Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
562 Roe W. Goodman
Nilpotent Lie Groups: Structure and A...
34 downloads
567 Views
6MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
562 Roe W. Goodman
Nilpotent Lie Groups: Structure and Applications to Analysis
Springer-Verlag Berlin-Heidelberg • New York 1976
Author Roe William Goodman Department of Mathematics Rutgers The State University New Brunswick, N. J. 0 8 9 0 3 / U S A
Library of Congress Cataloging in Publication Data
Goodman, Roe. Nilpotent lie groups. (Lecture notes in mathematics ; 562) Bibliography: p. Includes index. i. Lie groups, Nilpotent. 2o Representetions of groups. 3° Differential equations~ Hypoelliptic. I. Title. II. Series: Lecture notes in mathematics (Berlin) ; 562. QA3. L28 no. 562 [QA387 ] 512'.55 76-30271
AMS Subject Classifications (1970): 44A25, 17B30, 22E25, 22E30, 22E45, 35H05, 32M15 ISBN 3-540-08055-4 Springer-Verlag Berlin • Heidelberg ' New York ISBN 0-38?-08055-4 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin • Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
Table o f Contents
Chapter I ,
Structure of nilpotent
L i e algebras and L i e groups . . . . . . . . . . . . . .
§ 1. D e r i v a t i o n s and automorphisms o f f i l t e r e d I.I
1
polynomial r i n g s
D i l a t i o n s and g r a d a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
1,2 Homogeneous norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.3 Vector f i e l d s
4
w i t h polynomial c o e f f i c i e n t s . . . . . . . . . . . . . . . . . . . . . . . .
1.4 L o c a l l y u n i p o t e n t automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
1.5 Transformation groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i0
1.6 F i n i t e dimensional r e p r e s e n t a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I0
1.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II
§ 2. B i r k h o f f embedding theorem 2,1 F i l t r a t i o n s
on n i l p o t e n t
Lie a l g e b r a s . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
2.2 A l g e b r a i c comparison o f a d d i t i v e and n i l p o t e n t group s t r u c t u r e s . . 13 2.3 F a i t h f u l
unipotent representations ...............................
16
§ 3. Comparison o f group s t r u c t u r e s 3.1 Norm comparison o f a d d i t i v e and n i l p o t e n t 3.2 A l g e b r a i c comparison o f f i l t e r e d 3.3 Norm comparison o f f i l t e r e d
structures .............
and graded s t r u c t u r e s . . . . . . . . . . .
and graded s t r u c t u r e s . . . . . . . . . . . . . . . .
17 19 27
Comments and references f o r Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
Chapter i i .
33
N i l p o t e n t L i e algebras as tangent spaces . . . . . . . . . . . . . . . . . . . . . . .
§ 1. T r a n s i t i v e L i e algebras o f v e c t o r i.I
fields
Geometric background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
1.2 P a r t i a l homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
1.3 L i f t i n g
38
theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
§ 2. Proof o f the L i f t i n g
Theorem
2.1 Basic L i e formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
2.2 L e f t - i n v a r i a n t
42
vector fields
....................................
2.3 Formal s o l u t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
2.4 C~ s o l u t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
iV
§3, Group germs generated by p a r t i a l isomorphisms 3.1 Exponential c o o r d i n a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
312 Comparison o f group germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
§4. Examples from complex a n a l y s i s 4.1 Real hypersurfaces i n 4.2 Points o f type
~n+l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m ...............................................
53 55
4,3 Geometric c h a r a c t e r i s a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
4.4 Siegel domains and the Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Comments and references f o r Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Chapter I I I .
67
S i n g u l a r i n t e g r a l s on spaces o f homogeneous type . . . . . . . . . . . . . .
§ 1. Analysis on v e c t o r spaces w i t h d i l a t i o n s 1.1 Homogeneous f u n c t i o n s and d i s t r i b u t i o n s
..........................
1.2 I n t e g r a l formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67 70
§ 2. Spaces o f homogeneous type 2,1 Distance f u n c t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
2.2 Homogeneous measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
2.3 L i p s c h i t z spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
§ 3. S i n g u l a r i n t e g r a l o p e r a t o r s 3.1 S i n g u l a r kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
3,2 Operators d e f i n e d by s i n g u l a r kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
§ 4, Boundedness o f s i n g u l a r i n t e g r a l o p e r a t o r s 4.1 Almost orthogonal decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
85
4.2 Decompositions o f s i n g u l a r i n t e g r a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
4.3 Lp
95
boundedness
( 1 < p < ~ ) ..................................
§ 5. Examples 5.1 Graded n i l p o t e n t groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,2 F i l t e r e d n i l p o t e n t groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96 99
5.3 Group germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101
5.4 Boundedness on Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
108
v
Comments and references f o r Chapter I I I
Chapter IV.
......................................
Applications ...................................................
114
117
§ 1. I n t e r t w i n i n g Operators 1 . 1 B r u h a t decomposition and i n t e g r a l formulas . . . . . . . . . . . . . . . . . . . . . . .
118
1.2 P r i n c i p a l
121
series .................................................
1.3 I n t e r t w i n i n g o p e r a t o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
124
1.4 Boundedness o f i n t e r t w i n i n g o p e r a t o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . .
128
1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
134
§ 2. Boundary values o f
H2
functions
2,1 Harmonic a n a l y s i s on the Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . .
138
2.2 Tangential Cauchy-Riemann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
142
2.3 P r o j e c t i o n onto
146
2.4 Szeg~ kernel f o r
H~(G)
as a s i n g u l a r i n t e g r a l o p e r a t o r . . . . . . . . . .
H2(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
§ 3. H y p o e l l i p t i c d i f f e r e n t i a l
operators
3.1 Fundamental s o l u t i o n s f o r homogeneous h y p o e l l i p t i c 3.2 P r i n c i p a l
151
parts of differential
operators .....
operators ........................
158 163
3.3 C o n s t r u c t i o n o f a p a r a m e t r i x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
166
3.4 Local r e g u l a r i t y
167
.................................................
Comments and references f o r Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
173
Appendix:
175
Generalized Jonqui6res Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1
Root space decomposition o f
A.2
Maximal f i n i t e - d i m e n s i o n a l
A.3
Structure of
A.4
Birational
Der(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
176 180
m ......................................................
185
transformations ...........................................
192
Comments and references f o r Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201
Bibliography .................................................................
202
Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
210
Preface
These notes are based on lectures given by the author
during the Winter
semester 1975/76 at the University of B i e l e f e l d . The goal of the lectures was to present some of the recent uses of n i l p o t e n t Lie groups in the representation theory of semi-simple Lie groups, complex analysis, and p a r t i a l d i f f e r e n t i a l equations. A complementary objective was to describe certain structural aspects of simply-connected n i l p o t e n t Lie groups from a " g l o b a l " point of view (as opposed to the convenient but often unenlightening induction-on-dimension treatment).
The unifying algebraic theme running through the notes is the use of filtrations;
indeed, n i l p o t e n t Lie algebras are characterized by the property of
admitting a p o s i t i v e , decreasing f i l t r a t i o n .
The basic a n a l y t i c tool is a
homogeneous norm, which replaces the usual Euclidean norm and gives a "noni s o t r o p i c " measurement of distances. One obtains a f i l t r a t i o n
on the algebra of
germs of C~ functions at a point by measuring the order of vanishing in terms of the homogeneous norm. This in turn induces a f i l t r a t i o n
on the Lie algebra of
vector f i e l d s and on the associative algebra of d i f f e r e n t i a l operators. To construct (approximate) inverses f o r certain d i f f e r e n t i a l operators, one uses integral operators whose order of s i n g u l a r i t y along the diagonal is measured via the homogeneous norm.
A recurring aspect of our constructions is the approximation of one algebraic structure by a simpler structure; e.g. a f i l t e r e d Lie algebra is approximated by the associated graded Lie algebra; a group germ generated by a Lie algebra of vector f i e l d s is approximated by the Lie group generated by a " p a r t i a l l y isomorphic" n i l p o t e n t Lie algebra. The "order of approximation" is s u f f i c i e n t l y good that results in analysis on the simpler structure can be transfered to corresponding results on the o r i g i n a l structure; e.g. convolution operators on a f i l t e r e d n i l p o t e n t group which are " s i n g u l a r at i n f i n i t y "
have the
Vlll
same LP-boundedness properties as operators on the corresponding graded group.
The notes are organized as follows: Chapter I studies n i l p o t e n t Lie algebras and groups viewed as l o c a l l y n i l p o t e n t derivations and l o c a l l y unipotent automorphisms o f f i l t e r e d polynomial rings. Comparisons, both algebraic and a n a l y t i c , are made between various n i l p o t e n t group structures. These constructions are continued in the Appendix, in the context of groups of b i r a t i o n a l transformations.
In Chapter I I we explore the p o s s i b i l i t y of approximating a f i n i t e l y generated ( i n f i n i t e - d i m e n s i o n a l ) Lie algebra of vector f i e l d s by a ( f i n i t e dimensional) graded n i l p o t e n t Lie algebra. This leads to the notion of " p a r t i a l homomorphism" of graded Lie algebras, and the problem of " l i f t i n g "
a partial
homomorphism. The prototype f o r t h i s s i t u a t i o n is the case of a homogeneous space f o r a group, where the " l i f t i n g "
is obtained by i d e n t i f y i n g functions on the
homogeneous space with functions on the group which are l e f t - i n v a r i a n t under the s t a b i l i t y subgroup of a f i x e d point. The main r e s u l t of t h i s chapter is that a s i m i l a r construction can be carried out r e l a t i v e to a p a r t i a l homomorphismwhich is " i n f i n i t e s i m a l l y t r a n s i t i v e " . In concrete terms, this means that i f one wants to study a set of vector f i e l d s on a manifold which have the property that t h e i r i t e r a t e d commutators span the tangent space at each point of the manifold, then f o r local questions i t suffices to consider the case in which the manifold is a n i l p o t e n t Lie group, and the vector f i e l d s are "approximately" l e f t i n v a r i a n t . We describe how vector f i e l d s of t h i s type arise in connection with real submanifolds of complex manifolds.
Chapter I I I is devoted to constructing a theory of " s i n g u l a r i n t e g r a l operators" which is s u f f i c i e n t l y general to include the "approximate convolution" operators associated with the " a p p r o x i m a t e l y - i n v a r i a n t " vector f i e l d s of the previous chapter. We prove the boundedness of these operators on
~,
I < p l
( - 1 ) n+z
we p r o v e t h a t
e tX e Aut (P)
Hence f o r any
f,g
Z .
But t h i s
and r e a r r a n g i n g ,
eXe -X = I ,
it
follows
transformation
X
we
that on
eX e N . P by
(~ - l ) n f
n
power s e r i e s
o n l y remains t o p r o v e t h a t
> etX(fg)
eX(fg)
define a linear
and by t h e f o r m a l
t,
of
e P ,
X
for all
identity
t = el°g t
t e ~R .
Indeed, for
in
so i t
any
the function
a polynomial
we
is a derivation.
- (etXf)(etXg)
is clearly
,
t
,
must v a n i s h
n e2Z,
Thus X(fg) = ~
e tX ( f g ) t:o d
= dt
t=o(e
tX
f)(e
tX
g)
= (Xf)g + f (Xg) ,
The map for
N .
X~--~ e X
f u r n i s h e s g l o b a l " c a n o n i c a l c o o r d i n a t e s o f the f i r s t
Using t h i s map, we t r a n s f e r
v e c t o r space
n
to the group
N .
X,Y ~
restriction
kind"
the a n a l y t i c m a n i f o l d s t r u c t u r e o f the
If
X,Y e n
and
f e P ,
then the map
e X eY f
i s o b v i o u s l y a p o l y n o m i a l mapping on mined by t h e i r
Q.E.D.
to
n x n .
V* ~ P r
'
it
Since elements o f
N
are d e t e r -
f o l l o w s t h a t group m u l t i p l i c a t i o n
is
a p o l y n o m i a l map when expressed i n c a n o n i c a l c o o r d i n a t e s . Indeed, as i n the p r o o f o f the theorem, i f
Hence i f
we w r i t e
eX eY = eZ
then
Z = log (e X eY)
e
Z = X * Y ,
(~)
X ~ Y =
To d e t e r m i n e the e x p r e s s i o n f o r {X * Y ( ~ i ) } that
,
using
{X * Y ( ~ i ) }
(*)
.
n .
then Z (-l)n+l, n>L n X mY
Since t h i s
i~eX e Y - l ) n
as a v e c t o r f i e l d , s e r i e s is l o c a l l y
are p o l y n o m i a l f u n c t i o n s o f
s h a l l o b t a i n more e x p l i c i t
{X(~i)
we o n l y need c a l c u l a t e finite
, Y(~i)}
on .
P , (In
we f i n d § 2
i n f o r m a t i o n about these f u n c t i o n s using the
Campbell-Hausdorff formula to rewrite
(m)
i n terms o f L i e p o l y n o m i a l s . )
we
10
1.5 T r a n s f o r m a t i o n
groups
a group o f ( n o n - l i n e a r ) {Ci }
be a b a s i s f o r
Theorem
If
The group
analytic V~
a l s o has a dual p r e s e n t a t i o n
transformations
with
m e N ,
N
~i
of weight
of the vector
space
V .
as Let
ni
then t h e r e i s a t r a n s f o r m a t i o n
T : V ÷ V
of the
form (~)
~i(Tx)
with
qi e P n . - 1 '
=
such t h a t
~i(x)
~(f)(x)
+ qi(x)
,
= f(Tx)
.
C o n v e r s e l y , f o r any c h o i c e o f
3
qi e Pn.-i exists
'
formula
m e N
(~)
defines
isomorphism o f
V ,
and t h e r e
such t h a t ~(f)
Proof
an a n a l y t i c
Since
= f o T
m(~i ) = ~i
mod
,
for
Pn -1 '
all
f e P .
there exist
qi
so t h a t
1
m(~i ) = Ei + qi is clear
that
"
Define
is invertible, if
g i v e n any
such t h a t
same p r o o f as i n
that
with
qi e P n i _ l
shows t h a t -1
= e -X .
o f the m a n i f o l d
Aut (P) V ,
subgroup o f a l i n e a r
Xn(~)
,
,
P
there exists One has
m = e
X
Hence
V
i s g e n e r a t e d by
,
it
for
a u n i q u e homomorphism
(~ - I ) some
m e N .
Pn ~- Pn-1 '
X e n . Clearly
corresponding to
representations
so the
In p a r t i c u l a r , m(f) = f o T ,
-I m
,
so
we have
We have p r e s e n t e d the group
and as a subgroup o f t h e group o f a n a l y t i c
two i n f i n i t e - d i m e n s i o n a l
N
isomorphisms
g r o u p s . We may a l s o embed
N
as a
group.
Xn : N + GL (Pn)
o b t a i n e d by r e s t r i c t i o n for
Then s i n c e
Q.E.D.
1.6 F i n i t e - d i m e n s i o n a l as a subgroup o f
"
is the transformation
S o T = T o S = I ,
matrix
(m) .
m(~i ) = ~i + qi
§ 1.4
S : V + V
Let
by
m(f) = f o T .
Conversely, : P ÷ P
T
to relative
be t h e f i n i t e - d i m e n s i o n a l Pn
Since
,n(m) f = f
t o the d e c o m p o s i t i o n
representation mod P k - i
for
Pn = Ho ~ HI ~ ' " ~
of
N
f e Pk ' Hn '
the is
(il : ii
Xn(m)
.
,
n
where
I k = identity
Theorem Proof P
If If
n > r ,
this
1.7 ExamPleS
and
n > r ,
implies that
1)
~{k "
If
Xn then
is faithful. R[V ~ = I .
V = V1 ,
2)
vector fields, If
V = V1 ' V2 ,
d e f i n e d as in
§ 1.3 ,
dim V I = dim V2 = i by
X = ~/ax
and
,
then
N
~t
maps
N
H : V~
(x,y)
Vm g e n e r a t e s
is scalar multiplication
translations and
~1 = Pl 8 V 1 P2
Y = x~/~y ,
and
~2 = P2 "
~-2
i s spanned by
by
~ = all
by elements o f
are c o o r d i n a t e f u n c t i o n s .
and
n ,
H2 = (V~)2 + V~
Heidenberg a l g e b r a in t h i s
t
,
constant-
V . If
~k
is
Suppose Then
@/ay = ~ , Y ]
hi
i s spanned .
Thus
case. As a t r a n s f o r m a t i o n
~
group
acts by
Ii The space
N = all
then
then and
the t h r e e - d i m e n s i o n a l IR2,
and
Since
m= I .
i s the usual space o f homogeneous p o l y n o m i a l s o f degree
coefficient
on
on
the r e p r e s e n t a t i o n
m e Ker (Rn)
as an a l g e b r a ,
Hn
transformation
P2
has b a s i s
t i e IR
÷x+tl ÷Y+t2x+t
i
3
, x , y , x
2
,
and the f a i t h f u l
onto matrices
\0
I
t2
0 0
10l 0
2tl) /
t i e IR
representation
~2
is
12 § 2.
2.1 F i l t r a t i o n s Lie algebra over
B i r k h o f f Embedding ' Theorem
on n i l p o t e n t Lie algebras
IR .
A positive filtration
~1 ~ 2 ~ 3
~ "'"
~ = ~1 '
g-n = 0
Let
F
of
for
n
~ g
be a f i n i t e - d i m e n s i o n a l is a chain o f subspaces
such t h a t
i Proposition
Proof
Set
g
i
~j
' g~]
~
is n i l p o t e n t
=~ ,
?+i
~j+k 0
such t h a t
I x y - x - y I ~ C { I x l a l y l z-a + I x l a l y l a + i x l l - a l y l
r = length of filtration Proof
Since a l l
{~i }
with
Pie
i s a basis f o r
Q+ ni ,
by
w(~) + w(~) ~ n i
a = 1/r ,
homogeneous norms are e q u i v a l e n t , we may assume t h a t
V~
l~i(x) 1 with
~i(xy-x-y) where
where
F .
txl : max where
a} ,
~i e V~i
= pi(x,y)
Theorem 2.2 . and
1/n i
But
Then
, Pi
is a sum o f monomials
w(~) ~ 1, w(B) ~ 1 .
Since
i~(x)l
~(x)~(y)
~ Ixl w(~)
,
, we
thus have ipi(x,y)I where
1 ~ j,
k
and
~ c max { I x l J l y l k}
j + k ~ ni .
From t h i s we o b t a i n the estimate
I x y - x - y I < C max { [ x l J / n l y [ where the max is taken over a l l and
,
integers
j,k,n
k/n}
with
, j ~ 1, k ~ 1, 2 ~ n < r ,
j+k 0
and
write IxlJ/nlylk/n
We may assume and f o r
j,k,n
r > 2 ,
= I~-~) j / n
since o t h e r w i s e
lyl(j+k)/n
~,_g_~ = 0
and
xy = x+y .
in the i n d i c a t e d range we have j/n
~ a ,
2a < ( j + k ) / n
~ i
Hence i x l J / n l y l k/n < (
max { l y l 2a
lyl}
Thus
a < 1/2,
19 Interchanging
x
Corollary
Ixl
y ,
we g e t e s t i m a t e
Suppose the f i l t r a t i o n
i s a homogeneous norm r e l a t i v e
(t,) where
and
Ixy-x-yl a = l/r,
F
(t)
comes from a g r a d a t i o n of
g__ ,
and
to the g r a d a t i o n . Then
~ C { I x l a l y l l - a + I x z Z - a l y [ a} ,
r = length o f
Proof of C o r o l l a r y
Let
F .
Ci ' Pi
be as in the p r o o f above. Since
at
is
an automorphism o f the L i e algebra in the graded case, we have ni Pi ( a t x ' ~t y) = t Hence
Pi
is a sum o f monomials
w(B) ~ i .
C(x)~B(y)
occur in the f i n a l
j + k = n .
w(~) + w(~) = n i ,
w(~) > I ,
Hence the term
The only d i f f e r e n c e between the f i l t e r e d
or
Ixlalyl a
does not
estimate.
these estimates is the behaviour near Ixl ~ ~ > 0
with
By the p r o o f j u s t g i v e n , t h i s leads to the same estimates as b e f o r e ,
but now w i t h the c o n s t r a i n t
Remark
Pi ( x , y )
lyl ~ E > 0 ,
x = O, y = 0 .
estimates
3.2 A l g e b r a i c comparison o f f i l t e r e d
(t)
and
o f the n i l p o t e n t algebra
p o t e n t Lie algebra
using
gr(g) :
F ,
As long as e i t h e r (tt)
are e q u i v a l e n t .
and graded s t r u c t u r e s
be a decreasing f i l t r a t i o n gr(~)
and the graded case in
as f o l l o w s :
~ .
Let
F = {g_~}
We c o n s t r u c t a graded n
Set
z @ (~n / ~n+l ) n>l
and d e f i n e + g-m+1 ' Y + g-~+l~ = ~ ' Y ] when
X e ~m' Y e ~n •
+ g-m+n+l '
The r i g h t - h a n d side o f t h i s formula o n l y depends on the
20 equivalence classes o f filtration into
X, Y mod g-m+1 '
g-~+l '
r e s p e c t i v e l y , by v i r t u e of the
c o n d i t i o n . Extending t h i s bracket o p e r a t i o n to a b i l i n e a r map o f gr(g)
gr(~) ,
we obtain a Lie algebra s t r u c t u r e
(skew-symmetry and the Jacobi
i d e n t i t y f o l l o w immediately from the corresponding i d e n t i t i e s
in
9) .
In t h i s section we want to make an a l g e b r a i c comparison between the Lie algebras
~
and
gr(~) . Pick a l i n e a r map m : g ÷ ~(X) : X + g-n+1
Then
,
if
gr g
such t h a t f o r a l l
X e g_n •
is a l i n e a r isomorphism, and we t r a n s f e r the Lie m u l t i p l i c a t i o n
to
gr(~)
from
by d e f i n i n g ~(x,y) : ~ ([~-Ix, -ly])
I f we denote property
g-n / -~n+l = Vn' gr(g_) = V ,
[~q, ~nl] ~g-m+n
then we see from the f i l t r a t i o n
t h a t the b i l i n e a r map u
can be w r i t t e n as a f i n i t e
sum of b i l i n e a r maps
(1)
P = ~o + P l + ' " + P r - 1
'
where Pk : Vm x Vn ÷ Vm+n+k (r = length of the f i l t r a t i o n ) . p l i c a t i o n on
In p a r t i c u l a r ,
St
on
x e Vn
is a b i l i n e a r map, d e f i n e
~t b ( x , y ) = a l / t The maps Pk
is skew symmetric.
V by
6t x = tnx,
b:VxV+V
is the Lie algebra m u l t i -
V defined above. Each o f the maps Uk
Define d i l a t i o n s
If
Po
b(~ t x, ~t y) "
are thus homogeneous of degree
k :
~ Pk = tk ~k " Thus
at u = Uo + t u l +" . "+ t r - 1 Ur_ 1
n ,
21 In p a r t i c u l a r , lim t+o
6t ~ = ~o "
Note t h a t f o r every
t # o ,
and the Lie a l g e b r a
(V, 6~ ~)
Thus
gr(g) When i s
6t u
is in the c l o s u r e gr(g)
defines a L i e algebra m u l t i p l i c a t i o n
is isomorphic to
choices are o f the form
above so t h a t ms ,
mIvn
where
map v
on
V
to
g ?
Uk = 0
Identity
(mod
from
g
V ,
map 6 t o m.
~ .
This w i l l
for
~ : V÷ V
I f we t r a n s f e r the Lie m u l t i p l i c a t i o n bilinear
v i a the l i n e a r
o f the isomorphism class o f
a c t u a l l y isomorphic
we can choose the map ~
~ ,
on
occur e x a c t l y when
k ~ 1 .
But the p o s s i b l e
i s l i n e a r and
k>nE Vk) . to
V
using
~m ,
we o b t a i n a
such t h a t
m ~ ( x , y ) = ~(mx, mY) • As b e f o r e , we decompose v
(2)
i n t o i t s homogeneous p a r t s :
~ = Vo + ~ I + ' " '+ U r - i
where
'
6~ ~k = tkuk "
We have
~o = ~o '
To compare
since t h i s gives the L i e m u l t i p l i c a t i o n (1)
and
(2) ,
we note t h a t
= I + ml + ' ' ' +
of
gr(~!
.
m can be w r i t t e n as
mr-1 '
where ~k : Vn ~ Vn+k Hence equating terms o f the same degree o f homogeneity ( r e l a t i v e the r e l a t i o n s (3)
Z m+n=p
~m~n(X,y) =
z ~k(~ix,~jy) i+j+k=p
,
to
6t)
gives
22 for
0 ~ p ~ r-1
can pick
~k
(mo = I d e n t i t y )
so t h a t
Vk = 0
.
for
In p a r t i c u l a r ,
= gr(~)
i f and o n l y i f we
k ~ 1 .
To express these equations in a more i n f o r m a t i v e way, we i n t r o d u c e the coboundary o p e r a t o r a s s o c i a t e d w i t h the L i e a l g e b r a space o f a l t e r n a t i n g ,
n-linear
maps from
V
to
gr(#)
V .
.
Let
cn(v,v)
be the
Define
: cn(v,v) ÷ cn+I(v,v) by the formula
a f ( x l . . . . . Xn+l) = i # j
(-1)i+J
f(~°(xi'xj)'
x l . . . . . xi . . . . . x j . . . . . Xn+l)
z ( - I ) i A ( x i ) f ( x I . . . . . x i . . . . . Xn+l) Here
xi
means to omit
i.e.
A ( x ) y = ~o(X,y)
condition
62 = 0 .
xi ,
.
A
is the a d j o i n t
The Jacobi i d e n t i t y
For
6f(xl,x2)
and
n = 1
representation of
gr(~)
for
Uo
is e q u i v a l e n t to the
the formula f o r
~f
becomes
= Uo(f(xl),
x 2) + U o ( X l , f ( x 2 ) )
- f(uo(Xl,X2)) Using t h i s ,
we o b t a i n from
Proposition
the f o l l o w i n g
The L i e algebras
e x i s t l i n e a r maps
mp on
(4) where
(3)
V ,
~
P
e C2(V,V)
gr g
mp : Vn ÷ Vn+ p ,
6rap = Up + Fp F
and
criterion:
,
are isomorphic
There
such t h a t
1 I
satisfy
p-1 aUp = kZ=l u k - Up_ k
We conclude t h a t necessary c o n d i t i o n s f o r s o l v i n g starting with
p = 1 ,
2. The f i l t r a t i o n ~F~ e H2(gr ~, A)
F
determines an i n t r i n s i c
(A = a d j o i n t representation of
remark
i
,
and
~1
Up + Fp
,?p ,
be zero.
cohomology class gr g__) .
Indeed by
(3) ,
= Uo(~lx,Y) + Uo(X,~ly) - ~lUo(X,y) = ~l(x,y)
uI
recursively for
are t h a t the cohomology classes of
Ul(x,y ) - ~l(x,y)
so t h a t
(4)
,
are representatives of the same cohomology class. By
t h i s class is the " f i r s t
o b s t r u c t i o n " to c o n s t r u c t i n g an isomorphism
24 between
g
and
gr(~)
Examples 1. isomorphic to to
~
in
I f the f i l t r a t i o n
g .
g ,
.
is of length
Indeed, in t h i s case
then
~ (a,b,c,d)
Xl,...,x 7
[Xl,Xn]
= 0 ,
then so i f
gr(g) VI
is
any complement
~J1,V~ ~g-~2 ' ~Vl'g-2~ = 0 .
2. Consider the f a m i l y algebras w i t h basis
~2'~
< 2 ,
o f seven-dimensional n i l p o t e n t Lie
and commutation r e l a t i o n s
~1'x7]
= Xn+ 1 ,
= 0
[x2,x3] = ax 5 + bx 6 + cx 7 )
[x2,x4] =
xz,x
with all
ax 6 + bx 7
:
7
Fx3,x4] :
d x7
o t h e r commutators obtained by skew-symmetry from t h i s t a b l e ( o r equal zero
i f they do not appear in the t a b l e ) . A s t r a i g h t f o r w a r d c a l c u l a t i o n shows t h a t Ad x i
is a d e r i v a t i o n o f t h i s algebra s t r u c t u r e ,
1 ~ i < 7 ,
and hence these
equations do d e f i n e a f o u r - p a r a m e t e r f a m i l y o f Lie a l g e b r a s . The descending c e n t r a l s e r i e s
g_n is given by
n ~_ = span {Xn+ 1 . . . . . x 7} when
2 < n ~ 6 .
Thus
~
is s i x - s t e p n i l p o t e n t .
o f the commutation r e l a t i o n s t h a t { n} .
But c l e a r l y
~ (0,0,0,0)
parameters are non-zero . when
~
W,
with
I t is obvious from the form
gr g ~ g (0,0,0,0) i s not isomorphic t o
,
r e ] a t i v e to the f i l t r a t i o n g (a,b,c,d)
when any o f the
Hence the descending c e n t r a l s e r i e s is graded only
is the s e m i - d i r e c t product o f
Lie algebra
,
ad x I
(Xl)
being the s h i f t
A more i n t e r e s t i n g f i l t r a t i o n
on
~
-~n = span {Xn,Xn+ 1 . . . . . x 7} ,
and a s i x - d i m e n s i o n a l commutative o p e r a t o r on
W.
is obtained by s e t t i n g
1 < n < 7
25
This f i l t r a t i o n
is o f l e n g t h seven, and i t
is obvious t h a t r e l a t i v e
to t h i s
filtration gr(g) = ~ (a,O,O,d) w i t h the parameters writing
Ix,y]
a
and
= ~(x,y),
d
,
arbitrary.
Letting
Vn = span (Xn)
we see t h a t the decomposition
(I)
of
~
,
and
i n t o a sum
o f homogeneous terms is given by
~o(Xl,Xn) = Xn+ 1
,
~o(Xl,X7) = 0
~o(X2,X3) = ax 5 ~o(X2,X4) = ax 6 ~o(X2,X5) = ( a - d ) x 7 ~o(X3,X4) =
dx 7
~1(x2,x3) = bx 6
,
~1(x2,x4) = bx 7
~ 2 ( x 2 ' x 3 ) = cx7
'
u3 = ' " =
u6 = 0
( A l l e n t r i e s not o b t a i n a b l e by skew-symmetry are z e r o ) . Let us examine e q u a t i o n homogeneous o f degree
p ,
(4)
o f the p r o p o s i t i o n in t h i s case. A map
is d e f i n e d by
~p Xn = a n Xn+ p where
an = 0
when
algebra structure
n > 7-p . ~o '
,
The coboundary o f
- mp(~o(Xi,Xj))
p = 1
relative
to the Lie
is thus the skew-symmetric mapping d e f i n e d by
a@p(Xi,Xj) : a i ~ o ( X i + p , x j )
When
~p ,
we c a l c u l a t e t h a t
+ ajuo(Xi,Xj+p)
~p
26
6@l(Xl,X2) = (a2-a3) x 4 aml(Xl,X3) = (aal+a3-a4) x 5 6ml(Xl,X4) = (aal+a4-a5) x 6 ~ml(Xl,X5) = ( ( a - d ) a l + a 5 - a 6 ) x 7 ~l(X2,X3)
= a(a3-as) x 6
6~1(x2,x4) = (da2+(a-d)a4-aa6) x 7
,
w i t h a l l o t h e r e n t r i e s not o b t a i n a b l e by skew symmetry equal zero. Hence the condition
6ml = ~I
i s e q u i v a l e n t to the s e t o f 6 l i n e a r equations
a2-a 3 = 0 a3-a 4 = -aa 1 a4-a 5 = -aa 1 a5-a 6 = (d-a) a 1 a(a3-a5) = b d(a2-a4) + a(a4-a6) = b
One c a l c u l a t e s t h a t t h i s inhomogeneous system has rank 5 , and o n l y i f e i t h e r if
a = 0
and
filtration
b = 0
b # 0 ,
(i.e.
Ul = O) ,
or else
then we cannot solve
Assume
a # 0 .
isomorphism between require solving
and
~mp = Up + Fp ,
when
to those j u s t made, we f i n d t h a t f o r while for
p = 2
the e x p l i c i t
~(a,O,O,d,)
(4)
a ~ 0
and
d # 0 ,
then
.
and the s o l u t i o n
~(a,b,c,d)
The h i g h e r - o r d e r .
d # 0 .
consistency c o n d i t i o n i s expressed by the equation that if
b # 0 .
obstructions
By c a l c u l a t i o n s s i m i l a r
these equations can always be s o l v e d ,
they can always be solved i f
form o f equation
hence the
o b s t r u c t i o n to d e f i n i n g an
p = 2,3,...,6 p > 2
In p a r t i c u l a r ,
~ and
~(O,b,c,d),
Then t h e r e i s no f i r s t - o r d e r ~(a,b,c,d)
a # 0 .
~ml = Ul
i s not e q u i v a l e n t to a g r a d a t i o n on
and is c o n s i s t e n t i f
If
ml '
d = 0 ,
we f i n d t h a t the
5b2 = 4ac .
~ g(a,O,O,d).
then using
Hence we conclude
27
Furthermore,
~ ( a , b , c , O ) ~ ~(a,O,O,O)
same a n a l y s i s shows t h a t
i f and o n l y i f
~(O,O,c,O) ~ ~ ( 0 , 0 , 0 , 0 )
F i n a l l y , the
i f and o n l y i f
is also obvious by i n s p e c t i o n o f the m u l t i p l i c a t i o n
3.3 Norm comparison o f f i l t e r e d
5b2 = 4ac .
c = 0 .
(This
t a b l e i n t h i s case).
and graded structures
Continuing the
n o t a t i o n o f the previous s e c t i o n , l e t us turn now to the question of a metric comparison between the group structures defined by l i n e a r map m : ~ + w i t h the subspace
xy
and
x,y
~
xy
V , xmy ,
group laws on
such t h a t
m(~n) .
the vector space write
gr(~)
V . and
gr(m) = I
g
as in
gr(~) .
§ 3.2 ,
corresponding to the Lie brackets
~
and i d e n t i f y
and
~0 "
We shall
r e s p e c t i v e l y , f o r the corresponding Campbell-Hausdorff
~ ~ xmy ,
[x I
on
is o f length
V .
are "asymptotic at i n f i n i t y "
the homogeneous norm, in the f o l l o w i n g sense (Recall t h a t filtration
Fix a
Thus we have two n i l p o t e n t Lie algebra structures on
Fix a dilation-homogeneous norm x,y
and
Then the maps
when measured by
~ = gr ~
i f the
~ 2) :
Theorem Assume the f i l t r a t i o n Then there is a constant
F
is o f length
r > 3 ,
and set
a = 1/r .
M so t h a t
Ixy-x*y[ ~ M ( I x l Z - 2 a l y l a + I x l a l y l a + I x l a l y [ 1-2a)
In p a r t i c u l a r ,
Proof
Ixy-xmy I ~ M ( I x l + l y I # -a
lim
Ixy-x*Yl
IxI+IYl ->~
Ixl+lyl
x,y e V
~i e Vni .
Thus
0
is given by a universal
s u f f i c e to compare the r e s u l t of e v a l u a t i n g a formal Lie p o l y -
Pick a basis and
Ixl + IYl ~ 1 .
Since the Campbell-Hausdorff m u l t i p l i c a t i o n
formula, i t w i l l nomial at
=
if
,
using the two Lie algebra structures on
{x i }
for
V and dual basis
We can w r i t e , by equation
(i)
{~i } of
for
§ 3.2 ,
V .
V* ,
with
xie
Vni
28
~ =
where
~0
+
B
,
B(Vm'Vn) ~g-m+n+l
Hence f o r the formal Lie element
c(x,y) = ~,~
(~)
~ ( x , y ) = ~o(X,y) + z ~ i ( x ) ~ j ( y )
where
zij
c , ,
= B(xi,xj)
l e t us w r i t e and w r i t e
c(x,y)
cm(x,y)
Then by equation
(m)
e_~ni+nj+ 1
we have
zij
More g e n e r a l l y , f o r any Lie polynomial
f o r the r e s u l t of s u b s t i t u t i o n using the Lie bracket f o r the r e s u l t of s u b s t i t u t i o n using the Lie bracket
Uo
and induction one sees t h a t
c ( x , y ) = cm(x,y) +
s qk ( x , y ) z k k>2 =
÷
where
qk e Qk and
the maps x , y
z k e g-k+1 ( n o t a t i o n of
~ ~ qk(x,y) zk .
As in the proof of Theorem lqk(x,Y)I where
11 i,j
§ 2.2). Thus i t s u f f i c e s to estimate
and
3.1 ,
! C max { I x l i l y l i+j < k .
we have the estimate j}
Since
,
z k e g~+ 1 ,
l q k ( x , y ) Zkl ! C max ( I x l i / n where the max is taken over
k+l < n < r ,
dominant term in t h i s estimate, we assume ixli/n
lylj/n
= (~)i/n
In the i n d i c a t e d range we have
~_)a
lyl j / n }
,
with
i,j
as before. To f i n d the
lyl ~ Ixl > 0 ,
and w r i t e
lyi(i+j)/n
i/n ! a
l q k ( x , y ) Zkl r
is a vector f i e l d on
~(Yi) ,
and
{~i }
~(u)Z
M corresponding to a commutator of weight >r
is a graded basis f o r
converges in the asymptotic sense, since
B(u)Y
g__='=
Notice t h a t t h i s expansion
is a polynomial f u n c t i o n of
u .
Let us w r i t e t h i s as B(k(u))X : X(B(u)Y) ~ Ty(u)
S u b s t i t u t i n g t h i s in
(a)
By Lemma 11,2.2
and the formula
t h i s and the Lie formula
,
we get
(I)
,
W = e x(u) ,
the f i r s t
term is
dR(Y)W .
Using
we thus have
WX = dR(Y)W + WE(~(u)) Ty(U)
Suppose
Y e Vk ,
and consider the " e r r o r term"
This is a formal sum of terms field
(III)
It=O exp ~,(u+tB(u)Y) + --~-t It= 0 exp ~ ( u ) + t T y ( u ~
WX = T t
(c)
and using the Lie formula
on
M .
~(u)
From the s u r j e c t i v i t y
T
,
with
E(x(u)) Ty(u)
w(~) > r-k
and
T
in
(c) .
a vector
hypothesis, we conclude t h a t there e x i s t s a
45 neighborhood of
x in M on which every vector f i e l d
combination, with c o e f f i c i e n t s in Hence by s h r i n k i n g ~(u)
~ ~(Z) ,
with
H ,
C~(M) ,
we can w r i t e
can be expressed as a l i n e a r
of vector f i e l d s
E(~(u)) Ty(U)
w(~) > r - k , ~ e C~(H) ,
and
{~(Z)
: Z e g} .
as a series of terms Z e~ .
Applying the operator
W to such a term, we o b t a i n a term w ~ (z)
where
,
¢(u) = ~m(u) W~(u) e Cw(m) .
Let
{Yi : 1 ~ i < d}
be a basis f o r
]
,
and the foregoing a n a l y s i s , we can f i n d f u n c t i o n s d
(d)
W ~(Yi) = dR(Yi)W +
s s n>l j = l
with
Yi e Vni
~!~) e Cn 13
By formula
(c)
such t h a t
~!~) W ~(Yj) lJ
This series converges in the asymptotic sense. Furthermore, we know t h a t n @I]) = 0
To w r i t e t h i s formula in more compact form, introduce the column vectors X = (x(Yi))
,
Y = (dR(Yi))
and the matrices
Define (d)'
W × = (W ~(Yi) ) .
Then
(d)
WX = Y W +
To complete the formal
becomes S ~n W X n~l
s o l u t i o n , we introduce the m a t r i x
series converges in the asymptotic sense, and Hence the geometric series T=
~ Sn n>l
S
S = E ~n "
vanishes to order
This
~ 1 a t u=O .
46
converges in the a s y m p t o t i c sense. Since ÷
(d)'
can be w r i t t e n
as
÷
(I-S) W X = Y W , ÷
(e)
solution
÷
C~
solution
in terms o f
To pass from the formal a s y m p t o t i c expansion
C=
vector fields,
Given a formal power s e r i e s , as i t s T a y l o r s e r i e s a t are
C~
f u n c t i o n s on
u = 0 .
equation
0 o ~ ,
C~
function
such t h a t
T~ = T
(e)
to a
theorem o f E. B o r e l :
having the given s e r i e s
Hence t h e r e e x i s t s a m a t r i x
By the d e f i n i t i o n
(e)
we i n v o k e a c l a s s i c a l
there exists a
T~ ,
whose e n t r i e s
in the sense o f formal T a y l o r s e r i e s
of asymptotic equality,
we can conclude from
that
(t)
W X = (I + T) Y W
where
c
at
follows that
W X = (I+T) Y W •
2.4
at
it
co
_-- #'Ic n n
mod C
is the space o f f u n c t i o n s v a n i s h i n g to i n f i t e
order
u=O.
The space .
C
is i n v a r i a n t
under a r b i t r a r y
(This is not t r u e o f the spaces
m a t i o n s . ) By the i m p l i c i t intertwining such t h a t
operator
W C (M )
Cn ,
C~
changes o f c o o r d i n a t e s on
even w i t h r e s p e c t t o l i n e a r
transfor-
f u n c t i o n theorem we can d e s c r i b e the range o f the
W as f o l l o w s :
There are c o o r d i n a t e s
(t I ..... td)
c o n s i s t s o f the f u n c t i o n s depending on the f i r s t
for
m coordinates
(m = dim M). ÷
Set
÷
Zo = ( I + 7 ) Y .
Then e q u a t i o n
(t)
t o g e t h e r w i t h the above d e s c r i p t i o n ÷
of the range of C~
W implies t h a t t h e r e e x i s t column v e c t o r s
such t h a t ÷
÷
m ÷
W X = Z° W + k=lZ Fk ~Tk
W
Fk
of f u n c t i o n s in
4?
Replace
Z°
by
Z = Z° + ~ F k ( B / ~ t k )
(~) If
w x
{Z i }
.
Then
= z w
are the components o f
Z ,
then the assumption t h a t
is a partial
x
homomorphism t o g e t h e r w i t h t h i s i n t e r t w i n i n g p r o p e r t y i m p l i e s t h a t
(:H:~) if
~i, zj-] w = w ~'([Yi,Yj~)
n i + n j _< r .
We s h a l l
construct
the d e s i r e d l i f t i n g
c e r t a i n commutators o f t h e
Zi .
( ~ )
:
Zi
A
Let us f i r s t
dR(Yi)
mod
by using c e r t a i n
o f the
Zi
and
observe that Ln._1 1 -9
Indeed, we o n l y need to v e r i f y t h i s f o r the formal s o l u t i o n t h i s p r o p e r t y o n l y depends on the T a y l o r expansions a t o f the
Zi .
But
T
is a s e r i e s o f terms
(I+T) Y ,
u = 0
Tml .- ~mk
since
of the c o e f f i c i e n t s
k > 1 ,
and one can
write
( ~ m l " ' " ~mk
with
mij e Ck(r_ni+l ) ,
p r o p e r t y o f the at
0 ,
~!~))
as i s e a s i l y
.
shows t h a t
g
i s the f r e e ,
then we d e f i n e Y l . . . . . Yn '
A
(TY)i
~ij
verified
is of order
r-step nilpotent
as f o l l o w s :
as in
= z
i
Since the v e c t o r f i e l d s
this
If
Y)
§ 1.2 .
Let
F
dR(Yj)
'
by i n d u c t i o n
( u s i n g the v a n i s h i n g
dR(Yj)
of order
~ ni - 1
at
are all 0 .
Lie algebra with generators
be the f r e e L i e a l g e b r a on
By the u n i v e r s a l
property of
< r
F ,
n
Y1 . . . . . Yn '
generators
there exists
a
unique Lie a l g e b r a homomorphism r
such t h a t
F(yi)
: F
= Zi
,
+
L(~)
1 ~ i ~ n .
Let
~ : g+
F be the p a r t i a l
homomorphism
48 of Proposition
1.2 ,
and d e f i n e
A = r o u .
Then
A
is obviously a partial
homomorphism. Note t h a t in terms o f a h a l l b a s i s , one has
A(H~(Y I . . . . . Yn )) = H~(Z 1 . . . . . Zn) , I t f o l l o w s from
(~)
and
(~)
that
A
]~I ~ r
satisfies
properties
(i)
and
(ii)
o f the Theorem. When ~ define
A
i s not the f r e e , r - s t e p n i l p o t e n t L i e a l g e b r a , then we cannot
merely by s p e c i f y i n g the v e c t o r f i e l d s
generators f o r
~ .
A
to
by l i n e a r i t y
properties
(i)
In t h i s case, we set ~ .
and
immediate consequence o f p r o p e r t y 1.1.3.
vector fields o f § 1.1.3 for
in
L0
(~)
1 ~ i < d ,
and
(~)
that
and extend A
vanish a t
A
is surjective at
(ii)
We know t h a t a t 0 .
0 .
and the s t r u c t u r e o f 0 ,
dR(Y) 0 = Dy ,
Hence i f
But t h i s is an L k , g i v e n by
by Lemma I I . 2 . 2 .
n = nI 0 . . . 0 ~ r
associated w i t h the d i r e c t sum decomposition
A(Y)o = Dy 0
But by the s t r u c t u r e o f equations
(T)
~j
,
mod
we have
is in t r i a n g u l a r
njlo
~ = V1 0 . . . 0 Vr ,
Z -J1no
(-l)n n+z
(T-I) n
.
is the formal series inverse to the exponential
series) . By Dynkin's e x p l i c a t i o n o f the Campbell-Hausdorff formula, we know t h a t the formal series log (eXeY) = X + Y + . . . in the non-commuting indeterminants e n t i r e l y in terms o f
X,Y
rearrangement in the case
X,Y
can be rearranged to be e x p r e s s i b l e
and i t e r a t e d commutators of X = ~(u) ,
Y = ~(v)
X and Y .
Applying t h i s
and using the f a c t t h a t
p a r t i a l homomorphism, we conclude t h a t the asymptotic expansion o f
~
is a
X(F(u,v))
has the form ~(F(u,v))
Here
uv
= ~(uv) + R ( u , v )
is the n i l p o t e n t group product on
g ,
and the remainder
R is the sum
o f terms p(u,v)
where
p
{X }
,
is homogeneous o f t o t a l degree
is the image under
surjectivity in the
~ x
of
~ ,
all
~
n > r
in
o f a graded basis f o r
the commutators o f
C~(M) - module spanned by the
{X } . )
F(u,v)
= uv +
S
~ .
Since
~
,
m e C~(M) ,
and
(Because of the
~(u) , ~(v)
map, t h i s implies t h a t the asymptotic expansion of (~)
(u,v)
which occur in
R are
is an i n j e c t i v e l i n e a r
F(u,v)
is of the form
Fn(U,V ) ,
n>r
where
Fn
is a homogeneous polynomial of t o t a l degree
n
in
(u,v)
( r e l a t i v e to
the graded s t r u c t u r e on ~). To o b t a i n the estimate o f the theorem, we r e c a l l from C o r o l l a r y 1.3.1 t h a t
52
this
estimate is satisfied
to estimate
F(u,v)
by t h e d i f f e r e n c e
- uv,
We n o t e t h a t
as
u and v
uv - u - v .
Hence we o n l y need
range o v e r the bounded s e t
Fn(O,V) = Fn(U,O ) = 0 .
o
Hence
n-i
[IFn(U,v)ll _ n
We must have e q u a l i t y ,
,
d
however, because
2 d i m ~ ( L l ' O ) p = dim~(L 1 ' 0 + L O ' l ) p
_< dim T{Mp = 2n+l
.
This completes the p r o o f o f the p r o p o s i t i o n .
4.2 P o i n t s o f type m
By P r o p o s i t i o n
p a r t s o f the h o l o m o r p h i c v e c t o r f i e l d s o f the
2n+1
on
d i m e n s i o n a l t a n g e n t space t o
4 . 1 , we see t h a t the r e a l and i m a g i n a r y M M
span a
2n
d i m e n s i o n a l subspace
a t each p o i n t .
The q u e s t i o n o f
56
i n t e r e s t now i s to determine whether the missing d i r e c t i o n t a k i n g i t e r a t e d commutators o f these v e c t o r f i e l d s .
It
can be o b t a i n e d by
is t e c h n i c a l l y s i m p l e r
and more n a t u r a l t o work in the c o m p l e x i f i e d tangent space to
M .
Then i t
becomes a question o f examining i t e r a t e d commutators o f holomorphic and a n t i holomorphic v e c t o r f i e l d s
Definition C~(M,$))
on
M .
For each i n t e g e r
of vector fields
m~ 1 ,
let
generated by Lie brackets of l e n g t h
holomorphic and a n t i - h o l o m o r p h i c v e c t o r f i e l d s type
Lm be the module (over
on
M .
~ m o f the
A point
p e M ~s of
m if
(Lm+l) p =TcM p
and
(Lm) p # T6Mp .
(If
We s h a l l say t h a t s
llzll 2}
,
when
case we can make a l i n e a r
so t h a t f(z,w)
where
{CAB} # o ,
w e ~}
m = 1 , change
82 which is a
Siegel domain o f type I I
.
By the foregoing a n a l y s i s
H
is the
simplest example o f a "complex-convex" manifold of real codimension one. (Observe t h a t the complex hyperplane D
lies strictly
H
is tangent to
is the zero set of the f u n c t i o n ,
w - w - 2i IIz[I2 ,
1 < j ~ n
span the holomorphic tangent space everywhere on
{Lj
0 ,
and
0 .)
the vector f i e l d s
,
M
,
and mutually commute.
commutation r e l a t i o n s are [Lj
where
to order one at
D and blows up e x a c t l y at the boundary p o i n t
Lj = ~ - ~ + 2i ~j ~ J
The n o n t r i v i a l
H
on one side o f t h i s hyperplane. As a consequence, the f u n c t i o n
i/w is holomorphic in Since
{w = o}
, Lk] = 6jk N
N = -2i ( ~ +
~)
[-j : I ~ j < n}
.
,
This shows t h a t the complex Lie algebra generated by
is isomorphic to the complex
(2n+l) - dimensional
Heisenberg algebra. As a basis f o r the real form o f t h i s algebra, we take
.FXj = Re(Lj) = ~1 ~-~~ + xj ~-~ ~ + yj
Yj
where
=
zj = xj + i y j
Im(Lj) =
2I ~yj ~
, w = s + it
Yj Tt
+
xj
in terms o f real coordinates. Thus
I
{Xj,Yj,Z
; 1 ~ j ~ n}
span the real tangent space to
H at each p o i n t , and
s a t i s f y the Heisenberg commutation r e l a t i o n s [Xj,Y~
: 6jk Z
( a l l o t h e r commutators being zero). Let
g
be the real Heisenberg algebra of dimension
n i l p o t e n t Lie group pbtained from
~
2n+l ,
and
G the
as usual by the Campbell-Hausdorff formula.
63 Since
is t w o - s t e p n i l p o t e n t ,
UV = U +
Pick c o o r d i n a t e s
the group s t r u c t u r e
V + - Zi
[u,v]
is
u,v e
= (C 1 . . . . . ~n) , n = (n I . . . . . nn)
for
and
g
so t h a t
the map n
~ , n , ~ ) = j=lZ (Cj Xj + nj Y j ) + ~ Z
i s a L i e a l g e b r a isomorphism from {Xj,
Y j , Z}.
For
u e g ,
where
~.n = s ~ j n j
•
on
from the p o i n t
0
write g
u = (~,n,~)
= (o,o
in
with initial
¢n+1 .
The i n t e g r a l
!zj
(*)
we f i n d
dyj d~
'
~.y+n.x+~,
conditions
T = 1 ,
of
= (~%',n+n',
- ~"~)
G
,
d-c
-
is
~+~' + ½ (~'~' - ~ ' - n ) ) .
: ~ (~j - inj)
2).
~(~,n,~)
,
starting
0
equations
= _ 1 ~- nj
-
g-x-n.y
xj = yj = s = t = 0 . t h a t the p o i n t
,
curre
the system o f o r d i n a r y d i f f e r e n t i a l
=
Thus in these c o o r d i -
the f l o w g e n e r a t e d by the v e c t o r f i e l d
~dxj _ i I d--~-- - ~- ~j
setting
, ~.n'
Hence the group s t r u c t u r e
• ~-~ e T ~ ( ~ ' n ' ~ ) satisfies
,
are
, (~',n',~'~
(~,n,~) ( ~ ' , n ' , ~ ' ) Let us c a l c u l a t e
onto the L i e a l g e b r a spanned by
we s h a l l
nates the commutation r e l a t i o n s [(~,n,~)
~
S o l v i n g these e q u a t i o n s and
e~ ( ~ ' n ' ~ )
. 0 e H
has c o o r d i n a t e s
64
This shows t h a t the map u~-+ eX(U).o The i n t e r t w i n i n g operator
is a diffeomorphism from
W : C~(M) + C~(G)
defined by
Wf(u) = f ( e ~ ( U ) . o ) can be expressed in these coordinates as Wf(~,n,~) = f ( z I . . . . . Zn,W) , where
z I . . . . . Zn,W are given by
(m)
G onto
M
65 Comments and references f o r Chapter I I
§ 1.1
The i n s p i r a t i o n f o r t h i s section was the work of Folland-Stein B ]
and Rothschild-Stein [ I ] . We have t r i e d here to recast these constructions i n t o a more geometric form, emphasizing the analogies with the case of a homogeneous space. For f u r t h e r d i f f e r e n t i a l - g e o m e t r i c aspects of t h i s s i t u a t i o n , cf. Tanaka
[2]. § 1.2
The notion of " p a r t i a l homomorphism" was introduced by Rothschild-
Stein [1] f o r the case of the free n i l p o t e n t Lie algebras. For information about free Lie algebras and P.Hall bases, cf. Bourbaki [ i ] .
§ 1.3 Stein [ ~ ,
The " L i f t i n g Theorem" was f i r s t
stated and proved by Rothschild-
from a d i f f e r e n t point of view and by somewhat d i f f e r e n t methods (the
problem of "adding variables" to make vector f i e l d s "free up to step r . " ) The present treatment is taken from Goodman [71 .
§ 2.1-2.2
The basic formula f o r the d i f f e r e n t i a l of the exponential
mapping can be found in Helgason [1]. The formal inverse to t h i s formula, i n v o l v i n g the "Bernoulli operator," also appears in Berezin B ] ,
§ 2.3-2.4
Goodman [31 , and Conze [1].
One can reverse the order of construction here, and obtain
the a p r i o r i existence of the vector f i e l d s
{Z i }
by the i m p l i c i t function
theorem. This was pointed out to the author by P. Cartier. The formal series solution then serves to calculate the Taylor expansion of the c o e f f i c i e n t s of the
{Z i }
,
and the l i f t i n g
A
is constructed from the
Zi
as in the t e x t , cf.
Goodman [7]. This procedure has the advantage of being applicable in any category where the i m p l i c i t function theorem applies, e.g. analytic.
Ca ,
real a n a l y t i c , or complex
66
§ 3.1-3.2
Theorem 3.2 is i m p l i c i t in the paper of Rothschild-Stein [1],
The presentation here is taken from Goodman [7].
§ 4
The results and proofs here are taken from Kohn [3] and Bloom-
Graham [ 1 ] , who also obtain s i m i l a r results f o r surfaces of codimension
k > 1
which are in "general p o s i t i o n " . For the c l a s s i f i c a t i o n of the i n v a r i a n t s of real hypersurfaces under holomorphic coordinate transformations, cf. Chern-Moser
[11
Chapter I I I
S i n g u l a r i n t e g r a l s on spaces of homogeneous type In t h i s chapter we shall construct a general theory of " s i n g u l a r i n t e g r a l operators" on a class of l o c a l l y compact spaces of "homogeneous t y p e . " Such a space
X will
have a "distance f u n c t i o n "
c o n d i t i o n t h a t the b a l l s of radius
p
and a measure
~
r e l a t e d by the
R have measure of the order
RQ ,
where
Q
is a p o s i t i v e number (the "homogeneous dimension" of the space). The distance function
p
is required to s a t i s f y a c e r t a i n L i p s c h i t z - c o n t i n u i t y c o n d i t i o n ,
which serves as a replacement f o r the t r i a n g l e i n e q u a l i t y . The operators we shall study are of the form T f ( x ) = PV f K ( x , y ) f ( y ) d~(y) , X where
K is a kernel which is s i n g u l a r along the diagonal
v a l u e ) . The major r e s u l t of t h i s chapter is t h a t when
(PV = p r i n c i p a l
K satisfies certain
homogeneity c o n d i t i o n s , mean-value c o n d i t i o n s , and smoothness c o n d i t i o n s , then T
defines a bounded o p e r a t o r on
L2 (X , dp) .
This is a g e n e r a l i z a t i o n of the
Calderon-Zygmund theory of s i n g u l a r i n t e g r a l o p e r a t o r s , which applies both to n i l p o t e n t Lie groups and to the group germs studied in Chapter I I . To make t h i s connection, we begin, as in Chapter I , with some basic d i f f e r e n t i a l
and i n t e g r a l
calculus on graded vector spaces w i t h d i l a t i o n s and homogeneous norms.
§ 1. Analysis on vector spaces w i t h d i l a t i o n s
1.1. Homogeneous functions and d i s t r i b u t i o n s .
Let
dimensional vector space, with a direct-sum decomposition V =
r z ~ V n=l n
V
be a r e a l , f i n i t e -
88
D e f i n e the d i l a t i o n s
{6 t
Lebesgue measure on
V
: t > o}
by
dx .
on
V
as i n
Q = s n dim (Vn)
dimension of
V .
A function
(If f
.
We s h a l l
V = V1 ,
on
V
will
refer then
g
on
V
will
f e Cc (V)
.
measure
dx
defines
g
on
V
to the i n t e g e r
( t > o)
integrable
the d i s t r i b u t i o n
g ( x ) dx
Q
as the homogeneous
be c a l l e d
homogeneous o f degree
if
f o r m u l a above shows t h a t
which i s homogeneous o f degree
which i s homogeneous o f degree
is homogeneous o f degree
{xR. : 1 < i < d}
u (u e C)
= t - u for all
dx
formula
Q = dim V).
f o ~t = t u f A distribution
§ 1 . 1 , and d e n o t e
We then have the i n t e g r a t i o n
LQ I f ( ~ t x) dx = ~ f ( x ) V V where
Ch I ,
for
V
u ,
the
El .
If
then
~ .
such t h a t
xR, e V n . ,
and l e t
{~i }
1
be t h e dual b a s i s f o r
V* .
Write
l[~fll~ : sup { I D i f ( x ) l Here
Ixl
Lemma. of degree
Suppose ~ .
: Ixl
1 < i ~ d}
is a
- f(y)[
~ M Ix-yl
Proof.
f
If
V .
CI
function
a constant
~ M l]vfl~
(Here g
= i,
and d e f i n e
.
Then we have the f o l l o w i n g
version of
homogeneous f u n c t i o n s .
There e x i s t s
If(x) Ixl
'
i s any homogeneous norm on
t h e m e a n - v a l u e theorem f o r
when
Di = ~ / ~ i -
on
M ,
Ixl ~-I
V ~ {o}
which is homogeneous
independent of
ix-yl
f
,
such t h a t
,
~ = Re ~) .
is a function
on
V ~ {o}
which i s homogeneous o f degree
u,
69 then
Ig(x)l ~ 1loll lxl ~ , where
llgIl~ : sup { I g ( x ) l
estimate for y(t)
f(x)
= x+t (y-x)
- ni .
: Ixl
- f(y) ,
: I}
,
and
z = Re u •
o b t a i n e d by i n t e g r a t i n g
0 < t ~ I .
df
We observe t h a t
Dif
Let us a p p l y t h i s along the path
i s homogeneous o f degree
Hence If( x ) " f(Y)I
~
sup s l D i f ( Y ( t ) ) I I ~ i ( x - y ) [ O~t~l M l[vfll® { sup z i y ( t ) [ x - n i O~t~l
p r o v i d e d the path To Itx[
t o the
y
does not pass through
0
0 < t < i
,
where
Ixl ~ K ( l ~ ( t ) [
IY(t)[~ so t h a t i f
Ixl
~ 2K I x - y l (2K) - I
In p a r t i c u l a r ,
the path
¥
]x+Yl S K
Ixl + I Y l )
and
Hence
+ Ix-yl)
+ Ix-yl) ,
K2(ixl ,
K ~ 1 .
,
(M = max ll~ill~ ) .
c o n t i n u e these e s t i m a t e s , we note t h a t
~ K l x I when
Ix-y[ ni}
then Ixl
~ iY(t)l
~ 2Kmlxl
does n o t pass through
i ¥ ( t ) l X-hi
Ix-ylni
• 0 ,
L Co i x l ~ - n i
and
I x - y l ni
! C1 Ixl ^ I x - y l ,
provided
Ixl
L 2K I x - y l
depending o n l y on
Corollary. it
is Lipschitz
,
K , X ,
since and
ni ~ 1 . ni .
CO and
C1
are c o n s t a n t s
This proves the Lemma.
Suppose the homogeneous norm continuous:
Ilxl - l y [ l
Here
~ c Ix-yl
ixl
is
C1
on
V ~ {o}
.
Then
70 1.2 I n t e g [ a l formulas. Suppose
Ix[
is a homogeneous norm on
V .
Then
we have the f o l l o w i n g i n t e g r a t i o n f o r m u l a :
a ~ i xB I |
where
C
Ixl -Q dx
=
C log (B/A)
i s a constant independent o f
dimension o f
A,B ,
,
and
Q
is the homogeneous
V .
To prove t h i s f o r m u l a , set
f(t)
=
I
Ixl -Q dx
( t ~ 1) .
1~Ixi~t Because the measure
Ixl -Q dx
is i n v a r i a n t under d i l a t i o n s ,
we f i n d t h a t f o r
s,t ~ I , f(st) In p a r t i c u l a r , 0 < t < I , R+
= f(s) + f(t)
this implies that then
f
.
f(1) = 0 .
I f we d e f i n e
f(t)
= -f(1/t)
i s a continuous homomorphism from the m u l t i p l i c a t i v e
to the a d d i t i v e group ~ .
Hence
More g e n e r a l l y , suppose t h a t
f(t)
= C log t
,
, group
as a s s e r t e d .
i s any continuous f u n c t i o n on
which i s homogeneous o f degree zero. Then there e x i s t s a constant
V ~ {o} m(m)
such
that I f([xl) V f o r any
f
m ( x ) I x l -Q dx = m(m) I f ( t ) R+
e L 1 (IR+ ; t -1 d t ) .
function of
LA,~
(IR+= ( 0 , ~ ) )
.
t -1 d t
(The case
f = characteristic
i s proved as above, and the general case f o l l o w s by dominated
convergence.) We s h a l l c a l l
m(m)
the mean-value o f
m .
The map ~ -~ m(~)
is a
continuous l i n e a r f u n c t i o n a l on the space o f continuous f u n c t i o n s homogeneous o f degree
0 ,
relative
to the norm
m(~) log R =
I
I~LxI~R
llmll~ •
Indeed, we have, f o r
m(x) Ix[ -q dx ,
R > i ,
71
so t h a t
lm(~)l
log R 2
114L
f
Ixl -q dx
12]xl~R and hence
(We n o r m a l i z e the measure
dx
on
V
by the c o n d i t i o n
m(1) = 1 .)
§ 2. Spaces o f homogeneous t y p e
2.1
Distance f u n c t i o n s
Let
X
be a l o c a l l y
compact H a u s d o r f f space.
Suppose
p : x× We s h a l l
call
p
x+[o,~)
.
a d i s t a n c e f u n c t i o n on
X
p r o v i d e d the f o l l o w i n g c o n d i t i o n s are
satisfied:
I)
p(x,y)
# 0 if
2)
p(x,y)
= p(y,x)
3)
The sets
x # y , and p ( x , x )
{y : p(x,y)
~ r},
for
basis f o r the neighborhoods o f
4)
There e x i s t s c o n s t a n t s [p(x,y)
We s h a l l c a l l
p(x,y)
c a l l e d the exponent o f that
- p(x,z)l
C > 0
r > 0 ,
are compact and are a
x and
~ C p(y,z) a ~(x,y)
the d i s t a n c e between
p .
= 0
0 < a < I
such t h a t
+ p ( y , z ~ 1-a
x and y .
The number a w i l l
Note t h a t a i s r e q u i r e d to be s t r i c t l y
positive,
be so
1 - a < 1 . Examples I .
dilations
6t .
Let Let
V I'I
be a graded r e a l v e c t o r space as in
§ 1.1 ,
be a smooth, symmetric homogeneous norm on
with V ,
and
72
p(x,y) = Ix'YI.
set
Then by C o r o l l a r y
Ip(x,y) Thus
4)
- p(x,z)I
is satisfied
with
2. More g e n e r a l l y , Lie algebra
V
! C [ x - y - x+z I = [Y-Zl
a = 1 .
let
X
e(x,y)
The o t h e r p r o p e r t i e s
I'I
(as a L i e a l g e b r a ) .
on
= log ( x - l y )
V
,
structure
on
map).
is clear that conditions
4) V
It
in this
as n o t e d . Then
Corollary
1.3.1
a = i/r,
function
u = x-ly
e(x,y)
p(x,y)
le(x,y)l
=
(If
,
we d e f i n e the group
,
1) - 3)
are s a t i s f i e d .
v = x-lz
= u, e ( x , z )
,
w = y-lz
= v, e(y,z)
,
= w .
is the i d e n t i t y
To e s t a b l i s h and i d e n t i f y
But
estimate ×
v = uw ,
with
so by
we have
IV-U-Wl
where
Take a smooth,
using the C a m p b e l l - H a u s d o r f f f o r m u l a , then log
case, s e t
L i e group whose
as in example 1, and d e f i n e
where log i s the i n v e r s e to the e x p o n e n t i a l map V
are obviously verified.
be any s i m p l y connected n i l p o t e n t
admits a g r a d a t i o n
symmetric homogeneous norm
1.1 ,
~ C ( l u l a l w l l - a + l u l l - a l w l a) ,
r = length
o f the g r a d a t i o n on
V .
Further,
f o r any norm
one has
lu-vl ~ K(lu-v+wl + I w l ) . By c o n s i d e r i n g the cases
[u I ~ Iw[
and
lul
! lwl
separately,
we see t h a t t h i s
g i v e s the e s t i m a t e
lU-Vl ! C {luil-alwl a + lwl} (Note t h a t we may assume
a ~ 1/2 ,
commutative and
lul
other properties
are o b v i o u s .
3.
Let
X
= Iluli.)
be a p a r t i a l
s i n c e the case
By C o r o l l a r y
a = I
means
X
1.1, this gives condition
homomorphism from a graded n i l p o t e n t
is 4) .
The
Lie a l g e b r a
V
73 i n t o the Lie a l g e b r a o f v e c t o r f i e l d s Assume t h a t f o r from to
V H
x e M ,
the map
u --+ ~(U)x
o n t o t h e t a n g e n t space a t
be d e f i n e d as in
§ 11.3.
on a m a n i f o l d
x .
M ,
as in Chapter I I .
is a linear
isomorphism
L e t the e x p o n e n t i a l map from
The analogue o f the map
V
x , y ÷ log ( x ' l y )
considered in the p r e v i o u s example is the map
e :H defined implicitly
o
×H
÷V
o
by the i d e n t i t y
exp x ( e ( x , y ) ) Here in
Jqo c
g
is a s u f f i c i e n t l y
X = Ho, p ( x , y )
s i n c e t h e maps condition
eXPx ,
4)
= Io(x,y)l x e Ho ,
w i t h the a d d i t i v e
4. Suppose filtration
it
V
Then are a l l
p
obviously satisfies
as
group o f
X
II.3.2
to compare the group germ generated by
is any s i m p l y - c o n n e c t e d n i l p o t e n t
= Ilog(x-ly)l
satisfies
of
4)
~.
V .
on t h e L i e a l g e b r a
p(x,y)
1) - 3) ,
d i f f e o m o r p h i s m s . The v e r i f i c a t i o n
V
of
X ,
L i e group. L e t
,
as in example 2. Then
in e v e r y subset where
F
be a
and put a graded v e c t o r space s t r u c t u r e
by choosing complementary subspaces t o the f i l t r a t i o n ,
C = C(~). lul
xe e g ,
i s made by e x a c t l y t h e same argument as in the preceding example,
but t h i s t i m e using Theorem
Let
small neighborhood o f a g i v e n p o i n t
§ 11.3.1.
Set
on
= y .
p
as in Chapter I .
satisfies
p(x,y) ~ ~ > 0 ,
1) - 3) ,
and
with a constant
Indeed, using the same n o t a t i o n as in example 2 above, we have
= p(x,y)
estimate for
~ e .
Hence by Theorem 1 . 3 . 1
Iv-u-wl
Remarks 1.
Remark 1 . 3 . 1 , we get the same
as in t h e graded case.
Suppose
p
i s a d i s t a n c e f u n c t i o n on
mean-geometric mean i n e q u a l i t y Ip(x,y)
and
- p(x,z)l
we have ! K~(x,y)
+ p(y,z~
.
X .
By the a r i t h m e t i c
74 In p a r t i c u l a r , p ( x , z ) ~ 2K ~ ( x , y ) so t h a t
p
satisfies
2. Condition compared to implies that
z
,
a weak form o f the t r i a n g l e
4)
p(x,y)
+ p(y,z~
on
,
p
i.e.
will y
be used in s i t u a t i o n s where
is close to
is also f a r from
inequality.
x
z
but f a r from
x .
and t h a t the d i f f e r e n c e
i s o f s m a l l e r o r d e r o f magnitude than the d i s t a n c e require
p(y,z)
p(x,y)
is small
In t h i s case 4)
ip(x,y)
(recall
- p(x,z)l
t h a t we
a > o) .
3. In a l l
the examples
2) - 4)
above the number
i n t e g e r equal to the l e n g t h o f the g r a d a t i o n on the weaker e s t i m a t e
4)
V .
r = 1/a
is a p o s i t i v e
The l o n g e r the g r a d a t i o n ,
becomes, in terms o f the comparison o f distances described
in the previous remark.
2.2 Homogeneous measures p o s i t i v e Radon measure on relative
X .
Let
X, p
be as in
We s h a l l say t h a t
to the d i s t a n c e f u n c t i o n
p ,
§ 2.1. ~
Suppose
u
is o f homogeneous t y p e ,
i f t h e r e e x i s t constants
C, Q > 0
that (~)
S p ( x , y ) -Q d~(y) ~ C log (B/A) A~p(x,y)~B
for all
x e X ,
Lemma
(i) (ii)
(iii)
and a l l
Assume
u
0 < A < B .
satisfies
(~) .
Let
m> 0 ,
is a
0 < A < B .
~ ( { y : p ( x , y ) ~ B}) ~ CBQ f p ( x , y ) -Q+~ du(y) 1
be such t h a t
K e KM, R (X,p,u)-
For
j e Z ,
define I K ( x , y ) , i f Rj ~ p ( x , y ) ~ Rj + l Kj ( x , y ) =
L o
,
otherwise
and set Tjf(x) for
:
f e L2 (X, d~) .
L2(X, du). {Tj}j~ °
f K j ( x , y ) f ( y ) dy Let
IIAII
,
denote the operator norm of an operator
A on
Then we have the f o l l o w i n g estimate which shows that the two f a m i l i e s and
{Tj}
are both almost orthogonal.
(This separation of
j > o
j~o and
j ~ 0 corresponds to the two s i n g u l a r i t i e s
of
K :
the p o i n t at i n f i n i t y
and the d i a g o n a l . ) Lemma
There is a constant
C ,
independent of
K ,
such t h a t when
j,Z
have the same sign, then
[ETj T~I] + IIT~ TZl] 2 CR-ajj-zl (The norm
HKHM,R was defined in
Proof.
If
A
IIKLI2 R
§ 3.1.
Here
a
is the exponent of
is an i n t e g r a l operator w i t h kernel
A(x,y),
(X,p,~).)
then by the
Schwarz i n e q u a l i t y one has the pointwise estimate I A f ( x ) l 2 j .
Fix
x ,
and
j ~ Z
separately.
and set
: Rj ~ p ( x , z ) ~ Rj + l
A l l estimates take place on
I ~ j
,
RZ ~ p ( y , z ) L RZ+l} .
E .
We w i l l make a three-term collapsing sum estimate of the left-hand side of
(mm) ,
of
§ 3.1
corresponding roughly to the three conditions on the kernels
GjZ ( x , y ) = f
K and K~ .
Kj(x,z)
+ ~(y,x) + Kz(y,x
(I),
(II),
(III)
Namely, we w r i t e
~Kz(y,z ) - K ( y , x ~ c dz
- Kz(y,x~C f K j ( x , z ) dz
)c
f K j ( x , z ) dz
Thus we have f I G j z ( x , y ) I d y 5 ~f I K j ( x , z ) I I K ( y , z ) + ff E
- K ( y , x ) I d y dz
IKj(x,z)IIK(y,x)
- Kz(y,x)Idy dz
+ I f K j ( x , z ) dz I f I K z ( y , x ) i dy
(Note t h a t
Kz(y,z ) = K(y,z)
I I , 12 , 13 ,
13
is the simplest to estimate. Indeed, by
I IKz(y,x)I dy = ~ I (~1 e { ~)( x}) " [ x
If - T
u
is any o t h e r d i s t r i b u t i o n
is a f i n i t e
6t ,
convolution o p e r a t o r on {e}
was bounded on
I
such t h a t
~(x) dx
o
~ = ixl -Q
away from
e ,
l i n e a r combination o f d e r i v a t i v e s o f the d e l t a f u n c t i o n at
Using the d i l a t i o n s
f u n c t i o n at
~+ id^x,
it L2(G )
is simple to show t h a t i f then
p - T
p
Thus i t
e .
defined a bounded
would be a m u l t i p l e of the d e l t a
(no d e r i v a t i v e s could occur). This in turn would imply t h a t L2 .
then
is enough to show t h a t convolution by
T
is not
T
98 bounded on
L2 . T ,
To prove the unboundedness o f o f the f u n c t i o n control
I x l -Q
either
o v e r the s i n g u l a r i t y
Take a f u n c t i o n
f e Ca(G) f(x)
By the i n t e g r a t i o n
e ,
=
the n o n - i n t e g r a b i l i t y
Since we have a l r e a d y gained some
i s e a s i e r t o use the s i n g u l a r i t y
f > o
and
Ixl) -I
[xl ~ 2 .
when
we have
F u r t h e r m o r e , by the mean value theorem, i f
l lxl-
at
dx ! C1 + C2 ~ dt 2 t(log t) 2
But we know from C o r o l l a r i e s
1/a
it
§ 1.2 ,
If( u) - f(v)i
where
or at
such t h a t
formula of
I [f(x)l 2
f e L2(G ) .
at
e
= Ix[ -Q/2 ( l o g
G
Thus
at
we may e x p l o i t
! C(Iul-
Ivl)Ivl
lUl ~ IVl
,
then
-(Q+2)/2
1 . 3 . 1 and 111.1.1 t h a t
IxwLE ~ c [xy-xl < C (Ixy-x-yL
+ IYl)
< C (Ixll-alyl
a + { x l a l y l 1-a + l Y l )
i s the l e n g t h o f the f i l t r a t i o n
on
G .
It follows
from these e s t i m a t e s
that If(xy)
,
- f ( x ) l 2 ! C Ixl -Q-2a j y l 2a
whenever
Ixl ~ A IYl
following
e s t i m a t e f o r the
IYI < i .
and
llRyf - f[Ik2
if
IYI o and i f
s+m
at K
u = o
(as measured
is a kernel o f type
(Expand
f(x,u)
in a T a y l o r
u .)
To t r e a t the i n t e r a c t i o n between o p e r a t o r s defined by kernels o f type and d i f f e r e n t i a l
3.
which is spanned over
DO(X)m be the module o f d i f f e r e n t i a l
Let C'(X)
by
x(w I ) wi e V
s
operators on X we i n t r o d u c e the f o l l o w i n g f i l t r a t i o n :
Definition
where
s ,
o p e r a t o r s on
and the o p e r a t o r s o f the form
1
~(w k) ,
...
is homogeneous o f degree
ni ,
and
n I + . . . + nk ~ m .
We s h a l l X-degree ~ m .
r e f e r to elements o f
operators of
These modules are i n v a r i a n t under t r a n s p o s i t i o n ( r e l a t i v e
p a i r i n g given by i n t e g r a t i o n over
Theorem 2 m< s ,
DO(A)m as d i f f e r e n t i a l
If
A
to the
M .)
is an o p e r a t o r o f type
then t h e r e e x i s t o p e r a t o r s
AI and A2
s > o ,
o f type
and
s - m ,
D e DO(X)m
5
with
such t h a t
[AA ~ = A 1 Dm for all
~ e Cc(X ) .
Proof A
A2~
I t is o b v i o u s l y s u f f i c i e n t
an o p e r a t o r w i t h kernel
homogeneous o f degree
m ,
to c o n s i d e r the case
K(x,y) = a(x) k(e(y,x)) and
k
is a
b(y)
Ca f u n c t i o n on
,
D = X(w)
where V ~ {o}
w e V ,
and is
homogeneous
106
o f degree
s - Q .
Denote by the function
K(1 )
the function
x r-+ k ( e ( y , x ) )
(m)
.
K(I ) (x,y)
o b t a i n e d by a p p l y i n g t h e
By f o r m u l a
(III)
= dR(w) k ( e ( y , x ) )
Since t h e v e c t o r f i e l d
D
to
we can w r i t e
+ Ty,w k ( e ( y , x ) )
is of order
Ty,w on
vector field
.
< m - I
,
it
can be
e x p r e s s e d as a sum o f terms o f t h e form
a(y,u) where
a
is a
v e V
i s homogeneous o f degree
Ty,w k(u)
C~ f u n c t i o n
a
,
which vanishes to o r d e r n .
(cf.
> n - m + I -
Chapter I ,
§ 1.3).
at
u = o ,
and
Hence the f u n c t i o n
i s a sum o f terms
a(y,u) with
Dv
as above and
expansion in s - m + i
u ,
kI
kl(U ) ,
homogeneous o f degree
we f i n d
t h a t the f u n c t i o n
s - n - Q .
Ty,w k ( o ( y , x ) )
Taking the T a y l o r i s a kernel o f t y p e
.
To a n a l y s e the l e a d i n g term
in
(m) ,
set
F = dR(w) k
where t h e d e r i v a t i v e s the distribution s - m - Q .
If
a r e taken i n t h e d i s t r i b u t i o n
k(u) du . s > m ,
f(u)
It
follows
Then as a d i s t r i b u t i o n ,
F
is
k
with
homogeneous o f degree
the pointwise derivative
= ~ t t= 0
i s a homogeneous f u n c t i o n
sense by i d e n t i f y i n g
k(u(tw))
o f degree
u ~ 0
s - m - Q ,
that the distribution
F = f(u)
,
du
and hence i s l o c a l l y
integrable.
107 in t h i s
case.
In the case We c l a i m t h a t
(~)
f
s = m ,
the f u n c t i o n
f(u)
is homogeneous o f degree
-Q .
has mean-value z e r o , and t h a t F = PV(f) + Ca ,
where
C
we f i r s t
is a c o n s t a n t , and
a
i s the d e l t a f u n c t i o n a t
choose the c o n s t a n t
0 .
so t h a t the mean-value o f
To prove t h i s ,
g(u) : f(u)
-
~lul -Q
is z e r o . The d i s t r i b u t i o n
G
=
F
-
PV(g)
is then homogeneous o f degree
-Q ,
mlul -Q But t h i s
implies that
and d e r i v a t i v e s
G
linear
o f the d e l t a f u n c t i o n ,
luI 1
however,
T
f
C # 0 .
Hence
G
where
lul
T
Iol]
I
m
lul Q
~(o)
i s n o t homogeneous o f degree
a(x) f(e(y,x))
ax
lul du
lU >1
t r a n s f o r m s by
The f o r e g o i n g a n a l y s i s thus proves t h a t
where
BT
is the d i s t r i b u t i o n
has mean-value z e r o , and by homogeneity we o b t a i n
modulo o p e r a t o r s o f t y p e
c o i n c i d e s w i t h the f u n c t i o n
c o m b i n a t i o n o f the d i s t r i b u t i o n
< T,~oa t > = < T,~ > + C l o g ( t ) with
0
du .
is a finite
< Under d i l a t i o n s ,
and away from
b(y)
s - m+ 1
i s the d e l t a f u n c t i o n a t
DA
-Q
unless
B = 0 .
Thus
(**) is an o p e r a t o r w i t h k e r n e l
, (plus a term
C a ( x ) b(y) a x ( y )
when
x) .
Taking t r a n s p o s e s , we o b t a i n the same c o n c l u s i o n f o r
AD ,
Q.E.D.
s = m ,
108 5.4
Boundedness on Sobolev spaces
In t h i s section we want to e s t a b l i s h
the smoothing p r o p e r t i e s o f the class of i n t e g r a l operators o f type
s
introduced
in the previous s e c t i o n . For t h i s purpose we introduce the f o l l o w i n g class o f "Sobolev spaces." t h a t the set
We continue the assumptions and n o t a t i o n o f
X has compact closure in
neighborhood o f
w
I I I = I~11 + . . . +
If
l~nI
{w }
for
Definition
I
with
S~(X) III
V ,
I = { a l . . . . . an}
is smooth on a
If
~ m .
and denote by
I < p < =
(D1f
~ .) .
the degree of
i s an o r d e r e d c o l l e c t i o n
and
of indices,
set
m is a non-negative i n t e g e r , then the f e LP(x)
is the d i s t r i b u t i o n
Dlf e LP(x)
for all
d e r i v a t i v e , using the dual~ty defined
=
l i~<m
IIDIfI[Lp(X)
As an immediate consequence o f Theorems 1 and 2 o f If
such t h a t
Set
Ilfllp,m Theorem i
la[
~(w n)
consists of a l l functions
by the measure
u
and d e f i n e
DI = ~(w 1) . . .
space
and the measure
and assume
X .
Pick a graded basis homogeneity of
M ,
§ 5.3 ,
A
is an o p e r a t o r of type
§ 5.3 , m, m a
we have non-negative i n t e g e r ,
then A : L P ( x ) + SmP(X) continuously, for
lo
and we can t a k e
We have
B =
Given
a-
: a elR ~ { o }
Then t h e maps BV
onto
g ~ - + m(g)
M , A , V
,
120
we have
g e BV d # o ,
and in t h i s case
a(g) = I dl-1
m(g) = sgn(d) I ,
o
°1]
v(g) =
Id
If01
Note t h a t Bw =
-I
:
a,b elR ,
a # o
In terms of the Bruhat decomposition, we have the f o l l o w i n g i n t e g r a l formulas:
Lemma
Let
dm, da, dn, dv
denote Haar measures on
M, A, N, V r e s p e c t i -
vely ( a l l these groups are unimodular). Then (i)
left
~ f l f(man) MAN
Haar i n t e g r a l on (ii)
where
d/b
dm da dn
is a
B = MAN; fB
denotes l e f t
f ( b man) dlb = ~(a) IB f ( b ) d/b , Haar measure on
B ,
and
~(a) = Bet (Ad(a)l~)
(iii)
fB iV
Haar i n t e g r a l on Proof p r o p e r t i e s of
(i)
isa
f ( b v ) dzb dv
G . f o l l o w s immediately from the n o r m a l i z a t i o n and commutation
M, A, N .
To prove
Lebesgue measure on the Lie algebra det (Ad ml~ ) = det (Ad n i l ) = 1 ,
(ii) n
,
recall
t h a t via the exponential map,
serves as Haar measure f o r
we obtain
(ii)
from
(i)
N .
Since
and the change of
Lebesgue measure under l i n e a r transformations. The proof of
(iii)
requires a reversal of p o i n t of view. We s t a r t w i t h a
121
Haar measure direct
dg
on
G ,
p r o d u c t group
and we use
B × V .
l(f)
(f
dg
on the
Namely, we c o n s i d e r t h e i n t e g r a l
: IG f ( b ( g ) ,
continuous w i t h compact s u p p o r t on
g e BV ,
t o d e f i n e a Haar i n t e g r a l
v(g))
dg .
B x V.)
Here
g = b(g) v(g)
for
and we note t h a t
b I gv I = b(blg ) v(gv 1) •
Hence I ( f ) by
is i n v a r i a n t under l e f t t r a n s l a t i o n s by
V on
dzb dv ,
B × V .
Since
V
G ~ BV
: I I f(b,v) BV
B × V
is
dzb dv .
i s o f Haar measure z e r o , t h i s proves
1.2 P r i n c ! p a l
irreducible
I.
(iii)
We c o n t i n u e to assume t h a t
series.
L i e group o f r e a l - r a n k unitary
is unimodular, the l e f t Haar measure on
so by uniqueness o f Haar measure, we must have l(f)
Since
B and r i g h t t r a n s l a t i o n s
Let
B = MAN
representations
.
G
is a semi-simple
as in
§ 1,1.
The f i n i t e - d i m e n s i o n a l
of
are a l l
o f t h e form
B
x(man) = ~(a) o(m) , where
~
is a u n i t a r y c h a r a c t e r o f
sentation of vectors for
M . y
is non-trivial
representation
denote by
H(~)
is an i r r e d u c i b l e
and
unitary repre-
(This f o l l o w s from E n g e l ' s theorem: the space o f
r e p r e s e n t a t i o n space.) cible
A
and i n v a r i a n t
under
C o n v e r s e l y , any such p a i r y
of
the H i l b e r t
B
"f
(~,~)
hence i s the whole d e t e r m i n e s an i r r e d u -
by t h i s f o r m u l a . We w r i t e
space on which
Consider now the u n i t a r y
B ,
representation
= Ind (~) . B+G
~ ,
N-fixed
and hence
y = (~,~), y ,
acts.
and
122 By d e f i n i t i o n ,
~
a c t s on t h e H i l b e r t
T
f such t h a t
where
for all
man e B
and
x e G ,
(ii)
IV Iif(y)II 2 dy ~ IlfIl 2
I
such t h a t
is zero f o r a l l
A > 0 .
The
operator A(y) f ( x )
= P.V. fV Ky(y) f ( y x ) dy
i s a non-zero bounded o p e r a t o r from tations
and
~
(b)
~y
to
wy = y .
A(~)
is a unitary operator.
Then the r e p r e s e n t a t i o n
the mean-value o f the f u n c t i o n
splits
Hwy which i n t e r t w i n e s the represen-
Some s c a l a r m u l t i p l e o f
Suppose t h a t
and only i f case
~w~
H
y~-~ t r
~ Y (~(w)~yw))
is r e d u c i b l e i f i s zero. In t h i s
as the d i r e c t sum o f two i n e q u i v a l e n t i r r e d u c i b l e
representations.
The p r o j e c t i o n o p e r a t o r g i v i n g the decomposition is a l i n e a r combination o f and the o p e r a t o r Remarks 1.
I
~(w) A(y) . In p a r t
we may d e f i n e an o p e r a t o r
(b) , o(w)
we are using the f a c t t h a t when which extends the r e p r e s e n t a t i o n
wy = ~ , ~
from
then
131
M to
M'
Indeed, by assumption t h e r e e x i s t s
a unitary
operator
T O on
H(~)
such t h a t o(w-lmw) = T o l ~(w) TO Since
w2 e M ,
is a scalar.
one f i n d s t h a t
T 2 o(w2) -1 o
Thus we can choose T=
e ie T
e elR
commutes w i t h
o(m)
and hence
such t h a t
o
satisfies T 2 = ~(w 2)
We set
~(w) : T . 2.
When wy -- ~ ,
a u n i t a r y map from
H Y
to
P r o o f o f theorem the kernel
~
then
~ = o ,
Hw. ~
and the o p e r a t o r sending
which i n t e r t w i n e s
~
~"
and
Y ~-~ ym ,
m e M .
is
W'T
We begin by d e t e r m i n i n g the t r a n s f o r m a t i o n
under the automorphisms
f ÷ o(w)-lf
properties
of
Note t h a t
y m w = m-1 yw mw Hence the M-component o f
ym w
is
m-1 mI mw ,
where
mI
i s the M-component o f
yw. We a l r e a d y c a l c u l a t e d in Lemma 1.4 t h a t a ( y m w) = a(yw)
Hence we o b t a i n the f o r m u l a ~
Since
IYl = lyml
a shell
Det ( A d ( m ) I v ) = i
{a ~ IYl < b}
T
~Y (y) o(m)
,
we may i n t e g r a t e
and o b t a i n the r e l a t i o n
T
(¢=) where
and
(ym) : ( w . o ) ( m - l )
= (w-~)(m -1) T
= mean-value of the f u n c t i o n
~(m)
,
lyl -x a.((y) .
this
formula over
132 Suppose now t h a t there is an
R > I
w¥ # y .
If
~ # o
L2(V) . w-~
If
and
K and
~ = o ,
o ,
by
also a p p l i e s , and
K~ .
then
(~) , A(y)
Hence
A(~)
w~ # o .
of
e x i s t s as a bounded o p e r a t o r on
Since the mean-value
T intertwines T in t h i s case. Thus Lemma I l l . 3 . 1
we must have
T = o T e x i s t s as a bounded o p e r a t o r on
The r e p r e s e n t a t i o n space o f L2(V) ~ H(~) ,
integral
e i IR,then by Lemma I I I . 3 . 1
K over {A ~ lyl ~ AR} is zero T f o r any A > o . By Lemma 1.3, the a d j o i n t kernel K (y-1)m also s a t i s f i e s t h i s T c o n d i t i o n , f o r the same value of R . The smoothness and homogeneity c o n d i t i o n s
are s a t i s f i e d by
such t h a t the
and
via the map f ~
~
and
¥
flY "
~ W'y
can be i d e n t i f i e d with
(This is the s o - c a l l e d "non-compact
p i c t u r e " f o r the r e p r e s e n t a t i o n . ) In t h i s r e a l i s a t i o n , r i g h t t r a n s l a t i o n s , and the subgroup
L2(V) ~ H(a) .
the subgroup
V
acts by
MA acts by
(ma) f ( y ) = v(a) 1/2 y(ma) f(yma) T The element
w
acts by
¥ Since
(w) f(y) = u(yw) I/2 ¥(yw) f ( ~ )
G = (MAV)LW (MAV w V) , I t is obvious t h a t
A(y)
these formulas determine
T
commutes w i t h r i g h t t r a n s l a t i o n s by
V .
By
Lemma 1.3 and the c a l c u l a t i o n above we f i n d t h a t (~) Suppose
Ky (y) ~(ma) = ~(a)(w-y)(ma) Ky (yma) f e
C ~c
(V) @ H(o)
Then
A(y)f
is given by the a b s o l u t e l y conver-
gent i n t e g r a l A(¥) f ( x ) : fV K since
Ky
has
integral
(y) [ f ( y x )
- f(x)]
zero over the f a m i l y of s h e l l s
Using equation (mm) and the i n t e g r a t i o n formula fV f(yma) v(a) dy = fV f(Y) dy
,
dy
,
{Rn < _ IYl < _ Rn+l} •
133 we v e r i f y e a s i l y t h a t i f
g e MAV, then
A(y) Rx(g) f ( x ) The p r o o f t h a t ceptual v e r i f i c a t i o n g i v e n , but take
A(y)
: ~W.y (g) A(T) f ( x )
intertwines
R (w) is more d e l i c a t e . The most conY seems t o be to r e t u r n to the formula f o r A(y) as o r i g i n a l l y
Re x > o .
converges a b s o l u t e l y f o r
Then one proves t h a t the i n t e g r a l d e f i n i n g
f
in
H" , Y
A(y)
now
where
H= : { f e C ' ( G , H ( ~ ) ) ; f(man g) = ~(a) I / 2 y ( m a ) f ( g ) } Y
.
The same change o f v a r i a b l e argument shows t h a t A(y)
and
A(y)
A(y)
: H~ + H~ ~/ w-y
,
commutes w i t h r i g h t t r a n s l a t i o n s by
G .
One proves t h a t as
Re X ~ o ,
converges to the s i n g u l a r i n t e g r a l o p e r a t o r c o n s t r u c t e d above. For d e t a i l s
we r e f e r to the l i t e r a t u r e To f i n i s h cited earlier, A ( y ) * A(y) utes w i t h
c i t e d a t the end o f the c h a p t e r .
the p r o o f o f p a r t ( a ) , we r e c a l l t h a t by the r e s u l t s o f Bruhat
~ is i r r e d u c i b l e i f w.y # T • Hence T must be a non-zero m u l t i p l e o f the i d e n t i t y o p e r a t o r , since i t comm-
~
the r e p r e s e n t a t i o n
Similary,
A(y) A(y) *
Thus w i t h a s u i t a b l e n o r m a l i z a t i o n , In p a r t
(b) ,
the r e p r e s e n t a t i o n
w.y = T ~
to
M'
i s a m u l t i p l e o f the i d e n t i t y
A(T)
implies that
operator.
becomes u n i t a r y . x = o
and
as noted in remark I .
w.o = o .
We extend
Then the c a l c u l a t i o n at
the beginning o f the p r o o f shows t h a t (o(w) T ) = o { m ) - l ( o ( w ) T ) o(m) where
T
i s the mean-value o f the m a t r i x f u n c t i o n
is a scalar m u l t i p l e o f T = o ¥
if
and o n l y i f
I ,
since
o
y ~-+ o(yw) .
Hence o ( w ) T
i s i r r e d u c i b l e . We conclude t h a t
the mean-value o f the f u n c t i o n
y ~-+ t r
,
(o(w) o(yw))
134
is zero Suppose t h i s mean-value i s z e r o . The argument above shows t h a t bounded o p e r a t o r from operator
~(w) A(y)
with
(cf.
~ Y
H¥
to
Hw¥ which i n t e r t w i n e s
~y
and
~wy .
A(y)
is a
The
i s then a bounded o p e r a t o r from
H to H which commutes Y Y remark 2 above). On the o t h e r hand, the r e s u l t s o f Bruhat i m p l y
t h a t the o r d e r o f the Weyl group ( t w o , in t h i s case) always m a j o r i z e s the number of irreducible on
components o f
~ Since o(w) A(~) is not the i d e n t i t y o p e r a t o r Y we conclude t h a t every i n t e r t w i n i n g o p e r a t o r is a l i n e a r
L2(V) ~ H(o) ,
combination o f
~(w) A(y)
and
I ,
and the i n t e r t w i n i n g
dimensional (and hence commutative). Thus
~ Y
splits
as
ring for
~ i s twoY ~+ @ ~- , where ~± are Y Y Y
i r r e d u c i b l e and i n e q u i v a l e n t . I t o n l y remains to v e r i f y t h a t i f the i n t e r t w i n i n g
c
Q
i s n o t z e r o , then
ring for
twining operator and away from
the mean value o f
{e}
~ is trivial. By the r e s u l t s o f Bruhat, any i n t e r Y i s e x p r e s s i b l e as l e f t c o n v o l u t i o n by a d i s t r i b u t i o n on V ,
T
this distribution
is the f u n c t i o n
is a c o n s t a n t . By the "unboundedness" Theorem
bounded o p e r a t o r unless
y ~-* c~(w)o(yw) ,
III.
c = o o This i m p l i e s t h a t
5.1 ,
T
T
where
cannot be a
is a m u l t i p l e o f
I ,
Q,E.D.
1.5 Examples Theorem 1.4. Suppose f i r s t either trivial
o r else
c o n d i t i o n is s a t i s f i e d
Thus
A = ~-IA(E)
Let us i l l u s t r a t e that
y = ~ ,
G = SL(2,R) . where
the r e d u c i b i l i t y Then
c ( ± l ) = ±I .
w-~ = ~
criterion means t h a t
The mean-value zero
o n l y in the second case, and we have in t h i s case
i s the c l a s s i c a l H i l b e r t A f(x)
= P.V. Z
transform:
f f(t) dt t-x
of y
is
135 A f t e r Fourier transformation so
A2 = - I .
A becomes m u l t i p l i c a t i o n by the function
The spectral decomposition of
where H2(IR) are the Paley-Wiener spaces of
A
i sgn(~),
is given by
L2
functions holomorphic in the upper
(lower) half plane, with sup 7 If( x ± iY)I 2 dy < y>o -~ The representation
~
in the non-compact picture is g i v e n by
E
~ (g) f ( x ) = (bx+d) - I f rax+cl ~x--x~-~J b if
g =
.
under
g) .
'
I t is evident from the above description that Theorem 1.4 asserts that the r e s t r i c t i o n
of
~
H±2
are i n v a r i a n t
to
H±2
is i r r e -
ducible. As an other example, consider the group
G~SL(3,~)
which leaves i n v a r i a n t
the Hermitian form z 2 z 2 + 2 Re(z I z~) where
(z 1, z 2, z3) e ~3.
,
(This group is conjugate to the group
leaves i n v a r i a n t the form
z~ Z l +
z:2 z 2 - z 3 z 3.)
The subgroups
t h i s case are the f o l l o w i n g ( a l l blank matrix e n t r i e s are zeros):
I i°
M :
me =
A :
ar = ~
N :
exp
L~° |
e -2ie
1
zo
ei
1
r -I]
i zt 1 0
,
e e IR
'
r>o
,
z e (~, t e IR
SU(2,1)
which
M, A, N, V
in
136
V:
ze¢,teR t
z=',
For t h e Weyl group r e p r e s e n t a t i v e ,
It
is then a straightforward
a(vw)
and
v~ ,
when
matrix,
t
,
where
z~':
(z:':z+it)
whose d i a g o n ~ e n t r i e s
z='~
that
then g i v e
( v w ) u -1 m(vw)
a(vw) = a r ,
where
r = 2 1 z m z + i t I -1
m(vw) = m0 ,
where
e = arg~(zmz+it~
-~=
v(~,~)
2iz = z,z-it
The a d j o i n t
action
of
Ad(ar) r > o ,
function
A
on
v(z,t)
,
where
,
T = -
V
i s an upper
and
a(vw).)
One
4t z~z-itl 2
i s g l v e n by
= v(rz,
r2t)
,
and t h e homogeneous d i m e n s i o n o f
~(ar) = r 4 ,
v = v(z,t)
V
is
Q = 4 .
and hence t h e homogeneous norm on
Iv I = u ( v w ) - 1 / 8 = !
Here
m(vw)
that
l
when
,
to determine the matrices
i s u n i q u e l y d e t e r m i n e d by t h e p r o p e r t y
triangular finds
calculation
v = v(z,t)
t/2
(u = v~
we t a k e
Izmz+itl I/2
V
The m o d u l a r
i s g i v e n by
137 The group
M = U (1)
in this
c a s e , and
on(me) = e - i n e
The a c t i o n o f
w
on
M
is trivial.
M consists of all
representations
n e
Let
Kn(V ) = ~(vw) 1/2 On(VW)
-1
veV
By the f o r m u l a s above we can w r i t e
%(v) Kn(V ) = c n tvt where %(v)
= (z*z+!t)
n
v = v(z,t)
,
Iz'~z+itl n
and
cn
i s a non-zero c o n s t a n t .
by the c h a r a c t e r Theorem Proof.
Denote by
~n
the r e p r e s e n t a t i o n
of
G
induced
ma --+ On(m ) . ~n
is reducible
We s h a l l
n # o .
For t h i s
dinates,
we can express
n
show t h a t the mean-value o f
p u r p o s e , we w r i t e
Qn(V)
Thus the mean-value o f
i s even and n o n - z e r o .
b
~n
i e inO
z'ez+it = re i e .
n
(i eineds)-~ o
,
o
which vanishes p r e c i s e l y
for
n
even ,
n # o ,
n
i s even,
Then using c y l i n d r i c a l
i s given by the i n t e g r a l
de
i s zero
Q.E.D.
coor-
138
§ 2
2.1
BpuRdary values o f
H2
functions
Harmonic analysis on the Heisenber 9 9roup
domain o f type I I " introduced in Chapter I I , acts simply t r a n s i t i v e l y F o u r i e r a n a l y s i s on Hardy class
G ,
on the boundary
parametrize
D .
G
Using the (non-commutative).
r e c a l l the basic facts concerning harmonic a n a l y s i s on G as IRn × Rn x ~ ,
X e IR ~ {o} ,
G acting on
L 2 ( £ n)
g = ((,q,¢)
as in
,
G .
We
§ 11.4.4, with m u l t i p l i c a t i o n
= (~+~',n+n',~+~'+ ½ ( ~ ' n ' - ~ " n ) )
•
there is an i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n
~
of
by 1 f ( x ) = e i~(~+q'x+ ~ q'~) f(x+~)
~(g)
Given
The Heisenberg group
we shall study the boundary values of functions in the
(~,n,¢)(~',n',~')
where
M of
D be the "Siegel
H2(D) .
We f i r s t
For every
§ 4.4.
Let
and
m e LI(G) ,
x-y = ~ xiY i
,
( x , y e IRn) .
we d e f i n e the o p e r a t o r
#(x)
on
L2(£p)
by the
operator-valued integral @(x) = ~ X(g):~ re(g) dg G Here
dg
is Haar measure on
G (=Lebesgue measure on IR2n+l
in the above
c o o r d i n a t e s ) . The Plancherel formula is J im(g)l 2 dg = I G IR where
]]TI]~S : t r (TmT)
lle(~)l]~sdu(x)
is the square o f the H i l b e r t - S c h m i d t norm, and the
Pl ancherel measure d~(~) = c n lXt n d~ ,
with
c n = (2~) -n'1
and
d~
Lebesgue measure on IR .
I f we define
L2(G)
to
t39 X ~-~ T(~) on IR
be the H i l b e r t space o f a l l measurable, o p e r a t o r - v a l u e d f u n c t i o n s such t h a t
[ IIT(x)ll~s d~(x)
,):':)d~(>.)
are e q u i v a l e n t to
^
for
i < k < n =
and
m(~) i a.e.
Range
~ .
I t is immediate from the Plancherel formula t h a t converse f o l l o w s from the existence of " s u f f i c i e n t l y ~(~) .
Specifically,
if
f e L2(IR n)
and
(~)
implies
(~) .
The
many" operators of the form
h e Cc(IR ) ,
then the operator-
144 valued f u n c t i o n ~-+ h(x)
g~f
is the F o u r i e r transform of some rank one on sation of
L2(IR n) H~(p)
a c t i n g by
(Here
v ~-~ ( v , f ) g . )
g ~ f
is the operator of
This f o l l o w s from the c h a r a c t e r i -
given in the previous paragraph, since the elements of
act in the representations coefficients.
e H~(p)
xx
as d i f f e r e n t i a l
With t h i s choice of
~ ,
operators w i t h polynomial
we have
~ ( A ~ ) ; (X) ; (X)* = h ( X ) ( ~ ( A ~ ) g ) £
Hence by the Plancherel formula,
(~)
U(£)
(;(X)f)
.
implies t h a t
/ h(~)(,X(A~)g,~ ; (X)f) dp(X) = o R
f o r a l l such of
h ,
f , g, h
(Recall t h a t
i ~ k < n
~ (A k) •
~(X)f) = o
and a l l
To i n v e s t i g a t e
f e L2(IRn),
(~),
By the a r b i t r a r i n e s s
on
a.e. (X)
g e S (IRn),
we need the e x p l i c i t
Going back to the formulas f o r x~(Pk) = ~
acting
.
t h i s is e q u i v a l e n t to the conditions (~(A~)g,
for
tr(g ~ f ) = (g,f))
S (IRn),
Ak = -Pk-iQk ,
where
'
~®(Qk) = i x x k
{x k}
Ak) = - aXk + Xxk Ak = Pk - iQk '
~(Ak)
=
~
+ Xxk
,
we have
(~).
form of the operators we c a l c u l a t e t h a t
,
are the coordinate
t h i s gives the formula
For the operator
~
which is p r e c i s e l y
functions
on
IRn .
Since
145 Case 1:
If
~ < o ,
l a t e d by
~(A~)
.
+ ~x k, - ~x3k + ~x~ = 2% I
contains the f u n c t i o n s
~k
p(x)
Range
---> ~(~) = o If
when
~ > o ,
is a n n i h i l a t e d by
p
L2(IR n) ,
the f u n c t i o n
~1(Ak) .
Ciioirollary
Hence i t
(i)
v~ and
(ii)
L2(G) .
space commutes w i t h l e f t
translation.
P~
=
v~
Hence
On the o t h e r hand, p(x) v ~ ( x ) ,
(~
is
of the Theorem, and completes the proof.
m e L2(G)
which s a t i s f y
I < _ k < n
,
If
~ e L2(G) ,
P onto t h i s sub-
then the F o u r i e r transform
where
I'0 ~
,
if
~ < o
is the f u n c t i o n
expF-
,
~-ilxll]2
and
W~ Z is one-dimensional
The orthogonal p r o j e c t i o n
c(~) v~ ~ v~ Here
S (IRn),
W~ contains the functions
p(o) = o .
The space o f f u n c t i o n s
Px ~(~) ,
W~
in
in t h i s case. This shows t h a t
is a closed subspace o f
is
~llxll 2) is
is orthogonal to
P(Ak) m = o ,
P ~
is an a r b i t r a r y polynomial.
as is well-known, so t h a t
vx(x) = exp{-
is any polynomial such t h a t
e q u i v a l e n t to c o n d i t i o n s
p
x < o .
and is spanned by the f u n c t i o n
of
and is a n n i h i -
,
where
the same argument as in Case 1 shows t h a t where
S (IR~ ,
~ (Ak)
exp(~llxl~),
This set of f u n c t i o n s is dense in
Case 2:
is in
i n d u c t i v e l y t h a t the subspace
W~ :
(~)
expI~llxll2)
Using the commutation r e l a t i o n s
~k
one v e r i f i e s
the f u n c t i o n
)~ >
,
0
and
c(x)=
EIvxl[-2 = (~/~)n/2 .
146 Proof:
This follows immediately from the Plancherel theorem and the theorem
j u s t proved. Definition functions
Let
m e L2(G)
Remark
Define
H~(G) ~
be the closed subspace of
which s a t i s f y L2(H)
on M via the map u ~
L2(G)
consisting of a l l
(~).
by transporting the Haar measure on
e~(u) • 0 .
If
H~(H)
G to a measure
is the subspace of functions in
L2(M) which s a t i s f y the tangential Cauchy-Riemann equations
(~)
(in the d i s t r i -
bution sense), then
where
W is the l i f t i n g
§ 11.4.4.
map from functions on H to functions on
(In this notation,
2.3
as in
b = boundary.
Projection onto
P : L2(G) + HE(G )-
G ,
H~G_(_~_ #S a slngular integral operator
be the projection operator in Corollary 2.2.
we want to use the Fourier inversion formula on
G (§2.1)
Let
In this section
to show that
P is a
l i n e a r combination of the i d e n t i t y operator and a singular integral operator of the type studied in Chapter I I I . To i l l u s t r a t e the method, we f i r s t classical Paley-Wiener space Fourier transform
f(~)
H~(IR) ,
vanishes f o r
orthogonal projection, then for
consider the analogous problem f o r the consisting of functions x ~ o .
If
P+ : L2(IR) ~ H~(IR)
eo
d~ o
£->0 £>0
!i
e -~(~+ix) d~t
~(x) dx
whose
is the
m e C#(~R) we can w r i t e , by the classical
Fourier inversion formula, 1
f e L2(IR)
147
=
,,II dx +ix
lira
~-~o c>o To w r i t e t h i s l i m i t
as a s i n g u l a r i n t e g r a l , we observe t h a t f o r any f i x e d
1 R dx i ~ l i m T ~ £ ~+ix = ~
dx 1 x-~+l : ~ -
R > o ,
'
~>0
independent of
R .
change of v a r i a b l e
(Write the i n t e g r a l x ÷ cx.)
Since
1 P+~(o) = l i m Tl~ f
as an i n t e g r a l over
[o,R]
and make the
m has compact support, we thus can w r i t e
c÷ix
-
dx
+ "2"1
~(0)
c>O
: ~_T~II 9(x)-m(O)x dx + ½ 9(0)
But the f u n c t i o n
x
-1
has mean-value zero, so t h i s l a s t equation can also be
w r i t t e n as P+~(o) = ~ I
lim ~0
Finally,
~
using the t r a n s l a t i o n - i n v a r i a n c e
P+ = ½ [I-iA] where
A
.9~.(.x.l. dx + ~1 9(0) • x
I X~> E
is the c l a s s i c a l
P+ ,
we conclude t h a t
,
H i l b e r t transform ( c f . § 1.5).
Coming back to the Heisenberg group we f i r s t
of
G and the p r o j e c t i o n
P onto
H~(G)
observe t h a t by the (non-commutative) Fourier i n v e r s i o n formula and
C o r o l l a r y 2.2, co
P~(e) = I t r ( P x ~(X)) d~(X)
,
0
if and
~ e C~c (G) o Here
d~(x) = c n Ix I n dx
is the Plancherel measure f o r
G ,
148 PL ~(~) =c(~)(vk @ v~) ~(X) ^
=c(x) v~ ~ ~(x)* v x v~(x) = exp[- Tx
where
ilxli2]
and
,
c(x) = (X/~) n/2
Hence
t r (Px #(~)) = c(~)(~(X) Vx , v~)
= C(X) ~ m(X)(~(g-l)
VX' v~) dg .
G Next, from the e x p l i c i t
form of the representations
T:x
in
§ 2.1,
routine c a l c u l a t i o n shows that (~(g)
v~, v~) = c(~) -1 exp[ix~ - ¼ (II~l~ + llnII2)~ ,
where the coordinates of
g
P~ as the i t e r a t e d i n t e g r a l
are
(¢,n,¢)
,
as in
§ 2.1.
Thus we can w r i t e
(non-absolutely convergent)
co
(*)
P~(e) = ~ (f e -xT(g) e(g) dg] dp(~) o G
,
where
x(g) if
= ~- (ll~II 2 + llnll 2) - ic
g : (C,n,c) To interchange the order of i n t e g r a t i o n in
factor
exp(-E~) ,
E > o ,
(m) ,
we introduce a convergence
so t h a t
Pm(e) = lim f (7 e-~(c+T(g)) d~(~)] dg . c÷O G 0 E>O
Using the formula f o r the Plancherel measure to evaluate the inner i n t e g r a l , we obtain the formula (me)
P~(e) : lim c f ~(g) dg ~+o G (~+x(g)) n+l E>O
'
149 c = n I ( 2 ~ ) -n-1
where
I t remains to rewrite
and
(~)
considered i n Chapter I I i o
~ e C~c (G)
as a p r i n c i p a l - v a l u e
For d i l a t i o n s
on
i n t e g r a l o f the type
G we take the one-parameter
group o f automorphisms whose a c t i o n in canonical c o o r d i n a t e s i s
~t (~'~'~) : ( t ~ ' t n ' t 2 ~ ) when
t > o ,
The function
'
T introduced above is then homogeneous of degree 2 :
~(~tg ) = t2~(g) . We d e f i n e a homogeneous norm on
G by s e t t i n g
Igl = I T ( g ) l 1/2
= [2 + 4-2(1i~112 + ii~i12)211/4 -1
This norm i s smooth and symmetric, (Recall t h a t
g
The homogeneous dimension o f
and the f u n c t i o n
G
is
Q = 2n+2 ,
has c o o r d i n a t e s
(-~,-n,-~),)
K(g) = T(g) - n - I
i s homogeneous o f degree -Q .
Obviously
K(g-Z) ~ = K(g)
so
K
is
C co
on
G ~ {e}
°
Also
,
i s Hermitian symmetric.
Lemma. Proof
K has mean-value z e r o . Introduce " c y l i n d r i c a l "
p = ( I / 4 ) ( I I ~ I I 2 + llnl[2) .
c o o r d i n a t e s on
,
dm i s the measure on the u n i t sphere in
constant.
G by s e t t i n g
The change o f measure is then
d~ dn d~ = c p n - i d~ do d~ where
K
In these c o o r d i n a t e s , we have
R2n ,
and
c
is a p o s i t i v e
150 K(g) dg : c f f ( p - i ~ ) -n-1 pn-1 do d~ E
a~Ig ~b where
E clR 2
is the h a l f annulus a
4
= H
Here J>O
dx'
and
dx"
f(x')
~(x~x") J(x~x") dx' dx"
denote Lebesgue measure in the respective coordinates, and
is a s u i t a b l e change of measure f a c t o r . Thus i f we define P~(x') = f ~(x',x") J(x',x") dx"
,
Wf
170 then c o n d i t i o n (1) i s o b v i o u s l y s a t i s f i e d . t a k i n g f u n c t i o n s o f the form To v e r i f y
The s u r j e c t i v i t y
of
P
i s e v i d e n t on
m l ( X ' ) ~2(x") .
( 2 ) , we express the v e c t o r f i e l d s
z(v)
and
A(v)
in these
coordinates in the form
~(v) : a ( x ' )
~/~x'
A(v) : a ( x ' )
~/~x' + b ( x ' , x " )
(such an expression is e q u i v a l e n t to the r e l a t i o n by p a r t s in the i n t e g r a l
for
P(A(V)~)
,
~l~x"
A(v) W = W ~ ( v ) )
we o b t a i n r e l a t i o n
.
Integrating
(2), finishing
the
proof. If on
f
is a distribution
Q by formula ( I ) .
Then
on
on
d e n s i t y f a c t o r s in the measures on and
A(V)
Q , H
since and
Q ,
on
is surjective.
the i n t e r t w i n i n g
A~o i n j e c t i v e l y Because o f the r e l a t i o n between
a v e C=(~o )
Let
f
be a d i s t r i b u t i o n
f e
Proof f
g a L~oc(Mo)
on
and
M° .
Then
f
The Lemma i s c l e a r l y true when ~(v) f
are both l o c a l l y
in
m= o , Lp .
~ ) ~ ~ Cc(
°
~(v) P~ > : < g, P~ > Using r e l a t i o n
(3)
by d e f i n i t i o n
of
Wf .
Then t h e r e is a f u n c t i o n
such t h a t < f,
for all
P
as a d i s t r i b u t i o n
W z(v) = (A(v) + av)
Lemma 2
Suppose
Wf
now becomes
(3) where
we now d e f i n e
W maps the space o f d i s t r i b u t i o n s
i n t o the space o f d i s t r i b u t i o n s
~(v)
H O
we f i n d t h a t
171
< W f , A(V)~ > : < W g - a v, ~ > which shows t h a t implication
~
A(v)W f e L~oc(~ ) .
t h e r e is a f u n c t i o n
f e k~oc(Mo)
G e L~oc(Q )
< f, ~ e C#(~) .
taking
m o f the form < f, g e L~oc(Ho) .
A(v)W f e L~oc(~ ) ,
m l ( X ' ) m2(x") ,
P
~(v)~ > = < g,~ > ,
if
homomorphism from
§ 1.2).
V
"principal
part"
A
~(P) ,
where
g e S~,loc(H,~ ) ~
Proof point
xo
Then i f ,
it
P
A
follows that
The r e s u l t i s l o c a l ,
satisfies
on
of
~
~ .
Theorem" o f
which is also a
This allows us to t r a n s f e r
o p e r a t o r on
operators
satisfies
H ,
.
V):
such t h a t
dR(P)
the equation
f e S~+m,loc(M,~ ) ~
A
has a
m ,
0 < m< Q .
and
dR(P t )
Af=g , (Here
are
where i < p < ~ .)
so we may work in a neighborhood o f a f i x e d
Theorem can be a p p l i e d . Since
t e n t Lie a l g e b r a , there e x i s t s a p a r t i a l Thus
A
V
g e n e r a t o r s , w i t h i t s standard
is homogeneous o f degree
differential
f e L~oc(H )
on which the L i f t i n g
n
(Q=homogeneous dimension o f
be a d i f f e r e n t i a l
Assume t h a t the l e f t - i n v a r i a n t hypoelliptic.
and
,
In t h i s case the " L i f t i n g
to v e c t o r f i e l d s
the r e s u l t s o f § 3.3, as f o l l o w s
Let
~ e C~(Ho)
to the main r e s u l t o f t h i s s e c t i o n . Assume now t h a t
Chapter I I ,
Theorem
(x',x")
By i n d u c t i o n t h i s f i n i s h e s the p r o o f .
Chapter I I asserts t h a t there e x i s t s a l i f t i n g partial
in l o c a l c o o r d i n a t e s
we f i n d by H~Ider's i n e q u a l i t y t h a t
r - s t e p n i l p o t e n t Lie algebra on
(cf.
then (3) shows t h a t
such t h a t
Using the formula f o r
We turn f i n a l l y
gradation
and
~(v) P~ > = < G,~ >
for all
is the f r e e ,
t h i s argument gives the
.
Conversely, i f
where
Iterating
,
V
is a free nilpo-
homomorphism A which is a l i f t i n g
the hypotheses o f § 3.3 .
of
~.
172
By r e l a t i o n : Wf
satisfies
(3)
o f t h i s s e c t i o n , we f i n d t h a t the d i s t r i b u t i o n
an equation o f the form Df = g
where
g = Wg ,
and
D
,
is an o p e r a t o r w i t h p r i n c i p a l
part
A(P) .
By Lemma 2
and the C o r o l l a r y to the Theorem o f § 3.3, we conclude t h a t
e S~+m,loc(~,A ) •
Hence
f e S~+m,loc(H,x ) ,
ExamI ] ~
Let
A
Q.E.D.
be the o p e r a t o r considered in the example at the end
o f § 3.2, and assume t h a t the v e c t o r f i e l d s commutators up to l e n g t h Assume also t h a t e i t h e r n > 2 ,
A .
n
dim H > 2 ,
generators s a t i s f i e s
For example, i f
and t h e i r
s u f f i c e to span the tangent space a t each p o i n t o f o r else
and the homogeneous dimension
algebra on to
r
{X i : 1 ~ i < n}
Q of the f r e e ,
Q> 2 ,
f e L~oc(M )
dim H = 2
and
r > 1 .
Then
r-step nilpotent Lie
so the theorem j u s t proved a p p l i e s
i s such t h a t
Af e L~oc(H ) ,
then we can
conclude t h a t
Xif
also, for nilpotent
i < i, j ~ n .
,
X i X j f e L~oc(H)
Note t h a t t h i s r e s u l t i n v o l v e s no e x p l i c i t
groups o r s i n g u l a r i n t e g r a l o p e r a t o r s .
mention o f
M.
173 Comments and references for Chapter IV
§ 1
We have largely followed Knapp-Stein [1], to which we refer the reader
for more examples and references. The l i t e r a t u r e on intertwining operators for semi-simple groups is extensive. For the basic analytic properties of the " i n t e r twining i n t e g r a l " , cf. Kunze-Stein LFI] and Schiffmann [1]. For recent developments, we c i t e Johnson-Wallach [1], Helgason [2], Knapp-Stein ~ ] ,
[3]. See also Stain's
survey t a l k LF1], Wallach [1], and Warner [ I ] .
§ 2.1
The use of non-commutative Fourier analysis on the Heisenberg group
to study the space
H2(D)
was f i r s t
done by Ogden and V~gi [1], who consider the
general "Siegel domain of type I I " . For a survey of the unitary representation theory of nilpotent groups, cf. Moore [1]. The Ca regularity theory is treated; e.g. in Goodman [1], [2],
§ 2.2 of
[4], Poulsen [1], and Cartier [1], ~ ] .
The Theorem is due to Ogden-V~gi [1]. Our proof, using the behaviour
Ca vectors under direct integral decomposition, is s l i g h t l y d i f f e r e n t .
"tangential Cauchy-Riemann equations" can be written more i n t r i n s i c a l l y of the operator
The
in terms
~b ; cf. Folland-Kohn [1].
§ 2.3
The Theorem is due to Kor~nyi-V~gi LFI]; cf. Kor~nyi-V~gi-Welland [ i ] .
§ 2.4
For the general theory of the Szeg~ kernel of a domain, cf.
Gindikin [I] and Stein [2]. For the Szeg~J kernel in the case of Siegel domains, cf. Kor~nyi [ i ] . The construction of the Szeg~J kernel given here, using the Fourier analysis on the Heisenberg group, avoids the problem of proving a priori that functions in
H2(D)
have a boundary integral representation. For connections
between Szeg~J kernels and representations of semi-simple groups, cf. Knapp L1].
§ 3.1
For the h y p o e l l i p t i c i t y
of second-order operators, cf. H~rmander ~ ]
174 and Kohn [ ~ ,
[2]. The Theorem and i t s proof are taken from Folland [2]. The
results from functional analysis cited in the proof can be found in TrOves [1], § 52. The heat equation, r e l a t i v e to the s u b e l l i p t i c Laplacian in examples 3 and 4, has been studied by Hulanicki [ i ] , Folland [2], and J6rgensen [1]. The fundamental solution for the s u b e l l i p t i c Laplacian on the Heisenberg group was calculated by Folland [ i ] .
Gaveau [ ~
has used stochastic integrals to calculate fundamental
solutions on two-step nilpotent groups. Rockland [I] has shown that on the Heisenberg group, a homogeneous, l e f t - i n v a r i a n t d i f f e r e n t i a l operator is h y p o e l l i p t i c , provided i t s image in every n o n - t r i v i a l irreducible unitary representation has a bounded inverse. See Gru~in [1], ~ ] for examples of h y p o e l l i p t i c operators with polynomial c o e f f i c i e n t s .
§ 3.2
For the relations between tensor algebras, universal enveloping
algebras, and l e f t - i n v a r i a n t d i f f e r e n t i a l operators on a Lie group, cf. Helgason [ i ] . The study of operators whose principal part is a polynomial in the vector fields
~(v)
with variable coefficients has been treated, in special cases, by
Rothschild-Stein [1].
§§ 3.3-3.4
These results are due to Rothschild-Stein [ ~ ,
extending s i m i l a r
results of Folland-Stein ~ ] . The proofs given here are somewhat d i f f e r e n t , since we have again t r i e d to emphasize the s i m i l a r i t y with the case of functions on a homogeneous space, as in Chapter I I . For the classical e l l i p t i c
r e g u l a r i t y theory we refer to Bers-John-Schechter
LI]. For applications of the r e g u l a r i t y results here to the study of the
~b
operator, we refer to Folland-Stein ~ ] and Rothschild-Stein [1]. For e l l i p t i c r e g u l a r i t y in the context of unitary representation theory, cf. Goodman [4].
Appendix Generalized Jonqui#res Groups
In Chapter I we r e s t r i c t e d our a t t e n t i o n to the group of automorphisms of the ring
P of polynomial functions, and we embedded every simply-connected n i l p o t e n t
Lie group as a subgroup of such a group. For geometric reasons i t is desirable to consider a larger group, namely the group of automorphisms of the f i e l d of r a t i o n a l functions (the Cremona group). In this appendix we want to construct certain ( f i n i t e dimensional) Lie subgroups of the Cremona group, extending the constructions of
§ 1.1.
In f a c t , the construction works over any f i e l d of
c h a r a c t e r i s t i c zero. We w i l l assume in these notes that the c o e f f i c i e n t f i e l d is the complex numbers, however, since we have systematically avoided any mention of algebraic groups up to t h i s point. The f i r s t
step in t h i s analysis is to replace the one-parameter d i l a t i o n
group on the vector space
V by an
n-parameter d i l a t i o n group
The generators of this group span a commutative subalgebra a d j o i n t action of In
§ A.1
h on
Der(P)
(n = dim V).
h c Der(P) ,
and the
is diagonalizable.
we study the vector f i e l d s with polynomial c o e f f i c i e n t s which are
eigenvectors f o r
ad(h) .
dimensional subalgebras of t h e i r structure in
§ A.3 .
In
§ A.2 ,
Der(P) ,
we construct a family of maximal f i n i t e each of which contains
h ,
and determine
(The n i l p o t e n t algebras studied in Chapter I occur
as subalgebras of these maximal algebras.)
In order to achieve
maximality, we
have to include vector f i e l d s which generate b i r a t i o n a l (but not everywheredefined) transformations of
V .
In
§ A.4
we construct groups of b i r a t i o n a l
transformations corresponding to these maximal subalgebras.
176
A.1
Let
P
Root space d e c o m p o s i t i o n o f Der(P)
be the a l g e b r a o f p o l y n o m i a l f u n c t i o n s
complex v e c t o r space V~ ,
1 < i < d .
Fix a basis
{x i }
Thus the monomials
the v e c t o r f i e l d s = Der(P)
V .
{~a~ i
(~i = Dx i )
for
on a f i n i t e - d i m e n s i o n a l V
and dual basis
{ a : a e INd}
: a e ~ d , 1 < i < d}
{~i }
for
P ,
and
are a basis for
are a b a s i s f o r the L i e a l g e b r a
"
Consider the commutative s u b a l g e b r a
The a c t i o n o f
h
on
=
span { ~ i ~ i
P
is d i a g o n a l i z a b l e .
Hi ~a
=
Hence i f
we d e f i n e l i n e a r
and s e t
M = {Ua : a e ~d}
:
1 < i < d}
Indeed, i f we w r i t e
Hi = ~ i ~ i
,
then
ai ~a
functions ,
Sa '
a e INd ,
on
_h by
~a ( H i ) = ai
then
P
=
z H
(~ e M)
ff
: {f e P : H f = p(H)f
where
Thus
dim H
= i
,
and
H
has b a s i s
The a c t i o n o f
adh
on
g
(a
(H e £ ) } if
.
p = ~_
can a l s o be d i a g o n a l i z e d .
Indeed, we have the
commutation r e l a t i o n s
(I)
Bali , ~j~j]
(6ij
= Kronecker d e l t a ) .
~a,i
(Hj) = 6ij
- aj
,
_9. =
Hence i f and s e t
Z gx
=
(6ij
- aj)
~a~ i
we d e f i n e the l i n e a r L = {~a,i
functions
: 1 _ m .
with
Since on
Pr
V~P r ,
By the above
t h i s is zero.
we o b t a i n , in p a r t i c u l a r ,
by n i l p o t e n t t r a n s f o r m a t i o n s . Hence ~
f i n i s h e s the p r o o f o f
(ii)
and
(iii)
.
a faithful
r e p r e s e n t a t i o n of
is a n i l p o t e n t Lie algebra. This
192
A.4
Birational
rational
f u n c t i o n s on
We s h a l l
denote by
~(~) = ~
where
V ,
Aut(R)
i.e.
If
~1 . . . . .
~(~1 . . . . . ~n )" generators
~n
the q u o t i e n t f i e l d
and automorphism
m.)
Aut(P)
,
for
for
A transformation
Fi
functions into R
(we view
R
R = Rat(V)
V
,
and
be the f i e l d
o f the i n t e g r a l R
functions
There i s a n a t u r a l
f,g e P .
t h e n we can i d e n t i f y
R with
is determined by i t s
function
in
n
variables.
a c t i o n on the
C o n v e r s e l y , given r a t i o n a l
then these e q u a t i o n s d e f i n e a unique homomorphism ~)
This homomorphism w i l l
GI . . . . . Gn
m
Aut(R)
.
are c a l l e d b i r a t i o n a l
be the L i e a l g e b r a c o n s t r u c t e d i n
o f a p o s i t i v e i n t e g r a l element
Aut(R)
Now the group
m of R
be an ,
i.e.
find
such t h a t
Ci = G i ( m ( ~ l ) . . . . . m(~n ))
Let
inclusion
: F i ( ~ I . . . . . ~n ) ,
as an a l g e b r a o v e r
Hence the elements o f
P .
(We r e q u i r e t h a t
automorphism p r e c i s e l y when we can s o l v e these e q u a t i o n s r a t i o n a l l y rational
domain
of
and can be expressed as
is a rational F1 . . . . . Fn ,
Aut(R)
m e Aut(R)
~(~i) where
c
m e Aut(P)
is a basis
CI . . . . . ~n '
Let
the group o f automorphisms o f
f o r any s c a l a r
m ( f / g ) = mf/~g ,
Transformations
Aut(R)
H e h .
§ 2 ,
" transformations relative
to a choice
We would l i k e to " e x p o n e n t i a t e "
m
i s n o t a L i e g r o u p , in any r e a s o n a b l e sense.
in
193 For example, as we noted in
§ A.I
,
a derivation of
R ( o r P)
n e c e s s a r i l y generate a one-parameter group o f automorphisms o f i s no f u n c t o r mapping Lie subalgebras o f d e r i v a t i o n s o f Aut(R).
For the a l g e b r a
m ,
m which are e i g e n v e c t o r s f o r whose r o o t s
~
R
Thus t h e r e
however, we a l r e a d y know t h a t the v e c t o r f i e l d s ad h
generate r a t i o n a l
reasonable to expect t h a t everY element of R .
R .
to Lie subgroups o f
flows ( i n f a c t ,
are non-negative generate polynomial f l o w s ) .
o f automorphisms o f
does not
~
those is
generates a one-parameter group
We s h a l l v e r i f y t h i s by an e x p l i c i t
the i n f o r m a t i o n about the s t r u c t u r e o f
Hence i t
in
m obtained in
c o n s t r u c t i o n , using
§ A.3.
Recall t h a t by Theorem A.3, m : n- ~ ro ~ n+ ~ u If
Xeu
,
then
eX
is d e f i n e d as an automorphism o f the polynomial a l g e b r a .
We set U = {e x : X e u} By the p r o o f o f Theorem 1 . 1 . 4 , i t t h a t the
map X ÷ e X
f o l l o w s (using the l o c a l n i l p o t e n c y o f
is a bijection
from
a complex, simply-connected n i l p o t e n t Let
N+
~x ~-~ Px
N_
=
f(v+x)
,
defines a bijection
to the v e c t o r group Let
Lie group on
be the group o f t r a n s f o r m a t i o n s pxf(V)
The map
u to U ,
~ on P)
and aefines the s t r u c t u r e o f U .
{Px : x e V1} ,
where
f e R from
~+
to
N+ ,
and
N+
is isomorphic
VI .
be the group o f t r a n s f o r m a t i o n s
{~
: ~ e V1} ,
where
~
is
determined from i t s a c t i o n on the l i n e a r f u n c t i o n s by the formulas
~(~) The map
~H ~-+ ~_~
= ~(I+~) -k
,
defines a bijection
isomorphic t o the v e c t o r group
VI .
~ e V~ from
n_
onto
N_ ,
and
N_
is
(Note t h a t the f l o w generated by the v e c t o r
194 field
CH
is
°-t~
'
and
o~
is a b i r a t i o n a l
To c o n s t r u c t the subgroup first
corresponding to the subalgebra
~o '
our
impulse, based on lemma A . 3 . 1 , would be to take the d i r e c t product o f the
groups on
Ro
t r a n s f o r m a t i o n , by Remark A . 1 . 5 . )
GL(Vk) ,
V .
w i t h the a c t i o n on f u n c t i o n s being induced by the l i n e a r a c t i o n
This guess i s indeed c o r r e c t f o r
action of Let A e GL(Vk)
GL(VI) Gk ,
must be " t w i s t e d "
k ~ 2 ,
(cf.
However, f o r
For the case
on the subspaces
k = i
,
k = 1
the
remark a f t e r lemma A . 3 . 2 ) .
be the group o f automorphisms
a c t i n g as the i d e n t i t y
Gk = GL(Vk) .
k ~ 2 .
we l e t
GI
f ~ - + foA - 1 , w i t h
Vj , j ~ k .
Thus
be the group o f automorphisms
whose a c t i o n on l i n e a r f u n c t i o n s is (m)
when
~ ~-~ (det A) -k ~oA"1
~ e V~ .
the subspaces
Here Vk ,
A e GL(V1) , k > 1 .
D
i s the f i n i t e
k>2
such t h a t
view
GL(Vl) and
and
A
,
c e n t r a l subgroup
Vk ~ O} .
is extended to act as the i d e n t i t y on
Thus
G1 = GL(VI)/D where
,
(Here
{ml : ~q+l = i and k q
q = dim Vl)
D as subgroups o f
.
SL(q+I,C)
A i:01
It will
: I for all
be convenient to
via the embedding
,
A e GL(V1)
(det A)-
Now define
be the subgroup of that
( d i r e c t product as groups) ,
R° = GI x G2 x . . . x Gr Aut(R)
G is isomorphic to
generated by r/D ,
where
N F
,
GL(Vk) ,
Furthermore, the groups
k ~ 2 , N±
and
GI ,
and
N+ .
N+ .
We s h a l l show
GL(Vr) ,
(q = dim Vl) -
we a l r e a d y have an isomorphism w i t h Gk ,
t o c o n s t r u c t an isomorphism between N_ ,
and
i s the d i r e c t product
F : SL(q+I,$) x GL(V2) . . . . . For each f a c t o r
Ro ,
and l e t
k > 2
Gk .
m u t u a l l y commute. Thus we o n l y need
SL(q+I,$)/D
and the group generated by
195
We s h a l l v i e w
as t h e m a t r i c e s i n b l o c k form
?1 = S L ( q + l , $ )
det(g) = I
where
x e V1 , ~ e V~ , A e End(V1)
can be e x p r e s s e d
in t e r m s o f t h i s
,
and
,
The c o n d i t i o n
~, e ~,
det(g) = 1
d e c o m p o s i t i o n as
X d e t A - < ~, a d j ( A ) x > = 1 , where
adj A
is the " a d j u g a t e " o f
A
(transposed cofactor matrix).
= adj(a) (Recall t h a t SL(q+I,$)
AA = AA = ( d e t A) I . )
Write
.
We can imbed the v e c t o r groups
VI ,
V~
into
as t h e subgroups
V+ =
,
X e
0
Thus
V+ _
are commutative subgroups o f
Theorem 1. r e s t r i c t i o n to
,
which are n o r m a l i z e d by
There i s a unique homomorphism
from
to
The k e r n e l o f
D .
~
is
GL(Vk)
is the homomorphism o n t o
On the basis o f t h e p r e v i o u s d i s c u s s i o n , on
?
onto
GL(V1) .
G whose
V+_ is
and whose r e s t r i c t i o n
Proof
sI
define
~
FI .
Consider the subset o f
On t h i s
set we have the unique f a c t o r i s a t i o n
£1
where
Gk
d e f i n e d above.
the o n l y problem is to det A # 0
in
(mm) .
196
CA X ~\, 'k{< x] Hence i f
~
exists,
it
{A ~ L~
(9)
/ =
if
I\~A-1
i s g i v e n on t h i s
s e t by
x~ x> = ~~A-I
~(A) PA-Ix
Since the subgroups uniquely,
0\i i/A i] cA = ~ ( d e t A) Ci # + E m/(g)~/
,
where ~l(g ) =
~ j,k
det
> < ~,x k
cji
cz
j k Here
[cij ]
classical
i s the c o f a c t o r
fact
determinants"
in determinant
it
A
proof,
~/(g)
(~)
= 0 .
on
~ ,
of
u
m ,
det
(~)
But i t
is a
the "compound
by
det A .
rank A < 1 ~
i s an i r r e d u c i b l e
(For a
all
2x2
polynomial,
is everywhere regular ~
from
V_GIV +
to
£
on
rI
.
is in fact
o f a group o f automorphisms c o r r e s p o n d i n g
we o n l y need t o put t o g e t h e r G
Aut(R)
normalises
U ,
and
the groups
G ~ U = {1}
.
and we v e r i f y
easily
determined in
nilpotence
u of
To p r o v e t h a t
G
and
Hence
t o the
U , as f o l l o w s :
M = G U
is a
.
From t h e p r o o f o f Theorem A . 3 , we see t h a t
The passage from local
that
are d i v i s i b l e
det A = 0 ~
Since
basis.
.
Theorem 2
Proof
that
to this
formulas")
~l
the extension of
To c o m p l e t e o u r c o n s t r u c t i o n
subgroup o f
relative
("Jacobi's
t h e n u m e r a t o r in
continuation,
Lie algebra
A
ml ")
This shows t h a t
g i v e n by
theory
use the f a c t
vanish ~
must thus d i v i d e
By a n a l y t i c
of
a p p e a r i n g i n the f o r m u l a f o r
non-computational minors of
matrix
ClkJ
that
Lemma A . 3 . 3 to u
U on
follows
Ad(N+) we f i n d
stabilises that
directly
Ad(Ro)
ad(~±) ~ .
acts n i l p o t e n t l y
By the s t r u c t u r e
also stabilises
from t h e s e c a l c u l a t i o n s
u .
and t h e
P
G ~ U = {1}
,
we o b s e r v e f i r s t
one has G ~ U~RoN+U
.
that
since
GnUcAut(P)
,
'
199 (In formula
(~)
above, i f
~ # 0
then
Tc(g)c
is not a polynomial f u n c t i o n on
V.) Set n+ + u
T = N+U o
From lemmas 2 and 3 of the previous s e c t i o n we see t h a t
is a nilpotent
L i e algebra which acts l o c a l l y n i l p o t e n t l y
on
£ .
Hence
T = exp (n+ + u) On the o t h e r hand, we e v i d e n t l y have
n_+ + u = U_o + n _ l +n_2 + . . . +
I f we d e f i n e the spaces in
n_r
H° o f n o n - l i n e a r homogeneous polynomials o f degree m
m as
lemma 3, and s e t
Qm = H° m + Pm-I
,
m > I
then we can d e s c r i b e the Lie algebra
,
~+ + u
as
~+ + ~ = {X e Der(P) : X Pm ~Qm (cf.
lemma A.3.3
and
c h a r a c t e r i s e the group
§ 1.1.3) T
.
Ro
E x p o n e n t i a t i n g t h i s d e s c r i p t i o n , we thus can
as
T = {~ e Aut(P) Now the group
f o r a l l m} .
: ( m - l ) Pm ~ Qm f o r a l l m} .
acts l i n e a r l y
ant. The above d e s c r i p t i o n o f
T
on
V
,
l e a v i n g each subspace
Vk
invari-
makes i t e v i d e n t t h a t
Ro/n T = {1} . Finally, ~+ + ~
we have onto
Example
T .
N+h U = {1}
because the e x p o n e n t i a l map i s a b i j e c t i o n
This completes the p r o o f .
Let us r e t u r n t o the examples
and employ the same n o t a t i o n . The a l g e b r a integer (View
n . x,y
from
When n = I ,
then
(dim V = 2)
a t the end o f
§ A.2 ,
m i s determined by a choice o f p o s i t i v e
M = SL(3) ,
as inhomogeneous c o o r d i n a t e s f o r
acting projectively
~2.)
on
{x,y}
.
200
When
n > 1 ,
then
M = G U ,
where
G = SL(2) x GL(1) Here
Col
$
e G
acts by t h e b i r a t i o n a l
transformation
(b + d x ) ( a + cx) - I CoY (a + cx) -n
The group
U
consists
÷
(c i e ~) .
The group
of all
transformations
y + c I x +...+
M
cn xn
is the classical
" J o n q u i ~ r e s group o f o r d e r
n ."
Comments and references f o r Appendix
The study of f i n i t e - d i m e n s i o n a l Lie subgroups of the ( i n f i n i t e - d i m e n s i o n a l ) group of b i r a t i o n a l transformations of an a f f i n e space has a long h i s t o r y ; cf. Fano [ i ] .
The classical "Jonqui~res groups" in two variables occurred in the
c l a s s i f i c a t i o n by Enriques of a l l f i n i t e - d i m e n s i o n a l groups of b i r a t i o n a l transformations in two variables. They were studied in more d e t a i l by Mohrmann [1] and Godeaux [1], and "automorphic functions" on these groups were considered by Myrberg [1]; cf. the survey a r t i c l e by Coble [ I ] . In recent years the subject has been g r e a t l y extended by Demazure [1] and Vinberg [ i ] .
The algebras
and groups we construct here f u r n i s h a class of examples
f o r Demazure~ general theory of "Enriques systems". Several of our proofs are special cases of his general methods. Since there exists no c l a s s i f i c a t i o n of Enriques systems, as contrasted to the c l a s s i f i c a t i o n of root systems f o r semisimple algebras, i t is perhaps useful to have such examples constructed e x p l i c i t l y . The fact that the Lie algebras
m are maximal seems to be new. The subalgebra
of vector f i e l d s homogeneous of degree zero has appeared also in Arnol'd [ i ] ,
~o in
connection with the c l a s s i f i c a t i o n of normal forms f o r smooth functions at a critical Pedoe [ i ] ,
point. For "Jacobi's formulas", used in the Remark in Chap. 2, § 8 .
§ 4 ,
cf. Hodge-
Bibliography
L. Auslander, J. Brezin, and R. Sacksteder [I]
A method in metric diophantine approximation, J. D i f f e r e n t i a l Geometry 6(1972), 479-496.
V . l . Arnol'd [~
C r i t i c a l points of smooth functions and t h e i r normal forms, Uspekhi Math. Nauk 30(1975), 3-66.
F.A. Berezin [I]
Some remarks on the associative envelopes of Lie algebras, Funkt. Analiz i ego P r i l . 1(1967), 1-14.
L. Bers, F. John, and M. Schechter [1]
Partial d i f f e r e n t i a l equations, in Lectures in Applied Mathematics Vol. I I I ,
Interscience, New York, 1964.
G. Birkhoff [~
Representability of Lie algebras and Lie groups by matrices, Annals of Math. 38(1937), 526-532.
N. Bourbaki [~
El~ments de math~matique XXXIV, Groupes et alg~bres de Lie, Hermann, Paris, 1968.
T. Bloom and I. Graham
[i]
A geometric characterisation of points of type m on real submanifolds of ~n , J. D i f f e r e n t i a l Geometry (to appear).
P. Cartier F1]
Quantum mechanical commutation relations and theta functions, in Algebraic Groups and discontinuous subgroups, Amer. Math. Soc., 1966, 361-383.
[2]
Vecteurs d i f f ~ r e n t i a b l e s dans les repr6sentations unitaires des groupes de Lie, S~minaire Bourbaki 27(1974/75), NQ 454.
203
S.S. Chern and J. Moser [~
Real hypersurfaces in complex manifolds,Acta Math. 133(1974), 219-272.
A.B. Coble [~
Cremona transformations and applications to algebra, geometry, and modular functions, Bull. Amer. Math. Soc, 28(1922), 329-364.
R. Coiffman and G. Weiss [i]
Analyse Harmonique Non-Corm~utative sur Certains Espaces Homogenes, Lecture Notes in Mathematics 242, Springer-Verlag, 1971.
N. Conze [1]
Alg~bres d'op~rateurs differentials et quotients des alg@bres enveloppantes, Bull. Soc. Math. France 102(1974), 379-415.
M. Cotlar and C. Sadosky [i]
On Quasi-homogeneous Bessel Potential Operators, in Singular Integral s , Amer. Math. Soc., 1966, 275-287.
M. Demazure
[1]
Sous-groupes alg~briques de rang maximum du group de Cremona, Ann. Scient. Ec. Norm. Sup.(4), t.3(1970), 507-588. (cf. Sem. Bourbaki, 1971/72, Expos~ 413)
J. Dixmier [I]
Cohomologie des alg@bres de Lie nilpotentes, Acta Scientiarum Mathematicarum 16(1955), 246-250.
[2]
Alg~bres enveloppantes, Paris, Gauthier-Villars, 1974 (Cahiers scientifiques 37).
J. Dyer
F1]
A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc. 76(1970), 52-56.
G. Fano
[1]
Kontinuierliche Geometrische Gruppen, Encyclopaedie der Math. Wiss. 1111, Geometrie, 4b, § 21-22.
204 G. Favre [I]
Syst#mes de poids sur une alg@bre nilpotente, Manuscripta Math. 9(1973), 53-90.
G.B. Folland [17
[2]
A fundamental solution for a s u b e l l i p t i c operator, Bull. Amer. Math. Soc. 79(1973), 373-376. Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv f~r matematik 13(1975), 161-208.
G.B. Folland and J.J. Kohn [I]
The Neumann Problem for the Cauchy_-Riemann complex, Ann. of Math. Studies ~ 7 5 , Princeton Univ. Press, Princeton, N.J., 1972.
G.B. Folland and E.M. Stein El]
Estimates for the ~b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math, 27(1974), 429-522.
B. Gaveau [I]
Solutions fondamentales, representations, et estim~es sous-elliptiques pour les groupes nilpotent d'ordre 2, C.R. Acad. Sc. Paris 282(1976), A 563-566.
S.G. Gindikin [~
Analysis in homogeneous domains, Russian Math. Surveys 19(1964), 1-90.
L. Godeaux
[1]
Les transformations birationnelles du planMem, des Sc. Math. ××II, GauthierV i l l a r s , Paris, 1927.
[2]
Sur les transformations b i r a t i o n e l l e s de Jonqui@res de l'~space, Acad. roy. Belgique, 1922.
Goodman, R. [~
One-parameter groups generated by operators in an enveloping algebra, J. Functional Analysis 6(1970), 218-236.
[2]
Complex Fourier analysis on nilpotent Lie groups, Trans. Amer. Math. Soc. 160(1971), 373-391.
205 [3]
Differential
operators of i n f i n i t e
order on a Lie group I I ,
Indiana Univ. Math. J. 21(1971), 383-409. [4]
Some regularity theorems for operators in an enveloping algebra, J. D i f f e r e n t i a l Equations 10(1971), 448-470.
[5~
On the boundedness and unboundedness of certain convolution operators on nilpotent Lie groups, Proc. Amer. Math. Soc. 39(1973), 409-413.
F6]
F i l t r a t i o n s and asymptotic automorphisms on nilpotent Lie groups, J. D i f f e r e n t i a l Geometry (to appear).
[7]
L i f t i n g vector f i e l d s to nilpotent Lie groups, (to appear).
V.V. Gru~in [1]
E2]
On a class of hypoelliptic operators, Mat. Sbornik 83 (125) (1970), 456-473 (=Math. USSR Sbornik 12(1970), 458-476). Hypoelliptic d i f f e r e n t i a l
equations and pseudodifferential
operators
with operator-valued symbols, Mat. Sbornik 88 (130) (1972), 504-521 (=Math. USSR Sbornik 17(1972), 497-514). Y. Guivarc'h [0
Croissance polynomiale et p~riodes des fonctions harmoniques, Bull. Soc. Math. France 101(1973), 333-379.
S. Helgason
[~
Differential
Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[2]
A duality for symmetric spaces with applications to group representations, Advances in Math. 5(1970), 1-154.
G. Hochschild [0
The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
W.V.D. Hodge and D. Pedoe
[1]
Methods of Algebraic Geometry, I, Cambridge University Press, 1968.
L. H~rmander [1]
Hypoelliptic second-order d i f f e r e n t i a l 147-171.
equations, Acta Math. 119(1968),
206 A. Hulanicki [i]
Commutative subalgebra of LI(G) associated with a subelliptic operator on a Lie group, Bull. Amer. Math. Soc. 81(1975), 121-124.
N. Jacobson [~
Lie Al~ebras, Interscience, New York, 1962.
J. Jenkins [~
Dilations, gauges, and growth in nilpotent Lie groups, preprint, June, 1975.
K. Johnson and N. Wallach [~
Composition series and intertwining operators for the spherical principal series, Bull. Amer. Math. Soc. 78(1972), 1053-1059.
R.W. Johnson [~
Homogeneous Lie algebras and expanding automorphisms, preprint, 1974.
P. J~rgensen [~
Representations of d i f f e r e n t i a l operators on a Lie group, J. Functional Analysis 20(1975), 105-135.
A.W. Knapp [~
A Szeg5 kernel for discrete series, Proc. Inter. Cong. Math. Vancouver (1974), VoI. 2, 99-104.
A.W. Knapp and E.M. Stein ~i]
Intertwining operators for semisimple groups, Annals of Math. (2) 93 (1971), 489-578.
[2]
Singular integrals and the principal series I I I , Proc. Nat. Acad. Sc. USA 71(1974), 4622-4624
[3]
Singular integrals and the principal series IV, USA 72(1975), 2459-2461.
Proc. Nat. Acad. Sci.
J.J. Kohn [~
Pseudo-differential operators and h y p o e l l i p t i c i t y , Equations, Amer. Math. Soc. (1973), 61-70.
in Partial Differential
207
[2]
Integration of complex vector f i e l d s , Bull. Amer. Math. Soc. 78(1972), I-Iio Boundary behaviour of ~ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6(1972), 523-542.
A. Kor~nyi [I]
The Poisson integral for generalized half-planes and bounded symmetric domains, Annals of Math (2) 82(1965), 332-350.
A. Kor~nyi and S. V~gi [1]
Singular integrals in homogeneous spaces and some problems in classical analysis, Ann. Scuola Norm. Sup. Pisa, Classe di Scienze 25(1971), 575-648.
A. Kor~nyi, S. V~gi, and G. Welland [1]
Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. and Mech, 19(1970), 1069-1081.
R. Kunze and E.M. Stein [~
Uniformly bounded representations I I I , Amer. J. of Math. 89(1967), 385-442.
H. Mohrmann
Eli
Ober die automorphe Kollineationsgruppe des rationalen Normalkegels n-ter Ordnung, Rendic. del Circolo Mat. di Palermo 31(1911), 170-200.
C.C. Moore [~
Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds, in Harmonic Analysis on Homogeneous Spaces, Amer. Math. Soc. (1972), 3-44.
P. MUller-R~mer [1]
Kontrahierende Erweiterungen und kontrahierbare Gruppen, J.f.d. Reine und Angewandte Mathematik 283/284 1976) 238-264.
P.J. Myrber [~
Ober die automorphen Funktionen bei einer Klasse Jonqui~resscher Gruppen zweier Ver~nderlichen, Math, Z e i t s c h r i f t 21(1924), 224-253.
208 A. Nijenhuis and R.W. Richardson, Jr. [i]
Deformations of algebraic structures, Bull. Amer. Math. Soc. 70(1964), 406-411.
R.D. Ogden and S. V~gi
[1]
Harmonic analysis and H2
functions on Siegel domains of type I I ,
Proc. Nat. Acad. Sci. USA 69(1972), 11-14. N.S. Poulsen
[i]
C~ vectors and intertwining b i l i n e a r forms for representations of Lie groups, J. Functional Analysis 9(1972), 87-120.
G. Rauch [I]
Variation d'alg~bres de Lie r~solubles, C.R. Acad. Sci. Paris 269(1969), A 685-687.
[2]
Variations d'alg#bres de Lie, Pub. Math. Univ. Paris XI (Orsay), N2 32, 1973.
B. Reed
Representations of solvable Lie algebras, Michigan Math. J. 16(1969), 227-233. C. Rockland [i]
H y p o e l l i p t i c i t y on the Heisenberg group-representation theoretic c r i t e r i a (preprint).
L.P. Rothschild and E.M. Stein [I]
Hypoelliptic d i f f e r e n t i a l operators and nilpotent groups, Acta Math. (to appear).
G. Schiffmann ~]
Int~grales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99(1971), 3-72.
E.M. Stein [ i ] "Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups," Actes du Congr~s International des Math~maticiens, Nice, 1970, Tom. i , pp. 173-189.
209 [2]
Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, Princeton Univ. Press, 1972.
R.S. Strichartz [~
Singular integrals on nilpotent Lie groups, Proc. Amer. Math. Soc. 53(1975), 367-374.
N. Tanaka
[1]
On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10(1970), 1-82.
[2]
A differential-geometric study on strongly pseudo-convex manifolds, Lectures in Math. ~ 9 , Dept. of Math., Kyoto Univ., 1975.
F. Tr6ves [i]
Topological Vector Spaces, Distributions, and Kernels, New York, Academic Press, 1967.
M. Vergne [~
Cohomologie des alg~bres de Lie nilpotentes; application 6 l'~tude de la vari~t~ des alg~bres de Lie nilpotentes, Bull. Soc. Math. France 98(1970), 81-116.
E.B. Vinberg [~
Algebraic groups of transformations of maximal rank, Math. Sbornik 88 (130) (1972), 493-503. (=Math. USSRSbornik 17(1972), 487-496).
N.R. Wallach [1]
Harmonic Analysis on Homogen~egus Spaces, Marcel Dekker, New York, 1973.
G. Warner ~
Harmonic Analysis of Semi-Simple Lie Groups, Springer-Verlag, Berlin, 1972.
Subject Index almost orthogonal o p e r a t o r s automorphisms o f polynomials Bernoulli operator birational transformation boundary values Bruhat decomposition Campbell-Hausdorff formula canonical coordinates coboundary o p e r a t o r comultiplication Cremona group C~ v e c t o r dilations distance function
85 8 42 192 154 118 13,51 9 22 14 175 139 1 71
elementary r o o t .......... automorphism e x p o n e n t i a l map
177 178 49
faithful representation filtration: polynomials .......... Lie algebra .......... C~ f u n c t i o n s .......... d i f f . Operators free n i l p o t e n t Lie algebra fundamental s o l u t i o n
16 2 12 5 105 36 159
g r a d a t i o n : Lie algebra ......... polynomials ......... v e c t o r space Hall basis Hardy space Heisenberg algebra .......... group homogeneous: b i l i n e a r map ........... diff. operator ........... dimension ........... distribution ........... function ........... norm ........... polynomial ........... vector field hypersurface hypoelliptic diff. operator
5,13 2 I 37 151 11 63 20 158 68,76 68 68 3 1 7 53 158
infinitesimal transitivity intertwining integral
158 125
Jonqui~res group .......... transformation
200 178
kernel o f type
103
s
length o f f i l t r a t i o n l i f t i n g theorem Lipschitz condition
12 39 77
maximal subalgebras mean value measure o f homogeneous type
180 7O 74
o p e r a t o r o f type s order of vector field
104 6
parametrix p a r t i a l homomorphism Plancherel formula principal part of diff. operator principal series representation ......... irreducibility criterion 2 p r o j e c t i o n Hb
166 36 138 164 123 130
real rank r o o t spaces
118 177
Siegel domain s i n g u l a r kernel Sobolev spaces space o f homogeneous type s u b e l l i p t i c Laplacian Szeg~ kernel
146
61 78 108,168 76 162 157
t a n g e n t i a l Cauchy-Riemann equations t r a n s i t i v e p a r t i a l homomorphism transpose o f d i f f . o p e r a t o r
142 168 165
unboundedness o f s i n g u l a r i n t e g r a l s
97
vector fields: ............. .............
4 54 54
polynomial c o e f f i c i e n t s holomorphic anti-holomorphic