This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
3 series by Watson's formula (2.5.1), formulas (3.10.5) and (3.10.6) are equivalent to the summation formulas 4¢>3
[
a, qa!, -w/qa!, q-n .1
.1
a 2 ,w,-a 2 q
I-n
;
1
q, q
(w/aq, -a!, aq2 /w; q)n
(3.10.9)
(w, -a-!, aq/w; q)n
and
2
(1 + l/b)(l + a"2 qn /b)(a/b , qa"2 /b, l/b; q)n (1 + qn /b)(l + a! /b)(aq/b, a! /b, 1/b2; q)n ' 1
1
(3.10.10)
respectively, which are closer to what one would expect q-analogues of formulas 4.5(1.1) and 4.5(1.2) in Bailey [1935] to look like.
3.10 Transformations of series
99
It is also of interest to note that if we set c2 = aq in (3.10.3), rewrite the il> series on the left side as an 8¢7 series in base q and transform it to a balanced 4¢3 series, we obtain 4¢3
[
a, b, -w /b, q-n ] /b -b -n ; q, q aq , q ,w
_ (w/a,-aq/b;q)n (w,-q/b;q)n
¢ [ 4
3
2 2] (
a,a 2q2/ w 2,aq/b 2,q-2n . a2q2/b2,aql-n/w,aq2-n/w,q,q
,
)
3.10.11
which is a q-analogue of the c = (1 + a)/2 case of Bailey [1935, 4.5(1)]. Using (2.10.4), the left side of (3.10.11) can be transformed to give q-n, a, aq/b 2, -aq/w ] [ 4¢3 aq /b , -aq /b ,aq I-n/ w ; q, q
(3.10.12) This formula was first proved by Singh [1959] and more recently by Askey and Wilson [1985]. The latter authors also wrote it in the form 4¢3
=
a2,b2,c,d ] [ b! a q2, -ab! q2,-cd; q, q 4¢3
[
2b22d2 a, ,c , 2 2] 2b2 d d; q , q , qa , -c , -qc
(3.10.13)
provided that both series terminate. Now that we have the summation formulas (3.10.5)-(3.10.8), we can use them to produce additional transformation formulas. Set r = 3 and al = -a2 = qa!, a3 = -aq/w, bl = -b 2 = a!, b4 = _aqn+1 in (3.10.1). The il> series on the right side can now be summed by (3.10.5) and this leads to the following q-analogue of Bailey [1935, 4.5(2)]
(-aq, aq2 /w, w/aq; q)n (-q, aq/w, w; q)n X5¢4
[
2 2]
aq,aq2,a2q2/b2c2,a2q2/w2,q-2n a2q2/b2,a2q2/c2,aq2-n/w,aq3-n/w;q,q
.
(3.10.14)
Let us now turn to applications of (3.10.2). If we set r = 1, al = _Aqn+l/a, bl = a 2q-n /A, b2 = _aqn+l, z = q in (3.10.2), where A = (qa 2/bcd)2, then the il> series on the right side reduces to a balanced very-well-poised 8¢7 series in base q which can be summed by Jackson's formula (2.6.2). Thus, we obtain the transformation formula a2,_aq2,b2,c2,d2: _Aqn+l/a,q-n il> [ ;q2,q;q -a, a 2q2 /b 2, a 2q2 / c2, a 2q2 / d 2 : a 2q-n / A, _ aqn+1
1
100
Additional summation, transformation, and expansion formulas
(-aq, >..qj a; q)n(>..q2 j a 2; q2)n (-q, >..qja 2; q)n(>..q2; q2)n
This is a q-analogue of Bailey [1935, 4.5(3)]. Similarly, setting r = 3 and choosing the parameters so that the series on the right side of (3.10.2) can be summed by (3.10.7), we get the following q-analogue of Bailey [1935,4.5(4)] [
2 2 d 2 . ->..qnja q-n a2 'aq2 ] " _aq2 b , c , ., 2 a, -a, a 2q2 jb2, a 2q2 j c2, a 2q2 j d 2 : a 2ql-n j >.., _ aq n+l ; q ,q; q
Exercises 3.1 Deduce from (3.10.13) that
provided that both series terminate. Show that this formula is a q-analogue of Gauss' quadratic transformation formula (3.1.7) when the series terminate. 3.2 Using the sum -+. 2 '/'1
(q-n ql-n. qb2. q2 q2) ,
,
"
2 = (b(b 2'..q2)) n q- (n) 2 , ,q
n
prove that
(i)
q)oo = ((Z; .) az, q
00
-+.
2'/'1
(
a, aq; qb2 ; q2,Z 2) , IZI < 1.
101
Exercises
2
a
2 2 2 ]11 22;q,azq,z../b) (q>..2/b, >..2 /ab 2; q)oo' 1
3.10 Show that 8W7 (
->..; q>,,~, -q>,,~, a, b, -b; q, >..jab2)
(>..ja, >"q, ->..q, >../b2, >..q/ab, ->..q/ab;.q)oo , l>..jab2 < l. (>.., >"q/a, ->..q/a, >"q/b, ->..q/b, >../ab ,q)oo Show that this is a q-analogue of the formula 1
F 3
2
1+>..j2,>"/2,
[a,
b
.
1 + >.. - b'
r(>../2)r (1 + A;a) r(l r(l + >..j2)r (A;a) r(l
1]
+ >.. - b)r(>.. - a + >.. - a - b)r(>.. -
2b) Re(>..-a-2b) >0. 2b)'
3.11 Derive Jackson's [1941] product formula 2(Pl (a 2, b2; qa 2b2; q2,
=
4¢3
z)
2¢1 (a 2, b2; qa 2b2; q2,
] a2, b2, ab, -ab [ 2b2 b! b! ; q, z , a ,a q2, -a q2
qz)
Izl < 1, Iql < 1,
and show that it has Clausen's [1828] formula
[2a, 2b, a + b 1 ; Z ] , Izl < 1, 2a + 2b, a + b + "2 as a limit case. Additional q-analogues of Clausen's formula are given in §8.8. 1 )] 2 [2F1 ( a, b; a + b + -; z = 2
3 F2
3.12 Prove that IJ? [
wq2-n] b2 c2 . d _q1-n/ w q-2n ' _q2-n " ., . 2 • _q-n,q2-2n/b 2,q2-2n/ c2: _q1-n/d,w,q ,q, b2c2d
= (-l,w/d;q)nd n (-d,w; q)n d2,q2-2n/b2c2,q2-2n/w2,q-n,q1-n [ X 5¢4 q2-2n/b2,q 2-2n/ c, 2 dq1-n/ w, dq2-n/ w ; q ,q
2 2] .
104
Additional summation, transformation, and expansion formulas
3.13 If A = a 4q2 /b 2c2d 2 , show that [
a2 ' _q 2a" d2 . . -Aqn/a ] b2 c2, , q-n 2 2 _a,a2q2/b2,a2q2/c2,a2q2/d2: a2ql-n/A,_aqn+l;q ,q;q
(-aq, Aja; q)n(Aja 2 , Aq2/a; q2)n (-q, A/a 2; q)n(Aq2, A/a; q2)n X lOVVg(A; a,aq, Ab2/a 2 , Ac2/a 2 , Ad2/a2,A2q2n/a2,q-2n;q2,a2q3 /A)
and [
=
2a b2 c2 d 2 . _Aqn-l/a q-n a2 " q2a -q ] " ,. , 2 2 a, -a, a 2q2 /b 2, a 2q2 / c2 , a 2q2 / d 2 : a 2q2-n / A, _aqn+l ; q , q; q (-aq,Ajaq;q)n(A/a 2q2;q2)n(1- Aq2n-l/a) n q
(-q, A/qa 2; q)n(Aq2; q2)n(1- Aq-l/a) x lQVVg (A; aq, aq2, Ab2/a 2, AC2/a 2, Ad2/a 2, A2q2n-2 /a 2, q-2n; q2, a 2l/A).
(Nassrallah and Rahman [1981]) 3.14 Using (3.4.7) show that the q-Bessel function defined in Ex. 1.24 can be expressed as
for Ixl < 2. (Rahman [1987]) 3.16 Show that 1
4¢3
[
axq ] a, -qa"2, b, c 1 ; q, -b-a"2, aq/b, aq/c c
_ (l-xa~)(axq;q)oo () x; q 00
-
J.
5'1-'4
[a~,-qa~,(aq)~,-(aq)~,aq/bc. /
/
/
aq b, aq c, q x, axq
(1 - a~)(aq, aq/bc, axq/b, axq/c; q)oo
+~~~~~~--~~~~~-
(aq/b,aq/c,axq/bc,l/x;q)oo
x
J.
5'1-'4
[xa~,-xqd,x(aq)~,-x(aq)~,aXq/bc axq/b,axq/c,qx,aqx 2
] ;q,q .
'
] q, q
Exercises
105
(cz/ab; q2)00 ( /) ~ n (. 2) 2¢1 a,b;c;q,cz abq = ~anZ , n=O z, q 00 show that
3.17 If
(Singh [1959], Nassrallah [1982]) 3.18 If
(cqz/ab; q2)00 ( / ) ~ n 2¢1 a, b; c; q, cz ab = ~ anz ,show that ( . 2) z,q 00 n=O 2¢1(cq/a, cq/b; cq2; q2, z) 2¢1(a, b; c; q2, cz/ab)
(Singh [1959], Nassrallah [1982]) 3.19 If
(cqz/ab; q2)00 2¢1 (/ ) = ~ n a q, b; c/ q; q, cz /ab ~ anz ,show that ( . 2) z,q 00 n=O 2¢1(cq/a, c/bq; c; q2, z) 2¢1(a, b; c; q2, cz/ab)
(Singh [1959], Nassrallah [1982]) 3.20 Prove that
when max(lpl, Iql, Ibl) formulas
< 1, and extend this to the bibasic transformation
~ 1 - apkqk (a;ph(c/b; qh bk 1- a (q; qh(abp;ph
6 =
=
1 - c ~ (ap;ph(c/b; q)k (bq)k 1- b (q; q)k(abp;p)k
6
1 - c ~ (ap;p)k(cq/b; qh bk 1- abp (q;q)k(abp2;ph
6
= (1 - c)(ap;p)oo
f
(b;ph(cqpk; q)oo (ap)k (1 - b) (abp; p)oo k=O (p; p)k (bqpk; q)oo
when max(lpl, Iql, lapl, Ibl) (Gasper [1989a])
1 (qa,qb;qc;q,z) =
fiOO
rq(c) 1 rq(a)rq(b)27ri
-ioo
r q(a+s)rq(b+s)r(-s)r(1+s)(_z)Sds. rq(c+s)rq(1+s) (4.2.6)
4.3 Analytic continuation of 21>I(a, b; C; q, z) Since the integral in (4.2.2) defines an analytic function of z which is singlevalued when larg( -z)1 < 7r, the right side of (4.2.2) gives the analytic continuation ofthe function represented by the series 21>I(a, b; c; q, z) when Izl < 1. As in the ordinary hypergeometric case, we shall denote this analytic continuation of 21>I(a,b;c;q,z) to the domain larg(-z)1 < 7r again by 21>I(a,b;c;q,z). Barnes [1908] used (4.1.1) to show that if larg( -z)1 < 7r and a, b, c, a - b are not integers, then the analytic continuation for Izl > 1 of the series which defines 2Fl(a, b; C; z) for Izl < 1 is given by the equation
r(c)r(b-a) -a -1 2Fl(a,b;c;z) = r(b)r(c-a)(-z) 2Fl(a,1+a-c; 1+a-b;z ) r(c)r(a - b) -b + r(a)r(c-b)(-z) 2Fl(b,1+b-c; 1+b-a;z-1), (4.3.1) where, as elsewhere in this section, the symbol "=" is used in the sense "is the analytic continuation of". To illustrate the extension of Barnes' method to 21>1 series we shall now give Watson's [1910] derivation of the following q-analogue of (4.3.1):
21>1 (a, b; C; q, z) (b, cl a; q)oo (az, ql az; q)oo ( I I I) = (bl ) ( I ) 21>1 a, aq C; aq b; q, cq abz c, a; q 00 z, q Z; q 00 (a, clb; q)oo (bz, qlbz; q)oo ( I I I) + (c, aIb) ; q 00 (z, qI Z; q)00 21>1 b, bq C; bq a; q, cq abz , provided that larg( -z)1
o.
(4.3.2)
< 7r, c and alb are not integer powers of q, and a, b, z =I=-
First consider the integral
h =
_1-/ 27ri
(ql+s, cq S;q)oo7r(_z)S ds (aqs, bqs; q)oo sin 7rS
(4.3.3)
118
Basic contour integrals
along three line-segments AI, A 2 , B, whose equations are: Al : Im(s) = ml,
A2
:
Im(s) = -m2,
B: Re(s) = -M,
(4.3.4)
where ml,m2,M are large positive constants chosen so that A l ,A2 ,B are at least a distance E > 0 away from each pole and zero of
(ql+s, cqs; q)oo
g(s)
= ( ) aqS, bqS; q
(4.3.5) 00
and it is assumed that AI, A 2 , B are terminated by each other and by the contour of the integral in (4.2.2), i.e. Re(s) = 0 with suitable indentations. From an asymptotic formula for (a; q)oo with q = e- w , W > 0 , due to Littlewood [1907, §12]' it follows that if Re(s) ---. -00 with Is - sol> E for some fixed E > 0 and any zero So of (qS; q)oo, then
Re[log(qS; q)ool
=
W
"2(Re(s))
2
W
+"2 Re(s) + 0(1).
(4.3.6)
This implies that
g(s)
=
0
(I :~ IRe(S)) ,
(4.3.7)
when Re(s) ---. -00 with s bounded away from the zeros and poles of g(s). By using this asymptotic expansion and the method of §4.2 it can be shown that if Izl > Icqjabl, then the value of the integral II in (4.3.3) taken along the contours AI, A 2, B tends to zero as ml, m2, M ---. 00. Hence, by Cauchy's theorem, the value of h, taken along the contour C of §4.2, equals the sum of the residues of the integrand at its poles to the left of C when Izl > Icqjabl. Set 0: = -w-lloga, f3 = -w-llogb so that a = q''',b = qf3. Since the residue of the integrand at -0: - n + 27rimw- l is (
-1 l-n
a
-1 -n
n+l
)
q ,ca q ,q ;q -1 -n (q, q, ba q ; q)oo
00
7rW
-l(
-z
)-a-n n(n+l)/2 q
x exp {2m7riw- l log( -z)} csc (2m7r 2iw- l - 0:7r) , we have 00
m=-oo
x
7rw- l (cja, qja; q)oo ( )-a (bj .) -z a, q, q
2¢1
( j j j) a, aq c; aq b; q, cq abz
00
+ idem (a; b).
(4.3.8)
Thus it remains to evaluate the above sums over m when larg(-z)1 < 7r. Letting c = bin (4.3.8) and using (4.2.2), we find that the analytic continuation of 2¢1(a,b;b;q,z) is 00
m=-oo
l qj x 7rw-( (a, )a;q)oo( -z )-a q,q;q 00
2¢1
(a, aq j b; aq j b; q, q jaz) .
4.4 q-analogues of Barnes' first and second lemmas
119
Since, by the q-binomial theorem, 2rP1
(a, b; b; q, z )
(az; q)oo
= (z;q )
00
and the products converge for all values of z, it follows that 00
m=-oo
(4.3.9)
w(q,q,az, q/az; q)oo 7r(a,q/a,z,q/z;q)oo . Using (4.3.9) in (4.3.8) we finally obtain (4.3.2). 4.4 q-analogues of Barnes' first and second lemmas Assume, as before, that 0< q < 1, and consider the integral (q1-c+s " q1-d+s. q) I _ _1 00 7rq S dS 2 - 27ri -ioo (qa+s,qb+s;q)oo sin7r(c-s)sin7r(d-s)'
fiOO
(4.4.1)
where, as usual, the contour of integration runs from -ioo to ioo so that the increasing sequences of poles of the integrand (i.e. c + n, d + n with n = 0,1,2, ... ) lie to the right and the decreasing sequences of poles (i.e. the zeros of (qa+s, qb+ s ; q)oo) lie to the left of the contour. By using Cauchy's theorem as in §4.2 to evaluate this integral as the sum of the residues at the poles c + n, d + n with n = 0,1,2, ... , we find that c (q q1+c-d. q) I 7rq , '00 A.. (a+c b+c. l+c-d. ) 2 -. ( d) (a+c ,q ,q ,q, q sm 7r c q , qb+c.) ,q 00 2'/-'1 q
+ idem (c; d).
(4.4.2)
Applying the formula (2.10.13) to (4.4.2), we get 1
fiOO
(q1-c+s, q1-d+s; q)oo
7rqs ds
(qa+s,qb+s;q)oo sin7r(c-s)sin7r(d-s) qC (q, q1+c-d, qd-c, qa+b+c+d; q) 00 sin 7r(c - d) (qa+c, qa+d, qb+ c, qb+d; q)oo
27ri
-ioo
(4.4.3)
which is Watson's [1910] q-analogue of Barnes' first lemma (4.1.2), as can be seen by rewriting it in terms of q-gamma functions. A q-analogue of Barnes' second lemma (4.1.3) can be derived by proceeding as in Agarwal [1953b]. Set c = nand d = c - a - bin (4.4.3) to obtain 1
27ri
fiOO
(q1-n+s,q1-c+a+b+s;q)00
-ioo
= csc 7r( C X
7rqs ds
(qa+s,qb+s;q)oo sin7rssin7r(c-a-b-s) (q1+a+b-c, qc-a-b, qC, q; q)oo a-
b) -'---,----,----------;----:---'-''''(qa, qb, qc-a, qC-b; q)oo
(_l)n (q(a,qb;)q)nqn(C-a-bl-G) qC;q n
(4.4.4)
120
Basic contour integrals
for n = 0,1,2, .... Next, replace c by d in (4.4.4), multiply both sides by
(_I)n qn (e-c)+G) (qC; q)n / (q, qe; q)n' sum over n and change the order of integration and summation (which is easily justified if Iqe-c+sl < 1) to obtain (ql+a+b-d, qd-a-b, qd, q; q) 00 csc 7f( d - a - b) --'--------;----;----;-----;--;--;---'---''-''(qa,qb,qd-a,qd-b;q)oo
x
(qa, l, qC; qd, qe; q, qd+e-a-b-c)
3¢2
jiOO
1
(ql+s,ql-d+a+b+s;q)oo
=
27fi -ioo (qa+s,qb+s;q)oo x 2¢1 (q-S, qC; qe; q, qe-c+s) ds
=
(qe-c; q)oo ~
jiOO
27f~
-ioo
(qe; q)oo
7fqs sin7fssin7f(d-a-b-s)
(ql+s, qe+s, ql-d+a+b+s; q) 00 (qa+s, qb+ s , qe-c+s; q)oo
7fqs ds x sin 7f s sin 7f (d - a - b + s )'
(4.4.5)
by the q-Gauss formula (1.5.1). Now take c = d. Then the series on the left of (4.4.5) can be summed by the q-Gauss formula to give, after an obvious change in parameters,
jiOO
(ql+S, qd+s, qe+s; q) 00 7fqs ds 27fi -ioo (qa+s, qb+ s , qc+s; q)oo sin 7fS sin 7f( d + s) (q, qd, ql-d, qe-a, qe-b, qe-c; q) 00 d =~7f , (qa, qb, qC, ql+a-d, ql+b-d, ql+c-d; q)oo 1
(4.4.6)
where d + e = 1 + a + b + c, which is Agarwal's q-analogue of Barnes' second lemma. This integral converges if q is so small that Re [s log q - log(sin 7fS sin 7f(d + s ))]
Ib1 ... br q/a1 ... a r +11, then the integral I3 = 2;'i t,:,oo ... ds is equal to the sum of the residues of the integrand at those poles of the integrand which lie on the left of the contour. Set a1 = -w- 1 10g a1. Since the residue ofthe integrand at -a1 -n+27rimw- 1 IS
b a -1 q -n , ... , br a 1-1 q -n i q ) ( qn+1 ,a 1-1 q 1-n ,1 -1 _ _ (+1)/2 1 --'-----;------,-------------,-------,----------'---"oo=7rW (-z) 1 nqn n 1 1 (q, q, a2 a l q-n, ... , a r+1 a l q-n i q)oo x csc(2m7r 2iw- 1 - al7r) exp {2m7riw- 1 10g( -z)},
by proceeding as in the proof of (4.3.2) and using (4.3.9) and (4.5.1) we obtain the expansion
(a2, ... , ar+1, bl/a1, ... , br/a1, a1 Z, q/a1 z i q)oo (b1, ... ,br,a2/a1, ... ,ar+1/al,z,q/Ziq)00 A,
X r+1'i/r
[al,a1q/bl, ... ,alq/br. qb1 ... br ] / / ' q, alq a2,···,alq ar+l za1···ar+1
(4.5.2)
+ idem (ali a2,···, ar+d, where the equality holds in the "is the analytic continuation of" sense. The symbol "idem (ali a2, ... , ar+d" after an expression stands for the sum of the r expressions obtained from the preceding expression by interchanging a1 with each ak, k = 2,3, ... , r + 1.
4.6 Contour integrals representing well-poised series Let us replace a, b, c, d and e in (4.4.6) by a + n, b + n, c + n, d + nand e + 2n, respectively, where (4.6.1) e = 1 + a + b + c - d, and transform the integration variable s to s - n, where n is a non-negative integer. Then we get n+ioo (q1+s-n,qd+s,qe+s+n iq )00 1 7rqs-n ds 27ri n-ioo (qa+s , qb+ s , qc+s i q) 00 sin 7r s sin 7r (d + s)
I
= CSC7r
d
(q,qd+n,q1-d-n,qe-a+n,qe-b+n,qe-c+niq)00 ( b +n,qc+n,qe-a- b,qe-a-c,qe- b ) 00 . qa+n,q -c iq
(4.6.2)
The limits of integration n ± ioo can be replaced by ±ioo because we always indent the contour of integration to separate the increasing and decreasing sequences of poles. Thus, it follows from (4.6.2) that (a b c ) ( q,q d ,qI-d ,e e-a ,qe-b ,qe-c iq ) 00 csc(7rd) q ,q ,q iq n (l-d)n (qa, qb, qC, qe-b-c, qe-c-a, qe-a-b i q)oo (qe-a, qe-b, qe-c i q)n q =
1 fioo (q1+S, qd+s, qe+s i q)oo 7rq(n+l)s(q- Si q)n ds 27ri -ioo (qa+s, qb+ s , qc+s i q)oo sin 7rssin 7r(d + s)(qe+s i q)n'
(4.6.3)
122
Basic contour integrals
(4.6.4) where e = 1 + a + b + c - d, Izl < Iqdl and it is assumed that (4.4.7) holds. Therefore, if we can sum the series on the right of (4.6.4), then we can find a simpler contour integral representing the series on the left. In particular, if we let r = 4,e = 1 +A,al = ql+A/2 = -a2,a3 = qd,a4 = qe, _ q2-d-e+A , b1 -- qA/2 -- -b 2, b3 -- ql-d+A , b4 -- ql-e+A ,Z -
then we get a VWP-balanced 6¢5 series which can be summed by (2.7.1). This yields Agarwal's [1953b] contour integral representation for a VWP-balanced 8¢7 series: 8¢7
=
[
qA,ql+A/2,_ql+A/2,qa,qb,qc,qd,qe qA/2, _qA/2, ql+A-a, ql+A-b, ql+A-c, ql+A-d, ql+A-e ; q, q
B]
sin 7r(a + b + c - A)
x
7rqS ds
(4.6.5)
--------~~----------~
sin 7rS sin 7r( a + b + c - A
where B
= 2 + 2A -
+ s) ,
a - b - c - d - e, provided Re(B)
Re [s log q -log(sin7rssin7r(a + b+ c - A
> 0 and
+ s))] < o.
If we evaluate the integral in (4.6.5) by considering the residues at the poles of 1/ [sin 7r s sin 7r( a + b + c - A + s ) ] lying to the right of the contour, then we obtain the transformation (2.10.10) of a VWP-balanced 8¢7 series in terms of the sum of two balanced 4¢3 series. In addition, if we replace A, d, e and a by A, A+d-A, A+e-A and A+a-A, respectively, and take A+a+d+e = 1+2A in (4.6.5), then the integral in (4.6.5) remains unchanged. This gives Bailey's transformation formula (2.10.1) between two VWP-balanced 8¢7 series.
4.7 Contour integral analogue of Bailey's formula
123
4.7 A contour integral analogue of Bailey's summation formula By replacing A, a, b, c, d, e in (4.6.5) by a, d, e, f, b, c, respectively, we obtain the formula
s W7 (qa; qb, qC, qd, qe, qf; q, q)
=
sin n (d + e +
f - a)
(ql+a,qd,qe, qf,ql+a-d-e, ql+a-d-f, ql+a-e- f ; q)oo X
~~~~--~----~--~~------~--~~--~--~~--
(q, ql+a-b, ql+a-c, ql+a-d, ql+a-e, ql+a- f ,ql+a-d-e- f ; q)oo
1
x-
jiOO
2ni
(ql+S, ql+a-b+s, ql+a-c+s; q) 00 (qd+s, qe+s, qf+ s ; q)oo
-ioo
nqs ds
sin ns sin n(d + e +
f -
a + s)'
(4.7.1) provided the series is VWP-balanced, i.e.,
1 + 2a = b + c + d + e +
f.
(4.7.2)
Since 1 + 2(2b - a) = b + (b + c - a) + (b + d - a) + (b + e - a) + (b + f - a) by (4.7.2), it follows that (4.7.2) remains unchanged if we replace a, c, d, e, f by 2b - a, b + c - a, b + d - a, b + e - a, b + f - a, respectively, and keep b unaltered. Then (4.7.1) gives S W7
X
(q2b-a; qb, qb+c-a, qb+d-a, qb+e-a, qb+ f-a; q, q)
) ( q 1+2b-a ,qb+d-a ,qb+e-a ,qb+f-a ,q l+a-d-e ,q l+a-d-f ,q l+a-e-f.,qoo ~------~~~~--~~--~~~~~--~~~~--~------~=
(q,ql+b-a,ql+b-c, ql+b-d,ql+b-e,ql+b-f, qC; q)oo
1
x2ni
.
= SIn nc X
= sin nc
jiOO -ioo
(ql+b-a+s, ql+b-c+s, ql+s; q) 00
nqs ds
(qb+ d- a+s , qb+ e- a+s , qb+ f -a+s; q) 00 sin n s sin n( c - s)
(ql+2b-a, qb+d-a, qb+e-a, qb+f- a ; q)oo """"'--------,----:;-:-;-----:;-.,-;-------,-------'-'''''' (q, q1+ b- a , q1+ b- c , qC; q)oo
(ql+a-d-e,ql+a-d- f ,ql+a-e- f ;q)oo 1 (q1+b-d, q1+b-e , q1+b- f ; q) 00
2ni
jiOO
(q1+s;q)oo
-ioo
(qd+s; q) 00
(ql+a-c+s, ql+a-b+s; q) 00
nqs ds
(qe+s, qf+ s ; q)oo
sinn(a-b+s)sinn(c+b-a-s)'
x
(4.7.3)
where the second integral in (4.7.3) follows from the first by a change of the integration variable s ----; a-b+s. Combining (4.7.1) and (4.7.3) and simplifying, we obtain (ql+a-b, ql+a-c, ql+a-d, ql+a-e, ql+a- f ; q)oo (q1+a, qC, qd, qe, qf ; q) 00 X SW7
b-a
- q
(qa;qb,qc,qd,qe,qf;q,q) ) (q l+b-a ' ql+b-c , ql+b-d , ql+b-e , ql+b- f '. (qX l (ql+2b-a, qb+c-a, qb+d-a, qb+e-a, qb+f-a; q)oo
124
Basic contour integrals X 8W7
(q2b-a; qb, qb+c-a, qb+d-a, qb+e-a, l+f- a ; q, q)
) ( q I+a-d-e ,q I+a-e-f ,q I+a-d-f.,q(X) (q, qC, qb+c-a; q)(X) q) 1 ji(x) (q l+s , ql+a-b+s , ql+a-c+s.'(x)
x2ni
(qd+s, qe+s, qf+ s ; q)(X)
-i(X)
· nq sSIn n (a_ b) d s sin ns sin n(a - b + s) ,
(4.7.4) when (4.7.2) holds. Evaluating the above integral via (4.4.6), we obtain Bailey's summation formula (2.11.7). Agarwal's [1953b] formula 1 2ITi
i(X) (ql+S, q~a+s, _q~a+s, ql+a-b+s, ql+a-c+s; q) (X)
l,~
(
q"+", q1+j "+', _q1+ j "+', qb+., qo+,; q) oc
(ql+a-d+s,ql+a-e+s,ql+a-f+s;q)(X)
x
nqs ds
------~~--~--~--~----~--------~--~--7
(qd+ s , qe+s, qf+ s ; q)(X)
sin ns sin n(a - b + s)
b (q, ql+a-b, qb-a, ql+a-d-e, ql+a-e- f; q) (X) =cscn(a-)
(qb,qc,qd,qe,qf;q)(X)
( q I+a-d- f ,q I+a-c-d ,q I+a-c-e ,q I+a-c- f.,q ) (X)
x
(qb+c-a, qb+d-a, qb+e-a, qb+ f -a; q) (X)
,
(4.7.5)
where 1 + 2a = b + c + d + e + j, follows directly from (2.11.7) by considering the residues of the integrand of the above integral at the poles to the right of the contour, i.e. at s = n, b - a + n with n = 0,1,2, .... Thus (4.7.5) gives an integral analogue of Bailey's summation formula (2.11.7). The integral in (4.7.5) converges if q is so small that Re [s log q - log (sin n s sin n (a - b + s) )1 < 0 on the contour for large
(4.7.6)
lsi-
4.8 Extensions to complex q inside the unit disc The previous basic contour integrals can be extended to complex q inside the unit disc by using suitable contours. For 0 < Iql < 1, let (4.8.1) where WI = -log Iql > 0 and W2 = -Arg q. Thus q = e-(Wl +iW 2). Then a modification of the proof in §4.2 (see Watson [1910]) shows that if 0 < Iql < 1 and Izl < 1, then formula (4.2.2) extends to 2¢1
(a, b; c; q, z) (a, b; q)(X) (q,c;q)(X)
(4.8.2)
4.9 Other types of basic contour integral formulas
125
where C is an upward directed contour parallel to the line Re( s( WI + iW2)) = 0 with indentations, to ensure that the increasing sequence of poles 0, 1,2, ... , of the integrand lie to the right, and the decreasing sequences of poles lie to the left of C. Since the above integral converges if Re[s log( -z) - log (sin 7fs)] < 0 on C for large lsi, i.e., if (4.8.3) it is required that z satisfies (4.8.3) in order for (4.8.2) to hold. This restriction means that the z-plane has a cut in the form of the spiral whose equation in polar coordinates is r = eW1 (J/W2. Analogously, when 0 < Iql < 1, the contours in the q-analogues of Barnes' first and second lemmas given in §4.4 and the contours in the other integrals in §§4.4-4.7 must be replaced by upward directed contours parallel to the line Re(s(wl + iW2)) = 0 with indentations to separate the increasing and decreasing sequences of poles. 4.9 Other types of basic contour integrals
Let q = e- w with
W
> 0 and suppose that
(aIz, ... ,aAz, bl/z, ... ,bB/z;q)oo P () z = ~----------~~----~~~~ (CIZ, ... ,ccz , dl/z, ... ,dD/z;q)oo
(4.9.1)
has only simple poles. During the 1950's Slater [1952c,d, 1955] considered contour integrals of the form 1m
W == 1m(A,B;C,D) = -.
27f~
J-i7r i7r
/
W
P(qS)qmsds
(4.9.2)
/w
with m = 0 or 1. However, here we shall let m be an arbitrary integer. It is assumed that none of the poles of P(qS) lie on the lines Ims = ±7f/w and that the contour of integration runs from -i7f / W to i7f / wand separates the increasing sequences of poles in 11m sl < 7f/w from those that are decreasing. By setting if) = -sw the integral 1m can also be written in the "exponential" form 1m
= ~ J7r 27f
-7r
P (ei(J) eim(Jdf)
(4.9.3)
with suitable indentations, if necessary, in the contour of integration. Similarly, setting z = qS we obtain that (4.9.4) where the contour K is a deformation of the (positively oriented) unit circle so that the poles of 1/ (CIZ, ... , ccz; q)oo lie outside the contour and the origin and poles of 1/(dl/z, ... ,dD/z;q)oo lie inside the contour. Special cases of (4.9.3) and (4.9.4) have been considered by Askey and Roy [1986]. Although each of the above three types of integrals can be used to derive transformation formulas for basic hypergeometric series, we shall prefer to
126
Basic contour integrals
use mainly the contour integrals of the type in (4.9.4) since they are easier to work with, especially when the assumption in Slater [1952c,d, 1966] that 0< q < 1 is replaced by only assuming that Iql < 1, which is the case we wish to consider in the remainder of this chapter. 4.10 General basic contour integral formulas
Our main objective in this section is to see what formulas can be derived by applying Cauchy's theorem to the integrals Im in (4.9.4). Let Iql < 1 and let 15 be a positive number such that 15 -=1= Idjqnl for j = 1,2, ... , D, and 15 -=1= Icjlq-nl for j = 1,2, ... ,0 when n = 0,1,2, .... Also let ON be the circle Izl = blqlN, where N is a positive integer. Then ON does not pass through any of the poles of P(z) and we have that
IF (bqN)
(bqN) m-l I = I (alb, ... ,aAb, bd 15, ... ,bB/b; q)oo I (clb, ... ,ceb, dd b, ... , dD/b; q)oo
x
I (Clb, ... ,ceb,qb/bl, ... ,qb/bB;.q)N
X
bm-llbNq(Ntl)
(bl ... bBqm-l)NI (alb, ... , aAb, qb/d l , ... , qb/d D, q)N d l ··· d D D I
-
B
=
0
(I bl
~~ ~~~:-l IN IbN q(Ntl) ..
D I
-
B
)
.
(4.10.1) Since ON is of length O(lqIN) it follows from (4.10.1) that if D and
> B or if D = B (4.10.2)
then
lim
N--+oo
1
eN
p(z)zm-ldz
=
O.
(4.10.3)
Hence, by applying Cauchy's residue theorem to the region between K and ON for sufficiently large N and letting N ----+ 00, we find that if D > B or if D = B and (4.10.2) holds, then Im equals the sum of the residues of p(z)zm-l at the poles of 1/ (dd z, ... , dD/ z; q)oo' Therefore, since .
ReSIdue
z
=
(
dqn
1
(d/ z; q)oo
)
=
(_I)ndq2n+G) , (q; q)n (q; q)oo
n
=
0,1,2, ... ,
(4.10.4)
it follows that
(4.10.5)
4.10 General basic contour integral formulas
127
> B, or if D = Band (4.10.2) holds. In addition, by considering the residues of p(z)zm-l outside of K or by just using the inversion z -+ Z-l and renaming the parameters, we obtain if D
1m= (blCl, ... ,bBcl,aI/cl, ... ,aAlcl;q)oo_m ~ (q, dlCl, ... , dDCl, c2/cl, ... , Cc ICl; q)oo
f
x
(dlCl, ... , dDCl, qcI/al, ... , qcI/aA; q)n n=O (q, blCl, ... , bBCl, qCI/C2, ... , qcI/cc; q)n
(n+l)/2)n(C-A) (a l ... aAq-m)n x ( -Clq Cl··· Cc + idem (Cl; C2, ... , cc)
if C
> A, or if C
=
A and l
In the special case when C in the form
(A
Im
(4.10.6)
=
al ... aAq-ml Cl··· Cc
< 1.
A we can use the
reps
(4.10.7) notation to write (4.10.5)
·A ) - (aldl, ... ,aAdl,bI/dl, ... ,bBldl;q)oo d m , B, , D - (q,cl dl , ... ,CAdl ,d2Idl, ... ,dD I ) 00 1 dl;q
cldl , ... , cAdI, qdI/bl , ... , qdI/bB . t( d )D-B] al d 1,···,aA d l,q did 1 2,···,q did 1 D ,q, q 1 + idem (d l ;d2, ... ,dD ) (4.10.8) rI,
[
XA+B'I'A+D-l
where t
= bl b2 ··· bBqm Id l ... d D , if D > B, or if D = Band (4.10.2) holds.
Similarly, from the D
1 (A B·C B) m
=
B case of (4.10.6) we have
(blCl, ... ,bBcl,aI/cl, ... ,aAlcl;q)oo -m (q,dlCl, ... ,dBCl,C2/cl, ... ,cclcl;q)ooCl
=
",
[dlCl, ... , dBCl, qCI/al, ... , qcI/aA. ( )C-A] I I ' q, U qCl blCl, ... ,bBcl,qcl C2,···,qCl Cc + idem (Cl; C2, ... , cc) (4.10.9) rI,
XA+B'I'B+C-l
> A, or if C = A and (4.10.7) holds, where u = al··· aAq-m ICI ... CC. Evaluations of Im which follow from these formulas will be considered in §4.11. From (4.10.8) and (4.10.9) it follows that if C = A and D = B, then we have the transformation formula
if C
(aldl , ... , aAdl , bI/dl , ... , bBldl ; q)oo dm (cldl , ... , cAdI, d2/dl, ... , dBI dl ; q)oo 1 rI,
XA+B'I'A+B-l
[Cldl, ... ,CAdl,qdI/bl, ... ,qdI/bB. bl ... bBqm ] al d 1,···aA d l,q did 1 2,···,qdid 1 B ,q, d 1··· d B
+ idem (d l ; d 2 , ... , dB) =
(blCl, ... , bBCl, aI/cl, ... , aAlcl; q)oo -m ~ (dlCl, ... , dBCl, c2/cl, ... , cAlcl; q)oo
128
Basic contour integrals
'" [dICI, ... ,dBCI,qcI/al, ... ,qcI/aA. al ... a Aq - m ] XA+B 'f'A+B-I bICI,···, bBCI,qCI / C2,···,qCI / CA' q, CI···CA + idem (CI; C2, ... , CA) (4.10.10) provided that Ibl ·· ·bBqml < Idl ·· ·dBI, lal·· ·aAq-ml < ICI·· ·cAI and m = 0,±1,±2, .... In some applications it is useful to have a variable Z in the argument of the series which is independent of the parameters in the series. This can be accomplished by replacing A by A + 1, B by B + 1 and setting bB + I = Z and aA+I = q/z in (4.10.10). More generally, doing this to the m = 0 case of (4.10.5) and of (4.10.6) gives the rather general transformation formula
(aldl , ... , aAdl , bI/dl , ... , bB/dl , z/dl , qdI/ z; q)(XJ (cld l , ... , CedI, d 2/d l , ... , dD/d l ; q)(XJ
x
f
(cldl , ... , CedI, qdI/bl , ... , qdI/bB ; q)n
n=O (q, aldl , ... , aAdl , qdI/d2, ... , qdI/dD; q)n
x (_d l q(n+I J/2)n(D-B-IJ (bl ... bBZ) n dl
··
·dD
+ idem (d l ; d2, ... , d D ) (bl CI, ... , bBCI, aI/ CI, ... , aA/ CI, CIZ, q/ CIZ; q)(XJ (dICI, ... , dDCI, C2/CI, ... , Ce /CI; q)(XJ
x
f
(dICI, ... , dDCI, qCI/al, .. . , qcI/aA; q)n n=O (q, bICI, ... , bBCI, qcI/c2, ... , qcI/ce; q)n
(_Clq(n+I J/2)n(e-A-IJ (a l ... aAq)n CI··· CeZ + idem (CI; C2, ... , ce), X
(4.10.11)
where, for convergence,
(i)
D >B
+ 1,
or D
bl ... bBz I
= B + 1 and I d l
...
dD
A + 1, or C = A + 1 and l
al .. . aAql CI··· CeZ
0, Re d beta integral
_1_liOO 27ri
> 0, and Re(x + y) > 1. Show that Cauchy's [1825]
(1
-ioo
ds = r(x + y - 1)(1 + d/e)l- Y + C/d)l-x (1 + es)x(1- ds)Y (e + d)r(x)r(y)
has a q-analogue of the form
liOO
(-esqX,dsqY;q)oo ds (-es, ds; q)oo r q(x + y - 1) (_eqX /d, -dqY /e; q)oo r q(x)r q(Y) (e + d)( -eq/d, -dq/e; q)oo'
1 27ri
-ioo
°
where < q < 1. (Wilson [1985]) 4.2 Prove that
1 27ri
liOO
(q1+s, _qa+s, qa-b+1+s, _qa-b+1+s, qc+d+e-a+s; q) 00
(qc+s, qd+s, qe+s, _qa+1+s, _qa-2b+s; q)oo 7rqs ds x ~--~--~~~------~ sin 7r s sin 7r (e + d + e - a + s) (q,qc+d+e-a, q1+a-c-d-e,q1+a-b; q)oo =csc7r(e+d+e-a) (q1+ a, _q 1+ a, _qa -2b , qC; q ) 00 -ioo
(_q1+a-b, _qa, q1+a-c, q1+a-d, q1+a-e; q) 00 X
~~--~----~~------~--~--~=
XlO
(qd,qe,q1+a-c-d, q1+a-c-e, q1+a-d-e; q)oo
W g (qa; i q1+a/2, _i q1+a/2, l, _qb, qC, qd, qe; q, _q1+2a-2b-C-d-e) ,
where 1 + 2a - 2b
> e + d + e.
4.3 Show that
ae, be, ad ] 3cP2 [ b dh;q,gh a eg,ae (q, ae, be, ag, bg, eh; q)oo
133
Exercises 4.4 Prove that ~ 27r
j1l"
(Je iO , ke iO Id, qde- iO Ik, cke- iO , qe iO Ick, abcdghe iO I j; q) 00 dB (ae iO be iO ce- iO de- iO ge iO heiO . q)
-7r
" " "
00
(k,qlk,ckld,qdlck,cj,dj,acdg, bcdg, cdgh,abcdhlj; q)oo (q, ac, ad, bc, bd, cg, dg, ch, dh, cdjg; q)oo x 8 W 7 (cdjglq; cg, dg, j la, jib, j Ih; q, abcdhl1)·
4.5 Prove that
[
.,.f...
4'1-'3
q-n , abcdqn-l " ae iO ae- iO ab, ac, ad 2
(q;q)oo (q!, q!, ab, ac, bc; q)oo
1l" (q! eiHi I a, q! ae-i(}-i , aq! eiO - i , q! ei-iO I a, abcei I a; q) 00
1 X
27r { }
x
-7[
(ae i la bei la ce i la ae iO - i ae- iO - i. q) 00 " ' "
(dae-i,bc;q)n (~eird¢ (abce i la, ad; q) n a
and, more generally, (q,az,alz,bz, blz,cz, clz;q)oo (t;;, ql t;;, t;; Z 2, ql t;; Z 2, ab, ac, bc; q)oo 1 {1l" (t;;ze i la, qae- i It;;z, t;;aze- i , qei It;;az, abce i la; q)oo x 27r ) -1l" X
for n
(ae i I a, be i I a, cei I a, aze- i, ae- i I Z; q)oo
(daci,bc;q) (a .",)n n -e''I' d¢ i (abce la, ad; q)n a
= 0,1,2, ... , where
z
=
ei()
and
t;;
is an arbitrary parameter.
4.6 Prove that
(aqle,aqlj,aqlg,aqlh,qlae,qlaj,qlag,qlah;q)oo (qa2, ab, ac, ad, bla, cia, dla; q)oo x lOW9 (a 2; ab, ac, ad, ae, aj, ag, ah; q, q3labcdejgh)
-1
a
+ idem (a; b, c, d) = 0, where Iq31
< labcdejghl.
134
Basic contour integrals
4.7 Prove that _l(alq/bl,alq/b2, ... ,alq/br,q/albl, ... ,q/albr;q)OO (qai, ala2,···, alan a2/al, ... , ar/al; q)oo
al
X
2r+2 W 2r +l (ai; ala2, ... , alan alb l , ... , alb r ; q, qr-l /al ... arb l ... br )
+ idem (al; a2,···, ar) = 0, where r
1,2, ... , and Iqr-ll
=
< lal ... arb l ... brl.
4.8 Show that _ 1 lioo (_csqn+l ' bds , as·, q) oods 27ri -ioo (-CS, ds, basqn-l; q)oo (-a/ c, -bd/ c; q)oo (b, a/ d; q)n (C + d)( -dq/c, -ba/cq; q)oo (q, -cq/d; q)n'
°
where Re(c, d, ba) > and n = 0,1, .... Show that the q-Cauchy beta integral in Ex. 4.1 follows from this formula by letting n ----+ 00 and then setting b = qY, a = _cqx. 4.9 Extend the integral in Ex. 4.8 to 1 lioo (-acs, ac2s/a, ac 2s/ (3, ac2s/'Y, ac2S/6, ac2s/ A; q)oo 27ri -ioo (-cs, as, (3s, "Is, 6s, AS; q)oo
x
(1- a2~s2)
ds
(a/ q, -ac/ a, -ac/ (3, -ach, -ac/6, -ac/ A; q)oo c(q, -a/c, -(3/c, -'Y/c, -6/c, -A/C; q)oo (q2/a , ac2/a(3, ac2/a'Y, ac2/(3"1; q)n X ~~7---~~----~~~~~~~(-cq/a, -cq/ (3, -cqh, -a 2c3 /a(3'Yq; q)n'
where Re(c,a,(3,'Y,6,A) 1,2 ....
>
0, a 3 c5 = -a(3'Y6Aq2, ac = -Aqn+l, and n
4.10 Show that
r
~ (q2z/aa'Y,q2z/ba'Y,q2z/ca'Y,'Y/z;q)oo 1- qz2/a'Y dz 27r2 ) K (az, bz, cz, a/ z; q)oo z
(a'Y, b'Y, c'Y, aqh; q)oo (aa, ba, ca, q; q)oo '
where q2
=
abcaq2, I'Y/al
< 1, and the contour K is as defined in §4.9.
=
Notes 4.11 Show that ~
r (bqz,qzh,'"'(lz;q)oo
JK
27r~
135
(az, bz, al z; q)oo
dz x (qzhqm; q)m(alz; q)ml ... (arz; q)mr Z
b la, aqh, bqla; q)oo (aa, qlaa, ba; q)oo x (qlb'"'(qm; q)m(al/b; q)ml ... (arlb; q)mr (ba)m+ml +.+m r ,
provided
1'"'(1 a < 1, where 1
m, ml, ... ,mr are nonnegative integers, q =
a'"'(qm+ml +·+m r and K is as defined in §4.9. 4.12 Show that 1
-. 27r~
jiOO -ioo
(-acs, dqs; q)oo ( ) ( ) ( d .) al s; q ml . .. ars; q mr ds -cs, S, q 00
(-acld;q)oo
(I)
(I)
(c + d)( -cqld; q)oo al d; q ml ... ar d; q mr provided laq-(m1+·+mr)1 are nonnegative integers.
< 1, Re (c,d,al,···,a r ) > 0, and ml, ... ,mr
4.13 Show that
jiOO
(-acs,-ac 2slf,ac2sla,ac 2sl/3;q)00 27ri -ioo (-cs, - f s, as, /3s; q)oo 2 2 x (ac sh ,ac s15;q)00(1 - ac2 s 21 q) ds ('"'(s, 5s; q)oo (alq, acl f, -acla, -acl/3, -ach, -acI5; q)oo c(q, f Ic, -alc, -/3lc, -'"'( Ic, -5Ic; q)oo (q2 la, ac2la/3, ac2la,",(, ac21/3'"'(; q)n x ~~~~~~~-7~~~~~~~ (-cqla, -cql/3, -cqh, -a2c3 Ia/3'"'(q; q)n (ac 2I Pq, acl f, -ac2I fa, -ac2I f/3, -ac2I f'"'(, -ac2I j8; q)oo +~~~~~~~~~~~~~~~~~~~~~ f(q, cl f, -al f, -/31 f, -'"'(If, -51 f; q)oo (P q2lac 2, ac2/a/3, ac2/a'"'(, ac21/3'"'(; q)n x ~~~--~~~~~~~~~~~~ (- fqla, - fql /3, - fqh, -a2c4 I fa/3,",(q; q)n provided ac = f qn+l, a3 c5 = fa/3'"'(5q2, Re (c, f, a, /3, ,",(, 5) > 0, the integrand has only simple poles, and n = 0,1, .... 1
(For the formulas in Exercises 4.8 - 4.13, and related formulas, see Gasper [1989c].) Notes
§4.4 Kalnins and Miller [1988, 1989] exploited symmetry (recurrence relation) techniques similar to those used by Nikiforov and Suslov [1986], Nikiforov,
136
Basic contour integrals
Suslov and Uvarov [1991]' and Nikiforov and Uvarov [1988] to give another proof of (4.4.3) and of (4.11.1). §4.6 Contour integrals of the types considered in this section were used by Agarwal [1953c] to give simple proofs of the two-term and three-term transformation formulas for 8¢7 series. §4.12 Sears [1951b] also derived the hypergeometric limit cases of the transformation formulas in this section. Applications of (4.12.1) to some formulas in partition theory are given in M. Jackson [1949]. Exercises 4.1-4.5 For additional q-beta integrals, see Askey [1988a,b, 198ge], Gasper [1989c], and Rahman and Suslov [1994a,b, 1996a, 1998].
5 BILATERAL BASIC HYPERGEOMETRIC SERIES
5.1 Notations and definitions The general bilateral basic hypergeometric series in base q with r numerator and s denominator parameters is defined by
r1/Js(z)
== r1/Js [ab1,ab2""'bar;q,z]
f
1, 2,···,
s
(a1, a2,···, ar ; q)n (_I)(s-rlnq(s-rlG) zn. n=-oo (b 1, b2,···, bs; q)n
(5.1.1)
In (5.1.1) it is assumed that q, z and the parameters are such that each term of the series is well-defined (i.e., the denominator factors are never zero, q =I=- 0 if s < r, and z =I=- 0 if negative powers of z occur). Note that a bilateral basic hypergeometric series is a series L~=-oo Vn such that Vo = 1 and vn+dvn is a rational function of qn. By applying (1.2.28) to the terms with negative n, we obtain that
r1/Js(z) =
f
(a1,a2, ... ,ar ;q)n (_I)(s-r ln q(s-rlG)zn ... ,bs;q)n n=O (b1,b2,
+
f
(5.1.2)
(q/b1, q/b2, ... , q/bs;.q)n (b 1'" bs ) n n=l (q/a1, q/a2,"" q/ar , q)n a1 ... arz
Let R = Ib 1 ··· bs /a1'" arl. If s < rand Iql < 1, then the first series on the right side of (5.1.2) diverges for z =I=- 0; if s < rand Iql > 1, then the first series converges for Izl < R and the second series converges for all z =I=- O. When r < sand Iql < 1 the first series converges for all z, but the second series converges only when Izl > R. If r < sand Iql > 1, the second series diverges for all z =I=- O. If r = s, which is the most important case, and Iql < 1, the first series converges when Izl < 1 and the second when Izl > R; on the other hand, if Iql > 1 the second series converges when Izl > 1 and the first when Izl < R. We shall assume throughout this chapter that Iql < 1, so that the region of convergence of the bilateral series
(5.1.3)
137
138
Bilateral basic hypergeometric series
is the annulus (5.1.4) When bj = q for some j, the second series on the right sides of (5.1.2) and (5.1.3) vanish and the first series become basic hypergeometric series. If we replace the index of summation n in (5.1.1) by k + n, where k is an integer, then it follows that
= (al, ... ,ar;q)k z k [(_I)kq(~)]s-r (b l
X
, ... ,
r'l/Js [
bs ; qh
k(S-r J] al qk, ... , arqk k k ; q, zq . blq , ... ,bsq
(5.1.5)
When rand s are small we shall frequently use the single-line notation
r'l/Js(z) == r'l/Js(al,"" ar ; bl , ... , bs; q, z). An r'l/Jr series will be called well-poised if alb l = a2b2 = ... = arbn and verywell-poised if it is well-poised and al = -a2 = qb l = -qb 2. Corresponding to the definition of a VWP-balanced r+l¢r series in §2.1, we call a very-wellpoised r'l/Jr series very-well-poised-balanced (VWP-balanced) if (5.1.6) with either the plus or minus sign. The very-well-poised bilateral basic hypergeometric series in (5.3.1), (5.5.2), (5.5.3), and in §5.6 are VWP-balanced. Note 1
that if in (5.1.6) we replace r by r+l, al by qar, and then a3 by aI, then (5.1.6) reduces to the condition (2.1.12) for a r+l Wr series to be VWP-balanced. A well-poised r'l/Jr series will be called well-poised-balanced (WP-balanced) if
(ala2'" ar)z = -(±(alb1)br
(5.1.7)
with either the plus or minus sign. The well-poised bilateral basic hypergeometric series in (5.3.3), (5.3.4), (5.5.1), (5.5.4), and in (5.5.5) are WP-balanced. 5.2 Ramanujan's sum for l'l/Jl(a;b;q,z)
The bilateral summation formula oj,
1 '1-'1
('b' )_ (q,bja,az,qjaz;q)cxo a, ,q, z - ( b,qj a,z,b j az;q ) cxo ,
Ibjal
7
157
Thus
I(a,b,e,d) bd(1 - q)3(q; q)'!xo(a/b, bq/a, ab, e/d, dq/e, cd; q)oo X
I
b
d qU
a
(qu/a, qu/b, u; q)oo (u/ab;q)oo
Id dqV (qv/e,v(-v/ed,vq/u,u/v,uv;q)oo qv/d, -v, -q! /u, -q! Iv; q)oo c
1
X
lv:~'2 dqt (t'!~ /u, ~q~ lv, qt; q)oo uq
(tq'2, -tq'2, -qt/uv; q)oo n(a- 1 , b- 1 , -e- 1 , -d- 1 ; q)oo bd(1 - q)2(q; q)'!xo(a/b, bq/a, ab, e/d, dq/e, cd; q)oo X
I
a
b
2
Id dqV (qv(v,uv,-v/ed;q)oo / qv / d, -uv; q)oo n( a-l, b-l, q! , -q! , q)oo Ib d (qu/ a, qu/b, edu; q)oo
d
(qu/ a, qu/b; q)oo qU (-u,u/ab;q)oo
e,
c
-1;
=
b(1 - q)(q; q)~(a/b, bq/a, ab, e, d, cd; q)oo
a
qU (eu, du, u/ab; q)oo
n( -1, q! , -q!, abed; q)oo (q, ab, ae, ad, be, bd, cd; q)oo'
(6.2.8)
by repeated applications of (2.10.18). Since (-I,q!,-q!;q)oo = 2(q!,-q!,-q;q)oo = 2, which follows from (6.2.6) by setting t = 1, we get (6.1.1). By analytic continuation, the restrictions on a, b, e, d mentioned above may be removed.
6.3 Integral representations for very-well-poised
81>7
series
Formulas (2.10.18) and (2.10.19) enable us to use the Askey-Wilson q-beta integral (6.1.1) to derive Riemann integral representations for very-well-poised 81>7 series. Let us first set 1
w(x; a, b, e, d)
=
and
J(a, b, e, d, f, g) = where max(lal, Ibl, lei, Idl,
1 1
-1
h(x;g) w(x; a, b, e, d) h(x; f) dx,
If I, Iql) < 1 and 9 is arbitrary.
h(x;g) h(x;d,f)
1
_!h(x;I,-I,q'2,-q'2) (1 - x) 2 h(. b d) x,a, ,e, 2
(6.3.1)
(6.3.2)
Since, by (2.10.18),
(g/d,g/f;q)oo f(1 - q)(q, d/ f, qf /d, fd; q)oo X
i
d
f
d
(qu/ d, qui f, gu; q)oo qU (gu/df; q)ooh(x; u) ,
(6.3.3)
158
The Askey-Wilson q-beta integral
we have
J(
b d f ) (g/d, g/ f; q)oo a, ,e, , ,g = f(l-q)(q,d/f,qf/d,df;q)oo
{f d
Jd
X
qU
(qu/d, qui f, gu; q)oo (gu/df; q)oo
11 ( -1
)
w x; a, b, e, u dx.
(6.3.4)
By (6.1.1),
1 1
-1
W
b )d _ x, a, ,e, u x -
(.
27f(abeu; q)oo . (q, ab, ae, be; q)oo(au, bu, eu; q)oo
(6.3.5)
Substituting this into (6.3.4), we obtain
J(
=
b d f ) a, ,e, , , 9
i
x d
f d qU
27f(g/d, g/ f; q)oo f( 1 - q) (q,. q)200 (d/f ,q f/d ,J, dff ab,ae, b·) e, q 00
(qu/d, qui f, gu, abeu; q)oo ( ). au,bu,eu,gu / df;q 00
(6.3.6)
The parameters in this q-integral are such that (2.10.19) can be applied to obtain
J(
b d f ) a, ,e, "g
=
27f(g/f,fg,abef,bedf,edaf,dabf;q)00 (q,ad,bd,ed,af, bf,ef,df,ab,ae, be, abedf2; q)oo
x 8W7(abedf2q-\af,bf,ef,df,abedfg-\q,g/f),
(6.3.7)
provided Ig/ fl < 1, if the series does not terminate. By virtue of the transformation formula (2.10.1) many different forms of (6.3.7) can be written down. Two particularly useful ones are
J( a, b,e, d , f ,g )
=
(
27f(ag,bg,eg,abed,abef;q)00 ) q, ab, ae, ad, af, be, bd, bf, cd, ef, abeg; q 00
x 8 W 7(abegq-\ ab, ae, be, g/d, g/ f; q, df),
(6.3.8)
which was derived in Nassrallah and Rahman [1985], and
J(
b d f ) a, ,e, "g
=
27f(ag, bg,eg, dg, fg,abedf/g; q)oo (q,ab,ae,ad,af,be,bd,bf,ed,ef,df,g2;q)00 x 8 W 7(lq-\ g/a, g/b, g/e, g/d, g/ f; q, abedfg-1). (6.3.9)
If the series in (6.3.9) does not terminate, then we must impose the condition labedfg-11 < 1 so that it converges. Note that, if in (6.3.8) we let 0 < q < 1, a = -b = q!, e = qa+!, d = z, f = _qf3+!, 9 = zq' with Re(a, (3) > -~ and then take the limit q --+ 1-, we obtain, after some simplification,
r
1 a . . _ r(a + (3 + 2) f3 -, 2F1(--y,a+1,a+(3+2,z)-r(a+1)r((3+1)Jo X (I-x) (l-xz) dx.
(6.3.10) This shows that (6.3.8) is a q-analogue of Euler's integral representation (1.11.10).
6.4 Integral representations for very-well-poised
1O¢9
series
159
Another limiting case of (6.3.8) was pointed out in Rahman [1986b]. To derive it, replace a,b,e,d,f,g in (6.3.8) by qa,qb,qc,qd,qf,qg, respectively. Also, replace x in the integral (6.3.2) by cos(t log q), which corresponds to replacing ei () by qit. Now let q ---+ 1- and use (1.10.1) and (1.10.3) to get the formula 00 ~ r(a + it)r(a - it)r(b + it)r(b - it)r(e + it)r(e - it) 47f -00 r(2it)r( -2it)
1
x r(d + it)r(d - it)r(j + it)r(j - it) dt r(g + it)r(g - it) r(a + b)r(a + e)r(a + d)r(a + f)r(b + e)r(b + d) r(a + g)r(b + g)r(e + g) x r(b + f)r(e + d)r(e + f)r(a + b + e + g) r(a + b + e + d)r(a + b + e + f) ~--~~--~~~~~----~~
a+b+e+g-l,~(a+b+e+g+l),a+b,a+e, b+e x 7 F.6 1 2(a + b + e + 9 - 1), e + g, b + g, a + g,
[
9 - j,
9 - d, a
+ b + e + d, a + b + e + j
.,
1] ,
(6.3.11)
> O.
where Re (a, b, e, d, f)
6.4 Integral representations for very-well-poised
1O¢9
series
If we set 9 = abedj in (6.3.7), then the 8 W 7 series collapses to one term with value 1 and so we have the formula
1
h(x;I,-I,q!,-q!,abedf) dx h(x; a, b, e, d, f) VI - x 2 27f(abed,abej,bedj,abdj,aedj;q)00 (q, ab, ae, ad, aj, be, bd, bj, cd, ej, dj; q)oo = go(a, b, e, d, f), say, 1
-1
where (max lal, Ibl, lei, Idl, Ijl, Iql)
10 1 x a- 1(1 -
(6.4.1)
< 1. This is a q-analogue of the formula
x)b-1(1 - tx)-a-b dx
=
~~~~(:? (1 -
t)-a, Re(a, b)
> o.
Replace j by jqn in (6.4.1), where n is a nonnegative integer, to get
1
(je i () , je- i (); q)n v(x;a,b,e,d,f)( b dj -1 ace -i() ,abedj ei().,q ) n dx 1
= go
(
(aj, bj, ej, dj; q)n ) a,b,e,d,j (bedj,aedj,abdj,abej;q)n'
(6.4.2)
where
. b d j) v (x, a, ,e, ,
=
(1-
x
2)-! h(x; 1, -1, q!, -q!, abedf) h(. x,a, b,e, d , j)
.
(6.4.3)
160
The Askey-Wilson q-beta integral
Let u
abedj. If
=
1 1 -1
=
Izl < 1, then
(6.4.2) gives the formula
v(x;a,b,e,d,f) r+sWr+4(Ujq-\al, ... ,ar,jei!J,je-i!J;q,z) dx
go(a, b, e, d, f) r+7Wr+6(u jq-\ al, ... , ar, aj, bj, ej, dj; q, z).
(6.4.4)
In particular, for r = 3 and z = u2/ala2a3, we have the formula
1 1 -1
v(x;a,b,e,d,j) 8W7(ujq-\al,a2,a3,jei!J,je-i!J;q,u2/ala2a3) dx
= go(a, b, e, d, f) lOW9(U jq-\ aI, a2, a3, aj, bj, ej, dj; q, u2/ala2a3), (6.4.5) where lu2/ala2a31 < 1, if the series do not terminate. Let us assume that (6.4.6) which ensures that the very-well-poised series on either side of (6.4.5) are balanced. Then, by (2.11.7) 8W 7(u jq-l; aI, a2, a3, jei!J, je-i!J; q, q) (u j, qaI/u j, a2, qaI/a2, a3, qaI/a3; q)ooh(x; j, qaI/ f) (u j /qal, u j /a2, u j /a3, qala2/u j, qala3/u j, q2 aI/u j; q)ooh(x; u, qaI/u)
+~~--~~~~~~~~~~~~~~~~~~~----~
x
8 W 7 (qai!u j;
aI, qala2/u j, qala3/uj, qalei!J /u, qale-i!J /u; q, q) (u j, u j /a2a3, qaI/u j, u / j; q)ooh(x; u/a2, u/a3)
(6.4.7)
and hence
1 1
-1
h(x;I,-I,q!,-q!,u/a2,u/a3) h(x;a,b,e,d,j,u/a2a3)
= go(a, b, e, d, f)
{
dx
viI -x 2
(~j /a2, ~ j /a3, uj ja 2; u / j a3; ~)oo Uj, Uj a2a3, u j, u ja2a3; q
00
x lOW9(U jq-l; aI, a2, a3, aj, bj, ej, dj; q, q)
+
(aj, bj, ej, dj, a2, a3, qaI/a2, qaI/a3; q)oo (u/a, u/b, u/e, u/d, qaal/u, qbal/U, qeal/u,qdal/U; q)oo (qal/aj,qal/bj,qal/ej,qal/dj,qal/uj;q)oo x (u / j, u f!qal, u j /a2a3, u/ ja2a3, q2 aI/u j; q)oo x lOWg(qai!uj; aI, u/ ja2, u/ ja3, qaaI/u, qbaI/u, qeaI/u, qdaI/u; q, q) },
(6.4.8) where u = abedj and ala2 a3q = u 2. Since the integrand on the left side of (6.4.8) is symmetric in a, b, e, d and j, the expression on the right side must have the same property. This provides an alternate proof of Bailey's four-term transformation formula (2.12.9) for VWP-balanced 1O max(lbl, lei, Idl)·
(6.6.1)
If a = ±1, then the functions h(x; ±1) and h(x; a) in the integrand in (6.1.1) cancel and by continuity it follows that
I( ±1, b,e, d) =
27f(±bed; q)oo
(q, ±b, ±e, ±d, be, bd, cd; q)
(6.6.2)
00
However, if lal = 1 and a -I=- ±1, then h(x; a) = 0 for some x in the interval (-1,1) and so the integral in (6.1.1) does not converge. Similarly, this integral does not converge if laqnl = 1 and aqn -I=- ±1 for some positive integer n.
164
The Askey-Wilson q-beta integral If there is a nonnegative integer m such that
(6.6.3) and if ab, ac and ad are not of the form q-n for any nonnegative integer n, then the integral in (6.1.1) converges and we can evaluate it by the following technique. Observe that, since h(x;a)
=
(ae i !:l,ae- i !:l;q)m+1 h(x; aqm+1)
=
a 2m +2qm+m2 h(x; aqm+1, q-m la)lh(x; qla),
(6.6.4)
we have
J( a, b,c, d) 1
=
a -2m-2 q -m-m 1
2
1
x j h(x;1,-1,q2-q2,qla) -1 h(x; b, c, d, aqm+1, q-m fa)
dx
V1- x 2 '
(6.6.5)
where the parameters b, c, d, aqm+1, q-m I a in the denominator of the integrand are now all less than 1 in absolute value. By (6.3.8),
J(
b d) a, ,c,
=
2n(qbla,qcla,qdla,abcdqm+l,bcdq- m l a;q)00 (q, bc, bd, cd, abqm+1, acqm+l, adqm+l, bcdqla; q)oo a- 2m- 2q-m-m 2 x ~--~----~~~--~~-(bq-m la, cq-m la, dq-m la; q)oo
x 8 W 7(bcda-\ bc, bd, cd, q-m a-2, qm+\ q, q).
(6.6.6)
The series in (6.6.6) is balanced and so we can apply Bailey's summation formula (2.11.7). After some simplification we find that 2n(abcd;q)00 ) q,ab,ac,ad,bc,bd,cd;q 00
J( a, b,c, d) = (
+ L m (·b a, ,c, d) ,
(6.6.7)
where L m
. b d _ 2n( aql d, bql d, cql d, qm+1, a 2bcqm+1, q-m I a 2 , bcq-m; q)oo (a, ,c, ) - (q, ab, ac, bc, abqm+1, acqm+1, adqm+l, aqm+l I d, abcql d; q)oo a-2m-1d-1q-m-m2
x
~--~------~~~~----~~~
(bq-m I a, cq-m I a, dq-m I a, q-m I ad; q)oo
x 8 W 7(abcd-\ bc, q-m lad, aqm+1 Id, ab, ac; q, q).
(6.6.8)
By (2.10.1), 8 W 7 (abcd-\
bc, q-m lad, aqm+1Id, ab, ac; q, q)
(abcqld,qlad,abq, acq; q)oo (bqld,cqld,q, a 2bcq; q)oo x 8 W7(a 2 bc; abcd, ab, ac, a 2 qm+1, q-m; q, qlad).
(6.6.9)
6.6 The Askey-Wilson integral when max (Ial, Ibl, Icl, Idl) ~ 1
165
Since m is a nonnegative integer, the series on the right side of (6.6.9) terminates and hence, by Watson's formula (2.5.1), 8
2 yy 7 a 2b c,. a bcd ,ab,ac, a 2 qm+1 ,q -m., q, q I a d) -_ ((a bbcq, q; q)m ) a q,acq;q m ¢ [q-m, ab, ac, q-m I ad . ] _ (a 2bcq, q, aqlb, aql c; q)m X43 bcq-m, aqld, q-m,q,q - (qa2,abq,acq,qlbc;q)m q] a 2 , qa, -qa, ab, ac, ad, a 2qm+1, q-m [ X 8¢7 a, -a, aq Ib ,aq I c, aq Id , q-m ,a 2 qm+1; q, ab cd
TXT (
(a 2bcq,q,aqlb,aqlc;q)m (qa 2 ,abq,acq,qlbc;q)m
f
X
(a 2;q)k(l-a 2q2k)(ab,ac,ad;q)k ( q )k (q; qh(1 - a 2 )(aqlb, aqlc, aqld; q)k abcd .
k=O
(6.6.10)
Using (6.6.10) and (6.6.9) in (6.6.8), we obtain L m
2n(a- 2; q)= ( . b d) = _ a, ,c, (q,ab,ac,ad,b I a,c I a,d I a;q )=
f
X
k=O
(a 2; q)k(1 - a 2q2k)(ab, ac, ad; q)k ( q )k (q; qh(1 - a 2 )(aqlb, aqlc, aqld; q)k abcd .
(6.6.11)
Hence
1
1 h(x;I,-I,q!,-q!)
-1
X
f
h(x; a, b, c, d)
k=O
2n(a- 2;q)=
dx
VI -
x2
+
(q, ab, ac, ad, bla, cia, dla; q)=
(a 2;q)k(l-a 2q2k)(ab,ac,ad;q)k ( q )k (q; q)k(1 - a 2)(aqlb, aqlc, aqld; qh abcd
2n(abcd; q)= (q, ab, ac, ad, bc, bd, cd; q)= '
(6.6.12)
where max(lbl, Icl, Idl, Iql) < 1, laqm+ll < 1 < laqml for some nonnegative integer m, and the products ab, ac, ad are not of the form q-n, n = 1,2, .... Askey and Wilson [1985] proved this formula by using contour integration. By continuity, formula (6.6.12) also holds if the restriction (6.6.3) is replaced by aqm = ±l. Note that, if one of the products ab, ac or ad is of the form q-n for some nonnegative integer n, the integral in (6.6.12) converges even though the denominator on the right side of (6.6.12) equals zero as does the denominator in the coefficient of the sum in (6.6.12). If we let ab tend to q-n then, since Ibl < 1 and laqm+11 < 1 < laqml, we must have n:S; m. We may then multiply (6.6.12) by 1 - abqn and take the limit ab ~ q-n. The result is a terminating 6¢5 series on the left side and its sum on the right, giving the summation formula (2.4.2). If max(lcl, Idl, Iql) < 1 and there are nonnegative integers m and r such that (6.6.13)
166
The Askey-Wilson q-beta integral
then the above technique can be extended to evaluate I(a, b, e, d) provided the products ab, ae, ad, be, bd are not of the form q-n and alb i=- q±n for any nonnegative integer n. Splitting h(x; b) in the same way as in (6.6.4) and using (6.3.4) we get
I(a,b,e,d) = b- 2r - 2q-r-r 2 J(a, bqr+1, q-r /b, e, d, q/b) - 2r - 2 -r-r2 q
=b
j
X
d
c
d
qU
(q/be, q/bd; q)oo d(l - q)(q, e/d, dq/e, cd; q)oo
(qu/e, quid, qu/b; q)oo (/b d. ) qu e, q 00
11 (. -1
W
b r+1 -rib ) d x, a, q , q ,u x. (6.6.14)
However, by (6.6.12),
1 w(x; q, bqr+l, q-r /b, u) dx r 1-1
27r( aqu; q)oo (q, q, abqr+1, aq-r /b; q)oo(au, buqr+l, uq-r /b; q)oo 27r(a- 2; q)oo (q, abqr+1, q-r lab, bqr+1/a; q)oo(au, u/a; q)oo X
~ (a 2; q)k(l - a 2q2k)(au; q)k ( )-k ~ (q; qh(l _ a2)(aq/u; q)k au .
(6.6.15)
Since by (2.10.18),
j
d
c
dqu (qu/e, quid, qu/b; q)oo (au; qh (qu)-k (qu/bed, au, u/a; q)oo (aq/u; q)k
= (_l)k -2k -k(k+1)/2
jd
(qu/e, quid, qu/b; q)oo ,uq- k/ a;q ) 00 d(l - q)(q, e/d, dq/e, cd, q/ab, aq/b; q)oo (q/be,q/bd, ae, ad, e/a, d/a; q)oo a
q
c
(ab,ae, ad; qh X (aq/b,aq/e,aq/d;q)k
d
qU ( qu /b e d ,auq k
(q)k abed '
(6.6.16)
we find that
I(a, b, e, d)
+
= Lm(a; b, e, d)
27r(adq, edq, dq/b, qr+2, q1-r /b 2; q)oob- 2r - 2q-r-r 2 (q,q,ad,ed,dq2/b,abqr+1,beqr+1,bdqr+1,aq-r/b,eq-r/b,dq-r/b;q)oo
x 8 W 7(dq/b; bdqr+1, q, dq-r /b, q/be, q/ab; q, ae),
(6.6.17)
where Lm (a; b, e, d) is as defined in (6.6.11). The reduction of this 8 W 7 will be done in two stages. First we use (2.10.1) twice to reduce it to a balanced 8 W 7 and then apply (2.11.7) to obtain 8 W 7(dq/b;bdqr+1,q,dq-r/b,q/be,q/ab;q,ae)
6.6 The Askey-Wilson integral when max (Ial, Ibl, Icl, Idl) ~ 1
167
(dq2/b,q/bd,abcdqr+1,acdq-r/b;q)00 (q1-r/b 2,qr+2,ac,qacd2;q)00 X 8 W7( acd 2; abcd, bdqr+1, dq-r /b, ad, cd; q, q/bd) (dq2/b,aq/b,cq/b,q, abcdqr+1,acdq-r/b; q)oo (ac,adq, cdq, acdq/b,qr+2, q1-r/b 2; q)oo x 8 W 7 (acdb-\ cd, ad, ac, qr+1, q-r /b 2; q, q) (dq2/b, aq/b, bfa, q, q/ab, abcd, bcqr+1, bdqr+1, cq-r /b, dq-r /b; q)oo (ac,adq, cdq,dq/b, bd, bc,qr+2, bqr+1/a, q-r/ab, q1-r/b 2; q)oo + ~ (dq2/b, q, bq/a, cq/a, dq/a, ad, qr+1, b2cdqr+1, cdq-r, q-r /b 2; q)oo a (bcdq/a, dq/b, bc, bd, adq, cdq, qr+2, bqr+1 la, q-r lab, q1-r /b 2; q)oo X 8 W 7 (bcda-\
bc, bd, cd, bqr+1 la, q-r lab; q, q).
(6.6.18)
Substituting (6.6.18) into (6.6.17) and simplifying the coefficients we get
27r(abcd; q)oo I(a, b, c, d) - Lm(a; b, c, d) - ( b d b bd d ) q,a ,ac,a ,c, ,c;q 00 27r(bq/a, cq/a, dq/a, qr+1, b2cdqr+1, cdq-r, q-r/b 2; q)oo (q,bc,bd,cd,abqr+1,bcqr+1,bqr+1/ a,aq-r/b,cq-r/b,dq-r;q)00 b-2r-1 -1 -r-r2 X ( -r / b : dq/ .) 8 W 7 (bcda-\ bc, bd, cd, bqr+1 la, q1-r lab; q, q). a, c q a, q 00 q (6.6.19) The expression on the right side of (6.6.19) is the same as that in (6.6.8) with a, b, c, d, m replaced by b, d, c, a and r, respectively, and so has the value
27r(b- 2; q)oo (q,ba, bc,bd,a/b,c/b,d/b; q)oo (b 2; q)k(l- b2q2k)(ba, bc, bd; q)k ( q )k X (q; q)k(l - b2 )(bq/a, bq/c, bq/d; q)k abcd
t
k=O
= Lr(b; c, d, a),
(6.6.20)
by (6.6.11). So we find that
I(a, b, c, d) - Lm(a; b, c, d) - Lr(b; c, d, a) 27r(abcd; q)oo (q, ab, ac, ad, bc, bd, cd; q)oo'
(6.6.21)
where the parameters satisfy the conditions stated earlier. It is now clear that we can handle the cases of three or all four of the parameters a, b, c, d exceeding 1 in absolute value in exactly the same way. For example, in the extreme case when min(lal, Ibl, lei, Idl) > 1 > Iql with
laqm+11 < 1 < laqml, Icq s+11
< 1 < IcqSI,
Ibqr+11 < 1 < Ibqrl, Idqt+11 < 1 < Idqtl,
(6.6.22)
for some nonnegative integers m, r, s, t such that the pairwise products of a, b, c, d are not of the form q-n and the pairwise ratios of a, b, c, d are not
168
The Askey-Wilson q-beta integral
of the form q±n for n
=
0,1,2, ... , we have the formula
I(a, b, c, d) - Lm(a; b, c, d) - Lr(b; c, d, a) - Ls(c; d, a, b) - Lt(d; a, b, c) 27r( abcd; q)oo (6.6.23) (q, ab, ac, ad, bc, bd, cd; q)oo' where Ls(c; d, a, b) and Lt(d; a, b, c) are the same type of finite series as those in (6.6.11) and (6.6.20), and can be written down by obvious replacement of the parameters.
Exercises
6.1 Prove that
17r
sin 2 () d()
IT
(1- 2aj cos() + a;) j=1 when max(la11, la21, la31, la41) o
2
7r(1 - a1 a2a3a4) I1 (1 - ajak) 1 0 and Re b > (Askey and Roy [1986], Gasper [1987])
1-q rq(a+b)
o.
6.17 Extend the above q- beta integral formulas to
(i)
{OO t c - 1 (-tqb, _qa+l It; q)oo d t
Jo
(-t, -qlt; q)oo q (_qC, _ql-c; q)oo r q(a + c)r q(b - c) (-l,-q;q)oo rq(a+b)
and
(ii)
{OO t c - 1 (_tqb, _qa+~ It; q)oo dt
Jo
(-t, -qlt, q)oo r(c)r(l- c)rq(a + c)rq(b - c) rq(c)rq(l- c)rq(a + b)
where 0 < q < 1, Re (a + c) > 0 and Re (b - c) > o. (See Ramanujan [1915]' Askey and Roy [1986], Gasper [1987], Askey [1988b], and Koornwinder [2003]) 6.18 Use Ex. 2.16(ii) to show that, for y
= cos ¢;,
if x> y, if x < y, if x = y. (Ismail and Rahman [2002b]) 6.19 Denoting S(al' ... ' am) Ex. 2.16(i) to prove that
= S(al' ... ' am; q) =
n:=l (ak, qlak; q)oo,
use
Notes
173
Deduce that n
r
7r
io
rr rr
(2W -2iIJ.) h(cosf); Ak, q/Ak) e ,e ,q 00 k=1 df) h(cos f); a, b) n + l ( f ) /) h cos ;am,q am m=1
n+l n .) S(Ak/aj, Akaj) q, q, q 00 j=1 k=1
21f =
(1 _ ab)(
L II
n+l X
II [S(araj, ar/aj)(aaj, baj, aq/aj, bq/aj; q)oo]-I. r=l r=l-j
(Ismail and Rahman [2002b]) 6.20 Show that
1
1 h(x; 1, -1, ql/2, _ql/2, aql/2, ql/2/ a )
-1
h(x;al,a2, ... ,a6)
dx
viI -x 2
rr (aajql/2, ajql/2 / a; q)oo j=1 (q, q, qa 2, q/ a 2; q)oo rr (ajak; q)oo l::;j 0, Re y > 0, Re z > - min(l/n, Re x/(n - 1), Re y/(n - 1)). Aomoto [1987] considered a generalization of Selberg's integral and utilized the extra freedom that he had in his integral to give a short elegant proof of it. Habsieger [1988] and Kadell [1988b] proved a q-analogue of Selberg's integral that was conjectured in Askey [1980b]. For conjectured multivariable extensions of the integrals in Exercises 6.11-6.13, other conjectured q-analogues of Selberg's integral, and related constant term identities that come from root systems associated with Lie algebras, see Andrews [1986, 1988], Askey [1980b, 1982b, 1985a, 1989f, 1990], Evans, Ismail and Stanton [1982]' Garvan [1990], Garvan and Gonnet [1992]' Habsieger [1988], Kadell [1988a-1994]' Macdonald [1972-1995]' Milne [1985a, 1989], Morris [1982]' Rahman [1986a], Stanton [1986b, 1989], and Zeilberger [1987, 1988, 1990a]. Also see the extension of Ex. 6.11, the q-Selberg integrals, and the identities in Aomoto [1998], Evans [1994]' Ito [2002]' Kaneko [1996-1998], Lassalle and Schlosser [2003], Macdonald [1998a,b], Rains [2003a], Stokman [2002] and Tarasov and Varchenko [1997].
7 APPLICATIONS TO ORTHOGONAL POLYNOMIALS
7.1 Orthogonality Let a(x) be a non-constant, non-decreasing, real-valued bounded function defined on (-00,00) such that its moments /Ln =
I:
xnda(x),
n = 0,1,2, ... ,
(7.1.1)
are finite. A finite or infinite sequence Po (x), Pl (x), ... of polynomials, where Pn(x) is of degree n in x, is said to be orthogonal with respect to the measure da(x) and called an orthogonal system of polynomials if (7.1.2) In view of the definition of a(x) the integrals in (7.1.1) and (7.1.2) exist in the Lebesgue-Stieltjes sense. If a(x) is absolutely continuous and da(x) = w(x)dx, then the orthogonality relation reduces to
I:
Pm(X)Pn(X)W(X) dx = 0,
m -=I- n,
(7.1.3)
and the sequence {Pn (x)} is said to be orthogonal with respect to the weight function w(x). If a( x) is a step function (usually taken to be right-continuous) with jumps Wj at x = Xj,j = 0,1,2, ... , then (7.1.2) reduces to LPm(Xj)Pn(Xj)Wj = 0,
m -=I- n.
(7.1.4)
j
In this case the polynomials are said to be orthogonal with respect to a jump function and are usually referred to as orthogonal polynomials of a discrete variable. Every orthogonal system of real valued polynomials {Pn(x)} satisfies a three-term recurrence relation of the form
(7.1.5) with p-l(X) == O,Po(x) == 1, where An, B n , C n are real and AnCn+ l > 0. Conversely, if (7.1.5) holds for a sequence of polynomials {Pn(x)} such that P-l(X) == O,Po(x) == 1 and An, B n , C n are real with AnCn+ l > 0, then there exists a positive measure da(x) such that (7.1.6) 175
176
Applications to orthogonal polynomials
where
_ rrn A k - l Vn C' k
k=l
Vo = 1.
(7.1.7)
°
If {Pn(X)} = {Pn(x)}~=o and AnCn+1 > for n = 0,1,2, ... , then the measure has infinitely many points of support, (7.1.5) holds for n = 0,1,2, ... , and (7.1.6) holds for m, n = 0,1,2, .... If {Pn(x)} = {Pn(x)};;=o and AnCn+1 > for n = 0,1,2, ... , N -1, where N is a fixed positive integer, then the measure can be taken to have support on N + 1 points xo, Xl,"" XN, (7.1.5) holds for n = 0,1, ... , N - 1, and (7.1.6) holds for m, n = 0,1,2, ... , N. This characterization theorem of orthogonal polynomials is usually attributed to Favard [1935], but it appeared earlier in published works of Perron [1929]' Wintner [1929] and Stone [1932]. For a detailed discussion of this theorem see, for example, Atkinson [1964], Chihara [1978], Freud [1971] and Szego [1975]. In the finite discrete case the recurrence relation (7.1.5) is a discrete analogue of a Sturm-Liouville two-point boundary-value problem with boundary conditions p-I(X) = O,PN+I(X) = 0. If Xo, Xl, ... , XN are the zeros of PN+l(X), which can be easily proved to be real and distinct (see e.g., Atkinson [1964] for a complete proof), then the orthogonality relation (7.1.6) can be written in the form
°
N
N
LPm(Xj)Pn(Xj)Wj = V;;:-l L Wj bm,n, (7.1.8) j=O j=O m, n = 0,1, ... , N, where Wj is the positive jump at Xj and Vn is as defined in (7.1.7). The dual orthogonality relation N
N
LPn(Xj)Pn(Xk)Vn = wjl L Wn bj,k, n=O n=O
(7.1.9)
j, k = 0,1, ... , N, follows from the fact that a matrix that is orthogonal by rows is also orthogonal by columns. It can be shown that
Wj = [ANvNPN(Xj )P~+l (Xj)
r
N
lL
Wn,
j
= 0, 1, ... ,N,
(7.1.10)
n=O
where the prime indicates the first derivative. In general, the measure in (7.1.6) is not unique and, given a recurrence relation, it may not be possible to find an explicit formula for o:(x). Even though the classical orthogonal polynomials, which include the Jacobi polynomials
P~Q,(3)(x) =
(0:
:!I)n
2FI (
-n, n
+ 0: + (3 + 1; 0: + 1; 1; X)
,
(7.1.11)
and the ultraspherical polynomials
C~(x)
((2>')t) p2-~')..-~)(x) >'+"2n n _ L -'(>'h(>')n-k -----'---:----'----'------:-:- ei(n-2k)e
=
-
k=O
k!(n-k)!
'
X
= cos e,
(7.1.12)
7.2 The finite discrete case
177
are orthogonal with respect to unique measures (see Szego [1975]), it is not easy to discover these measures from the corresponding recurrence relations (see e.g., Askey and Ismail [1984]). However, for a wide class of discrete orthogonal polynomials it is possible to use the recurrence relation (7.1.5) and the formulas (7.1.8)-(7.1.10) to compute the jumps Wj and hence the measure. We shall illustrate this in the next section by considering the q-Racah polynomials (Askey and Wilson [1979]).
7.2 The finite discrete case: the q-Racah polynomials and some special cases Suppose {Pn(x)} is a finite discrete orthogonal polynomial sequence which satisfies a three-term recurrence relation of the form (7.1.5) and the orthogonality relations (7.1.8) and (7.1.9) with the weights Wj and the normalization constants Vn given by (7.1.10) and (7.1.7), respectively. We shall now assume, without any loss of generality, that Pn(XO) = 1 for n = 0,1, ... , N. This enables us to rewrite (7.1.5) in the form
(x - XO)Pn(x) where n
=
An [Pn+l(X) - Pn(x)]- en [Pn(x) - Pn-l(X)] ,
= 0,1, ... ,N.
Setting j
= k = 0 in (7.1.9)
N
L Vn =
(7.2.1)
we find that
N
L
(7.2.2) W n· n=O n=O It is clear that in order to obtain solutions of (7.2.1) which are representable W;;l
N
in terms of basic series it would be helpful if Vn and quotients of products of q-shifted factorials. (2.4.2) in mind, let us take
Vn
L
Vn were equal to n=O Therefore, with the 6¢5 sum
(abq; q)n (1 - abq2n+l) (aq, eq, bdq; q)n ( )-n (q; q)n(1- abq) (bq, abq/e, aq/d; q)n edq
=
n
II
=
k=l
(1 _ abqk) (1 - abq2k+l) (1 - aqk)(l - eqk)(l - bdqk) (1- qk) (1- abq2k-l) (1- bqk)(l- abqk/e)(l- aqk/d)edq' (7.2.3)
where bdq
=
q-N, 0 < q < 1, so that
~
[ab q, q(abq)~, -q(abq)~, aq, eq, q-N .
_
~ Vn -
n=O
6¢5
1
1
N
(abq)'i, -(abq)'i, bq, abq/e, abq +
2'
(abq2, b/e; q)N (bq, abq/e; q)N' where it is assumed that a, b, e, d are such that Vn > 0 for n view of (7.1. 7) we can take A
q,
bqN ]
(7.2.4)
= 0,1, ... , N.
_ (1 - abqk) (1 - aqk) (1 - eqk) (1 - bdqk) (1 _ abq2k-l) rk,
k-l -
e
In
(7.2.5)
178
Applications to orthogonal polynomials
(7.2.6) where {rdf=l is an arbitrary sequence with rk =I- 0,1 ::::; k ::::; N. Since Co = 0 and Ao = (1 - aq)(l - eq)(l - bdq)rl' we have from the n = 0 case of (7.2.1) that -1 (1- q-l)(Xj - xo)qr 11 Pl ( X· ) (7.2.7) J (1 - q)(l - aq)(l - eq)(l - bdq) This suggests that we should look for a basic series representation of Pn (x j ) whose (k + l)-th term has (q, aq, eq, bdq; qh as its denominator, which in turn suggests considering a terminating 4¢3 series. In view of the product ( -n) k (n+ a+,8 + l)k in the numerator ofthe (k+ l)-th term in the hypergeometric series representation of p~<x,(3)(x) in (7.1.11) and the dual orthogonality relations (7.1.8) and (7.1.9) required for Pn(Xj) it is natural to look for a 4¢3 series whose (k + l)-th term has the numerator
Replacing q<X, qf3, q'Y, q8 by a, b, e, d, respectively, we are then led to consider a 4¢3 series of the form 4¢3
[
q-n, abqn+l, q-j, edqj+l . ] b d ' q, q . aq, eq, q
(7.2.8)
Observing that (q-j, edqJ+\ q) k is a polynomial of degree k in the variable q-j + edqj+1, we find that if we take
(7.2.9) then Xj - Xo = -(1- q-j)(l- edqJ+l) , and so (7.2.7) is satisfied with
(7.2.10) Then AkCk+1 > 0 for 0 ::::; k ::::; N - 1 if, for example, a, b, e are real, d b-1q-N-1, be < 0, max(laql, Ibql, leql, lablel) < 1 and 0 < q < 1. We shall now verify that _ Pn(Xj) satisfies (7.2.1) with x
4¢3
[q-n,abqn+l,q-j,edqj+l. ] b d ' q, q aq, eq, q
=
(7.2.11)
= Xj. A straightforward calculation gives
(7.2.12)
7.2 The finite discrete case
o< n
179
::::: N. So we need to verify that
q-n, abqn+l, q-j, edqj+l ] b d ; q, q aq, eq, q Anq-n (1 - abq2n+2) [q-n, abqn+2, ql- j , edqj+2 . _ ] - (1 - aq) (1 - eq) (1 - bdq) 4¢3 aq2, eq2, bdq2 ' q, q
4¢3
[
C nq l-n (1- abq2n) - (l-aq)(l-eq)(l-bdq)
4¢3
[ql-n, abqn+l, ql- j , edqj+2 . ] aq2,eq2,bdq2 ,q,q,
(7.2.13) where An and C n are given by (7.2.5) and (7.2.6) with Tk as defined in (7.2.10). Use of (2.10.4) on both sides of (7.2.13) reduces the problem to verifying that [
4¢3
q-n, abqn+l, bq-j Ie, bdqi+l ] bq, a bq I e, bdq ; q, q
(1- abqn+l)
(1- bdqn+l)
(1 - abq2n+l) (1 - bdq) x
4¢3
[
q-n, abqn+2, bq-j Ie, bdqi+l ] bq, a bq I e, bd q2 ; q, q
(1 - qn) (1 - aqn Id) (1 - abq2n+l) (1 _ bdq) bdq X4¢3
[
ql-n, abqn+l, bq-j Ie, bdqi+l ] bq, a blbd2 ;q,q, q e, q
(7.2.14)
which follows immediately from the fact that (q-n; qh (abqn+l; q) k+l
(1 -
bdqn+l)
(1 - abq2n+l) (1 - bdqk+l)
(1-
+
(q-n;q)k+l (abqn+\q)k af) bdqn+l (1 - abq2n+l) (1 _ bdqk+l) = (q-n, abqn+1; q) k .
The verification that (7.2.11) satisfies the boundary condition PN+l(Xj) = ::::: N is left as an exercise (Ex. 7.3). Note that the 4¢3 series in (7.2.11) remains unchanged if we switch n, a, b, respectively, with j, e, d. This implies that the polynomials Pn(Xj) are self-dual in the sense that they are of degree n in Xj = q-j + edqi+l and of degree j in Yn = q-n + abqn+l and that the weights Wj are obtained from the Vn in (7.2.3) by replacing n, a, b, e, d, by j, e, d, a, b, respectively, i.e.,
o for 0 ::::: j
W· J
=
(edq; q)j (1 - edq2i+l) (eq, aq, bdq; q)j ( )_j abq , (q; q)j(l - edq) (dq, edqla, eqlb; q)j
(7.2.15)
o : : : j ::::: N. Thus {Pn(Xj)};;=o is orthogonal with respect to the weights Wj, while {Pj (Yn)}f=o is orthogonal with respect to the weights Vn (see Ex. 7.4). The calculations have so far been done with the assumption that bdq = q-N, but the same results will hold if we assume that one of aq, eq and bdq is q- N.
180
Applications to orthogonal polynomials
The polynomials Pn(Xj) were discovered by Askey and Wilson [1979] as q-analogues of the Racah polynomials
Pn
F [-n,n+a+ f3 +1,-j,j+1'+6"+1.1]
( ,\.) = 4
J
a
3
+ 1, l' + 1, f3 + 6" + 1
"
(7.2.16)
where ,\j = j(j + l' + 6" + 1), which were named after the physicist Racah, who worked out their orthogonality without apparently being aware of the polynomial orthogonality. In the physicist's language the Pn ('\j) 's are known as Racah coefficients or 6j-symbols. The connection between the 6j-symbols and the 4F3 polynomials (7.2.16) was first made in Wilson's [1978] thesis. The q-analogues in (7.2.11) are called the q-Racah polynomials. We shall now point out some important special cases of the q-Racah polynomials. First, let us set d = b-1q-N-l in (7.2.11) and replace e by be to rewrite the q- Racah polynomials in the more standard notation
Wn(x;a,b,e,N;q)
=
4¢3
[
] q-n,abqn+1, q-X, eqx-N -N ;q,q . aq,q ,beq
(7.2.17)
Then, by (7.1.8), (7.2.3) and (7.2.15), N
LP(x;q)Wm(X;q)Wn(x;q) x=o
=
~m(,n),
(7.2.18)
n q
where
Wn(X; q) p(x; q)
== Wn(x; a, b, e, N; q), == p(x; a, b, e, N; q) (eq-N. q) (1 eq2X-N) (aq beq q-N. q)
=
'x ' , ' x (abq)-X (7.2.19) (q; q)x(l - eq-N)(ea-1q-N, b-1q-N, cq; q)x
and
hn(q)
== hn(a, b, e, N; q) = (bq, aqle; q)N (abq; q)n (1 - abq2n+l) (aq, beq, q-N; q)n (qN ler . (abq2, lie; q)N
(q; q)n(1- abq) (bq, aqle, abqN+2; q)n (7.2.20)
Setting e = 0 in (7.2.17) gives the q-Hahn polynomials
Qn(x)
_
=
. . _ Qn(x, a, b, N, q) -
3¢2
[q-n, abqn+l, q-X . ] aq, q-N ,q, q ,
(7.2.21 )
which were introduced by Hahn [1949a] and, by (7.2.18), satisfy the orthogonality relation N
L Qm(x)Qn(x) (aq; q)x(bq; q)N-x (aq)-X x=o (q; q)x(q; q)N-x 2 (abq2; q)N(aq)-N -----'--(q_;q--'-,)_n('-:-1_-_a_bq--'::),.:-(b.,. . "q,-:-a,-qb_N_+----:;c:-'q)---,n_(_ )n (n)-Nn.r -:N aq q 2 Um n (q; q)N (abq; q)n(1- abq2n+l )(aq, q- ; q)n ' (7.2.22)
7.3 The infinite discrete case
181
for m, n = 0,1, ... , N. Setting a = 0 in (7.2.17) we obtain the dual q-Hahn polynomials (Hahn [1949b])
Rn(P,(x))
== Rn(P,(x); b, e, N; q) _ -
where p,(x)
=
3¢2
[q-n, q-X, eqx-N . ] q-N, beq , q, q ,
(7.2.23)
+ eqx-N, which satisfy the orthogonality relation
q-X
N (eq-N. q) (1 eq2X-N) (beq q-N. q) x ' " Rm(P,(x))Rn(P,(x)) 'x " x qNX-(2)(_beq)-X (q; q)x(1- eq-N)(b-1q-N, eq; q)x
f='o =
(!t
e; ~)N (b (q, b~;;)n) (eq-Nt bm,n, q;q N eq,q ;q n
(7.2.24)
m, n = 0,1, ... , N. For some applications of q-Hahn, dual q-Hahn polynomials, and their limit cases, see Delsarte [1976a,b, 1978], Delsarte and Goethals [1975], Dunkl [1977-1980] and Stanton [1977-1986c].
7.3 The infinite discrete case: the little and big q-Jacobi polynomials As a q-analogue of the Jacobi polynomials (7.1.11), Hahn [1949a] (also see Andrews and Askey [1977]) introduced the polynomials
Pn(x;a,b;q)
= 2¢1(q-n,abqn+\aq;q,xq).
(7.3.1)
It can be easily verified that
. (1-
hm Pn
q--->l
x. a (3. ) _ p~a,(3)(x) - - , q ,q ,q ((3) .
2
Pn a,
(7.3.2)
(1)
He proved that
~ (x. b.) (x. b.) (bq; q)x ( )X _ bm,n ~ Pm q ,a, ,q Pn q ,a, ,q ( .) aq - h ( b. )'
(7.3.3)
< q,aq < 1 and h ( b. ) = (abq; q)n(1- abq2n+l )(aq; q)n(aq; q)= ( )-n
(7.3.4)
x=o
q, q x
n a, ,q
where 0
n a, ,q
(q,. q) n (1 - abq ) (bq,. q)n (abq 2.) ,q =
aq.
Observe that (7.3.3) and (7.3.4) also follow from (7.2.22) when we replace x by N - x and then let N ---+ 00. To prove (7.3.3), assume, as we may, that o :::; m :::; n, and observe that
f
(bq; q)x (aq)xqxkPm(qx; a, b; q) x=o (q; q)x m (q-m abqm+1. q) . ' J qj l¢o(bq;-;q,aq1+k+ j ) j=O (q,aq;q)j
=2:
'
182
Applications to orthogonal polynomials
(7.3.5) by the q-binomial and q-Saalschiitz formulas. Then the orthogonality relation (7.3.3) follows immediately by using (1.5.2) and (7.3.5). It is easy to verify that Pn(x; a, b; q) satisfies the three-term recurrence relation (7.3.6) for n 2: 0, where A
_ (1- abqn+l) (1- aqn+l) _ n n - (1 _ abq2n+l) (1 _ abq2n+2) ( q ),
(7.3.7)
(l-qn)(l-bqn) n C n = (1 _ abq2n) (1 _ abq2n+l) (-aq ),
(7.3.8)
so the condition that AnCn +l > 0 for n = 0,1, ... , is satisfied if 0 < q, aq < 1 and bq < 1. When b < 0 the polynomials Pn(x; a, b; q) give a q-analogue of the Laguerre polynomials L~(1) (x) since liml Pn ((1 - q)x; qOl, _q(3; q)
q-+
= L~OI) (x) / L~OI) (0).
(7.3.9)
Andrews and Askey [1985] introduced a second q-analogue of the Jacobi polynomials, (7.3.10) which has the property that •
•
01
(3
,.
_
hm Pn(x, q ,q ,-q ,q) -
q-+l
p~OI,(3)(X) ((3) , Pn 01, (1)
(7.3.11)
where'Y is real. In view of the third free parameter in (7.3.10) they called the Pn(x; a, b, c; q) the big q-Jacobi and the Pn(x; a, b; q) the little q-Jacobi polynomials. We shall now prove that the big q-Jacobi polynomials satisfy the orthogonality relation
l
aq
cq
( ) ( ) (x/a, x/c; q)oo Pm x; a, b, c; q Pn x; a, b, c; q ( b / . ) dqx x,xc,qoo
(7.3.12)
hn(a, b, c; q)'
where h ( b . ) n a, ,c, q
= M-l(abq;q)n(1_abq2n+l)(aq,cq;q)n(_ ( q; ) q n ( 1 - abq ) (bq, abq /c;) q n
2)-n acq
q
-G) (7.3.13)
7.3 The infinite discrete case
183
and M =
ja
q (x/a, x/c; q)oo dqx cq (x, bx/c; q)oo
aq(1 - q)(q, cia, aq/c, abq2; q)oo (aq,bq,cq, abq/c; q)oo
(7.3.14)
by (2.10.20). Since
j _ja
(x/a, X/C; q)oo (bx/c;q)j(X;q)k ( b / .) dqx cq x, x c, q 00 q (x/a, x/c; q)oo d - cq (k xq, bxql0/ C; q)00 qX aq
_ M(bq,abq/c;q)j(aq,cq;q)k (abq2; q)j+k ' the left side of (7.3.12) becomes M (bq, abq/c; q)m (c/b)m
(aq, cq; q)m m n (q-m abqm+1. q) (q-n abqn+1. q) '"' '"' ' '1 ' ' k j+k x ~ ~ (q,. q)j (q,. q) k (abq 2.) q, j=O k=O ,q j+k 0
(7.3.15)
where we used (7.3.10) and the observation that, by (3.2.2) and (3.2.5),
Pm(x; a, b, c; q) =
(bq,abq/c;q)m( /b)m C ( aq,cq;q ) m
r/,
3'1'2
[q-m,abqm+1,bX/C. ] bq,a bq/ c ' q, q . (7.3.16)
Assume that 0 ::; m ::; n. Since, by (1.5.3)
the double sum in (7.3.15) equals
n-m (qm-n abqm+n+1. q) (q -n abqn+1. q) , ' m ( b m+2) m ' " ' ' , k k (abq2; qhm a q ~ (q, abq2m+2; qh q _
-
(q -n abqn+1. q) ' ' n ( b n+2)n J: (b 2. ) a q Um,n' a q ,q 2n
Substituting this into (7.3.15), we obtain (7.3.12).
(7.3.17)
184
Applications to orthogonal polynomials
7.4 An absolutely continuous measure: the continuous q- ultraspherical polynomials In this and the following section we shall give two important examples of orthogonal polynomials which are orthogonal with respect to an absolutely continuous measure da(x) = w(x)dx. In his work of the 1890's, in which he discovered the now-famous RogersRamanujan identities, Rogers [1893b, 1894, 1895] introduced a set of orthogonal polynomials that are representable in terms of basic hypergeometric series and have the ultraspherical polynomials (7.1.12) as limits when q ---+ 1. Following Askey and Ismail [1983], we shall call these polynomials the continuous q-ultraspherical polynomials and define them by the generating function
((3te iO , (3te- iO ; q) 00 (·0 "0) te' , te-'· q '00
n
00
= "Cn(x; (3lq)t , ~
where x = cos 0, 0 ::; 0 ::; 7f and max(lql, Itl) theorem, it follows from (7.4.1) that
Cn(x; (3lq)
=
(7.4.1)
n=O
< 1. Using the q-binomial
t
((3; qh((3; q)n-k ei(n-2k)O k=O (q; qh(q; q)n-k
-- ((3; q)n inO ( ) e q;q
n
rI-. ( -n (3. 2'1-'1 q "
(3-1 q1-n.,q, q(3-1 e -2iO) .
(742) . .
Note that 1· C ( . AI ) - ~ (A)k(A)n-k i(n-2k)O 1m n x, q q - ~ k'( k)'. e • n k=O = C~(x).
q--->l
(7.4.3)
Before considering the orthogonality relation for Cn(x; (3lq), we shall first derive some important formulas for these polynomials. For 0 < 0 < 7f, 1(31 < 1, set a = q(3-1 e2iO, b = q(3-1, C = qe 2iO and z = (32 qn in (3.3.5) to obtain
2cP1 (q-n, (3; (3-1 q1-n; q, q(3-1 e -2iO) =
" " ((3qn, (3e- 2iO ; q) 00 rI-. (q(3-1 q(3-1 e 2,O. qe 2,o. q (32qn) n+1 -2iO.) 2'1-'1 , " , (q ,e ,qoo ((3, q(3-1, (3q n e2iO , (3-1 q1-n e -2iO; q) 00
+ (qn+1, e 2iO , q(3-1 e -2iO, (3-1 q1-n; q)oo X
2cP1 (q(3-l,q(3-1e-2iO;qe-2iO;q,(32qn).
(7.4.4)
Then, application of the transformation formula (1.4.3) to the two 2cP1 series on the right side of (7.4.4) gives
7.4 An absolutely continuous measure
185
(7.4.5) where
x = cos B.
(7.4.6)
Rewriting the right side of (7.4.5) as a q-integral we obtain the formula
Cn (x· ;3lq) ,
=
2i sin B (;3,;3; q)oo (;32; q) n (l-q)W{3(xlq) (q,;32;q)00 (q;q)n e - iO (queiO,que-iO;q)oo n X e iO (;3ueiO , ;3ue-iO ; q)oo u dqu,
l
(7.4.7)
which was found by Rahman and Verma [1986a]. Now use (1.4.1) to obtain from (7.4.5) that
Cn (x;;3lq) = (;3,;3;;q) ooWi 1(xlq) (;32;q)n (q,;3 ; q)oo (;3q; q)n 2iO inO X {(I - e ) e 2¢1 (q;3-1, qn+\ ;3qn+\ q, ;3e 2iO ) + (1 - e- 2iO ) e- inO 2¢1 (q;3-1, qn+\ ;3qn+l; q, ;3e- 2iO )} 00
= 4sinB Wil(xlq)
L b(k, n;;3) sin(n + 2k + l)B,
(7.4.8)
k=O
where 0
< B < 7[, 1;31 < 1 and b(k,n;;3) = (;3,;3;;q)oo (;32;q)n(q;3-\q)k(q;q)n+k ;3k. (q,;3 ; q)oo (q; q)n(q; q)d;3q; q)n+k
(7.4.9)
The series on the right side of (7.4.8) is absolutely convergent if 1;31 < 1. For Ixl < 1, Iql < 1 and large n it is clear from (7.4.5) that the leading term in the asymptotic expansion of Cn(cosB; ;3lq) is given by
C ( B·;3I) n cos, q
rv
(;3;q)oo {(;3e 2iO ;q)00 -inO + (;3e- 2i O;q)00 ino} (q;q)oo (e 2iO ;q)00 e (e- 2iO ;q)00 e
=2~;3;q?00 q;q
IA(eiO)lcos(nB-a),
(7.4.10)
00
where (7.4.11) and, as elsewhere, f(n) rv g(n) means that lim n--+ oo f(n)jg(n) = 1. For further results on the asymptotics of Cn(x; ;3lq), see Askey and Ismail [1980] and Rahman and Verma [1986a].
186
Applications to orthogonal polynomials
If we use (3.5.4) to express 2¢1 (q-n, (3; (3-1 q1-n; q, q(3-1 e-2iO) as a terminating VWP-balanced S¢7 series in base q~ and then apply (2.5.1), we obtain
,/-. ( -n (3. (3-1 1-n. (3-1 e -2iO) 2'/"1 q " q ,q,q
=
(q ~-n e -2iO.,q) n (_ q(1-n)/2(3-1.,q ~) n ((3 - 1 q21-n ; q21) n
-n/2 ,(31 2 e -iO ,- (31 2 e -iO , -q -n/2 1 1] (3 1_ n /2 -iO 1_ n /2 -iO ; q2, q2 - ,q4 e ,-q4 e (3 n/2 , (312 e iO , (312 e -iO . ~ ~ ] _ ((3 2.'q) n (3-n/2 -inO,/-. [ q-n/2 ,q - ((3 ) e 4 '/"3 1 1 1 1 ,q, q ;q n -(3, (32 q4, -(32 q4 X
4¢3
[q
(7.4.12)
by (2.10.4). However, by (3.10.13),
(7.4.13) and hence, from (7.4.2), (7.4.12) and (7.4.13), we have Cn(cosB; (3lq)
_ ((32;q)n -n/2 [q-n,(32qn,(3~eiO,(3~e-iO. ] - (q,q . ) n (3 4¢3 (3 q2,1 (3 ,- (3 q21 , q, q .
(7.4.14)
Since W,a(cosBlq) = IA(e iO )I- 2 for real (3, it follows from Theorem 40 in Nevai [1979] and the asymptotic formula (7.4.10) that the polynomials C n (cos B; (3lq) are orthogonal on [O,n] with respect to the measure W,a( cos Blq)dB, -1 < (3 < 1. One can also guess the weight function by setting (3 = q>' and comparing the generating function (7.4.1) and the expansion (7.4.8) with the q ---+ 1 limit cases and the weight function (1 - e2iO )>. (1 - e- 2iO )>' for the ultraspherical polynomials C~ (cos B). We shall now give a direct proof of the orthogonality relation
1" where Iql
Cm (cos B; (3lq)Cn (cos B; (3lq)W,a( cos Blq) dB
=
h:(~lq)'
(7.4.15)
< 1,1(31 < 1 and h n ((3lq)
=
(q, (32; ~)oo (q; ;!n(1- (3qn). 2n((3, (3q, q)oo ((3 ,q)n(1- (3)
(7.4.16)
As we shall see in the next section, (7.4.15) can be proved by using (7.4.14) and the Askey-Wilson q- beta integral (6.1.1); but here we shall give a direct proof by using (7.4.2), (1.9.10) and (1.9.11), as in Gasper [1981b]' to evaluate the integral. Since the integrand in (7.4.15) is even in B, it suffices to prove that (7.4.17)
7.4 An absolutely continuous measure
187
when 0 ::; m ::; n. We first show that, for any integer k,
j
7r -7r
e
ike
( I) { 0, if k is odd, W/3 cos () q d() = Ck/2 ((3I)·f . even, q, 1 k IS
(7.4.18)
where
(7.4.19)
I:
By the q-binomial theorem,
=
eike W/3( cos ()Iq)
ff r=Os=O
d()
((3-\ q)r((3-\ q)s (3r+s (q;q)r(q;q)s
r
J-7r
ei(k+2r-2s)e d(),
which equals zero when k is odd and equals
2n
f
s=o
((3-1: q)s((3.-\ q)s+j (31+2s (q, q)s(q, q)s+j
= 2n(~-.\~)j (3j 2¢1 ((3-1, (3-1 qj ; q1+\ q,(32) q, q
when k
=
2j, j
= 0,1, ....
J
By (1.4.5), the above 2¢1 series equals
((3, (3q1+\ q)oo rI-. ( -1 (3-1. (3. (3 j+1) 2\f'1 q , "q, q ((3 2 ,qj+1.) ,q 00 =
((3,(3,;!q)oo (q;.q)j (1+qj). (q,(3 ,q)oo ((3q,q)j
From this and the fact that W /3 ( cos () q) is symmetric in (), so that we can handle negative k's, we get (7.4.18). Hence, from (7.4.2), 1
(7.4.20) equals zero when n - k is odd and equals
(7.4.21 ) when n - k = 2j is even. From (1.9.11) it follows that this 4¢3 series and hence the integral (7.4.20) are equal to zero when n > Ikl. Hence (7.4.17) holds when m -I- n. If k = ±n -I- 0, then (1.9.10) gives
I:
eikOCn(cos();(3lq)W/3(cos()lq) d()
2n((3, (3q; q)00((32; q)n (q, (32; q)oo((3q; q)n
(7.4.22)
188
Applications to orthogonal polynomials
from which it follows that (7.4.17) also holds when m
=
n.
7.5 The Askey-Wilson polynomials In view of the 4¢3 series representation (7.4.14) for the continuous q-ultraspherical polynomials it is natural to consider the more general polynomials
(7.5.1) which are of degree n in x = cosO, and to try to determine the values of cv, /3, ,,(, 8, E for which these polynomials are orthogonal. Because terminating balanced 4¢3 series can be transformed to other balanced 4¢3 series and to VWP-balanced 8¢7 series which satisfy three-term transformation formulas (see, e.g., (7.2.13), (2.11.1), Exercise 2.15 and the three-term recurrence relation for the q-Racah polynomials), one is led to consider balanced 4¢3 series. From Sears' transformation formula (2.10.4) it follows that if we set cv = abcdq-l, /3 = a, "( = ab, 8 = ac and E = ad, then the polynomials
=
(ab, ac, ad; q)na-n
4¢3
[
q-n abcdqn-l ae iIJ ae- iIJ ] ' b 'd' ; q, q a ,ac,a
(7.5.2) are symmetric in a, b, c, d. In addition, for real 0 these polynomials are analytic functions of a, b, c, d and are, in view of the coefficient (ab, ac, ad; q)na-n, realvalued when a, b, c, d are real or, if complex, occur in conjugate pairs. Askey and Wilson [1985] introduced these polynomials as q-analogues of the 4F3 polynomials of Wilson [1978, 1980]. Since they derived the orthogonality relation, three-term recurrence relation, difference equation and other properties of Pn(x; a, b, c, dlq), these polynomials are now called the AskeyWilson polynomials. Since the three-term recurrence relation (7.2.1) for the q-Racah polynomials continues to hold without the restriction bdq = q-N, by translating it into the notation for Pn(x; a, b, c, dlq) we find, as in Askey and Wilson [1985], that the recurrence relation for these polynomials can be written in the form 2xPn(x) = AnPn+l(X)
+ BnPn(x) + CnPn-l(X),
n 2 0,
(7.5.3)
with P-l(X) = O,Po(x) = 1, where An =
1 - abcdqn-l
~------~~~------~~
(1 - abcdq2n-l) (1 - abcdq2n) ' (1 - qn)(1 - abqn-l )(1 - acqn-l )(1 - adqn-l) (1 - abcdq2n-2) (1 - abcdq2n-l) X (1- bcqn-l)(I- bdqn-l)(I- cdqn-l),
(7.5.4)
(7.5.5)
7.4 An absolutely continuous measure
189
and
= a + a-I
Bn
-
A n a- l (l- abqn)(l - aeqn)(l - adqn)
- Gna/ (1 - abqn-I) (1 - aeqn-I) (1 - adqn-I).
(7.5.6)
It is clear that An, B n , G n are real if a, b, e, d are real or, if complex, occur in conjugate pairs. Also AnGn+1 > 0, n = 0,1, ... , if the pairwise products of a, b, e, d are less than 1 in absolute value. So by Favard's theorem, there exists a measure da(x) with respect to which Pn(x; a, b, e, dlq) are orthogonal. In order to determine this measure let us assume that max(lal, Ibl, lei, Idl, Iql) < 1. Then, by (2.5.1), Pn( cos B; a, b, e, dlq) (ab, ae, be, de- iO , ; q)
=
"0
netn
(abee iO ; q)n S W7 (abee iO q-\ ae iO , be iO , ee iO , abedqn-I, q-n; q, qd-Ie- iO ) , (7.5.7)
X
and, by (2.11.1), S
W (abeeiOq-l. ae iO beiO ee iO abedqn-I q-n. qd-Ie- iO ) 7
""
"
q) 0 ( abee iO , bedeiOqn , beiOqn+1 , eeiOqn+1 , ae- iO , be- iO , ee- iO , de-iOqn.' 0 2iO 2iO ab ae be qn+1 bdqn edqn beqn+Ie e. q) ( ,
X S W7
"
,
"
"
CXJ
(beq n e 2iO ; beqn, beiO , ee iO , qa-Ie iO , qd-Ie iO ; q, adqn)
(abeeiO, abee- iO qn, bede- iO qn, be- iO qn+l, ee- iO qn+l; q) 00 +~--~~~~--~--~~~~--~~~~~--~
X
(qn+l, bdqn, edqn, abeeiOqn, beqn+Ie- 2iO ; q)oo q) 0 -2tnO " ( ae iO , beiO , ee iO , de iO '. 0 ( ab, ae, ad, e2"0) e t ; q 00
X SW 7
where
(beqn e -2iO; beqn, be- iO , ee- iO , qa-Ie- iO , qd-Ie- iO ; q, adqn) , (7.5.8)
°< B
3
[
q-n, _q-n, _q~-n, q~-A-n. ] ql-A-2n, q~ -n e 2iO, q~ -n e -2iO , q, q .
(7.5.39)
series, we obtain
C2n (cos e; qAlq) _ -
(q A qA+~. q) ' ' n -n/2 ( 1 ) q q, q2; q
1
4¢>3
.
1
.
[q-n,qn+A,q2e2.0,q2e-2.0. ] A+~ _ ~ _ ' q, q . q ,q, q
n
(7.5.40) This, together with (7.5.25), yields (7.5.35). The proof of (7.5.36) is left as an exercise. Following Askey and Wilson [1985] we shall obtain what are now called the continuous q-Hahn polynomials. First note that the orthogonality relation (7.5.15) can be written in the form
1:
Pm(cose; a, b, c, dlq)Pn(cose; a, b, c, dlq)w(cose; a, b, c, dlq) sine de
hn(a, b, c, dlq)'
(7.5.41)
194
Applications to orthogonal polynomials
Replace B by B + ¢, a by ae i¢, b by ae- i¢ and then set c = be i¢, d = be- i ¢ to find by periodicity that if -1 < a, b < 1 or if b = a and lal < 1, then
[ : Pm(cos(B + ¢); a, blq)Pn(cos(B + ¢); a, blq)W(B) dB (7.5.42) where
(7.5.43) (7.5.44) and
x (1 _ a2b2q-l) (q , a2 , b2 , ab " ab abe 2i ¢ , abe- 2i ¢.'q) n
(7.5.45) The recurrence relation for these polynomials is 2 cos(B + ¢ )Pn(cos(B + ¢); a, blq)
= AnPn+l (cos(B + ¢); a, blq) + BnPn(cos(B + ¢); a, blq)
+ CnPn-l(cos(B + ¢); a, blq)
(7.5.46)
for n = 0,1, ... , where P-l (x; a, blq) = 0,
A -
1 - a 2 b2 qn-l
(7.5.4 7)
-,---..".-:-;:,......."..----:-..,...-7-----,,-:-:::-;:--:-
n - (1 _ a 2b2q2n-l) (1 _ a 2b2q2n) '
and
Bn
=
ae i¢ + a-1e- i¢ - Ana-1e-i¢(1 - a 2qn)(1 - abqn)(l - abe 2i ¢qn) - Cnae i¢ /(1- a 2qn-l)(1_ abe 2i ¢qn-l)(1_ abqn-l). (7.5.49)
If we set a obtain
= qO
1 we
(7.5.50)
7.6 Connection coefficients
195
where . (3) _ · n Pn ( x, a, - 2
D
3£2
[-n, n+ 2aa++(32(3, 2-a 1, a- ix ,.1].
(7.5.51)
For further details and an extension to one more parameter, see Askey [1985b], Askey and Wilson [1982, 1985], Atakishiyev and Suslov [1985], and Suslov [1982, 1987].
7.6 Connection coefficients Suppose fn(x) and gn(x), n = 0,1, ... , are polynomials of exact degree n in x. Sometimes it is of interest to express one of these sequences as a linear combination of the polynomials in the other sequence, say, n
gn(X)
=
L ck,nfk(X).
(7.6.1)
k=O
The numbers Ck,n are called the connection coefficients. If the polynomials fn(x) happen to be orthogonal on an interval I with respect to a measure da(x), then Ck,n is the k-th Fourier coefficient of gn(x) with respect to the orthogonal polynomials fk(X) and hence can be expressed as a multiple of the integral II fk(X)gn(x)da(x). A particularly interesting problem is to determine the conditions under which the connection coefficients are nonnegative for particular systems of orthogonal polynomials. Formula (7.6.1) is sometimes called a projection formula when all of the coefficients are nonnegative. See the applications to positive definite functions, isometric embeddings of metric spaces, and inequalities in Askey [1970, 1975], Askey and Gasper [1971]' Gangolli [1967] and Gasper [1975a]. As an illustration we shall consider the coefficients Ck,n in the relation n
Pn(x; a, (3, 1', dlq) =
L Ck,nPk(X; a, b, c, dlq)·
(7.6.2)
k=O
Askey and Wilson [1985] showed that
Ck,n
=
(ad,(3d,1'd,q;q)n (a(31'd qn-\q)k k2-nkdk-n kq (ad, (3d, 'I'd, q, abcdq 1; qh (q; q)n-k
x S¢4
[qk-n, a(31'dqn+k-1, adqk, bdqk, cdqk . ] abcdq2k, adqk, (3dqk, 1'dqk ,q, q .
To prove (7.6.3), temporarily assume that max observe that, by orthogonality,
bk,j =
11
w(x;a,b,c,dlq)Pk(x;a,b,c,dlq)(deiO,de-iO;q)j dx
-1
vanishes if j
0 when 0 < a < a < 1, 0 < q < 1 and max (be, bd, cd, abed) < 1. Another simple case is when the 5rP4 series in (7.6.3) reduces to a summable 4rP3 series. For example, this happens when we set d = q!, c = -q! = 'Y, b = -a and (3 = -a. The 5rP4 series then reduces to
(7.6.10) which equals ( a2qn+k+1 qk-n+1 a2qk+n+2 a2qk-n+2/a2.q2) '
,
,
(q,a2q2k+1,a2q2k+2,a2q2/a2;q2)00
,
00
(
()/ n+k) n-k 2 a q 2
(
)
7.6.11
by Andrews' formula (Ex. 2.8). Clearly, this vanishes when n - k is an odd integer and equals
(qa 2, q2a 2; q2)n_2 o(q, 00 2 /a 2; q2)Jo (qa 2, q2a 2; q2)n_j
J -----;-----;c----';;:~'____;;co__------"(a 2q2n+ 1-4 j )j
(7.6.12)
7.7 A difference equation and a Rodrigues-type formula when n - k
197
2j,j = 0, 1, ... , [~]. Since by (3.10.12) and (7.4.14)
=
.
Pn (X, a,
__ ~ a,
~I) _
(q2,qa 2 ;q2)n (. 21 2) (2.) On X, a q , a ,q n
q ,q q -
(7.6.13)
we obtain, after some simplification, Rogers' formula
o (. n
X, "(
1) q
= [~l ~
k=O
(3k("( j (3; qh(,,(; q)n-k(l - (3qn-2k) 0 (. (31 ) ( . ) ((3 .) (1 _ (3) n-2k X, q q, q k q, q n-k
(7.6.14)
after replacing 0;2, a 2 , q2 by ,,(, (3 and q, respectively. It is left as an exercise (Ex. 7.15) to show that formulas (7.6.2) and (7.6.14) are special cases of the q-analogue ofthe Fields-Wimp formula given in (3.7.9). For other applications of the connection coefficient formula (7.6.2), see Askey and Wilson [1985].
7.7 A difference equation and a Rodrigues-type formula for the Askey-Wilson polynomials
The polynomials Pn(x; a, b, c, dlq), unlike the Jacobi polynomials, do not satisfy a differential equation; but, as Askey and Wilson [1985] showed, they satisfy a second-order difference equation. Define Eif(e iO )
6qf (e iO )
= f (q±~eiO), (Et - E;;) f (e iO )
=
Dqf(x) = 6q!(X) , uqx
and
(7.7.1)
X = cose.
(7.7.2) (7.7.3)
Clearly,
~ (q~
6q( cos e) =
and 6q (ae iO , ae- iO ; q) n
q-~)
-
(e iO - e- iO ) = -iq- ~ (1 - q) sin e,
= 2aiq- ~ (1 -
qn) sin
e (aq~ eiO , aq~ e- iO ; q)n-l,
(7.7.4) (7.7.5)
so that "0
D q ( ae'
"0)
,
ae-'·'qn
=-
2a(1-qn)
(1 _ q)
1"0
1
"0
(aq2 e' , aq2 e-' ,. q) n-l,
(7.7.6)
which implies that the divided difference operator Dq plays the same role for (aeiO,ae-iO;q)n as djdx does for xn. When q ---+ 1, formula (7.7.6) becomes
d~ (1- 2ax + a 2)n = -2an(1- 2ax + a 2t- 1 . Generally, for a differentiable function .
hm Dqf(x)
q--+l
f (x) =
we have
d
-d f(x). X
198
Applications to orthogonal polynomials
Following Askey and Wilson [1985], we shall now use the operator Dq and the recurrence relation (7.5.3) to derive a Rodrigues-type formula for Pn(x; a, b, c, dlq). First note that by (7.5.2) and (7.7.5)
8q Pn(x; a, b, c, dlq) 1 1 1 1 1 n sine (1 - qn)(l - qn- 1 abcd)Pn-l(X; aq2, = -2iq2bq2, cq2, dq2Iq). (7.7.7) If we define
(7.7.8) and
r (eiO ) = n
4'" 'f'3
[q-n,abCdqn-l,aeiO,ae-iO. ] ab , ac , ad ' q, q ,
(7.7.9)
then the recurrence relation (7.5.3) can be written as
q-n(1- qn)(l_ abcdqn-l)rn(e iO ) = A( -e) [rn(q-1e iO ) - rn(e iO )] + A(e) [rn(qe iO ) - rn(e iO )].
(7.7.10)
Also, setting (7.7.11) (7.7.12) we find that (7.7.10) can be expressed in the form
q-n(1- qn)(l_ abcdqn-l)V(eiO)V(e-iO)Pn(x) = 8q [{E:V(e iO )} {E';-V(e- iO )} {8 qPn(xH]·
(7.7.13)
Combining (7.7.7) and (7.7.13) we have
- q-n/2V(e iO)V(e- iO)Pn(X; a, b, c, dlq) = 8q [{ E:V(e iO )} {E.;-V(e- iO )} (e iO _ e- iO ) x Pn-l (X; aq! , bq! , cq! , dq! Iq)] . (7.7.14) Since
(e iO _ e- iO ) E:V(eiO)E';-V(e- iO ) (e iO -
c iO ) (qe 2iO , qe- 2iO ; q)
00
h( cos 61; aq! )h( cos 61; bq! )h( cos 61; cq! )h( cos 61; dq!) W (eiO;aq!,bq!,cq!,dq!lq) eiO
-
e- iO
199
Exercises (7.7.14) can be written in a slightly better form
q-n/2W(eiO ; a, b, c, dlq)Pn(x; a, b, c, dlq)
= liq [(e iO
- e-iO)-l W(e iO ; aq~, 1
1
1
1
bq~, cq~ ,dq~ Iq) ]
Pn-l (x; aq2 ,bq2 ,cq2, dq2lq) .
X
(7.7.15) Observing that, by (6.3.1),
Vl- x 2w(x; a, b, c, dlq) =
W(e iO ; a, b, c, dlq)
we find by iterating (7.7.15) that
w(x; a, b, c, dlq)Pn(x; a, b, c, dlq) =
(_I)k
(1 ;
q) k qnk/2-k(k+l)/4
k k k k k k k k ] x Dqk[ w(x; aq2, bq2, cq2, dq2Iq)Pn_k(X; aq'i, bq'i, cq'i, dq'ilq)
=
(-It
(1 ;
q) n q(n 2 -n)/4 D~ [w(x; aqn/2, bqn/2, cqn/2, dqn/2Iq)] . (7.7.16)
This gives a Rodrigues-type formula for the Askey-Wilson polynomials. By combining (7.7.7) and (7.7.15) it can be easily seen that the polynomials Pn(x) = Pn(x; a, b, c, dlq) satisfy the second-order difference equation 1
1
1
1
Dq [ w(x; aq2, bq2, cq2, dq 2 Iq)D qPn(x)
]
+ AnW(X; a, b, c, dlq)Pn(x) = 0,
(7.7.17)
where (7.7.18)
Exercises 7.1 If {Pn(x)} is an orthogonal system of polynomials on (-00, (0) with respect to a positive measure da(x) that has infinitely many points of support, prove that they satisfy a three-term recurrence relation of the form
XPn(X)
=
AnPn+l(X)
+ BnPn(x) + CnPn-l(X), n;::: 0,
with p-l(X) = 0, po(x) = 1, where An, B n , Cn are real and AnCn+1 > for n ;::: 0. 7.2 Let PO(X),Pl(X), ... ,PN(X) be a system of polynomials that satisfies a three-term recurrence relation
°
200
Applications to orthogonal polynomials n = 0,1, ... , N, where Darboux formula
P-l (x)
= O,Po(x) = 1. Prove the Christoffel-
n
(x - Y) LPj(x)pj(Y)Vj = Anvn [Pn+1 (x)Pn (y) - Pn(X)Pn+l(Y)] ' j=O :S n :S N, where Vo = 1 and vnCn = vn-1An- 1, 1 :S n :S N. Deduce
°
that
n
LP](x)Vj = Anvn [p~+1(X)Pn(X) - P~(X)Pn+l(X)l j=O and hence
N
LP](Xk)Vj j=O
=
ANVNPN(Xk)p~+l(Xk)
if x k is a zero of PN +1 (x) .
= N, the recurrence relation (7.2.1) reduces to (1 - q-j) (1 - cdqHl) PN(Xj) = CN [PN(Xj) - PN-l (Xj)] ,
7.3 Show that when n
where Pn(Xj) is given by (7.2.11), Xj by (7.2.9), and An and Cn by (7.2.5) and (7.2.6). Hence show that (7.2.1) holds with x = Xj,j = O,l, ... ,N. (Askey and Wilson [1979]) 7.4 If Pn(Xj), Vn and Wj are defined by (7.2.11), (7.2.3) and (7.2.15), respectively, prove directly (i.e. without the use of Favard's theorem) that N
N
LPm(Xj)Pn(Xj)Wj = j=O and
V;;:-l
N
L Wj Dm,n j=O N
LPn(Xj)Pn(Xk)Vn = wjl L Wn Dj,k. n=O n=O [Hint: First transform one of the polynomials, say Pn(x), to be a multiple of the
4¢3
series on the left side of (7.2.14)].
7.5 Let one of a, b, c, d be a nonnegative integer power of q-l and let
¢(a, b) =
4¢3 [
a~~~/~d; q, q] ,
where efg = abcdq. Prove the Askey and Wilson [1979] contiguous relation
A¢(aq-l, bq) where
+ B¢(a, b) + C¢(aq, bq-l) = 0,
A = b(l - b)(aq - b)(a - e)(a - f)(a - g), B = ab(a - bq)(b - a)(aq - b)(l - c)(l - d) - b(l - b)(aq - b)(a - e)(a - f)(a - g) + a(l - a)(a - bq)(e - b)(f - b)(g - b), C = -a(l - a)(a - bq)(e - b)(f - b)(g - b),
Exercises
201
and derive the following limit case which was found independently by Lassalle [1999]: ( (c-b)+ ab(1-c) _ aC(l-b)) y x _ (l-c)(y-a)(y-b) y(l - y) -
3
(l-b)(x-a)(x-c) x(1- x)
3(P2
(a,b,C;q, x y ) x,y abc
. +"2) (1) Ln/kJ (>')rn/kl
hn =
where the roof and floor functions are defined by
Ial = laJ =
smallest integer greater than or equal to a, largest integer less than or equal to a.
(AI-Salam, Allaway and Askey [1984b]) 7.25 The sieved ultraspherical polynomials of the second kind are defined by B~(x; k)
= lim Cn(x; sAk+1WklsWk), Wk = exp(27rijk). 8---+1
Show that B~(x; k) satisfies the recurrence relation 2xB~(x; k)
=
B~+l (x; k)
+ B~_l (x; k),
n
+ 1 -=I- mk,
2x(m + >')B~k-1 (x; k) = mB~k(x; k) + (m + 2>')B~k_2(X; k), where B6(x; k) = 1; Bf(x; k) = 2x if k 2:: 2; Bf(x; 1) = 2(>' + l)x. Show also that B~(x; k) satisfies the orthogonality relation
1 B~(x; k)B~(x; 1
k)w(x) dx =
-1
8~,n, n
where
k-1 W(X) = 22A (k-1)(1_ x 2)!
II Ix
2 -
cos 2(7rjjk)IA
j=O
and
_ hn
-
(l)Ln/kJ(>'+l)L~J
2r(>'+1) 1
1
(
nt J
r("2)r(>. +"2) >. + 1) Ln/kJ ( 2>' + 1) L
(AI-Salam, Allaway and Askey [1984b])
1
.
206
Applications to orthogonal polynomials
7.26 Using (2.5.1) show that
_ (ab,ae,be,q;q)n ( . b,e, dl) PnX,a, q - (bd-l.) aeq ,qn n (abeq-1 eiO;q)k (1- abee iO q2k-1) (aeiO,beiO,eeiO;q)k x {; (q; qh(l - abeq- 1eiO ) (be, ae, ab; q)k x (abedq-1; q)nH (de- iO ; q)n-k ei(n-2k)O
(abee 20 ; q)nH (q; q)n-k Deduce that the polynomials
Pn(x)
= q-+O lim Pn(x;a,b,e,dlq)
are given by
PO(X) = 1 = Uo(x), P1(X) = (1- 84)U1(X)
+ (83 - 81)UO(X), P2(X) = U2(x) - 81U1(X) + (82 - 84)UO(X), 4
Pn(X) = ~) -1)k8k Un _k(X), k=O
n ~ 3,
where 80
= 1,
81
= a + b + e + d, 83
82
= ab + ae + ad + be + bd + cd,
= abc + abd + aed + bcd,
84
= abed,
and Un (COS 0) = sin(n+1)ej sinO, U- 1(x) = O. When max(lal, Ibl, lei, Idl) < 1 show that these polynomials satisfy the orthogonality relation
211 7r
-1
Pm(X)Pn(x)(l - x 2)! dx (1- 2ax + a 2 )(1 - 2bx + b2 )(1 - 2ex + e2 )(1 - 2dx + d 2 )
0,
1- abed = { (1 - ab)(l - ae)(l - ad)(l - be)(l - bd)(l _ cd)' 1- abed, 1,
m#n, m m m
= n = 0, = n = 1, = n ~ 2.
(Askey and Wilson [1985]) 7.27 Prove that
· _ q, q! , _! _ ( n+2.,q) n sin(n. +0 1)e ' q Iq) - q S1n
(i)
Pn (cos 0, q,
(ii)
Pn(cos 0; 1, -1, q!, -q! Iq) = 2(qn; q)n cos nO,
(iii)
Pn(cosO,q,
(iv)
Pn(cosO,l,
n ~ 1,
· _ 1,q, ! _! _ ( n+ 1.,q) n sin( n + ~)e q Iq) - q sin(Oj2) , · _
! _!
_ ( n+1. ) cos(n + ~)e
q,q , q Iq) -
q
,q n
cos(Oj2) .
Exercises
207
7.28 Use the orthogonality relations (7.5.28) and (7.5.29) to prove the quadratic transformation formula (7.5.26). 7.29 Verify the orthogonality relations (7.5.28) and (7.5.29). 7.30 Verify formula (7.5.36). 7.31 Suppose that a,b,c,d are complex parameters with max (Ibl, Icl, Idl, Iql) < 1 < lal such that laqN+11 < 1 < laqNI, where N is a nonnegative integer. Use (6.6.12) to prove that 1
[1 Pm(X)Pn(X)W(X; a, b,
N
c, dlq) dx
+ 2n ~Pm(Xk)Pn(Xk)Wk
hn(a, b, c, dlq)' where Pn(x) by (7.5.22).
=
Pn(x;a,b,c,dlq), Xk
=
~
(aqk +a- 1 q-k) and Wk is given
7.32 Prove that
(i)
p~a,(3)(_x;q)
(ii)
p~a,(3)(_xlq)
= (-ltP~f3,a)(x;q), = (_ltq(a-f3)n/2p~f3,a)(xlq).
7.33 Using (7.4.1), (7.4.7) and (2.11.2) prove that
~ (~;;qJ)n On(x; ,8lq)On(Y; ,8lq)tn
(i)
(t 2,,8;q)= (,8t2, ,82; q)= x 8 W7
(~t2q-l. ~ jJ ,jJ,
teiiJ+i¢ , te -iO-i¢ , te iO - i¢ , tei¢-iO., q,jJ~)
,
~ (q; q)n 1 - ,8qn C ( ~I)O ( ~I) n f=' o (,82;q)n 1-,8 n X;{J q n Y;{J q t
(ii)
(t2,,8; q) = (,8teiiJ+ i¢, q,8te iO - i¢; q) = (q,8t2, ,82; q)= (teiiJ+i¢, te iO - i¢; q)= x
SW7
2
(,8t 2;,8, qteiiJ+ i¢, qte- iO - i¢, te iO - i¢, tei¢-iO; q,,8) ,
where -1 < q,,8, t < 1 and x = cosB, y = cos¢. (Gasper and Rahman [1983a], Rahman and Verma [1986a]) 7.34 Show that
Pn(cosB; a, b, c, dlq) x
l
qe - W / d
qeW
/d
D-l(B)(ab, ac, bc; q)n (dueiO,due- iO , abcdujq; q) =
(qju;q) (dU)n n du (daujq, dbujq, dcujq; q)= (abcdujq; q)n q q,
=
where
D( B) =
-iq(l - q) 2d (q, ab, ac, bc; q)=h( cos B; d)w( cos B; a, b, c, dlq).
208
Applications to orthogonal polynomials Hence show that 00 ( 11 ) n '""" a2c2) ; q nPn (() cos ; a, aq 1 2 , C, cq 2 q ~ 1 1 t n=O (q; q)n(a 2q2, ac, acq2; q)n
(at " ac2t -acteiIJ , -acte- iIJ ., q) 00 (-ct, -a 2ct, te iIJ , te- iIJ ; q)oo
x 8 W 7 ( -a 2ctq-\ -ac, -a/c, -ctq-~, ae iIJ , ae- iIJ ; q, -ctq~) . (Gasper and Rahman [1986]) 7.35 Show that Ex. 6.9 is equivalent to
1 1
w(y; a, b, p,eiIJ, J.Le-iIJlq)Pn(Y; a, b, c, dlq) dy
-1
27r(abJ.L 2; q)oo (ab; q)n n (q, ab, J.L2, aJ.Le iIJ , aJ.Le- iIJ , bJ.LeiIJ , bJ.Le- iIJ ; q)oo (abJ.L2; q)n J.L x Pn(cos (); aJ.L, bJ.L, CJ.L- 1 , dJ.L- 1 Iq),
where max(lal, Ibl, IJ.LI) 7.36 Show that if for Iql
-+I, qn+v+~ ,qn+2v, qn+v+leilJ, qn+v+le-ilJ . ] q2n+2v+l, qn+v+>-+I, qn+2v+l, _qn+v+>-+I, _qn+v+~ ,q, q
Show that Un(x) satisfies the q-differential equation
Dq[(qn+V+ 1 e iIJ , qn+v+l e -ilJ; q)-nUn(x)]
=X
1 - qn+2v 1 - qn+l
3
.
3.
(qn+v+2 e,IJ, qn+v+2 e-,IJ; q)
-2n-2v-l
Dq[(q-n-v e iIJ , q-n-v e- iIJ ; q)n+2v+l Un+1 (x)].
(Gasper [1989b])
Exercises
209
7.38 Show that the discrete q-Hermite polynomials
[n/2] (q; q)n (_l)k k(k-l) n-2k H ( . )= " n X, q ~ (2 2) ( ) q X k=O q; q k q; q n-2k satisfy the recurrence relation
and the orthogonality relation
where 1jJ(x) is a step function with jumps
Ixl (X 2q2, q; q2)= 2
(q2; q2)=
at the points x = ±qj, j = 0,1,2, .... (Ai-Salam and Garlitz [1965], Ai-Salam and Ismail [1988]) 7.39 Let a
< 0 and 0 < q < 1. Show that
I:
u$::)(x;q)u~a)(x;q) doJa) (x)
= (1- a)( _a)n(q; q) nq G)8m ,n, where
and oJa) (x) is a step function with jumps
qk
at the points x
=
qk, k
=
0,1, ... , and jumps
-aqk
at the points x = aqk, k = 0,1,.... Verify that when a = -1 this orthogonality relation reduces to the orthogonality relation for the discrete q-Hermite polynomials in Ex. 7.38. (See Ai-Salam and Garlitz [1957, 1965], Ghihara [1978, (10.7)], and Ismail [1985b, p.590]) 7.40 Show that if
(q; q)n k h ( . )- ~ n x, q - ~ ( ) ( ) x, k=O q; q k q; q n-k
210
Applications to orthogonal polynomials then h~(x;q) - hn+l(x;q)hn-1(x;q)
n
qn-kxk
k=O
q, q n-k
= (1 - q)(q; q)n-l L h~_k(X; q) ( .)
, n ;::: 1.
Deduce that the polynomials hn(x; q), which are called the Rogers-Szego polynomials, satisfy the Thnin-type inequality
for x ;::: 0 when 0 (Carlitz [1957b])
< q < 1 and n = 1,2, ....
7.41 Derive the addition formula
Pn(qZ; 1, 1; q) py(qZ; qX, 0; q) =
Pn(qx+y; 1, 1; q) Pn(qY; 1, 1; q) py(qZ; qX, 0; q)
+ Ln k=l X
(q. q) (q. q) qk(k+y-n) ' x+y+k , n+k (q; q)x+y(q; q)n-k(q; q)~
Pn_k(qx+y; l, qk; q) Pn-k(qY; l, l; q)
Z x x Py+k(q ; q ,0; q) X
n (q; q)y(q; q)n+kqk(x+y-n+l)
+ k=l L (.) (.) (. )2 q,qy-kq,qn-kq,qk
Pn_k(qx+y-k; l, l; q) Pn-k(qy-\ qk, qk; q) Py_k(qZ; qX, 0; q)
where x, y, z, n = 0,1, ... , and Pn(t; a, b; q) is the little q-Jacobi polynomial defined in Ex. 1.32. (Koornwinder [1991a]) 7.42 Derive the product formula 00
Pn(qX; 1, 1; q) Pn(qy; 1, 1; q)
=
(1 - q) LPn(qZ; 1, 1; q) K(qX, qy, qZ; q)qZ, z=O
where x, y, z, n = 0,1, ... , Pn(t; a, b; q) is the little q-Jacobi polynomial, and x+l y+l z+l. ) K( x y z. ) _ ( q ,q ,q ,q 00 xy+Xz+yz q ,q ,q ,q (1 -)( q q, q,.) q 00 q
x {3¢2(q-X,q-y,q-Z;0,0;q,q)}2. (Koornwinder [1991a]) 7.43 The q-Laguerre polynomials are defined by
Exercises
211
> -1 then these polynomials satisfy the orthogonality
Show that if a relation
(i)
and the discrete orthogonality relation (ii) where
A
=
(q, -c(1 - q)qe3
219
polynomials
Then, replacing j by j - k in the sum on the right side of (8.2.4), we obtain 41>3 [
q-n, aqn, bl , b2 ] j ;q,q b, b3 , qab l b2 bb3
~
[ q-n, aqn,
CI, C2
j
41>3
]
C3, qacIC2 CC3
C,
;q,q
(q-n, aqn, CI, C2, qabdbb3, qab 2 jbb 3 ; q)m m (q, C, C3, qajbb 3 , qacIC2jcC3, qab l b2 jbb 3 ; q)m q
=~
~ (bb 3q-m-1 ja; q)j(l - bb3q 2j-m-1 ja)(b l , b2 , bq-m ja, b3q-m ja, q-m; q)j
X
~
(q; q)j(l - bb3q-m-1 ja)(bb 3q-m jab l , bb3q-m jab 2 , b3 , b, bbJ/a; q)j
bb3qm )j
x ( --
[q-j, ql-m jc, ql-m j C3, bb3qj-m-1 ja, CC3q-m j acIC2. 51>4
bl b2
q
I
-m JCI,
q
I
-m j C2,
'
bq-m ja, b3q-m ja
]
q, q . (8.2.5)
Note that the 51>4 series in (8.2.5) is balanced and, in the special case C = aqjb and C3 = aqjb3 , becomes a 31>2 which is summable by (1.7.2). Thus, we obtain the formula
bb3c2jaq, q
where). formula
=
I -m
bq-m ja,
j C2,
b3q-m ja,
b3 ,
q-m
b,
bb3 ja,
;
q,
a q2 bl b2CIC2
]
,(8.2.6)
bb3q-m-1 ja. This formula is a q-analogue of Bailey's [1933] product 2FI ( -n,
a
+ n; b; x)
2FI ( -n,
a
+ n; 1 + a -
b; y)
= F 4 ( -n, a + n; b, 1 + a - b; x(l - y), y(l - x)),
(8.2.7)
~ ~ (a)m+n(b)m+n m n F ( b d ) 4 a, ;C, ;x,y = ~~ m!n!(c)m(d)n x y .
(8.2.8)
where
However, even though (8.2.6) is valid only when the series on both sides terminate, (8.2.7) holds whether or not n is a nonnegative integer, subject to the absolute convergence of the two 2FI series on the left and the F4 series on the right. Application of Sears' transformation formula (2.10.4) enables us to transform one or both of the 41>3 series on the left side of (8.2.6) and derive a number of equivalent forms. Two particularly interesting ones are
220
Further applications
(8.2.9)
bb3 C2/ aq, ql-m /C2,
b3 ,
(8.2.10)
b,
where ,\ = bb3 q-m-l/a. Either of the formulas (8.2.9) and (8.2.10) may be regarded as a q-analogue of Watson's [1922] product formula for the Jacobi polynomials 2FI( -n, a + n; b; x) 2FI( -n, a + n; b; y)
(-1 )n(1+a-b)n (b)n F4 (-n,a+n;b,l+a-b;xy, ( I-x )( l-y )) ,
=
(8.2.11) where n = 0,1, .... The special case in which the lOcP9 series in (8.2.6), (8.2.9) or (8.2.10) become balanced is also of interest in some applications. Thus, if we set C2 = aq/bIb2CI, then by using Bailey's transformation formula (2.10.8) we may express (8.2.9) in the form 4cP3
[
q-n, aqn, bl , b2 ] b, b3, qa bb/bb ;q,q I 2 3
= (aq/b,aq/b 3 ;q)n (bb 3 )n (b, b3 ; q)n X lOcP9
[
fJ'
aq
4cP3
t
] [q-n, aqn, bb3 cd aq, bb3 /bl b2CI b, b3, bb/bb ;q,q 3 I 2
(q-n,aqn,bICI,b2CI,aq/bIb2CI;q)mqm m=O (q, aq/b, aq/b 3 , bIb2CI, bb3 /b Ib2; q)m bIb2CI/b,
bIb2CI/b 3 ,
b,
b3 ,
8.3 Product formulas for q-Racah and Askey-Wilson polynomials
bb3cI/aq,
aqm,
qab 1b2/bb 3,
b1b2c1q-m la,
221
(8.2.12)
where /-l = b1b2c1q-1. This provides a q-analogue of Bateman's [1932, p. 392] product formula 2F1 ( -n, a + n; b; x) 2F1 ( -n, a + n; b; y)
= (_I)n (1 + a (b)n
b)n:t (-n)k(a + n)k (1- x _ y)k k=O k!(1 + a - bh
x 2F1 (-k, a + k; b; -xy/(1 - x - y)).
(8.2.13)
8.3 Product formulas for q-Racah and Askey-Wilson polynomials Let us replace the parameters a,b,b 1,b2,b3,C1,C2 in (8.2.9) byabq,aq,q-X, cqx-N, bcq, c- 1q-Y, qy-N, respectively, to obtain the following product formula for the q-Racah polynomials introduced in §7.2: VVn(x;a,b,c,lV;q) VVn(y;a,b,c,lV;q) n (q-n abqn+1 qx-N qy-N c- 1q-X c- 1q-Y. q) (b q, qac -1.) ,q n n '"""' ' , , , , 'm m = (aq, bcq; q) n c m=O ~ (b q q, q, qac -1 ,c -1 ,q -N , q-N ; q) m ,/,. [cq- m , q(cq-m)~, _q(cq-m)~, ca- 1q-m, b- 1q-m, q-m, q-X, X 10'1-'9
1
1
1
(cq-m)2, _(cq-m)2, aq, bcq, cq, cqx+ -m,
q -y , cq x-N , cq y-N b 2N +3 ] y+1-m N -x+1-m N -y+1-m ; q, a q , cq ,q ,q
(8.3.1)
where VVn(x;a,b,c,lV;q) _ -
41>3
[q-n, abqn+1, q-X, cqx-N . ] -N b ,q,q aq,q ,cq
(8.3.2)
is the q-Racah polynomial defined in (7.2.17). This is a Watson-type formula. Two additional Watson-type formulas are given in Ex. 8.l. Letting c ----t 0 in (8.3.1) gives a product formula for the q-Hahn polynomials defined in (7.2.21): Qn(x; a, b, lV; q) Qn(Y; a, b, lV; q) b ) n (-n b n+1 x-N y-N ) = (-aqtqG) ( q;q n q ,a q ,q ,q ;q m (aqx+y)-m (aq;q)n m=O (q,bq,q-N,q-N;q)m
L
X 41>3
[
q-X, q-Y, b- 1q-m, q-m b 2N+3] N-x+1-m N-y+1-m; q, a q . aq,q ,q
(8.3.3)
222
Further applications
To obtain a Watson-type product formula for the Askey-Wilson polynomials defined in (7.5.2) we replace a, b, bl , b2, b3 , Cl, C2 in (8.2.9) by abcdq-l, ab, ae i(} , ae- i (}, ac, de i ¢, de- i ¢, respectively, where x = cos B, y = cos ¢. This gives Pn(x; a, b, c, dlq) Pn(Y; a, b, c, dlq) = (ab, ac, ad, ad, bd, cd; q)n(ad)-n n (q-n abcdqn-l de i() de- i(} de i ¢ de-i¢. q)
x
L
'(q, ad, ad, , bd,, cd, da-
'1
m=O A.
' m qm
')
;q
m
[aq- m /d, q(aq-m /d)~, -q(aq-m /d)~, ql-m /bd, ql-m lcd, q-m,
X 10'1"9
1
1
(aq-m /d)'l, -(aq-m /d)'l, ab, ac, aq/d,
ae i(} , ae- i (} , ae i ¢, ae- i¢ bcq ] ql-me-i() /d, ql-mei(} /d, ql-me-i¢ /d, ql-mei¢ /d; q, ad·
(8.3.4)
When b = aq~ and d = cq~, the 1O¢9 series in (8.3.4) becomes balanced and hence can be transformed to another balanced 1O¢9 via (2.9.1). This leads to a Bateman-type product formula Pn(x; a, aq~, c, cq~ Iq) Pn(Y; a, aq~, c, cq~ Iq)
1
X 1O¢9
[v'
qv'l, 1
v 'l ,
ae- i(} , acq~ ei¢+i(} ,
1
-qv'l, 1
-v'l,
ae i ¢,
aq~ ei ¢,
ce i¢,
ac,
a2q~ ,
1
acq'l,
a 2c2qm, .¢ q'l- m e' /c, 1
2
~:mm+!; q, q]
a ce q
2
ae i (} , acq~ ei¢-i(} , ,
(8.3.5)
where v = a2cei¢q-~. In fact, if we replace a and c by q(2o:+l)/4 and _q(2,6+l)/4, respectively, then this gives a Bateman-type product formula for the continuous q-Jacobi polynomials (7.5.24) which, on letting q ----t 1, gives Bateman's [1932] product formula for the Jacobi polynomials:
t
PAOI ,,6)(x)PAOI ,,6)(y) = (_1)nC8 + 1 )n (-nh(n+a+,8+1)k (x+2 y)k OI OI PA ,,6) (l)PA ,,6) (1) (a+1)n k=o k!(,8+1h
x p(OI,,6) k
(1 +
x Y ) /p(a,,6)(l), x+y k
(8.3.6)
which is equivalent to (8.2.13). For terminating series there is really no difference between the Watson formula (8.2.11) and the Bailey formula (8.2.7) since one can be transformed into the other in a trivial way. However, for the continuous q-ultraspherical polynomials given in (7.4.14), there is an interesting Bailey-type product formula that can be obtained from (8.2.6) by replacing a, b, bl , b2, b3 , Cl, C2 by
8.4 A product formula
223
a 4, a2q~ , ae i() , ae- i () " -a2q~ aeiq, and ae-iq, , respectively'.
_
n
'"'
(q-n a 4qn aeiq, ae-iq, -aei () -ae-i(). q) '
-~ -0 mX 1O¢9
(
[
,
,
,
1
,
'm m
1
2 -a 2. q q , a 2q2 , -a 2q2 " -1 -a "
_q-m,
q
)
m
q( _q-m)~,
_q(_q-m)~
-q -m)!2,
_(_q-m)~
(
,
q~-m la2,
_q~-mla2,
q-m,
,
_a2q~ ,
a2q~,
_q,
ae i () , _q1-m e -i() la,
(8.3.7)
For further information about product formulas see Rahman [1982] and Gasper and Rahman [1984].
8.4 A product formula in integral form for the continuous q- ultraspherical polynomials As an application of the Bateman-type product formula (8.3.5) for the AskeyWilson polynomials we shall now derive a product formula for the continuous q-ultraspherical polynomials in the integral form Cn(X; ,8lq)Cn (y; ,8lq)
(r; ~)n q, q
n
,8-n/2j1 K(x, y, Z; ,8lq)Cn (z; ,8lq) dz,
(8.4.1)
-1
where K(
x
. r-II ) = (q,,8,,8;q)=1 (,8e2i(},,8e2iq,;q)=12 x, y, Z, {J q 2n(,82; q)= W
(z;,8~eiO+iq",8~e-i(}-iq",8~ei(}-iq",8~eiq,-i(})
(8.4.2)
with w(z; a, b, c, d) defined as in (6.3.1) and x = cos e, y = cos ¢. First, we set c = -a in (8.3.5) and rewrite it in the form !
!
!
!
rn(x; a, aq2, -a, -aq2Iq)rn(Y; a, aq2, -a, -aq2Iq)
2q = 11++a a 2n(-q _!)n 2
~ (q-n, a 4qn, -a2q~ ei(}+iq" -a2q~ eiq,-i() , -aq~ e-iq,; q) x
~
m=O X
(q, a2q~, -a2q~, -a 2q, -a3q~ eiq,; q) m
mqm
lOW9 (-a3q-~eiq,;aeiq" -aeiq"aq~eiq"aei(},ae-i(},a4qm,q-m;q,q),
(8.4.3) where
224
Further applications
rn(X; a, b, c, dlq) _ -
4¢3
[q-n, abcdqn-1, aeil:l, ae-il:l . ] b d ,q, q . a ,ac,a
(8.4.4)
The key step now is to use the d = -(aq)! case of Bailey's transformation formula (2.8.3) to transform the balanced 1O¢9 series in (8.4.3) to a balanced 4¢3 series:
(a 2e- 2i ¢, -a3q! ei¢; q) m (a 4 , -aq! e- i¢; q) m
X4¢3
[
a2e2i¢, _q! eil:l+i¢, _q! ei¢-il:l, q-m ] 21""'"1:1 2 1 Z"1:1 "'" 1 2"'" 2;q,q· -a q'2 eZ3
=
(q, a 2 , a 2; q)oo I (a 2e 2i ¢, a 2e- 2iO ; q)oo 12 2n(a 4 ; q)oo X
11
W
(z', aei¢-iO , ae iO - i ¢ , ae iO +i¢ , ae- iO - i¢)
-1
(q, a 2 , a 2; q)oo I (a 2e 2i ¢, a 2e- 2iO ; q)oo 12
x
11
2n(a 4 ; q)oo W
(z', aei¢-iO , ae iO - i ¢ , ae iO +i¢ , ae- iO - i¢)
-1
( -aq~ ei'ljJ, -aq~ e-i'ljJ; q) X
m
( -a2q~ ei¢-iO, -q~ e iO - i ¢; q) m
dz.
(8.4.9)
Substituting (8.4.9) into (8.4.7) and using (2.10.4) we finally obtain 1
1
1
1
rn(X; a, aq'2, -a, -aq'2lq) rn(Y; a, aq'2, -a, -aq'2lq)
=
11
K(x, y, z; a 2 lq) rn(Z; a,
aq~, -a, -aq~ Iq) dz.
(8.4.10)
-1
This yields (8.4.1) if we replace a by f3~ and use (7.4.14). By setting f3 = qA in (8.4.1) and taking the limit q --+ 1, Rahman and Verma [1986b] showed that (8.4.1) tends to Gegenbauer's [1874] product formula
O~(x)O~(y) 0;(1)0;(1) =
11
-1
O~(z) K(x, y, z) 0;(1) dz,
(8.4.11)
where (8.4.12) according as 1 - x 2 - y2 - z2 + 2xyz is positive or negative. Rahman and Verma [1986b] were also able to derive an addition formula for the continuous q-ultraspherical polynomials corresponding to the product formula (8.4.1). This is left as an exercise (Ex. 8.11).
226
Further applications
8.5 Rogers' linearization formula for the continuous q- ultraspherical polynomials
Rogers [1895] used an induction argument to prove the linearization formula
Cm(X; ,6lq)Cn (x; ,6lq)
mi~,n) (q; q)m+n-2d,6; q)m-k(,6; q)n-k(,6; q)k(,62; q)m+n-k k=O
(,62; q)m+n-2k(q; q)m-k(q; q)n-k(q; q)d,6q; q)m+n-k
(1 - ,6qm+n-2k) (1 _ ,6)
X
(8.5.1)
Cm+n- 2k (X; ,6lq)·
Different proofs of (8.5.1) have been given by Bressoud [1981d], Rahman [1981] and Gasper [1985]. We shall give Gasper's proof since it appears to be the simplest. We use (7.4.2) for Cn(x; ,6lq) and, via Heine's transformation formula (1.4.3) ,
',61 ) = (,6e- 2iO ; q) 00 (,6; q)m imO X, q (q,6-1e-2iO; q)oo (q; q)m e
c ( m
x
where x
= cos e.
2cPl (q,6-1,,6-2ql-m;,6-1ql-m;q,,6e- 2iO ) ,
Then, temporarily assuming that Iql
(8.5.2)
< 1,61 < 1, we have
(8.5.3) where A
(,6e- 2iO ;q) 00 (,6; q)m(,6; q)n i(m+n)O m,n - (q,6-1e-2iO; q)oo (q; q)m(q; q)n e . _
(8.5.4)
The crucial point here is that the 4cP3 series in (8.5.3) is balanced and so, by (2.5.1),
8.6 The Poisson kernel for Cn(x; ,8lq)
227
Substituting this into (8.5.3) and interchanging the order of summation, we obtain
min(m,n)
X
L
k=O
X
x
(,8-2 ql-m-n; q)2k (q,8-1 e -2iO)k (,8-1 ql-m-n; q)2k A,
2'/'1
(
(./ -2iO) ql-'(./-1 ,I-'(./-2 q1+2k-m-n.,I-'(./-1 q1+2k-m-n.,q,l-'e,
(856) ..
which gives (8.5.1) by using (8.5.2) and observing that both sides of (8.5.1) are polynomials in x. Notice that the linearization coefficients in (8.5.1) are nonnegative when -1 < ,8 < 1 and -1 < q < 1. For an extension of the linearization formula to the continuous q-Jacobi polynomials, see Ex. 8.24.
8.6 The Poisson kernel for Cn(x; ,8lq) For a system of orthogonal polynomials {Pn(x)} which satisfies an orthogonality relation of the form (7.1.6), the bilinear generating function 00
(8.6.1) n=O is called a Poisson kernel for these polynomials provided that h n = CVn for some constant C > O. The Poisson kernel for the continuous q-ultraspherical polynomials is defined by
Kt(x, y; ,8lq)
=
~ ~~;;;)~(~ ~~i Cn(x; ,8lq)Cn (y; ,8lq)tn ,
(8.6.2)
where It I < 1. Gasper and Rahman [1983a] used (8.5.1) to show that
-qt,8! , qte iHi , qte- iO - i , -t,8! , ,8te- iO - i , ,8teiHi , te iO - i , q,8tei-iO,
tei-iO, q,8teiO - i ,
where x = cos(),y = cos¢ and max(lql, Itl, closely related kernel
(8.6.3)
1(81) < 1. They also computed a
228
Further applications ((3, t 2 ; q) 00 ((32, (3t 2; q)oo
teiO+iq, ,
te-iO-iq, ,
(3te- iO - i q, , (3te iHi q, , (8.6.4) Alternative derivations of (8.6.3) and (8.6.4) were given by Rahman and Verma [1986a]. In view of the product formula (8.4.1), however, one can now give a simpler proof. Let us assume, for the moment, that It(3-~ 1< 1 and 1(31 < l. Then, by (7.4.1) and (8.4.1), we find that, with z = cos'lj.;,
1
(t(3~eiW,t(3~e-iw;q)
1
Lt(x, y; (3lq)
=
-1
K(x, y, z; (3lq) (
1.
1.
00)
t(3-2 e2W , t(3-2 e- 2W ; q
dz
00
(q,(3,(3;q)ool ((3e2iO,(3e2iq,;q)00 12 27r((32; q)oo
By (6.3.9),
x 8 W7 ((3t 2q-1., teiO+iq, , te-iO-iq, , teiO-iq, , teiq,-iO , (3." q (3)
.
(8.6.6)
Formula (8.6.4) follows immediately from (8.6.5) and (8.6.6). It is slightly more complicated to compute (8.6.1). Consider the generating function 00
Gt(z)
=
L
1 _ (3qn 1 _ (3 Cn(z; (3lq)tn
n=O ((3te iW , (3te- iw ; q) 00 (l-(3)(te iw ,te- iW ;q)oo
_
~ ((3qte iW , (3qte- iw ; q) 00
1-(3 (qteiW,qte-iW;q)oo
= 1 _ (3t2 ((3qte 2W , (3qte- iw ; q) 00 • (
)
(te 2w , te- 2W ; q) 00
(8.6.7)
8.7 Poisson kernels for the q-Racah polynomials
229
Then Kt(x, Y; ,8lq) =
11
-1
K(x, y, Z; ,8lq) G 13_1 (z) dz t
2
(1- t 2)(q,,8,,8;q)= I (,8e2il1,,8e2i.~, _>.~, ab q N+r+s+2, qr+s-K' q, q ,
= abq2r+2s+1.
We shall now show that when K
(8.7.7)
= N,
( N-z ) q ; q z-r-s A, (qr+s-z ql+r+s-z. ql+N-z. q abqN+z+2) , , , , . ( abq N+r+s+2.,q) z-r-s 2'1"1 (8.7.8) To prove (8.7.8) it suffices to show that Br,s
=
4¢3
[
a,
1
1
-qa 2 , 1 -a2,
qa2, 1 a2,
b w] ; q,w aq
(wblaq, wlb; q)oo 2'1"1, A, (b b' q,w bl' a,q,w Ib) ( w I aq,w;q ) 00
(8.7.9)
whether or not b is a negative integer power of q, provided the series on both sides converge. Since 1 - aq2k = 1 - qk + qk(l - aqk), the left side of (8.7.9) equals 2¢I(aq,b;w;q,wla)+ (wbla,wlb;q)oo (I ) w a,w;q 00
w(l - b) ( ) 2¢I(aq,bq;wq;q,wlaq) aq 1-w
2¢1
(
I I ) b, bq; wb a; q, w b
8.7 Poisson kernels for the q-Racah polynomials wlb; q)oo + w(l(b)(wbla, I ) aq w aq,w;q
rI-.
(wblaq, wlb; q)oo (w I aq,w;q )00
rI-.
(b b· bl· Ib) q, W a, q, w
2'1-'1,
00
=
(b b· q, W bl· a, q, w Ib)
2'1-'1,
by (1.4.5). Also, for 0: = a the which, by (2.10.4), equals
5¢>4
231
series in (8.7.5) reduces to a
(8.7.10) 4¢>3
series
( M+1-y-s b-1 -1 -y-s. ) _' "( q ,q s (b"(qr+s+y-M) s q (qr M, b"(qr+1; q)s X 4¢>3
[
q-S, qr- y , b-1q-S, C"(-l q M+1- y -s ] l+r-s M+1-y-s b- 1 -1 -y-s; q, q . cq ,q ,,,( q
(8.7.11)
From (8.7.6), (8.7.8) and (8.7.11) it follows that JDz(x,y; a,b,c, a,,,(,lV, AI, lV; q)
20
(8.7.12)
for x = 0,1, ... , lV, y = 0,1, ... , AI, z = 0,1, ... , lV when 0 < q < 1, 0 < aq < 1, 0 ::; bq < 1, 0 < c < aqN and cq ::; "( < qM -1 ::; qN -1. Hence the discrete Poisson kernel (8.7.2) is nonnegative for x, y, z = 0,1, ... ,lV when 0 < q < 1, o < aq < 1, 0 ::; bq < 1 and 0 < c < aqN. If in (8.7.3) we write the sum with lV as the upper limit of summation, replace (q-Z; q)n by (tq-K; q)n and let K ----t 00, it follows from (8.7.6) that Lt(x, y; a, b, c, 0:, ,,(, AI, lV; q) N
=
L tnhn(a, b, c, lV; q)Wn(x; a, b, c, lV; q)Wn(y;
0:,
abo:- 1 , ,,(, AI; q)
n=O
(b q,aq I c;q ) N
x N-x
~ ~
(b a q 2.) ,q 2r+2s (-x q ,cqx-N ,q -y ,,,(q y-M.) ,q r
(abq2,c 1;q)N ~ ~ (abqN+2;q)r+s (q,o:q,q-M, ab,,(qo:-1, cql-s; q)r
-
X
( q x-N ,c -1 q -x ; q) s (1 - cq r-s) A C (_t)r+s (r+s)(2N -r-s+1)/2-rs (q,b q,ac- 1 ) s (1-cq-S ) rs q , q;q " rs
(8.7.13) for x
=
0,1, ... , lV, y
C
=
-
r,s -
4¢>3
0, 1, ... , AI with Ar,s defined in (8.7.5) and \! r+s-N \ \ ! [ A, qA2, -qA2, q \! \! b N+r+s+2
A2,-A2,a q
. t N-r-s ] ,q, q ,
(8.7.14)
where A = abq2r+2s+1. However, by Ex. 2.2, rI-.
4'1-'3
[A,
qA~, A~ ,
-qA~, b- 1 ; q, tb] -A~
,
Abq
(t, Aq; q)oo ( ) bAb.) 2¢>l b ,tb;tq;q,Aq (t, q, q 00 for max(ltbl, IAql)
(8.7.15)
< 1. Use of this in (8.7.14) yields
Gr,s = (t, abq 2r+2s+2; q)N-r-s
2¢>1
(qN-r-s, tqN-r-s; tq; q, abq2r+2s+2) ,
(8.7.16)
232
Further applications
from which it is obvious that er,s 2: 0 for 0 :::; t < 1, r + s :::; N when Combining this with our previous observation that Ar,s equals the expression in (8.7.11) when a = a, it follows from (8.7.13) that
o :::; abq2 < 1.
Lt(x,y;a,b,c,a,,,!,M,N;q) > 0
(8.7.17)
for x = 0,1, ... ,N, y = 0,1, ... ,M, 0 :::; t < 1 when 0 < q < 1, 0 < aq < 1, bq < 1, 0 < c < aqN and cq :::; "! < qM-l :::; qN-l. In particular, the Poisson kernel (8.7.1) is positive for x,y = O,l, ... ,N, 0:::; t < 1 when o < q < 1, 0 < aq < 1, 0 :::; bq < 1 and 0 < c < aqN. For further details on the nonnegative bilinear sums of discrete orthogonal polynomials, see Gasper and Rahman [1984] and Rahman [1982].
o :::;
8.8 q-analogues of Clausen's formula Clausen's [1828] formula
{2Fl [a +ai~ ! ;z]
r
F [ 3
2
2a, 2b, a + b 2a + 2b, a + b +
! ;z
]
,
(8.8.1)
where Izl < 1, provides a rare example ofthe square of a hypergeometric series that is expressible as a hypergeometric series. Ramanujan's [1927, pp. 2339] rapidly convergent series representations of l/n, which have been used to compute n to millions of decimal digits, are based on special cases of (8.8.1); see the Chudnovskys' [1988] survey paper. Clausen's formula was used in Askey and Gasper [1976] to prove that 3
F [-n,n+a+2,!(a+1).1-x] > 0 2 a+1,!(a+3) '2 -
() 8.8.2
when a > -2, -1 :::; x :::; 1, n = 0,1, ... , which was then used to prove the positivity of certain important kernels involving sums of Jacobi polynomials; see Askey [1975] and the extensions in Gasper [1975a, 1977]. The special cases a = 2,4,6, ... of (8.8.2) turned out to be the inequalities de Branges [1985] needed to complete the last step in his celebrated proof of the Bieberbach conjecture. In this section we consider q-analogues of (8.8.1). Jackson [1940, 1941] derived the product formula given in Ex. 3.11 and additional proofs of it have been given by Singh [1959], Nassrallah [1982]' and Jain and Srivastava [1986]. But, unfortunately, the left side ofit is not a square and so Jackson's formula cannot be used to write certain basic hypergeometric series as sums of squares as was done with Clausen's formula in Askey and Gasper [1976] to prove (8.8.2). In order to obtain a q-analogue of Clausen's formula which expressed the square of a basic hypergeometric series as a basic hypergeometric series, the authors derived the formula
a,b,abz,ab/z . { 4¢3 [ b! a q2, -ab! q2,-a b,q,q
]}2
5¢4
a2,b2,ab,abz,ab/z ] [ 2b2 b! b! b; q, q , a ,a q2,-a q2,-a (8.8.3)
8.8 q-analogues of Clausen's formula
233
which holds when the series terminate. See Gasper [1989b], where it was pointed out that there are several ways of proving (8.8.3), such as using the Rogers' linearization formula (8.5.1), the product formula in §8.2, or the Rahman and Verma integral (8.4.10). In this section we derive a nonterminating q-analogue of Clausen's formula which reduces to (8.8.3) when it terminates. The key to the discovery of this formula is the observation that the proof of Rogers' linearization formula given in §8.5 is independent of the fact that the parameter n in the 21>1 series in (7.4.2) is a nonnegative integer. In view of (7.4.2) let
J(z)
= 21>1(a,(3;aql(3;q,zql(3),
(8.8.4)
which reduces to the 21>1 series in (7.4.2) when a = q-n and z = e- 2iIJ . Temporarily assume that Iql < 1(31 < 1 and Izl ::::; 1. From Heine's transformation (1.4.3) , (8.8.5) Hence, if we multiply the two coefficients of zj, we get
21>1
series in (8.8.4) and (8.8.5) and collect the
(8.8.6) where
Ak =
41>3
[
q-k,(3,(3q-kla,a ] (3q-k, (32 q-k la, aql (3; q, q
(8.8.7)
is a terminating balanced series. As in (8.5.5) we now apply (2.5.1) to the series in (8.8.7) to obtain that
2ql(32;q)00 A k -- (aql(3,a (a 2 q1(3 , aq 1(32.) , q 00
8
w:7 (2/(3· (3 2 k+l/(32 -k. 1(3) a ,a,a"a q ,q ,q,q .
41>3
( ) 8.8.8
Using (8.8.8) in (8.8.6) and changing the order of summation we get the formula
f=
J2(z) - ((3z;q)oo (1- a 2q2k l(3)(a 2/(3,a,a,(3;q)k - (zql (3; q)oo k=O (1 - a 21(3)(q, aql (3, aql (3, a 2ql (32; q)k (a 2ql(32;q)zk (Zq)k x (a 2ql (3; q)zk
/3
21>1
[a2q2k+l/(32,ql(3 ] a 2 q2k+l 1(3 ; q, (3z . (8.8.9)
Observe that since the 21>1 series in (8.8.9) is well-poised we may transform it by applying the quadratic transformation formula (3.4.7) to express it as an 81>7 series and then apply (2.10.10) to get the transformation formula
1> [a2q2k+l/(32,ql(3 (3] 2 1 a2q2k+l 1(3 ; q, z [ X 41>3
=
(k+l) (azql(3;q)oo(-al(3z)k q 2 ((3zla; q)oo(aql (3z, azql (3; q)k
] aqk, aqk+! 1(3, -aqk+! 1(3, _ aqk+ 1 1(3 a2q2k+l 1(3, azqk+l 1(3, aqk+l 1(3z ; q, q
234
Further applications
1
X
rI-.
4'f'3
[
1
/3z, zq"2 , -zq"2, -zq ] ; q, q . qz2, o: zq k+l, /3 zq l-k /0:
(8.8.10)
We can now substitute (8.8.10) into (8.8.9) and change the orders of summation to find that
f
J2(Z) = (/3z,o:zq//3;q)oo (0:; q)m(0:2q//3 2; qhm (zq/ /3, /3z / 0:; q)oo m=O (q, o:zq/ /3, o:q/ /3z, 0:2 q/ /3, o:q/ /3; q)m X
qm 6W 5(0:2//3;0:,/3,q-m;q,o:qm+l//32)
+
(0:, 0:2q/ /3, zq, o:zq; q)oo (/3z, zq!, -zq!, -zq; q)m m (o:q/ /3, 0:2q/ /3, zq/ /3,0:/ /3z; q)oo m=O (q, qz2, o:zq, /3zq/o:; q)m q
f
X6W5(0:2 //3; 0:, /3, o:q-m / /3z; q, zqm+l /(3). Summing the above {
6W5
(8.8.11)
series by means of (2.7.1), we obtain the formula
2 (/3z, o:zq/ /3; q)oo 2¢>1 ( 0:, /3; o:q / /3; q, zq / /3 )} = (zq //3 , /3 Z/ 0:,. q) rI-. [0:, o:q/ /3 2, o:q! //3, -o:q! //3, -o:q/ /3 ] X 5'f'4 o:q/ /3, 0:2q/ /3 2, o:q/ /3z, o:zq/ /3 ; q, q (0:, o:q/ /3 2, zq, zq, o:zq/ /3; q)oo 00
+~~~~~=-~~~~~-
(o:q//3,o:q//3,zq//3,zq//3,o://3z;q)oo rI-.
x 5'f'4
[/3z,Zq//3,Zq!,-Zq!,-Zq ] 2 ; q, q , zq, z q, /3zq/o:, o:zq/ /3
(8.8.12)
which gives the square of a well-poised 2¢>1 series as the sum ofthe two balanced 5¢>4 series. By analytic continuation, (8.8.12) holds whenever Iql < 1 and
Izq/ /31 < l. To derive (8.8.3) from (8.8.12), observe that if 0: 0 and (8.8.12) gives
q-n, n
=
=
0,1, ... , then
(0:; q)oo =
J2(Z) (/3z, zql-n//3;q)oo ¢> [q-n,q!-n//3,ql-n//32,_q!-n//3,_ql-n//3 ] = (/3zqn,zq//3;q)oo 5 4 ql-n//3,ql-2n//32, zq l-n//3,ql-n//3z ;q,q _ (/3 2,/32;q)n (.:.)n rI-. [q-n,/32 qn,/3,/3z,/3/z. ] - (/3 , /3.) 5'f'4 /32 , /3 q2,1 /3 q2,1 /3' q, q (8.8.13) ,q n /3 by reversing the order of summation. Since
1
2;q)n (.:.)n rI-. [q-n,/32 qn, (/3z)!, (/3/z)! . J( z ) = (/3 (/3) /3 4'f'3 1 1 , q, q ;q n /3q"2, -/3q"2, -/3 by (7.4.14), it follows from (8.8.13) that rI-. {
4'f'3
l}2
[q-n,/32 qn,(/3z)!,(/3/Z)!. /3 q2,1 /3 q2,1 /3 ,q,q
(8.8.14)
8.8 q-analogues of Clausen's formula
235 (8.8.15)
for n = 0,1, ... , which is formula (8.8.3) written in an equivalent form. Now note that 2¢1(a,~;aq/~;q,zq/~)
(z(aq)!, -z(aq)!, zqa! I~, -zqa! I~; q)oo (zq!, -zq!, zq/~, -azq/~; q)oo X 8 W 7 ( -az/~;
a!, -a!, (aq)! I~, -(aq)! I~, -z; q, -zq),
(8.8.16)
by (3.4.7) and (2.10.1), and set a = a!,b = (aq)!/~ to obtain from (8.8.12) the following q-analogue of Clausen's formula:
_1
}2
(a2z2q, b2z 2q; q2)00 { (2 2b 2 . 2) 8 W7( -abzq 2; a, -a, b, -b, -z; q, -zq) z q,a 2z q,q 00 _ (azq! Ib, bzq! la; q)oo ,j., [ a2, b2, ab, -ab, -abq! . ] 1 1 5¥'4 1 1 1 , q, q (zq'i lab, abzq'i; q)oo a2b2, abq'i, abzq'i, abq'i I z
+
(zq, zq, a 2, b2; q)oo 1 1 1 (abq'i,abq'i,ablzq'i,abzq'i;q)oo 1
1
1 -zq'i, 1 -zq azq'i1 Ib, bzq'i1 la, zq'i,
X 5¢4
[
2
1
3
zq,z q,abzq'i,zq'ilab
;
q, q ,
(8.8.17)
where Iql < 1 and Izql < 1. To see that (8.8.17) is a nonterminating q-analogue of Clausen's formula, it suffices to replace a by qa, b by qb and let q ----+ 1-; then the left side and the first term on the right side of (8.8.17) tend to the left and right sides of (8.8.1) with z replaced by -4z(l- Z)-2 and so, by (8.8.1), the second term on the right side of (8.8.17) must tend to zero. It is shown in Gasper and Rahman [1989] that the nonterminating extension (3.4.1) of the Sears-Carlitz quadratic transformation can be used in place of (8.8.10) to derive the product formula 2¢1
(a,b;c;q,z ) ,j.,
x
6¥'5
2¢1
(a,aq I c;aq I b;q,z )
(az,abzlc;q)oo
= (z, bz I c; q )
00
[a, clb, (aclb)!, -(aclb)!, (acqlb)!, -(acqlb)! ] I I I ; q, q aq b, c, ac b, az, cq bz
+ (a,clb, az, bz,azqlc;q)oo (c,aqlb,z,z,clbz;q)oo ,j.,
x
6¥'5
[z, abzlc, z(ablc)!, -z(ablc)!, z(abqlc)!, -z(abqlc)! ] I I 21 ; q, q , az, bz, azq c, bzq c, abz c (8.8.18)
where Izl < 1 and Iql < 1. This formula reduces to (8.8.12) when a ~, c = aql ~ and z is replaced by zq/~.
= a, b =
236
Further applications
By applying various transformation formulas to the 2¢1 series in (8.8.12) and (8.8.18), these formulas can be written in many equivalent forms. For instance, by replacing b in (8.8.18) by c/b and applying (1.5.4) we obtain
2¢2(a, b; c, az; q, cz/b) 2¢2(a, b; abq/c, az; q, azq/c) ] _ (z,az/b;q)oo " [a,b,(ab)!,-(ab)!,(abq)!,-(ab q)!. - (az, z /b) ' q, q ; q 00 6'1'5 abq / c, c, ab, az, bq / z
+ (a, b, cz/b, azq/c; q)oo (c, abq/c, az, b/ z; q)oo " [z, abz, z(a/b)!, -z(a/b)!, z(aq/b)!, -z(aq/b)! ] ( ) ; q, q , 8.8.19 az, cz/b, aqz/c, zq/b, az 2/b
X 6'1'5
where max(lql, lazq/cl, Icz/bl) < 1. If we replace a, b, z in (8.8.19) by qa, bb, z/(z - 1), respectively, and let q ----+ 1-, we obtain the Ramanujan [1957, Vol. 2] and Bailey [1933, 1935a] product formula
2Fl(a, b; c; z) 2Fl(a, b; a + b - c + 1; z) = 4F3(a, b, (a + b)/2, (a + b + 1)/2; c, a + b, a + b - c + 1; 4z(1 - z)), (8.8.20) where Izl < 1 and 14z(l- z)1 < 1. This is an extension of Clausen's formula in the sense that by replacing a, b, c, 4z(1 - z) in (8.8.20) by 2a, 2b, a + b + ~,z, respectively, and using the quadratic transformation (Erdelyi [1953, 2.11 (2)]) 1
1
2Fl(2a, 2b; a + b + "2; z) = 2Fl(a, b; a + b + "2; 4z(1 - z)),
(8.8.21)
we get (8.8.1). See Askey [1989d].
8.9 Nonnegative basic hypergeometric series
Our main aim in this section is to show how the terminating q-Clausen formula (8.8.3) can be used to derive q-analogues of the Askey-Gasper inequalities (8.8.2) and of the nonnegative hypergeometric series in Gasper [1975a, Equations (8.19), (8.20), (8.22)]. As in Gasper [1989b], let us set 'Y Cl
= q2b,al = qb,a2 = qb eiO,a3 = qbe-iO,b 1 = q2b,b2 = _qb,
= q-n ,C2 = qn+a ,d1 = q2!(a+l) = -
d 2, el
= qH!2 = -e3, x = q, W = 1 ,
in the r = 3, s = t = u = k = 2 case of (3.7.9) to obtain the expansion
8.9 Nonnegative basic hypergeometric series
x 5rP4 [
237
q-j,qj+2b, qb,qbeiO, qbe-iO ] 2b HI HI b ;q,q, q ,q 2 , -q 2 , -q
(8.9.1)
where, as throughout this section, n = 0,1, .... By Ex. 2.8 the 4rP3 series in (8.9.1) equals zero when n - j is odd and equals ( q, q a-2b.,q 2) k 2k(n-2k+b+l/2) (q2n-4k+a+l, q2n-4k+2H2; q2)k q
when n - j = 2k and k = 0,1, .... Hence, using (8.8.3) to write the 5rP4 as the square of a 4rP3 series, we have 5rP4
[
q-n, qn+a, qb, qbeiO, qbe-iO ] 2b I (a+l) I (a+l) b ; q, q ,-q2 ,-q q ,q2
[n/2]
=
~
bIb
1
(_l)n(q-n,qn+a,q +"2,-q +"2;q)n-2k (q, q! (a+I), _q! (MI), qn-2k+2b; q)n-2k
(8.9.2)
(8.9.3) when a ~ 2b > -1 and 0 follows from (8.9.3) that 3
F
2
c > 0, which gives the nonnegativity of the 3F2 series in Gasper [1975a, (8.22)] when a = a + ~,b = ~a + and c = a + 1. Also see Gasper [1989d].
£
8.10 Applications in the theory of partitions of positive integers In the applications given so far we have dealt almost exclusively with orthogonal polynomials which are representable as basic hypergeometric series. These are important results and most of them have appeared in print during the last thirty years. They constitute the main bulk of applications as far as this book is concerned. However, our task would remain incomplete if we failed to mention some of the earliest examples where basic hypergeometric series played crucial roles. The simplest among these examples is Euler's [1748] enumeration p( n) of the partitions of a positive integer n, where a partition of a positive integer n is a finite monotone decreasing sequence of positive integers (called the parts ofthe partition) whose sum is n. To illustrate how p(n) arises in a q-series let us consider a formal series expansion of the infinite product (q; q)~} in powers of q: 00
k=O
00
(8.10.1) where
240
Further applications
n
=
kl . 1 + k2 . 2 + ... + k n . n,
(8.10.2)
p(O) = 1 and, for a positive integer n, p(n) is the number of partitions of n into parts::; n. In the partition (8.10.2) of n there are k m m's and hence 0::; k m ::; n/m, 1 ::; m ::; n. For small values of n, p(n) can be calculated quite easily, but the number increases very rapidly. For example, p(3) = 3, p( 4) = 5, p(5) = 7, but p(243) = 133978259344888. Hardy and Ramanujan [1918] found the following asymptotic formula for large n:
p(n)
~ 4n~ex+ C;) ']
(8.10.3)
Also of interest are the enumerations of partitions of a positive integer n into parts restricted in certain ways such as: (i) PN(n), the number of partitions of n into parts::; N, which is given by the generating function 00
(8.10.4) (q; q)"i/ = 2::PN(n)qn, n=O where n = kl . 1 + k2 ·2+ ... + kN . N has k m m's ; (ii) Pe(n), the number of partitions of an even integer n into even parts, generated by 00
II (1 _ q2k+2)-1
(q2; q2)~;;} =
k=O 00
(8.10.5)
= 2::Pe(n)qn; n=O
(iii) Pdist(n), the number of partitions of n into distinct positive integers, generated by 1
(-q; q)oo =
1
2:: 2:: ... qk ·Hk ·2+ .. 1
k1=O
2
k2 =O
00
=
2::
(8.10.6) Pdist (n )qn, n=O where n = kl . 1 + k2 ·2+ ... + k n . n, 0 ::; k i ::; 1, 1 ::; i ::; n, and (iv) po(n), the number of partitions of n into odd parts, generated by 00
(q;q2)~1= II(1-q2k+l)-1
k=O 00
(8.10.7) Euler's partition identity Pdist(n) = po(n)
(8.10.8)
8.10 Applications in the theory of partitions of positive integers
241
follows from (8.10.6), (8.10.7) and the fact that (-q; q)OO =
(q'l,1 -q'l;1)-1 q = (q; q2);;}. 00
(8.10.9)
Other combinatorial identities of this type can be discovered from q-series identities similar to, but perhaps somewhat more complicated than, (8.10.9). For example, let us consider Euler's [1748] identity involving the pentagonal numbers n(3n ± 1)/2: 00
n=-oo 00
00
n=l n=l which is given in Ex. 2.18. A formal power series expansion gives 00
k=O
=
1
1
k1=O
k2 =O
L L ... (_I)kl+k2+··qkl·Hk2·2+ .. ,
(8.10.11)
which differs from the multiple series in (8.10.6) only in the factor (-I)kl+k 2+··. This factor is ±1 according as the partition has an even or odd number of parts. Denoting these numbers by Peven (n) and Podd (n), respectively, we find that 00
(q; q)oo = 1 +
L
[Peven(n) - pOdd(n)] qn.
(8.10.12)
n=l
From (8.10.10) and (8.10.12) it follows that _{(-I)k Peven (n) -
Podd (n)
forn=k(3k±I)/2,
-
(8.10.13) otherwise. Thus Euler's identity (8.10.10) expresses the important property that a positive integer n which is not a pentagonal number of the form k(3k ± 1)/2 can be partitioned as often into an even number of parts as into an odd number of parts. However, if n = k(3k ± 1) /2, k = 1,2, ... , then Peven (n) exceeds Podd (n) by (-I)k. See Hardy and Wright [1979], Rademacher [1973] and Andrews [1976, 1983] for related results. Two of the most celebrated identities in combinatorial analysis are the socalled Rogers-Ramanujan identities (2.7.3) and (2.7.4) which, for the purposes of the present discussion, we rewrite in the following form:
o
1+
L 00
n2
-qn=l (q;q)n
1
= --------
fi (1- q5k+ 1) (1- q5k+4)
k=O
(8.10.14)
242
Further applications 00
1+
n=l
1
qn(n+l)
L ( )
=
TI (1 -
q; q n
q5k+2)
(1 -
(8.10.15) q5k+3)
k=O
It is clear that the infinite product on the right side of (8.10.14) enumerates the partitions of a positive integer n into parts of the form 5k + 1 and 5k + 4, while that on the right side of (8.10.15) enumerates partitions of n into parts of the form 5k + 2 and 5k + 3, k = 0,1, .... Following Hardy and Wright [1979] we shall now give combinatorial interpretations of the left sides of the above identities. Since
k2
=
1 + 3 + 5 + ... + (2k - 1),
we can exhibit this square in a graph of k rows of dots, each row having two more dots than the lower one. We then take any partition of n-k 2 into at most k parts with the parts in descending order, marked with x's and placed at the ends of the rows of dots to obtain a partition of n into parts with minimal difference 2. For example, when k = 5 and n = 32 = 52 + 7 we add 4 x's to the top row, 1 each to the 2nd, 3rd and 4th rows, counted from above. This gives the partition 32 = 13 + 8 + 6 + 4 + 1 displayed in the graph below.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
x
•
•
•
•
x
•
•
x
•
x
x
x
x
• The identity (8.10.14) states that the number of partitions of n in which the differences between parts are at least 2 is equal to the number of partitions of n into parts congruent to 1 or 4 (mod 5). Observing that k(k
+ 1) = 2 + 4 + 6 + ... + 2k,
a similar interpretation can be given to the left side of (8.10.15). Since the first number in the above sum is 2, one deduces that the partitions of n into parts not less than 2 and with minimal difference 2 are equinumerous with the partitions of n into parts congruent to 2 or 3 (mod 5). For more applications of basic hypergeometric series to partition theory, see Andrews [1976-1988], Fine [1948, 1988], Andrews and Askey [1977], and Andrews, Dyson and Hickerson [1988]. Additional results on RogersRamanujan type identities are given in Slater [1951, 1952a], Jain and Verma [1980-1982] and Andrews [1975a, 1984a,b,c,d].
8.11 Representations of positive integers as sums of squares
One of the most interesting problems in number theory is the representations of positive integers as sums of squares of integers. Fermat proved that all
8.11 Representations of positive integers as sums of squares
243
primes of the form 4n + 1 can be uniquely expressed as the sum of two squares. Lagrange showed in 1770 that all positive integers can be represented by sums of four squares and that this number is minimal. Earlier in the same year Waring posed the general problem of representing a positive integer as a sum of a fixed number of nonnegative k-th powers of integers (positive, negative, or zero) with order taken into account and stated without proof that every integer is the sum of 4 squares, of 9 cubes, of 19 biquadrates, 'and so on'. More than 100 years later Hilbert [1909] proved that all positive integers are representable by s kth powers where s = s(k) depends only on k. For an historical account of the Waring problem, see Dickson [1920]' Grosswald [1985], and Hua [1982]. To illustrate the usefulness of basic hypergeometric series in the study of such representations we shall restrict ourselves to the simplest cases: sums of two and sums of four squares, where it is understood, for example, that n = xi + x§ = yi + y§ are two different representations of n as a sum of two squares if Xl -=1= Yl or X2 -=1= Y2· Let r2k (n) be the number of different representations of n as a sum of 2k squares, k = 1,2, .... We will show by basic hypergeometric series techniques that, for n ~ 1,
r2(n) = 4(d l (n) - d3 (n)),
(8.11.1)
L
(8.11.2)
r4(n) = 8
d,
dln,4id
where di(n), i = 1,3, is the number of (positive) divisors of n congruent to i (mod 4) and the summation in (8.11.2) indicates the sum over all divisors of n not divisible by 4. The numbers 4 and 8 in (8.11.1) and (8.11.2), respectively, reflect the fact that r2(1) = 4 since 1 = 02 + (±1)2 = (±1)2 +0 2, and r4(1) = 8 since 1 = 02 + 02 + 0 2 + (± 1)2 = 0 2 + 02 + (± 1) 2 + 0 2 = 02 + (± 1) 2 + 02 + 02 = (±1)2 + 02 + 0 2 + 02. Both of these results were proved by Jacobi by means of the theory of elliptic functions, but the proofs below are based, as in Andrews [1974a], on the formulas stated in Ex. 5.1, 5.2, and 5.3. Combining Ex. 5.1 and 5.2 we have (8.11.3) However, the bilateral sum on the left side is clearly a generating function of (-1 )nr2 (n) and so it suffices to prove that 00
00
"[dl(n) - d3 (n)](-qt ~
(-1 )nqn(n+l)/2
(8.11.4) l+qn n=l n=l By splitting into odd and even parts and then by formal series manipulations, we find that 00 (-1 )nqn(n+l)/2 00 qr(2r+l) 00 q(m+l)(2m+l)
L
n=l
1+
qn
=
L r=l
1+
00
00
r=l m=r
q2r -
= "
~
L
m=O
1+
q2m+l 00
00
m=Or=m+l
244
Further applications
(Xl
(Xl
m=Or=l (Xl
=L
(Xl
L(-lr (q(4m+l)r _ q(4m+3)r)
m=Or=l (Xl
=
L( -q)n(d (n) 1
d3 (n)),
(8.11.5)
n=l
which completes the proof of (8.11.4). To prove (8.11.2) we first replace q by -q in Ex. 5.1 and 5.3 and find that
nqn
(Xl
= 1 + 8 ~ 1 + (_q)n '
(8.11.6)
where the last line is obtained from the previous one by expanding (1 + (_q)n)-2 and interchanging the order of summation. Now,
-- L (Xl
n=l
nqn -+ 1 - qn
L
even
n~2
nq
nIl ----1 + qn 1 _ qn (
)
(8.11. 7) Thus, (8.11.8)
Exercises
245
Since T4(O) = 1, this immediately leads to (8.11.2). For a direct proof of (8.11.8) based only on Jacobi's triple product identity (1.6.1), see Hirschhorn [1987]. Ex. 5.1 and 5.4 can be employed in a similar manner to show that
T8(n) = 16( _l)n~) _1)dd 3,
n ~ 1.
(8.11.9)
din
See Andrews [1974a]. Some remarks on other applications are given in Notes §8.11.
Exercises
8.1 Prove for the little q-Jacobi polynomials Pn(x; a, b; q) defined in (7.3.1) that
(i)
(ii)
Pn(x;a,b;q)Pn(y;a,b;q) n (b ) n (q-n abqn+1. q) m = (-bq)-n q -(2) q;qn 'm(_b yq 2)m q (2) (aq; q)n m=O (q, bq; q)m
L
(q-m abqm+1. q) (' ) ' k ( xq )k k=O q, aq; q k m
X '""' ~
'
A. ( qk-m ,xq;; b 0 2'/-'1
q, b-1 y -1) .
8.2 Derive the following product formula for the big q-Jacobi polynomials defined in (7.3.10):
246
Further applications
8.3 Prove that (abq,aq;q)n(1-abq2n+l) (t)n L ( b ' ) (1 _ b) Pn(qX; a, b; q)Pn(qY; a, b; q) n=O q, q, q n a q aq 00
= (t, abq2; q)oo L 00
r=O X 2¢1
(-X
min(x,y)
L
-Y
)
-s
q ,q ; q sa q(x+y)(r+s) (q, bq; q)s (q, aq; q)r
s=O
(0,0; qt; q, abq2r+2s+2) q-2rs-s 2 t r +s ,
and that this gives the positivity of the Poisson kernel for the little q-Jacobi polynomials for x, y = 0,1, ... , 0:::; t < 1 when 0 < q < 1,0 < aq < 1 and O1
(qr+s-z, q1+r+s-z; q1+N -z; q, abqN +Z+2)
= 0,1, ...
,N, Y
= 0,1, ...
o < aq < 1, 0 :::; bq < 1 and N
,M, z
= 0,1, ...
2 O.
,N, when 0
- ~ , ). ;::: 0, (Gasper [1989b])
°
-(xqk)-l
=
(bxq; qh (x-I; q)oo (a/x)k, (q; qh (q; q)oo
and so a suitable comparison function for asymptotic purposes is
f
(bxq; qh (x-\ q)oo (a/x)k k=O (q;q)k (q;q)oo l+xtqk
= (x-\ q)oo (q;q)oo
f
==0
(abq=+\ q)oo (-xt)=. (aq=/x;q)oo
(9.2.4)
9.2 The little q-Jacobi polynomials
261
Combining (9.2.4) and the left side of (9.2.1) we find, by Darboux's theorem, as extended by Ismail and Wilson [1982]' that
(x-I. q) (n) Pn(x;a,b;q) "-' ( ') 00 (_x)n q- 2 , aq; q 00
x
#
0,I,q,q2, ... ,
uniformly for x, a and b in compact sets. Now we shall reconsider the Poisson kernel for the little q-Jacobi polynomials given in Ex. 8.3, which has the right positivity properties but suffers from the flaw that it does not directly lead to the known q ----+ 1- limit:
f
n=O
=
(2n + a + (3 + 1) (a + (3 + 1 )nn! t n p(a,(3) (cos 2(})p(a,(3) (cos 2c/J) (a + (3 + 1)(a + l)n((3 + l)n n n
(1
1- t
+ t)a+(3+2 F4
[a +
(3 + 2 2 '
a+
(3 + 3 2 ;a
+ 1, (3 + 1;
a2
b2 ]
/1,2' /1,2
'
(9.2.5)
Hi!
where a = sin(}sinc/J, b = cos () cos c/J, /1, = +c~), 0:::; (},c/J:::; 7[, 0 < t < 1, see Bailey [1935, p. 102]. First, use the product formula Ex. 8.1(i) to obtain the following expression
1 - abq2n+l (abq, aq; q)n 1_ b (b .) (t/aq)n Pn(x; a, b; q) Pn(Y; a, b; q) n=O a q, q, q n
=L 00
Kt(x, y)
L L
min(x,y) (
00
=
b 2) (-X -y) a q ;q 2r+2s q ,q str+sa-Sq(x+y)(r+s)-s2-2rs (q,aq;q)r(q,bq;q)s
r=O
s=O
x
1 - abq2(n+r+s)+1 (abq2r+2s+\ q)s (~) -t n
00
~
1- abq2(r+s)+1
(q; q)n
q
(
).
(9.2.6)
What is needed to compute now is a series of the form
f
n=O
1 - aq2n (a: q)n qG) (_t)n == ht(a), say. I-a (q,q)n
(9.2.7)
Without the qG) factor the computation is trivial via the q-binomial theorem (1.3.2). But with this factor the best one can do seems to be to consider this as the b ----+ (Xl limit of the very-well-poised series 4 W3(a;
b; q, t/b)
which, by (3.4.8), transforms to
(t,aq 2t 2;q)00 SW7 ( aqt; ()1 2 ,-qa 1 2 ,bqt;q,t / b) aq 2,_ ()1 aq 2,qa 1 (qt2, atq 2) ; q 00 =
(1 _ t) (-qta~, -:q~ a~, t(aq)~ /~, tqa~ /b; q)oo (-tq'2, -tq, t/b, atq'2 /b; q)oo 1
X
1
1
1
1
1
1)
SW7 ( atq'2/b;tq'2,(aq)'2,qa'2,-a'2/b,-(aq)'2/b;q,tq'2 , (9.2.8)
262
Linear and bilinear generating functions
from (2.10.1). Since 0
< t < 1, it follows by letting b ----;
ht(a) = (1 _ t)
that
00
(-tqa~ 'l-tq~ d; q)oo (-tq'l, -tq; q)oo
,/-. X 3'1'2
[(aq)~,qa~,tq~.q tq~] 1 3 1" -qta'l,-tq'la'l
(9.2.9)
•
So, if we replace a and b in (9.2.6) by qa and q(3, respectively, and use (1.6) and (1.25), then Kt(x, y) of (9.2.6) can be written in a more suggestive form
Kt(x,y)
=
(1- t) 1
1
(-tq'l; q'l )a+(3+2 00
min(x,y) (q~(a+(3+2), q~(a+(3+3), _q~(a+(3+2), _q~(a+(3+3);
(_ tq~(a+(3+3) "_tq~(a+(3+4). q) r+s
xL L r=O s=O x
q)r+s
(q-X, q-Y; q)s (t qx+y)r+s q-s 2-2rs-2s ~~~~~~~~~~----
(q, qa+l; q)r(q, q(3+1; q)s qr+s+~ (a+(3+2) qr+s+~ (a+(3+3) tq~ [ _tqr+s+~(a+(3+3), _tqr+s+~(a+(3+4) ; q, tq2 .
1]
X 3¢2
(9.2.10)
It is obvious that the q ----; 1- limit of (9.2.10) is indeed (9.2.5) and that the expression on the right side of (9.2.10) is nonnegative when 0 < t < 1 and a,j3 > -1.
9.3 A generating function for Askey-Wilson polynomials There are many different generating functions for the Askey-Wilson polynomials Tn(X; a, b, e, dlq) defined in (8.4.4), of which G t (x; a, b, e, d I) q
(abed/q; =~ ~ (.) q)n t nTn (X; a, b, e, d I) q, n=O
q, q n
It I < 1,
(9.3.1)
is one of the simplest. By Ex. 7.34,
Gt(x;a,b,e,dlq)
= D-1(B) x
3¢2
r
e- iO / d (dueiO,due- iO , abedu/:; q)oo JqeiO /d (dau/q, dbu/q, deu/q, q)oo
q , be, q/u ] [ abed/ ad, abedu/q ; q, adut/q dqu,
(9.3.2)
where D(B) is defined in Ex. 7.34. However, by (3.4.1),
,/-. [abed/q,be,q/u. adut/] 3'1'2 ad, abedu/q ,q, q
= (abedt/q;q)oo (t; q)oo
¢ [(abCd/q)~, -(abed/q) ~, (abed) ~, -(abed) ~,adu/q .
x
5 4
ad, abedu/q, abedt/q, q/t
(abed/q, adt, abcdut/q, adu/q; q)oo (ad, abedu/q, adut/q, l/t; q)oo
+~~~~~--~~--~~~
] ,q, q
9.3 A generating function for Askey-Wilson polynomials
'"
[
X 5'1'4
263
] t(abcdjq) "21 , -t(abcdjq) "21 , t(abcd) "21 , -t(abcd) "21 ,adutjq . j 2j ,q, q . adt,abcdut q,abcdt q,qt (9.3.3)
Substituting this into (9.3.2), using (2.10.18) and simplifying the coefficients, we find that
Gt (x,. a, b,c, dl) q
=
(abcdtjq; q)oo () t; q 00
¢ [(abcdjq)~, -(abcdjq) ~, (abcd) ~, -(abcd) ~ ,aei (}, ae- i (} . ] 5 ab, ac, ad, abcdtjq, qjt ,q, q
x
6
+
(abcdj q, abt, act, adt, ae i (} , ae- i(); q)oo (ab, ac, ad, ate i (} , ate- iO , t- I ; q)oo
x
6'1'5
'" [t(abcdjq)~, -t(abcdjq)~, t(abcd)~, -t(abcd)~, ate iO , ate- iO . ] abt, act, adt, abcdt 2 jq, qt ,q, q . (9.3.4)
The generating function given in Ex. 7.34 is a special case of (9.3.4). A more difficult problem is to evaluate the sum of the series
Ht(x;a,b,c,dlq) =
f
n=O
((a~q))ntn Tn(x;a,b,c,dlq), q, q
(9.3.5)
n
where a is an arbitrary parameter. For a = ab this would, in particular, give a q-analogue of the generating function of Jacobi polynomials given in the previous section. Note that
Ht(x)
== Ht(x; a, b, c, dlq) ~ (abcdjaq; q)m
(a; q)oo
= (a bcdj q,.) q
~
00
m=O
(.) q, q m
a
m
( I ) ( ) Gtqrn x; a, b, c, d q. 9.3.6
So, use of (9.3.4) in (9.3.6) gives
Ht(x)
=
(a, abcdtjq; q)oo (t, abcdjq; q)oo X
'" 6'1'5
f m=O
(t, abcdjaq; q)m am (q, abcdtjq; q)m
[(abcdjq)~, -(abcdjq)~, (abcd)~, -(abcd)~, ae iO , ae- iO . a b,ac, a d ,abcdt qm-I , q I-mjt
+
(a, abt, act, adt, ae iO , ae- iO ; q)oo (ab, ac, ad, ate iO , ate- iO , t- I ; q)oo
x
~--~~~~~--~~~~
x
6'1'5
f
m=O
] ,q, q
(abcdjaq; q)m (q; q)m
. . (m+I) (ate,O,ate-,O;q)mq 2 (-at)m (abt, act, adt, qt; q)m
'" [tqm(abcdjq)~, -tqm(abcdjq)~, tqm(abcd)~, -tqm(abcd)~, abtqm, actqm, adtqm, tqm+ 1 , (9.3.7)
Linear and bilinear generating functions
264
Since, by (1.4.5) 2¢1(abed/aq, tq-n; abedtqn-\ q, aqn) =
(atqn, abedqn-l; q)oo (-n / n-l n) ( bd 1) 2¢1 q ,abed aq; abedq ; q, atq , (9.3.8) aqn, a e tqn- ; q 00
the first term on the right side of (9.3.7) becomes
f
(a, abed/ aq, ae iO , ae- iO ; q)nqG) (-at)n (t; q)oo n=O (q, ab, ae, ad, at, q/t; q)n
(at; q)oo
(9.3.9) Interchange of the order of summation followed by the use of (1.4.5) and simplification in the second term of (9.3.7) gives
(a, at 2 , abedt/q, abt, act, adt, ae iO , ae- iO ; q)oo (ab, ae, ad, at, abedt 2/q, t-I, ate iO , ate- iO ; q)oo x
f
(abed/aq, r\ q)n (at2t (q,abedt/q;q)n
n=O rI.
x 7'1'6
[at, t( abed/ q)! , -t( abed/ q)! , t( abed)! , -t( abed)! , ate iO , ate- iO . ] 2 1 1 ,q, q . abt, act, adt, at ,abedtqn- ,tq -n (9.3.10)
In the special case b = aq!, d = eq!, e --+ -e and a = ab = a 2q!, both 7¢6 series above become balanced 4¢3 's, which along with their coefficients, can be combined via (2.10.10). Denoting the sum of (9.3.9) and (9.3.10) in this combination by Gt(x; a, elq), we get Gt(x; a, elq) (a 2t a2tq! a 2ete iO a 2ete- iO . q) (aetq! , a 3 etq! ,ateiO , ate- iO ; q)oo ,
X
,
,
,(Xl
ae, aeq !2 ,e2 q - !2, ae iO ,ae -iO ; q ) n (a 3 etq!2 ; q) 2n (2 2 !)n 1 1 . 1. a t q2 n=O (q, a 2t, a 2tq2, a 2etq2 e'O, a 2etq2 e-'O; q)n(a 2e 2; qhn 00 "'"'
(
L...J
x 8 W7 ( a 3 etq2n-!; atq! /e, aeqn, aeqn+!, aqneiO, aqne-iO; q, act). (9.3.11) Unfortunately, neither the 8 W 7 series inside nor the outside series over n can be summed exactly except in the limit q --+ 1-. If we replace a and e by q!(o+!) and qH6+!), respectively, in (9.3.11), then lim G t (x;q!(o+!),q!(l3+!)lq)
q-->l -
9.4 A bilinear sum for the Askey-Wilson polynomials I
= (1 _ t)i3+ 1R-a-i3-1 ~ ~
n=O
265
((3)n [2t2 (1 - x)] n n! R2
x F [n+~(a+(3+1),n+~(a+(3+2).2t(1-X)] ( ) 2 1 a + (3 + 1 + 2n ' R 2 · 9.3.12 By the summation formula Erdelyi [1953 Vol. 1. 2.8(6)] we can evaluate the above 2F1 series, and then do the summation over n in (9.3.12) by the binomial theorem (1.3.1) to obtain the well-known generating function Szego [1975, (4.4.5)] for the Jacobi polynomials.
9.4 A bilinear sum for the Askey-Wilson polynomials I
We shall now compute the sum
F(x, ylq) :=
~ (abed)~: !~~~/g; q)n (abed/ fg)nknTn(X)Tn(Y),
(9.4.1)
where Tn(X) is the Askey-Wilson polynomial given in (8.4.4),
k n = K,(a, b, e, dlq)
(111 [Tn(xWw(x)dx) -1,
(9.4.2)
and f and 9 are arbitrary parameters such that the series in (9.4.1) has a convergent sum. By Ex. 7.34,
Tn( cos B)
= B-1 (B) lqe-i8/b qei8/b
Tn(COS¢)
= C- 1(¢) l
(buei!i, bue-i!i, abedu/q; q)oo(ed, q/u; q)n (bau/q, beu/q, bdu/q; q)oo(ab, abedu/q; q)n x (abu/q)ndqu, (9.4.3)
qe - i1> /e ( i¢ . ) 00 (bd ,q /v,q . )n eve ,eve -i¢ ,abedv / q,q qei1>/e (eav/q, ebv/q, edv/q; q)oo(ae, abedv/q; q)n x (aev/q)ndqv, (9.4.4)
where
B(B) = -
iq(l - q) 2b (q,ae,ad,ed;q)ooh(cosB;b)w(cosB;a,b,e,dlq),
(9.4.5)
iq(l - q) (q,ab,ad,bd;q)ooh(cos¢;e)w(cos¢;a,b,c,dlq). 2e
(9.4.6)
and
C(¢)
=-
Hence
F(x, ylq)
=
B-1(B)C-1 (¢) lqe-i8/b (buei!i, bue-i!i, abcdu/q; q)oo qeie /b (bau/q, beu/q, bdu/q; q)oo i qe - 1> /e (eve i¢, eve- i¢, abedv/q; q)oo l X qei1>/e (eav/q,ebv/q,cdv/q;q)oo x 8 W7(abcd/q; ad, f, g, q/u, q/v; q, ab2e2duv/ fgq2)d q ud q v. (9.4.7)
266
Linear and bilinear generating functions
However, by (2.10.10) the above
SW7
equals
(abed, be/ j, be/ g, abed/ j g; q)oo (be, abed/ j, abed/ g, be/ jg; q)oo
x
4¢3
ad,j,g,abeduv/q2 ] [ abedu/q, abedv/q, qjg/be; q, q
(abed, ad, j, g, abeduv/q2, ab 2e2du/ jgq, ab 2e2dv/ jgq; q)oo (be, abed/j,abed/g, abedu/q, abedv/q, ab 2e2duv/jgq2, jg/be; q)oo
+~~--~~~~--~~----~~~--~~~~=-~-
be/j,be/g,abed/jg,ab2e2duv/jgq2
]
x 4¢3 [ ab2e2du/ jgq, ab2e2dv/ jgq, beq/ jg ; q, q ,
(9.4.8)
which, when substituted into (9.4.7), leads to the sum of two terms, say, F Fl + F 2 , where F1(x, ylq)
=
=
(abed, be/ j, be/g, abed/ jg; q)oo B-l(B)C-1(¢) (be,abed/j,abed/g,be/jg;q)oo ~ (ad, j, g; q)n n q n=O (q, qjg/be; q)n
x~
l l
qe - W /b (bue i() , bue-i(} , abeduqn-l; q)oo
qeiO /b (bau/q, beu/q, bdu/q; q)oo i qe - ¢/e (eve i , eve- i , abedvqn-l, abeduvq-2; q)oo x qei¢ /e ( eav/ q, ebv / q, edv / q, abeduvq n-2) ; q 00 dqv dqu, X
(9.4.9) and F 2(x,ylq)
=
(abed,ad,j,g;q)oo B-l(B)C- 1(¢) (be, abed/ j, abed/ g, jg/be; q)oo ~ (be/ j, be/g, abed/ jg; q)n n q n=O (q, beq/ jg; q)n
x~
X
X
l l
qe - iO /b (bue i() , bue- i() , ab 2e2duqn-l / j g; q)oo
qeiO /b (bau/ q, beu/ q, bdu/ q; q)oo qe - i¢/e (eve i , eve- i , ab 2e2dvqn-l / jg, abeduv/q2; q)oo qei¢/e (eav/q, ebv/q, edv/q, ab2e2duvqn-2 / jg; q)oo
x dqv dqu
(9.4.10)
with x = cos B, y = cos ¢. The q-integral over v on the right side of (9.4.9) can be expressed as a terminating S¢7 series via (2.10.19), which can then be transformed to a balanced 4¢3 series that can be transformed back into a different S¢7 series. The final expression for this q-integral turns out to be C(¢) (dei, de- i , bdu/q; q)n (ad, bd, d/a; q)n X S W 7 (aq-n /d; ae i , ae- i , ql-n /bd, q-n, abu/q; q, q2 / adu). (9.4.11)
9.4 A bilinear sum for the Askey-Wilson polynomials I
267
The q-integral over u in (9.4.9) then has the form
l
qe -
iB
qe iB /b
/b
(bue iO , bue- iO , abeduqn-\ q)oo d (bauqk-l, beu/q, bduqn-k-l; q)oo qU,
which, by (2.10.18), gives
B(()) (ae iO , ae- iO ; q)k(de iO , de- iO ; q)n-k. (ad; q)n(ae; qh(ed; q)n-k
(9.4.12)
Substitution of (9.4.11) and (9.4.12) into (9.4.9) then gives F ( 1 X,
I) Yq
(abed, be/ f, be/ g, abed/ f g; q)oo
= (be, abed/ f, abed/g, be/ fg; q)oo x
L (f "9 de iO ,de- iO ,dei ,de-i.,q)n qn 00
n=O
x
10
(q, ad, bd, ed, d/a, qfg/be; q)n
W.9 (aq-n/d· ae iO , ae- iO , ae i , ae- i , ql-n/bd , q1-n/ ed " q-n. q'ad beq ) . \ '
(9.4.13) The q-integral over v in (9.4.10) equals
C ¢ (abdue- i /q, ab 2 edq n e- i / fg; q)oo ( ) (ab 2 eduqn-1 e -2 / fg, abde- 2; q)oo x 8 W 7 (abde- i /q; ae- i , be- i , de- i , q/u, fgq-n /be; q, ab 2 eduqn- 1ei / fg), (9.4.14) which is a bit more troublesome than the previous case because the 8 W 7 series is nonterminating unless fg/be is of the form q-k, k = 0,1, ... , which cannot be the case because of the factor (be/fg;q)oo in the denominator of F 1(x,ylq) and of the factor (fg/be; q)oo in the denominator of F 2 (x, ylq). So either we split up this 8 W 7 series into a pair of balanced 4¢3 series via (2.10.10) and get bogged down in a long and tedious computation, or seek an alternative shorter method. In fact, by (6.3.9) the expression in (9.4.14) can be written as 2 C(rI.) (q ae i , be i , de i ' ab cqn '1-', fg'
b2 cdqn abcdqn fg , fg'
abu/q , bdu/q , adu/q·, q) 00
assuming, for the time being, that (9.4.16)
268
Linear and bilinear generating functions
If we make the further assumption that ad = be, then the q-integral over u reduces to
j
qe- iO /b
qe iO /b
(bue iO , bue- iO , ab 2c2duqn-1 II g; q)oodqu 2 1 (ab eduqn- ei Ilg, q-1 (abd) !uei'I/J-!i, q-1(abd)!ue- i'I/J-!i; q)oo'
which sums to
(9.4.17)
x h(z; eiO-!i(adlb)!, e-iO-!i(adlb)!) . So the q-integral in u over the expression in (9.4.14) equals
B( 8)C( ¢)( q, ae i , bei , ee- i , de i ; q)oo 1(ae iO , ee iO , de iO ; q)oo 12 2n(ab,ae, ad, ad, bd, cd; q)oo (abedqn Ilg, ab 2eqn Ig, b2edqn Ilg; q)oo x (abedqnei+iO Ilg, abedqnei-iO Ilg; q)oo x
h(z;l,-l,q!,-q!)
1
/
-1
h (z; (abl d)! d i , (adlb)! e!i, (bdl a)! e!i ,ae-'"1> ;q, bcq ad)' (ii) From (i) deduce the projection formula m
p:::,b)(x;q) = Lg(n,m)p~o:,f3)(x;q), n=O where p:::,b) (x; q) is the continuous q-Jacobi polynomial defined in (7.5.25), and
(Rahman [1985])
278
Linear and bilinear generating functions
9.18 In (9.5.2) and (9.5.3) take ad = be and Wn =
(ex,(3,"(,o;q)n (be, be, beql f, ex(3"(of Ib 3e3; q)n'
--,----------=-------=--'--------"-'----,---0----=----,-----
Also, in (9.6.2) and (9.6.3) take ad = be and
an
=
(exJlbe,(3J1be,,,(Jlbe,ofl be;q)n n q (ex(3"(oj2 Ib 4 e4 ; q)n .
Choosing appropriate multiples of (9.5.1) and (9.6.1), show that
f
(1 - b2e2q2n-l) (b 2e2q-l, ab, ae, ex, (3, ,,(, 0; q)n (ex(3"( f Ibe; qhn -0 (1 - b2e2q-l) (q be2a- 1 b2ea- 1 f3'Yf a'Yf af3f af3'Y8f. q) (b 2e2. q)2 n'" be ' be ' be ' b3 e 3 , n ,n b2e2qn Of) (f)n ( ex(3"( fbeq2n-l ; ex(3"(f X SW7 b3e3 '-o-,ex qn ,(3qn,,,(qn;q, be a2 x rn(x;a,b,e,bea-1Iq) rn(y;a,b,e,bea-1Iq) (exf Ibe, (3 f Ibe, "( f Ibe, ex(3"( f Ibe; q)oo (ex(3f Ibe, ex"(f Ibe, (3"(f Ibe, f Ibe; q)oo 00
x
~
(ex, (3, ,,(, 0; q)nl(bea-1eil:l, bea-1e i¢; q)nl 2qn (q, be, be, b2ea-1, be2a-1, bea- 2, ex(3"(of Ib 3e3, beql f; q)n
X 10 W g ( a 2q-n Ibe;
aql-n Ib 2e, aql-n Ibe 2, q-n, aeil:l, ae-il:l, ae i¢, ae- i¢; q, q)
(ex, (3, ,,(, 0, ex(3"( f Ibe, ex(3"(oP Ib 4 e4 , f, af Ie; q)oo + (ex(3 f Ibe, ex"( f Ibe, (3"( f Ibe, of Ibe, ab, ae, be, b2el a; q)oo x (aeil:l, bei¢, befeil:l la, efe i¢; q)0012 . 2 (ale, be f I a, bel f, ex(3"(o f Ib 3e3; q)oo 1(Je'CO+¢), fe,CI:I-¢); q)oo 12 X (exJlbe, (3f Ibe, ,,(JIbe, of Ibe, be2f la; q)n 1(JeiCO+¢) ,jeiCO+¢); q)nl 2qn n=O (q, f, qf Ibe, af Ie, ex(3"(oj2 Ib 4 c4; q)n (efe i¢, befeil:l fa; q)nl 2 1
f
1
x
10 W g(be 2fqn-l
fa; fqn, befqn-l, efqn la, eeil:l, ee-il:l, beei¢la, bee- i¢ la; q, q)
(ex, (3, ,,(, 0, ex(3"( f Ibe, f, ef I a, ex(3"(oP Ib 4 e4 ; q)oo (ex(3f Ibe, ex"( f Ibe, (3"( f Ibe, of Ibe, ae, be, b2ea- 1, be2a- 1; q)oo 1(eeil:l, beei¢ I a, bfeil:l, afe i ¢; q)oo 12 x (cia, abf, bel f, ex(3"(o f Ib 3e3; q)oo 1(JeiCO+¢), feiCI:I-¢); q)oo 12
+--,-------,-----~-~--,-------,-----~~--,-----~---,-----~~~~~~--
~ (exf Ibe, (3f Ibe, "( f Ibe, of Ibe, abf; q)n (JeiCO+¢), feiCI:I-¢); q)nl 2qn 1
x
~ (q, f, qJlbe, eJla, ex(3"(oj2 Ib 4 e4 ; q)n
x
10 Wg(abfqn-\
I(afe i¢, bfeil:l; q)nl 2
fqn, befqn-l, afqn Ie, aeil:l, ae-il:l, bei¢, be- i¢; q, q).
(Rahman [1985]) 9.19 Show that the special case ex = be = -,,(, (3 = beq~ = -0, f = t of the formula in Ex. 9.18 gives the Poisson kernel for the special Askey-Wilson
Exercises
279
polynomials Tn(X; a, b, e, bca-1Iq):
(1 - b2 e2 q2n-1)(b2 e2 q -1 ,ab,ae,q .) n (tla 2)n 2 2 2 1 2 1 (1 - b e q-1 )(q, be a- , b ca- ; q)n
00
"
f='o
x Tn(X; a, b, e, bea-1Iq)(Tn(Y; a, b, e, bea-1Iq))
= (1 _ t 2 ) (beqt; q)oo
f=
(tlbe; q)oo n=O X 10 W g(a 2q-n Ibe;
+
(q, be 2a-1, b2ea-1, be, bea- 2 , bcqt, beqlt; q)n
aq1-n Ib 2e, aq1-n Ibe 2 , q-n, aei(i, ae-i(i, aeiq" a-iq,; q, q)
2 2 q) 12 (t 'dtle " b e . q) 00 I(aei(i , beiq, , cteiq, 'bea-1tei(i. . '.00
1 2 1 2 1 belt· q)> I(te'(O+q,) , te,(q,-(i)·,ex> q) 12 ( ab 'ae " be ae- , b ea- , be a- t " CX 00
x
(beq~, -be, -beq~; q)nl(bea-1ei(i, bea-1eiq,; q)nl 2qn
~
(-t, tq~, -tq~, be2a- 1t; q)nl (tei((iH) , tei((i-q,); q)nl 2 n (q, qtlbe, qt 2 , atle; q)nl(eteiq" tbea-1ei(i; q)nl 2 q
x lOWg(bc2tqn-1 la; tqn, betqn-l, etqn la, beeiq, la, bee-iq, la, eei(i, ee-i(i; q, q)
+
(t ctla b2e2.q) I(eei(i bca-1eiq, ateiq, btei(i.q) 12 '" 00, ' . ' . ' 00 (ab, be, b2 ca- 1, be 2a- 1, abt, belt; q)oo I(te'(O+q,) , te,((i-q,); q)oo 12
x
f='o
~ (-t, tq~ , -tq~ ,abt; q)n I(tei((iH) , tei(q,-(i); q)n 12 n (q, qtlbe, qt 2etla; q)nl(ateiq" btei(i; q)nl 2 q
X 10 W
g( abtqn-1; tqn, betqn-1, atqn Ie, aei(i, ae-i(i, beiq" be-iq,; q, q),
where 0 < t < l. (Rahman [1985]; Gasper and Rahman [1986]) 9.20 Prove that 00
L
q-n 2(Pl (stei(i, ste-i(i; S2; q, -q n r 2h¢1 (sei(i It, se-i(i It; S2; q, _qn)
n=-oo
(q, q, _q 2t 2I s2, -s2 Iqt 2; q) 00
(1 _ qt2) (1 _ 2'j,t cos 0 +
x
q;;2) (_qt2, _t-2, -1, -1, -q, -q, S2, S2, S-2, qs-2; q)oo
h( cos 0; st, -st, qst, sit, -qtl s) 1
1
h(cosO; q'2, -q'2, q, -q, qtls)
x 8 W 7 (qt 2; q, stei(i, ste-i(i, qtei(i Is, qte-i(i Is; q, q), where It I < 1, 0 ~ 0 ~ n, and appropriate analytic continuations of the 2 ¢1 series are used as necessary. (Koelink and Stokman [2003])
9.21 The continuous q-Hermite polynomial Hn(cosOlq) in base q-1 becomes
280
Linear and bilinear generating functions Show that
(i)
(ii)
(Ismail and Masson [1994])
10J,81 < 1, prove that
9.22 (i) For
C' (
'-q
0.) _ (q, a 2 1,82; q)=(q,82; q2)= cos ,a (2. 2) qa ,q = x ~ (e 2i ,p,e- 2i ,p;q)= Eq(cos7jJ;,8)d7jJ.
r
2n
io
h(cosnl0/,.. Q!.eilJ Q!.e-ilJ) (3 , (3
(ii) Prove that
Eq (cos 0; a )Eq(cos 0; ,8)
= ( ,8-1 (1-n)/2. ) L -a t) ,q n ,8nqn2 /4cn (cos 0; I'lq) q ,q = n=O 1', q n _,8a- 1q(n+1)/2, -1',8a- 1q(n+1)/2 . 2] 2CP1 [ n+1 ,q, a .
( 2. 2)
= ( ~;.q 2)= X
I'q
(See Bustoz and Suslov [1998] for (i), and Ismail and Stanton [2000, (5.8)] for an equivalent form of (ii).) 9.23 Prove that
L
= (abedq-1" ae ad" a' b' a' e' a'd'· q) (bb' edt·,q)2 n (_ t) n " n n=O (q, cd, be't, b'et, bd't, b'dt; q)n(abedq-1; qhn aa'
x 8 W7 (bb' edtq2n-1; beqn, bdqn, b' e' qn, b' d' qn, btl a'; q, a'tlb)
x rn(x; a, b, e, dlq) rn(Y; a', b', e', d'lq) (bb' edt, dt I e', btei<jJ, bte-i<jJ, ctei<jJ, cte-i<jJ, b'tei () , b' te- i(}, e'tei (} , e'te- i(}; q)= (be't , b' et , bd't , b'dt , bb't " edt te i (9+<jJ) , tei(IJ-<jJ) , te i (<jJ-IJ) , te- i (9+<jJ)., q) 00 X 8W 7
(bb'tlq; be ilJ , be- ilJ , b' ei<jJ, b' e-i<jJ, btl a'; q, a'tlb)
x 8 W 7 (ee'tlq; ee ilJ , ee- i (} , e' ei<jJ, e' e-i<jJ, e'tld; q, d'tle) , where ab = a'b', cd = e'd', x = cosO, and Y = coscp. (Koelink and Van der Jeugt [1999])
Notes
281
Notes
§9.3 The special case a = ab, b = aq!, d = cq!, c ----; -c of (9.3.7), in which case the expression on the right side of (9.3.7) can be combined into a sum of SW7 series, was given by Ismail, Masson and Suslov [1997]. However, formula (3.6) in their paper does not directly lead to the generating function
f: p~a,(3)(x)tn when one sets a
=
qa/2+1/4, c
= qf3/2+1/4
and takes the limit
n=O
q ----; 1-.
JS
2 ) (x; q), Ex.9.14 A product formula for Jackson's q-Bessel function which is obtainable from this formula, is used in Rahman [2000a] to evaluate a Weber-Schafheitlin type integral for these functions. Ex.9.18 This is a q-analogue of Feldheim's [1941] bilinear generating function for the Jacobi polynomials. Ex.9.20 Rosengren [2003e] computed a more general bilinear generating function in an elementary manner. Bustoz and Suslov [1998] gave a bilateral bilinear sum that generalizes the classical Poisson kernel for the Fourier series:
f
n=-oo
tlnlein(x-y) -
1 - t2 1- 2tcos(x - y)
+ t2 '
0::; t
(l) (a;
c; _x_, -y-). x - I y-1
b, b'; c; q; x, y), then
(abx - c/q)f(q2 x , qy) + (1 - bx)f(qx, y) + (c/q - a)f(qx, qy) + (x - l)f(x, y) = 0, (aby' - c/q)f(qx, q2y) + (1 - b'y)f(x, qy)
+ (c/q - a)f(qx, qy) + (y - l)f(x, y) = O. 10.13 Show that if f(x, y)
=
(f>(2)
(a; b, b'; c, c'; q; x, y) then
ab'xf(q2 x , qy) - ~ f(q 2x, y) - axf(qx, qy) q
+ (1 + ~ 10.14 Show that if f(x " y)
=
(f>(3)
b' x ) f (qx, y)
+ (x -
1) f (x, y) = O.
(a a'·" b b'·, c·, q., x , y) then
abxf(q2 x , y) - ~ f(q 2x, qy) + ~ f(qx, qy) q
+ (1 10.15 Show that if f(x,y)
ax - bx)f(qx, y)
q
+ (x -
= (f>(4)(a,b;c,c';q;x,y)
l)f(x, y) = O.
then
abxf(q2 x , q2y) - cf(q 2x, y) - (a + b)xf(qx, qy)
+ (1 + c)f(qx, y) + (x -
l)f(x, y)
=
O.
q-series in two or more variables
300
10.16 Using (6.3.3) twice show that S(a,b,e,d,j,g;A,~)
2n(A/a,A/j,~/b,~/g;q)=
ab(l - q)2(q, q, q, cd, fla, aq/ j, g/b, qb/g, aj, bg; q)=
r (qu/a,qu/j,Au;q)= r (qv/b,qv/g,~v,eduv;q)=d b
x
if
(eu,du,Au/aj;q)=
ig
(ev,dv,uv,~v/bg;q)=
d qU
2n(abed,A/a,Aa,~/b,~b;q)=
(q, ab, ae, ad, be, bd, cd, j la, ja, g/b, gb; q)= x
+
ff
(ab;q)m+n(ae,ad,Alj;q)m(be,bd,~/g;q)n qm+n m=O n=O (abed; q)m+n(q, aq/ j, Aa; q)m(q, qb/g, ~b; q)n idem (a; j)
2n(aedg,A/a,Aa,~/g,~g;q)= +-;-----'--.,--=-'----'=-....,....:-'c-:-.::..c....:....::-'-:--=:'--:-----:--
(q, ae,ag,ad,eg,dg, cd, j/a,aj,b/g, bg; q)=
x
+
ff
(ag; q)m+n(ae, ad, AI j; q)m(eg, dg, ~/b; q)n qm+n m=O n=O (aedg; q)m+n(q, aq/ j, Aa; q)m(q, gq/b, ~g; q)n idem (a; j).
10.17 Extend (10.3.4) to
where D is a q-Lauricella function. (Andrews [1972]) 10.18 Prove that
[q-n : ale, e/d, e/e ; e/a, bid, b/e.. ] 1:2;2 be/de : a, q1-n /b ; b, q1-n /a ,q, q, q
1:3;3
(e, able; q)n (a,b;q)n ' where n = 0,1, .... Deduce the summation formula
ff
j=O k=O
(a/e, e/d: e/e; q)j(e~a, bid, b~e; qh b1akqjk (be/de, q)j+k(q, a, q)j(q, b, q)k
(e, able; q)= (a, b; q)= . (Gasper [2000])
qV,
Notes
301
10.19 Show that
j,k,m?O (,x,qz/"~y,,y,axz/,,~yz;q)oo
(x, a~zh, ~,y, y, xz, yZ; q)oo X 8 W7(~,yq-\~,
I, ,y/a, 1/z, ~Y/X; q, axzh)·
(Krattenthaler and Rosengren [2003]) 10.20 Extend (1.9.6) to
ff
n=Om=O X
(blqm 1 ,
... ,
brqmr; q)n+m(a, b; q)n(c, d; q)m
(bl , ... , br ; q)m+n(q, bq; q)n(q, dq; q)m
(a-lql-Mt(c-lql-M)m
(q, q, bq/ a, dq/ C; q)oo (bd db; q)ml ... (b r /bd; q)mr (bd)M (bq, dq, q/a, q/c; q)oo(b l ; q)ml ... (b r ; q)mr
where ml, ... , mr are nonnegative integers, M Iql-MI < min(lal, Icl)·
=
ml
+ ... +
m r , and
(Denis [1988])
Notes §1O.2 B. Srivastava [1995] introduced some elementary bibasic extensions of (10.2.5)-(10.2.8). For a quantum algebra approach to multivariable series, see Floreanini, Lapointe and Vinet [1994]. Sahai [1999] considered the q-Appell functions from the point of view of universal enveloping algebra of 8£(2). See also Jain [1980a,b] and, for connections of Appell functions with Ben root systems, Beerends [1992]. §§10.3-1O.6 Agarwal [1974] evaluated some q-integrals of the double series in (10.2.5)-(10.2.8). Also see Nassrallah [1990, 1991]. Exercises 10.1-10.2 Upadhyay [1973] gave some transformation and summation formulas for q-J ackson type double series. Ex. 10.3 This is a q-analogue of a quadratic transformation formula for Fl(a; b, b; C; x, -x) obtained by Ismail and Pitman [2000]. Exercises 10.12-10.15 Agarwal [1954] gave some 3-term contiguous relations satisfied by (1), ... ,(4), including formulas connecting them with the q-derivatives. Ex.1O.17 For an application of the q-Lauricella series, see Bressoud [1978]. Ex.1O.18 See Van der Jeugt, Pitre and Srinivasa Rao [1994] for more summation formulas of this type. For similar results when q ---+ 1, see Pitre and Van der Jeugt [1996].
11 ELLIPTIC, MODULAR, AND THETA HYPERGEOMETRIC SERIES
11.1 Introduction
Since the series L Un is called a hypergeometric series if 9 (n) = U n +IiUn is a rational function of n, and a q-(basic) hypergeometric series if g( n) is a rational function of qn, it is natural to call this series an elliptic hypergeometric series if g( n) is an elliptic (doubly periodic meromorphic) function of n with n considered as a complex variable. One motivation for considering these three classes of series is Weierstrass's theorem that a meromorphic function J(z) which satisfies an algebraic addition theorem of the form P(f(U), J(v), J(u
+ v)) = 0
identically in u and v, where P(x, y, z) is a nonzero polynomial whose coefficients are independent of u and v, is either a rational function of z, a rational function of e AZ for some A, or an elliptic function (see, e.g., Erdelyi [1953, §13.11]' Rosengren [200la, 2003c], and, for a proof, Phragmen [1885]). Elliptic analogues of very-well-poised basic hypergeometric series were introduced rather recently by Frenkel and Turaev [1997] in their work on elliptic 6j-symbols, which are elliptic solutions of the Yang-Baxter equation found by Baxter [1973], [1982] and Date et al. [1986-1988]. Frenkel and Turaev showed that the elliptic 6j-symbols are multiples of the very-well-poised 12Vl1 elliptic (modular) hypergeometric series defined in §11.3 (recall from §7.2 that the ordinary q-analogues of Racah's 6j-symbols are multiples of balanced 4¢3 series, which are transformable to 8¢7 series) and then used the tetrahedral symmetry of the elliptic 6j-symbols and the finite dimensionality of cusp forms to derive elliptic analogues of Bailey's transformation formula (2.9.1) for terminating 1O¢9 series and of Jackson's 8¢7 summation formula (2.6.2). This quickly led to a flurry of activity on elliptic hypergeometric series, resulting in several related papers (listed in alphabetical order) by van Diejen and Spiridonov [20002003], Gasper and Schlosser [2003], Kajihara and Noumi [2003], Kajiwara, Masuda, Noumi, Ohta and Yamada [2003], Koelink, van Norden and Rosengren [2003], Rosengren [200la-2003f], Rosengren and Schlosser [2003a,b], Spiridonov [2000-2003c], Spiridonov and Zhedanov [2000a-2003], Warnaar [2002b2003e], and others. In particular, general elliptic hypergeometric series and their extensions to theta hypergeometric series were introduced and studied by Spiridonov [2002a-2003a], who also considered theta hypergeometric integrals in Spiridonov [2003bj. Transformations of elliptic hypergeometric integrals are considered in Rains [2003bj. We start in §11.2 with the elliptic shifted factorials, Spiridonov's [2002aj "multiplicative" r+lEr theta hypergeometric series notation and its very-well302
11.2 Elliptic and theta hypergeometric series
303
poised r+1 Vr special case, and then point out some of their main properties. The "additive" forms of these series r+1er and r+1Vr are presented in §11.3, along with their modular properties, and the Frenkel and Turaev summation and transformation formulas. In §11.4 we present a simpler derivation of the elliptic analogue of Jackson's 8¢7 summation formula via mathematical induction, which is a modification of proofs that were kindly communicated to the authors by Rosengren (in a June 13, 2002, e-mail message), Spiridonov (in a Nov. 22, 2002, e-mail message) and Warnaar (see §6 in his [2002b] paper). Central to this method of proof and, in fact, to all of the formulas in this chapter is the theta function identity given in Ex. 2.16(i) which is simply the elliptic analogue of the trivial identity
(1- xA)(I- xIA)(I- fLV)(I- fLlv) - (1- xv)(I- xlv)(I- AfL)(I- fLIA)
= ~ (1 - XfL)(1 - xl fL)(1 - Av)(1 - Ajv).
(11.1.1)
The elliptic analogue of Bailey's 1O¢9 transformation formula is derived in §11.5, along with some other transformation formulas. Theta hypergeometric extensions of some of the summation and transformation formulas in sections 3.6-3.8 are derived in §11.6. Some multidimensional elliptic hypergeometric series are considered in §11. 7, where we present Rosengren's [2003c] elliptic extension of Milne's [1985a] fundamental theorem and related formulas. Many additional formulas involving theta hypergeometric series and elliptic integrals are presented in the exercises at the end of the chapter.
11.2 Elliptic and theta hypergeometric series
Define a modified Jacobi theta function by
O(X;p)
=
O(X1, ... , xm;p) =
(x,plx;p)oo,
II O(Xk;P),
(11.2.1)
k=l
where X,X1, ... ,Xm -=I- 0 and Ipi < 1. Since O(x;p) = (x;p)oo(plx;p)oo is the product of two infinite p-shifted factorials, analogous to the name of the triple product identity (1.6.1), we will call O(x;p) the double product theta function (with argument x and nome p). From (1.6.9) and (1.6.14) it follows that (11.2.2) and
[a· (J "
T]
=
O(qa. p) 'q(1-a)/2
O(q;p)
(11.2.3)
with (11.2.4) where a, (J, T are complex numbers such that 1m (T) > 0 and (J -=I- m + nT for integer values of m and n. We set qa = e2niaa and pa = e 2nim . Following
304
Elliptic, modular and theta hypergeometric series
Warnaar [2002b], we define an elliptic (or theta) shifted factorial analogue of the q-shifted factorial by
(a; q,P)n
=
{ 1,rr~:~ B(aqk;p), 1/ rr- B( aq n+k.,p ) , n
k=O-
l
and let
n = 1,2, ... , n=O,
(11.2.5)
n=-I,-2, ... , m
(aI, a2,···, am; q,P)n
=
II (ak; q,P)n,
(11.2.6)
k=l
where a, al, ... , am -I=- O. Analogous to the name q-shifted factorial for (a; q)n, we also call (a; q, P)n the q, P -shifted factorial in order to distinguish it from the a, T-shifted factorial defined in the next section. Notice that B(x; 0) = 1- x and thus (a; q, O)n = (a; q)n. Since q is called the base in (a; q)n and P is called the nome in B( a; p), we call q and P in (a; q, P)n the base and nome, respectively. Similarly, in order to distinguish the modular parameters a and T, we call a the base modular parameter and T the nome modular parameter. For the sake of simplicity, we decided not to use Spiridonov's [2002a,b] notation B(a;p; q)n for the elliptic shifted factorial. Corresponding to Spiridonov [2002a], we formally define an r+IEr theta hypergeometric series with base q and nome p by
(11.2.7) where, as elsewhere, it is assumed that the parameters are such that each term in the series is well-defined; in particular, the a's and b's are never zero. Unless stated otherwise, we assume that q and p are independent of each other, but we do not assume that the above series converges or that the numerator parameters aI, a2, ... , ar+l, denominator parameters b1, ... , bTl and the argument z in it are independent of each other or of q and p. Note that if ajpk is a nonpositive integer power of q for some integer k and a j E {I, 2, ... , r + I}, then the series in (11.2.7) terminates. Clearly, if z and the a's and b's are independent of p, then lim r+1Er(al, ... , ar+l; b1, ... , br ; q,p; z)
p--70
= r+1Er(al, ... , ar+l; b1, ... , br ; q, 0; z)
= r+lcPr(al, ... , ar+l; b1,···, br ; q, z),
(11.2.8)
where the limit of the series is a termwise limit. As is customary, the notation r+1Er(al, a2, ... , ar+l; bl , ... , br ; q,p; z) is also used to denote the sum of the series in (11.2.7) inside the circle of convergence and its analytic continuation (called a theta hypergeometric function) outside the circle of convergence. Unlike nonterminating r+1Fr series and nonterminating r+lcPr series with 0 < Iql < 1, which have radius of convergence R = 1 (as can be easily seen by applying the ratio test to (1.2.25) and (1.2.26)),
11.2 Elliptic and theta hypergeometric series
305
for 0 < Iql, Ipl < 1 and any R E [0,00] there is a nonterminating r+lEr series with radius of convergence R. In particular, there are nonterminating r+lEr series with 0 < Iql,lpl < 1 that converge to entire functions of z, which is not the case for nonterminating r+lFr and r+l¢r series with r = 0,1, ... and 0 < Iql < 1. For example, consider a nonterminating r+lEr series with 0< Iql, Ipi < 1 and (11.2.9) where ml, ... , mr+l are integers and br + l function identity ()(apm;p) (apm; q,P)n
for m, n
=
q. Since the double product theta
= (-a)-mp-(';)()(a;p)
=
implies that
(a; q,P)n( _a)-mnp-nG)q-m(~)
= 0, ±1, ... , we find that 00
. Z) -- " ( ZPr )n qMrG) , (11210) 1'+1 E l' (al,···, ar+l,. alPml , ... , arp mr . ,q,p, ~ .. n=O
with ar+l = qp-m r + 1 , Pr = rr~~i(-ak)mkp(~k), and Mr = ml + ... + mr+l. From (11.2.10) it is clear that this series converges to an entire function of Z when Mr > 0, converges only for Z = 0 when Mr < 0, and converges to 1/(1 - zPr) when Mr = 0 and IZPrl < 1. As in Spiridonov [2002a], we call a (unilateral or bilateral) series L Cn an elliptic hypergeometric series if g(n) = cn+1/cn is an elliptic function of n with n considered as a complex variable, i.e., g(x) is a doubly periodic meromorphic function of the complex variable x. For the r+lEr series in (11.2.7)
()x = II akq ;p ()(bkqX;p) 1'+1 ()(
g
x
)
Z
(11.2.11)
k=l
with br+ l = q. Clearly g(x) is a meromorphic function of x. From (11.2.4) it is obvious that qx+a- 1 = qX and hence g(x + a-I) = g(x). Since, by (11.2.1), ()(aqx+ra- 1 ;p)
=
(_aqx)-l()(aqx;p),
(11.2.12)
it follows that (11.2.13) Thus g(x
+ Ta- l ) =
g(x) when ala2··· ar+l = (bl b2 ··· br)q,
(11.2.14)
in which case g(x) is an elliptic (doubly periodic meromorphic) function of x with periods a-I and Ta- l . Therefore, we call (11.2.14) the elliptic balancing condition, and when (11.2.14) holds we say that r+lEr is elliptically balanced (E-balanced). In Spiridonov [2002a] an r+lEr series is called, simply, "balanced" when (11.2.14) holds, but here we need to distinguish between the different balancing conditions that arise. Notice that, unlike the requirement
Elliptic, modular and theta hypergeometric series
306
that z = q in the definition of a balanced r+l ¢r series, no restrictions are placed on the argument z in the above definition of an E-balanced r+IEr series. If z = q, then, by the definition of a k-balanced r+l¢r series in §1.2, the r+l¢r series in (11.2.8) is (-1 )-balanced if and only if the elliptic balancing condition (11.2.14) holds. Analogous to the basic hypergeometric special case, we call the r+IEr series in (11.2.7) well-poised if qal
=
=
a2 bl
a3 b2 =
... =
(11.2.15)
ar+lbr,
in which case the elliptic balancing condition (11.2.14) reduces to 2 2 2 ala2···ar+1
Via (11.2.5) and the n p, we find that 2
=
B(aq n;p)
alq
(11.2.16)
.
limit case of Ex. 1.1(iv) with q replaced by
---+ 00
1
()r+l
=
111
11
(qa"2,-qa"2,qa"2/p "2,-qa"2 p "2;q,P)n(_ )-n
B() a;p
1
1
1
1
1
(11.2.17)
q
1
(a"2,-a"2,a"2p"2,-a"2/p"2;q,P)n
is an elliptic analogue of the quotient 1 - aq2n
(qd, -qd; q)n
1-a
(d,-d;q)n '
which is the very-well-poised part of the r+l Wr series in (2.1.11) with al = a; see Ex. 11.3. Therefore the r+IEr series in (11.2.7) is called ve'T"y-well-poised if it is well-poised, 'T" ~ 4, and a2
=
1
qai, a3
=
1
-qai, a4
=
!
1
qai /p"2, a5
=
!
1
(11.2.18)
-qai p"2.
Corresponding to Spiridonov [2002b, (2.15)]' we define the well-poised theta hypergeometric series by
r+l Vr
very-
r+I Vr(al;a6,a7, ... ,ar+l;q,p;Z) =
~ B(alq2n; p)
~ n=O
B(al;p )
(aI, a6, a7, ... , ar+l; q, P)n (qz)n. (q,alq / a6,alq / a7,···,alq / ar+l;q,P ) n
(
)
11.2.19
It follows that if (11.2.15) and (11.2.18) hold, then r+I Vr(al;a6,a7, ... ,ar+l;q,p;Z)
= r+IEr(al, a2,···, ar+l; bl , ... , br ; q,p; -z), and that
r+l Vr
(11.2.20)
is elliptically balanced if and only if 2 ( a62 a7···
2) 2 ar+l q =
(
alq )r-5 .
(11.2.21 )
As in Warnaar [2003c], when the argument z in the r+l Vr series equals 1 we suppress it and denote the series in (11.2.19) by the simpler notation r+l Vr(al; a6, a7, ... , ar+l; q, p). If aI, a6, a7, ... , ar+l are independent of p, then lim
p-+O
r+l Vr(al;
= r-l W r-
a6, a7,·· ., ar+l; q,p)
2(al; a6,···, ar+l; q, q),
(11.2.22)
11.2 Elliptic and theta hypergeometric series
307
which shows that there is a shift r ----t r-2 when taking the P ----t 0 limit, and that the P ----t 0 limit of an r+l Vr(al; a6, a7,"" ar+l; q,p) series with aI, a6, a7,"" ar+l independent of p is an r-l W r - 2 series. As mentioned in the Introduction, Frenkel and Thraev showed that the elliptic 6j-symbols, which are elliptic solutions of the Yang-Baxter equation (formula (1.2. b) in their paper) found by Baxter [1973], [1982] and Date et al. [1986-1988] can be expressed as 12 Vu series (in the additive notation discussed in the next section). Then they employed the tetrahedral symmetry of the elliptic 6j-symbols, which is analogous to the symmetry of the classical, quantum and trigonometric 6j-symbols (see Frenkel and Turaev [1995, 1997]), and the finite dimensionality of cusp forms (see Eichler and Zagier [1985]) to derive (in their additive form) the following elliptic analogue of Bailey's 1O¢9 transformation formula (2.9.1) 12 Vu(a;
b, c, d, e, I, Aaqn+l /el, q-n; q,p)
(aq,aq/el,Aq/e, Aq/l;q,P)n (aq/e,aq/I,Aq/el,Aq;q,P)n
x
12 VU(A;
Ab/a, Ac/a, Ad/a, e, I, Aaqn+l/el, q-n; q,p)
(11.2.23)
for n = 0,1, ... , provided that the balancing condition
(11.2.24)
bcdel(Aaqn+l/ef)q-nq = (aq)3,
which is equivalent to A = qa 2/bcd, holds. Note that both of the series in (11.2.23) are E-balanced when (11.2.24) holds. Setting A = aid in (11.2.23) yields a summation formula for 10 Vg series that is an elliptic analogue of Jackson's 8¢7 summation formula (2.6.2) and of Dougall's 7F6 summation formula (2.1.6), which, after a change in parameters, can be written in the form: TT (
lOv9
• b d -no ) _ (aq, aq/bc, aq/bd, aq/cd; q,P)n a, ,c, ,e,q ,q,p - (aq /b ,aq / c,aq /d ,aq /b c d ;q,p ) n
for n = 0,1, ... , provided that the balancing condition bcde can be written in the form
=
(
11.2.25
)
a 2qn+l, which
(11.2.26) holds. Clearly, if a, b, c, d, e are independent of p, then (11.2.25) tends to Jackson's 8¢7 summation formula (2.6.2) as p ----t O. Unlike in the basic hypergeometric limit cases of (2.6.2) discussed in Chapters 1 and 2, one cannot take termwise limits of (11.2.25) to obtain a 3E2 analogue of the q-Saalschiitz formula (1.7.2), 2El analogues of the q-Vandermonde formulas (1.5.2) and (1.5.3), or even a lEo analogue of the terminating case of the q-binomial theorem (1.3.2) in Ex. 1.3(i). Therefore one cannot derive (11.2.25) by working up from sums at the lEo, 2El, and 3E2 levels as was done in Chapters 1 and 2, and so one is forced to employ a different approach, such as in the abovementioned Frenkel and Thraev derivation, or by some other method. Rather than repeating the Frenkel and Thraev [1997] derivation of (11.2.25), we will present in §11.4 a simpler derivation of (11.2.25) via mathematical induction, which is a modification of those discovered independently by Rosengren, Spiridonov, and Warnaar. We will then show in §11.5 that (11.2.23) follows from
Elliptic, modular and theta hypergeometric series
308
(11.2.25) in the same way as in our derivation of Bailey's 1O¢9 transformation formula (2.9.1) from Jackson's 8¢7 summation formula (2.6.2). Observe that if we set e = ±(aq)~, then (11.2.25) reduces to V; ( . b
9 8
d -no ) _ (aq, aqjbc, aqjbd, aqjcdi q,P)n a, ,c, ,q ,q,p - (aq jb ,aq j c,aq jd ,aq jb cd iq,P ) n
(
11.2.27
)
for n = 0, 1, ... , provided that the balancing condition
(11.2.28) holds, which is equivalent to the elliptic balancing condition b2c2d 2 = a 3q2n+1. In view of (11.2.24), (11.2.26), (11.2.28), and of the required balancing conditions for other significant special cases of the Frenkel and Turaev transformation formula (11.2.23) to hold, analogous to the definition of a VWP-balanced series given in §2.1 we call the series r+l Vr(ali a6, a7, ... , ar+li q,Pi z) a verywell-poised-balanced (VWP-balanced) series when the very-well-poised balancing condition (11.2.29) holds. It follows that r+lVr(alia6,a7, ... ,ar+liq,P) is VWP-balanced if and only if (11.2.30) and that the summation formulas (11.2.25), (11.2.27) and the transformation formula (11.2.23) hold for n = 0,1, ... , when the series are VWP-balanced. Note that (11.2.30) reduces to (a6a7··· a2j+6)q = (alq)j when r = 2j + 5 is odd. It should also be noted that if either (11.2.30) or (a6··· ar+dq = -(±(alq)~t-5 holds, then r+l Vr(ali a6, a7, ... , ar+li q,p) is E-balanced, and hence an elliptic hypergeometric series. If r+l Vr(ali a6, a7, ... , ar+li q,p) is E-balanced, then it is VWP-balanced when r is even, but not necessarily when r is odd. In particular, the elliptic balancing condition (11.2.21) is not a sufficient condition for the Frenkel and Turaev transformation and summation formulas (11.2.23) and (11.2.25) to holdi the series in these formulas need to be VWP-balanced in order for these formulas to hold for n = 0,1, .... Since, if r+lEr is a well-poised series satisfying the relations in (11.2.15), r+lEr(al, a2,···, ar+li bl , ... , bri q,Pi z)
=
1.
1.
1.
1
1.
1
r+9 Vr+8 (ali at , -at, at p2, -at jp2 ,a2, a3, ... ,ar+li q,Pi -z), (11.2.31)
we find that the very-well-poised balancing condition for the above r+9 Vr+8 series is equivalent to the well-poised balancing condition (ala2··· ar+dz = - ( ± (alq) !)r+l 2
(11.2.32)
for the r+lEr series in (11.2.31). Hence, a well-poised r+lEr series is called well-poised-balanced (WP-balanced) when (11.2.32) holds. In particular, the well-poised 4E3 series in the transformation formula in Ex. 11.6 is WP-balanced. Clearly, every VWP-balanced theta hypergeometric series is WP-balanced and, by the above observations, every WP-balanced theta hypergeometric series can be rewritten to be a VWP-balanced series of the form in (11.2.31).
11.2 Elliptic and theta hypergeometric series
309
Analogous to the bilateral r'¢r series, we follow Spiridonov [2002a] in defining a rG r bilateral theta hypergeometric series by
(11.2.33) Note that rGr(al, ... ,ar;q,bl,b2, ... ,br-l;q,p;Z)
= rEr-l (al' ... ' ar; bl , ... , br- l ; q,p; z)
(11.2.34)
and, more generally, as in the bilateral basic hypergeometric case in (5.1.5), if the index of summation in an r+lEr series is shifted by an integer amount, then the resulting series is an r+l G r + l series multiplied by a quotient of products of q,p-shifted factorials. Also note that corresponding to (11.2.9) we can consider nonterminating rG r series with 0 < Iql, Ipi < 1 and
where ml, ... , mr are integers. As in (11.2.10) we find that 00
rGr(al, ... ,ar;alpml, ... ,arpmT;q,p;z)
=
L
(zur)nqNrG)
(11.2.35)
n=-oo
with U r = I1~=l (_ak)mkp("';'k) and N r = ml + .. ·+mr, which clearly converges for any z =I- 0 if and only if N r > O. If, as in Spiridonov [2002a], we replace r + 1 by r in the upper limit of the product in (11.2.11) and proceed as in the derivation of the condition (11.2.14) for an r+lEr series to be elliptically balanced, we find that the series rG r is elliptically balanced (E-balanced) if and only if ala2··· ar
= bl b2 ··· br ·
(11.2.36)
If rG r is a well-poised series with (11.2.37) then the elliptic balancing condition (11.2.36) reduces to al2 a22 ... a 2r =
( al b)r 1 .
(11.2.38)
In view of (11.2.32), (11.2.34), and (5.1.7), it is consistent to call a well-poised rG r series well-poised-balanced (WP-balanced) when (ala2··· ar)z = - (
± (albd!f.
(11.2.39)
In our consideration of modular series in the next section we are led to consider additive forms of special cases of the rather general power series
(11.2.40)
310
Elliptic, modular and theta hypergeometric series
and the Laurent series
rCis(al, ... ,ar;b1, ... ,bs;q,p;~,z) _
-
~ (a1, ... ,ar;q,P)nA n ~ nZ , n=-oo (b1, ... ,bs;q,P)n
(11.2.41)
where ~ = {An} is an arbitrary sequence of complex numbers. Some special cases of these series with An = qcm(n-l)/2 or, more generally, with An = exp(aln+a2n2 +a3n3) are considered in Spiridonov [2002a, 2003bj. If An = 1 for all n, then we will suppress ~ from the left sides of (11.2.40) and (11.2.41). When we encounter series with more than one base or nome, such as in Ex. 11.25(i), Ex. 11.26 and in several of the formulas in §11.6, or multivariable formulas, such as the multivariable extension of the Frenkel and Thraev summation formula in §11. 7, we will write the series in terms of elliptic shifted factorials. To help keep the size of this book down we will not repeat the main elliptic identities and summation and transformation formulas in the appendices. Nevertheless, for the convenience of the readers we collect below some of the most useful identities involving ()(a;p), the q,p-shifted factorials, and the q, P - binomial coefficients.
()(a;p) = ()(pja;p) = -a ()(lja;p) ()(a 2;p2) = ()(a, -a;p),
=
-a()(ap;p),
(11.2.42) (11.2.43)
()(a;p) = ()(a, ap;p2) = ()(a~, -a~, (aq)~, -(aq)~ ;p),
(11.2.44)
()(a;p)
(11.2.45)
=
()(apn;p)( -a)npG) ,
(a; q,P)n()(aqn;p) = (a; q,P)n+l = ()(a;p)(aq; q,P)n, (a; q,P)n+k = (a; q,P)n(aqn; q,ph,
(11.2.46)
(a; q,P)n = (ql-n ja; q,P)n( -atqG),
(11.2.48)
(a; q,P)n (_ ~)k (~)-nk . ) _ (a,q,Pn-k-(l_nj.) , a,q,Pk a q q
(11.2.49)
(11.2.47)
(qja;q,P)n( - ~rq-G),
(11.2.50)
q,ph(qja; q,P)n -nk (aq -no,q,p)k -_ (a; (l-kj. ) q , a,q,Pn q
(11.2.51)
(aq-n;q,P)n
=
(a; q-l,P)n = (a-\ q,P)n( _a)nq-G), 1 (_qja)n (n) (a; q, p) -n = ( aq- n ;q,p ) n ( j q a;q,p) n q 2 , (a; q,P)n+k (aq n ;q,p )k = (a; q,p)k(aqk; q,P)n = , (a;q,P)n (a;q,P)n (a; q,P)n = (ap\ q,P)n( _a)nkpn(~)qkG), (a 2; q2,p2)n = (a, -a; q,P)n, (a; q,p 2hn = (a~ , -a~, (aq) ~, -(aq) ~; q, P)n,
(11.2.52) (11.2.53) (11.2.54) (11.2.55) (11.2.56) (11.2.57)
11.2 Elliptic and theta hypergeometric series
(a; q,phn (a; q,phn (a; q,P)kn
=
= =
(a, aq; q2,P)n, (a, aq, aq2; q3,P)n, (a, aq, ... , aqk-\ qk ,P)n'
Corresponding to the q-binomial coefficient
311 (11.2.58) (11.2.59) (11.2.60)
[~] q defined in Ex. 1.2, we define
the q, P - binomial coefficient (or elliptic binomial coefficient) by
(q;q,P)n
(11.2.61 )
for k = 0, 1, ... ,n. Then
[ ~]
=
[n ~ k]
q,p
= (q-~; q,ph (_qn)kq-(~). q,p
(q, q,p)k
(11.2.62)
For complex a we can employ (11.2.62) to define
[a] k when k
= 0,1, ....
= (q- o and a Z+TZ with Z+TZ = {m+Tn: m,n E Z}. Let [n;a,T]! = [l;a,T]n and
rt
m
[aI, a2,···, am; a, T]n =
II [ak; a, T]n.
(11.3.2)
k=l
Then we can formally define the additive forms of the r+IEr and series to be the series
r+l Vr
r+l er(al,a2, ... ,ar+l;bl , ... ,br ;a,T;z) =
f
[al,a2, ... ,ar+l;a,T]nzn, n=O [1, bl , ... , br ; a, T]n
(11.3.3)
and r+I V r(al;a6,a7, ... ,ar+l;a,T;z)
=
f
n=O
[al + 2n; a, T] [al;a,T]
[aI, a6, a7,···, ar+l; a, T]n n [1,1+al-a6,1+al-a7, ... ,1+al-ar+l;a,T]n z , (11.3.4)
respectively, where, as usual, it is assumed that the parameters are such that each term in these series is well-defined. When the argument z in the r+ I vr
11.3 Additive notations and modular series
313
series equals 1 we suppress it and denote the series in (11.3.4) by the simpler notation r+lVr(al; a6, a7, ... , ar+l; a, T). Since, by (11.2.3) and (11.3.1), [a; a, T]n = (qa; q,P)n qn(b-a l /2 (qb;q,P)n [b;a,T]n
(11.3.5)
and (11.3.6) we have that r+ler(al, ... ,ar+l;b1, ... ,br;a,T;Z) . q p. zq(1+b 1 +·+br-(al +.+ar+ dl /2) = r+l E r (qa 1 , ... , qar+ 1 "• qb 1 ... ,qbr '"
(11.3.7) and
(11.3.8) From (11.2.4) and the multiplicative form of the elliptic balancing condition in (11.2.14), it follows that r+ler is an elliptic hypergeometric series when (11.3.9) which is the additive form of the elliptic balancing condition. Hence, r+ler is called E-balanced when (11.3.9) holds, and it follows that
(11.3.10) holds with the plus sign of the ± when a[al + a2 + ... + ar+l - (1 + b1 + b2 + ... + br )] is an even integer and the minus sign when it is an odd integer. Using (11.2.4) we find that the additive form of the multiplicative well-poised condition (11.2.15) is (11.3.11) in which case r+ler is called well-poised, and the elliptic balancing condition (11.3.9) reduces to (11.3.12) Note that (11.3.9) and (11.3.11) are not equivalent to the additive forms of the "balanced" and "well-poised" constraints in Spiridonov [2002a, (20) and (26)], respectively, which correspond to requiring that the expressions inside the square brackets in (11.3.9) and (11.3.11) are equal to zero.
314
Elliptic, modular and theta hypergeometric series
If r+ler is a well-poised series that can be written in the very-well-poised form (11.3.4), e.g., when, via (11.2.17) and (11.3.6), a5 =
al 1 +T 1+-+-2 2IT' (11.3.13)
then the elliptic balancing condition reduces to r - 5 ] 2IT [ 1 + a6 + a7 + ... + ar+l - -2-(a1 + 1) EZ,
(11.3.14)
which is the condition for the r+lVr series in (11.3.4) to be elliptically balanced (E-balanced) and hence an elliptic hypergeometric series. Since e27ri (1'fl)/4 = ±1, it follows by setting z = qW that the additive form of the very-well-poised balancing condition in (11.2.29) is
r-5 ] 1=f1 IT [W + 1 + a6 + a7 + ... + ar+l - -2-(a1 + 1) + -4-(r + 1) E Z, (11.3.15) which, via (11.3.8), is the condition for the series
(11.3.16) to be very-well-poised-balanced (VWP-balanced) , where, as elsewhere, either both of the upper signs or both of the lower signs in =f1 and ±1 are used simultaneously. In particular, setting w = 0, it follows that if r is odd, then r+l vr(al; a6, a7,···, ar+l; IT, T) is VWP-balanced when
r- 5 IT [ 1 + a6 + a7 + ... + ar+l - -2-(a1 + 1) ] E Z,
(11.3.17)
and if r is even, then r+lVr(al;a6,a7, ... ,ar+l;IT,T;±1) is VWP-balanced when
r-5] 1=f1 IT [ 1+a6+a7+···+ar+1--2-(al+1) +-4- EZ.
(11.3.18)
Thus, by replacing the parameters a, b, c, d, e in (11.2.25) by qa, qb, qC, qd, qe, respectively, and applying (11.3.8), we obtain the additive form of the Frenkel and Turaev summation formula:
lOV9(a; b, c, d, e, -n; IT, T) [a + 1, a + 1 - b - c, a + 1 - b - d, a + 1 - c - d; IT, T]n [a + 1 - b, a + 1 - C, a + 1 - d, a + 1 - b - C - d; IT, T]n for n
= 0, 1, ... , provided that IT[b +
C
(11.3.19)
the series is VWP-balanced, i.e.,
+ d + e - n - 2a - 1] E Z.
(11.3.20)
Similarly, it follows from (11.2.27), (11.2.28), and (11.3.8) that
9V8(a; b, c, d, -n; IT, T; ±1) [a + 1, a + 1 - b - c, a + 1 - b - d, a + 1 - c - d; IT, T]n [a + 1 - b, a + 1 - c, a + 1 - d, a + 1 - b - c - d; IT, T]n
(11.3.21 )
11.3 Additive notations and modular series
315
for n = 0,1, ... , provided that the series is VWP-balanced, i.e., 3 - -1] a [b + c + d - n - -a 2 2
1 =f-1 +4
E Z.
(11.3.22)
This formula also follows by setting e = (a+1)/2+k/2a for k = 0,1 in (11.3.19) and using the fact that [(a+1)/2+k/2a; a, T]n = (-1)k[(a+1)/2-k/2a; a, T]n. In addition, the Frenkel and Turaev transformation formula (11.2.23) has the additive form b, c, d, e, f, A + a + n + 1 - e - f, -n; a, T) + 1, a + 1 - e - f, A + 1 - e, A + 1 - f; a, T]n [a + 1 - e, a + 1- f, A + 1 - e - f, A + 1; a, T]n 12Vl1 (A; A + b - a, A + c - a, A + d - a, e, f, A + a + n + 1 -
12Vl1 (a;
[a
X
e - f, -n; a, T)
(11.3.23)
for n = 0,1, ... , provided that the series is VWP-balanced, i.e., a[b + c + d + A - 2a - 1] E Z.
(11.3.24)
The summation formula (11.3.19) follows from (11.3.23) by setting A = a-d. Frenkel and Turaev [1997] used a slightly different notation for the z = 1 case of the series in (11.3.4) (with r-IWr-2 denoting an r+IVr series when z = 1) and assumed that the series terminates (to avoid the problem of convergence) and satisfies the balancing condition r-5 1 + (a6 + a7 + ... + ar+l) = -2-(a l + 1). (11.3.25) They called the function that is the sum of their terminating series a modular hypergeometric function and justified the name "modular" by showing that if the series r+IVr(al; a6, a7,"" ar+l; a, T) terminates and (11.3.25) holds, then these functions are invariant under the natural action of 8L(2, Z) on the a and T variables, i.e., if aI, a6, a7, ... , ar+l E C, then
b)
aT + a r+IVr ( al; a6, a7,"" ar+l; - - d ' - - d CT+ CT+ = r+I Vr(al;a6,a7, ... ,ar+l;a,T)
for all
(~ ~)
E 8L(2, Z), where 8L(2, Z) is the modular group of
(11.3.26)
2 x 2 ma-
trices such that a, b, c, d E Z and ad - bc = 1. Therefore, we call (11.3.25) the modular balancing condition, and when it holds we say that the series r+IVr is M-balanced. Note that if the series r+IVr(al;a6,a7, ... ,ar+l;a,T) is M-balanced, then it is E-balanced and VWP-balanced, but if it is E-balanced or VWP-balanced then it is not necessarily M-balanced. Frenkel and Turaev also showed that if aI, a6, a7, ... , ar+l E Z, (11.3.25) holds, and the series r+l vr(al; a6, a7, ... ,ar+l; a, T) terminates, then the sum of the series is invariant under the natural action of Z2 = {(m, n): m, n E Z} on the variable a, i.e., r+l vr(al;
a6,···, ar+l; a
+ m + nT, T)
= r+I Vr(al;a6, ... ,ar+l;a,T)
(11.3.27)
316
Elliptic, modular and theta hypergeometric series
for all (m, n) E Z2, and hence is elliptic in a with periods 1 and T. A formal unilateral or bilateral series of the form Ln en (a, T) is called a modular series (or modular invariant) if it is invariant under the natural action of SL(2, Z) on the a and T variables, i.e., (11.3.28)
for all
(~ ~)
E SL(2, Z), where, as usual, two formal series are considered
to be equal if their corresponding nth terms are equal. Spiridonov [2002a] extended (11.3.26) by proving that the unilateral theta hypergeometrie series
(11.3.29) is modular if
r
= s
+ 1,
(11.3.30a) (11.3.30b)
and ai
+ a~ + ... + a;+l = 1 + bi + b~ + ... + b;,
(11.3.30e)
and, more generally, that the bilateral theta hypergeometrie series
(11.3.31 ) is modular if
r = s,
(11.3.32a) (11.3.32b)
and a 21
+ a 22 + ... + a r2 = b21 + b22 + ... + b2r'
(11.3.32e)
where it is assumed that z and the a's and b's are complex numbers such that the series are well-defined. Hence, res and rgs will be called M-balaneed when (11.3.30a)-(I1.3.30c) and (11.3.32a)-(I1.3.32c), respectively, hold. Notice that if rgr is well-poised with k
then
=
1, ...
,r,
(11.3.33)
11.3 Additive notations and modular series
317
and so this well-poised rgr series is modular when the modular balancing condition r (11.3.35) al + a2 + ... + ar = "2 (a + 1) holds. Similarly, a well-poised r+ler series with
k = 1, .. . ,r,
(11.3.36)
is modular when the modular balancing condition al
+ a2 + ... + ar+l =
r+1
-2-(a1 + 1)
(11.3.37)
holds, which reduces to (11.3.25) if (11.3.13) also holds. In order to prove the Frenkel and Turaev, and the Spiridonov modularity results, (11.3.27), and some more general results, we start by observing that, by (1.6.9) and Whittaker and Watson [1965, §21.11 and §21.5]' 'l9 1(x, e7riT) satisfies the modular symmetry relations (11.3.38) (11.3.39) where the square root of -iT is chosen so that its real part is positive, and the quasi-periodicity relations 'l9 1(X 'l9 1(x
+ 7f, e7riT ) = -'l9 1(x, e7riT ) ,
+ 7fT, e7riT ) =
_e-7riT-2ix'l91(X, e7riT ).
(11.3.40) (11.3.41)
Hence, by (1.6.14), the elliptic number [a; a, T] has the modular symmetries
[a; a, T + 1]
=
[a; a, T],
(11.3.42)
[a; a IT, -liT]
=
e7ri (a 2-1)0"2 /T [a; a, T],
(11.3.43)
and the quasi-periodicity relations
+ 1, T] = [k; a + T, T] = [k; a
(_l)k+l [k; a, T],
(11.3.44)
(-1 )k+l e7ri(1-k 2 )(20"+T) [k; a, T],
(11.3.45)
where k E Z. See, e.g., van Diejen and Spiridonov [2000, 2001b], but note that (11.3.43) corrects a typo in both of these papers. Let us first consider when the bilateral series rgs is modular. Since the modular group 8L(2, Z) is generated by the two matrices
(0 -1)
10'
(11.3.46)
which, respectively, correspond to the two transformations (a, T)
----+
(a, T + 1),
(11.3.47)
it suffices to consider when each term (11.3.48)
318
Elliptic, modular and theta hypergeometric series
ofthe series in (11.3.31) is invariant under these transformations. From (11.3.1) and (11.3.42) it is clear that [a; u, T + l]n = [a; u, T]n for nEZ, and hence n E Z.
(11.3.49)
For the second transformation in (11.3.47) observe that from (11.3.1) and (11.3.43) it follows that
nEZ, with vn(a)
(11.3.50)
= n[a 2 + a(n - 1) + (n - 1)(2n - 1)/6 - 1], and thus (11.3.51)
nEZ, with
'\n =n[ai + a~ + ... + a; - (bi + b~ + ... + b;)] + n(n - 1)[al + a2 + ... + ar - (b 1 + b2 + ... + bs )] + n(r - s)[(n - 1)(2n - 1)/6 - 1]. (11.3.52) Consequently, (11.3.53) if and only if (11.3.54) whenever cn(u, T) -I=- O. Obviously, (11.3.54) holds for n = 0 since we have '\0 = 0, and in order for it to hold for any n -I=- 0 with (u, T) replaced by
(u/(CT+d),(aT+b)/(CT+d)) for (:
~)
E
8L(2,Z), it is necessary and
sufficient that '\n = O. Setting'\l = 0 in (11.3.52) gives
a21 + a22 + ... + ar2 = b21 + b22 + ... + b2s + r - s, which, with al series
=
-1, b1
=
(11.3.55)
1, is a necessary and sufficient condition for the
to be modular when ak -I=- 0 for k (11.3.55) and
=
2, ... , r. Setting'\l
=
'\2 = 0 gives
(11.3.56) which, with al = -2, b1 = 1, are necessary and sufficient for the series
to be modular when ak -I=- 0, -1 for k = 2, ... , r. Similarly, if Nand Mare nonnegative integers, then
rgs( -N, a2, a3, ... , ar; M + 1, b2, b3, ... , bs; u, T; z) N
=2:
(11.3.57)
11.3 Additive notations and modular series
319
is modular for arbitrary values of the a's and b's if and only if
An = 0,
-M::::;n::::;N,
(11.3.58)
which, since An is a cubic polynomial in powers of n, is equivalent to (l1.3.32a)(l1.3.32c) if and only if N + M 2:: 3. In particular, when N + M < 3 the restriction r = 8 is not needed for the series in (11.3.57) to be modular. It follows from the above observations that the rgs series in (11.3.31) is modular for arbitrary values of its parameters if and only if (l1.3.32a)-(l1.3.32c) hold. Replacing 8 by 8 + 1 in rgs and then setting bS +1 = 1 yields that the res series in (11.3.29) is modular for arbitrary values of its parameters if and only if (l1.3.30a)-(l1.3.30c) hold. It should be noted that, since the modularity of the above res and rgs series hold termwise under the stated conditions, when we extend res and rgs to
(11.3.59) and
(11.3.60) respectively, where A = {An} is an arbitrary sequence of complex numbers and aI, a2, ... , ar+l, Z E "q/e;q)n (>"q,d/a,aq/b,aq/e;q)n x 10 VVg (>..; a/ >.., J1" -J1" b, e, dqn, q-n; q, _q>..2 / a) and that the 12 VVl1 series is VWP-balanced and balanced, while the series is VWP-balanced but not balanced.
10 VVg
(See Warnaar [2002b] for part (i), and Rahman and Verma [1993] for the transformation in part (ii). Also see Andrews and Berkovich [2002] and Warnaar [2003c,e].) 11.25 (i) Extend the quadbasic transformation formula in Ex. 3.21 to
t
()(arkqk, brkq-k;p) (a, b; r,p)de, a/be; q,ph k=O ()(a,b;p) (q,aq/b; q,p)k(ar/e, ber;r,p)k (CR-n /A, R-n / BC; R, p)k(Q-n, BQ-n /A; Q, P)k k X (Q-n/C,BCQ-n/A;Q,Ph(R-n/A,R-n/B;R,Ph q (ar, br; r,P)n(eq, aq/be; q,P)n(Q, AQ/ B; Q, P)n(AR/C, BCR; R, P)n (q, aq/b; q,P)n(are, be/r; r,P)n(AR, BR; R, P)n(CQ, AQ/ BC; Q, P)n
x
t
()(ARkQk,BRkQ-k;p) (A,B;R,Ph(C,A/BC;Q,P)k ()(A, B; P) (Q, AQ/ B; Q, P)dAR/C, BCR; R, P)k k=O x (er-n la, r- n /be; r,p)k(q-n, bq-n fa; q,P)k Qk (q-n /e, beq-n fa; q,p)k(r- n la, r- n /b; r,p)k for n = 0,1, .... (ii) Deduce the following transformation formula for a "split-poised" theta hypergeometric series
t
()(aq2k;p) (a,b,e,a/be;q,p)k k=O ()(a;p) (q, aq/b, aq/e, beq; q,p)k (q-n, B/Aqn, C/Aqn, I/BCqn; q,ph k (I/Aqn, I/Bqn, l/cqn, BC/Aqn; q,P)k q (aq, bq, eq, aq/be, Aq/ B, Aq/C, BCq; q,P)n (Aq, Bq, Cq, Aq/ BC, aq/b, aq/e, beq; q,P)n
X
x
X
t
()(Aq2k;p) (A,B,C,A/BC;q,p)k k=O ()(A;p) (q, Aq/ B, Aq/C, BCq; q,ph (q-n,b/aqn,e/aqn,l/beqn;q,p)k k q (l/aqn,l/bqn, l/eqn, be/aqn; q,p)k
for n = 0,1, ... , which is an extension of the transformation formula for a split-poised 1O¢9 series given in Ex. 3.21. Write this formula as a transformation formula for a split-poised 12En series.
Exercises
343
(Gasper and Schlosser [2003])
11.26 Extend Ex. l1.25(i) to
t
()(a(rst/q)k, brkq-k, cskq-k, at k /bcqk;p) k=O ()(a, b, e, a/bc;p) (a; rst/q2,p)db; r,p)k(c; s,ph(a/bc; t,P)k (q;q,p)k(ast/bq;st/q,p)k(art/cq;rt/q,p)k(bers/q;rs/q,p)k (Q-n; Q, Ph(B(Q/ST)n /A; ST/Q, P)k(C(Q/ RT)n /A; RT/Q, P)k x ((Q2 /RST)n/A; RST/Q2, p)k(R-n / B; R, p)k(s-n /C; S, Ph ((Q/Rs)n/BC;RS/Q,P)k k x (BC/ATn;T,p)k q (arst/q2;rst/q2,P)n(br;r,P)n(cs;s,P)n(at/bc;t,P)n (q;q,P)n(ast/bq;st/q,P)n(art/cq;rt/q,P)n(bers/q;rs/q,p)n (Q; Q,P)n(AST/BQ; ST/Q,P)n X..,....,...'--'--"":""'--:'-""""'-------'--::--'-:-"""":--'----'--....,..(ARST /Q2; RST/Q 2, P)n(BR; R, P)n (ART /CQ; RT /Q, P)n(BCRS/Q; RS/Q, P)n x-'------'-----;-==-=---=-~--;--;-::::-:-=-=:--::::-_=_=_----'-....::...:....--'-(CS; S,P)n(AT/BC;T, P)n x ()(A(RST/Q)k, BRkQ-k, CSkQ-k, ATk/BCQk;p) ()(A, B, c, A/ BC; P) k=O (A; RST/Q2, P)k(B; R, P)k x~'--='--=-:-~-===-:-:'::-'-:'---,==-':-::-'--'::-: (Q; Q, P)k(AST/BQ; ST/Q, P)k (C; S, P)k(A/BC; T, P)k x (ART/CQ; RT/Q, P)k(BCRS/Q; RS/Q, P)k (q-n; q,p)k(b(q/ st)n fa; st/q,p)k x-'-=--------;.-;-:~-"--'-:-=:-----'-----'--;--';::_____'_,-=-:-=---'-'-' ((q2 /rst)n fa; rst/q2 ,ph x (c(q/rt)n fa; rt/q,ph((q/rs)n /bc; rs/q,ph Qk (r- n /b; r,p)k(S-n /e; s,p)k(bc/atn ; t,p)k x~~~~~~~~~~~~~~~~~~
t
for n = 0,1, .... Use (11.6.9) and (11.6.18) to extend this formula to a transformation formula containing the two additional parameters d and D. (Gasper and Schlosser [2003]) 11.27 Show that if
344
Elliptic, modular and theta hypergeometric series and a~ = bkckdkekfkgk for k = 0, ±1, ±2, ... , then
~ ()(aVbkckdkh, aVbkckdkek, ak, ak/ekfk;P) U k
f:::n ()(ak/ek, ak/ fk' aVbkCkdkekfk, aVbkCkdk;p) x =
[
()(ak/ckdk,ak/bkdk,ak/bkck,ek,fk,gk;p)
1
- ()(ak/bk,ak/ck,ak/dk,a~/bkckdkek,a~/bkckdkfk,a~/bkckdkgk;P) Urn - Un+1
for n,m
=
]
0, ±1, ±2, ....
(Gasper and Schlosser [2003]) 11.28 Extend the indefinite multibasic theta hypergeometric summation formula in (11.6.9) to
k a (V ) k a 2 ( v 2 ) k
a2 (V2 ) k a2
)
~ () (av 'J[j Ui 'TiCrJ! qrsl 'vr;cag qrsu 'DCa; P ~ ( a a2 a 2 a 2 ( v 2 ) k. ) () a, J[j' bcd] , bcdg' bcd qr s
k=O
,p
3
3
(b; q,p)k(C; r,ph(d; s, p)k(f; t, p)k(g; u, p)k (bcdfg; q;!stu ,p) k (qrstu/v 2)k x
--------------------------------~~~~--~--~----
a v a v a v av v av v bcdfgqrstu qrstu (-b;-,P)k(-;-,P)k(-d;-,P)k(ft;-t,P)k(-;-,P)k( 22 ; - 2 ,P)k c r s gu u a v v q
1
()(cdU!s)k, bd(~s)k, bc(~r)k,ftk,guk, bCdfg(q;!s3tu )k;p) x [ 1------------------------.;-------;o;-------,;---~---=-------;;-------a (V)k a (V)k a (V)k a 2 ( V2 )k a 2 ( v 2 )k fg (tU)k. ) () ( 7i q 'c r 'd S 'TiCrJ! qr st 'Ocag qr su 'a v ' P ()(a/f,a/g,a 2/bcdfg,a 2/bcd;p) ()(a 2/bcdg,a 2/bcdf,a,a/fg;p) x
[1 _
(b; q,P)n+l(C; r,P)n+l(d; S,P)n+l(f; t,P)n+l(g; U,P)n+l
(~; ~'P)k+l (%; ¥,P)n+l (a; ~,P)n+l Uj-; ¥,P)n+l (~; *,P)n+l a3
1
V3
x (-oCilfii; 7jFSfU' p) n+ 1 , ( bcdtg. qrstu) a
'
----;;r-' P
n+l
where n = 0,1, .... (Gasper and Schlosser [2003]) 11.29 Define the elliptic beta function BE(t;q,p) via its elliptic beta contour integral representation
BE(t; q,p)
=
rllE(Z;
IJJ'
t; q,p) dz,
z
where l' is the positively oriented unit circle, 4
I1
r(ztk,tk/Z;q,p) k=O llE z;t;q,p = -2 .r( Z, 2 1/ 2 7rZ z, zA, A/ z; q,p)' (
)
1
345
Exercises 4
t =
(to,t1,t2,t3,t4), max(ltol, It11, It21, It31, It41, Iql, Ipl) < 1, A
I1
=
tk,
k=l
Iqpl < A, and n
r(Zl,"" Zn; q,p)
=
II r(Zk; q,p),
n
=
1,2, ... ,
k=l
with f(z; q,p) as defined in Ex. 11.12. Prove that 2
BE(t; q,p)
=
I1 O~j 1, C. R. Math. Rep. Acad. Sci. Canada 15, 7-12. Ismail, M. E. H. and Masson, D. R. (1994). q-Hermite polynomials, biorthogonal rational functions, and q-beta integrals, Trans. Amer. Math. Soc. 346, 63-116. Ismail, M. E. H. and Masson, D. R. (1995). Generalized orthogonality and continued fractions, J. Approx. Theory 83, 1-40. Ismail, M. E. H. and Masson, D. R. (1999). Some continued fractions related to elliptic functions, Contemp. Math. 236, 149-166. Ismail, M. E. H., Masson, D. R. and Rahman, M. (1991). Complex weight functions for classical orthogonal polynomials, Canad. J. Math. 43, 1294-1308. Ismail, M. E. H., Masson, D. R. and Suslov, S. K. (1997). Some generating functions for q-polynomials, Fields Inst. Commun. 14,91-108. Ismail, M. E. H., Masson, D. R. and Suslov, S. K. (1999). The q-Bessel function on a q-quadratic grid, CRM Proc. Lecture Notes 22, 183-200.
References
391
Ismail, M. E. H., Merkes, E. and Styer, D. (1990). A generalization of starlike functions, Complex Variables Theory Appl. 14, 77-84. Ismail, M. E. H. and Muldoon, M. E. (1988). On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions, J. Math. Anal. Appl. 135, 187-207. Ismail, M. E. H. and Muldoon, M. E. (1994). Inequalities and monotonicity properties for gamma and q-gamma functions, Internat. Ser. Numer. Math. 119,309-323. Ismail, M. E. H., Mulla, F. S. (1987). On the generalized Chebyshev polynomials, SIAM J. Math. Anal. 18, 243-258. Ismail, M. E. H., Perline, R. and Wimp, J. (1992). Pade approximants for some q-hypergeometric functions, Springer Ser. Comput. Math. 19, 37-50. Ismail, M. E. H. and Pitman, J. (2000). Algebraic evaluations of some symmetric Euler integrals, duplication formulas for Appell's hypergeometric function F l , and Brownian variations, Canad. J. Math. 52, 961-98l. Ismail, M. E. H. and Rahman, M. (1991). The associated Askey-Wilson polynomials, Trans. Amer. Math. Soc. 328, 201-237. Ismail, M. E. H. and Rahman, M. (1995). Some basic bilateral sums and integrals, Pacific J. Math. 170, 497-515. Ismail, M. E. H. and Rahman, M. (1996). Ladder operators for Szego polynomials and related biorthogonal rational functions, Proc. Amer. Math. Soc. 124, 2149-2159. Ismail, M. E. H. and Rahman, M. (1998). The q-Laguerre polynomials and related moment problems, J. Math. Anal. Appl. 218, 155-174. Ismail, M. E. H. and Rahman, M. (2002a). An inverse to the Askey-Wilson operator, Rocky Mtn. J. Math. 32, 657-678. Ismail, M. E. H. and Rahman, M. (2002b). Inverse operators, q-fractional integrals, and q-Bernoulli polynomials, J. Approx. Theory 114, 269-307. Ismail, M. E. H., Rahman, M. and Stanton, D. (1999). Quadratic q-exponentials and connection coefficient problems, Proc. Amer. Math. Soc. 127, 2931-294l. Ismail, M. E. H., Rahman, M. and Zhang, R. (1996). Diagonalization of certain integral operators. II, J. Comput. Appl. Math. 68, 163-196. Ismail, M. E. H. and Ruedemann, R. W. (1992). Relation between polynomials orthogonal on the unit circle with respect to different weights, J. Approx. Theory 71, 39-60. Ismail, M. E. H. and Stanton, D. (1988). On the Askey-Wilson and Rogers polynomials, Canad. J. Math. 40, 1025-1045. Ismail, M. E. H. and Stanton, D. (1997). Classical orthogonal polynomials as moments, Canad. J. Math. 49, 520-542. Ismail, M. E. H. and Stanton, D. (1998). More orthogonal polynomials as moments, Progress in Mathematics 161, 377-396. Ismail, M. E. H. and Stanton, D. (2000). Addition theorems for the q-exponential function, Contemp. Math. 254, 235-245. Ismail, M. E. H. and Stanton, D. (2002). q-Integral and moment representations for q-orthogonal polynomials, Canad. J. Math. 54709-735. Ismail, M. E. H. and Stanton, D. (2003a). q-Taylor theorems, polynomial expansions, and interpolation of entire functions, J. Approx. Theory 123, 125-146. Ismail, M. E. H. and Stanton, D. (2003b). Applications of q-Taylor theorems, J. Comput. Appl. Math. 153, 259-272.
392
References
Ismail, M. E. H., Stanton, D. and Viennot, G. (1987). The combinatorics of q-Hermite polynomials and the Askey-Wilson integral, European J. Combinatorics 8, 379-392. Ismail, M. E. H., Valent, G. and Yoon, G. J. (2001). Some orthogonal polynomials related to elliptic functions, J. Approx. Theory 112, 251-278. Ismail, M. E. H. and Wilson, J. A. (1982). Asymptotic and generating relations for the q-Jacobi and 44>3 polynomials, J. Approx. Thy. 36, 43-54. Ismail, M. E. H. and Zhang, R. (1994). Diagonalization of certain integral operators, Adv. in Math. 109, 1-33. Ito, M. (2002). A product formula for Jackson integral associated with the root system F 4 , Ramanujan J. 6, 279-293. Jackson, F. H. (1904a). A basic-sine and cosine with symbolical solutions of certain differential equations, Proc. Edin. Math. Soc. 22, 28-38. Jackson, F. H. (1904b). Note of a theorem of Lommel, Proc. Edin. Math. Soc. 22, 80-85. Jackson, F. H. (1904c). Theorems relating to a generalization of the Bessel-function, Trans. Roy. Soc. Edin. 41, 105-118. Jackson, F. H. (1904d). On generalized functions of Legendre and Bessel, Trans. Roy. Soc. Edin. 41, 1-28. Jackson, F. H. (1904e). A generalization of the functions r(n) and xn, Proc. Roy. Soc. London 74,64-72. Jackson, F. H. (1905a). The application of basic numbers to Bessel's and Legendre's functions, Proc. London Math. Soc. (2) 2, 192-220. Jackson, F. H. (1905b). The application of basic numbers to Bessel's and Legendre's functions (Second paper), Proc. London Math. Soc. (2) 3, 1-23. Jackson, F. H. (1905c). Some properties of a generalized hypergeometric function, Amer. J. Math. 27, 1-6. Jackson, F. H. (1905d). The basic gamma-function and the elliptic functions, Proc. Roy. Soc. London A 76, 127-144. Jackson, F. H. (1905e). Theorems relating to a generalization of Bessel's function. II, Trans. Roy. Soc. Edin. 41, 399-408. Jackson, F. H. (1908). On q-functions and a certain difference operator, Trans. Roy. Soc. Edin. 46, 253-28l. Jackson, F. H. (1909a). Generalization of the differential operative symbol with an extended form of Boole's equation ... , Messenger of Math. 38, 57-6l. Jackson, F. H. (1909b). A q-form of Taylor's theorem, Messenger of Math. 38, 62--64. Jackson, F. H. (1909c). The q-series corresponding to Taylor's series, Messenger of Math. 39,26-28. Jackson, F. H. (1910a). Transformations of q-series, Messenger of Math. 39, 145-153. Jackson, F. H. (191Ob). A q-generalization of Abel's series, Rendiconti Palermo 29,340-346. Jackson, F. H. (191Oc). On q-definite integrals, Quart. J. Pure and Appl. Math. 41,193-203. Jackson, F. H. (1910d). q-Difference equations, Amer. J. Math. 32, 305-314. Jackson, F. H. (1910e). Borel's integral and q-series, Proc. Roy. Soc. Edin. 30, 378-385. Jackson, F. H. (1911). The products of q-hypergeometric functions, Messenger of Math. 40, 92-100.
References
393
Jackson, F. H. (1917). The q-integral analogous to Borel's integral, Messenger of Math. 47, 57-64. Jackson, F. H (1921). 101-1l2.
Summation of q-hypergeometric series, Messenger of Math.
50,
Jackson, F. H (1927). A new transformation of Heinean series, Quart. J. Pure and Appl. Math. 50, 377-384. Jackson, F. H (1928). Examples of a generalization of Euler's transformation for power series, Messenger of Math. 57, 169-187. Jackson, F. H (1940). The q8 equations whose solutions are products of solutions of
l
equations of lower order, Quart. J. Math. (Oxford) 11, 1-17. Jackson, F. H. (1941). Certain q-identities, Quart. J. Math. (Oxford) 12, 167-172. Jackson, F. H. (1942). On basic double hypergeometric functions, Quart. J. Math. (Oxford) 13,69-82. Jackson, F. H. (1944). Basic double hypergeometric functions (II), Quart. J. Math. (Oxford) 15,49-61. Jackson, F. H. (1951). Basic integration, Quart. J. Math. (Oxford) (2) 2, 1-16. Note: For additional publications of F. H. Jackson, see his obituary notice Chaundy [1962]. Jackson, M. (1949). On some formulae in partition theory, and bilateral basic hypergeometric series, J. London Math. Soc. 24, 233-237. Jackson, M. (1950a). On well-poised bilateral hypergeometric series of the type s'lj;s, Quart. J. Math. (Oxford) (2) 1, 63-68. Jackson, M. (1950b). On Lerch's transcendant and the basic bilateral hypergeometric series 2'1j;2, J. London Math. Soc. 25,189-196. Jackson, M. (1954). Transformations of series of the type 3'1j;3, Pac. J. Math. 4, 557-562. Jacobi, C. G. J. (1829). Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti. Sumptibus frat rum Borntrager; reprinted in Gesammelte Werke 1 (1881), 49-239, Reimer, Berlin; reprinted by Chelsea, New York, 1969. Jacobi, C. G. J. (1846). Uber einige der Binomialreihe analoge Reihen, J. reine angew. Math. 32, 197-204; reprinted in Gesammelte Werke 6 (1881), 163-173, Reimer, Berlin. Jain, V. K. (1980a). Some expansions involving basic hypergeometric functions of two variables, Pac. J. Math. 91, 349-361. Jain, V. K. (1980b). Some transformations of basic hypergeometric series and their applications, Proc. Amer. Math. Soc. 78, 375-384. Jain, V. K. (1980c). Summations of basic hypergeometric series and Rogers-Ramanujan identities, Houston J. Math. 6, 511-522. Jain, V. K. (1981). Some transformations of basic hypergeometric functions. Part II, SIAM J. Math. Anal. 12, 957-961. Jain, V. K. (1982). Certain transformations of basic hypergeometric series and their applications, Pac. J. Math. 101, 333-349. Jain, V. K. and Srivastava, H. M. (1986). q-Series identities and reducibility of basic double hypergeometric functions, Ganad. J. Math. 38, 215-231. Jain, V. K. and Verma, A. (1980). Transformations between basic hypergeometric series on different bases and identities of Rogers-Ramanujan type, J. Math. Anal. Appl. 76, 230-269.
394
References
Jain, V. K. and Verma, A. (1981). Some transformations of basic hypergeometric functions, Part I, SIAM J. Math. Anal. 12, 943-956. Jain, V. K. and Verma, A. (1982). Transformations of non-terminating basic hypergeometric series, their contour integrals and applications to Rogers-Ramanujan identities, J. Math. Anal. Appl. 87, 9-44. Jain, V. K. and Verma, A. (1985). Some summation formulae for nonterminating basic hypergeometric series, SIAM J. Math. Anal. 16, 647-655. Jain, V. K. and Verma, A. (1986). Basic analogues of transformations of nearly-poised basic hypergeometric series, Number Theory, Lecture Notes on Math. 1122, Springer, New York, 206-217. Jain, V. K. and Verma, A. (1987). On transformations of nearly-poised basic hypergeometric series and their applications, Indian J. Pure Appl. Math. 18 (1), 55-64. Jimbo, M. (1985). A q-difference analogue of U (g) and the Yang-Baxter equation, Lett. Math. Phys. 10, 63-69. Jimbo, M. (1986). A q-analogue of U(gl(N+l)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11, 247-252. Joichi, J. T. and Stanton, D. (1987). Bijective proofs of basic hypergeometric series identities, Pacific J. Math. 127, 103-120. Joichi, J. T. and Stanton, D. (1989). An involution for Jacobi's identity, Discrete Math 73, 261-271. Joshi, C. M. and Verma, A. (1979). Some remarks on summation of basic hypergeometric series, Houston J. Math. 5, 277-294. Kac, V. G. (1978). Infinite-dimensional algebras, Dedekind's 'I)-function, classical Mobius function and the very strange formula, Adv. in Math. 30, 85-136. Kac, V. G. (1985). Infinite Dimensional Lie Algebras, 2nd edition, Cambridge University Press, Cambridge. Kadel!, K. W. J. (1985a). Weighted inversion numbers, restricted growth functions, and standard Young tableaux, J. Comb. Thy. A 40, 22-44. Kadel!, K. W. J. (1985b). A proof of Andrews' q-Dyson conjecture for n=4, Trans. Amer. Math. Soc. 290, 127-144. Kadel!, K. W. J. (1987a). Path functions and generalized basic hypergeometric functions, Memoirs Amer. Math. Soc. 360. Kadel!, K. W. J. (1987b). A probabilistic proof of Ramanujan's 1'1/;1 sum, SIAM J. Math. Anal. 18, 1539-1548. Kadel!, K. W. J. (1988a). A proof of some q-analogues of Selberg's integral for k J. Math. Anal. 19, 944-968.
=
1, SIAM
Kadel!, K. W. J. (1988b). A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Anal. 19, 969-986. Kadel!, K. W. J. (1988c). The q-Selberg polynomials for n=2, Trans. Amer. Math. Soc. 310, 535-553. Kadel!, K. W. J. (1994). A proof of the q-Macdonald-Morris conjecture for BCn Amer. Math. Soc. 108, no. 516.
,
Memoirs
Kadel!, K. W. J. (1997). The Selberg-Jack symmetric functions, Adv. in Math. 130,33-102. Kadel!, K. W. J. (1998). Aomoto's machine and the Dyson constant term identity, Methods Appl. Anal. 5, 335-350.
References
395
Kadell, K. W. J. (2000). A Dyson constant term orthogonality relation, J. Combin. Theory Ser. A 89, 291-297. Kairies, H.-H and Muldoon, M. E. (1982). Some characterizations of q-factorial functions, Aequationes Math. 25, 67-76. Kajihara, Y. and Noumi, M. (2003). Multiple elliptic hypergeometric series from the Cauchy determinant - , Indag. Math., (N.S.) 14, 395-421.
An approach
Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y. and Yamada, Y. (2003). lOEg solution to the elliptic Painleve equation, J. Phys. A, Math. Gen. 36, L263-L272. Kalnins, E. G. and Miller, W. (1988). q-Series and orthogonal polynomials associated with Barnes' first lemma, SIAM J. Math. Anal. 19, 1216-1231. Kalnins, E. G. and Miller, W. (1989). Symmetry techniques for q-series: Askey-Wilson polynomials, Rocky Mtn. J. Math. 19, 223-230. van Kampen, N. G. (1961). Exact calculation of the fluctuation spectrum for a nonlinear model system, J. Math. Phys. 2, 592-601. Kaneko, J. (1996). q-Selberg integrals and Macdonald polynomials, Ann. Sci. Ecole Norm. Sup. (4) 29, 583-637. Kaneko, J. (1997). Constant term identities of Forrester-Zeilberger-Cooper, Discrete Math. 173,79-90. Kaneko, J. (1998). A 2,379-386.
,ljf,
summation theorem for Macdonald polynomials, Ramanujan J.
Kaneko, J. (2001). Forrester's constant term conjecture and its q-analogue, Physics and combinatorics, 2000 (Nagoya), World Sci. Publishing, River Edge, NJ, 49-62. Karlsson, Per W. (1971). Hypergeometric functions with integral parameter differences, J. Math. Phys. 12, 270-271. Kendall, M. G. and Stuart, A. (1979). The Advanced Theory of Statistics, Vol. 2, Inference and Relationship, 4th edition, C. Griffin & Co., London. Kirillov, A. N. (1995). Dilogarithm identities, Progr. Theon. Phys. Suppl. No. 118, 61-142. Kirillov, A. N. and Noumi, M. (1999). q-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients, CRM Proc. Lecture Notes 22, 227-243. Kirillov, A. N. and Reshetikhin, N. Yu. (1989). Representations of the algebra U q (sl(2)), q-orthogonal polynomials and invariants of links, Adv. Ser. Math. Phys. 7, 285-339. Klein, F. (1933). Vorlesungen iiber die Hypergeometrische Funktion, Springer, New York. Knuth, D. (1971). Subspaces, subsets, and partitions, J. Comb. Thy. A 10, 178-180. Knuth, D. (1973). The Art of Computer Programming, Vols. 1-3, Addison-Wesley, Reading, Mass. Koekoek, R. and Swarttouw, R. F. (1998). The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Reports of the faculty of Technical Mathematics and Informatics, No. 98-17, Delft. Koelink, H. T. (1994). The addition formula for continuous q-Legendre polynomials and associated spherical elements on the SU(2) quantum group related to Askey-Wilson polynomials, SIAM J. Math. Anal. 25,197-217. Koelink, H. T. (1995a). Addition formula for big q-Legendre polynomials from the quantum SU(2) group, Canad. J. Math. 47, 436-448.
396
References
Koelink, H. T. (1995b). Identities for q-ultraspherical polynomials and Jacobi functions, Proc. Amer. Math. Soc. 123, 2479-2487. Koelink, H. T. (1996). Askey-Wilson polynomials and the quantum U(2) group: survey and applications, Acta Appl. Math. 44,295-352. Koelink, H. T. (1997). Addition formulas for q-special functions, Fields Inst. Commun. 14, 109-129. Koelink, H. T. (2000). q-Krawtchouk polynomials as spherical functions on the Hecke algebra of type B, Trans. Amer. Math. Soc. 352, 4789-4813. Koelink, H. T. (2003). One-parameter orthogonality relations for basic hypergeometric series, Indag. Math. (N.S.) 14,423-443. Koelink, H. T. and Koornwinder, T. H. (1989). The Clebsch-Gordan coefficients for the quantum group Sp,U(2) and q-Hahn polynomials, Proc. Kon. Nederl. Akad. Wetensch. Ser. A 92, 443-456. Koelink, H. T., van Norden, Y. and Rosengren, H. (2003). Elliptic U(2) quantum group and elliptic hypergeometric series, Comm. Math. Phys., to appear. Koelink, H. T. and Rosengren, H. (2001). Harmonic analysis on the SU(2) dynamical quantum group, Acta Appl. Math. 69, 163-220. Koelink, H. T. and Rosengren, H. (2002). Transmutation kernels for the little q-Jacobi function transform, Rocky Mtn. J. Math. 32, 703-738. Koelink, H. T. and Stokman, J. V. (2001a). Fourier transforms on the quantum SU(l,l) group: With an appendix by Mizan Rahman, Publ. Res. Inst. Math. Sci. 37,621-715. Koelink, H. T. and Stokman, J. V. (2001b). The Askey-Wilson function transform, Internat. Math. Res. Notices, 1203-1227. Koelink, H. T. and Stokman, J. V. (200lc). The Askey-Wilson function transform scheme, Special Functions 2000: Current Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 221-24l. Koelink, H. T. and Stokman, J. V. (2003). The big q-Jacobi function transform, Constr. Approx. 19, 191-235. Koelink, H. T. and Swarttouw, R. F. (1994). On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl. 186, 690-710. Koelink, H. T. and Swarttouw, R. F. (1995). A q-analogue of Graf's addition formula for the Hahn-Exton q-Bessel function, J. Approx. Theory 81, 260-273. Koelink, H. T. and Van der Jeugt, J. (1998). Convolutions for orthogonal polynomials from Lie and quantum algebra representations, SIAM J. Math. Anal. 29, 794-822. Koelink, H. T. and Van der Jeugt, J. (1999). Bilinear generating functions for orthogonal polynomials, Constr. Approx. 15,481-497. Koepf, W. (1998). Hypergeometric summation. An algorithmic approach to summation and special function identities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig. Koornwinder, T. H. (1974a). Jacobi polynomials, II. An analytic proof of the product formula, SIAM J. Math. Anal. 5, 125-137. Koornwinder, T. H. (1974b). Jacobi polynomials, III. An analytic proof of the addition formula, SIAM J. Math. Anal. 6,533-543. Koornwinder, T. H. (1984). Squares of Gegenbauer polynomials and Milin type inequalities, Report PM-R8412, Centre for Math. and Computer Science, Amsterdam.
References
397
Koornwinder, T. H. (1986). A group theoretic interpretation of the last part of de Branges' proof of the Bieberbach conjecture, Complex Variables 6, 309-321. Koornwinder, T. H. (1989). Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials, Pmc. Kon. Nederl. Akad. Wetensch. Ser. A 92,97-117. Koornwinder, T. H. (1990). Jacobi functions as limit cases of q-ultraspherical polynomials, J. Math. Anal. Appl. 148, 44-54. Koornwinder, T. H. (1991a). The addition formula for little q-Legendre polynomials and the SU(2) quantum group, SIAM J. Math. Anal. 22, 295-301. Koornwinder, T. H. (1991b). Handling hypergeometric series in Maple, IMACS Ann. Comput. Appl. Math. 9, 73-80. Koornwinder, T. H. (1992). Askey-Wilson polynomials for root systems of type BC, Contemp. Math. 138, 189-204. Koornwinder, T. H. (1993a). On Zeilberger's algorithm and its q-analogue, J. Comput. Appl. Math. 48, 91-111. Koornwinder, T. H. (1993b). Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group, SIAM J. Math. Anal. 24, 795-813. Koornwinder, T. H. (1994). Compact quantum groups and q-special functions, Pitman Res. Notes Math. Ser. 311,46-128. Koornwinder, T. H. (1997). Special functions and q-commuting variables, Fields Inst. Commun. 14,131-166. Koornwinder, T. H. (1998). Identities of nonterminating series by Zeilberger's algorithm, J. Comput. Appl. Math. 99,449-461. Koornwinder, T. H. (1999). Some simple applications and variants of the q-binomial formula, Informal note, Oct. 30, 1999: Revised Nov. 9, 1999, www.wins.uva.nl/pub/ mathematics / reports / Analysis /koornwinder / q binomial. ps. Koornwinder, T. H. (2003). A second addition formula for continuous q-ultraspherical polynomials, to appear in Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman (M. E. H. Ismail and E. Koelink, eds.), Dev. Math., Kluwer Acad. Publ., Dordrecht. Koornwinder, T. H. and Schwartz, A. L. (1997). Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Appmx. 13, 537-567. Koornwinder, T. H. and Swarttouw, R. F. (1992). On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333,445-461. Koornwinder, T. H. and Touhami, N. (2003). Fusion and exchange matrices for quantized sl(2) and associated q-special functions, to appear. Krattenthaler, C. (1984). A new q-Lagrange formula and some applications, Proc. Amer. Math. Soc. 90, 338-344. Krattenthaler, C. (1988). Operator methods and Lagrange inversion: a unified approach to Lagrange formulas, Trans. Amer. Math. Soc. 305,431-465. Krattenthaler, C. (1989a). q-Analogue of a two-variable inverse pair of series with applications to basic double hypergeometric series, Canad. J. Math. 41, 743-768.
398
References
Krattenthaler, C. (1989b). Einige quadratische, kubische und quartische Summenformeln fiir q-hypergeometrische Reihen, (German) [Some quadratic, cubic and quartic summation formulas for q-hypergeometric series], Anz. Osterreich Akad. Wiss. Math.-Natur. Kl. 126, 9-10. Krattenthaler, C. (1995a). The major counting of nonintersecting lattice paths and generating functions for tableaux, Memoirs Amer. Math. Soc. 115, no. 552. Krattenthaler, C. (1995b). HYP and HYPQ: Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q-binomial sums and basic hypergeometric series, J. Symbolic Comput. 20, 737-744. Krattenthaler, C. (1996). A new matrix inverse, Proc. Amer. Math. Soc. 124, 47-59. Krattenthaler, C. (1999). Advanced Determinant Calculus, Sem. Lothar. Combin. 42, Art. B42q. Krattenthaler, C. (2001). Proof of a summation formula for an An basic hypergeometric series conjectured by Warnaar, Contemp. Math. 291, 153-161. Krattenthaler, C. and Rosengren, H. (2003). On a hypergeometric identity of Gelfand, Graev and Retakh, J. Comput. Appl. Math. 160, 147-158. Krattenthaler, C. and Schlosser, M. (1999). A new multidimensional matrix inverse with applications to multiple q-series, Discrete Math. 204, 249-279. Kummer, E. E. (1836), Uber die hypergeometrische Reihe ... , J. fur Math. 15, 39-83 and 127-172. Laine, T. P. (1982). Projection formulas and a new proof of the addition formula for the Jacobi polynomials, SIAM J. Math. Anal. 13, 324-330. Lassalle, M. (1999).
Quelques valeurs prises par les polynomes de Macdonald decales
(French) [Some values taken by shifted Macdonald polynomials], Ann. Inst. Fourier {Grenoble} 9, 543-561. Lassalle, M. and Schlosser, M. (2003). An analytic formula for Macdonald polynomials, C. R. Math. Acad. Sci. Paris 337, 569-574. Leininger, V. and Milne, S. (1999a). Expansions for (q):::o2+2n and basic hypergeometric series in U(n), Discrete Math. 204,281-317. Leininger, V. and Milne, S. (1999b). Some new infinite families of eta function identities, Methods Appl. Anal. 6, 225-248. Leonard, D. A. (1982). Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13, 656-663. Lepowsky, J. (1982). Affine Lie algebras and combinatorial identities, Lie Algebras and Related Topic, Lecture Notes in Math. 933, Springer, New York, 130-156. Lepowsky, J. and Milne, S. (1978). Lie algebraic approaches to classical partition identities, Adv. in Math. 29, 15-59. Lepowsky, J. and Wilson, R. L. (1982). A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. in Math. 45, 21-72. Lewis, R. P. (1984). A combinatorial proof of the triple product identity, Amer. Math. Monthly 91,420-423. Lilly, G. M. and Milne, S. (1993). The C£ Bailey transform and Bailey lemma, Constr. Appmx. 9, 473-500. Littlewood, J. E. (1907). On the asymptotic approximation to integral functions of zero order, Pmc. London Math. Soc. (2) 5,361-410.
References
399
Liu, Zhi-Guo (2001). On the representation of integers as sums of squares, Contemp. Math. 291, 163-176. Lubinsky, D. S. and Saff, E. B. (1987). Convergence of Pade approximants of partial theta functions and the Rogers-Szego polynomials, Constr. Approx. 3,331-36l. Luke, Y. L. (1969). The Special Functions and Their Approximations, Vols. I and II, Academic Press, New York. Macdonald, 1. G. (1972). Affine root systems and Dedekind's 1]-function, Invent. Math. 15, 91-143. Macdonald, 1. G. (1982). Some conjectures for root systems, SIAM J. Math. Anal. 13, 988-1007. Macdonald, 1. G. (1990). Orthogonal polynomials associated with root systems, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 294,311-318. Macdonald, 1. G. (1995). Symmetric Functions and Hall Polynomials, Second edition, Oxford University Press, New York. Macdonald, 1. G. (1998a). Symmetric functions and orthogonal polynomials, University Lecture Series 12, American Mathematical Society, Providence, R1. Macdonald, 1. G. (1998b). Constant term identities, orthogonal polynomials, and affine Hecke algebras, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Vol. I, 303-317. MacMahon, P. A. (1916). Combinatory Analysis, Cambridge University Press, Cambridge; reprinted by Chelsea, New York, 1960. McCoy, B. M. (1999). Quasi-particles and the generalized Rogers-Ramanujan identities, XII th International Congress of Mathematical Physics (ICMP '97) (Brisbane), Internat. Press, Cambridge, MA, 350-356. Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M. and Ueno, K. (1991). Representations of quantum group SUq (2) and the little q-Jacobi polynomials, J. Funct. Anal. 99, 357-386. Menon, P. K. (1965). On Ramanujan's continued fraction and related identities, J. London Math. Soc. 40,49-54. Milin, 1. M. (1977). Univalent Functions and Orthogonal Systems, Trans!. Math. Monographs, Vo!' 29, Amer. Math. Soc., Providence, R. 1. Miller, W. (1968). Lie Theory and Special Jilunctions, Academic Press, New York. Miller, W. (1970). Lie theory and q-difference equations, SIAM J. Math. Anal. 1, 171-188. Milne, S. C. (1980a). A multiple series transformation of the very well poised 2k+4'IjJ2k+4' Pacific J. Math. 91, 419-430. Milne, S. C. (1980b). Hypergeometric series well-poised in SU(n) and a generalization of Biedenharn's G-functions, Adv. in Math. 36, 169-21l. Milne, S. C. (1985a). An elementary proof of the Macdonald identities for A~l), Adv. in
Math. 57, 34-70. Milne, S. C. (1985b). A new symmetry related to SU(n) classical basic hypergeometric series, Adv. in Math. 57, 71-90. Milne, S. C. (1985c). A q-analogue of hypergeometric series well-poised in SU(n) and invariant G-functions, Adv. in Math. 58, 1-60. Milne, S. C. (1985d). A q-analogue of the 5F4(1) summation theorem for hypergeometric series well-poised in SU(n), Adv. in Math. 57, 14-33.
400
References
Milne, S. C. (1986). A U(n) generalization of Ramanujan's Appl. 118, 263-277.
1'l/J1
summation, J. Math. Anal.
Milne, S. C. (1987). Basic hypergeometric series very-well-poised in U(n), J. Math. Anal. Appl. 122, 223-256. Milne, S. C. (1988a). Multiple q-series and U(n) generalizations of Ramanujan's 1'I/J1 sum, Ramanujan Revisited (G. E. Andrews et al., eds.), Academic Press, New York, 473-524. Milne, S. C. (1988b). A q-analog of the Gauss summation theorem for hypergeometric series in U(n), Adv. in Math. 72, 59-131. Milne, S. C. (1989). The multidimensional
1'l/J1
sum and Macdonald identities for A~1), Pmc.
Sympos. Pure Math. 49, Part 2, 323-359. Milne, S. C. (1992). Classical partition functions and the U(n+l) Rogers-Selberg identity, Discrete Math. 99, 199-246. Milne, S. C. (1993). A q-analog of the balanced 3F2 summation theorem for hypergeometric series in U(n), Adv. in Math. 99, 162-237. Milne, S. C. (1994a). A q-analog of Whipple's transformation for hypergeometric series in U(n), Adv. in Math. 108, 1-76. Milne, S. C. (1994b). The C R Rogers-Selberg Identity, SIAM Jour. Math. Anal. 25,571-595. Milne, S. C. (1996). New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function, Proc. Nat. Acad. Sci. U.S.A. 93, 1500415008. Milne, S. C. (1997). Balanced 3CP2 summation theorems for U(n) basic hypergeometric series, Adv. in Math. 131,93-187. Milne, S. C. (2000). A new U(n) generalization of the Jacobi triple product identity, Contemp. Math. 254,351-370. Milne, S. C. (2001). Transformations of U(n+l) multiple basic hypergeometric series, Physics
and combinatorics 1999 (Nagoya), World Sci. Publishing, River Edge, NJ, 201-243. Milne, S. C. (2002). Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions, Ramanujan J. 6, 7-149. Milne, S. C. and Bhatnagar, G. (1998). A characterization of inverse relations, Discrete Math. 193, 235-245. Milne, S. C. and Lilly, G. M. (1992). The AR and C R Bailey transform and lemma, Bull. Amer. Math. Soc. 26, 258-263. Milne, S. C. and Lilly, G. M. (1995). Consequences of the Bailey lemma, Discrete Math. 139, 319-346.
Al
and C l Bailey transform and
Milne, S. C. and Newcomb, J. W. (1996). U(n) very-well-poised Comput. Appl. Math. 68, 239-285.
lQcpg
transformations, J.
Milne, S. C. and Schlosser, M. (2002). A new An extension of Ramanujan's 1'l/J1 summation with applications to multilateral An series, Rocky Mtn. J. Math. 32, 759-792. Mimachi, K. (1989). Connection problem in holonomic q-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya math. J. 116, 149-161. Minton, B. M. (1970). Generalized hypergeometric function of unit argument, J. Math. Phys. 11, 1375-1376. Misra, K. C. (1988). Specialized characters for affine Lie algebras and the Rogers-Ramanujan identities, Ramanujan Revisited (G. E. Andrews et al., eds.), Academic Press, New York, 85-109.
References
401
Moak, D. S. (1980a). The q-gamma function for q> 1, Aequationes Math. 20, 278-285. Moak, D. S. (1980b). The q-gamma function for x < 0, Aequationes Math. 21, 179-191. Moak, D. S. (1981). The q-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81, 20-47. Mordell, L. J. (1917). On the representation of numbers as the sum of 2r squares, Quart. J. Pure and Appl. Math. 48, 93-104. Morris, W. (1982). Constant term identities for finite and affine root systems, Ph.D. Thesis, University of Wisconsin, Madison. Narukawa, A. (2003). The modular properties and the integral representations of the multiple elliptic gamma functions, to appear. Nassrallah, B. (1982). Some quadratic transformations and projection formulas for basic hypergeometric series, Ph.D. Thesis, Carleton University, Ottawa. Nassrallah, B. (1990). A q-analogue of Appell's Fi function, its integral representation and transformations, Pacific J. Math. 142, 121-134. Nassrallah, B. (1991). Basic double series, quadratic transformations and products of basic series, Canad. Math. Bull. 34,499-513. Nassrallah, B. and Rahman, M. (1981). On the q-analogues of some transformations of nearly-poised hypergeometric series, Trans. Amer. Math. Soc. 268, 211-229. Nassrallah, B. and Rahman, M. (1985). Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials, SIAM J. Math. Anal. 16,186-197. Nassrallah, B. and Rahman, M. (1986). A q-analogue of Appell's Fi function and some quadratic transformation formulas for non-terminating basic hypergeometric series, Rocky Mtn. J. of Math. 16, 63-82. Needham, J. (1959). Science and Civilization in China, Vol. 3, Mathematics and the Sciences of the Heavens and the Earth, Cambridge University Press, Cambridge. Nelson, C. A. and Gartley, M. G. (1994). On the zeros of the q-analogue exponential function, J. Phys. A 27, 3857-3881. Nelson, C. A. and Gartley, M. G. (1996). On the two q-analogue logarithmic functions: lnq(w), In{eq(z)}, J. Phys. A 29, 8099-8115. Nevai, P. G. (1979). Orthogonal polynomials, Memoirs Amer. Math. Soc. 213. Nikiforov, A. F. and Suslov, S. K. (1986). Classical orthogonal polynomials of a discrete variable on nonuniform lattices, Lett. Math. Phys., II, 27-34. Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B. (1991). Classical orthogonal polynomials of a discrete variable, Translated from the Russian, Springer Series in Computational Physics, Springer, New York. Nikiforov, A. F. and Uvarov, V. B. (1988). Special Functions of Mathematical Physics: A Unified Introduction with Applications, Translated from the Russian by R. P. Boas, Birkhiiuser, Boston, Mass. Nishizawa, M. (2002). Multiple gamma function, its q- and elliptic analogue, Rocky Mtn. J. Math. 32, 793-811. O'Hara, K. M. (1990). Unimodality of the Gaussian coefficients: a constructive proof, J. Comb. Thy. Ser. A 53, 29-52. Opdam, E. M. (1989). Some applications of hypergeometric shift operators, Invent. Math. 98, 1-18.
402
References
Orr, W. McF. (1899). Theorems relating to the product of two hypergeometric series, Trans. Camb. Phil. Soc. 17,1-15. Pastro, P. 1. (1985). Orthogonal polynomials and some q-beta integrals of Ramanujan, J. Math. Anal. Appl. 112, 517-540. Paule, P. (1985a). On identities of the Rogers-Ramanujan type, J. Math. Anal. Appl. 107, 255-284. Paule, P. (1985b). Ein neuer Weg zur q-Lagrange Inversion, Bayreuther Math. Schriften 18, 1-37. Paule, P. and Riese, A. (1997). A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, Fields Inst. Commun. 14, 179-210. Perron, O. (1929). Die Lehre von den Kettenbriichen, 2nd edition, Teubner, Leipzig. Petkovsek, M., Wilf, H. S. and Zeilberger, D. (1996). A = B, A. K. Peters Ltd., Wellesley, MA. Pfaff, J. F. (1797). Observationes analyticae ad L. Euler Institutiones Calculi Integralis, Vol. IV, Supplem. II et IV, Historia de 1793, Nova acta acado sci. Petropolitanae 11 (1797), 38-57. Phragmen, E. (1885). Sur un theoreme concernant les fonctions elliptiques, Acta. Math. 7, 33-42. Pitre, S. N. and Van der Jeugt, J. (1996). Transformation and summation formulas for Kampe de Feriet series F~i~ (1,1), J. Math. Anal. Appl. 202, 121-132. P6lya, G. (1927). Uber die algebraisch-funktionentheoretischen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Videnskabernes Selskab. Math.-Fys. Medd. 7, 3-33; reprinted in Collected Papers, Vol. II, The MIT Press, Cambridge, Mass., 278-308. P6lya, G. (1970). Gaussian binomial coefficients and the enumeration of inversions, Proceedings of the Second Chapel Hill Conference on Combinatorial Mathematics and its Applications (Aug. 1970), Univ. of North Carolina, Chapel Hill, 381-384. P6lya, G. and Alexanderson, G. L. (1970). Gaussian binomial coefficients, Elemente der Mathematik 26, 102-108. Potter, H. S. A. (1950). On the latent roots of quasi-commutative matrices, Amer. Math. Monthly 57, 321-322. Qazi, Tariq M. and Rahman, M. (2003). Linearization formula for the product of associated q-ultraspherical polynomials, Ramanujan J., to appear. Rademacher, H. (1973). Topics in Analytic Number Theory, Springer, New York. Rahman, M. (1981). The linearization of the product of continuous q-Jacobi polynomials, Canad. J. Math. 33, 255-284. Rahman, M. (1982). Reproducing kernels and bilinear sums for q-Racah and q-Wilson polynomials, Trans. Amer. Math. Soc. 273,483-508. Rahman, M. (1984). A simple evaluation of Askey and Wilson's q-beta integral, Proc. Amer. Math. Soc. 92, 413-417. Rahman, M. (1985). A q-extension of Feldheim's bilinear sum for Jacobi polynomials and some applications, Canad. J. Math. 37, 551-576. Rahman, M. (1986a). Another conjectured q-Selberg integral, SIAM J. Math. Anal. 17, 1267-1279. Rahman, M. (1986b). An integral representation of a 1O¢9 and continuous bi-orthogonal 1O¢9 rational functions, Canad. J. Math. 38, 605-618.
References
403
Rahman, M. (1986c). q-Wilson functions of the second kind, SIAM J. Math. Anal. 17, 1280-1286. Rahman, M. (1986d). A product formula for the continuous q-Jacobi polynomials, J. Math. Anal. Appl. 118, 309-322. Rahman, M. (1987). An integral representation and some transformation properties of q-Bessel functions, J. Math. Anal. Appl. 125, 58-71. Rahman, M. (1988a). A projection formula for the Askey-Wilson polynomials and an application, Proc. Amer. Math. Soc. 103, 1099-1107. Rahman, M. (1988b). Some extensions of Askey-Wilson's q-beta integral and the corresponding orthogonal systems, Ganad. Math. Bull. 33 (4), 111-120. Rahman, M. (1988c). An addition theorem and some product formulas for q-Bessel functions, Ganad. J. Math. 40, 1203-1221. Rahman, M. (1989a). A simple proof of Koornwinder's addition formula for the little q-Legendre polynomials, Proc. Amer. Math. Soc. 107, 373-381. Rahman, M. (1989b). Some infinite integrals of q-Bessel functions, Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 117-137. Rahman, M. (1989c). A note on the biorthogonality of q-Bessel functions, Ganad. Math. Bull. 32,369-376. Rahman, M. (1989d). Some cubic summation formulas for basic hypergeometric series, Utilitas Math. 36,161-172. Rahman, M. (1991). Biorthogonality of a system of rational functions with respect to a positive measure on [-1, 1], SIAM J. Math. Anal. 22, 1430-1441. Rahman, M. (1992a).
Askey-Wilson functions of the first and second kinds: series and
integral representations of C~(x;!3lql+D;(x;!3lq), J. Math. Anal. Appl. 164, 263-284. Rahman, M. (1992b). A cubic and a quintic summation formula, Ganita 43,45-61. Rahman, M. (1993). Some quadratic and cubic summation formulas for basic hypergeometric series, Ganad. J. Math. 45, 394-411. Rahman, M. (1996a). An integral representation of the very-well-poised 81/;8 series, GRM Proc. Lecture Notes 9, 281-287. Rahman, M. (1996b). Some generating functions for the associated Askey-Wilson polynomials, J. Gomput. Appl. Math. 68, 287-296. Rahman, M. (1997). Some cubic summation and transformation formulas, Ramanujan J. 1, 299-308. Rahman, M. (1999). A q-extension of a product formula of Watson, Quaest. Math. 22, 27-42. Rahman, M. (2000a). A q-analogue of Weber-Schafheitlin integral of Bessel functions, Ramanujan J. 4, 251-265. Rahman, M. (2000b). A q-analogue of a product formula of Bailey and related results, Special functions (Hong Kong, 1999), World Sci. Publishing, River Edge, NJ, 262-281. Rahman, M. (2001). The associated classical orthogonal polynomials, Special Functions 2000: Gurrent Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 255-279. Rahman, M. and Suslov, S. K. (1993). Classical biorthogonal rational functions, Lecture Notes in Math. 1550, Springer, New York, 131-146.
404
References
Rahman, M. and Suslov, S. K. (1994a). The Pearson equation and the beta integrals, SIAM J. Math. Anal. 25, 646-693. Rahman, M. and Suslov, S. K. (1994b). Barnes and Ramanujan-type integrals on the q-linear lattice, SIAM J. Math. Anal. 25, 1002-1022. Rahman, M. and Suslov, S. K. (1996a). A unified approach to the summation and integration formulas for q-hypergeometric functions. I, J. Statist. Plann. Inference 54, 101-118. Rahman, M. and Suslov, S. K. (1996b). Singular analogue of the Fourier transformation for the Askey-Wilson polynomials, CRM Proc. Lecture Notes 9, 289-302. Rahman, M. and Suslov, S. K. (1998). A unified approach to the summation and integration formulas for q-hypergeometric functions. II, III, Methods Appl. Anal. 5, 399-412, 413424. Rahman, M. and Tariq M. Qazi (1997a). Poisson kernel for the associated continuous q-ultraspherical polynomials, Methods Appl. Anal. 4, 77-90. Rahman, M. and Tariq M. Qazi (1997b). A projection formula and a reproducing kernel for the associated Askey-Wilson polynomials, Int. J. Math. Stat. Sci. 6, 141-160. Rahman, M. and Tariq M. Qazi (1999). Addition formulas for q-Legendre-type functions, Methods Appl. Anal. 6, 3-20. Rahman, M. and Verma, A. (1986a). A q-integral representation of Rogers' q-ultraspherical polynomials and some applications, Const. Approx. 2, 1-10. Rahman, M. and Verma, A. (1986b). Product and addition formulas for the continuous q-ultraspherical polynomials, SIAM J. Math. Anal. 17, 1461-1474. Rahman, M. and Verma, A. (1987). Infinite sums of products of continuous q-ultraspherical functions, Rocky Mtn. J. Math. 17, 371-384. Rahman, M. and Verma, A. (1991). Positivity of the Poisson kernel for the Askey-Wilson polynomials, Indian J. Math. 33, 287-306. Rahman, M. and Verma, A. (1993). Quadratic transformation formulas for basic hypergeometric series, Trans. Amer. Math. Soc. 335, 277-302. Rains, E. (2003a). BCn-symmetric polynomials, to appear. Rains, E. (2003b). Transformations of elliptic hypergeometric integrals, to appear. Rainville, E. D. (1960). Special Functions, Macmillan, New York. Ramanujan, S. (1915). Some definite integrals, Messenger of Math. 44, 10-18; reprinted in Ramanujan [1927, pp. 53-58]. Ramanujan, S. (1919). Proof of certain identities in combinatory analysis, Proc. Camb. Phil. Soc. 19, 214-216; reprinted in Ramanujan [1927, pp. 214-215]. Ramanujan, S. (1927). Collected Papers (G. H. Hardy et al., eds.), Cambridge University Press, Cambridge; reprinted by Chelsea, New York, 1962. Ramanujan, S. (1957). Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay; reprinted by Narosa, New Delhi, 1984. Ramanujan, S. (1988). The lost notebook and other unpublished papers (Introduction by G. E. Andrews), Narosa Publishing House, New Delhi. Riese, A. (2003). QMultiSum - a package for proving q-hypergeometric multiple summation identities, J. Symbolic Comput. 35, 349-376. Rogers, L. J. (1893a). On a three-fold symmetry in the elements of Heine's series, Proc. London Math. Soc. 24,171-179.
References
405
Rogers, L. J. (1893b). On the expansion of some infinite products, Pmc. London Math. Soc. 24, 337-352. Rogers, L. J. (1894). Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25, 318-343. Rogers, L. J. (1895). Third memoir on the expansion of certain infinite products, Pmc. London Math. Soc. 26, 15-32. Rogers, L. J. (1917). On two theorems of combinatory analysis and some allied identities,
Pmc. London Math. Soc. (2) 16, 315-336. Rogers, L. J. and Ramanujan, S. (1919). Proof of certain identities in combinatory analysis (with a prefatory note by G. H. Hardy), Pmc. Camb. Phil. Soc. 19, 211-216. Rogov, V.-B. K. (2000). q2-Convolution and its q2-Fourier transform, Czechoslovak J. Phys. 50, 1347-1352. Rosengren, H. (1999). Multivariable orthogonal polynomials and coupling coefficients for discrete series representations, SIAM J. Math. Anal. 30, 232-272. Rosengren, H. (2000a). A new quantum algebraic interpretation of the Askey-Wilson polynomials, Contemp. Math. 254,371-394. Rosengren, H. (2000b). A non-commutative binomial formula, J. Geom. Phys. 32,349-363. Rosengren, H. (2001a). A proof of a multivariable elliptic summation formula conjectured by Warnaar, Contemp. Math. 291, 193-202. Rosengren, H. (2001b). Multivariable q-Hahn polynomials as coupling coefficients for quantum algebra representations, Int. J. Math. Math. Sci. 28,331-358. Rosengren, H. (2003a). Reduction formulas for Karlsson-Minton-type hypergeometric functions, Constr. Approx., to appear. Rosengren, H. (2003b). Karlsson-Minton type hypergeometric functions on the root system J. Math. Anal. Appl. 281,332-345.
en,
Rosengren, H. (2003c). Elliptic hypergeometric series on root systems, Adv. in Math., to appear. Rosengren, H. (2003d). New transformations for elliptic hypergeometric series on the root system An, Ramanujan J., to appear. Rosengren, H. (2003e). A bilateral series involving basic hypergeometric functions, to appear in Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman (M. E. H. Ismail and E. Koelink, eds.), Dev. Math., Kluwer Acad. Pub!., Dordrecht. Rosengren, H. (2003f). Duality and self-duality for dynamical quantum groups, Algebr. Represent. Theory, to appear. Rosengren, H. (2003g). An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic) to appear. Rosengren, H. and Schlosser, M. (2003a). Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations, Indag. Math. (N.S.) 14, 483-513. Rosengren, H. and Schlosser, M. (2003b). On Warnaar's elliptic matrix inversion and Karlsson-Minton-type elliptic hypergeometric series, to appear. Rota, G.-C. and Goldman, J. (1969). The number of subspaces of a vector space, Recent
Progress in Combinatorics (W. T. Tutte, ed.), Academic Press, New York, 75-83. Rota, G.-C. and Mullin, R. (1970). On the foundations of combinatorial theory, III: Theory of binomial enumeration, Graph Theory and Its Applications (B. Harris, ed.), Academic Press, New York, 167-213.
406
References
Rothe, H. A. (1811). Systematisches Lehrbuch der Arithmetik, Leipzig. Ruijsenaars, S. N. M. (1997). First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38, 1069-1146. Ruijsenaars, S. N. M. (1999). A generalized hypergeometric function satisfying four analytic difference equations of Askey-Wilson type, Comm. Math. Phys. 206, 639-690. Ruijsenaars, S. N. M. (2001). Special functions defined by analytic difference equations, Special FUnctions 2000: Current Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 281-333. Saalschiitz, L. (1890). Eine Summationsformel, Zeitschr. Math. Phys. 35, 186-188. Sahai, V. (1999). On models of Uq (sl(2» and q-Appell functions using a q-integral transformation, Proc. Amer. Math. Soc. 127,3201-3213. Sauloy, J. (2003). Galois theory of fuchsian q-difference equations, to appear. Schilling, A. and Warnaar, S. O. (2000). A generalization of the q-Saalschiitz sum and the Burge transform, Progress in Mathematics 191, 163-183. Schlosser, M. (1997). Multidimensional matrix inversions and Ar and Dr basic hypergeometric series, Ramanujan J. 1, 243-274. Schlosser, M. (1998). Multidimensional matrix inversions and multiple basic hypergeometric series associated to root systems, Special functions and differential equations (Madras, 1997), Allied Pub!., New Delhi, 25-30. Schlosser, M. (1999). Some new applications of matrix inversions in Ar, Ramanujan J. 3, 405-46l. Schlosser, M. (2000a). Summation theorems for multidimensional basic hypergeometric series by determinant evaluations, Discrete Math. 210, 151-169. Schlosser, M. (2000b). A new multidimensional matrix inversion in Ar, Contemp. Math. 254, 413-432. Schlosser, M. (2001). Multilateral transformations of q-series with quotients of parameters that are nonnegative integral powers of q, Contemp. Math. 291, 203-227. Schlosser, M. (2003a). Inversion of bilateral basic hypergeometric series, Electron. J. Comb. 10, #RI0. 27 pp. Schlosser, M. (2003b). Elementary derivations of identities for bilateral basic hypergeometric series, Selecta Math. (N.S.) 9, 119-159. Schlosser, M. (2003c). A multidimensional generalization of Shuka's 8'1/;8 summation, Constr. Approx. 19,163-178. Schlosser, M. (2003d). A nonterminating 8(h summation for the root system C r , J. Comput. Appl. Math. 160, 283-296. Schlosser, M. (2003e). Abel-Rothe type generalizations of Jacobi's triple product identity, to appear in Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman (M. E. H. Ismail and E. Koelink, eds.), Dev. Math., Kluwer Acad. Pub!., Dordrecht. Schur, 1. J. (1917). Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbriiche, Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl., 302-321. Schiitzenberger, M.-P. (1953). Une interpretation de certaines solutions de ['equation fonctionnelle: F(x+y) = F(x)F(y), C. R. Acad. Sci. Paris 236, 352-353. Schweins, Ferd. F. (1820). Analysis, Mohr und Winter, Heidelberg.
References
407
Sears, D. B. (1951a). Transformations of basic hypergeometric functions of special type, Proc. London Math. Soc. (2) 52, 467-483. Sears, D. B. (1951b). On the transformation theory of hypergeometric functions and cognate trigonometric series, Proc. London Math. Soc. (2) 53, 138-157. Sears, D. B. (1951c). On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53, 158-180. Sears, D. B. (1951d). Transformations of basic hypergeometric functions of any order, Proc. London Math. Soc. (2) 53, 181-19l. Sears, D. B. (1952). Two identities of Bailey, J. London Math. Soc. 27, 510-511. Selberg, A. (1944). Bemerkninger om et multiplet integral, Norske Mat. Tidsskr. 26,71-78. Shohat, J. and Tamarkin, T. (1950). The Problem of Moments, Mathematical Surveys 1, Amer. Math. Soc., Providence, R. 1. Sills, A. V. (2003a). Finite Rogers-Ramanujan type identities, Electron. J. Comb. 10, #R13. Sills, A. V. (2003b). On identities of Rogers-Ramanujan type, Ramanujan. J., to appear. Sills, A. V. (2003c). RRtools-a Maple package for aiding the discovery and proof of finite Rogers-Ramanujan type identities, to appear. Singh, V. N. (1959). The basic analogues of identities of the Cayley-Orr type, J. London Math. Soc. 34, 15-22. Slater, L. J. (1951). A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc. (2) 53,460-475. Slater, L. J. (1952a). Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54, 147-167. Slater, L. J. (1952b). General transformations of bilateral series, Quart. J. Math. (Oxford) (2) 3, 73-80. Slater, L. J. (1952c). Integrals representing general hypergeometric transformations, Quart. J. Math. (Oxford) (2) 3, 206-216. Slater, L. J. (1952d). 578-582.
An integral of hypergeometric type, Proc. Camb. Phil. Soc.
48,
Slater, L. J. (1954a). A note on equivalent product theorems, Math. Gazette 38, 127-128. Slater, L. J. (1954b). Some new results on equivalent products, Proc. Camb. Phil. Soc. 50, 394-403. Slater, L. J. (1954c). The evaluation of the basic confluent hypergeometric functions, Proc. Camb. Phil. Soc. 50, 404-413. Slater, L. J. (1955). Some basic hypergeometric transforms, J. London Math. Soc. 351-360.
30,
Slater, L. J. (1963). Wilfrid Norman Bailey (obituary), J. London Math. Soc. 37, 504-512. Slater, L. J. (1966). Generalized Hypergeometric Functions, Cambridge University Press, Cambridge. Slater, L. J. and Lakin, A. (1956). Two proofs of the 61/J6 summation theorem, Proc. Edin. Math. Soc. 9, 116-12l. Spiridonov, V. P. (1999). q-Special functions: differential-difference equations, roots of unity, and all that, CRM Proc. Lecture Notes 22, 257-265. Spiridonov, V. P. (2000). Solitons and Coulomb plasmas, similarity reductions and special functions, Special functions (Hong Kong, 1999), World Sci. Publishing, River Edge, NJ, 324-338.
408
References
Spiridonov, V. P. (2001a). An elliptic beta integral, Proc. Fifth International Conference on Difference Equations and Applications (Temuco, Chile, January 3-7, 2000), Taylor and Francis, London, 273-282; On the elliptic beta function, Russian Math. Surveys 56 (1), 185-186. Spiridonov, V. P. (2001b). Elliptic beta integrals and special functions of hypergeometric type, NATO Sci. Ser. II Math. Phys. Chem. 35, 305-313. Spiridonov, V. P. (2001c). The factorization method, self-similar potentials and quantum algebras, Special Functions 2000: Current Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 335-2364. Spiridonov, V. P. (2002a). Theta hypergeometric series, Proc. NATO ASI Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, July 9-22,2001) (V. A. Malyshev and A. M. Vershik, eds.), Kluwer Acad. Pub!., Dordrecht, 307-327. Spiridonov, V. P. (2002b). An elliptic incarnation of the Bailey chain, Int. Math. Res. Not. 37, 1945-1977. Spiridonov, V. P. (2003a). Modularity and total ellipticity of some multiple series of hypergeometric type, Teor. Mat. Fiz. 135,462-477 (translated in Theor. Math. Phys. 135, 836-848). Spiridonov, V. P. (2003b). Theta hypergeometric integrals, Algebra i Analiz (St. Petersburg Math. J.), to appear. Spiridonov, V. P. (2003c). A Bailey tree for integrals, Theor. Math. Phys. , to appear. Spiridonov, V. P. and Zhedanov, A. S. (1995). Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal. 2,369-398. Spiridonov, V. P. and Zhedanov, A. S. (1996). q-Ultraspherical polynomials for q a root of unity, Lett. Math. Phys. 37, 173-180. Spiridonov, V. P. and Zhedanov, A. S. (1997). Zeros and orthogonality of the Askey-Wilson polynomials for q a root of unity, Duke Math. J. 89, 283-305. Spiridonov, V. P. and Zhedanov, A. S. (2000a). Spectral transformation chains and some new biorthogonal rational functions, Comm. Math. Phys. 10, 49-83. Spiridonov, V. P. and Zhedanov, A. S. (2000b). Classical biorthogonal rational functions on elliptic grids, C. R. Math. Acad. Sci. Soc. R. Can. 22, 70-76. Spiridonov, V. P. and Zhedanov, A. S. (2001). Generalized eigenvalue problem and a new family of rational functions biorthogonal on elliptic grids, Special Functions 2000: Current Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 365-388. Spiridonov, V. P. and Zhedanov, A. S. (2003). To the theory of biorthogonal rational functions, RIMS Kokyuroku 1302, 172-192. Srivastava, B. (1995). A note on certain bibasic q-Appell and Lauricella series, Glas. Mat. Ser. III 30(50), 29-36. Srivastava, H. M. (1982). An elementary proof of Bailey's bilinear generating function for Jacobi polynomials and of its q-analogue, IMA J. Appl. Math. 29, 275-280. Srivastava, H. M. (1984). Certain q-polynomial expansions for functions of several variables. II, IMA J. Appl. Math. 33, 205-209. Stanton, D. (1977). Some basic hypergeometric polynomials arising from finite classical groups, Ph.D. Thesis, University of Wisconsin, Madison.
References
409
Stanton, D. (1980a). Product formulas for q-Hahn polynomials, SIAM J. Math. Anal. 11, 100-107. Stanton, D. (1980b). Some q-Krawtchouk polynomials on Chevalley groups, Amer. J. Math. 102, 625-662. Stanton, D. (1980c). Some Erdos-Ko-Rado theorems for Chevalley groups, SIAM J. Alg. Disc. Meth. 1, 160-163. Stanton, D. (1981a). A partially ordered set and q-Krawtchouk polynomials, J. Comb. Thy. A 30, 276-284. Stanton, D. (1981b). Three addition theorems for some q-Krawtchouk polynomials, Geometriae Dedicata 10, 403-425. Stanton, D. (1983). Generalized n-gons and Chebychev polynomials, J. Comb. Thy. A 34, 15-27. Stanton, D. (1984). Orthogonal polynomials and Chevalley groups, Special Functions: Group Theoretical Aspects and Applications (R. Askey et al., eds.), Reidel, Boston, Mass., 87-128. Stanton, D. (1986a). Harmonics on posets, J. Comb. Thy. A 40, 136-149. Stanton, D. (1986b). Sign variations of the Macdonald identities, SIAM J. Math. Anal. 17, 1454-1460. Stanton, D. (1986c). t-designs in classical association schemes, Graphs and Combinatorics 2,283-286. Stanton, D. (1988). Recent results for the q-Lagrange inversion formula, Ramanujan Revisited (G. E. Andrews et al., eds.), Academic Press, New York, 525-536. Stanton, D. (1989). An elementary approach to the Macdonald identities, IMA Volumes in Mathematics and its Applications 18, 139-149. Stanton, D. (2001a). The Bailey-Rogers-Ramanujan group, Contemp. Math. 291, 55-70. Stanton, D. (2001b). Orthogonal polynomials and combinatorics, Special Functions 2000: Current Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 389-409. Starcher, G. W. (1931). On identities arising from solutions of q-difference equations and some interpretations in number theory, Amer. J. Math. 53, 801-816. Stembridge, J. R. (1988). A short proof of Macdonald's conjecture for the root systems of type A, Proc. Amer. Math. Soc. 102, 777-786. Stokman, J. V. (1997a). Multivariable big and little q-Jacobi polynomials, SIAM J. Math. Anal. 28, 452-480. Stokman, J. V. (1997b). Multivariable BC type Askey-Wilson polynomials with partly discrete orthogonality measure, Ramanujan J. 1, 275-297. Stokman, J. V. (2000). On BC type basic hypergeometric orthogonal polynomials, Trans. Amer. Math. Soc. 352, 1527-1579. Stokman, J. V. (2001). Multivariable orthogonal polynomials and quantum Grassmannians, Dissertation, University of Amsterdam, 1998, CWI Tract 132, Centrum voor Wiskunde en Informatica, Amsterdam. Stokman, J. V. (2002). An expansion formula for the Askey-Wilson function, J. Approx. Theory 114, 308-342. Stokman, J. V. (2003a). Askey-Wilson functions and quantum groups, to appear in Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman (M. E. H. Ismail and E. Koelink, eds.), Dev. Math., Kluwer Acad. Pub!., Dordrecht.
410
References
Stokman, J. V. (2003b). Hyperbolic beta integrals, Adv. in Math., to appear. Stokman, J. V. (2003c). Vertex-IRF transformations, dynamical quantum groups and harmonic analysis, Indag. Math. (N.S.) 14, 545-570. Stokman, J. V. and Koornwinder, T. H. (1998). polynomials, J. Approx. Theory 95, 310-330.
On some limit cases of Askey-Wilson
Stone, M. H. (1932). Linear Transformations in Hilbert Spaces, Amer. Math. Soc. Colloq. Pub!. 15, Providence, R. 1. Subbarao, M. V. and Verma, A. (1999). Some summations of q-series by telescoping, Pacific J. Math. 191, 173-182. Subbarao, M. V. and Vidyasagar, M. (1970). On Watson's quintuple product identity, Proc. Amer. Math. Soc. 26, 23-27. Sudler, C. (1966). Two enumerative proofs of an identity of Jacobi, Proc. Edin. Math. Soc. 15, 67-7l. Suslov, S. K. (1982). Matrix elements of Lorentz boosts and the orthogonality of Hahn polynomials on a contour, Sov. J. Nucl. Phys. 36,621--622. Suslov, S. K. (1984). The Hahn polynomials in the Coulomb problem, Soviet J. Nuclear Phys. 40, 79-82. Suslov, S. K. (1987). Classical orthogonal polynomials of a discrete variable continuous orthogonality relation, Lett. Math. Phys. 14, 77-88. Suslov, S. K. (1997). "Addition" theorems for some q-exponential and q-trigonometric functions, Methods Appl. Anal. 4, 11-32. Suslov, S. K. (1998). Multiparameter Ramanujan-type q-beta integrals, Ramanujan J. 2, 351-369. Suslov, S. K. (2000). Another addition theorem for the q-exponential function, J. Phys. A 33, L375-L380. Suslov, S. K. (2001a). Basic exponential functions on a q-quadratic grid, Special Functions 2000: Current Perspective and Future Directions (J. Bustoz, M. E. H. Ismail and S. K. Suslov, eds.), Kluwer Acad. Pub!., Dordrecht, 411-456. Suslov, S. K. (2001b). Some orthogonal very-well-poised sq)7-functions that generalize AskeyWilson polynomials, Ramanujan J. 5, 183-218. Suslov, S. K. (2001c). Completeness of basic trigonometric system in .L P , Contemp. Math. 291, 229-24l. Suslov, S. K. (2002). Some expansions in basic Fourier series and related topics, J. Approx. Theory 115, 289-353. Suslov, S. K. (2003). An Introduction to Basic Fourier Series, Dev. Math. 9, Kluwer Acad. Pub!., Dordrecht. Suslov, S. K. (2003a). Asymptotics of zeros of basic sine and cosine functions, J. Approx. Th. 121, 292-335. Swarttouw, R. F. (1992). The Hahn-Exton q-Bessel function, Ph.D. Thesis, Delft University of Technology, Delft. Swarttouw, R. F. and Meijer, H. G. (1994). A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation, Proc. Amer. Math. Soc. 120, 855-864. Sylvester, J. J. (1878). Proof of the hitherto undemonstrated fundamental theorem of invariants, Philosophical Magazine V, 178-188; reprinted in Collected MathematicalPapers 3, 117-126; reprinted by Chelsea, New York, 1973.
411
References
Sylvester, J. J. (1882). A constructive theory of partitions in three acts, an interact and an exodion, Amer. J. Math. 5, 251-330 (and ibid. 6 (1884), 334-336); reprinted in Collected Mathematical Papers 4, 1-83; reprinted by Chelsea, New York, 1974. Szego, G. (1926). Ein Beitrag zur Theorie der Thetafunktionen, Sitz. Preuss. Akad. Wiss. Phys.-Math. KI, 242-252; reprinted in Collected Papers 1, 793-805. Szego, G. (1968). An outline of the history of orthogonal polynomials, Proc. Conf. on Orthogonal Expansions and their Continuous Analogues (1967) (D. Haimo, ed.), Southern Illinois Univ. Press, Carbondale, 3-11; reprinted in Collected Papers 3, 857-865, also see the comments on pp. 866-869. Szego, G. (1975). Orthogonal Polynomials, 4th edition, Amer. Math. Soc. Colloq. Pub!. 23, Providence, R. I. Szego, G. (1982). Collected Papers (R. Askey, ed.), Vols. 1-3, Birkhauser, Boston, Mass. Takacs, L. (1973). On an identity of Shih-Chieh Chu, Acta. Sci. Math. (Szeged) 34, 383-391. Tannery, J. and Molk, J. (1898). Elements de la theorie des fonctions elliptiques (French), Tome III, Reprinted by Chelsea Publishing Co., Bronx, N. Y., 1972. Tarasov, V. and Varchenko, A., (1997). Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Asterisque No. 246. Temme, N. M. (1996). Special Functions: An Introduction to the Classical Functions of Mathematical Physics, John Wiley and Sons, New York. Terwilliger, P. (2003). Leonard pairs and the q-Racah polynomials, to appear. Thomae, J. (1869). Beitrage zur Theorie der durch die Heinesche Reihe ... , J. reine angew. Math. 70, 258-281. Thomae, J. (1870). Les series Heineennes superieures, ou les series de la forme ... , Annali di Matematica Pum ed Applicata 4, 105-138. Thomae, J. (1879). Ueber die Funktionen, welche durch Reihen von der Form dergestellt werden ... , J. reine angew. Math. 87, 26-73. Toeplitz, O. (1963). Chicago.
The Calculus: A Genetic Approach, University of Chicago Press,
Tratnik, M. V. (1989). Multivariable Wilson polynomials, J. Math. Phys. 30, 2001-2011. Tratnik, M. V. (1991a). Some multivariable orthogonal polynomials of the Askey tableaucontinuous families, J. Math. Phys. 32, 2065-2073. Tratnik, M. V. (1991b). Some multivariable orthogonal polynomials of the Askey tableau - discrete families, J. Math. Phys. 32, 2337-2342. Trjitzinsky, W. J. (1933). Analytic theory of linear q-difference equations, Acta Math. 61, 1-38. Upadhyay, M. (1973). Certain transformations for basic double hypergeometric functions of higher order, Indian J. Pure Appl. Math. 4,341-354. Van Assche, W. and Koornwinder, T. H. (1991). Asymptotic behaviour for Wall polynomials and the addition formula for little q-Legendre polynomials, SIAM J. Math. Anal. 22, 302-311. Van der Jeugt, J., Pitre, S. N. and Srinivasa Rao, K. (1994). functions and 9-j coefficients, J. Phys. A 27, 5251-5264.
Multiple hypergeometric
Vandermonde, A. T. (1772). Memoire sur des irrationnelles de differens ordres avec une application au cercle, Mem. Acad. Roy. Sci. Paris, 489-498.
412
References
Verma, A. (1966). Certain expansions of the basic hypergeometric functions, Math. Gomp. 20, 151-157. Verma, A. (1972). Some transformations of series with arbitrary terms, Instituto Lombardo (Rend. Sc.) A 106, 342-353. Verma, A. (1980). A quadratic transformation of a basic hypergeometric series, SIAM J. Math. Anal. 11,425-427. Vilenkin, N. Ja. (1968). Special Functions and the Theory of Group Representations, Amer. Math. Soc. Trans!. of Math. Monographs 22, Amer. Math. Soc., Providence, R. I. Vinet, L. and Zhedanov, A. (2001). Generalized little q-Jacobi polynomials as eigensolutions of higher-order q-difference operators, Proc. Amer. Math. Soc. 129, 1317-1327 Wallisser, R. (1985). tiber ganze Funktionen, die in einer geometrischen Folge ganze Werte annehmen, Monatsh. fur Math. 100,329-335. Warnaar, S. O. (1999). Supernomial coefficients, Bailey's lemma and Rogers-Ramanujantype identities. A survey of results and open problems, Sem. Lothar. Gombin. 42, Art. B42n. Warnaar, S. O. (200la). The generalized Borwein conjecture I. The Burge transform, Gontemp. Math. 291, 243-267. Warnaar, S. O. (2001b). 50 Years of Bailey's lemma, Algebraic Gombinatorics and Applications (G5weinstein, 1999), Springer, New York, 333-347. Warnaar, S. O. (2002a). Partial-sum analogues of the Rogers-Ramanujan identities, J. Gombin. Theory Ser. A 99, 143-16l. Warnaar, S. O. (2002b). Summation and transformation formulas for elliptic hypergeometric series, Gonstr. Approx. 18,479-502. Warnaar, S. O. (2003a). Partial theta functions. I. Beyond the lost notebook, Proc. London Math. Soc. 87, 363-395. Warnaar, S. O. (2003b). The generalized Borwein conjecture II. Refined q-trinomial coefficients, Discrete Math., to appear. Warnaar, S. O. (2003c). Extensions of the well-poised and elliptic well-poised Bailey lemma,
Indag. Math. (N.S.) 14, 571-588. Warnaar, S. O. (2003d). q-Hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem, to appear. Warnaar, S. O. (2003e). The Bailey lemma and Kostka polynomials, to appear. Warnaar, S. O. (2003f). Summation formulae for elliptic hypergeometric series, Proc. Amer. Math. Soc., to appear. Watson, G. N. (1910). The continuations of functions defined by generalized hypergeometric series, Trans. Gamb. Phil. Soc. 21, 281-299. Watson, G. N. (1922). The product of two hypergeometric functions, Proc. London Math.
Soc. (2) 20, 189-195. Watson, G. N. (1924). The theorems of Clausen and Cayley on products of hypergeometric functions, Pmc. London Math. Soc. (2) 22, 163-170. Watson, G. N. (1929a). A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4,4-9. Watson, G. N. (1929b). Theorems stated by Ramanujan. VII: Theorems on continued fractions, J. London Math. Soc. 4,39-48.
References
413
Watson, G. N. (1931). Ramanujan's notebooks, J. London Math. Soc. 6, 137-153. Watson, G. N. (1936). The final problem: an account of the mock theta functions, J. London Math. Soc. 11, 55-80. Watson, G. N. (1937). The mock theta functions (2), Proc. London Math. Soc. (2) 42, 274-304. Watson, G. N. (1952). A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge University Press, Cambridge. Whipple, F. J. W. (1926a). On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum, Proc. London Math. Soc. (2) 24, 247-263. Whipple, F. J. W. (1926b). Well-poised series and other generalized hypergeometric series, Proc. London Math. Soc. (2) 25, 525-544. Whipple, F. J. W. (1927). Algebraic proofs of the theorems of Cayley and Orr concerning the products of certain hypergeometric series, J. London Math. Soc. 2, 85-90. Whipple, F. J. W. (1929). On a formula implied in Orr's theorems concerning the product of hypergeometric series, J. London Math. Soc. 4, 48-50. Whittaker, E. T. and Watson, G. N. (1965). A Course of Modern Analysis, 4th edition, Cambridge University Press, Cambridge. Wilf, H. S. and Zeilberger, D. (1990). Towards computerized proofs of identities, Bull. Amer. Math. Soc. (N. S.) 23, 77-83. Wilson, J. A. (1978). Hypergeometric series, recurrence relations and some new orthogonal functions, Ph.D. Thesis, Univ. of Wisconsin, Madison. Wilson, J. A. (1980). Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11, 690-701. Wilson, J. A. (1985). Solution to problem 84-7 (A q-extension of Cauchy's beta integral, by R. Askey), SIAM Review 27, 252-253. Wilson, J. A. (1991). Orthogonal functions from Gram determinants, SIAM J. Math. Anal. 22, 1147-1155. Wintner, A. (1929). Spektmltheorie der unendlichen Matrizen, Einfiihrung in den analytischen Appamt der Quantenmechanik, Hirzel, Leipzig. Wright, E. M. (1965). An enumerative proof of an identity of Jacobi, J. London Math. Soc. 40,55-57. Wright, E. M. (1968). An identity and applications, Amer. Math. Monthly 75, 711-714. Yang, K.-W. (1991). Partitions, inversions, and q-algebras, Gmph theory, combinatorics, algorithms, and applications (San Francisco, CA, 1989), SIAM, Philadelphia, PA, 625635. Zaslavsky, T. (1987). The Mobius function and the characteristic polynomial, Combinatorial Geometries (N. White, ed.), Cambridge University Press, Cambridge, 114-138. Zeilberger, D. (1987). A proof of the G 2 case of Macdonald's root system-Dyson conjecture, SIAM J. Math. Anal. 18, 880-883. Zeilberger, D. (1988). A unified approach to Macdonald's root-system conjectures, SIAM J. Math. Anal. 19, 987-1013. Zeilberger, D. (1989a). Identities, IMA Vol. Math. Appl. 18, 35-44. Zeilberger, D. (1989b). Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials, Amer. Math. Monthly 96, 590-602.
414
References
Zeilberger, D. (1990a). A Stembridge-Stanton style elementary proof of the Habsieger-Kadell q-Morris identity, Discrete Math. 79, 313-322. Zeilberger, D. (1990b). A holonomic systems approach to special functions identities, J. Gomput. Appl. Math. 32,321-368. Zeilberger, D. (1994). Proof of a q-analog of a constant term identity conjectured by Forrester, J. Gombin. Theory Ser. A 66, 311-312. Zeilberger, D. and Bressoud, D. M. (1985). A proof of Andrews' q-Dyson conjecture, Discrete Math. 54, 201-224.
Symbol index
(a)n (a; q)n (a; q)l/ (al' a2, ... ,am; q)n (a; q)oo (al' a2, ... ,am; q)oo (a; q,P)n, (al' a2,···, am; q,P)n (a;p, q)r,s ,al, laJ [a]q [n]q! [a]q,n [al' a2,·· . ,am]q,n [a; 0"] [n; O"]! [a;O"]n [a;O",T] [n;O",T]! [a; 0", T]n, [al' a2,··· ,am; 0", T]n [al' a2,·· . ,am; 0", T]n an(a, ;3lq) A(z) bk,j b(k, n;;3) bn (a,;3; q) B(z) B((}) B(x,y) Bq(x, y) B~(x; k) BE(t; q,p) cosq(x) Ck,n
2, 5 3, 6 208 6 6 6 304 112 205 7 7 7 7 7 8 8 17 312 312 312 192 185 195 185 192 189 265 23 23 205 344 28 195
Cj (;3lq) cn(x; a; q) c~(x; k)
C
CN (Contour) Cj,k,m,n (Contour) C(¢) Cosq(x) Cq(x;w) Cn(x; ;3lq) C~(x; ;3lq) C~(x)
C.T.
'Dq Dq Dn(x; ;3lq) r+ler res eq(z) eXPq(z) Eq(z) E± q r+1Er rEs Eq(x; a) Eq(x; a, b) Eq(x, y; a) F(a, b; c; z) rFs Fl ,F2,F3 F4 F(x, t) F(x, ylq) Fl (x, ylq), F2(x, ylq) 415
187 202 204 312 126 345 265 28 212 31 255 2 171 27 197 212 312 316, 319 11 12 11 197 304 309 12 12 111
2 3 283 219, 283 259 265 266
416 FA:B;C D:E;F
r9s rGr rGs 9o(a,b,e,d,f) G(x, t) Gl(x, ylq) G2(x, ylq) Gt(x; a, b, e, dlq) Gt(x; a, elq) h(x; a), h(x; a; q) h(x; aI, a2,··· ,am) h(x; aI, a2,··· ,am; q) hn(q),hn(a,b,e,N;q) ht(a) hn(a, b, e; q) hn(a, b, e, dlq) hn(a, b, e, d, 1) hn ((3lq) hn(x; q) Hn(x) Hn(xlq) Hn(x;q) Ht(x), Ht(x; a, b, e, dlq) H(x,y, t) idem (b; e) idem (al;a2, ... ,ar+1) I(a,b,e,d) 1m Ja(x) JP) (x; q), JS 2)(X; q), JS 3)(x; q) J(a,b,e,d,j,9) kn ]( (Contour)
]((x, y, z) ]((x, y, Z; (3lq) ](n(x; a, N; q) ](n(x; a, Nlq) ](t(x, y) ](t(x, y; (3lq) ](:ff (x; a, N; q) Lm(a; b, e, d) Lt(x, y; (3lq)
Symbol index
283 316,319 309 310 159 260 269 270 262 264 154 154 154 180 261 182 190 256 186 209 4 31 209 263 259 69 121 156 125 4 30 157 265 125 225 223 201 201 227, 261 227 202 164 227
231 4 L~(x) 210 L~(x; q) Mn(x; a, e; q) 202 M(x, y), M(x, y; a, b, e, e' ; q) 291 p(n) 239 240 PN (n), Pe (n), Pdist (n), Po( n) 241 Peven (n), Podd (n) 175 Pn(x) 195 Pn(x; a, (3) 32, 181 Pn(x; a, b; q) 194 Pn(eos(B + ¢); a, blq) 59, 189 Pn(x; a, b, e, dlq) 253 Pv(qX; a, b; q) P(z) 125 2 Pn(x) Pn(x; a, b, e; q) 182 255 Pn(xlq) 255 Pn(x; a, b, e, d, a2, a3, . .. , aslq)
Lt(x, y; a, b, e, a", M, N; q)
p~a,(3)(x)
p~a,(3) (x;
2
q)
191
p~a,(3) (xlq)
191 229 229 180 273 189 243 265 254 333 181 257 345 216 28 28 315 294 61 214 257
Pz(x, y) Pz(x,y;a,b,e,a",](,M,N;q) Qn(x), Qn(x; a, b, N; q) Qn(x; a, blq) Qn(z; a, b, e, dlq) r2k(n) 224, rn(x;a,b,e,dlq),rn(x) r~(x), r~(x; a, b, e, dlq) RN Rn(~(x)), Rn(~(x); b, e, N; q) Rm(x), Rm(x; a, b, e, d, 1) Rm,j(z) sn(x) sinq(x) Sinq(x) SL(2, 2':) S(a,b,e,d,j,9;A,~) S(A,~,V,p)
Sn(x;p, q) Sn(x),Sn(x;a,b,e,d,j)
Symbol index
Sq(x; w) rts ']['
,][,n Tn (X) Tn,k(Z) Un (X) U~a)(x; q) Vn r+lVr v(x; a, b, c, d, f) V(e iO ) r+1 v;.
Wj w(x) w(x; a, b, c, d) w(x; a, b, c, dlq) w( 0; q) wk(a, b, c, dlq) W(O) W(e iO ), W(eiO,a,b,c,dlq) W,a(xlq) Wn(x; b,q) Wn(x;q), Wn(x;a,b,c,fV;q) r+lWr x+ z,zqk Z 2Z Z+rZ J J(t) dqt J(n) "-' g(n)
L:~=m ak rr~=m ak
[~L' [~L [kl' ~ ,kmL
212 7 344 347 2 345 2 209 176 312 159 198 306 175, 179 175 157 190 192 191 194 198 185 214 59, 180 39 114 331 312 320 312 23 185 81 325 24 25
0
[~Lp' [~Lp
311
[~Lp
417
312
175 21 20, 29 rq(X) r(z; q,p) 311,338 345 r(Zl'oo 0 ,zn;q,p) t(z; q,p) 338 42 Om,n 11, 197 Oq 11 /).J(z), '\l J(z) /).Uk 80 32 /).bJ(Z) /).(Z) , /).(zqk) 331 /).(z;p), /).n(z;p) 333 /).E(Z; t; q,p) 344 /).E(Z; t) 345 303 O(x;p), O(Xl' 0 0 0, xm;P) 16 171 (x, q), 172 (X, q), 173 (X, q), 174 (x, q) 190 K(a, b, c, dlq) 180 Aj 156 An(q) 156 An(a, b, c, d, a2, a3, 0 0 0, aslq) 181 JL(x) 269 Vn 270 1rn p(x;q),p(x;a,b,c,fV;q) 180 194 Pn(a, blq) 156 p(xlq) 156 p(x; a, b, c, d, a2, a3, 0 0 0, aslq) ¢(a,b;c;q,z) 3 2¢1 (a, b; c; q, z) 3 4 r¢s [0 0 oj 95 (l) , (2) ,(3), (4) 283 294 1(a; {3, (3'; 'I; q; x, y) D(a; bl , 0 0 0, br ; c; q; Xl, 0 0 0, x r ) 300 A:B;C 283 D:E;F 137 r1/Js 315 r-l W r-2 a(x) r(x)
Author index
Adams, C. R., 36 Adiga, C., 35, 67, 152 Agarwal, A. K., 111, 257 Agarwal, N., 112 Agarwal, R. P., 34-36, 68, 111, 112, 119, 122, 124, 136, 301 Aigner, M., 35 Alder, H. L., 257 Alexanderson, G. L., 35 Alladi, K., 35, 67 Allaway, Wm. R., 204, 205, 214, 216 AI-Salam, W. A., 35, 36, 52, 83, 86, 204, 205, 209, 214-216, 273 Andrews, G. E., 9, 15, 21, 26, 29, 33-37, 52, 53, 59, 65, 67, 68, 111, 112, 138, 141, 147, 149, 152, 174, 181, 182, 184, 213, 215, 216, 241-243, 245, 257, 296, 297, 300, 341, 342 Aomoto, K., 174 Appell, P., xv, 282 Artin, E., 36 Askey, R., 2, 9, 17, 21, 26, 29, 31, 33-35, 52, 53, 59, 67, 84, 99, 113, 125, 129, 136, 138, 141, 149, 152, 154, 165, 170-172, 174, 177, 180-182, 185, 188, 191, 193, 195, 197, 198, 200, 204-206, 214, 215, 232, 236, 242, 257, 273, 274, 281 Atakishiyev, M. N., 215, 257 Atakishiyev, N. M., 12, 35, 195, 213-215, 257 Atkin, A. O. L., 152 Atkinson, F. V., 176 Bailey, W. N., xxiii, 5, 9, 18, 41, 46, 47, 50, 53, 54, 57, 58, 60, 61, 64, 67, 73, 96100, 112, 140, 148-150, 152, 219, 236, 261, 287-290, 293, 298, 299 Baker, M., 35 Baker, T. H., 68 Bannai, E., 213 Barnes, E. W., 113, 117
418
Bateman, H., 221, 222 Baxter, R. J., 35, 67, 302, 307 Beckmann, P., 257 Beerends, R. J., 301 Bellman, R., 35 Bender, E. A., 34 Berg, C., 214 Berkovich, A., 35, 67, 341, 342 Berman, G., 35 Berndt, B. C., 35, 67, 152, 257 Bhargava, S., 35, 67, 152 Bhatnagar, G., 257, 258, 325, 349, 350 Biedenharn, L. C., 213 Bohr, H., 29 Baing, H., 34 Borwein, J. M., 67 Borwein, P. B., 67 Bowman, D., 36 de Branges, L., xv, 84, 232, 237, 257 Bressoud, D. M., 35, 36, 67, 68, 83, 111, 112, 213, 226, 257, 301 Bromwich, T. J. I'A., 5 Brown, B. M., 214, 216 Burchnall, J. L., 111, 112, 291 Burge, W. H., 67 Bustoz, J., 36, 213, 273, 280, 281 Carlitz, L., 28, 31, 35, 36, 58, 64, 111, 152, 209, 210, 215, 216, 275, 281 Carlson, B. C., 34 Carmichael, R. D., 36 Carnovale, G., 35 Cauchy, A.-L., 9, 112, 132 Cayley, A., 112 Charris, J., 215 Chaundy, T. W., 111, 291 Cheema, M. S., 35 Chen, Y., 216 Cherednik, 1., 68 Chihara, L., 213-215
Author index
Chihara, T. S., 34, 176, 209, 213-216, 259, 273 Chu Shih-Chieh, 2 Chu, VV., 111, 151, 152, 257, 325, 349, 350 Chudnovsky, D. V., xv, 232 Chudnovsky, G. V., xv, 232 Chung, VV. S., 258 Ciccoli, N., 215 Cigler, J., 33, 35, 112, 216 Clausen, T., xiv, 103, 232 Cohen, H., 258 Comtet, L., 258 Coon, D., 35 Cooper, S., 68, 258 Crippa, D., 34 Date, E., 302, 307 Daum, J. A., 18 Dehesa, J. S., 216 Delsarte, P., 181, 202, 213, 215 Denis, R Y., 301, 350 Desarmenien, J., 112, 216 Dickson, 1. E., 243 van Diejen, J.F., 258, 302, 317, 347, 349 Di Vizio, L., 36 Dixon, A. C., 38 Dobbie, J. M., 67 Dougall, J., 38 Dowling, T. A., 35 Dunkl, C. F., 35, 181, 202, 259 Duren, P. L., 257 Dyson, F. J., 67, 68, 242, 257 Edwards, D., 112 Eichler, M., 307 Erdelyi, A., 34, 66, 111, 174, 236, 249, 265, 284, 287, 302 Euler, 1., 3, 62, 239, 241 Evans, R J., 68, 174 Evans, VV. D., 214 Ewell, J. A., 35 Exton, H., 36, 283 Faddeev, L. D., 36 Fairlie, D. B., 34 Favard, J., 176 Feinsilver, P., 33 Felder, G., 312, 338, 339, 350 Feldheim, E., 281 Fields, J. L., 84, 86 Fine, N. J., 67, 112, 242 Floreanini, R, 215, 301
419
Floris, P. G. A., 258 Foata, D., 36, 112 Foda, 0., 67 Forrester, P. J., 67, 68, 257 Fox, C., 19 Frenkel, I. B., 7, 17, 258, 302, 307, 315 Freud, G., 176 Fryer, K. D., 35 Fiirlinger, J., 112 Gangolli, R., 195 Garoufalidis, S., 34 Garrett, K., 67, 148 Garsia, A. M., 67, 112 Gartley, M. G., 12 Garvan, F. G., 34, 35, 67, 174 Gasper, G., 19, 32-34, 36, 58, 61, 65-67, 74,78,80,81,83-85,88,91,93,94,105107, 109-111, 130, 135, 136, 172, 174, 186, 195, 207, 208, 213, 215, 217, 223, 226, 227, 229, 232, 233, 235, 236, 238, 239, 248, 250, 251, 256-258, 279, 300, 302, 326, 327, 329, 343, 344, 349, 350 Gauss, C. F., xiv, 1 Gegenbauer, 1., 225, 249 Geronimo, J. S., 258 Gessel, I., 83, 93, 112, 258, 349, 350 Goethals, J. M., 181, 215 Goldman, J., 35, 258 Gonnet, G. H., 34, 174 Gordon, B., 152 Gosper, R. VVm., 21, 34, 36, 81, 93, 111, 148 Goulden, I. P., 37, 68, 257 Greiner, P. C., 19 Grosswald, E., 243 Gupta, D. P., 215 Gustafson, R A., 35, 152, 173, 258, 349, 350 Habsieger, L., 174 Hahn, VV., 28, 30, 36, 138, 180, 181 Hall, N. A., 72 Handa, B. R., 35 Hardy, G. H., 44, 45, 138, 240-242 Heine, E., xviii, 3, 9, 13, 14, 21, 26-28 Henrici, P., 32, 34 Hickerson, D., 242, 257 Hilbert, D., 243 Hirschhorn, M. D., 152, 245, 258 Hodges, J., 215 Hofbauer, J., 112
420
Author index
Hou, Q.-H., 216 Hua, L. K., 243 Ihrig, E., 35 Ismail, M. E. H., 12, 22, 30, 31, 35-37, 61, 65, 67, 68, 86, 111, 138, 141, 148, 152, 155, 172-174, 177, 184, 185, 204, 209, 212-216, 251, 254, 257-259, 261, 272277, 280, 281, 301 Ito, M., 174,349 Ito, T., 213 Jackson, D. M., 37 Jackson, F. H., 14, 18, 21-23 28 30 32 35, 36, 43, 58, 87, 103, 11~, 1'12, '136: 138, 232, 282-284, 311, 338 Jackson, M., 144, 146, 152 Jacobi, C. G. J., 15, 34 Jain, V. K., 36, 60, 61, 63, 78, 97, 98, 101, 111, 112, 152, 232, 242, 301 Jimbo, M., 35, 302, 307 Joichi, J. T., 34, 35 Joshi, C. M., 68
Lakin, A., 141 Lam, H. Y., 258 Lapointe, L., 301 Lascoux, A., 216 Lassalle, M., 174, 201 Le, T. T., 34 Leininger, V., 258, 349 Leonard, D. A., 213 Lepowsky, J., 35, 68 LeTourneux, J., 215 Lewis, R. P., 35 Li, X., 215 Libis, C. A., 215 Lilly, G. M., 258, 349 Littlewood, J. E., 118 Liu, Zhi-Guo, 258 Lorch, L., 22 Louck, J. D., 213 Lubinsky, D. S., 216 Luke, Y. L., 34, 88
Kac, V. G., 35, 152 Kadell, K W. J., 36, 68, 152, 174, 258 Kairies, H.-H., 36 Kajihara, Y., 302, 346 Kajiwara, K, 302 Kalnins, E. G., 135, 214, 257, 258 Kampe de Feriet, J., xv, 282 van Kampen, N. G., 35 Kaneko, J., 68, 174 Karlsson, Per W., 18 Kashaev, R. M., 36 Kendall, M. G., 35 Kirillov, A. N., 258 Klein, F., xv Klimyk, A. U., 215, 257 Knopfmacher, A., 34 Knuth, D., 35, 36 Koekoek, R., 259, 273 Koelink, H. T., 213-215, 252, 256, 258, 274, 279, 280, 302 Koepf, W., 34 Koornwinder, T. H., 21, 33-35, 101, 172, 202, 210, 213-216, 257, 258, 349 Krattenthaler, C., 34, 83, 111, 112, 258, 301, 346, 349 Kummer, E. E., xv Kuniba, A., 302, 307
Macdonald, 1. G., 35, 68, 174 MacMahon, P. A., 35 Masson, D. R., 36, 173, 213, 215, 275, 276, 280, 281 Masuda, T., 37, 302 McCoy, B. M., 67, 68 Meijer, H. G., 36 Menon, P. K., 35 Merkes, E., 36 Milin, 1. M., 257 Miller, W., 34, 36, 135, 214, 258 Milne, S. C., 35, 67, 152, 174, 213, 257, 258, 303, 325, 331, 333, 335, 349, 350 Mimachi, K., 36 Minton, B. M., 18, 19 Misra, K. C., 68 Miwa, T., 302, 307 Moak, D. S., 21, 29, 211, 216 Mohanty, S. G., 35 Molk, J., 151, 331 Mollerop, J., 29 Monsalve, S., 215 Mordell, L. J., 258 Morris, W., 68, 174 Mu, Y.-P., 216 Muldoon, M. E., 22, 36 Mulla, F. S., 257 Mullin, R., 258 Muttalib, K A., 216
Laine, T. P., 216
Nakagami, Y., 37
Author index
Narukawa, A., 350 Nassrallah, B., 96, 104, 105, 112, 158, 163, 232, 295, 301, 341 Needham, J., 2 Nelson, C. A., 12 Nevai, P. G., 186, 190, 215, 259 Newcomb, J. W., 258, 350 Nikiforov, A. F., 34, 135, 136, 213 Nishizawa, M., 350 van Norden, Y., 302 Noumi, M., 258, 302, 346 O'Hara, K. M., 35 Ohta, Y., 302 Okado, M., 302, 307 Onofri, E., 257 Opdam, E. M., 68 Orr, W. McF., 112 Pastro, P. I., 216 Paule, P., 34, 67, 68, 112 Pearce, P. A., 35, 67 Perline, R, 37 Perron, 0., 176 Petkovsek, M., 34 Pfaff, J. F., xiv, 17 Phragmen, E., 302 Pitman, J., 301 Pitre, S. N., 301 P6lya, G., 35 Potter, H. S. A., 33 Qazi, Tariq M., 214, 254, 255, 257 Quano, Y.-H., 67 Rademacher, H., 241 Rahman, M., 34, 36, 58, 61, 65, 74, 78, 81, 91-94, 96, 104, 108-112, 136, 152, 153, 155, 158, 159, 161, 163, 169, 171-174, 185, 191, 207, 208, 211-217, 223, 225229, 232, 235, 248, 249, 251, 253-258, 269, 274-279, 281, 295, 341, 342, 350 Rains, E., 174, 302, 347, 349 Rainville, E. D., 34 Rakha, M. A., 258, 349 Ramanujan, S., 68, 138, 152, 172, 232, 236, 240 Ramanathan, K. G., 67 Rankin, R A., 67 Remmel, J., 112 Reshetikhin, N. Yu, 258 Riese, A., 34
421
Rogers, L. J., xviii, 31, 68, 184, 226 Rogov, V.-B. K., 35 Rosengren, H., 258, 281, 301-303, 331, 332, 335, 337, 346-350 Rota, G.-C., 35, 258 Rothe, H. A., 9 Roy, R, 9, 113, 125, 129, 172 Ruedemann, R. W., 213 Ruijsenaars, S. N. M., 311, 338 Saalschiitz, L., 17, 113 Saff, E. B., 216 Sahai, V., 301 Sauloy, J., 36 Schempp, W., 257 Schilling, A., 67, 68 Schlosser, M., 152, 174, 257, 258, 302, 326, 327, 329, 343, 344, 347, 349, 350 Schur, I. J., 68 Schiitzenberger, M.-P., 33 Schwartz, A. L., 257 Schweins, Ferd. F., 9 Sears, D. B., 15, 49, 51, 61, 64, 70, 71, 74, 130, 131, 136, 152 Selberg, A., 174 Shohat, J., 214 Sills, A. V., 34, 68 Simon, K., 34 Singh, V. N., 99, 105, 232 Slater, L. J., 5, 9, 32, 36, 68, 125, 126, 128, 130, 141-144, 151, 152, 242, 331 Spiridonov, V. P., 215, 302-306, 309, 310, 313, 316, 317, 320, 338, 341, 345, 347, 349 Srinivasa Rao, K., 301 Srivastava, B., 301 Srivastava, H. M., 84, 107, 232, 283 Stanton, D., 34-36, 65, 67, 68, 83, 93, 111, 112, 148, 155, 174, 181, 201, 213, 215, 216, 258, 276, 277, 280, 349, 350 Starcher, G. W., 36 Stembridge, J. R., 68 Stevens, L., 350 Stokman, J. V., 174, 215, 253, 258, 279 Stone, M. H., 176 Stuart, A., 35 Styer, D., 36 Subbarao, M. V., 152, 349 Sudler, C., 35 Suslov, S. K., 12, 34-36, 111, 135, 136, 152, 153, 195, 213, 214, 216, 257, 258, 274-276, 280, 281
422
Author index
Swarttouw, R. F., 36, 258, 259, 273 Swinnerton-Dyer, P., 152 Sylvester, J. J., 35 Szego, G., 31, 34, 35, 176, 177, 213, 216, 249, 259, 260, 265 Takacs, L., 2 Tamarkin, T., 214 Tannery, J., 151, 331 Tarasov, V., 174 Temme, N., 259 Terwilliger, P., 213 Thomae, J., xviii, 21, 23, 24, 69, 70 Toeplitz, 0., 35 Touhami, N., 258 Tratnik, M. V., 213, 215, 258 Trebels, W., 257 Trjitzinsky, W. J., 36 Trutt, D., 257 Turaev, V. G., 7, 17, 258, 302, 307, 315 Ueno, K., 37 Upadhyay, M., 301 Uvarov, V. B., 34, 136, 213 Valent, G., 213 Vandermonde, A. T., 2 Van Assche, W., 258 Van der Jeugt, J., 252, 258, 280, 301 Varchenko, A., 174, 312, 339, 350 Verma, A., 36, 52, 61, 63, 65, 68, 78, 83, 86, 97, 98, 111, 112, 185, 207, 214, 216, 225, 228, 242, 249, 257, 342, 349 Vidyasagar, M., 152 Viennot, G., 67, 216
Vilenkin, N. Ja., 34 Vinet, L., 215, 301 Volkov, A. Yu., 36 Wallisser, R., 36 Warnaar, S. 0., 34, 67, 68, 302-304, 306, 323, 325, 329, 339-342, 346, 347, 349 Watson, G. N., xv, 16, 17, 21, 34, 35, 42, 67, 68, 112, 114, 115, 117, 119, 124, 151, 152, 220, 317 Whipple, F. J. W., 49, 68, 112 Whittaker, E. T., 16, 17, 21, 34, 151 Wilf, H. S., 34 Wilson, J. A., 59, 99, 132, 152, 154, 165, 177, 180, 188, 191, 193, 195, 197, 198, 200, 206, 214, 215, 259, 261, 272, 274, 317 Wilson, R. L., 68 Wimp, J., 37, 84 Wintner, A., 176 Wright, E. M., 35, 241, 242 Wu, M.-Y., 34 Xu, Y., 259 Yamada, Y., 302 Yang, K.-W., 33 Yoon, G. J., 213 Zagier, D., 307 Zaslavsky, T., 35 Zeilberger, D., 34, 35, 68, 174 Zhang, R., 12, 204, 251 Zhedanov, A. S., 215, 302 Zimmermann, B., 34
Subject index
Addition formula for continuous q-ultraspherical polynomials, 249 Eq functions, 111 little q-Jacobi polynomials, 210 little q- Legendre functions, 254 Affine q-Krawtchouk polynomials, 202 Al-Salam-Chihara polynomials, 273 Almost-poised series, 111 Analytic continuation of 21 series, 117 r+" cPr series, 120 Andrews' q-Dyson conjecture, 68 Appell functions and series, 282, 283 Askey-Gasper inequality, 232 q-analogues of, 236-238 Askey-Wilson polynomials, 59, 188 multivariable extension of, 255 Askey-Wilson q-beta integral, 154, 163-168 Associated Askey-Wilson polynomials, 254 Associated q-ultraspherical polynomials, 255 Bailey-Daum summation formula, 18, 354 Bailey's four-term transformation formulas for balanced very-well-poised lOcP9 series, 55-58, 64, 365 Bailey's identity, 61 Bailey's lemma, 41 Bailey's product formulas, 219, 236 Bailey's sum of a very-well-poised 6'I/J6 series, 140, 357 Bailey's summation formula, 54, 124, 356 Bailey's three-term transformation formula for a very-well-poised 8cP7 series, 53, 364 Bailey's transformation formulas for 2'I/J2 series, 150 terminating 5cP4 and 7cP6 series, 45-47, 363 terminating lOcP9 series, 47, 263 limiting cases of, 48-53, 360-362
423
Bailey's 3'I/J3 and 6'I/J6 summation formulas, 149, 150, 357 Balanced series (and k-balanced), 5 Barnes' beta integral, 114 Barnes' contour integral, 113 Barnes' first and second lemmas, 113 q-analogues of, 119 Base modular parameter, 304 Basic contour integrals, 113 Basic hypergeometric functions, 5 Basic hypergeometric series, 1-4 Basic integrals, 23 Basic number, 4 Bateman's product formula, 221, 222 Bessel function, 4 Beta function, 22 Beta function integral, 23 Bibasic expansion formulas, 84-87 series, 80-87 summation formulas, 80-83, 328, 358 transformation formulas, 105-107 Big q-Jacobi polynomials, 181, 182 Bilateral basic hypergeometric series, 137 Bilateral bibasic series, 82 Bilateral q-integral, 23 Bilateral theta hypergeometric series, 309, 316 Bilinear generating functions, 227, 259, 281 Binomial theorem, 8 q-analogue of, 8, 354 Biorthogonal rational functions, 35, 173, 213, 257, 258, 345 Cauchy's beta integral, 132 Christoffel-Darboux formula, 200 Chu-Vandermonde formula, 3 q-analogue of, 14, 354 Clausen's formula, 103, 232 q-extensions of, 232, 235, 236, 251, 261 Connection coefficients, 33, 195-197
424
Subject index
Continuous q-Hahn polynomials, 193 in base q-l, 279 Continuous q-Hermite polynomials, 31 Continuous q-Jacobi polynomials, 191 Continuous q-ultraspherical polynomials, 31, 184 Contour integral representations of 2Fl series, 113 21 series, 115 very-well-poised series, 121-124 Convergence of basic hypergeometric series, 5 bilateral basic series, 137 hypergeometric series, 5 Cubic summation and transformation formulas, 93, 108-110
Darboux's method, 259 Discrete q-Hermite polynomials, 209 Dixon's formula, 38 q-analogue of, 44, 355 Double product theta function, 303 Dougall's summation formulas, 38, 39 q-analogues of, 43, 44, 356 Dual orthogonality, 176 Dual q-Hahn polynomials, 181 Dyson's conjecture, 68
Elliptic analogue of Bailey's transformation formula for a terminating 1O9 series, 307, 323 Elliptic analogue of Jackson's 87 summation formula, 307, 321 Elliptic balancing conditions (E-balanced), 305, 309, 313, 314 Elliptically balanced series, see Elliptic balancing conditions Elliptic beta function, 344 Elliptic Jackson sum, 347 Elliptic Dn Jackson sum, 348 Elliptic gamma function, 311, 338 Elliptic hypergeometric series, 302, 305 Elliptic integrals, 344, 345, 347 Elliptic numbers, 17 Elliptic shifted factorials, 304, 312 Erdelyi's formula, 174 Euler's identity, 62 Euler's integral representation, 24 Euler's partition identity, 240 Euler's transformation formulas, 13, 86
en
Expansion formulas (also see Addition formula, Connection coefficients, Linearization formula, Nonnegativity, Product formulas, and Transformation formulas), basic series, 19, 40, 41, 62--67, 84-87, 107,143 elliptic and theta hypergeometric series, 329-331, 337 multi basic series, 95-97 Fields-Wimp expansion, 84 q-extensions of, 84-87 q,p-extensions of, 329-331 Gamma function, 2, 21, 22 q-analogues of, 20, 29, 353 Gauss' hypergeometric series, 1, 2 Gauss' multiplication formula, 22 Gauss' summation formula, 3 Gegenbauer's addition formula, 249 q-extension of, 249 Gegenbauer polynomials, 2 Gegenbauer's product formula, 225 General basic contour integral formulas, 126 General transformations for r'l/Jr series, 138-145 Generalized hypergeometric series, 3 Generalized Stieltjes-Wigert polynomials, 214 Generating functions for orthogonal polynomials, 31, 184, 203, 259-281 partitions, 239, 240 q- Bessel functions, 31 Gosper's sums, 81, 93, 358 extensions, 81, 82, 93, 358 Hall's formula, 72 Heine's series, 3 Heine's summation formula, 14 Heine's transformation formulas, 13, 14, 359 Hermite polynomials, 4 q-analogues of, 31 Hypergeometric functions, 5 Identities involving q-shifted factorials, 6, 24, 25, 351-353 Indefinite summation formulas, 80-83, 322, 324-329, 342-344 Infinite products, 6, 20-23, 352, 353 sums of, 61, 150-152, 304-310, 312-349
Subject index Integral representations of 2Fl series, 24 21 series, 24 associated Askey-Wilson polynomials, 255 very-well-poised 81>7 series, 157, 158 very-well-poised 101>9 series, 159-161 Integral representations for q-Appell series, 284, 286, 288, 289, 294 Inversion in the base of a basic series, 25 theta hypergeometric series, 337 Jackson's product formula, 93 Jackson's summation formulas, 43, 355, 356 Jacobi polynomials, 2 Jacobi's triple product identity, 15, 357 Jain's transformation formula, 60 Jain and Verma's transformation formulas, 63, 78 Jump function, 175 Kampe de Feriet series, 284 Karlsson-Minton summation formulas, 18, 19 q-extensions of, 19, 20 Kummer's formula, 18 q-analogue of, 18, 354 Laguerre polynomials, 4 Legendre polynomials, 2 Level basic series, 111 Linearization formula for Cn(x;,Blq), 226 inverse of, 249 Linearization formula for continuous q-Jacobi polynomials, 253 associated q-ultraspherical polynomials, 255 Little q-Jacobi polynomials, 32, 181, 182, 245 Little q-Legendre function, 253 Milne's fundamental theorem, 331 Rosengren's elliptic extension of, 331, 332 Modular balancing conditions (M-balanced), 315-317 Modular group, 315 Modular hypergeometric function, 315 Modular invariant, 316 Modular parameters, 304, 312 Modular series, 316 Modular symmetry relations, 317 Moments, 175
425
Multibasic hypergeometric series, 95-97, 105-107, 112 Multibasic summation and transformation formulas for theta hypergeometric series, 325-331 Multinomial coefficients, 68 q-analogue of, 25, 68 Multivariable sums, 331-336, 345-350
Nearly poised series, 38, 39 of the first and second kinds, 38, 39 Nome modular parameter, 304 N onnegativity of 3F2 series, 232, 237 4F3 series, 239 51>4 series, 237 61>5 series, 238, 239 71>6 series, 238 connection coefficients, 197, 215 linearization coefficients, 226, 227, 257 Poisson and other kernels, 229-232, 257
Orthogonality relations for affine q-Krawtchouk polynomials, 201 Al-Salam-Carlitz polynomials, 209 Askey-Wilson polynomials, 190, 191, 206-208 big q-Jacobi polynomials, 182 continuous q-Hermite polynomials, 31, 204 continuous q-Jacobi polynomials, 191, 192 continuous q-ultraspherical polynomials, 31, 184-187 discrete q-Hermite polynomials, 209 dual q-Hahn polynomials, 181 little q-Jacobi polynomials, 182 q-Charlier polynomials, 202 q-Hahn polynomials, 180 q-Krawtchouk polynomials, 201, 203 q-Laguerre polynomials, 210 q-Meixner polynomials, 202 q-Racah polynomials, 180 sieved orthogonal polynomials, 204, 205 Orthogonal system of polynomials, 175 in several variables, 213, 255, 258
Partial sums, 58, 63, 80-83, 106, 358 Partitions, 239-242 Pentagonal numbers, 241 Pfaff-Saalschiitz summation formula, 17 q-analogue of, 17, 355
426
Subject index
Poisson kernels for continuous q-ultraspherical polynomials, 227-229 q-Racah polynomials, 229-232 Product formulas for 2Fl series, 103, 219-221, 232, 236 Askey-Wilson polynomials, 222 balanced 43 polynomials, 218-223 basic hypergeometric series, 103-105, 232-236, 251, 361 big q-Jacobi polynomials, 245 continuous q-Jacobi polynomials, 253 continuous q-ultraspherical polynomials, 223, 227, 236, 249 Gegenbauer polynomials, 225 hypergeometric series, 103,219-221,232, 236 Jacobi polynomials, 220, 222 little q-Jacobi polynomials, 210, 245 q-Hahn polynomials, 221, 246 q-Racah polynomials, 221, 246, 247 Projection formulas, 195
q-analogue of Fl (a;b,b' ;c;x,y), 283-285, 294-296 q-analogue of F 4 (a,b;c,c';X(1-y),Y(1-X)), 219, 220, 283, 290-294 q-Appell functions, 282, 283 q-Bessel functions, 30, 104 q-beta function, 22, 23 q- beta integrals of Andrews and Askey, 53 Askey, 170, 171 Askey and Roy, 129 Askey and Wilson, 154, 155 Gasper, 130 Nassrallah and Rahman, 158,295 Ramanujan, 172 Wilson, 132 q-binomial theorem, 8, 354 q-binomial coefficients, 24, 353 q-Cayley-Orr type formulas, 105, 112 q-Charlier polynomials, 202 q-Clausen formulas, 232-235, 361 q-contiguous relations for 43 polynomials, 200 Heine's series, 27 q-Cosine functions, 28 q-deformation, 7 q-derivative operators, 27, 197, 208, 251 q-difference equations, 32, 199
q-difference equations for Askey-Wilson polynomials, 199 q-difference operators, 32 forward and backward, 11 symmetric, 11 q-differential equations, 27 q-Dixon sums, 44, 58, 355 q-Dougall sum, 44, 356 q-exponential functions, 11, 12,33,34, 111, 354 q-extension, 7 q-gamma functions, 20-22, 29, 353 q-Gauss sum, 14, 354 q-generalization, 7 q-Hahn polynomials, 180, 181 q-integral representations of 2(1)1 series, 24 Askey-Wilson polynomials, 207 continuous q-ultraspherical polynomials, 185 very-well-poised 87 series, 52 q-integrals, 23, 24, 52-55, 57, 58, 65, 76, 149, 156-158, 162, 163, 166, 171, 172, 183, 185, 203, 207 q-Kampe de Feriet series, 284 q-Karlsson-Minton sums, 19, 20, 357 q-Krawtchouk polynomials, 201, 202 q-Kummer sum, 18,354 q-Lagrange inversion theorem, 107 q-Laguerre polynomials, 210 q-Lauricella function, 300, 301 q-Leibniz formula, 27 q-Mehler's formula, 275 q-Meixner polynomials, 202 q-multinomial coefficients, 25, 68 q-multinomial theorem, 25 q-number,7 q-number factorial, 7 q-number shifted factorial, 7 q-quadratic lattice, 12, 294 q-Racah polynomials, 59, 197-180 q-Saalschiitz sum, 17, 355 q-series, 4, 8, 282 q-shifted factorial, 3, 351 q-sine functions, 28 q-trigonometric functions, 28, 212 q-ultraspherical function of the second kind, 211 q-Vandermonde sum, 14,354 q-Watson sum, 61, 355 q-Whipple sum, 61, 355 q,p-binomial coefficient, 311
Subject index
q,p -shifted factorial, 304 Quadratic elliptic transformation formula, 341 Quadratic summation and transformation formulas, 69-90, 91,92, 96-100, 162, 163, 341, 361, 362 Quartic summation and transformation formulas, 94, 111, 109 Quasi-periodicity relations, 317 Quintuple product identity, 147
Ramanujan's identities, 171, 172 Ramanujan's summation formula, 52, 138, 357 Recurrence relations for Askey-Wilson polynomials, 188 big q-Jacobi polynomials, 202 continuous q-ultraspherical polynomials, 203, 204 discrete q-Hermite polynomials, 209 little q-Jacobi polynomials, 204, 205 orthogonal polynomials, 175, 200 q-Racah polynomials, 177 sieved orthogonal polynomials, 201, 202 Reduction formulas for q-Appell series, 282, 284-289, 299 Reversal of terminating basic series, 25 theta hypergeometric series, 338 Rodrigues-type formula for the Askey-Wilson polynomials, 199 Rogers' linearization formula, 226 inverse of, 249 Rogers-Ramanujan identities, 44, 241 Rogers-Szego polynomials, 210 Saalschiitzian series, 5 Saalschiitz's formula, 17 Sears' 43 transformation formula, 49, 360 Sears' nonterminating extension of the q-Saalschiitz sum, 51, 356 Sears' transformations of well-poised series, 130, 131 Sears-Carlitz transformation formulas, 64, 75, 360 Selberg's integral, 174 Shifted factorial, 2 Sieved ultraspherical polynomials of the first kind, 204 second kind, 205 Singh's quadratic transformation, 99, 361 6j-coefficients, 180, 302, 307
427
Split-poised series, 106 Squares of 2 F1 series, 232 2