THE BIDUAL OF C(X) I
NORTH-HOLLAND MATHEMATICS STUDIES
101
THE BIDUAL OF C(X) I
Samuel KAPLAN Purdue University W...
22 downloads
753 Views
12MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
THE BIDUAL OF C(X) I
NORTH-HOLLAND MATHEMATICS STUDIES
101
THE BIDUAL OF C(X) I
Samuel KAPLAN Purdue University West Lafayette Indiana U.S.A.
1985
NORTH-HOLLAND -AMSTERDAM
0
NEW YORK
OXFORD
' Elsevier Science Publishers B V , 1985 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording of otherwise, without the prior permission of the copyright owner
ISBN: 044487631 6
Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V P.O. BOX 1991 1000 BZ AMSTERDAM THE NETHERLANDS
Sole distributors for the U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC 52 VAN DER B ILT AVENUE NEW YORK, N.Y. 10017 U.S.A.
L i b r a r y of Congres5 Cataloging i n Publication D a t a
&plan, Samuel, 1916The bidual of C(X) I.
(North-Holland mathematics studies ; 101) Bibliography: p. 1. Banach spaces. 2. Duality theory (Mathematics) 3. Embeddings (Mathematics) I. Title. 11. Title: Bidual of C.(X). I. 111. Series. 515.7'32 84-18665 QA322.2.K36 1985 ISBN 0-444-87631-6 PRINTED I N THE NETHERLANDS
PREFACE
T h e most commonly o c c u r r i n g , and p r o b a b l y t h e most i m p o r t a n t ,
n o n - r e f l e x i v e r e a l Banach s p a c e s ’ ( a l l o u r s p a c e s a r e o v e r t h e r e a l s ) a r e t h o s e o f t h e form C(X), X c o m p a c t , and t h o s e o f t h e 1 form L ( p ) , 1-1 a g i v e n m e a s u r e . For a n o n - r e f l e x i v e Banach s p a c e E , t h e r e a r e some n a t u r a l p r o b l e m s which do n o t a r i s e i n t h e r e f l e x i v e c a s e . such a r e : t o d e s c r i b e i t s b i d u a l E ” ,
Three
t o d e s c r i b e t h e imbedding
o f E i n E ” ; and - s i n c e E ” i s d e t e r m i n e d by E - t o s e e how
much o f t h e s t r u c t u r e o f
El’
can be o b t a i n e d from t h i s i m b e d d i n g . 1
For a s p a c e o f t h e form C(X) o r L ( p ) , t h e answer t o t h e f i r s t p r o b l e m i s w e l l known: t h e b i d u a l o f C(X) i s a C(Y), Y c o m p a c t , and t h a t o f L 1( p ) i s an L 1 (v) , v some m e a s u r e . A l s o t h e imbedd i n g o f L 1( p ) i n i t s b i d u a l i s w e l l known, and c a n b e d e s c r i b e d i n a r e l a t i v e l y s i m p l e and s a t i s f y i n g manner. The p r e s e n t work i s c o n c e r n e d w i t h t h e imbedding of a s p a c e C(X) i n i t s b i d u a l C“(X) and t h e s t u d y o f what p r o p e r t i e s of t h e l a t t e r c a n b e f o u n d s t a r t i n g from t h i s imbedding. my knowledge, l i t t l e h a s b e e n done i n t h i s d i r e c t i o n .
To
Or
r a t h e r , what we have i s a s c a t t e r e d body o f o c c a s i o n a l r e s u l t s ; t h e r e h a s been no s y s t e m a t i c a p p r o a c h t o t h e p r o b l e m . For a number o f y e a r s now, I have d e v o t e d m y s e l f t o s u c h a s y s t e m a t i c a p p r o a c h , and many o f t h e r e s u l t s have a p p e a r e d i n V
vi
Preface
a series of papers ( [ 2 2 ] - [ 2 8 ] ) .
My program i n t h i s monograph
i s t o p r e s e n t what I know, b o t h from my own work and t h a t of
o t h e r s , a s a u n i f i e d whole.
The c a n v a s i s a l a r g e o n e , and
t h e m a t e r i a l h e r e c o n s t i t u t e s o n l y t h e f i r s t volume. m a t i c i a n o f s t a n d i n g once remarked t o me t h a t C ' l ( X ) a gigantic C(Y),
A mathe-
was s i m p l y
much t o o c o m p l i c a t e d t o make g e n e r a l s t a t e -
A c t u a l l y , o f c o u r s e , many g e n e r a l s t a t e m e n t s
ments a b o u t .
Indeed, t h e b i d u a l of a general C ( X )
can be made a b o u t i t .
( i n common w i t h a l l m a t h e m a t i c a l o b j e c t s ) h a s an o r d e r l y and beautiful structure. C(X)
and i t s b i d u a l c a n be s t u d i e d t h r o u g h t h e i r r i n g
structure or, equivalently, t h e i r vector-space-cum-lattice structure.
We f o l l o w t h e l a t t e r r o u t e , examining them a s
Banach l a t t i c e s , t h a t i s , norm c o m p l e t e normed R i e s z s p a c e s . P a r t I i s an i n t r o d u c t i o n t o R i e s z s p a c e s , w i t h t h e c o n c e p t s and n o t a t i o n s w e w i l l u s e . ( s p a c e s o f t h e form C ( X ) ) ~'(p)).
P a r t I 1 d o e s t h e same f o r M l - s p a c e s and L - s p a c e s ( t h o s e o f t h e form
P a r t 111 c o n s i s t s of c l a s s i c a l m a t e r i a l on c ( x ) , i t s
d u a l , and b i d u a l
.
I n t h e r e m a i n d e r o f Volume I , we p r o c e e d w i t h t h e d e v e l o p ment o f o u r program.
I n p a r t I V , we s i n g l e o u t - o r o c c a s i o n -
a l l y d i s c o v e r - t h e s u b s p a c e s o f C l l ( X ) which seem t o be t h e most i m p o r t a n t .
The p r i n c i p a l one ( a f t e r C ( X )
t o be t h e s u b s p a c e U ( X )
i t s e l f ) seems
of "universally integrable" elements.
I t c o n t a i n s t h e s u b s p a c e s o f Bore1 e l e m e n t s and B a i r e e l e m e n t s , and s h a r e s many o f t h e i r p r o p e r t i e s .
In the context of C'l(X),
i t seems t o be a more n a t u r a l s u b s p a c e t h e n e i t h e r o f t h e l a t t e r
t o work w i t h .
Also p l a y i n g an i m p o r t a n t r o l e i s t h e norm
c l o s e d l i n e a r s u b s p a c e g e n e r a t e d by t h e " l o w e r s e m i c o n t i n u o u s "
Preface
vii
( e q u i v a l e n t l y , t h e "uppersemicontinuous")
elements.
I t seems
t o me w o r t h y o f more a t t e n t i o n t h a n h a s s o f a r been g i v e n t o i t . I n a n a t u r a l way, t h e d u a l Cl(X) o f C(X) i s t h e "home" o f a l l t h e s p a c e s L 1 (u),
p r u n n i n g t h r o u g h t h e Radon,
m e a s u r e s on X , and C"(X) t h e s e measures.
or regular,
i s t h e "home" o f t h e s p a c e s L m ( p ) f o r
Riemann i n t e g r a t i o n , t h e s u b j e c t o f P a r t V ,
t u r n s o u t t o be an i m p o r t a n t u n i f y i n g c o n c e p t i n s t u d y i n g t h e imbedding o f t h e s e L 1 ( p ) I s i n C'(X) and L m ( p ) ' s i n C v f ( X ) , I t i s c l o s e l y r e l a t e d t o what we c o n s i d e r an i m p o r t a n t c o n c e p t i n
R i e s z s p a c e s : t h e "Dedekind c l o s u r e " o f a s u b s e t .
This concept
a l s o i n c l u d e s Lebesgue i n t e g r a b i l i t y ( t o be d i s c u s s e d i n Volume 1 1 ) . I n P a r t V I , we examine t h e i d e a l o f " r a r e " e l e m e n t s ( c o r r e s p o n d i n g t o t h e nowhere d e n s e s e t s i n t o p o l o g y ) and i t s r e l a t i o n t o t h e Dedekind c o m p l e t i o n o f C(X). C'l(X) i s c l o s e l y c o n n e c t e d n o t o n l y w i t h i n t e g r a t i o n t h e o r y , but a l s o with general topology.
With e a c h Boolean a l g e b r a ,
t h e r e i s a s s o c i a t e d a t o p o l o g i c a l s p a c e , i t s S t o n e s p a c e , and t h e s t u d y o f Boolean a l g e b r a s h a s b e e n e n r i c h e d by t h e s t u d y of t h e t o p o l o g i c a l p r o p e r t i e s of t h e s e Stone spaces.
Parallel-
i n g t h i s , f o r e a c h C(X), Cll(X) seems t o p l a y t h e r o l e o f a " S t o n e s p a c e " f o r C(X).
As the reader w i l l see, there i s a
r e m a r k a b l e a r r a y 'of c o n c e p t s i n C " ( X )
analogous - i n f a c t ,
g e n e r a l i z i n g - t h e p r i n c i p a l concepts o f (general) topology. Some o f t h e s e a p p e a r i n C h a p t e r 1 0 , o t h e r s i n P a r t V I . The r e l a t i o n o f C " ( X )
t o the function spaces of ordinary
a n a l y s i s on X i s examined i n t h e monograph.
T h i s i s done
t h r o u g h t h e Isomorphism t h e o r e m , e s t a b l i s h e d i n 5 5 3 .
Although
t h e p r o o f i s r e l a t i v e l y s i m p l e , t h e t h e o r e m i s n o n - t r i v i a l , and
viii
Preface
h i g h l i g h t s t h e c e n t r a l r o l e of t h e Dini theorem i n t h e r e l a t i o n b e t w e e n C(X) a n d C"(X)
While t h e i n t r o d u c t o r y m a t e r i a l i n P a r t s I and I 1 i s s e l f c o n t a i n e d , o u r g o a l i s a l w a y s C"(X), two p a r t s a r e o f t e n o m i t t e d .
and t h e p r o o f s i n t h e s e
F o r an e n c y c l o p e d i c p r e s e n t a t i o n
o f R i e s z s p a c e s , w e r e f e r t h e r e a d e r t o Luxemburg and Zaanen [ 3 6 ] ; f o r a more l i m i t e d , b u t b e a u t i f u l l y w r i t t e n , p r e s e n t a t i o n ,
we r e f e r h e r o r him t o S c h a e f e r [ 4 7 ] ; a n d f o r a n e x t e n s i v e d e v e l o p m e n t o f t o p o l o g i c a l R i e s z s p a c e s , t o A l i p r a n t i s and Burkinshaw [ 2 ] .
F i n a l l y , f o r C(X) i t s e l f , t h e r e i s Semadeni [ 4 9 ] .
To k e e p t h e i n t r o d u c t o r y m a t e r i a l from becoming t o o d e n s e , I h a v e r e l e g a t e d some o f i t t o E x e r c i s e s i n t h e f i r s t t h r e e
chapters. I w a n t t o a c k n o w l e d g e h e r e some d e b t s .
To t h e D e p a r t m e n t o f
Mathematics of Purdue U n i v e r s i t y f o r providing, over t h e y e a r s , t h e a t m o s p h e r e a n d t h e a s s i s t a n c e n e e d e d t o c a r r y on t h e o r i g i n a l work a n d t h e work on t h i s monograph.
To t h e D e p a r t m e n t o f
M a t h e m a t i c s o f W e s t f i e l d C o l l e g e , U n i v e r s i t y o f London, w h e r e I carried
o u t a good p a r t o f t h e work a s a g u e s t o f t h e D e p a r t -
ment f o r more times t h a n I c a n remember.
To Owen B u r k i n s h a w
f o r k i n d l y p r o o f r e a d i n g t h e e n t i r e f i n a l copy.
And f i n a l l y , t o
E l i z a b e t h Young f o r t h e many h o u r s a n d t h e c a r e w h i c h s h e d e v o t e d t o t y p i n g t h i s volume.
Purdue U n i v e r s i t y July, 1984
TABLE OF CONTENTS
PREFACE
V
PART I BACKGROUND
CHAPTER 1
RIESZ SPACES
51
Ordered v e c t o r s p a c e s
2
52
Riesz spaces
5
53
R i e s z s u b s p a c e s and R i e s z i d e a l s
9
54
Order convergence
15
55
O r d e r c l o s u r e and b a n d s
20
56
R i e s z homomorphisms
26
57
Dedekind c o m p l e t e n e s s
31
58
Countabilit y p r o p e r t i e s
36
59
R i e s z norms and Banach l a t t i c e s
38
E xe r c i s e s
CHAPTER 2
44
RIESZ SPACE DUALITY
510 The s p a c e E b o f o r d e r bounded l i n e a r f u n c t i o n a 1s
52
9 1 1 E a s " p r e d u a l " o f Eb
62
ix
Contents
X
512
The s p a c e E C o f o r d e r c o n t i n u o u s l i n e a r functions
69 bb
74
513
The c a n o n i c a l i m b e d d i n g o f E i n E
514
The t r a n s p o s e o f a R i e s z homomorphism
78
515
The d u a l o f a Banach l a t t i c e
88
Exercises
89
PART I 1 L-SPACES AND Mll-SPACES
CHAPTER 3
§
16
MIL-SPACES AND L-SPACES
93
MI- s p a c e s
517
The components o f ll
100
918
MI-homomorphisms
108
519
L-spaces
109
520
The e x t r e m e p o i n t s o f K(E)
116
Exercises
CHAPTER 4
119
DUAL L-SPACES AND MIL-SPACES
521
The d u a l o f an MIL-normed s p a c e
120
522
1 ~ 1
a diversion
126
§23
The d u a l o f a n L - s p a c e
132
524
Mappings o f L - s p a c e s
138
(El
,E)
,
Contents
CHAPTER 5
xi
DUALITY RELATIONS BETWEEN AN L-SPACE AND ITS DUAL
525
T o p o l o g y on t h e d u a l o f an L - s p a c e
144
526
Dual b a n d s
146
527
B a s i c b a n d s i n t h e d u a l o f an L-space
147
528
Equi-order-continuity
152
529
Weak c o m p a c t n e s s
159
PART I 1 1 C (X)
CHAPTER 6
,
C (X)
,
C" (X) : THE FRAMEWORK
(C(X) ,X) - D U A L I T Y
The t o p o l o g y o f s i m p l e c o n v e r g e n c e
530
on C(X) 531
166
The d u a l i t y b e t w e e n t h e norm c l o s e d R i e s z i d e a l s o f C(X) and t h e c l o s e d
( o r open) s u b s e t s of X 532
169
The d u a l i t y b e t w e e n t h e MIL-subspaces o f C(X) and t h e u p p e r s e m i c o n t i n u o u s decomposition
933
CHAPTER 7
of X
The MIL-homomorphisms o f C(X)
(C(X)
,
176 181
C ' (X)) - D U A L I T Y
934
The i m b e d d i n g o f X i n C ' ( X )
186
535
Atomic a n d d i f f u s e Radon m e a s u r e s
188
xii
Contents
536
The v a g u e t o p o l o g y on C ' ( X )
193
537
Mapping d u a l i t y
199
CHAPTER 8
C"(X)
938
The i m b e d d i n g o f C(X) i n C " (
539
Some s i m p l e s e q u e n c e s p a c e s
8
206
208
PART IV THE STRUCTURE OF C"(X) : BEGINNINGS
THE FUNDAMENTAL SUBSPACES O F C"(X)
CHAPTER 9
5 40
Cll(X).
213
a n d C"(X)d
The b a s i c b a n d s a n d C"(X)
217
5 42
The 'Is emi c o n t i n u o u s " e 1emen t s
221
§43
The Up-down-up t h e o r e m
228
5 44
The s u b s p a c e U(X) o f u n i v e r s a l l y
§
41
0
integrable elements
2 31
945
The s u b s p a c e s s ( X ) a n d S(X)
234
546
Dedekind c l o s u r e s
2 35
547
The B o r e 1 s u b s p a c e Bo(X)
237
548
C(X)
238
CHAPTER 1 0
and C(X)
THE OPERATORS u AND L
549
The o p e r a t o r s u a n d L
248
550
The o p e r a t o r 6
256
Contents
551
&bands
552
Applications to general bands
CHAPTER 11
and u-bands
263 2 71
U(X)
553
The Isomorphism theorem
554
Immediate consequences o f the Isomorphism theorem
955
xiii
275
277
The universally measurable subsets of
x
289
§56 The Nakano completeness theorem
294
Appendix
297
PART V RIEMANN INTEGRATION
CHAPTER 12
THE RIEMANN SUBSPACE OF A BAND
557
The Dedekind closure of C(X),
303
558
A representation theorem
307
559
Examples of Riemann subspaces
310
CHAPTER 13
RIEMANN INTEGRABILITY
560
Riemann integrable elements
316
561
p-Riemann integrability
317
562
Riemann negligible elements
324
xiv
Contents 563
564
Riemann integrability and Riemann subspaces
32 7
Examples
331
PART VI THE RARE ELEMENTS
CHAPTER 1 4
THE LEAN ELEMENTS
565
Elementary properties
336
566
A "localization" theorem
342
CHAPTER 15
THE RARE ELEMENTS
567
Elementary properties
348
568
A "localization" theorem
359
CHAPTER 1 6
THE DECOMPOSITION C'(X) = Ra(X)'
0
C(X)'
569
The decomposition o f C'(X)
36 3
570
The band Ra(X)d
365
571
The band Ra(X)
572
Examples
CHAPTER 1 7
ad
370 372
THE DEDEKIND COMPLETION OF C(X)
973
The Maxey representation
377
574
The Dilworth representation
378
Contents
xv
575
A third representation
38 3
576
A fourth representation
387
CHAPTER 1 8
THE MEAGER ELEMENTS
577
Elementary properties
578
Sums o f positive elements o f a
389
Riesz space
390
579
Sums o f positive elements o f C " ( X )
395
580
The "localization" theorem
400
BIBLIOGRAPHY
410
This Page Intentionally Left Blank
PART I
BACKGROUND
1
CHAPTER 1
R I E S Z SPACES
Notation.
N
=
{ n , m , - . . } and IR
=
{ l , ~ , .} w i l l d e n o t e t h e
n a t u r a l numbers and t h e r e a l numbers r e s p e c t i v e l y . s p a c e s w i l l a l w a y s be o v e r
pi,
Our v e c t o r
w i t h t h e n e u t r a l element denoted
by 0 . A n i n d e x e d s e t {aalacl
w i l l g e n e r a l l y be w r i t t e n simply
{aaI .
5 1 . Ordered v e c t o r spaces
< on a s e t E , we mean, a s u s u a l , a b i n a r y By an o r d e r -
r e l a t i o n which s a t i s f i e s
(I)
a < a for a l l a€ E
(reflexivity) ;
(11)
a < b, b < c implies a < c
(transitivity) ;
(111)
a < b, b < a implies a
(anti-symmetry).
For a s e t A
=
=
b
{ a a ) i n E and bE E , A < b w i l l mean a a
f o r a l l a , and s i m i l a r l y € o r A > b.
A s u b s e t A o f E w i l l be
< b f o r some bE E . s a i d t o be bounded above i f A -
2
5 b
Any s u c h b-
Riesz Spaces
3
i n g e n e r a l , i t i s n o t u n i q u e - w i l l be c a l l e d an u p p e r bound of A .
C o r r e s p o n d i n g d e f i n i t i o n s h o l d f o r bounded below and
lower bound.
I f A i s bounded below and a b o v e , we w i l l s a y i t
i s o r d e r bounded. An e l e m e n t b of E i s c a l l e d t h e supremum of a s e t
3 if (i) b > A and ( i i ) c > A implies c > b. The a infimum o f A i s d e f i n e d i n t h e same way w i t h > r e p l a c e d by
0. -
We have i m m e d i a t e l y :
(1.1)
L e t E be an o r d e r e d v e c t o r s p a c e and { a J a s u b s e t o f E.
a
If V a e x i s t s , then a a ~ ( va ) = v ( A a a ) f o r a l l A > 0; (i)
a
cla
(ii)
-(Vaaa) = A a ( - a a ) ;
(iii) v a
cla
+
c =
+
c ) f o r a l l cE E .
More g e n e r a l l y , i f {b } i s a l s o a s u b s e t o f E and V b e x i s t s , B B B then ~aa
c1
+ vB bB
= V
cl,fdaa
+
be>.
a
Chapter 1
The n o t a t i o n
denotes t h a t a,B (over t h e r e s p e c t i v e index s e t s ) . V
~1
and
vary independently
The " d u a l " s t a t e m e n t t o ( l . l ) , o b t a i n e d by r e p l a c i n g A a l s o holds.
T h i s w i l l be t r u e t h r o u g h o u t t h e work.
V
by
For
e v e r y p r o p o s i t i o n i n v o l v i n g one o r more o f t h e s y m b o l s A,,
V,
_ _
t h e s t a t e m e n t o b t a i n e d by i n t e r c h a n g i n g t h e f i r s t
two w i t h e a c h o t h e r a n d t h e l a s t two w i t h e a c h o t h e r w i l l a l s o hold. A subset A of a vector space E i s a
cone
i f it s a t i s f i e s
the conditions:
(I)
a , b € A implies a + b€ A;
(11)
a € A i m p l i e s ha€ A f o r a l l
(111)
a, - a € A implies a
=
x
> 0; -
0.
A c o n e a l w a y s c o n t a i n s 0 , and c o n t a i n s n o o t h e r l i n e a r
subspace. An e l e m e n t a o f an o r d e r e d v e c t o r s p a c e E i s c a l l e d o-s i t i v e i f a > 0 (thus 0 i s positive). P
I t is immediate t h a t
t h e s e t of p o s i t i v e elements of E i s a cone.
I t is called the
p o s i t i v e cone o f E , and w i l l be d e n o t e d by E,.
I t is easily
verified that a < b i f a n d o n l y i f b - a € E,
s o t h e o r d e r i s known i f E, A i n a vector space E,
b
- a€
i s known.
( c f . E x e r c i s e 1) ,
Moreover, f o r any cone
t h e d e f i n i t i o n "a < b i f and o n l y i f
A" d e f i n e s a c o m p a t i b l e o r d e r o n E f o r w h i c h A i s
p r e c i s e l y E,.
Riesz Spaces
5
3 2 . Riesz s p a c e s
A R i e s z s p a c e , o r v e c t o r l a t t i c e , i s an o r d e r e d v e c t o r
s p a c e which i s a l a t t i c e u n d e r t h e o r d e r , t h a t i s , e v e r y f i n i t e { a l , . - . , an } h a s a supremum and an infimum i n E . We n . r e s p e c t i v e l y ; and, a s i s w i l l d e n o t e t h e s e by Vyai and A 1a 1 set A
=
customary, i f n
2 , a l s o by a1Va2 and alAa2.
=
n t h e v e r y d e f i n i t i o n , Vlai
Note t h a t , by n and ~~a~ a r e i n d e p e n d e n t o f t h e
o r d e r i n g o f t h e s u b s c r i p t s ; i n p a r t i c u l a r , a l v a 2 = a2Va1 and alAa2
=
a2Aal.
For two s u b s e t s A , B o f a R i e s z s p a c e E ( i n d e e d , o f any l a t t i c e ) , i f V A and V B e x i s t , t h e n (VA)V (VB)
= V (AIJ
B)
For t h r e e e l e m e n t s a l , a 2 , a 3 , t h i s g i v e s 3 u s ( a 1Va 2 ) v a , = a l v ( a 2Va 3 ) = v 1a 1. ’ s o we c a n w r i t e a 1Va 2v a 3 ( a s s o c i a t i v e law).
unambiguously.
And o f c o u r s e t h i s e x t e n d s t o any f i n i t e
number o f e l e m e n t s . The i d e n t i t i e s (1.1) w i l l be a p p l i e d r e p e a t e d l y t o a s e t c o n s i s t i n g o f two e l e m e n t s s o we s t a t e them f o r t h i s c a s e explicitly.
( 2 . 1 ) Given e l e m e n t s a , b o f a R i e s z s p a c e E , (i)
X(aVb) = ( 1 a ) v (Xb)
(ii)
-(aVb) = ( - a ) A ( - b )
(iii)
avb
+
c
=
(a + c)V (b
for a l l
+
x
> 0;
c).
This g i v e s u s immediately t h e s u p r i s i n g l y s t r o n g c o r o l l a r y :
Chapter 1
6
For a l l a,bE E ,
(2.2)
avb
avb - b
Pro of. -
=
+
a b
=
a + b.
(a - b)v 0
=
a - bAa ( t h i s l a s t e q u a l i t y
from E x e r c i s e 2 ) . QED
Note t h a t from ( i i ) a b o v e , f o r an o r d e r e d v e c t o r s p a c e t o be a R i e s z s p a c e i t i s s u f f i c i e n t t h a t t h e supremum e x i s t f o r every p a i r of elements. The f o l l o w i n g d i s t r i b u t i v e law i s e a s i l y v e r i f i e d : I f and V b e x i s t i n a Riesz s p a c e E , t h e n B B Vaaa (Vaaa)V ( V b ) = V (a vbB). In p a r t i c u l a r , B B a aV(V b ) = V ( a v b ) , a n d f o r t h r e e e l e m e n t s a , b , c ,
P a
av(bvc)
B
=
B
(avb)v ( a v c ) .
Not s o o b v i o u s i s a n o t h e r
( D i s t r i b u t i v e Law) Given a s u b s e t {a 1 o f a R i e s z s p a c e E , a i f Vaaa e x i s t s , t h e n (2.3)
bA(vaaa) = V a ( b h a a ) f o r a l l bE E .
Proof. Set a
=
Vaaa.
T h a t bAa
2
bAaa f o r a l l a i s c l e a r .
Suppose c > bAa f o r a l l a ; we h a v e t o show c > bAa. For e a c h U a, c > bAa = b + a - bva > b + a - bva. I t follows a a aa c 2 Va(b + aa - b v a ) = b + V a a a - b v a = b + a - b v a = h a . QED
7
Riesz Spaces
The " d u a l " law bv ( A a a a ) = A (bva ) a l s o h o l d s . F o r two c1 a e l e m e n t s , t h e laws r e d u c e t o bA(alVa2) = (bAal)V(bAa2) and bV(alAa2)
(bVal)A(bVa2).
=
By s t r a i g h t f o r w a r d a r g u m e n t from ( 2 . 3 ) , we c a n a l s o o b t a i n the apparently stronger
One o f t h e most u s e f u l p r o p e r t i e s o f a R i e s z s p a c e i s g i v e n by t h e
( D e c o m p o s i t i o n Lemma).
(2.5)
Given a R i e s z s p a c e E , i f
a,bl,b2EE+
and a
5
bl
with 0 < al
5
0
5
a2
Set al
=
a b l and a 2 = a
Proof. a - a/\bl
=
bl,
Ov(a
+
b 2 , t h e n a can be w r i t t e n a
5
=
al
+
b2 (al,a2 are not unique).
- b l ) 5 Ovb2
- al.
Then a 2
=
= b2 ( t h e second e q u a l i t y again
from E x e r c i s e 2 ) . QED
Given a , b E E
with a < b, the s e t {cla < c < b } w i l l be
d e n o t e d by [ a , b ] and c a l l e d an i n t e r v a l .
The D e c o m p o s i t i o n
Lemma c a n b e s t a t e d : For e v e r y b l , b 2 E E + ,
[O,bl
[O,blI
+
[O,b21.
+
b2] =
a2
8
Chapter 1
I t f o l l o w s f r o m t h e D e c o m p o s i t i o n Lemma, b y i n d u c t i o n , t h a t i f a , b l , . * - ,bnE E, 0 < a . < bi -
1 -
(i
-
,n).
1,.
=
Crib. 1 1'
and a
0;
b);
By an o r d e r bounded n e t , we w i l l mean one whose s e t o f v a l u e s i s o r d e r bounded. I f a a + a , t h e n , by r e p l a c i n g t h e n e t by a t e r m i n a l p a r t ,
,
i f n e c e s s a r y , we c a n assume i t h a s a f i r s t e l e m e n t a
and i s
"0
t h e r e f o r e an o r d e r bounded n e t ( s p e c i f i c a l l y , a for all a).
< a < a "0a -
And s i m i l a r l y f o r a d e s c e n d i n g n e t .
So hence-
f o r t h t h e n o t a t i o n s a + a and a + a w i l l always i m p l y t h a t we c1 a a r e d e a l i n g w i t h an o r d e r bounded n e t . Given a n e t { a 3 ( n o t n e c e s s a r i l y m o n o t o n i c ) , we w i l l s a y
"
t h a t t h e n e t {a } o r d e r converges t o a E E , i f t h e r e e x i s t n e t s a Ira}, { s 1 i n E , w i t h t h e same i n d e x s e t , s u c h t h a t ( i ) r a + a , a ( i i ) s + a , and ( i i i ) r < a < s f o r a l l a. We w i l l d e n o t e a- a a t h i s o r d e r c o n v e r g e n c e by a -+ a . a Note t h a t ( I ) from, t h e p r e c e d i n g p a r a g r a p h , t h e n o t a t i o n
"
a
-+
a net,
a always i m p l i e s t h a t we a r e d e a l i n g w i t h an o r d e r bounded (11) a + a and a + a a r e s p e c i a l c a s e s o f o r d e r c o n v e r g e n c e , a a
Riesz Spaces
17
a n d ( 1 1 1 ) f o r a n e t { a }, i f a = a f o r a l l a, t h e n a -t a . a a a For o r d e r c o n v e r g e n c e t o be a u s e f u l t o o l , l i m i t s m u s t b e
We v e r i f y t h i s .
a'
we 1 h a v e t o show a' = a . By d e f i n i t i o n , t h e r e e x i s t n e t s { r } . a 1 2 2 { s } s a t i s f y i n g t h e c o n d i t i o n s ( i ) , (ii), (iii) { s a } and I r a } , a We n o t e f i r s t t h a t f o r a l l f o r a' a n d a 2 r e s p e c t i v e l y . 1 In e f f e c t , choose Y E A 2 < s As a , f i E d ( t h e i n d e x s e t ) , r UV r a - a a' 1 1 1 1 2 such t h a t a , a < y; then r V r 2 < r V r 2 < a < s A s 2 < s A s ci a - y y - y - y y - a 0' 1 1 2 1 2 I t f o l l o w s t h a t a V a 2 = V ( r V r ) < A ( s A S ) = a1Aa2, whence
unique.
Suppose
a
2
a
a 1 = a2 .
a
a
-
c1
B
-+
B
and a
-t
U
a';
B
The a b o v e d e f i n i t i o n a n d d i s c u s s i o n c l e a r l y h o l d s i n a n y lattice.
In contrast, the following equivalent definition of
o r d e r convergence i s meaningful o n l y i n a Riesz s p a c e .
( 4 . 2 ) F o r a s e t { a } i n a R i e s z s p a c e E a n d aE E , a ing are equivalent: lo 2'
(a
-
a
a
-+
the follow-
a,
t h e r e e x i s t s a n e t { pc1 } i n E s u c h t h a t p c1 $ 0 a n d
a a ( 5 p,
f o r a l l a.
h o l d s , a n d f o r e v e r y a, s e t p
s - r a a' Then p a + 0 ( 4 . 1 ) , a n d F o r e v e r y a, r < a < s , r < a < s a- a a - a - u' Cc-versely, < a - a a 5 p a , t h a t i s , l a - aal 5 p a . hence pa assume 2' h o l d s . Then f o r e v e r y - p a -< a a - a 5 p a , h e n c e < a i a + p . T h u s a - p , a + pa a r e t h e d e s i r e d a pa- a a U r s a' a' QED Proof.
Assume 1'
c1
=
Chapter 1
18
From (4.1), we o b t a i n e a s i l y
3 b e two n e t s i n a R i e s z s p a c e E , w i t h t h e a b , then I f aa + a and b
( 4 . 3 ) Let { a , } , { b same i n d e x s e t .
c1
(i)
(-aa)
(ii)
laa
(iii)
a
(iv)
aavba
-+
avb,
(v)
a Ab a a
-+
aAb.
ci
-+
+
(-a),
Xa f o r a l l X ,
ba
+
-f
-f
a
+
b,
And, a s a c o r o l l a r y ,
(i)
a
a
+
a i f and o n l y i f ( a
(ii)
a
w
+
a i f and o n l y i f ( a ) +
(iii)
a
a
-+
a implies
(iv)
if a
(4.4)
a
-
w
a
+
a, b
a
laa/ +
-+
a) +
-+
0;
a + a n d (aa)- + a - ;
/at;
b , and a
< b
a-
a
f o r a l l a, t h e n
a < b.
T h e r e i s a p a r t i c u l a r k i n d o f m o n o t o n i c n e t w h i c h we w i l l o f t e n use.
F o l l o w i n g B o u r b a k i , we w i l l s a y t h a t A c E i s
f i l t e r i n g upward
-
i f a l , a 2 E ; A i m p l i e s alVa2EA.
d i r e c t e d s e t , h e n c e t h e i n j e c t i o n map
a n e t , an a s c e n d i n g o n e .
at+
A is then a
a of A into E is
This n e t w i l l be c a l l e d t h e
( c a n o n i c a l ) n e t a s s o c i a t e d w i t h A.
In general, we w i l l write
i t {aa} e v e n t h o u g h t h e i n d e x s e t {a} i s A i t s e l f .
I t is
19
R i e s z Spaces
clear that i f a
= VA,
then t h i s n e t order converges t o a .
A w i l l b e s a i d t o b e f i l t e r i n g downward i f a l , a Z f A i m p l i e s
a1Aa2EA.
A s above, t h e r e i s a c a n o n i c a l n e t a s s o c i a t e d w i t h A,
t h i s time a descending one.
And i f a
=
AA, then t h i s n e t order
converges t o a .
the set of a l l
G i v e n a s u b s e t A o f E , w e d e n o t e b y A(') limits i n E of o r d e r convergent n e t s o f A. that (i) A c A(1),
(ii) A c B i m p l i e s A(')
I t i s immediate
c B ( l ) , and
(iii)
( A I J B ) ( l ) = A(1) IJ B " ) .
In addition,
(4.5)
( i ) I f A is a l i n e a r subspace, then so i s A('); ( i i ) I f A i s a s u b l a t t i c e , t h e n s o i s A (1) ; ( i i i ) I f F i s a Riesz subspace, then so i s F ' l ) ,
I f I i s a Riesz i d e a l , then so is
(iv)
I'll,
with
and ( I ( ' ) ) +
i s t h e s e t o f suprema o f a r b i t r a r y s u b s e t s o f I + .
Proof.
(i) and ( i i ) a r e immediate; a l s o t h e f i r s t s t a t e -
ment i n ( i i i ) .
There e x i s t s a n e t {a } c F s u c h t h a t a
a € (F('))+. Then ( a a ] +
To p r o v e t h e l a s t s t a t e m e n t i n ( i i i ) , c o n s i d e r c1
+
a+
=
a, so a € (F+)(').
Thus ( F ( ' ) ) +
c1
a.
+
c ( F + )(1). ,
The o p p o s i t e i n c l u s i o n f o l l o w s f r o m t h e e a s i l y v e r i f i e d f a c t t h a t t h e l i m i t o f an o r d e r c o n v e r g e n t n e t o f p o s i t i v e e l e m e n t s
is positive. Now s u p p o s e I i s a R i e s z i d e a l . subspace.
We show t h a t 0 - b - a E I
By ( i i i ) , I ( ' )
i s a Riesz
i m p l i e s b e I(1)
,
hence
20
Chapter 1
i s a Riesz i d e a l .
I(') a
a
-f
a (by ( i i i ) a g a i n ) .
There e x i s t s a n e t { a } i n I + such t h a t a Then aaAb€ I,
f o r a l l a , and
I t remains t o prove t h e l a s t a A b -f a/ib = b . Thus b E I ( l ) . a statement in ( i v ) . I f a E E i s t h e supremum o f some s u b s e t o f
t h e n , by E x e r c i s e 1 4 , some n e t i n I + o r d e r c o n v e r g e s t o a ,
I,,
s o a € I'll.
C o n v e r s e l y , s u p p o s e a € ( I (1) ) + .
There e x i s t s
3
Since
n e t {a } i n I+ such t h a t aa a . Then aaAa -t a ~ =a a . a a Aa < a , i t f o l l o w s e a s i l y t h a t a = V a ( a a A a ) . a -f
QED
55. Order c l o s u r e and bands
A s u b s e t A of E w i l l be c a l l e d o r d e r c l o s e d i f i t i s
c l o s e d under o r d e r convergence i n E of n e t s i n A: f o r e v e r y n e t { a } i n A and a € E ,
+ a implies aEA. I t is easily verified a t h a t t h e union o f a f i n i t e c o l l e c t i o n of o r d e r c l o s e d s e t s and
a
a
t h e i n t e r s e c t i o n o f an a r b i t r a r y c o l l e c t i o n a r e o r d e r c l o s e d . We have a l r e a d y p o i n t e d o u t i n t h e p r o o f o f ( 4 . 5 )
t h a t E,
i s order closed. A useful property:
(5.1) A Riesz subspace F o f a Riesz space E i s o r d e r c l o s e d i f and o n l y i f F,
Proof. -____
i s order closed.
Suppose F i s o r d e r c l o s e d .
S i n c e F,
= F
n
E,,
i t i s t h e i n t e r s e c t i o n o f two o r d e r c l o s e d s e t s , h e n c e o r d e r
Riesz S p a c e s
closed.
C o n v e r s e l y , l e t F,
21
b e o r d e r c l o s e d , and s u p p o s e a n e t
{ a } i n I: o r d e r c o n v e r g e s t o a n e l e m e n t a . Then (a,)' CL + I t f o l l o w s a , a E F + , hence a E F . and ( a a ) - + a - .
+
a+
QED
Consider a subset A o f E .
The i n t e r s e c t i o n o f a l l t h e
o r d e r c l o s e d s e t s c o n t a i n i n g A i s an o r d e r c l o s e d s e t , hence t h e smallest one c o n t a i n i n g A.
We w i l l c a l l i t t h e o r d e r
c l o s u r e o f A. I n g e n e r a l A(1)
i s n o t o r d e r c l o s e d , hence i s a p r o p e r
s u b s e t o f t h e o r d e r c l o s u r e o f A. A(3)
and so on.
=
Let A ( 2 )
=
( A ( 1 ) )( 1 ) 9
I t may r e q u i r e a t r a n s f i n i t e
s e q u e n c e o f t h e s e i t e r a t i o n s t o o b t a i n t h e o r d e r c l o s u r e o f A. (Note, however, t h a t A i s o r d e r c l o s e d i f and o n l y i f A
=
A").)
I t i s c l e a r t h a t i f A c B , t h e n o r d e r closure A c o r d e r c l o s u r e B.
A l s o , f o r a n y two s u b s e t s A , B o f E ,
o r d e r c l o s u r e ( A ! J B ) = ( o r d e r c l o s u r e A) IJ ( o r d e r c l o s u r e B )
Combining ( 4 . 5 ) w i t h Z o r n ' s lemma, we c a n show
(5.2)
Theorem. (i)
Let E b e a R i e s z s p a c e .
I f A is a l i n e a r subspace, then so is i t s o r d e r
closure. (ii)
I f A i s a sublattice, then so i s i t s order closure
( i i i ) I f F i s a Riesz subspace and G i t s o r d e r c l o s u r e , t h e n G i s a R i e s z s u b s p a c e a n d G,
= o r d e r c l o s u r e F,.
Chapter 1
22
F o r a R i e s z i d e a l I , w e c a n do b e t t e r .
I(1) is order
c l o s e d , h e n c e i s t h e o r d e r c l o s u r e o f I (we t h u s h a v e n o n e e d o f Z o r n ' s lemma):
For a R i e s z i d e a l I o f a Riesz s p a c e E , I(1)
(5.3)
is order
c l o s e d , hence i s t h e o r d e r c l o s u r e o f I .
Proof.
By ( 5 . 1 ) a n d ( 4 . 5 ) , we n e e d o n l y show t h a t ( I ( 1 ) ) +
i s c l o s e d under t h e o p e r a t i o n o f a d j o i n i n g suprema o f a r b i t r a r y subsets of itself. idempotent.
Now t h i s o p e r a t i o n i s e a s i l y shown t o b e
Since (I('))+
i s o b t a i n e d by a p p l y i n g t h e o p e r a -
t i o n t o I + , we a r e t h r o u g h .
QED
We w i l l s e l d o m e n c o u n t e r o r d e r c l o s e d R i e s z s u b s p a c e s i n t h i s work. abound,
I n c o n t r a s t t o t h i s , o r d e r c l o s e d Riesz i d e a l s w i l l
The l a t t e r h a v e a name: a n o r d e r c l o s e d R i e s z i d e a l o f
a Riesz s p a c e E i s c a l l e d a
band
of E.
The r e m a i n d e r o f t h i s 5
i s devoted t o bands. Given a s u b s e t A o f a R i e s z s p a c e E , t h e i n t e r s e c t i o n o f a l l t h e bands c o n t a i n i n g A i s a band, hence t h e s m a l l e s t one
c o n t a i n i n g A. clearly I(1),
I t i s c a l l e d t h e band g e n e r a t e d by A.
It is
where I i s t h e Riesz i d e a l g e n e r a t e d by A.
We r e m a r k e d i n 53 t h a t f o r e v e r y s u b s e t A o f a R i e s z s p a c e , Aa i s a Riesz i d e a l .
In point of f a c t ,
Kiesz S p a c e s
(5.4)
23
For e v e r y s u b s e t A of a Riesz space E , A
Proof. -__
d . i s a band.
I t r e m a i n s t o show t h a t Ad i s o r d e r c l o s e d .
This
f o l l o w s f r o m ( 5 . 1 ) and ( i v ) o f E x e r c i s e 5 .
QED d d For a s u b s e t A of a R i e s z space E , w e w i l l denote (A ) s i m p l y by A dd
(5.5)
.
I t i s o b v i o u s t h a t A C A dd .
Let A b e a s u b s e t o f a R i e s z s p a c e E , I t h e R i e s z i d e a l
g e n e r a t e d by A ,
a n d H t h e b a n d g e n e r a t e d by A ( h e n c e t h e o r d e r
closure of I ) .
Then Ad
Id
=
=
H
d
a n d ( t h e r e f o r e ) Add
=
Idd
=
Hdd.
The v e r i f i c a t i o n i s s t r a i g h t f o r w a r d .
F o r an A r c h i m e d e a n
R i e s z s p a c e , w e c a n s a y more:
( 5 . 6 ) Theorem. -____
I f E i s an Archimedean Riesz s p a c e , t h e n f o r
every R i e s z i d e a l I , Idd i s i t s o r d e r c l o s u r e .
i f I i s a band, then Idd
Proof.
=
I.
Idd i s o r d e r c l o s e d ( 5 . 4 ) ,
of I i s contained i n I
dd
.
In particular,
so the order closure
For t h e o p p o s i t e i n c l u s i o n c o n s i d e r
24
bE ( I
Chapter I dd
< a < b } ; we show b = V A . ) + and s e t A = { a € I 1 0 -
Suppose A < c < b ; we h a v e t o show c = b . On t h e o n e h a n d , dd 0 < b - c < b , s o b - cE I on t h e o t h e r h a n d b - c E 1 d .
.
To
e s t a b l i s h t h i s , i t i s enough t o show t h a t i f dE I . s a t i s f i e s
0 < d < b - c , then d
=
0.
We have 0 c d < b - c < b , s o dEA,
so d < c , so 0 < 2d < c + (b - c) we h a v e 0 < nd < b for a l l n We t h u s h a v e b
- cE I d d
=
=
b.
1,2,...
P r o c e e d i n g by i n d u c t i o n ,
.
I t follows d
r) I d , whence b -
c
=
=
0.
0.
QED
( 5 . 7 ) C o r o l l a r y 1. A o f E , Add
I f E i s Archimedean, t h e n f o r e v e r y s u b s e t
i s t h e band g e n e r a t e d by A .
(5.8) Corollary 2.
For a R i e s z i d e a l I o f an Archimedean R i e s z
space E , the following a r e equivalent:
1'
the order closure of I i s E;
Z0
Id = 0.
For a counterexample t o ( 5 . 8 )
,
hence t o ( 5 . 6 )
,
when E i s
n o t A r c h i m e d e a n , l e t E b e t h e p l a n e IR2 o r d e r e d l e x i c o g r a p h i c a l l y ( 5 2 ) and H t h e y - a x i s . f o r e H~~
=
Then H i s a b a n d b u t Hd = 0 and t h e r e -
E.
We have s e e n ( 3 . 7 ) t h a t i f E then H
=
I d and I = H d .
=
I a H , I , H Riesz i d e a l s ,
T h u s , by ( 5 . 4 ) ,
I and H a r e b a n d s
( 3 . 7 ) can be s t a t e d a s f o l l o w s : A R ies z i d e a l I h as a
R i e s z Spaces
25
complementary Riesz i d e a l i f and o n l y i f E
I 3 Id; i n such
=
c a s e , ( i ) I d i s t h e o n l y c o m p l e m e n t a r y R i e s z i d e a l and ( i i ) I i s a band.
In g e n e r a l , even i f I is a band, I complementary t o I . i d e a l I i s a band.
+
Id
# E , so I d
is not
I n t h e example f o l l o w i n g ( 3 . 7 ) , t h e R i e s z However, i n an Archimedean R i e s z s p a c e ,
I d i s " a l m o s t " complementary t o I ( ( 5 . 9 ) b e l o w ) . We f i r s t a d o p t a n o t a t i o n .
I f two l i n e a r s u b s p a c e s F , G
of a vector space s a t i s f y F n G F
+
Thus f o r a R i e s z i d e a l I o f a R i e s z
G t o indicate this.
s p a c e , we w i l l a l w a y s d e n o t e I
(5.9)
Theorem.
0 , we w i l l w r i t e F 3 G f o r
=
+
I
d
by 1 3 I
d
.
I f E i s Archimedean, then
(Luxemburg-Zaanen).
f o r e v e r y Riesz i d e a l I of E , t h e o r d e r c l o s u r e o f I
Proof.
(I @ Id)d
=
Id
n
Idd
=
0 (Exercise 17).
Id i s E.
%,
Now
apply (5.8) QE D
Remark.
( i ) Since I 3 Id i s a R i e s z i d e a l , t h e theorem
s a y s t h a t e v e r y e l e m e n t o f E+ i s t h e supremum o f some s u b s e t d of (I 3 I )+ ( i i ) Theorems ( 5 . 6 ) a n d ( 5 . 9 )
a r e contained i n a general
t h e o r e m o f Luxemburg a n d Zaanen ( [ 3 5 ] Theorem 2 2 . 1 0 ) , w h i c h s t a t e s t h a t t h e p r o p e r t y i n e a c h o f them i s , i n f a c t , a n e c e s s a r y and s u f f i c i e n t c o n d i t i o n f o r E t o be Archimedean.
Chapter 1
26
56. R i e s z homomorphisms
C o n s i d e r a l i n e a r mapping E ->F into another.
T o f one R i e s z s p a c e
Perhaps t h e weakest p r o p e r t y T can have i n v o l v -
i n g t h e Riesz space s t r u c t u r e i s o r d e r boundedness.
T w i l l he
s a i d t o b e o r d e r bounded i f i t c a r r i e s o r d e r bounded s e t s i n t o o r d e r bounded s e t s .
A stronger property is positivity.
T is
c a l l e d p o s i t i v e i f T(E+) c F + , o r , e q u i v a l e n t l y , i f i t p r e i m p l i e s Ta i Ta,. That a p o s i t i v e 2 1 l i n e a r mapping i s o r d e r b o u n d e d i s i m m e d i a t e . A stronger pro-
serves order: a
1 -
a
L
p e r t y s t i l l : T w i l l b e c a l l e d a R i e s z homomorphism i f i t p r e s e r v e s t h e l a t t i c e o p e r a t i o n s , t h a t i s , i f f o r a l l a , b E E:, T(avb)
=
(Ta)V(?'b) a n d T(ar\b)
=
(Ta)A(Tb).
A R i e s z homomorphism
clearly preserves order. A f o u r t h p r o p e r t y , s t r o n g e r t h a n o r d e r boundedness b u t
i n d e p e n d e n t o f t h e o t h e r two p r o p e r t i e s ,
is order continuity.
T w i l l be c a l l e d o r d e r continuous i f it p r e s e r v e s o r d e r con-
vergence: a
(6.0)
a.
+
a i m p l i e s Ta(,
+
Ta.
I f T i s o r d e r c o n t i n u o u s , t h e n i t i s o r d e r bounded
Proof. -__
I t i s e n o u g h t o show t h a t f o r a n i n t e r v a l o f t h e
f o r m [ O , a ] i n E , T ( [ O , a ] ) c [ - c , c ] f o r some c E F , .
As a set,
[ O , a ] i s f i l t e r i n g downward ( a l s o u p w a r d , b u t n o m a t t e r ) . L e t {a } b e t h e a s s o c i a t e d ( d e s c e n d i n g ) n e t ( c f . t h e d i s c u s s i o n c1
R i e s z Spaces
following ( 4 . 4 ) ) .
Then a,+O,
27
s o , b y h y p o t h e s e s , Ta
ci
+
s a y s t h e r e e x i s t s a n e t {b } i n F s u c h t h a t b 4 0 a n d ITa
"
CY
This
0.
a
I
< b
-
f o r a l l a. Now s i n c e t h e d i r e c t e d i n d e x s e t {a} i s a c t u a l l y t h e s e t
[ O , a l , i t h a s a f i r s t e l e m e n t a0 ( w h i c h i s a c t u a l l y a ) .
Since
f o r a l l Q, a n d t h u s { b c x }i s d e s c e n d i n g , i t f o l l o w s b < b a-b i Ta < b f o r a l l a, 'Thus b is the desired c. noci"0 aO
QED
F o r now, o u r i n t e r e s t l i e s i n R i e s z homomorphisms.
( 6 . 1 ) Given a l i n e a r mapping E __ > F o f o n e R i e s z s p a c e i n t o another.
The f o l l o w i n g a r e e q u i v a l e n t :
1'
T i s a R i e s z homomorphism;
2'
T p r e s e r v e s one o f t h e l a t t i c e o p e r a t i o n s V , A ;
3'
~ ( a + )= ( ~ a ) +f o r a l l a E E :
4'
For a l l a , b E E ,
Proof.
Assume 4'
a/\b
0 i m p l i e s Ta/\Tb
=
For a , b E E ,
holds
( a - a/\b)A (b
=
a ~ b )= 0 ,
-
hence T ( a - a/\b)A T b - W b )
=
0.
Writing t h i s (Ta - T ( a / \ b ) ) A (Tb - T ( a / \ b ) ) = 0 ,
we h a v e Ta/\Tb
-
T(aAb)
=
0,
0.
iy.
Chapter I
28
w h i c h g i v e s u s 2'.
The r e m a i n d e r o f t h e p r o o f i s s t r a i g h t -
forward.
QED
(6.2)
I f E __ > F i s a R i e s z homomorphism, t h e n T(E) i s a
Riesz subspace o f F and T-l(O) i s a Riesz i d e a l of E .
The p r o o f i s s i m p l e . I f a l i n e a r mapping E
> F i s a b i j e c t i o n and b o t h T
~
and T - l p r e s e r v e t h e l a t t i c e o p e r a t i o n s , t h e n T w i l l be c a l l e d a R i e s z isomorphism.
For a l i n e a r b i j e c t i o n t o be a Riesz
isomorphism, i t s u f f i c e s t h a t T(E+)
The r e m a i n d e r o f t h i s
§
=
F,.
i s d e v o t e d t o two k i n d s o f R i e s z
homomorphisms w h i c h w i l l b e w i t h u s t h r o u g h o u t t h e w ork.
( 6 . 3 ) Theorem.
Let I b e a R i e s z i d e a l o f a Riesz s p a c e E , E / I
t h e q u o t i e n t v e c t o r s p a c e , and E -> E / I t h e q u o t i e n t map. Then (i)
q ( E + ) i s a c o n e , h e n c e d e f i n e s a n o r d e r on E / I .
Under t h i s o r d e r , (ii)
E/I i s a Riesz space;
(iii)
q i s a R i e s z homomorphism ;
(iv)
f o r every interval [a,b] of E , q([a,b]) = [qa,qb].
29
Riesz Spaces
*
We d e n o t e t h e e l e m e n t s o f E / I by % , b , ' * . .
P roof. -
n e e d o n l y show t h a t g , - S i E q ( E + ) i m p l i e s 2 t h a t qa
-5, s o
Z.
=
also -a
S i n c e qaE q ( E + ) , a +
jEE+
€ o r some j E 1 .
- a + j -> 0 , we have - i < a 5 j.
Z
iEE+
+
f o r some i E I .
Writing these a
q(-a) = i
+
2
0,
( E x e r c i s e 11) , s o
Thus a E I
-
Choose a s u c h
0.
=
( i ) We
0.
=
We n e x t show t h a t f o r a E E , qa'
=
(qa)',
which w i l l
e s t a b l i s h b o t h ( i i ) and ( i i i ) .
q i s p o s i t i v e by t h e v e r y
d e f i n i t i o n o f t h e o r d e r on E / I ,
s o qa'
b 2
qa,
b 2 0;
a + s u c h t h a t qb
Since
b
>
q a , bo + j
2
a f o r some j E 1 .
b.
t h a t qbO = since b
2
0, b o
+
i
bo + i v j > a , hence bo + iVj 2 a + .
2
q a , qa
+
2
-
0.
Suppose
We w i l l do t h i s by
qa'.
2
f i n d i n g an e l e m e n t b
-
'>
we have t o show
2
=
b.
Choose b o s u c h
0 f o r some i E I .
I t follows b o
And +
ivj
LO,
Thus b o + i v j i s t h e
d e s i r e d b. (iv) Since q i s p o s i t i v e , q ( [ a , b ] ) c [qa,qb].
For t h e
o p p o s i t e i n c l u s i o n , c o n s i d e r CE [ q a , q b ] and c h o o s e c E E t h a t qc qd
=
s.
=
such
Then, s e t t i n g d = ( c V a ) A b , we have dE [ a , b ] and
?. QED
Suppose E = I 3 H , I , H R i e s z i d e a l s ( h e n c e b a n d s ) . c a n o n i c a l mappinga+?al
o f E o n t o I i s a p r o j e c t i o n , t h a t i s , an
i d e m p o t e n t l i n e a r mapping o f E i n t o i t s e l f . by &I
.
The
We w i l l d e n o t e i t
S i n c e p r o j I e x i s t s whenever a R i e s z i d e a l I h a s a
complementary R i e s z i d e a l (and t h e r e f o r e b o t h a r e b a n d s ) , s u c h an I i s c a l l e d a F o j e c t i o n b a n d , and p r o j I i s c a l l e d a projection.
band
Chapter I
30
(6.4)
F o r a p r o j e c t i o n E-
Theorem.
> E on a R i e s z s p a c e ,
the following a r e equivalent: 1'
T i s a band p r o j e c t i o n ;
2'
( i ) T i s a R i e s z homomorphism, a n d < a f o r a l l aEE,. ( i i ) 0 5 Ta -
Proof. Assume 2'
T h a t 1'
h o l d s , and s e t H
The m a p p i n g E
i s t h e content of ( 3 . 6 ) .
T(E),
I
=
T-l(O).
Then E
=
H 3 I,
> E d e f i n e d b y S a = a - Ta i s a l s o a p r o j e c -
L
t i o n , w i t h S(E)
=
I , S - l ( O ) = I].
So we n e e d o n l y show S i s a
Note t h a t by i t s d e f i n i t i o n , S a l s o
R i e s z homomorphism.
satisfies
=
0
I i s a R i e s z i d e a l ; w e show FI i s a R i e s z i d e a l .
and, by ( 6 . 2 ) ,
(ii): 0 < Sa < a f o r aEE,
Then 0 < SWSb < ar\b (6.1)
implies 2
=
Now s u p p o s e ar\b
0 , hence S w S b = 0.
=
0.
I t f o l l o w s from
t h a t S i s a R i e s z homomorphism.
QED
( 6 . 5 ) A band p r o j e c t i o n p r e s e r v e s suprema and i n f i m a o f a r b i t rary sets.
A f o r t i o r i , it is order continuous.
If AA
Proof. A(projI(A))
=
=
0 i n E , t h e n , by 2'
( i i ) i n (6.4)
above,
0. QE D
Riesz Spaces
31
5 7 . Dedekind c o m p l e t e n e s s
A liiesz s p a c e w i l l b e c a l l e d D e d e k i n d c o m p l e t e i f e v e r y
s u b s e t w h i c h i s bounded a b o v e h a s a supremum i n E - e q u i v a l e n t l y , e v e r y s u b s e t b o u n d e d b e l o w h a s a n infimum i n E .
F o r l a t e r c o m p a r i s o n , we g i v e two a d d i t i o n a l d e f i n i t i o n s . An o r d e r e d p a i r ( A , B ) ~
o f s u b s e t s o f E w i l l be c a l l e d a D e d e k i n d
cut i f ( i ) A < B a n d ( i i ) e a c h i s maximal w i t h r e s p e c t t o t h i s
< B i m p l i e s c E A , and c > A implies c E R ) . property (that i s , c -
Note t h a t V A
=
A B i f e i t h e r e x i s t s ; and i n s u c h c a s e , i t l i e s
b o t h i n A and B , and i s i n f a c t t h e o n l y e l e m e n t i n t h e i r i n t e r -
section.
For a R i e s z space E , t h e following a r e e q u i v a l e n t :
(7.1)
1'
E i s Dedekind c o m p l e t e ;
2'
f o r every p a i r of subsets A , B such t h a t A < B, there
ic < B; e x i s t s c E E such t h a t A -
3'
f o r e v e r y Dedekind c u t ( A , B ) ,
A
n
B i s n o t empty.
The v e r i f i c a t i o n i s s i m p l e . Remark.
'3
above i s e s s e n t i a l l y Dedekind's o r i g i n a l
definition.
Note t h a t i f E i s Dedekind c o m p l e t e , t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e e l e m e n t s o f E and t h e D e d e k i n d c u t s
32
Chapter I
o f E , g i v e n by c B
=
(A,B), where A
=
CaEEla 5 c } ,
2 c}.
{bEEIb
(7.2)
I+
A Dedekind c o m p l e t e R i e s z s p a c e E i s A r c h i m e d e a n .
Proof.
C o n s i d e r aEE+
5
b 5 ( 1 / 2 n ) a f o r a l l n , s o 2b
b
=
b
2 0 , t h i s g i v e s u s 2b
0.
and l e t b = A n ( l / n ) a ; w e show
b , whence b
=
=
(l/n)a f o r a l l n.
Since
0. QED
Judged by u s e f u l n e s s , t h e f o l l o w i n g i s p r o b a b l y t h e m o s t i m p o r t a n t p r o p e r t y o f a Dedekind c o m p l e t e R i e s z s p a c e [ 4 4 ] .
( 7 . 3 ) Theorem..
(F. Riesz)
I n a Dedekind c o m p l e t e R i e s z s p a c e
E , e v e r y band I i s a p r o j e c t i o n b a n d .
Proof.
We n e e d o n l y show I + I d s u f f i c e s t o show t h a t I + + ( I d ) + = E,.
c = V([O,b] Suppose 0
2
a
hence a
c
5 c , hence a
+
E , and f o r t h i s , i t
C o n s i d e r bEE,,
Since I i s a band, cEI;
I).
2
=
b - c, aEI. =
Then 0
5
and l e t
we show b - c E I d .
a + c
5
b , with a + c f I ,
0. QED
Note t h a t c
=
bI.
Exercise 2 1 c o n t a i n s t h e d e t a i l s o f t h e
Riesz Spaces
33
a c t u a l computation of bI i n various s i t u a t i o n s . Remark. -__
The R i e s z theorem c o n t a i n s a l l t h e d e c o m p o s i t i o n
theorems o f c l a s s i c a l i n t e g r a t i o n t h e o r y .
I t may have been
R i e s z ' d e s i r e t o show t h a t t h e s e d e c o m p o s i t i o n theorems were t h e same t h a t l e d him t o d e f i n e R i e s z s p a c e s .
I n a Dedekind c o m p l e t e R i e s z s p a c e E , t h e c o n c e p t s of l i m i t s u p e r i o r and l i m i t i n f e r i o r o f an o r d e r bounded n e t can
be d e f i n e d .
And t h e s e , i n t u r n , l e a d t o an a l t e r n a t e d e f i n i -
t i o n o f o r d e r convergence. Given an o r d e r bounded n e t { a c l ) i n E , we d e f i n e limsupclacl = /\cl(VB,ccaB)and l i m i n f c l a a c l e a r t h a t liminfaacl
5
limsup a
clcl
.
=
Vcl(~8,,ag).
I t is
I f (and o n l y i f ) t h e two a r e
equal, t h e n e t i s order convergent:
( 7 . 4 ) I f E i s Dedekind c o m p l e t e , t h e n f o r an o r d e r bounded s e t the following a r e equivalent:
{ a a } i n E and aEE,
2'
liminf a
=
a = limsup a
cla
cla
.
For e a c h a, s e t r
= A a and s = VB,aaB. Then a B>a - B cl r -f l i m i n f a a a , s a + l i m s u p a and r < a < s f o r a l l a. The c1 a a' a- a- a e q u i v a l e n c e o f 10 and 2' now f o l l o w s e a s i l y .
Proof.
QE D
We w i l l s a y a R i e s z s u b s p a c e F o f a R i e s z s p a c e E i s
Chapter 1
34
Dedekind d e n s e i n E i f e v e r y e l e m e n t o f E i s b o t h t h e supremum o f some s u b s e t o f F a n d t h e infimum o f some s u b s e t o f F .
As i s
o b v i o u s , i f F i s Dedekind d e n s e i n E , t h e R i e s z i d e a l g e n e r a t e d
by F i s a l l o f E ; h e n c e , g i v e n a R i e s z s u b s p a c e F , t o a s k a b o u t i t s Dedekind d e n s e n e s s makes s e n s e o n l y i n
t h e Riesz i d e a l
which i t g e n e r a t e s . N o t e t h a t i f E i s D e d e k i n d c o m p l e t e and F i s Dedekind dense i n E , t h e n t h e r e i s a one-one c o r r e s p o n d e n c e between t h e e l e m e n t s o f E and t h e Dedekind c u t s o f F . We w i l l s a y a R i e s z s u b s p a c e F o f a R i e s z s p a c e E
has
a r b i t r a r i l y small elements i n E i f f o r every a > 0 i n E , there e x i s t s bE F s u c h t h a t 0 < b < a.
(The common t e r m i n o l o g y i s
t h a t F i s o r d e r dense i n E . ) .
I f E i s Archimedean, t h e n f o r a R i e s z s u b s p a c e F , t h e
(7.5)
following are equivalent: 1'
F has a r b i t r a r i l y small elements;
2'
f o r e v e r y aEE,,
t h e r e e x i s t s a n e t Cb 1 i n F, c1
such
t h a t ba+a.
Proof.
We n e e d o n l y show t h a t 1'
h o l d s , and c o n s i d e r a > 0 .
Set A
enough t o show t h a t a = V A . c
3
0 such t h a t A < a
=
i m p l i e s 2'.
{bCF 10 < b < a } ; it i s
Suppose n o t .
- c.
Assume '1
Then t h e r e e x i s t s
We show t h a t b E F , 0 < b < c implies
b = 0 , which w i l l c o n t r a d i c t lo.
So c o n s i d e r b E F ,
0
5
b
5 c.
Since c
5
a , t h i s g i v e s us
35
Riesz Spaces
b < a , hence bE A , (a - c)
c
+
hence b < a - c.
a , whence 2 b € A ,
=
But t h e n 2b = b + b
A a n d b i s i n t h e norm
(9.5)
c l o s u r e o f A, t h e n b
P roof. A < c < b.
hence (Ib
-
= VA.
Suppose n o t .
Then t h e r e e x i s t s c s u c h t h a t
I t f o l l o w s t h a t f o r e v e r y aEA, b - a > b
all> - IIb - cI[ > 0 .
-
c > 0,
This contradicts the hypothesis
t h a t b i s i n t h e norm c l o s u r e o f A. QED
C o r o l l a r y 1.
(9.6)
I f a monotonic n e t {a } i n a normed R i e s z a
s p a c e norm c o n v e r g e s t o some e l e m e n t b , t h e n i t o r d e r c o n v e r g e s t o b.
Proof. (9.5),
For c o n c r e t e n e s s , assume { a } i s a s c e n d i n g . CL
i t i s e n o u g h t o show t h a t b > { a }. a = b. F o r e v e r y CL > a 0 , I[ b v a a - aa,l
'
bva aO
0
(Ib - ad/ ( 9 . 2 ) . - aJl
limdlbva aO
By
F i x a,; w e show =
[Ibvaa
-
0
S i n c e l i m IIb - aall = 0 , t h i s g i v e s a = 0 , h e n c e , b y t h e u n i q u e n e s s o f norm
42
Chapter 1
convergence, bva
= b. c10
Corollary 2.
(9.7)
I n a normed R i e s z s p a c e , e v e r y band -
i n d e e d , e v e r y o - o r d e r c l o s e d R i e s z i d e a l - i s norm c l o s e d .
Even f o r a m o n o t o n i c n e t , o r d e r c o n v e r g e n c e n e e d n o t i m pl y norm c o n v e r g e n c e : t h e exam pl e above i n t h e s p a c e c i s a n ascending sequence.
(9.8)
L e t E b e a normed Riesz s p a c e a n d I a norm c l o s e d R i e s z
ideal.
Then u n d e r t h e q u o t i e n t o r d e r a n d q u o t i e n t norm, E / I
i s a normed R i e s z s p a c e .
Proof.
Let B b e t h e u n i t b a l l o f E .
t h a t q(B) i s s o l d, t h a t i s , f o r every aEB, S i n c e 1qaI = q 1 a
We n e e d o n l y show [ I - q a l , \ q a [ J c q(B).
( ( 6 . 3 ) ( i i i ) , t h i s f o l l o w s from ( ( 6 . 3 ) ( i v ) ) . QED
A Banach l a t t i c e i s a normed R i e s z s p a c e w h i c h i s norm
complete.
As i s t o b e e x p e c t e d , t h e p r o p e r t i e s o f a normed
R i e s z s p a c e c a n g e n e r a l l y b e i m pr ove d upon f o r a Banach l a t t i c e . I t i s s t i l l t r u e o r d e r c o n v e r g e n c e and norm c o n v e r g e n c e
are independent.
However, we now h a v e :
Riesz Spaces
(9.9)
Theorem.
I n a Banach l a t t i c e E , i f a s e q u e n c e { a n ) norm
converges t o aEE,
t h e n some s u b s e q u e n c e o r d e r c o n v e r g e s t o a .
For s i m p l i c i t y , take a = 0.
Proof.
s e q u e n c e i f n e c e s s a r y , we c a n assume
We show an
43
+
0.
m For each n , {cnlaj
I}
And, b y t a k i n g a s u b -
anll < 1/2" (m
=
(n
=
1,2,
- - .).
n , n + 1 , 9 3 3 ) i s an
a s c e n d i n g Cauchy s e q u e n c e w i t h norms a l l < 1/2"'l;
hence i t
norm c o n v e r g e s t o some b n E E ,
Then bn+O,
by ( 9 . 6 ) , a n d l a n /
5 bn ( n
=
w i t h ]Ibnlj i 1/2"-l.
1 , 2 , - - - ) , s o we a r e t h r o u g h .
QE D
(9.10)
Corollary.
I n a Banach l a t t i c e , i f a s e t i s 0 - o r d e r
c l o s e d , t h e n i t i s norm c l o s e d .
F o r a g e n e r a l normed R i e s z s p a c e , w e were a b l e t o show t h i s only f o r Riesz ideal (9.7).
'
G i v e n A l i n e a r m a p p i n g E __ > F o f o n e normed R i e s z s p a c e i n t o a n o t h e r , we c a n a s k w h a t a r e t h e r e l a t i o n s b e t w e e n o r d e r c o n t i n u i t y a n d norm c o n t i n u i t y f o r T , o r ( s i n c e norm c o n t i n u i t y
i s e q u i v a l e n t t o norm b o u n d e d n e s s ) b e t w e e n o r d e r b o u n d e d n e s s a n d norm c o n t i n u i t y .
I n g e n e r a l , t h e r e i s none ( E x e r c i s e 2 4 ) .
However, i f E i s a Banach l a t t i c e , w e h a v e t h e
( 9 . 1 1 ) Theorem. ( C . mapping E
Birkhoff)
E v e r y o r d e r bounded l i n e a r
> F o f a B a n a c h l a t t i c e i n t o a normed R i e s z
Chapter 1
44
s p a c e i s norm c o n t i n u o u s .
Proof.
Assume T i s n o t norm c o n t i n u o u s .
e x i s t s a s e q u e n c e {a,)
1. n (n
IITanll (k
=
Then t h e r e
i n E s u c h t h a t l i m n ~ ~ a =n ~0 ~and By ( 9 . 9 ) , some s u b s e q u e n c e { a } "k
= 1 , 2 , ...).
order converges t o 0 , hence, i n p a r t i c u l a r , i s
1,2,...)
o r d e r bounded.
I t f o l l o w s {Ta } (k = 1 , 1 , . . . ) i s o r d e r nk
bounded i n F a n d t h e r e f o r e norm bounded. f a c t t h a t IITa "k
11 2
n k (k
=
This contradicts t h e
1,2,...). QED
(9.12)
Corollary
E v e r y p o s i t i v e l i n e a r mapping o f a Banach
l a t t i c e E i n t o a normed R i e s z s p a c e i s norm c o n t i n u o u s .
In
p a r t i c u l a r , t h i s h o l d s f o r e v e r y R i e s z homomorphism o f E .
Borkhoff's proof of (9.11)
(cf.
[ 9 ] ) was f o r a l i n e a r
functional, but i t c a r r i e s over verbatim.
EXERCISES
I n t h e s e e x e r c i s e s , E i s always a Riesz s p a c e , although some h o l d more g e n e r a l l y f o r a n o r d e r e d v e c t o r s p a c e and some
Riesz Spaces
45
for a lattice
1.
For a l l a , b , c E E , (i)
a < b i f and o n l y i f (b - a ) > 0;
(ii) a < b i f and o n l y i f ( - a ) > (-b);
(iii) if a < b and c < d, then a
+
c < b
+
d, avc < bvd,
and a c < bAd.
2.
For a l l a , b , c E E , c c - a b
=
-
avb
=
( c - a)A(C - b ) and
( c - a)V(c - b ) .
3.
For a l l aEE, a ( - a ) < 0 < aV(-a).
4.
Given a E E + , t h e n (i)
5.
f o r a l l b,cEE, av(b
+
c) < avb
+
avc;
( i i ) f o r a l l b,cEE, ah(b
+
c) < a b
+
a c .
(i)
a/\b = 0 i f and o n l y i f avb = a + b .
(ii)
a b
=
0 i f and o n l y i f &(Xb)
( i i i ) For a l l a , b , c E E + , i f a b
=
=
0 for all 1 > 0.
0 and a < b
+
c , then
< c. a -
(iv)
If
v c lbc l e x i s t s a n d a b a
=
0 f o r a l l a, t h e n
a(Vaba) = 0.
6.
(v)
I f a b = 0 and a c
(vi)
I f bAc = 0 , t h e n f o r a l l a > 0, a ( b
(i)
F o r a l l a , b E E , avb b - (b
- a)'.
=
=
0 , t h e n aA(b
+
c) = 0. c)
=
a + ( b - a ) + and ar\b
=
+
a h b + aAc.
Chapter 1
46
(ii)
For a l i n e a r s u b s p a c e F o f E t o b e a Riesz s u b s p a c e , it s u f f i c e s t h a t a E F i m p l i e s a+EF.
la - b l .
7.
avb - a/\b
8.
(Converse t o ( i ) i n ( 2 . 6 ) ) . Then b
9.
(i)
=
a+, c
a
=
G i v e n bAc = 0 , s e t a = b
+
b)-
a- + b - , and / a + b l
=
-
c.
.
I f a and b a r e d i s j o i n t , t h e n ( a
(a (ii)
=
I f a and b a r e d i s j o i n t and a
+
+
=
b)'
= a+ + b + ,
lal+Ibl.
b > 0 , then
a > O , b > O . ( i i i ) I f a l , . . . ,an a r e mutually d i s j o i n t and a l l d i s t i n c t from 0 , t h e n t h e y a r e l i n e a r l y i n d e p e n d e n t .
10.
lR i m p l i e s
11.
lim 1
I f E i s Archimedean, t h e n f o r e v e r y a E E ,
x c1 a
-f
cta
=
0 in
0.
I f I i s a Riesz i d e a l , then f o r a l l a , b E I ,
with a < b,
[a,b] c I.
12.
I n R',
l e t F1 b e t h e l i n e a r s u b s p a c e g e n e r a t e d b y t h e
element (1 ,l,O)
,
and F 2 t h e o n e g e n e r a t e d b y ( O , l , l ) .
Then F1 a n d F 2 a r e R i e s z s u b s p a c e s b u t F
13.
1
+
F2 i s not.
I f F i s a R i e s z s u b s p a c e and I a R i e s z i d e a l o f E , t h e n F + I i s a R i e s z s u b s p a c e , w i t h (F + I ) +
c F+
+
I.
Riesz Spaces
14.
Let A b e a s u b l a t t i c e o f E .
47
For a E E , . t h e f o l l o w i n g a r e
equivalent.
15.
'1
a i s t h e supremum o f some s u b s e t o f A ;
2'
t h e r e i s a n e t {a } i n A such t h a t a +a. c1.
c1
Let A , B be s u b s e t s of E. (i)
o r d e r c l o s u r e (AIJ B) IJ
(ii)
( o r d e r c l o s u r e A)
=
(order closure B).
O r d e r c l o s u r e ( A n B ) c ( o r d e r c l o s u r e A)
n
( o r d e r c l o s u r e B ) , and t h e i n c l u s i o n i s p r o p e r
in general. ( i i i ) If, i n ( i i ) , A , B a r e R i e s z i d e a l s , w e h a v e e q u a l i t y .
16.
(a)
F o r R i e s z i d e a l s 11,12,H o f E : (i)
H
n
(I1
(ii) if E (b)
18.
I1
Q
12, t h e n H
=
(fdnI,) 3 ( H n 1 2 ) .
12;
=
H I a n d i s a p r o j e c t i o n b a n d o f H.
If I a n d H a r e p r o j e c t i o n b a n d s , t h e n s o a r e 1 n I{ and I
17.
I1
n
+
=
H
n
I1
12)
If I i s a p r o j e c t i o n b a n d , t h e n f o r e v e r y R i e s z i d e a l H, H n I
(c)
=
+
+
H.
(I
d
n Hd .
(i)
For R i e s z i d e a l s I , H ,
(ii)
I f E i s Archimedean, t h e n , i n a d d i t i o n , d order closure (Id + H ) .
+
H)d
=
I
(InIj)d
If E i s D e d e k i n d c o m p l e t e , t h e n : (i)
e v e r y R i e s z i d e a l i s Dedekind c o m p l e t e ;
(ii)
e v e r y o r d e r c l o s e d R i e s z s u b s p a c e i s Dedekind complete.
=
48
19.
Chapter 1
I f E i s Dedekind c o m p l e t e , t h e n f o r e v e r y p a i r o f
(i)
bands I , H , I (ii)
+ H
i s a band.
The a b o v e n e e d n o t b e t r u e i f E i s n o t Dedekind complete.
20.
I f I i s a p r o j e c t i o n band, then f o r e v e r y a € E + \ aI
21.
=
V{bEIIO < b < a}.
Let E be Dedekind c o m p l e t e . (i)
Let I b e a R i e s z i d e a l a n d H i t s o r d e r c l o s u r e . Then f o r e a c h b E E + , h H
(ii)
=
V{aEIIO < a < b}.
Let H b e t h e b a n d g e n e r a t e d by a s u b s e t A . f o r e v e r y bEE,,
m
bH = V {bA ( c l n i / a i
( i i i ) Given a E E , t h e n f o r e a c h bEE,,
I ) I aiEA:
Then n i E N}.
ba = v n ( b A ( n l a l ) ) .
(We r e c a l l t h a t ba i s t h e component o f b i n t h e band g e n e r a t e d by a ( 5 8 ) (iv)
Let F be a R i e s z subspace and H t h e band g e n e r a t e d by F .
22.
.>
Then f o r e v e r y bEE,,
bH
=
V{bAa a € F + }
.
XE IR.
(i)
I f A i s s o l i d , t h e n XA i s s o l i d f o r a 1
(ii)
I f {A } i s a c o l l e c t i o n o f s o l i d s e t s , t h e n nclAa.
a.
and \J A
clcl
are solid.
( i i i ) Given A A C E , b y t h e s o l i d h u l l o f A , w e w i l l mean t h e i n t e r s e c t i o n o f a l l t h e s o l i d s e t s c o n t a i n i n g A. T h i s s o l i d h u l l i s p r e c i s e l y IJaEA
[- l a l , l a / ] .
(iv)
I f A i s s o l i d , i t s ~convex h u l l i s s o l i d .
(v)
I f A i s s o l i d , t h e n A c A+ - A+ ( A + = A
inclusion is proper i n general.
n
E+).
The
Riesz Spaces
23.
Let E b e a Banach l a t t i c e .
49
I f I i s t h e b a n d g e n e r a t e d by
a c o u n t a b l e s e t , then I i s a p r i n c i p a l band.
24.
(i)
The Banach l a t t i c e c o f c o n v e r g e n t s e q u e n c e s c a n b e written c
=
co
9 IRE
,
w h e r e co i s t h e s u b s p a c e o f
sequences c o n v e r g i n g t o 0 and U = ( l , l , l , * . * ) .
Let
P b e t h e p r o j e c t i o n o f c o n t o co d e f i n e d by t h i s decomposition.
Then, c o n s i d e r i n g c as t h e r a n g e
s p a c e , P i s norm c o n t i n u o u s b u t n o t e v e n o r d e r bounded ( h e n c e n o t o r d e r c o n t i n u o u s ) . (ii)
We d e n o t e , a s c u s t o m a r y , t h e s p a c e o f a l l f i n i t e s e q u e n c e s b y IR"), (Xl,X2,...),
and d e n o t e e a c h a €
IR")
by
it being understood t h a t only a f i n i t e
number o f t h e An's d i f f e r f r o m 0 . ( i l , A 2 , . . . , X n , - . - ) +>
Then t h e m a p p i n g
(X1,2x 2 , . . . , n ~ n ., . . ) i s o r d e r
c o n t i n u o u s b u t n o t norm c o n t i n u o u s .
25.
The f o l l o w i n g a r e e q u i v a l e n t : 1'
'2
E i s Dedekind complete; e v e r y a s c e n d i n g n e t i n E,
which i s bounded above
is order convergent; 3'
26.
e v e r y d e s c e n d i n g n e t i n E,
L e t E b e a normed R i e s z s p a c e .
i s order convergent.
G i v e n b = V A , l e t A1 b e
t h e s e t o b t a i n e d by a d j o i n i n g t o A t h e suprema o f a l l f i n i t e s u b s e t s o f A.
Then b i s i n t h e norm c l o s u r e o f A1.
CIIAPTIJR 2
RTESZ S P A C E D U A L I T Y
L e t L: be a v e c t o r s p a c c .
N o t a t i o n a n d t e r m i_ n o_ l og y~.
l i n e a r E u n c t i o n a l $ on E , t h e v a l u e o f 4 a t a E E by ( a , + ) .
We d e n o t e b y E
*
For a
w i l l be denoted
t h e v e c t o r space o f a l l l i n e a r func-
t i o n a l s on E ( a d d i t i o n a n d s c a l a r m u l t i p l i c a t i o n d e f i n e d p o i n t w i s e on E ) .
I t f o l l o w s from t h e v e r y d e f i n i t i o n o f l i n e a r func-
t i o n a l on t h e o n e h a n d , a n d t h e a b o v e d e f i n i t i o n o f a d d i t i o n and s c a l a r m u l t i p l i c a t i o n i n E b i l i n e a r f u n c t i o n on E E and E
*
E
*
E
=
is a
on t h e o t h e r , t h a t (.;)
.
a r e s e p a r a t i n g on each o t h e r : ( “ , G o )
i m p l i e s 40
aEE
x
*
*
0 , and ( a o , $ )
=
0 for a l l +€ E
*
D f o r a1 1
=
implies a0
=
*
i s c a n o n i c a l l y cndowed w i t h t h e t o p o l o g y a ( E , E ) o f
*
p o i n t w i s e c o n v e r g e n c e on E , a n d t h e terms “ c o n v e r g e n t i n E ”, “bounded i n E*“,
” c l o s e d i n E*“,
and s o f o r t h will always r e f e r
t o t h i s topology.
*
F u n c t i o n a l a n a l y s i s g e n e r a l l y works w i t h a p r o p e r subspace
of E , r a t h e r than E
*
itself.
*
F o r a s u b s p a c e F o f li , ( J ( F , € )
o f course coincides w i t h t h e topology induced by t h a t of E
*
.
Note a l s o t h a t E i s always s e p a r a t i n g on F , b u t F need n o t h e on E . The t o p o l o g y o f C
*
has three b a s i c properties.
50
0.
Riesz Space D u a l i t y
(1)
E* i s complete.
(11)
(Tihonov)
51
For e v e r y s u b s e t A o f E X , t h e f o l l o w i n g a r e
cquivalcnt: 1'
A i s compact;
2'
A i s c l o s e d and bounded.
Otherwise s t a t e d , C
*
has t h e IIeine-Rorel property.
( 1 1 1 ) For e v e r y l i n e a r s u b s p a c e I; o f E
*
,
t h e following are
equivalent: 1'
2
0
I: i s s e p a r a t i n g on
F i s dense i n E
*
E;
.
Consider a l i n e a r subspace F of E a l i n e a r f u n c t i o n a l @ +>
*
( a , @ ) on F .
.
Each a E E
defines
I f F is separating
on E , t h e n d i s t i n c t e l e m e n t s o f E d e f i n e d i s t i n c t l i n e a r f u n c t i o n a l s , and w e have a c a n o n i c a l imbedding o f E i n t o F
*
.
O t h e r w i s e s t a t e d , i f F i s s e p a r a t i n g on E , t h e n E a n d F a r e e a c h a s p a c e o f l i n e a r f u n c t i o n a l s on t h e o t h e r .
We a d o p t a c o n v e n t i o n f o r R .
so Chapter 1 a p p l i e s t o i t .
IR i s i t s e l f a R i e s z s p a c e ,
Iiowever, when d e a l i n g w i t h R, we
w i l l u s e t h e t e r m i n o l o g y common i n a n a l y s i s , r a t h e r t h a n t h e
52
Chapter 2
one w e have a d o p t e d f o r R i e s z s p a c e s .
F o r e x a m p l e , we w i l l
write sup 1 i n s t e a d o f v 1
.
o r d i n a r y convergence i n R .
I f { A } i s bounded t h e n t h i s
clcl
cla
"1
=
lim 1
w i l l denote
cla
c1
c l e a r l y c o i n c i d e s w i t h o r d e r convergence.
5 1 0 . The s p a c e E b o f o r d e r bounded l i n e a r f u n c t i o n a l s
Let E h e a R i e s z s p a c e and
+
a l i n e a r f u n c t i o n a l on E .
The d e f i n i t i o n s on l i n e a r mappings i n 5 6 a p p l y t o 4, r e s t a t e them h e r e f o r F =
IR.
+
i s o r d e r hounded i f i t i s
bounded on e v e r y o r d e r b o u n d e d s e t . n o n - n e g a t i v e on E + . max((a,+},(h,$})
and w e
I t is positive if it is
I t i s a R i e s z homomorphism i f ( a v b , $ )
f o r a l l a,bEE.
=
F i n a l l y , i t i s o r d e r con-
tinuous i f a
+ a implies (a,$} = lima(aa,$). a We w i l l d e n o t e t h e s e t o f o r d e r bounded l i n e a r f u n c t i o n a l s
on E by E
b
,
I t i s a l i n e a r subspace of E
positive linear functionals are a l l in E
h
*
.
.
Moreover, t h e Since they con-
s t i t u t e a c o n e , t h e y d e f i n e a n o r d e r on E b f o r w h i c h t h e c o n e
i s p r e c i s e l y ( Eh ) + .
(10.1)
Theorem.
(Riesz).
b b Under t h e o r d e r d e f i n e d by ( E ) + , E
i s a Dedekind c o m p l e t e R i e s z s p a c e .
Proof.
We show $+ e x i s t s i n Eb f o r e v e r y $ E E b
.
I t is
R i e s z Space D u a l i t y
e a s y t o show t h a t t h e n , f o r a l l + , J , E E
-~ Lemma 1.
by f ( a )
dE[O,b].
(J,
-
4)'
= +VJ,,
cE [ ( ) , a 1( c , + > *
+
For e v e r y cE [ O , a ]
b, so ( c , + ) + ( d , + )
I t follows f ( a ) + f ( b ) < f(a i f eE[O,a
+
f i s a d d i t i v e and p o s i t i v e l y homogeneous.
Consider a,bEE+. 0 < c + d < a
sup
=
,+
C o n s i d e r + E n b , and d e f i n e a
hence t h a t E b i s a R i e s z s p a c e . f u n c t i o n f on E,
b
53
+
d,+) < f(a
+
b).
For t h e o p p o s i t e i n e q u a l i t y ,
b).
+
(c
=
and d € [ O , b ] ,
b ] , t h e n by ( 2 . 5 ) ,
e
=
Hence ( e , + ) = ( c , + )
+
(d,+) < f(a) + f(b).
It
Thus f i s a d d i t i v e .
That
+
follows f ( a + b) < f(a)
f(b).
+
c
+
d , where c € [ o , a ] and
and 1 > 0 i s clear.
f ( x a ) = x f ( a ) f o r a l l aEE+
This e s t a b -
l i s h e s t h e Lemma. Applying E x e r c i s e 1 ( i n t h e p r e s e n t C h a p t e r ) , t h e r e i s a u n i q u e l i n e a r f u n c t i o n a l $ on E which c o i n c i d e s w i t h f on E, (hence i s p o s i t i v e ) ; w e show t h e o r d e r on E b , aEE+. wEEh
aEE,.,
5
a2
= $+.
IJJ
From t h e d e f i n i t i o n o f
i f and o n l y i f ( a , + , )
T h u s , by t h e v e r y d e f i n i t i o n o f satisfies w > 0, w hence w >
J,.
1. + ;
(a,w)
2
J,,
$ >
5
(a,+2) for a l l
+.
we show ( a , w ) > (a,$) ( c , ~ ) (c,+)
Suppose for a l l
f o r a l l c€[O,a].
Hence ( a , o ) > s u pc E [ o , a ] ( C 9 + )= f ( a ) = ( a , + ) . Thus E b i s a R i e s z s p a c e .
T h a t i t i s Dedekind c o m p l e t e
f o l l o w s from t h e f o l l o w i n g s t r o n g e r p r o p e r t y ( c f . E x e r c i s e 2 5 i n Chapter 1 ) :
54
Chapter 2
b I f an a s c e n d i n g n e t { $ 1 i n ( E ) + i s , ( E ~ , E ) c1 b b o u n d e d , t h e n $ + $ f o r some $ E E . Lemma 2 .
c1
For e a c h a E E + ,
i s a n a s c e n d i n g n e t i n lR f o r
{( a , @ , ) }
w h i c h , by t h e h y p o t h e s i s ,
~ u p , ( a , $ ~ )
( a , $ ) f o r a l l a i E + , hence
il,
$
Hut
for a l l aEE+.
2
@.
Given a E E + ,
Supu(a,$a)
=
(a,$) > (a,$,)
f o r a l l a , hence ( a , $ )
>
-
(a,@>.
T h i s e s t a b l i s h e s t h e Lemma a n d t h u s c o m p l e t e s t h e p r o o f
o f t h e Theorem.
QED
Remark.
I n p l a c e o f Lemma 2 , we c o u l d h a v e u s e d t h e
following equivalent property:
(10.2)
I f a s u b s e t {@a} o f E b i s f i l t e r i n g upward a n d s a t i s f i e s :
Riesz Space D u a l i t y
s u p a ( a , $cx)
0, there exist b,cE[O,a],
E
a , such t h a t (by@)
+
( c , + >2
E -
A l s o f r o m ( 1 0 . 3 ) - a n d t h e f a c t t h a t / b l 5 a i f and o n l y i f b = c - d with c,dE
[o , a ]
( 1 0 . 6 ) F o r e v e r y $EEb
a n d aEE+,
--
we h a v e
Whence ( o r by s t r a i g h t f o r w a r d c o m p u t a t i o n ) ,
(10.7)
F o r e v e r y aEE
and $ E E
I(a,+.)l
2
b
,
(la1
,Id)
*
An o b v i o u s p r o p e r t y o f E b *
(10.8)
Given a s e t { $ , ) . i n
f o r a l l aEE+, t h e n $ =
V$ ,.,
Eb and $ E E
b
,
i f ( a , $ ) = sup,(a,$,)
Riesz Space D u a l i t y
57
The o p p o s i t e i m p l i c a t i o n d o e s n o t h o l d , e v e n f o r a f i n i t e
s e t , w h i c h i s why w e n e e d ( 1 0 . 4 ) .
However, i t __ does hold i f
{$a} i s an a s c e n d i n g n e t o r a s e t w h i c h i s f i l t e r i n g u p w a r d . This i s contained i n the proof of (10.1).
More f u l l y , f r o m
that proof,
(10.9)
b i n (E ) + , t h e f o l l o w i n g a r e
F o r an a s c e n d i n g n e t
equivalent: 10
{ G a l i s a ( ~ b , ~c o)n v e r g e n t ;
2'
{$a} i s .(Eb,E)
3'
{$a} i s o r d e r c o n v e r g e n t ;
'4
{$a} i s o r d e r b o u n d e d .
bounded;
In another formulation, f o r a s e t
b c (E ) + which i s
f i l t e r i n g upward, t h e f o l l o w i n g a r e e q u i v a l e n t : t h e r e e x i s t s $€Eb
1'
(hence
such t h a t ( a , $ ) = sup ( a , $ ) c1
lima(a,$a))
f o r a l l aEE,;
2'
s u p a < a , @ c l )
0.
Riesz Space D u a l i t y We h a v e t o show $ € I L
4
,
E b = (IL) d 3 I',
HL.
+
61
s o i t i s enough t o show $
EHL.
so $ = $ By ( 1 0 . 1 7 )
(IL 1
II e a ch aEH+,
(Illd ,' f o r
+
O-< b-< a
Since every such b l i e s i n H , ( a , $ )
=
So t h e r i g h t s i d e
0.
i s 0 , a n d we a r e t h r o u g h .
If E = I
( 1 0 . 2 0 ) C o r o l l a r y 1.
E~
(i)
= HL
that H
+
I
T h a t HL =
H , I,H Riesz i d e a l s , then
3 11
( i i ) HL = I b and IL
P roof. -
%,
0
1'
b.
=
H
=
0 i s t r u e i n general vector spaces;
E f o l l o w s from ( 1 0 . 1 9 ) .
We t h u s h a v e ( i ) .
By
I b i n ( i i ) , we mean, more p r e c i s e l y , t h a t t h e b i l i n e a r b form ( , . ) on I x HL i n d u c e d by t h e c a n o n i c a l o n e on E X E
HL
=
-
d e f i n e s a R i e s z i s o m o r p h i s m o f HL o n t o I $
+-> $11 c l e a r l y
maps HL i n t o I
b
.
b
.
The mapping
The v e r i f i c a t i o n t h a t
t h i s mapping i s a R i e s z i s o m o r p h i s m ( i n t o ) i s s t r a i g h t f o r w a r d . b I t r e m a i n s t o show i t i s o n t o . Given $ € I , l e t $ b e t h e element o f Eb d e f i n e d by ( a , $ ) = ( a , $ ) f o r a l l a E I ( a , $ ) = 0 f o r a l l aEH.
and
Then $ € H I and c o i n c i d e s w i t h $ o n I ,
h e n c e i s c a r r i e d i n t o $ u n d e r t h e a b o v e mapping. QED
62
Chapter 2
(10.21) Corollary 2. b b a n d s o f E , t h e n .J
(Lotz [ 3 3 ] ) . +
I f ,J,G a r c a ( E b , E )
G i s a o(Eb,E)
closcd
c l o s e d band.
We w i l l p r o v e t h i s a t t h e e n d o f 511.
511. E a s " p r e d u a l " o f E
b
We e x a m i n e w h i c h p r o p e r t i e s o f 510 h o l d when we i n t e r b c h a n g e E and E b ( a n d o f c o u r s e r e p l a c e a ( E b , E ) by o ( E , E ) . b While E i s a l w a y s s e p a r a t i n g on E b , we n e e d n o t h a v e E s e p a r a t i n g on E . However, f o r t h e s p a c e s t o b e c o n s i d e r e d b i n t h i s work, E w i l l b e s e p a r a t i n g on E . Consequently, w e w i l l i n c l u d e t h i s a s s u m p t i o n i n many o f t h e t h e o r e m s b e l o w . E b , b e i n g Dedekind c o m p l e t e , i s A r c h i m e d e a n .
While E n e e d
n o t b e Dedekind c o m p l e t e , we do h a v e
( 1 1 . 1 ) I f Eb i s s e p a r a t i n g on E , t h e n E i s A r c h i m e d e a n .
Proof. -__ b
Suppose 0 < b < ( l / n ) a (n
every $ E ( E ) + (b,$)
=
0.
,
0
5
(b,@)
I t follows b
=
5 ( l / n ) ( a , $ ) (n
=
1,2;.*). =
1,2;-.),
Then f o r hence
0. QE n
The f o l l o w i n g s h o u l d b e compared w i t h t h e d e f i n i t i o n o f a
Riesz S p a c e D u a l i t y
63
positive linear functional.
(11.2)
Tf
E
b . i s s e p a r a t i n g on E , t h e n f o r a l l a E E , a E E +
if
b and o n l y i f ( a , + ) > 0 f o r 311 + € ( E ) + .
P r o o f . Suppose a#E+.
i d e a l g e n e r a t e d by a - .
# 0 ; l e t I be t h e Riesz
Then a
I _
We h a v e E b
=
d ( I L ) 3 1'
(lO.lh),so
c l e a r l y ( I L ) d i s s e p a r a t i n g on I .
I t follows there e x i s t s
s € ( ( I L ) d ) + such t h a t ( a - , $ ) > 0 .
S i n c e , by (10.181, ( a + , $ ) = O ,
we h a v e ( a , $ )
=
- ( a ,$I) < 0 . QED
(11.3)
Corollary.
E,
-
b is a(E,E ) closed in E.
We now t u r n t o t h e q u e s t i o n w h e t h e r t h e r e s u l t s i n 510 b c a r r y o v e r when w e i n t e r c h a n g e E a n d E . (10.1) of course does n o t c a r r y o v e r , s i n c e E n e e d n o t b e Dedekind c o m p l e t e . o f course (10.2)
( a l s o Lemma 2 i n ( 1 0 . 1 ) ) d o e s n o t c a r r y o v e r .
In contrast t o t h i s ,
(10.3) and i t s immediate consequences
a r e r e p l a c e d h e r e by s t r o n g e r r e s u l t s :
(11.4)
Then
Given a € E ,
b then f o r every + € ( E ) + ,
64
Chapter 2
M o r e o v e r , t h i s supremum i s a t t a i n e d . such t h a t ( a , + )
=
[O,@]
(a+,+).
(a+,+>2 (a+,$>
Proof.
T h e r e e x i s t s I)€
2
( a , + > f o r a l l $C LO,@],
so we
n e e d o n l y show t h e e x i s t e n c e o f a $ s a t i s f y i n g t h e l a s t Let I b e t h e R i e s z i d e a l g e n e r a t e d by a + .
equality.
g i v e s t h e decomposition Eb Then ( a , $ ) = ( a ' , + )
=
(1')
d
0 1'.
Set $
=
+
This
(1')d'
- ( a ,+) = ( a + , + ) = ( a + , + ) , where t h e s e c -
ond e q u a l i t y f o l l o w s f r o m ( 1 0 . 1 8 ) , a n d t h e l a s t f r o m t h e d e f i n i t i o n of
+. QED
b ( 1 1 . 5 ) For e v e r y a , b E E and + E ( E ) + , with p + u
=
there exist ~ , o € [ O , + l ,
4, s u c h t h a t (a"b,+)
=
(a,p)
(mb,+)
=
(a,o>
+
+
(b,o)
,
(b,D)
2
T h i s f o l l o w s f r o m ( 1 1 . 4 ) i n t h e same way t h a t ( 1 0 . 4 ) f o l l o w s from ( 1 0 . 3 ) .
(11.6)
I f E b i s s e p a r a t i n g on E , t h e n f o r a l l a , b E E + , t h e
following are equivalent: 1'
a/\b
2'
b f o r e v e r y +E(E )+, t h e r e e x i s t p,crE[O,+],
=
0.
with
Riesz Space D u a l i t y
p +
such t h a t
= @,
0
(a,D)
P roof.
2'
65
T h a t 1'
=
(b,o) = 0.
i m p l i e s 2'
h o l d s , and s e t c = w b .
f o l l o w s from ( 1 1 . 5 ) .
b Then f o r e v e r y + E ( E ) + ,
Suppose letting
$ = p + u be t h e d e c o m p o s i t i o n p o s t u l a t e d by 2 O , we have
0 < ( c , @ )= ( c , p )
+
( c , ~ 5) ( a , ~ )+ ( b , o )
=
0.
I t follows c
=
0
QE D
( 1 0 . 8 ) c a r r i e s o v e r , b u t now n e e d s p r o v i n g .
Given a s e t { a } i n E and a f o r a l l + E ( E b ) + ,t h e n a = V a . a ,
L e t Eb b e s e p a r a t i n g on E .
(11.7)
aEE, i f ( a , @ ) = sup ( a , , $ )
P roof.
S i n c e f o r e v e r y a, ( a , + > > for a l l
i t f o l l o w s from ( 1 1 . 2 ) t h a t a > aa.
t h e r e e x i s t s bEE
such t h a t aa
5
Suppose a # vclacl.
b < a f o r a l l a.
@E(E~)+, Then
( E b ) + by b
i t s e l f i s s e p a r a t i n g on E , h e n c e t h e r e e x i s t s $E(E ) + s u c h t h a t (a
- b,$)
> 0.
Then ( a , @ ) > ( b , $ ) > sup,(aa,$)
=
(a,$)
and
we have a c o n t r a d i c t i o n . QE D
b
i s s e p a r a t i n g on E , t h e n f o r an b ascending n e t i n E , o ( E , E ) convergence i m p l i e s o r d e r con(11.8)
Corollary.
ve r g e n c e
If E
66
Chapter 2
( 1 0 . 9 ) d o e s n o t c a r r y o v e r ; e v e n f o r an a s c e n d i n g n e t , b o r d e r convergence d o e s n o t imply a ( E , E ) convergence: example i n t h e s equence s p a c e c p r e c e d i n g ( 9 . 5 ) , n s e q u e n c e {C e 1 (n = 1 , 2 , . I k
a
In t h e
the ascending
order converges t o the element
a )
b ( l , l , l , a - . ) b u t does n o t o(E,E ) converge t o it ( t h e r e e x i s t s b . $ € E w i t h v a l u e 1 on t h i s l a t t e r e l e m e n t a n d v a l u e 0 on all the elements of the sequence. I t follows of course t h a t (10.10), not carry over.
b F o r an e x a m p l e o f a o ( E , E ) c l o s e d R i e s z i d e a l
which i s n o t o r d e r c l o s e d , l e t E sequences.
( 1 0 . 1 1 ) a n d ( 1 0 . 1 2 ) do
=
c, the space of convergent
c i s a Banach l a t t i c e , a n d we w i l l s e e ( 1 5 . 7 ) t h a t
t h e r e f o r e E b i s a c t u a l l y t h e Banach s p a c e d u a l o f E .
It
f o l l o w s t h a t f o r l i n e a r s u b s p a c e s o f E , t h e norm c l o s u r e a n d b o(E,E ) closure coincide.
sequences converging t o 0.
Now c o n s i d e r c o , t h e s u b s p a c e o f co i s a R i e s z i d e a l w h i c h i s norm
b c l o s e d , hence o(E,E ) c l o s e d .
But i t s o r d e r c l o s u r e i s a l l
of E.
I t i s n o t t o b e e x p e c t e d t h a t ( 1 0 . 1 3 ) and (10.14) s h o u l d h h o l d w i t h E a n d Eh i n t e r c h a n g e d . (E ) + i s t h e s e t o f all p o s i t i v e l i n e a r f u n c t i o n a l s on E , b u t E + i s n o t t h e s e t o f a l l b t h o s e on E .
For a s u b s e t A o f E h , we w i l l d e n o t e t h e s e t { a E E l ( a , @ ) = O f o r a l l $CA}
by A L .
Only p a r t o f (10.15)
carries over:
( 1 1 . 9 ) F o r e v e r y R i e s z i d e a l .I o f E b ,
I n general, it i s n o t a band.
J
L
i s a R i e s z i d e a l of E.
Riesz Space D u a l i t y
Proof.
That J
67
i s a R i e s z i d e a l f o l l o w s by t h e a r g u m e n t
i n (10.15) using (l1.4),
To show i t n e e d n o t be a b a n d , t a k e
t h e R i e s z i d e a l co o f c a n d s e t <J b
u(E,E ) closed (cf. above), J
1
c
=
= 0'
( c0 )I.
S i n c e co i s
and w e h a v e shown
abovc
t h a t i t i s n o t a band. QED
We a r e now i n a p o s i t i o n t o p r o v e ( 1 0 . 1 2 ) . Consider a b R i e s z i d e a l <J o f E . I t s .(Eb,E) c l o s u r e i s (.J )' h e n c e , by 1
(11.9)
and ( 1 0 . 5 ) i s a b a n d .
I t r e m a i n s t o show t h a t ( ( J ) ' ) + L b The l a t t e r i s c o n t a i n e d i n ( E ) +
i s t h e 0 ( E b , E ) c l o s u r e o f J,.
by ( l O . l 3 ) , h e n c e i s c o n t a i n e d i n ( ( J ) ' ) + . L
For t h e o p p o s i t e
b ~ E ( E) + i s n o t i n t h e a ( ~ b , ~c l)o s u r e o f
i n c l u s i o n , suppose
< J + ; we show i t i s n o t i n ( J )" 1
J+ i s a c o n v e x c o n e , so by
t h e Hahn-Banach t h e o r e m , t h e r e e x i s t s a E E s u c h t h a t s ~ p ~ ~ ~ + (= a 0, 0 , it follows in
This completes t h e proof o f (10.12).
t h e a(Eb,E) closure of a R i e s z i d e a l i s order
c l o s e d , w h i l e (as we s h a l l s e e ) t h e o r d e r c l o s u r e n e e d n o t b e b o(E , E )
closed.
In E , exactly the opposite holds.
The
b
u(E,E ) c l o s u r e o f a Riesz i d e a l need n o t be o r d e r c l o s e d ( c f . t h e d i s c u s s i o n f o l l o w i n g ( 1 1 . 8 ) ) , b u t , a s w e now show, b its order closure is o(E,E ) closed.
( 1 1 . 1 0 ) I f Eb i s s e p a r a t i n g on E , t h e n e v e r y b a n d I o f E i s
Chapter 2
68
b a(E,E ) closed.
P roof. -
We show ( I L )
1
t a i n s some a E I d , a a fortiori (IL)
1
#
=
I.
Suppose n o t .
Then ( I L ) c o n 1
0 : E i s A r c h i m e d e a n , by (ll.l),
is also.
Now I i s a band o f ( I L )
our assumption, a proper band.
L
so
,
and by
I t f o l l o w s from ( 5 . 8 ) t h a t
t h e r e e x i s t s a E ( I L ) d i s j o i n t from I . 1
Now a v a n i s h e s on I L , and by (10.18), i t v a n i s h e s o n (IL)d.
a t h u s v a n i s h e s on a l l o f E b ,
h e n c e a = 0 , a n d we h a v e
a contradiction. QED
does c a r r y
(10.12)
o v e r on i n t e r c h a n g i n g E and E b ,
i f we
r e p l a c e "band" b y t h e w e a k e r " R i e s z i d e a l " :
(11.11) I f E
b
b i s s e p a r a t i n g on E , t h e n t h e a ( E , E ) c l o s u r e o f
a R i e s z i d e a l I i s a R i e s z i d e a l , and i t s p o s i t i v e c o n e i s t h e u ( E , Eb ) c l o s u r e o f I + .
The p r o o f i s t h e same a s t h a t u s e d a b o v e t o e s t a b l i s h (10.12).
The w e a k e r c o n c l u s i o n i s d u e t o t h e f a c t t h a t ( 1 1 . 9 )
i s weaker than ( 1 0 . 1 5 ) .
I f {J,} i s a c o l l e c t i o n o f R i e s z i d e a l s o f E b ,
f r o m t h e g e n e r a l t h e o r y o f v e c t o r s p a c e s , (CaJa)L =
then again
n,(J,)L,
R i e s z Space D u a l i t y
a n d i f t h e J ' s a r e .(Eb,E) c1
closed,
69
(nc J1 a) L
= a(E,E
b
) closure
( C , ( J ~ ) ~l )l o.w e v e r , t h e t h e o r e m c o r r e s p o n d i n g t o ( 1 0 . 1 9 )
not
h o l d : g i v e n two b a n d s J , G o f E b ,
t h e n , i n g e n e r a l , <J
(JnGjL. F o L a n e x a m p l e , l e t E = c a g a i n , a n d s e t I J = ( ( c ~ ) ' ) ~ a, n d G = (c,)'.
show <J
1
+ G
1
# E.
J
L
=
(c,)~
J
n
=
G = 0 , s o (.JnG)L
=
co,
=
E:
0 , by E x e r c i s e 2 , and G
b since the l a t t e r is a(E,E ) closed.
does
Thus J + G L
= L
L
0 +co
CL#
+
We =
c6'
# E.
F i n a l l y , we give t h e proof of t h e Lotz theorem (10.21).
(J
+
G)l
.J + G .
=
JL n G L , h e n c e ( ( J + G ) L ) L
S i n c e (J
+
=
(.Jl)'
+
(Gl)'
(10.19)
=
G ) L i s a Riesz i d e a l o f E , by ( 1 1 . 9 ) ,
(10.15) g i v e s us t h e d e s i r e d r e s u l t . N o t e t h a t t h i s t h e o r e m d o e s n o t c a r r y o v e r t o E : t h e sum b b o f two o ( E , E ) c l o s e d R i e s z i d e a l s o f E n e e d n o t b e o ( E , E ) closed.
We p r e s e n t a n e x a m p l e i n E x e r c i s e 6 .
5 1 2 . The s p a c e E C o f o r d e r c o n t i n u o u s l i n e a r f u n c t i o n s
We r e c a l l ( 5 1 0 ) t h a t a l i n e a r f u n c t i o n a l space E i s o r d e r continuous i f a lima(acl,@).
c1
-t
@
on a Riesz
a implies ( a , $ ) =
We w i l l d e n o t e t h e s e t o f o r d e r c o n t i n u o u s l i n e a r
f u n c t i o n a l s on E by E C .
By ( 6 . 0 ) , E C
C
Eb.
(12.1) Given a R i e s z s p a c e E , t h e n f o r 4 E E are equivalent:
b
,
the following
Chapter 2
70
lo
@EEC;
2'
I$lEEc;
3'
f o r e v e r y n e t { a 1 o f I:,
Proof.
a 40 i m p l i e s ~
a
We show f i r s t t h a t 1'
h o l d s , and s u p p o s e a $ 0 b u t { ( a n , a
implies 3
I@I }
0
.
i (ma rY
a' 1 4 1 )
=
0.
Assume 1'
d o e s n o t c o n v e r g e t o 0.
Ry t a k i n g a s u b n e t i f n e c e s s a r y , we c a n assume t h e r e e x i s t s I
0 such t h a t ( a a ,
/@I)
> 1 for a l l
(1.
Then f o r e a c h a , t h e r e
e x i s t s b E [ - a a ] such t h a t ( b $) > 1 ( 1 0 . 6 ) . a a' a Y(. ' 0 ( s i n c e lbwl < a n ) , h e n c e , by 1 , l i m ( b , $ ) = 0 . a c1 a contradiction.
i m p l i e s 1'
The v e r i f i c a t i o n t h a t 3'
But h a
+
0
We t h u s h a v e
implies 2
0
a n d 2'
is straightforward.
qr: u
( 1 2 . 2 ) -___ 'Theorem.
___ Proof.
E C i s a band o f E
b
.
EC i s c l e a r l y a l i n e a r subspace.
g i v e s u s t h a t i t i s a Riesz i d e a l .
(12.1) then
Finally, that it is order
c l o s e d f o l l o w s from t h e
Lemma. ___
Given a n e t { @ } i n ( E c ) + , i f @ , i t @ E E b , t h e n @ € E C . ci
71
Riesz Space D u a l i t y
(b,$)
=
l i m ( b , $ ) u n i f o r m l y on [ - a , a ] . -_____
ct
Now s u p p o s e a 40 i n E ; we show l i I n B ( a R , ( P ) = 0 , w h i c h will B e s t a b l i s h t h e Lemma, a n d , w i t h i t , t h e Theorem. We c a n a s s u m e t h e n e t { a 1 h a s an i n i t i a l e l e m c n t , w h i c h we d e n o t e b y a o . B
agE[O,aO]
f o r a l l B,
s o , by t h e a b o v e r e s u l t , ( a , , @ )
l i m a ( a B , @ J u n i f o r m l y i n P.
Since a l s o l i m
B( , ‘I 4 ’@ CL )
=
=
0 for
a l l a , s t a n d a r d f u n c t i o n t h e o r y g i v e s u s t h a t l i m B ( a B , @ )= 0 .
QE D
E‘
h a s s t r o n g e r p r o p e r t i e s t h a n II
b
.
The f o l l o w i n g
i m p r o v e s on ( 1 1 . 9 ) .
(12.3)
F o r e v e r y R i e s z i d e a l .J o f E c ,
Proof. -__
.J
1
,I
1
i s a band o f E .
i s a Riesz i d e a l by (11.9).
That i t i s o r d e r
c l o s e d f o l l o w s f r o m t h e o r d e r c o n t i n u i t y o f t h e e l e m e n t s o f .J. QEI)
F o r t h e s i g n i f i c a n c e o f t h e n e x t two t h e o r e m s , s e e E x e r c i s e s 4 and 5 .
(12.4)
Theorem.
i d e a l ,J O f E‘,
I f E i s Archimedean, t h e n f o r e v e r y Riesz
t h e b a n d ( J L ) d o f E i s s e p a r a t i n g on J .
Chapter 2
72
C o n s i d e r $ E J , and s u p p o s e ( a , $ ) = 0 f o r a l l d a E ( J ) . Then ( a , $ ) = 0 f o r a l l a E ( . J ) %, J , h e n c e ( $ b e i n g L L L d o r d e r c o n t i n u o u s ) f o r a l l a i n t h e o r d e r c l o s u r e o f ( J ) %, .J . Proof. d
L
the latter is E.
By ( 5 . 9 ) ,
I t follows $
=
L
0.
QED
( 1 2 . 5 ) Theorem.
Let E b e Archimedean.
n
J , G of EC, i f J
( . J ~n ) ~
G = 0 , then (G )d c J L
=
0 , whence ( G ) d c J L
t h a t f o r every
a1
+
bl
=
d
1
c GL,whence
d We show t h a t f o r a E ( ( G L ) ) + a n d
g e n e r a t e d b y , s a y , $.
=
a n d (J )
Assume f i r s t t h a t G i s a p r i n c i p a l R i e s z i d e a l ,
Proof.
+A$
L
o.
=
$EJ+, (a,$)
F o r two R i e s z i d e a l s
E
5
> 0, (a,$)
0 , s o , by ( 1 0 . 5 ) ,
L
.
S p e c i f i c a l l y , we show
E.
there exist al,blEIO,a],
a , such t h a t b1,$)
+
(bl,$)
5
E/2.
In turn, there e x i s t a2,b2E[0,bl], a2
+
b2
=
bl,
such t h a t
C o n t i n u i n g i n t h i s f a s h i o n , we o b t a i n two s e q u e n c e s Can} {b,}
,
i n E+ w i t h t h e p r o p e r t i e s (i)
an
(ii)
(an,$>
+
bn
= +
(n
bn-l
O n , + )5
N o t e f i r s t t h a t bn+O.
E D n
=
2,3,...),
(n = 1 , 2 ; . - ) .
I n e f f e c t , s u p p o s e bEE
satisfies
0 < b < bn f o r a l l n . Then 0 < (b,$) < (bn,$) 5 ~ / f o2 r a~ l l n, whence ( b , + ) = 0 . I t follows b E G I . Since 0 < b < a, we
R i e s z Space D u a l i t y
a l s o have bE(G ) d , h e n c e b
=
J.
73
0.
I t f o l l o w s xnan = a i n t h e s e n s e o f o r d e r c o n v e r g e n c e . Since $ i s order continuous, ( a , $ ) Thus ( G ) d c J 1
(12.3)
1
and ( 5 . 6 ) ) ,
.
zn(an,$) 5
=
I t f o l l o w s (.Jl)d
E.
c (Gl)dd
=
G
1
(by
and we have t h e t h e o r e m f o r G a p r i n c i p a l
I n t h e g e n e r a l c a s e , l e t { G 1 be t h e s e t o f a l l a d p r i n c i p a l Riesz i d e a l s i n G . Then (Jl) c (Ga)l f o r a l l a , Riesz i d e a l .
hence ( J ) d c na(Ga)l= (1 G )
a a 1
1
=
G
1
. QED
(12.6)
Corollary.
I f E i s Archimedean, t h e n for two R i e s z
ideals J , G of EC, i f J
G = 0 , t h e o r d e r c l o s u r e of J
1
+
G
1
is E.
T h i s f o l l o w s from t h e above and ( 5 . 9 ) . For t h e f o l l o w i n g , s e e Theorem 3 1 . 5 i n [ 3 5 ] .
( 1 2 . 7 ) Theorem.
I f a Riesz space E i s
(Luxemburg-Zaanen).
Archimedean, t h e n e v e r y band J o f E c i s o ( E C , E ) c l o s e d i n E C .
P roof. ( J )' 1
n
Set G = J
EC; s o EC = J 3 G.
G = 0 ; i t w i l l l o l l o w (J1)'
desired conclusion.
(J1)'
d
c ((Gl)d)l.
By ( 1 2 . 5 ) , Jl
n 3
We show
E C = J , which i s t h e (Gl)d, hence
S i n c e (G ) d i s s e p a r a t i n g on G ( 1 2 . 4 ) , 1
74
((C
Chapter 2
L
d ) )'
n
C = 0 , and we a r e t h r o u g h .
I f a Riesz spacc E i s Archimedean, t h e n f o r
(12.8) Corollary.
e v e r y Riesz i d e a l J o f E C , t h e o r d e r c l o s u r e of J and i t s o(EC,E) c l o s u r e i n EC c o i n c i d e .
§ 1 3 . The c a n o n i c a l i m b e d d i n g o f E i n E
We w i l l d e n o t e ( E b ) b s i m p l y by E b b ,
Assume Eb i s s e p a r a t i n g on E .
Notation.
( a , $ ) on E
x
a n d ( E b ) c by E b c .
Then w e h a v e t h e c a n o n i c a l i m -
b * b e d d i n g o f E i n (E ) : f o r e a c h aEE,
t h e l i n e a r f u n c t i o n a l $+->
bb
i t s image i n ( E b ) *
( a , $ ) on E
b
is
.
Thus f a r we h a v e worked w i t h t h e b i l i n e a r f o r m
Eb .
We a r e now i m b e d d i n g E i n t o E b b
.
In order
n o t t o c h a n g e ( a , $ ) t o ( $ , a ) , we a d o p t t h e c o n v e n t i o n t h a t t h e d u a l i t y between Eb and (Eb)* w i l l be d e n o t e d by a b i l i n e a r f o r m on ( E b ) * f o r $€Eb (@,$).
x
Eb
( i n s t e a d o f Eb
x
(E b ) *) .
Otherwise s t a t e d ,
,
t h e v a l u e of 0 a t $ w i l l b e w r i t t e n bb The same n o t a t i o n w i l l t h e n b e i n h e r i t e d f o r E . and Q E ( E b ) *
( 1 3 . 1 ) -___ Theorem.
Let E
b
b e s e p a r a t i n g on E .
The c a n o n i c a l
imbedding o f E i n t o (Eb)* i s a R i e s z isomorphism Ebc o f Ebb.
into
t h e band
Riesz Space D u a l i t y
75
T D e n o t e t h e c a n o n i c a l i m b e d d i n g b y E -->(E
Proof.
So T i s g i v e n b y ( T a , g )
=
( a , $ ) f o r a11 aEE
and $ E E
b * )
b
.
.
By
t h e v e r y d e f i n i t i o n o f o r d e r on E b , t h e l i n e a r f u n c t i o n a l Ta bb i s p o s i t i v e f o r e v e r y a E E + , hence l i e s i n E . I t f o l l o w s I n f a c t , T(E) c Eb c :
T(E) c E b b .
that i s the content of
(10.12).
We show t h a t ar\b
=
0 i n E i m p l i e s (Ta)A(Tb) = 0 i n E b
which w i l l complete t h e p r o o f . show t h e r e e x i s t p , a E [ O , $ ] , (Tb,a)
'
0.
qb i m p l i e s ( a , $ )
=
( b , $ ) , 4 determines a (positive)
l i n e a r f u n c t i o n a l ii, on E / T b y ( q a , + ) = ( a , $ ) f o r all a E E . t t h u s have a $ i ( E / I ) b such t h a t q $ = 4.
We
t t S i n c e q i s p o s i t i v e , s o i s q . And s i n c e q i s o n t o , (1 t i s o n e - o n e . Thus I L < q ( E / I ) b i s a p o s i t i v e b i j e c t i o n .
M o r e o v e r , from t h e a b o v e p r o o f t h a t q t i s o n t o , positive.
is also
(qt)-'
I t i s easily shown t h a t a b i j e c t i o n T s u c h t h a t
b o t h T and T - '
a r e p o s i t i v e i s a R i e s z i s o m o r p h i s m , s o we a r e
through.
QEn
H e n c e f o r t h , we i d e n t i f y '1
with (E/I)
b
.
We s t a t e t h i s
explicitly.
Given a R i e s z i d e a l I o f a R i e s z s p a c e E , t h e n u n d e r t h e b i l i n e a r form ( $ , $ )
we h a v e IL
on ( E / I )
x
'I
d e f i n e d by ( q a , $ ) = ( a , $ ) ,
(E/I)b.
To d e a l w i t h t h e c a n o n i c a l i n j e c t i o n o f a R i e s z s u b s p a c e ,
we n e e d some p r e l i m i n a r y r e s u l t s .
A l i n e a r mapping E
-> F o f o n e R i e s z s p a c e i n t o
a n o t h e r w i l l be c a l l e d i n t e r v a l p r e s e r v i n g i f (i)
T i s p o s i t i v e , and
(ii)
f o r every i n t e r v a l [a,b] of E , T([a,b])
=
[Ta,Tb].
R i e s z Space D u a l i t y
83
Note ( 6 . 3 ) t h a t a q u o t i e n t map i s i n t e r v a l p r e s c r v i n g .
114.7)
If E
> F i s i n t e r v a l p r e s e r v i n g , t h e n f o r e v e r y Riesz
~
i d e a l T o f E , T ( I ) i s a Riesz i d e a l o f F and T(T+)
=
((T(T))+.
I n p a r t i c u l a r , T(E) i s a R i e s z i d e a l o f F.
If 0 < d < cET(I), then, since T i s interval
Proof. -__
preserving, dET(1).
We show t h a t i f c E T ( I ) , t h e n c ' + E T ( T ) ,
which w i l l e s t a b l i s h b o t h t h a t T ( 1 ) i s a Riesz i d e a l ( c f . ( 3 . 1 ) ) and t h a t T ( I + ) (Ta) Tb
=
+
5
Ta
+
,
=
((T(I))+.
c
=
T a f o r some a E T , s o 0 < c+
so t h e r e e x i s t s b E [ O , a + ]
=
such t h a t
c'.
QED
An e x t e n s i o n lemma
(14.8)
Lemma.
p o s i t i v e l i n e a r f u n c t i o n a l on F , (a,+) 5(a,$) Then
+
a n d @ i s o n e on E s u c h t h a t
for a l l aEE+.
can bc e x t e n d e d t o a p o s i t i v c l i n e a r f u n c t i o n a l
such t h a t
35
Proof.
~-
p(a)
Suppose $ i s a
Let E b e a R i e s z s u b s p a c e o f F .
= (a+,$)
on F
$.
D e f i n e t h e s u b l i n e a r f u n c t i o n a l p on F b y for a l l aEF.
Then p d o m i n a t e s
+
on E , s o , b y
Chapter 2
84
t h e Hahn-Banachtheorem, @ can h e e x t e n d e d t o a l i n e a r f u n c tional
T
on F w h i c h i s s t i l l d o m i n a t e d by p .
(a,$)
2
(a,?)
5 ~ ( a )= ( a , $ ) ,
p(a) = 0 , so
5 is so
positive.
For e v e r y a < 0,
Finally, f o r every a > 0,
T 5 +. QED
Remark. -
The above Lemma f i r s t a p p e a r e d i n o u r p a p e r [ 2 3 ]
( P r o p o s i t i o n ( 2 . 4 ) , t h e Lemma).
(14.9) Theorem. -
Let E be a Riesz s u b s p a c e o f a Riesz s p a c e F ,
a n d E __ > F t h e c a n o n i c a l i n j e c t i o n .
Then E b +IE.
C o n s i d e r a n i n t e r v a l [ 0 , $ ] o f Fb .
Since it is positive,
For the opposite inclusion, given
it([O, $1) c [O,it$].
@ € [ O , i t $ ] , t h e n by ( 1 4 . 8 ) , $ h a s e x t e n s i o n
t h a t TE[O,$].
Then @
=
5 to
a l l of F such
it$, a n d we a r e t h r o u g h . QED
( 1 4 . 1 0 ) C o r o l l a r y 1.
Given a Riesz subspace E o f a Riesz
s p a c e F; (i)
t h e r e s t r i c t i o n map
I+%-->
$ l E maps Fb o n t o a R i e s z
i d e a l o f Eb; (ii)
i f Fh i s s e p a r a t i n g on F (on E i s e n o u g h ) , t h i s
Riesz i d e a l i s o(Eb,E) dense i n Eb;
Riesz Space D u a l i t y
85
( i i i ) i f E i s s e p a r a t i n g on F b , t h e r e s t r i c t i o n map i s a R i e s z i s o m o r p h i s m o f Fb o n t o a R i e s z i d e a l o f E b .
( i i ) I f Fb i s s e p a r a t i n g on F , t h e n i t i s s e p a r a t i n g on E , h e n c e i t ( F b ) i s Proof.
( i ) follows from ( 1 4 . 9 )
s e p a r a t i n g on E .
( i i i ) i Li s o n e - o n e , o n t o , a n d p o s i t i v e , s o
i t i s e n o u g h t o show t h a t ( i t ) - '
(14.6)).
and ( 1 4 . 7 ) .
i s p o s i t i v e ( c f . the proof of
S u p p o s e i t q, > 0;we h a v e t o show q, > 0.
i t $+, s o i t J,
=
t i p f o r some P E [ O , $ + ] .
0 < it $
T
T i s a R i e s z homomorphism;
2'
T
P roof.
Then f o r a l i n e a r
F, the following are equivalent:
1'
t
b
i s interval preserving.
Assume T i s a R i e s z homomorphism.
Then T - l ( O )
i s a R i e s z i d e a l , and we h a v e t h e f a c t o r i z a t i o n
This gives, i n turn, the
Ttorization of T t :
t
Eb
< [4 fi/T-l(0))b
F , t h e f o l l o w i n g a r e e q u i v a l e n t :
'1
T i s norm c o n t i n u o u s ;
2'
T i s o r d e r bounded.
I n p a r t i c u l a r , e v e r y p o s i t i v e l i n e a r mapping i s norm cont i n u o u s , hence e v e r y R i e s z homomorphism.
A l s o , f o r an MILb normed s p a c e E ( w h e t h e r norm c o m p l e t e o r n o t ) , E ' = E
.
As u s u a l , i t i s R i e s z homomorphisms t h a t we a r e i n t e r e s t e d
in.
L e t E , F be MI-normed s p a c e s .
By an MI-homomorphism
of E
i n t o F , we w i l l mean a R i e s z homomorphism T w i t h t h e p r o p e r t y : Tll(E) = l l ( F ) .
We w i l l g e n e r a l l y u s e t h e symbol lL f o r t h e
u n i t s o f h o t h E and F ; t h u s t h e above e q u a l i t y w i l l be w r i t t e n T R = ll.
Note t h a t ( i n t h e u n i f o r m norm) [[ T(I = 1.
The term Mll-isomorphism i s c l e a r . t h a t an Ma-isomorphism i s an i s o m e t r y .
I t is easily verified By an imbedding o f one
Ma-normed s p a c e E i n t o a n o t h e r one F , we w i l l mean an Mll-isomorphism o f E o n t o a R i e s z s u b s p a c e o f F c o n t a i n i n g It.
( 1 8 . 2 ) An MIL-homomorphic image o f an Mll-space E i s an M I - s p a c e .
109
MIL-spaces a n d L - s p a c e s Proof.
Let E
-> F b e a n Ma-homomorphism.
a R i e s z subspace of F c o n t a i n i n g space.
We h a v e t o show
n,
a n d i s t h u s a n MIL-normed Consider a
T(E) i s norm c o m p l e t e .
norm Cauchy s e r i e s CnTan i n T ( E ) .
Then T(E) i s
By d i s c a r d i n g some terms a t
5 1/2"
t h e b e g i n n i n g a n d g r o u p i n g t h e r e s t , we c a n assume IITanll (n
=
1,2,...)
.
T h i s can be w r i t t e n
2
- (1/2")IL(F)
Tan
5
(1/2")Il(F).
For e a c h n , s e t b n = [anV ( ( - l / Z n )
Then IIbnjl
5 1 / 2 " a n d Tbn
=
n(E) 1 IA ( ( 1 / 2 n ) n(E) 1 .
Tan ( n = 1 , 2 , . . . )
.
From t h e f i r s t
o f t h e s e , I n b n i s norm C a u c h y , s o ( E b e i n g norm c o m p l e t e ) t h e r e
e x i s t s bEE
s u c h t h a t Cnbn
=
b i n t h e norm.
c o n t i n u o u s , we h a v e CnTan = CnTbn
S i n c e T i s norm
Tb.
=
QED
(18.3)
Corollary.
If E
-> F i s a n MIL-homomorphism o f o n e
MIL-space i n t o a n o t h e r , t h e n T ( E ) i s a n M I - s u b s p a c e o f F.
919 L - s p a c e s
Dual t o M-norms a r e L - n o r m s . R i e s z s p a c e E i s a d d i t i v e o n E,,
I f a R i e s z norm
11 . [ I
on a
that is,
= IIaII + [ l b [ [ f o r a l l a , b E E + ,
\ l a + b[I
i t w i l l b e c a l l e d a n L-norm.
A s s o c i a t e d w i t h a n L-norm
the set K
=
{aEE+I[Iall = 1 1 .
[I
is
110
Chapter 3
K i s c o n v e x a n d norm c l o s e d , a n d e v e r y a E E + c a l l be w r i t t e n u n i q u e l y i n t h e form a
Ah, b E K .
=
So
e v e r y aEE c a n b e w r i t t e n , u n i q u e l y , a ~b = a + , Kc = a
[la;].
= =
Xb -
I t follows w i t h b,cEK,
KC,
.
N o t e t h a t , w h i l e K i s d e t e r m i n e d by t h e norm l a t t e r i s , i n t u r n , d e t e r m i n e d by K . t h e n , from t h e a b o v e ,
11
/ a l I l = ~ ~ a ++i l11 a-11
=
1 a1 x +
=
a+
+
a-
[I . !I,
the
In e f f e c t , given aEE, =
Xb
Xc, h e n c e
+
a![
=
K.
Given a R i e s z s p a c e E , a c o n v e x s u b s e t K o f E + s u c h t h a t every a
0 has a unique r e p r e s e n t a t i o n a
a b a s e f o r E,. ~
Then, a s a b o v e , e v e r y a h a s t h e u n i q u e
representation a
Xb -
=
KC,
b,cCK, Xb
=
is e a s i l y v e r i f i e d t h a t t h e f u n c t i o n IIaII on E .
Xb, h E K , i s c a l l e d
=
a: =
= a
KC
X
+
K
, and i t i s an L-norm
Summing u p ,
( 1 9 . 1 ) Given a R i e s z s p a c e E , t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e b a s e s o f E + a n d t h e L-norms on E .
11 - ! I ,
the correspondence base i s K
=
{aEE+I/Iall
e a c h b a s e K , t h e c o r r e s p o n d i n g L-norm i s a+
=
Xb, a
= KC,
[I a [ [ =
For e a c h L-norm
1 1 , and f o r
=
X
+ K,
where
b,cEK.
Because o f t h e
a b o v e , an L-norm i s a l s o c a l l e d a b a s e -
norm. Henceforth,
g i v e n an L-normed s p a c e E , i t w i l l b e c o n -
v e n i e n t t o d e n o t e t h e c o r r e s p o n d i n g b a s e by K ( E ) t h e b a s e o f E,.
and t o c a l l i t
We e m p h a s i z e t h a t t h i s n o t a t i o n a n d t e r m i n o l o g y
111
MIL-spaces a n d L - s p a c e s
w i l l a l w a y s mean t h a t w e h a v e a g i v e n f i x e d L-norm.
I t is
c l e a r t h a t f o r e v e r y R i e s z s u b s p a c e F o f E , t h e norm i n d u c e d on F i s a l s o on I,-norm a n d K ( F ) = K(E)
n
F.
Given a s u b s e t A o f a v e c t o r s p a c e , w e w i l l d e n o t e b y conv A t h e convex e n v e l o p e o f A.
(19.2)
E
=
Let E b e an L-normed s p a c e .
.J 3 G ,
For every decomposition
*J,G b a n d s , K(E)
Proof.
=
c o n v [ K ( J ) IJ K ( G ) ] .
Consider a E K ( E ) and w r i t e a
=
aJ
+
aG.
If neither
_ I
component i s 0 , we c a n w r i t e
Then a 0.
that
H e n c e , f o r s i m p l i c i t y , w e c a n assume
We c a n a l s o a s s u m e t h a t
I[ 011
=
1.
Chapter 5
146
a n d we c a n t a k e 0
Assume $ $ 0 i n E ' , 0.
w e h a v e t o show t h a t i n f a ( $ , , @ )
0.
=
5
5 n
for a l l a;
Suppose n o t .
Then t h e r e
e x i s t s X > 0 such t h a t
(i)
2X f o r a l l a .
($,,@)
For e a c h a , s e t em
~ ~ $ 0 A.p p l y i n g -
XI)'
8O,
I t ( $ c w . - X n ) + . By ( 1 7 . 9 1 , Xe, 5 $ , + O , we h a v e l i m , ( e a , @ )
< A l l + lL(,ixa)+ =
< 2X,
An
+
=
0.
Now $a
e a , h e n c e ($,,@)
=
hence
$,All
+
5 (An,@)+
= 0 , we c a n f i n d c1 s u c h t h a t
S i n c e lim,(e,,@)
(e,,@). ($,,@)
=
c o n t r a d i c t i n g ( i ) above. QED
Remark. -
On t h e o r i g i n a l s p a c e E ,
t h e g i v e n norm t o p o l o g y ,
so l o l ( E , E ' )
101
(E,E')
=
T(E,E')
o f f e r s n o t h i n g o f new
interest.
526. Dual bands
From ( 1 0 . 2 0 ) a n d E x e r c i s e 9 o f C h a p t e r 2 , we h a v e
( 2 6 . 1 ) L e t E b e an L-space (i)
If E
=
J1 @ J
E l
=
(J,P
(ii) If E'
=
2 (J1,J2 b a n d s ) , t h e n
3
(J1lL.
I1 3 I 2 (I 1 , I 2 bands), then
E = ( I 2 )L 3 ( I l l L .
=
An L - s p a c e a n d i t s Dual
147
O t h e r w i s e s t a t e d , e v e r y band J o f E d e t e r m i n e s u n i q u e d c c o m p o s i t i o n s o f b o t h E and
E
E l ;
.J 3 ,J
=
d
, E'
=
(JL)d 3 .JL;
and e v e r y band I o f E ' d e t e r m i n e s u n i q u e d e c o m p o s i t i o n s o f b o t h E ' and E : E '
=
Id, E
I
=
(I )d 3 I L
L
.
We w i l l c a l l (.JL) d
t h e band d u a l t o J o r t h e d u a l band o f J ; and w e w i l l c a l l (I )
d
t h e band d u a l t o I o r t h e d u a l band o f I .
1
-
T h e s e terms
a r e w e l l d e f i n e d o n l y i n t h e c o n t e s t o f a f i x e d L-space E and i t s dual E ' .
Each .J i s t h e d u a l b a n d o f i t s d u a l b a n d , a n d s i m i l a r l y f o r each I .
Thus w e c a n t a l k a b o u t a p a i r o f d u a l b a n d s ( I , , J ) ,
meaning t h a t I
=
( J L ) da n d ,J
=
(T. ) d . ( N o t e t h a t (,JL) d
=
( I , . J ) i s a p a i r o f d u a l b a n d s , t h e n c l e a r l y .J i s an b L - s p a c e and I i s i t s d u a l . Thus I = , J t = J c = J a n d J = I c If
(under t h e b i l i n e a r form following (cf.
(26.2)
(9.7),
(
a
, . ) on E ' x E ) .
We a l s o r e c o r d t h e
(12.7)).
I f E i s an L - s p a c e ,
c l o s e d and e v e r y band o f E '
t h e n e v e r y band o f E i s weakly
i s vaguely closed.
5 2 7 . B a s i c b a n d s i n t h e d u a l o f an L - s p a c e
Let E b e an L - s p a c e .
"small",
The p r i n c i p a l b a n d s o f E , b e i n g
can b e t h o u g h t of as t h e b u i l d i n g b l o c k s of E .
h a v e c h a r a c t e r i z e d them i n ( 1 9 . 1 0 ) .
In E ' ,
We
however, e v e r y
148
Chapter 5
band i s p r i n c i p a l - i s i n f a c t a p r i n c i p a l R i e s z i d e a l . b a n d s , t h e n , c a n be t h o u g h t o f a s " s m a l l " ? t h e bands d u a l t o p r i n c i p a l bands o f E . band a b a s i c band o f
What
The a n s w e r i s :
We w i l l c a l l s u c h a
E l .
We a d o p t a s p e c i a l n o t a t i o n f o r a b a s i c band o f
Given
E l .
a E E , l e t ,J h e t h e band o f E g e n e r a t e d by a , a n d I t h e band of E ' dual t o ,J.
Under t h e c o n v e n t i o n a d o p t e d a t t h e e n d o f 58,
f o r a n y bEE o r A c E , bJ i s d e n o t e d by h a , a n d an a b u s e o f l a n g u a g e , f o r a n y
or A C
$ € E l
n o t e d by $a a l s o , and A I b y A a .
E l ,
A 0 ; we h a v e t o show t h e r e e x i s t s a s u c h t h a t
consider E
is not order continuous.
a, hence
Then [ - c a , c a ] c E B ,
11 a,\] 5
> a. E f o r a l l fi QED
Let E b e a normed s p a c e ( a l t h o u g h t h e f o l l o w i n g c a n b e
154
Chapter 5
done more g e n e r a l l y ) .
F o r e a c h s u b s e t A o f E , t h e p o l a r A'
E l d e t e r m i n e s a g a u g e f u n c t i o n , w h i c h we w i l l d e n o t e by
I n g e n e r a l , it i s p o s s i b l e t o have
o f El.
\)
@[IA
=
m
in
\I - [ I A .
f o r some e l e m e n t s
As i s e a s i l y v e r i f i e d , t h e f o l l o w i n g a r e e q u i v a l e n t :
'1
11 $[IA
2'
A'
3'
A i s norm b o u n d e d .
2c
there is a $
i n A such t h a t :
;
for a l l
11;
I ( u m , a n ) 1 5 & f o r a l l m,n s u c h t h a t m > n .
To p r o d u c e t h e s e s e q u e n c e s , w e p r o c e e d i n d u c t i v e l y . Choose a1 a r b i t r a r i l y ; t h e n c h o o s e
al
1
5
such t h a t
"1
a n d II$lllA > $"+O,
26;
t h e n c h o o s e alEA s u c h ~ ( + l , a l ) >~
26.
Since
$ a V + l + ~ ) l& i t h a); h e n c e , s i n c e a l i s o r d e r c o n t i n u o u s ,
w e c a n c h o o s e a 2 > a1 t o s a t i s f y
Chapter 5
156
(the first of these, because also /all is order continuous).
l$,l
Now choose $ 2 such that
5 $a and 2
choose a2iA such that /($2,a2)l fashion, and setting wn
= $a
v $ ~(n
> ZE,
then
Proceeding in this
> ZE.
n+ 1
i1$2[[A
=
1 , 2 , * * * ) , we obtain
the desired sequences. Now IIwn - Wn+lllA 1 2 l(Wn I ( ~ ~ + ~ , a ~ >) l2~ -
E
= E.
-
wn+19an)l
3
\(wn,an)l
This contradicts 4'
-
and completes
the proof. QED
Remark. -
Contained in the above proof is the result that
a subset A of an L-space E is equi-order-continuous on E ' if and only if every countable subset of A is equi-order-continuous on E ' .
(28.3) Theorem. _____ In an L-space E, every weakly convergent
sequence is equi-order-continuous.
Proof. -
It is enough t o consider a sequence {an) which
converges weakly t o 0.
Denote the set {a,,)
+n $ 0 ;
=
(*)
we show limnl[$njlA
0 (28.2).
by A, and assume
Suppose not.
We can assume (for simplicity) that there exists
such that -
+n+l,an)l
>
E
for all n.
E >
0
An L - s p a c e and i t s Dual
157
In e f f e c t , by s u p p o s i t i o n , t h e r e e x i s t s
E
> 0 such t h a t
€ o r e a c h n o t h e r e i s a n n > no and an m s u c h t h a t l ( $ n , a m ) / > S e t no
2 ~ . We p r o c e e d b y i n d u c t i o n .
)I
and m1 s u c h t h a t I ( $ , , , a 1
1 a n d c h o o s e n1 > 1
=
The e l e m e n t s a l ; * * , a
> ZE.
ml
ml
s o limn($n,ai)
a r e o r d e r c o n t i n u o u s on E ' ,
=
0 (i
1,. . - , m , ) .
=
I t f o l l o w s t h e r e e x i s t n 2 > n l a n d m 2 > ml s u c h t h a t
I(
)I
$ n 2 9 aml
E
and I(+,
) ) > 2 ~ . Continuing i n t h i s
,a
2
m2
f a s h i o n , w e o b t a i n subsequences { $ nk ,a
k l($n
mk
>
I(
26,
$n
,amk)/ >
-
k
)I
k+l E
,a
mk
)I
< -
E
for a l l k.
},{a } such t h a t mk
f o r a l l k.
Then
Since t h e subsequences re-
'nk+ 1
t a i n t h e d e f i n i n g p r o p e r t i e s o f t h e o r i g i n a l s e q u e n c e s we have (*)
.
A s i s e a s i l y v e r i f i e d , t h e r e e x i s t s a (unique) p o s i t i v e l i n e a r mapping (n
=
1,2,-..).
1
Rm->
E'
( e n i s t h e e l e m e n t o f R"
p o s i t i o n and 0 e l s e w h e r e . ) T
such t h a t Ten
=
$n - $n+l
having 1 i n the n t h
T h i s g i v e s u s (a")'
0 and se-
and l($m,an)l
> E
Thus not only {an}, but every subsequence of (a,}
fails to be equi-order-continuous. But, by Smulian's theorem, some subsequence of {an} is weakly convergent and therefore, by (28.7), equi-order-continuous. We thus have a contradiction. QE D
Combining this theorem with (28.6), we have the
(29.3) Corollary 1. If a subset of an L-space is relatively weakly compact, then s o is its convex, solid hull.
An L - s p a c e and i t s Dual
161
I f a s u b s e t A o f an L - s p a c e E i s r e l a -
(29.4) Corollary 2.
t i v e l y weakly compact, t h e n e v e r y s e t B o f m u t u a l l y d i s j o i n t elements of A i s countable, B
=
{ a n } , and limnllanII
By ( 2 9 . 3 ) , we can assume A i s s o l i d .
P roof.
0.
=
To e s t a b l i s h
t h e p r o o f , i t i s enough t o show t h a t f o r e v e r y 1 > 0 , t h e r e i s o n l y a f i n i t e number o f e l e m e n t s o f B w i t h norm > 1.
Suppose
t h e r e e x i s t s A > 0 and an i n f i n i t e s e t {bn} c B s u c h t h a t IIb,ll
> 1 f o r a l l n. -
In E ' ,
second paragraph i n 527).
l l , , (n = 1 , 2 , . . - ) ( c f . t h e n The e n ' s a r e a l s o m u t u a l l y d i s j o i n t ,
s e t en
hence ( a s i s e a s i l y v e r i f i e d ) e n
= 0.
0.
I t f o l l o w s from ( 2 9 . 2 )
In p a r t i c u l a r , s i n c e A i s s o l i d ,
t h a t limn\lenllA = 0 . limn(en,/bnI)
+
=
But ( e n , l b n l ) = ( n , I b n l )
=
IIbnll
2
1 , s o we
have a c o n t r a d i c t i o n .
QED
(29.5)
C o r o l l a r y 3.
E v e r y w e a k l y compact s u b s e t A o f an L-
s p a c e E i s c o n t a i n e d i n a p r i n c i p a l band o f E .
R e p l a c e A by i t s s o l i d h u l l A1.
Proof.
L e t { a n } be a
maximal s e t o f m u t u a l l y d i s j o i n t e l e m e n t s o f A1.
Then t h e
band J g e n e r a t e d by t h e s e t { a n } i s a p r i n c i p a l band ( 1 9 . 1 0 ) . That A 1 c
J f o l l o w s from t h e e a s i l y v e r i f i e d f a c t t h a t i f a
s o l i d s e t i s not contained i n J , then it contains a non-zero element of J
d
. QED
162
Chapter 5
A t o p o l o g y 7 on a R i e s z s p a c e i s c a l l e d Lebesgue i f o r d e r convergence i m p l i e s convergence i n
g.
An e q u i v a l e n t d e f i n i t i o n
f o r a l o c a l l y convex t o p o l o g y i s t h a t t h e f a m i l y o f d e f i n i n g seminorms a r e e a c h o r d e r c o n t i n u o u s . From ( 2 9 . 2 )
(and ( 2 9 . 3 ) ) , we h a v e
(29.6) Corollary 4. 7(E',E)
I f E i s an L - s p a c e , t h e Mackey t o p o l o g y
on E' i s a Lebesgue R i e s z t o p o l o g y .
Also
( 2 9 . 7 ) C o r o l l a r y 5.
I f E i s an L - s p a c e ,
?-(El
, E ) i s d e f i n e d by
t h e s e t o f a l l o r d e r c o n t i n u o u s R i e s z seminorms on
E l .
N o t e t h a t f o r an L - s p a c e E , s i n c e e v e r y i n t e r v a l o f E i s w e a k l y compact ( 2 9 . 1 ) - and c o n v e x - we h a v e :
(29.8) If E i s an L-space, then ( u )( E l , E ) c r ( E '
,E).
T h i s c a n a l s o b e s e e n from ( 2 9 . 1 ) seminorms
{I] - I I a I
aEE}
defining
IuI
and t h e f a c t t h a t t h e
(El ,E)
a r e a l l o r d e r con-
An L - s p a c e a n d i t s Dual
I n g e n e r a l , a n L - s p a c e E c o n t a i n s w e a k l y compact s e t s
tinuous.
n o t contained i n i n t e r v a l s , so T ( E ' , E )
lo/(E',E). of E '
16 3
i s s t r i c t l y f i n e r than
However, t h e two a l w a y s c o i n c i d e on t h e u n i t b a l l
((29.10) below).
We n e e d t h e f o l l o w i n g t h e o r e m .
I t was
p r o v e d o r i g i n a l l y b y Amemiya a n d Mori f o r a D e d e k i n d c o m p l e t e R i e s z s p a c e , a n d l a t e r , b y a n e l e g a n t p r o o f , shown t o h o l d f o r
a g e n e r a l Riesz s p a c e by A l i p r a n t i s and Burkinshaw ( [ Z ] , Theorem 1 2 . 9 ) .
We r e f e r t h e r e a d e r t o t h e i r p r o o f .
( 2 9 . 9 ) Theorem.
A l l t h e l i a u s d o r f f L e b e s g u e t o p o l o g i e s on a
R i e s z s p a c e E i n d u c e t h e same t o p o l o g y o n e v e r y o r d e r b o u n d e d subset of E.
Thus :
(29.10) C o r o l l a r y . T(E',E)
I f E i s an L - s p a c e ,
c o i n c i d e on t h e u n i t b a l l
then
101
[-ll,n] o f E ' .
(E',E)
and
PART I11
C (X) , C ' (X)
,
C" (X) : THE
164
FRAMEWORK
CHAPTER 6
(C(X) ,X) -DUALITY
X , Y w i l l d e n o t e compact H a u s d o r f f s p a c e s .
C(X) i s t h e s e t
o f r e a l c o n t i n u o u s f u n c t i o n s on X , a n d n ( X ) w i l l d e n o t e t h e f u n c t i o n o f c o n s t a n t v a l u e 1 on X .
Under t h e u s u a l p o i n t w i s e
d e f i n i t i o n s o f a d d i t i o n , s c a l a r m u l t i p l i c a t i o n , a n d o r d e r , C(X) i s a R i e s z s p a c e w i t h n(X) f o r a n o r d e r u n i t .
The MI-norm
d e t e r m i n e d by n(X) i s p r e c i s e l y t h e s t a n d a r d supremum n o r m , and u n d e r t h i s norm, C(X) i s c o m p l e t e . Thus C(X) i s a n M I - s p a c e .
I n more d e t a i l , f o r f , g E C ( X ) ,
f v g a n d fAg a r e g i v e n b y ( f V g ) ( x ) = m a x ( f ( x ) , g ( x ) ) a n d ( f A g ) ( x ) = m i n ( f ( x ) , g ( x ) ) f o r a l l xEX. f+(x)
=
( f ( x ) ) + , and f - ( x )
in particular, =
Ifl(x)
=
/f(x)I,
( f ( x ) ) - f o r a l l x€X.
Although X is n o t a v e c t o r s p a c e , i t i s u s e f u l (and s u g g e s t i v e ) t o t h i n k o f C(X) a s " d u a l " t o X.
This has been
done by v a r i o u s w r i t e r s , e s p e c i a l l y i n t h e c o n t e x t o f C a t e g o r y Theory ( c f .
[49],
523.2 or [4T).
We w i l l f o r m u l a t e t h e r e l a -
t i o n s b e t w e e n C(X) a n d X f r o m t h i s v i e w p o i n t .
Since X has a
n a t u r a l i m b e d d i n g i n t o t h e d u a l C'(X) o f C(X), C'(X) w i l l t h u s play the r o l e of "bidual"
t o X.
I n p a r t i c u l a r , we w i l l f e e l
free t o denote f ( x ) by ( f , x ) . X w i l l b e c a l l e d t h e K a k u t a n i - S t o n e s p a c e o f C(X).
165
Chapter 6
166
5 3 0 . The t o p o l o g y o f s i m p l e C o n v e r g e n c e o n C ( X )
X i s o f c o u r s e s e p a r a t i n g o n C ( X ) by v e r y d e f i n i t i o n : f # g means t h e r e e x i s t s xEX
such t h a t f ( x )
# g(x).
Dually,
C(X) i s s e p a r a t i n g on X , a n d i n d e e d , i n a v e r y s t r o n g s e n s e : (Urysohn) f o r e v e r y p a i r o f d i s j o i n t , c l o s e d , non-empty s u h s e t s Z1,Z2 o f X , ( i i ) f(x)
=
Remark. -___
t h e r e e x i s t s fEC(X) s a t i s f y i n g ( i ) 0 < f (n(X),
1 f o r a l l xEZ1,
(iii) f(x)
=
0 f o r a l l xEZZ.
I l e n c e f o r t h , we w i l l c a l l an f E C ( X ) w i t h t h e a b o v e
properties a Urysohn f u n c t i o n f o r t h e ( o r d e r e d ) p a i r (Z,,Z,). A s o n e would e x p e c t , we d e f i n e o ( C ( X ) , X )
a s t h e topology
on C ( x ) o f p o i n t w i s e c o n v e r g e n c e on X : a n e t { f } i n CL
C(X) c o n -
v e r g e s t o fEC(X) i n a ( C [ X ) , X ) i f f ( x ) = l i m f ( x ) f o r a l l xEX. CY.N
We w i l l c a l l i t by i t s common name: t h e t o p o l o g y o f s i m p l e convergence.
And we c a n d e f i n e o ( X , C ( X ) ) a s t h e t o p o l o g y o n X
o f p o i n t w i s e c o n v e r g e n c e o n C(X): a n e t { x } i n X c o n v e r g c s t o c1
xEX i n ~ ( y C, ( X ) )
if f ( x )
=
limolf(x,)
for a l l fEC(X).
Since
x
completely regular,o(X,C(X)) i s simply t h e o r i g i n a l topology on X .
We e x a m i n e o(C(X) , X ) . Norm c o n v e r g e n c e ( i n C ( X ) )
and s i m p l e c onvergence.
i m p l i e s b o t h o r d e r convergence
T h e r e i s no o t h e r i m p l i c a t i o n b e t w e e n
the t h r e e convergences: Let X = a m , t h e one-point (Alexandroff) c o m p a c t i f i c a t i o n o f N , and f o r e a c h n , l e t en b e t h e e l e m e n t o f C(X)
h a v i n g v a l u e 1 on n E N a n d v a l u e 0 e l s e w h e r e .
t h e s e q u e n c e {ne,}
Then
c o n v e r g e s t o 0 s i m p l y b u t n e i t h e r normwise n n o r i n t h e o r d e r , a n d t h e s e q u e n c e {c e . ) ( n = 1 , 2 , . * . ) o r d e r 1 1 c o n v e r g e s t o l(X) b u t d o e s n o t c o n v e r g e e i t h e r s i m p l y o r no r m w i s e .
is
16 7
(C(X) ,X)-Duality
For a monotonic n e t , however, w e have one a d d i t i o n a l implication:
( D i n i t h e o r e m ) F o r a m o n o t o n i c n e t { f } i n C(X) cr f E C (X), the following a r e equivalent : (30.1)
1'
{fci. 1 c o n v e r g e s t o f n o r m w i s e ;
2'
{fa} c o n v e r g e s t o f s i m p l y ;
We n e e d o n l y show 2'
Proof. -__
implies lo.
and
For c o n c r e t n e s s ,
assume { f } i s a d e s c e n d i n g n e t w i t h i n f f ( x ) = 0 f o r a l l xEX. a a Consider E > 0 . F o r e a c h xEX, c h o o s e a ( x ) s u c h t h a t (x)
0, the set {tET
1
If(t)
1
> E} i s
The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 3 1 . 7 ) There i s a o n e - o n e c o r r e s p o n den ce between t h e f a m i l y o f
open s u b s e t s W of X and t h a t o f t h e norm c l o s e d R i e s z i d e a l s
H o f C(X): H
fEH}
W i f and o n l y i f W
=
{ x G X \ f ( x ) # 0 f o r some
i f and o n l y i f H i s t h e s e t o f c o n t i n u o u s f u n c t i o n s on
W which v a n i s h a t i n f i n i t y .
H e n c e f o r t h Z w i l l a l w a y s d e n o t e a c l o s e d s e t of
Notation.
X , a n d W an open s e t .
F o r a s u b s e t A o f C ( X ) , W(A) w i l l b e
t h e s e t X\Z(A). The s e t o f c o n t i n u o u s f u n c t i o n s v a n i s h i n g a t i n f i n i t y on a l o c a l l y compact s p a c e T w i l l b e d e n o t e d by C w ( T ) .
Note
t h a t i t i s an M-space u n d e r t h e supremum norm, a n d i s an MEs p a c e i f and o n l y i f T i s c o m p a c t . U s i n g t h e above n o t a t i o n , we c a n s t a t e p a r t o f ( 3 1 . 7 ) a s
follows: I f X
= W IJ Z ,
W a n d Z c o m p l e m e n t a r y , t h e n ZL = Cw(W) .
A n o t h e r o b s e r v a t i o n on C w ( W ) . elements of C(X) of W.
Let Ho c o n s i s t o f t h e
e a c h h a v i n g f o r i t s s u p p o r t a comp.act s u b s e t
Then Ho i s a R i e s z i d e a l , i s c o n t a i n e d i n C w ( W ) ,
norm d e n s e i n t h e l a t t e r .
We n e e d o n l y v e r i f y t h e l a s t
and i s
(C(X) ,X) - D u a l i t y
statement.
173
Tn e f f e c t , s i n c e W i s c o m p l e t e l y r e g u l a r , Ho i s s o , by ( 3 0 . 4 )
s i m p l y d e n s e i n C'(W),
( o r t h e Dini Theorem), i s
norm d e n s e i n i t .
We c h a r a c t e r i z e v a r i o u s t y p e s o f R i e s z i d e a l s o f C(X) by p r o p e r t i e s of X . by i n t Q
.
We w i l l d e n o t e t h e i n t e r i o r o f a s e t Q i n X
Recall that a r e g u l a r c l o s e d s e t i s one which i s
t h e c l o s u r e o f an o p e n s e t , a n d a r e g u l a r o p e n s e t i s o n e which i s t h e i n t e r i o r o f a c l o s e d s e t .
We h a v e s e e n ( 3 1 . 2 ) t h a t f o r Q c X , QL i s a norm c l o s e d Riesz i d e a l .
F o r a n o p e n s e t W i n X , WL
(31.8)
___ Proof. WL
F o r an o p e n s e t , w e c a n s a y m o r e :
Let 2
X\W.
=
i s a b a n d o f C(X)
T h e n , as i s e a s i l y v e r i f i e d ,
(ZL)d, hence i s a band
=
QE D
For a Riesz i d e a l H o f C(X),
(31.9) C o r o l l a r y 1.
o r d e r c l o s u r e tI
P roof. simplicity, and H can
=
.'2
=
( i n t Z(H))'.
We c a n a s s u m e H i s norm c l o s e d . denote Z(H)
Also f o r
s i m p l y by Z a n d W(H) b y W.
So W
=
X\Z
S i n c e C(X) i s A r c h i m e d e a n , w h a t we w a n t t o p r o v e
b e s t a t e d : Hdd
=
( i n t Z)'.
A s we remarked i n ( 3 1 . 8 ) ,
2
Chapter 6
174
Hd
=
W"
(x\W)*
But t h e n Hd =
,
(w)" ,
s o , by t h e same r e m a r k , H d d
=
j i n t z)'.
=
QED
For a R i e s z i d e a l f1 o f C(X), t h e
(31.10) Corollary 2.
following are equivalent: lo
t h e o r d e r c l o s u r e o f H i s C(X);
'2
Z(H) h a s empty i n t e r i o r ( s o , b e i n g c l o s e d , i s nowhere
rare,
dense -
i n t h e Bourbaki terminology);
WIN) i s d e n s e i n X .
3'
The f o l l o w i n g a r e a l s o c o r o l l a r i e s , b u t we l i s t them a s theorems.
( 3 1 . 1 1 ) ____ Theorem.
F o r a norm c l o s e d R i e s z i d e a l H o f C ( X ) ,
the
following are equivalent:
1'
H i s a band;
'2
Z(H) i s a r e g u l a r c l o s e d s e t ;
'3
W ( H ) i s a r e g u l a r open s e t .
P roof. Z(H)
=
i f Z(H) H
=
I f H i s a band, t h e n , by (31.9) and (31.3),
m, so
Z(H) i s a r e g u l a r c l o s e d s e t .
Conversely,
i s a r e g u l a r c l o s e d s e t , t h e n , by ( 3 1 . 4 ) and ( 3 1 . 9 ) ,
(Z(H))'
=
order closure H. QED
(C(X) ,X) -Duality
175
I f a s e t i n X i s b o t h open and c l o s e d , w e w i l l c a l l i t clopen.
F o r a norm c l o s e d R i e s z i d e a l lI o f C ( X ) ,
( 3 1 . 1 2 ) Theorem.
the
following are equivalent: 1'
H i s a p r o j e c t i o n band;
2'
Z(II) is clopen;
3'
W(t1)
-__ Proof..
i s clopen.
S u p p o s e H 3 Hd
=
C(X),
but Z(H)
some xEZ(H) i s i n t h e c l o s u r e o f W ( I I ) . t1 v a n i s h e s on
Conversely, i f X =
T t
v a n i s h e s on x , c o n t r a d i c t i n g ( l l ( X ) ) ( x ) Z1lJ
=
So
Then e v e r y e l e m e n t o f
x a n d e v e r y e l e m e n t o f Hd v a n i s h e s on x .
follows a l l of C(X)
C(X)
i s n o t open.
=
Z2, w i t h Z1,Z2 d i s j o i n t , t h e n c l e a r l y ,
( Z , P 3 (Z$. QED
Finally
,
( 3 1 . 1 3 ) Theorem.
For a R i e s z i d e a l H o f C ( X ) ,
are equivalent: 1' H i s a maximal R i e s z i d e a l ;
2'
Z(f1)
1.
consists of a single point.
the following
176
Chapter 6
-__ Proof.
Assume H i s m a x i m a l , a n d c h o o s e xEZ(f1).
a p r o p e r Riesz i d c a l o f C ( X )
w i t h 11.
{x}'
is
and c o n t a i n s [ I , hencc c o i n c i d e s
I t f o l l o w s from ( 3 1 . 3 ) t h a t Z ( l I )
=
{x}.
T h a t '2
i m p l i e s lo i s c l e a r . Qlill
Consider a c l o s e d s e t Z o f X. Cw(W), W
= X\Z.:
As we h a v e s e e n , ZL =
Tn a d d i t i o n , C(X)/ZL = C(Z) ( c f .
(33.6))
5 3 2 . The d u a l i t y b e t w e e n t h e M l l - s u b s p a c e s o f C ( X )
and t h e u p p e r s e m i c o n t i n u o u s d e c o m p o s i t i o n o f X
P a r a l l e l i n g 531, we c o l l e c t h e r e t h e o r e m s r e l a t i n g t h c M I - s u b s p a c e s o f C(X) t o t h e t o p o l o g y o f X. immediately a r i s e s .
A difficulty
E v e r y MIL-subspace F c o n t a i n s l l ( X ) ,
t h e a n n i h i l a t o r o f F i s always cmpty.
hence
A substitute for this
a n n i h i l a t o r i s t h e dccomposition of X i n t o t h e sets of cons t a n c y o f F.
(The a n n i h i l a t o r __ does e x i s t
-
in C'(X)!
And
i s closely r e l a t e d t o these s e t s of constancy.) By a d e c o m p o s i t i o n o f X , w e w i l l mean a f a m i l y x
=
{Za}
o f m u t u a l l y d i s j o i n t , c l o s e d , n o n - e m p t y s u b s e t s o f X whose
union i s X.
The d e c o m p o s i t i o n s o c c u r r i n g i n o u r s u b j e c t a r e
of a special kind.
A decompositionx
=
{Za} o f X i s c a l l e d
uppersemicontinuous i f f o r e v e r y c l o s e d s e t Z i n X , t h e union of a l l the Za's intersecting 2 i s also closed.
I t i s e a s i l y v e r i f i e d t h a t i f X s > Y i s a continuous mapping ( r e m e m b e r , X , Y a r e a l w a y s compact H a u s d o r f f ) , t h e n t h e
(C(X) , X ) - D u a l i t y
decomposition
2
=
{s
-1
(y) / y € s ( X ) }
177
of X i s uppersemicontinuous.
Conversely, every uppersemicontinuous decomposition
X i s d e t e r m i n e d b y a c o n t i n u o u s mapping o f X :
2
=
{Za} o f
In e f f e c t , l e t
X A> L b e t h e mapping w h i c h a s s i g n s t o e a c h xEX t h e Z t a i n i n g i t , and d e n o t e h y J f i n e d b y t h i s mapping q .
(Z,J)
cona t h e i n d u c t i v e t o p o l o g y on 5 d e -
The r e s u l t i n g t o p o l o g i c a l s p a c e
is called the q u o t i e n t s p a c e o f X d e t e r m i n e d by
c a l l e d t h e q u o t i e n t map, a n d ? very d e f i n i t i o n o f ? ,
the quotient topology.
is
By t h e
q i s continuous.
( 3 2 . 1 ) The q u o t i e n t s p a c e
Proof.
t ,q
(x,y) i s
compact H a u s d o r f f .
N o t e f i r s t t h a t an e q u i v a l e n t f o r m u l a t i o n o f t h e
u p p e r s e m i c o n t i n u i t y o f 5 i s t h a t f o r e v e r y open s e t W o f X , union o f a l l t h e 2 ' s c o n t a i n e d i n W i s a l s o open. c1
a s u b s e t Q o f X whole i f it i s a union o f Z ' s . whole i f Q
=
q
-1( q ( Q ) ) .
c1
the
Let u s c a l l
Q is then
T h u s , by t h e d e f i n i t i o n o f t h e
i n d u c t i v e t o p o l o g y , i f a n o p e n s e t W i n X i s w h o l e , t h e n q(W)
i s open i n
(2,y).
I t f o l l o w s t h a t t o show
(2,y)
is Hausdorff,
i t s u f f i c e s t o show t h a t d i s t i n c t Z ' s h a v e d i s t i n c t w h o l e (Y
neighborhoods i n X.
So c o n s i d e r Z
j o i n t open neighborhoods Wl,W2
"1
#
Za2,
and c h o o s e d i s -
o f Zal,Za r e s p e c t i v e 1y . 2
V1 b e t h e u n i o n o f a l l t h e Z ' s c o n t a i n e d i n
a
union of a l l those contained i n W2.
Since
2
Le t
W1, a n d V2 t h e i s uppersemicon-
t i n u o u s , V1 a n d V2 a r e o p e n , s o w e a r e t h r o u g h .
That
(t,7)
i s compact f o l l o w s from t h e c o n t i n u i t y o f q . QED
Chapter 6
178
mapping X
Returning to a continuous
__ >
resulting uppersemicontinuous decomposition
of X, form the quotient space ( X , y j . ical mapping ( 2 , J j
-
Y and the
2 = I S -1 ( y ) 1 y E s (X)}
Then s induces the canon-
2: Y such that the following diagram
commutes.
Then
(32.2)
2 is a homomorphism of
(X,r)onto Y.
The verification is simple.
We can now proceed with o u r examination of the MIl-subspaces of C(X).
Given a subset A of C ( X ) ,
a set Z in X will
be called set of constancy of A if (i) e v e r y f E A i s constant on 2 , and (ii) 2 is maximal with respect to this property.
If
A consists of a single element f, then t h e s e t s of constancy
are the sets { f - l ( X ) I X E I R l .
(32.3)
Given a subset A of C ( X ) ,
the set of sets of constancy
of A is an uppersemicontinuous decomposition of X.
(C(X) ,X)-Duality
Proof. -__
179
The family of continuous mappings { f l f E A 1 of X
into R defines a single continuous mapping X -> S IR
A
so
has the product topology). {
Then s(X)
IRA (as always,
is compact Hausdorff,
s - l(y) I y E s ( X ) 1 s an uppersemicontinuous decomposition of X.
But the sets s-l[y) are precisely the sets of constancy of A. QED
For any decomposition continuous), let F ( 2 )
=
x
of X (not necessarily uppersemi-
{fCC(X)lf
is constant on every
ZCX} .
Then, a s can b e verified b y straightforward computation, F(X) is an MIL-space.
(32.4) Given a subset A of C ( X ) ,
sets of constancy.
Then F(x)
let
b e the collection of its
is precisely the Ma-subspace I:
of C ( X ) generated by A.
____ Proof.
A s we have noted above, F(2)
and therefore contains F.
is an MIL-subspace
Conversely, consider fEF(x);
show f is in the norm closure of F, hence lies in F. [30.4),
we
By
it is enough t o show that f is in the simple closure
of F.
Lemma.
For every Z l , . . + , Z n € X ,a l l distinct, F contains
_ _ I
a Urysohn function for (Zl, lJnZ.) ( c f . the beginning of 5 3 0 ) . 2 1
Chapter 6
180
T h e r e e x i s t s R E F s u c h t h a t g(Z,) g(Z,)
tains A).
#
g ( Z z ) ( s i n c e I: c o n -
and g ( Z 2 ) a r e e a c h a s i n g l e r e a l n u m b e r , s o
by a d d i n g a n a p p r o p r i a t e m u l t i p l e o f I ( X ) t o g , i f n e c e s s a r y ,
w e c a n assume g ( Z 2 )
=
0.
Then,, h y m u l t i p l y i n g g b y an a p p r o -
p r i a t e s c a l a r , w e c a n assume g ( Z 1)
=
1.
The e l e m e n t (gVo)AI(X)
o f F i s now a Urysohn f u n c t i o n f o r ( Z l , Z 2 ) ; d e n o t e i t b y E ~ . S i m i l a r l y , F c o n t a i n s a Urysohn f u n c t i o n g i f o r e a c h p a i r (ZIJZi)
(i
=
3,...,n).
A;gi
i s t h e n a Urysohn f u n c t i o n f o r
( Z l , lJ;Zi). I t f o l l o w s f r o m t h e Lemma t h a t f o r e v e r y f i n i t e s u b s e t { x l , * - - , x n }o f X , t h e r e e x i s t s g E F s u c h t h a t g ( x i ) i
=
l,...,n.
=
f(xi)
€or
Thus f i s i n t h e s i m p l e c l o s u r e o f F .
OED
i t s sets of constancy a r e s i n g l e
I f A i s s e p a r a t i n g on X , points.
(32.5)
(32.4) then reduces t o
( W e i e r s t r a s s - S t o n e Theorem - l a t t i c e v e r s i o n ) .
A c C(X) i s s e p a r a t i n g on X ,
If
t h e n t h e M I - s u b s p a c e o f C(X)
g e n e r a t e d b y A i s C(X) i t s e l f .
( 3 2 . 4 ) s t a t e s t h a t i f we s t a r t w i t h an ME-subspace F o f C(X), t a k e t h e s e t 2 o f i t s s e t s o f c o n s t a n c y , t h e n t a k e F ( , ) , we a r r i v e b a c k a t F .
Dually,
(32.6) Every uppersemicontinuous decomposition
2
of X i s the
(C(X) ,X) - D u a l i t y
181
s e t o f s e t s o f c o n s t a n c y o f t h e MIL-subspace F ( X ) w h i c h i t
determines.
Proof.
We n e e d o n l y show t h e m a x i m a l i t y o f e a c h Z E
Specifically, consider
Zo€X
and x e Z o ; w e h a v e t o show t h e r e
e x i s t s fEF(z) such t h a t f ( x ) # f(Zo). space
(x,J)
determined b y x .
Denote b y Y t h e q u o t i e n t
Y i s compact H a u s d o r f f ( 3 2 . 1 ) ,
h e n c e t h e r e e x i s t s hEC(Y) s u c h t h a t h ( q x ) # h ( q ( Z o ) ) . f
=
hoq.
5.
Set
Then f i s a c o n t i n u o u s f u n c t i o n on X w h i c h i s c o n -
s t a n t on e v e r y Z € z , h e n c e i s i n
F(2)
- and s a t i s f i e s
f(x) # f(Zo).
QED
Summing u p ,
( 3 2 . 7 ) T h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e MIL-subs p a c e s F o f C(X) a n d t h e u p p e r s e m i c o n t i n u o u s d e c o m p o s i t i o n s of X.
F ;!
i f and o n l y i f
2
2
i s t h e s e t of sets of con-
s t a n c y o f F i f a n d o n l y i f F c o n s i s t s o f t h e e l e m e n t s o f C(X) c o n s t a n t on e v e r y Z E
2.
033. The MIL-homomorphisms o f C ( X )
For t h e following d i s c u s s i o n , it i s convenient t o use t h e notation
( f , x ) i n place of f(x)
(cf. the beginning of the
Chapter 6
182
Chapter).
Each xEX
d e f i n e s a f u n c t i o n on C(X) by f +>
(f,x),
and s i n c e C(X) i s s e p a r a t i n g on X , d i s t i n c t x ' s d e f i n e d i s t i n c t functions.
We c a n t h e r e f o r e i d e n t i f y e a c h x w i t h t h e f u n c t i o n
i t d e f i n e s , and h e n c e f o r t h w e w i l l do t h i s : x w i l l be c o n s i d e r e d a f u n c t i o n on C(X).
M o r e o v e r , by t h e v e r y d e f i n i t i o n
o f a d d i t i o n a n d s c a l a r m u l t i p l i c a t i o n i n C(X), x i s a c t u a l l y a linear functional.
Even m o r e , f r o m t h e d i s c u s s i o n o f t h e
b e g i n n i n g o f t h e C h a p t e r on t h e l a t t i c e o p e r a t i o n s i n C ( X ) , e v e r y xEX i s , i n f a c t , a n MI-homomorphism o f C(X) ( i n t o IR). And t h e y a r e t h e o n l y o n e s :
( 3 3 . 1 ) F o r a f u n c t i o n $ o n C(X), t h e f o l l o w i n g a r e e q u i v a l e n t
'1
$ i s a n MI-homomorphism o f C(X) i n t o R ;
2O
$EX.
P roof. -
I t r e m a i n s t o show t h a t ' 1
implies 2
0
.
We n o t e
f i r s t t h a t two MI-homomorphisms $1 , $ 2 o f C(X) i n t o 1R a r e i d e n t i c a l i f and o n l y i f (+1)-1(0) h o l d s f o r 4.
$-'lo) i s
=
Now assume 1'
($2)-1(0).
t h e n a R i e s z i d e a l H o f C(X), a n d
$ b e i n g a s i n g l e l i n e a r f u n c t i o n a l - i s a maximal o n e .
Z(H)
consists of a single point x (31.13).
Hence
But t h e n x -1( 0 )
=
H,
s o w e have $ = x . QED
C o n s i d e r a c o n t i n u o u s mapping X
f o s o f C(X) i n t o C ( Y ) .
We
We w i l l c a l l
(C(X) ,X) - D u a l i t y
183
t h i s mapping t h e t r a n s p o s e o f s , a n d d e n o t e i t b y s t . f o r a l l f E C ( X ) and yEY, ( s t f , y )
=
Thus,
(f,sy).
I t i s t r i v i a l t o v e r i f y t h a t C(X)
S
t
> C(Y)
Mn-
i s an
homomorphism.
We show t h a t , c o n v e r s e l y , f o r e a c h Mn-homomorph-
T i s m C(X) ->
C(Y), t h e r e e x i s t s a unique c o n t i n u o u s
X So ( f , s y )
=
(Tf,y) for all
i t i s immediate from t h i s i d e n t i t y t h a t f o r
e v e r y n e t { y a } i n Y a n d yoEY, i f ( g , y o ) = l i m a ( g , y a ) gEC(Y), t h e n ( f , s y o ) = l i m a ( f , s y a ) continuous.
That T
=
f o r a l l fEC(X).
i s a n MIL-subspace o f C(Y) ( 1 8 . 2 ) , a n d T - ’ ( O )
R i e s z i d e a l o f C(X).
for all Thus s i s
s t f o l l o w s f r o m t h e same i d e n t i t y .
As we know, f o r a n MIL-homomorphism C(X)
s(Y)
yoT
T
--A
C(Y), T(C(X))
i s a norm c l o s e d
And f o r a c o n t i n u o u s m a p p i n g X f l Z .
T i e t z e E x t e n s i o n Theorem.
__ > C ( Z )
is c l e a r l y t h e r e -
(33.6) then a l s o follows from t h e
CflAl'TER
7
(C(X) , C ' ( X ) ) - D U A I . T T Y
5 3 4 . The i m b e d d i n g o f X i n C 1 ( X )
The e l e m e n t s o f t h e d u a l C ' ( X ) o f C(X) a r e c a l l e d t h e Radon m e a s u r e s on X ; w e w i l l d e n o t e thcm by ~ i , v , u , p , u .
-
f e e l f r e e t o o m i t "Radon";
We w i l l
that i s , unless otherwise s t a t e d ,
" m e a s u r e : w i 11 a l w a y s mean Radon m e a s u r e . S i n c e C(Xj apply.
i s an ME-space, t h e r e s u l t s o f 5 5 2 1 , and 1 9
I n p a r t i c u l a r , C ' (X) i s a n L - s p a c e w i t h
IIuI[
=
( nfX) , p )
for a l l uEC'(X)+. Under ( f , x ) , e a c h xEX i s a p o s i t i v e l i n e a r f u n c t i o n a l on C(X) w i t h ( 1 , x )
=
1.
I t follows xEK(C'(X)j.
Combining t h i s
w i t h ( 3 3 . 1 ) and ( 2 1 . 2 ) , we o b t a i n :
( 3 4 . 1 ) -__ Theorem.
X = ext K(C'(X)).
K ( C ' ( X ) ) is o f t e n c a l l e d t h e s t a t e s p a c e o f C(X), and i t s e l e m e n t s a r e c a l l e d ____ states. e x t r e m e p o i n t s o f K(C1 ( X ) ) ,
The e l e m e n t s o f X , b e i n g t h e a r e t h e n c a l l e d t h e =re
186
s t a t e s on
(C(X) , C ' ( X ) ) - D u a l i t y
187
C(X).
The e l e m e n t s o f K ( C ' ( X ) )
are also called the probability
( K a d o n )_ m_ e a_ s u_ r e_ s on X.
-
A consequence o f (34.1) worth n o t i n g i s t h a t f o r X1,X
2 E X , x1
+
x 2 i m p l i e s xlAx2
=
0 in
c'(x)
(2'
i n (21.2)).
A s a c o n v e r s e t o ( 3 4 . 1 ) , we h a v e t h e f o l l o w i n g s p e c i a l c a s e o f K a k u t a n i ' s c l a s s i c t h e o r e m 1211.
( 3 4 . 2 ) ____ Theorem. ( K a k u t a n i ) .
Every MI-space E i s a C ( X ) .
S p e c i f i c a l l y , we c a n t a k e f o r X t h e s e t e x t K ( E ' ) endowed w i t h t h e vague t o p o l o g y .
Proof.
-I_.
E-
By ( 2 1 . 6 ) ,
C ( e x t K ( E ' ) ) by
e x t K(E') i s v a g u e l y compact. (Ta,$)
=
Define
( a , $ ) f o r a l l a E E and
$€ e x t K(E').
Then T i s a p o s i t i v e l i n e a r m a p p i n g w i t h T I =
Il(ext K ( E ' ) ) .
By (21.8), T i s an i s o m e t r y , h e n c e o n e - o n e .
We
show n e x t t h a t T p r e s e r v e s t h e l a t t i c e o p e r a t i o n s , h e n c e i s a n Mn-isomorphism o f E i n t o C ( e x t K ( E ' ) ) .
Given a , b E E , t h e n f o r
every $€ e x t K(E'), (T(aVb),$) = (avb,$) max((Ta,$), ( T b , $ ) )
=
(TaVTb,$).
=
max((a,$),(b,$))
(Here t h e s e c o n d e q u a l i t y
f o l l o w s f r o m t h e f a c t t h a t $ i s a R i e s z homomorphism ( 2 1 . 2 ) , and t h e l a s t from t h e d e f i n i t i o n o f o r d e r o n C ( e x t K ( E ' ) ) . ) F i n a l l y , T(E)
=
i s s e p a r a t i n g on e x t K ( E ' ) ,
t h e W e i e r s t r a s s - S t o n e Theorem ( 3 2 . 5 ) , T(E)
s i n c e E i s , s o , by = C(ext K(E')).
QE D
Chapter 7
188
With t h e i n t r o d u c t i o n o f C t ( X ) , w e c a n c o n s i d e r weak c o n v e r g e n c e on C(X).
The D i n i Theorem g i v e s u s an i m p o r t a n t p r o -
p e r t y o f t h i s convergence.
For l a t e r c o m p a r i s o n , we p r e s e n t i t
a s a s h a r p e n i n g o f t h e D i n i Theorem.
(34.3)
( D i n i Theorem).
F o r a m o n o t o n i c n e t {fa} i n C(X) and
fEC(X), t h e following a r e e q u i v a l e n t : 1'
{fa) c o n v e r g e s
2'
{fa} c o n v e r g e s t o f w e a k l y ;
3'
{fa] c o n v e r g e s t o f s i m p l y .
t o f normwise;
5 3 5 . Atomic a n d d i f f u s e Radon m e a s u r e s
S i n c e C t ( X ) i s an L - s p a c e , e v e r y norm c l o s e d R i e s z i d e a l i s a band (hence a p r o j e c t i o n b a n d ) .
I n p a r t i c u l a r , t h e band
o f C t ( X ) g e n e r a t e d b y X i s s i m p l y t h e norm c l o s e d R i e s z i d e a l which i t g e n e r a t e s .
I n f a c t , we h a v e m o r e :
( 3 5 . 1 ) The b a n d o f C'(X) g e n e r a t e d b y t h e s u b s e t X i s s i m p l y
t h e norm c l o s e d l i n e a r s u b s p a c e w h i c h X g e n e r a t e s .
-__ Proof,
I t i s e n o u g h t o show t h a t t h e l i n e a r s u b s p a c e
c x c p x i s a Riesz i d e a l . f o l l o w s from ( 3 . 3 ) .
S i n c e each1Rx i s a R i e s z i d e a l , t h i s
QED
(C(X) , C ' ( X ) ) - D u a l i t y
189
We w i l l c a l l t h e a b o v e b a n d t h e a t o m i c p a r t o f C ' ( X ) , a n d C ' ( X ) a has a s i m p l e , e v e n t r a n s p a r e n t ,
d e n o t e i t by C ' ( X ) a .
We l e a v e many o f t h e f o l l o w i n g s t a t e m e n t s t o t h e
structure.
reader's verification. a f t c r (34.1),
( O f major u s e f u l n e s s i s t h e f a c t , noted
t h a t the elements of X a r e mutually d i s j o i n t :
x1 # x 2 i m p l i e s x1/\x2
=
0 , h e n c e t h a t two s u b s e t s o f X w i t h
cinpty i n t e r s e c t i o n a r e d i s j o i n t i n t h e R i e s z s p a c e s e n s e . ) Let Q b e an a r b i t r a r y s u b s e t o f X , a n d J t h e b a n d w h i c h i t generates.
Then J i s s i m p l y t h e norm c l o s e d l i n e a r s u b s p a c e
g e n e r a t e d b y Q (same p r o o f as f o r ( 3 5 . 1 ) ) , a n d ,J
n
X
=
Q.
v e r s e l y t o t h i s l a s t i d e n t i t y , l e t J be a band o f C ' ( X ) a ,
set Q
J
=
n
X;
t h e n t h e band g e n e r a t e d by Q i s J .
Conand
Thus
(35.3) There i s a one-one correspondence between t h e bands J of a n d t h e s u b s e t s Q o f X : J
C'(X)a
n
Q = J
Q i f and o n l y i f
X i f and o n l y i f J i s t h e band g e n e r a t e d by Q .
We a l s o h a v e :
(35.3)
If X
g e n e r a t e d by versely,
Q , , Q,
= Q,IJ
Q,,Q,
n
=
respectively,
i f C'(X)a
J2 flX , t h e n Q,
0 Q,
=
Q,
8,
and J1,J2 a r e t h e bands
t h e n C'(X)a
J, 3 J 2 ( b a n d s ) , a n d Q, =
P, a n d X
=
Q, IJ Q,.
=
J 1 o J,.
=
J1
n
X, Q,
Con=
Chapter 7
190
Our n e x t g o a l i s t o g i v e a s i m p l e r e p r e s e n t a t i o n o f C ' ( X ) u F o r e a c h xEX,lRx i s a p r o j e c t i o n band o f C ' ( X ) ,
((35.4) below).
hence, given P E C ' (X) form Axx.
,
t h e component o f p i n t h i s band h a s t h e
Note t h a t t h u s , f o r e v e r y U E C ' ( X )
u n i q u e l y d e t e r m i n e d s e t o f numbers
X
, we
have t h e
I xEX},
Fix a s u b s e t Q o f X , and l e t G b e t h e l i n e a r s u b s p a c e o f C l ( X )
generated by Q.
( S o G i s t h e R i e s z i d e a l cxEQRx, a n d
E v e r y P E G h a s t h e form P
lies in C'(X)u.)
=
zyXx;xi I
(x1;
**,xn€Q).
F o r two e l e m e n t P = C n X x . and v 1 xi 1
=
z nl ~ X i ~ i
(we c a n c l e a r l y assume t h e y a r e l i n e a r c o m b i n a t i o n s o f t h e same e l e m e n t s o f Q ) , w e h a v e p + v
=
Cn(A 1 xi
+
K ~ . ) x Xu ~ ,= 1
f o l l o w i n g d e s c r i p t i o n o f t h e band J g e n e r a t e d by
Q i s now
e a s i l y e s t a b l i s h e d (remember, G i s a c t u a l l y a R i e s z i d a e a l )
( i ) E v e r y p E J l i e s i n t h e h a n d g e n e r a t e d b y some c o u n t a b l e s u b s e t {xn} o f Q , and i n t h e b a n d , i t h a s t h e u n i q u e r e p r e s e n t a t i o n p = ZnXxnxn i n t h e s e n s e o f norm c o n v e r g e n c e .
( i i ) Two e l e m e n t s p , v o f J c a n a l w a y s b e w r i t t e n i n t e r m s o f t h e same c o u n t a b l e s e t { x n } c Q : p = C A and w e h a v e p + v
=
Cn(A 'n
zn
max(X
,K
'n
'n
) x n , [IFiIj =
xn, v = C n ~ x n ~ n , 'n + K ) x n , Ap = Cn(AX )xn, pVv = 'n xn n
I.
C o n s e q u e n t l y , we c a n d e n o t e e a c h p E J b y 1-1 = CxEQAxx, i t being understood t h a t Ax = 0 f o r a l l but a countable s e t of The s e t o f c o e f f i c i e n t s {Xx)x€Q) each P E G .
i s uniquely determined f o r
I n t h i s n o t a t i o n , we h a v e
u
+ v = CX~q(Xx
+
KX)X,
X I S .
(C(X) , C ' ( X ) ) - D u a l i t y
191
Some g e n e r a l n o t a t i o n : G i v e n a s e t T, d e n o t e b y a l [ T ) s e t o f a l l r e a l f u n c t i o n s p on T s u c h t h a t Z t E T l p [ t )
1
o f <J o n t o V
1
(9).
1 Thus <J c a n b e i d e n t i f i e d w i t h R ( Q ) .
We
do t h i s :
(35.4) Theorem. -
Q.
Given a s u b s e t Q o f X , l e t ,J b e t h e b a n d
1x€Q X xx a s t h e f u n c t i o n on Q w i t h v a l u e Xx a t x , we h a v e LJ = a ' ( Q ) . We h a v e
g e n e r a t e d by
T h e n , c o n s i d e r i n g e a c h i~
We w i l l d e n o t e ( C I ( X ) a ) d i f f u s e p a r t o f C'(X)
d
(hence
by C ' [ X ) d ,
=
and c a l l i t t h e
the subscript d ) .
Its ele-
m e n t s a r e t h e d i f f u s e (Radon1 m e a s u r e s on X - a l s o c a l l e d t h e purely non-atomic ones.
The d e c o m p o s i t i o n C l ( X )
=
C'(X)
C ' (X)d g i v e s a s t a n d a r d r e p r e s e n t a t i o n o f e v e r y u E C ' {X)
a
3
as
t h e sum o f a u n i q u e l y d e t e r m i n e d a t o m i c m e a s u r e a n d a u n i q u e l y
192
Chapter 7
determined d i f f u s e one.
T h e s e two components o f p w i l l b e
d e n o t e d s i m p l y b y pa and p d ( i n s t e a d o f p
C ' (XIa
and 1-1 C ' (X) d l *
And f o r a s u b s e t A o f C 1 ( X ) , i t s images u n d e r p r o j e c t i o n i n t o C ' ( X ) u and C ' ( X ) d w i l l b e d e n o t e d by Au and A d . The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 3 5 . 5 ) Let J be a Riesz i d e a l o f C ' ( X ) , and s e t Q
Then Ja i s c o n t a i n e d i n t h e
=
*J
n
X.
If J is a
band g e n e r a t e d by Q .
b a n d , t h e n J a c o i n c i d e s w i t h t h e b a n d g e n e r a t e d by Q .
For a Riesz i d e a l J o f C ' (X)
(35.6) Corollary.
,
the following
are equivalent:
'1
J c C ' (X)d;
2'
J
~
C'(X)a
X
g.=
i s a l w a y s s e p a r a t i n g on C(X) ( s i n c e X i s ) .
c o n t r a s t t o t h i s , C ' ( X ) d may c o n s i s t o n l y o f 0 :
Let X be t h e
A l e x a n d r o f f o n e - p o i n t c o m p a c t i f i c a t i o n o f N ; t h e n C(X) ( t h e s p a c e o f c o n v e r g e n t s e q u e n c e s ) a n d C'(X) = A t t h e o t h e r extreme, C'(X)d
In
1
=
c
(X) = C ' ( X ) u .
may a l s o b e s e p a r a t i n g on C ( X ) :
L e t X b e a r e a l i n t e r v a l ; t h e n t h e Lebesgue m e a s u r e on X i s d i f f u s e a n d , a s i s w e l l known, t h e b a n d i t g e n e r a t e s i s s e p a r a t i n g on C(X). Remark. -____
The s p a c e s X f o r w h i c h t h e r e e x i s t s a t l e a s t
o n e d i f f u s e m e a s u r e d i f f e r e n t from 0 c a n b e d e s c r i b e d p r e c i s e l y
(C(X) ,C' (X))-Duality
193
( ( 3 7 . 8 ) below).
5 3 6 . The v a g u e t o p o l o g y on C ' ( X )
0 on C ' ( X )
A linear functional
l i e s i n C(X)
i f i t i s v a g u e l y c o n t i n u o u s on C ' ( X ) ;
i f and o n l y
a n d i n d e e d , by t h e
G r o t h e n d i e c k c o m p l e t e n e s s t h e o r e m , i t s u f f i c e s f o r Q t o be
We c a n s a y m o r e :
v a g u e l y c o n t i n u o u s on t h e u n i t b a l l B ( C ' ( X ) ) .
( 3 6 . 1 ) -~ Theorem.
A l i n e a r f u n c t i o n a l 0 on C ' ( X )
lies i n C(X)
i f a n d o n l y i f 0 i s v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) .
Proof.
We n e e d o n l y show t h a t i f
@ i sv a g u e l y c o n t i n u o u s
on K ( C ' ( X ) ) , t h e n i t i s v a g u e l y c o n t i n u o u s on B ( C ' ( X ) ) .
a n e t {pa} i n B ( C ' ( X ) )
J(@,p) - (@,pa)l
A,@-
pa +
c o n v e r g e s v a g u e l y t o p , b u t ( 0 , ~ )#
Then w e c a n a s s u m e t h e r e
l i m a ( G,p,).
2
E
for a l l a.
exists
=
K
), = {O
a
> 0 such t h a t
For e a c h a , w e c a n w r i t e
w h e r e P , u ~ E K ( C ' ( X ) ) , X,K,, > 0 , and a 1 (cf.519). Now t h e real i n t e r v a l [ 0 , 1 ] i s compact.
i s v a g u e l y c o m p a c t , s o b y t a k i n g an a p p r o p r i a t e
s u b n e t , w e c a n assume t h e r e e x i s t X , K €
and
E
KaUas
a and K ( C ' ( X ) )
that
Suppose
limaha,
K
=
lim
K
c1
a'
} converges vaguely t o
{pa} O.
On t h e o t h e r h a n d ,
@
such
converges vaguely t o p, On t h e o n e h a n d i t f o l l o w s
t h a t { p } c o n v e r g e s v a g u e l y t o AD c1
IR a n d p , o E K ( C ' ( X ) )
KU,
whence Xp
-
KO
= p
b e i n g v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) ,
. we
Chapter 7
194
S i n c c X i s s e p a r a t i n g on C(X), t h e l i n e a r s u b s p a c e g e n e r a t -
A f o r t i o r i , C ' ( X ) r L i s also.
ed by X i s vaguely dense i n C ' ( X ) .
More s h a r p l y , b y t h e Krein-Milrnan t h e o r e m , t h e c o n v e x h u l l o f X i s v a g u e l y d e n s e i n K(C' ( X ) ) .
I t f o l l o w s K(C'(X)=)
is also.
We w i l l n e e d t h e f o l l o w i n g f u r t h e r s h a r p e n i n g .
( 3 6 . 2 ) F o r two R i e s z i d e a l s J1,J2 o f C ' ( X ) ,
the following arc
equivalent: 1'
< J 2 i s c o n t a i n e d i n t h e v a g u e c l o s u r e o f J1;
2'
( J 2 ) + i s c o n t a i n e d i n t h e v a g u e c l o s u r e o f (.J1)+.
3'
K ( J 2 ) i s c o n t a i n e d i n t h e vague c l o s u r e o f K ( J 1 ) .
P roof. -
2'
T h a t 1'
i m p l i e s 2'
f o l l o w s f r o m (10.12).
Assume
By 2O, some n e t {pa} i n (J1)+
h o l d s and c o n s i d e r p E K ( J , ) . 1
converges vaguely t o P.
Then
IIuil
=
(n(X),u)
lirna[lpal[ , s o , t a k i n g a s u b n e t , w e c a n assume
lima(ll(X),pa)
IIuaI[ #
Thus 2'
i m p l i e s 3.
T h a t 3'
=
0 f o r a l l a.
Then {vc13 i s a n e t i n K(.J1)
For e a c h a, s e t v U = c o n v e r g e s v a g u e l y t o p.
=
and 0
implies 1
i s immediate.
QED
(36.3) Corollary.
For a R i e s z i d e a l J o f C ' ( X ) ,
the following
(C(X) , C ' (X)) -Duality
195
are equivalent:
'1
,J i s v a g u e l y c l o s e d ;
.7 0
%J+ i s v a g u e l y c l o s e d ;
0
3
4'
R(J)
is vaguely closed;
K(J)
i s vaguely closed.
By t h e d i s c u s s i o n i n 5 4 1 0 , 11, t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e v a g u e l y c l o s e d b a n d s tJ o f C ' ( X )
and
t h e ( w e a k l y c l o s e d , h e n c e ) norm c l o s e d R i e s z i d e a l s I I o f i f and o n l y i f J
JH
C'(X):
Now c o n s i d e r a s u b s e t Q o f X . l i n e a r subspace of C ' ( X ) i d e a l of C(X)
(31.2),
n
X
=
Z(QL)
=
1
.
But ' Q
i s a Riesz
so QLL i s , i n f a c t , the vaguely closed
Q (31.3).
c l o s e d band of C ' ( X ) ,
then J
X,
Two e a s y c o n s e q u e n c e s a r e t h a t
L
HL i s p r e c i s e l y t h e v a g u e l y
a n d [ i i ) i f ,J i s a v a g u e l y
c l o s e d band g e n e r a t e d by Z(H),
n
<J
QLL i s t h e vaguely c l o s e d
g e n e r a t e d by Q .
( i ) f o r a Riesz i d e a l H of C ( X ) ,
J
=
Moreover, i f Q i s a c l o s e d s u b s e t o f
___ b a n d g e n e r a t e d by Q .
QLL
i f and o n l y i f I1
fIL
=
=
(JnX)'
- equivalently,
Z(J ) L
Summing u p ,
X.
There i s a t h r e e - w a y correspondence between
( 3 6 . 4 ) Theorem.
t h e c l o s e d s u b s e t s 2 o f X , t h e norm c l o s e d R i e s z i d e a l s H o f C(X),
and t h e v a g u e l y c l o s e d bands J o f C ' ( X ) .
Z,H,
a n d .J
c o r r e s p o n d t o e a c h o t h e r i f and o n l y i f t h e f o l l o w i n g h o l d :
J
n
(i)
Z
=
Z(H)
=
(ii)
H
=
ZL
=
J .
(iii) J
=
€1'
=
t h e v a g u e l y c l o s e d band g e n e r a t e d b y 2 .
X;
1'
=
Chapter 7
196
Remark 1. -
In ( i i ) , w e c o u l d have w r i t t e n Z
1
.
i t depends
on w h e t h e r we t h i n k o f X a s t h e " p r e d u a l " o f C(X) o r a s a s u b -
s e t o f Cl(X). Remark 2 . b e emp ty : l e t J
C1(X)d f o r a real i n t e r v a l .
=
a bo v e t h e o r e m , s i n c e f o r __ any X , Ct(X)d
n
X =
We saw i n 535 t h a t f o r two s u b s e t s Q l , Q 2 bands J1,J2 which t h e y g e n e r a t e , J2
=
I n d e e d , by t h e
@,w e
have t h a t
Qln
Q,
=
o f X and t h e
fl i f and o n l y i f
F o r c l o s e d s u b s e t s o f X , w e c a n s a y more:
0.
(36.5) Let Z1,Z2 they generate.
b e c l o s e d s u b s e t s o f X and J 1 , J 2 t h e b a n d s Then t h e f o l l o w i n g a r e e q u i v a l e n t :
io
z1 n z 2
2'
J~
3'
(vague c l o s u r e J1)n
n J~
P roof. -
=
+;
= 0;
( v a g u e c l o s u r e J,)
We n e e d o n l y show t h a t 1'
Urysohn f u n c t i o n f o r t h e p a i r ( Z l , Z 2 )
=
0.
i m p l i e s 3'. ( c f . 530).
n(X) - f i s a Urysohn f u n c t i o n f o r ( Z 2 , Z l ) .
Let f be a Then g
=
assume 1-1 > 0 , h e n c e i t s u f f i c e s t o show t h a t ( n ( X ) , p ) The v a g u e c l o s u r e o f J1 i s ( Z 1 ) l L ; s i n c e g€(Z1)', follows ( g , u ) +
(g91-I)
=
0.
=
0.
S i m i l a r l y , ( f , p ) = 0.
=
Now s u p p o s e p l i e s
i n t h e v a g u e c l o s u r e s o f b o t h J1 a n d J2; w e show p
(f3.1-I)
X may
i s v a g u e l y c l o s e d i f and o n l y i f C1(X ), = 0 .
C '( X) ,
Jln
n
I f a band J i s n o t v a g u e l y c l o s e d , J
We c a n
0.
= 0.
it
Then (n(X),.cl)
=
QED
197
(C(X) ,C' (X))-Duality
A non-empty s u b s e t Q o f a t o p o l o g i c a l s p a c e i s c a l l e d
d e n s e - i n - i t s e l f i f , a s a s p a c e i n i t s own r i g h t , i t h a s no If Qis d e n s e - i n - i t s e l f ,
isolated point.
let ,J b e t h e v a g u e l y c l o s e d
Given a s u b s e t A o f C ' ( X ) , band g e n e r a t e d by A .
Then
8.
then so i s
. J / T X w i l l be c a l l e d t h e s u p p o r t
I f A c o n s i s t s o f a s i n g l e e l e m e n t 1~., w e w i l l c a l l .J
of A. -
X
t h e s u p p o r t o f p.
(36.6)
Theorem.
--
For e v e r y non-empty s u b s e t A o f C ' ( X ) , ,
~
the
support of A i s d e n s e - i n - i t s e l f .
___ Proof.
Let J b e t h e v a g u e l y c l o s e d b a n d g e n e r a t e d by A ,
X h a s an i s o l a t e d p o i n t x.
and s u p p o s e J
is a closed set.
Then Z
=
(,JnX)\{x 1
Let J1 b e t h e v a g u e l y c l o s e d b a n d g e n e r a t e d
by Z .
J = J g R x . 1
Note f i r s t t h a t w r i t t e n J1
%,
Rx.
Jln
Rx
=
0 by ( 3 6 . 5 ) ,
s o J1 + R x c a n b e
S i n c e Rx ( b e i n g o n e - d i m e n s i o n a l ) i s a l s o
v a g u e l y c l o s e d , i t f o l l o w s f r o m t h e L o t z Theorem ( 1 0 . 2 1 ) t h a t J1 3 Wx i s v a g u e l y c l o s e d .
I t i s i m m e d i a t e t h a t J1 3 R x c < J .
The o p p o s i t e i n c l u s i o n f o l l o w s f r o m t h e f a c t t h a t J l 3 R x c o n t a i n s Z IJ
{x)
and i s vaguely closed.
This e s t a b l i s h e s (*).
Chapter 7
198
Now A c C ' ( X ) d ,
h e n c e A c { x } d , hence by (*)
,
A c .Jl.
T h i s c o n t r a d i c t s t h e a s s u m p t i o n t h a t t h e v a g u e l y c l o s e d hand g e n e r a t e d by A i s . J . QED
G i v e n a c l o s e d s u b s e t Z o f X, l e t W
=
v a g u e l y c l o s e d band g e n e r a t e d by Z , and I1
s o b y s t a n d a r d Banach s p a c e t h e o r y , ,J 11'.
=
=
X\Z,
<J b e t h e
Z ' .
Then .J
(C(X)/II)
'
=
HL,
and C ' ( X ) / . J
S i n c e ,Jd c a n b e i d e n t i f i e d w i t h C ' ( X ) / , J , t h e l a s t i d e n t i t y
can be w r i t t e n J d = 1 1 ' . Now H = Cw(W) and C[X)/II
=
C(Z)
( c f . § 3 1 ) , s o t h e above
can b e w r i t t e n :
( 3 6 . 7 ) -____ Theorem.
L e t 2 b e a c l o s e d s u b s e t o f X, W
-J t h e v a g u e l y c l o s e d b a n d g e n e r a t e d b y
Z.
=
X\Z,.and
Then
.J = C ' ( Z ) ,
Jd
=
(Cw(W))'.
We r e s t a t e o n e o f t h e s e for e m p h a s i s .
Corollary. (36.8) -J
=
=
Given a v a g u e l y c l o s e d b a n d (J o f C'(X),
C'(JnX),
T h e r e i s u n d o u b t e d l y a body o f r e s u l t s f o r t h e Mll-subs p a c e s o f C(X) p a r a l l e l i n g t h o s e w e h a v e g i v e n f o r norm c l o s e d
( C ( X ) ,C' ( X ) ) -Duali t y
Riesz i d e a l s .
199
However, w e h a v e l i t t l e t o o f f e r i n t h i s d i r e c -
One p r o b l e m : f o r an M I - s u b s p a c e F , w e know no r e a s o n a b l e
tion.
d e s c r i p t i o n o f F'. R e c a l l t h a t i n t h e d u a l i t y b e t w e e n C(X) a n d X, t h e r o l e played by Z ( H )
f o r a norm c l o s e d R i e s z i d e a l H was t a k e n f o r F ,
We n o t e h e r e t h a t t h e s e
by t h e s e t o f s e t s o f c o n s t a n c y o f F .
s c t s of constancy a r e simply the i n t e r s e c t i o n s with X of the t r a n s l a t e s o f F'.
5 3 7 . Mapping d u a l i t y
The d i s c u s s i o n i n 5 2 4 on a n bin-homomorphism a n d i t s t r a n s -
We e x p a n d on t h e r e s u l t s
pose a p p l i e s t o t h e p a i r (C(X),C'(X)). given there.
Let C(X)
__ > C(Y) h e a norm c o n t i n u o u s
o r d e r bounded - l i n e a r mapping. vaguely c o n t i n u o u s .
Then C ' ( X )
d e t e r m i n e d b y i t s v a l u e s on Y . mapping C ' ( X )
C " ( Y ) .
For t h e r e m a i n d e r
s , T , S w i l l correspond w i t h each o t h e r a s above.
We s h a r p e n t h e f i r s t h a l f o f ( 2 4 . 4 ) .
( 3 7 . 2 ) The f o l l o w i n g a r e e q u i v a l e n t : lo
T i s a Markov m a p p i n g ;
2'
S(K(C' Y)j)
3O
s(Y) c K(C' (X 1 .
Also (24.5)
= KlC'
(XI);
(by combining i t w i t h ( 3 3 . 2 ) ) .
( 3 7 . 3 ) The f o l l o w i n g a r e e q u i v a l e n t :
'1 2'
T i s a n MIL-homomorphism;
S (i) i s i n t e r v a l p r e s e r v i n g a n d ( i i ) maps K ( C ' ( Y ) ) i n t o K ( C ' ( X ) ) ;
(C(X) ,C'(X))-Duality
3O
201
x.
s(Y) c
I f S s a t i s f i e s t h e a b o v e , t h e n , from ( 2 4 . 7 ) , i f G i s a band o f C ' ( Y ) , S(G)
The f a c t t h a t S i s
i s a band o f C ' ( X ) .
v a g u e l y c o n t i n u o u s g i v e s u s more:
(37.4) I f s , T , S s a t i s f y (37.3), then f o r every vaguely closed band G o f C ' ( Y ) , S(G)
Proof.
i s a l s o a vaguely c l o s e d band.
is
By ( 3 6 . 3 ) i t s u f f i c e s t o show t h a t K ( S ( G ) )
vaguely c l o s e d .
By ( 2 4 . 7 ) ,
K(S(G))
S(K(G));
=
is
since K(G)
v a g u e l y compact and S i s v a g u e l y c o n t i n u o u s , S ( K ( G ) )
is also
v a g u e l y compact. QED
( 3 7 . 5 ) Theorem. H
=
T
-1
Suppose s , T , S s a t i s f y ( 3 7 . 3 ) .
( 0 ) , and J = S ( C ' ( Y ) ) .
e a c h o t h e r by ( 3 6 . 4 ) : Z = Z ( H )
Set Z
=
s(Y),
Then Z,H, and J c o r r e s p o n d t o = J
n
X, H
=
ZL
=
Jl, and
J = HL = t h e v a g u e l y c l o s e d band g e n e r a t e d by Z .
T h i s f o l l o w s from ( 3 3 . 3 ) ,
(36.4),
( 3 7 . 3 ) , and ( 3 7 . 4 ) .
The f o l l o w i n g r e s u l t c o n t a i n e d i n t h e above i s w o r t h noting.
I f C(X)
[Tt(C'(y>)l
?i
X.
-> C(Y)
i s an MI-homomorphism, t h e n Tt(Y)
=
Chapter 7
202
( 3 7 . 6 ) C o r o l l a r y 1.
L e t C(X) ___ > C(Y) be an MIL-homomorphism.
Then (i)
T i s a s u r j e c t i o n i f and o n l y i f T t i s an i n j e c t i o n .
( i i ) T i s a n i n j e c t i o n i f and o n l y i f T t
(37.7) Corollary 2 .
L e t C(X) ->
T
is a surjection.
C(Y) b e an MI-homomorphism,
Then and s e t J = T t ( C ' ( Y ) ) . t ( i ) T [ C ' ( Y ) ] = Ja; U
( i i ) T~ [ C ' ( Y ) ~ 3] J ~ .
Proof.
( i ) f o l l o w s e a s i l y from t h e comment f o l l o w i n g
( 3 7 . 5 ) above a n d t h e f a c t t h a t T t i v e elements.
t
p r e s e r v e s t h e norms o f p o s i -
( i i ) f o l l o w s from ( i ) . QED
( 3 7 . 8 ) C o r o l l a r y 3.
L e t C(X)
and s e t J = T t ( C ' ( Y ) ) .
->C(Y) be an MI-homomorphism,
I f T i s s u r j e c t i v e , T t maps CI(Y),
and
C 1 ( Y ) d e a c h R i e s z i s o m o r p h i c a l l y and i s o m e t r i c a l l y o n t o <Ju and J d respectively.
We showed i n ( 3 6 . 6 ) t h a t a n e c e s s a r y c o n d i t i o n f o r C ' ( X ) t o c o n t a i n non-zero d i f f u s e measures i s t h a t X c o n t a i n a s u b s e t which i s d e n s e - i n - i t s e l f .
We show t h i s c o n d i t i o n i s a l s o s u f -
ficeint. We w i l l u s e t h e f o l l o w i n g s t a n d a r d p r o p e r t y o f compact
(C(X) ,C' (X)) -Duality
203
spaces.
Lemma.
~f
Y
C
X i s~ a c o n t i n u o u s s u r j e c t i o n , t h e n t h e r e
e x i s t s a c l o s e d s u b s e t 2 o f X w h i c h i s mapped o n t o Y w h i l e no p r o p e r c l o s e d s u b s e t o f Z i s mapped o n t o Y .
The f o l l o w i n g t h e o r e m i s d u e t o W . and Semadeni ( c f .
Theorem.
(37.9)
-
Rudin and t o P e l c z y n s k i
[49] 519.7).
The f o l l o w i n g a r e e q u i v a l e n t :
X c3ntains a dense-in-itself subset;
1'
there i s a continuous s u r j e c t i o n of X onto a r e a l
2'
interval ; 3O
c'(x)d #
Proof.
0.
Assume X c o n t a i n s a s e t Q d e n s e - i n - i t s e l f .
Choose
d i s t i n c t p o i n t s xo,xl of Q y then d i s j o i n t closed neighborhoods of xOyx1 r e s p e c t i v e l y .
Vo,V1
Choose d i s t i n c t p o i n t s x o o , x o l
o f Q i n t h e i n t e r i o r o f V o and x l o , x l l
of Q i n t h e i n t e r i o r
Then c h o o s e d i s j o i n t c l o s e d n e i g h b o r h o o d s V o o , V o l
o f V1.
x o o , x o l r e s p e c t i v e l y i n V o and VloYVl1 i n Vl.
of xlo,xll
of
respectively
C o n t i n u i n g t h i s p r o c e s s i n d u c t i v e l y , we o b t a i n , f o r
(ij = 0 or 1 for j = l,...,n); each n , Zn closed s e t s V. i l . . . in d e n o t e t h e i r union by Zn. Finally, set Z =
nnZn.
F o r e a c h x E Z , t h e r e i s a u n i q u e s e q u e n c e { i n )(n
=
1,2,..*),
204
Chapter 7
w i t h in
=
.
0 o r 1 f o r a l l n , such t h a t xEnnVili2...i n
Let s x be t h e e l e m e n t i n t h e r e a l i n t e r v a l [ 0 , 1 ] w h i c h h a s t h e dyadic representation 0 . i i 1 2 mapping o f Z o n t o [ 0 , 1 ] ,
- - . in
* - . .
x t->s x i s t h e n a
and i s c l e a r l y continuous.
e x t e n s i o n t h e o r e m now g i v e s u s 2
0
The T i e t z e
. <s
Now assume t h e r e i s a c o n t i n u o u s s u r j e c t i o n Y X onto t a r e a l i n t e r v a l Y. Then C(Y) __ >C(X) i s an M l l i s o m o r p h i s m tt ( i n t o ) , and t h e r e f o r e C ' ( Y ) C'(X) i s s u r j e c t i v e . It
<s
f o l l o w s from ( 3 7 . 7 ) t h a t C ' ( Y ) d c st t ( C ' ( X ) d ) . ( i t c o n t a i n s t h e L e b e s g u e m e a s u r e on Y ) , C I ( X ) d h a v e 3'.
T h a t 3'
Since C'(Y)d# 0
# 0.
We t h u s
i m p l i e s 1' was shown i n ( 3 6 . 6 ) .
QED
Combining t h e a b o v e w i t h ( 3 6 . 7 ) , we o b t a i n e a s i l y :
( 3 7 . 1 0 ) C o r o l l a r y 1.
Let Z b e a c l o s e d s u b s e t o f X a n d J t h e
v a g u e l y c l o s e d band which i t g e n e r a t e s .
Then t h e f o l l o w i n g a r e
equivalent:
1'
'2
Z contains a dense-in-itself subset; Jd # 0 .
Corollary 2. (37.11) -
The f o l l o w i n g a r e e q u i v a l e n t :
1'
X is dense-in-itself;
2'
C ' (X)d i s v a g u e l y d e n s e i n C ' ( X ) ;
3'
c ~ ( x > , i s s e p a r a t i n g on
c(x).
(C(X) , C ' (X))-Duality
205
If X contains no dense-in-itself subset, it is called dispersed or scattered..
-
The equivalence of '1
and 3'
(37.9) can be stated as follows.
(37.12) Corollary 3.
The following are equivalent:
1'
X is dispersed;
2O
c'(x)d
=
0.
in
CHAPTER 8 C"
The i m b e d d i n g o f C(X)
538.
S i n c e C'(X)
(X)
i s an L - s p a c e , t h e r e s u l t s i n P a r t I1 on t h e
d u a l o f an L-space a l l a p p l y t o C"(X). existence of C(X). consider C(X) do s o .
Since
C l ( X )
The new f a c t o r i s t h e
i s s e p a r a t i n g on C ( X ) , w e c a n
as a R i e s z s u b s p a c e of
C1l(X)
(5131, and w e w i l l
We h a v e m o r e :
( 3 8 . 1 ) The u n i t
C(X)
i n C1'(X)
n(X)
of C(X)
i s a l s o t h e u n i t o f C"(X).
Thus
i s an MIL-subspace o f C " ( X ) .
T h i s f o l l o w s from ( 2 1 . 3 ) and ( 2 3 . 1 ) .
As w e p o i n t e d o u t i n 513, w h i l e t h e i m b e d d i n g o f C ( X )
C"(X)
in
p r e s e r v e s t h e suprema and i n f i m a o f f i n i t e s e t s ( t h e
l a t t i c e o p e r a t i o n s ) , it does n o t , i n g e n e r a l , p r e s e r v e t h o s e of i n f i n i t e s e t s .
(Thus i t i s n o t o r d e r c o n t i n u o u s . )
Hence-
f o r t h , t h e n o t a t i o n f = V A w i l l a l w a y s mean t h a t f i s t h e supremum o f A i n C " ( X ) ,
e v e n when A a n d f a r e b o t h i n C ( X ) . 206
C" (X)
And s i m i l a r l y f o r f
-f
c1
f.
207
I f we w a n t t o i n d i c a t e t h a t t h e s e
r e l a t i o n s h o l d i n C(X), w e w i l l w r i t e " f
''f
a
+
=
V A - i n C(X)" a n d
f i n C(X)".
( 3 8 . 2 ) Under t h e r e s t r i c t i o n o f t h e form ( * , . ) on C"(X)
t o C"(X)
x
K ( C ' ( X ) ) , Cf'(X)
=
x
C'(X)
A ( K ( C ' ( X ) ) ) , t h e s p a c e o f bounded
a f f i n e f u n c t i o n s on K ( C l ( X ) ) , a n d C(X) i s t h e s u b s p a c e o f vaguely continuous ones.
The f i r s t s t a t e m e n t was e s t a b l i s h e d i n ( 2 3 . 4 ) ,
the second,
i n (36.1).
S i n c e C"(X) i s a n M a - s p a c e , norm b o u n d e d n e s s i n Cl'(X) a n d o r d e r b o u n d e d n e s s i n C"(X)
are equivalent.
Thus
w e can
s i m p l y r e f e r t o a s e t ( o r a l i n e a r mapping) a s "bounded",
w e w i l l do s o .
and
( A l l t h i s of course a l s o h o l d s i n C(X).)
We r e c o r d a f u r t h e r s h a r p e n i n g o f t h e D i n i Theorem.
In
s p i t e o f t h e c o n v e n t i o n on o r d e r c o n v e r g e n c e a b o v e , w e a c t u a l l y do u s e t h e p h r a s e " i n Cf1(X)" i n 4'
below.
This i s t o emphasize
the contrast with the other three statements.
(38.3)
( D i n i Theorem).
For a bounded monotonic n e t { f } i n
C(X) a n d f E C ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
1'
I f a } c o n v e r g e s t o f normwise;
'2
{f } converges t o f weakly;
'3
{ f a ) converges t o f simply;
c1
c1
208
Chapter 8
' 4
{ f a } o r d e r c o n v e r g e s t o f i n C"(X).
P-r o o f .
The new s t a t e m e n t i s 4'.
T h a t 1'
implies 4
0
And, s i n c e e v e r y e l e m e n t o f C ' (X) i s o r d e r
f o l l o w s from ( 9 . 6 ) .
i m p l i e s .'2
c o n t i n u o u s on c l l ( x ) , 4'
QED
5 3 9 . Some s i m p l e s e q u e n c e s p a c e s
Some s e q u e n c e s p a c e s
w i l l r e c u r t h r o u g h o u t t h e work.
To
a v o i d u n n e c e s s a r y r e p e t i t i o n , w e c o l l e c t t h e m a t e r i a l on t h e s e here.
I t i s w e l l known, a n d i n any c a s e , e a s i l y v e r i f i e d .
Throughout t h i s g , T i s a f i x e d s e t . k"(T)
i s t h e s p a c e o f bounded f u n c t i o n s on T endowed w i t h
p o i n t w i s e a d d i t i o n , s c a l a r m u l t i p l i c a t i o n , and o r d e r , and w i t h t h e supremum norm.
I t i s a D e d e k i n d complete MI-space, w i t h t h e
f u n c t i o n n ( T ) €or u n i t . T R g e n e r a t e d by I l ( T ) .
Note t h a t i t i s t h e Riesz i d e a l o f
c o ( T ) w i l l d e n o t e t h e s u b s e t o f km(T) c o n s i s t i n g o f t h o s e f u n c t i o n s f which "vanish a t i n f i n i t y " :
set { t E T l If(t)I > i d e a l o f k"(T).
E }
is finite.
f o r every
E
> 0 , the
c o ( T ) i s a norm c l o s e d R i e s z
Note t h a t f o r e v e r y f E c o ( T ) , f ( t ) # 0 f o r
only a countable s e t of t ' s . c(T) i s t h e l i n e a r subspace co(T) I t t u r n s o u t t o be a n MIL-subspace.
+
W
n (T)
of km(T).
C"
(X)
209
1
We h a v e a l r e a d y d e f i n e d XO. (T) ( c f .
535).
We e m p h a s i z e t h a t t h e a b o v e s p a c e s a r e i n d e p e n d e n t o f a n y
t o p o l o g y w i t h w h i c h T may b e endowed.
F o r e x a m p l e , when we
1 1 d i s c u s s e d il ( T ) i n 535, t h e n , a s f a r a s il ( X ) was c o n c e r n e d , X
was s i m p l y a d i s c r e t e s e t . C'(X)a.
( N ot e t h a t t h i s h o l d s a l s o f o r
The t o p o l o g y o f X d o e s n o t e n t e r i n t o i t s p r o p e r t i e s
a s an L - s p a c e .
Under two d i f f e r e n t t o p o l o g i e s on X
t h a t X i s c o m pact - t h e r e s u l t i n g C ' ( X ) , ' s
-
such
w i l l be i d e n t i c a l .
Where t h e y w i l l d i f f e r i s i n t h e v a g u e t o p o l o g i e s . )
We r e c o r d t h e d u a l i t y p r o p e r t i e s o f o u r s p a c e s . w i t h t h e M- s p ace ( b u t n o t a n M I - s p a c e )
(39.1)
il 1( T )
=
( c o ( T ) ) ' = (c0(T))'
We s t a r t
co(T).
= ( c , ( T ) ) ~ under the
b i l i n e a r form , p ) = 'tETf ( t ) p ( t ) 1 f o r f E c o ( T ) , pE R ( T ) . (
(39.2)
am(T)
=
(al(T))' = (al(T)IC
=
(al(T)Ib under t h e
=
(c0(T))".
b i l i n e a r form ( f9p) = CtETf(t)p(t)
f o r fERm(T), PER' (TI.
Thus Rm(T)
And t h e
o r i g i n a l i m b e d d i n g o f co(T) i n am(T) c o i n c i d e s w i t h i t s c a n o n i c a l imbedding i n i t s b i d u a l .
Chapter 8
210
U n l i k e c o ( T ) , c ( T ) i s a n MIL-space h e n c e c a n b c r e p r e s e n t e d
as a C ( X ) .
The a p p r o p r i a t e X i s t h e c l a s s i c a l A l e x a n d r o f f o n e -
p o i n t c o m p a c t i f i c a t i o n a T o f T , T b e i n g c o n s i d e r e d t o have t h e d i s c r e t e - h e n c e l o c a l l y compact - t o p o l o g y . C ( n T ) , and ( c ( T ) ) '
=
C'(aT).
Thus c ( T )
=
Now aT i s d i s p e r s e d , h e n c e
C ' ( C X T )=~ 0 ( 3 7 . 1 2 ) , a n d we h a v e C ' ( a T )
=
C ' ( ~ L T )= ~ gl[aT).
L e t u s d e n o t e t h e new p o i n t i n u T b y t,:
aT
=
T IJ
{t,}
Each t E T i s a n o r d e r c o n t i n u o u s l i n e a r f u n c t i o n a l o n C('T), 1 1 w h i l e tm i s n o t , s o we h a v e C ' ( a T ) = 9. ( T ) 3 W t , , with k (T) ( C ( a ~ )'.
.
=
Summing up :
From ( i i ) and ( 3 9 . 2 ) ,
(39.4)
km(T) c a n a l s o b e w r i t t e n a s a C ( X ) .
The a p p r o p r i a t e X
i s t h e S t o n e - C e c h c o m p a c t i f i c a t i o n RT o f T , T b e i n g c o n s i d e r e d
Let u s d e n o t e t h e p a r t B-T
t o have t h e d i s c r e t e topology. Z:
RT = T I J
Z (Z i s a c l o s e d s e t i n PT, a n d T an o p e n o n e ) .
I t i s e a s i l y v e r i f i e d t h a t ZL ( 3 6 . 7 ) , C ' ( @ T ) = L1(T)
=
3 C'(Z).
co(T).
Hence, by ( 3 9 . 1 ) and
Summing u p ,
by
C" (X)
211
( i i i ) h e r e f o l l o w s from ( 3 9 . 2 ) a n d ( 2 3 . 5 ) .
A s i s c u s t o m a r y , w e w i l l d e n o t e R"(N),
1
R (N) s i m p l y b y Rm,
c o , c , and R
customary t o s a y t h a t c
0
c o ( N ) , c(IN), a n d
1
.
A word o f w a r n i n g : I t i s 1 a n d c h a v e t h e same d u a l s , v i z R .
In t h e p r e s e n t work, t h i s i s an i n c o r r e c t s t a t e m e n t . k1
=
.9
1
(N), b u t c'
= k
1
(&).
W h i l e IN a n d aW
(c0)'
=
h a v e t h e same
c a r d i n a l i t y , t h e p o i n t t m i n aW h a s d i f f e r e n t p r o p e r t i e s t h a n t h e p o i n t s i n IN.
As we p o i n t e d o u t a b o v e , t h e p o i n t s o f N a r e
o r d e r c o n t i n u o u s on c , w h i l e t w i s n o t . N o t e t h a t , a s a c o n s e q u e n c e , we m u s t a l s o d i s t i n g u i s h between Rm
=
R"(N)
a n d R"(aN).
PART I V
THE STRUCTURE OF C ” (X) : BEGINNINGS
212
CIIAPTER 9
THE FUNDAMENTAL SUBSPACES OF C" (X)
5 4 0 . C"(X)a a n d C"(X)d
The d e c o m p o s i t i o n C ' (X)
C ' (X)a 3 C ' ( X ) d
=
i n t o the atomic
and d i f f u s e p a r t s o f C ' ( X ) g i v e s u s t h e d e c o m p o s i t i o n C"(X) = C'l(X)a 0 C"(X)d, w h e r e C"(X)a
[C' ( X ) d ] L a n d C'l(X)d
=
=
By t h e t e r m i n o l o g y a d o p t e d i n 5 2 6 , C1'(X)a and
[C'(X)a]L.
C ' ( X ) a a r e d u a l b a n d s , w h i c h i s why w e u s e t h e n o t a t i o n C"(X)a; and s i m i l a r l y f o r c " ( x ) d and C ' ( X ) d .
We e x a m i n e t h e b a n d C"(X)a. C''(X)a = [ C ' ( X ) a ] ' , we h a v e C ' ( X ) a every fEC"(X)a,f
Remark.
=
a"(X).
Specifically, for
Note t h a t i n t h e p r e s e n t w o r k , w h i l e c(X) a n d =
C"(X)a,
1( X ) , b e i n g t h e p r e d u a l
i s never contained i n the l a t t e r .
The i d e n t i t y o f t h e d u a l p a i r (C"(X)a, (k"(X),a
1
R (X), and
Cx,-XX,xEC' (X)a, ( f , p ) = EXEX( f , x ) X x ( 3 9 . 2 ) .
co(X) a r e c o n t a i n e d i n iz"(X) o f a"(X),
=
=
i s t h e f u n c t i o n on X w i t h t h e v a l u e ( f , x ) on
e a c h xEX; s o f o r i-1 _ I _
S i n c e C'(X)a
1
C1(X)a) w i t h
(X)) means t h a t t h e p r o p e r t i e s o f C ' ( X ) a a r e w e l l
known, a n d e v e n t r a n s p a r e n t .
We r e c o r d two t h a t we w i l l u s e
frequently.
213
Chapter 9
214
(40.1)
F o r A c C"(X)a a n d fEC"(X),
,
the following are cqui-
valent:
'1
f
2'
(f,x)
=
VA; supgEA(g,x) f o r a l l
=
EX.
I t i s i m m e d i a t e t h a t t h e t o p o l o g y on C"(X)u i n d u c e d by
a(C"(X) , C ' ( X ) ) c o i n c i d e s w i t h o ( C " ( X ) a ,
C ' (X)u).
'Thus w e can
s i m p l y t a l k a b o u t t h e v a g u e t o p o l o g y on C''(X)a w i t h o u t ambiguity.
(40.2) Corollary.
F o r a bounded n e t { f } i n C"(X)a a n d c1
f E C " (X)a, t h e f o l l o w i n g a r e e q u i v a l e n t : 1'
{f } o r d e r converges t o f ;
2'
{fa} c o n v e r g e s v a g u e l y t o f ;
3'
(f,x)
c1
=
lim (f
u
x) f o r a l l
a,
XEX.
We a d o p t t h e same c o n v e n t i o n f o r c o m p o n e n t s i n C"(X)u and
C''(X)d t h a t we d i d i n 5 3 5 f o r components i n C t ( X ) u and C'(X),: p r o j a and p r o j d w i l l d e n o t e t h e b a n d p r o j e c t i o n s o n t o C"(X), a n d C"(X)d r e s p e c t i v e l y ; f o r f E C " ( X ) , f a and f d w i l l b e t h e c o r r e s p o n d i n g c o m p o n e n t s ; a n d f o r A c C''(X), we w i l l d e n o t e p r o j a ( A ) and p r o j d ( A ) by Au and A d . Now c o n s i d e r t h e image C(X)u o f C(X) u n d e r p r o j , .
Since
X i s s e p a r a t i n g on C(X), p r o j a c l e a r l y maps C(X) M l - i s o m o r p h i c -
a l l y o n t o C(X)u.
Even m o r e , s i n c e e a c h fEC(X) i s d e f i n e d by
S u b s p a c e s o f C" ( X )
i t s v a l u e s on X , X,
215
i t f o l l o w s t h a t i f R € C ( X ) ~ i s c o n t i n u o u s on
t h e n t h e r e e x i s t s fEC(X) s u c h t h a t f u
=
g.
Otherwise s t a t e d
C(X)a c o n s i s t s p r e c i s e l y o f t h o s e e l e m e n t s o f C"(X)a w h i c h a r e c o n t i n u o u s on X .
i n g e n e r a l , C(X)a # C ( X ) ! !
Nevertheless,
Given f E C ( X ) , f a i s t h e e l e m e n t o f C"(X)u w h i c h a g r e e s w i t h f on e v e r y xEX, s o " l o o k s l i k e " f .
But f a d o e s n o t c o i n c i d e w i t h
f o n C ' ( X ) d i n g e n e r a l ; fa v a n i s h e s on C ' ( X ) d w h i l e f n e e d n o t .
A s t r i k i n g e x a m p l e i s f u r n i s h e d b y n(X)
for X t h e r e a l i n t e r v a l
[0,1].
Il(X)a h a s t h e c o n s t a n t v a l u e 1 on
C"(X)d;
in particular,
=
1 but ( l ( X ) a , u )
=
X b u t v a n i s h e s on
f o r t h e Lebesgue m e a s u r e
u on X ,
(l(X),p)
0.
W h i l e C(X)a i s M a - i s o m o r p h i c w i t h C ( X ) , t h e i m b e d d i n g o f C(X)a i n C t ' ( X ) a
i s i n a d e q u a t e f o r t e l l i n g u s a b o u t t h e imbedd( w h i c h i s e s s e n t i a l l y w h a t t h i s work i s
i n g o f C(X) i n C ' l ( X )
However, w e r e c o r d h e r e a p r o p e r t y f o r w h i c h i t
about).
Remember t h a t V A i n '1
adequate. i n C"(X)
(40.3)
b e l o w means t h e supremum
.
For A c C(X)
1'
f
2'
f a = VA,.
= VA;
_Proof. implies 2
0
and f E C ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
.
S i n c e b a n d p r o j e c t i o n p r e s e r v e s s u p r e m a , '1 Assume '2
holds.
By a d j o i n i n g s u p r e m a o f f i n i t e
s u b s e t s o f A t o A , we c a n r e d u c e t h e p r o b l e m t o t h e f o l l o w i n g :
Let I f c 1 } b e a n a s c e n d i n g n e t i n C ( X )
and f € C ( X ) : i f (fa)=l.fu
216
Chapter 9
(in C1l(X)u), show that fa+f (in Ctt(X)).
This follows f r o m
(40.2) and the Dini Theorem (38.3). QED We have been discussing C(X)a.
What about C(X)
The latter may vary from 0 to all of C(X).
n
C”(X)a?
Specifically, from
(37.11):
(40.4) Theorem. The following are equivalent: 1’
X is dense-in-itself;
zo
c(x) n
C ~ I ( X )=~ 0 .
And from (37.12):
(40.5) Theorem. The following are equivalent: 1’
X is dispersed;
2O
C(X) c cyX)a.
C’(X)a C(X)
n
is always separating on C(X),
Ct‘(X)d
=
0.
so we always have
Combining this with (40.4), we have that
for X dense-in-itself, C(X)
has only 0 in common with both
Ct’(X)u and C t t ( X ) d .
A final property of C(X),.
Recall (cf.141
that f o r a
S u b s p a c e s o f C"(X)
217
s u b s e t A o f a R i e s z s p a c e E , A(1) d e n o t e s t h e s e t o f a l l l i m i t s o f n e t s i n A which a r e o r d e r c o n v e r g e n t i n E .
( 4 0 . 6 ) Every e l e m e n t o f C1l(X)a i s t h e l i m i t o f an o r d e r c o n -
v e r g e n t n e t i n c ( x ) ~ : [ C ( X ) ~ I ( ' )= C ~ I ( X ) ~ .
Proof.
C o n s i d e r f€C"(X),,
The collection.&!
and we c a n assume 0 < f < ll(X)u.
= { a } of a l l f i n i t e s u b s e t s of X i s a d i r e c t e d
s e t under i n c l u s i o n .
We w i l l o b t a i n a n e t i n C(X)u, i n d e x e d by
A , which o r d e r c o n v e r g e s t o f .
Given a
=
{ x l , - + . , x n ) , choose
gaEC(X) s u c h t h a t 0 < g (i = l , * * - , n ) . a -< n ( X ) and g a ( x i ) = f ( x i ) Then ( f , x ) = l i m a ( g a , x ) = l i m a ( ( g a ) a , x ) f o r e v e r y xEX. It f o l l o w s from ( 4 0 . 2 )
t h a t (ga)a
-t
f.
QED
As an i l l u s t r a t i o n o f o u r e a r l i e r s t a t e m e n t t h a t t h e
imbedding o f C(X)u i n C 1 l ( X ) u d o e s n o t t e l l u s a b o u t t h e imbeddi n g o f C(X) i n Cll(X), we w i l l s e e l a t e r (548) t h a t , i n c o n t r a s t t o t h e above r e s u l t , C(X)(')
i s a p r o p e r s u b s e t o f C"(X).
5 4 1 . The b a s i c bands and Cg(X)
We f i r s t i n t r o d u c e t h e B a i r e e l e m e n t s o f C"(X) b r i e f l y , i n o r d e r t o e s t a b l i s h t h e i m p o r t a n t theorem ( 4 1 . 3 ) .
The a - o r d e r
c l o s u r e o f C(X) i n Cl'(X) w i l l be c a l l e d t h e B a i r e s u b s p a c e o f
218
Chapter 9
C"(X),
a n d d e n o t e d by B a ( X ) .
B a i r e e l e m e n t s o f C"(X).
-
ordinal
0 c
c(
< fi,{>
I t s e l e m e n t s w i l l be c a l l e d t h e
S e t Ba(X)O
=
C(X), and f o r each
t h e f i r s t uncountable o r d i n a l , l e t
Ba(X)a b c t h e s e t o f a l l l i m i t s o f o r d e r c o n v e r g e n t s e q u e n c e s i n IJ
=
--
Ou f o r a€C(X)'
( a - u)EC(X)'
and u€C(X)',
-C(X)'.
=
This g i v e s i n t u r n t h a t ( a - mu)€C(X)'
Consequently,
, and ( u - a)€C(X)'. and ( u - R A U ) € C ( X ) ~ .
The f i r s t o f t h e s e , f o r e x a m p l e , f o l l o w s from t h e i d e n t i t y R
- mu
=
( a - u)VO and t h e f a c t t h a t C(X)'
For s i m p l i c i t y , we w i l l w r i t e C(X)" similarly for C ( X ) ' ~ ,c and C(X)uu = C(X)',
XIuu,
C(X R'
and C(X)uR.
and C(X)"
i s a sublattice. f o r (C(X)')&, While C(X)"
and =
a r e new i n g e n e r a l .
C(X)'
S u b s p a c e s of C t t ( X )
(42.5)
C ( x p
In e f f e c t , - ( C ( X ) ' ) ~
Since C(X) c C(X)u
=
=
225
-C(X)RU.
(-c(x)')'
=
and C ( X ) c C ( X ) ' ,
((-C(X)p)Q
=
(C(Xp)Q.
we a l s o have
C(X)Q c C(Xp',
(42.6)
c ( X p c C(X)RU.
The argument u s e d f o r ( 4 2 . 4 ) g i v e s u s t h a t C ( X ) I u C ( X ) U R a r e norm c l o s e d a l s o .
and
Unexpectedly perhaps, t h e y a r e ,
i n f a c t , a-order closed:
( 4 2 . 7 ) -~ Theorem. (i)
C ( X ) R U i s c l o s e d under t h e o p e r a t i o n s of t a k i n g
i n f i m a o f a r b i t r a r y s u b s e t s and suprema o f c o u n t a b l e s u b s e t s . ( i i ) C(X)"
i s c l o s e d under t h e o p e r a t i o n s of t a k i n g
suprema o f a r b i t r a r y s u b s e t s and i n f i m a o f c o u n t a b l e s u b s e t s .
Proof.
We show C ( X ) R U i s c l o s e d u n d e r t h e o p e r a t i o n o f
t a k i n g suprema o f c o u n t a b l e s u b s e t s . ifn} c C(X)lU.
fl 5 f 2 nl(X)
Suppose f = v n f n ,
S i n c e C ( X ) R U i s a s u b l a t t i c e , w e c a n assume
z - - -Let .
A
=
> f f o r sonte n ) .
EESC(X)'~1 R > f j
(A i s n o t empty, s i n c e
We show f = h A , h e n c e l i e s i n C ( X ) Q u .
226
Chapter 9
S i n c e C ( X ) k i s a l s o a s u b l a t t i c e , A i s f i l t e r i n g downward, s o i t i s enough by ( 1 0 . 9 ) ,
-___ Lemma.
t o prove t h e
F o r e a c h u E C ' ( X ) + and
E
> 0, there exists LEA
such t h a t ( t , l J >
+
2E.
F o r s i m p l i c i t y o f n o t a t i o n , we assume 0 < f
0 , w > 0 , and p.hv
t h e r e e x i s t s W € C ( X ) ~s u c h t h a t w
2
0 , ( w , p ) = 0, ( w , w )
=
0,
> 0.
S u b s p a c e s o f C"(X)
Proof.
I[ u[[ =
We c a n a s s u m e
I _
I I v / [ = 1.
229
We w i l l d e f i n e , b y
i n d u c t i o n , a s e q u e n c e I f n ] i n C(X)+ s a t i s f y i n g (i)
> f2 >...9 fl -
(ii)
(fn,p>
5
(n = 1 , 2 , . . - ) ,
l/zn+l
(iii) (fn,u> > 1/2
+
(n
1/2"+'
=
1,2,...)
Choose f l , g l E C ( X ) + s u c h t h a t fl
+
(f,,!J> (cf.
(10.5)).
fl,
.,fn-l
g1 = -t
m i ,
(gp") I 1 / 2
Then f l h a s t h e t h r e e p r o p e r t i e s .
have been chosen.
fn
+
(fn,u)
gn +
=
Assume
Choose f n , g n E C ( X ) +
such t h a t
fn-y
(gn,") 5
Then ( f n , v ) = ( f n - l , v ) 1/2 + 1/2"+l,
2
- ( g n , v ) 2. 1 / 2
+ l/Zn
- 1/2"+'
and t h u s f n h a s t h e t h r e e p r o p e r t i e s .
=
w = A f n n
i s now t h e d e s i r e d e l e m e n t o f C(X)u. QED
(43.2)
(Up-down-up T h e o r e m ) . C(X)2UR = C(X)"R"
= C"
(X) .
P ro o f . The c o r e o f t h e t h e o r e m i s c o n t a i n e d i n t h e
f o l l o w i n g Lemma ( c f . 5 4 1 f o r a d i s c u s s i o n o f C:(X)).
P r o o f o f t h e Lemma.
.
2 30
Chapter 9
( I ) I t i s e n o u g h t o show
c (X I n e f f e c t , s u p p o s e t h i s i n c l u s i o n h o l d s ; we show t h a t
I i s a Dedekind
t h e n , f o r e v e r y b a s i c band I , I, c C(X)RU. complete MI-space w i t h I ( X ) ,
f o r u n i t , hence, by the
F r e u d e n t h a l Theorem ( 1 7 . 1 0 ) , I + i s t h e norm c l o s u r e o f t h e s e t of p o s i t i v e l i n e a r combinations o f elements of&(ll(X))
n
I.
S i n c e C(X)Qu i s a norm c l o s e d w e d g e , t h i s e s t a b l i s h e s ( I ) . CL(X); w e h a v e t o show e E C ( X ) e U .
So c o n s i d e r e E t ( n ( X ) )
e l i e s i n a b a s i c b a n d , s o e = ll(X)v f o r some v E C ' ( X ) , a n d we c a n t a k e p € C ' (X)+ w i t h
Il(X),
EC(X)9'u
11 1111
1.
=
The s t a t e m e n t t h a t
i s e q u i v a l e n t t o : n(X) - Il(X),IEC(X)S.
We show
t h i s l a s t statement.
(11) F o r e v e r y v > 0 s u c h t h a t
ponent e(v) of
n(X)
,IAV
= 0,
t h e r e e x i s t s a com-
,
s u c h t h a t e(v)EC(X)"
(e(v),u) = 0,
( e ( v ) , v > > 0.
Let w be 'the u s c e l e m e n t o b t a i n e d i n ( 4 3 . 1 ) , and s e t e ( v ) = I ( X ) w ( t h e c o m p o n e n t o f n(X) i n t h e b a n d g e n e r a t e d b y w ) Then e ( v )
=
vn[(nw)An(X)],
hence l i e s i n C(X)UR, and c l e a r l y
has t h e desired properties. We c o m p l e t e t h e p r o o f o f t h e Lemma b y s h o w i n g t h a t n ( x ) - n ( x l v = v C e ( v ) Iv > 0 ,
,IAV
D e n o t e t h e supremum on t h e r i g h t b y d . d 5 n(X) - n(X),.
Suppose ( l t ( X )
=
01. dAlt(X)p = 0 , h e n c e
- n(x)u)
- d > 0.
Let I b e
t h e band i t g e n e r a t e s and J t h e band o f Cl(X) d u a l t o I . Choose v E J , v > 0 .
Then pAv
=
0 , s o we have a c o r r e s p o n d i n g
2 31
S u b s p a c e s o f C" (X)
e(u).
Rut t h e n e ( v ) A d
=
0 , contradicting the definition of d.
We c a n now e s t a b l i s h t h e t h e o r e m ( 4 3 . 2 ) .
Every element
o f C"(X)+ i s t h e supremum o f some s u b s e t o f C:(X)+.
t h e Lcmma, C"(X)+ c C(X) fEC(X)"'. i n C(X)
lies in
.
Hence b y
C o n s i d e r a n y f E C " ( X ) : w e show
N o t e f i r s t t h a t f o r e v e r y n , nn(X) a n d -nll(X) l i e
,
2
Choose n s u c h t h a t f
h e n c e i n C(X)'"'.
Then ( s i n c e C(X)'up c(x)'~'.
0 u'
-nn(X).
i s a wedge) f + n n ( x ) > 0, hence l i e s i n
[Ience, f i n a l l y , f
=
(f
+
nn(x))
+
(-nn(x)) also
c(x)'~'. QEII
The Up-down-up t h e o r e m i s c o n t a i n e d i n ___ Note. [25].
my p a p e r
P e d e r s o n ' s g e n e r a l Up-down-up t h e o r e m f o r C * - a l g e b r a s
appeared i n 1972 [41].
F r e m l i n p u b l i s h e d h i s Up-down-up-down
t h e o r e m f o r p e r f e c t R i e s z s p a c e s i n 1 9 6 7 [16].
5 4 4 . The s u b s p a c e U ( X )
of universally
integrable elements
We now h a v e
C ( X p c C(X)RU c C(X)RU'
CIX)
=
= C"(X)
C ( x p c C(XpR
C
.
C(XpRU
Of t h e s e , t h e i n t e r m e d i a t e members C(X)'
a n d C(X)Ru o f t h e t o p
232
Chapter 9
row a r e o n l y w e d g e s , n o t l i n e a r s u b s p a c e s , and s i m i l a r l y f o r t h e i n t e r m e d i a t e members C(X)u a n d C(X)" Now C(X)u
=
-C(X)',
s o C(X)'
n
l a r g e s t one c o n t a i n e d i n C (X) s i m i l a r l y f o r C(X)'' subspaces.
2!
(lC(X)U'.
C(X)'
o f t h e b o t t o m row.
i s a l i n e a r subspace, the
( e q u i v a l e n t l y , i n C(X)');
and
They a r e e a c h , i n f a c t M I -
We t h u s h a v e t h e c h a i n o f Ma- s u b s p a c e s :
c(x) c
c ( x l Rn
n C ( X ) ~ c'
c(xiu c C ( X ) ' ~
Have w e f o u n d new MIL-subspaces?
(44.1) Theorem. -
C(X)'
n
C(X)'
cll(x).
The f i r s t one i s n o t new:
= C(X).
P ro o f . We n e e d o n l y show t h e l e f t s i d e i s c o n t a i n e d i n C(X)
*
Lemma. ( i ) E v e r y f€C(X)'
i s vaguely lowersemicontinuous
on K ( C ' ( X ) ) . ( i i ) Every f€C(X)'
i s v a g u e l y u p p e r s e m i c o n t i n u o u s on
K(C'CX1).
I n e f f e c t , t h e r e i s a n e t { f } i n C(X) s u c h t h a t f t f . c1
I t follows ( f , p ) = s u p ( f a , p ) f o r a l l pEK(C'(X)). f
Is
0.
c1
Since the
a r e v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) , t h i s g i v e s u s ( i ) ,
( i i ) i s proved s i m i l a r l y . I t f o l l o w s f r o m t h e Lemma t h a t e v e r y f€C(X)'
n
v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) , h e n c e by ( 3 6 . 1 ) , l i e s
C(X)u i s
Subspaces of C"(X)
233
in C ( X ) . QED
Our c h a i n o f MIL-subspaces i s now r e d u c e d t o
The m i d d l e member
new, i n g e n e r a l d i s t i n c t from b o t h C(X)
and C r f ( X ) . We s h a l l s e e t h a t i t can be i d e n t i f i e d w i t h t h e f a m i l y o f f u n c t i o n s on C which a r e i n t e g r a b l e w i t h r e s p e c t t o e v e r y Radon m e a s u r e .
( T h i s i s a l r e a d y foreshadowed by t h e f a c t
t h a t an e l e m e n t o f C"(X) supremum o f
USC
l i e s i n i t i f and o n l y i f i t i s a
e l e m e n t s and an infimum o f Rsc o n e s . )
Con-
s e q u e n t l y , we w i l l c a l l i t s e l e m e n t s t h e u n i v e r s a l l y i n t e g r a b l e e l e m e n t s o f C"(X),
( 4 4 . 2 ) -____ Theorem.
and w e w i l l d e n o t e i t by U(X).
U(X)
i s a a - o r d e r c l o s e d MI-subspace o f C"(X).
The a - o r d e r c l o s e d n e s s f o l l o w s from ( 4 2 . 8 ) .
U(X) i s p e r h a p s t h e most i m p o r t a n t MI-subspace o f C"(X) a f t e r C(X)
itself.
I t w i l l come t o d o m i n a t e o u r work.
2 34
Chapter 9
5 4 5 . The s u b s p a c e s s ( X ) and S(X)
We a r e s t i l l l o o k i n g f o r MIL-subspaces. a R i e s z s u b s p a c e o f C"(X) t i o n , u s i n g C(X)'
= -C(X)'
(42.1).
C(X)'
- C(X)'
is
A s t r a i g h t f o r w a r d computa-
a n d t h e f a c t t h a t b o t h c o n t a i n IL(X).
gives u s :
(45.1)
The f o l l o w i n g R i e s z s u b s p a c e s c o i n c i d e : C(X) R - C(X) 9
C(XIu - C ( x I u , (C(Xl'l+
- (C(X)')+,
a n d (C(X)')+
-
We w i l l d e n o t e t h i s common s u b s p a c e by s ( X ) .
(C(X)u>+.
While i t i s
a R i e s z s u b s p a c e c o n t a i n i n g IL(X), i t i s , i n g e n e r a l , n o t norm c l o s e d , s o i s n o t an MI-subspace. Appendix t o C h a p t e r 1 1 . )
(We g i v e an e x a m p l e i n t h e
I t s norm closure
g
an MIL-subspace.
We w i l l d e n o t e i t by S ( X ) . We now h a v e t h e c h a i n o f M a - s u b s p a c e s :
C(X) c S(X) c U(X) c C'l(X)
I n g e n e r a l , S(X) i s d i s t i n c t f r o m b o t h C(X) a n d U(X), s o we h a v e i s o l a t e d a s e c o n d new M I - s u b s p a c e .
C(X)RU - C(X)'U s p a c e o f Cl'(X).
(= C(X)U'
- C(X)UR) i s a l s o a R i e s z s u b -
I t c o n t a i n s U(X> o f c o u r s e , a n d a r e a s o n a b l e
c o n j e c t u r e m i g h t be t h a t i t i s d i s t i n c t from C"(X). n o t know w h e t h e r o r n o t t h i s i s t r u e .
,
We do
2 35
Subspaces o f C"(X)
5 4 6 . Dedekind c l o s u r e s
B e c a u s e o f i t s l a t e r i m p o r t a n c e , we s i n g l e o u t a n o p e r a t i o n w h i c h we h a v e u s e d a b o v e .
Given a s u b s e t A o f a R i e s z
s p a c e E , b y t h e D e d e k i n d c l o s u r e o f A i n E , we w i l l mean t h e s e t o f e l e m e n t s o f E w h i c h a r e e a c h b o t h t h e supremum o f some s u b s e t o f A a n d t h e infimum o f some s u b s e t o f A .
Otherwise R s t a t e d , t h e Dedekind c l o s u r e o f A i n E i s t h e s e t A AU. The D e d e k i n d c l o s u r e o f A o f c o u r s e c o n t a i n s A .
If it
c o i n c i d e s w i t h A , we w i l l s a y t h a t A i s D e d e k i n d c l o s e d i n E .
We l i s t some e a s i l y v e r i f i e d p r o p e r t i e s . c l o s u r e o f a s e t i s Dedekind c l o s e d .
The D e d e k i n d c l o s u r e o f
a Riesz subspace i s a g a i n a R i e s z s u b s p a c e s . a u t o m a t i c a l l y Dedekind c l o s e d .
The D e d e k i n d
A Riesz ideal is
If a subset A of E i s , a s an
o r d e r e d s e t , D e d e k i n d c o m p l e t e , t h e n A i s Dedekind c l o s e d i n E . The c o n v e r s e i s f a l s e ( c f .
( 4 6 . 3 ) b e l o w a n d t h e Remark f o l l o w -
ing i t ) .
( 4 6 . 1 ) I f a l i n e a r s u b s p a c e F o f C''(X)
contains ll(X),
D e d e k i n d c l o s u r e o f F i s norm c l o s e d .
I t follows t h a t
(i)
then the
F a n d i t s norm c l o s u r e h a v e t h e same D e d e k i n d c l o s u r e ,
and ( i i ) i f F i s D e d e k i n d c l o s e d , t h e n i t i s norm c l o s e d .
Proof.
An e x a m i n a t i o n o f t h e p r o o f o f ( 1 6 . 6 ) shows t h a t
2 36
Chapter 9
F t h e r e need o n l y b e a l i n e a r s u b s p ace c o n t a i n i n g
I (we do n o t
need t h e sequ e n c e s o b t a i n e d t o b e m o n o to n ic) . QED
(46.2) Corollary.
I f a R i e s z subspace of C"(X)
contains IL(X),
t h e n i t s Dedekind c l o s u r e i s a Dedekind c l o s e d M I - s u b s p a c e .
I n o u r s e a r c h f o r new M I - s u b s p a c e s , what a b o u t t h e Dedekind c l o s u r e s o f o u r t h r e e M I - s u b s p a c e s C ( X ) , U(X)?
The r e s u l t s a r e n e g a t i v e .
(44.1) t h a t C(X)
(46.3) C(X)
Remark.
S ( X ) , and
We h a v e a l r e a d y shown i n
i s Dedekind c l o s e d .
We r e s t a t e i t f o r m a l l y :
i s Dedekind c l o s e d i n C l ' ( X ) .
In general, C(X)
i s f a r from b e i n g Dedekind
complete.
( 4 6 . 4 ) The Dedekind c l o s u r e o f S ( X )
i n C''(X)
i s U(X)
(so U(X)
i s Dedekind c l o s e d i n C " ( X ) ) .
Proof.
By ( 4 6 . 1 ) , i t i s enough t o show t h a t t h e Dedekind
closure of s ( X ) U(X)
and t h e
i s U(X).
T h i s f o l l o w s from t h e d e f i n i t i o n o f
S u b s p a c e s o f Cll(X)
-____ Lemma.
s(x)'
237
= c ( x ) ' ~ , s ( ~ ) ' = c(x)".
C(X)' c s ( X ) , s o C(X)RUc S ( X ) ~ . For t h e o p p o s i t e i n -
c(x)'
c l u s i o n , s ( ~ )= (42.6)
=
C(X)",
-
c(x)'
=
+ c(x)'
c(x)'
c c(x)RU + c(x)RU
s o S ( X ) ~c C(X)RU. QE D
5 4 7 . The B o r e l s u b s p a c e Bo(X)
What do we o b t a i n i f we r e p e a t t h e o p e r a t i o n s t h a t we have c a r r i e d o u t i n t h i s c h a p t e r , b u t s t a r t i n g t h i s t i m e w i t h S(X) instead of C ( X ) ?
(47.1)
(i)
On t h e w h o l e , l i t t l e t h a t i s new.
S(X)'
= U(X)
R
= C(X)''.
( i i ) s ( x ) ~= u ( x ) ~= c ( x ) ' ~ .
The v e r i f i c a t i o n i s s i m p l e .
The 0 - o r d e r c l o s u r e o f S ( X ) , however, d o e s g i v e u s somet h i n g new.
We w i l l c a l l t h i s a - o r d e r c l o s u r e t h e B o r e l s u b -
=ace - o f C"(X),
and d e n o t e i t b y Bo(X).
c a l l e d t h e B o r e l e l e m e n t s o f C"(X). d e f i n e t h e c l a s s e s Bo(X),
( 4 1 . 1 ) g i v e s us:
(0
5
c1
I t s e l e m e n t s w i l l be
A s w i t h Ba(X), we c a n
2 a).
The argument u s e d f o r
238
Chapter 9
( 4 7 . 1 ) Bo(X) i s a 0 - o r d e r c l o s e d MIL-subspace o f C'l(X). Bo(X),
Every
i s a n MIL-subspace.
Note t h a t ( i ) Bo(X) i s a l s o t h e 0 - o r d e r c l o s u r e o f s ( X ) , and ( i i ) Ba(X) c Bo(X) c U ( X ) .
( i ) f o l l o w s f r o m ( 1 6 . 5 ) , and
( i i ) from C(X) c S(X) c U(X) t o g e t h e r w i t h t h e f a c t t h a t U(X)
is 0-order closed (44.2).
548. C(X) ")
and C(X) ( 2 )
I n o u r s e a r c h f o r new MIL-subspaces, w e h a v e s o f a r i g n o r e d an o b v i o u s s e t o f c a n d i d a t e s : c C ( X ) ( 1 ) , C ( X ) ( 2 ) , . . . }
(cf. §54,5).
One c o n s e q u e n c e o f t h e Up-down-up t h e o r e m ( 4 3 . 2 ) i s t h a t C(X)(3)
=
C"(X).
So we n e e d o n l y e x a m i n e C(X)(')
A g a i n , we h a v e n o t h i n g new. U(X)
and C ( X ) ( 2 ) .
We show i n t h i s 5 t h a t C ( X ) ( l )
( a l l r o a d s l e a d t o U[X)) and C(X)(')
ment on t h e i d e n t i t y g i v e n a b o v e ) .
=
C"(X)
=
(an improve-
Both p r o o f s a r e n o n t r i v i a l ,
and we f i r s t r e c o r d some g e n e r a l t h e o r e m s i n f u n c t i o n a l analysis.
The f i r s t i s t h e Hahn-Banach t h e o r e m i n t h e f o r m we
w i l l use i t .
(48.1)
(Hahn-Banach T h e o r e m ) .
L e t E b e a l o c a l l y convex s p a c e .
I f t h e convex s u b s e t s A , B o f E h a v e t h e p r o p e r t y t h a t t h e c l o s u r e of A - B does n o t c o n t a i n 0 , then t h e r e e x i s t s a cont i n u o u s l i n e a r f u n c t i o n a l @ on E s u c h t h a t
Subspaces o f C"(X)
2 39
Let K b e a compact convex s u b s e t o f a l o c a l l y
( 4 8 . 2 ) Lemma.
convex s p a c e E , and KO a c l o s e d convex s u b s e t o f K .
Suppose
f i s a c o n v e x l o w e r s e m i c o n t i n u o u s f u n c t i o n on K , a n d
(i)
( i i ) g i s a c o n c a v e u p p e r s e m i c o n t i n u o u s f u n c t i o n on K O s u c h t h a t g ( a ) < f ( a ) f o r a l l aEKo.
Then t h e r e e x i s t s a n
a f f i n e c o n t i n u o u s f u n c t i o n h on K s u c h t h a t h ( a ) > g ( a ) f o r a l l aEKo,
(i)
( i i ) h ( a ) < f ( a ) f o r a l l aEK.
P roof.
Form t h e p r o d u c t s p a c e E
x
IR ( w i t h e l e m e n t s ( a , ) , ) ) ,
and s e t G = I(a,1)(aEKo F = t(a,?,)la€K,
7
x x
f(a13.
I t i s e a s i l y v e r i f i e d t h a t G and F a r e convex s e t s .
We show
S u p p o s e a n e t { ( a ?,a)} a' i n F - G c o n v e r g e s t o 0 ( i n t h e t o p o l o g y o f E x lR). F o r e a c h
t h a t 0 i s n o t i n t h e c l o s u r e of F - G.
a. (aa,Xa)
a n d ( c ,T I E G . a ,K a) E F a c 1 K i s compact, s o , t a k i n g a s u b n e t i f n e c e s s a r y , w e c a n assume =
(ba7Ka) - ( c a 7 n a ) , where (b
{ b a } c o n v e r g e s t o bEK.
s o a c t u a l l y b€Ko.
I t follows { c } a l s o converges t o b , c1
Choose r , s E IR s u c h t h a t g ( b ) < r < s < f ( b ) .
Then e v e n t u a l l y g ( c ) < r a n d f ( b ) > s , h e n c e K - IT > f ( b a ) a a a a This c o n t r a d i c t s t h e assumption t h a t t h e g(c,) > s - r > 0. n e t {la}
} converges t o 0 inlR. a I t f o l l o w s from ( 4 8 . 1 ) t h a t t h e r e e x i s t s a c o n t i n u o u s =
{
K
~ -
linear functional
on E
x
lR, a n d t E R , s u c h t h a t
240
Chapter 9
(i)
( (a,
SUP
(a, X)EG Now ( E
x
XI ,Q)
IR)'
< t
0 : i n e f f e c t , s u p p o s e u aEKo, u f ( a ) (a,$)
+
5
0; then f o r every
5 ug(a) hence ( ( a , f ( a ) ) , Q > = ( ( a , f ( a ) ) , ( $ , u ) )
uf(a) 5 ( a , $ )
+
ug(a)
=
=
((a,g(a)),O), contradicting ( i ) .
F o r s i m p l i c i t y , assume u = 1 .
Then ( i ) becomes
In p a r t i c u l a r , (a,+)
+
g(a) < t < ( b , $ )
+
f(b)
f o r a l l aEKo, bEK. The f u n c t i o n h on K d e f i n e d by h ( b ) = t - ( b , + ) now h a s the desired properties. QED
Let K b e a compact c o n v e x s e t i n a l o c a l l y
(48.3) Corollary.
convex s p a c e .
Then f o r a f u n c t i o n f o n K , t h e f o l l o w i n g a r e
equivalent:
'1
f i s t h e p o i n t w i s e supremum o f a s e t A o f c o n t i n u o u s
a f f i n e f u n c t i o n s on K ; f i s a lowersemicontinuous convex f u n c t i o n .
2'
Assume 1' h o l d s .
P roof. -
Then f i s c l e a r l y l o w e r s e m i -
c o n t i n u o u s ; w e show i t i s c o n v e x . and b i n K , X and show f ( c ) Kg(b)
5
Xf(a)
5 Xf(a)
+
Suppose c
K
non-negative, and X +
+
Kf(b).
K
Xa
= =
+
Kb, w i t h a
We h a v e t o
1.
F o r e v e r y g 6 A , g ( c ) = Xg(a)
K f ( b ) ; h e n c e SupgEAg(C)
5 lf(a)
+
Kf(b).
+
S u b s p a c e s o f C"(X)
241
S i n c e t h e l e f t s i d e i s f ( c ) , we are through. Now as s um e 2'
Consider anEK
holds.
a n d 1 < f ( a o ) ; w e show
t h e r e e x i s t s a c o n t i n u o u s a f f i n e f u n c t i o n h on K s u c h t h a t h ( a ) < f ( a ) f o r a l l aEK a n d h ( a o ) > 1. t h e p r e s e n t K , KO c o n s i s t o f t h e p o i n t a
I n ( 4 8 . 2 ) , l e t K be 0'
f be t h e given f ,
a nd g b e t h e f u n c t i o n on K O d e f i n e d by g ( a o )
=
1.
Then t h e
conditions there are s a t i s f i e d , so the h given there i s the d e s i r e d one. QED
Remark.
The a b o v e o f c o u r s e h o l d s w i t h "supremum"
p l a c e d b y " inf i m um " ,
" convex" b y " c o n c a v e " ,
re-
and "lowersemi-
c o n t i n u o u s " by " u p p e r s e m i c o n t i n u o u s " .
t u r n t o C'l(X).
We
The f o l l o w i n g i s e a s i l y d e r i v e d f r o m
( 4 8 . 3) ( a n d ( 3 8 . 2 ) ) .
For f E C " ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
( 4 8 . 4 ) Theorem. lo
f EC ( X ) R ;
2'
f i s v a g u e l y l o w e r s e m i c o n t i n u o u s on K ( C ' (XI).
We w i l l n e e d t h e f o l l o w i n g s p e c i a l c a s e o f t h e i n s e r t i o n
theorem o f D.A. Edwards [ 1 5 ] .
( 4 8 . 5 ) Theorem. -___F
(Edwards).
We u s e h i s p r o o f .
F o r e v e r y p a i r U E C ( X ) ~ ,R€C(X)
R
242
Chapter 9
such t h a t u < R , t h e r e e x i s t s fEC(X) s u c h t h a t u < f < k.
Proof.
We c o n s i d e r o n l y t h e v a g u e t o p o l o g y on K(C'(X)),
w e w i l l o m i t t h e m o d i f i e r "vague". K(C'(X))
and
so
A l s o we w i l l w r i t e K f o r
f o r ll(X).
I t s u f f i c e s t o e s t a b l i s h the following:
( I ) T h e r e e x i s t s a s e q u e n c e {f,}
(n
=
0,1,2,...) i n C(X) s u c h
that
u - 2-nn
-
f n -< R
+
z-"n
(n
=
0,1,2;.*)
(n
=
1,2,...).
and < fn f n - 1 - 2-"n -
5 fn-l
+ z-"n
Let u s show f i r s t t h a t t h e t h e o r e m f o l l o w s from ( I ) .
t h e s e c o n d s e t o f i n e q u a l i t i e s , t h e s e q u e n c e {€,I Cauchy, h e n c e norm c o n v e r g e s t o some f € C ( X ) .
By
i s norm
T h e n , by t h e
f i r s t set of i n e q u a l i t i e s ,
u - 2-nn < f < R
+
f o r a l l n.
I t follows u < f < R.
We p r o c e e d t o e s t a b l i s h ( I ) , o r r a t h e r t h e s t r o n g e r property:
We w i l l c h o o s e f o t o s a t i s f y p r o p e r t y ( i i ) b e l o w , a n d t h e
r e m a i n i n g f ' s by i n d u c t i o n t o s a t i s f y ( 1 1 ) . n
A c t u a l l y , we w i l l
Subspaces of C”(X) only derive f1 from f O . same
243
‘The derivation of fn from fn-l is the
.
Note first that, by ( 4 8 . 4 ) , for every
ic
> 0, u
uppersemicontinuous affine function on K and R
f
-
K is I ~ an
Kn is a lower-
semicontinuous one, and that
Set
K
=
foEC(X)
1 and a p p l y (48.2) with K O = K (also (38.2)).
We obtain
such that
We proceed to derive fl.
Proof of (iii):
In effect, by (ii), ( f o Since f 0 - (u -
n)
-
(u - ll) ,p) > 0 for all p E K . .
is an ilsc element, it is lowersemicontinuous
244
Chapter 9
on K.
(fO (U
-
-
But K is compact, so there exists 0
-
Since
for all p E K .
x
< 1
such that
I t follows that f o -
An. k - u >
0, we also have R - ( u
-
It)
2 n
Writ-
> XI. -
ing these two inequalities in the form -1 ( u - z n) + xn < fo + 2-'n, -1 < a + z-ln, ( u - 2 n) + An we obtain the first inequality in ( * ) . Again by (ii), ( ( a .
1) - fO,p) > 0 for all p E K .
+
(a
+
f0 is again lowersemicontinuous on K , so there exists 0 < such that ( (a.
(a
+
lL)
-
+
nj) - fO,p) >
for a l l p E K .
ll) < 1 -
It follows that
This gives us the first of the following;
f0 2 A l l .
the second is trivial.
xn
(fO
-
2-ln)
(fO
-
2 - l +~ I n < f0
+
R(uVf).
Another, useful, corollary:
(49.7)
fAg = 0 implies R(f)Au(g)
=
0.
Of the equalities and inequalities obtained so f a r , the binomial ones can be sharpened when one of the elements lies in C ( X ) .
252
Chapter 1 0
I f g € C ( X j , t h e n f o r every fEC"(X),
(49.8)
e(f
+
u(f
g ) = E(f)
+
p,
u(f)
+
g.
+ g)
=
T h i s f o l l o w s from ( 4 9 . 1 ) .
Proof. ___
The f i r s t a n d f o u r t h o f t h e s e a r e s p e c i a l c a s e s o f
By a p p l y i n g ( 4 9 . 5 ) a n d ( 4 9 . 3 ) ,
( 4 9 . 4 ) ; we show t h e s e c o n d . together with k(g) L(f)vp
=
=
g = u ( g ) , we h a v e L ( f V g ) < Q(f)Vu(g) =
k(f)vk(g', < a ( f v g ) , which g i v e s u s e q u a l i t y . QE D
S e t t i n g g = 0 i n ( 4 9 . 9 ) , we o b t a i n
(49.10)
(U(f))+
= U(f+)
(E(f>)+
=
Q(f+)
(u(f))-
=
L(f-j
(k(f))-
=
U(f-)
The O p e r a t o r s u a n d P,
253
Whence,
(49.11)
P roof.
u(f+)vu(f-)
u(f)
=
U(f+) - e ( f - ) .
a(f)
=
a(f')
lu(f)l =
ll(f+)
+
a(f-1
= u[f')va(f-).
la(f)j
PJf+)
+
u(f-)
=
+ u(f-)
I
=
=
a(f')vu(f-).
[u(f+)va(f-)]
u ( f + v f - ) = u ( If
h o l d i n g by ( 4 9 . 4 ) . a(f')
=
lu(f) IV l a ( f ) =
u(f-).
-
I),
v
[a(f+)vu(f-)l
t h e second l a s t e q u a l i t y
For t h e i n e q u a l i t y , k ( l f l ) = G(f+ (a(f))-
(g,(f))++
t h e t h i r d term by u ( f + )
+
=
=
la(f)
1,
Q(f-) - a(lf1)
+
f-)
0 and 6 ( f ) = 0 i f and o n l y i f fEC(X).
Also t h a t 6 ( f ) i s a usc element.
From t h e i d e n t i t i e s
k ( - f ) = - u ( f ) and u ( - f ) = - k ( f ) , w e have 6 ( - f ) more
=
6(f).
Even
The O p e r a t o r s u a n d II
257
The v e r i f i c a t i o n i s s t r a i g h t f o r w a r d .
Proof. [u(f)
+
a(g)l
6 ( f ) - 6(g)
- [il(f)
+
=
[u(f) - a ( f ) ] -
u(g)l 5 u(f
+
g) -
[ ~ ( g )- a ( g ) ]
a(f
+
g)
=
6(f
= +
8).
The o t h e r i n e q u a l i t i e s a r e o b t a i n e d i n t h e same way. QED
I n t e r c h a n g i n g f and g , and u s i n g 6 ( - h ) the
-___ Proof.
a(fvg) = u(fvg) - a(fvg)
=
6 ( h ) , we obtain
258
Chapter 10
QED
We s h a r p e n o n e o f t h e i n e q u a l i t i e s i n ( 5 0 . 2 ) .
(50.5)
S(f
+
g)
5
6(f'Jg)
+
6(fAg) < S(f)
S e t t i n g g = 0 , we o b t a i n :
+
6(g).
The O p e r a t o r s u a n d EL
(50.6)
C o r o l l a r y 1.
F o r e v e r y f€C"{X), 6(f)
Setting f
=
259
f+, g
=
=
6(f+)
+
6(f-).
f - , and a p p l y i n g C o r o l l a r y 1, w e
obtain :
(50.7) Corollary 2.
For e v e r y f€C"(X), S(jfl)
C o r o l l a r y 3. (50.8) -
5 6(f).
For e v e r y f € C " . ( X ) , 6(f) < 2u(lfl)
Proof.
Since f + , f - > 0 , we have 6 ( f f ) < u(f+)
and & ( f - ) < u(f-) < u(lf1).
5
u(lf()
Now a p p l y ( 5 0 . 6 ) . QED
( 5 0 . 9 ) I f gEC(X), t h e n f o r e v e r y f € C " ( X ) , S(f
+
g) = S(f).
This i s immediate from (49.8). t h a t f o r e v e r y fEC"(X), 6 ( f ) = s ( l L ( X )
A u s e f u l consequence i s
- f).
Chapter 1 0
260
For a l l f , g E C " ( X ) ,
(50.10)
I)&(f)
- 6 k ) I I 5 211 f
- gll.
Thus t h e o p e r a t i o n & ( - ) i s norm c o n t i n u o u s .
T h i s follows from ( 4 9 . 1 6 .
Under R i e s z homomorphisms, R i e s z s u b s p a c e s show up a s i m a g e s o f R i e s z s u b s p a c e s , and R i e s z i d e a l s a s i n v e r s e images of R i e s z i d e a l s .
I t may b e w o r t h n o t i n g , t h e r e f o r e , t h a t u n d e r
t h e mapping C"(X)---> 6
C"(X),
t h e i n v e r s e images o f R i e s z i d e a l s
a r e Riesz subspaces (6 i s o f course n o t l i n e a r ) :
(50.11) Theorem. -
I f I i s a norm c l o s e d R i e s z i d e a l o f C"(X),
then &-'(I) (i)
i s a n MJl-subspace o f C l ' ( X ) ,
(ii)
contains C(X),
and
( i i i ) i s closed under t h e operations u ( - ) , & ( * ) ,
Proof.
&
(
a
+
.
g ) E I an d , by ( 5 0 . 4 1 ,
Thus & - l ( I ) i s a R i e s z s u b s p a c e .
T h a t i t i s norm
c l o s e d f o l l o w s f r o m t h e norm c o n t i n u i t y o f & ( * )
(50.10).
F i n a l l y , t h a t & - l ( I ) c o n t a i n s 1 f o l l o w s from ( i i ) , w h i c h i s clear.
)
I f s ( f ) E I , t h e n by ( S O . l ) , & ( X f ) E I ; and i f
& ( f ) , 6 ( g ) E I , t h e n , by ( 5 0 . 2 1 , 6 ( f G(fVg)EI.
and
( i i i ) f o l l o w s from t h e e a s i l y v e r i f i e d i n e q u a l i t i e s :
0 < & ( U ( f ) , & ( & ( f ) ) , & ( & ( f5) )s / f ) .
QED
The O p e r a t o r s u a n d R
Kemark. ___
261
( i i ) and ( i i i ) c l e a r l y h o l d even i f I i s n o t
norm c l o s e d . For I a b a n d , w e c a n s a y m o r e :
(50.12)
I f I i s a band o f
Cll(X),
then 6
-1
( I ) i s Dedekind c l o s e d
i n C"(X).
We p r o v e a s t r o n g e r r e s u l t : i f A , B c 6 - ' ( 1 ) , and V A = f
=
A B "modulo I " , t h e n f E A ; ' ( I ) .
A
Precisely,
I f A,B c 6-'(1),
( 5 0 . 1 3 ) Let I b e a band o f C " ( X ] .
5 f 5 B,
A
5
f
5
B,
and (AB - VA)EI, t h e n f E 6 - ' ( 1 ) .
Proof.
We w i l l u s e t h e o b v i o u s
F o r e v e r y kEC"(X), Lemma. -
Now s e t g show ( u ( h )
= VA
and h
= AB.
the following a r e equivalent:
By h y p o t h e s i s
(h - g ) E I .
k(g))EI; s i n c e k(g) < f < u(h), it w i l l follow
-
u ( f ) - p,(f)CI, which i s t h e d e s i r e d r e s u l t . Fix v E I
1
,v
0.
Since 6-'(I)
i s a s u b l a t t i c e , we can
assume A i s f i l t e r i n g u p w a r d s a n d B downwards, h e n c e w e c a n r e p l a c e them by n e t s { g a l a n d { h g } s u c h t h a t g U f g and h U + h .
We
Chapter 10
262
Then { k ( g ) } i s a l s o a n a s c e n d i n g n e t a n d { u ( h ) } a d e s c e n d i n g
8
c1
net, so k(gcl)+k < k(g) and uChS)+u > u(h1. A p p l y i n g t h e Lemma a n d t h e o r d e r c o n t i n u i t y o f v , we h a v e
(!L,v>
=
lima(a(ga),u>
=
lima
= (g,v>
-
and. s i m i l a r l y ,
(u,v>
=
(h,v>
*
Thus
QED
As a n a p p l i c a t i o n o f t h e o p e r a t i o n 6('),
we present a
t h e o r e m o f K r i p k e a n d Holmes [ 3 0 ] ( t h e y d i d i t i n t h e c o n t e x t of ordinary function theoryJ.
(50.14)
F o r e a c h f E C " ( X ) , t h e d i s t a n c e o f f f r o m C(X)
(1/2)11 6 ( f )
11,
Proof. -__
and t h i s d i s t a n c e i s a t t a i n e d .
For e v e r y g E C ( X ) , 6 ( g ) = 0 , hence, by ( 5 0 . 1 0 ) ,
/ I f - gll > (1/2)1[ ~ ( f ) l [ . We show t h e r e e x i s t s gEC(X)
11 f
is
- gjl < (1/2)11 6 ( f ) l l .
D e n o t e (1/2)\1 6 ( f )
11
by r .
such t h a t
Then
The O p e r a t o r s u a n d i! 6(f)
0.
f I , i t f o l l o w s from t h e Lemma i n ( 5 1 . 3 ) t h a t f
V{hEH 1 0 < h < f}.
Since
=
T h i s i s f i l t e r i n g upward, h e n c e , by
D i n i ' s t h e o r e m ( 3 8 . 3 1 , f i s i n t h e norm c l o s u r e o f H , h e n c e i n H. QED
Some a d d i t i o n a l c h a r a c t e r i z a t i o n s o f an R-band:
(51.6) Let I b e a band o f C ' l ( X ) ,
and H = C ( X )
n
I.
J i t s d u a l band i n C l ( X ) ,
The f o l l o w i n g a r e e q u i v a l e n t :
The O p e r a t o r s
and R
11
1'
I i s an R - b a n d ;
2'
I i s t h e vague c l o s u r e o f H ;
3'
1 1 i s s e p a r a t i n g on J ;
4O
I
=
267
Ill ;
J.
5'
I
6'
I
i s vaguely closed;
1
= G1
f o r some v a g u e l y c l o s e d b a n d
By ( 5 1 . 5 ) a n d ( 2 6 . 2 ) , 2' -__f'roof. ( 5 1 . 3 ) , hence t o lo.
S u p p o s e 2'
(1IJ.)'
=
I
(IJ.)'
1
.
=
I.
Thus 4'
( H ' )
=
S u p p o s e 5'
=
holds.
Conversely,
=
1
5'
(GL)J.
i f 4'
T h i s s a y s t h a t 2'
(HL)'.
holds.
holds.
then I
i s e q u i v a l e n t t o 3'.
I t f o l l o w s from ( 1 0 . 1 5 )
=
(I
1
holds then I
4'
holds.
iJ. n c ( x )
o f c o u r s e i m p l i e s 6'. =
and (26.2) t h a t =
i m p l i e s 5'.
T h e n , i n t h e d u a l i t y b e t w e e n C(X) and
C ~ ( X ) , ( ( I ~ =) ~I )~~ . But ( I J . )J .
So 4'
J ' , 2'
in
i s e q u i v a l e n t t o 3'
T h i n k i n g o f i t a s a s u b s e t o f C(X), t h i s can b e
w r i t t e n (HI)' tl'
=
of Cl(X).
Then, t h i n k i n g o f H as a s u b s e t o f C " ( X ) ,
holds.
I.
=
Since I
C,
G,
s o 5'
=
Finally,
I
n
c(x) = H.
i f 6'
holds,
holds. QE D
A b a n d I o f C"(X) w i l l b e c a l l e d a u - b a n d i f n ( X ) , usc element.
I f two c o m p o n e n t s e , d o f E(X) s a t i s f y e
+
is a d =
lt(X), t h e n o n e i s a u s c e l e m e n t i f a n d o n l y i f t h e o t h e r i s a n
~ s ecl e m e n t .
I t follows t h a t f o r a b a n d I o f C"(X),
u-band ( r e s p . an k-band)
a u-band).
i f a n d o n l y i f I d i s an k - b a n d ( r e s p .
And i t f o l l o w s f r o m t h i s , i n t u r n , t h a t t h e
c h a r a c t e r i z a t i o n s o f k-bands have "dual"
u- b a n d s
.
I is a
characterizations f o r
Chapter 1 0
268
Whereas f o r an k - b a n d I , C(X)
I plays t h e central r o l e ,
f o r a u - b a n d I , i t i s C(X), t h a t p l a y s t h e c e n t r a l r o l e . can s a y t h i s a n o t h e r way. w i t h C(X)/(C(X)
n
Id).
We
Note t h a t C(X)I c a n b e i d e n t i f i e d
T h u s , where t h e r e i s a o n e - o n e c o r r e s -
pondence b e t w e e n t h e k - b a n d s o f C1'(X) and t h e norm c l o s e d R i e s z i d e a l s o f C(X), we w i l l s e e t h a t t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e u - b a n d s o f C"(X)
and t h e q u o t i e n t
s p a c e s o f C(X) ( w i t h r e s p e c t t o norm c l o s e d R i e s z i d e a l s ) . One c h a r a c t e r i z a t i o n o f an k - b a n d i s t h a t i t i s t h e s m a l l e s t band o f Cl'(X) c o n t a i n i n g some R i e s z i d e a l o f C(X). T h a t i s t h e c o n t e n t o f 2'
i n (51.3).
Correspondingly a u-band
can b e c h a r a c t e r i z e d a s t h e l a r g e s t band o f C'l(X) " c o n t a i n i n g " some q u o t i e n t s p a c e o f C ( X ) - t h e word " c o n t a i n i n g " b e i n g appropriately defined.
(51.7)
T h a t i s t h e c o n t e n t o f '3
below.
L e t I b e a band o f C'l(X) and J i t s d u a l band i n C ' ( X ) .
The f o l l o w i n g a r e e q u i v a l e n t : 1'
I i s a u-band;
2'
J i s vaguely closed;
3'
For e v e r y band I1 o f C"(X), i f (i)
I1
3
I , and
o n t o C(X), i s a b i I1 j e c t i o n ( h e n c e a n M I - i s o m o r p h i s m ) , t h e n I1 = I . ( i i ) t h e p r o j e c t i o n o f C(X)
P roof.
The e q u i v a l e n c e o f 1' and 2'
t h a t o f l o and 5' above b a n d ) .
i n (51.6)
i s a restatement of
( w i t h I t h e r e r e p l a c e d by I d , I t h e
We p r o v e t h e e q u i v a l e n c e o f 1' a n d 3'.
Suppose
The O p e r a t o r s u and
269
,?.,
we h a v e two b a n d s 1,11 w i t h I c 11, s o t h a t ( I 1 ) always have ((C(X), ) I 1 C(X),)
a n d C(X)
n
=
C(X),
( t h a t i s , C(X)
( I , ) d c C(X)
n
o n t o C(X),
w e show ( I l l d
i s o n e - o n e (so C(X)
n
I1 (I,)d
=
h o l d s a n d I1 s a t i s f i e s t h e h y p o t h e s e s o f
=
I d , whence I 1 = I .
h e n c e , by ( 5 1 . 3 ) ,
(Il)d
Conversely, suppose 3
=
n
C(X)
C(X)
o n t o C(X),
=
C(X)
n
Id c
h o l d s ; w e show I i s a u - b a n d .
n
To
t h e band g e n e r a t e d by
d (so i t s d i s j o i n t i s I1). I
(Il)d,
By ( * ) , C(X)
Id.
f i t o u r n o t a t i o n , d e n o t e by
0
onto
0
0
C(X)
We
Id'
Now s u p p o s e 1
(Il)d,
.
And i t i s c l e a r t h a t
Id.
and C(X), a r e M a - i s o m o r p h i c ) i f a n d o n l y i f C(X)
3';
d
projects
I1
n
c I
I1
( * ) t h e p r o j e c t i o n o f C(X)
C(XI
d
By t h e v e r y d e f i n i t i o n o f
I d , s o , by ( * ) , t h e p r o j e c t i o n o f
i s one-one.
I t f o l l o w s f r o m 3'
that I
=
I1.
I1 Sincc (I,)d
i s a n ,?.,-band, I l i s a u - b a n d , s o we a r e t h r o u g h .
QED
We g i v e c h a r a c t e r i z a t i o n s o f k - b a n d s a n d u - b a n d s i n terms
o f t h e i r d u a l b a n d s i n C'(X).
(51.8)
Let I b e a b a n d o f C"(X)
The f o l l o w i n g a r e e q u i v a l e n t : 1'
I i s a n R-band;
2'
J = (c(x)
I n such c a s e , I
=
n 11'. (C(X)
n
I)".
a n d J i t s d u a l b a n d i n C'(X).
C h a p t e r 10
270
___ Proof.
Set H
=
C(X)
n
( I L ) d , i t f o l l o w s f r o m '4
0
I.
Suppose 1
i n ( 5 1 . 6 ) t h a t .J
holds.
S i n c e ,J
CI(X)/HL
=
=
=
H'.
C o n v e r s e l y , i f J = H I , t h e n fl i s s e p a r a t i n g on LJ, h e n c e , b y 3'
i n ( 5 1 . 6 ) , I i s an R - b a n d . QE D
Remark. -
The a b o v e i s a c t u a l l y ( 3 6 . 7 ) r e s t a t e d .
a n d J i t s d u a l b a n d i n C'CX).
Let I b e a band o f C " ( X )
(51.9)
The f o l l o w i n g a r e e q u i v a l e n t :
'1
I i s a u-band;
2'
J
=
(C(X)I)'.
In such case, I
Proof.
=
(C(X)I)I'.
S e t II
I _ _
(C(X)I)l t o <J
=
HL.
n
I
d
.
Then C(X),
=
Thus we n e e d o n l y show t h a t 1'
Since J
HL.
=
C(X)
=
=
d [I )
I'
t h e i d e n t i t y ,J
=
C[X)/H, h e n c e
is equivalent IIL
is equivalent
t o I d b e i n g an k - b a n d ( 5 1 . 6 ) , s o w e a r e t h r o u g h .
QED
Given a b a n d I o f C'l(X), l e t <J b e i t s d u a l b a n d i n C ' ( X ) , and Q
=
J
n
X.
In g e n e r a l , I cannot be r e c a p t u r e d from
i n d e e d , Q may e v e n b y e m p t y .
Q
-
I f I i s a u - b a n d o r an R - b a n d ,
c a n b e r e c a p t u r e d f r o m Q: however, i t -
(51.10).
I f I i s a u - b a n d , w i t h d u a l b a n d J , t h e n <J
n
X is a
The O p e r a t o r s u a n d R
c l o s e d s e t Z o f X , C(X),
=
J
C(Z),
271
C ' ( Z ) , and I =
=
C'l(Z).
T h i s i s e a s i l y v e r i f i e d from t h e m a t e r i a l i n t h e p r e s e n t section (cf.
(51.11)
(36. 7 ) ) .
I f I i s an f - b a n d , w i t h d u a l b a n d . J , t h e n J
I
o p e n s e t W o f X a n d C(X)
n
X i s an
Cw(W).
=
This also is e a s i l y verified.
-__ Remark.
I n § 5 6 , we g i v e w h a t i s p r o b a b l y t h e l a r g e s t
f a m i l y o f bands1 o f C"(X) r e c a p t u r e d from J
w i t h t h e p r o p e r t y t h a t each I can be
X (J t h e b a n d o f
C l ( X )
dual t o I ) .
9 52. A p p l i c a t i o n s t o g e n e r a l bands
Given a band I o f C " ( X ) ,
t h e n , i n g e n e r a l , Il(X),
n e i t h e r an Rsc n o r u s c e l e m e n t . g e n e r a t e d by k(Il(X),) k-band i n I .
is
IIowever, t h e R i e s z i d e a l
i s a n R-band,
and i s c l e a r l y t h e l a r g e s t
And t h e R i e s z i d e a l g e n e r a t e d b y u ( l l ( X ) , )
u-band, and i s c l e a r l y t h e smallest u-band c o n t a i n i n g I .
is a
By
a n a b u s e o f n o t a t i o n , we w i l l d e n o t e t h e f i r s t b a n d b y R ( 1 ) and t h e s e c o n d by u ( 1 ) . From t h e d e c o m p o s i t i o n
Cll(X)
= 1 3 Id,
w e have
272
Chapter 1 0
Ctt(X)
=
(Q(1))
u(1) 3 a(Id). =
u(1
d
O t h e r w i s e s t a t e d , ( ~ ( 1 ) =) ~k ( I d )
(and
1).
We h a v e i m m e d i a t e l y :
( 5 2 . 1 ) For e v e r y b a n d I o f C " ( X ) , a ( I )
i s t h e b a n d g e n e r a t e d by
~ ( xn ) I.
For e v e r y band I o f C t l ( X ) , ( a ( I ) ) L i s t h e
(52.2) Corollary.
vague c l o s u r e o f I
Remark,
L
.
C l e a r l y C(X)
n
k(1)
=
C(X)
s m a l l e s t band f o r which t h i s i s t r u e .
n
I
and k ( I ) i s t h e
I t f o l l o w s a l l t h e bands
b e t w e e n I a n d ~ ( 1 ) h a v e t h e same i n t e r s e c t i o n w i t h C(X), and ~ ( 1 )i s t h e s m a l l e s t b a n d f o r w h i c h t h i s i s t r u e .
For t h e bands between I and u ( I ) , t h e r e i s a c o r r e s p o n d i n g statement: projection
t h e y a l l h a v e t h e "same"
image o f C(X) u n d e r b a n d
- t h e word "same" now m e a n i n g " M I - i s o m o r p h i c " .
We
s t a t e t h i s precisely.
(52.3)
F o r e v e r y b a n d I o f C"(X),the p r o j e c t i o n o f u ( 1 ) o n t o I m p s
u ( I)
M I - i s o m o r p h i c a l l y o n t o C(X),.
Moreover, u ( I ) i s t h e
l a r g e s t band f o r which t h i s i s t r u e .
T h i s f o l l o w s f r o m t h e a b o v e Remark a n d ( * ) i n t h e p r o o f
The O p e r a t o r s u a n d R
273
of (51.7).
And from ( 5 2 . 2 ) ,
w e have:
( 5 2 . 4 ) Let J b e t h e b a n d d u a l t o t h e b a n d I o f C"(X).
Then
t h e vague c l o s u r e o f 3 i s t h e band d u a l t o u ( 1 ) .
We c a n now d e s c r i b e (C(X) a r b i t r a r y b a n d I o f C"(X).
n
I ) ' and (C(X),)'
From ( 5 1 . 8 ) a n d ( 5 1 . 9 ) , we h a v e
t h a t (C(X)
n
(C(X)I)'
<J i f a n d o n l y i f I i s a u - b a n d .
=
I)'
=
f o r an
J i f a n d o n l y i f I i s an R - b a n d , a n d
From t h e f i r s t o f t h e s e , we h a v e i m m e d i a t e l y :
( 5 2 . 5 ) F o r e v e r y b a n d I o f C"(X), t o a(11,
(c(x) n
SO
I ) I I
=
(C(X)
n
I ) ' i s t h e band dual
~ ( 1 ) .
The c o r r e s p o n d i n g s t a t e m e n t f o r C(X),
i s less d i r e c t .
( 5 2 . 6 ) L e t I be a b a n d o f C''(X) a n d J i t s d u a l b a n d i n C ' ( X ) .
Then ( C ( X ) , ) '
so (C(X),)"
can be i d e n t i f i e d w i t h t h e vague c l o s u r e o f J.,
can be i d e n t i f i e d w i t h u ( 1 ) .
Denote t h e v a g u e c l o s u r e o f J b y J1. t h e b i l i n e a r form
( ( . , - ) ) on C(X),
x
We h a v e t o d e f i n e
J1 g i v i n g t h e d u a l i t y
2 74
Chapter 1 0
Note f i r s t t h a t i f I i s a u - b a n d , s o t h a t .J i t s c l f i s v a g u e l y c l o s e d , t h e n f o r fCC(X), and l i E t J , ( ( f , ] ~ ) ) = b e i n g t h e c a n o n i c a l b i l i n e a r form on C " ( X ) c a u s e I and .J a r e d u a l b a n d s .
(f,Ll),
XC1(X).
the l a t t e r This be-
Now l e t I b e a g e n e r a l b a n d , and
Denote t h e r e s t r i c p r o h , u ( I ) the p r o j e c t i o n of u(1) onto I. tion of proj s i m p l y by p . So p i s an M l l I , u ( I ) to c ( X )U ( I ) i s o m o r p h i s m o f C(X) o n t o C(X),. Then, f o r f E C ( X ) I and Ll(I)
uEJ1,
the desired valuc ((f,ii)) ((f,lJ))
i s g i v e n by
(P-'(f),lJ)
=
-
And t h e i m b e d d i n g o f f i n t o t h e b i d u a l o f C(X), i s g i v e n by
f
L-, p-l
(f).
I n s t u d y i n g a p a i r o f d u a l b a n d s ( I , J ) , t h e r e i s o f t e n no l o s s i n r e p l a c i n g C'(X) b y t h e v a g u e c l o s u r e ,JI o f <J a n d
( t h e r e f o r e ) C''(X) b y u ( 1 ) . ourselves t o t h e support
O t h e r w i s e s t a t e d , we c a n c o n f i n e
.J1n X
o f J i n s t e a d o f a l l o f X.
We
will do t h i s i n p r a c t i c e b y s i m p l y a s s u m i n g t h a t J i s v a g u e l y d e n s e i n C'(X)
- e q u i v a l e n t l y , t h a t u(1) = C"(X).
553. The Isomorphism theorem
We pointed o u t in 540 that the projection of
Clt(X)u
maps C(X)
bin-isomorphically onto C ( X )
0.
Cl'[X)
onto
. We show now
that, in fact:
(53.11 (Isomorphism theorem). C"(X)u
maps U(X)
Proof. on U(X).
The projection o f C " ( X )
onto
MI-isomorphically onto U(X)a.
We need o n l y show that the projection is one-one
And for this, it is enough to show that for a l l
f,gEU(X), fu
5 g, implies f
-___ Lemma 1.
0 ; we show p i s n o t
Now i n t h e c l a s s i c a l example a b o v e ,
X c o u l d have been any compact s p a c e and p any s t r i c t l y p o s i -
t i v e element o f C1(X)d
.
So we a r e t h r o u g h .
QED
Remark 1.
I t i s n o t d i f f i c u l t t o show t h a t
all
the order
c o n t i n u o u s l i n e a r f u n c t i o n a l on U(X), n o t o n l y t h o s e i n C"(X), l i e i n C ' ( X ) a - o t h e r w i s e s t a t e d , U(X)' Remark 2 .
= C'(X)a.
( 5 4 . 2 3 ) i s a s p e c i a l c a s e o f a g e n e r a l theorem
by M a s t e r s o n [ 5 2 ] .
355. The u n i v e r s a l l y m e a s u r a b l e s u b s e t s o f X
L e t ( 1 , J ) be a p a i r o f d u a l b a n d s . vague c l o s u r e o f J by J1, call J
n
X t h e s e a t of J
be no c o n f u s i o n .
(u(I),J1)
Then, d e n o t i n g t h e
a r e dual bands.
and a l s o t h e s e a t o f L .
Note t h a t J
We w i l l There can
X = { x E X [ . ( f , x ) # 0 f o r some
f E I } ; s o i t c a n be d e f i n e d i n d i f f e r e n t l y u s i n g e i t h e r J o r I . S i m i l a r l y , t h e support of J , be c a l l e d t h e s u p p o r t o f I .
Jln
X,
( c f . 536) w i l l a l s o
Thus t h e s u p p o r t o f J i s s i m p l y
t h e s e a t o f J1 - e q u i v a l e n t l y , t h e s u p p o r t o f I i s s i m p l y t h e s e a t of u ( 1 ) .
C h a p t e r 11
290
We e x t e n d t h e a b o v e t o a r b i t r a r y s u b s e t s . A o f C 1 ( X ) , l e t $J b e t h e b a n d g e n e r a t e d b y A .
Given a s u b s e t Then by t h e --s e a t
w e w i l l mean t h e s e a t o f J , a n d s i m i l a r l y f o r t h e s u p p o r t
__ of A
o f A.
I n p a r t i c u l a r , we c a n t a l k a b o u t t h e s e a t a n d s u p p o r t o f
a s i n g l e element
of Cl(X).
Similarly
f o r t h e s e a t and s u p -
p o r t o f a s u b s e t o f C'l(X), a n d i n p a r t i c u l a r o f a s i n g l e e l e men t
. F o r a band J o f C l ( X ) , w e c l e a r l y h a v e J
.
Note a l s o t h a t f o r a
=
JU
n
X.
t h e s e a t of I i s t h e s e a t
E q u i v a l e n t l y , f o r a band I o f C ' ( X ) , of Ia
.OX
R i e s z i d e a l G o f C f ( X ) , i f we
d e n o t e i t s o r d e r c l o s u r e b y .J, t h e n J
n
X
=
G
X.
The s u p p o r t o f a s e t ( i n e i t h e r Cl(X) o r C"(X))
is, i n
g e n e r a l , n o t t h e c l o s u r e o f i t s s e a t : t h e s e a t of C1(X)d i s ~
always empty, b u t i f X i s d e n s e - i n - i t s e l f , t h e n t h e s u p p o r t o f C1(X)d i s a l l o f X.
We w i l l s i n g l e o u t b e l o w a f a m i l y o f b a n d s
o f C"(X) w i t h t h e p r o p e r t y t h a t t h e s u p p o r t o f e a c h i s t h e closure of its seat.
D i s t i n c t b a n d s o f C l ( X ) c a n h a v e t h e same s e a t , a n d s i m i l a r l y f o r d i s t i n c t b a n d s o f C"(X). band o f Cl(X) o r o f C"(X)
Thus, i n g e n e r a l , a
c a n n o t be r e c a p t u r e d from i t s s e a t .
I f w e know t h a t a b a n d J o f C 1 ( X ) i s v a g u e l y c l o s e d , t h e n w e
can r e c a p t u r e it from i t s s e a t Z u s u a l , ZL = Z'-in-C(X)
(so
know Jd i s v a g u e l y c l o s e d ,
J
= J
n
= C1(Z)).
X ; J = (Z')',
I t follows t h a t i f we
we c a n a l s o r e c a p t u r e J f r o m i t s
s e a t (which i n t h i s c a s e i s an open s e t ) . know t h a t a b a n d I o f C"(X)
where, a s
E q u i v a l e n t l y , i f we
i s a u - b a n d - o r a n R-band - t h e n
we can r e c a p t u r e i t f r o m i t s s e a t .
We w i l l d e s c r i b e b e l n w w h a t
i s p r o b a b l y t h e l a r g e s t f a m i l y o f b a n d s o f C"(X) w h i c h c a n b e
291
r e c a p t u r e d from t h e i r s e a t s .
We now s i n g l e o u t a p a r t i c u l a r f a m i l y o f s u b s e t s o f X , "universally measureable ones.
I n t h i s 5 and t h e f o l l o w i n g o n e ,
w i l l be d e n o t e d s i m p l y by
z(ll(X))
ways d e n o t e a n e l e m e n t o f t . either C"(X) For
o r C'(X))
e € 6 ,C(e)
the
t,
and t h e l e t t e r e w i l l a l -
Also t h e s e a t o f a s e t A ( i n
w i l l b e d e n o t e d b y Q(A).
is c l e a r l y the set { x E X I(e,x)
1).
=
I t is
e a s i l y v e r i f i e d t h a t t h e m a p p i n g e +-> Q(e) ( t h a t i s , t h e r e s t r i c t i o n of Q(.)
6
t o g ) i s a B o o l e a n a l g e b r a homomorphism o f
o n t o t h e Boolean a l g e b r a o f a l l s u b s e t s of X.
is not one-one. this. write
However i t i s one-one
Note f i r s t t h a t
6
n
C"(X),
=
&,
OT,
=
6 n
In general, it
we record
C"(X),;
(n(X),);
we w i l l
6,.
( 5 5 . 1 ) The r e s t r i c t i o n o f t h e o p e r a t o r Q ( * ) t o z , hence i s a Boolean a l g e b r a isomorphism o f 6 ,
is one-one,
w i t h t h e Boolean
a l g e b r a of a l l s u b s e t s o f X.
F o r e a c h s u b s e t (! o f X , w e w i l l c a l l t h e u n i q u e t h a t Q(e)
=
eE2,
such
Q t h e c h a r a c t e r i s t i c e l e m e n t of Q i n C 1 ' ( X ) a . These
-
two B o o l e a n a l g e b r a s , t h a t o f a l l s u b s e t s o f X a n d t h a t o f t h e i r c h a r a c t e r i s t i c e l e m e n t s i n C 1 l ( X ) a a r e o b j e c t s commonly dealt with in analysis. p a i r o f Boolean a l g e b r a s :
We a r e more i n t e r e s t e d i n a d i f f e r e n t
292
C h a p t e r 11
n
( 5 5 . 2 ) The r e s t r i c t i o n o f t h e o p e r a t o r Q ( . ) t o
U(X)
is also
o n e - o n e ( b u t n o t o n t o ) , hence i s a Boolean a l g e b r a isomorphism w i t h a Boolean s u b a l g e b r a o f t h a t of a l l t h e s u b s e t s o f X .
Th s f o l l o w s from Q(e)
=
Q ( e a ) , t h e Isomorphism t h e o r e m ,
and ( 5 5 1 ) .
We w i l l c a l l t h e s e t s CQ(e) IeE
U(X) 1 t h e u n i v e r s a l l y
8
m easurable s u b s e t s o f X , and f o r e v e r y s u c h Q c a l l e t h e c h a r a c t e r i s t i c element o f Q .
=
Q ( e ) , we w i l l
We emphasize t h a t t h i s
t e r m , " t h e c h a r a c t e r i s t i c e l e m e n t o f Q" w i l l o n l y be used when we know t h a t Q i s a u n i v e r s a l l y m e a s u r a b l e s e t , and t h a t t h e n t h e term r e f e r s t o a unique element o f
u(x).
Given Q c X , i f
we d o n ' t know t h a t i t i s u n i v e r s a l l y m e a s u r a b l e ( o r know t h a t i t i s n o t ) , t h e n we can o n l y r e f e r t o i t s " c h a r a c t e r i s t i c e l e -
ment i n C 1 r ( X ) a r r .
Even f o r a u n i v e r s a l l y m e a s u r a b l e s e t , we c a n
of c o u r s e s t i l l r e f e r t o i t s c h a r a c t e r i s t i c e l e m e n t i n C 1 ' ( X ) a . I n g e n e r a l , t h i s w i l l be d i s t i n c t from i t s c h a r a c t e r i s t i c e l e ment, a l t h o u g h , i n some c a s e s , t h e two w i l l c o i n c i d e ( f o r example, when Q c o n s i s t s o f a s i n g l e e l e m e n t x ) . Some immed a t e p r o p e r t i e s o f t h e f a m i l y o f u n i v e r s a l l y measurable s e t s
I t c o u l d e q u a l l y w e l l have been d e f i n e d a s
t h e family of s e a t s of elements o f lJ(X),
{Q(f) l f C U ( X ) I .
c l o s e d u n d e r suprema and i n f i m a o f c o u n t a b l e s e t s . e of
8 0
U(X)
I t is
An e l e m e n t
i s a u s c e l e m e n t ( r e s p . an llsc e l e m e n t ) i f and
o n l y i f Q(e) i s a c l o s e d s e t ( r e s p . an open s e t ) . I n p a r t i c u l a r eE8
,nU ( X )
over,
l i e s i n C(X)
i f and o n l y i f Q(e) i s c l o p e n .
More-
293
(55.3)
F o r e v e r y eE
8 n
(i) Q(u(e))=
U(X),
91e),
( i i ) Qlk(e)) = i n t e r i o r Q(e), ( i i i ) Q(s(e)) = frontier Q(e).
T h i s f o l l o w s from (54.7) and o r d i n a r y f u n c t i o n t h e o r y .
We s i n g l e o u t a n o t h e r f a m i l y o f b a n d s o f C"(X). c l u d e s t h e R-bands and t h e u - b a n d s . c a l l e d a U-band i f l l ( X ) I E U(X).
a l s o a U-band.
n 1~1.
IU(X
It is clear that collection
In particular,
( 5 5 . 4 ) F o r a b a n d I o f C"(X) 1'
I i s a U-band;
2O
U(X), c U(X);
(55.5)
=
=
n(X)
-
2 n
Jl(X),,
If follows e a s i l y t h a t u(x)
t h i s h o l d s , t h e n IL(X),€U(X),
30 u ( x )
I
[u(x)
Corollary.
n
I]
u(x),
=
u
X)
n
U(X).
hence I d i s
[u(x)
=
I.
s o I i s a U-band.
,
w i l l be
A b a n d I o f C"(X)
of U-bands i s a Boolean a l g e b r a i s o m o r p h i c t o
F o r e v e r y U-band I , n(X)
I t in-
n
11
3
Moreover, i f Thus
the following are equivalent:
B [u(x)
n rdl.
The m a p p i n g I t->U(X)
n
I i s an isomorph-
i s m o f t h e Boolean a l g e b r a ' o f U-bands o n t o t h a t o f t h e p r o j e c t i o n bands o f U ( X ) .
C h a p t e r 11
294
I t i s c l e a r t h a t t h e mapping I
6
-
2
Q(1)
i s an i s o m o r p h i s m
o f t h e B o o l e a n a l g e b r a o f U-bands o n t o t h a t o f t h e u n i v e r s a l l y measurable s u b s e t s of X.
Thus a U-band i s d e t e r m i n e d by i t s
M o r e o v e r , from ( 5 5 . 3 ) , t h e s u p p o r t o f a U-band i s t h e
seat.
closure of i t s s e a t .
A s we s t a t e d e a r l i e r , t h e U-bands may
c o n s t i t u t e t h e l a r g e s t f a m i l y o f b a n d s i n C'l(X) w i t h t h e s e two p r o p e r t i e s .
5 5 6 . The Nakano c o m p l e t e n e s s t h e o r e m
We g i v e t h e c l a s s i c a l c h a r a c t e r i z a t i o n o f Dedekind comp l e t e n e s s f o r C(X) i n t e r m s o f t h e t o p o l o g y o f X ( 5 6 . 3 ) .
( 5 6 . 1 ) The f o l l o w i n g a r e e q u i v a l e n t :
'1
C(X) i s Dedekind c o m p l e t e ;
2'
f o r every t s c element t , U ( L ) E C ( X ) ;
3'
f o r every usc element u , L ( U ) E C ( X ) .
Proof.
Assume C(X) i s Dedekind c o m p l e t e a n d c o n s i d e r a n
ksc element il. show f
=
u(Q).
hence f > u(a). {hEC(X)lh > t}.
1'
i m p l i e s 2'.
Let A = { g E C ( X ) ( g < a } and f = V A - i n - C ( X ) ; we f
2 u(a):
in effect, f > A, hence f > VA = t,
For t h e o p p o s i t e i n e q u a l i t y , l e t B = Then B > A , s o f < B , s o f < A B = u ( ~ ) . Thus C o n v e r s e l y , assume 2' h o l d s , a n d c o n s i d e r
A C C(X), A bounded a b o v e ,
C(X).
U ( R ) E C ( X b) y 2'.
so f > u(k).
Thus '2
Set R
VA; w e show u ( k )
=
=
VA-in-
Suppose fEC(X1, f > A; then f > VA 0
implies 1
.
a n d 3'
2'
=
II,
a r e clearly e q u i -
valent.
QED
We n e x t show t h a t i t s u f f i c e s f o r '2 f o r elements of
(we a r e s t i l l d e n o t i n g
or 3 C$
0
above t o h o l d
(Il(X)) b y
&
and
r e s e r v i n g t h e l e t t e r e t o denote an element o f z ) .
( 5 6 . 2 ) The f o l l o w i n g a r e e q u i v a l e n t : 1'
C(X) i s Dedekind c o m p l e t e ;
4'
for every
element e i n
6,
u(e)Ec(~)
SO
f o r every usc element e i n
E,
a(e)Ec(x)
RSC
____ P r o o f . We n e e d o n l y show 4'
i m p l i e s 2'
h o l d s a n d c o n s i d e r a n Rsc e l e m e n t I ? , 0 < R < n
above.
Assume 4'
n(X).
For each
1 , 2 , * * * , set
=
n
n
w h e r e t h e e i ( k / n ) ' s a r e t h e s p e c t r a l e l e m e n t s o f I? d e f i n e d i n 517.
Rn
i s c l e a r l y a n Rsc e l e m e n t .
By t h e p r o o f o f t h e
Freudenthal theorem ( 1 7 . 1 0 ) , we have limn+m[l R by ( 4 9 . 1 6 ) ,
(n
=
limn,,[lu(R)
- u(tn)[l = 0.
Qn[I
=
0 , hence,
We show u ( k n ) E C ( X )
1,2;..); it w i l l follow t h a t u(a)EC(X). n R n = ~ ~ = ~ ( k / n ) e ~ ( k h/ enn )c e, by (49.4), u(R,)
=
C h a p t e r 11
296
VE=l(k/n)u(eQ(k/n)). (k
=
l,...,n),
S i n c e , by a s s u m p t i o n ,
u(eQ(k/n))EC(X)
u(R,)EC(X). QED
Combining t h e above w i t h ( 5 5 . 3 ) i t ) , we have ( c f .
(56.3)
(Nakano)
(and t h e remark p r e c e d i n g
[541):
The f o l l o w i n g a r e e q u i v a l e n t :
1'
C(X) i s Dedekind c o m p l e t e ;
6'
f o r e v e r y open s e t W i n X , W i s open.
-
We h a v e b e e n d e a l i n g w i t h t h e s e t components o f n(X) i n C l t ( X ) .
t
=
8
(n(X)) o f
all t h e
Note i n t h e f o l l o w i n g c o r o l l a r y ,
we a r e d e a l i n g o n l y w i t h t h o s e i n C(X).
(56.4) Corollary.
The f o l l o w i n g a r e e q u i v a l e n t :
1'
C(X) i s Dedekind c o m p l e t e ;
7'
8
(n(x))-in-c(x) is ( a ) t o t a l i n C(X), and ( b ) Dedekind c o m p l e t e .
Proof. (56.2). assume 7'
T h a t 1'
i m p l i e s 7'(a)
That i t implies 7 O ( b )
is contained i n the proof of
f o l l o w s from ( 1 7 . 2 ) .
h o l d s ; w e show t h a t t h e n 4'
Conversely,
( i n 56.2)) holds.
We n o t e f i r s t t h e f o l l o w i n g c o r o l l a r y o f ( 1 7 . 7 ) .
Lemma 1 .
If;(Il(X))-in-C(X)
i s t o t a l i n C(X), t h e n e v e r y
fEC(X)+ i s i n t h e norm c l o s u r e o f t h e s e t o f e l e m e n t s below i t o f t h e form Xe, where e €
6
( n ( X ) ) - i n - C ( X ) and
> 0.
I t f o l l o w s f i s t h e supremum ( i n C t ’ ( X ) ) o f t h i s s e t o f elements.
Lemma 2 . elements of
Every e € i $ which i s Rsc i s t h e supremum o f t h e
t (n(X))-in-C(X)
below i t .
By d e f i n i t i o n , e i s t h e supremum o f a l l t h e e l e m e n t s o f C ( X ) + below i t .
Let i e a ) be t h e s e t o f a l l e l e m e n t s o f
6
(n(X))-
in-C(X) which have t h e f o l l o w i n g p r o p e r t y : t h e r e e x i s t f E C ( X ) + below e and A > 0 s u c h t h a t Xea 5 f < e. u s i n g t h e comment a f t e r Lemma 1 , t h a t e
I t is easily verified, =
V e
clcl
.
Lemma 2 g i v e s u s t h a t a l s o e v e r y e € z which i s infimum o f t h e e l e m e n t s o f $- ( l l ( X ) ) - i n - C ( X ) above i t .
USC
is the
T h a t 4’
h o l d s c a n now be p r o v e d by e x a c t l y t h e same argument used t o p r o v e 2’
(56.1). QED
Appendix
We p r e s e n t h e r e t h e example p r o m i s e d i n 9 4 5 t o show t h a t t h e Riesz subspace s(X) of C ” ( X ) (45.1),
s(X)
=
n e e d n o t be norm c l o s e d .
(C(X)u)+ - (C(X)’)+,
and i t i s i n t h i s form
By
Chapter 11 that we will treat it. We have to exhibit an element o f C"[X) which is not in (C(X)')+
(C(X)u)+
-
& in its norm closure. Since
but
U(X)
is
norm closed, this element will still be in U(X), and thus we can work within LJ(X).
It follows from the Isomorphism theorem This means we can
that, equivalently, we can work in U(X)=.
confine ourselves to bounded functions on X and use the tools and terminology of ordinary function theory (in particular, cf. (54.6)). Specifically, let X be a real (compact) interval. produce a sequence If,]
We will
of bounded, non-negative functions on
X and a function f on X such that:
for each k, fk = uk - vk, uk and vk non-negative
(I)
uppersemicontinuous functions on X; limkll f - fk[I
(11)
=
0;
(111) f cannot be expressed in the form f
=
u - v, u and
v non-negative uppersemicontinuous functions on X.
Lemma. -
Let X be the real interval [a,b].
1 > 0, there exists a non-negative g on X with
F o r every
I[ gI[
=
1 such
that: (i)
g can be written in the form g
=
u - v, u and v non-
negative uppersemicontinuous functions on X; (ii) for every such representation of g, I[u/l 2 1.
Proof.
I _
To avoid burdensome details, we establish the
Lemma for 1 = 2; it will be clear that the same procedure
( c o n s i d e r a b l y l e n g t h e n e d ) w i l l work f o r a r b i t r a r y n , h e n c e f o r any
> 0.
Let { x n } (n
1 , 2 , . . - ) be a descending sequence of d i s t i n c t
=
p o i n t s i n t h e open i n t e r v a l ( a , b ) which c o n v e r g e s t o e a c h n , l c t {xnm} (m
=
For
3.
1,2,...) be a d e s c e n d i n g s e q u e n c e o f
d i s t i n c t p o i n t s i n t h e o p e n i n t e r v a l ( X ~ , X ~w-h i~c h) c o n v e r g e s to x n,m
( t a k e xo
n
1,2,.-.
=
=
b).
We d e f i n e g b y g ( a )
n
=
=
0 otherwise.
=
2 , u(xnm)
=
1 for
=
1 f o r n,m
=
1,2;-*,and
F i n a l l y d e f i n e v by v ( a ) = v ( x n )
=
1 for
Then u and v a r e u p p e r -
and v ( x ) = 0 o t h e r w i s e .
1,2,...,
g(xnm)
and g ( x ) = 0 o t h e r w i s e .
Now d e f i n e u by u ( a ) u(x)
=
semicontinuous and u - v = g , which e s t a b l i s h e s ( i ) . To show ( i i ) , a s s u m e g = u - v , w i t h u a n d v n o n - n e g a t i v e uppersemicontinuous.
Since v > 0 , t h e c o n d i t i o n g(xnm)
g i v e s us u(xnm) > 1 f o r n,m
=
1,2,-..
.
Since u i s uppersemi-
continuous, t h i s g i v e s u s , i n t u r n , t h a t u(xn) > 1 for n The c o n d i t i o n g ( x n )
1,2;.*.
n = 1,2,.
-
9
.
-
=
0 then gives us v(x ) > 1 f o r
n S i n c e v i s u p p e r s e m i c o n t i n u o u s , we o b t a i n v ( a ) > 1.
Applying t h e c o n d i t i o n g ( a )
u(a)
=
1
=
=
1, w e o b t a i n , f i n a l l y , t h a t
2.
QED
We p r o c e e d t o c o n s t r u c t t h e e x a m p l e .
l e t X be t h e r e a l i n t e r v a l [0,1]. al > b 2 > a 2 > * ” >
bk > ak > . . -
For c o n c r e t e n e s s ,
Choose a s e q u e n c e 1 > b l >
converging t o 0.
For each k ,
l e t Z k be t h e c l o s e d i n t e r v a l [ a k , b k ] a n d gk t h e f u n c t i o n on 2 Z k g i v e n by t h e Lemma w i t h = k . D e f i n e hk ( k = 1 , 2 , - - . ) o n X , byhk(x) = (l/k)gk(x) k d e f i n e f k = Clhi ( k
on Zk, h k ( x ) =
1,2,...)
=
0 elsewhere.
and f = cyhi
Finally
(norm c o n v e r g e n c e ) .
Chapter 1 1
300
Then { f k } and f have t h e desired properties.
Remark.
A study o f t h e problem o f t h e n o r m closure o f
s ( X ) o n a real interval h a s been carried out b y Ryan [ 4 6 ] .
PART V
RIEMANN INTEGRATION The a p p r o a c h t o Riemann i n t e g r a t i o n p r e s e n t e d h e r e stems from t h e f o l l o w i n g p a p e r s : C a r a t h e o d o r y [ l l ] , Loomis [ 3 2 ] , Bauer [ S ] , and Semadeni [ 4 8 ] .
The r e a d e r i s r e f e r r e d t o them
for further references.
301
CHAPTER 1 2
THE RIEMANN SUBSPACE O F A BAND
I n 5 4 0 , we d i s c u s s e d C ( X j a , a n d i n 5 4 1 , C ( X ) , band C"(X)
u'
pEC'(X).
We now t u r n t o C(X),
€or a b a s i c
f o r a g e n e r a l band
I of C"(X). N o t e f i r s t t h a t t h e o r d e r c l o s u r e o f C(X),
is a l l of I .
I n s h a r p e r f o r m t h e Up-down-up t h e o r e m h o l d s f o r C(X), i n I . R T h i s f o l l o w s f r o m t h e e a s i l y v e r i f i e d f a c t t h a t (C(X) ) I = ( C ( X ) I ) p . , (C(X)'')I
= (C(X)I)ue,
and s o o n .
Note a l s o t h a t
p r o j I d o e s n o t p r e s e r v e D e d e k i n d c l o s u r e : w h i l e C(X) i s ( 4 6 . 3 ) , C(X), i s , i n g e n e r a l , n o t
D e d e k i n d c l o s e d i n Cl'(X) Dedekind c l o s e d i n I .
E x a m i n a t i o n o f i t s Dedekind c l o s u r e w i l l
l e a d u s t o Riemann i n t e g r a t i o n . C o n s i d e r a c o n c r e t e case: I J
=
=
L m ( p ) and i t s d u a l band
1 L ( p ) , f o r p L e b e s g u e m e a s u r e on a r e a l i n t e r v a l .
them s i m p l y by La and L
1
.
L e t C b e t h e image i n Lm o f t h e c o n C(X) , ) . By a s t a n d a r d t h e o r e m L 1 t h e s e t o f l i n e a r f u n c t i o n a l s on L
tinuous functions (that is C on t h e t o p o l o g y
o(L1,C),
which are a(L1,C) which a r e o(L1,C)
We d e n o t e
=
continuous is C i t s e l f .
What a b o u t t h o s e 1 c o n t i n u o u s on t h e u n i t b a l l B(L ) ? T h i s i s no
l a r g e r ; G r o t h e n d i e c k ' s completeness theorem gives us t h a t i t i s s t i l l C.
What a b o u t t h e s e t o f t h o s e t h a t a r e 0(L1,C) 1
o u s on K ( L ) ?
continu-
T h i s s e t i s l a r g e r ; w e show t h a t i t i s t h e
Dedekind c l o s u r e o f C i n Lm. 302
Riemann Subspace of a Band
303
Now, contained implicitly in a theorem of Caratheodory [ll] is the fact that this Dedekind closure is precisely the image R in La of the Riemann integrable functions.
We thus have
a topological characterization of R: R consists of those elements of Lm which are a(L1,C) continuous on K ( L 1 ) . In this chapter,we establish o u r results not for the above concrete case but for a general band.
§ 5 7 . The Dedekind closure of C ( X ) ,
We first record a theorem from function theory - which we have met earlier ($54)
-
and a sharpening of it for convex
sets.
(57.1) Let Q be a subset of a topological space T, and h a bounded function on Q. -
h(t)
We define =
limsup h(q) qE Q
on the closure
by
.
q+t Then
(i)
h is uppersemicontinuous on Q;
(ii) if h is uppersemicontinuous on Q , then E(q)
=
h(q)
for q E Q .
Again, we will call 5 the uppersemicontinuous upper envelope of h.
304
Chapter 1 2
A f u n c t i o n f on a c o n v e x s e t Q ( i n some v e c t o r s p a c e ) i s
concave ( r e s p . convex) i f t h e f o l l o w i n g h o l d s . q 1 , q 2 E Q and X 1 , X 2
2
Xlf(q1)
(resp. f ( l p l
(57.2)
+
X2f(q2)
0 such t h a t
Proof.
x2
=
1 , f(X1ql
x2q2) 5 xlf(ql)
+
+
x2q2)
=
1.
XIF;(pl)
+
A2F(p2).
Set p
=
Alpl
+
and
x1,x2 2
X2p2.
0 such t h a t
We h a v e t o show h ( p ) >
I t i s enough t o show t h e f o l l o w i n g ( q ' s
always denote elements of 9).
F o r e v e r y q1 E p l + N a n d q 2 E p 2 + N
,
X1ql
+
X2q2Ep +N;
hence
The d e s i r e d i n e q u a l i t y f o l l o w s d i r e c t l y from t h i s .
Our g o a l i s ( 5 7 . 5 1 b e l o w .
1
X2f(q2))*
I f h i s c o n c a v e , t h e n s o i s f;.
Consider p1,p2En
X2
+
+
+
I n t h e above t h e o r e m , l e t T b e a l o c a l l y convex s p a c e
and Q a c o n v e x s u b s e t .
X1
xl
For e v e r y
Riemann S u b s p a c e o f a Band
( 5 7 . 3 ) Lemma 1.
Let I b e a b a n d o f C"(X), w i t h d u a l b a n d J .
F o r a bounded f u n c t i o n h on K ( J ) ,
'1
305
the following a r e equivalent:
h i s t h e p o i n t w i s e infimum on K ( J )
o f some s u b s e t o f
C(X),; h i s concax'e a n d u p p e r s e m i c o n t i n u o u s on K ( J )
2'
with res-
p e c t t o u (J,C(X) I ) .
T h a t '1
Proof.
i m p l i e s 2'
i s c l e a r , s i n c e every element
i s a f f i n e a n d u ( J , C ( X ) d c o n t i n u o u s on K ( J ) .
o f C(X),
To show
t h e c o n v e r s e , w e n o t e f i r s t t h a t C ~ ( J , C ( X ) ~c o) i n c i d e s w i t h t h e r e s t r i c t i o n t o .J o f t h e v a g u e t o p o l o g y u ( C ' (X) , C ( X ) ) ; c a n work w i t h t h e l a t t e r .
s o we
S e c o n d l y , b y t h e comment a t t h e e n d
o f 8 5 2 , we c a n , f o r s i m p l i c i t y , assume .J i s v a l u e l y d e n s e i n C'(X).
K(J)
i s then vaguely dense i n K ( C ' ( X ) ) ,
uppersemicontinuous upper envelope K(C'(X)).
so t h e
o f h i s d e f i n e d on a l l o f
-
By ( 5 7 . 1 ) and ( 5 7 . 2 ) , h i s c o n c a v e a n d v a g u e l y u p p e r -
s e m i c o n t i n u o u s , a n d c o i n c i d e s w i t h h on K ( J ) . and (38.2) g i v e s u s t h a t
o f some s u b s e t o f C(X).
Applying (48.3)
i s t h e p o i n t w i s e infimum on K ( C ' ( X ) )
'1
follows immediately.
QE D
For a monotonic n e t i n I , o r d e r convergence is e a s i l y s e e n t o be e q u i v a l e n t t o p o i n t w i s e c o n v e r g e n c e on K(J)
(cf. (10.9)).
Combining t h i s w i t h ( 5 7 . 3 ) , w e o b t a i n :
( 5 7 . 4 ) Lemma 2 .
Let I b e a b a n d o f C"(X), w i t h d u a l b a n d J .
For f E I , , t h e f o l l o w i n g a r e e q u i v a l e n t :
Chapter 1 2
306
l o f E (C(X) 2'
y;
f i s u p p e r s e m i c o n t i n u o u s on K ( J ) w i t h r e s p e c t t o
O(J,C(X)~).
I n t h e two Lemmas, we c a n o f c o u r s e r e p l a c e " u p p e r s e m i c o n t i n u o u s " by " low ers em icontinuous " ,
"concave"
by "convex",
and ( C ( X) I ) u by (C(x),)'.
( 5 7 . 5 ) Theorem.
L e t I b e a band o f Cf'(X ), w i t h d u a l b a n d < J .
For a l i n e a r f u n c t i o n a l $ on J , t h e f o l l o w i n g a r e e q u i v a l e n t . 1'
$ i s i n t h e D edeki nd c l o s u r e o f C(X ), ;
2'
$ i s a ( J , C ( X ) I ) - c o n t i n u o u s on K ( J ) .
Proof.
N ot e t h a t i f
element of I .
s a t i s f i e s ZO,
In effect, u(J,C(X),)
t h e n i t must b e a n
i s c o a r s e r t h a n t h e norm
topology o f J , s o (23.2) g i v e s t h e d e s i r e d conclusion.
The
t h e o r e m f o l l o w s f r om Lemma 2 and t h e comment f o l l o w i n g i t .
UED
H e n c e f o r t h , we w i l l c a l l t h e D edeki nd c l o s u r e o f C ( X ) , Riemann s u b s p a c e o f I , a n d d e n o t e i t b y R ( 1 ) .
the
The t e r m i n o l o g y
o f c o u r s e comes f r om t h e C a r a t h e o d o r y t h e o r e m r e f e r r e d t o i n the introduction to this chapter. Remark. above theorem.
o ( J , C ( X ) I ) c a n be r e p l a c e d by o(C'(X),
I t then reads:
C(X))
in the
The Riemann s u b s p a c e o f a band
Riemann S u b s p a c e o f a Band
o f C"(X)
307
c o n s i s t s o f t h e l i n e a r f u n c t i o n a l s on tJ w h i c h a r e
v a g u e l y c o n t i n u o u s on K ( J ) .
By i t s d e f i n i t i o n , R(1) (C(X),)'
=
(C(X)')I
Warning!
(C(X),)un
=
and (C(X)I)'
=
(C(X)7)2.
(C(X)'),,
While f E R ( 1 ) i f and o n l y i f f
Now
s o we have:
=
uI
=
RI f o r
some usc e l e m e n t u a n d some Rsc e l e m e n t t , w e may n o t b e a b l e t o choose u and R s o t h a t R
i
u.
We g i v e a n e x a m p l e i n 563.
558. A r e p r e s e n t a t i o n theorem
F o r e v e r y b a n d I o f C"(X),
C(X),
i s an M I - s u b s p a c e o f I
w h i c h i s s e p a r a t i n g on t h e d u a l b a n d J .
This represents a q u i t e
general situation:
( 5 8 . 1 ) -___ Theorem.
Let E b e an L-space, E '
i t s d u a l , and F an
M I - s u b s p a c e o f E ' w h i c h i s s e p a r a t i n g on E . compact s p a c e X, d e n s e i n C'(X)
Then t h e r e e x i s t s a
a band J o f C'(X) - which w e c a n t a k e v a g u e l y
-
a n d an i s o m o r p h i s m o f E o n t o J s u c h t h a t E '
i s M I - i s o m o r p h i c t o t h e band I d u a l t o J and F i s Ma-isomorphic
308
Chapter 1 2
t o C(X),.
F i s an MIL-space, s o i s M I - i s o m o r p h i c t o C(X) f o r
Proof.
some X c o m p a c t .
L e t C(X) __ To > F b e t h i s isomorphism, F i > E t
the canonical i n j e c t i o n o f F i n t o
E l ,
and s e t T = i o T o .
'
C(X) -> E l i s an ME-isomorphism o f C(X) i n t o C o n s i d e r C t ( X ) 0.
Proof.
We show the equivalent statement: for every Rsc
< 0. element R , R E C " ( X ) ~ implies R -
so R+
=
V{f€C(X)j
T h u s R'
is also an ilsc element,
But, by ( 4 0 . 4 ) ,
0 < f < a'}.
consists only of 0.
il+
=
the latter set
0.
We proceed with our example.
Let X be the real interval
[ 0 , 1 ] , u the characteristic element of the closed set [ 0 , 1 / 2 ] ,
and R the characteristic element of the interval [O,l/Z). (Remember, we mean the characteristic elements in U(X); so u is a usc element and
k
an Rsc element (cf. § 5 5 ) . )
Then
Chapter 1 2
314
( b y ( 5 4 . 1 3 ) ) , h e n c e ud
u - REC"(X)a
I t r e m a i n s t o show u d & C(X)d.
that fd (u,x)
=
ud = R d .
Suppose t h e r e e x i s t s f E C ( X ) s u c h
We show R < f < u , whence ( k , x )
f o r a l l xEX, which i s i m p o s s i b l e .
f - REC"(X)a
f - u = ( u ( f ) , p ) f o r e v e r y ~ E J .
The p r o o f i s i m m e d i a t e .
We n e x t g i v e some c h a r a c t e r i z a t i o n s o f x ( p ) .
For s i m p l i c -
i t y , we t a k e p > 0.
(61.3)
Given u € C ' ( X ) + , t h e n f o r f E C " ( X ) , t h e f o l l o w i n g a r e
equivalent:
1'
f i s p-Riemann i n t e g r a b l e ;
h>f
g 0 , the following a r e equivalent:
1'
f is lean;
2'
f
=
u ( g ) - g f o r some ~ E c ~ * ( x ) ;
3'
f
=
h - R(h) f o r some h € C " ( X ) ;
4O
f < 6(f).
336
The Lean E l e m e n t s
Proof. ___ u(f)
S u p p o s e 1' h o l d s .
p(f)
=
S(f).
u(f) < s(f)
=
u(f)
-
-
=
0.
so f
=
f - k(f).
T h a t 3'
Finally, i f f
t ( u ( g ) - g) 0
plies 1
5
Then k ( f ) = 0 , s o f < u(f) =
holds.
S u p p o s e 4'
e(f) < u ( f ) , so u ( f )
Thus 1' h o l d s .
a(f)
i n 3'.
Thus 4'
=
1'
i m p l i e s 3':
i m p l i e s 2'
u(g)
-
337
holds.
Then
u(f) - Elf), so
=
i n effect, k(f)
=
0,
f o l l o w s by s e t t i n g g
=
-11
g , t h e n by ( 4 9 . 2 ) ,
u ( g ) - u ( g ) = 0 , whence k ( f )
=
0 < k(f) =
Thus 2'
0.
im-
. QED
I f f i s l e a n , t h e n s o are f + and f - .
The c o n v e r s e i s f a l s e .
For o n e e x a m p le, l e t X be a r e a l i n t e r v a l and g a n d h t h e c h a r a c t e r i s t i c elements o f t h e sets o f r a t i o n a l p o i n t s and i r rational points respectively h are lean.
(555)).
( r em em be r, g , h E I J ( X )
Suppose k(g) > 0 ; t h e n e(g),
g and
i s a lowersemicon-
t i n u o u s f u n c t i o n o n X w hi ch i s > 0 a n d v a n i s h e s o n t h e i r r a t i o n a l points, an impossibility. Then f +
=
g and f -
=
Similarly for k(h).
11, b o t h l e a n , w h i l e If
I
=
Set f
=
g - h.
R ( X ) , which i s n o t
lean. F o r a n e x a m p l e removed f r o m f u n c t i o n i m a g e r y , l e t X b e d e n s e - i n - i t s e l f and f f - = l.(X)d, f
=
l(X)u
- n(X)d.
Then f +
=
n(X),
and
b o t h l e a n ( c f . t h e comment f o l l o w i n g ( 4 0 . 5 ) ) , w h i l e
n(x).
=
Remark.
N ot e t h a t i n t h e s e two e x a m p l e s , 6 ( f )
T h u s, i n c o n t r a s t w i t h ( 6 5 . 1 ) ,
(65.2)
=
2.n(X).
6 ( f ) is, i n general, not lean.
If f i s l e a n , t h e n k ( f ) < 0 < u(f).
C h a p t e r 14
338
Proof.
f f and f - a r e l e a n , h e n c e , by ( 4 9 . 1 1 ) ,
u(f+) - a(f-)
=
u(f+) > 0 , and L ( f )
=
a(f')
u(f)
=
- u(f-) = -u(f-)
.(
0.
QED
We n o t e t h e u s e f u l c o r o l l a r y t h a t i f a u s c e l e m e n t u i s l e a n , > 0 , and i f an Esc e l e m e n t R i s l e a n , t h e n R < 0. then u -
(Note
that (59.5) i s a corollary of t h i s . ) Note a l s o t h a t t h e c o n c l u s i o n o f ( 6 5 . 2 ) i s n o t a s u f f i c i e n t c o n d i t i o n f o r f t o be l e a n , a s t h e examples p r e c e d i n g ( 6 5 . 2 ) show. These examples a l s o show t h a t t h e s e t o f l e a n e l e m e n t s i s not c l o s e d under a d d i t i o n o r t h e l a t t i c e o p e r a t i o n s i s n e i t h e r a l i n e a r subspace nor a s u b l a t t i c e of
V,A.
C'l(X).
So i t
I t con-
t a i n s w i t h e a c h e l e m e n t t h e R i e s z i d e a l g e n e r a t e d by t h a t c l e ment.
I t i s t h u s a union of Riesz i d e a l s , a c t u a l l y t h e union
o f a l l t h e R i e s z i d e a l s i n t e r s e c t i n g C(X) o n l y i n 0 .
I t is
t h u s a s o l i d s e t , and c o u l d be d e f i n e d a s t h e l a r g e s t s o l i d s e t i n t e r s e c t i n g C(X) o n l y i n 0 . An o b v i o u s , b u t u s e f u l , consequence o f t h e s o l i d n e s s i s t h a t i f f i s l e a n , t h e n f o r e v e r y band I o f Cl'(X), f I i s a l s o lean. Another p r o p e r t y :
( 6 5 . 3 ) The s e t o f l e a n e l e m e n t s i s norm c l o s e d .
T h i s f o l l o w s from t h e e a s i l y v e r i f i e d f a c t t h a t i f a s o l i d
s e t i n t e r s e c t s C(X) o n l y i n 0 , t h e n s o does i t s norm c l o s u r e .
The Lean Elements
339
The examples preceding (65.2) actually show that the sum of two lean elements f,g need not be lean even if f A g
=
0.
ever, under "stronger" disjointness of f and g, their sum
How-
%
lean.
> 0 are lean and u ( f ) A g (65.4) If f,g -
Proof.
By (49.1), k(f
+
g)
-
u(f)
(using Exercise 4 in Chapter 1) R(f u(f)Af
R(f
+
+
g)
u(f)Ag =
=
f.
Thus 0
.
(65.9) Corollary 2 .
If h i s l e a n , then f o r every usc element u,
a(u
i h)
k.
In particular, for every gEC(X), R(g
?
h) 0 and f i s i n t h e band g e n e r a t e d by Lemma 2 , i t i s enough t o show t h a t If \ A l l i s l e a n .
:
By
il = V a i l a
v t r ( R w ) + , and by Lemma 1 , I f \ A ( L a ) + i s l e a n f o r e v e r y a. f o l l o w s L ( l f [ ) A ( e w ) += 0 f o r a l l a ( 4 9 . 4 ) , whence L( whence ( a g a i n by ( 4 9 . 4 ) )
=
It
f()AL
=
0,
IfjAR i s l e a n .
Case 11, L < 0 : Choose a n a r b i t r a r y cto.
5 f ui,u(f). k u ( ( f - u)')
=
I t i s enough t o show u z ku(f).
0 , s o Lu(f - u ) < 0 , s o L(u(f)
whence ( a g a i n by ( 4 9 . 2 ) ) k u ( f )
-
u
0:
( 6 8 . 5 ) Given a n Rsc e l e m e n t il > 0 , l e t I b e t h e band which i t generates.
P roof. -
Then f o r f € 1 , i f fAR i s r a r e , f i s r a r e .
By ( 6 8 . 4 ) , ) f l A L i s r a r e , s o f o r s i m p l i c i t y , we c a n
assume f > 0.
For e v e r y n E N , 0 < fAnR < n ( f A k ) , s o fAna i s
rare.
=
Since f
Vn(fAnL), i t f o l l o w s from ( 6 8 . 1 ) t h a t f i s r a r e QED
The a b o v e d o e s n o t h o l d € o r a g e n e r a l Lsc e l e m e n t R : be a r e a l i n t e r v a l and { r n } t h e r a t i o n a l p o i n t s o f X .
Let X
L e t f be
36 2
Chapter 1 5
t h e c h a r a c t e r i s t i c element of t h e s e t { r n l , and u t h e u s c e l e ment d e f i n e d by ( u , r n )
wise.
Finally, l e t R
by R a n d fAL
= =
l / n (n
-u.
=
and ( u , x )
=
0 other-
Then f i s i n t h e b a n d g e n e r a t e d But u ( f ) = n ( X ) , s o f i s n o t
R , w hi ch i s r a r e .
=
1,2,...)
rare. A s with l e a n elements ( c f .
( 6 6 . 6 ) ) , t h e f o l l o w i n g theorem
i s analogous t o (68.1), and while they a r e a c t u a l l y d i f f e r e n t , t h e y r e d u c e t o t h e same t h e o r e m i n t o p o l o g y .
( 6 8 . 6 ) Theorem.
u
= Aauu.
Then f o r f E C " ( X ) ,
t h a t ( f - u)'
Proof. Aauu =
u.
Let {uul be a c o l l e c t i o n of usc elements, and (f
-
ua)+ r a r e f o r a l l a i m p l i e s
i s rare.
By ( 6 7 . 8 ) , R u ( f ) Thus ( f - u)'
5 ua f o r a l l a, h e n c e Ru(f)
< ( f - Ru(f))'
> 0 .
QED
363
Chapter 1 6
364
( 6 9 . 2 ) Theorem.
( R a ( X ) L ) d = Ra(X)'.
We p r o v e t h e more g e n e r a l t h e o r e m :
( 6 9 . 3 ) I f I i s a norm c l o s e d R i e s z i d e a l o f
then ( I l ) d
Cl'(X),
=
IC.
Proof.
We show f i r s t t h a t ( I ) d i s a R i e s z i d e a l o f 1'. 1
Note t h a t , s i n c e Cl(X) i s a band o f C 1 " ( X ) ,
n
[ (11) d - i n - c l l l (X)]
Cl(X),
and t h u s ( I ) d 1
(II) d
=
i s a band o f
Combining t h i s w i t h ( 1 4 . 1 1 ) , we have t h a t
(IL)d-in-C1'l;X).
( I L ) d i s a Riesz i d e a l o f Ib.
Now e a c h u E ( I ) d I
i s o r d e r con-
t i n u o u s on Cll(X), hence - s i n c e I i s a R i e s z i d e a l - on I . Thus ( I L ) d i s a R i e s z i d e a l o f 1'. I t r e m a i n s t o show t h a t ( I ) d i s a l l o f 1'. I
t h a t , by ( 1 5 . 4 ) and ( 2 1 . 1 ) ,
Ib
=
Note f i r s t
I ' and s o i s a n L - s p a c e .
t h e imbedding o f ( I ) d i n 1 ' i s c l e a r l y norm p r e s e r v i n g . I
Now Since
i s norm c o m p l e t e , i t i s norm c l o s e d i n I f , h e n c e , by
(19.7), order closed.
i s a band o f 1'.
Thus
Finally,
( I l l d i s s e p a r a t i n g on I , h e n c e v a g u e l y d e n s e i n 1'; t h e Luxemburg-Zaanen theorem ( 1 2 . 7 ) ,
h e n c e , by
( I ) d = 1'. I
QED
We c a n t h u s w r i t e o u r d e c o m p o s i t i o n o f C 1 ( X )
C'(X) = Ra(X)' t i o n of X, X
0 =
[X
C(X)'.
i n t h e form
By ( 2 0 . 1 ) , t h i s g i v e s us t h e decomposi-
n Ra(X)']
IJ [X
n
C(X)'].
So e v e r y xEX
is
C'(X) e i t h e r i n Ra(X)'
=
o r C(X)'.
Ra(X)'@
C(X)'
365
We c a n s h a r p e n t h i s :
( 6 9 . 4 ) O f x € X i s an i s o l a t e d p o i n t , i t l i e s i n C(X)';
i f not,
it l i e s in R ~ ( x ) ' .
Proof.
Let u b e t h e c h a r a c t e r i s t i c e l e m e n t o f x .
x is not isolated.
Suppose
Every f€C(X) s u c h t h a t 0 < f < u vanishes
on X\x ( s i n c e u d o e s ) , h e n c e , b e i n g c o n t i n u o u s on X , a l s o v a n i s h e s on x ; i t i s t h e r e f o r e 0 . is isolated.
Thus u E R a ( X ) .
Suppose x
Then u i s c o n t i n u o u s on x, h e n c e ( b y t h e d i s -
c u s s i o n following (40.2)
and t h e Isomorphism theorem) ufC(X)
I t f o l l o w s t h a t Wu c C ( X ) .
.
But IRu i s i n f a c t a b a n d , s o t h i s
i n c l u s i o n a c t u a l l y g i v e s u s t h a t i t i s d i s j o i n t from Ra(X). Thus uERa(X)d X
=
[Ra(X)']'
,
a n d t h e r e f o r e v a n i s h e s on
Ra(X)'.
QED
5 7 0 . The b a n d Ra(X)
d
Ra(X) also d e t e r m i n e s a d e c o m p o s i t i o n o f C"(X): Ra(X)dd 3 Ra(X)d.
=
Ra(X)dd i s t h e band g e n e r a t e d by Ra(X), or
equivalently, i t s order closure. Ra(X)d = (Ra(X)')'.
C"(X)
I t i s a l s o (C(X)')',
O t h e r w i s e s t a t e d , ( R a ( X ) d d , Ra(X)')
p a i r o f d u a l b a n d s , and (Ra(X)d,C(X)c) decomposition can be w r i t t e n :
is also.
while is a
So t h e a b o v e
366
Chapter 1 6
(70.1)
C''(X)
Ra(X)"
=
%,
C(X)".
We examine Ra(X)d i n more d e t a i l .
Our f i r s t aim i s t o
show t h a t C(X)
i s Dedekind d e n s e i n R a ( X ) d , t h a t i s , t h e Ra (XI Dedekind c l o s u r e R(Ra(X) d ) o f C(X) i s a l l o f Ra(X)d ( 7 0 . 3 ) . Ra (XI
( 7 0 . 2 ) Theorem.
F o r e v e r y f€IJ(X) Jl ( f )
Proof.
Ra(X)d
= f
,
Ra(X)
d = u(f)
We show t h e s e c o n d i d e n t i t y .
Ra(X)d
Set I
=
Ra(X) d .
Note f i r s t t h a t f o r an Q s c e l e m e n t Q , ( u ( k ) - . f ) € R a ( X ) , h e n c e u(Q), = R,.
Now c o n s i d e r f E U ( X ) .
elements such t h a t
?,!
c1
+f.
Choose a n e t
{aa)
o f Ilsc
Then ( Q a ) , + f I , s o b y t h e above
identity, u(a ) +fI.
a 1
Now f < u(f) < U(Q) for a l l c1
u ( ~ , ) , + f , , and t h u s f I
( 7 0 . 3 ) C o r o l l a r y 1.
Proof. _-
=
(L,
h e n c e f I 5 ~ ( f 5) ~
u(f),.
R(Ra(X)d) = Ra(X)
d
.
The Up-down-up t h e o r e m h o l d s Ra(X)d' f o r F i n Ra(X)d ( c f . t h e i n t r o d u c t i o n t o C h a p t e r 1 2 ) , s o FRuQ
=
Ra(X)
S e t F = C(X)
d
.
d S i n c e R(Ra(X) ) = FR
FU, we t h u s n e e d o n l y
C'(X)'
show t h a t Feu'
=
FR
=
R a ( X t 3 C(X)'
36 7
FU.
=
We f i r s t show F R
=
FU.
Consider f E F
'.
Then, by t h e
above mentioned d i s c u s s i o n i n t h c i n t r o d u c t i o n t o Chapter 1 2 , t h e r e i s a n e s c e l e m e n t R s u c h t h a t p. ( 7 0 . 2 1 , U(')
=
f.
Thus F E F U .
= f , whence, by Ra (XI T h i s g i v e s u s F' c F u ;
Ra(X)d t h e o p p o s i t e i n c l u s i o n i s shown t h e same way. F'
FU g i v e s u s FRu
=
Fa.'
=
F
=
Fuu
=
FU
=
F i!
,
The i d e n t i t y
h e n c e , f i n a l l y , F 'uk
-
a. .
Remark. -___
Contained i n t h e above a r e t h e i d e n t i t i e s
S i n c e R z ~ ( X )i s~ D e d e k i n d c o m p l e t e , we h a v e t h e
(70.4) Corollary 2 . C(X)
Ra(X)d i s t h e D e d e k i n d c o m p l e t i o n o f
Ra(XId'
(70.5) p r o j
maps s u p r e m a a n d i n f i m a i n C(X) i n t o s u p r e m a Ra (XI and i n f i m a i n Ra(X)d: f o r e v e r y A c C(X), f = AA-in-C(X) implies f Ra (XI A
(A
Proof. =
(So, a f o r t i o r i , f
Ra(X)
Ra(X)d -
d) -in-C(X) Ra(X)
u
d).
= A(A
Ra(X)d')
C o n s i d e r A c C(X) s u c h t h a t AA-in-C(X)
AA is r a r e .
Since proj
=
0.
Then
preserves infima i n C"(X),
Ra ( X I
36 8
Chapter 16
t h i s gives us
d)
A(A
=
Ra (XI
u Ra (X)
d
=
0.
QE D
d , c o n s i d e r e d a s a mapping o f C ( X ) Ra (XI d . i n t o Ra(X) i s o r d e r c o n t i n u o u s , and t h e r e f o r e i s a l s o o r d c r (70.6) Corollary.
proj
c o n t i n u o u s c o n s i d e r e d a s a mapping o f C(X)
o n t o C(X) Ra(X) d '
(70.7)
Theorem.
-
C(X)'
=
[C(X)
dIc. Ra (XI
C(X)
0 , and s u p p o s e f,+O
p
P r o o f . C o n s i d e r pEC(X)',
in
I t f o l l o w s e a s i l y f r o m (70.6) t h a t t h e n f,+O
in
Ra(X)d'
R a ( X ) d , whence i n f , ( f a , p )
=
0.
Thus U E [ C ( X )
C o n v e r s e l y , c o n s i d e r $E[C(X)
dlc.
Ra(X)d
IC.
~t f o l l o w s from
Ra (XI (70.6) t h a t t h e l i n e a r f u n c t i o n a l $oproj c o n t i n u o u s , h e n c e an e l e m e n t o f C(X)',
on C ( X ) i s o r d e r Ra (XI and c o i n c i d e s w i t h on
QED
Remark.
The a b o v e t h e o r e m a n d ( 5 4 . 2 3 ) a r e s p e c i a l c a s e s
of a g e n e r a l theorem o f J . J . Masterson [ 5 2 ] , which s t a t e s t h a t an Archimedean R i e s z s p a c e a n d i t s D e d e k i n d c o m p l e t i o n h a v e t h e same o r d e r c o n t i n u o u s l i n e a r f u n c t i o n a l s t h e comment p r e c e d i n g ( 2 6 . 2 ) ) .
(cf.
( 5 4 . 2 2 ) and
C'(X)
Ra(X)'
=
3 C(X)'
369
The f o l l o w i n g a r e o f c o u r s e e q u i v a l e n t : 1'
c(x)'
20 c(x)
i s S e p a r a t i n g on c ( x ) ;
n
R ~ ( x = ) 0~; ~
t h e mapping o f C ( X ) o n t o C ( X ) Ra (XI i s an Ml-i s o m o r p h i s m . 3'
g i v e n by p r o j Ra(X)d
Combining t h i s w i t h (70.4), w e h a v e :
( 7 0 . 8 ) 'Theorem.
I f C(X)'
i s s e p a r a t i n g o n C ( X ) , t h e n Ra(X) d
i s t h e D e d e k i n d c o m p l e t i o n o f C(X).
Remark,
I n g e n e r a l , t h e D e d e k i n d c o m p l e t i o n o f C(X) c a n
b e r e a l i z e d i n a n a t u r a l way o n l y a s a q u o t i e n t s p a c e o f C'l(X), not as a subspace (cf. Chapterl7). s e p a r a t i n g on C(X)
-
The p r e s e n t c a s e - C(X)'
i s p r o b a b l y t h e o n l y one i n which t h e r e
e x i s t s a n a t u r a l , u n i q u e l y d e t e r m i n e d , s u b s p a c e o f C"(X)
which
c a n b e i d e n t i f i e d w i t h t h e d e s i r e d Dedekind c o m p l e t i o n .
(Using
t h e Axion o f C h o i c e , V e k s l e r
[ 5 3 ] shows t h a t t h e r e e x i s t i n
C"(X) many c o p i e s o f t h e D e d e k i n d c o m p l e t i o n o f C(X) c o n t a i n i n g C(X) i n i t s g i v e n i m b e d d i n g i n C"(X).) We c o m p l e t e t h i s 5 w i t h t h e c a s e t h a t C(X) i s D e d e k i n d complete.
(70.9)
I f C(X) i s D e d e k i n d c o m p l e t e , t h e n p r o j
maps C(X)
Ra ( X I o n t o Ra(X)
~
d
.
Chapter 16
370
Proof.
C o n s i d e r fERa(X)
d
;
we h a v e t o show f E C ( X ) Ra(Xld'
By t h e Remark f o l l o w i n g ( 7 0 . 3 ) , f ment R , h e n c e b y ( 7 0 . 2 ) , f
=
R
f o r some ~ s ecl e -
Ra (XI
But b y t h e h y p o t h e s i s
= u(k)
Ra ( X ) d m and ( 5 6 . 1 ) , u ( k ) E C ( X ) , s o we a r e t h r o u g h .
(>En
(70.10) Corollary.
I f C(X) i s D e d e k i n d c o m p l e t e and C(X)'
s e p a r a t i n g on C ( X ) , d o n t o Ra(X)
then p r o j
is
maps C(X) M I L - i s o m o r p h i c a l l y Ra (XI
.
T h i s f o l l o w s from ( 7 0 . 9 ) and t h e e q u i v a l e n c e s p r e c e d i n g (70.8). Remarks. -___
(1) I f t h e two c o n d i t i o n s o f ( 7 0 . 1 0 )
fied, X is called hyperstonian.
are s a t i s -
( 2 ) Note t h a t ( 7 0 . 1 0 ) i s a
p a r t i c u l a r c a s e o f Nakano's theorem ( 1 3 . 2 ) .
5 7 1 . The b a n d Ra(X)
dd
An i m m e d i a t e q u e s t i o n i s w h e t h e r Ra(X)dd c o n t a i n s a l l t h e lean elements.
We s h a l l s e e i n t h e n e x t 5 t h a t t h i s n e e d n o t
be s o . For e v e r y fERa.(!),
u ( f ) a n d k ( f ) a r e a l s o i n Ra(X) ( 6 7 . 3 ) .
Does t h i s p r o p e r t y h o l d f o r Ra(X)dd? However, b y ( 7 0 . 2 )
,
Again t h e a n s w e r i s n o .
C'(X)
=
Ra(X)'
0 C(XlC
371
F o r f E U ( X ) , i f f E R a ( X ) d d , t h e n u ( f ) , a ( f ) E R a ( X ) dd .
(71.1)
T h i s i m m e d i a t e l y e x t e n d s t o all f i n t h e R i e s z i d e a l g e n e r a t e d b y [J(X)
(71.2)
n
Ra(X)dd.
Indeed:
L e t I b e t h e R i e s z i d e a l g e n e r a t e d b y U(X)
n
Ra(X) dd .
Then f o r f € C " ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t : lo
fEI;
Z0
t(f),u(f)EI;
3'
1( f ) ,u(f) ERa(X) d d .
___ Proof. A l s o 2'
a n d 3'
2'
a r e c l e a r l y e q u i v a l e n t ( k ( f ) , u ( f ) ELJ(X)).
c l e a r l y i m p l i e s .'1
We show 1'
s i d e r f E I , a n d assume f i r s t t h a t f > 0.
i m p l i e s 3'.
Con-
Then t h e r e e x i s t s
g E U ( X ) n Ra(X)dd s u c h t h a t 0 < f < g , whence 0 < k(f)
u(g).
Since
gEIJ(X),
u(g)ERa(X)dd
(71.1),
0 , t h e n , by ( 7 1 . 1 ) ,
u(f)€Ra(X)dd,
hence u ( f ) i s l e a n , hence u ( f ) i s r a r e , hence f
is rare,
QED
5 7 2 . Examples
How l a r g e and how small c a n e a c h o f t h e b a n d s Ra(X)', C(X)',
Ra(X)dd, and Ra(X)d b e ? S i n c e e v e r y i n f i n i t e compact s p a c e h a s a t l e a s t one non (69.4) gives us:
isolated point,
(72.1)
Ra(X)'
= 0 i f and o n l y i f
X is a finite set.
A fort-
i o r i , t h e same h o l d s f o r Ra(X).
However, Ra(X)' i n f i n i t e : L e t X = OlN
may b e o n l y o n e - d i m e n s i o n a l , e v e n f o r X =
{1,2,...,n;*.,w~,
t h e Alex an d r o f f onec , Cl(X) = R 1( X ) ,
p o i n t c o m p a c t i f i c a t i o n o f N.
Then C(X)
and C"(X)
Let u b e t h e c h a r a c t e r i s t i c e l e -
ment o f
=
W.
Ru = Ra(X).
k"(X)
(cf. 539).
Then Ra(X)
=
=
n u , Ra(X)d = k m ( N ) , and Ra(X) dd
C o r r e s p o n d i n g l y , Ra(X)'
I n c o n t r a s t t o Ea(X)',
= lRw
we h a v e C(X)'
b u t i t may b e 0 f o r X i n f i n i t e .
and C(X)'
= L!
1
=
(IN).
# 0 for X finite,
Consider t h e c l a s s i c a l
Ct(X)
Theorem.
=
Ra(X)'
3 C(X)'
373
I f X i s d e n s e - i n - i t s e l f and
(Szpilrajn [51]).
s e p a r a b l e , t h e n f o r e v e r y n o n - z e r o r e g u l a r m e a s u r e 1-1, t h e r e exists
3
nowhere d e n s e s u b s e t Z s u c h t h a t p ( Z ) > 0 .
I n o u r c o n t e x t t h i s becomes:
(Szpilrajn).
(72.2)
I f X i s d e n s e - i n - i t s e l f and s e p a r a b l e ,
t h e n f o r e v e r y p E C t , ( X ) , p > 0 , t h e r e e x i s t s fERa(X)+ s u c h t h a t ( f , u ) > 0.
Hence
(72.3) Corollary.
I f X i s d e n s e - i n - i t s e l f and s e p a r a b l e , t h e n
c(x>c = 0.
I n p a r t i c u l a r , C(X)' C(X)'
=
0 , t h e n Ra[X)'
=
=
0 for X a real interval.
Cl[X),
and t h e r e f o r e Ra(X)dd
When =
C'I(X).
Thus i n t h i s c a s e Ra(X) i s o r d e r d e n s e i n C"(X). A c o m p l e t e l y d i f f e r e n t e x a m p l e o f a s p a c e X w i t h C(X)'
is X
=
BN\N:.
Dieudonn6 h a s shown t h a t i t h a s i n f a c t a much
stronger property (cf.
[ 1 4 ] , Lemma 8 ) .
A t t h e o t h e r e x t r e m e C(X)'
X
=
= 0
& i s an example.
c a n b e s e p a r a t i n g on C(X),
A n o t h e r e x a m p l e i s o b t a i n e d by t a k i n g
374
Chapter 1 6
f o r C(Y) t h e b i d u a l C"(X),
X any compact s p a c e .
C l ( X ) , w h i c h i s s e p a r a t i n g on C"(X).
(L"(p))c
= L
=
A more i n t e r e s t i n g e x a m p l e
1-1 t h e L e b e s g u e m e a s u r e on some r e a l i n -
i s t h e MU-space L a ( , ) ,
terval.
Here C(Y)'
1
(p),
w h i c h i s s e p a r a t i n g on L " ( p ) .
We c o n c l u d e w i t h some r e s u l t s on t h e v a g u e c l o s u r e s o f Ra(X)'
o r e q u i v a l e n t l y , on u(Ra(X) d d ) a n d u ( R a ( X ) d ) .
a n d C(X)',
Let W be t h e s e t o f i s o l a t e d p o i n t s o f X , and 2
=
X\W.
Then ( c f . ( 3 6 . 7 ) a n d t h e d i s c u s s i o n f o l l o w i n g ( 3 1 . 7 ) ) ZL
s o C1(X)
=
C 1 ( Z ) 0 al(W)
( 6 9 . 4 ) , W c C(X)'
a n d C"(X)
=
C"(Z)
o
=
co(W),
A l s o , by
a"(W).
a n d Z c Ra(X)'.
(72.4) Let W be t h e s e t o f i s o l a t e d p o i n t s o f X , and Z
=
X\W.
Then (i)
t h e v a g u e c l o s u r e o f Ra(X)d i s C l ( Z ) ;
(ii)
u(Ra(X)
dd
( i i i ) a(Ra(X) d )
Proof.
=
a"(W).
( i ) and ( i i ) are e q u i v a l e n t by t h e p r e c e d i n g
identities (cf. Z c Ra(X)',
) = C"(Z);
( 5 2 . 4 ) ) ; and a l s o ( i i ) and ( i i i ) .
Since
and C'(Z) i s t h e v a g u e l y c l o s e d band g e n e r a t e d by Z ,
i t f o l l o w s C ' ( Z ) i s c o n t a i n e d i n t h e v a g u e c l o s u r e o f Ra(X)'. 1 F o r t h e o p p o s i t e i n c l u s i o n , a (W) c C(X)', h e n c e Ra(X)' c [al(W)ld i n C'(Z).
=
C l ( Z ) , h e n c e t h e v a g u e c l o s u r e o f Ra(X)'
is contained
Thus ( i ) h o l d s , a n d we a r e t h r o u g h . QED
Note t h a t
1(W) = ( C ( X ) c ) a a n d ( t h e r e f o r e ) L"(W)
=(Ra(X)d) a .
C'(X)
Ra(X)'
=
This gives us (11) below.
3 C(X)'
375
include (I), which we have re-
We
marked earlier, €or comparison.
(72.5) Corollary 1 . [ I ) The following statements are equivalent: lo
c(x)c
2'
Ra(X)'
3'
Ra(X)dd
0;
=
C'(X);
=
C"(X)
=
- otherwise stated,
Ra(X)
is
order dense in C"(X).
(11) The following weaker statements are equivalent: lo
(c(x)c)a
'2
Ra(XlC is vaguely dense in c'(x);
3'
u ( R ~ ( X ) ~ ~ )= C"(X).
=
0;
We single out the following for emphasis.
(72.6) Corollary 2 .
If X is dense-in-itself, then U(REI(X)~~)
C" (X) .
Other consequences of (72.4):
=
376
C h a p t e r 16
-__ Proof.
(a) f o l l o w s from (72.4
( i i i ) and ( 5 2 . 1 ) .
fol-
(b)
lows from ( 7 2 . 4 ) , ( 3 3 . 6 ) , a n d ( 5 1 . 1 0 ) .
Q E 13
F i n a l l y , a n e n l i g h t e n i n g e x a m p l e i s s u p p l i e d b y C(X)
L m ( u ) , 1-1 t h e L e b e s g u e m e a s u r e on some r e a l i n t e r v a l . a l r e a d y r e m a r k e d t h a t C(X)'
= L
1
(p),
Cl(X).
d
E q u i v a l e n t l y , u(Ra(X) )
=
We h a v e
hence i s s e p a r a t i n g on
C(X), a n d t h u s i s v a g u e l y d e n s e i n C l ( X ) . l a t e d p o i n t s , s o , b y ( 7 2 . 6 ) , Ra(X)'
=
But X h a s no i s o -
i s a l s o vaguely dense i n
u(Ra(X)
dd
) = C"(X).
We c a n now a n s w e r ( i n t h e n e g a t i v e ) t h e two q u e s t i o n s r a i s e d a t the beginning of 571. Ra(X) d # 0 w h i l e k(Ra(X) d ) lean.
=
I n t h e above e x a m p l e ,
0 , hence a l l i t s elements a r e
We t h u s h a v e l e a n e l e m e n t s n o t c o n t a i n e d i n Ra(X)
And s i n c e u(n (X)
dd) R a ( X ) dd such t h a t u ( f ) E , Rn(X) .
=
dd
.
l l ( X ) , w e h a v e an e l e m e n t fERa(X)
dd
CHAPTER 1 7
TfIE D E D E K T N D C O M P L E T I O N OF C ( X )
5 7 3 . The Maxey r e p r e s e n t a t i o n
By a n a b u s e o f l a n g u a g e , we w i l l c a l l a R i e s z i d e a l I o f
C"(X) I
n
lean
i f a l l of i t s elements are lean - equivalently, i f
c ( x ) = 0.
( 7 3 . 1 ) Theorem.
i d e a l I , C"(X)/I
Proof.
(Maxey [ 3 7 ] ) .
F o r e v e r y maximal l e a n R i e s z
i s t h e D e d e k i n d c o m p l e t i o n o f C(X).
T i s norm c l o s e d , b y ( 6 5 . 3 ) ,
s o C"(X)/I
i s an
M I - s p a c e w i t h qIl(X) f o r t h e u n i t (q t h e q u o t i e n t m a p ) , a n d q i s an MI-homomorphism.
I t f o l l o w s q maps C(X) M I L - i s o m o r p h i c a l l y
onto q(C(X)).
(*)
q(C(X)) i s Dedekind d e n s e i n C"(X)/I.
By ( 7 . 6 ) , w e n e e d o n l y show t h a t q ( C ( X ) ) h a s a r b i t r a r i l y
small e l e m e n t s i n C " ( X ) / I .
Consider fEC"(X)/T,
t o show t h e r e e x i s t s g E q ( C ( X ) ) s u c h t h a t 0 < 377
> 0 ; we h a v e < If.
Otherwise
378
Chapter 1 7
s t a t e d , i f we d e n o t e by H t h e Riesz i d e a l o f C"(X)/T by f , t h e n we h a v e t o show t h a t H
n
generated
q(C(X)) # 0 .
c o n t a i n s I p r o p e r l y , h e n c e , by h y p o t h e s i s , i t i s n o t
q-l(H)
l e a n : q - l ( ~ )n C ( X )
+
0.
I t f o l l o w s 11 n q ( c ( x ) )
+
0.
T h i s e s t a b l i s h e s ( * ) ; we c o m p l e t e t h e p r o o f b y s h o w i n g t h a t C"(X)/I C"(X)/I;
(cf.
i s Dedekind c o m p l e t e .
w e show t h e r e e x i s t s ?EC"(X)/I
(7.1)).
Similarly, s e t
-
A1
5
-
B1,
(A,B)
Let
Set
gl
b e a Dedekind c u t i n
i n q ( C ( X ) ) , and n q ( C ( X ) ) , a n d B1
il =
A1
=
=
hence - q b e i n g an isomorphism
fEC"(X) s u c h t h a t A1
5 f
< B1.
Then
il 5
e l e m e n t o f A i s a supremum o f e l e m e n t s o f
ii
i s an infimum o f e l e m e n t s o f
G1,
q-'(i,) -1 q (B1)
n
A1
qf
u(VclR(ua)); show t h a t u = U ( V ~ ( )u) . We o f c o u r s e h a v e u a a we show t h a t f o r e v e r y u s c e l e m e n t v s u c h t h a t v > u(V,R(u,)), Now s e t u =
u(V
For e v e r y a,
w e have v > u.
(ua i s r e g u l a r ) .
v > ~ ( u , ) , hence v > uR(ua) = ua
hence v > u(V u ) I t follows v > v u acl a a'
=
u.
QED
( 7 4 . 4 ) C o r o l l a r y 1. (i)
ul, u 2 r e g u l a r u s c e l e m e n t s i m p l i e s ulvu2 i s r e g u l a r .
( i i ) R1,
R2 regular
RSC
elements implies k 1 ~ k 2 i s regular.
Dedekind Completion o f C(X)
381
( 7 4 . 5 ) C o r o l l a r y 2 . Under t h e h y p o t h e s i s o f ( 7 4 . 3 ) : ( i ) v,u(fa)
- v,a(fa)
i s rare;
( i i ) A,u(fa)
- ~,l(f,)
i s rare.
Proof.
we p r o v e ( i ) .
V,u(fa)
v u k ( f a ) 5 u(v,f,)
- VaR(fa)
proof o f ( 7 4 . 3 ) .
Now a p p l y ( 6 7 . 1 6 ) .
5 U ( Vc lfc l ) , s o 0
= 6(vaa(f,)),
< V,u(f,)
-
t h i s l a s t by t h e
QED
We w i l l d e n o t e t h e s e t o f r e g u l a r u s c e l e m e n t s by C(X)Ur and t h e s e t o f r e g u l a r Rsc e l e m e n t s by C(X)". The Dedekind c u t s o f C ( X ) with t h e
a r e i n one-one correspondence
r e g u l a r p a i r s i n C(X), h e n c e w i t h t h e r e g u l a r u s c e l e -
ments and w i t h t h e r e g u l a r Rsc e l e m e n t s .
Since t h e r e i s a
o n e - o n e c o r r e s p o n d e n c e between t h e Dedekind c u t s o f C(X) and t h e e l e m e n t s o f i t s Dedekind c o m p l e t i o n ? ( X ) , i t f o l l o w s t h e r e i s one between t h e r e g u l a r u s c e l e m e n t s and t h e e l e m e n t s o f
t ( X ) ; and s i m i l a r l y f o r t h e r e g u l a r Q s c e l e m e n t s .
Thus, b y
t h e Maxey t h e o r e m :
( 7 4 . 6 ) For a maximal l e a n R i e s z i d e a l I o f C'l(X), t h e q u o t i e n t map C"(X) %>
C"(X)/I
i s a b i j e c t i o n of each of the follow-
i n g s e t s onto C"(X)/I:
(i)
c(x)"
(ii) c(x)'~.
As a c o r o l l a r y , we have ( c f .
[13]):
Chapter 1 7
382
( 7 4 . 7 ) Theorem.
(Dilworth).
C(X)"
a n d C(X)"
a r e each iso-
m o r p h i c a s l a t t i c e s t o t h e Dedekind c o m p l e t i o n o f C ( X ) .
(So,
i n p a r t i c u l a r , t h e y a r e Dedekind c o m p l e t e . )
We w i l l n e e d t h e f o l l o w i n g g e n e r a l i z a t i o n o f ( 7 4 . 6 ) . A c t u a l l y , we w i l l n e e d i t o n l y f o r I more g e n e r a l l y . c o n t a i n s Ra(X)
(74.8)
R a ( X ) , b u t we s t a t e i t
=
R e c a l l t h a t e v e r y maximal l e a n R i e s z i d e a l (67.5).
L e t I be a l e a n R i e s z i d e a l c o n t a i n i n g Ra(X), and A modulo I .
a n e q u i v a l e n c e c l a s s o f C"(X)
I f A c o n t a i n s an k s c
element o r a usc element, then:
(i)
A c o n t a i n s e x a c t l y one r e g u l a r p a i r
(ii)
f o r e v e r y ksc e l e m e n t R i n A , u ( a )
every usc element u i n A,
USC
Proof.
=
uo, and f o r
~ ( u )= Q,;
( i i i ) k0 i s t h e l a r g e s t
smallest
(ko,uo);
RSC
e l e m e n t i n A , a n d uo i s t h e
element.
( i ) S u p p o s e A c o n t a i n s a n Rsc e l e m e n t R .
u ( k ) - RERa(X)
again, Ru(k)EA.
Then
( 6 7 . 1 6 ) , hence u ( 2 ) E A ; and a p p l y i n g (67.16) S e t uo
=
u ( k ) , R,
=
a u ( ~ ) . (k0,uo) i s a
r e g u l a r p a i r ; t h a t i t i s u n i q u e w i l l f o l l o w from ( i i ) . ( i i ) C o n s i d e r two E S C e l e m e n t s (u(k23 - k 2 )
+
(E2 - k l )
+
(kl
1 , ~ 2i n A .
- u(al))ERa(X)
+
u ( R ~ )- u ( a , ) = I
+
Ra(X)
I t f o l l o w s from (67.17) and (67.9) t h a t uku(k2) = u k u ( k l ) .
=
I. But
D e d e k i n d C o m p l e t i o n o f C(X)
and uRu(R1)
uilu(k2) = u(k,)
same u 0 .
=
u(Rl).
Thus R 1
and
a2
give the
S i m i l a r l y , two u s c e l e m e n t s i n A g i v e t h e same L o .
( i i i ) Given a n y Lsc e l e m e n t R i n A , R f i k(uo)
38 3
=
5 u(R)
=
uo, so
S i m i l a r l y , f o r any u s c element u i n A , u
Po.
2 uo. QED
Contained i n t h e above and t h e comment f o l l o w i n g i t
-
i t can a l s o be s e e n from (65.2)
-
is the r e s u l t that the only
lean r e g u l a r element i s 0. Finally,
i f ( a n d o n l y i f ) C(X) i s D e d e k i n d c o m p l e t e , t h e n
t h e o n l y r e g u l a r e l e m e n t s a r e t h e e l e m e n t s o f C(X):
( 7 4 . 9 ) The f o l l o w i n g a r e e q u i v a l e n t : 1'
C(X) i s D e d e k i n d c o m p l e t e ;
2O
C(xpr
=
C(X);
3O
C(X)Q'
=
C(X).
This is contained i n the r e s u l t s of t h i s be s e e n from (56.1)
§.
I t can a l s o
(and ( 7 4 . 2 ) ) .
575. A t h i r d r e p r e s e n t a t i o n
By t h e Maxey t h e o r e m ( 7 3 . 1 ) , t h e D e d e k i n d c o m p l e t i o n A
C(X) o f C(X) i s a n Mn-homomorphic image o f C"(X), w i t h C(X) mapped M X - i s o m o r p h i c a l l y ,
s u c h t h a t t h e D e d e k i n d c l o s u r e of
Chapter 1 7
384
A
( t h e image o f ) C ( X ) i s i t s D e d e k i n d c o m p l e t i o n .
C(X)
is
c l e a r l y t h e s m a l l e s t MI-homomorphic image o f C1'(X) w i t h t h i s property.
5 , we p r e s e n t w h a t i s p r o b a b l y t h e
In the present
l a r g e s t Mn-homomorphic image o f C1'( X)
w i t h t h e same p r o p e r t y .
We e x t e n d o u r term "Riemann s u b s p a c e " ( 5 5 7 ) t o q u o t i e n t spaces of
Cl'(X).
Given a norm c l o s e d Riesz i d e a l I o f C"(X),
t h e n by t h e Riemann s u b s p a c e o f C 1 I ( X ) / I , we w i l l mean t h e Dedekind c l o s u r e o f q ( C ( X ) ) ( q t h e q u o t i e n t map); we w i l l d e n o t e i t by R ( C " ( X ) / I ) .
For a band o f Crl(X), t h e d e f i n i t i o n r e d u c e s
t o t h e former one. The blaxey t h e o r e m c a n now be s t a t e d a s f o l l o w s : I f I i s a maximal l e a n R i e s z i d e a l , t h e n (i)
R(C"(X)/I)
( i i ) R(C"(X)/I)
We show t h a t f o r I
=
i s Dedekind c o m p l e t e , and =
C"(X)/I.
Ra(X), ( i ) s t i l l h o l d s ( ( 7 5 . 3 ) b e l o w ) .
I n t h e f o l l o w i n g two lemmas, q i s t h e q u o t i e n t map o f C'I(X) o n t o C"(X)/Ra(X).
In general, q is not order continu-
o u s ; however, i t h a s a p a r t i a l o r d e r c o n t i n u i t y :
(75.1)
Lemma 1.
( i ) Given a s e t {u } o f u s c e l e m e n t s , c1
.
u = A u i m p l i e s qu = A q u a a a a ( i i ) Given a s e t { i } o f Rsc e l e m e n t s , a i = v i implies q i = V q i acl a a
.
P-r o o f . -
We p r o v e ( i ) .
S i n c e q p r e s e r v e s o r d e r , qu
5 qua
D e d e k i n d C o m p l e t i o n o f C(X)
< qua f o r a l l a ; S u p p o s e t h a t f o r some f E C " ( X ) , q f -
for a l l
we show q f < qu.
The a s s u m p t i o n t h a t q f < qu
u s ( f - u )'€Ra(X)
for a l l a.
c1
(f
-
385
u)+ERa(X),
a
for a l l a gives
I t f o l l o w s from (68.6) t h a t
hence q f 5 qu. QED
(75.2)
Lemma 2 .
The f o l l o w i n g c o i n c i d e :
lo
q(c(x)ur);
2O
q (C (XI R r ) ;
3O
q(C(XIU);
4O
q(C(X)5;
5'
R [ C" (X) /Ra (XI ] .
Proof.
(74.8),
That l o ,
2O,
3O,
a n d '4
c o i n c i d e f o l l o w s from
s o i t s u f f i c e s t o show t h a t q ( C ( X ) u ) = R [ C " ( X ) / R a ( X ) ] . c h o o s e A , B c C(X) s u c h t h a t V A
Given u€C(X)',
Then b y Lemma 1, A q ( B )
quE R[C" (X) / Ra (X) ] Conversely,
=
qu
=
q(R ( u ) )
= Vq(A)
=
,
a(u), AB
=
u.
hence
. if
?
= Aq(A),
A c C(X), t h e n , s e t t i n g u = A A
a n d a p p l y i n g Lemma 1 a g a i n , w e h a v e q u =
?.
Thus ? € q ( C ( X ) u ) . QED
( 7 5 . 3 ) Theorem.
R[C"(X)/Ra(X)]
i s Dedekind c o m p l e t e , h e n c e i s
t h e D e d e k i n d c o m p l e t i o n o f C(X).
Proof.
S i n c e t h e q u o t i e n t map q maps C(X)ur o n e - o n e
Chapter 1 7
386
and o r d e r p r e s e r v i n g o n t o R[C"(X)/Ra(X)]
( ( 7 4 . 8 ) and ( 7 5 . 2 ) ) ,
t h i s f o l l o w s from ( 7 4 . 7 ) . Q E 1)
i s D e d e k i n d c o m p l e t e , i t i s Dedekind
S i n c e R[C"(X)/Ra(X)] c l o s e d i n C"(X)/Ra(X).
i t h a s a much s t r o n g e r
Actually,
property:
((75.4)
I f a subset
o f R[C"(X)/Ra(X)]
( s a y ) , t h e n V F-in-C'l(X)/Ra(X) a R[C"(X)/Ra(X)].
Proof.
-~
-
fa
= q(ka)
k
< AIL(X).
a-
e x i s t s and l i e s i n
{fa} i lq(lL(X)) f o r some A.
f o r some
RSC
element k
Set R = V R cta
.
i s bounded a b o v e
c1
(75.2),
Now f o r e a c h a, a n d we c a n assume
Then, by ( 7 5 . 1 ) ,
qk
=
V
cta
. QED
Whence, p e r h a p s s u r p r i s i n g l y ,
( 7 5 . 5 ) Theorem.
Proof. C"(X)/Ra(X).
R[C"(X)/Ra(X)]
Suppose
i s o r d e r c l o s e d i n C''(X)/Ra(X).
{ f a ] c R[C"(X)/Ra(X)],
By ( 7 5 . 4 ) , f o r e v e r y
a,
e x i s t s and b e l o n g s t o R[C"(X)/Ra(X)].
qct =
Since
'from ( 7 5 . 4 ) a g a i n t h a t f€R[C"(X)/Ra(X)].
0 , we h a v e aAb - aAc
1,
and
-
ua,
Chapter 18
406 hl
=
P1
h
=
(Pa
c1
-
v B < a p I+
c1
@
It follows f r o m (78.5) that p+ = Ch
ci
.
> 1.
Thus, if we show that
{ g c x } , {ha} satisfy the conditions of ( 8 0 . 4 ) , i t will f o l l o w
that p + is meager. Cg,
exists: in effect, by (78.5) again, 7 g M
= VR(l =
k.
Combining this with (79.5) gives us C g M 5 u ( C k ( g a ) ) ; thus (ii) is satisfied. a l l a.
q,
Since 0 < h (x 5 p,
=
(p - 4,)'.
ha is mcager f o r
It remains to show that 0 < h M 5 pa €or each a.
are positive.)
QED
The Meager E l e m e n t s
(80.9) Thcorcm. ti
407
For e v e r y f E C " ( X ) , t h e r e e x i s t s a u s c e l e m e n t
such t h a t (i)
~ i r ( f