Studies in Surface Science and Catalysis 46
ZEOLITES AS CATALYSTS, SORBENTS AND DETERGENT BUILDERS Applications and In...
116 downloads
1305 Views
32MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Studies in Surface Science and Catalysis 46
ZEOLITES AS CATALYSTS, SORBENTS AND DETERGENT BUILDERS Applications and Innovations
This Page Intentionally Left Blank
Studies in Surface Science and Catalysis Advisory Editors:B. Delmon and J.T. Yates
Vol. 46
ZEOLITES AS CATALYSTS. SORBENTS AND DETERGENT BUILDERS Applications and Innovations Proceedings of an International Symposium, Wurzburg, F.R.G., September 4-8,1988
Editors
H.G. Karge Fritz-Haber-lnstitut der Max-Planck-Gesellscha ft, Faradayweg 4-6, D- 1000 Berlin 33 (West)
J. Weitkamp University of Stuttgart, Institute of Chemical Technology I, Pfaffenwaldring, D- 7000 Stuttgart 80, F. R. G.
ELSEVIER
Amsterdam - Oxford - New York -Tokyo
1989
ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 21 1, 1000 AE Amsterdam, The Netherlands Distributors for the United States and Canada: ELSEVIER SCIENCE PUBLISHING COMPANY INC. 655, Avenue of the Americas New York, NY 10010, U S A . L l b r i r y of Congress C 8 t 8 I o g l n g - l n - P u b l l c a t I n n
Zeolites a s c a t a l y s t s . s o r b e n t s . and d e r e r g e n r b u l l d e r r
Data
applications
and i n n o v a t i o n s P r O c e e d l n g s o f an i n t e r n a t t o n a l s y n p o s i u n . WuPZbuPg. F . R . G . . Smptemb8r 4-8. 1988 / 0 d l T O r S . H.G. K a r g n . J. He I r k a m p . p. cm. ( S t u d l e i I n r u r f a c n s c l e n c o and c a t i l y s l s , 4 6 ) P r o c a e d l n p s o f t h e I n r 8 r n a r l o n a l Symposium on "Zeolltss a s C a r a l y s t s . S o r b e n t r . and D s t n r g 8 n t B u l l d a r s . " I n c l u d e s indexes. Blbliography p. ISBN 0-444-87383-x 1. ZeoIites--Congrcsrsr. 2 . Sorbents--Congresres. 3 . D8Tmrponts. Synthetlc--Conprssses. I . Kargm. H. 0 . t n e l l m u r 0 . ) 11. W8ltkamp. J. ( J e n s ) 111. I n r s r n a t l o n a l Symposium on "Zeolltss as C a t i l y s t s . S o r b a n t s . ana D e t e r g e n t B u l l d 8 r S ' (1988 H u r z b u r g . Germany) i V . Sa-les. ~ ~ 2 4 5 . ~ 5 198s z m 660 . 2 9 9 5 - - d c 2 0 89- 1464 CIP
--
ISBN 0-444-87383-X (VOI.46) ISBN 0-444-4 1801-6 (Series)
0 Elsevier Science Publishers B.V., 1989 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./ Physical Sciences & Engineering Division, P.O. Box 330, 1000 AH Amsterdam, The Netherlands.
-
Special regulationsfor readers in the USA This publication has been registered with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside of the USA, should be referred t o the publisher. No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligenceor otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Although all advertising material is expected to conform to ethical (medical)standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer. Printed in The Netherlands
V
CONTENTS
.......................... XI11 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV International Scientific Committee . . . . . . . . . . . . . . . . . . .X I V Executive Committee ........................... XV Preface
Financial Support
...........................
xv
I . CATALYSIS AND CATALYSIS-RELATED PROPERTIES
Skeletal Rearrangement Reactions of Olefins, Paraffins and Aromatics over Aluminophosphate based Molecular Sieve Catalysts J.A. Rabo, R.J. Pellet, P.K. Coughlin, E.S. Shamshoum
.........1
Catalytic and Physical Properties of Silicon-Substituted AlP04-5 Molecular Sieves K.J. Chao, L.J. Leu
...........................
On the Nature of the Catalytic Activity of SAPO-5 Ch. Minchev, V. Kanazirev, V. Mavrodinova. V. Penchev, H. Lechert
19
. . . . 29
Molecular Orbital Calculations on the Structural and Acidic Characteristics of Aluminophosphates (AlPO). Si 1 icoaluminophosphates (SAPO) and Metaluminophosphate (MeAPO) Based Molecular Sieves R. Carson, E.M. Cooke, J. Dwyer, A. Hinchliffe, P.J. O'Malley
. . . . . . 39
Relation between Paraffin Isomerisation Capability and Pore Architecture of Large-Pore Bifunctional Zeolites J.A. Martens, M. Tielen, P.A. Jacobs.
..................
49
Respective Influences of the Geometric and Chemical Factors in the Conversion o f Aromatics over Acidic Zeolites F. Fajula, M. Lambret, F. Figueras
. . . . . . . . . . . . . . . . . . . 61
Para-Selectivity of Pentasil Zeolites 3.-H. Kim. S. Namba, T. Yashima
.....................
71
v1
Hydrogen Spillover in the Conversion of n-Alkanes on Zeolites K.-H. Steinberg, U. Mroczek, F. Roeher
. . . . . . . . . . . . . . . . 81
Intermediates in the Formation of Aromatics from Propene and 2-Propanol on H-ZSM-5 Zeol i tes H. Lechert, C. Bezouhanova, C. Oimitrov, V. Nenova
. . . . . . . . . . . 91
Zeolite and Matrix Structures and their Role in Catalytic Cracking C.J. Groenenboom
...........................
99
Evaluation of Non-Commercial Modified Large Pore Zeolites in FCC E. Jacquinot, F. Raatz, A. Macedo. Ch. Marcilly
. . . . . . . . . . . . 115
Surface-Metals Interactions in Fluid Cracking Catalysts During the Upgrading of Vanadium Contaminated Gas Oils M.L. Occelli, J.M. Stencel
.......................
127
Highly Dispersed Pt and Pt-Cr Clusters in Pentasils and their Activity in Transformations of Lower Alkanes E.S. Shpiro, G.J. Tuleuova, V.I. Zaikovskii, O.P. Tkachenko, T.V. Vasina, O.V. Bragin, Kh.M. Minachev
. . . . . . . . . . . . . . . . 143
Conversion of Light Alkanes into Aromatic Hydrocarbons. 3. Arornatization of Propane and Propene on Mixtures of HZSM5 and of Ga2O3 N.S. Gnep, J.Y. Doyemet, M. Guisnet
. . . . . . . . . . . . . . . . . . 153
Shape-Selective Catalysis in Zeolites with Organic Substrates Containing Oxygen R.F. Parton, J.M. Jacobs, O.R. Huybrechts and P.A. Jacobs.
. . . . . . . 163
lhe Use of Zeolite Catalysts for the Synthesis of Nitrogen-Containing Organic Intermediates W.F. Hoelderich
............................
193
Comparison of the Alkylation of Anisole and Phenol wifh Methanol on Pentasil and Ultrastable Zeolites R.F. Parton. J.M. Jacobs. H.v. Ooteghem, P.A. Jacobs
. . . . . . . . . . 211
Acidity Effect o f ZSM 5 Zeolites on Phenol Methylation Reaction N.S. Chang, C.C. Chen, S.J. Chu, P.Y. Chen, T.K. Chuang
. . . . . . . . 223
VII
A new Catalyst for MIBK Synthesis - Palladium on ZSM-5 Zeolites P.Y. Chen, S.J. Chu, N.S. Chang, T.K. Chuang, L.Y. Chen.
. . . . . . . . 231
Acetylene Hydration on Zeolite Catalysts: An I.R. of the Surface Species Gy. Onyestyak, J. Papp Jr.. 0. Kallo
Spectroscopic Study
. . . . . . . . . . . . . . . . .241
Preparation and Characterization of Mo-HY Zeolites A. Meszaros-Kis, J. Valyon
251
Propylene Metathesis Reaction over Mo/Y-Zeolites M. Caniecki
259
......................
..............................
Molybdenum-Oxide-Modif ied Pentasil Zeolites I.M. Harris, J. Dwyer, A.A. Garforth, C.H. McAteer, W.J. Ball
. . . . . 271
Surface and Catalytic Properties of the New Zeolite Type LZ 132 Z. TvaruZkova, M. Tupa, P. Jiru. A. Nastro. 6. Giordano, F. Trifiro
. . 281
PtRh-Doped Zeolites as Three-Way-Catalysts: SIMS Analysis as a Tool for the Selection of Suitable Zeolite Types C. Plog, J. Haas, J. Steinwandel
. . . . . . . . . . . . . . . . . . . 295
Transformation o f Ethanethiol over Zeolites M. Ziol’ek, P. Decyk, M. Derewinski, J. Haber
. . . . . . . . . . . . . 305
Study o f the Structure and the Redox Reactivity of NaX Encapsulated Co( 1 I)-Phthalocyanine G. Schulz-Ekloff, 0. Wohrle, V. Iliev, E. Ignatzek, A. Andreev Selective Reduction o f Nitric Oxide over Zeolite-Supported Iridium Catalyst R. Myrdal, St. Kolboe
. . . . 315
........................
Metal-Doped Zeolites for Selective Catalytic Reduction of Nitrogen Oxides in Combustion Gases J.Haas, J.Steinwande1, C. Plog
327
. . . . . . . . . . . . . . . . . . . 337
Vlll
Preparation of NiHZSM-5 Catalyst for Isomerization o f c8 Aromatics. Solid-state Incorporation of Nickel B. Wichterlova. S. Beran, L. Kubelkova, J. Novakova, A. SmieSkova, R. Sebik
347
Formation of Carbocations from c6 Compounds in Zeolites I. Kiricsi, H. Forster, G. Tasi
355
............................... ....................
An Infrared and Catalytic Study o f Isomorphous Substitution in Pentasil Zeolites M.F.M. Post, T. Huizinga, C.A. Emeis, J.M. Nanne, W.H.J. Stork
. . . . 365
Calorimetric lnvestigation o f the Acidity of Dealuminated Y-Type Zeolites Using Various Basic Probes A. Auroux. Z.C. Shi, N. Echoufi, Y . Ben Taarit
. . . . . . . . . . . . 377
The Acidity of a Modified Faujasite Structure, Zeolite CSZ-1 S. Cartlidge. R.L. Cotterman, M.L. Howes
. . . . . . . . . . . . . . . 389
Control of Catalytic Properties of ZSM-5 made by Fast and Template-free Synthesis A. TiAler, P. Polanek, U. Girrbach, U. Muller, K.K. Unger Theoretical Studies of BrBnsted Acidity in Zeolites R. Vetrivel. C.R.A. Catlow. E.A. Colbourn. M. Leslie
. . . . . . . 399
. . . . . . . . . 409
N M R and I R Studies of Zeolites of the Erionite Type F. Roefiner, K.-H. Steinberg, 0. Freude, M. Hunger, H. Pfeifer
. . . . 421
Specific Platinum Particles Properties in Basic Zeolites A. de Mallmann, D. Barthomeuf
....................
11.
429
SORPTION
Fundamental Research and Modeling for a Technical Process of Selective Adsorption of Normal Paraffins ("Parex"-Process of DDR) by Zeolite A W. Schirmer, K. Fiedler, H. Stach, M.Suckow
. . . . . . . . . . . . . 439
Sorbex Technology for Industrial Scale Separation J.A. Johnson, A.R. Oroskar
......................
451
IX
Gas Oil Dearomatization by Adsorption A. Laktic, J. Muhl. I. Beck. M. Beer
. . . . . . . . . . . . . . . . . 469
Modeling Diffusion Pathways in MFI Materials by Time-Resolved Powder Diffraction Techniques B.F. Mentzen
.............................
477
Measurement of Intracrystalline Diffusivities of HZSM-5 Zeolite at Higher Temperatures and Predictions of Shape Selectivity K. Hashimoto, T. Masuda, M. Kawase
. . . . . . . . . . . . . . . . . . 485
Measurement of Hydrocarbon Diffusion Coefficient in a Non-Isobaric Chromatographic Column of Zeolite Crystal Powder E. Aust, W. Hilgert, G. Emig
.....................
495
Molecular Mobility of Benzene and p-Xylene in M F I Type Zeolites M. Bulow, J. Caro, B. Rohl-Kuhn, B. Zibrowlus
. . . . . . . . . . . . 505
Diffusion of n-Hexane and 3-Methylpentane in H-ZSM-5 Crystals of Various Sizes P. Voogd, H. van Bekkum
........................
519
Comparative Study by Deuteron Solid State NMR Spectroscopy of the Dynamics o f Benzene and Olefins in Faujasite- and Mordenite-Type Zeolites B. Boddenberg. R. Burmeister, G. Spaeth
k
. . . . . . . . . . . . . . . 533
Probing the Hydrogen Sorption States in Zeolites A by Infrared Spectroscopy and Low-Temperature Gas Chromatography Supplemented by Theoretical Calculations H. Forster, W. Frede, G. Peters
. . . . . . . . . . . . . . . . . . . 545
Fourier-Transform Infra-Red Photoacoustic Spectroscopy, A Useful Technique for the Study of Strongly Physisorbed Molecules J. Philippaerts, E.F. Vansant, Y.A. Yan
. . . . . . . . . . . . . . . 555
Adsorption Properties of Large Crystals of ZSM-5 Zeolite as a Function of the Degree of Dealumination J. Kornatowski, M. Rozwadowski, A. Gutsze, K.E. Wisniewski
. . . . . . 567
X
Self-Consistent-Charge Xu Calculations of Sorption Complexes of Nitrous Oxide Attached to Transition Metal Occupied Zeolite Clusters 0. Zakharieva-Pencheva, M. Grodzicki, H. Forster
. . . . . . . . . . . 575
IR Study o f the Adsorption of Benzene on HZSM5 A. Jentys, J.A. Lercher
......................
565
Adsorption Separation o f Methylnaphthalene Isomers on X and Y Zeolites V. Solinas. R. Monaci, E. Rombi, M.Morbidelli
. . . . . . . . . . . . 595
Oxygen Enrichment of Air with Molecular Sieve Zeolites Using the PSA/VSA Technique G. ReiR
..............................
607
Adsorption and Diffusion o f Different Hydrocarbons in MFI Zeolite of Varying Crystallite Size D.H. Lin, V. Ducarme, 6. Coudurier, J.C. Vedrine
. . . . . . . . . . . 615
High Resolution Sorption Studies of Argon and Nitrogen on Large Crystals of Aluminophosphate A1 Po4-5 and Zeolite ZSM-5 U. Muller, K.K. Unger, 0. Pan, A. Mersmann, Y. Grillet, F. Rouquerol. J. Rouquerol
......................
625
A new Potential Large-Scale Application o f Zeolites as Fire-Retardant Material H.K. Beyer, G. Borbely, P. Miasnikov, P. Rozsa
. . . . . . . . . . . . 635
111. ION EXCHANGE AND DETERGENT BUILDING
Industrial Production of Zeolites E. Roland
645
Calcium and Magnesium Exchange in Na-A, Ma-X and their Precursor Gels L.V.C. Rees
661
.............................
.............................
Fundamentals of Phosphate Substitution in Detergents by Zeolites Cobuilders and Optical Brighteners M.J. Schwuger, M. Liphard
-
.....................
673
XI
Zeolite A - A Builder for Liquid Detergents? W. Leonhardt, B.-M. Sax
691
Development and Performance of Zeol ite-A-Bui It Non-Phosphate Detergents H. Upadek, P. Krings
701
.......................
........................
Simultaneous Separation of Suspended Sol ids, Ammonium and Phosphate Ions from Waste Water by Modified Clinoptilolite J. Olah. J. Papp, A. Meszaros-Kis, Gy. Mucsi, 0. Kallo
. . . . . . . . 711
IV. MODIFICATION AND CHARACTERIZATION Framework and Non-Framework A1 Species in Dealuminated Zeolite Y P.J. Grobet, H. Geerts, M. Tielen, J.A. Martens and P.A. Jacobs Characterization of Calcined FAPO-5 S. Schubert, H.M. Ziethen, A.X. Trautwein, F. Schmidt, H.-X. J.A. Martens, P.A. Jacobs
. . . 721
Li,
......................
Control of Pore-Opening Size of Zeolites Y.F. Chu, C.F. Keweshan, E.F. Vansant
735
. . . . . . . . . . . . . . . . . 749
Structural-Modification Technique for Zeolites: Chemisorption o f Si2H6 Y. Yan, J . Verbiest, J. Philippaerts, E.F. Vansant. P. De Hulsters I\ new
. . . 759
Dealumination of the Zeolites Offretite and Erionite Studied by Sol id-State 29Si- and 27A1-MAS NMR Spectroscopy K.P. Lillerud, M.Stocker
769
Gal liation and 180-exchange Reactivities of ZSM-5 and ZSM-11 A. Endoh, K. Nishimiya, K. Tsutsumi, T. Takaishi
779
Thermal Decomposition of Ironpentacarbonyl in Zeolites of Faujasite Type. A Study of the Influence of Argon, HE, H2/CO Gas Mixture and Various Si/Al Ratios Using Mossbauer, ESR and Mass Spectroscopy H.M. Ziethen. A.X. Trautwein
709
....................... ...........
....................
Investigation of Ultra Stable Y by Differential Thermal Analysis after Injection of Water Vapour A. Yoshida, K. Inoue
. . . . . . . . . . . . . . . . . . . . . . . . . 801
Properties of Hydrothermal Low-Damaged 5A and 1OX Zeolites R. Schollner, H. Siege1
. . . . . . . . . . . . . . . . . . . . . . . . 811
Phase Transformations and Changes in Lattice Parameters of ZSM-5 as a Function of A1 Content and Temperature G.T. Kokotailo, L. Riekert, A. TiRler
. . . . . . . . . . . . . . . . . 821
The Effect of Sorbates and Elevated Temperatures on the Structures of Some Zeolite Catalysts C.A. Fyfe, G.T. Kokotailo, H. Strobl, H. Gies, G.J. Kennedy, C.T. Pasztor, G.E. Barlow
. . . . . . . . . . . . . . . . . . . . . . 827
The Effect of Temperature and Sorption of p-Xylene and Benzene on the Structure of ZSM-5 G.T. Kokotailo, L. Riekert, A. TiSler.
. . . . . . . . . . . . . . . . . 843
The Characterization of Modified ZSM-5 Catalysts prepared via a Sol id-state Reaction for Propane Aromatization Y. Yang, X. Guo, M. Oeng, L. Wang, Z. Fu
. . . . . . . . . . . . . . . . 849
Author Index
......,.....,.. ............ ....
Subject Index
. . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . 863
Studies in Surface Science and Catalysis (other volumes in the series). .
859
. 869
XI11
PREFACE
This symposium was one of the smaller zeolite meetings held in between the big International Zeolite Conferences. It is the latest in the series of meetings which started in 1978 in Szeged, Hungary, and continued in 1980 in Villeurbanne (Lyon), France; 1982 in Bremen, FRG; 1984 in Prague, Czechoslovakia; 1985 in Si6fok, Hungary; and 1987 in Nieuwpoort, Belgium. These conferences are intended t o cover selected fields from the broad area of zeolite research and application. For the Wurzburg Symposium emphasis was placed on zeolite catalysis, sorption and detergent builders. With respect t o catalysis, particular attention was paid to the synthesis of fine chemicals with the help of zeolite catalysts. An overview of this important field was given in two invited lectures which were complemented by a number of related oral and poster contributions. Special efforts were made to bring together experts from industry and academia. This endeavour was successful, as was reflected both in the invited lectures, oral and poster presentations and in the composition of the audience. An expected trend was the ever increasing interest in the so-called new generation molecular sieves both for research and application. A remarkable number of the presented studies were devoted t o these materials. Innovations, however, were mostly visible in developing and refining methods and techniques of investigation either in experiment or theory. Obviously, successful application of highly sophisticated tools of solid state and surface science t o problems of zeolite research now becomes possible. This seems t o promise a growth in our knowledge of and deeper insight into the subtle details of zeolite properties and behaviour.
Hellmut G. Karge Fritz Haber institute Max Planck Society, Berlin
January, 1989
Jens Weitkamp institute of Chemical Technology I University of Stuttgart
XIV
ACKNOWLEDGMENTS The organizers of the international Symposium on "ZEOLITES AS CATALYSTS, SORBENTS AND DETERGENT BUILDERS", held at Wurzburg, Federal Republic of Germany, September 4-8, 1988 express their appreciation to the members of the International Scientific Committee who carried out the difficult and important task of paper selection. They also wish t o thank the members of the Executive Staff for their great efforts made during preparation and running of the symposium. Particular thanks are due to Mrs. R. Stottko for the coordination and execution of the finances, to Dr. St. Ernst for his active participation in the organizational work and to Mrs. M. Rahimi, Mrs. E. Stankewitz and Mrs. J. Reiffel for their most valuable assistance in preparing the proceedings. Furthermore, the organizers thank the authors for submitting their manuscripts for publication in these proceedingsand the referees for spending time and effort in order to ensure the high scientific standard of the contributions. Last but not least, the help and generous financial support of collaborating organizations and sponsors from the industry is gratefully acknowledged.
Hellmut G. Karge
Jens Weitkamp.
INTERNATIONAL SCIENTIFIC COMMlllEE H. BEYER, HungarianAcademy of Sciences, Budapest, Hungary. 5. CARTLIDGE, Grace GmbH, Worms, FRG. P. CHRISTOPHLIEMK, Henkel KGaA, Dusseldorf, FRG. J. DWYER, The University of Manchester, England.
F. FAJULA, Ecole Nationale Supkrieure de Chimie, Montpellier, France. F. FETTING, Technische Hochschule Darmstadt, FRG.
W. H6LDERICH. BASF AG, Ludwigshafen, FRG. W. KEIM, RWTH Aachen, FRG, and DMGK, Hamburg, FRG. A. KISS, Degussa AG, Hanau, FRG.
H. KRAL, Dechema, FrankfurVM., FRG.
xv E.4. LEUPOLD, Hoechst AG, FrankfuWM., FRG. R. MAUREL, lnstitut de Recherches sur la Catalyse, Villeurbanne, France. I.E. MAXWELL, Koninklijke/Shell, Amsterdam, The Netherlands. L. MOSCOU, Akzo Chemie BV, Amsterdam, The Netherlands. G. OHLMANN, Academy of Sciences of the GDR, Berlin-Adlershof, GDR. L. PUPPE, Bayer AG, Leverkusen, FRG.
M.S. SPENCER, ICI, Billingham, England. J.B. UYlTERHOEVEN, Katholieke Universiteit Leuven, Belgium.
EXECUTIVE COMMllTEE R. AMBERG, Berlin (West).
C.H.BERKE, Stuttgart, FRG. A. BREHM, Oldenburg, FRG. C.-Y. CHEN, Oldenburg, FRG.
H. DARMSTADT, Berlin (West). St. ERNST, Oldenburg, FRG.
TH. KROMMINGA, Stuttgart, FRG. D. LINDNER, Oldenburg, FRG. G.W. MULLER, Stuttgart, FRG. M. NEUBER, Karlsruhe, FRG. W. NIESSEN, Berlin (West). E. PERNKLAU, Stuttgart, FRG. E. STANKEWITZ, Berlin (West). R. STOTTKO, Berlin (West).
W. WACHSMANN, Berlin (West).
FINANCIAL SUPPORT Akzo Chemie, Ketjen Catalysts, Amsterdam, The Netherlands. BASF AG, Ludwigshafen, FRG. BP International Limited, Sunbury-on-Thames, England.
Bayer AG, Leverkusen, FRG.
XVI
Degussa AG, Frankfurt, FRG. Deutsche Forschungsgemeinschaft(DFG), Bonn, FRG. Deutscher Akademischer Austauschdienst (DAAD), Bonn, FRG. DGMK German Society for Petroleum Sciences and Coal Chemistry, Processing and Application Division, Hamburg, FRG. Exxon Chemical Holland B.V., Rotterdam, The Netherlands. Grace GmbH, Worms, FRG. Henkel KGaA, Dussseldorf, FRG. Hoechst AG, Frankfurt, FRG. lnstitut Frangais du Petrole, Rueil Malmaison, France. International Zeolite Association (IZA). Kali-Chemie AG, Hannover, FRG.
Max-Planck-Gesellschaft, Munchen, FRG. Perkin Elmer GmbH, Uberlingen, FRG. Rutgerswerke AG, Frankfurt, FRG. SKW Trostberg AG, Trostberg, FRG.
Sud-Chemie AC, Miinchen, FRG.
I. CATALYSIS AND CATALYSIS-RELATED PROPERTIES
This Page Intentionally Left Blank
H.G. Karge, J . Weitkamp (Editors), Zeolites as Catalysts, Sorbents and Detergent Builders 1989 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands
SKELETAL REARRANGEMENT REACTIONS OF OLEFINS,
PARAFFINS AND AROMATICS OVER
ALUMINOPHOSPHATE BASED MOLECULAR S I E V E CATALYSTS
J u l e A. Rabo, Regis J . P e l l e t , P e t e r K. C o u g h l i n and Edwar S. Shamshoum Union Carbide C o r p o r a t i o n , O l d Saw M i l l R i v e r Road, Tarrytown, NY 10591, U.S.A.
ABSTRACT Medium pore aluminophosphate based m o l e c u l a r s i e v e s w i t h t h e -11, -31 and -41 c r y s t a l s t r u c t u r e s a r e a c t i v e and s e l e c t i v e c a t a l y s t s f o r 1-hexene i s o m e r i z a t i o n , hexane d e h y d r o c y c l i z a t i o n and c 8 a r o m a t i c r e a c t i o n s . With o l e f i n feeds, t h e y promote i s o m e r i z a t i o n w i t h l i t t l e loss t o competing hydride transfer and c r a c k i n g r e a c t i o n s . With C8 aromatics, they e f f e c t i v e l y c a t a l y z e xylene i s o m e r i z a t i o n and ethylbenzene d i s p r o p o r t i o n a t i o n a t v e r y low xylene loss. As a c i d components i n b i f u n c t i o n a l c a t a l y s t s , t h e y a r e s e l e c t i v e f o r p a r a f f i n and c y c l o p a r a f f i n i s o m e r i z a t i o n w i t h low c r a c k i n g activity. I n these r e a c t i o n s t h e medium p o r e aluminophosphate based s i e v e s a r e g e n e r a l l y l e s s a c t i v e b u t s i g n i f i c a n t l y more s e l e c t i v e t h a n t h e medium pore z e o l i t e s . S i m i l a r i t y w i t h medium p o r e z e o l i t e s i s d i s p l a y e d b y an o u t s t a n d i n g r e s i s t a n c e t o coke induced d e a c t i v a t i o n and b y a v a r i e t y o f shape s e l e c t i v e actions i n catalysis. The e x c e l l e n t s e l e c t i v i t i e s observed w i t h medium pore aluminophosphate based s i e v e s i s a t t r i b u t e d t o a unique combinat i o n o f m i l d a c i d i t y and shape s e l e c t i v i t y . S e l e c t i v i t y i s a l s o enhanced by t h e presence o f t r a n s i t i o n metal framework c o n s t i t u e n t s such as c o b a l t and manganese which may e x e r t a chemical i n f l u e n c e on r e a c t i o n i n t e r m e d i a t e s . INTRODUCTION According t o recent reports,
t h e aluminophosphate based m o l e c u l a r s i e v e s
have a c i d i c c a t a l y t i c a c t i v i t y f o r a broad a r r a y o f p e t r o l e u m r e f i n i n g and petrochemical
reactions.
activities
were
molecular
sieves.
reported
In
early
for
a
SAPO
These
studies
number
of
molecular
Subsequently,
substitution
aluminophosphate
certain
2)
n-butane
cracking
(SAPO)
sieves
showed
weak
acidity
by
i t was found t h a t t r a n s i t i o n m e t a l
comparison w i t h z e o l i t e s . into
(ref.
silicoaluminophosphate
crystals
resulted
i n enhanced
a c i d i t y as i n d i c a t e d b y enhanced butane c r a c k i n g a c t i v i t y ( r e f .
3).
With
medium pore species t h e g e n e r a l l y m i l d a c i d i t y combined w i t h u n i q u e shape selectivity reactions.
has Thus,
resulted
in
a r e v i e w of
improved
phosphate based m o l e c u l a r s i e v e s catalytic
cracking
reforming
(ref.
conversion
(refs.
(ref.
7),
4),
aromatic
9,lO)
and
catalytic
selectivity
in
several
t h e p a t e n t l i t e r a t u r e r e v e a l s t h a t aluminohave
shown c a t a l y t i c
hydrocracking alkylations
(ref. (ref.
activity
in fluid
5), dewaxing ( r e f . 6), 8 ) , methanol t o o l e f i n
i n o l e f i n oligomerization
(refs.
8.11).
In
s e v e r a l cases o l e f i n s p l a y an i m p o r t a n t r o l e , e i t h e r as f e e d c o n s t i t u e n t s o r
as r e a c t i o n i n t e r m e d i a t e s .
The enhanced s e l e c t i v i t y o f c e r t a i n SAPO's f o r
o l e f i n r e a c t i o n s has a l r e a d y been noted. SAPO-34,
s m a l l p o r e SAPO's,
such as
were found v e r y e f f e c t i v e a t i n t e r c o n v e r t i n g l i g h t o l e f i n s such as
ethylene,
propylene
and
butylenes
12).
oligomeric products ( r e f , very
Thus,
selective
for
with
little
loss
to
paraffinic
or
The medium p o r e SAPO's were a l s o a c t i v e and
oligomerization
of
p r o p y l e n e and butenes t o o l e f i n i c
11) o r t o d i s t i l l a t e s w i t h o u t the production o f p a r a f f i n s o r
gasoline ( r e f . aromatics. The
present
aluminophosphate
paper
on
reports
molecular
the
sieves
in
catalytic model
properties
hydrocarbon
of
selected
reactions.
The
m o l e c u l a r s i e v e s were s e l e c t e d t o r e p r e s e n t l a r g e and medium p o r e s i z e s w i t h
a v a r i e t y o f framework elements i n c l u d i n g t r a n s i t i o n m e t a l s , i n a d d i t i o n t o aluminum and phosphorus.
Model
r e a c t i o n s were chosen t o e x p l o r e c a t a l y t i c
performance i n p a r a f f i n , o l e f i n and a r o m a t i c rearrangement r e a c t i o n s t o probe molecular
sieve
character,
shape
selectivity
and
catalytic
activity,
p a r t i c u l a r l y for reactions i n v o l v i n g o l e f i n s or o l e f i n r e a c t i o n intermediates. EXPERIMENTAL M o l e c u l a r Sieve C a t a l y s t P r e p a r a t i o n The aluminophosphate based m o l e c u l a r s i e v e s used i n t h e p r e s e n t s t u d y were prepared a c c o r d i n g t o procedures d e s c r i b e d i n US P a t e n t ( r e f s .
2, 13, 14).
The p r e p a r a t i o n o f medium p o r e r e f e r e n c e m o l e c u l a r sieves, LZ-105 z e o l i t e and s i l i c a l i t e , have a l s o been d e s c r i b e d elsewhere ( r e f s . 15, 16). For 1-hexene i s o m e r i z a t i o n and f o r a c i d c a t a l y z e d C8 a r o m a t i c r e a c t i o n s a l l m o l e c u l a r s i e v e s were e v a l u a t e d i n t h e i r c a l c i n e d ,
C8 aromatics,
the study o f
selected
SAPO m o l e c u l a r
exchanged o r steam t r e a t e d as n o t e d i n T a b l e I V . used
in
paraffin
interconversions, platinum-loaded
the
cyclizationlisomerization calcined
molecular
sieve
c h l o r i d e d gamma alumina powder.
powdered s t a t e .
For
s i e v e s were aluminum
For b i f u n c t i o n a l c a t a l y s t s and
ethylbenzene-xylene
powder
was
mixed
with
These m i x t u r e s were t h e n
bound u s i n g s i l i c a s o l and e x t r u d e d t o f o r m 1/16" e x t r u d a t e s which were d r i e d and c a l c i n e d a t 500°C.
The b i f u n c t i o n a l c a t a l y s t s were p r e p a r e d t o c o n t a i n
about 0.5% p l a t i n u m and about 40 t o 50% SAPO m o l e c u l a r s i e v e i n t h e f i n i s h e d catalysts. Cata 1ys t Eva1u a t ion The powdered m o l e c u l a r
sieves
were e v a l u a t e d f o l l o w i n g t h e t r e a t m e n t
d e s c r i b e d above, w i t h o u t f u r t h e r a c t i v a t i o n .
C8
aromatic
isomerization
tests
continuous f l o w microreactors.
were
The 1-hexene i s o m e r i z a t i o n and
conducted
in
tubular,
fixed
bed,
The c a t a l y s t bed c o n t a i n e d one gram m o l e c u l a r
3
s i e v e powder and one t o t h r e e grams o f s i m i l a r l y s i z e d q u a r t z c h i p s used as diluent.
The r e a c t o r was heated t o t h e chosen r e a c t i o n temperatures i n a
fluidized
sand
bath,
and
the
r e a c t i o n t e m p e r a t u r e was
monitored b y
a
Typical runs l a s t e d 3 t o 5 hours
thermocouple .located i n t h e c a t a l y s t bed.
d u r i n g which samples were c o l l e c t e d e v e r y 30 minutes. P a r a f f i n c y c l i z a t i o n and i s o m e r i z a t i o n s t u d i e s were a l s o conducted i n t h e m i c r o r e a c t o r system. The f e e d used i n t h i s s t u d y was t e c h n i c a l grade n-hexane c o n t a i n i n g 87% n-hexane, 9% methylcyclopentane and 4% isopentanes. T y p i c a l l y about 0.35 g o f ground e x t r u d a t e s (20/80 mesh) were mixed w i t h quartz
c h i p s and loaded t o t h e r e a c t o r .
The r e a c t o r was heated t o t h e
r e a c t i o n temperature i n f l o w i n g hydrogen, p r i o r t o hexane f e e d i n t r o d u c t i o n . Runs l a s t e d f o r 24 hours and samples were c o l l e c t e d o n l y a f t e r 20 h o u r s on feed t o p e r m i t c a t a l y s t l i n e - o u t .
L i q u i d and gaseous p r o d u c t s were c o l l e c t e d
and analyzed as d e s c r i b e d above. The
bifunctional
platinum
-
SAP0
catalysts
were
evaluated
for
C8
a r o m a t i c r e a c t i o n s i n t h e presence o f hydrogen i n bench s c a l e r e a c t o r s . T y p i c a l l y , 25 t o 50 cc c a t a l y s t e x t r u d a t e s were d i l u t e d w i t h about f o u r volumes of s i m i l a r l y s i z e d q u a r t z chips, and p l a c e d i n a 1 1/4" ID r e a c t o r w i t n q u a r t z c h i p s placed i n b o t h end zones.
Feed which c o n s i s t e d o f e i t h e r
17% ethylbenzene + 83% m-xylene o r 40% ethylbenzene + 60% m-xylene was t h e n pumped over
t h e c a t a l y s t bed.
p r o d u c t s were c o l l e c t e d d a i l y .
Bench s c a l e r u n s l a s t e d s e v e r a l days and Both gas and l i q u i d p r o d u c t s were q u a n t i f i e d
and analyzed and m a t e r i a l balances were determined.
T y p i c a l l y t h e s e balances
were w i t h i n 2% o f c l o s u r e . The r e a c t i o n c o n d i t i o n s f o r a l l c a t a l y s t t e s t s a r e g i v e n a l o n g w i t h t h e t e s t r e s u l t s i n Tables I t o V. RESULTS A N D DISCUSSION Reactions o f O l e f i n s Olefins
p l a y a key r o l e as
intermediates
r e f i n i n g and petrochemical r e a c t i o n s .
Therefore,
i n a number o f
petroleum
t o b e t t e r understand t h e
f u n c t i o n and u t i l i t y o f aluminophosphate-based c a t a l y s t s , i t i s d e s i r a b l e t o examine t h e i r c a t a l y t i c c h e m i s t r y w i t h model o l e f i n s .
As mentioned above,
t h e s i l icoaluminophosphate m o l e c u l a r s i e v e s have a l r e a d y been r e p o r t e d t o be a c t i v e f o r o l i g o m e r i z a t i o n o f l i g h t o l e f i n s t o g a s o l i n e range p r o d u c t s ( r e f . 11).
The r e s u l t s o f t h a t s t u d y a r e reproduced i n T a b l e I which p r e s e n t s
conversion and s e l e c t i v i t y d a t a f o r p r o p y l e n e o l i g o m e r i z a t i o n t o l i q u i d products. These d a t a were o b t a i n e d u s i n g l a r g e , medium and s m a l l - p o r e SAPO's and medium pore r e f e r e n c e LZ-105 z e o l i t e .
4
TABLE I Vapor Phase P r o p y l e n e 01 i g o m e r i z a t i o n M o l e c u l a r Sieve P o r e Size, A Run Temperature, "F Pressure, p s i g P r o p y l ene WHSV Time on Stream,hr. p r o p y l e n e Conversion, % C5+ S e l e c t i v i t y a a)
SAPO-5 8 700 25 0.98 4.3 0
SAPO- 11 6 700 25 0.94 4.2 86.3 77.0
SAPO-3 1 1 700 50 1.04 5.5 76.2 82.7
SAPO-34 4.3 700 25 0.53 2.33 41.6 19.5
LZ- 105 6 703 25 0.90 3.5 81.6 37.2
C5+ S e l e c t i v i t y = (C5+ y i e l d , wt%)/(C3= c o n v e r s i o n , wt%)x100. The
data
show
that
the
l a r g e pore
SAPO-5
with
a
undirectional
non
i n t e r s e c t i n g channel system ( r e f . 17) was i n a c t i v e f o r o l i g o m e r i z a t i o n b y t h e t i m e t h e f i r s t sample had been taken. a c t i v i t y f o r butane c r a c k i n g ( r e f .
2),
Since SAPO-5 e x h i b i t e d s i g n i f i c a n t t h e lack o f oligomerization a c t i v i t y
was a t t r i b u t e d t o r a p i d c a t a l y s t coking, r e s u l t i n g i n d e a c t i v a t i o n . The s m a l l p o r e SAPO-34 h a v i n g a c r y s t a l s t r u c t u r e analogous t o c h a b a z i t e was
also
ineffective for
c o n v e r s i o n was observed,
propylene oligomerization. most o f
While 40% p r o p y l e n e
the products consisted o f ethylene
butenes, w i t h o n l y 20% s e l e c t i v i t y t o l i q u i d p r o d u c t s .
and
L a r g e r o l i g o m e r s were
c o n c e i v a b l y formed i n t h e cages o f t h e -34 c r y s t a l s t r u c t u r e b u t c o u l d n o t escape through t h e m o l e c u l a r s i e v e ' s s m a l l p o r e openings. products
observed,
were
p r o p y l e n e oligomers.
presumably
formed
by
the
The l i g h t o l e f i n
cracking
of
trapped
T h i s s c r a m b l i n g o f l i g h t o l e f i n s b y SAPO-34 was a l s o
observed by K a i s e r ( r e f . 12). I n c o n t r a s t t o SAPO-5 and SAPO-34, exhibited products.
significant While
oligomerization
the
s t r u c t u r e o f SAPO-11
structure
of
t h e medium p o r e SAPO-11 and SAPO-31 activity
the
has been r e p o r t e d .
and s e l e c t i v i t y t o
SAPO-31
is
as
yet
liquid
unknown,
the
I t comprises u n i d i r e c t i o n a l ,
non
i n t e r s e c t i n g channels formed by 10 member oxygen r i n g s ( r e f . 17). Conversions as h i g h as 86%, with C5+ p r o d u c t s e l e c t i v i t i e s as h i g h as 83%, were r e p o r t e d under t h e s c r e e n i n g c o n d i t i o n s .
The performance o f t h e medium p o r e SAPO's
a l s o d i f f e r e d s i g n i f i c a n t l y from t h a t o f t h e medium p o r e z e o l i t e r e f e r e n c e , LZ-105,
which a l s o achieved h i g h p r o p y l e n e conversion,
b u t a t o n l y 37% C5+
selectivity. The LZ-105 i s s t r u c t u r a l l y r e l a t e d t o ZSM-5 b u t i s p r e p a r e d w i t h o u t an o r g a n i c template. The l i q u i d p r o d u c t s formed over LZ-105 were h i g h l y aromatic,
i n c o n t r a s t t o t h e SAPO p r o d u c t s which were p r e d o m i n a n t l y
o l e f i n i c . Furthermore, t h e major gas p r o d u c t formed over LZ-105 c o n s i s t e d o f l i g h t paraffins.
The LZ-105
preponderance
hydrogen
of
o l i g o m e r i z a t e underwent
p r o d u c t d i s t r i b u t i o n was
transfer
secondary
reactions reactions,
in
which
attributed t o olefin
presumably o v e r
feed
strong
the and acid
5
s i t e s , t o produce l i g h t p a r a f f i n s and aromatics.
It was concluded t h a t , t h e
medium p o r e SAPO'S l a c k e d t h e a c i d s t r e n g t h r e q u i r e d t o c a t a l y z e h y d r i d e s h i f t r e a c t i o n s , and p o s s i b l y l a c k e d s p a t i a l r e q u i r e m e n t s t o f o r m t h e b u l k y t r a n s i t i o n s t a t e s e n v i s i o n e d f o r t h e s e h y d r i d e s h i f t r e a c t i o n s ( r e f . 11).
This lack
of h y d r i d e s h i f t a c t i v i t y r e s u l t e d i n h i g h s e l e c t i v i t y t o o l e f i n i c g a s o l i n e .
In t h e p r e s e n t study, t h e r e a c t i o n s o f 1-hexene as c a t a l y z e d b y a number of t h e s e m o l e c u l a r s i e v e s a r e summarized i n T a b l e 11. presented for
large,
medium
and
small
pore
As b e f o r e , d a t a a r e
SAPO's.
The
influence
of
t r a n s i t i o n metal framework elements i s a l s o e x p l o r e d w i t h s e l e c t e d MeAPO and
In a d d i t i o n t o o l i g o m e r i z a t i o n and h y d r i d e t r a n s f e r
MeAPSO m o l e c u l a r s i e v e s . reactions
observed
with
propylene
feed,
double
bond
and
skeletal
i s o m e r i z a t i o n s , c y c l i z a t i o n and c r a c k i n g a r e a l s o p o s s i b l e u s i n g 1-hexene as model r e a c t a n t , TABLE I 1 Reactions o f I-Hexene over A1 uminophosphate-Based M o l e c u l a r Sieves Run C o n d i t i o n s : Run Temperature 650°F Pressure 40 p s i g WHSV 5.5 l / h r M o l e c u l a r Sieve Pore Size, A T o t a l Conversion,% Selectivities: Double Bond Isomerization, % Skel e t a 1 Isomerization, % Oligomerization, % Cracking, %
SAPO -5 8
SAPO -11 6
FAPO -11 6
MnAPO -11 6
SAPO -31 7
FAPO -31 7
85.1
84 .5
90.1
89.6
86.0
89.1
94.5
93.7
79.1
46.2
22.1
28.0
82.2
42.5
43.2
2.4
10.9 5.6 3.2
41.9 4.3 3.3
70.6 2.4 1.5
63.6 0.9 1.9
14.3 1.7 0.9
52.8 0.9 1.3
44.6 4.1 2.6
12.2 55.1 25.6
MnAPSO -31 7
LZ-105 6
As w i t h propylene, t h e medium p o r e SAPO's a r e again q u i t e a c t i v e and a l s o quite selective.
Thus,
SAPO-11 gave over 90% 1-hexene conversion w i t h over
90% s e l e c t i v i t y t o isomerized products, h a l f o f which were s k e l e t a l isomers. It i s
important t o note t h a t
medium p o r e SAPO-11
i s s e v e r a l o r d e r s of
magnitude more coke r e s i s t a n t than t h e l a r g e p o r e SAPO-5. minutes
on
hexene
feed,
the
SAPO-5
was
catalytically
A f t e r o n l y 30 i n a c t i v e whereas
i s o m e r i z a t i o n a c t i v i t y w i t h SAPO-11 remained unchanged t h r o u g h o u t t h e t h r e e hour l o n g m i c r o - s c r e e n i n g t e s t .
It i s envisioned t h a t
t h e enhanced coke
r e s i s t a n c e o f t h e medium pore SAPO-11 i s due t o a p r o d u c t shape s e l e c t i v i t y . Due t o s p a t i a l c o n s t r a i n t s w i t h i n t h e SUPO-11 s t r u c t u r e , b u l k y coke p r e c u r s o r s a r e formed a t a g r e a t l y reduced r a t e r e l a t i v e t o t h e i r r a t e o f f o r m a t i o n i n
6
U n t i l now t h i s r e s i s t a n c e t o coke formation has o n l y been observed
SAPO-5.
w i t h t h e medium pore ZSM type molecular sieves ( r e f . 18). Under t h e m i l d e r c o n d i t i o n s o f t h i s screening s t u d y w i t h SAPO-11, l i t t l e o l i g o m e r i z a t i o n activity
was
observed,
but
importantly,
almost
no
cracking
of
hexene
occurred. I n c o n t r a s t , under i d e n t i c a l t e s t c o n d i t i o n s , t h e z e o l i t e r e f e r e n c e LZ-105 had v e r y h i g h a c t i v i t y f o r both o l i g o m e r i z a t i o n and cracking, f o r m i n g over 30% l i g h t products.
Most o f t h e isomerized hexene o l e f i n s were consumed
i n these secondary r e a c t i o n s .
The h i g h i s o m e r i z a t i o n s e l e c t i v i t y observed
w i t h t h e medium pore SAPO's i s probably a t t r i b u t a b l e t o s i g n i f i c a n t l y m i l d e r a c i d s t r e n g t h than t h a t possessed b y the r e f e r e n c e z e o l i t e c a t a l y s t . The i n c o r p o r a t i o n o f t r a n s i t i o n elements i n t o the c r y s t a l s t r u c t u r e o f medium pore aluminophosphate molecular sieves enhances s k e l e t a l i s o m e r i z a t i o n selectivity
even
beyond
that
with
observed
the
SAPO's.
Thus,
the
s i l icoaluminophosphate SAPO-11 gives 42% conversion t o s k e l e t a l isomers w i t h 3% cracked product w h i l e t h e same aluminophosphate c r y s t a l phase c o n t a i n i n g manganese
as
a
framework
constituent,
MnAPO-11,
i s o m e r i z a t i o n w i t h o n l y 2% cracked product.
gives
64%
skeletal
The i r o n c o n t a i n i n g FAPO-11 was
even more a c t i v e and s e l e c t i v e w i t h 71% and 1.5% i s o m e r i z a t i o n and c r a c k i n g a c t i v i t i e s , respectively.
S i m i l a r trends can be seen f o r t h e manganese and
i r o n s u b s t i t u t e d aluminophosphates w i t h t h e -31 s t r u c t u r e . P a r a f f i n Reactions The dehydrocycl i z a t i o n o f p a r a f f i n s r e p r e s e n t s a v e r y i m p o r t a n t c l a s s o f reactions
occurring
dehydrocyclization aromatics.
low
in
the
gasoline
octane
paraffins
converted
to
Through
high
octane
isomers t y p i c a l l y have v e r y s i g n i f i c a n t l y enhanced octane
numbers r e l a t i v e t o normal p a r a f f i n s . very
are
process.
P a r a f f i n i s o m e r i z a t i o n a l s o boosts g a s o l i n e octane i n r e f o r m i n g
s i n c e branched are
reforming
often
accompanied
by
D e h y d r o c y c l i z a t i o n and i s o m e r i z a t i o n
undesirable
cracking
reactions
enhancing
product octane a t t h e expense o f g a s o l i n e y i e l d . Shape s e l e c t i v e c r a c k i n g can enhance octane by c r a c k i n g away t h e low octane p a r a f f i n s t o form gas. The intermediacy o f o l e f i n s i n these r e a c t i o n s has been p r e v i o u s l y demonstrated ( r e f . 19). A simp1 i f i e d mechanism f o r t h e dehydrocycl i z a t i o n , i s o m e r i z a t i o n and c r a c k i n g o f n hexane i s summarized below: Pt
nG
-
nG--
CYCLO ~e
-
LIGHT OLEFINS
BENZENE LIGHT PARAFFINS
7
Here,
f i r s t o l e f i n i c i n t e r m e d i a t e s a r e generated over p l a t i n u m .
These
i n t e r m e d i a t e s a r e e i t h e r cracked t o f o r m l i g h t e r o l e f i n s o r c y c l i z e d and isomerized over t h e a c i d i c c h l o r i d e d alumina.
The o l e f i n s and naphthenes
thus formed a r e f i n a l l y dehydrogenated over t h e p l a t i n u m t o f o r m p a r a f f i n s Z e o l i t i c a c i d s such as m o r d e n i t e ( r e f . 20) and ZSM-5
and aromatics.
( r e f . 21)
have been s u b s t i t u t e d f o r t h e c h l o r i d e d alumina as a c i d c a t a l y s t components. I n t h e p r e s e n t study, m i x t u r e s o f supported p l a t i n u m and aluminophosphate based m o l e c u l a r s i e v e s have been t e s t e d f o r n-hexane rearrangement r e a c t i o n s under
reforming
conditions
(900°F,
200
psig).
Results
are
summarized
g r a p h i c a l l y i n F i g u r e s 1 and 2, where s e l e c t i v i t i e s a r e p l o t t e d as f u n c t i o n s Of
n-hexane conversion.
Data a r e presented f o r t h e l a r g e , medium and s m a l l
pore SAPO m o l e c u l a r s i e v e s mixed w i t h
a Pt-alumina
catalyst.
Data f o r
p l a t i n u m mixed w i t h c h l o r i d e d alumina o r mixed w i t h s i l i c a l i t e a r e p r e s e n t e d f o r reference.
I n F i g u r e 1, t h e r a t i o o f iso-hexanes t o cracked p r o d u c t s i s
p l o t t e d a g a i n s t conversion. pore
SAPO-5
however,
is
less
The c a t a l y s t c o n s i s t i n g o f p l a t i n u m and l a r g e
active
i t appears s i m i l a r
distribution of pore SAPO-34
than
reference
i n selectivity,
platinum-chlorided
i n t h a t i t produces a s i m i l a r
isomerized and cracked p r o d u c t s .
i s quite active f o r
alumina;
Mixed p l a t i n u m and s m a l l
hexane conversions
but
selectivity for
isomerized hexanes i s s i g n i f i c a n t l y lower than observed w i t h t h e r e f e r e n c e , and
a
significant
observed.
increase
in
the
amount o f
These r e s u l t s a r e t o be expected.
l i g h t cracked
products
is
SAPO-34 w i t h t h e c h a b a z i t e - t y p e
s t r u c t u r e possesses cages i n which t h e l a r g e hexene isomers can form; however, due t o t h e small pore opening o f t h e -34 s t r u c t u r e ,
t h e isomers once formed
can n o t escape w i t h o u t c r a c k i n g t o l i g h t e r p r o d u c t s .
The n o b l e m e t a l - l o a d e d
medium pore
SAPO's
-11
and
-41
exhibit
excellent
hexane
isomerization
s e l e c t i v i t i e s when a p p l i e d t o g e t h e r w i t h p l a t i n u m , p r o d u c i n g 2 t o 4 t i m e s t h e amount o f isomers compared t o r e f e r e n c e p l a t i n u m - c h l o r i d e d alumina c a t a l y s t . I n contrast, mixture,
t h e medium pore s i l i c a l i t e
and
supported p l a t i n u m c a t a l y s t
w h i l e a c h i e v i n g s i g n i f i c a n t l y h i g h e r n-hexane
conversion,
i s far
l e s s s e l e c t i v e than t h e medium p o r e SAPO c a t a l y s t m i x t u r e and t h e c h l o r i d e d alumina-platinum
reference,
p r o d u c i n g a l a r g e amount o f cracked p r o d u c t s .
S i m i l a r s e l e c t i v i t y t r e n d s a r e observed f o r t h e dehydrocycl i z a t i o n r e a c t i o n s of n-hexane.
Thus i n F i g u r e 2 t h e benzene t o l i g h t p r o d u c t s r a t i o i s p l o t t e d
a g a i n s t conversion f o r t h e same s e t o f c a t a l y s t s ,
and again t h e medium p o r e
SAPO's e x h i b i t s u p e r i o r s e l e c t i v i t y t o b o t h r e f e r e n c e m a t e r i a l s and t o b o t h l a r g e and small pore SAPO c a t a l y s t systems.
These r e s u l t s a r e i n complete
agreement w i t h t h e hexene i s o m e r i z a t i o n d a t a d e s c r i b e d above,
wherein t h e
medium pore SAPO's show s i g n i f i c a n t l y reduced a c t i v i t y f o r c r a c k i n g r e a c t i o n s while maintaining h i g h skeletal isomerization a c t i v i t y .
8 12r
11
-
A A
10. 0
A
!i 5 *9 c 9-
7-
x
I
'i
2
+n +
1-
Q o A 1
.
1
1
1
,
Fig. 1 . I s o m e r i z a t i o n / C r a c k i n g S e l e c t i v i t y R a t i o p l o t t e d as a f u n c t i o n o f n-hexane conversion: ASAPO- 11 , X SAPO-41, +SAPO-5, OSAPO-34, A S i l i c a l i t e and O P t / c h l o r i d e d - a l u m i n a r e f e r e n c e .
+
I
.75-
A
x x
A
2
I I
s
A
.50-
z W
++
.25W
m
0
I
0
I
10
1
1
.
A
,
30 40 50 60 7 0 80 n - HEXANE CONVERSION, WT% 20
I
90
F i g . 2. D e h y d r o c y c l i z a t i o n / C r a c k i n g S e l e c t i v i t y R a t i o p l o t t e d as a f u n c t i o n of n-hexane conversion: ASAPO-11, XSAPO-41, +SAPO-5, OSAPO-34, A S i l i c a l i t e and O P t / c h l o r i d e d - a l u m i n a r e f e r e n c e .
9
Aromatic Reactions I n a d d i t i o n t o reforming,
t h e i s o m e r i z a t i o n o f C8
a r o m a t i c s t o produce
para-xylene i s another area where o l e f i n i c i n t e r m e d i a t e s may p l a y a s i g n i f i c a n t m e c h a n i s t i c r o l e . The p r o d u c t i o n o f p a r a - x y l e n e i s o f i n t e r e s t t o t h e petrochemical i n d u s t r y because o f i t s use as monomer i n p o l y e s t e r p r o d u c t i o n . I n a d d i t i o n t o C a r o m a t i c i s o m e r i z a t i o n , t h e r e a r e a number o f i m p o r t a n t 8 r o u t e s t o para-xylene i n c l u d i n g t h e a l k y l a t i o n o f t o l u e n e w i t h methanol and the disproportionation o f
toluene.
The c a t a l y t i c
p r o p e r t i e s o f t h e SAP0
m o l e c u l a r s i e v e s f o r t o l u e n e m e t h y l a t i o n r e a c t i o n s have been d e s c r i b e d ( r e f . 11).
While b o t h l a r g e and medium pore SAPO's were a c t i v e f o r t h e a l k y l a t i o n
reaction,
t h e medium pore m a t e r i a l s were d i s t i n g u i s h e d b y r e m a r k a b l y h i g h
s e l e c t i v i t y f o r methylation reactions, with disproportionation o f the toluene feed r e p r e s e n t i n g l e s s than 2% o f t h e t o t a l conversion. pore SAPO-5 had n e a r l y 60% d i s p r o p o r t i o n a t i o n
By comparison, l a r g e
s e l e c t i v i t y and t h e z e o l i t e
r e f e r e n c e LZ-105 had n e a r l y 80% d i s p r o p o r t i o n a t i o n s e l e c t i v i t y . d i s p r o p o r t i o n a t i o n a c t i v i t y o f t h e medium p o r e SAPO's, m i l d acid character,
The v e r y low
attributed t o their
r e s u l t e d i n reduced l o s s e s o f t o l u e n e t o benzene and
increased xylene y i e l d s r e l a t i v e t o LZ-105 and SAPO-5. In
the
present
study,
silicon
and
transition
metal
substituted
aluminophosphate m o l e c u l a r s i e v e s have a l s o been e v a l u a t e d f o r a c t i v i t y and selectivity for
p r o d u c t i o n v i a C8
para-xylene
commercial p r a c t i c e ,
C8
and
naphtha
from
fraction
pyrolysis
aromatic isomerization.
In
aromatic c u t s a r e o b t a i n e d f r o m r e f o r m a t e g a s o l i n e streams.
o f ethylbenzene which
Both
feeds
contain
a
significant
i s d i f f i c u l t t o s e p a r a t e f r o m xylenes
by
and must be c a t a l y t i c a l l y c o n v e r t e d t o o t h e r p r o d u c t s .
p h y s i c a l techniques,
T h i s c a t a l y t i c conversion can b e accomplished b y one o f two c o m n e r c i a l l y a v a i l a b l e approaches. as ZSM-5
(ref.
22)
I n one approach,
m o n o - f u n c t i o n a l a c i d c a t a l y s t s such
isomerize xylenes and a l s o c o n v e r t ethylbenzene t o non
aromatics by selective ethyl group disproportionation. '8 D i s p r o p o r t i o n a t i o n o f xylenes t o non C8 a r o m a t i c s i s a competing s i d e r e a c t i o n l o w e r i n g t h e u l t i m a t e para-xylene y i e l d . not
convert
catalysts
the
ethyl-benzene
to
xylenes.
To
A c i d c a t a l y s i s a l o n e can this
end,
c o n t a i n i n g b o t h a hydrogenation-dehydrogenation
f u n c t i o n such as
p l a t i n u m as w e l l as an a c i d i c f u n c t i o n such as mordenite typically
been
hydrogenated
over
employed. Pt
to
In
the
latter
ethylcyclohexene
approach,
which
is
bifunctional
(ref.
2 3 ) , have
ethylbenzene
then
isomerized
is to
dimethylcyclohexene o v e r t h e a c i d c a t a l y s t f u n c t i o n , and f i n a l l y c o n v e r t e d t o xylenes b y dehydrogenation over t h e platinum.
10
2Hzf
CRACKED PRODUCTS
Conceptually, yields,
this
b u t since
route
offers
naphthenic
the
possibility
intermediates
of
are present,
enhanced
xylene
s i g n i f i c a n t acid
c a t a l y z e d r i n g opening and y i e l d l o s s o f a r o m a t i c s a r e a l s o p o s s i b l e . review o f a v a i l a b l e patent l i t e r a t u r e data
(refs.
because o f these u n d e s i r a b l e s i d e r e a c t i o n s , isomerization
yields
about
the
same
22,
23b) suggests
A
that
t h e b i f u n c t i o n a l approach t o
amount
of
xylene
as
does
the
monofunctional route.
C, Aromatic Reactions Witnout Hydrogen v -
I n t h e p r e s e n t study,
t h e alumino-phosphate
m o l e c u l a r s i e v e s have been
used a l o n e and w i t h added p l a t i n u m and hydrogen t o i s o m e r i z e C feeds.
8
aromatic
In an i n i t i a l s c r e e n i n g s t u d y , a s e r i e s o f l a r g e t o medium p o r e s i z e
molecular
sieves
rearrangements a t conditions
all
isomerization xylene
were
evaluated
1000°F
without
molecular
sieves
o f m-xylene
isomers,
while
trimethylbenzenes
varies
for
catalytic
added metal
activity
for
and hydrogen.
evaluated
give
m-xylene
Under
essentially
these
complete
f e e d t o a thermodynamic e q u i l i b r i u m m i x t u r e of
the
disproportionation
significantly.
summarized i n T a b l e 111 and i n F i g u r e 3,
The
activity
results
to
of
toluene
this
study
and are
where x y l e n e d i s p r o p o r t i o n a t i o n
a c t i v i t y i s p l o t t e d as a f u n c t i o n o f m o l e c u l a r s i e v e p o r e s i z e .
I n general,
a rough t r e n d can be seen i n which t h e m o l e c u l a r s i e v e s with l a r g e r p o r e s i z e s a r e more a c t i v e f o r t h i s u n d e s i r a b l e s i d e r e a c t i o n . chosen
screening
conditions,
SAPO-5,
MAPO-5
and MAPO-36,
m o l e c u l a r s i e v e s w i t h a p p r o x i m a t e l y 8 angstrom p o r e s i z e s , to
22
%
disproportionation
while
SAPO-11,
Thus under t h e
MAPO-11
all
l a r g e pore
c a t a l y z e f r o m 12 and
SAPO-41
a p p r o x i m a t e l y 6 angstrom pores s u f f e r o n l y 2 t o 7 % x y l e n e l o s s e s .
with These
r e s u l t s a r e c o n s i s t e n t w i t h t h e concept o f t r a n s i t i o n s t a t e shape s e l e c t i v i t y where a b u l k y ,
bimolecular
i n t e r a c t i o n o f two xylenes t o f o r m t o l u e n e and
t r i m e t h y l b e n z e n e i s d i f f i c u l t t o a c h i e v e i n t h e a p p r o x i m a t e l y 6 angstrom s i z e channels.
11
TABLE 111 m-Xylene Reactions Catalyzed by A1 uminophosphate-Based Molecular Sieves Run Conditions: Run Temperature Pressure WHSV
1000°F 100 p s i g 5.6 l / h r . a
Molecular Sieve SAPO-5 MAPO-5 MAPO-36 SAPO-3 1 SAPO-4 1 SAPO- 11 MAPO- 1 1
I:
Pore Size 0.8 0.8 0.8 0.65 0.6 0.6 0.6
b Pore Volume 0.31 0.17 0.22 0.16 0.16
m-Xyl ene Dispropor t ionat ion, % Conversion 20.7 22.4 12.6 15.1 7.1 3.2 1.8
Determined by McBain Bakr g r a v i m e t r i c adsorption s t u d i e s ( r e f . 3). Determined by water adsorption a t s a t u r a t i o n ( r e f . 3). 3oL
z
0
2 -
0 24
1 0
E
g18-
* z
0 v)
212-
> z
8w z
2
6-
X
#
01
I
0.8
0.7
0.8
0.9
PORE SIZE, NM
Fig. 3. Xylene losses due t o d i s p r o p o r t i o n a t i o n are a f u n c t i o n o f molecular sieve c a t a l y s t ' s pore s i z e . I n t h e next phase o f t h e present study, sieves were evaluated f o r m-xylene feed.
the
several medium pore molecular
c a t a l y t i c performance with an ethylbenzene and
Again, t h e molecular sieves were t e s t e d with no added metal
12
o r hydrogen.
Several of
t h e s e aluminophosphate based m o l e c u l a r s i e v e s d i d The r e s u l t s o f t h i s s t u d y
c o n t a i n t r a n s i t i o n m e t a l s as framework elements. are summarized i n Table I V and F i g u r e 4.
From t h e Table i t can be seen t h a t
a l l m o l e c u l d r s i e v e s y i e l d p a r a - x y l e n e i n amounts e q u i v a l e n t t o thermodynamic equilibrium.
Surprisingly,
the
cobalt
and manganese-containing
molecular
s i e v e s w i t h t h e -31 t y p e s t r u c t u r e d i d n o t promote t h e e q u i l i b r a t i o n o f meta t o ortho-xylene,
so t h a t v e r y h i g h p a r a / o r t h o s e l e c t i v i t i e s were observed.
Since SAPO-31 w i t h i d e n t i c a l framework s t r u c t u r e does n o t e x h i b i t t h e h i g h para and low o r t h o - x y l e n e
s e l e c t i v i t y observed w i t h t h e MeAPSO-31 m o l e c u l a r
s i e v e s , t h e i r h i g h s e l e c t i v i t y m i g h t p o s s i b l y be i n t e r p r e t e d as p r o d u c t shape selectivity
due
to
restricted
pore
size.
Obviously
the
Mn+2 framework
c a t i o n s a r e l a r g e r than t h e s i l i c o n and aluminum c a t i o n s t h e y a r e r e p l a c i n g , and t h i s c o u l d c o n c e i v a b l y r e s u l t i n r e s t r i c t i o n s i n t h e m o l e c u l a r
sieve
channels.
"plug
gauge-sized"
However,
McBain-Bakr
g r a v i m e t r i c adsorption
studies with
molecules suggest t h a t MeAPSO-31 I s have p o r e s i z e s and volumes
s i m i l a r t o those o f t h e m e t a l - f r e e SAPO-31, which does n o t appear t o b e p a r a s e l e c t i v e ( r e f . 3 ) . Furthermore, SAPO-11 w i t h s l i g h t l y s m a l l e r p o r e s i z e t h a n CoAPSO-31 and MnAPSO-31 does n o t show n e a r l y t h e p a r a s e l e c t i v i t y observed w i t h the t r a n s i t i o n metal-containing structure.
m o l e c u l a r s i e v e s w i t h t h e -31
An a l t e r n a t e e x p l a n a t i o n i s needed.
crystal
I t may b e t h a t t h e framework
t r a n s i t i o n metal i o n s i n t h e s e m o l e c u l a r s i e v e s e x e r t a chemical i n f l u e n c e on the
intermediates
para-isomer.
in
Alternately,
isomerization,
favoring
the
formation
of
the
a c i d s i t e s may be u n i q u e l y l o c a t e d i n t h e MeAPSO
m o l e c u l a r s i e v e s such t h a t access o f r e a c t a n t s and r e a c t i o n i n t e r m e d i a t e s t o these acid s i t e s i s s p a t i a l l y constrained, f a v o r i n g p a r a - s e l e c t i v i t y . TABLE I V m-XylenelEthylbenzene Reactions w i t h Medium Pore S i z e Aluminophosphate Based M o l e c u l a r Sieves Run C o n d i t i o n s : Run Temperature Pressure WHSV
800°F 100 p s i g 5.6 l / h r .
M o l e c u l a r Sieve SAPO- 11 SAPO-11 (Al'3 exchanged) SAPO-11 (Steam t r e a t e d ) SAPO-31 SAPO-31 (Steam t r e a t e d ) MnAPSO- 11 COAPSO-11 MnAPSO-31 COAPSO-31 LZ-105
P ar a/Or t h o Xylene R a t i o
:1.52 ; 0.78 1.56 0.88 1.81 3.59 3.06 0.99
%Para-Xyl ene Equilibration 96 102 63 100 102 104 91 120 111 100
% D i s p r o p o r t io n a t ion Xylenes Ethylbenzene 9.9 23.2 6.6 20.1 0.2 6 .O 31.6 56.3 1.7 10.4 5 .O 23.3 0.0 7.7 0.0 17.7 1.7 23.0 23.6 58.5
13
Figure 4 plots ethylbenzene vs xylene disproportionation activity for the same series of catalysts. Data were obtained at a range of conversions by varying reaction temperature. Again a1 1 catalysts were tested without added metal or hydrogen. Data obtained with medium pore zeolite reference LZ-105 are also presented for comparison. The MeAPSO-31 molecular sieves are again distinguished by superior selectivity. Thus at comparable ethylbenzene conversions, the CoAPSO and MnAPSO-31 molecular sieves exhibit the lowest activity for the undesirable xylene disproportionation while SAPO-11 and SAPO-31 are considerably less selective. Data obtained with LZ-105 is intermediate in selectivity. Again the enhanced selectivity observed with the MeAPSO-31 molecular sieves may be due to a transition metal specific influence on the reaction intermediates. Shape selective effects by themselves cannot explain differences between these materials and the transition metal-free SAPO's.
./ rn
J
6
13
20
27
% XYLENE LOSS
Fig. 4. Selectivity for ethylbenzene conversion plotted against xylene losses for A MeAPSO's, 0 LZ-105 and SAPO's.
14
C Aromatic -
R e a c t i o n s w i t h Hydrogen
I n a final
phase o f t h e c u r r e n t s t u d y , c a t a l y s t s c o n s i s t i n g o f s e l e c t e d
SAPO's and s u p p o r t e d p l a t i n u m have been e v a l u a t e d i n t h e presence o f hydrogen for
C8 a r o m a t i c i s o m e r i z a t i o n .
bifunctional
Two c a t a l y s t s were prepared,
one c o n t a i n i n g 40% o f t h e i n t e r m e d i a t e p o r e SAPO-11 and t h e o t h e r c o n t a i n i n g 40% o f l a r g e pore SAPO-5.
Both c a t a l y s t s were prepared t o c o n t a i n about 0.6% The c a t a l y s t s were e v a l u a t e d a t 8OO0F,
p l a t i n u m supported on alumina.
185
p s i g and a t a space v e l o c i t y o f 1 and a hydrogen t o hydrocarbon r a t i o o f 14. The f e e d used f o r t h e s e t e s t s c o n t a i n e d 17% e t h y l b e n z e n e and 83% m-xylene, simulating
C8
a
aromatic
cut
obtained
from
reformate
gasoline.
Each
c a t a l y s t was e v a l u a t e d f o r s e v e r a l days on stream, and a t t h e h i g h hydrogen/ hydrocarbon r a t i o employed, addition,
the
l i t t l e or
SAPO-11-containing
n o d e a c t i v a t i o n was
catalyst
ethylbenzene
+
effectiveness
i n c o n v e r t i n g ethylbenzene
60% m-xylene
feed
s i m i l a r t o a p y r o l y s i s naphtha C8
in
was
order
to
Typical
with
better
t o xylenes,
cut.
observed.
evaluated
a
In
40%
evaluate
and t o model
its
a feed
performance d a t a f o r each
c a t a l y s t a f t e r s e v e r a l h o u r s on t h e 17% e t h y l b e n z e n e f e e d a r e summarized i n Table V . formed
Performance i n d i c a t o r s were c a l c u l a t e d assuming t h a t t h e naphthenes during
processing
would
in
commercial
practice
be
recycled,
and
t h e r e f o r e t h e i r f o r m a t i o n would c o n t r i b u t e t o n e i t h e r e t h y l b e n z e n e c o n v e r s i o n nor t o xylene losses. A c c o r d i n g t o t h e t e s t s b o t h c a t a l y s t s promote near-complete
xylene
equilibration,
and
the
catalyst
containing
achieves h i g h e r ethylbenzene c o n v e r s i o n t h a n t h e SAPO-11 c a t a l y s t , 44% r e s p e c t i v e l y . However,
SAPO-5 68% and
t h e l a r g e p o r e m o l e c u l a r s i e v e i n c u r s n e a r l y 22%
x y l e n e l o s s e s w h i l e t h e SAPO-11 based c a t a l y s t a c t u a l l y produces 2.1% more xylenes than were p r e s e n t i n i t i a l l y i n t h e feed.
With SAPO-5 these l o s s e s
a r e due t o d i s p r o p o r t i o n a t i o n r e a c t i o n s p r o d u c i n g benzene, aromatics,
and a l s o t o non c y c l i c p r o d u c t f o r m a t i o n ,
t o l u e n e and C9+
suggesting s i g n i f i c a n t
r i n g opening and c r a c k i n g .
With t h e SAPO-11 c a t a l y s t
t h e r e i s much l e s s
disproportionation
and almost n o ring-opened
p a r a f f i n i c products
activity,
a r e observed. While t h e p r e s e n t s t u d y has n o t examined t h e performance o f z e o l i t e based catalysts,
Table
V
summarizes
patent
m o r a e n i t e and p l a t i n u m / a l u m i n a m i x t u r e . obtained
under
similar
conditions
literature
data
(ref.
23b)
for
a
Data f o r t h e P t and SAPO-11 m i x t u r e are
presented
for
comparison.
m o r d e n i t e c a t a l y s t i s s i g n i f i c a n t l y l e s s s e l e c t i v e t h a n SAPO-11,
The
g i v i n g 25.6%
ethylbenzene c o n v e r s i o n w i t h o n l y 0.5% n e t x y l e n e p r o d u c t i o n . The
data
obtained
with
high
ethylbenzene
feed
shows
even
more
d r a m a t i c a l l y t h e e f f i c i e n t c o n v e r s i o n o f e t h y l b e n z e n e t o xylenes o v e r t h e SAPO-11-containing c a t a l y s t .
Thus a t 23.6% ethylbenzene conversion,
a nearly
15
13% i n c r e a s e i n x y l e n e y i e l d i s observed. T h i s i n d i c a t e s t h a t ethylbenzene has been c o n v e r t e d w i t h 75% s e l e c t i v i t y t o xylene isomers. The r e m a i n i n g conversion was t o d i s p r o p o r t i o n a t i o n opening.
products w i t h
a g a i n almost n o r i n g
TABLE V Cg Aromatic I s o m e r i z a t i o n With B i f u n c t i o n a l C a t a l y s t s ~~
Molecular Sieve Component
b
SAPO-5
SAPO-11
SAPO-11
SAPO-11
40 800 185 14 1 17
40 800 185 14 1 17
40 840 250 8.3 2.9 17
40 800 165 14 1 40
Mordenite
a M o l e c u l a r Sieve Content, % Run Pressure, p s i g Run Temperature,"C H2/HC R a t i o WHSV Ethylbenzene i n Feed, % Approach t o p-xylene Equilibrium, % Ethylbenzene Conversion, % Net Xylene P r o d u c t i o n , % a) b)
94.9 67.9 -21.6
97.3 44.6 2.1
94.5 28.2 1.5
50 800 175 8 3.6 15.5
96.2 23.6 12.8
99.3 25.6 0.5
I n a d d i t i o n t o the q u a n t i t y o f molecular sieve l i s t e d , a l l c a t a l y s t s c o n t a i n e d 0.4-0.6% p l atinum. Data o b t a i n e d f r o m U.S. P a t e n t 4,255,606, Example 1.
CONCLUSIONS The medium p o r e aluminophosphate based m o l e c u l a r s i e v e s a r e a c t i v e and selective catalysts f o r reactions.
As
acid
a variety of
catalysts,
i m p o r t a n t hydrocarbon rearrangement
they
promote
olefin
isomerization
and
o l i g o m e r i z a t i o n w h i l e t h e y a r e s i g n i f i c a n t l y l e s s e f f e c t i v e a t t h e competing h y d r i d e t r a n s f e r and c r a c k i n g r e a c t i o n s . I n t h e r e a c t i o n s o f a r o m a t i c s , t h e medium pore aluminophosphates a r e again e f f e c t i v e f o r s k e l e t a l i s o m e r i z a t i o n b u t show low e t h y l group d i s p r o p o r t i o n a t i o n a c t i v i t y . bifunctional
catalysts,
As a c i d components i n
t h e y a r e s e l e c t i v e f o r p a r a f f i n and c y c l o p a r a f f i n
i s o m e r i z a t i o n w i t h low c r a c k i n g a c t i v i t y . These c a t a l y t i c p r o p e r t i e s c o n t r a s t s h a r p l y w i t h t h o s e o f medium p o r e z e o l i t e s such as LZ-105 and w i t h s i l i c a l i t e . considerably
less
active
than LZ-105
for
Thus, medium p o r e SAPO's a r e olefin,
paraffin
and a r o m a t i c
conversions when compared a t t h e same temperature. However, t h e y a r e more s e l e c t i v e f o r o l e f i n and p a r a f f i n i s o m e r i z a t i o n s when e v a l u a t e d a t comparable conversions
.
Not s u r p r i s i n g l y ,
t h e c a t a l y t i c p r o p e r t i e s o f medium p o r e aluminophos-
phates a l s o c o n t r a s t w i t h l a r g e pore aluminophosphate-based m o l e c u l a r s i e v e s of
similar
framework
composition.
With
olefinic
feeds,
the
l a r g e pore
molecular sieves d e a c t i v a t e v e r y r a p i d l y , presumably due t o p o r e p l u g g i n g b y
16
higher molecular weight products. more coke r e s i s t a n t . than 30 minutes,
SAPO-11 I s
With a r o m a t i c feeds, for
The medium p o r e SAPO's a r e d r a m a t i c a l l y
Under c o n d i t i o n s t h a t f u l l y d e a c t i v a t e SAPO-5 a c t i v i t y remains unchanged f o r
i n less
several
hours.
b o t h l a r g e and medium p o r e m o l e c u l a r s i e v e s a r e a c t i v e
a l k y l a t i o n and i s o m e r i z a t i o n .
However,
t h e l a r g e pore molecular sieves
a r e s i g n i f i c a n t l y more a c t i v e f o r t h e d i s p r o p o r t i o n a t i o n o f d i a l k y l a r o m a t i c s , i m p l y i n g t r a n s i t i o n s t a t e shape s e l e c t i v i t y f o r t h e medium p o r e m o l e c u l a r sieves.
I n bifunctional
catalysis
i n v o l v i n g o l e f i n i c intermediates,
large
pore m o l e c u l a r s i e v e s a r e more a c t i v e f o r c r a c k i n g and l e s s s e l e c t i v e f o r skeletal isomerization reactions. The c a t a l y t i c also
p r o p e r t i e s o f t h e aluminophosphate
influenced by
chemical
composition.
The
molecular
sieves are
introduction o f
transition
m e t a l s i n t o framework p o s i t i o n s enhances t h e a c t i v i t y and s e l e c t i v i t y f o r o l e f i n i s o m e r i z a t i o n r e l a t i v e t o t h e silicoaluminophosphates.
The t r a n s i t i o n
metal c o n t a i n i n g alurninophosphates a r e a l s o s u r p r i s i n g l y more s e l e c t i v e f o r
C8 a r o m a t i c rearrangements t h a n t h e c o r r e s p o n d i n g SAP0 m o l e c u l a r s i e v e s , an e f f e c t which can n o t b e a t t r i b u t e d s o l e l y t o improved shape s e l e c t i v i t y . The
enhanced
selectivities
observed
with
medium
pore
silico-
and
metalloaluminophosphates may, t o a l a r g e e x t e n t b e a t t r i b u t e d t o a u n i q u e combination o f m i l d a c i d i t y and shape s e l e c t i v i t y . and c r a c k i n g a c t i v i t y i n o l e f i n - m e d i a t e d acidity.
The
observed r e s i s t a n c e
selectivity t o
para-xylene
to
addition
constituents
to
these
appear
to
coke
deactivation
i n m e t h y l a t i o n and factors,
exert
a
and t h e enhanced
isomerization reactions
is
.
evidence o f shape-sel e c t ive c a t a l y s i s In
The l a c k o f h y d r i d e s h i f t
r e a c t i o n s i s suggestive o f m i l d
however, special
transition
chemical
metal
effect
on
framework catalytic
performance which appears t o be independent o f m o l e c u l a r s i e v e a c i d s t r e n g t h and
spatial
constraints.
manganese-containing
This
molecular
effect sieves
is as
evidenced
by
enhanced
selectivity
ethylbenzene d i s p r o p o r t i o n a t i o n i n t h e presence o f xylenes, para-selectivity size
i n xylene i s o m e r i z a t i o n .
than SAPO-11
as
judged b y
s e l e c t i v e f o r para-xylene to
a uniquely
molecular Alternately, metal,
sieve
for
and b y enhanced
"plug
gauge"
molecules
but
i s f a r more
and f o r ethylbenzene d i s p r o p o r t i o n a t i o n than t h e
'located with
and
Thus, MnAPSO-31 has a l a r g e r p o r e
SAPO-11 under comparable t e s t c o n d i t i o n s . due
cobalt
acid
site
special
and
T h i s enhanced s e l e c t i v i t y may b e
in
the
transition
unexpected
metal-containing
spatial
requirements.
i t may b e due t o a l i g a n d o r e l e c t r o n i c e f f e c t o f t h e t r a n s i t i o n
affecting
the
transition
disproportionation reactions.
states
in
aromatic
isomerization
and
17
REFERENCES 1 S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am. Chem. SOC. 1982, 1146. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. 2 B.M. Flanigen, J. Am. Chem. SOC. 1984, 6092; U.S. Patent 4 440 871, 1984. 3 E.M. Flanigen, B.M. Lok, R.L. Patton, S.T. Wilson, I n New Developments i n Z e o l i t e Science and Technology; Y. Murakami, A. I i j i m a , J.W. Ward, Eds., Proceedings o f t h e 7 t h I n t e r n a t i o n a l Z e o l i t e Conference; E l s e v i e r , New York, 1986, p.103. 4 R.J. P e l l e t , P.K. Coughlin, M.T. S t a n i u l i s , G.N. Long, J.A. Rabo, U.S. Patent 4 666 875, 1987. Gortsema, R.J. P e l l e t , A.R. Springer, J.A. Rabo, G.N. Long, 5 F.P. Eur. P a t . Appl. 207 133, 1987. Gortsema, R.J. P e l l e t , A.R. 6 F.P. Springer, J.A. Rabo, G.N. Long, Eur. P a t . Appl. 185 329, 1986. 7 D.C. Garska, B.M. Lok, U.S. Patent 4 499 315, 1985. Long, J.A. Rabo, I n New Developments i n Z e o l i t e 8 R.J. P e l l e t , G.N. Y. Murakami, A. I i j i m a , J.W. Ward, Eds., Science and Technology; Proceedings o f t h e 7 t h I n t e r n a t i o n a l Z e o l i t e Conference; E l s e v i e r , New York, 1986, p. 843; 9 S.W. Kaiser, U.S. Patent 4 524 234, 1985. 10 S.k. Kaiser, Arabian J. Sci. Eng., 1985, 10(4),361-6; 1 1 G.N. Lonq, R.J. P e l l e t , J.A. Rabo, U.S. Patent 4 528 414, 1985: 12 S.W. K a i i e r , Eur. Pat; Appl. 142-156, 1985. 13 C.A. Messina, B.M. Lok, E.M. Flanigen U.S. Patent 4 544 143, 1985. 14 S.T. Wilson, E.M. Flanigen U.S. Patent 4 567 029, 1986. 15 R.W. Grose, E.M. Flanigen U.S. Patent 4 257 885, 1981. 16 R.W. Grose, E.M. Flaniqen U.S. Patent 4 061 724, 1977. Flanigen, J.J. - P l u t h , J.V. Smith, I n 17a J.M. Bennett, J.P. CGhen, E.M. I n t r a z e o l i t e Chemistry; ACS Symposium Series No. 218; American Chemical S o c i e t y : Washington, D.C., 1983; pp 109-18. b J.M. Bennett, J.V. Smith, 2. K r i s t . 1985, 171, 65-68. 18 D.E. Walsh, L.D. Rollman, J. Catal. 1979, 195-197. 19 G.A. M i l l s , H. Heinemann, T.H. M i l l i k e n , Oblad, A.G. Ind. Eng. Chem. 1953, 45, 134. 20 R.J. B e r t o l a c i n i , U.S. Patent 4 018 711, 1977. 21 C.M. Detz, L.M. F i e l d , U.S. P a t e n t 4 347 394, 1982. 22 W.O. Haag, D.H. Olson, U.S. Patent 3 856 871, 1974. 23a W.C. Carr, L.M.Polinski, S.G. Hindin, J.L.Kosco, U.S. Patent 4128 591, 1978. b H.F. Tse, U.S. Patent 4 255 606, 1981.
104,
106,
This Page Intentionally Left Blank
H.G. Karge, J. Weitkamp (Editors),Zeolites as Catalysts, Sorbents and Detergent Builders 0 1989 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands
CATALYTIC AND PHYSICAL PROPERTIES OF SILICON-SUBSTITUTED A1P04-5 MOLECULAR SIEVES
K.J. CHAO and L.J. LEU Department o f Chemistry, Tsinghua U n i v e r s i t y , Hsinchu, Taiwan
ABSTRACT The i n c o r p o r a t i o n o f S i i n t o AlP04-5 framework m o d i f i e s t h e a c i d i t y and c a t a l y t i c p r o p e r t i e s o f t h e h o s t w i t h o u t d i s r u p t i n g i t s microporous s t r u c t u r e . Bransted a c i d s i t e s w i t h medium s t r e n g t h were generated b y S i s u b s t i t u t i o n , w h i l e o n l y v e r y weak a c i d i t y was found on t h e o r i g i n a l A1P04-5. B o t h A1P04-5 and SAPO-5 were found t o be a c t i v e i n n o n - o x i d a t i v e dehydrogenation o f ethylbenzene t o s t y r e n e ; t h e a c t i v i t y o f e t h y l benzene c r a c k i n g t o benzene depends on t h e S i c o n t e n t o r B r d n s t e d a c i d i t y on SAPO-5.
INTRODUCTION C r y s t a l l i n e aluminophosphate m o l e c u l a r s i e v e s c o n s i s t o f a l t e r n a t i n g alumina and phosphate t e t r a h e d r a and so a r e e l e c t r o v a l e n t l y n e u t r a l w i t h no e x t r a framework c a t i o n s and no ion-exchange c a p a c i t y ( r e f . 1,2). (E.N.=2.2)
The phosphorus atom
o f h i g h e l e c t r o n e g a t i v i t y may produce a s h i f t i n e l e c t r o n d e n s i t y
away from t h e aluminum atom (E.N.=1.6)
r e s u l t i n g i n a d i p o l a r nature o f t h e
Alp04 s u r f a c e . U s i n g t h e s e m i e m p i r i c a l CND0/2 quantum c a l c u l a t i o n on a c l u s t e r model o f Alp04
, M o f f a t e t a l . ( r e f . 3) found t h a t t h e oxygen atoms possess
n e g a t i v e charge and f u n c t i o n as Lewis base s i t e s , phosphorus atoms w i t h h i g h e r p o s i t i v e charge compared w i t h aluminum atoms a c t as Lewis a c i d s i t e s ; and Brdnsted a c i d s i t e s a r e t h e p r o t o n s a t t a c h e d t o t e r m i n a l oxygen atoms on t h e s u r f a c e o f aluminophosphate. Therefore, t h e r e a r e v e r y few B r d n s t e d a c i d s i t e s and t h e m a j o r i t y o f a c i d s i t e s i s Lewis a c i d s i t e s i n Alp04 m o l e c u l a r s i e v e s . The s p e c t r o s c o p i c r e s u l t s ( r e f . 4) show t h a t t h e a c i d s i t e s a r e m o d e r a t e l y s t r o n g and t h e base s i t e s a r e v e r y weak on A1P04-5 m o l e c u l a r s i e v e which has an u n i d i m e n s i o n a l p o r e system c o n s i s t i n g o f c y l i n d r i c a l channels bounded by 12 membered r i n g s ( r e f . 5). The i n c o r p o r a t i o n o f s i l i c o n i n t o t h e aluminophosphate framework leads t o s i l i c o a l u m i n o D h o s p h a t e m o l e c u l a r s i e v e s (SAPO) ( r e f . 6 ) . The s i l i c o n atoms can m a i n l y s u b s t i t u t e i n t o t h e aluminophosphate framework v i a ( 1 ) s i l i c o n s u b s t i t u t i o n f o r phosphorus, ( 2 ) s u b s t i t u t i o n o f two s i l i c o n s f o r one aluminum p l u s one phosphorus. The s i l i c o n s u b s t i t u t i o n f o r phosphorus r e s u l t s i n a n e g a t i v e l y charged framework which can be coupled w i t h exchangeable
20
c a t i o n s and Brdnsted a c i d s i t e s . The amount o f Brdnsted a c i d s i t e s can be increased by s i l i c o n s u b s t i t u t i o n f o r phosphorus i n t h e aluminophosphate framework. I n t h i s paper, we r e p o r t t h a t t h e i n c o r p o r a t i o n o f S i i n t o t h e n e u t r a l A1P04-5 framework m o d i f i e s i t s p h y s i c a l and c a t a l y t i c p r o p e r t i e s w i t h o u t disrupting
its
microporous s t r u c t u r e .
The framework s i t t i n g o f S i was
confirmed by powder XRD, 2 9 S i MASNMR and EPMA ( e l e c t r o n microprobe a n a l y s i s ) . The temperature programmed d e s o r p t i o n (TPD) o f ammonia from ammonia adsorbed o r ammonium exchanged samples was used f o r c h a r a c t e r i z i n g t h e a c i d i t y and i o n exchange c a p a c i t y o f SAPO-5 and AlP04-5.
The few Brfinsted a c i d s i t e s on AlP04-5
were found t o be a c t i v e i n xylene i s o m e r i z a t i o n and cumene c r a c k i n g ( r e f s . 7 - 9 ) . L i t t l e a t t e n t i o n has been p a i d t o t h e importance o f b a s i c s i t e s on phosphates. As a c a t a l y s t having s u i t a b l e acid-base p a i r s i t e s sometimes shows pronounced a c t i v i t y even i f i t s a c i d o r base s t r e n g t h i s v e r y weak i n t h e form o f simple a c i d o r base. I n t h i s work, t h e c a t a l y t i c a c t i v i t i e s o f A1P04-5 and SAPO-5 were t e s t e d on ethylbenzene conversion. Ethylbenzene was found t o be converted t o benzene by a c i d i c c r a c k i n g on Brfinsted a c i d s i t e s and t o s t y r e n e by nono x i d a t i v e dehydrogenation on dual Lewis acid-base s i t e s . EXPERIMENT PreDaration and C h a r a c t e r i z a t i o n The precusors o f AlP04-5 based molecular s i e v e s (AlP04-5, SAPO-5, BAPO-5 and MgAPO-5) were prepared by r e a c t i n g orthophosphoric a c i d (Verck)
,
pseudoboehmite (Verse1 250)/ and c a t i o n source o f Ludox HS-40 (Du P o n t ) , HgBOg, o r MgC12 (Merck) w i t h t r i p r o p y l a m i n e i n t h e hydrothermal c o n d i t i o n o u t l i n e d by Wilson e t a l . ( r e f . 1 ) . The c r y s t a l l i n e phase was i d e n t i f i e d by XRD on a SCINTAG PADV powder d i f f r a c t o m e t e r and examined by scanning e l e c t r o n microscopy w i t h EPMA on a Jeol Superprobe 733 i n s t r u m e n t and b y MASNMR spectroscopy on a Bruker MSL-200 instrument. The elemental compositions o f products were a l s o analyzed by I C P ( i n d u c t i v e l y - c o u p l e d plasma atomic emission spectrometry). M o d i f i c a t i o n o f A1P04-5 and SAPO-5 samples, which had been c a l c i n e d a t 5OO0C, was made by impregnation w i t h aqueous s o l u t i o n o f 2-5 w t % Mg(CHgC00)2 or F.3803 and MgC12 . The NH4 form o f t h e molecular sieves was obtained by five-times-repeated ion-exchange o f t h e s y n t h e t i c samples w i t h 1N NH4C1 s o l u t i o n ; t h e samples were p r e t r e a t e d i n d r y n i t r o g e n and a i r f l o w a t 50OoC. A f t e r c a l c i n a t i o n a t 5OO0C, samples o f A1P04-5 and SAPO-5 were a l s o cooled t o room temperature i n f l o w n i t r o g e n and t r e a t e d w i t h ammonia f l o w a t 100 o r 200OC. Excess ammonia t h e n was swept o u t from t h e sample a t 100 o r 2DD°C by f l o w i n g d r y N2. The a c i d i t y and c a t i o n exchange c a p a c i t y o f molecular s i e v e products were determined by TPD o f
21
o f ammonia from NH4SAPO-5 o r NHqMgAPO-5 and ammonia adsorbed AlP04-5 o r SAPO-5. The evolved ammonia was trapped i n a s o l u t i o n o f b o r i c a c i d and t i t r a t e d b y s u l f a m i c a c i d ( r e f . 1 0 ) . A h e a t i n g r a t e o f 5oC min-1 and a sweep gas f l o w r a t e o f 30 cm3min-1 were used. The number o f m i l l i e q u i v a l e n t o f ammonia evolved p e r gram sample was c a l c u l a t e d from t h e volume o f t i t r a n t used p e r two minut es vs. temperature o r f o r t h e whole range o f d e s o r p t i o n temperature f rom 100 t o 50OoC. C a t a l y t i c R eac t io n The c a t a l y t i c a c t i v i t i e s on ethylbenzene conversion were determined i n a fixe d -b ed m i c r o r e a c t o r system. A sample o f 0.25 g c a t a l y s t and 1.0 g q u a r t z powder was sandwiched w i t h q u a r t z wool i n a s t a i n l e s s s t e e l tube o f 0.7 cm i n n e r diamet e r. A l l experiments were performed a t atmospheric pressure. P r i o r t o t e s t i n g , each sample was heated f r o m room temperature t o 6OO0C (5'C/min) and c a l c i n e d a t 6OO0C f o r 2h i n a n a i r stream, purged by a h e l i u m stream f o r 30 m i n and t h en c o oled t o t h e r e a c t i o n temperature. Ethylbenzene was f e d v i a a h e l i u m stream which was s a t u r a t e d w i t h ethylbenzene vapor by passage t hrough a b u b b l e r . Reactor f e ed stream and e x i s t stream were analyzed b y FID gas chromatography. A 5% SP-1200/1.75% Bentone on 100/120 S u p e l c o p o r t column was used f o r analyses. As t h e vapor p re s s u r e o f t o l u e n e i s h i g h e r t h an t h a t o f ethylbenzene, t h e c o n t e n t o f t o luene i m p u r i t y was found t o be i n creased t o 2.5 mole% o f t h e f eed. RESULTS AND D I S C U S S I O N A1 1 t he c r y s t a l 1 i n e p r o d u c t s have t h e s i m i l a r XRO p a t t e r n and framework s t r u c t u r e as AlP04-5 ( r e f . 5 ) . The amount o f s i l i c o n i n c o r p o r a t i o n i n SAPO-5 i s low, as shown i n t h e c o m p o s i t i o n o f Al:P:Si=1:1:0.04-0.07
by EPMA and I C P .
The s i m i l a r S i c o n t e n t was found i n b o t h c r y s t a l and b u l k SAPO-5 samples. The absence o f a octahedra 27Al MASNMR s i g n a l t o -0 ppm and t h e presence o f o n l y one 31P MASNMR s i g n a l a t -31 ppm show t h a t t h e r e i s no amorphous m a t e r i a l p r e s e n t i n t h e s y n t h e s i z e d SAPO-5 samples. Two s i l i c a species generat ed i n SAPO-5 have been i d e n t i f i e d by *9Si MASNMR as shown i n F i g . 1. The s i g n a l s w i t h chemical s h i f t s o f -92 and -111 ppm a r e p r o b a b l y c h a r a c t e r i s t i c of S i 4 ' s u b s t i t u t i o n f o r P5+ and t h e c l u s t e r o f s i l i c a i n SAPO-5 ( r e f . 11). The d i s s o c i a t i o n o f ammonia f r o m ammonium exchanged m o l e c u l a r sieves has been e s t a b l i s h e d as t h e mechanism f o r g e n e r a t i n g Bransted a c i d s i t e s . The s t r e n g t h o f t h e s i t e s generated i s r e f l e c t e d on t h e ammonia decomposition temperature. The amount ( i n m i l l i e q u i v a l e n t ) and t h e temperature o f ammonia evolved from NH4SAPO-5 a r e i n agreement w i t h t h a t from NH3 adsorbed on SAPO-5 a t 200°C as shown i n F i g . 2a and Table 1. The a c i d values o f NH4' f o r m o f SAPO-5 a r e 0.7 and 0.5 f r a c t i o n s o f t h e t o t a l s i l i c o n c o n t e n t s i n SAPO-5(A) and SAPO(6) r e s p e c t i v e l y , i n which t h e S i c ont e nt s a r e 0.7 w t % of SAPO-5(A) and 1.2 w t % o f SAPO(6) r e s p e c t i v e l y .
22
T h i s i n d i c a t e s t h a t t h e r e l a t i v e c o n t r i b u t i o n o f S i s u b s t i t u t i n g P decreased w i t h i n c r e a s i n g S i c o n t e n t i n samples. AlP04-5 based m o l e c u l a r s i e v e s were a l s o s y n t h e s i z e d i n t h e presence o f H3BO3 o r MgC12. The p r o d u c t s c o n t a i n e d ~ 0 . 1w t % o f B b y I C P o r -1.0 w t % o f
Hg by I C P and EPMA and were termed BAPO-5 o r MgAPO-5. The a n a l y t i c a l r e s u l t s s u p p o r t t h e o c c u r r e n c e o f a r e a s o n a b l e a d d i t i o n o f B o r Mg t o A1P04-5 c o m p o s i t i o n . The TPD p r o f i l e s o f NH3 on AlP04-5, SAPO-5, BAPO-5 and MgAPO-5 a r e g i v e n i n F i g . 2. The AlP04-5 and BAPO-5 c o n t a i n v e r y few s t r o n g a c i d s i t e s , and t h e m a j o r i t y o f s i t e s i s weak. There e x i s t s a abroad s i t e d i s t r i b u t i o n on SAPO-5 which c o n t a i n s weak a c i d s i t e s as A1P04-5 (Td=200°C) and s t r o n g B r d n s t e d a c i d s i t e s (Td=300°C). The s t r e n g t h o f t h e s e a c i d s i t e s on AlP04-5 and SAPO-5 m o l e c u l a r s i e v e s i s weaker t h a n t h a t on z e o l i t e ZSM-5 (Td=400°C) ( r e f . 10). S u b s t i t u t i o n o f boron i n t o aluminophosphate l a t t i c e does n o t appear t o p r o v i d e s t r o n g a c i d s i t e s , w h i l e t h e magnesium s u b s t i t u t i o n f o r aluminum r e s u l t s i n a a n i o n i c framework and s m a l l member o f s t r o n g B r e n s t e d a c i d s i t e s (Td=4J0°C). B u t extraneous o x i d e s and h y d r o x i d e s i n g e n e r a l do n o t enhance B r d n s t e d a c i d i t y . A f t e r h e a t t r e a t m e n t a t 7OO0C, MgAPO-5 showed p a r t i a l s t r u c t u r a l d e g r a d a t i o n as d e t e c t e d b y X-ray powder d i f f r a c t i o n . The thermal s t a b i l i t y o f MgAPO-5 i s t h e r e f o r e l e s s t h a n t h a t o f A1PO4-5 and SAPO-5 whose decomposition t e m p e r a t u r e
I
- 60
-100 -140 ppm vs. TMS
F i g . 1 . 29Si MASNMR spectrum o f SAPO-5(B)
>lOOO°C.
23
10
5
0
5
0 C
2.5
I
0
,---\
Temperature
F i g . 2.
400
200
600
("C)
TPD o f NH3 f r o m m o l e c u l a r s i e v e s ( a ) SAPO-5, ammonia i n i t i a l l y sorbed
a t 100°C (-.-)
o r 2OO0C (----) and NH4SAPO-5 (-);
i n i t i a l l y sorbed a t 100°C (-) NHqMgAPO-5 (-) t i t r a t i o n data.)
(b) A1P04-5, ammonia
or 2OO0C (----); ( c ) NH4BAPO-5 (---) and
(The TPD p r o f i l e s a r e o b t a i n e d by a l e a s t - s q u a r e s f i t t i n g o f
24
TABLE 1 Composition and a c i d i t y o f m o l e c u l a r s i e v e s
S u r f a c e S i :A1 :P b y EPMA B u l k SI% ( w t ) b I C P S u r f a c e S i % (wtf b y EPMA A c i d amount (m mole/g) by TPD o f NH3 adsorbed sample ( ZOOOC) A c i d amount (T mole/g) by TPD o f NH4 exchanged sample
SAPO-5( A)
SAPO-5( B)
A1P04-5
0.04:l.l:l.O
0.07:l.O:l.O 1.2 1.2 0.22
-0:l.O:l.O 0.1
-
0.7 0.17
-
0.03
0.22
Ethylbenzene c o n v e r s i o n The c a t a l y t i c dehydrogenation o f e t h y l b e n z e n e i s o f i n d u s t r i a l i m p o r t a n c e i n t h e manufacture o f s t y r e n e ( r e f s . 1 2 - 1 8 ) .
I n o x i d a t i v e dehydrogenation,
an acid-promoted mechanism was proposed b y s t u d y i n g t h e r e a c t i o n on Na.Si02.Al203 ( r e f . 12) and SnO.P205 ( r e f . 13) c a t a l y s t s . The c a t a l y t i c a c t i v i t y o f o x i d e s on t h e n o n o x i d a t i v e d e h y d r o g e n a t i o n was c o n s i d e r e d t o be r e l a t e d t o e i t h e r t h e semiconductor p r o p e r t i e s o f m e t a l i o n s i n m e t a l o x i d e s such as C r i n Cr203.Al203 ( r e f . 14) and Fe i n FeO ( r e f . 151, o r t h e a c i d base p a i r s i t e s on t h e mixed o x i d e s as Ti02eZr02 ( r e f . 1 6 ) . R e s u l t s from a c o n t i n u o u s - f l o w f i x e d - b e d m i c r o r e a c t o r a r e g i v e n i n Table 2 . N o n - o x i d a t i v e dehydrogenation t o s t y r e n e and d e a l k y l a t i o n t o benzene were t h e main r e a c t i o n s i n t h e c o n v e r s i o n o f e t h y l b e n z e n e on A1P04-5 based m o l e c u l a r s i e v e s a t 5OO0C, w h i l e t h e amorphous aluminophosphates e x h i b i t e d v e r y low a c t i v i t y on b o t h r e a c t i o n s . W i t h styrene:benzene mole r a t i o > 5 , AlP04-5 i s more a c t i v e i n n o n - o x i d a t i v e dehydrogenation t h a n i n d e a l k y l a t i o n . Due t o t h e presence o f B r d n s t e d a c i d s i t e s , t h e y i e l d o f s t y r e n e was suppressed and t h e p r o d u c t i o n o f benzene was enhanced on SAPO-5. However, e t h y l b e n z e n e was f o u n d t o have no s i g n i f i c a n t dehydrogenation on a l u m i n o s i l i c a t e m o l e c u l a r s i e v e ZSM-5; d i s p r o p o r t i o n a t i o n o r d e a l k y l a t i o n p r o d u c t s o f d i e t h y l b e n z e n e , x y l e n e , t o l u e n e and benzene were o b t a i n e d on t h i s a c i d c a t a l y s t a t 320-500°C. A1P04-5 and SAPO-5 c a t a l y s t s were a l s o m o d i f i e d b y i m p r e g n a t i o n w i t h aqueous s o l u t i o n o f Mg(CH3C00)2~rH3B03 and MgC12 r e s p e c t i v e l y . The i n f o r m a t i o n o b t a i n e d i n MgO and B2O3 m o d i f i c a t i o n concerns t h e r o l e s o f t h e a c i d and base c e n t e r s o f c a t a l y s t s i n ethylbenzene c o n v e r s i o n . Table 2 shows t h a t t h e t o t a l c o n v e r s i o n of e t h y l b e v e n e and t h e y i e l d o f s t y r e n e decrease w i t h t h e a d d i t i o n o f HgBOg and change s l i g h t l y b y t r e a t i n g AlP04-5 w i t h Mg(CH$00)2.
This
25
i n d i c a t e s t h a t t h e b a s i c i t y of t h e c a t a l y s t may p l a y an i m p o r t a n t r o l e i n dehydrogenation r e a c t i o n . The i n c o r p o r a t i o n o f boron i n t o A1P04-5 leads t o BAPO-5 which has a c i d i t y and a c t i v i t y s i m i l a r t o A1P04-5. The s u b s t i t u t i o n magnesium f o r a aluminum i n MgAPO-5 p r o v i d e s s t r o n g Brdnsted a c i d s i t e s and gives h i g h preference f o r benzene p r o d u c t i o n on ethylbenzene conversion. When the Brdnsted protons a r e p a r t i a l l y exchanged by magnesium c a t i o n s , t h e a c t i v i t y o f d e a l k y l a t i o n i s reduced and t h e s e l e c t i v i t y o f dehydrogenation i s s l i g h t l y increased on SAPO-5 (5,Mg).
The i n c o r p o r a t i o n o f S i and Mg i n aluminophosphate
framework leads t o an increase i n t h e t o t a l number o f Brdnsted a c i d s i t e s , w h i l e Lewis a c i d and base s i t e s , which a r e most l i k e l y l o c a t e d on P and 0 atoms r e s p e c t i v e l y , a r e o n l y s l i g h t l y changed. As t h e y i e l d o f s t y r e n e was n o t increased by i n c o r p o r a t i n g S i o r Mg i n A1P04-5,
t h e Brbnsted a c i d s i t e s seem
n o t t o p a r t i c i p a t e i n dehydrogenation r e a c t i o n .
TABLE 2 A c t i v i t i e s o f molecular sieves i n ethylbenzene conversion.a Catalystb A1 Po4-5 A1P04-5 (5,Mg) A1P04-5 (2,B) A1P04-5 (5,B) SAPO-5 ( A ) SAPO-5 SAP@-5 (5,Mg) BAPO-5 MgAPO-5 ZSM-5 (5,Mg) ZSM-5 (5,Mg)'
Ethylbenzene conv. % 5.8 6.1 3.5 0.3 7.5 12.9 6.3 7.3 26.2 91.5 31.2
Benzene 1 .o 0.5 0.9 0.3 2.6 10.8 3.1 1.7 23.1 94.7 22.9
Product d i s t r i b u t i o n ( % b y mole) E thy1 S t rene Toluene benzene Styrene
-
2.0 2.1 1.9 2.5 2.4 1.9 1.6 1.9 2.3 2.2 4.8
91.7 91.4 94.0 97.2 90.5 84.6 91.2 90.2 71.7 1.6 66.3
&
5.3 6.0 3.2 0.1 4.5 2.6 4.0 6.2 2.9 (1 . 5 I e (6.1)
5.4 11 3.5 0.4 1.7 0.3 1.3 3.7 0.1
-
aReaction temperature=500°C, atmospheric pressure; WHSV=O.Ol , time on stream=lhr, feed=97.5 mole% ethylbenzene and 2.5 mole% toluene. b w i t h 5 Wt9: Mg(CH3C00)2 and 2 o r 5 w t % H3BO-j impregnated A1P04-5 samples were denoted as AlP04-5 (5,Mg) and AlP04-5 ( 2 , B ) o r AlP04-5 (5,B); w i t h 5 w t % MgC12 impregnated SAPO-5 and ZSM-5 were denoted as SAPO-5 (5,Mg) and ZSM-5 (5,Mg). The Bransted a c i d values o f SAPO-5, SAPO-5 (A) and SAPO-5 (5,Mg) a r e 0.21, 0.17 and 0.15 m mole/g, r e s p e c t i v e l y . C320OC. dXy1 ene . eDiethylbenzene. The non-oxidative dehydrogenation over CrO3 c a t a l y s t i s based on t h e chemisorption o f hydrogen on surface oxygen w i t h a cleavaqe o f t h e C-H bond and the a l k y l group bounded t o a C r atom ( r e f . 1 4 ) . I n t h e p r e s e n t work,
26
c r y s t a l l i n e microporous A1P04-5 was found t o be a c t i v e i n ethylbenzene dehydrogenation i n the absence o f oxygen. The r e s u l t s o f H3803 doping i n d i c a t e t h a t t h e weak base s i t e s o f t h e c a t a l y s t may p l a y an i m p o r t a n t r o l e i n dehydrogenation. However, t h e b a s i c i t y l o c a t e d on oxygen atoms i s n o t s t r o n g enough, and t h e c o o p e r a t i o n w i t h a d j a c e n t a c i d i c s i t e s i s e s s e n t i a l t o c a t a l y z e t h e r e a c t i o n . A concerted H2 e l i m i n a t i o n mechanism was proposed t o proceed on A1P04-5 and SAPO-5. I n which, two hydrogens o f a- and B- carbons o f ethylbenzene simultaneously a t t a c k t h e a c i d and base s i t e s o f t h e c a t a l y s t . The average bond d i s t a n c e o f P-0 (1.52 A) i s very c l o s e t o t h e C-C bond d i s t a n c e and s h o r t e r than t h e A1-0 (1.72 A) d i s t a n c e ( r e f . 5 ) , and t h i s may p r o v i d e a proper environment f o r acid-base c a t a l y z e d r e a c t i o n . However, t h e Lewis a c i d and base s i t e p a i r s a r e n o t s t r o n g as few Brdnsted a c i d s i t e s on AlP04-5. The y i e l d o f s t y r e n e was n o t increased by r a i s i n g t h e r e a c t i o n temperature above 5OO0C, a t t h i s temperature r e g i o n where Brdnsted a c i d c r a c k i n g became s i g n i f i c a n t . As SAPO-5 and MgAPO-5 e x h i b i t b o t h Brdnsted a c i d s i t e s and Lewis acid-base s i t e s , the adsorbed ethylbenzene on p r o t o n i c species may b l o c k t h e f o r m a t i o n o f dehydrogenation i n t e r m e d i a t e s and i n t u r n reduce the y i e l d o f styrene. CONCLUSION The present r e s u l t s show t h e importance o f b o t h t h e a c i d i t y and b a s i c i t y o f AlPO4 and SAP0 molecular sieves on c a t a l y t i c r e a c t i o n s . I n t r o d u c t i o n o f b i v a l e n t ( i .e. Mg) and t e t r a v a l e n t ( i .e. S i ) c a t i o n s i n t o t h e aluminophosphate framework r e s u l t s i n t h e f o r m a t i o n o f Brdnsted a c i d s i t e s and enhances the acidic catalytic a c t i v i t y .
REFERENCES 1 S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan and E.M. Flanigen, J . Am. Chem. SOC. 104(1982) 1146-1147. 2 E.M. Flanigen, B.M. Lok, L. P a t t o n and S.T. Wilson, i n Y . Murakami ( E d i t o r 1 Proc. 7 t h I n t . Z e o l i t e Congress, Toyko, 1986, E l s e v i e r , Amsterdam, 1986, pp. 103-112. 3 J.8. M o f f a t , R . V e t r i v a l and B. Viswanathan, J . Mol. C a t a l . 30(1985) 171180. 4 G. Dworezkov, G. Rumplmayer, H. Mayer and J.A. Lercher, i n M. Che ( E d i t o r ) , Adsorption and C a t a l y s i s on Oxide Surfaces, E l s e v i e r , Amsterdam. 1985, op. 163-171. 5 S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan and E.M. Flanigen, Adv. Chem. Ser. 218(1983) 79-119. 6 B.M. Lok, C.A. Messina, R . L . Patton, R.T. Gajak, T.R. Cannan and E.M. Flanigen, J . Am. Chem. SOC. 106(1984) 6092-6093. 7 V.R. Choudhary and D.B. Akolekar, J . C a t a l . 103(1987) 115-125. 8 D . R . Pyke, P. Whitney and H. Houghton. Appl. C a t a l . 18(1985) 173-182. 9 S.G. Hedge, R. Ratnasamy, L.M. Kustov and B.B. Kazansky, Z e o l i t e s B(1988) 137-141. 10 K.J. Chao, B.H. Chiou, C.C. Cho and S . Y . Jeng, Z e o l i t e s 4(1984) 2-4.
21
11 I . P . Appleyard, R.K. H a r r i s and F.R. F i t c h , Chem. L e t t . (1985) 1747-1750. 12 T . Tagawa, T. H a t t o r i and Y . Murakami, J. C a t a l . 75(1982) 56-77. 13 Y . Murakami, K. Iwayama, H. Uckida, T. H a t t o r i and T. Tagewa, J. C a t a l . 71(1981) 257-269. 14 S . Carra and L. F o r n i , C a t a l . Rev. 5(1972) 159-185. 15 E.H. Lee, Catal. Rev. 8(19731 285-300. 16 I . Wang, W.F. Chang, R.J. Shiau, J.C. Wu and C.S. Chung, J. C a t a l . 83(1933) 428-435. 17 T. Yashima, K . Sato, T. Hayasaka and N . Hara, J . C a t a l . 26(1972) 303-310. 18 Monsanto Co., US Patent, 4,115,424(1978).
This Page Intentionally Left Blank
H.G. Karge, J. Weitkamp (Editors),Zeolites as Catalysts, Sorbents and Detergent Builders 0 1989 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands
ON THE NATURE OF THE CATALYTIC ACTIVITY OF SAPO-5
CH.MINCHEV1, V.KANAZIREV1, V . H A V R O D I N O V A 1 ,
V.PENCHEV1 a n d H. LECHERT2
t l n s t i t u t e o f O r g a n i c C h e m i s t r y , S o f i a 1040
Bulgaria)
2 1 n s t i t u t e o f P h y s i c a l C h e m i s t r y , Hamburg Un v e r s i t y , 2 Hamburg
3 (FRG)
ABSTRACT An a t t e m p t t o e s t i m a t e t h e n a t u r e o f t h e c a t a l y t i c a c t i v i t y o f SAPO-5 was made by means o f t h e " i n n e r s t a n d a r d " a p p r o a c h . SAPO-5 m a t e r i a l s were compared w i t h model m i x t u r e s o f HY i n t r o d u c e d i n t o a n AIPO-5 m a t r i x as w e l l as w i t h HZSM-5 and h i g h l y d e a l u m i n a t e d HY. The s e l e c t i v i t y p a t t e r n s i n m-xylene c o n v e r s i o n s u p p o r t t h e a s s u m p t i o n o f a r e l a t i v e l y homogeneous S i - i n c o r p o r a t i o n , The g e n e r a t e d a c t i v e c e n t e r s a r e s i t u a t e d f a r f r o m each o t h e r as i n t h e c a s e o f t h e h i g h l y d e a l u m i n a t e d f a u J a s i t e .
I NTRODUCTI ON
The new g e n e r a t i o n o f a l u m i n o p h o s p h a t e - b a s e d m i c r o p o r o u s o x i d e s ( A I P 0 4 - n , SAPO-n,
etc.)
( r e f . 1 ) r e v e a l s new p o s s i b i l i t i e s o f c a t a l y s i s by m o l e c u l a r
s i e v e s . The i n c o r p o r a t i o n o f S i i n t h e n o n - a c i d i c a l u m i n o - p h o s p h a t e framework e l i c i t s i n many cases a s i g n i f i c a n t c a r b o n i o g e n i c c a t a l y t i c a c t i v i t y . Recently, remarkable
c a t a l y t i c a c t i v i t y o f SAPO-5 i n n - b u t a n e ( r e f . 2)
and cumene ( r e f . 3) c r a c k i n g , o - x y l e n e
isomerization (ref.3),
alkylation
o f t o l u e n e w i t h methanol ( r e f . 4 ) , o l i g o m e r i z a t i o n o f p r o p e n e ( r e f . 4 ) , c o n v e r s i o n o f decane ( r e f . 5) a n d methanol ( r e f . 6) was r e p o r t e d .
The
c a t a l y t i c a c t i v i t y o f t h e aluminophosphate-type m a t e r i a l s ranges w i t h i n a l m o s t two o r d e r s o f m a g n i t u d e a c c o r d i n g t o t h e c o m p o s i t i o n and p r e p a r a t i o n c o n d i t i o n s ( r e f . 2 ) . Adsorption and I R data
suggest t h e e x i s t e n c e o f
a c i d i c c e n t e r s i n t h e SAPO-5 s t r u c t u r e ( r e f . 3, 5
-
7).
The n a t u r e o f t h e c a t a l y t i c a c t i v i t y o f t h e SAPO-5 m a t e r i a l s i s s t i l l n o t f u l l y understood ( r e f . 7 ) .
O b v i o u s l y , t h e mechanism o f S i i n c o r p o r a t i o n
i n t o t h e l a t t i c e i s o f g r e a t i m p o r t a n c e f o r t h e appearance o f c a t a l y t i c a l l y a c t i v e c e n t e r s . A t t e m p t s were made t o a p p l y some c u r r e n t c o n c e p t s i n t h e
z e o l i t e c a t a l y s i s t o t h e s e new o b j e c t s ( r e f . 7 ) . The g e n e r a t i o n o f non-comp e n s a t e d charges i n t h e a l u m i n o - p h o s p h a t e framework a n d t h e p o s s i b l e c o n t r o l o f t h i s p r o c e s s a r e t h e most i m p o r t a n t d i s c u s s i o n t o p i c s i n t h e r e c e n t l i t e r a t u r e ( r e f . 5-8). I n t h e p r e s e n t work, a n " i n n e r s t a n d a r d " a p p r o a c h has been a p p l i e d f o r
30 e s t i m a t i o n o f t h e p r o p e r t i e s o f SAPO-5 as a c i d c a t a l y s t . The HY z e o l i t e , m e c h a n i c a l l y d i s p e r s e d i n a m a t r i x o f AIP04-5, s t a n d a r d . The physico-chemical
was used as an i n n e r
and c a t a l y t i c p r o p e r t i e s o f t h e so p r e p a r e d
model samples were compared t o those o f SAPO-5, as w e l l as t o ZSH-5 and dealuminated HY w i t h low d e n s l t y o f t h e a c i d c e n t e r s .
EXPERIMENT Samples and c h a r a c t e r i z a t i o n SAPO-5 and A1P04-5 were s y n t h e s i z e d a c c o r d i n g t o ( r e f . 9,lO)
by
u s i n g Pr3N (Herck) and a g e l whose c o m p o s i t i o n i s p r e s e n t e d i n T a b l e 1.
TABLE 1 Composition o f t h e r e a c t i o n m i x t u r e , mol Sample AP SPI SPII
Type AIPO-5 SAPO-5 SAPO-5
Pr3N 1.5 2.0 2.0
Si02
A1203
p2°5
H20
1 .O 1 .o 1 .o
1 .o 1 .o 1 .o
40 50 50
0.4 0.9
Pseudoboehmite f r o m Condea, 85% o r t h o p h o s p h o r i c a c i d and amorphous s i l i c a (Herck) were used as sources f o r Al2O3, P2O5 and SiO2 r e s p e c t i v e l y . The c r y s t a l l i z a t i o n was c a r r i e d o u t under 423-453K
i n T e f l o n tubes i n an a u t o -
c l a v e f o r 6 t o 24 hours. The f i n a l thermal t r e a t m e n t was performed i n a i r a t 823-873K
f o r 6 hours i n a m u f f l e oven.
The samples used f o r comparison were:
HY(Si02/A1203-5.1)
and HZSM-5
(Si02/A1203 -200) o b t a i n e d by t h e u s u a l d e c o m p o s i t i o n o f t h e NHq+-form (ref.lO,as
w e l l as a dealuminated HY, d e s i g n a t e d as US-Ex
prepared a c c o r d i n g t o ( r e f . 1 2 ) . 0.9AP-O.1HY
(Si02/A1203=200)
The model samples 0.95AP-0.05HY
and
were p r e p a r e d by thorough m i x i n g o f t h e A1P04-5 m a t e r i a l w i t h
5 and 10 w t % o f t h e inner s t a n d a r d HY, The p h i s i c o - c h e m i c a l
characteri-
z a t i o n o f t h e samples was made by t h e f o l l o w i n g t e c h n i q u e s : X-ray powder diffraction,CuKkby
a DRON a p p a r a t u s , I R spectroscopy
in the region o f
1400-400 cm-l u s i n g KBr d i s k s , by a Specord 75 I R s p e c t r o p h o t o m e t e r , e l e c t r o n microscopy by JSH-200 and simultaneous t h e r m a l a n a l y s i s (TG-DTA- DTG) up t o 1 2 7 3 ~w~i t h 100/min i n a i r i n MOM a p p a r a t u s . A d s o r p t i o n and c a t a l y t i c measurements The adsorption-thermodesorption measurements were c a r r i e d o u t i n f l o w a t e l e v a t e d temperature.
The a d s o r p t i o n o f NH3(30 kPa,
i n a He s t r e a m a t 423K
and TPD up t o 87310 was measured a 8 a l r e a d y descr i b e d ( r e f . 13). The a d s o r p t i o n and c a t a l y t i c experiments w i t h m-xylene were p e r f o r m e d i n one and t h e same f l o w - t y p e a p p a r a t u s c o u p l e d "on l i n e n w i t h a GC. The c a t a l y s t ' s w e i g h t was 0.49.
The m-xylene was i n t r o d u c e d b y means
31 o f a s a t u r a t o r . H i g h - p u r i t y N2 was used as a c a r r i e r gas. The p r e l i m i n a r y t r e a t m e n t o f t h e c a t a l y s t s was c a r r i e d o u t f o r 5 h o u r s
i n n i t r o g e n a t 773K, f o l l o w e d b y e s t a b l i s h i n g t h e temperature a t 453K and then i n t r o d u c i n g m-xylene from t h e s a t u r a t o r . The a d s o r p t i o n was t r a c e d by t h e f r o n t a l method and chromatographical m o n i t o r i n g o f t h e m-xylene concentration a t the reactor outlet.
The c a t a l y t i c experiments f o r t h e m-xylene
c o n v e r s i o n were performed immediately a f t e r t h e a d s o r p t i o n as f o l l o w s : r a i s i n g up t h e temperature t o 673K; p a s s i n g t h e r e a g e n t t h r o u g h t h e c a t a l y s t u n t i l c o n s t a n t a c t i v i t y was reached and v a r y i n g t h e c o n t a c t t i m e i n t h e range 0 . 3
-
42h by changing t h e f l o w r a t e o f t h e c a r r i e r gas. The a n a l y -
s i s o f t h e r e a g e n t m i x t u r e and t h e r e a c t o r e f f l u e n t was accomplished by GC. The t o l u e n e d i s p r o p o r t i o n a t i o n was c a r r i e d o u t i n a c o n t i n u o u s f l o w reactor (ref.
14) a t 723 and 753K. The WHSV was l . I h - l ,
Ptoluene=27.5kPa and t h e
Hg/toluene molar ratio.2.5.
RESULTS Physico-chemical c h a r a c t e r i z a t i o n o f t h e i n i t i a l and model samples I n accordance w i t h t h e l i t e r a t u r e , t h e r e s u l t s Obtained show t h a t t h e phase p u r i t y o f AIP04-5
( r e f . 1,6) and SAPO-5 ( r e f . 5 )
‘1
is
s t r o n g l y dependent on t h e c o n d i -
t i o n s o f p r e p a r a t i o n . Combined thermal a n a l y s i s proved t o be Very u s e f u l i n p u r i t y c o n t r o l ( r e f . 15), t o g e t h e r w i t h X-ray scopy.
and I R s p e c t r o -
I n F i g . 1 t h e DTG curves o f
*‘pure** AIPO-5 and SAPO-5,
as w e l l
as those o f samples w i t h i n c r e a s i n g amounts o f phase i m p u r i t y ( c u r v e s
I 373. . 573. . .773 . .973 . .1173 I TEMPERATUK,K
b-d)
a r e presented.
les
were p r e p a r e d u s i n g t h e same
nlmpuren samp-
s t a r t i n g g e l by d i f f e r e n t d u r a t i o n s o f c r y s t a l l i z a t i o n ( c u r v e s b-c)
or
b y a d i f f e r e n t way o f homogenizing
Fig.l.
DTG o f as-synthesized:
a,AIPO-5;
b,c,d,
AlPO-5 w i t h i m p u r i t y ; ,
e,
o f t h e r e a c t i o n mixture (curve d ) .
SAPO-5. They were s u b j e c t e d t o thermal ana-
l y s i s a f t e r d r y i n g a t 333K and r e h y d r a t a t i o n . The minimum o f t h e DTG curves a t 453K a r e an i n d i c a t i o n o f t h e presence o f an u n i d e n t i f i e d s e p a r a t e phase which i s n o t s t a b l e a t 823K. I t i s t o be p o i n t e d o u t t h a t X-ray and I R spectroscopy,
which a r e t h e
32 usual c o n t r o l techniques,
are ineffective for establishing
c e n t r a t i o n s such as t h a t
p r e s e n t i n t h e sample c o r r e s p o n d i n g t o c u r v e b,
Fig.l.Taking
i m p u r i t y con-
i n t o c o n s i d e r a t i o n t h a t t h e p r e p a r a t i o n o f monophase a l u m i n i u m
o r t h o p h o s p h a t e s i s q u i t e d i f f i c u l t a n d c a n be a c h i e v e d by a v e r y p r e c i s e m a i n t e n a n c e o f t h e r e s p e c t i v e optimum c o n d i t i o n s f o r each p r o d u c t ( r e f . we recommend a d d i t i o n a l c o n t r o l by t h e r m a l a n a l y s i s ( r e f .
161,
15).
The p u r i t y o f samples c o n t a i n i n g h i g h e r amounts o f u n d e s i r e d p r o d u c t (Fig.l,
c u r v e s c,d)
may be c h e c k e d by I R s p e c t r o s c o p y ( F i g . 2 ) .
The in-
crease o f t h e i m p u r i t y y i e l d can be c l e a r l y i n d e n t i f i e d i n t h e r e g i o n 950-400 a n d 1200-1050 cm-l. The d i f f e r e n c e between t h e I R s p e c t r u m o f t h e p u r e AIP04-5 a n d SAPO-5 i n t h i s range i s n e g l i g i b l e . The complex p h y s i c o - c h e m i c a l c h a r a c t e r i z a t i o n showed t h a t p r a c t i c a l l y p h a s e - p u r e AIPO-5 a n d SAPO-5 w e r e s y n t h e s i z e d , whose d i f f r a c t i o n p a t t e r n s a r e i n v e r y good agreement w i t h t h e l i t e r a t u r e data ( r e f . 9,lO). The s c a n n i n g e l e c t r o n m i c r o g r a p h s c o n f i r m t h e good c r y s t a l l i n i t y o f t h e m a t e r i a l s used i n t h e a d s o r p t i o n and c a t a l y t i c experiments.
The c r y s -
t a s have a h e x a g o n a l c r o s s - s e c t i o n
1200 Fig.2.
800
O f
1
W A V E N U ~ R cm-1 .
The same methods w e r e a p p l i e d
I R spectrum o f as-synthesized:
a, AIPO-5;
c,d,
a b o u t 10-22y.m.
AIPO-5 w i t h i m p u r i t y ;
e, SAPO-5;
in
he c o m p a r a t i v e s t u d y o f t h e mo-
de I samples 0 . 9 5 AP-0.05HY 0 . 9 AP-O.1HY.
and
The X-ray a n d I R spec-
t r o s c o p y d a t a show t h a t c l e a r i n d i c a t i o n s f o r t h e presence o f a z e o l i t i c m a t e r i a l (HY i n t h i s case) c a n be d i s t n g u i s h e d when i t s c o n c e n t r a t i o n i n t h e AIP04-5
i s about 5wt% (Fig.3)
o r h gher (Fig.4)
I
TPD o f NH3 a n d m - x y l e n e a d s o r p t i o n A r e l a t i v e l y w i d e t e m p e r a t u r e r a n g e o f NH3 d e s o r p t i o n , F i g . 5 ,
i s character-
i s t i c f o r a l l samples. The f o l l o w i n g r e g u l a r i t i e s c a n be o b s e r v e d f r o m t h e data presented: -The c o n c e n t r a t i o n o f t h e c e n t e r s r e a c t i n g w i t h ammonia i s h i g h e s t i n HY.
The model m i x t u r e s 0 . 9 5 AP-0.05HY
and 0 . 9 AP-O.1HY
d e s o r b ammonia i n
33
Fig.3.
o f c a l c i n e d AIPO-5 AIPO-5
1OOo 600 WAVENUM)ER , crn"
X-ray d i f f r a c t i o n p a t t e r n
-
0.05HY
( a ) , and 0 . 9 5 F i g . 4 I R spectrum o f c a l c i n e d
(b); t h e arrows
0 . 9 AIPO-5
n o t e l i n e s c h a r a c t e r i s t i c o f HY.
-
AIPO-5-0.05HY
HY(0.4 g SPll
O.1HY
( a ) , 0.95
( b ) , AIPO-5
(C).
1---I
.-
IHZSM-5
SP I
a- SPII
0
F i g . 5 . TPD chromatograms o f NH3 HY(O.4g)-pure
HY;
HY(0.04g)-HY
d i l u t e d w i t h i n e r t rnater i a l .
F i g . 6 . C o n v e r s i o n o f m-xylene as a f u n c t i o n o f t h e m o d i f i e d c o n t a c t time.
34 t h e same temperature range b u t i t s quant t y i s much s m a l l e r compared t o t h e 'non-di l u t e d " HY. -SPI,
0.95 AP-0.05HY and 0 , 9 AP-O.1HY
have v e r y s i m i l a r TPD c u r v e s . The
TPD maximum of' t h e above-mentioned mater a l s i s s h i f t e d t o lower temperatur e s , w h i l e t h a t o f S P I I i s s h i f t e d t o h i g h e r ones, -The TPD chromatograms o f HZSM-5 and US-Ex used f o r comparison
are typi-
c a l f o r z e o l i t e s o f t h i s k i n d . They i n d i c a t e a h i g h e r r e l a t i v e c o n t r i b u t i o n o f t h e s t r o n g a c i d c e n t e r s . T h e number o f t h e s i t e s i n t e r a c t i n g w i t h NH3 i s
v e r y low because o f t h e h i g h S i / A l
o f t h e s e samples.
Comparison o f t h e q u a n t i t i e s o f NH3 desorbed ( T a b l e 2) f o r AIP04-5 and SAPO-5 shows,
i n agreement w i t h ( r e f . 1,3,6 and 71, t h a t t h e former have
lower a c i d i t y . The s h i f t o f t h e maximum r a t e o f ammonia d e s o r p t i o n t o h i g h e r temperatures f o r S P I I compared t o t h e o t h e r aluminophosphate samples i n d i cates a s p e c i f i c e f f e c t o f t h e increased TABLE 2
S i c o n t e n t on t h e a c i d i t y , The d a t a f o r
Thermodesorption o f ammonia,
t h e mixed samples r e v e a l t h e s i g n i f i -
adsor bed a t 420K, P~%=30kPa
c a n t r o l e o f t h e aluminophosphate m a t r i x , which o b v i o u s l y has a c o n s i d e r -
Samples
mmol NH3/g
a b l e number o f c e n t e r s i n t e r a c t i n g w i t h ammonia ( r e f .
17).
AP
0.12
HY
0.96
The m-xylene a d s o r p t i o n r e s u l t s
0.95AP-0.05HY
0.14
recorded i n t h e p r e - c a t a l y t i c region
0.9AP-0. 1OHY
0.16
showed t h a t HY adsorbed 0 . 8 6 mmol/g
SP I
0.22
m-xylene, w h i l e a d s o r p t i o n values f o r
SPI I
0.24
a l l o t h e r samples amounted t o 0 . 0 3 -
HZSM-5
0.08
0 . 1 6 mmol/g.
US-E x
0.04
The above r e s u l t s i n d i -
cate t h a t the differences i n the acide centers'
samples under e x a m i n a t i o n m a n i f e s t themselves i n a
concentration i n the l i k e manner w i t h
r e s p e c t t o t h e model m-xylene substance, which i s used f o r t h e c a t a l y t i c characterization. C a t a l y t i c studies M-xylene c o n v e r s i o n was s t u d i e d a t 673K. The f l o w r a t e o f t h e m-xylene and t h e w e i g h t o f t h e c a t a l y s t s were v a r i e d i n o r d e r t o o b t a i n c l o s e values f o r t h e o v e r a l l r a t e o f c o n v e r s i o n a t d i f f e r e n t c o n t a c t t i m e s . Under t h e e x p e r i m e n t a l c o n d i t i o n s used,
b o t h i s o m e r i z a t i o n and d i s p r o p o r t i o n a t i o n o f
t h e m-xylene proceed. Table 3 r e v e a l s t h e c o n s i d e r a b l e d i f f e r e n c e s i n t h e c a t a l y t i c a c t i v i t y o f t h e samples.Contact t i m e s d i f f e r i n g by about one o r d e r
o f magnitude a r e necessary t o o b t a i n c l o s e degrees o f c o n v e r s i o n u s i n g HY
35 TABLE 3
Conversion o f m-xylene, T ~ 6 7 3 K
Samples
Contact time, h
Total r a t e o f convers ion, %
Products o f i somer i z a t ion, X
41.5
10.0
7.7
0.30
0.95AP0.05HY
0.3 0.4 0.5
25.6 28.1 37.7
12.1 13.9 17.3
0.95 1.01 1-10
0.9APO.1OHY
0.6 0.7 1. O
34.4 37.5 48.5
19.5 20.8 23.6
0.72 0.80 0.97
0.02gHY
0.3 0.4 1 .o
23.9 28.1 44.3
11.8 13.9 19.3
0.96 1.01 1.32
0.40gHY
5.9
63.7
29.5
1.13
5.9
7.0
37.2 43.9
30.6 34.7
0.21 0.26
SP I w
5.9
42.4
37.3
0.14
US-Ex
10.4 19.8 41.5
24.6 40.2 48.0
20.2 29.4 30.2
0.20 0.36 0.59
5.9 10.4
37.7 43.2
37.4 41.9
0.01 0.03
APW
SPI Iw
HZSM-5
S=
Disprop. , % Isom. , X
wThese samples showed a tendency towards d e a c t i v a t i o n
on one s i d e , and S P I , S P I I and US-Ex on t h e o t h e r . T h i s
i s i n good agreement
w i t h t h e above-established differences i n the adsorption center density o f t h e samples. The AP sample e x h i b i t s v e r y low a c t i v i t y . T h e degree o f convers i o n o b t a i n e d even f o r 42h c o n t a c t t i m e i s o n l y 1O.OX.The a c t i v i t y o f t h e m i x t u r e s 0 . 9 5 AP-0.05HY
and 0 . 9 AP-O.1HY
i s m a i n l y due t o t h e HY component.
B y v a r y i n g t h e c o n t a c t times necessary t o o b t a i n c l o s e degrees o f conver-
s i o n , t h e f o l l o w i n g range o f a c t i v i t y i s observed: Alp04
206
pyridine is highest (10 %, 425 "C) when Cs-zeolite is used. The above examples indicate how it is possible to suppress or to induce consecutive reactions during the alkylation of pyridine merely by means of the appropriate choice of dopant in the zeolite catalyst. The examples also show how the selectivity can be influenced by the type of zeolite employed. In contrast to the side-chain alkylation of toluene using alkali-earth-doped faujasites, it is characteristic of the side-chain alkylation of picolines that alkylation of the nucleus also occurs (e. g. ref. 4). Alkylation of aromatic amines The alkylation of aromatic amines includes the reaction of aniline with methanol (refs. 84, 85) or with olefins (refs. 86 - 88) in the presence of zeolitic and nonzeolitic molecular sieves. In principle, reaction can take place at the N-containing groups forming N-alkylated compounds or at the nucleus forming C-alkylated compounds. In other words, the methylation of aniline, for example, yields toluidine, N- methylaniline and N,N-dimethylaniline. All are useful intermediates for dyestuffs, agrochemicals and drugs as well as for the organic synthesis. A mixture of aniline and methanol in a molar ratio 1:3 reacts at 350 "C and WHSV = 0.8 hr-' with 51.4 % selectivity for N-methylaniline and 20.1 % for toluidine using HZSM-5 with Si02/A1,03 = 60. The conversion is 70 %. That means the acid HZSM-5 already favours N-alkylation over C-alkylation. By impregnating or moulding with, e. g. MgO, thereby reducing the acidity, the amount of Nalkylate can be increased; N-methylaniline was formed with 86.5 % selectivity at 85.5 % conversion. However, only 3,5 % toluidine selectivity was obtained. The alkylation of aniline with olefines such as propylene can be carried out employing H-mordenite (ref. 86), dealuminated mordenite or Y-zeolite (ref. 87) or SAPO 37 (ref. 88). In contrast to the alkylation with methanol, in all these cases C-alkylation is favoured especially in the ortho-position. Using Hmordenite, aniline and propylene in a 1:l molar ratio are converted at 250 C' and LHSV = 0.35 hr-' to o-alkylate with 84 %, p-alkylate with 4 % and N-alkylate with 15 % selectivity. 32 % conversion is obtained. Using dealuminated mordenite the conversion rate can be increased to 76 % whilst maintaining a similar product distribution, and using SAPO 37 a further increase up to 93 % is possible. In the latter case, however, only 64 % o-alkylate selectivity and 12 % p-alkylate selectivity are achieved. The selectivity for N-alkylate is 21 %. In the author's opinion a concerted reaction between aromatic amine and olefine (ref. 86) is responsible for ortho-alkylation being favoured over para-alkylation.As far as the thermodynamics are concerned the para-alkylates are the most stable, as is demonstrated by the fact that their selectivity increases with higher temperatures demonstrates.
207
CONCLUSION This presentation is intended to underline once again the versatility of zeolites for both synthesis and reactions of N-containing compounds. Some examples demonstrate that existing processes can be improved merely by replacing the conventional heterogeneous catalyst. Other examples show the advantages of the change from homogeneously catalysed processes to heterogeneous catalysis if environmental and process engineering problems occur in the separation and work-up. However, in other cases, like the Beckmann rearrangement to produce caprolactam, the results obtained by homogeneous catalysts can not be achieved by zeolitic or non-zeolitic molecular sieves up to now. Considerable effort is still necessary in order to solve this problem. The principles derived from reactions of hydrocarbons on zeolites can generally be applied to the reactions of N-containing compounds. However, there can be a few differences, too, as the alkylation of pyridine or aniline in comparison t o the alkylation of benzene or toluene has shown. Nevertheless, there are some promising results in the chemistry of N-containing organic compounds which encourage us to proceed further along the road of shape-selective catalysis. REFERENCES 1 2 3 4
P. B. Venuto and P. S. Landis, Adv. Catalysis 18 (1968) 259 - 371 Y. I. Isakov and K. M. Minachev, Russ. Chem. Rev. 51 (1982) 1188 - 1204 W. F. Hoelderich, Pure Appl. Chem. 58 (1986) 1383 - 1388 W. F. Hoelderich, M. Hesse and F. Naeumann, Angew. Chem. Int. Edit. 27
5
H. van Bekkum, H. W. Kouwenhoven, Stud. Surf. Sci. Catal. 41 (1988) 45 -
( 1988) 226
6 7
8
10
11 12 13
14 15 16 17
246
59 W. F. Hoelderich, Stud. Surf. Sci. Catal. 41 (1988) 83
-
90
Y. Ono in B. Imelik et al. (Editors), Catalysis by Zeolites, Elsevier, Amsterdam, 1980, pp. 19 - 27 D. Barthomeuf, G. Coudurier and J. C. Vedrine, Mat. Chem. Phys. 18 (1988) 553
9
-
-
575
R. Martens, P. J. Grobet, W. J. Vermeiren and P. A. Jacobs, Stud. Surf. Sci. Catal. 28 (1986) 935 - 941 L. R. Martens, W. J. Vermeiren, D. R. Huybrechts, P. J. Grobet and P. A. Jacobs in M. J. Phillips and M. Ternan (Editors), Proc. 9th Int. Congr. Catal. Calgary, Canada, 1988, Chem. Inst. Canada, Ottawa, 1988, Vol 1 pp. 420 - 428 M. Keane, G. C. Sonnichsen, L. Abrams, 0. R. Corbin, T. E. Gier, R. D. Shannon, Appl. Catal. 32 (1987) 361 - 366 L. Abrams, 0. R. Corbin and R. D. Shannon, EP 251.597 (Jan. 07, 1988) DuPont de Nemours Co. Y. Ashina, T. Fujita, M. Fukatsu and J. Yagi, EP 125.616 (Nov. 21, 19841, JP 57 169 444 (Oct. 19,1982), JP 59 227 841 (June 8, 1983), JP 60 045 550 (Aug. 22, 1983) and Neth. Pat. 8201 523 (April 10, 1981), Nitto Chem. Ind. G. Schmitz, J. Chim. Phys. Phys-Chim. Biol. 77 (1980) 393 - 400 I. Mochida, A. Yasutake and H. Fujitsu, J. Catal. 82 (1983) 313 - 321 M Deeba, EP 180.983 (Nov. 6 , 1985) Air Prod. Chem. Inc. M. Deeba, M. F. Ford and T. A. Johnson, EP 252.424 (Jan. 13, 1988) Air L.
208
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Prod. Chem. Inc. R. A. Budnik and M. R. Sandner, EP 158. 139 (Oct. 16, 1985) UCC H. Sato and M. Tsuzuki, Int. Appl. WO 8.703.592 (Jun. 18, 1987), Idemitsu Kosan Co. C. Herrmann, E. Nagy and F. F e t t i n g , Chem. -1ng. -Tech. 59 (1987) 227 - 228 C. D. Chang and W. H. Lang, US 4 434 299 (Feb. 28, 1984) and EP 062 542 (Oct. 13, 19821, Mobil O i l Corp. K. K. P i t a l e , M. G. Warawdekar and R. A. Rajadhyaksha, Adv. Catal. [Proc. -Natl. Symp. Catal. 2 7 t h (1985) 263 - 268 K. K. P i t a l e and R. A. Rajadhyaksha, Curr. Sci. 54 (1985) 447 - 450 M. Gans, Hydrocarbon Proc. 55 (1976) 145 - 150 F. G. Dwyer, Chem. Ind. (N. Y. ) 5 (1981) 39 - 50 W. F. Hoelderich and E. G a l l e i , Ger. Chem. Eng. 8 (1985) 337 - 345 A. V. Rao, M. N. Rao, K. Garyali and P. Kumar, Chem. Ind. (London) 1984, 270 C. D. Chang, W. H. Lang and R. B. Lapierre, US-Pat. 4231955 (Nov. 04, 1980), Mobil O i l Corp. W. F. Hoelderich, H. Lendle, P. Magnussen, H. L e i t n e r , J. H. Manegold and W. Leitenberger, EP 196554 (Oct. 08, 1986), BASF AG S. R. A u v i l and I. W. Gambell, EP 108.737 (May 16, 1984) 0. Immel, H. H. Schwarz, H. Starke and W. Swodenk, Chem.-Ing. -Techn. 56 (1984) 612 - 613 P. 5. Landis and P. B. Venuto, J. Catal. 6 (1966) 245 - 252 M. Burauet. A. Auce.io and M. Sancho-Tello, An. Ouim. Ser. A, 81 1985 ) 259 262 . A. Aucejo, M. Burguet, A. Corma and V. Fornes, Appl. Catal. 22 ( 986) 187 - 200 W. K. B e l l and C. D. Chang, EP 056.698 (June 05, 19851, Mobil O i Corp. P. M. G. Frenken, EP 086.543 (May 07, 1986) Stamicarbon B. V. H. Sato, N. I s h i i , K. Hirose and 5. Nakamura, Stud. Surf. Sci. C t a l . 28 (1986) 755 - 762 H. Sato, K, Hirose, N. I s h i i and Y. Umada, EP 234.088 (Sept. 02, 1987), Sumitomo Chem. Co. H. Sato, K. Hirose, M. Kitamura, H. Tojima and N. I s h i i , EP 236.092 (Sept. 09,19871, Sumitomo Chem. Co. K. D. Olson, EP 251.168 (Jan. 07, 1988). UCC C. D. Chang and P. D. Perkins, EP 082.613 (June 29, 1983) and US 4.388.461 (June 14, 19831, Mobil O i l Corp. H. LeBlanc, L. Puppe and K. Wedemeyer, DE 3.332.687 (March 28, 19851, Bayer AG K. D. Olson, EP 251.169 (Jan. 07, 1988) and US 4.701.562 (Oct. 20, 1987), UCC C. D. Chang and W. H. Lang, US 4.220.783 (May 09,1979) Mobil O i l Corp. 5. K. Roy, N. 5. Rawat and P. N. Mukherjee, Natl. Symp. Catal. 7 t h (1985) 121 - 130 5. K. Roy, 5. K. Roy, K. Sarkar and J. Das, CEW, Chem. Eng. World 22 (1987) 73 - 77 5. Yasuda and N. Abe, I P 6153.265 and I P 6153.266 (March 17, 1986), Koei Chem. Ind. Y.Yokota, Y. H a t t o r i , T. Imanaka, Y. Abe and N. Hida, I P 62 149.647 ( J u l y 03,19871, Kao Corp. D. F e i t l e r , W. Schimming and H. Wetstein, EP 131.887 (Jan. 23, 19851, Nepera Chem. Co. S. Shimizu, N. Abe, M. Doba, A. Iguchi, H. Sato, K. Hirose and Y. Umada, EP 232.182 (Aug. 12, 19871, Koei Chem. Co. W. F. Holderich, N. Gotz and G. Fouquet, EP 263.464 ( A p r i l 13, 1988) BASF AG Y. Ono, Heterocycles 16 (1981) 1755 - 1771 Y. Ono, K. Hatada, K. F u j i t a , A. H a l g e r i and T. K e i i , J. Catal. 41 (1976) 328 322 K. F u j i t a , K. Hatada, Y. Ono and T. K e i i , J. Catal. 35 (1974) 325 - 329
-
-
209
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
Y. Ono, A. H a l g e r i , M. Kaneko, K. Hatada, ACS Symp. Ser. 40 (1977) 596 605 K. Hatada, M. Shimada, K. F u j i t a , Y. Ono, T. K e i i , Chem. L e t t . 1974, 439 K. Hatada, M. Shimada, Y. Ono and T. K e i i , J. Catal. 37 (1975) 166 G. T. K e r r , Ch. J. Plank and E. J. R o s i n s k i , US 3.442.795 (May 06, 19691, M o b i l O i l Corp. Ch. J. Plank, E. J. R o s i n s k i and G. T. K e r r , US 4.011.278 (March 08, 1977), M o b i l O i l Corp. W. F. H o e l d e r i c h and M. Schwarzmann, EP 267.438 (May 18, 1988) BASF AG G. Perego, G. B e l l u s s i , C. Corno, M. Taramasso, F. Buonomo and A. Espos i t o , Stud. Surf. Sci. Catal. 28 (1986) 129 - 136 B. N o t a r i , Stud. Surf. Sci. Catal. 37 (1988) 413 - 425 P. R o f f i a , M. Padovan, E. M o r e t t i and G. De A l b e r t i , EP 208.311 (Jan. 14, 19871, Montedipe S. p. A. F. J. Van d e r Gaag, F. L o u t e r and H. Van Bekkum, Stud. Surf. Sci. Catal. 28 ( 1986) 763 - 769 F. J. Van d e r Gaag, F. L o u t e r , J. Oudejans and H. Van Bekkum, Appl. Catal. 26 (1986) 191 - 201 G. 0. Chivadze, Kh. J. A r e s h i d z e and Ts. J. N a s k i d a s h v i l i , Geterog. K a t a l . 5 (1983) 141 - 146 J. C. Oudejans, F. J. Van d e r Gaag and H. Van Bekkum, i n D. Olson and A. B i s i o ( E d i t o r s ) , Proc. 6 t h I n t . Z e o l i t e Conf., Reno, USA, J u l y 1983, B u t t e r w o r t h G u i l d f o r d , UK, 1984, pp. 536 - 544 S. S. Shepelev and K. G. I o n e , SU 1.321.722 ( J u l y 07, 1987). I n s t . Catal, Novosibirsk M. L. O c c e l l i , I. T. Hsu and L. G. Galya, J. Mol. Catal. 32 (1985) 377 390 Y. Ben T a a r i t , Y. Diab, B. E l l e u c h , M. K e r k a n i and M. C h i h a o u i , J. Chem. SOC. Chem. Commun. 5 (1986) 402 - 403 K. E i c h l e r , E. Leupold, H. J. Arpe and H. B a l t e s , DE 3.420.707 (Dec. 05,1985), Hoechst AG H. J. Arpe and H. L i t t e r e r , EP 092.103 (Oct. 26, 1983) Hoechst AG F. J. Weigert, US 4.593. 124 (June 03,1986) du Pont de Nemours F. J. Weigert, J. Org. Chem. 52 (1987) 3296 - 3298 F. J. Weigert, J. Org. Chem. 51 (1986) 2653 - 2655 P. Cartraud, A. C o i n t o t , M. D u f o u r , N. S. Gnet, G. J o l y and J. Tejada, Appl. Catal. 21 (1986) 85 - 96 F. G. Dwyer i n W. R. Moser ( E d i t o r ) , " C a t a l y s i s o f Organic R e a c t i o n s " , M a r c e l Dekker Inc., New York, USA, 1981, pp. 73 - 94 P. I. Lewis, F. G. Dwyer, O i l Gas J. 75 (1977) 55 58 T. Yashima, K. Sato, T. Hayasaka, N. Hara, J. Catal. 26 (1972) 303 - 312 M. L. Unland, G. E. B a r k e r see C 7 7 1 51 71 J. M. Garces, G. E. V r i e l a n d , S. I. Bates and F. M. S c h e i d t , Stud. Surf. Sci. Catal. 20 (1985) 67 - 74 C. L a c r o i x , A. Deluzarche, A. Kiennemann and A. Boyer, Z e o l i t e s 4 (1984) 109 111 H. Kashiwagi, Y. F u j i k i and S. Enomoto, Chem. Pharm. B u l l . 30 (1982) 404 - 411 and pp. 2575 - 2578 P. Y. Chen, M. C. Chen, H. Y. Chu, N. S. Chang and T. K. Chuang, Stud. Surf. Sci. Catal. 28 (1986) 739 - 746 H. Sat0 and M. Tsuzuki, I P 62.195.350 (Febr. 21, 19861, I d e m i t s u Kosan Co. D. D. Dixon, EP 226. 781 ( J u l y 01, 19861, A i r Prod. Chem. Inc. R. Agrawal, S. A u v i l and M. Deeba, EP 240.018 (Oct. 07, 1987), A i r Prod, Chem. Inc. R. P i e r a n t o z z i , EP 245.797 (Nov. 19, 1987), A i r Prod. Chem. Inc.
-
-
-
This Page Intentionally Left Blank
H.G. Karge, J. Weitkamp (Editors),Zeolites as Catalysts, Sorbents and Detergent Builders 0 1989 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands
COMPARISON OF THE ALKYLATION OF ANISOLE AND PHENOL WITH METHANOL ON PENTASIL AND ULTRASTABLE ZEOLITES
RUDY F. PARTON, JULIA M. JACOBS, HEIDI VAN OOTEGHEM and PETER A. JACOBS Laboratorium voor Oppervlaktechemie, KU Leuven, Kardinaal Mercierl aan 92, B3030, Heverlee (Leuven), Belgium
ABSTRACT The alkylation of anisole and phenol with methanol was measured in a microreactor at 473 K and at different contact times, using as catalysts pentasil and H-USY zeolites. Activity and selectivity results showed that monomolecular reactions are favoured on pentasil and bimolecular reactions on large-pore zeolites. The high selectivity o f o-cresol observed on the tenmembered-ring compared to H-USY zeolites is explained by the intramolecular rearrangement of anisole to o-cresol . INTRODUCTION The acid-catalysed a1 kylation of toluene with methanol over tenmembered-ring (10-MR) zeolites to obtain a para-enriched a1 kylate is now well established industrial practice [l-31. The methylation of phenol with methanol [4-91 or anisole [lo, 111 on zeolites gives a mixture of anisole, xylenols and cresols, rich in the ortho-isomer. Evidently, the selectivity of p-cresol is not improved by the use of pentasil-type zeolites. On H-ZSM-5, the o/p-cresol ratio is always higher than one whereas on Y zeolites o/p ratios significantly lower than one have been reported [12-141. On the contrary, a high p-selectivity in the methylanisole fraction is observed in the self-alkylation of anisole on H-ZSM-5 [15] as well as in the methylation of anisole with methanol [14]. In order to make p-cresol selectively by the use of shape selective zeolite catalysts, it is desirable to know the reaction network of the methylation of phenol with methanol and the influence of the zeolite structure on the different pathways. Recently, for A1P04-Ti02 catalysts an overall scheme of the phenol and anisole alkylation was reported [16, 171. On H-ZSM-5 a detailed study of anisole conversion showed three primary pathways [15]. The main pathway of cresol formation is the intramolecular rearrangement of anisole to o-cresol When the influence of the zeolite structure and acidity on the reaction network of the alkylation of phenol with methanol is known it should be possible to select and modify zeolite catalysts in order to obtain the desired isomer with high selectivity.
.
EXPERIMENT M a t e r i a1 s Two batches, (1) and ( 2 ) , o f ZSM-5 and a sample o f ZSM-11 w i t h a Si/A1 r a t i o o f 100 were s y n t h e s i z e d a c c o r d i n g t o e s t a b l i s h e d l i t e r a t u r e procedures [18, 191. A f t e r a i r c a l c i n a t i o n a t 823 K, subsequent ammonium exchange a t r e f l u x c o n d i t i o n s was done. A sample o f H-USY w i t h a framework S i / A l r a t i o o f 20 was r e c e i v e d f r o m Toyo Soda.
A n o t h e r sample o f H-USY was prepared by
steaming o f NH4-Y, purchased f r o m V e n t r o n as Nay, w i t h a Si/A1 r a t i o o f 2.46. Bot h
samples
are
denoted
as
H-USY(T)
framework Si/A1 r a t i o o f USY(V) was 4.3 reaction a l l
and
H-USY(V),
respectively.
The
as det ermined b y 2 9 S i NMR. Bef ore
z e o l i t e s were c a l c i n e d i n s i t u i n f l o w i n g oxygen.
Anisole,
phenol and methanol w i t h a p u r i t y o f a t l e a s t 99% were purchased f rom Janssen Chimica. Reac t io n procedure Time-on-stream (ToS) e x p e r i m e n t s i n t h e vapour phase were c a r r i e d o u t i n hydrogen, u s i n g a f i x e d - b e d c o n t i n u o u s f l o w r e a c t o r a t d i f f e r e n t c o n t a c t times , W/Fo,
and atmospheric p r e s s u r e . W s t ands f o r c a t a l y s t weight and Fo
f o r mo lar f l o w r a t e o f t h e f e e d a t t h e r e a c t o r e n t r a n c e . The z e o l i t e powder was pressed,
crushed,
s i e v e d and t h e 0.25-0.50
mm f r a c t i o n
retained for
f u r t h e r use. The vapour p r e s s u r e o f a n i s o l e , phenol and methanol was 1.3 kPa. The r e a c t i o n p r o d u c t s were analysed o n - l i n e by gas chromatography on a 2 m packed column from Supelco c o n t a i n i n g 0 . 1 % SP-1,000 on Carbopack C . RESULTS and DISCUSSION O v e r a l l a c t i v i t y i n t h e a l k v l a t i o n o f a n i s o l e w i t h methanol 100
-aR
80
.-C0 2 0
60
>
e
0 V
-
40
0 0
.-mC
z
/
10-
0 100
k d I
150
b/ M.I.B.K.
/'
0
E
> I-
'Light hydrocar