•
:,t,
.
•. t
.-
,',
..
)
..
,~
t-
030 460"
ED 18' 8t3 ,
I
>
.
,:\
Kogan, ,6. Yu .. I rhe Appli~ati...
39 downloads
957 Views
2MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
..
•
:,t,
.
•. t
.-
,',
..
)
..
,~
t-
030 460"
ED 18' 8t3 ,
I
>
.
,:\
Kogan, ,6. Yu .. I rhe Appli~ation ~f Me~anics to
AUTH~R
'rI~LE
"
Mathe.atic~. Univ.~ Ill. "Dept.
Lecture$ in INSTlrurION
Chica9~ N~tiona 1
SPONS AGENCY
74
pas
DATE GRANr
,
.
N01'E
ii,
j
"
.
Ce
of Mathe.at s. Scietlce Foun,da tion, Wa,t$ington,', D. C. '
,
\
I
N S~~:;~B 847 (MA,
6Sp.: for related docuaentsl see SE 030 q~'-465. Not a vailab le in ha rd cop y t1 \Ie t:): cop yright ,restr lct ion s. rranslated and adapted from the Rus~ian edition. The University of Chicago Press, Chica~o, IL',60637, , (Order No. 450163: $~.50'. " i, ,. l
, '8P01 Plus postage.' peNot 'Available fios ED~S. DES:RrPrORS 4cColleqe !!athematics: Force: Geometric conc~pts-: " *Geolletry: Bigher Education: Lecture '!!et:hod; "*Mat~e.aticaI Applications: *Mathema~ic~: *Mech!ni:s
BDRS PIU CE
(Physi: s)
,
...,
Pr,esented in thi-s trl\nsHltion are three chapters. , Chapter I discusses the comp"os!~l~n of forces !ind several theorels !)f g~OIetry ~re pr!)vpd asing the'fundamental concepts and c~rtain l~ws of statics. Cha~pter II discusses the ~rpetu9.1 mot.ion postqlate; sever!l ;eometri:::. th20rems are proved, u$ing th~ postulate th~t p~rp~ual motion is impossib~e. !nCnapter IIl, the center o~ ... Grav~, Potential E!lergy. an4work. are, discussed. (HK) , . '
-
,
/
-
******************~***************.****************************~.*~*4c**
* • *
Raproductions supplied by EDRS ~re the hest that can be maj1 from ~he oriqinal document. ,
~
* *
*************************.******************~************************** .~
•
··:f]r~~1j'~~r~}I~:~~~*!;:'i!21~%~~4®~~~2i'~i~~:: :».i;:~-j·.," ", "'.':;:1'::>':;:.'" ~\ :~t:"',!,
::: >,'~.:.. "
. :~": l' • ~~.
•
'.
!.
U.S. O'PA_TMaHT OF HeALTH. UUCATtON • aL".". N.ttONAL INSTaTU'" Of. .OVUoTIOH
: ~~~StDoo;xU~;~~A~e~i~:EDR~= . THE PERSON OR-ORGANIZATIQN ORIGIN-ATiNO IT POIN"S-oF VIEw OR OP .... IOHS STATED DO NOT NECESSARILV ,.£PAE-· SENT OFF1CIAL NATIONAL. INSTITUt.E OF eDUCATION POSITION OR POLICY .
•
REPRO~THIS
"I¥RMISSION TO MATERIAL IN ......HAS BEEN GRANTED BY
MJCRO~~y
Mar¥ .
h·~N:f,$ ·
N~E
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERte)."
..
'-:,',
, ~.
'."
'. , '2
.'
'"",
I. '
:
.,
.....
',." ,
-
...
, .'
.\
'"
./
.,
, .'
'.
... Popular Lectures in ~thematiCS' SolIoII;t~ Survey of Recent East European Literature •
I
•
A projeCt conducted oy lzaak Wirszup, Department of Mathetltatics. the University of Chicago, under a .grant from the National Science Foundation .
.
.~
,
........ ,
~ ~
L
).\
"
•
-
.,1
'1
B~Yu.
. ..
,
Kogan
,
.
"
'
•
' '
,
.,
The."
..
..~,',' '
-:of,
-
_/'
-
~ ~'~
.Mechatiics" to .Geometry
, /
'1" ~.
,
"
l
_~
.. '" \
.' .
,
•
Translated and •
adapted from the Russian by
,...
.
David J. Sookne and Robert A. Hummel
.
,
•
.
• De University of Chicago Press Chicago and London
.. I
I
. ?
'
,
.
'~
-,~'.:,.-. (-.
~Application ~
."
,
.
'
, ,.\
•
...
.'
0
. Of
.
•
(I
"
...
~.
,
:
.
')
"
. "
.' .)
.,
..
• The University of Chicago Press, Chicago 6(}637 Press, Ltd .• London
1lle University of Chicago
lC 1974 by The University of Chicago All rights reserved. Published 1974 Printed in the Un.it~d States of America Intornational Standard Book Number: (}-"'226--450!6-3 • Libiafy of Congress Cataloi Card Number: 73-89789 .
.
Q~,'
.. \
(
"
'.
5 \
.
..
•.... :.': :,1' ,,~.
-, "
, ~.
"
• 'i..-.-
.. ' Contents'
:
.. .,
., "l'
..
. ,
. .)
'.
' ..
,
,
...
J
..
. . • •
~~
.'
,
.
'
, "
"
"
4
-04"
.
,1
,;
The Composition of FOrceS
"
, ~
•
.,'
•
.' obtain their rcsultant.Ru.' The fo~ P s and Rill. are now in equilibrium. -- But this is possible only if they have a common line of action. Thus, the line of action of the force P s passes through the point O-that is, the' lin~ of action of all three forces ~t one another,at this point. " \ USing this propOsition;'we shall' now prove some theorems of geometrj. ~ ,
-
..
.
!
.
'1.2. A,1bi:orem GO the ADale Bisectors of • ~
, ,J
, Let'us consider six equal forces Flo F~ •.. '~'FG acting along the sides -er a triangle, as shown iII figure 1.8. Since these forces cancel onc another in pairs, they are clearly in ~uilibrium, an~ therefore, the resultants ltl~' i.23 • and ~5 are 'also'1n equilibrium.'Bu( the forces RUh R~s! and ~~ arc, directed ~ong thebisect.ors of the interior angles 'T • A.,' B, and C. (The parallelograms are rhqm~i, and the' ~iagona1 is an , angle bisector.) This leads, consequently. to the following theorem: . , -\ THEoREllt 1.1. The bisectors of the interior. angles of a triangle inter-
sect at a point. 8
B
". Fi~,
Fig, 1.8
•
1.9
,-' "
1.3. ADother Theorem on the Angle B'isectors of a Triangle
•
.!
Let us consider the six·e'qulli forces Flo Fill' , ., Fs shown in figure 1.9. These forces are in equilibriuIl! since each of the three' l!airs of forces, taken conse