ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
FOUNDED BY G.-C. ROTA Editorial Board R. S. Doran, P. Flajolet, M. Is...
78 downloads
556 Views
7MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
FOUNDED BY G.-C. ROTA Editorial Board R. S. Doran, P. Flajolet, M. Ismail, T.-Y. Lam, E. Lutwak, R. Spigler
Volume 91
Geometry of Sporadic Groups II Representations and amalgams
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS 4 6 11 12 18 19 21 22 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 76 78 80 81 82
W. Miller, Jr. Symmetry and separation of variables H. Mine Permanents W. B. Jones and W. J. Thron Continued fractions N. F. G. Martin and J. W. England Mathematical theory of entropy H. O. Fattorini The Cauchy problem G. G. Lorentz, K. Jetter and S. D. Riemenschneider Birkhoff interpolation W. T. Tutte Graph theory J. R. Bastida Field extensions and Galois theory J. R. Cannon The one-dimensional heat equation A. Salomaa Computation and automata N. White (ed.) Theory ofmatroids N. H. Bingham, C. M. Goldie and J. L. Teugels Regular variation P. P. Petrushev and V. A. Popov Rational approximation of real functions N. White (ed.) Combinatorial geometries M. Pohst and H. Zassenhaus Algorithmic algebraic number theory J. Aczel and J. Dhombres Functional equations containing several variables M. Kuczma, B. Chozewski and R. Ger Iterative functional equations R. V. Ambartzumian Factorization calculus and geometric probability G. Gripenberg, S.-O. Londen and O. Staffans Volterra integral and functional equations G. Gasper and M. Rahman Basic hypergeometric series E. Torgersen Comparison of statistical experiments A. Neumaier Intervals methods for systems of equations N. Komeichuk Exact constants in approximation theory R. A. Brualdi and H. J. Ryser Combinatorial matrix theory N. White (ed.) Matroid applications S. Sakai Operator algebras in dynamical systems W. Hodges Model theory H. Stahl and V. Totik General orthogonal polynomials R. Schneider Convex bodies G. Da Prato and J. Zabczyk Stochastic equations in infinite dimensions A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler Oriented matroids E. A. Edgar and L. Sucheston Stopping times and directed processes C. Sims Computation with finitely presented groups T. Palmer Banach algebras and the general theory of '-algebras F. Borceux Handbook of categorical algebra I F. Borceux Handbook of categorical algebra II F. Borceux Handbook of categorical algebra III A. Katok and B. Hassleblatt Introduction to the modern theory of dynamical systems V. N. Sachkov Combinatorial methods in discrete mathematics V. N. Sachkov Probabilistic methods in discrete mathematics P. M. Cohn Skew Fields Richard J. Gardner Geometric tomography George A. Baker, Jr. and Peter Graves-Morris Padi approximants Jan Krajicek Bounded arithmetic, propositional logic, and complex theory H. Gromer Geometric applications of Fourier series and spherical harmonics H. 0 . Fattorini Infinite dimensional optimization and control theory A. C. Thompson Minkowski geometry R. B. Bapat and T. E. S. Raghavan Nonnegative matrices and applications K. Engel Sperner theory D. Cvetkovic, P. Rowlinson and S. Simic Eigenspaces of graphs F. Bergeron, G. Labelle and P. Leroux Combinatorial species and tree-like structures R. Goodman and N. Wallach Representations of the classical groups T. Beth, D. Jungnickel and H. Lenz Design theory volume I 2 ed. A. Pietsch and J. Wenzel Orthonormal systems and Banach space geometry George E. Andrews, Richard Askey and Ranjan Roy Special functions R. Ticciati Quantum field theory for mathematicians A. A. Ivanov Geometry of sporadic groups I T. Beth, D. Jungnickel and H. Lenz Design theory volume II 2 ed. O. Stormark Lie's structural approach to PDE systems C. F. Dunkl and Y. Xu Orthogonal polynomials of several variables J. P. Mayberry The foundations of mathematics in the theory of sets
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
Geometry of Sporadic Groups II Representations and Amalgams
A. A. IVANOV Imperial College, London
S. V. SHPECTOROV Bowling Green State University, Ohio
CAMBRIDGE UNIVERSITY PRESS
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcon 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 2002 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United Kingdom at the University Press, Cambridge Typeface Monotype Times 10/12pt
System MJBX
[UPH]
A catalogue record of this book is available from the British Library ISBN 0 521 62349 9 hardback
Contents
Preface 1 1.1 1.2 1.3 1.4 1.5
Preliminaries Geometries and diagrams Coverings of geometries Amalgams of groups Simple connectedness via universal completion Representations of geometries
page ix 1 1 3 5 7 11
Part I. Representations 2 General features 2.1 Terminology and notation 2.2 Collinearity graph 2.3 Geometric hyperplanes 2.4 Odd order subgroups 2.5 Cayley graphs 2.6 Higher ranks 2.7 c-extensions 2.8 Non-split extensions
17 19 19 22 24 27 32 34 35 40
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
43 43 45 47 50 51 55 56 64
Classical geometries Linear groups The Grassmanian 8P\ is uniserial 0(S4(2)) Symplectic groups Orthogonal groups Brouwer's conjecture 0(3 • S4(2))
vi
Contents 9{Alt5) 9(3®* • S2n(2))
66 68
4 4.1 4.2 4.3 4.4 4.5 4.6
Mathieu groups and Held group ^(M 23 )
76 76 77 81 82 88 92
5 5.1 5.2 5.3 5.4 5.5 5.6
Conway groups Leech lattice $(Co2) 9(Cox) Abelianization 0(3 2 3 • Co2) 3(3 • C/4(3))
93 93 97 99 101 103 108
6 6.1 6.2 6.3 6.4 6.5 6.6
Involution geometries General methods J(Alt7) S(M22) •(1/4(3)) S(C2,2B) S{Cou2A)
111 111 115 117 120 122 125
7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9
Large sporadics Existence of the representations A reduction via simple connectedness The structure of N(p) Identifying Ri(p) Ri{p) is normal in R[p\ R\_p\ is isomorphic to G(p) Generation of G(p) n G(q) Reconstructing the rank 3 amalgam ^(3 4 3 7 1 • BM)
128 128 131 134 141 146 151 153 155 159
3.9 3.10