"!$#$%'&() +"",.-0/1#$2$3(4 57683(3(&:9$'&( @?)A50BC"!$#$3( ED>F GHA...
141 downloads
1371 Views
7MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
"!$#$%'&() +"",.-0/1#$2$3(4 57683(3(&:9$'&( @?)A50BC"!$#$3( ED>F GHA5$$!JIE9$973(&('&()$A LNMPOQ(RSO U"O'SW`aVPXXMPMPOYO'*bdZN] ef[N\ VP]g^OVP]_RShi`aeXO MP^O'\_R%b eO LNnoMPgj%O klO'pSWMPVPj] XO8^fSjX^)MPOMqO'Rb VP] je r.u ROeVP] XFjb eFR%\siR%^Fb vwO] OMqblVPMqRbPbaQ:jMPsxR%eFyEVPgOzpMPjX^f\_R@{|]_RYy] ]_b}jMqb U"O'SW$VP]XeFMPyO] e~piZNL7^)jj]] e4e4VqVqbbdjeRV}VP]_SO'bo]_R=VPgOzX^^)OM.gFR%\ Q^\_R%eO U"O'SWvwVPXO'MPR%O EmFsYZNj,yjXy\_R%XMo\_R%Q:M.jMPsijbMPsiboj%Q7U"OO\0* ,] jsYyOXeF\_R%b}]M.jeFbojMPj%siQ0b b}^FRSO'bdj%Q7sYjyX\_R%MoQ:jMPsib .O'SqO8j^)OMqRVPjMqb U"O'SWVPX] MPMP]_OSqgK\ OZNV.Ub}Ob}MPO] MPO'] bO'b,jyX\_R%M.jMPsiboj%Q7.] pgOM.U"OO\ UjQ:MPXsieFboSWVPj%] jQ$eFgbo] pj%gQ7OsYM\jOyXO\_\ R%MoQ:jMPsiboj%Q$\ OO\0* Ub}OMP] O'bdj%Q$O\ ] ^VP]_SzSXMPO'b U"O'SWVPXMPOzZNRy]_S8rO^MPO'b}Oe4VqRVP] jeFb
K
*
T **cm* **'tT ~*'c* ~~KK ~4~%tT ~%c %m t mFmF** mmm~ m4 m4m4cc K%K* Km K4T
"7>">$
ueR%\Oj]_ybd] sYMPOO^eFMPb}O'] b}jOeFe4R%Vq\RVPMP]Oj^eFMPb O'b}Oe4VqRVP] jeFb nou gR%Oz\ jS]_bdjeFMPOy^XFMPSWO'VPb}jOM e4VqRVP] jeFboSjsY] ep1Q:MPjsO\ ] ^VP]_SzSXMPO'b U"O'SW,VPXjMPMqO=yOT\ ZNnovwgOOz] \ r.R%ej%Q7[N\ \ ] ^VP]_S=`aXMPO'b.OM nonoggO OzvwR%eFO'R%R%\ 4fVP]_,S8jMqMqR%yeO \ \ vwO] \"nogOjMPOs U"O'SWLNVPMPX] MPsiOzR%t\ ]ZNVl .^^\ ]_SRVP] jeFboj%Q0[N\ \ ] ^VP]_S`aXMPO'b F`aRMPSWVP^jVPMPj] epMqp R%^g ¡d] ¢\ ] jpMqR%^g I43( @&(® ¤£"&(3:?)4 @¥a4 ¦>5o§Y9a©¨i#$A'&()$AE&(|IE &:'2$GH4'&(ªI3(¦)4¥$ &(w«f)G¬ `agF¯R%e4^VPVPMPOjMzy*XFZdSWVP] je OMP] O{ [N .\¢)] O^\ ]_VPR%]_S e<SXR%MPMP] OO'VPb ] O'b ,n>jjMqMqb}y] jOef\ b}vwX¢O]p\MPpjMPXj^FXb ^Fb r.U"jR%je] b epYR%gO'Ry ° XppO'blVPO'yMPO'Ry] ep `agFn>R%^jVPMqOb}]Mj~efZNb}n>X¢jMqpb}MP] jjXe ^F° baXQ:¢jMpMPOj\ X] ^^FVPb ]_SzSXMPO'b ²`aj±4eXklO']_SqSWEVPX\ MPjO'jb RVsYjyX\_R%M.SXMPO'b . ..¢)¢)VPgOOO\\ ]_]_MR%R%e<e<MPO'b}XR%R%\MPMPVq]] bdOOVPVPQ:]] jO'O'MboboOjj\ \ ]OO^MdMdVPej%]_SzVPXgs=SOX¢)MoMPO
FMO'Ob \_
FyOb \_yb ] pMPO'bPb}] jeje<SjsY^\ Os=X\ VP] ^\ ]_SRVP] je `agF[0R%^VPR%OsYM.^\ ZNO'b r.R%eb µN³.R%eXFMP¢)RYjyXVPMqgReFVPO y]_S.O'
FyOVle{\_y O']_bPblbWVq´@b ¢)jXeFyO'yeO'bPb .]_blOVPMqMPR%] ¢pXOVPMq] R%jee$
· no[Ng]_O=yO`aeFjSeO8pQ:MPjXM.Oe4¡ V.° ¸.²X¯ s=¢)OM.LNMPj¢\ Os ***@*@~~ ¡[N° ]_²yO¯}eF¯ SO8Q:jM.¡ ° ²¯}¯ ***'*@K ***'*T [0° O\ R%sYsYOM^\ pO'MPbNj¹ºX^Fb yO'bPSOe4Vqb `agF R%^¡.VP`|OM`aKjZNe klO'¡.SW`JVPXMPR%O'eFb y¿&:¥a4=$!¾ÀÁ&(3(3(&(GÂIª-7£'&(a5>Ãa%'#> A1)J£"4 @ )Ä AY;=)"¬ *m4 LNMPOQ(RSO *mK `agF¯R%e4^VPVPMPOjMzy*XFZ0SWVP¯] e4jVPe MPjyXFSWVP] jeVPj ° OMPMPOÆ b`ajeklO'SWVPXMPO **m4m4cc nonoggO Oz{dblVPO'MPR%jepiSjSejkleO'klSWO'VPSWXVPMPXO MPO j%Q ° OMPMPO *@*@KKm~ r¡oRO^SqMPO'pb}MPOje4XVqeFRyiVP] jsieFRboVPOR%MPMP]_]_R%b}]\ ep=Q:MPjsxR%eSqgFR%MqRSWVPOMqb *'*'%%mm rO^MPnoO'b}gOOe4Vqb}RXVP^)] jOeFMqb}bd] ej%pQ$Xg\_] R%pMg<S{dRb}OO ] pg4V *'*'4KT °nogblOVPOb}siX^)bOj%MqQ$b}] sYepjXy\_R%Ç8MOS] Rpb}OO eMPR%O\ X]_b}O'] b VPO'y *'*'tc **TT** ]_blVP] nouepgOXjOz]_sYb}jgOMq] yVPeMP] pYeF]_S R%¢)MPSOEjVleF{dSblROVPb}OMPO e<XFSW{dVP] Oj] efpg4j%VqQ bu ~YR%R%\ jeF]_yEbdÇaMPOÉJ^MP* O'b}Oe4VqRVP] jeFb *T%~
·
" 7>">$ rO^MPO'b}MPOOe4VqSRXVP] MPjeFO'bob R%MP]_b}] ep=Q:MPjsO\ \ ] ^VP]_SzSXMPO'b `ajsY[0^FR%eR%] sYjeE^\ Q:O'jb MPsib ^rVP] O'sYy] XF» SW] eVP]pYjeVPgVPOjiU"{dOO] Op\ g4V~ ,u OXj\ sYVP,] ^O\XVP]_MP\SVP]_] S8]Vl^MP\ O']_jSR%e] \ Vl]O f» RjVPe] jO eMPj%O^Q MPu O'b}R%O\ je4]_VqboRVPMP] Oj^eFMPb O'b}Oe4VqRVP] jeFb ,,XX\\ VPVP]] ^^\\ ]_]_SS]] VlVlffjjeeO8O8VPQ:jgMOjsYMPOjsiy,b ~=MPO^MPO'b}Oe4VqRVP] jeFb no .g^O ^MPj4ORSqgSO'Rbab}O VPjY\ OO\j^VP] sY] » RVP] jej%Q0nogOjMPOsxKZ *@~ `agFR%^VPOM.ZN .^^)OeFy] f¢Ë O] e,¡dX »» R%MqyÊ7 ²,jyÇ ,X\ VP] ^\ ]_S] VlªeOzrO'b}X\ V ¡d] ¢\ ] jpMqR%^g D>4 $$!$¾¨?aÌ 50ÍfF GH'&()$A1)8«f3()&(AY¿49$ A'''&()$A ¯e4VPMPjyXFSWVP] je U"O'SWu VPXR%MP\ jOY]_bd*ZpMPu jR%X\ ^Fjbo]_b j%uQ$]MPej
FXe^F] bVPOR%eFR%y">$ vJnoggOzyyOOQ:jQ:jMPMPsis RVPu ] jR%e\ jQ:]_XbdeFMPSWOVP^jMPM O'b}Oe4VqRVP] jeFbqÏ ³.rOe^] MPOO'Mqb}bPOR%e4\VqR%y¢O\Q:OjMPQ:siXeFRSWVPVP] jjeFMqbbÊ7R%{eFygE
F¢)MPOO^M.MP^O'MPb}jOe4yVqXFR%SW¢Vq\b OQ:XeFSWVPjMqbR%MPO e]_SO no`ajgsYO8Vq^R%\ OesYpOOe4e4V.Vqbdb}^FVPjiRSU"O O'SWVPXMPO=~ U"O'SW° VPSqXgMP\ OzO'bPb}ZN] enopgOM'OzÆ bo³.SeMP]] VPOOMPMq]_bPR R%\"OQ:jMPsiRVP] je"Ê0[0]_blVPOeFSO ³. .e¢F]b}jO\ XMqbPVPR%O\\ E] OMPQ:MPjO'MPysiXFSR] VP¢] j\ O eFboMPOO^MP]_O'blb}V Oe4VqRVP] jeFb [0[0VPR%MqsYR1^LN\ OMPÊ$j¢VPg\ OOsiSb Rb}O8ЪѲ* `ajsY^\ OsYOe4Vqboj%Q0U"O'SWVPXMPOz U"O'SWVPXXeFMPO SWVPmFjZNMP]_noR%\g^OzMP³.j^)eO] M}VPO] MqO'bPb R%\"OQ:jMPsiRVP] je"Ê0LNMPj^)OM}VP] O'b n$n$R%R%eeppOOe4e4VVb}b}^F^FRRSSO'O'bbR%R%eFeFy$ La³.Lae[aj¸¢FblVP¯MPÒCXFSWVP~O'ZNyf .ye OQ:jMPsiOMPRVP] ] Oj{Ôefj%^Q7MPjRi¢no\ OgsiOb jMPOsÈj%Q0$\_RSqgf¢n>jsxvwO'blVPje $u° O] R%Mq\ sY\bljV]_ObdMPMO'sYpyMPXFjjSWyXVPX]^Fj\ bO'eFb.b R%eFyEVPgOSR%\_SX\ XFboj%Q0n$RVPO8Vl{]_blVqb noË gjOz\ ¶0R%Q:pX] e"eFÆSWbNVP]VPjge3: @97?)2äA « ¥a4 ¦>5w "!$#$%'&()å'æWç=A'ç=æè2$F @®éF ê683(3(&:9$'&( LNMPOQ(RSO `agF[0R%^VPOOMqMzS]_*b}O'ZNb ,jMqyO\ vwO] \ u MPjX^Fb `agF[0R%^VPOOMqMS]_~b}O'Z b ° O\ sYOM u MPjX^Fb `agF[0R%^VPOOMqM.S]_b}O'ZNb ëN,jyX\ O'b `agF[0R%^VPOOMqMS]_mFb}O'ZNb ªR » XM'Æ b.`aje4VPMPj\"nogOjMPOs ¡d] ¢\ ] jpMqR%^g +")2$u JMPjèdX^f'sY)5ajy«fX\ O'3(b)&(AE;=)2$)GH)3()¦F® `ajgj[0sYjR%\ sYjp^ \ O'b Ú à(íYîïá » a ` F g % R q M R W S P V O P M ] R P V ] j e % j 7 Q ì Ë XsYsYOMoVPgOjMP
%%mm4tT %4m4K%t 44K%K% 44K%t~ 4tK T%c~ T%K tTc t%tm tttc c4c4~K cT m4* m4c mF** mFm~*'m mm4~4TT mK* m4 m44K m4m4cT mmTT* mmT%T%~~
"7>">$
noXgeFO SW°VPjgFMRQ(j%R%Q7MPO^FR%]_] SqMqgfb à(píYMPjîPXð8^ á no`aXgO ^°#
Á*lÇ §\@d©\«2dY¬>d,ysV
P*dlly'¢DVlJiYl'f{l¢µsdB,id~]l
i°9BBP¨~f@~Æ{[@d°>Y®2]Òdy7
i
®[Q¢µl´y»ª¢¸QB¤ºiB'li¬S©ª'Ç ~°>YdPG¨llWµ£¢}sÓ>°9di
ilQB2
¨2W½¯Á7l
fPdl®lYd]¨kYB V Ì ¢ «Y¤iG
iJlB7ºa½>
Yii7B{V¢µ7Æ{² ddÂÒ
®lQ´yQÔ¢}li2Ò lºÕ¶d2Á¯kdYylVNYi92® Ì DêÖN×#ëÜUWØVÙ{ClÚÜIdbÛkÝ}CBì@ÞNßÔì@àSEÞNT]áLÞ]Yl7]¶² kl\9Y@
iŮN
,¯lyi*iS
7f9®B{Y#7\lP @GWkY
J
]l´N][Bdll¢ 7 dYd¡@7W¤B¶77llP¢ Yi
y¤Wd
]dll]7¢ ' li
i BW¤l]P]l2
®¤ysÂ@² [Å®¬ÜW]µ¤#¢di77PYi@YY ]ÃÍYd@Y¯J¤i
i*[BVФl®NVÁkddl*ÄJ®d £,VÐ*
i*Bk¨ Y
7i
\l]Bº9ª
¤ d¨iB¤@B2¤7B
]®Åi,ÁGdN f iB¾£97dB7GN
#¯
Á7 ]4B®Â~@¶[Åiddi·Y® Ál®
]¶BPl7¤yGVB\·YÂÁ#iBli lÁ¢@liiÂ,Èd7l*VNkVYÇ Jk¤ldly®J7²
]9lk7\ 77Vk¢{7ddYd]@\dN\W[7@llVPBYV]7² Bd*d d{Ç Jd¾£7d7GyGl·Á¢@¶Y¸\ iyY@ J
È]*k¶[id \ BdlkJ
i ]ÐikY ¶
¤G
sd¶ds¾~]Y]yGlªÁls² ÈY]*B]Ç É7>]ÆDÂNd>J7
i77Gl7²,7 J
iÁld ¤ iillYd27JklV
i'k9~
7
#k¶¤9dsy
iBY@ Y
VЮkdl :9=
3?
@
F@
Z
[
L
BADCFEHG'IKJA-EHG1L:ANMOJ
EHG
C
JPCQERGTSUJVERG1WYX
=
Z
[
Z
Z
[
[
>\ Z
][
>^
_`ba 4dcfe.587hgb7
L
J
EA
L
Mji
L
JkMjljEHmon'pqAVMsr&ljEHmon'p6iMjnYt
l
L
Mt
C
_`ba d 4 cfe.587w*7 S S S {J E|A M}i
ruTmov
yxMzu
S
S
iJPliÉ77PyY@YdÂBdlil}i ¡7G7² ³ iiN@d e J
ERA
Mi C
J~MvYtlpqAVMutC3piMOuotC:lCEHmTv3t
L
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
m]j
'
1
'P1
P
o/
'P
2
1
-2
-1
1
2
-1
¥ d]\*Bs]ÐiBdl
iB9d Ã͹®k\7¶l dP]GÄ ¶
¤G
sd9lVÐikYd¾~]Y]yGlªÁls²«7]lYdl¢@BÂVЮkdlsB¸
Á 0¹Ðilydf¡ldlP¤Bµd ]
B ®dl,
JGB
iiBy®ÁslP¤@] ~
il2¶lvdy7ddiYdS@9¤,B7G7² *Yv¾£7d7GyGlfÁl Y¶
,¡ldlP¤B· -2
J
L
EHA
L
M
A C
MJ
L
ruomTv
t
l
L
Mt
C
ruotp
ADCyM
~J
i¬7lv]BB ¡¤Ð[idWld'V7¢k
B®#¥ iByGi¦
±fB
i®k]7d¡7]*aBB{Ǫ l½¯Yd¡l7Á]7S
iYЮYBV]] ² _`ba 4dcfe.5877
{
o
23.o
QJp#Ap#/p#8p# JVEHA J
M
C
EHA C
M
C L
L
C
Vü§·ÐY®]kÉ]\É7ddll¤Ê¯Åi**i P
f
BÅi'dGlyi]P¢@ll}\Yd]lyd@,7¯yY
®Yk9dlB Y l¡d@dlY¹Y
i]dl¶]@ NÄ[7²Â»\¢@ Ys@Gdkdd@ld®B}
 ¡
7dGG7 ¢ J
EHA
M
C
\
J J C
EdA C
M
i C
rJA-EdA C
M
C
C
X
¤©ª*ld£@®d7l]GyyÁ]VYS2¢9B
Ю ÅiBBlyW² dlV°9iÐliYfk
Yldl@
¿kY B¿i7PiB ]7B
dYvdv']7vli7~¤ky]@YNl7£ d
idY7]¾~7]¹Y]¤yy''yG
ilB¹BW]Ð
dik]lY7 7ÃÁYli
Pl]dP¹'ldlW
ÂdPNl\ll¤]]
7PÁilfl]]Ðli7®BBi¹dPl7]ddÐYB@i¶Bd@Jd7l7i] Bl#Âʵ@d
]JlsY7k7BGydlVdSYVdl Ä[k¢{BBdi~dNl\ÍfdS] l*7iG
k7d G
Bd7 *lÐi
iBlBÏ
7¤ ®VÍ[lYÅ®[V '7ÃÁyÉ7]¢@Âaª[ f[l
lPl7i7l®>VЮkdl®>d kBdlYV>l\@]l7 lÄS² ¬77G7yGdBl¤kB7Ī{¾£´Ni7id7SGNV7¢·BÁ®l¹s
²¯J
V¤l¶@[]i·¶>Yd¡¶®dfY}B¡fd¶®yVWil
@d[®Yiª,@V7d¡lY·Ã @ÄJ
iB>Biª]\
dldiBµÐVNY{² ¬Ü¶
sG
iBGl[]¤Nd¹l d{Ç WVЮB· s
7Yv
¾£7d7GyGl Á ÎÊ \ 7BÂ[PY7
#Ðilfl
i Y7 9
iBiÂd¯*l7 à lÄ P7¤Y Gü
°>
i lP[\iSs7d¶ ddy®d>¤JYy]Bl{¢ªP
d¯l¤PÅiD7l]¤ÂÐ,i¤B
yD#dÇl¶ Y]Ðd
¹i>l
ii
B® ] Ðyi¤
@B] dl@ \VfB9]BBl* ¯Ái
i7dyQYd
@ 7¤¶]®Y[PVikdVsÂÁPY
Blfi] ]² ÐÄli¬ÜkdY
Y
yÁ
il Y
¹kBdld ']YdPYiB
] 7i'2¶Y
£B2VЮkdl'B ¡Èi
l]P]B*li7li7PBGB¸aYi]>СyidBP]dªlY'¤¶[YdN£l ² ,
[¹]
¹7[]isy¢¸¤@B]i·~
iªdJP¶YPdYad77\i¾~~]Ys]iy7GlÁ7Á
idf ÁGk
7P]
i]lY J@7
Åi\ll
i·¶B¶]*
¤a dWd][
J,
i7¤#l72ÎYBiW@@lidl7¶,B7¹ilkl]
dB7dl7li¡lYdaPi7lBPN²a7J
2]'¶B®sJB#d,k ¹J
¤BÂlf7Pi Ì 7l¡7l¶iBd]¸B·]B[P¹7ÁlPJllG¸l@]Y®dYk¤ N[i@l7V7GW¢Á¤ l47¢\7GBBi}v@¡
]Â]]9l¡77 G*®VQSdlldV7 ² ]k´Nk[iYi ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢i[l² A C
MOJ
J]ERv
JNEHn
J*pA
§
.T4
a 2¨O5P7 ©7
y=
@
BA C
l-CM
v
ERG I JAªEHG L ANMJ
L
ERG
J
C
C
EHG S JNEHG W
A-EHG'IKJ«Yv&ERG1L¬«v CyM
>J*X
m
-J
VJ
lCyMOt
L
C
ERGTt}E¦X
D?
®
> ¯*° 5
>²±a'³ * ´{µ/³ * ¶{·/a * ¶
0¸ ¹Fa
g1 * ºs° 5 ¯
+» * ¯*° g1
£¾ #NȺGB¶¶Åi7
¤ 7²*l]¾¿\d
s]
7l¤lB]id7¶ yªYP¶dldYÂy7JP¹¹¡l
idB#lGP#¤BG
i¤JlYsSN\]P¤yQl¤ ¤¤BiYVB7 ² V¶
iÐYk®
£ B·¤[ ,Â[d7 G¯² d~¯v
@¹7Åi]l]d2YvÍlSªYlG¶
>Ydd7iÂi*dY*V
B
i,¯kÍ Íl]S[ l]lG
i~]k²#®°9Y d¹¹[¤BBYdV,YkB¤ŮB7¤d l ¤ llY7GB¤7lYd'7YyV'Å®7¤v[lGBdYi yiG
£
ikWl'7d7P]WB d ¼*½d¾~¿FÀÁ/ÂPÃÄ ÅÆoÇF¦ÈÉÊŦËQÌÍÈ*ÅFÂ
Î=
v
a
m Ï
eÐ8.o¸/2 a'°Ñoa eeÒ
N=
Ñ e0
³ .TÓ
:?
¥=
Îa eÐ8.T¸2 a'°ÔÑÑ e0
>=
³µ
23.
¡=
=
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ Vm h N¤ly\Y~P7lGiBG¤
,¤ykl*Y7G7ÄS² GÃÁÔB² ¤,²Y¢¶[dkdyÅi]]¹*B£,¡¤lyd¹lPi¤
Bd¶~]ÃÐi
Bldl
¶
Y7
¿[l ,i7yY]®BGdYPvY¡*Ä B}v²°9iG
J°9
k7 d\[
Åi#yV7' k7 ¤Ã ~Ä\Ê É7]² ®YPdl aà @Ä>d N\7,BGk@B]2dldf]¶
¶,Y
'BP7* ,[i[d7l²LįJd
*É]² 7ü°sW[ B\YiY
i¹dB ¡£ldslP¤Bli¤É7 7¶,
ik7 B¤\BP>Yi y®BdYd ¶¤Yyi
lY[dÉ7ªl@µdi
Bª]7\d ll¢QB¤¶® @] 2Bd]º B9Å®7¤#[GBdd
7¹yY@Yi} aÃ Ä Ã ªÄJÊ Ã Ä Ê aÃ Ä P° ]liÌ ¶BBsdl7idl7P¡]ld9d¹ à £
isĪÁ7l9WÅ@¤P]s'G¡
lld¤[¹dl alYÃ ~7ÄSG¢\B¤B¯i7 Y yi Bl²
Â[i
*s]7ÐilBld²l£«¶@@¬Ü ]
a7Ã llYG@Ä7Y®GkBs¤V*¯d 7
islBP7W7Bl ~¹klYl7i] [7~®P@
i7l7vlB£k[d@y Íl¡d[d77Gl ~d#lld@iB#Y7 l¡ià 7l7d@#įiB @7ÅiYdlÂBa ¡ldV¢ ¹¶
#@d]S9iBdlÂB¡kl ,[]¶Ál¶li¶®yV7² ¾£d ]iQ,[d
®dfk¯d,
7#l7 i¤ f
iB99¤¶d]Y·iG[>d@d7Åi¶d¹,®¡Yld¹lP¤B¤µB d aà ÄJ¤>² lild@]Y lY¸®¶[
¤G¶
ÂÍdS¶@l7GÅifà JV
Pk[7Ä[ à l à NÄ\Ī@k9l]l J2kÃN
i7Ä l@fÂ
l ² i[ lÌ Gk¤\Y
i Bºi®YYVl¢µDN@\ PdYd]]]i¢@[]dGd
Èil7 iiY¤k[Y9l2]*\B¹¨PPl¹¨l
#
7*l[GBl7l² YÂ
iB 7l]¯B d]i[ddWiYVf\ *B¨ 7®B°>iYPl¸
i
k# [l.kÃ Ä d ¤*£®Y*l [l Ê aÃ Ä ²
ºQY aà @Ä BÃ Ä Ã Ä ¶i
G]
®k à @à ķd@ªÄ{ d¸
¹É7l]]J7
i7 ¡l
diÃÁllP¸dlV[B]DB7lYd>7 d®²a]¬Üi[#d¤·dVĵ
7>* BdYVÃNdÄ]l7 ¤¶BÂJB
i7Q@ldPPBddl Y *y *7Y]dy*Bl Yµ¤[ dNà BJÄà d#Ä[²lÉ]7i¢¸¼² l²d¢¸YJ
d7Yi]BW\]ÁB' ¡*>B
ili\Q@
dPÁBlV 2yGBdl
¯ddWd*Bdºi7dl
®
i@l P² J
BÃ Ä aÃ Ä aÃ Ä B P
²>¬Ï7ldflª® ydQl*id
ilB DB·YVlPy·¤\l
i9l}Bi
l¶7N\¶ dYi#lyB dlPi@² 7dQBdlVadlÉ]7 É7«]Ws
il7]s7
GB dY
il¢·PY l7d]*liYiªlÁl¤B *B®ÍlSYlGJ¤¹Y
i¹ddYV]llyJPÁdlP]l 7*iG
iB d Ã Ä Ã Ä GkB7¡7] B7Bv]®dBÄSYd² lV]G#B¤¹
i7¯Y[iyiP>kB ¢ºÃ¼[Bi~]
, ¶2d
,d ] Yddd7NPYDyP9lB*µ
B¤9~ÍS¡*B
B °9ÃÁd@9BiG
i
B¤iºlld7i¹77GBldYGÉ]@]YD®kVBªPl@fΡlkd¶G
¿ l#Y[Yl¡®ÄSy² ¤@7d9
\ºQYD7®BiY '
1
'P1
P
o/
'P
:?
-aDÖH·
ÎaDÖH·
.>cfe a'·
.Îc/e a'·
¡=
.
ѵ
.
C
y×
Mj×
C =
ØMj=
]Õ
C
]YV¶ld@Yid BaÃÍ7* Î7iYl®dµÄJdd
J7f
N¸#Q[Nªidl®d² [³ [@Yilli ¤BY¹Y¤V JBD
P¤J²¤9NJB®
¤y#¤·*lPY]ill7ilY¤dB]9
i kB¶
#² Ìkdl@dd *J
kYiiB\ÁGlBdd{k7ªVl,G@Y,®kliG
iy¤lkYlViª]d¢sÔ² l
²d¢#* B*iJlDdl
i#ÁBlf lidl¤BJdYi]BJliyÁl Ì Ã ~Ä Ã £Ä J@d
iVBy¯]]B¢{>B®yP
i[7d2PB]\ 7¡lY7di]*Y PDBid¯aGB
ill V@[BŮD7YiYiyB
ilV7¢¤2l¡dWdV]l\7G
idllYdlVYBkDB7¤Bl Ì ®@7¬Ü9¶idGd
 G
iBY£]J
il*º[dl*@ddiB7]G]yV² SG B *,[i k à Vį
i7£
9Ã \Ä lB¡
>¡l¢@d¶
]$ ¤·
dJ>
7[·ll{ Ql¤y
*dl#il,µ
¯d®Y Y
®lJP¡dl77µà iyÄ\lÊ lPa[à dÉ7]{Ê yÄ Ã yÄ\Ê @7l77V°9Gyµi¡YBli
i
7Y>PVJÐQWi,kYYi @Y¤VB[Y7d
]d®ªGĶ#Ydl
>¤,>ÃͶY¤d¶
¶liQ,[É7
®]kl9¯#7¶ #,Á[@Ydd7kl9YGi7Ä{ʪ¶BGi
WYld#l]*k
i]B[k¸ddll]iÐYi kÃÍB
iY®k Á¡ld
ilkP¤kBB·ÃÁddlÂld£lik0B¤BidVyÄYÍ@l[YJl ][
i£@dVÐWikPY
0 BY 7
GyvVS[idl®l7²4² J
£]Yi ¥ N@dBii¢fd]l
~YiBGB¡l
¤ J
'd7G]SYi,l
£dY ] B 0 ¡ £ l @ G B d ] 0 ¿ l d Y Á l B i 0 y ® VBÐ\®k
dl¡ ld à ¥ ÄS¥² ²J
iJ dYili,®BGB¡l¤#d7GyVS\¶
WYiY¤[YN*N\ $¥d7G]S¶dsNª¹®YG7¢ ¡B
2Ã BÄ Ì GkYJiB
Ô¢@Yd@9l 2Ì BiBdli
il#¼²[d7Y
_`ba 4dcfe.587 *7
&A C
Û
C
J*p#A MA C
rJ
C
L
r~J
M
r~J
ArJ
Mjß
C
A-EdJ
ÜA]MJ
»Û
~ANMr¡J
V·
C
0bÓ/.
Z
_`ba 4dcfe.587 *7
»A C
rJ
[
L
Mjß
FA C
Mß
J
>ѵ/³ c
³
Y?
á<Edp
â
ªÝ
C
Ô=
:p6
â~×
C =
KX
Y?
bì
úÝ
°Ô·å .T2 ³ . ÑY嬰 0
·
3?
µ
4
íûM
Ú
Ú
ØMjÛ
-Û>MOß
Ú
ÝHM
à J
ERGTKp#A
E¦
YQâ
=HãoX
:?
_`ba 4dcfe.5875 b7
AsM
J
C
E
C
Edv3J-E
yMjß
pß
_`ba 4dcfe.587585P7 v
|M
~A
#r
è
JEáA~E
J
îJ
Tp#A
Ý
Qí
¥ÞMjß
J
e 嬰 cfe °Ño° å Ò
ªANMOJ è
»J
C
EdA C
M
ß
J
EGoKpA *EK
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
m
'
A C
L
MOJ
1
EHJ
'P1
P
o/
'P
ANMJ C
L
dJ
7GY]S97GByVSPd¢®lvBiW9Y¤d¶YV¤[ÐY®NB}9ÂÃ ¥Yº \
7Ä ¤ YVÐ]®B]ª[J G'Bi¶l]
ÂB[dY*lB Pli² vdYi@{Ç N]¶YdP¤[YiBk ,
7£ÂB\J®
¶l[iJ@[Â
B k® []Ði¤B dl ¥² à ¬,= 7l¤lià £y¯dyÄf[dBliG£@ld¤i kyBd#>¹¤V>7ÐdidPYk]B
i dW7®Bd[*¤'B7lÂd ¡BP]
i
Bd
®]Ji
dWlflB´N9]/[Y1 dÅil YdNYl² - Ã ~Ä97li¤NG9Ba
W Pi dY Ã ~Ä 9Ê]¥ l[
7 ¶Y
° P¡ydldYd¡? ld-0V/{² à £ÄPd@[Å®] k7v@Åi]d #lP27]7BdlÂB Y Vd ÐisYkBB d77®¶[¡*7[d¤l*fW
il Yi7Yld]Ps®7*GYGBddY~li
iÉ7,7yP]ÅiB7¤B¤µJ¢DYÔ² l²d¢D²AYª@>B
,[
¹¡
ldi97¹VBdiY Ã
ik,¥VY#Ä Ì ªN2d7
i
l¶¹7l]YÉ]YivBÃÁÔV² ª²Yd¢9 @}d² d2 É7]kBdldVÄS¢\
7
2]Yi iBV° Īdsil´N]S"Y! fi[d>W*~lüyl¹¸7
dPÁ]l¹ 7Bdd]v2il´N]SY,G
iBil,l>[lG@ Ì 3 B ¶~
]'9 ] B¤B¤#¹@~77PiyYdi*
dl l¹,¥G
®B *B¶¥[*lkG@dYi kN]\ ~Ci- G
/ à P~BÄ[²d7¬Ü9] 2G
i
®BBP*}7B 7 ]Pyid[YiidBlÂ[Vl¶B² a*B
i >*
B¹i
Yi®*]¤B i* k iYlÅi7 YND/¤>YB27YN¢}*
]'G
il l7 ll'G7
VlGG¨@Y®
ikk¯V¶
d YaWÃ4¤W}° Ä2iEYdl4]É]l7¹a2à 7}l®Ä WÁYY¹®klYPFdld4vl la9à vP}Ä ²ld9¹¹¤B¤#l¥]lQJ7lBi¤GB#BiJ¡YVl@ d7dWl]
P ¹¤®B¢¤W¶l]l
d7G
ild WPB]7>Ðd¹d7kVlBWd77] B d'YVY ! l²JJ
É]7,y7¯liG
2*¡ldlP¤B¸d¯*ª]Y Ì @[Åii]i[>lG -0/µÃ ~Ä>ydi7 ¡a®là V¡dBÄ ¨ldPi*¤¢B¤>¤
7V²Â ÐÉ7°9i]Ydkl*B]d7[9l9ddPs kilalà d4 [´N]}YSÄV Y7 lv²9Ì °4®ilÃÍ7¶BYk´Nyl]7[7dlQ#Ä BÂ*Åi[YYd][ddllsvBla
lP¤7¢®lY7i7yl]®Y kBd[d]¸¶
¤dG¯
WB]ÂB di]B@a®®[Jd¶Y*¥ Ì 7¹YPl7¸®ÅiydlYi\lDBddll®]¸GlBi¤¯kll¡7d[N²ªJQl
d[YYPV77²¸®° ydl)lH lJ I Åil
Y]7di7ª¹Ä\GB7¤]>
Ðk@ldVd[ªVNÐÁi]yYB]
ª7¶¡7B \[l@Á[i¨}Å®i²\]Âl¨¡Y¢Blil,id¹k]d
79
i7ldª¡lVÐdliYdk]BBdd7Y®[lW9ÃÍkBldl]]BGBi¤7Bdd ¤@k] Ì l7i¶JPYd
i ll²[´N]iS[]Y@f¶7Ba#lGBd 7\dd#7l¡lf 77®@]¸P7l]B*´NV¡Slddl9[
iil>]W\iY dÐÌ yiGB[ Ì ¢ i
dllP
i¸77d £Ì @dYP
iP27idYÁdvBl´Ni]l
[Âdlll´N]B¤[Bdildll,¢J\¼² ilÂl²d¢ 7]k ]B]v@y²¡d,[¬ÜW*dB'¡ª
]vy7
ys]
PB>lP¨¤BdiN£,*d
i B7][yilW´N]~[]Pd®d7 ¢ Áll [2l¡Yil]dµ²J~«Bliµ7k¢Y97V¢
[d¹¤lWVJlYÂÂ
7 li7Ál´NYd]lS¢aY*BdlB >l
sf
i l¡É77]*d]#[Gl99B·
i*[Yiild ¡*ld#lPÉ7¤B]B¹J]
iBB¤B¸S[ÄS²a°>lV\µB7¡lkfl¡¢\@7>Åi¶dVY µl}ÁP*>µdd ]Jik[BdddlYYNYPVÃÁd]¶
Y[lddd]lk¹Yd 7iY¬Ü¤[ YadÃBddÄkªVµ ² ¤\ ¡ldlP¤B¡Y kBdld]ªB¸@]l7 ¹
7¶7l¡ I LK P¹¡ldlP¤B NMlà Ä\Ê aÃ Ä °>*
ilPl7]li®Y¹¤B" µÃ Ä·iB¶@Y¤ydd¯ ¹¤
lPl7iYÉVkdlB µÃ 7¥QÄS² T
ÎJ
*
b
fP1
8
I
b
IMçß
I
Ô=
of
=
Y?
=
×
I
=
¥Mêà¬J
ã
zÕ
>Õ
{=
x]E
Õ
Ñ ,
a'·
ÐP.O0
Ñ 0b0P23Ó
°Ô·aDå . ³
J
xE
áJ
ÎxE
ì
®
=
Y?
-×
Y?
Y?
QÛ
Û
'J
0P24 Û
J
ò
NM
J
RxE
kó
îó
Û
J
áâ
=
Î^
³
=
¥MÊß
~Û
'J
¥M
ß
¡a eÐ8.T¸2 a'°ÔÑ
»x
Ù a 2 ° . å Ò
=
¡° 22.1Ó
µÑo° ¸fe.
c/230 ¬. Ñ
嬰 ÙP.
ѵ
2ÙP.
8ì
~x
¡·
·³¬°·
0
Ð
µ
e a 2
¡x
&³ 4H0b0
å ,
Mïv
Z
[
-m
/Û
. ·/°
J*p#A Mß
>v
yó
.1Ó
Û
Jp#Api
Jp#Api
Jp#Ap
²Mji
ò
Û
J«3iPp#A«Yi :X
úi
,/084H0PÐ
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ m O 7k¶YJª
Åi7lii YNlldy¢ W~ºÔ²lli*²d¢
il\¡[l
d ld dºd 2¶i@¢@Y[¶
7
a¤PGÃ
ÂYlVÄ ¯ÁliiiM lÃs´N]Ss]Yy¥V,Ä Y[d¯ l ¸M \à M 7dl¸i¢ºÄ
lJi®£² Y
id yi,d¶
#@[>¤k V7,v¶B
i´N7VSlYf 7*,l²VÐJ®
kiJdl
¤ ]¶ÐiBYyd]l{ ¢º
YPdd7¹l@´NVS¹B '
3?
1
îÛOM
[
o/
'P
ß
V×
Z
'P1
P
îÛ
úÛ
C
J*p#A ÞMjÛ
J*p#Ap
-iMß
_`ba 4dcfe.58751*7
Ï
M
ß
ÞMjß
]Û
J*p#Apß ÞMjß
3?
L
¶dYµ¡l¨l]
]P®J´Niy>
l
iliÁl ¤J
·¯Êk®¥{Ê Y²vG J
k\i#Y9@Å®
slN[® W
Y7B¶¹9¶Y
iv
P>
¶YY[i
Y ¡l[d ilidyÊ7PW¥{lÊ
P9¯k
¶ÂYdP Åi*iYNGÂl
² ®ld@Yªdli, 9
Êd\\[ÊQi¥ JÏ
l **BÃÁYiil9´N]lSYPJBdl
V¡Äal7d]l¢} BiaÂà d]Ä ][d l]B Pi¡¶YVd@¤[iYN[sVW¶Y
~
iP>Y7dly¶¢¡Á[>i*d@¡]ldV VBÊ YdÊ77¥a²¸J
] G
iB
i\l@\[BÅ®µ[YlGi@{did k]
JªÃÁ ÔP² ²Yi¢ª 7ByPªBd7d¯d¶d
fª Pfiª*[kiYi Ä{aà Pk7l¥Q Ä ² aà É7J]
®s¢@Ä BiB´N]Ys[¤sdl
ikP>l7]GBlY
ϯv
¹B9kÂl
YVsll]yBsJildd7' ¹ldY#ds
dPiylyGBddllf
yÁ7YJkkBGYµ²~]° B ¡ldk d aà #Ä aà #Ä )P aà #Ä Jl
i
*,*kÍdBSd]llYY]V[PWdÃl
ii
® fk ¡V[@yN7\7Y7d7Gv¯¹¶ÂÁlYdY
4i,sdsBiNª¹É7Â]k[Bd7ll* d,]]B][²d7® PYÁ£i
i£*]Ð'i]kYdYP£YiÁBld
i*liYd*VBÄ ©ªlid7\
7]lµ[¤ [ifd WQl¤BiYV RQ RS C RT VU ¬Pldl9µdBal@¨7d#]k ·
>É]7#y7]¢Yl´N][dl9il7l¢B}
W*Ã Ä Q S X RT 'U Y ¾¿
d
9]
i¹B¡V7{®¶
[J®l[Yd,[ Z ¶
] Ê]¥{Ê ¯Y² dª#
da7d^ Q i_yd i¢Qyd9l·
l\P®
Y¯º7d¸lYd@WÉ7]]B¶>®Yd²9@ÅiP]YlNÂd9,
QWPYd
ik>
*GB*7
¤¶¯Ydd9
B aGZÎB¤J7
i> dYYid #YG k9Q d@Åi,ilNi \ Y ¤Èºdi
iBd*Y¢l¶
®l]kª @dYVi[N \¡7]l£d
B,µdV@ÐÑiiVkSYdliD ¢2YB7®¹'
i
B, [id Y] ²J
¤¶
il\
7]ÐilµBGJld,Y ² J
Vy7*B¨@\ldl¯
ÁYdk¶Yi¹]Y]² >°$¤Bi#[¤[l
i\
Á ÎÊ ADCyMJ
L
ADCUiMJ
Z
ß
A C
M|J
Kß L
D[
ERGTJER
L
ERGTJPiTCER:i
X
kiMjß
3?
ERGoJNER
&ß
í
yÛ
KA
Jp#Api ÜMß
¥m
ß
J
ß
ß
m
Y?
¥í
Y?
FÛ
Jp#Ap
fMjß
Ní
Û
J*p#Api M
ß
VÛ
õ&JVERö-AªE
Ú
iMß'p
õjM÷1øTÛ
í
Kp6öêM÷1ùYÛ
í
Kp
Mj÷ Û
Ú
í
{í
:X
U?
_`ba 4dcfe.5875'©7 GoJ
L
v
E¦ JPCA»E
L
KJADCERóA
E
¬JPCFE¦Û8JAªE
1ADCE
JVEHë A»E
MOßX
»m
J*pApi ÞMOGTJ
L
E¦ J
C AªE
KJPA C
EHóoA
áMjß
L
E
¬J
C iyE¦Û8JADiE
TA C i<E
JPi C
Edë ADi C
E
Ti
L
X
#ß
~óNMOß
KJ/E
Di
i]MÊß
MÊß
FiMjß
¹
¡GTJ
.14H4
a
L
ê;
E¦ J
i
ªi
C iMjß
Ü¡Mjß
9
5P7Ô51æ
@
BADCERG I JAªEHG L ANMJ
L
ERG
C
JPCQEHG S JNEHG W
µã ºÙ | õ Ú {ÚÍã ã ¸Ù }Ø m¹B[i~dd9Ä[>²ºWÁ¬Ül¸NY ªd¹
iY¤lB[DYNN
\ĵf#liÍ
il¶[]Yd¯\dªB¶i7G
]S7YY i,
J[Bd7i¯l@\´N7]dÅiSYV ¢
7ÂJY
\¤9
iYGl]ÍlySªl9
iB@9Vª¶fB¤y*®² Ä ,@[Å®#Bsl¡7GkYls
®YG ,à £Ä à lk#[Ä ?m]kÊ ¿
YGsY7GyVSdlsB¸
dd _k¶Y
,Ã ~Ä d>BY>i77ª7\G¡Bkl¨ d Î_]¢}k¿Yª ¹fyn]® \kP
®
i² k\³ dYdi7º
i´Nll
d9¤9Yi ]®Ð0WdBil]ªi kd
lYi[¤@
Bd¯7y Y]'li[l\ G@@l7¤aN>PYÁili[9]d¢Ð
B¤i¯##®B
i]\lB7ldl¶lÂd]Y ¡#@°9[Å®]sdP797
7¶>
¤7ªl#² Y®BW®]Bdl*l,Wy7ªYª¤·iBGBiWYiÐd>¶
7
]l ®l9]B
idd>ll¡@7GVkJdlBJ*kBd¨lyÅi ],¶Ã~
¹ÄªkY@Y¹*¹¶lBli*{l²ºJli
i{²ª¬Ü[f d,9Ã]~lÄP,Y
7¶
iQ
ik>9P
lW¯l®
ikl ®¶]YBÑidl]2[d¤lyD*Ç ¡lldyV@¢7dBd
illB²·9
ik7\¶7ª7V¢ d¹Ã
i~QįJ@ ]¡¯9P~lJl@f
il*sl¡¹¶l¤~@]B¡7Nd¤B¢'liW
®@7J
l¡7GkY Rk oZmfà m]k Ä ¶l·
Y]@Ñ®p ]ZSY{¢{ÊV3¥{Ê Z5'mr²,Z ©ªljPZ WÄS@²#B«2dll¹7kdl]]¢idlidf]¢{VlB®V Z4,Åidf®'
BP~d@Y]7YGNy#lqà Z4 Pd ¢µiB¡Pl]dY m]Z¹²¬]l¤fYfÁ¹dQl
¤lJli2*d[f7dB
ldP7l9Jl¤yQ
Ì d@sYdl]YSl7YºkGÁBB¤ld¯l il7J
P¹®V[[[@¤Bl{d¢@¤7[¶Y>dydVµÁl7®²# °i¨lPd7l7G²>
VJ[
ildB®¶[77l
i®]liPµs¹@B7D
l@
¢¡µ¤¶¢i@YV]SYVdÐPY² l]Â9@
7¹]®[]¶iy¤V@y]YÌ ]]YdBY#¬G¬Ü¯V ¢¡
¤
iyW [Ì ]i¤B>dYVl
¢}#BÅ®iG7
¤2¤Bk·Ì ¯Glk
lYW]iiBl*º lil @¡
Y7¹G']¢i¤QP
77£7ll2i¯[®]B¹Y]iGd¤]k72kVÂYi
i¯77BÌÌ 77Â]¢{dlPYdÉ7VY¤ [Y d~¾£7l7kdÔ´N¢VSQ@ºV'
iB·'Ál§alY® 7B7 dds Y¢®@¤kd>7[ lk¶lkV27º'
«>B@dl]Yi·lli'
¡]7£Gak
iN7Y ¤9@¹[ÅiV]Y² Wy7>B¡ldGJÁl4¶
idG
2lY{l
]>7B¡ @]dlV
¤9G
Ì GB7 C
-@
f=
F=
U?
¡@
í¥p
^
í
ØM
-í
Qí
ú@
yí
{@
k=
=
Ô=
Ȓ
Üí
M
ª@
»@
Ô=
&@
»^
8@
íOE
Mçß
Ô=
=
M
Ôí
ß
M
í
í
íOE
í
MOí
í
M
ª@
¥Ï
Z
F=ïMêè
[
VX =
:X
mt
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
'
u 'v
(
xw
1
'P1
P
o/
'P
¬dGkÂY7iBiBlÁ¤7il[D]dlÐii¹Bldli 7lP l¢¡BBaiÂ
#,l]i7GBÃÍ{iB[¯ÅilYÄJdl®
7W¢¡Õ¶Bid7s*l
7 2Ì Õ¶7l@iG
Âd7
9]lGk7YÂi²9B¾£}Á ®lSdlWdl®,>ÂY7·*y7¨[Gl
' dB dl@7
¹l]Y9d i@yµ
i² J7]
VGllÄS@¢@l]¶iGP
~
sQ@, ]Åily]iYÂY9P¢ i7y7Á{l¢ *
i¨ld] 7P¢ B
] ¤]Bl¢7[lGBB² ®dlPiÁl}Ái£iSY¿YüiB¶PlÂ
* dBY | -0¬Ü}$bz ¤ªdlfB]2ÐddkVB@d7ii[7d¯d 7dkBªdB[$NÂ~ @Á[Åii*]f2ÃÁk¶Y7
Â[,
][~d7GBd dl£ilÄ·Dd* BiY¥fQlÁ¤B{iYVz i Ê PÊ } lJ®\f
¯iGB
*P[9@Yd]]l[7dlli¢ay®lG
WJ]
iÐkJdkkB·d7d]N}
7¶#B}Y
\7
9@B]P·JBVykild¶
*
]¤@J7
¤77 lYld¹Jl¡ Bz*
² @7ÅiV Ô² ²Y>¢ ¤J]ÐdkBd7¶Ã¼@[Åii]J
#lPfGkYiB}*BbÄ Î Ã }Ä @à ¡Ä ià }Ä Ã }Ä Ál·f®lYY Usliy® G
iBz*¯²W
J7
i ¤fy¹¹[,Yd! ][)dl 2l·Ál*l·as
i¹ÁlGfk¶Y
i¤GB
º}*à ¡B~į¤d¯f@
7Åi¹V[ d@'7Åi
Y*dyl]i¤J
i
i#kx *µkà @¡Yį*¤l ¸[i9llÉ]7¶~
id
ÃG~ 3
s$¥V[Ä ÅiÌ iV>YP² *¬]Ál®dYk9B¶¯sÁl7 l
PÍlÃÍ[¶
7
i B
d P@¡[lÅidi]G £Bk l] ¶7lYP
£i[ll[P#ld[Y]27BiY,YiBÍVl9[Á²°> l[P Ì @idlP[ 7ildYl]ilB¸i[Y*PYy7Í2[**B¤#Y
Ál¤Pµ¢µ7lBPi'
7
i®d[¹P 2l
d[
i]dl¶²ªJd
i7V#Ç 9llP]Ál® 97¤lWP®¶®]
_ ¤G]
'BB¤[9Q@
i¤kJli]
i@sdk]f¹,k
iGyBG¨lYGi
Vdµ¹7¢>BGid
ilXll£iS¤dWB7]ddlByÂdY¤V B£¹B,
yWÍ[#Ílli7B ¤ ܽ
ÂÅÜ¿Ã
Ú
Ú
=
Ú
Ð8. ·µ/³
Z ;
î;
J
U[
8S
Y¸
J7
¤B l,¡lld]lyl¤d77l] ]¢>@S#7Åi]@Y]dl]¢Bi¤2 iÂBÍ[GVBJÔ¢#YsVy¡
i]7dlYddl0l¶
¤k] Y{Bd² l]GB¤£7l]'B Yd®7[\2]v\2lW¶Õ¶dYd¯7*\lB y7Ílli7]]d²27V»\¢ª@ÁWYW7¤@ liPB Y¢JYÅid*Yk'7dÅi7¤ ],²[d¬Ü7dWÁl® d Y2i¡Y] ¡@7Åii
Vk]¶Y kB7d
®l7kÃÍi* l
ds@Åi@l][YdÅ®s7lGYBĪ¤¿*
B#B®f7£l
P'l¡dl[l7dlid]WBB®iµ][¢J]Åi²¶YY
¿dl®ÐWYl',VÐYYkllYf]\WlÁl¨}¹¢ª[Y7llV l
iik·JBYi
l¤\·Yl¡]É]Y®yP{dBd
¡J >[YiiÅili*¤B7li#YYG®Vk9JYd@Â7iÅiB
W]*WlB¤WBdlÁ] l] Bld ][BÁ[dYd¯d£lJfüyi]#l´N]S¤BYiÄS>>²¶7Y¬Üºfdl]JB9¶¡
\¶
dllki¶Yl ¢ Yil¤BYV>ÃÍaBÄ·B>i]]¢Ô² l²d¢ydlidl¡ldG\¶
,N\¹@¤ydiS\ll]\YdV7² )! >¬Ü ¤¯¤BWl´N][dl 7 l@7] ÂBiÂ
7Wl @@] B®*l
]9yddlJ®Y]¢@
7s
i B ¤ Ê Ã ¥QÄ[Ã lÄ Èi
l#¶@dJi[
NÅ®G\Bli]7Yl®Â¢D
i
¤ºl#JYÈk]7B*idlk\9]DÐ7iil@¤} ]a¥lYG² kYiB*Bd¶iPY¹7²ºl«
l[7kl7fVB¢7Y @]l¤a7B ¢yBP®B
B´N°9V
Si]YBl¹
i7Â77¯² lY 7
G7B£¤¯Á
l7 Pd¤ kYBBdlai
ila Pl]l'i7Á¢il¹ Wy9 Y- ld ¶
i,Wd¯*7BlP]¤ 9lifd Ì ¡]]¢®¤fYPd¤[Yfd ÃÍiB¯lÄ>
PÕ¶d7*B Ì Õ¶@G
7]²f°¯P#Á>
W]yB v5875
9
ó
Ú
ÐP. ·µ/³
ór
ØM
»J
Ôó-rdv
L
v
EHA C
Mi
x
Ú
rxÜX
L
»m
Ú
Ú
C
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ kh j 7
dl]² [dlW
iB dl¹lY7GB¤7lYd [d] Åi7¤PBi
iB ¤·yPB
Wil´N]SY ° d¶¹Å®Ál*Bµd7l¡dd]l9[lWdikYBa¡ldG '
1
'P1
P
o/
'P
=
° Ù
Ó
Ú
°³ 0P2
A`F ¾£d
iBW·d7i7#]y
iVkfYlG
à µÄ][ l¸yi [ÃÁ·llª[ÁiGSyY¢iiY ¸¶
d¯·¡7lkd]DYl
¤¯9\VÐliGYyº]9
iB
iB
iQf¹É]7¹l¸@]¶k9d]ly B #ÄS²¾£#@7lf
id¶][l¶il7 >ÃL ÄS¢Ô² ²Y¢ >ÃqÄ Ã Ä\ÊB à µÄb @Ã;~dPf7il¨ldl illVWSl¹ ®idl 7l¯²2ÃL ÈilĪ diy[lil[7¢ºYYr{ ² Ä#¬Ü¶d¶W
i7l¤¯9ÃLÍ SÄ J[
iiByJ¤y
¤Jl9d¶ BÅidliYl }M
G
í¥p
G
â
&X
Z
ÔÛ
sr&G &G
Ý
ªÛ~Mß
î[
G
»Û
yí
ÞM
kÝ
àÛ{â{=
ÍÛ
Ú
jr&G
ãoX
~Ý
Á7l®iSydll®\*Á
®ik[dl
iiQ]¢ÂÔ² ²Y¢®@¡Yl d]>]¢Jà lÄ i ¥lY² d,¨ik¶
ik
'ld iG
Ái[dliB J
BaP@Y¤ya d @]¡qÃ Ä n l7*Gkdl®B¡Ái[dl 2@7]Pd]¶Y¶Y¤y9@Y{à µÄ\BºG¶É7]\lis®YV7¢ @Y{à µÄ\Ê n lG ¶Ã µÄ ¶li
yJ \Á@sdi@ddllPdGJ7lBGfl>B®W
d7dBl¤{]BÂfQ¡@
#7
liy@]llJ7>fÁ B®{S
dldJ®7@² dWdYlJ
¤7 '²J}
7fldP
iÁPi[Yd¤lyi lºWÁi[dl{¢®¼² l²d¢ ? à µÄ ¶VÐ
i]Yk*Bdà 7µÄ¶9@@7didBlVGJ\
i
iQ lf@d
i¤#l¶lB¹a É7]@]l¶7Bi² s¡ld]>BPBdlil}ÁiSY º²ªÆDYVBY 7lliiWdy
9·Bµ7B,dBl¡il
iLà - 9Á®Ä#i[YÆ{¯[dlk i· P,y PÊQ²
¥ >°9i - lG´Nk]¢¸[lYidli¶Bd[YÁi>®y¶S¤@
d]l_ *9d li>YWà ®P#¢ºÄaY97s¤l¹B
i¡ B9 ¶>Ã#]Ê] ¥ Ä aà 9Ê Ä W*à 9/ Ê @Ä ¶
¿]¥ a 7WÏ ¤,·B[d,7l]¢YyG¹B
#Ál@d ¹]li{@Y7sl]D
²a#Èy®l*[9lÃÍYaPNi\G
kÁlBPdlJd¤] GÄDl¿{@¥ 7li] Â
iQ @Y >à #Ä ¥ «¶¹*¡]7[¤]B{l]Yldl¢Dl²
sÕ¶d7*B Ì Õ¶@G
£
i7l7
i
i*ÁldYk¶dÂ
7],ÀB@[Å®Y ]l]]¡¢¡]B dYV,)
l]®b i>µ¬Üà Ä\ld ¢ili®Gy
dl
iiBd9lf7@]¡Ãq Ä]
7 ~J
i7W#¤
7B £Y Ì Y >qÃ Ä 7®qÃ Ä ¥ V J
il´N]SY¯dd
ilJ7i i¢@,
#]B¤[¤kYsl®kl² l¯ Là p>Ãq¢¤£ ÄSC¢Ál9Ä[B¢i¶
YJ]G
B0>pÁ¢¤d¡£ ¢@Õ¶dd¤7\*7
il* ¶Ì 7Õ¶Bl¸@lG
Pi#d]
@B]]µll@d77¤¢@lll 7d l]i]¢BÁ
®l# [@idP¤l7Á²i·dl
is¯B@ dP7iY / / Mäß
|Ý
RÝ
Ôß ÞM
Ó/.1Ð23.1.
ÞM
;
G
X
Û
ÍÛ
ÍÛ
²M
ÔÛ
#í¥p
¥ß
e °·
. a 23e Òj.
M
µ/° Ù a eÔ. ·å
1E
®
ÍÛ
ÍÛ
Û
_`ba 4dcfe.587hg
I
b7
íôM}ß
I
~â
M
xbí
Ý
¥Û
Fí
Þx
Û
úÝ
J
J
#A ÞM
xbí
A
J
Qx
xúE
¥xîE
|Ý
+-,/.1023.14
.
·°å° 0
·
587hgb5
9
Ú
|Ý
§
.T4
a 2¨O5P7 gPgb7
.T4
a 2¨O5P7 gw*7
xbí
ÞM|xîE
X
Ú
NM
§
Qx
U?
v rdv
Ú
ÞM
E
¡r
¡ß
Ý
/Ý
r
Z
[
8X
xbí
MOß
µã ºÙ | õ Ú {ÚÍã ã ¸Ù }Ø
T
¥ .¦
'§¨( )w
*
b
ª©
fP1
8
b
Rh (
,«
hm
of
5©
(
J7
l¢a]B7i]@d2Py¨[]GG
vG¶B¶Bi
is@7ÅiBYJdli
i¶B¹]B]ÂYdd®@¤i7]¹]#]YB ¹¡[iÅi@¹Yddls2B¾£B7sd77GdydYG@ld Á¢B®,
lD
ik¶
®YGJÁl4BÂB¡7d¤BÂllD² k[il)]! ]\BB>f¯¤ly°9]¿¹®]Ydi¥d
@¢d>¤2l¸[7i
]]¹f¶k¤\lY7W
,v£ ÅiyÌ ¡77]¤l 7iyÅiVldªGkvdYyBPidBl\iB¡l
¿l®d*D lB,Z¹´N]Á² [lJdlªl£i[i¯7d[dYi@d l
iW BB
i77>9[
iiB¯l*² Bi9
¹y¡]7Å®]¡ld¯l 7 ,
¹y¡]7ÅiV¡ld °¯7[YWP
#Õ¶d7*Bi Ì Õ9G
ÂJ
]l7 \
iQl @d >à Z Ä @Y ¯Ã Z Ä J¹
i
ik¤¯y¤
J
9]BlºlV7SB ldllili®ldÁY7Vi]>i S¯ YÃ $iZ alÄW lJs Î9[@¶7Åi
l]¹VfkPlk]
il9#7 [
* ,BYd$ [lZÏd77idG]lJ¢lddWBP`[WÎd
¯ly3] i vyJB¢{
i¯kd
]²WWÅi
iiQ iy¤\Æ{J7B
Â'>là V¡S Z l*ÄSP² iyli Ì [[ i>NGà )BZ 9Ĺ7[d7lPG]Bdi¯B ¥Â>Bà ® Z ÄS¿¢}@B7®Åiµ¢]ÂYik77Y*d ¢®*Ì @d
iPB7 id¥ lil#¼¢d¯l @YJd
li]l µB7d7 P 7l}Y¢iiB¤\yP7d7@P7Åi7]s9BkD7
²Ì @JdP
i7 i¯YÃ iZ B}Ä\
®]lSJli9yi¤ l7 ¥ >Ã )Z ÄS² Ê ¥ J
Vdy7dd7YPV7B W7 ¡®7iN @]¡i[dd]]dlBdd£l7 ¡®7iN¹@]®, iPlÉ]7]k2l7yVdi¢{[,
7y ,l[dP7
W,B Y~lN\i ]7Y] ¹,][d7#¶¯YB
®¬WY¥ V#B9l97i @i>²2
»ª VЮkGBdldd7lYd¾~]Y\]y]GBlJlÁlÂP² *¯
iB #
i],2N
i\l PG
i]G¨*
ik¶
*B à ºÃ #Ä µÃ #ÄÄ Yd]l\JB,dl] ¡[]i@dddPB7 Bild¤7 l®Á
f lÃÍ´N7][dl>idÁl9f@[iGGB
ddGÄS
i² Bª
Y*B>¤J iY Ì Á¡]yÂ*¢Dvi]G
l7 'ülP¬£ÃÍ®Äs[l®yYs
£[@dd7 ¾¿@7
ilBY¸¤µB¡
ilkº{
iQ
lal9l®f\GdQ
r ]G\¨]°9µ²¸B°>d{¢]y
P·®l
iBda ¤@]9¤DdlDY]l7lG¢7B¤
7lYd>l
[d
7]{²¸lJa
P7l77l i à WÄS¢¡d9[ÅiVs*¡
i#]ÐdkBd7i7#[¤lyVJB@Y¤y9B s B * ® ¢ § d @,]à l~7Ä i,¢º§idi @à 7 WÄ\
i 7¤kdll9®]Y~YdVBY~]ÐdQlY]]²2¾£@7Åis*BvÁl
XZ J>
kª¤º]*l7BV ¢ ¤¯aÃqdk#k´NÄ>][¤>dllʸ Ì @ d¹|]iZ YiBÔY¢}{à µsÄ p
kWi|Z V[]
7Y
]l@d7{Âà µ¢µÄ Bpi'k0B i[ Bdi>>à k#
ÄS ² 7li¼´Ny]SlY>lÁÊ9iYª S Yid]² s³ @ Y£¤y¤¯¯7llªi@y]ll7f B,i
]'
k*P² @¯Y¤y
¹ B
i7Z f
i
iB¯i{¢®7l
7¤>*¥l¢{B~lid ¯ÃL ?Z Ä
i#@dP7iY ¥l²¬Ü dWilÉ]7s]Y]P7 B\
®k ]Sl#il7l¢D
] Þ½
Â8ÄÍÂ8ÀoÃ3ÆoÀoÈbÃÃ
. >587hg
À
È*Å
ÆoÇFÂ
À /¿Ë}ÌÍÈ
9
ÁÄÔÈ
QÄÔÁÄÍÃ *ÀTÃ
O=
@
V=
|Ý
Ôv
ÞMjv'p
OÝ
m
ÞMjm'X
~@
ÜÝ
=
x
Þ=
y«
:?
yJ ÜÝ
ÞÝ
{=
Ív
&=
-à op#J*ã
Ív
~Ý
m
RJ
¡A
Nm
¡=
&Ý
m
Y
ddy]>lJ
Ál7f4®[YG7]²®J
i]@ dW¹¤J
@dDà ¯Ä Rk R® Z Wüydi[Yr iZÏY¤[Y¤N· P¡lkdrZ ªBÄ[²}YJ@
Ñ®¤]¶SPY],B®B\iW
iB
¶ll]add Y ]][a
>7J¶
CZ k CZ ® CZ §·¤ Ã Ä Yl9iB2i\£*Nliy]Y®~ Si¶
iks
7l£
i *B,i,Ãk£[lÄ#ddlda]ll¶]l
²s¤G«'i
lyZ*idl[W]
7PGBl¤d@Y~]¢{§ldi Nà ¢ 7Blį®vd
idi]iY G¡°¨Âld¯ sP
iy¹¶ii
dÐ
yiSflº¹B´NVSdlkBd[Nl¢iG
iB¶
]¤9¹Pl
¤y l¸kBd[d] ~0Ê ±¯
@G
7Åi VÌ GBk77 ª¤Q0
ik*]
B dd®É7]WYG
¶B B¡kldB,7¤7Qi ¢dl¶
iÅidG7
¤sYB ² V@i[VW£
>s£yW®Y¤7lP@Gkdl llGB £dBPlGB
i B>]Ydd@¤Â[lV ¾¿§·
kl]ÂJ
ikVJ\dQ,
¢¤Á¶l
i¶fk]lBlY
9i
®
®JQklG
¯lN
¤ª[7V*\[BB P¶®Nª¹7[9l¢¹\ d¡li
7 ]]B¢{
i7BªlG@
Y>®k¡lf®¤@B]²lfd ²´³Jµ ¾¿Bs
7]dYdi@l]² #
®i@V[¹¡li7 B>lv7dYd@d[l
iQ ¢@¤¶dli9G
WP\$Ãͼ² Bl²d¢}l
i¤7WlY
d,]Ydi
[ ]Byd·¡WlÁdiPSÃYÂBÄ> l¡2ÄS²
¹®i@V'[P®7]¢ ȸdi¹Bd@ydlidl¸¡ldºl
ÃÁB´NVSYdÉ]kY l
Qĺ[l s¥² ÈÁºdi² , dYi]Õ¶BlWG
i
BdP,¨l7B9G
7 lGYBiB
VB
iB¹7ll]¡yG¢fÁlJ
#¤ ¡]Ydd@Y¤>G7kdlP®Bi£7BWil®]¤7¡l² @¤ydiS,9 B³
\kd
®k¢¹B®~[
#l G
ilS]aäy}Ä#¤9¤WB YV@di{7Ç Y9d]Ðikl}7 2@Åi² 7¤ aà ¡Ä
il P[¹iY77d£YlY7GB¤ Á² " @]
l@Ydlv¤Q l @
di B®]]Y²PG\ÃÍÆDȸB
idiB]~9¯ly\l] l7¶ÅiGBdiYDs®d7s YÍl
i¯SB9lfl¡Y{l
®dQl¯fBY@Å®ÅiY#¹llGG,@@]]]>
i²LÄk
iQ@ d²´³J7µ
i7Q¯7#ldG@7Y®7k¯V77¢}l Ì '
ÔÛ
ár
1
'P1
P
Êr
o/
¡í
'P
ÍÛ
ÞM
r
Êr
HEí
yí
ÞÕ
/=
Z
Ü=
~Õ
@
@
=
@
:X
=
@
@
¡Õ
Õ'[
=
Ô=
N@
{@
Ní
=
yÝ
Q=
kÝQ«¢
>@
Ý¥«U¢
fMjíOE
OE
rÎm
@
@
@
N=
Ü@
_`
A C
Ü=
587hgPæb7 L ERGoJNER
M|J
ÜGPp â
úA C
Z
A
[
A
J
L
EGTJkEz
Jp#A
|ß
_`
M
fJ
FA C
587hg8é7
_`
587hg
b7
_`
587hg
b7
L
bJ
kA C
MôÛ
L
EA
MjG
587w
_`
587w*5P7
b7
R=
Ü=
;
dA C
A C
MáJ
L
M
îv
J
L
S
E
QG
J
=
_`
MOJ
EGoJkEj
rÎuoJNE¦u
#@Y«2dlBiY,l,#7§lB,9lÃÁyi ¹>Ä
iB[\dl@Y#¡®
®kY G7
®kÅi¶VfBd
VЮkdl ,ÃÍ
il¶]¹y]l~d@
ilY¶9P]dÂil@®d@Y¨~ydYlÆ{sdl7Y®sNG¡kdįl®§YBµfkG k Y¡Èi77GB]*}² kVWÇ ®Èº]YG y J
i7YlB7i ilÊfJd,
Y T
_`
*
b
fP1
8
b
of
úXUXX
587wg7
bì
J
_` L
587w8wb7
EdA
L
kJ
MG
L
rA
L
^
MOG
Z
][
¥Jp#A
·¶
qÂo ¹¸ oª¸ Âxx y £u9z p
" F%D)
ô
#"#$&%'"
'(
*)
Gk7lYPJi7
BÂlN² iW@®v]l¶d
ls>lBlµ
i¶BÁ>¡ildlP 7,là ®Ä#@l´N]¯[B· l7DdYNd@i@¤s¹[YBlk
lP7[#¤9
slYÅi7]dGBB¤ *®]Bd¬YB¤Jµ]¡illB]d¶®G¶Bµ]YBsP9®®
i] Qll[d¯si
ys#iyÁVlSB]GG
à Yi* ®Áyd¶¹®Y
Ä\9¶¶
i7
dqº lÌ ¨lY@Pi¤W B*kf\lYiB
idf]@lyV]¤Ð¶i]B²ak·¬PJdW
#ikld9Pl]
iD\kBl¶J
¡
¤k¤J>ªdd]J][ª7BD]#il¤9dYPd¹]]l²aJd
iªYd J dB]
>Wdª]ilP¤ Í
SdW]¤¢µ¹Bli27®YY7dl£@yfl
i]Yl[iy]Ð~7®
®[k]*>7ÁlBf¡®ldÁGl>l®·vÅiY YB¹dPlG@y]¹¯Bdd \B,¶Ã ,
iÄS²#°>7]lY{l¢ [Á]]i[Vª]Ydd@¤ [lVJldl]d
ÅiGN9d][l² V@
Íè
Uì
FÏ
b«3ó C p
ilYd9®@B7J]@
lYd¢[[®]7@Nª]
i7kªN\
>d¹
¤9Bdl]G \ 7BÂ@@i7f*l7Ï®Y]Ê Ä 1 = 1 ü¦ = 1 1 ½ à @¥ ¦ i¥ ¦¥ Ä ¨1 ½ Ãy¥ ¦i¥ ¥ i¥ B¦Ä 1 à ¥ ¥ Ä = 1 à k¦ 7¥ l¦ lÄ = 1 ¬¶7ÅilJ7rY*ÂZ¹l7¢l>Gº@Y7
i¹Åi lY® 7dYs
i¶dPPd¶l[i¹,¡®ld
iY9QGB7 ² d¼ 7¢y7d¶i7[J
@9dilB
]]]·¢¡ylPdBGdµ7¢Bl¸
lP¡Jld GiJlYd9
l ¡l
®7kÂ>¢d
idyQ9lJ
iQl¯ ÌYYÅi]lY] ·l[G@l]Gª@d7i@k77]@] ² °7l7Á{yi@B¸
ddy>
k9\
iB9YÍl[977*®Y>7l¡ ¶7 1 ]¥ . 1 J
iJ\
iQl @¤7kl]VP
iB )¯ ¤¶P°9yÂil]ll7Âs[dB ,7Jà dlÄS²¨B\
#
iB¡BD
¡ldGJ
®k¶
iQl¡7]@@i7]Ây
ik9
ik77s¡ld
il¯
i¹
iB¡ÂÃ Ä>Áfd]l7G i² ¸sk
id]¢{\ '
1
'P1
P
o/
'P
¡í
óA
äM
mYJ
M
óoJ
~@
L
ßMOt
r
C
tôrJ
tôrJ
J*pA
v3A
lÊrANM
A»E
M
KX
<J L
M|t
C
r
C t
Yt
E
'X
EOññUñbX
C
:?
r
ÞJ
¥@
v3JEHJ
»J
ªJ
>C
ÞvYí
J
A
MÊr
A»E
M
J
îA
í
M
rHvYJ*X
C
rJ
M
~J]rAVr
~J
ví
îA
Qí
ví ví
moí
MOí
L
M
L
p!vYí
I
Í ¬o«vY¤ 'pn13m
M
í
T«3upm1«3¤ Kp
«u
Um Kp
#r&¤T« p ¬ß T«vo Kp ªí
AVMjm
M
yíL
L pí
pí
L
í
vYí
ERí
L
ví
I
M
L
Mjí
M
Uu
L
p
«Ymn op#uouonß
ry «vDpry3uTmT« v KX
L
¡m
L
G1í
L
ER:í
pGúâà¬ß'p p v1ãopqâ
&X
Q«3m
f@
Íè
b«3ó C p#'«3ó
L
«no¤
pPpó
µã ºÙ vèVõ ´¿ºÚ
À ¸Øp¿AÀ Ú {ÚÍã ã ¸Ù }Ø hc ¬Ü7 lidd¶7¹
>É7¡]kªP]GklY º iB@}d¤@ d¡ 7J
¯
7@]@l7PÅidik
lG·l¡µk7ª]lJG@BY ®º kVY7¢l¤Á@lYªi]lG¹
*idP º ² lG Á@Ã ¡Ä Ã º /'ÂÃ ' ¶
] º @]JiB>@dd@ ]
7 Â l ² [
ii#@ 7¶YP
YiB¯RÆ{ª7¶
i²#7º s¬Ü ¡¹
] ä¶dP¹lį®¢{l¤fyiY2dld [ d Ì d]lÊ]7l 7fy¡®lGd
iB®k º @¡d¹¤@lV'¯7ddY@¹Bd lG Á à ¡Ä lG Á Ã Ä B\d]l7G]¢ - l9B"d! D@¾£d¤¶Y¶dY\
º ¶²·®J
Y ·ilB´N´N]VSSYY¯7dV#ÐilkY $Ê Ê ¶
]
lkªP9@Yi¯dBd
i@B f*º B²\@Jd
i
¤*d@VY] Ð
iilBPdlldi,7[*7l]YPl i®@>d[¤@V¶ @ldiBd¹]fµ¤
i#
7@ld9dyBiYi¹JYN*ªd#l ~7º ²*
iBJ·#
@l7d[d*ÁYliY 9º
iW@@
] Ì
lBdlPº
i7 ®®¡kN\k¶ª7¡¶] la lº ² º ³ ld
iiiB[
@¤
lYy·7¶Á[lNÁªdYk¹9¢@º]i*
iYk]P¢
¶ ÁiN\à ¹flÄ i7 *i¢@·ª@dld [Yi@Yd¶dd VY ÐiBsN¡k\¤S7YG lG) Áà ¯Ä ¿ Áà ¯Ä ÁiÃ Ä flG Áà ~Ä ÆD[ lG Áà ~Ä[²·J
7 lG Á à ¡Ä lG Á à ¯Ä \lislG Á Ã Ä Á à ¯Ä ³Ã di7J
¤·¤ÄJlJJ\Á ·li777l#V,7YP¡7¢lYd·¹Ál]dYkB9dd*Á
ilBJª
BidBli¤l[@i®dlJY7¯Ãl@BÄ¡
ikllal²
¶Á @]lÈPªdi#kÅl@J]B* d¤¹¶ @Yº ¤lyid*d ¡'ÃÍYB99YYVly7GlÄ ]º /}Ê d[ / ¡9
if[\B{¡ldG¶
i7¶
/ Ê Ã Ä ,Ã ,ÄJÊllG Á Ã ¡]Ä Ä JlY
µV¡ylWdlJlB®>B
iWQY@Å®i] ¢¡llGi@'7\Á79l[7ÁlºVl iBd@y¤¯B
i7dyQ² i[ 7]B¤¶
ik T
*
b
f
¦P1
8
b
of
Z
fJ
J
+-,/.1023.14
gb75
QM|xÜp
fJkM
pqxâ
9
ª@
ÎGPp Vâ
¥í
M
]JP[
'A C
L
MÊJ
EGTJúE|
J*p#A
¥x
J
230b0
M
ryv3xÜp
A ÞMsr&mYxÜX
Üí
7
lC¢Mt
L
MOt
l
¢
L
ERGot΢&CÞE¦U¢
ªt
¥tplpK¢
¢
l
GTt¢
]l
-l
C ¢
~t l
¡x{M
L
{U¢
C
L
C ¢ ì
C ¢
l
ÞM
Í¢
M
ÞMß
L
t
ÞMjm
t
KX
t
J
«Yó C pD«Yó
FM
tî«U¢
ÜM
ryvYxÜp
A M
l¥«U¢
ÞM
r&mxÜX
J*pA
L
x
¥@
fJ
@
Ü@
% VÅ
ØMÊà J*pA Qâ~@
è
J
¥A C
I
MOJ
áryv3xfãTX
L
ERGTJVE¦
Æw r© + w
W®d@7P[ l[G@¹diik@ 9GU®
ià l ÄSl¢9V7²¯
]¬ Ã º ÊPº l ²¢ ÄS² J
¶¹
ildGdl
sidl>¸WPPdY*l7º¤BP¡@l@Gk]·¯y
@´N]¤2[]² lf¡¹7l@Á®yV2¶Y
~
ÉËÊ Ì¹³² Ð Íp³ÎËÏ °Ô·
M|
S
S p
M|
W
W p
M
C
X
Ù a 2 °a'·å
@
L S «
M
Ô@
KX
Ô@
¡è
U?
U?
°Ô·° 4
a e¥4H0bÓ/.1e
@
Í0P2
a'å
Z
[
a 2¨¦g7hwb7
.T4
] ¶{·/a
G'Iâà¬ß'p Yã 1G §
ý
y@
4
§
¥G
*v ß Þ²¯*° 5o
âà¬ßp p v1ã
C
a 2¨¦g7*7
.T4
}m
I
C
¹F³ ¨b
²±
§
2.o
.T4
a 2¨¦g7 ©7 ²¯b° 5
¯b° g1
f 'v "© G+ q(
Å@>@@¤kV[PYP[ddiPB9º ²ºk ¾£º
¯²¹yYiPB¶dl2
ik¶\
iª7¯
i\Ql#9
i#Ql¡W]*[YÅÅ®@>]]2Ði7dkYd@Y*¤¹Ál[ $l
®kªkl¤·7l{ÂP¢µYBid*'B ¬Ü ¤sl0d77
]Ï\9£Ê \Y7Ê s ¤f@]¡lBd'd
8 ~- d*Ã ,BÄ>~l
7£ÏdsÏW
~YdÅi7Y¤n dÂy Á 2Ê º l º 7d7P7]²#¬Ü lY}Y[Bi¹YP¡li7É7]\ÂBG>kddl®7B7Gªl i,¡7B \\d],N7\l£lfBµP
l7¢¸ ¶¤ª
lB¶#@Yd¤Yl\df7 ]º l²Y¬ÜYNl9¢µÊ \
iÊk ¤¶y®G
sP7]7Gkdl¯B 9- à ,Ī
7s
*B >Ê \Ê 9Ê \Ê Þ½
Â
¥¿
DÆTÄ /Å
@
ȏ
Q@
J
J
Q«
¥í}MsJ
A
J
i
ØM
C Íè
*J
Üíâ
J
C Íè
#A
i
J
A
i
#A
i
µã ºÙ vèVõ ´¿ºÚ
À ¸Øp¿AÀ Ú {ÚÍã ã ¸Ù }Ø hke ¤¯d º \² 7d Ì @[Å®]'Pld,Ál{- à Ķ3- ÃLyªÁÄS¢{]BdYV
W]iSY'*B~¹@ Ì
[¬Ül d¯ÎBÂ@77ÅidYdV@d k77] yª ÁWk¶l
] [YÂ ¾£,[7dd77º GNG\l\ Á4Ê
]Pª #º ]²BJs
®
ª]2\[li@yG¤@B]d l ¬ÜfP
]2lY@Y ¤ºP[²Y
P diVBÐi*kBY ÂÁld Pl¹@@@di¤Y Yd² J
º ¤>7
i7 l#
¤>2]BddYV[sYP
di B*B d É7]¹ÃͺlW]Y]P7B,yªÁĺBi 0¤BW7dYd@d¶7k7AyªÁ@²º¬Üi
¶@¤7dPYil l]B s®¤#fG
YVG¤¨lydV*dW* ¡_º yª
Á 7Ì G kYi¤B yÄSd²lidl]¢µB®
i¯¤Ð¹dl¤Bf¡ld*Ã
ik k7_ Æ{yª7ÁlÄS²2/JÑ
@]7vl
f
iG
_ lyªG Á ÌÌ BBidll7il#}¤®Q Y]BJv¶¡
id,G
ÂiB]v¯i7lliSYiY£ll¤ BJ®l7Á lPÃÍ'l¶@¹7Åi[is yYi,S
d PB
®,k¶ÅiªY P]BС7dddl],2Jlll¶i¹li dÐ/Ñ GBÃÁ]]7Bd¶DYd
ik fdls'l'7\d]*@i7[Åidd ?[mbidk# ÄS²
7ddY@d 7¡ l¶)
¤G
¤¶PYiY*üBÕ¶¸]k@ ®º S²·dlJ
]ªÂ®lVÄ fB¸ÆD[
ÁY¡dk¶d
*7VlÐi]k\Y
diB7¯Ê l ¥l²9@J7
Åi¯@Vd[kd¹7pdiyªlÁ¢\Èlià Ä\¤·iQBª@
idkd dY>¤P
iº l² J
] ]¤@®BS*d]lYd d@k¤ 9º [²i¬®li
sW
illl¯P @@ dk¯¯[¶@[
dddG#
ÂB
l G@N\7 Pº l0l¥l]²¶¬²d¢¬Ü
iJ
®Pl*®Y
2G¶ÁB¸ ÅiY#@]GÄ[² s
7¿
' d J
@[¹¤kNVfWi#k
G>B¸]Y7dld@¤7¯7>Áll¯#Ã kdÄ[P¢i
@dªfPBl¤yV99]dY2]¹Y]¨Bd¹B9l
iÍ7lÁl,P¡9lÁ{lliil*i d *BJ,
lDÁl
d#YkN¶GdBi>i7BlGldddl9]iiBSiYYVi{\iDP¶7dÅ®dYi@d 7dll ]]¡² ldGDVlYdl¢QkºYVlyDlW[lV lD
iÁl Q² I @
NíÊE
íáE
@
+-,/.1023.14
9
@
@
gb7hé
@
@
Íè
@
î@I
FJ
A
úi
i
Nß
ß
J«3iPp#A«Yi
@I
+-,/.1023.14
9
gb7
|@
C
@
@&L
A C
zñUñUñ
L
MïJ
EÊGTJE
@
Z
I
[
#²¯*° 5o
A C
±
L
MOJ
02308ee a 2ÒOgb7
EHGTJVE¦ {a
ÐP.1ee ¹Fµ*å
9
L
ADCyMJ
ÎJ
A
ªA C
J*p#A
ERGTJVE¦p
G8pâ
ªAMçß
L
MOuTG
Fí}M
-í
k@
230b0
-v
E¦vo C
Íè
]@
7
J
~A
í
Þv
NAVMjß ÞÏ
¡vYí
M
J
p#A
J
A
v3J]ERJ
äM
mJ
C
ERG «YvYA
vYJEdJ
îA C
mJ
#ryvo3J
L
&A C
C
ERG
MOJ
mJ
C
ERG
uA C
C
M
ÔmYJ
u
J
L
C
EHG
C
ERGoJE¦
C Ü^
rdvo3GTJE¦vo L
M
J
EHGTJVE¦
L
ERGTJER E
ÔmYJPCQEduTG
mJPCERG #CMuoG
L
ERvTYKC
M
C
µã ºÙ vèVõ ´¿ºÚ
À ¸Øp¿AÀ Ú {ÚÍã ã ¸Ù }Ø m Bliº Ji¹
*7i l¤l ,yÌ Ã ,lYÄ y¤B]y}YFlG',ydÁlsYdk®
i9BY 9Á
l¤J* Ys]
ii* S¨lYi7y£]*]kµBlB~dal~¤#V@@
ii7BSÅi Y] {£²
il Yall@Gy£dl~V@®iSYYG7 ¢ > ¬Üµ
>[i¶
il·
9P¶7]l¾~]Y]yGlaÁ
],ªd® Ì ]d\Y f
i
Qdi lBGiy~dlW ®¤Y]Gy¶
WiilP Ì Y7lÅ®GiB@7Bd¸lYiGyBdlV~7¢k®YGfYdY
yY G¹Bdl
JÁl7\]ll JQ2Ã ¢ Ä[² ¯yd
¹ÁdaÁlG[¹BP@@]v±fl
]i@d]G¨ Ì NNdWBdl]GB¤ l]lP[¢{«2BÉ]¯Jl lYfP7lPd[7d[¤lÁ*
¡ydd¯lGydlll®Jkl7ª
i Bdlilµi ¡7G7² lli ,à ,¤Ä ØLÙ¹ÚLÛªlüº«2¡BlÉ]dVJÇ ¶BJº
Åi]lY 7,Ä ¯7¬ÜJ l d¯Bd¶Â7dYd@B¸d#
7Ál Ydkk¶l]Yi ¹4
]iÂ]Ê
x¥ Ä VÄ¥ ¥ n¯ ) Yº
#§·dk[lWYP
idiBB
ÈÃ7 Ä l ¥ ®Ã Ä\k¤¢D¶ÁÉ7] ®² ¶¢º¤#yddl 9li ]Bdl¤9½>V@7[¤kd®dWlB¢dDÔ² ¡ll²d¢ dG lk ¹®ÎlB]Ydd@¤ 7#y®G
ik¯
yB ¹l Ì mfà kmb® Ä Ã m]k#$Ä mb® ȸdiÂBd Ì GkYiB®Y¡ldJ 0¥l² ȸdiÂBd Ì GkYiB®Y¡ldJ ¸Ã Ä[à ÄS² d¤7kÌ yYdYJWVȸ@diYiS dYYB¤sv7BB7ddldYº @²²dȺsdi[iÂBÂ*k7dld7Y@ d 7B®l BisYPP º YP¶
]¶
]f
i
l WyV@diYW[ dliÂd Ì §·kl\
iBY $¤l*Ê 7dYd@d97,à l¹¶ÄJklÊ ]a
5¯Z [lPd[P ¡7G
]P
¤¡flBd]¢@@B]¯
i7¦iJ²#ȸ
®Bdis£
B~ ¤7@d]Yd@¤NP²9[à >lY]ʪWk¡7l d i¤G¶
2Bº
ilkG @7 PY[GBdi P̲ ÄBdlil ¡ldJlº ȸ7di £@² B2]Ydd@¤P[l#k7 ¶Y
£¡ldfl·lG@7 i² ȺY®2liW¶Y
£ ¤f
ik7Wl]'{²_® >Yȸ¹ diP
¤ ¯@7Ì G]ÅikiP'dld®
B]¹¹®2ÅiGYyl¯ d@Á]dll¡]d@Åi*if
B¶JlBG±f'@]7d@ÅiY]i*PB{Ç ] к½¯Ã ]dli[ lÄ7 à iYÄS]à ² ³
Y k Ä ld@[dl®]º®fi
±f 7Pd7*²aȺld{iÇ Â½¯¹¤BV[ fGydlliYÁ]lr Y@@Yis7]7WPY¹Jl
^J ÅiGN² ·d][/ l¢B¶/
i7/ / /1 / T
*
b
f
¦P1
8
b
of
&@
d@
§
.T4
è
ªM
@
a 2¨¦g7Ô5 *7
#²¯b° 5 b ¶{·a
+-,/.1023.14 ~@
K9
gb7585
¡p
x
F«3x¢
ßp#x~M
¬v
Q«Yv ¡p6x{Mjv'p#uPpn'p¤'X
NA C
gb75'g7
@
_`
è
>@
F«3x
_`
Þ@
è
L
M}J
FMÊr
n
uTG
L
E|GTJkEO
-GPp úâ
rdvo C
Z
yí¥p Np
gb75Dwb7
í
ÞM
í
VX
_`
gb751*7
/è
~A C
MOJ
_`
gb75'©7
/è
~A C
MOJ
_`
gb75Dæb7
_`
gb75'é7
L
E
J]ERv
]è
JVEHn î@
@
F±
@ú m
²MÊà¬íêâ~@ V@
^
_`
[
±
míÊM
ȏ
ã
ª@ú m
yí
¡m
ªè
gb75 b7
ªè
ÜvíáMsr&í
B7aGB¤yµ@¹ ¡]i]
d> ]7[dY@]YJliºJ]BY¸dd@
¤¤#9[[iV² ]Jkl]J
W[lPd[s ¡7G7¢®Bis iJĺ]Ð
B®¹]#kB[·@dY]¡[i¯Y]]li²a¤a9J7
l
i>Wky#¡\llÁ l¤yW¤·i¶W7YddW ¡*\¹B7®d #yÌ 7¨iÁdka¶[¶]Â]
²¸ÃÍ7°>£BWªdV¹y ¡dÁ]7l¨dlÎYkd
P79lii7Yd7dl]>7ÁVk
*¹7f]7d Ì d]iBysB®® ¢[l[ÁG¢Bd²i sd ¢ ¢®B¢ ®sd¹¢ d¤B¶l¶P¢ ]dl¢ ®B¯¢ ]kP¢7ßÞ9]B¢ ¡Ál¢ i{¢Ál ¢ Z
[
®
H ¯
.85Y
j²¯b° 5 &²¯b° g1 & ¯
° & ¶{·/a & ¶
,
0P¸ & ¹a
5T & ¹Fa
g' &
Ð8Ð h º° 5Y & ºs° g1
ºs° Ò8
'» G© $w
(^w5(
w
¬¤ky
>d7Q]>lYdÂl®
V[BdYPÉVkYY7i¤BB}il
¢>
P#@@i®d¡]>i
il[9[¤ÁB]]¢®WliWsB¡
kWlllS¢\Yd lD
i° ÁYD¹@@d idl¶dDll
iªslil@Y
i®l]9l
iil aB0¤Bl7² i7GkV>N\>[PY7fW®] àQ¢ É7à ]®¢i
iBB®sBl{dÇd>]dYl#d2dPi@Yd7¡ 7®
@7l,k
sl]
#2²dl¬Y,Y
®B]Y7B ̤[]y¤B¤]ki£#YdB~i
k9l¯¹Q l
i,B*B³ Ã Æ VÃÆB{Ä[lÄ ¶WÃLYQ ®]]l>]yÄfiGdÌ
sd '
iÌ k
*Pk¤¡[7]âQ l7lai@7d]7¶P[diBl 7¥®²J[ÈilydYki¶ldl*i[GÄS¢@l\7 YyPÃÍ[¶d
P¤G]
¶@¶]YdDB¡ ³ [Æd]lê]9ÄJliDYãÃydB¥VÄ[7² V¢i¶
i7\ \
iJQl
i>¹P
Wl ll ³ Æ ÃÆÄ ãÃN¥QÄ9S>l
i®]¯
®BY·dl d
¹7®y
ik ãªÃN¥VbÄ ¯ ä
¶
¤G
sd9[ÅiVs
7 å Q iæ *Ê Q l³ iQ dç ¹ l
ifB¶Y
㪤¶ÃN¥V¤Äª9P
7l lil[dlÂP]liJ
®k9Y *¤¶ds
i®]9
iBY Ì dl#B®D ç à ç"ç´¤Ä ça
Ã ç´ Ä ¾£QPB
i B]¶s
Q]Pl
®kf9]YÐ$ ç dkBd7] ²
] Pli Bf]ÐdQlY]Jii@7 ³ Æ Æà Ä[¢lJ\\´NiN W ¾£W d7]PlYN¨¹*
ikk>YµY¢®[
a*l[ \d¤Bdd*l
i®]¶
iBY Ì idll¢@¶
]0 P¤\
§ ³ Æ Ã ªÄ\Ê ³ Æ Ã ªÄ J¬ ãªÃN¥VÄ ¬ lDS9
iJld9
¶\[
Y~ *®JlãikÃyd¥VfĸlG@B7l{iiJB,QVlº
®²Jk¬2¶l[l[PaJB ¡[ldG
[ G*ºBy¡iB7®
¶[¤
®]B9lYSºfYd¤>B{i¹²¸lJ²
iWd[]lB 7¡¶d7[¶iN,®
SdV¨ VÐ@ªiPdYYkiB[]dJ7®ª,]YGPk
i B,¢ydÂ]dY]l¹¹GW@]77\\ldÁlYV JSd
l¤B J®,P¡lW¸ N7iªd7WP[Á7]d{7GP\7B G
il\yi*G
BB¤y
iP>BV9ÐB>Yk PlY7]ld7¡PVl²d7l°>¶\*B¶l Y d}®d ²
ik9¾¿BYf
¤¹@´N]][P¶Bdºld
l¤¶£d]dS
iBliÊa
iª7Â7ll iyBBÂGBl}W ´NÁ][iidlB P*7B®l ¶d7YÅ®7Bdli 7ddY@d [lVªk7 ,
¤k¤[V¶Y ³ Æ Ã ªÄ ,
¹l
7N ,
dlPl
¤ ¬
Vyd@]YÅ®7Bdli¹di{¢·ylyYi J
'
1
'P1
P
Þi
o/
'P
{G8p3p 3pó
»GTórH
ÔG1iªE «
:iªE|ó
v
C
C
&M
C
v
>´
G
i
ó
´
G1iE¦
ØM
X
UiEHó fi
iM
iMi
>i
i KX
ki
C
Nr
v
kv
²M
C
«Tà
C
ãM
«
´
Ü´«
kt
´
´
*t
*t
>t
´
±
r
y±
r
r
±îX
C
% Vg Cè
V($§
++
>l¯dlP
id¯aBiliY YJ ¸\
W7]Yddd@>¤¹G[
®BlV¯kla77 BY¸iB
Vf Ál ¡¹[N\ 7]dlP
l7Â
¢@¤Á>ªlPd®kliÉ]l7@ ,²ªÅi¬ÜiºP\#dBkBdllGd,é dÁ7]iy[VdlsiYÂB7 dd Y@lid [·
ilkV l
7¤ª#kY[]kBlPdl¢@@
iº[#Åii®P]@ls7·f7 7]Yli}BÁl\G
iB¤lJ]]²¸YÈi7lsa®V]Ylk li¢i¸ªi#l7ylYi dl¡7[J
il 7U YÌY kBBiWdlil WyBY U¡Ã Ä ¥ @>Bi~Y
i'¤BJ
vB@®7PYYiB WiN¡~7 ² É7] ydi7l¢f VBYd7Â7ld7dBdli]¢ .d ܽ
kÇFÂ
RÄ Å/ÁÈbÀTÄÍÈ*Å/Æ
ÈÅÂÌ ÌÍÄÍËFÆoÄ
&±
¿FÀÁ/Â
}A C
JkMO
C J
L
MOJ
p
EdGTJEd
L
ANM
A
Nâ±
G
Z
@
ÜuoG
L
FM
3YvY¤ñ
uoG
uTG
L
]
[
L
ERvTY C
X
y@
E¦vo C
MOß
µã ºÙ CêVõ Ú {ÚÍã ã ºÙ µØ ¿ ¡Ù H ; 7d
dY¤@PdY\ B7®'l¶Y¯'J
\\U®#Ã
]72dÄ YdR@
iQUid¯² [
,lVlkPl0] U Ì Ylk}B
¤B>Á]l²WάÜ`U Y7*B¡
k]l~9l
¶7¤yPdP ll Ì - "! J
[@diB~G
®B ¢ i@@i7]ÂBÏ7dYd@d[i Ê ë ,ë ¶Y
= ¡¢ $= Q¢¡BiÂBÂdP¹V@¤k#]B¤[¤kY
YPk9dJ B
idklF]U®Ã ¹ Ä
k9U¡\Ã
i BÄS² ©ªll]7dl¢Y li
iQl
WBP U Ì YkBdl¶
] 1
+-,/.1023.14
*
b
/81
8
9
w*75
f
bf
F±
â|±
Ô@
@
230b0
7
A
C
M
J
MjJ
L
EHG
Ô@
J
E
¡M
G
M
S
Mj
@
C J
G
ë ë
L
G
L
W
L
G M
Gl Bi¨ÂYi
®k]¢¸kYVly¯Y B® lWlÉ]7¹iì ¢¡
i7B2¹¤ì yPl
¤y 7l'¡¹[ÅiV' Ã @Ä Ã [Ä k¸
B#dÅi[Vª ¤U l
v¶
Ys
liD BU N¢al¥
i,l7U l2Ã '®¡ÃGU
i]
iGl¨~¥ i@
id]BÄ2¹Ä·d
iYPªPGU~U ]dÌW@d¤lkkdBl7]dds{l¢JBi][ÐiiYlb}dU5@]7 U®d²*]J¥
#P[¢D¡]
[l¤]VB ¶Y
PBi ¹]®VSdl]Y² J
*B UªÊ@]YdY¤ [lVGÀkdlPl
¤j
¤\
>{Å®[y¶Bº¶B
d il¤@®7
]Å®9]k[Y7iiJ·lP
d9]sl]B¡7kGlB@²¾£7d7GyGla¹@@]¼²a¬@7ÅiVPkl7·
¶Å®7¤ ¾¿Y
s
id¶7]l}¾~]Y]yGlªÁls¢il
i\*[iy¤@]9[lG@dikfG
illV C
QG
C
kM
G
I S
«3G
M
Í
I W
«
X
Mäß'p Yv¤
{G]Mj¡Msryvo D« u
kMsß
{GVMß
îM
»r
Yv¤
Yv¤
{¡MOß
ï±
Ï
Ô@
L S «
ÞM
Ô@
»@
@
JkM
, Â
C J
1E
p
L
ANMO
Mjß
A oEd
C
à " J
TEH
l i,°>
¶#lBdl]@GY dli]]l@µV]PÁllJ¨}
i¢ ªll¸¯¤J
i¹BJ
¤]¶dl[®¤lyBYÅ®l]² kdls7l¡f®yVµ¢l[
7 ¶lY
PYGyBP¹\Åi]7Y¤]P 7²·lÈ ¶±YliYydli7[l
¢Y¹YÊ l¢] [¤lyYÁ#[>l¤V¶ºB¹]YdYdl¤ P[l
idkl]k l] ¶BYP
Va U¡U ÃÌ dÄ Qle¤BUi¢¶¶¤JYB
8ºUo
7 Á7 ¥ và Ál¹ydPdd7NÄS¢·>
Á]>ByPfBi
l7¹É]7[ l,¶ÂY
¢ili
]
ilk¯J
i d97[>ll fdJÌ ¤dylPPll
¤¤94 [¤lkyVJ7 B·4[iB]i\l
®ikY>,
iYQ ,#dP¶PldlÐ]®pBU ÌlY²kJB
i¤BJY#ÃÁÔ
i² d²Y ¢ lQ@f¶dl
®Pkf
iPd¯yVk[l]i2
[#iBdWl]B¡klld¯ [ddlí VÄdJ ¤ly·P
il Åi
G¤y9]¢µ Bi'M ªÃWM BÄ [² >
ikil\Yd,Wl7li 7lY¯
kl¤Bd]¶¹
iB9GJ]ÐiBdlsd Q² &=
Ô@
VM
f@
A C
Mäß'p 3Yv¤
A C
ú@
MOJ
L
MJ
L
ERGTJVE¦
ERó C GTJVEHó
yè
L
yè
Nóîâè
/ó
Fè
úè
úå ]°³å
&óoA C
MOJ
L
ERGoJNER
« Íè
C
O f 'î
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
'
++
1
'P1
P
o/
'P
+
Já
[#Á®BfP¤7¶PGBy\dillPll
BD¤
#7l¤ik@V Y¤kyld7l]WBBi ]¢YdlYi,¤
[#iÐ]B]²ÂY]° JdBy¤[ Já ]Bà ® à ¤y®BdYÉ]]sl\
i ÁiiBP7lµiBGBdd7dllGB à à Ê Ä ¥ Ä dÏ¥ ¶lY¡
Âl°9dlYdll]7YNG²·BD¤7B®d¢ºdlBY¢·il~
¤7d¤B#*dd
dlPl¢P¤ll7#PP]lBlÂ
G
¤
¤]#G¨,£2
i
B lii@*@á iÃÁY[i@
l7YiG]¯¶'¹Á l®¯Y
lP2*Á[ididiG@[idBs7P]]G
B idl
]lYYd7Wdl
il yiP[d7YlÁ¯Y£¹Õ¶lYi]*®ByY yy¤@VÍlÄ[7²a£°>ÃÍliB dÌ ¤Y7Pl7Yd®ly¢dlliilf\]7BlPG
dV[G¨¹*
iBBi ÁdJiá Ä Á«l ]kl
i]£]¢@N\dl®iG
'Õ¶dÕ97*Y]PBil'ÍlÍ[l£[VN ®JSáiB~® l Já ¢f Bli#¤
ilBPÂlYÂ
i¤l sl>]Õ¶id7*Bil ² WÍl«®[]V] {Y®¹B¶® i9
lád¯d Ái®"S
á¯dªl² d®B9yl¤[ V¸láª
7llPsl¡#
7¤@¤7·d#ÅiV
iª¶7Yi
·P
i7klºP
l]ª
d¤º¯>Á7liP[dld[i
iB¶l ¶Y
Â]®VS¶pá¿d
#7i
®k aà à Ä aÃ Ä à 3á Jy
l]yGªJ¶BYª
s7
7 GB¾~\]YQ]@y¸Gl[ iï2yÁiiS[dyl® G
Á®Sdl® l
JPyº®y7ÁÁlaliºi¡] ¥ ¥ ïÃ Ä ¥ Ã Ä ö à à ð ñòâó¨ôaõ ¡¯l7ydY@P,@¤7iW¹y]¤#¢]7
®lPkPPld
[
¤¹¤ BÁiÁliiY[@[ddld]l{¢£Ç l*il yY
ivkB¡9ilJ{d]¢µ*
iiBly>dÂÂ
@dfyP7dWsYV]9¡Y]l[d]B* 7B,[lVB¶d lBifl÷dd@á¯7]² YB°¯*dl Á®S¬Y
J]¢}]lBidsY]a
dl li®llYªV>B®l@dddlGd]#¢B®>YV7 ² Ì [¯l®ÂNG
B ¸Õ¶Áid7i*SBYi ]ïB¤d[ ¤>kà YZ Ä ¶lYi
svB
i B7
i@7i BiÁd®lSi¶dlBa ï Z d
k>9Ã ªZ
iÄ[B¢¸¶¶
]Á3iiZ SY J᯲° Á*B ï Ã Ä ïÃ Ä X ïÃ Ä C
ikBd i~¡Bl d]]
²,J®
V][Y7ÅiÁ]l,¡l
iddW|ÁZ¹i¢º[
dlP Ád®PS£dl[vi¤N GB¤@7 Áid]iBSdYY{²² >³ d7i7PY
P,B¨]W ®]
Là áJÄJB® lqà á\ÄJl@[Å®]s Ý ¥ : 6ø à ¥ lø ð ñòâó¨ô Áli ¹DJ
Ï
] ¹¥l*² 7B¡ds7i*VyYd¶ ll®P@
¶>i
ii @¾~7]dY]dy G¤lk ¤ï[lÌ Á²Ji
[¯dly*Bª f 6\ø Ál7ldYkl9]]² \lild@]Y ¯ÈºÂ¹dBy¤[_ ῶB¡kl² Þ½
]ÌÍÌ ÄÍËFÆoÄ
RM
à¬G
¿FÀÁ/ÂPÃÁÄÔÈzÌÔÈbÆYÆoÄ 'Â8Ã
IfER
±N«
C
ã
ܱ
Z
à¬J
I
][
EdA
oß
C
¦J
pÜß
RA
ãoX
~¯
I
I
¦¯
Pá¿BdBl]GlB¤#Y[idyd*BV¸Ä¶l
·lÁG@7 @dd@d ²f¬Ü 1
{±
*
fp
b
/81
8
f
Þ±
L
rdvo
C
LC i
]A C
M
i Kp
z±N«
L
uJ
i
r
C
Jr
~@
MáuJ
.T4
±
ͱ
±
L
r
Jkr
C
ÞM
L
§
î@
L á^
{±N«
@
A C
bf
L
&M
C
L
C
a 2¨Rwb7hwb7
bì
yJ
{±N«
ú@
i<EHi
ÞM
C «u»r
Ôi Ür
Ôi /r
äM
§
.T4
ͱ
i
Ôi /r
X
Ôi
óJ
M
A
úóoJ«3A
®
y@
±
Ü^
y^»I Ô@
ͱ
Kp§
®
.T4
Mji
a 2¨Rwb7*7
I
§
*i
i
®
a 2¨Rwb7 ©7
±N«
k=
@ú x
²M
à¬íâ~@
=
YxbíáM
ã
kx
¥x
G I
à
I
±V« E
G
C
à
p
G
â
Ä
&p!ß
|G
Q=
M±
x
¹
iB 2o ¯ ¬dP¡kªJ]k9lB7º l¹lilY 7G
iB¤l7>lYGd
i B[Gdl[]7 ¤ÅiN7d¤¹º BµG
i7BÂGl
[77 ¤NBdfNªB,@]dld]JY
ik ² x
x
@ú x
C
Q«x
ý
Q«x
ý
&X
ªx
ÜxM
{=
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ @¤\77YVÊD¤B7ÔY¢@
iYÂ7 ¶
¤G
i7ly 7d ¶B¢¤Y,¶P
i®dG
,]l $dªldW² ® ¢·7¤y d]kd7ls*JB[DP
9YP7@¹@7 P l¡7G
\¤y
®*á>k9²`ÃÁ¤@¯lB]lP]77lddl]¯¢@GÄ¡
B @P7¤lkdYPd@¤l[dV·7
7¢@¤Ôy²*l²Y]¢JD[B]]l¡9liPJ
Pd ¨ BY¡dld Ì >lÃ Ä 9là á Já Ä Ê ´áüiá t
'
F@î x
1
'P1
P
Þx
a 2¨Rwb7hæb7
.T4
o/
'P
&@
»@
§
-³¬µ
0P23Ó
c.T2 ³¬°·
µ
Ð
°Ô·a 2¬Ò
&@î x
e a 2
^
b@sMá±V«
^
u 'ý
@úp@
ÞMj^
±V« ypK±N«
+
ÞM
à{â±
Y
ãoX
§Ó
Ⱥ
di B¬ÜdaYª¡¢@7ª¶
i
iQ[lai¹d¤@B¤k]\¤P[
0@á¿@¤@7¶dPYY
ÂÅ®
]iklÁid¤lY0{sPþ ¡@[@N\¤7B7¶Y9dBdJyid97B]ãJÃNGd¥Q BÄS}² P¢@Pl¨lPf
N\¹¹l]
y7N¤lS¢dlli® ily®V²#]là d³ di¶7 Y
{
² ȺdyB]¢> ªdi2@7¡7®7,@7
'k®là l7 dà 2y¢®ÿ v
W
ikY* Bà Y®à B
iilly>®lyYd
l¹2Ðd*BBY]Yifld ÂÉ7]]¤®l¢¡[dli3 áÏd7Âà GG
i
lP
lldP*B
[à dW¤k7y7d7GsyVJÃy¥
i¹S¨Äá$Y2ªB¹7B
£¹lY*yil¹ldi¢µB¶®
Bl]f²LÄ2dJ
f]B 7¤Bi]lYYN² l¢
iB¶l\dByd7f
®lJ ®ld\BD
fÁà l{ þN¥ ÿ \7 W¤\Y
ifi®]J
iBY ¾¿
]'B
WdByd7] þy¥ liX þN¥
lPB
[d
¤yW®ll[PJ7ãÃyW¥VÄJ
]kB ®
iWBdW7
YÅi]]Y]¹¶]YW
VBW >ÃÁ
ll
¹Y¡ #W
idJW,¤
Ðdl¨ ¢ ]B[ÁdYB¡l@J
i#Õ¶Y]*ByÍ[N®Si
d>ÐiBd79il7VÄS² :iERó
»´«
Z
&´
[
´
&iNâ>´
i
&i
²M
x
«Yv
Di
ß
3«Yv ¦Ï
Ôi
²M
à¬iVâ{´
'r
«v
´«
Ôi
«vDp
i
p
i
i
|ßDãoX
µã ºÙ CêVõ Ú {ÚÍã ã ºÙ µØ ¿ ¡Ù H Be J
@[GBdd9BD
#Bli¹å ]¶ldPy
k0
iBÏli ¥æ Ê ¥ · l7i ]B0¯B§ a³ lÆG@]ê ÄSi¢i² li,dÍlS9
k¿
ik9§ ³ Æ Æà Ä\¤J#Á7@@i[Jl B¸7 ¬Üaª 7lP®y lYµlº\Áil¹]BDd@]YÅ®7BdliJ\l[>¹ ´N][dl U·Ê ãÃy¥V`Ä
¬ÜYªda¤yi\Pll@ª
i¤Bª
f[y7¹ ®lSJ·ãªÕ¶ÃN¥QdÄ7*
ilª¹ ikÍl7lª¡¶Õ9YY]
¹Pll\¡ldÍlP[f¤NYi®iS²ºi¬Üaf¤aB¡iPyd
ikd 7fYiB
i\PG
i¤BdJ¯¡ ld
ik¶k
º Y@yÅ®ddl
N d¯,YW¤B
il7\J7liPl7fd[#¤J¤y¤B¹JB®i#
d>@¹@i
[#\Byi
i7l¢¤lki
*Bp U*[7i\,BsdlP
id UÊ ãÃN¥Q´Ä - à ¹Ä
ik¶J¤9
¤B9s7ldlP¡#@V
id7 d®VBa[dY¹
®lYS9¹Õ¶d7*l]7dy7dÍl7\]]Á²ldYk9]²Æ{[ 'MfÊ D- Ã Ä lid[r ãªÃN¥QÄJlS¶3 - åà Ä\YWÍBdd,dli\JQ}Ê ç Q iæ à ¸Ê 7Ä Ã ¡¹Ê Q 7Ä ¾£ Y7 Ãy¥VÄ JãÃy¥VÄ li ÃN¥QÄ M JãªÃN¥VÄ J
] ? #li ¤9P[lPiS9Õ¶d7*BiÂÍl7l² ¾¿
iB9B¯
É7]\Bb ï à ¨Ä \ §k9
®k9Y Là áJÄ qà á ÄJli Là áJÄ Là á Ī
7 á ?á ² ȸdip U¡Ã NÄJB® U¡qà S ì ÄS² §·kl¯
iBF 0Ç Ã lÄ ² dld]B}ll³ D
¢kÏ]
i7B9¶*
* []dl7µY®Yª
9 BB@Â@7idSYd9@ldº *77YG[ d BBfis¤l¹Plll
s¤BB¢ºl¶G@¹7l@¡² Ì ³
k
ik0 ï Ã Ä ¡ïaÃ Ä ' ïaà Ä\¤¶P[iNGBJÁi[dl{²
id4Æ{[ °>@Q®Ã Ä\BBº7d
iYd#@[df[l²\lÃ9@d7ÅiVÊ]
i kll]ls²
iȺlY¶idÉ7
ifWYN É]U¡¯Ã l {Ä
i7 l]@¥ P²LlÄ Ì 1
§
.T4
*
b
/81
8
f
bf
a 2¨Rwb7 é7
ß
²M
C
r
ß
¡v
C
¥m
´«
ï±îX
Q´«
Z
D[
´«
´
I
G
J
ó
l
_`
w*7 *7
_`
w*7 *7
_`
w*75 b7
_`
w*7585P7
_`
w*75'g7
à |ã
#JI ÞM
Mjl
t
Ml
I
ØMO´
ͱ
Íè
Íè
JkM
kt
I
à |ã
GTJ
¥ER JI
:J
QERóJI :X
MOt
ÞM´«
ÞMO´
«
:X
ît
i
ÞM
C
ë
ý
C
<M
L
C
ÞM
L
¦M
L
ÔmT«
SC
&v
_`
w*75Dwb7
_`
w*751*7
i
C
r
Ôi
L
r
&@
C
Ôi
¡±
Ô@
Ô^
-v
@
Mß'p Yv¤
o >u¯xNaz¶o·z
vo #p
ªpDx
)
î
(
@¤ k7Åi¤È[V]2sl lÃÁi~
7d¹Y'd@d@
]dP¹[YliÅ®7
B7]Nd¯lkiÄ#l¯7l dlÁ]2®ÃÁSiY~'dl®
is¹W¤[lÅiP7lVdli
¯¤yd,]S
iÄ>[l i\]®W]®¹¨
®ikBÂ$Y>
i¤ÁBkfi[ÁÃÁdil[idl
i S sdlÂÐll`dãª7ÃN¥Q#ÄyÄSB²¶\JÁ
i[U dÌ lÁii#[
idlB B¤>7l{Ç [
B]P*yd] YB]· idGQ
2l¹¤BÁi[idl@{]¢}BãiÃyÂ¥VÄ[Y>² ¤9>k@\7Åi77VV ¢ ãª
ÃN]¥VÄ['²°>
PÁlilS]Y7ii\ l,Á¤lk*¤[V7¢l
ii7yPÁlG.B®N¶ÁY
¶Y
7 ¿ld\l77d*l
\7dl®
@\7¶s
7
i~
l¯[ddBlyϤ[B ¤¶]¬
iB¯YºÆDi[d l£®d¶s 2í 7kY*Yp]! l]]²2°4B¸
\l7ddllP
l
¤¹Ái[dl
aà ç Ä Là Q ¨Ä ø aÃ Ä Ál9lY ¢¶
i7 å ç Q iæ 3ãªÃN¥VÄ ç Q ¬ÜPª7 #®N
¶]*
iQ
i 77@Vdl2LÃ Q Ä ø @]®]i\ld¹l,
>d*B>B çÂd§ ³ Æ ÆÃ Ä Là Q ¨Ä ø à aQ ¨Ä ø @m ¼*½
ÂPÈ
¥¿FÌÍÈbÀ
. ]75
9
À zÃ
]Õ
¦Û
. a ¨4H0bÓ Û
µ
e a 2
i fM
yÕ
0234
UiEHó
Û
i
biúâ~´
>M
Û
Mß
G
ó
â
:p
iM
UiQEó
:i<EHó
GTiyE¦ :iERó
X
C
ªM
r
:iªrÎó
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ Á]l97DB²d 9ii¢iY¼V² lº²d¢ [s@ d¤®[NYa9P¡ ]7Y7{#² >³ P
¶
[l\7dll
f9dlaa*l@l¢kl\ªÉ]7¶dPdªlVBy¨,PPª@Y@W¤
B¤¶aÁd]Sd d
ik7a7
iV\² \7dl
B}B \]B¨ P@@¤BaÁ¢B®yilYd#@]B] }¢l¤>il]Bdl\7l] J
ÁWd NMlLà áJÄ à ø aà à à SÄ á þ à à ÿ Á[7Gi®¯Sfidl£
i®sB [M B]ª®¤ki¤@[]Vif[W
i®B#7N
iªQ]l7¹'ª\]]Yl¨
Pµ¢{d¶lf
~Ál]P¡ ]Sls\
i7ldlP
B~
[B®YV'7¢¸[Y]~yGB
d NMBà "áJÄ = ø NMkLà áJÄ ÁiÃ;~y*f¤ª¶BYl¯\l
ÁiiSP7iYYi>®J¢
ilÂk¶d¤*k\y>
id7¯]]Ð]¢7dBi¯dsli
®dkYyVà S¹ à ¢li
ikkJY²\ÄWi9J\l
iidd\*¶ª¤[Jii7yl¤[,@Á]Ô
² lYid¨,7BDVPP@dB@y¤¤B[ ¬ ,[]\*G
]G¨*
ik aà ¥VÄ aÃ Ä aà ¥ Ä ø aÃ Ä Y®[0 ãÃy¥VÄ\¤Jl7i7GkV*
å *k¤[V ¥ ¥V¥ æ å ¥ ·¥ æ ]lYYBdÉ7i>Y¹
Y] 7l\«7]Y@V]¹µ@¢]a¤BùJÄ7ÁBÃl¸*
Ä *ø d7l]Y Skl¡BJ¤yBY®l[7 i¯7ÃL7ªVÄ ãªÁÃNl¥Q¶ ÄS²Æ{
YdVlB
i]Yl ¹@dYid7y*ldG @ª¡ ]>l]] BdllÃydd¥VÄS ² ¾£J
¶ dÁ
N]id[7]Á[ldlif l [¢Åi7ø BP\7B¤#fl¡dJldi
iBldYÂ
@7lÅi}]ºÁÁlifSdBYyi¤·[V@77¢}ÅiVfWs¹
¶Wdi7®]·YÅ®
i7BBY Ìdlidl¯dl ² d
ø Ã Ä n LÃ ~ ¥ DÄ ø ¶l#
]7¯7#
id#y747V²¸dJJk
V7yJJBdµ*i¸Bd7lLà l~ ]DÄBli¸dld@777dlG7¢k¢Bil ¶®lYÁl
ÂPÉ7]Y ®¢ li[¹,®¤lJSBa[lii[ lD
iJ
Vyf¡7Á9i
i[ldali¤>BB¢y]¹BdYV
i k9dÂiB¤[£¤B\7d
]7]s²¸¬Ü@9[Åi¤¶i]#BydidlYy]7¤¯Á
iiB[ dli]²
ø Ã ¿¥QÄ ? ø Ã Ä ø Ã ¥ Ä ø ø Ã Ä 7l l]ø d]Y®*@7BVÂ BªilVYB¨d¯PÁ@@i[¤Bdl{B² \7dl
}¢9kYVly*Ál ¶
i7
i~7YV h
'
*i
1
'P1
P
o/
'P
PÕ
NÕ
Û
ÞM
Û
C
«
C
I :p
M
Ip
C
ªÛ
-Û
Û
ÞM|
C
Û
Û
.T4
Û
«
KX
â{´
I
Ôi
iE
D?
ÞMjÛ
M
§
ªÕ
NryÕ
i Kp
Û
r
p
ß
«Yi fMOi
ß
M
Û
i
r
X
ß
Z
a 2¨H*7 g7
1Û
Ôi
®
ì [
óTi
ªÝ
Ôi ÞM
~t
p
~i<Edx
Õ
u
px
>Õ
k_w
\°>P]ÁliP¨,i¡SP7YY@'@B¤d¶l¶ÁÕ9iÁilÃSÄ9Yl'ilÂk,d
y
7Åi¯][ÁVaBá#Y
®d0l>>¥V
®ÄlÈ\ aÃÈd7ÄJfyPyY]]
id[]k@] ²il~¯i¤¶Y¹¡{77l²º'Y«2@y@l
i¤ k>Bla]]¡77
G7YB@fddWi¥#BYil d7ili@P®]]®¶d][
iiB@YB7 iÌ ildYll@}d ]
@¢¯l
Y¯*iJBsªY®B
i@QY#]i[B>l B 9BÃÁi² ®¹²Y¢
ik·
¯{² 7d]·Ä\7l
®kl9]
]W¸7Ál \,B[d d7#dP¯B
aÃ Ä / S / P ܽ
Q¿QÌÍÈbÀ
*À zÃ
Û
Û
iE
QMáÛ
i
yÄJllª]\Yl
] ªµ² *!Y"'@Å®Y>¤N>*² ³Pdi@[@ ¤B9Ál4
7Y ø #Y$&d % ø Ã yÄ % ¥ ø \ y]¯
ik¶
#[iyBJ]4
il\*® 'Ã iÄ\/ ¶
7 % 'iÃ Ã Ä ¥ Ñ Õ¶Ã Ã ]Ä 0¥ ¤\
¬Ü P®yili{PÕ¶d@7P*B®2É][7WlÁl]®Sd7dlWD/ ² l*BdYÉ],
i ·¤y]iN7d 7YVPy£
®kP
7liylª] ¤ªVÐiB®s¥l²J
iªª@[Å®>
fl*BdYÉ]] d7iy]Yy]d] ø
Ã Ä ø Ã Ä 'ø Ã Ä Á7Y]97GJ7Bºd
77Ì G[ @i9liY®² ³ Bl¸P
]¶
iikl¯PlYdÉ7VdYilddl7¢®YN>7ds®>7YV@¶9B
®¯kG k(YÏÏ iBBa}
iWW[®] ]̲
id¯Vyi>Yd¯[l7d79,V7lYD
¹»ª]ildY¸ ¡7G7¢}B®Â
]Y ¸ N G k # 77¤k]YBidy
i YÁiiSY
i É7[G~ÁiSY{²0J
B@[Åii] v
% ,/ / S ¥ / ¹
iB r ¥ ¥ ¥ ¥ ¥ Ç ¥ ¤ l¦i¥ V /1 Èil¶77 }¢ ¥ Ã ¥VÄ ø = ø Ã ,+DÄ ø 'Ã iÄ ´¾ /*) ø / ³ ¡]7dl{7yVJBD
¤¶Y®[di@
i ª]Y Ì ¨k¶Ál ¤l 'à lÄ + 'Ã Ä +¦ Ál ¹¹@@idlJ¯ÁlJ
·Ba¤yª]i]YN
7d µ²7¬ÜYV Ì [ø @¤i¸B
®lyddllPsld
¤kºYÅiYNli ¤{
7 Ì Ãø Ä ¥ ø % .- ø = BÃ DÄ / T
*
b
f*
Û
M
ÜG
1P/8
Ôi ÞM
G
ý
C
Mjß
Z
¡x
|ß
Z
yÛ
9
. ]7w
Û
[
[
i
ÞÕ
µ
4H0*Ó
e a 2
0234
Õ
~G
Û
]Ñoµ³ c
i
0234
Õ
äG
ë
¥
ë Mjv
v
M
ÔÕ
p
x
I
þ
x
I
þ
;
ú;
@
Õ
Q@
i
Ôi ÞM
v
ÍÕ
u
U?
k;
J
ø
ö
ö
M
r
M
p
öªI&MÊr
3«3mßp
.T2 ·
M
r
0
µ
eÔe °V·µ
J
ö
xÜ\
þ
3«YvDpfö
M
C
öªI <Mjo«Ynn'pföªI
3«3n'pÜöSM
M
C
r&n
{Õ
v
ÔÕ
M
x
þ
C
Ív M
+-,/.1023.14
7
9
n
ö
S
u M
oß
*@
&Õ
Ôi ÞM
¡r
uTÕ
ö
/
I x
þ
I
3«3moß'pö<WyM
Ôv
Õ\
p
Q;
@
r
«YvT3moß'p*ö
I
r
M
4¸.T2 ³
X
«u1v
I¡Mßp#x
C
X
ßX
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
'
¶
]
1
'P1
P
o/
'P
BÃ DÄJÊ o / ø = B®,
#yi4¤¶kl]ª¡Y#@d¤lG ,BD/
d77 ² l¯i, ®
k i Ì [l@¸iyBB®yddl*ldl¤l77s d®l
Á
i¶7l
i 7¢@¤JBa
iB#a[
B GBÁl 7J¤¹[@ÁilB0®'yà dlĶY7B¡kl¢ ¥ ¥ ¥ % ¥ + 7BVÃ+ Ä ö / õ / i*QilYidfB>7[Yl]7dl 9[¤[]PYY7d]li¶Bd@
y ¤D]7l*G9ll²D J
\y7iÏ]sly{P¥ @
ià k9D
ĵ kvl7B¸®Bdld'777GP l[¾£ ·YVdQl]ºsl
iJ]d·sV
yi#G]µ7llµi]dlÁ®l4BlaD[@
7#G[y¤i]s¡² Ál{
·]@7V²D¸¶klº
aÁW¤ Á7&lP'Ã 7iÄS¢df[y] d]d\P*y
i
2k0¥ Ã
iB DÄli ¥ Ã DÄf7P Bi£[@ili~
VyY l % 'ià DÄ />= + [lVà + Ä ¥ 7¶W®]Â]²
'Y7
iB®¿y¤@2d ]*,l
2/ 7]Bd£Ái[dl¿Á*
~»ª]ildY l ¸¿f7i¸kà ,+
Ä*Ì 7y
i®kBiY
®#k ÁWd¯Á ø ¢lyly#[@]Y1 + [lV2à + ĸY¹7P +#[l]2à + Ä + ¥ ,+ -ø=
I x
²M
I
ó
ò
Qó
¡x
Ï
ÍÕ
bi ÞM
M
iEHx
E
i
þ
E
iEdx
I
iªrx
« ÔiEªx
bx
-x
ÔÕ
« i-E|x
« irRx
bi ÞM
rdv
i
ÔvYx
I
i C
ì
I
þ
Þ@
M
Îr¡x
bi
Ôv ëi
bi M
f 43 Æw
q( '($§
ë*r
N+ V($§|wo(`©
v ë
¡r
X
V§¨( >w
Ji
l>7¯lll¸PBµ@@
¤¤ªB\]Á[ld*l*\¤B¸\¹7NdGlk
>}²·J
i7
l¤J7ÎVyi
®Jkª
il¶Y]laP
¯yiYP7¤®ydydlP*[ll®µyV
Яil7]i[7]] ² Á]S lÈ\B{yi\Yi7[ydl¯l
Bi D[P¢µ@@
i¹ ²¤BiJª
@Áli@i*[ Ç lBBDiªP ]@Y@
¤
®B#Qfl
®Á9ll\*
@fYPBl]ª¹i\y¯d7lªdl~]
Y¥lG²
³]~²ºdiB¾~[®¯f ¶
iY dµ¤ yÌ ][9@iPl
i@ik@\ydl¤
®B ¡7B¤k
sYy2ly®J7N¶ª]
7'¥l¢
ª* 7l i7Ì lYi Ì@¯dd
iklG¶aÁÇiiSY ²·J
dBJi¤2@]
*NY PÌ ld YÌ V@¶dBds lG¶7Ái¡i]S[YV Ê Ã- DÄ - à DÄ ¥ /> = ø - Ã Ä - à ¥VÄ ø { Æ 7 2 ® * l i 7 k d l 7 l ] ' d 7 7 V } ¢ P7l@@Vy¤¡Bl\iÁlY*\Bi¸l7\\7ldl¡
7 i*y¹ÁÁ\*
]f²ºÁÈidlµ Pd Y7f_ dl ¶
>lø Là [lãÃyPD¥VĢįYl7i 7lVdl[S Wl ·ø
ÃL¹iãllÃy7¥VVF ÄSĪ f7LÃãilÃy¥Vf[ĹÄa
Bd Y¤B@ydi7\Yª7llYi¸
9[]®i@d ·¤y]iN7d¹7d] BPl7kl]]¢VÁø D i¢ Y ø Là ãªÃN¥QÄyÄ 0@d ø Là ãÃy¥VÄÄ ¿¥ ¤¶Y®¹[·Yd
]\l¶P*l B9d P¶
GB¨yd¨l¯]¯iP7{[idldDyÁJ7@S>Y,
\l7Dli
y#l[iDs]Ál*l7i² Y Ì 7@iBidl Þ½
HÄ jÂÅÃoÄ /ÅÃ
ÃËFÈ
ÂPÃ
¥¿FÌÍÈbÀ
*À zÃ
&Õ
»Õ
¡ÕyEÕ
Q@
î@
Õ
CS
Q¤
&@
yMj@
SC
L
x
M
L x
*E
¬vß
L ÍÕ
L xkr
:X
I
þ
ªÕ
&Õ
Õ
¦u
»;
M
VÛ
G
ì
*E
Õ
u
µã ºÙ æQõ×_¿ äaÙ¿aÙD×#Ø¿ ; | Bi¯ \ ͤB9®W[#ÁlJ Qlº\[@7dl
] º
iªÍ dS\,
ikaQP
i¶
ik¶@@
®#Sy®Bl}[P dlºÁlPal®\7dl
5 %ø ø Là ãªÃN¥VÄÄ l lÃqYãºÃyP¥VÄy@ÄJ@]B¤Bs9®Á ]*i97lÁilãªdBÃN¥QVÄJdfds*Nª*@y]k7lPY77GG¶²¶B¡Jl
@#¶¨7
d>ÍBld[l7fiB¡il² @9
Wi[] ø B® ²·«]k¯l7JV
¢f
yViy[79d7lPµ¹]@G@9iBdl ·ÁBldl*]·l¤d]B7dYP]dBi@V]µ®¢]i@B7,Vl² Y7G¢ Á¸ Q¤s¶P
idBYfVPB¶@@[ ¤B¯dÁilB*dl¯slBaWl7@i@7®GkSVJl¸
ÁlBi PVBi>
iBlsP@@¤B T
*
b
f*
1P/8
Ï
Õ
{Õ
yÕªERÕ
þ
+-,/.1023.14 k@
7h©
9
V@¡S
W
{@
@
S
W
£ 76
düiJ@
]®]ªi]@Y7
J9BPº7
i7ddJ,PPl]illiP\dl
®}kd¶
i] ¹Q²ÄW¸lPP¤BQ¤PJB
®fk dd]#lBd®, di@ 7¡l7®@B7dl]]² GB¤7Bdd à [Ä\Bºli7¯BJdl
fsY@d¹7l]]i¶YiG
B
i Bø qà ãÃy¥VÄyÄ ¤ VЮB·2
W®] l9iBd »\7lid7YW
i ]ÐikY 7l7ÁdY¢@l#
k9ª
iB @d ø Là ãÃy¥VÄÄ ¥ ¥ 98 ø = ¶@d
]dd Y@'7¥@l² V9
Wd]l7filyfB Bi: 8 } d¹¥sÃÁ]{² Ä9YG ~¤WÃÍVy{²}¤>iBGÄ G
VGÉ7³¨P]diÁ2l[¶s7i@Pdv lYÁ løLà ã
Ãy¶k¥V9ÄYdÄ ªª¡
i,B@d
Ây*ø ¥ LÃBWãªdd¤ÃN]\¥VyÄ
Ä ª 0]YP¥¢a
l#ÁYld]Á ly¶¹[¶
B¤PiG¢a
d@l
i¢@d ¶
iP7lø Yd] y ¥l\²'li7° d l
y dPlB>Y NdY\iW]BPd@@Yi¤B7J¡Á7i@*]]¢i]B²P®¬Ü#\d ®@k[Åiiil¸[l®Ni[#7iy~Ál '@Sd
Vy È Ã Ä Ã Ä lÃ Ä Ã; DÄ\JB
º
Ì [@Ì i[l@iilYi~ydll B È BÃ i Ä ,
iQlPGkdl®B·[ *7Y]]¢ºli~
7 ,[d7 % È Ã Ä ; à DÄ / ]kBdYdVyÁsÕ>BB *]Bl7k¿´yly lÁi7iPSY{l¡¢¡7liNs}Êi
i7> / lB@>ÂY,¡7#l] ]i²YJd
¤7ÂkÁY®#SdÂdl
¹; y¤]Piy
2
ik Ì ; ; ÃL~ DÄ ; Ã
~Ä ; Ã DÄJÁl9lYD]dBdl7d*YP¡Y Y]l]b~ li ² ¬
i P@@¤% B9Á È
i>*@@i[¯[@iliYsl
È Ã Ä ÃN¥ / Ä @
S @
W X
¥uTGEdnT
±
02308ee a 2Ò7æ
&@¡S
k@&W
9
G8p
uoG<ERno¥MzÕX
kuTG<ERno¥MjÕ M
~ J
FEj Õ« v r
C
J
8ß
v
VM
¥r
*Õ
ÕNM
NÕ
¬v
®J]iQ@]'Wly'®y@®,@#Y
*¹d7¹N]i7@PBYdªli]>BVy]
Pk±YlYid] ¢
0Ê Ï±BÜÃ Ä l\B¸
B·Bd
l¤7iYVlSd*i7Y¹yd¯*Bd¶
iG[k¹YYPiB¡ªll ¡7±G#Bdkl¤f7 ]
VyG]kYkiYB·i>W®@][¤k]²']ÂJ
]YdYÓ·¤B [dlilVi\llid¶sÍlPSGªl®dlJ@ÁJl±*lY7² d]]7Bdli·]B,¡9Ái,B
¯¡7YiYi lli d ²
Vy\@[7V@d]¢VliÁ
i7ºY@Á*Bdl ]B ¡Ái d ¢ ¢ Ï
U®
:®
èk«è
²M
*
µ
0
k²¯
.'g1 ' ka 2
~°a
X (
(
J
d d¶ldl]>dYPY9llBº
i¶±BÜà ,Īl GB]ªkl] ÍlllYD¹Åidd² Y9l¹7[Bl@¢]liÍPyBdPll®dY9P
B¤ly µ*l @Y- Pk l£¡±
li¤¼yfà *B2¤ª]YÄJ7]l¹ÁP]>i]B - dG
2Yl>yG® G
 Åi@[]Yy7¹¹±¤Sdl·YV¯d >[[l]Pi iYB ü dd diidk@Pl
DPÅl@¡]ldllY7d'G¶B¤
P¤G[
'dYd s7²slPJ
i*Sl>lBiG8Bd YÎ@¤¤#-*7lsi]lSÅi]'Y*ll- {²£Õ¶li£l
idll ¢ Y
\dÅiiPV BiÐfB
iYk]G7
i² *ll£7B£¡¹ii@7Gy@~7lPd[]Y''i@]yli@dBdB J
¤BlflB}d¶*@][d®f
i Ì @dP7idlilµ]Vy]kYi ,Ê ±Æ / Là W#Ä ¶ª
]d]V BdW Y¢¤sl
i®F W Yl¤7B9¢ ÅiW7¤Å®B®l ¢ a W¤l[7l7YidliÂ,B
|PÁ@l² Pl
¤y.B#i]² li ¾£f¤97¹P¤d\iYP
#
Bº]
il#7\dsP
iBBDB¶a
d ±7B7dGl\¤¤J¶
ilPBl>±i[llYdG
i\Bkd7¶i 7ºi]¢7d
ll{]V¢ º Î
d¶ yW7 GÌ k¶ddll®Ê B}YPl¢ Ê Â±lÔà Ä\Ê Ã #Ä ¼*½
È*Ì /ÄÔÃÀoÂ8ËQÀoÂ8ÃYÂÅ/ÆÈÆoÄ ÅFÃ
=>«è
â
*è
¡=
Nì
Qè
Ô=~«è
=
Ü^
*=
|Ý
è
ªx
ÊMz±
Þè
f=~«è
>í
ÐP230
µ
Ó/. Ñ 084dc0
Qí
c
ØM
à
â
Ô=~«è
;c
í
FMOíVãoX
³°å° 0
·
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ Y ]¹P]²Jl
iµ
f@]7lP®yYdlP0[i,d@y[¯7B·PY
¯B@lP
iBlfd
i¤@y®*[¹lµ
¹
¤>@7Vy¤Y@N2¶BÅ®7¤ Ì Pl
¤s¢@Ô² l²d¢ Ê 3 Ê Ã ¡sÄ p *P Q J
J7
\7@i]7dll P®y4Ydl¤9#lBi¤- ,d¹7¡ ¤¶-llii{l7YdA BV >¤J¯@d }¤7BÔ7² ¸d¹V{dY>kl7 º l[ȺYk®´NBdYB¢l
d¯±]l¤@Ôà ¶Åi,]dÄS,² d\ ±Bdl¤·77®ydl*lµ
>Åi7¤d º 9¢@Bi¹
f±lYd Pl~
¤lJ
i¤#Bª7GB7¨liV dlv
i#Á 2²¾~7lfYl7i9d]ÈBl>lÁW]@7]GkBlfV¢{lil]¹Y]]¹Y]¢aYJl
dWv7y
iPkJ
*BBi\ Ì l
id,ª7\l¯¶ldd¤¡7l®yil]lYd7*GklilY*V²¸iJf
i¶ªdÈ,l)
iÁ d]ll>ddW\¶7
id®dG
[ºÅi¤V\*PG@B@PdÅ® ]µ
²¯JYi
7 Ȥ l¡l7liYiD ¢ *¡#B¡[By¤y7 f7B¡G7kiY\{² *9k
\f7G
7lV¤¢[¯
BPµ±
B¯dli¤9dlP>li¤@Â]lS GP¶¢@GB ®y
iYBd\l]¡Y7
illi¤ª@Èi]ld> Bv \ld¤ Ì d7l,k´Nk7k lº ²9¢}BJ®
Â]l7Ál G
iÈ]Gl¨@ JÁ
®[k>d2
® @}
77l
f>Èil®l]>,Y®ª9]7Yd 7Ì P[]ÅiGV92d~[±k´NBÔÃl[s,[Ä9¤lB7 ² ªd]BdY¢l ¨ik9 WW7iVy]GkY ,¨k¶d¹
]Y]P7 ÃÍÈi Á Ä[² ;Jt
'
1
'P1
P
o/
'P
;
-«Yí
V°Ô·
.T2 å°Ôa
µ
ÐP20
²M
c
à
â
J
>=~«è
-µ/·
J
2 a 4
Ní¥p
J{â
ãTX
° /.1Ó
®
Ô=~«oè
Q«
QJ
J
8í
&^
Þ=
®
Z
=>«è
[
% j Ó© Æw
(
(
¿¾¶
Y¤G
sd
JV¡y7
iB7®dd¹d
i lldi]]Y¢ª]lN>GB
i\k9¤\7ÁlidY¤@7iY@i] yli@Ì µ@²·YPJ]
iVyydl®7B¡]]7VyB]dlki\Y7il] ¢ ¡Y,i@ [7PYV£iyd27d¯Åi]d£
7²,Èl diyli[¢Dli Ì @YP]iydl®B7]7 Ì Ê M 챮 Bà ¹Ä 7ll®]YV¤By¡l[i¿]iY½¯iY*dGB
i Y7G¶
®BG
lS[@7[GdX B_ lPÊä`7[Vª7®Ä M ydl i,l@M GBdd ]
i£ ¤@l]k´NldÅ¡7YikY[ $Ì B
B\lºiN² ³ ®V[YÅ®7lYdl¢
]¤¶BÂdlP
id Æà a[Vª¹Ä Mr ±B¼Ã à [ Ä ,Ä l
iakiªNBs¨]ª*B*
]dY 7Ì 7
2*¡k]\dB7Vd² l7>d 7il¢UdP9[ 7 @[ ]B ]>
f
B¹@y7l>PBls[
Ì ¤y
Î
®BkG9GBB¨]i·NÂBdG
#BJdl
]¤¶d¹ldi¯Y[d]d\
ikf¶l
²*k@Y*l{B¡7ddlÂÐld7¶B` ¤
£ 6 20±l¼Ã 22à DÄ ,Ä ¶
]¬lºÁ@i7iJNl Y ËSsÌ ¡²k\7BGªl¸iN¢@¶
7 Ë d ¹YP²¾~ [¶]]7Bdli _ Ë / Ê °9QÃ Ë / [Ä 2ÆÃ Ë / 6Ä M P
i@k@ld Ë / 7²vlPÆ{7i7 BUdVÃ YD 2Ä Á7,l@ ,¡]
] d
27iÂ
ik
iPBw ¤#_
Ë /1 dl]V@,i7dY]P¹YPj l_¶Ë
/ Ë / ¢¸¶
£]¡]SÂ
ldYi,s
ËSÌ
~¡k\7 *B~Ál Ë /1 Ë / ² ¯ ]B
d¨lal]Y]P79B¸
¤¶d7GyfdYPY¯l¶P]Ð7®[ Ã Ä ¶
] / Ë / Bi /1 / ² ܽ
ÅÂ
QÄ zÂ8ÅFÃÄ ÅFÈ*ÌÀoÂ8ËQÀoÂ8ÃYÂÅ/ÆÈÆoÄ ÅFÃ
ï±
&M
/I ͱ
Q«
±
è
F«
è
Þ
«oè
QÕ
ªÕ
¥^
Þ
Üè
Íè
«è
è
Q
Z
Þ
¬[
®
úx +
Þ
F
aDå .4H0bÓ
Z
I3p#
â
Þ
~
I
µ
M|
C
pUññUñ
I
Q
e.
[
Ï
»
F«
Þ
I
Þ
}ã ¸Ù eVõ]k¤äºÚÍãvÙ }Ù µØ ´À @ä {ÚL¿AÀaØ ;ke 7]J
7G±kldlY d lSG l£
d#Yl]PYdPWY£
iM ,lYiJQ'Bi£\*l7 _®Ê °9@k2à U]à DÄyGÄ 2n ¾£*¶
iBBP9>
i
®Bl\Á 2Ã DÄf
]¤ >¤yyPiSl
¤ dsÂ
#
7iËSÌld
®¹kd¶7
i 7lGl 9 BvSBG®¶NlsS¯ l¤Wl
D ¢ ]7Bs]®#77Glki7dl7u7_ d, ²ª@J7Åi
dJ]s7iVy]iG7kYdW¤9
i7Bl Yd]
Bi Ã- ¡Ä *, J ¶\
]l d,]]AË / _ Áà lÄaPlP@ Ë /}¢B² liS _Qà - ĸ¤¸d M ^² @>Bª
®kºÁl¸
Jl[dl# A Ë / 1
*
*
b8
b
U
X
-Ñ Ò
J
FJ{â
Þ
Ñ eÔ0
å 0P4
°ÔÑkÑ ,
a 2 a'ÑYå .T2
FMOJ
x
J{â
Þ
-
f X (
( .+(^w ªh5§ (^w ++ ®*l27dYd@d¹[lWkl] Bid[ iÎ ¥² J
W¡ld¯Y
¤ÆDy[@ P] l'
Ál¤94WW
l#l@dVS
i9B @@i[¢iJ7llaYd7]@,[dd
f llii,JlB ºlÌG@@Y7 ¤ydlÊ ®Y,GÃ JlÄ9
i*B¢l
iBW9Bd Þ½
È*Ì /ÄÔÃÀoÂ8ËQÀoÂ8ÃYÂÅ/ÆÈÆoÄ ÅFÃ
ª@
zÄ Å
À
ȏ
Fx
¡@î x
ÂÌÍÌ ÄÍËFÆoÄ
¿FÀÁ/ÂPÃ
ªx
@
è
x
>@
¥x
2o ¯
¬d[ddll]2iB¡Ydl~Vd2Bf®2Âl l
Ì 7]7Bdl Íl[lG\
il
±BÜÃ / ,Ä[/ ¢@¼² l²d¢@
i7f¤9P@¤Bl
±BÜà / ,Ä ±Æ à ªÄ ¶¤¶
Y]B´N¯]S
Yfl*² Bl*
Y7 \¤ª
7llid]B®¼´N][dlli*
fPl,
i¯Y
° @d@¹] , V7,[²9¤Yº¸·Y
iyÍ7lBl[a 7® y
iBdl¯ Y³dP 7ll¸ #dlÃ]ª7dD7Äad¡Q@\y¸#d
id]B]ÁÂ
*¤,·*±BBB¨ldl@W¤da,¤7@Y[Å®dJ]7Y>{BŲ>d@lJ]W#
l Åi¹® YJiYy7Y·dBB iB~ G£BiP\Ql ²¸d¬Ü,}l
i >]lil@i¹¹lµi7
id@ PÁl,
B¤y*7d¤dY@ydd[7dWl¤B l*]a¢¶y
R ]{$ü ¤·iBµ¤¹Ã #ÄP
id¿Q llGl[] slyd¡@]V7ld]l¢®¼¢li
 YV
l79²sB°9lY7d
[dY@@ldd d
7[f]Y[ddl¤@lVJ¤J¶Åi77¤
2Â[]l
P7¶Yd£[
ÂÃÍ[7 ¤llPiYÅ®d[]dk¤7 kYYYÂBd·dd¯Bd]¡Pk7dYd¤lG
77idliGĪB¸d*BYil,Ði@Gk¤¯Åi7¤]² @ú x
Q«x
Q«x
&X
â
Qx
^
í
í
Ȓ
M
J*p#A
í
M
Jp
A
/í
íE
ÞM
íE
Ô@
x
@ú x
*v
Q«x
x
+-,/.1023.14
æ*75
9
NJ
x
Q«x
C
v
»@
A
/x
Q=
@
¥è
=
x
=
=
?
#²¯
*x
«oè
«oè
C
Q«x
.1w'
fx
Z
>[
{@
;
î@
Ñ 0P4dcfe. `
4
µ
e 嬰 cfe °ÔÑaD嬰 0
·
Ô@
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
i¥fQ
]s[¹
i Y7*BW ó Y]dYV¤¤9Ä 7¯B¬Üd ¼l´N{]S¢V¤Y
7lB ²~
7d]Yd@ªd¤ºPB[#dlP]l@77Åi~ ]'ikG
l]
ikº®
®k7 D@Ã
~ ]fDÄ B ¬ \±lBGdl¤]J¢i[
W]7iydl®JYiBB V49B¶
Ìy@#d±dlYYdJ®YG>¤9'±BÆ ]ÃY dY¤ªWÄS7² ®yilYd Á@[®°>Jyd
P YPl7s
®>]k]\l77¶GGk\BµBdll®W ÅÌ @Y]Ps7®yYdPli lË @² ]]7Bdli]¢B\¶k ]]ly
Vy>d@Vl Ë / ,Ê °9@kÃ Ë / Ä ¶Pl
@9]@7l dP il/ kY
iWY¶7Ë Ád/Yd@B@i¤ ¡ ]7Ë ]l/ l1 ²>²¬ÜfJ¤
99/ ¤yd²#PJ7
lG¤yf¶
ldd¤¹lYª2l¤ @l7Ë fi/ B*[Vl ilyU¤]yDà ¢¡ llÄfiµBÂliY
iº'là fd>*
i*BºkGBÄ Ì PYfN®Si>li, ikl®Sdl*l$ ²»\Wid
¯Y7Gy9dd¹YJB
Ë / lif[G¶¹Nª Ì @dP7idlilµ±lYd\7]7Gkdl Ê °9Qà à ÄGÄ 2±Æ ÆÃ Ä ¾£#NGk 77GB¡Íl[9l®@J
¤>±Bdl¤J7]7Bdl{² Y ¬Ü@ 7VÃ
®SlÄ Jl_v@]²V@iSYk º ¢ili º 7 Ë ¢@
7 Y Và QüÈl) ÁÄyÄ ¥ º ,Là yªÁÄ Y J
]@®SdlsP@ Ë B V¢Ô² ²Y¢ Ë ·¹@ Ë Ê ±Æ Là yb[Ä ¤JY]@i7YiYfÁl9lYPN9BdµYPV Ë ² d@>lBP¤[l Ë
iB7 >º
l i[W
®lBJlÈl@¡7iVY@ii¯S¤>Ydi@k] ®º]iÄ[²@7B·
WG
il¤[ l
¹YP Ë ÃÍ OBj
'
+-,/.1023.14
1
:9
æ*7hg
'P1
P
o/
'P
¥@
ªè
p#x
x
Z
Þx
Üè
C
®
Ví
âd@ú
@ú
x
í
ÞM
D[
Q«x
b@ú
íÜI3pí
I-Msí
Ô@
C
pUññUñ
C
@
+-,/.1023.14
æ*7w
C
KX
9
ÞM
Ü@
M
ÞM
M
FE
@
r
M
:X
C
Kp
>@
u Vg i+( ª© ª+ (
¤J 7
¯][l7®@GkiSdll®b{[ ly>@7[ dB ]l DB9*
7dJdY[@d¯l[²¸Jl
\[l7®B@*i¡S¯lº[BÅi®lV#P7Yd,dY@7d\*[·ilµ
¯k±l7Yd ½
kÇFÂ
Å
Q¿
DÆ À
ôM
&@
F@
[ >[ M
ü
M
Á
º
p
Üè
¶¸f
][\Åi
\¶[
@J¡[l@®]G[7S [Á S BÁ JÁl lº iªÉ77¶fG
ld#y\Á¯ai
dP9iË dP7 ]º a¶Ã
]JÁ l
iid¯aidald¹i@]]@®i]i[@d]l{ ² lD
id9G
il¤[VÄ\liÂy7 SÁ ¿l¹ Á ¶Y¤> Á ¶
] GBPâ Á 7Yqà z& [ì¡` Ä ¶]
S]lr ¶z i lB7¯Åi à VÄ ¢
>¢ ®Ãd7¤Pĺdy·i
l>lY]Dy² d#ll*k º ¢li z Gì [ 7l]·
7¡l³ id7i[¶_ dz ¶ ]dJ
7 Ì i@¢µdP¥l¢@7i YWilBi}]
S lJ]y®¡l][SYk 77 l]J¢@l
f]ly¹P ,7l@][Yid@®dÊl¹
&@
M
ªM
¡E
M
-M
@
è
èî«è
]v
&ß
&è
yv
}ã ¸Ù eVõ]k¤äºÚÍãvÙ }Ù µØ ´À @ä {ÚL¿AÀaØ
1
*
*
b8
b
U
Om
Y Î
®lJl@V@iSYsB º G BPâÁ } z| ¥ Y Î
®lJ iYd¤7kY V@i[dlÂk º Y Î
®l¶li@YV@iSYsB º ~ | J@7
ÅiY¶*¶fd¤
iW
®
BY·7
d7·¶]G7
®BBPGBY@Å®7d7alB #dl@sË ]ll[lY¡®l
ª¢lÅi
]d l
Pl B* ËSÃÁÌP@YYil¤ySdÄal[l®P¡Y7Gi7² k³Y¡]W7YÅ®ª]@B]d®Y]¢i\
±lÔà ,Ä\Ê - à ¡OÄ p ,P@ 1 ¶d
7]7G\Ysdf
®lkP¶ Åi]dµd¹²·JW
ik7ls]
º d ¶d¤ ®BB® Jl~DGB
i#l[]>ik@li][¯lB¶dº¤7 d7P7¯B
¹dB ¶dd Á % [@@ xd Ã Ê Ë ¤£v¥ Ä >7lr ] x\>¶¤·dB
]>Jd
]_ y d lfPdY,¤B{
>liÅiY
f#[7]iYPyd7l® yrdls7²d°99¤É7y7®¢li²
¯ d·ÅiYydi7 VÂЮkJld
l¤l ÁB®£W
iB
dD d¹]Ö§iBvY¦ ]¹¡]@ ,º[kYl Ç #l'ªBd[l
,PY7d
i@dY @²2dÁlÈ [Å®yil@id¢{kÂ
i7d7l
¢º9¹
idl[dv*¹
iBQi@¾£,]7l d]7[7G]lyGl
iÆ{B7G ª¨PÁ¶llD² Q Á Ê
¡7¶la7lP¡l]GJBº
#¡][¤B}Å®®]¶Bº
_ @97s l¹@@]Dk º ¯J
W¶Y¤ÂiB>lº
#7¡li7>Ba
W7li@®S9¤9É7]*iYV º º PB®
i¶l@Ydl ]iSYsB º ²¬7ll¢ ¶Y¤) Á lG ÁÃ È Ã ÄÄ ¥ 8QlÁ ¶
]lG ÁiÃ È Ã WÄyÄJ¤\
¡k\7¶B º Y
i ¹dd*BD@¤[YPdiB¶B *² +-,/.1023.14
9
æ*7
ß
Ü@
-M
X
Ü@
v
Ü@
M
ý
à
>=
â
Ví
Ô=
«oè
=
J
OJ
Ví
ý
I
ã
{J
@ú
M
ýþ
I
ý
^
X
ú=
ý
?
.T230
·
4H0bÓ/.1e
ØM
X
+-,/.1023.14 Mzv
9
æ*7h©
Mm
k@
ªM
@
@
E
¡r
Ü@
£w9p A¸ª© o· Âxx y £u9z p o
Q¨ p{z>«
Ê
k
#"#$&%'"
'(
*)
(
Åi ® @YJiB¹
·PGÐk]ilYldidV7B7 µ¢¡l±fild]JY]*lB·{
Ç [ 7½>¡dY]¤dB>@ª d#]7#illY¸ Y®]]yÁVBSª¯ÅiiÐ@idBs]¶N\d]sdJ]*l7G
f ¶
Pd7y ÂB ¢ Ê ¸Ã lÄ[Ã Ä N¡J\l
idW¢ºBºiB~dÅ®l2
i¡ªl@>dB77dVB̲ Æ{ 9kV\lÉ,7JÂ
7V]¢7l@
7[]7\]¹®BdY®Ê9a@i
ify7V~¹lºl l@]
@iYÁ77Pªl
ilkd@#dldil
i>7¸®,>BYP
ªldlBlGd
@i7]l liJY]
s'¢«2PlªG@7d Ì]¾£]7d¶*@
7]l]7P dQ@ÁPd{
ilkl ,sà BºÄPBd,dlÅiilY}]®Y Yl] ,7Gà k]ÄSµ² ² ÃÍJ
¤,Jl Åi]ddlidÈ7i¢Blddi'
,*7klBV¡l7PddlBv¡k«klll¢{d[7
YdVP¼7¢·¢@lliGyd¾£l~
i77ddÔ² Ä ]Y]7¹]]lYBdÉ7V'µ¢ºl®£]Y¤7Bd£Yd@B\dslG[@7flVÁl#ik]¢º7B#i¤'Bl
] Åii7dl]7Gk]B¡7ddl à ,Ä\
®l\
i#y
il® à ,ªÄ 25s¬0¯ à ,Ä ØLÙ6Ú
Û 25s¬0¯ )i¯. Áli#,yÅ®i¹ÂPBds[7@7 dd7 ¢¸>]B[d9YVl~
l*7iGB7Gk¨lªªB
a,d@[iÅiYl ²P¾~@*]]\² lid~Yd¨lPsÅii~
*GBi¨¡¢  ii
GB¨,Á ®]Yk¤\,]BGG
,Á¶®YG7²¬iÉ7[@¯dP
#@ ]yP]@llil7l¤]**[alB®P dl[d@llY9Nd,]Ê2
B¯ºli
i ¹d7dlÂ
¢d7d]JÂlB² P*#iy>Y7¤yd d7B* N*JBl¢l
il·iµ ¢ GB² ®²Y¨}¢¸J¢aÅi
Åii]®@@d,Yi'l~l,v]ÂYdBYdll¤WY®7]
#B]¶ÃÁWÔl² k¡²Yl7¢a] l@li[¯Y]]BP *Y[GlB®i[BY7dG£Bddl7s]',
Âl¨}l7¢P¨'lPYliJ@B[]QY7dÄfd@P¤Y,Å®d[ii£~]
@]iN,la7l]\la¹ldl]GB¨~ÃÍ7 Ä[² Z
D[
@
BA C
MJ
JVE¦v
JVERn KX
^
y@
~@
@
Íè
~@
Íè
~@
Íè
Q«Yv
îíïM
«uPpUr
Íè
Íè
F«v
Ôv'p¤
OvYíïM
o«3¤
Üí
ì
Nè
ú²¯b° eh
O
OJ
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ
'
VÅ( )©
Ó¦
1
'P1
P
o/
'P
JYP
]d2ll7Nªdl ¨7
iBd*l
]]Y']lGPÂY YÅiBfYB]>Y
*2B«@¡]lYd Ì ¾~G,]dY9J
2]l7² ¯PÂ@@dd ~ Ì
¡k\7G7² 2à IF × ¶¬Ü ¤ lv7dYd@d,7l*kl] li ~ ¤¶¹®yYdld77J
i7 ,Ã Ä ~ ,Ã ,Ä ¤\ÅiY J]
ФJ]·]~9i¶*dd{
®Â#7®lVi[¤B¤@ª7]l]YÂ~ Pl@ ¢@B[iGBd{ª¤k,¶]¶ddYsÅ
yY¤VGS¨'2²
i¬Ü>k¹y Q*lY7i],JÁÁl J
7*BJdi
@]J]B7ºli
¤¶dd]lS]@dl7² dÏ
B¹d2 P[
@Ál2PVld
ydÉ7l Bª
7Pdl
y,] ÂQBà ,l¢9lÄ\i®¤*JYÅi
G7#Yf]dvYdJl
#]77lGkl]]BDµ²2d² ¬ÜW¶[
¶]BPB, l
id~¯Åi¡lYd7d]¢*
B7~¡
ilfd«WB97d
Ì ]¾~Y]
Y iBWJ®GB]
@>]iB BldlY#P,Gl9¡di
¶¡
W7]>Yl
·ªP@B7 µG}k77B> dBl®i2ill@@Y7ii ¹ lP¡B7Y®·Yk¤9iÃÁ99ilBa®
iyWkfY
7idlB
>¡7lĺ¹,ÃÁ
[9@®*Yk]@]²d ]¯Âid d]NJ]*GÄS¢@Ô² ²Y¢
]Y
Và [ÄªÊ *kµÃÁdl}FÃ Ä Y¡ à M ÄÄ 7Dà [Ä ¥ ¾£¹ ¡[l¢Ál¤¶di
N7G2Bi7[lÅi¢@#
#]Y
i7
d¶l
l>ºBY *GÌ 7kYiBYiµB¡ldÊ ÎÃ ÄJl2ls]Ydd@¤#[i
7dl
]Ã #Ä
7dl
]Ã ¡Ä Á°>®®
Sªldl @
2\¹
d®f¤ÍB\P l,¯[d7]Y] llªdlP2[Áify¤@
]P
B·Bª
*«ÃÁb7d@9 Ì 7¾~s l] YaÌ ºJk
]QlÄ
7Â]Y¢µ
TDÃ #Ä ¥ / d$Y %
7dl
]/ Ã / #Ä ÃÔ©\llid]B 9]Y
¶§®]yYVÄ ¥@l²9²9ÈiJl
9BidNlQkl¢@Yd7
d#l[l¶ BadQ®ÏY
Gl ¤]ÊaÈil,9là ,Y{Ä\¡lÊ dT{à #ÎFÄ Ä¡liQ 3 #k*¤\¢ ÅiY² TDà ¡k#Ä TDà k #Ä TDà #Ä T¸qà k#Ä ²9J
7Bil¤7l·
7dl
#ÁiiSY¤ ÐilB¤PYv
7®y*
ik TDÃ Â #Ä i²9ÂJ
T{Ã #7lÄ[² l id]B}
7dl
JdJ il]Bdll¢B®,¤JÉ77¹ld*llGY,®YG7Ê T¸Ã #]Ä TDà #Ä ®¯ ,à ÆÄ ØLÙ6Ú
Û J]B
¤ad]]B®
7Qdl
¸Á
iiki ST¹Y¤f¤ªÐiV@7Gkd¤lYdÁWlidlÐ ¢
y¶#
iB\ Y,Dlà i,¯Ä[y²¸¬ÜBª¶®Ya
l@Wa@
® ¡k]a]
l]Ydl
>ÁBDi[
dli{B²#dl©\¹BÃÁd[lÁiB{
]BPPdVÄ7
iG7>dll
\l
ºPW7l®lYV¤7¢@l¶D
[]ÅiY
V¯ª7¹l2
® WÁBlPii7Bd~ilBd¤º7Bl
#NJGB
i¹i¾~BGV*B¨7«¶@]Y] Ì Y¾~dY]Y¤¸ [
]llV77² ¢µBi
¹il¤#ÍSfB¡l]Bd]B¸
7dl
]li BÈi7d2*Bk¿]Ç *Vl]G
idÐB2Bl
id~@Åi«Y£@]@Y] Ì ¾~[]]Y>£J
i
i7Bl7
Â'²$iyJV
2i77]B NÁ¤,dd@ÁlVs77y]il]ll ½¯Y
ilYifVÐikYi7² ¼*½
*À FÂÌ Ì
ÂÄ Ì
jÏ
Z
[
+-,/.1023.14
. a ¨
éb75
º
. ° e 9
0P23Ó.1ee
@
Íè
« >@
&@
Vè
è
TX
'?
Môv
Z
[
k@
è
Z
®
G'«
²M
[
G
Ï
Kp
Kp
G8p ÞM
íM
X
J*pA
¥J
Ôí
M
J
KX
D?
ªÑa'·
Ôí
+-,/.1023.14
M
Ív Dí
v
X
u
b^
éb7hg
·/°Ñoa e
0
:9
@
Íè
k Á9y¹ N BiÂlP ¡ldxk à ,Ä[²ª¬Ü ¸T Ãqk#ÄFÄQ\#B @li,ÃÁ¡B
'®Y Â
¹dl
>
®Bi2¤@¹l Y Ķ\WB @l²¯¬Ü ¸T Ãq#k Äo Q
]2
i illYd7dll íÊMí
-í
â
çâ>@
QE¦v
Íè
d]ÐilYYN,ds
W©\l l¤7l 97dl
>J
]l7 Y ] TD à NVÄ T{à VÄ T¸Ã #Ä T{à NVÄ
¬P
l s¡ ildV [M ¤Ãy@M Ä\7ÅiBl{¸Ydl@{]É7¢¶ ]@ Y²iG7kÂY
iÂBÁWW®¤]£ªPV@P@Bd ÐiB]\
iJ[@®7 @¢@Ô² l²d¢@
#ÐiBfBB,7d7P]9¤\
i d@]YNl² ܽ
kÇFÂ
ôÂ8È
@
*À QÂ8Ì Ì
A C
M
Â8Ä Ì
~ÇÂ
JkrG
Júrd
*ÀTÂ
Júr
Kp
GPp p #Yi[lYª#¶Biµ 7к Bi²\ld¾~lQ ÄÌ ¶l dY´ ¸Ã y#
kĶ0lf
iB¶YP
V J
idB9@YYP¤@V \
iB¯7l@77J,lÂi¡k\7JYÂ
#[P®7 ,Ê Ã [Ä7Ã 8Q]Ä[LÃ Q @Ä ³
di 7Yȯ*ll
4l7f BVBy´ ¯Y² \dsd*Åi
Y]]Y[iP,ld],[YPª]]¢¨
ik7¿l
ikf¶lYi Y*Ůà 7d,Ä*¤¶B¹,]lY]¹Ì ¤@]7JNd ¡7l®d\¢¼²
l7²d¢µÃ
i#Ä @7à PYiB\l Ä·¶¤¶
] ¡>7
Áf][d>7Ði7l 0¢@B¤ªi7¤k
Y@7]dWliPddPik>l JB B,i ¤¶® ² J
iJ\l[>lVÐikYdÂY]l] à Ä7à Ä[à CQ Ä @ }7¬Ü 7iº 7 Y¤@]
ÅiGNWNªÍSlG#l
dl
ilid,
i7YPY¤@]
]Y Ã VÄ Ã VÄ Ã 7Ä OO
'
¹
a
.14H4
1
'P1
P
9
'@
é7
í
ÞM
Íè
ïè
«è
Ôß ÞM
7
í
{í
]AM
EHí
I
ÔG-r
r&í
ERí
C
ÞM
C
íáM
G8pß
íáM
Jp#A KpJ
í
MG
D?
Mß
L
'P
íáM
ÔGrd
JúrÎG
230b0
o/
í
í
I
í
C
L ÞM
G8pß
ý
JkE
îí
Nv
M
ý
X
J
pA
ý
ý
îA
tôrJI
trJ
C
trJPL FM
JIQrÎG
Ôí
-í
@
Íè
è
«è
C
J
Ôí
I
tôrÎG
rÎG
C
Ôí
C
-í
«è
G-E
tûE
C
C
ý
C
è
«è
CYp
Ôí
ÞM
í
&8ojM
í
/r
G8pß
/p#8p#
Ôí
J8L¡rG M
tôr
L ÞM
ý
è
trd
Ôí
M
JkrG
ÜíÊM
Júrd
Júr
&íÊM
í
Jp#A KpJ
M A C:
:p
Kp
í
:X
MOG8p
M
~íÊM
G8pß
Ï
¹
230b0
a
.14H4
é7 ©
9
Qè
7
{Jâè
«oè
«oè
C
C
í
ó
ØM
ÔGrd
ÔFr
¥rÎG KX
fí
J*pA M
«3
C pD«3
C
M
J L
úrÎGT
M
/A
Q
C
úrd
C
úr
K
C KX
®
úrÎGTyC Ür
J*pA
úrÎKyC ÞM
GrÎ yCoX
ú
µã ºÙ vç]õ Ù{äAÀ±°?¿ Ú {ÚÍãã ºÙ µØp¿ }Ù³² Oc @³ ddid7¬Ü ]º º @dVdfP@VB9iB,@Y
isd7ld[iÁ lB aiü²y
d i7Íl[,lG\Jll¤
#
]Y
l>d
iB@®Y¤y@¤@µÄS
i¢7Y2*YÁ¯ld@dkd9d@¹V9
iYB> º l]°9l7dsDd¡kBªd¼]¢®ªÃ¼y di77li7Y
i d[9
ili
Â#y¤@Y¤9¹YP®]]\yÁV
iSk>fÐ@®YB¤@V#ÄS² [P®79B ´ à #ÄJ @®k\7GJBdP]¶@ddY ®¢ili,
¤¶kl]ª
Y]PPi² J
f¨l¤]ly\]}]B Y´ \² ]]@V,Wik9
if\]l¨,«lG@]Y Ì ¾£7dµJ
7] d¶¹@][d@dlB ¯¨l]]à ´ Ä ,à ,Ä @>
iBk ,
ià k,¯Ä
¤,9à d,7PÄ\**¹B®ÅiJ¤Yk
´NV]S9Y
7#d,i*BWaÅi
ikY là ,lÄ {² ,à Ä\d9ÅiYl¢}Yi7 y
ik9 - "! ³ i®y
iB ´ Ã #Ä ¥l¢µÔ² ²Y¢}
ikf
]PB#GkYiBº ¡7G º¢ ¡¢{Bi iG
iB CQ ¶
]
PVl@]à ]²LÄÄS¾£²¶¹ÃÍJJ
iB¯7fy>
i
Bk
®kÃ
]Ä·¹d\¤ ydP Y¤B V¢d Bi*Ã ,YPÄid7GV
'¢@Bi
iPB ¶dd®¡¯d[P ² J
Τ9B¶iddDN¶¡ d7@#lki # s²
k¶d¹
iB>
i7#d>*Yd
ik¯Y]][9
7l l®[ B
ik ¸½¯P[Åid¹_ iS YYÁ¢ *J7
id#7PB7dl¢7illii9 ¢yQ\ P7PBs[l¤²>yiÁi¹iSYPi¶GBB® y¤kY$,
® k ²J
¤J¹VBi }à ¡ÄJÊ Ã }Ä7à Ä7à ¯Ä 8S RS CS ¾£ k0i7]sPNlY
yÁlJBG2ÃÁYalP]¶
ik¶PldQBViĶBdl]GB¤9]V² à @Ä7à 7Ä[à CQ7Ä Ã 8S Ä 0Là S CS Ä dJYi
³ iY]PP¹Y]\BsYPP]@¤k?SlDB¸8
S Æ{]PP @Y®@7VY¶YPdd]\
®kJ
dS ² 7G]SG
i[id*i[,BW¡ldW¶
li£N¶d7k 2®Y ¶Y
-
ikkl¶"V!
#ÃÍY¡Blµ][d
idill²\³P¬¤Ä\ª,ddJ9iyP#GPBkd¯l
YdVy Ál7y>JPB¤ GYY y¡
ilY#dYii
ÌlfPGB
dal{ld® B dl7
iil¢
BV®¶¢,ª7
l,B®l ¢iliÂydPY¤BdPÁl li #²·J
i µÃ ¯ÆÄ µÃ ¯Ä à Ä7à Ä7Ã Ä Ã @Ä[à [Ä7à Q]Ä °>d µÃ ¯ÆÄ µÃ ¯Ä à CS S 8S VÄ[à CS CS CS ]Ä #à RS CS 8S ]Ä7à RS CS CS ]Ä #à RS ¯Ä 0Là S RS Ä Ã RS Ä qà S S Ä dÕ¶7P]*¤l[²d B®@ldP
i Bdl]*]B[ÁddldlV\
Ál ¤¹Y2
Ì 1
*
b
f*
P1
8
o/
b/
{
{
¡G-rd
ªó
Ôí
úó
¹
.14H4
a
&@
è
«vY@
9
é7hæ
MjvY@
è
:X
@
230b0
Íè
«Yv@
Íè
è
Ôí
7
yM
y
JúrÎGVMO8Cp6Júrd¥MOTCop6Júr
íÊM
Jp#A
Qí
M
&M|yC
ÔGPpß
kí
r&í
@
Íè
-ví
Mçí
&í
&JkMjß
&GVMsr¡
C P¡MÊr¡ C
&MÊr¡
C
/pPp
ý
J
¯*µ
¸fe.14H4
a
ØM
éb7hé
Jîr
Júr
Júr
MJ
tôr
ÞMt
tär
L
r
YI J
C
E
Júr
C
¬LX
9
tôrG
tôrÎ
E
C
C
I tôr
C X
L
ì
lM
I tôr
L
Ht
M
ß
dt
C
230b0
7
Í¢
t
MO
r¢
~tðMÊ¢
¡
C
Í¢
r¢
Í¢
r¢
ÜM
tôr
6M
¢
M
]t
r¡t
r
tôr C
C
L
r
YIU¢
L
¢
M
r
M
r¡t
C
~
¢
E
C
E
L
t}E
C
¢r
C
E
tr
C
¢
YIU¢
CFE
C
C
¢r
E
C ÞM
L
L
Í¢
I ¢yCE
I t
ERG
L
r¢
r
C
t
E
L
L
L C
C X
E
r
t
3I¢ C
E¦
C
¢r
r
t
C
3I¢
E
KX
¢r
L
r
L
C
M
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ df¹
i 7dY d@¤J
[Ji±f7 d7*BDÇ º½>¤Bld7[id@]VY
ªÅiGNºYVSªldlV ºÃ lÄ7Ã Ä >7d,d]Jª¶
iQyl @ä@i¬S¶¤ ²'¥lJ¢l
iis ¶
7Y*]llG
l[Ã P´ ®Yd]W7Y9
i
s\
YÁdd d]kYllivB Ã ¥VKÄ ¬ Ñ # Â 7¥ J
¤JJl
¹liY*l¤Jl Ball G´ @7
i >² @]fB¯d]N Ã Ál
i N\¡ldfB7 Bi2
VlYd Álii¹®Y>à ĺB}Y@Å®9lG@]]²ºJ
®aª97li7YiJ
iB
¶GB¨  kdyÅi] ¥ Ä Â Ä Á¶l
]¬iÈi7Bll}ª7YÁÂiy®¥l²lliiB[d@¢y¤ªÃ d*@
iÄdª¤7l*>
k[9ia
i¶k
] ĥ>
i B´ Ã
i¡dÄ
iJ2l
¤7Plly²¶Y¬Ü®Y·ik,dlll] ¢¡@#ldWs¯N[l@i¤7NYl¼iÊ,®>SldlWÅili]]¹Yld2kGª
sB]ÁW
¡Pl
]®>¹B9N²#
i¬ÜYª¨Â]l
PVGyl
i¹] ® ]lBii[Á idlYÂl®]B7P¡#l®\P9iB
i®,]#à ,®Äi,à B,lĪiÁl¹ ]8] ¢Ds#ÃÍ@¶2
dBG
¤¶Ì
i@lV 7L7ÄS² s~By]P@dÂ2]B¤[¤kP®i G
k#Y†ilaPBk
l¹²B[J
µ#l
y]
® BlJ
d\
¹7 l®Ádl7Y d9B¤d9l¹iD*BaBà }¹Ä¶¶·
]7lP
dWd]7k]µ¤ ¢Qa@à D}Ķ
@ªd]@>Vl{Bl>
®Qilld]
iBd]Y ´ Ê ,Ã ,Ä Ã ,[Ä M M
iYikW9¤
i9kB9¤9dkP´N][d@l@ i
[9PBºlPÅi7l¤]
¢i¤ly] [l¶G@d
sWÅi*Y
#kd *Balà ~² Ī9Í]S Jk7 ¢®ÃBaià £ÄyĪM dB> l
>>
ii]ÂG7ll¡d
i]Pk\l d®²¸ÃÁ¬Ü
a2Ã ~]lÄaÂ
i7li
¤@]79]Gk dBl¡®kBliQÄS¢BYG aa
à ~] ÄW
i¤Pl
fÂ@YGk][dªl®BJ@@il[ d
7] i$[d¤Jdl²a
#J
>Y]d*[9Bl>@B@ ®´ S¶[lB® y¤NGB·ilÂ{7Pd7ÐPil7\B¤i>GÅ®
P7¤µ
iB¢iªB®VlG$
,[¤¶P¹®Åi]ds7Yª akà ~dyÅiÄ\]d Åi
]#dW[
iik@Y¤d·li
ilBP>lÅiQV´N¹Yl@dGy¹¤@¶
i#YÐPiVl·@fd¤@ldJ Y
]¶>l@¤77dP7iY®Bdls·BBº a
ià ~B>Ä[[² l³ PB¡®lB]G ]Y¢ald PlY7GÁBl¤\¶7B P¡7da]G
ÄS²7W7ilYJJ dYPY·
idÂÃÍ7 ¢ ¢ ,à ,«]Ä [,Yª¡lÃ2,7iBĺ7 lGBa[d@Yy¢Vdi¤[Ylªd ]lB[¹Dy²¸P@Jy
@7¶*l7BlddÂd7É7·Åi¤k
Yd¤l ¸W¤@B³ V®7>d¹
]*³ i]lYYPilf7± Bdl ¤/µº{Ã[¢Q l
ilÄWllP7
ilk
d]la7¶l
PlYli ByÌ @]]P[@]] ² 2¤@±f77]YÁ l,7là ,
Ä ¹,YÃ l¤7ÄlB*¤lG
Vdyifk7Yldi7¸dB@dl@i®][¢ªdª¯l7Ál7i&V¹µ à WÄS ¢l]@BldYdV l
º
k# ÐÌN³ B
ikYÍ]l¶]ld¸G
l ³l7d{P¢7¶iG
s
®k¶
i#î,YÄ Gª ,µ à ,à Ä[¢Ä ¼² l²d¢B
i7@ ]d ¶~lsdÂ7l
S 9]ÐÂ]iB[ ,Ã Ä ,à [Ä / à WGÄ ¶µ à Ä
†#lP
v¸² B³ dÌÃ Ä / Ñ Õ¶Ã bÄ Æ{7ª [ 7l
i#[l®@iSlV¢@Bi/
#dlsYs
iÁiSYiBD]ÐikY{²J
7 ¯Ã à 7¥QÄ % / S = F / # ì`¸ % / S = F / ì # ¸ / / J
] l 7 Y P d Y V # i
k
> ¯¹Ã à ¡7¥QÄ·]Ф\ilYi}7¡¥¹7iÃÁ@Ál]¶JdilyDB®
[ lG¢@
Yl¤[fB S¥¯²·J
i]> Á¯Ã Wdl
]d¥V#WĪ
i¤¤\lJild¹iYdY@ViNy¶dBP¶JÉ7
]
]ÄS\Ál² f9 Gk
i\¤s7yÁ7lV ¢ d¶
¤GG
*lS
d7#QYl¯Yi¤9fBG
i l72l7Vl·¤lJ]#Yl]@9,,dik@l¤7Bdl
,Wli{BG
iBP7[l79VSP]]·¤l7lµYd
i l[l 7>li
P7d]BµNGBddNBD
]G7² ¡¯¯
N#7liY
ÁÁl \llºW\J7Qd l
J#N\Pkl7Jl
iVdyf¡ÃÍl®7 @Yi# ¢,][¢@d*l 7ld²Y7¥ ¤k¤f#
ikd[ = / / áfÃ Ã Ä [ Ñ ì à ,+DÄ = Ñ >Ã Ã Ä où % [ö Ñl= õ ¯f
iÅiiJ
ik % Þ½
kÇFÂÈ*ÅÈÌ ÜÆTÄ RÀoÈ*Å
kÝ
@]p
Ý
@
ª
@úp
Qa'·a
M
ÞM
å°ÔÑ
e Ò
kè
] ° e
C Ôv
2 a'·
#Ý
Ô@]p
ÞM
+
Ý
Ô@]p
ÍvÝ
@]p
Ü^
ì
Ï
V ±
îv
23.
¬m
¡Û~M
G
ú@
@úp
Ï
M
ù % #
Û
C Ív
Ý
ëÍA
õ [ö
¯yd#
f¹@@idlYNWi®]yNPB
óoANM
ÍÛ8p
ÞM
[ + /
ë A
Û
G
I
A
/ S = / # ì`¸ C
X
óAX
dd77lla¼¢Á[ []@sP
iBf*]B
®d7V7klByJ Blfü lYªlvY7lBGd
¹k¯YN#¤l¤@ {]Bl{= d]
Bâ9·ÁdiÄ[i²¿]SlJGY
BisBÁ}Âl]Ð
i,B¤i£dl]Y® Ädl
®
7] VyiG7² Û
ðß
þ
I
x
{
I
p
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ 7@7lP¤PYY¢]VN ¢ll{°>,² iBdl,²Dl¬V2sdlPfd ld¹YY£N¡ll¢¡ldBldlsl Ì @*VB7dªdGdlyPs*B[9
]Â@@N77 7dliPyV7GW]vYdd@d¤[#Ñi[i¨l]7]G²
d2N\BdllY
*]¢·Bi
] ;
®
'& w
»·
¬Ü *¡i7ÁdlP ¹¤d>@]¼*]½ @Vd¼
W( VB¸]ªy]¤²ºµÈi¢ila² ®Y®²Y¢®NÁGlBfi7[l¢B@¶l[GlBid
W¤ky7P¡@]]f¢®7 ÁyB
ik º ¤¶YPG
]ËDG¾¨Îd³ ¹Ì`¿
iÍ B Ï¿µÀ Á = p¥JP º Á9 JÁ
]VÏyakl]YyVDJBl {2Ç {ÃÁPkddlsº
7]ldY*dÉ]BBddNl¯iB\ Bº ¸¢V
@¤{¶¤
@7]f*lkfBd@ 7Â7liP®]s]Yddd9G7l[¤@¤7[®Q[ÄSl² ² ¬2iiv¢¶¶Y
i
BG'@J[lBP>¡ldYG,
{¢iil7i]lGBY¶P[*y¤P#¤Í¯l#GQd]l¢ ¶
®¹Bv¤yB
¨,Yl¹ildYlYNN~² Ä l9 ]ÐW¾¿®d]V
iµ]B² ¢kB¬YGd*> NkJªyB7a@GB* ¡¡]@ 7]i¼ B ̹³fJlÁlË D
ifk¶G
º ]¤>G
¤
i¤QDil¡¹d[P®VSV¡iNldY*¢¸k¤lW>ª7Qd@dY¶l@Ç d
®*Jkf7
]
ll¹]7¯ k l¶]¡
>7¤Å®Gf
BlPd¡lÅilV d7¤B¯]¢{d]f¶yB
di¤*G
£kQ7P@lddÁ*lGk¯]l
YY VZPÐÃ ®Bº ·ÄS² 2
W®]Wl9®YWl
l´N][dl,dYil¢¶Y
lv7 ]
ikPd ¶
] º ¤¶W idPà l¢@
7×s¯¬Ü
i idº B¡#7]¶YdBd@a¡¤ld7Gª·k,lÃL]yªµÁ
iÄJ·kÅi]¤dy| Åi]yª ÁJl º 7d7P]G7¢ ,qà yªÁÄ Ã º ¥VDÄ º ¡
iJl
\d
P\lÁN
yGB[dl
lfÁl¶\Yl
s]llG
YQ®l²·Æ{7
YiY vÌ [Åiil> G@ di,kqà lyª² Á³ ÄPd*¡f7l
iB *º
i¤ª2@{ ¢B¡i7 B ¥ ]¥ õºö ¡7
i YiiBi Bs¸Æ{¤ 7i¢}7i¥l¢l# # 7¡[lÔ²JYJ#
i7¹¶
i
[
7 ¡7¯B¡ld¶G9¤\ Âl
Ì 7ÐilB l¶¢YÉ77
iÅi¢Gly ¹É7]PÐil²J
®\
W®]¶Ba®YJ¶Y
sÅiGy>[lG@dik¯VЮB} ¤ ¥ õ º ö ³ i¹Pd*kl]\lY ÃÍB®7P] ¡7YW
iÁ ®Y>k¶d@ÅiYNÄJldlV = Là y Á Ä ¥ º ö õ º Á¬Ü,®[Sd¬N]fdllÂd
id¶f
lͨlyNV lli YPyY. Ykr ZP\Ïà º kÈÄWBd#vy*d[¶lP¡Yl iº @i@s ]¤sf
dÍ*ly]P¢{Â[i@¢i ¶yÁ
iBl7J¤BdPl¹ ]i º yº ®Y²B a dZP7à º [ÄPi@[7¤klYV*Y 7*Yk¡ l]²i7JVy
i]¤2B®JNÁGd2BiiB[ldls Å@BJ]{Qsv
i¯lvdlТ¡iy¹JBd7
iÁ#Bd
D
²º@¤¬
] º d d- d7¹" 7! ¢£¾£liy¯iGl¹
s9
idYk¹ 7,Íl,S5l]ÐZÎiB¶l
d l]~*ÂP¶ª@@
¡7d Á$lº à Áº ¨ ìl,i@¢W¥VYÄ\yiYJi@Gl
sYs
i
$B# B[Ã µl
¯Ä VlÐo\i7 kZ¹Yº ² {\¢7l Ä*BdYVN i dPPÍlSl#l º ²sJ
i,l@Y dl® PY º { Æ 7 ® *
' Í Ã ¨ k ¶ ®  @diBY£]]¢º
¹,@B@dliY Y
¢ 7l¹]k7Bd#d£¡[ldPW@l B,dliÃqy dÄ ,
ikLÃ ¹y ¬ BÄfY~l
i,]vy]li]y[¹@
idk Â
*[
Ì
ik Yªl\¡¹7G
®kQYlWll£2Â l
iikflll¡Dl²fdJV
¢D¹QliWY£l
il@P¬ Yli7Biº7l7®*¯B7¨
iYkifBdfV >]]Ê @\VÊ2
¶]
iW7d
,d¹[P¹@d¡ldil7f#2lG
*]Gd¨d]l,7G
i]¢Dk\,
i7PBv7@lG7@VY®S k¶V9
7
iQ
]W#iY sd7|lZ4PPPl@'@@dd'dll£V¢{iB®¨ ks¶d 7¤kJY
79d*¡lddP f Ê º ²9üÏJ
i¤lJad¶
i97]]ls¡7YN#y]
i kP¶
7]s\df,VNÃqy¶
iÄS¢k @ eo7 Z¹²LiÄ ²J
d ¬ P]li\
®k1 ,LÃ y ¬ Ä\d¶Y¤ydd ²·J
7[Á à  ¹ì ¥VÄ Â Â 0¥ \ ,qà y ¬ bÄ $à º ¨ì ¥VÄ J\
d ]\@
®]JB ]*º ¶²·JY
i  º º ¹ì ¢B²iJ
iº dy9*ldYPd]y ¶l¶d[P¤BdPÍl][µ² l>B º d¶]
7>]ÐiB{ º ¢ Â T
*
b
8
P
u
P
8T
8
b
&íêâ>@
&x
of
í
M
îxbí
M
ÊÏ
¡@
Z
ªx
Qxbí
Z
m
&
Mß
»xbí
M
Z
u
[
1[
&í
+-,/.1023.14
230b0
íÊM
[
9
*7hg
Q@
7
¡x
&xbí
M
¬[
I S
/x
@
úí
Z
E
x«
#í
M
d@
H@
J
A
i
i
ku
Fí
ØMOx
í
&x
Qí
Mß
í
ú@
í
M
MOß
@
I
C
E
M
C
I
ERv
E
I S
@
E
C X
C
M
% '» N+ ( Gh
³Ãͼi² l²d®¢ª¤¹y¯B
®k ~'¤¶YP ¤B¡klª][]²LPÄ ®¯yYf[Y¤7 l]B\y
i]PBJ@¤*¶@£dÅidiYi Yf£YkPJsYVlÍly[JNlªP¹l 0YP] B¤BlºYd@YdP¤ydlG'lSd]BiÔ¢®77Y]®[y dl]
Yd>dlVÐ79Yd]>]ll¶7*G]B²9¬Üs vl¤¯ZPBà f¨Bì dºÄ¶dl@ddY
i¤f]²Jd¯ÈiYld9¨l]YW®]® lª7d7kBi7PYP@@7£7@ll
üQ¢ YGį
d#@7]¯\lid~VÐYl¢ ܽ
È
'Æ *À1Ä Å
¡x
Ï
x
x
x
*mßoß
I
C
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ id]¹yVlJk¹GĪ¨
k ¶¡7ll\d¤BdiPYBiºY
i[ ¹i@dl7]G]¢@lP² l9YPf
®B
®l\7¤Bi]ydi7¹Ã¼[] J
¤ ¶ ¤ ¶ B s [ @ ® 7 d l } d ¹ # l Y l
4 Y ® [ f
i Y ¹ Y P |ZPà ¨ì Ä\dJ7¡ Ì ]«2¤Bµld~B
d lldY
@*>¯YÉ]
i QlZP¹ÃÁd®l] 7DÄl¸l¡
]d2Á7l7 Íl[²dsY]l]]²¹°>
lil
k
PdlP
i ]dW@2 ByddlÉ7¢¡Yl
P ¹d y¨ Ì k7¶¡li¶7
¤B*ºBidlldY
*dP9l#¤ ¨¡lk¶iD²¯]v¸@]Â[®d®YWl¹W¤BB
],l§a¢liddll¹ ]Yº P
¥* P·[dd
iY@{d ¢D©ª¶
¤Gl
vf«yi[][
]@] ,¹ÃÍBY¸ÆD7]iyyGiBÃdWd¹ÄS¢@QÄYJY¤ \i
i[lÁ ¡¹¡]]7[¤lBY l¡³ 7Nil®² y
iBW\BPY22ÍSlWlvY7l] ¢B®vlyP*
ikW
]d £id@P@iS@*dl¤l@ ¤yº diBSJ,
d¹V *¡d]7 ¹
il
i BWl
id ]
il7D l¡²7Nü2Èl,
ik
º 0i¥*¡ÍS]Pl >Y
id dP][77dlG¢ ]PBYi~¡s
ikl¨l7iG
¿£®slYPsP7Yd¤dyY]{²¿² ÄÎ¬Ü ¾£s¤,l{Ç ¹¨Ydk d2¶B
® kº º ¤¥7¢li@ *Bd GlBifY®lGΨ¢@
d]> Wi6 ~®¥>]dJ\Í#lSWl¶lYi Yf² B º ¢li*]{à 6 £¥ DĤª@dddY¯ º Bi{¢YD\ ¯J°Jl
¤¶P d]@¡li7d¶Jl¤i¶\llPd,2d*ªP¡
i
k¶Á lYJddÌ
®k¶lPJY B¹iG
B#dPiY@ºfB@PddµYÉ]Bd]¸lGJº @y7®d]PG@
, @
®lYk² ¤yº Jl¥¯¤fF k ¶ÌPPyal
{²² Ã º ¥ lYl
,Ä ÆD[ n d²J©ª
y *GBil d77 '¹@ Ì d ~li
]Â7lP@ ]µÃ 6 ¥ DÄ[² J
#G
il¤i[ S¶BB ºf¤
i9 PYYdyPY] J¹d]\#
illi.
d y¤¢@7lB¶V77d Gl[¤[ il#7l¤ÂG
9*® ¤[2Ãy¥ 6Ä dkBd]Â@]l¹¶¤£9lYi7VlldB
*Ã ÁG
i9B®
[ ,7l
iikB iº Yd$YV¥¶@Bdad
@ V [QP² J@
ds,il*l¹G
7Yi]7p *
i7BB> ¶®dY ¡ i±f]i]Ä[k² ]y7lPPl@d¤lGf]B~®,7lP@]~ ,[d7d2 i[dd{Ç lYl
² «]B 9®~[lPdYil]dl¢B
,[[d7lPdl÷² k@¯YBP*7Bdµl¢J
\>'¤BNGlB¶,d¶77
0Jdli V][®VVkB]@ld¢ Bi]B¤[6 ¤£k¥ ¡Gkkª
]7 W6 PB@d¶ B¯²
Â@¡dl7]7G¤¹kd P@@²d °>i ]ªB ¡@'lD[Ç ,¹li[@ilVY d ,7l[Pd7@d 6
@ @Y®[BV@v¹¯7dP
@Yµ¤[¢ Y>d¶
d
G
lG®B¨ly]V*kkk*YPy
i ka dl®Ã [Ĺ iYd¤7kYi]¢ª
][iY ì ø Ãc ¸Ã à ø ø = Ä Ä YY ¤¤JJ7@7µ ² l
i7 °9¶dl¤ª
dYld¨li
i7d d¹i¡²¹~Pª¥¤9P¨}l²º®¬dYPV¹N]¯7·Í
ld@yPP7#Vl¢lµÍÔG² Sl
i²dl¢l¤>[
iJBk®Áªl
Y9BY¯¤lBiidÍYl[#Âldd¹
By]Pº @ÁºÁ¯li
d¡7GV¸Ð®l®BDii¨diPk¶]]¹¢®G
iWlÐiS7@VG²kÃÍÈi¤#laY]l# ¡>7Ga¨W®k]¶>#Åi]fd~¡JydB7®#
¶JdÁYº® ¡7¬ÆD©ª[
y?#* Gà d\B² ®©\@«'l Ä 7dYd@¤ 7l P@@d ¢®li*¡ld 9Ê \Ê * ²>P©ª@¹@id@ ² Ê vÊ $lis[lP ]µÃ DÄ[² Pd°¯i [@¤Y77®_B@dd]lks]]BBva2¶B¡¡
iPkkl¶Ql¤¢¶d¹]®'¤ lifddiYfBidds~[Á7Gi
¼² y7J]£
i¶¹d*Gl
G
d7dYdlV
7² d4@¥ }77#PJQYl]¢ºfBi£7
s,illil
Ì *°9J
¤B#diµ¢kY\N@]l7 ]*]]B¢y@¨>di7J7
f¶\d dY{BiYB,dd] l
i7kJ ¤º
i]yÍ lfSdfl{[ÇY¯ÉV¹kWiYÅi@7¤\µB¢i >Pdi¶
i]7B[l]9PVYÇd9[· ]BY>Y7¨YdVBkdd¶¶]k¶{²
iYB ¤
iQP,]B¡7 7 2@[GÅ®
]Yiksl7l ~Åi]7Y¤dY]²¤*¬lkªW]l7VYP¢µd~¢l
i,,BY{¡k
ld¹\il@Y[¯]¹P
@d#dld,{ÍÇ Bdd]]¢lY
d2]]Yª]@ÍlVYµ¤JÊ [\PiN7lP®S@dl] Y¹d
¹Bµl7®Y{ylWY
iBi¯²
P7]>i@@i7]B~[@dd7YPWÍl[llO[v¢µ¶
¤G
'Jl¯l P
@9@d¬Ü dº 7º dkJBBWº
¨¥ lkP¶¯,7º ldº 7d¹£¤k¥ @dld®d·ldº ªB,l iÃÆÂP Y}
º Y7ªªÄS¤²··
JP
7fllld7G
*@d7]Bld li,ª
¹ÃLdy Á#,Ä¡dÆà ¯\ B@dYÄd]llV@]Bi 7d °¯
W7 d 4
¶Y§ad·ld¡dl*
*Bdl¤ @l]Y
N£B\is'7 l
i,¤d¡N#Â7[GBYiB@diPlB dY£4¶diYdG·¨¡,B@®Y¤yBddJd*YPº] ² @ddY ~¹dl
¶
iQ9
id¶i®]yN¢ds¶
dG
Â7y¯
iÅiiBµ7¶Yd{¡fVÐiB} ² T
*
b
8
P
P
8T
8
b
of
f
F«
@
-Ï
QE
Þx
Þx
x
ª;
x
y;
xdM
×
eÐ802 ° å ,4
Ô;
*7
¡M
7
ç\
v
-@
úx
Q7l]WY¸@¥]l¦ ldf¡l7Gai7]¢i]y@'@VyÂ]P[¹
iGÁlQ
ill¯7l
¹G
ifPBÁ]YdYkil¶lY]if]#7d£Ál7·
ÂP¹²a]Á¬Ü@ºl°9ld]¤a[¢D d*B
i7
~s9»\Bl]l7¨liiV77¶¿B2µ
i¡k
iJByd
iP7d Þ½d¾kÀ ÞËÆ 13ß
*ÀTÈbË¥Ç
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ ¶Y ]
7]7 °9¨dd77 #\l¢N]¤7,lYd7P®YsP
P¯VÁlB Bº
Á\70lª¤l]¨l¢l
J7 >ydlYYW[BD iG7B¢@i7sB7²®Æ¸[k]] ¢ ÷ ,à ~Ä i¤Bdd7B¿V²a]¾¿i[
7@»\dll sÁiVi[S]YY] *
P]i@l@lif7
'[ªd
]¤y[i
ifÁdl.l]
>~Ái¨li]S Yli9
@V[@J
¤Bd7JÁl4
#7Y
i7[ 52Ã ~Ä J7
¤@l7iy7G]BÂ>¢lG
i7sP~]Ydd]\¨k¶
lsl¡7NPP
i¹B7r 2d à à ÃÁ£ÄdQ~BÄ Ì ¨7Pl¢¶² ]77¨l]Ä iBPl7 ¯ dyF7¹/ lÍkB
'lP]l\ii
[BÅiB ]Pdisi¶dPBYddY
sfsN
\7 ¹]]Y]7P Ì7VdÂP]lP²·9iJil
7s Nd~d¶
i]¢idGÔ
v² l²d7¢®]yY ]¹]Bi9 la
iWQllW][
Ã Ä 2à @Ä ¤l9ºl
iW@Yi WÌ 7l]YdS] lG\lY9 Ì yFY/ P¢#¶®
l¤Gµ
² ¤J9]]B ddÉ7]
PYlÂ[PY2@l]¡¶7
iGkBGY@JBd·¯´Ni\Nf
f
iW
i ®]NB¶d¤l [[¯di>Y] BÌ l¹ Áll ¡7iGdkBY>{f²
7]
ikª7
iB ¤·GB®@l
]P
¤ª@N7 ¤]aB{Ç a]]B@¨kil7\Yl ll
d
¯dll¢Q®
i@9 d]fyddi7ª
iBB¹BB¹]YQGlBV¯¤Bd®]a7¶
Yldl]VD77@dGª ¯
JlP 7Y
i°97i[B
i 7\ÍBºP
l ®J¨7[,B¤Pd¯l¸P yPP ² [¤¯7@@N7 d\
½¯B ·i7@Y ¶³
G
7B¤iGW
iB¤¶ GdBd¡~Ãͽ¡ }7³llÄSY ¢kd]d,i@@
]@®J°>[Q]@s klÂi>[lV]V B¤·Gl¸[®l [li
¢Q,¶d½ l
¤G
¹³³
i[Bl®a@¯BG¨l27y@#ÃÍy° d]É7 \³ ÄB¶ Y
i9k
Js¶YY]d²·7µ ¡©ªfy@G
y7]ys]Y ¢ l¹¬¨lY] JdÂY]W®B¯
{B² {*Bill Ì l7Y*@YÉ]ly¢¸l]² i²d¢{]Сd,V9W iG
vÌ y
Y9y¨l]7fd2
®Bl£G@N]Jd],B7·@PG
®VBBf]]P²PVÈilB#]di]y¢iylPi[
ik¢{>
i,
#½ ¨7³ ¤@ ¤yB¡Yl@ dÂlÂBWa®¨l]d9dYlsii
i² #·VlB]µ'\¶lYd
£s¤¶
idl#]
@y7*¨l]Bl®¢µ@Yi
i*²ªÈill¶d]7l 7,lªi*lYB>®BBal7dYd
]
i
]kJfÁ7VVÐi7¹[dl² G
iBil9P]BlV
7¯
®l¹® ¨7¢li,Y\¤\i@7ª¹¡ik l
iDQfJ
,d¤¤>Ì
i¨¨lB77,Ì 7PY@lÁi@B*l7BPld7l
s>l®²¸i7JYÁl
i
¯ *Á[iBiG#
iBB\Pil]9dG¹BVµPk¤@Pd]ÂVWB¤PB7
ildY²k9¬VlY¤ÂG[@ ]Bsª®Á
>W»\°9ldd¤[@P@iYSy]Yli] l¹PVWlB¯#ls»\liDY¤¢{ Bid¸
l
ik¹ ¡
W¨
®Ä>ll¯i2Âi@s¹d¯fsÂdy]i¨'~P»\]{lÇ fll² iJY
¤¹Vy¨l ] XyÉPÊ P6 ÃÁ[d Ì 7d ~@7@y]*@N\l7i*s¹BfVyd][¹iklNGyBd¶VilfY]i¹k\¨7Q*@7l² iB7P7Pdyi]W
il¿yPP[¤ ¶
¤GJ
#
P]iN9[Íl@Pdlli9ÁiiG[
2dlGÂ
7d P ¤¶
Õ¶dlVN Ì@d7*BÂ[@y@y]4d ,Ã #Ä P ¶
@]@iJ[»\\ll{DÇ Nº\Wld¤ª¨
7d#¹7VlÐiiBdyµºld¹®fViĪBBd¶®Ã l¹Skĸ[[@¡ily¤y]dF¯Sl²¡Jl
d@V7[7 'dlà ,
iÁki·i¤S¸Y
¤A 2Ã Ä P@ *ÁlGBd i²º¬Üdº]yff7lP@
\]77º¨7 ¨k¶d S cJO
'
Z
1
'P1
P
o/
'P
D[-=
í
í
MO@
Ú
p=
j@
Ú
íÊM
Ú
Ú
p=
Z
:X
[
@
í¥p=
Z
'[
J*pA M
J*pA FMOJEHA
Ï
Kp=
Mí Ní
=
C
@
Z
Z
[O^
C
[
Ï
b=
oì
Mí{Ek=
Ú
Üí
Ú
&=
Ú
Mí
E
Ú
V;
dÏl d@iÁlY¤*¶kB®YP 7Ì i
¹77´N¤ Yy]d i¨ Ykf¶¤dÄ[ ²f°>lYP¤[9PyBV®[2[·»\dl@2Ál
i*Qk YÂ [P
iki¤7 B]#Ql]Vd]Y®d] ¨k99]]² ¤9PJQ,,@*V¢®B9YVly9i@]¯BidBlyP@Yi]²ª°$Åii [@[d¤
@*llY lV B®li@2@Yd77 d'],BPlY_
ik£7#Yl^ Yr F~ ~ dB¹d ,VB7¨² Yk¶7l]fi
Y]¤[Xdl~D²v Èil¡P [l¤7
d*7i]7Y]lP¢a\7#¶BF ¥l²¶l°>ºY¤*[fBG
Yiü½>@]· * l¸ iÌ 9
dk7 kddlP>G@l¨l77ª| Ò|~47 Î ·
iBºk@ªG
®d\ B GfBi°>d@Y #l Ä[² d
,7Ä 7>ÃÍl
iY¹B}
i>lG@] i@²¶²¶²¶»\°>»\llY¤ÂÂ[#G7
7iiia]]~ J~D* **Y*P,d°9»ªdld¤J[{l² ² dkk ¨l7D ~ ² @²¶°>Y¤[#7lP@] ?~£Là ~ @Ä 9 Bi»\lÂ[¹i@V ~ Là ~DÄ 9 P² °\
iªk¶
¾¿Yf>
i7dBJi ,dd7¨lB@7µ[d*dd
iWf*ll®Yl#l@V,
[Îy
iY¡¶lBÁl¤
29l°9\dW¤[V®¯QyllVi\,@J»\l
il¤®]Py
iYl*
9 l@
G7fB7d ¨l]
d9¡*YB@iÁ*\*dYd9B2¶dÐldY µ]lydl{ ¢ ]YB®s[® lY77@[]dd7*],di *lBJ
s@ ¡l]¹]*9\Q7@ ]l¢l*i¤yP
¤lJi
¤iB9² l9@kJ\*7l¡]#]¢º[[@i[7dd¤l*¼² ll® Jl Q ¢¬Ülb}º ¢YBi¤7fd l]~d
* lPiÄ @'Y£ P9l¢Q¤Jl
]7X¹y, ¤PiBWB]il~
7d[7@Pi][7d7ddG] ·BÂlBd7l¹ª7
®Yk
ia]Á7P$VÅi2i
3 dJ'¨~£
² k*¶id]@iB laY¢Q¯Ál] l]yd
PJªx¥ ldÄd
7].N¸
®¢k B º i¢BµG
¢k
iY7* ¿·Y¤·{
d¶
i\PB @@Yd7diYºVddB]afk®
id¶lkªilYd·Pl¤Vĺ]BÃyi º 7ªd7ÅiÄ PMi7 ÃͶWG
7µBªYºJ7¤dº[]iYy77 ]º Ì ¢ }¢®li3 ø P@ º ² ³ ldYi*
¤9iY] ¤>]BdYVs
P@@Èd 9º ² ¡7G¶l7@ll
¤fdÉ7
i7 B *¨k¶BdlY
*J,yYld7
@@¤ ,[[[Y*N¿dlB B
£
iidY[] ['P@dl@ld2Y
i YPiV#dY] VPllilYdPº lyP]7l*#B J®YPll²J
Y T
*
b
8
P
P
8T
8
/x
b
of
¬\
¦ó
Nx
?
Z
O= ?
V^
][
^
î=
¬ßßoß
?
^
V=
^
dâ
×
eÐ802 ° å ,4
*7h©
?
^
î;
7
v
m
u
¡=
M
Qâ
¡=
M
Qâ
V=
?
b\
>^
®
F«3x
/ß
x
RJ
Vx
»J
¦x
-;
Ï
Q«
J
]Õ
Ó
?
°Ô³Ñ 2. å .eÔ0PÐ
a 2 ° å ,4
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ VyÐBiY kBBda7
9W*ly9
i ¤¶
ilkfd7 i B¡a7ÍG¶SBN¢}dQ*d¢ 7*7@G¶dlBY>
WddÉ7Â#¡l# º ]¢¡lyiiB*d
W]7[¢®]B d]NJJÁ
lÂ9WBdÁ7]Ϲ]]B@G7]¹² ¶dY¶l¤[
iBP£VB¨£
i½¯ P Ì >7dY*l Ò] ·G
iB l]BYdYlVs
.*©ªYlPlSi@GBkdddl®y B,¸½¯7] PÌ >y7dYY*l2
£lÁYdd7k¶ʶYi±fYª7V'B¨*7iY ]ÂB¢¯i2l7Pd7[PY7P] }¢ ~D}¢B®d ~ 'ÃÁ¶
]x ~ liD ~ l¨k¶sd77GÄ[¢Åii3 ~d~ ¡² ¨lk¶¬Ü
P{ ²sdP¬\Á l]*BW¨ Ì7
i9#s7d@7dPG¤yl[dl¿[£BJlY
d7lÂY¢\
li@Y,] l
i'
iY][# lk7YGl]V¹2¤B*2l®B Ì dP7®yGlB
YdPl¢}l
7¨>7¶¤
7[B
77f@Yfl¤f®l
¡YiÊ}Y
>½¯]d7yddYl¹i½¯d
2 Pd~Ì >B7dÂY*il[*ÁºJQds7¡[¶N\
¤7G]
{ ¢ dd·]JddYB@ºd
i[Áll V¶
ê~d] ¹~ Y ¨@~3@i~ 7]@sÄJYli[li@llGPB
d,d]J9 B@9a]ll¸liÒ7YdY7PÉW]BiGÂ7² Ó¯d[l k« P¢{d7d¯dY£]Åis
ÃÍYY*iP½¯7Åi¡]*d7i ]Ì@¢{>]7
dY*d*@PÄ[B²vvy°9l#YYN
llYl
v
ÂÁ¢}l
7Â\Âl®,B',B¤*BBdl¤7Pk[@Y\[Q'dd@P¤~s7GBi¨lY¹'¹
l*7dY[d
i@@*[d¤ldsPl[~lVB ¡ld¾¿
,'Ã
Ä\lB¤'Bs
7*dYd@]YddY 7¤*[kll¹7l¶]WÅiY2YB\Å®7
i¤ Pµ½¯² P Ì >7dY*l£il@[º¡PPl ]7°9¯l
®ik¹¶]
i ·ll®Y@Yiªl[}l7@GYlG,B\
idJy7l
*iiBdd#ÍBdÍlª
l·Bµ*k
7*B¤7B »\@·BN¢B>Y®7[l\PP¤l¸¨l7¶77lP]7ld@#l@i *77kkYºY¯i7i²ºkJ
ª9]][YdiYYN¤9Á[llB¶lYG7l[Gf¤7
iBla[
@¶Á]y7@dYy ]sB ² ¶f
ik¤JlGl]¨#2f¡lQ¶]µdB¢ld¶d*7
¨]7iG] k9_¥ Ĥ
\98
yk ¿iº [PB®[¶PB
¡¤@¯
¶@YXdlk* il²º,D¾¿ÃLNy YÁ®
ĺS¤Ã·i y ,º *ÃÍl7Ä Y² Mi]²d¢
id ¯
iW] Y]iY¹É]¨ ] B
i~kªlBilY Y³ ]Wl]lYP®l,{Í
SVyl YlÉVkfdill¡Ä#]Bddlks Bk ldYl®i@W[k]Bl¤G[¨@ dil #v¤@
]sW
idk[¶[ldlVdªlllYYl
i
*l¶i
iY]s ² 7llfP¨d[k@¶NWÁd¶y7dPdYdY@¤Bd 7
iB]]²Bµd77ÍSlYÉVkdlPBdlY
iP BWyiG
*lYl
* ¡Bd¹7¬ÜVi9¤
Bd
i¤YºBlB#[Py]7i*da@>d]ai[lyVd2s][dP] ¢Q®7à d dyY@GºBdiJ7Ä 7M ¢{Y¿li\i'½¯y PSdd¤[Ì >l¢¶d7ldy Yd*iV[Ðl~WYykilGyY]
¿]* @ºN]][7Bi*WY*iNlyPJ²#YJP
l¤fYd®7d ] ¡@9]]@]V@sd]YiP¤@ QlP¢ªl
iy9]]sBGi dW[¶
]]* B¨i¹l7Pf7¤¶7dk>¹[GkG7GP
dÂ
2² yiyÍ[ÂB £ldY ¶Yk
¿¶d7 Åi7i]d{dl²aÈil[¶Á7W7®d[[]*fB{G
l¯[7¤7l7>BJiB ¸
f7G7l¤S7ld]9Bª}y¤@¨@fGÄSB¢J{l
¿fÅi[7l¤i'd¿ÃÁ7ll[i
7Y *³ GB
iJ,7
di7fVdÇ ®f[l]]l]¢@Pdi d[ld}iY@Pd¡ ²lJB
®*[>i² l,¸[l\]@YdYlG¤B,[
¹l¶VYd}Yl7d,[@ldli9
¹dl#k ]¢[lYi¡,]£Y¶dd 7l¡7]Y\id Â7¹lViB]dSYÉ]9Y
ik¶VY¢@
*7ik@ ¢*By]**Pl
i>B¡7½¯Yd¯
i
ilQ>Yi l]®ÐBikdPY
i]]l² *lD7ddY@d cJt
'
1
'P1
P
o/
'P
mßoß
?
^
Î;
D?
?
^
?
^
?
8p
^
p
;
?
¡@
^
ÍÕ
>Õ
?
^
?
N@
'?
ªíRE
Q«
¥J
OJ
ÜJ
Z
[
ì
?
Q«
Z
[
²¯bÑ ,
{ ]¯/¯
^
t9Ët » ³³ »\ »\ »JÒ L©\l L©ª L©ªi¥ L©ª ½>VÕ ±fl ½¯l ½>¤ È >l
»\@ldl,¨l«'l¢lk¬S²Y¢
i³7*7klid]B¼ ¢³±¹²d7¢Yl7iN¹ ÆD³ ]*[B]r¢)@#@9²dl¢Ï ϳϿ ¼7µqY¿VÐr7¢Ñl¾Ì`¼ÁJ² Ë ½ ¿²:¢©\ÑAÌ`BÀ W¼ µ¤³ Òd@Ì (¡¼.aÓ 9À ¢ÆDdll] ÌÌ y©¯YN² »\§7VdÔ¢ ]¢i©\»fB²LW©ª¤@µl¢ ¢ >ÒPÈ\²¢{½¯¥V¤¦lB¦P¦l² i li Õ#² ºQY]¢ ¯
P@@ Ì dlYN , lí í ]í YdY¤ [lV.k7 Â Ê ¾¿d¤ Ì l@¤ 7@7G[¤yV7¢.]Y]¢ »\ ÃN]¥V¹¦ i7ÄV¢®i°9¥ ®Ì @®¥ ] ¢ ÔÖÕ ¿L³ ¼.Ó.( ²µ¿²"Ëh×UÀ ½ µÆËÍ ¢®¬u¤BØ®P²®©ªiµk¢9]È\¶²Y¢¯liB i ³ ² ̬ ¿Ðâ·Ò)lË6³¨ ÍÌ 9˵]Ì`dÀ ¢¯7d±f®]®@¢µi¥]B¦ '¸² [YÏ«2k
7*kd]7¢ cke Ï
è
åUå c
,
9
aDå ,F7,
74
¤on u
m
u
a 2Ù a 23ÓF7.1Ó
µ
m
2 åa Òbe0P2
¬
o;
Y^
¤on
U;
Ív
T
Tv
d^
vYßoßß
D^
vßßoß
Uuom 1m
mYu
n
TYm
^
Z
][
1
^
O
1vYno
º e q WBÎ
&Ë Ì\Í
d
m
Z
N[
o
n
¤
^
Pv
^
ßYu
To
tBj
9Òii Ò l« Òl ÆDi¥ ÆDÆD¨ Æ{] Æ{ «7 «d
««Ô ¥ ««dl « ¯l Õ¶l
³ G
³ S ³³ l ¥ ³ ³ ³
i
^
¤1
vYnoß
nTYm
n
m
¤
T
ß
Uu1vYm
åUå c
,
åUå c
,
9
7 4
° e ·
.870P23Ð
9
7 ¬4
° e ·
.870P2Ð
aDå ,
4
aDå ,
4
o¤
¤
¬vo
Uu1vYm
TYn
o
Ï
on
Z
][
T
on
'uou
o¤o
1uo¤om Tu Yu
TYm
é
m
5'©
Uu
o¤T FnYu
5'gæ
¬v
o¤ov QvT
w
8^
¤1
13n
'P
¤u
o/
ߤ
¤o
²Ï
'P1
P
ov
v
1
^
Tv
õ iõiÝ ¡Ù·Û Ú DÚÍã ã ºÙ µØlÛ ºãºõ 9ÒiiB7iP{¢BY°9d7V¢
i½¯llY¾¢UÏ ²YÏ¢HÏ¿Ï ¼ µq¿ÐA¼ ѾÌ`ÁJË ½S¢ ³ ½G¢B§ddi77J[Ó7d9lii¢Y@>77GyãYN â·l§·¨¡]¢µ7¥V¢Q¦ §·Y®[[l{¢ ¥]Ò ¦k¦ Él¢b@9¤G
l¤l]¢B® «2ÏÏl¿ É7µ¿VÐ7¢Ñ»J¾BÌ`ÁJË l¢ðÔ Ó °9@#² Øi®²dB¢{¤¥V¦ lD«2² k
7*kd] ³ i@d]]¢}¥ i²§dÌ`i¿[µ 7Íp˵¿9ÐÍpdl³7ã â·l¨¡¢µ¥V¦ Æ"Dy¨k( ¢ª«d¼ G
®B7ÔÏ¢OÏä¿ Ô µ²¿Ð¢i( «2ìñÏ Ò)¾k³J²Ì`Ð
{¿µµ ²¡¿LÓ ³J©ªÍ ² ¹" ³JDÌS² ò[,²´ Î,Ãy¿²¥]¦Ò (lÄ Í7¿²*¿Ì Í ( ϲ ó9ËD¿LËÌ ½ µÌ (½¡½ Ë åD¾ ( µ¿L³J² Æ{«2³J]ÌkiN
{²8² iË¢ ÏÏ>¿ 7µÃyi¿¥]Ц Ðad¾¨BÌ`Ä ÁJ¾Ë ²dñ¢¦ Ì ØlV²d¢ ì ( еƳÌ`¿²HÒA¿²,µÆËôÒ)ËÌ ½&õ ¿µ Ó ËÏÏä¿ ¼ µ¿ÐwÐa¾Ì`ÁJË ½G¢µ°>iB¤¯B Æ{«2k]
7É7*dBÔ¢i¤½>7]d¢i¦®²U¢ °>Ô ¹²]¿²¤Á7¿lµ s( µ«'¿L³J²8kµÆ
i³ 7*( Ì`k¿µ Ód]ÍpB ˵³ ¿@ÐS[Òd[ËlN³Í¢i˧·µqÌ`kÀ ¢}d±f7i@7li¢BÕ¶ ¬S¢{³ ¥]®¦¦@iYV² ¶d «@77Pi¤7 É7V§·7¢}i°9Y¤YyÁ
i]74G7Ø®¢µ²d¥V¢ñ¦lÏ ¦ ÏÏä¿ ¼ µ¿ÐîѾÌ`ÁË Û ¾ÜÏ¿Ð&ö ËDÀ4ÑAÌ`À ¼ µÆ³ ½ À ½ µ¤ËÍ ½S²µÒY\7>°¯7 Ì «¥]¦d¦ v
B÷ ¢@dY¦ VÌ7¥l{¥ ¢ai§·¢d ]³ i¢ YÑiÀMlÐ7϶³Jµ¤ÆD³J]ÍhSÀ Û_Ì`¿@9Í B( Ïä]¿JµqÀ d'Û ©ªÌ¹³,lÁP¿²HÒ9@ø 7 é ³ 7Ë¡YÐ6]Ëi²[µ Õ }ËD²µÁJ¥ ËÏ ³ ¼ iÍp² ˲,µ ½S¢ ««ddYY¢¢ خخ²² ³³ ²D²Dù¢¢ Ï ÏÏä¿ ¼ µ¿(ÐAѾÌ`ÁJË ½G¢ ½S( " í íí ( H ½S¢ Þ'³¹§adl²d7¢ Gà NÓ ,Ë §Ô VÏ Ò]³¢iÌ`¿©\µ Ó BÍ7 ¿iÐ ¤é @lË ½ ³¢µÏ¥]¾¦µq¦¿L³² ³ ":Õ ¿L³ ¼.Ó( ²,µq¿²´Ë Ï åD¾ ( µ¿L³J² ½S¢ ¸B¢ Øl
i{¢ à Ó Ë ( Ì`¿µ Ó Íp˵q¿Ð³ " ËÏÏ¿ ¼ µq¿ÐuÐa¾Ì`ÁJË ½ ¬Òf°9À ¢¡i
]] ª¢ é77V@Ó Yi]² ¼ ¼ ½ " ( ¿²Òf뤵 Ël³Ì¹Ëµ¿Ð ̹³ ËÌ⵿LË ³ ÐlËÌâµ ¿² ˾¿¡YÐd]]Ë ¢( °9Ï Ò)®Ë@ÜÌ ](, ½S¢®¢ °9i{²ilº( «2B
{¼ ² ÃN¥]¦¦½( ÄS¢ ç (² ½ (,½ Ó «2k
{² Ãy¥]¦¦ lÞ.Ä[¢ ³ªÓ«&Ä ¢¤©l¡)ÁOÓÖ²ÄÅÃ@¿x¯Ö)ÓŪ4ÔQÒË£(§/ÒÚ/Ó ¦LÒ¨¥NÄ ª ¦£(Ä ¢?¿I¡)ª £L«ÅÄŦߣL«&¡)Á¨ÓÖ ² ´ µà¶²µ$·È¯ °
«&Ä Ãl£ ÁÒNá
É©p°m¥x¤¦±C§-¨N¯£§§-«g]¤g´C¯¤g¬¬-®¨xÀ§ ¢Nµp¨x£§T¤¦¥AÌ ¬-®¨¯Ï Àp`§Ì ÁNµpÏ¥ [¬4Ì ©p°²¥v¤¦±CÏ4§-¾¨¯§`± » ½Ð§`¨x³Åµo[¾ 7§¸¥v£m©oÁɧ[±×¯£mµo x£§¸©p°m«]½¨¯µEx¤g©p°mµp«G¥x©p«g®Cx¤g©p°m¥ Ì:ÍBâNãävå(×A Bdæ2
Æèç¯Ë°±³²´\ȲQ¾ é
(½lê½ )ê ®ê½ ê ȸ®ê½
ü ú ¡)£L¦ÒN¡sª\¯¨±³½Ó ª¯ °
Ì:ÍBÎ&ÏI(Ðy
&¹
¬
>¬
xy
(y
º
¬
\¬
y
:º
ÉðÕñ dó zò Íñ dò Eh n ú ²ò G%9k(Gu :µp¨x§i§7³Å£mµVµEÀ°k§N½L¥x§-¤g°§`¯°§-¨¯Ìͧ`µ ¥v» x©o¤g°Àp¹T§VÏħ4®mا`µE¥v³Tx¤g©p´°m«g§`¥0¥9µ ©E» ªz©§-®C«g]0¤g´C¨¯xµp¤¦°¬7C¬-¥-®¾Ä Ã-¡s¢L¢¤£ ¥A¦ß£(§9§s©ª «&¡ÙÔ£L¦LÒ
²ê¯ x£ ÁOÄÙÃAÓ Ã öÆ
Ä ª¡x£Læ¡Ü¡)ª/Á/ÛÄ ÃA¿Ù¡s£L¦ÒN¡sª\¯±}½{ÓŪ¯ °
É©p°m¥x¤¦±C§-¨
ÓÖEúEãL¦¡ÓŪ¿¡sª/Û¦ÒN¡sÃ>²ÄÅÃ@¿x¯
£ Á4Ä>¿Å£L«
n
Á ©lÚÜ ªÓÅ©Ø T iØóÞ ×Ì Ï Gá MáôØ =õqö Ã7§-Øk7Áɧ¥v¯µo¯§µT¥R¯¨x§`°¹E¯£§-°¤g°¹T©Eª §-¨¯§-«ÞÑ ¥N¨x§[¥v®«]`Ö²±C®§ix© Ú §[¥R¯§-¨¯« §÷ ¾ KML Ì Ú §[¥R¯§-¨¯« §V÷ Ï N _Ø LÌ Ï 5á á@Ï Ì ø ö Ï &¹
&¹
¾
N|
z
±ÿ®
B
Æ
(í
ñ
þº
±}º
í
ô °
»
-z
®I®
®'ô
a
Õ±
±
~
z
ËlÎÅËã
ÓÖ¿I¡ßܪ¡/¡ Ä ÃA¿
±
B~ìQ ü
(z
Û¦LÒl¡)Ã
á Ö
)
OÆ
(ÖþÆ
(í
®>ÄÅÃ@¿4Æ
®
®
®'¹
®
£ ÁÄ Ã!¡)¢L¢¤£ ¥@¦£(§§s©ª «&¡>¿¡úEÃ@¡¿{ÓÅ«Å¡)ªÀÄé¨Ú/¡sª ú ¡)¢~¿Àí
£ Á¨Ú/ÓÅ©Ã@¿¡/¿9ÄÚ/Ó «&¡>Ú)û9Ä9§/ÓÅÃNÁ ¦7ÄÅæ¿I¡¥l¡sÃA¿Å£LÃËÜ{Ó Ãl¢¤û
ÓÅÃ
(í
:ÒNÄ&ÁOÄþ¥NÓ £LÃl¦ÓÖ ¥@ª £L¨¡ÓŪ¿¡sª BÛE¦ÒN¡sÃ
´
á
vz
ËlÎÅËã
í
B~ìQ
ÓÖx¿¡Üª¡/¡ ÛÄÅÃ@¿xÆ
í
ÖxÆ
£ Á>Ä ÃÕ¡s¢L¢¤£ ¥@¦£(§9§s©ª «&¡¿I¡(úCÃA¡/¿Ó «&¡sª>Ä{Ãl©ÂÚ/¡)ª\ú ¡)¢~¿
2ÒNÄ&Á4Äþ¥NÓ £LÃl¦ÓÖ ¥@ª £L¨¡¨ÓŪ¿¡sª BÛE¦ÒN¡sà ®µ!ô
° ¾
ü ú ö ñ ò Íñ ò[ó ñdó ò hù ©°§¢N°ÌÍÃA§-£§[©E§±¯§¥_°7§-xØk©Å¢Ç7©×®m¨x¥x§[¹p§¥v§-®7Ðm«]µp7ªÆ¨¯«¿¯¹p©p¤]¤g³°Àp¹§[¥-x¥0£Ñ²µE¤¦¢N¥A°£x§§-©Lúz©§`¨x¯§`¬4£x³ §Å¤gÀpÔ§xa¨¯Àp¾PÏ©p§`°¨¯¥x¹'¤g©p¢G°©¨¯©E¥xªG¤]©¯£° §5ÉÔ©p¯°o¨x¶R©§[°¬X¹Åx®m¢G¨x©§Ó¨¯ªÆ¥x©p¤g©p¨ ° Ù}É«]g¤©´C°ox¶R¤¦§`¬ ¬4xÉ®®m¨¯¨x§ÀªÆ§`©p¥`¨ Ö Ù}«]g¤]´x¤¦¬ É®m¨xÀ§`¥`¾
Ì v xÆÏ > KML ªØ LÌ Ï Há8î Há á î Ï ¯rm~Ì n¯õ [Ï-Ì ¯ØÏ Ëm¨¯§`§`¬-«g±§-°Ú 9§`´¥vx¨¯©E§`§-ª7¨x´´« ±C¨¯§÷ ¤]§`Ñ °¥}¹p ¨¯¨x§-§[½¼4:
· ¸ ¸ Í )  ¸ ªÆ©¨0§-Àp§`¨xo½ ¹Þ ¾ KML Ê&Ì¡Ô¯§-ÁNµE¨xvº?¢G©´ v 8 xÛÏ N i4 í 4 MÍËÞï4 í ×.b 5 O 8\ÏÍ F
7Ì ×iÏ ½ \d>½¼4 ÌÍ«]©Í G¹ Í) º Ï (¯
°
° ±
´ 2µà¶
?ê
±
Qê
ï
ç
ñ
´ µ!· E±
A´ 2µà¶ ô
´ µ!·
ñ
¾
Ê ¤»
ê
±
?ê
?ê Àï
O
I¾
Oz
w
ð
oê
Qê
Qê
ñ
?ê
ç
ð
¤ê
ñ
ð
°
Õ½
ËlÎÅËã
æ
~
)
(Ö2Æ
¼± ½NÛv¦ÒN¡sÃ{¦ÒN¡sª¡¡ØI£ Á ¦a¥lÓ&Á £L¦ß£L«&¡¨§/ÓÅÃlÁ ¦Ä Ãl¦Á ¶· ³ IÁsÝ)©lÄ ª¡ ¤Ö/ª¡¡
ç
ê
çA¯ °
±É² ´ µÕ¶²ÀµÕ·Ô£L¦Ò¶Aê·ïÕ¬
ÄÅÃA¿
ð
-º
Á ©l§Ò9¦LÒlÄŦ@Ö)ÓŪ4¡s«&¡sª û ð ð
°
¾
ÄÅÃA¿ Û
ÉðÕñ dó zò Íñ dò `q n ú ²ò ©pªd¼i¢N©p®m£µEÀ§_¨¯«8§`® ¨xµ¸ 7§[¥v®µE®m°m» «¿d±¤g°×©EUª²µE°mÔµE¯±Ü`§-®ÁNª¨[ÖµEv ¨x» 8d®Cw9µpAxÕ°m±C³T±©k©C¢Ç§`¥7±C©p¤]´5°Ëm©E§`£m0±Åµp¨¯¥x§-£µA«g½L§iÁ_¤g©p§`±°µ §`pµx§`£m©p¨Ç§ ªÇ¬4©
ÄÅÃA¿
ü ú ÿ 9üñ ü ó ò¸ñ ü ú átò ø ñ á Ù q[nEh Ú«g¤¿¯§-¨Jµo¯®U¨x§Û µ¥0¥xµV ¬½k¤gi°¹Ó¢ÇµE¯x£m§µoÑ 0¥ RRÁ_¥x©p©Å¹§-µ °k» ½ §-«gɤ µp©°°o¶RÀV§`µp¬4¨xx¤g®§4¯¨¯¤]§§[¥N¤g¥A©o¥vÀp©§`³¸¨N§-µ¸x¤g°k³T®³§`¥7» ¤g§`°m¨0¬-©pËm¨¯§-¨x«¦§[± ¬Xx«g½×µE¥v¨¯¯§iµEx¤¦§`¥x±©p¹p¤g§`°°©px£®²§ ¥ ©o¤¦¥iÀ§-ªÍµE¨ «¦¥v§Å§`¤]ª}Àp§`µE°°m±ªÆ©©p¨°m§-«]½«g]¤g¤¿´Cªdx¯¤¦¬Å£§-¬4¤g®m¨ ¨xÝ9Àº¡§`ªÆ¥`®Ö°²¤¡¬X¾ §px¤g¾g©pÖÇ°²¢N¥0£m©o§-Àp©p§`¨¯¨§-³ mµE¾ ¨¯p§¾ ק`ĵ »®mµp©oÀ«¡¾ §57¤¦¥ ©oÁ_§-À§-¨[¤]Ökª x+£¤¦¥A¤¦¥¥v¯¨xµE§`x´§-«¦³Tµp¬4§`§[°± »U½UÌZgRµEÏv°$Ï4¾ µE¨ » ¤]x¨JµE¨¯½°®m³ » §-¨iËm§-«¦±ÌÍ¥x§-!§ 0§-³Åµp¨ m¾ ©Eª v 9xÄÅÃÕ¡)¢L¢¤£ ¥@¦£(§9§s©ª «Å¡Ó «&¡sª¬Û¦LÒl¡)Ã$¦LÒl¡2Ö)ÓÅ¢L¢~Ó Ô£LÃÜÁ ¦Ä ¦¡s¡)æ(Á
í Ê Ê#î Í!íÌ)6 ÏG
ªÇ
ª6?î î î.ï ð î ã 2Ìñ¥lÓÅ£Læî
» ô
í
í
߬
ï{¬¾
î
¨Æ
w
|
z
Ó ª¿¡sªþÁ ©l§Ò9¦LÒlÄŦ
y
2w
ìQ Bdæ
~N
¼± ½ }
(Æê'®
Ê
±}¬
(í
S±}¹
Eí
±
¬
È\ô
)
(ÖxÆ
£ Á>ÄÅÃ$¡s¢L¢¤£ ¥@¦£(§9§s©ª «&¡ÓÅ«Å¡sª¬
Ô£L¦Ò
Ú)ûÀíàÛ
£(áL¡'á~Û ¦LÒl¡OÄ ÃAÄÅ¢oûŦ£(§OªÄ à À£ Á½ &Ûv¦ÒN¡sÃ
£ ÁCúCÃl£L¦7¡ Û
ð ©à< Ì #v Ømõ xÆÏ #v Ø,xÆÏ 1Zè L> õ p Ì UÌ #v Ø,xÛÏ #v ØmxÆÏ / Ì mv Ø,xÛÏ ]Ø ÆØ Ì ÓÏ
· LÌ L=Ï Ï ¤¦¥µx©pÌ } ¯µpn«]gÏv½UϤ¦¨J¥9µEµE³T°T¤¿Ë²®§`°±:¨JµE§4³TØkx¤]Ëm§`°m§`±T¥x¤]©Ä°:®mµ©p±Cª ¨¯µEx¤¦¬ Ö ¤]A±CÌ ©k§`NÏ ¥N< °©p¨¯§`A¥ ¬4©Ì °JµEÏ4¾¤g° §£²IÌ µVÀpÏX§ ¾}¢N£m§-¨¯§4ªÆ©p¨¯§pÖ Ì ·Ï < 7©³ÌÞ¼µE«@Ì > < Ï #v
xÆÏXÖÕµE°m±×x£k®m¥ Ì P < P Ï X_ÿ LJ J ¨x§[¥ Ì Ï Ì LÌ =Ï < LÌ ÏvÏ O Ì P < P Ï ¢N£§`¨x§-ªÆ©p¨¯§pÖk¨JµE° zÌ LÌ LÏxÏ ÆÏ CÖ¥x©T¨¯µp° zÌ LÌ LÏvÏ ÌÆ´m¨x©oÀk¤g°¹5Á0£²µo7Ч`¨x³Åµo k°§`ÁAÏXÖ µE°²± ¬ O Ì P < P Ï O LÌ ×Ï < LÌ ×Ï Ñv
x ¯¢N£m£µo§5 ¬4®¨¯Àp§ £²µp¥ » ½ ÝAÌ UVZÌÏ gRÏX¾ :§Ó£mµVÀG§ öÓÌ :Ï mÖ²µp°m± 0® » ¤]À° v /9xd¥x£©oÁ_§`± × ÌÆ´Õ©oÁ_§-¨0©Eª EÏ ß ÌÍ´²©oÁ_§-¨N©Eª EÏ º
xî
ð ñ ê
±
º ² ° µà²µ}® ±É¬
Æ
´ ±
&
°
î
ï
°
°
G
°
º
°
xÆ
°
±
߬
ß±
±
¬
µ!º ° ±
º
: z
P&
°
í
±
°
° µ
G
º
߬
°
±ÿ¬
Æês®
¬
î
°
߬
°
¬
Æ
°
)êÆ
º
þ²
°
¬
׬
°
ºÆ
߬
°
°
±
)êÆ
º
º
´¾
\|
º a±³½lê (í
Eº E±
ȸ®
\¬
Z I¬
±½
y
Èಠ´ µ
{º ÿ±}î
°
߬
ê
ñ
È
F
ï9é
M_/&
°
I¬
®
F 4±
Z
N| (Æ
ºÆ
î
È\ô E±
°
°
Æ
° 2¬
¸¹
C±}¬
&
G
ê
¬
®
° ȸ®
°
'
é
/
±
¬
°
¬
°
¬
°
°
Ey
(
°
¬
9¬
N| (Æ
G
߬
È\ôê
À¬
:¬
°
ï
F
\±É¬
ºÆ
ð q ¸ï!Æ
p
À¬
߬
®
±
±É®¾
¹
~N
Eº )¾
°
ÉðÕñ dó zò Íñ dò ú ²ò v
x m¾ 0§[¬-µp«]g¤]°m¹x£mµE » ½:Ù9ØCµp³T´«]§ ²¾ rm¾ TÁ_§Å£mµVÀp§ á ã CÖ ×Æά á Ý Ì [Ï ×'Ì LÌ LVÏ U;WX;Yxã Ï ß ¢N£k®m¥`Ö 0Ô NµE°m± NµE¨¯§ix¨¯®§iªÆ©p¨ G¾ §[Ä®²µox¤g©pÖ °GÖ9Á0¤¿Ê¯²¬ £tÖ ±CA¤g¥¯Ò¬4§-¨¯¤g ³¸¤g°mµp» °§× x£§Ì Ó§-:«gÏ n ]¤g´C¯¤g¬a·¾ ¬4n +®_¨¯Àp½Lµp§ °m°±&¤g¹p¬-£©p= °m-T±Á_®m§¬X¯¬4©p©¨.³¸n 6 ´mG
®C¾$x§¢N¯££m¤g¥¸µo n ¤¦¥5¾ µ ³Ţ¤]°£m¤g³ÅµVÀµE§Ï« £máÌ µ[¥Ï4¤]Ö7°Á_Ëm°§á ¤]x£m§LµVÀ©§ ¨¯±Cö§`¨LÌÆ©°Ä§Å¬-µE°µpÖA´¥x´©&«g½ÝA¢NÌ £§`V©pϨ¯§-³ ¾ ¾ n¾ Åɵ©»³¸©o´mÀp®C§VxÏX¤gÖG°¥x¹ ©¨¯µpâ
° z¸ Ì Lå Ì L¤g° ÏvÆÏ ½ ·^ p¾Å_ªÆ©p½ ¨ ° ¨JµE° ¤¦¥ p¾L·A¹µp¤]°Ö ¯  Ví ¥x£©oÁ7¥i
x£mµEÓÝ · Ì [Ï a Ç Ö p µ m ° $ ± v ¥ © ¯ £ L § E µ m ° p µ ] « ½ ¯ g ¤ ¸ ¬ »#®v
7xD¤¿7s ¤¦¥NL°Ì ©ÅL«gÏ4©p¾ °7¹§-§`¨_¨x§x¶Ö©p¯> µE«g ½L¨¯µp³TÌ } ¤¿Ëm§[±g ¾9} ·AnE¥0ÏXµ¾ » ¢N©o£À§-§p¨¯Ök§Á_¤¦§¥ °µÅ©o®mÁ °£m¤gĵV®À§5§ ´¨¯¤]³TG§ 2שpuª > µ » ©oÀp§ CÖ A©p³Ì¡¼µp«ÞIÌ > < Ï #v µxÛÏ s Ì P < P Ï X_ÿ ÌP < P Ï 7©³ÌÞ¼µE«Ì < Ï #v
xÆÏ ö :§£mµVÀp§ Ì P < P Ï X_ÿ Ì LÌ =Ï < LÌ ÏvÏ O Ì P < P Ï ¥x©T¨¯µp° ÕÌ LÌ ×ÏvqÏ Ï p¾9¢N£k®m¥`ÖC¨¯µp° zÌ LÌ LÏvÏ ÖµE°m± O Ì P < P Ï O LÌ =Ï < LÌ Ï Ñóv µx »_vG® ®ÌM½ 7Ï£©p¤g¥7«g½k´Ào¨xµEr©k¹p:©p¤grm°ªdµpv «g¥xy©TxÞ:ÖPÁɾAó©·A¨ vC¥ áy¥_x µE¤]°U°§-7¯Øk£ªÆ§`§©¨¯¨ Ì ;Ì g } EÏvÏÓ¤¦¥Óµ¯©EJµE«g]½ [q lEn ¯¢N££§-§`¨¯¨x§4§-ªÆ©ªÆ©p¨x¨¯§ §pÖH
sPLF)t?D@H=@D@HBM
±
º ±
¹
a
N ÿw
°
®®
eT Æ
¬
Ç
ð
º
°
´
>±
ò
º
>¯ °
ò
º¾ ô ¹ IºS¾s¾'¾
º
¾
Æês® ±
º¾,ºº» ¾s¾'¾
¬
±
² ´
Ⱥ ²
º q
±
° $y
(Æê'® YT
(
(Æ
ȸ®
±
±
îɱ
®
±
é
º
ð T
q
cb
³Æ
(Æê'®
±
`
~®
¯ ° ±² ´ Èײ
q ±
®
±
°
¨Æ
ð
®ww
Ì:ÍBâNãävå(ìQ ~ìQ º
0 P v3
½
(Æ
±
K DA3u QD
~®
½
N| (Æ ð
® Ù
1d
=
ȹêÊ
¬
N|
w
®
ºËê /ê
G
/
4º
Z ¬
é
°
(
/
é
ºÆ
߬
¬
°
êÆ
°
_
¬
êÆ
°
º
º
y
º
N| Æ
߬
®
JE&
°
N| (Æ
G
G
°:J
º
±
°
Nì
¬
´ ±
(Æ
°
¬
°
fT
´ê
±ÿ®
Æ
¬
ºÆ
°
߬
ê
°
º @±³½l¾
@±}½
z
|
(î
º
±
°
±
½N¾ ¹ »Å¹\¾s¾'¾
½
þî
½Nê½
Æ
߬
(é
ê½
'ç
~®&º
~ü
xy
±
=
ð
T
>
ð
º
î
°
E
gTÿ®I¾ =
,ü
¹ ¾'¾s¾/ê
ð
Æ
> Éw
Ùww
2Æ
Ç
°
|
º
ð
°
°
®
±
º
ê
¯ ° ±³² ´ Ⱥ Ų
Ì:ÍBâNãävå(ìQ üB ±
߬
ð
±
>
±
¹
ð
N|
±
Æ
ð
˱
ð
:½ \y
º
ðT
ò
®&»
¸¯ ° ò
±
>º
° ²
(Æê'® `T
¾s¾'¾
ð
> Ih
®Å»
º q ®Å»
±
®¾,ºI»®
=
² ´ È
±
º
±
Z
±
¬
°
° ày ¼± ½
ºN¾ ¹IôË»» ¾'¾s¾
/ê
º
¬
ºËê /ê
®Å»
ü ú ÿ 9üñ ü ó ò¸ñ ü ú átò ø ñ á Ù qVlq ¨JµE³T¤]Ëm§`±±C§-¹¨x§`§ T§-د§-°m¥x¤g©p°©Eª Ì Ì } EÏvÏX¾ÉA· ¥0µ » ©oÀp§ÖCÁɧ£mµVÀ§ s 7©p³ÌÞ¼ µE«Ì@>à< ×Ï #v µxÛÏ O Ì P < P Ï Ì P < P Ï X_ÿ a8 QK 0 D@H
&
v3?J D
0 ?HBD
:¹
E¬
)X
º
°
(
?5×=@PH a8
ß±
°
G
/
¬
3
P3?3D@H 0 v3
®&»
°
ç
é
°
¬
A©p³Ì¡¼µp«ÞÌI>
XBAVY ö
vDAH
êÆ
¾¢N¤g¥0£µ5§_Ëmx©p§`¯«g±µp«]g½×¨JÌ@µE³TϤ]¤¦Ëm¥à< LÏ #v
xÆÏ µp°m±$µE°m©p±°§&¬-µpÏ°µE°²¥v£m±8©oVÁ©¨§[xÄ£m®mµEµEÆ«g¤¿óR½ v »
x½O ¬J£Ì§`P ¬ k< ¤g°P ¹Ï x£m̧׻ ½:¨¯¤]¹¬-£©pT°m¥v¥vx¤¦¨¯±C®m§×¬4xªÆ©p¤g°¨¹¯£§-«g§§-³T«]©C§-¬-°µpJ«É¥¯Ï4¬-¾U©p°m¢N±C£¤]x§-¤g©p¨¯§4°²ªÆ¥5©¨xµE§ Ö ¤¦µp×Æ¥i°m¢Ëm±$°x¤]½ £mx§§-²¾¨¯§45¾ ÚªÆ 0©p°¨¯® §L§Å» ¯¬4¤g°£m©pµo®mv T«g±:/¨J9µE±C°xG©z¥vµ£Ì L©o+xÁ_Ì ¥xL§`§`±Å¬4Ïx©Ï x°m£m±:µEª ±C §`Öd¥¯¬4xv§`£má/°§x o -LoºÞ¯Ó´©U¨¯ªÆ¤g©p³T¬4¨0©µp³¸µp¨x«]½:´mz®C©C´mx±µp§¸±'¨vx¸´£²©E¨xµo¤gª^³T § °k®¤gO ¥³ ÌÌ » PP §`l¼l ´Ý
EÓÅà s¡/§)¦ß©ª¡£LÂ\¥@¢¤£(¡ Á\¦ÒN¡Ùõ9¡Ä
ÇÌ 1F Ï4Ì 5Ï
ÓÖþ¦LÒl¡O¡s¢L¢¤£ ¥A¦ß£(§§s©ª «&¡
£ Á
Á
Ás¡O¦LÒlÄŦ۩ÃA¿I¡)ª4¦LÒl¡þÒû¥NÓ ¦LÒl¡ Ás¡)Á¨ÓÖx¦ÒN¡õ¡/Ä
&+
76
ÉðÕñ dó zò Íñ dò ú ²ò ¢N£§ªÆ©«]g©oÁ0¤]°m¹Ó¯£§-©¨x§`³ Á_µ¥0¬4©°o¶R§`¬4x®¨¯§`±'¤]°v \yx¾ ÌÍ¥x§-§#v xm¥x§-§µE«¦¥x©iá v \¼w Úp xÞÖ v x Ö v ¬\íxÆÏ Ì ÓÏ1 cá iá KML á Ì ÓÏ r mÌHÓá Ï µ ^á mÌ 5Ï ~ p Ì ÓÏ Ì ÓNÏ á r 5á §`«]g¤]´?¢Nx°À¤¦¬£¤¦v ¬4¥7®¨¯¨¯§`9Àp¥xxÞ§[®Ö¥É«]Ã7 ©p¤]ª¤g¯³¸µE´m¶7´m¨x¤g«]¹p³T¤g§`¤gÀp§¥7§[x¬-¥A£m©pµE°mµE° ±®mÔk§4¬XØÜ`¯´µE©p³T¤]¨[¨¯¾©m´Ñ «g¥ §'ÉÌÍ©E©ªÉ°o¶Rµ'§`¬4¬4x®®¨¯¨¯Àp§§Á_©p©pª}®¬4«¦©± °m±C» ®m§¬4xx¨¯©p®¨ §Ó¤]nª9©p°mß §¨x§[¥R¯¨x¤¦¬X𠯧`±ð n ¯© ð ð ð r ð VÏÉÁ0¤¿¯ £ +x«gµp¨x¹§iÔkÜ`´¤g¨x©T¨Jµox¤gÚ© «]©5¹ «g ©p¹u6Ì
5Ï jß ß ·A¥Aµ¸¬-©p¨¯©p«g µp¨x½T©pªd¢N£§`©p¨¯§-³ ²¾ m¾ ŵ » ©oÀp§ÖC±C§ §`¹p§`¨0´¨x©oÀ§`¥ &ÌÍ¥x§-§ É©¨x©«]¦µE¨¯½T©p°´¾a4 Ó©pqª v 9 9xÛÏ N ç .l ´Ý KML q[l
sPLF)t?D@H=@D@HBM
r
K DA3u QD
0 P v3
~
ËlÎÅËã
üBdæ
§s©ª «&¡ÓÅ«Å¡sªO¬ ±
Ç
~Ëæ
~
Ô£L¦Ò>¥Aª £L¡§/ÓÅÃA¿ ©l§)¦7ÓŪ vá Ç N
Æ ± ®I® q ÛÓ ª ±
®®àÄÅÃ@¿ N
Æ ±
®
ÑA©íôÁ ©ªÖ)ħ/¡)Á lw
¹ À
À
Ù
{é
»
®'½
®® ®z a® ô ? EÓÅà s¡/§s¦©ª¡ Á§/Ó ÃA§/¡)ª ãLÃÜà¡s¢L¢¤£ ¥@¦£(§§)©ª «Å¡ Á Õ v z x a®ç ´Ý ´ o Ö _ ® g « ¡ Õ ¾ k Ô C © E ¬ ¾ U E µ x £ ¾ m Ð ¯ ¨ p µ m ° 4 ¬ § /w$Ì ¹rÚr pÏ4ÖC°©m¾ ²Ö Úß:n 9n m¾ m¾7x¼¸£¾p§`Щp¨¯¨¯½§-½jÖ )Ì 7 «g³9[ Ö ¹rß EÏ4Ö Ö_ÒG§`¬X¯3®¨¯F § Ã7©pxQ§`¥'4 ¤g° Uµo¯£¾ 8wGÖAÔk´X¨¯Ö¤g¤]°°Å¹p§`ÃA¨`®Ö0³ Ã7» §`§-Á ¨ Ci¾ 90m¾7©p¨ ¼i§º X_» Öm§-§-· «Þ¨¯Ö«]¬X¤gJ°·µ¸Ö ¾ ¹·AdrÚ¨xߧ-¤]xrmx£G £ ¾ ¾©² Ö $̾A¹¼¸rÚr C¾ fÕÏ4ÖC¤g³T°©m³T¾ §-¨[Ö ,Ö l r ¾ Úßm¾i0m¾k¼i§ » §-«ÞÖk·Ó¾ d§-x£ ©² Ö Ó¾k¼¸¾fÕ¤g³¸³T§`¨`Ö mI ç ²Ö É©³T´²©¥v¤]x¤g© UµEx£¾ 9w$Ì rrßÏXÖk°©²¾ Ö Ún k¾ Úrm¾0ÙÖ 1 if A has split multiplicative reduction at p : 0 if A has additive reduction at p. The integers a(n are obtained recursively from the ap as follows: apr = aaprr; ap ; papr; ifif pp j N N p anm = an am , if (n; m) = 1. The conjectures made by Serre in [102], which are the subject of this paper, concern representations : Gal(Q=Q) ! GL(2; F` ). We always require (usually tacitly) that our representations are continuous. The continuity condition just means that the kernel of is open, so that it corresponds to a nite Galois extension K of Q. The representation then embeds Gal(K=Q) into GL(2; F` ). Since K is a nite extension of Q, the image of is contained in GL(2; F) for some nite sub eld F of F` . 1
2
-
Q
GQ M M
K GQ
M M M M M M M M M M & / ) GL(2; ` )
Gal(K=Q
Q
F
For various technical reasons, the original conjectures of Serre insist that be irreducible. It is nevertheless fruitful to consider the reducible case as well (see [111]). The conjectures state (in particular) that each continuous irreducible that satis es a necessary parity condition \arises from" (or is associated with) a suitable modular form mod `. To explain what's going on, let's start with 1 X
1
Y := (n)qn = q (1 ; qi )24 ; n=1 i=1
the unique (normalized) cusp form of weight 12 on SL(2; Z). In [92], Serre conjectured the existence of a \strictly compatible" family of `-adic representations of Gal(Q=Q) whose L-function is the L-function of , namely
L(; s) =
1 X
n=1
(n)n;s =
Y
p
(1 ; (p)p;s + p11;2s );1 ;
where the product is taken over all prime numbers p. The conjectured `-adic representations were constructed soon after by Deligne [24]. Speci cally, Deligne constructed, for each prime `, a representation `1 : Gal(Q=Q) ! GL(2; Z` );
1.1. Introduction
151
unrami ed outside `, such that for all primes p 6= `, tr(`1 (Frobp )) = (p); det(`1 (Frobp )) = p11 : On reducing `1 mod `, we obtain a representation ` : Gal(Q=Q) ! GL(2; F` ) with analogous properties. (Equalities are replaced by congruences mod `.) In other words, the ` for are just like the ` for an elliptic curve E , except that the integers ap are replaced by the corresponding values of the -function. The determinant of ` is the 11th power of the mod ` cyclotomic character : Gal(Q=Q) ! F` , i.e., the character giving the action of Gal(Q=Q) on the group of `th roots of unity in Q (see Section 1.5). P More generally, take a weight k 12 and suppose that f = n cn qn is a nonzero weight-k cusp form for SL(2; Z) that satis es f jTn = cn f for all n 1, Tn being the nth Hecke operator on the space of cusp forms of weight k for SL(2; Z) (see Section 1.5). Then the complex numbers cn (n 1) are algebraic integers. Moreover, the eld E := Q(: : : cn : : : ) generated by the cn is a totally real number eld (of nite degree over Q). Thus the cn all lie in the integer ring OE of E . For each ring homomorphism ' : OE ! F` , one nds a representation = ' : Gal(Q=Q) ! GL(2; F` ); unrami ed outside `, such that tr((Frobp )) = '(cp ); det((Frobp )) = pk;1 for all p 6= `. We have det = k;1 . Of course, there is no guarantee that is irreducible. We can (and do) suppose that is semisimple by replacing it by its semisimpli cation. Then is determined up to isomorphism by the displayed trace and determinant conditions; this follows from the Cebotarev density theorem and the Brauer-Nesbitt theorem [21], which states that semisimple representations are determined by their characteristic polynomials. It is important to note that k is necessarily an even integer; otherwise the space Sk (SL(2; Z)) of weight-k cusp forms on SL(2; Z) is easily seen to be 0. Thus the determinant k;1 of is an odd power of . In particular, det : Gal(Q=Q) ! F` is unrami ed outside ` and takes the value ;1 on complex conjugations c 2 Gal(Q=Q). It's a nice exercise to check that, conversely, all continuous homomorphisms with these properties are odd powers of (see Exercise 1). In the early 1970s, Serre conjectured that all homomorphisms that are \like " come from cusp forms of some weight on SL(2; Z). Namely, let : Gal(Q=Q) ! GL(2; F` ) be a continuous, irreducible representation that is (1) unrami ed outside ` and (2) of odd determinant, in the sense that det (c) = ;1 2 F` for complex conjugations c 2 Gal(Q=Q). In a May, 1973 letter to Tate, Serre conjectured that is of the form '. This means that there is a weight k 12, an eigenform f 2 Sk (SL(2; Z)), and a homomorphism ' : OE ! F` (where OE is the ring of integers of the eld generated by the coecients of f ) so that ' and are isomorphic. To investigate Serre's conjecture, it is fruitful to consider the operation 7!
on representations. This \twisting" operation preserves the set of representations that comePfrom modular forms. Indeed, let = q dqd be the classical dierential P n operator an q 7! nan qn . According to Serre and Swinnerton-Dyer [61, 94,
152
RIBET AND STEIN, SERRE'S CONJECTURES
112], if f is a mod ` form of weight k, then f is a mod ` form of weight k + ` + 1. Then if is associated to f , is associated with f . According to a result of Atkin, Serre and Tate (see [97, Th. 3] and Section 2.1), if comes from an eigenform in some space Sk (SL(2; Z)), then a suitable twist i of f comes from a form of weight ` + 1. Serre's conjecture thus has the following consequence: each two-dimensional irreducible odd representation of Gal(Q=Q) over F` that is unrami ed outside ` has a twist (by a power of ) coming from an eigenform on SL(2; Z) of weight at most ` + 1. In particular, suppose that ` < 11. Then the spaces Sk (SL(2; Z)) with k ` + 1 are all 0; as a result, they contain no nonzero eigenforms! The conjecture that all are modular (of level 1) thus predicts that there are no representations of the type contemplated if ` is 2, 3, 5 or 7. In support of the conjecture, the non-existence statement was proved for ` = 2 by J. Tate in a July, 1973 letter to Serre [113]. Soon after, Serre treated the case ` = 3 by methods similar to those of Tate. (See [113, p. 155] for a discussion and a reference to a note in Serre's uvres.) Quite recently, Sharon Brueggeman considered the case ` = 5; she proved that the conjectured result follows from the Generalized Riemann Hypothesis (see [8]). In another direction, Hyunsuk Moon generalized Tate's result and proved that there are only nitely many isomorphism classes of continuous semisimple Galois representations : GQ ! GL4 (F2 ) unrami ed outside 2 such that eld K=Q corresponding to the kernel of is totally real (see [76]). Similar work in this direction has been carried out by Joshi [58], under additional local hypothesis. Serre discussed his conjecture with Deligne, who pointed out a number of surprising consequences. In particular, suppose that one takes a coming from an eigenform f 0 of some weight and of level N > 1. On general grounds, has the right to be rami ed at primes p dividing N as well as at the prime `. Suppose that, by accident as it were, turned out to be unrami ed at all primes p j N . Then the conjecture would predict the existence of a level-1 form f 0 (presumably of the same weight as f ) whose mod ` representation was isomorphic to . For example, if N = ` is a power of `, then the conjecture predicts that arises from a form f 0 of level 1. How could one manufacture the f 0 ? The passage f f 0 comes under the rubric of \level optimization". When you take a representation that comes from high level N , and it seems as though that representation comes from a lower level N 0 , then to \optimize the level" is to cough up a form of level N 0 that gives . Deligne pointed out also that Serre's conjecture implies that representations over F` are required to \lift" to -adic representations of Gal(Q=Q). In the recent articles [80] and [81], R. Ramakrishna used purely Galois cohomological techniques to prove results in this direction.
1.2. The weak conjecture of Serre
In the mid 1980s, Gerhard Frey began lecturing on a link between Fermat's Last Theorem and elliptic curves (see [42, 43]). (Earlier, Hellegouarch had also considered links between Fermat's Last Theorem and elliptic curves; see the MathSciNet review and Appendix of [48].) As is now well known, Frey proposed that if a` + b` was a perfect `th power, then the elliptic curve y2 = x(x ; a` )(x + b`) could be proved to be non-modular. Soon after, Serre pointed out that the non-modularity
1.2. The weak conjecture of Serre
153
contemplated by Frey would follow from suitable level-optimization results concerning modular forms [101]. To formulate such optimization results, Serre went back to the tentative conjecture that he had made 15 years earlier and decided to study representations : Gal(Q=Q) ! GL(2; F` ) that are not necessarily unrami ed at `. The results, of course, were the conjectures of [102]. An important consequence of these conjectures is the so-called \weak conjecture of Serre." As background, we recall that Hecke eigenforms on congruence subgroups of SL(2; Z) give rise to two-dimensional representations of Gal(Q=Q). If we set things up correctly, we get representations over F` . More speci cally, take integers P k 2 and N 1; these are the weight and level, respectively. Let f = an qn be a normalized Hecke eigenform in the space Sk (;1 (N )) of complex weight-k cusp forms on the subgroup ;1 (N ) of SL(2; Z). Thus f is nonzero and it satis es f jTn = an f for all n 1. Further, there is a character " : (Z=N Z) ! C so that f jhdi = "(d)f for all d 2 (Z=N Z) , where hdi is the diamond-bracket operator. Again, let O be the ring of integers of the eld Q(: : : an : : : ) generated by the an ; this eld is a number eld that is either totally real or a CM eld. Consider a ring homomorphism ' : O ! F` as before. Associated to this set-up is a representation : Gal(Q=Q) ! GL(2; F` ) with properties that connect it up with f (and '). First, the representation is unrami ed at all p not dividing `N . Next, for all such p, we have tr((Frobp )) = ap ; det((Frobp )) = pk;1 "(p); the numbers ap and pk;1 "(p), literally in O, are mapped tacitly into F` by '. The representation is determined up to isomorphism by the trace and determinant identities that are displayed, plus the supplemental requirement that it be semisimple. We are interested mainly in the (generic) case in which is irreducible; in that case, it is of course semisimple. The construction of from f , k and ' was described in [24]. In this article, Deligne sketches a method that manufactures for each non-archimedean prime of E a representation ~ : Gal(Q=Q) ! GL(2; E ), where E denotes the completion of E at . Given ', we let = ker ' and nd a model of ~ over the ring of integers O of E . Reducing ~ modulo , we obtain a representation over the nite eld O =O , and ' embeds this eld into F` . In fact, as Shimura has pointed out, the machinery of [24] can be avoided if one seeks only the mod representation attached to f (as opposed to the full -adic representation ~ ). As the rst author pointed out in [87], one can use congruences among modular forms to nd a form of weight two and level N`2 that gives rise to . Accordingly, one can nd concretely by looking within the group of `-division points of a suitable abelian variety over Q: the variety J1 (`2 N ), which is de ned in Section 2.3 and in Conrad's Appendix. Which representations of Gal(Q=Q) arise in this way (as k, N , f and ' all vary)? As in the case N = 1 (i.e., that where ;1 (N ) = SL(2; Z)), any that comes from modular forms is an odd representation: we have det((c)) = ;1 when c 2 Gal(Q=Q) is a complex conjugation. To see this, we begin with the fact that "(;1) = (;1)k , which generalizes; (1.4); this follows from the functional equation az+b ) to f (z ) when a b is an element of ;0 (N ) (see Exercise 7). On that relates f ( cz cd +d the other hand, using the Cebotarev density theorem, we nd that det = k;1 ", where is again the mod ` cyclotomic character and where " is regarded now as a map Gal(Q=Q) ! F` in the obvious way, namely by composing " : (Z=N Z) ! F`
154
RIBET AND STEIN, SERRE'S CONJECTURES
with the mod N cyclotomic character. The value on c of the latter incarnation of " is the number "(;1) = (;1)k . Since (c) = ;1, we deduce that (det )(c) = ;1, as was claimed. Serre's weak conjecture states that, conversely, every irreducible odd representation : Gal(Q=Q) ! GL(2; F` ) is modular in the sense that it arises from some f and '. A concrete consequence of the conjecture is that all odd irreducible 2-dimensional Galois representations come from abelian varieties over Q. Given , one should be able to nd a totally real or CM number eld E , an abelian variety A over Q of dimension [E : Q] that comes equipped with an action of the ring of integers O of E , and a ring homomorphism ' : O ! F` with the following property: Let = ker '. Then the representation A[] O= F` is isomorphic to . (In comparing A[] and , we use ' : O= ,! F` to promote the 2-dimensional A[] into a representation over F` .) Much of the evidence for the weak conjecture concerns representations taking values in GL(2; Fq ) where the nite eld Fq has small cardinality. In his original article [102, x5], Serre's discusses a large number of examples of such representations. Serre uses theorems of Langlands [68] and Tunnell [115] to establish his weak conjecture for odd irreducible representations with values in GL(2; F2 ) and GL(2; F3 ). Further, he reports on numerical computations of J.-F. Mestre that pertain to representations over F4 (and trivial determinant). Additionally, Serre remarks [102, p. 219] that the weak conjecture is true for those representations with values in GL(2; Fp ) that are dihedral in the sense that their projective images (in PGL(2; Fp )) are dihedral groups. (See also [29, x5] for a related argument.) This section of Serre's paper concludes with examples over F9 and F7 . More recently, representations over the elds F4 and F5 were treated, under somewhat mild hypotheses, by Shepherd-Barron and Taylor [105]. For example, Shepherd-Barron and Taylor show that : Gal(Q=Q) ! GL(2; F5 ) is isomorphic to the 5-torsion representaton of an elliptic curve over Q provided that det is the mod 5 cyclotomic character. Because elliptic curves over Q are modular, it follows that is modular.
1.3. The strong conjecture
Fix an odd irreducible Galois representation
: GQ ! GL(2; F` ): As discussed above, the weak conjecture asserts that is modular, in the sense that there exists integers N and k such that comes from some f 2 Sk (;1 (N )). The strong conjecture goes further and gives a recipe for integers N () and k(), then asserts that comes from Sk() (;1 (N ())). In any particular instance, the strong conjecture is, a priori, easier to verify or disprove than the weak conjecture because Sk() (;1 (N ())) is a nite-dimensional vector space that can be computed (using, e.g., the algorithm in [73]). The relation between the weak and strong conjectures is analogous to the relation between the assertion that an elliptic curve is modular of some level and the assertion that an elliptic curve A is modular of a speci c level, the conductor of A.
1.3. The strong conjecture
155
For each prime p, let Ip GQ denote an inertia group at p. The optimal level is a product Y N () = pn(p) ; p6=`
where n(p) depends only on jIp . The optimal weight k() depends only on jI` . The integer n(p) is a conductor in additive notation. In particular, n(p) = 0 if and only if is unrami ed at p. View as a homomorphism GQ ! Aut(V ), where V is a two-dimensional vector space over F` . It is natural to consider the subspace of inertia invariants: V Ip := fv 2 V : ()v = v; all 2 Ip g: For example, V Ip = V if and only if is unrami ed at p. De ne n(p) := dim(V=V Ip ) + Swan(V ); where the wild term Swan(V ) is the Swan conductor 1 X Swan(V ) := [G 1: G ] dim(V=V Gi ) 0: i=1 0 i Here G0 = Ip and the Gi G0 are the higher rami cation groups. Suppose that arises from a newform f 2 Sk (;1 (N )). A theorem of Carayol [12], which was proved independently by Livne [70, Prop. 0.1], implies that N () j N . It is productive to study the quotient N=N (). Let O be the ring of integers of the eld generated by the Fourier coecients of f and let ' : O ! F` be the map such that '(ap ) = tr((Frobp )): Let be a prime of O lying over ` and E be the completion of Frac(O) at . Deligne [24] attached to the pair f; a representation : GQ ! GL(2; E ) = Aut(V~ ) where V~ is a two-dimensional vector space over E . The representation can be conjugated so that its images lies inside GL(2; O ); the reduction of modulo is then . The following diagram summarizes the set up: / GL(2;6 E ) = Aut(V~ )
GQ /
❧ ❧ ❧ ❧ ❧ ❧ ❧ ❧ ❧ ( ❧ ❧ ❧ ❧
GL(2; O )❘
❘ ❘ ❘ ❘ ❘ ❘' ❘ ❘ ❘ ❘ ❘ ❘ ( / GL(2; ` ) = Aut(V )
F
Let m(p) be the power of p dividing the conductor of . In [12], Carayol proves that m(p) = ordp N . As above, m(p) = dim(V~ =V~ Ip ) + (wild term), and the wild term is the same as for . The power of p dividing N=N () is dim(V~ =V~ Ip ) ; dim(V=V Ip ) = dim V Ip ; dim V~ Ip . Though V~ and V are vector spaces over dierent elds, we can compare the dimensions of their inertia invariant subspaces. The formula (1.1) ordp (N ) = n(p) + (dim V Ip ; dim V~ Ip ) indicates how this dierence is the deviation of N from the optimal level locally at p. This is the description of n(p) that is used in proving that if is modular at
156
RIBET AND STEIN, SERRE'S CONJECTURES
all, then it is possible to re ne N and k to eventually discover that arises from a newform in Sk() (;1 (N ())). After much work (see [26, 87]) it has been shown that for ` > 2 the weak and strong conjectures are equivalent. See [9] for equivalence in many cases when ` = 2. Rearranging (1.1) into n(p) = ordp (N ) ; (dim V Ip ; dim V~ Ip ) provides us with a way to read o N () from ordp (N ), dim V Ip , and dim V~ Ip . If f 2 Sk (;1 (N )) gives rise to and ` N , then k() k. In contrast, if we allow powers of ` in the level then the weight k can always be made equal to 2. -
1.4. Representations arising from an elliptic curve
Equations for elliptic curves can be found in the Antwerp tables [4] and the tables of Cremona [20]. For example, consider the elliptic curve B given by the equation y2 + y = x3 + x2 ; 12x +2: This is the curve labeled 141A1 in [20]; it has conductor N = 3 47 and discriminant = 37 47. There is a newform f 2 S2 (;0 (141)) attached to B . Because N is square free, the elliptic curve B is semistable, in the sense that B has multiplicative reduction at each prime. The curve B is isolated in its isogeny class; equivalently, for every ` the representation ` : GQ ! Aut(B [`]) GL(2; F` ) is irreducible (see Exercise 4 and Exercise 5). We will frequently consider the representations ` attached to B . The following proposition shows that because B is semistable, each ` is surjective [93]. Proposition 1.1. If A is a semistable elliptic curve over Q and ` is a prime such that ` is irreducible, then ` is surjective. Proof. Serre proved this when ` is odd; see [93, Prop. 21], [103, x3.1]. If 2 isn't surjective, then by [93, Prop. 21(b)] and Theorem 2.10 it's unrami ed outside 2. This contradicts [113]. To give a avor of Serre's invariants, we describe N (` ) and k(` ) for the representations ` attached to B . (Note that we still have not de ned k().) At primes p of bad reduction, after a possible unrami ed quadratic extension of Qp , the elliptic curve B is a Tate curve. This implies that for p 6= `, the representation ` is unrami ed at p if and only if ordp () 0 (mod `); for more details, see Section 2.4. The optimal level N (` ) is a divisor of 3 47; it is divisible only by primes for which ` is rami ed, and is not divisible by `. The representation ` is unrami ed at 3 if and only if ` j ord3 () = 7, i.e., when ` = 7. Furthermore, ` is always rami ed at 47. First suppose ` 62 f3; 47g. If in addition ` 6= 7 then N (` ) = 3 47, and k(` ) = 2 since ` 3 47. If ` = 7 then N (`) = 47, and again k(` ) = 2. The remaining cases are ` = 3 and ` = 47. If ` = 47 then N (` ) = 3, and because ` ; 1 is the order of the cyclotomic character, k(` ) 2 (mod 47 ; 1); Serre's recipe then gives k(` ) = 2 + (47 ; 1) = 48. Similarly, when ` = 3, we have N (`) = 47 and k(` ) = 2 + (3 ; 1) = 4. The following table summarizes the Serre invariants: -
1.5. Background material
157
Table 1.4. The Serre invariants of `
` N (` ) k(` ) 3 47 4 7 47 2 47 3 48 all other ` 141 2 To verify the strong conjecture of Serre for ` = 3; 47, we use a standard tradeo of level and weight, which relates eigenforms in S2 (;0 (141); F`) to eigenforms in S2+`;1 (;0 (141=`); F`) (see Section 3.1). The only exceptional prime is ` = 7, for which the minimal weight k() is 2. The strong conjecture of Serre predicts the existence of an eigenform g 2 S2 (;0 (47)) that gives rise to ` . Our initial instinct is to look for an elliptic curve A of conductor 47 such that A[`] = B [`], as GQ -modules. In fact, there are no elliptic curves of conductor 47. This is because S2 (;0 (47)) is four having basis the Galois conjugates of a single eigenform g = P dimensional, cn qn . The Fourier coecients cn of g generate the full ring of integers in the eld K obtained from Q by adjoining a root of h = x4 ; x3 ; 5x2 + 5x ; 1: The discriminant 1957 = 19 103 of K equals the discriminant of h, so a root of h generates the full ring of integers. The eigenvalue c2 satis es h(c2 ) = 0. Since h (x + 2)(x3 + 4x2 + x + 3) (mod 7), there is a prime lying over 7 such that O= = F7 ; the isomorphism is given by c2 7! ;2 mod 7. As a check, note that #B (F2 ) = 5 so a2 = 3 ; 5 = ;2 = '(c2 ). More generally, for p 7 141, we have '(cp ) ap mod 7. This equality of traces implies that the representation g; is isomorphic to = A;7 , so A is modular of level 47. -
1.5. Background material
In this section, we review the cyclotomic character, Frobenius elements, modular forms, and Tate curves. We frequently write GQ for Gal(Q=Q). Many of these basics facts are also summarized in [23].
1.5.1. The cyclotomic character
The mod ` cyclotomic character is de ned by considering the group ` of `th roots of unity in Q; the action of the Galois group GQ on the cyclic group ` gives rise to a continuous homomorphism (1.2) ` : GQ ! Aut(` ): Since ` is a cyclic group of order `, its group of automorphisms is canonically the group (Z=`Z) = F` . We emerge with a map GQ ! F` , which is the character in question. Let A be an elliptic curve and ` be a prime number. The Weil pairing e` (see [109, III.8]) sets up an isomorphism of GQ -modules 2 ^
= : A[`] ;;;;! ` The determinant of the representation A;` is the mod ` cyclotomic character ` . Suppose now that c 2 GQ is the automorphism \complex conjugation." Then the determinant of A;`(c) is ` (c). Now c operates on roots of unity by the map
(1.3)
e` :
158
RIBET AND STEIN, SERRE'S CONJECTURES
7! ;1 , since roots of unity have absolute value 1. Accordingly, (1.4) det A;` (c) = ;1; ; one says that A;` is odd. If ` 6= 2, then A;`(c) is conjugate over F` to 10 ;01 (Exercise 7). If ` = 2 then the characteristic polynomial of A;` (c) is (x + 1)2 so A;`(c) is conjugate over F` to either the identity matrix or ( 10 11 ).
1.5.2. Frobenius elements
Let K be a number eld. The Galois group Gal(K=Q) leaves the ring OK of integers of K invariant, so that one obtains an induced action on the ideals of OK . The set of prime ideals p of OK lying over p (i.e., that contain p) is permuted under this action. For each p, the subgroup Dp of Gal(K=Q) xing p is called the decomposition group of p. Meanwhile, Fp := OK =p is a nite extension of Fp . The extension Fp =Fp is necessarily Galois; its Galois group is cyclic, generated by the Frobenius automorphism 'p : x 7! xp of Fp . There is a natural surjective map Dp ! Gal(Fp =Fp ); its injectivity is equivalent to the assertion that p is unrami ed in K=Q. Therefore, whenever this assertion is true, there is a unique p 2 Dp whose image in Gal(Fp =Fp ) is 'p . The automorphism p is then a well-de ned element of Gal(K=Q), the Frobenius automorphism for p. The various p are all conjugate under Gal(K=Q) and that the Frobenius automorphism for the conjugate of p by g is gp g;1. In particular, the various p are all conjugate; this justi es the practice of writing p for any one of them and stating that p is well de ned up to conjugation. We next introduce the concept of Frobenius elements in GQ = Gal(Q=Q). Let p again be a prime and let p now be a prime of the ring of integers of Q lying over p. To p we associate: (1) its residue eld Fp , which is an algebraic closure of Fp , and (2) a decomposition subgroup Dp of GQ . There is again a surjective map Dp ! Gal(Fp =Fp ). The Frobenius automorphism 'p topologically generates the target group. We shall use the symbol Frobp to denote any preimage of 'p in any Dp corresponding to a prime lying over p, and refer to Frobp as a Frobenius element for p in GQ . This element is doubly ill de ned. The ambiguity in Frobp results from the circumstance that p needs to be chosen and from the fact that Dp ! Gal(Fp =Fp ) has a large kernel, the inertia subgroup Ip of Dp . The usefulness of Frobp stems from the fact that the various p are all conjugate, so that likewise the subgroups Dp and Ip are conjugate. Thus if is a homomorphism mapping GQ to some other group, the kernel of contains one Ip if and only if it contains all Ip . In this case, one says that is unrami ed at p; the image of Frobp is then an element of the target that is well de ned up to conjugation. Consider an elliptic curve A over Q and let ` be a prime number. The xed eld of A;` is a nite Galois extension K` =Q whose Galois group G` is a subgroup of GL(2; F` ). A key piece of information about the extension K`=Q is that its discriminant is divisible at most by ` and primes dividing the conductor of A. In other words, if p 6= ` is a prime number at which A has good reduction, then K`=Q is unrami ed at ` (see Exercise 15); one says that the representation A;` is unrami ed at p. Whenever this occurs, the construction described above produces a Frobenius element p in G` that is well de ned up to conjugation. Fix again an elliptic curve A and a prime number `, and let A;` : GQ ! GL(2; F`) be the associated representation. For each prime p not dividing ` at which A has good reduction the Frobenius p = A;` (Frobp ) is well de ned only up
1.5. Background material
159
to conjugation. Nevertheless, the trace and determinant of p are well de ned. The determinant of A;` is the mod ` cyclotomic character , so p = (Frobp ) = p 2 F` . On the other hand, one has the striking congruence tr(A;` (Frobp )) = p + 1 ; #A~(Fp ) (mod `):
1.5.3. Modular forms
We now summarize some background material concerning modular forms. Serre's book [96] is an excellent introduction (it treats only N = 1). One might also read the survey article [27] or consult any of the standard references [65, 66, 75, 108]. The modular group SL(2; Z) is the group of 2 2 invertible integer matrices. For each positive integer N , consider the subgroup
a b 2 SL(2; Z) : N j c and a d 1 (mod N ) : c d Let h be the complex upper half plane. A cusp form of integer weight k 1 and level N is a holomorphic function f (z ) on h such that az + b = (cz + d)k f (z ) for all a b 2 ; (N ); f cz (1.5) 1 c d +d we also require that f (z ) vanishes at the cusps (see [108, x2.1]). We denote by Sk (;1 (N )) the space of weight-k cusp forms of level N . It is a nite dimensional complex vector space. When k 2 a formula for the dimension can be found in ;1 (N ) :=
[108, x2.6]. Modular forms are usually presented as convergent Fourier series
f (z ) =
1 X
n=1
an qn
where q := e2iz . This is possible because the matrices ( 10 1b ) lie in ;1 (N ) so that f (z + b) = f (z ) for all integers b. For the forms that most interest us, the complex numbers an are algebraic integers. The space Sk (;1 (N )) is equipped with an action of (Z=N Z) ; this action is given by
f (z ) 7! f jhdi(z ) := (cz + d);k f az + b
cz + d where ac db 2 SL(2; Z) is any matrix such that d d (mod N ). The operator hdi = hdi is referred to as a \diamond-bracket" operator. For each integer n 1, the nth Hecke operator on Sk (;1 (N )) is an endomorphism Tn of Sk (;1 (N )). The action is generally written on the right: f 7! f jTn. The various Tn commute with each other and are interrelated by identities that express a given Tn in terms of the Hecke operators indexed by the prime factors of n. If p N is a prime de ne the operator Tp on Sk (;1 (N )) by ;
-
f jTp (z ) =
1 X
n=1
anp qn + pk;1
1 X
n=1
an (f jhpi)qnp :
160
RIBET AND STEIN, SERRE'S CONJECTURES
For p j N prime, de ne Tp by
f jTp (z ) =
1 X n=1
anp qn :
The Hecke algebra associated to cusp forms of weight k on ;1 (N ) is the subring
T := Z[: : : Tn : : : hdi : : : ] End(Sk (;1(N ))) generated by all of the Tn and hdi. It is nite as a module over Z (see Exercise 20). The diamond-bracket operators are really Hecke operators, in the sense that they lie in the ring generated by the Tn; thus T = Z[: : : Tn : : : ]: An eigenform is a nonzero element f 2 Sk (;1 (N )) that is P a simultaneous eigenvector for every element of the Hecke algebra T. Writing f = an qn we nd
that an = a1 cn where cn is the eigenvalue of Tn on f . Since f is nonzero, a1 is also nonzero, so it is possible to multiply f by P a;1 1 . The resulting normalized eigenform wears its eigenvalues on its sleeve: f = cn qn . Because f is an eigenform, the action of the diamond bracket operators de nes a character " : (Z=N Z) ! C ; we call " the character of f . Associated to an eigenform f 2 Sk (;1 (N )) we have a system (: : : ap : : : ), p N , of eigenvalues. We say that f is a newform if this system of eigenvalues is not the system of eigenvalues associated to an eigenform g 2 Sk (;1 (M )) for some level M j N with M 6= N . Newforms have been extensively studied (see [2, 13, 69, 75]); the idea is to understand where systems of eigenvalues rst arise, and then reconstruct the full space Sk (;1 (N )) from newforms of various levels. -
1.5.4. Tate curves
The Tate curve is a p-adic analogue of the exponentiation of the representation C= of the group of an elliptic curve over C. In this section we recall a few facts about Tate curves; for further details, see [110, V.3]. Let K be a nite extension of Qp ; consider an elliptic curve E=K with split multiplicative reduction, and let j denote the j -invariant of E . By formally inverting the well-known relation j (q(z )) = q(1z ) + 744 + 196884q(z ) + between the complex functions q(z ) = e2iz and j (z ), we nd an element q 2 K with j = j (q) and jqj < 1. There is a Gal(Qp =K )-equivariant isomorphism E (Qp ) = Qp =qZ . The Tate curve, which we suggestively denote by Gm =qZ , is a scheme whose Qp points equal Qp =qZ . As a consequence, the group of n-torsion points on the Tate curve is identi ed with the Gal(Qp =K )-module fna (q1=n )b : 0 a; b n ; 1g; here n is a primitive nth root of unity and q1=n is a xed nth root of q in Qp . In particular, the subgroup generated by n is invariant under Gal(Qp =K ), so the local Galois representation on E [n] is reducible. It is also known that the group of connected component of the reduction of the Neron model of E over Fp is a cyclic group whose order is ordp (q). The situation is summarized by the following table (taken from [88]):
1.5. Background material Complex case C=
161
p-adic case no p-adic analogue
exponential map e2iz
no exponential available C=qZ K =qZ . Remark 1.2. When E has non-split multiplicative reduction over K , there is an unrami ed extension L over which E aquires split multiplicative reduction.
1.5.5. Mod ` modular forms
There are several excellent papers to consult when learning about mod ` modular forms. The papers of Serre [95] and Swinnerton-Dyer [112] approach the subject from the point of view of Galois representations. Katz's paper [59] is very geometric. Edixhoven's paper [32] contains a clear description of the basic facts. See also Jochnowitz's paper [56].
CHAPTER 2
Optimizing the weight In [102, x2] Serre associated to an odd irreducible Galois representation : GQ ! GL(2; F` ) two integers N () and k(), which are meant to be the minimal level and weight of a form giving rise to . Conjecture 2.1 (Strong conjecture of Serre). Let : GQ ! GL(2; F`) be an odd irreducible Galois representation arising from a modular form. Then arises from a modular form of level N () and weight k(). In this chapter, we are concerned with k(). We consider a mod ` representation that arises from an eigenform of level N not divisible by `. Using results of Fontaine and Deligne, we motivate Serre's recipe for k(). In [32], Edixhoven also de nes an \optimal" weight, which sometimes diers from Serre's k(). Our de nition is an \average" of the two; for example, we introduce a tiny modi cation of k() when ` = 2. We appologize for any confusion this may cause the reader. Using various arguments involving the Eichler-Shimura correspondence and Tate's -cycles, Edixhoven showed in [31] that there must exist another form of weight at most k(), also of level N , which gives rise to . Some of Edixhoven's result rely on unchecked compatibilities that are assumed in [46]; however, when ` 6= 2 these results were obtained unconditionally by Coleman and Voloch in [17]. We sketch some of Edixhoven's arguments to convey the avor of the subject. Remark 2.2 (Notation). We pause to describe a notational shorthand which we will employ extensively in this chapter. If : G ! Aut(V ) is a two-dimensional representation over a eld F, we will frequently write
to mean that there is a basis for V with respect to which ( x ) ( x ) (x) = (x) (x) 2 GL2 (F) for all x 2 G. If we do not wish to specify one of the entries we will simply write . Thus \ ( 0 1 )" means that possesses a one-dimensional invariant subspace, and the action on the quotient is trivial.
2.1. Representations arising from forms of low weight
We rst consider irreducible Galois representations associated to newforms of low P weight. Fix a prime ` and suppose f = an qn is a newform of weight k and 163
164
RIBET AND STEIN, SERRE'S CONJECTURES
level N , such that ` N and 2 k ` + 1. Let " : (Z=N Z) ! C denote the character of f . Fix a homomorphism ' from the ring of integers O of Q(: : : an : : : ) to F` . To abbreviate, we often write an for '(an ); thereby thinking of an as an element F` . Let = f;' : GQ ! GL(2; F` ) be the two-dimensional semisimple odd Galois representation attached to f and ', and assume that is irreducible. The recipe for N () depends on the local behavior of at primes p other than `; the recipe for k() depends on the restriction jI` of to the inertia group at `. Motivated by questions of Serre, Fontaine and Deligne described jI` in many situations. We distinguish two cases: the ordinary case and the non-ordinary case, which we call the \supersingular case." -
2.1.1. The ordinary case
Deligne (see [46, Prop. 12.1]) considered the ordinary case, in which arises from a weight-k newform f with a` (f ) 6= 02 F` .He showed that has a one-dimensional unrami ed quotient , so jD` 0 with (I` ) = 1 and = k;1 ". The mod N character " is also unrami ed at `because` N . Since the mod ` cyclotomic k;1 character has order ` ; 1 and jI` 0 1 ; the value of k modulo ` ; 1 is determined by jI` . In the case when k is not congruent to 2 modulo ` ; 1, the restriction jI` determines the minimal weight k(). We will discuss the remaining case in Section 2.2. -
2.1.2. The supersingular case and fundamental characters
Fontaine (see [32, x6]) investigated the supersingular case, in which arises from a newform f with a` (f ) = 0 2 F` . We call such a newform f supersingular. To describe the restriction jI` of to the inertia group at `, we introduce the fundamental characters of the tame inertia group. Fix an algebraic closure Q` of the eld Q` of `-adic numbers; let Qnr ` Q` denote the maximal unrami ed extension of Q` , and Qtm Q the maximal tamely rami ed extension of Qnr ` ` `. tm nr The extension Q` is the compositum of all nite extensions of Q` in Q` of degree prime to `. Letting D` denote the decomposition group, I` the inertia group, It the tame inertia group, and Iw the wild inertia group, we have the following diagram:
Q` Iw
Qtm ` D`
It
Qnr` Zb
Q`
I`
2.2. Representations of high weight
p
165
n It is a standard fact (see, e.g., [44, x8]) that the extensions Qnr ` ( `), for all n tm not divisible by `, generate Q` . For n not divisible by `, the nth roots of unity n are contained in Qnr ` . Kummer theory (see [3]) gives, for each n, a canonical isomorphism p pn (pn `) : ! ; nr ) ;; Gal(Qnr ( ` ) = Q ! 7 n ` ` n
`
Each isomorphism lifts to a map I` ! n that factors through the tame quotient It of I` . The groups n = n (Q` ) lie in the ring of integers Z` of Q` . Composing any of the maps It ! n with reduction modulo the maximal ideal of Z` gives a mod ` character It ! F` , as illustrated: / F It ❈ ❈ ✇ ; ` ❈❈ ❈❈ ❈!
= /
n (Q` )
✇✇ - ✇ ✇ ✇
n (F` ):
Let n = ` ; 1 with > 0. The map It ! n de nes a character " : I` ! F` . Composing with each of the eld embeddings F` ! F` gives the fundamental characters of level :
It
GG GG GG GG GG #
✇ ✇✇ ✇✇✇✇✇ ✇ ✇✇ ✇
F` F`
F
; ✇ ✇ ; `: ✇✇ ✇ ✇ ✇ ✇✇ ✇ ; ✇ ✇✇✇✇✇ ✇✇
maps
For example, the unique fundamental character of level 1 is the mod ` cyclotomic character (see Exercise 16). When = 2, there are two fundamental characters, denoted and 0 ; these satisfy ` = 0 and ( 0 )` = . Let A be an elliptic curve over Q` with good supersingular reduction. In [93], Serre proved that the representation It ! Aut(A[`]) GL(2; F` ) is the direct sum of the two fundamental characters and 0 . One of the characters is It ! F` GL(2; F` ) where F` is contained in GL(2; F` ) as a non-split Cartan subgroup of GL(2; F` ). More precisely, F` is embedded in GL(2; F` ) via the action of the multiplicative group of a eld on itself after a choice of basis. More generally, in unpublished joint work, Fontaine and Serre proved in 1979 that if f is a supersingular eigenform of weight k `, then jI` : I` ! GL(2; F` ) factors through It and is a direct sum of the two character k;1 and ( 0 )k;1 . Note that k is determined by this representation, because it is determined modulo `2 ; 1. 2
2
2
2.2. Representations of high weight
Let D` be a decomposition group at ` and consider a representation : D` ! GL(2; F` ) that arises from a newform f of possibly large weight k. Let ss denote the semisimpli cation of ; so ss = if is irreducible, otherwise ss is a direct
166
RIBET AND STEIN, SERRE'S CONJECTURES
sum of two characters and . The following lemma of Serre (see [93, Prop. 4]) asserts that ss is tamely rami ed. Lemma 2.3. Any semisimple representation is tame, in the sense that (Iw ) = 0. Proof. Since the direct sum of tame representations is tame, we may assume that is simple. The wild inertia group Iw is the pro nite Sylow `-subgroup of I` : it is a Sylow `-subgroup because each nite Galois extension of Qtm ` has degree a power of `, and the order of It is prime to `; it is unique, because it is the kernel of Gal(Q` =Q`) ! Gal(Q` =Qtm ` ), hence normal. Because is continuous, the image of D` is nite and we view as a representation on a vector space W over a nite extension of F` . The subspace W Iw = fw 2 W : ( )w = w for all 2 Iw g is invariant under D`. It is nonzero, as can be seen by writing the nite set W as a disjoint union of its orbits under Iw : since Iw is a pro-`-group, each orbit has size either 1 or a positive power of `. The orbit f0g has size 1, and #W is a power of `, so there must be at least ` ; 1 other singleton orbits fwg; for each of these, w 2 W Iw . Since is simple and W Iw is a nonzero D` -submodule, it follows that W Iw = W , as claimed. The restriction ss jI` is abelian and semisimple, so it is given by a pair of characters ; : I` ! F` : Let n be an integer not divisible by `, and consider the tower of elds p Qnr` ( n `) n
G
Qnr` Zb =hFrob` i
Q` pn nr nr in which G = Gal(Qnr = Gal(Qnr ` ( `)=Q` ), n ` ( `)=Q` ), and Gal(Q` =Q` ) is topologically generated by a Frobenius element at `. Choose a lift g 2 G of Frob` , pand consider an element h 2 n corresponding to an element 2 n nr Gal(Qnr ` ( `)=Q` ). Then since g acts as the `th powering map on roots of unity, p p p p gg;p1 ( n `) = g(gp; n `) = g(g;ph n `) = g(hp) n ` = h` : n n n n pn
`
1
`
1
`
`
Applying the conjugation formula ghg;1 = h` to ss gives ss (ghg;1) = ss (h` ) =
ss (h)` . The two representations h 7! ss (h)` and h 7! ss (h) of It are thus equivalent via conjugation by ss (g); we have ss (g)ss (h)ss (g;1 ) = ss (ghg;1) = ss (h)` : Consequently, the pair of characters f; g is stable under the `th power map, so as a set f; g = f`; ` g: There are two possibilities: | The ordinary case: ` = and ` = . | The supersingular case: ` = 6= and ` = 6= .
2.2. Representations of high weight
167
In the rst case and take values in F` and in the second case they take values in F` but not in F` . By the results discussed in Section 2.1, this terminology is consistent with the terminology introduced above. We rst consider the supersingular case. Let denote one of the fundamental characters of level 2, and write = n, = n` , with n an integer modulo `2 ; 1. Next write the smallest non-negative representative for n in base `: n = a + `b with 0 a; b ` ; 1. Then `n b + `a (mod `2 ; 1). Switching and permutes a and b so, relabeling if necessary, we may assume that a b. If a = b, then = a( 0 )a = a , so takes values in F` , which is not the supersingular case; thus we may assume that 0 a < b ` ; 1: We now factor out by a power of the cyclotomic character: = n = a ( 0 )b = a ( 0 )a ( 0 )b;a = a ( 0 )b;a = a b;a: Put another way, b;a 0 ss a 0 ( 0 )b;a : k; The untwisted representation is 0 ( 0 0 )k; , where k = 1 + b ; a. Since 2 1+ b ; a ` ; 1, the weight of the untwisted representation is in the range considered above. Thus we are in good shape to de ne k(). Before giving k() it is necessary to understand how the weight changes upon twisting by a power of the cyclotomic character . This problem is addressed by the theory of mod ` modular forms, rst developed by Serre [95] and Swinnerton-Dyer [112], then generalized by Katz [59]. A brief review of the geometric theory, which gives an excellent de nition of mod ` modular forms, can be found in [32, x2], [35, x1], or [46, x2]. In [61], Katz de ned spaces of mod ` modular forms, and a q-expansion map M : Mk (;1 (N ); F` ) ! F` [[q]]: 2
1
1
k0
This map is not injective, because both the Hasse invariant of weight ` ; 1 and the constant 1 have the same q-expansion. De nition 2.4. The minimal weight ltration w(f ) 2 Z of an element f of the ring of mod ` modular forms is the smallest integer k such that the q-expansion of f comes from a modular form of weight k; if no such k exists, do not de ne w(f ). De nition 2.5. De ne the operator = q dqd on q-expansions by (P anqn) = P nan qn . For example, if f is an eigenform of weight k, then there isPa mod ` eigenform f of weight k + ` + 1, still of level N , whose q-expansion is ( an qn ). Theorem 2.6. Let f be a mod ` modular form. Then w(f ) = w(f ) + ` + 1 if and only if ` w(f ). In addition, if ` j w(f ) then w(f ) < w(f ) + ` + 1. -
2.2.1. The supersingular case
We now give Serre's recipe for k() in the supersingular case. The minimal weight before twisting is 1+ b ; a, which is a positive integer that is not divisible by `. Each
168
RIBET AND STEIN, SERRE'S CONJECTURES
twist by adds ` + 1 to the weight, so in the supersingular case we are motivated to de ne k() := (1 + b ; a) + a(` + 1) = 1 + `a + b: We have to check that at each step the weight is prime to `, so the minimal weight does not drop during any of the a twists by . Since 1 < 1 + b ; a < ` and (1 + b ; a) + a(` + 1) (` ; 1) + (` ; 2)(` + 1) < `2 ; the weight can only drop if there exists c with 1 c < a such that (1 + b ; a) + c(` + 1) 0 (mod `): If this occurred, then c a ; b ; 1 (mod `). But 1 c < a ` ; 2, so either c = a ; b ; 1, which implies c 0 since a < b, or c = ` + a ; b ; 1 = a + ` ; 1 ; b a, which would be a contradiction. Assume that : GQ ! GL(2; F` ) arises from an eigenform f such that a` (f ) = 0 2 F` . Now we sketch Edixhoven's proof that arises from a mod ` eigenform of weight k(). Let ss denote the semisimpli cation of the restriction of to a decomposition group at `. The restriction of ss to the inertia group at ` is n ss jI` 0 ( 0 0 )n ; where and 0 = ` are the two fundamental characters of level 2. If necessary, reorder and 0 so that n = a + b` with 0 a < b ` ; 1. Then n = a+b` = a ( 0 )b = a ( 0 )a ( 0 )b;a = a ( 0 )b;a ; and 0 b;a 0 ss jI` a ( 0 ) b;a : Recall that, motivated by Fontaine's theorem on Galois representations arising from supersingular eigenforms, we de ned k() = a(` + 1) + (b ; a + 1) = 1 + `a + b: The rst step in showing that arises from a form of weight k(), is to recall the well known result that, up to twist, all systems of mod ` eigenvalues occur in weight at most ` + 1. This is the subject of the next section.
2.2.2. Systems of mod ` eigenvalues Theorem 2.7. Suppose is modular of level N and some weight k, and that ` N . Then some twist ; is modular of weight ` + 1 and level N . -
This is a general theorem, applying to both the ordinary and supersingular cases. See Serre [97, Th. 3] when N = 1; signi cant further work was carried out by Jochnowitz [55] and Ash-Stevens [1, Thm. 3.5] when ` 5. Two proofs are given in [32, Thm. 3.4 and x7]. The original method of Serre, Tate, and Koike for treating questions like this is to use the Eichler-Selberg trace formula. As Serre has pointed out to us, the weight appears in that formula simply as an exponent; this makes more or less clear that a congruence modulo `2 ; 1 gives information on modular forms mod `.
2.2. Representations of high weight
169
As a digression, we pause to single out some of the tools involved in one possible proof of Theorem 2.7. Note that by twisting we may assume without loss of generality that k 2. The group ;1 (N ) acts by matrix multiplication on the real vector space R2 . The Eichler-Shimura correspondence (see [108, x8.2]) is an isomorphism of real vector spaces = H 1 (; (N ); Symk;2 (R2 )): Sk (;1 (N )) ;;;;! P 1 The parabolic (or cuspidal) cohomology group HP1 is the intersection, over all cusps 2 P1 (Q), of the kernels of the restriction maps res : H 1 (;1 (N ); Symk;2 (R2 )) ! H 1 (; ; Symk;2 (R2 )); where ; denotes the stabilizer of . For xed z0 in the upper half plane, the Eichler-Shimura isomorphism sends a cusp form f to the class of the cocycle c : ;1 (N ) ! Symk;2 (R2 ) induced by
7! k;2
where z1
(z0 )
Z
z0
k;2
Re f (z ) z1
!
dz ;
denotes the image of z1 z1 2 Symk;2 (C2 ), and integration
is coordinate wise. There is an action of the Hecke algebra T on HP1 (;1 (N ); Symk;2 (R2 )); such that the Eichler-Shimura correspondence is an isomorphism of T-modules. The forms whose periods are integral form a lattice HP1 (;1 (N ); Symk;2 (Z2 )) inside HP1 (;1 (N ); Symk;2 (R2 )): Reducing this lattice modulo ` suggests that there is a relationship between mod ` modular forms and the cohomology group HP1 (;~ 1 (N ); Symk;2 (F2` )); where ;~ 1 (N ) is the image of ;1 (N ) in SL(2; F` ). Serre and Hida observed that for k ; 2 ` the ;~ (N ) representations Symk;2 (F2` ) are sums of representations 0 ;2 1 2 k arising in Sym (F` ) for k0 < k. This essential idea is used in proving that all systems of eigenvalues occur in weight at most ` + 1.
2.2.3. The supersingular case revisited
Let be a supersingular mod ` representation that arises from some modular form. By Theorem 2.7 there is a form f of weight k ` + 1 such that ; f . In fact, we may assume that 2 k `; when k = ` + 1 a theorem of Mazur (see [32, Thm. 2.8]) implies that there is a form of weight 2 giving rise to f , and when k = 1 we multiply f by the weight ` ; 1 Hasse invariant. To show that w( f ) = k() we investigate how application n of the -operator changes the minimal weight. We have (f )jI` 0 ( 0 0 )n with n = a + b` and a < b. Fontaine's theory (see Section 2.1) identi es the characters corresponding to f jI` as powers k;1 and ( 0 )k;1 of the fundamental characters. This gives an equality of unordered sets f k;1 ; ( 0 )k;1 g = f n; ( 0 )n g: It is now possible to compute w( f ) by considering two cases, corresponding to the ways in which equality of unordered pairs can occur.
170
RIBET AND STEIN, SERRE'S CONJECTURES
Case 1. Suppose that k;1 = ( 0)n . Since = `+1, we have
k;1+(`+1) = k;1 = ( 0 )n = ( 0 )a+b` = b+a`: Comparing exponents of gives (2.1) k ; 1 + (` + 1) b + a` (mod `2 ; 1); which reduces modulo ` + 1 to k ; 1 b ; a (mod ` + 1); because 2 k `, this implies that k = 1 + b ; a. Reducing (2.1) modulo ` ; 1 and substituting k = 1 + b ; a gives b ; a + 2 b + a (mod ` ; 1); we nd the possible solutions = a + m(` ; 1)=2 with m an integer. No solution = a + m(` ; 1)=2, with m odd, satis es (2.1), so = a as an integer mod ` ; 1. Finally, we apply Theorem 2.6 and argue as in the end of Section 2.2, to show that w(a f ) = w(f ) + a(` + 1) = 1 + b ; a + a` + a = 1 + b + a` = k(): Case 2. Suppose that k;1 = n. Then k;1+(`+1) = k;1 = n = a+b` : Comparing powers of , we obtain (2.2) k ; 1 + (` + 1) a + b` (mod `2 ; 1); which reduces modulo ` + 1 to k ; 1 a ; b (mod ` + 1); thus k = ` + 2 ; (b ; a): The dierence b ; a must be greater than 1; otherwise k = ` + 1, contrary to our assumption that 2 k `. Reducing (2.2) modulo ` ; 1 gives k ; 1 + 2 a + b (mod ` ; 1); substituting k = ` + 2 ; (b ; a) we nd that = b ; 1 + m(` ; 1)=2 with m an integer. If m is odd, then does not satisfy (2.2), so = b ; 1 as an integer modulo ` ; 1. It remains to verify the equality w(b;1 f ) = w(). Unfortunately, k = ` + 2 ; (b ; a) is not especially telling. The argument of Case 1 does not apply to compute w( f ); instead we use -cycles. Because f is supersingular, Fermat's Little Theorem implies that `;1 f = f . We use Tate's theory of -cycles (see [32, x7] and [55]) to compute w(b;1 f ). The -cycle associated to f is the sequence of integers w(f ); w(f ); w(2 f ); : : : ; w(`;2 f ); w(f ): The -cycle for any supersingular eigenform must behave as follows (see Theorem 2.6):
go up
✈ ✈ ✈ ✈✈ ✈ ✈ ✈✈ ✈✈ ✈
✈ : ✈ ✈ ✈✈ ✈ ✈ ✈ ✈ ✈ ✈ : : :✈ ✈ ✈ ✈✈
❄❄
❥ 5 ✴ ❥ ❥ ❥ ✴✴ ❥ ❄❄ ❥ ❥ ✴✴ ❄ ❄ drop ❥ ❥ ❥ ❥ ❥ ❄❄ ❥ ❥ go up : : : ✴✴ ❥ ❥ ❄❄ ❥ ❥ ❥ ✴✴ ❥ ❥ ❥ ❥ ❥ ✴ ✴ drop ✴✴ ✴✴ ✴✴ ✴
go up : : : , drop once, go up : : : , drop to original weight
2.3. Distinguishing between weights 2 and ` + 1
171
Knowing this, we can deduce the exact -cycle. List ` numbers starting and ending with k: k; k + (` + 1); k + 2(` + 1); : : : ; k + (` ; k)(` + 1); ` + 3 ; k; (` + 3 ; k) + (` + 1); : : : ; (` + 3 ; k) + (k ; 3)(` + 1);
k
The rst and second lines contain ` + 1 ; k and k ; 2 numbers, respectively. All told, ` numbers are listed; this must be the -cycle. It is now possible to compute w(b;1 f ). If b ; 1 ` ; k = ` ; (` + 2 ; b + a) = ;2 + b ; a; then a ;1, a contradiction; thus b ; 1 > ` ; k. It follows that w(b;1 f ) = ` + 3 ; k + (` + 1)(b ; 2 ; (` ; k)) = 1 + b + a` = k(); verifying Serre's conjecture in this case.
2.2.4. The ordinary case
We next turn to the ordinary case, in which
jI` 0
with ; : I` ! F` powers of the cyclotomic character. View jI` as the twist of a representation in which the lower right entry is 1:
;1 : 0 0 1
To determine the minimal weight of a form giving rise to jI` , it is necessary to develop an ordinary version of -cycles. In general this so we make isi complicated, the simplifying assumption that = 1; then jI` 0 1 with 1 i ` ; 1. Deligne showed that if f is of weight k and = 1, then the associated representation is 0k; 1 with 2 k ` + 1. Motivated by this, our rst reaction is to de ne k() to be i +1. This de nition does not distinguish between the extreme weights 2 and ` +1 because they are congruent modulo ` ; 1. Given a representation arising from a form of weight either 2 or ` + 1, we cannot, in general, set k() = 2. For example, suppose f = is the level 1 cusp form of weight 12 and is the associated mod 11 representation. It would be wrong to set k() = 2, because there is no cusp form of weight 2 and level 1. Warning: When ` = 2 and our k() is 3, Serre replaced k() by 4 because there are no weight-3 modular forms whose character is of degree coprime to ` = 2. 1
2.3. Distinguishing between weights 2 and ` + 1
We continue to motivate the de nition of k(). Consider a representation : GQ ! GL(2; F` ) that arises from a newform f of the optimal level N = N () and weight k satisfying 2 k ` +1. Assume that f is ordinary in the sense that a`(f ) 6= 0 2 F` . Then, as discussed in Section 2.1,
jI` 0k; 1 ; 1
172
RIBET AND STEIN, SERRE'S CONJECTURES
so jI` determines k modulo ` ; 1. This suggests a way to de ne k() purely in terms of the Galois representation , at least when k 62 f2; ` + 1g. The key to de ning k() when k = 2 or k = ` + 1 is good reduction. To understand why this is so, we brie y summarize Shimura's geometric construction of Galois representations associated to newforms of weight 2.
2.3.1. Geometric construction of Galois representations
P
Shimura attached mod ` representations to a weight-2 newform f = an qn of level N . Let E be the totally real or CM eld Q(: : : an : : : ). In [108, Thm. 7.14], Shimura described how to associate to f an abelian variety A = Af over Q of dimension [E : Q] furnished with an embedding E ,! EndQ A (see also Conrad's appendix). The mod ` representations attached to f are then found in the `-torsion of A. Over the complex numbers, the abelian variety A is found as a quotient of the Jacobian of the Riemann surface X1 (N ) := ;1 (N )nh = ;1 (N )nh [ fcuspsg: The Riemann surface X1 (N ) has a structure of algebraic curve over Q; it is called the modular curve of level N . Its Jacobian J1 (N ) is an abelian variety over Q which, by work of Igusa, has good reduction at all primes ` N . The dimension of J1 (N ) equals the genus of X1 (N ); for example, when N = 1, the curve X1 (1) is isomorphic over Q to the projective line and J1 (1) = 0. There are (at least) two functorial actions of the Hecke algebra T on J1 (N ), and (at least) two de nitions of J1 (N ). In the next section we will x choices, and then construct A as the quotient of J1 (N ) by the image of the annihilator in T of f . -
2.3.1.1. Hecke operators on J1 (N ). We pause to formulate a careful de nition of X1 (N ) and of our preferred functorial action of the Hecke operators Tp on J1 (N ). For simplicity, we assume that N > 4 and p N . Following [46, Prop. 2.1] there is a smooth, proper, geometrically connected algebraic curve X1 (N ) over Z[1=N ] that represents the functor assigning to each Z[1=N ]-scheme S the set of isomorphism classes of pairs (E; ), where E is a generalized elliptic curve over S and : (N )S ,! E sm [N ] an embedding of group schemes over S whose image meets every irreducible component in each geometric ber. Let X1 (N; p) be the ne moduli scheme over Z[1=N ] that represents the functor assigning to each Z[1=N ]-scheme S the set of isomorphism classes of triples (E; ; C ), where E is a generalized elliptic curve over S , : (N )S ,! E sm [N ] an embedding of group schemes over S , and C a locally free subgroup scheme of rank p in E sm [p], such that im() C meets every irreducible component in each geometric ber of E . Let 1 ; 2 : X1 (N; p) ! X1 (N ) over Z[1=N ] be the two standard degeneracy maps, which are de ned on genuine elliptic curves by 1 (E; ; C ) = (E; ) and 2 (E; ; C ) = (E 0 ; 0 = '), where E 0 = E=C and ' : E ! E 0 is the associated p-isogeny. The Hecke operator Tp = (Tp ) acts on divisors D on X1 (N )=Q by Tp (D) = (1 ) 2 D: For example, if (E; ) is a non-cuspidal Q-point, then X Tp (E; ) = (E 0 ; ' [p];1 ); -
2.3. Distinguishing between weights 2 and ` + 1
173
The Hecke operatorThe Hecke operator Tp = (Tp ) acts on divisors D on X1 (N )=Q by Tp (D) = (1 ) 2 D: For example, if (E; ) is a non-cuspidal Q-point, then X
Tp (E; ) = (E 0 ; ' [p];1 ); where the sum is over all isogenies ' : E ! E 0 of degree p, and Tp = (Tp ) acts on divisors D on X1 (N )=Q by Tp (D) = (1 ) 2 D: For example, if (E; ) is a non-cuspidal Q-point, then X Tp (E; ) = (E 0 ; ' [p];1 ); where the sum is over all isogenies ' : E ! E 0 of degree p, and where the sum is over all isogenies ' : E ! E 0 of degree p, and [p];1 is the inverse of pth powering on N . This map on divisors de nes an endomorphism Tp of the Jacobian J1 (N ) associated to X1 (N ) via Picard functoriality. For each prime p there is an involution hpi of X1 (N ) called a diamond bracket operator, de ned functorially by
hpi(E; ) = (E; [p]):
The diamond bracket operator de nes a correspondence, such that the induced map (hpi) on J1 (N ) is (hpi) (E; ) = (E; [p;1 ]): If (Tp ) denotes the pth Hecke operator as de ned in [46, x3], then (Tp ) = Tp (hp;1 i) ; Thus our Tp diers from Gross's (Tp ) . Furthermore, upon embedding X1 (N ) into J1 (N ) and identifying weight-2 cusp forms with dierentials on J1 (N ), Gross's (Tp ) induces, via Albanese functoriality, the usual Hecke action on cusp forms, whereas ours does not. In addition, we could have de ned X1 (N ) by replacing the group scheme N by (Z=N Z). In this connection, see the discussion at the end of Section 5 of [26] and [35, x2.1]. 2.3.1.2. The representations attached to aPnewform. Again let O be the ring of integers of E = Q(: : : an : : : ), where f = an qn is a weight-2 modular forms on ;1 (N ). Recall that A = Af is the quotient of J1 (N ) by the image of the annihilator in T of f . In general, O need not be contained in End A. However, by replacing A by an abelian variety Q-isogenous to A, we may assume that O is contained in End A (see [108, pg. 199]). Let be a maximal ideal of O and set A[] := fP 2 A(Q) : xP = 0 all x 2 g: By [108, Prop. 7.20, pg 190], dimO= A[] = 2, so A[] aords a 2-dimensional Galois representation, which is well-de ned up to semisimpli cation. Let f; : GQ ! A[]ss be the semisimpli cation of A[].
174
RIBET AND STEIN, SERRE'S CONJECTURES
2.3.1.3. Good reduction. De nition 2.8. A nite group scheme G over Qnr` is said to have good reduction, or to be nite at, if it extends to a nite at group scheme over the ring of integers OQ` of Qnr` . Proposition 2.9. The representation f; is nite at at each prime p N . Proof. The nite at group scheme extending A[] is the scheme theoretic closure of A[] in a good model A=OQ` of A. Such a model exists because A has good reduction at p. Consider again a Galois representation as in the beginning of Section 2.3 such that jI` 0k; 1 . If k 6 2 (mod ` ; 1) then k() is de ned to equal k. If k 2 (mod ` ; 1), then ( if is nite at, k() := 2 ` + 1 otherwise. nr
-
nr
1
2.4. Representations arising from elliptic curves
Theorem 2.10. Suppose A=Q is a semistable elliptic curve and that A;` is irreducible. Let A denote the minimal discriminant of A. The representation A;` is nite at at ` if and only if ` j ord` A . If p 6= `, then A;` is unrami ed at p if and only if ` j ordp A : Proof. The rst statement is Proposition 5 of [102]. When A has good reduction at p, the second statement holds (see Exercise 15). Suppose A has multiplicative reduction at p. There is an unrami ed extension K of Qp such that A has split multiplicative reduction at p. Consider the Tate curve Gm=qZ over K associated to A. Thus Qp=qZ = A(Qp ) as Gal(Qp=K )-modules. The `-torsion points A[`] correspond to the points f`a (q1=` )b : 0 a; b < `g in the Tate curve. The extension K (` ; q1=` ) of K is unrami ed because ` 6= p and ordp (q) = ordp (A ) is divisible by `. Since an unrami ed extension of an unrami ed extension is unrami ed, the extension K (` ; q1=` ) of Qp is unrami ed, which proves the second part of the theorem.
2.4.1. Frey curves
Using Theorem 2.10 we see that the Shimura-Taniyama conjecture together with Serre's conjecture implies Fermat's Last Theorem. Suppose (a; b; c) is a solution to the Fermat equation a` + b` = c` with ` 11 and abc 6= 0. Consider the Frey curve A given by the equation y2 = x(x ; a` )(x + b` ); it is an elliptic curve ` with discriminant A = ((abc2 ) ) : By [93, x4.1, Prop. 6] the representation A[`] is irreducible. Theorem 2.10 implies that A;` is unrami ed, except possibly at 2 and `. Thus N () j 2, and k() = 2 since ` j ord` (A ). But there are no cusp forms of level 2 and weight 2. The modularity of A (proved in [114, 117]), together with the weak conjecture of Serre (enough of which is proved in [84]), leads to a contradiction. 2
8
2.4.2. Examples
2.5. Companion forms
175
Using Theorem 2.10 we can frequently determine the Serre invariants N () and k() of a representation attached to an elliptic curve. When N () < N , it is illustrative to verify directly that there is a newform of level N () that also gives rise to . For example, there is a unique weight-2 normalized newform f = q + q2 ; q3 ; q4 ; 2q5 ; q6 + 4q7 ; 3q8 + q9 + on ;0 (33). One of the elliptic curves associated to f is the curve A given by the equation y2 + xy = x3 + x2 ; 11x: The discriminant of A is = 36 112 and the conductor is N = 3 11. Because A is semistable and there are no elliptic curves 3-isogenous to A, the associated mod 3 representation = A;3 : GQ ! Aut(A[3]) is surjective (see Section 1.4). Since 3 j ord3 A , the Serre weight and level are k() = 2 and N () = 11. As predicted by Serre's conjecture, there is a weight-2 newform on ;0 (11) such that if B is one of the three elliptic curves of conductor 11 (it does not matter which), then B [3] A[3] as representations of GQ . Placing the eigenforms corresponding to A and B next to each other, we observe that their Fourier coecients are congruent modulo 3: fA = q +q2 ;q3 ;q4 ;2q5 ;q6 +4q7 ;3q8 +q9 + fB = q ;2q2 ;q3 +2q4 +q5 +2q6 ;2q7 ;2q9 + : Next consider the elliptic curve A cut out by the equation y2 + y = x3 + x2 ; 12x + 2: It has conductor N = 141 = 3 47 and discriminant = 37 47. Since ord3 () is divisible by 7, the mod 7 representation A;7 has Serre invariants k(A;7 ) = 2 and N (A;7) = 47. In con rmation of Serre's conjecture, we nd a form f 2 S2 (;0 (47)) that gives rise to A;7 . The Fourier coecients of f generate a quartic eld. Next consider A;3 , whose Serre invariants are N (A;3 ) = 47 and, since 3 does not divide ord3 (), k(A;3 ) = ` + 1 = 4. In S4 (;0 (47)) there are two conjugacy classes of eigenforms, which are de ned over elds of degree 3 and 8, respectively. The one that gives rise to A;3 is g = q + aq2 + (;1=2a2 ; 5=2a ; 1)q3 + (a2 ; 8)q4 + (a2 + a ; 10)q5 + ; where a3 + 5a2 ; 2a ; 12 = 0.
2.5. Companion forms
Suppose f is a newform of weight k with 2 k ` +1. Let ` be an ordinary prime, so a`(f ) is not congruent to 0 modulo a prime lying over ` and
k;1 f; jI` 0 1 :
Is this representation split or not? Put another way, can be taken equal to 0, after an appropriate choice of basis? For how many ` do these representations split? We suspect that the ordinary split primes ` are in the minority, among all primes. How can we quantify the number of split primes? If = 0, then 1 0 jI` 0 k;1 ;
176 so
RIBET AND STEIN, SERRE'S CONJECTURES
`;k jI` `;k 0 01 : Assume that 2 1 + ` ; k ` + 1, so k( `;k ) = 1 + ` ; k. Using the -operator we see that `;k is modular, of some weight and level. To say that it is modular of Serre's conjectured weight k() is to make a much strong statement. If `;k is indeed modular of weight 1+ ` ; k, then by de nition there exists an eigenform g of weight 1 + ` ; k with g f `;k . Such an eigenform g, if it exists, is called a companion of f . The existence of g is far from obvious. We can extend the notion of companion form to the case when k() = `. In this case the companion has weight 1. If is unrami ed at `, then we expect to
also arise from a weight-1 eigenform. The existence of a companion form was proved (assuming unchecked compatibilities) in most cases in which k < ` by Gross in [46] and in a few cases when k = `. Using new methods, Coleman and Voloch [17] proved all cases except k = ` = 2. The arguments of Coleman and Voloch do not require veri cation of Gross's unchecked compatibilities.
CHAPTER 3
Optimizing the level Consider an irreducible Galois representation : GQ ! GL(2; F` ) that arises from a newform of weight k and level N . Serre de ned integers k() and N (), and conjectured that arises from a newform of weight k() and level N (). In Chapter 2 we sketched Edixhoven's proof that if ` N then arises from an newform of weight k() and level N . In this chapter, we introduce some of the techniques used in proving that arises from a newform level N (). For more details, see [84, 87]. In [102, x1.2] Serre de ned the optimal level N () Q as the prime-to-` part of the Artin conductor of . Recall that N () is a product pn(p) over prime numbers p 6= `. The integer n(p) is de ned by restricting to a decomposition group Dp at p. Consider the sequence of rami cation groups G0 G1 Gi where G0 is the inertia subgroup Ip of Dp . Let V be a vector space over F` aording the representation , and for each i 0 let Vi be the subspace of V consisting of those v 2 V that are xed by Gi . Then -
n(p) :=
1 X
1 dim V=V : i ( G : Gi ) 0 i=0
3.1. Reduction to weight 2
The optimal level N () is not divisible by `. The rst step in level optimization is to strip the power of ` from N . When ` is odd, this is done explicitly in [87, x2]; for the case ` = 2 see [9, x1]. Many of the arguments and key ideas are due to Serre [94]. This proof that ` can be stripped from the level uses concrete techniques of Serre [95, x3], [98, Thm. 5.4], and Queen [78, x3]; it involves multiplying f by suitable Eisenstein series and taking traces. Katz's theory of `-adic modular forms suggests an alternative method. A classical form of weight 2 and level M`m is an `-adic form of level M ; the mod ` reduction of this form is classical of level M and some weight, and is congruent to f . See the appendices of [60] and the discussions in [49, x1] and [50, x1]. The next step is to replace f by a newform of weight between 2 and ` + 1 that gives rise to a twist of . Twisting by the mod ` cyclotomic character preserves N ; this is because arises from (f ) = q dqd (f ), which also has level N . Theorem 2.7 asserts that some twist i of arises from a form g of weight between 2 and ` + 1. If i arises from a newform of level N , then also arises from a newform of the same level, so we can replace f by g and k by the weight of g. By results discussed in Chapter 2, we may assume that k = k( i ). For the case ` = 2 see [9, Prop. 1.3(a)]. 177
178
RIBET AND STEIN, SERRE'S CONJECTURES
We have reduced to considering a representation that arises from a newform f of weight k() and level N not divisible by `. The weight satis es 2 k() ` + 1, but N need not equal N (). That N is a multiple of N () is a theorem proved by both Carayol [12] and Livne [70, Prop. 0.1]. In order to lower N it is convenient to work systematically with form of weight 2. Paradoxically, even though we have just taken all powers of ` out of N , we are now going to allow one power of ` back into N . This allows us to reduce to weight 2 and realize as a group of torsion points on an abelian variety. An alternative approach (see [41, 57]) is to avoid this crutch and work directly with representations coming from arbitrary weights between 2 and ` + 1; these are realized in etale cohomology groups. This later approach has the advantage that X0 (N ) has good reduction at `. Reduction to weight 2 is accomplished using a general relationship that originates with ideas of Koike and Shimura. In characteristic `, eigenforms of level N whose weights satisfy 2 < k ` + 1 correspond to eigenforms of weight 2 and level `N (see [87, Thm. 2.2]): n
2 < k ` + 1, level N
o
o /o /o /o /o /o /
n
o
k = 2, level `N :
Thus we can and do work with weight 2 and level (
N := N
if k = 2, N` if k > 2.
3.2. Geometric realization of Galois representations
To understand representations arising from modular forms, it is helpful to realize these representations inside of geometric objects such as J := J1 (N ). These representations are constructed geometrically with the help of the Hecke algebra T := Z[: : : Tn : : : ]; which was de ned in Section 2.3. Recall that T is a commutative subring of EndQ J that is free as a module over Z, and that its rank is equal to the dimension of J . When N is cube free, T is an order in a product of integer rings of number elds; this is a result of Coleman and Edixhoven (see [16, Thm. 4.1]). In contrast, the Hecke operators Tp , for p3 j N , are usually not semisimple (see Exercise 3). It is fruitful to view a newform f as a homomorphism T ! O = Z[: : : an : : : ]; Tn 7! an: Letting ' : O ! F` be the map sending ap to tr((Frobp )) 2 F` , we obtain an exact sequence 0 ! m ! T ! F` with m a maximal ideal. Let : GQ ! GL(2; F` ) be an irreducible Galois representation that arises from a weight-2 newform f . The next step, after having attached a maximal ideal m to f and ', is to nd a T=m-vector space aording inside of the group of `-torsion points of J . Following [71, xII.7], we consider the T=m-vector space J [m] := fP 2 J (Q) : tP = 0 all t 2 mg J (Q)[`] (Z=`Z)2g : Since the endomorphisms in T are Q-rational, J [m] comes equipped with a linear action of GQ .
3.3. Multiplicity one
179
That tr((Frobp )) and det((Frobp )) both lie in the sub eld T=m of F` suggests that has a model over T=m, in the sense that is equivalent to a representation taking values in GL(2; T=m) GL(2; F` ). Lemma 3.1. The representation has a model m over the nite eld T=m. Proof. This is a classical result of I. Schur. Brauer groups of nite elds are trivial (see e.g., [100, X.7, Ex. a]), so the argument of [99, x12.2] proves the lemma. Alternatively, when the residue characteristic ` of T=m is odd, the following more direct proof can be used. Complex conjugation acts through as a matrix with distinct F` -rational eigenvalues; another well known theorem of Schur [90, IX a] (cf. [116, Lemme I.1]) then implies that can be conjugated into a representation with values in GL(2; T=m).
3.3. Multiplicity one
Let Vm be a vector space aording m. Under the assumption that m is absolutely irreducible, Boston, Lenstra, and Ribet (see [6]) proved that J [m] is isomorphic as a GQ -module to a sum of copies of Vm :
J [m]
t M i=1
Vm :
The number of copies of Vm is called the multiplicity of m. When ` is odd, the hypothesis of irreducibility of m is equivalent to absolute irreducibility (see Exercise 3). Proposition 3.2. The multiplicity t is at least 1. Proof. Let T End(J ) be the Hecke algebra associated to J . Because T Z` is an algebra of nite rank over the local ring Z` , we have a decomposition M T Z` = T ; j`
where runs through the maximal ideals of T lying over `, and T denotes the completion of T at (see, e.g., [37, Cor. 7.6]). The Tate module n Tate` J := Hom(Q` =Z` ; [n1 J [`n ]) = lim ; J [` ] is a free Z` -module of rank equal to twice the dimension of J . For each maximal ideal of T lyingPover `, let e 2 T Z` denote the corresponding idempotent; P thus e2 = e and j` e = 1. The map x 7! e x gives a decomposition
= Tate` J ;;;;!
M
j`
e Tate` J:
The ring End(J ) Z` operates faithfully on Tate` J (see, e.g., [74, Lem. 12.2]), so each summand e Tate` J is nonzero. Set Tate J := Hom(Q` =Z` ; [n1 J [n ]): We claim that Tate J is identi ed with e Tate` J under the natural inclusion Tate J Tate` J . Denote by ~ the maximal ideal in T Z` generated by . Let n be a positive integer, and let I be the ideal in T generated by `n . Because T is
180
RIBET AND STEIN, SERRE'S CONJECTURES
a local ring with maximal ideal ~, there is an integer m such that ~m I . Since I is principal and generated by `n , and T acts on e J [`n ] through T , we have e J [`n ] = (e J [`n ])[I ] (e J [`n ])[~m ] (e J [`n ])[m ] J [m ]: This shows that e Tate` J Tate J . Next suppose 0 6= and let n be a positive integer. Since T acts on J [n ] through T=n = T =~n , we have e0 J [n ] = 0, so X J [ n ] = e0 J [n ] = e J [n ]: all 0
The other inclusion Tate J = e Tate J e Tate` J , which we need to prove equality, then follows. We apply the above conclusion with = m. Since Tatem J 6= 0, some J [mr ] is nonzero; let r be the smallest such integer. Following [71, p. 112], observe that for each generating set of elements a1 ; : : : ; at of the T=m-vector space mr;1=mr , the map x 7! a1 x at x is an injection of the module J [mr ]=J [mr;1] into the direct sum of t copies of J [m]. Thus J [m] is nonzero. The special case t = 1, in which the multiplicity is one, plays a central role in the development of the theory. A detailed summary of multiplicity one results can be found in [32, x9], and some supplementary results are contained in [117, Thm. 2.1]. In general, the multiplicity can be greater than one (see [72, x13] and [63]).
3.3.1. Multiplicity one representations
Let : GQ ! GL(2; F` ) be an irreducible modular Galois representation such that 2 k() ` + 1: Consider pairs (N; ) where N 1 is an integer with the property that ` N if k() = 2 and ` jj N if k() > 2, together with maps : TN ! F` , such that (Tp ) = tr((Frobp )) and (phpi) = det((Frobp )) for almost all p. Here TN is the Hecke algebra associated to S2 (;1 (N )). Note that if (N; ) is such a pair and m = ker(), then -
m T=m F` ;
where : T=m ,! F` and m is the unique (up to isomorphism) semisimple representation over F` such that tr(m (Frobp )) = (Tp ) det(m (Frobp )) = (phpi) for almost all p. De nition 3.3. is a multiplicity one representation if J1(N )[ker ] has dimension 2 for all pairs (N; ) as above. Remark 3.4. 1. If J1(N )[ker ] has dimension 2 then m = J1 (N )[ker ] by Eichler-Shimura, see [6]. 2. The de nition extends to arbitrary modular Galois representations as follows. As explained in Section 2.2, every has a twist i by some power of the cyclotomic character such that k( i ) ` + 1. We say that is a multiplicity one representation if i is a multiplicity one representation.
3.3. Multiplicity one
181
3.3.2. Multiplicity one theorems
Techniques for proving multiplicity one results were pioneered by Mazur in [71] who considered J0 (p) with p prime. Let f be an eigenform and x a nonzero prime of the ring generated by the Fourier coecients of f such that f; is absolutely irreducible. View the Hecke algebra T as a subring of End(J0 (p)), and let m be the maximal ideal associated to f and . Let Vm again be a two-dimensional T=m-vector space that aords m : GQ ! GL(2; T=m). Mazur proved (see Prop. 14.2, ibid.) that J [m] Vm , except perhaps when m is ordinary of residue characteristic ` = 2. The missing ordinary case can be treated under suitable hypothesis. If m restricted to a decomposition group at 2 is not contained in the scalar matrices, then J [m] Vm (see, e.g., [9, Prop. 2.4]). The results of Mazur are extended in [72] and [84, x5]. Theorem 3.5. An irreducible modular Galois representation : GQ ! GL2(F`) is a multiplicity one representation, except perhaps when all of the following hypothesis on are simultaneously satis ed: | k() = `; | is unrami ed at `; | is ordinary at `; | jD` ( 0 ) with = . Proof. See [32, x9], [117, Thm. 2.1], and [9, Prop. 2.4] for the case ` = 2. In [46, x12] Gross proves multiplicity one when 6= , k() `, and is ordinary; he uses this result in his proof of the existence of companion forms. In contrast, Coleman and Voloch [17] prove the existence of companion forms when = and ` > 2 using a method that avoids the need for multiplicity one. Remark 3.6. L. Kilford of London, England has recently discovered an example at prime level 503 in which multiplicity one fails. Let E1 , E2 , and E3 be the three elliptic curves of conductor 503, and for each i = 1; 2; 3, let mi be the maximal ideal of T End(J0 (503)) generated by 2 and all Tp ; ap (Ei ), with p prime. Each of the Galois representations Ei [2] is irreducible, and one can check that m1 = m2 = m3 . If multiplicity one holds, then E1 [2] = E2 [2] = E3 [2] inside of J0 (503). However, this is not the case, as a modular symbols computation in the integral homology H1 (X0 (N ); Z) reveals that E1 \ E2 = f0g.
3.3.3. Multiplicity one for mod 2 representations
For future reference, we now wish to consider multiplicity one in the following rather extreme situation. Suppose that ` = 2, and let be a mod ` representation arising from a form of weight either 2 or 3. If the weight is 3 then is not nite at 2; this can be used to deduce multiplicity one by adapting the arguments of [72] (see the proof of [9, Prop. 2.4]). When the weight is 2, we have the following proposition. Proposition 3.7. Let : GQ ! GL2(PF2) be an irreducible Galois representation that arises from a weight-2 form f = an qn on ; = ;1 (N ) \ ;0 (2) with N odd, and let " be the character of f . If a22 6 "(2) 2 F2 , then is a multiplicity one representation.
182
RIBET AND STEIN, SERRE'S CONJECTURES
Proof. Let m be the maximal ideal associated to f in the Hecke algebra T at-
tached to ;. Because the weight of f is 2, the representation is nite at 2. If is supersingular then the inertia group I2 operates through the two fundamental characters of level 2. These both have order `2 ; 1 = 3 6= 1, so is rami ed and this can be used to deduce multiplicity one. If is ordinary then jD ( 0 ) with unrami ed and (Frob2 ) T2 mod m. The determinant of jD is " where is the mod 2 cyclotomic character and " is unrami ed at 2. Since , ", and are unrami ed, is also unrami ed. Since (Frob2 ) = 1 and = ", we have (Frob2 ) = ;1 (Frob2 )"(2) = a;2 1 "(2) (mod m): The further condition, under which we might not know multiplicity one, is jD = jD ; expressed in terms of the image of Frobenius, this becomes a;2 1 "(2) a2 (mod m), or equivalently, a22 "(2) (mod m). By hypothesis, this latter condition does not hold. 2
2
2
2
3.4. The key case
We have set our problem up so that level optimization pertains to weight-2 forms of appropriate level, and takes place on Jacobians of modular curves. This level optimization problem was described, and partially treated, in a paper of Carayol [12]. In this paper, Carayol reduced the problem to the following key case.
Key case: Let : GQ ! GL(2; F`) be a Galois representation that arises from a weight-2 newform f of level pM , with p `M , and character " : (Z=pM Z) ! C . Assume that is unrami ed at p, and that " factors through the natural map (Z=pM Z) ! (Z=M Z) . Show that arises from a form of level M . -
In the key case, the character " of f is unrami ed at p. Thus f , a priori on ;1 (pM ), is also on the bigger group ;1 (M ) \ ;0 (p); that is, f lies in S2 (;1 (M ) \ ;0 (p)). Example 3.8. Consider the representation arising from the 7-division points of the modular elliptic curve A of conductor NA = 3 47 and minimal discriminant A = 37 47. (The curve A is labeled 141A in Cremona's notation [20].) The newform f corresponding to A is on ;0 (347). As in Section 1.4, since ord3 (A ) = 7, the representation is unrami ed at 3 and N () = 47. To optimize the level means to nd a form g on ;0 (47) that gives rise to . Example 3.9 (Frey curves). The elliptic curves that Frey associated in [42] to hypothetical solutions of the Fermat equation x` + y` = z ` give rise to mod ` Galois representations. According to Wiles's theorem [117], there is a weight-2 form f of level 2L, with L big and square free, that gives rise to . At the same time, N () = 2. Taking p to be any odd prime dividing L, we are put in the key case. If we can optimize the level, then we eventually reach a contradiction and thus deduce Fermat's Last Theorem. The key case divides into two subcases; the more dicult one occurs when the following conditions are both satis ed: | p 1 (mod `); | (Frobp ) is a scalar matrix. The second condition makes sense because p N (); since det((Frobp )) = k;1 ", we know the scalar up to 1. The complementary case is easier; it can be treated -
3.5. Approaches to level optimization in the key case
183
using \Mazur's principle" (see Section 3.9). Though Example 3.8 falls into the easier case because 3 6 1 (mod 7), the proof of Fermat's Last Theorem requires level optimization in both cases. Consider a modular representation : GQ ! GL(2; F` ) that arises from a newform of level N and weight k = k(), and assume that ` N . The goal of level optimization is to show that there is a newform of Serre's optimal level N () that gives rise to . P As discussed in Section 3.1, arises from a newform f = an qn on ;1 (N ) of weight 2 and some character ". Thus there is a homomorphism ' from O = Z[: : : an : : : ] to F` such that '(ap ) = tr((Frobp)) for all p `N . Let T be the Hecke algebra associated to S2 (;1 (N )). The maximal ideal m of T associated to is the kernel of the map sending Tn to '(an ). As was discussed in the previous chapter, the representation is realized geometrically inside the subspace J [m] J [`] of the `-torsion of the Jacobian J of X1 (N ). Problem. Fix a divisor p of N =N (). Find a newform whose level is a divisor of N =p that also gives rise to . -
-
Lemma 3.10. Let be as above, and suppose p is a prime such that p j N but p `N (), so is unrami ed at p. Let "p denote the p part of ". Then either "p = 1 or p 1 (mod `). Proof. The character " is initially de ned as a homomorphism (Z=N Z) ! O; the reduction " is obtained by composing " with ' : O ! F` . Since is unrami ed k ;1 -
at p, the determinant det() = ` " = ` " is also unrami ed at p. Because ` is rami ed only at `, the character " is unrami ed at p. Let M = N =pr where r = ordp (N ), and write (Z=N Z) = (Z=pr Z) (Z=M Z) . By restricting " to each factor, we write " as a product of two characters: " = "p "(p) where "p is a character of (Z=pr Z) and "(p) is a character of (Z=M Z) . The character "(p) has conductor dividing M , so it is unrami ed at p. By class eld theory, "p is totally rami ed at p, so the reduction " is unrami ed at p precisely when "p = 1; equivalently, " is unrami ed at p exactly when "p has order a power of `. If "p is non-trivial, then, since the order of "p divides the order pr;1(p ; 1) of a generator of (Z=pr Z) , a power of ` divides pr;1 (p ; 1), so p 1 (mod `) since ` 6= p. In addition to his conjectures about the optimal weight and level, Serre also made a conjecture about the optimal character of a form giving rise to . Let p be a prime not dividing `N (). Serre's optimal character conjecture implies that , which we know to arise from a form on ;1 (M ) \ ;1 (pr ), arises from a form on ;1 (M ) \ ;0 (pr ), and this has been proved in most cases.
3.5. Approaches to level optimization in the key case
As discussed in Section 3.4, results of Carayol and Livne (see [12, 70]) reduce the level optimization problem to the following key case. The weight-2 newform f , a priori on ;1 (N ), is in fact on the bigger group ;1 (M ) \ ;0 (p), where Mp = N , p M , and is unrami ed at p. The goal is to show that arises from a newform on ;1 (M ). This has been achieved when ` is odd, and in many cases when ` = 2, using several level optimization techniques. -
184
RIBET AND STEIN, SERRE'S CONJECTURES
I. Mazur's principle If either (Frobp ) is not a scalar matrix or p 6 1 (mod `), then an argument of Mazur, explained in Section 3.9, can be used to optimize the level. II. Multiplicity one It is possible to optimize the level if is a multiplicity one representation, as explained in [84, 9] and Section 3.11. The cases in which multiplicity one is known were reviewed in Section 3.3. In particular, we do not know multiplicity one in some cases when k() = ` and the eigenvalues of Frobp are not distinct. III. Using a pivot Suppose that M can be written as a product M = qK with q a prime not dividing pK , that arises from a form on ;1 (K ) \ ;0 (pq), and that is rami ed at q and unrami ed at p. Then q can be used as a \pivot" to remove p from the level. This approach grew out of [83], and was introduced in the short paper [86]. In Section 3.10 we describe the approach and discuss the terminology. IV. Without multiplicity one When ` is odd and " = 1, the level optimization theorem was proved in [87] using an argument that does not require to have multiplicity one. The hypothesis ` 6= 2 is used in the proof of Proposition 7.8 of [87] to force splitting of a short exact sequence. In [26], Diamond extended the results of [87] to cover the case of arbitrary character, still under the assumption that ` is odd. One encounters seemingly insurmountable diculties in trying to push this argument through when ` = 2.
3.6. Some commutative algebra
In this section we set up some of the commutative algebra that is required in order to lower levels. There are two injective maps
S2 (;1 (M ))
/
/ S2 (;1 (M ) \ ;0 (p))
:
One is the inclusion f (q) 7! f (q) and the other is f (q) 7! f (qp ) (see Exercise 18). The p-new subspace S2 (;1 (M ) \ ;0 (p))p-new is the complement, with respect to the Petersson inner product, of the subspace S generated by the two images of S2 (;1 (M )). The p-new subspace can also be de ned algebraically as the kernel of the natural map from S2 (;1 (M ) \ ;0 (p)) to the direct sum of two copies of S2 (;1 (M )). Let T denote the Hecke algebra acting on S2 (;1 (M ) \ ;0 (p)). If p M , then Tp acts on S as a direct sum of two copies of its action on S2 (;1 (M )); otherwise, Tp usually does not act diagonally (see Exercise 19). The image of T in End(S ) is a quotient T called the p-new quotient. A representation associated to a maximal ideal m of T arises from level M if and only if m arises by pullback from a maximal ideal of T. Because the map T ! T is surjective, m arises from level M if and only if the image of m inT is not the unit ideal (see Exercise 21). -
3.7. Aside: Examples in characteristic two
Sections 3.7 and 3.8 can be safely skipped on a rst reading.
3.7. Aside: Examples in characteristic two
185
To orient the reader, we focus for the moment on mod 2 representations that arise from elliptic curves. We give examples in which one of the level optimizations methods applies but the others do not. We do not consider method IV because it is not applicable to mod 2 representations. The hypothesis of the \multiplicity one" method II when ` = 2 are discussed after the statement of Theorem 3.19 in Section 3.11. We were unable to nd an example in which none of the level optimization theorems applies. We will repeatedly refer to the following theorem, which rst appeared in [85]. Theorem 3.11. Suppose arises from a newform in S2(;0(N )). Let p `N be a prime satisfying one or both of the identities tr (Frobp ) = (p + 1) (mod `): Then arises from a newform of level pN . -
3.7.1. III applies but I and II do not
In this section we give a mod 2 representations in which the pivot hypothesis of
III is satis ed, but the hypotheses of I and II are not. Our example is obtained
by applying Theorem 3.11 to the mod 2 representation attached to a well-chosen elliptic curve. We will nd an elliptic curve E of conductor M = qR such that = E [2] is absolutely irreducible, rami ed at q, unrami ed at 2, and (Frob2 ) = ( 10 01 ). Because of the last condition, [9, Prop. 2.4] does not imply that is a multiplicity one representation, so II does not apply. (In fact, following Remark 3.6, one sees that is not a multiplicity one representation.) Likewise, I does not apply because (Frob2 ) is a scalar and the p we will chose will satisfy p 1 (mod 2). Next we choose a prime p 2qR such that E;2 (Frobp ) = ( 10 01 ). Let f be the newform associated to E . By Theorem 3.11 there is a newform g of level pqR such that -
In particular,
g; E;2 :
g; (Frobp ) = E;2(Frobp ) = ( 10 01 )
is scalar and p 1 (mod 2), so I does not apply. However, method III does apply with q used as a pivot. For example, consider the elliptic curve E de ned by the equation y2 + xy = x3 ; x2 + 19x ; 32: The conductor of E is N = 19 109, and the discriminant of the eld K = Q(E [2]) is ;193 1093. We select q = 19 as our pivot. The prime p = 73 splits completely in K , so 1 0 E;2 (Frobp ) = 0 1 : By Theorem 3.11 there is a form g of level 109 19 73 that is congruent to the newform f attached to E modulo a prime lying over 2. Method III can be used to optimize the level, but neither method I nor II applies.
3.7.2. II applies but I and III do not
We exhibit a mod 2 representation for which method II can be used to optimize
186
RIBET AND STEIN, SERRE'S CONJECTURES
Z[x]=(x + 1) (2; x + 1) (3; x + 1)
(3; x)
(2; x2 + x + 1) 2 Z[x]=(x + x + 3)
(5; x + 2)
2 2 (7; x2 + x + 3) (13; x + x + 3) (19; x + x + 3) (5; x + 4) (17; x2 + x + 3) (23; x + 5) (11; x + 6) (23; x + 19) (5; x + 1) (7; x + 1) (11; x + 1)
(13; x + 1) Figure 1.
(17; x + 1)
(23; x + 1) (19; x + 1)
The spectrum of T End(S2 (;0 (33))), with x = T3
the level, but neither method I nor III applies. Let K be the GL2 (F2 )-extension of Q obtained by adjoining all cube roots of 2. Then K = Q(E [2]), where E is the elliptic curve X0 (27) given by the equation y2 + y = x3 ; 7. The prime p = 31 splits completely in K , so by Theorem 3.11 there is a newform f of level 31 27 and a maximal ideal of the appropriate Hecke algebra such that f; E [2]. Neither method I nor III can be used to optimize the level of f; . Method I doesn't apply because 31 is odd and f; (Frob31 ) = ( 10 01 ); method III doesn't apply because the only odd prime that is rami ed in K is 3, which does not exactly divide 31 27. If D2 is a decomposition group at 2 then D2 has image in GL2 (F2 ) of order 2, so it is not contained in the scalar matrices and II can be used to optimize the level of f; .
3.8. Aside: Sketching the spectrum of the Hecke algebra
It is helpful to understand the Hecke algebra geometrically using the language of schemes (see, e.g., [38]). The topological space underlying the scheme Spec(T) is the set of prime ideals of T endowed with the Zariski topology, in which the closed sets are the set of prime ideals containing a xed ideal. We can draw Spec(T) by sketching a diagram whose irreducible components correspond to the Galois conjugacy classes of eigenforms, and whose intersections correspond to congruences between eigenforms. When the level is not cube free, T can contain nilpotent elements, and then one might wish to include additional P information. If an qn is an eigenform, then the failure of Z[: : : an : : : ] to be integrally closed can be illustrated by drawing singular points on the corresponding irreducible component; however, we do not do this below. Example 3.12. The spectrum of the Hecke algebra associated to ;0(33) is illustrated in Figure 1. The Hecke algebra T S2 (;0 (33)) has discriminant ;99, as does the characteristic polynomial of T3 , so T = Z[T3]=((T3 + 1)(T32 + T3 + 3)) = Z[x]=((x + 1)(x2 + x + 3)): We sketch a curve corresponding to each of the two irreducible components. Some of the closed points (maximal) ideals are represented as dots. One component corresponds to the unique newform on ;0 (33), and the other corresponds to the two images of the newform on ;0 (11).
3.9. Mazur's principle
187
141A
141E 2
3 43 3
141D
7
47A
141C 2
141B
141F: Z[T2]=(T22 + T2 ; 4) Figure 2.
The spectrum of T End(S2 (;0 (141)))
Example 3.13. Figure 2 is a diagram of the Hecke algebra associated to S2(;0(3
47)). We have labeled fewer closed points than in Figure 1. The components are labeled by their isogeny class and the level at which they are new (the notation extends that of [20]). The component labeled 141F corresponds to an eigenform whose Fourier coecients generate a quadratic extension of Q. The newform corresponding to the elliptic curve A from Example 3.8 is labeled 141A. Geometrically, the assertion that the level of A;7 can be optimized is represented by the characteristic-7 intersection between the component labeled 141A and the old component 47A coming from the unique Galois conjugacy class of newforms on ;0 (47).
3.9. Mazur's principle
A principle due to Mazur can be used to optimize the level in the key case, provided that a mild hypothesis is satis ed. The principle applies whenever p 6 1 (mod `) and also in the case when p 1 (mod `) but (Frobp ) is not a scalar. This principle rst appeared in [84, x6], then in [26, x4], and most recently when ` = 2 in [9, pg. 7].
188
RIBET AND STEIN, SERRE'S CONJECTURES
Theorem 3.14 (Mazur's Principle). Suppose that : GQ ! GL(2; F`) arises from
a newform f of weight 2 and level Mp, with p - M , and character " of conductor dividing M . Assume that is unrami ed at p and that either (Frobp ) is not a scalar matrix or p 6 1 (mod `). Then arises from a modular of level dividing M . We will require the following basic fact later in the proof. Lemma 3.15 (Li). Let f = P anqn be a newform on ;1(M ) \ ;0(p) of weight k. Then a2p = "(p)pk;2 : Proof. Li's proof is an easy application of her generalization to ;1 of the AtkinLehner theory of newforms [69, Thm. 3(iii)]. The newform f is an eigenvector for the operator Wp which is de ned on Sk (;1 (M ) \ ;0 (p)) by apz + b ; Wp (f ) = pk=2 f Mpz +p 2 where a and b are integers such that ap ; bMp = p. By [69, Lem. 3], g := Tp (f ) + pk=2;1 Wp (f ) lies in Sk (;1 (M )): For all primes q - Mp, the eigenvalue of Tq on the oldform g is the same as the eigenvalue of Tq on the newform f , so g = 0. By [69, Lem. 2] Wp 2 (f ) = "(p)f , so a2p = "(p)pk;2 . Remark 3.16. The case of Lemma 3.15 that we will need can also be understood in terms of the local representation jGp , which resembles the mod ` representation attached to a Tate curve, in the sense that jGp ( 0 ). Our hypothesis include the assumption that is unrami ed at p, so the two characters and are unrami ed at p. Thus (Frobp ) makes sense; we have (Frobp ) = ap (f ) and (Frobp ) = ap (f )p. Since det(jGp ) = 2 = ", we see that a2p = "(p): This local analysis of was vastly generalized by Langlands in [67], which extends the analysis to include many `-adic representations of possibly higher weight. See also [13]. Let T be the Hecke algebra associated to ;1 (M ) \ ;0 (p), and let m be the kernel of the following map T ! F` : Tn 7!an ; hdi7!"(d) F`: 0 ;! m ;! T ;;;;;;;;;;;! As in Lemma 3.1, the determinants and traces of elements in the image of = m lie in T=m F`, so there is a vector space V (T=m)2 that aords m . Next we realize m as a group of division points in a Jacobian. The curve X1 (Mp) corresponding to ;1 (Mp) covers the curve X1 (M; p) corresponding to ;1 (M ) \ ;0 (p). The induced map J = Jac(X1 (M; p)) ! J1 (Mp) = Jac(X1 (Mp)) has a nite kernel on which the Galois action is abelian. Just as in Section 2.3.1.1, the Hecke algebra associated to ;1 (M ) \ ;0 (p), can be constructed as a ring of correspondences on X1 (M; p), then viewed as a subring T EndQ(J ). Inside of J we nd the nonzero GQ -module J [m] ti=1V . For the purposes of this discussion, we do not need to know that J [m] is a direct sum of copies of V . The following weaker assertion, known long ago to Mazur [71, x14, pg. 112], will suce: J [m] is a successive extension of copies of V . In particular, V J [m]. A weaker conclusion, true since ` 2 m, is that V J [`],
X1 (M )
3.9. Mazur's principle
189
X1 (M ) Figure 3.
The reduction mod p of the Deligne-Rapoport model of X1 (M; p)
Our hypothesis that is unrami ed at p translates into the inclusion V J [`]Ip , where Ip is an inertia group at p. By [104, Lem. 2], if A is an abelian variety over Q with good reduction at p, then A[`]Ip = AFp [`]. However, the modular curve X1 (M; p) has bad reduction at p, so J is likely to have bad reduction at p| in this case it does. We are led to consider the Neron model J of J (see, e.g., [5]), which is a smooth commutative group scheme over Z satisfying the following property: the restriction map HomZ (S ; J ) ;! HomQ (SQ ; J ) is bijective for all smooth schemes S over Z. Passing to the scheme-theoretic closure, we have, inside of J , a two-dimensional T=m-vector space scheme V . In Section 2.3.1.1 we only de ned X1 (M; p) as a scheme over Z[1=Mp]. Deligne and Rapoport [25] extended X1 (M; p) to a scheme over Z[1=M ] and computed the reduction modulo p. The introduction to [62] contains a beautiful historical discussion of the diculties involved in extending modular curves over Z. We know a great deal about the reduction of X1 (M; p) at p, which is frequently illustrated by the squiggly diagram in Figure 3. This reduction is the union of 2 copies of X1 (M )Fp intersecting transversely at the supersingular points. The subspace S2 (;1 (M )) S2 (;1 (M )) of S2 (;1 (M ) \ ;0 (p)) is stable under the Hecke algebra T, so there is a map T ! End(S2 (;1 (M )) S2 (;1 (M ))). The p-old quotient of T is the image T. Since the map T ! T is surjective, the image of m in T is an ideal m. To optimize the level in the key case amounts to showing that m is not the unit ideal. As is well known (cf. [71, Appendix, Prop 1.4]), the results of M. Raynaud [82] and Deligne-Rapoport [25] combine to produce an exact sequence (3.1)
0 ;! T ;! JF0p ;! J1 (M )Fp J1 (M )Fp ;! 0;
where T is a torus, i.e., TFp Gm Gm , and JF0p is the identity component of JFp . There is a concrete description of T and of the maps in the exact sequence. Each object in the sequence is equipped with a functorial action of the Hecke algebra T, and the sequence is T-invariant. The p-old quotient T can be viewed as coming from the action of T on J1 (M )Fp J1 (M )Fp . By a generalization of [104, Lem. 2], the reduction map J (Qp )[`]Ip ! JFp (Fp ) is injective. Thus V = VFp (Fp ) JFp (Fp ). The component group = JFp =JF0p is Eisenstein, in the sense that it does not contain irreducible representations arising from eigenforms. Since V is irreducible, as a Galois module does not contain an
190
RIBET AND STEIN, SERRE'S CONJECTURES
isomorphic copy of V , so VFp JF0p and we have the following diagram: 0 /
T
/ _
JFO0p ?
VFp
/ J1 (M )Fp 8 p p p p p p p p p pp p p
J1 (M )Fp
/
0:
Since m acts as 0 on V , the image m of m acts as 0 on the image of V in J1 (M )Fp J1 (M )Fp . If m 6= (1) then we can optimize the level, so assume m = (1). Then the image of V in J1 (M )Fp J1 (M )Fp is 0, so VFp ,! T . Let Xp (J ) := Hom(T ; Gm ) be the character group of T . The action of T on T induces an action of T on Xp (J ). Furthermore, Xp (J ) supports an action of Gal(Fp =Fp ) which, because tori split over a quadratic extension, factors through the Galois group of Fp . View the Galois action as an action of Frobp 2 Dp = Gal(Qp =Qp). With our conventions, the action of Frobenius on the torus is as follows (cf. [26, pg. 31]). Lemma 3.17. The Frobenius Frobp acts as pTp on T (Fp ). Make the identi cation T = HomZ (Xp (J ); Gm ), so that V T (Fp )[`] = HomZ (Xp (J ); ` ): By Lemma 3.17, Frobp acts on V T (Fp ) as pap 2 T=m, i.e., as a scalar. The determinant of is ", so we have simulatenously ( det((Frobp )) = p"(p)2 and (pap ) : By Lemma 3.15, a2p = "(p), so p2 p (mod `). Since p 6= `, this can only happen if p 1 (mod `), which completes the proof. 2
3.10. Level optimization using a pivot
In this section we discuss an approach to level optimization that does not rely on multiplicity one results. In this approach, we eliminate a prime p from the level by making use of the rational quaternion algebra that is rami ed precisely at p and at a second prime q. The latter prime is, in the simplest case, an appropriate prime number at which rami es; in more complicated cases, it is an \auxiliary" prime at which is unrami ed. The central role of q in the argument, and the fact that q stays xed in the level while p is removed, leads us to refer to q as a \pivot." The following theorem rst appeared in [86]. Theorem 3.18. Let : GQ ! GL(2; F`) be an irreducible continuous representation that arises from an eigenform f on ;1 (K ) \ ;0 (pq) with p and q distinct primes that do not divide `K . Make the key assumption that the representation is rami ed at q and unrami ed at p. Then arises from a weight-2 eigenform on ;1 (K ) \ ;0 (q). The case ` = 2 is not excluded from consideration. Before sketching the proof, we describe a famous application. Edixhoven suggested to the rst author that such an approach might be possible in the context of
3.10. Level optimization using a pivot
191
Fermat's Last Theorem. We associate to a (hypothetical) solution a` + b` + c` = 0 of the Fermat equation with ` > 3 a Galois representation E [`] attached to an elliptic curve E . A theorem of Mazur implies that this representation is irreducible; a theorem of Wiles implies that it arises from a modular` form. Using Tate's algorithm, we nds that the discriminant of E is E = (abc2 ) , which is aQperfect `th power away from 2, and that the conductor of E is NE = rad(abc) = pjabc p. Let q = 2; then E [`] is rami ed at q because ` ord2 (E ) = ;8 (see Theorem 2.10), but E [`] is unrami ed at all other primes p, again by Theorem 2.10. To complete the proof of Fermat Last Theorem, we use q = 2 as a pivot and inductively remove each odd factor from N . One complication that may arise (the second case of Fermat Last Theorem) is that ` j N . Upon removing ` from the level (using Section 3.1), the weight may initially go up to ` + 1. If this occurs, since k() = 2 we can use [32] to optimize the weight back to 2. As demonstrated by the application to Fermat, in problems of genuine interest the setup of Theorem 3.18 occurs. There are, however, situations in which it does not apply such as the recent applications of level optimization as a key ingredient to a proof of Artin's conjecture for certain icosahedral Galois representations (see [10]). 2
8
-
3.10.1. Shimura curves
We cannot avoid considering Shimura curves. Denote by X (K; pq) the modular curve associated to ;1 (K ) \ ;0 (pq) and let J := Jac(X (K; pq)) be its Jacobian. Likewise, denote by X pq (K ) the Shimura curve associated to the quaternion algebra of discriminant pq. The curve X pq (K ) is constructed as follows. Let B be an inde nite quaternion algebra over Q of discriminant pq. (Up to isomorphism, B is unique.) Let O be an Eichler order (i.e., intersection of two maximal orders) of level K (i.e., reduced discriminant Kpq) in B . Let ;1 be the group of elements of O with (reduced) norm 1. After xing an embedding B ! M (2; R) (an embedding exists because B is inde nite), we obtain in particular an embedding ;1 ,! SL(2; R) and therefore an action of ;1 on the upper half-plane h. Let X pq (K ) be the standard canonical model, over Q, of the compact Riemann surface ;1 nh, and let J 0 = Jac(X pq (K )) denote its Jacobian. The curve X pq (K ) is furnished with Hecke correspondences Tn for n 1. We write Tn for the endomorphism of J induced by the Tn on X pq (K ) via Pic functoriality. Set J 0 := Jac(X pq (K )) and J := Jac(X (K; pq)). Work of Eichler, JacquetLanglands, and Shimura (see [36, 51, 106]) has uncovered a deep correspondence between certain automorphic forms and certain cusp forms. Combining their work with the isogeny theorem of Faltings [40], we nd (noncanonically!) a map J 0 ! J with nite kernel. The pq-new part of J is Jpq-new := ker(J (K; pq) ;! J (K; p)2 J (K; q)2 ) where the map is induced by Albanese functoriality from the four maps // X (K; p) // X (K; q ): X (K; pq) X (K; pq) and The image of J 0 ! J is the pq-new part of J .
3.10.2. Character groups
Amazingly, there seems to be no canonical map J 0 ! J between the Shimura and classical Jacobians described in the previous section. Surprisingly, there is a
192
RIBET AND STEIN, SERRE'S CONJECTURES
canonical relationship between the character groups of J 0 and J . The C erednikDrinfeld theory gives a description of X pq (K ) in characteristic p (see [14, 30]). Using this we nd a canonical T-equivariant exact sequence (3.2)
0 ! Xp (J 0 ) ! Xq (J ) ! Xq (J 00 ) ! 0
where J 00 = Jac(X (K; q))2 . This exact sequence relates a character group \in characteristic p" to two character groups \in characteristic q". We are now prepared to prove the theorem.
3.10.3. Proof Proof of Theorem 3.18. By our key assumption, the representation is rami ed at q, so m T is not q-old. We may as well suppose we are in a situation where we can not optimize the level, so we assume that m is not p-old either and hope for a contradiction. Localization is an exact functor, so the localization (3.3)
0 ;! Xp (J 0 )m ;! Xq (J )m ;! Xq (J 00 )m ;! 0
of (3.2) is also exact. The Hecke algebra T acts on Xq (J 00 ) through a quotient T. Since m is not q-old, the image of m in T generates the unit ideal. Therefore Xq (J 00 )m = 0 and we obtain an isomorphism Xp (J 0 )m Xq (J )m . If R is a Tmodule then R=mR = Rm =mRm so (3.4)
Xq (J )=mXq (J ) Xp (J 0 )=mXp (J 0 ):
Switching p and q and applying the same argument shows that
Xp (J )=mXp (J ) Xq (J 0 )=mXq (J 0 ): Both (3.4) and (3.5) are isomorphisms of T=m-vector spaces. L 0 By [ 6 ] we have an isomorphism J [ m ] V i=1 , with > 0 and J [m] L Our i=1 V . (It follows from [51] that > 0, but we will not use this here.) L hypothesis that V is unrami ed automatically propagates to all of J [m] i=1 V . (3.5)
Since V is irreducible and we are assuming that m is not p-old, the same argument as in Section 3.9 shows that J [m] T [m] where T is the toric part of JFp . This means that dim(Xp (J )=mXp (J )) 2. Using the same argument with J replaced by J 0 gives that dim(Xp (J 0 )=mXp (J 0 )) 2. As an Iq -module V is an extension of two copies of the trivial character. This follows from results of Langlands [67], since is a mod ` representation of GQ associated to some newform f whose level divides pqK and is divisible by q. (The admissible representation of GL(2; Qq ) which is associated to f is a special representation.) Because V is rami ed at q and there is an unrami ed line, we see that dim(V Iq ) = 1. Thus dim J [m]Iq = ; since q 6= ` and the action of inertia on character groups is trivial, we see that Hom(Xq (J )=mXq (J ); ` ) J [m]Iq ;
3.11. Level optimization with multiplicity one
193
so dim Xq (J )=mXq (J ) . A similar argument bounds dim Xq (J 0 )=mXq (J 0 ). We obtain the following quadruple of inequalities: dim Xq (J )=mXq (J ) ; dim Xq (J 0 )=mXq (J 0 ) ; dim Xp (J )=mXp (J ) 2; dim Xp (J 0 )=mXp (J 0 ) 2: Combining these with (3.4, 3.5), we nd that 2 dim Xp (J )=mXp (J ) = dim Xq (J 0 )=mXq (J 0 )
and simulatenously that 2 . Together these imply that 4 so = 0. But Proposition 3.2 implies that the multiplicity of in J [m] is strictly positive. This contradiction implies that our assumption that m is not p-old is false, hence m is p-old and arises from an eigenform on ;1 (K ) \ ;0 (q).
3.11. Level optimization with multiplicity one
Theorem 3.19. Suppose : GQ ! GL2(F`) is an irreducible multiplicity one representation that arises from a weight-2 newform f on ;1 (M ) \ ;0 (p) and that p
is unrami ed. Then there is a newform on ;1 (M ) that also gives rise to . We sketch a proof, under the assumption that ` > 2. Buzzard [9] has given a proof when ` = 2; his result has been combined with the results of [28] to prove a Wiles-like lifting theorem valid for many representations when ` = 2, and hence (thanks to Taylor) to establish new examples of Artin's conjecture (see [10]). The following diagram illustrates the multiplicity one argument: /o /o /o /o pivot /o /o /o /o /o /o /o / Mq Mpq 1. Let ` be the smallest prime divisor of d and choose a point x 2 ker(') of exact order `. If the order-` cyclic subgroup generated by x is Galois stable, then A;` is reducible, which is contrary to our assumption. Thus ker(') contains the full `-torsion subgroup A[`] of A. In particular, ' factors as illustrated below: A❋❋
'
❋❋ ❋ ❋` ❋❋
❋"
/ B: ; xx x xx x xx
A=A[`] Since A=A[`] = A, there is an isogeny from A to B of degree equal to d=`2 , which contradicts our assumption that d is minimal.
Solution 6. The Weil pairing ( ; ) : A[`] A[`] ! ` can be viewed as a map 2 ^
= A[`] ;! ` sending P ^Q to (P; Q). For any 2 Gal(Q =Q), we have (P ; Q ) = (P; Q) . With V2 the action (P ^ Q) = P ^ Q , the map A[`] ! ` is a map of Galois modules. ; To compute det(()) observe that if e1 , e2 is a basis for A[`], and () = ac db ,
then
(e1 ^ e2 ) = (ae1 + ce2 ) ^ (be1 + de2 ) = (ad ; bc)e1 ^ e2 = det(())e1 ^ e2 V2 Thus A[`] gives the one-dimensional representation det(). Since isomorphic to ` it follows that det() = .
V2
A[`] is
Solution 7.; Thede nition of hdi is as follows: choose any matrix d 2 ;0(N ) such that d d0 d;0 (mod N ); then hdif = f jd : Observe that ;1 (N ) is a normal 1
subgroup of ;0 (N ) and the matrices ; d with (d; N ) = 1 and d < N are a system of coset representatives. Thus any ac db 2 ;0 (N ) can be written in the form d g for some g 2 ;1 (N ). We have az + b ; k f = f jd g = (f jd )jg = ("(d)f )jg = "(d)f jg = "(d)(cz + d) f cz + d :
202
RIBET AND STEIN, SERRE'S CONJECTURES
Solution 8.
1. Since c2 = 1, the minimal polynomial f of (c) divides x2 ; 1. Thus f is ; either x + 1, x ; 1, or x2 ; 1. If f = x + 1 then (c) = ;1 = ;10 ;01 . This implies that det((c)) = (;1)2 = 1, which is a contradiction since det((c)) = ;1 and the characteristic of the base eld is odd. If f = x ; 1, then (c) = 1; again a contradiction. Thus the minimal polynomial of (c) is x2 ; 1 = (x ; 1)(x + 1). Since ;1 6= 1 there is a basis of eigenvectors for ; (c) such that the matrix of (c) with respect to this basis is ;10 01 . 2. The following example ; shows that when ` = 2 the matrix of A;` need not be conjugate to 10 ;01 . Let A be the elliptic curve over Q de ned by y2 = x(x2 ; a) with a 2 Q not square. Then p p A[2] = f1; (0; 0); ( a; 0); (; a; 0)g: p The action of cpon the basis (0; 0); (; a; 0) pis represented by the matrix p ( 10 11 ), since c(; a; 0) = ( a; 0) = (0; 0) + (; a; 0):
p Solution 9. TheQextension Q( d; d 2 Q=(Q)2) is an extension of Q with Galois group X F2 . The index-two open subgroups of X correspond to the quadratic extensions of Q. However, Zorn's lemma implies that X contains many
more index-two subgroups, which can be seen more precisely as follows. 1. ChooseQa sequence p1 ; p2 ; p3 ; : : : of distinct prime numbers. De ne 1 : GQ ! F2 by
p 1 ()i = 0 if acts trivially on Q( pi ); (
1 otherwise
Thus 1 is just
GQ ! Gal(Q(pp1 ; pp2 ; : : : )=Q)
Y
Q
F2 :
2. Let F2 F2 be the subgroup of elements having only nitely many Q nonzero coordinates. Then F2 =F2 is a vector Q space over F2 of dimension > 0. By Zorn's lemma, there is a basis B of F2 = FQ2 . Let b 2 B and let W be the subspace spanned by B ; fbg. Then V = ( F2 = F2 )=W is an F2 -vector space of dimensional 1. 3. Let be the composite map Gal(Q=Q)❘ Q
F2
❘ ❘ ❘ ❘ ❘ ❘ ❘ ❘ /
V
❘ ❘ ❘ ❘ ❘ ❘ )
/ = f1g
4. Let H = ker() Gal(Q=Q). If (ppi ) = ;ppi pand (ppj ) = ppj for i 6= j , then 2 H . Thus H does not x any Q( pi ), so the xed eld of H equals Q. The largest nite Galois group quotient through which factors is then Gal(Q=Q) = f1g. Since 6= 1, we conclude that does not factor through any nite Galois group quotient, which proves that is not continuous.
4.2. Solutions
203
Solution 10. We have f = f1 + f2 with f1; f2 2 S2(;0 (23)) and f1 = q ; q 3 ; q 4 + f2 = q2 ; 2q3 ; q4 + 2q5 + : Because S2 (;0 (23)) has dimension 2, it is spanned by f1 and f2. Let (q) = Q q n1 (1 ; qn ). Then g = ((q)(q23 ))2 2 S2 (;0 (23)). Expanding we nd that g = q2 ; 2q3 + , so g = f2 . Next observe that g is a power series in q2 modulo 2: 1 24
Y
g = q2 (1 ; qn )2 (1 ; q23n )2 Y q2 (1 ; q2n )(1 ; q46n ) (mod 2) Y q2 (1 + q2n + q46n + q48n ) (mod 2) Thus the coecient in f2 of qp with p 6= 2 prime is even, and the proposition follows.
Solution 11. V 1. Let 2 ` be a primitive `th root of unity. Since 2 A[`] = ` , there exists P; Q 2 A[`] such that P ^ Q = . Since ` > 2 there exists such that 6= , hence P ^ Q = 6 P ^ Q. This is impossible if all `-torsion is rational, since then P = P and Q = Q. 2. Consider the elliptic curve de ned by y2 = (x ; a)(x ; b)(x ; c) where a; b; c are distinct rational numbers.
Solution 12.
1. Let K be the splitting eld of x3 + ax + b. Then embeds Gal(K=Q) in GL(2; F2 ): Gal(Q=QN )
NN N N NN NNN N &
/
GL(2; F2 )
q 8 q q q q q q q + q q q
Gal(K=Q)
2. The representation is reducible exactly when the polynomial x3 + ax + b has a rational root. 3. Examples: y2 = x(x2 ; 23), y2 = x3 + x ; 1.
Solution 13. Consider the character = "=. By assumption, (Frobp ) = 1 for all unrami ed p. Let K be an extension of Q such that factors through Gal(K=Q). For any 2 Gal(K=Q), the Cebotarev density theorem implies that there are
in nitely many primes p such that Frobp = . Thus for any , () = (Frobp ) = 1, so = 1 and hence = ".
Solution 14.
1. See, e.g., [109, 2.11]. 2. By [109, 5.5], ; 1 is separable, so #A(Fp ) = deg( ; 1). Since has degree p, there exists an isogeny (the dual isogeny, see [109, III.6]), such
204
RIBET AND STEIN, SERRE'S CONJECTURES
that = p. Letting bars denote the dual isogeny, we have #A(Fp ) = deg( ; 1) = ( ; 1)( ; 1) = ; ; + 1 = p ; tr() + 1 3. Both maps are pth powering on coordinates.
Solution 15. Since ` 6= p and A has good reduction at p, the natural map A[`] ! A~[`] is an isomorphism. We have the following commutative diagram / Aut(A[`]) Gal(Qp (A[`])=Qp )
Gal((O=)Fp )
=
Aut(A~[`]) It follows that the rst vertical map must be injective, which is the same as Qp (A[`]) being unrami ed over Qp . /
Solution 16. The fundamental character of level one is the composition p nr `; Gal(Qnr ` ( `)=Q` ) ! `;1 (Q` ) ! `;1 (F` ) = F` : Let be such that `;1 = `. Then () = () (mod ): Let 2 Q` be a primitive 1
`th root of unity. Now so
`Y ;1
( a ; 1) = `;
a=1
( ; 1)`;1
`Y ;1 a ; 1 a=1
; ;1 =`
and (this is where Wilson's theorem is used), `Y ;1 a ; 1 ` a=1 ; 1
1 (mod ; 1):
Since the polynomial x`;1 ; 1 has roots over F` , by Hensel's lemma there is a unit u 2 Q`() such that `Y ;1 a u`;1 = ;;11 : a=1 We can take = ( ; 1)u. Then () = ( () ; 1)(u) ( ; 1)u ();1 + 1) (u) = ( ; 1)( ( ; + 1)u ( ) ; 1 = ( + + 1)(u)=u () (mod ; 1):
4.2. Solutions
205
Solution 17. We write N = N () and k = k() to save space. The essential tool
is Theorem 2.10. 1. ` = 5: N = 6, k = 6, ` > 5, N = 30, k = 2. 2. ` = 5: N = 2 3 7, k = 6; ` = 7: N = 2 3 5, k = 8; ` > 7: N = 2 3 5 7, k = 2. 3. ` = 3: N = 2 5 11, k = 4; ` = 5: N = 2 3 11, k = 6; ` = 7: N = 2 3 5 11, k = 2; ` = 11: N = 2 3 5, k = 12; ` > 11: N = 2 3 5 11, k = 2. 4. ` = 3: N = 7 13, k = 2; ` = 5: N = 7 13, k = 6; ` = 7: N = 5 13, k = 8; ` = 13: N = 5 7, k = 14; ` = 11; ` > 13: N = 5 7 13, k = 2. 5. ` = 3: N = 2 11 19, k = 2; ` = 7: N = 2 11 19, k = 8; ` = 11: N = 2 7 19, k = 12; ` = 19: N = 2 7 11, k = 20; ` other: N = 2 7 11 19, k = 2.
Solution 20. One approach is to view J1 (N ) as a complex torus, and note that
the endomorphism ring is the set of automorphism of a complex vector space that x a lattice. Another approach is to use the deeper niteness theorems that are valid in arbitrary characteristic, see, e.g., [74, Thm. 12.5].
CHAPTER 5
Appendix by Brian Conrad: The Shimura construction in weight 2 The purpose of this appendix is to explain the ideas of Eichler-Shimura for constructing the two-dimensional `-adic representations attached to classical weight-2 Hecke eigenforms. We assume familiarity with the theory of schemes and the theory of newforms, but the essential arithmetic ideas are due to Eichler and Shimura. We warn the reader that a complete proof along the lines indicated below requires the veri cation of a number of compatibilities between algebraic geometry, algebraic topology, and the classical theory of modular forms. As the aim of this appendix is to explain the key arithmetic ideas of the proof, we must pass over in silence the veri cation of many such compatibilities. However, we at least make explicit what compatibilities we need. To prove them all here would require a serious digression from our expository goal; see [18, Ch. 3] for details. It is also worth noting that the form of the arguments we present is exactly the weight-2 version of Deligne's more general proof of related results in weight > 1, up to the canonical isomorphism Q` Z` lim; Pic0X=k [`n](k) = He1t(X; Q`(1)) = He1t;c(Y; Q`(1)) for a proper smooth connected curve X over a separably closed eld k of characteristic prime to `, and Y a dense open in X . Using `-adic Tate modules allows us to bypass the general theory of etale cohomology which arises in the case of higher weight.
5.1. Analytic preparations p
Fix i = ;1 2 C for all time. Fix an integer N 5 and let X1 (N )an denote the classical analytic modular curve, the \canonical" compacti cation of Y1 (N )an = ;1 (N )nh, where h = fz 2 C : Im z > 0g and ;1 (N ) SL2 (Z) acts on the left via linear fractional transformations. The classical theory identi es the C-vector space H 0 (X1 (N )an ; 1X (N ) ) with S2 (;1 (N ); C), the space of weight-2 cusp forms. Note that the classical Riemann surface X1 (N )an has genus 0 if we consider N < 5, while S2 (;1 (N ); C) = 0 if N < 5. Thus, assuming N 5 is harmless for what we will do. The Hodge decomposition for the compact Riemann surface X1 (N )an supplies us with an isomorphism of C-vector spaces 1
an
207
208
CONRAD, THE SHIMURA CONSTRUCTION
S2 (;1 (N ); C) S2 (;1 (N ); C) =H 0 (X1 (N )an ; 1X (N ) ) H 0 (X1 (N )an ; 1X (N ) ) H 1 (X (N )an ; C) ;! 1 =H 1 (X1 (N )an ; Z) Z C (where A denotes the constant sheaf attached to an abelian group A). This 1
an
1
an
will be called the (weight-2) Shimura isomorphism. We want to de ne \geometric" operations on H 1 (X1 (N )an ; Z) which recover the classical Hecke operators on S2 (;1 (N ); C) via the above isomorphism. The \geometric" (or rather, cohomological) operations we wish to de ne can be described in two ways. First, we can use explicit matrices and explicit \upper-half plane" models of modular curves. This has the advantage of being concrete, but it provides little conceptual insight and encourages messy matrix calculations. The other point of view is to identify the classical modular curves as the base of certain universal analytic families of (generalized) elliptic curves with level structure. A proper discussion of this latter point of view would take us too far a eld, so we will have to settle for only some brief indications along these two lines (though this is how to best verify compatibility with the algebraic theory via schemes). ; Choose a matrix n 2 SL2 (Z) with n n0 ; n (mod N ), for n 2 (Z=N Z) . The action of n on h induces an action on Y1 (N )an and even on X1 (N )an . Associating to each z 2 h the data of the elliptic curve C=[1; z ] = C=(Z + Zz ) and the point 1=N of exact order N , we may identify Y1 (N )an as a set with the set of isomorphism classes of pairs (E; P ) consisting of an elliptic curve E over C and a point P 2 E of exact order N . The map Y1 (N )an ! Y1 (N )an induced by n can then described on the underlying set by (E; P ) 7! (E; nP ), so it is \intrinsic", depending only on n 2 (Z=N Z) . We denote by In : X1 (N )an ! X1 (N )an the induced map on X1 (N )an . Once this data (E; P ) is formulated in a relative context over an analytic base, we could de ne the analytic map In conceptually, without using the matrix n . We ignore this point here. ;1 on h induces a map Y1 (N )an ! Y1 (N )an which extends to The map z 7! Nz an wN : X1 (N ) ! X1 (N )an . More conceptually and more generally, if 2 N (C) is a primitive N th root of unity, consider the rule w that sends (E; P ) 2 Y1 (N )an to (E=P; P 0 mod P ), where P 0 2 E has exact order N and hP; P 0 iN = , with h ; iN the Weil pairing on N -torsion points (following the sign conventions of [62, 77]; opposite the convention of [109]). More speci cally, on C=[1; z ] we have h N1 ; Nz iN = e2i=N . The map w extends to an analytic map X1 (N )an ! X1 (N )an . When = e2i=N , we have w = wN due to the above sign convention. We have induced pullback maps w ; In : H 1 (X1 (N )an ; Z) ! H 1 (X1 (N )an ; Z): We write hni rather than In . Finally, choose a prime p. De ne ;1 (N; p) SL2 (Z) to be ;1 (N; p) = ;1 (N ) \ ;0 (p) when p N and ;1 (N; p) = ;1 (N ) \ ;0 (p)t when p j N , where the group ;0 (p)t is the transpose of ;0 (p). De ne Y1 (N; p)an = ;1 (N; p)nh and let X1 (N; p)an be its \canonical" compacti cation. Using the assignment z 7! (C=[1; z ]; 1 ; h 1 i) 1
-
N p
5.1. Analytic preparations
209
when p N and -
z 7! (C=[1; z ]; N1 ; h zp i) when p j N , we may identify the set Y1 (N; p)an with the set of isomorphism classes of triples (E; P; C ) where P 2 E has exact order N and C E is a cyclic subgroup of order p, meeting hP i trivially (a constraint if p j N ). Here and below, we denote by hP i the (cyclic) subgroup generated by P .
There are unique analytic maps 1(p) ; 2(p) : X1 (N; p)an ! X1 (N )an determined on Y1 (N; p)an by 1(p) (E; P; C ) = (E; P ) and 2(p) (E; P; C ) = (E=C; P mod C ): For example, 1(p) is induced by z 7! z on h, in terms of the above upper half plane uniformization of Y1 (N )an and Y1 (N; p)an . We de ne Tp = (1(p) ) (2(p) ) : H 1 (X1 (N )an ; Z) ! H 1 (X1 (N )an ; Z) where (1(p) ) : H 1 (X1 (N; p)an ; Z) ! H 1 (X1 (N )an ; Z) is the canonical trace map associated to the nite map 1(p) of compact Riemann surfaces. More speci cally, we have a canonical isomorphism H 1 (X1 (N; p)an ; Z) = H 1 (X1 (N )an ; (1(p) ) Z) since (1(p) ) is exact on abelian sheaves, and there is a unique trace map of sheaves (1(p) ) Z ! Z determined on stalks at x 2 X1 (N )an by Y
(5.1)
1(p) (y)=x
Z!Z
(ay ) 7! y ey ay where ey is the rami cation degree of y over x via 1(p) . A fundamental compatibility, whose proof we omit for reasons of space, is: Theorem 5.1. The weight-2 Shimura isomorphism Sh; (N ) : S2 (;1 (N ); C) S2 (;1 (N ); C) = H 1 (X1 (N )an ; Z) Z C from (5:1) identi es hni hni with hni 1, Tp T p with Tp 1, and wN wN with we i=N 1. Let T1 (N ) EndZ (H 1 (X1 (N )an ; Z)) be the subring generated by the Tp's and hni 's. By Theorem 5.1, this is identi ed via the Shimura isomorphism with the classical (weight-2) Hecke ring at level N . In particular, this ring is commutative (which can be seen directly via cohomological considerations as well). It is clearly a nite at Z-algebra. The natural map (5.2) T1 (N ) Z C ,! EndC(H 1(X1(N )an ; Z) Z C) 1
2
210
CONRAD, THE SHIMURA CONSTRUCTION
induces an injection T1 (N ) C ,! EndC (S2 (;1 (N ); C)), by Theorem 5.1. This is the classical realization of Hecke operators in weight 2. Another compatibility we need is between the cup product on H 1 (X1 (N )an ; Z) and the (non-normalized) Petersson product on S2 (;1 (N ); C). To be precise, we de ne an isomorphism H 2 (X1 (N )an ; Z) = Z using the i-orientation of the complex manifold X1 (N )an (i.e., the \idz ^ dz" orientation), so we get via cup product a (perfect) pairing ( ; ); (N ) : H 1 (X1 (N )an ; Z) Z H 1 (X1 (N )an ; Z) ! H 2 (X1 (N )an ; Z) = Z: This induces an analogous pairing after applying Z C. For f; g 2 S2 (;1 (N ); C) we de ne Z hf; gi; (N ) = f (z )g(z )dxdy 1
;1 (N )nh
1
where this integral is absolutely convergent since f and g have exponential decay near the cusps. This is a perfect Hermitian pairing. Theorem 5.2. Under the weight-2 Shimura isomorphism Sh; (N ), ; Sh; (N ) (f1 + g1 ); Sh; (N ) (f2 + g2 ) ; (N ) = 4 (hf1 ; g2i; (N ) ; hf2 ; g1i; (N ) ): Note that both sides are antilinear in g1 , g2 and alternating with respect to interchanging the pair (f1 ; g1 ) and (f2 ; g2 ). The extra factor of 4 is harmless for our purposes since it does not aect formation of adjoints. What is important is that in the classical theory, conjugation by the involution wN takes each T 2 T1 (N ) to its adjoint with respect to the Petersson product. The most subtle case of this is T = Tp for p j N . For p N the adjoint of Tp is hp;1 i Tp and the adjoint of hni is hn;1 i . These classical facts (especially for Tp with p j N ) yield the following important corollary of Theorem 5.2. Corollary 5.3. With respect to the pairing [x; y]; (N ) = (x; w y); (N ) with = e2i=N , the action of T1 (N ) on H 1 (X1 (N )an ; Z) is equivariant. That is, [x; Ty]; (N ) = [Tx; y]; (N ) for all T 2 T1 (N ). With respect to ( ; ); (N ) , the adjoint of Tp for p N is hp;1 i Tp and the adjoint of hni is hn;1 i for n 2 (Z=N Z) . Looking back at the \conceptual" de nition of w for an arbitrary primitive N th root of unity 2 N (C), which gives an analytic involution of X1 (N )an , one can check that wj w = hj i for j 2 (Z=N Z) . Since hj i is a unit in T1 (N ) and T1(N ) is commutative, we conclude that Corollary 5.3 is true with 2 N (C) any primitive N th root of unity (by reduction to the case = e2i=N ). Our nal step on the analytic side is to reformulate everything above in terms of Jacobians. For any compact Riemann surface X , there is an isomorphism of complex Lie groups Pic0X (5.3) = H 1 (X; OX )=H 1(X; Z) via the exponential sequence 1
1
1
1
1
1
-
1
1
1
1
-
1
0 ! Z ! OX ;e;;;! OX ! 1 and the identi cation of the underlying group of Pic0X with H 1 (X; OX ) = H 1 (X; OX ) ; 2i( )
5.1. Analytic preparations
211
where the line bundle L with trivializations 'i : OUi = LjUi corresponds to the class of the C ech 1-cocycle Y f';j 1 'i : OUi \Uj = OUi \Uj g 2 H 0 (Ui \ Uj ; OX ) i<j
for an ordered open cover fUig. Beware that the tangent space isomorphism T0(Pic0X ) = H 1 (X; OX ) coming from (5.3) is ;2i times the \algebraic" isomorphism arising from 0 ! OX ! OX ["] ! OX ! 1; where X ["] = (X; OX ["]="2 ) is the non-reduced space of \dual numbers over X ". This extra factor of ;2i will not cause problems. We will use (5.3) to \compute" with Jacobians. Let f : X ! Y be a nite map between compact Riemann surfaces. Since f is nite at, there is a natural trace map fOX ! OY , and it is not dicult to check that this is compatible with the trace map f Z ! Z as de ned in (5.1). In particular, we have a trace map f : H 1 (X; OX ) = H 1 (Y; f OX ) ! H 1 (Y; OY ): Likewise, we have compatible pullback maps f OY = OX and f Z = Z. Thus, any such f gives rise to commutative diagrams H 1 (Y;O OY ) f / H 1 (X;O OX )
H 1 (Y; Z)
H 1 (X;O OX ) f / H 1 (Y;O OY )
f / 1 H (X; Z)
H 1 (X; Z) f / H 1 (Y; Z) ;
where the columns are induced by the canonical maps Z ! OY and Z ! OX . Passing to quotients on the columns therefore gives rise to maps f : Pic0Y ! Pic0X ; f : Pic0X ! Pic0Y of analytic Lie groups. These maps are \computed" by Lemma 5.4. In the above situation, f = Pic0 (f ) is the map induced by Pic0 functoriality and f = Alb(f ) is the map induced by Albanese functoriality. These are dual with respect to the canonical autodualities of Pic0X , Pic0Y . The signi cance of the theory of Jacobians is that by (5.3) we have a canonical isomorphism T` (Pic0X (N ) ) = H 1 (X1 (N )an ; Z`) (5.4) = H 1 (X1 (N )an ; Z) Z Z` ; connecting the `-adic Tate module of Pic0X (N ) with the Z-module H 1 (X1 (N )an ; Z) that \encodes" S2 (;1 (N ); C) via the Shimura isomorphism. Note that this isomorphism is de ned in terms of the analytic construction (5.3) which depends upon the choice of i. The intrinsic isomorphism (compatible with etale cohomology) has Z above replaced by 2iZ = ;2iZ. De nition 5.5. We de ne endomorphisms of Pic0X (N ) via Tp = Alb(1(p) ) Pic0 (2(p) ); hni = Pic0 (In ); w = Pic0 (w ): 1
an
1
1
an
212
CONRAD, THE SHIMURA CONSTRUCTION
By Lemma 5.4, it follows that the above isomorphism (5.4) carries the operators on T`(Pic0X (N ) ) over to the ones previously de ned on H 1 (X1 (N )an ; Z) (which are, in turn, compatible with the classical operations via the Shimura isomorphism). By the faithfulness of the \Tate module" functor on complex tori, we conclude that T1(N ) acts on Pic0X (N ) in a unique manner compatible with the above de nition, and (5.4) is an isomorphism of T1 (N ) Z Z` -modules. We call this the ( ) -action of T1 (N ) on Pic0X (N ) . We must warn the reader that under the canonical isomorphism of C-vector spaces S2 (;1 (N ); C) = H 0 (X1 (N )an ; 1X (N ) ) = H 0 (Pic0X (N ) ; 1Pic ) X N = Cot0 (Pic0X (N ) ); the ( ) -action of T 2 T1 (N ) on Pic0X (N ) does not go over to the classical action of T on S2 (;1 (N ); C), but rather the adjoint of T with respect to the Petersson pairing. To clear up this matter, we make the following de nition: 1
an
1
an
an
1
an
1
an
1
)an
1(
an
1
1
0
an
De nition 5.6.
(Tp ) = Alb(2(p) ) Pic0 (1(p) ); hni = Alb(In ); (w ) = Alb(w ): Since In;1 = In; and w;1 = w on X1 (N )an , we have (w ) = w and hni = ; 1 hn i . We claim that the above ( ) operators are the dual morphisms (with respect to the canonical principal polarization of Pic0X (N ) ) of the ( ) operators and induce exactly the classical action of Tp and hni on S2 (;1 (N ); C), so we also have a well-de ned ( ) -action of T1 (N ) on Pic0X (N ) , dual to the ( ) -action. By Theorem 5.2, Corollary 5.3, and Lemma 5.4, this follows from the following general fact about compact Riemann surfaces. The proof is non-trivial. Lemma 5.7. Let X be a compact Riemann surface, and use the i-orientation to n 2 i=` de ne H 2 (X; Z) Z . Use 1 ! 7 e to de ne Z=`n = `n (C) for all n. The = diagram / Z` H 1 (X; Z` ) Z` H 1 (X; Z` ) [ 1
an
1
an
1
=
=
lim ; `n (C) anticommutes (i.e., going around from upper left to lower right in the two possible ways gives results that are negatives of each other), where the bottom row is the `adic Weil pairing (with respect to the canonical principal polarization Pic0X = Pic0X for the \second" Pic0X in the lower left.) Note that the sign doesn't aect formation of adjoints. It ultimately comes from the sign on the bottom of [77, pg. 237] since our Weil pairing sign convention agrees with [77]. We now summarize our ndings in terms of V` (N ) = Q` Z` T`(Pic0X (N ) ), which has a perfect alternating Weil pairing ( ; )` : V` (N ) V` (N ) ! Q` (1)
T`(Pic0X ) Z` T`(Pic0X )
/
[
1
an
5.1. Analytic preparations
213
and has two Q` T1 (N )-actions, via the ( ) -actions and the ( ) -actions. Since (w ) = w , we simply write w for this operator on V` (N ). Theorem 5.8. Let T1(N ) act on V`(N ) with respect to the ( ) -action or with respect to the ( ) -action. With respect to ( ; )` , the adjoint of Tp for p N is hpi;1 Tp and the adjoint of hni is hni;1 for n 2 (Z=N Z) . With respect to [x; y]` = (x; w (y))` for 2 N (C) a primitive N th root of unity, the action of T1 (N ) on V` (N ) is selfadjoint. In general, adjointness with respect to ( ; )` interchanges the ( ) -action and ( ) -action. It should be noted that when making the translation to etale cohomology, the ( ) -action plays a more prominent role (since this is what makes (5.4) a T1 (N )equivariant map). However, when working directly with Tate modules and arithmetic Frobenius elements, it is the ( ) -action which gives the cleaner formulation of Shimura's results. An important consequence of Theorem 5.8 is Corollary 5.9. The Q` Z T1 (N )-module V` (N ) is free of rank 2 for either action, and HomQ (Q T1 (N ); Q) is free of rank 1 over Q T1 (N ) (hence likewise with Q replaced by any eld of characteristic 0). Remark 5.10. The assertion about HomQ(Q T1(N ); Q) is equivalent to the intrinsic condition that Q T1 (N ) is Gorenstein. Also, this freeness clearly makes the two assertions about V` (N ) for the ( ) - and ( ) -actions equivalent. For the proof, the ( ) -action is what we use. But in what follows, it is the case of the ( ) -action that we need! Proof. Using (5.4) and the choice of ( ) -action on V`(N ), it suces to prove H 1 (X1 (N )an ; Q) is free of rank 2 over Q T1 (N ), HomQ (Q T1 (N ); Q) is free of rank 1 over Q T1 (N ). Using [ ; ]; (N ) , we have (5.5) H 1 (X1 (N )an ; Q) = HomQ (H 1 (X1 (N )an ; Q); Q) as Q T1 (N )-modules, so we may study this Q-dual instead. Since Q T1 (N ) is semilocal, a nite module over this ring is locally free of constant rank if and only if it is free of that rank. But local freeness of constant rank can be checked after faithfully at base change. Applying this with the base change Q ! C, and noting that C T1 (N ) is semilocal, it suces to replace Q by C above. Note that if the right hand side of (5.5) is free of rank 2, so is the left side, so choosing a basis of the left side and feeding it into the right hand side shows that HomQ (Q T1 (N )2 ; Q) is free of rank 2. In particular, the direct summand HomQ (Q T1 (N ); Q) is at over Q T1 (N ) with full support over Spec(Q
T1(N )), so it must be locally free with local rank at least 1 at all points of Spec(Q
T1(N )). Consideration of Q-dimensions then forces HomQ(Q T1(N ); Q) to be locally free of rank 1, hence free of rank 1. In other words, it suces to show that HomQ (H 1 (X1 (N )an ; Q); Q) is free of rank 2 over T1 (N ) Q, or equivalently that HomC (H 1 (X1 (N )an ; C); C) is free of rank 2 over T1 (N ) C. Via the Shimura isomorphism (in weight 2), which is compatible with the Hecke actions, we are reduced to showing that Hom(S2 (;1 (N ); C); C) is free of rank 1 over -
1
214
CONRAD, THE SHIMURA CONSTRUCTION
C T1 (N ). For this purpose, we will study the C T1(N )-equivariant C-bilinear
pairing
S2 (;1 (N ); C) C (C T1 (N )) ! C (f; T ) 7! a1 (Tf ) were a1 () is the \Fourier coecient of q". This is C T1 (N )-equivariant, since T1(N ) is commutative. It suces to check that there's no nonzero kernel on either side of this pairing. Since
C T1(N ) ! EndC(S2(;1 (N ); C))
is injective (as noted in (5.2)) and a1 (TTnf ) = an (Tf ) for T 2 T1 (N ), the kernel on the right is trivial. Since a1 (Tn f ) = an (f ), the kernel on the left is also trivial.
5.2. Algebraic preliminaries
Let S be a scheme. An elliptic curve E ! S is a proper smooth group scheme with geometrically connected bers of dimension 1 (necessarily of genus 1). It follows from [62, Ch.2] that the group structure is commutative and uniquely determined by the identity section. Fix N 1 and assume N 2 H 0 (S; OS ) (i.e., S is a Z[ N1 ]scheme). Thus, the map N : E ! E is nite etale of degree N 2 as can be checked on geometric bers. A point of exact order N on E is a section P : S ! E which is killed by N (i.e., factors through the nite etale group scheme E [N ]) and induces a point of exact order N on geometric bers. It follows from the stack-theoretic methods in [25] or the more explicit descent arguments in [62] that for N 5 there is a proper smooth Z[ N1 ]-scheme X1 (N ) equipped with a nite at map to P1Z[ N ] , such that the open subscheme Y1 (N ) lying over P1Z[ N ] ; f1g = A1Z[ N ] is the base of a universal object (E1 (N ); P ) ! Y1 (N ) for elliptic curves with a point of exact order N over variable Z[ N1 ]-schemes. Moreover, the bers of X1 (N ) ! Spec Z[ N1 ] are geometrically connected, as this can be checked on a single geometric ber and by choosing the complex ber we may appeal to the fact (whose proof requires some care) that there is an isomorphism (X1 (N ) Z[ N ] C)an = X1 (N )an identifying the \algebraic" data (C=[1; z ]; N1 ) in Y1 (N )(C) X1 (N )(C) with the class of z 2 h in ;1 (N )nh = Y1 (N )an X1 (N )an (and X1 (N )an is connected, as h is). These kinds of compatibilities are somewhat painful to check unless one develops a full-blown relative theory of elliptic curves in the analytic world (in which case the veri cations become quite mechanical and natural). Again xing N 5, but now also a prime p, we want an algebraic analogue of 1 ]. Let (E; P ) ! S be an elliptic curve with a point of exact X1 (N; p)an over Z[ Np 1 order N over a Z[ Np ]-scheme S . We're interested in studying triples (E; P; C ) ! S where C E is an order-p nite locally free S -subgroup-scheme which is not contained in the subgroup generated by P on geometric bers (if p j N ). Methods in [25] and [62] ensure the existence of a universal such object (E1 (N; p); P; C ) ! 1 ]-scheme which naturally sits as the complement Y1 (N; p) for a smooth ane Z[ Np 1 ]-scheme X1 (N; p) which is of a relative Cartier divisor in a proper smooth Z[ Np nite at over P1Z[ Np ] (with Y1 (N; p) the preimage of A1Z[ Np ] ). Base change to C 1 ] has and analyti cation recovers X1 (N; p)an as before, so X1 (N; p) ! Spec Z[ Np geometrically connected bers. 1
1
1
1
1
1
5.2. Algebraic preliminaries
215
1 ]-schemes (respectively, Z[ 1 ]-schemes) There are maps of Z[ Np N
In Y (N ) Y1 (N ) ;! 1
Y1 (N; p❑ )
❑ ❑ ❑ (p) ❑ ❑ ❑ 2 ❑❑❑ %
1(p) s s s s s
ss ys s s
Y1 (N )[ p1 ]
Y1 (N )[ p1 ]
determined by (E; P; C ) ;;! (E; P ) and (E; P; C ) ;;! (E=C; P ) (which makes sense in Y1 (N ) if p j N by the \disjointness" condition on C and P ) and In (E; P ) = (E; nP ). Although 2(p) is not a map over A1Z[ Np ] , it can be shown that these all uniquely extend to (necessarily nite at) maps, again denoted 1(p) , 2(p) , In between X1 (N; p), X1 (N )[ p1 ], X1 (N ). A proof of this fact requires the theory of minimal regular proper models of curves over a Dedekind base; the analogous fact over Q is an immediate consequence of basic facts about proper smooth curves over a eld, but in order to most easily do some later calculations in characteristic p N it is convenient to know that we have the map Ip de ned on X1 (N ) over Z[1=N ] (though this could be bypassed by using liftings to characteristic 0 in a manner similar to our later calculations of Tp in characteristic p). Likewise, over Z[ N1 ; N ] we can de ne, for any primitive N th root of unity = Ni (i 2 (Z=N Z) ), an operator w : Y1 (N )=Z[ N ;N ] ! Y1 (N )=Z[ N ;N ] via w (E; P ) = (E=hP i; P 0 ) where hP i is the order-N etale subgroup-scheme generated by P and P 0 2 (E [N ]=hP i)(S ) is uniquely determined by the relative Weil pairing condition hP; P 0 iN = (with P 0 2 E [N ](S ) here). This really does extend to X1 (N )=Z[ N ;N ] , and one checks that w j w = Ij for j 2 (Z=N Z) . In particular, w2 = 1. Since X1 (N ) ! Spec Z[ N1 ] is a proper smooth scheme with geometrically connected bers of dimension 1, Pic0X (N )=Z is an abelian scheme over Z[ N1 ] and N hence is the Neron model of its generic ber. We have scheme-theoretic Albanese and Pic0 functoriality for nite ( at) maps between proper smooth curves (with geometrically connected bers) over any base at all, and analyti cation of such a situation over C recovers the classical theory of Pic0 as used in Section 5.1. For example, we have endomorphisms hni = Pic0 (In ); hni = Alb(In ) (p) 1
(p) 2
1
-
1
1
1
1
[ 1 ]
on Pic0X (N )=Z , 1
[ 1 ]
on Pic0X (N )=Z
N
1
1 [N
w = Pic0 (w ) = Alb(w ) = (w ) ;N ]
, and
Tp = Alb(1(p) ) Pic0 (2(p) ) (Tp ) = Alb(2(p) ) Pic0 (1(p) )
on Pic0X (N )=Z . A key point is that by the Neronian property, Tp and (Tp ) Np uniquely extend to endomorphisms of Pic0X (N )=Z , even though the i(p) do not 1
[ 1 ]
1
[ 1 ] N
216
CONRAD, THE SHIMURA CONSTRUCTION
make sense over Z[ N1 ] from what has gone before. In particular, it makes sense to study Tp and (Tp ) on the abelian variety Pic0X (N )=Fp over Fp for p N . This will be rather crucial later, but note it requires the Neronian property in the de nition. Passing to the analyti cations, the above constructions recover the operators de ned on Pic0X (N ) in Section 5.1. The resulting subring of End(Pic0X (N )=Z ) End(Pic0X (N ) ) N generated by Tp, hni (respectively, by (Tp ) , hni ) is identi ed with T1 (N ) via its ( ) -action (respectively, via its ( ) -action) and using 0 0 n (5.6) lim ; PicX (N )=Z [` ](Q) = T` (PicX (N ) ) -
1
1
an
[ 1 ]
1
1
an
1
1 ] [N
an
1
(using Q C) endows our \analytic" V` (N ) with a canonical continuous action of GQ = Gal(Q=Q) unrami ed at all p N` (via Neron-Ogg-Shafarevich) and commuting with the action of T1 (N ) (via either the ( ) -action or the ( ) -action). We also have an endomorphism w = w = (w ) on Pic0X (N )=Z ; and it is easy N N to see that (g;1 ) wg( ) g = w on Q-points, where g 2 Gal(Q=Q) and g denotes the natural action of g on Qpoints (corresponding to base change of degree 0 line bundles on X1 (N )=Q ). Since w = w ; (as (E; P ) = (E; ;P ) via ;1), we see that w is de ned over the real sub eld Q(N )+ . By etale descent, the operator w is de ned over Z[ N1 ; N ]+ . In any case, w acts on V` (N ), recovering the operator in Section 5.1, and so this conjugates the ( ) -action to the ( ) -action, taking each T 2 T1 (N ) (for either action on V` (N )) to its Weil pairing adjoint, via the canonical principal polarization of the abelian scheme Pic0X (N )=Z . Using Corollary 5.3 and (5.6) we obtain -
1
[ 1
]
1
1
[ 1 ]
N
Lemma 5.11. Let T1(N ) act on V`(N ) through either the ( ) -action or the ( ) GL(2; Q` T1 (N )) is a continuous action. Then N;` : GQ ! Aut(V` (N )) =
representation, unrami ed at p - N`. The main result we are after is Theorem 5.12. Let T1 (N ) act on Pic0X (N )=Z N via the ( )-action. For any p N`, the characteristic polynomial of N;`(Frobp ) is X 2 ; (Tp ) X + phpi relative to the Q` T1 (N )-module structure on V` (N ), where Frobp denotes an arithmetic Frobenius element at p. The proof of Theorem 5.12 will make essential use of the w operator. For the remainder of this section, we admit Theorem 5.12 and deduce its consequences. Let f 2 S2 (;1 (N ); C) be a newform of levelPN . Let Kf C be the number eld generated by ap (f ) for all p - N , where f = an (f )qn , so by weak multiplicity one an (f ) 2 Kf for all n 1 and the Nebentypus character f has values in Kf . Let pf T1 (N ) be the minimal prime corresponding to f (i.e., the kernel of the map T1(N ) ! Kf sending each T 2 T1(N ) to its eigenvalue on f ). We now require T1 (N ) to act on Pic0X (N )=Z via its ( ) -action. [ 1 ]
1
1 ] [N
1
De nition 5.13. Af is the quotient of Pic0X (N )=Q by pf T1 (N ). 1
5.3. Proof of Theorem 5.12
217
By construction, Af has good reduction over Z[ N1 ] and the action of T1 (N ) on Pic0X (N )=Q induces an action of T1 (N )=p on Af , hence an action of Kf = (T1 (N )=p) Z Q on Af in the \up-to-isogeny" category. Theorem 5.14 (Shimura). We have dim Af = [Kf : Q] and V`(Af ) is free of rank 2 over Q` Q Kf , with Frobp having characteristic polynomial X 2 ; (1 ap (f ))X + 1 pf (p) for all p N`. Proof. By Lemma 5.11 and Theorem 5.12, we just have to check that the Q`
T1(N )-linear map V` (Pic0X (N )=Q ) ! V` (Af ) identi es the right hand side with the quotient of the left hand side by pf . More generally, for any exact sequence B0 ! B ! A ! 0 of abelian varieties over a eld of characteristic prime to `, we claim V` (B 0 ) ! V` (B ) ! V` (A) ! 0 is exact. We may assume the base eld is algebraically closed, and then may appeal to Poincare reducibility (see [77, pg. 173]). Choosing a place of Kf over ` and using the natural realization of Kf; as a factor of Q` Kf , we deduce from Theorem 5.14: Corollary 5.15. Let f 2 S2(;1 (N ); C) be a newform and a place of Kf over `. There exists a continuous representation f; : GQ ! GL(2; Kf;) unrami ed at all p N`, with Frobp having characteristic polynomial X 2 ; ap (f )X + pf (p) 2 Kf; [X ]: 1
-
1
-
5.3. Proof of Theorem 5.12 Fix p N and let -
Jp = Pic0X (N )=Fp = Pic0X (N )=Z 1
1
[ 1 ] N
Z[ N ] Fp 1
with T1 (N ) acting through the ( ) -action. Fix a choice of Frobp , or more specifically x a choice of place in Q over p. Note that this determines a preferred algebraic closure Fp as a quotient of the ring of algebraic integers, and in particular a map Z[1=N; N ] ! Fp . Thus, we may view w as inducing an endomorphism of the abelian variety Jp Fp Fp over Fp (whereas the elements in T1 (N ) induce endomorphisms of Jp over Fp ). The canonical isomorphism V` (Pic0X (N )=Q ) = V` (Pic0X (N )=Z ) = V` (Jp ) 1
1
[ 1 ]
N
identi es the Frobp -action on Q-points on the left hand side with the (arithmetic) Frobenius action on Fp -points on the right hand side. Obviously V` (Jp ) is a module
218
CONRAD, THE SHIMURA CONSTRUCTION
over the ring Q` T1 (N ) and is free of rank 2 as such. For any Fp -schemes Z , Z 0 and any Fp -map f : Z ! Z 0 the diagram (5.7)
f / 0 Z
Z FZ
FZ 0 f / 0 Z
Z
commutes, where columns are absolute Frobenius. Taking Z = Spec Fp , Z 0 = Jp , we see that the Frobp action of V` (Jp ) through Fp -points is identical to the action induced by the intrinsic absolute Frobenius morphism F : Jp ! Jp over Fp . Here is the essential input, to be proven later. Theorem 5.16 (Eichler-Shimura). In EndFp (Jp ),
(Tp ) = F + hpi F _ ; w;1 Fw = hpi; 1 F where F _ denotes the dual morphism. The extra relation involving w is crucial. The interested reader should compare this with [108, Cor. 7.10]. Let us admit Theorem 5.16 and use it to prove Theorem 5.12. We will then prove Theorem 5.16. Using an Fp -rational base point P (e.g., the cusp 0), we get a commutative diagram / Jp X1 (N )=Fp FX1 (N )
X1 (N )=Fp
F
/ Jp
where FX (N ) denotes the absolute Frobenius morphism of X1 (N )=Fp , so by Albanese functoriality F = Alb(FX (N ) ). Thus FF _ = Alb(FX (N ) ) Pic0 (FX (N ) ) = deg(FX (N ) ) = p as X1 (N )=Fp is a smooth curve. We conclude from (Tp ) = F + hpi F _ that F 2 ; (Tp ) F + phpi = 0 on Jp , hence in V` (Jp ). Thus, N;`(Frobp ) satis es the expected quadratic polynomial X 2 ; (Tp ) X + phpi = 0: Let X 2 ; aX + b be the true characteristic polynomial, which N;`(Frobp ) must also satisfy, by Cayley-Hamilton. We must prove that a = (Tp ) , and then b = phpi is forced. It is this matter which requires the second relation. We want trQ` T (N ) (N;`(Frobp )) = (Tp ) or equivalently trQ` T (N ) (V` (F )) = (Tp ) : Using the modi ed Weil pairing [x; y]` = (x; w y)` 1
1
1
1
1
1
1
5.3. Proof of Theorem 5.12
219
and using the fact that V` (Jp ) = V` (Pic0X (N )=Q ) respects Weil pairings (by invoking the relativization of this concept, here over Z[ N1 ]) we may identify (via Theorem 5.8 and a choice Q` (1) = Q` as Q`-vector spaces) V` (Jp ) = HomQ` (V` (Jp ); Q` ) := V` (Jp ) as Q` T1 (N )-modules, but taking the F -action over to the hpi F _ -action, since adjoints with respect to Weil pairings are dual morphisms and w;1 F _ w is dual to w;1 Fw = hpi; 1 F = F hpi; 1 (absolute Frobenius commutes with all morphisms of Fp-schemes!) Since V` (Jp ) is free of rank 2 over Q` T1 (N ) and HomQ` (Q` T1 (N ); Q` ) is free of rank 1 over Q` T1 (N ), by Corollary 5.9, we conclude trQ` T (N )(F jV` (Jp )) = trQ` T (N ) (hpi F _ jV` (Jp ) ): We wish to invoke the following applied to the Q` -algebra Q` T1 (N ) and the Q` T1(N )-module V` (Jp): Lemma 5.17. Let O be a commutative ring, A a nite locally free O-algebra with HomO (A; O) a locally free A-module (necessarily of rank 1). Let M be a nite locally free A-module, M = HomO (M; O), so M is nite and locally free over A with the same rank as M . For any A-linear map f : M ! M with O-dual f : M ! M , automatically A-linear, char(f ) = char(f ) in A[T ] (these are the characteristic polynomials). Proof. Without loss of generality O is local, so A is semilocal. Making faithfully
at base change to the henselization of O (or the completion if O is noetherian or if we rst reduce to the noetherian case), we may assume that A is a product of local rings. Without loss of generality, A is then local, so M = Aei if free, and HomO (A; O) is free of rank 1 over A. Choose an isomorphism h:A = HomO (A; O) as A-modules, so the projections i : M ! Aei =A satisfy ei = h(i) i in M . These ei are an A-basis of M and we compute matrices over A: Matfei g (f ) = Matfei g (f )t : 1
1
1
We conclude that trQ` T (N ) (F jV` (Jp )) = trQ` T (N ) (hpi f _jV` (Jp )): By Theorem 5.16, we have 2(Tp ) = tr((Tp ) jV` (Jp )) = tr(F + hpi F _jV` (Jp )) = 2 tr(F jV` (Jp )): This proves that tr(F jV` (Jp )) = (Tp ) , so indeed X 2 ; (Tp ) X + phpi is the characteristic polynomial. Finally, there remains 1
1
220
CONRAD, THE SHIMURA CONSTRUCTION
Proof of Theorem 5.16. It suces to check the maps coincide on a Zariski dense subset of Jp (Fp ) = Pic0 (X1 (N )=Fp ). If g is the genus of X1 (N )=Z[ N ] and we x an Fp-rational base point, we get an induced surjective map X1 (N )g=Fp ! Jp =Fp ; so for any dense open U X1 (N )Fp , U g ! (Jp )=Fp hits a Zariski dense subset of Fp-points. Taking U to be the ordinary locus of Y1(N )=Fp , it suces to study what happens to a dierence (x) ; (x0 ) for x; x0 2 Y1 (N )(Fp ) corresponding to (E; P ), (E 0 ; P 0 ) over Fp with E and E 0 ordinary elliptic curves. 1
By the commutative diagram (5.7), the map Jp (Fp ) ! Jp (Fp ) induced by F is the same as the map induced by the pth power map in Fp . By de nition of Pic0 functoriality, this corresponds to base change of an invertible sheaf on X1 (N )=Fp by the absolute Frobenius on Fp . By de nition of Y1 (N )=Fp as a universal object, such base change induces on Y1 (N )(Fp ) exactly \base change by absolute Frobenius" on elliptic curves with a point of exact order N over Fp . We conclude F ((x) ; (x0 )) = (E (p) ; P (p) ) ; ((E 0 )(p) ; P (p) ) where ( )(p) denotes base change by absolute Frobenius on Fp . Since p = FF _ = F _ F and F is bijective on Fp -points, we have F _ ((x) ; (x0 )) = pF ;1 ((x) ; (x0 )) ; ; ; ; = p((E (p ) ; P (p ) ) ; ((E 0 )(p ) ; (P 0 )(p ) )): Thus, hpi F _((x) ; (x0 )) = p(E (p; ) ; pP (p; ) ) ; p((E 0 )(p; ) ; p(P 0 )(p; ) ) so ; ; (F + hpi F _)((x) ; (x0 )) = (E (p) ; P (p) ) + p(E (p ) ; pP (p ) ) ; ((E 0 )(p) ; (P 0 )(p) ) + p((E 0 )(p; ) ; p(P 0 )(p; ) ): 1
1
1
1
1
1
1
1
1
1
1
1
Computing (Tp ) on Jp = Pic0X (N )=Z Z[ N ] Fp is more subtle because (Tp ) N 1 ] (or over Q) as (2 ) and was extended over Z[ 1 ] by was de ned over Z[ Np 1 N the Neronian property. That is, we do not have a direct de nition of (Tp ) in characteristic p, so we will need to lift to characteristic 0 to compute. It is here that the ordinariness assumption is crucial, for we shall see that, in some sense, (Tp ) ((x) ; (x0 )) = (F + hpi F _ )((x) ; (x0 )) as divisors for ordinary points x, x0 . This is, of course, much stronger than the mere linear equivalence that we need to prove. Before we dive into the somewhat subtle calculation of (Tp ) ((x) ; (x0 )), let's quickly take care of the relation w;1 Fw = hpi; 1 F , or equivalently, 1
[ 1 ]
1
Fw = w hp;1 i F:
5.3. Proof of Theorem 5.12
221
All maps here are induced by maps on X1 (N )=Fp , with F = Alb(FX (N ) ), w = Alb(w jX N ), hp;1 i = Alb(Ip; ). Thus, it suces to show FX (N ) w = w Ip; FX (N ) on X1 (N )=Fp , and we can check by studying x = (E; P ) 2 Y1 (N )(Fp ): FX (N )w (x) = FX (N ) (E=P; P 0 ) = (E (p) =P (p) ; (P 0 )(p) ) where hP; P 0 iN = , so hP (p) ; (P 0 )(p) iN = p by compatibility of the (relative) Weil pairing with respect to base change. Meanwhile, w Ip; FX (N ) (x) = w (E (p) ; p;1 P (p) ) = (E (p) =(p;1P (p) ); Q) where hp;1 P (p) ; QiN = , or equivalently hP (p) ; Qi = p . Since Q = (P 0 )(p) is such a point, this second relation is established. Now we turn to the problem of computing (Tp ) ((x) ; (x0 )) for \ordinary points" x = (E; P ), x0 = (E 0 ; P 0 ) as above. Let R = Zun p , W (Fp ), or more generally any henselian (e.g., complete) discrete valuation ring with residue eld Fp and fraction eld K of characteristic 0. Since p N , R is a Z[ N1 ]-algebra. Since Y1 (N ) is smooth over Z[ N1 ], we conclude from the (strict) henselian property that Y1 (N )(R) ! Y1 (N )(Fp ) is surjective. Of course, this can be seen \by hand": if (E; P ) is given over Fp , choose a Weierstrass model E ,! P2R lifting E (this is canonically an elliptic curve, by [62, Ch 2]). The nite etale group scheme E [N ] is constant since R is strictly henselian. Thus there exists a unique closed immersion of group schemes Z=N Z ,! E [N ] lifting P : Z=N Z ,! E [N ]. Let (E ; P ), (E 0 ; P 0 ) over R lift x, x0 respectively. We view these sections to X1 (N )=R ! Spec R as relative eective Cartier divisors of degree 1. Using the reduction map Pic0X (N )=Z (R) ! Jp (Fp ) N and the de nition of (Tp ) , we see that (Tp ) ((x);(x0 )) is the image of (Tp ) ((E ; P ); 1 ]-algebra but K is, and we have an injection (even (E 0 ; P 0 )). Now R is NOT a Z[ Np bijection) Pic0X (N )=Z (R) ,! Pic0X (N )=Z (K ); N N as Pic0X (N )=Z ! Spec Z[ N1 ] is separated (even proper). N Thus, we will rst compute (Tp ) ((x) ; (x0 )) by working with K -points, where K is an algebraic closure of K . Since p N , we have X (2 ) 1 ((E ; P )=K ) = (EK =C; PK mod C ) 1
1(
1
)
1
1
1
1
1
1
1
-
1
1
1
[ 1 ]
[ 1 ]
1
[ 1 ]
[ 1 ]
-
C
where C runs through all p + 1 order-p subgroups of E=K . Since E ! Spec R has ordinary reduction, and R is strictly henselian, the connected-etale sequence of E [p] is the short exact sequence of nite at R-group schemes 0 ! p ! E [p] ! Z=pZ ! 0: Enlarging R to a nite extension does not change the residue eld Fp , so we may assume that E [p]=K = Z=pZ Z=pZ:
222
CONRAD, THE SHIMURA CONSTRUCTION
Taking the scheme-theoretic closure in E [p] of the p +1 distinct subgroups of E [p]=K gives p + 1 distinct nite at subgroup schemes C E realizing the p + 1 distinct C 's over K . Exactly one of these C 's is killed by E [p] ! Z=pZ over R, as this can be checked on the generic ber, so it must be p ,! E [p]. For the remaining C 's, the map C ! Z=pZ is an isomorphism on the generic ber. We claim these maps
C ! Z=pZ over R are isomorphisms. Indeed, if C is etale this is clear, yet C ,! E [p] is a nite
at closed subgroup-scheme of order p, so a consideration of the closed ber shows that if C is not etale then it is multiplicative. But E [p] has a unique multiplicative subgroup-scheme since E [p]_ = E [p] by Cartier-Nishi duality and E [p] has a unique order-p etale quotient (as any such quotient must kill the p we have inside E [p].) Thus, X X (2 ) 1 ((E ; P )=K ) = (E =C ; P mod C ) ; (E 0 =C 0; P 0 mod C 0 ) C
C0
2 Pic0
X1 (N )=Z[ N1 ] (R)
coincides with (Tp ) ((E ; P ) ; (E 0 ; P 0 )) as both induce the same K -point. Passing to closed bers, (Tp ) ((x) ; (x0 )) = (E=p ; P mod p ) + p(E=Z=pZ0 ; P mod Z=pZ) ; (E 0 =p ; P 0 mod p ) + p(E 0 =Z=pZ; P 0 mod Z=pZ) where E [p] = p Z=pZ and E 0 [p] = p Z=pZ are the canonical splittings of the connected-etale sequence over the perfect eld Fp . Now consider the relative Frobenius morphism FE=Fp : E ! E (p) ; which sends O to O (and P to P (p) ) and so is a map of elliptic curves over Fp . Recall that in characteristic p, for any map of schemes X ! S we de ne the relative Frobenius map FX=S : X ! X (p) to be the unique S -map tting into the diagram
X ❉ ❉ FX=S
FX / X (p)
❉❉ ❉❉ ❉❉ ❉!
(/
X
S FS / S
where FS , FX are the absolute Frobenius maps. Since E ! Spec Fp is smooth of pure relative dimension 1, FE=Fp is nite at of degree p1 = p. It is bijective on points, so ker(FE=Fp ) must be connected of order p. The only such subgroup-scheme of E is p ,! E [p] by the ordinariness. Thus E=p = E (p) is easily seen to take P mod p to P (p) .
5.3. Proof of Theorem 5.12 Similarly, we have
E
223
p (/ / (p) _F E FE=Fp E FE= p
_ is etale of degree p and base extension by Frob;1 : Fp ! Fp gives so FE= Fp p
E (p;1 )
*
E (p; ) ✤ ✤ / p P (p; ) : P (p; ) / P As the second map in this composite is etale of degree p, we conclude ; ; (E=Z=pZ ; P mod Z=pZ) = (E (p ) ; pP (p ) ): /
E
/
1
1
1
1
1
Thus, in Pic0X (N ) (Fp ), ; ; (Tp ) ((x) ; (x0 )) = (E (p) ; P (p) ) + p (E (p ) ; p P (p ) ) ; ((E 0 )(p) ; (P 0 )(p) ) ; p ((E 0 )(p; ) ; p (P 0 )(p; ) ) which we have seen is equal to (F + hpi F _ )((x) ; (x0 )). 1
1
1
1
1
CHAPTER 6
Appendix by Kevin Buzzard: A mod ` multiplicity one result In this appendix, we explain how the ideas of [46] can be used to prove the following mild strengthening of the multiplicity one results in x9 of [32]. The setup is as follows. Let f be a normalised cuspidal eigenform of level N , and weight k, de ned over F` , with ` N and 2 k ` + 1. Let N denote N if k = 2, and N` if k > 2. Let JQ be the Jacobian of the curve X1 (N )Q , and let H denote the Hecke algebra in End(JQ ) generated over Z by Tp for all primes p, and all the Diamond operators of level N . It is well-known (for example by Proposition 9.3 of [46]) that there is a characteristic 0 normalised eigenform F in S2 (;1 (N )) lifting f . Let m denote the maximal ideal of H associated to F (note that m depends only on f and not on the choice of F ), and let F = H=m, which embeds naturally into F` . Suppose the representation f : GQ ! GL2 (F` ) associated to f is absolutely irreducible, and furthermore assume that if k = ` + 1 then f is not isomorphic to a representation coming from a form of weight 2 and level N . Theorem 6.1. If f is rami ed at `, or if f is unrami ed at ` but f (Frob`) is not a scalar matrix, then JQ (Q)[m] has H=m-dimension two, and hence is a model for (precisely one copy of) f . The motivation for putting ourselves in the setup above is that every absolutely irreducible modular mod ` representation has a twist coming from a modular form of level prime to ` and weight at most ` + 1. In particular, every modular mod ` representation has a twist coming from a form satisfying the conditions of our setup. Furthermore, if f is as in our setup, then Theorems 2.5 and 2.6 of [32] tell us the precise structure of the restriction of f to D` , a decomposition group at `. These results are explained in Section 2.2. Using them, it is easy to deduce Corollary 6.2. Let be an absolutely irreducible modular mod ` representation, such that f (D` ) is not contained within the scalars. Then some twist of comes from a modular form satisfying the conditions of the theorem, and hence is a multiplicity one representation in the sense of Remark 3.4.2. The theorem, commonly referred to as a \multiplicity one theorem", is a mild extension of results of Mazur, Ribet, Gross and Edixhoven. It was announced for ` = 2 as Proposition 2.4 of [9] but the proof given there is not quite complete|in fact, the last line of the proof there is a little optimistic. I would hence like to thank Ribet and Stein for the opportunity to correct this oversight in [9]. 225 -
226
BUZZARD, A MOD ` MULTIPLICITY ONE RESULT
Proof of Theorem. Firstly we observe that the only case not dealt with by Theorem 9.2 of [32] is the case when k = ` and f is unrami ed at `, with f (Frob` ) a non-scalar matrix whose eigenvalues are equal. Moreover, using Theorems 2.5 and 2.6 of [32] we see that in this case f must be ordinary at `. We are hence in a position to use the detailed construction of f given in xx11{12 of [46]. We will follow the conventions set up in the present paper for normalisations of Hecke operators, and so in particular the formulae below dier from the ones in [46] by a twist. The maximal ideal m of H associated to f gives rise as in (12.5) of [46] to an idempotent e 2 H` := H Z Zl , such that the completion Hm of H at m is just eH`. Let G denote e(JQ` [`1 ]), the part of the `-divisible group of J which is associated to m. Then Hm acts on G, and it is proved in Propositions 12.8 and 12.9 of [46] that there is an exact sequence of `-divisible groups
0 ! G0 ! G ! Ge ! 0 over Q` , which is Hm -stable. Let 0 ! T0 ! T ! Te ! 0 be the exact sequence of Tate modules of these groups. We now explain explicitly, following [46], how the group D` acts on these Tate modules. If k > 2 then there is a Hecke operator U` in Hm , and we de ne u = U` . If k = 2 then there is a Hecke operator T` in Hm and because we are in the ordinary case we know that T` is a unit in Hm. We de ne u to be the unique root of the polynomial X 2 ; T` X + `h`i in Hm which is a unit (u exists by an appropriate analogue of Hensel's lemma). The calculations of Propositions 12.8 and 12.9 of [46] show that, under our conventions, the absolute Galois group D` of Q` acts on T e as (u), where (x) denotes the unrami ed character taking Frob` to x. Moreover, these propositions also tell us that D` acts on T 0 via the character `(u;1 h`iN )`;2 , where ` is the cyclotomic character and is the Teichmuller character. The key point is that this character takes values in H . The next key observation is that a standard argument on dierentials, again contained in the proof of Propositions 12.8 and 12.9 of [46], shows that Ge [m] = m;1`T e =`T e has Hm=m-dimension 1 and that G0 [m] has dimension d0 1. (Note that the fact that Ge [m] has dimension 1 implies, via some simple linear algebra, that the sequence 0 ! G0 [m] ! G[m] ! Ge [m] ! 0 is exact, as asserted by Gross.) Furthermore, because we can identify G0 [m] with m;1 `T 0=`T 0, we see that the action of D` on G0 [m] is via a character which takes values in (H=m) . In particular, D` acts as scalars on G0 [m]. Let us now assume that f is unrami ed at `, and that f (Frob` ) is a nondiagonalisable matrix with eigenvalue 2 H=m. Choose a model for f de ned over GL2 (H=m). By the theorem of Boston, Lenstra and Ribet, we know that G[m] is isomorphic to a direct sum of d copies of , or more precisely, d copies of the restriction of to D` . Here d is an integer satisfying 2d = d0 + de . Hence, if G[m] denotes the subspace of G[m] where Frob` acts as , then the H=m-dimension of G[m] is at most d. On the other hand, Frob` acts on G[m]0 as a scalar, and hence this scalar must be , and so we see G[m]0 G[m] . Hence d0 d = (d0 + 1)=2. We deduce that d0 1 and hence d0 = d = 1 and the theorem is proved.
BUZZARD, A MOD ` MULTIPLICITY ONE RESULT
227
We remark that L. Kilford has found examples of mod 2 forms f of weight 2, such that f is unrami ed at 2 and f (Frob2 ) is the identity, and where JQ (Q)[m] has H=m-dimension 4, and so one cannot hope to extend the theorem to this case. See Remark 3.6 for more details, or [64]. A detailed analysis of what is happening in this case, at least in the analogous setting of forms of weight 2 on J0 (p), with p prime, has been undertaken by Emerton in [39]. In particular, Emerton proves that multiplicity one fails if and only if the analogue of the exact sequence 0 ! T 0 ! T ! T e ! 0 fails to split as a sequence of Hm -modules.
BIBLIOGRAPHY 1. A. Ash and G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192{220. 2. A. O. L. Atkin and J. Lehner, Hecke operators on ;0 (m), Math. Ann. 185 (1970), 134{160. 3. B. J. Birch, Cyclotomic elds and Kummer extensions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 85{93. 4. B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Springer-Verlag, Berlin, 1975, Lecture Notes in Mathematics, Vol. 476. 5. S. Bosch, W. Lutkebohmert, and M. Raynaud, Neron models, SpringerVerlag, Berlin, 1990. 6. N. Boston, H. W. Lenstra, Jr., and K. A. Ribet, Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), no. 4, 323{328. 7. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q, or Wild 3-adic exercises, http://www.math.harvard.edu/HTML/Individuals/Richard Taylor.html 8. S. Brueggeman, The non-existence of certain Galois extensions unrami ed outside 5, Journal of Number Theory 75 (1999), 47{52. 9. K. Buzzard, On level-lowering for mod 2 representations, to appear in Mathematics Research Letters. 10. K. Buzzard, M. Dickinson, N. Shepherd-Barron, and R. Taylor, On icosahedral Artin representations, in preparation. 11. H. Carayol, Sur les representations `-adiques associees aux formes modulaires de Hilbert, Ann. scient. E c. Norm. Sup., 4eb serie 19 (1986), 409{468. , Sur les representations galoisiennes modulo ` attachees aux formes 12. modulaires, Duke Math. J. 59 (1989), 785{801. 13. W. Casselman, On representations of GL2 and the arithmetic of modular curves, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Berlin), Springer, 1973, pp. 107{141. Lecture Notes in Math., Vol. 349. 14. I. V. C erednik, Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2 (kw ) with compact quotient spaces, Mat. Sb. (N.S.) 100(142) 229
230
BUZZARD, A MOD ` MULTIPLICITY ONE RESULT
(1976), no. 1, 59{88, 165. 15. R. F. Coleman, Serre's conjecture: The Jugentraum of the 20th century, Mat. Contemp. 6 (1994), 13{18, XII School of Algebra, Part I (Portuguese) (Diamantina, 1992). 16. R. F. Coleman and B. Edixhoven, On the semi-simplicity of the Up -operator on modular forms, Math. Ann. 310 (1998), no. 1, 119{127. 17. R. F. Coleman and J. F. Voloch, Companion forms and Kodaira-Spencer theory, Invent. Math. 110 (1992), no. 2, 263{281. 18. B. Conrad, Modular forms, cohomology, and the Ramanujan conjecture, in preparation. 19. B. Conrad, F. Diamond, and R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 2, 521{567. 20. J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. 21. C. W. Curtis and I. Reiner, Representation theory of nite groups and associative algebras, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962, Pure and Applied Mathematics, Vol. XI. 22. H. Darmon, Serre's conjectures, Seminar on Fermat's Last Theorem (Toronto, ON, 1993{1994), Amer. Math. Soc., Providence, RI, 1995, pp. 135{153. 23. H. Darmon, F. Diamond, and R. Taylor, Fermat's last theorem, Current developments in mathematics, 1995 (Cambridge, MA), Internat. Press, Cambridge, MA, 1994, pp. 1{154. 24. P. Deligne, Formes modulaires et representations `-adiques., Sem. Bourbaki no. 355, 1968/69 (Berlin and New York), Springer-Verlag, 1971, Lecture Notes in Mathematics, Vol. 179, pp. 139{172. 25. P. Deligne and M. Rapoport, Les schemas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Berlin), Springer, 1973, pp. 143{316. Lecture Notes in Math., Vol. 349. 26. F. Diamond, The re ned conjecture of Serre, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993) (Cambridge, MA), Internat. Press, 1995, pp. 22{37. 27. F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem (Providence, RI), Amer. Math. Soc., 1995, pp. 39{133. 28. M. Dickinson, On the modularity of certain 2-adic galois representations, Harvard Ph.D. thesis (2000). 29. D. Doud, S4 and S~4 extensions of Q rami ed at only one prime, J. Number Theory 75 (1999), no. 2, 185{197. 30. V. G. Drinfeld, Coverings of p-adic symmetric domains, Funkcional. Anal. i Prilov zen. 10 (1976), no. 2, 29{40. 31. B. Edixhoven, L'action de l'algebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est \Eisenstein", Asterisque (1991), no. 196{197, 7{8, 159{170 (1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). 32. , The weight in Serre's conjectures on modular forms, Invent. Math. 109 (1992), no. 3, 563{594. 33. B. Edixhoven, Le r^ole de la conjecture de Serre dans la demonstration du theoreme de Fermat, Gaz. Math. (1995), no. 66, 25{41.
BIBLIOGRAPHY
34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58.
231
, Erratum and addendum: \The role of Serre's conjecture in the proof of Fermat's theorem", Gaz. Math. (1996), no. 67, 19. , Serre's conjecture, Modular forms and Fermat's last theorem (Boston, MA, 1995) (New York), Springer, 1997, pp. 209{242. M. Eichler, Quadratische Formen und Modulfunktionen, Acta Arith. 4 (1958), 217{239. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995. D. Eisenbud and J. Harris, Schemes, The language of modern algebraic geometry, Springer-Verlag, Berlin, Graduate Texts in Mathematics, Vol. 197. M. Emerton, Supersingular elliptic curves, theta series and weight two modular forms, preprint. G. Faltings, Endlichkeitssatze fur abelsche Varietaten uber Zahlkorpern, Invent. Math. 73 (1983), no. 3, 349{366. G. Faltings and B. W. Jordan, Crystalline cohomology and GL(2; Q), Israel J. Math. 90 (1995), no. 1-3, 1{66. G. Frey, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Sarav. Ser. Math. 1 (1986), no. 1, iv+40. , Links between solutions of A ; B = C and elliptic curves, Number theory (Ulm, 1987), Springer, New York, 1989, pp. 31{62. A. Frohlich, Local elds, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 1{41. K. Fujiwara, Level optimization in the totally real case, in preparation (1999). B. H. Gross, A tameness criterion for Galois representations associated to modular forms (mod p), Duke Math. J. 61 (1990), no. 2, 445{517. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. Y. Hellegouarch, Invitation aux mathematiques de Fermat-Wiles, Masson, Paris, 1997. H. Hida, Galois representations into GL2 (Zp [[X ]]) attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545{613. , Iwasawa modules attached to congruences of cusp forms, Ann. Sci. E cole Norm. Sup. (4) 19 (1986), no. 2, 231{273. H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), SpringerVerlag, Berlin, 1970, Lecture Notes in Mathematics, Vol. 114. F. Jarvis, On Galois representations associated to Hilbert modular forms, J. Reine Angew. Math. 491 (1997), 199{216. , Level lowering for modular mod ` representations over totally real elds, Math. Ann. 313 (1999), no. 1, 141{160. , Mazur's principle for totally real elds of odd degree, Compositio Math. 116 (1999), no. 1, 39{79. N. Jochnowitz, A study of the local components of the Hecke algebra mod `, Trans. Amer. Math. Soc. 270 (1982), no. 1, 253{267. , The index of the Hecke ring, Tk , in the ring of integers of Tk Q, Duke Math. J. 46 (1979), no. 4, 861{869. B. W. Jordan and R. Livne, Conjecture \epsilon" for weight k > 2, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 51{56. K. Joshi, Remarks on methods of Fontaine and Faltings, Internat. Math. Res. Notices 1999, no. 22, 1199{1209.
232
BUZZARD, A MOD ` MULTIPLICITY ONE RESULT
59. N. M. Katz, p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Berlin), Springer, 1973, pp. 69{190. Lecture Notes in Mathematics, Vol. 350. , Higher congruences between modular forms, Ann. of Math. (2) 101 60. (1975), 332{367. , A result on modular forms in characteristic p, Modular functions 61. of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) (Berlin), Springer, 1977, pp. 53{61. Lecture Notes in Math., Vol. 601. 62. N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Princeton University Press, Princeton, N.J., 1985. 63. C. Khare, Multiplicities of mod p Galois representations, Manuscripta Math. 95 (1998), no. 2, 181{188. 64. L. J. P. Kilford, Some examples of non-Gorenstein Hecke algebras associated to modular forms, in preparation. 65. A. W. Knapp, Elliptic curves, Princeton University Press, Princeton, NJ, 1992. 66. S. Lang, Introduction to modular forms, Springer-Verlag, Berlin, 1995, With appendixes by D. Zagier and Walter Feit, Corrected reprint of the 1976 original. 67. R. P. Langlands, Modular forms and `-adic representations, Proceedings of the International Summer School, University of Antwerp, RUCA, July 17{ August 3, 1972 (Berlin) (P. Deligne and W. Kuyk, eds.), Springer, 1973, pp. 361{500. Lecture Notes in Math., Vol. 349. 68. , Base change for GL(2), Princeton University Press, Princeton, N.J., 1980. 69. W-C. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285{ 315. 70. R. Livne, On the conductors of mod ` Galois representations coming from modular forms, J. Number Theory 31 (1989), no. 2, 133{141. 71. B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes E tudes Sci. Publ. Math. (1977), no. 47, 33{186 (1978). 72. B. Mazur and K. A. Ribet, Two-dimensional representations in the arithmetic of modular curves, Asterisque (1991), no. 196-197, 6, 215{255 (1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). 73. L. Merel, Universal Fourier expansions of modular forms, On Artin's conjecture for odd 2-dimensional representations (Berlin), Springer, 1994, pp. 59{94. 74. J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103{150. 75. T. Miyake, Modular forms, Springer-Verlag, Berlin, 1989, Translated from the Japanese by Yoshitaka Maeda. 76. H. Moon, Finiteness results on certain mod p Galois representations, to appear in J. Number Theory. 77. D. Mumford, Abelian varieties, Published for the Tata Institute of Fundamental Research, Bombay, 1970, Tata Institute of Fundamental Research Studies in Mathematics, No. 5. 78. C. Queen, The existence of p-adic Abelian L-functions, Number theory and algebra (New York), Academic Press, 1977, pp. 263{288.
BIBLIOGRAPHY
233
79. A. Raji, On the levels of modular mod ` Galois representations of totally real elds, Princeton University Ph.D. thesis, 1998. 80. R. Ramakrishna, Lifting Galois representations, Invent. Math. 138 (1999), no. 3, 537{562. , Deforming Galois representations and the conjectures of Serre and 81. Fontaine-Mazur, preprint, ftp://math.cornell.edu/pub/ravi (2000). 82. M. Raynaud, Specialisation du foncteur de Picard, Inst. Hautes E tudes Sci. Publ. Math. No. 38 (1970), 27{76. 83. K. A. Ribet, From the Taniyama-Shimura conjecture to Fermat's last theorem, Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), no. 1, 116{139. 84. , On modular representations of Gal(Q=Q) arising from modular forms, Invent. Math. 100 (1990), no. 2, 431{476. 85. , Raising the levels of modular representations, Seminaire de Theorie des Nombres, Paris 1987{88, Birkhauser Boston, Boston, MA, 1990, pp. 259{ 271. 86. , Lowering the levels of modular representations without multiplicity one, International Mathematics Research Notices (1991), 15{19. 87. , Report on mod ` representations of Gal(Q=Q), Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994, pp. 639{676. 88. A. Robert, Elliptic curves, Springer-Verlag, Berlin, 1973, Notes from postgraduate lectures given in Lausanne 1971/72, Lecture Notes in Mathematics, Vol. 326. 89. T. Saito, Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), 607{620. 90. I. Schur, Arithmetische Untersuchungen uber endliche Gruppen linearer Substitutionen, Sitz. Pr. Akad. Wiss. (1906), 164{184, Gesam. Abhl., I, 177{197, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1973. 91. J-P. Serre, Groupes de Lie l-adiques attaches aux courbes elliptiques, Les Tendances Geom. en Algebre et Theorie des Nombres, E ditions du Centre National de la Recherche Scienti que, Paris, 1966, pp. 239{256 (= Collected Papers 70). , Une interpretation des congruences relatives a la fonction de Ra92. manujan, Seminaire Delange-Pisot-Poitou no 14 (1967{68) (= C.P. 80). , Proprietes galoisiennes des points d'ordre ni des courbes elliptiques, 93. Invent. Math. 15 (1972), no. 4, 259{331 (= C.P. 94). 94. , Congruences et formes modulaires [d'apres H. P. F. SwinnertonDyer], Seminaire Bourbaki, 24e annee (1971/1972), Exp. No. 416 (Berlin), Springer, 1973, pp. 319{338. Lecture Notes in Math., Vol. 317 (= C.P. 95). , Formes modulaires et fonctions z^eta p-adiques, Proceedings of the 95. International Summer School, University of Antwerp, RUCA, July 17{August 3, 1972 (Berlin), Springer, 1973, pp. 191{268. Lecture Notes in Math., Vol. 350 (= C.P. 97). , A Course in Arithmetic, Springer-Verlag, New York, 1973, Trans96. lated from the French, Graduate Texts in Mathematics, No. 7. 97. , Valeurs propres des operateurs de Hecke modulo `, Asterisque 24{25 (1975), 109{117 (= C.P. 104). , Divisibilite de certaines fonctions arithmetiques, Enseign. Math. (2) 98. 22 (1976), no. 3-4, 227{260 (= C.P. 108).
234 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117.
BUZZARD, A MOD ` MULTIPLICITY ONE RESULT
, Linear representations of nite groups, Springer-Verlag, New York, 1977, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42. , Local elds, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg. , Lettre a J.-F. Mestre, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Amer. Math. Soc., Providence, RI, 1987, pp. 263{ 268 (= C.P. 142). , Sur les representations modulaires de degre 2 de Gal(Q=Q), Duke Math. J. 54 (1987), no. 1, 179{230 (= C.P. 143). , Travaux de Wiles (et Taylor, ...), Partie I, Seminaire Bourbaki, 803 (1995) (= C.P. 168). J-P. Serre and J. T. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492{517 (= C.P. 79). N. I. Shepherd-Barron and R. Taylor, Mod 2 and mod 5 icosahedral representations, J. Amer. Math. Soc. 10 (1997), no. 2, 283{298. H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math. (2) 81 (1965), 166{193. G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math. 221 (1966), 209{220. , Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1. J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original. , Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994. C. M. Skinner and A. J. Wiles, Ordinary representations and modular forms, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 20, 10520{10527. H. P. F. Swinnerton-Dyer, On `-adic representations and congruences for coecients of modular forms, Proceedings of the International Summer School, University of Antwerp, RUCA, July 17{August 3, 1972 (Berlin), Springer, 1973, pp. 1{55. Lecture Notes in Math., Vol. 350. J. T. Tate, The non-existence of certain Galois extensions of Q unrami ed outside 2, Contemporary Math. 174 (1994), 153{156. R. Taylor and A. J. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553{572. J. Tunnell, Artin's conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173{175. J.-L. Waldspurger, Quelques proprietes arithmetiques de certaines formes automorphes sur GL(2), Compositio Math. 54 (1985), no. 2, 121{171. A. J. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443{551.
! " # " ! $%'&)(* (+ ,.-0/213,54762%'8 *
a_9;:=`AV5@CBAU"DFegEHfiGJhkjlILKNjgMPm OQBRKTSUWV5BRKFIYX[Z\ ?;A@
HG
onK
þ
@ 1 ûCB8D û E~ I01 J0
h aú ü ï ³ü äû Þ é ü û p
¡¢]FÀAi]l!·g?ª ]l² £Ô§¾Ör¡¢¾
]¡d l[ª Æg]i¡d]lHÀ¡¢ kÄ Æ?È] ¡¢5·ª l¡d ²PÄ ÍC
¡Y[ [ª?µY¡¢H·
P
AiH
·
iA5
¡Y ÄiÆ?!W Q
Æg· Ä ]][µd À¡¢ k ʲ7´Aµdl¡¢=¶a
·
? ªQ
¡¢l !¡¢ [Æg¤l]iª¡YäAi!Al ®3Ä
·¡Y]H¡Yi
l
¾H\¡d2l
lµ¢
5
l]Àl²µd]Ã pl
!i]?
¡Y¡¢¤¡dl¶Ê F
lgÀ§²)
»Àl ªW?Ü ]iÄ Ü
i A[ ll?)®P¡Y]®¾l l]ii
k¡d!®
¼]iFHlQ ? iÄ ·gA
ª¬v¡Y\¡d]l Üi
5i¡dRA¤¡d
P l®PiA¡d·
µY®P²?²)Ég ¡dJi
[ ]
¤ll¡di\ªQ?l ]Ä µYW]
¶?®¾]¡ëJ²]ll²d¶i ¬¡YAaA?
{l]®P·!l¡¢µd=l
l¡¢®P® ¡dl®P¬
²§· ¸\Äi?F µ¢7Ai k Ä
¡¥¡Y³¬Ai
¯Hl
'µd¯ª¾Akµd¡Yr¤§
²J"Ég¡Y]¶aÜ[~
¬]ii[ P iAk¡d ®¯µ¢AAlg]ªP
i?AÁÔl i² l\]Ü
[]\lr
¡¢\Nªg¶?~"iR¤v
kpHik ¡¢J¡Y¬älTp®5iF / 1q= Csr utwx v
onL
C .y'r.z
x /'rD4
L z « > ÿ µ ®:2¬JåJây?å;V7 ^ æ Þ
l·k¤£;¯~i[ll¡d]
µdli]¶A¯
P'
]HÄ ii¡¥·
l
l·
[Æg pi
¡Y¡¢FiH]A² 'Aµ¢ µYWPAi¾A Ä i¡¥'¡Y?[Æʶg] |
~
o4pq8rs*t,u&
8.
%.PëmÒyxT}?wx4}?wyx:xP
o4pq8rs*t,u& 8.d .v
? ~x}?wxJ'x ~íûìQ ãFkw zwj }?wyxJzX? }?5AÂku%y~9}2 z x}x
? '
yXÂOã4É+x{z-¤x}?wxZÀsu : ¡¢5 ü |ã~
jyJXyzwj~x}myXZz{u
: /wyyÑ}?w}T }wyy#u
M5¤y¡''ukÂ
}xV
~xM#w zwM¢xJ
}kz x{~/íÖ
VÂ-z?}bî4ï¨Æ  }^u¤¡¢5y^Âb
}x
~xMxM
}iz x~eðñ o4pq8rs*t,u& 8.ò%.P¾x} ü u
y~ ü l ¤xV
}x¡''u»/wyyh}?wy}IVz
{}2
uk
ó=xz?}2 Òyx · wy'kk:=5w ü B8D ü l Iu
M k:tuw ôÂ ' ü
{}A {µY¡d® Ñ @ A CB ÃÑ DB ü
ü ç ¸ B ç I}'' 5¡: z{uu '#:tuw Pi¥byh~5ux{i}?w Tx }x4}]'¤u x ü
BeD
©
5
| ü è2ü~
ü
ü
Ô)¬
á Ô)¬ ¼ Ô1
' ¤eÔ =X1' kX
®k)1E
/ã
A
ã-
o4pq8rs*t,u& 8.\ Ô%.X¾x} פxjÃ-kx5 R¢
}x¡''u ü ½zu x~) ´ï ´ï Ø Â xÒx^e¬ « ^ ÿ 9% ´>' 1 éäb> « >n; ÿ / ü ö 1 é97e¬ « ÿ 7n;:?;
s
t K Y 1 ~9 ü
|ú
t
B/D
ú
ö 1 1
s
õþ
¬7/ M ´>' ã ÿ ¬ «'I/¬ « I ÿ 9
s=
øö
o4pq8rs*t,u& 8.d1%.Tvwxz|}?wy}M}?w ½ 'k:=uw ÿ <x' Òyu x
{}P}Á}?wx}?wyx:x y }J yu X}}x~ +uuu¤x u
x?y}x
y6
iÂsãÕx4z'
}
x~J
Xkxz?z }4 zk'x ~/
p®PÑ
J'Á;
lA]?§¡¢5"Fi[¡dAª?F[Alµdµ¢[A¬lF®PH]²)¡dµd?ÍrF[Aiµ lB Tl,
K WW²³F¨lJ
ÁÔ]» ]~·]p·i!R
¤]
l5N®FA¶ÊiA
ilQ¡¥"
Ag¿NWT]A¡dlQ ·l¾i7WNµYFk tW ·¡d äÍC?Aµ li]F¨l]ÁÔ»À· B t B t K Y s= vƲ£;iJ
¡dli
=]Al~liµël]¶)F©~ª¨l]µ¢lgÁÔ
»À ®5̳··¡Y]] µd¾Ä ]J
µdr]
l¶li® ª
¡dH¬k¤g¡Y
"¡¢? ]]AÄ ·H?5
i¡d]A[W¡dµ ]2A5?W©~µdi?¡d¯ª?̳´¡dl¡dl2µ¢µY{l¡dpvJl
]7lliAiª·=kµdl¡¤lil]
]?¡d F§
]ivµdA¡¥¡dlFki]
²=Jil¯\®P
l]lvª?¡¢A¡dgµ¢²§Jl
®P]
"µd[AÆ =]¤l
]®Pl®¯µlA][¡Y¹]¯
~lA¶a³©~ µ¢l\~¯Ì³[¡dµ¢ J
]lJ
ªH]RÀ¤kAA¡dµ l·
µY®¯ÖgAlg
ª#!AlC
i!Ü®¾
]!¡dli¬[W#¡d·
lµY¨¼
A]·\l?¡¢
2Ô´² Aµdl¡¢ll
{l "² Ì
l Æ?l®P
µY¶g
µYdkp¡d
5¡¢'5äA®Pip[k¿N][
"Ú=gª Ä
¡Y!
]A7·!·?l¡Yi]lpP?¡¢!Ü
A¡Y]Jl K ² « Ti¶·
F?\\lip¨H
iµdp·lk]¿NW T?
=!¡Y]7®Pl
¡Y §?¤l¡d]WTª¾¡Y® 7iFl¯Ã
¡¢]'r[² Ù k¿N
]'[
] º5'[Æ
®PA®P
¡Yµdl
¶¡Yi] ¡Y'
)A¡d¡d\li¯pA¡Y]®Pp?l
ppiR¤lA'¡¥·']¡d®P
®¯µY¡d]lp
iA¯ [®¾K !® i7N'p·¡Y QÜ
l¡¥k ¿NW[T®¾
ilµYµr¡¢?A]][ ¡d?¡dli'A K Ögl
pl
v®¾N)¡d]WN¡Y
¡d\´"l
]i?¡d]F¨½ §
]lª Ap×?]¡di)r½ ]?äAØ ë] Cl'?A¡dµ¢ [² G ·Úv¦p¯~·
lµY5"]®È
R °¡d®¾²LÓ?AW¶A·k²¼l¤l~J[¶
Æ
A¡¢¯®PÄ
¡¢
P¡Yµd
[A¶¯·iÆg?i
¡dll=¯A¡d 'ÄÕ
¡Y]A? ¾·Æ] lliliµY¡dªlai· ëF[Æ?Al®PWT¡ ¡¢Ä ?]iPkAv
[Ä Æ
×l¡Yi®¾A5i
µYiFA®5¡dµ¢Ø Á ´lliµY»À¡d¡d
plF½ µYiÄ
WÆÀ ] ´FÄAkµdil¡¥¡Y¡¢\Hi i ®Pl lª¯A pJ¡Y
]¡d·®P¡dl]¡d
l]i¶C
¡dµdi]A7[µd]i l?J®P¡d
l¡Ä ]lk
µYH¡YÄ
r
² ¡Y¡Y®PHµdªA l®P¡Y ¡Ä Ä
W¡¥ÊNª²p² Jë
J¡¢=
¡d ]T
¡YW
Al)¡d ·Ä vi?¡¥Nlª
² p¡d» ¯l¯]J
AFA"µÂ¶A·
[)il§¡d?]
)[
Æg
]i¡dl]§\l½ µYÛAµd\pR
ª?¡d³F\lAP§ l®PAµd¡ Ä kWQFA
®PµYª ¡ Ä kA¡dl
¡d®¾W!·µdl
¡Y
7* JÖa~H
][¡Y·P
Wl ×
FA®P¡ Ä ] l?F¡¢?q J² Ø ¦)
¡d
lµY ì Wß æ=LçFï ãÂôTìLßßNRæWæ[çFãÂßãÂîâÂìLáFßN æ[ñ¢ï ãÂîòß ó~CíNìLñLñ çTlîÂíNß çTJæRîëî ì WRòRßNôTâÊâÂçTç æRRñ àWó î ?RõçFãÂêRìLßNßNææ[ãÂÊîÊß ãëêkrááFãÃæ[áFãâÂãëß ç§ßNRåpçFãëàRìLêkßNæáFãëîÂîCì NìLßæ'ãëêRãëêRìLîßaï íáß ãëßNÃôTìLçTñ âë]ó=îÂàAçFßè?á àR~âëçFç 9èkæRÂíNì ãëçTß³æ[ãÂôTìLâÂæ ç RWç àRRîî ï D ü U B/D
ü SU
1
ÙXÚ ,:qp,:&
/.®|
ý
ý
ße>'T; ÿ
~?.
u
ü S UMý
1 ü U B8D
1 97/¬ « ÿ 7];:?;
ö 1
ã
wk)'¬
ã
ü
q/± , ³ mp,/.
|
/ò´~
ü
u
ù
ü
|
X1
i~
õ1ë>ô î¬êé÷Xô¬êéò=ìô
õîEå
ê\ó9÷'åZôEêéèaò
úý>ã
|
~
|
G~
|
~
R z G A
{Î sÎ
úýoã
N
é
S
iÎ Î
aA
NM
?Î eÎ
6Í
ð ú ³ü äû aú û¾ü ³Þ û ü û h Ji²aFJ
¡¢)¡¢l)W[l
¡Yµdª¾~Fli¡d¤l]]F¨lW?5¶ ·
=v ®¯´AÆgl¡dµY®¯¡dA§µ[ÆgÆg]i¡d¡Yl¯¯lA "Ö\p'
¡¢\FHl¡¢\)
FA®P?¡ ª Ä ]¯
=?¡d
,K7 =
J
?¡¢'F¡¢N=FA¬iÜri² A¡d=la
!iµY K ¶l)[lil¶
·i?v¡dQ®¯Agª¬JRª?p¡Yv¡¢'® F ]l¡dp ?lµY CÄ
¸\¡YP[¡dlA!FF'
\¡dî¾=pW?l]i
l]¡d
l
µA)g¡d®P
® ]= ·®¯T¶l ªg¡YÄ¡YH]]µdµd
]¡Y
µY¶kH]A¶ilµd![lWv½i~Cli¡dAA
\v
l\?¡d®¾ ~Wpi¡YµdAa~7\AAµd= lHëA ®¯rA²kA¡d¨rg'p¶]l¡di
¡¢["µY i
li¡Y®P
k ¡d·A l]J\!A
?¡Yi¯
PWN¡¢T¡YiJl
!FA®P¡ Ä A¡dl7k'¡d Ä
¡YNªl² y x L .4 x
%ú
H áLbÏ x z´4á4 x -4 x
C ay'r.z ¤CD4ur a-
=ã
x HaL
L zõò.ô åZôEêéè.ò@ë
ü
ü
ü U B8D
ü
@ 1
Ág ý
@ 1
|
~
u
¯],u°s±s²´³²-q/±
/.m.
í|
ü
V~
]BeD
N
| O~?è
)G
·
·
þ
·
l
9â ÿ ¢78
g
N
l
| O~
HG
ü
ú ¤x½'x ~x?y}x
y6 '
mu
~Á x} H¤xV}?wxõò.ô åZôEêéèaò=ë
i
k¤~]!
]kª¯¤
µdRª]H\5l[¨il['¡¢A»¼µ¡Yµd]µYv]¶§¡Y¬ÃR
ªgµd"l
W¶ÃgÅvA¡drlA®PÊli
Ê"¶§®¾¸\??i
µd¡dlµë¶§¡YlNiª¯[l©~Al¿N]
TFl
T'² l'\k\µd ¡Y?¤¡dW ¶
'
¡¢]llª¯¡¢
Aµd]
ªl¶JA]i\ iÄ kF'N \^lÑ
Á;¨l¶?
A¡d iH´5Aµdl
¡¢H!l
¡dl¡d]iAµF®PkA¡dl¡Y¤kkP¡Y·J lp]A
¡ [
µdª ]² i
¡YW \?P#
]?HT¡dll®P¼¡d
?¡¢?®3 ]µYd¡ [?7¡¢A¬
¡d¤®¾]]W²q Ï ¤l¡Y¤ªQ]]¯µYd¡Y
¬¡¢¬
[i]¤HF?k Ä¡dli]¯Ak ¤l], K7y p¡Y¡¥ ·l~A#
¯´Í ]
]¾AA¡dlÀ´Í k¤l Tr¶J²¬AiJ
¡¢ iAiµdl]µYldª
!ªQl
¡d¤lW]
i W ]Ä FkN ¡YÆ
Ak®P¤l
]µd¯A¯p¡¢¯ ]¡¢×?µd¡¥iºFAØ µ
]J
¯Fk][¡dliÀAi[7µ¢lli¡¢"llµa³¡Ylip
[5llJ®¯´kAµd¡Yl¡¢i"² ]
]A¡dliA¾®¾??iµdll®P]¶Cli i
[¡d=]l¡¢!l¹F¡Y]k¯H¡dl
lviA i¡dW§PFii?"l[AT®P®¯]'A¡¢i¡dAl¡¢r~²Ñö pÃi¡d
F=l[F ~!äiiA¡dA~µdYlª r']A
W[Æ
]A®Pk
¡Yµd iA])¶A¡Y¯7F]i¡¢A?FilA[Áµ iR¤)J·
" W¡YAiµ
¡diW¯!·gkª J'AF¡¢
~½ C]l
µY
õÊlN!i?
ªP)A
³iFªl?
[lF?¡Y®¯Akª¡YÑ
iÁ;]l¶
¡d§k\®P?¤?
W¶µ¢AÃ]®Pl~®¯ ¶ âÂîÂÝ ßNßNõ îÂåpì ߧìLîÂkîÔìLáNáFåpNóñàWâëñLßìRkàWî íâÂkßNááFîÂãÂñLßNìLçTæ[0ó æãÔ\áãëòAìLßNçTríæêRá ï ìLRî=ÃîÂߧåpêWìLçFßíÔè?ê¾áFãëæRêRåpî'ß³ßãÂèYáFêkçTæRáñLîã=ç CÊãëêRìLß æRß î ñLôâÂàRîëßNçTâëîÂçTìåpòRRßNñLßNãëáFìLå ñaåpâÂ?ßNßNõ5î§àRâëêkß ßáî îëñLö[ßNßpæçFãÂèYãëáãëç!ßNãÂæìLàkçTæáFrîÂáFî)íNæ[çTèYãråpâÂçTãÂìLçå æRôRÊá"ïrçTâèYâÂçTßNâ'àRCâëïß ßì ¤Wãëîëê"áFßNåpæá ãÂàRáñLãÂßTìLçTïCæPèdâëãëçTç!å ì ãëáî åpç Rñ^áFâèdçTâëåå'áNópè¢áFìLñAãëçJòAßaãÂêRß)âëß Rí;ãÂìLçTæçFè?ãëêRß)âÂßNàRâëßNîÂßNæãÂáãëìLçTæìLævíÂêkáFâÔáFí;ãëßâëìLîëãëìLí ßNâëç h m wã
1~ Z
|
k{
|
~
wã
ü
l | ö 1~
l |90211~ T021
|
ö 1
'~
u
|
·~
N
A
é é
’L
Î Î
G Î
N
K
kÎ
»Î
=Í^Î
B=éa? &
VM
N
h lh aú ü ï ³ü äû Þ é ü û pil
¡¢F¡d¬
ªgµ¢¡dAWµ¢¶a?]¬][]¡¢
Aµd¡ ]¹¡d
A=¡d¡dlii
½ pµ¢
A¡dFl~]]
"W?]][k¡d·¡YWi¬ k\¡di
=¡ ¡Y®P!Pl5\×R¤ª? ª¾iµ¢?A?li² ]ØQ£; µ¢µdgAll¨¬5®5iiF® ·µd¡Y¨ AJAg?ª¬[l§®¯
k¡Y×iiviAA\µ¢ØP]
¡d]?AµaA]¡d
li]]²JJA
¡dv¡dlr]¶Ê®¯lp®P5Hli~Rp¤!
¡¢µYFW
«Q¡d A¹]
A] ¶ ¡d¡d
¡¢v
]l®Pµë² ¡diAµÃiA Ô¶H!i5Ü
]¡dl l)
i?]li?¡d
¯
5?l®¯k¡dl ?¡di
Ãl ¬ª¾[]Æ?kÑ
Á;
µ¢lA?¡d]¡¢p ®P
i¡dk?v!?®P
Aµ¢lA!v l
µdµd®¯¤kªlA ¶~'ä5¬ l¡dl¤li 'Ô¬¶i¤l]®Pª7)l² µYg Ù
v
Ô¶]
®Pl[®¯¡Y?[AÆ
¡YAª7®PQ
Aµd
[=®P¶¡d]ig'
i½=
¡Y\5
l7W¨ll?i]µYª ¡¢\äA®P̳¡¥¡dÆ µY¡¢APp
p¡Y¡Y®P7'fÑ i Ê NFÎ?A¶iil
l¡Y¬]il]l] g ªH¶l
ÃA®Pv?
?¡Y¤g
¡¢µ¢A¡dJ·
µd!l·®¯ª¾ÑCÖ
¶A ilÔ² ¡Y]l]] ÕSÊ3L?²\Ír[ Ú ®¯Hg ][¶¡d¡Â² '²Y=¶~·¡Y
Q
R
¶·
Ai®PÁÔ?®P?[gl
µd
¡¢µY? AA=§
®P
W¾g
i
··
µdªl®P'g
®¯µY¡dpl]l?aÚl\g ®¯¡dl¾lÕ7ñ PA
y ×< lF?g ¡diµAðHª?= p¾W?
i]¡Y
v®PAg
¡dl
µY\Ñ ëAi l¨¡d
=
J]®P¡¥Á;¡d®P
µd¡ Ä ]k¡Y ¡¥
]]lª¶W~·]µYk Cl¡d¤lW À ÷ K ´Í = =¡d
i½ J\l¨H
k~WHikp
[Æ?¡¢NFp ×·
¡dؾ]
]A¡dl À K ´Í õ ró p
¡¢FÐסY]lµ¢k]Ø Aµd
7]
W]k¡Yi [l®P¡d
Ql® ?¡dilªÀ¡dl]?l®¯ Ä Ú wg ñ l7¤Rl¡dl¬\¡dlSÕ iF¼Àø k7
oùWÁÔ[Æ?iA¡dli¬Aó li%Ä l¡di[« ¡¢?'®Pig
W
[¡¢µY]µYÑê² ¶
'~ Ä iHl¯¡dl
lú® Ä wg ñ iFPik ó Z ûÄZ ¶ p
]]·iAFkFH¡dl¡di?Ø ¡¢ÀAAi]
iÀ T¡Yl{"®Pig
lµY®P ÑC²
J
H{]Ü¡Y
7¡d¤kA
µdÚ ii lT?² '¡¢
i
A½¬pi
×]W®Ë¡¢?Riª?l µ
ik®PJl®Pil!
[Æ?¡¢¡d®Çp¾¡Y¤÷
]®PÀøl²¯®Pø Jlg
i
]¡¢¶Cü®
õ!r·
ó ¡d7iWv]iFkF¡YiA¡¢=![®¾®¾]
k¡dÐ
ilÀ l®Pp[¡Y7¡d¹¡di
¡d llµYÀ µd¡¥ºFJlA!rA
W¡¢?ilµ
]A'F´kA¡dµdll ¡¢"À ÷ ]
p
W¡¢F]lkv¡YAia]5¶rAµd§AAJ¡d¯p
Nªg¡dFÀl²§i»ÀR¤ ]A
¬H
l¡d®P
¨ / 1q= Csr utwx v
K
L z;2M2®5? ^7å
ÿ
\lµdi»À\HlA¡Yµd,WK ¡dl
v ?¯Aª i¨g?
Jkl!i ¶rA,p·gK7ª
J ¶
iplili?¡Y,® ¡dc"l°l ¡¢'² 7]PAl7
iÀ·¡Y®P ¦) lAl·
iµd]Q® ¡d°¡¢'²L
¤¶ÊÄ FiAi¡¥µk ]!Ü
¡d'¤kAA©~aµdl
iJ
¡Y®P¡¥l]¡Y]®¯o²)£Ô² ÿW½ Api¬
Ä i¡¥
Írq ý]½ ¡¢ Ä 5[
®¾¬
AFk¡dlCA²QÌádFNW¶Ã
Ñ ý @ #µd¡Y® ý pli
]\7P\k\FAJ¨¬lÑÃ
² ÉgµY¡d]®Pl¡¥HiÊk¶g¤
PpAÑ µd'[µd]d
Á l®¯Aµpil·
!lý l
¡¢\5
p!i®¯AÆg¡d®¯¡diA?µrÆl¡¢ ¡dgÄ
l¡Yi l·]µY¡¢AÜ
A¡Y]pl! ý p
¡¢F7v¡dpÑ lÃÆgli)ÑC² ×ý @ A J
µYdkp¡Yi5µd®P®¯Pl¡d¤lW\¤FAµ]Ü
¡d¤kAµdp\Rª?\A§k¡YiPli
¡¥¡Yy ÿ ² Á â ýñ ý_ñ ²² Ñ Ñ ý]ñ | çãÂFêWrèìLáêRîCß\íkáFæRíNîëçTì ß ãëæR¿ß îäãÂkâ ßNRñ í;ãÂìLìLçTîræ ãëêRÊß~çTâåp]çTî îäãCRîÂîäìLã§ôTæRáFîì kíáFßæ[ñL?ã³èYèYçTçTâ³â îëWçTîåpïlßNáFãëæ êRìLæRô'>ß ñLî ìñLTߧîÂìLãëåpêRàRßJñLìáFè¥ñLóJôTßNãëòRêRâÂìLæRáFìLôTí\îaíNò[ñLó"çTî âëRßNâëîëß~ãëâÂçFìLèí;ãÂìLiæWïôpò ç WRãaâÂîëãëßêRñ ß\ö[ßNíîCáFãÂîÂçß
ü
1
ü
eã
1
þ
¸ B
ã « ;k/ t-7
ýZè
|
ã 3 ÿ t =97 =-78
g~
o4pq8rs*t,u& .\8.4/wyh}?w}^}?wx ' ª } }2
'y}2 x
{}Ix?5 }#u
y~½}?wy}# }# I}?wyxV#y¡5x 1 5 ó=xz?}2 Òyx4z'
}2
5y'y#wk'k:=uw ôÂ ' 1
,u&Ì&H$ .\8.Û
9
6 ÿ e µ 79 £%ÞMße>'»9ä97u
« 7/¬9 t-7' ÿ 9â ÿ 7
´>'I/ã ã « ;k/ =-7Ë 6' «Gÿ 9å µ 789 åu7e ÿ 2¬é ´>' ÿ 6 ÿ 8 7 ÿ t-7nk 9>eã ã « ;k/ t-7 ÿ ö 1 ã ;V¬ ¢T µ 789 # ÿ 7
R L
\
N
Î
tÍ )F\
sÎ
a
TÎ
Í
é
é
aú ü ï ³ü äû Þ
h
/ 1q= Csr utwx v
Kop
x /'rD4
C .y'r.z
éü û L z=
~@þ£
¯],u°s±s²´³²-q/±®%.=
o4pq8rs*t,u& .\m. s9u
}x^}?w i
}4}?wyx u
¡yy¡5x^Â/Â ¢x{x ##:~u xsI }?w4#z'
}2
5y'y z}2 '
 R¢x{6 ~yux¢x{x
}}2 '
ˤx{z'kx{PÁ|tÒyx{z}:iyzx½I }?wZjz'
}2
5y'y z}2 '
4Â ×u
~M~x´:t#}2
P}£¤x#'kxP|y
~Âm xx #k ~5 xkI }?wXXz'
}2
5y'y z}2 '
; ÿ 7' | ã â « = ÿ5« J>';V;V='>:?;P V >:?; « { g « - 7 ã ÿ 5 ÿ Þ
Q
àD
B8D
|E è
?
A a| Q>~¬ è
Q
ée 9>I ÿ 7 ÿ = ÿ : á « =-7
Pè|E ´~?è
ÿ 7/¬
7Õ;<
ÿ 7V>';V;V?ã
ð ú §Þ é ü û h û ü û pÌi
]
®Pll¶W®P¡di?[ )ô
')?®¯]l
"A®5]=iC
·¾~¡Y®¯p
lll ®Pl®¾¯¡Yi
¡d
®{¾l] ò¡d?Á;iAµdlÄ·i]µd ¶ ¶l¡¢iC [®P
µY]µYlª ² ªg?¡dµ¢]
\®P¡d
]ÍC·g®Pª¬®¯¡Y
=² ¤kAµd
]p µd®PF ô ²J»Àl¨g¡Y
P?=piA ®5i=µYg¨¬µd¡Y¨ lÆgµYiµd·
»ÀlF¡YH(7iõ¾kR¶l¼¤l
5
k
p¡d
C¨¯¶§l
]r¶~¶iA[A~¶?Ppµd¡Y]!
l¡¢QF\
5
T[F¡dl ²§¡Ûád ᢿN®¯PiAJ]¨l
'¾]
[¡¢]¶
W]~2lµYd·gª¾[ªÁÔ~¤l WT¨g¶l~\H=i[l¡dRl¤l ² pÙò Á ·l
[F£ÔÁÔ)µY¡d
¶
]\l¾]¶?)\llli
H)vi
A)?[Hii!k'l!¡d~¡d ¡¢ii®PkFl
F
A
µi\¡¢¤R®Û]ª [ll ')[ÁÔi¤lW®¯[T'Al¨p i
Tl5[
W·i=¡ ²¿NWlT ¡dl ¡Y³
i¯AÍC~A®P¡¢®¯W l¡Y®P]
µYµd]ªH®¾]l®Ë2iA! äl[¡Y'¤]iJAA A
¡dvlP®PWl
il¡dil®Û·
µdAªH
¡¢[!r·g
ª T]² Ù
A'Aa
¡¢'¡¢pWlª ( ( läªl7]]l¶
J?
H¡¢®¾=¡¢
v?i¡Y
T¡d¡dli® ÀAµd¡dAY!ª 7¯·
¡Y¡Y iHiTA
²)FlJ?®P]
]¡¢²Hp®¾lÉg¡d¡d¤liiW[
JP¡d¾\® ¯lAµdllPiJ7®
i
µY®P¡d
[¡d
µd¡ l¬]kli¶¡dlk·g ª¬·gÕªii¡¢lT² l]
¡dlWµY¡N]ªl¶lA¡d·i¤lµYW ¶ \¨ik ¡Y'il\
«QRªl]Á =¡d[l¡d~
lNªl²³» l
µdª¬¡Yp¾i ?¡dllFA® y x ZL a4 x
Q¤þrQá|
K
L z:å2 ´>'?½ây |
¢
l i£;] Aµd
¡¢J¶?«Q
l¹
p
l]iA\\Rª¾ivi²iTl ¼¡¢ kk¤¡d Ä l]²pÃÉg
5J«QlA
¹]l
]]½ )'lil¡dJµYªgpA
]
¡d§]vli?5¡¢
iJF¡dAl
r¶Ai) llµd[¾ l"¡d¯ Ä ?
¡d¡Y[[Á;?¡d¡Y®PiA§¡Y
¡¥i³kA¡¥ µ P
̳A¡Y
A\µdYª
¶
¡¢J~P
l
סd7µ¢kl¡Y¤¡d]
Ø ¯]Al
l¡Y
]Jp¡Y
¡¢F]¬i
kA¡Y]lllê¯
¡¢ l
w l][² pi[ Å=] õ ò õ r c þ I
||E ´~
ÿ 7uu78 = ÿ« V4 ´>'6 7 «
I
XuE
4|
I
¢
7e ÿ ?åV /78 ÿ ¢
07V| O~
¢
¢
7 | Pè|~i}?wyxH|tÒyx{z}: o pq8rs*t,u& 4 .1m.#/wyya}?w} P Z
}?uu Ì k:tuw zJ} yzx u ¡x¤9P~5x- Òy}2
^Â ' }Z|5Tí Iw T ku
y}?wyxx{y'
}½}?w
u|Â P y }?wyxT}u
¡5x
}zxu ñ
Ì µ 9
çéõ1÷'ôEï@î¬õ´³
Jl·
5?µdJl
l A
l[ lA~®¯]kk¡Y]l¬
¡d]vAªi²a¸Jii¡¢TllµYdFªl=¶
¡¢]kH]lilªP¡d
µdlµdª¯ª[l¡d]g\¤
¯¡d®¯Av¨lJR
ª]¡d"
¡d
¨ ¡¢?·?]¿N"][iJkp~
¡YH¡¢F®¯\k
i®¯?ªA¡¢lA² iµ²d׶i
[F¡d¤l¶?]p
AÊi?]¶?¡¢¡dl
F]¶g]Øv
]µYl=¡¢¡dalNµªg
i¡¢[l]µYd]ª5¶?[!®¾liµdYµYWT!¡Y
¯gA[Á \
=i¡dRl¤¯=µY?Q]×A[µ¡d
][Ø"p
¡¥A¬¡Y]H¡dA
C
Ä i]Tµd ¡Y¬¶·[lN\² [¶g]lHiPl
~l]·?¿NFW¬TF iäFlH² i[²d¶µYd][¡d
l=Hµdl¡¢NrplA·?·¿NkW¤lT ¶
lª¯¡dg\
ll
iµ¢¯Ã·
aT
¡dlT¶¡dlµY?~l¡dµg7
ll®Pil®PFAµÂ¶
i¡d
®¯¯Ã
¡dli®P?[®¾¡d
"i
¡dp®¯¡¢?¶¡Y¡¥
Nª ¾
5®¾]®P¡¢?l
Ä
¡¢µ¢
®¯ T]²¶ ÉgF7À×i
¡Y¤[Fl"i
A]§[?³¡¢?¡ l]
F]]³Ø5¡dAp]]AlµdlYW7¡d]] ¶liN®P² ¡d
Ji~·?¿N][rl
l
vl·?¿NWT l~i
T¯
A
li¡d?]?l¡d¡Y
Nª7
ii¬[l¡dl®P¼5A
lH®P
iT¡¥¡Y¡Yii]P¶ÃpA"
¡dµ
¯i
[¡dWli] ¤gT²¡d
» Q®¾l¯
µ¢ ·g¤¡d¤ll] WA¨QlJ ×klª A\]kl¡d]]¶ Ø¡dp
¡¢F
HAi
¡dA5
iT¡Yi \liµd · è
ð9çéõ
õò.ô ë%ôEè
|
|
~
O|
G~
Z«Gÿ 5?å
3 7 « 6 æ|
{
G~
ð ú §Þ é ü û h û ü û
)[
TWlF]¯²a[Jg
¯)
¡Y]T~¡YÃ
\~²aA«QA¡d
]]®PWAN¡¢]!¡d¡d5)l
µYA[ÊÁÂi¤kilµYT
WlÊF¶R¶·
?kÃ~¡¢]
¶Rv
®¾]ª NläA?®P[¡¢lki
l]®P7A¡dv[l]·?F¿NAW¡dT
Fµd ª
®¾À¤RµYll¡dlªHlHi
[lTil®P¬lµdlkªl¶k[Fll² [F² lµY·
FA¡¢ ·?¿N][¬ ¤Rl¡dl ®Pª¶§«QAA=lµdl¨p]¡d
·
¾¡¢FF'i[\¡dJÆg7¡d·®P
g
lW¨?WÖl¡dillµY
ª2¡¢[NÀÆ
¡dA®P®¯?
WAµdµdlp¶lA¡d?®P ¡Yli¬rW
¶²2£T]¶ J]¡d
°° Ô¡d²Ã·i\Ìill
¡d)!¬®P·
ilA¡Yp¡Yi¡d]i?PJlAA®¯³]kk?¡d¡¢l[Cli¶lª¾Wl2g
?¡d[ Á äl[p]p]¡diµYÊ[pi¡¢[«Q² ÍÃA
½ Ô¶pi¡dFHll¡Yi)® iF¯®Pl'®¯k¡dlµ?AH\piR¤l=iW y x ZL a4 x
K
x /'rD4
L z
i|
1
B8D
>
N
||~
h| Ø|
'7 I eã /2?7 ÿ {Þ 7] ÿ ? = « ÿ 6ék ´>'J2®56 t ÿ 7Ì- á « ` 7ô? « >È 9> ÿ I | O~ þ 97 7 Þ a| `è O~ Pây?å
,Áæ
I
é
4Áí
|
X/Ô¬ II>
~
¬5
:Áæ
n
èRn l è ·
þ
MÁí ¢ ; è%n] Æ
'
F`
X/Ô¬
n
I
I
·
|
~iQÈI |
~
·
-I
|
· ~iQÈI | ~
·
è%n l è
t 7 ~ |
è%ntÆ
6t6 7 «
^I
·
B/DÉI
ÇI
h lh Ð
aú ü ï ³ü äû Þ
/ 1q= Csr utwx v
Ñ
C .y'r.z
éü û L z'- ÿ 4/ã /78 ÿ Þ
j
o4pq8rs*t,u& %.d .PëmÒyxV}?wx]'56 }2
:]í £wx]#
n:
} T}?wy}T}?wyx¢x{}?- z?}2 '
½Â^u
ó=xz?}2 ÒyxPwy'#'k:=5w £u{}#}2 zu P
ó=x{z}2 Òxu ñ
)
N)
+
+
o4pq8rs*t,u& %.%.v+wyx{z|b}?w}e}?wx^'56 }2
» %u ^}?tyxi Âux^¢x5 zx +2xxx
}u¤5 x ¤ 2wym#w5u ítx{ Òu x
}? { Â:x'4 }+'x}=FÊ0Ëñm
#¤}?w#w{u}?wyx? mu
y~#z
yz? '
o4pq8rs*t,u& %.m.PÖ
M}?wxP6 }?}2 '
Â}?wxJ'? }2 '
x}` }?w}kxxx
}I^ëmÒyx4}?wy}}?wx¤óx{z}kxxx
}2
¡]I
¤xX}?wyxPz:1 x .Vzy x
} I}2 x
}Â$`X
ò
u ¡x¤
]k7]¨gl'Ú
kPpªPA¡dµY
pP]
]ik k¡dÄ ¤l·\A'¡¢
'ii
?A?lÁÔiF![
¡¢J§]Æg
¡¢l]Wl¶
N·
µd[µd]Wl!½²§'·g»Àª R ªP«Q
l¹Wk
=³lP¡Y
? ¡¢A·
l¡¥vFAÔA® ¶A§pµdl
¡¢Fl5?AlgWÃÄ iFA)?¡dQAgª · I>
I
A
?? ?? ?
?? ?? ?
y
z
¡¢¡¢'¯
·?
i[¡Y'
Ap)¯¡Y[?ki¤k[lWP¡¢A®¯pA ÁÔ¤RlµYi]7
i[¡¢')lA¾ ¡dlñ ®P¶li
i¡di®
²g'k#ik
T²´"¡d¤l]7P?¡¢Al® ¡Y ñ 2ÌVÿ
I
ý,
5FBeD
? ?? ÿ 7
y
^ 7
^ 7
||~
T?
\![l¡¢?\
[®¾®5?A¡d¤l!ÜA I
|
w
ý,
y
I
w
ý,
y©~
·
|
~
JI
·
I
| |~=þ
·
y
?? ?? z
w
ý, / I · | ~
@ A I
@ AI
ý, / I | O~
·
|Sy ~
|Sy©~
¡d Jp¡Y
l¡¢Fi'
5¤g¤l¡Yip¡¢?l¡¢µCAik'¡dlpr²§A£Ô!§]¡Yi¤lµYª¬¡dliiFv A?i¡¢7AlF
A ®
¡¢v¡d©\¹l]AµÃ¡dlAr¶
k«Q'Ap¹]l
'!R·?ªg\l¡Y
iWk {¡¢ ² Ó _Ó
iAlÁÔJA
v]]µYª¶Wp¡Yi]l¶¡Y·
µdJµdill«²
rg'§¶g]
¡¢¤l§]¤g¡dk
l\iµd«C]Ai¹¶li¡Yl¯]½ ®P® lli§
?Aµd¡Yª ¡dAli
H'ilµY¡dµYl]dka]'pa§p
]¡Y
5¯'\pp!iA¡dµdFFAPWil\?\ª~p¨g]¡d
µikF·2¯p
~ik¨g]¡d
N¡dª
=??
l®P
lAC¡d² lP
Tp¡dµY¡di?W¯·'
AÁÔ]
W]A·iµY¶l iA~¦)l¡¥¡Y È
² L¡d I
ÿ =9âåJe7 ÿ Q I E · o pq8rs*t,u& 4 %.9Ô .4/wyl}?wy} Â>I QrIC Px }2 Òyx Zxxx
}u¤5 xu}?wyx
e´:x{zw 6:I · · 2}2 'xJ Ê i ÂI¦~:x u
y~V?4 t ´:%}?wyxT}u
¡5x
}yzxPwu}?wyx6
,I
ð ú h ú ³û]ü Þ é ü äû ³ð »À!
k l
µdªÉ?F
µd]¡Y
W½ ~
]® ¾i ?[®¯k¡Y¬iiTl Ég ¡Y¤¬·gª wõ W?l®¯k¡dl~l À õ = ÚvÃp\\iAp ¡YµdÀ
¡d]]l² ¶k
Ä FN³
J[i?¡Y¡dli³p¡dµY
lµYJRª?Cilµ¢Ê¶k·
?§
¾p¡Yµd
? vÍC[ À · ¾W¡¢?ilµÊ]
W]k¡Yr²³» !µd[ Â 7« VÂ À ÜÄ À Ä aÂÐ'AµdÄ Hý = À '® ÚÀ =¡¢vv¡Y
"¾
¡Yi Ä
l¡Y° ¡dlýpÀÁÔ®Pigl
l
WµYN¾F¶\?l5®P]Al
¡¢¡Yi®P¨Q]² A « 5l"l iýpFÁÔA®PµdY?ª?¶
¡Y° µd5 ¤g¡¢¡¢"7À ¶Ê[Agi ¯Q¡Y
]] v ò ÁÔlµY·
F li À ¡dpP?l®PA¡dl7A À ¶
\!li À P®¯A¨k ý'Á®P??
µdl¶ liH
®¯A¨"
liAµdlli\? Ä
¡¥¡Y À H¾g H[¡dvòÍCÁ;[A µdlÀ ]··
F J ¯ ²]» ¡¢? iA?µÊ Ä
i W]Fk¡Yr¶
Aiµd[ À ·5¯?[®¯k¡YA À =l® }  7« w  À Ä À ÜÄ ïÂ=AµdÄ Qý = £À ; ill¶g¡dk
'µdl¡¢¶?p
À ]"
!lÀ
T²\µdªH» ®¯!kp¡d¡¢µY[ÃW·\ ¡Y ]« W[¡¢A~µdYªHi¡dA'][lW®PN®5]7?¡Y!p
¡Y ]l
!"p¡d®¯iA l À lv
lµdlJ®PA¡d]]² ä«A¹i]¶ 'l®¯A¨g¡¢
i ý ò ÿ À ý ´Í 3DLmÏ x
y x L .4 x
òê a Z õ)îEë>åaçÍ¿õ)ñèaî
Y
H zt x 4
L z? ÿ 7×?97uØä9 ´>ô??-¬ ÿ = µ Xe2? =-MÃÄ:é 7 ¯D7 ÿ ÿ 3 z | ~%þì|
À
«Qiil?¹
J]
¬¡¢A
µd®PYªP?
¡Yk ¤lWPiki ¡dÀ\¡d
A·i]®lµd?¡Y ]µYª ¡YÔ¶?][?Æ
i¡Y?·i\µY²iA'pl
®P"l¨g
k¡¢\i]i¬¬
l¡d]WNª 2 ÍC?~®P¡d®¯ ë]·i]AµYk~
\=\g!ªg?¯A¨gi
]k¡d¼~[likµd ¯·"À ~WA¨l"]p
]iP ~À l¡d·=kA¤·il²lg=µd?A]'µYª¬¡YkJW?·iª¯É?¡Y·
Fµdgl
² W½
»ÀÍr
l=°ilpõ?¡dñlµYW¶ ²
õ k¤lJi
õ =
·]vlA®¡d
·g¡dlª¾¯ [g H¡d][§¡dl µdò ®PÁ;A®¯µdll]·i²a» ¶AlÄ iƾ¯
i=
lµdYkpp\¡d
'!A
lplk¡d¤l¡Y] 6õ õñ A õ õñ lpl·k¤l²§Ír ¨ 1 'l® wý ´Í wõ 1 ·®¯PkÆ?
¡d®¯HAµ[!¡d?lW\AµÂ
²§J®P
l®PSl<
õ ¡¢®¯vTF~lË®ý ¨ Q·gª¯´[Í k¿Nwõ
1 A"p¡dl
7¡dFAi ]?·][¾li"À ?®Pl??®¯
kµd7¡dl
lN¡¢T'WÜ
¡Y¤klµY]i[![µ¢l]1 \Aa
l®P®¾1 i
¡d®¯ \"R¤l õ 1 %¨ 1 < wõ 1 >= J
\Jli
µY!ª ®¯
¡AH7[¡di µ¥¡YW\a¡Y¡¢5
J
gAl¡¢~¡d5l¡d
'"
pÜ
A¡Y]³lì® ¨ 1 õ 1 T²
Á
1'Ô¬ |
@
·
·
z
â~
l @ l
·
B/D
l B/D
þÑ
|
N
£Ôµd_® õ Èi² LV [² l
B/D ¬~
| è
~@þ
ý
¨ < wõ õ]ñ¬¡d¾iä¿NWT¡d¤l¶C
Ã< wõ N
~
|
i~
6¨ < õ m ý
~~
|
N
æ|¬À>~
â
|
N
~
¯D7V|
~Vþ|
|
|
m ~^B8D
ý
·
N
|
N
|
· < ~ 8 B D l
|
N
~
4¯
P ½ A ¨ < õ = @ < wõñ !¡¢ Aµ¢Q
ë¿N][¡d¤l
~ ý,Ñ
N
½ Rº Ò |
l ý
c
o~
N
|
7
|
~
ë]H
l·?Á
l ~
|
aú ü ï ³ü äû Þ é ü û l
iëQ¿N]õ T¡Y¤pÉg i[
²§
¡¢F» ¡YiyJ
õAi[J H
ɾ
õkl ñQ®¾5¡¢Hi?A[=®P¡¥laµY®¯\k!¡d#i¡YR7ä¤ll!TW¾¶põiAAñµd'¡d¶ \~ À ilÀ ]\iAl§2?!¨il
kÈ®P®yA¡¢P¡dlllii\A¬
]¡Y'¬õ ¡d ¨ [¾T¶?5?[\"
®¯Wk¯¡Y2PF
U WFõ ¨5²ÀikJpi\¡d5v¡d]¾A[¬µd]il¡d F¨¯5
]®Pl®PFkl¡d
¤lW
§¡¢®¯ ä
¡ë!² l²dN¶§¡¢T J]µdÜ
®P¡d¤k]AµdF¾iA µd1 Ã]5J?5 i
k¡¢p¶g\
=ª
¡¢×F®¯¨HkAFgFª5iØ5N~p5
]
]A¿NWTAW¡d¤l]
kp¬A õ ñ ² ²§J
li®¾
¡dlH¡¢)ik
iF ¡dJ¡Yi®¯kA]l~k¡Y¿NHiõ kñ ¡Yli="N
p¡¢¡YT®¯µYlª¯lW\ÜAi ¡Y¤kAµd·gª W¶g5l¡d¤li]AÃ~
p¡Y®¯v¡¢lJlA\A µd®P²)Ég¡Y [.? õ A< wõ õ]ñ ñ ¡¢JA
ië¿N ][¡d¤l\ ¶g¾¡d? l< \wlõ l
l®P< l®Pwõñ [
Ö
i
¡d]®¯i[r¶?i~k§ilR¬¤µd¡¥º
pl®¾ \¡d®PQll< ~¡Y¯õ ´ÍT²)Jõ]
ñ ]T ¶ ®¯liAP\
['À
À ªPT?¶i lÄ i
7v P
\l"®PlR®P¤l
ik¡d¤l®]HiAQ ¨ \²a¡dJpiv
ë¿N]T¡d[¡Y¤l]ܲ
¡d¤kAµdiv[µ¢l§l
¡d]¶
J\
!¡¢JAµdÊlµd] N\¾¶gµd·
®P?J®¯~l"]²)NÍr¡YµdÊ
W¯S¨ 5[Aii¡d?µY]~pñ iH¬¨ ¡YJñ ¡d·~!¡YkJ ¡dp®¯¡¢A~¡dlk¿N²)WÉgT[¡d¤l²§Ì
l Ä Q< wõ 1 JĬ[®P® ?]Jp¡Y7
!¡d®¯A"l 1 ¡dQ´Í õ 1 = 1 1
g'¡dAJ¡¢='Pik
\·
li¡d\li¡¢~l¡Y®Pµ~
m
M`
|E
þ
ü
þ
N
|
~
ü l | @ l ~BeD
|¬À>~
ü ¬| @ o~
Áæ
·
ð ú
h ú ³û]ü Þ é ü äû ³ð "ÍC[Qý ñ À li{µd[ À ·2µY¡ º A À Â²Û£Ô ý ñ ¶"\ iR¤ ÀS< °¶[l²¬iJ
\7[µd¡Y ºÀik* ?< ]®P¡d
= P=
iHl¶A®PÀ P?®¯]A®P® ¡d
]vN ¯·®¯¯A¡d
l¡¢® lµëý ²ñ g=k!¶ý À ñ ¡¢] µY]A®¾]A]ªvl
··
]µY¡¢A!
A
?rýÛ²C¸\Aª"
·glª
Nª,·
ÿ µd®Ë¶]
Èi² LÈ
¶rl\ ¯Ä ¨gi
¡¥k#µdª"< ®¯lª"®¯"A¡di5 ý ñ Ä
¡Y p Ñ
À Á < [² ']i[¶ ~¡d= Ä
¡¥ ]¶ili~½ !?l
² k \Ñ 3DLmÏ x
y x L .4 x
H zt x 4
,u&Ì&H$í%.d .FÓ
6'? tåtÃ^Ðn =?{Þ
o4pq%q2. |´E~þ | |E d~ N
þ
|´E~kg
| |E d~
N
7
¯
L zèaç#ï@ô
õ)ç
êéî¬îEõ
ï=÷gêéö9ç\õ®î¬õ1ðî¬õ1ë>õò.ô åZô¬ê\è.ò@ë
2z
F «
~þÕ|
|
> vÙ Û ;M; ÿ z | ~Vþ×|
¯],u°s±s²´³²-q/±m.m.
BeD
V| N
|
6¬ « -
||~ ~ 9?6¬ « -
N
h ;
ÿ åX9?6¬ « -¢
]|{¶dýu|
|{¶
A
l |SÚs~
|
i~
»
o4pq8rs*t,u& %.ò%.P¾x} |#¤xIu
ku ¡x¤ ziz 5u¢x^Âm|5sewyË}?wy} Â+u
y~ ÿ ÿ« `w| è|è × ~Vþ Z9ÿ 7e¬< ´>' 79â6 ÿ s¬t?; ÿ =-7Ëk9â7Áå
ñ
r=
×
ý
B/D
s
|
E|´E~ áD|-E)~B
l\Á®P
H??"
k̳µd~l¡d²a] !£Ô Ap¡¢¡YA§Wµd!ë¶ri=\¡d
gP
¨g® ò
·k!~¶CA·gʪQl]g
ªg=0=F=lk
lWFÔ¡¢¶AJ¶§
Aÿ i]?¯À¶r~
']ki¨gJ[
= FlJk\
?¡d]l C \² À ¯£Ô Q À lõ¾ ¡¢!²Pµdg£;l
¨Q[ikAl!®¯¡Y¡¢[ k
µ¢
¡YA[W¶Ê]¡YA!®P ¡dÀliµdAYk'W¶C"?[¡di
kHÀ ¶Ãõ¾?p¶
¡d
FÀ¡d!¡¢![µd]?l
µdlªQ[Á;®P??[¡dA®P À¡dliÀ¡d¡YA7Ji??A[µa[ À
®¯7k]¡Y
Á
i¡Y¤Flµ¡d
wý À T²)¸\ªHi
¡Y¤FlµY¡ Nªl¶g¡YplµdYk'\ikp
¡d=5®¯l ò < wý À = J
ò ¡¢\<
lYÁ;®PAµdl®¾]·
F
i²Ã
J¡d®i¡dp¶gpÆg
¡dFF¾~ip[¡dµY
r]A¡dµdp
l!®P?[¡Y®PW®PJ¡Y¡Y®PAl\iAl®PWl² ®Pl
¡¢®7¶g®¯A¨]
×B/D
N
| |~
e
5`w| Xè|è
~
ZmB/Dl`þc`w| Xè|è
~
6`
Z
ð ú °?+ ÀÑ
3DLmÏ x
y x L .4 x
(
=
~iB/DL`w|
¶~
o4pq8rs*t,u& m.\8.4/wy)}?w}+}?wx4 '#:tuw ÈQX| ö1÷ ~ »~5x}xt4
yx{~½¤k}?wyxxxx
}}2 '
y ¶J u
~ íÖ
½}?wx:~5{m }4~:x{
y}4~xx
~
½'uzwy: zxMÂ}?wx]¢}2 zu iT}?´ EZg | Á| |~~ ñ N ¶ 6QX| ö ÷ ~ tQX| ¶ è ~
À
Q´Ég¡dÍiÀ [ rT r
i
³
µYª"l
~W¡¢?ilµl
]A¡dli li ¶R\~l ?]
A ¡Y'·gª À À [²)J
¡¢p
k¤l]\ilplCi!
¡¢Üi3
W)p¡dl7¡YÀ J0
+ ]lÀ ® Èi²Y°°l² ´Í À (Ä À ÜÄ \
o4pq8rs*t,u& m.d .Pëm Z}?wxZ2ukx¡5ukx£ }?wZ}?wx }?u
y5x
Òx¢x Ëu{}k:tuw  }]wyyô}?w}k}?wyxJu
Òyxue~x´:tT}2 '
]´
y¡Â u
~Â^ }z'
}?y¡¢x~: x
{}Xí ¢ xu N àD }?wyxM¢x¢x{x
{}}2
| | '~ ·@~ ø ñ^xXzu
y'
zu P k:tuw z
À
À
À
À À
o4pq8rs*t,u& m.%.4/5uxz | ~Vþ×|5Wz | ~Vþ×|5uu
~z | h l ~Vþ|55X}?w}»uy}?w5xx l · · xxx
}}2 '
yMwyÒyxZu
Òyxu ~x´:tT}2 '
j-
¡5{À Òx
]~x´:tT}2 '
 }j · · -
¡ u
y~M~5x´:=#}2 '
 } M V
¡ u w y H ? } w } ? } y w £ x } x
: m
' ~ ? z } h l l l l · · IM~x´:t#}2
 h l }M}?wyxV´
y¡ · h ø l u
y~½~5x{~zx= JÚv
¡¢¾À ~l¡dp¤l
W5¡dF7À¡¢[\Ü
¡Y][¡d¡dl®P·FNA~]Jli
p
?¡dFl~®PAp¡d¡dlµY2rl
¡dgª
vli¾2[Æ
A®P[¡d
v
l¡d®Pl
µdl
ªÆA ][¡dlr² J¢ Ä ú ø wý Ú= À 'g l¡¢[ ik7p
ý ¡¢¬´lµY¡d¬ll
r¶\
¡d
?FHi¡d#
WAµd® l ´lµY¡d þ
M| 7 ÿ =-7
·
| '~
%ÿ ¬ á97 ^ /ã
||~
N
I|
~
· | è
õþ
u|
| '~
a|
~~
~
àD o4pq8rs*t,u& m.
%.v+wyx{z|T}?w}^}?wx½#u #Mz z?z xXu
~p
L z= J¡Y
¡¢'T² ¡Y¤]Ji=l
®¾!JRª¯Hlvk'
!FA
vil äA]W[¡¢AµdYª¡¥F=?¡d®P?Á Iu
M k:=5w P
¢@ú
þѯ ||E ´~ õþ
· | Xè
· Î |
~~ õþ
a|
;
þ èþ
~
|
1~
ë
ë
ë#ë
9
Jil
k
"¯
iWT
v¡Yl!C·¡d
N ~
]AF5kl
¡d·l[ l?H®¯kl¡Y\
kË!
?]
l¡Y®Prª² ]ilJi¡d
l7¡¢¯lA
¡dCH®¾¡Y
i"
µYl]l
ªvl·]
ªQJii¡d
lv=² v
N»ÀFAlQi·
A?·
lµd]ªH]¡¢?¡d#lW'A
¡dµ¢ ?l®¯]k7¡dl5
iiAlAª ádl\iJ=Aiª l[
®P®P
??¡dl'i=
l'pA·i·k¤liT²~¡YÉg
5i!µY¡ º\¡d
! i R
¤l"®P¡dl
®P_ õ
i¡dli® ² ¨
õ ñ ®P
¡dl¿µ®PÀla¶)
k
A¡¢¡¢i2®ª¡d[Q
²f
¸\ë]¿N]Å]A[ô i¡d¤l¬ Hl[=g$¯i ¡d¡Yµd]iN ¯lò l¡dÁÔl
iµYµd®¾l]·
¶³F¬\¡dl¬ril¶~[®P~
lµd®Pll· ¬
ë\A¡¢li® ¨g¡Yõ ?i 5p¤g¡¥¡dü õ Qñ2p®PP¡¥lµY ¨[ÁÔ¤lWT»À~lpµdJë¶R\l)® [A²~Ä !iÉg
¡Yi
HA¡dP
!µd?ª \Ä lA!®¯pkl¡d¡dl¤lÁÂ
]Plõ
[®¾ ¡¢aµd®P¡¥ºWl¶W¡Â
² l
²d¡¢¶R\® iÀ iT6ý ¡Y ´ý Í wõñ ´T²~Í »¼wõ ik ikpµd¡¥ºF À ²)C¾WN'pi[iJi¡dp¡¢'¾
®¾®Pl
¡¢®¶g~\l
µ¢7iR¤lvHl®P
? íöëoô îï@÷XôEõ
åIò
ïò@èaö=ëoôEî¬ï=÷Xô õ
õ)ñèaî
åZôEêéèaò
ð=î¬èIö9çéõ
ë
·
l
È7
þ
P
~
}|
| ÕB8D
|
·
2á
·
B/D
·
¬~
N
|
~
×B/D
ÜÄ Ä ¬á ÜÄ \ á Ä \ Ég¡d5i]"¤l¡Y ª*Ä ¾¦
Ä l®Pl®Pý ²2
£Ôi¡dá#®Û~®P]?7?
Qµd
®¾¶
\®P!l?¯
¨g
¡¢k®{¶§\ik \l
µ¢2iR¤MÕ Ä aÄ Õ ÜÄ ïÄ °° Ä aÄ ÜÄ ïÄ
Õ>|
·
è
l
·
è
l ~Vþ´ás| ·
· D|
l ~ s| l ~
g
·
~
·
è
l ~=þ
|
·
è
l ~
·
è
·
~
0°l²
·
>|
>|
|
N
l ~þ
h aú ü ï ³ü äû Þ é ü û p¡¢ ¡YU LR Á;Ü[Ä ?[ïª?Ä [µd¯Qp¡Y« w¤k lµY
W Ú=¡dÀ Úv À i²~£Ô=
¶)kA ¡¢ri½ =A5g¯
iµ¢AlF¡Yi HF
·gWª2F¨¯?k¡ ÜÄ 5ïĵd¡¥º Fil
lW~
¡¢'[?ªgµY·gª¬P[·
i
lª² J
]ll¶"
[?[ª?[µdý ÚvÜÄ aÀ Ä ¡Y¤]¶' Ali ]µY
]¡d®P¬µd ®PÀ ¬ñ 7¡¢¯¡d¡d¤g
¡dlµ'[¡Y!lilli®P#llµdliµYªª wý Úv À ¡Y·iN
]'T¡dÆ?l¡d7[)µ¢liJlA®P Àl®Pñ!lµ¢
k
¡Y¡¢¤û®=ý õ ´Í õ]wñõ ² §µY¡ º¡d
À ñ²³»À=®P¡YAµd À ñ ³
?iklH£;2®¯µd¡¥ºkl¡Y]i¡d
lPFA
[µÂÆ?¶³¡¢lN·
H
µd¬® Æ
]lATr
½ µYl ª
µ¢p]Q
·?¡YP µdª ]lÀW®P[ñ ¡¢
A?µdYªQ¬$À¡d®¾·i®PNi]µYli² TPÚ'¡dlii2kHµdi¡Y ¡d]¡¢]"² ¡Yý i'
kÚv\] ¤lÀ ]i]P¶CË]
lH$ lä¶Êl
lT «Ql¹
p
k\]ʲ / 1q= Csr utwx v
÷L
|
è
·
o4pq8rs*t,u& l | è
l ~Ig
| ~õþ
N
I|
h ;
~
u|
L z' 79â6 ÿ %¬5-?; ÿ ã ÙXÚ ,:qp,:& =-7j?97:½2e?7 =97uJ 9>P¬5-?; ÿ t-7'7nä»4> ÿ ây |¬ÀÀ>~
? %$
3 ? 9>?; ÿ âV ÿ 9 tåA 1
l¡¢["iA ô P]¶g]
Ü
¡d¤kAiµdµYC
µd¡Yªl®P¶
¾¡d
l! FlA³i¨H
¡¢A= '¡Yil¯® ¡d=]Üi AµC¯Jl
p FA
¨7Á®PA? ?
µdl ² @ A ' Á®P??
µdl¶ Ù ¯
vl
]iliʶi=®5
µd A·k¤l=Rª?§k
µd
¡Y®P¡dl¡d\k\µYWl °° ¶
p
¡¢Ji!i® ·pA§[®P
µYƬ
¡Y®PWJA ²)ÉgP~!R¤l
kpk l
¨ 'l® Ê ¿° p¡¢'
W¡¢ÜF i¡Y¡¢¤k³A¡Yµd ävlT)H=~
]µY Á¨g
kp W
µY]²³J
Jll=]
¡Y Ä iµ¢ A³
²"]J~
N¡¢=~v¡¢=pig® ª7·~F¾Ãll¡d~7]ÜiikA µ ©~
'kl¿N]][
FAlµ
²
¡Y®P¡dlHlk¿NWTi'
liµd¾·'¤g¡Y]~W¯l)¤klµdª
]lµY¡d¹WPÍrµd? ¡Yi)5AJ·i
µd J¡ lÍC¾i!lÆg[Æ?lµ¢gWvT¡dl©~]il7)AA?¿N]Ê¡Y®PTÜ]
il?!¡dFl¡dkJC¨g²)¡d\
J¡dk®P
p!lll¡d]i¯
A·Fª AµÊÄ ]
µdi!¶l']l®P¡dP·J]µYi¤¡¢AA7ª¯[ÆglµdiJi¡Y¤i¡Yl'² i?J[A ®¯"¶Ãkl¡Yi `£þ
`Oý
7Ç`£þ|E ü
1
d
è
+
Q
2Q
l
| ü
bè ö 1~
1
d õ ü
©
ö 1
ö 1
sú
l
43 U
Ì
VÛ 62¬
| ü
~Q
bè ö 1~
7{á « =
l è
íú
sã
o4pq8rs*t,u&
m.\¬b.Tvwxz|T}?wx{xXzXu{}}2
o4pq8rs*t,u& m.\ Ô%.X¾:'|õ1ôEï=ð
ã~
| |~
N
N~
Oþ
|
~
.ú
Jæ
ü
þ
|\ã sý>ú ~õþ
CB/D
N
Dú
·
e
á
ü
N
|a`â~
eN
|aáZ~¤þ
g |a`â~
,u&Ì&H$nÔ .\8.3
ã
@ãÕQú ® Q ã |ã~Ãõþ | ~
ÿ 78å@
ã
B/D
ã- Þ
o4pq%q2.
A
Î ½ >=?
º2
ú
*
|a`â~ N |a`â~iBeD
*
wý
N
|a`â~
kh eh aú ü ï ³ü äû Þ é ü û
!®¯kÆ?¡Y®¯lµÊ¡d?WAµÊ¡dQõ5²§J
] < õ #µd¡Y® < õ ô Ú = Ãl i
¡d
k¤lJ\]iF=µdl®Pî¯
"¶
FAAi ¡¥Ä¡YFNiilA®P l< ®Plõ Ú
ô ¡¢®PC < ° ¡d~pÑ
ÁÔll
C¶A¾
] < õ ô Ú < wõ ô Ú \ = p¡d¸\ ª!
°°¡di=?ôi [Ú ÁÔ\ ¡d?l¡¢rAô¶A\lÚi¶
l¡Â¨gµi²
l]²dk¶
¡¥'¡d]¡¢
~JA¡d®P=l¡dl¯~¡diav~¡¢Ñ
?ÁÔ]llµ lô
rÚ \²ÃJ
ô ~Ú¨Ai
¯pµ?iliv¡d?¡¢ÃAAili
lµi\®¯k¡d]~¡¢A[] °° « ô Ú \ ô Ú =
«Ù
'ô FiÚ ]\ F¨?§ô ]Ú T¶i¡dµ pª
¡dFk7)¡¢p
]¡d® ¡dµY
ªµY¡d]
µd¡ ]kP¡Y¤·' llÑi
ÁÂP¡¢)
¡¢r²®Pl
¡¢!i « ô Ú \ ô Ú k =Ñ ÉgµaQ?ill®P½ Ap¡dilA ~¡dii?iR¤l]!
¬l
®PiA¡¥ÁÁ l ¤ ] A ®P¡¢l¼
¡¢A® Á¢Ñ
ÁÔý_lñ lirɲ3< J
]T¶pllie
<
AÁ @ A Y @ K AY ®Pla®P
ll
i
l¡¢¯® ý_®Pñ \ilÁdÑP< Ü
Av¡Y]® i)l äý]lTñlÁ ² K A A @ Y Y @ Ú'glªiHiAFÃ#5Ü
AA碄
¡Y]ÁÔ[Æg¯p]i¡dµYp¡Y·¯A i ¶g´l µYµd[¡d l ¡¢\¯·Hv
]P
A"Á¢iÑ
®¯AÁÔl kÆ?l¡d
®P®5 li䵡Yi!äälllÁdTÑi[]ÁÂl¶rÆ¡Y"
¡¢iv¡dl
¯lP A®¯ ý kÆ?¡d®¯
AFµaA[®Pl¡ Ä ]¡Yg¬²
lä¸\?iF=N¡¢i?lk lÁd ÑiAÁÔi²)Ü
Jl
«Q]¡dlq ¹v
 l°]Aý_µd ñ Tý ¶Cli
Ñ »Àl½ ¤l
kprý ¶i
]r¶iikvÀ
²
¡d¤lFAµC?l®¯k¡dl ®5i'äl[l=
lil7
Ü=
li¡dl¶A
ý '
l
lK« rA²£Ôi ¡d~?µY¡ddk['¡YiPk5¡d)lµYiA
7~'?[]AP®¯A
µ¢¡dlli_ !ý¼®5pi¡¥ älý¼[pl
]H
Nliil? ªg¡Yiý ²
¾·
[
l[ ®¯Â kp¡YiQ¡dFi¡dl¯ª A
AÀ Á¢² Ñ
ÁÔJl
lP
[r¶)il¡dil2µÃW
k
Ü
¾AA¡Y]ýÕ ¡¢vý iÂÇA"¡¢P¡Y!¡dill®P¬
·
i¡Y7¡dH
À®¯
A µ ¡d®¯Al"A À ¶i¾ikJi WÜii °  ý 0£;® À ° ¡¢=[gÆ
l¯TW²v¡Y]J
¾ò ·iÁ;Aµdl¡¢] ·
¡¢F?]¬õ¾¡d¶Ãv\
¯k
]]i µY
dkp?¡YiF NJFAi
liµY?)]®¯liliQ?l®ËlÂÈ®¯ky¡dl< 'wõ A!À li
?l2®P[Ai¡dlÀ¡¢?]A5
À k²HÛ£Ô!
]ª2i®PlR?ª2!·ik[ Æg\]¯i?¨gW
2kÐ]A
µdlp
A 2ýËA·¡dl?!i
FA碄
ÁÔJ[ÆgRª2]il5¡YiÀ"·A g
?®57·?]]Ä []¡dµd?
¡dl7iAA5 ¡d2l®¯iA¬glªÀº]]l]lµdP
¡¢A Ã
l!
il®¡Y¤Fll2µ·
¬[l
i®¯
k]¡Y
l²
¡Y¤H lv×NF'A®PA
]]
i]A7? A¡d
l¡¢i~]¡d² HØ
"®¾N\l]
FAµ¶\vp¡dµ ?iH
"¡d®¾iµY]\]l ¡¢J
A=
¡Y¤g¡¢¡d·
µd"·g=ª5»ÀÑC¯² Rª W¡¢?ilµÃ
]Fk¡dl À ¡¢ ¡Y
PlF?"A~£;® À / 1q= Csr utwx v
|
N
~@þ
¸ B
N
~
~sþ
~iB/D
| wý
| wý
N
| wý
N
L z{
·ý
· ý
|
N
~
ÿ ¬5¬9 =9ây
N
·ý
|
o~
o4pq8rs*t,u& Ô .\8. e]z'Xu x}xP}?wx:»}?wyx¾xX# %zwxz|P}?wy}#}?wx' =-78 ÞËße>'7 ü « 78 ÿ 97' ÿ ? ? « >È ´> ÿ 97e¬ « ? ÿ 7Á;:?;
Á Y Â Â
B
Þ 3 ? ´>'?;V?é ÿ 78å =ä»6/kä9 ´>½ ´>:»/6'? =å ÿ 2 « 7á? ÿ å ÿ 7 B D ü ý ;V7 ^ Þ
ëÉ?§liÊ]¶
ÜC
² ]L i [Ô¶ ² ¡¢³
p®P¡¥Á;?¡dWT§
??iT§l9 liJ ²a» Jp¡dµY?ÆgiµY¡¥ai¡d Ú = µ¢JkRªl§² ? Ä
=!
®Pl®Pl
¡¢®Õl ·gª¾
Ä
¡d
¡Y~{APl ¡YH [l®PiA¡d·
µd |
Bo
X1
~
ü
ü
9
9Â
o4pq8rs*t,u& Ô .d .4/5ux ü yXu¤Òxu ü ¶ XJ}' ¡ zu¡¢5 mu
~]x½xj7/?; ÿ '/ã ã åäØ?2 7 9 ); ÿ 8 ´>'½2®56 t ÿ 7 ã 97â ÿ ? ÿ 7 k6 þ ä9 ´> 7
þ
7e¬
Þ
kh e aú ü ï ³ü äû Þ é ü û £;¡Y!
Ì
¡d¡¢rv'i][lAÆ
Ãll\®¾¶
)i
iµY R¶i¤l
[ i¡¢]?®Ç¼]JiR
ª?F J]ilkk! p \
l Q· ¡¢pµd¡¥lº@
]A ÁÔ
¡Yì®PAl®P)¡dlµdFii®PlAµëF²)lJ [i] U i ilF
®Pis?kÁ ² @ A ¶
p
6 \ ®5iNpÙ ·
¯Ä iFliµ³AF·il¡¥[A]~l
Ä ]i¡¥lµÃ!lF?
QW¶?s A¡¢i
p¯]
FiAF[Fk!l[¡d® l]\N'µd
¡Yº·¡d
ª
= ² Ã
ÂÉg¡¢F¡Y
[® D
µdY]¡¢p µYÄ ¡ ´º
'Í ¡YA ¶
v²i¡d¡d H2¶C
·
iA
¡¢ p
Û5« lF?!'p¡¢v¡¥
¡d®P T ¡dÑC
¶Êl·giª µdl[k ¿Nik·¡Y5r
²¾ÉgliR
¿N¡Yv yi¡¢ W]l®PFk¯¡YA
A Älii¡¥[ÛÁ;?¡Y®P=]®Pi?¡d?l
µdA]µ "[kÁÔ¤¤l]p[
~5il
v p¡Y¡Y
A7lT²!¡YÉg¬¡dil[ 52iÖ
5~?]i=lµël¶g \"]¡¢A=¬
l
"¡d
?¨H¡d¤g¡dl ¡d·
µY ·g
ªP®ÛÑC¶rl«Q³¡d]F
ii¨ll[¡d½ ·
=µdJ ildÁԮǮ¾??Riª?µY'W²ik¤ª dÁÔ®¾??iµY¾A·Pp¡¥Àl"
¡Y][ ¡Y li iR¤l=
¡d]
i[¡d·
µd
·?ÁÔ]
]A¡d=li»À~v¡Y p¡dµl®PR®Pª lÐr² ¡d p®¯¡YiJk
¡Yli×[iiWJ¡d®Pp·
[
µYÁÂ]®¯A"Á;l²~k
É?¿N¡¢l'¡dFlØ iÊ?[¶¡Yi¡d]l?T7¡Y¡Y¡d
l µ¢7Rª?°
p²Yµ¢Ò° R¾L ªgÔJ¶ ¡dl5C
·
¶¡ Ä ¡d¾][ll¡dJlµd=Q l¡d7L µdlÔ
¶ ² i?r]¶i]lTi¡Y?¡dQ
¯È
²[Ô¶iAli¡Y7 ?[Á
wb JÑ õ ] < wõ < õ ô = ~´Í Ñ \ / 1q= Csr utwx v
>p
C .y'r.z
¼
þ
EZg
sW
· E8W þ
L zút N · wyM)
y}?uu»|E æ 2k ~'u xJ}?tz?}?ux5»u
~È}?wy}NOPNõgøsô
õò=ë êéèaò=ë
æú
QA9ýoú
.ú
·
þ
¿ X
âú
®|
~
ü
·
|A9ýoú~
ð ú ð Þ é ü û hAe ¡d Ä
Ír¡Y )° i¡Y ¡d?®P
'l[Al vFA
¶¡di\=g=
lp®5ª7·¡¥]
~¡Yl®PáY[¡dl¤l®¾~viÑ
iµYÁÂvÆHQ[
®Pg¡d®PA
µY]=\A¡dAl§ H
l¡Y²§NªlÚ=¶Ê\lkii i²§AµÂÌi¶gl¡¥~ l¯ìg¡dª J$¯Ä A]µd
Ä
P¡Yp¶¡dµdl[l ² ÍC[ Ír ·"
!\£;® lÃÀ
T²
¹]5µd®P 0iF¬iAJ
"FlT¡YiAµ¡¢?]lµ Wl
F ][A®¾]7i·gµYª ¡dl ¡¢p i=lÑ
ÁÂ fk \²'Ù l)§[l
®PF ¡¢¶
?¡¥W AQµÃ¡¢l=il µY]iF?ª¬iAÑi Áë ¡dvk!\Ñ
ÁÂp¡d k~¶i]'
]¡d ÍC[ k»ÀQ ?² ?g'A
7Al
¡dk!
Ä ki=l·µYdAª dJ Á®PNF?k?s
µd
dAi
]s ®ÈA A² ·lA?·i_ µY ÂPi² i?=
¾´Aµdl¡¢'l[¡dl A 2² 5 x¿ -)yz
y x L a4 x
>Q
ö
Iú
K
R
, qp,:&¿Ô%.b.4Û ÙXÚ : ÿ 7 ÞVß/>7
·
û
|'7nä»4> ÿ âyP ´>'9ä97u];:?;PM 01I æ ã ; ÿ T¬+/?9;<
1
0 1
A
+æ
N
|
~
F
k ¡dl]'
[µ¥F'F¡dA¡d
]7
¡d]¤g
¡Y5il'R¿N]¡YT=¡Yr¶
] µ¢kFk]¡d'l7l
Aµdª72¡Yg²p¤lÉgµY¯¤!
¡Y ]?
i·
¡Y·i
µY ]
·
Fk
¡dl]J
AÁ ¡dÂÈ®¯Apl
¡d² F2l ll¡Yi] ¡YÀi¬lR¿N¡Y!
]A¡dl p¡Yµd)iR¤5iR¤l¾¡d¤¡¢Aµ æ
N
æ
7/
|
~
kh e aú ü ï ³ü äû Þ é ü û F ]¼H£;
® lÀ A~¡d¡¢li
\llJ\
A¡Y·¤g¡¢k¤l¡d·
µd¶vl·giª¬ÑC²p
®PW=Aµd
k#iA\i¡dkH À
¡¢¡d\]ll®Pl ¶g¡¢Jk J
¡d]¶®¯iAA~µ
Av碄
ÁNÉg
ªg\µYkA Â
·
A
HiA·
lý5²vl
¸\y ª7
PÉ?FVgÂ
Á 2²'
¸\]A]iAi\J
< ]T ®7¶ ýÕp¡d'¡¢'i
PlÁdÑÃ]®P¶i\¡d? ¡d]lT "
igP
É?iFTg"
AÁ liH
iiA[ivA\A¡d!A Ä Ä ii¾µd
¡¥º·i ll
A~´Í T =p
¡¢FQ¡d"¡¢®Pl
¡¢ À ý ´Í rT ¡d i?i¡Yi´Í A2T ¡¢®Pl[¶
p
¡¢¡¢F® ~® p¡dµY Ä Æ¬ l®Û²
»ÀkH l[r]²¶³
r¶§l2¡Yi
i[W2¡Y[µdi¡dl À !< T
Ì ) A g 5 ª g H [ d ¡ ) Y ¡
( õ ~piR¤\!]A
¡¢Aµ?il®Pl®Pl
¡¢û® T
¤g¡¢] i[p
¡¢vp
ll®P®P®¾®¾ii
¡d¡d® ®² ´Í wõ [²³»ÀJµY¿#lT§N< õ ³·ª lk¿Niõ kl¡Yi FAl¨g® ¡Yi´"¾Â ¡d¤l¡d¯Alµd
]][ iÀ ¡d
\o\<
CD w¶põ ]Á;Tl]² [Aµd» ?¡dli \k]\A7lg·®Pª¾Al?¨ll¡¢?®¯
]¡¢]kP² ¡d¡dl¯ÀlÀ À
¡di]?¡d[]~[l
]®Pli®P?l
[
¬¡¢·g® ª ¡YiÅvõ¾ ¶ Ä
PH[Á¤kAµd
WQ[k¤kA¡¢Ap
i[l ·gª7? Ä
¡d
i¶=]F[g ¯¡Y] wõ '®  < wõ pl
®P]® ?=!l® p¡¥?]
A ]гli['¡dlr)²\A»À l\l¡dg
plHa[
l®P®PilA®P
¡¢ip¡d®¯iiCTll'û® P¼
D 5< ?[wõ ³®¯pk
¡Y¡¢F
Tg'l ¡¢[5² iA ¡di[ ý ¡dv
¯]®¾¡¢?¡dWT
g
iTA°ÂËAi* ëAi \5iR¤ ·] ¡dl]iAC[µd[
ii
¡Y[µkp l¨l¶a?
Ä ¿
pW'Á;lP[² ?¡dl[¡d®¯=kl¡Y][
AÀ T¶RAgõ¾ªv² µd=®Pil ¶?
!¡d=wõ PT¶Wikl
l
µÊ]®Prpl¡¥
¡¢
® ²²]j À ä¸\Nl
v!i¡YA?"iAÍC[¡dW[l7]r½ ¶g®PpÄ l ¡¥'
wõ k¤lkl=i\ õ \i¡¢R'¤¾ ·
A¡ ¿N²§]¡¢[´"¡d¡d¤ll®¾]r² i¾
[¡dg®È Hp¡Yi]\¡d
À õ¾¶\lv²pCµd¬l¡Y®µY¡dli]k ¬
µY¬¡ º,
Ã" l·iµY~]®0i´Al³·Í ¡Yk§¤¡dõ aTT¶³
² \ëÉg¿N¬]¡diT[l¡YP¤lAF¶Aµd
§
g
iFH µY ¡ º
À¡¢®¾aAv5®P?lllk
¿N®¯
i¡¢kk® ¡d lÐ ·gAª¡d2À µd
®P, 7õ¾N²³FvJ¡¢Tli¾¿ ]< ÜÀ
¡d¡dõ¤kiA?µdiëi]] µd¡d[~pA] ÜÀ
¡d¤RilFµY¬]i[i!A µdJl =¶
²)iJA'
¡d] ¶? À ² ¡¢pA¬]µY]®P\lµ ¨ õ )p
¡¢F7®Pli~5
µd¡¥ºF¡d [ó5WÜl
i¡Y'¤k liµY]ki~[l~
® À"²i®¯É?§A¡YiH·J¡¢~A·¡Y5kl¿NWµdT®P¡Y¤ll¶?aiAi
< w¡dõi?ÃilTl i¡Yi =lS ¡d ¤gi¡d¶gl?µY?d
ªil®PvN A·g¡d¡¥[ƪ µd[ªPWA]kµdÜ¿N¡Y
¹]
¡Y¡d
¤RA lµY¡d]l
r ¶ ¡Â²
²Y¶Rl[
®Pµdª¯® µd?®P¡Y
=Fp~¡¥lµ <
~wõ¡Y®¯\A[l§®PA®5; ?² ¡d
'¾k\p¡¥¤¬W¶
!i
¡Y®¯Cll
=Clµ
A®P?v¡d
l!"iAkµ¢ AF]² À ']i[l ¶ / 1q= Csr utwx v
L å
L zõò.ô åZôEêéè.ò@ë
æßþ
|
~
s
_G
L
õþ
L
ü ý
G
þ×æ
næ
·
·
× G B/D
æ
| Á| |~~
N
næ
×B/D
| Á| |~~ N | Á||~~ N
H¼
·
| Á||~~
N o pq8rs*t,u& 4 Ô .
%.4/wyØ}?w}}?wyxV Â9} X5
'yxM5P}V}?- z?}Ix{ Òu x
zxu'u
~½z
yzy~5x · }?w}iu
X}=Mzw zxiÂs}?wyxX
zy6
¼Èx4z'
óy¡5}xM¤u
x xkx
{}i | Á||~~ N Á| |~iBeD ¼ P ×B/D | ~ | ~ N N þ
|
N
~
4!
!
I
|
~Vþô
K
| ^è
V
N
|
~~è
V
£¯
N
G
I!
B/Dê¯
ÙXÚ ,:qp,:&¿Ô%.
|
g!
»
P
~
|
@
G~
]¼
|
|
~
ße>'i6 7 « !
1~.
ÿ ä ÿ åyX /78 ÿ ¢{Þ 3 ? 9>?;#7 ÿ = ÿ ';V='> 6;ù%6 7 « 6 ! B Dì¯ / 9 ` 9>?äé ´>'P;:?; 7È ÿ 7:57 = ÿ5« ?Þ
o4pq%q2.
^z
T! ]!©|
aB/D
N
|
þô! J¯ ~iB/Dê¯ | ~
~ ~ ^`4_ V
þѯ
·
~9þÕ|
N
`
þh¼ b`
`T_
P
|
D
@
^`
|
` l
]`
J` l
·
N
s
|
~
N
|
~
·
4¼
|
~|
~
@ l
$z
~Vþ×|
|
b
ð ú ð Þ é ü û hAe
¡dlp»Ài 5WNµd]R¡¢T¤?¡¡Yi
"~P·gª ÂÕ[ lAAp¿Ni
v A
¡dlQAÀ ®PN·gª l" ¶
Hl i7¬Aµ¢
A
Wi¾¶¡ë ² ]ll²d¶Ê
?lW¶rA½ "²
¡
!gkWAµdë²v£;
ki¤l¡diA
µ¢AW¶ ¡¢¡¢pp¾®P
A]¡¥Æ l·
µdl²\©~
gl]
FklF =0== AR ÂP²~J
¡Y®¯AA ¡dy< õ °° A @ A @ A A ==0= @ AA @ °° @ ==0= @ ==0= A @ @ A ==0= °° @ A p
]»À"
p ¡Yµd=1Ý@ [Ù A iAvi¡d7T¾
! ®¯k¡d
Æ?¡d®¯A]µÊ
¡¢?W]l]µrA¡d!
õ5²Ç¯ÜiA¡d¯A"i7k\H¡YW ¡Yi%T 0==0= © ¶
@ A ¾0==0= ka'© \@ "A [¡d= l Æ?¤kTl'¡¢A]·
ܵd
]]²Ç[ÍrAa lyl
·
]2
A碄
ÁÔll
{ ° Â 6° = Ú¼iq l®P< l®Pwõ lv
¡¢F ®ÛiAl ® Â ¡d" ¡dQ<
w5õ ¨p¡¢'
Æ?µÂ²T» µYPª·
5¡Y l®¾·ª 5?l =Ä H
¡d
l®P¬l
®P®P
li®P¡dl®Û
¡¢l®®
l!®Ë®¯k
5¡YÆ ilÁdÑiÁÂ
#q < T © 1Ý@Ù A viF k=ikv
¾¡d®Pll l ¡d °° o© A @ A © @ A A ==0= © @ AA © @ °° o© @ ==0= © @ = =0== © @ A © @ A ==0= °° h© @ A ¡dpgW¤lÜl
µd¤g¡Y¡Yi¡d
v
i_A© 1Ý@Ù .A
·lQµ¢Ê¡Y² #pW
ÜQi¡Y¨¡Yi
µ=iAl)®Pl
kpHÁ;l[2¡dl]iÜ)
¡dl¡d®P
®
ipk@ pA ¡Y¯l
¡Y'#
]Ü®¾iA®P¡dlliÁ
i¡d®Ð¡d®¾]³i
§WÜk¡dl²aÍrR @ ·A\ip¡d?WAµ?l T © 1ÝÙ il]
Fk] ·gª lµY
] ]Üik< ¡Yi]²§T£Ô²³\£Ô ¡¢µY [µd]l!T k
©¡d 1Ù ¡d
¦?\
!¡d¤liRF¤l"Aµ)
ig
Fi[
Wl®PPl
®P®P
li®P¡dl®
¶³
l¡¢i®
]i["ik ]
]~i
iTl 5² Ü
ÃWN£Ô
]¡YJ½ )7
\ill³[¯ iiAW¡d]¡da
FAi·
i¡dkWµ ¡¥~N]ª¯
F¡¢
A)·
iµdlpg¶AlAA
r§pµYW
l]¯
a·~¡d ¾[®P
p'
µY]]¡dll[~W¬pPi¯
p'À
¡¢[¡d³
F
A='®PAlÊ
²§p]Úvi akl~i¡¥\®¾A×[µÂW¶kÆgA
iF l ?®¾´iÍ
¡dwõ ®¯\¡¢² ØJ
£;
¡¢Ü
l ² ¡¥ik¡Yr¶³
Üi]¡dlii l? Q·¬p
]
¬µd¡¥º JÉg¡d
i¡¢[pH]
Pµ¥pN\iJ
·i][lFl ]
ÛFlAiµd¡ ¹]¬·glª¬P¸ ¡¢F¨g®¾µYÖ
i]
¡dl¶C¶
QlAp[5Æ
l
®¾¡di µYF²A
l[W² =i ?¡d® ?¡d® '®  < = ¡ä¢g=pATÑ
\¶rÁÔ
µd
k®Pl
iF AAJ ÂPªH< ² A=·µdi¡ l=7¡¢¡¢
®¾r¶
Pi
¡d¤l5]ª¬
Úvl ®PÀl®P"l!
liU ¡d'® Á®Pl?ü®?
µdÂÐlÖ³¡d À< A¡¢[
\µ¢A®5Wi¶ÊN¡¥ ?¡d® ?¡d® =l®  Ú= À = 5 x¿ -)yz
y x L a4 x
`
Z` l
·
b b
|
c
iE
Á||~ ·2· èE l è èE Æ ·
N
|
è
NN
N
c
B8D
`
o4pq8rs*t,u&
e e
l N
)\
N l
è
g
NN
ih
B/DjhÃB/D
CB/D
| Á||~
· l
·2·
E
d~
lil
d e e
· N
l N
e
g
NN
N l
N ·
s
`£þ
|S`â~
N
\
ll
dfe
· N
~
kh
l ·
@
|
N
b
M
\
Á| |~
Á| |~
ÿ ´>' ÿ ÿ ;<{Þ Û ú 6M 9> µ ¬ µ ®:6¬å 9> ?7/+ é ÿ 7/¬ 6X ´>'X ^ie?9;VP ú äb>: « >j- ÿ 2âyP ´>'I/?9;<?X97 Þ Û ·
{[l¨
þ
SY/1g|\ú ~iB/D
þ
, À
¬5 µ 7/6¬ ÿ ÿ 6âyÞml# ´> þ ÿ 7/¬J y þTy ´ >' « ÿ 6½7 ;:ã?ä ÿ ¬È
·
j¯
|
~
{¿
Xü
B8D
·
|
|
å
h V
{
{ ~ |.
N
G
4ü
· | O~
·
~
N
| O~
ËG
·
·
g~
G~
â|
G~
¯],u°s±s²´³²-q/±
m.= £;õ ilv
]i \l]F
N]ª ¶³\¡Y\lliQRªg
¡dµY
ª ¡Y~¡Yk"¾ ]??iÚ [[¡dl®¯i"A®P¡dl?2?
Aµd À ô ÚPÀR¤l iH[¡d]Nª ò ÁÔlµY·
lFµY ÕqÊ °² ^ 7
B8D
N
|
y
ý
~
£
_z
kz
-{}
9â
×BeD B/D
·
N
6{
| O~
£
£
z
D|
Ã|
1~
| d~
£¯
í|
~
¯],u°s±s²´³²-q/±
m.%.
z
¯iW
7 C
¯
| O~@þ
z
X¯
7
¯
I|
~@þ
¸ B
¯ia| wý
~
z
z
o4pq8rs*t,u&
%.\8.v+wyx{z|]}?w}'62;'7 ¯ ÿ ÿ t µ e2? = å ÃMÅ é ÿ 7/¬V ´>'tXT /2?7 ÿ å ÿ ?97u ` Áäb> « >Z ÿ =-78 T ´>' 789ây6 ÿ b¬5-?; ÿ t-7Ë?97: `w| ~ Þ
À
Á
Aj aú ü ï ³ü äû Þ é ü û l³P?["J®¯
¡¢Ar¡¢¡drl7i
Nª·
µd® ®iF² !¡d®P®P]?¡¢k)l® [l?¡¥¡Yi ä¡Y ÃAi ä¡Yd¡ r¡Y
\? Ä i¡¥¡Y ilÉg]
\iAa·A'\ piR¤A'i! ?[®¯k¡Y¯[l?¡¥¡Y )²aJi¯\'A¯li¡d
§
pl
l] / 1q= Csr utwx v
n >p
L z7¦ ´>'È2®5? - 79â6 ÿ ã¬97 ÿ ?å¬t?; ÿ =-7Õ Þ ' « µ«Gÿ 9 åyé½ ´>'Á2®? t ÿ ?97: ` þ e ¬ t?; ÿ =-7 ã¬97 ÿ ?åJ | è|è è ¬~wÿ 7/¬ ÿ 7
wý À }
À
ý
B/D
À
´Í
l |S`
~
e
[~\WA£ÔlÃFH¡dµYvl]rWH
ª7Wi·
7l
]l ·
li¿lkii¶¦l
¶¾¶i=0l==r¶¦
[ Æg]"lii[Æ?¯¡¢N
F
~¡¢"v5W]
¡¢
?¡dµY¤li=]lµ7Aµ
?k[] ®¯iFAkA"¡d¡d¡YllH\Àl5r¡¢liiA~
¡d
¡YNiªgllª ² _2 Ã À ]ý ´Í w ¯° ! N lWÚ=al?i¡¢i[)iHW ¾A
··ik¤li¶[
~Ailai['
&A ÁÔlF?¡diAª"
[l®¯k¡Y i·?
i[l wý = wý Ú= À 6þ 6þ À «2 À Hþ CÚ= À v Ú À /þ fþ pþ wý Úv À wý } = wý Úv À Í ë =g´klеY¡dµY³l]½lil 7A·ilF
¨p®¯7kÆ?
¡dH®¯A¡¥µgi[Ægk¡Y]i¡Yl~ ®PA {!
¡Yi]l®¾WN¡ ÄW "l
¶r¡d?ppi4Ä
ý ¡Yp[§K7A
¡¢"¡Y®P
] J ²aÚ=~Aµd\Rª?]¶A\pp¡Yµd
®PJiA&À [A¡di§·A!ѬA¾
'i¡d®P=k)¡d Ä
¡YNªl²§J
wÁ
? « >Ë 9> ÿ ÿ 7å ã¬97 ÿ ?ån¬t?; ÿ =-7h â ÿ%ÿ 7 # >;# ´>'£>? 78 ÿ ÿ ?ä+ ÿ T97 « :?-7 ÿ 7e¬ ´>'#â? = «Gÿ ÿ ?2äÃ7] ´>'#?y>: £ ´>' ? t? « =-7j; ÿ H7 « >';: « >ué£n ÿ5« > Hg ? t? « =-7n V ´>'9; ÿ 5V T· | ü è u| ~~ Þ
o4pq%q2.
¯
4g
ð ú §Þ é ü û õ ûð Þ û ?mAm G ë ê Ú=F
µY¾g·i¡dAµr']´W
ANµdµdª¯l¡Y¡¢
Jl
"A
iµY?
]]µY¡¢AµA?¡dA[l¾¡dlAr®¯¶?k
¾¡YJ¬¡¢i?A[]?iaý ?¡Y¾¡Y¡dl
,r¡d)K7¶gµY W]TÜ
i'¡dJ¡d
¡¢ ħ
p¡Yi
A \ [À p
\¡¢A§a
v[
Nl~¡Y®Pl®¯]ÁÔ?k_¡dp®P¡Y¶
iAii·¡d7l( i\Al Á µ l?¡dilª¶Wpi ÑC²3 ¡¢)A¾¡Yi¡¢"
·
5AÊÑC²³» 'Rª!k)F5
]Fk¡dl ÉgPi
ñ À ¡d\?¡dilª¯kaÑC¶?li¬li¡d
~
"
i[ ñ p
¡¢F¬¡¢\
Ä
W¬·gª wõ R?[®¯A¡dli\A À õÐp
¡dF l"lF?¡diAªHñ k)Ñ = Úvr·[ll¶W
¡dá¢C
]FA²§·
Jµdl
¶W¡¢~Ai¡d\! \Ü
]lAµd¡dAi~lÊ
]=
µY¡d
pi¡Y¤¡YiF lµ?À Êl
®P A¡dl¯¡Yi li¬JA
F]A®PH[lP¡d¹NW\\
[Wll®¯lik"¡Y i\lA¡d¤l HÀ pW
[¡¢¡¢FA7µlA]lF?¡dl¡diÀAªH k
§HÑò
i¡Y¤Flµ§lF?¡YAª?[Á ¡YÀ ®¯¡¢k ¡Y®PQ??
¡Y
µ¢AW² ¶³J
] Ä lFNªÀ¡d"lF?i¡dkiWA¶Êª ¡YÀ
®¯[AlgªQ®¯k¡YW2¶A¡YÀ lµd¡¢Y¾k'Aµ¢=Q®P® ??»¼
µ¢¡dAµYW½\li¨A ik¡d l]l]]ƶ?iiA
'] i ]i¡d
T²¼ñÚ'iÀ Apil ¯·J Rª¡d?]A¡ Ä R]ªg ¡d
p¡Y
Q¡¢P¬¡d[Pilk¡Y¯P\ÑiÁÔ ?¡dA =
]Fk¨¤l A¶)µd¡Yl#·i®¯ Agëª µd?AµdJ¡ ¹]
k"¡YA¬
l\ÃW
l l'P¡¢
P
vAµdil
]·
¡Y¤iF¶l¯µi· ?¡d?i¡dl[ªP?][¬
®¯A
¡d]lp¯¡Y7¡Y
i5!¡d\
¡d[Æg'µd]]T¡d
5 T¡d² iA]¶ ¡
dµdl¶?
A ¡dl]li]]k¶l¤=
l®PlµdYk®¾p¡d
i¾
¡dW® iµ¥W² À ñ À )¡¢J\µdii?Fg?ʲ§Ì
l\[Æ
l®5Á Ñ ë«QA¹]
]¶
«A¡d Ñ À ,K7 ´Í K7 s Ñ ²²'À? À " ° ?\ y x L .4 xQ{
õ1ðî¬õ1ë>õò.ô åZô¬ê\è.ò@ëíô
z LmÏ
L z e ?7/i½ ´>' =份;<7 tÞ
B/D
ZB/D
é 9> ÿ
`w|
«Gÿ 7e7 «Gÿ >; ÿ â
~
#97 ÿ ¬¬9 t-7nä» 7eäØ 9> ÿ é ´>'7Zä»T> ÿ â ÿ ä»?-??97uJ97n =ä» ÿ ´>'9ä97u « 7e¬9 =-7j>'¬y
qj
é ÿ 7/¬';V;V='> 6;P] ÿ ?ã =97 ÿ 7 « Sg « - 78 ?97u6é ÿ 7/¬M ´>'e:>:ã?ä ÿ ¬y4 I¾ m¿ ÿ 7/¬ I¾ y1¿ ÿ 7 ý y1¿ÿ V97 é¾ m¿ÿ 7/¬ éS¾ yÀ¿ é£=' « t9âåyék ´>'7 E ;<7 E 97 I¾ ý yÀ¿ Þ 97 é¾
²X³´4µ¶4³4· ¸º¹4»r¼]½
Ô
w
5' Á RB/D y ÿ 7Ì97 « :?-7à ÿ ? =97 ÿ 7 « { g « -7 k?97: ÿ 7e¬ E ÿ 7 ;V7 ^ I¾ m¿ äb>y £/:>:ã?ä ÿ ¬å -?97 é¾Sy1¿ < Þ ß/>7 E 97 é¾ m¿ Þ
Ô
Á
w
o4pq%q2.ÂÄÃ]ÅÆÇ#ÈCÉ6ÈCÉËÊ#ÌÅÎÍpÈEÅfÉÏ2ÈEÉKÏÃ]ÅÐ]ÌÑÒÑÓ ÈEÔÏÃ]ÅXÉ]Ñ#ÏÈEÑ#É6ÑÓÇÉªÕ 9ÖË×Ø Ù Õ9ÚÀÈCÉ6ÏÃ]ÅXÛfÇÏÅ9Ü Ê4Ñ#ÌÝ1Ñ#ÓRÇÌÏÈEÉ]ÈÞÇÉ_ÛfÑÅfßÛ9ÈEÅfÉÏÌÈEÉ]Ê4ÔÎà]áÒâ]Ð]Ð Ñ4ÔÅmãÅZÃÇåä#Å2ÏãÑÀÃ]Ñ#ÆÑ#ÆÑ4ÌÐ]ÃËÈEÔÆÔ%ÑÓ,ÇÌÏÈEÉ]ÈEÇ#É ÛfÑÅfßÛ9ÈEÅfÉÏRÌÈCÉËÊ4ÔRæ ç èÁ4éHê ëjì1íîãÅÔÇåÝÇ2Ã]Ñ4ÆÀÑ4ÆÑ#ÌÐ]Ã]ÈÞÔ ÆðïÁ#ñêëòéóÈÞÔPÏÃ]ÅÅÎôâËÇ#õCÈEöfÅÎÌ Ñ#Ó æÇ#ÉËÍKèÈ÷Ó,ÏãÑÛfÑ#ÉËÍ]È÷ÏÈCÑ4ÉËÔÇÌÅÔÇÏÈÞÔøËÅÍ>Á
Ùúù Ä Â Ã]ÅÛ9Ñ4ÆÐÑÔ ÈCÏÅÆÇÐËÔZÇÌÅmÅô4âÇõûÁüæ1ýï1þðèýËï ù ÙúÙúù Ä Â Ã]ÅÆÇÐê ëòñ ÔâËÛrÃ_ÏÃËÇîÏ þªïý ù ÉXÑ#ÏÃ]ÅÎÌPãÑ#ÌrÍ]ÔÎàåÇ#ÉÒÝmÑ#ÏÃ]ÅÎÌRÃ]Ñ4ÆÑ#ÆÑ#ÌÐ]Ã]ÈÞÔ Æ8ãÃ]ÈÞÛrÃ
ÿ ÅôâËÇõEÈCöÎÅÎÔ2æÀÇÉËÍèÓÇ#Û9ÏÑ4ÌÔÏÃ]ÌÑ#â]Ê4à ÏÃ]ÅÅÎôâËÇ#õCÈEöfÅÎÌÆÇ#Ðï ù Ï2ÈÞÔÅÎÇ4Ô ÝÏÑÔ ÅÎÅmÏÃËÇîÏ2ÅôâËÇõEÈCöÎÅfÌrÔÄÇÌÅÇ#õCãÄÇåÝpÔÈCÉ ÅÛ®ÏÈCä4Å ù ÂÄÃ]Å2Ô ÏÌrÇîÏÅfÊ#ÝÑ#ÓÏÃ]ÅÐ]ÌÑÒÑÓÈÞÔÎàîøËÌrÔÏàÏÑÔÃ]ÑîãªÏÃËÇîÏÏÃ]ÅÌÅÎÔâ]õ÷ÏÈÞÔ ÏÌâ]ÅÄãÃ]ÅÎÉïÁ#ñ êë é ÈÞÔÏÃ]ÅÅôâËÇõEÈCöÎÅfÌÑ#ÓÄÔÑ#ÆÅÐËÇÈEÌÑÓÄÃ]Ñ4ÆÀÑ4ÆÑ#ÌÐ]Ã]ÈÞÔ ÆÔÎàÇÉËÍQÔÅÎÛ9Ñ4ÉËÍ>à>ÏÑÔ ÃËÑîãÏÃÇîÏXãÅ ÛÎÇÉkÍpÅÎÍpâÛ9ÅÏÃËÅÊ#ÅfÉËÅfÌrÇõ>ÛfÇ4Ô ÅmÓ}ÌÑ4Æ ÏÃ]ÈEÔ2Ñ#É]Å ù ïÁ#ñ¡ê.ëòé Ù
× Õ ÖË×Ø"Ù ! Õ9Ú #Ù %$& ( × $ +Õ *,î.Ú -/, × Ú $I#Ù Ù
× ' ,Î1Õ 02' Ù Õ 3$ Õ ' ) Ú #Ù * 45$#& Õ 6$& ÕÚÕ ®Öp7Ø $8& , :Ø 9;< ápâ]Ð]Ð Ñ4ÔÅ2ÏÃËÅfÌÅZÇÌÅ2Ã]Ñ4ÆÀÑ4ÆÑ#ÌÐ]Ã]ÈÞÔ ÆÔüæ ç èÁ#é êëòì¡ÔâËÛrà ÏÃËÇîÏüïÈÞÔÄÏÃ]ÅÅÎôâËÇ#õCÈEöfÅÎÌÑ#Óæ
ÇÉËÍ_è ù ÂÄÃ]ÅfÉkãÅÃÇåä#Å Ç =Ç#Ì ÏÅÎÔÈEÇ#É6Í]ÈEÇ#Ê#ÌrÇ Æ >
ñ @
ý
?BADC
ý
?
/é @FEHG
?
C
IJ KL / ìNMOì PZÑîãï Q.RTSTU¾éÀ¿ÄÇÉËÍàWVÝÓ}âËÉËÛ®ÏÑ#ÌÈEÇ#õCÈCÏÝ#à¾ûæý]ïÒB ¿ QXRTSTU¾ì¿®àÇÉËÍ%Y%ÌÑ#Ð ÅfÌÏÝk¾+Z¿ÏÅfõEõEÔÄâËÔ ÏÃËÇîÏ[RTSTU¾ñ¿ ù ]\(^`_86a$& Õ # Ù ' ØF Ö ®Ù , ï Ù a , $b × ®Ö #Ú cfÕ ' $ûÙ , 34d$& Õ $#& Õ9ÚÕkÕ e Ù $1_g × f BÚ , f ÕfÚ ®Ö3h Ú Ù# *(ij, l × 9o ,îd Ö ®Ù , i ê ëòé é k &ÒÙ ' & ' , 3$×î#Ù 3$& Õ #Ù m× *n Õ , ï
Ú k &ÒÙ ' &p$#& Õ #Ù ' ØF Ù× Õ ÖË×Ø"Ù ! Õ9Ú < Ó ïÀÈÞÔüÉ]Ñ#ÏÄÔâ]1Ì ÅÎÛ9ÏÈEä#Å#à4ÏÃËÅfÉ_ÉËÅfÈCÏÃ]ÅÎÌÈÞÔüÏÃ]ÅÈCÉÍpâËÛ9ÅÍÆÇÐ_Ñ#ÉKÛfÑÏrÇÉ]Ê4ÅfÉÏ ÔÐËÇ#ÛfÅÎÔÎàpÇÉËÍkÔÑ1ÏÃ]ÅXÍpâËÇ#õ>ÆÇÐ ì
q2Ñ4Æ
: > W
ÉKÏÃ]ÈÞÔ2ÛÎÇ#ÔÅ#àpÈCÏ2ÈEÔÅÇ#ÔÝÏÑÔÅfÅÏÃÇîÏZÂ$ξIæ>¿þi
:
EEOEOE
æÏÃ]ÅÛ9Ñ#ÉÍpâËÛ®ÏÑ#ÌÑ#Ó æÛfÇ#Ã É V ÅÆâÛrÃÔÆÇõEõCÅÎÌmÏÃËÇÉÏÃ]ÅÀÏÇÆÅõEÅfä4Åf õ )ÑÓ ÏÃ]ÅZÆÑpÍpâ]õÞÇÌüÓ}Ñ#ÌÆ Ó}ÌÑ#Æ ãÃ]ÈÞÛrÃÈ÷ÏÄÛ9Ñ#ÆÅÔ ù ÉÓÇ#Û9ÏÎàÏÃÇîÏÈÞÔüÇXÆ) Ç Ñ#ÌüÏÃ]ÅÎÆÀÅmÑÓ.ÏÃËÅZÌÅÎÛ9ÅÎÉÏ ãÑ#Ì {Ñ#ÉÉ
GÊ
ãÃ]ÈEÛrÃkÆÇåÝÑ#ÌÆÇåÝÉËÑÏoV ÅÆÀÑpÍpâËõEÇ#ÌuÊÈÞÔÍpÅ9øËÉËÅÎÍ6ÈCÉG£ãÈCÏÃKÏÃ]ÅÇ4Û®ÏÈEÑ#ÉKÑÓ5ç èDé ê Ê#ÈEä#ÅfÉ%VÒÝaæàæâæãÈEÔÏÃ]ÅÔ â3V]ÆÑÒÍ]â]õCÅ Ñ#ÓRÈEÉäîÇ#ÌÈÞÇÉÏÔâ]ÉÍpÅfÌÏÃ]ÅXÇ#Û9ÏÈEÑ#É6ÑÓ ÇÉkÈCÉËÅfÌÏÈÞÇ1Ê4ÌÑ4â]ÐKÇÏà]ÇÉËÍkÔÅ9Ï É
É
çBæaÊ%þ
ïêiÌrÇÉ3{
G
â ã
jäå É
æÊüþ
ïêiÌrÇÉ3{
G
â ã
jäå É
æÊ E
ÂÄÃ]ÅÓÇ#Û9ÏZÏÃËÇîÏ2ÏÃ]ÅÀápãÇ#ÉÛ9Ñ#ÉÍpâËÛ®ÏÑ#ÌrÔÑÓ ækÇÉËÍkÑ#Ó K æ ÇÌÅXÅô4âÇõÈÞÔZãÅfõEõ8{ÒÉ]ÑîãÉPíËÈCÏmÈÞÔZÔÑ
V ÅÎÛÎÇâËÔÅÏÃËÅ1ãÈEõEÍÈCÉ]ÅÎÌ ÏÈEÇ_Ê#ÌÑ#â]ÐÇÏ[XÈÞÔmÇ_Ð]ÌÑÜ®ÜûÊ4ÌÑ4â]Ðà]ãÃ]ÈEõEÅ#à>Ç#ÔZÉ]ÑÏÅÎÍÈEÉ¿ìPÅÎÛ®Ïâ]ÌÅ~Jpà
ÏÃ]Åg{#ÅfÌÉ]ÅÎõRÑ#ÓüÏÃËÅÀÌÅÎÍ]âËÛ®ÏÈCÑ4ÉiÆÇЫÞì ñ*Êê ë Þì r|ÊmÈÞÔÇ_Ð]ÌÑÜî]ÜÊ#ÌÑ#âËÐà ÔÑKÏÃËÇÏÇ#õCõ > É > É ÏÃ]ÅãÈCõÞÍKÌÇ#ÆÀÈCøÛÎÇîÏÈEÑ#É6ãÈEõCõPÇ#õCÌÅÎÇ4ÍpÝÑpÛfÛfâ]ÌÈCÉ6ÏÃ]Å æ ù Ê P2Ñ#ÏÅÏÃÇîÏãÅÄÃËÇåä4ÅÅÎõCÈEÆÈCÉÇîÏÅÍÐ ÑîãÅfÌrÔRÑ#| Ó îÀÓ}ÌÑ4Æ ÏÃËÅÄÛfÑ#ÉËÍ]âËÛ®ÏÑ#ÌíîÏÃ]ÈÞÔÈÞÔ,ÈCÉ]ÅÎäÒÈ÷ÏrÇ)V]õEÅ#à ÔåÈCÉÛ9ÅãÅüÇÌÅ É]ÑÏRÇ4ÔÔâ]ÆÈEÉ][ Ê æZÈÞÔPÇÄÐËÇ#Ì ÏÑ#Ó]ÇÛ9Ñ#ÆÐËÇÏ:È V]õEÅÓÇÆÈEõCÝÑÓa®ÜÇ#ÍpÈÞÛ,ÌÅÎÐ]ÌÅÔ ÅÎÉÏÇîÏÈCÑ4ÉËÔ ù Ñ#Ì1ÇkÆÀÑpÍpâËõEÇ#ÌÍpÅ9Ó}Ñ4ÌÆÇÏÈEÑ#ÉàRãÅÃËÇåä4ÅÇ É ®ÜÇ#ÍpÈÞÛÀÌÅÎÐ]ÌÅÔ ÅÎÉÏÇîÏÈCÑ4É
Ó}Ñ4ÌXÅfä4ÅfÌÝÐ]ÌÈCÆX Å à É Ç#ÉËÍÏÃ]ÅXÅ pÐ Ñ#É]ÅÎÉ4ÏrÔÈCÉiÏÃËÅÛ9Ñ#ÉÍpâËÛ®ÏÑ#ÌÇÊ4ÌÅÎÅ ù ÂÄÃ]ÈEÔÇ#õCõEÑîã2ÔâËÔÏÑ É
Õ9Ú Ù.$ûÙ
±$×)$IÙ ,
ÚÕ Õ r|Ê9ç '
ÕfÚB, !
Õ
ÍpÅÔÛfÌÈEÐpÏÈCÑ4ÉàpÇÉËÍÃs òWûæÑHvûà só$hWvàDs k!ûFvà syl±óFvûà syûæÿHvà§syûóFvà]ÇÉËÍÃs û$kFv>Ó}Ñ4ÌÄäåÇ#ÌÈEÑ#âÔ Ç4ÛfÛ9Ñ4â]ÉÏÔÑÓ,ÏÃËÅXÍpÅ9ÏrÇÈEõEÔ ù ÂÄÃ]Å_ÏÃ]ÅÎÑ#ÌÝ
ÑÓ îËÜÇ4ÍpÈÞÛÆÀÑpÍpâËõEÇ#ÌXÓ}Ñ#ÌÆÔXÊ4ÈCä4ÅÎÔâËÔ1ÇÓ}Ñ4ÌÆ æÀ Ø Ô Ñ2ÏÃËÇÏPÏÃËÅ%õCÅÎä#ÅÎ õ )HÈÞÔÑ#Ð]ÏÈEÆÇ#õ ù ÂÄÃËÇÏPÏÃ]ÈEÔRÈÞÔÐ Ñ4ÔÔ :È V]õEÅ É Ó}Ñ48 Ì îH
JÈEÔÑ#É]ÅZÑÓ>ÏÃËÅZÆÇÈEÉÏÃËÅfÑ#ÌÅfÆÔÍpÅÎÔÛ9Ì"È V ÅÎÍÈE¿ É s"ò±òHóv ù Ê â ÉÛ9Å2ãÅ2ÃËÇåä4ÅZÍpÑ#ÉËÅÏÃËÇÏÎà õ V ÅXXÅ ]Ç4Û®ÏõEÝ6ÅÎôâËÇõÏR Ñ ) ù zÅãÈEõCõRõCÑÒt Ñ {_Ó}Ñ4ÌZÍpÅ9Ó}Ñ4ÌÆÇÏÈEÑ#ÉËÔÄÏÃËÇîÏ ÏÃ]ÅÛ9Ñ4ÉËÍpâËÛ9ÏÑ4Ì2ÑÓ æ_ãÈEõE ÿõCÑÒ| Ñ {Ç#Ô>ÈCÓpÏÃËÅfÝÆÈCÊ4Ã4Ï,Û9Ñ#ÌÌÅÎÔÐÑ4ÉËÍmÏÑÓ}Ñ4ÌÆÔÑ#ÓpõCÅÎä#Åf õ )T[VÒÝÈCÆÐ Ñ4ÔÈCÉ]ÊZõCÑpÛfÇ#õ#ÌrÇÆÈCøÛfÇÏÈEÑ#É ÛfÑ#ÉËÍpÈCÏÈEÑ#ÉÔÇîÏ2Ô Ñ4ÆÅÑ#ÓRÏÃ]ÅÐ]ÌÈCÆÅ% Ô ) ù äZÔ2âËÔ âÇõûàpõCÅfÏ -Qþ
ÃÎÐ]ÌÈEÆÀÅÔÍpÈEäÈÞÍpÈEÉ]Ê^)ÄÅÃBîRçuÆiÄ E
P2Ñîã Ôâ]Ð]Ð Ñ4ÔÅKÏÃËÇîÏKãÅ6Ï| Ç {#ÅÇQÍpÈÞÔÛfÌÅfÏÅÍpÅ9Ó}Ñ4ÌÆÇîÏÈCÑ4É
F 9
m ×)$IÙ Õ ,Ú
,
È ç
èDé ê
êë
Ö ËÙ¬ù ÕfÚ 9 ×ØØ Õ ù Õ Ø W à ÌÅÔ Ð ÅÎÛ9ÏÈEä#ÅfõEÝ ù
zÅÆÀÈEÊ#ÃÏ2ÛfÇ#õCõ ÏÃ]ÅÎÔÅÏÃ]Å
)
)
Þì 9
> É
"D É
m × $ûÙ Õ ,îÚ
æÊÊ E ,
×îØ>Ø Õ ù Õ Ø Ú Ù# K * ÇÉÍÏÃ]Å ÖWËÙ¬ù Õ9Ú f
.«ÎDFrw+ [
! 't n yo->Î + [
µ}n r sr;
s; r ;
1; r sr|#¥ [y; r ou) o ;§"q .o1s r w.Fo
n 8 ;18uo1 )5+uw.ryrX1o
.FrX
¹ç&À
±÷ø
±ø
®5¨ ùᤠú °
°£H®²´
¬
¤H®5©8¯°±¦ ²®5³´
Ó æXÈEÔ%Ñ#ÌrÍpÈCÉÇÌÝXÇîÏDîPà4ãÅÛfÇ#ÉÀÍ]ÑÏÃ]Å2Ç#ÉËÇõEÑ#Ê4Ñ#âËÔPÏÃ]ÈEÉ]ÊãÈCÏÃÏÃ]Å2Ç#Í]Í]ÅÎÍÀÍpÅ9Ó}Ñ4ÌÆÇîÏÈCÑ4É ã fÛ Ñ#ÉËÍpÈCÏÈEÑ#ÉiÑÓ VÅÎÈCÉ]Êá 5 ÜÑ#ÌrÍpÈEÉËÇÌÝ#à>ÇÉÍiÍpÅføËÉ]Å" æÊ®àÏÃ]Åâ]É]ÈEä#ÅÎÌÔÇõ îËܧÊÑ#ÌrÍpÈEÉËÇÌÝkõCÅÎä#Åfõ É É )ÍpÅ9Ó}Ñ4ÌÆÇÏÈEÑ#É6ÌÈEÉ]Ê ù zðÈCÏÃÓ}Ñ#ÌÄÆÑ#ÌÅmÍpÅfÏÇ#ÈCõ¬Ê®à É Ç#ÉËÍ_ÈCÏ2ÈÞÔÉ]ÑîãóÌÅÎÇ4Ô Ñ4ÉËÇ)VËõCÅZÏÑÛ9Ñ4É ÅÎÛ9Ïâ]ÌÅÏÃËÇÏÏÃ]ÅÎÝ_ÇÌÅÈCÉ6ÓÇ4Û®Ï2ÈÞÔ Ñ4ÆÀÑ4ÌÐËÃ]ÈEÔÆÔ ù ¼
`_wE) w
~ ðÂÄÃËÅÆÇ#ÐËÔ
ÊÄÇ#ÉËÍ
É
BÊÄÇ)V Ñîä#ÅÇÌÅÈÞÔÑ#ÆÑ#ÌÐ]Ã]ÈÞÔ ÆÔ
É
ù
ÂÄÃ]ÈÞÔ Û9Ñ#É) ÅÎÛ®Ïâ]ÌÅÈÞÔ Ípâ]ÅÏÑüÇöÎâ]ÌàåÏÃ]Ñ4â]Ê#Ã1È÷ÏÔ ÅÎÅfÆÔRÏÃËÇÏÈ÷ÏãÄÇ#ÔPøËÌÔ ÏÔÏrÇîÏÅÍXÈEÉ1ÐËÌÈEÉÏ ÈEɾsyl$kWv ù zðÃËÇîÏÈCÏZÔÇåÝpÔÈÞÔÏÃËÇÏÇ#ÉÒÝ_ÍpÅ9Ó}Ñ4ÌÆÇÏÈEÑ#É_Ñ#Ó,ÇÀÆÑpÍpâ]õÞÇÌÌÅÎÔÈEÍpâÇõ.ÌÅÎÐ]ÌÅÎÔÅfÉÏÇÏÈEÑ#É ÈÞ Ô î]ÜÇ#Í]ÈEÛÎÇõEõCÝÆÑpÍpâ]õÞÇÌà]È ù Å ù à ÇîÏÏÇ#ÛrÃËÅÎÍKÏÑÇîËÜÇ4ÍpÈEÛÆÑpÍpâ]õÞÇÌ2Ó}Ñ#ÌÆ ù ÂÄÃ]ÅXãÑ#Ì{ÑÓ5zðÈEõCÅÔfà Â,ÇåÝÒõCÑ4Ì +Ü zðÈCõEÅÎÔÎà]ÅfÏ ù Çõ ù ÈÞÔmÔâpßÛ9ÈEÅfÉÏmÏÑÅÔÏr) Ç V]õEÈEÔÃÈEÉÆÇÉÒÝkÛfÇ#ÔÅÎÔ2ÏÃËÇÏ ÊZÈEÔÇÉàfÈEÉXÇÄä#ÅÎÌÝÔ Ð Å9Ü fÛ ÈEÇ#õËÛfÇ4Ô Å4à#ÏÃËÇîÏÿÇõEõÍpÅfÓ}Ñ#ÌÆÇîÏÈEÑ#ÉÔ%ÇÌÅÆÑÒÍ]â]õEÇ#Ì ù
ÂÄÃËÈEÔüÈCÉÒä#Ñ4õCä4ÅÎÔâÔ ÈEÉ]Ê`=Ñ#õEÅfÆÇ#É ô ÔüãÑ4ÌB{ Ñ4ÉkÓÇÆÈCõEÈEÅÎÔmÑÓÆÑÒÍ]â]õEÇ#Ì2Ó}Ñ4ÌÆÔZÇ#ÉËÍkÏÃ]ÅXÏÃ]ÅfÑ4ÌÝ6ÑÓ îËÜûÑ4õEÍàËÏÃ]ÅÎÉ ÝÒÈEÅfõÞÍ]ÔÏÃ]ÅÌÅÎÔâ]õCÏ ù q2ÅÎÌt Å ô ÔÏÃ]( Å VËÇ4Ô ÈÞÛÔ ÅfÏâ]Ð ù z| Å ô õEõPÇ#ÔÔ âËÆÀÅãÅXÇÌÅmÊ4ÈCä4ÅfÉkÇÀÌÅÔ ÈÞÍpâËÇ#õ>ÌÅÎÐ]ÌÅÔ ÅÎÉÏÇîÏÈCÑ4É æ
è é Þ 5 é
È ç
ê.ë ß
Þì
> É
A45$Ê
ãÃ]ÈÞÛrÃJÈÞÔÇ)VËÔÑ#õEâpÏÅfõEÝxÈCÌÌÅÍpâËÛfÈ"V]õEÅkÇÉËÍÛ9Ñ#ÆÅÔÓ}ÌÑ#Æ ÔÑ#ÆÅ6ÅfÈEÊ#ÅÎÉpÓ}Ñ#ÌÆòÑÓmãÅfÈEÊ#ÃÏX+JÇ#ÉËÍ õEÅfä4Åfõ ÍpÅ9øÉ]ÅÎÍ6Ñîä#ÅÎ Ì 3%5 ù ìPÅ9Ïm¿ æ S-. /'1 Ê®@ç 35sÊ V ÅÏÃ]ÅÅÎÈCÊ4ÅfÉpÓ}Ñ4ÌÆ^ÇîÏ ÏrÇ#ÛrÃ]ÅÍÏÑ æ ù É É Ë Ë äZ8 Ô VÅfÓ}Ñ#ÌÅ#àãÅ%ÛÎÇÉÛ9Ñ4ÉËÔÈEÍpÅÎÌ>ÏÃËÅ%â]É]ÈEä#ÅÎÌÔÇõÍpÅfÓ}Ñ#ÌÆÇîÏÈEÑ#ÉÌÈCÉË\ Ê " æÊ>ÇÉËÍÏÃ]Å%â]ÉËÈCä4ÅfÌrÔÇ#õ É ÆÑpÍpâ]õÞÇÌ ÍpÅ9Ó}Ñ4ÌÆÇÏÈEÑ#ÉXÌÈCÉËT Ê " $ ( æ Ø Ê ãÃ]ÈÞÛrÃÈÞ± Ô âËÔ ÏÇÛ9Ñ4ÆÐ]õCÅfÏÈEÑ#É1ÑÓ]ÏÃ] Å VËÈCÊ î]ÜÇ#ÍpÈÞ Û qZÅÎÛ {4Å É É Ç#õCÊ4Å V]Ìr Ç Ê ù áÒÈCÉÛ9ÅüãÅÇ#ÌÅÇ#ÔÔ â]ÆÈEÉ]ÊÏÃËÇîZ Ï )©þ àåãÅÍpÑ4 É ô Ï,ÃËÇåä#Å ÏÑZãÑ#ÌÌÝ) Ç V Ñ#âpÏ,ÈCÆÐ Ñ4ÔÈCÉËÊ Ë õEÑpÛfÇõÍ]Å9Ó}Ñ#ÌÆÇîÏÈCÑ4ÉKÛ9Ñ4ÉËÍpÈCÏÈEÑ#ÉËÔ ù äZÎ Ô V Å9Ó}Ñ4ÌÅ4à]ãÅmÏÃ]ÅfÉkÃËÇåä4ÅÇ1ÃËÑ#ÆÑ#ÆÑ#ÌÐ]Ã]ÈÞÔÆ
" É
I" $
æaÊÄêë
É
æ!Ø Ê®ç
Ç#ÉËÍ_ãÅãÇ#ÉÏÏÑÐ]ÌÑîä#ÅmÏÃ]ÈÞÔÄÈEÔ2ÈCÉ6ÓÇ#Û9ÏZÇÉ6ÈEÔÑ#ÆÑ4ÌÐ]ÃËÈEÔÆ ù ÂÄÃ]ÅXÛfÌâËÛfÈEÇ#õ>Ç#ÔÔ â]ÆÐpÏÈCÑ4ÉkãÅãÈEõCõÆ| Ç {#ÅÈEÔÄÏÃ]ÅÓ}Ñ#õEõEÑîãÈCÉ]Ê
Rî|îw-D
vC
%
C )aú+_
~
D
|ï_
4#ED
~ _
ú+_ ~ æ
È ï0îg_'î ~ :) w ð
É¡ÐËÇÌÏÈÞÛ9âËõEÇ#ÌÎàmãÅQÃËÇåä4Å" æÊþ 3 5 s:s 1 çh ç v:v ù ÂÄÃ]ÈÞÔ ÏÃ]ÅÍpÅfÓ}Ñ#ÌÆÇîÏÈEÑ#ÉÔÐËÇ4Û9ŪÈEÉ Çðä4ÅfÌÝ~ÛfÑ#ÉËÛfÌÅfÏŪãÄÇåÝ È ÅÎä#ÅfÌÝÏÌÈEÐ]õEÅJÑ#Óáî]ÜÇ#ÍpÈÞÛxÈEÉ4ÏÅfÊ4ÅfÌrÔ 1 @ ç 4ç Ê Sgî$3 5 M`î83 5 M/î$3 5 ÍpÅføËÉ]ÅÔ2ÇÀÃ]Ñ#ÆÑ#ÆÑ4ÌÐ]ÃËÈEÔÆ
É
>
" É
h
æÊüþi35;s:s 1îç
>
ç
v"vPê.ë\35åç
Ç#ÉËÍÓ}Ñ#ÌÆÑ#ÌÅÍpÅ9ÏrÇÈEõEÔ ù ÂÄÃ]ÅÔH â VËÔÐËÇ4Û9ÅXÑ#d Ó -. /Z1 )ÊP/ã î!Ê®4ç =5$ÊZÔ ÐËÇ#É]É]Å6 Í VÝKÏÃËÅÈEÆÇ#Ê#ÅÔÑÓ 5Ç#ÉËÍ ¯ 5ÈEÔ É É É § Ö hXf]× 'rÕ9àPÇ#ÉËÍ
ÏÃ]ÅÅfÈEÊ#ÅÎÉpÓ}Ñ#ÌÆÔZÈEÉiÏÃ]ÈÞÔÔ ÐÇ#Û9ÅÇÌÅÛfÇõEõEÅÎa ÛÎÇõEõCÅÍÈCÉËÉ]ÅfÌ2ÐËÌÑpÍpâËÛ9ÏZÑ#Y É -. /'1 )ÊP}/ã î8Ê®4ç =5$Ê®àÇ#ÉËÍ6âËÔÈCÉ]ÊÏÃËÇîÏ É É É Ö h.fË× 'rÕÇ4Ô2ÏÃ]Å1Ñ4Ì ÏÃ]Ñ#Ê4Ñ#ÉËÇ#õRÛfÑ#ÆÐ]õEÅfÆÅfÉÏÑÓ ÈEÉ]É]ÅÎÌmÐ]ÌÑpÍpâËÛ9ÏãÅ1ÛÎÇÉiÍ]Å9øËÉ]Å1ÏÃË Å îø Õ k ®3 ÏÃ]Å î]ÜÑ#õÞÍÔH â VËÔÐËÇ#ÛfÅ ù ý%ÈEÊ#ÅfÉ]Ó}Ñ#ÌÆÔÏÃËÇ Ï V ÅfõEÑ#É]ÊÏÑÏÃË Å î]ÜÉ]ÅÎã±ÔH â VËÔÐËÇ4Û9Å2ÇÌÅZÛÎÇõEõCÅ Í îø Õ k Õ Ù *4Õ ,Ú mn àÄÑ#ÌÔÑ#ÆÅfÏÈEÆÀÅd Ô âËÔ á Ï îø Õ k ,îÚ m`®ù ÏÈEg Ô {ÒÉ]ÑîãÉÏÃËÇÏÅfä4ÅfÌÝxÅfÈEÊ#ÅfÉ]Ó}Ñ#ÌÆ ÈEÔ ÅÎÈ÷ÏÃ]ÅfÌÈEÉ6ÏÃ][ Å îËÜûÑ4õEÍ6Ô ÐÇ#Û9ÅÑ4ÌÈEÉ6ÏÃ][ Å îËÜûÉËÅfã8ÔÐËÇ4Û9Å ù â â]ÌÊ#ÑÇõËÃËÅf Ç V Ñ#âpÏÏÃ]ÅÔ õEÑ#Ð ÅÎÔ å ÌÅZÈÞÔ%ÏÑ1â]ÉÍpÅfÌrÔÏrÇÉËÍãÃËÇîÏÏÃ]ÈÞÔÄÔÏÌâËÛ9Ïâ]ÌÅmÛÎÇÉÏÅfõEõ.âËÔÄ) Ñ#ÓRÅfÈEÊ#ÅÎÉpÓ}Ñ#ÌÆÔ ù Ñ#ÌÄÏÃË[ Å î]ÜÉ]Åfã8ÐËÇÌÏÎàÒÏÃ]ÅXÇÉËÔãÅfÌÏâ]ÌÉËÔÑ4âpÏÄÏ Ñ V Åä#ÅÎÌÝÔÈCÆÐ]õEÅ È
&CF_ \
~ ED kðò8ð ó§& Õ ®Ø , f Õ6, K× îø Õk Õ Ù *Õ w î , Ú ×Ø k × - +Àê«ïÊB)ï þ ± î8Êî >
Q;ã Ð Í#ÏÛ ÎPÐEÔ ÿ ÎÎÔhÔ ÎvÑ4HÏ ÐÒÍ#õCõEÝÏ ÓzÍÑËÔ< ä ÎvÓHÔ Íõ 6ÏÑiÏ Ì ÎJÍ4Û®HÏ ÐCW Ñ ÑJÑ& Ó Ä < Ñ ÑjQªL à ÐÒÑJÏ Ì Î ¥ÖÇ× Ø
+
\Ù
m µ oyoDuoyo p ª ´ |q z ¦n ;¾
;)¿/ F¯0¯ áÎ n .)rFr; Î.|¥ur;uo p1 4¥#;uoyo£X í uoyo p z ¯íw X
sr;8uqW n ).yr1 yr Õ n 5 15;ívr;
£X
z ° oyo) n ).yrX8yr[ n ¾y rwv r; 1 q:
rF¿tD ).w1[
sr;11w
0¶yr?q í;ívr;
(@£X
z )Î n [ruoWo . uqH n
YÕ
Ù
¾
;)¿[r; 1[[o ;yr;;
i«g
TÕ
-Ù
*Ù
£¤D¥§¦8¨© ¤
Ú ÍÐËÐÔÐÛÑ4Ü
(«F¥ ° ¬
²¥«w°¯²#£F²#¤D´/°³
¬
²³H²³8²#¦8¤¾3¤©³´
¹|¹|õ
Ý ã
È Q É
R ã
)Äêë\Q M
Ã
ý8R Ý çhÃÊdë
ã
Ý Ì 4 Í Ô%ø±VÎvÓÔÑÓPÛvÍÓzÞßÐÛÑÍõÒÐáàÝöï ÐÒÑÓ¨Í4ÛlàÎà ÐÞÔà Ì Î8ÓHÎÎÔhàÓHÐEÛ«àÐEÑ
P o VaZ O q?;VB A V (W VZW Z V O W ]r O W O 'W W M Z OV sW O aW Z ?] BV O O V V M W Z W MPO O W V T,ZVW MuZ W T O t V ?2B A V W O T aZ W >] VZ Z W V W @O W ] E '8H -% "3 % $ %5 W !` W Z 8 . ! v !28 #* /%] &% E'!108 ; v ? B ' H - % ;' - " Q ! 0) &; 8 = 8 "6 H ' L " - ' ' 7 " ' Z W W ZUO O ?9A @@?;w B A T O M W 3Z W V ? V B Z W W OZ aW Z W Z M WXWZW W V MPO M W O O V V"x W O M /? O B W B' E = 'j? C 2 0 '';4 y ! = " - '1 y)?2 A - 2qG1 ? B ' - ! - ! 0 " " 5 - H @ j8 ! 8% ^ i " B . $ 9 . ' V4J 9J V ZUO lW O $W WZUO VW TO V W V O W O jW V O @W VM ZUO W aW O aZ VaZEW VaMkM &V O aZ ;W2W M W jW V V V ZUO VaMkM W;W ZUO W MPO W O W . 8 ` E" r H [ EK !
a ; V W M W jW +T K 8W V O WO V ZVaMPO "W W W O ?9BV A W V IO V CO 'VVjM%VaMPZ O O V ZUO W - 7 C %,L ; ' ' -@ 0% 9j ! ) ! - K C E % - ! ! $ % K )' " ;= - ' E
= % E ! ! % . j' " * C W T Z 8 ? B O W V W ? B W W W Z V O `W Z O Z W Z W W V M W - '"; 4 ?;CB A 0 * ! ! 8 - !! %I + / ?2B A 82 - -v t E - j L ! ? B A * CC "6 1 9C * j - L Q 1 : -% ! > 8 - " ' % '7D " C 0 7 C K + 7 % ;6, lK " 1L! : 6 3 ' 8 2 5 ' ! ' E - 5 [ !! 8 = #% ! ¬
°··±¤§³
t.
²
°5³¤ ²´¦ ¤§³¥§¤
¥D©8²#¦ ¤©8²®5³
¸
¬
2¯°5©
²¥
¹|¹&Ú
5²³5´;®5³
ÍÑÞÍ