrium tungstate Lithium zinc borate Lithium zinc indium fluoride Lithium zinc niobate Lutetium aluminum borate Lutetium aluminum garnet Lutetium borate Lutetium calcium borate Lutetium gallium garnet Lutetium molybdate Lutetium orthosilicate Lutetium oxide Lutetium oxymolybdate Lutetium oxysulfate Lutetium oxytungstate Lutetium pentaphosphate Lutetium phosphate Lutetium scandate Lutetium scandium aluminum garnet (LSAG) Lutetium tantalate Lutetium titanate Lutetium tungstate Lutetium vanadate Magnesium aluminate (spinel) Magnesium aluminum borate (sinhalite) Magnesium aluminum borosilicate (grandidierite) Magnesium aluminum silicate (cordierite) Magnesium aluminum silicate (sapphirine) Magnesium aluminum silicate garnet (pyrope) Magnesium borate (kotoite) Magnesium borate (suanite) Magnesium carbonate (magnesite) Magnesium chloroborate (boracite) Magnesium fluoride (sellaite, Irtran 1) Magnesium fluoroborate
© 2003 by CRC Press LLC
Formula LiVO3 Li3VO4 Li3Y2(BO3)3 Li6Y(BO3)3 LiYF4 LiYGeO4 LiYO2 LiYSiO4 LiY(WO4)2 LiZnBO3 LiZnInF6 LiZnNbO4 LuAl3(BO3)3 Lu3Al5O12 LuBO3 LuCaBO4 Lu3Ga5O12 Lu2(MoO4)3 Lu2SiO5 Lu2O3 Lu2MO6 Lu2O2SO4 Lu2WO6 LuP5O14 LuPO4 LuScO3 Lu3Sc2Al3O12 LuTaO4 Lu2Ti2O3 Lu2(WO4)3 LuVO4 MgAl2O4 MgAlBO4 MgAl3BSiO9 Mg2Al3(Si5Al)O18 Mg4Al8Si2O20 Mg3Al2Si3O12 Mg3B2O6 Mg2B2O5 MgCO3 Mg3B7O13Cl MgF2 Mg2BO3F
Crystal system (Space group) Monoclinic (C2/c) Orthorhombic (Pmn21) Monoclinic (P21/n) Monoclinic (P21/b) Tetragonal (I41/a) Orthorhombic (Pbcn) Monoclinic (P21/c) Orthorhombic (Pbcn) Monoclinic (P2/c) Monoclinic (C2/c) Trigonal (P321) Tetragonal (P4122) Trigonal (R32) Cubic (Ia3d) Rhombohedral (R−3c) Orthorhombic (Pnam) Cubic (Ia3d) Orthorhombic (Pbcn) Monoclinic (C2/c) Cubic (Ia3) Monoclinic (I2/c) Orthorhombic Monoclinic (P2/c) Monoclinic (C2/c) Tetragonal (I41/amd) Cubic (Ia3) Cubic (Ia3d) Monoclinic (P2/a) Cubic (Fd3m) Orthorhombic (Pcna) Tetragonal (I41/amd) Cubic (Fd3m) Orthorhombic (Pnma) Orthorhombic Hexagonal (P6/mcc) Monoclinic (P21/a) Cubic (Ia3d) Orthorhombic (Pnma) Monoclinic Rhombohedral (R−3c) Orthorhombic Tetragonal (P42/mnm) Orthorhombic
22
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Magnesium fluoroborate Magnesium fluorophosphate (wagnerite) Magnesium gallate spinel Magnesium gallium borate Magnesium gallium germanate Magnesium germanate Magnesium germanate Magnesium molybdate Magnesium oxide (periclase, Irtran 5) Magnesium phosphate (farringtonite) Magnesium pyroarsenate Magnesium silicate (enstatite) Magnesium silicate (forsterite) Magnesium titanate Magnesium titanate Magnesium titanate (geikielite) Magnesium titanium sulfate Magnesium titanum borate (warwickite) Magnesium tungstate Magnesium vanadate Magnesium vanadate Magnesium vanadate Magnesium vanadate Manganese fluoride Manganese oxide (manganosite) Mercurous bromide (kuzminite) Mercurous chloride (calomel) Mercurous iodide (moschelite) Mercury antimonade Mercury chloride Mercury iodide Mercury oxide Mercury peroxide Mercury selenide (tiemannite) Mercury sulfide (cinnabar) Mercury tellurite (coloradoite) Neodymium calcium aluminum oxide Neodymium gallate Neodymium yttrium aluminum borate Niobium phosphate Potassium aluminum borate Potassium aluminum fluoride Potassium aluminum germanate
© 2003 by CRC Press LLC
Formula Mg5(BO3)3F Mg2PO4F MgGa2O4 MgGaBO4 Mg4Ga8Ge2O20 MgGeO3 Mg2GeO4 MgMoO4 MgO Mg3(PO4)2 Mg2As2O7 MgSiO3 Mg2SiO4 MgTi2O5 Mg2TiO4 MgTiO3 MgTi(SO4)2 Mg3TiB2O8 MgWO4 MgV2O6 MgVO3 Mg2V2O7 Mg3(VO4)2 MnF2 MnO Hg2Br2 Hg2Cl2 Hg2I2 Hg2Sb2O7 HgCl2 HgI2 HgO Hg2O2 HgSe HgS HgTe NdCaAlO4 NbGaO3 NdxY1-xAl3 (BO3)4 NbOPO4 K2A2lB2O7 K3AlF6 KAlGeO4
Crystal system (Space group) Orthorhombic (P*nb) Monoclinic (P21/a) Cubic (Fd3m) Orthorhombic (Pnam) Monoclinic (P21/a) Orthorhombic (Pbca) Orthorhombic (Pnma) Monoclinic (C2/m) Cubic (Fm3m) Monoclinic Monoclinic (C2/m) Monoclinic (P21/c) Orthorhombic (Pbcn) Orthorhombic (Bbmm) Cubic (Fd3m) Trigonal(R−3) Monoclinic (P21/n) Orthorhombic Monoclinic (P2/c) Orthorhombic (Pbcn) Monoclinic (Cmc21) Monoclinic (C2/m) Orthorhombic (Cmca) Tetragonal (P42/mnm) Cubic (Fm3m) Tetragonal (I4/mmm) Tetragonal (I4/mmm) Tetragonal (I4/mmm) Cubic (Fd3m) Orthorhombic (Pmnb) Tetragonal (P42/mmc) Orthorhombic (Pmna) Monoclinic (C2/m) Cubic (F43m) Trigonal (R32) Cubic (F43m) Tetragonal (I4/mmm) Orthorhombic (Pbnm) Trigonal (R32) Tetragonal (P4/n) Trigonal (P321) Cubic (Pm3m) Hexagonal (P63)
Section 1: Crystalline Materials
23
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Potassium aluminum molybdate Potassium aluminum silicate (kaliophilite) Potassium aluminum silicate (leucite) Potassium aluminum silicate (orthoclase) Potassium aluminum silicate hydroxide (mica) Potassium aluminum sulfate Potassium aluminum tetrafluoride Potassium beryllium fluoride Potassium beryllium fluoroborate (KBBF) Potassium bismuth niobate Potassium boron fluoride (avogadvite) Potassium bromide Potassium cadmium fluoride Potassium calcium fluoride Potassium calcium silicate Potassium calcium zirconium silicate (wadeite) Potassium chloride (sylvite) Potassium dideuterium phosphate (KDP) Potassium dihydrogen phosphate (KDP) Potassium fluoride (carobbiite) Potassium gadolinium niobate Potassium gadolinium tungstate Potassium gadolinium vanadate Potassium gallium germanate Potassium gallium silicate Potassium gallium silicate Potassium indium molybdate Potassium indium tungstate Potassium iodide Potassium iodide Potassium lanthanum molybdate Potassium lanthanum niobate Potassium lanthanum phosphate Potassium lanthanum tetraphosphate Potassium lanthanum tungstate Potassium lead chloride Potassium lithium beryllium fluoride Potassium lithium gadolinium fluoride (KLGF) Potassium lithium niobate (KLN) Potassium lithium yttrium fluoride (KLYF) Potassium lutetium tungstate
© 2003 by CRC Press LLC
Formula KAl(MoO4)2 KAlSiO4 KAlSi2O6 KAlSi3O8 KAl3Si3O10•(OH)2 KAl(SO4)2 KAlF4 K2BeF4 KBe2BO3F2 KBiNb5O15 KBF4 KBr KCdF3 KCaF3 K2CaSiO4 K2CaZr(SiO3)4 KCl KD2PO4 KH2PO4 KF K2GdNb5O15 KGd(WO4)2 K3Gd(VO4)2 KGaGeO4 KGaSi3O8 KGaSiO4 KIn(MoO4)2 KIn(WO4)2 KI KIO3 KLa(MoO4)4 K2LaNb5O15 K3La(PO4)2 KLaP4O12 KLa(WO4)2 KPb2Cl5 KLiBeF4 KLiGdF5 K3Li2Nb5O15 KLiYF5 KLu(WO4)4
Crystal system (Space group) Trigonal (P−3m1) Hexagonal (P63) Tetragonal (I41/a) Monoclinic (C2/m) Monoclinic Trigonal (P321) Tetragonal (P4/mbm) Orthorhombic (Pna21) Trigonal (R32) Tetragonal Orthorhombic (Cmcm) Cubic (Fm3m) Cubic (Pm3m) Cubic (Pm3M) Orthorhombic (Pnmm) Hexagonal (P63m) Cubic (Fm3m) Hexagonal (P63) Tetragonal (I−42m) Cubic (Fm3m) Tetragonal Monoclinic (C2/c) Monoclinic (P21/m) Hexagonal (P63) Monoclinic (C2/m) Hexagonal (P63) Orthorhombic (Pnam) Trigonal (P−3m1) Cubic (Fm3m) Monoclinic (P1) Tetragonal (I41/a) Tetragonal Monoclinic (P21/m) Monoclinic (P21) Monoclinic (C2/m) Monoclinic (P21/c) Hexagonal (P−3m1) Monoclinic (P21/c) Tetragonal (P4bm) Monoclinic (P21/c) Monoclinic (C2/c)
24
Handbook of Optical Materials
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Potassium lutetium vanadate Potassium magnesium chloride Potassium magnesium fluoride Potassium magnesium fluoride Potassium magnesium sulfate (langbeinite) Potassium niobate (KN) Potassium niobium borate Potassium nitrate (nitre) Potassium pentaborate Potassium scandium molybdate Potassium scandium tungstate Potassium scandium vanadate Potassium sodium aluminum fluoride (elpasolite) Potassium sodium gallium fluoride Potassium sodium lithium niobate Potassium sodium lithum niobate Potassium strontium sulfate (kalistrontite) Potassium tantalate Potassium tantalum borate Potassium tin germanate Potassium tin silicate Potassium titanium germanate Potassium titanium niobate Potassium titanium niobate Potassium titanoarsenate (KTA) Potassium titanophosphate (KTP) Potassium titanum silicate Potassium vanadate Potassium yttrium fluoride Potassium yttrium molybdate Potassium yttrium niobate Potassium yttrium tetrafluoride (KYF) Potassium yttrium tungstate Potassium yttrium vanadate Potassium zinc fluoride Potassium zinc fluoride Rubidium aluminum selenate Rubidium aluminum silicate Rubidium aluminum silicate Rubidium aluminum sulfate Rubidium aluminum tetrafluoride Rubidium beryllium fluoride Rubidium bismuth molybdate
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
K3Lu(VO4)4 K2MgCl4 K2MgF4 KMgF3 K2Mg2(SO4)3 KNbO3 KNbB2O6 KNO3 KB5O8•4H2O KSc(MoO4)2 KSc(WO4)2 KSc(VO4)2 K2NaAlF6 K2NaGaF6 KNaLi2Nb5O15 K2NaLi2Nb5O15 K2Sr(SO4)2 KTaO3 KTaB2O6 K2SnGe3O9 K2SnSi3O9 K2TiGe3O9 KTiNbO5 KTi3NbO9 KTiOAsO4 KTiOPO4 K2TiSi3O9 KVO3 KY3F10 KY(MoO4)2 K2YNb5O15 KYF4 KY(WO4)2 K3Y(VO4)2 K2ZnF4 KZnF3 RbAl(SeO4)2 RbAlSiO4 RbAlSi2O6 RbAl(SO4)2 RbAlF4 Rb2BeF4 RbBi(MoO4)2
Monoclinic (P21/m) Tetragonal (I4/mmm) Tetragonal (I4/mmm) Cubic (Pm3m) Cubic (P213) Orthorhombic (Amm2) Orthorhombic (Pn21m) Orthorhombic (Pmcn) Orthorhombic (Aba2) Tetragonal (P–3m1) Trigonal (P–3m1) Trigonal Cubic (Fm3m) Cubic (Fm3m) Trigonal Tetragonal (P4bm) Trigonal Cubic (Pm–3m) Orthorhombic (Pmm) Trigonal (P–3c1) Hexagonal (P63/m) Trigonal (P–3c1) Orthorhombic (Pnma) Orthorhombic (Pnmm) Orthorhombic (P21nb) Orthorhombic (P21nb) Hexagonal (P63/m) Orthorhombic (Pmab) Cubic (Fm3m) Orthorhombic (Pbna) Tetragonal Trigonal (P31) Monoclinic (C2/c) Monoclinic Tetragonal (I4/mmm) Tetragonal Trigonal (P321) Orthorhombic (Pcmn) Tetragonal (I41/a) Trigonal (P321) Tetragonal (P4/mmm) Orthorhombic (Pna21) Monoclinic (P21/c)
Section 1: Crystalline Materials
25
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Rubidium bromide Rubidium cadmium fluoride Rubidium calcium fluoride Rubidium chloride Rubidium dihydrogen arsenate (RDA) Rubidium dihydrogen phosphate (RDP) Rubidium fluoride Rubidium gadolinium bromide Rubidium gadolinium vanadate Rubidium gadolinium vanadate Rubidium gallium selenate Rubidium gallium sulfate Rubidium indium molybdate Rubidium indium tungstate Rubidium iodide Rubidium lanthanum niobate Rubidium lanthanum tungstate Rubidium lithium aluminum fluoride Rubidium lithium gallium fluoride Rubidium lutetium vanadate Rubidium lutetium vanadate Rubidium magnesium chloride Rubidium magnesium fluoride Rubidium niobium borate Rubidium pentaborate Rubidium potassium gallium fluoride Rubidium scandium molybdate Rubidium scandium tungstate Rubidium scandium vanadate Rubidium scandium vanadate Rubidium sodium beryllium fluoride Rubidium sodium indium fluoride Rubidium tantalum borate Rubidium tin germanate Rubidium tin silicate Rubidium titanium germanate Rubidium titanium silicate Rubidium titano arsenate (RTA) Rubidium titano phosphate (RTP) Rubidium yttrium vanadate Rubidium yttrium vanadate Rubidium zinc bromide Rubidium zinc chloride
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
RbBr RbCdF3 RbCaF3 RbCl RbH2AsO4 RbH2PO4 RbF RbGd2Br7 Rb3Gd(VO4)2 RbGd(VO4)2 RbGa(SeO4)2 RbGa(SO4)2 RbIn(MoO4)2 RbIn(WO4)2 RbI Rb2LaNb5O15 RbLa(WO4)2 Rb2LiAlF6 Rb2LiGaF6 Rb3Lu(VO4)2 RbLu(VO4)2 Rb2MgCl4 Rb2MgF4 RbNbB2O6 RbB5O8•4H2O Rb2KGaF6 RbSc(MoO4)2 RbSc(WO4)2 Rb3Sc(VO4)2 RbSc(VO4)2 Rb3NaBeF8 Rb2NaInF6 RbTaB2O6 Rb2SnGe3O9 Rb2SnSi3O9 Rb2TiGe3O9 Rb2TiSi3O9 RbTiOAsO4 RbTiOPO4 Rb3Y(VO4)2 RbY(VO4)2 Rb2ZnBr4 Rb2ZnCl4
Cubic (Fm3m) Cubic (Pm3m) Cubic (Pm3m) Cubic (Fm3m) Tetragonal (I41/a) Tetragonal ((I–42m) Cubic (Fm3m) Orthorhombic (Pnma) Trigonal Tetragonal (P4/mmm) Trigonal (P321) Trigonal (P321) Trigonal (P321) Trigonal (P321) Cubic (Fm3m) Tetragonal Monoclinic (C2/c) Rhombohedral (R–3m) Rhombohedral (R–3m) Trigonal Trigonal Tetragonal (I4/mmm) Tetragonal (I4/mmm) Orthorhombic (Pn21m) Orthorhombic (Aba2) Cubic (Fm3m) Trigonal (P–3m1) Trigonal (P–3m1) Trigonal Trigonal Hexagonal (P63) Cubic (Fm3m) Orthorhombic (Pn21m) Trigonal (P–3c1) Hexagonal (P63/m) Trigonal (P–3c1) Hexagonal (P63/m) Orthorhombic (P21nb) Orthorhombic (P21nb) Trigonal Trigonal Orthorhombic (Pnma) Orthorhombic (Pnma)
26
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Crystal system (Space group)
Rubidium zinc fluoride Rubidium zinc fluoride Scandium aluminum beryllate (SCAB)
Rb2ZnF4 RbZnF3 ScAlBeO4
Tetragonal (I4/mmm) Cubic (Pm3m) Orthorhombic (Pmcn)
Scandium borate Scandium calcium borate Scandium gallate Scandium germanate Scandium magnesium borate Scandium metaphosphate Scandium molybdate Scandium niobate Scandium orthosilicate Scandium oxide Scandium phosphate Scandium silicate Scandium tantalate Scandium titanate Scandium tungstate Scandium vanadate Scandium yttrium silicate (thortveitite) Selenium Selenium dioxide (downeyite) Silicon Silicon carbide (carborundum, moissanite) Silicon carbide Silicon dioxide (α-quartz) Silicon nitride Silver antimony sulfide (pyrargyrite) Silver arsenic selenide Silver arsenic sulfide (proustite) Silver arsenic sulfide (trechmannite) Silver bromide (bromyrite) Silver chloride (cerargyrite) Silver gallium selenide Silver gallium sulfide Silver iodide (iodargyrite) Silver mercury iodide Sodium aluminum borate Sodium aluminum chlorosilicate (sodalite) Sodium aluminum fluoride (chiolite) Sodium aluminum fluoride (cryolite) Sodium aluminum fluoroarsenate (durangite) Sodium aluminum fluorophosphate (lacroixite)
ScBO3 ScCaBO4 ScGaO3 Sc2GeO5 ScMgBO4 Sc(PO3)3 Sc2(MoO4)3 ScNbO4 Sc2SiO5 Sc2O3 ScPO4 Sc2Si2O7 ScTaO4 Sc2TiO5 Sc2(WO4)3 ScVO4 (Sc,Y)2Si2O7 Se SeO2 Si α-SiC (2H) β-SiC (3C) SiO2 Si3N4 Ag3SbS3 Ag3AsSe3 Ag3AsS3 AgAsS2 AgBr AgCl AgGaSe2 AgGaS2 AgI Ag2HgI4 Na2Al2B2O7 Na8Al6Si6O24Cl2 Na5Al3F14 Na3AlF6 NaAl(AsO4)F NaAl(PO4)F
Rhombohedral (R–31) Orthorhombic (Pnam) Monoclinic (A2/m) Monoclinic (B2/b) Orthorhombic (Pnam) Monoclinic (Cc) Orthorhombic (Pbcn) Monoclinic (P2/c) Monoclinic (I2/a) Cubic (I213) Tetragonal (I41/amd) Monoclinic (C2/m) Monoclinic (P2/c) Orthorhombic (Bbmm) Orthorhombic (Pcna) Tetragonal (I41/amd) Monoclinic (C2/m) Trigonal (32) Tetragonal (P42/nbc) Cubic (F–43m) Hexagonal (P63/m) Cubic (Fd3m) Trigonal (P312) Hexagonal (P63/m) Trigonal (R3c) Trigonal (R3c) Trigonal (R3c) Tetragonal (I–42d) Cubic (Fm3m) Cubic (Fm3m) Tetragonal (I–42d) Tetragonal (I–42d) Hexagonal (P63mc) Tetragonal (I –4) Tetragonal (I–42d) Cubic Tetragonal (P4/mnc) Monoclinic (P21/n) Monoclinic (C2/c) Monoclinic
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
27
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Sodium aluminum germanate Sodium aluminum silicate (albite) Sodium aluminum silicate (nepheline) Sodium antimony beryllate (swedenburgite) Sodium barium phosphate Sodium barium titanium silicate (batisite) Sodium beryllium fluoride Sodium beryllium fluoroborate Sodium beryllium phosphate (beryllonite) Sodium beryllium silicate (chkalovite) Sodium beryllium silicate Sodium bismuth magnesium vanadate Sodium bismuth zinc vanadate Sodium boron fluoride (ferruccite) Sodium bromide Sodium cadmium magnesium fluoride Sodium cadmium phosphate Sodium cadmium zinc fluoride Sodium calcium fluorophosphate (arctite) Sodium calcium fluorophosphate (nacaphite) Sodium calcium magnesium phosphate (brianite) Sodium calcium phosphate (bushwaldite) Sodium calcium silicate Sodium calcium silicate (combeite) Sodium calcium yttrium fluoride (α-gagarinite) Sodium carbonate (natrite Sodium chloride (halite) Sodium fluoride (villiaumite) Sodium gadolinium arsenate Sodium gadolinium germanate Sodium gadolinium germanate Sodium gadolinium magnesium vanadate Sodium gadolinium molybdate Sodium gadolinium oxide Sodium gadolinium phosphate Sodium gadolinium pyrophosphate Sodium gadolinium silicate Sodium gadolinium silicate Sodium gadolinium silicate Sodium gadolinium tetraphosphate Sodium gadolinium tungstate Sodium gadolinium vanadate Sodium gallium borate
© 2003 by CRC Press LLC
Formula NaAlGeO4 NaAlSi3O8 NaAlSiO4 NaSbBe4O7 NaBaPO4 Na2BaTi2Si4O14 Na2BeF4 NaBe2BO3F2 NaBePO4 Na2BeSi2O6 Na2BeSiO4 Na2BiMg2V3O12 Na2BiZn2V3O12 NaBF4 NaBr NaCdMg2F7 NaCdPO4 NaCdZn2F7 Na2Ca4(PO4)3F Na2CaPO4F Na2CaMg(PO4)2 NaCaPO4 Na2CaSiO4 Na2Ca2Si3O9 α-NaCaYF6 Na2CO3 NaCl NaF Na3Gd(AsO4)2 NaGdGeO4 Na5GdGe4O12 Na2GdMg2V3O12 NaGd(MoO4)2 NaGdO2 Na3Gd(PO4)2 NaGdP2O7 NaGdSiO4 Na3GdSi3O9 Na5GdSi4O12 NaGdP4O12 NaGd(WO4)2 Na3Gd(VO4)2 Na2Ga2B2O7
Crystal system (Space group) Monoclinic (P21/n) Triclinic (P–1) Hexagonal (P63) Hexagonal (P63mc) Hexagonal (P–3m1) Orthorhombic Monoclinic (P21/n) Trigonal (R32) Monoclinic (P21/n) Orthorhombic (Fddd) Orthorhombic (Pca21) Cubic (Ia3d) Cubic (Ia3d) Orthorhombic (Cmcm) Cubic (Fm3m) Cubic (Fd3m) Orthorhombic (Pnma) Cubic (Fd3m) Trigonal Orthorhombic Orthorhombic Orthorhombic (Pnam) Cubic (Fm3m) Trigonal (P31221) Hexagonal Hexagonal (P63mc) Cubic (Fm3m) Cubic (Fm3m) Monoclinic (Cc) Orthorhombic (Pbn21) Trigonal (R32) Cubic (Ia3d) Tetragonal (I41/a) Tetragonal (I41/amd) Monoclinic Monoclinic Orthorhombic (Pbn21) Orthorhombic (P212121) Trigonal (R32) Monoclinic (P21/n) Tetragonal (I41/a) Monoclinic (Cc) Tetragonal
28
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Sodium gallium germanate Sodium gallium germanate Sodium gallium silicate Sodium germanate Sodium indate Sodium indium germanate Sodium indium molybdate Sodium indium silicate Sodium iodide Sodium lanthanum arsenate Sodium lanthanum borate Sodium lanthanum borate Sodium lanthanum borate Sodium lanthanum molybdate Sodium lanthanum oxide Sodium lanthanum phosphate Sodium lanthanum pyrophosphate Sodium lanthanum tetraphosphate Sodium lanthanum tungstate Sodium lanthanum vanadate Sodium lithium aluminum borosilicate (elbaite) Sodium lithium aluminum fluoride Sodium lithium aluminum fluorogarnet Sodium lithium gallium fluorogarnet (GFG) Sodium lithium indium fluorogarnet Sodium lithium niobate Sodium lithium scandium fluorogarnet Sodium lithium vanadate Sodium lithium yttrium silicate Sodium lithium zirconium silicate (Zektzerite) Sodium lutetium arsenate Sodium lutetium germanate Sodium lutetium germanate Sodium lutetium magnesium vanadate Sodium lutetium oxide Sodium lutetium phosphate Sodium lutetium pyrophosphate Sodium lutetium silicate Sodium lutetium silicate Sodium lutetium vanadate Sodium magnesium aluminum fluoride (weberite) Sodium magnesium carbonate (eitelite)
© 2003 by CRC Press LLC
Formula NaGaGeO4 NaGaGe2O6 NaGaSiO4 Na2GeO3 NaInO2 Na5InGe4O12 NaIn(MoO4)2 Na5InSi4O12 NaI Na3La(AsO4)2 Na3La(BO3)2 Na3La2(BO3)3 Na18La(BO3)7 NaLa(MoO4)2 NaLaO2 Na3La(PO4)2 NaLaP2O7 NaLaP4O12 NaLa(WO4)2 Na3La(VO4)2 Na(Li,Al)3Al6(BO3)3Si6O18(OH) Na2LiAlF6 Na3Li3Al2F12 Na3Li3Ga2F12 Na3Li3In2F12 Na3Li2Nb5O15 Na3Li3Sc2F12 NaLiV2O6 Na2LiYSi6O15 Na2LiZrSi6O15 Na3Lu(AsO4)2 NaLuGeO4 Na5LuGe4O12 Na2LuMg2V3O12 NaLuO2 Na3Lu(PO4)2 NaLuP2O7 NaLuSiO4 Na5LuSi4O12 Na3Lu(VO4)2 NaMgAlF7 Na2Mg(CO3)2
Crystal system (Space group) Monoclinic (P21/n) Monoclinic (C2/c) Monoclinic (P21/n) Orthorhombic (Cmc21) Rhombohedral (R3/m) Trigonal (R32) Triclinic (P–1) Trigonal (R32) Cubic (Fm3m) Orthorhombic (Pbc21) Monoclinic (P21/c) Orthorhombic (Amm2) Monoclinic Tetragonal (I41/a) Tetragonal (I41/amd) Orthorhombic (Pbc21) Orthorhombic Monoclinic (P21/n) Tetragonal (I41/a) Orthorhombic (Pbc21) Trigonal (R3m) Monoclinic (P21/n) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Tetragonal (P4bm) Cubic (Ia3d) Monoclinic (C2/c) Orthorhombic (Cmca) Orthorhombic (Cmca) Monoclinic (Cc) Orthorhombic (Pbn21) Trigonal (R32) Cubic (Ia3d) Tetragonal(I41/amd) Monoclinic Monoclinic Orthorhombic (Pbcn) Trigonal (R32) Monoclinic (P21/n) Orthorhombic (Imm2) Trigonal (R –3)
Section 1: Crystalline Materials
29
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Sodium magnesium fluoride (neighborite) Sodium magnesium gallium fluoride Sodium magnesium indium fluoride Sodium magnesium scandium fluoride Sodium magnesium silicate Sodium niobate (natroniobite) Sodium nitrate (soda-nitre) Sodium potassium titanoniobosilicate Sodium scandium germanate Sodium scandium germanate Sodium scandium germanate Sodium scandium indium vanadate Sodium scandium oxide Sodium scandium silicate Sodium scandium silicate Sodium scandium silicate (jervisite) Sodium scandium vanadate Sodium silicate Sodium silicate (natrosilite) Sodium strontium aluminum fluoride Sodium strontium aluminum fluoride (jarlite) Sodium strontium phosphate Sodium tantalate Sodium titanium silicate (lorenzenite) Sodium titanium silicate (natisite) Sodium vanadate Sodium yttrium fluoride Sodium yttrium fluorosilicate Sodium yttrium germanate Sodium yttrium germanate Sodium yttrium magnesium vanadate Sodium yttrium molybdate Sodium yttrium oxide Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium tetrafluoride Sodium zinc chloride Sodium zinc fluoride Strontium aluminate Strontium aluminate Strontium aluminate
© 2003 by CRC Press LLC
Formula NaMgF3 NaMgGaF7 NaMgInF7 NaMgScF7 Na2MgSiO4 NaNbO3 NaNO3 Na2KTiNbSi4O14 NaScGeO4 NaScGe2O6 Na5ScGe4O12 Na3Sc1.5In0.5V3O12 NaScO2 Na3ScSi2O7 Na5ScSi4O12 NaScSi2O6 Na3Sc2V3O12 Na2SiO3 Na2Si2O5 NaSrAlF6 NaSr3Al3F16 Na2Sr(PO2)4 NaTaO3 Na2Ti2Si2O9 Na2TiOSiO4 NaVO3 5NaF–9YF3 Na5Y4(SiO4)4F NaYGeO4 Na5YGe4O12 Na2YMg2V3O12 NaY(MoO4)2 NaYO2 NaYSiO4 Na3YSi3O9 Na3YSi2O7 Na5YSi4O12 NaYF4 NaZnF3 Na2ZnCl4 SrAl2O4 SrAl4O7 Sr3Al2O6
Crystal system (Space group) Orthorhombic (Pcmm) Orthorhombic (Imm2) Orthorhombic (Imm2) Orthorhombic (Imm2) Monoclinic Orthorhombic (Pbma) Trigonal (R–3c) Orthorhombic Orthorhombic (Pbnm) Monoclinic (C2/m) Trigonal (R32) Cubic (Ia3d) Rhombohedral (R3/m) Orthorhombic (Pbcn) Trigonal (R32) Monoclinic (C2/c) Cubic (Ia3d) Orthorhombic (Cmc21) Monoclinic(P21/a) Orthorhombic (Pna21) Monoclinic Tetragonal (P4/nbm) Orthorhombic (Pbma) Orthorhombic (Pnca) Tetragonal (P4/nmm) Monoclinic (C2/c) Cubic (Ia3d) Rhombohedral (R–3) Orthorhombic (Pbn21) Trigonal (R32) Cubic (Ia3d) Tetragonal (I41/a) Monoclinic (P21/c) Orthorhombic (Pbcn) Orthorhombic (P212121) Hexagonal (P63/m) Trigonal (R32) Trigonal (P31) Orthorhombic (Pnmc) Orthorhombic (Pnma) Monoclinic (P21/n) Monoclinic (C2/c) Cubic (Pa3)
30
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Strontium aluminum fluoride Strontium aluminum germanate Strontium aluminum silicate Strontium aluminum silicate Strontium barium niobate (SBN) Strontium borate Strontium borate Strontium borate Strontium bromovanadate Strontium carbonate (strontianite) Strontium chloroarsenate Strontium chloroarsenate Strontium chloroborate Strontium chlorophosphate Strontium chlorovanadate Strontium chlorovanadate Strontium fluoride Strontium fluoroarsenate Strontium fluorophosphate (SFAP) Strontium fluorovanadate (SVAP) Strontium gadolinium aluminate Strontium gadolinium gallate (SGGM) Strontium gadolinium phosphate Strontium gadolinum oxide Strontium gallate Strontium gallium fluoride Strontium gallium germanate Strontium gallium silicate Strontium gallium silicate Strontium hexa-aluminate Strontium indium germanium garnet Strontium indium oxide Strontium lanthanum aluminate Strontium lanthanum borate Strontium lanthanum gallate Strontium lanthanum oxysilicate Strontium lanthanum phosphate Strontium lutetium oxide Strontium magnesium germanate Strontium magnesium silicate Strontium magnesium vanadate Strontium molybdate Strontium niobate
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
SrAlF5 SrAl2Ge2O8 SrAl2Si2O8 Sr2Al2SiO7 Sr0.6Ba0.4Nb2O6 SrB2O4 SrB4O7 Sr3B2O6 Sr2VO4Br SrCO3 Sr2AsO4Cl Sr5(AsO4)3Cl Sr2B5O9Cl Sr5(PO4)3Cl Sr2VO4Cl Sr5(VO4)3Cl SrF2 Sr5(AsO4)3F Sr5(PO4)3F Sr5(VO4)3F SrGdAlO4 SrGdGa3O7 Sr3Gd(PO4)3 SrGd2O4 SrGa2O4 SrGaF5 Sr3Ga2Ge4O14 SrGa2Si2O8 Sr2Ga2SiO7 SrAl12O19 Sr3In2Ge3O12 SrIn2O4 SrLaAlO4 SrLaBO4 SrLaGaO4 SrLa4(SiO4)3O Sr3La(PO4)3 SrLu2O4 Sr2MgGe2O7 Sr2MgSi2O7 SrMg2(VO4)2 SrMoO4 SrNb2O6
Tetragonal (P4) Monoclinic (P21/a) Monoclinic (P21/a) Tetragonal (P421m) Tetragonal Orthorhombic (Pnca) Orthorhombic (Pbca) Rhombohedral (R–3c) Orthorhombic (Pbcm) Orthorhombic (Pnam) Orthorhombic (Pbcm) Hexagonal(P63/m) Tetragonal (P42212) Hexagonal(P63/m) Orthorhombic (Pbcm) Hexagonal(P63/m) Cubic (Fm3m) Hexagonal(P63/m) Hexagonal(P63/m) Hexagonal(P63/m) Tetragonal (I4/mmm) Tetragonal (P421m) Cubic (I–43d) Orthorhombic (Pnma) Monoclinic (P21/n) Tetragonal (P4) Trigonal (P321) Monoclinic (P21/a) Tetragonal (P421m) Hexagonal (P63/mmc) Cubic (Ia3d) Orthorhombic (Pnma) Tetragonal (I4/mmm) Hexagonal (P6322) Tetragonal (I4/mmm) Hexagonal (P63/m) Cubic (I–43d) Orthorhombic (Pnma) Tetragonal (P421m) Tetragonal (P421m) Tetragonal (I41/acd) Tetragonal (I41/a) Orthorhombic (Pcan)
Section 1: Crystalline Materials
31
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Strontium niobate Strontium niobate Strontium niobate Strontium potassium niobate Strontium potassium tantalate Strontium scandate Strontium scandium germanium garnet Strontium silicate Strontium sodium niobate Strontium sulfate (celestite) Strontium tantalate Strontium tin borate Strontium tin oxide Strontium titanate Strontium titanate (tausonite) Strontium titanium borate Strontium tungstate Strontium vanadate Strontium vanadate Strontium vanadate Strontium vanadate Strontium vanadate Strontium yttrium borate Strontium yttrium oxide Strontium yttrium oxysilicate Strontium zinc fluoride Strontium zinc germanate Strontium zinc germanate Strontium zinc silicate Strontium zirconate Strontium zirconium borate Strontiun tantalate Strontiun tantalate Strontiun tantalate Strontiun tantalate Tantalum borate (behierite) Tantalum oxide (tantite) Tantalum oxyphosphate Tellurium Tellurium oxide (tellurite) Thallium aluminum selenate Thallium aluminum sulfate Thallium aluminum tetrafluoride
© 2003 by CRC Press LLC
Formula Sr2Nb2O7 Sr5Nb4O15 SrNb2O6 Sr2KNb5O15 Sr2KTa5O15 SrSc2O4 Sr3Sc2Ge3O12 SrSiO3 Sr2NaNb5O15 SrSO4 Sr2Ta2O7 SrSnB2O6 SrSnO3 Sr3Ti2O7 SrTiO3 SrTiB2O6 SrWO4 SrV2O6 β-Sr2V2O7 Sr3(VO4)2 β-Sr2V2O7 SrVO3 Sr3Y (BO3)3 SrY2O4 SrY4(SiO4)3O SrZnF4 SrZnGe2O6 Sr2ZnGe2O7 Sr2ZnSi2O7 SrZrO3 SrZrB2O6 SrTa2O6 Sr2Ta2O7 Sr5Ta4O15 Sr6Ta2O11 TaBO4 Ta2O5 TaOPO4 Te TeO2 TlAl(SeO4)2 TlAl(SO4)2 TlAlF4
Crystal system (Space group) Orthorhombic (Cmc21) Monoclinic (P21/m) Monoclinic (P21/c) Orthorhombic (Im2a) Orthorhombic (Im2a) Orthorhombic (Pnam) Cubic (Ia3d) Monoclinic (C2) Orthorhombic (Im2a) Orthorhombic (Pmma) Orthorhombic (Pnma) Trigonal (R–3) Cubic (P213) Tetragonal (I4/mmm) Cubic (Pm3m) Trigonal (R–3) Tetragonal (I41/a) Monoclinic (C2/m) Tetragonal (I41/amd) Rhombohedral (R –3m) Tetragonal (P41) Cubic (Pm3m) Trigonal (R–3) Orthorhombic (Pnma) Hexagonal (P63/m) Tetragonal (I41/a) Monoclinic (C2/c) Tetragonal (P421m) Tetragonal (P421m) Orthorhombic (Pnma) Trigonal (R–3) Orthorhombic (Pcan) Orthorhombic (Cmcm) Hexagonal Cubic Tetragonal (I41/amd) Orthorhombic (P2mm) Tetragonal (P4/n) Trigonal (32) Orthorhombic (Pbca) Trigonal (P321) Trigonal (P321) Tetragonal (P4/mmm)
32
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Thallium arsenic selenide Thallium arsenic sulfide (ellisite) Thallium bromide Thallium bromoiodide (KRS-5) Thallium chloride Thallium chlorobromide (KRS-6) Thallium gallium selenate Thallium gallium sulfate Thallium niobium borate Thallium oxide (avicennite) Thallium tantalium borate Thallium tin germanate Thallium titanium germanate Thorium oxide (thorianite) Thorium silicate (thorite) Tin dioxide (cassiterite) Titanium dioxide (rutile) Tourmaline (elbaite) Urea Vanadium oxide (shcherbinaite) Yttrium aluminate Yttrium aluminate (YAP, YALO) Yttrium aluminum borate (YAB) Yttrium aluminum garnet (YAG) Yttrium antimonade Yttrium arsenate (chernovite) Yttrium beryllate Yttrium beryllium aluminate Yttrium borate Yttrium calcium aluminate Yttrium calcium gallium beryllium silicate Yttrium calcium oxyborate Yttrium chlorosilicate Yttrium fluoride Yttrium gadolinium antimonade Yttrium gadolinium niobate Yttrium gadolinium tantalate Yttrium gallium borate Yttrium gallium garnet (YGG) Yttrium germanate Yttrium germanium beryllate Yttrium hafnium tantalate
© 2003 by CRC Press LLC
Formula Tl3AsSe3 Tl3AsS3 TlBr Tl(Br,I) TlCl Tl(Cl,Br) TlGa(SeO4)2 TlGa(SO4)2 TlNbB2O6 Tl2O3 TlTaB2O6 Tl2SnGe3O9 Tl2TiGe3O9 ThO2 ThSiO4 SnO2 TiO2 Na(Li,Al)3Al6(BO3)3Si6O18(OH) (NH2)2CO V2 O 5 Y4Al2O9 YAlO3 YAl3(BO3)4 Y3Al5O12 Y3SbO7 YAsO4 YBeBO4 Y2BeAl2O7 YBO3 YCaAl3O7 YCaGaBe2Si2O10 YCa4O(BO3)3 Y3(SiO4)2Cl YF3 Y2GdSbO7 YGd2NbO7 Y2GdTaO7 YGa3(BO3)4 Y3Ga5O12 Y2GeO5 Y2GeBe2O7 YHfTaO6
Crystal system (Space group) Trigonal (R3c) Trigonal (R3c) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Trigonal (P321) Trigonal (P321) Orthorhombic (Pn21m) Cubic (Ia3d) Orthorhombic (Pn21m) Trigonal (P–3c1) Hexagonal (P63/m) Cubic (Fm3m) Tetragonal (I41/amd) Tetragonal (P42/mnm) Tetragonal (P42/mnm) Trigonal (R3m) Tetragonal (I – 4 2m) Orthorhombic (Pmmm) Monoclinic (P21/a) Orthorhombic (Pnma) Trigonal (R32) Cubic (Ia3d) Orthorhombic (C2221) Tetragonal (I41/amd) Monoclinic (C2/c) Tetragonal (P421m) Hexagonal (P63/mmc) Tetragonal (P421m) Monoclinic (P21/c) Monoclinic (Cm) Orthorhombic (Pnma) Orthorhombic (Pnma) Orthorhombic (C2221) Orthorhombic (C2221) Orthorhombic (C2221) Trigonal (R32) Cubic (Ia3d) Monoclinic (P21/c) Tetragonal (P421m) Orthorhombic
Section 1: Crystalline Materials
33
Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name Yttrium indate Yttrium indium gallium garnet Yttrium iron garnet (YAG) yttrium lithium fluoride (YLF) Yttrium magnesium beryllium silicate (gadolinite) Yttrium molybdate Yttrium niobate (fergusonite) Yttrium orthosilicate (YOS, YSO) Yttrium oxide (yttria) Yttrium oxychloride Yttrium molybdate Yttrium oxymolybdate Yttrium oxysulfate Yttrium oxytungstate Yttrium pentaphosphate Yttrium phosphate (xenotime) Yttrium scandate Yttrium scandium aluminum garnet (YSAG) Yttrium scandium gallium garnet (YSGG) Yttrium silicate (keiviite) Yttrium silicon beryllate Yttrium tantalate Yttrium tantalate (formanite) Yttrium titanate Yttrium titanium silicate (trimounsite) Yttrium titanium tantalate Yttrium tungstate Yttrium vanadate (wakefieldite) Yttrium zinc beryllium silicate Zinc aluminate (gahnite) Zinc antimonate (ordonezite) Zinc arsenate Zinc arsenide (reinerite) Zinc borate Zinc borate Zinc borate Zinc carbonate (smithsonite) Zinc chloride Zinc fluoride Zinc gallate Zinc germanate Zinc germanium arsenide Zinc germanium phosphide
© 2003 by CRC Press LLC
Formula
Crystal system (Space group)
YInO3 Y3In2Ga3O12 Y3Fe5O12 LiYF4 Y2MgBe2Si2O10 Y2(MoO4)3 YNbO4 Y2SiO5 Y2 O3 YOCl Y2Mo2O7 Y2MoO6 Y2OS2 Y2WO6 YP5O14 YPO4 YScO3 Y3Sc2Al3O12 Y3Sc2Ga3O12 Y2Si2O7 Y2SiBe2O7 Y3TaO7 YTaO4 Y2Ti2O7 Y2Ti2SiO9 YTiTaO6 Y2(WO4)3 YVO4 Y2ZnBe2Si2O10 ZnAl2O4 ZnSb2O6 ZnAsO4 Zn3(AsO3)2 Zn3(BO3)2 ZnB4O7 Zn4B6O13 ZnCO3 ZnCl2 ZnF2 ZnGa2O4 Zn2GeO4 ZnGeAs2 ZnGeP2
Hexagonal (P63cm) Cubic (Ia3d) Cubic (Ia3d) Tetragonal (I41/a) Monoclinic (P21/c) Orthorhombic (Pbcn) Monoclinic (C2/c) Monoclinic (C2/c) Cubic (Ia3) Rhombohedral (R–3m) Cubic (Fd3m) Monoclinic (I2/c) Monoclinic (P21/c) Monoclinic (P2/c) Orthorhombic (Pcmn) Tetragonal (I41/amd) Orthorhombic (Pbnm) Cubic (Ia3d) Cubic (Ia3d) Monoclinic (C2/m) Tetragonal (P421m) Orthorhombic (C2221) Monoclinic (P2/a) Cubic (Fd3m) Monoclinic Orthorhombic (Pbcn) Orthorhombic (Pcna) Tetragonal (I41/amd) Monoclinic (P21/c) Cubic (Fd3m) Tetragonal (P42/mnm Monoclinic (P21/c) Orthorhombic (Pbam) Monoclinic (P2/c) Othorhombic (Pbca) Cubic (I–43m) Rhombohedral (R –3c) Tetragonal (P42/mnm) Tetragonal (P42/mnm) Cubic (Fd3m) Tetragonal (I4122) Tetragonal (I–42d) Tetragonal (I–42d)
34
Handbook of Optical Materials Name, Formula, Crystal System, and Space Group for Optical Crystals—continued Name
Formula
Crystal system (Space group)
Zinc oxide (zincite)
ZnO
Hexagonal (6mm)
Zinc pyroarsenade
Zn2As2O7
Monoclinic (C2/m)
Zinc selenide (stilleite, Irtran 4)
ZnSe
Cubic (Fm3m)
Zinc silicate (willemite)
Zn2SiO4
Trigonal (R–3)
Zinc silicon arsenide
ZnSiAs2
Tetragonal (I–42d)
Zinc silicon phosphide
ZnSiP2
Tetragonal (I–42d)
Zinc sulfide (sphalerite, Irtran 2, zincblende)
β-ZnS
Cubic (Fm3m)
Zinc sulfide (wurtzite)
α-ZnS
Hexagonal (P6mm)
Zinc telluride
ZnTe
Cubic (Fm3m)
Zinc tin antimonide
ZnSnSb2
Tetragonal (I–42d)
Zinc tin arsenide
ZnSnAs2
Tetragonal (I–42d)
Zinc tin phosphide
ZnSnP2
Tetragonal (I–42d)
Zinc tungstate
ZnWO4
Monoclinic (P2/c)
Zinc vanadate
ZnV2O6
Monoclinic (C2)
Zirc silicon arsenate
ZnSiAs2
Cubic (F–43m)
Zirconium oxide
ZrO2
Tetragonal (P42/nmc)
Zirconium oxide (cubic zirconia, CZ)
ZrO2:0.12Y2O3
Cubic (Fm3m)
Zirconium silicate (zircon)
ZrSiO4
Tetragonal (I41/amd)
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
35
1.2 Physical Properties* Physical properties of optical crystals in this section are grouped into three tables: isotropic crystals, uniaxial crystals, and biaxial crystals. Materials are listed alphabetically in order of the chemical formulas. The following properties are included: Density: Data are for room temperature. Hardness: This is an empirical and relative measure of a material’s resistance to wear. Average Knoop (indentation test) hardness numbers or range of values at room temperature are given when available. In many cases only Vicker (V) or Mohs hardness are known. This is indicated parentheses after the value. The hardness of a crystal varies with orientation even for cubic symmetry crystals. Cleavage: The ease of cleavage varies greatly depending on the crystal quality and the nature and direction of stress applied. In many crystals there can be more than one set of cleavage planes. Miller indices are used to denote the cleavage planes. The actual number of cleavage planes depends on the plane orientation relative to the symmetry of the crystal. Only the easiest cleavage plane for each crystal is listed. They are ranked qualitatively as perfect (p) or imperfect (i). A crystal listed with a perfect cleavage plane can crack along that direction with a smooth surface if a stress is applied. The imperfect cleavage plane means that the crack does not easily move along the plane, although a small area of oriented flat surfaces may form along the cracking surface when the crystal is fractured. Solubility : Solubility is defined as the weight loss in grams per 100 grams of water. The dissolution temperature in °C is included in parentheses, if given. If the solubility is less than 10-3 g/100 g, the material is generally considered to be insoluble. If a crystal is listed as insoluble, it means that, when submerged in water with a reasonable amount of time (a day or so), no noticeable loss of weight nor visible surface erosion of the crystal is observed. * This section was adapted from “Optical Crystals” by B. H. T. Chai, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 30 ff (with additions). 1.2.1 Isotropic Crystals Physical Properties of Isotropic Crystalline Materials Cubic material AgBr AgCl AlAs Al23O27N5 (ALON) AlP AlSb As2O3 Ba(NO3)2 Ba2Zr2Si3O12 Ba3Al2O6
© 2003 by CRC Press LLC
Density 3
(g/cm ) 6.473 5.56 3.729 3.713 2.40 4.26 3.87 3.24 – 5.008
Hardness 2
(kg/mm ) 7 9.5 – 1850 – – 1.5 (Mohs) – – –
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
None None (111)-p – – – (111) None – –
1.2 × 10–5 (20) 1.5 × 10–4 (20) Insoluble Insoluble Slightly soluble Soluble Soluble Insoluble –
Physical Properties of Isotropic Crystalline Materials—continued Cubic material Ba3MgTa2O9 BaF2 BaF2-CaF2 Bi12GeO20 Bi12SiO20 Bi12TiO20 Bi4Ge3O12 Bi4Si3O12 BN BP C (diamond) Ca12Al14O33 Ca2LiMg2V3O12 Ca2LiZn2V3O12 Ca2NaMg2V3O12 Ca2NaZn2V3O12 Ca2Sb2O7 Ca3Al2Ge3O12 Ca3Al2Si3O12 Ca3Ga2Ge3O12 Ca3Gd(PO4)3 Ca3In2Ge3O12 Ca3La(PO4)3 Ca3Lu2Ge3O12 Ca3Sc2Ge3O12 Ca3Sc2Si3O12 CaF2 CaLa2S4 CaO CaTiO3 CaY2Mg3Ge3O12 Cd2Nb2O7 Cd2Sb2O7 Cd3Sc2Ge3O12 CdB2O4 CdF2 CdGa2O4 CdIn2O4 CdO CdTe Cs2KLaF6 Cs2NaYF6 CsBr © 2003 by CRC Press LLC
Density 3
(g/cm ) 6.435 4.83 4.89 9.22 9.20 9.069 7.13 6.60 3.48 2.97 3.51 2.68 3.447 3.726 3.414 3.976 – 4.357 3.60 4.837 3.900 5.063 3.678 5.668 4.203 3.514 3.180 4.524 3.3 3.98 – 6.216 – 5.749 4.58 6.64 – 7.00 8.24 6.20 3.95 4.397 4.44
Hardness 2
(kg/mm ) – 82(500) – 4.5(Mohs) – – 5.0 (Mohs) 4.5 (Mohs) 4600 3600 5700–10400 – – – – – – – 7 (Mohs) – – – – – – – 158 570 3.5 – – – – – – – – – 3 (Mohs) 56 – – 19.5
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– (111)-p (111)-p None None None None (110)-i (111) – (111) None – – – – None None None None – None – None None None (111)-p – (100)-p – None None None None – (111)-p None None (111) (110)-p None None None
Insoluble 0.12 0.16 Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble – – – – Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 1.6 × 10–3 (18) – 0.13(10) Insoluble Insoluble Insoluble Insoluble Insoluble – 4.4 (20) Insoluble – – Very slightly soluble Slightly soluble Slightly soluble 124 (25)
Physical Properties of Isotropic Crystalline Materials—continued Cubic material
Density 3
(g/cm )
Hardness 2
(kg/mm )
CsCaF3 CsCdF3 CsCl CsF CsI CsSrF3 Cu2O CuBr CuCl CuI GaAs GaP GaSb Gd2Ti2O7 Gd3Ga5O12 Gd3Sc2Al3O12 Gd3Sc2Ga3O12 Ge Hg2Sb2O7 HgSe HgTe InAs InP InSb
4.123 5.62 3.9 4.638 4.510 4.299 6.11 4.77 4.14 5.68 5.316 4.13 5.619 6.52 7.02 5.82 – 5.35 – 8.266 – 5.66 4.8 5.78
– – – – 1–2 (Mohs) – 3.5 (Mohs) 21 2.5 (Mohs) 2.5 (Mohs) 721 – – 1114 6.5–7(Mohs) 7.5 (Mohs) 7.0 (Mohs) 800 – – – 330 430 225
K2Mg2(SO4)3 K2NaAlF6 K2NaGaF6 K3AlF6 KBr KCaF3 KCdF3 KCl KF KI KMgF3 KTaO3 KY3F10 La3Lu2Ga3O12 Li2BeF4 Li2CdCl4 Li2MgCl4 LiAl5O8 LiBaF3
2.83 2.99 3.34 – 2.75 2.709 4.264 1.984 2.48 3.12 3.15 7.015 4.312 – 2.289 2.956 2.119 3.625 5.242
3.5 (Mohs) 2.5 (Mohs) – – 7.0(200) – – 9.3(200) 2 (Mohs) 5 2.5 (Mohs) – 4.5 (Mohs) 7.0 (Mohs) – – – – –
© 2003 by CRC Press LLC
Cleavage
Solubility (ºC)
plane
(g/100 g H2O)
– – None (100)-p None – (111)-i – (110)-p (110)-p (111)-p (111)-p (111)-p None None None None (111) None – – (111)-p (111)-p (111)-p None None None None (100)-p – – (100)-p (100)-p (100)-p None – None None – – – None –
Slightly soluble – 186 (20) 367 (18) 44 (0) – Insoluble Very slightly soluble 6.1 × 10–3 – 2.12 0.33 4.929 1.79 3.5 (D) 2.872 – – – 3.227 – 1.80 – 1.704 – 1.879 – 1.802 – 1.816 – 2.2148 – 1.719 – 1.625 – – – 1.502
Refractive index no 2.124 2.058 – 2.416 1.80 2.3812 2.655 2.27 1.55 1.50 1.872 2.79 – 2.04 1.55 1.990 1.816 1.8336 1.6314 1.824 1.895 – 2.310 1.838 1.8567 1.9064 2.20 > 2.12 6.372 1.78 2.584 – 3.419 1.83 1.778 1.783 1.788 1.827 1.9915 1.691 1.850 – 1.529
Birefringence ∆n –0.018 –0.010 – –0.066 0.08 –0.123 0.130 –0.08 –0.05 –0.03 –0.092 0.82 (1µm) – – 0.0095 0.010 –0.016 0.0164 –0.062 –0.015 0.027 – 0.04 0.008 –0.034 0.0046 0.01 – –1.45 (4 µm) 0.01 0.288 – –0.192 –0.03 0.074 0.096 0.014 –0.011 0.2233 0.028 –0.275 – –0.027
69
70
Handbook of Optical Materials Optical Properties of Uniaxial Crystalline Materials—continued Uniaxial material
ZnGeP2 ZnO ZnSb2O6 α-ZnS ZrO2 ZrSiO4
Transmission (µm) 0.74–15 0.37– – – – 0.4–
Band gap (eV) – 3.35 (D) – – 4.99– –
Refractive index ne
Refractive index no
3.28 2.015 >1.95 2.378 – 1.967
3.23 1.998 >1.95 2.356 – 1.920
Birefringence ∆n 0.05 (1 µm) 0.017 – 0.022 – 0.042
1.3.3 Biaxial Crystals Optical Properties of Biaxial Crystalline Materials Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
Al2(WO4)3 Al2SiO4F2 Al2SiO5 (andalusite) Al2SiO5 (kyanite) Al2SiO5 Al4B2O9 Al6Ge2O13 Al6Si2O13 AlNb11O29 AlNbO4 As2S3 AsS AsSbS3 Ba2CaMgAl2F14 Ba2NaNb5O15 BaAl2Si2O8 BaBe2Si2O7 BaCa2Mg(SiO4)2 BaCa2Si3O9 BaCO3 BaMgF4 β-BaSi2O5 BaSO4 BaY2F8 Be2BO3F BeAl2O4 BiB3O6
© 2003 by CRC Press LLC
0.3–5.0 – – – – – – 0.21 – – [2.5] –
– 1.630 1.629 1.712 1.653 1.605 1.72 1.642 2.20 1.985 2.4 2.538
– 0.38–6.0 – – – – – 0.185–10 – – 0.2–9.5 – – 0.3–2.5
1.441 2.2177 1.587 1.694 1.731 1.668 1.530 1.4496 1.598 1.6362 1.5142 1.554 1.746 –
– 1.631 1.633 1.720 1.654 1.610 – 1.644 – – 2.81 2.684 >2.11 1.442 2.3205 1.593 1.70 – 1.684 1.679 1.4661 1.617 1.6373 1.5232 1.587 1.748 –
– 1.638 1.638 1.727 1.669 1.645 1.758 1.654 2.22 2.005 3.02 2.704 >2.73 1.444 2.3222 1.600 1.706 1.752 1.685 1.680 1.4738 1.625 1.6482 1.5353 1.628 1.756 –
– 0.008 0.009 0.015 0.023 0.040 0.046 0.012 0.02 0.02 ~0.6 0.116 >0.62 0.003 0.1045 0.013 0.012 0.021 0.017 0.150 0.0242 0.027 0.012 0.0211 0.074 0.010 –
Section 1: Crystalline Materials
71
Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
Bi2Mo3O12 Bi2O3 Bi2WO6 BiSbO4 BiTaO4 BiVO4 (puucherite) Ca(IO3)2 β-Ca2SiO4 Ca2(VO4)Cl Ca2Al2O5 Ca2V2O7 Ca3(VO4)2 Ca3(Zr,Ti)Si2O9 Ca3MgSi2O8 Ca3Si2O7 Ca5Al6O14 Ca5Ga6O14 CaAl2F8 CaAl2Si2O8 CaAl4O7 CaAlB3O7 CaAlBO4 CaB2Si2O8 CaB3O5F CaBa(CO3)2 CaBe(PO4)F CaBe2(PO4)2 CaCO3-α CaGe2O5 CaMgAsO4F CaMgB2O5 CaMgSi2O6 CaMgSiO4 CaNb2O6 CaSc2O4 CaSiO3 CaSnSiO5 CaSO4 CaTiSiO5 CaV2O6 CaZnSiO4 CaZrSi2O7 Cd2B6O11 © 2003 by CRC Press LLC
0.42–5.2 [2.9] [2.8] – – – – – – – – – – – – – – 0.255–6.5 – – 0.23–5.1 – – – – – – – – – – – – – 0.3–5.5 0.3–6.5 – – – – – – – –
2.254 ? – 2.04 – 2.41 1.792 1.707 1.835 1.96 1.942 1.864 1.735 1.706 1.641 1.68 – 1.501 1.577 1.6178 1.712 1.558 1.630 1.612 1.5261 1.580 1.595 1.530 1.84 1.640 1.635 1.664 1.641 2.07 – 1.615 1.765 1.570 1.84 1.916 1.767 1.720 1.617
2.306 2.42 2.2 – 2.35 2.50 1.840 1.715 – 2.01 2.00 1.885 1.737 1.712 1.644 1.682 – 1.503 1.585 1.6184 1.717 1.585 1.633 1.636 1.6710 1.600 1.601 1.6810 – 1.660 1.681 1.671 1.649 2.10 – 1.627 1.784 1.575 1.870 1.995 1.770 1.736 1.630
2.497 ? – 2.14 – 2.51 1.888 1.730 1.865 2.04 2.132 1.890 1.758 1.724 1.650 1.685 – 1.510 1.590 1.6516 1.726 1.614 1.635 1.653 1.6717 1.610 1.604 1.6854 1.88 1.675 1.698 1.694 1.655 2.19 – 1.629 1.799 1.614 1.943 2.13 1.774 1.738 –
0.243 – – 0.10 – 0.10 0.096 0.023 0.03 0.08 0.19 0.026 0.023 0.018 0.009 0.005 – 0.009 0.013 0.0338 0.014 0.056 0.005 0.041 0.146 0.030 0.009 0.1554 0.04 0.035 0.063 0.030 0.014 0.12 – 0.014 0.034 0.044 0.103 0.214 0.007 0.018 –
72
Handbook of Optical Materials Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
CsB3O6 CsNbO(SO4)2 CsTiOAsO4 β-Ga2O3 Gd2O3 Gd2(MoO4)3 Gd2SiO5 GdP5O14 HfO2 HgCl2 HIO3 InPO4 KAl3Si3O10(OH)2 KAlSi3O8 KBF4 KB5O8•4H2O KLaP4O12 KNbB2O6 KNbO3 KNO3 KPbCl KTiOAsO4 KTiOPO4 KVO3 La(BO2)3 La2Be2O5 La2Ti2O7 LaBO3 LaP5O14 LaPO4 Li2BeSiO4 Li2CO3 Li2GeO3 Li3PO4 Li3VO4 LiAl(PO4)F LiAlSi2O6 LiAlSi4O10 LiB3O5 LiBO2 LiGaO2 LiVO3 Lu2SiO5 © 2003 by CRC Press LLC
0.17–3.0 – 0.35–5.3 0.3–4.5 [2.9, 933 K] 0.32–5.2 0.2–5 – [5.5] – 0.3–1.8 – – – – 0.16–1.5 – 0.27–3.1 0.4–4.5 – 0.3–20 0.35–3.0 0.35–4.5 [3.5] 0.4–5.5 – 0.3–4 – – – – – – – – 0.32 – – – – 0.16–2.6 – 0.25–6 0.5–5.5 0.2–5
1.5294 1.597 1.8796 – – 1.8385 1.871 1.6094 – 1.725 2.37 1.608 1.552 1.518 1.324 1.422 1.592 1.773 2.168 1.332 1.8079 1.7614 – 1.694 1.9641 2.17 1.800 1.5956 1.774 1.622 1.430 ? 1.550 – 1.575 1.648 1.504 1.5742 1.540 1.730 1.850 1.797
1.5588 1.604 1.8961 1.962 – 1.8390 1.884 1.6158 – 1.859 2.5 1.618 1.582 1.520 1.325 1.435 1.600 1.773 2.279 1.505 n≈2 1.8138 1.7704 – 1.769 1.9974 2.24 1.877 1.6015 1.77 1.633 1.567 1.686 1.557 – 1.587 1.655 1.510 1.6014 1.612 1.758 1.970 1.803
1.5864 1.703 1.9608 – – 1.8915 1.910 1.6298 – 1.965 2.65 1.623 1.587 1.523 1.325 1.488 1.608 1.801 2.329 1.509
0.0570 0.106 0.0812 – – 0.053 0.039 0.0204 – 0.240 0.280 0.015 0.036 0.005 0.001 0.066 0.016 0.028 0.161 0.172
1.9044 1.8636 – 1.791 2.0348 2.265 1.882 1.6145 1.828 1.638 1.570 ? 1.566 – 1.590 1.662 1.516 1.6163 1.616 1.761 2.13 1.825
0.0965 0.1022 – 0.097 0.071 0.095 0.082 0.0189 0.054 0.016 0.140 – 0.016 – 0.015 0.014 0.012 0.0421 0.076 0.031 0.28 0.028
Section 1: Crystalline Materials
73
Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
LuP5O14 Mg2(PO4)F Mg2B2O5 Mg2GeO4 Mg2SiO4 Mg3(PO4)2 Mg3B2O6 Mg3B7O13Cl Mg3TiB2O8 Mg4Al8Si2O20 Mg5(BO3)3F Mg2SiO4 MgAl3BSiO9 MgAlBO4 MgMoO4 MgSiO3 Na2BaTi2Si4O14 Na2BeSi2O6 Na2Ca(PO4)F Na2CaMg(PO4)2 Na2MgAlF7 Na2MgSiO4 Na2Si2O5 Na2Ti2Si2O9 Na3AlF6 NaAl(AsO4)F NaAl(PO4)F NaAlSi3O8 NaBe2BO3F2 NaBePO4 NaBF4 NaCaPO4 NaMgF3 NaNbO3 NaScSi2O6 NaSr3Al3F16 NaVO3 NaZnF3 NH4B5O8•4H2O Pb2KNb5O15 Pb2V2O7 PbBr2 PbCl2
– – – – – – – – – – – – – – – – – – – – – – – – – – – – ~0.15– – – – – – – – 0.4–5.5 – – –– – 0.36–30 [3.3] 0.35–20
© 2003 by CRC Press LLC
1.5950 1.569 1.596 1.698 1.635 1.540 1.652 1.658 1.806 1.701 1.614 1.635 1.590 1.667 1.82 1.654 1.727 1.544 1.508 1.598 1.346 1.534 1.507 1.91 1.338 1.634 1.545 1.527 1.370 1.552 1.301 1.607 – 2.10 1.683 1.429 – – 1.42 2.39 – 2.1992
1.6072 1.570 1.639 1.717 1.651 1.544 1.653 1.662 1.809 1.703 1.623 1.651 1.618 1.697 1.83 1.655 1.732 1.549 1.515 1.605 1.348 1.536 1.517 2.01 1.338 1.672 1.554 1.531 1.474 1.558 1.3012 1.610 1.364 2.19 1.715 1.433 – 1.440 1.43 2.445 2.2–2.6 – 2.2172
1.6125 1.580 1.670 1.765 1.670 1.559 1.673 1.668 1.830 1.705 1.648 1.670 1.623 1.705 1.84 1.665 1.789 1.549 1.520 1.608 1.350 1.543 1.521 2.03 1.339 1.685 1.565 1.538 1.474 1.561 1.3068 1.616 – 2.21 1.724 1.436 – – 1.48 2.46 – 2.2596
0.0175 0.011 0.074 0.067 0.035 0.015 0.021 0.010 0.024 0.004 0.034 0.035 0.033 0.038 0.02 0.011 0.062 0.005 0.012 0.010 0.004 0.009 0.014 0.12 0.001 0.051 0.020 0.011 0.104 0.009 0.0058 0.009 – 0.11 0.041 0.007 – – 0.06 0.07 0.279 – 0.0604
74
Handbook of Optical Materials Optical Properties of Biaxial Crystalline Materials—continued Biaxial
Transmission (µm)
Refractive
Refractive
Refractive
Birefringence
material
[Band gap (eV)]
index nx
index ny
index nz
∆n
PbCO3 PbO (massicot) PbSeO3 PbSeO4 PbSiO3 PbSO4 PbZnSiO4 RbNbB2O6 RbTiOAsO4 RbTiOPO4 Sb2O3 SbNbO4 SbTaO4 Sc2(WO4)3 Sc2Si2O7 Sc2SiO5 (Sc,Y)2Si2O7 Sr2(VO4)Cl Sr2Nb2O7 SrAl2O4 SrAl4O7 SrB2O4 SrCO3 SrGa2O4 SrSO4 SrZrO3 Ta2O5 TeO2 V2 O5 Y2BeO4 Y2MgBe2Si2O10 Y2Si2O7 Y2SiO5 Y4Al2O9 YAlO3 Zn3(AsO3)2 ZrO2
– [1.7] – – – – – 0.27–3.0 0.35–5.3 0.35–4.3 – – – 0.3–5.0 – – – – – – 0.2–5.5 – – – – 0.28–7.7 [4.6] 0.33–5.0 [3] [~2.3] – – – 0.2–5 – 0.2–7 – –
1.803 2.51 2.12 1.96 1.947 1.878 1.91 1.751 1.8294 1.7884 2.18 2.3977 2.3742 1.728 1.754 1.835 1.756 1.785 1.85 1.638 1.620 1.632 1.517 1.737 1.6215 – – 2.00 2.42 1.840 1.78 1.731 1.780 1.826 1.9243 1.74 2.13
2.074 2.61 2.14 1.97 1.961 1.883 1.95 1.771 1.838 1.7992 2.35 2.4190 2.4039 1.754 1.785 ? 1.793 – 2.044 – 1.636 1.650 1.663 – 1.6237 – – 2.18 ? – 1.80 1.738 1.784 1.830 1.9387 1.79 2.19
2.076 2.71 2.14 1.98 1.968 1.895 1.96 1.795 1.9186 1.8859 2.35 2.4588 2.4568 1.755 1.803 1.850 1.809 1.816 2.05 1.656 1.644 1.660 1.667 1.767 1.6308 – – 2.35 – 1.855 1.82 1.744 1.811 1.832 1.9478 1.82 2.20
0.273 0.200 0.02 0.02 0.021 0.017 0.05 0.044 0.0892 0.0975 0.17 0.061 0.083 0.027 0.049 – 0.053 0.03 0.20 0.018 0.024 0.028 0.150 0.03 0.0057 – – 0.35 – 0.015 0.04 0.013 0.031 0.006 0.0235 0.08 0.07
Section 1: Crystalline Materials
75
References: Berger, L. I. and Pamplin, B. R., Properties of semiconductors, CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12–87. Chai, B. H. T., Optical crystals, Handbook of Laser Science and Technology, Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 3. Frederikse, H. P. R., Structure, melting point, density, and energy gap of simple inorganic compounds, American Institute of Physics Handbook, 3rd edition, Gray, D. E., Ed. (McGraw-Hill, New York, 1972), p. 9–16. Strehlow, W. H. and Cook, E. L., Compilation of energy band gaps in elemental and binary compound semiconductors and insulators, J. Phys. Chem. Ref. Data 2, 163 (1973). Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), p. 33.51.
1.3.4 Dispersion Formulas for Refractive Indices Dispersion formulas for the refractive indices of crystals at room temperature are given in the following pages. Tabulated values of refractive indices at many wavelengths are given in Refs. 1–4 for most of the crystals below. Dispersion formulas for several organic materials are given in Refs. 1 and 3.
© 2003 by CRC Press LLC
76
Dispersion Formulas for Refractive Indices 2
2
Range (µm)
2
no = 7.483 + 0.474/(λ − 0.09) − 0.0019λ 2 2 2 ne = 6.346 + 0.342/(λ − 0.09) − 0.0011λ
Ag3AsS3
2
2
2
2
2
no = 9.220 + 0.4454λ /(λ − 0.1264) + 1733λ /(λ − 1000) 2 2 2 2 2 2 ne = 7.007 + 0.3230λ /(λ − 0.1192) + 660λ /(λ − 1000) 2
2
2
2
AgBr
(n − 1)/(n − 2) = 0.452505 + 0.09939/(λ − 0.070537) − 0.001509λ
AgCl
(n − 1) = 2.062508λ /[λ − ( 0.1039054) ] + 0.9461465λ /[λ − (0.2438691) ] + 4.300785λ /[λ − (70.85723) ]
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 3.6280 + 2.1686λ /(λ − 0.1003) + 2.1753λ /(λ − 950) 2 2 2 2 2 ne = 4.0172 + 1.5274λ /(λ − 0.1310) + 2.1699λ /(λ − 950)
AgGaSe2
no = 4.6453 + 2.2057λ /(λ − 0.1897) +1.8377λ /(λ − 1600) 2 2 2 2 2 ne = 5.2912 + 1.3970λ /(λ − 0.2845) + 1.9282λ /(λ − 1600)
β-AgI
AlAs AlN
ALON
© 2003 by CRC Press LLC
2
no = 2.184; ne = 2.200 @ 0.659 µm no = 2.104; ne = 2.115 @ 1.318 µm 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
no = 1 + 1.43134936λ /[λ − (0.0726631) ] + 0.65054713λ /[λ − (0.1193242) ] + 5.3414021λ /[λ − (18.028251) ] 2 2 2 2 2 2 2 2 2 2 ne = 1 + 1.5039759λ /[λ − ( 0.0740288) ] + 0.55069141λ /[λ − (0.1216529) ] + 6.59273791λ /[λ − (20.072248) ] 2
2
2
2
2
2
2
2
2
2
n = 2.0729 + 6.0840λ /[λ − 0.2822) ] + 1.900λ /[λ –27.62) ] 2
2
2
2
no = 3.1399 + 1.3786λ /[λ − (0.1715) ] + 3.861λ /[λ − (15.03) ] 2 2 2 2 2 2 2 ne = 3.0729 + 1.6173λ /[λ − (0.1746) ] + 4.139λ /[λ − (15.03) ] 2
2
2
2
2
2
0.63–4.6 0.59–4.6
5
0.6–20
5
0.49–0.67
6
0.54–21.0
7
0.49–12
8
0.73–13.5
8
—
no = 1 + 6.585λ /[λ − (0.4) ] + 0.1133λ /[λ − (15) ] 2 2 2 2 2 2 2 ne = 1 + 5.845λ /[λ − (0.4) ] + 0.0202λ /[λ − (15) ]
Ag3SbS3
Al2O3
2
2
AgGaS2
2
2
2
n − 1 = 2.1375λ /[λ − (0.10256) ] + 4.582λ /[λ − (18.868) ]
Ref.
9
1.5–10.6
10
0.22–5.0
13
0.56–2.2
11
0.22–5.0
12
0.4–2.3
14
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
BaF2
2
2
2
no = 2.7405 + 0.0184/(λ − 0.0179) − 0.0155λ 2 2 2 ne = 2.3730 + 0.0128/(λ − 0.0156) − 0.0044λ
BaB2O4 2
2
2
2
2
2
2
2
2
2
2
BaTiO3
no = 1 + 4.187λ /[λ − (0.223) ] 2 2 2 2 ne = 1 + 4.064λ /[λ − 0.211) ]
BaMgF4
nx = 2.1462 + 0.00736λ /(λ –0.0090) 2 2 2 ny = 2.007 + 0.0076λ /(λ –0.00799) 2 2 2 nz = 2.1238 + 0.0086λ /(λ –0)
2
2
2
2
Ba2NaNb5O12
BeO
2
2
nx = 1 + 3.6008λ /(λ –0.032199) 2 2 2 ny = 1 + 3.9495λ /(λ –0.040140) 2 2 2 nz = 1 + 3.9495λ /(λ –0.040389) 2
2
2
2
2
2
2
no = 1 + 1.92274λ /[λ − (0.07908) ] + 1.24209λ /[λ − (9.7131) ] 2 2 2 2 2 2 2 ne = 1 + 1.96939λ /[λ − (08590) ] + 1.67389λ /[λ − (10.4797) ]
2
2
2
2
2
15
0.27–10.3
16
0.4–0.7
17
0.53–1.06
18
0.46–1.06
19, 20
0.44–7.0
38, 50
2
2
2
2
Bi4Ge3O12
n = 1 + 3.08959λ /(λ –0.01337)
Bi12GeO20
n = 1 + 4.601λ /[λ − (0.242) ]
2
2
2
2
117
2
0.48–1.06
2
0.48–0.7
2
2
n = 2.72777 + 3.01705λ /[λ − (0.266) ]
Bi12SiO20
2
2
2
2
n = 1 + 6.841λ /[λ − (0.267) ]
BP 2
2
2
2
2
2
2
n = 1 + 4.3356λ /[λ − (0.1.60) ] + 0.3306λ /[λ − (0.1750) ]
21 22, 32
0.4–0.7
23
0.48–0.7
24
0.225–∞
29
Section 1: Crystalline Materials
nx = 3.6545 + 0.0511λ /(λ − 0.0371) − 0.0226λ 2 2 2 2 ny = 3.0740 + 0.03233λ /(λ − 0.0316) − 0.01337λ 2 2 2 2 nz = 3.1685 + 00373λ /(λ − 0.0346) − 0.01750λ
BiB3O6
C (diamond)
2
no = 1 + 0.643356λ /[λ − (0.057789) ] + 0.506762λ /[λ − (0.10968) ] + 3.8261 /[λ − (14.3864) ]
0.22–1.06
77
© 2003 by CRC Press LLC
78
Dispersion Formulas for Refractive Indices—continued Range (µm)
2
2
Ca2Al2SiO7
no = 1 + 1.712/( λ –0.0196) 2 2 ne = 1 + 1.687/( λ − 0.01133)
Ca5(PO4)3F
no = 2.626769 + 0.014626/( λ − 0.012833) − 0.007653λ 2 2 2 ne = 2.620175 + 0.014703/( λ − 0.011037) − 0.007544λ 2
2
2
2
2
2
2
2
2
2
no = 1 + 0.8559λ /[λ − (0.0588) ] + 0.83913λ /[λ − (0.141) ] + 0.0009λ /[λ − (0.197) ] + 2 2 2 0.6845λ /[λ − (7.005) ] 2 2 2 2 2 2 2 2 2 ne = 1 + 1.0856λ /[λ − ( 0.07897) ] + 0.0988λ /[λ − (0.142) ] + 0.317λ /[λ − (1.468) ]
CaCO3
CaF2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CaMoO4
no = 1 + 2.7840λ /[λ –(0.1483) ] + 1.2425λ /[λ − (11.576) ] 2 2 2 2 2 2 2 ne = 1 + 2.8045λ /[λ − (0.1542) ] + 1.0055λ /[λ − (10.522) ]
CaWO4
no = 1 + 2.5493λ /[λ − (0.1347) ] + 0.9200λ /[λ − (10.815) ] 2 2 2 2 2 2 2 ne = 1 + 2.6041λ /[λ − (0.11379) ] + 4.1237λ /[λ − (21.371) ]
CdGeAs2
no = 10.1064 + 2.2988λ /(λ − 1.0872) + 1.6247λ /(λ − 1370) 2 2 2 2 2 ne = 11.8018 + 1.2152λ /(λ − 2.6971) + 1.6922λ /(λ − 1370)
CdGeP2
no = 5.9677 + 4.2286λ /(λ –0.2021) + 1.6351λ /(λ –671.33) 2 2 2 2 2 ne = 61573 + 4.0970λ /(λ –0.2330) + 1.4925λ /(λ –671.33)
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CdS
no = 1 + 3.96582820λ /[λ − (0.23622804) ] + 0.18113874λ /[λ − (0.48285199) ] 2 2 2 2 2 2 2 ne = 1 + 3.97478769λ /[λ − ( 0.22426984) ] + 0.26680809λ /[λ − (0.46693785) ] 2 2 2 +0.00074077λ /[λ − (0.50915139) ]
CdSe
no = 4.2243 + 1.7680λ /(λ − 0.2270) + 3.1200λ /(λ − 3380) 2 2 2 2 2 ne = 4.2009 + 1.8875λ /(λ − 0.2171) + 3.6461λ /(λ − 3629)
© 2003 by CRC Press LLC
2
n = 1 + 0.5675888λ /[λ − ( 0.050263605) ] + 0.4710914λ /[λ − (0.1003909) ] + 3.8484723λ /[λ − (34.649040) ]
2
2
2
2
2
Ref.
0.31–1.06
26
0.4–1.0
27
0.2–2.2
28
0.23–9.7
45
0.45–3.8
30, 50
0.45– 4.0
30, 50
2.4–11.5
8
5.5–12.5
31
0.51–1.4
93
1–12
8
Handbook of Optical Materials
Dispersion formula (wavelength λ in µm)
Material
2
2
2
2
2
2
2
n = 1 + 6.1977889λ /[λ − (0.317069) ] + 3.22438216λ /[λ − (72.0663) ]
CdTe
2
2
2
6–22
2
nx = 2.2916 + 0.02105λ /(λ − 0.06525)–0.000031848λ 2 2 2 2 ny = 3.34498 + 1.04863λ /(λ − 0.22044) − 0.01483λ 2 2 2 2 nz = 3.53666 + 1.10600λ /(λ − 0.24988]) − 0.01711λ
CsB3O5
2
2
2
2
2
2
0.35–1.06
2
2
2
2
CsBr
n = 1 + 0.9533786λ /[λ − (0.0905643) ] + 0.8303809λ /[λ − (0.1671517) ] + 2.847172λ /[λ − (119.0155) ]
CsCl
n = 1.33013 + 0.98369λ /[λ − (0.119) ] + 0.00009λ /[λ − (0.137) ] + 0.00018λ /[λ − (145) ] 2 2 2 2 2 2 + 0.30914λ /[λ − (0.162) ] + 4.320λ /[λ − (100.50) ]
2
2
2
2
2
2
2
2
2
2
2
2
CsD2AsO4
no = 1 + 1.40840λ /(λ –0.01299) 2 2 2 ne = 1 + 1.34731λ /(λ –0.01185)
CsH2AsO4
no = 1 + 1.39961λ /(λ –0.01156) 2 2 2 ne = 1 + 1.34417λ /(λ –0.01155)
CsI
2
2
2
2
2
2
2
2
2
2
2
no = 2.2049 + 0.0110259/(λ –0.0118119)–0.0000695625λ 2 2 2 ne = 2.05936 + 0.00864948/(λ –0.0128929) − 0.0000267532λ 2
2
2
2
2
2
2
nx = 3.74440 + 0.70733λ /(λ − 0.26033) − 0.01526λ 2 2 2 2 ny = 3.34498 + 1.04863λ /(λ − 0.22044) − 0.01483λ 2 2 2 2 nz = 3.53666 + 1.10600λ /(λ − 0.24988) − 0.01711λ
CsTiOAsO4
2
2
2
n = 3.580 + 0.03162λ /(λ − 0.1642) + 0.09288/λ
CuCl
2
2
2
2
2
2
2
2
no = 3.9064 + 2.3065λ /(λ − 0.1149) + 1.5479λ /(λ − 738.43) 2 2 2 2 2 ne = 4.3165 + 1.8692λ /(λ − 0.1364) + 1.7575λ /(λ − 738.43)
0.36–39
34
0.18–40
35
0.35–1.06
36
0.35–1.06
36
0.29–50
37
0.24–0.63
118
0.63–1.06
0.45–1.55
91
0.43–2.5
25
0.55–11.5
39, 116
79
© 2003 by CRC Press LLC
2
n = 1 + 0.34617251λ /[λ − (0.0229567) ] + 1.0080886λ /[λ − (0.1466) ] + 0.28551800λ /[λ − (0.1830) ] 2 2 2 2 2 2 + 0.39743178λ /[λ − (0.2120) ] + 3.3605359λ /[λ − (161.0) ]
no = 2.14318 + 0.0158749/(λ + 1.37559)–0.00062375λ 2 2 2 ne = 2.04195 + 0.0273245/(λ + 0.286672) − 0.000342718λ
CuGaS2
2
117
Section 1: Crystalline Materials
CsLiB6O10
2
2
33
80
Dispersion Formulas for Refractive Indices—continued 2
2
2
2
Range (µm) 2
no = 3.9064 + 2.3065λ /(λ − 0.1149) + 1.5479λ /(λ − 738.43) 2 2 2 2 2 ne = 4.3165 + 1.8692λ /(λ − 0.1364) + 1.7575λ /(λ − 738.43)
CuGaS2
2
2
2
2
2
0.55–11.5 2
GaAs
n = 3.5 + 7.4969λ /(λ − 0.4082) + 1.9347λ /[(λ − 37.17) ]
α-GaN
2
2
2
2
2
2
0.43–2.5
2
no = 3.6 + 1.75λ /[λ − (0.256) ] + 4.1λ /[λ − (17.86) ] 2 2 2 2 2 2 ne = 5.35 + 5.08λ /[λ − (18.76) ] + 1.0055λ /[λ − (10.522) ]
2300
845p
1.1 || a 2.1 || c 0.7400
α-SiC
3110
0.690
β-SiC
3103d
0.670
SrF2
1710
0.6200
SrGaO4 SrGdGa3O7 SrLaAl O4 SrMoO4
1870 1870 1920 1763
SrTiO3
110p 2358
Sr3Y(BO3)3
1670
© 2003 by CRC Press LLC
12.38 || a 6.88 || c
2.77 18.1
11 8.3
6 0.619
0.536
4.0 || a 4.2 || c 8.3
12.5 11.2
300 300
2 2
250 300
2 2
Section 1: Crystalline Materials
131
Thermal Properties—continued Material
Melting point (K)
Heat capacity (J/g K)
Sr3Y4(SiO4)3O
2270
Sr5(PO4)3F
2040
0.50
Sr5(VO4)3F
1920
0.513
Ta2O5
2140
Te
621p 723
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
2.0
T (K)
300
Ref.
6 6 6
7.3 || a 10.8 ⊥ c
1 0.202
27.5 || a –1.6 || c
2.5 || a 4.9 || c 2.1 || a 3.9 || c 1.5 || a 2.5 || c
250 250 300 300 500 500
2 2 2 2 2 2
15.0 || a 4.9 || c
3
295
1,2 2
TeO2
1006
0.41
ThO2
3600
0.24
7.8
15
300
1
TiO2 rutile
2128
0.6910
6.86 || a 8.97 || c
8.3 || a 11.8 || c 7.4 || a 10.4 || c 5.5 || a 8.0 || c
250 250 300 300 500 500
2 2 2 2 2 2
Tl[Br,Cl]
697
0.201
51
0.50
300
2
Tl[Br,I]
687
0.16
58
0.32
300
2
Tl3AsSe3
583
0.19
28 || a 18 || c
0.35
300
2 2
TlBr
740
0.1778
51
0.53
300
2
TlCl Y2 O3
703 2650
0.2198 0.4567
52.7 6.56
0.74 13.5
300 300
2 2
YAlO3
2140
0.42
4.3–9.5 ⊥ c 11 || c 7.38 (ave)
11
323
1 1
YCa4O(BO3)3
YVO4
Y3Al5O12
© 2003 by CRC Press LLC
~2100
2220
11.4 || a 4.4 ⊥ c 0.625
7.7
2.60 || a 2.33 || b 3.01 || c
300 300 300
5.1 || a 5.2 || c
300 300
1,6 1,6
226 300
6 1,2
14.5 13.4
132
Handbook of Optical Materials Thermal Properties—continued
Material
Melting point (K)
Heat capacity (J/g K)
Thermal expansion –6 (10 K)
Thermal conductivity (W/ m K)
T (K)
Ref.
9.5
322
6
41.0 7.4
70 300
5 5
39 9.0
70 300
5 5
11
300
6
7.3
300
6
0.313
562.9
8
Y3Fe5O12
1830
Y3Ga5O12
2100
Y3Sc2Al3O12
2170
0.57
6.5
Y3Sc2Ga3O12
2180
0.534
8.1
ZnCl2
563
0.525
ZnF2
1140
0.63
ZnGeAs2
1150
ZnGeP2
1225p 1300 2248
0.495
α-ZnS
2100
0.4723
6.54 || a 4.59 || c
β-ZnS
1293p
0.4732
6.8
16.7
300
2
ZnSe
1790
0.339
7.1
13
300
2
ZnSnAs2
1048
15
300
3
ZnSnSb2
870
7.6
300
3
ZnO
10.4
9.8
7.8 || a 5.0 || c 6.5 || a 3.7 || c
1 11
300
3
18
300
30 15
300 500
3 3 2 2 2 2
ZnTe ZrO2
1510 ~3000
0.218 0.42
8.4 8.8
10 10.5
300 260
1 1
ZrO2:
3110
0.46
10.2
1.8
300
2
1.9
500
2
6.3
300
1
12%Y2O3 ZrSiO4
2820
2.7
p – phase change, d – decomposes
References: 1. Ballard, S. S. and Browder, J. S., Thermal properties, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 49. 2. Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. 2 (McGraw-Hill, New York, 1995), p. 33.51. 3. Berger, L. I. and Pamplin, B. R., Properties of semiconductors, CRC Handbook of Chemistry and Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-87. 4. Powell, R. L. and Childs, G. E., American Institute of Physics Handbook, 3rd Edition, Gray, D. E., Ed. (McGraw-Hill, New York, 1972).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
133
5. DeShazer, L. G.,Rand, S. C., and Wechsler, B. A., Laser crystals, Handbook of Laser Science and Technology,Vol. V: Optical Materials, Part 3 (CRC Press, Boca Raton, FL, 2000), p. 595. 6. Wechsler, B. A. and Sumida, D. S., Laser crystals, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 2000), p. 595. 7. Browder, J. S., Ballard, S. S., and Klocek, P., Physical property comparisons of infrared optical materials, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
1.5.2 Temperature Dependence of Heat Capacity for Selected Solids Temperature dependence of the molar heat capacity at constant pressure for representative crystalline solids and semiconductors in the range 200 to 600 K. Molar Heat Capacity Cp in J/mol K Name
200 K
250 K
300 K
400 K
500 K
600 K
Al2O3
51.12
67.05
79.45
88.91
106.17
112.55
CaCO3 CaO CsCl Cu2O
66.50
75.66
83.82
91.51
104.52
109.86
33.64 50.13 34.80
38.59 51.34 —
42.18 52.48 42.41
45.07 53.58 44.95
49.33 56.90 49.19
50.72 59.10 50.83
77.01
89.25
99.25
107.65
127.19
136.31
— 48.44 43.35 — 46.89 15.64 32.64
— 50.10 46.08 — 48.85 18.22 39.21
23.25 51.37 48.10 37.38 50.21 20.04 44.77
23.85 52.31 49.66 40.59 51.25 21.28 49.47
24.96 54.71 53.34 45.56 53.96 23.33 59.64
25.45 56.35 55.59 47.30 55.81 24.15 64.42
CuSO4 Ge KCl LiCl MgO NaCl Si SiO2
References: Chase, M. W., et al., JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 14, (1985). Garvin, D., Parker, V. B., and White, H. J., CODATA Thermodynamic Tables (Hemisphere Press, New York, 1987). DIPPR Database of Pure Compound Properties, Design Institute for Physical Properties Data, (American Institute of Chemical Engineers, New York, 1987).
1.5.3 Debye Temperature References: 1. Tropf, W. J., Thomas, M. F., and Harris, T. J., Properties of crystals and glasses, Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), p. 33.51. 2. Physics, 82nd edition, Lide, D. R., Ed. (CRC Press, Boca Raton, FL, 2001), p. 12-87.
© 2003 by CRC Press LLC
134
Handbook of Optical Materials
Material
Debye temperature (K)
Ref.
AgBr AgCl AgGaS2 AgGaSe2 AgGaTe2 β-AgI Al2O3 AlAs AlN AlP AlSb BaF2 BeO BN BP C (diamond) CaF2 CdGeS2 CdS CdSe CdSiP2 CdSnP2 CdTe CsBr CsCl CsI Cu2GeS3 Cu2GeSe3 Cu2SnS3 Cu2SnSe3 Cu3AsSe4 Cu3SbSe4 CuCl CuGaS2 CuInTe2 GaAs GaP GaSb Ge HgTe InP InAs
145 162 255 156 212 116 1030 417 950 588 292 283 1280 1900 985 2240 510 253 215 181 282 195 160 145 175 124 254 168 214 148 169 212 179 356 195 344 460 320 380 242 321 249
1 1 1 1 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1 1 2 1 1 2 1 2 2 2
© 2003 by CRC Press LLC
Material InSb KBr KCl KF KI KTaO3 LaF3 LiF LiNbO3 MgAl2O4 MgF2 MgO NaBr NaCl NaF NaI PbF2 PbS PbSe PbTe Se Si β-SiC SiO2, α-quartz SrF2 Te TiO2 Tl[Br,Cl], KRS-6 Tl[Br,I] KRS-5 TlBr TlCl Y2 O3 Y3Al5O12 ZnGeAs2 ZnGeP2 ZnO α-ZnS β-ZnS ZnSe ZnTe ZrO2:12%Y2O3
Debye temperature (K)
Ref.
144 174 235 336 132 311 392 735 560 850 535 950 225 321 492 164 225 227 138 125 151 645 1000 271 378 152 760 120 110 116 126 465 754 271 428 416 351 340 270 225 563
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
Section 1: Crystalline Materials
135
1.6 Magnetooptic Properties 1.6.1 Diamagnetic Materials Verdet Constants V of Diamagnetic Crystals (room temperature)* Wavelength Crystal AgBr AgCl Al2O3 BaF2 Ba(NO3)2 BaTaO3 (403 K)
BaTiO3 Bi4Ge3O12
Bi12GeO20 C (diamond) CaCO3 CaF2 CsBr CsCl CsCN CsF CsH2AsO4 CsI CsNO2 CuCl Cu2O GaP GaSe
© 2003 by CRC Press LLC
(nm) 633 633 546 589 633 633 427 496 620 826 620 442 633 633 1064 1064 633 589 633 589 589 633 633 633 633 633 633 633 633 546 633 633 633 633
V
CTE α
(rad/(m T))
(10–6/K)
26.8 22.8 4.0 3.5 3.75 2.9 276 111 52.4 21.0 –51.0 84.1 30.1 28.8 7.6 7.5 60.3 6.8 5.81 5.6 5.6 2.49 10.8 8.3 5.51 4.71 6.49 17.4 4.24 58.1 31.9 147 154 22
30
19 17.5
(1/V)dVdT + α (10–4/K)
3.2
–0.2 0.7
2.0
1.4 0.87 0 19 47 46 33
0.9 0.8 0.7 3 0.3
49
2.5
30 0 5.81
3.0 5.2 3.3
Ref. 1 1 3 3 1 1 16 16 16 16 3 4 2 4 4 4 1 5 1 6 4 1 1 1 1 1 7 1 1 8 1 1 1 9
136
Handbook of Optical Materials Verdet Constants of Diamagnetic Crystals—continued Wavelength
Crystal Gd3Al5O12 Hg3Te2Cl2 KAl(SO4)•12 H2O KBr
KCl KCN KH2PO4 KH2AsO4 KI
KTaO3
LaF3 (H || c)
LiBaF3 LiBr LiCl LiF LiH MgAl2O4 MgO NaBr NaCl
NaClO3 NaI NH4 NH4Al(SO4)•12 H2O NH4Br
© 2003 by CRC Press LLC
(nm) 633 633 589 546 589 633 633 633 633 633 546 589 633 352 413 496 620 826 325 442 633 1064 633 633 633 633 633 589 633 633 546 633 546 589 633 546 589 633 633 589 589 633
V
CTE α
(rad/(m T))
(10–6/K)
13.3 83 3.6 14.5 12.4 10.1 6.68 3.89 3.72 69.3 24.1 20.4 17.5 128 55 28 –14 6.4 16 8.1 3.5 1.8 3.72 14.2 9.3 2.33 24.6 6.1 7.6 9.2 18.1 13.2 11.9 10.0 8.5 3.1 2.4 22.5 12.6 3.7 14.7 8.9
3.35
38.4 36.2 49
(1/V)dVdT + α (10–4/K)
Ref.
–2.2
1 1 13 10 10 1 1 1 7 7 10 10 1 13 13 13 3 13 4 4 4 4 1 1 1 1 1 14 1 1 13 1 10 10 1 13 13 1 1 13 13 1
1.0 2.1 0.5
2.2
43
27 38 35 25 32
0.7 2 1.3 3.0 1.7
8.82 13
0.9 1.7 1.8
39.8
1.2
43 53
1.9 2
48
0.9
Section 1: Crystalline Materials
137
Verdet Constants V of Diamagnetic Crystals—continued Wavelength Crystal NH4Cl
NH4H2AsO4 NH4H2PO4 NH4I NiSO4•H2O RbH2PO4 RbH2AsO4 SiO2 Sm3Ga5O12 SrTiO3
TiO2 Y3Ga5O12 ZnS
ZnSe
ZnTe
(nm) 546 589 633 633 633 633 546 589 633 633 546 589 633 413 496 633 826 620 633 546 589 633 476 496 514 587 633 633
V
CTE α
(rad/(m T))
(10–6/K)
11.9 10.5 6.60 69.3 40.2 18.3 7.4 6.4 3.72 6.17 5.6 4.9 11.8 227 90.2 –49.0 –19.2 –45 11.7 83.4 65.8 52.8 436 302 244 154 118 188
37
6.39
9.4
5
(1/V)dVdT + α (10–4/K)
3.0
1.24
–1.8
1.23
10.0
3.7
Ref. 13 13 7 15 15 1 14 14 7 7 11 11 1 16 16 1 3 3 1 5 5 1 12 12 12 12 12 1
* The above table was adapted from Deeter, M. N., Day, G. W., and Rose, A. H., Magnetooptic materials: crystals and glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 367, with additions.
References: 1. 2. 3. 4.
5. 6.
Haussühl, S., and Effgen, W., Faraday effect in cubic crystals, Z. Kristallogr., 183, 153 (1988). Baer, W. S., Intraband Faraday rotation in some perovskite oxides, J. Phys. Chem. Solids, 28, 677 (1977). Ramaseshan, S., Faraday effect and birefringence, II–Corundum, Proc. Indian Acad. Sci. A, 34, 97 (1951). W eb er, M . J. , F arad ay ro tato r m ateri als fo r laser sy stem s, P ro c. S o c. P h o to O p t. In stru m . E n g ., 6 8 1 , 7 5 (1 9 8 6 ), an d Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982). Ramaseshan, S., The Faraday effect in diamond, Proc. Indian Acad. Sci. A, 24, 104 (1946). Chauvin, J. Physique, 9, 5, 1890).
© 2003 by CRC Press LLC
138 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
Handbook of Optical Materials Munin, E., and Villaverde, A. B., Magneto-optical rotatory dispersion of some non-linear crystals, J. Phys. Condens. Matter, 3, 5099 (1991). Gassmann, G., Negative Faraday effect independent of temperature, Ann. Phys. (Leipzig), 35, 638 (1939). Villaverde, A.B., and Donnati, D. A., GaSe Faraday rotation near the absorption edge, J. Chem Phys., 72, 5341 (1980). Ramaseshan, S., The Faraday effect and magneto-optic anomaly of some cubic crystals, Proc. Ind. Acad. Sci. A, 28, 360 (1948). Ramaseshan, S., Determination of the magneto-optic anomaly of some glasses, Proc. Ind. Acad. Sci. A, 24, 426 (1946). Wunderlich, J. A., and DeShazer, L. G., Visible optical isolator using ZnSe, Appl. Opt., 16, 1584 (1977). Ramaseshan, S., Proc. Indian Acad. Sci., 28, 360 (1948). O’Connor. Beck, and Underwood, Phys. Rev., 60, 443 (1941). Koralewski, M. Phys. Status. Solidi A, 65, K49 (1981). Baer, W. S., J. Chem. Solids 28, 677 (1977).
1.6.2 Paramagnetic Materials Verdet Constants for Representative Paramagnetic Crystals* Crystal 3+
CaF2:Ce (30%)
3+
CaF2:Pr (5%)
CeF3
EuF2
LiTbF4
NdF3
© 2003 by CRC Press LLC
Wavelength λ (nm) 325 442 633 1064 266 325 442 633 1064 442 633 1064 450 500 550 600 633 650 1064 325 442 633 1064 442 633 1064
Refractive index n 1.516 1.502 1.494 1.489 1.471 1.461 1.451 1.445 1.441 1.613 1.598
1.544 1.518 1.493 1.481 1.473 1.469 1.60 1.59 1.58
V (rad/(m T) –278 –86.4 –32.3 –10.2 –50.1 –23.8 –4.9 –1.31 –306 –118 –33 –1310 –757 –466 –320 –262 –233 –55.3 –553 –285 –128 –38 –161 –60.8 –28.2
Ref. 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 1 3 3 3 3 1 1 1
Section 1: Crystalline Materials
139
Verdet Constants for Representative Paramagnetic Crystals—continued Wavelength λ (nm)
Crystal KTb3F10
Refractive index n
325 442 633 1064 500 570 633 830 1064
Tb3Ga5O12
V (rad/(m T)
1.531 1.518 1.510 1.505
Ref.
–633 –272 –112 –33.2 –278 –169 –134 –61 –35
1.976 1.954
3 3 3 3 4 4 1 4 1
* The above table was adapted from Deeter, M. N., Day, G. W., and Rose, A. H., Magnetooptic materials: crystals and glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 367, with additions.
References: 1 . W eb er, M . J. , F arad ay ro tato r m ateri als fo r laser sy stem s, P ro c. S o c. P h o to O p t. In stru m . E n g ., 6 8 1 , 7 5 (1 9 8 6 ); Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982). 2. Suits, J. C., Argyle, B. E., and Freiser, M. J., Magneto-optical properties of materials containing divalent europium, J. Appl. Phys., 37, 1391 (1966). 3. Weber, M. J., Morgret, R. Leung, S. Y., Griffin, J. A., Gabbe, D., and Linz, A., J. Appl. Phys. 49, 3464 (1978). 4. Dentz, D. J., Puttbach, R. C., and Belt, R. F., Magnetism and Magnetic Materials, AIP Conf. Proc. No. 18 (American Institute of Physics, New York, 1974).
Rare Earth Aluminum Garnets Verdet constant V (rad/T m) at wavelength in nm Material
Temp. (K)
405
450
480
520
578
670
Ref.
Tb3Al5O12
300 77 4.2 1.45 300 300 300 300 298 77
–659.4 — — — –361 –206 –55.0 43.9 83.5 209
–455.4 –29728 — –58476 –274 –93.1 –69.8 30.0 62.6 157
375.4 24284 — –50203 –234 –75.7 –44.8 27.1 54.1 140
–302.3 –997 –18860 –40530 –194 –97.5 –47.1 22.1 40.7 114
–229 –757 –15650 –32380 –151 –87.0 –42.2 17.2 33.8 87.9
–158 –528 –13140 –27185 –104 –59.9 –25.9 — — —
1 1 2 2 1 1 1 1 3 3
Dy3Al5O12 Ho3Al5O12 Er3Al5O12 Tm3Al5O12 Yb3Al5O12
References: 1. 2. 3.
R u b in stein , C . B ., V an U itert, L . G ., an d Grodkiewicz, W. H., J. Appl. Phys. 35, 3069 (1964). Desorbo, W., Phys. Rev. 158, 839 (1967). R u b in stein , C . B . an d B erg er, S . B ., J. Appl. Phys. 36, 3951 (1965).
© 2003 by CRC Press LLC
140
Handbook of Optical Materials
1.6.3 Ferromagnetic, Antiferromagnetic, and Ferrimagnetic Materials The following symbols are used in the tables below: Tc = Curie temperature
4πMS = saturation induction at 0 K, gauss
Tp = phase transition temperature
F = specific Faraday rotation, deg/cm
TN = Neel temperature
α = absorption coefficient (cm )
T∞ = compensation temperature
λ = measurement wavelength, nm
–1
Transition Metals* Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
Fe (bcc)
Tc = 1043
21800
4.4 × 10 5 3.5 × 10 5 6.5 × 10 5 7 × 10 5 7 × 10
Co (hcp)
Tc = 1390
18200
2.9 × 10 5 3.6 × 10 5 5.5 × 10 5 5.5 × 10 5 4.8 × 10
Ni (fcc)
Tc = 633
6400
0.8 × 10 5 0.99 × 10 5 2.6 × 10 5 1.5 × 10 5 1 × 10 5 7.2 × 10
Material
Critical
4πMS
5
5
5
Temp. –1
coeff. α (cm )
(K)
λ (nm)
6.5 × 10 5 7.6 × 10 5 5 × 10 5 4.2 × 10 5 3.5 × 10
300 300 300 300 300
500 546 1000 1500 2000
— 5 8.5 × 10 5 6.1 × 10 5 4.5 × 10 5 3.6 × 10
300 300 300 300 300
500 546 1000 1500 2000
— 5 8.0 × 10 5 5.8 × 10 5 4.8 × 10 5 4.1 × 10 4.2
300 300 300 300 300
500 546 1000 1500 2000 4000
Absorp.
Temp.
5
Binary Compounds* F
–1
coeff. α (cm )
(structure)
temp.
(gauss)
(deg/cm)
MnBi (NiAs)
Tc = 639
7700 7500 (300 K)
4.2 × 10 5 5.0 × 10 5 7.0 × 10 5 7.7 × 10 5 7.6 × 10 5 7.5 × 10 5 7.4 × 10
5
6.1 × 10 5 5.8 × 10 5 5.1 × 10 5 4.5 × 10 5 4.3 × 10 5 4.2 × 10 5 4.1 × 10
MnAs (NiAs)
Tc = 313
5
5.0 × 10 5 4.9 × 10
© 2003 by CRC Press LLC
0.44 × 10 5 0.49 × 10
5
5
(K)
λ (nm)
300 300 300 300 300 300 300
450 500 600 700 800 900 1000
300 300
500 600
Section 1: Crystalline Materials
141
Binary Compounds*—continued Material
Critical
4πMS
F
Absorp.
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
MnAs
Temp. –1
0.78 × 10 5 0.62 × 10
5
4.5 × 10 5 4.4 × 10
5
2.0 × 10 5 1.2 × 10 5 0.6 × 10
5
3.3 × 10
CrTe (NiAs)
Tc = 334
0.5 × 10 5 0.4 × 10 5 0.4 × 10
FeRh
Tp = 334
0.9 × 10
Material
Critical
5
5
5
(K)
λ (nm)
300 300
800 900
300 300 300
550 900 2500
348
700
Ferrites* 4πMS
F
Absorp.
Temp. –1
(structure)
temp.
(gauss)
(deg/cm)
coeff. α (cm )
(K)
λ (nm)
Y3Fe5O12 (garnet)
TN = 560
2500
2400 1750 1250 900 800 750 240 175
1500 1350 1400 670 1150 450 0.069 0.5 ≥1.0
5 5 5 5 20 20
800 700 600 500 2500 10600
~0 4 3.3 × 10 5 1.2 × 10 5 1.0 × 10
6 6 6 6
825 690 563 495
4.2 4.2 4.2
750 775 800
4
80 70 60
The data in the above tables are from Di Chen, Magnetooptical materials, Handbook of Laser Science and Technology, Vol. IV, Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1986), p. 287.
© 2003 by CRC Press LLC
144
Handbook of Optical Materials
Room-Temperature Saturation Kerr Rotation Data for Ferromagnetic Materials Material
Tc (K)
Fe Co Ni FeCo MnBi PtMnSb CeSba
1043 1388 627 NA 633 582 16
λ (nm)
θK (°)
Ref.
633 633 633 633 633 720 2500
–0.41 –0.35 –0.13 –0.54 –0.70 –1.27 14
1 1 1 1 2 3 4
Measured at T = 2 K.
Faraday Rotation Data For Nonmetallic Ferro– and Antiferromagnetic Materials µ0H (T)
Material
Tc (K)
EuO EuSe EuS CrBr3 CdCr2S4 CdCr2Se4 CoCr2S4 YFeO3 FeBO3 UO2
69 7 16 36 84 130 221
0.6 0.45 0.4
348 30.8
4.0
2.1 2.0 0.675
λ (nm) 660 755 670 493 1000 1050 10,600 600 525 276
θ ′F (°/cm) 4.9 × 105 1.4 × 105 5.5 × 105 1 × 105 3800 5.5 × 104 320 ~8 × 103 2300 4.8 × 104
Ref.
Comments
5 6 7 8 9 10 11 12 13 14
1,4 1,2,4,8 1,4 1,5 1,5 1,4 ferri, 4 3,5,7 3,5,7 2,4,8
Comments: (1) ferromagnetic; (2) antiferromagnetic; (3) canted antiferromagnetic; (4) electrically semiconducting; (5) electrically insulating; (6) electrically conducting; (7) birefringent; (8) measured in unsaturated state. (The ferrimagnet CoCr2S4 is included because of its chemical similarity to the ferromagnets CdCr2S4 and CdCr2Se4.)
Saturation Kerr Rotation/Ellipticity Data for Nonmetallic Ferromagnetic Materials Material TmS TmSe US USe UTe CuCr2Se4 CoCr2S4
Tc (K) 5.2 1.85 177 160 104 432 221
µ0H (T) 4 4 4 4 4 2 1.5
λ (nm) 440 540 350 420 830 1290 1800
θK[εK] (°)
Ref.
Comments
[–2.4] [–3.6] [3.4] [4.0] 3.1 [–1.19] –4.6
15 15 16 16 16 17 18
1,6,8 1,6,8 1,6 1,6 1,6 1,6 ferri, 4
For materials which possess greater values of Kerr ellipticity than Kerr rotation, the ellipticity is reported in brackets [ ]. Comments: (1) ferromagnetic; (2) antiferromagnetic; (3) canted antiferromagnetic; (4) electrically semiconducting; (5) electrically insulating; (6) electrically conducting; (7) birefringent; (8) measured in unsaturated state.
© 2003 by CRC Press LLC
Section 1: Crystalline Materials
145
Room–Temperature Saturation Faraday Rotation and Absorption Data for Selected Iron Garnets at λ = 633 nm Material Y3Fe5O12 Gd3Fe5O12 Bi3Fe5O12 Y3Fe4.07Ga0.93O12 Y3Fe3.54Ga1.46O12 Y2.3Bi0.7Fe5O12 Y0.5Bi2.5Fe5O12 Y2.0Ce1.0Fe5O12
θ ′F ( °/cm)
α (cm–1)
835 345 –5.5 × 104 855 645 –1.25 × 104 –7.5 × 104 2.2 × 104
870 750
Growth technique LPE LPE sputtering LPE flux method flux method MOCVD sputtering
650 530 1000 540
Ref. 25 20 21 19 19 22 23 24
Room–Temperature Saturation Faraday Rotation and Absorption Data for Selected Iron Garnets at λ = 1064 nm Material Y3Fe5O12 Pr3Fe5O12 Nd3Fe5O12 Sm3Fe5O12 Eu3Fe5O12 Gd3Fe5O12 Tb3Fe5O12 Dy3Fe5O12 Ho3Fe5O12 Er3Fe5O12 Gd2.0Bi1.0Fe5O12 Y2.0Ce1.0Fe5O12
θ ′F (°/cm) 280 65 535 15 107 65 535 310 135 120 –3300 –22000
α (cm–1) 9 10
10
< 10 1700
Growth technique flux method flux method flux method flux method flux method flux method flux method flux method flux method flux method flux method sputtering
Ref. 25 26 26 25 25 25 25 25 25 25 27 24
Room–Temperature Saturation Faraday Rotation and Absorption Data for Selected Iron Garnets at λ = 1300 nm Material θ ′F (°/cm) α (cm–1) Growth technique Ref. Y3Fe5O12 Gd3Fe5O12 Tb3Fe5O12 Dy3Fe5O12 Tm3Fe5O12 Pr3Fe5O12 Nd3Fe5O12 Y1.7Bi1.3Fe5O12 Gd2.0Bi1.0Fe5O12 Y2.0Ce1.0Fe5O12
210 60 320 175 110 –1060 –690 –2100 –2100 –120000
0.3 1.0
70 < 50 < 10 250
flux method flux method flux method flux method flux method flux method LPE LPE flux method sputtering
28 28 26 26 26 26 26 29 27 24
LPE (liquid phase epitaxy), sputtering, and MOCVD (metal–organic chemical vapor deposition) are thin–film growth techniques. The flux method yields bulk crystals.
© 2003 by CRC Press LLC
146
Handbook of Optical Materials
The preceding tables were adapted from Deeter, M. N., Day, G. W., and Rose, A. H., Magnetooptic materials: crystals and glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 367 (with additions).
References: 1. 2. 3. 4. 5. 6. 7. 8. 9.
10. 11. 12. 13. 14. 15.
16. 17.
18. 19. 20. 21.
Buschow, K. H. J., Van Engen, P. G., and Jongebreur, R., Magneto–optical properties of metallic ferromagnetic materials, J. Magn. Magn. Mater., 38, 1 (1983). Egashira, K., and Yamada, T., Kerr–effect enhancement and improvement of readout characteristics in MnBi film memory, J. Appl. Phys., 45, 3643 (1974). Van Engen, P. G., Buschow, K. H. J., and Jongebreur, R., PtMnSb, a material with very high magneto–optical Kerr effect, Appl. Phys. Lett., 42, 202 (1983). Reim, W., Schoenes, J., Hulliger, F., and Vogt, O., Giant Kerr rotation and electronic structure of CeSbxTe1–x, J. Magn. Magn. Mater, 54–57, 1401 (1986). Dimmock, J. O., Optical properties of the europium chalcogenides, IBM J. Res. Dev., 14, 301 (1970), and references therein. Suits, J. C., Argyle, B. E., and Freiser, M. J., Magneto–optical properties of materials containing divalent europium, J. Appl. Phys., 37, 1391 (1966). Guntherodt, G., Schoenes, J., and Wachter, P., Optical constants of the Eu chalcogenides above and below the magnetic ordering temperatures, J. Appl. Phys., 41, 1083 (1970). Dillon, J. F., Jr., Kamimura, H., and Remeika, J, P., Magneto–optical studies of chromium tribromide, J. Appl. Phys., 34, 1240 (1963). Ahrenkiel, R. K., Moser, F., Carnall, E., Martin, T., Pearlman, D., Lyu, S. L., Coburn, T., and Lee, T. H., Hot–pressed CdCr2S4: an efficient magneto–optic material, Appl. Phys. Lett., 18, 171 (1971). Golik, L. L., Kun’kova, Z. É., Aminov, T. G., and Kalinnikov, V. T., Magnetooptic properties of CdCr2Se4 single crystals near the absorption edge, Sov. Phys. Solid State, 22, 512 (1980). Jacobs, S. D., Faraday rotation, optical isolation, and modulation at 10.6 µm using hot–pressed CdCr2S4 and CoCr2S4, J. Electron. Mater., 4, 223 (1975). Tabor, W. J., Anderson, A. W., and Van Uitert, L. G., Visible and infrared Faraday rotation and birefringence of single–crystal rare–earth orthoferrites, J. Appl. Phys., 41, 3018 (1970). Kurtzig, A. J., Wolfe, R., LeCraw, R. C., and Nielsen, J. W., Magneto–optical properties of a green room–temperature ferromagnet: FeBO3, Appl. Phys. Lett., 14, 350 (1969). Reim, W., and Schoenes, J., Magneto–optical study of the 5f 2 → 5f 16d 1 transition in UO2 , Solid State Commun., 39, 1101 (1981). Reim, W., Hüsser, O. E., Schoenes, J., Kaldis, E., Wachter, P., Seiler, K., and W. Reim, , First magneto–optical observation of an exchange–induced plasma edge splitting, J. Appl. Phys., 55, 2155 (1984). Reim, W., Schoenes, J., and Vogt, O., Magneto–optics and electronic structure of uranium monochalcogenides, J. Appl. Phys., 55, 1853 (1984). Brändle, H., Schoenes, J., Wachter, P., Hulliger, F., and Reim, W., Large room–temperature magneto–optical Kerr effect in CuCr2Se4–xBrx, x = 0 and 0.3, J. Magn. Magn. Mater., 93, 207 (1991). Ahrenkiel R. K., and Coburn, T. J., Hot–pressed CoCr2S4: a magneto–optical memory material, Appl. Phys. Lett., 22, 340 (1973). Hansen, P., and Witter, K., Magneto–optical properties of gallium–substituted yttrium iron garnets, Phys. Rev. B, 27, 1498 (1983). Hansen, P., Witter, K., and Tolksdorf, W., Magnetic and magneto–optical properties of bismuth–substituted gadolinium iron garnet films, Phys. Rev. B, 27, 4375 (1983). Okuda, T., Katayama, T., Satoh, K., and Yamamoto, H., Preparation of polycrystalline Bi3Fe5O12 garnet films, J. Appl. Phys., 69, 4580 (1991).
© 2003 by CRC Press LLC
Section 1: Crystalline Materials 22. 23.
24. 25. 26. 27. 28. 29.
147
Scott, G. B., and Lacklison, D. E., Magnetooptic properties and applications of bismuth substituted iron garnets, IEEE Trans. Magn., MAG–12, 292 (1976). Okada, M., Katayama, S., and Tominaga, K., Preparation and magneto–optic properties of Bi–substituted yttrium iron garnet thin films by metalorganic chemical vapor deposition, J. Appl. Phys., 69, 3566 (1991). Gomi, M., Satoh, K., Furuyama, H., and Abe, M., Sputter deposition of Ce–substituted iron garnet films with giant magneto–optical effect, IEEE Transl. J. Magn. Jpn., 5, 294 (1990). Wemple, S. H., Dillon, J. F., Jr., Van Uitert, L. G., and Grodkiewicz, W. H., Iron garnet crystals for magneto–optic light modulators at 1.064 µm, Appl. Phys. Lett., 22, 331 (1973). Dillon, J. F., Jr., Albiston, S. D., and Fratello, V. J., Magnetooptical rotation of PrIG and NdIG, in Advances in Magneto–Optics (Magnetics Society of Japan, Tokyo, 1987), p. 241. Takeuchi, H., Ito, S., Mikami, I., and Taniguchi, S., Faraday rotation and optical absorption of a single crystal of bismuth–substituted gadolinium iron garnet, J. Appl. Phys., 44, 4789 (1973). Booth, R. C. and White, E. A. D., Magneto–optic properties of rare earth iron garnet crystals in the wavelength range 1.1–1.7 µm & their use in device fabrication, J. Phys. D., 17, 579 (1984). K am ad a, O ., M in em o to , H . , an d Ish izu k a, S ., A p p l icatio n o f b ism u th – su b st itu ted iro n g arn et film s to m ag n etic field sen so rs, In A d va n ces in M a g n eto – O p tics (T h e M ag n etics S o ciety o f J ap an , T o k y o , 1 9 8 7 ), p . 4 0 1 . a
Faraday Rotation and Magnetooptic Properties of Orthoferrites
Intrinsic specific Faraday rotation (deg/cm) at 300 K 4πMS
b
Material
(gauss)
EuFeO3 GdFeO3 TbFeO3 DyFeO3 HoFeO3 ErFeO3 TmFeO3 YbFeO3 LuFeO3
83 94 137 128 91 81 140 143 119
SmFeO3 YFeO3 LaFeO3 PrFeO3 NdFeO3
84 105 83 71 62
Abs. –1
600 nm 800 nm 1000 nm 1200 nm 1400 nm 1600 nm coeff. (cm )
8000
3400
2200
|| c 1000
700
|| a 400
800
300
700
200
600
~38 ~10 ~29 ~40 ~10 ~15 ~5 ~12.5 ~5
150
~50 ~10 ~10 ~35 ~10
c
a Strong natural birefringence interferes with the Faraday effect. b Saturation induction. c
At a wavelength of 1250 nm.
References: Bobeck, A. H., Fisher, R. F., Perneski, A. J., Remeika, J. P., and Van Uitert, L. G., IEEE Trans.Magn. MAG–5, 544 (1969). Tabor, W. J., Anderson, A. W., and Van Uitert, L. G., J. Appl. Phys. 41, 3018 (1970). Chetkin, M. V. and Shcherbakov, A., Sov. Phys. Solid State 11, 1313 (1969).
© 2003 by CRC Press LLC
148
Handbook of Optical Materials
1.7 Electrooptic Properties 1.7.1 Linear Electrooptic Coefficients The linear electrooptic effect occurs in acentric crystals. Only 21 acentric groups (those lacking a center of inversion) may have nonvanishing coefficients. Reduced electrooptic matrix forms are given in the two references below. If the electrooptic coefficient rij is determined at constant strain (by making the measurement at high frequencies well above acoustic resonances of the sample) the crystal is clamped, as indicated by S. If the rij is determined at constant stress (at low frequencies well below the acoustic resonances of the sample) the sample is free, as indicated by T. The electrooptic coefficients are generally those for room temperature. Typical accuracies for rij are ±15%. Unless shown explicitly, the signs of rij have not been determined. As a rule, rij has little optical wavelength dependence in the transparent region of the crystal. The following tables were adapted from: Kaminow, I. P., Linear Electrooptic Materials, Handbook of Laser Science and Technology, Vol. IV (CRC Press, Boca Raton, FL, 1986), p. 253. Holland, W. R. and Kaminow, I. P., Linear Electrooptic Materials, Handbook of Laser Science and Technology, Suppl. 2 (CRC Press, Boca Raton, FL, 1995), p. 133. A comprehensive table of electrooptic constants including extensive data on refractive indices and curves of wavelength and temperature dependence of electrooptic coefficients is given in Cook, W. R., Hearmon, R. F. S., Jaffe, H., and Nelson, D. F., Piezooptic and electrooptic coefficient constants, Landolt-Börstein, Group III, Vol. 11, Hellewege, K.-H. and Hellewege, A. M., Eds. (Springer-Verlag, New York, 1979), p. 495. The following tables are divided according to the general structure of the electrooptic materials, i.e., tetrahedally coordinated binary AB compounds that are semiconductors, ABO3-type compounds that are ferroelectric or pyroelectric, isomorphs of ferroelectric KH2PO4 and antiferroelectric NH4H2PO4, other compounds that do not fit the previous categories, and organic compounds. Although nonlinear optic coefficients have been measured for many organic crystal and can be converted to equivalent electrooptic coefficients, only direct phase retardation measurements of the electrooptic effect are included in the last table. AB-Type Compounds Material CdS
Symmetry
T/S
6mm
T T T S S T T
© 2003 by CRC Press LLC
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
rc = 4
0.589
r51 = 3.7 rc = 5.5 r33 = 2.4 r13 = 1.1 rc = 4.8 ± 0.2 r42 = 1.6 ± 0.2
0.589 10.6 0.633
Section 1: Crystalline Materials
149
AB-Type Compounds—continued Material
Symmetry
CdS
CdSe
6mm
T/S
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
T T T T T T T T T T T T
r33 = 3.2 ±0.2 r13 = 3.1 ± 0.2 rc = 6.2 ± 0.2 r42 = 2.0 ± 0.2 r33 = 2.9 ± 0.1 r13 = 3.5 ± 0.1 rc = 6.5 ± 0.2 r42 = 2.0 ± 0.2 r33 = 2.75 ± 0.08 r13 = 2.45 ± 0.08 rc = 5.2 ± 0.3 r42 = 1.7 ± 0.3
1.15
S S
r33 = 4.3
3.39
3.39
10.6
r13 = 1.8 3
CdS0.75Se0.25
6mm
T
n1 rc = 70
0.63
CdTe
-43m
T T
r41 = 6.8
3.39
r41 = 6.8
10.6
T
r41 = 5.5
23.35
T
r41 = 5.0
27.95
S
n0 r41 = 100 ± 10
10.6
T S
r41 = 0.85
0.525
r41 = -2.5
0.63
S
r41 = -3.0
1.15
S
r41 = -3.0
3.39
T T
r41 = 3.6 r41 = 3.2
0.633 10.6
S
r41 = 2.35
0.633
S
r41 = 2.20
3.39
S
r41 = -2.35
0.63
S
r41 = -2.5
3.39
T
r41 = -5
0.55
CuBr
CuCl
-43m
-43m
3
3
CuI
-43m
T
n0 r41 = 30
0.63
GaAs
-43m
S S
r41 = 1.2
0.9–1.08
r41 = -1.5
3.39
S+T
r41 = 1.2 – 1.6
1.0 – 3.0
T
r41 = 1.0 – 1.2
2.0 – 12.0
T
r41 = 1.6
10.6
S
r41 = -1.33
1.06
© 2003 by CRC Press LLC
150
Handbook of Optical Materials
AB-Type Compounds—continued Material
Symmetry
GaAs
T/S
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
T
r41 = 1.24 ± 0.04
3.39
T
r41 = 1.51 ± 0.05
10.6
GaP
-43m
S T S
r41 = -1.07 – -0.97 r41 = 0.79–0.80 (200 Hz) r41 = 0.95–0.87 (9.45 GHz)
0.56 – 3.39 0.552 – 1.15
GaSe
-6m2
T T
r22 = 22 n13r22 = 27.5
0.63 1.06
HgS
32
S S S S
r11 = 3.1 r41 = 1.4 r11 = 4.2 r41 = 2.4
0.633 0.633 3.39 3.39
InP
-43m
S S
r41 = -1.34 r41 = -1.68
1.06 1.50
β-SiC
43m
T
r41,52,63 = 2.7±0.5
0.633
ZnO
6mm
S
r33 = +2.6 r13 = -1.4 r33 = +1.9 r13 = +0.96 r51 = -3.1 r31 - r33 = -1.4
0.633 0.633 3.39 3.39 0.4 0.4
T T
r41 = 1.2
0.4
r41 = 2.1
0.65
S
r41 = 1.6
0.633
S
r41 = 1.4
3.39
T
r41 = -1.9
0.63
T S
r41 = 2.0
0.546
r41 = 2.0
0.633
T
r41 = 2.2
10.6
T
r41 = 1.9
0.55
T T
r41 = 4.45 – 3.95
0.59 – 0.69
r41 = 1.4
10.6
S
r41 = 4.3
0.633
S
r41 = 3.2
3.39
T
r41 = 4.2 ± 0.3 r41 = 3.9 ± 0.2
10.6
S
T ZnS
-43m
ZnS
6mm
ZnTe
-43m
T 3
3
* rc = r33 – (n1 / n3 )r33
© 2003 by CRC Press LLC
3.41
Section 1: Crystalline Materials
151
ABO3-Type Compounds Material BaxNaNb5O15
Symmetry
Electrooptic coeff.*
Wavelength
rij (10-12 m/V)
λ (µm)
T/S
mm2
rC = 34
0.633
r33 = 48 r42 = 92 r13 = 15 r33 = +29 42 = 75 r13 = 6.1 3
n3 r33 = 265 3
n1 r13 = 76 Ba2-ySryKxNa1-xNb5O15 (0.5<x600 kg/mm for lanthanum crown glasses. The Knoop hardness generally correlates with Young’s modulus. The stress-optical coefficient K varies with glass type and wavelength. It is usually positive, although it can become negative (so-called Pockels glasses) for silicate glasses having a high lead content. The stress-optical coefficient is measured in units of 1 Brewster = (TPa)–1 = 10–12 m2/N. Values of K are included in the table and generally range from –2 < K < 4 TPa–1 for oxide glasses to –40 < K < 20 TPa–1 for chalcogenide glasses.
Chemical Properties An important consideration for many optical glasses is their chemical reactivity with slurries during cutting and polishing of components such as lenses, windows, and prisms and with its environment where it may be subject to chemical attack by water, water vapor, gases, acids, etc. Corrosion, dimming, and straining occur and vary greatly depending on the chemical composition of the glass. No simple test and parameter is sufficient to characterize chemical reactivity under all conditions. Thus many terms and tests are used to rank glasses with respect to their resistance to acids, straining, climate, weathering, etc. Manufacturers typically list several categories of acid and alkali resistance to cover the above ranges.
2.2 Commercial Optical Glasses Data for selected commercial optical glasses representative of the various glass types are presented in Sections 2.2 and 2.3 are from manufacturers’ catalogs and data sheets and from the Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), chapter 33, and references cited therein.
© 2003 by CRC Press LLC
Section 2: Glasses 2.2.1
Optical Properties
Glass type
Refractive index nd
FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N2 LaF N21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF N1 KzFS N4 LgSK 2
1.48749 1.48656 1.51821 1.55232 1.62014 1.51680 1.51849 1.52249 1.52257 1.53315 1.50847 1.56774 1.60738 1.60311 1.52341 1.57957 1.61765 1.65844 1.65160 1.72000 1.53172 1.60562 1.67003 1.58144 1.62004 1.66446 1.72373 1.74400 1.78831 1.80318 1.88067 1.64769 1.95250 1.70585 1.47869 1.51118 1.61650 1.55115 1.61340 1.58599
70.41 84.47 65.05 63.46 63.48 64.17 60.25 59.48 60.38 57.98 61.19 57.99 56.65 60.60 51.49 53.71 55.14 50.88 58.52 50.41 48.76 43.93 47.11 40.85 36.37 35.83 38.11 44.77 47.39 46.45 41.10 33.85 20.36 30.30 58.70 51.01 30.97 49.64 44.30 61.04
NbF 1
1.74330
59.23
* dn/dT in air; 0/+20˚C
© 2003 by CRC Press LLC
Abbe number νd
Dispersion -3 nF − nC(x10 ) 6.924 5.760 7.966 8.704 9.769 8.054 8.606 8.784 8.654 9.196 8.310 9.790 10.721 9.952 10.166 10.790 11.201 12.940 11.134 14.282 10.905 13.787 14.222 14.233 17.050 18.545 18.991 16.618 16.633 17.292 21.429 19.135 46.774 22.295 8.155 10.022 19.904 11.103 13.848 9.600 –
-6
dn/dT (10 /K)* 435.8 nm 1060 nm −1.1 −5.9 3.7 – −1.7 3.4 3.1 2.4 – 4.4 6.8 8.7 5.6 3.6 5.1 6.3 4.0 – 1.7 5.8 4.4 5.1 – 4.4 5.9 – 12.1 3.4 6.1 – 6.2 −1.8 – 4.3 −1.8 −0.1 – 5.0 6.2 −2.5 7.9 (633 nm)
−1.8 −6.4 2.3 – −2.6 2.3 1.9 1.1 – 2.8 6.1 7.7 3.9 2.3 3.3 4.3 2.2 – 0.5 3.8 2.6 2.6 – 1.6 2.8 – 8.1 1.1 3.8 – 3.5 −2.6 – 0.9 −2.6 −1.5 – 3.1 4.4 −4.0 –
229
230
Handbook of Optical Materials
2.2.2 Internal transmittance (5 mm) Wavelength Glass type
320 nm
400 nm
700 nm
1530 nm
2325 nm
FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 UBK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N2 LaF 21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF 1 KzFS N4 LgSK 2
0.975 0.87 0.84 0.85 0.05 0.81 0.920 0.82 0.78 0.92 0.77 0.69 0.36 0.71 0.73 0.41 0.08 0.4 – 0.46 0.20 0.84 0.15 – 0.60 0.20 – – 0.02 – – 0.13 0.01 – – 0.17 – – 0.46 0.50 0.07
0.998 0.996 0.998 0.997 0.96 0.998 0.998 0.998 0.997 0.998 0.996 0.992 0.998 0.995 0.994 0.996 0.995 0.994 0.981 0.992 0.981 0.998 0.994 0.965 0.998 0.998 0.963 0.956 0.968 0.975 0.975 0.93 0.994 0.60 0.93 0.94 0.981 0.90 0.986 0.988 0.970
0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.994 0.999 0.998 0.998 0.996 0.999 0.999 0.996
0.993 0.999 0.999 0.996 0.985 0.997 0.997 0.997 0.998 0.996 0.995 0.995 0.994 0.998 0.994 0.999 0.997 0.997 0.997 0.997 0.998 0.998 0.999 0.997 0.999 0.999 0.998 0.999 0.996 0.999 0.999 0.998 0.999 0.999 0.998 0.999 0.999 0.998 0.990 0.996 0.979
0.91 0.999 0.975 0.91 0.94 0.89 0.88 0.91 0.91 0.92 0.92 0.92 0.93 0.952 0.90 0.90 0.94 0.94 0.93 0.89 0.87 0.90 0.951 0.93 0.92 0.93 0.959 0.89 0.93 0.88 0.87 0.961 0.94 0.950 0.950 – 0.89 0.68 0.92 0.790 –
© 2003 by CRC Press LLC
Section 2: Glasses 2.2.3 Mechanical Properties Glass type FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N2 LaF N21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF N1 KzFS N4 LgSK 2 NbF 1
Density 3 (g/cm ) 2.45 3.73 2.51 2.91 3.60 2.51 2.61 2.59 2.62 2.71 2.49 2.93 3.55 3.44 2.71 3.17 3.63 3.71 3.84 3.81 2.81 3.50 3.76 3.22 3.61 3.90 4.31 4.54 4.44 4.56 5.24 3.86 6.26 3.00 2.39 2.47 2.79 2.71 3.20 4.15 4.17
© 2003 by CRC Press LLC
Young’s modulus E 3 2 (10 N/mm ) 62 79 84 84 77 81 72 71 73 68 71 81 78 86 67 76 79 88 90 111 63 66 89 59 58 66 80 87 120 124 123 55 51 93 40 58 65 60 60 76 108
Poisson’s ratio µ
Knoop hardness 2 (kg/mm )
0.205 0.287 0.209 0.226 0.287 0.208 0.212 0.227 0.240 0.214 0.259 0.263 0.261 0.202 0.244 0.265 0.278 0.277 0.288 0.205 0.247 0.281 0.226 0.225 0.245 0.289 0.293 0.294 0.290 0.298 0.231 0.269 0.250 0.254 0.239 0.263 0.225 0.276 0.290 0.308 –
450 360 520 510 370 520 470 450 460 430 450 520 460 490 440 460 460 470 460 580 420 400 480 410 370 410 450 450 630 630 620 350 250 500 330 440 410 500 380 340 675
Stress-optical coefficient -1 K (TPa) 2.91 0.67 – – – 2.74 – – – – 3.62 – – 2.00 – – – – – – – – – 2.81 – – – 1.65 – – – 2.65 −1.46 – – – – – – – –
231
232
Handbook of Optical Materials
2.2.4 Thermal Properties Glass type FK 5 FK 51 PK 2 PSK 3 PSK 53 BK 7 BaLK N3 K5 UK 50 ZK 1 ZK N7 BaK 50 SK 2 SK 14 KF 9 BaLF 4 SSK 4 SSK N5 LaK N7 LaK 10 LLF 6 BaF 4 BaF N10 LF 5 F2 BaSF 2 BaSF 51 LaF N3 LaF N21 LaSF 30 LaSF 31 SF 2 SF 59 SF N64 TiK 1 TiF 1 TiF 6 KzF N1 KzFS N4 LgSK 2 NbF 1 * 20/300˚C
© 2003 by CRC Press LLC
Thermal expansion* ( 10-6/K) 9.2 16.9 6.9 7.4 10.7 7.1 9.0 8.2 8.1 7.5 5.4 4.6 7.0 7.0 638 6.4 6.1 7.9 8.2 6.9 8.5 8.8 7.9 9.1 8.2 9.3 6.4 9.1 6.9 7.1 7.9 9.2 10.3 9.7 10.3 9.1 16.7 7.5 5.5 12.1 5.3
Thermal conductivity (W/m K)
Specific heat ( J/g K)
0.925 – 1.149 0.990 0.612 1.114 1.029 0.950 0.964 0.894 1.042 1.044 0.776 0.851 1.01 0.827 0.806 – – – – 0.766 0.798 0.866 0.780 – 0.722 0.670 – – – 0.735 0.506
0.818 – 0.80 0.682 0.603 0.858 0.749 0.783
0.773 0.953 – – 0.769 0.866 0.845
0.842 0.81 – – 0.64 0.51 0.48
0.77 0.770 0.758 0.595 0.636 0.75 0.67 0.57 0.574 – – – 0.557 0.595 0.657 0.557 – 0.536 0.481 – – – 0.498 0.306
Transform. temp. (˚C) 464 403 568 602 614 563 562 583 554 562 528 629 654 649 445 569 639 641 618 620 422 521 630 419 432 493 522 616 667 684 753 441 362 578 340 443 410 470 492 515 590
Softening temp. (˚C) 672 – 721 736 – 766 738 720 735 732 721 820 823 773 661 731 791 751 716 703 627 694 745 585 593 640 630 736 – – – 600 – 666 – – 494 675 594 – 625
Section 2: Glasses
233
2.3 Specialty Optical Glasses Designation Vycor (Corning 7913) Pyrex (Corning 7740)
Glass type
Composition
silica borosilicate
96% SiO2 SiO2–B2O3–Na2O–Al2O3
alkali borosilicate borosilicate
SiO2–B2O3–Na2O + . . . SiO2–B2O3–Na2O–CaO + . . .
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
germanium oxide calcium aluminate calcium aluminate calcium aluminate germanate germanate fluorophosphate calcium aluminate chalcogenide chalcogenide chalcogenide chalcogenide chalcogenide
100% GeO2 SiO2–CaO–Al2O3 GeO2–CaO–Al2O3–BaO–ZnO CaO–Al2O3–MgO BaO–Ga2O3–GeO2
Fluoride glass Ohara HTF-1
fluoride
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
glass ceramic glass ceramic glass ceramic glass ceramic glass ceramic
aluminosilicate SiO2–Al2O3–P2O5 + . . . SiO2–TiO2
Athermal glasses Schott PSK 54 Schott TiF 6
dense phosphate crown titanium flint
P2O5– (B,Al)2O3–R2O–MO SiO2(B2O3) –TiO2–Al2O3–KF
Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
tellurite tellurite
TeO2 + . . . TeO2 + . . .
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
Low nonlinear refractive index glass Schott FK 54 fluorophosphate
© 2003 by CRC Press LLC
P 2 O5 + . . . CaO–Al2O3 + . . . 100% As2S3 100% As2Se3 Ge33As12Se55 Ge28As12Se60
P 2 O5 + . .
234
Handbook of Optical Materials
2.3.1 Optical Properties
Glass type Vycor (Corning 7913) Pyrex (Corning 7740)
Transmission range (µm)
Refractive index n d
Abbe number νd
0.3–2.4 1.474
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
0.25– 0.32–2.1 0.28– 0.27–
1.47 1.5168 1.5483 1.472
65 64.3 74.3 65.8
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
0.30–4.9 0.38–4.3 0.36–4.8 0.38–4.9 0.5–5.0 0.44–5.1 0.38–4.1 0.44–4.75 0.93–13 0.62–11.0 0.87–17.2 0.75–14.5 0.93–16.5
1.60832 (nD) 1.60475 (nD)) 1.6601 (nD) 1.6764 (nD) 1.663 (nD) 1.8918 1.4861 1.6809 2.7235 (n1) 2.47773 (n1) 2.7728 (n12) 2.6055 (n1) 2.6366 (n3)
41.2
Fluoride glass Ohara HTF-1
0.21–6.9
1.44296
92.5
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
0.42– 0.40– 0.35– 0.4–2.3 0.23–3.9
1.547 1.547 1.532 1.5424 1.5418
55.0 55.1 56.1 75.2
Athermal glasses Schott PSK 54 Schott TiF 6
0.4–1.7
1.5860 1.6165
64.6 31.0
Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
2.10238 1.97961
18.10 20.58
Low nonlinear refractive index glass Schott FK 54 0.35–2.5
1.4370
90.7
© 2003 by CRC Press LLC
dn/dT (10-6/K)
46.5 44.5 45.6 30.0 81.0 44.2
−5.8 (546 nm)
7.4 (589.3 nm) 12
103 (2.5 µm) 85 (0.6 µm) 55 (0.83 µm) 101 (1 µm) 98 (3 µm)
15.7 −5.5
−5.68 (546 nm)
Section 2: Glasses
235
2.3.2 Mechanical Properties
Glass type Vycor (Corning 7913) Pyrex (Corning 7740)
Density (g/cm3)
Young’s modulus E (103 N/mm2)
Poisson’s ratio µ
Knoop hardness (kg/mm2)
2.18 2.23
68.8 62.8
0.19 0.200
487 418
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
2.17 2.51 4.02 2.26
72 81 76 59.1
0.23 0.212 0.297 0.222
500 380 488
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
3.60 2.798 3.581 3.1 3.6 5.00 3.63 3.12 4.67 3.20 4.69 4.41 4.67
43.1 98.6 84.1 104 84.1 95.9 77.0 107.5 21 15.8 18.3 22.1 21.4
0.192 0.28 0.290 0.29 0.29 0.282 0.288 0.284 0.261 0.295 0.288 0.27 0.26
Fluoride glass Ohara HTF-1
3.94
64.2
0.28
320
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
2.56 2.57 2.58 2.53 2.205
95.8 95.5 75.4 91 67.3
0.25 0.25 0.159 0.24 0.17
680 660 657 630 460
Athermal glasses Schott PSK 54 Schott TiF 6
3.52 2.79
65
0.262
340 310
Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
5.87 5.06
Low nonlinear refractive index glass Schott FK 54 3.18
© 2003 by CRC Press LLC
0.286
3.9
600 560 560 481 346 610 150 180 120 170 150
290 226
76
Stress-optic coefficient K (TPa)-1
320
2.9 3.0 4.0
236
Handbook of Optical Materials
2.3.3 Thermal Properties
Glass type Vycor (Corning 7913) Pyrex (Corning 7740)
Thermal expansion (10-6/K) 0.75 3.25
Ultraviolet transmitting glasses Corning 9741 Schott UBK 7 ULTRAN 30 (Schott) Hoya UBS250
3.8 8.3 13.9 5.6
Infrared transmitting glasses Fused germania Corning 9753 Corning 9754 Barr&Stroud BS-39B Kigre BGA Schott IRG 2 Schott IRG 9 Schott IRG 11 Schott IRG 100 Arsenic trisulfide Arsenic triselenide AMTIR-1 AMTIR-3
6.3 6.0 6.2 6.3 6.3 8.8 16.1 8.2 15.0 26.1 24.6 12.0 13.5
Fluoride glass Ohara HTF-1
16.1
Low expansion glasses CLEARCERAM 55 (Ohara) CLEARCERAM 63 (Ohara) LE30 (Hoya) Zerodur (Schott) ULE (Corning 7971)
0.2 −2.1 0.4 0.5 0.03
Athermal glasses Schott PSK 54 Schott TiF 6 Acoustooptic glasses Hoya AOT-5 Hoya AOT-44B
Thermal conduct. (W/m K) 1.38 1.13
0.667 0.96
2.3 0.81
0.91 0.88 1.13 0.3 0.17 0.20 0.25 0.22
Specific heat ( J/g K) 0.75 1.05
0.58
0.746 0.795 0.54 0.865 0.495 0.695 0.749 0.473 0.349 0.293 0.276
Transform. Softening temp. (K) temp. (K) 890 560
1200 821
733 563 513 449
978 716 600 645
800 1015 1008 741 975 696 1075 550 436 635 550
1147 970 873
624 573 345 678 570
658
1.62 1.62
0.76 0.73
1.64 1.31
0.821 0.776
690
921
1000
1490
11.9 16.7
486 410
568 494
16.1 20.1
332 296
347 314
Low nonlinear refractive index glass Schott FK 54 16.9
403
© 2003 by CRC Press LLC
Section 2: Glasses
237
2.4 Fused (Vitreous) Silica* Different types of silica have been commercially available from several suppliers (Corning Incorporated, Hereaus Amersil, Thermal Syndicate Ltd, General Electric Co., Quartz et Silice [France], Dynasil Corp. of America, NSG Quartz [Japan], Westdeutsche Quartzschmelze GmbH (Germany), Nippon Glass [Japan]). The glasses are compositionally the same except for metallic impurities, structural defects, and water content, but these differences and fabrication variations cause the properties of the silicas to differ significantly. The vitreous silicas can be distinguished by the source of raw material used and the process of melting or consolidating the raw material into bulk vitreous silica. It is produced commercially from naturally occurring quartz of high purity and from silicon tetrachloride liquid or vapor or from tetraethyl orthosilicate liquid. These precursors are 1 processed in several different ways. Hetherington et al. divided the different silicas into four types based on manufacturing method In one method, naturally occurring quartz is purified to varying degrees by preselection of clean crystalline material, fragmented to a fine powder, and fused to bulk glass. The fusion is performed by electric melting in a refractory crucible or container under vacuum, an inert atmosphere, or a hydrogen atmosphere. This produces a type of vitreous silica designated as type I. If the same raw material is fused using an oxyhydrogen torch or an isothermal plasma torch, then the resultant vitreous silica is designated type II. The principal differences between these are the lower hydroxyl content and different impurities of type I. Melting atmosphere influences the glass structure and properties. After fusion, various amounts of hot working are performed to homogenize the resultant silica glasses. The synthetic precursors, mainly SiCl4, are fused to a solid glass with an oxyhydrogen torch producing a very pure but wet material denoted type III. These precursors also can be used to produce vitreous silica under relatively dry conditions such as those present using an oxygen or argon plasma torch. This material has been designated type IV. The principal difference between types III and IV fused silica is OH content which introduces strong absorption around 2.8 µm. Using similar torches but depositing on a cooler bait, the synthetic material can also be formed into a porous boule that is subsequently consolidated to a fully dense silica boule in a furnace. Consolidation of the porous silica body can involve firing in different atmospheres and can be achieved at a temperature several hundred degrees below that used for fusion of the type III and type IV silica. The commercialization of this latter technology has occurred principally in the fabrication of optical fibers based on vitreous silica. Certain manufacturers have used this technology for the fabrication of bulk silica. This vitreous silica is similar to type III or IV depending on the method of consolidation, but the processing is sufficiently different that it should be considered in a class by itself. Although there is varied opinion on what kind of silica should be designated type V, there is general agreement that there are many types of vitreous silica which, because of the dependence on 2 fabrication, do not fall into the earlier established four types. Fleming has viewed the consolidated soot sufficiently close to type III and IV that it is designated type V in the following tables. Fluoride-doped, low-OH silica glass has recently been developed for deep 3 UV and vacuum UV applications and is designated as modified silica. Optical, mechanical, and thermal properties of the various types of silicas are compared below. * From Fleming, J. W., Optical glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 69 (with additions).
© 2003 by CRC Press LLC
238
Handbook of Optical Materials
Glass Type
Brand name
Source
SiO2 I
IR-Vitreosil Infrasil Pursil 453, Ultra GE 104, 105, 201, 204, 124, 125
4 5 6 7
SiO2 II
Herasil, Homosil, Ultrasil, Optosil Vitreosil 055, 066, 077
5 4
SiO2 III
Suprasil Spectrosil 7940, 7980 (HPFS) Dynasil Tetrasil NSG-ES GE 151 Synsil
SiO2 IV
Suprasil W Spectrosil WF
SiO2 V
Nippon Sheet Glass
12
Sol gel SiO2
Gelsil
13
5 4 8 9 6 10 7 11 5 4
Refractive Index Properties14
λ (nm) 193 238 248 308 365 405 436 486 546 588 633 644 656 1064 1500 2000 2500 3000 3500
Refractive index Homosil/ Herasil/ Infrasil Suprasil 1.56077 1.50855 1.48564 1.47447 1.46962 1.46669 1.46313 1.46008 1.45846 1.45702
1.560841
1.47462 1.46975 1.46681 1.46324 1.46018 1.45856
1.45637
1.45646
1.44462 1.43809 1.42980 1.41925 1.40589
1.44473 1.43821 1.42995 1.41941 1.40605
© 2003 by CRC Press LLC
HPFS 7980
1.508601 1.485663 1.474555 1.469628 1.466701 1.463132 1.460082 1.458467 1.457021 1.456370 1.449633
λ (nm) 193 238 248 308 365 405 436 486 546 588 633 644 656 1064 1500 2000 2500 3000 3500
dn/dT (10-6/K) Homosil/ Herasil/ Infrasil Suprasil
HPFS 7980 20.6
14.6
15.2
11.0
11.5
9.9 9.8
10.6 10.5
9.6
10.4
14.2 12.1 11.2 10.8 10.6 10.4 10.2 10.1 10.0 9.9 9.6
Section 2: Glasses
239
Optical Properties Glass type
Data source
Transmission range (µm)
Refractive index nd
Abbe number νd
dn/dT (10-6/K) 10.5
SiO2 I
4,5,7
0.21–2.8
1.45867
67.56
SiO2 II
4,5
0.19–3.5
1.45857
67.6
SiO2 III
5,8
0.17–2.2
1.45847
67.7
SiO2 IV
5
0.18–3.5
–
–
–
SiO2 V
12
0.18–3.5
1.45847
67.7
9.9
Sol gel SiO2
13, 15
0.17–3.5
1.458–1.463
Mod. SiO2
16,17
0.155–3.5
1.65423 (157 nm)
9.9
66.4–67.8
–
–
39 (157 nm)
Resistance to humidity: fused silica exhibits no or very little surface deterioration due to climatic conditions. 18
Dispersion formula 2
2
(wavelength λ in µm)
2
2
2
Range (µm)
2
2
n = 1 + 0.6961663λ /[λ − (0.0684043) ] + 0.4079426λ /[λ − (0.1162414) ] 2
2
0.21–3.71
2
+ 0.8974794λ /[λ − (9.896161) ]
Mechanical Properties Glass type
Density (g/cm3)
Young’s modulus E (103 N/mm2)
Poisson’s ratio µ
Hardness (Knoop) (kg/mm2)
Stress-optical coefficient K (TPa)-1
SiO2 I
2.203
72
0.17
570
3.5
SiO2 II
2.203
70
0.17
600
–
SiO2 III
2.201
70
0.17
610
–
SiO2 IV
2.201
70
0.17
600
–
SiO2 V
2.201
70
0.17
600
–
Sol gel SiO2
2.204
73
–
–
–
Mod. SiO2
2.201
69
0.17
–
–
Thermal Properties Glass type
Thermal expansion ( 10-6/K)
Thermal conductivity (W/m K)
Specific heat (J/g K)
Transformation temperature (°C)
Softening temperature (°C)
SiO2 I
0.55
1.4
0.67
1215
1683
SiO2 II
0.55
1.38
0.75
1175
1727
SiO2 III
0.60
1.38
0.74
1080
1590
SiO2 IV
0.55
1.38
0.75
1110
1650
SiO2 V
0.60
1.38
0.74
Sol gel SiO2
0.57
–
–
Mod. SiO2
0.51*
1.37
0.77
* 0–300ºC
© 2003 by CRC Press LLC
1080
1590
~1160
–
–
–
240
Handbook of Optical Materials 19
Properties of Modified Silica
Refractive Index Data For Fluorine-Doped Silica Blanks Wavelength (nm) 435.8 480 546.1 589.3 632.8 643.8 777 1300 1541
0% F
0.17 wt.% F 0.67 wt.% F 0.8 wt.% F 1.12 wt.%F 1.48 wt.%F
1.4671 1.4639 1.4605 1.4588 1.4576 1.4572 1.4533 1.4472 1.4441
1.466 1.4628 1.4594 1.4578 1.4568 1.4561 1.4526 1.4461 1.4433
1.4638 1.4606 1.4573 1.4556 1.4546 1.4539 1.4502 1.4444 1.4409
1.4634 1.4603 1.4569 1.4552 1.4542 1.4536 1.4499 1.4436 1.4405
1.4618 1.4586 1.4553 1.4537 1.4529 1.452 1.4485 1.4423 1.4393
1.4604 1.4573 1.4539 1.4524 1.4515 1.4507 1.4474 1.4411 1.438
Coeff. thermal expansion (10-6/K)
0.59
–
–
0.51
–
0.43
Anneal point (°C)
1094
962
883
866
833
807
References: 1. Hetherington, G., Jack, K. H., and Kennedy, J. C., The viscosity of vitreous silica, Phys. Chem. Glass 5, 123 (1970). 2. Flerming, J. W., Optical glasses, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 69. 3. Smith, C. M. and Moore, L. A., Proc. SPIE 3676, 834 (1999). 4. Thermal Syndicate Ltd, Montville, NJ 5. Hereaus Amersil, Duluth, GA 6. Quartz et Silice, France 7. General Electric Co., Cleveland, OH 8. Corning Incorporated 9. Dynasil Corp. of America, Berlin, NJ 10. NSG Quartz, Japan 11. Westdeutsche Quartzschmelze GmbH, Germany 12. Nippon Sheet Glass, Japan 13. Hench, L. L., Wang, S. H., and Nogues, J. L., Gel-silica optics, Proc. SPIE 878, 76 (1988). 14. Data from Hereaus Amersil (Suprasil, Homosil, Herasil, Infrasil) and Corning (HPFS, 7980). 15. Shoup, R. D., Gel-derived fused silica for large optics, Ceramic Bull. 70, 1505 (1991). 16. Smith, C. M., Modified silica transmits vacuum UV, Optoelectronics World (July 2001), p. S15. 17. Moore, L. A. and Smith, C. M., Fused silica for 157-nm transmittance, Proc. SPIE 3673, 392 (1999). 18. Rodney, W. S. and Spinder, R. J., Index of refraction of fused quartz glass for ultraviolet, visible, and infrared wavelengths, J. Res. Nat. Bur. Stand. 53, 185 (1954). 19. Moore, L. A. and Smith, C. M. (private communication, 2002).
© 2003 by CRC Press LLC
Section 2: Glasses
241
2.5 Fluoride Glasses 2.5.1 Fluorozirconate Glasses Fluorozirconate Glass Compositions Glass ZBL ZBG ZBGA ZBT ZTL ZBAN ZBLA ZBGA ZBLAL ZBLYAL ZBLAN
Composition (mol %) LaF3 YF3 AlF3
ZrF4
BaF2
GdF3
62 63 61 60 60 58 57 60 52 49 56
33 33 32 33
– 4 4 –
5 – – – 7
– – – –
15 34 32 20 22 14
– 4 – – –
5 – 5 3 6
– – – 3 –
– – 3 – – 6 4 4 3 3 4
ThF4
LiF
NaF
– – – 7 23
– – – – –
– – – – –
– – 20 20 –
– – – – – 21 – – – – 20
Optical Properties Glass type
Transmission range (µm)
ZBL ZBT ZBLA ZBLAN
Refractive index nD
0.25–7.0 0.32–6.8 0.29–7.0 0.25–6.9
dn/dT (10−6/K) 435.8 nm 1060 nm
Abbe number νd
1.523 1.53 1.521 1.480
– – 62 64
– – – −14.5 (633 nm)
– – – –
Mechanical Properties Glass type
Density 3 (g/cm )
ZBL ZBT ZBLA ZBLAN
4.78 4.8 4.61 4.52
Young’s modulus E 60 60 60.2 60
Poisson’s ratio µ 0.31 0.28 0.25 0.31
Hardness (Knoop)
Stress-optical coeff. K (TPa) −1
228 250 235 225
– – – –
Thermal Properties Glass type
Thermal expansion −6 ( 10 /K)
ZBL ZBT ZBLA ZBLAN
© 2003 by CRC Press LLC
18.8 4.3 18.7 17.5
Thermal conductivity (W/m K) – – – 0.4
Specific heat ( J/g K) 0.538 0.511 0.534 0.520
Transformation temperature (K) 580 568 588 543
Softening temperature (K) – 723 – –
242
Handbook of Optical Materials
2.5.2 Fluorohafnate Glasses Fluorohafnate Glass Composition (mol %) Glass
HfF4
HBL HBT HBLA
62 60 58
BaF2
LaF3
AlF3
33 33 33
5 – 5
– – 4
ThF4 – 7 –
Optical Properties Glass type HBL HBT HBLA
Transmission range (µm) 0.25–7.3 0.22–7.7 0.29–7.3
Refractive index nD 1.498 1.53 1.504
dn/dT (10−6/K) 435.8 nm 1060 nm
Abbe number νd – – –
– – –
– – –
Mechanical Properties Glass type
Density 3 (g/cm )
HBL HBT HBLA
5.78 6.2 5.88
Young’s modulus E 55 55 56
Poisson’s ratio µ 0.3 0.3 0.3
Hardness (Knoop) 228 250 240
Stress-optical coeff. K (TPa) −1 – – –
Thermal Properties Glass type
Thermal expansion (10−6/K)
HBL HBT HBLA
18.3 6.0 17.3
Thermal conductivity (W/m K) – – –
Specific heat ( J/g K) 0.413 0.428 0.414
Transformation temperature (K) 605 593 580
Softening temperature (K) – – –
Data in the tables of Sections 2.5.1 and 2.5.2 are from the Handbook of Optics, Vol. II (McGraw-Hill, New York, 1995), chapter 33, and references cited therein.
© 2003 by CRC Press LLC
Section 2: Glasses
243
2.5.3 Other Fluoride Glasses Fluoroberyllate Glasses Composition (mol %) Glass
BeF2
BF BLK BACK BAMCBa
MgF2
100 60 49 35
– – – 19
CaF2
BaF2
AlF3
LiF
KF
– – 14 10
– – – 14
– – 10 22
– 20 – –
– 20 27 –
Properties of Fluoroberyllate Glasses Glass
Density (g/cm3)
BF BACK BAMCBa
Refractive index nD
2.122 2.621 3.247
Abbe number
Nonlinear index (m2/W)
1.275 1.3459 1.3538
0.75 1.03 1.14 (calc.)
Hardness (kg/mm2)
105 96 ~95
300 215 315
Barium Indium Fluoride Glasses Glass
BaF3
InF3
30 30
30 18
BIZnYbT BlG
Composition (mol %) GaF3 ZnF2 YbF3 – 12
20 20
ThF4
ZrF4
10 6
– 4
10 10
Aluminofluoride Glasses Composition (mol %)
YABC CLAP ABC
AlF3
BaF2
CaF2
40 30.6 30.2
20 – 9.9
20 – 19.2
© 2003 by CRC Press LLC
YF3
SrF2
20 – 8.3
– – 12.4
MgF2
CdF2
– – 3.5
– 26.1 –
LiF
NaF
ZrF4
PbF2
– 10 –
– – 3.8
– – 10.2
– 33.3 2.5
244
Handbook of Optical Materials
2.6 Chalcogenide Glasses Chalcogenide Glass-Forming Systems System
Example glass (atomic %)
As-S As-Se Ge-S Ge-Se Ge-As-S Ge-As-Se Ge-As-Te Ge-Se-Te Ge-Sb-Se Ge-P-S Ge-As-Se-Te
As 40, S 60 As 40, Se 60 Ge 20, S 80 Ge 20, Se 80 Ge 25, As 15, S 60 Ge 33, As 12, Se 55 Ge 10, As 20, Te 70 Ge 22, Se 20, Te 58 Ge 28, Sb 12, Se 60 Ge 70, P 5, S 25 Ge 30, As 13, Se 27, Te 30
Refractive Indices of Chalcogenide Glasses Refractive Index (nλ), λ in µm
Glass (atomic %)
n2
As40, S60 2.4268 As40, Se60 – Ge20, Se80 – Ge25, As15, Se60 2.22 Ge10, As20, Se70 – Ge10, As30, Se60 – Ge10, As40, Se50 – Ge33, As13, Se55 2.5310 Ge10, As20, Te70 – Ge28, Sb12, Se60 – Ge30, As13, Se27, Te30 –
[dn/dT]λ
(10–5K–1)
n3
n4
n5
n8
n10
n12
2.4152 – – – – – – 2.5184 – 2.6266 2.8818
2.4116 – – – – – – 2.5146 – 2.6210 2.8732
2.4074 – – – – – – 2.5112 3.55 2.6173 2.8688
2.3937 2.7789 2.4071 – 2.4649 2.6256 2.6108 2.5036 – 2.6088 2.8610
2.3822 2.7789 2.4027 – 2.4594 2.6201 2.6067 2.4977 – 2.6023 2.8563
– 2.7738 2.3973 – 2.4526 2.6135 2.6016 2.4902 – 2.5942 2.8509
[0.9]5 – – – – – [7.2]10.6 – [9.1]10 [15]10
Physical Properties of Chalcogenide Glasses Glass (atomic %)
Tg (°C)
Thermal expansion (10–6/°C)
Density (g/cm3)
As40, S60 As40, Se60 Ge20, Se80 Ge25, As15, Se60 Ge10, As20, Se70 Ge10, As30, Se60 Ge10, As40, Se50 Ge 33, As13, Se55 Ge10, As20, Te70 Ge28, Sb12, Se60 Ge30, As13, Se27, Te30
180 178 154 425 159 210 222 362 – 277 262
21.4 21.0 24.8 12.8 24.8 190 20.9 12.0 18.0 13.5 12.8
3.15 4.62 4.37 3.00 4.47 4.51 4.49 4.40 – 4.67 4.91
K, Knoop; V, Vickers © 2003 by CRC Press LLC
Hardness (kg/mm2) 109(K) – 147(V) 200(K) 154(V) 176(V) 173(V) 170(K) 111(K) 159(K) 226(V)
Young’s modulus (G Pa) 15.9 – – – 16.5 18.0 15.9 22.1 – 21.5 –
Fracture toughness (N mm–3/2) – – – – 6.7 ± 0.4 7.1 ± 0.6 7.4 ± 0.8 – – – –
Section 2: Glasses
245
Chalcohalide Glass-Forming Systems As-based systems
Ge-based systems
As-S-Cl As-S-Br As-S-I As-Se-Br As-Se-I As-Se-In-I As-Te-Br As-Te-I
Ge-S-Br Ge-S-I Ge-S-Ag-I Ge-As-S-I Ge-Se-Br Ge-Se-I Ge-Te-I
Te-based systems
Other systems
Te-Cl Te-Br Te-S-Cl Te-S-Br Te-S-I Te-Se-Cl Te-Se-Br Te-Se-I Te-Se-As-I
Sb-S-Br Sb-S-I Sb-Se-I Si-S-Cl Si-S-I Si-Se-I Cs-Al-S-Cl Cs-Ga-S-Cl
Properties of Chalcohalide Glasses Glass (atomic %) As 30, S 60, Br 10 As 30, Se 60, Br 10 As 30, Te 60, Br 10 As 40, S 50, Cl 10 As 30, S 60, Cl 10 Ge 30, S 60, Br 10 Ge 30, S 60, I 10 Te 60, Cl 40 Te 60, Br 40 Te 60, I 40 Te 50, Sl6.7, Cl 33.3 Te 50, Se16.7, Cl 33.3 Te 30, S 50, Cl 20 Te 30, S 50, Br 20 Te 50, S 16.7, Br 33.3 Te 50, Se 30, Br20 Te10, Se 70, I 20 Te 30, Se 25, I 45 Te 30, Se 30, I 40 Te 20, Se 30, As 40 I 10
Tg (°C)
Thermal expansion (10–6/°C)
120 70 95 145 122 322 370 82 73 44 80 81 73 64 71 – 53 49 48 120
– – – 46.7 49.0 – – 31.0 – – 33.0 – 74 60 33 – 44.6 – 62.7 –
Density (g/cm3) 3.1 4.33 4.92 2.62 4.26 – 2.90 4.63 – – – 4.2 – – – – 4.6 – 5.0 4.71
Hardness (kg/mm2) 110 110 110 71 40 – – – – – – – – – – – – – – –
nλ (λ in µm) – – – – – 1.883 (0.63) 2.0 (0.63) – – – – – – – – 2.86 (10.6) – – 2.80 (10.6) 2.87 (10.6)
Tables in Section 2.6 are from Bruce, A. J., Optical waveguide materials:glasses, Handbook of Laser Science and Technology, Suppl. 2 (CRC Press, Boca Raton, FL, 1998), p. 691.
© 2003 by CRC Press LLC
246
Handbook of Optical Materials
2.7 Magnetooptic Properties 2.7.1 Diamagnetic Glasses Verdet Constants and Dispersion of Commercial Diamagnetic Glasses1 V=π λ Glass typea FK 3 FK 5 FK 51 FK 52 PK 2 BK 3 BK 7 BaLKN3 K3 BaK 50 SK 16 SSK N 5 LaKN12 LaKN14 LF 3 F2 FN 11 F 13 LaSFN31 LaSF 32 SF 1 SF 2 SF 6 SF 14 SF 18 SF 53 SF 57 SF 58 SF 59 SFN 64 TiK 1 TiF 3 TiF 6 KzFSN 4 LgSK 2
n 1.4630 1.4860 1.4853 1.4848 1.5165 1.4967 1.5151 1.5167 1.5164 1.5657 1.6182 1.6557 1.6753 1.6941 1.5793 1.6166 1.6175 1.6188 1.8762 1.7981 1.7124 1.6438 1.7988 1.7561 1.7165 1.7232 1.8396 1.9091 1.9432 1.7011 1.4770 1.5450 1.6125 1.6105 1.5840
n2(λ)- 1 n(λ)
V (633 nm) (rad/(m Τ))
λo (nm)
A (10–7 rad/T)
4.1 4.7 3.5 3.2 4.7 4.4 4.9 5.2 5.2 5.8 5.5 5.8 6.1 4.9 8.4 10.8 2.6 10.8 5.5 2.6 15.4 11.6 20.1 15.1 15.7 15.1 21.8 27.1 28.5 1.5 4.7 2.3 2.3 7.9 6.1
95.3 92.3 84.7 86.2 96.4 96.1 97.0 100.0 101.0 102.6 101.2 110.6 106.5 106.5 120.4 129.7 130.1 130.4 125.4 143.9 144.7 134.6 156.4 152.8 145.2 146.7 161.7 170.5 175.3 142.8 100.8 119.9 140.6 117.8 100.6
7.2702 7.3531 5.4805 4.1070 7.1672 6.8316 5.5387 5.9938 1.2978 7.2536 5.5302 8.3749 6.7875 6.4470 9.4425 11.1061 1.2158 10.6164 7.0445 0.9594 13.4192 7.0169 15.7116 12.3008 12.2097 11.0378 16.7417 18.2033 22.6382 0.7433 9.1198 5.9402 0.9432 8.7691 8.2800
aSchott glass designations. Similar glasses are available from other sources.
© 2003 by CRC Press LLC
A+
B 2
2
λ - λ0 B (10–19 m2 rad/T) 1.3333 1.2647 1.2695 1.6842 1.5350 1.5282 2.1116 2.2601 3.8205 1.9887 2.1438 1.2103 1.8439 1.0542 3.4867 4.0872 1.2041 4.3176 0.5728 0.9845 5.4231 5.7546 6.3430 4.9536 5.8514 5.8444 6.7168 7.7697 6.8410 37.1043 1.4464 0.0959 1.0387 2.8597 1.7067
Section 2: Glasses
247
Verdet Constants V of Noncommercial Diamagnetic Glasses Glass
Composition
type
(wt %)
V (rad/(m T), wavelength (nm) 442
633
700
853
–
–
B2 O3
100 B2O3
–
3.77
Bi2O3
95 Bi2O3, 5 B2O3
–
–
25.0
PbO
95 PbO, 5 B2O3 82 PbO, 18 SiO2 50 PbO, 15 K2O, 35 SiO2
– – –
– – –
Tl2O
95 Tl2O, 5 B2O3 82 Tl2O, 18 SiO2 50 Tl2O, 15 K2O
– – –
SnO
76 SnO, 13 B2O3, 11 SiO2
CdO
1060
Ref.
–
2
14.8
9.6
3
27.1 22.3 9.3
17.8 13.1 5.8
9.1 7.9 3.1
3 3 3
– – –
26.7 29.1 10.5
17.8 19.5 6.5
9.3 12.6 3.5
3 3 3
–
–
20.6
13.4
7.5
3
47.5 CdO, 52.5 P2O5
9.6
6.5
–
–
–
4
ZnO
36.4 ZnO, 63.6 P2O5
12.7
5.8
–
–
–
4
TeO2
75 TeO2, 25 Sb2O3 88.9 TeO2, 11.1 P2O5 80 TeO2, 20 ZnCl2 84 TeO2, 16 BaO 70 TeO2, 30 WO3 20 TeO2, 80 PbO
– 57.1 – – – –
– 22.2 – – – –
22.2 – 21.3 16.2 15.2 37.2
15.2 – 13.4 11.9 10.1 21.8
9.3 6.5 7.3 8.4 6.5 14.0
3 3 3 3 3 3
Sb2O3
25 Sb2O3, 75 TeO2 – – 75 Sb2O3, 20 Cs2O, 5 Al2O3 75 Sb2O3, 10 Cs2O, 10 Rb2O, 5 Al2O3
– – –
22.2 21.5 22.7
15.2 12.7 15.2
9.3 7.3 8.7
3 3 3
ZrF4
63.1 ZrF4, 14.9 BaF2, 7.2LaF3, 1.9 AlF3, 9.1 PbF2, 3.8 LiF
3.1
–
–
–
2
V (rad/(m T), wavelength (nm) Chalcogenide glasses
500
633
700
1000
Ref.
As2S3
–
0.28
0.21
0.081
5,6
As20S80
0.22
0.12
0.093
As2Se3
–
–
–
0.110
6
As40 S57 Se3
–
0.31
0.23
6
Ge20 As20S60
–
0.20
0.155
6
© 2003 by CRC Press LLC
6
248
Handbook of Optical Materials Verdet Constants of SiO2
λ(nm)
V (rad/T m)
254 410 436
29.8 11.0 7.68 8.38 8.12
Ref.
λ(nm)
7 8 9 10 11
500 578 620 633
V (rad/T m) 7.2 4.35 4.40 4.5 3.67
Ref. 8 9 11 8 11,12
Wavelength Dependence of Verdet Constants (300 K) Glass type
435.8 nm
SF 59 SF 58 SF 57 SF 6 SF 1 SF 5 SF 2 F2 BK 7
69.8 63.1 52.4 45.1 34.9 29.7 27.1 24.2 9.6
V (rad/(m T)) 546.1 nm 632.8 nm 37.2 34.3 28.8 25.3 19.8 16.9 15.4 13.7 5.8
25.9 23.9 20.1 17.6 13.7 11.9 11.1 9.9 4.1
1060 nm 8.1 7.6 6.7 6.1 4.9 4.1 3.8 3.5 1.7
From Schott Optical Glass, Technical Information Optical Glass, Tl. No. 11.
Temperature Dependence of the Faraday Effect in Several Glasses13,14
1 d (VL ) (VL ) 0 dT
1 dV V0 dT Glass
V (rad/(m T)
Theory (10–4/K)
Experiment –4 (10 /K)
Experiment –4 (10 /K)
α –6 (10 /K)
SF-57 SiO2 BK-7
21.8 3.7 4.9
1.29 0.81 0.56
1.26 ± 0.08 0.69 ± 0.03 0.63 ± 0.06
1.35 ± 0.08 0.69 ± 0.03 0.71 ± 0.06
9.2 0.55 8.3
Values for 633 nm.
References: 1. 2. 3. 4.
5. 6.
Faraday effect in optical glass–the wavelength dependence of the Verdet constant, Tech. Information No. 17, Schott Glaswerke, Postfach 2480, D-6500 Mainz, Germany. Pye, L. D., Cherukuri, S. C., Mansfield, J., and Loretz, T., The Faraday rotation in some noncrystalline fluorides, J. Non-Cryst. Solids, 56, 99 (1983). Borelli, N. F., Faraday rotation in glasses, J. Chem. Phys. 41, 3289 (1964). Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982) and Faraday rotator materials for laser systems, Proc. Soc. Photo Opt. Instrum. Eng. 681, 75 (1986). R o b in so n , C . C ., T h e F arad ay ro tatio n o f d iam ag n etic g lasses fro m 0 .3 3 4 µ to 1 .9 µ, Appl. Opt. 3, 1163 (1964). Qui, J., Kanbara, H., Nasu, H. and Hirao, K., J. Ceram. Soc. Jpn. 106, 228 (1998).
© 2003 by CRC Press LLC
Section 2: Glasses 7. 8. 9. 10. 11. 12. 13. 14.
249
Dexter, J. L., Landry, J., Cooper, D. G., and Reintjes, J., Opt. Commun. 80, 115 (1990). Khalilov, V. Kh., Malyshkin, S. F., Amosov, A. V., Kondratev, Yu. N., and Grigoreva, L. Z., Faraday effect in crystalline and vitreous SiO2, Opt. Spectrosc. 38, 665 (1975). Ramaseshan, S., Determination of the magneto-optic anomaly of some glasses, Proc. Ind. Acad. Sci. A, 24, 426 (1946). Herlack, F., Knoepfel, H., Luppi, R., and Van Montfoort, J. E., Proceedings of the Conference on Megagaus Magnetic Field Generation by Explosives and Related Experiments (1965). Garn, W. B., Caird, R. S., Fowler, C. M., and Thomson, D. B., Measurement of Faraday rotation in megagauss fields over the continuous visible spectrum, Rev. Sci. Instrum. 39, 1313 (1968). George, N., Waniek, R. W., and Lee, S. W., Faraday effect at optical frequencies in strong magnetic fields, Appl. Opt. 4, 253 (1965). Faraday effect in optical glass—the wavelength dependence of the Verdet constant, Tech. Information No. 17, Schott Glaswerke, Postfach 2480, D-6500 Mainz, Gemany. Williams, P.A., Rose, A. H., Day, G. W., Milner, T. E., and Deeter, M. N., Temperature dependence of the Verdet constant in several diamagnetic glasses, Appl. Opt. 30, 1176 (1991).
2.7.2 Paramagnetic Glasses Verdet Constants V of Paramagnetic Glasses (295 K) Rare earth ion Host glass Ce
Ion conc. (1021/cm3)
V (rad/(m T), wavelength (nm) 400
500
633
700
1064
Ref.
3+
aluminoborate phosphate silicophosphate
8.33 6 4.8
– –196(a) –169
– –94.9 –
–64 –50.3(b) 39.9
– –38.4 –
– – –9.0
1 2 3
Pr3+ aluminoborate borate lanthanum borate metaphosphate phosphate silicate
6.64 9.2 5.0 3.32 5.3 3.79
–178 – –111(a) – –130 –
– – –64.0 –125(c) –76.0 –
– – – –39.6(b) –43.7(b) –)
– –59.1 – – –35.8 –20.9
– –17.5 – –12.3 – –7.9
3 4 5 6 1 4
Eu3+ aluminoborate
4.1
–343
–86.7
–32.9(d)
–26.5
Tb3+ aluminosilicate fluoroberyllate fluorophosphate lanthanum borate phosphate
6.6 2.92 4.72 5.5 5.4
– – – –149(a) –163(a)
– –25.2(c) –52.4(c) –83.8 –94.0
–73.6 –10.7 –23.3 –48.6(b) –55.3(b)
– – – – –43.6
–20.1 –2.9 –5.4 – –
8 6 6 5 2
Dy3+ aluminoborate borate phosphate silicate
8.6 5.8 6.2 3.46
–271 –127(a) –157(a) –
– –79.4 –96.3 –
–70.1 –46.3(b) –57.3(b) –
– – –46.3 –19.5
– – – –9.3
3 5 2 4
(a)
405 nm, (b) 635 nm, (c) 442 nm, (d) 650 nm.
© 2003 by CRC Press LLC
7
250
Handbook of Optical Materials Verdet Constants of Commercial Paramagnetic Glasses (295 K) V (rad/(m T), wavelength (nm)
Glass type Hoya FR-4 (discontinued) (cerium phosphate)
325
442
532
633
1064
Ref.
–
–82.6
–
–30.5
–8.4
9
–444
–174
–
–71.0
–20.6
9
–
–82.3
–
–34.9
–9.6
6
–
–
–74.8
–
–20.6
10
–
–
–88.2
–
–26.1
10
–
–
–98.4
–
–29.0
10
–273
–98
—
–41.9
–11.9
6
–
–
–
–
–11
6
Hoya FR-5 (terbium borosilicate) Hoya FR-7 (terbium fluorophosphate) Kigre M-18 (terbium boroaluminosilicate) Kigre M-24 (terbium boroaluminosilicate) Kigre M-32 (terbium boroaluminosilicate) Ownes-Illinois EY-1 (discontinued) (terbium silicate) Ownes-Illinois EY-2(discontinued) (terbium silicate)
References: 1. 2.
Asahara, Y. and Izumitani, T., Proc. 1968 Meeting, Ceramic Assoc. of Jpn. A10 (1968). Berger, S. B., Rubenstein, C. B., Kurkjian, C. R., and Treptow, A. W., Faraday rotation of rareearth (III) phosphate glasses, Phys. Rev. 133, A723 (1964). 3. Petrovskii, G. T., Edelman, I. S., Zarubina, T. V. et al., J. Non-Cryst. Solids 130, 35 (1991). 4. Borrelli, N. F., J. Faraday rotation in glasses, Chem. Phys. 41, 3289 (1964). 5. Rubenstein, C. B., Berger, S. B., Van Uitert, L. G., and Bonner, W. A., Faraday rotation of rareearth (III) borate glasses, J. Appl. Phys. 35, 2338 (1964). 6 . Web er, M. J. , Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103 (1982) and F arad ay ro ta to r m aterials fo r laser sy stem s, P ro c. S o c. P h o to O p t. In stru m . E n g . 6 8 1 , 7 5 (1 9 8 6 ). 7. Shafer, M. W., and Suits, J., Preparation and Faraday rotation of divalent europium glasses, J. Am. Ceram. Soc. 49, 261 (1966). 8. Ballato, J. and Snitzer, E., Fabrication of fibers with high rare-earth concentration for Faraday isolator applications, Appl. Opt. 34, 6848 (1995). 9. Data sheets, Hoya, Inc. 10. Data sheets, Kigre, Inc.
© 2003 by CRC Press LLC
Section 2: Glasses
251
2.8 Electrooptic Properties Electric-field-induced birefringence, the DC electrooptic Kerr effect, is given by 2
n = n – n⊥ = λBE ,
n = n|| - n⊥
where λ is the wavelength in centimeters, E is the applied electric field strength in volts per centimeter, n and n⊥ are the refractive indices in the directions parallel and perpendicular to the electric field, and B is the Kerr constant in centimeters per volt squared. In terms of the third-order nonlinear susceptibilities [in electrostatic units (esu )], χeff(–ω,ω,0,0) = χ
(3) 1111
–χ
(3)
1122 =
4
(9λBn/24π) 10 .
A positive electrooptic constant is obtained when the induced index change in the direction of the applied field is larger than the induced index change for the perpendicular direction. A negative sign for B implies that the major effect is a large decrease in the refractive index in the direction of the electric field. DC Electrooptic Kerr Constants
1,2
nD
ε
B(10–14 m/V2)
Commercial glasses: Schott Schott Schott Schott Schott
SF 6 SF 57 SF 58 SF 59 LASF 7
1.805 1.847 1.918 1.962 1.850
15.7 16 18 23 19
Corning Corning Corning Corning Corning Corning
8310 8363 8391 8393 8427 8463
– 1.94 – – – 1.97
– 20 – – – –
0.07 0.2 0.06 0.08 0.09 0.36
2.48
–
8.7
40 SiO2 - 60 PbO
2.06
–
0.38
60 SiO2 - 40 Tl2O
2.0
–
1.10
54 SiO2 - 41 Tl2O - 5 PbO
–
–
0.96
76 SiO2 - 9 Tl2O - 15 K2O
–
–
0.30
73 SiO2 - 14 K2O - 13 Ta2O5
–
–
–0.57
85 TeO2 - 7.5 BaO - 7.5 ZnO
2.17
–
0.7
60 TeO2 - 20 BaO - 20 ZnO
2.02
–
0.5 1.1
Arsenic trisulfide
As2S3
0.08 0.11 0.16 0.30 –0.22
Experimental glasses (mol %):
36 TeO2 - 51 PbO - 12 SiO2
–
–
32 Tl2O - 28 Bi2O3 - 40 GeO2 –
–
1.15
© 2003 by CRC Press LLC
252
Handbook of Optical Materials
DC Electrooptic Kerr Constants1,2—continued ε
nD
B(10–14 m/V2)
57 PbO - 25 Bi2O3 - 18 Ga2O3
2.46
28.4
1.4
34 Nb2O5 - 36 SiO2 - 30 Na2O
–
–
2.80
70 PbO - 12 Ga2O3 - 6 Tl2O - 12 CdO
2.31
21
1.6
57 PbO - 18 Bi2O3 - 18 Ga2O3 - 7 Tl2O
2.30
25.5
1.4
48 PbO - 14 Bi2O3 - 10 Ga2O3 - 14 Tl2O - 14 CdO
2.27
23
1.4
43 SiO2 - 15.5 Li2O - 11.5 K2O - 4 Al2O3 - 31 Ta2O5
1.81
17.4
–0.8
20 SiO2 - 20 B2O3 - 20 Na2O - 20 Na2O - 20 Nb2O5 - 20 TiO2
1.93
15.3
–1.23
41 B2O3 - 10 ZnO - 11 La2O3 - 22 ThO2 - 5Ta2O5 - 11 Nb2O5
1.94
–
–0.18
23 PbO - 22 SiO2 - 11 MgO - 14 BaO - 16 TiO2 - 4 Al2O3 - 8Nb2O5
–
22
–0.4
46 PbO - 42 Bi2O3 - 11 Ga2O3- 9 Tl2O
2.46
29
1.4
46 PbO - 33 Bi2O3 - 12 Ga2O3 - 9 Tl2O
2.31
26
1.2
71.6 PbO - 26.5 SiO2 - 0.5 Na2O - 0.9 K2O - 0.5 As2S3
1.79
16
0.14
66.5 PbO - 28.1 SiO2 - 3.4 TiO2 - 0.5 Na2O - 1.0 K2O - 0.5 As2S3
1.84
16
0
54.2 PbO - 32.0 SiO2 - 11.6 TiO2 - 0.6 Na2O - 1.1 K2O - 0.5 As2S3
1.82
16
-0.22
71.6 PbO - 26.5 SiO2 – 3.4 TiO2 - 0.6 Na2O - 1.2 K2O - 0.5 As2S3
1.86
16
0.25
Measured at 633 nm. References: 1. Hall, D. W. and Borrelli, N. F., Nonlinear optical properties of glasses, Optical Properties of Glass, Kreidl, N. and Uhlmann, D. R., Eds., American Ceramic Society (1991), pp. 87–125. 2. Borrelli, N.F., Aitken, B.G., Newhouse, M.A., and Hall, D.W., Electric-field induced birefringence properties of high refractive under glasses exhibiting large Kerr nonlinearaties, J. Appl. Phys. 70, 2774 (1991). See, also, Borrelli, N.F., Electric field induced birefringence in glass, Phys. Chem. Glass 12, 9 (1971) and Paillette, M., Temperature dependent behavior of the Kerr constant in the vitreous state, J. NonCryst. Solids 91, 253 (1987).
© 2003 by CRC Press LLC
Section 2: Glasses
253
2.9 Elastooptic Properties The stress optic coefficients are defined as Kp = dnp/dP and Ks = dns/dP, where the ordinary and extraordinary indices of refractive are designated ns and np, respectively, according as the light polarization is perpendicular (s) or parallel ( p) to the pressure vector. The elastooptic coefficients can be calculated from the experimentally determined values of the stress optic coefficients through the relations p11 = 2E[2µKs + (1 – µ)Kp]/[n3(2µ – 1)(µ + 1)] and p12 = 2E[µKp + Ks]/[n3(2µ – 1)(µ + 1)], where E is the elastic modulus and µ is Poisson’s ratio. The elastooptic coefficients for several representative glasses are given below. Elastooptic Coefficients Glass
Wavelength (µm)
p11
p12
p44
Ref.
fused silica (SiO2) tellurite glass As2S3 Ge33Se55As12 LaSF SF4 TaFd7
0.633 0.633 1.15 1.06 0.633 0.633 0.633
0.121 0.257 0.308 0.21 0.088 0.215 0.099
0.270 0.241 0.299 0.21 0.147 0.243 0.138
-0.075 0.0079 0.0045 — -0.030 -0.014 -0.020
1 2 1 1 3 3 3
1. Pinnow, D. A., Elasto-optical materials, CRC Handbook of Lasers, Pressley, R. J., Ed. (The Chemical Rubber Co., Cleveland, OH, 1971). 2. Yano, T., Fukomoto, A., and Watanabe, A., Tellurite glass: a new acousto-optic material, J. Appl. Phys. 42, 3671 (1971). 3. Eschler, H. and Weidinger, F., J. Appl. Phys., 46, 65 (1975).
Two acoustooptic figures of merit, M1 and M2, are: M1i = n7p1i/ρν1 and M2i = n6p1i/ρν31. A compilation of these properties for most of the optical glasses carried in the Schott Optical Glass Catalog is given in Modification of the refractive index of optical glass by tensile and compressive stresses, Schott Technical Information TI No. 20, 4/88 and in Gottlied, M. and Singh, N. B., Elastooptic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 415.
© 2003 by CRC Press LLC
254
Handbook of Optical Materials Elastooptic Properties of Schott Glasses –Kpa
–Ksa
FK 3 FK 5 FK 51 FK 52 FK 54
1.0 0.9 1.1 1.1 0.8
4.9 3.8 1.8 1.8 1.6
0.15 0.14 0.17 0.16 0.14
0.24 0.23 0.20 0.19 0.17
3 2 2 2 1
7 6 3 3 2
1 1 1 1 0
2 1 1 1 0
PK 1 PK 2 PK 3 PK 50 PK 51A
0.8 0.4 0.5 1.2 1.4
3.9 3.1 3.1 3.4 1.9
0.14 0.11 0.11 0.14 0.16
0.25 0.22 0.21 0.21 0.18
2 1 2 3 3
7 6 6 6 3
0 0 0 1 1
1 1 1 1 1
PSK 2 PSK 3 PSK 50 PSK 52 PSK 53A
0.6 0.8 1.2 1.0 1.5
2.9 3.3 3.1 2.4 2.6
0.13 0.14 0.16 0.14 0.17
0.21 0.23 0.21 0.18 0.20
2 3 3 3 5
6 7 6 5 6
0 0 1 1 1
1 1 1 1 1
BK 1 BK 3 BK 6 BK 7 UBK 7
0.6 0.5 0.4 0.5 0.5
3.4 3.8 2.9 3.3 3.3
0.12 0.12 0.11 0.12 0.12
0.21 0.24 0.20 0.22 0.23
2 2 1 2 2
6 7 5 6 6
0 0 0 0 0
1 1 1 1 1
BK 8 BK 10 BaLK 1 BaLK N3 K3
0.4 0.7 1.4 0.7 1.2
3.1 3.9 4.1 4.0 4.1
0.11 0.13 0.17 0.13 0.16
0.21 0.24 0.26 0.24 0.26
1 2 4 2 3
5 7 9 8 9
0 0 1 0 1
1 1 2 2 2
K4 K5 K7 K 10 K 11
0.8 0.6 0.7 1.4 1.1
3.5 3.7 3.8 4.6 4.1
0.12 0.13 0.12 0.15 0.14
0.21 0.23 0.23 0.26 0.24
2 2 2 3 2
6 7 7 8 7
0 0 0 1 1
1 1 1 2 2
K 50 UK 50 K 51 ZK 1 ZK 5
0.5 0.5 1.0 0.3 0.3
3.7 3.8 4.6 4.0 3.8
0.12 0.13 0.15 0.13 0.12
0.23 0.24 0.27 0.24 0.22
2 2 3 2 2
7 7 9 8 7
0 0 1 0 0
1 1 2 2 2
Glass type
© 2003 by CRC Press LLC
P11
P 12
M11b
M12b
M21c
M22c
Section 2: Glasses
255
Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
M12b
M21c
M22c
ZK N7 BaK 1 BaK 2 BaK 4 BaK 5
0.3 0.7 1.0 0.5 0.9
3.8 3.2 3.6 3.2 3.6
0.11 0.13 0.14 0.12 0.15
0.23 0.20 0.22 0.21 0.23
2 2 3 2 3
7 6 7 6 7
0 1 1 0 1
1 1 2 1 2
BaK 6 BaK 50 SK 1 SK 2 SK 3
0.8 0.0 0.7 0.8 0.7
3.2 3.0 3.0 3.0 2.6
0.14 0.11 0.13 0.14 0.12
0.21 0.21 0.20 0.20 0.18
3 2 3 3 2
6 6 6 6 5
1 0 1 1 0
1 1 1 1 1
SK 4 SK 5 SK 6 SK 7 SK 8
0.6 0.8 0.7 0.8 0.8
2.5 2.8 3.0 2.6 3.1
0.12 0.14 0.14 0.13 0.14
0.18 0.21 0.20 0.19 0.21
2 3 3 3 3
5 6 6 5 7
0 1 1 1 1
1 1 1 1 2
SK 9 SK 10 SK 11 SK 12 SK 13
0.8 0.8 0.7 0.5 0.9
3.1 2.6 3.2 2.8 3.2
0.14 0.13 0.13 0.11 0.15
0.21 0.19 0.22 0.19 0.22
3 3 2 2 3
7 5 6 5 7
1 1 0 0 1
2 1 1 1 2
SK 14 SK 15 SK 16 SK N18 SK 19
0.8 0.8 1.0 0.5 1.0
2.6 2.7 2.8 2.4 2.8
0.13 0.14 0.16 0.13 0.14
0.19 0.20 0.22 0.19 0.20
3 3 4 3 3
5 6 7 6 6
1 1 1 1 1
1 1 1 1 1
SK 20 SK 51 SK 52 SK 55 KF 1
0.6 1.1 0.0 0.2 1.3
3.0 2.7 2.3 2.2 4.3
0.12 0.15 0.10 0.10 0.16
0.20 0.20 0.18 0.17 0.25
2 4 2 1 3
5 6 5 4 9
0 1 0 0 1
1 1 1 1 2
KF 3 KF 6 KF 9 KF 50 BaLF 3
0.8 1.2 1.4 1.1 0.8
3.8 4.1 4.5 4.3 3.9
0.13 0.14 0.16 0.14 0.15
0.22 0.23 0.25 0.23 0.24
2 2 3 3 3
6 7 9 8 8
0 1 1 1 1
1 2 2 2 2
Glass type
© 2003 by CRC Press LLC
256
Handbook of Optical Materials Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
M12b
M21c
M22c
BaLF 4 BaLF 5 BaLF 6 BaLF 8 BaLF 50
0.2 0.9 0.4 0.8 0.6
3.3 4.0 3.1 3.7 2.9
0.11 0.14 0.11 0.12 0.12
0.20 0.23 0.19 0.21 0.19
2 3 2 2 2
6 7 6 6 5
0 1 0 1 0
1 2 1 2 1
BaLF 51 SSK 1 SSK 2 SSK 3 SSK 4
0.9 0.9 1.2 0.9 0.8
3.3 3.1 3.4 3.2 2.9
0.13 0.14 0.16 0.14 0.13
0.21 0.21 0.22 0.20 0.20
3 3 4 3 3
6 7 8 6 6
1 1 1 1 1
1 2 2 2 1
SSK N5 SSK N8 SSK 50 SSK 51 SSK 52
0.5 0.7 0.9 1.1 –
2.3 3.1 2.7 3.3 –
0.11 0.13 0.14 0.16 –
0.17 0.21 0.19 0.23 –
2 3 3 4 –
5 7 6 8 –
0 1 1 1 –
1 1 1 2 –
LaK N6 LaK .N7 LaK 8 LaK 9 LaK 10
1.0 0.6 0.1 0.3 0.1
2.6 2.1 1.9 2.0 2.0
0.15 0.11 0.10 0.11 0.10
0.20 0.16 0.16 0.17 0.16
3 2 2 2 2
6 4 5 5 5
1 0 0 0 0
1 1 1 1 1
LaK 11 LaK N12 LaK L12 LaK N13 LaK N14
0.5 0.8 0.0 1.2 0.2
2.3 2.3 1.6 2.5 2.0
0.12 0.13 0.07 0.15 0.10
0.17 0.17 0.13 0.19 0.17
2 3 1 4 2
5 5 3 6 5
0 1 0 1 0
1 1 0 1 1
LaK 16A LaK 21 LaK L21 LaK N22 LaK 23
– 0.1 1.0 0.0 0.7 0.7
1.8 2.8 2.0 2.5 2.2
0.08 0.16 0.09 0.13 0.12
0.15 0.22 0.17 0.18 0.16
1 4 1 3 2
4 7 5 5 4
0 1 0 1 1
1 1 1 1 1
0.2 0.1 0.3 1.7 1.6
2.0 1.7 1.7 4.7 4.6
0.11 0.09 0.10 0.15 0.15
0.17 0.15 0.15 0.23 0.23
6 4 5 8 8
0 0 0 1 1
1 1 1 2 2
Glass type
LaK 28 LaK 31 LaK 33 LLF 1 LLF 2
© 2003 by CRC Press LLC
2 1 2 3 3
Section 2: Glasses
257
Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
LLF 3 LLF 4 LLF 6 LLF 7 BaF 3
1.4 1.5 1.5 1.5 0.8
4.2 4.5 4.7 4.6 3.8
0.15 0.15 0.15 0.14 0.12
0.23 0.24 0.25 0.23 0.20
3 4 3 3 2
8 9 8 8 6
1 1 1 1 1
2 2 2 2 2
BaF 4 BaF 5 BaF N6 BaF 8 BaF 9
1.3 1.3 1.3 0.8 0.8
3.9 4.0 3.8 3.1 2.9
0.14 0.17 0.16 0.12 0.13
0.21 0.24 0.24 0.19 0.19
3 4 4 3 3
7 9 9 6 6
1 1 1 1 1
2 2 2 1 1
BaF N10 BaF N11 BaF 12 BaF 13 BaF 50
0.7 0.4 0.7 1.1 0.9
2.7 2.3 2.9 2.9 2.7
0.14 0.11 0.12 0.15 0.14
0.20 0.16 0.19 0.20 0.19
3 2 3 4 3
7 5 6 7 7
1 0 1 1 1
1 1 1 2 1
BaF 51 BaF 52 BaF 53 BaF 54 LF 1
0.2 0.8 0.3 0.5 1.9
2.4 3.1 2.5 2.3 4.9
0.09 0.12 0.10 0.11 0.17
0.16 0.19 0.17 0.16 0.24
2 3 2 2 4
5 6 5 5 9
0 1 0 0 1
1 1 1 1 3
LF 2 LF 3 LF 4 LF 5 LF 6
1.9 1.8 1.5 2.3 1.9
4.6 4.6 4.6 5.2 4.8
0.16 0.16 0.14 0.18 0.16
0.23 0.23 0.22 0.25 0.23
4 4 3 6 4
9 9 8 11 9
1 1 1 2 1
3 3 2 3 3
LF 7 LF 8 F1 F2 F3
2.2 2.1 2.7 2.4 2.3
5.3 5.1 5.4 5.2 5.2
0.18 0.18 0.18 0.17 0.17
0.25 0.25 0.23 0.23 0.23
5 5 6 5 5
10 10 11 10 10
2 1 2 2 2
3 3 4 3 3
F4 F5 F6 F7 F8
2.3 2.0 2.6 2.7 1.8
5.2 4.9 5.1 5.6 4.9
0.16 0.15 0.17 0.19 0.16
0.22 0.22 0.22 0.25 0.23
5 4 6 7 4
9 9 10 12 9
2 1 2 2 1
3 3 3 4 3
Glass type
© 2003 by CRC Press LLC
M12b
M21c
M22c
258
Handbook of Optical Materials Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
F9 F N11 F 13 F 14 F 15
2.0 0.3 2.9 1.9 2.4
4.7 3.4 5.8 4.9 5.3
0.16 0.10 0.19 0.15 0.17
0.23 0.20 0.25 0.22 0.24
5 2 7 4 5
9 7 12 9 10
1 0 2 1 2
3 1 4 3 3
BaSF 1 BaSF 2 BaSF 5 BaSF 6 BaSF 10
1.4 1.7 1.8 1.2 1.6
4.1 4.1 4.2 3.2 3.8
0.14 0.15 0.15 0.15 0.15
0.20 0.20 0.21 0.20 0.21
3 4 4 4 4
7 8 8 8 8
1 1 1 1 1
2 3 2 2 2
BaSF 12 BaSF 13 BaSF 14 BaSF 50 BaSF 51
1.4 1.1 1.8 0.9 0.6
3.5 2.9 3.8 3.1 2.8
0.15 0.13 0.17 0.13 0.12
0.20 0.18 0.22 0.19 0.17
4 4 6 4 3
8 7 10 7 6
1 1 2 1 1
2 2 3 2 1
BaSF 52 BaSF 54 BaSF 55 BaSF 56 BaSF 57
0.3 2.5 1.3 1.9 1.2
2.6 3.9 3.5 4.3 3.2
0.11 0.18 0.15 0.17 0.14
0.17 0.21 0.20 0.22 0.19
2 8 5 5 3
6 11 8 10 7
0 2 1 2 1
1 3 2 3 2
BaSF 64 LaF 2 LaF 3 LaF N7 LaF N8
– 0.1 0.7 0.6 1.2 0.2
2.4 2.2 2.1 2.9 2.2
0.09 0.11 0.11 0.13 0.10
0.17 0.15 0.15 0.17 0.16
1 3 2 4 2
6 5 5 7 5
0 1 0 1 0
1 1 1 2 1
LaF 9 LaF N10 LaF 11A LaF 13 LaF 20
3.5 0.2 2.6 1.2 0.8
4.3 1.9 4.1 2.6 2.6
0.19 0.10 0.18 0.15 0.14
0.21 0.15 0.21 0.18 0.19
11 2 8 5 3
13 5 11 8 7
4 0 2 1 1
4 1 3 2 1
LaF N21 LaF 22A LaF N23 LaF N24 LaF 25
0.1 0.5 1.2 – 0.2 – 0.5
1.4 2.0 2.8 1.6 1.6
0.07 0.09 0.15 0.06 0.05
0.12 0.14 0.19 0.13 0.11
1 2 4 1 0
3 4 7 3 3
0 0 1 0 0
0 1 2 0 0
Glass type
© 2003 by CRC Press LLC
M12b
M21c
M22c
Section 2: Glasses
259
Elastooptic Properties of Schott Glasses—continued –Ksa
P11
P 12
M11b
0.1 0.1 0.0 2.0 0.3
2.1 1.4 1.8 3.5 2.1
0.09 0.07 0.08 0.17 0.09
0.14 0.12 0.14 0.21 0.14
2 1 2 8 2
4 3 5 12 6
0 0 0 2 0
1 0 1 3 1
0.3 0.3 0.3 0.6 – 0.1
1.5 1.6 1.7 1.7 2.3
0.08 0.08 0.10 0.10 0.07
0.11 0.11 0.14 0.14 0.14
2 2 2 3 1
4 4 5 5 6
0 0 0 1 0
1 1 1 1 1
LaSF 33 SF 1 SF 2 SF 3 SF 4
0.7 4.5 3.3 4.4 4.6
2.5 6.2 5.9 6.0 5.9
0.11 0.22 0.19 0.20 0.20
0.16 0.25 0.25 0.23 0.23
3 12 8 11 12
7 16 13 15 15
1 5 3 5 5
1 6 5 6 6
SF 5 SF 6 SF L6 SF 7 SF 8
3.1 6.0 0.2 2.7 3.6
5.4 6.8 3.0 5.5 5.9
0.18 0.24 0.09 0.17 0.19
0.22 0.25 0.16 0.23 0.24
7 19 3 6 9
11 21 8 11 13
3 8 0 2 3
4 9 1 4 5
SF 9 SF 10 SF 11 SF 12 SF 13
3.2 3.6 3.8 2.8 3.3
5.8 5.6 5.0 5.3 5.2
0.20 0.20 0.19 0.18 0.18
0.25 0.24 0.21 0.24 0.22
8 10 10 7 9
13 15 13 12 13
3 3 4 2 3
5 5 5 4 4
SF 14 SF 15 SF 16 SF 17 SF 18
3.8 3.0 3.3 3.3 4.1
5.4 5.1 6.0 6.1 5.9
0.20 0.18 0.20 0.20 0.20
0.23 0.22 0.25 0.25 0.23
11 7 8 8 11
15 11 13 13 14
4 3 3 3 4
5 4 5 5 6
SF 19 SF 50 SF 51 SF 52 SF 53
3.1 – 2.3 3.5 3.8
5.5 – 4.7 5.7 5.4
0.18 – 0.16 0.20 0.19
0.23 – 0.21 0.24 0.22
7 – 5 9 10
12 – 9 14 13
3 – 2 3 4
4 – 3 5 5
Glass type
–Kpa
LaF 26 LaF N28 LaSF 3 LaSF 8 LaSF N9 LaSF N15 LaSF N18 LaSF N30 LaSF N31 LaSF 32
© 2003 by CRC Press LLC
M12b
M21c
M22c
260
Handbook of Optical Materials Elastooptic Properties of Schott Glasses—continued –Kpa
–Ksa
P11
P 12
M11b
SF 54 SF 55 SF 56 SF L56 SF 57
4.7 4.3 4.8 0.0 6.7
6.4 5.7 5.8 2.8 6.7
0.22 0.20 0.21 0.07 0.23
0.26 0.22 0.22 0.15 0.23
14 11 13 2 20
18 14 16 6 20
5 5 5 0 9
7 6 6 1 9
SF 58 SF 59 SF 61 SF 62 SF 63
8.2 9.0 4.5 3.5 4.2
7.2 7.6 6.0 5.8 5.8
0.24 0.25 0.21 0.19 0.20
0.23 0.24 0.23 0.24 0.22
29 34 12 8 11
26 30 15 13 14
14 17 5 3 4
13 15 6 5 6
SF N64 TiK 1 TiF 1 TiF 2 TiF 3
0.2 2.3 1.1 1.1 1.1
3.1 6.1 4.2 4.5 4.4
0.10 0.19 0.15 0.15 0.15
0.18 0.27 0.23 0.25 0.24
2 5 3 4 4
8 10 7 9 9
0 2 1 1 1
1 3 2 2 2
TiF 4 TiF N5 TiF 6 KzF N1 KzF N2
0.9 0.6 0.7 1.0 1.3
4.2 3.9 3.0 4.2 5.0
0.14 0.12 0.11 0.13 0.14
0.23 0.21 0.16 0.21 0.24
3 3 2 3 3
9 8 5 7 9
1 1 0 1 1
2 2 1 2 2
KzF 6 KzFS1 KzFS N2 KzFS N4 KzFS N5
1.7 1.0 0.1 0.6 0.7
5.8 4.2 3.8 3.8 3.4
0.16 0.15 0.12 0.13 0.12
0.26 0.21 0.23 0.20 0.18
4 4 2 3 3
10 8 8 7 7
1 1 0 1 1
3 2 2 2 2
KzFS 6 KzFS N7 KzFS 8 KzFS N9 LgSK 2
0.6 0.6 1.5 0.4 1.1
4.0 3.1 3.7 3.5 2.2
0.14 0.12 0.15 0.12 0.15
0.22 0.18 0.20 0.20 0.18
3 3 5 2 3
8 7 9 7 4
1 1 1 1 1
2 1 2 2 1
Glass type
a 10–6 mm2/N;
b
© 2003 by CRC Press LLC
10–7 cm2 s/g; c 10–18 s3/g.
M12b
M21c
M22c
Section 2: Glasses
261
2.10 Nonlinear Optical Properties 2.10.1 Nonlinear Refractive Index* Nonlinear refraction is commonly defined either in terms of the optical field intensity I n = n0 + γI or in terms of the average of the square of the optical electric field <E2> n = n0 + n2 <E2>, where n0 is the ordinary linear refractive index, γ is the nonlinear refractive coefficient, and n0 is the nonlinear refractive index. The conversion between n2 and γ is given by n2[cm3/erg] = (cn0/40π) γ[m2/W] = 238.7 n0 γ[cm2/W], where c is the speed(in m/s) of light in vacuum. In terms of third-order susceptibility tensor χ(3)(−ω,ω,ω,−ω) of a medium, the nonlinear refractive indices for a linearly polarized wave and for a circularly polarized wave in an isotropic material are n2(LP) = (12π/n0) χ(3)1111(−ω,ω,ω,−ω) and n2(CP) = (24π/n0) χ(3)1122(−ω,ω,ω,−ω). The two-photon absorption coefficient β is proportional to the corresponding imaginary part of χ(3)(–ω,ω,ω,–ω). The relationship between n2, β, and χ(3) is analogous to the relationship between n0, the linear absorption coefficient α, and the linear susceptibility χ. The nonlinear refractive index is not a unique quantity for a given material because a number of physical mechanisms contribute to the polarization that is cubic in the applied optical electric field. The mechanisms that contribute most strongly to n2 , and their characteristic time scales (in parentheses) are bound electrons (10–15 s), optically created free carriers (>10–12 s), Raman-active optical phonons (10–12 s), electrostriction (>10–9 s), and thermal excitation (~10–9 s). Several methods listed below have been employed to measure n2. The details of the measurements determine the relative contributions from the various possible physical mechanisms to the measured n2. In general, experiments done with picosecond pulses and nondegenerate mixing are less likely to be affected by the “slow” electrostrictive or thermal effects than those done in the nanosecond pulse regime and with degenerate mixing. Most of the measurements include the effects of both electronic and vibrational (Raman) contributions to n2. In the following tables values of the parameters in parentheses were calculated by Chase and Van Stryland1 from the quantities reported in the original references. Refractive indices in parentheses were obtained from extrapolation of available data. For noncubic crystals, or for cubic crystals where the polarization is not along a cube axis or is not specified in the original reference, the value tabulated for χ(3)1111 is an effective value of χ(3). * This section was adapted from Chase, L. L., and Van Stryland, E. W., Nonlinear refractive index: inorganic materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269. © 2003 by CRC Press LLC
Techniques for Measuring the Nonlinear Refractive Index Method DFWM DTLC ER NDFWM OKE PDF RSS SPM SSMG TII TRI TWM TWR
Ref.
Degenerate four-wave mixing Damage threshold for linear vs. circular polarization Ellipse rotation Non-degenerate four-wave mixing Optical Kerr effect Power-dependent focus Raman scattering spectroscopy Self-phase modulation Small-scale modulation growth Time-integrated interferometry Time-resolved interferometry Three-wave mixing Temporal waveform reshaping
2 3 4 5, 6 7 8 9 10 11 12 13 5 14
Boling, Glass, and Owyoung15 derived an empirical formula relating n2 at wavelengths much longer than the interband absorption to the linear refractive index and its dispersion. This formula for estimating n2 is accurate to within about 25% for a wide range of crystals and glasses.6,16 The equation is generally not applicable to chalcogenide glasses. Lines of constant n2 predicted from this equation are plotted as a function of nd and νd in the figure below and are superimposed on regions of known oxide and fluoride glasses.
2.0
Oxide glasses
Refractive index nd
1.8
20 Fluoride glasses
1.6
10
5
SiO2
1.4
3 2
1.2
© 2003 by CRC Press LLC
n2 (10–20 m2/W)
1
BeF2 100
80
60 Abbe number υd
40
20
Measured Nonlinear Refractive Parameters of Glasses Glass
Refractive
χ1111
n2,LP
γLP
(nm)
index
(10–13 cm3erg)
(10–13 cm3erg)
(10–16 cm2/W)
3 0.15 3 3 20 20 0.125 0.17 3 12. 20 0.15 3 3 3 3 3 0.125 0.125 0.125 3 0.09 0.09 0.09
1064 1064 1064 1064 1064 694 1064 355 560,590 694 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064
(1.6637) 1.28 (1.606) (1.5168) 1.51 1.52 1.52 1.50 1.51 (1.50) 1.73 1.34 (1.4899) (1.4372) (1.4423) (1.4511) (1.4364) 1.49 1.49 1.49 (1.5314) 2.48 2.30 1.84
(.116) (0.0078) (0.080) (0.052) (1.150) (0.056) (0.050) (0.024) (0.092) (0.080) (0.38) (0.012) (0.032) (0.023) (0.027) (0.026) (0.025) (0.028) (0.027) (0.042) (0.049) 4.2 0.8 0.48
2.64 0.26 1.88 1.30 1.24 1.4 1.24 0.6 2.3 2.0 8.3 0.33 0.80 0.61 0.70 0.68 0.65 0.71 0.69 1.07 1.21 (227) (15.7) (9.66)
(6.6) (0.75) (4.9) (3.59) (3.44) (3.86) 3.43 1.7 (6.4) (5.6) (20.) (1.0) (2.25) (1.78) (2.03) (1.96) (1.90) 2.0 1.94 3.01 (3.31) (383) (29) (22)
Ref. 16 17 16 16 3a 19b 13 20 5 21 3 17 16 16 16 16 16 21 13 13 16 22 22 77
263
© 2003 by CRC Press LLC
NDFWM TRI NDFWM NDFWM DTLC ER TRI TRI TWM TWR DTLC TRI NDFWM NDFWM NDFWM NDFWM NDFWM TRI TRI TRI NDFWM DFWM DFWM DFWM
Wavelength
length (ns)
Section 2: Glasses
Aluminate L-65 Beryllium fluoride Borate L-109 Borosilicate BK-7 Borosilicate 517 Borosilicate BK-7 Borosilicate BK-7 Borosilicate BK-10 Borosilicate BSC Borosilicate BSC-2 Flint SF-55 Fluoroberyllate:Nd Fluorophosphate E-115 Fluorophosphate E-131 Fluorophosphate E-132 Fluorophosphate E-133 Fluorophosphate K-1172 Fluorophosphate A86-82 Fluorophosphate FK-51 Fluorosilicate FC-5 Fluorozirconate 9028 Gallate “RN” Germanate Q-5 Germanate VIR-3
Method
Pulse
264
Measured Nonlinear Refractive Parameters of Glasses—continued
Phosphate:Ce FR-4 Phosphate EV-1 Phosphate LHG-5 Phosphate:Nd LHG-5 Phosphate LHG-6 Posphate:Nd LHG-6 Phosphate:Nd LHG-5 Phosphate:Nd LHG-6 Phosphate Q-88 Phosphate P-108 Phosphate 5037 Phosphate 5038 Silica (Dynasil 4000) Silica (fiber) Silica (Suprasil II) Silica (Suprasil II) Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2 Silica, SiO2
© 2003 by CRC Press LLC
Wavelength
Refractive
Method
length (ns)
(nm)
Index
χ1111 –13 (10 cm3erg)
TRI TRI NDFWM TRI NDFWM TRI PDF PDF NDFWM NDFWM NDFWM NDFWM TRI SPM TRI SSMG NDFWM OKE TII TII/SPM/SS PDF ER NDFWM DTLC
0.15 0.125 3 0.125 3 0.125 0.030 0.030 3 3 3 3 0.125 ~0.15 0.17 1.1 3 10–4 20 0.004 0.17 13 3 20
(1.56) 1.51 (1.51) 1.54 (1.53) 1.53 1.54 1.53 (1.5449) (1.5312) (1.5772) (1.5915) 1.46 (1.47) 1.50 1.50 (1.46) 1.4519 (1.46) (1.508) (1.489) 1.45 1.46 1.45
(0.081) (0.036) (0.058) (0.047) (0.045) (0.040) (0.061) (0.061) (0.052) (0.052) (0.065) (0.072) (0.037) (0.044) (0.036) (0.024) (0.033) 0.024 0.044 (0.06–0.08) (0.042) (0.039) (0.070) (0.036)
1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 514 355 351 1064 620 1064 249 308 694 560,590 1064
n2,LP –13 (10 cm3erg) 1.95 0.91 1.44 1.16 1.12 1.01 1.5 1.5 1.27 1.28 1.56 1.71 0.95 1.14 0.9 0.6 0.85 0.62 (1.1) 1.5–2.0 (1.07) 1.00 1.8 0.93
γLP –16 (10 cm2/W)
Ref.
(5.2) 2.53 (4.0) 3.15 (3.07) 2.76 (4.1) (4.1) (3.44) (3.50) (4.14) (4.50) 2.73 (3.2) 2.5 1.7 (2.44) (1.80) (3.3) (4.2–5.6) 3.0 (2.88) (5.2) (2.7)
23 24 16 24 19 24 25 25 16 16 16 16 13 10 20 11 16 26 27 28 29 4 5 3a
Handbook of Optical Materials
Glass
Pulse
0.08 0.09 ~1 ~1 3 ~1 10–4 0.08 3 ~1 0.125 0.125 0.15 3 3 0.030 13 3 13 0.15 0.08 0.08 10–4 0.08 3 ~1
1064 1064 1064 1064 647 1064 1064 620 1064 1064 1064 1064 1064 647 1064 1064 560,590 1064 694 1064 694 1064 1064 1064 620 1064 1064 1064
1.56–1.95 1.94 1.50 1.50 1.51 (1.5418) 1.53 1.8050 1.93 (1.57) (1.57) 1.57 1.57 (1.57) (1.57) (1.5714) 1.55 1.55 1.56 (1.6008) 1.61 (1.61) 1.77 1.77 1.8052 1.81
(0.072–0.97) 1.0 (0.073) (0.073) (0.060) (0.063) (0.084) 0.48 (1.16) (0.066) (0.064) (0.059) (0.059) (0.075) (0.063) (0.064) (0.011) (0.086) (0.072) (0.072) (0.088) (0.076) (0.61) (0.39) 0.42 (0.46)
1.75–18.8 (19.4) 1.83 1.83 1.5 1.54 2.08 (10.0) (22.6) 1.58 1.53 1.41 1.41 1.8 1.52 1.53 2.6 2.1 1.73 1.69 2.06 1.77 (13.1) (8.4) (8.77) (9.5) 1.93 1.16
(4.7–40) (42) (5.1) (5.1) (4.2) (4.18) (5.7) (23.) 49 (4.22) (4.1) 3.77 3.77 (4.8) (4.1) (4.08) (7.0) (5.7) (4.6) (4.42) (5.4) (4.6) 31 20 (20) 22
30 22 31 31 9c 16 31 26 2 16 31 21 13 9c 23 16 5 25 4 16 32 3 2 2 26 2 16 34
265
© 2003 by CRC Press LLC
DFWM DFWM TRI TRI RSS NDFWM TRI OKE DFWM NDFWM TRI TRI TRI RSS TRI NDFWM NDFWM PDF ER NDFWM ER TRI DFWM DFWM OKE DFWM NDFWM PDF
Section 2: Glasses
Silicate (Si-Nb-Ti-Na) Silicate 8463 Silicate C835 Silicate C1020 Silicate C1020 Silicate C-2828 Silicate C2828 Silicate E-0525 Silicate E-1 Silicate ED-2 Silicate ED-2 Silicate ED-2 Silicate ED-2:Nd Silicate ED-2:Nd Silicate ED-2:Nd Silicate ED-3 Silicate ED-4 Silicate ED-4 Silicate ED-4 Silicate ED-8 Silicate EY-1 Silicate EY-1 Silicate FD-6 Silicate FD-60 Silicate FD-60 Silicate FDS-9 Silicate FR-5 Silicate GLS-1
266
Measured Nonlinear Refractive Parameters of Glasses—continued
Silicate La SF30 Silicate LG-650 Silicate K-8 Silicate KGSS-1621 Silicate LGS-247 Silicate LSO Silicate Q-246 Silicate “QR” Silicate SF-56 Silicate SF-57 Silicate SF-57 Silicate SF-58 Silicate SF-58 Silicate SF-59 Silicate SF-59 Silicate SF-6 Silicate SF-6 Silicate SF-6 Silicate SF-7 Silicate:TB FR-5 Silicate ZF-7 Tellurite 3151 Tellurite K-1261
Method OKE NDFWM TII PDF PDF ER NDFWM DFWM DFWM DFWM OKE DFWM DFWM DFWM OKE NDFWM OKE TRI ER TRI TII NDFWM NDFWM
Wavelength
Refractive
length (ns)
(nm)
index
10–4 3 10 ~1 ~1 13 3 0.09 0.08 0.08 10–4 0.09 0.08 0.09 10–4 3 10–4 ~1 20 0.125 3 3
620 1064 694 1064 1064 694 1064 1064 1064 1064 620 1064 1064 1064 620 1064 620 1064 694 1064 532 1064 1064
1.8032 (1.5214)
0.12 (0.058) 1.5
1.51 (1.558) 2.02 1.75 1.81 1.8467 1.88 1.88 1.91 1.9176 (1.77) 1.8052 1.77 1.67
(0.058) (0.054) 1.1 (0.51) (0.85) 0.51 0.52 (1.10) 0.75 0.78 (0.38) 0.45 (0.42) (0.093)
2.05 2.05
(1.31) (1.25)
a total n2; b electronic assumption; c also nuclear/electronic ratio; d low frequency assumption.
© 2003 by CRC Press LLC
χ1111 –13 (10 cm3erg)
n2,LP –13 (10 cm3erg) (2.51) 1.44 1.07 1.17 1.44 1.31 (20.7) (10.9) (17.7) (10.4) (10.3) (22) (14.6) (15.3) 8.0 (9.40) 9.0 5.9 2.1 0.7 24 23
γLP –16 (10 cm2/W) (5.83) (3.96)
(3.25) (4.0) (3.52) (43) 26 41 (23.6) (23) 49 (32) (33.5) (18.9) (21.8) (21) (15) 5.2 (49) (47)
Ref. 26 16 35 34 34 4 16 22 2 2 26d 22 2 22 26d 16 26d 31 19b 13 35 16 16
Handbook of Optical Materials
Glass
Pulse
Section 2: Glasses
267
References: 1.
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
Chase, L. L., and Van Stryland, E. W., Nonlinear refractive index: inorganic materials, in Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p. 269. Friberg, S. R., and Smith, P. W., Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089 (1987). Feldman, A., Horowitz, D., and Waxler, R. M., Mechanisms for self-focusing in optical glasses, IEEE J. Quantum Electron. QE-9, 1054 (1973). Owyoung, A., Ellipse rotation studies in laser host materials, IEEE J. Quantum Electron. QE9(11), 1064 (1973). Levenson, M. D., Feasibility of measuring the nonlinear index of refraction by third-order frequency mixing, IEEE J. Quantum Electron. QE-10, 110 (1974). Adair, R., Chase, L. L., and Payne, S. A., Nonlinear refractive index of optical crystals, Phys. Rev. B39, 3337 (1989). Ho, P. P., and Alfano, R. R., Optical Kerr effect in liquids, Phys. Rev. A 20(5), 2170 (1979). Smith, W. L., Bechtel, J. H., and Bloembergen, N., Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses, Phys. Rev. B 12, 706 (1975). Yang, T. T., Raman scattering and optical susceptibilities of Nd-doped glasses, Appl. Phys. 11, 167 (1976). Stolen, R. H., and Lin, C., Self-phase-modulation in silica optical fibers, Phys. Rev. A 17(4), 1448 (1978). Smith, W. L., Warren, W. E., Vercimak, C. L., and White, W. T., III, Nonlinear refractive index at 351 nm by direct measurement of small-scale self-focusing, Paper FB4, Digest of Conference on Lasers and Electro Optics (Optical Society of America, Washington, DC, 1983), p. 17. Witte, K. J., Galanti, M., and Volk, R., n 2-Measurements at 1.32 µm of some organic compounds usable as solvents in a saturable absorber for an atomic iodine laser, Opt. Commun. 34(2), 278 (1980). Milam, D., and Weber, M. J., Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium laser, J. Appl. Phys. 47(6), 2497 (1976). Hanson, E. G., Shen, Y. R., and Wong, G. K. L., Experimental study of self-focusing in a liquid crystalline medium, Appl. Phys. 14, 65 (1977); Self-focusing: from transient to quasi-steadystate, Opt. Commun. 20(1), 45 (1977); Wong, G. K. L., and Shen, Y. R., Transient self-focusing in a nematic liquid crystal in the isotropic phase, Phys. Rev. Lett. 32(10), 527 (1974). Boling, N. L., Glass, A. J., and Owyoung, A., Empirical relationships for predicting nonlinear refractive index changes in optical solids, IEEE J. Quantum Electron. QE-14, 601 (1978). Adair, R., Chase, L .L., and Payne, S. A., Nonlinear refractive index measurements of glasses using three-wave frequency mixing, J. Opt. Soc. Am. B4, 875 (1987). Weber, M. J., Cline, C. F., Smith, W. L., Milam, D., Heiman, D., and Hellwarth, R. W., Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses, Appl. Phys. Lett. 32(7), 403 (1978). Owyoung, A., Hellwarth, R. W., and George, N., Intensity-induced changes in optical polarizations in glasses, Phys. Rev. B5(2), 628 (1972). White, W. T., III, Smith, W. L., and Milam, D., Direct measurement of the nonlinear refractive index coefficient γ at 355 nm in fused silica and in BK-10 glass, Opt. Lett. 9, 10 (1984). Newnham, B. E., and DeShazer, L. B., Direct nondestructive measurement of self-focusing in laser glass, NBS Spec. Publ. 356, 113 (1971). Garaev, R. A., Vlasov, D. V., and Korobkin, V. V., Need to allow for slow nonlinearity in measurements of n2, Sov. J. Quantum Electron. 12(1), 100 (1982). Hall, D. W., Newhouse, M. A., Borelli, N. F., Dumbaugh, W. H., and Weidman, D. L., Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293 (1989). Bliss, E. S., Speck, D. R., and Simmons, W. W., Direct interferometric measurements of the nonlinear refractive index coefficient n2 in laser materials, Appl. Phys. Lett. 25(12), 728 (1974). Milam, D., and Weber, M. J., Nonlinear refractive index coefficient for Nd phosphate laser glasses, IEEE J. Quantum Electron. QE-12, 512 (1976). Smith, W. L., and Bechtel, J. H., Laser-induced breakdown and nonlinear refractive index measurements in phosphate glasses, lanthanum beryllate, and Al2O3, Appl. Phys. Lett. 28, 606 (1976). Thomazeau, I., Etcheparre, J., Grillon, G., and Migus, A., Electronic nonlinear optical susceptibilities of silicate glasses, Opt. Lett. 10, 223 (1985).
© 2003 by CRC Press LLC
27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
Altshuler, G. B., Barbashev, A. I., Karasev, V. B., Krylov, K. I., Ovchinnikov, V. M., and Sharlai, S. F., Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials, Sov. Tech. Phys. Lett. 3(6), 213 (1977). Ross, I. N., Toner, W. C., Hooker, C. J., Barr, J. R. M., and Coffey, I., Nonlinear properties of silica and air for picosecond ultraviolet pulses, J. Mod. Opt. 37, 555 (1990). Kim, Y. P., and Hutchinson, M. H. R., Intensity-induced nonlinear effects in UV window materials, Appl. Phys. B49, 469 (1989). Vogel, E. M., Kosinski, S. G., Krol, D. M., Jackel, J. L., Friberg, S. R., Oliver, M. K., and Powers, J. D., Structural and optical study of silicate glasses for nonlinear optical devices, J. Non-Cryst. Solids 107, 244 (1987). Moran, M. J., She, C. Y., and Carman, R. L., Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser-system-related materials, IEEE J. Quantum Electron. QE-11, 159 (1975). Owyoung, A., Nonlinear refractive index measurements in laser media, NBS Spec. Publ. 387, 12 (1973). Miller, D. A. B., Seaton, C. T., Prise, M. E., and Smith, S. D., Band-gap-resonant nonlinear refraction in III-V semiconductors, Phys. Rev. Lett. 47, 197 (1981). Weaire, D., Wherrett, D. S., Miller, D. A. B., and Smith, S. D., Effect of low-power nonlinear refraction on laser-beam propagation in InSb, Opt. Lett. 4, 331 (1979). Chi, K., Interferometric measurement of nonlinear refractive index of ZF-7 glass, Laser J. (China) 8, 48 (1981). Veduta, A. P., and Kirsanov, B. P., Variation of refractive index of liquids and glasses in a high intensity field of a ruby laser, Sov. Phys. JETP 27, 736 (1968).
2.10.2 Two-Photon Absorption Two-Photon Absorption Data Glass As2S3 As2S3 BK 3 (Schott) BK 7 (Schott) BK 7 (Schott) BK 10 (Schott) BK 10 (Schott) Holmium oxide LG630:Nd (Schott) Silica 7940 (Corning) Silica (Suprasil) Silica (Suprasil) Silica (Suprasil) Silica (Suprasil) Silica (fused) Silica (fused) Silica (fused) Silica (fused) Silica (fused)
Pulse width tp (ns)
Band gap Eg (eV)
2hhω (eV)
~30 30 1.2 1.1, 7 1.2 1.1, 7 1.2 – 0.006 1.1, 7 0.017 0.015 0.015 0.00045 0.0007 ~10 0.008 0.00028 0.004
– 2.3 4.4 3.9 4.0 4.1 4.5 – – 7.8 7.8 7.8 7.8 7.8 7.8 – – 7.8 –
3.56 2.4–3.6 4.67 7.07 4.67 7.07 4.67 4.26–4.32 2.33 7.07 6.99 9.32 9.32 10.0 10.0 12.8 10.0 10.0 10.0
(a) Relative spectrum, (b) Absorption spectrum (30 @ 3.1 eV)
© 2003 by CRC Press LLC
Index n0(hhω) ~2.58 2.5–2.6 – 1.54 1.52 – – – ~1.6 ~1.6 ~1.6 ~1.6 ~1.6 ~1.6 – ~1.6 ~1.6 ~1.6
2PA coeff. β (cm/GW) 14 (a) 0.0006 0.0060 0.0029 0.0045 0.0004 (b) 0.004