Heike Fliegl Coupled-Cluster-R12-Methoden mit Auxiliarbasisfunktionen
Coupled-Cluster-R12-Methoden mit Auxiliarbasisf...
187 downloads
465 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Heike Fliegl Coupled-Cluster-R12-Methoden mit Auxiliarbasisfunktionen
Coupled-Cluster-R12-Methoden mit Auxiliarbasisfunktionen von Heike Fliegl
Dissertation, Universität Karlsruhe (TH) Fakultät für Chemie und Biowissenschaften, 2006
Impressum Universitätsverlag Karlsruhe c/o Universitätsbibliothek Straße am Forum 2 D-76131 Karlsruhe www.uvka.de
Dieses Werk ist unter folgender Creative Commons-Lizenz lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/
Universitätsverlag Karlsruhe 2006 Print on Demand ISBN-13: 978-3-86644-061-6 ISBN-10: 3-86644-061-8
! "#
$ %
"
& ' ) ' + ' " ('
( # ( ( * !$$ ( , - +. / +..0
! " # $ % &' #& ( ) $ #
# # % "% "*+," " #"- %". ! " # $ * #& / 0 ) 1 ' %%! 2*+,3" 4
() ' - 4
5 6 ( !53· 2 5 7 8 5 ' ( ' ' 9 *' - 06 % ! 0 0' #' 5 ' : ' : :' 9 * 8 !; ' - 06 : .< =' / * & 0 #& 8(
"
1' % !' ' > %' : < ! 0 ( . 8 &
#& ' ' /# ' ;' /' 1( %#' % 4
' !'
#' % 1' $ ' #' ) ' * ' :' / ? : @
/ 8
1 2%:13' : 2 :-3 /&
,+ % "%
- ,, % "% "# ,,+ 8 & % "% "
C ,,, % "% "?" # ,,E % "% "#
E+ $ E++ :" % " E, % "? H%I" E,+ EE $7
EE+ *+," EE, *+," EEE $L *+," EEG 7
*+,"
+E +G +A +J +K +K ,F ,, ,G
% "% "*+," %%! (*+," %%! (*+," %%,(*+,"- %%,(*+," : *+,"& %%,(*+,"- GA+ $ 7 GA, : % GAE !& GJ : *+,"& %%,(*+,"
!"#
A B B D +F
G+ G, GE GG GA
,B ,D ,K E+ EE EA EK GE GG
A+ %%! 2*+,3"% "% "- GB A++ : *+,"& %%! 2*+,3"
GK A, $# %%! 2*+,3 %%! 232*+,3"
A+ .
$ %&& ' (
%&& !"#
$
) ' (
$
J+
4 AE J, *+,"& * + AJ JE *+,"& * , AD
B+ -
! J+ B, . *+,"& J, D+ D, DE DG DA
4# ; *+,"& 8
* !"#
K+ %%! 2*+,3"- K++ 4# K+, $ K+E 8 K, %%! 232*+,3"* K,+ 4# K,, $ K,E 8 KE !53· KE+ KE, 4# KEE $ KEG 8
+, -&& - ./0
2 5
JB JD B, BD DE
)
DB DB DD KA KB KD KK +FG +FB +FB +FK ++, ++G
.0 1
2 31 /0 - ' (
*
.. 1 4- $
-. .. 1 4- )
-. .. 1 4- *
$*
..
5 4 0 2- - ./ *
:+ :, :E :G
5 !# 5 !< 5 < 7
**
,FF ,FF ,FF ,F+
...
.4
! % "% "2%%3"
M+"EN ' -( ! 0 " ":" MGN - ":"4 MA"BN ?' $ ( MDN > n ! 9 %%! 2*+,3". (
%%! ' . O(n2N 4) O(n3N 3) ' # ' & *+,"& & $ &
& %%! (*+,"
MGFN 0(
'
*# ' %%! 2*+,3"
( # # . .*%%*+,(5! M+E+N %%! (*+,". . ' O(n3N 4) 1 4 ' . %%! (*+,". ' ! O(n3N 3) ( %%! (*+,"
-06 #
%%! "
4 %%! 2*+,3"1& 4
& %%! (*+,"
* ' # 1& * 8 $ 2*.3 JE
8 " " ,!3451
$ 7 #' %%! (*+,"
*."1& # %%! 2*+,3 # &
# %%! 2*+,3" %%! (*+,"
' 4# 7 ' 5 5 #& # ' ?
' @ 8 0
7 &' # # * *.(1& M+FE' ++B' ++DN % ". /*55?$ M+E,"+EJN ' #' 4 ˆ Tˆ3 ]|HF μ2 |[Φ, ˆ Tˆ3 ]|HF - 8 "& μ1 |[Φ, 2A+A3 %%! 232*+,3"
*+,"& #( . %%! 2*+,3"* # ( . 23 ' " ( # . . # & & ˜ˆ ˆ ˆ Tˆ3 ]|HF μ2 |[H, μ1 |[H, T3 ]|HF %%E"! " "- Ωμ Ωμ M+G'+A'+EFN' # Ωμ
%%E". Tˆ1"
' !
( ˆ Tˆ3 ]|HF μ2 |[Φ, ˆ Tˆ3 ]|HF & 0 23" μ1 |[Φ, 0 &6 - 2A+A3 # # . 23" %%! 2*+,3"
%%! 23W%%E" M+G'+A'+EFN %%! 2*+,3" * # 1
2
JG
3
8 " " ' 1
• • • • •
. Ωai = 0' Ωaibj = 0 Ωkilj = 0 BF + BF − ΩBF αiβj = Ωαβ,ij + Ωαβ,ij ΩCaibj ΩDaibj Ωaibj = Ωaibj + ΩCaibj + ΩDaibj ΩGai ΩHai Ωai = Ωai + ΩGai + ΩHai ΩBαiβj
? (V ) *+," c Ω = c (V ) → O(n N ) Ω = Ω ± Ω † kl αβ
ij kl
B αiβj
#
• • •
† kl αβ
ij kl kl
B± αβ,ij ± ΩB αβ,ij α
B αi,βj
≥β
4
B βi,αj
2
i ≥ j ΩBαi,βj αi ≥ βj
B± BF ΩBF αiβj = Ωαiβj + Ωαβ,ij p p BF ΩBF aibj = αβ Λαa Λβb Ωαiβj
ΩFkilj ? (V †)klαβ ΩFkilj = V˜klij = αβ ΛhαiΛhβj (V †)klαβ
•
Ωkilj = Ωkilj + ΩFkilj
•
? Vklab Ωkilj = Ωkilj +
•
ΩEkilj =
•
Ωkilj = Ωkilj + ΩEkilj
→ O(n3 N (N + n))
mn
ij ab ab tab Vkl
→ O(n4 N 2 )
(ij)
6 Bkl,mn cij mn → O(n )
B+S !
( *+,"& %%! 2*+,3"- Ωμ * + i
JA
8 " " ,!3451
•
ΩGai ? (V †)klαm (V †)kla˜m = α Λpαa(V †)klαm → O(n3V N ) mi † kl 4 ΩGai = klm(2cim ˜m → O(n V ) kl − ckl )(V )a
• • • • •
Ωai = Ωai + ΩGai ΩJai Ωai = Ωai + ΩJai ΩAaibj = kl tklab αβ Λpαk Λpβl ΩBF αiβj Ωaibj = Ωaibj + ΩAaibj *+," ΩEaibj
? (V ) (V ) E = (2c − c E = E + E † mn αl
† mn kl
2 lj
kmn
kj mn
2 lj
2 lj
2 lj
• • •
=
α
Λpαk (V † )mn → O(n4 N ) αl
jk † mn mn )(V )kl
→ O(n5 )
ΩEaibj = −Pˆabij l tilabElj2 Ωaibj = Ωaibj + ΩEaibj ΩIai Ωai = Ωai + ΩIai
B,S : 2B+3S !
*+,"& %%! 2*+,3"-( Ωμ * + i
JJ
0 #! . # # %%,(*+,"
( # # 1 # ' 12' %5 : #
7 3
%%,(*+,"* # GAE !&( '
. B C # 4# # ?51 M+,JN # ((4T8 &( M,F' D+' D,N 9# 5 ' %%,(*+,"* , &6 - 2GG3
( , - 2E+K3' #
%%,( *+,"* , &6 - 2GG3 # $ 4 ,
%%,(*+,"* # 4( # !"1& 7 # +K+GDJGE, 2KJGE, 3 * MGBN # # +"5 H I"1& #' #& 1 & *
# # ! * # 7
& 2re 3 ' %5' 12 : * M+EBN : * # ,F+B+G++DA # 5 " 7 # # ' # " M+JKN 84( M+BF' +B+N /*55?$" M+E,'+B,"+BGN !#( O #' 7
* ΔH ' ! 2,KD+A ' + 3 # ( * ΔE 2F 3' F #' # 0 / 4# ΔH = ΔU + pΔV , 2K,3 # 7
* ΔH(298.15K) V $ ΔU &6 ΔH(0K) = ΔH(298.15K) − ΔΔU (298.15K → 0K) − pΔV , 2KE3 ΔE(0K) = ΔH(298.15K) − ΔΔU (298.15K → 0K) − ΔZPVE − pΔV , 2KG3 *
ΔE(0K) ( 1
# ΔZPVE # 4 ( & ΔV p &# 4 - pΔV &6 pΔV = ΔnRT
# ( J Δn ' T R = 8.314472 molK - ' # ' # ΔΔU (298.15K → 0K) ; ΔΔU (298.15K → 0K) = ΔU (298.15K) − ΔU (0K) , 2KA3 KD
P38 & $ # # $7 $ " O "ζ "1 28WC83 X = 3 Y = 4 O " O " ζ "1 2C8WA83 X = 4 Y = 5 # 7(
28WC83" 2C8WA83" 9# ":"$ 06 # ' 28WC83" O " 2C8WA83"$7 O "ζ "
3 )
! +A *
2K+3
# .
2$++3 2$+,3 # 2$+E3 2$+G3 ( ,"' ,(*+,"' %%! "' %%! 2*+,3"' %%! 23" %%! 232*+,3"-( * ' ((42P38 ((42CP38 & # - "ζ " O "ζ "1 *( # & 7
> k∗1c ' $ - 2K+,3 - 2K+F3 ' -# !#( & &6 d[H2 SO4 ] k∗ = K1a ∗1b k∗1c [H2 O]2 [SO3 ] = kobs [H2 O]2 [SO3 ] dt k−1b
2K+E3
# 7 % * 2+ 3 2+3 # ' *# # 0 -#( 2∗3 - 2K+E3 7
*# kobs Ea(obs) &6 Ea(obs) ≡ RT2
d ln kobs = ΔH01a + E∗a(1b) − E∗a(−1b) + E∗a(−1c) dT
2K+G3
# ΔH01a ! * 2+3 E∗a(i) # * i $ ' *' ' E∗a(i) # M+DEN / 4 # 7
Ea(obs) ΔH01a ' # De = −ΔE(0K) &6 −ΔH01a (T) = De + ΔΔU(0K → T) + ΔZPVE + RT 2K+A3 # " 1
# 2K,3 ΔΔU ΔZPVE # +FD
2 = ! "
!53· 2 5 ( - 2K+A3 & * ΔH01a ( # 0 ; - 2K+G3 4 kobs $ & 4 ΔH01a & 4& & kobs 4@ * 3 4
! # 4# & ( !53· 2 5 M+DGN " $ #
1 - #'
9# HI HI # - !53 25 ( : - !53· 25 7 # HI # # H:7I #' # - !53· 2 5 7 - $&' #' # HI"2%3" M+DA"+DDN #' H I"2!!$3": M+DA"+DDN 0 ' ;3' !@ ! 2+KKA3 M,N 5 %' )Q' % ; ?' +!' GFK 2+KKA3 MEN - * ) ' ) % ;' ,-' +K+F 2+KD,3 MGN ' )Q ) 5 ' . 0 5 "'
; % 2,FFF3 MAN * ' % !' +' DK 2+K,D3 MJN 4 :' 8 ;' -.' +,J 2+KEF3 MBN 4 :' 8 ;' -' BKA 2+KEF3 MDN 5 ?0#' % ;' ' ,FB 2+KAK3 MKN ' 5 %' )Q ) 5 ' % ; ?' ++' BA 2+KKA3 M+FN 5 %' ' )Q ) 5 ' % ; ?' /-' +DA 2+KKJ3 M++N * - >' / " 5 " & + . ' 57( /; ' 57 2+KDK3 M+,N ' ! Z' 5 %' ) % ;' .0+' G+AB 2+KKA3 M+EN 5 %' ' ' )Q' ! Z' ) % ;' .0/' JK,+ 2+KKJ3 M+GN 5 %' )Q' ) % ;' .0!' BG,K 2+KKA3 M+AN ' 5 %' )Q' ! [ ' ) % ;' .0-' +DFD 2+KKB3 ,++
$
M+JN ! 1 ! 5 ' . 6 "' 54$*' 1# > 2+KKJ3 M+BN $ !0' ;' ,1' EJ+ 2+K,K3 M+DN $ !0' ;' ,1' GDK 2+K,K3 M+KN * 5' ;' 2+' GAB 2+K,B3 M,FN $7 % %; $ ! ' 4 +FW,+WFE M,+N ' ) % ;' .02' A+KG 2+KKD3 M,,N 5 %' )Q' ) % ;' .0!' BG,K 2+KKA3 M,EN )Q' ) % ;' 1!' EEEE 2+KKF3 M,GN ' ) % ;' .0-' DFAK 2+KKB3 M,AN % !#' ; *' .-' +F+A 2+KJ,3 M,JN % !#' % ;' ' ,G+ 2+KJE3 M,BN %
' ) ! * ' ) % ;' ,.' G+G, 2+KBK3 M,DN * 1
' ) % ;' 2!' ++BE 2+KDA3 M,KN $ ;
' 8 ;' /+' EGB 2+K,K3 MEFN ' % ' -2' GGA 2+KDA3 ME+N ? Q
! ' ; *' +-' J+D 2+KEG3 ME,N ' % ; ?' .!+' +B 2+KDB3 MEEN ) ' 1 % ;' * $ ' % ' ,1' EJ+ 2+KK+3 MEGN ' % ; ?' .2-' ADE 2+KK+3 MEAN $ : 4 : ! ...' ) % ;' ..!' EKKF 2,FFF3 MEJN $ : 4 '
' : ! ... - %\\' ) % ;' ..+' ,DBA 2,FF+3 MEBN $ : 4 '
' * ' % !
: ! ...' ) % ;' ..2' DAKG 2,FFE3 MEDN ) 1' ' % ; ?' .11' GKB 2+KK,3 ,+,
$
MEKN ) 1 ' ) % ;' .0.' BBED 2+KKG3 MGFN ) 1 4 ' % ; ?' !+' +JJ 2,FFF3 MG+N ) 1 4 ' ' " ()* ' "3 (4- & 5' B' ! +E+' 2 ( S ) ?;3' !@' ! 2,FF,3 MG,N ) 1' ' ()*3 + ' " 5 "' ( +4 "' E' ! +' 2 S * ) 3' !@' ! 2+KKB3 MGEN ' ) % ;' .0' +FDKF 2,FFG3 MGGN ' ' % ' .0,' +BE 2,FF,3 MGAN : * ;' ) % ;' ..1' GJFB 2,FFE3 MGJN ! ( : * ;' ) % ;' ..1' AEAD 2,FFE3 MGBN % % !' ) % ;' ..-' JEKB 2,FF,3 MGDN ! ˘' ) 1' . ) C %' .0/' K,K 2,FFA3 MGKN $ ' % 4
' ) % ;' .' ,+GEFJ 2,FFA3 MAFN ! (' ) % ;' ..' ++B 2,FFG3 MA+N ) ; : * ;' ) % ;' ..' GGBK 2,FFG3 MA,N % % !' ' % ; %' .+1' + 2,FF,3 MAEN ) ;' $ 4 ' *
; : * ;' ; % % ;' ,' ,B+F 2,FFA3 MAGN ) 1' ()* "' ' " " "' ! +GK' 2 S ) *; #( 3' # ' 2,FFE3 MAAN ) 1' 4 ' ) % ;' ../' ,F,, 2,FF+3 MAJN ) 1' % ; %' +' E, 2,FFE3 MABN 5 %' )Q % &' . ) C %' -2' + 2+KKD3 MADN % &' . % ! ! & !! , 1 4 . ' ' /& 2 3 2,FFA3 MAKN : 4' $ ! ) ) ' ) % ;' 2' EBAE 2+KDA3 ,+E
$
$ ! *9' ; * ' !!' ,K,D 2+KDJ3 ) ' ) % ;' ..2' EFFJ 2,FF,3 ' = ) ' ; % % ;' -' ,FAK 2,FFG3 0' + " !! , 1 % ! 7 ! 0" ( . (8*' ( ' /& 2 3 2,FFE3 MJGN ) 5 )Q' 5/ ( 5 " - +
MJFN MJ+N MJ,N MJEN
0 & . 9! 0 & : 4 ' . 0 5 "' ! DAB' 2 S * >;3'
MJAN MJJN MJBN MJDN MJKN MBFN MB+N MB,N MBEN MBGN MBAN MBJN MBBN ,+G
!@' ! 2+KKA3
' % ' 2!' ,JE 2+KK,3 !' : * .' ) % ;' 11' EBED 2+KKE3 ) 5 )Q' ) % ;' 2' E,EA 2+KDA3 % &' 5 % )Q' ) % ;' .02' DEE+ 2+KKD3 #' ' ) % $' 40( 2,FFJ3
' 5 " & ' ' " : 4
" "' ! E' 2 S ) *; #3' # ( 2,FFE3
' ()* . ; ' . . + ! & 6 "' ! +D+' 2 S ) -3' % . 2,FFF3
' 12/ : 4 ' ' $0 8 2+KKJ3 % % !' 2+KJF3 ) ! 5 !˘ ' ) % ;' ++' +DKK 2+KJJ3
$
MBDN MBKN MDFN MD+N MD,N MDEN MDGN MDAN MDJN MDBN MDDN MDKN MKFN MK+N MK,N MKEN MKGN MKAN MKJN MKBN MKDN MKKN M+FFN M+F+N
) ! 5 !˘ ' ) % ;' ++' EJFD 2+KJJ3 ) ! 5 !˘ ' ) % ;' +-' DAG 2+KJB3 ' % ' .0' +A+ 2+KAB3 *
' * ) ' ) % ;' 1-' JBKJ 2+KK,3 ' )' ' !22' EEK 2+KKB3 %." %."*+,"
# # # 4
0 2,FFA3 ' ' ) 1' ) % ;' .0-' KJEK 2+KKB3
) ...' ) % ;' 1-' GGDG 2+KK+3 ) % ! ' ; *' !.' EEE 2+K,D3 $ ;
' 8 ;' -/' +G 2+KEF3 % ? ' ; *' ..' +JGK 2+KAD3 % ? ' ; *' ../' +,+J 2+KAK3 % ? ' ; *' .-' +GBF 2+KJ,3 - ' ; * ' /.' AF+K 2+KKA3 ?# ' . ) C %' +.' B+K 2+KK,3 ?# ' . ) C %' +/' GGA 2+KKE3 ?#' . ) C %' +/' DB 2+KKE3 ' - ?#' . ) C %' /!' ABA 2+KKA3
? ) * 1 ' . 6 . & 0 ' " & "' ! +BEA' 2 S 4 * ! ; 3' ;' % 2+KKD3 ?# ) ' ) % ;' .0/' GJEJ 2+KKJ3 ! ?#' ) % ;' ../' AEJ, 2,FF+3 ?# ) ' * ; %' /.' AF+ 2,FFF3 ) ! ! ! ' ; * ' +' KFD 2+KB+3 ) ! ! ! ' ; * ' ..' G+D 2+KBG3 ,+A
$
M+F,N ' '
' ) 1 ! 4' ' + ; " ()* ' ; 5 "' ,FE' ! ,+' 2 S * !9[3' !' W 2+KKK3 M+FEN 5 4' ) 0 :;' % ; ?' .!' A+G 2+KKE3 M+FGN ) * ; ' ) % ;' .0/' AK+A 2+KKJ3 M+FAN % ) *; #' ) % ;' 12' +,A, 2+KKE3 M+FJN % ) *; #' ) % ;' .0' ,AEE 2+KKA3 M+FBN ) ' % ) *; #' ; * ' /' GAFF 2+KKA3 M+FDN ) *; # ) ' ' " > ' ' " : 4 " "' ! K+ 2,FFE3 M+FKN ) ) *; #' % ; ?' +1' ,AE 2+KKJ3 M++FN %' ) ) *; #' % ; ?' +-' G+B 2+KKA3 M+++N # ' ) % ;' .!' FBG+F+ 2,FFA3 M++,N ! (' % ; ?' !12' AJ 2,FFG3 M++EN ' ) % ;' 1+' +KDA 2+KK+3 M++GN ) 1 ' ) % ;' .0.' BBED 2+KKG3 M++AN : ' % & ' ) % ;' .+' FGG++, 2,FFJ3 M++JN $ : 4 ' % ; ?' !1/' +KF 2,FFG3 M++BN ) ? ' ) % ;' /2' GGKJ 2+KBE3 M++DN . ' ) %
; * ! ' ) % ;' ,.' EEKJ 2+KBK3 M++KN - ' ( %' ) ; % ' .0.' +FFFF 2+KKB3 5 ' A