Lecture Notes in Mathematics An informal series of special lectures, seminars and reports on mathematical topics Edited ...
47 downloads
638 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics An informal series of special lectures, seminars and reports on mathematical topics Edited by A. Dold, Heidelberg and B. Eckmann, ZUrich
8
[_!
Gaetano Fichera University of Rome
Linear elliptic differential systems and eigenvalue problems 1965
The Johns Hopkins University, Baltimore Md, March- May 1965
S p r i n g e r - V e r l a g . Berlin 9 H e i d e l b e r g 9 N e w York
All rights, especially that oftranalafion into foreign languages, reserved. It is also forbidden to reproduce this book, either whole or in part, by photomechanical rues.us (photostat, microfilm and/or microcard)or by other procedure without written permission from Springer Verlag. @ by Springer-Verlag Berlin 9 Heidelberg 1965. Library of Congress Catalog Card Number 65--27796. Printed in Germany. Title No. 7328
These N ot e s c o n t a i n t h e l e c t u r e s of delivering
as V i s i t i n g
P r o f e s s o r at the Department of ~echanics
of The J o h n s Hopkins U n i v e r s i t y Clifford
I had t h e p l e a s u r e
on t h e i n v i t a t i o n
of P r o f e s s o r
Truesdell.
They a r e i n t e n d e d t o be an i n t r o d u c t i o n approach to higher order elliptic
t o t h e modern
b o u n d a r y v a l u e p r o b l e m s and r e l a t e d
eigenvalue problems.
I am d e e p l y g r a t e f u l kind collaboration
t o D r. Warren E d e l s t e i n
for his
i n c h e c k i n g b o t h t h e E n g l i s h and t h e M a t h e m a t i c s
of t h e s e N o t e s .
G. F i c h e r a
B a l t i m o r e s Md. - L i a y 1965.
CONTENTS
Lecture
1.
"Well posed"
Lectnre
29
Existenc e principle
boundar 7 value
problems
.......................
1
~.....................................
~9
11
O
Lecture
3~
The f u n c t i o n
Lecture
4~
The trace
Lecture
6.
Elliptic
Lecture
6.
Existence
Lecture
7o
Semiveak solutions
Lecture
8.
Regularity
at
the
boundary:
Lecture
9.
Regularity
at
the
b oundar]v: tangential
Lecture
10.
Re~ularit~
at
the
boundary:
Lecture
11.
The c l a s s i c a l
12.
linear
Lecture
18~
14~
StronKly
Interior f oi r
elliptic
plates
operators.
problems....... Problems.
Lecture
16~
T h e Wei na.t.ei n-Aron8, s a . j n , m e t h o d
Lecture
IT.
Construction
Lecture
18.
0rtho~onal
Lecture
19.
Upper approxinmtion
elliptic
system
results
...
44
..............
deriv.atives
The R a y l e i K h - R i t z
......
62
.......... 9.......
61
. ....
69
Physics: 80
P.hysics: 9.........
88
Ph]rsics:
method
~ 0. o . o . 9 . . . . .
intermediate of pomitiTe
operators
~
96
of the
O O O O O . . . . . o e e o o e e e .
~
112
0...0 ............
120
o ~~~9 9~~~. . . . . . . . .
130
9 9 9 9 9 9 9 9 9 9 139
of a I~0.
invariants. Green's
. 101
9............
compeer operator8
of .the ei~envalues
of ortho~onal
construction
...........
39
...................................
EiKenvalue
Explicit
...........
G~rdin K inequality.
16.
20.
systems
30
o.ooo.~ .........................
Lecture
Lecture
systems
BVP o f M a t h e m a t i c a l
Ei~envalue
Representation
24
~...............
preliminar 7 le.m~s
final
17
9.............
~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 .6. . . . . . . . . . . . .
elliptic
i nvariants
elliptic
BVP o f M a t h e ~ t i c a l
i
of the
regularity
...
.......................................
elliptic
elliptic
lethal.
BVP o f M a t h e m a t i c a l
PDE
of thin
...o .....................
and Ehrling
o f BVP f o r
elliptic
The c l a s s i c a l
Hm
solutions
Elastostatics 9
Equilibrium Lecture
systems~
linear
and
Sobolev
of local
The classical Linear
Hm
operator.
2nd order Lecture
spaces
Btrix
.........
~. . . .
99~....
162
~or an
e . o . . e . o . . o o o . . e
e m o . o . m . o .
164
-1-
L e c t u r e
"Well
posed"
The c l a s s i c a l equations
properly
those
expressed
of it.
theory
solutions
conditions. equations
of partial
with
reason~
these
number
a PDE c o n s i s t s
a particular
one ~ich
These conditions
of findsatisfies
are generally
which the unknown functions
b o u n d a r y o f t h e d o m a i n ~ w h e r e t h e PDE i s
For this
differential
a d m i t %o a n i n f i n i t e
problem connected
as complementary on t h e
p r o b l e . ~ s' .
such equations
possible
given auxiliary
value
of view in the
The t y p i c a l
ing amongst all
satisfy
boundary
(PDE) a s s u m e s t h a t
of solutions.
part
point
1
conditions
must
considered,
o r on
a r e known as " b o u n d a r y
c o n d i %i o n s " 9 In spite with
of the fact
applications
m u s t be p o i n t e d
that
o f PDE i n v a r i o u s out that
the
with very
smooth coefficients,
be false,
since
respect
let
a few years
the
where
equation
us consider
point
of view is
branches
assump%ion that possesses might fail
a very
the one that
of applied
mathematics,
a PDE, e v e n a l i n e a r
infinitely
~ the
~ ~ ~ ~'
in the real
cartesian
the Wirtinger
may
In this
e x a m p l e g i v e n b y Hans Lewy [ 4 ]
3-space
with coordinates
PDE
. By u s i n g
i%
one
many s o l u t i o n s
to have any solution.
interesting
agrees
ago.
Let us consider~ X ,'/',t
this
differential
operator
-2-
L.~
~-~ ) , we can write @y
I(X y,~ )
We a s s u m e t h a t
s u p p o s e t o be r e a l as a d e r i v a t i v e
is
valued.
of a real
a function We w r i t e ,
function
in a more compact form
d e p e n d i n g o n l y on
for convenience, ~(t)
t
, w h i c h we
such a function
. The a b o v e e q u a t i o n
can then
be ~ r i t t e n
(1.1)
We s h a l l
prove that
differentiable real
analytic
)~
0"~
"~.
a necessary
solution
=
~
condition
for
~
function
of
seen
real
is
that
~
be a
~ 9 :t
be a p o s i t i v e
t o have. a c o n t i n u o u s l ~
in a neighborhood of the origin
'"
Let
(1.1)
number and s e t
~
{,e
=
e.
. It
is
easily
that -
z
+
rD~
Z
~
oe
Since
0
0
Te o b t a i n
)
(1.2)
~
0
dS. 0
.s From
(1.1) and (1.2),
~
by assuming
~9 and i n t e g r a t i n g
t)ao
~t o
d~
dt
ve get
-3-
Now set ~ ~ ~ti" ~,t
and
Z~
l
s
,:,,~
f
~,g
o Equation
(1.3)
gives
This means that of
~
for
the
O~ ~
function
~ ~
and -~
The f u n c t i o n
~/(~)
is
From this
follows
that
it
and vanishes
for
across
the
on t h e
t-axis
If
real
the
equation the
for
real
with
an holomorphic ~
0~- ~ ~ &
part
of ~r
~/
is
conveniently and vanishes continuous
c a n be c o n t i n u e d
(~>~)-plane.
function
Hence ~
chosen. for
for
~ :0. 0 _~ ~ ~
analitically
- as the trace
o f ~r
function
~
is
a s s m o o t h as we w a n t ,
h a s no s o l u t i o n
in any arbitrarily
but not analytic, fixed
neighborhood
of
origin.
order
which possesses
closed
and l e t
square
another
example of a linear
only one solution
of the
b4(x,y ] and b ~ ( x , y )
b4 (.-4, Y)
(z,y)
first
in a given domain. Let
be two r e a l
,
->0 _>o
C_
PDE o f t h e
~
be
(zj~)-plane,
a s s m o o t h a s we w i s h a n d s a t i s ~ y S n g
Let
~
is
analytic.
L e t u s now c o n s i d e r
the
(
9 Therefore
of the
- is
(1.1)
the
+ b~Tr~
~ t
continuous
~ : 0
~-axis
= ~
~/
be a n a r b i t r a r i l y
the
functions
following
b.~(4,,y)
on
conditions
~ O.
,
smooth real
defined
o.
function
defined
on
Q
and
-4-
negative
at every point
differentiable
of
solution
~
solution
~
solution of (1.4)
i n an i n t e r i o r
point
over of
Let us assume that instance
~ - 0 Q
(X~ - 4 )
~(~oj-~)~y(Xo)-~)~O. Xo:-~
Since it
~
is
cannot
be n e g a t i v e .
if
be p o s i t i v e .
0
) ~O
and
1928. ~ore sophisticated
o r d e r whose o n l y s o l u t i o n these
simple
is
and t h e r e f o r e
~ ~ O
can also
e x a m p l e s show t h a t ,
besides
what a "well posed boundary value
space
~
consider
when we s a y t h a t values space.
of
vector-valued
of By
~
are ~-:
ua
shas b e e n known
like
the above considered
of higher
(see [2],[3]). point
of view,
o n e s , when
problem" is
for
a
PDE.
be a d o m a i n ( i . e .
X ~ . The p o i n t
.~(xQ)-r
t h e maximum o f
the classical
aiming to describe
Let
b4 ( X o ) - 4 ~ x ( ~ o - 4 ) ~O,
be c o n s t r u c t e d
also
system of linear
connected
X ~ will
functions
~ (x)
is
n~-vectors (~4 ,'",
~
an
open set)
be d e n o t e d by uu(x )
defined
Oh-vector
of the ) ) ~
~O;
t~ _: 0 .
one h a s t o i n c l u d e
general
(xo)-4)
examples of homogeneous equations
situations
for
~
follows
T h i s e x a m p l e ~ w h i c h was g i v e n by ~lauro P i c o n e [ 5 ] since
t a k e n on
and t h e r e f o r e
. In any case
of (1.4) Then
is 9
for-t~•
X~:~
of the real
on t h e b o u n d a r y ,
C(X~)-4)t~(xo;~)~_O,it
a solution
~
If f~
f~:
minimum ~ t
b~x(~o -4) = 0
(Xo - ~ ) ~ 0
-b~
t h e minimum
. Then ~ ( X o - I
m u s t be t h e c a s e t h a t
The f u n c t i o n over
~
and
on i t s
PDE
u, ~ o
, then~ obviously~
takes
in the point
In fact,
cannot
Q
~
.
the only continuous
of the linear
+ b~ (.x~y.) Q---~ + c. ( x , y ) ,gy
the trivial
if
9 ~Te ~ a n t t o p r o v e t h a t
in the square
(l.4)
is
~
of the real
g ~ (x4 ,-.-, x~).~%e s h a l l on ~
function,
oh-dimensional = ~-~;
cartesian
9 ~ore precisely, we mean t h a t
the
complex cartesian
we d e n o t e t h e d i f f e r e n t i a t i o n
-5-
p~q ,,~...
~ e c t o r ~ The l e t t e r s integral
components e . g . ,
~ ~ (~
O t h e r w i s e f o r any v e c t o r len~ht
1~1 ~:
If
~
p,~
Dr:
,
i s any p o i n t - s e t
C ~ (~the
clems o f a l l
derivative
of ~
and c o i n c i d e j ~
sub-class By'
up t o t h e o r d e r
of
~
(A)
§ K
~
exists
We w r i t e
Cartesian
[ ~:. ~...~)].
ve shall
functions ~.
denote
9 0
.
that
any
p o i n t of
apt ~
C ~ ~A) ~
b7
b~ p o s s e s s i n g
T h i s means
, we d e n o t e by
of f u n c t i o n s
denote the class
~.
(support of ~ )
will
such that
denote the spt ~ c A.
o f f u n ~ t i o n 8 d e f i n e d i n t h e w h o le s p a c e ~ ~ up t o t h e o r d e r
denote the sub-class The symbols
of
c-
~
, i e.
C ~ consisting (A)
C~176
,
C ~ :
of f u n c t i o n s ,
C
,
6~
explanatory. be an k~
~•
- m a t r i x d e f i n e d on
the matrix differential
L~
--- d~
D ~
We u s e h e r e t h e s u m n a t i o n c o n v e n t i o n , i . e .
) , We
A
operator
. when a v e c t o r - i n d e x
r e p e a t e d t w i c e , a summation must be u n d e r s t o o d T h i c h i s T h o l e d o m ~ n of v a r i a b i l i t y Let
its
o).
points,
in
Pc
~.
represent
a t ~ver 7 i n t e r i o r
A
J~(x)j
consisting
w i t h a bounded s u p p o r t .
d e n o t e by
will
Jpl--
p: -
P,,
X ~ with interior
o f t h e s e t w he r e
: C ~ (~),&Zwill
~(•
J~l
~L~ : ~, ~ . ~ . .
and p o s s e s s i n g c o n t i n u o u s d e r i v a t i v e s
Let
and Te s e t
the (vector-valued-)
of o r d e r
with non-negative
with a f u n c t i o n which i s c o n t i n u o u s i n t h e whole s e t
C, K ve s h a l l
are self
~-~ectors
.... ) p ~ ) ,
i s a ny f u n c t i o n d e f i n e d on
the closure
denote
~..,~),
Dh
of
continuous derivatives
If
~ -: ( ~
I~I-;, I ~" and
~
n,
_-
will
~ ~ k t be a d i s c r e t e
of
is
extended to the
~ 9
s e t o f complex v e c t o r
mean t h e s e t t o be empty, f i n i t e ,
~
or countableo
s p a c e s . By d i s c r e t e Let
Mk
ve
be a l i n e a r
-6-
C ~(A)and with
t r a n s f o r n ~ t i o n defined on
range i n the
vector space S ~ .
~e s h a l l c o n s i d e r t h e f o l l o w i n g problem
(1.~)
L ~, :
0.6)
,
The symbol~ denotes a giTen ~ - v e c t o r a given Tector of the space
H
=
~,
v a l u e d f u n c t i o n d e f i n e d on ~ , ~
5}1.
I n s p i t e of t h e i r e x t r e m e l y a b s t r a c t d e f i n i t i o n ve s h a l l r e f e r to c o n d i t i o n s (1.6) (when
I n the case t h a t a solution
Ix,
~ S~]is
not empty) as bo,un,dar ~ con.,d,.iti,ons,.
~ S~ ] i s empty, t h e problem consists merely i n f i n d i n g of the e q u a t i o n ( 1 . 5 ) .
Let us furthermore suppose t h a t (i.e.
~
i s a bounded r e g u l a r domain of X ~
t h e Green-Gauss i d e n t i t y holds f o r i t )
belongs to
cl~l(A)
the adjoint matrix, i.e. matrix-differential
o~ _~ ((o~ ~K ))
. If
the
,u- :
(~:,(...~]K:1..'~)we denote
by ~
re.x-rim, m a t r i x ( ( ~
a~l
(,-~)
K ~ ) ) . The f o l l o w i n g
D ~,~.
and ~Y both belong to
~
C~ ( x )
o p e r a t o r w i l l be c a l l e d the a.djoint o p e r a t o r of L Li~ -
Suppose t h a t
and t h a t t h e m a t r i x
C ~ ( A ) then t h e f o l l o w i n g
G r e e n ' s formula h o l d s :
A where
~ (~jlr)is a bilinear
~A (4)differential
o p e r a t o r of order '~ -4
(4)Since ~j~r)is d e f i n e d f o r complex v e c t o r Talued f u n c t i o n s t h e term " b i l i n e a r " means t h a t H(%~)is l J n e a e w i t h r e s p e c t to It, , i . e . H (~t~ + bu'~ ~) -:~(%~)+~H( i ) end a n t i l i n e a r with r e s p e c t to ~ , i . e . H(~)~.~ b~') = --o-H (u.,~)~-b H (I~.,~')[Z,~ a r e the complex c o n j u g a t e s of ~ and b ~ .
-7-
in
~
and i n
matrices fJA of
~
, whose c o e f f i c i e n t s
CL and o f t h e f i r s t
a r e e x p r e s s e d i n terms of t h e
order differential
e l e m e n t s of t h e boundary
. I t i s somewhat t e d i o u s t o w r i t e down e x p l i c i t l y ~ ( ~ W)o lloTever, t h i s ~'e s h a l l
the full
expression
i s n o t n e e d e d f o r our p u r p o s e s 9
c o n s i d e r , i n s t e a d of the general problem (1.5) , ( 1 . 6 )
the
f o l l o w i n g one w i t h "homogeneous b o u n d a r y c o n d i t i o n s "
(1.5)
L~ : ~ ~
When a f u n c t i o n
(1.6.)
,
admissible solutions)
MI~ ~ ~
o.
( b e l o n g i n g t o t h e s p a c e of what we s h a l l d e f i n e as exists
such t h a t
M~. ~ ~ ~ ~
, t h e n , and o n l y t h e n ,
p r o b l e m ( 1 . 5 ) , (I .6) i s e q u i v a l e n t t o p r o b l e m ( 1 . 5 ) , ( 1 . 6 o ) . L e t us d e n o t e by V
the linear variety
valued functions belonging to
C ~ (AI
" H (~,,~,-)d~= "aA f o r any
~
satisfying
If a solution then
~
~
conditions
the integral
of a l l
~-vector
such t h a t 0
(1.6~
of problem ( 1 . 5 ) ,
must s a t i s f y
consisting
belonging to C ~ ( A
(1.6o) exists belonging to
),
C ~'(/~)
equation
(1.7)
for
eve17
9 This i s t h e s t a r t i n g
~s
p o i n t o f t h e c o n c e p t of weak
solution for the boundary problem ( 1 . 5 ) , ( 1 . % ) 9 substituting
the integral
the equations
(1.5),(1.6o).
equations (1.7),
I t consists merely in
written
f o r any
~y~r
In order to make t h e e q u a t i a n s
(1.7)
, for
consistent
Te assume t h e f o l l o ~ r i n g h y p o t h e s i s 9 1~ the
zero-vector
The l i n e a r v a r i e t y 9
"Vr
c o n . r a i n s some v e c t o r i d i f f e r e . n t f r o m
-8-
It is co~enient
to e n l a r g e our problem i n order to i n c l u d e t h e p o s s i b i l i t y
t h a t t h e given f u n c t i o n
~
and t h e unknown f u n c t i o n ~ be g e n e r a l i s e d
f u n c t i o n s . We do t h i s i n a q u i t e a b s t r a c t Tay.
Let
5~
be a complex •anaoh sp~ce ( B - s p a c e ) .
~e ~s~ume that
c o n t a i n s a l i n e a r s u b v a r i e t y t h a t i s l i n e a r - i s o m o r p h i c to w i l l be the
S~
space of t h e a d m i s s i b l e unImolms. Let
We assume t h a t
S{
C ~
S~
(,~), S~
be a second ~ - s ~ a c e .
c o n t a i n s a l i n e a r s u b v a r i e t y l i n e a r - i s o m o r p h i c to
C~
In a d d i t i o n to the h y p o t h e s i s 1 ~ we make the f o l l o l r i n g ones: 2~
There e x i s t too complex ~ - s p a c e s
~
and
I'~.
such t h a t
c o n s i s t s of measurable (complex l ~ - v e c t o r v a l u e d ) f u n c t i o n s and
{~
measurable (~omplex ~ - v e c t o r valued) functions. ~oreover S ~ : ~
S~r~ b~'~* ( ,~*~ and
I~,
of
and
_are . . the. topolol~i-cal . . . dual spaces of I ~ and [ ~
i~;.
respectiTely) 9 3") ~ varies in V
contains
an_~d I ~
c ont_ains the range o_f L ~
S~
~-space
[~
] c o n t a i n s a. l i n e a r s u b v a r i e t ~ Banach-iso,morphic
of m e a s u r a b l e f u n c t i o n s ~ t h e n ! i f
~
[ ~ ] denotes any
f u n c t i o n of t h i s su ,bvari,et~ an.d "~ i s any f u n c t i o n .o_f the scalar function
( (
)
The____nn
9
4") I f to. a
V
~~
[ ~ ~/3
denotes the dua,lit~ b e t . e e n
i~
i s Lebesgue i n t e g r a b l e on
,a
~-space
L I~ ~ ~
and
and i t s topologica,l dual
space) 9
We s h a l l c o n s i d e r t h e f o l l o T i n g problem: A vector
~
of the ~ - s p ~ e
$~ |
vector
of t h e
(1 ~ fo.r any
%~ s V .
~-space
St ~ such t h a t
i s g i v e n . We . ~ t
to find a
),
-9-
Because of h y p o t h e s i s 4 ~
(1.8)
s e n s e , t h e n the s y s t e m The v e c t o r
~
when
w i l l be c a l l e d
(1.5) ,(1.%) , with space
.~
and ~ a r e f u n c t i o n s i n t h e c l a s s i c a l
i
r e d u c e s to t h e system ( 1 . 7 ) . a weak s o l u t i o n
S~
o f t h e boundary v a l u e p r o b l e m
as t h e s p a c e o f " d a t a " and s ~ e
6
as t h e
space of a d m i s s i b l e s o l u t i o n s . Assume t h a t in the variety all
theveexists
"~ 9 L e t
some n o n t r i v i a l
~r~
the linear
solution
of t h e e q u a t i o n ~ ' ~
s u b v a r i e t y o f ~/
consisting
of
t h e s e s o l u t i o n s ~ t h e n a n e c e s s a r y c o n d i t i o n f o r t h e e x i s t e n c e of a
solution
of o u r p r o b l e m i s t h a t
(..~, 'b~~
(1.9)
We s h a l l s a y
:
for
0
~jo
Vo
t h a t t h e b o u n d a r y v a l u e p r o b l e m (B.V.]7.) ( 1 . 5 ) , ( 1 . 6 o )
.well p o s e d b o u n d a r y v a l u e p r o b l e m i n t h e s p a c _ e s -~ ~.. 5 ~ vector
satisfying ~ e ~
the compatibility
satisfying
5~ '
condition
~a
is a
, ~dlen f o r any
( 1 . 9 ) t h e r e e x i s t s some
equations (1.8).
We want now t o g i v e a n e c e s s a r y and s u f f i c i e n t
c o n d i t i o n f o r a B.V.~. Q
t o be w e l l p o s e d .
~ r o be t h e c l o s u r e o f t h e v a r i e t y
space
~
If
i s any f u n c t i o n i n
~/
.
Let
Let us denote by ~
c l a s s - as an e l e m e n t o f ~
~
the factor
, we s h a l l -
-~r
~-space
in the
~
d e n o t e by [~v~ t h e
d e t e r m i n e d by ~ v .
/
~-
V~
equivalence
Set
II L~(~ iiB~ ~,V-~
I n t h e n e x t l e c t u r e we s h a l l 1.I. (1.6.)
Ji E~ l ji
~
prove the following theorem:
A n e c e s s a r y and s u f f i c i e n t
t o be w e l l posed i n t h e s p a c e s
c_o_n_dition f o r t h e B . V . P . S~ ,
S
is that
~
(1.5),
be g r e a t e r
than zero. w i l l be c a l l e d t h e d i s c r i m i n a t o r spaces
S t ,
5~.
of t h e B.V.I:'. ( 1 . 5 ) , ( 1 . 6 o )
in the
-10-
Bibliography,
F_x]
G. FICItERA - L e z i o n i
sulle
Trieste,
[2J
[3]
o f L e.et,ur,e 1
trasformazioni
le
Ediz.
- Roma,1958.
Veschi
G. F I C H ~ A - S u l c o n c e r t o differenziale
equaz.ioni
Ediz.
di problema -
without
proble.mi
"ben posto"
Rendiconti
solution
dei
differenziali
Veschi
-
par~ia.1
- Annals
al
- Corsi
per
di Matematica
- An e x a m p l . e .o,f a s m o o t h l i n e a r equation
M. PICONE
~enerale
c o.ntorno per
66 -
-
1954.
Go FICHI~IA - P r e m e s s , e a d u n a , t e o r i a
I t . LI~#Y
lineari
una -
INAM
e~uazione
19 -
1960.
d i f f , e,r e n t i a l
of Mathematics
-
195"/.
-Ma~iorazi.one
degli
mente paraboliche ordine
-
inte~rali alle
derivate
Ani~ali di M a t e m a t i c a
dell.e .e~uazioni parzialt
del
pura eapplicata
totalsecondo - 1929.
-11-
Lecture
Existence
Let Let
~f
Lhi~
9
~'e d e n o t e by ~
~Ye s h a l l A
principle.
be a complex v e c t o r s p a c e and ~
~1 h ( ~ : 4,~ ) be a l i n e a r
space
2
vector
and ~
two complex ~ - s p a c e s .
t r a n s f o r m a t i o n ~ i t h domain ~r and r a n g e i n t h e the topological
dual space of
~h "
c o n s i d e r t h e f o l l o w i n g problem: ~
of
the
,space ~: is
given;
find a
vector
~/
_of ' ~ :
such t h a t
(2.1) ~'e s h a l l 2.I.
prove the following theorem:
it n e c e s s a r y , and s u f f i c i e n t
. . s o l u t i o n . of problem
. (~.i) , f o r any r
c o n d i t i o n f o r t h e , e x i s t e n c e of a ~
~ ' ~ ~ ~ i s t h a t .a p o. s i t i. v e . c o n s t a n t
e x i s t such t h a t t h e f o l l o w i n g i n e q u a l i t y
S~.fficiency. Let ~Z be any vector in end s e t ~V:
the
h o l d f o r any %~e ~r
range M ( V ) o f M . L e t % - M ~
~/~ = M4~r. 'I~e v e c t o r ~X/4 i s u n i q u e l y d e t e r m i n e d by ~,'~ , s i n c e Iv~'~ ' ' ~'z
implies,
because of ( 2 , 2 ) ,
that
~ M 4-v - M4%v' II -~
V~ il ~ z ~y- M ]Y'l] = O. L e t us d e f i n e on M2. ( V ) t h e f u n c t i o n a l
-12-
Obviously
depends linearly on ~ z 9 On the other hand, l ~ (.~)i ~ i i ~ j t l l M ~ l l
~
il~llllM~rii tional
of ~
-" V~ t t ~ l l [ I ~ II 9
i n such a way t h a t functional
(2.3)
still
in the whole space
M t (V)
and
spaces
holds for the continued functional.
w i l l be a s o l u t i o n
N . e c e s s i t y . We can r e s t r i c t
~4
Mz~V)
and ~ .
there exists
ourselves to c o n s i d e r a t i o n
of
~,
~
and ~
T h i s a l l o w s us t o s a y t h a t
the solution
~--~
such t h a t
is a solution
[M~(V)]
M~ ~ V ) functional I~enceforth the range
, l e t us consider the f ~ o t i o n a l is linear ~i~ w M~(V)
and It ~rv'~r Ii z il ~
M~(V)
and i t
~ 9 T
~ and T ~ - - ~
" V~ ilc~li 9
i s bounded s i n c e
il ~- V, ~ i ~
II .
, the linear
, i.e.
of a n y
con~t~t).
~et us define on ~
is linear.
I t i s bounded s i n c e
has
such t h a t
L e t us is a
a closed Then we
"I.~ : ' l ' . ~ . .
By t h e
A constant ~,
t~
in the range
This
I ~ Q r ~ z ( ~ ) l - ' t ~ v c z ~ l ~ t~ II~[IJl~z[~,
L e t us now c o n s i d e r f o r a n y
functional
~
9 I
(~)- - 0
~ Qx away f r o m z e r o i n t h e w h o l e J
into
is
), such that
semiball
and t h e j a c o b i a n
,
o
if
c H ~ ( T - ~ T 1,
properly
~
homeomorphism t h e s e t
~1
of those
~ ~(T)
, then
It is not difficult
derivatives,
are satisfied:
contaihing
onto
consisting
A i s s a i d t o be a
d,)
In this
,~h
(T-~T), M o r e o v e r
) c i~
~ ~ (T)
A domain hypotheses
continuous
we shall
The s e t s
So /
in
I4
A.
Let
) "~ ~
I
i ~ (x) r ~ be a p a r t i t i o n of ~:4 h C ~ functions such that ~t ~hLx) (h=~...;~)
~
-22-
i s c o n t a i n e d i n one of t h e s e t s of t h e above c o n s i d e r e d c o v e r i n g . L e t ~ ~ ~ ) ~'e have
~ : 2_- ~. ~
and ,~ •
Let .$~o~ ~9h C i $(~)o Then i f ~f i s a bounded s e t i n of functions
~b ~
( ~ ~ (/)
. e have p r o v e d t h a t , we can e ~ r a c t
for
i s bounded i n
~/~
a subsequence
Ht ( ~ ) , the se~ ~/h
ki 4 ( I ~ ( h ) n
~ )o
bounded, from any sequence i~w
t such t h a t t ~
~v.
Suppose
~ ~
t
I r
~-
is convergent
~o (~ ~{h)r~ /~ ). Then we can o b v i o u s l y suppose~ t h a t ~d~h b~.~ i i s 7. ~ h b~~ v i i i be c o n v e r g e n t c o n v e r g e n t f o r any ~ Hence t ~ ~ ~.~ in
:
9
in
~i~ ( / ~ ) .
to general
,~
This p r o v e s t h e t h e o r e m f o r alad ~ ( ~ w ~ )
Compactness of f o l l o w s from 3 . I I I
is trivial.
~fh
in the space
since in this case
greater than zero 9 Set, for simplicity, set
~ (~)
~ k x (y)]
~l~
~f~ C ~(h)
when ~1~ ~ ~ o ) ~ L e t : ~ " For any
~e have a l m o s t everywhere on
Fa~
It
~*~ = d ~ ~ : O. The e x t e n s i o n
~
"
~ax h
follows that:
x +
l
ly J
L h
1i4 II
/~0. Then f o r any positive integer
~
Set
~e haTe~
~
: . . . .
II~ll
(4.0)
, t h e r e must e x i s t some
> ~ 9 .~ I I ~ l I B ~
)
I t f o l l o T s from ( 4 . 7 ) t h a t I I ~ l] L~I
a subsequence
~
c o n t i n u i t y of
~s
But t h i s c o n t r a d i c t s 4.III. For an_y
o~
~~
~s
[I ~
II~. > ~
[I L%~ ~
to some ~
t converges to ~r i n
: ~
~3
0
On t h e
, we can e x t r a c t 9 Because of t h e Then
~ = O,
~hat follows from ( 4 . 6 ) . d o m a i n
t h.ere e x i s t s a p o s i t i v e
,~,d ~
iI ~
~
~ i s compact i n
( F i r s t Ehrling le~na). Let
~ >0
~ , A
~ r
il~ll.~
i s u n i f o r m l y bounded w i t h r e s p e c t
I converging in ,
such t h a t :
(4.7)
to ,'~ . Then, from ( 4 . 6 ) , i t follows t h a t o t h e r hand, s i n c e t h e sequence
~
) such t h a t for ~
~
be any ..bgunded
constant
~ ~
j~
c (~)
of ~
(depending only
CA)the
follo~ng
i nequal.i.ty h o l d s :
(4.s)
11 ~ II
L
~
II ~ l l
~.
~he lemma f o l l o T s as a p a r t i c u l a r
c(.~) il~IIo 9 c a s e of ( 4 . 5 ) , by u s i n g t h e o r .
3.111.
4.IV. domain of
(Second l~lrling l e n ~ a ) . Le~t A ~g,
For any
(depending o n l y on the inequality
E>C
~ ~ /1 and
be an~ p r o p e r l y r e g u l a r
there exists a positive constant
) such t h a t f o r ~ y
c (s
~ ~ H~(A)
(4.8) holds.
The lemma follows as a p a r t i c u l a r
c a s e of ( 4 . 5 ) , b y u s i n g t h e o r . 3 . I V .
-29-
Bibliography
[lj
G. HtRLING - On a t y p e o f di f f e r e n t i a l
of
ei~envalue operators
6 . FICIH~%A- S u l l ' e s i s t e n z a problemi
e sul
al contor~o)
c orpo elastico vol.IV)
Lecture
4
problem for certain - ~ath.
calcolo relativi
elliptic
Scandinavica ,vol .2,1954.
delle
soluzioni
all'equilibrio
dei d i un
- Annali Scuola Norm.Sup.Pisa,s.III
1950.
C 3 ]
ft. F I C H ~ A - s e e L 2 ] o f l e c t u r e
[4]
L . NIR~B~I~G - Remarks on S t r o n g l y Equations
1.
Elliptic
Partial
Differential
- C o m m . on p u r e and a p p l 9 m a t h . v o l . 8 ,
NeT Y o r k , 1 9 5 5 .
S . L . SOBOLLV - On a t h e o r e m o f f u n c t i o n a l
N.S. 4) 1938.
analysis
- Mat.Sbornik
-
-30-
L e c t u r e
Elliptic.
Let
,,syste.ms.
Interior
A be a domain of X m9 Suppose t h a t t h e
~(•
~ i ~ [ _~ ~
differential elliptic
1.inear.
5
) are defined in
~
.
, regularity.
~X.~
complex m a t r i c e s
Consider the linear matrix
operator
J . ~ -: ~ ( X ) ~ , This o p e r a t o r i s s a i d t o be an 4 i n /~ i f ~ f o r any r e a l non z e r o ~ - v e c t o r ~ ~the
operator
following condition is satisfied:
i'~i- v
xeA
at every point
Examples: i )
If
~=
A
. . . .
Q• elliptic
i f and o n l y i f
the operator
L
~ ~ (• 4
of the interval
L
A
and
~ = A
,
-I- ~ ( •
have t h e l i n e a r In this case
~ _~ .~. I n t h e c a s e ~-~- ~ 0%(•
dx
of t h e r e a l a x i s .
O,,.(X)@X,- +G,z(x/"#X.z+(:t~
For i n s t a n c e ,
, we
I.
may be
~= A , e l l i p t i c i t y
means ~4(X) ~ 0 In the case
is elliptic
operator
a t any p o i n t
~ : ~,
onlyThen
for
~
t h e Cauchy-Rieme~n ( o r W i r t i n g e r ) o p e r a t o r
the operator
O,,(X)~(X'#~'O, x +~ y
~x-~/~
is elliptic 9
( t ) A more g e n e r a l d e f i n i t i o n of e l l i p t i c D o u g l i s & N i r e n b e r g (see ~'4 ] , [ 1 0 ] ) 9
o p e r a t o r has been g i v e n by
)
-31-
ii) :
~= ~
If
.,
,
~:Z
, t h e l i n e a r o p e r a t o r i s as f o l l o w s :
~ b.
.+ c
~ ~
in the space
-~
)
when a t l e a s t t
one of t h e
>~,
~(~)will
be d e n o t e d
H ~ Let
~ (X)
following function
he a f u n c t i o n of ~Y~(~) defined in
C ~m ( ~ ) , We c o n s i d e r t h e X ~ by:
~- ,~ ( ~ t )
I L
The s c a l a r s
)~' J
: L
~ . ~r(y - i Z )
are the solutions
for
t ~_ o
for
t~o.
of t h e f o l l o w i n g a l b e g r a i c
system:
-53-
(8.,)
2:
j:~
It is easily that its
J
seen t h a t t h e f u n c t i o n
(8.3)
II ~ *
V ~Y~ ~)
il
it
(~ :
i s e a s y to v e r i f y
z_
LQ
c I l v II
~,
FI ~ ( ~ )
e
( 8 . 2 ) , belongs to H~(~)
and c o n v e r g e s i n
(~)
and
that:
L : o,...~
~.
~
~ d e f i n e d by means of
. In fact if
t o bL , t h e n
C
[ X~ [ ~ )~.
~R
~ the function
1~
,
belongs to
C i s a c o n s t a n t which does not depend on If
(8.1),
,--,
support is contained in the square
By v e r y s i m p l e c o m p u t a t i o n s
where
=4
tLr
{ V~ } 6 C ,v~
} converges
in the space
0
~-~ (Q)
towards
(s.4)
t~ ~ o
I1~ ~ II
We d e n o t e by Dy
--
_~ c l l ~ l l
~Q
t h e symbolic
~,g
y-differentiation
t&
( A
(A)
has t h e
being a bounded domain of
~-strong
derivative
. h e n e v e r a sequence of C~^'('A ) - f u n c t i o n s
converges i n
~2(A)
t o some f u n c t i o n vative
(8.5)
vector
,"',
Let t~e ~ say that
Dy
Moreover ~e h a v e :
DP~
towards
~f F
DPt~
(l~l
{~YK ~ e x i s t s
which Te d e f i n e t o be t h e
i
A
d~ = (-4)
iptl
~
~-strong
dx
: ~
)
such t h a t
t converges i n
|A, and { ~ P ~
of ~ 9 Hence:
~ ~
X ~ ) . We
~R(A) deri-
-54o
for any
C
~
( A ) . I t follows t h s t
i s 9 c l o s e d s u b s e t of ~ the
o~-strong
In th,t
and ~ v a n i s h e s i n
deriTative
come (8~
~
~ - ~
, then, if
, this deriT~tiTe ~nishes
h o l d s f o r a n y ~7 ~ C ~ ( A ) .
F o u r i e r development o f I ~ P ~ ~
~ P does n o t depend on t lY~
Assuming t h a t
i s o b t a i n e d from t h e
by f o r m a l l y d i f f e r e n t i a t i n g
~
~.If r hem
in A-r'.
A C Q , the
F o u r i e r development of
i t by mea~l o f ~ P
From t h i s
remark i t
follows th~t8.1.
l_ff
~ E I"l o ( ~ ) and v~ h~s e v e r y
~ 2-strong derivstive
of
|
order ~
~ then
In f~ct,
~
~ ~ ~'(R)for
has t h e ~
~n~ ~
such t h a t
-strong derivatives
h~s t h e f o l l o w i n g F o u r i e r development i n _
(8.6)
~P~
~
~' < ~'
( IpI --~
) snd i f ~
,
~oO
0
~KX
l
:*
~
_ 0 , l y l 2' + t ~ _z c~ ~. L e t
,: c r,+
belongs
number such t h a t
(~-4)-vector-index.
II D~' ~, II ~"
(9.4) with
~
be the. s e m i b s l l ;
be an a r b i t r a . r ~
F("~.~
The f u n c t i o n
is ant
the function
y-partial
~Lr
differentiation
~ Dy~
O ~
I~[ ~
9 We have f o r ~ / n C
(~nd
any r e a l ~ ( ~ 4 ) - - ) ~
4)0)
4-6
s
,v :(-~) I Dq(f(x+k)=(x+~)-~~
y(~r~-D%)dx = (-4)~I ~PsD 'b'< Z*
u'(x)
~.+
)-r
r
(~) From now on we s h a l l u s e t h e l e t t e r
D, II
'1)'s
q~F I)K '~-(x-~,)-'u-(x)d•
(
= CO I1 F il
get
,v
: CO
Z
ilD ~II
-t ,Fil )
~
=
)
lhl
we o b t a i n from
c~ ( F. IiD ~
l~l~w
,~-Ii
6'
U' (• ~.~,)-I.)"(,() By assuming
).
,1>",
(9.2}=
+ ii F II
U
Y
~,['+
K-~
~
-I" 4
.5'Vt
From t h i s e s t i m a t e t h e p r o o f f o l l o w s -
Biblio~raph~
of i Lecture
9
i
[i]
F . E . BR0WD]~- s e e [1]p[2]of l e c t u r e 5~ F . E . BR0WD]~- .,A p r i o r i
estimates for solutions
of e l l i p t i c
v a l u e p r o b l e m s , I & I I - I n d a g ~ Math~ T01~
boundary 1960o
-68-
F . E . BROWD~t - E s t i m a t e s and exi,s.tence t h e o r e m s f o r e l l i p t i c .boundary v a l u e p r o b l e m s U ~176
Proc~176176
v o l . 4 5 9 1959.
G~ FICHI~tA- L i n e a r e l l i p t i c
e ~ u a t . i o n s of h i g h e r o r d e r i n two
independen_t v a r i a b l e s equations,
and s i n g u l a r
integral
with application_s to anisotropic
i nhom oge neo u s e l a s t i c i t 7 - P r o c e e d i n g s o f t h e Int.
C o n f e r e n c e on PDE and Continuum M e c h a n i c s ,
M a d i s o n , Wis. 1960 - R . E . L a n g e r E d i t o r . I!
CsJ
L . tlORMXNDE~ - On t h e r e g u l a r i t y
o f t h e solu.t.ions o f b.oundar]v
p r o b l e m s - a c t a Mathem. v o l . L . NIRI~BI~G A.Jo u
s e e ~4J o f l e c t u r e
9 9 , 1958.
4 and [ 4 ] o f l e c t u r e
- Boundary v a l u e problems f o r e l l i p t i c of d i f f e r e n t i a l
systems
equations of higher order in
t h e p l a n e - Dokl~ Akad. Nauk SSSR v . 1 2 7 , (in Russian).
8.
1959
-69-
Lecture
Regularity
In lecture Z~" -strong
result
derivative
])~, x)P~I~
results~
t~ of ( 9 . 3 ) h a s any
in the semiball
We wish now t o c o m p l e t e t h i s
result
of a r b i t r a r y
Given an a r b i t r a r y
a4ny 4
and prove t h a t t~
order in
~)y ~
in F / .
o( pq.., Is and on
~
< ~
positive
and any
~ ,0
A constant
~;.
This
, the
, the solution c~2-strong
C~ exists, depending ,onl]v on
_~
IP
c~
F
I
(j-O,
~t~§ Dy t,L and any
~
0
when r e g a r d e d as a f u n c t i o n o f ~ i s a c o n t i n u o u s f u n c t i o n of Set ~tegral
L ~(x)t)=
~
with values in the space
Those v a l u e s b e l o n g t o
~o(x,~).It
H ~ (/~) j
M (V).
is readily seen that the following
e q u a t i on i n t h e new unknown f u n c t i o n
C~ ( X ) ~; )
t
(lO.8)
t•
I)
) 9 7-.
:
d~ 0
i s e q u i v a l e n t to (10.7) with the "boundary c o n d i t i o n " f o r any
t
~
Co, T ) ,
This means t h a t t o any
s o l u t i o n of ( 1 0 . 8 ) , t h e r e c o r r e s p o n d s a s o l u t i o n g i v e n by
G~(~,t)
~(X,~) ~(x,~)
~,(g)~:)
of ( 1 0 . 7 )
there corresponds a solution
of ( 1 0 . 8 ) b e l o n g i n g t o
H~_~
L e t us w r i t e ( 1 0 . 8 ) as f o l l o w s .
t
(10.9) J
o
f o r any
M(V)
Thich i s a
and b e l o n g i n g - as a f u n c t i o n o f )( - t o
C o n v e r s e l y , t o such a : Lt~(x,t)
~()(~t )~
M (V). c~(•
~ ~ ~ .
-79-
.here
~ ~)
with values in
and
~= ( ~
must be u n d e r s t o o d t o be f u n c t i o n s of
~
(A) (K-~-~), N(t,~) i s , f o r any ( t , ~ ) E k E (o~T) :~ ( O ~ T ) , a l i n e a r bounded o p e r a t o r from H K ( A ) in itself, such t h a t [I ~ ( ~ j ~ ) [ I The c l a s s i c a l
-~ C
( C
constant).
s u c c e s s i v e a p p r o x i m a t i o n s method~ used f o r t h e
" s c a l a r " V o l t e r r a i n t e g r a l e q u a t i o n works i n e x a c t l y t h e same way f o r e q u a t i o n (10.9) and proves t h e e x i s t e n c e of one and o n l y one s o l u t i o n f o r (10.8)~ i . e .
f o r our i n t e g r o - d i f f e r e n t i a l
Bibliography
See b i b l i o g r a p h y of l e c t u r e 9.
of
Lecture
10
problem.
80
Lecture
The
classical
11
elliptic
2nd
order
BVP
of
linear
Mathematical
Physics:
]?DE.
L e t us c o n s i d e r a 2nd o r d e r l i n e a r
elliptic
equation with real
coefficients:
L u.
(11.1)
'a
The unknown f u n c t i o n ~i'
b~ , C ~ ~
o. j (x) - .
~ i s now a r e a l - v a l u e d
lecture.
We assume t h a t
L
is elliptic
form
~
~X)
The f u n c t i o n s
C ~ , The bounded demain A i s
These h y p o t h e s e s w i l l
means t h a t t h e r e a l q u a d r a t i c for every
+ c(x)u, = ~(x).
function.
are supposed to belong to
s u p p o s e d t o be C ~ - s m o o t h . this
, b., cx)
be m a i n t a i n e d t h r o u g h o u t
and p o s i t i v e ~
in ~
is positive
consider the Dirichlet
problem for
( 1 1 . 1 ) . As a
c o n s e q u e n c e of t h e t h e o r y d e v e l o p e d i n t h e p r e v i o u s l e c t u r e s , the following existence
and u n i q u e n e s s t h e o r e m f o r t h i s
Under t h e a b o v e - m e n t i o n e d h y p o t h e s e s on
under the further exists
definite
X ~ A0
L e t us f i r s t
ll.I.
. This
assumption that
one and o n l y one
C ( X ) ~_ 0
C co f u n c t i o n
~(X)
f o r an y
we h a v e
problem.
~
and x E A
such t h a t :
A
and
, there
-81 -
(11.2)
L u, .-..~
Let us first
*hA
suppose that
(n .4)
for
C
(11.3)
,
on 9 A
~,--0
X ~ ~
~> O.
9•
s 0
We h a v e f o r
-
~ H.~ (A)"
any
]~ ("" " ' ) :
~
"ax.
0~:
,~. i ~ Ox;
dx
v
c
Coll~ll
>
4'
-
A as f o l l o w s
from the
theorem is
proven under the assumption
C (X)
~ 0
ellipticity
follows
from theor.
] t ~ ( X ) l ~- ~ • l~(X)] • 9A smooth solution (see,
for
Let
instance~
[7]
on
~
9
for
the
operator
(11.5) Let
)
another
IO.V a n d f r o m t h e
The f o l l o w i n g
L~,-
"~-: ( ~ 4 J ' " , ~
in the
case
inequality
knoTn - holds L~t -- 0
when
classical
BVP f o r
the
r,egula r oblique
be a r e a l
when c o n s i d e r e d
L
The p r o o f
Thus t h e
for
any
C { x ) -~ 0
~ p. 4-5).
the so called
~ ~ ( ~ls,..~ G ~
(11.4).
of the homogeneous equation
(11.1)~
which is
a n d f r o m lemma 3 . I .
which - as is well
L e t u s now c o n s i d e r equation
of
unit
vector
as a f u n c t i o n
derivative defined
for
of the point
BVP i s known as t h e
elliptic
oblique
problem. any X
•
varying
derivative
problem
:
in
A
,
) be t h e i n t e r i o r
(11~ unit
--:0 O~
normal to
on
/~A
9A,
9 Under the
-82-
further
assumption
~
>0
C~•
~ 0
, the problem ( 1 1 . 5 )
( 1 1 . 6 ) i s said to
be r e ~ u l a r . 11oli. and o n l y one
I__f
for
X~ ~
~ then there exists
~ ~
s o l u t i o n of t h e r e g u l a r q b l i q u e d e r i y a t i v e
~i
be a r b i t r a r y
one
problem
Ol.~) (l~.~). Let such t h a t
~i
(ll.l')
functions belonging to
~i $ . The o p e r a t o r
Lu.
L
can be w r i t t e n as f o l l o w s :
~;i
:
C~A)
""
+c~
,
where*
I t is p o s s i b l e to choose the f u n c t i o n s
where ~
is a positive
Q ~
scalzr
~i
i n such a way t h a t :
f u n c t i o n d e f i n e d on
o r d e r t o p r o v e t h i s ~ l e t us f i x a r b i t r a r i l y Let
~
~...~ ~
the point
~A.
•
In
on ~ A .
he an o r t h o n o r m a l s y s t e m of v e c t o r s such t h a t
coincides vdth the interior
normal v e c t o r
may s u p p o s e t h a t t h e f u n c t i o n s and b e l o n g t o
~
(~).
~lj..
,~
~
at
~ ~
~A
in
X.
We
are defined throughout
There i s no l o s s i n g e n e r a l i t y i n
a s s u m i n g t h i s ~ s i n c e we can always c h o o s e
~
to
t h e above ~ f ~ f u n c t i o n s
~ ~ (~)
throu~ou~
since,
and t h e r e a f t e r A
.
continue all
We can a l s o s ~ p ~ o s e t h ~
by t h e r e g u l a r i t y
consider the functions
condition~ it ~hk
)...~ ~
~'
is positive
d e f i n e d as f o l l o w s i n
belonging
is positive
on ~ A . A
:
i~
L e t us
-83-
4
CL--
~).
I
,.~ --,) ~
~).
- o,,.. v'.
( fo~
R k~
I - 0 -
:
~ : ~ ~.a.
4 O
,
/~
on / J A .
H~ ( A )
which vanish
(11.1')
of
L C0
on
-0
on
/~4(A).
with the coefficients
By t h e same a r g u m e n t u s e d i n t h e o b l i q u e
p r o b l e m , we s e e t h a t : 2
%r ~ ~/
, when
have a unique solution of ~
9
-C
~ ~
of (11.8),
with
p~
corresponding
~,zA.
of the subclass
c o Ii ll for any
) )
BVP i s known as t h e m i x e d BVP:
As s p a c e ~/~ we t a k e now t h e c l o s u r e C I (~)
a r e two d i s j o i n t
(already introduced i n the oblique d e r i v a t i v e
problem) which satisfies
derivative
~
X~ i s any p o i n t
~
) then
t h e Neumann BVP.
of x ~ e n j o y i n g t h e p r o p e r t i e s
~oreover, we assume t h a t
o~ ~
and
: c~j~
~]
i s known as t h e c o n o r m a l
8, c a n be c h o s e n i n s u c h a way t h a t
of l e c t u r e
of
a maximum (minimum) f o r
) by a t h e o r e m o f G i r a u d ) we m u s t h a v e
L e t u s now s u p p o s e t h a t subsets
is
follows.
we c h o o s e t h e
the oblique
•
large
enough.
to the present
Then we choice
-86-
The c l a s s lectures
V satisfies
the conditions for the regularisation
9 and 10 i n t h e n e i g h b o r h o o d of any p o i n t o f /~4A
t h e o r y of and o f ~ A ,
Hence, t h e s o l u t i o n of t h e mixed BVP has t h e f o l l o w i n g r e g u l a r i t y properties =
If
i)
belongs to
C ~ ( A ) n H~(A).
ii)
belongs to
c
~A
-- ~)t A u ~ A
, then ~
,).
( A is
o t h e r w i s e t h e o n l y p o i n t s where ~
~ ~ i n the c l o s e d domain
A,
c o u l d n o t be C c~ a r e i n t h e s e t
I t has been p r o v e n t h a t ~ i s c o n t i n u o u s i n t h e c l o s e d domain
(see ~3 ]
)*
B i b l i o g r a p h y of L e c t u r e
Eli
G.BOULIGAND-G.GIRAUD-P~
-Le
en t h ~ o r i e du p o t e n t i e l
11.
probl~me .de l a d ~ r i v 6 e o b l i q u e -
Actual. Scient.
Industr.
Hermann~ P a r i s ~ 1935.
E2]
G~
- . S u l p r o b l e m a d e l l a d e r i v a t a obl.igua e s u l p r o b l e m a m i s t o p e r l ' e q u a z i o n e di L a p l a c e - B o l l e t t ~ U n i o n e btat. Ital.
Is]
1952.
GoFICtlERA- A l c u n i r e c e n t i
sviluppi della teqria
contorno, etc -Atti 1954-
Cony~ I n t e r n .
Cremonese~ Roma~ 1955.
dei Pr0blemi al
sulle
l~q. Der~ P a r z ~
-87-
[4]
G.FICIIEI~- Analisi
esistenzial.e
contorno misti
E53
G.GIP~UD
-
S c u o l a Norm~ Sup~ P i s a ,
principales
-Ann.
1947.
E c . Norm.
51, 1934.
-Ann~
closes
s o c . P o l o n . Mathem., 1932.
C.~IP~NDA- E~uazioni a l l e
deriva.t.e p a r z i a l i
Ergeb~ S p r i n g e r ,
[8]
dei problemi al
Probl~mes m i x t e s eL p r o b l ~ m e s s u r des v a r i e t ~ s etc.
LT]
etc~ -Annali
- E~uations a int~rales Sup. t .
GoGIP~UD
pe.r l e s o l u z i o n i
di t i p o e l l i t t i c o
-
1955.
C.~IItA~DA- Sul pro, blema m i s t o p e r l e e~uaz.i.oni l i n e a r i
ellittiche-
Ann. d i Matem. , 1955~ G.STAJ~PACCHIA- P r o b l e m i a l c o n t o r n o e l l i t t i c i
c,on ,dati d i s c o n t i n u i ,
I!
dotati
di s o l u z i o n i
holderiane-
Ann. di b~atem~ 1960o
-88-
Lecture
12
The cl.as.s.ical e . l l i ~ t i c ~ P
of ~ a t h e m a t i c a l P h [ s i c s :
9i n e a r E l a s t o s t a t i c s .
We s h a l l now c o n s i d e r t h e c l a s s i c a l t h e c a s e o f an
lnhomogene~us a n i s o t r o p i c
BVP of l i n e a r elastic
elasticity
in
body. I t i s c o n v e n i e n t
t o s t u d y t h e BVP c o n n e c t e d w i t h t h e e q u i l i b r i u m problems i n t h e s p a c e X ~ i n o r d e r t o i n c l u d e b o t h t h e c a s e s of p l a n e and 3 - d i m e n s i o n a l e l a s t i c i t y . Set-
'~x k L e t us c o n s i d e r t h e e l a s t i c 41~
The ( r e a l - v a l u e d )
~(~§
potential 4,,~
f u n c t i o n s ~ ~k.i~(X) a r e s u p p o s e d %o b e l o n g t o
and t h e q u a d r a t i c form ~ r in the
'gx;
variables
(X,6) s
We can s u p p o s e t h a t ~
(x)
i s s u p p o s e d t o be p o s i t i v e (4~L~
~ ~ ) f o r any
~g~
C
definite ~
-89-
L e t us now d e f i n e f o r
arbitrary
v a l u e s of t h e
i n d e c e s 4 ...) 9 :
: (X)
CL
~h~,,jK ( g )
for
~ > i~)
-. ~ h , K i (X)
for
~ ~_ k s J > K
._ O~h~,Ki (X)
for
~ > i~ ,
i >~
"ZO~;h,j ~ ( X )
s
i,= ~ ,
i " K.
We have f o r t h e e l a s t i c
potentialz
4_ C~ c ~,i
(12.1) V q ( •
j "- K
6. ~
~
f. ~
=_ zct~,J
~ ~x~ ~ x
I t must be p o i n t e d o u t t h a t t h e q u a d r a t i c form
~;h,j~
i s .not p o s i t i v e
definite,
as a f u n c t i o n of t h e
real variables
~ ~h
(~ j h 9 4 j . . - ~ ~ ) .
i n t h e s u b s p a c e of t h e the conditions Let
A
~
but o n l y s e m i d e f i n i t e
"-
be t h e
~-dimensional ~h~
~Lh ~ K
It is positive s p a c e of t h e
definite ~h~s
only
d e f i n e d by
d
C ~ - s m o o t h domain c o n s i d e r e d i n l e c t u r e
11.
The e q u a t i o n s o f e q u i l i b r i u m i n A a r e t h e f o l l o w i n g :
(12.2)
~
~
-
in
.
We have t h r e e k i n d s o f b o u n d a r y c o n d i t i o n s c o r r e s p o n d i n g t o t h e t h r e e main p r o b l e m s o f e l a s t i c i t y . boundary c o n d i t i o n s .
We c o n s i d e r h e r e o n l y homogeneous
-90-
1st
BVP
(12.3)
L~ = 0
2nd
(12.4)
( ~
(body f i x e d a l o n g i t s
BVP
on
/~/~.
(body f r e e a l o n g i t s
"~,~ (u.) - v k
is the unit innrd
boundary)
boundary)
W ' (x, c ) -- o on
normal t o /~A
)
ard 8VP (.dxedBVP) (12~
where
t~:O
/~4A
in lecture
on /~4 ~
and
/~zA
,
(12,,6)
"~ (1~,)= 0
a r e t h e s u b s e t s of ~
on f~DA,
a~ready introduced
11.
Other BVP's c o u l d be c o n s i d e r e d , components o f
~
shall
o u r s e l T e s t o t h e t h r e e aboYe c o n s i d e r e d c a s e s and leaYe
it
restrict
and
~-~
f o r i n s t a n c e t h e ones a s s i g n i n g p
components of
t(~)
on / ~ A .
HoweTer Te
as an e x e r c i s e t o t h e r e a d e r t o s t u d y o t h e r BVP's f o r ( 1 2 . 2 ) .
Equations
(12.Z) c a n be w r i t t e n :
(12.2')
Cl,~k,i x (X)
~X k
In order to prove t h e e x i s t e n c e BVP ( 1 2 . 2 )
(12.3),
"F ~;,
: O,
~x~
and t h e u n i q u e n e s s of t h e s o l u t i o n
Te need t o p r o v e i n e q u a l i t y
case is the follo~ng:
(9.1),
of
which i n t h e p r e s e n t
-91 -
f
(1~.7)
~'A
~
J i,~
~c gxk
(x)
~nxj ,9 xK
dx >_ c
Ilu'llt o
0
f o r any
%r s
H 4 ( A ) , B e c a u s e of ( 1 2 . 1 ) i n e q u a l i t y
as t h e 1 s t Korn~s i n e q u a l i t y
J"'(
(12.s)
~
( 1 2 . 7 ) - which i s known
- i s e q u i v a l e n t t o t h e f o l l o w i n g onel
~'~ + ~ ~"
d•
> C,I IIv II
(c, > 0 )
T h i s i s i m m e d i a t e l y o b t a i n e d by u s i n g t h e F o u r i e r d e v e l o p m e n t s o f t h e functions
~r. and P a r s e v a l ' s
theorem.
I t must be o b s e r v e d t h a t , t h a t f o r any
• ~ A
as a c o n s e q u e n c e of ( 1 2 . 7 ) , i t
and any n o n - z e r o r e a l
~
follows
I
>0
for every non-zero real t h e o r e m which w i l l particular,
~-vector
be p r o v e d l a t e r
the ellipticity
~
.
T h i s i s a c o n s e q u e n c e of a g e n e r a l
(see theor.
1 4 . I I of l e c t u r e
of system (12.2) follows.
14).
In
We h a v e t h u s t h e
following theorem.
12.I.
Given
~ ~ C oo ( ~ ) , t h e r e e x i s . t s one and o n l y one s o l u t i o n
of the BVP (12,,2), (12.8) ,_ _wh_ich belonE~ t._.__o C " ~ ( A ), I n o r d e r t o p r o v e t h e e x i s t e n c e t h e o r e m f o r ( 1 2 . 2 ) ~ ( 1 9 . 4 ) ~ l e t us c o n s i d e r t h e systems
(12.9)
~ rbx~
cL~, j, ~ ( ' ~
/~;,(,r
- po-.
, ~
:
o
-92-
where
~o
(12o4).
is any positive constant~ We wish first solve problem (12.9)
I t i s e a s i l y seen t h a t the i n e q u a l i t y to be proven i n t h i s
case is the folloxing
~-.
+
x +
dx
~
C~.ll,~ I1~
A
q~ E H 4 ( A ) . S e v e r a l
the original
proofs
of ( 1 2 . 1 0 ) have been g i v e n a f t e r
one due t o Korn [ 5 ] ( s e e [ 2 ] ~ [ 6 ] ~ [ 3 ] ) .
one c a n be o b t a i n e d ( s e e [6]) i f We r e f e r
)
I~
A for any
(IJ.
(2nd K o r n ' s i n e q u a l i t y
A is
A rather
~-homeomorphic
simple
to a closed ball.
the reader to the quoted papers.
From (12o10) i t which i s
~
adjoint,
it
in
follows that
(12,9)
( 1 2 . 4 ) has o n l y one s o l u t i o n
A o S i n c e our d i f f e r e n t i a l
follows that
a
C~
solution
system is formally self-
of t h e f o l l o w i n g d i f f e r e n t i a l
system:
(12o11)
w i t h t h e boundary c o n d i t i o n s
(1 .12)
,
~
(12.4),
fA
;
exists
when and o n l y when:
o
, m ,
(4) A c t u a l l y t h e 2nd K o r n ' s i n e q u a l i t y
is the following:
(% ",o) f o r any qY such t h a t :
, However i t
is easily
seen that this
;0
inequality
i m p l i e s and i s i m p l s
by ( 1 2 . 1 0 ) .
-93-
~Z i s a n y
C ~ solution
the only
C ~ solution
There
and B~i
~,
12.II. if rith
~
(12.4) Tith
: 0.
I n t h e c a s e ~ ~ Po
constants
such t h a t
b~j = - ~'.
~ P (12.2) (12.4) has solutions belon~in~ to C ~ C ~ ) C~
function
.~
satisfies
c.onditi,ons
(12.12)
g i v e n by (12.1.3).
For g e t t i n g BVP ( 1 2 . 2 ) ,
t h e e x i s t e n c e and u n i q u e n e s s of t h e s o l u t i o n
(12.5),
(12~
r e assume t h a t
composed of t h e f u n c t i o n s v a n i s h i n g on inequality any
~
of t h e homogeneous s y s t e m i s :
are arbitrary
and on,ly i f t h e ~
of ( 1 9 . 1 1 )
(considered
~ ~ ~/
for any
~ inequality
V
/~
~r~ V
of t h e
i s the subspace of H 4 ( A ) . From the second Kornts
) it
is easy to derive~ for
( 1 2 o 8 ) . A r g u i n g as i n t h e p r e v i o u s l e c t u r e
f o r t h e c a s e of t h e mixed BYP f o r a 2nd o r d e r e l l i p t i c
equation~ re
deduce t h e f o l l o w i n g t h e o r e m : 12~
For
~ ~ C ~ 1 7 6 ) t h e r e exist.s one and o n l y one . s o l u t i o n
of t h e BYP (1.2.2). (12..5) It
is rorthrhile
(12o6)tT.hich b e l o n g s t o C ~ (A u g 4 A u ~ A ) n
t o remar~ t h a t
the obtained solutions
l s t ~ 2nd and 3rd BVPts a r e t h e ones r e q u i r e d of e l a s t i c i t y 9
s i n c e t h e y m i n i m i z e t h e ener~T i n t e g r a l
H 4(A) ,
H4(A)
and "v"
of t h e
by t h e m a t h e m a t i c a l t h e o r y
O
in the classes
~4(A).
respectively.
-94-
Bibliography
[1]
G. F I C I I E R A - s e e [ 2 ]
of
of lecture
Lecture
12.
4.
K.O.FRIEDRICttS - .On t h e . B o u n d a r T - v a l u e ' P r o b l e m s o f t h e T h e o r y o f El a s t i c i t ~
v.
[3]
J.
GOBERT - U n e
48,
A. KORN
-Annals
of Math.
1947.
in~alitd
Bull.
[4]
.and K o r n ' s i n e q u a l i t y
f o n d a m e n t a l e de l a t h ~ o r i e
Soc. Roy. des Sci.
- Solution ~enerale du
de l ' ~ l a s t i c i t ~
de L i b g e - 3-4 - 1962.
pro bleme .d'e~uilibre dan.s, la
theorie de l'~lasticitd dans le cas ou les efforts sont donnds & la surface - A n n .
A. K01~
Toulose Univ. 1908.
- U.eber einige UnMleiclmngen welche in der Theorie der
elastischen un_d_ele~trischen Schwin~un~en ein.e.Rolle spielen - Bull. Inst. Cracovie Akad. Umiejet, Classe des sci.
math. et nat.
, 1909.
L.E.PAYNF~-H.F.WEINBERGER - On. I{o..rn's Inequality - Arch. for Rat. Mech. & A n a l .
8,
1961.
-
-95-
Lecture
The
classical
elliptic
Equilibri~
The c l a s s i c a l the solution two v a r i a b l e s
13
BVP of
of
~athematical
thin
Physics:
~lates.
t h e o r y of t h e e q u i l i b r i u m of t h i n p l a t e s
of c e r t a i n x,y
BVP's f o r t h e i t e r a t e d
Laplace operator in
:
~4
4 ~ xZ,~y z
9 x~
w i t h s e v e r a l k i n d s of boundary c o n d i t i o n s . bounded ( c o n n e c t e d ) p l a n e
,9 y~
Let, us
is a
C~176
plates
c o n s i d e r s t h e f o l l o w i n g boundary c o n d i t i o n s
suppose t h a t
domain.
~ : o,
(ta.3)
(13.~)
~ ~
~,~
(13.4)
on ~ A
-- o ,
: o,
9~ ~
A
~
~ + (4- e )
~
ov
0
A
The t h e o r y of t h i n
f'j~
(13.1)
requires
-96-
Here
~
i s t h e u n i t innward norma~ t o ~
denotes differentiation
w i t h r e s p e c t t o t h e arc ( i n c r e a s i n g c o u n t e r - c l o c ~ l s e ) c u r v a t u r e of
~A
~
i s a c o n s t a n t such t h a t
~
is the
- t < 6-~ 4
is the Laplace operator, The d i f f e r e n t i a l and
~ /
e q u a t i o n t o be c o n s i d e r e d i s t h e f o l l o T i n g (
real valued functions).
A4
(13.5)
The BVP ( 1 3 . 5 ) ,
(13.1),
:
(13.2) corresponds to the e q u i l i b r i u m p r o b l e m
f o r a p l a t e clamped a l o n g i t s
b o u n d a r y . The boundary c o n d i t i o n s
(13.3) express the f a c t t h a t the p l a t e is supported along i t s boundary c o n d i t i o n s
is free.
to the consideration
ourself
( 1 3 . 2 ) and t h e mixedBVP f o r a p a r t i a l l y and ( 1 3 . 2 ) a r e s a t i s f i e d the remaining part. i n l e c ~ a r e 11.
e d g e . The
( 1 3 . 3 ) and ( 1 3 . 4 ) mean t h a t t h e p a r t o f t h e b o u n d a r y
There t h e s e c o n d i t i o n s a r e s a t i s f i e d We r e s t r i c t
(13.1),
on a p a r t
~4~
and
~
of t h e BVP ( 1 3 . 5 ) , ( 1 3 . 1 ) ,
clamped p l a t e ,
~4 A
o f HA
i oeo when ( 1 3 . 1 )
and ( 1 3 . 3 ) ,
a r e the s u b s e t s of ~A
( 1 3 . 4 ) on considered
The r e a d e r i s r e q u e s t e d t o c a r r y out t h e p r o o f s of t h e
e x i s t e n c e and u n i q u e n e s s t h e o r e m s i n t h e o t h e r c a s e s , f o r i n s t a n c e i n t h e BVP c o r r e s p o n d i n g t o a p l a t e p a r t i a l l y s u p p o r t e d and p a r t i a l l y
As b i l i n e a r (13.2)
form
clamped on ~
, partially
free. b(~,~r)
c o r r e s p o n d i n g t o t h e H~P ( 1 3 . 5 ) , ( 1 3 . 1 ) ,
we a s s u m e "
(
§
~x ~.
)oixol
-97-
The s u b s p a c e imequality
V
H~IA)
of
0
(9.1) reduces to inequlity
6(,,,,,-)
FI~ (A).
t o be c o n s i d e r e d i s (3.6)
for
: 2
~
ii~-, &~
~ ~o
In this
case
Thus Te h a v e
[,,,- ~ H,(A)~ ]
Then-
13.i.I.G.r
~ ~ C ~ C~,) , ~ r
(13.5), (18.1), (!3.a)
I n o r d e r t o c o n s i d e r t h e above m e n t i o n e d mixed BVP ( i . e . on
07 A
and c o n d i t i o n s
convenient to observe that~ for
o.e
C ~ ( ,~ ) ,
and, on,l~r one s,o l u t i o n b e l o n g i n g t o
(13.1) , (13.2)
has
~
(13.3),(13.4)
and ~
on ~
belonging to
conditions ) it
C ~ (A)~
Te h a v e :
0 9'~
.
io [ 9~
2
+~"
'g,7 :~
(
tabu"
ma:~u, Ov '3r
]
al~
-
I ~u. )]ol~
:
OA
A
~gx ~ tax=
Ou. +
~x 2 Oy ~
9,/:~ Oys
qlx 9 y "ax~y
,9 ,,/z '3x :L
u. d x d y .
dxdy A
is
-98-
L e t us now assume as s p a c e of t h e f u n c t i o n s which s a t i s f y
V t h e s u b s p a c e of
conditions
H~ ( A )
( 1 3 o l ) , ( 1 3 o 2 ) on
+ (~- ~
+
~z
t~
~2t~
i
Because o f t h e a s s u m p t i o n
C (~)
9xgy
~ztt
@7:L + 9 yz Qx z
-4
~• ~7-
"~ ~ 9 ~] ~ "are h a v e :
Ipl:~ The c o n s t a n t
~4/~, S e t
+
~•
A
composed
IAIDr~I~ c~x dy.
depends o n l y on ~ .
I n o r d e r t o p r o v e ( 9 . 1 ) ve n e e d o n l y t o show t h a t t h e r e e x i s t s C4> 0 such t h a t ~ f o r any ~ - E ~ r
(z3~)
~
I I D%I =axdv
~- e~
I1~,~.
I A Suppose ( 1 3 . 7 ) t o be f a l s e .
(13.8)
]j ~
Jl~. = '{
)
Then t h e r e e x i s t s
(13o9)
Z~ Ipl= ~-
such t h a t =
I ID~ l=olx oly ~t
A
-99-
We can suppose t h a t
for (13.9),
t qY~ ~ converges in
converges in
(A) and the li
has strong second derivatives vanishing on
that in
~ ~
i s a p o l y n o m i a l of d e g r e e .
This contradicts
(theor.
~ 4(A)
3 . I V ) . Then ,
t function
A . It follows readily
~ . Because
tr
belongs to
%r
~r-O
(13~
Since (9.1) has been proved~ there exists one and only one
solution
~
of t h e e q u a t i o n s :
belon~ng
to
V.
By u s i n g
(13.6),
The f u n c t i o n it
folloTs that
~
belongs to ~
C co ( A u Q ~ A u Q ~ A ) .
is the solution
of our mixed
p r obl em. 13.II. ~
The mixed ~ P ,
(13.5);
~ E C~176
(13.1),(13.2)
on ~ A
~
(18.3),
, has..one..and o n l y one s o l u t i o n
b e l o n g i n ~ ~,0 C ~ 1 7 (6A t~ ~4A t) ~#.A) t~ H I (~). From len,na 4 . 1 I i t
follows also that
Bibliography
[13
Lecture
G. FICHERA - Teorema d'e_sisten.za p e r i l Rend. Acc.
[23
of
~t
G. FICHERA -
Naz. Lincei~
belongs to C~
),
13
p_roblema b i - i p e r a r m o n i c o -
1948.
On some g e n e r a l i n t e ~ r a t i . o n methods employed i n connection with linear Jour.
differential
e~uations -
of Math. and Phy~ voI.XXIX ~ 1950.
-100-
G.
FICHERA
-
Esistenza calcolo
[4]
d e l minimo i n u n c l a s s i c o delle
variazioni
problema di
- Rend. Acc. Naz. Lincei~
1951.
K.0.FRIEDRICIIS - Rie RandTert- und Ei~enwert Probleme aus der Theorie der elastischen Platten - b~th. Annalen,
G. ~ D I N I
- I1 p r i n c i D i o
d i minimo e i t e o r e m i
per i problemi alle
derivate
al contorno parziali
di
relativi
di
esistenza
alle
ordine pari
1928.
e~uazioni
- Rend. Circ.
Matem. P a l e r m o ~ 1 9 0 7 .
A.E.H~LOVE - A
Treatise
on t h e ~ [ a t h e m a t i c a l T h e o r 7 o f E l a s t i c . i t y
Cambridge at the UniT. Press
-vol.I~
1893.
-
-101-
Lecture
Strongly
elliptic
14
o
operatorso
.Garding
inequality.
Eigenvalue . problems.
The e x i s t e n c e t h e o r y d e v e l o p e d i n t h e p r e v i o u s l e c t u r e s on i n e q u a l i t y
(9.1).
We p r o v e d t h i s i n e q u a l i t y
lar cases considered in lectures a general operator.
11, 12, and 13.
Of c o u r s e t h e p o s s i b i l i t y
on t h e c h o i c e of t h e s u b v a r i e t y
for all
~r
any c a s e , b e c a u s e o f t h e a s s u m p t i o n
(A)r
of the p a r t i c u -
We wish n o t c o n s i d e r
o f p r o v i n g ( 9 . 1 ) depends
of t h e s p a c e H
i s founded
H
~
(A) . HoTever, i n
, inequality
(9.1)
consider here only this
case,
O
must be t r u e Then H
(A)-V.
We s h a l l
which c o r r e s p o n d s t o t h e D i r i c h l e t The m a t r i x d i f f e r e n t i a l
operator
i s s a i d t o be a s t r o n g l y e l l i p t i c any r e a l n o n - z e r o vector
~
Te
~-vector
problem.
~
~ ~ (~5(x)~
~
operator at the point
X , if
for
and f o r e v e r y n o n - z e r o complex ~ -
have:
.~
i~I:v
It is evident that strong ellipticity converse is not true,
'9• 4
implies ellipticity.
as t h e example o f t h e W i r t i n g e r o p e r a t o r
'~ x~.
( 4 ) F o r a more g e n e r a l d e f i n i t i o n of s t r o n g e l l i p t i c i t y , From n o t on . e s h a l l o ~ t parentheses Then ~iting ( Z
s e e ~4 ] .
~ (~)?.
The
-102-
For t h e o p e r a t o r we s h a l l point
L =
assume t h a t t h e s t r o n g e l l i p t i c i t y
x~
~
('o
])Po.,P0).
on b o t h s i d e s
by
L TO~
, we g e t :
4
T o~ -
T/PT
4
~ qY O
=
p qr
-132-
Conversely~ (17.3)
let
we d e d u c e t h a t
17e c a n ~ r i t e
~ ~ 0
us a s s u m e t h a t there
exists
and
tr
a vector
satisfy(17
bC s u c h t h a t
. 3 J . From s qY = __To~
( 1 7 , 8 ) as f o l l o w s : •
[ "l"~u, _ PTo ,. -
]_- o
I
Since
T~ ~
is strictly
positive~
From t h e a b o v e t h e o r e m s i t m e t h o d we c a n s o l v e
a)
To~
P~
-
P
To~
1
"I- u, - T o ~ p T o ~ u .
Actually 9 in his
m u s t be s a t i s f i e d . that
in Weinstein's
original
problem any of the following:
)u, -p.u.
=o
- p ,.,. - o
•
c)
follows
as i n t e r m e d i a t e
( i- P.~, ) To ( I-
b)
(17.1)
work~ W e i n s t e i n
-~-0.
considered
p r o b l e m s b) as i n t e r m e d i a t e
p r o b l eros.
I
I f we c o n s i d e r
~ d replace
r
problem c),
by T o - Toz r To ~
theorems 17.1 andlV.II)~ is clearly
and she, l l
T
the operator
To-ToAP
T ~
(this is feasible because of
then the above mentioned monotonicity
condition
satisfied.
In considering operators~
assume as
we s h a l l replace
a general assume t h a t
condition
i)
Our c o n s t r ~ z c t i o n i n c l u d e s
methed for constructing the base operator
the intermediate
To i s
greater
than
T
by t h e f o l l o w i n g :
as p a r t i c u l a r
cases the procedures
given
)
-188-
by W e i n s t e i n and A r o n s z a j n and some of t h e methods c o n s i d e r e d by B a z l e y ~nd B a z l e y & Fox.
(;)
L T o- T and u s u m e t h a t
Set
L e t us ~ s s o c i ~ t e w i t h strictly
L.~ a l i n e a r
p o s i t i v e *~We d e n o t e by
by t h e c o m p l e t i o n o f
The o p e r a t o r its S
S
(,t~)~
for ~
.We hate
M~
S~ t h e H i l b e r t
positive S
[ (~t~')~
in
and ~
~ 9 ~r 6 ~ .
On t h e o t h e r hand
u s e t h e same symbol
which i s s u p p o s e d t o be
spe~e which i s o b t a i n e d
~
and i t s
~
For
{~'1~
~
i n such a M y t h a t range still
S
, where
(~).
, there
exists
I
!
belongs to
( I
(Lt,'~)~ i s a l i n e a r
M~
such t h a t ( g , ~ r ) ~ -
M . ~r
i s t h e d e s i r e d e x t e n s i o n of
M~ t o d e n o t e t h e
extension
I~, ) denotes
Since
~ r ~ ~ we h a v e o b v i o u s l y
~Y)~. : ( N . ~~Y , ~ L ~ r ) a n d
~ ML ~
follows that
S~
~ ~ C/, ~
bounded f u n c t i o n a l i n t h e s p a c e and
L~ i s a 1~0.
S~ , l e t us c o n s i d e r t h e s c a l a r p r o d u c t
t h e l e n g t h of a v e c t o r i n t h e space
qY- 0 . I t
operator
M~ can be e x t e n d e d i n t h e s p ~ c e
In fact,
: (t ~ r )
~ ~, x h e r e each
w i t h r e s p e c t t o t h e f o l l o w i n g new s c a l a r p r o d u c t :
extension is strictly .
~ : ~,
:
~
M,
= 0
implies
M-~ .
We s h a l l
M ~ of the operator
under considerationL e t us nov i n t r o d u c e a new H i l b e r t s p ~ c e in
H~
viii
be d e n o t e d by
[
~ ~
,
.
By
~.
HL . The s c a l a r p r o d u c t we d e n o t e a
compact
(4) I t must be o b s e r v e d t h a t t h e s e a u t h o r s c o n s i d e r e x g e n v a l u e p r o b l e m s f o r more g e n e r a l o p e r a t o r s t h a n ~CO~ However t h e main i d e a s do n o t d i f f e r s u b s t a n t i a l l y from t h e PC0 ceme,
-134-
linear
S~ and r a n g e i n t h e s p a c e
o p e r a t o r w i t h domain
i s bounded s t h e r e e x i s t s i t s linear
adjoint
bounded t r a n s f o r m a t i o n of
and any
lr~
HL
H; into
]
, ~'tr
suppose t h a t
.
:
spaces
such t h a t f o r any t~ ~ ~
%r
x-
P(;J
S;
.
.
L ~ admits the following decompositionz
9 : where
~ ~ ~ that is to say, a
:
[R We s h a l l
operator
9 Since ~
~
(;)
M. R~. P
i s any g i v e n p r o j e c t o r
R~,
of t h e s p a c e H~ o n t o one of i t s
~ F . . The d e c o m p o s i t i o n ( 1 7 . 4 ) i s a d m i s s i b l e s i n c e
r e p r e s e n t e d by ( 1 7 o 4 ) , i s an o p e r a t o r which maps
S
L~
into
, if ~
as
f o l l o w s from t h e d i a g r a m :
S. (
Rt
V~ c FI.
On t h e o t h e r hand we hate*.
(M.~ P,"~. P~R~, u . , ~ )
P(:~R~ u, , R~ v
= ( R ~ p(~ IR:~, ' 'u')~ :
=
PC~)R ~,
R v
=
sub-
-135-
From t h e s e e q u a t i o n s i t
L e t us now s u p p o s e t h a t of l i n e a r l y
a complete system of
~"
9 Let
variety
.~
17.Ill.
V~,
r
i s a 1~0.
i s s e p a r a b l e and d e n o t e by t~O ( / ) }
independent vectors
be t h e p r o j e c t o r
spanned by
L ~,
follows that
of
i n t h e s u b s p a c e ~r~
H ~ onto t h e
.~ - d i m e n s i o n a l
(~) ~ ... ~ 6~ .
(4)
The s e q u e n c e :
T
R:
: T o - ~'. M~,R~, P
i s a se~uenc e of i n t e r m e d i a t e
operators~ i.e.
conditions
i)~ii)~iii)
are satisfied. We h a v e f o r a ny
t~ E S j
[ "'
(To..~) ~_ ( T o . , - ) >_. (T
-,~,1
This proves t h a t
P'~'R..].
[ P ...-k ; u , ,
> (ToU,,u,)- Y'.
c o n d i t i o n i I) i s s a t i s f i e d .
The o p e r a t o r :
T o- T
J~,
:
L L=4
M .bR .
b
P
(~)
R~
p..
: (\.,.)> ]
R~ u, ~,
:
,
.).
-136-
P (~) p r o j e c t s
is degenerate since
I n order to prove i i i ) ,
'~,~
(1T.5)
The u n i t s p h e r e ~'~
such t h a t
P c~)~ = ~
if
to shov that~
---
~ of
~
i s mapped by
R.
i n t o a compact
. L e t i%Yt~)l~, be an o r t h o r m a l c o m p l e t e s e t i n t h e s p a c e
" ~--" I [ R~ ~13" ~
suffices
dimensional subspace.
II P o:~R, - P ~'~ R. Ii o.
i~['~
s u b s e t of
to
it
onto a f i n i t e
(1~ 1~
).~
. Then
(~I] % I tends to zero, f o r
I~l~: ~
).
From t h i s ,
II P
R . ~ - P~
V..
R. ~ II
.-
.~f~-, c~ , m~iformly ~ i t h respect
(1~.5)
follows,
and t h e p r o o f of t h e
t h e o r e m i s c o m p l e t e . (~) I f we assume t h a t
L~ , R
M 4 :
"~-
~
is strictly
positive,
~ = 4 , ~ = H
-- pt~)= ~ , t h e n ve h a v e ;
T - T - L P where
P
projects
S
i n t o t h e s p a c e s p a n n e d by
i s any complete system i n the space operators constructed
space
~--4 ~
and
/~
intermediate i
i
T
and i ~ )
are the intermediate
]- ~
I
P T ~z
~ where
P
, t h e n t h e above g e n e r a l p r o c e d u r e s
case the intermediate
i
These
~ cJ
by A r o n s z a j n [1 ] . 4
If
S~ o
~)~ ,
i s any p r o j e c t o r
of t h e
g i v e us as a p a r t i c u l a r
problems c) which a r e t o be e q u i v a l e n t t o W e i n s t e i n ' s
problems.
ml
( ~ ) See f o o t n o t e
(~)
of pag.20.
We have d e n o t e d by I[
II; t h e norm i n t h e s p a c e
[4. 9
(~) The p r o o f of i i i ) c a n be c a r r i e d out by a s i m i l a r p r o c e d u r e i f ve r e p l a c e t h e h y p o t h e s e s of compactness o f R~ by c o m p a c t n e s s of M~ .
t
-137-
s If we assume
~tt)
~
C~ : ,4
s P'R4 : ~
and
5= .~t: Ht s
~4
s
= ~-2'
( L . "z > 0 ) ,
~ we have t h e f o l l o w i n g k i n d o f i n t e r m e d i a t e o p e r a t o r s :
~-~ --
4
~" % -
~ ~ ~ ~-i ~ h e r e 2
by t h e f i r s t
~
q~
is the projection
onto t h e s u b s p a c e s p a n n e d
% v e c t o r s of any c o m p l e t e s y s t e m i n t h e s p a c e
S
*
It is now evident how to construct as many examples as we wish,
starting
from t h e g e n e r a l p r o c e d u r e .
Bibliography
of
Lecture
17
[1 ]
N~kRONSZAJN - s e e [2 ] of l e c t u r e
16.
Is]
N . W . B A Z L E Y - D . W . F O X - Lower Bounds to ~.~genvalues. using operator Decompositions of the form B*B -
Arch. for Rat. Mech.
and A n a l . v o l 10, 1962. N.W.BAZLEY-D.W.FOX-
Improvement of Bounds to Eigenvalues of
Operators of the form T*T - The Johns Hopkins Univ.
A p p l . Phy. Lab. ( R e p o r t ) 1964.
~4.]
N.W.BAZLEY-D.W.FOX - Comparison Operators for Lower Bounds to Ei~envalu.e.s - Battelle Centre de recherche de Geneve-
( R e p o r t ) 1963.
~5]
N.W. BAZLLY-D.W.FOX - ~ e t h o d s f o r Lower Bounds t o F r e q u e n c i e s of Continuous E l a s t i c
S~stems - The J o h n s Hopkins U n i v .
A p p l . Phy. Lab. ( R e p o r t ) ,
1964o
-138-
C61
G.FICUERk - S u l c a l c o l o sulle
degli
applicazioni
Cagliari-Sassari
E71
G,FICHI~t~ - A p p r o x i m a t i o n s Proc,
S.T~URODA-
dell lAnalisi
alla
del Convegno Fisica
Matem. -
1964. a n d Es.t.imat.es f o r E i ~ e n v a l u e s
of ~aryland
On a G e n e r a l i z a t i o n
o f BVP, -
Papers
of Tokyo-
(to appear).
Determinant
of the College vol.
of
of the Weinstein-Aronsza.jn
Formula and the Infinite Sci.
-Atti
o f t h e S y m p o s i u m on t h e N u m e r i c a l S o l u t i o n
PDE - U n i v .
C83
autovalori
- R e p . from
o f Gen. E d u c a t i o n ,
11 - N ~ 1 , 1 0 6 1 .
Univ.
-139-
Lecture
18
Orthogonal . .invariants
of . p o s i t i v e
The method d e v e l o p e d i n l e c t u r e s after
the essential
contributions
B a z l e y , as a v e r y e f f i c i e n t v~lues of a I~0.
Hoverer
the requirement that the entire
s e t of i t s
a serious
by A r o n s z a j n , W e i n b e r g e r and
limitation
to its
applicability
this
Tu, - I
T O must be known t o g e t h e r w i t h
p o i n t ~ l e t us suppose t h a t
K
sp~ce
T
i s an
Z ~ (Oj 4 ) g i v e n by :
(x,y) ~,(y)dy.
i s supposed t o b e l o n g t o
K(x,y)
to be hermitian, i . e .
~
[ (0,4)X (0,4)J
i
f
4
/
K (X~y)l,l,(x)IA,(.y)dx ~ y
> 0
o g ~ E Z ~ ( 0 ~ t ) , I f we w i s h t o a p p l y t h e a b o v e - m e n t i o n e d
method f o r t h e u p p e r a p p r o x i m a t i o n o f t h e e i g e n v a l u e s of t h e k e r n e l (•
Y)
,
K (x,y) : IK (y,~') and to be of "positive t ~ e " ,
iee.-
f o r every/
is
e i g e n v a l u e s and e i g e n v e c t o r s ~
operator in the Hilbert
The k e r n e l
16 and 17 must be c o n s i d e r e d ,
t o o l f o r t h e u p p e r a p p r o x i m a t i o n of e i g e n -
a "base operator"
In order to clarify integral
to it
. .compact . . o p e r a t o r s .
, we have t o know a h e r m i t i a n k e r n e l
K
(x~Y) O
such t h a t
-140-
any of its
eigenvalues
(•
~oreover
of the kernel kernel
is
greater
corresponding
we m u s t know e v e r y e i g e n v a l u e
"-o (Xj y) -
In general~
eigenvalue
of
and every eigenvector
we do n o t know %o c o n s t r u c t
the
k o (• We w i s h now %o d e v e l o p
as an a l t e r n a t i v e requires
a further
condition ~
method will
no~ r e q u i r e
ator
TO .
On t h e
under
special
the second
a different
on t h e
the
other
conditions
one to these
while
more general a 1~0
T
we s h a l l
f r o m now on t h a t
by h i m s e l f
a strictly
positive
the
modifications
slight
be made i n o r d e r
%o i n c l u d e
is
5
-
ex%ension of
(which is
operators
and that
The r e a d e r
following
a separable
sake of simplicity,
positive
compact operator.
positive
the
For the
strictly
of the
of a base oper-
i% n o t y e t k n o w n .
Hilber% space). T
h o w e v e r t h e new
m e t h o d c a n be a p p l i e d
operators,
cases
must belong to
existence
in the space
dimensional
("~
applicability
later),
first
- to non-compact
complex infinite suppose
of the
the
Its
T
be d e f i n e d
assumption
hand,
one.
operator
, which will
Let us consider
for
m e t h o d , w h i c h m u s t be c o n s i d e r e d
to the Weinstein-Aronszajn
one of the classes
stands
than the
will
results
PCO
notice
which must
which are not strictly
positive. We s h a l l the
where
6
vectors
~
is
denote ~
by
~(~)('~,..%,"~
, "'" , ~4
a positive
integer.
)the
with respect
In other
Gramian determinant to the scalar
words,
we s e t ,
of
product
by d e f i n i t i o n ,
-141-
(T ~,,~.,) ...... ( r G
~,,~,~)
('~)
(T ~ , ~ , ) ..... (1" ~,- ~,-~)
Let
~ ~Yk ~ ( k = 4 .9 ...
) be a c o m p l e t e o r t h o n o r m a l s y s t e m i n t h e s p a c e
We p u t : A%
(is .1)
~
( T ) -- ,J. O
and f o r any p o s i t i v e
08.2)
'~
~
The s u m m a t i o n Since
the
integer
4
('r)-
is
terms
of
the
Y'. _
9
extended
~
to
G `') ( ~
any set
multiple
series
how t h e summation i s c a r r i e d o u t . be f i n i t e
or i n f i n i t e .
system
The v a l u e of
~y~ }
operator T
~ i..,e.
~ are
positive
).
integers
non-negative,
Of c o u r s e
t h e v a l u e of
K~ j . . .
it
does
~
not
(T)
~ ~
,~
matter
could
(T) (T)
(T). doe,s, n o t depend ' on, ,ghe o r t h o n o r m a l
i s an orthon~r~nal i n v a r i a n t
of t h e
9
In order t o prove this important theorem we need first the
f o l l o w i n g 1 emma.
, K~ .
It is evident that-
~ (T'~): 18 ~
of
,...,~
-142-
18.II.
If
) . . . , ~ ,~. ) i s
G(,I~ 4
v e c t,,o r s , i n a H i l b e r t
s~,,ace
following
holds:
inequalit~
G,. ( i),,, 4
The p r o o f
) --.
is
~
trivial
if
~4 ),
~
subspace
~)...,
s p a n n e d by ~
K
~ and
with
respect
co-(~.,,..., ~.~ )
where
~
(-4)
= 4 +---§
t
)...
,I
.......
X
.......
X
bells
.-. / 1-~',1~ )-
dtpendent by
X in
vectors.
S~t
the
be t h e c o o r d i ~
.We h a v e :
'1
:
.....
K~4~-..~
4
X
~
~
and
the determinant:
X ........
,1~
X.
J4
4
. . . . . . .
Jr,
•
o f q~
, .t.h. e. .n. t h e
and denote
to an orthonormal
~ X 4~''''~
X
0
. Let
"X
f_,
are linearly
~)>
~
X
=
0 ~-- t,< z: ~
C7" (I~L'K4.4)
G (~,...,
of
Gram~an de t b r m i n a n t
,
Let us suppose thtt
nates
the
~C.
Jr,
~~
'
. . ...... .
~" -,,.
denotes
-143-
The s u m m a t i o n i s rots
e x t e n d e d t o any s u b d e t e r m i n a n t
of the matrix
determinant).
It
t •
contained
t ( ~ J : q~"'~ ~ ) (Laplace development of a
follows that:
~ ( ~ , . . . , ~
:
)
s
Z
X
~ ....
o(~,,.-.,~,)
z (x
~
o
( , . +, , . . . ,
We go n o t t o t h e p r o o f o f t h e o r e m 1 8 . 1 . spectral
in the first
decomposition of the operator
2 .,,
.....
,~
~,
).
L e t us c o n s i d e r
the
T ~ :
O0
We h a v e
-~
( '~ > 0
):
4,q
~lq
4jq
41~
4~,-~oo K4j-,,K, ~ c~->~o
S
k4 ~ kt
h4
h~
~
~ h
-144-
L e t us d e n o t e by spanned by
9
the projection
%r4,... , ~rn~
d e t e r m i n a n t of (~,~)
~ /
~4}...
;
G
~/~
on t h e v a r i e t y
of
(~4,...~/~
i s t h e Crramian
Tith respect to the scalar
product
We h a v e :
A~.--~q
-~! ~ 0"): ~,"~ ~ ' ~
"
L e t us now suppose t h a t t h e m u l t i p l e v h e r e the, s - ~ y y t i o n i s e x t e n d e d t o a n y s e t indices
is
convergent.
Let
~
denote its
(P9, m ~,h4
There
is a positive S i n c e , by lemma
~4 J " - , ~B
~---p~
we h a v e :
,,,).
of d i s t i n e t
sum and a s s u m e
r e a l number g i v e n a r b i t r a r i l y . 18 . I I ,
Pn,~
series
i s such t h a t :
~- Z
J"'/
~
-145-
G
it
)
follows
"
.
.
)
"P ','-
)~-IP,,,.,.,,i
~"
IP.,,,~,
thatz
z~ t"j,,
P'h,
h 4 ,.., h s
.
.
.
)~
.
h~ ,.., I~
4j., cJr
~'h- ['I.-G(P
,r
~,
) ] +.2.,6..
P ~
Thus~
(z8.3)
~ L
(r)
Fh,
Suppos e t h e r i g h t - h a n d s e r i es i n ( 1 ~ . 3 ) let
~i.i
I ~"
be s u c h t h a t
9 fie,,
is
divergent.
I"h '
t~,
Given
H '> 0
--
%"'~H ~t
pN.,, > H
,,
Sincez
,...,
P
,.,.
)>_
-146-
> /;,~ it
~
p~-..l~ '~
follows that
in this
: ..I-~ .
~,
,.-.,P ~ ) > H
This means t h a t
(18.3) also holds
case.
The i n d e x ~
(T)
G(P
(T)
~
w i l l be c a l l e d t h e o r d e r o f t h e o r t h o g o n a l i n v a r i a n t
and ~he i n d e x
Ig . I I Z .
~
We have
t h e degree of t h i s T ) < + 0o
invariant.
i f .and, o,nl E i f
~t
The p r o o f i s a c o n s e q u e n c e of t h e f o l l o w i n g i n e q u a l i t i e s ~
~
(Igo4)
(T)
~
5!
~
(. T)
5
~:4
S i n c e (lemma 18 . I I ) :
G (18.4)
~(~
foiloTs
from
,--., "~'.~) ~ (iX.2).
P,--P~-4 From t h i s
i
inequality
1~0
G(~)
)
(~,)
(~'~) . . . G~
Zn o r d e r t o p r o v e
(18.5)
Te o b s e r v e
tha~:
P~+F,~,, + .... ) ~ "~ ~ - s ( T ) ' (18.5) folloTs readily.
is said t o belon~ t o t h e class ~ ~ ,i,f ~ 4
It is evident that
C '~.~
if
~ n , ~ m,.
(T)z+~,
-147-
18
,IV,
The s e q u e n c e of p o s i t i v e
.i,s a c o m p l e t e s y s t e m of i n v a r i a n t s of two ~ O ' s
of t h e c l a s s
numbers
{ ~'(T)
} (~:4,~,..
)
T i t h r e s p e c t t o t h e unitary., . e ~ u i v a l e n c e
~
We must p r o v e t h a t i f
and ~
a r e tTo o p e r a t o r s of ~ z
such that.*
~(T then a unitary
) - ~(
operator
(18.8)
T -
of t h e s p a c e
U-'R
e x i s t s such t h a t :
equivalent.
Let us denote - as usual - by T
~
(~: ,I,.~, ... )
br
i . e . t h e tTo o p e r a t o r s a r e u n i t a r y
of
R)
{ ~ ~ }
( e a c h r e p e a t e d as many t i m e s as i t s
the s~uence
of e * g e ~ a l u ~ s
multiplicity).
The i n f i n i t e
product: ~t
c o n v e r g e s u n i f o r m l y on any compact s e t of t h e complex ~ - p l a n e d e f i n e s an e n t i r e
function
~(~)
of t h e complex v a r i a b l e
and
~,
Let
us d e f i n e :
Let
T
t t ~ } be a c o m p l e t e o r t h o n o r m a l s e t o f e i g e n v e c t o r s of t h e o p e r a t o r
, ~th
T a
= ~,%.Venote
by
~
the projector ~ich
o n t o t h e ~ - d i m e n m i o n a l m a n i f o l d s p a n n e d by
L~4 j . - - ~ ~
.
projects We have.*
5
-148-
(~X)= Z (-~) J~ ('P,~T) 'xs.
For any
~
, let
us consider
the power seriess
(4)
It
converges
follows
in the
entire
~-plane
with respect
t o rn~. T h i s
from the inequalities:
9+~
9 +~
~
I ?"
(-'
(PT)
;~
I z s
:~=9+.t
J~ (P~T)I:Xl ~ ~-
,~-. 9+4
,~ C --
U
(T)I),I
z_ ?.
-~!
,t
(T)
I),I.
~=9+ ~
,s=9,4
On t h e
uniformly
other
hand,
for
any given
~
we h a v e s
cl
(P T)), ~: ~ (-.4)~(T)), ~. /vw --~ cQ
Thus,
for
any complex
.,~',~ 7. C-4 4 ~ --, oo
"$:O
,,$:O
"$=O
(~)The operator P~ T in the ~t -dimensional
~
~'('P
T )
Z.. "&"O
i s c o n s i d e r e d as a s t r i c t l y positive s p a c e s p a n n e d by ~t4 j "'" ~ ~ ~ '
operator
-149-
Sets
(,~) = Z.
(-~)',~"(r)),',
~'"(t). 7'. (-,)~,, ('P,,,.T)),'.
"S:O
Given
F.. > 0
, let
~&(~)
s!
We &ssume t h a t
such t h a t f o r
~ "~ ( T )
~ > C~(~)
I>,l ~
~ ( ~ ) i s l a r g e enough t h a t f o r
One has:
Thus, f o r
~
> q8 ( I )
,
I t f o l l o w s that=
oo
(18.~)
5
(T)~.
E.,.
c ~ > ~&
)
-149-
Sets
(,~) = Z.
(-~)',~"(r)),',
~'"(t). 7'. (-,)~,, ('P,,,.T)),'.
"S:O
Given
F.. > 0
, let
~&(~)
s!
We &ssume t h a t
such t h a t f o r
~ "~ ( T )
~ > C~(~)
I>,l ~
~ ( ~ ) i s l a r g e enough t h a t f o r
One has:
Thus, f o r
~
> q8 ( I )
,
I t f o l l o w s that=
oo
(18.~)
5
(T)~.
E.,.
c ~ > ~&
)
-151-
Bib_liofra~hy
C1]
G. FICHER& - F g n z i o n i
of
Lecture
analitiehe
18
di una Tariabile
com~lesea -
E d i z . V e s c h i - Roma~ 1 9 5 9 .
[2]
E . GOUBXkT - C.ours d*Anal]vse ~M~.t h 6 m & t i q u e - v o l ~ Villars
- Paris~
- Gauthier-
199-4~
- U_eber d i e I n t e g r a l e
d e s H e r r n H.e!.linKer und d i e
O r t h o g o n a l i n v a r i .an~en d e r q u a d r a t . i s c h e n T..on u n e n d l . i c h v i e l e n
I!
Varandlichen
Formen
- tionat~
P h y . Bd~ 2 3 , 1 9 1 2 .
[4j
E. H~LLINGER - Di 9 0 r t h o g o n a l i n v a r i a n t e n
quadratiaehen
yen undendlich Tielen Yariablen vl
Gottingen,
1907.
Formen
- Dissertation
-152-
Lecture
Upper
approximation Representation
19
of
the
of
eigenvalues
orth.ogona 1
L e t us c o n s i d e r an a r b i t r a r y
of
_a PC0.
invariants o
c o m p l e t e s y s t e m { ~v4K} of l i n e a r l y
independent vectors in the space
~.
Let and
~r
be t h e
P -dimensional
m a n i f o l d spanned by
~/4 ~-.- , ~/~
Pe the projector
As we saw i n l e c t u r e
15 9 t h e a p p r o x i m a t i n g e i g e n v a l u e s g i v e n by t h e
R a y l e i g h - R i t z method c o i n c i d e w i t h t h e p o s i t i v e operator
on ~ ) ~ r
eigenvalues of the
V~ "1" V~ . I f "1" - as we have assumed - i s s t r i c t l y
then the determinantal
positive,
equation:
c~et I(-]-W'.,w'i)-~(W'~ ~W/j)I = 0 (v) has ~ p o s i t i v e
roots
~4
(v) -~ ~ z -~
"'" ~
(~) ~V "
to Deno~,e hy ~ v~(tO
and
~ >0
, s e t f o r V~>~:
-153(') 4
m
~t
(IOn) 6-~(~): t ~-4
~,
~,
We have:
(v) K
where
~
--
}
K
- as ,usual - de,notes ,the se~uenc,e
of
)
,.the eigenvalues o f -/'.
~e have for ( 1 8 . 3 ) : 4j.~ 1%2 "1%
(1~ .5)
~-~
P~"'T P v~ ~
:
z~ ~"'
h~.., h
p~ ' ! ~ . ,
,
tj .-)
where
~ 9(~) k ~ . . ~ h~.~
set of ~-4 I% f o l l o w s
meA.-A t h a t t h e summation i s e ~ e n d e d t o any
increasing
integers
chosen amongst
~j...
K-4 ) K+4; . - - ; ~ .
that-
c~)
~
[ , k~--~-~
~'" - ~ ' ~ 1
~4< --'c h~. 4 (t)
E~ (~} a l s o d e p e n d s on ~ and on ~ , b u t we do n o t n e e d t o p u t i n t o e v i d e n c e t h i s d e p e n d e n c e s i n c e we c o n s i d e r ~ a n d % %o be f i x e d . For the definition of the orthogonal invariants o f P~-r P~ and PvIK) T p(~l see footnote (4) o f lecture 18.
-154-
4 ) .. ,v*~
+
I~,I~:--~' h~s
_.
_
~"
15,,
- - 9 ~,,
Since (see le~na IS~
4,..,1,0
L~)
4).. ) ~-)r4
L~)
~'~' [~,,..i~,~., ] ~,4 -
tt
-161-
(lemma Ig.V ) and t h a t ,
(19.~),
by t h e same arguments u s e d i n t h e p r o o f of
~K {~'~j > ~K (~'~) "
(le=a
~8.V~
(zg.12) folto~s from ~
~ K (~'~J ~ Kc ~
~
"-
(~.~).
) and from
Remark. I f we r e p l a c e i n t h e f o r m u l a ( 1 9 . 1 0 ) t h e o p e r a t o r
by T~ and . ~ the space
~
~K(
(i.e. tl, e ~ y l e i ~ - m t - approximation, in
, of t h e e i g e n v a l u e
an u p p e r bound by
by p ~ CYK
for
Hoverer,
T
~g
~ (~)
of
~-~
) we s t i l l
obtain
, which i s b e t t e r t h a n t h e one g i v e n
i n o r d e r t o compute ~ ( ~ ' ~ )
Te m u s t , f o r an../ ~
,
compute t h e R a y l e i ~ l - R o t z a p p r o x i m a t i o n s o f t h e e i g e n v a l u e s of T ~ . I f a "base operatbv"
To
i s known, t h e n as o p e r a t o r
may u s e t h e ones c o n s t r u c t e d i n l e c t u r e that,
17.
T~
we
However i t must be remarked
now we do n o t n e e d t o know t h e e i g e n v a l u e s and t h e e i g e n v e c t o r s
f o r To
, but the orthogonal i n v a r i a n t
~
(T~)
j which e n t e r s i n t h e
formula (19.10). We wish t o remark t h a t
orthogonal invariants
can
be u s e d i n
several other topics connected with eigenvalue problems, for instance in the still
partially
of t h e m u l t i p l i c i t y
o f each
orthogonal invariants, to the multiplicity
u n s o l v e d problem c o n s i s t i n g eigenvalue
~ K of
of each
I n f a c t ~ by u s i n g
~ K " I t i s h n T e v e r n o t y e t known h o t t o
This would d e t e r m i n e t h e m u l t i p l i c i t y For an i n t e r e s t i n g
this
T.
it is possible to construct sequences converging
g i v e u p p e r and l o T e r bounds t o t h e m u l t i p l i c i t y , than 1.
in the computation
application
w i t h an e r r o r l e s s completely.
of o r t h o g o n a l i n v a r i a n t s
to
problem see [ 1 ] . A n o t h e r a p p l i c a t i o n T h i c h can be madej c o n c e r n s t h e mini-max
principle
(see IS.VIII).
-162-
We l e a v e t o t h e r e a d e r t h e p r o o f of t h e f o l l o w i n g t h e o r e m (where t h e same n o t a t i o n as i n t h e o r e m 1 5 . V I I I 19 oIV.
Let,
T
15 u s e d ) :
b e l o n g ,to
~.
A n e c e s s a r y and s u f f i c i e n t
condition for the e~uality sign to hold in the following relation:
is t h a t =
I~, ~'~
(R)]
where t h e ol~_er,a t o r
~
-
: t~,,,
is the following= K-4
K-4
R~-- T.
~"
h=,2"(T~,~-h)v.
_ ~~,
( ~ , , ' v ' ~ , ) T vW
4,..j~-4
9+
T__.,
(Tp u ,p~)(~.,p~,)p~.
Another approach t o t h e t w o - s i d e d approximation of t h e e i g e n v a l u e s of a I~0 i n i n t e g r a l highly interesting
form i s due t o L . De V i t o [ 2 ~ . His method i s from a t h e o r e t i c a l
p o i n t of v i e w and does n o t r e q u i r e (2) t h e u s e of t h e R a y l e i g h - R i t z a p p r o x i m a t i o n s . However t h e i t e r a t i v e
( ~ ~' U n f o r t u n a t e l y t h e m a t h e m a t i c a l i n t e r e s t o f De V i t o ' s r e s u l t s has escaped researchers working in this area, probably because of a quite incompetent review of De Vito's paper published in Mathematical Reviews.
-163-
technique rather
needed for
impractical
the
application
procedure
point
of view.
from the numerical
Bibliography
[i]
of his
of
MoP. COLAUTTI - S u l c a l c o l o
Lecture
dei humeri
differenziabile~ atlante
[ 2 ]
L . DE VIT0
-
Sul calcolo
G. FICIIEP~
[4 ]
v.. TREFFTZ -
-
out to be
19
di Betti
di una varlet&
n o t a p e r mezzo d i u n s u o
R e n d . d i M a t e m . - Roma~ 1 9 6 3 .
approssimato
trasformazioni
[3]
turns
compatte
plicit&
- Nota I & II
see [1]
of lecture
Ueber Fehlersh~tzun~
degli, autoya, lori e delle
relative
de,lie molte-
- Rend. Accad. Naz. Lintel,1961.
1.
b e i B e r e c h n u n g y o n F.igenwe.rt, en -
M a t h . JLnnalen B d . 108~ 1 9 3 3 .
-164-
Lecture
~plicit
construction .for
an
20
of
elliptic
~x,'~,
L e t us c o n s i d e r t h e
L (•
the
Greents
matrix
s~stem.
matrix differential
o p e r a t o r of o r d e r ~ u
- D~p cx~ D '~
(o'Ipl',,~_ _ )~
Suppose t h e c o e f f i c i e n t s in the entire
(~ ( x ) t o be complex ~ x ~ Pq X ~ c a r t e s i a n s p a c e and b e l o n g i n g t o
matrices defined ~ oo.
We make t h e f o l l o w i n g h y p o t h e s e s ; i)
The o p e r a t o r
L (x)~) is elliptic
for every
• E X ~ , i.e.
(~ real ~0);
(Ipl:lql: '~) ii)
L (x~D)
is
formally
O.pq(X) : (-4) iii)
self-adjoint,
tpt-t-lCl t
Consider the bilinear
(u,,~)
:
connected with the operator
i.e.,
O..qp(X) ;
form:
(-4)PfAO.p, ~D#u. D~'~ fix, L (•
in
the properly/~dom~in
A
~egulae (4)for the definition
of p r o p e r l y r e g u l a r
domain s e e
lecture
3.
-165-
The c o r r e s p o n d i n g q u a d r a t i c form
~ ( ~ , ~ ) i s such t h a t :
(-~)- ~ (~,~) _> c
/ ID~'u, l~dx
~ Ipl--~
f o r any
~ 6 ~ ~
J
where
A
C i s a p o s i t i v e c o n s t a n t i n d e p e n d e n t of
o
A further hypothesis will require that:
iiii)
A fundamental 'matrix in the large for the operator L (• D)
e~sts.
This m t r i x -
say F(X,F) - is defined as follows: F(x,y) is a ~ x ~
matrix defined for (X , y)E (X ~x X )-~,where ~ cartesian
~(x,y)
2)
F(•
3)
I) '~ F ( x , y ) x
is
and i s such t h a t :
C ~" i n t h e s e t
;
~
: 0
I•165
~o~ I •
belonging to
,,
Z 2,CX ~) and v a n i s h i n g o u t s i d e of
the function:
u(x) = #x~~(y; F(x,y)dy
(zo.1)
Z ~ - w e a ~ s o l u t i o n of t h e d i f f e r e n t i a l From t h e t h e o r y of e l l i p t i c
follows that the function
(~)
(X~xX~)-~
: F (y,x)
For any
bounded s e t ,
i s an
X ~ • X ~
1)
4) a
product
is t h e diagonal of t h e
See l e c t u r e
5.
bb(X)
equation
linear differential has
~
strong partial
L b~ : ~ 9 operators
,
{2)
derivatives
it up
-166-
to the order
~m~
i n any bounded domain of t h e p l a n e .
D e r i v a t i v e s of order not exceeding ~m~-~ can be computed by differentiating h y p o t h e s i s 3) If
(20.1) under t h e i n t e g r a l
9
~ s C ~ ~ then
differential
equation
~(g)
F(•
~pq
Let
Ca~
i s a s o l u t i o n of t h e
in the c l a s s i c a l
operators Tith constant c o e f f i c i e n t s 9 the
CLpq(X) ~ 0
for
Ipl§
c o n s t a n t m a t r i c e s such t h a t
L (~) : ~ ~qI ) F D q ~ . By L ( ~ )
and denote ( f o r IpI = Iql = ~ )
z~
we
~ (~> : ~et
Let us denote by
dimensional c a r t e s i a n s u r f a c e element on ~
5(•
~
t h e u n i t sphere
apace and by d ~ . Define (
:
(~T~,)~-' (~.4)! for
S
/~
:
(A y)
~ O.
q
and t r a n s p o s i n g
J~J , ~ i n t h e
;O -
t h e measure of t h e h y p e r i s t h e Laplace o p e r a t o r )
( ay)
~ odd~ and
O~pq~ P ~
s h a l l denote the matrix obtained
by t a k i n g t h e m a t r i ~ of t h e c o f a c t o r s of (L q ~ ~ it.
sense.
can be given i n c l o s e d form. For i n s t a n c e p l e t us
suppose t h a t by
is
L t~ ~- f
In t h e case of e l l i p t i c matrix
s i g n . This f o l l o T s from
I G~('~)
-167-
for
~ even (see [ ( ~ ]
).
F (x,y)
Then
i s d e f i n e d as f o l l o w s :
(3)
F (x,y)
L (:D) 5 ( •
In t h e g e n e r a l case of v a r i a b l e fundamental solution - Aj that
~=
~.
.
coefficients
the existence
i n t h e l a r g e h as been p r o v e n by G i r a u d
F or ~a
arbitrary,
see
[ 3 ~ .
of a
~ 4 ] for
The method d e s c r i b e d i n
p a p e r ca n be e x t e n d e d t o t h e c a s e of s y s t e m s , L e t us c o n s i d e r i n t h e s p a c e
functions with scalar
~
H~
strong derivatives
( A ) ( s p a c e of v e c t o r v a l u e d
up t o t h e o r d e r
~
) the net
product:
The s p a c e o b t a i n e d from
~
(~)by
functional
to this
net scalar
product Till
by
the finite
dimensional vector
~
of degree functions
_~ ~ - ~ of
~
belonging to
~.
, such t h a t
(A)
completion with respect
be d e n o t e d by ~
(A),
If .e denote
s p a c e composed of p o l y n o m i a l s ~ /
B (~/p~/) : 0
, Te must c o n s i d e r tTo
as c o i n c i d i n g when t h e y d i f f e r
The s p a c e
~ ( A ) i s none o t h e r s e x c e p t
isomorphism, than the quotient L e t us d e n o t e by ( ~ )
by a p o l y n o m i a l
space
H~
the scalar
(A)
for a Hilbert
/ r.
product in
~
(A)and consider
the operator
IA ~ (y~ I:"(x,y) ay. (3)
~
~
I f L~i (.~') is t h e e l e m e n t o f L.('~'), t h e n by m a t r i x Those e l e m e n t s a r e ~ . .~j ( ] ) ) S ,
/~
L('D)5
.e
mean
the
-168-
Since for
~
~ Z ~
(A),
R U.
I--i~
belongs to
as an o p e r a t o r w i t h domain
~ ~ (A)
It is eanil 7 seen that
i s a compact o p e r a t o r .
has
~ (A)
~
R
, we can c o n s i d e r
(A)
and r a n g e i n t h e s p a c e
a dom~n and range in
~ (A).
The a d j o i n t
Z ~ ( A ) . For
~ ~ H
operator
~ ~
(A) i t i s
e x p r e s s e d as f o l l o w s
R 'u-- (-~)
DP v(,)) x
p (x)
F(v,x)ax
Dq x
A and r e p r e s e n t s
a function belonging to
H
i n a n y compact s e t o f t h e
plane. L e t u s nov c o n s i d e r t h e f o l l o w i n g BVPs
L (•
(20.2)
: (-J)~
A ,.
in
(~o.8)
DP~ --0
on
@A
o_~ I p I -~ m r
Suppose we w i s h t o r e p r e s e n t -- R ~13
containing t h e spa~e
b7 a p r o p e r c h o i c e of A ~z
in its (Ao-A
interior.
~ 9 Let
Lot
t~
~/' F_ A o- ~
is
H~
(A)
i n t h e f o l l o w i n g wayz
A o be a bounded domain
( x ) j be a c o m p l e t e s y s t e m i n
) . The b o u n d a r y c o n d i t i o n s
(in the sense of functions of ered for
the solution
( 2 0 . 8 ) w i l l be s a t i s f i e d
) if the f~nction
R x~r
consid-
such t h a t l
/
0,0.4)
~
@,~ (,/) R * ~ d y
= o
Ao-A
Sets /
(x) : |
co
q~K (Y)F(X'y)cly'
K
o-,6,
C o n d i t i o n s ( 2 0 . 4 ) can be w r i t t e n :
( K: ~,:~,- )
-169-
(.-0.5)
(K=
V
L e t us c o n s i d e r t h e m a n i f o l d equation
L (x , ~ ) ~ = o
A
in
of solutions
Let
H~
P
,
('A).
~
since it
This
is a closed sub-
(A). be t h e p r o j e c t o r
PIz - O
is satisfied
if
the function
~--
For
(A) ~
1~ ~ kl
(A)
J .
o f t h e homogeneous
, ~hieh belong to
manifold i s a c l o s e d subspace of space of
~,2,.-.
4%
of
9 It
(A)
onto ~ /
follovs that
, Condition (20,5)
f o r any
~- ~
FI~ (A),
R * (17-PIT;satisfies t h e boundary c o n d i t i o n s ( 2 0 , 3 ) . FI
2~
( A' ) ( f o r every A'
such t h a t A' C A
) we havel
b~
as c a n y p r o v e d e a s i l y .
It
follows that the function:
i s t h e s o l u t i o n o f t h e BYP ( 2 0 . 2 ) ,
(20~
We have t h u s c o n s t r u c t e d e x p l i c i t l y
G--
R R-
This construction is perfectly by u s i n g r e s u l t s In fact,
of lecture
the Green's transformation:
R*P R . iJ
suitable
f o r a p p l y i n g t h e o r e m 19.111
17.
l e t us t a k e a b a s i s i n t h e s u b s p a c e
~/
, say
~ ~
~ ,
-170-
~Q
and d e n o t e by
by
~4
, ..~j~
- Iq ~ P~ ~ (5
,
the
projector of
~ (~)
From theorem 17.]II
converges unifermly to
and t h e o p e r a t o r s
~
the subspace spanned
it follows that
G.
~
: ~
~ -
On the o t h e r hand~ the o p e r a t o r ~n,
belong to
onto
f o r any
~t
such t h a t :
>
This f o l l o w s from p r o p e r t y S) o f The o r t h o g o n a l i n v a r i a n t s be c a l c u l a t e d
by u s i n g t h e r e s u l t s
e x p r e s s e d as an i n t e g r a l
F(X,~/)o of
G~
corresponding
of l e c t u r e
19~ s i n c e
t,o such ~t R* R
o p e r a t o r and t h e same i s t r u e f o r
can
can be
~ ~ ~
~ ]
which i s a d e g e n e r a t e o p e r a t o r . I t f o l l o w s t h a t we may c o n s i d e r as s o l v e d t h e e i g e n v a l u e p r o b l e m s c o n n e c t e d w i t h t h e boundary v a l u e p r o b l e m ( 2 0 . 2 ) ,
C-V-p
(20o3), i.e.
=o.
L e t us c o n s i d e r some p a r t i c u l a r
cases corresponding to classical
e i g e n v a l u e problems of m a t h e m a t i c a l P h y s i c s . For t h e s e p r o b l e m s we s h a l l construct explicitly L e t us f i r s t f o r an i s o t r o p i c space
~
I
or
the approximating sequences for the eigenvalues. consider the classical
o p e r a t o r of l i n e a r
elasticity
homogeneous body~ which we w r i t e as f o l l o w s i n t h e
X 3 :
-171-
with
the
boundary
assume the
condition
L~ = 0
on ~ A
.
As b i l i n e a r
f o r m we may
following:
1~ (' u,,~')
,:/l, 'v':/~,,, ~;/~ %,/~, ) a• A
(we c o n s i d e r
f r o m now on o n l y r e a l
vector-valued
functions).
Let us assume that: -4
(--~(t) I The f u n d a m e n t a l
F,:j (x-y)
:: ),x:)~tt "4 matrix
~.:2,~ =.5 .
for
- as given
by Somigliana
- is
the
following:
9z (x_y i zcp(,Ix_ y j )
g~ (4+,~)
,"~x; '3x i
Set.
"f~j (x,y) ---
IIF:,,/h
j,~/h
~,,(/,
oo
-- ~:~ ~ ~t (K')
:~X~.
~ -~, oo
(,;)
The
where
are t h e roots of t h e f o l l o w i n g d e t e r m i n a n t a l e q u a t i o n :
~ ~v/~ t is
any complete system of f u n c t i o n s v a n i s h i n g on / ~ .
The 17K(v~ are given by the f o l l o w i n g formula:
,.
p~
~
'
A
~j(~,y~ (,)~(y~d~dY -E~ [r~ ]
- ~
AA
'
-173-
It
is
easy for
~
and
- 2
~ : ~
t o d e r i T e from t h e aboTe f o r m u l e ~
the approximations for the eigenT~lues for
a membrane f i x e d a l o n g i t s
boundary. As a s e c o n d e x a m p l e , l e t u s c o n m i d e r t h e T i b r a t i o n s clamped along i t s
boundary, ioeo the two-dimennion~l eigenTalue problem
A s A s ~. -
In this
.),~
: o
in
A
c ~ s e , t h e l o w e r bounds
"~
u.:
o
on
ere e x p r e s s e d , by means o f t h e
I .,i
l•
12'
1
h
A
,,--4
~ G3~ t is an orthonormal symtela of harmonic polynolaials i n A
/'aA.
follows:
:
"iIl
h:4
,
K
Rayleigh-Ritz approximations, ~
4~ ~
of a plate
~ z )!/A,
is supposed simply connected. As a l ~ s t
e x a m p l e , l e t us c o n s i d e r t h e e i g e n v a l u e p r o b l e m c o n n e c t e d
w i t h t h e b u c k l i n g o f a c l a m pe d p l a t e :
~.A
u. 'r ~ / ~ u .
- 0 in
A
U,-
~
9~
:
0
on
9A,
A f t e r c o m p u t i n g t h e R ~ y l e i g h - R i t z a p p r o x i m & t i o n , we h a t e f o r t h e l o w e r approximation of
~ ~ :
-174-
~)
~.(t) A
J
J:4
A
4j~
+7. h
j
;.:4
AA
The
~
h
h a v e t h e same meeming a s i n t h e p r e v i o u s
example.
Ix-t l dr
dx §