MORSE T H E O R Y BY
J. Milnor Based on lecture notes by M. SPIVAK and R. WELLS
PRINCETON, NEW JERSEY PRINCETON UNIVER...
167 downloads
683 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
MORSE T H E O R Y BY
J. Milnor Based on lecture notes by M. SPIVAK and R. WELLS
PRINCETON, NEW JERSEY PRINCETON UNIVERSITY PRESS 1963
CONTENTS
Copyright 0 1963. by Princeton University Press All Rights Reserved L C Card 63-13729
PART I .
NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD
. .
. $2.
. . . . . . . . . . . . . . . . . . . . . . D e f i n i t i o n s and Lemmas . . . . . . . . . . . . . . . . . . $3 . Homotopy Type i n Terms of C r i t i c a l Values . . . . . . . . $ 4 . Examples . . . . . . . . . . . . . . . . . . . . . . . . . $5 . The Morse I n e q u a l i t i e s . . . . . . . . . . . . . . . . . .
$1
I n t r o d u c t i o n.
0 6 . Manifolds i n Euclidean Space: Non-degenerate Functions . $7
.
PART I1
.
The k f s c h e t z Theorem on
1
4 12
25 28
The Existence of
. . . . . . . . . . . . . . . . Hyperplane Sections . . . . . . .
12
39
A WID COURSE I N RIEZ"NIAN GEOKETRY
.
Covariant D i f f e r e n t i a t i o n
.
The Curvature
$8 $9
$10
. Geodesics
. . . . . . . . . . . . . Tensor . . . . . . . . . . . . . . . .
and Completeness .
43 51
. . . . . . . . . . . .
55
.
PART I11 THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS
. §12 . $11
$13
.
. 515 .
$14
Printed in the United States of America
. . . . . . . . . . . Path . . . . . . . . . . . . . . . . . . .
The Path Space of a Smooth Manifold
67
The Energy of a
70
The Hessian of t h e Energy Function a t a C r i t i c a l Path Jacobi F i e l d s :
The Index Theorem
. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Null-space of
E*++ .
§16
.
A F i n i t e Dimensional Approximation t o
817
.
The Topology
$18
.
EXistence of
§I9
.
Some R e l a t i o n s Between Topology and Curvature
74
77 a3
. . . . . . . . aa of the Pull Path Space . . . . . . . . . . . 93 Non-conjugate Points . . . . . . . . . . . . 9a
V
QC
......
loo
CONTENTS PART IV. APPLICATIONS TO LIE GROUPS $20.
$21. $22.
$23. $24.
APPmIX.
I
IC SPACES
. . . . . . . . . . . . . . . . . . . . Symmetric Spaces . . . . . . . . . . . . Lie Groups a s Symmetric Spaces Whole Manifolds of Minimal Geodesics . . . . . . . . . The Bott P e r i o d i c i t y Theorem f o r t h e Unitary Group . . The P e r j o d i c i t y Theorem f o r t h e Orthogonal Group . . .
THE HGMOTOPY TYPE OF A MONOTONE UNION
109
. . . .
. . . . . . . .
112
118 124
13’1
PART I
149
NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD.
$1.
Introduction.
I n this s e c t i o n we w i l l i l l u s t r a t e by a s p e c i f i c example t h e s i t u a t i o n that we w i l l i n v e s t i g a t e l a t e r for a r b i t r a r y manifolds. sider a torus
M,
tangent t o t h e plane
Diagram
Let above t h e
f(x)
5
a.
V
f:
M+R
Let u s conas i n d i c a t e d i n D i a g r a m 1 .
V,
1.
(R always denotes t h e r e a l numbers) be t h e height I@‘ be the s e t of a l l p o i n t s x E M such that
plane, and l e t
Then the following t h i n g s a r e t r u e : (1)
If
a
E~
cpt(q)
PROOF:
for q
q
-
t
c(t)
M
= k(E0/2)
dc
by t h e i d e n t i t y
dc =(f)
=
't
h .
k
~
2
= 'E0/2
O
'pE0/2
.
only necessary t o r e p l a c e (Compare $ 8 . )
Now l e t
cp
cp
be a 1-parameter group of diffeomorphisms, generated by t h e v e c t o r f i e l d
X.
i t follows that this d i f f e r e n -
K,
qt(q)
i s defined for a l l v a l u e s of
Eo/2
t.
It1
for
cpt
q
t h e curve
completes the proof of Lemma
t
+
RFMARK: cannot be omitted.
-a€--= Xcpt(q) '
where
p
=
cpt(q).
cpo(q)
=
q.
and l e t
But i t i s w e l l known that such a d i f f e r e n t i a l equation,
l o c a l l y , has a unique s o l u t i o n which depends smoothly on the i n i t i a l condi(Compare Graves, "The Theory of Functions of Real V a r i a b l e s i ' p . 166. ,un, t h e d i f f e r e n t i a l equaNote that, i n terms of l o c a l coordinates u' , tion.
i
2
E
for a l l
and
Further-
l t ( , 1 s ) , l t + s 1< c O . . Any
~
r
t
number
with
onto i t s e l f ,
of diffeomorphisms of M we define
cp
E
11
i
= 1
,...,n . )
Then
M.
X
(0,l)
does not
C R,
I.
12
NON-DEGENERATE FUNCTIONS
HOMOTQPY TYPE
$3. C:
R
+
$
i s a curve w i t h v e l o c i t y vector
M
13
note t h e i d e n t i t y
.
< dc E , g r a d f >d (=f o cT) $3.
Homotopy Type i n Terms of C r i t i c a l Values.
Throughout t h i s s e c t i o n , i f manifold
Let
i s a r e a l valued f u n c t i o n on a
f
M&
.
= f-’(- m , a l
= (p E M : f(p)
5 a)
.
1 / < g r a d f , grad f>
be a smooth f u n c t i o n which i s equal t o
throughout thecompact s e t f - l [ a , b ] ; and which vanishes Then t h e v e c t o r f i e l d
X,
defined by
f be a smooth r e a l valued f u n c t i o n on a manifold M. Let a < b and suppose that t h e s e t f - l [ a , b l , c o n s i s t i n g of a l l p E M w i t h a L f ( p ) L b , i s compact, and contains no c r i t i c a l p o i n t s of f. Then M& i s diffeomorphic t o Mb. Furthermore, i s a deformation r e t r a c t of Mb, so t h a t t h e i n c l u s i o n map Ma Mb i s a homotopy equivalence.
THEOREM 3 . 1
M+R
outside of a compact neighborhood of this s e t .
we l e t
M,
p:
Xq
Let
=
p ( q ) (grad
s a t i s f i e s the conditions of Lema 2 . 4 .
Hence
f)s
X
generates a 1-parameter
group of diffeomorphisms
vt: M For fixed
q E M
+
M.
consider the f u n c t i o n
t + f(cpt(q)).
If Tt(q)
-+
l i e s i n the s e t The i d e a of t h e proof is t o push n a l t r a j e c t o r i e s of t h e hypersurfaces
Mb
M&
down t o
f = constant.
f-’[a,bl,
then
(Compare D i a g r a m 2 . )
=
<X,
grad f >
=
+ 1.
Thus t h e correspondence
t
\
i s l i n e a r with d e r i v a t i v e
-*
f(vt(9))
as long as
+1
f ( c p t ( q ) ) l i e s between
Now consider the diffeomorphism
M&
diffeomorphically onto
Mb.
M + M.
\
I I
I
I
I
I
D i a g r a m 2.
I
Y
r t : M~
4
~b
and
b.
Clearly this c a r r i e s
T h i s proves the f i r s t half of
Define a 1-parameter family of maps
a
7.1.
I.
14
NON-DEGENERATE FUNCTIONS
HOMOTOPY TYPE
§ 3.
Choosing a s u i t a b l e c e l l in@;
e x C H,
15
a d i r e c t argument
( i . e . , push-
i n along the h o r i z o n t a l l i n e s ) w i l l show t h a t
M C - E ~ ex i s a deformation r e t r a c t of M ~ u- H.~ F i n a l l y , by applying 3 . 1 t o the f u n c t i o n F and the region F-1 [ C - E , C + E I we w i l l see that M ~ u- H~ i s a deformation r e t r a c t
of MC+& . T h i s w i l l complete t h e proof. Choose a coordinate system 90
=
holds throughout
c -
(U1l2-
...
Choose
>
E
(UX+l)2,
=
...
=
u”(p)
p
...
+
The region
p o i n t s other than
f-’[ c - E
MC-E
i s heavily shaded.
= f - l (-m,C-E
= 0
.
,C+E
1
i s compact and contains no c r i t i c a l
The image of
U
under the diffeomorphic
. . . ,un) :
imbedding
U -Rn
“u Now d e f i n e
We w i l l introduce a new f u n c t i o n
coincides w i t h t h e h e i g h t f u n c t i o n
f
except that
F
F: M
0 . Then, f o r a l l s u f f i c i e n t l y s m a l l E , t h e s e t MC+E has t h e homotopy type of MCFE with a k - c e l l a t t a c h e d .
i n a neighborhood
that the i d e n t i t y f
Diagram 3 .
u 1 ,..., un
c’
f
C+E
I Diagram 5.
f . C i E
‘f.c
16
u1
=
...
ux
=
and G;
b a l l of r a d i u s
.
and f - ' ( c + E )
respectively;
= 0
un
= 0
F
and
i s h e a v i l y shaded; t h e region
MC-€
z o n t a l dark l i n e through
p
f-' ( c - E )
Within this e l l i p s o i d we have
x
We must prove t h a t
formation r e t r a c t of M ' + ~ . Construct a new smooth f u n c t i o n
F: M
-
R
MCeE
u
The h o r i -
PROOF:
C+E
a r e t h e same as those of
F
f.
Note that
so that e x e x i s a de-
as follows.
c-c+q < c+ ls+q 2 -
are t h e s t a n d a r d v e c t o r f i e l d s on t h e co-
should be c o n s t a n t .
that
PROOF:
Choose p a r a l l e l v e c t o r f i e l d s
are orthonormal a t one p o i n t of
c
t i v e l y (where vi
w
lows that
V
= =
1
by t h i s formula, i t i s n o t d i f f i c u l t t o v e r i f y
that c o n d i t i o n s ( a ) , (b), and ( c ) A vector f i e l d
along
i f the c o v a r i a n t d e r i v a t i v e
DV
are s a t i s f i e d .
c
i s s a i d t o be a p a r a l l e l v e c t o r f i e l d
Theref o r e i s i d e n t i c a l l y zero.
which completes the p r o o f .
a
viwi
P,,
. . . , Pn
along
and hence a t e v e r y p o i n t of
t h e g i v e n f i e l d s V and W can be e x p r e s s e d as
Conversely, d e f i n i n g
I n o t h e r words,
of' p a r a l l e l v e c t o r f i e l d s
P, P '
LEMMA 8 . 3 . Suppose that t h e connection i s compatible w i t h the m e t r i c . L e t V, W be any two v e c t o r f i e l d s a l o n g c . Then
(or a n a p p r o p r i a t e open
I t f o l l o w s from ( a ) , ( b ) , and ( c )
o r d i n a t e neighborhood.
c,
c
1
viPi
and
2
c. wjPj
i s a r e a l valued f u n c t i o n on R) . and t h a t
c
which Then respec-
It f o l -
COROLLARY 8 . 4 . For any v e c t o r f i e l d s vector Xp E TMp:
xp < Y , Y ' >
<xp
=
COVARIANT DIFFERENTIATION
§ 8.
11. RIEMANNIAN GEOMETRY
48
Y,Y'
on
M
three quantities
and any
I- a j , a k > ,
k y,y;>
+
.
I- Y ' >
0 s o that, for each (To,To) E W the differen-
numbers I1vII
E
s o that:
~0
f o r each
p
E
and each
U
57
v
TMp w i t h
E
t h e r e i s a unique geodesic ( - 2 ~ ~ , 2 - +~M ~ )
yv:
s a t i s f y i n g the required i n i t i a l conditions. has a unique s o l u t i o n t - < ( t ) which i s defined for It\ < E, and s a t i s f i e s t h e i n i t i a l conditions
To o b t a i n t h e sharper statement i t i s only necessary t o observe that the d i f f e r e n t i a l equation for geodesics has t h e following homogeneity property.
c
Let
be any c o n s t a n t .
I f t h e parametrized curve
Furthermore, t h e s o l u t i o n depends smoothly on t h e i n i t i a l conditions. I n other words, t h e correspondence
Go,Yo,t ) from w x ( - E , E ) 2n+1 v a r i a b l e s .
to
is a
R~
3t ) ern f u n c t i o n
i s a geodesic, then the parametrized curve
+
of a l l
t
+
Y(Ct)
w i l l a l s o be a geodesic.
PROOF:
Introducing t h e new v a r i a b l e s
second order equations becomes a system of
v
i
=
dui
t h i s system of
Now suppose that
n
(tl
?n f i r s t order equations:
(2)
p(p;,q)
PA
W e claim that
=
(r
-
i s equal t o
to) -
7(t0
6'
.
+ sl).
I n f a c t the t r i a n g l e
i n e q u a l i t y states t h a t 0,
choose a neighborhood
denote a s p h e r i c a l s h e l l of r a d i u s
6
dt.
A(t),A(t)
=
c
for a l l
t.
Hence each
W(ti)
=
at2V.
(ol[ti,ti+ll
Then
C',
even a t the p o i n t s
ti.
from the uniqueness theorem f o r d i f f e r e n t i a l equations that
shows
path
/
-!f ( t )
=
Conversely, suppose t h a t Choose a subdivision
WII [ti-,,til
Tn7
.
The second
0 =
to
.
0
=
(Since DV iTt; = o ) ,
0
0
for W
Then W
If
For if
T
0
M
S
x
to
y
x
E
and
S
i s constant along 7 . I n f a c t ,
=
p
IV. APPLICATIONS
110
@ven
P
q
= 7(0),
carries
p
to
q.
= 7 ( c)
,
Thus
remains t r u e everywhere along
i s parallel.
R(U,V)W
7.
=
eiUi
Any v e c t o r f i e l d W along
may be
y
expressed uniquely as
i s constant f o r every p a r a l l e l
111
the condition R(V,Ui)V
I t c l e a r l y follows that
X.
17(c/2)Ip which
i s an isometry, this q u a n t i t y i s equal t o
.
R(Up,Vp)Wp,%>
=
Then
>
=
Therefore we may choose an orthonormal b a s i s %(Ui)
where
el,
...,en
along
7
by p a r a l l e l t r a n s l a t i o n .
*
=
a r e t h e eigenvalues.
...,Un
U,,
eiUi
Mp
s o that
,
Extend the
Then since
. for
M
should n o t be confused w i t h t h e R i c c i t e n s o r
Ui
t o vector f i e l d s
is l o c a l l y symmetric,
Of
$19.
=
ei
=
ci s i n
wi(t)
(5 t),
O
*
t
If
= 0.
f o r some constant
a r e a t the m u l t i p l e s of
t
0
then
ci.
.
n/Gi
-
= 0
vanishes only a t
<W,KJ(W>
=
wi(t) Then t h e zeros of
THEOREM 2 0 . 5 . The conjugate p o i n t s t o p along 7 are the p o i n t s y ( c k / G i ) where k i s any non-zero i n t e g e r , and ei i s any p o s i t i v e eigenvalue of %. The m u l t i p l i c i t y of 7 ( t ) a s a conjugate p o i n t I s equal t o t h e number of ei such t h a t t i s a mult i p l e of c / G i . PROOF:
=
then
Thus i f
ei
1. 0 ,
wi(t)
LIE GROUPS
§21.
IV. APPLICATIONS
112
113
LEMMA 2 1 . 2 . The geodesics y i n G with ~ ( 0 =) e a r e p r e c i s e l y t h e one-parameter subgroups of G .
PROOF:
Lie Groups as Symmetric Spaces.
521.
G
I n this s e c t i o n we consider a Lie group
the map
with a Riemannian metric
so
which i s i n v a r i a n t both under l e f t t r a n s l a t i o n s
Let
I y ( t ) I e takes
G
+
L,(u)
G,
T d
=
~
and right t r a n s l a t i o n , certainly exists.
as follows:
R,(u)
If
the Haar measure on new i n n e r product
If
UT.
i s commutative such a metric
G
GI and L e t
be any Riemannian metric on
G.
Then
>
on
1
=
i s r i g h t and l e f t i n v a r i a n t .
I.I
G
denote
I.I
Define a
by
>
LU,RTy(W)
gent v e c t o r of Hence
and only if
GxG
Then
geodesic through y 7'
e
at
e.
Ie: G
-
G
L,
and
Iex: TGe
-+
-
Ie*: Gu
1,
Finally, defining I,
Q
t'
i s rational so that n'
n" then
and
y(nt)
n't
=
+ t ")
y(t'
= y(t)n
t"
and
n"t
=
= y(t)n'+n"
=
i s a homomorphism.
be a
1-parameter subgroup.
Let
at
7'
be the
7'
i s t h e tan-
e
i s a 1-parameter sub-
7'
on a Lie group
=
Xa.b [X,YI
G
i s called l e f t invariant
for every a and i s also.
b
in
If X
G.
The Lie algebra
Q
[
of
if
and G
Y
i s the
I.
i s a c t u a l l y a Lie algebra because the Jacobi I d e n t i t y + "Y,Zl,Xl
+ "Z,Xl,YI
=
0
holds f o r a l l ( n o t n e c e s s a r i l y l e f t i n v a r i a n t ) v e c t o r f i e l d s
.
-1
THEOREM 2 1 . 3 .
RU- 1 I,',,
so i s certainly
X,Y
and
Z.
=
TU-~T,
u
E
G.
Since
the identity
I,
=
G
i s a C"
i t s tangent v e c t o r a t
e.
G
W
.
A s i n 5 0 we w i l l use t h e n o t a t i o n
PROOF:
e.
d e r i v a t i v e of
R,IeRil
homomorphism of R
and
1,
i s a n isometry which r e v e r s e s geodesics through of
be a Lie group with a l e f t and
b) R ( X , Y ) Z = ~[X,Yl,Zl C) = [X,YI,[Z,W1>
Now t h e i d e n t i t y
=
IT(u)
A 1-parameter subgroup G.
u
i s an isometry f o r any
G -1
r e v e r s e s t h e tangent space a t
shows that each
=
r e v e r s e s t h e tangent space of
TGe
an isometry on this tangent space.
shows that
Iy(t)Ie(~ = )y ( t ) u 7 ( t )
By induction it follows that
We have j u s t seen that
X
(La)*(Xb)
the bracket
Define a map
are isometries.
By Lemma 20.1
by Ie(a)
Then
R,
e.
T h i s completes t h e proof.
= 7.
"X,Yl,Zl By hypothesis
Now
2t).
=
v e c t o r space of a l l l e f t i n v a r i a n t v e c t o r f i e l d s , made i n t o a n a l g e b r a by
LEMMA 2 1 . 1 I f G i s a Lie group with a l e f t and right i n v a r i a n t metric, then G i s a symmetric space. The r e f l e c t i o n I, i n any p o i n t T E G i s given by t h e formula ~ , ( u ) = T o - ' , . PROOF:
7(O)
such that t h e tangent v e c t o r of
a r e l e f t i n v a r i a n t then
i s l e f t and r i g h t i n v a r i a n t .
G
7
7(u +
into
t l / t "
-
R
y:
A vector f i e l d
.
dp(d) dp(T)
If
By c o n t i n u i t y
Now l e t
group.
be t h e orthogonal complement of
* It follows
that t h e t r i - l i n e a r f u n c t i o n X,Y,Z .-, Q X , Y I , Z > i s skewsymmetric i n a l l t h r e e v a r i a b l e s . Thus one obtains a l e f t i n v a r i a n t d i f f e r e n t i a l 3-form on G, r e p r e s e n t i n g a n element of t h e de R h a m cohomology group H3(G). I n this way Cartan w a s a b l e t o prove that H3(G) # 0 i f G i s a non-abelian compact connected Lie group. (See E. Cartan, "La Topologie des Espaces Representatives des Groupes de Lie," P a r i s , Hermann, 1936.)
GI x Rk possesses a
Conversely it i s c l e a r that any such product l e f t and right i n v a r i a n t metric.
if
x,y
E
and
01
C
c
E
hence
[x,yI
E
0'.
Hence
o for a l l
.
Then
c
=
I t follows that G
gr
C
E
and l e t
c 1
i s a Lie sub-algebra.
For
then
< [X,YI,C > Lie a l g e b r a s .
=
B
<X,[Y,CI> g
=
0;
s p l i t s as a d i r e c t sum
S p l i t s as a C a r t e s i a n product
i s c m p a c t by 21.5 and. GI'
GI
x G";
f l l (3
C
where
of GI
1s Simply connected and a b e l i a n , hence isomorphic
$21
IV. APPLICATIONS
116
LIE GROUPS
117
by
T h i s completes the
t o some Rk. (See Chevalley, "Theory of Lie Groups.")
.
Ad V(W)
proof.
=
[V,WI
we have
%
THEOREM 2 1 . 7 ( B o t t ) . Let G be a compact, simply connected Lie group. Then t h e loop space n(G) has t h e homotopy type o f a CW-complex with no odd dimensional c e l l s , and with only f i n i t e l y many X-cells for each even value of h . Thus t h e X-th homology groups of
n(G)
i s zero f o r
A
The l i n e a r transformation
odd, and i s
+
G
(-a1O
REMARK
an example, i f
1.
G
T h i s CW-complex w i l l always be i n f i n i t e dimensional.
i s t h e group
that t h e homology group REMARK 2.
0
Ad V =
(Ad
.
V)
i s skew-symmetric; that i s
-
Ad V
t a k e s t h e form
of u n i t quaternions, then we have seen
S3
i s i n f i n i t e c y c l i c f g r a l l even values of i.
HiO(S3)
It follows that t h e composite l i n e a r transformation
T h i s theorem remains t r u e even f o r a non-compact group.
(Ad V) (Ad V) 0
has
matrix
I n f a c t any connected Lie group contains a compact subgroup as deformation (See K. Iwasawa, On some types of topological proups, A n n a l s of
retract.
Mathematics 50 ( 1949), Theorem 6 . ) PROOF of 2 1 . 7 .
Choose two p o i n t s
conjugate along any geodesic.
p
and
By Theorem 17.3,
to
each
q X.
of index
X.
G
O(G;p,q)
type of a CW-complex with one c e l l of dimension p
in
q
A
which a r e not
has t h e homotopy
Therefore t h e non-zero eigenvalues of
f o r each geodesic from
By 6 1 9 . 4 t h e r e a r e only f i n i t e l y many
Thus i t only remains t o prove that the index
X
= - &Ad
V)*
a r e p o s i t i v e , and
occur i n p a i r s .
A-cells for
I t follows from 20.5 that t h e conjugate p o i n t s of
of a geodesic is
occur i n p a i r s .
always even.
p
7
starting at
v
=
$(O)ETG
P
t h e conjugate p o i n t s o f
p
with velocity vector
p
on
y
a r e determined by the
eigenvalues of t h e l i n e a r transformation
q:
TGp - T G
P
'
defined by
%(W)
=
R(V,W)V
=
Defining the a d j o i n t homomorphism Ad V:
kl
-.,
geodesic from
' a .
$[V,Wl,Vl
.
.*
along
7
also
I n other words every conjugate p o i n t has even m u l t i p l i c i t y .
Together with the Index Theorem, this implies that the index
Consider a geodesic
According t o 6 2 0 . 5
%
p
to
q
i s even.
T h i s completes t h e proof.
X
of any
MANIFOLDS OF MINIMAL GEODESICS
$22.
IV. APPLICATIONS
118
119
Thus we obtain: COROLLARY 2 2 . 2 . With t h e same hypotheses, isomorphic t o I X ~ + ~ ( M )f o r 0 5 i 5 X o -
Whole Manifolds of Minimal Geodesics
$22.
n(M;p,q) based on two p o i n t s
So f a r we have used a p a t h space
special position. let
p,q
A s an example l e t
be a n t i p o d a l p o i n t s .
d e s i c s from
p
to
q.
M
p,q
a smooth manifold of dimension
n
Rn2
is
and contain two conjugate p o i n t s , each of m u l t i p l i c i t y
2n.
=
Xo
For any non-minimal geodesic must wind one and a h a l f times around
S"";
n, i n i t s i n t e r i o r .
T h i s proves the following.
Then t h e r e a r e i n f i n i t e l y many minimal geo-
I n f a c t t h e space
)
2.
t h e ( n + l ) - s p h e r e . Evidently t h e hypotheses a r e s a t i s f i e d with
i n some
Sn+l , and
be t h e unit sphere
d
L e t u s apply t h i s c o r o l l a r y t o the case of two a n t i p o d a l p o i n t s on
However, Bott has pointed out
p,q E K which a r e i n "general p o s i t i o n . " t h a t very u s e f u l r e s u l t s can be obtained by considering p a i r s
ni(0
of m i n i m a l geodesics forms
COROLLARY 2 2 . 3 . (The Freudenthal suspension theorem.) The homotopy group ni(Sn) i s isomorphic t o n i + l ( S n + l ) f o r i 5 2n-2.
which can be i d e n t i f i e d with the equator
Sn C S n + l . We w i l l see t h a t this space of minimal geodesics provides a
Theorem
P
space
-
n
a l s o implies that t h e homology groups of the loop
22.1
ad
a r e isomorphic t o those of
f a c t follows from
22.1
for example Hu, p .
206.
i n dimensions
5
Lo
-
2.
This
together with the r e l a t i v e Hurewicz theorem. Compare a l s o
(See
J . H. C . Whitehead, Combinatorial
homotopy I , Theorem 2 . ) The r e s t of
$22
w i l l be devoted t o the proof of Theorem 2 2 . 1 .
The
proof w i l l be based on t h e following l e m a , which a s s e r t s t h a t t h e condition " a l l c r i t i c a l p o i n t s have index
2 Xot'
remains t r u e when a f u n c t i o n i s
jiggled slightly. 4
Let
f a i r l y good approximation t o t h e e n t i r e loop space Let
M
n(Sn+').
be a complete Riemannian manifold, and l e t
points w i t h distance
p(p,q)
=
be a compact subset of the Euclidean space Rn;
K
a neighborhood of
p,c, E M
K;
be
U - R
f:
be a smooth f u n c t i o n such that a l l c r i t i c a l p o i n t s of
>
U
and l e t
be two
a.
let
f in
K
have index
lo.
THEOREM 2 2 . 1 . I f the space ad of minimal geodesics from p t o g i s a t o p o l o g i c a l manifold, and i f every non-minimal geodesic from p t o q has index 2 L o , then t h e r e l a t i v e homotopy group n i ( n , n d ) i s zero f o r o 5 i < h0.
LEMMA
If
22.4.
i s "close" t o
g: f,
-
U R i s any smooth f u n c t i o n which i n t h e sense t h a t
I t follows that t h e i n c l u s i o n homomorphism ni(O
is a n isomorphism for i group
ni(n)
5
Xo
i s isomorphic t o
-
d 2.
)
-
ni(n)
ni+l(M)
f o r a l l values of
S. T. Hu, "Homotopy Theory," Academic P r e s s , 1959, p. 817.1.)
uniformly throughout
But i t i s w e l l known that t h e homotopy
111;
i.
f o r some s u f f i c i e n t l y small constant
then a l l C r i t i c a l P o i n t s of
(Compare
together with
K,
(Note that the a p p l i c a t i o n , points.)
f
g
g
in
K
have index
2
E,
Xo.
1s allowed t o have degenerate c r i t i c a l p o i n t s .
In
w i l l be a nearby f u n c t i o n without degenerate c r i t i c a l
IV. APPLICATIONS
120
PROOF of 2 2 . 4 .
The f i r s t d e r i v a t i v e s of
g
a r e roughly described
U; which vanishes p r e c i s e l y a t t h e c r i t i c a l p o i n t s of
d e r i v a t i v e s of
g
121
To complete the proof of 2 2 . 4 , i t i s only necessary t o show t h a t
the i n e q u a l i t i e s ( * ) w i l l be s a t i s f i e d providing t h a t
by the s i n g l e r e a l valued f u n c t i o n
on
MANIFOLDS OF MINIMAL GEODESICS
§ 22.
can be roughly described by
n
g.
for s u f f i c i e n t l y small
The second
T h i s follows by a uniform c o n t i n u i t y argument
E .
which w i l l be l e f t t o t h e reader (or by the footnote above ) .
continuous f u n c t i o n s
We w i l l next prove an analogue of Theorem 2 2 . 1
for r e a l valued
functions on a manifold.
as follows.
Let
Let 1
eg(x)
of
g
eg(x)
F...
n eigenvalues of t h e matrix
denote the x
5
2
has index
2
such that each
ei(x)
a2
( 6-$) . xi x j
i f and only i f the number
A
f:
Thus a c r i t i c a l p o i n t
MC
+
R be a smooth r e a l valued f u n c t i o n with minimum i s compact.
f-'[O,cl
=
0,
LIDlMA 2 2 . 5 . If the s e t Mo of minimal p o i n t s i s a manifold, and if every c r i t i c a l p o i n t i n M - Mo has index 2 A o , then nr(M,M 0 ) = 0 f o r 0 5 r < X o .
i s negative.
ek(x)
M
e x follows from the f a c t that the 63 * A-th eigenvalue of a symmetric matrix depends continuously on t h e matrix The c o n t i n u i t y of t h e functions
.
T h i s i n t u r n follows from the f a c t that the r o o t s of a polynomial depend
continuously on the polynomial.
U C M.
(See § 1 4 of K . Knopp, "Theory of Functions,
P a r t 11," published i n the United S t a t e s by Dover, 1 9 4 7 . ) LO m ( x ) denote t h e l a r g e r of the two numbers kg ( x ) and -eg ( x ) . g Similarly l e t mf(x) denote t h e l a r g e r of t h e corresponding numbers k f ( x )
Let
and index mf(x)
The hypothesis that a l l c r i t i c a l p o i n t s of
-e)(x).
2
>
implies that
A.
0
for a l l x
Let
6
>
i s so c l o s e t o
0
f
E
AO
-ef ( x )
>
0
whenever
kf(x)
f
= 0.
in
K
PROOF:
have
F i r s t observe t h a t
Mo
I n f a c t Harmer has proved that any manifold
neighborhood r e t r a c t .
mf
on
K.
absolute neighborhood r e t r a c t s , A r k i v f o r Matematik, V o l . 389-408.)
Replacing
i s joined t o the corresponding p o i n t of Mo
U
by a unique m i n i m a l geodesic.
Let '1
Thus
h: (Ir,Tr) be any map.
can be deformed i n t o
U
denote t h e u n i t cube of dimension
g
that
(1950), pp.
1
by a smaller neighborhood i f necessary, we may
U
assume that each point of
I n other words
Now suppose that
i s an absolute
Mo
(See Theorem 3.3 of 0 . Harmer, Some theorems on
K.
denote t h e minimum of
i s a r e t r a c t of some neighborhood
We must show that
h
-
r
Computation shows t h a t the
a r e odd i n t e g e r s .
0
non-zero eigenvectors of the l i n e a r transformation
i s e a s i l y seen t o be
n
...
-I i f and only i f
i s equal t o
and only if a 1
...
0
The i n n e r product
=
LEMMA 2 4 . 2 . Any non-minimal geodesic from i n O(2m) has index 2 2 m - 2 .
T(exp
*.. ...
...
J*
The proof i s similar t o that of 2 3 . 2 .
c o s na,
\
-I t h i s implies that
Together with t h e i d e n t i t y
J.
proof.
0
equal t o
/
denotes t h e transpose of
f o r some & , , a 2 ,... am -> that a, = . .. = = 1;
-?2* ..
-a with
=
J*
135
i s skew-symmetric, t h e r e e x i s t s an element
A
(
so that
THE ORTHOGONAL G R O W
$24.
IV. APPLICATIONS
134
I)
for each i
2)
f o r each
i
<
a
=
1
(3+1-2)
+
0
(ai - a j -
2)
.
j
a2
=
aj)2/ 4.
This l e a d s t o the formula
=
... -- & m = ’
For a non-minimal geodesic we have
2
are
2m
-
a,
s o that
2 3;
so t h a t
2.
2
hence
A
i s a complex s t r u c t u r e .
Conversely, l e t
J
This completes t h e proof.
be any complex s t r u c t u r e .
nal we have
JJ*
=
I
Since
J
i s orthogo-
NOW l e t u s apply Theorem 2 2 . 1 .
The two lennnas above, together w i t h
IV. APPLICATIONS
136
the statement t h a t a , ( n )
0 24.
i s a manifold imply the following.
a,
PROOF of 2 4 . 4 .
-
0,( n )
=
fli+,
Any p o i n t i n O(n)
expressed uniquely i n t h e form
THEOREM 2 4 . 3 ( B o t t ) . The i n c l u s i o n map (n) R O(n) induces isomorphisms of homotopy groups i n dimensions < n-4. Hence fii
THE ORTHOGONAL GROW
sgmmetric matrix. J
O(n)
exp A,
c l o s e t o the i d e n t i t y can be
where
Hence any p o i n t i n O ( n )
can be expressed uniquely as
137
J exp A,;
A
is a "small,"
skew-
c l o s e t o t h e complex s t r u c t u r e
where again
i s s m a l l and
A
skew.
for i .( n-4. ASSERTION Now we w i l l i t e r a t e t h i s procedure, studying t h e space of geodesics from
J
to
high power of
Let commute
*,
i n n l ( n ) ; and s o on.
-J
J
r # s.
anti-commutes w i t h
J,,
. . ., J k - l
be f i x e d complex s t r u c t u r e s on Rn
anti-commutes with
If A I
which anti-
i n the sense that JsJr
=
exp(J-'A J ) exp A
( J exp A ) 2
Therefore
+
=
J,
then
J-lA J
=
J - ' ( e x p A ) J exp A
.
hence
-A
Since
denote t h e s e t of a l l complex s t r u c t u r e s J
which anti-commute with t h e fixed s t r u c t u r e s
J,, . . . , J k - l .
A
J- A J
s o that
C l e a r l y each n , ( n )
C
... C n l ( n ) C
i s a compact s e t .
n a t u r a l t o define n 0 ( n )
t o be
O(n)
.
anti-commutes w i t h
J1,...,Jk-l
To complete t h e d e f i n i t i o n i t i s
=
-I
then the
=
I
.
-A
=
J.
J exp A
anti-commutes w i t h t h e complex s t r u c t u r e s
i f and only i f
commutes with
A
J1,...,Jk-l.
The proof i s similar and straightforward.
O(n)
Note that Assertions 1 and 2 b o t h put l i n e a r conditions on
**
Thus a neighborhood of
LEMMA 2 4 . 4 . Each n k ( n ) i s a smooth, t o t a l l y geodesic submanifold of O ( n ) . The space of minimal geodesics from Jf t o -Jf i n O,(n) i s homeomorphic t o n f + l ( n ) , f o r
A
J
i n %(n)
c o n s i s t s of a l l p o i n t s
A.
J exp A where
ranges over a l l small m a t r i c e s i n a l i n e a r subspace of the Lie algebra
T h i s c l e a r l y implies t h a t n k ( n )
O < f < k .
g.
i s a t o t a l l y geodesic submanifold of
O(n).
It follows that each component of
For t h e isometric r e f l e c t i o n of O ( n ) cally carry n k ( n )
A
ASSERTION 2 . C
( J exp A ) 2
i s s m a l l , this implies that 1
.
Thus we have n,(n)
Conversely i f
exp(J-lA J ) exp A
Jl,...,Jk-l.
Let n,(n)
-I.
=
=
above computation shows that
0
Suppose that t h e r e e x i s t s a t l e a s t one other complex s t r u c t u r e
DEFINITION.
n,(n)
i s a s y m e t r i c space.
i n a p o i n t of n k ( n ) w i l l automati-
to itself.
Now choose a s p e c i f i c p o i n t
2
exists a complex s t r u c t u r e J J = J@
w e see e a s i l y t h a t
cmutes with
*
These s t r u c t u r e s make Rn i n t o a module over a s u i t a b l e C l i f f o r d algebra. However, t h e C l i f f o r d a l g e b r a s w i l l be suppressed i n t h e following presentation.
**
J.
i s d i v i s i b l e by a PROOF:
which anti-commutes w i t h
on R n
n
A
2.
JrJs
for
Assume that
i s a complex s t r u c t u r e i f and only i f
J exp A
1.
A submanifold of a Riemannian manifold i s c a l l e d t o t a l l y geodesic if each geodesic i n t h e submanifold i s a l s o a geodesic i n l a r g e r manifold.
Jk.
Jk
E
nk(n),
and assume that t h e r e
which anti-commutes w i t h
...,Jk.
Setting
i s a l s o a complex s t r u c t u r e which anti-
A
However,
J1,
A
comutes w i t h
J1
,..., J k - l .
Hence t h e
formula
t d e f i n e s a geodesic f r m Jk
+
to
J k e x p ( n t A)
-Jk
i n llk(n).
Since t h i s geodesic i s
minimal i n o ( n ) , it i s c e r t a i n l y m i n i m a l i n n k ( n ) .
$24. THE ORTHOGONAL GROUP
IV. APPLICATIONS
136
a,(n).
Conversely, let 7 be any minimal geodesic from Jk to -Jk in
Cn/, as being a vector space gl4 over the quaternions H .
Setting y(t)
be the group of isometries of this vector space onto itself. Then n,(n)
=
Jk exp(nt A),
it follows from
a complex structure, and from Assertions
... ,Jk-l
Jl,
REMMRK.
geodesic
y
1,2
and anti-commutes with Jk.
that A
that A is
24.1
Before going further it will be convenient to set n
It follows easily that Jip
The point Jip
E
y($)
of the geodesic.
PROOF: Any complex structure J3 e n 3 ( 1 6 r )
In order to pass to a stable situation, note that nk(n)
of
can be
. . .,Ji
structure J f3 21; =
1,
.
on Rn’
Then each J
E
nk(n)
@
=
R’6r into two mutually orthogonal subspaces V, and V,
as fol-
are
1.
b t V, C R16r be the subspace on which JlJ2J3 equals + I; and let V,
JA for
...,k - 1 .
be the orthogonal subspace on which it equals -I. Then clearly
DEFINITION. Let SFaces a,(n),
H4r
determines a splitting
J,J2J3J,J2J3 equal to + I. Hence the eigenvalues of J,J,J3
determines a complex
on Rn @Rn’ which anti-commutes with J,
16r.
lows. Note that JlJ2J3 is an orthogonal transformation with square
imbedded in nk(n+nt) as follows. Choose fixed anti-commuting complex structures J;,
=
LEMMA 24.6 - (3). The space a,( 1 6 r ) can be identified with the quaternionic Grassmam manifold consisting of quaternionic subspaces of
flk+l(n) which corresponds to a given
has a very simple interpretation: it is the midpoint
Let Sp(n/4)
can be identified with the quotient space U(n/2)/ Sp(n/‘c).
commutes with
This completes the proof of 24.4.
belongs to Qk+l(n).
CY
139
nk
denote the direct limit as n-r
m
=
of the
with the direct limit topology.
(I.e., the fine topology.) The space 0 =nois called the infinite orthogonal group.
V, f3 V,.
Since JlJ,J3
that both V, and V,
.
commutes with J, and J,
it is clear
are closed under the action of J, and J,.
Conversely, given the splitting H4k
=
V,
@
orthogonal quaternionic subspaces, we can define J3
V, E
into mutually
n3(l6r) by the
identities It is not difficult to see that the inclusions give rise, in the limit, to inclusions
nk+l ank .
-r
0
I
n,(n)
-r
-
THEOREM 24.5. For each k 2 0 this limit map fik+l 0 ak is a homotopy equivalence. Thus we have isomorphisms nh 0
E
nhw1
n, z
nh-,
n,
g
...
=
J31V2
=
-J1J,IV1 JlJ21V2
.
T h i s proves Lemma ?4.6 - ( 3 ) .
The space “lnh-l
J3P1=
*
3
is awkward in that it contains components of
(16r)
varying dimension. It is convenient to restrict attention to the component
The proof will be given presently.
of largest dimension: namely the space of 2r-dimensional quaternionic sub-
Next we will give individual descriptions of the manifolds for
k
= 0,1,2,
ak(n)
...,8. n,(n)
this way, so that dimHV1
is the orthogonal group.
nl(n) is the set of all complex structures on Rn
.
Given a fixed complex structure J, we may think of Rn as being a vector space Cn/2 over the complex numbers. n,(n)
spaces of H4r. Henceforth, we will assume that J a
can be described as the set of “quaternionic structures” on
the complex vector space Cn’2.
Given a fixed J2 en2(n)
We m y think of
=
dimHV2
3
has been chosen in
= 217.
LEMMA 24.6 - ( 4 ) . The space n4(16r) can be identified with the set of all quaternionic isometries from Vl to V,. Thus n4(16r) is diffeomorphic to the symplectic group S p ( 2 ~ ) .
PROOF: Given J,, E n4( 16r) Commutes with JlJ,J3
.
Hence J3J4
note that the product J3J4 antimaps V,
to V2 (and V,
to V 1 )
$24. THE ORTHOGONAL GROUP
IV. APPLICATIONS
140
W i n t o two mutually orthogonal subspaces.
s p l i t t i n g of Since
J3J4 commutes w i t h
and
J,
we see that
J,
i t i s e a s i l y seen that
-V,
Conversely, given
identities:
his proves 24.6 - ( 4 )
-
REMARK.
Jil T
=
J41V2
= -T-’
-
phisms of
PROOF:
Given
commutes with
J,J,J3
Let
Since
J2
W C V,
( 5)
=
X C W, i t i s not hard t o see that
J 6 i s unique-
If O(2r) C U(2r)
keeping
W
X
denotes t h e p o u p of complex automor-
f i x e d , then t h e q u o t i e n t space
U( 2 r ) / O ( 2r)
can
a,(
J5
E
a,( 1 6 r )
note that t h e transformation
J1J4J5
+ I . Thus J,J4J5 maps V,
and has square
V,
J,J4J5 coincides with
J,J4J5, i t follows that
J2W
J,J4Jg equals
c
V,
Given
J,J6J7
commutes with
square
+ I . Thus
J1J6J7
+ I.
equals
J7,
anti-commuting with
J,J2J3, w i t h
J,,
...,J6
J,J4J5, and with
J , J 6 J 7 determines a s p l i t t i n g of
orthogonal subspaces:
into
i n t o two mutually orthogonal sub-
be the subspace on which
anti-commutes w i t h
PROOF:
X,
(mere
J,J6J7 equals
- I ) . Conversely, given
X, C X
X
note that
J2J4J6; and has
i n t o two mutually
+I) and
X,
(where
it can be sharn that
J7
I s uniquely determined.
is
T h i s space a7(16r), l i k e n3(16r),has components of varying dimen-
-I. Clearly
sion.
W.
Again we w i l l r e s t r i c t a t t e n t i o n t o t h e component of l a r g e s t dimen-
sion, by assuming that Conversely, given t h e subspace
dim X ,
W, i t i s n o t d i f f i c u l t t o show t h a t
REMARK. morphisms of
V,
If
U ( 2 r ) C Sp(2r)
keeping W
ASSERTION.
denotes t h e group of quaternionic auto-
f i x e d , then t h e q u o t i e n t s w c e
can be i d e n t i f i e d with n 5 ( 1 6 r )
Sp( 2 r ) / U( 2 r )
commutes b o t h with Since
J6
.
E
n6(16r) note that the transformation
J,J2J3 and with
(J,J4J6)2
=
r.
=
I,
J 1 J 4 J g . Hence
it follows that
J,J4J6 maps
J2J4Jg
The l a r g e s t component of
n7(1 6 r )
i s diffeomorphic t o R2’.
a
UMNA 2 4 . 6 - ( 8 ) . The space a , ( 1 6 r ) can be i d e n t i f i e d w i t h t h e s e t of a l l r e a l i s o m e t r i e s from X, t o X,.
PROOF. c-utes
Given
dim X p
t h e Grassmann manifold c o n s i s t i n g of r- dimensional subspaces of
can be i d e n t i f i e d LEMMA 2 4 . 6 - (6). The space a6( 161’) with the set of a l l real subspaces X C W such that W s p l i t s as t h e orthogonal sum X fB J , X . PROOF.
=
Thus we obtain:
J 5 i s uniquely determined.
itself.
-I.
L F M 24.6 - ( 7 ) . The space i 6 r ) can be i d e n t i f i e d with the r e a l Grassrnann manifold c o n s i s t i n g of real subspaces of X s Rzr.
.
p r e c i s e l y the orthogonal subspace, on which JIW
w i l l be the orthogonal
+ I . Then J , X
I
i t s e l f ; and determines a s p l i t t i n g of spaces.
be t h e
be i d e n t i f i e d with a6(16r).
J3
The space n5( 1 6 r ) can be i d e n t i f i e d with t h e s e t of a l l v e c t o r spaces W C V, such that ( I ) W i s closed under J , ( i . e . , W i s a complex vector space) and (2) V1 s p l i t s a s t h e orthogonal sum W 8 J, W .
LEMMA 24.6
X C W
Let
l y determined.
J 4 i s uniquely determined by the
J41V,
J2J4J6 equals
subspace on which i t equals
Conversely, given any such isomorphism
is a quaternionic isomorphism. T : V,
subspace on which
-+v,
J 3 J 4 1 V , : V,
141
J,J4J6 W
determines a
into
&nce
with
JrJ8
determines
If
J8
E
a8(16r) then t h e orthogonal transformation
J,J2Jj, J,J4J5,
maps
X,
and
J2J4J6; b u t anti-commutes w i t h
isomorphically onto
X,.
J7J8 J,J6J7.
Clearly this isomorphism
J8 uniquely.
Thus w e see that
n8( 16r)
i s diffeomorphic t o t h e orthogonal
IV. APPLICATIONS
142
$24. THE ORTHOGONAL GROUP
group* O ( r ) .
DEFINITION.
Let us consider this diffeomorphism
r
the l i m i t a s
-+O(r),
and pass t o
( J , , . . . , Jk) -space i f no proper, non-
i s a minimal
V
J l ,...,
t r i v i a l subspace i s closed under t h e a c t i o n of
It follows that O8 i s homeomorphic t o t h e i n f i n i t e
-c m .
orthogonal group 0 .
a8( 16r)
143
Jk. Two such
and
minimal v e c t o r spaces a r e isomorphic i f t h e r e i s a n isometry between them
Combining t h i s f a c t with Theorem 24.5, we obtain the
J,,. . . , Jk.
which commutes with the a c t i o n of
following. LEMMA 2 4 . 8 ( B o t t and Shapiro) . F o r k f 3 (mod 4), any two minimal ( J 1 , . , . , J k ) vector spaces a r e isomorphic.
THEOREM 2 4 . 7 ( B o t t ) . The i n f i n i t e orthogonal group 0 has t h e same homotopy type as i t s own 8 - t h loop space. Hence the homotopy group n i 0 i s isomorphic t o ni+8 0 f o r i
Sp
If
= a 4denotes
argcunent a l s o shows t h a t 0 and t h a t
n R n R Sp,
Rnnn 0 .
Sp
%
20.
L
The proof of 24.8 follows t h a t of 2 4 . 6 .
complex numbers o r the quaternions.
has t h e homotopy type of t h e & - f o l d loop space
For
has t h e homotopy type of the & - f o l d loop space J3
1
0 1
"i SP
1
z2 0
3
Z
Z
4 5
0
Z2 Z2
6 7
T h i s g i v e s t w o non-isomorphic minimal
-J,J2.
H
to
=
5,6
complex s t r u c t u r e s spaces.
k
For
The dimension i s equal t o
HI.
and H
HI. @
HI, with
8.
we o b t a i n t h e same minimal vector space
H
@
HI. The
we again o b t a i n t h e same space, b u t t h e r e a r e two J 7 i s equal t o
p o s s i b i l i t i e s , according a s
Z
H
J5,J6 merely determine p r e f e r r e d complex or r e a l sub-
7
=
Call these
4.
a minimal space must be isomorphic t o
4
=
k
For
0
Z
However, t h e r e a r e two p o s s i b i l i t i e s , according as
+J1J2 or
k
J3J4 mapping
0
0 0
a
2
a minimal space i s s t i l l a 1-dimensional v e c t o r space
3
=
i s equal t o
For
0
2
or
= 0,1,
Clearly any two such a r e isomorphic.
spaces, both with dimension equal t o
0
z2
k
over t h e quaternions.
The a c t u a l homotopy groups can be tabulated as follows. n i 0
k
m i n i m a l space i s j u s t a 1-dimensional v e c t o r space over the reals, the
t h e i n f i n i t e symplectic group, then t h e above
i modulo 8
For
+J1J2J3J4JgJ6o r t o
-J1J2J3J4J5J6.Thus i n this case t h e r e a r e two non-isomorphic minimal
vector spaces;
The v e r i f i c a t i o n t h a t t h e s e groupsare c o r r e c t w i l l be l e f t t o the reader.
SP(1) i s a ?,-sphere, and that
(Note that
SO(3)
For
i s a p r o j e c t i v e 3-space.) with
The remainder of this s e c t i o n w i l l be concerned with the proof of
Consider a Euclidean v e c t o r space
*
For
k
Jl,
>
8
V
with anti-commuting complex
>
k
Periodically.
8
L
L'.
and
a minimal v e c t o r space must be isomorphic t o L
onto
L
L',
L'. The dimension i s equal t o 1 6 .
i t can be shown that the s i t u a t i o n r e p e a t s more o r l e s s
However, t h e cases
mk
Let
...,J k' i t can be shown that
i
8
=
mapping
For
It i s f i r s t necessary t o prove an a l g e b r a i c lemma.
Theorem 24.5.
structures
J7J8
c a l l these
k
k
5 8 w i l l s u f f i c e f o r our purposes.
denote t h e dimension of a m i n i m a l
...,J k ) - v e c t o r
(Jl,
space.
From t h e above d i s c u s s i o n we see t h a t : ak(l 6r)
I n f a c t any a d d i t i o n a l complex s t r u c t u r e s
i s diffeomorphic t o
ak-8(r).
Jg,Jlo,.. . ,Jk on R16r
give J8Jk on
...,
r i s e t o anti-commuting complex s t r u c t u r e s J8Jg, J 8 J l 0 , J 8 J l l , and hence t o an element of ak-8(r).However, f o r our purposes i t Xl; w i l l be s u f f i c i e n t t o s t o p w i t h k = 8.
For
k
>
8
mo
= 1,
m4
=
ml
mg
=
= 2,
m6
REMARK.
These numbers
=
mk
i t can be shown that
mk
m2 = m3 m7 =
=
=
8, m8
4, =
16.
16m~-~.
a r e c l o s e l y connected with t h e problem
of c o n s t r u c t i n g l i n e a r l y independent v e c t o r f i e l d s on spheres. example t h a t
J,,
...,Jk
Suppose f o r a r e anti-commuting complex s t r u c t u r e s on a vector
F IV. APPLICATIONS
144
space
of dimension
V
u
f o r each u n i t vector
d i c u l a r t o each other and vector f i e l d s on an
the
V
E
r can be any p o s i t i v e i n t e g e r .
Here
rmk.
to
Thus w e obtain
u.
linearly
k
For example we o b t a i n
(rmk-l)-sphere.
f i e l d s on a
(4r-l)-sphere;
f i e l d s on a
( 1 6 r - I ) - s p h e r e ; and s o on.
and Radon.
..., Jku
J l u , J2u,
vectors
k
7 v e c t o r f i e l d s on an
Then
eigenspaces of
A;
are perpen-
eigenvalues of
AIMh;
independent 3
(8r-l)-sphere;
...,
we see that
Commentarii Math. Helv. V o l . 1 5 ( 1 g 4 3 ) , pp. 358-366.) J .
.'
F . Adam has r e c e n t l y proved that t h e s e estimates a r e b e s t p o s s i b l e . k f 2 (mod 4 ) .
PROOF of Theorem 24.5 for minimal geodesics from
of n k ( n )
at
T
c o n s i s t s of a l l matrices
J
i s skew
2)
A
anti-commutes with commutes with
t
corresponds t o a geodesic
J,,
-
T
-
T.
can compute
E
T
Since n k ( n ) KA
e x i s t s by
j u s t as before.
from J
(nL4)
A.
to
A given
A
E
T
=
-+
24.8.
-J i f and only i f
mutes w i t h
O(n),
we
(-A2B + PABA
-
BA2)/4
-,J
S p l i t t h e v e c t o r space Rn
eigenvalue
so as
J,
,...,J k - l , J
and
A.
a l l equal, except f o r s i p . *
*
for a
e x p ( n t A)
.
Then t h e eigenvalues of For otherwise
Mh
BIMj
B
Mh
as follows.
T
Let
to M
j
. . . Q M,
of
must be
would s p l i t as a sum of
BIMj
We are d e a l i n g with t h e complex eigenvalues of a r e a l , skew-symmetric transformation. Hence these eigenvalues a r e pure imagiinars; and occur i n conjugate p a i r s .
Bw)
J
Mh
B
B
on
T.
Since
w
M
E
I.
J.
BIMh
com-
It follows e a s i l y that
J1,...,Jk-l
and anti-
i s an eigenvector of
+ 1
v
E
KA Mh
corresponding t o the then
( - A ~ B + ~ A B A- m 2 ) v 2
2
( a Bv + 2a Ba v + Bah)v j j h
Ti 1 (aj
+ ah)2 BV v
E
M
;
j*
The number of minimal spaces
Mh C Rn
i s given
&n must be 2 3 .
T h i s proves t h e following
k f 2 (mod 4) ) :
ASSERTION-
-> ( 3 + 1 1 2 / 4
B(Mh.
T.
E
For otherwise we would have a minimal geodesic. (always f o r
Such an isomorphism
Mj.
For a t least one of t h e s e t h e i n t e g e r
= n/mk+l.
where the bar i n -
It i s a l s o c l e a r that
(ah + a j ) 2 / 4 . For example i f
Now l e t u s count.
Mj;
to
for v c Mh,
and a similar computation a p p l i e s f o r
s
=
a l s o commutes with
=
by
...,k-1; +JIB .
and anti-commutes w i t h
=
on
-
be the negative a d j o i n t of
i s skew-symmetric.
Thus
J.
&j
(ah - a j -
2)
for
.
KA. 1
be
Then
.
(ah - aj)2B/4
we o b t a i n a n eigenvalue
l i n e a r transformation, and has a w e l l defined complex determinant which w i l l be denoted by
of t h e l i n e a r transforma-
an easy computation shows that
Jk-iv
The condition
J , , J , ,..., J k - l
Choose a base p o i n t composition
J,J2
=
B
minimal it follows from 24.8 t h a t t h e r e e x i s t s an isornet-y
c c
defining
for
-+
Can be constructed much as b e f o r e .
rT
iv
an eigenvector
be t h e f i x e d anti-commuting complex s t r u c -
i n t o an
Make Rn
-
we c o n s t r u c t a map
n&(n)
i ( a l +...+a r ) m k / 2 .
tion
i n g subspace n k + , ( n ) has only f i n i t e l y many.
f
h # j
Now f o r each
has i n f i n i t e l y many components, while the approximat-
To describe t h e fundamental group
i s equal t o
Therefore t h e t r a c e of A
has an i n f i n i t e c y c l i c fundamental
be ascribed t o the f a c t . t h a t n,(n) group.
The d i f f i c u l t y i n t h i s case may
IV. APPLICATIONS
148
149
Now l e t u s r e s t r i c t a t t e n t i o n t o some f i x e d component of T h a t i s l e t us l o o k only a t matrices c
such that
A
trace A
=
nClk(n).
icmk/2
where
i s some constant i n t e g e r . Thus t h e i n t e g e r s 1) 2)
3)
al,
= a2 I ... a1 +...+ a = Max Iahl 2 3 a1
h
ar c,
satisfy E 1
(mod 2 ) , ( s i n c e
=
The o b j e c t of this appendix w i l l be t o give a n a l t e r n a t i v e v e r s i o n
-I),
and
f o r t h e f i n a l s t e p i n t h e proof of Theorem 1 7 . 3 ( t h e fundamental theorem
ah i s equal t o
Let
- 3.
-9 the sum of t h e negative
ah and
exp(nA)
( f o r a non-minimal g e o d e s i c ) .
Suppose f o r example that some the positive
APPENDIX. THE HOMOTOPY TYPE OF A MONOTONE UNION
...ar
ah.
p
of Morse t h e o r y ) .
a
space
be t h e sum of
n(M;pJq),
=
a
Given t h e s u b s e t s
nal
C
R
C
na2
C
...
and given t h e information that each
of t h e p a t h
nai
has t h e
homotopy type of a c e r t a i n CW-complex, we wish t o prove that t h e union
Thus
R
a l s o has t h e homotopy type of a c e r t a i n CW-complex. P - 9
hence
2r
2p 2~
2
+ c.
=
c,
4X
1 %>
2 2p 2 r
+
q
>
r,
More g e n e r a l l y consider a t o p o l o g i c a l space
Now
(ah
X, C X1 C X2 C
-
aj
-
2)
+ c;
1
>
aj
hence
~
ah where
follows that t h e component of
r
=
>
n/mk
n %(n)
X (ah - ( - 3 )
- 3)
P
,
with
n.
=
( n ) , as
n
x,
It
-
m
=
xo
XIOJll
" xlx
[1,21
Xi?
x2 x [ 2 , 3 1
u
u
... .
X x R.
T h i s i s t o be topologized as a subset of
. DEFINITION.
Passing t o t h e d i r e c t l i m i t , w e o b t a i n a homotopy equivalence on each component.
To w h a t e x t e n t i s t h e homotopy type of
I t i s convenient t o consider t h e i n f i n i t e union
i s approximated up t o higher and
higher dimensions by t h e corresponding component of
of subspaces.
determined by t h e homotopy types of t h e
0
tends t o i n f l n i t y
...
and a sequence
X
the sequence
T h i s completes t h e proof of 24.5.
p(x,.r)
=
[Xi)
X
i s t h e homotopy d i r e c t l i m i t of
i f t h e p r o j e c t i o n map
p : X,
+
X,
defined by
i s a homotopy equivalence.
x,
EXAMPLE some Xi,
We w i l l say that
1.
and that
Suppose that each p o i n t of X
i s paracompact.
X
l i e s i n t h e i n t e r i o r of
Then using a p a r t i t i o n of u n i t y one
can c o n s t r u c t a map f :X+R tr
6*
SO that
pondence
f(x)
2
i+l
for
x q! XiJ
x + ( x , f ( x ) ) maps
and
X
20
for a l l
x.
Now t h e corres-
homeomorphically onto a subset of
X
i s c l e a r l y a deformation r e t r a c t . and
f(x)
Therefore
p
X,
which
i s a homotopy equivalence;
i s a homotopy d i r e c t l i m i t . EXAMPLE 2.
w i t h union
X.
Let
Since
X
be a CW-complex, and l e t t h e Xi be subcomplexes
P : Xz
-
X
induces isomorphisms of homotopy groups
i n a l l dimensions, i t f o l l o w s f r m W t e h e a d ' s theorem that X direct l i m i t .
i s a homotopy
150
1,
APPENDIX
151
HOMOTOPY CF A MONOTONE U N I O N
I
The u n i t i n t e r v a l
EXAMPL3 3.
[0,11
l i m i t of the sequence of closed subsets
is
LO1
not
the homotopy d i r e c t
a s follows (where it i s always t o be understood that
[l/i,ll.
n
0
and
5 t 5 1,
,...) .
= 0,1,2
The main r e s u l t of this appendix i s the following. THEOREM A . Suppose that X i s t h e homotopy d i r e c t l i m i t of (Xi] and Y i s t h e homotopy d i r e c t l i m i t of ( Y i ) . Let f : X + Y be a map which c a r r i e s each Xi i n t o Yi by a homotopy equivalence. Then f i t s e l f i s a homotopy equivalence.
f
Taking u
to Assuming Theorem A, t h e a l t e r n a t i v e proof of Theorem 17.3 can be given as follows.
of homotopy equivalences.
C K,
Since
n
C K2 C
K
U nai
=
Define
Suppose that
(obtained by r e s t r i c t i n g f ) f
and
=
Yi
fz
-
+
K
=
U Ki
a r e homotopy
homotopy inverse
g : X,
t
Y,
by
f,(x,t)
=
fi : Xi+
i s homotopic t o t h e i d e n t i t y .
(x,n+2t)
hl(x,n+t)
E
X,+l
x [n+ll
=
fn,
h:
=
identity.
o < t < $
for
35t 5
1
.
In fact a
$ can be defined by the formula o < t < +
(x,n+2t)
hLt"
=
hl(x,n+l)
Proof that the composition
Yi Of
X,.
.
hlg
=
(x,n+l)
.
i s homotopic t o the i d e n t i t y map
Note that
o < t < t
t < t < h
c P
h l ( x , n +3 ? - t) Define a homotopy
$ : %'Xn
for
i s a homotopy equivalence.
hl
=
However counter-
let
%:%-%
on t h e other hand has the following
=
hl(x,n++)
We must prove
examples can be given.
Define the hornotopy
which i s c l e a r l y homotopic
(x,n+4t)
f c must a c t u a l l y be homotopic t o the i d e n t i t y .
be a one-parameter family of mappings, w i t h
X,
+
This i s w e l l defined since
(f(x),t).
i s a homotopy equivalence.
and that each map
-
f
g(x,n+t)
Under these conditions i t would be n a t u r a l t o conjecture
For each n
X,
%
:
hl( x , n + t )
c i s a homotopy equivalence. FEWARK.
that
Xi
:
f,
It i s c l e a r l y s u f f i c i e n t t o prove t h a t
tht
hl : X,
We w i l l show that any such map
i s a l s o a homotopy equivalence.
PROOF of Theorem A.
CASE 1 .
The mapping
hO
proper t i e s :
...
d i r e c t l i m i t s (compare Examples 1 and 2 above), it follows t h a t t h e l i m i t
-
t h i s d e f i n e s a map
R e c a l l that we had constructed a commutative diagram
KO
mapping
f,.
= 0
Q : Xc
+
%
as follows.
.
h < t < 1
For
0
5u