Theoretical Computer Science Cheat Sheet
f(n) = O(g(n))
De nitions i 9 positive c; n such that 0 f(n) cg(n) 8n ...
66 downloads
1764 Views
181KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Theoretical Computer Science Cheat Sheet
f(n) = O(g(n))
De nitions i 9 positive c; n such that 0 f(n) cg(n) 8n n . i 9 positive c; n such that f(n) cg(n) 0 8n n . i f(n) = O(g(n)) and f(n) = (g(n)). i limn!1 f(n)=g(n) = 0. i 8 2 R, 9n such that jan , aj < , 8n n . least b 2 R such that b s, 8s 2 S. greatest b 2 R such that b s, 8s 2 S. lim inf fai j i n; i 2 Ng. n!1
n X
0
0
f(n) = (g(n))
i
=1
In general:
0
f(n) = o(g(n)) lim a = a n!1 n sup S inf S lim inf a n!1 n
n X i
=1
n X
+ 1) ; i = n(n + 1)(2n 6
i = n (n4+ 1) : i
2
n , X
+1
=1
=1
+1
+1
+1
=1
0
=0
+1
i
n X
=0
i
ici =
ncn
+2
=0
+1
(c , 1)
2
=0
Harmonic series: n X Hn = 1i ;
n!1
i
, (n + 1)cn
i
+ c ; c 6= 1;
i
1 X
=1
2
i
=0
n X
ici = (1 ,c c) ; c < 1:
iHi = n(n2+ 1) Hn , n(n4, 1) :
i
=1
n i X
1
=1
+1
=1
2
=0
=0
1
25. 28.
1
=0
=0
31.
=0
=0
=0
34.
=0
36.
n + 1 Combinations: Size k subHi = (n + 1)Hn , n; Hi = m + 1 Hn , m 1+ 1 : m sets of a size n set. i i n n n n n X Stirling numbers (1st kind): n n! k n 1. k = (n , k)!k! ; 2. 3. k = n , k ; Arrangements of an n elek =2 ; k n , 1 ment set into k cycles. n , 1 n n , 1 n n n 4. k = k k , 1 ; 5. k = k + k , 1 ; Stirling numbers (2nd kind): k Partitions of an n element X r + k r + n + 1 6. mn mk = nk mn ,, kk ; 7. ; set into k non-empty sets. k = n
n k n 1st order Eulerian numbers: n k n + 1 n r s r + s k X X Permutations : : :n on 8. = ; 9. m+1 k n,k = n ; f1; 2; : : :; ng with k ascents. k m k n n
n n = (,1)k k , n , 1; 10. 11. 2nd order Eulerian numbers. k k k 1 = n = 1; n n n , 1 n , 1 Cn Catlan Numbers: Binary n , trees with n + 1 vertices. 12. 2 = 2 , 1; 13. k = k k + k , 1 ; n n n n n = (n , 1)!; 15. = (n , 1)!H ; 16. = 1; 17. k ; n, 1 2 n k n n , 1 n , 1 n n n n n X 1 2n ; = (n , 1) + ; 19. = = ; 20. = n!; 21. C = n n+1 n k,1 2 kn n k n n, 1 n n, 1 n k k n , 1 n , 1 = = 1; 23. = ; 24. = (k + 1) + (n , k) ; 0 n , 1 k n , 1 , k k k k , 1 0 n n n 1 if k = 0, n , n , 1; n , (n + 1)2n + n + 1 ; = 26. = 2 27. = 3 k 0 otherwise 1 2 2 n X n n x + k m n + 1 n n k X X n xn = ; 29. m = (m + 1 , k)n(,1)k ; 30. m! m = k n k k n,m ; k k k n X n n n n n , k n , k , m k!; 32. 0 = 1; 33. n = 0 for n 6= 0; m =k k m (,1) n n , 1 n , 1 n n (2n)n X = (k + 1) + (2n , 1 , k) ; 35. k k k,1 k = 2n ; k x X n + 1 X n k X n n x + n , 1 , k n k ; 37. m + 1 = = (m + 1)n,k ; x,n = k k 2n k m m k k n X
=0
22.
=1
=1
18.
2
1
0
n!1 ,n k
14.
2
3
i = m 1+ 1 (n + 1)m , 1 , (i + 1)m , im , (m + 1)im i i m nX , X m+1 Bk nm ,k : im = m 1+ 1 k i k Geometric series: 1 1 n n X X X ci = 1 ,1 c ; ci = 1 ,c c ; c < 1; ci = c c ,,1 1 ; c 6= 1;
lim supfai j i n; i 2 Ng.
lim sup an
n X m
0
f(n) = (g(n))
i = n(n2+ 1) ;
Series
=0
=0
Theoretical Computer Science Cheat Sheet
Identities Cont. n + 1 X n k X n k n n,k = n! X 1 k ; 38. m + 1 = = n k m k m k k! m n X k n k+1 =0
=0
40. m = (,1)n,k ; k m + 1 m + n +k1 X m n + k 42. = k k ; m
Trees x X n n x + k tree with n 39. x , n = ; Every vertices has n , 1 k 2n n X n +k 1 k edges. =0
41. m = (,1)m,k ; Kraft inequalk + 1 m m + n + 1k X n + k ity: If the depths m 43. = k(n + k) k ; of the leaves of m
a binary tree are n X n +k 1 k n X n + 1 k k :n: :; dn: m,k ; 45. (n , m)! m,k ; for n m, d ;X 44. m = ( , 1) = ( , 1) k+1 m m 2,di 1; n k X m , nm + n m + k n k k +X1 mm, nm + n m + k i =0
=0
1
46. n , m = +k k ; n ` +kmm +Xk kn n , k n 48. ` + m ` = ` m k ;
47. n , m = k ; and equality holds n k` + mm+ k X n k+k n , k only if every inn 49. ` + m ` = ` m k : ternal node has 2 =1
k
Master method: T(n) = aT(n=b) + f(n); a 1; b > 1 If 9 > 0 such that f(n) = O(n b a, ) then T (n) = (n b a ): If f(n) = (n b a ) then T(n) = (n b a log n): If 9 > 0 such that f(n) = (n b a ), and 9c < 1 such that af(n=b) cf(n) for large n, then T(n) = (f(n)): Substitution (example): Consider the following recurrence Ti = 2 i Ti ; T = 2: Note that Ti is always a power of two. Let ti = log Ti . Then we have ti = 2i + 2ti; t = 1: Let ui = ti =2i. Dividing both sides of the previous equation by 2i we get ti = 2i + ti : 2i 2i 2i log
log
log
log
2
log
2
+1
2
+
1
k
,
log
+1
+1
+1
Substituting we nd ui = + ui ; u = 12; which is simply ui = i=2. So we nd that Ti has the closed form Ti = 2i i,1 . Summing factors (example): Consider the following recurrence Ti = 3Tn= + n; T = n: Rewrite so that all terms involving T are on the left side Ti , 3Tn= = n: Now expand the recurrence, and choose a factor which makes the left side \telescope" +1
1
1
2
2
1
log
log
=0
Let c = andm = log n. Then we have m m , 1 X c n ci = n c , 1 3
2
2
+1
i
=0
= 2n(c c 2 n , 1) = 2n(c ck c n , 1) = 2nk , 2n 2n : log
+1
1 58496
1
1
j
Note that
0
=0
Ti = 1 + +1
1
2
2
, 2n;
where k = (log ), . Full history recurrences can often be changed to limited history ones (example): Consider the following recurrence i, X Ti = 1 + Tj ; T = 1: 3 2 2
Xi j
Tj :
=0
Subtracting we nd i, Xi X Ti , Ti = 1 + Tj , 1 , Tj 1
+1
j
=0
= Ti : And so Ti = 2Ti = 2i . +1
+1
Generating functions: 1. Multiply both sides of the equation by xi . 2. Sum both sides over all i for which the equation is valid. 3. Choose a generatingPfunction i G(x). Usually G(x) = 1 i x. 3. Rewrite the equation in terms of the generating function G(x). 4. Solve for G(x). 5. The coecient of xi in G(x) is gi . Example: gi = 2gi + 1; g = 0: Multiply X andi sum: X X gi x = 2gi xi + xi: =0
+1
i
0
+1
i
i
P We choose G(x) = i xi. Rewrite in terms of G(x): X i G(x) , g 0
0
0
0
log
1
+1
1 T(n) , 3T(n=2) = n , 3 T(n=2) , 3T(n=4) = n=2 .. .. .. . . . ,T(2) , 3T(1) = 2 n , 2 3 , 3 2 n T(1) , 0 = 1 Summing the left side we get T (n). Summing the right side we get X2 n n i i3 : i 2
2
+1
Recurrences
sons.
j
=0
0
x
= 2G(x) +
x:
i
0
Simplify: G(x) = 2G(x) + 1 : x 1,x Solve for G(x): x G(x) = (1 , x)(1 , 2x) : Expand this using partial fractions: G(x) = x 1 ,2 2x , 1 ,1 x
0 1 X X = x @2 2i xi , xi A i X ii i 0
=
(2
i
0
So gi = 2i , 1.
+1
0
, 1)x : +1
Theoretical Computer Science Cheat Sheet p e 2:71828,
0:57721, = 1:61803,
3:14159, i 2i pi General 1 2 2 Bernoulli Numbers (Bi = 0, odd i 6= 1): 2 4 3 B = 1, B = , , B = , B = , , B = ,B =, ,B = . 3 8 5 Change of base, quadratic formula: 4 16 7 p b , 4ac : log x , b 5 32 11 a logb x = log b ; 2a 6 64 13 a Euler's number e: 7 128 17 + e = 1 + 8 256 19 +x n+ x + 9 512 23 lim 1 + n = e : n!1 ,1 + n < e < ,1 + n : 10 1,024 29 n n 11 2,048 31 , e 11e n 1 + n = e , 2n + 24n , O n1 : 12 4,096 37 13 8,192 41 Harmonic numbers: 14 16,384 43 1, , , , , , , , ; : : : 15 32,768 47 16 65,536 53 lnn < Hn < ln n + 1; 17 131,072 59 Hn = ln n + + O n1 : 18 262,144 61 Factorial, Stirling's approximation: 19 524,288 67 ::: 20 1,048,576 71 1 21 2,097,152 73 p n n n! = 2n 1 + 22 4,194,304 79 e n : 23 8,388,608 83 Ackermann's 8 jfunction and inverse: 24 16,777,216 89 i=1 b are integers then gcd(a; b) = gcd(a mod b; b): Q If ni pei i is the prime factorization of x then n ei X Y S(x) = d = pip ,,1 1 : ( )
1
=1
+1
djx
i
=1
i
Perfect Numbers: x is an even perfect number i x = 2n, (2n , 1) and 2n , 1 is prime. Wilson's theorem: n is a prime i (n , 1)! ,1 mod n: Mobius 8 inversion: if i = 1. > < 10 square-free. (i) = > (,1)r ifif ii isis not the product of : r distinct primes. If X G(a) = F(d); 1
then
F(a) =
X dja
dja
a
Prime numbers: n pn = n ln n + n lnln n , n + n lnln ln n n + O ln n ; 2!n (n) = lnnn + (lnnn) + (lnn) + O (lnnn) : 4
0
1
1
1
0
2
3
1
2
0
1
1
0
1
0
1
1
0
1
0
2
0
0
1
1
2
1
2
1
0
1
0
2
0
2
0
2
2
2
1
1
(d)G d :
2
Graph Theory Notation: De nitions: E(G) Edge set Loop An edge connecting a verV (G) Vertex set tex to itself. c(G) Number of components Directed Each edge has a direction. G[S] Induced subgraph Simple Graph with no loops or deg(v) Degree of v multi-edges. (G) Maximum degree Walk A sequence v e v : : :e` v` . (G) Minimum degree Trail A walk with distinct edges. (G) Chromatic number Path A trail with distinct E (G) Edge chromatic number vertices. Gc Complement graph Connected A graph where there exists K Complete graph n a path between any two K Complete bipartite graph n ;n 1 2 vertices. r(k; `) Ramsey number Component A maximal connected subgraph. Geometry Tree A connected acyclic graph. Projective coordinates: triples Free tree A tree with no root. (x; y; z), not all x, y and z zero. DAG Directed acyclic graph. (x; y; z) = (cx; cy; cz) 8c 6= 0: Eulerian Graph with a trail visiting Cartesian Projective each edge exactly once. Hamiltonian Graph with a path visiting (x; y) (x; y; 1) each vertex exactly once. y = mx + b (m; ,1; b) Cut A set of edges whose rex=c (1; 0; ,c) moval increases the numDistance formula, Lp and L1 ber of components. metric: p Cut-set A minimal cut. (x , x ) + (x , x ) ; Cut edge A size 1 cut. jx , x jp + jx , x jp =p; k-Connected A graph connected with jx , x jp + jx , x jp =p: the removal of any k , 1 lim p !1 vertices. k-Tough 8S V; S 6= ; we have Area of triangle (x ; y ), (x ; y ) and (x ; y ): k c(G , S) jS j. k-Regular A graph where all vertices x , x y , y abs x , x y , y : have degree k. k-Factor A k-regular spanning Angle formed by three points: subgraph. Matching A set of edges, no two of (x ; y ) which are adjacent. ` Clique A set of vertices, all of which are adjacent. (0; 0) ` (x ; y ) Ind. set A set of vertices, none of which are adjacent. cos = (x ; y `) `(x ; y ) : Vertex cover A set of vertices which cover all edges. Line through two points (x ; y ) Planar graph A graph which can be emand (x ; y ): beded in the plane. x y 1 Plane graph An embedding of a planar x y 1 = 0: graph. x y 1 X Area of circle, volume of sphere: deg(v) = 2m: v2V A = r ; V = r : If G is planar then n , m + f = 2, so If I have seen farther than others, f 2n , 4; m 3n , 6: it is because I have stood on the Any planar graph has a vertex with de- shoulders of giants. gree 5. { Issac Newton 1
1
2
1
1
2
2
0
1
1
0
0
1
1
2
4 3
3
0
Theoretical Computer Science Cheat Sheet
Wallis' identity: = 2 21 23 43 45 65 67
Brouncker's continued fraction expansion: 1 =1+ 2 2+ 52 2
4
3
2+
2+ 2+72
Gregrory's series: = 1, + , + , Newton's series: 1 + 13 + =1+ 2 232 2452 Sharp's series: = p1 1 , 1 + 1 , 1 + 3 3 3 5 3 7 3 Euler's series: 4
1
1
1
1
3
5
7
9
6
3
6
5
1
2
= = 2 = 6
+ 2+
2
+ 2+ 2, 2+ 2
1
2
1
8
1
12
1
1
1
2
1
2
1
3
1
2
+ 2+
3
+ 2+ 2, 2+ 2
1 3
1 5
1 3
2
1
4
1
7
1
4
+ 2 + 2
1 5
1 9
1
2
5
,
Partial Fractions Let N(x) and D(x) be polynomial functions of x. We can break down N(x)=D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining N(x) = Q(x) + N 0(x) ; D(x) D(x)
where the degree of N 0 is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor: N(x) = A + N 0 (x) ; (x , a)D(x) x , a D(x) where
N(x)
A = D(x) : x a For a repeated factor: mX , N(x) Ak + N 0 (x) ; = m (x , a) D(x) (x , a)m,k D(x)
Calculus
Derivatives: du dv d(uv) dv du 2. d(udx+ v) = du 1. d(cu) dx = c dx ; dx, + dx ; , 3. dx = u dx + v dx ; du dv n) d(ecu ) = cecu du ; n, du ; 5. d(u=v) = v dx , u dx ; 4. d(u = nu 6. dx dx dx v dx dx u u) 1 du 7. d(cdx ) = (ln c)cu du 8. d(ln dx ; dx = u dx ; d(cos u) = , sin u du ; u) = cos u du ; 10. 9. d(sin dx dx dx dx d(tan u) du d(cot u) 12. dx = csc u du 11. dx = sec u dx ; dx ; du u) du u) 14. d(csc 13. d(sec dx = tan u sec u dx ; dx = , cot u csc u dx ; u) 1 du u) = p ,1 du ; 15. d(arcsin 16. d(arccos dx = p1 , u dx ; dx 1 , u dx u) = 1 du ; d(arccot u) = ,1 du ; 17. d(arctan 18. dx 1 , u dx dx 1 , u dx 1
2
2
2
where
k
=0
dk N(x) Ak = k!1 dx : k D(x) x a =
The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. { George Bernard Shaw
2
2
2
u) = p,1 du ; 20. d(arccsc dx u 1 , u dx u) du 22. d(cosh dx = sinh u dx ;
u) = p 1 du ; 19. d(arcsec dx u 1 , u dx u) du 21. d(sinh dx = cosh u dx ; 2
2
u) du 23. d(tanh dx = sech u dx ;
u) du 24. d(coth dx = , csch u dx ;
2
2
u) du 25. d(sech dx = , sech u tanh u dx ; u) = p 1 27. d(arcsinh dx
u) du 26. d(csch dx = , csch u coth u dx ;
du ; 1 + u dx d(arctanh u) 1 du ; 29. = dx 1 , u dx u) = p,1 du ; 31. d(arcsech dx u 1 , u dx Integrals:
u) = p 1 28. d(arccosh dx
du ; u , 1 dx d(arccoth u) 1 du ; 30. = dx u , 1 dx u) = p,1 du : 32. d(arccsch dx juj 1 + u dx
2
2
2
2
2
1. 3.
=
1
2
6. 8.
Z
2
Z
Z
Z
xn dx =
Z 1 4. x dx = ln x; Z dv
1 n n + 1 x ; n 6= ,1; +1
Z dx 1 + x = arctan x; Z
10. 12. 14.
7.
2
Z Z Z
Z
Z
2. (u + v) dx = u dx + v dx;
cu dx = c u dx;
5.
9.
13.
sec x dx = ln j sec x + tan xj;
p
Z
arcsin xa dx = arcsin xa + a , x ; a > 0; 2
2
ex dx = ex ;
Z u dx dx = uv , v du dx dx;
sin x dx = , cos x;
tan x dx = , ln j cos xj;
Z
11.
Z
Z
cos x dx = sin x;
cot x dx = ln j cos xj;
csc x dx = ln j csc x + cot xj;
Theoretical Computer Science Cheat Sheet 15. 17. 19. 21. 23. 25. 26. 29. 33. 36.
Z Z Z Z Z Z Z Z Z Z
Calculus Cont.
p
arccos xa dx = arccos xa ,
16.
a , x ; a > 0;
,
2
2
Z
arctan xa dx = x arctan ax , a ln(a + x ); a > 0; 2
2
1
Z
18.
sin (ax)dx = a ax , sin(ax) cos(ax) ; 2
39.
40.
Z Z
43. 46. 48. 50. 52.
Z Z Z Z
1
Z
20.
2
csc x dx = , cot x; 2
Z n, n, x sinx n , 1 Z 1 Z sinn, x dx; n x dx = cos sinn x dx = , sin nx cos x + n , 22. cos + n cosn, x dx; n n Z n, x Z n, x Z tan cot n n , n 24. cot x dx = , n , 1 , cotn, x dx; n 6= 1; tan x dx = n , 1 , tan x dx; n 6= 1; n, x n , 2 Z n, sec n x dx = tan xnsec , 1 + n , 1 sec x dx; n 6= 1; Z Z n, x n , 2 Z n, x dx; n 6= 1; 27. sinh x dx = cosh x; 28. cosh x dx = sinh x; + csc csc n x dx = , cot xncsc ,1 n,1 1
1
2
2
1
1
2
2
1
2
1
2
tanh x dx = ln j cosh xj; 30.
Z
coth x dx = ln j sinh xj; 31.
1
1
4
2
arcsinh xa dx = x arcsinh xa ,
p
Z
34.
sinh x dx = sinh(2x) , x; 2
Z
sech x dx = arctan sinh x; 32. 1
1
4
37.
x + a ; a > 0; 2
2
Z
p
2
2
2
2
= ln x + a + x ; a > 0; a +x dx x a + x = a arctan a ; a > 0; 2
2
41.
1
2
2
2
2 3 2
2
p
2
2
2
2
2
2
a4 arcsin x ; a
3
8
2
2
2
2
a > 0;
Zp
2
2
2
2
2
2
2
2
2
2
2
2
51.
2
8
2
2
2
2
x x a dx = (x a ) ; 2
2
1 3
2
2
2 3 2
2
p
2
2
2
8
2
2
arctanh xa dx = x arctanh xa + a ln ja , x j;
2
2
2
2
sech x dx = tanh x;
2
2
2
2
2
2
Z
a , x dx = x a , x + a2 arcsin ax ; a > 0;
2
dx = 1 ln x ; ax + bx a a + bx p a + bx dx = 2pa + bx + a Z p 1 dx; x a +pbx p x a , x dx = pa , x , a ln a + a , x ; x x 2
2
2
Z 1 ln a + x ; p dx = arcsin ax ; a > 0; 44. a dx = , x 2a a , x a ,x p p p a x dx = x a x a2 ln x + a x ; 47. 8
2
csch x dx = ln tanh x ;
2
2
2
Z
35.
cosh x dx = sinh(2x) + x; 2
Z p p 54. x a , x dx = x (2x , a ) a , x + a4 arcsin xa ; a > 0; Z Z x dx p 56. pa , x = , a , x ; 57. p p Z a +x Z a + a + x p 58. dx = a + x , a ln ; 59. x Z px = 60.
2
sec x dx = tan x;
42. (a , x ) = dx = x (5a , 2x ) a , x +
Z
,
cos (ax)dx = a ax + sin(ax) cos(ax) ; 2
p 8 < x arccosh xa , x + a ; if arccosh xa > 0 and a > 0, 38. arccosh xa dx = : p x arccosh xa + x + a ; if arccosh xa < 0 and a > 0, Z dx p Z
2
2
Z
49.
2
Z
45.
Z
p dx Z xp , a 2
dx x p ; = = (a , x ) a a ,x p = ln x + x , a ; a > 0; 2
2
3 2
2
2
2
2
2
2
=
+ bx) ; x a + bxdx = 2(3bx , 2a)(a 15b 3 2
p
2
pa x 1 a + bx , ; a > 0; p dx = p ln p a + bx a + bx + pa 2 Z p 53. x a , x dx = , (a , x ) = ; 2
2
Z
1
2
3
p
2 3 2
55. p dx = , a ln a + ax , x ; a ,x p x dx p = , x a , x + a2 arcsin a;x a > 0; pa , x x , a dx = px , a , a arccos a ; a > 0; jxj x 2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
61.
Z
p dx
x x +a 2
2
1
2
= a ln
; a+ a +x px
2
2
Theoretical Computer Science Cheat Sheet
62. 64. 66.
Z Z
Calculus Cont.
p
p dx = a arccos jaxj ; a > 0; p dx 63. = xa x a ; x x ,a Z pxx ax a (x + a ) = p x dx p 65. dx = 3a x ; = x a ; x a 8 p x > + b , pb , 4ac ; if b > 4ac, > < pb ,1 4ac ln 2ax dx 2ax + b + b , 4ac = ax + bx + c > > : p 2 arctan p2ax + b ; if b < 4ac, 4ac , b 4ac , b 8 1 papax + bx + c ; if a > 0, > p ln 2ax + b + 2 < a p dx = ax + bx + c > : p1,a arcsin p,b2ax, ,4acb ; if a < 0, Z p p ax + bx + c dx = 2ax + b ax + bx + c + 4ax , b p dx ; 1
2
2
2
2
2
2
2
Z
Z
2
2
2
2
2
2
2
3 2
2
4
2
2
3
2
2
2
Finite Calculus Dierence, shift operators: f(x) = f(x + 1) , f(x); E f(x) = f(x + 1): Fundamental Theorem: X f(x) = F(x) , f(x)x = F (x) + C: b X
2
2
2
2
67. 68. 69. 70. 71. 72. 73. 74.
Z
2
2
2
Z
2
2
2
Z
2
4a
8a
2
Z x dx ax + bx + c b p = , 2a p dx ; a ax + bx + c ax + bx + c p
2
2
Z
ax + bx + c
2
8 ,1 2pcpax + bx + c + bx + 2c > ; if c > 0, > < pc ln x dx p => x ax + bx + c > 1 : p,c arcsin jxjpbxb+,2c4ac ; if c < 0, p x x + a dx = ( x , a )(x + a ) = ; Z 2
Z Z Z Z
2
2
1
2
2
3
2
2
2 3 2
xn sin(ax) dx = , a xn cos(ax) + na xn, cos(ax) dx; xneax dx =
Z
1
1
sin(ax) dx;
+1
ln(ax)
+1
1
= = = = =
x x x x x
= x = x +x = x + 3x + 2x = x + 6x + 11x + 6x = x + 10x + 35x + 50x + 24x
1
2 3 4 5
1 2 3 4 5
x x +x x + 3x + x x + 6x + 7x + x x + 15x + 25x + 10x + x
= = = = =
1
2
3
1
2
4
1
3
5
2
4
1
3
2
1
1
2
3
4
5
2
3
4
3
2
1
2
3
1
2
x x x x x
1
1
4
1
5
1
+1
1
x ,x x , 3x + x x , 6x + 7x , x x , 15x + 25x , 10x + x 2
3
1
2
4
1
3
5
2
4
1
3
2
1
= x = x ,x = x , 3x + 2x = x , 6x + 11x , 6x = x , 10x + 35x , 50x + 24x 1
2
3
4
=1
1
2
3
4
xn m = xm (x + m)n : Conversion: xn = (,1)n (,x)n = (x , m + 1)n = 1=(x + 1),n ; xn = (,1)n (,x)n = (x + m , 1)n = 1=(x , 1),n ; n n n X k = X n (,1)n,k xk ; xn = x k k k k n X n xn = (,1)n,k xk ; k k n n X n x = xk : k k +
x
5
1
0
2
x x x x x
1
+
1
xn ln(ax) dx = xn
Dierences: (cu) = cu; (u + v) = u + v; (uv) = uv + E vu; (xn) = nxn, ; (Hx ) = x, ; (2x ) = 2x ; , , (cx ) = (c , 1)cx ; mx = mx, : Sums: P cu x = c P u x; P(u + v) x = P u x + P v x; P uv x = uv , P E vu x; P x, x = H ; P xn x = xn+1 ; x m P, x x = , x : P cx x = cx ; c, m m Falling Factorial Powers: xn = x(x , 1) (x , m + 1); n > 0; x = 1; xn = (x + 1) 1 (x + jnj) ; n < 0; xn m = xm (x , m)n : Rising Factorial Powers: xn = x(x + 1) (x + m , 1); n > 0; x = 1; xn = (x , 1) 1 (x , jnj) ; n < 0;
1 , n + 1 (n + 1) ; Z Z n 76. xn(ln ax)m dx = nx + 1 (ln ax)m , n m+ 1 xn(ln ax)m, dx:
75.
f(i):
=
0
1
n n, n a x sin(ax) , a x xn eax , n Z xn, eax dx; a a
xn cos(ax) dx =
i a
1
15
1
1
1
2
3
b, X
+1
2
Z
a
f(x)x =
1
2
3
=1
1
2
1
=1
=1
Theoretical Computer Science Cheat Sheet Series
Taylor's series: 1 i X f(x) = f(a) + (x , a)f 0 (a) + (x ,2 a) f 00 (a) + = (x ,i! a) f i (a): i Expansions: 1 X 1 = 1 + x + x + x + x + = xi ; 1,x
Ordinary power series:
2
A(x) =
( )
=0
2
3
=0
4
i
1 X
= 1 + cx + c x + c x +
1 , cx 1 1 , xn x (1 , x) 1 dn xk dx n 1,x
2
2
3
3
=
i
ci xi ;
1 X
=0
=0
= 1 + xn + x n + x n + 2
3
= x + 2x + 3x + 4x + 2
2
3
4
= =
i
xni;
1 X
=1
=0
ixi ;
i
1 X n =0
= x + 2n x + 3nx + 4n x + = 2
3
4
k
i xi ;
i
= 1+x+ x + x + 1
1
2
2
3
6
=
1 xi X i
=0
= x, x + x , x ,
ln(1 + x)
1
1
2
2
1
3
3
4
4
ln 1 ,1 x
= x+ x + x + x +
sin x
= x, x + x , x +
cos x
= 1, x + x , x +
1
1
2
2
1
3
3
1
1
3
3!
4
4
1
5
5!
7
7!
= =
i
xn , yn = (x , y)
i! ;
1 X
(,1)i
+1
xi
i;
1 xi X i
=1
1 X =1
i;
1
2
2!
1
4
4!
6
6!
i = (,1)i (2ix + 1)! ; i 1 X xi; = (,1)i (2i)! i1 X xi ; = (,1)i (2i i + 1) 1 n X = xi ; i i 1 i + n X = xi ; i i 1 i X = Bi!i x ; i 1 1 2i X = i + 1 i xi ; i 1 2i X = xi ; i i 1 2i + n X = xi ; i i 2 +1
2
=0
tan, x
= x, x + x , x +
1
1
1
3
3
1
5
5
7
7
= 1 + nx + n n, x + (
, = 1 + (n + 1)x + n x + +2
2
2
+1
2 +1
A(x) + B(x) = xk A(x) =
= 1, x+ x , 1
1
2
12
1
2
720
x + 4
=0
= 1 + x + 2x + 5x + 2
3
=0
= 1 + x + 2x + 6x + 2
3
= 1 + (2 + n)x +
, nx + 4+
2
2
=0
1 X =0
= x+ x + x + x + = 3
11
2
2
25
3
6
4
12
i
Hi xi ;
1 H xi X i, =1
2
= x + x + x + 1
3
2
2
11
3
4
4
24
=
i
1 X =2
= x + x + 2x + 3x + 2
2
3
4
=
i
1 X
i
1
Fi xi;
=0
2
= Fnx + F nx + F nx + = 2
2
3
3
i
=0
k
xn, ,kyk : 1
=0
1 X
(ai + bi )xi ;
i
1 X
Fnixi :
;
ai,k xi;
i P 1 k , i A(x) , i aix = X ai,k xi ; xk 1 i X i i =0
1
=0
=0
A(cx) =
c ai x ;
i
1 X =0
A0 (x) =
(i + 1)ai xi; +1
i
1 X =0
=0
=0
1 (1 , p1 , 4x) 2x p 1 1 , 4x p n 1 1 , 1 , 4x p 2x 1 , 4x 1 1 1 , x ln 1 , x 1 ln 1 2 1,x x 1,x,x Fn x 1 , (Fn, + Fn )x , (,1)n x +1
2
2
1 (1 , x)n x ex , 1
1
1)
1
For ordinary power series:
=0
(1 + x)n
nX ,
=0
=0
1
=0
Dierence of like powers:
=0
ex
i
aixi :
Exponential power series: 1 i X A(x) = ai xi! : i Dirichlet power series: 1 X A(x) = iaxi : i Binomial theorem: n n X n,k k (x + y)n = k x y:
=0
1
1 X
Z
xA0 (x) =
i
iai xi;
1 a X i, =1
A(x) dx =
i i x; 1
i
1 A(x) + A(,x) = X a ix i; 2 i X A(x) , A(,x) 1 i =1
2
2
=0
= ai x : 2 i P Summation: If bi = ij ai then B(x) = 1 ,1 x A(x): Convolution: 0 1 2 +1
2 +1
=0
=0
A(x)B(x) =
1 X i X @ i
=0
j
aj bi,j A xi:
=0
God made the natural numbers; all the rest is the work of man. { Leopold Kronecker
Theoretical Computer Science Cheat Sheet Series
Expansions: n + i 1 X 1 1 i (1 , x)n ln 1 , x = (Hn i , Hn) i x ; +1
1 ,n
1 n X = xi ; i i 1 i n!xi X =0
xn
n 1 ln 1 , x
n i! ; 1 iB ix i X = (,4)(2i)! ; i 1 1 X = ix ; i 1 X = (i) ix ; i =
=0
=
2
=0
=0
2
2
2
1
=1
=1
2
i
(x)(x , 1)
=
=1
1 S(i) X =1
P where S(n) = djn d;
xi n, jB nj = 2 (2n)! n; n 2 N; 1 i 2)B ix i X = (,1)i, (4 ,(2i)! ; i 1 X = n(2ii!(n+ +n ,i)!1)! xi ; i 1 2i= sin i X = xi ; i! i i
=1 2
(2n) x sin x 1 , p1 , 4x n 2x
1
2
2
2
1
Z b,
Zb Zb G(x) + H(x) dF(x) = G(x) dF(x) + H(x) dF (x); a a Zb Zab , Zb
2
=0
Zb a
p
1 X
p (4i)! = xi ; i 16 2(2i)!(2i + 1)! i 1 X 4i i! = (i + 1)(2i x i: + 1)! i Crammer's Rule If we have equations: a ; x + a ; x + + a ;nxn = b a ; x + a ; x + + a ;nxn = b .. .. .. . . . an; x + an; x + + an;nxn = bn Let A = (ai;j ) and B be the column matrix (bi ). Then there is a unique solution i det A 6= 0. Let Ai be A with column i replaced by B. Then Ai xi = det det A : =0
2
Zb a
=0
1 2
2
1
1
2 1
1
2 2
2
2
2
2
2
Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. { William Blake (The Marriage of Heaven and Hell)
a
G(x) dF(x) +
,
G(x) d c F(x) = c
Z ab a b
Z
G(x) dH(x);
G(x) dF(x);
G(x) dF(x) = G(b)F(b) , G(a)F (a) , F (x) dG(x): a If the integrals involved exist, and F possesses a derivative F 0 at every point in [a; b] then
2
1
Zb
a
a
2
1 1
1
c G(x) dF(x) =
Zb
4
1, 1,x x arcsin x x
G(x) d F(x) + H(x) =
a
=0
=1
1
a
exists. If a b c then Zc Zb Zc G(x) dF(x) = G(x) dF(x) + G(x) dF (x): a a b If the integrals involved exist
2
ex sin x
2
x cot x n i! ; i 1 i i 1)B i x i, X = (,1)i, 2 (2 ,(2i)! ; (x) i 1 X (x , 1) = (i) ; x i (x) i Y 1 = 1 , p,x ; Stieltjes Integration p If G is continuous in the interval [a; b] and F is nondecreasing then 1 d(i) X Zb P = G(x) dF(x) xi where d(n) = djn 1; 1
(x)
i
=0
=1
1 (x) (x)
s
=0
(ex , 1)n
2
tanx
1 i X = xi ; n i 1 i n!xi X
x
+
i
Escher's Knot
G(x) dF(x) =
0
47
18
76
29
93
85
34
61
52
86
11
57
28
70
39
94
95
80
22
67
38
71
49
45
2
63
56
13
4
59
96
81
33
7
48
73
69
90
82
44
17
72
60
24
15
58
1
35
68
74
9
91
83
55
26
27
12
46
30
37
8
75
19
92
84
66
23
50
41
14
25
36
40
51
62
3
77
88
99
21
32
43
54
65
6
10
89
97
78
42
53
64
5
16
20
31
98
79
87
The Fibonacci number system: Every integer n has a unique representation n = Fk1 + Fk2 + + Fkm ; where ki ki + 2 for all i, 1 i < m and km 2. +1
Zb a
G(x)F 0(x) dx: Fibonacci Numbers
1; 1; 2; 3; 5;8; 13; 21; 34; 55; 89; : : : De nitions: Fi = Fi, +Fi, ; F = F = 1; i, F,i = (, 1)i ^Fii; Fi = p , ; Cassini's identity: for i > 0: Fi Fi, , Fi = (,1)i : Additive rule: Fn k = Fk Fn + Fk, Fn; F n = FnFn + Fn, Fn: Calculation F F by matrices: n n, n, = 0 1 : F F 1 1 1
2
0
1
1
1
5
+1
2
1
+
+1
2
+1
2
n,
1
n
1
1
1