Aerofax Minigraph 28
Lockheed U-2R/TR-1 by Jay Miller and Chris Pocock
ISBN 0·942548·43·4
©1988
Aerofax, Inc. P.O. B...
68 downloads
1269 Views
52MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Aerofax Minigraph 28
Lockheed U-2R/TR-1 by Jay Miller and Chris Pocock
ISBN 0·942548·43·4
©1988
Aerofax, Inc. P.O. Box 200006 Arlington, Texas 76006 ph. 214647-1105
, Trade Distribution by:
looks International lect Ave. Wisconsin 54020 94-2090
Trade Distribution by:
d Cou nties Publications ollow, Earl Shilton , LEg 7NA, England ) 47256
"',X,,,,,,
Stock No. 0228
ABBREVIATIONS AND ACRONYMS AB AC ADF ADI AEC AF AFB ALSS ASARS AWACS CIA COMINT DC Det
DME DOA 000 ELINT
EP-X ER EW FDC FDS FEBA FL FS HF
HSI IFF liS
ILS
Air Base Alternating Current Automatic Direction Finder Attitude Director Indicator Atomic Energy Commission Air Force Air Force Base Airborne Location Strike System Advanced Synthetic Aperture Radar System Airborne Warning and Control System Central Intelligence Agency Communications Intelligence Direct Current Detachment Distance Measuring Equipment Direction of Arrival Department of Defense Electronics Intelligence Electronics Patrol Experimental Earth Resources Electronic Warfare Flight Director Computer Flight Director System Forward Edge of Battle Area Focal Length Fuselage Station High-Frequency Horizontal Situation Indicator Identification Friend or Foe , International Imaging Systems Instrument Landing System
IMC KVA LF LOROP MF NACA NASA NRC OL PLSS RAF RBV RPV RTO SAC SIGINT SPO SRS SRTS SRW TCN TELl NT
TEREC TLG TOA U UHF VHF
WL WS
Image Motion Compensation Kilo-Volt Ampere Low-Frequency Long Range Oblique Photography Medium-Frequency National Advisory Committee for Aeronautics National Aeronautics & Space Administration Nuclear Regulatory Commission Operating Location Precision Emitter Location Strike System Royal Air Force Return Beam Video Remotely Piloted Vehicle Responsible Test Organization Strategic Air Command Signal Intelligence System Program Office Strategic Reconnaissance Squadron Strategic Reconnaissance Training Squadron Strategic Reconnaissance Wing TACAN Telecommunications Intelligence Tactical Electronic Reconnaissance System Tail Landing Gear Time of Arrival Utility Ultra-High Frequency Very-High Frequency Water Line Wing Station
MISCELLANEOUS SENIOR BOOK ANTENNAS AND L O C A T I O N S - - - - - - - - - - - - - - - -
A.
B. C. O. E. F. G. H. I. J. K. L. M. N. O. P. Q.
R. S. T. U. V.
10-119017-1 VHF/OF ANTENNA FS 419.20 (O.C.) 10-119017·1 VHF/OF ANTENNA FS 501.6 @ ws 559.30 (L) '0-119017·1 VHF/OF ANTENNA FS 501.60 @ WS 559.30 (R) '0-"9017·' VHF/OF ANTENNA FS 529.60 (L) '0-"9017·' VHF/OF ANTENNA FS 548.25 (Ll 10-119017-1 VHF/OF ANTENNA FS 548.25 (R) 10-119016-1 UHF/OF ANTENNA FS 45L.OO (L) 10-119016-1 UHF/OF ANTENNA FS 483.20 (R) 10-119226-1 UHF/OF ANTENNA FS 570.50 (D.C.) 10-119190-' UHF/OF ANTENNA FS 564.50 (D.C.) '0-119016-1 UHF/OF ANTENNA FS 587.38 (R) 10-119016-1 UHF/OF ANTENNA FS 587.38 (L) AT 256A1ARC ANTENNA FS ? (D.C.) AT 256A1ARC VHF RELAY ANTENNA FS 310.65 (D.C.) AT 256A1ARC VHF RELAY ANTENNA FS 418.53 (O.C.) AT 256A1ARC VHF RELAY ANTENNA FS 496.90 (O.C.) AT 256A1ARC VHF RELAY ANTENNA FS 572.43 (O.C.) AS 5211ARN·69 ANTENNA FS ? (O.C.) AS 5211ARN·69/DN338 ANTENNA FS ? (O.C.) AT 256A1ARC VHF RELAY ANTENNA FS 7 (D.C.) R923 ANTENNA WS ? (R) UNDER WING RX 395 ANTENNA ws ? (L) UNOER WING
·.......
:~~.
.
_.;;.~
..
THE LOCKHEED U·2R/TR·1/ER·2 STORY
N-803X (probably 68-10329) was the prototype lor the U-2R series and, as originally buill and test flown, was unpainted. Only visible marking was registration on the vertical fin surface. Production U-2Rs differed only in detail from the prototype. N-803X later was painted black, like its stablemates, and went on to become a dual role testbed, serving operationally with the 100th SRW (later 9th SRVV) and also being utilized by Lockheed lor systems and airframe development work. .
CREDITS:
and although production continues at a modest rate as of this writing, it virtually is certain now that production will end with the roll-out of the 104th aircraft sometime during September 1989. The justification for the U-2's unprecedented fame and extraordinary service longevity lies in the simple fact that the basic design developed under Johnson's skillful leadership during the mid-1950s was, and still is, the ultimate high-altitude subsonic aircraft. Initial studies generated by Johnson and his small design team utilized the fuselage of the firstgeneration XlYF-104A Starfighter and a totally new,
The authors and Aerofax, Inc. would like to thank the following individuals for their assistance during the production of this'Minigraph: John Andrews; Robert Archer; Robert Birkett; Ted Carlson; Bob Danielson; Vinko Dolson; Larry Engesath (special thanks); Jim Goodall; Mike Grove; DeKe Hall; Norm Hatch; Tony Landis; Gayle Lawson; Robert Lawson; Susan Miller; Ben Rich, Richard Stadler, and Eric Schulzinger of Lockheed Corp.; Jim Long; Daryl Niewald; Tom Ring; Capt. Brian Rogers; Mick Roth; Arthur Sanchez; Robert Schumacher; Ben Koziol of the United Technologies Corp.; Mike Wagnon; Barbara Wasson; and Tim White. Note: An early draft of the text found in this Minigraph originally appeared in abbreviated form in the October 1984 issue of Air International. Major ~. ~~"l. new historical revelations and events, hardware devel- ~ opments, and the release by Lockheed, the Central' Intelligence Agency, and the Air Force of important new photographic and textual reference materials, provided the authors with rationale to forge ahead with the book you now hold in your hands.
extremely lightweight, high-aspect-ratio Wing. The result was the first formal configuration proposal for what qUickly would become a reconnaissance platform with high-altitude performance unmatched by any other manned, air-breathing aircraft in the world. Its performance eventually would prove so spectacular, in fact, that to date, over three decades after the U-2 prototype's first flight on August 1, 1955, it is likely not to be exceeded by an operational, manned subsonic aircraft during this century; even in consideration of today's technology and powerplant resources, improvements in maximum altitude per-
PROGRAM HISTORY: The undeniable genius of Lockheed Aircraft Corporation's inimitable aircraft designer, Clarence L. "Kelly" Johnson, has been described adequately by some observers as a powerful mix of guts, gumption, and a talented gift for aircraft design. The facts underscore the image, as Kelly's aerospace industry contributions are unparalleled in the more than four decades he has set precedent for the profession. Kelly's major accomplishments, in terms of hardware, have been listed too many times to reiterate here. Suffice It to say that one of his most noteworthy achievements was, and still is, the graceful black lady of high altitude surveillance, Lockheed's enduring masterpiece, the U-2. Now well into its third decade of operational service, the U-2 has acquired fame, a mystique, and a reputation far in excess of its almost unbelievably modest production runs. In total, no more than 100 U-2s of all variants have been built at Lockheed's truly enigmatic "Skunk Works" and Palmdale facilities,
" \
\,
"'-"
The prototype U-2R, N-803X (foreground), along with four of the five additional Central Intelligence Agency U-2Rs' (68-10330/68-10334) at Edwards AFB's sensitive North Base facility during late 1968. The North Base operation, even today, tends to be non-military in nature.
When first completed, the Agency's U-2Rs, including N-810X (seen at the highly classified Groom Lake, Nevada facility), were given white cockpit sun shades. Later, these were changed to black, as were those seen on AF-allocated aircraft. Central Intelligence Agency aircraft all initially were given civil registrations. q _ J '\
....
I
U-2R, N-812X, served to carrier-qualify the type for maritime use. Initial trials were undertaken aboard the USS "America" (CVA-66) during 1969 and virtually no problems were encountered. Almost all U-2Rs and TR-1s now are equipped with structural and systems capabilities to accommodate a field-installed tailhook.
Because of the U-2R's exceptional thrust-to-weight ratio, its expansive wings, and its abnormally high lId (lift over drag), it did not require catapult equipment for launch. Standard wind-over-deck numbers usually proved more than sufficient to get the aircraft airborne in less than 300 ft. Fully extended flaps are noteworthy in this view.
....
I
The modifications required to make the U-2RITR-1 series carrier compatible are relatively few in number. Because of early experience gained with first-generation U-2s, the U-2R was built with carrier landing-related structural and stress factors in mind. Special wingtip skid extensions are visible in this view.
The prototype U-2R, 68-10329, during November 1983 at March AFB, California. Bearing AF markings, it usually serves as a Lockheed testbed, though operational missions remain an option. All-black scheme and black cockpit shade are in stark contrast with prototype's bare metal scheme. Wingtips now are equipped with radar warning antenna pods.
2
formance that might be realized by the development of a totally new aircraft remain decidedly negligible. The success of the early U-2 configurations (U-2A1B/C/D/E/F/G/H) is beyond the scope of this story to recount. Suffice it to say that their accomplishments were legion and their achievements were genuinely legendary. Thousands of missions were flown over virtually every square inch of the earth's surface and the information gathered, of both political and scientific import, was a major intelligence windfall for the free world. Unfortunately, by the mid-1960s, a sizable proportion of the 56 early-model U-2s that had been built by Lockheed from 1955 through 1960 had been lost to attrition resulting from a variety of causes. The aircraft had proved extremely difficult to fly under even the most ideal circumstances and accordingly, accidents eventually claimed over 40 airframes, as well as the lives of more than a few of the highly skilled pilots who invariably had volunteered for the oftentimes dangerous U-2 missions. As military and governmental demand for the U-2's high-altitude sensor system platform capabilities had increased rather than decreased, Lockheed, again under the auspices of Kelly Johnson, unveiled to the Department of Defense and the U.S. intelligence community a variety of on-going studies calling for the development of a totally new reconnaissance platform utilizing the basic U-2C configuration enlarged by a factor of one-third. Birth of this second-generation surveillance platform, later officially designated U-2R (some sources indicate that it was at one time referred to as the "WU-2C" and that it began life as the U-2N), had come about, like that of the first-generation aircraft, through a specific secret requirement within the confines of the Central Intelligence Agency. Two factors had generated the Agency's action: (1) the firstgeneration aircraft had been attrited down to almost irrelevant quantities; and (2) the original U-2, because of sensor system and mission requirements growth, had become powerplant limited (this deficiency actually had become apparent shortly after the U-2's service introduction during 1956 when sensor system weights began to increase beyond the original specifications outlined for the original aircraft). During 1965, Johnson had proposed to the Agency what some sources claim was the U-2L-effectively a stretched U-2A with a span increase of approximately 16 ft. and a length increase of 8 ft. Two years of gestation improved upon the basic premise of this design, and coupled with the powerplant limitations inherent in the first-generation U-2s, garnered serious interest not only from the Agency, but the AF as well. The pl'werplant dilemma had, in fact, become critical by the late 1950s and in order to compensate for the associated loss in cruise altitude performance, a decision was made to install a more powerful engine in the form of the Pratt & Whitney J75 in place of the original J57. This effectively eliminated the thrust-toweight-ratio shortfall, but now reversed the dilemma by creating an aircraft that was airframe limited. Though significant, the performance and airframe limitations eventually were endured for almost ten years. By the mid-1960s, however, with most of the .operational U-2 inventory written-off and the demand for its services markedly on the increase, the need for a replacement sensor system platform aircraft had become critical. During August 1966, in a cooperative agreement similar to that that had given birth to the original program during 1954, Lockheed, the AF, and the Centrallntelligence Agency signed a contract calling for the development and flight test of a totally new aircraft under the U-2R designation. The new design was expected to overcome the failings of the firstgeneration aircraft and, in particular, to offer an increased payload capacity, improved controllability and stability at cruising altitude, improved landing characteristics, greatly increased range and endurance, and an improved fatigue life. Arising from these physical changes was an improvement of primary importance to the pilot. The U-2R, because of its over-all size increase over its predecessor, was the recipient of a cockpit of marked-
Iy increased dimensions. This permitted the pilot, for the first time in the U-2 program, to wear a fullpressure suit. First-generation U-2 pilots were limited to partial-pressure suits of the S-4/T-1/T-1A variety because of severe space constraints. Comfort was a luxury under the early, somewhat primitive conditions generated by these suits, and it therefore was considered a major ergonomic advance when it was determined that improved, state-of-the-art fullpressure suit systems such as the A1P-22S-2 (consisting of the CSK-6/P suit and the HGK-13/P helmet), and the newer S1010B could be worn without difficulty. The U-2R, developed by Kelly Johnson, Ben Rich, Fred Cavanaugh and others, had risen from a series of design studies that had explored the potential performance and payload improvements that might be gained by incorporating such advances as supercritical airfoil sections for the wing and tail surfaces, increased thrusUhigh-altitucfe optimized engines, and refined aerodynamics. The resulting final design became not simply an updated first-generation airframe, but rather a totally new aircraft some 40% larger than its predecessor. The wingspan was increased by 23 ft. (the original stock NACA 64A airfoil was retained, however, but proportionately enlarged; the supercritical airfoil section wing idea was dropped from contention because of limited experience with it at very high' altitudes); wing area was increased by 400 sq. ft.; wing structural weight was reduced by 31b. per sq. ft.; the wing lift/drag ratio (UD) was improved to 27:1; and a totally new and enlarged fuselage, with significantly improved fineness ratio, was created. The fuselage r;hange proved as significant as that for the wing as it provided nearly a third again as much internal volume as the first-generation aircraft. This increased volume permitted larger sensor packages and more sophisticated and thus more capable electronic countermeasures systems to be carried. Additionally, the increased fuselage size permitted improved structural design techniques to be incorporated and consequently permitted the elimination of drag-inducing external oil cooler intakes. Importantly, the length of the empennage section alleviated the need for the first-generation aircraft's infrared signature lowering "sugar scoop" attachment to the lower lip of the exhaust fairing-as it was long enough in its own right to permit the exhaust efflux to cool somewhat before exiting the aircraft. Revised and enlarged horizontal and vertical. tail surfaces also were created to accommodate the new control moments resulting from the over-all increase in size, and the outer wing panels were hinged to permit folding (partially in consideration of the fact the aircraft was to be aircraft carrier capable, and partially to alleviate difficulties resulting from storage space constraints). Hydraulically-actuated roll (outboard) and lift dumping (inboard) spoilers were added to the top mid-span surface of each wing (ahead of the flaps) in addition to the conventional trailing edge ailerons and flaps. Like the first-generation aircraft, however, aileron actuation remained strictly mechanical, with no boost. Other new features were a zero-zero capability ejection seat (some of the very early, super-lightweight, first-generation aircraft were not ejection seat equipped at all); larger retractable leading edge stall strips; accommod.ations for wing-mounted sensor pods (which later would be increased in size considerably to become what today are referred to most commonly as "super-pods"); and a strengthened landing gear and brake system to accommodate the resultant significant weight increases and associated dynamic loads. Significant emphasis was placed by Kelly Johnson and his design team on increasing the new design's range and endurance. This requirement was accommodated nicely by the improved volumetric efficiency permitted by the aircraft's vastly increased size. As it were, the first-generation aircraft had suffered from serious inherent fuel capacity limitations; with some 1,320 gals. being their maximum internal load, and another 200 gals. being permitted when carrying external underwing drop tanks, endurance rare-
Prototype U-2R, 68-10329: modified to SfGfNTICOMINT configuration. "Senior Spear" pods and comprehensive ventraf fuselage antenna farms tend to be commonplace on aircraft that are so equipped. Antenna shapes and sizes are dictated by the specific frequency ranges being monitored.
Another view of U-2R, 68-10329, with SIGINTICOMINT monitoring equipment. Antenna farms on aircraft thus configured sometimes can involve twenty or more individual antennas. Configurations are almost infinitely variable in terms of antenna shapes, sizes, and quantities, depending on monitoring objectives, ranges, source power, etc.
Lacking its standard dorsal VHF communications antenna, U-2R, 68-10330, apparently was utilized as a trainer by the AF fol/owing its transferral from the Agency. This aircraft, or a U-2R assigned the same serial number, later was destroyed during a 1977 fatal accident at Akrotiri, Cyprus.
Equipped with a "Senior Spear" pod system and related ventral antennas, U-2R, 68-10330, prepares for a SIGINTICOMINT mission from Akrotiri, Cyprus. The Akrotiri facility is operated by Great Britain and thus is considered an RAF base. "Snoopy" cartoon and early vertical fin cap configuration are noteworthy.
3
Another view of 68-10330, following SIGINTICOMINT mission out of RAF Akrotiri, Cyprus. "Senior Spear" pods are readily visible. Noteworthy are wing walkers lying on port wing tip to compensate for lack of starboard wing "pogo". Typical of U-2Rs and TR-ls, this aircraft bears no national insigne or markings, other than serial number.
The most unusual second-generation U-2 configuraton yet to have flown is represented by the two "C-Span III" aircraft. U-2R, 68-10331, is shown, equipped with its very distinctive dorsally-mounted data-link pod. COMINTISIGINT antennas are mounted in the aircraft's nose, its wing "super pods", and under its fuselage.
Iy exceeded ten hours. Though inflight refueling capability was added to a select few first-generation aircraft, the fundamental limitations posed by crew fatigue, poor altitude performance, and structural considerations remained only marginally tenable. The new, second-generation U-2R made up for the fuel deficiency in no uncertain manner. Its 2,950 gal. capacity, all contained in its integral wing tanks, totally eliminated the need for external tanks of any kind and concommitantly gave the aircraft considerably more endurance than the average pilot could accommodate under even the most ideal of circumstances. Missions in excess of 14 hours became possible, but rarely were ordered due to the debilitating physiological effects resulting from operating in a high-altitude environment while wearing a full-pressure suit in a decidedly cramped cockpit. Interestingly, the non-afterburning 17,000 lb. tho Pratt & Whitney J75-P-13B powerplant utilized on the upgraded first-generation U-2s and now chosen for the new aircraft, remained essentially unchanged (some first-generation aircraft, it should be noted, were powered by early, 1959-vintage J75-P-13A engines rated at just over 15,000 Ibs. th.). As it was sufficiently powerful to accommodate the needs of .the new aircraft, and it had benefitted considerably from its lengthy experience base and high reliability record, Lockheed's U-2 program propulsion system manager, Ben Rich, saw no need to change to a different powerplant. Additionally, Pratt & Whitney had continuously upgraded and tweaked the specialized' J75-P-13 series engine's design and had promised Lockheed improved cruise thrust performance at altitude in concert with the new aircraft's proposed mission objectives and operational schedule deadlines.
IN SERVICE: The initial operational use of the first twelve U-2Rs (six were assigned to the Agency and six to the AF) followed rapidly on the heels of the type's first flight. This had taken place, with Lockheed company test pilot-Bill Park in the cockpit of N-803X (68-10329), on August 28,1967, from North Base at Edwards AFB, California. The flight test program that followed proved of
4
limited duration due to the critical need, imagined or otherwise, to get the aircraft into service. Within six months of first flight, preparations were underway to fly operational missions, and during mid-1968, under the auspices of the Agency, the initial mission assignments calling for Chinese overflights were made. The first U-2R, following a non-stop delivery flight from Edwards AFB, arrived in Taiwan during the middle of the year. The AF followed suit during the fall of 1968 by sending its first U-2Rs to OL-20 at Bien Hoa, Vietnam and OL-19 at McCoy AFB, Florida. With the arrival at North Base of the remaining Agency aircraft from Lockheed, test flights and operational missions increased in intensity. Four of the Agency's six U-2Rs initially were based at North Base, while all six of the AF's aircraft eventually were assigned to Davis-Monthan AFB, Arizona, and from there, farmed out to various temporary OL's throughout the world. Nationalist Chinese U-2 operations, which centered on surveillance of mainland China, by the time of the advent of the U-2R, already had proven a major windfall for the U.S. intelligence community. As it were, the Agency first had conceived the idea of using the "free Chinese", as the ChineselTaiwanese were called, in an overhead reconnaisance effort that had begun as early as 1958. After a lengthy instruction program undertaken with AF supervision during 1958 and 1959 at Laughlin AFB near Del Rio, Texas, three Martin RB-57Ds were turned over to the Taiwanese government following ferry flights to Tao Yuan AB, near Taiwan. These aircraft, and later, a number of U-2As and U-2Cs, served the U.S. intelligence community with great success for the following nine years. Though significant losses were incurred, with a number of aircraft falling victim to Communist Chinese anti-aircraft operations, the end product of the effort made the losses politically palatable. The Nationalist Chinese U-2 operation again was uprated during 1968 when the first of two advanced U-2Rs was delivered to Taiyvan, non-stop from the U.S. These aircraft, representing at the time fully onethird of the entire Agency U-2R fleet, permitted significantly larger and more advanced Agency sensor payloads to be carried at significantly less risk over greater ranges and for longer periods of time.
Nationalist Chinese U-2R operations continued unabated, with both Agency and Nationalist Chinese pilots flying missions, until October 1974, when the Nixon accords (PACPRO) with the Communist Chinese led to a cessation of all U-2 Chinese overflight activity. All Agency U-2 operations, including the U-2R facility at Edwards AFB North Base, now were downgraded and shortly afterwards, (at least temporarily) phased out. AF activity, primarily in the form of training under the aegis of the Agency, had moved along rapidly at North Base, this facility serving as the primary U·2R operations site. The first two AF U-2R pilots, Jack Fenimore and Robert Birkett, also were trained here and worked closely with Agency pilots in a combined operationallflight test program exploring the new aircraft's capabilities. During 1966, the AF's first-generation U-2 operating units had been renumbered to bring them in line with other units in SAC. In consequence, the 4080th was redesignated the 100th Strategic Reconnaissance Wing and the 4028th became the 349th Strategic Reconnaissance Squadron. During 1970, the U-2s assigned to OL-20 achieved full squadron status as the 99th SRS, and on July 11, this unit was moved to U-Tapao in Thailand to undertake missions in support of the Vietnam war. During the intensive Linebaker /I aerial bombardment of North Vietnam during the closing months of 1972, U-2 surveillance missions were code-named Olympic Torch, and in concert with a strong contingent of RPVs (Remotely Piloted Vehicles-mostly Teledyne Ryan reconnaissance Firebee variants operated by a companion unit), took part in pre- and post-strike reconnaissance activity. For its work during 1972, the 100th SRW was awarded SAC's Paul T. Cullen Memorial Trophy and the Gen. John A. Desportes Trophy for best Reconnaissance Wing in the 15th Air Force. By this time, a significant percentage of 99th SRS flying time was being devoted to what now was being called the Senior Book program Which, with the help of the RPVs, was collecting COMINT (communications intelligence) from mainland China while remaining at high altitude outside Chinese airspace. Senior Book U-2Rs consequently were modified to "minimally manned" configuration with the pilot's role usually being confined to control and navigation of the aircraft while the payload was being exercised remotely. Remote control was made possible by the ANI UPQ-3 microwave command guidance system which also featured a real-time data link capability. The latter served as the transmitting system for relaying any pertinent signal intelligence intercepted by the aircraft's receiving sensors. The U-2Rs were tracked continuously via the AN/UPQ-3's transponder .feature at line-of-sight ranges approaching 400 miles from a ground or airborne station. This range could be extended considerably through the use of an airborne relay station. With the "minimally manned" configurations, the AF was able to track the U-2 accurately throughout its flight profile and correlate precise target positional information by utilizing real-time surveillance data relayed from the aircraft. The Vietnam war had proved relatively expensive for the squadron as at least two of its aircraft were attrited. As the U-2R had begun its operational career as a limited resource, these losses proved decidedly critical. Congressional funding constraints brought on by the war effort by now were drastically affecting virtually every military program and the U-2R was no exception. Construction of replace~nt aircraft was not likely to take place in the foreseeable future, and conversely there was to be no predicted let-up in demand for the U-2R's services. Senior book and associated sensor system missions occupied the 99th SRS steadily during the remainder of the war until, during April 1976, the unit finally was withdrawn from Thailand and dispersed to other OLs around the world. By the end of Senior Book the U-2R had set several records for type, inclUding the accumulation of no less than 600 hours flying time in one month (December 1974). During late 1972 and early 1973, the U.S. Navy
began to explore the U-2R's unique capabilities by borrowing from the Agency two U-2Rs (including 68-10339) in order to test the viability of its proposed EP-X (electronics patrol-experimental) mission. The actual modified aircraft initially were delivered to North Base at Edwards AFB during the spring of 1973, and the program ran for the following year with the majority of the test missions being flown off the southern California coast. Basically, the experimental Navy-funded effort sought to verify the effectiveness of several sensors, including a highly modified RCA X-band radar, a United Technologies AN/ALQ-110 electronic intelligence receiver, and an RCA RBV (return beam video) camera. All three were used in real-time monitoring of maritime movements from high altitudes. Later, the RCA X-band radar was removed from 68-10339 and replaced in the aircraft's Q-bay by a modified Texas Instruments AN/APS-116 forward looking radar. This latter installation was utilized to explore the effectivity of detecting submarine snorkels and periscopes from extremely high altitudes and over extremely long ranges. Resulting from this was a Lockheed study calling for the U-2R to carry the electro-optically guided Condor anti-ship missile. Interestingly, Navy involvement in the U-2 program had been on-going almost from the aircraft's very inception. During 1963, one of the first major firstgeneration U-2 modifications involved making three aircraft, temporarily assigned the civil registrations N-315X, N-801X, and N-808X, carrier compatible. This program had met with significant success and, under Project Seeker, had led to a number of operational carrier-based missions which were undertaken in order to obtain particulates for analysis from French nuclear weapons tests in the South Pacific. With precedent set by the first-generation aircraft, it was a foregone conclusion almost that the significantly more capable U-2R also would be given carrier capability. Trials did, in fact, take place not long after the type entered service. Under the auspices of the Agency, Lockheed demonstrated satisfactorily the U-2R's carrier suitability aboard the USS America (CVA-66) off the coast of Virginia during closely-guarded secret sessions taking place between November 21 and 23, 1969. Lockheed test pilot Bill Park conducted the initial U-2R carrier trials. In an interview for The Hook magazine (c/o The Tailhook Association, P.O. Box 40, Bonita, CA 92002), Park, along with Program Manager Fred Cavanaugh, and Ken Weir, chief U-2 test pilot for Lockheed, discussed some of the unclassified portions of the USS America tests: Park, a former AF fighter pilot, described his first venture into the world of carrier aviation: "The purpose of the landing was to demonstrate the carrier suitability of the U-2R. Having no experience in carrier landings, I first went to Pensacola for training in the regular T-2B student syllabus. I think the most impressive part of the program down there was the students themselves, making carrier landings and cat shots with so little flying experience. I remember after we came back from the carrier, some of the kids asked me what I thought of it. They, of course, were all excited. Well, here I was, the big time test pilot trying to maintain my image, so I said something like, 'Oh, nothing to it!' Hell, I'd never seen anything like a cat shot in my life!" Continuing on to the training and preparation phase with the U-2 itself, Park returned to California and worked with a Navy LSO (Landing Systems Officer) flying FCLPs (Field Carrier Landing Practice) while experimenting with various approaches, using flaps, no flaps, speed brakes, etc. A 45 0 flap setting finally was selected and an approach speed of 72 knots with 20 knots wind-over-deck was used for the USS America landings. The U-2 has no angle of attack indicator so the approaches were flown relying solely on indicated airspeed and "feel". The big day finally arrived for the first landing and the stage was all set with the actors in place. Support personnel, test pilot and machine were on the beach with the admirals, while other big brass and the ship were off the coast steaming under clear skies in a fairly rough Atlantic sea state. All was ready. Park
manned up and launched for the big event, a culmination of many months planning and preparation. Arriving overhead at his Charlie time, he began his first approach. All eyes were focused on the broad-winged black bird as it gracefully slid into its approach. Suddenly Park pulled up and circled, radioing his waiting audience that he was returning to the beach for some additional "checks". Unknown below, it seems that someone had forgotten to remove the locking pin from the newly installed tailhook, prior to launch. A quick turnaround soon had the U-2 back over the ship and a rather anticlimactic series of landing (deck runs averaged approximately 300 ft.) and waveoff demonstrations was made. "I flew standard approaches and took a cut for the landings with no problem", stated Park. "The aircraft demonstrated good waveoff characteristics and I felt at the time that landings could be made without a hook. We required very little special handling and even took the airplane down to the hangar deck. The outer 70 inches of the Wings fold and by careful placement on the elevator we could get it in with no problem. One of the things that amazed me was the stability of the ship. The sea was fairly rough but the ship was as smooth and stable as could be". Lockheed and the various supporting agencies involved declared themselves satisfied with the carrier trial results and the aircraft then became officially carrier suitable. Accordingly, Lockheed was given a small contract to develop an arresting gear field modification kit, consisting of an arresting hook and associated fairings, rear landing gear cable deflectors, wing tip skid extensions, and wing tip skid cable deflectors. Additionally, a cockpit right console switch panel was developed that extended the tail hook upon pilot command (this later became a standard fit on subsequent production U-2Rs). During 1974, AF operations with the older U-2 models began to phase down as ex-Agency U-2Rs were absorbed to replace attrited aircraft. The new model permitted signficant improvements in virtually
every facet of the program, including deployability and support of the reconnaissance objectives of the Joint Chiefs of Staff. It remained, and remains, constantly in use.
MISCELLANEOUS OPERATIONS: During August 1970, two aircraft were sent to monitor an uneasy cease fire in the Middle East. Flights initially were mounted every two or three days, but were suspended during the first week in November following Egyptian objections. During midNovember the aircraft returned home. Three years later, follOWing the October 1973 war, the Middle East surveillance operation was resumed with the approval of both warring sides. The war's aftermath had resulted in a peace-preserving buffer zone and it was requested that U-2s be used to safeguard against unwarranted activity therein. The monitoring Agency U-2R unit was based at RAF Akrotiri, Cyprus, from where it also proved convenient to monitor other suspicious activity in the region. During 1974, the 100th SRW took over U-2R Middle Eastern operations and the following year, began monitoring the Soviet build-up in Somalia following discovery of same by a 99th SRS U-2R operating out of Diego Garcia. By the time of its twentieth anniversary during 1976, the 100th SRW and its predecessor, the 4080th SRW, had notched up six Outstanding Unit Awards. This enviable record went with it during March as it moved from Davis-Monthan AFB, Arizona, to its new home at Beale AFB, California. As part of a lengthy series of post-Vietnam budget cuts, the AF had elected to consolidate its unique stable of U-2 and SR-71 strategic reconnaissance aircraft at Beale under the 9th SRW umbrella; the old wing and squadron numbers (1 OOth and 349th/350th, respectively) now were re-assigned to KC-135 units already at Beale and the relocated U-2 squadron became the
"C-Span III" U-2R, 68-10331, has unusual tail markings in concert with its unusual dorsally-mounted data-link pod. The pod is relatively narrow in cross-section, thus providing minimal drag and aerodynamic interference. The "super pods" also are modified to accommodate mission-dedicated systems.
--
U-2R, 68-10332, following its Agency tenure (and used presumably for Chinese overflights), was released to the AF. Still assigned to the 9th SRW, it apparently is utilized primarily for training while retaining an operational capability, if needed. It is seen during a May 1983 airshow.
5
-
U-2R (probably 68-10332), during operations out of Osan AB, S. Korea. It is equipped wifh a LOROP camera-equipped "Senior Open" nose and SIGINTICOMINT optimized "super pods" mounting a large array of obliquely-oriented sensor antennas.
U-2R, 68-10336, during a November 1976 airshow at Davis-Monthan AFB, Arizona. This was supposedly the second of the first six aircraft delivered to the AF. It appears now to be utilized primarily for training and pilot conversion work.
U-2R, 68-10336, became the first ASARS-2 aircraft. The modification involved a new nose cone and associated structural assemblies, new "super pod" systems, and internal changes including the installation of a celestial navigation system.
The addition of the ASARS·2 system to the U-2R increases the aircraft's over-all length by nearly five feet. A heat exchanger is in the large protruding intake fairing near the nose tip. A navigation system antenna fairing protrudes aft of that.
99th SRS. This activity officially was completed during October 1976. Now that the U-2 squadron was established at Beale AFB alongside that for the SR-71 , it became significantly easier to identify which missions were most suitable for each of the two mission-similar, but decidedly performance-dissimilar, aircraft. As the AF now was beginning to lose interest in the complex and costly Compass Cope RPV program, the prospects for increased U·2 employment began to rise. Interestingly, at this time, Lockheed, in a neardesperate attempt to keep the U-2R production line open, proposed to the RPV-enamored AF, a "U-2R RPV" that, it was presumed, could compete with Teledyne Ryan's and Boeing's forthcoming Compass Cope submissions. Primarily because it was based on an aircraft that already was in production, Lockheed argued that their "U-2R RPV" could be built for substantially less money than either of its
competitors, and that it could accomplish the proposed mission substantially more effectively. Though four Compass Cope prototypes eventually were built (two YQM-98As by Teledyne Ryan and two YQM-94As by Boeing) to meet the requirement, the program died a seemingly premature death. Along with it went the U-2R RPV and any hope, serious or otherwise, that a contract for Lockheed might be forthcoming. The U-2R RPV was, in fact, somewhat of a red herring. In effect, the U-2R production program was in direct competition with the Compass Cope program and any funding successes garnered by the latter would almost certainly have killed long-term U-2R funding. Lockheed elected not to take any chances; by proposing their drone U-2R, they increased their options and concommitantiy gave the AF a strong argument in favor of keeping the manned U-2R program alive. In the end, Lockheed won, and the Com-
pass Cope program was aborted. During August 1976, the 99th SRS began detaching U-2Rs to RAF Mildenhall in the United Kingdom with increasing regularity. This detachment became permanent during 1979, with a single U-2R (and later, two SR-71As) kept on station at all times. This aircraft, usually seen configured for ELI NT, TEllNT, and/or COMINT surveillance, flew missions from Mildenhall at very regular intervals. Many of the missions lasted in excess of 8 hrs. and involved peripheral flights along the borders of the various European Communist bloc countries and the Soviet Union. As the Iranian crises deepened during 1979, and the U.S. began expanding its military presence in the Indian Ocean, a U-2R was detached to Diego Garcia, and there utilized in the Iranian and Indian Ocean surveillance role. Direct overflights of a number of sensitive areas followed, and the information gathered proved of inestimable value in making decisions of both political and strategic importance.
THE TR-1 PROGRAM:
Because of their need to know precisely where they are located at any given moment, ASARS·2-equipped aircraft are provided celestial riavigation systems. The CNS optical unit is visible aft of the cockpit as a chrome-like circular port. It is possible to position a CNS-equipped aircraft to literally within feet of a required destination point.
6
A newly perceived need for increased TAC reconnaissance capability in Europe during the mid-1970s eventually led the Secretary of Defense to direct the AF to formulate a formal requirement for a European tactical reconnaissance platform. The AF responded with a proposal to modify much of the extant F-111 tactical fighter fleet into reconnaissance versions. TAC's reaction to this proved decidedly negative, and after exploring other options, concluded that the U-2R, with several times the F-111 's range and loiter capability and only one-third its cost, might prove a significantly more viable alternative. The AF Chief of Staff, when presented with the U-2R proposal, reacted quickly and decisively. Funds for the tactical U-2R would be made available, and because of the negative pUblicity surrounding the original designator, the new aircraft would be given a new TR-designator more in line with its tactical mission objectives. In one bold step, the Chief actually had solved two problems: he had eliminated a threat to the AF's F-111 fleet; and he had forced new blood into the declining U-2R production program. During early 1978, a year after it had been proposed to the AF, the first details of the new TR-1A (TR = Tactical Reconnaissance) program were released to the public. The TR-1A, a proposed new production
--~U-2R, 68-10337, displayed during an airshow at Cannon AFB, New Mexico during October 1977. Aircraft is equipped with original vertical fin cap assembly with its associated fuel dump tube extension.
U-2R, 68-10337, transient at Offutt AFB, Nebraska. Markings are virtually non-existent, with the exception of the red serial number on the vertical fin. Original tip-skid configuration, without RHAW antenna fairings, is noteworthy.
U-2R, 68·10337, during August 1982, equipped with a full-spectrum SIGINTICOMINT antenna farm. Some 20 antennas are visible in this view; many others, including those faired-in to the flat face of the port "super pod" are not so easily discerned.
U-2R, 68-10338, essentially is barren of electro-magnetic sensors, but apparently is equipped with optical system capabilities in its Q-bay and nose cone compartment. Photo probably was taken relatively early in the history of the U-2R program.
U-2R with minor changes in secondary internal systems, was to be adapted to carry a Hughes UPD-X Advanced Synthetic Aperture Radar System (ASARS-2) with a range of well over 50 miles. Optimized for use in the European theatre, it would offer excellent high-resolution radar·generated imagery that could provide battlefield commanders with detailed tactical intelligence in all weather conditions. Unit delivery costs were estimated to be $12.5 million, less sensors and related equipment. Just over a year later, during July 1977, Lockheed won a full-scale four year development contract for the passive Precision Emitter Location Strike System (PLSS). This was a direct descendant of the earlier Pave Onyx and Pave Nickel programs that promised tremendous increases in over-all speed, accuracy, and receptor capability. Additionally, thanks to ·advances in solid-state micro-electronics, it was a substantially lighter system and therefore less burdensome to its carrier aircraft. In service, PLSS would require the services of several TR-1 As orbiting over friendly territory as they gathered hostile emissions and transmissions. On November 16,1979, in response to the TR-1 contract and after nearly a 12-year production lapse, the U-2R was reinstated as a production aircraft by the AF. The initial contract award, for $10.2 million, called for the refurbishment of Lockheed's Palmdale, California (AF Plant No. 42, Site 7) facility and the old U-2R production tooling that had been placed in storage at Norton AFB, California during 1969. New and replacement tooling was to be manufactured as required. The actual production contract, for $42.4 million, calling for an initial batch of two TR-1As for the AF and a single ER-2 for the NASA, was announced less than a month later. This was followed by an AF announcement of intentions to buy 10 TR-1s during 1982, four during 1983, and five during 1984, with a total requirement for 35 by the time production ended. Not widely publicized, but decidedly noteworthy was the fact that of the 35 aircraft total estimated for acquisition under the 1979 announcement, at least 10 were scheduled to be U-2Rs. These aircraft, unlike the TR·1s involved, were, and remain, very sensitive. It is assumed their acquisition was related directly to the U.S. intelligence community and that they therefore were ordered as replacements for attrited aircraft. There also remains the possibility of U-2R use by
non-indigenous intelligence services including the Nationalist Chinese, the West Germans, and Israel. Interestingly, Lockheed discussed the possibility of supplying U-2Rs to the Royal Air Force during 1982 at a reported unit cost of $20 million, less sensors. Having been awakened by its past learning curve experience with the first-generation U-2 series, the AF elected to purchase two dual control training versions of the TR-1 for use by the 9th SRW. These aircraft, designated TR-1 B, were to join the two U-2CTs for what originally was to have been the 5th SRTS after the old SAC 9th Wing unit. This designator was waived, however, when it was decided to revive the 4029th number from 4080th SRW days. At a later date, the name Dragon Tamers was chosen for the new 4029th SRTS. Following a formal, publicly-attended roll-out from Lockheed's Palmdale facility on July 15, 1981, the first prototype TR-1 A (80-1066) took to the air for the first time on August 1, with Lockheed company test
pilot Ken Weir at the controls. Pilot transitional training using the first two aircraft was undertaken later that year, also at Palmdale, and by April 1982, six TR-1As had been delivered to Beale AFB. The first two-seat TR-1 B was completed at Palmdale during January 1983, and following preliminary ground checks, was flown for the first time on February 23, with Lockheed company test pilot Art Peterson at the controls. Unlike the two U-2CT firstgeneration trainers which were built-up from U-2A single-seaters, both TR-1 Bs were pu rpose-built with two seats for the training role. At the end of March ~ 981, the UK government announced that a TR-1 squadron would be based at RAF Alconbury in England from 1983. The support structure of the new outfit, in the form of the 17th Reconnaissance Wing and the 95th Reconnaissance Squadron (with the 9th serving in the support role), officially had come into being on October 1, 1981. On February 12, 1983 the first European-based
U-2R, 68-10337, showing a variation to the "Senior Spear" pod configuration optimized for COMINTISIGINT work. Antennas under the fuselage center section and "super pods" are complemented by rarely seen wing root section antennas. Noteworthy is flat dielectric panel on "super pod" forward section.
7
OFF Ull
u1 1
rOller
&qt
,llll~
Ulfll
U-2R, 68-10338, during a transient stopover at Offutt AFB, Nebraska. It is configured for the "Senior Book" program and has what appear to be four UHF antennas mounted dorsally, along with the standard combined ADF whip and VHF antennas.
U·2R, 68-10338, departing Offutt AFB. Main gear assembly is just beginning its retraction sequence. Tail wheel, though fully extended, has not yet started its forward movement. Ventral antennas accommodate frequencies not addressed by dorsal units.
"Senior Book" U-2R, 68-10338, at RAF Mildenhall during July 1977, almost certainly is a COMINT configured aircraft. Ventral antennas appear to be earmarked for frequencies outside the normal UHF communications channels.
U-2R, 68-10338, at Osan AB, S. Korea. Still configured as a "Senior Book" aircraft, it mounts four UHF relay antennas dorsally and a single UHF antenna as part of the system, ventrally, just ahead of the lower Q-bay hatch.
TR-1A, 80-1068, was flown from Beale AFB to RAF Alconbury logging nearly 14 hrs. of flying time and almost 6,000 mi. enroute (a very rel/ealing feat of extraordinary single-engine aircraft performance and pilot endurance). This aircraft, later joined by 80-1070, and which replaced initially the single Mildenhallbased U-2R-and though operating in Europe and therefore normally falling under the jurisdiction of USAFE-nonetheless remained SAC-controlled. For the first two years of its existence, the 17th RW had only three aircraft and nine pilots assigned. By 1985, however, exigenices generated by world events dictated increased monitoring of Iron Curtain countries and accordingly, a steady buildup in hardware was initiated, this eventually resulting in no less than ten TR-1As being stationed at Alconbury along with
a 500-strong wing personnel roster (eventually, some 18 TR-1As are scheduled to be assigned to RAF Alconbury). Interestingly, in addition to the latter, there also was a small contingent of SIGINT specialists under the control of a separate unit, the 6952nd Electronic Security Squadron. The RAF Alconbury operation is claimed to cost approximately $1 million per year. To date, four commanders have been in charge, these including (in order) Col. George Freese, Col. Thomas Lesan, Col. James Wrenn, and Col. Art Sabowski. All are former U-2 pilots. Plans to accommodate equipment and personnel increases are being carried out in the form of taxiway and runway improvements. A second, short runway of 4,650 ft. length has been built to permit crosswind
U-2R, 68-10339, with an extensive passive receiving antenna farm in its two "super pods". These antennas tend to be highly directional and thus justify the need for the angled flat dielectric "super pod" nose panel. This particular aircraft later was modified to become one of the two EP-X testbeds.
8
activity in wartime, and new structures have been built to house equipment and personnel. In addition to RAF Alconbury, most U.S.-occupied airfields in Britain, some RAF airfields, and some U.S.-occupied bases in Spain and West Germany are receiving special ground handling equipment that is optimized to service U-2Rs and TR-1s. This equipment, which consists most importantly of the aircraft's specialized pogo-type outrigger landing gear, is to be utilized in emergency situations when U-2Rs and TR-1s are forced to land at airfields other than RAF Alconbury. Beyond conventional operations which include missions and miscellaneous training sorties, once every year further training and refresher work is carried out in a two-seat TR-1 B (two of these presently are available). This aircraft is flown over from Beale AFB for visits which normally last approximately two weeks. Following arrival of the first two TR-1As, the 17th RW's first task was fo take-over the communications and electronic intelligence (COMINTIELlNT) missions flown previously by the single U-2R based at nearby RAF Mildenhall under the aegis of Detachment 4, 9th SRW. The 17th RW has provided little public informatio.n pertaining to these missions, and virtually all of the sensor equipment carried in the aircraft's miscellaneous nose and fuselage bays, and "superpods" remains classified. However, the data collected during high-altitude flights across Europe (which can last for over 9 hours) is typically analyzed in the first instance by SAC and by the Electronic Security Command. The latter's mission includes the collection and analysis of enemy command, control, and communications intelligence. In the latter role, the TR-tA takes its place alongside other SAC-operated platforms such as the Lockheed SR-71A and the various reconnaissance and electronics intelligence versions of the Boeing C-135. In addition to the COMINT/ELINT missions, the 17th RW retains the capability to undertake photographic reconnaissance sorties. These flights usually are conducted with any of a number of long-range oblique-capability cameras mounting lenses of very high acuity and extremely long focal length.
U-2R, 68-10339, after nearly eight years of service, on display during an August 1976 airshow at Davis Monthan AFB, Arizona. Aircraft has been equipped with radar warning receiver antennas in wingtip pods. Blotchy paint pattern is noteworthy.
With wings sagging from fuel weight, COMINT configured U-2R, 68-10339, taxies out at RAF Mildenhall for an early morning takeoff. "Super pods" contained the majority of the aircraft's sensor antennas and related systems.
U-2R, 68-10339, sans "super pods" and apparently immediately prior to delivery from Lockheed's Palmdale, California facility. Noteworthy is the fact this aircraft does not have the port wing trailing edge infrared sensor ball.
U-2R, 68-10339, configured with "Senior Spear" Phase IV sensor pods. Starboard pod mounted unfaired blade antennas and port pod had sensor cones mounted in large ventral canoe. Additional antennas were mounted ventrally under fuselage.
Another view of U-2R, 68-10339, with "Senior Spear" Phase IV sensor pods ("super pods'}. L-52 data-link antenna system fairing is readily discernible under fuselage . empennage section. Condensation under wings indicates fuel tank locations.
"Senior Lance" program involved the installation of a Goodyear synthetic aperture radar in the Q-bay of U-2R. 68-10339. Flight testing was undertaken during early 1976. Antenna was mounted in an inflatable rubberized radome. Entire system was optimized for the spotting and documenting of surface targets that included everything from buildings and tanks to submarine periscope!,. The program apparently was overtaken by ASARS-2.
U-2R, 68-10339, was one of two to be modified into EP-X testbeds for maritime patrol work. Changes were subtle, but distinctive and included a slightly shorter and blunter nose radome to house a. new radar, and reconfigured wing pods.
Distinctive Navy markings added to EP-X uniqueness. Noteworthy in this view are revised empennage data-link antenna fairing. cooling system intake under cockpit area, abbreviated wing pods, and reconfigured nose radome.
9
Abbreviated wing pods appeared to be identical in configuration, though their actual purpose remains classified. Revised nose radome configuration accommodated a search radar with an articulated dish. This unit was optimized for sea patrol missions and could identify small surface targets at significant ranges.
Contrast variation between the numbers "103" and "40" provide ample evidence that U-2RfTR-l serial numbers are indeed changed at random. In truth, the changes are quite purposeful-with no known instances of redundancy. The engine exhaust cover indicates this aircraft originally to have been serialed 68-10338.
U-2R, 68-10340, during an October 1976 airshow at March AFB, California. It has few outward indications of being equipped with sensors of any kind. The only visible antennas are primarily UHF or VHF or ADF in nature. The wingtips remain unmodified to radar warning system antenna standard. Only empennage data-link fairing is visible.
U-2R, 68-10340, during a July 1979 transient stopover at Offutt AFB, Nebraska. Markings and equipment appear to be extremely basic and there is every indication this aircraft was being used for training or pilot transition work at the time. U-2Rs and TR-ls always are towed using tail wheel assembly.
10
The RAF Alconbury operation provides a dramatic .improvement to the reconnaissance capabilities within . IJSAFE and NATO. To realize this potential, the 17th SRW is awaiting delivery of the Hughes Advanced Synthetic Aperture Radar System (ASARS-2) which will accommodate battlefield reconnaissance needs. It also remains modestly optimistic that approval eventually will be given for production of the Lockheed PLSS. Prototypes of the Hughes ASARS-2 have been flight tested on various U-2R and TR-1 aircraft for nearly half a decade. The synthetic aperture radar technology embodied in the system, surprisingly, is not new. Early systems, such as the first combat SAR, the AN/UPD-1, was fielded by the U.S. Army aboard a Beechcraft U-8D Seminole light twin as early as 1960. However, it wasn't until the advent of digital processing techniques and their associated high speed that SAR systems began to offer serious advantages in the reconnaissance role. The current SAR state-of-the-art effectively is represented by the Goodyear AN/UPD-4 system and its derivatives, which are fitted to Marine Corps RF-4Bs, AF RF-4Cs, and to German and Japanese RF-4Es. This system is capable of providing map-type radar imagery with a claimed 10ft. resolution, out to distances at least 30 miles abeam the carrier aircraft's flight path. The imagery is captured on photographic film within the SAR's film magazine system and saved for processing later on the ground. Alternatively, the radar signals can be data-linked from the aircraft in flight to ground stations in order to provide immediate information to field commanders .. The Hughes-built ASARS-2, which is the latest perturbation of the ASARS concept, according to Lt. Gen. Thomas McMullen of the AF Systems Command, "represents a quantum jump over currently operational systems". Development began during 1977 with the system originally being designated UPD-X. Very little information pertaining to performance of the ASARS-2 radar has been revealed, but it is clear that the range, resolution, and area coverage are excellent. One estimate is that a high-orbiting ASARS-2I TR-1 could fly 30 miles behind the forward edge of battle area (FEBA) and still return near-photographic quality radar imagery of virtually anything from armored formations to mobile headquarters up to 50 miles into enemy-held territory. One advantage of ASARS-2 over conventional systems is that it can provide users with finished reconnaissance imagery within minutes. Additionally, according to Lt. Gen. McMullen, "the avionics system architecture enables several sensors to provide real-time cues which tell the radar where to look". As part of this capability, the unit provides wide-area or high-resolution spot coverage on an instantaneously interchangeable basis. Moreover, it can provide images of areas that because of "particular boundary configurations, cannot currently be mapped at all". What ASARS-2 is to the Army, PLSS is to the AF. Like ASARS-2, PLSS can trace its origins back to the early 1970s and similarly, can trace its refinement to state-of-the-art microelectronics technology. The lineage of PLSS started with the AF's Pave Onyx program, whereby the service sought to acquire a reliable counter to North Vietnam's SA-2 surface-to-air missiles during the Vietnam war. In the face of attacks by Wild Weasel configured anti-radiation aircraft using missiles which homed in on radiation from the missile battery, the enemy operators developed the tactic of switching their systems on only at the last possible moment and for the least amount of time necessary for the search and track function to be accomplished. In response what the U.S. military needed was a system which could locate the SAM radar units and attack them without resorting to the haphazard and dangerous "cat and mouse" Wild Weasel mission tactics. Acco'rdingly, the AF and IBM Corporation created the Airborne Location and Strike System (ALSS) which was tested at the White Sands Missile Range during 1972. During the tests ALSS detected all eight emitters and fixed the position of six to within 75 ft. ALSS never was deployed in Vietnam, but it continued to receive long-term development funding.
During 1975, five SAC Lockheed U-2Cs, equipped with ALSS, were deployed to RAF Weathersfield for a two-month trial of the equipment in the European environment (during the same year, the more advanced PLSS program received its first funding). The aim of the tests was to improve ALSS capabilities by providing wider coverage, better signal sorting and data processing, and better maintainability and reliability. PLSS would aim to locate continuous-wave, as well as pulse emitters. Competitive contracts were let, and two years later, it was announced that a team led by Lockheed Missile and Space Company had won, and would be undertaking full-scale development. Other contractors on the team included ESystems, Collins, Control Data, Harris Electronics, Motorola, and Sperry Univac. The TR-1 became the PLSS transport almost by default. During the 1975 time-frame, no commitment to any particular platform had been made, and only the Compass Cope RPV program, with its proposed high-altitude and long-endurance capabilities, was considered a strong prospect. Compass Cope was cancelled during the autumn of 1977, however, and a few months later Lockheed received approval for initial TR-1 production. The PLSS and TR-1 programs proceeded in parallel, but it was not always apparent the two would meet. The difficulty lay primarily in funding constraints levied on the PLSS system itself. Its complexity was to prove its achilles heel, and to date, no firm production commitment on behalf of the AF has been made. The PLSS system program office (SPO) was located at Wright-Patterson AFB, Ohio and drew its funding and support from the AF Systems Command. Due to SAC involvement in providing pilots, and TAC involvement in accommodating airframe and support personnel needs, the PLSS SPO interfaced directly with the two commands. Development and testing of the system and its TR-1 A platforms was accommodated by the responsible test organization (RTO) at Nellis AFB, Nevada and involved TR-1As from Beale AFB. Later, initial operational testing, also at Nellis with Beale TR-1As, brought together personnel from the Communications and Electronic Security commands and from the Air Training and Operational Test and Evaluation centers. Similar activity took place between the AF and Lockheed Missiles and Space Co.'s Austin, Texas division, which was the prime contractor. Lockheed had thirteen different subcontractors and a considerable number of suppliers and vendors involved in the program, as well.' PLSS funding has been reduced significantly over the past several years, and only five aircraft (one of which is a spare) have been PLSS configured. The first PLSS-equipped aircraft flew during late 1983, and four additional PLSS equipped U-2Rs followed shortly afterwards. The latter began full-scale test flights at Beale AFB during September 1984. During 1987, the consensus of opinion was that the program effectively had been shelved; to date, no changes in program status have become apparent. Basically, PLSS works on the same principle as ALSS. Intercept receiving systems are carried aloft by three aircraft which set up racetrack patterns in friendly skies parallel to the enemy front line. The position of each aircraft is determined precisely by its reference to ground-based DME transponders. When enemy electromagnetic emissions are picked up by the receivers, the point from which they emanate can be fixed by a sophisticated triangulation process, whereby the time taken for the emissions to be intercepted by each aircraft in turn is measured and compared. This is called the "time-of-arrival" (TOA) technique, and it is complemented by "direction-of-arrival" (DOA) measurements. The sophisticated processing job of comparing the minute differences between the two is accommodated by a ground station to which the data is down-lined from each aircraft. The ground station can then direct a strike aircraft towards the target, and it can derive precise navigation data enroute from anyone of the three cruising TOA/DOA aircraft. The great advantage to the PLSS system is that the radiating target can be attacked even after it has
U-2R, 68-10340, touching down at Osan AFB, S. Korea following an operational mission. Aircraft is equipped with "Senior Spear" BIGINT/COMINT pods, radar warning antennas on the wingtips, and the unit logo on the vertical fin. Landing the U-2R remains perhaps the most difficult part of any mission.
The "Senior Spear" pod arrangement remains the most visually impressive of the numerous pod options. Asymmetric configurations often are carried to accommodate antenna design variations; blade antennas can be mounted externally, but the miscellaneous cone-like receiving antennas must be faired.
"Senior Open" U-2R with LOROP camera in its nose taxies out in preparation for departure from Osan AB, S. Korea. Antenna farm, as is the case with almost all ELlNT-configuredU-2Rs, is extensive. Antennas on this aircraft are mounted under the "super pods", the center fuselage, the wing root section, and the empennage.
Under the auspices of the Central Intelligence Agency, at least two U-2Rs effectively were placed on loan with the Taiwanese government. Operating from Nationalist China, these aircraft were utilized to monitor military and related activity in Communist China. Both US. and Nationalist Chinese pilots flew the missions.
11
1 111 U-2R 68-10339 Assigned to the 9th SRW. First noted during 1969 while assigned to the 100th SRW. Converted under Navy contract to become U-2R1EP-X testbed. Later used as TR-1 systems testbed and flown from RAF Upper Heyford. 1 121 U-2R 68-10340 Assigned to the 9th SRW. First noted during 1969 while assigned to the 100th SRW. 1 1 U-2R 68-10341 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10342 Serial number thought assigned to U-2R but never utilized except for deception. Noted during a single 1975 sighting at DavisMonthan AFB, Arizona. 1 1 U-2R 68-10343 Seriai number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10344 Serial number thought assIgned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10345 First noted during 1975 while assigned to the 100th SRW. Was first U-2R to visit RAF Mildenhall when it staged through twice emoute to and from Akrotiri, Cyprus (January, 1975; and Mayor June 1976). Was observed again during June 1977, but has not
Markings were minimal on Nationalist Chinese U-2Rs. This aircraft bears what is apparently the Nationalist Chinese serial number "3925" on its vertical fin. Aft of the port airbrake is a small Nationalist Chinese national insignia. No other markings are discernible. Both Agency-owned U-2Rs were returned to the U.S. following Nationalist Chinese use.
Another view of "3925" during the course of a training flight over Taiwan. For the Agency, the Nationalist Chinese operation was an ideal arrangement. The U.S. needed intelligence from betrind the "Bamboo Curtain" and the Nationalist Chinese were willing to accept the responsibility-and thus, the liability.
been switched off. It has been said that the positior, of such emitters can be located from a single pulse. PLSS therefore offers an improvement over the only other operational system of this kind in the AF inventory, the Litton Industries AN/ALQ-125 Tactical Electronic Reconnaissance System (TEREC)-which was fitted to a limited number of RF-4Cs during the late 1970s. TEREC, unlike the multi-faceted PLSS, has to track the emitter long enough to obtain a series of direction-finding fixes. PLSS has much to offer. It has all-weather capability, and can classify larger numbers of emitters by type (TEREC is limited to dealing with five emitters per mission). According to Lt. Gen McMullen, PLSS brings to the ground electronic war what AWACS has brought to the air electronic war. Interestingly, PLSS has developmental potential significantly beyond its extant capabilities. As well as guiding strike aircraft toward a target, it has the potential to directly control stand·off weapons such as the DME-guided version of the Rockwell GBU-15, thus allowing the strike aircraft to "launch and leave". This reduces the launch aircraft's window of vulnerability while eliminating any reduction in accuracy. The PLSS operating envelope has not been revealed officially, but estimates of a 200 mi. range appear to be approximately correct. This would allow the TR-1 racetrack pattern to be set up well behind the FEBA still while providing coverage of the enemy air defense network in some depth. The Army continues to explore PLSS's capability to provide data on emitters which are of interest to ground troops. The ground station (or Central Processing System, as it is known) may be made mobile,,.,,ather than being located in a protected shelter, as is the present plan. This improves the system's survivability and versatility, as far as the Army is concerned, but does not yet provide justification for the significant amount of funding that would be required to place it in operational service. The decision to effectively cancel PLSS forced changes in the planned TR-1 procurement quantity. An original target of 35 single-seat TR-1 As was reduced to 26, with the last three procured using FY 1987 funds. In addition, two TR-1 B trainers were 12
delivered to Beale during 1983, and NASA received their ER-2 (Earth Resources - 2) during 1981 (to supplement their two U-2Cs at Ames Research Facility at Moffet Field, California; these aircraft, 56-6681 and 56-6682, now have been permanently retired with one to serve as a gate guardian at Moffett, and the other being reserved for museum display duties). A third TR-1 B and a second ER-2 now are being built and these two aircraft almost certainly will be the last of the U-2RITR-1 family to be manufactured. Both are expected to be delivered during late 1988. The follOWing list is the most accurate yet assembled documenting all known U-2R1TR-1/ER-2 aircraft to roll from Lockheed's Palmdale facility:
been seen since. Now assumed to have been a spurious serial
number assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10346 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10347 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10348 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10349 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10350 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10351 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10352 Serial number thought assigned to U-2R program but never actually utilized except for deception. 1 1 U-2R 68-10353 Serial number thought assigned to U-2R program but never actually utilized except for deception. 80-1063/N-706 063 1 ER-2 Effectively TR-1A prototype. Delivered to NASA Ames on June 10, 1981.
064 6 TR-1B 80-1064 Delivered initially to Beale AFB where it serves with 9th SRW. 065 7 TR-1B 80-1065 Delivered initially to Beale AFB where it serves with 9th SRW.
1 21 U-2R 68-10330 Assigned to the 9th SRW. Wlo December 7, 1977 at Akrotiri, Cyprus. First noted while serving with the 100th SRW during 1968.
066 2 TR-1A 80-1066 Delivered initially to Beale AFB where it serves with 9th SRW. Possibly to be converted to U-2R configuration during late 1988. 067 3 TR-1A 80-1067 Delivered initially to Beale AFB where it serves with 9th SRW. 068 4 TR-1A 80-1068 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. Possibly to be converted to U-2R configuration during late 1988.
1 31 U-2R 68-10331 Assigned to the 9th SRW. First noted while serving with the 100th SRW during 1969. Presently "C-Span III" configured aircraft.
069 5 TR-1A 80-1069 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW.
Article No. Build No.
Type
Serial No. "/Clvll Registration
68-10329/N-803X 1 11 U-2R Assigned to the 9th SRW. First noted while assigned serving with the toOth SRW. Aircraft equipped with ELiNT system initially, later served as development aircraft at Lockheed.
1 41 U-2R 68-10332 Assigned to the 9th SRW. First noted during 1973 while serving with the 100th SRW. Assigned to the 1130th ATTG until the unit was disbanded. 51 U-2R 68-10333 1 Assigned to the 9th SRW. First noted during 1970 while serving with the 100th SRW. 61 U-2R 68-10334 1 Assigned to the 9th SRW. Wlo August 15, 1975. First noted during 1974 while serving with the 100th SRW.
7? U-2R 78-10335 1 Assigned to the 9th SRW. First noted during 1979. 1 . 81 U-2R 68-10336 Assigned to the 9th SRW. First noted during. 1972 while serving with the 100th SRW. Baled to Lockheed for ASARS tests. 1 91 U-2R 68-10337 Assigned to the 9th SRW. First noted during 1971 while serving with the 100th SRW..... 1 101 U-2R 68-10338 Assigned to the 9th SRW. First noted during 1973 while serving with the 100th SRW.
070 8 TR-1A 80-1070 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. Possibly to be converted to U-2R configuration during late 1988. 071 9 TR-1A 80-1071 Delivered initially to Beale AFB where it serves with 9th SRW. Presently "C-Span III" configured aircraft. 072 10 TR-1A No information available.
80-1072
073 11 TR-1A 80-1073 Delivered initially to Beale AFB where it serves with 9th SRW. 074 12 TR-1A 80-1074 Delivered initially to Beale AFB where it serves with 9th SRW. 075
131
U-2R
1
076 141 U-2R No information available.
1
077 151 TR-1A No information available.
80-1075
No information available.
TR-1 A 80-1076 078 161 Delivered initially to Beale AFB where it serves with 9th SRW.
079 171 TR-1A 80-1077 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW.
08D 18? TR-1A 80-1078 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. 081 19? TR-1A 80·1079 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. 082 20? TR-1A 80·1080 Delivered initially to Beale AFB where it serves with 9th SRW. Now PLSS configured. 083 21? TR-1A 80·1081 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. 084
22?
TR-1A
80-1082
No information available.
085 23? TR-1A 80-1083 Delivered initially to Beale AFB where it serves with 9th SRW. 086 24? TR-1A 80-1084 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. 087 25? TR-1A 80-1085 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. 088 26? TR-1A 80-1086 Delivered initially to Beale AFB and from there assigned to RAF Alconbury where it serves with 17th RW. 089
271
U-2R?
?
No information available.
090 28? U-2R? No information available.
?
throughout the world later were credited as reduced quality enlargements taken by U-2-transported optical sensors. The U-2RrrR-1 program has not been without its fair share of accidents. A series of three crashes inside five months (two U-2Rs in Korea and a single TR-1A at Beale) led to a six week grounding of all U-2RrrR-1 series aircraft during October 1984. This resulted in serious intelligence gaps for NATO commanders as they had become accustomed to the near-real-time downlinking of information to ground stations in West Germany. Since 1985, the data gathered by the AF's U-2RrrR-1A fleet has been supplemented byelectronic terrain images from ASARS-2. The 17th RW conducted development and initial operational testing of this high-resolution sensor, which is housed in a special nose. Though the radar has proven excellent, the complicated process of integrating the returns from this active sensor with the passively-received SIGINT data (so as to provide a complete tactical reconnaissance system) has been difficult. Modifications to accommodate the multi-disciplined requirement presently are being undertaken.
NASA: NASA's ER-2, 80-1063/N-706NA (NASA continues
to maintain the originally-assigned military registrations on its ai rcraft in order to take advantage of a Federal loop-hole that permits military aircraft operators to buy fuel without having to pay Federal fuel taxes) effectively became the prototype for the TR-1 series as it was the first of this new production run to roll from Lockheed's Palmdale, California facility. It was delivered, following its first flight at Palmdale on May 11, 1981 with Lockheed company test pilot Art Peterson at the controls, on June 10 to the highaltitude flight operations facility at NASA's Ames Research Center. The first operational mission took place two days later, on June 12. Unofficially a "demilitarized" TR-1 A, the ER-2 had been a line item in the NASA budget for some time, and some sources claim, led directly to the virtual elimination of high-altitude research being conducted by NASA's three General Dynamics RB-57Fs (based at NASA's Ellington AFB, Texas facility; in truth, RB-57F flights were all but eliminated by NASA following the arrival of the ER-2, and today, only one of the two aircraft remaining at Ellington is considered flightworthy). While the ER-2's specialized dedicated sensor pods were being completed, this aircraft was used initially for training missions to familiarize NASA pilots with its performance and handling characteristics. Though all of the pilots involved had experience in
091 29? U-2R(T) ? Trainer version of the U-2R similar in all respects to TR-1 B, though acquired utilizing U-2R (possibly CIA) funds. No other information available. 092 30? TR-l A 80-1087 Delivered initially to Beale. AFB where it serves with 9th SRW. 093 31? TR-1A No information available.
80-1088
094 32? TR-1A No information available.
80-1089
095 33? TR-1A No information available.
?
096 34? TR-1A No information available.
?
097 No information 098 No information 099 No information
?
35? TR-1A available. 36 ER-2 available. 37 TR-l B available.
? ?
• Readers should please note that U-2RITR-l AlTR-l B serial numbers tend to be somewhat ephemeral in nature. Due to the general secrecy surrounding this family of aircraft it long has been customary for the U.S. agencies operating U-2Rs and TR-ls physically to change serial numbers somewhat randomly from airframe to airframe. This is done specifically to confuse any attempt by unfriendly agents to monitor their activities and whereabouts. Because the tails of these aircraft are physically easily removed, repainting numbers is not always necessary to accommodate this need-tails can be switched from aircraft to aircraft with relatively little effort. Additionally, a bogus family of numbers has been assigned the U-2RITR-1 series, and though seldom used, there is ample evidence, both photographic and othelWise, to verify they have been.
Five active AF squadrons currently are equipped with the U-2RrrR-1-series aircraft. Four of these, the 4025th, the 4028th, the 99th and the 4029th operate under the aegis of the 9th SRW at Beale AFB. The 95th TRS operates under the aegis of the 17th RW at RAF Alconbury. U-2RrrR-1 detachments exist in one form or another at some 20 bases that literally place the aircraft within non-stop flying distance of virtually any spot on the globe. Referred to as OLs (Operating Locations), known examples include Patrick AFB, Florida (Det 5/9th SRW); Osan AB, Korea (Det 2/9th SRW); RAF Akrotiri, Cyprus (Det 3/9th SRW); Diego Garcia; RAF Mildenhall, England (Det 4/17th RW); and Norton AFB, California (Det 6/9th SRW). TR-1 and U-2R activity continues at a high rate of utility as of this writing. During March 1982, for instance, the U.S. government revealed that U-2s had photographed what was claimed to be an extensive military build-up in Nicaragua. This information was used politically to underscore the Reagan Administration's claims against the Sandanista regime, and also to back up statements concerning the Soviet Union's extensive backing for Sandanista military activities. Photos presented on national television to viewers
The two U-2Rs assigned to the Nationalist Chinese were maintained in their original flat black color scheme. These were some of the first aircraft to be equipped with the aft-facing infrared warning receiver assembly on the starboard wing trailing edge, but they were not equipped with radar warning units on the wingtips.
Nationalist Chinese operations were maintained under very trying logistical and political conditions. Maintenance was supported by Lockheed under contract to the CIA. Most of the U.S. personnel on hand were civilian. U-2R, N-803X, is seen being prepared for an operational mission. Noteworthy is "Black Cat" unit logo on Jeep door.
13
0."
I
The TR-IA was the first U-2 version purpose-built with accommodations for the large "super pods". This entailed the development of a split flap arrangement and the inclusion of attachment points (essentially bolt holes) on the wing spars.
Roll-out of the first TR-1A, 80-1066, took place at Lockheed's Palmdale, California facility on July 15, 1981. Differences between this aircraft and its U-2R predecessor were few, but important. Markings, as with previous U-2s, were minimal.
~ ~
1_'-:::;";"'-"11--- ~
TR-l A, 80-1066, hangared at Beale AFB during February 1985. As the prototype, it remains apparently a testbed aircraft. It is seen with "Senior Spear" Phase IV "super pods" and a covered "Senior Open" ncse (for a LOROP camera).
The second TR-1A, 80-1067, during a test flight out of Palmdale, California. The aircraft is seen without its "super pods". It later was delivered to Beale AFB where it entered service under the aegis of the 95th SRS.
The second TR-1A, 80-1067, shortly before delivery to the AF. Barely discernible are the flaps and ailerons in their "up", or gust control position. This feature shifted the wing center of pressure forward and thus reduced both wing and tail structural loads.
TR-1A, 80-1067, on final to March AFB during November 1987. Aircraft is equipped with "super pods", but they do not seem to be equipped with sensors. The aircraft Q-bay, however, is configured for a "Type H" camera, and optical port.
TR-1A, 80-1067, at Beale AFB, California from direct front and rear. Noteworthy is split flap configuration and cut-out which was developed specifically to accommodate large "super pods". Loss of flap area has not noticeably affected TR-1A's landing and/or takeoff performance. Many U-2Rs have been modified to the split flap configuration. Wide stance of balancing "pogo" gear necessitates the use of SAC-type runways for U-2RITR-l operations.
~,
~
~O
~
§._
0
VALyE
SERVO DRIVE ~ SKEW BAR AIR LINE ACCESS PANEL I ' I NON-ROTATION NOSE
_ ADF ANTENNA LATCH CLEVIS (4 PLACES)
~~GULATOR
SENIOR OPEN SYSTEM ROTATING NOSE 1
PRECONDITIONING VALVE
LOROP camera system, possibly a KA·l02 with a 66 in. equivalent focal length folded optics lens, as installed in the "Senior Open" nose of a U·2R. Angled mirror is articulated to provide coverage to left and right of flight path.
l RF ISOLATION BLANKET ,SERVO ELECTRONIC UNIT
SENSOR VIEW A AX694 NOSE
ILS ANTENNA
49
The first of the high-acuity reconnaissance cameras was the HR73B, or "Type B" camera. It is equipped with folded optics lens and bulk quantity film.
The Itek optical bar camera is an extremely high resolution panoramic unit utilized by the AF, the CIA, and the NASA. An angled mirror sits at the front of the camera lens. (right) and rotates left and right to provide panoramic coverage. Film normally is contained in a light tight housing (left) and fed into camera by electric drive system.
~
~
~
~
~
fItt
~
50
The dual Wild-Heerbrug RC-10 metric camera configuration provides either multiple emulsion or multiple scale coverage of a target area. Each camera can mount either a 6 in. or 12 in. lens.
The A-4 camera system consists of one Wild-Heerbrug RC-10 metric camera and one 36 in. FL Fairchild HR-732 camera. The latter can be operated in fixed vertical or active "rocking" modes. "Rocking" provides sequential coverage to either side.
A single Wild-Heerbrug RC-10 metric camera with intervalometer for overlap control (stereo format). Camera has 9 in. x 9 in. format with 400 ft. of film. It also has frame annotation, corner and side fiducial marks, and a possible 4 ft. resolution.
The International Imaging Systems multi-spectral camera consists of a single camera body and four separate lenses to provide multi-spectral coverage of a target area. Format size is 4 x 3-1/2 in. x 3-1/2 in. images on a 9 in. x 9 in. format.
-----
Hatch optimized for use with dual Wild-Heerbrug RC·l0 metric camera system as installed in the ER-2. Hatch is mounted under Q-bay, ahead of main gear well.
When equipped to generate optical imagery, U-2Rs normally mount the larger camera systems in their Q-bays. Special ventral hatches with optical transparencies built-in allow light to reach the lens and film. Ventral hatches vary considerably in configuration, depending on camera type and angular coverage. ~
MARK IV CONTROLS AND INDICATORS
::::---
~
ELECTRICAL CONNECTOR
OBLIQUE ANGLE LIGHT (TYP 4 PLACES) SECTOR YOKE IND GEAR ' PANEL MOUNTING FASTENER HORIZON VIEWING / (TYP. 4 PLACES) LEVER CONTROL STICK RESET BunON SECTOR GEAR ~
CONTROL STICK CLAMP LEVER
AIRFRAME INSULATION r;;;-=.
There are a large number of upper and lower Q-bay and E-bay hatches available to accommodate a seemingly endless number of optical and electro-magnetic sensors. Two optical system Q-bay ventral hatches, including an EAQ-207-1 (right), are shown. All optical hatches come with defogging units to ensure transparency clarity.
"r"
cElFIOmROUCTIFtf.fl~
(Q-BAY LOWER .HA.TCHES)' .( - '~ , Itl: Ii
""ir;;.","
L..JL.
III'}'" ~'H. ,'"
IW'-'
H [
"r~li·~:'··l
I
_~ r?/
,...•",... •
I
_~l.""=-..F'" ~L!.
"11
~~ :;:k~
B HATCH
:;:'lfU;II.T~
J-i.•.•.1•.
~lJ
~ .~
l
I~K·K
L
JF=l:3 )". tii!J
~
ti.lJ
lktlOIIL-L
r
l.OI~Cl< M~X
H HATCH VIEW LOOKING AT INSIDE OF HATCH
The U-2R, like first-generation U-2 configurations, has a particulate sampler capability. The particulate sampling unit mounts in the Q-bay.
\
Particulate sampler intake unit can be seen protruding from the port side of the Q-bay area of this U-2R on final approach to Davis-Monthan AFB.
Though of poor quality, this rare photograph illustrates just a few of the many sensor system payload options available to the U-2R. At least two of the many modular nose configurations are shown, along with several "super pod" and Q-bayoptions. "Super pod" forward component to right provides some insight into antenna configurations.
51
MISSION RECORDERS (REF)
LIQUID
ESA
""''' o~"m =, ~u~ ~~~ \(:~~j :6 14::~-~ ~-'--_~_
PLSS COMPONENT
COOLER
HEAT EXCHANGER
~
LOCATIONS
RX 1274-1 / NOSE ASSY
FORWARD POWER
~12L --J~-------.:== k -:t. NOSE-BREAK
®
SUPPLY
ASSY~ . .~....'
PRESS SYS ARRAY POWER SUPPLY
trwD
~
EXC PROC' PANEL KG-45 COM SEC POD BREAK
Gf:
@l
POD BREAK
~\
"Q" BAY
CONTROL'
(~I
AIRCRAFT FREQUENCY STAN DARD
INTERFACE ASSY
:~t~~=~:-~~-R--:-LL~~> XMIT ANT. COOLING
,'ii',
RCV
A~T
XMIT ANT
IN.:=~ .~ .tIill········.···, ~~dlc----~::M ---:) ·'~LEFTPO:·· ~~~;~NS~ ·(£~A~~~~~-T --.J-----B~i;K .•.•....P6.'bBREAK
TOP VIEW
..
__
•.._.POO.BREA>_
MODEM
XMIT ANT
ASARS-2 component illustration provides insight into equipment and systems. Two different antenna configurations have been tested, including the ESA (shown), and the MSA. The latter appears to be more rounded and larger than the former.
--
The Lockheed PLSS-equipped TR-IAs have distinctive nose configurations with indented flat side panels and miscellaneous ventral and dorsal antenna fairings. The extraordinary cost and military vulnerability of PLSS have played key roles in leading to the program's unofficial cancellation.
MSA antenna for ASARS-2 is less angular than ESA. An-MSA-series antenna is installed by Hughes in the special TR-IA ASARS-2 radome assembly.
SUPER POD COMPONENT LOCATIONS • RX925·500L (LEFT POD) RX925-500R (RIGHT POD) "RX965-500L (LEFT POD) RX965·500R (RIGHT POD) (WITH RX934-1 CONE)
"Super pod" front and rear cones primarily are fiberglass shells with aluminum stiffeners. Some "super pod" configurations utilize other construction materials.
• RX985·IL (LEFT POD) RX985·IR (RIGHT POD)
ill
"RX986·3L(LEFT POD) RX986·3R(RIGHT POD)
ill
RX 914-1 forebody (typ left and right super pods) or mission kit peculiar forebody as required.
In
Left super pod belly radoms RX11Q7 (not shown) installed by installation kit RX530.
.....- - - - - - - - - - - - - - - - - - - - ~~W~T~~~TBOARD
~
.....lIIl.II••lIIIl
"Super pod" center section primarily is of aluminum construction. "Super pods" bolt directly to wing and are faired-in using special fillet assemblies.
52
Fixed flap (RW 360·2L for left wing and RW 360 2R for right wing) installed when super pod not installed.
i
i
~
~
~
.
"Super pod" forward body assembly. This particular unit appears to have an aluminum main body and a fiberglass nose cone. Note release latches to left.
..1
~
"Super pod" aft body/tailcone assembly. Construction is almost totally fiberglass. Screws, rather than latch assemblies, mount it to center body section.
L
"Senior Spear" COMINTISIGINT pods are distinguished from others usually by their antenna farms. An early "Senior Spear" Phase I or Phase /I pod is shown with VHF and UHF communications antenna mounted ventrally.
"Senior Spear" pods internally consist of electronics optimized specifically to receive and record COMINT andlor SIGINT energy. Numerous sensor options are available, depending on the specific objectives of the mission.
;l;]I.~•••I-S
I
!
The individual antennas seen in U-2R an~enna farms, such as satellite communications system-equipped "C-Span III" configured U-2R, 68-10331, are designed to be highly sensitive to very specific frequencies and wavelengths.
The "C-Span III" configured U-2R, 68-10331, mounts a large up-link dish-type. satellite communications antenna in its large dorsal radome and miscellaneous COMINT and SIGINT antennas in its "super pods" and under its fuselage.
Several different data/down-link type antenna fairings, including that for the L-51 system (left), have been seen on U-2Rs and TR-l As. These serve to transmit mission data to ground stations for real-time interpretation and processing. The fairings are dielectric and are usually of fiberglass construction.
One of a number of passive warning antenna fairings often visible on the U-2R andlor TR-IA. One such fairing is mounted on each of the aircraft's intake cheeks.
SENIOR SPEAR SYSTEM COMPONENT LOCATION SENIOR SPEAR POD NOSE BREAK
1
RX631·2 nose cone is installed on right wing pod.
RX612·26 pod assy is installed on right wing. RX607·2A pod assy is installed on right wing.
There are no antennas on right wing pod. Left wing installation is shown; right wing RQ150-15 SENIOR SPEAR SYSTEMS CONTROL PANEL
installation is similar.
VIEW
A
RQ 135-10 SYSTEM 6 CONTROL PANEL
j
\~~, ......~~
The large, silvered protective covering appears to be a cooling jacket, possibly for an early ASARS system_ A liquid oxygen or liquid nitrogen line is visible above the suited-up pilot's head, and a inflation line is visible to the right.
53
Dummy "System 20" pod protrudes from the starboard wing of a U-2R. All U-2Rs and TR-1As are equipped with this pod, which can be operationally configured with its dedicated infrared sensor, as needed. When the "System 20" is in place, the unit normally is kept capped for protection.
The rarely seen infrared sensor ("System 20") mounted in a faired pod and facing aft from the starboard wing trailing edge of U-2R, 68-10340.
,.. Left photo illustrates a ventrally-mounted UHF communications antenna and what appears to be an aft-facing radar warning receiver antenna fairing just ahead of the mid fuselage point. The right photo illustrates another ventrally-mounted UHF antenna and what appears to be a forward-facing radar warning receiver antenna fairing, just ahead of the ventral rotating beacon. Placement of the radar warning antenna fairings is decidedly unusual, but appropriate for the U-2R.
~
I Original wingtip-mounted radar warning receiver antenna fairings appeared somewhat crude in construction and were manufactured from a dielectric material (probably fiberglass). They also served as mounting point for wingtip navigation lights.
~
Inboard, underwing view of U-2R tip skid configuration. Abradable bul/ons on bol/om of skid are designed to be easily replaced when wear so dictates. Tip skids were a design concession made in response to bicycle landing gear design.
Most recent wingtip design originally was developed for the TR-IA. Accommodating the tip skid, the navigation lights, and the radar warning receiver antennas in a simple but neat package, it since has been adopted as a retrofit to almost all U-2Rs.
Radar warning receiver antenna faces outward at an angle of approximately 45 0 • Coupled with the other three wingtip pod antennas, radar warning coverage is virtually 360 0 • Additional warning antennas can be added in other positions.
54
The S1010B full-pressure sUit system has virtually unlimited altitude potential. Due to its relative bulkiness, until the advent of the U-2R, it could not be worn by U-2 pilots. Portable oxygen/air conditioning unit keeps pilot comfortable.
~r:
h
....
Helmet for 81010B suit is equipped with clear and colored visors. The latter serves as a sun shade and can be manually locked in the,up position.
The breathing oxygen supply enters the helmet from the rear and the communications wiring enters the helmet via an attachment at the left rear.
The breathing oxygen supply enters the helmet through two lines attached to its rear segment. 8uit entry is from the rear through zippered opening.
A "Mae West" harness is an optional survival item reserved for over-water missions. It is. equipped with inflatable floats and other specialized items.
Inflatable gloves are provided with the 81010B suit for hand protection at high altitude. 8imple metal connector/sealing ring attaches glove to suit arm.
A portable breathing oxygen/air-conditioning unit (which also maintains pre-breathing status) has been developed to provide preflight comfort for pilots.
-:-::::il-~-=-"""""'!!!!lI!!!!II!I!!!!!I~IIP"'lfIr!!lWII!::iIill:=- ~
& ~
The dedicated ground transport dolly for the U-2RITR-l series aircraft is extraordinarily versatile and optimized to facilitate ground maintenance as well as gear-up transportation. Hydraulic actuators raise or lower the unit as required.
The dedicated ground transport dolly in use. U-2R, 68-10331, is seen at Beale AFB while undergoing gear-up maintenance. Entire aircraft is supported at four special fuselage mounting points by dolly.
55
C-141 TRANSPORTATION OPTION
~"~~'
RH WING
VDO
-Je::-r HORIZONTAL
~
LIFTING THE AIRPLANE
RG 220 SLING ASSEMBLY
Install sling forward attachment fittings with two EWe 22-6-58 bolts and two NAS623·4·24 screws (right and left sides) in existing bolt
holes at FS 418.47 wing root fitting. Existing MS21250-0B 058 bolts may be used with ENGINE OUT ONLY if EWB bolts are not available.
Install sling aft attachment fittings with one EWB22·6-58 bolt,and two NAS623-4·24 screws (right and left sides) in existing bolt hole at FS 492.27 wing root fitting. Existing MS21250..(lS 058 bolts may
be used WITH ENGINE OUT ONLY if EWe bolts are not available.
EXTEWORU~.HT
RG16 NOSE SECTION DOLLY
'.J
LOCATIONS
".
CoD
t
9
~
....
:
I
"---.,'LEFT WING TIP SHOWN (RED) RIGHT WING TIP SIMILAR (GREEN)
131----11 18 INCH ADJUSTMENT
1- .__.. TAIL LIGHTS ?:6f~+- RIGHT & LEFT
SIDES (CLEAR)
11
STRAP ASSEMBLY FUSELAGE NOSE SECTION CRADLE POSITION SCREW ASSEMBLY CRADLE ASSEMBLY DUST GUARD SLEEVE (31 INCHES EXTENDED LENGTH) 6. WORM GEAR LELVELING JACK ASSEMBLY (4 REO) (SHOWN IN PHANTOM) 7. CASTER JACK ASSEMBLY (4 REO)
1. 2. 3. 4. 5.
56
8. 9. 10. 11. 12. 13. 14. 15.
JACK DRIVE SHAFT ASSEMBLY FRAME ASSEMBLY CRANK ASSEMBLY TIE-DOWN RING TOW BAR ASSEMBLY CASTER JACK ASSEMBLY CRANK HANDLE CRADLE ASSEMBLY ROLLER (4 PLACES) ROTATING BEACON LIGHTS (UPPER & LOWER FUSELAGE) (RED)
Concerning references: Aerofax, Inc., in a conscientious effort to provide readers with the most accurate and authentic monographic aircraft histories available in their price range, does not print bibliographies in its Mlnlgraph or Datagraph series. This measure is taken only to preserve precious space in books that are optimized to offer a maximum amount of information at minimal expense. In general, however, our primary references are official, unclassified government documents, official, unclassified private sector (company) documents, and authoritative civilian publications such as Jane's All The World's Aircraft and" Aviation Week & Space Technology". Our photo sources consist primarily of contributions by professionals and amateurs from around the world, various government agencies, the aerospace industry, and our own in-house morgue. Specific requests from Aerofax customers for titles utilized as information sources in our books will be provided as time permits. Photos from our negative files also will be provided based on availability and the willingness of the requestor to pay reproduction charges. Thanks for your consideration,
Jay Miller, Publisher
AEROFAX, INC. would like to take a moment to thank you for your patronage. In acquiring this MINIGRAPH, you have given us a mandate to continue our efforts to provide you with the finest aircraft and aviation reference books available on the market today. These high-quality authoritative booklets have been created specifically for you, the serious enthusiast and modeler, and are designed to provide textual and pictorial detail usually not found in other readily available books of this type. Each MINIGRAPH contains a minimum of 150 photographs, multiple drawings, an eight-page foldout, color scheme information, and highly detailed and accurate text. If you find the MINIGRAPH series to your liking and would like to receive free, AEROFAX NEWS, please drop us a line with your name and address at P.O. BOX 200006, Arlington, Texas 76006, or call us direct (214 647-1105). We would enjoy hearing from you as your comments and criticisms do influence our decisions. AEROFAX also is in need of interesting, previously unpublished photos of aircraft for use in forthcoming MINIGRAPH titles and other AEROFAX publications. If you have such items in your files, please consider loaning them to AEROFAX so that others may have a chance to see them, too. You will, of course, be credited if your photo is used, and a free copy of the publication in which it is used will be sent. AEROFAX looks forward to hearing from you ... Thanks for your interest, Jay Miller and the AEROFAX, INC. Editorial Staff
-------------
VERTICAL STABILIZER STATION
V~R~~t;
I AIRCRAFT STATION DIAGRAM FUSELAGE STATION; I
•
-'::~i1~"~
STABILIZER STATION
, HORIZONTAL STABILIZER STATION
• • • ~~~~.~
(TR-1 A/U-2R/ER-2)
l