Lecture Notes in Control and Information Sciences Edited by M.Thoma
73 III
IIII
IIIIIIIIII
IIIII
J. Zarzycki
Nonli...
61 downloads
603 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Control and Information Sciences Edited by M.Thoma
73 III
IIII
IIIIIIIIII
IIIII
J. Zarzycki
Nonlinear Prediction
Ladder-Filters for Higher-Order Stochastic Sequences I
IIIIIII
II
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIII
Springer-Verlag Berlin Heidelberg New York Tokyo
Series Editor M.Thoma Advisory Board A.V. Balakrishnan • L. D. Davisson • A. G. J. MacFarlane H. Kwakernaak • J. L. Massey • Ya Z. Tsypkin • A. J. Viterbi Author Jan Zarzycki Institute of Telecommunication and Acoustics The Technical University of Wroclaw ul. B. Prusa 5 3 / 5 5 50-317 Wroclaw - Poland
ISBN 3-540-15635-6
Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-38?-15635-6
Springer-Verlag New York Heidelberg Berlin Tokyo
Library of Congress Cataloging in Publication Data Zarzycki, J. (Jan) Nonlinear prediction ladder-filters for higher-order stochastic sequences. (Lecture notes in control and information sciences; 73) Bibliography: p. 1. Stochastic sequences. 2. Prediction theory. 3. Filters (Mathematics) I. Title. I1. Series. QA274.225.Z37 1985 519.2 85-12668 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under c:354 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich. © Springer-Verlag Berlin, Heidelberg 1985 Printed in Germany Offsetprinting: Mercedes-Druck, Berlin Binding: LiJderitz und Bauer, Berlin 2161/3020-543910
PREFACE
In t h i s w o r k w e s h a l l b e c o n c e r n e d with t h e p r o b l e m of n o n l i n e a r
least-squares linear
prediction of h i g h e r - o r d e r stochastic s e q u e n c e s
orihogonal
digital
filters. The
nonlinear
problem
as a generalization of the lineaLr least-squares The cond-order
linear l e a s t - s q u a r e s
will be
prediction problem.
for w h i c h
white noise
when
ven sequence)
or s h a p i n g
filters ( w h o s e
modeling
statistically equivalent to the given s e q u e n c e ,
when
sire p r o c e d u r e s ,
in w h i c h
one
will not h a v e
e a c h time the permitted complexity derlies both the ladder-structures ry, a n d
the theory of orthogonal
the gi-
output is
driven b y white noise)
remarkable
implemented
Hence,
expa~sions
means
plemented
using
(namely CORDICS
of a n
any
orthogonal filter w h o s e
via recur-
the w h o l e
the s a m e
in m o d e r n
inherent numerica/
result of this theory is t h a t
alized b y
The
assures
computed
to r e c o m p u t e
is increased.
(Fourier)
be
of the m o s t importa~nt proper~y of the orthogonal
vat[on of 'energy' w h i c h A
driven b y
established° In practice, the linear or£hogonal filters c a n
One
with s e -
the orthogonal prediction or
innovations linear filters ( p r o d u c i n g
can be
considered
estimation theory is a s s o c i a t e d
stochastic s e q u e n c e s ,
as well a s
using non-
filter
idea u n -
digital filters theo-
in Hilber~
spaces.
digital filter is p r e s e t stability of the filter.
transfer function c a n modular
structure c a n
sophisticated 'building-blocks' with V L S I
be be
reim-
integrated circuits
processors).
linear theory results in the o p t i m u m
approximation of s e c o n d - o r d e r
sequences.
(least-squares)
Therefore,
stochastic
the linear estimation
IV filter b e c o m e s properties
the best possible
are completely c h a r a c t e r i z e d
If the undertyin~ s e q u e n c e may
be
In this w o r k least-squares
we
wish
sequence
the s e c o n d - o r d e r
(whose
statistics).
the linear estimation a c c u r a c y
a norz[inear a p p r o a c h
in order to i m p r o v e
to the p r o b l e m
the a c c u r a c y .
to p r e s e n t efficient algorithms of nonlinear
prediction filters for higher-order stochastic s e q u e n c e s ,
sulting in the o p t i m u m
approximate
re-
nonlinear digital filters of the Volterra-
class, ri~hese nonlinear ladder-filters will generalize the linear fil-
ters, p r e s e r v i n g zations, a m o n g order
by
is non-Gaussio.n,
not satisfactory. In that c ~ e ,
shot~Id b e introduced
Wiener
filter for ~ Gatlssi~n
m o s t of their properties
will mention h e r e
reali-
for higher-
stocha.stic s e q u e n c e s .
only t h o s e p a p e r s
ted to the subject of this work, the p a p e r s
modular
others), a n d yielding better estimation a c c u r a c y
(o.nd non-CTaussi~.n)
We
(orthogonality a n d
which
reffering for m o r e
citied ( a n d the r e f e r e n c e s
are closely c o n n e c -
complete
bibliography to
therein),
ACKNOWLEDGMENTS
I am p a r t i c u l a r l y indebted to Professor Patrick DewZlde of the D e l f t University of Technology for ~is helpful suggestions and h i n ~ introduced in many stim~at~ng and f r u i t f ~
disc~sio~,
~ p e c i a ~ l y d~ring my o n e - y e n s t a y
in Delft, which h ~ undoubtedly inspired t h i s work. I am ~ o
g r a t e f u l to P r o f ~ s o r M~ian S. P i e k ~ s k i of the Technical
Unive~Zty of Wro~aw for his valuable commen~ and d ~ c ~ s i o n s
concerning
t h ~ work. I wish to thank ~ . manuscript.
Zdzislawa Zabska for her c ~ e f u l typing of t h i s
CONTENTS
CHAPTER
i, I N T R O D U C T I O N
CHAPTER
2. N O N L I N E A R A UNIFIED
.......,........................................... ............... PREDICTION APPROACH
I
FILTER PROBLEM: .................................................... 1 3
2.1 H i g h e r - o r d e r stochastic sequences ........................................... 1 3 2.2 N o n l i n e a r lea~st-squares prediction: Algebraic a p p r o a c h ......... 20 2.3 N o n l i n e a r least-squares prediction: Geometric a p p r o a c h ........ 24: 2.3.1 S p a c e of t h e r e g u l a r V o l t e r r a f u n c t i o n a l p o l y n o m i a l s .......................... ............................................ 2 4 2.3.2 S p a c e of g e n e r a l i z e d c o e f f i c i e n t - m a t r i c e s .................. 26 2.3.3 S p a c e of g e n e r a l i z e d z - p o l y n o m i a l s ........................... 2 9 2.3.4 I s o m e t r i e s ........................................................................ 3 2 2.3.5 S t o c h a s t i c n o n l i n e a r e s t i m a t i o n .................................... 3 5 2.3.6 O p t i m u m generalized matrix approximaUon ................. 36 2.3.7 O p t i m u m generalized polynomial a p p r o x i m a t i o n .......... 3 8 CHAPTER
3.
GENERALIZED
NONLINEAR
LA/DDER-F'ILTERS
.............
4O
3.1 I n d e x - s e t s a n d their o r d e r i n g ...................................................... 4 1 3.2 N o n l i n e a r filter algorithm: t i m e - d o m a i n a p p r o a c h ....................... 4 8 3.2.1 'Local' e s t / m a t e s a n d errors..• ......................... ............. 5 1 of s u b s p a c e s ......................................... 5 5 3.2.2 D e c o m p o s i t i o n b a s e s .......................................................... 5 7 3.2.3 O r t h o n o r m a l Cholesky factorizat.[ons ............................ 6 0 3.2.4 G e n e r a l i z e d F o u r i e r s e r i e s e x p a / n s i o n ..................................... 6 1 3.2.5 M - D r e c u r s i o n s ................................................ 6 2 3.2.6 O r d e r - u p d a t e approxim~ion of t h e M - D impulse 3.2.7 O p t i m u m responses•..•••....•.••••.•••••....••.•.•.•...•......•..•.....••••...•.••.•.•.....7 0 3.2.8 E s t i m a t i o n a c c u r a c y ........................................................ 7 1 3.3 N o n l i n e a r filter algorithm: t r a n s f o r m - d o m a i n a p p r o a c h .............. 7 4 3.3.1 'Local' e s t i m a t e s a n d e r r o r s ......................................... 7 6 3.3.2 D e c o m p o s i t i o n of s u b s p a c e s , ON bases and M-D ~'~ourier e x p a n s i o n ................................................. 7 9 3.3.3 0 r d e r - u p d a t e r e c u r s i o n s ................................................ 8 3 3.3.4 Optimum ON approximation of t h e s e t of M - D t r a n s f e r f u n c t i o n s ............................................................ 8 5 3.4 N o n l i n e a r time-variax:t ladder~-filter.............................................. 8 6 CHAPTER
4.1
4. T I M E - I N V A R I A N T LADDER-FILTERS Shift-invariance
AND 'QUASI-LINEAR' ................................................................ 9 1
of inner--produc~......... ........................... ...........
91
6.2 T i m e - i n v a r i a n t n o n l i n e a r ladder-filter ~Igorithm......................... 4.3 ' Q u a s i - l i n e a r ' l a d d e r - f i l t e r s............................................................ 4.4 E x p e r i m e n t a l e x a m p l e.....................................................................
93 98 106
CONCLUDING
REMARKS
REFERENCES
..........................................................................
109
............................................................................................. II0
APPENDIX
i .................................................................................... 116 • , * • t • • •,,• •
APPENDIX
2
.................................................................. ........... ....•........ ..... .
127
i. I N T R O D U C T I O N
(a,B,u)
Let
tract set w h o s e sets of
elements
a, a n d
will u n d e r s t a n d which
~s
denote
U
are
12du
expressed
0
(2.22)
r e n o r m a l i z e d form a s
N N N Z ~ ... ~ aN;il...j m y_jl...y_j m J l = l j2---jl jm=~Jm_l
(2.23a)
where
aN; o =
Md~ql
;
aN;Jl.,,jm
In o r d e r to solve the M - t h
= -
degree
as
N;JI...j m
nonlinear, N - t h o r d e r leo.st-squ~res
21 prediction problem, w e
wish to c h o o s e
the coefficients
such w a y that the m e a n - s q u a r e
error (2.22)
achieved if for
u i (kl,...,ku) ¢ s y m L N _ 1
u=i,...,M
and
aN;Jl...j m
in a
is minimized. This will
be
OIVIR c~N
=
(2.24~)
o
8 aN;kf..ku
Conditions
will imply
(2.24a) M
aN;oho,kl...k u +
Moreover,
E m=l jl=l
N ""
j m=Jm_i
aN;jl...j m h.Jl...Jmkl..*k . u
-
0
(2.2,~b)
get
we
M
5q;ohoo +
N
E
N
N
X E ... E h. Md N m = l jl=l jmmJm_l aN;Jl'"Jm Jl""Jm '° =
G e n e r a l i z i n g t h e notion of 'matrix', we c a n i n t r o d u c e t h e following M-block ( r o w ) ,
m - i n d e x e d coefficient-matrix
{M}AN = [ m A N
whoso
each m-indexed
block-entry
from the m-variate index-set
m%
DmAN
con be considered
D mA N
=
numbers
(2.2~b)
can talk e~bout the 'doma/n' of the m-indexed
that m - v a r i a t e index-set, and
~s a m a p
into the real (or complex)
m%. D m%, -~
Hence, w e
(2.25a)
] m = l .....M
matrix es being
we will have
symmLNI-I
if
m=l
if
m=2,...,M
(2.25c)
22 Consequently,
we write
for
m-2,,,,,M
mAN .. [ °N;Jl""Jm ] and for
m
(Jl .....jm)
e
(2.25d)
i
sym LN_1
m=l
1AN -', [ aN;ill JlC LN Thus,
the M-block,
considered
m-indexed
as a m a p
(2.25e)
coefficient-matrix
{M ~AN
(2.25a)
can be
from the vector of simple d o m a i n s
D{M} %
[DmAN] m~,l,00,,M
=
(2.26a)
into the reat (or complex) numbers
{ M}AN. D{M }AN + ~
see
a/so
Appendix
Using
where
1_yo N
1 mYN_ 1 can
i.
(2.25),(2.26)
{M}YN
=
a n d introducing
M
col [ 1 Y No
is e x p r e s s e d
( m - 2 .....M )
(2.26b)
by
(2.17b)
are given b y
rewrite the error (2.23)
with
(2.17b)
re=l, x = 0 with
in a generalized
MeN; ° = {M }AN. {M}YN
where
•
l
YN-1 ]
"'"
x=l
(2.~T~)
and and
n=N
while
n=N-:i , w e
matrix form a.s follows
(2.27b)
indicates product of generalized matrices ( s e e Appendix 1),
23
Introducing the following matrix [ M~ N
where
Md N
i
(2.28a)
ON_ 1 ] { M}~I
is e x p r e s s e d b y ( 2 . 2 2 ) , and
M-block ( r o w ) ,
1
ON-1
u
block-entries
u
=
1 ON_ I
[Uol_1 ]
are u-indexed
(see also A p p e n d i x
mad equat/ons'
in a generalized
rzycki and Dewilde
denotes the
(2.28b)
u=i,...,M
i i D ON_ l - symuLN_l (2.24)
UN-I
zero-matrix
u-indexed
{M}
whose
{M}
zero-mafrices i), w e
with domains
can rewrite the 'nor-
mafrix form a~s follows (see Za-
(1983a))
t =N where {M}Y N
{ M×M}H N
is e x p r e s s e d b y (2.18)
( 2 . 2 7 a ) , Rewriting
{ M x M }HN
(2.29)
with
{M}YXn r e p l a c e d b y
in a generalized
block-column
form
{MXM}HN.,
[{M}x%
] U-1 .....M
(2,30a)
where for u-2,...,M
{M}xUHN .
[ {M} 1 1 HN;kl"'ku] (kl...,ku)¢ myrau LN_
(2.30b)
and {M}×XHN = [ {M}HN;k 1 ]
0 kI ¢ LN
(2,30C)
with { M}H N;kl...ku - [ h.]l...Jmkl...ku . ] (Jl ..... Jm ) ~ D{M}YN
(2.30d)
24 we
c a n express the 'normal equations' (2.29), for
u=l,...,M
and
for
i
( k 1 ..... ku) ~ s y m u L N _ l , a s follows
(M}^
~'4"
{M) H
{M }AN.( M }HN;o
These
(2.31a)
N;kl..,k u = 0
=
MdN
(2.31b)
are the 'normal equations' associated with the M-th degree nonli-
near, N-th order prediction problem. W e
can observe
that they will reduce
to the 'normal equations' corresponding to the linear problem, if Equations
(2.31)
M~I.
can be recurslvely solved via the nonlinear Le-
vinson algorithm, presented in Zarzycki and Dewilde (1983). q)his algorithm computes
(1983a); Z~vzycki
the coefficients of the optimum nonlinear
approximate prediction ladder-filter, a n d implies the generalized C h o l e s k y factoriza~on of the block, multi-lndexed covariance matrix
{ M×M
}HN ,
generalizing the linear case, considered in meprettere a n d Lie (1980).
2.3 Nonlinear ! e ~ t - s q u a r e s
prediction: Geometric
approach
In the s u b s e q u e n t sections of this paragraph w e
will introduce the
nonlinear prediction problem in the following spaces: of the regular Volterra function~/ poIy/qomials; of the generalized coefficient-matrices;
~nd of
generalized z-polynomials.
2.3.1 S p a c e
o f tlae r e q u l a r V o l t e r r a f u n c t i o n a l . p o l y n o m i a l s
G i v e n the M - b l o c k , m - i n d e x e d matrix of the r a n d o m veu~iables [M} YNI-I
(expressed
by
(2.17) with
x=l
and
n=N-l) , ea~d a s s u m i n g
25 that the entries are linearly independent,
{ M}__I
A
Each
wil/
element from that s p a c e
M
where
I2nX~flto Lx-,n ~ - ~ n,n+l T
x~n
xtnl,n Ln+
LnX,fl,o
".__> Lx~n _ ~ .... n+l,n-i ~
Lx,n÷l n+l,n+2
Ln+ I,n+ l
Lx,n + n+l,n
Lnx'+~,n+1
Lx,n-I n,n+ I
Lx,n-I n+ l,n-I
Lx, n-i n+ l,n
LXP 0 n,2
LX, O n+l,o
LX, O n,n+l
f X~O
f
-
. .
-'~ Ln,n+l--~
n,2
Lx n,n+ i Lx
--~
n,o " t Lx+ l,n-i n~o
Lx
nsl
>
--~ L x sin
~
LX~O n+l,l
X~O
1'n+l,o +
Lx n,n+l
Lx+ l,n-i ntn
Lx n+ I,o ~
LX+iio
LX+ l,n n~n+l
Fig. 3.2 'Local' structure of the 'global' order-update index-set step.
n + n+l
47
o
0
t-" ILb;0"% k
•
..
ILb; 1
T[ •
f A
lb ° b ; 2 .............. % A
Lo
b| 3
f
•
A
,%
'
•
~
l
x=l
Ibm3
1
lLf; 2
-J
! x=2
x=3
3 ) Lf; 0
.J Initi~zations:
IL _
'I~Iew" elements:
T'
~
LX oeo
>
(x=O .....3)
5"i~.
3.3
n,n+l
(n=i,2,3 ~ x=O,.,.,3-n)
'Local' structure The symbols 0
cursions
a
of the third-order (N-3) indicate corresponding
of l~'ig. 3.2.
index-set recursions. 'local' index-set re-
48 From
Fig.
the L-forward
3.2 it f o l l o w s t h a t t h e will work
index-set
a)
initialization: L x n)o
b)
'uni-variate ) step: L x + n)o
C) )bi--vaLrlate' steps: L x
n)l
d) For
o)
)bi-variate'
d)
termination: L x)v n+l)v+l*
The
L- ~und B - b ~ c k w a r d
d)
for
follows:
-~ L x n)2 -~ "'"-~ nLX)n+l ~" L xn+l,o
we
steps:
i~U~za~ons:
x)v Ln)v+2-~
Lx)v n,v+2 x,v Ln,v+3
index-sets
L x+1'n-* ntm L x+l'n n,n+l
'uni-varla[e'
get:
(v=0) ....n)
x)v + step: Ln)v÷ 1
'uni-vari~te'
c)
recursion
Lx n) l
the B-for~vard index-sets
b)
b)
order-update
termination: L x n+l)o °
initializat[on: L x'v n,v+l
a)
~s
'global'
+ "'"
Lx,V x)v -~ Lx,v n)n+l ÷ n+1,o ÷ ...-~ L n + l , v + 1
are u p d a t e d
o.s follows:
( m = 0 .....n) (m=n+l)
stepS: L x+l'n-I ~. L x nim n)m+l L x+l'n -~ L x n)n+ l n+ l,o
'bi-variate' steps: L x + n,m+l
L x)O n)m+2
( m = 0 .....n) ( re=n+ i)
-~ L x'l n,m+3
+
"'"
-~ L x'n-I L x)n n + l ) m - i "~ n + l , m
termination: L x)n n+l)m"
We notice that e a c h is associated (N=3)
'local' order-update
with 'label-update'
index-set recursions The
index-set
n e a r ladder-filter
step. T h e
is p r e s e n t e d
recursions,
6dgorithms
step for the b a c k w a r d
of the third-order
in Fig. 3.3.
derived
presented
'Iota/' structure
index-sets
in this section, will underly
in the s u b s e q u e n t
paragraphs
nonliof
this chapter.
3.2 Nonlinear
filter a/~orithm: time-domain
In this p a r a g r a p h degree
we
will derive
nonlinear prediction problem,
of generalized
coefficient-matrices,
approach
a recursive
using projection
introduced
solution to the s e c o n d method
in p a r a g r a p h
in the s p a c e 2.3.2.
49 Let
{y}
denote a fourth-order ( M = 2 )
v e d o n the time-interval riables
[ 0,-l,...,-N ]
stochastic s e q u e n c e ,
and represented
yo,Y_l,...,y_N . C o n s i d e r i n g the index-sets
(3.2b), w e
define for
of the r a n d o m
n-0,...N
and
b y the r a n d o m
Lx n,m
(3.23)
va-
a n d L x'v ntm
the following submatrices
vorlatbles o.nd their products
Y-Jl
nmm yX
=~
(3.9)
=
n,m
2yx
n,m a n d the s u b m ~ t r i c e s L x'v . T h e n n,m
x=0,...,N-n
obser-
we
ly_j~
yX,V ntm
, expressed
(jl,J2) ,xnt m
by
(3.9) with
c o n consider the following ( 2
variance submatrices
Hx n,m
and
H x'v n,m
the former is given b y
le2HX n,m
H xn~m = E { ~ n , m
replaced b y
2)-block, multi-indexed co-
, where
lelHX
Lx nsm
] n,m
@ ~n,m } "
2 • 1HX
2 • 2HX n,mJ
ntm
Ik kk21 J12kl hJlJ2klk2
(Jl,J2,kl,k2)
a n d the latter is e x p r e s s e d
by
(3.10)
with
Lx n,m
replaced b y
(3.1o) ~ ~,m×L xn,m L x'v . n~m
Now let Ix
=
n~m
where
ljl
for
"~
[
(ki,k2)
~kl;j. I
[llX n,m
21x
] =
[i.
n,m
Jl
1..
(3.11~)
] ( j l , J 2 ) • L xn0m
JlJ2
• L xn~rtl
2o ]
~jlj2
[ lo
~
kzk2;jlj2 ]
(3.11b)
50 with
I0
and
20
ctively, w h o s e
being the o n e -
domains
Lx respectively. n,m |
Let us
and
~wo-indexed
are hhe uni- a n d
In a similar w a y
introduce
the
respe-
bi-variate parts of the index-set
we
following,
zero-malrices,
con
introduce
x-labeled
and
the mah-i~
Ix'v n~m
(x,v)-labeled,
sub-
spaces
I nx , m =
We
notice
{IX, mn
11'N-I -N-I,N
thai
by (2.37) with element
v
M.-2)
Fx nmm
}
will b e
se
n,m
domain
Ix'v ntm
is
Ix n~m
will b e
a two-block
F x'v nsm
(row),
with d o m a i n
x
expressed
multi-indexed
Gx
= Fx
n,m) ~x n,m
element
o n the s u b s p a c e s
.H x
n,m
n,m
x=0,...,N-n
the
to
(3.4~)
subsequent
and
(3.5),
subspaces
we
EMh
as
(3.12b)
coefficient-matrix w h o of the s u b s p a c e (2.39a),
(3.12a)
.%x
we
as
(3.13~)
n,m
X,V G X , V ~ --b~X'V°HX'V-G x'v Fn, m ' n,m j ]~x,v n,m n,m n,m ntm
According
(expressed
_o,N KN,N+ 1 °
will b e
D b ~ % v .. b x'v . Following n~m n0m
a family of inner-products
(Fn,m '
{ 2} K ~ _ I
fx ] n'm;jl-x'J2-x (Jl'J2) ¢ LXn,m
DF x - .Lx . Similarly, e a c h n~m nsm
will b e
introduce
v
precisely the s p a c e
of the s u b s p a c e
will b e
F x
.
n~m
while the 'biggest' s p a c e
b"Xn,m m [ f~n,m;Jl_ x
i.e.,
,xv
;
can
of the
(3.13b)
introduce
for
n=0,...,N
and
~o,N
-N,N+I
L-for-Nard
I~n~o = ~ (I~o) i
(3.14~)
51 B-forward
(for
v = O .... , n )
IX, v n,v+l
=
IX'v v { n,v+l }
(3.14b)
itx,n-i n,o
x,n-i = v { In, O }
(3.14c)
L-backward
(for
B-backward
m - i ....,n+l)
N x'n-I n,m
,, v { Ix'n-i } n,m
1[x'n n,n+l
3.2.1 'Local'
v
estimates
Denoting ta/dng projection subsequent
=
by on
,
xln {In,n+1}
and
,
m-.l .....n
(3.14d)
m=n+l
(3.14e)
errors
P l ; nx , m
("--I;n,m" p x,vj
the s u b s p a c e s
'local' estimates
and
the o r £ h o g o n a / ]ix n,m
errors
as
(Ix'vJ " n,m-
'
projection
we
operators,
will introduce
the
follows:
L-forward Following
(3.~a),(3.11),(3.12)
Itx n,o =
v
and
(3.14a),
we
{ix
x+l,n-i ' In-i,n }
can
rewrite
a~
Itx
n~o
(3.i5a)
A
We
define
the L - f o r w a r d
n-th o r d e r
p
estimate
x÷i,n-i i 11;n-l,n
x
'ix
n,o
of the
ix+l,n-1 n-l,n
i
x
as
(3.15b)
52 Let
0jl
denote the zero-entry with 'coordinate'
the L-forward ^ n-lh order approximation error, c o r r e s p o n d i n g to the estimate ix , will n,o
be expressed
as
x =A p l x+i,n-I i - I - [0 An,o --~ ;n-l,n x x o
(since the estimate x ~n,o). This
pace
Jl " T h e n
'%1 x nto
~x I ± n,o ~
is c o n s i d e r e d h e r e ~
~x+l,n-I n-l,n
(3.16a)
etn element of the s u b s -
error caxl b e rewritten in a renormalized form
AX n,o "
x An,o
x
C:
1{ An,o [
=
n,O =
[x
ax ] n,OlJl-X,J2-x (jl,J2) • L x n~o
n,o;Jl-X
in accordance
the errors
with
(3.16)
respec~vely, if
B-forward Using
(3.12b).
can
observe
are precisely the
M~2
( for
We
, x=0
and
that the
estimate
{M) IN;o , { M }A N
~d
c a n rewrite the s u b s p a c e s
I
v { Ix, x
'
Ix } n,o
n,v+l
Let
'
X x'v n,v+ 1
if
Ix'v-I } n,v
car* introduce the B - f o r w a r d
0jl,j2
A
i
(2.54)
(3.14b)
as
v=0 (3.17a)
{v { iX,x+v [
ix, v
{M)A N
and
v=0,...,n)
(3.4b), w e
we
(3,15b)
n=N.
Xx'v s < n,v4-I I
Then
(3.16b)
p I;n,o x Ix,x
c
if
v--l,...,n
estimates
Itxn,o
if
v=0
IIX'V-i n,v
if
v--l,...,n
(3.17b)
p
x,v-i 11;n,v
i
X,X+V
E
stand for the zero-entry- with 'coordinates'
(jl,j2) . T h e n
53 the B-forward
approximation
will be e x p r e s s e d
j
A =
n,'%r%'- ~
to the estimates
(3.17b),
a~
. p±
ax,v
errors, c o r r e s p o n d i n g
x
a
Xx
I[ ;n,o Ix,x
if
v=O
if
v=l,...,n
n,o
(a.18a)
/
[ p l x,v-i
i
1
ITX'V-I n)v
x)x+v
H ;n)v
i.e., Ax ' v
nsv+ 1
as the estimates B-forward
-
Ix,x+v
~x,v n,v+l
(3.18)
errors
AX'V = n,v+ 1
=
[0
~X)V ] n,v+ 1
O)V
are treated here
can
be e x p r e s s e d
(3.18b)
as elements
of
x,v I[n,v+i). The
in the renorma/ized
form as
ax'v llAX'Vl[l-lnv+ n,v+ 1 , llx,v n,v+ 1 x,v
(3.1So)
x,v
= [ an,v+l;Jl-x
an,v+l;Jl-x,J2-xl
(jl,J2)
x,v £ Ln,v+ 1
(3.14c), using
(3.5a), as
L-backward Let us
K~;n-i nuo
rewrite
n" x , n - 1
~' V {In~.q:nl -- )
lq)O
so
that
we
will define
-1 ~x,n n,o
The
n,o
A
x,n-1
= P~;n-l,n
L-backward
k p x,n-i = R;n-l,n i x + n
L-backward
B x,n-1
the
approximation
lx+n
=
-
ix+n}
estimate
(3,19a)
as
l[x,n-i n-l,n
e
error
:1. x+n
!
will then
Vx'n-1
[ln,o
(3.19b)
be
On]
i
I x'n-1
n-l,n
(3,20a)
54 or, in a renormalized
B x'n-I n,o
form,
B x'n-1 IIB x'n-1 -i n,o n,o ]l~x,n-i n,o
=
-- [b x'n-1 n'°;x+n-Jl
(for
B-backward
F'ollowing (3.5)
Hx'n-I
m = l ....,n+l)
and
V
(3.14), w e
{ Ix'n-I
c a n write
'
i x + n + l-m,x+n}
'
mml"°°tn
(3.21a)
x~n . ..xln--I Kntn+l , v [in~ n
,
ix,x+n }
,
m=n+l
(3 21b)
"
the B - b a c k w a r d
~x,n-1 n,m
~= _ x,n-I P~;n,m-i
ix, n A= P x,n-i n, n+ 1 ]I;n,n
Consequently,
estimates will be e x p r e s s e d
C
B x,n nmn+l
IIx'n-I n,m-i
,
ix, x+ n
Nx'n-1 n, n
'
the B - b a c k w a r d
c
approxima£ion
;n,m-I i x + n + l-m,x+n
A= Pli x,n-1 ;n,n
as
i x + n + l-m,x+n
i
x,x+n
±
!
~[x, n-i n,m-1
ix, n-i n,n
i
m=l,...n
(3.21c)
m=n+l
(3.21d)
errors will be defined as
,n-1 n,m
so
(3.20b)
n,m-i
n,m
Hence,
bY.n-1 ] n'°;x+n-Jl'x+n-J2 (jl,J2) E L x'n-I nlo
'
m=ii...,n
(3.22a)
m=n+l
(3.22b)
that Bx,n-1 n,m
~,n
~n,n+l
-
[~x,n-1
= i x + n + l-m,x+n
=" lx,x+n
-
r~ ~ ' n
~ n,n+l
n,m
0
o,n
On+ i-m,n ]
(3.22c)
]
(3.22d)
55 "Dhe B - b a c k w a r d
errors c a n b e e x p r e s s e d
in a renormalized
illx, n_l-i
Bx'n-ln, m I1 Bx'n-ln,m
Sx'n-ln,m "
form
,
m n l .....n
(3.22e)
,
m-n+ l
(3.22f)
n~m Bx,n
x,n n n,n+1 .. Bn, n+ I U 5~n,n+111 -* ~x~n n~n+l
similarly as the L - b a c k w a r d
3.2.2 D e c o m p o s i t i o n
PoUowing
error
of s u b s p a c e s
B x'n-I nmo
(3.20b).
'
the considerations
consider the 'local' decomposlf/ons
o f the previous
paragraph,
we
can
of s u b s p a c e s :
L-for~rard Since
Ax n,o
is in
from (3.16), w e
Ix n,o
'
but is or%hogonal to
n,o
=
fix+ 1,n-I
n-l,n
•
x
v { An, o}
w h i c h implies the 'local' decomposition
x . p x+1,n-1 PII;n,o K;n-l,n
x
P~n,o
denotes of
B-forward
v=O,...,n)
Since
+
(3.23a)
of projectlon operators
x PA;n,o
(3.23b)
the om£hogone/ projection operator, taking projec-
£ion o n the s p a n
(for
, as it follows
c a n write
Kx
where
~x+l,n-i n-l,n
Ax n~o
AX'Vn,v+l belongs
to
~n,v+X'V1
but is orthogonal to:
]iXn, o
(if
v=O),
56 and to
I x'v-I n~v
Ix'v
(if
v--1 ..... n ) ,
I IIx n,o
=
in accordax,c e witkl ( 3 . 1 8 ) , we o b t a i n
o
Ax, o v{ n,l }
v~O
~
x,v v { An,v+ I}
v=l,...In
(3.24a) n,v+ I
This
11x'v- 1 n,v
implies
p
xtv Pl;n,v+ 1
p
where
< l
xtv A;n,v+l
X l[;n,o
+
,
V~0
,
v=l,---,n
(3.24b) X,V--I ][;n,v
p
+
is the projection
operator
on
the s u b s p a c e
spanned
by
Ax, v n,v+ i " L-b ac k w a r d Observing
h a l to
that
I xn-l,n 'n-1
B x'n-I , see
(3.20),
I x'n-I n,o
resulting
PB;n,o
IB-backwvi~rd From
we
to the s u b s p e t c e
]Ix'n-I
n~O
but is o r t h o ~ o -
car* write
= ITx'n-1 n-l,n
(9
v
{B x'n-I n,o }
(3.25a)
in lhe d e c o m p o s i t i o n
p
v~here
belongs
n~o
x,n-i ~;n,o
_ x,n-i = ~]l;n-l,n
is the projection
( for
(3.25b)
+
opereltor o n
the s p a n
of
Bx'n-ln,o "
m=l,...,n+l)
(3.22)
it follows
that
]ix,n-1 n,m
= ~x,n-1 n,m-i
•
v {Bx~n-1 } n~rfl
,
m=l,...,n
(3.26a)
57 ix, n = I x'n-I n,n+ I
This
•
V {B x'n . }
m=n+l
(3.26b)
imp)/es
p
x,n-1 ]I|n,m
p
x,n
= o x,n-1 --~;n,m-i
+
x~n-i I[;n,n
+
~
p
W;n,n+l
p B ; nx,n-i ,m
where spanned
by
We
can
x,n PB;n,n+l
n +i ) ( P B ; n~tn
B n x'n-I .m
3.2.30rthonormal
(Bx:nn+ I )
that the L - a n d
In o r d e r
to s h o w
A x'u n,u+l
'
that, let u s
a/qd let u s
m=n+l
~sume
belongs
£o
we
can
that •x,v n,v+l
show
A x'v nlv÷1
B-forward
set in the s p a c e
consider
A x'v n,v+ 1
Consequen~y,
,
operator
(3.Z6c)
(3.26d)
on
the s u b s p a c e
ba~es
observe
In a similar w a y
m = l,...,n
"
(v--0,...,n) f o r m the O N
A xn ', vv + l
,
is the projection
A x'v n,v+ I
and
,
two
~
errors
A x'u ± n,u+l
a2ud the matrices.
A Xn,,Vv + l Ix'u-I n,u
and
D N x'v n,v+l'
v=0,..,n
A x'u n,u+ I
that for
±
obtain for
A x n~o
of g e n e r a l i z e d
B-foFwca'd
v < u. S i n c e ' we
errors
( 3.27 a)
v:O,...,n
A x n~o
(3.27b)
the entries of
A x = n will f o r m the O N
[A x
n~o set.
AX, o n~o
"'"
An,n x • n - 1 A nx:n ,n+
11
(3.28)
58 If w e
introduce, a c c o r d i n g to (3.15a)
[Ix
iX, x
...
and
(3.1?a), the following set
Ix,x+n_ 1
ix, x+n]
(3.29)
J/~en (3.28) wiU be the orf/,1onormalized version of that set. Using (3.28) we cain write the following 'global' orthogona/ decomposition of subspaces
x,n
~n,n+ i
:
f An,n+l
Bx Ax
xiO Bn+l,l
. AX, v n,m
AX,V n,m+l B x,v-I n,m
Fig. 3.~ 'Local' structure of the 'global' section of the timevariant nonlinear ladder-filter.
88
"l
,--Bo°(Z)-~
¢---
B
(
'(z)-m
[I
~~(z)
--J
u ---.~ ~a(z)
I
x--1
J ~(z) x=2
J ~3(z) o
x=3
> Initia/izations:
lu
~=
T
.)
'New' elements:
B2;2(z)
'
ao~,o(Z)
u
Bx'n _ (z)
'
n ~ n-l- 3
>
x=O,...,3)
Fig. 3.5 'Local' structure of the third-order (N=3) time-variant prediction filter. T h e symbols ponding 'local' 8-recursions of Fig. 3,4.
(n---i,2,3 ~ x=0,.,.,3-n)
nonlinear (Levinson) O indicate corres-
89 Let u s nested
observe
'local' 8-transformations
the s u b s e q u e n t m6dn
that the filter structure consists
sets of the forward
mutually orthonorma/
hal' order-update solutions
(actually - ~ i v e n ' s
step
in Figs,
a.s we]/ ~
after e a c h
(see
3,4: a n d
3.5). T h i s
means
of the 'local" ol~hogonal
Vieira a n d
De~vilde
(1982)).
cients
is associated
Kailath
These
(with n o r m s
(1978),
matrices
being
will re-
after e a c h
'~lo-
resp. horizontal
orthogon~9/it'y requirements, a/nd norma/ized
aJnd D y m
are specified b y
less than one),
errors
with the J-lossless
Dewilde
s o that
that the structure of this
as the filter consists
Dewilde,
backward
the subsequent-vertical,
will satisfy the desired
section
rotations)
'local' a/qd, hence,
nonlinear ladder-filter
sections. E a c h
of a cluster of
'local'
8-matrix
(see
(1981,1984),
the reflection coeffi-
actually the Fourier
coeffici-
enhS. Since the p a r a m e t e r observation, ar prediction
the reflection coefficients x , being the b a c k w a r d which
We
can
input s e q u e n c e
notice t h a t ON
ar prediction p r o b l e m
that
interpreted
(not Toeplltz)
well a~ back~vard
obtained
be
to the generalized
in meprettere
and
Lie
be solved
of the generalized the s p a c e
is reflected in the H e r m i cova/'iar*ce matrix. computes
the forward
~s
the solution to the N-th order nonlinein the innovations
context)
is
@/so r e m a r k
terms, the filter of B~i~. 3.5 Will immediately
(time--vari~/nt) linear L e v i n s o n
filter c o n s i d e r e d
(1980).
~Ve car, c o n c l u d e lem c a n
, and
'level' in the filter structure. W e
ne.qlectin~ all nonlinear
reduce
{y}
(actually c o n s i d e r e d
at the 0-1abeled
point of
is implied b y the nonstationarity
the nonlinear ladder-filter and
on
~s the 'current' time, this nonline-
of the genera/ized
b~es,
)galns )) d e p e n d
shift from the reference
filter is time-variant. T h i s
of the higher-order tian propet~y
(i.e.)the f i l t e r
Uqat the nonlinear
geometrically, (block,
using
multi-indexed)
of the genera/ized
least-squares
projection
method,
prediction
in the s p a c e
coefficient-matrlces,
(block, multi-variate)
prob-
and#or
z-polynomials
in
(provi-
9O d e d the higher-order c o v a r i a n c e
dmt~ or, equdva/ent|y, the higher-order
spectral functions of the underlyln~ s £ o c h ~ t i c former a p p r o a c h fine M - D
results in the o p t i m u m O N
impulse r e s p o n s e s
sequence
approximation of the set of
of the nonlinear prediction filter of the Volte-
rra-Wiener class. In the latter case, the o p t i m u m O N mation of the set of M - D
polynomial approxi-
transfer functions is obta/ned. W e
the results p r e s e n t e d he~'e ~ e s e n t e d in Z a r z y c k i
are given). "imhe
and Dewilde
equlv~/ent to [he algebraic solution pre(1983a),
a n d to the ~eometric solution
of the stochasf/c esf/mation problem, d i s c u s s e d in Z a r z y c k i
The
non]/near a p p r o a c h
(1984a, b)o
to the lea.st-squares prediction p r o b l e m
(for higher-order stoch~.~tic s e q u e n c e s ) the linear treatment)
r e m a r k that
may
estimation a c c u r a c y
result in better (than in
(if the s e q u e n c e
is n o n - G a u s -
sign), ho'vvever, complexity of the genera]/zed nonlinear filter p r e s e n t e d here [ n c r e ~ e s
rapidly ( s y n c h r o n o u s l y
step), a n d b e c o m e s
rather big e v e n
with e a c h
'global' order-update
in re~tively low-order nonlinear
filters ( c o m p a r i n g to the complexity of the linear filter), as it c a n b e seen
in Fig. 3.5. "l~herefore, the complexity reduction p r o b l e m will b e
the subject of the next chapter, w h e r e
time-invariant as well as 'quasi-
linear' ladder-filter algorithms will b e presented.
4. T I R I E - I R V A R I A N T
We
AND
noticed in the
'QUASI-LINEAR'
~DER-F'ILTERS
previous chapter that complexity of the ~enerali-
z e d nonline~gx' ladder-filter i n c r e a s e s
rapidly ( s y n c h r o n o u s l y
'global' order-update step), a n d b e c o m e s nonlinear filters. Consequently,
with e a c h
rel;~tively 'big' e v e n
in this chapter w e
in low-order
w i s h to c o n s i d e r the
problem of complexity reduction in nonlinear ladder-filters. In order t o obtadn efficient nonlinear filter algorithms, w e
w i n first d i s c u s s the nonlinear
least-squares prediction problem for stationary (in the higher-order s e n s e ) stochastic s e q u e n c e s . W e
~Nill s h o w
near Ume-invariant filter w h o s e
that the solution results in the nonli-
complexity is m u c h
reduced
(comparing
to
the genera/ized algorithm). Purther complexity reduction will b e a c h i e v e d by introducing simplified nonlinear estimation s c h e m e s ,
ca/led 'quasi-linear'
filters a n d associated with the o p t i m u m prediction of higher-order stochastic s e q u e n c e s
whose
'distar,ce' from the G a u s s i a n
s e n s e to b e defined). T h a t Zarzyckl and DewJ/de
problem
(1983b),
has been
is l o w
(in a
introduced algebraically in
and considered
ce of the Volterra functional polynomials)
sequence
geometrically
in Z a r z y c k i
(in the s p a -
(1984c,e).
4.1 Shift-invaria~nce of inner-products
Let u s
a~sume
stationary (in a w e a k
Ulat the underlying stochastic s e q u e n c e four~h-order s e n s e ) ,
Then,
{ y }
is
following (2.19), w e
92 will
obtain
I-Ix n,m
H x'v n,m
regardless
of t h e x - s h i R
with d o m a i n s
respectively.
- H e = "9 n,m n,m
-- H x + l ' v , , n,m.
are the g e n e r e d i z e d ces
= H x+l n,m
nom
Applying
T v n,m
(4.1b)
(i.e., the time-shift), where
(block, DT
H O'v ~ n,m
(4.la)
multi-indexed)
= L° x LO n~m n~m
(4.1a)
x x (b-~n,m ' G n , m ) xx
Toeplltz and
in (3.13),
we
"1"
n,m
covariance
DT v n,m can
and
= L °'v nlm
T v n,m
subma%rix L O'v nlm
,
write
= (_x+l _x+i~ - b ' n , m ' ('Zn,m) E x + l ~"
n,m
n,m
=
(FOn, m ,
A
F
G°m)
.T n,m
=
o
.~_T nmm
n,m
= ( F ~ , m ' Sn,~)~o
(~.2~)
n~m where
F
[fn,m;jl
=
f . . ] L° n'm;Jl'J2 (Jl'J2) ~ n,m
n,m
Applying
(4.1b),
we obtain similar relations
for t h e
(x,v)-labeled
(4.2b)
quanti-
ties
.,v
x,v
~ Fv
(Fn,m'Gn,m)ix,v
.~ v
n,m
.Sv
n,m
n,m
v
n.m "
(Fn, m ' G n ,
v
(4.z~) m)i[o,v n,m
wiLh
F v = l-l,m
[ fv . • n'm;Jl
fV . . ] L O'v n'm;JlJ2 (Jl']2) ¢ n , m
(~.2d)
93 Equations product next
(4~.2) e x p r e s s
the x-shift (i.e., time-shift)
in the h i g h e r - o r d e r
paragraph
simplifications
we
(i.e., fourth-order)
will show
of the nonlinear
4.2 "l~ime-lnvarlan% n o n l i n e a r
Following
Ao
n,m
A A
~__-
a
significant
inner-product
(4.2), w e
will satisfy the following
=
.
]
.
n'm;J1]2
notice
relations
[a v n'm;Jl
(¢.3a) (jl,J2) c L °
n,m
(v=O,...,n), w e
: A °,v n~m
Similarly, for the L- a n d
obtain
=
a
] n'm;]lJ2
B-backward
(jl,j2) E
errors,
we
L O'v n,m
can
write
= B x + I , n-I = B°, n-I = n~m n~m
A Bn-1 n,m
m=0~...,n , a n d
~':,~ n,n+l
in
=
errors
A x,v = A X + l , v n,m n,m
if
Of the
errors
n'mlJl
the B - f o ~ a r d
Bx, n-I njm
will result
In the
ladder-filter e d ~ o r i t h m
[a
==
A A v : n,m
property
case.
n,m
n,m
For
stationary
of inner-
ladder-filter algorilhm.
approximation
~ Ax+I=
n,m
this
the shift-invariance
that the L-forwc~rd
Ax
that
invariance
[bn-I n,m;n-Jl
for
~ Bn n,n+l
bn-1 n,m;n-Jl,n-J2
(4.40.)
] (jl,J2) ( Lo,n-i n,m
m-n+l
-_ [ b n , ~ + l ; n _ q ~
bn . . 1 n,n+ l;n-] l,n-] 2
(jl,ja)
e Lo, n n,n+l
94 Consequently,
the forward a n d b a c k w a r d
'global' O N
bases
will
satisfy
A x = Ax+£= n n
A ° £ A n n
(4.5a)
B *n - ~ +n * =
B ° ~: B
(4.5b)
n
n
wihh
A
B
We
n
-
n "
[A
A ° n,l
n,o
[ 13 n - I
n,o
"'"
"""
A n ntn+l ]
B n-I n,n
B n n n +.I]
notice that in stationary case, the entries of
initializations in the 'g/obal' order-update step higher-order forward a n d b ~ c k w a r d
solutions
(4.5c)
(4.5d)
B n
n ~ Z~n+ l
will be u s e d
n+l
as
, yielding the
and
l~n+ 1 . C o n -
sequentiy, in the stationoxy case: a)
there
is n o 'nesting' b e t w e e n
the x-labeled 'levels' in the structure of
the nonlinear ladder-filter; b) the nonlinear filter atgorithm c a n b e e x e c u t e d
at e a c h
x-labeled 'level'
s ep arately; c)
it is sufficient to run the a/gorithm at the (x::0)-labeled 'level' only,
following (4.5). Hence,
the stationary version of the generalized nonlinear ladder-filter
algorithm -#vil/b e obta/ned if w e
c o n s i d e r the 'loca/' LL, LB, B L
recurslons ~t the (x=0)-labeled 'level'. F o r sion of the L L "local' ordeP--updatte recursion
An,1 = ( 1 - [ P n , 1 1 2 ) - ½
Bn, I
( l - [ p n,1] 2) -P~
([An, o 0n+l]
(-Pn,l[An,o
and BB
example, the st~ttionary ver(3.42) will take the form
- Pn,1 [ 0o Bn-1])n,o
0n+l ] +[0o
B nn,o -l])
(4.6a)
(4.6b)
95 with
P~,I" ([A,,,o o . i] . [0o Bn-:t])Io~,o
(4.6~)
n,1 The ssed
transform-domain as
counterpart of the L L recurSion
(4.6) will b e expre-
(following (3.68))
InlzI 0. Fnozl
(4,7~)
with
69 n,l =" (I- [Pn, l]2) -½
(4.7b) -P n,l
and ~,i
The
remaining LB, B L
tionary c a s e
"
(A~,o(Z)'z'~.oi(z))z
and BB
'local' order-update
will be the 'local' recursions
(4.7=) recursions
of A p p e n d i x
in the sta-
2, provided the
x-label is r e m o v e d . The
L L 'local' recursion
[ion of the corresponding
(4.7)
cart b e interpreted a~ the L L - s e c -
nonlinear ladder-filter
B~,I(Z) A o(Z)
~
-- A i(Z)
B~-i(z) n
(~.Td)
g6 "l~he remaining
'local' LL, L B
and
filter will again b e
expressed
v i d e d the x-labels
~/'e r e m o v e d .
BB
sections
of the stationary nonlinear
a s the 'local' sections These
of A p p e n d i x
sections, c o n n e c t e d
together, w i U constitute the 'global' section
accord[n~y
n÷l
of the filter. W e
notice that the "set o f reflection coefficient~ c o m p u t e d
b y the alsorithm
the 'global' step x-labels Pn,m
n -~ n + l
are again
removed.
P vn,m
~qd
paraJneter
x
, will b e
(being
Observing
me
(N=3)
rithm c ~ n
can
observe
~s
lying stochastic On
sequence
(block,
mu/ti-indexed)
moving
all nonlinea~r terms, w e
sequences,
~
Toeplitz
considered
Comparing (Fig. 4,1)
in the time-variant
of the generalized
Kailath
(in a w e a k
higher-order
Levinson
matrix. W e
(1982),
Vieira a n d
Deprettere
ladder-filters, has
been
be con-
also notice that re-
a~nd Lie
we
achieved
ase
with e a c h achieved
sense).
the classical linear stationary
i~[ai%ath (1978),
of the time-variant
of the quaint[ties p r o c e s s e d
WiLl b e
the u n d e r -
algorithm c a n
will immediately o b t a i n
in Dewllde,
algo-
factorization of the generalized
Uqough, the n u m b e r
ty reduction
ca~e.
a/qd/or of the
prediction filter for s e c o n d - o r d e r
nonlinear
synchronously
matrices
provided
covari~nce
the structures
tion of the filter complexity
is
or%hogonaliza-
z-polynomials,
for C h o l e s k y
(Levinson)
(1981),
'local'
nonlinear ladder-filter
for ( G r a m - S c h m i d t )
the stationa/q~" nonlinear
a~ the fast m e t h o d
variant
considered
is stationa/'y
sidered
time-invariant A R
o n the
conclude
is time-invariant. T h e
t[me-invariant
of the generalized
the other hamd,
a.nd D y m
o n 'current' time), w e
b e treated as the fast m e t h o d
in the s p ~ c e
do not d e p e n d
that the time-invariant nonlinear ladder-filter
tlon of the ba.sis in the s p a c e basis
the
notice that the filter satisfies precisely the sa-
or£hogonality requirements, We
(3.43), p r o v i d e d
at
that the reflection coefficients
prediction ladder-filter
in Fig, zi.l. W e
by
actual/y the filter gains)
structure of the third-order presented
expressed
(i.e., they d o not d e p e n d
that the nonlinear
n +
2, pro-
Dewilde
(1980).
(Fig. 3.5)
and
time-in-
notice that significant reducin the stationary case,
al-
in the filter ~ill still incre-
'global' order-update
step. Further
in 'quasi-linear' prediction filters.
complexi-
have
structure
All s y m b o l s
F i g . 4.1 ' L o c a l '
III
IL]I the s a m e
meaning
of t h e t h i r d - o r d e r
time-invarlant nonlinear a s in Fig. 3.5.
(N=3)
ladder-filter.
(D
98 4.3 'quasi-linear' ladder-fiite[s
In this p ~ r ~ g r ~ p h ladder-filter
algorithms
we
w J ~ consider
which
we
ters will yields better estimation le their complexity considered
nonllneam
Let u s ce
{y }
riables
will b e
a~sume
accuracy
(than in the linemr cruse)
in c o m p a r i s o n
filwhi-
with the previously
algorithms.
that
is r e p r e s e n t e d
of simplified nonlinear
w J ~ c~i[ 'qu~si-lhqear' filters. T h e s e
reduced
filter
a class
the underlying
fourth-order
b y the following s u b m a t r i c e s
stochastic
sequen-
of the r a n d o m
va-
( a n d their productS)
yl,n n,n+l
.
__
_
n=0,...,N-i
Y-JlY-J2J
(4.8a)
(Jl,J2) ¢ L n,n+ l,n 1
where L l'n = LI 2Ll,n n,n+ 3. n u n,n+l
with
LI = n
{ 3,...,n+l }
2Ll'n n,n+l
Now win~
let u s
(4.Sb)
and
= sym2L I n
introduce
for
× sym2Ln1
n=0,...,N-1
(4.8c)
and
~ =0,...,n+l
the foUo-
index-sets
~(~) n
& L I u 2L(~) n
n
(4.9~)
99
where
the bi-varia~e part of the i n d e x - s e t
2L(n~)
"l~hen w e
if ~ = n + l
- i f
If w e
0
Lx
n=m
Lx
~
nln+l
f
LX+l,n n,n+l
Lx
n+ljo
(A.23~)
128 BL-recursions:
'loco/' order-upda£es
for the 'uni-variate' part of the
B-fo~va/~d index-se£s, a n d for the 'bi-varia£e' part of %he L - b a c k w o 2 d index-se~
i.e., for
v=0
n~l L x'O nt2
=
L x'O n~l
u
Lx n,l
.
{x,x} %,....
u Lx U {x+n+l} n,o ~, 2
( A . 2Zia)
LX~ O n,l
a n d for
v=l,...,n
Lx,v-I n,v+ 1 LXt v
n,V+2
= L x'v L x'v-I ~ { x , x + v } n,v+l U n~V+1
u Lx, v-I ntv
u {x+n+1}
(A,2a~b)
T LX, v *%~V+ i
These
recurs[ons will b e in£erpre£ed as the B L
Lx, o n, 2
Lx~° n,l
~I .~
LX, v n,v+ 2
~ r
LX'° n,2
Lx'v n,v+l
'"
Lx n, 1
BB-recursions:
index-set sec%ions
~ "~
"2
(A.2~c)
LX, v 2 n,V+
Lx, v-I rl,v+1
'local'
order-updates
B-foF%va~d a n d B - b a c k w a r d
for
the
Jbi-v~iate
index-sets; i.e., for
v=0
~ parts
and
of
the
m=3,...,n+3
129 LX
n,m-1 Lx. ° _- Lx, ° n,m n,m-I
u
A
f
Lx n,m-I"
{x,x} k
...............
u L=,m_ 2 U {x+n+4-m,x+n+l} J
%
(A.25a.)
Lxs O
n,m-i
arld for
v~.l,...,n e ~ n d m m v + 3,...,v+n+ 3
ijxlv'l n,m--i [ L x'v n,m
m
L x'v n,m-I
u L xn ,' vm--12
- { x,x+v}
U
•
u {x + n + 4 + v - m , x + n + 1 }
Y LXl v
n,m-1
These
recursions will result in the B B
index-set sections
L~,o
LXi v r'isi-n
ntm
Lx, O n,m-1
~ ~
(A.e5b)
>
L x'° n,m
Lx ' v n Im - 1
-~ "~ |
Lx n,m-i
Lx,v-I n,m-I
~
Lx'v n~m
(A.25c)
130
'LOCAL' 0 R D E R - U P D A T E
LB-recursions:
for
RECUI~SIONS
m=2,...,n+l
A~,m_z(z) ]
AX, re(Z)
lB~,m(Z)J =
X
n,m
and for
,.
@
x n,,m
(A~,m(Z)
(A.26a) z.Bx+I,n-L(Z) [ n, m-i ~ j
x+i,n-l.
, Z'Bn,m_ l
(Z))Z
(A.26b)
re=n+2
(A. 26C:)
Sn,n+i(z) (A.26d)
x P
BL-recursions-
for
n+l,o
v=O
~"~(~)] . 0~.o XsO = Pn,2
( A X~, , I (O z)
-A::~(=~I
, B~,I(Zl) z
(A.2Va)
(A.27b)
131 for
v=l,...,n
[]:::+~(~1 .o.,v [ n,v+2
px,o ~ n,m
BB-recursions:
for
v=0
(AX, O (Z) n,v+l
and
(A.27c) B x'v-I ( Z ] I n,v+ 1 ~
"J
B x'v-I (Z~) n,v+l ~ " Z
'
(A.27d)
m=3,...,n+3
Ax'O ~ (Z)l n,m-I | =