Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
423 S. S. Abhyankar A. M. Sathaye
Geometric Theory of Al...
22 downloads
494 Views
8MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
423 S. S. Abhyankar A. M. Sathaye
Geometric Theory of Algebraic Space Curves
Springer-Verlag Berlin.Heidelberg New York 1974
Prof. Dr. Shreeram Shankar Abhyankar Purdue University Division of Mathematical Sciences West Lafayette, IN 4?907/USA Prof. Dr. Avinash Madhav Sathaye University of Kentucky Department of Mathematics Lexington, KY 40506/USA
Library of Congress Cataloging in Publication Data
Abhy~Lkar~ Shreeram Shankar. Geometric theory of algebraic space curves. (Lecture notes in mathematics ; 423) Includes bibliographical references and indexes. i. Curves, Algebraic. 2. Algebraic varieties. I. Sathaye~ Avinash Madhav, 1948joint author. Iio Title. III. Series: Lecture notes in mathematics (Berlin) ; 423. Q~3.L28 no. 423 [QA567] 510'.8s [516'.35] 74-20717
A M S Subject Classifications (1970): 14-01, 14 H 99, 14 M 10
ISBN 3-540-06969-0 Springer-Verlag Berlin • Heidelberg • New York ISBN 0-387-06969-0 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin • Heidelberg 1974. Printed in Germany Offsetdruck: Julius Beltz, Hemsbach/Bergstr.
PREFACE
The o r i g i n a l Montreal
Notes
(36.9),
namely
m a i n part of this b o o k w a s
[ 3 3that
The m a i n
"All i r r e d u c i b l e
degree
at most
ground
field are c o m p l e t e
completely
five and genus
proved
and circulated, self-contained of the proof,
it had
nonsingular
at most one over
in 1971.
published.
We
obsolete
space
intended
or rather,
the p r e p a r a t o r y
material,
finally
started
1973,
a completely
in the process,
and s o m e w h a t
in June
closed
the T h e o r e m A w a s
to give
and
clearer
of
of the proof h a v e b e e n w r i t t e n
of the Theorem,
to b e c o m e
curves
an a l g e b r a i c a l l y
treatment
October
by p r o v i n g
1973, that
however,
the size
enlarged;
sharper.
and w e
Murthy
while
the
The p r e s e n t
finally
at m o s t one o v e r an a l g e b r a i c a l l y
plete
intersections.
Conjecture" k
his p r o o f
[123-
decided
that
is a l g e b r a i c a l l y
closed
modules
closed)."
over
detailed
proofs
itself,
by u s i n g
a concrete
three
elements
given
in the M o n t r e a l
curves
the w e l l k n o w n
can sometimes
are
"Serre's
free in
be more u s e f u l
description
of a basis
nonsingular
[ 3 3 as one of the main
of
field are com-
k[X,Y,Z~
for the ideal of an i r r e d u c i b l e Notes
ground
space
H o w e v e r he also i l l u s t r a t e d
concrete
the t h e o r e m
our m a i n T h e o r e m
nonsingular
In fact he proved
that all p r o j e c t i v e
that,
rendered
"All i r r e d u c i b l e
genus
than
to the T h e o r e m
As such,
Two v e r s i o n s
to the
to be a book.
During
(when
the p r o o f
intersections."
but none
proof c o n t i n u e d version was
part was
just a s e q u e l
steps
space curve in his
proof. Another genus
and d i f f e r e n t i a l s
function developed 1973.
important
feature
of the book
of a s e p a r a b l y
field over an a r b i t r a r y by A b h y a n k a r
One v i r t u e
any a r t i f i c i a l
during
the
of the p r e s e n t
devices
is a new t r e a t m e n t
of the
generated
one-dimensional
field.
The t r e a t m e n t was
ground Purdue
Seminar
treatment
such as r e p a r t i t i o n s
is,
in S u m m e r
that it does
or d e r i v a t i o n s
of
and Fall not need of the
IV
g r o u n d field.
(See C h a p t e r III for the t r e a t m e n t and §40 for the com-
parison with other treatments.) R e t u r n i n g to the proof of the c o m p l e t e note that it has b a s i c a l l y two parts: p r o j e c t i o n of the space curve w i t h (26.12))
i n t e r s e c t i o n theorem, we
one part is to o b t a i n a "nice"
a "nice" a d j o i n t
(our T h e o r e m
and the second part is to c o n s t r u c t a basis of two elements
for the ideal of the curve
(our T h e o r e m
(36.7)).
In the present v e r s i o n of the proof,
the second part that is
needed was already d e v e l o p e d in [ 3 ], but w e include a p r o o f for the sake of completeness. namely,
In an older version,
a g e n e r a l i z a t i o n was needed;
the t r e a t m e n t of the s o - c a l l e d chains of e u c l i d e a n domains,
and
is p r e s e n t e d in §39, m a i n l y b e c a u s e it is of interest in itself. The t r e a t m e n t of the first part about p r o j e c t i o n s different
from its c o u n t e r p a r t in ~ 3 3-
is e s s e n t i a l l y
in [ 3 I, w e w r i t e down expli-
cit e q u a t i o n s of the curve and carry out the p r o o f by c o m p l i c a t e d calculations;
here a s i m i l a r m e t h o d was
too cumbersome.
W h a t we p r e s e n t h e r e is a g e o m e t r i c a r g u m e n t in w h i c h
w e never e v e n need a c o o r d i n a t e system. to c o n v i n c e anybody,
self-contained
However,
that this is geometry,
a v o i d e d the use of g e o m e t r i c terms, ours,
first tried and proved to be
it m i g h t be d i f f i c u l t
for we h a v e d e l i b e r a t e l y
so that the proof may stay rigor-
and still r e a s o n a b l y short.
Thus we h a v e taken the useful g e o m e t r i c concepts,
translated
t h e m into precise a l g e b r a i c terms and a l m o s t never gone b a c k to the g e o m e t r i c terms.
For a g e o m e t r i c m i n d e d reader, however, we h a v e pro-
v i d e d a d i c t i o n a r y in §43 so that he may be able to read the underlying g e o m e t r i c 'geometry'
argument very easily.
The name of this b o o k owes its
to this arrangement.
The p r o o f of e x i s t e n c e of the "nice p r o j e c t i o n " may be a p p r o p r i a tely d e s c r i b e d as repeated a p p l i c a t i o n s of "Bezout's Theorem." need b a s i c a l l y the special
(but m o s t w e l l known)
"Bezout's Little Theorem" in the present book,
case,
namely,
We
termed as the case of the
intersection
of a h y p e r s u r f a c e
§ (23.9).
The general
presented
in §38;
case
mainly
because
Bezout's
is, however,
study
to e m b e d
jective
terminology
Chapter
II,
is treated
in
is
p r o o f of this
To avoid clashes only
get a p r o j e c t i v e
counterpart
of the
(§26)
theorem.
and
This made
in a p r o j e c t i v e
concentrate
space,
in affine
on p r o j e c t i v e
then return
theorem
it
and
and procurves
in
about exist-
to affine
curves
in
IV.
Bezout's
theorem
multiplicity;
also needs
for p r o j e c t i v e
We d e v e l o p
the
for affine
curves
theory
in C h a p t e r
is to provide
a precise
as w e l l
for p r o j e c t i v e
The only use of C h a p t e r cerned
curve
first
of nice p r o j e c t i o n s
Chapter
accessible
a projective
completion. we
case
literature.
the g i v e n affine
its p r o j e c t i v e
This
of two h y p e r s u r f a c e s
a readily
in the
Theorem
a curve.
of i n t e r s e c t i o n
is not a v a i l a b l e
necessary
ence
case
with
III,
I §5,6;
theory of i n t e r s e c t i o n
as affine curves
curves,
in C h a p t e r
in our case. II §23,24
and put it t o g e t h e r
so far as c o m p l e t e
a p r o o f of the w e l l k n o w n
in c h a p t e r
intersections genus
and
formula
are
IV.
con-
for plane
curves. We h a v e their
taken
coordinate
coordinate sections
rings
appear
they d e s c r i b e Here
to be almost
spaces
abstract, in case
in d u p l i c a t e
results
for these
is a general
summary
of various
I gives
the theory
essentially
some general
Chapter
cepts
if they are
of a m b i e n t
at a point,
contains
sent
rings,
that v a r i e t i e s
the same
Chapter curves
the v i e w p o i n t
II gives
abstract
for p r o j e c t i v e
curves.
they
in the
are embedded.
(§5,6;
§23,24
two types
by
etc.)
Several because
of varieties.
chapters. multiplicity
or local
curves.
of two It also
terminology. a treatment
irreducible
of i n t e r s e c t i o n
and by ideals
of i n t e r s e c t i o n for affine
are r e p r e s e n t e d
of
projective
multiplicity,
"homogeneous varieties. projection,
domains"
which
It d e v e l o p s tangential
repre-
the con-
spaces
etc.
VI
C h a p t e r III gives a t r e a t m e n t of d i f f e r e n t i a l s generated
function fields.
in s e p a r a b l y
It also has various genus
a b s t r a c t and e m b e d d e d p r o j e c t i v e curves.
formulas
for
This c h a p t e r is almost
s e l f - c o n t a i n e d except for some use of C h a p t e r I and some a l t e r n a t i v e proofs u s i n g C h a p t e r II. C h a p t e r IV studies affine irreducible curves w i t h an equivalence class of affine c o o r d i n a t e systems preassigned; algebraically,
translated
such curves have c o o r d i n a t e rings w h i c h are
ered domains"
"filt-
We also study the concepts of taking a p r o j e c t i v e
c o m p l e t i o n and taking an affine piece; tion and d e h o m o g e n i z a t i o n . the main T h e o r e m
algebraically,
homogeniza-
Then we go on to finish the proof of
(36.9).
C h a p t e r V is a supplement.
It deals w i t h g e n e r a l i z a t i o n s
some concepts of the first four chapters
of
and has several statements
w h o s e p r o o f are only s k e t c h e d or referred to other sources. An e l e m e n t a r y k n o w l e d g e of general algebra is assumed to be a v a i l a b l e to the reader Lemma'
(for example,
results
, "Krull's I n t e r s e c t i o n Theorem',
There is only one
"official exercise"
like
'Nakayama's
'~ eif i = n formula'
etc.).
(in §15), but several pro-
perties stated in C h a p t e r I, II and IV may very w e l l be treated as exercises w i t h v a r y i n g degree of difficulty. The contents
are intended to give b r i e f d e s c r i p t i o n s
in
g e o m e t r i c w o r d s of w h a t is b e i n g treated in the r e l e v a n t sections. A list of i n t e r d e p e n d e n c e s of sections
follows the contents.
S h r e e r a m S. A b h y a n k a r A v i n a s h Sathaye
CONTENTS CHAPTER
I.
LOCAL
GEOMETRY
OR LENGTH
§l.
General
§2.
Principal
§3.
T o t a l q u o t i e n t r i n g and c o n d u c t o r . (3.1). L o c a l i z a t i o n of the c o n d u c t o r .
§4.
N o r m a l model. (4.1). Divisor (4.2). Divisor (4.3) . The " ~
§5.
Length affine curve. (5.1 (5.2 (5.3 (5.4)
.
(5.5 (5.6 (5.7
(5.8) (5.9
(5.10 (5.1l) (5.12).
.
terminology. ideals
and p r i m e
ideals.
of a f u n c t i o n . of zeros of a f u n c t i o n . e.f. = n " formula. ll
in a o n e - d i m e n s i o n a l n o e t h e r i a n domain, or i n t e r s e c t i o n m u l t i p l i c i t y on an i r r e d u c i b l e V a l u e s of local i n t e r s e c t i o n m u l t i p l i c i t y . V a r i o u s cases. L o c a l e x p a n s i o n of i n t e r s e c t i o n m u l t i p l i c i t y over a divisor. Global intersection multiplicity. L o c a l e x p a n s i o n of length. I n t e r s e c t i o n m u l t i p l i c i t y e q u a l s l e n g t h in the i n t e g r a l c l o s u r e (R*) . Local intersection multiplicity equals a l e n g t h (in R) for a p r i n c i p a l ideal. G l o b a l i z a t i o n of (5.6). S p e c i a l case of (5.6) - the n o r m a l case. S p e c i a l case of (5.7) - the n o r m a l case. D e f i n i t i o n . M u l t i p l i c i t y of a local d o m a i n of d i m e n s i o n one. D e f i n i t i o n and p r o p e r t i e s . C o n d u c t o r , its length; and a d j o i n t s . L e m m a on o v e r a d j o i n t s .
§6.
L e n g t h in a o n e - d i m e n s i o n a l noetherian homorphic image, or a f f i n e i n t e r s e c t i o n m u l t i p l i c i t y on an e m b e d d e d i r r e d u c i b l e curve. (6.1). V a l u e s of local i n t e r s e c t i o n m u l t i p l i c i t y . V a r i o u s cases. (6.2). L o c a l e x p a n s i o n of i n t e r s e c t i o n m u l t i p l i c i t y in the p r e i m a g e . (6.3). Global intersection multiplicity. (6.4). Case of a l g e b r a i c a l l y c l o s e d g r o u n d field (6.5). Case w h e n a c u r v e is t h o u g h t to be e m b e d d e d in itself. (6.6) to (6.9). R e s t a t e m e n t s of (5.6) to (5.9) for the case of a h o m o m o r p h i c image.
20
§7.
A c o m m u t i n g lemma for length.-(7.1). F o r two e m b e d d e d i r r e d u c i b l e curves, at a c o m m o n s i m p l e point, the i n t e r s e c t i o n m u l t i p l i c i t y of e i t h e r one w i t h the o t h e r is the same. (7.2). G l o b a l i z a t i o n of (7.1) o v e r a d i v i s o r .
27
VIII
(7.3)
C o m p l e t e g l o b a l i z a t i o n of
(7.1).
§8.
L e n g t h in a t w o - d i m e n s i o n a l regular local d o m a i n . . . . . . (8.1). I n t e r s e c t i o n m u l t i p l i c i t y of curves e m b e d d e d in a regular surface. Local case. (8.2). For two curves e m b e d d e d in a regular surface, the i n t e r s e c t i o n m u l t i p l i c i t y of either one w i t h the other is the same. Local case. (8.3). A d d i t i v i t y of i n t e r s e c t i o n m u l t i p l i c i t y of curves e m b e d d e d in a regular surface. Local case.
28
§9.
M u l t i p l i c i t y in a regular local domain (9.1). M u l t i p l i c i t y of an irreducible curve (embedded in a regular surface) at a point is the order of its d e f i n i n g equation. (9.2). T e c h n i c a l lemma for (9.1).
30
§i0. Double points of algebraic curves i0.i). Theorem. D e s c r i p t i o n of a double point of a curve. 10.2). Lemma. D e s c r i p t i o n of h i g h nodes. 10.3). Lemma. D e s c r i p t i o n of h i g h cusps. 10.4). Lemma. D e s c r i p t i o n of n o n r a t i o n a l h i g h cusps.
33
C H A P T E R II.
88
PROJECTIVE G E O M E T R Y OR H O M O G E N E O U S DOMAINS . . . . . .
§ii. F u n c t i o n fields and p r o j e c t i v e models.
86
§12. H o m o g e n e o u s h o m o m o r p h i s m .
68
§13. H o m o g e n e o u s ideals and h y p e r s u r f a c e s
68
(projective varieties)
§14. H o m o g e n e o u s subdomains, flats (linear varieties), projections, b i r a t i o n a l projections, and cones. (14.1). D i m e n s i o n and e m b e d d i n g d i m e n s i o n of a h o m o g e n e o u s subdomain. (14.2) and (14.3). D i m e n s i o n and e m b e d d i n g d i m e n s i o n of a (homogeneous) h o m o m o r p h i c image.
70
§15. Zeroset and h o m o g e n e o u s l o c a l i z a t i o n . _ (15.1), (15.2) and (15.3). E x t e n s i o n to (homogeneous) localization. (15.4) and (15.5) A l t e r n a t i v e (affinized) d e s c r i p t i o n of the (homogeneous) localization. (15.6). C o r r e s p o n d e n c e b e t w e e n h o m o g e n e o u s prime ideals and h o m o g e n e o u s localization. (15.7), (15.8) and (15.9). R e s t a t e m e n t of (15.1), (15.2) and (15.3) for e m b e d d e d varieties. (15.10). Lemma. Number of conditions imposed on a linear s y s t e m of h y p e r s u r f a c e s .
75
§16. H o m o g e n e o u s c o o r d i n a t e systems.
85
IX
§ 17.
§18.
§ 19.
§2o.
§21.
§22.
Polynomial rings as h o m o g e n e o u s domains . . . . . . (iZl) to (17.5). E q u i v a l e n t d e s c r i p t i o n s and p r o p e r t i e s of h o m o geneous domains w h i c h are p o l y n o m i a l rings over a field. O r d e r on an e m b e d d e d ( i r r e d u c i b l e ) curve and i n t e g r a l projections. (18.1) and (18.2). O r d e r of a h y p e r s u r f a c e at a v a l u a t i o n of an e m b e d d e d curve. (18.3) and (18.4). O r d e r of an ideal at a v a l u a t i o n of an e m b e d d e d curve. (18.5). Zerosets of ideals. (18.6) to (18.10). O r d e r at a v a l u a t i o n of an e m b e d d e d curve behaves like a valualtion. (18.11). P r o j e c t i o n lemma. P r o j e c t i o n of v a l u a t i o n and order, from a v e c t o r space. (18.12). Projection lemma. P r o j e c t i o n of v a l u a t i o n and order, from a flat (linear variety). (18.13). Corollary-definition. C o n d i t i o n for a ~ - i n t e g r a l p r o j e c t i o n (where ~ is a hyperplane). (18.13.1) . S p e c i a l case of ( 1 8 . 1 3 ) - p r o j e c t i o n from a c e n t e r not m e e t i n g the curve. O r d e r on an a b s t r a c t (irreducible) curve and integral p r o j e c t i o n s . (19.1) to (19.12). V e r s i o n s of (18.1) to (18.12) w h e n a curve is t h o u g h t of as e m b e d d e d in itself. (19.13) and (19.13.1). V e r s i o n s of (18.13) and (18.13.1) for an a b s t r a c t curve. (19.14). Remark. "Integral"ness of p r o j e c t i o n commutes w i t h h o m o m o r p h i c image. V a l u e d v e c t o r spaces. (20.1) to (20.13). S t r u c t u r e and p r o p e r t i e s v e c t o r space.
86
88
93
95
of a v a l u e d
O s c u l a t i n g flats and integral p r o j e c t i o n s of an e m b e d d e d (irreducible) curve. (21.1) D e f i n i t i o n and s t r u c t u r e of o s c u l a t i n g flats. (21.2), (21.3) and (21.4). A p p l i c a t i o n of §20 to the p r o p e r t i e s of o s c u l a t i n g flats. (21.5). Properties of o s c u l a t i n g flats in special cases. (21.6). C o n d i t i o n for integral p r o j e c t i o n in terms of o s c u l a t i n g flats at the center of projections. O s c u l a t i n g flats and integral p r o j e c t i o n s of an a b s t r a c t (irreducible) curve. (22.1) to (22.6). R e s t a t e m e n t s of (21.1) to (21.6) w h e n a curve is thought of as e m b e d d e d in itself (22.7). Remark. O s c u l a t i n g flats commute w i t h h o m o m o r p h i c image.
109
118
X
§23.
I n t e r s e c t i o n m u l t i p l i c i t y w i t h an e m b e d d e d (irreducible projective) curve. (23.1), (23.2) and (23.3). Properties of i n t e r s e c t i o n m u l t i p l i c i t y w i t h an embedded curve. (23.4). Case of a l g e b r a i c a l l y closed ground field. (23.5). A d d i t i v i t y of i n t e r s e c t i o n m u l t i p l i c i t y . (23.6). I n t e r s e c t i o n m u l t i p l i c i t y equals length for a p r i n c i p a l ideal. (23.7). All points of an e m b e d d e d line are simple. (23.8) and (23.9). Bezout's Little Theorem. Definition. D e g r e e of an elabedded (irreducible) curve. Remark. Affine i n t e r p r e t a t i o n of degree. (23. i0). Lemma. If there are enough rational points (23. ii). then e m b e d d i n g d i m e n s i o n of an embedded curve is less than or equal to its degree. Lemma. If the degree of an embedded curve (23. 12). is one, then its e m b e d d i n g d i m e n s i o n is one. Remark. H y p e r p l a n e s h a v e degree one. (23. 13). P r o j e c t i o n formula. P r o j e c t i o n of v a r i e t i e s (23. 14). from flats. Special p r o j e c t i o n formula. Degree of (23. 15). the projection. Remark. Case of an a l g e b r a i c a l l y closed (23. 16). ground field. Lemma. B i r a t i o n a l i t y of the p r o j e c t i o n from (23. 17). the generic point on a line. D e f i n i t i o n and p r o p e r t i e s of tangents to (23. 18). an e m b e d d e d curve. C o m m u t i n g len~as. V e r s i o n s of (23. 19) and (23.20). (7.1) and (8.2) for p r o j e c t i v e curves.
§24.
I n t e r s e c t i o n m u l t i p l i c i t y w i t h an a b s t r a c t (irreducible) curve. (24.1) to (24.17). V e r s i o n s of (23.1) to ( 2 3 . 1 7 ) for an a b s t r a c t curve. (24.18). D e f i n i t i o n and p r o p e r t i e s of tangents to an a b s t r a c t curve. (24.19). Remark. Relations b e t w e e n an e m b e d d e d curve [A,C] and an a b s t r a c t curve A/C. (24.20). Lemma on overadjoints. Projective v e r s i o n of (5.12). (24.21). Lemma on u n d e r a d j o i n t s . E x i s t e n c e of c e r t a i n type of p r o j e c t i v e u n d e r a d j o i n t s w h i c h are true adjoints in an affine piece.
§25.
T a n g e n t cones and q u a s i h y p e r p l a n e s . (25.1). Definition. L e a d i n g form of a h y p e r s u r f a c e . (25.2) and (25.3). Le~ma-definition. Definition and p r o p e r t i e s of tangent-cones. ~-quasihyperplane. (25.4) . Definition. C h a r a c t e r i z a t i o n of ~ - q u a s i h y p e r p l a n e s . (25.5) . Lemma. A h y p e r p l a n e (different from ~) (25.6) . Lemma. is a ~ - q u a s i h y p e r p l a n e . Lemma. Quadric ~ - q u a s i p l a n e s . (25.7) . Lemma. V e r s i o n of (9.1) for p r o j e c t i v e curves. (25.8) . Lemma. D e g r e e of an e m b e d d e d plane curve is (25.9). the d e g r e e of its d e f i n i n g equation.
121
138
148
XI
(25. i0) . (25.11) . (25.12) . (25.13) . (25.14) .
§26.
Lemma. Characterization o f t a n g e n t lines of plane projective curves. Definition Intersection multiplicity of two hypersurfaces. A d d i t i v i t y of the i n t e r s e c t i o n m u l t i p l i c i t y of two hypersurfaces. Lemma. V e r s i o n o f (8.2) f o r p r o j e c t i v e curves. Bezout's Theorem. Intersection of two plane projective curves.
2-equimultiple plane projections of projective space quintics. (For n o t a t i o n see b e g i n n i n g of §26.) (26.1). Lemma. Most lines through a d-fold point o f a n i r r e d u c i b l e c u r v e are d - s e c a n t s . A l s o , if d < d e g r e e of the curve, t h e n t h e r e are (d l l ) - c h o r d s t h r o u g h the p o i n t in e v e r y p l a n e t h r o u g h the p o i n t . Lemma. A n i r r e d u c i b l e c u r v e of d e g r e e m 2 26.2). h a s 2 - c h o r d s in e v e r y p l a n e . 26.3) Lemma. S u f f i c i e n t c o n d i t i o n for e x i s t a n c e of 4-chords. 26.4) Lemma. S u f f i c i e n t c o n d i t i o n for e x i s t a n c e of 2-secants. 26.5) Lemma. P r o j e c t i o n f r o m p o i n t s o n an (n-l)-secant. 26.6) Lemma. Projection from points on 2-secants o f an i r r e d u c i b l e q u a r t i c . 26.7) Lemma. P r o j e c t i o n f r o m p o i n t s on c e r t a i n 3-secants. 26.8) Cone Lemma. 26.9). Plane Lemma. (26.10) . Q u a d r i c L e m m a . (26.11). Proposition. Detailed description of proj e c t i o n s of c u r v e s of d e g r e e at m o s t 5. (26.12) . T h e o r e m . C o n d e n s e d v e r s i o n o f (26.11) for r e f e r e n c e .
CHAPTER
III.
BIRATIONAL
GEOMETRY
155
180
OR GENUS_
§27.
Different. (27.1) . D e f i n i t i o n s . (27.2) . D e d e k i n d ' s f o r m u l a . "{y = ~ dx " (27.3) . L e m m a . Condition for an u n r a m i f i e d e x t e n s i o n . (27.4) . T e c h n i c a l lemma. (27.5) . L e m m a . Another characterization of an unramified extension. Description of an unramified extension. (27.6). F i n i t e n e s s o f the s e t o f (27.7) . L e m m a . ramified primes. Separably generated (27.8) . D e f i n i t i o n . function fields. (27.9) . L e m m a . Conditions for separably generated function fields.
180
§28.
Differentials. (28.1). ~formulatiQn of ( 2 7 . 2 ) in t e r m s ~ivlsors. i n t e g r a l case.
189
of
XII
(28.2).
C o n v e r s i o n f o r m u l a for d i f f e r e n t . I n t e g r a l case. (28.3) and (28.4). E x c h a n g e lemmas. (28.5). G e n e r a l c a s e of (28.2). (28.6). G e n e r a l c a s e of (28.1). (28.7). Definition. ordv(~,x) ; (~,x) (28.8)
to
(28.11). (28.12) . (28.13) . (28.14) . (28.15) . (28.16) . (28.17) . (28.18) . (28.19). (28.20) . (28.21). (28.22) .
i n t e n d e d to be r e p l a c e d by ~dx. (28.10). Lemma. (~,x) behaves so far as ord V is c o n c e r n e d .
~dx,
T e c h n i c a l d e f i n i t i o n of genus. Theorem. A r a t i o n a l curve h a s genus zero Definition. Usual differentials and their properties. U s u a l d e f i n i t i o n of genus. Genus f o r m u l a s . Remark. A l t e r n a t i v e p r o o f to a genus formula. Remark. Definition. Uniformizing parameter and c o o r d i n a t e . Lemma. P r o p e r t i e s of u n i f o r m i z i n g coordinates. Example. Valuations with unseparable r e s i d u e fields. Remark. Lemma. (28.19) r e f o r m u l a t e d u s i n g differentials.
§29.
Genus of an a b s t r a c t curve. (29.1) and (29.2). Genus f o r m u l a s for p l a n e p r o j e c t i v e curves. R a t i o n a l i t y of a c u r v e of genus zero. (29.3). Remark. (29.4). D i r e c t p r o o f of r a t i o n a l i t y of a conic. (29.5). D i r e c t p r o o f of r a t i o n a l i t y of a line. (29.6). D i r e c t c o m p u t a t i o n of the genus of a cubic. (29.7). Theorem. A p p l i c a t i o n of (24.21) to p l a n e p r o j e c t i v e c u r v e s of genus ~ 1 and d e g r e e 4 or 5.
220
§30.
G e n u s of an e m b e d d e d curve. (30.1) and (30.2). Genus f o r m u l a s . of a c u r v e of genus zero. (30.3). Theorem. Combined version and (26.12) for r e f e r e n c e .
231
CHAPTER
IV.
AFFINE
GEOMETRY
domains.
OR FILTERED
Various
Rationality of
(29.7)
DOMAINS-
definitions.
234 234
§31.
Filtered
§32.
Homogenization or t a k i n g p r o j e c t i v e c o m p l e t i o n . (32.1). Definition. Degree (32.3) to (32.8). P r o p e r t i e s of h o m o g e n i z a t i o n .
236
§33.
Dehomogenization or t a k i n g an a f f i n e p i e c e (33.1). Definition. Dehomogenization (33.2) to (33.4). P r o p e r t i e s of d e h o m o g e n i z a t i o n
238
XIII
§34.
Relation b e t w e e n h o m o g e n i z a t i o n and d e h o m o g e n i z a t i o n . . . .
241
§35.
P r o j e c t i o n of a filtered domain. (35.1). Definition. Projection. (35.2). R e l a t i o n w i t h h o m o g e n i z a t i o n and dehomogenization. (35.3). Lemma. C o n d i t i o n s for integral projections. (35.4). Definition. Degree, genus. (35.5). Theorem. Affine v e r s i o n of (30.3) and (26.12) .
244
§36.
C o m p l e t e intersections. (36.1) . Definition. C o m p l e t e intersections, essentially hyperplanar. (36.2) . Lemma. E s s e n t i a l l y planar space curve is a c o m p l e t e intersection. (36.3) . C o r o l l a r y to (36.2). (36.4) . Lemma. A case of complete intersection. (36.5) . Theorem. A s u f f i c i e n t c o n d i t i o n for c o m p l e t e intersection. (36.6) . E l e m e n t a r y t r a n s f o r m a t i o n s . (36.7) . Theorem. Another sufficient condition for complete intersection. (36.8) . C o r o l l a r y to (36.7). (36.9) . Main theorem of complete intersection.
248
C H A P T E R V. §37.
257
APPENDIX.
Double points of a l g e b r o i d curves. t r e a t m e n t of most of §i0.
§38.
Bezout's
§39.
Chains of e u c l i d e a n curves. v e r s i o n of (36.7).,
§40. §41.
theorem.
An a l t e r n a t i v e 257 268
The general case
Treatments of d i f f e r e n t i a l s A short survey.
A generalized 274
in d i m e n s i o n one.
A g e n e r a l i z a t i o n of D e d e k i n d ' s c o n d u c t o r and d i f f e r e n t . _
280 formula about 281
§42.
The general adjoint condition.
285
§43.
G e o m e t r i c language. Geometric motivations behind the various notations.
287
§44.
Index to notations.
295
§45.
Index to topics.
298
I n t e r d e p e n d e n c e o f sections. In the following,
§b e §a I ..... §a r
d i r e c t l y referred to in §b. other p r e r e q u i s i t e s previous
sections
§l, §2, §3, §4,
for §b
Except
means
§al ..... §r
for such references,
are the notations
and d e f i n i t i o n s
and they may be located from the index.
§5,
basic.
are
the only from
XIV
§6 ~ §5.
§7 4- §6. §8, §9,
independent.
§10 ~ §s. §ii, §18 ~
§12,
§13,
§14,
§15,
§16,
§17, basic.
§15.
§19 ~ §18. §20 4- §18,§19. §21 ~ §18,§20. §22 ~ §21. §23 ~ §4,§5,§15,§17,§18. §24 4-- §5,§10,§15,§23. §25 ~ §8,§9,§15,§23. §26 ~ §18,§21,§23,§25. §27, basic. §28 ~ §27
(§3,§5,§23
and §25 optional use).
§29 ~ §4,§15,§17,§24,§25,§28. §30 ~ §25,§26,§29. §31,§32,
basic.
§33 4- §32. §34 ~ §15,§25,§32,§33. §35 ~- §19,§26,§30,§33,§34. §36 4- §10,§26,§30. §37 ~- §i0. §38 ~ §23,§25. §39 ~ §36. §40,
independent.
§41,
related to §28.
§42 ~ §29,§30 §43,§44,§45,
(also related index.
to §i0).
CHAPTER
I:
LOCAL
gEOMETRY
OR LENGTH
§i. We
shall
assume
(1.7),(1.8),(1.9) tions
and
I.
elementary
ful r e s u l t s
about
General
terminology.
the
terminology
This
includes
properties
local
introduced
general
algebraic
of m o d e l s
rings.
We
shall
in [i:
and
(1.1), (1.6),
terms,
defini-
some w e l l k n o w n
also
u s e the
and u s e -
following
nota-
tion. By card w e d e n o t e For E = a
subsets
module
positive generated
over
and A
we d e n o t e
For of
by
the
a module
n, b y
set
also put
Ix I + x 2 + . . . + X n :
E
x i ~ Ji}.
jn
[E
: A~ = sup{n:
a ring
note
that, if
dimension
of
there
exists
For
: A]
is e i t h e r
is a field, t h e n
E
over
a ring
A
n > 1
(A) = the
subgroup
a subset
J
of
of
In c a s e
is an
J
A
A
subgroup
A, b y
[E:A~
we denote
a sequence
of
ideal
the
length
of
E
E 0 c E 1 c E2c...cE n with
a nonnegative [E
: A3
integer
is s i m p l y
A.
Principal
ideals
and p r i m e
ideals.
we define:
set o f all
nonzero
principal
ideals
in
or
w.
Also
the v e c t o r - s p a c e -
w
F
is a
~ E2~.-.~En~
A
§2.
x i ~ Ji }.
i.e.,
E0 ~ E1 [E
by
the a d d i t i v e
x i e J}.
of A - s u b m o d u l e s
then
(for i n s t a n c e
integer,
additive
For
we denote
[XlX2...Xn:
over
as an A - m o d u l e ,
that
the
E
jO = A.
E
Note
A, w h e r e
we denote
[XlX2...Xn:
integer
group
is a p o s i t i v e
of a r i n g
JiJ2...Jn
set
n
set
by
generated A, w e
the
integer, the
of an a d d i t i v e
where
J i , J 2 .... 'Jn
a positive
in
a ring),
subsets
by
number.
J i , J 2 ..... Jn
Jl + J 2 + ' ' ' + J n For
cardinal
A,
1.2
~(A)
= the
~i(A)
set of all p r i m e
= [P c ~(A):
dim A/P
ideals
in
A
= i]
for any ~i(A,x)
= ~(A,x)
~(A,I)
I c p]
1
for any
= ~(A,I)
~([A, I3)
x ¢ A
,
N ~i(A)
= {p ~ ~(A):
~i(A,I)
,
N ~i(A)
I c A
,
= ~(A,I) for any
I ¢ A
or
I c A
,
~i ([A, I]) = ~i (A, I) and ~([A,I],J)
= ~(A,I)
~i([A,I~,J)
We
note
~(A)
that
= ~(A,0)
Z(A, IA) I c A rad
= ~
n 9(A,J)
([A,I~,J)
~
(A,I) = ~(A) ~ ~
I e A
or
I c A
i
and
J e A
or
J c A
any
,
I c A,
I =
for any
then
= 9([A,0],I) or
n ~i(A)
1
~
= 9([A,I],0)
and
for any
= ~([A,I])
ideals
I
and
= D(A,I) J
P I c
radA{0}
~(A,I)
=
I = A
~(A,I)
= ~(A,J)
~
9(A,I)
O 9(A,J)
= ~(A,I
n J)
~(A,I)
n ~(A,J)
= ~(A,I
+ J)
radAI
= radAJ =
A, IJ)
and
§3.
For
a nonnull
Total
quotient
ring
R
we
rlng
define
and c o n d u c t o r .
in
for any A
we have:
.
1.3
~(R)
= the
total
quotient
ring
of
R.
and we define ~(R) ~(R),and of
R
we
in
~(R)
For
= the c o n d u c t o r note ~(R), = the
we
largest
{X
~
R:
xR
=
{X
e
R
: xR
=
{x
c ~(R):
upon
in the
letting
ideal C
integral
R
to be
closure
the
of
R
integral
in
closure
c
C
in
R
which
remains
an ideal
in
R*
R} R}
xR
ideal
~([A,C])
upon
R
then have
=
a nonunit
and,
that,
of
c R}.
in a r i n g
A
we
define
= ~(A/C)
letting
f: A ~ A / C
to be
the c a n o n i c a l
epimorphism,
we
define
~([A,C~) We
take
= f-I(~(A/C)) note
of the
fact
that
the c o n d u c t o r
localizes
properly,
i.e.:
(3.1) i__nn ~(R) respect
If
R
is a d o m a i n
is a finite to some
model,
For a domain the =
For
~(R)
and
multiplicative
§4.
I(R,k)
such
R
and
set
of all
~ (V) =
local
ring.
= I (R, R)
R
we
S
Normal
in
define
and
integral
R, t h e n
closure r i n q of
~(R)S
=
of
R
R
with
(S).
model. k
of
subrings R)
the
is the q u o t i e n t
system
a subring
that
a domain
that
V V
R of
we ~(R)
define with
k c V
is a o n e - d i m e n s i o n a l
such
regular
1.4
and for any
Q e R
~(R,Q)
or
Q c R
we d e f i n e
= {V e ~(R) : O r d v Q
For a ring
A
and any
> 0}.
C e 9(A)
we define
([A,C3) = ~(A/C). F o r a ring f: A ~ A / C
A, C e ~(A),
and
to b e the c a n o n i c a l
ord[A,C~,vQ
Q e A
or
epimorphism,
= Ordvf(Q)
for any
Q c A, u p o n
letting
we d e f i n e
V ~ ~([A,C])
and w e d e f i n e
~([A,C~,Q) We observe
We note
= ~(f(A),
that,
if
field e x t e n s i o n )
(K,k)
K
c o m p l e t e m o d e l of
is a f u n c t i o n
m o d e l of K
k
over
sor o f a f u n c t i o n
i, t h e n
I__ff K
for e v e r y
is zero",
.
over k
(i.e. a f i n i t e l y t r d e g k K = i, t h e n
k
and:
I (K,k)
all w h o s e m e m b e r s
fact that "the d e g r e e
field o v e r a field
k
{ i I if if
x ~ 0 x = 0.
that b y c o n v e n t i o n
real n u m b e r
of the d i v i -
with trdegkK =
we have,
(ordVX) [V/M(V) : k~ =
positive
is the
are normal.
V e ~ (K,k)
We remark
gener-
i.e.:
is a f u n c t i o n x e K
field with
K
W e a l s o take n o t e of the w e l l - k n o w n
(4.1)
> 0~
f(Q))
o v e r a field
is a p r o j e c t i v e
unique
ord[A,C?,vQ
that t h e n
~([A,C~,Q)
ated
= {V ¢ ~ ( [ A , C ] ) :
t i m e s ~ = ~ times p o s i t i v e = ~ times ~--- c o
real n u m b e r
1.5
Further, upon
for a n y
family
a (U)us U
where
is an i n t e g e r
a(u)
or
letting
U'
= [u ¢ U:
a(u)
~ 0},
=
a(u)
< 0}.
u
= {u c U:
a(u)
= ~]
,
ww
u
(u ~ u:
by convention
we have
0
if a(u)
u~U'
a (u)
U'
=
if U' , U =
is a n o n e m p t y
finite
set and
if
U'
is a n o n e m p t y
finite
s e t and
if
U'
is a n i n f i n i t e
=
u~U
finite
We follows fact
recall from
that
(4.1)
(4.3)
about
(4.2)
If
extensions
K
U
~
is a
set.
follows
" ~ eif i = n "
set and
U
immediately
formula,
i.e.,
of Dedekind
is a f u n c t i o n
field
from
(4.2) w h i c h
in t u r n
f r o m the w e l l - k n o w n
domains.
over
a field
k
with
w
trdegkK
= I, then,
closure
of
k
upon
i__nn I
i.
(10.1.2)
(I) c a r d
over
xI e R
emdim
it is e a s y
Now we
and
(10.1.4)).
and
Since
(i0.1.4)
emdim
= 1
from
(10.1.13)
we have
of
(5.5)
(10.1.12)
and h e n c e
either
and
(I0.i.i0).
(i0.i.i),
member
rational
and
and
(10.1.2)
From
(using
(5.4)
= Jd ) ; and a l s o
(10.1.7),
by
and
(i0.I.ii)
~(R)
implied
of this,
for letting
1.37
w e get
x0 ~ R
clearly
have
with
ordvx 0 = 1 = ordwx 0
ordVX
finally,
clearly
there
z, b y N a k a y a m a ' s
-- 1 = o r d w x
exists
lemma,
z ~
we h a v e
; also
~ l(R,x)
(R
R
for a n y
x ~ R
we
= 2 ;
~ M(V))\M(W)
and
for any
such
= R[z3. W
Since have
l(R)
that
R n
~(R)
= 2, =
IV],
(M(V)\M(V) 2) =
clearly
if
(2) h o l d s ,
V
then:
is r e s i d u a l l y
~, R N
upon
rational
(M(V) 2\M(V) 3) ~
clearly
there
lemma,
Since
and
l(R)
that
9(R)
for a n y
exists
= 2, =
R
if
2
z ~ M(V)\M(V)
we have
(3) h o l d s
then:
[V/M(V)
: R/M(R)]
we
clearly
have
there
exists
g: V - V/M(V)
by Nakayama's Now, deduction, and
as w e l l shall
for the
z ¢ V
is the
lemma,
(10.1.14)
(10.1.8)
(10.4)
for a n y
x ¢ R
we
and
such
upon
such
z, b y
V = R
we
(M(V)kM(V2))
= ~,
= 2 ;
V/M(V)
epimorphism;
-- g ( R ) ( g ( z ) ) for any
such
z,
R* = R[z3.
can b e d e d u c e d as p r o o f s
of
be p r e s e n t e d (I),
letting
= 2, R N
that
canonical
we have
cases
for a n y
= R[z~.
{V],
x ~ R
clearly
where
R,
-- 2 ;
x ~ M ( V ) \ M ( V ) 2 ~ l(R,x)
also,
V = R , we
have
Nakayama's
have
over
~, and
x e M ( V ) 2 \ M ( V ) 3 ~ k (R,x)
also,
letting
(2)
from
(10.1.5)
(10.1.4), in the and
(10.1.9).
(10.1.5),
Lemmas
(3)
and
This
(10.1.6),
(10.2),
(10.3)
(10.1.7) and
respectively. w
REMARK. R the
is like
Geometrically
the
singularity
local is
ring what
speaking:
In c a s e
of a s i n g u l a r i t y may be called
(i),
R
represents
of an a l g e b r a i c
a "high
node";
curve
the h i g h
(or,
when
node
is
w
an " o r d i n a r y called
node"
a "high
if
cusp";
d =
I.
the h i g h
In case cusp 37
(2),
R
represents
is an " o r d i n a r y
cusp"
what if
may be
d = i.
1.38
In case
(3),
R
represents
what
may be
called
a "nonrational
high
cusp" °
(10.2) V
and
are
W
LEMMA be
the d i s t i n c t
residually
such
that
n_ote the
ON H I G H
rational
ordVX
NODES.
Assume
members
of
over
R.
= 1 = ordwx,
set o f a l l p a i r s
that
~(R).
Assume
that
a_nd fix a n y
(p,q)
card~(R)
= 2, and
Assume
that
there
exists
such
x ¢ R.
of nQnneqative
V
let
and
w
x ¢ R
Let
inteqers,
G
d__ee-
let
W
G
and
--- { (p,q)
for e v e r y n o n n e g a t i v e
G
For
everv
I c R
inteqer
=
n
~ G: p = q]
n
[ (p,q)
le__~t
~ G: p a n ~ q}.
le__~t
G(I)
=
{ (ordvr,
or~r):
0 ~ r e I}
; w
(Note t h a t G(I)
then
G(I)
c G,
is a s u b s e m i g r o u p
every
(p,q)
e G(I)
and
of
and
if
G,
I
is an ideal
i.e.,
p',q')
(p + p ' , q
in
+ q')
R
or
e G(I)
R
, then when-
e G(I).).
Let w
P = R
(Note t h a t
then:
ideals
R
in
.
P
and
Further
R
For
every
w
N M(V)
Q
are
and
Q = R
exactly
N M(W).
all the
distinct
maximal
we h a v e
Q
P =
R
n
Q
=
R
Q
(PQ)
-- M(R).
(re,n) ¢ G, w e h a v e w
S(V) m N M(W) n = pm Q Qn = pmQn =
{r ¢ R : o r ~ r
~ m
and o r d w R
and G ( p m Q n) =
[ (p,q)
38
~ G: p ~ m
and
q ~ n}
;
a n~
1.39
and,
in p a r t i c u l a r ,
for
every
nonnegative
M(V) n n M(W) n = pn Q Q n = p n Q n
integer
= {r c R * :
n
we
(ordVr, ordwr)
have
e G n U {~,~]]
and G(pnQn)
= Gn .)
Let d =
Then
we
have
the
(10.2.1)
: R].
following:
For
a = min(ordVY,
[R/~(R)
any
y ~ R
orgy),
we
with
have
ordVY
paQa
c
~ orgy,
(x,y)R
upon
; whence
letting
in p a r t i c u l a r ,
G a c G((x,y)R). (10.2.2)
We
have
ordv~(R ) = or~(R) ~(R)
= pdQd
G(R)
= G
and
= d = a positive k~(R)
integer
= 2d
and W
For
every
unique
integer
ideal
moreover
we
Ji
have
every
with
i__nn R
and
emdim
0 ~ i ~ d
with
~(R)
R = 2.
we have
c Ji
such
that that
there [R/J i
exists
a
: R] = i ;
have
Ji = ~(R)
For
i
U Gd
+ xiR
y c R
(x,y)R
and
with
= M(R).
k ( R , J i)
orgy For
c ~(R) ~R
any
= 2i
~ orgy
= ~(R)
we
> 2d
~ k(R,e)
39
0 < i ~ d
and
~ ~ R
~ k(R,~)
for
min(ordVY,or~y)
have
,
= 2d
.
,
= d, w__ee
1.40
.a_nd
l(R,~)
(10.2.3) dimensional
Let
f: A - R
regular such
< 2d = I (R,~)
local
anv
elements
that
Then
Ker
f c
((~,~)A) 2
PROOF
OF
(10.2.1).
be
ring.
R
an epimorphism Let
= R[z],
Let
=- 0 ( 2 ) .
any
z ~ R
f(~)R
, ~ c A
=
y £ R
where
~(R),
A
is a t w o -
and
and
~ e A
f(~)z
be
given.
First
there
exists
r e
we
b__ee
=
f(8).
claim
that:
if
a = ordVY
such
that
Namely, 8 e R\M(R)
< ordWY
or~r
since such
= a
W
that
= b,
then
and
ordwr
(x,y) R
> b.
is r e s i d u a l l y
rational
ordW(Y
- 8x b)
> b;
(I) w e
get:
over
R,
it s u f f i c e s
there
exists
to t a k e
r = y - 8x b. By
I
induction
if
on
a = orgy
m,
from
< ordWY
and
m
is a n y
nonnegative
integer,
then
(2) there
Next
(3) I
if
q - p + a + xq
claim
such
that
ordvr
= a
and
ordwr
> m.
that:
a = ordVY
there
(x,y)R
and
(x,y)R
can
(p,q) such
find
r e
; it s u f f i c e s
in c a s e
p < q.
that:
40
e G
that
with ordVS
(x,y)R to t a k e
such
a ~ p = p
that
s = xp
~ q,
and
then
ordws
ordvr in c a s e
= q.
= a p = q,
1.41
if
a = ordVY
such
that
Namely, e R\M(R)
y,
= y - 6,x a.
such
(3)
I if
and
ordvY
then
a = orgy'
since
6'
By
< orgy,
V
there
ordV(Y
(4) w e
get
~ orgy,
y'
¢
(x,y)R
< ordvY°
is r e s i d u a l l y
that
exists
rational
over
R,
there
- 6'x a) > a ; it s u f f i c e s
exists
to take
that:
then
G a c G((x,y)R)
,
(5) where
a = min(ordvY
Now we
claim
if o r d V Y (6)
that:
~ orgy
min(or~y,or~y), (x,y) R Namely,
elements
I, and
(since
residually or~(D
now
there
in
R
that
or~
,
62
e R\M(R) ~'
(since
that
61
to take W
such
R
we
and n o w
~'
over
find
R) w e and
such
V
can
find
- 62t2)
such
W
~'
= ~ - 60t 0 rational
ordv( ~ - 61t I) > e
and
in case
R) w e now
is
that
is r e s i d u a l l y
over
> e,
find
(since
to take
that
rational
41
~ - ~'
= e = ordvD,
can
then
p e R
(since
= ~ - 62t 2.
(5) w e
ordv~
= ~ - 61t I ; finally,
or~(~
that
O r d v t 0 = e = o r d v t 0, o r d v t I =
it s u f f i c e s
~ R\M(R)
such
by
2 ; in c a s e
can
is r e s i d u a l l y that
e R
m a =
> min(ordV~,or~).
rational
= e < or~,
find
~'
ordv( ~ - 60t 0) > e
over
ordv~
can
exists
min(ordv~,Or~)
e = min(or~,or~), such
- 60t 0 - pt I) > e,
R) w e
with
min(or~',ordwD')
rational
it s u f f i c e s
take
then
is r e s i d u a l l y
such
pt I ; in case over
0 ~ ~ c R
ordvt 2 > e = or~t
v
60 c R\M(R)
and
letting
t0,tlt 2
e < or~t first
and
upon
, orgy).
can
ordv~
, and > e =
find
it s u f f i c e s
to
1.42
By induction if
l
(7)
on
i, from
ordVY ~ ordwY ., i
any element
in
NOW
~' c R*
, ordw~')
l
ordVY ~ ordwY
paQa c
integer,
min(ordv~,Ordw~) such that
and
~
is
~ min(ordVY,ordwY)
~ - 4' ¢ (x,y)R
and
> i.
(7) can clearly be reformulated
if
(8)
is any nonnegative
R , with
then there exists
min(ordv~'
(6) we get:
and
(x,y)R + piQi
thus:
a = min(ordVY,or%y),
for every nonnegative
then
integer
i.
Next we claim that:
f there exists
a positive
integer
u
such that
(9) pUjQuj Namely, positive get
c M(R) j since
integer
~(R) u
puQU c M(R);
integer
for every positive is a nonzero
such that
it follows
integer
ideal
puQU c ~(R):
that
pUjQuj
in
j. R , we can find a
since
c M(R) j
~(R) c R, we then for every positive
j.
Finally we claim that:
(lO)
I~ f
ordVY / o r % y
aQa c
Namely, positive
and
a = min(ordVY,OrdwY)
then
(x,y)R. by
integer
(8) and
(9) we get
paQa c
j, and by the Krull [(x,y)R + M(R) j] =
(x,y)R + M(R) j
intersection
for every
theorem we have
(x,y)R.
j=l This completes PROOF OF w
such that
the proof of
(10.2.2). for some
Let ~ ~ R
Q
(10.2.1). be the set of all nonnegative
we have
OrdW~ = w.
42
ordv~ ~ ordw~
and
integers
min(ordv~,
1.43
w
Since
~(R)
Q ~ ~.
c R
Upon
and
is a n o n z e r o
~R)
a = min{w:
that
in
R , we
see t h a t
letting
(1) we get
ideal
a
(2)
w
is a p o s i t i v e
ordVY
h e n c e f o r t ~ ........fix . any
~ orgy
such
e Q}
integer,
and
and
for s o m e
rain (Ordvy,
y 8 R
ordWY)
= a
we have
;
y ¢ R.
By a s s u m p t i o n
x e R
(3) and
so
G*\{0,0]
we have
with
ordvx
--- G ( [ x , x 2,x 3,...])
G a c G((x,y)R);
(4)
G~(R))
In v i e w
of
(10.2.1)
and
paQa
clearly
c G((x,y)R)
consequently,
= G((x,y) R) =
(5)
and hence
= 1 = ordwx
c
in p a r t i c u l a r
; by
in v i e w of
(G \[ (0,0)]
U Ga
(10.2.1)
(i) we g e t
and
G(R)
and that
= G
U G a-
(2) w e h a v e
(x,y)R
paQa
c
~(R)
; also,
for any
r e R*\paQ a
have min(ordvr,ordwr)
~- a
w
and we
can
find
s ~ rR
such
that
m i n ( o r d V r , o r d w r) = m i n ( o r d V s , o r d W S )
and then
in v i e w
thus we have
proved
(6)
By
(7)
of
(2)
(4) w e
< max(ordVs,ordw
see t h a t
s ~ R
that
~(R)
= paQa
.
(6), w e get ordv~(R ) = ordw~R) 43
= a
and h e n c e
s)
r ~
~(R)
;
we
i. 44
and,
since
V
and
W
are
(8)
residually
k~(R)
Since (6) w e
V
and
W
are
rational
over
R, w e
also
get
rational
over
R, b y
(4) and
= 2a.
residually
see t h a t
(9)
for any
~ e R
w e have:
~ e
~(R)
(i0)
for a n y
~ ¢ R
w e have:
c~R
for any
~ e R
w e have:
I(R,~)
~ k (R,~)
a 2a
w
=
~(R)
~ ~ (R,~)
= 2a
and
(ii)
We
claim
(R A
rational then
{ ¢ R
given
over
in v i e w
of
reverse
can
we
inclusion
claim
[(R N
Namely,
e R n find
= ordw@
have
= i < a
we have
(piQl).
(piQi),
p ~ R
(since
such
ordw(g
v
that
-p~)
is r e s i d u a l l y
Ordv(~
> i
-Og)
> i
and h e n c e
; thus
(pi+iQi+l))
+ ~R D
is o f c o u r s e
induction
(R n ( p a Q a ) )
Next
(14)
~
(4) w e m u s t
By decreasing
(13)
ordv{
+ {R = R N
(pi+iQi+l)
(R n
the
any
R) w e
- pg e R n
and
with
(pi+iQi+l))
Namely,
~ 0(2).
that
for any (12) I
~ 2a = k(R,~)
on
(piAi. U ) ,
obvious.
i, in v i e w o f
+ xlR = R N
.pi_i, ~ ~ )
(3) and
for
(12) w e get:
0 ~ i ~ a.
that:
(piQi))/(R
N
(pi+IQi+l))
for e v e r y
44
: R3 =
1
for
0 ~ i < a.
and
1.45
~
by
(4) w e m u s t h a v e
(R n
o r d v ~ -- i = o r d w ~
(R n this shows
(pi+iQi+l))+
(pi+iQi+l))
and h e n c e b y
~R = R N
(piQl)
(12) w e h a v e
;
that [ (R N
(i4 i) by
(piQi))\(R n
(piQi))/(R n
(pi+iQi+l))
: R~ s 1 ;
(3) xi e
(R n
(piQ1))\(R N
(pi+iQi+l))
and h e n c e (142 )
R N
now by
(141 ) and
(piQi)~
R Q
view of
(pi+iQi+l)
; hence by applying
: R~ = 1
(13) w i t h
i = I, in
(x,y)R = M(R)
(15) we h a v e
e m d i m R < 2; n o w
R
is not r e g u l a r b e c a u s e
we m u s t h a v e
(16)
emdim R = 2 . Since
R N
(17)
(6),
(3),
(pOQ0) = R, u p o n
J. = 1
(13) and
(18) By
;
(5) w e get
therefore
by
(PIQI))/(R Q
(PQ) = M(R)
(15)
By
(pi+iQi+l)
(142 ) we get [ (R n
Now
R N
setting
~(R)
,
(14) w e get
[R/J i : R~ = i (6) and
+ xiR
(17) we h a v e 45
for
0 < i s a .
~(R) ~ i;
1.46
(19)
X ( R , J i) =
We
claim
given
2i
for
0 ~ i ~ a.
that:
any
ideal
J
in
R
with
~(R)
c J,
upon
letting
i = ordvJ, (20) we have
Namely, 0 < i < a,
that
i
in v i e w
is a n
(4)
and
J c R n
i = a
that
then
since
~(R)
J = J a ; so h e n c e f o r t h
ordv~
=
i
and
then
=
(203 )
c J)
(2)
and
in v i e w
6x I + ~ y
(6) w e h a v e
y
(204 )
e
xi c
since
(R) c J, b y that
is
an
J = Ji"
integer
with
;
by
(3) , (6), (17)
that
(6),
~(R)
(13),
hence
of
i < a; w e
(2),
with
~(R),
and can
(201 ) w e
see
take
(3)
8 e R\M(R)
and hence
+ ~R
(17),
and
by
(15) w e
and
(pOQ0)
= R, b y
by
the
definition
of
(6),
(203 ) w e
(201),
(13)
and
we have
a = d.
46
get
;
: R] = a
d
get
~ e R
(202 ) a n d
(204 ) w e
1
R N
[R/~(R)
(21)
i
that
and
J = J..
Since
and
0 ~ i ~ a,
~ e J
with
clude
see
(piQi)
assume
(202 )
by
(6) w e
with
and
(201 )
if
integer
(14) w e
get
con-
1.47
Now
in v i e w
(Ii),
and
PROOF
of
(21),
(15) to
OF
the p r o o f
of
(10.2.2)
R
= R[z],
is c o m p l e t e
by
(4),
(20).
(10.2.3).
Since
and
so,
upon
relabelling
z ~
P.
Now,
since
V
V
and
W
we must
suitably,
is r e s i d u a l l y
(I)
rational
have
we may over
z ~
that
R, w e c a n
find
that
(2)
z + f(8)
¢ P.
w
NOW
R
= R[z
+ f(8)],
and h e n c e
(3)
z + f(8)
Since
f(~)R*
=
~(R),
(4)
by
.
we get
that
-- d = o r d w f ( ~ )
~ =
clearly
~ +
66
have
(6)
By a s s u m p t i o n
(~,9)A =
f(~)z
=
consequently,
(7)
By a s s u m p t i o n
by
(2),
=
and h e n c e
f(~)(z
(3) a n d
ordwf(~)
OrdVx
(~,~)A
f(8),
f(N)
(8)
have
letting
(5)
we
~ Q
(10.2.2)
ordvf(~)
Upon
we must
+ f(6))
(5) w e h a v e
;
(4) w e g e t t h a t
= d < Ordvf(~)
= 1 = OrdwX,
{ e A
by
with
and h e n c e
f(~)
47
-- x
.
upon
P n Q,
suppose
8 ~ A\M(A)
such
(6) to
fixing
any
i. 48
we h a v e
(9)
Ordvf(~)
NOW,
in v i e w
of
(7) and
(I0)
By
= 1 = ordwf( 0,
in v i e w of
(7) w e
also h a v e
(4) w e g e t
~ ~ ~A
~ e M(A)
; consequently,
; in v i e w
in v i e w
of
of
(4)
(ii) we
can
write
(12)
and
~ =
b
6'~ b + D~
is a p o s i t i v e
where
integer;
(13)
By
now,
b = d
(12)
and
(13) w e
see t h a t
6' c A\M(A)
and
by
(9) a n d
(4),
(7),
p e A
(12) w e g e t
.
({d,n)A =
(e,9)A,
and h e n c e
by
(6) w e
get (~d,~)A =
(14)
Let then NOW,
y ¢
any
(({d,9)A)2,
in v i e w of
(15) such
y e A
with and
(11), w e
f(y)
(~,~)A.
= 0
in v i e w
b e given.
of
(14)
We
this will
shall
show that
complete
the p r o o f .
can w r i t e
y = r + s~ + t~ 2
with
r,s,t
in
A
that I
either
r = 0
(16) or
r = 60 ~a
with
60 e A\M(A)
48
and n o n n e g a t i v e
integer
a
1.49
l
either
(17) [ o r
By
(9),
s = 0
s = 81 gb
(16) and
(18)
f(~)
(19) N o w by
= or~f(r)
= 0, in v i e w o f
ordvf(r) (15),
(16),
and
integer
b.
that
and
ordvf(S)
(7),
= oral(r) (17)
and n o n n e g a t i v e
8 1 e A\M(A)
(17) w e d e d u c e
ordvf(r)
Since
with
(15) and
a 2d (19)
and
= or~f(s)
(18) w e c o n c l u d e
ordvf(S)
it f o l l o w s
that
that
= or~f(s)
z d .
y c ((~d,9)A)2.
w
(10.3) {V] R N
LEMMA ON HIGH CUSPS.
and that
V
is r e s i d u a l l y
for e v e r y
n c G
I c V
[2m
Assume R.
that
(M(V)2\M(V)3)-
Let
let
: m ~ G]
{2m+l
: m ~ G
,
with
m ~ n]
let G(I)
= {ordvr
: 0 ~ r e I]
Let d = [R/~ (R) Then we have
: R]
the f o l l o w i n g ,
(10.3.1).
d
is a p o s i t i v e
ordv~(R)
integer,
= 2d = X~(R)
and
49
and
that
Assume
let
Gn For every
over
x c R N
integers,
G
V = R .
rational
(M(V)\M(V) 2) = ~, and fix any
b the s e t of all n o n n e g a t i v e
and
Let
~(R)
= M(V)
2d
~(R)
G
=
1.50
G(R)
For
every
unique
inteqer
ideal
moreover
i
Ji
= G
with
i__nn R
U Gd
and
0 ~ i ~ d
with
~(R)
emdim
we have
~ Ji
R =
2.
that
such
that
2i
for
there
exists
a
[ R / J i : R~ =
i ;
we have
Ji = ~(R)
_FOr e v e r y F__oor an%
e ; n o w it
W
suffices
to take
0' = 9 - 6 t.
By i n d u c t i o n on (6)
M(V) 2a c
i, from
(5) we get:
(x,y)R + M(V) i
for e v e r y n o n n e g a t i v e
integer
i.
N e x t w e c l a i m that:
(7) I
there
exists
a positive
M(V) uj c M(R) j Namely, positive t h e n get positive By
since
integer
(6) and
is a n o n z e r o
such t h a t
M(V) u c M(R) integer
u
for e v e r y p o s i t i v e
~(R) u
integer
j. (7) w e get
51
integer
ideal
M(V) u ~
; it f o l l o w s
such t h a t
that
~(R)
in
j V, w e can find a
; since
~(R) c R, we
M(V) uj c M(R) j
for e v e r y
1.52
M(V) 2a c and by
the
(x,y)R + M(R) j
Krull
for e v e r y
intersection
[(x,y)R
theorem
+ M(R)J~
=
positive
integer
j
we have
(x,y)R
;
therefore
j=l (8)
M(V) 2a c
and h e n c e we
can
s ~
in p a r t i c u l a r
find
R
s ¢rR
and h e n c e
r ~ ~(R)
; thus
(i0)
ordv~(R)
(i) w e
~(R)
M(V) 2a c ~(R) ordVS
~(R)
Since
.
with
(9)
and
(x,y)R
=
=
2a - 1
we h a v e
= M(v)2a
see that,
and
X~(R)
= 2a
(12)
~ c {(R)
(13)
~R
and
any
then by
proved
*
r ~ R \M(V)
2a
(4) w e h a v e
that
. V
for any
(ll)
given
and hence
= 2a
IV]
; also
is r e s i d u a l l y
rational
~ ¢ R, we h a v e
the
over
R, b y
(4)
following.
.
~ l(R,~)
~ 2a
w
= {(R)
~ k(R,~)
-- 2a
.
and (14)
I (R,~)
We
claim
{
2a
=
l(R,~)
~
0(2)
.
that
for a n y
{ e R
with
ordw{
we have
(R N M(V) 2i+2)
= 2i
where
i
is an
integer
< a ,
(15) + ~R = R N M(V) 2i
w
Namely, rational
given
over
any
{
R) we c a n
e R N M(V) 2i, find
p e R
(since
such
that
V
is r e s i d u a l l y
o r d v ( { -p~)
> 2i
w
then *
in v i e w of
(4) w e m u s t
- p{ ¢ R N M(V)
2i+2
have
the
reverse
By d e c r e a s i n g
~ 2i + 2, and h e n c e
; thus
(R N M(V) 2i+2) and
o r d v ( { -p{)
inclusion
+ {R D R Q M(V) 2i
is of c o u r s e
induction
on
i,
52
,
obvious.
in v i e w
of
(3) and
(15) w e get
and
1.53
(16)
(R N M(V) 2a)
+ x i R = R O M(V) 2i
for
0 ~ i < a .
for
0 < i < a .
N e x t we c l a i m that (17)
[(R N M(v) 2 i ) / ( R
Namely,
(R n M ( v ) 2 i ) \ ( R
(4) we m u s t h a v e
o r d v ~ = 2i
(R N M(V) 2i+2)
this
shows
N M(V) 2i+2)
and h e n c e b y
+ ~R
=
(15) we h a v e
R Q M(V) 2i
that [(R N M(v) 2 i ) / ( R
(171 ) by
: R]
for e v e r y ~
by
N M(V) 2i+2)
N M(V) 2i+2)
: R~ ~ 1 ;
(3) we h a v e x
i
C
(R N M(V)
2i\
(R N M
(V) 2i+2)
and h e n c e (17 2 )
(R Q M(v) 2 i ) \ ( R
now by
(171 ) and
~ ~ ;
(172 ) we get [(R N M ( v ) 2 i ) / ( R
Now by assumption M(R)
N M(V) 2i+2)
; consequently,
R P
N M(V) 2i+2)
: R~ = 1 .
(M(V)\M(V) 2) = ~, and h e n c e
by applying
(16) w i t h
R e M(V) 2 =
i = I, in v i e w of
get (18) By
(x,y)R = M(R).
(18 we get
R N (19)
emdim
R < 2 ; now
(M(V)\M(V) 2) = ~ ; t h e r e f o r e emdim
R
is not r e g u l a r
we m u s t h a v e
R = 2
53
because
(8) we
i. 54
Since
R n M(V) 0 = R,
J
(20)
by
(9),
(16)
and
(21)
By
(3),
(9) a n d
(22)
claim
given
f
i =
(23) I
J
we have
that
i
in v i e w and
0 < i < a .
in
R
with
~R)
c J,
upon
letting
is an
of
(4)
integer
and
with
(9) w e
0 ~ i ~ a,
see
that
(2),
(3)
i
and
J = Ji
is an
integer
clearly ;
~cJ
and
=
2i
and
~ =
6x I + ~y
then
(9) w e h a v e
(234 )
clude
.
take
(233 )
since
for
J c R N M(V) 2i
ordv~
(2)
0 < i ~ a
for
(i/2)or~J,
(232 )
by
i
2i
ideal
(231 )
with
that
that:
0 ~ i ~ a,
can
,
(20) w e h a v e
any
Namely, with
letting
+ xlR
see
: R~ =
(R,J i) = We
we
--- ~(R)
l
(17) w e
[R/J i
upon
xi c
~(R) that
c J, b y
(9),
in v i e w
y ~
~(R)
of
with
8 e R\M(R)
~(R),
and
+ ~R
(16),
hence
and
and
by
(18)
~ ~ R
(233 ) w e
we
get
;
get
;
(20),
J = J.
l
54
(231),
(232 ) a n d
(234 ) w e
con-
1.5~
Since
R N M(V) 0 = R, b y
(9),
[R/~(R)
and h e n c e
b y the d e f i n i t i o n
(24)
Now
in v i e w
(14),
and
(18)
PROOF
OF
rational 8 e A
of
(24), to
such
(17) we get
d
we h a v e
of
(10.3.1)
.
the p r o o f
is c o m p l e t e
R, and
By assumption R n
R
= R[z],
V
(M(V)\M(V) 2 = ~, t h e r e f o r e
that
(I)
o r d V (z+f (8)) =
1
and
(2)
Since
f(6)R
either
8 e A\M(A)
or
=
by
w e get
~(R),
(3)
~ =
clearly
that
.
~ + 66
have
(5)
(~,~)A =
By a s s u m p t i o n
f(e)z
=
f(~)
consequently (6)
= 2d
6 = 0 .
letting
(4)
we
(i0.3.1)
ordvf(C~)
Upon
by
by
(4),
(9) to
(23).
(10.3.2).
over
and
: R] = a
of
a = d
(16)
(i) and
f(~),
=
(~,8)A
and h e n c e
f(~)(z
+ f(6))
(3) w e g e t
ordvf(D)
by
that
--- 2d + 1
55
(4) we h a v e
;
is r e s i d u a l l y we
can
find
1.56
By a s s u m p t i o n
ordvx
(7)
=
2
{ e A
and hence,
upon
with
= x
f({)
fixing
any
,
we have
(s)
ordvf(~)
NOW,
in v i e w
of
(6) and
(9)
(7), b y
(f(~),
By
(10.3.1)
clude
we h a v e
(10.3.1)
we g e t
that
f ( ~ ) ) R = M(R).
emdim
R =
2, and h e n c e
in v i e w
of
(9) w e
con-
that
(i0)
(~,~)A = M(A)
Since and
= 2
d > 0,
in v i e w
(6) w e a l s o h a v e
~ ~
of
.
(3) w e g e t
~A
~ ~ M(A)
; consequently,
; in v i e w
in v i e w
of
of
(3)
(i0) w e
can
write
=
(II)
and
p
6' {P + p~
is a p o s i t i v e
integer;
(12)
By
where
nOw,
p = d
(ii)
and
(12)we
6' e A \ M ( A )
and
by
(8) and
(3),
(6),
p e A
(ii) w e g e t
°
see that
({d,~)A =
(~,~)A,
and h e n c e
by
(5)
w e get
(13)
(@d,~)A =
Let a n y then proof.
(14)
y ~
y ¢ A
((~d,z)A)2,
Now,
in v i e w
with
f(y)
and of
(~,$)A.
= 0
in v i e w
(i0),
y = r + sD + t~ 2
we
of
be given. (13)
We
this will
can w r i t e
with
56
r,s,t
in
A
shall
show that
complete
the
i. 57
such
that
[
either
r = 0
or
60 ~a
(15) r =
with
6 0 e A\M(A)
and
nonnegative
integer
a
with
81 ¢ A\M(A)
and
nonnegative
integer
b
and
( I either
s = 0
(16) or
Since
s = 61 ~b
f(y)
= 0, b y
(6),
(8),
r ~ {2dA
(17)
Now by
(14)
and
(17)
(14), and
it f o l l o w s
(15) s
and
¢ {dA
that
y ~
(16) w e d e d u c e
that
.
((@d,9)A)2 @
(10.4) that
~(R)
=
LEMMA
ON N O N R A T I O N A L
IV}.
Assume
R n M(V)\M(V) 2 ~ g: V ~ V/M(V)
~
and
b e the
that
T h e n we h a v e
the
(10.4.1)
CUSPS.
[V/M(V)
fix an v
canonical
d =
HIGH
x
Let
: R/M(R)]
¢ R n
= 2.
(M(V)\M(V) 2) .
epimorphism.
[R/~(R):
V = R .
Assume
Assume
that
Let
Let
R]
followinq
We h a v e
or%{(R)
= d = a positive
~(R) = M ( v ) d
and
integer
k ~(R) = 2d
and emdim For
everv
unique
inteqer
ideal
J
in 1
moreover
i
with R
R = 2 .
0 ~ i ~ d
with
~(R)
we h a v e c J
such
that that
- -
there
exists
[R/J.
: R~ 1
we have Ji ~
~(R)
+ x±R
and
k(R, Ji)
57
= 2i
for
0 ~ i ~ d
o
a =
i
;
1.58
For any
0 ~ ~ ¢ R
we have:
d ~ ordv@
For every
y ¢ R
(x,y)R = M(R).
I
there exists
[
ordv@'
~ith
= ordv@
ordVY = d
For an~
@' ¢ R
such that
and
and
g(9'/@)
~ g(R).
g(y/x d) ~ g(R), we have
~ 6 R
we have
-- {(R)
~ X(R,~)
= ~(R)
~ X (R,~) -- 2d
w
aR
~ 2d
w
~R and
X(R,~) (10.4.2). dimensional
Let
~ 2d = I (R,~) -= 0(2).
f: A - R
reqular l o c a l
be a n eDimorphis m where
rinq.
Let
z ¢ R
W
an y elements Then
such that
Ker f c
((~,~)A) 2
PROOF OF
(10.4.1).
R
, ~ C R
A and
is a two~ ~ R
be
*
= R[z],
f(~)R
= {(R),
and
f(~)z = f(~).
We claim that:
there exists a positive
integer
u
such that
(I) I M ( V ) uj c M(R) j Namely, positive get
since
integer
M(V) u c M(R);
integer
for every positive
{(R) u
is a nonzero
such that
integer
ideal in
M(V) u c ~(R);
it follows that
j.
V, we can find a
since
M(V) uj c M(R) j
~(R)
c R, we then
for every p o s i t i v e
j.
Recall that b y assumption (2)
x c R Let
some
Q
~ ~ R
g(V) ~ g(R),
with
ordVX = I.
be the set of all nonnegative with
or%~
and hence
= w
we have
in v i e w of
integers
w
such that for
g (~/x w) ~ g (R).
By assumption
(i) we see that 58
~ ~ ~.
1.59
Now upon
letting
(3)
a = min[w:
we get that
a
w ¢ Q}
is a p o s i t i v e
i n t e g e r and t h e r e
exists
y ¢ R
such
that
(4)
ordvY = a
henceforth
fix a n y
such
We c l a i m that
(5)
a
OrdV8
I OrdVS'
if
ordve = ordvxb cOnsequently if and
e
and
g(@'/e)
hence by
and e i t h e r
;
such that
and
g(e'/8)
then by
to t a k e in
then either
(3) w e m u s t h a v e
we h a v e
0' e R
g(yxb-a/8)
are e l e m e n t s
~ g(R),
@ c R
= OrdV8
ordv8 = b m a
it s u f f i c e s 8'
0 ~
exists
~ Namely,
g ( y / x a) ~ g(R)
y ~ R.
for any
I there
and
(4) w e see t h a t ~ g(R)
6' = y x b - a R
~ g(R).
or or
such that g(~'/xh)~g(R)
ordVYX
b-a
g(xb/8) ~ g(R) 8' = x b.
or~8' or
= ;
Conversely,
= ordv@ = b ~ g ( 8 / x b) ~
g(R)
b ~ a.
Next we claim that
given any
0 ~ ~ e V
such that
q - ~' e
Namely, elements
p
since
and n o w it s u f f i c e s By induction
M(V) a c
(7) By
(i) and
(x,y)R
[V/M(V) p*
and
w i t h ord V = e ~ a, t h e r e
on
in
R
to t a k e i, from
and
: R/M(R)]
OrdV~'
> ordv~
= 2, in v i e w of
such t h a t 4' = ~ - px
exists
~' ¢ V
.
(4) we c a n
find
o r d v (qx -e - p - p*yx -a ) > 0 e
* e-a - p yx
(6) w e get:
(x,y)R + M(V) i
for e v e r y n o n n e g a t i v e
(7) w e g e t
59
integer
i.
;
i. 60
M(V) a c
and by
the
Krull
(x,y)R + M(R) j
intersection
for
theorem
every
positive
integer
j
we have
¢0
n j=l
[x,y)R
+ M(R) j] -- ( x , y ) R
;
therefore
(8)
and
M(V) a c
hence
ordvr
= p < a,
s ~ V that
in p a r t i c u l a r
with either
upon
OrdvS r ~
R
M(V) a c ~(R)
letting = p
and
or
s ~
; also,
s = r y / x a, b y g(s/r) R
~(R)
(9)
(x,y)R
~
; thus
given
any
(2) a n d
g(R),
and
we have
(4) w e
then
proved
r ¢ V
by
get
with that
(5) w e
see
that
= M(V) a
and hence
(io)
ordv~(R)
~(I{) =
Since see
{V}
and
[V/M(V)
= a
.
: R/M(R)]
=
2,
in v i e w
¢
~(R)
of
(i0) w e
that
(n)
X~(R)
= 2a
(12)
for any
~ ¢ R
we have:
(13)
for
any
~ ¢ R
we have:
~R
for any
~ ¢ R
we have:
X(R,~)
~ k (R,~)
m 2a
@
=
~(R)
~ k(R,~)
= 2a
and
(14) We
claim
that
60
&
2a = k ( R , ~ )
=- 0(2)
1.61
/ for any
~ ¢ R
with
o r d v ~ = i < a, we h a v e
(15) (R N M(V) i+l)
Namely,
given
+ ~R = R N M(V) i
any
~ * ~ R N M(V) i
we must h a v e
*
then o b v i o u s l y ,
and
if
ordv~
(if
ordv~*
>
= i, then b y
(5))
g(~ /~)
e g(R)
W
h e n c e we can find
p e R
such that
(R N M(V) i+l)
and the r e v e r s e
inclusion
By d e c r e a s i n g (16)
~
- p~ ¢ R N M ( v ) i + I
; thus
+ ~R ~ R D M(V) i ,
is of course
induction
on
obvious.
i, in v i e w of
(R q M(V) a) + x i R = R Q M(V) i
for
(2) and
(15) we get
0 ~ i < a .
Next we claim that (17)
[ (R D M(v) i/(R D M(V) i+l)
Namely,
by
for
0 ~ i < a .
(R N M(v) i ) \ ( R N M(V) i+l)
(15) we h a v e (R N M(V) i+l)
which
+ {R = R D M(V) i
shows that
(171 ) by
: R~ = 1
for e v e r y ~
[ (R n M ( v ) i ) / ( R
N M(V) i+l)
: R] ~ 1 ;
(2) we h a v e xi ~
(R n M(v) i ) \ ( R D M(V) I+I)
and h e n c e
(172 )
i,
W
(R N M(v) i ) \ ( R Q M(V) i+l) @ @ ;
61
and
1.62
now by
(171 ) a n d
(172 ) w e
get
[ (R n M ( v ) i ) / ( R
Now view
of
R N M(V) (8) w e
= M(R)
and hence
by
; R] = 1 .
applying
i =
(16) w i t h
I,
in
get
(18)
BY
D M ( V i+l)
(x,y)R = M(R)
(18) w e
g(V)
get
~ g(R)
emdim
R < 2 ; now
; therefore
we must
(19)
emdim
Since
R N M(V)
0
= R,
J
(20)
R
is n o t
regular
because
have
R =
upon
2 .
letting
=
~(R)
see
that
+ xlR
,
1
by
(9),
(16)
and
(17) w e
(21)
for
[ R / J i : R] = i
Since
[V/M(V)
: R/M(R)]
(22)
=
2 , by
k ( R , J i) =
We
claim
given
2i
0 < i < a
(2),
for
(9) a n d
0 < i < a
.
(20) w e h a v e
.
that:
any
ideal
i = or~
J
we have
that
J
in
R
with
~(R)
c J,
upon
letting
,
(23)
Namely, 0 < i < a,
in v i e w and
i
is a n
of
(9) w e
i = a
see
with
that
i
0 ~ i ~ a,
is a n
and
integer
J = Ji
"
with
clearly
J c R N M(V) i ;
(231 )
if
integer
then
(since
~(R)
c J) b y
62
(2),
(9),
(20)
and
(231 ) w e
see
i. 63
that
J = J a ; so h e n c e f o r t h
(232)
with
ordv~
= i
and
then
~ =
(4) and
(9) w e h a v e
~(R)
c J, b y
that
J = J
Since
(9),
i
(16),
by
in v i e w
0
have of
and
(18)
PROOF
OF
g(z) ~ (10.4.1),
(1)
(24), to
(9),
by
and
(233)
~ e R
;
w e get
(231),
(232 ) and
(234 )
we
con-
(16)
and
(17) w e g e t
of
d
we h a v e
of
(10.4.1)
.
is c o m p l e t e
by
(5),
(9) to
(23).
Since
g(R).
Since
we get
that
ordvf(~)
(2)
6 ¢ R\M(R)
(18) we get
: R] = a
the p r o o f
(10.4.2).
By assumption
V = R[z]
f(~)R
--- d = o r d v f ( ~ )
Ordvx
e A
= 1
with
=
and
~(R)
and hence,
f(~)
or~f(~)
= x
= 1 .
63
and
g(V)
and
f(~)z
g(f(~)/f(~))
we h a v e
(3)
take
+ ~R ;
(20),
= R, b y
the d e f i n i t i o n
of
(4) and
and h e n c e
¢ ~(R)
a = d
(14),
can
l
R n M(V)
(24)
Now
i < a ; we
(2),
with
[R/~(R)
and h e n c e
of
y ~ ~(R),
x
since
in v i e w
6x I + ~y
(234 )
clude
that
~ e J
(233 )
by
assume
upon
,
~ g(R), =
f(~),
~ g(R).
fixing
any
we m u s t in v i e w
i. 64
In v i e w
(i), t h e r e
g(f(9)/f([d))
that A
of
such
is a p e r m u t a t i o n
~ g(R).
Note
that
now
of
(9,{) ~
(~,~)
such
are e l e m e n t s
and
in
that
(4)
o r d v f (~3) = d
(5)
g(f(~])/f(~d))
(6)
ordvf(~)
(7)
g(f({)/f(~))
(~ g(R)
= d
~ g(R)
and
(8)
(~,~])A =
In v i e w
of
(2),
(4) and
(9)
By
(5), b y
(f(~),
(10.4.1)
(c~,8)A
.
(10.4.1)
we get
f ( ~ ) ) R = M(R)
we also have
emdim
R = 2, and h e n c e
by
(9) we
conclude
that
(i0)
(~,~)A = M(A)
Since (6) and
d > 0,
in v i e w
(7) w e a l s o h a v e
of
(6) w e get
~ ~
~(A)
~ ~ M(A)
; consequently,
; in v i e w in v i e w
of
of
(4),
(i0) w e
can w r i t e
(Ii)
and
~ =
p
6'~ p + p~
is a p o s i t i v e
where
integer;
6'
now by
e A\M(A)
(3),
(4),
and
p e A
(6),
(7) and
(ii) w e
get
(12) By
(ii)
p = d and
(12) w e
see t h a t
. (~d,~)A =
get
64
(~,~)A,
and h e n c e
by
(8) w e
1.65
(13)
(~d,~)A = Let any
then
y e A
with
y ¢ ((~d,~)A)2,
Now, in view of (14)
(~,~)A .
f(y) = 0
be given.
and in view of
We shall show that
(13) this will complete the proof.
(i0), we can write
y = r + s~ + t~ 2
with
r, s, t
in
A
such that
(15) I either i or
r = 0
r = 60 ~a
with
60 ¢ A\M(A)
and nonnegative
integer
a
with
61 ¢ A\M(A)
and nonnegative
integer
b .
and I either
s = 0
(16) I
or
s = 81gb
Since
f(y) = 0, by
(4),
r e ~2dA
(17) NOW by
(3),
(14) and
(5), and
(14),
(15) and
(16) we deduce that
s e ~dA .
(17) it follows that
65
y c ((~d,~)A)2
CHAPTER
IIo
PROJECTIVE
By a h o m o g e n e o u s family
[Hn(A)]0mn 0. In the r e s t o f C h a p t e r
§ll.
Function
II,
let
A
be a homogeneous
fields and projective
domain.
models.
We define H(A)
=
U
H n (A) .
0gn 0, w e m a y
flat w h e r e
We
also
£(A, Q I , Q 2 ..... Qs )
e = E m d i m [ A , Q i , Q 2 .... ,Qs])
QI,Q2,...,Qs reference
call
to
note
; from A
these
is c l e a r
phrases from
i__n A
" in A
the
flat
spanned
(or the e-
by
" m a y be d r o p p e d
when
the
the context.
that H I(A)
= ~r-l(A)
F o r any
where
[0] fi N ~ ~
r = Emdim (A), w e
A.
define
A N = A N N H I (A)
Again tion
we
observe
that
of the s e t of all
homogeneous
subdomains
N - AN
gives
nonzero
members
of
A,
and
a
(inclusion
preserving)
of
onto
~
the
inverse
{0}
~ N e ~
(A)
bijection
the
set of all
is g i v e n
B - HI(B)A. In the r e s t
of §14,
let any
73
(A)
biject-
be qiven.
by
2.9
For
any
J c A
we d e f i n e jN,A = A N N J
and w e
call
jN,A
words,
projection
corresponding to
A
from
member
is c l e a r
and w e
the ~ r o j e c t i o n
simply
from
call
of
N
is the
N
n HI(A)
the
context,
J
from
same
thing
of
~(A).
N
of
J
A N = A N'A = the p r o j e c t i o n
A.
In o t h e r
as p r o j e c t i o n Again,
we m a y w r i t e
it the p r o j e c t i o n
in
jN
from
of
when
the
instead N.
A
from the
We
from
reference
of
note
N
jN,A that,
(in A)
,
and Emdim A N = Emdim We o b s e r v e
inverse
particular c N] ~
j ~ jN
* [J ¢ ~i(A)
tion of and the
that
: J c N]
bijection
~ , N
onto
gives
HI(AN),
and
A - Emdim[A,N]
gives
a
(inclusion
onto
~ i*- e - i (A N )
preserving) where
is g i v e n b y
K ~ KA.
a
preserving)
(inclusion
the
inverse
- 1 .
We
bijection
bijec-
e = Emdim[A,N~,
note
that
then,
[~ c HI(A)
is a g a i n
in
:
given by
@A.
We
define H
(A,N)
=
{~ ¢ H
(A)
: ~ =
and w
*
Hn(A,N) and we n o t e Hn(A,N) We
also
that
onto note
H
= H
w
(A,N)
~ , ~N (AN),
and
*
to m e a n ideal
in
gives
(inclusion
inverse
W
(A,A (A)) = H
shall
say t h a t
that
~ ( A N) = ~(A).
C
the
a
preserving)
bijection
bijection
is g i v e n
by
of
~ ~ ~A.
that
H We
n Hn(A)
in
A, we
W
(A)
and
the p r o j e c t i o n
shall
Given
from
N
= H n(A) in
any n o n m a x i m a l
say t h a t
74
*
H n ( A , A (A))
A
is b i r a t i o n a l
homogeneous
the p r o j e c t i o n
of
C
prime from
N
in
2.10
A
is b i r a t i o n a l
to m e a n t h a t
N ~ C
and
Again,
f r o m t h e s e two p h r a s e s w e m a y d r o p
to
is c l e a r
A
LR([A,C~):R([AN,cN)~ " in A " w h e n
= i.
the r e f e r e n c e
f r o m the c o n t e x t .
§15.
Zeroset
and h o m o g e n e o u s
localization.
We define ~(A)
= the s e t of all n o n m a x i m a l
homogeneous
prime
ideals
in
A.
W e also d e f i n e
~I(A)
= {P ¢ n(A)
: E m d i m A / P = D i m A/P]
hi(A)
= {P ~ n(A)
: D i m A / P = i}
I(A)
and w e n o t e
= ~I(A)
N n i (A)
that
~ i (A) c ~ i + l (A) We observe A ~ A/P, With
every
1
hi(A)
and
t h a t for any
*
c ~i(A)
P c ~(A),
[R([A, P3)
i.
v i a the c a n o n i c a l
H 0 ( A / P ) - v e c t o r - s p a c e becomes a
this u n d e r s t a n d i n g
for all
epimorphism
H0(A)-vector space.
we have
: H0(A)~
= [R([A,P])
: H 0 (A/P)
= {P ~ •(A)
: [R([A,P~)
: H 0(A)]
and 9 0(A)
< ~}
We define neg~A, P3 = [R([A, P3)
: H 0(A) ] for all
and w e n o t e t h a t t h e n
Deg[A, P3 = D e g ( A / P )
75
for all
P c Do(A)
P e ~0(A)
2.11
We also note that 1 n0(A ) = [p ¢ n0(A)
: Deg[A,P]
= i]
and in particular: H0(A)
algebraically
closed = n0(A) = ~ ( A )
We define n(A,x)
= [P ¢ n(A)
~l(A,x)
: x ¢ P]
= ~(A,x)
n ZI(A)
~i (A,x) = •(A,x)
Q ~i(A)
for any
x ¢ H(A)
~}(A,x) : ~(A,x) n ~(A) 1 n(A,I)
: [P c ~(A)
: I n H(A) c P]
n I(A,I) = [%(A,I) e ~I(A) for any
I cA
n i (A, I) = n (A, I) N n i (A) nI(A,I)
= n(A,I)
n nl(A~l
n(A,\I)
= ~(A)\n(A,I)
nl(A,\I)
= n(A,\I)
N nl(n)
ni(A,\I)
= ~3(A,\I)
N ~i(A)
~(A,\I)
= ~(a,\i) n e~(a)
n([A,I])
= •(A,I)
nl([A,I])
= •I(A,I)
ni([A,I])
= ni(A,I)
1 ni([A'I])
I(A,I ) = [%i
I
76
for any
I c H(A)
or
I cA
for any
I ¢ H(A)
or
I cA
2.12
n([A,I~,J)
= n(A,I)
N ~(A.,J)
nl([A,I~,J)
= n([A,I~,J)
n nl(A)
for a n y
I ¢ H(A)
or
ni([A,I~,J)
= n([A,IT,J)
N hi(A)
and a n y
J ~ H(A)
or J c A
nl([A,I],J) i
= ~([A, IT,J)
n nl(A) i
n([A,I~,\J)
= ~3(A,I)\~3(A,J)
~I(A,I],\J)
= ~I([A,I~,\J)
I c A
and
Q ~I(A)
~i([A,I~,\J)
= ni([A,I~,\J)
n ~i(A)
~ i1( [ A , I ] , \ J )
= n Ii ( [ A , J ~ , \ J )
N ~I(A)
We note that then ~(A) •(A,xA)
= •([A,0],x)
= ~(A,0)
= ~([A,x],O)
= n([A,0],I)
n(A,I)
= ~ ~ HI(A)
~(A,I)
is a finite
set ~ n(A,I)
~ n0(A,I) (radAI)
=
J
= e ~ ~0(A,I)
c n(A,J)
~ n0(A,~)
and
n(A,I)
(radAI) n(A,I)
I
= n(A)
~ n0(A,I)
and a n y
J ~ H(A)
or J c A
= Z(A,x) ,
= ~([A,I])
= n(A,I)
I c A ,
n(A,i)
= n(A,J)
or
,
= n([A,I],0)
ideals
I e H(A)
l
x e H(A)
for a n y and for a n y h o m o g e n e o u s
for a n y
= Z([A,x])
for a n y n(A, (I N H ( A ) ) A )
I
D0(A)
in ~
A Z =
w e have: [0]
c radAI
,
,
= ~0(A,I)
= n0(A,J) P
(HI(A)A)=
(radAJ)
Q
(HI(A)A)
•
(radAJ)
Q
(HI(A)A)
,
c n0(A,J ) n
(HI(A)A)
77
~
I c A
2.13
n(A,I)
U n(A,J)
= ~(A,I
N J) = n(A, IJ)
n(A,I)
n n(A,J)
= n(A,I
+ J)
,
and
We observe sing)
injection
~(A). A/C
that,
in p a r t i c u l a r of
~(A)
Finally we note
bijection
G i v e n any
t h a t for any
~([A,C~)
P e ~(A)
= {x/z
~(A,I,P)
=
; ~(A,P)
~(A,P)/M(~(A,P))
for e v e r y
n
=
I c A
subsets
letting
gives
a
of
f: A
(inclusion
~(A/C).
for any
x ~ Hn(A)
for any
I c A ,
,
(A)
is a local d o m a i n w i t h q u o t i e n t
= dim A - Dim A/P
isomorphic with
R([A,P~)
we have
~ ~ ~(A,x,P)
(x/z)~(A,P)
we have
for e v e r y
~(A,I,P)
= ~(A, (I N H(A))A,
M(~(A,P))
field
H 0(A) ; d i m ~ ( A , P )
= ~(A,P,P)
and
78
;
P)
;
;
;
c ~(A,P)
z ¢ Hn(A)\P
c ~(A,P)
{ ~(A,I,P)~(A,P)
(15.3)
~(A,P)
x c H
~(A,x,P)~(A,P)
(inclusion rever-
= ~(A,A, P) ,
is n a t u r a l l y
I1511 (15.2)
onto
: z c Hn(A)\P ~
is a s p o t o v e r
for e v e r y
upon
p - f(P)
U ~(A,x,P) XcINH(A)
a n d w e note t h a t then:
an
we define
(A,P)
(A)
C e ~(A),
epimorphism,
of
~(A,x,P)
gives
into the set of all n o n e m p t y
to be the c a n o n i c a l
preserving)
P - ~(A,P)
and
and
;
2.14
given
any
I' =
z ¢ HI(A)\P
U {xz - n 0~n 0 = x
e P.
For
ord([A,C~,x,V)
(18.3)
For
ord([A,C~,I,V)
any
x
e Hn(A)
we
have
= ordvf(x)/f(z)
any
I c A
we
for
all
z
have
= ord([A,C~,
(I D H ( A ) ) A , V )
--- o r d ( [ A , C ~ ,
(I n H ( A ) ) A
= min[ord([A,C~,x,V): =
£ Hn(A) \ P
a nonnegative
+ C,V) x
integer
~ I n H(A)} or
and ord([A,C~,I,V)
= ~ ~
I n H(A)
c C
,
ord([A,C~,I,V)
> 0 ~
I Q H(A)
c P
.
88
~
,
.
then
2.24
In v i e w o f
(18.1)
and
(18.3) we get
(18.4)
ord([A,C],J,V)
(18.5)
For any
@([A,C],Q)
= IV'
In v i e w o f (18.6),
(18.7),
m ord([A,C],I,V)
Q e H(A)
(18.8)
(18.2) and
ord([A,C],a,V)
(18.7)
For any
ord ([A,C],x+y,V)
where
H n (A)
If
of
0]
.
or~
w e a l s o get
for all
and
0 # a e H0(A).
0 ~ a e H0(A)
we have
= ord([A,C],x,V)
and
y
in
Hn(A)
we h a v e
m min(ord([A,C],x,V),ord([A,C],y,V))
equality holds
(18.9)
J c I c A.
we have
and p r o p e r t i e s
x ~ H(A)
x
(18.5):
for all
: ord([A,C],Q,V')>
= 0
ord ([A,C],ax,V)
For a n y
Q c A
and
(18.9):
(18.6)
(18.8)
or
~ ,~([A,C])
(18.1),
(18.4)
in case
[V/M(V)
ord([A,C],x,V)
: H0(A) ] =I,
,
/ ord([A,C],y,V)
t h e n g i v e n any
x
and
,
y
in
s u c h that ord ([A,C],x,V)
there exists
a unique
a ¢ H 0(A)
ord([A,C],x-
moreover:
m ord ([A,C],y,V)
ay,V)
a = 0 ~ ord([A,C],x,V)
# ~ ,
such that > ord ([A,C],y,V)
>ord
;
([A, C],y,V)
W e s h a l l n o w prove:
(18. I0) L E M M A . ord([A,C],xy,V)
For any
x e Hm(A)\C
= ord([A,C],x,V)
89
and
y ~ Hn(A)\C
+ ord([A,C],y,V)
we have
2.25
and ord ([A,C],xn,v)
PROOF.
- ord([A,C],ym,v)
We can take
= Ordvf(xn)/f(ym)
z ~ H 1 (A)\P
and t h e n we h a v e
ord ([A, C],xy,V) = o r d v f (xy)/f (zre+n) = [ordvf(x)/f(zm ) + -- o r d ( [ A , C ] , x , V )
[or~f(y)/f(z
by
(18.2)
by
(18.2),
by
(18.2)
n)
+ ord([A,C],y,V)
and we also h a v e ([A,C],xn,v)
- ord([A,C],ym,v)
= [Ordvf(xn)/f(zmn)]
- [Ordvf(ym)/f(zmn)]
= Ordvf(xn)/f(ym ) N o w w e shall prove: (18.11) and
D = C N.
PROJECTION Assume
(Note that,
Let
h:
that
if
D ~ %(B)
LEMMA.
Given
[0] ~ N e ~(A),
let
B = AN
D e ~3I(B).
H 0(A)
is a l g e b r a i c a l l y
closed,
then
~ IN : H0(A) ] - [C A N : H0(A) ] ~ 2.)
R([B,D])
~ R(f(B))
b e the c a n o n i c a l
isomorphism,
and let
W = h - l ( v D R(f(B))). (Note that now: h(W)
= v ~ R(f(B)), Then
for all
ord([A,e],x,V) and
for all
ord([A,C],N,V) and
x ¢ N\C
= N, W ~ ~([B,D]),
is a p o s i t i v e
integer.)
we h a v e
- ord ([A,C],N,V)
J c 7](A)
ord([A,e],J,V)
ordvM(h(W))
~ ~, HI(B)
= [ordvM(h(W)) ]lord ([B,D],x,W) ] ,
wit____hh J c N
- ord([A,C],N,V)
and
J ~ C
we h a v e
-- [ordvM(h(W)) ] [ o r d ( [ B , D ] , J , W )
90
2.26
PROOF. Q = ~
Let
g: B ~ B / D
([B,D],W).
b e the c a n o n i c a l
epimorphism.
Let
We can fix
z ¢ N\Q
and then,
in v i e w of
ordWg(x)/g(z)
Upon multiplying
and
(18.2),
= ord([B,D~,x,W)
the a b o v e
I for all
(i)
(18.1)
ordvf(x)/f(z)
=
ordvM(h(W))
(18.10)
(2)
in v i e w of
(3)
ord([A,C~,x,V)
z ¢ N, b y
(5)
for all
(18.1)
(18.3)
and
(2) a n d
and
ord([A,C],x,V)
[
=
(18.3)
and
we have
J ~ C
and
ord ([A,C],J,V)
that
for all
x c N.
(3) w e get
= o r d ([A,C~,z,V) that
- ord([A,C],N,V)
[ordvM(h(W))][ord([B,D],x,W)
In v i e w of
,
(i), w e c o n c l u d e
(4) it f o l l o w s
/
x ~ N\C
~ ord([A,C~,z,V)
ord ([A,C~,N,V) (i),
integer.
- ord([A,C~,z,V)
and hence,
Now by
w e see t h a t
[ordvM(h(W)) ] [ o r d ( [ B , D ] , x , W )
= ordvf(X)/f(z)
(4)
integer.
we h a v e
ord([A,CT,x,V)
Since
we h a v e
we have:
= a nonnegative By
x ¢ N\D
= a nonnegative
equation by
x ¢ N\D
for all
(5) w e see t h a t
]
for all
for all
x ¢ N\C
J c ~(A)
- ord([A,C],N,V) =
[ordvM(h(W)) ][ord([B,D],J,W) ] .
91
.
with
JcN
2.27
In v i e w of
(18.12) and
D = C N.
(18.3) b y
PROJECTION Assume
(Note that,
h:
LEMMA.
that
if
D e ~(B)
Let
(18.11) w e get:
Given
is a l g e b r a i c a l l y
~ Emdim[A,e~N]
-
*
(A), let
B
=
AN
D e ~I(B)-
H0(A)
R([B,D])
{0] ~ N e ~
R(f(B))
closed,
- Emdim[A,N]
then:
~ 2.)
b e the c a n o n i c a l
isomorphism,
and let
W = h - l ( v N R(f(B))).
(Note t h a t now: V n R(f(B)), Then
and
and
for all
ord([A,C],N,V)
ordvM(h(W) ) x e
is a p o s i t i v e
(N D H I ( A ) ) \ C ,
ord([A,C],x,V)
- ord([A,C],N,V)
for all
(A)
J ¢ ~
~ ~, W e ~ ( [ B , D ] , h(W))
with
=
integer.)
w_e have,
-- [ o r d v M ( h ( W ) ) ] [ o r d ( [ B , D ] , x , W ) ) ] ,
J c N
and
J ~ C, u p o n
lettinq
K = jR, we h a v e
ord
([A,C],J,V)
-
ord([A,C],N,V)
= [OrdvM(h(W)) ][ord([B,D],K,W) ] . (18.13) be given with t h a t the
COROLLARY-DEFINITION. ~ c N.
following
D ¢ ~(B)
I
Let
B = AN
two c o n d i t i o n s
and,
upon
to b e the c a n o n i c a l
(*)
h - l ( v ' n 9(f(B)))
D ¢ ~I(B)
Let and
~ e HI(A) D = C N.
and
By
N e ~
(A)
(18.12) we
see
are e q u i v a l e n t .
letting
h:
9([B,D])
isomorphism,
w e have:
e ~([B,D],17 N)
for all
- R(f(B))
V'
~ ,~([A,C],~).
and:
(**) ord([A,C],n,V')
> ord([A,C],N,V')
92
for all
V'
e ~([A,C],~)
2.28
We
shall
integral
to m e a n
satisfied. to
A
tion
say that
that one
From
is c l e a r
the p r o j e c t i o n
this
(and h e n c e
C
both)
phrase we may drop
f r o m the c o n t e x t .
(**), w h e r e a s
of
in C h a p t e r
N
o f the
" in A
In t h i s
IV w e
from
is n -
two conditions
" when
Chapter
shall use
i__nn A
we
the
is
reference
shall use
condition
(*).
condi-
We
note
that obviously the p r o j e c t i o n (18.13.1)
D ¢ nl(B)
and n0([A,C3,N)
of C from N
= ~ = is m - i n t e g r a l .
§19.
(19.1)
Order
to
R
P = ~
be
celarly
(19.i) by
assertion
and
integral
get
by
projections.
{0];
in addition B
identity
map
(18.i)
and
f
and
by
as
to
by
G i v e n V c ~(R),
R = i.
~B,D~
(19.10)
where, A
or
for
map
R - R.
(18.11)
and
(18.12)
replacements by
S;
D
we by
I c A.
1 ~ i ~ 10,
as w e l l
identity
from
above
I ¢ H(A)
replacing:
the
(19.12)
to the
for any
(19.1)
from
as w e l l R(S)
Dim
We define
assertions
(19.11)
replace:
domain with
= ord([R,{0}~,I,V)
is o b t a i n e d
R; C
where
a homogeneous
(R,V).
ord(R,I,V)
We
curve
(19.12).
Let let
on an abstract
as We
[A, C3 also get
respectively,
let
S = RN
and
{0};
and
by
h
the
- R(S).
w
(19.13) be
given with
COROLLARY-DEFINITION. ~ c N.
ing two conditions
(*) (**)
Dim
then
Let
Let By
S = R N.
*
~ c HI(R) (19.12)
we
and
N e ~
see t h a t
the
(R) follow-
are e q u i v a l e n t .
S = 1
and:
V'
N R(S)
Dim S = 1
and:
ord(R,~,V')
93
e ~ ( S , ~ N)
for all V'
> ord(R,N,V)
c O(R,~).
for a l l V'
¢ ~(R,n).
2.29
W e s h a l l say t h a t the p r o j e c t i o n to m e a n that o n e satisfied. to
R
tion
(and h e n c e both)
from
from the context.
(**), w h e r e a s
in C h a p t e r
in
R
of the c o n d i t i o n s
F r o m this p h r a s e we m a y o m i t
is c l e a r
N
i__ss~ - i n t e q r a l (*) and
(**)
is
,r in R '~ w h e n the r e f e r e n c e
In this C h a p t e r w e s h a l l use c o n d i -
IV w e s h a l l u s e c o n d i t i o n
(*).
We note that obviously
I
the p r o j e c t i o n
(19.13.1)
D i m S = 1 and
~0(R,N)
= ~
from
N
in R
is n - i n t e g r a l
and the p r o j e c t i o n (19.13.2)
from
N
in
R
is ~ - i n t e g r a l
I the p r o j e c t i o n
(19.14) canonical
REMARK.
of
G i v e n any
{0] from N in R
C ~ ~I(A),
let
is n - i n t e g r a l .
f: A - A / C
b e the
epimorphism. w
We n o t e that,
then,
for any
V
c ~([A,C~),
ord([A,C~,x,V
) = o r d (f (A) , f (x) ,V )
ord([A,C~,I,V
) -- o r d ( f ( A ) , f ( ( I
we c l e a r l y h a v e
for a n y
x c H(A)
and N H(A))A),V
)
*
We also n o t e that, n c N
and
for any
for any W
~ c HI(A)
and
N ~ ~
(A), w i t h
~ ~ C, w e c l e a r l y h a v e that:
the projection
of
the p r o j e c t i o n
C from
from
N
f(N)
in in
g4
A f(A)
is f ( ~ ) - i n t e g r a l is
f(~)-integral.
I c A.
2.30
§20.
By a v a l u e d a field,
A
Valued
vector
space we m e a n
is a k - v e c t o r - s p a c e
v: is a m a p p i n g , and
Z
where
is the
vector
Q(A)
a triple
with
[A : k~
A U fi(A)
is the
spaces.
(k,A,v)
where:
k
is
< ~ , and
~ Z
set of all k - v e c t o r - s u b s p a c e s
set o f all n o n n e g a t i v e
integers
together
of
with
A
, such
that: (1)
v(0)
=
(2)
v(x+y)
> m i n (v (x) ,v (y) )
(3)
v(x+y)
= min(v(x),
v(x)
~
;
~ v(y)
v(y))
v(zx)
= v(x)
for a l l
(5)
given
any
and
there
exists
such (6)
that v(L)
(*) [V/M(V)
(**)
(H 0(R),
(18.1),
: H0(A)]
H I(R),
in
> v(y)
(18.3),
and x
y
and
in y
]% ;
in
]% w i t h
0 ~ a ¢ k v(x)
;
> v(y)
~ ~ ,
; and for e v e r y
(18.7),
and
= i, we h a v e
and
I% w i t h
: x ¢ L}
any
that
(18.8)
V
L ¢ Q(A) and
(18.9)
¢ ~([A,C~)
(H0(A) , HI(A),
we
see that:
with ord([A,C3,.,V)
space.
(19.1),
(19.3),
F_or any h o m o q e n e o u s with
for all
x ¢ A
y
C ¢ ~I(A)
vector
In v i e w o f
V ¢ ~(R)
v(x-ay)
For any
is a v a l u e d
x
= min{v(x)
In v i e w o f
x
;
(4)
a ¢ k
for all
[V/M(V)
(19.7), domain
(19.8) R
with
: H 0(A) ] = i, we h a v e
ord(R,.,V))
is a v a l u e d
95
vector
and
(19.9)
Dim R = 1 that space.
we
see that:
and
any
2.31
In
§21
and
groundwork lemmas like
about
to
topic of
for
this
shall
defining
define
osculating
osculating vector
in m i n d
flats
flats,
space.
situations
osculating
To
(*)
much
shall
fix
and
more
we
flats.
the
(**).
thoroughly
To
now
idea, We
prove the
shall
than
prepare
several
reader
deal
needed
in t h e
defined For
every
=
[]i(L) Z(L)
rest
of
§20,
=
let
in
(k,A,v)
be
a valued
vector
let:
~ ( A ) : I c L}
[Ie
Q(L):
[I
=
[v(x): =
Y' (L) = =
Ix
x e L}
~ L:
[I~
,
: k]
Iv(I) : I ~ 0 (L)]
Y(L,j)
Y(L)
L ¢ Q (A)
[Ie =
Z' (L)
=
i}
,
,
v(x)
~ j}
,
q (L) : I = Y ( L , j )
[Ie
Q(L):
,
for
I = Y(L,v(I))]
some
j e 7}
,
,
w
(L)
=
{X e L:
v(x)
> v(L)}
(L)
=
[x e L:
V(X)
= ~]
, and
w
A
*
We
note
that,
in v i e w
w
(i),
w
(2)
and
: k]
.
(4),
we
then
have
w
A
(L)
e O (L).
Let w
p(n)
we
also
may
with
above.
Q(L)
T
the
the
book.
So, as
we
a valued
keep
of
§23
observe
that
=
[A
in v i e w C N L
A
in t h e
of
(18.1) in
case
and of
(19.1) (*)
(L)= [0]
Now,
(L)
rest
of
§20,
in c a s e
let
of
(**)
L ~ n d (A)
p = p (L) .
96
be
given
and
let
space
the rest
2.32
We
shall
first
state Lemmas
(20.1)
to
(20.13)
and t h e n p r o v e
t h e m o n e b y one. (20.1)
LEMMA.
Z(L) = Z' (L)
(20.2)
LEMMA.
c a r d Z'(L)
(20.3)
LEMMA.
Y(L)
(20.4)
LEMMA.
For any
over
j e Z(L),
then
{ d - p + i.
= Y' (L).
Y(L,j)
j ~ Z
we h a v e
~ Y(L)
(20.5)
LEMMA.
c a r d Y(L)
(20.6)
LEMMA.
I ~ Y(L)
(20.7)
LEMMA.
I__~f d > p
and
Y(L,j)
v(Y(L,j))
¢ ~(L);
if m o r e -
= j.
= c a r d Z(L). = Y(I)
c Y(L)
then
~
and
(L) c T
~
(I) = A (L).
(L) ~
Y(L)
N Qd_I(L)
W
and
v(T
that
(L)) > v(L);
v(I)
> v(L),
(20.8) Ld = L
then
LEMMA.
such t h a t
Moreover
we have
There
have
v(L and
i)
> v(
~i+I )
L'~I = Li
for
for
, i) > v ( L
whenever the said
characterized
sequenc e
and
sequence
v(L
Alternatively,
unique
a unique
sequence
v ( L i) > v ( L i + I) p ~ i ~ d, L i = T
%,
~
0d_l(L)
such
Lp c L p + i C . . . c for
p { i < d.
(Li+ I)
with
L ,e c L , e + i c . . . c L ,i+ I)
for
p ~ e ~ d,
,d = L
fo___~r ~ ~ i < d.
such that
Moreover
we
p { ~ { ~ ~ i ~ d. sequence
by saying
the
c Lp,+ic...c_L~ = L
for
of
= ~.
w e c a n say that g i v e n a n y
a unique and
is a n y m e m b e r
(L).
(L), an___~d V(Lp)
L , i = L~, i
completely
i_~f I
exists
L i e Y(L)
More generally
L , i ~ Qi(L)
I = T
Li ~ Qi(L)
p { i < d, Lp = ~
there exists
moreover,
%
c Lp+iC...eL
following: such that
P' ~ i ~ d, v( % ', , = -.
p ~ i ~ d.
97
-- L
can be a
there exists L:l ~ Qi (L)
Moreover
we h a v e
a and..... p' = p
2.33
(20.9)
We have
card
Y(L)
= card
Y' (L) = c a r d
card
Y(L)
n Qi(L)
Z' (L) = c a r d
Z(L)
= d - p + 1
and
Moreover,
with
~ = V(Lp)
is t h e
the
= card
Y' (L)
notation
N Qi(L)
of
(20.8)
=
1
for
we have
p
< i < d.
that:
> V(Lp+l)>...>V(Ld)
unique
descending
Y(L)
= Y' (L) =
Y(L)
N Qi(L)
= Y' (L)
LEMMA.
Let
labelling
{ L p , L p + 1 ..... Ld]
of
Z(L)
,
,
and
(20. i0 ) Given the Ji
J c ~ b (L)
unique c ~i(J)
and
In v i e w
of
and
L D J, w e
r(b)
~ d
of
Lp c Lp+l
n --- p (J)
let
sequence
(obtained
v(Ji) the
Q Ni(L)
fo r
set-theoretic
integers
get such
p
~ i < d.
be
L
(20.8)
as
in
(20.8)
to
J)
such
Ib e
that
n < i < b.
inclusions
a unique
for
J n c J n + l c" " °c Jb -- J
let
applying
> v ( J i + I)
clearly
[Li}
c. " . c L d =
and
by
=
Lp c Lp+iC...
sequence
p = r(~)
Ld = L
< r(~+l) ord(S,Ki+l,W)
HI(S)
integer.)
J0 c Jl c . . . c Jb = J
> ord(R, Ji+l,V)
be the u n i q u e by
~ ~ , H0(S)
is a p o s i t i v e
(obtained b y a p p l y i n g
c . . . c Kb = J ing
ord(R,N,V)
from
Also
Ji ¢ ~i (J) let
K0 c Ki
(20.8) b y r e p l a c -
K i ¢ Qi(J) Then we have
and
2.37
K. = J. 1
ord(S,Ki,W)
and
and
(20.10)
gives
L = A, i.e., P R O O F OF
P R O O F OF
(20.1).
By
for
for o b t a i n i n g
from the
0 < i ~ b
.
the s e q u e n c e s
sequences
is p a r t i c u l a r l y
(6)
and b y
(20.2).
V(Xl),
given
any e l e m e n t s
we have
(i),
Z' (L) c Z(L).
that
nonzero,
,
(Li)0~i~ d
significant when
L = HI(R).)
x k ¢ Q(L),
consequently
recipes
(ord(R,Ji,V)~i~b
(ord(R, L i , V ) ) 0 ~ i ~ d ; t h i s
we have
0 ~ i ~ b
= [ o r d ( R , J i , V ) - ord(R,N,V)]/orcIvM(W)
(Observe t h a t (Ji)0~i~b
for
1
(4)
Z(L) and
Therefore
(6)
in
w e get
v(xk)
X l , X 2 ..... x m
are all d i s t i n c t
al,a2, .... a m
For any
x ¢ L,
--- v(x)
Z(L) = Z' (L).
Given any elements
v ( x 2) ...... v ( x m)
c Z' (L).
k
in
L
and n o n i n f i n i t e ,
at l e a s t one o f w h i c h
such and is
we have for some
v ( a l x I + a 2 x 2 + . . . + a m X m) = v ( x i)
i
by
(3)
and
(4)
and h e n c e alx I + a 2 x 2 + . . . + a m X m It f o l l o w s
A (L)
that c a r d Z' (L)\[~} =
[L/A
(L)
= k]
and hence c a r d Z' (L) ~ [L/A*(L)
Clearly
[L/A*(L)
: k] + 1 .
: k~ = d - p, and h e n c e
P R O O F OF
(20.3).
Obvious
P R O O F OF
(20.4).
By
(I*),
in v i e w o f
(2*) a n d
102
c a r d Z' (L) ~ d - p + 1 .
(6*)
(4*) w e
see t h a t
;
2,38
W
Y(L,j)
~ O(L),
and n o w b y
Y(L,j)
e Y(L)
and
PROOF Y(L)
OF
into
Therefore
and by
OF
(20.6).
in v i e w o f
In v i e w
(i)
and
we
(20.3),
(6)
if
j ¢ Z(L),
then
gives
see t h a t
an
the
injective
said m a p
m a p of
is s u r j e c t i v e .
Z(L).
Obviously:
Therefore, of
I - v(I)
(20.4)
= card
see that,
= j.
Clearly
card Y(L)
PROOF
we
v(Y(L,j))
(20.5).
Z(L),
(6)
I ¢ Y' (L) = Y' (1) c y' (L)
w e get
we also
I ¢ Y(L)
see t h a t
= Y(I)
I ~ Y(L)
.
c Y(L)
= A
.
(I) = A
(L)
W
PROOF
OF
(20.7)°
Assume
that
d > p.
Then
in v i e w of
(6)
we have (i)
v (L)
v(L)
exists
y ¢ L
such
that
v(y)
(2) and
(5)
-- v(L)
= min[v(x)
: x e L}
*
In v i e w o f
(i),
W
we
see t h a t
y ~ L\T
(L)
and
the k -
W
vector-space
L/T
(L)
is
generated
by the
image of
y ; consequently
W
[L/T
(L)
: k] = 1
(3) Let
and h e n c e
T
(L) ¢ ~ d _ l ( L )
any
(4) be given
I ¢ ~d_l(L) such t h a t
(5)
then by
v(I)
(5) and
(6*) w e g e t
> v(L)
T*(L)
103
;
c I, and h e n c e
by
(4) and
(3) w e
2.39
get
I = T
(L)
PROOF
OF
paragraphs of
(i)
(20.8).
follow
and
(6)
The
assertions
from the assertio~ we
clearly
have
in the in the
L ~ Y(L)
second
and the third
first paragraph. N Qd(L)
In v i e w
and:
w
v(L)
Therefore
the assertions
d - p = 0.
Now,
first paragraph
PROOF
OF
= m ~ L =
in t h e
in v i e w
of
(20.9).
L e t the
(L)
.
first paragraph
(20.6)
in the g e n e r a l
A
and
case
(20.7),
the
follow by
notation
are o b v i o u s
assertions
induction
b e as in
in c a s e
(20.8).
on
in t h e
d - p
By
.
(20.8)
we have
{ L p , L p + 1 ..... Ld} c Y(L)
consequently
by
(20.1),
:
~, (~) :
Y(L)
(i)
(20.2),
(20.3)
£~,L+I
.....
and
(20.5)
we
conclude
that
T,d}
(20.8)
= c a r d Y' (L) = c a r d
Z' (L) = c a r d
Z(L)
= d - p + 1 .
we have
L i ¢ Y(L) and
c a r d [ L p , L p + 1 ..... Ld} = d - p + 1 ;
and
c a r d Y(L)
By
and
N Qi(L)
for
p ~ i ~ d
clearly
c a r d Y(L)
n ~i(L)
= c a r d Y(L)
p < i gd Consequently,
by
c a r d Y(L)
(i) w e
conclude
N ~i(L)
that
= card
Y' (L) N Q i ( L )
= 1
for
p
~ i ~ d
and Y(L)
N Qi(L)
= y' (L) N ~ i ( L )
104
=
{Li}
for
p ~ i ~ d
.
2.40
In v i e w o f
(i), b y
I
~ = V(Lp)
(20.8) we also
> V ( L p + l ) > . . . > v ( L d)
l is the u n i q u e PROOF
OF
see that
descending
(20.10).
labelling
By a p p l y i n g
(20.9)
of to
Z(L) L
and
J
we get that:
(I) {~ = V(Lp)> L(Lp+l)>...>v(L d) is the u n i q u e
descending
labelling
of
Z(L)
,
of
Z(J)
,
= v ( J n) > V ( J n + l ) > . . . > v ( J b) (2) is the u n i q u e
(3)
descending
labelling
Y(L)
Q ~i(L)
= {Li}
for
p ~ i ~ d ,
Y(J)
D Qi(J)
= [Ji}
for
n ~ i ~ b .
and
(4)
J c Q (L), we c l e a r l y h a v e
Since and
(2), t h e r e
d
(5) Since
(6) Since
of i n t e g e r s
Upon
a unique
J c L, b y
(3),
Ji = J n Lt(i) Ji c Qi (J) by
~ Z(L)
sequence
; consequently,
p = t(n)
by
(I)
< t(n+l) v(x)
and Fi =
in v i e w
of
(i),
e L
(3)
and
L s c L t (b)
(s)
we
n
< i v ( J i + l )}
by
(20.1)
we
for
U F1
have
n
Z' (J)
=
~ i < b
Z(J),
and
and
hence
in v i e w
of
(2)
;
we
also
get
(9)
By
J N
(7),
(8)
and
J N
(io) I
and
(9)
F. = 1
it
~
for
follows
n
< i ~ b
.
that
L t(b)
=
J N Ls
for
J N Lt(i)
=
J N Ls ~
and
~ s < t(i+l)
t (b)
~ s < d
,
and
hence
we
Consequently,
t(i)
must
have
upon
~ =
letting
J D
n
for
Lt(i+l)
n
~ i < b
,
and
t (i)
r(b+l)
= d
= r (i)
+ i, b y
for
n
(5),
(6)
~ i g b and
(i0)
. we
get
Ji =
J D Ls
for
r(i)
< s < r(i+l)1 for
v ( J i ) = v ( L r(i) )
The follows
special from
PROOF Then,
OF
in v i e w
the
claim
bracketed
(20.11). of
for
(20.9),
n
~ i gb
.
I
the
case
when
d - p = b
- n +
1
now
remark.
Let we
Lp c know
Lp+iC...~L that
106
d
=
L
be
as
in
(20.8).
2.42
(1)
v (Lp) = ~
and
V(Lp)
> V ( L p + l ) > . . . > ( L d)
(2) is the u n i q u e
Since
0 < n < p, w e can take
(2) w e can take
(3) By
descending
x.
c L
l
J
(2) and
(3)we
(4)
¢ nn(~
of
Z (L)
In view of
(L)).
(20.1)
and
with
v(x i) = V(Lr(i)) (i),
labelling
for
n < i < b
get
> V ( X n + l ) > . . . > v ( x b)
Let W
J = J Then in v i e w of *
J
+ Xn+l k + X n + 2 k + . . . + X b k
(4), b y
(l),
(3)
and
(4)
. we see that
J c ~b(L),
W
= A (J), n = p(J),
and
!
(5) Let ing
Z (J) = [ ~ , V ( X n + l ) , V ( X n + 2) ..... V(Xb)] Jn c Jn+l ~'" .c J n (20.8)
n < i < b,
to
J, such
= J
be the u n i q u e
that
V(Jn)
I
and
(obtained
v(J i) ~ v(Ji+l)
and
(6) By a p p l y i n g
Ji e ~i(J)
sequence
(20.1)
and
(20.9)
= to
J
we know
that
v(J n) > V ( J n + l ) > . . . > v ( J b) is the u n i q u e
and hence,
in view of
descending (4) and
labelling
of
(5), we m u s t h a v e
107
Z' (J)
by applyfor
2.43
(7) By
v(J i) = v(xi) (I),
(3),
(6) and
for
(7) we get
(8)
v(J i) = V(Lr(i))
In v i e w of p = r(n) the pair
(2) and
(8), by
< r(n+l) ord([A,C],Ji+l,V)
for
n ~ i < b ,
> ord([B,D~,Ji+l,W)
for
n ~ i < b
(I) we get that
ord([B,D],Ji,W)
and hence by the uniqueness part of
(20.8),
applied
to
B,D,W,J,
we
conclude that K.1 = J 1 therefore,
in view of
for
n ~ i < b ;
(i), it now follows that
ord ([B,D],Ki,W)
I for
= [ord(~A,C],Ji,V) PROOF OF
(20.13).
- ord([A,C],N,V) ]/ordvM(h(W)) By
(19.11)we
108
have
n < i ~ b.
2.44
(1)
ord (S,Ji,W) for
= [0rd(R,Ji,V)
0 < i ~b
- ord (R,N,V) ]/ordvM(W)
.
Since ord(R, Ji,V) by
> ord(R, Ji+l,V)
for
0 ~ i < b
> ord (S,Ji+I,W)
for
0 ~ i < b
(20.8),
applied
,
(i) w e g e t t h a t
ord(S,Ji,W)
and h e n c e b y the u n i q u e n e s s conclude
therefore,
in v i e w o f
for
C ~
(21.1)
1
for
= [ord(R, Ji,V)
S,W,J,
we
;
that
- ord(R,N,V)]/ordvM(W)
.
flats and i n t e g r ~
projections
of an e m b e d d e d
curve.
DI(A) LEMMA-DEFINITION.
: H0(A) ] = i.
Emdim[A,C,L],
0 ~ i ~ b
(I), it n o w f o l l o w s
0 < i ~b
Osculating
Let
= J
1
ord(S,Ki,W)
[V/M(V)
to
that K
§21.
p a r t of
F o r any
Let
V ~ O([A,C])
L e @d(A),
it is e a s y to get the
upon
be such that
letting
following by applying
p = (18.3)
and
(20.8). The______ree x i s t s L i c ~i(A) Moreover
an d
sequence
L = Ld D Ld+I~...~L p
ord([A,C],Li_l,V ) < ord([A,C],Li,V)
for
such t h a t d < i ~ p.
we have
L i ~ HI(A) for
a unique
= {x ~ Li_ 1 ~ HI(A)
: ord([A,C],x,V)
d < i ~ p ,
109
> ord([A,C],Li_l,V~
2.45
L p = A (A,C,L) , and
ord ([A, C] ,Lp, V) = ~
M o r e q e n e r a l l y w e can say that q i v e n there exists
a unique
L , i e ~i(A) d < i ~ ~.
and
Moreover we have
unique
sequence
,i_l,V)
L , i = LS, i
by sayinq
d ~ ~ ~ p , such that for
d ~ i ~ ~ ~ 8 ~ p.
L = L d D Ld+ID...DLp
L = L'd ~ Ld+l'D...~L'p,
,V) = ~.
whenever
the f o l l o w i n q :
ord([A,C],L~_I,V ) < ord([A,C3,LI,V) ord([A,C],L~,
with
< ord([A,C~,L~,i,V)
the s a i d s e q u e n c e
characterized
~
L = L ,d ~ L ~ , d + I D . . . ~ L ~ , ~
ord([A,C],L
Alternatively, completely
sequence
any
There exists
such that
for
L!z e ~i(A)
d < i ~ p'
Moreover we have
p' = p
c a n be a and
, and
and
L~z = L.l
for
d ~ i ~ b. We d e f i n e
Ti([A, C3,L,V) = Li
Ti([A,C],L,V) and w e n o t e t h a t then: negative
integer
for
1
for
d ~ i ~ p
= ord([A,C],Li,V ) Tp([A,C],L,V)
= ~, ~ i ( [ A , C ] , L , V )
d ~ i < p, and in v i e w of
is a non-
(18.3) w e h a v e
w
~d([A,C],L,V)
> 0 ~ L c ~
([A,C],V)
We also define
Ti([A,C],V ) = Ti([A,C],A(A),V) for
-i < i < E m d i m [ A , C ]
Ti([A,C3,V ) = Ti([A,C~,A(A),V )
W e note t h a t in v i e w of
(18.3) w e h a v e w
T_I([A,C'],V)
= 0
and
110
To([A,C],V)
= ~ ([A,C'],V)
2.46
Ti([A, C3,L,V) at
V
relative
f l a t of when
in
=.
L.
the r e f e r e n c e
to
A
By
(20.1)
(18.3) and
Let
A
and
(21.4)
Z(L)
m a y be c a l l e d
to
(20.12) w e
A
the o s c u l a t i n g
i-
" in A
immqediately g e t L e m m a s
L c ~d(A),
= [ord([A,C~,x,V):
Y'(L)
= [Ie
~
be s u c h t h a t
th@ set of all n o n n e g a t i v e
= {ord([A,C~,I,V):
upon
[V/M(V)
integers
" ,
(21.2),
: H0(A)~
together with
letting
I e ~
(A)
with
I c L}
x e L n HI(A)}
(A): I n HI(A)
= [x ~ L N Hl(A): j
for some = {I e M
C
f r o m the c o n t e x t .
V ¢ 3([A, C3)
Z'(L)
Y(L)
in
From these phrases we may drop is c l e a r
Let
denote
T h e n for any
i - f l a t of
as s t a t e d b e l o w .
LEMMA. Z
the o s c u l a t i n g
Ti([A, C3,V) V.
(21.2) = I.
to
at
(21.3)
C
m a y be c a l l e d
(A) : I N HI(A)
= [x e L n HI(A):
ord([A,C~,x,V)
~ j ]
e Z~ ord([A, C3,x,V)
> ord([A,e~,I,V)}} p = Emdim[A, C, L~
we have
the f o l l o w i n g :
(i)
Y(L)
(2)
c a r d Y(L)
(3)
Y(L)
Q 91i(A) = Y' (L) n ~
= c a r d Y' (L) n ~ i ( A )
= Y' (L) = [ T i ( [ A , C ~ , L , V ) :
Z(L)
c a r d Y(L)
for d ~ i ~ p.
I
is the u n i q u e
= 1
for
d ~ i < p.
d ~ i ~ p}.
= Z' (L).
= c a r d Y'(L)
Td([A, C3,L,V) (6)
(A) = { T i ( [ A , C ~ , L , V ) } w
Q ~i(A)
(4) (5)
;
= c a r d Z' (L) = c a r d Z(L)
< Td+I([A, C 3 , L , V ) < . . . < T p ( [ A , C ~ , L , V )
ascending
labelling
111
of
Z(L).
= p - d + I. = =
2.47
J
J - [ord([A,C],I,V):
I ~ ~
w
(A)
with
I c J]
qives a surjective map of (7) [J e
(A) : J c L]
onto the set of all nonempty
subsets of
Z(L) (21.3) =
LEMMA.
Let
V e ~ ([A,C])
be such that
[V/M(V):
H0(A)]
i.
Given any Emdim[A,C,L]
L ~ ~d(A) and
and
J e ~b(A)
with
J c L, let
p =
n = Emdim[A,C,J].
In view of the relations L = T d ([A,C],L,V)
(1')
Ts([A,C],L,V)
we clearly qet a unique (2')
e~(A)
for
L D J eg~b(A)
,
d ~ s ~ p
and
sequence
d < r(b) < r(b+l)gb+p-n-d
~ d
and { d , d + l ..... p } \ { r ( b ) , r ( b + l ) ..... r ( v ) ~ Whence, of
in p a r t i c u l a r ,
p - d > n - b,
the
H
----
unique
upon
we must
v = n.
with
d ~ u < p
) c J + Tp([A,C~,L,V)
and Tu([A,CI,L,V)
We
also
note
letting
integer
Tu+I([A,C~,L,V
have
= [gl,g 2 ..... g b + p _ n _ d ~
~Z J + T p ( [ A , C ~ , L , V )
113
such
that
that
in c a s e
2.49
and u
= maxis
¢ [d,d+l ..... p-l}: =
we
clearly
u= It
u
A(A,J,Ts+I([A,C],L,V))
~ ,
have
= gl
follows
r(i)
~(A,J,Ts([A,C],L,V))
that,
" if
p - d = n - b + i, then:
= p - n + i - 1
for
b
b - 1 ~ u + n - p < n
~ i ~ u + n - p
,
and r(i)
We v = n
= p - n + i
claim and,
that,
upon
r(i-1)
=
in t h e
=
particular, above
T i([A,C],J,V)
for
u + n - p < i ~ n.]
with
the
r(b-l)
(2')
J + Tp([A,C],L,V)
as d e f i n e d
=
we have
| for
b
~ i ~ n
.
Tr(i) ( [ A , C ] , L , V ) if
p - d = n - b + 1 remark,
the_____nn, w i t h
u
as d e f i n e d
we h a v e
A(A,J, T p _ n + i _ I ( [ A , C ] , L , V ) )
] for
T i ([A,C],J,V)
above,
= d - I, w e h a v e
A(A,J,Ts([A,C],L,V))
bracketed
=
sequence
c
< s ~ r(i)
~i([A,C],J,V) ID
Tp_n+i([A,C],L,V)
Letting
Ti([A,C],J,V) for
and
Tp_n+i_ I([A,C],L,V)
b
< i ~ u + n - p
I i
and
Ti([A'C]'J'V)
=
~(A'J'Tp-n+i([A'C]'L'V))
} fQr u + n - p < i
T i([A,C],J,V)
=
~p-n+i([A'C]'L'V)
114
~n
.
,
2.50
(We n o t e
that,
in case
Ti([A,C~,J,V)
= Ti([A,C],L,V),
Conversely, d ~ r(b)
A(A,C,L)
given
any
=
[0}, w e h a v e
for
u < i g n.)
L e '~d(A)
< r(b+l) 2.
let
h:
every
Let
~ ([B,D])
V ~
~[A,C])
let
n f(B)).
=
that
[s
(21.3)
Te+I([A,C],N,V)
for
every
V ~
e [ 0 , i ..... p]:
and
=
Te+ I([A,C],N,V) N =
(21.4)
Ts([A,C],V)
(with
A(A,N,Tm(v)
,q([A,C]),
J = N
([A,C],V))
and
upon
letting
J N]
,
L =
A(A)),
¢
~ * ( [ B , D ] , V N)
and w
m(V)
D = C N.
: I c N]
a bijection
D ~ ZI(B),
the
observe
of
~
that
m(V)
in v i e w
q = Emdim[A,C,N],
Let
that
J
Assume
let
closed.
= 0 ~ Tm(V) ([A.C],V)
= .~ ( [ A , C ] , V )
116
= V (~ ~ ( [ A , C ] , N )
we
get:
2.52
We
also
F(J)
observe
=
that
for any
[V ¢ ~ ( [ A , C ] )
J ¢ Q,
upon
letting
: Te+I([A,C],N,V)
= J}
,
we have F(J)
=
IV e ~ ( [ A , C ] )
=
{V ¢ ~ ( [ A , C ] , J )
= a finite
and,
in v i e w
of
Finally p = Emdim
we
:
we
: ord([A,C],J,V)
> ord([A,C],N,V)]
get
V ¢ F(J) } = ~ ( [ B , D ]
observe
A = q =
~ ord([A,C],N,V}
set
(21.4),
{V N
: ord([A,C],J,V)
that,
if
, jN)
A(A,C)
( E m d i m B)
+ 1
and
integer
with
-i
for
=
,
[0}
any
and V
e
e = 0,
then
.~[A,C]),
upon
letting
u(v)
=/
the
unique
Tu(V)+I
in v i e w
u(V)
of
(21.3)
= maxis
([A,C],V)
and
c N
(21.4),
¢ [ - I , 0 ..... p - l ] :
and
with
=
1 ~ N = ~
T i ( [ B , D ] , V N)
< p
such
Tu(V) ([A,C],V)
J = N
and
L =
that
~ N
,
A(A),
A(A,N,Ts+I([A,C],V))}
get:
,
([A,C~,V)
= Ti+ I([A,C],V) N for -i
T i ( [ B , D ~ , V N)
we
A(A,N,Ts([A,C],V)) =
u(V)
< u(v)
=
Ti+I([A,C~,V)
and
117
- ~0([A,C],V)
~ i ~ q-i
,
2.53
u(v) # -1 - N ~ S ([A,C],V) T i([B,D],v N) = A(A,N,T i([A,C],v))N for
-i ~ i < u(V)
for
u(V)
Ti([B,D],V N) = Ti([A,C],V) =
and T i ( [ B , D ] , V N) = T i + I ( [ A , C ] , v ) N ~ i < q - 1 .
T i([B,D],V N) = Ti+ I([A,C],V)
(21.6) Let
REMARK.
~ ~ H 1 (A)
and
q = Emdim[A,C,N].
I
Assume that N ~ ~ e (A)
is a l g e b r a i c a l l y
be given with
~ c N.
closed.
Let
We note that then clearly:
the p r o j e c t i o n
(21.6.1)~
H 0 (A)
of
C
from
N
in
A
is w-integral
q-e ~ 2
and
~ c Te+I([A,C],N,V)
for all
V e ~([A,C],~)
q-e a 2
and
~ c Te+I([A,C],N,V)
for all
V ¢ ~([A,C],N).
!
~
We also note that, the p r o j e c t i o n
of
C from N in A
is n-integral (21.6.2)
if e = 0,then:
{ q ~ 2
and
~ ~ TI([A,C~,V)
for all
V c ~([A,C],N).
§22.
Osculating Let
R
(22.1)
flats and integral projections
be a homogeneous
domain with
LEMMA-DEF INITION.
Let
in an abstract
curve.
Dim R = i.
p = Emdim R.
Let
V e ~(R)
be
w
such that
[V/M(V)
: H0(R) ] = i.
For any
(20.8) we get the following:
118
L ~ ~d(R),
by
(19.3)
and
2.54
There
exists
L i ¢ ~i(A) Moreover
and
a unique
ord(R, Li_l,V)
=
Ix ¢ L i _ for
clearly
< ord(R,Li,V)
for
{0}
M__ore q e n e r a l l y
we
exists
1 N H I(A) : ord (R,x,V)
d < i Kp
Lp =
there
L = L d ~ Ld+I~...oL
such
P
that
d < i ~ p.
we have
L i n H I(R)
and
sequence
a unique
and can
> o r d (R,Li_I,V)
,
o r d ( R , Lp,V) say
that
sequence
= =.
qiven
L = L
any
,d ~ L
ff
with
d ~ ~
,d+l~...~Lff,ff
~ p
such
, that
w
L
,i ¢ ~i(R)
Moreover
and
ord(R,L
we have
L
, i = LS, i
alternatively, completely
,i_l,V)
the
characterized
said by
< ord(R,L
whenever sequence
sayinq
, i , V ) for
d ~ i ~ ~
d < i ~ ~
~ 8 ~ P-
L =L d D Ld+I~...DLp
the
followinq:
.
There
can be exists
a
w
unique
sequence
ord(R,L[_l,V) Moreover We
L = L'd D Ld+l~..' .DL'p < ord(R,L~,V)
we have
T i(R,L,V)
integer
= p
and
also
d < i g p'
L!
1
= L
for
1
and
LIt ¢ ~ i ( R ) ord(R,L'p,,V)
and = =.
d ~ i ~ p.
-- L i for
d ~ i < p
= ~
, mi(R,L,V)
= ord(R,Li,V)
note
that,
then
for
d ~ i < p,
Tp(R,L,V) and
in v i e w
Td(R,L,V) We
that
define T i(R,L,V)
We
p'
for
such
of
(19.3)
> 0 ~ L c
is a n o n n e g a t i v e
we have
~*(R,V)
define T i(R,v)
= T i (R, ~ (R) ,V) for
T i(R,v)
=
T i ( R , A (R),V)
119
-i
~ i ~ p
2.55
and we n o t e that,
in v i e w o f
T_I(R,V) Ti(R,L,V) relative a__tt V. R
to
T0(R,V)
Ti(R,V)
= ,O*(R,V)
the o s c u l a t i n q
may be called
From these phrases we may drop
(22.2)
to
to
(19.3),
[0]; B
identity map
(22.7)
(20.1)
(22.6) w h i c h
(21.6) b y l e t t i n g
R
the o s c u l a t i n q
a__tt V
i-flat
in
R
" in R " w h e n the r e f e r e n c e
S = RN
to
(20.11),
and
are r e s p e c t i v e l y
and r e p l a c i n g :
A
(20.13),
to
obtained as w e l l
from as
(21.2)
[A,C]
as
[B,D]
by
by
[0];
f
R - R; and
h
b y the
identity map
R(S)
~ 9(S).
REMARK.
Given
any
C c ~I(A),
b e the c a n o n i c a l
[V/M(V)
We n o t e that,
: H0(A)]
S; D
we g e t a s s e r -
as w e l l
f: A ~ A / C
such that
in
(22.6).
(22.2)
R; C b y
i-flat
from the context.
In v i e w of
let
and
may be called
L.
is c l e a r
tions
= 0
(19.3), we h a v e ,
let
epimorphism.
by
b y the
r = Emdim[A,C] Let
to
and
V e ~([A,C])
be
= i.
t h e n clearly:
Emdim
f(T i([A,C],V)) = T i(F(A),V)
f(A) = r
and
,
T i([A,C],V)
= f-l(T i ( f ( A ) , V ) )
Ti([A'C]'V)
= Ti (f (A) 'V) '
for
-i < i < r .
' I #
More generally, p = Emdim[A,C,L],
we n o t e that,
w e c l e a r l y have:
for any f(L)
L e ~ d (A), u p o n
e 9~d+r_p(f(A))
f(T i([A,C],L,v)) = T i + r _ p (f (A) , f (L) ,v)
= L n f-i (Ti+r_ p (f (A) , f (L) ,V) ) ,
T i([A,C],L,v)
= T i + r - p (f (A) ' f (L) 'V)
120
and
,
Ti([A,C],L,V)
,
letting
for
d ~ i ~ p .
2.56
§23.
Intersection
Given
C ¢ ~(A),
For any
multiplicity let
I ¢ H(A)
or
with
f: A ~ A / C I c A
an e m b e d d e d
curve.
b e the c a n o n i c a l
and any
Q ¢ H(A)
epimorphism.
or
Q c A
we define: H ([A,C], I,Q) w
o r d ( [ A , C ] , I , V ) [V/M(V) : R ( [ A , ~ V~
([A,C],V) ]) ] ,
([A,C]) ,Q)
([A,C], I,\Q) =
([A, c],v) ]) ]
~ ord ([A, el, I,V) [V/M (V) : ~ ([A,~ Ve,~ ([A, C] ,\Q) ([A,C],I,Q)
=
~ ord([A,C],I,V)[V/M(V): V ¢ ~ ([A,C],Q)
H0(A)]
•
and o r d ( [ A , C ] , I , V ) [V/M(V) : H0(A) ]
([A.C], I . \ Q ) =
vc,q ([A,c],hQ) For any
I e H(A)
or
I c A
we define: w
u([A,C],I) For any
= u([A,C],I,0) Q ~ H(A)
~([A,C],Q)
=
U~([A,C],\Q)
U ~* ([A'C]'Q)
Adj ([A,C],Q)
Q c A
U
([A,C],I)
----
= U
,
~ ~.~(~([A,C],P)) Pe~]0 ([A,C],kQ)
.
f(k) (~ ([A,C], P) ~ ~"(Z P6~]0 ([A,C3,Q)
where
~ I~f(k) (~([A,C],P) PCZ]0 ([A,C],\Q) = [~ e H
(A): ~ ( [ A , C ] , # , P )
for all Adj ([A,C], \Q) = {~ e H
(A): 9 ( [ A , C ] , ~ , P )
k = H0(A)
, c adj(~([A,C],P))
p ¢ n 0([A,C~,\Q)]
121
where
k = H 0 (A) ,
C adj(9([A,C],P))
P ¢ ~0([A,C],Q)]
for all
([A,C],I,0)
we define:
~ I{(~([A,C],P)) P e n 0 ([A,C],Q) =
U * ([A.C~.\Q)=
or
and
,
2.57
Tradj([A,C3,Q)
--- [~ e H
(A): ~ ( [ A , C ] , ~ , P )
for a l l
¢ Tradj (~([A,C3,P))
P e n0([A,C~,Q)},
and
w
Tradj([A,C~,\Q)
= {~ ¢ H
(A): ~ ( [ A , C 3 , P )
for all By
an a d j o i n t
¢ tradj(~([A,C~,P)
P ¢ n 0([A,C3,\Q) ] ,
of
C
in
A
a__tt Q, we m e a n a m e m b e r of
B y an a d j o i n t o f
C
in
A
outside
Adj ([A,C3,\Q).
Q, we m e a n a m e m b e r o f
B y a _true a d j o i n t o f
m e m b e r of
Tradj ([A,C],Q).
Q, w e m e a n
a m e m b e r of
c
in
A
a_~t Q, w e m e a n a
B y a true a d j o i n t of
Tradj ([A,C],\Q).
d r o p " in A ", w h e n the r e f e r e n c e
Adj ([A,C~,Q).
to
A
C
in
A
outside
From these phrases is c l e a r
we may
from the context.
Finally we define and
Ad9 ([~,C~) = Adj ([A,C~,0) B y an a d j o i n t o f
C
a true adj0int of
in C
and
U~([A,C],0)
in
and
T r a d j ([A,C~) = T r a d j ([A,C],0).
A, we m e a n a m e m b e r of
Adj ([A,C~),
A, w e m e a n a m e m b e r o f
from these phrases we may drop clear
~([A,C])--
and b y
Tradj ([A,C~).
" in A ", w h e n t h e r e f e r e n c e
to
Again, A
is
from the c o n t e x t . In v i e w of
(5.1), (5.6), (5,8), (5.10), (5.11), (17.4), (18.1), (18.2),
(18.3), (18.4), (18.5), (23.1)
Let
and
(18.10), w e c l e a r l y g e t
k = H0(A).
any
P e ~0([A,CT),
I' =
(I N H ( A ) ) A
upon in c a s e
([A,cl,I,P)
Then
letting
for any I' = IA
(23.1)to
I ¢ H(A) in case
or
(23.7): I c A
I ¢ H(A)
and
and
I c A, w e have:
= ~ (~([A,c3,p),
~([A,C3,T,P))
= ~ (~(A,P),~(A,C,P) ~,~(~,T,p))
positive
integer,
if , if
U
([A,C~,I,P)
I' c P I' c C;
= u([A,c3,I,P)Deg[A'P~ = if(k) ( ~ ( [ A , C ~ , P ) , ~ ( [ A , C ~ , I , P ) )
= ~k ([~ (A, p) ,~ (A,C,p) 7,~ (A, I,P) )
122
and and
I' ~ C ,
2.58
0
I
a positive
For
any
P ¢ ~0([A,C]),
1 < card
we
~([A,C],P)
also
integer,
if
I' 9 ~ P
if
I' c p
if
I' c C
([A,C],P)
U~([A,C],P)
< u([A,C],P)
.
=
I(~([A,C],P))
=
~,([N(A,P),~(A,C,P)
= u([A,C],P)Deg[A,P]
=
=
xk([R(A,P),~(A,C,P)
],~(A,P,P))
=
X~(~([A,C],P))
integer
,
= a positive
= X~([~(A,P),~(A,C,P)
= ~([A,C],P)Deg[A,P]
],~(A,P,P))
I f(k) ( ~ ( [ A , C ] , P ) )
= a nonnegative U ~*( [ A , C ] , P )
I' ~ c ,
and
have:
= a positive U
,
f(k) },~
=
integer,
I)
integer,
(~ ( [ A , C ] , P ) )
k([~(A,P),~(A,C,P) = a nonnegative
])
integer.
and U~([A,C],P)
= 0
U~([A,C],P)
= 0
~ ([A,C],P)
is n o r m a l
~ ([A,C],P)
is r e g u l a r
u([A,C],I,P)
= ord~([A,C~,p)~([A,C],I,P) for
(23.2) Q c A,
upon
For
any
every
I ¢ H(A)
I c H(A) or
I c A
letting
IA + C
in c a s e
I ~ H(A)
if = (I n H ( A ) ) A
+ C,in
I cA
case
123
,
or
I cA
and
any
.
Q
c H(A)
or
2.59
f
QA + C
and
, in c a s e
Q e H(A)
,
Q' = 1 (Q N H ( A ) ) A
+ C,
Q cA
in c a s e
,
t we have :
u([A,C],I,Q)
= ~([A,C],I',
=
U
(radA(I'+Q'))
~
Pen0([A,C~,Q)
integer
-- U ( [ A , C ] , I ' ,
(radA(I'+Q')
=
~ u Pe~0 ([A,C],Q)
= a nonnegative
u([A,C],I,Q)
= ~ ~ U and
U ([A,C],I,Q)
N
(HI(A)A))
or
([A,C],I,P) integer
([A,C],I,Q) n([A,Cg,Q)
= 0 ~ ~
(HI(A)A))
u ([~,c],i,P)
= a nonnegative
([A,C],!,Q)
~
~
([A,C],I,Q)
or
~
,
= ~ ~ ~([A,C],I)
= ~([A,C])
~ ~ I' -- C
HI(A)
and
= 0 ~ ZI~,[A,C],I)
N
~ radAQ'
n([A,C~,Q)
HI(A ) c radA(I'+Q') *
[i ([A,C],I)
= U ([A,C],I,Q)
W
~ ~
([A,C],I)
= ~
~3([A,C],I) Q' N
U ([A,C],!,\Q)
c ~([A,C],Q)
(HI(A)A)
= U ([A,C],I',\(radAQ')
N
([A,C],I,Q)
c radAI'
(H I ( A ) A ) )
L~ ([A,C], I,P)
P~0 ([A,C],\Q) a nonnegative
U
([A,C], I,\Q)
= U
integer
or
([A, C T , I ' , \ ( r a d A Q ' ) N
~
,
(HI(A)A))
W
=
~
~
([A,c],i,p)
P~ n0 ([A,C], \Q) = a nonnegative
integer
124
or
~
,
,
,
=
e
2.60
([A,C~, I,\Q) = ~ ~ ~
([A,C~,\Q)
= ~ ~ ~([A.C~,I) ~I'
and
= n([A,C~)
=C~Q'
n ( [ A , C ~ , \Q) ~
,
and
U([A,C],I\Q) = 0 ~U
([A,C~,I,\Q)
= 0 ~ ~([A,C~,I) 9'
Moreover, c I'
for any
J ~ H(A)
with
N
J ~ I'
n n([A.C],\Q)
(HI(A)A)
or
J c A
=
c radAI' with
J n H(A)
w e have:
([A,C],J,Q)
U ([A,C~,J,Q)
~ ~ ([A,C~,I,Q) w ([A,C~,J,Q)
= ~I([A,C~,I,Q)
and . ~ U
([A,C~,I,Q)
~ U*([A,C~,J,Q)
= U
,
([A,C],I,Q)
p ([A.c3.J. p)~ ([A.c3.p)*
,
I = ~([a,c~,I,p)~([a,c],P~, for all u([A,C],J,\Q)
~ u([A,C3,I,\Q)
P e •0([A,C],Q)
and
([A,C~,J,XQ)
~ U
([A,C~,I.\Q)
,
and
u ([A,c],J,XQ) = u ([A,CT,I,\Q)
U
[
([A,C~,J,\Q)
= U
([A,C3,I,\Q)
~ ([A,C~, J, P)~ ([A,C~, P) * *
I = ~ ([A,C~, I, P)~ ([A, C~, P)
for all
where
~([A,C],P)
is the i n t e g r a l
P e ~0([A,C3,P)
closure
of
~([A.C~,P)
, in
([A,c~). For any
Q ¢ H(A)
or
Q c A
also h a v e
125
(in v i e w o f
(15.4)
and
(15.5) we
2.61
U~([A,C],Q)
~
W
([A,C],Q)
~([A,C],Q)
=
~ Q)~([A,C],P) Pcn0(~A,C~,
=
~ Pen 0 ( [A, C~, Q ) ~
W
= a nonnegative
integer
,
[A,C], P) = a n o n n e g a t i v e
integer
,
(
= 0 ~ ~([A,C~,Q)
= 0 ~ ~([A, C3,P)
is r e g u l a r
p ~ n0([A,C],Q) U ([A,C],~,Q)
~ U~([A,C],Q)
and
U
(~A,C],~,Q)
for all Adj ([A,C],Q)
Tradj([A,C],Q)
=
B
~ ~
(~A,C],Q)
~ c Adj([A,C],Q)
~ Adj ([A,C],p) Pen 0 ( [A, C], Q)
=
for all
,
,
Tradj(LA, C~,P) Pen0(~A,C~,Q)
= {~ e Adj([A,C],Q)
: ~([A,C],~,Q)}
= [~ c Adj([A, Cj,Q)
: ~
~(EA,
C],\Q)
=
A,~C],\Q)~([A,C], P6n 0 ( [
~([A,
C3,\Q)
=
~ ~([A,C],P) P~e O([A,c3,\Q)
~([A,C],\Q)
= 0 ~ U~([A,C],\Q)
([A,C~,~,Q)
> U~([A,C~,\Q)
integer
,
= a nonnegative
integer
,
= 0 ~ ~([A,C],P)
and
U
for all
([A,C],~,\Q)
is r e g u l a r
for all
, ~ ~([A,Cq~,\Q)
• c Adj (EA, C],\Q)
Adj([A,C~,\Q)
=
N Adj ([A,C],P) PeSO ( [A, C], \Q)
Tradj ([A,C],\Q)
=
N Tradj ([A,C],P) Pc• 0 ([A, C], \Q)
and
126
([A,C],Q)}
P) = a n o n n e g a t i v e
P ~ n0([A,C],\Q) ([A,C],~,\Q)
= ~
, ,
2.62
=
{~ ~ Adj([A,C3,\Q):
u([A,C],~,\Q)
=
[~ ¢ Adj([A,C3,\Q):
U
(23.3)
For
any
([A,C~,~,\Q)
I ¢ H(A)
IA + C
= ~([A,C~,\Q))
or
I c A,
, in case
(I n H ( A ) ) A
+ C,
= N~([A,C3,\Q)}
upon
letting
I ¢ H(A)
I cA
in case
•
,
,
we have:
u ([A,c~,i) = u ([A,C~,I')
ord([A,C],I,V)[V/M(V):
=
R([A,~
([A,C~,V)])]
V¢~([A,C3)
=
~
u ([A,c3,I,P)
p~n 0 ([A,C~, I,P) = a nonnegative
u
([A,c~,z)
= u
([A,c],z')
integer
or
o r d ([A, C ~, I,V) [ V / M (V) : H 0 (A) ~
= vc,q ([A,c))
w
=
~ u P e n 0 ([A,c3)
= a nonnegative
([A,c3, I,P) integer
or
~ ,
w
([A,C~,I)
u([A,C~,I) and
for any
=
~ ~ U
([A,C3,I)
= = ~ •([A,C3,I)
= ~([A,C3)
= 0 ~ ~
([A,C~,I)
= 0 ~ n([A,C~,I)
=
J ~ H(A),
with
J ~ I'
or
J c A
# ~ HI(A) with
~ u([A,C~,I)
and
U
([A,C~,J)
and
127
> U
([A,C~,I)
,
c radAI'
J N H(A)
we have u([A,C~,J)
= I' = C
c I'
2.63
~([A,C],J)
= ~([A,C],I)
~ Z
([A,C],J)
= Z
([A,C],I)
~ ([A,C], J, P) ~ ([A, C], P)
f where
~([A,C],P)
=
~ ([A,C], I, P) ~ ([A, C], P) * for all
P ¢ [30([A,C])
is the i n t e g r a l
closure
of
"
~([A,C],P)
in
([A,c]). Finally ~([A,C])
(in v i e w of
=
~
(15.4)
~
and
(15.5) we also have:
([A,C~,P)
= a nonnegative
integer
U~([A,C],P)
= a nonnegative
integer
P ~ 0 ([A,c]) ~ u~ ([A'c])
=
~
pe~0 ([A,c])
,
W
U~([A,C])
= 0 ~ U~([A,C])
= 0 ~ .~([A,C],P) p c n0([A,c])
is r e g u l a r ,
w
L~([A,C],~)
~ ~([A,C])
and
U
w
([A,C],~)
~ U~([A,C])
¢ Adj ([A,C]) Adj ([A,C]
=
N Pen 0
for all
Adj ([A,C],P)
for all
, ,
([A,C])
and Tradj ([A,C~
=
N Tradj ([A,C], P) P e n 0 ([A,C])
= {~ ¢ A d j ( [ A , c ~ ) :
U([A,C],~)
= {~ ¢ A d j ( [ A , C ] ) :
U*([A,C],~)
= U~([A,c])] w
(23.4). ([A,C],I,Q)
is a l g e b r a i c a l l y
If
H 0(A)
= ~
[A,C~,I,Q)
closed,
-- U ~ ( [ A , C ] ) ] then:
for any
I ¢ H(A)
or
I cA
and any
Q ¢ H(A)
or
Q cA
W
([A,C],I,\Q) ([A,C],I)
= ~ ([A,C],I,\Q) = ~([A,C],I)
for any
128
I ¢ H(A)
or
I cA
,
;
2.64
= ~([A,C],Q) Q
for a n y ~([A,C],\Q)
= ~([A,C],\Q)
or
H(A)
Q cA
,
f
,
and W
k~{([A,C]) = k ~ ( [ A , C ] ) (23.5).
We have
U ([A,C],xy,Q)
= U ([A,C],x,Q)
+ U ([A,C],y,Q)
for any
,
U{([A,C],xy,Q)
= [I*([A,C],x,Q)
+ U
([A,C],y,Q)
,
in
U ([A,C],xy,\Q)
= U ([A,C],x,\Q)
+ u ([A,C],y,\Q)
,
and any
W
U
W
([A,C],xy,\Q)=
U
x
and
Y
H (A)\C
W
([A,C],x,\Q)+
Q 6 H(A)
t] ([A,C],y,\Q)
or Q c A
and %
U ([A,Cq,xy)
= U ([A,C],x)
.
u
+ u ([a,C],y)
w
([A,C],xy)=
(23.6) Either
U
,
1 )
([A,C],y)
,]
w
([A,C~,x)+
Let
U
x
and
y
(
P ¢ ~0([A,C]),
assume that
for any
and let
in
H(A)\C
I e H(A)
~([A,C],I,P)~([A,C],P)
or
.
I c A.
is p r i n c i p a l
(note t h a t
w
this is c e r t a i n l y U ([A,C],P)
= i.
U ([A,C],I,P)
so if
I ~ H(A)
or
I z H
(A)); o r a s s u m e
Then,
= [~([A,C],P)/~([A,C],I,P)~([A,Cj~,P) =
that:
[~(A,P)/(~{(A,I,P)~{(A,P)
+ ~(A,C,P))
: ~([A,C],P)] : ~{(A,P)]
and ([A,C],I,P)
(23.7).
= [[~([A,C],P)/~([A,C],I,P)~([A,Cq,P) = [~(A,P)/(~(A,I,P)~(A,P)
+ ~(A,C,P))
If
U ([A,C],P)
Emdim[A,C]
= i, t h e n
P ~ n0([A,C].
129
: H0(A) ] : H0(A)] = 1
for all
2.65
Next we claim that: (23.8)~
LEMMA.
For any
x ¢ Hm(A)\C
and
y ¢ Hn(A)\C
w__ee
have n[z PROOF. n[~
([A,C],x) ]
=
m[~
([A,C],y) ] .
Namely
([A,C],x) ] - m[u
([A,C],y) ~_
=
~ Ve3([A,C])
[n(ord([A,C~,x,V))
=
~ [or~f(xn)/f(ym)~[V/M(V) Ve~([A,C])
= 0
by
(23.9)
- m(ord([A,C~,y,V))~[V/M(V)
(4.1),
since
DEFINITION-BEZOUT'S
there exists a unique positive
: H0(A) ~
: H0(A)]
by (18.10)
0 ~ f(xn)/f(y m) ~ R([A,C~)
LITTLE THEOREM. integer,
In v i e w of
t 9 be denoted by
(23.8),
Deg[A,C~,
such that U
([A,C~,~)
=
(23.10)
REMARK°
characterize Q ¢ H(A)\C
(Deg[A,C]) (DegAS)
Q c A
with
Q N H(A) ~ C
([A,C~,~,\Q)/degA~:
= max{u
([A,C~,~,\Q)/n:
Deg[A,C~
if
H0(A)
= max{~
way.
with
~ ~ C .
we can clearly Let any
be given.
Then
W
= max{~
is algebraically
([A,C~,~,\Q)/n: for all
~ c H
~ ¢ Hn(A)
for all large enough Moreover,
(A)
formula,
also in the following
*
Deg[A,C~
~ ~ H
In view of the above
Deg[A,C] or
for all
130
with
with
A ~ ~ ~ C]
~ ~ C}
n. closed,
~ c Hn(A)
n > 0 .
(A)
then
with
~) ~ C]
2.66
(23.11)
LEMMA.
,Assume t h a t
card{P
e ~30([A,C]):
(Note that this is a l g e b r a i c a l l y and,if
H0(A)
assumption
closed;
Deg[A,P]
= i] m 1 + D e g [ A , C ]
is a u t o m a t i c a l l y
namely, ~ 0 ( [ A , C ] )
is a l g e b r a i c a l l y
closed,
satisfied
is a l w a y s
then
.
if
H0(A)
an i n f i n i t e
Deg[A,P]
= 1
set,
for all
P c n0([A,c]).) Then
Emdim[A,C]
PROOF.
Let
d = Deg[A,C],
(i)
s =
By assumption D~ (A)
~ Deg[A,C]
there
[H I(A)
and
let
: H 0 (A) ]
exist pairwise
distinct members
L0,LI,...,L d
of
such t h a t
(2)
[L i : H 0 ( A ) ]
= s - 1 , for
0 < i < d ,
and (3)
LiA C ~ 0 ( [ A , C ] ) ,
Suppose,
if p o s s i b l e ,
~ H I(A) LoA,
such that
LIA ..... LdA
Z~0([A,~ ])
that
for
L 0 D LID...NL d ~ C ; then there exists
• ~ C
and
are p a i r w i s e
and hence,
0 ~ i ~ d .
~ c LiA
distinct members
in v i e w of
(23.1)
•
U
for
and
0 ~ i < d. of
Now
£0([A,C])
N
(23.3), w e see that w
([A,C],~)
> d + i.
However,
since
~ £ HI(A)
and
~ ~ C, b y
w
w e get
U
([A,C],~)) = d, w h i c h
L 0 D L I N . . . N L d c C, and h e n c e (4)
By
(5)
is a c o n t r a d i c t i o n . in v i e w of
(3) w e h a v e
L 0 n L I N . . . N L d = C N H I(A) (i),
(2) and
(4) w e see t h a t
[C N HI(A)
: H0(A ) ] ~ s - d - i
131
Therefore
(23.9)
2.67
By
(i) a n d
(5) w e g e t
(23.12)
Emdim[A,C]
LEMMA.
PROOF.
First
Deg[A,C3
suppose
g d = Deg[A,C]
.
= 1 ~ Emdim[A,C]
that
Emdim[A,C]
= 1 .
= I.
Then there exist w
P ¢ D0([A,C]) c p
and
(23.3),
with
~ ~ C.
(23.1)
Deg[A,P] Clearly
and
= i, a n d t h e r e e x i s t s ~ + C = P
and h e n c e ,
~ ¢ HI(A) in v i e w o f
with (23.9),
(23.6) w e get
w
Deg[A,C]
= U
([A,C],~)--~
Conversely
suppose
([A,C~,~,P)=
that
[~(A,P)/~(A,~C,P)
: ~(A,P)]
=
[~(A,P)/M(~(A,P)):
~(A,P)]
=
1
Deg[A,C]
•
= i.
Let
e = 1 + Emdim[A,C]. w
Then
e ~ 2
that
@i i C
and clearly for
1 ~ i ~ e
(i)
~(A,C)
Since for
there exist
Deg[A,C~
n0([A,C],@i)
=
in
HI(A)
such
and
+ ~i + ~2 + ' ' ' + %
= I, in v i e w o f
1 < i ~ e, w e h a v e
~ I , ~ 2 ..... %
(23.1),
= A(A)
(23.3)
and
c a r d ~ 0 ( [ A , C ] , ~ i) = 1
{Pi], w e h a v e
Deg[A,Pi]
= I.
. (23.9), w e see that,
and, By
upon
letting
(i) w e g e t
n 0([A,c3,~ 1)n...n~ 0([A,c3,~ e) = and hence
card[P
e n0([A,C]):
Therefore by (23.13) Deg[A,C]
Deg[A,P]
= i] ~ c a r d { P i , P 2 ..... Pe]
(23.11) w e c o n c l u d e REM~ARKo
= i, t h e n
Emdim[A,C~
As a consequence
u([A,C],P)
As a r e f o r m u l a t i o n
that
of
= 1
of
for all
= 1 .
(23.12), w e
nl(A):
132
see that,
P ¢ D0([A,C~)
(23.12) w e have:
£)I(A) = [ E ¢
z 2 .
Deg[A,E]
= i]
;
if
2.68
this motivates
As a consequence
if
~i1 (A)
the n o t a t i o n of
(23.12) w e a l s o
E m d i m A = D i m A, t h e n
The a b o v e o b s e r v a t i o n s
(23.14) be given
PROJECTION
such t h a t
~I(A)
= {E ¢ nl(A):
may henceforth
FORMULA.
J c N
see that:
and
(Note that,
if
H0(A)
C N ¢ hi(AN)
~ Emdim[A,C,N]
= i]
be used tacitly.
Let a n y
J c C.
Deg[A,E]
N ¢ ~
Assume
is a l g e b r a i c a l l y - Emdim[A,N]
(A)
that
and
J ¢ ~
(A)
cN ¢ ~i (AN) "
closed,
then:
~ 2.)
T h e n we h a v e w
.
u ([A,c],J) - ~ ([A,C],N) = [~([A,c]): ~([AN, cN])] ~*([A~,cN~,J N) PROOF°
R (f (B))
Let
B = A N , D = C N, and
b e the c a n o n i c a l
K = jN.
isomorphism.
Let
For every
h: R([B,D])
-
W ¢ ~([B,D])
let G(W) = {V ¢ .~([A,C~): V n R(f(B))
For e v e r y
W c ~([B,D])
h: R([B,D])
~ R(f(B))
V ~ V/M(V),
V/M(V)
g(V) =
and
V ¢ G(W),
and the c a n o n i c a l
becomes
[V/M(V):
a
= h(W)]
v i a the c a n o n i c a l epimorphisms
(W/M(W))-vector-space
W/M(W)]
and
p(W)
=
isomorphism
W ~ W/M(W) and,
[W/M(W):
upon
(1)
[V/M(V):
H0(A) ] = g(V)p(W)
Now
([A,c],J) =
~
- ~
([A,c],~)
[ord([A,C],J,V)
- ord([A,C],N,V)][V/M(V):
VC~([A,C])
133
letting
H0(B) ] ,
we have
H0(A) ]
and
2.69
=
~ We ~([B,D])
=
~ [ord([A,C],J,V) V~G(W)
~
(i)
(18o 1 2 )
V e G (W)
=
[R([A,C]): R([B,D])]
=
[R([A,C]) : R([B,D]) ] ~ ([B,D],K)
=
[~ ([A,C])
~ [ord([B,D],K,W)]p(W) w~|[B,O])
by
(4.3)
~([Am,cN]) ]~* tt~AN, cN~,~). J
:
(23.15) b e given.
by
[ordvM(h(W)) ] [ o r d ( [ B , D ] , K , W ] g ( V ) p ( W )
~
W e ~ ([B,D])
by
- ord([A,C],N,V)]g(v)p(W)
SPECIAL
Assume
(Note that,
PROJECTION
that if
FORMULA.
{0] J N ~ ~
Let any
(A)
C N e ~I(AN).
H0(A)
is a l g e b r a i c a l l y
C N ~ ~ I ( A N) ~ E m d i m [ A , C , N ]
closed,
- Emdim[A,N]
then:
~ 2.)
T h e n we h a v e (23.15.1)
Deg[A,C]
- ~/ ([A,C],N) = [R ([A,C])
: R ([AN, cN]) ]Deg[AN, c N]
and Deg[A,C]
- ~
([A,C],N)
. ~ ([~,CN]) ]
= [~([A,C])
Deg[AN, c N] = 1 (23.15.2)
PROOF. taking
= 1
Emdim[A,C,N]
- Emdim[A,N]
In v i e w of
J -- xA
(23.15.1),
Emdim[AN,cN]
with
(23.12)
and
(23.16)
REMARK.
*
~*
(23.9),
x c
(23.15.1)
(N N H I(A))\C.
= 2 . follows Now
from
(23.15.2)
= {N ~
follows
by from
(14.3). Assume
that
H 0(A)
is a l g e b r a i c a l l y
Let
N
(23.14)
(A): E m d i m [ A , C , N ]
- Emdim[A,N]
134
= 2]
closed.
2~70
i.e., N
= [0 / N ~ ~
~'
=
(A) : E m d i m [ A N , cN] = i}
.
Let
Then clearly Deg[A,C~
{N
N' ~ ~
~
N
n0([A,c~)
:
and b y
n n0([A,Nl)
(23.15) w e
see t h a t
= m a x { [ R([A,C~) : R ( [ A N , c N ~ ) ~ : = [ R([A,C])
: R([AN, cN])]
= ~}
N e N*]
for all
N ¢ N'
W
(23.17)
LEMMA.
(Note that,
if
Let
[0} ~ N eg~ I(A).
H0(A)
Assume
is a l g e b r a i c a l l y
that
closed,
C N e ~ I ( A N) ~ E m d i m [ A , C , N ~
C N e nl(A).
then:
a 3.)
Let = {P e ~ 0 ( A ) :
N c P
and
[R([A, C3) : R ( [ A P , c P ~ ) ~ ~ i}
and the set o f a l l s u b f i e l d s o f
R(f(AN))
T h e n we h a v e
and w h i c h
R([A,C])
are d i f f e r e n t
which
from
contain
R([A,C])
the f o l l o w i n q :
(23.17.1)
card ~ ~ c a r d ~'
o
(23.17.2)
If
([A,C~,N)
(Although we
Deg[A,C]
- ~
s h a l l not u s e this r e m a r k
~ 3, ~he_D
card ~ ~ 1 .
in t h i s b o o k ,
we note that
w
by a well-known overfield
fact
of a field
from algebra K',
then:
(namely, K
if
K
is an a l g e b r a i c
has a primitive
element over W
K' ~
there
are o n l y a f i n i t e n u m b e r of s u b f i e l d s
K') we k n o w t h a t over
~(f(AN)).
~'
is f i n i t e ~
Hence by
(23.17.1) 135
R([A,C~)
of
K
containing
has a p r i m i t i v e
w e see t h a t
if
R([A,C3)
element has
a
2.71
primitive cular,
element
if
over
H0(A)
R([A,C~)
has
R(f(AN))
(i')
~
is finite.
zero c h a r a c t e r i s t i c ,
is s e p a r a b l e
PROOF°
then
over
R(f(AN)),
or, more
then
~
So,
in p a r t i -
generally
if
is finite.)
Clearly
R(f(AN))
c R(f(AP))
c R([A,C])
for all
W
P e ~0(A) and h e n c e
to prove
(23.17.1)
with
N c p
it s u f f i c e s
to show
that
w
(*)
card{P
In v i e w of
(i'),
e ~0(A):
(*)
R(f(AP))
c K} ~ 1
is e q u i v a l e n t
for e v e r y
K e Q'
to:
R(f(AN)) ( R ( f ( A P ) ) , R ( f ( A Q ) ) )
= R([A,C~)
,
(**) for e v e r y
P ~ Q
in
~(A)
with
N c P
and
N c Q .
w
TO prove given.
(**)
let any
P ~ Q
in
~0(A)
Then w e can take e l e m e n t s N + X A = p,
with
X,Y,Z
N + Y A = Q,
in and
N c P HI(A) Z £ N\C
and
N c Q
such that .
Now clearly R(f(AP))
= R(f(AN)) (f(X)/f(Z)) R(f(AQ))
and
= R(f(AN))(f(Y)/f(Z))
;
also c l e a r l y (N n H I(A))
+ X H 0(A)
+ Y H 0(A)
= H I(A)
and h e n c e R([A,C3)
= R(f(AN))(f(X)/f(Z),
f(Y)/f(Z))
consequently R(f(AN)) (R(f(AP)),
R(f(AQ))) 136
=
R ( [ A , C ~) ~
;
;
be
2.72
and this proves By
(**).
(23.15)
(R([A,C]):
w e have, R(f(AN))~
~ Deg[A,C~
- ~*
([A, C3,N)
and h e n c e Deg[A,C3
- ~*([A,C3,N)
[R(LA, C~q): R ( f ( A N ) ) 3
~ 3 = 1 or 2 or 3
= card ~' < 1 ; therefore
(23.17.2)
(23.18) (*)
follows
DEFINITION°
[V/M(V):
([A,C~,P)
(23.17.1).
Let
H0(A) 3 = 1
(Note that c o n d i t i o n U
from
= l, or: H 0 ( A )
P ~ Do([A, C3). for all
that
V c ~([A,C3,P)
(*) is a u t o m a t i c a l l y is a l g e b r a i c a l l y
*
Assume
satisfied
closed.
if, either:
Also
note
that:
W
(*) = P ¢ ~o(A),
Deg[A, P3 = l, and
U
([A,C3,P)
= ~([A,C],P).)
We define: W
*
*
TI([A, c I,P) = {L 6 ~l(A) : L c P We note
that,
and
~
*
(EA,C],L,P)
g ~
([A,C3,P)}.
then clearly, W
TI(EA,C~,P)
= {L ¢ ~ l ( A ) :
*
([A,C],L,P)
> ~
([A,C],P)]
(23.18.1) W
for some
= {L ¢ ~I(A) : L = TI([A,C~,V) v c ~([A, C3,P)} and h e n c e (23.18.2)
1 < card TI([A, C3,P)
and so in p a r t i c u l a r
137
< c a r d 0([A, C3,P)
e
be a homogeneous
P ¢ ~0(R,~),
s(P)
P
Assume
of
.
m
and
2.80
then there
exists ¢ Tradj (R,\~)
such that
~
is i r r e d u c i b l e
® --- ~i~2 PROOF.
with
®i
~ Hm(R) in the
and
sense
~2
that:
i__nn H
(R) = ~i = R
o__rr ~2 --- R.
Let k = H 0 (R)
In v i e w of (i)
(*), b y
(i0.i.i0)
[~(R,P)/~(~(R,P))
and b y
(10.1.13)
I
: k3 =
we h a v e
w e H
we h a v e
(I/2)u~(R,P)
for all
P ¢ n0(R)
w < u~(R,P)
for all
P ¢ n0(R)
that, w
(R)
with
U
that
(R,~,P)
(2) w
= U
(R,~)
-= 0(2)
Let (3)
~2 = [P e •0(R,rr): k~(R,P) ~ 2}
Then b y by
(*) we h a v e
= 0
for all
P e £0(R,I~)\Q,
and h e n c e
(**) we get
(4)
s(P) = 0 For each
ideal (5)
#~(R,P)
.
J(P)
P e. Q, in
in v i e w of
~(R,P)
[~(R,P)/J(P)
for all
with
P e ~0(R,~)\Q
(**), b y
~(~(R,P))
: k~ = [ ~ ( R , P ) / ~ ( ~ ( R , P ) )
(10.1.12) c J(P)
there
exists
an
such that
: k~ - s ( P ) D e g [ R , P ~
and (6)
xk(9~(R,P),J(P))
For each
P e D0(R)
= k~k(~ (R,P))
- 2s(P)Deg[R,P~
we get an ideal
t45
I(P)
in
~(R,P)
by setting
2.81
(7)
J(P)
if
P e
~(~(R,P))
if
P ~ ~ o
I(P)
By
(i),
(3),
(4),
(8)
(5
and
(7)we
then have
: k] =
[~(R,P)/I(P) Pen 0 (R)
( 1 / 2 ) U ~ (R)
s(P)Deg[R,P]
-
.
Pcn0(R,~) Upon
(9)
letting
E = {x ¢ Hm(R):
by
(15.10)
(io) By
we see that
[E:k] +
(***) ,
9~(R,x,P) E
(8) and
for all
P ¢ f]0(R)]
is a k - v e c t o r - s u b s p a c e
~ [9(R,P)/I(P) p c ~ 0 (R)
: k]
of
z [Hm(R)
Hm(R)
: k]
with
.
(I0) we get
(ii)
[E:k] Upon
¢ I(P)
> 0
letting *
(12) by
A = [@ e Hm(R):
(9) we o b v i o u s l y U
(R,~,P)
and h e n c e
in v i e w of
(i3)
x ¢ E]
(3),
@ ¢ A
(4),
for all (6) and
e ~ A
(7) we
and
P ¢ ~]0(R)
see that
we have:
~ ~(R,P)
- 2s(P)Deg[R,P]
for all
P ¢ 90(R,~)
for all
P ~ ~]0(R'~)
and u
By
(R,G,P)
for some
get
m xk(~(R,P),I(p))
for e v e r y U
@ = xR
(R,~,P)
>_ ki{(m,P)
(13) we get
146
2.82
*
(14)
w
U
(R,®)
~ u~(R)
-
2s(P)Deg[R,p]
for all
® c A .
P¢~0 (R, ~) By
(3),
(7),
(9) and
(15) By
(12) w e
A c Adj (R,\~)
(9),
(Ii) and
A ~ ~ •
In v i e w of
(12), b y B e z o u t ' s
(17
u
(****),
(13),
U
( 18
(R,e,P)
Little
(R,®) = m n
(14) and
for e v e r y
(17)
® g A
Theorem
for all
(24.9) w e a l s o h a v e
~ g A .
it f o l l o w s
that
w e have:
= ~(R,P)
- 2s(P)Deg[R,p]
for all
P g ~0(R, TT)
for all
P c ~0(R,\n).
and U
By
A Hm(R)
(12) w e h a v e
(16)
By
also get
(R,®,P)
(15) and
(18) w e see t h a t
(19)
A c Tradj (R,\n)
NOW 2.
= u~(R,P)
let
In v i e w of
® ¢ A
such that
(2) and
= ®i~2
~ = ~i®2
with
®i ~ H
(R) for i = i,
(18) w e see that, U
and hence by Bezout's
N Hm(R)
(R,® i) =- 0(2)
Little
with
Theorem
® g A
and
,
(24.9) w e g e t t h a t
®i e H
(R)
for
i = 1,2
(20) = n ( D e g R ® i) =- 0(2) Now,
(21)
if
m ~ 2
and
D e g R ® i = 0(2),
and
for
i = 1,2
n # 0(2),
.
then by
(20)
DegR~ 1 + DegR® 2 ~ 2
147
it f o l l o w s
that
2.83
It
follows
®2 = R.
This
that
together
§25. Assume
we
with
Emdim
and
cones
A = Dim
DEFINITION.
for
(16)
Tangent
that
(25.1
DegR@ i = 0
For
some (19)
and
and hence
finishes
the
@I = R
or
proof.
quasihyperplanes.
A = r
any
i
.
• ~ H
(A)
and
any
P ~ ~[A,~])
define
([A,~],P)
We
note
that
=
k' ([~ ( A , P ) , ~ (A,~,P) ] , M ( ~ (A,P)))
then:
~' ( [ A , ~ ] , P )
= a nonnegative
U' ( [ A , ~ ] , P )
-- 0 ~ ~ ~ P
U' ( [ A , ~ , P ] )
and
so,
if
• ¢ e(A),
=
integer
,
,
1 ~ ~(A,P)/~(A,~,P)
is a r e g u l a r
local
domain
,
in p a r t i c u l a r ~
then:
U' ( [ A , ~ ] , P )
=
1 ~ • c P
Let
4} C H
and
~([A,~],P)
is
regular.
(25.2)
LEMMA-DEFINITION.
given.
We
can
take
P + XrA
= }{I (A)A.
Now
d
be
the
we
unique
integer
~i = 0
We the
claim
choice
of
Namely,
that ~ let
can
n n-i ~ ~iXr i---0
= Let
~ c H (A)
for
ord([A,C],P0,V )
upon letting
L = TI([A,C],P0,V) in v i e w of
now obviously
L
and
(or say in v i e w of
U ([A,C],L) and h e n c e
,
(21.1), w e h a v e
L ¢ nl(A,~)
P0 e ~ 0 (A'L)
> U ([A,C],P 0) = d = b - 1 ,
is a b - c h o r d .
LEMMA.
If
PROOF.
Clearly
(or say b y B e z o u t ' s
P0 e ~ 0 (A'TT)
follows by
;
(23.18))
(26.2)
exists
P ¢ ~o([A,C],~)\{Po}
in v i e w of B e z o u t ' s
U ( [ A , C ] , n , P O) = U ([A,C],~) Consequently
some
n ~ 2, t h e n t h e r e
with
exists
Little
a 2-chord
Theorem
L.
(23.9))
there
U ([A,C],P 0) >_ i, and h e n c e o u r a s s e r t i o n
(26. i) .
(26.3)
Assume
(*)
that
n ~ 4
~
and
[u ([A,C],P)
- 1] ~ 2
p~n 0 ([A,C],~) Then
there exists
PROOF. our assertion
If
a 4-chord
L.
U ([A,C],P 0) > 3
follows
from
for some
(26.1).
157
If
P0 e n 0 ( [ A , C ] , v ) ,
U ([A,C],P)
< 3
then
for all
2.93
P c £o(EA, C],~) bers
Pl
then,
and
P2
in v i e w
of
now
it c l e a r l y
(26.4).
(*) Then
that
u([A,C],~,P)
there
exists
PROOF. 3-secant,
By
then
Then,
Let
PI,P2,P3
(*),
by Bezout's
~o(A,L')
be
= 2.
So n o w
If
also
must have dicated
there
Little
to take
Let
Theorem
N2
and Let
L
is not
assume
that
N 3 e ~o(A,L*).
b y the
exists
the d i s t i n c t
following
N3 L
that
is not a 3 - s e c a n t .
a 2-chord L = L'
members
of
(23.9)
we
be
get
i = 1,2
158
L'
get
figure
that
a
L'
In v i e w
of
card ~0([A,C],n)\ members
Then
Then
of
clearly
it s u f f i c e s
let
is n o t
c a r d ~ o ( [ A , C ] , L ') = 3.
the d i s t i n c t
then
If
~o([A,C~,L').
is a 3 - s e c a n t .
suggestive
L'
So n o w a s s u m e
= A(A, PI,N2).
For
mem-
P e ~o(A,~)
(*), w e
a 3-secant L
two d i s t i n c t
and
which
of
find
L = &(A, PI,P2).
for all
L
in v i e w
~o(EA,C],~)\£0(A,L'). 2-chord.
~ 1
it s u f f i c e s
is a 3 - s e c a n t .
n = 5
can
i = 1,2,
to take
a 2-chord
(26.2)
such
a 2 , for
suffices
Assume
(*), w e
~o([A,C],~)
U ([A,C],Pi)
and
of
L
is a
to take
in v i e w
Li ~ £ iI(A,~)
of
L = L
.
(*) we be
as in-
2.94
| l
L2 %% L*I ~
N
.....
n I
P1
fl ~'/
$
% % %
i.e.,
let
2-secant
L i = A(A,Ni,Pi). for
i = 1,2.
REMARK.
Note
Namely,
Q0(A,~)
and we are
looking
So
Then
in v i e w
it s u f f i c e s
that this
lemma
of
to
(*) w e
take
is j u s t
see t h a t
L = L1
or
an e l e m e n t a r y
Li
is
L = L2 .
combinatorial
fact:
n,
contain
exactly
distinct,
lines
the
five points
and
since
the ten
ten
to choose then
(n-l)-chord.
There
from.
it a p p e a r
is n o t d i v i s i b l e does
LEMMA. Then
not
Assume L
five d i s t i n c t
for a l i n e w h i c h
three points.
lines which
(26.5)
is a set o f
is a n
joins
are
2
If a l i n e exactly
contain
that
contains
Emdim[A,C7
(n-l)-secant,
159
times
there must
exactly
in t h e p l a n e
two o f t h e m a n d d o e s = i0,
three
by three,
points
three
not
not
necessarily
exactly in t h e exist
three of
ten
lines;
a line
in
points.
= 3, and
let
L
be
any
2.95
card n 0 ( [ A , L ] , C ) and every
N ¢ ~0([A,L],\C)
PROOF. that
is a best projecting
The assertions
L ~ ~iI(A,~)
and
(i)
about card
center.
follow from our assumption
C ~ ~I(A,\~).
Now let any
N ¢ n0([A,L],\C)
be given.
Then clearly
C N ~ ~I(AN),
that the p r o j e c t i o n of Emdim[A,C]
Since
N
for any ~
~ n
(18.13.1)
is w-integral.
U ([A,C],~)
we also know
Since
(23.9) we get
e HI(A)
we see that,
for any
J e ZI(A)
A(A,L,J)
e HI(A)
U ([A,C],L) because
from
Little Theorem
N ~ ~0(A,C),
(3)
C
and by
= 3, by Bezout's
(2)
with
N e ~0(A,J)
and
J ~ L, we have
and
+ U ([A,C],J) ~ u([A,C],a(A,L,J))
clearly
L c ~](A,A(A,L,J)),J By
< ~ = card Z 0 ( [ A , L ] , \ C )
(2) and
e ~(A,h(A,L,J)),
and
n0(A,L)
N n0(A,J)
= IN].
(3) we get that
I for every
J ¢ ~iI(A)
with
N ¢ 90(A,J)
and
J ~ L, we have
(4) U ([A,C],L)
+ U ([A,C],J)
~ n .
By assumption (5)
U ([A,C],L)
Clearly there exists J' = ~(A,P,N) U ([A,C],J')
we get
~ i.
~ n - i .
P e ~0([A,C],\L) J' ~ ~31 I(A)
C o n s e q u e n t l y by
160
and then upon letting
with (4) and
N ~ ZI0(A,J'),
J' ~ L, and
(5) we see that
2.96
(6)
L1 ( [ A , C 3 , L )
i.e.,
L
is an
(n-l)-secant.
jection Formulas C
from
N
(23.14)
= n - 1
In v i e w of
and
(4) a n d
(23.15) w e d e d u c e
(6), b y the P r o -
t h a t the p r o j e c t i o n
is b i r a t i o n a l , Deg[AN, cN~ = D e g [ A , C ~
--- n ,
and U ([AN,cN~,Q)
Also
= 1
for all
Q e [30([AN,cN~,\LN)
clearly n 0 ( [ A N , c N ~ , \ N) c n 0 ( [ A N , C N ~ ,\LN)
Therefore
N
(26.6)
is a b e s t p r o j e c t i n g
LEMMA.
Assume
that
.
center.
n = 4.
Let
L
be a 2 - s e c a n t
and
le____t
(*)
N 6 ~0([A,L~,\C)
be such t h a t (**)
the project.ion of
Then
N
is a b e t t e r
PROOF.
Now
Deg[A,C3
In v i e w of
(i),
from
projectinq
N
of
= 4, and (*) and
C
from
N
L ¢ £iI(A,~)
and h e n c e b y
Deg[AN,cN3
= 4
and
161
(18.13.1)
is rT-integral. with
we k n o w
By a s s u m p t i o n
U ([A,C~ L) -- 2.
(**), b y the P r o j e c t i o n
see t h a t (2)
is b i r a t i o n a l .
center.
N e £0([A,~3,\C)
that the p r o j e c t i o n
(i)
C
Formula
(23.14),
we
of
2.97
U ([AN, cN], LN) = 2
(3)
Given
any
and
L N e ~ 0 ( [ A N , c N ] , ~ N)
Q e 9 0 ( A N , \ L N),
upon
letting
D = &(A N ,L N,Q)
we c l e a r l y
have
(4)
D ~ H I ( A N)
and (5)
U ([AN,cN],Q)
In v i e w of
(2) and
(4), b y B e z o u t ' s
(6)
Little
Theorem
(23.9)
(3),
(5) and
(7)
(6), we get U ([AN,cN],Q)
Therefore (26.7)
N
is a b e t t e r
LEMMAo
N e ~30(A,L)
Assume
be
~ 2 .
projecting
that
n = 5.
center. Let
L
be a 3-secant,
such that
(*)
U ([A,C],N)
(**)
U ([A,C],~,N)
> 1 > 1
and (***) Then
the p r o j e c t i o n N
is a qood
PROOF. (i)
we get
U ([AN, cN], D) = 4 ;
now b y
let
+ U ([AN,cN~, LN)~ U ([AN, cN], D)
By
of
C
from
projectinq
N
center.
(***) we h a v e EmdimEA,C,N]
~ 2 .
Since
162
is b i r a t i o n a l .
and
2.98
(2)
N ~ •0(A,L)
and (3)
L e ~i1 (A,Tt) ,
we get
(4)
N ~ f]0(A,n)
By(*),
(**)
and
(4) we get that
(5)
u ([A,c],~)
=
i
and (6)
card
G([A,C],N)
= i
and
rf c T I ([A,C],V)
where In v i e w of C
from
N
(i),
(4) and
(6), by
is ~-integral.
(7)
(23.14)
and
(***), (23.15)
(8)
(2),
(3),
(21.6.2)
~([A,C],N) we
see that the p r o j e c t i o n
Now by a s s u m p t i o n
U ([A,C],L)
In v i e w of
IV] =
= 3 (4) and
(7), by the P r o j e c t i o n
we see that Deg[AN, c N] = 4
and (9)
N ([AN,cN],L N) = 2 Given
any
and
L N ~ I]0([AN, cN],TT N)
Q e fl0 (AN,\L N) , upon D = A ( A N,L N,Q)
we c l e a r l y (i0)
have n £ H I (AN)
and
163
letting
Formulas
of
2,99
(ii)
~ ([AN,cN],Q)
In v i e w o f
(7) and
(12)
+ U ([AN, cN], LN)
(9), b y B e z o u t ' s
~ ~ ([AN,cN], D)
Little
Theorem
(23.9) w e g e t
U ([AN,cN], D) - 4 ;
now, b y
(8),
(I0) and
(13)
(ii), w e get,
U ([AN,cN],Q)
Therefore
(26.8)
N
is a g o o d p r o j e c t i n g
C O N E LEMMA.
(1)
~ 2 .
Let
Emdim[A,C]
L
center.
b e a 2-chord.
Assume
that
n ~ 5,
= 3 ,
and
(*)
~ ([A,C],P)
Also assume (**)
4 = 2 times
that
The 2
C
from
only composite
and
~ = cN'A
we clearly have
(3)
is not b i r a t i o n a l .
positive
integer
factorization
letting
(2)
such t h a t
Projection
-< 5
of 4. Formula
and
D e g [ A N' ,C N' ~ = 2 Upon
N'
.
i S a b e s t project_iin__g c e n t e r .
(*), b y the S p e c i a l
e ~ ( A N')
P ~ ~([A,C])
~ ~(A,L)
is the o n l y p r o p e r
(i) a n d
C N'
of
N'
N e %([A,L],\C)\[N']
PROOF.
view of
for all
that there exists
the projection
Then every
= 1
~ ¢ n(A)
,
164
u ([A,C],N')
~ 1 .
is 4, and
Therefore, (23.15), w e
in see
2.100
(4)
~ ¢ H
(5)
C ¢ nl(A,#)
and,
in v i e w o f
(i), b y
(25.9)
(6)
¢
NOW by
and h e n c e
~: n 0 ( A , L )
by
the
and
Projection
T,~'
(7)
(2) and
,
also
see t h a t
H 2 (A)
U ([A,C~,L)
Formula
a 2 > 1 a U ([A,C3,N')
(23.14)
c ~0 ( A N ' ' c
N l
we
see t h a t
)
(7) w e g e t
(8) By
we
,
assumption
~,
By
(A,N')
L ¢ ~(A,~)
(3) and
(6) w e
see that
(9)
Q(A,~)
Now
= ~ .
let any
(i0)
b e given.
N H I(A)
N ~ n0([A,L~,\c)\[N'] Let us k e e p
in m i n d
the
165
following
suggestive
figure:
2. i01
S,T
: Points of
C
necessarily
on
L, not
distinct
may contain
N'
and
S f
(') and
projection
C
(4) and
of
/
.
N
NOW in view of
T
(18.3.1)
from
N
we know that
is n-integral.
J
C N e ~ ( A N)
Since
and the
N' ¢ ~ ( A , L ) ,
by
(I0) we see that for any
J 6 ~(A)
with
N ~ ~(A,J)
and
J @ L, we have
(ii) w
By
A(A,N',J)
e HI(A)
A(A,N',J)
E n(A,@)
(9) and
and if
J ¢ ~(A,~),
then
(ii) we get that
for any
J e ~(A)
with
N e ~(A,J)
and J / L, we have
(12) I J ~ In view of
[~(A,~) (6) and
(12), by Bezout's
166
Little Theorem
(23.9) we conclude
2,102
that I for any (13)
J ¢ £]II(A) with
and
J ~ L, we have
/ I U ([A,J],~)
By
N 6 ~]0(A,J)
(8) and
~ 2
I
(i0) we know that
N ¢ Z]0(A,#)
and hence by
(13) we get
that I for any
J e 2 I(A)
with
N e D 0 (A, J)
and
J ~ L, we have
and hence by
(5) and
N e ~]0(A,J)
and
(14) ([A,J],~,\~)
By
(i0) we know that
~ 1 .
N ~ ~0(A,C),
(14) we get
that for any
J e 211 (A)
with
J ~ L, we have
(15) u ([A,J],C)
(because
~ 1
U ([A, J],C) = ~ ([A,J],C,\N)
by
(10)
u ([A,J],~,\N)
by
(5)
1
by
(14).)
In view of (*), by the Commuting Lemma ([A,J],C) = U ([A,C],J) and hence by I
for any
(23.19) we know that 1 (A) J c ~31
(15) we get that
for any
J e ~(A)
with
N e [30 (A,J)
and
J ~ L, we have
(16) ([A,c],J)
~ 1
Now in view of (16), by the Projection Formula that the projection of
C
from
N
167
(23.14) we conclude
is birational,
2.103
D e g [ A N , C N] = D e g [ A , C ]
= n
and (17)
u([AN,cN],Q)
Since
L e ~(A,~),
-- 1
by
U ([AN,cN],Q)
Therefore
N
Z ~ ( A , J I)
that, and
Further
O e 90 ([AN,cN],\~ N)
Assume
that
are d i s t i n c t
fo___~r A ( A , L , J I , J 2) = 9, say, we h a v e
that,
~(A,L)
then,
there
Z 0 ( A , J 2) assume
for all
L, Ji,J2
such that,
Note
= 1
LEMMA.
(A)
assume
(17) we get
center.
PLANE
Further
Q e ~ 0 ( [ A N , c N ] , \ L N)
is a b e s t p r o j e c t i n g
(26.9) o__~f ~
for all
N ~ ( A , J I) O ~ ( A , J 2 ) is a u n i q u e
; and then
member,
members
~ e HI(A).
= ~.
say
N, c.ommon to
N~(A,L).
that
(*)
U ([A,C],N)
{ 1
an___dd 2
(**)
t +
t = ~ U
~ U ([A,C],J i) ~ n + 2, w h e r e i--i
([A,C],L,P),
the s u m m a t i o n
P e ~(A,C)\(~0(A,JI)
U n0(A,J2)).
beinq
extended
over
all
T h e n we h a v e C ¢ ~(A,%) PROOF.
In v i e w of
(*), by
U ([A,C],Ji,N) and h e n c e
(i)
upon r e l a b e l l i n g
Jl
and h e n c e
Emdim[A,C]
(23.18.3)
we see that
for
~ 1 and
U ([A,C~,JI,N)
168
J2
i = 1 or 2
suitably
~ i.
< 2 .
we may
suppose
that
2. 104
By the d e f i n i t i o n
(2) By
of
~([A,C~,JI,N) (i) and
N
we clearly have
+ u([A,C],JI,\J2 ) = u(~A,C],JI)
(2) w e g e t
(3)
1 + u ( ~ A , C ] , J I , \ J 2) ~ u ( ~ A , C ] , J I)
By the d e f i n i t i o n
(4)
of
~
L ~ ~(A,@)
we have
and
Ji ¢ ~(A,~)
for
i = 1,2
.
Now clearly
U (~A,C],~)
~ t + ~ ( [ A , C ] , J I , \ J 2) + ~ ( ~ A , C ] , J 2) n + 1
and h e n c e b y B e z o u t ' s
(26.10) n
=
QUADRIC
by by
Little
Theorem
LEMMA.
Let
(23.9) w e g e t
L
(4)
(**) and
(3)
C ¢ ~I(A,~).
be a 2 - s e c a n t .
Assume
that
5p
(*)
~(~A,C],P)
= 1
for all
P e ~0([A,C],\L)
and t h e r e does
not e x i s t any
~ c H 2 (A)
such that
C c ~(A,~)
.
(**) is a n - q u a s i p l a n e
and
Let = {N ~ ~0(LA, L],\C) :
N
is a b e t t e r
projection
center}.
Then card ~0(~A,L],\C)\~) PROOF°
(i)
In v i e w of
~ 2
(**), by
and
card n0(A,L)\~
(25.6) w e
Emdim[A,C]
169
= 3.
see that
< ~ = c a r d ~.
2.105
Given jection number and
any
of
C
and
N ~ ~0([A,L],\C), from
N
we
(18.13.1)
is ~ - i n t e g r a l ,
Emdim[A,C]
(23.15)
by
and
we k n o w that
(because
5 is a p r i m e
= 3) in v i e w of £he P r o j e c t i o n
see that the p r o j e c t i o n
C
of
the pro-
from
Formula
N
(23.14)
is b i r a t i o n a l ,
Deg[AN, c N] = 5 ,
U ([AN,cN], JN) = H ([A,C],J)
and h e n c e
for e v e r y
j e ~II(A)
with
N ~ 90(A,J)
in p a r t i c u l a r
U ([AN, cN], LN) = U ([A,C],L)
= 2
LN~ n O ([AN,cN],~ N)
and
w
Thus
it o n l y r e m a i n s
to p r o v e
that
card
w
= {N ~ n 0 ( [ A , L ] , \ C ) : J ¢ ~(A)
u([A,C],J)
with
f)
£
2
where
for some
~ 3
N C ~0(A,J)] w
Suppose, (2)
if possible,
three distinct
that
members
> 3.
card NI,N2,N 3
of
T h e n we
can take
20 ([A, L], \C)
for w h i c h w e can find 1 Ji ~ nl(A)
(3)
with
N i ~ ~0(A,Ji)
for
i = 1,2,3
such that
(4) Since (5)
u ( [ A , C ] , J i) ~ 3 is a 2-secant,
L
n0(A,L)
Now we can choose suggestive
in v l e w of
N n 0 ( A , J i) = [Ni] Pij
~ g0(A)
for
i = 1,2,3
(2),
(3) and
and
Ni~
as i n d i c a t e d
figure
170
.
(4) we get
~0(A,C) in the
for
i = 1,2,3.
following
2 . lOG
I
I
I I
I l
/i
S
J2
J3
N2
N3
~P21
11
P22
13
IP32
P23
!
t P23
!
I l
I S,T
: Points
of
I
C
on
L, not n e c e s s a r i l y
distinct.
n0(~A, L3,C) = { S , T ]
i.e.,
w e choose
nine d i s t i n c t
members
P
. , i,j = 1,2,3, 13
of
0 (A)
such that
(6)
Pij ~ ~ 0 ( A ' J i )
for
i,j = 1,2,3
.
N o w we have,
[H 2 (A) : H 0(A) ] = number
of d i s t i n c t
monomials
of d e g r e e
2 in 4 i n d e t e r m i n a t e s
= i0 , (i.e.,
geometrically
projective
(7)
3-space)
speaking,
there
are
and h e n c e we can find
¢ ¢ H 2 (A)
such t h a t
171
~gquadrie
surfaces
in
2.107
(8) By
Pij 6 ~0(A,~) (6),
(7) and
for
(8) we have
~([A,Ji3,{)
~ 3 > 2 = (Deg[A, Ji3) (DegAS),
and hence by Bezout's (9)
Little Theorem
Ji 6 ~ ( A , ~ )
Consequently
by
Ni (2),
6
(7) and
(23.9) we conclude
for
i = 1,2,3.
~0(A,~)
for
i = 1,2,3.
that
~ 3 > 2 = (Deg[A, L3) (DegAS)
and hence by Bezout's
Little
(II)
L c £~(A,~). L
i = 1,2,3,
(I0) we have
~([A,L~,~)
Since
for
(3) we get
(I0) Now by
i,j = 1,2,3.
is a 2-secant,
(12)
Theorem we conclude
that
we have ([A,C],L)
= 2.
Now let s = ~ u([A,C~,~,P),
(131 )
over all In view of
(5),
Emdim[A,C3
NOW
(15)
(ii),
if possible
i,j c {I,2,3}.
(132), we see that
(26.9)
= 2 .
~0(A, Ji) Q ~0(A, Jj) ~ ~
In view of
for some dis-
(*), (2),(3), (4), (5), (12), (13 I)
can be applied
~ i, a contradiction
~0(A,Ji)
is extended
3 U £0(A, Ji) i=l (12) and (131) we have
s ~ u([A, C3,L)
Now suppose,
(14)
the summation
P e ~0(A,C)\
(132 )
tinct
where
to
(i).
to
L,J i
and
i,j e {1,2,3].
(9) gives, u([A,C~,~,J i) > ~([A,C~,Ji),
NOW
172
Jj; and we g e t
Thus we have proved
N £0(A, Jj) = ~, for distinct
for
i = 1,2,3.
and
2,108
([A,c],~) > s +
3 ~ U ([A,C],~,J i) i=l
by
(131 ) and
(14)
by
(15)
3
> s +
~ U ([A,C],J i) i=l
> ii
by
> 5 times
=
(4)
and
2 by
(Deg[A,C](DegA~)
and h e n c e b y B e z o u t ' s
Little
(16)
Theorem
(7)
(23.9) we m u s t h a v e
C ~ nl(A,~)
In v i e w of
(**),
(7),
(ii)
and
(16), b y
(25.7)
we c o n c l u d e
w
(17)
~ ¢ H
In v i e w of
(A,P)
for some
(14), we can take
(18)
permutation
P e ~0(A,L)
a
(e(1),
e(2),
e(3))
of
(1,2,3)
such that
(19) Upon
P ~ E]0(A,Je(i))
(14),(18)
(21)
for
4 i = A ( A , p , j e(i) ) and
4i
for
i = 1,2,
i = 1,2
with
(19) we get
~ H I(A)
for
and (22)
i = 1,2.
letting
(20) by
(132 )
Je (3) (~ ~ (A'4142)
173
41#42
that
2. 109
By
(7),
(9),
(17),
(18),
(20)
and
(21) w e
see
that
(231 By
(9)
and
(18) w e
also h a v e
(24)
Je(3)
Now
(22),
card Q
(23)
and
¢ ~ (A, ~)
(24) y i e l d
a contradiction;
therefore
we m u s t h a v e
< 2 .
(26. ii)
PROPOSITION. W
(26.11.1) such
that
If
Emdim[A,C3
C £ ~(A,~),
and
~ 3
there
then:
exists
a ~-quasiplane
and
(26.11.2)
If
n ~ 2
(26.11.3)
If
n = 3 = Emdim[A,C},
every
2-chord
every
then
Emdim~A,C]
and
N ¢ ~o(EA, L},\C)
any
there
I_ff n = 4, EmdimEA, C~
3-secant
exists L
a 3-chord;
we have
2-secant
exists
L
i__~s
Assume
that
~([A,C~,P)
= l
projecting
center.
PO e ~ 0 ( [ A , C ] , ~ )
3-chord
is a 3 - s e c a n t ;
projecting
Emdim[A,C~
for all
174
that
= 3, and
is a b e s t
n = 4,
a 2-chord;
we have
that
N e ~ o ( E A , L3,\C)
(26.11.5)
~
£0([A,L~,\C)
for some
every
there
card ~ 0 ( [ A , L ) , C ) < ~ = c a r d £ o ( [ A , L ] , \ C )
and e v e r y
that
~ 3
then:
for any
is a b e s t
# ( E A , C 3 , P O) ~ 1
then:
such
~ 6 H I(A)
C e ~(A,~).
is a 2 - s e c a n t ;
(26.11.4)
exists
~ ~ H 2 (A)
card no([A,L~,C ) < ~ = card and
there
= 3
center.
and
P 6 £o([A,C},~)
and
for
2.110
Then there
exists
fQ l l o w ! n g .
If
a 2-chord,
L
and for any 2-chord
is not a 2 - s e c a n t
card n 0 ( [ A , L ~ , C )
L
N ~ ~ 0 ( [ A , L3,\C)
a 2-secant
and
-- 1
,
is a b e s t p r o j e c t i n g
for all
we h a v e the
is a 3-secan______~t,
< ~ = card n 0 ( [ A , L ~ , \ C )
and every
~ ([A,C~,P)
then
L
center.
P e ~0([A,C~,\77)
I__ff L
i_ss
,
then upon letting
= {N ~ n 0 ( [ ~ , L ~ , \ c ) :
is a b e t t e r p r o j e c t i n g
N
center}
we have
card n0([A,L~,\C)\ ~ (26.11.6)
If
~ 1
and
n = 5, E m d i m [ A , C ~ [u([A,C~,P)
then:
there
exists
any 4-secant
L
a 4-chord;
Assume
(*)
2 >
(**)
u([A,C],P)
that:
assuming
- i] ~ 2 ,
every 4-chord
and
is a 4 - s e c a n t ;
is a best projecting
and
for
= 1
for all
C e ~I(A,~).
that there
exists
center.
n = 5;
~ [U ([A,C],P) P ~ n 0 ([A, C~, ~)
and t h e r e d o e s not e x i s t a n y ~uasiplane
-- 3, and
< ~ = card D 0 ( [ A , L ] , \ C )
N ¢ ~0([A,L~,\C)
(26.11.7)
< = = card Q .
we have that
card D 0 ( [ A , L ] , C )
and e v e r v
card D 0 ( A , L ) \ D
- i] ~ 0 ;
P e D0([A,C],\~)
e H 2 (A) [Note t h a t
such that (*) +
PO ~ D o ( [ A ' C ~ ' W )
175
(**)
is a Wis e q u i v a l e n t
such that:
to
2.111
U ([A,C],P 0) = 2, and
Then
there
exists
~ ([A,C],P)
a 2-secant
~ ([A,C],P)
and
for a n y
=
such
= 1
2-secant
= 1
L
such
for all
L
upon
IN e ~ 0 ( [ A , L ] , \ C ) :
N
~0([A,L],\C)\Q
and
for all
P e %([A,C],\P
0)
that
P ¢ ~([A,C],\L)
,
lettinq
is a b e t t e r
projecting
center]
we h a v e
card
(26.11.8)
Assume
~ 2
that:
card
e0(A,L)hQ
< = = card Q
n = 5;
(*)
~ [u([A,C],P) me n0 ([A, C],~)
- i]
(**)
U ([A,C],P)
P e n0([A,C],\~)
= 1
u([A,C],~,N')
and
there
does
quasiplane the
not
and
exist
such
ugon
any
some
=
N'
;
e ~0(A,~)
~ e H2(A) [Note
0
such
that
;
;
that
(*) +
~
(**)
is a ~is e q u i v a l e n t
to
that
~ ([A,C],P)
any
for
C e ~I(A,~).
assumption
Then
for all
> 1
.
= 1
there
exists
2-chord
L
for all
P ~ Z0([A,C]).]
a 2-chord
we have
the
L
such
that
following.
If
N' L
e ~0(A,L),
and
is a 2 - s e c a n t
for then
letting
=
{~ ~ ~ 0 ( [ A , T ~ , \ C ) :
N
is a b e t t e r
projecting
center}
we have
card
I_~f L
~0([A,L],\C)\Q
is a 3 - s e c a n t
and
~ 2
and
the p r o j e c t i o n
176
card~(A,L)\n
of
C
from
< = = card f]
N'
o
is b i r a t i o n a l
2.112
then
N'
is a g o o d
projection
of
C
from
card
and
every
neither
N
is a b e s t
is a 3 - s e c a n t
and
the
then
projectinq
then.
L
center.
is a b e s t
n =
I_~f
L
i__ss
is a 4 - s e c a n t e
< ~ = card n0([A,L~,\C)
that:
~
L
< ~ = card([A,L],\C)
a 3-secant,
Assume
If
is n o t b i r a t i o n a l
~ ~0([A,L],\C)
(26.11.9)
(*)
nor
n0([A,L],C)
N
center.
~0([A,L~,C)
a 2-secant
every
N'
c ~30([A,L],\C)
card
and
projecting
,
projectinq
center.
5;
13
[~ ( [ A , C ] , P )
-
-- 0
;
1
for all
P ¢ n0([A,C],\~)
for
P ¢ ~0(A,n)
Pen 0 ([A,CL~)
(**)
U ([A,C],P)
=
(***)
u([A,CT,n,P)
< 1
all
;
;
e
and
there
does
quasiplane
and
(*) +
(**)
not
exist
and
for
is e q u i v a l e n t
then
upon
Q =
there
any
~ ~ H 2 (A)
C ¢ Ill(A,#).
u[A,C],P)
Then
any_
=
such
L
to t h e
1
exists
[Note
we have
the
that
assumption
for all
a 2-chord
such
that
(***)
=
~ (*)
is a ~; also
note
that
P e n0([A,Cl).3
L
such
following.
that
L
is n o t
I__ff L
a 3-secant,
is a 2 - s e c a n t
letting
{N c ~ 0 ( [ A , L ~ , \ C ) :
N
is a b e t t e r
projecting
center~
we have
card n0([A,L~,\C)\O
I_~f
L
is n o t
a 2-secant
< 2
then
and
L
that
card n0(A,L)\Q.
is a 4 - s e c a n t ~
177
< ~ = card
n
.
2. 113
card ~ o ( [ A , L ] , C ) < ~ = card no([A,L],\C) and every
N 6 £0([A,L],\C )
PROOF. of
(25.6),
(26.11.2) (26.5), from and
the second assertion
(26.11.4)
(26.2),
To prove
there exists
such that
(26.11.9)
follows
(26.12)
L
(26.8).
(26.7),
Assume
~([A,C],P)
= 1
and
There exists
3 ~ n { 5
p r o j e c t i o n of
and
follows
follows
from
U ([A,C],P)
(*) there exists
follows (26.8)
= 1
from
and
(26.1)
for all (26.10).
(26.5).
(26.5).
that
n ~ 5
and
~ e H2(A )
(26.3)
~0 (A'L)" and finally note
and
for all
(26.11.8)
Finally,
P 6 ~]0([A,C],\n)
three situations such that:
C
from
and there exists N
~
min(4,n)
prevails. is a ~ - q u a s i p l a n e
the projection of
for all
C
from
and there exists N
C
Q 6 £ 0 ( [ A N , c N ] , \ ~ N)
') = 2
for some
N ~ ~o(A,TT)
is birational,
i__ssTT-integral, u([AN,cN],Q)
~([AN,cN],Q0
= 1
such that:
the from ,
~ Deg[AN,c N] < n .
4 < n ~ 5
p r o j e c t i o n of
N c ~o(A,~)
is birationa!,
i__ssTT-inteqral, ~([AN, cN],Q)
(3)
N
(26.11.6)
and
C ¢ £1(A'~) . (2)
N
in view
(26.2)
(26.11.5)
(26.10)
Then at least one of the following (i)
(26.5).
PO~
(26.11.7)
(26.4),
THEOREM.
from
first note that by
such that
(26.10),
from
and,
U ([A,C],P O) = 2, then note that by
the rest of
(26.1),
follows
and
(**) we must now have
P c ~o([A,C],\L); from
and
(26.11.7),
a 2-secant
(*) and
(26.1)
is obvious
from the first assertion.
(26.11.3)
from
(26.6)
in (26.11.1)
follows
(23.11).
follows
PO 6 ~o([A,C],~)
follows
from
(26.5),
(26.5).
that by
is a best projecting center.
The first assertion
follows
,
~ 2
the projection of
for all
C
the from
Q ¢ ~]o(AN),
Q0 6 ~o([AN,cN],\~N),
178
such that:
z([AN,cN],QI)
= 2
2.114
for some
Q1 ~ ~
PROOF.
([AN'CN~'~N)'
Follows
from
and min(4,n)
(26.11).
179
~ Deg[AN, cN~
< n .
CHAPTER
III:
BIRATIONAL
In this ~(Y)
in
chapter
Y , with
derivative
of
X,Y,Z
~(Y);
for a n y
X,Y,Z,
corresponding
subscript;
X
and
Y, w i t h
partial
derivative
denotes
the p a r t i a l
shall
(27.1) field
L.
field
now
thus
for i n s t a n c e ,
~(X,Y)
derivative
of
(S,K)
the
K
of
of
and
we
R c ~
note
that
(S,K).
We
S
L.
~
that
(27.2)
we
O(S,K)
~ {0};
shall
closure
indicated
in-
b y the
X,
with
~(X,Y)
denotes
and
the
~y(X,Y)
respect
to
Y.
o f the d i f f e r e n t .
domain with
of
S
quotient
in a f i n i t e
algebraic
define
module
TraceK/L(~)
(S,K)
is
an
of
~ S
S
i__nn K
for a l l
R-submodule
8 ~ R]
of
K
with
define
= {a ~ K:
note
t h e Y-
of the
~x(X,Y)
to
be a n o r m a l
We
~3(S,I 0
(3) and
-
(I/2)u~(R)
Theorem
-
(24.9)
(1/2) (n-l) (n-2)
we m u s t
(1/2) (n-l) (n-2)
(9), b y
(29.1)
~ 0
we get
have
;
that
/
/g (i0)
= (1/2)(n-l)(n-2) = a nonnegative
Henceforth such
(Ii)
-
(1/2)~(R)
integer.
assume t h a t
g = 0
that
m m max(l,
n-2)
223
and
let
any
integer
m
be
given
3.45
Then by
(i0) w e h a v e w
(12)
u{(R)
and h e n c e b y
(i),
=
(8) and
(13)
(n-l) (n-2)
(ii) we get t h a t
e (m) m 1
and w
(14)
e(m)
If
[E(m,e(m)
~£
Hm(R)
and t h e n b y
+ I)
with
(6) and
+ N~(R)
: H0(R)]
~ = CR
=mn
.
> 0, t h e n we c o u l d t a k e
for some
~ ~ E(m,e(m+l))
(14) we w o u l d h a v e w
(R,~) in c o n t r a d i c t i o n Therefore
[E(m,
(5) and
(15) a n d
(17) Again,
+ i)
in v i e w of
and h e n c e
(24.9).
: H0(R)]
= 0 .
: H0(R)]
~ 1.
(16) w e g e t
[E(m,
(18)
(19)
e(m)
[E(m,e(m))
(7),
Theorem
(8) w e h a v e
(16) By
Little
we m u s t h a v e
(15) By
to B e z o u t ' s
~ 1 + mn
e (m))
(13),by
[E(m, in v i e w o f
E(m,
e(m)
: H 0(R) ] = 1 .
(5) and
- i)
(8) w e h a v e
: H0(R) ] ~ 2
(7) w e g e t
e(m)
-I)\E(m,
224
e(m))
/
3.46
In v i e w
of
(17) w e
can
(20)
and
0 ~ x e E(m,e(m))
in v i e w o f
(19) w e
(21)
can
take
0 ~ y ¢ E(m,e(m)
In v i e w we
take
of
(4),
conclude
(14),
(20)
ord(R,x,V)
l
(21),
ord(R,x,W)
= e(m)
+ ordv~(~(R, ~
W
= or~(~(R,O
(23)
(R,W)))
whenever
In v i e w
and,
by Bezout's
of
(22)
in v i e w
and
of
(23),
(22)
and
by
by
we
(19.10)
= I, and
consequently
(29.3) above,
conic. But
by
REMARK. and
so also
latter
that would
be
can
genesis a good
(24.9)
Also
Let
assume
some
we
see
now
x/y
e R(R)
that
~ 0
V @ W
e 3(R)
;
of
(29.2.2)
ancient
as w e l l
pad
for m u c h
as of
its
of b i r a t i o n a l
i d e a of p a r a m e t r i z a t i o n
be d e d u c e d So h e r e
proof
as a c o r o l l a r y
of a
of
is the e l e m e n t a r y
(29.2.2). version,
§25.
OF A C O N I C .
k = H0(R) that
that
R (R) = H 0 ( R ) ( x / y ) .
facetious! after
= 1 + ord(R,y,V)
~ ~(R).
or~(x/y)
launching
and
PARAMETRIZATION
0 ~ z e HI(R).
have
of c o u r s e
a bit
any m a t e r i a l
(29.4)
n = 2.
The
is the e l e m e n t a r y
The
not using
(4.2) w e m u s t
(R,V)))
see
whenever
geometry,
Theorem
< ord(R,y,W)
V ~ W
(19.10)
(23),
or~(x/y)
given
Little
that
(22)
and
and
- l) \E (m, e (m) )
and
R' = k
V e ~(R,~)
225
Let
~ = zR
with
[HI(R)z-lJ. is r e s i d u a l l y
any
Assume
that
rational
over
3.47
k,
and
let
euclidean
P = ~
(R,V).
domain.
Then
Moreover,
i__nn H 1 (R)
with
xk
+ yk
(*)
R'
= k[x/z]
R'
= k[x/z,z/x]
Emdim
there
R ~
exist
+ zk = HI(R)
and
zy =
x
2
2,
g =
0,
nonzero and
case
z2
in
R'
elements
(x,z)R
in
and
=
P
~o(R,~)
is x
such
=
[P]
an
~nd
y
that:
,
and
(**) NOTE. figures P
is
conic
xy
writing
down
the
two
cases
where,
at
~
Before
for the
and
the
point
birationally
vertical
(i.e.,
along
onto
parallel
the
the
proof
case
let
us
in b o t h
cases,
y-axis,
and
(and h e n c e to
=
draw the
so w e
parametrizing
y-axis)
~0(R,n)
[P]
suggestive
projecting are
by)
center
projecting
the
x-axis
the along
directions.
P
2P
i/
i
I1
i//
~
y
I
/
/ /
/
\
!
/
z = 0/ ./__
/
\
z=O// /
X
/ ---X
/
Y
i
z = 0
Hyperbola:
xy
= z
no(R,~ ) =
[P,Q].
Projection
from
outside the
z = 0
: line
2
at
=.
Parabola: ~o(R,~)
P
is
except
zy =
= x
Projection
from
above
everywhere
outside
226
.
[P}.
integral
origin.
2
P
is z =
integral 0.
3.48
PROOF.
By
(24.12)
Projection
Formula
birational
and
U
=
get
(24.15)
Emdim
(R,P)
O.
be
4.4
H ( A , z ) (I) = The a d d i t i v e
s u b g r o u p of
generated
A[z]
e0
U H (A,z,n) (I) n---0
by We may drop Hz(X), clear
" A "
H ( z , n ) (I)
and
Hz(I)
respectively,
and
simply write
if the r e f e r e n c e
to
A
is
f r o m the c o n t e x t .
(32.3)
Observe
0 g n < ~, Hz(A) homogeneous N o t e that, then
if
z
a homogeneous
Hz(A) and
and
upon defining
z'
that
H z (A)
d i m A = Dim H
of
elements
Hz, (A)
A.
over
i.e.,
A,
there
which makes
for e v e r y
from the d e f i n i t i o n
for
W e say t h a t the
isomorphic,
and
to e a c h o t h e r
= H(z,n) (A)
z-homogenization
are c a n o n i c a l l y
It is c l e a r
it f o l l o w s
domain.
are two t r a n s c e n d e n t a l
Hz, (A)
to c o r r e s p o n d
(32.4)
Hn(Hz(A))
is the n a t u r a l
isomorphism between
az 'n
Thus
that,
becomes
domain
Hz(A)
a unique and
f r o m the a b o v e n o t a t i o n
az
is n
a g Fn(A).
that
~(Hz(A))
= ~(A).
(A). Z
(32.5)
Also
clearly
F 0 (A) = H 0 (H z (A))
vector
(32.6)
For
FI(A)
is i s o m o r p h i c
space and h e n c e
in p a r t i c u l a r It a l s o
~ Hz(~) (32.7) I, we h a v e {Hz(X): x £ I
For that
x e S}. and
degAx
as an
x e A, c l e a r l y w e h a v e
x ~ Hz(X)
follows
gives
HI(Hz(A))
e m d i m A = Emdim H z (A)
D e g H z (A)Hz (x) = d e g A x and
to
that
gives
for a n y
an i n j e c t i v e m a p I c A Hz(1) Further
an ideal
an i n j e c t i v e m a p H z(~)
Hz:
~ Hn(Hz(A)).
in
it is c l e a r
H z(x)
Fn(A) A
and
237
S
ideal
that
It f o l l o w s
e H z(I)
Hz: A - H ( H z ( A ) ) .
• e Fn(A),
is a h o m o g e n e o u s
~ n < ~].
,
~ x e I.
a generating in
Hz(I)
that
¢ H n ( H z(A))
Hz(A)
set for
generated
n H(Hz(A))
for a n y
and
by
= [xz n :
x ~ A, we h a v e
4.5
In p a r t i c u l a r w e have,
for any two ideals
Hz(I) It also f o l l o w s I ~ A
then
in
A,
~ I = I'
I = A, ~ 1 e I ~ z ¢ Hz(I),
so t h a t if
z ~ H z(I).
(32.8). homomorphism. a unique
that,
= Hz(I')
I,I'
Now
let
If
z'
extension
f' (a) = f(a) isomorphism
P e ~(A)
let
f: A ~ A / p
is any t r a n s c e n d e n t a l
f': A[z3
for e v e r y
-
(A/p)[z'3
a ¢ A.
of the h o m o g e n e o u s
In p a r t i c u l a r ,
and
w e m a y take
A/p,
s u c h that
It is t h e n c l e a r domains
Hz(P)
then
f
has
f' (z) = z'
and
that
Hz(A)/Hz(P)
~ = z modulo
= H_(A/P). z In p a r t i c u l a r it follows
over
be the c a n o n i c a l
f'
and
induces Hz, (A/P).
and t h e n w e h a v e
H z ( A ) / H z(P)
~(A)
- n(Hz(A)).
~i(Hz(A))
In v i e w of
and by
an i n j e c t i v e
(32.7),
p - Hz(P)
(32.4),
it follows
gives
it follows that
Hz:
a map
that ~i(A)
Hz:
Hz(~i(A))
c
- ~i(Hz(A))
is
map. §33.
(33.1)
DEFINITION.
0 ~ z ¢ HI(B).
lh
I c B
B
be a h o m o g e n e o u s
domain.
Let
h ¢ H(B), w e d e f i n e
, if
hz -n, for
Dehomogenization. Let
F o r any
F(B,z) (h) =
Also
that
and
if
h c H0(B),
and
h e Hn(B)
for
0 < n