Lecture Notes in Control and Information Sciences Edited by M.Thoma and A.VVyner
120 L. Trave, A. Titli, A. Tarras
Lar...
90 downloads
528 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Control and Information Sciences Edited by M.Thoma and A.VVyner
120 L. Trave, A. Titli, A. Tarras
Large Scale Systems: Decentralization, Structure Constraints and Fixed Modes
Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
Series Editors M. Thoma • A. Wyner
Advisory Board L D. Davisson • A. G. J. MacFarlane • H. Kwakernaak .I.L. Massey • Ya Z. Tsypkin. A. J. Viterbi Authors Louise Trave Andre Titli Ahmed Maher Tarras Laboratoire d'Automatique et d'Analyse des Systemes du Centre National de la Recherche Scientifique Toulouse France
ISBN 3-540-50787-6 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-50787-6 Springer-Verlag NewYork Berlin Heidelberg Library of Congress Cataloging in Publication Data Trave, L. (Louise) Large scale systems : decentralization structure constraints and fixed modes L. Trave, A. Titli, A. Tarras. (Lecture notes in control and information sciences ; 120) Bibliography: p. Includes indexes. ISBN 0-387-50787-6 (U.S.) 1. System theory. 2. Control theory. I. Titli, Andre. I1. Tarras, A. (Ahmed). II1. Title. IV. Series. Q295.T73 1989 88-35984 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin, Heidelberg 1989 Printed in Germany Offsetprinting: Mercedes-Druck, Berlin Binding: B, Helm, Bedin 2161/3020-543210
PREFACE
The
growing
dimensions and
c o m p l e x i t y of
the
present
day
technological,
e n v i r o n m e n t a n d societal p r o c e s s e s is one o f t h e f o r e m o s t c h a l l e n g e s to s y s t e m t h e o ry.
Determining a
solution
for
the
problems
arising
in l a r g e
scale
systems
may
become e i t h e r v e r y uneconomical o r e v e n impossible if u s i n g t h e c l a s s i c a l mathematical tools d e v e l o p e d f o r s y s t e m a n a l y s i s a n d c o n t r o l .
T h e main r e a s o n i s t h a t classical
t h e o r i e s a r e n o t b u i l t for d e a l i n g with h i g h d i m e n s i o n a l i t y models. Now, t h e e s s e n t i a l c h a r a c t e r i s t i c s of l a r g e scale s y s t e m s a r e a h u g e n u m b e r of i n p u t a n d o u t p u t v a r i a b l e s on s u b s y s t e m s w h i c h a r e g e n e r a l l y g e o g r a p h i c a l l y d i s t r i b u t e d . T h e s e new f e a t u r e s i n v o l v e l a r g e a n d complex m o d e l s , problem
may
not
be
solvable.
Moreover,
we m u s t
face
though the
modelling
economical a n d
reliability
p r o b l e m s r e l a t e d to t h e i n f o r m a t i o n t r a n s f e r b e t w e e n c o n t r o l s t a t i o n s . For t h e s e r e a s o n s , t h e d e c o m p o s i t i o n , a g g r e g a t i o n a n d model r e d u c t i o n t e c h n i c s h a v e r e c e i v e d c o n s i d e r a b l e a t t e n t i o n in t h e l a s t t e n y e a r s . A g r e a t deal of t h e o r e t i c a l a n d p r a c t i c a l r e s u l t s c o n c e r n i n g t h e i r a p p l i c a t i o n s h a v e b e e n o b t a i n e d in t h e a r e a o f stability and decentralized control.
In p a r t i c u l a r ,
t h e p r o b l e m of s t a b i l i z a t i o n a n d
pole p l a c e m e n t with d e c e n t r a l i z e d dynamic c o m p e n s a t i o n is of g r e a t p r a c t i c a l i n t e r e s t . Despite the numerous advances around
this problem,
which are
materialized by
a
l a r g e n u m b e r of p a p e r s , t h e r e is n o n e s y n t h e t i c a l s u r v e y work e x c l u s i v e l y c o n c e r n e d with t h i s p r o b l e m a n d t h e v a r i o u s o t h e r o n e s which a r e r e l e v a n t . The main o b j e c t i v e of t h i s book is to p r o v i d e s u c h global s u r v e y b y p r e s e n t i n g t h e p r e s e n t d a y r e s u l t s which can b e u s e d f o r : -the
a n a l y s i s of stabiHzability a n d pole p l a c e m e n t u n d e r d e c e n t r a l i z e d c o n s -
traints, - t h e d e t e r m i n a t i o n of a c o n t r o l policy s o l v i n g t h e p r o b l e m of s t a b i l i z a t i o n o r pole p l a c e m e n t w h e n d e c e n t r a l i z e d dynamic c o m p e n s a t i o n fails { p r e s e r v i n g a d e c e n t r a l i z e d s c h e m e of c o n t r o l o r minimizing t h e c o s t a s s o c i a t e d to t h e i n f o r m a t i o n t r a n s fer), - t h e d e s i g n of t h e s e p r e s p e c i f i e d c o n t r o l l a w s .
IV By t h i s w a y ,
t h i s b o o k s u p p l i e s t h e tools for b u i l d i n g a m e t h o d o l o g y w h i c h
b r i n g s a s o l u t i o n to t h e complete p r o b l e m of c o n t r o l in t h e c o n t e x t of l a r g e systems.
Moreover,
the last part
scale
of t h e w o r k t a k e s i n t o a c c o u n t p a r a m e t r i c a n d
structural robustness constraints. C h a p t e r I p r e s e n t s an o v e r v i e w of t h e w e l l - k n o w n r e s u l t s a r o u n d t h e p r o b l e m o f s t a b i l i z a t i o n a n d pole a s s i g n m e n t of l i n e a r t l m e - i n v a r i a n t dynamic s y s t e m s s u b j e c t e d to c e n t r a l i z e d c o n t r o l (no s t r u c t u r a l c o n s t r a i n t s ) . T h e f u n d a m e n t a l c o n c e p t s of c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y are i n t r o d u c e d a n d t h e y a r e e x t e n d e d to t h e c o n cepts of s t r u c t u r a l
controllability and
observability,
which a r e
of major p r a c t i c a l
i n t e r e s t in t h e s t u d y of l a r g e scale s y s t e m s . I n d e e d , t h e s e p r o p e r t i e s a r e e s t a b l i s h e d from t h e s y s t e m s t r u c t u r e a n d t h e y do n o t d e p e n d on t h e p a r t i c u l a r c o n f i g u r a t i o n o f the parameters I values.
In t h i s f r a m e w o r k ,
t h e p r o b l e m r e d u c e s to one of b i n a r y
n a t u r e t h a t allows f o r t h e a p p l i c a t i o n of g r a p h - t h e o r e t i c c o n c e p t s . T h i s a p p r o a c h is t h u s specially a d e q u a t e for l a r g e scale s y s t e m s . The n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s f o r t h e e x i s t e n c e of a s o l u t i o n to t h e problem of stabilization and cases
pole a s s i g n m e n t a r e
presented
for
the
following two
:
- centralized state feedback - centralized output feedback T h e y a r e s t a t e d in t e r m s of t h e c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y p r o p e r t i e s of the system. It is c l e a r t h a t a good u n d e r s t a n d i n g of t h e
c o n c e p t s of c o n t r o l l a b i l i t y and
o b s e r v a b i l i t y is i n d i s p e n s a b l e b e f o r e p r o c e e d i n g to t h e s t u d y of t h e a b o v e p r o b l e m with s t r u c t u r a l c o n s t r a i n t s on t h e c o n t r o l . T h i s p r o b l e m i s i n t r o d u c e d in C h a p t e r II, In t h e
c o n t r o l of l a r g e s c a l e s y s t e m s w h o s e e s s e n t i a l c h a r a c t e r i s t i c is t h e i r
high dimensionality, conventional techniques
fail to
give r e a s o n a b l e s o l u t i o n s w i t h
r e a s o n a b l e c o m p u t a t i o n a l e f f o r t s . The classical c o n t r o l t h e o r y g e n e r a l l y s t a n d s on t h e assumption of a centralized information pattern ; i.e., s y s t e m is available at a g i v e n c e n t e r ,
all t h e i n f o r m a t i o n on t h e
g e n e r a l l y a g e o g r a p h i c a l p o s i t i o n , w h e r e all
t h e c a l c u l a t i o n s can b e c a r r i e d o u t . F o r most l a r g e scale s y s t e m s , t h i s c e n t r a l i z a t i o n a s s u m p t i o n d o e s n o t h o l d d u e to t h e
g e o g r a p h i c a l d i s t r i b u t i o n of t h e
information.
This new constraint leads
economical a n d r e l i a b i l i t y p r o b l e m s r e l a t e d to t h e i n f o r m a t i o n t r a n s f e r .
to
This implies
t h a t t h e c o n t r o l s y s t e m s h o u l d b e made of a n u m b e r o5 local c o n t r o l l e r s t h a t a r e only allowed to u s e p a r t o f t h e whole i n f o r m a t i o n in o r d e r to g e n e r a t e p a r t of t h e whole
V c o n t r o l . In p a r t i c u l a r ~ t h e d e s i g n of f e e d b a c k c o n t r o l l e r s r e q u i r e s r e s t r i c t i o n s on t h e p a r t i c u l a r s y s t e m o u t p u t - i n p u t p a i r s t h a t t h e c o n t r o l l e r can c o n n e c t . When no t r a n s f e r of i n f o r m a t i o n b e t w e e n t h e d i f f e r e n t local s t a t i o n s is allowed, t h i s y i e l d s to a d e c e n t r a l i z e d s c h e m e of c o n t r o l .
When some b u t
n o t all t r a n s f e r s
( t h o s e of minimum c o s t for example) a r e allowed we o b t a i n a n o n s t a n d a r d r e d u c e d information p a t t e r n . It is c l e a r t h a t t h e d e c e n t r a l i z e d c o n t r o l s c h e m e i s t h e most economically a d v a n t a g e o u s s i n c e no t r a n s f e r of i n f o r m a t i o n for one g e o g r a p h i c a l location to a n o t h e r is r e q u i r e d : system inputs are
a s s i g n e d to a g i v e n s e t of local c o n t r o l l e r s ( s t a -
t i o n s ) , w h i c h o b s e r v e only local s y s t e m o u t p u t s . This is t h e r e a s o n t h e f i r s t s t u d i e s for t h e p r o b l e m of s t a b i l i z a t i o n a n d pole a s s i g n m e n t w e r e i n v e s t i g a t e d w i t h i n a d e c e n t r a l i z e d c o n t r o l s c h e m e . T h e r e s u l t s r e f e r i n g to t h i s s t u d y a r e p r e s e n t e d in t h e f i r s t p a r t of t h e c h a p t e r . T h e s e r e s u l t s w e r e t h e n e x t e n d e d to t h e more g e n e r a l case of a r b i t r a r i l y s t r u c t u r a l l y c o n s t r a i n e d c o n t r o l w h i c h is c o n s i d e r e d in t h e s e c o n d p a r t of t h e c h a p t e r . The main c o n c e p t to deal with t h i s k i n d of p r o b l e m is t h e new n o t i o n of f i x e d modes w h i c h is
f u n d a m e n t a l in t h e
s t u d y o f s t a b i l i z a t i o n a n d pole p l a c e m e n t with
s t r u c t u r a l l y c o n s t r a i n e d dynamic c o m p e n s a t i o n . I n d e e d t
t h e e x i s t e n c e o f a solution
d e p e n d s c r i t i c a l l y on t h e p r o p e r t i e s of t h i s finite s e t of n u m b e r s . T h e p r e s e n c e o f u n s t a b l e f i x e d m o d e s i n d i c a t e s t h a t s t a b i l i z a t i o n is i m p o s s i b l e while t h e p r e s e n c e of a n y s o r t of f i x e d modes r u l e s out a r b i t r a r y pole p l a c e m e n t . Due t o t h e t h e o r e t i c a l a n d p r a c t i c a l i m p o r t a n c e o f t h e notion of f i x e d m o d e s , t h e whole C h a p t e r 3 is c o n c e r n e d with t h e i r c h a r a c t e r i z a t i o n . T h e n u m b e r of d i f f e r e n t c h a r a c t e r i z a t i o n s which can b e f o u n d in t h e s c i e n t i f i c l i t e r a t u r e i s i m p r e s s i v e . Moreover, e v e r y one of them is e x p r e s s e d in t e r m s of i t s own a u t h o r s d e f i n i t i o n s a n d i n t r o d u c e d in a d i f f e r e n t w a y . presented
in two g r o u p s ,
With t h e main o b j e c t i v e of classifieation~
t h e time-domain a n d t h e
they
are
frequency-domain characteriza-
t i o n s . A p a r t i c u l a r a t t e n t i o n is g i v e n to show t h e e x i s t i n g e q u i v a l e n c e s . The a n a l y s i s of e v e r y one of them allows u s to p o i n t o u t t h e c o n d i t i o n s for t h e e x i s t e n c e o f f i x e d modes a n d to g i v e a d e a p i n s i d e into t h e i r i n t e r p r e t a t i o n r e l a t e d to t h e i r o r i g i n s . The d i f f e r e n t t y p e s of f i x e d modes a r e o u t l i n e d : no s t r u c t u r a l l y f i x e d modes w h i c h n e e d a q u a n t i t a t i v e a n a l y s i s of t h e s y s t e m a n d s t r u c t u r a l l y f i x e d modes for w h i c h a s t r u c t u r a l a p p r o a c h is more s u i t a b l e ( r e p r e s e n t a t i o n of t h e s y s t e m b y a g r a p h , u s e o f g e n e r a l c o n c e p t s of g r a p h t h e o r y ) . From
the
above
analysis,
the
different
results
concerning
the
problem
of
d e c e n t r a l i z e d s t a b i l i z a t i o n a n d pole p l a c e m e n t a r e u n i f i e d a n d e x p r e s s e d in t e r m s o f t h e d i f f e r e n t t y p e s of f i x e d m o d e s .
VI Whereas structure
Chapter
2 makes clear
(decentralized
the existence
that
for example)
of fixed modes,
the
choice a priori
can generate
Chapter
of a feedback
some problems
3 provides
control
if it gives
all t h e n e c e s s a r y
rise
to
t o o l s to a n a l y s e
and explain the situation.
As
a
different
natural
methods
consequence,
the
following
chapters
which are available to determine
are
concerned
an acceptable
with
the
control policy such
that stabilization or pole placement is possible. In the tralized
context
control
of large
structure
scale
(Chapter
systems,
allow
to
4 presents
avoid
fixed
a
class
modes
An original approach trol.
Vibrational
thods
(based
control
compatible presence
with
decentralized
too
consider
or
constraints
fixed modes.
From another
when
fixed modes. the
based
on
Chapter
the
an
can
-
the
system
origin.
vibrational
conventional
as
it
solves
point of view,
the
me-
of lack
method
is
problem
in
a particular
a method
con-
control
because
a stabilization
that
for the
applicadesign
of
or non-linear
control laws appears
to
of structurally
fixed modes,
we m u s t
which minimizes the cost
which is of immense practical
be
constraints
of Chapter
interest,
is
5 is to present
feedback
appropriate
more
Roughly
o n t h e c o n t r o l s e e m s to b e t h e m o s t
or pole placement
characterizations
is physically
geographical
and
a new control structure
stabilization
appropriate
s i t u a t i o n we a r e d e a l i n g w i t h .
different
in u s i n g
where
constitutes
in p r e s e n c e
the structural
different
3 : one
structural
which
5.
The purpose of
that
This problem,
to s o l v e t h e
design
a
) do n o t a p p l y
control
of time-varying
we a r e
transfer.
In fact, relaxing way
from
controllers
control laws.
the problem of determining
convenient
not
cases
principles
vibrational
the subject of Chapter
are
such
5).
time-varying
: it c o n s i s t s
in the
control is presented
of the information
for
developed
that
time-varying
difficult
they
or feedforward
When the implementation be
that
decentralization
of unstable
tion of vibrational
decentralized
a decen-
a new control structure
is minimum (Chapter
can be useful
It is shown the
i s to p r e s e r v e
laws are examined and compared.
is then
on feedback
of measurements.
of
provided
Several kinds of time-varying
objective
4) o r t o d e t e r m i n e
that the cost of the information transfer Chapter
the
the
control of
fixed
than
speaking,
partitioned
locations of the inputs
different
structure. modes
another two types
in several and
problem
methods
are
presented
depending
on
of situations
due
In this
of
available methods
These
which
stations,
outputs.
in presence
the
type
are in of
can occur
:
for example
to
case,
it is clear
Vll
that the decentralized structure
would b e t h e m o s t a p p r o p r i a t e .
O u r goal i s t h u s to
d e t e r m i n e t h e minimal i n f o r m a t i o n e x c h a n g e s b e t w e e n s t a t i o n s w h i c h g e t r i d of f i x e d modes.
The
optimality
criterion
can
be
chosen
as
the
number
of f e e d b a c k
links
b e t w e e n two d i f f e r e n t s t a t i o n s o r a s t h e c o s t a s s o c i a t e d with t h e i m p l e m e n t a t i o n of these feedback Hnks,
-
present
either the system does not reflect a prespecified partitioning or the stations the
particularity
that
the
cost
of local
f e e d b a c k s is n o t n e g l e c t a b l e w i t h
r e s p e c t to t h e c o s t of f e e d b a c k s b e t w e e n two d i f f e r e n t s t a t i o n s . I n t h e s e c a s e s , w a n t to d e t e r m i n e t h e minimal c o n t r o l s t r u c t u r e s
(if s e v e r a l )
we
for which t h e s y s t e m
h a s n o f i x e d m o d e s . T h e y do n o t g e n e r a l l y i n v o l v e all t h e local f e e d b a c k s .
Note
that
the
problem resulting
from t h e
second
s i t u a t i o n is more g e n e r a l .
I n d e e d , we a r e b r o u g h t b a c k to t h e f i r s t p r o b l e m b y s e t t i n g to z e r o t h e c o s t s a s s o dated
to t h e local f e e d b a c k s .
Therefore,
all t h e m e t h o d s w h i c h a r e p r e s e n t e d i n t h i s
g e n e r a l f r a m e w o r k c a n also b e u s e d f o r t h e p a r t i c u l a r c a s e .
As a logical following to t h e d e t e r m i n a t i o n of a d e q u a t e f e e d b a c k c o n t r o l s t r u c tures,
Chapter
structural techniques.
6 c o n s i d e r s t h e p r o b l e m of t h e
constraints.
It p r o v i d e s
synthesis
of f e e d b a c k
an o v e r v i e w of a p p r o p r i a t e
C o n s i d e r a t i o n s on the r o b u s t n e s s
gains under
near-optimal design
o f s u c h c o n t r o l l e r s a r e also i n c l u d e d ,
in t h e s e n s e t h a t u n c e r t a i n t i e s d u e to p a r a m e t e r v a r i a t i o n s o r e x t e r n a l d i s t u r b a n c e s are considered.
T h e e f f e c t s of s t r u c t u r a l
t u a t o r s , line c u t s . . . )
Chapter robustness.
7,
perturbations
( f a i l u r e of s e n s o r s
ac-
are studied later.
and
the
last
one,
approaches
indeed
the
problem
of
structural
The chapter extends the results concerning decentralized or structurally
c o n s t r a i n e d c o n t r o l s y s t e m s to s y s t e m s s u b j e c t e d to s t r u c t u r a l f a i l u r e s of s e n s o r s
or
actuators
S e v e r a l w a y s to c o n c l u d e on t h e r o b u s t n e s s are presented.
perturbations,
mamely
or c u t s of l i n e s i m p l e m e n t i n g f e e d b a c k - l o o p s .
n o t i o n s of s t r u c t u r a l l y r o b u s t c o n t r o l a n d s t r u c t u r a l l y r o b u s t structure,
or
of a c o n t r o l ,
The
modes are introduced.
knowing its prespecifled
T h e y a p p e a r a s a n e x t e n s i o n of w e l l - k n o w n r e s u l t s d e r i v e d
from f i x e d m o d e s c h a r a c t e r i z a t i o n s . At l a s t , a g r a p h - t h e o r e t i c
algorithm is presented
to d e t e r m i n e t h e i n f o r m a t i o n p a t t e r n o f a r o b u s t r e g u l a t o r w i t h minimum c o s t . Through ples
an the book,
which make easier
collection of p a c k a g e s book
their
e v e r y r e s u l t is i l l u s t r a t e d b y small s i g n i f i c a t i v e e x a m understanding.
corresponding
( e v a l u a t i o n of f i x e d m o d e s ,
trained structure
Moreover,
the
appendices
contain
to some i m p o r t a n t a l g o r i t h m s p r e s e n t e d
d e t e r m i n a t i o n of t h e i r
feedback matrices...).
type,
a
in t h e
c a l c u l a t i o n of c o n s -
Vlll T h i s b o o k i s t h e c o n s e q u e n c e o f an i n t e n s i v e r e s e a r c h a c t i v i t y of s e v e r a l y e a r s in t h e a r e a o f a n a l y s i s a n d c o n t r o l o f l a r g e s c a l e s y s t e m s a n d more p a r t i c u l a r l y in d e c e n t r a l i z e d c o n t r o l in t h e
Lahoratoire
d'Automatique et
d'Analyse des
Syst~mes
(LAAS). T h e a u t h o r s would like to e x p r e s s t h e i r g r a t i t u d e to all t h e c o l l e a g u e s of t h e i r r e s e a r c h g r o u p a n d to t h e D i r e c t o r of t h e LAAS, P r o f e s s o r A.
COSTES,
for their
scientific and financial s u p p o r t . The a u t h o r s s i n c e r e l y t h a n k Miss C.
FABRE f o r t y p i n g
all t h e s e p a g e s a n d
Mr. E. LAPEYRE-MESTRE for t h e d r a w i n g s of t h i s b o o k ,
Toulouse, January 1989
Louise T R A V E Andr~ TITLI Ahmed TARRAS
TABLE
OF
CONTENTS
INTRODUCTION
CHAPTER
1. C E N T R A L I Z E D
CONTROL
: STABILIZATION
AND
POLE
ASSIGNMENT
I.I. - Introduction 1.2. - Controllahility a n d observablllty
Stability
1 . 2 . I.
-
1.2.2.
-
Controllability
1.2.3.
-
Observability
1.2.4.
- Kalman's canonical form
1.2.5. - Practical importance of the concepts of controllability a n d B
observability
8
1.2.6.
-
Stabilization a n d pole a s s i g n m e n t
1.2.7.
-
Origins of uncontrollable a n d u n o b s e r v a b l e
10
modes
14
1.3. - Structural controllability a n d observability
15
I. 3. I. - Structural controllability 1.3.2. - General results o n structural controllability a n d observability
19
I. 3.3. - Computational
20
considerations
31
I. 4. - Conclusion
CHAPITER POLE
2. S T R U C T U R A L L Y
CONSTRAINED
CONTROL
• STABILIZATION
AND
ASSIGNMENT
2.1. - Introduction
33
2.2. - Decentralized structural constraints
34
2.2. I. - P r o b l e m
formulation
35
2.2.2. - Decentralized fixed m o d e s
37
2.2.3. - Decentralized stabilization a n d pole a s s i g n m e n t
39
X 2.3. - A r b i t r a r y
50
structural constraints
53
2.4. - Evaluation of fixed m o d e s
2.4.1.
- By
the spectra
comparing
of t h e o p e n - l o o p
and closed-loop dynamic
matrix
53
2.4.2.
- By
calculation of the s y s t e m
2.4.3.
- Concluding
modes
sensitivity
remarks
60
2. S. - C o n c l u s i o n
CHAPITER
61
3. C H A R A C T E R I Z A T I O N
OF
FIXED
MODES
3. I. - Introduction
62
3.2. - Characterization
in t e r m s of transmission
3.2.1.
- T a r o c k ' s results
3.2.2.
- Hu
and
66
and
67
Wiswanadham
70
results
71
- Seraji's results
3.2.5. - D a v i s o n 3.2.6.
63
zeros
Jiang results
B.2.3. - V i d y a s a g a r 3.2.4.
and
Wang
72
results
75
- Comments
3.3. - Algebraic characterizations
3.3.1.
- Matrix rank
3.3.2.
- Recursive
3.3.3.
- Particular cases
75
: time d o m a i n
75
test characterization
80
characterization
83 87
3.3.4. - C o m m e n t s
3.4. - A l g e b r a i c
3.4.1.
characterizations
- Necessary
- Transfer distinct
3.5.
: frequency
88
function matrix for 88
of f i x e d m o d e s
function matrix characterization
for systems with 91
poles
3.4.3.
- Polynomial matrix rank
3,4.4.
- General transfer
3.4.5.
- Interpretation
- Structurally
domain
conditions on the transfer
the existence 3.4.2,
54
fixed modes
test characterization
function matrix characterization
94 95 102
104
XI 3.5.1,
- Preliminaries
3,5.2,
- Controllability
104
information 3,5.3,
-
3.5.4.
- Evaluation
observability
under
decentralized
111
structure
Characterization
of structurally
of structurally
structural 3.5.5.
and
sensitivity
fixed
fixed
of the
modes
modes
modes
by
of the
I19
calculation
of the
system
130
- Comments
135 137
3.6. - Graph-theoretic characterization of fixed m o d e s
3.6.1.
- Preliminaries
3.6.2,
- Frequency
3.6.3.
- Time
3.6.4.
- Comments
137 domain
domain
graph-theoretic
graph-theoretic
137
characterization
characterization
141 147
3.7. - Conclusion
CHAPTER
FIXED
4,1.
- Introduction
4.2.
-
4.3.
- Use
4.5.
STABILIZATION
4. D E C E N T R A L I Z E D
STRUCTURALLY
4.4.
148
Sample
IN P R E S E N C E
OF
NON
MODES
150
and
hold
of time-varying
T52 controllers
156
4.3.1. - Piecewise constant f e e d b a c k laws
156
4.3.2. - Sinusoidal f e e d b a c k laws
158
4.3.3. - C o n c l u d i n g r e m a r k s
160
- Vibrational
161
control
4.4. i. - Vibrational control principle
161
4.4.2. - Stabilization b y vibrational control
167
4.4.3. - Vibrational f e e d b a c k control laws
169
175
- Conclusion
CHAPTER
5. C H O I C E
OF
FEEDBACK
CONTROL
STRUCTURE
TO
AVOID
FIXED
MODES
5.1.
- Introduction
177
Xll 5.2.
5.3.
5.4.
- Relaxing
prespecified
5.2.1.
-
Preliminaries
5.2.2.
-
llang
5.2.3.
- Armentano
and
feedback
and based
5.2.5. - S p e c i f i e d
approach
- Choice
of minimal
179
procedure
Singh'
5.2.4. - A p p r o a c h
- Concluding
178 178
Davison'
5.2.6.
constraints
182
procedure
on the for
system
modes
structurally
186
sensitivity
fixed
modes
of type
(i)
197
remarks
control
190
197
structures
5.3.1.
- Preliminaries
5.3.2.
- Senning's a p p r o a c h
198
5.3.3.
- Locatelli
202
5.3.4.
-
5.3.5.
- Concluding
197
et al.
Specified
approach
approaches
for
structurally
fixed
modes
205
remarks
227
- Conclusion
CHAPTER
227
6. D E S I G N
6.1.
- Introduction
6.2.
- The
TECHNIQUES
- PARAMETRIC
ROBUSTNESS
229
optimization
6.2.1.
- Dynamic
6.2.2.
- Static
6.2.3.
- Necessary
problem
229
controllers
230
controllers
231
conditions
for optimality
- Gradient
matrix
233
calculation
6.3.
6.4.
- Decentralized
control
with
parameter
6.3.1.
- The
algorithm
of Geromel
6.3.2.
- The
algorithm
of Jamshidi
optimization
and
236
Bernussou
236 241
6.3.3.
- Iterative
procedure
of Chen
6.3.4.
- Iterative
procedure
of Geromel
et al.
6.3.5.
- Comments
- Design
of robust
6.4.1.
- Controllers
6.4.2.
- Optimal
242
and
Peres
245 247
decentralized
with
control
controllers
a prescribed with
247
degree
performance
of stability
index
sensitivity
248
reduction
249
XlII 6.4.3. - R o b u s t
control with respect to large perturbations
i n the
system dynamics
6.5. - R o b u s t
255
decentralized s e r v o m e c h a n i s m
260
problem
6.5.1. - P r o b l e m formulation
260
6.5.2. - Existence of a solution
262
6.5.3. - R o b u s t
264
decentralized controller design
267
6.5.4. - Sequentially stable robust controller design 6.5.5. - R o b u s t
decentralized controller for u n k n o w n
systems
270
273
6.6. - Decentralized control via hierarchical calculation
6.6.1. - Three-ievel calculation algorithms
273
6.6.2. - Two-level calculation algorithm
279
6.7. - Calculation m e t h o d s using a n interconnection m o d e l
6.7. I. - T h e
general interconnecfion
282 282
model
285
6.7.2. - Model-following m e t h o d
6.8. - Decentralized control for s y s t e m s with overlapping
6.8.1. - E x p a n s i o n ,
contraction,
6.8.2. - O v e r l a p p i n g
information set
a n d inclusion
289
decomposition
291
295
6.9. - Conclusion
CliAPTER
289
7. S T R U C T U R A L
ROBUSTNESS
7.1.
- Introduction
7.2.
- Structural
perturbations
affecting
the system
297
7.3.
- Structural
perturbations
affecting
the control system
299
296
7.3.1. - S t r u c t u r a l
perturbations
7.3.2.
- Structural
robustness
7.3.3.
- Characterization
7.3.4.
- Example
7.3.5.
- Structurally
characterization
299 303
of structurally
robust
modes
304 310
robust
information pattern
control design
- T h e c h o i c e of t h e 313
XIV 7.4.
- Conclusion
318
APPENDIX
I, Multivariable system zeros
319
APPENDIX
2. A Fortran subroutine to evaluate the fixed modes using open-loop
321
and closed loop system poles
APPENDIX
3. A Fortran routine to evaluate the fixed modes using their sensitivity 330
A P P E N D I X 4. A n d e r s o n
and Clements'
A P P E N D I X 5. D e t e r m i n a t i o n using variations
A P P E N D I X 6, A F o r t r a n
test package
of the gradient
for real modes
m a t r i x of t h e p e r f o r m a n c e
340 index by
calculus
routine
with possible robustness
346
to d e t e r m i n e requirements
an optimal constrained
feedback
matrix 349
REFERENCES
368
AUTHOR
379
SUBJECT
INDEX
INDEX
382
I
CHAPTER
CENTRALIZED
STABILIZATION
CONTROL
AND
POLE
:
ASSIGNMENT
I.I. - I N T R O D U C T I O N
The
g e n e r a l i n t r o d u c t i o n p o i n t e d out
control p r o b l e m s are
characterized by
that,
very
structurally
often,
large
scale systems
constrained feedback patterns.
Before t a k i n g i n t o a c c o u n t t h e s e new r e q u i r e m e n t s , t h i s c h a p t e r p r e s e n t s an o v e r view of t h e w e l l - k n o w n r e s u l t s c o n c e r n e d b y t h e p r o b l e m of s t a b i l i z a t i o n a n d pole a s s i g n m e n t of a l i n e a r t i m e - i n v a r i a n t dynamic s y s t e m s u b j e c t e d to c e n t r a l i z e d c o n t r o l (no s t r u c t u r a l c o n s t r a i n t s ) .
The f u n d a m e n t a l c o n c e p t s of c o n t r o l l a b i l i t y a n d o b s e r -
vability a r e i n t r o d u c e d a n d e x t e n d e d to t h e c o n c e p t s o f s t r u c t u r a l c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y which a r e
of a major p r a c t i c a l i n t e r e s t
in t h e
study
of l a r g e
scale
s y s t e m s . I n d e e d , t h e s e p r o p e r t i e s a r e e s t a b l i s h e d from t h e s y s t e m s t r u c t u r e a n d do not d e p e n d on t h e p a r t i c u l a r c o n f i g u r a t i o n of t h e p a r a m e t e r s ' v a l u e s .
In t h i s f r a -
mework, t h e p r o b l e m r e d u c e s to one of b i n a r y n a t u r e t h a t allows f o r t h e a p p l i c a t i o n of g r a p h - t h e o r e t i c c o n c e p t s .
This
a p p r o a c h is t h u s
especially adequate
for
large
scale systems.
T h e n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s for t h e e x i s t e n c e o f a s o l u t i o n to t h e problem of s t a b i l i z a t i o n a n d
pole
assignment are
presented
for t h e
following two
cases :
-
centralized state feedback
- centralized output feedback T h e y a r e s t a t e d i n t e r m s of t h e c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y p r o p e r t i e s o f the system. It is c l e a r t h a t a good u n d e r s t a n d i n g
of t h e c o n c e p t s of c o n t r o l l a b i l i t y a n d
o b s e r v a b i l i t y is i n d i s p e n s a b l e b e f o r e p r o c e e d i n g to t h e s t u d y of t h e a b o v e p r o b l e m with s t r u c t u r a l c o n s t r a i n t s on t h e c o n t r o l .
2 1.2. - C O N T R O L L A B I L I T Y
AND
OBSERVABILITY
(FOS-77)
(KAI-80)
C o n s i d e r t h e l i n e a r t i m e - i n v a r i a n t dynamic s y s t e m d e s c r i b e d b y t h e following s t a t e - s p a c e model : x(t) = A x(t) + B u(t)
y(t)
= c x(t)
where x ( t ) ~
(1.2.1)
R n, u(t) 6 R m a n d y(t) ~ R r are the state, input and output vectors
respectively, and A, B and C are invariant matrices of appropriate dimensions.
1 . 2 . 1 . - S t a b i l i t y (WIL-70) Definition I . I .
The a u t o n o m o u s s y s t e m ( 1 . 2 . 1 )
a n y g i v e n v a l u e e > 0, t h e r e e x i s t s a n u m b e r
]l X (to)]l (
($I ==> ]Ix(t) ] < E:
(i.e. ~l(e,
f o r all
with u ( t )
= 0) is s t a b l e if for
t0) > 0 s u c h t h a t :
t>t 0
The autonomous s y s t e m ( 1 . 2 . 1 ) is aymptotically s t a b l e if : (i) - it is s t a b l e
(ii)-~
x
(to),
x(t)
~ 0 t -==b0o
It is w e l l - k n o w n t h a t t h e s o l u t i o n of t h e e q u a t i o n s
(1.2.1)
with u ( t ) =
0 is
given by : x(t) = eA(t-t0 ) x 0 Given
{X1,
....
Xn}
t h e s e t of e i g e n v a l u e s o f A, s y s t e m ( 1 . 2 . 1 ) with u ( t ) = 0 is
a s y m p t o t i c a l l y s t a b l e if a n d o n l y if all t h e e i g e n v a l u e s of A h a v e a n e g a t i v e r e a l part. In the opposite case, the state space X can be split into the stable subspace X S which is generated b y the set of eigenvectors associated with the stable eigenvalues and the unstable subspace X U which is generated b y the set of eigenvectors
associated with the
unstable
c o n v e r g e s t o w a r d z e r o . For
eigenvalues.
For
x ( t 0) £ X S,
the system response
x ( t 0) ~ X U, the s y s t e m r e s p o n s e d i v e r g e s .
3 I. 2.2. - Controllability
Definition 1.2. A state x I is said to be controllable at time t O if for every initial state x 0 defined at time t0, there exists a control u(t) that transfers the system from the state x 0 to the state x I in a finite time If every said to be equivalent The are stated
state of the system that the pair
necessary
and
1.1.
The
system
following conditions
holds
(1.2.1)
generate 2. such
AB
-
conditions
Note that
is of rank
n
products n),
(1.2.1)
to b e c o n t r o l l a b l e
if a n d
only if either
of the
two
The columns of the controllability
matrix
:
rank
criterion <w i ,
~C = n . (KAI-80).
There
bj> a r e n o n z e r o ,
exists
j £
(1 . . . . .
m}
w h e r e bj i s t h e j t h c o l u m n
of A.
i s n o t U m i n i m a l ' . More o f t e n t h a n n o t ,
i t will t u r n
:
AB . . . . . for
system
are the left eigenvectors
KahnanWs c r i t e r i o n
out that the matrix
#C = (B,
....
for
is controllable
(KAL-62).
Popov-Belevitch-Hantus
(i=l,
is
this is
An-IB)
. . . . .
all t h e s c a l a r
of B and wi,
the system
(1.2.1),
:
a space of dimension n, i.e.,
that
t o may be, For system
:
1. - KalmanWs c r i t e r i o n ~C = ( B ,
controllable.
( A , B) i s c o n t r o l l a b l e .
sufficient
in the following theorem
Theorem
is controllable whatever
"completely controllable ~ or just to s t a t i n g
(tl-t0).
somev
A~-IB) less
than
n.
The
smallest
such
x),
say
~c'
will t h e n
be
called the controllability index.
Popov-Belevitch-Hantus may be restated The system
Rank
where
criterion
may be more convenient
in some cases since it
in the following form • (1.2.1)
(~I-A B) = n
is controllable if and only if :
V ~ E
o (A)
o (.) denotes the set of eigenvalues of (.).
(1.2.2)
In t h i s new formj t h i s c r i t e r i o n i n t r o d u c e s t h e d e f i n i t i o n o f a c o n t r o l l a b l e pole ( e i g e n v a i u e of A) as a pole f o r w h i c h c o n d i t i o n ( 1 . 2 . 2 ) h o l d s . The c o m p o n e n t s of e v e r y s t a t e x ~ X of t h e s y s t e m can b e p a r t i t i o n e d s u c h t h a t : x = x c ~ Xun c w h e r e x c G X C a n d Xun c ~ XUN C. X C (XuN C) is t h e c o n t r o l l a b l e ( u n c o n t r o l l a b l e ) s u b s p a c e g e n e r a t e d b y t h e e i g e n v e c t o r s a s s o c i a t e d to the controllable
(uncontrollable)
e i g e n v a i u e s o f A.
It
can t h e n b e s h o w n t h a t t h e
e q u a t i o n s ( 1 . 2 . 1 ) can t a k e t h e form :
L unc.j
[:llu
A22
k uncd w h e r e i t a p p e a r s t h a t t h e c o m p o n e n t s o f XUN C a r e n o t c o n n e c t e d to t h e i n p u t . From t h i s p o i n t of viewj P o p o v - B e l e v i t c h - H a n t u s c r i t e r i o n g i v e s a d e e p i n s i g h t i n t o t h e c o n t r o l l a b i l i t y p r o p e r t i e s of t h e s y s t e m .
K a h n a n ' s c r i t e r i o n is s u i t a b l e for
c h e c k i n g t h e global c o n t r o I l a b i l i t y o n l y .
1.2.3.
-
Observabllity
Definition 1 . 3 .
A s t a t e x ( t 0 ) = x 0 is said to b e o b s e r v a b l e at time t O if it can b e
d e t e r m i n e d from t h e k n o w l e d g e of t h e i n p u t u ( t ) a n d of t h e o u t p u t y ( t ) o v e r a finite i n t e r v a l of time ( t 0 , t 1) . I f e v e r y s t a t e of t h e s y s t e m is o b s e r v a b l e w h a t e v e r t o may b e , t h e s y s t e m i s s a i d to be "completely o b s e r v a b l e n o r j u s t o b s e r v a b l e .
For system (1.2.1),
t h i s is
e q u i v a l e n t to s t a t i n g t h a t t h e p a i r ( C , A ) is o b s e r v a b l e . The n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s for s y s t e m
(1.2.1)
to b e o b s e r v a b l e
a r e s t a t e d in t h e following t h e o r e m ." T h e o r e m 1.2.
T h e system ( 1 . 2 . 1 )
is o b s e r v a b l e if a n d o n l y i f e i t h e r
of t h e
following c o n d i t i o n s h o l d s : 1. - K a h n a n ' s c r i t e r i o n ( K A L - 6 2 ) . T h e r o w s of t h e o b s e r v a b i L i t y m a t r i x :
two
~D - C A
n-1
generate
a space of dimension n, i.e.,
2.
- Popov-Belevitch-Hantus
such that and vi,
criterion
all t h e s c a l a r p r o d u c t s
(i=l,
ooo, n ) ,
¢O = n . (KAI-80).
There
a r e n o n z e r o ,
are the right
As for controllability,
rank
eigenvectors
i t will g e n e r a l l y
turn
exists
j ~ {1 . . . . .
r}
w h e r e cj i s t h e j t h r o w o f C
of A.
out that the matrix
:
EJ CA
~0
=
A v-
i s of r a n k
n
for
some ~ less
called the observability
than
n.
The
smallest
such
x~, s a y ~ , will t h e n 0
be
index.
In the observability
case,
Popov-Belevitch-Hantus
criterion
may be restated
in
the following form :
The system
(1.2.1)
is observable
if and only if :
IXI-A] = n
and an observable
Xun °
where
(unobservable) (unobservable) observability
of every
xo
subspace
E
state
XO and generated
eigenvalues puts
(1.2.3)
pole is defined as a pole for which condition
The components x0 ~
~4X~c (A)
equations
of A. (1.2.1)
of the system X u n ° ~"
can be partitioned
XUN O .
XO
by the eigenvectors The
(1.2.3)
decomposition
( X u N O) associated
of the
in the following form :
is
holds. such
that
x =
the
observable
to t h e
observable
system
with regard
to
:o]
rail
•u n ° /
LA21
y
[Oo] [] Xun
o
+
A22
= [C1
u
B2
O] [Xo0 Xun]
w h e r e it is clear t h a t t h e c o m p o n e n t s of XUN O a r e n o t c o n n e c t e d to t h e o u t p u t . The
obvious
analogy
between
theorems
between the concepts of controllability and
1.1
and
1.2 p o i n t s out
observability.
the
Two s y s t e m s a r e
duality called
dual if t h e y a r e d e f i n e d r e s p e c t i v e l y b y t h e e q u a t i o n s : = A x + B u
[x* =
A' x* + C' u*
S* :
S • y
C x
~y*
= B' x*
T h e s e s y s t e m s a r e s u c h t h a t , if S is c o n t r o l l a b l e , S* is o b s e r v a b l e a n d vice v e r s a . It is t h u s
p o s s i b l e to c h e c k t h e o b s e r v a b i l i t y of a s y s t e m b y e x a m i n i n g t h e c o n -
t r o l l a b i l i t y of t h e dual s y s t e m .
1.2.4. - K a l m a n ' s c a n o n i c a l form
(KAL-62)
In view of p a r a g r a p h s 1 . 2 . 2
a n d 1 . 2 . 3 , it follows t h a t t h e s t a t e - s p a c e X can
be decomposed into four s u b s p a c e s such that :
X = X1 • X2 • X3 • X4
where :
X 1 = X C n XUN O Xz = XC n XO x 3 = XUN C
n XUN O
X 4 = XUNC
n XO
(controllable and unobservable subspace) (controllable and observable subspace) (uncontrollable and unobservable subspace) (uncontrollable and observable subspace)
Kalman (KAL-62) s h o w e d t h a t t h e r e e x i s t s a r e a l , r e g u l a r t r a n s f o r m a t i o n m a t r i x s u c h that the system (1.2.1)
can be p u t in t h e following canonical form •
x2 x3
y
jail =
0 o 0
=[o
]
AI2
A13
A22
0
A2~ /
0
A33
A3~"[
o
0
A44J
C2
[Xl] x2
x3
B2
+
(1.2.4)
x4
I
x I x2 x 3
x4]
i l l u s t r a t e d b y f i g u r e 1.1 :
w
Fig. 1.1.
: C a n o n i c a l d e c o m p o s i t i o n of a l i n e a r t i m e - i n v a r i a n t s y s t e m
S t a r t i n g from t h e c a n o n i c a l f o r m , t h e t r a n s f e r
f u n c t i o n m a t r i x of t h e s y s t e m
is :
Y(p) W(p) = U(p) = C2 [pl- A22 ]-1 B2
(p : Laplace v a r i a b l e )
in w h i c h o n l y t h e s i m u l t a n e o u s l y c o n t r o l l a b l e a n d o b s e r v a b l e poles a r e p r e s e n t . Note t h a t t h e poles of t h e s y s t e m c o r r e s p o n d i n g to t h e e i g e n v a l u e s of A l l , a n d A44 ( t h e n o n s i m u l t a n e o u s l y u n c o n t r o l l a b l e a n d u n o b s e r v a b l e p o l e s ) condition :
rank
= n
easily d e r i v e d from t h e P o p o v - B e l e v i t c h - H a n t u s c r i t e r i o n ( 1 . 2 . 2 )
A22
verify the
and (1.2.3).
8 1 . 2 . 5 . - Practical importance of the c o n c e p t s of controllability a n d o b s e r v a b i l i t y (FOS-77) It is n o w i n t e r e s t i n g to e x a m i n e t h e c o n s e q u e n c e s o f t h e e x i s t e n c e of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s on t h e b e h a v i o u r of t h e s y s t e m .
T h e s e few follo-
wing r e m a r k s c o n s i d e r several cases and point out the practical importance of the c o n c e p t s of c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y .
Remark 1.1.
As s h o w n i n p a r a g r a p h
to t h e i n p u t .
p e n d e n t l y of t h e c o n t r o l i n p u t , Its
1 . 2 . 3 , a n u n c o n t r o l l a b l e mode i s n o t c o n n e c t e d
T h e r e s p o n s e a s s o c i a t e d w i t h s u c h mode will t h u s e v o l v e in time i n d e -
e v o l u t i o n will d e p e n d
w h e t h e r in o p e n - l o o p o r
closed-loop configuration.
o n l y on t h e mode d y n a m i c s a n d t h e c o r r e s p o n d i n g i n i t i a l
conditions.
Remark 1.2.
C o n s i d e r t h a t a n u n c o n t r o l l a b l e mode is u n s t a b l e .
t h e u n s t a b i l i t y will a p p e a r at t h e o u t p u t a n d will t h u s the
fact
that
the
If it is o b s e r v a b l e ,
be detectable.
Nevertheless,
mode is u n c o n t r o l l a b l e e x c l u d e s all p o s s i b i l i t y of s t a b i l i z i n g t h e
s y s t e m . What is r e q u i r e d is n o t a c o n t r o l law b u t a m o d i f i c a t i o n of t h e s y s t e m s t r u c ture.
Remark 1.3.
C o n s i d e r now t h e c a s e f o r w h i c h a n u n s t a b l e mode is n o t o b s e r v a b l e .
T h e u n s t a b l e d y n a m i c s of t h i s mode will n o t a p p e a r on t h e o u t p u t , s e e n in p a r a g r a p h e
s i n c e we h a v e
1 . 2 . 4 t h a t u n o b s e r v a b l e m o d e s a r e n o t c o n n e c t e d to t h e o u t p u t .
T h e s y s t e m m a y t h u s be o b s e r v e d a s s t a b l e . N e v e r t h e l e s s p t h e i n t e r n a l u n s t a b i l i t y of t h e s y s t e m may come to e i t h e r a b r e a k - u p
o f t h e s y s t e m o r t h e a p p e a r e n c e of a n o n
l i n e a r f u n c t i o n ( s a t u r a t i o n ) so t h a t t h e l i n e a r model is n o l o n g e r v a l i d . These
remarks
strength
the
importance
of
having
criteria
which
allow
the
d e t e c t i o n of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s w h e n c o n s i d e r i n g s y s t e m c o n t r o l
problems.
1.2.6. - Stabilization and pole assignment The
problem
system (1.2.1)
of
(i.e.,
stabilization
is
(BRA-70)
formulated
(WON-67) as
follows :
given
h a v i n g some p o l e s w i t h p o s i t i v e r e a l p a r t s ) ,
the
unstable
find a controller
o f t h e form : u = K y
(1.2.5)
such that the closed-loop system : x ( t ) = (A + B K C ) is s t a b I e ;
i.e.
(1.2.6)
x(t)
e v e r y e i g e n v a l u e of t h e c l o s e d - l o o p d y n a m i c m a t r i x (A + BKC) h a s a
negative re~ part.
1,2.6.a.
- State feedback control
First consider the case for which every
s t a t e of t h e s y s t e m
(1.2.1)
can b e
measured, what can be expressed by : C = I n ( I d e n t i t y m a t r i x of o r d e r n x n ) y=x T h e f e e d b a c k c o n t r o l t h e n t a k e s t h e form : u = K x
System
(1.2.1)
(1.2.7)
is s t a b i l i z a b l e u s i n g s u c h a c o n t r o l law if a n d o n l y i f t h e u n s t a b l e
s u b s p a c e X U ( s e e § 1 . 2 . 1 ) is i n c l u d e d in t h e c o n t r o l l a b l e s u b s p a c e X C ( s e e § 1 . 2 . 2 ) and every
pole of ( 1 . 2 . 1 )
can be arbitrarily
c o n t r o l l a b l e . T h i s is c l e a r l y u n d e r s t a n d a b l e However,
more o f t e n t h a n n o t ,
assigned
if a n d o n l y if
(1.2.1)
is
from t h e d e f i n i t i o n of c o n t r o l l a b i l l t y .
t h e s t a t e s a r e n o t d i r e c t l y a v a i l a b l e from t h e
measurements and additional conditions are required.
1.2.6.b.
- Output feedback control
With a c o n t r o l law of t h e (1.2.1)
(see
~2 ~3
form ( 1 . 2 . 5 ) ,
u s i n g t h e Kalman's c a n o n i c a l form of
1. Z. 4), t h e c l o s e d - l o o p s y s t e m is d e s c r i b e d b y : All
A12+BIKC 2
AI3
AI4+BIKC4 -
x1
o
A22 +B2K C 2
0
A24 +B2K C 4
x~
0
0
A23
A34
x3
0
o
0
A##
x~
I t is t h u s a p p a r e n t t h a t t h e c l o s e d - l o o p s y s t e m is s t a b l e if a n d o n l y if :
(i.z.8)
10 (i) t h e u n s t a b l e s u b s p a c e X U is i n c l u d e d in t h e c o n t r o l l a b l e s u b s p a c e X C a n d in t h e o b s e r v a b l e subspace X O ~ i . e . p
Stated in a different way,
the
e i g e n v a l u e s of A l l ,
A33 a n d
A44 a r e
stable.
this is equivalent to have all the unstable poles con-
trollable and observable. (ii) there exists a matrix K such that (A22 + B z K C z) is stable, what is expressed by : F2 = K C 2
and
rank (C2, F 2) = rank C 2
where F 2 is a stabilizing state feedback for the second subsystem that always exists since the second subsystem is controllable. W h e n considering arbitrary pole assignment, condition (i) is replaced by ." (i*) the system (1.2.1) is controllable and observable. When
condition (ii) cannot be verified, a dynamic output feedback control of
the form :
{
~(t) = S z(t) + R y(t)
(1.2.9)
u(t) = Q z(t) + K y(t) + v(t)
is required. Then, condition (i) is sufficient (and necessary) to stabilize the system (1.2.1) and arbitrary pole assignment is possible if and only if (1.2.1) trollable and observable (BRA-70)
showed
(condition
is con-
(i*)). In this latter case, Brasch and Pearson
that the minimal order of the required dynamic
achieve pole assignment is :min ( Vc-1 , ~o-1), where
x)c and
compensator to
~o are the controlla-
bility and observability indices, respectively.
1.2.7. - Origins of uncontrollable and unobservable modes In
order
to
show
the
mechanism
of
uncontrollability
and
unobservability,
c o n s i d e r t h e following simple example of a s i n g l e - v a r i a b l e s y s t e m t a k e n from (FOS-
77) : -2
0
-2
3
0 x +
I
l
1
1
1
0
0
(1.2.10) y
0
0
x
11 that can be r e p r e s e n t e d by t h e b l o c k - d i a g r a m of f i g u r e 1.2 :
xI
q +J
x2
x4
1.2.
Figure
Using conditions (1.2.2) and ( 1 . 2 . 3 ) , it can be easily c h e c k e d t h a t t h e mode ~1=1 is u n c o n t r o l l a b l e and ~2=-1 is u n o b s e r v a b l e :
o
0 3
o o
o
-2-1 3
-I
-1
0
0
0
-I
-1
o
2 rank [M-A
B]kl=l
:
rank
rank[1i-A
= rank
=-I
4
o
0
1
o
o
1
-1
-2
o
-1
-1
o
2
0
o
0,5
0.5
o 0 -
o
o
=3
i. I f t h e c o r r e s p o n d i n g
o n t h e a d j a c e n c y m a t r i x o f D, i t a p p e a r s
permutation is
t h e n in a b l o c k - t r i a n g u l a r
form
where every block in the diagonal is the adjacency matrix of a strong component.
Let M be a rectangular associated adding
to M a s t h e
(q-p)
zero rows.
pxq structured
digraph
matrix and define the digraph
whose adjacency
m a t r i x is M', o b t a i n e d
D=(V,E)
from M by
17 Definition 1 . 7 .
A d i g r a p h D=(V,E)
c o n t a i n s a dilation if a n d only if t h e r e e x i s t s a
s e t S c V I (V I c V is t h e s e t of v e r t i c e s w h i c h a r e a d j a c e n t from at l e a s t o n e v e r t e x in V) of K v e r t i c e s s u c h t h a t t h e s e t T ( S ) c V
o f v e r t i c e s t h a t a r e a d j a c e n t to a v e r t e x
of S c o n t a i n s no more t h a n ( K - I ) e l e m e n t s . The dilation is d e n o t e d b y { S , T ( S ) } . This
d e f i n i t i o n i s a g e n e r a l i z a t i o n of t h e
c o n c e p t of dilation i n t r o d u c e d b y
(LIN-74) in t h e c o n t e x t of s t r u c t u r a l a n a l y s i s for s i n g l e - v a r i a b l e s y s t e m s . In p r a c t i c e ,
D c o n t a i n s a dilation if a s e t of K rows can be f o u n d in t h e
a d j a c e n c y m a t r i x of D s u c h t h a t t h e r e a r e no more t h a n ( K - l ) columns w i t h n o n z e r o e n t r i e s in t h e s u b m a t r i x formed b y t h e s e K r o w s . Given
the
triple
(C,A,B),
one
defines
{U= U l , . . . , u m} i s t h e s e t of i n p u t v e r t i c e s ,
a
d i g r a p h F = ( U v X u Y,E)
X={Xl,...,Xn}iS
where
t h e s e t of s t a t e v e r -
tices a n d Y={~/1 . . . . y r } is t h e s e t o f o u t p u t v e r t i c e s . E i s t h e s e t o f e d g e s s u c h t h a t (u i,
xj)£E
if a n d
only i f bji#0 i n
B , ( x i , x j) E: E i f a n d only if aji#0 in
A and
( x i , Y j ) ( E if a n d only if cji#0 i n C. In t h i s w a y , t h e d i g r a p h r c o m p l e t e l y d e s c r i b e s t h e s t r u c t u r e o f t h e s y s t e m . Definition 1.8 ( S I L - 7 8 ) . The s y s t e m ( C , A , B ) is s a i d to b e i n p u t r e a c h a b l e (or i n p u t c o n n e c t a b l e (DAV-77a)) if X is r e a c h a b l e from U a n d o u t p u t r e a c h a b l e
(or o u t p u t
c o n n e c t a b l e (DAV-77a)) if X r e a c h e s Y. A l t h o u g h Lints work (LIN-74) d e a l t only with s i n g l e - i n p u t s y s t e m s , it can b e d i r e c t l y e x t e n d e d to m u l t i - i n p u t s y s t e m s .
Consider the pair (A,B) and its associated digraph rl=(U v X,E I) obtained from r by deleting the set of output vertices and every edge from X to Y. Then, we h a v e t h e following r e s u l t : Theorem 1 . 4 .
The
pair
(A,B)
is s t r u c t u r a l l y
c o n t r o l l a b l e if and only if t h e
two
following c o n d i t i o n s b o t h hold : 1 - (A,B) is input reachable. 2 - F1 d o e s n o t c o n t a i n a d i l a t i o n .
1 . 3 . 1 . c . - E q u i v a l e n c e of t h e two a p p r o a c h e s It is now w o r t h v e r i f y i n g t h a t t h e o r e m s 1.3 a n d 1.4 a r e e q u i v a l e n t . C o n s i d e r t h e f i r s t p a r t s of t h e t h e o r e m s .
18
If matrix
(A B)
has
form I,
by
definition 1.6,
there
matrix P satisfying :
P' [A B]
with A l l o f o r d e r t x t ,
a
permutation
o]
=
i
exists
A22
LA21
B2
1 ~ t (n.
T h e f i r s t e q u a t i o n in ( 1 . 3 . 1 ) is t h u s r e w r i t e d v i t h a p a r t i t i o n e d s t a t e v e c t o r :
I17 [ °]Ix,][ °] =
)(2
+
A21
A22
X2
U
132
a n d t h e g r a p h a s s o c i a t e d with t h e p a i r ( A , B ) in t h i s form is g i v e n in F i g u r e 1.8.
F i g u r e 1.8. It is c l e a r t h a t t h e s t a t e v e r t i c e s in X 1 a r e n o t i n p u t r e a c h a b l e . The i n v e r s e also h o l d s : if t h e g r a p h of a p a i r
(A,B)
contains non-input-reachable state ver-
t i c e s , t h e m a t r i x (A B) can b e b r o u g h t to form I. T h e f i r s t p a r t s of t h e t h e o r e m s 1.3 a n d 1.4 a r e t h e r e f o r e e q u i v a l e n t . To p o i n t o u t t h e e q u i v a l e n c e of t h e s e c o n d p a r t s o f t h e t h e o r e m s , we n e e d t h e following r e s u l t due to Shield a n d P e a r s o n ( S H I - 7 6 ) . Theorem 1 . 5 .
(SHI-76).
Assume a r e c t a n g u l a r m a t r i x M of o r d e r p x q with p ~ q .
gr(M) ( t for some t , 1 ~ t ~ p , if for some k in t h e r a n g e q - t < k ~ q , M c o n t a i n s a z e r o s u b m a t r i x of o r d e r ( p + q - t - k + l ) x k . Theorem
1.5
following c o r o l l a r y :
a p p l i e d to M=(A B)
of o r d e r
nx(n+m)
obviously
leads
to t h e
lg Corollary
1.1.
m( k ~ n+m,
: gr(A
B)
Making the change gr(A
B)
submatrix
(n
(i.e,
(A B)
has
(A B) c o n t a i n s a z e r o s u b m a t r i x
: K=n+m-k+l,
0, M c o n t a i n s a d i l a t i o n , s t o p .
i
If 1~'=-0, memorize t h e t a g g e d r o w s a n d c o l u m n s . J Step 6
If all t h e r o w s a b o v e R i a r e t a g g e d , go to s t e p 7. The r o w s a b o v e
Ri w i t h e n t r i e s in t h e t a g g e d columns a r e now s c a n n e d .
Select t h e one with minimal n u m b e r of e n t r i e s in t a g g e d c o l u m n s . If choice e x i s t s , s e l e c t t h e one with minimal n u m b e r of e n t r i e s a n d tag i t , j=j+l, go to s t e p 4.
28 Step 7
If all t h e r o w s in t h e block Ri a r e t a g g e d , go to s t e p 8. O t h e r w i s e , d e l e t e all t h e t a g s , j=j+l, k = k + l .
Step 8
If i=K, s t o p , t h e maximal G - d i l a t i o n of o r d e r 0 of M i s g i v e n b y : : memorized r o w s
T(6)
. memorized columns
O t h e r w i s e , i----i+l, go to s t e p 2. A s s u m i n g t h a t (B A) h a s initially b e e n p u t in form ( 1 . 3 . 4 ) b y u s i n g a n y of t h e m e t h o d s p r o p o s e d in (SIL-78) (BOW-76), t h e global algorithm is t h e following : Step 1
i=l,
B = n u m b e r o f d i a g o n a l b l o c k s , M00=0.
Step 2
S u c c e s s i v e l y d e l e t e t h e r o w s with only one e n t r y
and
the
corresponding
columns. If no r o w is left, gr(B A)=n,
Step 3
stop.
If t h e row block i h a s b e e n d e l e t e d o r F. h a s only one row l e f t , go to s t e p 1
4. O t h e r w i s e , REORDER (Fi) , ANALYZE ( F i ) . If Fi c o n t a i n s a d i l a t i o n , g r ( A B ) < n , s t o p . Otherwise, Step 4
{6i, T( 6i)~
is r e t u r n e d b y t h e algorithm ANALYZE.
If i= B, g r ( A B ) = n , s t o p . Otherwise,
delete
the
columns
corresponding
to
T( 6i ) ,
delete
the
null
r o w s . Fi+ 1 i s o b t a i n e d b y a d d i n g t h e row b l o c k ( i + l ) . .Step 5
i=i+l, go to s t e p 2.
It is a well k n o w n r e s u l t t h a t a r e c t a n g u l a r p x q (p 0 and
can b e d e s c r i b e d
by
latter
is
by Ozguner
controlled
a zero-order
by
hold.
and
Davison
a digital Then,
(OZG-85).
controller
the
with
resultant
Consi-
a constant
sampled
system
:
x ( t + T ) = e ~T ~ ( t )
S ~
+ r
Bi ~i
i:l
(4.2.4)
i = 1 ..... Yi ( t ) = ~ i ~ ( t ) w h e r e r = d i a g - ~ r 1, I"2 . . . . .
S
rn]
and
Fi = T
i f ~'i = 0
e TXi - l F =~
if ~i F 0
T h e n , we h a v e t h e f o l l o w i n g r e s u l t Theorem 4.2
(OZG-85).
Assume
:
that
the
a m o n g w h i c h t h e f i x e d m o d e s ~j (j = 1, (i). T h e n ,
the sampled system
(4.2.4)
system ....
(4.1.3)
(4.2.3)
has
ps ) are structurally
p
fixed
modes
fixed modes of type
h a s o n l y P s f i x e d m o d e s ek i T ,
j = 1.....
Ps'
for a l m o s t all T > 0.
The
interpretation
when fixed modes zero c a n c e l l a t i o n s sampling
has
on
of
(except
the
of a specific poles
results
structurally
and
kind
zeros
presented
in
this
fixed modes of type in
the
make
decentralized
that
the
section (i))
system.
cancellations
becomes
clearer
are viewed as poleThe
do n o t
effects occur
in
that the
model o f t h e s a m p l e d s y s t e m .
4 . 3 . - USE OF T I M E - V A R Y I N G C O N T R O L L E R S In
this
Purviance stabilize
section,
and linear
the particular
Tylee
I
the
that
systems
case of systems
with
results
use
a
of Anderson
decentralized
decentralized
+ B 1 ul(t)
and
Moore
tlme-varying
fixed
w i t h two c o n t r o l s t a t i o n s ,
a n d Moore to s y s t e m s
a controllable and observable
x (t) = A x(t)
Yi(t)
(PUR-82)
invariant
extension of Anderson Consider
we p r e s e n t
modes.
First
t h e n we d i s c u s s
(AND-81b), feedback
to
we p r e s e n t briefly
the
with S stations. two-station
system
described
by
•
+ B2 u2(t)
(4.3.1) Cixi(t)
(i = I , 2)
156 w h e r e x 6-R n ,
ui~
Rmi a n d YiE: Rri a r e t h e s t a t e v e c t o r a n d t h e local i n p u t and
o u t p u t of s t a t i o n i r e s p e c t i v e l y . dimensions.
Suppose
A, Bi a n d Ci a r e c o n s t a n t m a t r i c e s of a p p r o p r i a t e
also t h a t we a p p l y a p e r i o d i c
time-varying
control
law,
with
period T, at the second station : u 2 ( t ) = K z ( t ) Y2(t)
(4.3.2)
t h e n t h e r e s u l t i n g t i m e - v a r y i n g c l o s e d - l o o p s y s t e m is :
(t) =EA + BzKz(t) Ca] + BlUl(t) (4.3.3) Yl(t) = C I x(t) F o r t h i s s y s t e m , u n i f o r m c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y (KAI-80) m e a n s t h a t we can d e s i g n an o b s e r v e r a n d a l i n e a r s t a t e f e e d b a c k w h i c h will s t a b i l i z e t h e s y s t e m . d e n o t e b y ¢K2 ( t , T) t h e t r a n s i t i o n m a t r i x of s y s t e m
If we
(4.3.3),
then the observability
T @K2 (t,T) C 1 C 1 ¢K2(tJ) dt
(4.3.4)
grammian m a t r i x is :
OG(T , • + T) ~
fT+T
a n d t h e c o n t r o l l a b i l i t y grammian m a t r i x is
CG(~:, T+T) _/:+T
@K2 (T,t)
:
BIB l
T (T, t) dt
~2
(4.3.s)
T h e c o n d i t i o n of u n i f o r m c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y is s a t i s f i e d if t h e m a t r i c e s CG (~, z+T) a n d OG (~, T+T) a r e s t r i c t l y p o s i t i v e - d e f i n i t e .
4.3.1.
-
Piecewise
constant
feedback
laws
A n d e r s o n a n d Moore (AND-81b)
p r o p o s e d to u s e a p e r i o d i c p i e c e w i s e c o n s t a n t
f e e d b a c k at t h e s e c o n d s t a t i o n . Given t h e two following a s s u m p t i o n s : - Centralized controllability and observability, trollable -
i.e.
[(B1B2),
A,
(C 1' C2')w] is
con-
and observable.
Connectivity
assumptions,
identicaly zero :
i.e.
the
transfer
matrices
between
stations
are
not
157
B2 # 0
(4.3.6)
C 2 ( P I - A ) -1 B 1 # 0
(4.3.7)
W12(p) = C l ( P I - A ) - i w21(p)
t h e i r r e s u l t s a r e e x p r e s s e d in t h e following t h e o r e m : Theorem 4.2
(AND-81b).
Consider the controllable and observable
sense) system given by (4.3.1).
(in a c e n t r a l i z e d
A p p l y i n g a p e r i o d i c f e e d b a c k u 2 ( t ) = K 2 ( t ) Y2(t) at
the s e c o n d s t a t i o n p t h e s y s t e m ( 4 . 3 . 2 ) is u n i f o r m l y c o n t r o l l a b l e a n d o b s e r v a b l e if t h e connectivity assumptions (4.3.6)
and (4.3.7)
hold a n d if K 2 ( t ) is p i e c e w i s e c o n s t a n t
taking at l e a s t l + m a x ( m 2 , r 2) d i s t i n c t v a l u e s o v e r one p e r i o d . Remark 4.1 : T h e a s s u m p t i o n s r e q u i r e d
b y t h e a b o v e t h e o r e m a r e e q u i v a l e n t to t h e
a s s u m p t i o n of c o n t r o l l a b i l i t y a n d o b s c r v a b i l i t y u n d e r d e c e n t r a l i z e d i n f o r m a t i o n s t r u c ture. T h i s r e s u l t c a n b e a n a l y s e d as follows : if t h e s y s t e m h a s a f i x e d mode d u e to a lack of o b s e r v a b i l i t y of s t a t i o n 1, t h e n b y t h e a s s u m p t i o n of c e n t r a l i z e d o b s e r v a bility,
station 2 observes
t h i s mode a n d t r a n s m i t s
r e l a t e d i n f o r m a t i o n to s t a t i o n 1
t h r o u g h t h e t r a n s m i s s i o n c h a n n e l W12. A dual a n a l y s i s can b e made if t h e f i x e d mode is c a u s e d b y a lack of c o n t r o l l a b i l i t y of s t a t i o n 1. T h e a b o v e t h e o r e m c a n b e similarly d e r i v e d Moreover,
and Moore (AND-81b) mentary
discrete
systems
(JAM-83).
~ t h e y s h o w e d t h a t if t h e c o n n e c t i v i t y a s s u m p t i o n s of comple-
subsystems
hold
(system
decentralized constraints), observable
from
station
structurally
controllable
and
observable
under
t h e n t h e s y s t e m c a n b e made u n i f o r m l y c o n t r o l l a b l e a n d 1 by
f e e d b a c k c o n t r o l law u . ( t )
applying
= Ki(t)
successively
Yi(t),
i = 2,
...
a periodic
piecewise
constant
S at t h e o t h e r s t a t i o n s .
For
l
each s t a t i o n i , K i ( t ) m u s t t a k e a t l e a s t period.
for
t h e c a s e of s y s t e m s w i t h S c o n t r o l s t a t i o n s was c o n s i d e r e d b y A n d e r s o n
~ 1+max(re., r . ) d i s t i n c t v a l u e s o v e r o n e j:2 l J I t is c l e a r t h a t t h e n u m b e r of d i f f e r e n t v a l u e s i n c r e a s e s d a n g e r o u l s y with
the n u m b e r of s t a t i o n s making d i f f i c u l t t h e p r a c t i c a l i m p l e m e n t a t i o n of t h i s a p p r o a c h . E,.xamIAe 4.1
(AND-81b).
Consider
a controllable
and
observable
stations given by : 1
0
0
0
1
0
0
0
2
yl=[O
0
[1
~=
X +
1
0
u1
f0 0
1
u2
system
with
two
158 The system has a decentralized
rank
Applying
F L c,
f i x e d m o d e a t X0 = 1 s i n c e
XI-A 2 . . . . . .
= 2 < 3
10j
the following time-varying
u2(t)
= K2(t)
for X = ~ 0 : 1
c o n t r o l at t h e s e c o n d
station
:
Y2(t)
with
K2t fl °ljl 1
or2k t 2kl
0 •
for 2k+l
t < 2k+2
k = 0,
the
observability
the
range
(2k,
...
and
controllability
grammian
matrices
2k+l)
f o r all k= 0,
1,
are positive
number 1 approximately (piecewise constant) These properties
1, 2,
equal
2,
to 100 a n d
gain K2(t)
provides
can be improved
...
6,
(calculated
respectively.
reasonable
definite So,
the
controllability
by choosing another
analyticaly)
over
with a condition use
of a periodic
and observability.
kind of time-varying
feedback
l a w s a s it i s s h o w n i n t h e f o l l o w i n g s e c t i o n .
4.3.2.
- Sinusoidal feedback Purviance
put
controllable
prete ting
Tylee
to s t a t i o n the
(PUR-82)
and observable
the observability
through K2(t).
and
laws
1 the
transfer
problem value
consider
system
resulting
of the
function
This problem is a standard
WI2,
the particular
with a decentralized
fixed via
case of a 2-input
2-out-
fixed mode.
inter-
They
in the fixed mode as which of communicamode the
is
observable
by
station
time-varying
(which
feedback
law
with
o n e in c o m m u n i c a t i o n s y s t e m
2) gain
analysis and a good
1The condition number (CN) of a rectangular m a t r i x w i t h full r a n k i s g i v e n b y t h e ratio between the maximal and the minimal singular values of the matrix (MOO-8]). H e n c e , it i s a g o o d m e a s u r e o f t h e e f f e c t i v e r a n k o f t h e m a t r i x , a n d of c o u r s e , it is i n o u r i n t e r e s t to h a v e a c o n d i t i o n n u m b e r a s c l o s e to 1 a s p o s s i b l e ( i f CN = 1, t h e n the effective rank equals the actual rank).
159 solution is to u s e
sinusoldal modulation
(feedback)
at a f r e q u e n c y m a t c h e d to t h e
f r e q u e n c y r e s p o n s e of t h e communication c h a n n e l W12 ( V A N - 6 8 ) , U s i n g a simple e x a m p l e , t h e y show t h a t if t h e s y s t e m v e r i f i e s t h e c o n n e c t i v i t y assumptions, trollability
t h e n b y u s i n g a s i n u s o i d a l f e e b a c k law,
and
observability
is
higher
(decrease
the resulting
of t h e
d e g r e e of c o n -
corresponding
grammian
condition n u m b e r ) t h a n b y u s i n g t h e b i n a r y f e e d b a c k law p r o p o s e d b y A n d e r s o n a n d Moore ( A N D - 8 1 b ) . Example
4.2
(PUR-82).
Consider
a
2-input
2-output
controllable
and
observable
system d e s c r i b e d b y :
x=
yl=[0
-1
0
0
-2
x+
I
,Ix
uI + Ii
u2
y2=Ll 0 07 x The t r a n s f e r m a t r i x of t h i s s y s t e m is :
0
(p+t) (p+2)
W(p) ~-
0
and it is c l e a r
that the system has a decentralized structurally
fixed mode of t y p e
(fi) (x 0 = 0 ) .
A p p l y i n g a s i n u s o i d a l f e e d b a c k c o n t r o l at t h e s e c o n d s t a t i o n K 2 ( t ) = k sin 0~t, the c o n d i t i o n n u m b e r of t h e o b s e r v a b i l i t y grammian m a t r i x of t h e c l o s e d - l o o p s y s t e m is shown b y F i g u r e 4 . 1 - a a n d F i g u r e 4 . l - b , of k .
f o r d i f f e r e n t v a l u e s of ¢0 a n d two v a l u e s
160 500
sO0
0
~
2
C
3
0
4
Figure
4.1-a
: Condition number
for k = 0.05
Forc0=c0c = / 2 W12 a n d when
we c o u l d
w = coc ) ,
central
expect
m a x i m u m f o r k = 1. energy
the
result
points
However, Figure
system
the
k
and
by
~
2
3
¢
: Condition number
of the bandpass
can be explained This number of
the
for 0~=~ c,
by
between the
fact
is required
2 and
that
condition
for
with
1
"large"
and
the
destroys
observability
a good observability.
consideration
the
function
station
characteristics
and to achieve
energy
of the transfer
grammian is minimum for k =
system's
balance
of
for k = 1 (from (PUR-82))
in
control
number
law
This
design.
of OG(100,
0)
(see
is 72.7.
To m a k e a c o m p a r i s o n proposed
1
optimal communication
modes.
importance
= 0.05
.
of the observability
This
a small condition
out
with
4.l-a)
frequency
fixed mode dominates
between
g r a m m i a n to h a v e
,
4. l - b
OG(t,0)
to a c h i e v e
0.05 and
balance
Figure
the condition number
feedback the
of
(from (PUR-82))
(c0c i s t h e
il
FrequencY~o (rad/sec)
Frequencg~0o {rad/sec) OG(t,0)
,
Anderson
following binary
and
feedback
with the case of piecewise constant Moore
(AND-81b),
with period
o
o.lt
-2 1
(p+l)(p+2)
W(p)
(p-l)(p+l)(p+2)
( ~ '
3p+2 (p+l)(p+2)
It is c l e a r t h a t t h e s y s t e m h a s an u n s t a b l e d e c e n t r a l i z e d f i x e d mode at ;~0 = 1, t h e n any d e c e n t r a l i z e d o u t p u t f e e d b a c k fails to stabilize t h e s y s t e m . C o n s i d e r t h e autonomous s y s t e m a s s o c i a t e d with s y s t e m (4.4.10)
k=Ax~
:
[2, :,I 1
1
I
-I
x
-
This s y s t e m is v i b r a t i o n a l l y s t a b i l i z a b l e , s i n c e f o r c = ( i 0 0 ) ' , t h e p a i r
(c, A) is
o b s e r v a b l e a n d T r A = -2 ( 0. The v i b r a t i o n a l l y c o n t r o l l a b l e e l e m e n t s of A a r e a21
168
a n d a3z (or a12 and a23) for a lower ( u p p e r ) q u a s i - t r i a n g u l a r v i b r a t i o n matrix, These c o n s i d e r a t i o n s lead to the following matrix :
V(t)
0
1 sinm21 t
0J
0
0
0
~2 sin ~2 t
0
r e s u l t i n g in the t i m e - v a r y i n g system : = [A + V(t)]
x
(4.4.11)
The determination of V can be performed b y a p p l y i n g the a v e r a g i n g scheme described in the p r e v i o u s section. Matrix A has only one v i b r a t i o n a l l y controllable element in each row, t h e n in accordance with Remark 4.3 of the p r e v i o u s section, the "averaged" system is :
z : (A+V)z =
I
-2 1 +V 21
1
O 1
1
1
z
(4.4.12a) 1
- 1 +~32
- 1
where a212 V-2l : - a 1 2 - 2~212
~ 2l 2 =-
2t021
2
2 s t a t i o n s will be c o n s i d e r e d s u b s e q u e n t l y ) . controllability
and
observability
assumption,
make
the
case
S=2
(the
general
In addition to t h e c e n t r a l i z e d
the
following
connectivity
as-
sumption :
ClB 2 $ 0 ,
C 2 B 1 *0
(4.4.13)
170 which guarantees 81a)
that the system has no structurally
(COR-76a,b),
fixed modes of type
(i)
((SEZ-
see § 2.2.3)
Apply the following dynamic controller to the system
(4.1.3)
:
ul(t ) =ae K I (t) Yl(t) + Vl (t) u2(t ) - K 2 (-~ Y2(t) (t)
=
(4.4.14)
F (--t 6) ~(t) + G (--~ Yl(t)
~l(,) + H (t) ~;(t) + L (t) y~(t)
where
all t h e m a t r i c e s
have
almost periodic
entries
and
~ is t h e
state
of the
con-
t r o l l e r o f d i m e n s i o n v. T h e n t h e c o n t r o l l e d s y s t e m is :
~-
Ax + -a- Bl K 1 (~)ClX + B2 K 2 ~ ) C 2 x E
Yi : Cix
t
With ~ (~-)
being
+ B1 v1
(4.4.15)
i=1,2
a fundamental
matrix
t
f o r ~- B1KI(~-)_
C 1, d e f i n e t h e t r a n s f o r m a -
tion
x(t) = ~ (~) z (t) Consider
(4.4.16)
the almost periodic,
C1BI Q(t))
differentiable
m1 x r 1 matrix
O (t)
such
that
(I +
i s n o n s i n g u l a r f o r all t a n d : ¢
I
= Q (t) (I + C I B I Q
T h e n we h a v e
:~-I A~z4[B l B2]
I Pc'K2"K2c2B' B1Q Qpc, c2K2"K21I'Iz -12 Bivl (~.#.17)
171
where
p ( tc)
= _ Q (I)
(z + ClB 1 Q ( t ) ) - I
The c o n t r o l l e r in ( 4 . 4 . 1 4 ) is chosen as
= F ~+ G (I + CIB 1 Q ( t ) ) - 1 Yl
(4.4.18)
v I = (I + p(t) CIBI)-I H ~+ (I + P(~) CIBI)-I L (I + CIB 1 Q(t))-I Yl where F, G, H and L are constant matrices of appropriate dimensions. After some manipulations, (4.4.17) and (4.4.18) can be written as [PCI B2 K 2 C2 S 1 Q z
L
PC'B2K 1 VC]z
÷ BILCIZ+BIH (4.4.19)
/ K2C2BI Q
~:F~+GCIZ
Taking a v e r a g e s 3 in (4.4.19) gives the following time-invariant system :
(4.4.20)
= Ag + B1LCI~ + B1H : F 3 + c c1~
where~ = ~ +
1 2LF21 F22j
C2
1
3The average of an almost periodic matrix M (t) is given b y : M = lira .j../TF T ÷ooT.,'O
M (T) d'~
172
~" = ~ - 1
F
A ~= A + BI"~CIA + ABIQC 1 + B I P C I A B I ( ~ C 1
l
l
= PC1B2K2C2B1Q
r12 = PC1B2K2
F21 = K2C2B1Q
F22 = K 2
T h e a v e r a g e r can b e a s s i g n e d b y c h o o s i n g K1, a n d h e n c e Q, a n d K 2. I t is shown in
(RUN-85)
that an appropriate
trollable and observable.
choice of F c a n make t h e t r i p l e
Therefore,
(~,
u s i n g t h e r e s u l t s of ( B R A - 7 0 ) ,
B 1, C 1) con-
t h e m a t r i c e s L,
H, G a n d F ( w h e r e ~ i s of d i m e n s i o n ~ = rain (~)o-1, ~)c-1), ~)o(~c) b e i n g t h e o b s e r vability
(controllability)
index
of
(4.4.19))
can
be
chosen
such
that
the
system
( 4 . 4 . 2 0 ) is made a s y m p t o t i c a l l y s t a b l e . T h e n , u s i n g t h e r e s u l t s of (MEE-73) a n d
(BOG-61),
t h e main r e s u l t s h o w n in
(RUN-85) is t h a t ¢0 c a n b e s e l e c t e d so t h a t t h e s y s t e m ( 4 . 4 . 1 9 )
also b e c o m e s s t a b l e
for all 0 < c < E 0 a n d b y ( 4 . 4 . 1 6 ) so does t h e o r i g i n a l s y s t e m ( 4 . 4 . 1 5 ) . T h e following t h e o r e m s u m m a r i z e s t h e a b o v e d i s c u s s i o n T h e o r e m 4.5 ( R U N - 8 5 ) . A s s u m e t h a t ( 4 . 4 . 1 3 ) h o l d s . T h e n t h e r e e x i s t s a n ¢0 ) 0 and a c o n t r o l l e r of t h e form ( 4 . 4 . 1 4 )
t h a t e n s u r e s t h e a s y m p t o t i c s t a b i l i t y of t h e s y s t e m
( 4 . 1 . 3 ) for all 0 ( E-~ E 0. The subsequent
algorithm
(RUN-B5)
is t h e n p r o p o s e d
for t h e d e s i g n of the
controller (4.4.14). S t e p 1 : Choose
feedback matrices
controllability any Kl(t)
and
observability
any K2(t),
Step 2 : Design a linear,
and
K 2 ( ~t)
properties
(almost
K1 (!¢)
that achieve the desired any r and,
consequently,
works(POT-79)).
time i n v a r i a n t ,
dynamic f e e d b a c k c o n t r o l l e r for t h e a v e -
raged system (4.4.20). S t e p 3 : S u b s t i t u t e t h e p a r a m e t e r s of t h e c o n t r o l l e r from s t e p 2 i n t o t h e c o n t r o l l e r for t h e o r i g i n a l s y s t e m u s i n g ( 4 . 4 . 1 8 ) .
With c s u f f i c i e n t l y small, t h i s c o n t r o l l e r
e n s u r e s t h e a s y m p t o t i c s t a b i l i t y of ( 4 . 4 . 1 5 ) . Example 4.4 ( R U N - 8 5 ) . C o n s i d e r t h e following s y s t e m :
A =
173
°l
0 0
0 0
which h a s a s t r u c t u r a l l y
2
B1 :C
f i x e d mode of t y p e
1
(ii) at X0: 0. T h e s y s t e m is c e n t r a l l y
controllable a n d o b s e r v a b l e a n d C1B 2 = C2B1 = 1 ( c o n d i t i o n (4.4o13) is s a t i s f i e d ) . In t h i s c a s e , t h e s y s t e m ( 4 . 4 . 1 9 ) is g i v e n b y :
2]vc1 z iLcz iN
K2 : ~ - 1 A ~ z + [ B i B 2 ]2l qF "
"2 LC2]
LqK2 ~:
(4.4.21)
F { +GCIZ
Choose q = ¢~-sin
t E
' K2 =
"r+/~" B sin __t and therefore c
K 1 : q(l + CIBIq)-I
: 1'2"----~ac o s t g c
Since
::~-IA~=
[ 101 0 0
and t a k i n g a v e r a g e s in ( 4 . 4 . 2 1 ) , - a6
1
~0
1
=
0 0
0 0
: A,
0
the system (4.4.20) is given by :
2 - ~'a
1
0
0
y
0
a6
+ B I L C I g + BIH (4.4.22)
~"= F ~+ G CI :
Since the
triple (~,
B 1, C I) is controllable
and
observable
choose for example a = 6 = y = 1. The dynamic compensator order a (Vo = Vc = 3). Set the matrices :
for alla,6
and "¢,
for (4.4.22) must be of
174
oI
F = 0 then
(4.4.22)
The
,L=I
13 =
,
2
can be rewritten
compensator
i + j, -1,
h 2]
f2
I:l -
H = [h I
-1,
as :
-1
1
1-1
hI
h2
1
0
0
0
0
1
0
1
0
0
0
0
gl
fl
0
0
0
g2
0
F2
coefficients
are
I:]
chosen
to
have
the
closed-loop
eigenvalues
at
-2 :
fl = -3 +/5 1=-12
=- 0,764
/5
f2 = - 3 -
[-90/5"-" 1122)/5 10-5]
h i = g l =L
= - 5,236
= 0,106
[ 10,+0'7/,11~ The resulting
time-varying
0
1
1
0
system
_ 1 $2_2 E:2 c o s - t
6,850,
0
0
0
0
0
0
= 0,764
0
0
0,146
0
0
6)850
Therefore,
in
the original system
(4.4.23)
spite
existence
I:J
(4.4.23)
-5,236
0
is asymptotically
of the
has been
is
0,1o,6
0
Simulations show that
(4.4.15)
s t a b l e if ~ < 0 , 1 ( R U N - 8 5 ) .
of a d e c e n t r a l i z e d
stabilized by decentralized
unstable
vibrational
fixed
feedback
mode,
control.
175 Remark 4 . 4 . 1.
Although
the
above
control, i t s f e a t u r e (Kl(t)
stabilization
is t h a t
approach
combines
vibrational
t h e d e s i g n of the c o r r e c t i n g
and
feedback
vibrational control
action
a n d K 2 ( Et )) a n d t h e f e e d b a c k c o n t r o l law (L, H, G, F) can b e c o n d u c t e d
independently.
The f e e d b a c k c o n t r o l d e s i g n is d o n e for a much simpler l i n e a r time-
invariant system.
However,
in r e g a r d
to t h e o r i g i n a l s y s t e m , t h e v i b r a t i o n a l c o n t r o l
action t a k e s place t h r o u g h t h e f e e d b a c k . 2. In t h e g e n e r a l case of S ) 2 s t a t i o n s ,
(4.4.13)
m u s t b e r e p l a c e d b y t h e following
condition : 3 1 X ( ix( S s u c h t h a t GiBj $ 0 a n d CjBi 4: 0,
1,,( jx( S,
j $ i
(4.4.13')
and the c o n t r o l l e r ( 4 . 4 . 1 4 ) becomes : Pi = c* ~- Ki(_tc) y i ,
l..< i K s
vi
i
~a
Lemma 6.4 (or Lemma 6.6) e s t a b l i s h e s a r e l a t i o n s h i p b e t w e e n t h e a c c e p -
table p e r t u r b a t i o n s
and
the
prescribed
degree
of
stability a.
Consequently,
the
p a r a m e t e r a , can be u s e d as a d e s i g n p a r a m e t e r .
6 . 5 . - ROBUST DECENTRALIZED SERVOMECHANISM PROBLEM This s e c t i o n g i v e s an o v e r v i e w of t h e r e s u l t s o b t a i n e d b y Davison in r e f e r e n c e to t h e so caUed " D e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m " , c o n s i d e r e d in v a r i o u s forms (DAV-76a,b,c,d,
77b,
78a, 79a, 82).
Our a t t e n t i o n f o c u s e s on t h e r e s u l t s o b t a i n e d
w i t h i n a r o b u s t c o n t r o l a p p r o a c h (DAV-76c, 77b, c o n s i d e r a t i o n can
be p e r t u r b a t e d
78a, 79a, 87).
The s y s t e m s u n d e r
b y l a r g e v a r i a t i o n s of t h e p l a n t p a r a m e t e r s and
d y n a m i c s a n d b y e x t e r n a l d i s t u r b a n c e s . The p r o b l e m c o n s i s t s in d e s i g n i n g a d e c e n tralized
controller
such that the closed-loop
perturbated
s y s t e m r e m a i n s s t a b l e and
that satisfactory tracking or regulation o c c u r s .
6 . 5 . 1 . - Problem formulation C o n s i d e r a l i n e a r t i m e - i n v a r i a n t s y s t e m , with S s t a t i o n s , d e s c r i b e d b y : S = A x + i=~i
Bi u i + E m
Yi = Ci x + Di u i + Fi t0 , y~-- C ~ x + D [ % + F['m , ei = Yi - YP
(i=1 . . . . . S) (i--1 . . . . . S) ,
(i=I . . . . .
S)
(6.5.1)
261
where x ~ Rn is the the output
to
disturbance reference
B
be
[
=
m
u i ~ R m i , Yi ~ R r i "
regulated,
vector
output
state,
and
at
which may or may not be measurable,
Yi
B I .....
measurable
-r. m t (rim~< r i) a r e
output
and the output
the
Yi E •
local e r r o r
station and
i.
the input, 00ERq i s t h e
ei are
the
desired
at station i. Define :
BS]
D = block-diag. (D I ..... D S) D m=
block-diag. (D~, .... D~S)
C =
Cm=
s
Fm :
F=
Los
and assume that ~ belongs
(6.5.2)
LFs
FFl IYll Ieli e =
yd =
to t h e f o l l o w i n g c l a s s o f s y s t e m s
:
Zl = A1 Zl (6.5.3)
= H1 z1 where
z 1 d= R n l
output arises
and
Zl(0)
may or may not
be
from the following class of systems
known,
and
the
desired
reference
:
~'2 = A2 z2 z y
where
d d
= H2 z 2
(6.5.4)
d
=Gz
z2 ~ Rn2
and
z2(0)
is known.
I t is a l s o a s s u m e d
without
loss of generality
that :
rank[El rank
and that
(H1,
tems (6.5.3)
The follows :
= rand
G = rank
A1) ,
and
"robust
H1 = q H 2 = dim (z d )
(H 2,
(6.5.4)
A 2) a r e
observable.
are unstable
decentralized
In addition,
we a s s u m e
that
the sys-
to a v o i d t r i v i a l i t y .
servomechanism
problem"
i s d e f i n e d in ( D A V - 7 6 c ) a s
262 Find a decentralized linear time-invariant controller
(S local c o n t r o l l e r s )
for
the system (6.5.1) - (6.5.4) such that • • The c l o s e d - l o o p s y s t e m is a s y m p t o t i c a l l y s t a b l e , • Asymptotic tracking,
in p r e s e n c e of d i s t u r b a n c e s , o c c u r s i n d e p e n d e n t l y of
all a r b i t r a r y p e r t u r b a t i o n s in t h e p l a n t model ( 6 . 5 . 1 ) or plant
dynamic i n c l u d i n g c h a n g e s in model o r d e r )
(e.g.
plant parameters
w h i c h do n o t a f f e c t the
s t a b i l i t y of t h e r e s u l t a n t c l o s e d - l o o p s y s t e m , i . e . lira e ( t ) = 0 V x ( 0 ) ~ R n , t->oo V z 1 (0) E R n l , V z 2 (0) E Rn2 a n d f o r all c o n t r o l l e r initial c o n d i t i o n s .
6.5.2.
-
Existence
of
a solution
The c o n d i t i o n s u n d e r w h i c h a r o b u s t d e c e n t r a l i z e d c o n t r o l l e r e x i s t s a r e p r o vided. 6.5.2.a.
- G e n e r a l c a s e (DAV-76c, 77b)
S r = i~ 1
Define
ri,
S = i~ 1
m
m i and
rm
S = i~ I
r[n, a n d
the
matric
Cm*
of
dimension ( r m + r ) x (n+r) as follows •
C*m :
c;.,, ct~, , "'"
%7
(6.S.Sa)
w h e r e t h e C~.'s are g i v e n b y : 1
"E:
Irl
0 ........
0
lr. ......
0
0 °
C2 =
0
........°1
C3=
0
....... i1 "'r
The minimal polynomials of A I a n d A 2 o f ( 6 . 4 . 3 ) a n d (P2(s).
The
(6.4.4)
l e a s t common multiple o f @1(s) a n d (pz(s)
a r e d e n o t e d b y %01(s)
(multiplicity i n c l u d e d )
is
given by : r i~l (s - l i ) = s g + p g s g - I + P g - I s g - 2 + " ' " + P2 s + P l where 11' !2 . . . . . ,
Ig a r e i t s z e r o s .
(6.5.6)
263
Theorem 6 . 7 (DAV-76c, 7 7 b ) . A s o l u t i o n to t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m problem f o r t h e s y s t e m
(6.5.1)
-
(6.5.6)
e x i s t s i f a n d o n l y i f t h e following c o n d i -
t i o n s all h o l d : (i) T h e s y s t e m (C m, A, B) h a s n o u n s t a b l e d e c e n t r a l i z e d f i x e d m o d e s . (ii) T h e s e t of d e c e n t r a l i z e d f i x e d modes of t h e g s y s t e m s : respectively. (iii) T h e o u t p u t
Yi is c o n t a i n e d in y ~ ,
(i=l,...,S),
i.e.,
Yi is p h y s i c a l l y
measu-
rable. I n t h e c a s e f o r w h i c h mi = r i ,
(i=l,...,S),
C o r o l l a r y 6.2 ( D A V - 7 8 a ) . Assume t h a t mi = r i , tion to t h e
decentralized robust
we h a v e t h i s s i m p l e r c o n d i t i o n • (i=l,...,S),
servomechanism problem
then there exists a solufor t h e s y s t e m
(6.5.1)
-
( 6 . 5 . 6 ) if a n d o n l y if :
I
A = Xi I
rank
B1
C
=
n + r
(i:l,...,g)
D
T h e c o n d i t i o n of t h e a b o v e c o r o l l a r y m e a n s t h a t no e i g e n v a l u e )~] (]=1 . . . . . g) of ( 6 . 5 . 6 ) c o i n c i d e s with a t r a n s m i s s i o n zero of t h e s y s t e m (see A p p e n d i x 1).
6.5.2.b.
- P a r t i c u l a r c a s e of i n t e r c o n n e c t e d s y s t e m s
(DAV-76c,
79a).
The
c o n s i d e r e d h e r e is a composite s y s t e m , c o n s i s t i n g of i n t e r c o n n e c t e d s u b s y s t e m s
plant :
S
&i
=
Ai xi + Bi ui
+ Ei ~0 + i~ 1 /~ij xj
Yi = Ci xi + Di u i + Fi to
(6.5.7)
ym= C ~ x i + D~ i ui + F im d ei = Yi - Yi
( i = l . . . . S)
x i {~ R n*i is t h e s t a t e , a n d u i ' Yi' y~, Yid a n d m a r e d e f i n e d as i n t h e l a s t s e c t i o n . By a s s u m p t i o n t h e i n t e r c o n n e c t i o n m a t r i x is g i v e n b y t h e g e n e r a I model : where
A.. ~-H.. K . M..
1j
lj
ij
ij
( i , j = l . . . . . S)
i/j
(6.5.8)
264 w h e r e K,. lj d e n o t e s t h e i n t e r c o n n e c t i o n gain c o n n e c t i n g t h e s u b s y s t e m s i a n d j. i t h s u b s y s t e m is o b t a i n e d b y s e t t i n g Aij = 0, (j=l . . . . . S) a n d iCj, in ( 6 . 5 . 7 ) . T h e o r e m 6.8 (DAV-76c,
79a).
Assume that
there
exists
a solution
to
the
The
robust
c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m (DAV-75) f o r e a c h s u b s y s t e m of ( 6 . 5 . 7 ) . (i) T h e n t h e r e e x i s t s a solution to t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m problem f o r t h e c o m p o s i t e s y s t e m ( 6 . 5 . 7 ) if t h e i n t e r c o n n e c t i o n g a i n s K.. lj a r e "small e n o u g h " . (ii)
Assume,
in
(i=l,...,S),
addition,
that
(Cim, A,
Bi)
is
controllable
and
observable
for
t h e n t h e r e e x i s t s a solution to t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m
p r o b l e m f o r t h e composite s y s t e m ( 6 . 5 . 7 ) f o r almost all i n t e r c o n n e c t i o n g a i n s Kij. (iii) Assume t h a t t h e i n t e r c o n n e c t i o n m a t r i c e s A.. o f ( 6 . 5 . 8 ) h a v e t h e p r o p e r t y t h a t 1] (i=l . . . . . S ) , t h e n t h e r e e x i s t s a solution to the
Hij = B i, Mij = Cj a n d Di = 0 f o r
r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m for t h e composite s y s t e m ( 5 . 4 . 7 ) if and only if t h e r e e x i s t s a solution to t h e r o b u s t c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m for e a c h s u b s y s t e m of ( 6 . 4 . 7 ) .
5.5.3. - Robust decentralized controller design 6 . 5 . 3 . a. - C o n t r o l l e r s t r u c t u r e Consider the system (6.5.1) lized c o n t r o l l e r ,
then any decentralized controller which regulates
following s t r u c t u r e
1
(6.5.1)
decentrahas the
(DAV-76c, 77b) :
u. = K. v. + K~. w. 1
a n d assume t h a t t h e r e e x i s t s a r o b u s t
1
1
1
(i=l . . . . . S)
(6.5.9)
w h e r e v i ~ Rris is t h e o u t p u t of a d e c e n t r a l i z e d s e r v o - c o m p e n s a t o r , and wi £ R is t h e o u t p u t of a d e c e n t r a l i z e d s t a b i l i z i n g c o m p e n s a t o r . Consider the system (6.5.1) for ( 5 . 5 . 1 )
- (6.5.4),
then a decentralized servo-compensator
(DAV-76c) is a c o n t r o l l e r with i n p u t e i E R r i
and output v i ~ R r (
given
by : ~r = ~. v. 1
1
+
~ . e. 1
(6.5.10)
1
~i = b l o c k - d i a g . ( ~ , , ~ , . . . .
~,)
i matrices
265
B--i = block-diag.
(~,, g, ..... ~,) w i matrices
~, and B , are the (rxr) companion matrix and the (qxl) matrix, defined below : .
0
1
0
0
I0 l
;
g. =
°'.°.
*
;
:
:
-Pl
-P2
o
O,
•
;
..
0
J
_l ]
-P3 . . . . . :'-Pg
Pi' (i=l . . . . . g), are given by (6.5.6). The decentralized stabilizing compensator and output wi, ( i = l , . . . , S ) , is given by :
(DAV-76c),
with inputs
Yi'm vi, ui
~'i = GO i zi + G1i Yim~ G2 vi (6.5.1H
wi = G~i zi + G~ yim+ Ghvii where Yi = Yim - Dmui"
mm
The controller s t r u c t u r e as described above is illustrated in Figure 6.3.
• he gain mat.ces "i" ~
• 00, old,
0[, ~:,
0: and. ~.~, can be determ'nated
through the decentralized stabilization scheme of Wang and Davison (WAN-73) in order to stabilize and give the desired behaviour to the following augmented s y s tern :
X
A
,}
FIC 1
;
0
.........
U 1 ........
0
X
0
V
= o •
_
%1 .J
•
BsC 5 0 . . . . . . . . . C S
4-
Iblock-Bd lag. (BI D I ' " ' g s D I ) ] "vD]
(6.5.12.a)
266 t0
! Ul ~ J
/ • ( ~i
iyf I I I
~ t i
Yl I I
"~
SYSTEM
~
\ y.
~Lc4;%%t°ri
'
' i~
t
~
!
t I
\
'---J
stabilizing compensator
1 I I
I
Yi
Fig. 6.3 : C o n t r o l l e r s t r u c t u r e
L c,x1 vi
The system
(i= 1 ,...,S)
(6.5.12b)
LVi
(6.5.12)
h a s d e c e n t r a l i z e d fixed modes e q u a l to t h e d e c e n t r a l i z e d
f i x e d m o d e s of (C m, A, B) (if a n y ) .
6.5.3. b. Controller optimization In g e n e r a l , guarentee :
t h e o p t i m i z a t i o n of t h e d e c e n t r a l i z e d
stabilizing compensator must
267 (i) f a s t r e s p o n s e (ii) low i n t e r a c t i o n in t h e s y s t e m , i . e . ,
when a r e f e r e n c e output signal c h a n g e s , the
o t h e r o u t p u t s s h o u l d remain as close as p o s s i b l e o f t h e i r p r e v i o u s v a l u e s . The p a r a m e t e r optimization m e t h o d p r o p o s e d b y Davison e t a l .
{DAV-73,
79a,
81, 825 minimizes a q u a d r a t i c p e r f o r m a n c e i n d e x of t h e form : J = E((x'
Q x + u' Ru) dt
w h e r e E d e n o t e s t h e e x p e c t a t i o n o p e r a t o r , s u b j e c t to any i m p o s e d e n g i n e e r i n g c o n s traints.
In
particular
Davison
and
Chang
(DAV-825
showed
that,
if
the
system
(6.5.15 is o p e n - l o o p s t a b l e a n d if Re (kit = 0, (i=l . . . . , g S , w h e r e t h e k.I1 s a r e g i v e n by (6.5.65,
(e.g.
we h a v e p o l y n o m i a l - s i n u s o i d a l t y p e of d i s t u r b a n c e s a n d r e f e r e n c e
s i g n a l s ) , t h e n t h e r e always e x i s t s an initial f e a s i b l e s t a r t i n g p o i n t f o r t h i s p a r a m e t e r optimization p r o b l e m .
6 . 5 . 3 . c . Some p r o p e r t i e s of t h e c o n t r o l l e r (DAV-76c) I. Using the robust controller described before, one can locate the eigenvalues of the dosed-loop
system
in any
(the decentralized
fixed modes
nonempty
of (Cm,
symmetric
A,B)
(if any)
region of the complex
plane
must be in the desired re-
gion). 2.
A robust
d e c e n t r a l i z e d c o n t r o l l e r e x i s t s g e n e r i c a l l y (WAN-73)
for
"almost
all" p l a n t s (6.5.15 p r o v i d e d t h a t : (i) m i )/ r i ( i = l . . . . .
S)
(ii) the output Yi is physically measurable at station i. If either (it or (lit do not hold, then a solution to the robust
decentralized
ser-
vomechanism problem never exists.
6.5.4. - Sequentialiy stable robust controller design A realistic
s i t u a t i o n is to c o n s i d e r t h a t
no
central
authority
is allowed f o r
c a l c u l a t i n g t h e local c o n t r o l l e r s , a n d t h a t a complete k n o w l e d g e of t h e mathematical model of t h e p l a n t is n o t n e c e s s a r i l y available at a n y c o n t r o l s t a t i o n . T h e p r o b l e m is thus
to
find
a
solution
to t h e
robust
decentralized
servomechanism problem
for
s y s t e m ( 6 . 5 . 1 ) u n d e r t h e two following c o n s t r a i n t s : (i)
The c o n t r o l l e r s y n t h e s i s must be c a r r i e d o u t in a s e q u e n t i a l s t a b l e way
(DAV-79bS, i . e . ,
t h e c o n t r o l l e r s can be c o n n e c t e d to t h e s y s t e m one a f t e r a n o t h e r
r e s u l t i n g a t a n y time in a s t a b l e c l o s e d - l o o p s y s t e m .
268 T h i s is m o t i v a t e d b y
physical
constraints
like time l a g s
c o n t r o l l e r s c o n n e c t i o n , lack of communication h a r d s t r u c t u r e . . , is a c h i e v e d w i t h a c o n n e c t i o n s e q u e n c e
41,2 . . . . . S ) ,
associated etc.
with the
If this property
t h e c o n t r o l l e r is s a i d to b e se__z-
cluentiall 7 s t a b l e w i t h r e s p e c t to c o n t r o l s t a t i o n o r d e r ( l p 2 p . . . , S ) . (ii) No c e n t r a l a u t h o r i t y m u s t b e u s e d in d e c e n t r a l i z e d d e c i s i o n m a k i n g ,
and
e a c h c o n t r o l s t a t i o n p o s s e s s e s o n l y a limited k n o w l e d g e of t h e m a t h e m a t i c a l model of the system
(typically,
e a c h s t a t i o n of a l a r g e
scale s y s t e m p o s s e s s e s
o n l y a local
model ( D A V - 8 2 ) ) .
6.5.4.a.
- E x i s t e n c e of a c o n t r o l l e r
C o n s i d e r t h e s y s t e m ( 6 . 5 . 1 ) withe0=0 a n d yd=0 g i v e n b y : = Ax + i=~l Bi u i Y~= Cir~x + I~i ui
(6.5.13)
Yi = Cix + D'mlu.1
(i=l . . . . . S )
Apply t h e c o n t r o l : Am ~ ~ o ui = Ki Yi + Ki v i ( i = l , . .o ,S) where a n d AmYi= y~n_ "~Ki R r i x r ? _ b~ ui,
(6.5.14a) a n d w h e r e t h e following c o n t r o l l e r s h a v e
a l r e a d y b e e n a p p l i e d to c o n t r o l s t a t i o n s (1,2 . . . . , i - 1 ) , i~2 : v °. = K. v. + K.~w. ]
J
J
J
J
(j=1,2 . . . . . i - l )
iE{2 ..... S)
(6.5.14b)
v. is t h e o u t p u t of a d e c e n t r a l i z e d s e r v o c o m p e n s a t o r g i v e n b y ( 6 . 5 . 1 0 ) a n d w. is t h e J ] o u t p u t of a d e c e n t r a l i z e d s t a b i l i z i n g c o m p e n s a t o r g i v e n b y ( 6 . 5 . 1 1 ) . T h e minimal s t a t e r e a h z a t i o n of t h e r e s u l t a n t applying the controller (6.5.14a,b)
closed-loop system obtained by
to t h e s y s t e m ( 6 . 5 . 1 3 )
for c o n t r o l s t a t i o n i (with
i n p u t v oi a n d o u t p u t y ? is c a l l e d t h e i t h s t a t i o n ' s local model of t h e s y s t e m . The
problem
of f i n d i n g
a robust
decentralized
servomechanism
control
with
s e q u e n t i a l s t a b i l i t y , w h e n e a c h s t a t i o n p o s s e s s e s o n l y a local model of t h e s y s t e m a n d w h e n t h e c e n t r a l d e c i s i o n m a k i n g a u t h o r i t y is n o t allowed i s called t h e local model robust decentralize d servomechanism problem. I t is a s s u m e d ces/reference criterion,
(DAV-79b,
signals poles, i.e.
here
stability
o r pole
82) t h a t e a c h c o n t r o l s t a t i o n k n o w s X] . . . . . ~g of ( 6 . 5 . 8 ) , assignability
modes, i f a n y ) of t h e c l o s e d - l o o p s y s t e m .
(except
the disturban-
a n d h a s t h e same p e r f o r m a n c e for
the
decentralized
fixed
269 Theorem 6.9
(DAV-82).
Consider the system (6.5.1)
in which A is a s s u m e d to b e
a s y m p t o t i c a l l y s t a b l e . T h e n t h e r e e x i s t s a s o l u t i o n to t h e local model r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m if a n d only if t h e r e e x i s t s a solution to t h e r o b u s t decentralized s e r v o m e c h a n i s m p r o b l e m ( s e e T h e o r e m 6 . 7 ) .
6.5.4. b. - Controller synthesis A s s u m i n g t h a t T h e o r e m 6.9 h o l d s , t h e following algorithm p r o v i d e s a s y n t h e s i s procedure. Algortihm 6 . 1 . ( D e c e n t r a l i z e d s y n t h e s i s solution) (DAV-82). Step 1 : Apply t h e o u t p u t f e e d b a c k c o n t r o l : :
ui
~'m A~ ~ i Yi + Ki v °
(i=l
. . . . .
S)
A K. ~ R mi x r i,m K. ~: Rmixri
where
are
arbitrary
non
zero
I~i = r i, a n d w h e r e t h e Ki's a r e c h o s e n "small e n o u g h "
matrices
with
rank
so a s to maintain t h e
s t a b i l i t y of t h e c l o s e d - l o o p s y s t e m . Step 2 : Using a c e n t r a l i z e d s y n t h e s i s method (DAV-75) a n d t h e k n o w l e d g e of s t a tion l ' s local model of t h e s y s t e m , a p p l y t h e s e r v o c o m p e n s a t o r ( 6 . 5 . 1 0 )
with
i=l to t h e t e r m i n a l s of c o n t r o l s t a t i o n 1 a n d a p p l y t h e s t a b i l i z i n g c o m p e n s a t o r : O
v 1 = K 1 v I + K~ w 1 (v I is g i v e n b y (6.5.10) that
the resulting
c l o s e d - l o o p s y s t e m is
a n d w 1 is g i v e n b y ( 6 . 5 . 1 1 )
stable
and
has
a
desired
so
dynamic
r e s p o n s e . The r e s u l t i n g s y s t e m h a s t h u s t h e p r o p e r t y of h a v i n g Yl r e g u l a t e d , Step 3 : R e p e a t
sequentially step
2 for
(i=2,3,...,S)
until
all t h e
stations
have
regulated outputs. If pole a s s i g n m e n t is d e s i r e d ,
t h e a b o v e a l g o r i t h m can he modified as follow
(DAV-82). Algorithm 6.2. (Pole a s s i g n m e n t d e c e n t r a l i z e d s y n t h e s i s ) (DAV-82). Assume with no loss of g e n e r a l i t y t h a t t h e c o n t r o l s y n t h e s i s is p r o c e e d in t h e c o n t r o l s t a t i o n o r d e r 1, 2, . . . ,
S.
Step 1 : i=l Step 2 : Using a c e n t r a l i z e d s y n t h e s i s m e t h o d a n d t h e k n o w l e d g e of s t a t i o n i ' s local model of t h e s y s t e m ( i . e . t h e minimal r e a l i z a t i o n of t h e s y s t e m ( 6 . 5 . 1 3 ) a l r e a d y c o n t r o l l e d at s t a t i o n s ( 1 , 2 , . . . , i - 1 ) with r e s p e c t to t h e i n p u t u i a n d t h e o u t p u t ~m Yi ) ' a p p l y t h e s t a b i l i z i n g c o m p e n s a t o r ;
270
ui = Ki "~m Y i + K;zi m
(6.5.15)
;3 = Gi zi + Gi Yi to s t a t i o n i so t h a t : i
Z B.K .C. +j 1 j j ] G 1 C1
BIK 1 . . . . . . . GI: . . . . . . . . •
1
1
0
%.
•
G.*C.m
BjKT
*°.
0 ........
"LG
t
f:m
h a s all i t s e i g e n v a l u e s c o n t a i n e d in Cg ( e x c e p t t h e d e c e n t r a l i z e d f i x e d modes o f {
I • A , (B I . . . . . Bi))
which lie o u t s i d e of C~, if a n y ) . Cg is a s p e c i f i e d r e g i o n
LC] of ~-. This is always possible for almost all Kj, Gj, 0=1,2 .....i-l) (DAV-8Z). Step 3 : If i=S, s t o p , o t h e r w i s e , i=i+l, go to Step 2. Remark 6 . 6 . I.
If T h e o r e m 6.9 h o l d s , t h e n for almost all g a i n s c h o s e n in s t e p s I to 3 of
Algorithm 6 . 1 , it is always p o s s i b l e to c a r r y out t h e s y n t h e s i s (DAV-82). 2. If t h e s e q u e n t i a l s t a b i l i t y c o n s t r a i n t is r e l a x e d , t h e n Algorithms 6.1 and 6.2 are still a p p l i c a b l e for t h e case of u n s t a b l e o p e n - l o o p s y s t e m s • 3. Note t h a t t h e c o n t r o l l e r s o b t a i n e d b y A l g o r i t h m s 6.1 a n d 6.2 a r e , g e n e r a l l y , n o t u n i q u e with r e s p e c t to t h e c o n t r o l a g e n t s e q u e n c e . 4. I f Dral = 0, Di = 0 ( i = l , . . . , S ) ,
t h e n t h e r e s u l t s of t h i s s e c t i o n hold f o r t h e
g e n e r a l c a s e f o r w h i c h t h e i n f o r m a t i o n flow b e t w e e n c o n t r o l s t a t i o n s is a r b i t r a r i l y c o n s t r a i n e d ( n o t n e c e s s a r i l y d e c e n t r a l i z e d ) ( D A V - 8 2 ) . I n d e e d , as it is p o i n t e d o u t in (WAN-TBb), a r e o r d e r i n g of t h e o u t p u t s can always b e p e r f o r m e d to form an e q u i v a lent s t a n d a r d decentralized control problem•
6.5.5. - Robust decentralized controller for unknown systems In t h i s s e c t i o n , we c o n s i d e r t h a t t h e s y s t e m ( 6 . 5 . 1 )
t h a t we w a n t r e g u l a t e , is
n o t completly k n o w n . The only i n f o r m a t i o n on t h e s y s t e m is t h e following ; (i) The s y s t e m is d e s c r i b e d b y a finite dimensional l i n e a r f i m e - i n v a r i a n t model. (ii) T h e s y s t e m is o p e n - l o o p a s y m p t o t i c a l l y s t a b l e .
271
(iii) T h e d i s t u r b a n c e s a f f e c t i n g t h e s y s t e m a n d t h e t r a c k i n g r e f e r e n c e s i g n a l s are of polynomial/sinusoTdal t y p e , i . e . Re (Xi}=0, (i=l . . . . . g) in ( 6 . 5 . 6 ) . (iv) The s y s t e m i n p u t s can b e e x c i t e d , a n d t h e s y s t e m o u t p u t s to r e g u l a t e can m be m e a s u r e d , i . e . yi = Yi " With t h i s
sole i n f o r m a t i o n ,
it is
desired
to f i n d
a
decentralized controller
which
solves t h e r o b u s t s e r v o m e c h a n i s m p r o b l e m . T h e q u e s t i o n is to know w h e t h e r o r n o t t h e r e e x i s t s a f i n i t e s e t of e x p e r i m e n t s (taking into a c c o u n t n o i s y m e a s u r e m e n t s } to p e r f o r m on t h e p l a n t , necessary and
s u f f i c i e n t c o n d i t i o n s f o r t h e e x i s t e n c e of a
such that the
solution
to
the
above
problem can b e e x p r e s s e d in t e r m s of t h e s e e x p e r i m e n t s . If a solution e x i s t s , t h e following q u e s t i o n is to know w h e t h e r t h e r e e x i s t s a c o n t r o l l e r s y n t h e s i s p r o c e d u r e (using o n - l i n e t u n i n g
methods}
which satisfies the
decentralized controller tuning
s y n t h e s i s c o n s t r a i n t s above : (i) At a n y time, one c o n t r o l l e r can be i m p l e m e n t e d on one c o n t r o l s t a t i o n o n l y . (ii) A f t e r a c o n t r o l l e r h a s b e e n i m p l e m e n t e d on a g i v e n c o n t r o l s t a t i o n ,
this
c o n t r o l l e r is f i x e d a n d c a n n o t b e r e a c t u a l i z e d . (iii)
The
resultant
closed-loop system
must
remain
stable
any
time
of
the
controller s y n t h e s i s . This p r o b l e m is called t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m f o r u n k n o w n
systems.
6 . 5 . 5 . a . E x i s t e n c e of a s o l u t i o n Recall t h a t K d is t h e s e t of b l o c k - d i a g o n a l m a t r i c e s K d = { K]K = b l o c k - d i a g .
[K~ . . . . . Ks], K i e R m i = i
, (i=1 . . . . . S).
Definition 6.1 (DAV-78). 1. The s t e a d y - s t a t e t r a c k i n g gain p a r a m e t e r s T k ( i , j ) , of t h e s y s t e m ( 6 . 5 . 1 ) for t h e c a s e mi = r i , I Cj (Xk I - A) -1 Bi
(i=l,...,S),
(i,j=l . . . . . S ) , (k=l . . . . .
if i# j
Tk(i,j ) __a
(6.5.16) C i (Xk I - A } - I Bi + Di
2.
g)
are given by :
The
(k=l,...,g}, (i=l,...,S), given b y :
steady-state
tracking
of t h e s y s t e m (6.5.1} w h e r e r a n k Ki= r i ,
i f i=j gain
parameters
Tk ( i , j j K i ) ,
(i,]=l . . . . , S ) ,
w i t h r e s p e c t to t h e i n p u t m a t r i c e s K i E R m i x r i ,
(i=l . . . . . S ) ,
f o r t h e c a s e mi >/ r i,
(i=l . . . . . S ) , a r e
272 a [ C J (k k I - A ) - I Bi Ki
if i#j
=I
Tk(i'j;Ki)
(6.5.17)
Ci (k k I - A) -1 B i Ki + Di Ki
if i=j
It is clear that for the case Ki = I and mi = r i (i=l . . . . . S), T k ( i , ]) = T k ( i , j ; K i ) . It is worth noticing t h a t the s t e a d y - s t a t e t r a c k i n g gain p a r a m e t e r T k ( i , j) is equal to the t r a n s f e r function matrix between the i n p u t u i a n d the o u t p u t yj. Davison (DAV-76d, 78) s u g g e s t e d algorithms, called " e x p e r i m e n t s " , to evaluate the parameters T k ( i , j ) a n d T k ( i , j ; K i ) . Theorem 6.10 (DAV-78a). Consider the system (6.5.1) for which mi=ri,i {1. . . . . S), if i ~ ilp i 2 ) . . . , i d ,
a n d mi ) r i if i = i l , i 2 , . . . ) i d, a n d a set of mixr i i n p u t matrices Ki, with r a n k K.=r.. T h e n a n e c e s s a r y a n d sufficient condition for the
i=il,...,id,
1 1
existence of a solution to the r o b u s t decentralized servomechanism problem for u n k nown systems is t h a t t h e r e e x i s t s a list of d i s t i n c t i n t e g e r s (s 1, s 2 , . . . s S) (not n e c e s s a r i l y u n i q u e ) , si£ { 1 , . . . , S ) , such t h a t the following S successive r a n k conditions hold :
1.
rank[Tk(S 1, s I ;--Ksl )] = s I
2.
ran
[Tk(S , s2 ; ~ s 2 )
(k=l,...,g)
T k (s2, s I ;~'s2) ] [
= rsl = rs2
(k=l,...g)
~Tk(S I, s2 ;~'Sl) Tk(S1, s I ;~'Sl) J
rank[ Tk (Ss' sS ; ~ S s ) .... Tk (sS, C 1 ; ~ S s )
N.
S = ~ i=l
LTk (s I, s S ; ~ S l ) .... T k (s 1, s I ; ~ S l )
rs
l
(k=l,...g)
where
I
Irsi
s i ~ 11,...,, . .d
il
Ks i Ks.
if
. . si = ll)...,l d
I
Assuming t h a t carrying
out
the
Theorem 6.10 holds,
decentralized
controller
an algorithm is given in synthesis
T k ( i , j ) , u s i n g one dimensional o n - l i n e t u n i n g methods.
in
terms
(DAV-78)
of the
for
parameters
273
Remark 6 . 7 . 1.
I f mi
>/ r i,
(i=l . . . . . S),
Theorem
6.10
holds
for
almost all
(C~A,BtD)
s y s t e m s . On t h e o t h e r h a n d , if mi < r i f o r some i ~ {I . . . . . S}, t h e n T h e o r e m 6.10 does n o t h o l d , a n d no s o l u t i o n e x i s t s . 2. It is i n t e r e s t i n g to n o t e t h a t t h e local c o n t r o l l e r s s y n t h e s i s m u s t b e c a r r i e d out in s p e c i f i e d s e q u e n c e (not n e c e s s a r i l y u n i q u e ) . If t h i s s e q u e n c e is n o t r e s p e c t e d t h e n , in g e n e r a l , no c o n t r o l l e r s y n t h e s i s can b e p e r f o r m e d . H o w e v e r , t h i s is n o t t h e case if a s s u m p t i o n (it) is r e l a x e d in t h e t u n i n g s y n t h e s i s c o n s t r a i n t s ( D A V - 7 9 b ) .
6.6. - D E C E N T R A L I Z E D
CONTROL
BY
HIERARCHICAL
CALCULATION
T h i s s e c t i o n is c o n c e r n e d w i t h t h e h i e r a r c h i c a l calculation m e t h o d s of a d e c e n t r a l i z e d c o n t r o l for t h e c l a s s of l a r g e - s c a l e l i n e a r i n t e r c o n n e c t e d s y s t e m s . Two t y p e s of a l g o r i t h m s a r e p r e s e n t e d : t h r e e - l e v e l calculation a l g o r i t h m s (HAS-78a,b~ 79) a n d two-level c a l c u l a t i o n a l g o r i t h m s ( X I N - 8 2 ) .
6.6.1. - Three-level calculation algorithms
This subsection presents the algorithm of Hassan
a n d Singh
(HAS-78b)
a n d its
extension to the case of robust decentralized control (HAS-79).
6.6. l.a. - Decentralized near-optimal controller
(HAS-78b)
Consider the large-scale linear i n t e r c o n n e c t e d system described by : 5 xi = Ai xi + Bi ui + i--E1 A i j x j
(6.6.1)
orj in a compact form, b y :
I~ = Ax + Bu +
Cz
Lx
(6.6.2)
where A, B a n d C are appropriate block-diagonal
matrices with S blocks, a n d L is a
full matrix representing
the interconnections
trol t h e s y s t e m
b y d e c e n t r a l i z e d s t a t e f e e d b a c k minimizing a q u a d r a t i c p e r -
(6.6.2)
between
the systems.
formance i n d e x . The optimization p r o b l e m can b e w r i t t e n :
We
want to con-
274 7
rain
J = 1/2 f
( x ' Qx + u ' R u ) d t
K subject to : = Ax + Bu + Cz (6.6.3)
Z = Lx
u = -Kx where
Q a n d R are appropriate weighting matrices.
I t is s h o w n
in
(SIN-76)
that
the
solution of the
above problem has
the
fol-
lowing form •
u = - Gx - Tx where
G
equation,
is
a
block-diagonal
matrix
obtained
by
solving
the
decomposed
Riccati
a n d T is a full m a t r i x o b t a i n e d b y h i e r a r c h i c a l c a l c u l a t i o n .
Now, s u b s t i t u t i n g
(6.6.4)
into the criterion,
we o b t a i n
:
fT 0 ( x ' Qx + x ' W* x ) dt
Jopt = i/2 with
(6.6.4)
W* = ( G + T ) ' R ( G + T )
S i n c e it is d e s i r e d to o b t a i n a d e c e n t r a l i z e d matrix Td,
rain
control,
we c o n s t r a i n
T to b e a d i a g o n a l
and the optimization problem becomes : T J = 1/2 f0 ~ x ' Ox + x' Wx)]dt
Td s u b j e c t to £ = ( A - B G ) x + Cz - B T d x z = Lx
(6.6.5)
W = (G + T d ) ' R (G + T d ) w h e r e B is a n x n introduce
m a t r i x ( i f , in p r a c t i c e ,
B is o f l o w e r d i m e n s i o n t h a n n x n ,
we can
additional fictitious controls).
Let G d (Go) , A d ( A o ) ,
Qd(Q0),
a n d B d (B 0) be t h e m a t r i c e s c o m p o s e d o f t h e
d i a g o n a l ( o f f - d i a g o n a l ) e l e m e n t s o f t h e m a t r i c e s G, then the matrix W can be written
(A-BG),
:
W = (G d + T d ÷ GO)' R (G d + T d + G O) = (F + GO)' R (F + G O) w h e r e F = G d + T d is a d i a g o n a l m a t r i x .
The optimization problem can be rewritten
as :
Q, a n d B, r e s p e c t i v e l y ,
275
T = i/2 0/ [x' Q d x + x'F' R F x
rain J with
g (x,F,G0)
+ g (x,F,G o)] dt
= x' (Q0 + F' R G O + G O R F + G O ' R G O ) x
subject to : :~ = A d X with
(6.6.6.)
- B d T d x + y (x,z,T d)
y (x,z,T d) = A 0 x + Cz - B 0 T d X To s o l v e
which consists
this
problem,
in adding
the o p t i m i z a t i o n
problem
trajectories supplied a fixed point type
XCf
:
Hassan
certain into
and
additional
a number
by the second level.
algorithm.
Singh
(HAS-78b)
linear
constraints
of independent These
Let us introduce
use a prediction in o r d e r
subproblems
trajectories
to d e c o m p o s e for
are then
some fixed
improved
the additional linear constraints
using "
X
(6.6.7)
Td* = T d Substituting
(6.6.7)
rain J with
method
g (x*,
into (6.6.6),
the optimization problem becomes
:
T = 112 _~[ x ' Q d x + x * ' F' R F x * + g ( x * , F * , G O) ]
F * , G O) = x * ' (Q0 + F * ' R G O + G O' R F * + G O' R G O) x*
s u b j e c t to : ~¢ = AdX - B d T d x * + y ( x * , z , T d * ) z
= Lx
Td* = T d X*
with In order
---- X
y (x*,z, T d * ) = A 0 x * + Cz - B 0 T d * x * to s o l v e t h i s p r o b l e m ,
1 x' Qd x + ~1 x ~, H = ~-
+y ' [AdX-
let us write the Hamiltonian :
F' RF x * + ~1 g (x% F% G O) +
B d T d x ~ + y (x% z, Td~)] + ~ ' ( L x -
z) +
n
+ 13' ( x -
x ~) +
w h e r e ~ , B, v i a r e L a g r a n g e The necessary
Y: i:l
v[ (Td. - T~.) L
multipliers,
conditions
and y is the costate variable.
for optimality can be written
as :
dt
276 aH an
0
-
~
aH aT = 0 aH a6
z = Lx
--~
~ = C'
= 0
~
x* = x
= 0
---,,.
T*,.o
al-i aS'i
=
i
aH a
= 0 ~
T~
aH a x* = 0
(6.6.8) 5'
(6.6.9) (6.6.10) (6.6.11)
rd. ,
V = d i a g [(R G O x* - B'o 5" ) x * ' ]
(6.6.12)
B= ( F ' R F + Qo + F * ' R G o + C'o RG o) x* + (A o -
-'~
T~' B'o - T~j B~t ) ~" (6.6.t3)
Suppose then
the
now that x*,
Hamiltonian
can
be
Td*, 6 and V have been provided decomposed
such
that
each
b y t h e s e c o n d level,
subproblem
has
only
one
variable Tdi.
H aTd.
.-4,.
*2 x.t
or
Td"
_ Gd"
l
,
= 0
(Gd- + Td ) R i t i
Bd. Yi x~-t + vi = 0 t
l
-
-
-
1 .
R.
aaYiH = xi
= Ad i xi - Bd. [- Gd. l ~
I ~2 (vi - Bd. Y i xi)* ] x *i + Yi (x*, z, T *d) R-x. t gd" t i 2 Bd. % l
with
=-~.
i + vi)
X ~*
l
1
2 T I. = Ad i xi - Bd i Gd i x *i - - - -R.x.
3H 3xi
(- Bd.3'i
x- 2 1
v i - ' - ~i
Ti + Yi (x*, z, T d)
I
= Qd. xi * Ad.~'i + ki + 6 i l t
J
k. = L: ~. l
1
L e t Yi = Pi xi + h i '
l
t h e n a f t e r m i n o r m a n i p u l a t i o n s we o b t a i n
:
(6.6.1M
277 2 Bd.
Pi :
- 2
Ad. Pi ÷-'I~. P~l
Qi
wi'th Pi(T) = 0
(6.6• 15)
1
Bd. v i rli ) - Pi [Bdi Gd.1 x.*L + ' R I x ~•
P~. = (- Ad.l ÷
Ri
1
Hassan and singh
suggest
45
+ Yi (x , z, T d) ] - k i -
Bi(6.6.16)
1
the following three-level
algorithm.
Algorith m 6.3 (HAS-78b). Step 0 : G u e s s t h e i n i t i a l t r a j e c t o r i e s Step 1 :
Guess
the
initial
zh and k h at level 3 for the initial index h=l
trajectories
x *j,
T d * , B j,
vj
at
level
2,
and
set
the
iteration index j=l. Step 2 : U s i n g x *j, Td* J, B j, v j o b t a i n e d and (6.6.16), Step 3 : S u b s t i t u t e right the
sides
(BJ+I-BJ),
1, c a l c u l a t e P i ' n i f r o m ( 6 . 6 . 1 5 )
and
x and y obtained
a t l e v e l 1, Ir a n d
of ( 6 . 6 . 1 0 ) - ( 6 . 6 . 1 3 )
integral
from s t e p
x from ( 6 . 6 . 1 4 ) ,
of
and
the
norm
( ~ j + l _vj)
T (fromy=Px
to o b t a i n
of t h e
+ •).
x *]+1,
differences
C a l c u l a t e also T d .
z obtained
(x *iT1 -
are not sufficiently
small,
x'J),
the
decentralized
(k h + l
gain matrix,
- kh )
and
and
v j+l.
If
(Td*J÷l-Td*}),
go to s t e p
go to l e v e l 3 a n d c a l c u l a t e n e w k h + l a n d z h + l f r o m ( 6 . 6 . 9 ) n o r m of t h e d i f f e r e n c e s
at level 3 into the
Td~*J+l , B .3+1,
2.
and
Otherwise,
(6.6.8}.
If the
(z h + l - z h ) a r e s m a l l ,
otherwise
r e c o r d T d as h+l 1 using kh+l, z as the
go to s t e p
new guesses. Remark 6 . 8 . 1. T h e A l g o r i t h m be p r o v e d
using
for n o n l i n e a r
6.3 i s a p r e d i c t i o n
a similar technique
type
algorithm,
to t h e o n e u s e d
and its convergence
by Hassan
(HAS-76)
and only the decentralized
gains are
systems.
2. T h e e n t i r e
c a l c u l a t i o n is d o n e o f f - f i n e ,
u s e d o n - l i n e to c o m p u t e a n d i m p l e m e n t t h e o p t i m a l d e c e n t r a l i z e d 3.
The
desadvantage
a l t h o u g h it is n o t s e n s i t i v e
6.6.1.b.
- Robust
Hassan, to p r o v i d e prescribed and t a k e s
75,76).
can
and Singh
of
the
algorithm
to small v a r i a t i o n s
decentralized
near-optimal
S i n g h a n d Titli ( H A S - 7 9 )
a robust
decentralized
degree a (in the into account
control
sense
external
is
that
T d is
dependent
of t h e i n i t i a l c o n d i t i o n s .
controller
extended
(HAS-79).
the approach
which ensures
of A n d e r s o n
disturbances
control. initial-state
and and
of the above
exponential
Moore
structural
(AND-71),
stability see
perturbations
section with a § 6.4.1) (SIL-73,
278
Consider crlbed by
an interconnected
dynamical system
composed by
S subsystems
des-
: S
x i = Ai R'i * B i ~ i
*j
e.. 1J A.. D ~.J + ~.'
1
( i = I , . "" ,S)
where
t h e e. 2s a r e t h e e l e m e n t s o f t h e i n t e r c o n n e c t i o n m a t r i x E, w h i c h a r e i n t r o 1] d u c e d to i n c o r p o r a t e a n y s t r u c t u r a l p e r t u r b a t i o n w h i c h m a y o c c u r d u r i n g t h e o p e r a -
tion of the system.
E i s c o n t i n u o u s i n t i m e , w i t h 0 x< e l i ( t ) x( 1, ( i , j = l . . . . .
We s a w in s e c t i o n ( 6 . 4 . 1 ) a,
t h a t to e n s u r e
i t s u f f i c e s to c o n s i d e r t h e p e r f o r m a n c e
index
S).
t h a t t h e s y s t e m is s t a b l e w i t h d e g r e e :
5 i f = i__Z1 1/2 f0Te2c~t [ ( R i - ~ i ~ ' Qi ( ~ i -
~d)+
u--i, Ri ~ i ]
dt
w h e r e T e q u a l s a t l e a s t 4 t i m e s t h e time c o n s t a n t o f t h e s y s t e m . variable transformation, form, i.e.
"Linear Quadratic"
: 5
T
rain3 :
i
Qi
s u b j e c t to : with
With a n a p p r o p r i a t e
we c a n p u t t h i s p r o b l e m i n t o a s t a n d a r d
xi-
+ u i,
dt
S
~ i = Ai x i + Bi u i + jZ=l A. = ~. + a I l
e..H A.. i] x.] + d i ( t )
I
d i ( t ) = ~ii(t) e a t The optimal control for this system can be written as :
u1" G.
where
I
P. i s t h e I
system.
S Z
= - G,x 1
R7 ! I
e.. T., x, - s.
j=l
1]
E
]
1
B ) P. I
1
s o l u t i o n o f t h e local
(i.e.
decomposed)
Riccati equation
for the
it h
sub-
Let T =[e.. T . . ] , t h e n t h e o p t i m a l c o n t r o l , in i t s g l o b a l f o r m , b e c o m e s : 1] 11
u = - Gx - T x - S Now, w i t h t h e
same
approach
a n d n o t a t i o n s a s in t h e l a s t s e c t i o n ,
the optimi-
zation problem can be written T min J = 1]2 f0
(x-xd)'
Q(x-xd~
+ x'F' RFx + 2 X'Gd'RS +
+ 2 x ' T d ' RS + S' RS + g ( x , F , G O) s u b j e c t t o : ~ = AdX - B d T d X + y ( x , z , T d ) Z
---- L x
(6.6.17)
279 w h e r e g ( x , F , G 0) = (x-xd) ' O 0 ( x - x d )
+ x' F' R G 0 x + x'
+ x ' G O' R F x + x ' G O' RG0x y ( x , z , T d) = A0x + Cz - B 0 TdX + D D=d-BS
This p r o b l e m
is
similar
to
the
problem
(6.6.6)
and
can
be
solved
Algorithm 6.3 a f t e r c h a n g i n g t h e o p t i m a l i t y c o n d i t i o n s ( 6 . 6 . 8 ) - ( 6 . 6 . 1 6 )
by
using
the
by the appro-
priate ones.
6.6.2. - Two-level
calculation algorithm (XIN-82)
Xinogalas,Mahmoud
and
Singh
(XIN-82)
-
considered
the
following
optimization
problem : 1
rain Ki
S
3 =~- Z f (x! Qi xi + u! R i ui)dt i=l 0 l 1
subject
S xi : Aii xi + 5i ui + i=lZ Aij X.j
to
Ui = - K i x i
(i=l,...,S)
This p r o b l e m c a n b e w r i t t e n in a g l o b a l f o r m a s : co
min J = 1 / 2 f0
( x ' Qx + u ' R u )
dt
KEK d s u b j e c t to •
= Ax + Bu u=-
(6.6.19)
Kx
w h e r e B, Q a n d R a r e d i a g o n a l m a t r i c e s ,
and Kd is given by
K d = {K/K = b l o c k - d i a g . [ K 1 . . . . . K S ] , K i E R m i x r i
It is e a s y t o s h o w t h a t
min
(6.6.19)
can be b r o u g h t
:
, (i=l . . . . . S)}
b a c k to :
J = T r [ ( Q + K'RK) S ) ]
KCK d
subject to : g (S,x 0) = S (A-BK)' + ( A - B K ) S
+ X 0 =0
(6.6.20)
280
with
X0 = E [ x ( 0 )
Let
Ad = diag .(Aii)
x(0)']
= diag.
( x i)
A0 = A - A d An alternative
formulation of the optimization problem
(6.6.20)
is given by
:
rain J = T r [ (Q + K I R K ) S ] subject
K~K d to : + X0 +Z=0
g ( S , X 0) = S ( A d - n K ) t + ( A d - B K ) S Z = A O S + S A O'
The corresponding
Lagrangian
L = Tr [(Q + K'RK)S]
function can be formed as :
+ Tr[P
g (S,X0)]
For this static optimization problem,
tL --= '2 T
0
8L -0 8Z t___kL ~P
the necessary
--~
Z = A0P + PA"u
~
T-P
--4,-
(A d -
0
)__LL = ~ ~S
BK) S + S (A d -
(A d - BK)' T + T (A d -
D/., = 0 aK
~
K = R -1 B'
where
+ T r [T(AoS + SA 0' - Z ) ] conditions
for optimality are
:
(6.6.21)
BK)' + X0 ÷ Z = 0
(6.6.22)
BK) + Q + K ' R K + A~) P + PA 0 = 0
M d Sd 1
M d = diag. (T5) S d = diag.(S)
To s o l v e t h e 82) p r o p o s e
above optimality
conditions
Xinogalas,
Mahmoud and
Singh
(XIN-
the following tow-level algorithm.
Al~orithm 6.4 (XIN-82). Step 1 : Guess an initial value of the decentralized Step 2 : Compute have
negative
mentano
and
the eigenvalues
of the matrix
real parts,
step
Singh
g o to
(ARM-81)
(see
3.
g a i n m a t r i x Kq . (A d - B K q ) .
Otherwise,
§ 6.3.1.a)
use
to c o m p u t e
I f all t h e e i g e n v a l u e s the
algorithm
of A r -
a stabilizing
decen-
281
tralized
feedback
matrix
Kq ,
i.e.
such
that
(A d
-
BK q)
is
asymptoticaly
stable. Step 3 • S t a r t t h e t w o - l e v e l h i e r a r c h i c a l c o m p u t a t i o n s t r u c t u r e with g u e s s e d v a l u e s for t h e m a t r i c e s Zq a n d
Tq and send these values,
together with the
gain
m a t r i x K q , to t h e f i r s t level. Set q = l . Step 4 : At t h e f i r s t level, ( 6 . 6 . 2 1 ) Bartels and Stewart
(BAR-72).
a n d ( 6 . 6 . 2 2 ) a r e s o l v e d u s i n g t h e t e c h n i q u e of The m a t r i c e s S q a n d T q a r e c o n v e y e d to t h e
second level. Step 5 : New p r e d i c t i o n s of t h e m a t r i c e s Z, P a n d K a r e c a l c u l a t e d a c c o r d i n g t o :
Z q+l = A 0 S q + S q A 0' pq+l = Tq K q+] = R -I B' M q
(Sdq)-I
If the conditions : ~]HZ q+ll[- [[Zq[[ < ~Z k~llPq+l [[- ][Pq II < ep q [ [ K q + l ] [ - [[Kq[i <e K Kq+l are satisfied, regard
as
the
optimal
solution
and
finish the
iterative
s c h e m e . O t h e r w i s e , u p d a t e t h e m a t r i c e s Zq + l , p q + l a n d K q+l u s i n g t h e r u l e s : Zq+l = c 1 Zq + d I Zq+l = c2 p q + d2 p q + l Kq+l = c 3 K q + d 3 K q+l w h e r e t h e c o n s t a n t s c] a n d dj s a t i s f y cj + dj = 1 for j = 1 , 2 , 3 .
(The q u a n t i t i e s
eZ, ep, eK a r e small p r e s e l e c t e d t o l e r a n c e v a l u e s ) . Go to s t e p 2.
6.7. - CALCULATION METHODS USING AN INTERCONNECTION MODEL In t h i s s e c t i o n , we p r e s e n t an a l t e r n a t e a p p r o a c h to t h e optimization p r o b l e m , which u s e s
a
simple r e d u c e d
model
for
the
interactions
between
the
subsystems
(HAS-78a) (HAS-80) (CHE-81).
6.7.1. - The g e n e r a l i n t e r c o n n e c t t o n model (HAS-78a) The optimization p r o b l e m c o n s i d e r e d h e r e is : S
~o
min J = i/2 i__E1 0f [(xi - xd)' Qi (xl - xd) dt + u:,Ru.], dt subject to : ~i = Ai xi + Bi ui + Ci zi + di
(i=1 . . . . . S)
(6.7.1)
282
where
Qi ) 0,
Ri
tion vector
which
subsystems,
i.e.
z = Lx
0 are appropriate
>
is assumed
weighting
to b e
a linear
and
zi is the interconnec-
of the states
of the other
(L • f u l l m a t r i x )
The optimal control of each subsystem = _ ~1
ui
matrices,
combination
R'
is given
by
:
P. x . - R - I B . ' s. x 1 1 1
(6.7.2)
w h e r e P. i s t h e s o l u t i o n o f d e c o m p o s e d R i c c a t i e q u a t i o n ( i . e . R i c c a t i e q u a t i o n f o r the .th x 1 subsystem) a n d s i i s a s o l u t i o n o f a l i n e a r d i f f e r e n t i a l e q u a t i o n a n d d e p e n d s on the states
of the other
subsystems
(SIN-76)
:
S si
=
i~=l Wij xj + O i
If t h e i n t e r a c t i o n s
(j=l . . . . .
between
S)
the subsystems
(6.7.3) are ignored,
t h e c o n t r o l in
(6.7,2)
t
becomes
ui
= U l i = - R ~ I Bi' Pi xi - R i l =K . x. - w , 1
The control
I
(6.7.2)
Bi 0i (6.7.4)
I
is d e c o m p o s e d i n t o t w o c o m p o n e n t s
:
u i = Uli + u2i
(6.7.5)
where Uli is the control given by
(6o7.4),
a n d u 2 i will b e c o m p u t e d
as shown
in t h e
following. Now,
if
the
interconnections
optimization problem
are
can be written
as
considered
as
unknown
disturbances,
the
:
S "'-" J = subjecto
o
Qi ( " i -
+ *i
dt
to : ~ ' = A.* ~ . + I
with
(6.7.6)
C. ~ . + D.
I
1
I
I
A.* = A. - B,K. 1
1
1
1
D. = d. - B. w. 1
1
1
1
w h e r e ~i ( u 2 i , 5 2i ) i s a n a p p r o p r i a t e Let
the
v e c t o r Yi b e
Bi ui2 - CiY i, then
we h a v e
chosen :
function of the control ui2 and its derivative. to
minimize
the
Euclidean
norm
of
the
vector
283
Yi = (C'Ci)-1 Ci' Bi ui2 = ~ u2i Substituting
~i
B i u 2 i b y C i Yi' we h a v e
+ ci (B u2i + ~i ) + "~" = Ai* i + Ci Yi + Di Yi = B u2i + ~zi
with
=
(6.7.7)
Ai* ~i
where Axi is t h e a p p r o x i m a t e
Di (6,7.8) (6.7.9)
s o l u t i o n of t h e s t a t e s r e s u l t i n g
Let ~. b e a p p r o x i m a t e d
from these substitutions.
by the following linear differential
1
equation
:
~i = Azi Azi + dzi where Azi is t h e p a r t corresponds
of A G (A G i s t h e d y n a m i c m a t r i x o f t h e o v e r a l l s y s t e m ) ,
to t h e e l e m e n t s of 9 . . T h e d e r i v a t i v e
of ( 6 . 7 . 9 )
1
which
can then be written
-"
= Azi + IB fi2i - Azi IB u2i + dzi with
-- Azi Yi + vi + dzi
(6.7.10)
vi = ~ fi2i - Azi B u2i
(6.7.11)
D e f i n e t h e f u n c t i o n ~i in ( 6 . 7 . 6 )
as :
~i (u2i' u2i) = vi' Ri vi Then the optimal decentralized
control problem can be rewritten
S min J = 1]2 i=Z1 f0¢o(~'i - ~ d ) , Q i ( x~i _ .,sd .~i) + vi , R i v i s u b j e c t to : ~. = X. ~. + B. v. + D. 1
1
1
1
1
1
where
~i:
= Yi
[o:] ~L =
d
[: 0] aod
~i =
0
i
and t h e o p t i m a l s o l u t i o n of t h i s p r o b l e m is g i v e n b y
:
A. l
dt
as :
284
~7: B,
vi = - ~T1 ~i' ~i ~i = - Gil q
- Gi2 Yi -
~
~-ilB i.
~ i si
(6.7.12)
w h e r e ~ i is t h e s o l u t i o n of t h e R i c c a t i e q u a t i o n
a n d ~. is t h e s o l u t i o n of t h e l i n e a r - v e c t o r 1
=
-
Substituting
differential equation
I - Pi ~i
v i in ( 6 . 7 . 1 0 ) ,
6.7.11),
:
:
+ Qi ~d
we o b t a i n
:
~* = Ai* xi* + C i Yi* + D i
(6.7.13)
Y* = ( A z i - l G i 2 ) Yi* - Gil xi* + dzi* dzi* = - R~ ~ i ~ i + dzi
(6.7.14)
From t h e e q u a t i o n
(6.7.11),
we h a v e :
B u2i = v i + Azi IB u2i Again,
b y m a k i n g a similar a p p r o x i m a t i o n
calculating vectors
the
two v e c t o r s ai, ~3i w h i c h
to t h a t made in e q u a t i o n minimize t h e
Euclidean
(6.7.7),
norms
i.e.
of t h e
by two
•
IBa i - Azi ~B u2i and
BB i - v i
and substituting
them in e q u a t i o n
(6.7.8)°
we h a v e : (6.6.15)
u~i = Aui u~i - Hi xi* - Fi Yi* - Si with A
. = (13' ~ ) - I
B.' A I
Ul
. ~B. Zl
I
Hi = (13i' ]3) -1 ]Bi' Gil Fi
([Bi' B i ) - I 13i' Gi_~
Si
([Bil 13i)-i 13i' R i
and t h e d e c e n t r a l i z e d
[Bi' s i
c o n t r o l is g i v e n b y
(6.6.13)
g r a m of F i g u r e 6.5 s h o w s t h e c o n t r o l l e r s t r u c t u r e .
(6.6.14)
and
(6.6.15).
T h e dia-
285 Cizi*+Di
1
2 Fig.
6.7.2.
- Model-following method
(HAS-80)
Let the optimization problem be S
6.5
(CHE-81)
:
co
min J = 112 iZ__l Of (xi' Qi xi + ui' s u b j e c t to •
R i u i) d t
~c. = A. x. + B. u. + C. z. 1
~1
1
1
I
1
zi = j=~l
Lij xj
In order
to s o l v e t h i s
model o f i n t e r a c t i o n s
(6.7.16)
I
problem,
Hassan
and
."
z = Azi z i and the optimization problem can be rewritten 5
as :
¢o
rain J = I/2 iE__l Of (Yi' ~i Yi + ui' Ri ui) dt subject to : where
:
Singh
(HAS-80)
use the following
286
[xi] E:ic] [:ij I i]
Yi :
~i =
l
zi
~i :
and Qi =
Az i
The optimal solution of this problem is given by
:
ui = - R~ 1 ~ i Pi' Yi w h e r e P. is t h e s o l u t i o n o f t h e R i c c a t i e q u a t i o n . 1
T h i s c o n t r o l c a n b e w r i t t e n in the
form : (6.7.17)
u i = - K l i x i - K2i z i Now,
consider
the subsystem
m o d e l w h o s e i n p u t ~. is p r o v i d e d 1
by the inter-
connection model :
4.
1
= A. Ax. + B. u. + C. ~z. 1
1
1
w h e r e ~x.1 is t h e (from ( 6 . 6 . 1 7 ) ,
state
1
1
(6.6.18)
1
of subsystem
model.
Then,
a f t e r r e p l a c i n g z p a r Az) in ( 6 . 6 . 1 6 )
if we s u b s t i t u t e and (6.6.18)
u i by
its
we o b t a i n
value
:
-'xi = ~i ~i + Gi zi - Bi K2i~i
(6.6.19)
with ¢h1 = A i - B i K l i xi
= ~i~i
(6.6.20)
+ (Ci - Bi K2i) zi
w h e r e ~ is t h e i TM s u b s y s t e m 1
Substracting
Ai
,~
(6.6.20)
+
state resulting from ( 6 . 6 . 1 9 )
we g e t :
ci
where x i and zi are error vectors given by I
l
"~. = z . 1
I 1
I
-'~.
1
and the optimization problem is rewritten :
from t h e u s e o f ~z. i n s t e a d o f z . . 1
1
287 S
co
min J = 1/2 i=lZ °f subject to :
(x~i'Hi ~i + '~i'Si ~'i)dt
~". = ~. ~. + c. ~. 1
1
1
1
1
The optimal solution of this problem is given by : ~i* = = S~I C.' P.1 ×.1 1 where P.1 is the solution of the decomposed Riccati equation. Then we get : zi* = ~i - S~ 1C.' P. 1 1 1 and the decentralized control is given by :
~.i = /0
x ( t ; x 0, u) = T I x ( t I ~ 0 ' u)
J (x o, u) = ~ ' ( ~ 0 , for a n y i n p u t u ( t ) ,
u)
w h e r e T I is a g e n e r a l i z e d i n v e r s e of T.
If t h e p a i r (~',~) i n c l u d e s t h e p a i r ( S , J ) , sion of ( S , J ) , (S,J),
t h e n (~,~) is s a i d to be a n d e x p a n -
a n d ( S , J ) is called a c o n t r a c t i o n of ( ~ , ~ ) . Note t h a t if ( ~ , ~ ) i n c l u d e s
t h e n t h e optimization p r o b l e m c o r r e s p o n d i n g to ( ~ , ~ ) is e q u i v a l e n t to t h e one
for ( S , J ) p r o v i d e d t h a t 46.8.3) h o l d s . Now, u n d e r t h e t r a n s f o r m a t i o n
(6.8.2)
t h e m a t r i c e s of t h e e x p a n d e d s y s t e m
and the original system are related by ; = TAT I + MA,
N
B
= TB
+ NB,
= (TI) ' Q T I + MQ and ~ = R + N R w h e r e MA, NB, sion.
MQ a n d N R a r e c o n s t a n t c o m p l e m e n t a r y m a t r i c e s of p r o p e r
dimen-
291
Theorem 6.12 (IKE-81,
(i) MAT = 0,
or
The pair
N B = 0,
(~',~') i n c l u d e s
MQ MiA1 T = 0
MQ Mi - 1 N = 0 a n d N R = 0
(i=1,2 ..... ~)
are
Although must
be
such
that
out that
the conditions
two
different
the
choice of matrices
chosen
such
sets
that
it can be used
(6.8.4)
of conditions
the
T,
In
the
following,
on the original system Definition 6.3 tractible
for controller
system
we c o n s i d e r
(IKE-81,
expansion
no means unique design,
and
(IKE-81).
(IKE-80),
they
observable
(a d e t a i l e d s t u d y
and about
(MAL-85)).
design
problem
can be contracted
and
discuss
the
conditions
to u = - K x f o r i m p l e m e n t a t i o n
SIL-82a).
The control
u = - ~
(t; ~0'
u)
~t
of t h e e x p a n s i o n
~ is con-
S if ~ 0 = T x i m p l i e s t h a t
> 0
u.
6.13 ( I K E - 8 1 ) .
MAT = 0 a n d
If
NB = 0
then any control law u = - ~ given by
do n o t i m p l y e a c h o t h e r , and
S.
K x ( t ; x 0, u ) = ~
Theorem
the
(6.8.5)
is c o n t r o l l a b l e
or observer
:
(6.8.5)
to t h e c o n t r o l u = - K x f o r t h e o r i g i n a l s y s t e m
for any fixed input
(S,3) if either
(6.8.4)
contraction
MA, N B i s b y
expanded
which the control u = - ~
and
for
this choice is given by Malinowski and Singh
under
the pair
T I MQT = 0 a n d N R = 0
(il) MIMAT = 0, T MiA1 NB = 0,
We p o i n t they
SIL-SZa).
is contractible
to t h e c o n t r o l law u = - K x ,
and K is
:
K:~T
6 . 8 . Z. - O v e r l a p p i n g Consider
again
composed of three vely,
i.e.
:
decomposition the
system
subvectors
Xl,
(6.8.1), x 2 and
and
assume
that
x 3 of dimension
its nl,
state n 2 and
vector
x
is
n 3 respecti-
292
x = ( X l ' , x z' x3')'
and n = nI + nz + n3
Let t h e i n p u t b e decomposed i n t o two s t a t i o n s :
u = (u I' u2')' where u I E Rml,
u 2 ~ RmZ
and m = m I + m 2 .
With this representation the system S can be described as :
x2
I AI~21 L~A2"-2~; A23
x2
B2I
l B22 -- II
LA3,
×3
"~;1--
B32
',A~2
A33
t
(6.8.6)
w h e r e the submatrices correspond to the c o m p o n e n t s of the state and input vectors.
Let the state be zation to a n y n u m b e r
decomposed
of c o m p o n e n t s
into two
overlapping
is obvious)
components
(the generali-
non square
matrix defined
:
~1 = ( x l ' x 2 ' ) ' 9t2 = (x 2' x3')'
s u c h t h a t t h e new s t a t e v e c t o r is :
= (~'I' ~ 2 ' ) ' T h i s v e c t o r is r e l a t e d to x b y : ~=Tx where ~ ~ R~ a n d ~' = n 1 + 2n 2 + n 3 , by :
T=
I1 0 0 0
0 12 12 0
a n d T is a ~ x n
0}
0
0 13 •
293 i = 1,2,3.
where I i = i = 1,2,3 a r e u n i t y matrices of dimension n i x n i Define the e x p a n s i o n ~ :
where
~ = TAT I + M ,
~ = TB + N
Ikeda et al. (IKE-81) p r o p o s e the choice (not u n i q u e )
TI=
i o o o] I!
1
1
~- 12
~- x2
0
o
0
l
0
M =
: l
~ AI2
- ~ AI2
1
1
~ A22
0
- g A22
1
13
1
0 - ~ A22 0
which s a t i s f i e s the conditions ( g i v e n by p a r t
~ A22
I
I
- ~ A32
--~-A32
(i) of Theorem 6.12)
0 0
N=0
0 0
for ~ to be an
expansion of S. With the t r a n s f o r m a t i o n ( 6 . 8 . ? ) the e x p a n s i o n "S is g i v e n b y :
All
0
AI3
BII
II BI2
A22 11 0
A23
B21
1 B22
AI2 1I I
A21
I
w
x2J
A21
0
II
A22
A231
I
A31
0
iI
A32
By comparing the s y s t e m s S and ~
A33
23
(6.8.8}
I
B2i
I B22 I
331
1 B32
we see t h a t t h e o v e r l a p p i n g decomposition
of the system S r e s u l t s in a disjoint decomposition of the e x p a n s i o n ~ of S. S t a n d a r d d e c e n t r a l i z e d control t e c h n i q u e s can t h u s be u s e d to d e s i g n a c o n t r o l l e r for ~. The e x p a n s i o n ~ can be r e p r e s e n t e d as two i n t e r c o n n e c t e d s u b s y s t e m s :
: ;.Xl = ~1 ~1 + ~1 Ul + 12 ~2 + 12 u2 x2 ~2 ~2 + ~2 u2 + A21 ~1 + B21 Ul where t h e matrices of the d e c o u p l e d s u b s y s t e m s a r e g i v e n b y :
294
~
" Xl = AI'~I + L I Ul ,4, x2 ~2 ~2 + B2 u2
IF-AII
and •
Al2]
"~1
=
[ Bll
~l = . A21
A22.]
A22
A23
["
BI2
[] B22
A2 : A32 A33] and'~2 = 1332 The interconnection matrices are given by :
0
.%1
A23
0
[B22J
[B31]
Let us associate the following performance indices with the decoupled subsystems : (T10' Ul) =
(Xl ' ~1 ~1
Ul' ~1 Ul) dt
~ (xz0' u2) ~oo(~Z" Q2 ~2 + u2' ~2 u2) dt where ~10 and ~20 are the initial states of ~lD and ~SD2 and ~1' ~2' ~1 and '~2 weighting matrices of appropriate dimensions.
are
The global performance index can be written : N
00
J(%,u)=I 0 (~,~+u~.)dt
where
6 = diag. (~1' ~Z ) = diag. (~1' ~2 ) In virtue of part (i) of Theorem 6.12, the performance index ~ (~0' u) is a expansion of : co
J (x 0. u) = 0f (x' Qx + u' Ru) clt with Q = T I ~T
295
and J (Xo, u) is t h e p e r f o r m a n c e i n d e x a s s o c i a t e d to t h e o r i g i n a l s y s t e m . Now, t h e local c o n t r o l laws :
Ul = - K1 ~i u2 = - ~2 ~2 are c a l c u l a t e d to optimize t h e local p e r f o r m a n c e i n d i c e s f o r t h e local s u b s y s t e m s ~ p and ~
. The global c o n t r o l is t h e n w r i t t e n :
I
Ii
II "K23
K24
and t h e c o n t r o l to b e i m p l e m e n t e d on t h e o r i g i n a l s y s t e m is g i v e n b y t h e c o n t r a c tion : Kll
[
K
2
I K23
%v-----
K24 J
6.9. - CONCLUSION Decentralized
control
and
in
general
constrained
structure
control
induce
p a r a m e t r i c optimization p r o c e d u r e s for t h e s y n t h e s i s of a d e q u a t e c o n t r o l s t r u c t u r e s . In t h i s c h a p t e r , we h a v e p r e s e n t e d most o f t h e available t e c h n i q u e s f o r dealing with t h i s p r o b l e m , k i n d of p r o b l e m ,
In o r d e r to g i v e a more complete a n d r e a l i s t i c s o l u t i o n to t h i s we h a v e also c o n s i d e r e d t h a t t h e s y s t e m could b e p e r t u r b e d
small o r l a r g e p a r a m e t e r v a r i a t i o n s o r a f f e c t e d b y e x t e r n a l d i s t u r b a n c e s .
by
The s o l u -
tion p r o v i d e s a r o b u s t d e c e n t r a l i z e d c o n t r o l , Since
decentralized
control
remains
an
active
research
area
with
practical
impact in many fields of a p p l i c a t i o n , t h e p r e s e n t e d r e s u l t s s h o u l d b e c o m p l e t e d soon by other efficient techniques and algorithms.
CHAPTER
STRUCTURAL
7.1.
7
ROBUSTNESS
- INTRODUCTION The
problem
of designing
has no fixed modes and that Chapter
5.
Chapter
an
6 was then
which can be used
concerned
to d e t e r m i n e
disturbances
control
with
number which, every
the
studies
system have
in a d d i t i o n to p r o v i d e the
occurence
(ALB-83)
disturbances
to t h e
connection Siljak
of o n e
(SIL-75)
is concerned
In addressed thesizing
to
or
more
who
constrained
failures
number
(SIL-75)
(SIL-78)
concept
was
the
stability
importance A recent
of
(DAV-81)
sensor
(LOC-
structural
A structural
perturba-
as the
originally e
properties
system,
composite
class of structural
either
refering
regulators
of these
controlled
This
affecting
controller.
to t h e c o n t r o l l e d s y s t e m w h e n
a certain
The other
in
technics
constraints
synthesizing
of
for composite systems
considered
system
values.
perturbations.
of a n o p e r a t i n g
may be disconnected. controller
optimization
problem
perturbations
subsystems.
the
to s t r u c t u r a l
the
preserve
class is defined
that
it i s a l s o o f a r e a l p r a c t i c a l
some desirable properties working,
In presence
(SIL-78)
with
possible
dis-
introduced system
by when
perturbations
measurements,
actuator
or line cuts. (DAV-81), with
an
the
plant
the property (1,2 .....
j-l),
robust
additional
a decentralized
S-decentralized still has agents
first
subsystems
behaviour
parametric
can affect the plant itself or the control system.
tion related
certain
attention
of structure]
(ACK-84).
the
of the system parameter
can be subjected
paid
component is properly
under 83)
that
of
such
is m i n i m i z e d w a s c o n s i d e r e d
with the addition of robustness
and variations
When d e a l i n g w i t h l a r g e s c a l e s y s t e m s , to c o n s i d e r
structure
transfer
the gains of the structurally
This problem was also considered to e x t e r n a l
optimal
the information
decentralized reliability
controller
such
that
The
to s o l v e t h e r o b u s t
if t h e j - t h
that satisfactory Vj ~ {1,2 . . . . .
servomechanism
requirement. control
robust
problem
problem
servomechanism
agent
fails,
tracking/regulation
S} (sequential
reliability).
(DAV-76c)
consists
in
problem
the resulting occurs
is
synfor a
system
for control
297 Also in
(LOC-83),
t h e p r o b l e m of d e s i g n i n g
lator which performes robust preserves
zero-regulation
zero-error
of all t h e
chapter,
variables
the
consequences
using
of s t r u c t u r a l
structurally
fecting
the
sidered.
In
(Section
the
last
section,
which, besides preventing to h e
and the
subset)
is
a r e s p e c i f i e d in a d i f f e r e n t The study
stabilizability
control.
design
the i-th one when a failure
problem.
on
affecting
Both
the faced
of
conditions,
an
is f o c u s e d on
or pole a s s i g n a b i l i t y
structural
controller
some m o d e s of t h e s y s t e m
f i x e d m o d e s in n o r m a l o p e r a t i n g
another
structural
feedback
7.Z)
but
constraints
perturbations
constrained
plant
regu-
is d i s c u s s e d .
the robustness
way a n d we a r e c o n c e r n e d w i t h a p u r e
decentralized
r e g u l a t i o n in n o r m a l o p e r a t i n g c o n d i t i o n s a n d
error
o c c u r s in t h e i - t h f e e d b a c k loop ( r e l i a b i l i t y )
In t h e p r e s e n t
a completely
perturbations
(Section
optimal
7.3)
control
are
afcon-
structure
(the unstable ones for example)
guarantees
that
these
modes
(or
a r e n o t f i x e d m o d e s w h e n t h e s y s t e m is s u b j e c t e d to a p r e s p e c i f i e d
c l a s s of s t r u c t u r a l
perturbations
7.2. - S T R U C T U R A L
(affecting the controller).
PERTURBATIONS
AFFECTING
THE
SYSTEM
C o n s i d e r t h e following s y s t e m c o m p o s e d of S s u b s y s t e m s
(OZG-~2)
•
= Ax + Bu
(7.2.1)
All .........
AIS
A =
B =
1
132. `
O
I I i
ASI . . . . . . . . .
"
A55
where
A.. C R n i x n j a n d B. EE R n i x m i , ( i , j = l . . . . . *] 1 d e c e n t r a l i z e d s t a t e f e e d b a c k in t h e f o r m :
u = Kx
K = block-diag.[
K1 K2 ...
S).
This
BS
system
is
controlled
KS]
by
(7.2.2)
where K. ~ R m i x n i
, (i=l . . . . . S ) .
1
We a s s u m e
that
(7.2.1)
is s u b j e c t e d
to s t r u c t u r a l
in t h e d i s c o n n e c t i o n of o n e o r m o r e s u b s y s t e m s . system
(7.2.1)
c a n be
represented
by
perturbations
which consist
]'he interconnection structure
a digraph
G = (V,E).
Each
node
of the
v. ESV is 1
a s s o c i a t e d to a s u b s y s t e m
Si, i E
{1 . . . . . S }
and each edge
( e i , e j) 6- E r e p r e s e n t s
a
298 nonzero interconnection digraph
from Si to Sj w h i c h i m p l i e s t h a t
w a s a l s o u s e d in
G T = (V T .
(COR-76b),
see Chapter
ET) o f G is a c o l l e c t i o n of n o d e s
connecting
the nodes
V T in G.
t r i c e s of A a n d B c o r r e s p o n d i n g
2,
A.. $ 0 a n d v i c e v e r s a ( t h i s P Section 2.2.3.b). A subgraph
V T c_ V a n d
the set of edges
T h e m a t r i c e s AT a n d B T a r e d e f i n e d as t h e s u b m a to t h e s u b s y s t e m s
a s s o c i a t e d to V T .
T h e n t h e following r e s u l t p r o v i d e s s u f f i c i e n t c o n d i t i o n s u n d e r (7.2.1)
is p o l e a s s i g n a b l e u s i n g t h e c o n t r o l ( 7 . 1 . 2 )
Theorem Section
7.1
(OZG-825.
If for every
25 G T = (V T ,
system (7.2.1)
Remark 7.1.
ET),
(see
connected
subgraph are
T h e model ( 7 . 2 . 1 )
in
The results
2,
then
the
perturbations.
s o l u t i o n s to t h e
(OZG-825.
Chapter
controllable,
all s t r u c t u r a l
of d e c e n t r a l i z e d
( D A V - 7 6 c ) is a l s o d i s c u s s e d
~: = A x + B u
perturbations.
(A T , BT5
fixed modes under
which the system
structural
strongly
h a s no d e c e n t r a l i z e d
s e n t e d in t h i s r e m a r k .
under
the matrix pairs
T h e p r o b l e m of e x i s t e n c e
nism problem
E T c_ E
servomecha-
are briefly pre-
is m o d i f i e d a s follows :
+ Ew
(7.2.3)
y=Cx
ill[cc 0c201
E =
Es where
A
(i=l . . . . .
S).
and
Cs ] B
are
the
same
as
in
(7.1.15,
E. E Rni x~,
ei = Yi - Yi
ref
and
1
y= (Y'l Y ' 2 " " Y ' S )' is t h e o u t p u t to b e r e g u l a t e d
C. E: R P i x n i , 1
so t h a t t h e e r r o r s
(i=l,...,S)
t e n d to z e r o a s t -> co.
We a s s u m e t h a t t h e d i s t u r b a n c e
vector w satisfies :
~] = F 1 z 1 w where
(7.2.4)
= H1 z1
z 1 ~ R--1 a n d
where ref
reference input vector y
~2 = F2 z2
(H1,
F1)
satisfies
:
is o b s e r v a b l e
and
Zl(0)
is
not
known.
The
299
y
ref
= H2 z 2
(7.2.5)
/I
where
z 2 ~: Rn2
and
where
(H2,
F 2)
is o b s e r v a b l e a n d
y r e f is m e a s u r a b l e .
The
minimal polynomials of F 1 a n d F 2 a r e d e n o t e d b y h I (p) and h2 (p) a n d t h e i r l e a s t common multiple b y ~.(p). Let t h e z e r o s of A(p) (multiplicities included} b e g i v e n b y ~ 1 ' 1 2 ' . . . . Xq. A s y s t e m is said to b e d e c e n t r a l l y r e t u n a b l e u n d e r s t r u c t u r a l p e r t u r b a t i o n s if a f t e r any s t r u c t u r a l p e r t u r b a t i o n , d e c e n t r a l i z e d c o n t r o l l e r s can be d e s i g n e d so as to solve t h e s e r v o m e c h a n i s m problem for t h e p e r t u r b a t e d s y s t e m . We h a v e t h e following result : Theorem 4.2 (OZG-82}. If for e v e r y s t r o n g l y c o n n e c t e d s u b g r a p h G T = (VT, ET) (i) the m a t r i x p a i r s (A T , B T) a r e controllable (ii) the s u b s y s t e m s (CT, AT , B T) h a v e no t r a n s m i s s i o n zero coinciding with ), 1' )~2' . . . . ),q (C T is d e f i n e d in a similar way as AT a n d B T) t h e n t h e s y s t e m ( 7 . 2 . 3 ) is d e c e n t r a l l y r e t u n a b l e u n d e r all s t r u c t u r a l p e r t u r b a t i o n s .
7.3.
STRUCTURAL PERTURBATIONS AFFECTING THE CONTROL SYSTEM
-
(TRA-
84b ) In t h i s s e c t i o n , using
structurally
we a r e
constrained
s u p p o s e d to a f f e c t t h e
also c o n c e r n e d b y controllers
controller.
The
but
t h e p r o b l e m of pole a s s i g n a b i l i t y structural
perturbations
following s u b s e c t i o n
specifies the
p e r t u r b a t i o n s t h a t we c o n s i d e r a n d p r o v i d e s a model for the p e r t u r b a t e d
are type
now of
controlled
system.
7.3.1.
- S t r u c t u r a l p e r t u r b a t i o n s c h a r a c t e r i z a t i o n (TRA-84b) C o n s i d e r t h e c l a s s of l i n e a r t i m e - i n v a r i a n t s y s t e m s d e s c r i b e d b y t h e following
state-space representation
:
:~(t) = A x ( t ) + B u ( t ) y(t) = Cx(t) where x ( t ) ~
Rn ,
(7.3.]a) u ( t ) • Rm,
y ( t ) ~ Rr
are t h e s t a t e ,
input
and
r e s p e c t i v e l y a n d A, B, C are real m a t r i c e s of a p p r o p r i a t e d i m e n s i o n s . Define
B = [ b I . . . . . b m] C = [ c 1 . . . . . Cr ]l
output
vectors,
300
so that
the
written
:
equivalent
representation
of the
system
in t h e f r e q u e n c y
d o m a i n c a n be
(7.3.1b)
y(p) = w(p) u(p) with
m yi(p)
= i_E1 w j , i ( P )
w..(p)
= c (pI-A)-lbi
,1
Consider
(j=l . . . . . r )
ui(P)
j
the following feedback
c o n t r o l law f o r s y s t e m
(7.3.1)
:
u = K y
(7.3.2)
whose structure
is s p e c i f i e d b y t h e f e e d b a c k
K = (kij)i= 1
. . . . .
m
matrix K :
w i t h s o m e kii. c o n s t r a i n e d
to b e z e r o ,
j: 1,...,r We a s s u m e of t h e c o n t r o l l e r
that
the controlled
components
system
(sensors,
behaviour
actuators,
may be perturbed
lines).
These
by
failures
failures are specified
below : Definition 7.1. 1. If t h e i t h a c t u a t o r ,
2. If t h e i t h s e n s o r , The behaviour
ui(t) ;1 c~ i
~i(t)
=ct i ~ i ( t )
m} f a i l s a t t i m e x , t h e n u i ( t )
i ~{1 ..... p}
of t h e it h a c t u a t o r
if t h e a c t u a t o r
1 0 if
i ~" {1 . . . . .
f a i l s at t i m e T, t h e n can be expressed
= 0,
t ~,T
Y i ( t ) = 0, t ~/ z
b y "-
(i=l . . . . . m) is p r o p e r l y
(7.3.3) working
a failure occurs
is t h e c o n t r o l t h a t s h o u l d b e a p p l i e d to t h e s y s t e m
is e f f e c t i v e l y
and ui(t)
is t h e c o n t r o l t h a t
applied.
Similarly,
the behaviour
~i(t) =Bi Yi(t)
of t h e i t h s e n s o r
(i=l . . . . . r)
can be expressed
by
:
(7.3.4)
301
10 if t h e s e n s o r is p r o p e r l y
working
B i= if a f a i l u r e o c c u r s ~ i ( t ) is t h e m e a s u r e d v a l u e o f t h e r e a l o u t p u t Y i ( t ) . Line f a i l u r e s m u s t b e c o n s i d e r e d
differently
P r a c t i c a l c o n s i d e r a t i o n s l e a d to d i s t i n g u i s h 1. T h e p h y s i c a l
lines establishing
the
from a c t u a t o r
or sensor
t h e t w o following s i t u a t i o n s
feedback
from o n e o u t p u t
failures.
:
to o n e i n p u t
are
i s o l a t e d o n e from a n o t h e r . 2. T h e l i n e s e s t a b l i s h i n g inputs
(corresponding
unique
physical
tems
for
line.
which
s t a t i o n s Si,
c o n n e c t i o n s from a s e t o f o u t p u t s
to a g i v e n
geographical
station)
are put
This
situation
corresponds
to g e o g r a p h i c a l l y
is
a natural
partitioning
of inputs
there
(i=l . . . . .
the feedback
each
and
to a s e t o f
together
in a
distributed
sys-
outputs
in
several
S).
Definition 7.2. 1. I f t h e line a s s o c i a t e d to t h e f e e d b a c k c o n n e c t i o n b e t w e e n o u t p u t a n d i n p u t u i , i • { 1 . . . . . m} fails at time ~, t h e n ki] = O, 2. If t h e line a s s o c i a t e d S i, i , j ~ { 1 . . . . .
to t h e
feedback
S) fails at time t ,
then
(If a r e o r d e r i n g
of inputs
and outputs
t ~ ~ .
connection between
station
S. a n d J
station
:
k s v = 0 f o r all s , v s u c h t h a t u s e S i a n d Y v C
on t h e s y s t e m model ( 7 . 3 . 1 ) ,
Yi' ] C { 1 , . . . , r )
according
this corresponds
Sj.
to t h e s t a t i o n s h a s b e e n p e r f o r m e d
to s e t t i n g to z e r o t h e w h o l e b l o c k K.. q
in t h e f e e d b a c k m a t r i x K d e f i n e d in ( 7 . 3 . 2 ) ) . I n v i e w o f t h i s d e f i n i t i o n , we c a n d e f i n e a n e w f e e d b a c k m a t r i x ~ w h i c h t a k e s into a c c o u n t t h e line f a i l u r e s
1.~=
:
(lij kij) i=l ..... m j = 1 ..... r if there is a b r e a k
(7,3,5a) of the line j-i
lij = t °1 o t h e r w i s e 2, ~ . = b l o c k (Lij Kij) i , j = l Lij = / 0
.....
S
if t h e r e is a b r e a k o f t h e line b e t w e e n s t a t i o n Sj a n d s t a t i o n S i otherwise
(7.3.5b)
302 I f we d e f i n e
:
ct =
diag.[ a 1 . . . . .
=
diag.[ E 1 . . . . .
am ] E 8 p]
(7.3.6)
Rmxm
E Rrxr
we o b t a i n t h e f o l l o w i n g model f o r t h e p e r t u r b a t e d
system :
PLANT
State space
:
£(t)
= Ax(t)
+ B a ~(t)
,7(t) =~Cx(t) Frequency
(7.3.7a)
domain :
7(p) = 8w(p) ct~(p)
(7.3.7b)
CONTROL
~(t)
(7.3.8)
= ~ 7(0
The closed-loop s y s t e m ~7.3.7)
~ ( t ) = (A + B a ~
(7.3.8)
is given by
;
~ C) x ( t )
a n d i l l u s t r a t e d b y t h e following s c h e m e :
y(t) SYSTEM
Fig.
3. ]
Remark 7.2. 2. I n t h e c a s e o f d y n a m i c f e e d b a c k c o n t r o l a s :
= Sz + R y u = Qz + Ky + v
we s u p p o s e t h a t t h e s t r u c t u r e the
output
feedback
matrix
(7.3.9)
of t h e c o m p e n s a t o r is e o n d i t i o n n e d b y t h e s t r u c t u r e K (S,
R and
Q have
the
same s t r u c t u r e
than
K).
of The
303 existence
of a solution
tence of fixed be s o l v e d b y Chapter
7.3.2.
to t h e p r o b l e m
modes)
with
considering
the static
- Structural
liability...)
Therefore,
and
pole assignability
dynamic
feedback
of the
practical
considerations
compensation
same structure
(exis-
can
thus
((WAN-735,
see
robustness
make
a designer
perturbations
some
structural
generally
wants
which he considers
L e t Fa = {c~ 1 . . . . . c a } cx, a n d 8 a r e and
constrained
2, S e c t i o n 2 . 2 . 3 a 5 .
For a given controlled system, line
of stabilizability
structurally
defined
line failures.
in
Then
perturbations to r e s t r i c t
(like s e n s o r
more
the study
probable
technology, than
by specifying
others.
a class of
like t h e m o s t p r o b a b l e .
, F s = { 81 . . . . . 8 s} a n d FL = { ~ 1 . . . . . -~L}, w h e r e K',
(7.3.5)
and
P ={F a,
(7.3.6),
Fs,
represent
F L} s p e c i f i e s
a class of actuator,
a class
of structural
sensor, perturba-
tions. A controlled respect
system
(7.3.1)
within the
class
turally robust
P.
In this
with respect
case,
such
that
controller
perturbations
a 6F a, • ~ F s,
(see Chapter
Proposition
7.1.
The
controlled
respect
P
and
only
if
said
to
be
structurally
all p o s s i b l e (7.3.9)
robust
structural
with
perturbations
itself is said
P = {F a,
Fs,
to b e
F L} , we c a n
systems £p composed by the set of perturbated
m o d e s (WAN-73)
to
the
is under
struc-
to P .
To a c l a s s o f s t r u c t u r a l class of perturbated (7.3.85
(7.3.9)
to P if it r e m a i n s p o l e a s s i g n a b l e
and
K E F L.
Then
from
(7.3.9)
is
the
associate
systems
definition
a
(7.3.7) of
fixed
robust
with
2 ) , it c o m e s ;
if n o
system
(7.3.1)
perturbated
system
within
structurally the
class £p
has
fixed
modes. Introduce Definition turally,
7.3.
robust
the classFp
the following definition Given the controlled mode with respect
:
system
(7.3.15
(7.3.95,
k 0 ~ o (A)
to P if a n d o n l y if n o p e r t u r b a t e d
h a s X0 a s a f i x e d m o d e .
Using this definition,
Proposition
7.1 can be rewritten
is a s t r u c -
system
as follows :
within
304 Corollary respect
7.1.
The
controlled
system
(7.3.1)
(7.3.9)
to P if a n d o n l y if all t h e m o d e s o f ( 7 . 3 . 1 )
with respect
Remark
7.2.
I f we a r e
interested
the necessary
- Characterization In this section,
modes
(see
modes.
The
first
control,
i.e.
the
robustness
robust
of structurally
3)
two
to
provide
robust
(A) a r e s t r u c t u r a l l y
with robust
definitions
three
(7.3.9)
the
problem
of
7.1 must be replaced is s t a b l e " .
and the characterizations
characterizations
are
to
modes
given
in
matrix has a block-diagonal
feedback
reference
condition of Corollary
robust
characterizations
feedback
with
modes of (7.3.1)
we u s e t h e a b o v e
Chapter
be used for arbitrary
the
of
context
structure.
of fixed
structurally of
robust
decentralized
The third
one can
structures.
- In the state s p a c e
Consider ponding
by
and sufficient
by "the set of no structurally
7.3.3.a.
6o
structurally
to P .
stabilization,
7.3.3.
is
that
reordering
the of
system
(7.3.1)
inputs
and
is p a r t i t i o n e d
outputs
is
in
S stations.
performed,
we
If the
corres-
the
following
obtain
model : S £ = Ax + i~l
Bi u i
Yi = Ci x
with B = [B1, C. ~ R r i x n .
(i=l . . . . .
Bz .....
(7.3.10)
S)
BS 1
C = [ C ' 1,
C' 2 . . . . C ' S ] '
and
where
Bi ~ Rnxmi
and
1
The feedback
ui(t) The
structure
= Kii Y i ( t ) matrices
c~ a n d
failures are partitionned
is supposed
(i=l . . . . .
to b e d e c e n t r a l i z e d
:
(7.3.11)
S)
8 (defined
in
(7.3.6))
specifying
the
actuator
and
sensor
in the same way :
a = b l o c k - d i a g . [ XI,..., X S ]
X i = diag. [ Otil,... , aim. ]
i=l,...,S (7.3.12)
i
t3 = block-diag.[ rl,..., IS] F i = d i a g ' [ S i 1' " " ' 13i ] r. l
i=l,...,S
305 First, note that
in
t h e c o n t e x t of d e c e n t r a l i z e d c o n t r o l , t h e f a i l u r e of t h e line
a s s o c i a t e d to t h e f e e b a c k - l o o p at s t a t i o n i is e q u i v a l e n t to t h e elimination of s t a t i o n i in t h e s y s t e m model ( 7 . 3 . 1 0 ) remains identically zero). represented
( i n d e e d t h e r e is no more u s e made of Y i ( t ) ,
and ui(t)
A c o n f i g u r a t i o n of line f a i l u r e s K* E F L c a n t h e r e f o r e b e
b y d e f i n i n g t h e s e t Tr* =
{1 . . . . . S } -
{ i / L i i = 0} , Lii as d e f i n e d in
(7.3.5). T h e following c h a r a c t e r i z a t i o n is a s t r a i g h t f o r w a r d A n d e r s o n a n d C l e m e n t s (AND-82)
e x t e n s i o n of t h e r e s u l t of
(see C h a p t e r 3, Section 3 . 3 . 1 )
Proposition 7.2. Given the decentralized controlled system (7.3.10) ) , 0 ~ a (A) is a s t r u c t u r a l l y
: (7.3.11),
r o b u s t mode with r e s p e c t to P = { F a, F s ,
if a n d
F L}
only if : E
VB ~ F s ,
Fa,
I A
VIT* c o r r e s p o n d i n g to ~ * • F L,
X0I
-
BK a K l
rank
~ ~ - K Cw~-K
(7.3.13)
n
0
for all k s u c h t h a t K = { i l , . . . , i k }
c~*,
where : BK =[Bil ..... a K = Block-diag. 8~,_ K
C ~*-K =[C'i k+ l . . . . . C'is ] '
[×il , .., Xik ]
= block-diag. [rik+l
Proposition perturbated
Bi~
,..., riS]
7.2 means t h a t we u s e
system within
the matrix rank
test
(7.3.13)
for
every
P in o r d e r to c h e c k w h e t h e r o r not t0 is a d e c e n t r a l i z e d
fixed mode for some of t h e m . If we w a n t to c o n c l u d e w h e t h e r a d e c e n t r a l i z e d c o n t r o l is s t r u c t u r a l l y
robust,
a laborious task.
we m u s t c h e c k all t h e modes of t h e s y s t e m . T h i s is o b v i o u s l y
From a p r a c t i c a l p o i n t of view, t h e r e is no d o u b t t h a t t h e following
c h a r a c t e r i z a t i o n is more c o n v e n i e n t s i n c e t h e whole s e t of n o n s t r u c t u r a l l y
robust
modes (if a n y ) is d e t e r m i n e d in one s t e p . 7.3.3.b.
- In t h e f r e q u e n c y domain
T h i s c h a r a c t e r i z a t i o n is b a s e d on t h e f i x e d mode c h a r a c t e r i z a t i o n of V i d y a s a g a r
306
and Wiswanadham (VID-83) (see C h a p t e r 3, Section 3 . 2 . 3 ) . It p r o v i d e s a direct determination of the non s t r u c t u r a l l y
r o b u s t polynomial,
whose zeros are the non s t r u c t u r a l l y r o b u s t modes of the system. The same notations as in Section 3.2.3 are u s e d . C o n s i d e r the
partitioned
system
(7.3.10)
in a f r e q u e n c y
domain r e p r e s e n -
ration : y = [ Wll(p)
" ' " ~71s(P)]
u (7.3.14)
LWsI(P )
Wss(P) J
and the d e c e n t r a l i z e d feedback control ( 7 . 3 . 1 1 ) . We recall that the fixed polynomial c~(p) of the system are the d e c e n t r a l i z e d fixed modes of (7.3.14) , is g i v e n [ b; ; t e r i s t i c polynomial ~ ( p )
of (7.3.14)
(7.3.14),
the g . c . d ,
whose zeros of the c h a r a c -
and the minors W 1 of W(p) c o r r e s p o n d i n g
to
non s i n g u l a r s q u a r e submatrices of I( v (VID-83) : a(p):
g.od.
{ ¢ (P)'
W
[ f l u 12 U''" U I s ] } 3 IU 32u.,.
i-I I i c R i = {1£1.= r i + 1, ...,
3icMi
i-I Z :{j=l
IIliII
m: + 1, ..., /
u 3SJ
i=l j=lT' rj + r i }
i-I Z j:l
m + m } ! [
(7.3,15)
i=l,...,S
llJiU
Given a class of p e r t u r b a t i o n s P = {F a, F s, FL} , it is clear from Definition 7.3 that the non s t r u c t u r a l l y r o b u s t polynomial of (7.3.14) with r e s p e c t to P is equal to the 1.c.m.
of the
fixed polynomials of all the p e r t u r b a t e d
systems
withinEp.
Consider a s t r u c t u r a l p e r t u r b a t i o n a E F a, 8 ~ F s, and ~ ~ F L, (as defined in (7.3.6) and ( 7 . 3 . 5 ) ) t h e n the c o r r e s p o n d i n g p e r t u r b a t e d system is g i v e n b y ( ? . 3 , 7 ) (7.3.8)
:
7 ( p ) -- B w(p)
c~'(p)
307 The
matrix 8 W(p)a
responding
t o Bi =
j~{1
It
m}.
0,
is obtained
i~{I
follows
..... r}
that
the
f r o m W(p) and
any
minors
by setting
to z e r o a n y
columnr.1 J c o r r e s p o n d i n g
[BWc~] /11/
such
k~j
that
row i cortoc~j
i ~ I or
=
j~J
0, are
e q u a l to z e r o . From
another
hand,
~
b l o c k s Kii c o r r e s p o n d i n g the feedback
is
loop at s t a t i o n i ) .
K'
from there
K by
setting
to
zero
respect
7.3.
The
is s t r a i g h t f o r w a r d
non
to t h e s t r u c t u r a l ~(p) = g.c.d
singular.
JsJ
The following result Proposition
diagonal
submatrices
s u c h t h a t I i # O, Ji ~ fl a r e s t r u c t u r a l l y J1 u. • • uJiu. • .u
the
is a f a i l u r e o f t h e l i n e i m p l e m e n t i n g
It f o l l o w s t h a t t h e s q u a r e
IlU...UIiu...UIs ]
Ij=
obtained
to Lii = 0 ( i . e .
structurally
robust
perturbation
{ ~b ( p )
,
W
from the above discussion. polynomial
a , B , ~" i s g i v e n b y
[i:] ,
of
(7.3.14)
(7.3.11)
with
:
} (7.3.16)
I' = ( I ' l U
I' 2 u . . . u I ' S) -
J' = (J'lU
J ' 2 u ' ' ' U J ' S) - [ J"1 s u c h
I'.c
R'. = R. I
1
1
1
that
Lii = 0} L..11 = O}
{ k such that g k = 0 } "
3'. c M'. = M. - { k s u c h I
{ I' i s u c h t h a t
thatch.
K
1
= O} (i=1 . . . . .
II
s)
II = I1 i II
R. a n d M. a r e d e f i n e d i n ( 7 . 3 . 1 5 ) 1
1
Using respect
above proposition,
to a c l a s s of p e r t u r b a t i o n s
Proposition respect
the
7.4.
The
.....
robust
perturbations
polynomial P =
{ ~(p) }
As an example,
consider
the
problem of robustness
with
a s follows :
structurally
to t h e c l a s s of s t r u c t u r a l
~p(p) = 1 . c . m 7 P
i.e.
non
we c a n c o n s i d e r
of
(7.3.14)
{ F a , F s , F L}
(7.3.15)
is given by
with :
(7.3.17)
that
we a r e c o n c e r n e d
by the failure of one actuator,
P = {F a } , F a = { c x 1 = b l o c k - d i a g . [ 01...1] ..... a i = block-diag. [1..101..1] e ~x = b l o c k - d i a g . [ 1 . . . 1 0 ] } , t h e n t h e n o n s t r u c t u r a l l y r o b u s t p o l y n o m i a l is
given by
:
308
p(p)
= l.c.m.
{g.c.d.
¢ (r,), vl
}}
t
k=l .... m I P = I 1 u 12
I'. c R . 1
u ...
J, = 31 u J2 u . . . u 3S
IS
I
3'. c M'. = M. - ( k }
IIPi II = IIJ'i The problem of one sensor a similar
way
(TRA-84b).
o r o n e l i n e f a i l u r e c a n a l s o b e s i m p l y f o r m u l a t e d in
Although
the
with the number
of perturbations
interest
b a c k all t h e c a l c u l a t i o n s
to b r i n g
7 . 3 . 3 . c. - G r a p h - t h e o r e t i c This terization theoretic
characterization
decentralized).
t h a t We c o n s i d e r ,
of the
problem
grows
this characterization
obviously
presents
to t h e o r i g i n a l n o n p e r t u r b a t e d
the
system.
characterization derives
of Locatelli eta]. framework
complexity
from
(LOC-77)
a l l o w s to c o n s i d e r
The counterpart
the
(see
fixed
arbitrary
is t h a t
modes
Chapter
3,
feeback
the approach
graph-theoretic
Section
3.6.2).
structures
charac-
The
graph-
(not necessarily
is only applicable
for
systems
with simple modes.
The system
same
(7.3.1)
digraph
rS =
(V S .
and the same notations
LS)
as
in
R e f e r to t h e f i x e d m o d e s c h a r a c t e r i z a t i o n turally
robust
perturbation
mode
with
respect
does not result
to
Section
3.6.2
is
associated
to
the
a s in t h a t s e c t i o n a r e u s e d .
of Theorem
some structural
in t h e d c s a p p e a r a n c e
3.30.
Then~,0
perturbation
is a struc-
(a, 6,
o f all t h e e l e m e n t a r y
~)
if the
cycles of
FS f o r w h i c h ;k0 i s a p o l e . The perturbations ciated
to t h e o r i g i n a l
can be easily integrated system.
From Definitions
by 7.1
can be expressed
by the elimination of the vertex
be
the
expressed
line supporting
by
]" ~ 0
of t h e
kij c a n b e e x p r e s s e d
The following result Proposition
elimination
by
vertex
modifying and
7.2,
i ~ V1S,
the
digraph
the jth sensor
(j+m) ¢ . V 2 s ,
Fs a s s o -
t h e it h a c t u a t o r
and
the
the elimination of the edge
failure
failure can
failure
of the
(j+m, i ) ~
L2S.
comes.
7.5
is structurally
robust
with
respect
to t h e i t h a c t u a t o r
a n d o n l y i f ~0 i s a p o l e o f s o m e e l e m e n t a r y
(jth sensor)
f a i l u r e if
c y c l e o f t"S i n w h i c h t h e v e r t e x
i ~ VIS
(]+m ~ VS2) i s n o t i n v o l v e d . 2. X 0 i s s t r u c t u r a l l y
robust
with respect
to t h e
failure
of the line supporting
ki] if
309
and
only
if ~0 is
a
pole
of
some
elementary
cycle
of rS
in
which
the
edge
(j+m,i) ~ LS2 is n o t i n v o l v e d . For
a perturbation
(a, ~ ,
K')
involving
several
actuator,
sensor,
and
line
f a i l u r e s , it is c l e a r t h a t the s e t of c o n d i t i o n s of r o b u s t n e s s a r e g i v e n b y t h e i n t e r section of t h e c o n d i t i o n s c o r r e s p o n d i n g to e v e r y e l e m e n t a r y p e r t u r b a t i o n .
The same
is t r u e for a c l a s s of p e r t u r b a t i o n s , T h e following corollary p r o v i d e s some r e s u l t s r e f e r i n g to p a r t i c u l a r
c a s e s of
practical i n t e r e s t : Corollary 7.2. 1. k 0 is s t r u c t u r a l l y r o b u s t with r e s p e c t to one a c t u a t o r ( s e n s o r ) failure if and only if ~0 is a pole of at l e a s t two e l e m e n t a r y c y c l e s of FS s u c h t h a t t h e s e t s of v e r t i c e s V1S ( E : V 2 s ) i n v o l v e d in each cycle a r e d i s j o i n t . 2. k 0 is s t r u c t u r a l l y r o b u s t with r e s p e c t to one line f a i l u r e of if a n d only i f k 0 is a pole of at l e a s t two e l e m e n t a r y c y c l e s of FS s u c h t h a t t h e s e t s of e d g e s ~
L2S i n v o l -
ved in e a c h cycle a r e d i s j o i n t . 3. k0
is
structurally
robust
with
respect
to one
actuator,
s e n s o r or
line
failure
( o c c u r i n g one at a time) if and only if k0 is a pole of at l e a s t two e l e m e n t a r y disjoint cycles of FS. Remark 7 . 3 . T h i s g r a p h - t h e o r e t i c a p p r o a c h allows t h e d e t e r m i n a t i o n of t h e n a t u r e of the non s t r u c t u r a l l y r o b u s t
modes.
We c o n s i d e r t h e
d i g r a p h F' S a s s o c i a t e d to t h e
p e r t u r b a t e d s y s t e m (F~ is o b t a i n e d b y r e m o v | n ~ the v e r t i c e s a n d e d g e s c o r r e s p o n ding to t h e p e r t u r b a t i o n ) . ~0 is a non s t r u c t u r a l l y f i x e d mode (SEZ-81a)
for t h e p e r t u r b a t e d
s y s t e m if some
e l e m e n t a r y c y c l e s remain in rrS for which ~0 is n o t a pole d u e to a p o l e - z e r o c a n c e l lation in t h e c y c l e t r a n s m i t t a n c e s . k0 is a s t r u c t u r a l l y f i x e d mode (SEZ-81a) f o r t h e p e r t u r b a t e d s y s t e m if t h e a b s e n c e , due to t h e f a i l u r e , of e l e m e n t a r y c y c l e s for w h i c h k 0 is n o t a pole is not a c o n s e q u e n c e of p o l e - z e r o c a n c e l l a t i o n s , N e v e r t h e l e s s , some e d g e s ~ LIS f o r which k0 is a pole remain in FIS , k O is an uncontrollable or inobservable
mode
for the perturbated
system
(only for
actuator and sensor failures) if no edge ~- LIS for which ~0 is a pole remains in F~S. The following s c h e m e i l l u s t r a t e s t h e p o s s i b l e c o n s e q u e n c e s of a p e r t u r b a t i o n :
310
original
system 1
non fixed mode (~, I~) KV /
/
perturbatled system
X0 non structurally Iixed mode
l
1~,
- structurally fixed mode /
(a,•) /(a,13)
13~
/ ~0 uncontrollable or ~ ' /
unobservable
rood 1
Fig. 7.2
7.3.4.
- Example
Consider the B-station system described b y the following t r a n s f e r matrix : 3 p-2 W(p) :
0
p+l p(p'-2)
1
1
p-2
p+2
p+l
p+2
for which the c h a r a c t e r i s t i c
1
p(p-2)
polynomial is . ~ ( p )
= p(p+l)(p+2)(p-2).
Consider a
decentralized feedback s t r u c t u r e given b y the feedback matrix -" K = b l o c k - d i a g . [ k l l , k22,
k33 ]
Using one or the other of the fixed mode characterizations given in Theorem 3.4 or Theorem 3.30, we can determine that this system has a non s t r u c t u r a l l y fixed mode at X0 = -1. Now let us determine,
for example, the n o n s t r u c t u r a l l y r o b u s t modes with
r e s p e c t to one a c t u a t o r failure :
311 1. Using the f r e q u e n c y domain c h a r a c t e r i z a t i o n We h a v e : P1 = {1}
P2
M' I = { I } - { k }
(Proposition 7 . 4 ) .
= {2} P3 = {3 } M' z = {2}
- {k}
The non structurally robust polynomial is given by
I3 1
~p (p) : l.om.
{ g.c.d.
:,.,.m.
= 1.c.m.
{g.c.d.
{¢ (p), W
1
M' 3 = {3 } -{k} :
I2
13 ]
32
33
"t:J
}}
"[: '1',
{p(p+l)(p+2)(p-2);p(p+l)(p-2);0;(p+l)}
;
g . c . d . { p (p+l) (p+2) (p-2) ;3p (p+l) (p-2) ;0; (p+l) (p+2)} g.c.d. { p(p+l) (p+2) (p-2) ; 3p(p+l) (p-2) ;0; (p+l) (p+2) ; 3p (p+l) }} ;
= l.c.m.
{(p+l)
; (p+l)(p+2)
; p(p+l)}
~p(p)= p(p+l) (p+z) T h e r e f o r e the system has t h r e e non s t r u c t u r a l l y r o b u s t modes with r e s p e c t to one a c t u a t o r failure : ~0 -- - 1 ~'1 = 0, ~2 = -2. Obviously, the fixed mode ~0 = -1 a p p e a r s also as a non s t r u c t u r a l l y r o b u s t mode, 3. Using the g r a p h - t h e o r e t i c c h a r a c t e r i z a t i o n ciated to the system is the following :
(Corollary 7 . 2 ) .
The d i g r a p h r S a s s o -
312
f
..
2
/ ....
F S = (V S = { 1 , 2, 3 }
with
5
, L S)
Fig. 7.3.
VIS V2S ={4, 5, 6} LIS = {(1,4).(1,5),(1,6).(2.5),(2,6),(3,4),(3,5)} L2S = { ( 4 . 1 ) , ( 5 . 2 ) . ( 6 , 3 ) }
F S has five elementary
T
cycles for which the transmittances
I (p) = lY23
T
~'~ = (2,6,3,5,2) 1
It a p p e a r s
:
3 (p ) _ p +,_.l ' p(p--2) = p(p.-2) ... 1
~'5 = ( I , ~ , 2 , 6 , 3 , 4 , l ) p+l
=
T t~ (P) =p(p-2)(p+2)
consequence
T
1 2 (p) = p+2
are given below
T 5(p) p(p+2)(p_2)2
clearly that
of the pole-zero
~0 = - 1 i s a n o n s t r u c t u r a l l y c a n c e l l a t i o n in T
3(p),
there
fixed mode.
Indeed,
as a
is n o c y c l e f o r w h i c h
;~0=-1 i s a p o l e . N o w , we u s e t h e f i r s t r e s u l t robust
modes with respect
two e l e m e n t a r y disjoint is robust
in C o r o l l a r y 7 . 2 to d e t e r m i n e
to o n e a c t u a t o r
failure.
cycles such that the sets of vertices
X= 2.
These
modes with respect
two cycles
a r e "-~1 a n d ~4"
to o n e a c t u a t o r
the non structurally
T h e o n l y m o d e w h i c h i s a p o l e of
failure are
~ V l s i n v o l v e d i n e a c h c y c l e are Therefore, :
the non structurally
313 X0 = - 1
We
obtain
k l = 0
the
same
result
significant lower number
7.3.5.
k2=
- Structurally
as
- 2
using
the
frequency
domain
characterization
with
a
of calculations.
robust
control design
The choice of the information pattern A
significant
robustness
advantage
conditions
using binary
of
the
of Proposition
variables
associated
graph-theoretic
7.5
and
to t h e c o m p o n e n t s
way f o r s o l v i n g t h e p r o b l e m o f o p t i m a l s t r u c t u r a l l y Let
us
consider
the
system
(7.3.1)
characterization
Corollary
with
7.2
of the digraph. robust
the
is
that
can easily be
the
expressed
This provides
a
control design.
assumption
that
it
has
simple
poles. We s t u d y
the
same
which was presented
problem
in S e c t i o n
as
the
5.3.3
but
one
solved
by
L~catelli e t
we a d d r o b u s t n e s s
al,
(LOC-77)
constraints,
The
same
n o t a t i o n a s in S e c t i o n s 3 . 6 . 2 a n d 5 . 3 . 3 a r e u s e d . The problem consists of t h e
system
contained
defined as in (3.6.1)
(j,i)
E
by
r (i,j) ~
a minimal set
S* c S s u c h
that every
s e t A* = {)~1' . . . . ' ~ h * } i s s t r u c t u r a l l y
robust.
pole S is
:
S if k . . # 0 1,]
The optimization criterion
R(S*)
in d e t e r m i n i n g
in t h e
(i=l . . . . .
remains
m)
; (j=l . . . . .
r)
-"
S* r i , j
where r.. is a c o s t a s s o c i a t e d 1,j
to t h e
feeback
connection
from the
output
i to t h e
element
o f A* i s
input j. Of course, structurally
robust
the
problem
If we w a n t to d e t e r m i n e a unique
perturbation,
Section 5.3.3
for
has
with respect
the
the
a solution if and
a structurally simplest
perturbated
by e l i m i n a t i n g t h e c o r r e s p o n d i n g
o n l y if e v e r y
to S . robust
approach
system feedback
control structure
i s to s o l v e
(7.3.7).
The
connections
with respect
the problem
line failures
from S.
presented
are
to in
considered
314
N o w , i f we w a n t to t a k e i n t o a c c o u n t a c l a s s o f p e r t u r b a t i o n s , the program
remains
the same but
new constraints
expressing
the structure
the robustness
of
requi-
rement must be added.
Our study -
will b e r e s t r i c t e d
one actuator
- one sensor -
-
to t h e f o l l o w i n g c l a s s e s o f p e r t u r b a t i o n s
:
failure failure
one line failure one actuator,
which correspond Consider line failure
sensor,
or line failure
to t h e e a s e s c o n s i d e r e d first
the
in C o r o l l a r y
class of perturbations
(case 3 of Corollary
The constraint
( o n l y o n e at a t i m e )
(G g ) i s r e p l a c e d
v.g.
7.2). by
z.g.
>i Z
t h a t two e d g e s
(i,j)
1,J
1,]
Then,
7.2.
specifying
one actuator,
the original program
sensor,
or
i s e a s i l y modified,
:
(iij) £ LI 5 which assures
f o r w h i c h ~,g * i s a p o l e will b e r e t a i n e d ,
T h e two f o l l o w i n g c o n s t r a i n t s
(cg)
must be added
:
(i,j) E LIS i ¢ VIS] (k,i) G L25
which elimines
the
possibility
of a unique
cycle
for
which kg*
is a p o l e
of order
tWO.
(cg5)
~
~.g. ~ l
j/(i,j) ¢ L S
which
guarantees
sufficient
the variables
Remark
that
to a s s s u r e
7.4.
separately.
certifies
i ~v s
l,l
the
that
two
cycles
do
not
the two cycles are
involve
the
disjoint because
same
vertices.
the boolean
This
is
nature
of
that the two cycles are not composed by the same edges.
A significant Consequently,
advantage we c a n
of this approach impose
to
is that every
a m o d e Xi* to
be
m o d e is t r e a t e d
structurally
robust
315
whereas a n o t h e r mode Xj* is r e q u i r e d
not to b e fixed o n l y
(we modify C~ a n d a d d
C~, C~ o n l y ) . In t h e case for which we c o n s i d e r t h e c l a s s of p e r t u r b a t i o n s actuator f a i l u r e o r t h e c l a s s of p e r t u r b a t i o n s Corollary
7.2),
the
established above.
corresponding The
programs
two c y c l e s
are
not
specifying
one
s p e c i f y i n g one s e n s o r f a i l u r e ( c a s e 1 of are
particular
required
cases
of t h e
program
to b e d i s j o i n t = for a c t u a t o r
( s e n s o r ) f a i l u r e , t h e y a r e n o t allowed to i n v o l v e t h e same v e r t i c e s of V1S ( V 2 s ) b u t some v e r t i c e s
of V2S ( V 1 s )
c a n b e u s e d twice.
Therefore,
the constraint
(C~) is
relaxed as follows ; Actuator failure r. j(/(i,j) ~" L S
Finally,
zg i,j ~
consider
Sensor failure
I
Z j/(i,j) (~L S
i ~ VIS
the
case
of t h e
c l a s s of p e r t u r b a t i o n s
zg. l,) ~ I
specifying
i E.V2s
one line
failure ( c a s e 2 of C o r o l l a r y 7 . 2 ) . T h e two c y c l e s c a n n o t b e composed to b e t h e same e d g e s of L2S b u t an e d g e from L1S c a n b e l o n g to t h e two c y c l e s . T h i s p r o b l e m can be s o l v e d b y c o n s i d e r i n g some no boolean v a r i a b l e s o r , if we want to p r e s e r v e
the advantageous
boolean n~.ture of t h e p r o g r a m ,
b y a d d i n g some
redundant boolean variables. 1. The v a r i a b l e s zig,j, a s s o c i a t e d with t h e e d g e s (i, i) ~ LIS a r e n o t b o o l e a n = t 0 if ( i , j ) does not b e l o n g to t h e r e t a i n e d cycles ( i , j ) ~ : L 1 s , zlSj =
1 if (i,j) b e l o n g s to one r e t a i n e d c y c l e 2 if ( i , j ) b e l o n g s to two r e t a i n e d cycles
T h e p r o g r a m to b e s o l v e d is t h e same as t h e o n e a l r e a d y e s t a b l i s h e d b u t t h e c o n s t r a i n t (C~) m u s t b e r e m o v e d . 2. Two boolean v a r i a b l e s zlgj a n d x g j a r e a s s o c i a t e d to e a c h e d g e (i, i) ~ L1S T h e c o n s t r a i n t s Clg, C~ a n d C~ a r e modified as follows :
316
(c~)
z
(C2g)
zg i,j
j/(i,j)~ LS
(C4g)
(zgj
vg i,j
(i,j) E LIS
2
+ xg )~ i,j
xg + i,j
Z(i,j ) ~ L 1 S
(z~j
=
E
zg
j/(j,i) ~ Ls
+ x~j)
v~j
j,i
+ x~,
i ~
i
VS
Zkg,i ~ 2
i ~ V i s / ( k , i ) ~ L2 S
Moreover,
the constraint
As a n e x a m p l e , consider
C g is r e m o v e d . given
the
t h e following p r o b l e m
Find the feeback tions such that
same
system
as i n t h e
example
of S e c t i o n
7.3.3,
:
structure
S* c S w i t h a minimal n u m b e r
of f e e d b a c k
connec-
:
-X 1" = - 1 i s n o t a f i x e d m o d e -X 2* = 2 is specifying
structurally
one actuator,
Only the feeback are allowed,
sensor,
connections
and the associated
r..
1,J (i,j) E S
--
robust
with
respect
to t h e
class
of p e r t u r b a t i o n s
o r l i n e f a i l u r e ( c a s e 3 of C o r o l l a r y 7 . 2 ) .
specified
by
S = {(1,1),(2,1),(3,1),(2,2),(2,3),(3,3)}
costs are :
1
T h e s o l u t i o n is o b t a i n e d
b y s o l v i n g t h e following b o o l e a n l i n e a r p r o g r a m
:
rain w4,1 + w5,1 + w6,1 + w5, 2 + w5, 3 + w6, 3 (C~)
Z1l , 6 >/ 1
(C?)
z2 + z2 + z 2 z2 1,4 1,5 3 , 4 + 3,5 >/ 2 (~2 4 + z2 5 ) ( z g ,
1 + z2
z2 + z2 + z 2 1,4 1,5 1,6 ~< I
+
+
+
z~,3) ~ z
317
"~.5 ÷ q.6 ,< ( 8 5) z24,1 x( 1
z2,1 + 4,2 + z2,3 ~< 1 z2,1 + z2,3x< i and for g = 1,Z
z~, 4 + z~, 5 + z~, 6 = z~, 1 + z~, 1 + z~, 1 z~, 5 + z~, 6 = zsg 2 z~, 4 + z395 = z~, 3 + z6g, 3 (C~) z4g, 1 = z~, 4 + zig,4
z~.I + zsg,2+ z5g,3= zlg,5+ z2g,5+ z3g.5 z6g,1+ z6g,3= zlg,6+zZg,6 (c~)
z~,l '.< "%,1
z~,3 ( w5,3
z~,l < w6,,
z#3 ,< w6,3
There is
a u n i q u e optimal solution :
s* = { ( 1 , 1 ) , corresponding
=
(3,1))
to the following f e e d b a c k s t r u c t u r e kll
K
(z,3),
0 0
0 0 k32
kl3 ] 0 0
:
318
7.4.
- CONCLUSION When a controlled
the
controller
or
the controlled
system
of the
system.
for a good pursuit
is o p e r a t i n g ,
system
itself
it m a y h a p p e n
fails resulting
Such structural
perturbations
of the operations.
that
s o m e c o m p o n e n t of
in a s t r u c t u r a l
m o d i f i c a t i o n of
may be dangerously
As an example,
consider
detrimental
that the perturbeted
system is unstable. Two approaches one consists proceeding
can be used
in i m p l e m e n t i n g
to p r e v e n t
a system
for
to a r e a l t i m e r e c o n f i g u r a t i o n
mics of the proceeding
system,
this
solution,
unefficient.
The
second
approach
perturbations
in the
such
controller
some desirable
Such focuses
controller
on
the
assignability consider systems
properties
using
controller.
be
They
turally
robust
Section
7.3,
in t a k i n g
design
of the
preserves,
to t h e c o n t r o l l e d
of
structurally
structural
disconnected. is
the design
mizes the cost associated
feedback the
Section
7.2,
stem from actuator, modes
introduced
sensor, and
under
and
then
on the dyna-
new
components, and
the
control system.
robust.
affecting In
account
therefore
eventuality
of
The synthesis
is
structural
In this
perturbations
constrained
perturbations
Depending
installing
into
T h e first
diagnosis
perturbations,
system.
is s a i d to b e s t r u c t u r a l l y
consequences
structural may
the
situations.
and
controller.
may require
consists
some structural
that
detection
may be too much time consuming
then
performed
of the
(which
to n e w m e a s u r e m e n t s . . . )
such inacceptable
failure
structural
the
In
the
Section
sense
that
control feedback
structure
7.1, affect
The concept are
study o r pole we
some sub-
perturbations
characterizations
to t h e i n f o r m a t i o n t r a n s f e r .
chapter,
stabilizability
control. in
or line failures.
some
is f a c e d o f a r o b u s t
plant
on
the
of struc-
provided.
In
w h i c h mini-
1
APPENDIX
MULTIVARIABLE SYSTEM ZEROS
This
appendix
multivariable system.
is
concerned
by
the
different
types
of
zeros
appearing
in
Each t y p e of zero is d e f i n e d a n d some r e l a t i o n s h i p s a r e o u t -
lined. C o n s i d e r t h e following t i m e - i n v a r i a n t m u l t i v a r i a b l e s y s t e m :
= y
where
Ax
= Cx
+
Bu
+ Du
x C Rn ,
output
vectors,
u ~ R m,
and
respectively.
y ~ Rr A,
B,
(max C,
( m , r ) x( n) D are
are
constant
the
state,
matrices
of
input,
and
appropriate
d i m e n s i o n s . T h e polynomial m a t r i x :
[~
I A
B1
-
P(p)=
( n + r , n+m)
D
is called t h e s y s t e m m a t r i x
(ROS-70).
If r a n k
P(p)= q,
t h e n t h e SmithVs form of
P ( p ) is g i v e n b y :
S*(p)q,q
0q,n+m_ q
0n+r_q, q
0 n + r - q , n+m-c
S(p)= w h e r e S * ( p ) = diag ( S l , s 2 . . . . , Sq) a n d s i, (i=l . . . . . q) (s i d i v i d e s S i + l ) , a r e t h e i n v a r i a n t polynomials of P ( p ) . If Mj(p) d e n o t e s t h e g r e a t e s t common d i v i s o r of all j t h o r d e r m i n o r s of P ( p ) ,
sj(p)
=
t h e n t h e polynomial s.] is g i v e n b y :
M;(p) (j=1,2 . . . . . q )
320 with M0 = I , The t r a n s f e r f u n c t i o n m a t r i x of t h e s y s t e m is :
G(p) = C ( p I - A ) -1 B + D =
u~p]
and i t s Smith-Mc Millan form is g i v e n b y "
I~
*(P)qxq
M(s)=
0q'm-q
l
0r - q , m - q
Lr-q,q where .
M
E l (p)
c n(P)
.....
(p) = diag.( 7
~
)
and e i is t h e ith i n v a r i a n t polynomial of N(p) nomiallof G(p),
i.e. ~(p),
and
q = rank
divided by the characteristic poly-
G(p).
Note t h a t ¢i d i v i d e s ci+ 1 a n d ~ i + l
d i v i d e s ~i o The f i r s t c l e a r c l a s s i f i c a t i o n of t h e
z e r o s of l i n e a r m u l t i v a r i a b l e s y s t e m s was
g i v e n b y R o s e n b r o c k ( R O S - 7 0 ) . We f i n d t h e following t y p e s of z e r o s : Element Zeros ( E . Z . )
:
An e l e m e n t z e r o is a n y value of p f o r which t h e n u m e r a t o r of an e l e m e n t gi~(p) of G(p) v a n i s h e s . This
type
of
zero h a s
no
special meaning
in
multivariahle
systems
theory
b e y o n d i t s role in m o n o - v a r i a b l e s y s t e m t h e o r y . Decoupling Zeros ( D . Z . )
:
The d e c o u p l i n g z e r o s , i n t r o d u c e d b y R o s e n b r o c k ( R O S - 7 0 ) , a r e a s s o c i a t e d with t h e e x i s t e n c e of u n c o u p l e d modes. T h e y a r e d e f i n e d as t h e v a l u e s of p f o r w h i c h t h e matrices (pI-A These modes.
They
B) a n d / o r (picA)-- a r e r a n k d e f i c i e n t .
z e r o s are are
commonly k n o w n as
a s s o c i a t e d with
the
uncontrollable and/or
a p o l e - z e r o cancellation a n d ,
t h e y do n o t a p p e a r in the c o r r e s p o n d i n g t r a n s f e r f u n c t i o n .
unobservable
as a c o n s e q u e n c e ,
321 Three types of decoupling zeros can be defined
the input-decoupling
-
zeros (I.D.Z.)
- the output-decoupling -
the
So,
we
input-output-decoupling
have
which are the uncontrollable modes
zeros (O.D.Z.) zeros
uncontrollable and unobservable
:
which are the unobservable
(I.O.D.Z.)
which are
= I.D.Z.
n
O.D.Z.
D.Z.
= I.D.Z.
u
O.D.Z.
Transmission Zeros (T.Z.)
These
zeros
are
: (ROS-70)
defined
as
the
roots
of
the
numerator
Smith-Me Millan f o r m of G ( p ) .
In t e r m s o f t h e m i n o r s of G ( p ) ,
the
of all t h e q t h o r d e r
of the numerators
A transmission others.
properties
The
zero appears
(q = rank
a s a pole in s o m e e n t r i e s o f G ( p ) a n d a s a z e r o in
are
physically
associated
of the system
(see
(MAC-76)).
Note t h a t R o s e n b r o c k c a l l s t h e s e z e r o s t h e
matrix
Zeros (I.Z.)
with
the
transmission-blocking
(ROS-70).
:
system
zeros.
I n t e r m s of t h e m i n o r s o f P ( p ) ,
r o o t s of the monic g . c . d ,
Physically, behaviour
of the
frequency
for
non-square
G(p)).
a s t h e i r common d e n o m i n a t o r .
The roots of the invariant polynomials of the system matrix P(p) invariant
of the
T.Z.
zeros of the transfer
Invariant
polynomials
t h e y a r e t h e r o o t s of
minors of G(p)
Note t h a t t h e s e m i n o r s m u s t b e a d j u s t e d to h a v e ~ ( s )
some
simultaneously
modes.
:
I.O.D.Z.
g.c.d,
the
modes
the
system
system.
which
systems,
of all t h e m i n o r s o f P ( p )
the
invariant
They system
zeros
correspond output
t h e s e t of i n v a r i a n t
are called the
the invariant
zeros are the
of m a x i m u m o r d e r .
are
to t h e
associated
with
particular
values
is i d e n t i c a l l y
zero.
In the
z e r o s is c o m p o s e d b y t h e
the
zero-output
of the
complex
general
c a s e of
set of transmis-
sion zeros p l u s some decoupling z e r o s .
System
Zeros
(S.Z.)
The system
1
: (ROS-74)
zeros are
t h e r o o t s o f t h e monic g . c . d ,
of t h e f o r m P , I = {1,2 . . . . . n , obtained by selecting 0 ~ k ~ min(m,r).
the
n+i 1,
rows and
n+i 2 . . . . .
n÷ik},
of all t h e m i n o r s o f P ( p )
l
w h e r e PI d e n o t e s
columns corresponding
the minor
to t h e s e t I in P ( p )
and
322
R o u g h l y s p e a k i n g , t h e s e t of s y s t e m z e r o s is t h e u n i o n of t h e s e t o f t r a n s m i s s i o n z e r o s a n d t h e s e t of d e c o u p l i n g z e r o s : S,Z°
S.Z. = T.Z. u D.Z~ T.Z.
Note a l s o t h a t t h e s e t of i n v a r i a n t z e r o s
D.Z.
is i n c l u d e d in t h e s e t of s y s t e m z e r o s . These relationships are illustrated by Figure A1.1.
Figure A1.1.
When t h e
s y s t e m is c o m p l e t e l y c o n t r o l l a b l e
S.Z.,
I.Z. and T.Z.
G(p)
or P ( p ) .
and
completely o b s e r v a b l e ,
the
s e t s of
c o i n c i d e b e c a u s e t h e s e t of d e c o u p l i n g z e r o s is e m p t y .
So f a r , t h e v a r i o u s t y p e s of z e r o s h a v e b e e n d e f i n e d in t e r m s of t h e m i n o r s of Some a u t h o r s
g i v e e q u i v a l e n t d e f i n i t i o n s in t e r m s of t h e p a r t i c u l a r
f r e q u e n c y v a l u e s for w h i c h G ( p ) a n d P ( p ) loose r a n k
:
Z1 : Wolowich (WOL-73a) T h e z e r o s of t h e c o n t r o l l a b l e a n d o b s e r v a b l e s y s t e m (A,
B,
C,
D) a r e t h o s e
P0 s u c h t h a t r a n k P (p0) < r a n k P ( p ) . ZZ : D a v i s o n a n d Wang (DAV-74 et 76e) T h e t r a n s m i s s i o n z e r o s of t h e s y s t e m (A, B, C, D) a r e t h o s e c o m p l e x n u m b e r s P0 w h i c h s a t i s f y t h e following i n e q u a l i t y •
rank
Therefore, of
all
the
n+min(m,r),
P(po ) < n + min
(m,r)
t h e t r a n s m i s s i o n z e r o s ( m u l t i p l i c i t y i n c l u d e d ) a r e t h e r o o t s of t h e g . c . d . (n+min(m,r)) th then every
s a i d to b e d e g e n e r a t e d The T.Z.
order
minors
of
P(p).
Note
that
c o m p l e x n u m b e r is a t r a n s m i s s i o n z e r o
if and
rank the
P(s)
20 t h e dimension s t a t e m e n t must be modified a c c o r d i n g to : DIMENSION WK(N), Z 0 ( N , N ) ,
Z2(N,N), Z3(N,N),
ZI(N,N,N)
CALLED SUBROUTINES EIGRF
E i g e n v a l u e s calculation s u b r o u t i n e ,
described in:
Edition 8, 1980.
LISTING SU[I~OUTINE STFM1 (A, N, B,M, C , L , A K , E P S , MM, Z)
IMPLICIT REAL*8(A-H,O-Y) ,COMPLEX*I6(Z) DIMENSION A(N,N),B (N,M), C(L,N),AK(M,L), Z(N) DIMENSION WK(20),ZI(20,20,20)
"IMSL Library Manual",
332 DIMENSION
Z0(20,20),Z2(20,20),Z3(20,20)
NA=20 IF(L.NE.N) G O T O 40 D O 37 I=I,N DO
37 J=I,N
DD=0 D O 35 K=I,M 35
D D = D D + B (I oK) *AK (K, J) A(I, J)=A(I, J)+DD ZZ(I,J)=A(I,J)+(0.,I.)*0.
37
Z3(l, J)=DD+(0. , 1 . ) * 0 . G O T O 48
40
DO 44 I = I , N DO 44 J = I , N DD=0 DO 42 II=I,M DO 42 J J = I , L
42
DD=DD+B(I,II)*AK(II,JJ)*C(JJ,J) A (I, J ) = A ( I , J)+DD ZZ(I,J)=A(I,J)+(0.,I.)*0.
44 48
Z3 (I, J ) = D D + ( 0 . , 1 . ) * 0 . I JOB=0 CALL EIGRF(A, N , N , I J O B , Z, Z0,NA,WK,IER) MM=O D O 60 K=I,N D O 60 I=I,N D O 58 J=I,N
58
Z1 ( I , J , K ) = Z 2 ( I , J )
60
Z1 (I, I, K)=Z2 (I, I ) - Z ( K ) DO 100 K=I,N DO 55 I I = I , N DO 54 J J = I , N
54 55
ZO(ll,JJ)=(O. ,0.) zo(II,II)=(l.,0.) DO 70 J = I , N IF(J.EQ.K)
G O T O 70
D O 65 II=I,N D O 65 JZ=I,N
333
65
Z2 (I2, J2)=Z2 (I2, J2)+Z0 (I2, K 2 ) * Z I ( K 2 , J2, J) DO 67 I3=I,N DO 67 J 3 = I , N
67
Z0(I3,J3)=Z2 (I3,J3)
70
CONTINUE
ZZ=(O. ,0.) DO 75 I4=I,N DO 75 J4=I,N 75
ZZ=ZZ+Z0 (I4,34) * Z3 (J4, I4) RR=CDABS(ZZ) I F ( R R . G T . E P S ) GO TO 100 MM=MM+I Z(MM)=Z(K)
100
CONTINUE RETURN END
A p p e n d i x 3.2 ROUTINE BASED ON GRADIENT CALCULATION The FORTRAN r o u t i n e STFM2 p e r f o r m e s t h e same t a s k as STFM1. B a s e d on t h e algorithm
(3.1),
it c o m p u t e s t h e g r a d i e n t of t h e s y s t e m modes
with r e s p e c t to t h e f e e d b a c k m a t r i x . If t h e g r a d i e n t is zero ( s u f f i c i e n t l y small), t h e n t h e c o r r e s p o n d i n g mode is a f i x e d mode. In a d d i t i o n ,
STFM2 d e t e r m i n e s t h e t y p e of
t h e f i x e d modes b y d e t e r m i n i n g t h e s t r u c t u r a l s e n s i t i v i t y m a t r i x (see § 3 . 5 . 4 ) . The d a t a r e q u i r e d b y STFM2 a r e t h e same as t h e i n p u t a r g u m e n t s of STFM1 (see A p p e n d i x 3 . 1 ) .
CALLED SUBROUTINES EIGRF
See A p p e n d i x 3.1.
FIKT
Left e i g e n v e c t o r i n d e x s e a r c h (see l i s t i n g ) .
MODF
Calculation of t h e s e n s i t i v i t y with r e s p e c t to t h e f e e d b a c k m a t r i x ting)
ECRIV
Writing of a complex v e c t o r (see l i s t i n g ) .
(see lis-
334
LISTING
PARAMETER
(N=I2,M=3,L=3)
PARAMETER
(IK=2*N+I ,N2=N-2)
IMPLICIT REAL*8(A-H,O-Y) ,COMPLEX*I6(Z) DIMENSION ZM(N),Z(N,N),ZT(N,N) DIMENSION ZMT(N),ZMS(N) DIMENSION A(N,N), B (N,M) ,C (L,N) ,AK (M, N) DIMENSION WK(IK),AA(N,N),AS(N,N),AB(N,N) I N T E G E R S(N,N,N2),SS(N,N) READ(Z3,*) EPS DO 4 I = I , N
READ(23,*) (A(I,J),J=I,N) DO 5 I = I , N
READ(23,*) (B(I,J),J=I,M) IF(L.EQ.N) G O T O 7 D O 6 I=I,L R E A D (23,*) (C(I,J),J=I,N) DO 8 I--I,M
R E A D (23,*) (AK (I,J),J=l ,L) AL=0 I F ( L . E Q . N ) GO TO 40 DO 37 I = I , N DO 37 J = I , N AL=AL+0.05 DD=0 DO 35 K=I,M
35
DD=DD+B ( I , K ) * A K ( K , J ) A S ( I , J) =AL*A (I, J)+DD AB ( I , J ) = A ( I , J ) + D D
37
AA(J,I)=AB (l,J) GO TO 48
40
DO 44 I = I , N DO 44 J = I , N AL=AL+0.05 DD=0 DO 42 II=I,M DO 4Z J J = I , L
335
42
DD=DD+B (I, II)*AK (II, J J ) * C ( J J , J) AS(I,J)=AL*A(I,J)+DD AB ( I , J ) = A (I, J)+DD
44
A A ( J , I ) = A B (I, J) *** CLOSED-LOOP EIGENVALUES AND *** *** EIGENVECTORS CALCULATION
48
***
IJOB=I CALL E I G R F ( A B , N , N , I J O B , Z M , Z , N , W K , I E R ) IJOB=I CALL EIGRF(AA,N,N ,IJOB,ZMT ,ZT ,N, WK,IER) IR=0
IR2=0 D O I00 K=I,N C A L L FIKT(ZM, ZMT,K,KT, N) C A L L M O D F (B,AK, C,N, M,L, Z, ZT, K,KT, SK) IF(SK.GT.EPS) G O T O I00 IR=IR+ 1
ZM(IR)=ZM(K) IS=0 DO 70 I I = I , N DO 70 J J = I , N S (II,JJ,IR)=0 IF(A(II,JJ).EQ.0)
GO TO 70
ZZ=ZT(II,KT)*Z(JJ,K) RS=CDABS(ZZ) I F ( R S . L E . E P S ) GO TO 70 S ( I I , J J , IR)=I IS=IS+l 70
CONTINUE
IF(IS.GT.0) G O T O 100 IR2=IR2+I ZMS (IR2)=ZM(K) IR=IR- 1
I00
CONTINUE IRT=IR+IR2 IF(IRT.NE.0) G O T O 120 WRITE(6, ii0)
336 ii0
FORMAT(/,5X,,'THE
SYSTEM
H A S N O FIXED MODES',//)
STOP 120
WRITE(6,125)
125
F O R M A T ( / , 5 X , ' T H E FIXED MODES ARE : ' , / ) IRT=IR*IR2 IF(IRT.EQ.O) CALL
G O T O 140
ECRIV(ZM,IR, N)
C A L L E C R I V (ZMS,IR2, N) WRITE(6,130) 130
FORMAT(/,5X,'THE
STRUCTURALLY
FIXED M O D E S
O F T Y P E II A R E
C A L L E C R I V (ZMS,IR2, N) G O T O 160 140
IF(IR.NE.0)
G O T O 155
C A L L E C R I V (ZMS, IR2, N) WRITE(6,150) 150
FORMAT(/,5X,'ALL
T H E FIXED M O D E S
ARE
STRUCTURALW,II)
'OF T Y P E II',/) STOP 155
CALL E C R I V ( Z M , I R , N )
160
CONTINUE *** CALCULATION OF CLOSED-LOOP EIGENVALUES
***
*** AND EIGENVECTORS OF AN EQUIVALENT SYSTEM *** DO 170 I = I , N DO 170 J = I , N 170
AA(J,I)=AS(I,J) IJOB=I CALL EIGRF(AS,N,N,IJOB,ZMS,Z,N,WK,IER) IJOB=I CALL EIGRF (AA, N, N, I JOB, ZMT, ZT, N, WK, IER) IS=0 DO 230 K = I , N CALL F I K T ( Z M S , Z M T , K , K T , N ) CALL M O D F ( B , A K , C , N , M , L , Z, Z T , K , K T , SK) I F ( S K . G T . E P S ) GO TO 230 JS=0 DO 190 I I = I , N DO 190 J J = I , N
:',])
337
SS(II,JJ)=0 IF(A(II,JJ).EQ.0)
G O T O 190
ZZ=ZT(II,KT)*Z (JJ,K) RS=CDABS(ZZ) I F ( R S . L E . E P S ) GO TO 190 SS(II, JJ)=l JS=JS+I 190
CONTINUE I F ( J S . E Q . 0 ) GO TO 230 DO Z20 K K = l , I R DO 200 II--1,N DO 200 J J = l , N IF(SS(II, JJ).NE.S(II,JJ,KK))
200
GO TO 220
CONTINUE IS=IS+I ZMS(IS)=ZM(KK)
220
CONTINUE
230
CONTINUE IF(IS.EQ.0)
GO
TO
250
WRITE(6,240) 240
FORMAT(/,SX,'THE
STRUCTURALLY
FIXED M O D E S
OF TYPE I ARE
C A L L E C R I V (ZMS,IS,N) IF(IR.NE.IS) G O T O 950 STOP 250 260
WRITE(6,260) FORMAT(I,5X,'THE
NON
STRUCTURALLY
IF(IS.NE.0) T O G O 265 C A L L ECRIV(ZM,IR,N) STOP 265
D O 300 I=I,IR D O 290 J=I,IS ZZ=ZM(I)-ZMS(J) RX=DREAL(ZZ) RX=DABS(RX) I F ( R X . G T . E P S ) G O TO 270 RY=DIMAG(ZZ) RY=DABS (RY) I F ( R Y . L E . E P S ) GO TO 290
270
WRITE(6,280)
FIXED M O D E S
ARE
",/)
.l,/)
338
280
FORMAT(SX,'(',FI2.6,' +J',FI2.6,' )') G O T O 300
290
CONTINUE
3O0
CONTINUE STOP END ***
LEFT
EIGENVECTOR
INDEX
SEARCH
***
SUBROUTINE F I K T ( Z A , Z B , K , K T , N ) IMPLICIT R E A L * 8 ( A - H , O - Y ) ,COMPLEX*16(Z) DIMENSION ZA(N) , Z B ( N ) EPS=I.E-10 D O 5 II=I,N ZZ=ZA(K)-ZB (II) VA=DREAL(ZZ) VB=DABS(VA) IF(VB.GT.EPS) G O T O 5 WA=DIMAG(ZZ) WB=CDABS(ZZ) IF(WB.GT.EPS)
GO
TO
5
KT=II RETURN CONTINUE RETURN END
* CALCULATION * RESPECT
OF TO
THE
THE
SENSITIVITY
FEEDBACK
WITH
*
MATRIX
*****************************************************
S U B R O U T I N E MODF(B, AK,C, N, M, L, Z, ZT,K,KT, SK) IMPLICIT REAL*8(A-H,O-Y) ,COMPLEX*I6(Z) DIMENSION B (N,M) ,C(L, N),AK(M,N) DIMENSION
SK=0 DO 50 I=I,M
Z(N,N),ZT(N,N)
339
DO
50 J=I,L
ZSK=(O.,O.) IF(AK(I,J).EQ.0)
GO TO
50
XW=0 YW=0 DO
10 LL=I,N
XW=XW+DREAL(ZT(LL,KT))*B(LL,I)
10
YW=YW+DIMAG
(ZT (LL, KT) )*B (LL, I)
ZW=XW+(0., I.)*YW IF(L.EQ.N)
GO TO
30
XV=0
YV=O DO 20 LL=I,N XV=XV+C (J,LL)*DREAL (Z (LL, K) ) 20
YV=YV+C ( J , LL) ~'DIMAG ( Z (LL, K) ) ZV=XV+(0.,1.)*YV GO
30 40
TO
40
ZV=Z(J,K) ZSK=ZW*ZV SKI=CDABS(ZSK) SK=DMAX
50
l (SK, SKI)
CONTINUE RETURN END
* COMPLEX * Z (N)
SUBROUTINE
COMPLEX*f6
DO
VECTOR
* *
E C R I V (Z, N, N M A X )
Z (NMAX)
5 I=I,N
5
WRITE(6,10) Z(I)
I0
FORMAT RETURN END
WRITTING
N ~ NMAX
(I 5X,'(',FI2.6, ' +J',FI2.6,' )')
APPENDIX
ANDERSON
AND
CLEMENTS
FORTRAN
W subroutine
TEST
4
PACKAGE
FOR
evaluates
the
REAL
MODES
PURPOSE
The
ACTFM
f i x e d m o d e s of a N S - s t a t i o n s y s t e m d e s c r i b e d b y
set
of real
decentralized
:
NS = Ax + i__~1 B i u i (A4.1) Yi = Ci x Defining
(i=I,...,NS)
:
B =
(B 1 . . . . , BNS ) (A4.2) !
C =
(C ..... C'NS)'
the s y s t e m can be w r i t t e n
= Ax
:
(A4,3)
+ Bu
y=Cx
The
subroutine
ACTFM
d e s c r i b e d in s e c t i o n 3 . 3 . 1 .
uses
the
algebraic
characterization
UTILIZATION
The subroutine
s t a t e m e n t is :
S U B R O U T I N E ACTFM
of
Note t h a t ACTFM e x a m i n e s r e a l p o l e s o n l y .
(A,N,B,M,C,L,NS,IM,IR,EPS,Z,JJ)
fixed
modes
341
INPUT ARGUMENTS
N
Order
M
Number of the system inputs.
L
Number of the system outputs.
A,B,C
System matrices of dimension
NS
Number of the control stations.
IM
of the system.
Integer
vector
of dimension
(N,N),
(N,M)
and
(L,N),
respectively.
NS c o n t a i n i n g
the
number
of inputs
of the ith
of outputs
of the ith
s t a t i o n in t h e i t h p o s i t i o n . IR
Integer
vector
of dimension
NS c o n t a i n i n g
the
number
s t a t i o n in t h e i t h p o s i t i o n . EPS
Small p o s i t i v e r e a l n u m b e r
IT
Option parameter IT = 1 writting
defining
the zero accuracy.
: of the open-loop
poles.
IT # 1 no writting.
OUTPUT
JJ
ARGUMENTS
Number of real decentralized system
XX
Real
vector
any)
in t h e f i r s t JJ p o s i t i o n s .
CALLED
of length
J J=0 m e a n s t h a t
the
fixed modes.
N containing
the
real
decentralized
fixed
modes
(if
SUBROUTINES
EIGRF
See A p p e n d i x
DSVD
Subroutine
computing
rectangular
matrix,
GARBOW B . S . ,
2.
J.M.
"Matrix Eigensystem Lecture RANK
fixed modes of the system.
has not real decentralized
the
described BOYLE, Routines
notes in computer
Subroutine
Singular
determining
Value
Decomposition
arbitrary
real
in : J.J.
DONGARRA,
C.B.
MOLER
- EISPACK Guide Extension".
s c i e n c e n ° 51, S p r i n g e r - V e r l a g ,
the
of an
rank
of
2 real
matrix
of
New-York, dimension
1977.
(M,N)
by
calling DSVD.
REQUIRED
MEMORY
If N T = N + m a x ( M p L ) > 2 0 o r ged according
to :
NS>5,
then
the
dimension
statement
must
be chan-
342 DIMENSION II(NS), ZV(NT,NT), AA(NT,NT) DIMENSION WK(NT), U ( N T , N T ) ,
V(NT,NT),
RVI(NT)
LISTING SUBROUTINE ACTFM (A, N, B , M , C , L , N S , I M , I R , EPS, Z , J J , I T ) IMPLICIT R E A L * 8 ( A - H , O - Y ) , I N T E G E R ( I - N ) ,COMPLEX*16(Z) DIMENSION
A(N,N) ,B(N,M), C (L,N),IM(NS),IR(NS), Z(N)
DIMENSION
II(5),ZV(20,20),AA(20,20)
DIMENSION
WK (20), U (20,20) ,V (20,20), RV1 (20)
NT=20 *** O P E N - L O O P 15
16
P O L E S CALCULATION ***
IJOB=I DO
16 I=I,N
DO
16 J=l,N
AA(I,J)=A(I,J) C A L L EIGRF (AA, N,NT, IJOB, Z, ZV, N T , W K , IER) IF(IT.NE.I)
G O T O 25
WRITE(6,18) 18
FORMAT(5X,'THE
OPEN-LOOP
POLES ARE
D O 20 l=l,N 20
WRITE(6,22)
22
F O R M A T (5X,EI2.6,2X,EI2.6,/)
25
JJ=O
Z(1)
EPSI=10D-8 DO 90 J I = I , N YY=AIMAG (Z ( J I ) ) I F ( D A B S ( Y Y ) . G T . E P S 1 ) GO TO 90 XX=REAL(Z ( J I ) ) IF(JI.EQ.])
GO TO 40
JII=JI-1 DO 30 I = l , J I I YY=AIMAG (Z (I)) I E ( D A B S ( Y Y ) . G T . E P S 1 ) GO TO 30 XX I=REAL(Z (I))
',])
343 IF(DABS(XX-XXI).LT.EPS1) 30
GO TO 9~
CONTINUE *** B U I L D I N G OF THE MATRIX B L O C K - D I A G . ( ( A - S I ) , O )
40
DO 44 I = I , N DO 42 J = I , N
42
AA(I,J)=A (I,,I)
44
AA(I, I)=AA(I,I)-XX N I=N+ 1 IK=N+M IKI=N+L DO 46 I = N I , I K 1 DO 46 J = N I , I K
46
AA(I,J)=O. *** COMPLEMENTARY S U B S Y S T E M S SEARCH ***
MAX=2**NS-2 D O 90 N B = I , M A X II=O
NU=NB D O 48 I=I,NS ND=NU/2 NR=NU-ND*2 IF (NR.EQ'.0) G O T O 48 II=Ii+l
II(II)=I 48
NU=ND
*** B U I L D I N G OF THE T E S T E D MATRIX ***
56
Ii=l IP=N JP=N D O 68 IS=I,NS IC=0 JC=0 IK2=IS-I IF (IK2.LT.I) G O T O 60 D O 58 K=I,IK2 IC=IC+IR (K)
***
344
58
JC=JC+IM(K)
60
IF(IS.EQ.II(I1))
GO T O 64
IK3=IP+I IK4=IP+IR (IS) DO 62 I = I K 3 , I K 4 IC=IC+I DO 62 J = I , N 62
A A ( I , J ) = C (IC,J) IP=IP+IR (IS) GO
64
TO
68
IKS=JP+I IK6=JP+IM (IS) DO
66 J=IK5,IK6
JC=JC+l DO 66
66 I=I,N
A A ( I , J ) = B (I, JC) JP=JP+IM (IS) II=Ii+l
68
CONTINUE CALL
RANK(AA,IP,
IF(IRANK.LT.N)
GO T O 78
JP, N T , W K ~U,V, R V I , I R A N K ,
GO
TO
EPS)
78
90
JJ=JJ+l Z (J J)=Z (JI)
90
CONTINUE RETURN END
S U B R O U T I N E R A N K ( A , M , N , NM, W, U, V, R V 1 , I R A N K , EPS) ************************************* * DETERMINATION * A
OF
THE
RANK
OF
~*********~.****** ~*** A REAL
MATRIX
: MxN
* NM
= A
* REAL
* *
~M,~N
MATRICES
*
:
*
* W ( N M ) , U ( N M , NM) ,V (NM, NM) , R V 1 (NM)
*
* R E S U L T IN I R A N K * **** ~ * * * * * * * * * * * * * $ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * REAL*8 DO
A ( N M , N ) , W ( N ) , U ( N M , N ) ,V ( N M , N ) ,RVI(N)
1 I=I,NM
W(I)=O. CALL
DSVD(NM,N,M,A,W,.FALSE.,U,.FALSE.,V,IERR,RVI)
345
IRANK=0 MM=N I F ( M . G E . N ) GO TO 2 MM=M DO 3 I=I,MM IF (W(I).LT.EPS) G O T O 3 IRANK=IRANK+I CONTINUE RETURN END
APPENDIX 5
D E T E R M I N A T I O N OF T H E G R A D I E N T M A T R I X OF T H E P E R F O R M A N C E I N D E X BY U S I N G V A R I A T I O N C A L C U L U S
This appendix the performance
uses
variation
calculus
(LEV-70)
to determine
the derivatives
of
index.
AS. 1. P r e l i m i n a r i e s
The three
Theorem
AS.1
represents
(BEL-70).
the unique
Theorem number.
following results
A5.2
If the integral
s o l u t i o n of
(BEL-70).
K l e i n m a n ' s lemma ( K L E - 6 6 ) .
f(x+ ehx)
then
A5.2.
Development
Consider
£(t)
: A x(t) = c x(t)
Let f(x)
+ Trace M(x)
=M'(x)
(TAR-85)
the system
y(t)
matrix
:
+ B u(t)
{
e At
C
e]~t
exists
for
all C,
e (A+CB)t, in ~ as
where ~ is
a
small
:
B e As ds
be a trace
:
= f(x)
: dr(x)
the
to the first order
= e AL + ¢ 0 / t e A ( t - s )
e - - > 0, we c a n w r i t e
: x = -
development.
it
Ax + xB = C.
Consider
It can be approximated
e (A+CB)t
are useful in the subsequent
-
hx
function.
If,
f o r a]] x a n d f o r
real
347 2nd the
performance
index
.'
co
J = ~
Let the
(x'Q
control
x + u' Ru)
be
given
x = (A - B K C )
which has
the
Substituting get
by u = - Ky,
so that
the
closed-loop
system
is
:
x = Dx
solution
in
dt.
the
: x = e Dt x 0 ,
expression
of
y
x 0 = x(0)
and
using
the
trace
function
properties,
we
:
J(D)
= Tr
[ f0 e D '
t QI(K,C ) eDt dt X 0 ]
where X 0 = E [ x(0) x(0)' ] QI(K)
= Q + C' K' R K C
Suppose
that the s y s t e m matrices
A changes
where
~A _N
to B + e B . A B
C changes
to C + e C . AC
D changes
to D + e D . A D
CA,
£]3' e C a n d £ D a r e "~ ¢C
x(t)
with and
~- e D
" Then
small real the
numbers
elosep-loop
of the
system
same order,
becomes
i.e.
:
= (D + e . A D ) x ( t )
AD = AA - AB. K C - B . A K . C the
subjected to small perturbations, i.e. :
to A +e A . AA
B changes
eB
are
criterion
- B.K.
AC
: oo
J(D+
cAD)
By
developing
and
the
trace
one obtains
= Tr
this
[ ~
e (D+eAD)'t
expression
function
property
to
the
Tr(AB)
QI(K+e~K,
first
C+c~C)
order,
= Tr(BA)
using
e (D+cAD)t dt
Theorems
= Tr(A'B')
= Tr(B'A'),
:
J(D+~AD)
= J(D) + e T r
D'P + P D
+ Q + C'K'R KC
[2S(C'K'R-PB).A
with = 0
(KC)
A5.1
+ 2SP. A ( A , B ) ]
X0 ]
and
A5.2,
348 DS + SD + X 0 = 0
AD =
A(A,B)
A(KC) =
- B.
A (KC)
+ K. AC
AK.C
A(A,B) = AA -AB.
Two
1 -
cases
of variations
Simultaneous
KC
are
considered
variations
on
In this case, w e h a v e A(KC) Then
= 0 and
AD
:
A and
B
:
= A(A,B)
one gets : J [D+E.
A(A,B)]
and by application ~J
= J(D) + e T r
[2SP. A ( A , B ) ]
of Kleinman's l e m m a
:
-2PS
(A,B)
This
case
combines
two
situations
:
• variations
on
A only,
~T we get z-~ = 2 PS. ~A
• variations
on
B only,
~T w e g e t ~--Z-~ : ~B
2 -
Simultaneous
In
this
case,
A (A,B) The
criterion
J[
and
by
and
becomes
• variations
combines
on
B
n(KC)
:
= J(D)
+
lemma
e Tr
[ (2SC'K'R
-
:
- B'P) S
two situations
K only,
C
:
of Kleinman's
- 2 (RKC (KC)
case
K and
AD = -
B. A (KC)]
application
on
we have
= 0
D - e.
8 J
This
variations
- PSC'K'
we get
:
-B J : 2 K ' ( R K C
- B'P)S
3C • variations
on
C only,
we get
~J ~K
= 2 (RKC
- B'P) SC'
2SPB)]
(KC)
APPENDIX 6
A FORTRAN
ROUTINE
CONSTRAINED
TO
ROBUSTNESS
This
appendix
constrained
provides
= Ax
+ BU
AN WITH
REQUIREMENTS
a routine
x ~ R n,
and its sensitivities
State feedback
• Output
OPTIMAL POSSIBLE
for the
determination
of an optimal
:
u~R m
:
feedback
u
with respect
(see § 6.4.2).
=
to the classical quadratic
criterion
T h e r o u t i n e c o n s i d e r s two c a s e s
:
Kx
: u = K C x = Ky
T h e o p t i m i z a t i o n p r o b l e m is :
min
J3(K)
= Tr
(P V 0) + T r
(SPLPS)
+ Tr
[ (RKC-B'P)SFS(RKC-B'P)']
KEK F
subject to D'S + S D + Q + C ' K ' R K C DP
where R,Q,L,F
+ PD' + V 0
= 0
= 0
a r e w e i g h t i n g m a t r i c e s of a p p r o p r i a t e
T h e s o l u t i o n of t h i s p r o b l e m is g i v e n b y
B J3 = 2
with
[(RKC
= 0
DP
+ PD' + V 0 = 0
Du
+ uD' + F 2 ( K , P , S ) + F 3 (K,P,S)
= A + BKC
dimension.
:
+ B'S)~ + B' ~ P + R ( R K C + B ' S ) P F P ]
D'S + S D + FI(K)
D' X + X D whereD
(local)
y ~ Rr
T h e o p t i m i z a t i o n is p e r f o r m e d
•
MATRIX
f e e d b a c k m a t r i x K ~ KF f o r t h e l i n e a r s y s t e m
y = Cx
6.3.1)
DETERMINE
FEEDBACK
= 0 = 0
C'
(see §
350 FI(K) = Q + C'K'RKC F2(K,P,S) = V0 + PPSL + LSPP + B(RKC+B'S) PFP + PFP(RKC+B'S)'B' F3(K,P,S) = PSLS + SLSP + (RKC + B'S)' (RKC+B'S)PF +
+ FP(RKC+B'S)'(RKG+B'S) This problem tion)
to s a t i s f y
is solved by using
the
structural
the feasible direction
constraints
and
method
an adaptative
step
(gradient size
as
projecgiven
in
(6.3.6). The required
data are
:
SYSTEM DATA
N
Order
M
Number of inputs.
L
Number of outputs.
A,B,C
System matrices of dimension
IES
of t h e s y s t e m .
Option parameter
(N,N),
(N,M) and
(L,N),
respectively.
:
IES = 0 i f s t a t e f e e d b a c k IES ~ 0 i f o u t p u t
feedback.
OPTIMIZATION DATA
AL
Initial step
size.
PI
Real positive number
superior
ANU
Real positive number
such that
EPS
Accuracy
NI
Allowed maximum number
IT
Option parameter I T = 1,
to 1. 0 < ANU < 1.
positive small number
considered
as zero.
of iterations.
;
writing of the intermediate II i t e r a t i o n
number
F
norm
gradient
CR criterion
results
:
value
AL s t e p s i z e "VPD d o m i n a n t c l o s e d - l o o p
eigenvalue
of the matrix S.
I T ~ 1, n o w r i t t i n g . IGB
Option parameter
:
IGB=I for minimizing the reduced This
6.3.1)
case
corresponds
to
the
criterion algorithm
: J3 = T r [ P V ~ . of
Geromel
and
Bernussou
(see §
351
IGB=2 for minimizing t h e c r i t e r i o n : 33 = T r [PV0] + T r [SPLPS ] IGB#I a n d IGB#2 for s o l v i n g t h e g e n e r a l p r o b l e m d e s c r i b e d a b o v e . AK
Initial s t a b i l i z i n g f e e d b a c k m a t r i x s u c h t h a t AK ~ KF.
VO Q
Initial s t a t e c o n d i t i o n m a t r i x V0 = E Ix(0) x ( O ) ' ] .
R
I n p u t w e i g h t i n g m a t r i x of dimension (M,M).
PL
Weighting m a t r i x of dimension
S t a t e w e i g h t i n g matrix of d i m e n s i o n (N,N) (NxN)
f o r t h e s e n s i t i v i t y with r e s p e c t to A
a n d B. T h i s matrix is n e c e s s a r y if IGB~I. Weighting m a t r i x of d i m e n s i o n (N,N)
PF
for the
s e n s i t i v i t y with r e s p e c t to K
a n d C.
CALLED
MULT
SUBROUTINES
Two real m a t r i c e s multiplication (see l i s t i n g ) .
MULT3
T h r e e r e a l m a t r i c e s multiplication ( s e e l i s t i n g ) .
F1KC
Calculation of F I ( K )
(see l i s t i n g ) .
F2KSPV Calculation of F 2 ( K , P , S ) ( s e e l i s t i n g ) . F3KSPV Calculation of F 3 ( K , P , S )
(see listing).
RKCBS Calculation of QQ = ( R . A A + B ' S ) a n d of AB=QQ.P.
S t a t e f e e d b a c k : AA=K,
o u t p u t f e e d b a c k : AA = KC (see l i s t i n g ) . MST
Calculation of F - (A+A') ( s e e l i s t i n g ) .
LYAPUN L y a p u n o v e q u a t i o n s o l v i n g ( s e e l i s t i n g ) . MATBF C l o s e d - l o o p matrix calculation ( s e e l i s t i n g ) . PGV
D e t e r m i n a t i o n of t h e
smallest
(or
biggest)
e l e m e n t of a real
vector
(see
listin g ) . MEV
D e t e r m i n a t i o n of t h e
smallest r e a l p a r t of t h e e i g e n v a l u e s of a real matrix
(see l i s t i n g ) . CRIT
C r i t e r i o n calculation ( s e e l i s t i n g ) .
GRADK G r a d i e n t calculation (see l i s t i n g ) . EIGRF
Eigenvalue
calculation
subroutine,
described
in :
"IMSL L i b r a r y
Manual",
"IMSL
Manual",
Edition 8, 1980. LINV2F Real
matrix
inversion
subroutine,
described
in
Library
Edition 8, 1980. PRINT
Writing of a real matrix (see l i s t i n g ) .
REQUIRED MEMORY The d i m e n s i o n s t a t e m e n t s m u s t be modified if N > 15, M > 5, o r L > 5 a c c o r ding to :
352
DIMENSION A ( N , N ) , B ( N , M ) , C ( L , N ) , A K ( M , N ) , WK(IK), R(M,M) The same for all t h e o t h e r m a t r i c e s of dimension ( N , N ) . NA,MA,LA a n d IK m u s t b e s e t to : NA=N, MA=M, LA=L a n d I g >/ N2 + 3N
LISTING IMPLICIT REAL*8 ( A - H , O - Y ) , COMPLEX*I6(Z) COMMON /MATSS/ A(15,15) ,B(15,5) ,C(5,15),AK(5,15) COMMON / M A T P I / Q(15,15),R(5,5) COMMON /MATP2/ PL(15,15) ,PF(15,15) COMMON /MATLI/ S(15,15),P(15,15),VO(15,15) COMMON /MATL2/ PMU(IS,15),SLA(I5,15) COMMON /GRADS/ GA(15,15),GK(IS,]5) DIMENSION AF(15 ,15),AFF(15,15) ,G (15,15) ,D (15,15)
DIMENSION E(15,15),AA(15,15),AC(15,15),WK(270) DIMENSION ZV(15),Z(15,15)
NA=15 MA=5 LA=5 IK=270 *** SYSTEM MATRICES READING *** READ (19,*) N , M , L , I E S DO 12 I = I , N 12
READ (19,*) ( A ( I , J ) , J = I , N ) DO 17 I = I , N
17
READ (19,*) (B ( I , J ) , J=I,M) NL=N I F ( I E S . E Q . 0 ) GO TO 24 NL=L DO 20 I = I , L
20
READ (19,*) ( C ( I , J ) , J = I , N ) *** OPTIMIZATION DATA READING ***
24
READ (19,*) A L , P I , A N U , E P S , N I , I T , I G B
Also t h e p a r a m e t e r s
353
DO 26 I=I,M 26
READ (19,*) ( A K ( I , J) , J = I , N L ) DO 28 I = I , N
28
READ ( 1 9 , * ) ( V O ( I , J ) , J = I , N )
D O 32 I=I,N 32
READ(19,*) (Q(I,J),J=I,N) D O 36 I=l,M
36
READ(I9,*) (R(I,J),J=I,M) IF(IGB.EQ.1)
GO T O 52
DO 44 I = I , N 44
READ(19,*) (PL(I,J),J=I,N) IF(IGB.EQ.2)
GO TO 52
DO 48 I = I , N 48
READ(Ig,*) (PF(I,J),J=I,N) *** I T E R A T I O N S
52
IF(IT.NE.I)
BEGINING
***
G O T O 58
WRITE(6,56) 56
F O R M A T (6X,'II', 10X,'F', 10X,'CR', 10X,'AL', 10X,'VPD',/)
58
II=0
60
CONTINUE
*** CLOSED-LOOP MATRIX DETERMINATION
CALL
MATBF(N,
M, NL, NA,MA,
***
LA, AF)
*** SOLVING THE 1ST LYAPUNOV EQUATION
***
***
***
(CALCULATION OF S)
DO 65 I = I , N DO 65 J = I , N 65
A F F ( I , J ) = - A F ( I , J) CALL F1KC(N,NA,M,MA,NL,LA,AA,AC) CALL LYAPUN(AFF,N,NA,AC,NA,S,NA,P,G,ZV,Z,WK,IK) IF(IGB.NE.1)
GO TO 72
CALL C R I T ( N , M , I G B , C R ) IF(II.NE.0)
G O T O 72
WRITE(6,71) CR
354
71
FORMAT(LX,'INITIAL C R I T E R I O N VALUE=',EI2.6,/)
72
IF(II.EQ.0) G O T O 75 IF(IGB.NE.I) G O T O 73 IF(CR.GE.Y) G O T O 135
73
C A L L M E V (S, N,NA, G, ZV, Z,WK, IK, VPD) IF(VPD.LE.0) G O T O 135 ***
SOLVING
***
75
THE
2ND
LYAPUNOV
(CALCULATION
OF
EQUATION P)
*** ***
D O 76 I=I,N D O 76 J=I,N AFF(I, J)=-AF(J,I)
76
E(I,J)=-VO(I, J) G A L L L Y A P U N (AFF, N,NA,E, NA,P, NA,AC,G, ZV, Z,WK, IK)
C A L L R K C B S (AA,M, N,NA,MA,LA, E,GK) IF(IGB.NE.I) GO T O 90 IF(IES.EQ.0) G O T O 83 D O 80 I=I,N D O 80 J=I,L 80
AC(I,J)=C(J,I) C A L L M U L T (GK,NA, NA, AC, NA, NA, G, NA, NA, M,N, L) G O T O II0
83
D O 85 I=I,M D O 85 J=I,NL
85
G(I,J)=GK(I,J) G O T O 110
90
CALL MULT (S, NA, N A , P , NA, NA, GA, NA, NA, N, N, N) *** SOLVING THE 3RD LYAPUNOV EQUATION *** ***
95
(CALCULATION OF MU)
***
CALL F2KSPV(M,N,IGB,G,AFF,AA,NA,MA,LA)
D O 97 I=I,N D O 97 J=I,N 97
AFF(I, J)=-AF(J,I) C A L L L Y A P U N (AFF,N, NA, AA, NA,PMU, NA, G, AC, ZV, Z,WK, IK)
355
*** SOLVING THE 4TH LYPAUNOV E Q U A T I O N ***
***
(CALCULATION
OF L A M D A )
***
C A L L FBKSP(E,M,N,IGB,AFF, G , A A , N A , M A , LA) D O 103 I=I,N D O 103 J=I,N I03
AFF(I, J)=-AF(I, J) CALL LYAPUN(AFF,N,NA,AA,NA,SLA,NA,G,AC,ZV,Z,WK,IK) *** C R I T E R I O N
CALCUATION
***
C A L L CRIT(N,M,IG, CR) IF(II.NE.0) G O T O 107 WRITE(6,105) C R 105
FORMAT(LX,'INITIAL C R I T E R I O N VALUE=',E12.6,/)
107
IF(CR.GT.Y) G O T O 135
109
CALL
G O T O 109
GRADK(E,AA,AC,N,M,NL,NA,MA,LA,G)
*** G R A D I E N T P R O J E C T I O N ***
ii0
F=0 D O 115 I=I,M D O 115 J=I,NL D(I,J)=0 IF(AK(I,J).EQ.0) G O T O 115 D(I,J)=G(I,J) F I = D A B S (G ( I , J) ) F=DMAX 1 ( F , F1)
115
CONTINUE
Y=CR 11=11+1 IF(IT.NE.1)
GO TO 118
W R I T E ( 6 , 1 1 7 ) I I , F , C R , A L , VPD 117
118
F O R M A T (5X,13, IX,El2.6, IX,El2.6, IX,El4.8, IX,E12.6,/) IF(F.LT.EPS) G O T O 140 IF(II.GT.NI) G O T O 160
356
AL=PI*AL KL=I 120
DO 122 I=I,M DO 122 J = I , N L
122
A K (I,J) = A K (I,J)-AL*D (I,J) G O T O 60
135
CONTINUE IF(IT.NE.I)
G O T O 538
WRITE(6,136)CR,AL,VPD 136
FORMAT
138
D O 139 I=I,M DO
139
(22X, E12.6, IX, El4.8, IX,El2.6,/)
139 J=I,NL
A K (I,J) = A K (I,J)+AL*D (I,J) IF(KL.EQ. l) AL=AL/PI AL=AL*ANU IF(AL.LT.IE-10)
G O T O 160
KL=0 GO TO 120 540
WRITE(6,150) II
150
FORMAT(5X,'THE CONVERGENCE IS OBTAINED A F T E R ' , I X , I 4 , 1 X , ' I T E R A T I O N S ' , / , 5 X , ' T H E OBTAINED FEEDBACK MATRIX I S ' , / ) GO TO 170
160
W R I T E (6,165)II
165
FORMAT(5X,'THE
CONVERGENCE
,'ITERATIONS',/,5X,'THE 170
IS N O T
OBTAINED
OBTAINED
FEEDBACK
AFTER',I4
MATRIX
IS',/)
CALL P R I N T ( A K , M , N L , M A , 1) WRITE(6,180) Y
180
FORMAT(5X,'THE CRITERION VALUE= ' , E 1 2 . 6 , / / ) WRITE(6,190) F
190
FORMAT(5X,'THE GRADIENT NORM VALUE EPS = ' , E 1 2 . 6 , / ) STOP END
* CLOSED-LOOP *
AA=A+B.AK.C
MATRIX
DETERMINATION
IF O U T P U T
FEEDBACK
* *
357
* A=A+B.AK IF STATE FEEDBACK * ************************************************ SUBROUTINE MATFB ( N , M , N L , NA,MA,LA, AA) IMPLICIT REAL*8 ( A - H , O - Y ) COMMON /MATSS/ A ( 1 5 , 1 5 ) , B ( 1 5 , 5 ) , C ( 5 , 1 5 ) , A K ( 5 , 1 5 ) DIMENSION
AA(NA,NA)
I F ( N L . N E . N ) GO TO 4 CALL MULT(B,NA, MA, AK, MA, LA, AA, NA, NA, N, M, NL) GO TO 6 CALL
M U L T 3 (B,NA, MA, AK, MA,LA, C, LA, NA, N,M, NL, N,AA, NA)
D O 8 I=I,N D O 8 J=I,N A A (I,J)=A(I,J)+AA(I,J) RETURN END ********************************************************** * CALCULATION OF THE MATRIX QQ : * Q Q = -(Q+CIK~RKC) * QQ
=
-(Q+K'RK)
SUBROUTINE
IF O U T P U T IF S T A T E
FEEDBACK
* (NL=L)
FEEDBACK(NL=N)
F I K C ( N , N A jM,MA,NL,LA, BB, QQ)
IMPLICIT REAL*8 ( A - H . O - Y ) COMMON /MATSS! A ( 1 5 , 1 5 ) , B ( 1 5 , 5 ) , C ( S , 1 5 ) , A K ( 5 , 1 5 ) COMMON / M A T P I / Q ( 1 5 , 1 5 ) , R ( 5 , 5 ) DIMENSION QQ(NA, NA) ,BB (NA,NA) IF(NL.EQ.N)
GO TO 2
CALL MULT (AK, MA,LA,C t LA, NA, BB, NA, NA, M, NL, N) GO TO 6 2
D O 4 I=I,M D O 4 J=IpNL
4
B B (I,J)=AK(I,J)
6
DO
10 I=I,N
DO
I0 J=I,N
S=0 D O 8 II=I,M D O 8 JJ=I,M 8
S=S+BB (II,I)*R (II,J J) *BB (JJ, J)
I0
QQ(I,J)=-S-Q(I,J)
* *
358
RETURN END **********
~*****************************************
*SOLVING *
THE
A'Q+QA+C
*INPUT *
MATRIX
*
:
*
=0
*
ARGUMENTS
REAL
EQUATION
**** **
:
*
A(N,N)
N ~< N A
*
C(N,N)
N ~< N C
*
*
RI(N,N)
N ~< NA
*
*
R2(N,N)
N ~< N A
*
WK(IK)
I K >/ N * N + 3 * N
*
COMPLEX
*
* OUTPUT
*
*
REAL
Z(N,N),ZI(N) ARGEMENTS
*
N x< N A
*
:
*
Q(N,N) N ~< N Q
REFERENCE
* *
:
*
"THE
NUMERICAL
*
W.D.
HOSKINS,
*
IEEE T R A N S .
*
N. 5, O C T .
SUBROUTINE
SOLUTION D.S.
AUT.
OF
A'Q+QA=-C"
MEEK AND D.J.
CONT.,
VOL.
WALTON
AC-22,
1977, 882-883.
LYAPUN(A,
IMPLICIT R E A L * 8
N,NA,
C,NC,Q,NQ,RI,R2,
(A-H,O-Y)
A (NA, NA), C (NC, NC), Q (NQ, NQ)
DIMENSION
R I ( N A , N A ) ,R2(NA,NA) ,WK(IK) ZI(NA),Z(NA,NA)
K=0 K=K+I IF(K.GT.1O0)
G O T O 30
D O 3 I=I,N D O 3 J=I,N RI (I,J)=A(I,J) IJOB=0 CALL
EIGRF(R], N, NA, IJOB, Z], Z, NA, WK, IER)
D O 5 I=I,N W K (I)= R E A L (Zl (T)) II=0 C A L L P G V (WK,N,IK,PV,II) IF(PV.GT.0)
G O T O 12
* *
DIMENSION COMPLEX*f6
* *
ZI, Z,WK,IK)
359
DO
10 I=I,N
11=1+1 DO
9 J=11,N
Q(J,I)=0 9
l0
Q(I,J)=0
Q(z,I)=-I RETURN
12
II=i CALL
P G V (WK,N,IK,GV,II)
XX=(PV*GV)**0.5 X=I/(PV+XX)**2 ALPHA=2*PV*X BETA=PV*GV*ALPHA EPSI=X* (PV-X X) **2 DO 14 I = l , N DO 14 J = l , N 14
R2(I,J)=A(I,J) IDGT=0
CALL LINV2F(R2, N , N A , R I , I D G T , W K , IER) DO 17 I = I , N DO 17 J = I , N 17
Q(I,J)=RI(J,I) DO 20 I = l j N DO 20 J = I , N
2O
A (I, J)=ALPHA*A (I, J ) + B E T A * R l ( I , J) CALL MULT3 (Q,NQ, NQ, C , N C , N C , R 1 , NA, NAp N, N, N, N, R2, NA)
22
DO 24 I = l , N DO 24 J = I , N
24
C (I, J) =ALPHA*C (I, J) +B ETA*R2 (I, J) IF(EPSI.GE.1.E-07)
GO T O
1
DO 25 I = I , N DO 25 J = I , N 25
Q(1,J)=-0.5*C(I,J)
30
WRITE(6,32)
32
FORMAT
RETURN
RETURN END
II
(RX, ' I T E R A T I O N S
N U M B ER ( L Y A P U N O V ) = ' , 14, l ])
360 ********************************************************** * FINDING * THE
THE
REAL
* INPUT
VECTOR
*
Y REAL
K OPTION
*
K=0
*
K#0
ELEMENT
Y OF DIMENSION
ARGEMENTS
*
* USED
SMALLEST/BIGGEST
X
OF
N x< N M A X .
*
PARAMETER
:
SMALLEST
FOR
BIGGEST
AS AN
OUTPUT,
* DESIRED
* *
:
VECTOR
FOR
*
ELEMENT,
* ELEMENT
ELEMENT
*
K IS T H E
.I.E.
INDEX
OF
THE
X--Y(K)
* *
**********************************************************
SUBROUTINE
IMPLICIT
PGV(Y,N,NMAX,X,K)
REAL*8
(A-H,O-Z)
DIMENSION
Y(NMAX)
IF(K.NE.0)
GO
TO
2
K=I X = Y (i) DO
1 I=2,N
IF(Y(I).GE.X)
GO TO
1
GO
3
x=v(i) K=I CONTINUE RETURN K=I X=Y(1) DO
3 I=2,N
IF(X.GE.Y(I))
TO
X=Y(I) K=I CONTINUE RETURN END ********************************************************** * FINDING
THE
* EIGENVALUES *
WORKING
*
REAL*8
SMALLEST OF A REAL
AREA
:
AA(N,N),WK(IK)
REAL
PART
MATRIX
VPD
A(N,N).
OF THE
* * * *
361
*
COMPLEX*f6
*
N ~< NA,
SUB
ROU
TINE
IMPLICIT
ZV(N),Z(N,N)
*
IK >I N
MEV
(A , N , NA
*
, AA,
ZV
, Z , WK
, IK , VPD)
REAL*8 ( A - H , O - Y )
COMPLEX*16 Z V ( 1 5 ) , Z ( 1 5 , 1 5 ) DIMENSION A ( N A , N A ) , A A ( N A , N A ) , W K ( I K )
DO
2 I=I,N
DO
2 J=I,N
AA(I,J)=A(I, J) IJ O B = 0 CALL DO
E I G R F (AA,N, NA, IJ O B ,ZV, Z, N A , W K , I E R )
4 I=I,N
W K (1)=REAL (ZV (I)) II=O CALL
P G V (WK ,N, IK ,V P D ,II)
RETURN END
*** C R I T E R I O N
CALCULATION ***
SUBROUTINE C R I T ( N , M , I G B , CR)
IMPLICIT
REAL*8
(A-H,O-Y)
COMMON
/MATP2/
PL(15,I5),PF(15,15)
COMMON
]MATLI]
S(15,15),P(15,15),V0(15,15)
COMMON
]GRADS]
GA(15,15),GK(15,15)
CR=0 DO
2 I=I,N
DO
2 J=I,N
C R = C R + S (I, J) *V0 (J, I) IF(IGB.EQ. I) R E T U R N TR=0 D O 6 I=I,N SD=0 D O 4 II=I,N DO
4 JJ=I,N
362 4
SD=SD+G A ( I. II ) * P L ( I I , J J) * GA ( I, J J)
6
TR=TR+SD CR=CR+TR IF(IGB.EQ.2)
RETURN
TR=0 DO 10 I = I , N SD=0 DO 8 I I = I , M DO 8 J J = ] , M 8 10
SD=SD+GK ( I I , I) * P F ( I I , J J) *GK (J J , I) TR=TR+SD CR=CR+TR RETURN END ********************************************************** * C A L C U L A T I O N OF T H E M A T R I C E S *
QQ = R.AA
*
AB = ( R . A A + B ' . S ) . P
* AA= K . C
:
+ B'.S
* *
IF STATE FEEDBACK (NL=N)
*
* AA(M,N)
*
N ~< NA, M ,,< N A
* AB(M,N)
S U B R O U T I N E R K C B S ( A A , M, N, N A , M A , L A , Q Q , A B )
COMMON ] M A T S S / A(15,15),B(lS,]5),C(5,15),AK(5,15) /MATPI/
COMMON ] M A L T I /
Q(I5,]5),R(5,5) S(15,15),P(15,15),V0(15,15)
DIMENSION Q Q ( N A , N A ) , A A ( N A , N A ) , A B ( N A , N A ) DO 12 I = I , M DO 8 J = I , N SD=0 DO 4 I I = I , M S D = S D + R (I, II) * A A (II,J) SS=0 DO 6 K = I , N SS=SS+B (K,I)*S(K,J) QQ(I, J ) = S S + S D
* *
IMPLICIT REAL*8 (A-H,O-Y)
COMMON
*
I F OUTPUT FEEDBACK (NL=L)
* AA= K
* QQ(M,N),
*
363
D O I0 J=I,N SS=0 D O i0 K=I.N
SS=SS+Q Q (I, K) *P(K ,J) I0
AB(I,J)=SS
12
CONTINUE RETURN END
*** CALCULATION OF THE MATRIX -F2(K,S,P) ***
SUBROUTINE F2KSPV(M,N, IGB, G,AFF,F2, NA,MA, LA) IMPLICIT REAL*8 (A-H,O-Y) COMMON /MATSS/ A(15,15),B(15,5),C(5,15),AK(5,15) COMMON /MATP2/ PL(15,15),PF(15,IS) COMMON /MATLI/ S(15,15),P(15,15),V0(15,15) COMMON ]GRADSf GA(15,15),GK(15,15) DIMENSION F2(NA,NA),AF(NA,NA),G(NA,NA)
CALL M U L T 3 (PL, NA, NA, GA, NA, NA, P, NA, NA, N, N, N, N, AFF,NA)
D O 2 I=],N D O 2 J=I,N F2(I,J)=-V0(I,J) C A L L MST(AFF,F2,N,NA) IF(IGB.EQ. 2) R E T U R N C A L L M U L T (B ,MA,NA,GK.NA, NA,G, NA,NA, N,M, N) C A L L MULT3(G, NA, NA,PF, NA,NA,P,NA, NA, N, N, N, N, AFF, NA) C A L L M S T (AFF,F2,N, NA) RETURN END ***************
* ~****~***************
* CALCULATION OF F= F-(A+A')
*
*
WHERE
*
*
A(N,N), F (N,N), N ~< N A
*
*************************************
S U B R O U T I N E MST(A,F,N,NA) IMPLICIT REAL*8 (A-H,O-Y) D I M E N S I O N A(NA,NA) ,F(NA,NA)
364
D O 2 I=I,N D O 2 J=I,N A(I,J)=A(I, J)+A(J,I) A(J,I)=A(I,J) D O 4 I=I,N D O 4 J=I,N F (1,J) =F (I,J)-A (I,J) RETURN END
*** CALCULATION OF - F 3 ( K , S , P ) SUBROUTINE
***
F3KSP(E, M,N,IGB,AFF,D, F3,NA,MA, LA)
IMPLICIT REAL*8 ( A - H , O - Y ) COMMON / M A T S S / A ( 1 5 , I S ) , B ( 1 5 , 5 ) , C ( 5 , 1 5 ) . A K ( 5 , 1 5 ) COMMON /MATP2/ P L ( I 5 , I 5 ) o P F ( I S , 1 5 ) COMMON /MATL1/ S ( 1 5 , 1 5 ) , P ( 1 5 , 1 5 ) , V 0 ( 1 5 , 1 5 ) COMMON / G R A D S / G A ( 1 5 , 1 5 ) , G K ( 1 5 , 1 5 ) DIMENSION AFF (NA, NA), E (NA, NA). D (NA, NA ). F3 (NA, NA) CALL MULT3(S,NA,NA,PL,NA,NA,GA,NA,NA,N,N,N,N,AFF,NA) DO 2 I = I , N DO 2 J = I , N F3(I,J)=0 CALL MST ( A F F , F 3 , N , NA) IF(IGB.EQ.2)
RETURN
DO 4 I = I , N DO 4 J = I , M D(I,J)=E(J,I) CALL MULT 3 (D, NA, NA, G K, NA, N A, PF, NA, NA, N, M, N, N, AFF, NA) CALL MST ( A F F , F 3 , N , NA) RETURN END
*** GRADIENT CALCULATION *** SUBROUTINE G R A D K ( E , D , A C , N, M,NL, N A , M A , L A , G )
365
IMPLICIT REAL*8 ( A - H , O - Y ) COMMON /MATSS! A ( 1 5 , 1 5 ) , B ( 1 5 , 5 ) , C ( 5 , 1 5 ) , A K ( 5 , 1 5 ) COMMON /MATP1/ Q ( 1 5 , 1 5 ) , R ( 5 , 5 ) COMMON /MATPZ/ P L ( 1 5 , 1 5 ) , P F ( 1 5 , 1 5 ) COMMON / M A T L I / S ( 1 5 , 1 5 ) , P ( 1 5 , 1 5 ) , V 0 ( 1 5 , 1 5 ) COMMON /MATL2/ P M U ( 1 5 , 1 5 ) , S L A ( 1 5 , 1 5 ) COMMON / G R A D S / G A ( 1 5 , 1 5 ) , G K ( 1 5 , 1 5 ) DIMENSION AC (NA, NA) ,E (NA, NA), G (NA, NA) ,D (NA, NA)
CALL MULT ( E , N A , NA,PMU,NA, NA, G, NA, NA, M, N,N) DO 2 I=I,M DO 2 J = I , N A C (I,J)=B(J,I) C A L L M U L T 3 (AC,NA, NA, SLA,NA,NA,P,NA, NA, M, N, N, N,D, NA) D O 4 I=l,M D O 4 J=l,N G(I,J)=G(I,J)+D(I,J) IF(IGB.EQ.2)
GO TO 6
CALL MULT3 (R,MA, MA, GK,NA, NA, PF, NA, NA, M, M, N, N , A C , NA) CALL M U L T ( A C , N A , N A , P , N A , N A , D , N A , N A , M, N,N) DO 5 I=I,M DO 5 J = I , N G(I,J)=G(I,J)+D(I,J) IF(NL.EQ.N) R E T U R N D O 8 I=I,N D O 8 J=I,NL AC(I,J)=C (I,I) CALL MULT(G,NA,NA,AC, NA,NA,D,NA,NA,M.N,NL) DO 10 I=I,M DO 10 J = I , N L 10
G(I,J)=D (I,J) RETURN END
SUBROUTINE MULT (A, N A , M A , B , N B , M B , C , NC, MC, N, M,L) ********************************* ******************* ****** * TWO REAL MATRICES MULTIPLICATION : C=A.B *
A (N,M),
N x( N A ,
M ~< MA
* *
366 *
B
(M,L),
M ,,< NB,
L 4 MB
*
*
C
(N,L),
N k< NC,
L x< MC
*
IMPLICIT
(A-H,O-Y)
REAL*8
DIMENSION
A(NA,NA),B(NB,NB),C(NC,NC)
D O I I=I,N D O I J=I,L C(I,J)=0.D0 DO
I K=I,M
C (I, J ) = C (1, J)+A (I, K)*B
(K, J)
RETURN END
*************************************************************** * THREE * THE
REAL
MATRICES
MATRICE
MULTIPLICATION
DIMENSION
ARE
: Q
= A.B.C
:
* *
*
A(NpM),
N,
M x< MA
*
*
B ( M , L ) , M,
L ~ MB
*
*
C(L,K),
*
QQ(N,K), N ~
SUBROUTINE
L x< NC, K ,,< MC
*
NQ, K < N O
*
MULT3(A,NA,MA,B,NB,MB,C,NC,MC,
N,M,L,K,QO,NQ)
IMPLICIT R E A L * 8 (A-H,O-Y) D I M E N S I O N A (NA, MA), B (NB,MB),
C (NC, MC),
D O 2 I=I,N D O 2 J=I,K S=0 D O I II=I,M D O 1 JJ=I,L S=S+A (I,11)*B (II,J J) *C (JJ. J) QQ(I,J)=S CONTINUE RETURN END SUBROUTINE PRINT (A, M, N, MMAX, IT)
QQ(NO_,
NQ)
367 ********************************************************* * REAL MATRIX *
A:MxN
WRITING
SUBROUTINE
*
* MMAX M a x i m a l d i m e n s i o n * A as specified * the
*
Mx<MMAX
calling
in the
of the
dimension
rows
of the
statement
program.
of
matrix
* * *
* IT=] FOR WRITING * ********************************************************* R E A L * 8 A ( M M A X , 1)
IF (IT.NE.I) G O T O 6 K=(N-I)/I0+i D O 3 KK=I,K NN=I0 D O 2 I=I,M IF (N.GT.10*KK) G O T O l NN=N-10* (KK-I) CONTINUE WRITE(6,5) (A (I, (KK-I)*I0+J) ,J=l ,NN) WRITE(6,4) FORMAT(/]/) F O R MAT ( 10 ( D 1 2 . 4 ) ) RETURN END
REFERENCES
(ACK-84)
ACKERMANNp J .
(1984)
Robustness against sensor failures,
Automatica,
Vol. 20, n o . 2, 211-215. (ALB-83)
ALBERT,
J.
ALOS (1983)
Stabilization of a c l a s s of p l a n t s w i t h p o s s i b l e
loss of o u t p u t s o r a c t u a t o r f a i l u r e s , IEEE T r a n s . A u t . C o n t . , Vol. AC-28, no. 2, 231-233. (AND-71) ANDERSON, B . O . D .
and MOORE, J .
(1971) Linear optimal c o n t r o l , P r e n -
tice Hall. (AND-81a)
ANDERSON,
B.O.D.
and
CLEMENTS,
D.J.
zation of f i x e d modes in d e c e n t r a l i z e d c o n t r o l ,
(1981)
Algebraic characteri-
Automatica,
Vo].
17,
no.
5,
703-712. (AND-81b) ANDERSON, B . O . D .
a n d MOORE, J .
for d e c e n t r a l i z e d c o n t r o l , IEEE T r a n s .
(1981)
Aut.
T i m e - v a r y i n g f e e d b a c k laws
Cont.,
Vol. AC-26, n o .
5, 1133-
1139. (AND-82) ANDERSON, B . O . D .
(1982) T r a n s f e r f u n c t i o n matrix d e s c r i p t i o n of d e c e n -
t r a l i z e d f i x e d m o d e s , IEEE T r a n s . A u t . C o n t . , Vol. AC-27, no. 6, 1176-1182. (AND-84)
ANDERSON,
complexity
in
B.O.D.
and
decentralized
LINNEMANN, control
of
A.
(1984)
interconnected
Spreading the systems,
control
Systems
&
C o n t r o l L e t t e r s , Vol. 5, 1-8. (AOK-72)
AOKI,
M.
(1972)
On
feedback
stabilizability
of
decentralized
dynamic
s y s t e m s , Automatica, Vol. 8, no. 2, 163-173. (AOK-73)
AOKI,
M.,
LI,
M.T.
(1973)
Controllability and
s t a b i l i z a b i l i t y of d e c e n -
t r a l i z e d dynamic s y s t e m s , P r o c . of J o i n t Automatic C o n t r o l C o n f . ( J A C C ) , Ohio State University, U . S . A . , (AOK-76)
AOKI,
M.
(1976),
278-286.
On d e c e n t r a l i z e d s t a b i l i z a t i o n a n d dynamic a s s i g n m e n t
p r o b l e m s , J . o f I n t . Economics, Vol. 6, 143-171. (ARM-81)
ARMENTANO,
V.A.
and
SINGH,
d e c e n t r a l i z e d c o n t r o l l e r initialisation
M.G.
(1981)
problem,
8th
A new
approach
World C o n g r e s s
to t h e
of IFAC,
P a p e r 41.2, Kyoto, J a p a n . (ARM-82)
ARMENTANO,
decentralized
V.A.
fixed
and
modes
SINGH,
with
M.G.
reduced
(1982)
A procedure
information
exchange,
to
eliminate
IEEE T r a n s .
A u t . C o n t . , Vol. AC-27, no. 1, 258-260. (BAR-72)
BARTELS,
R.H.
and
STEWART,
G.W.
(1972)
AX + XB = C, Commun. ACM, Vol. 15, no. 9, 820.
Solution of m a t r i x e q u a t i o n
369
(BEL~70) BELLMAN,
R.
(1970) I n t r o d u c t i o n
to m a t r i x a n a l y s i s )
Me G r a w - H i l l ,
2nd
e dition. (BER-81) BERNUSSOU, J . a n d GEKOMEL, J . C .
(1981) An e a s y way to find g r a d i e n t
m a t r i x of composite matricial f u n c t i o n s ,
IEEE T r a n s .
Aut.
Cont.,
Vol. A C - 2 6 ,
n o . Z, 538-540. (BER-82)
BERNUSSOU,
CALVET,
J.L.
J. and TITLI, (1982)
A. w i t h t h e c o l l a b o r a t i o n of AUTHIE, G. a n d
Interconnected
dynamical
systems:
Stability:
Decom-
position and Decentralization, North-Holland. (BIN-78)
BINGULAC,
S.P.
(1978) C a l c u l a t i o n of d e r i v a t i v e s
nomials, IEEE T r a n s . (BOG-61)
BOGLIUBOV,
Aut. Cont.,
N.N.
of c h a r a c t e r i s t i c
poly-
Vol. AC-23, n o . 4, 751-753.
a n d MITROPOLSKY,
Yu.A.
(1961) A s y m p t o t i c m e t h o d s
in t h e t h e o r y of n o n - l i n e a r o s c i l l a t i o n s , New York : G o r d o n B r e a c h . (BOW-76) BOWIE, W.S. (1976) A p p l i c a t i o n of g r a p h t h e o r y in c o m p u t e r s y s t e m s , J . Com. a n d I n f . S c i . , (BRA-70) BRASCH,
F.M. a n d PEARSON,
c o m p e n s a t o r s ,IEEE T r a n s .
J.B.
Aut. Cont.,
(]970)
dynamic
(1981) A new a l g o r i t h m f o r d e t e r m i -
controllability, Int. J. Cont.,
(CAL-78) CALOVIC, M., DJOROVIC,
Pole p l a c e m e n t u s i n g
Vol. AC-15, 34-43.
(BUR-81) BURROWS, C . R . a n d SAHINKAYA M.N. ning structural
Int.
Vol. 5, 9-31.
Vol. 33, no. 2, 379-392.
M. a n d SILJAK,
D.D.
(1978) D e c e n t r a l i z e d a p -
p r o a c h to a u t o m a t i c g e n e r a t i o n c o n t r o l of i n t e r c o n n e c t e d p o w e r s y s t e m s , I n t e r national Conference
on L a r g e
High-volta.~e
Electric Systems
(CIGRE),
Paris,
Certain
consideration
France. (CHE-B1)
CHEN,
Y.
and
SING}I,
M.G.
(1981)
model-following m e t h o d of d e c e n t r a l i z e d c o n t r o l ,
practical
in
P r o c . IEE, Vol. 128, p a r t D . ,
no. 4, 149-155. (CHE-84)
CHEN,
Y.,
MAHMOUD, M.S.
diagonalization procedure
a n d qINGH,
M.G.
(1984) An i t e r a t i v e b l o c k -
for d e c e n t r a l i z e d optimal c o n t r o l , I n t . J .
Syst.
Sci.,
Vol. 15, n o . 5, 563-573. (COR-76a)
CORFMAT,
through
J.P.
and
specified input
MORSE,
channels,
A.S.
SIAM J .
(1976)
Control
Cont.
and Opt.,
of l i n e a r Vol.
I4,
systems no.
1,
163-175. (COR-76b)
CORFMAT,
J.P. and M O R S E ,
A.S.
(1976) Decentralized
control of linear
multivariable systems, Automatica, Vol. 12, no. 5, 479-495. (DAV-68)
DAVISON,
E.J.
and
MAN,
F.T.
(1973) The
numerical
solution
of
A'Q+QA =-C, IEEE Trans. Aut. Cont., Vol. AC-13, 448-449. (DAY-73)
DAVISON,
E.J., R A U ,
N.S. and P A L M A Y
tralized control of a power
system
F.V.
(1973) The optimal decen-
consisting of a number
of interconnected
synchronous machines, Int. J. Cont., Vol. 18, no. 6, 1313-1328. (DAY-74)
DAVISON,
transmission
E.J.
and
WANG,
W.H.
(1974) Properties
zeros of linear mu]tivariable time-invariant
Vol. 10, 643-658.
and
calculation of
systems,
Automatica,
370
(DAV-75)
DAVISON,
E.J.
and
GOLDENBERG,
general servomechanism problem:
A.
(1975)
The
robust
the servo-compensator,
control
of a
A u t o m a t i c a , Vol. 11,
461-471. (DAV-76a) DAVISON, multivariable
E.J.
(1976) D e c e n t r a l i z e d s t a b i l i z a t i o n a n d r e s u l a t i o n in l a r g e
systems,
optimization and
In
Direction
in
large scale systems
decentralized
(editors .. HO,
control, Many-person Y.C.
2rid M I T T E R
S.),
Plenum Press, 303-323. (DAV-76b)
DAVISON,
E.J. (1976) Multivariable tuning regulators • the feed-forward
and robust control of a general servomechanism
problem,
IEEE
Trans.
Aut.
Cont., Vol. AC-21, 35-47. (DAV-76c)
DAVISON,
E.J.
(1976) The
robust
decentralized
control of a general
servomechanism problem, IEEE Trans. Aut. Cont., Vol. AC-21, no. 1, 14-24. (DAV-76d)
DAVISON,
E.J.
(1976) The robust control of a servomechanism
for linear time-invariant multivariable systems,
IEEE Trans.
problem
Aut. Cont., Vol.
AC-21, 25-34. (DAV-76e)
DAVISON,
E.J. and W A N G ,
W.H.
(1976) Remark on multiple transmission
z e r o s of a s y s t e m , A u t o m a t i c a , Vol. 12, 195. (DAV-77a)
DAVISON,
E.J.
(1977)
Connectability
and
structural
controllability
of
composite s y s t e m s , A u t o m a t i c a , Vol. 13, ]09-123. (DAV-77b) DAVISON,
E.J.
(1977) T h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m
with extra stabilizing control agents, IEEE
Trans.
Aut.
Cont.,
Vol. AC-22,
no. 2, 256-259. (DAV-78a) DAVISON,
E.J.
(1978) D e c e n t r a l i z e d r o b u s t
using tuning regulators, (DAV-78b)
DAVISON,
obtaining
E.J.,
IEEE T r a n s . GESING,
c o n t r o l of u n k n o w n
Aut. Cont.,
systems
Volo A C - 2 3 , n o . 2, 276-289.
W. a n d WANG, W.H.
(1978)
An a l g o r i t h m for
t h e minimal r e a l i z a t i o n of a l i n e a r t i m e - i n v a r i a n t s y s t e m a n d d e t e r -
mining if a s y s t e m is s t a b i l i z a h l e - d e t e c t a b l e ,
IEEE T r a n s .
Aut.
Cont.,
Vol.
A C - 2 3 , no. 6, 1048-1054. (DAV-79a)
DAVISON,
chanism
IEEE T r a n s . (DAV-79b)
E.J.
problem
(1979)
for
The robust
composite
systems
decentralized with
c o n t r o l of a s e r v o m e -
input-output
interconnections,
A u t . C o n t . , Vol. 24, no. 2, 325-327.
DAVISON,
E.J.
and
GESING,
W.
(1979)
Sequential stability and opti-
mization of l a r g e - s c a l e d e c e n t r a l i z e d s y s t e m s , A u t o m a t i c a , Vol. 15, 307-324. (DAV-81)
DAVISON,
E.J.
the
multivable
robust
m e t h o d s , IEEE T r a n s . (DAV-82) DAVISON, trollers
for
E.J.
the
a n d FERGUSON,
I.
servomechanism Aut. Cont.,
a n d CHANG,
robust
(1981) problem
T h e d e s i g n of c o n t r o l l e r s for using
parameter
optimization
Vol. AC-26, no. 1, 93-110. T.
(198Z) T h e d e s i g n of d e c e n t r a l i z e d c o n -
servomechanism
problem
m e t h o d s , A m e r i c a n Automatic C o n t r o l C o n f e r e n c e ,
using parameter
optimization
Arlington, Virginia, U.S.A.,
905-909. (DAV-83) D A V I S O N ,
E°J. and O Z G U N E R ,
U. (1983) Characterization of decentralized
fixed modes for interconnected systems, Automatica, Vol. 19, no. 2, 169-182.
371
(DAV-85)
DAVISON,
E.J.
and
WANG,
S.H.
(1985)
A characterization
t r a l i z e d f i x e d modes in t e r m s of t r a n s m i s s i o n z e r o s ,
IEEE T r a n s .
of d e c e n -
Aut.
Cont.,
Vol. A C - 3 0 , no. 1, 81-82. (DES-?4)
DESOER,
transfer
C.A.
and
SCHULMAN,
D.
(1974)
Zeros
function and their dynamical interpretation,
and
poles
IEEE T r a n s .
of
Circ.
matrix Syst.,
Vol. GAS-21, 3-8. (EVA-84)
EVANS,
F.J.
and
KRUSER,
M.
(1984)
Pole a s s i g n m e n t in d e c e n t r a l i z e d
s y s t e m s : A s t r u c t u r a l a p p r o a c h , P r o c . IEE, Vol. 131, p a r t D, n o . 6, 229-232. (FAD-63)
FADDEEV,
D.K.
and
FADDEEVA,
V.N.
(1963)
C o m p u t a t i o n a l m e t h o d s of
l i n e a r a l g e b r a , F r e e m a n , 288. (FES-79)
FESSAS,
P.S.
(1979) A n o t e on )An example in d e c e n t r a l i z e d c o n t r o l s y s -
t e m s ' , IEEE T r a n s . (FES-80)
FESSAS,
P.S.
Aut. Cont.,
Vol. A C - 2 4 , 669.
(1980) D e c e n t r a l i z e d c o n t r o l of l i n e a r d y n a m i c a l s y s t e m s via
polynomial m a t r i x m e t h o d s : I - Two i n t e r c o n n e c t e d Cont.,
Vol.
Cont.,
Vol. 32, n o . 1, 127-147.
30, n o .
(FLE-63) FLETCHER,
2, 259-276. I I - A r b t t r a r y
R. a n d PONELL, M . J . D .
m e t h o d for minimization, C o m p u t e r J . , (FOS-77) FOSSARD,
interconnected
systems,
Int.
J.
Int.
J.
(1963) A r a p i d l y c o n v e r g e n t d e s c e n d
Vol. 6, 163-663.
A. (1977) M u l t i v a r i a b l e s y s t e m s c o n t r o l , N o r t h - H o l l a n d .
(GAN-79) GANTMACHER, F . R . (GER-79a)
scalar systems,
GEROMEL,
J.C.
(1979) T h e t h e o r y of m a t r i c e s , C h e l s e a , N e w - Y o r k .
and
BERNUSSOU,
J,
(1979)
An a l g o r i t h m f o r optimal
d e c e n t r a l i z e d r e g u l a t i o n of l i n e a r q u a d r a t i c i n t e r c o n n e c t e d s y s t e m s , A u t o m a t i c s , Vol. 14, 489-491. (GER-79b)
GEROMEL, J . C .
(1979)
interconnect~s : Aspects
Contribution
~ P~tude
de d d c e n t r a l i s a t i o n ,
Th~se
des syst~mes
dynamiques
de D o c t o r a t d ' E t a t ,
Uni-
v e r s i t d Paul S a b a t i e r , Toulouse, F r a n c e . (GER-82)
GEROMEL, J . C .
of d y n a m i c s y s t e m s , (GER-84)
GEROMEL,
J.C.
a n d BERNUSSOU,
J.
(1982) Optimal d e c e n t r a l i z e d c o n t r o l
A u t o m a t i c s , Vol. 13, n o . 5, 545-557. and
PERES,
P.L.D.
(1985)
Decentralized load-frequency
c o n t r o l , IEE P r o c e e d i n g s , Vol. 132, P t . D, n ° 5, 225-230. (GLO-76)
GLOVER,
K. a n d SILVERMAN, L.M.
c o n t r o l l a b i l i t y , IEEE T r a n s . (HAR-65)
HARARY,
F.,
Aut. Cont.,
NORMAN,
R.Z.
and
(1976) Characterization of s t r u c t u r a l Vol. A C - 2 1 , 534-537. CARTWRIGHT,
D,
models : An i n t r o d u c t i o n to t h e t h e o r y of d i r e c t e d g r a p h s , (HAS-78a) for
HASSAN, linear
M.F.
a n d SINGH,
interconnected
M.G.
dynamical
(1978)
systems,
Robust Proc.
(1965)
Structural
Wiley, N e w - Y o r k .
decentralized controller IEE,
Vol.
125,
no.
5,
429-432. ( H A S - ? 8 b ) HASSAN, M . F . , tralized 483-488.
SINGH, M.G. a n d T I T L I ,
A.
(1979) N e a r optimal d e c e n -
c o n t r o l with a p r e - s p e c i f i e d d e g r e e of s t a b i l i t y ,
Automatics,
Vo]. 15,
372
(HAS-80)
HASSAN,
M.F.
and
SINGH,
M.G.
(1980)
Decentralized
controller
with
o n l i n e i n t e r a c t i o n t r a j e c t o r y i m p r o v e m e n t , P r o c . IEE, Vol. 127, p a r t D, n o . 3, 142-148. (HOS-77)
HOSKINS,
W.D.,
MEEK,
D.S.
s o l u t i o n of A T o + 0 A = - C,
and
WALTON,
IEEE T r a n s .
Aut.
D.J.
(1977)
Cont.,
The numerical
Vol. AG-15,
no.
5,
881-885. (HUJ-84)
HU,
Y.Z.
a n d JIANG,
W.S.
(]984)
f i x e d modes a n d t h e i r a p p l i c a t i o n ,
New c h a r a c t e r i z a t i o n
9th C o n g r e s s of I . F . A . C . ,
of d e c e n t r a l i z e d Budapest,
Hun-
gary). (IKE-79)
IKEDA,
ture, (IKE-80)
M. a n d SILJAK,
IEEE T r a n s .
IKEDA,
D.D.
Ant. cont.,
M. a n d SILJAK,
(1979)
C o u n t e r e x a m p l e s to F e s s a s c o n j e c -
Vol. A C - 2 4 , n o . 4, 670. D.D.
(1980) O v e r l a p p i n g
decompositions, expan-
s i o n s a n d c o n t r a c t i o n of d y n a m i c s y s t e m s , L a r g e Scale s y s t e m s , Vol. 1, 29-38. (IKE-81)
IKEDA,
M.,
SILJAK,
D.D.
a n d WHITE, D . E .
(1981) D e c e n t r a l i z e d c o n t r o l
with o v e r l a p p i n g i n f o r m a t i o n s e t s , J O T A , Vol. 34, n o . 2, 279-310. (ISA-73) ISAKSEN, L. a n d PAYNE, H . J . by augmentation Aut. Cont.,
with a p p l i c a t i o n
(1973) S u b o p t i m a l c o n t r o l of l i n e a r s y s t e m s to f r e e w a y
traffic
regulation,
IEEE T r a n s .
Vol. A C - 1 8 , 210-219.
(JAM-83) JAMSHIDI,
M. (1983) L a r g e - S c a l e s y s t e m s : Modeling a n d c o n t r o l ,
North-
Holland. N e w - Y o r k . (JOH-84) JOHNSTON, of t h e
R.D.,
generic rank
BARTON,
G.W. a n d BRISK,
of s t r u c t u r a l
matrices,
Int.
M.L. J.
(1984) D e t e r m i n a t i o n
Cont.,
Vol.
40,
no.
2,
257-264. (KAI-80) KAILATH, T . (KAL-62)
KALMAN,
(1980) L i n e a r s y s t e m s , P r e n t i c e - H a l l .
R.E.
(1962)
Nat. A c a d . Sci. U . S . A . , (KAT-81)
KATTI,
S.K.
Canonical
structure
of d y n a m i c a l s y s t e m s ,
Proc.
Vol. 48, 596-600.
(1981)
Comments on D e c e n t r a l i z e d
c o n t r o l of l i n e a r
multi-
v a r i a b l e s y s t e m s , A u t o m a t i c a , VoI. 17, no. 4, 665. (KAU-68) KAUFMANN, A. (1968) I n t r o d u c t i o n h la e o m b i n a t o r i q u e en r u e
des appli-
cations, Dunod, Paris, France. (KAW-81) KAWASAKI, N. a n d SHIMEMURA, S.
(1981) A m e t h o d of d e c i d i n g w e i g h -
t i n g m a t r i c e s in a n L Q - p r o b l e m to locate all poles in t h e s p e c i f i e d r e g i o n , w o r l d c o n g r e s s of I . F . A . C . , (KEV-75) KEVORKIAN, A.K.
(1975) S t r u c t u r a l a s p e c t s of l a r g e d y n a m i c s y s t e m s , 6th
w o r l d c o n s r e s s of I . F . A . C . , (KLE-66)
KLEINMAN,
Riccati e q u a t i o n ,
D.L.
8th
Kyoto, J a p a n .
(1966)
p a r t III. A, p a p e r 19.3, B o s t o n , U . S . A . On t h e l i n e a r r e ~ u I a t o r p r o b l e m a n d t h e m a t r i x
MIT E l e c t r o n i c S y s t e m s
Lab.,
Mass.
Tech.
Rept.
ESL-R271
(1978)
Controlla-
Cambridge, U.K. (KOB-78) KOBAYASHI, bility under
H.,
HANAFUSA,
H. a n d YOSHIKAWA,
decentralized information structure,
AC-23, n o . 2, 182-188.
T.
IEEE T r a n s .
Aut. Cont.,
Vol.
373
(KOB-82)
KOBAYASHI,
H.
and
YOSHIKAWA,
T.
(1982)
Graph-Thoeretic
to c o n t r o l l a b i l i t y a n d l o c a l i z a b i l i t y of d e c e n t r a l i z e d c o n t r o l , Cont., (KOK-76)
approach
IEEE T r a n s .
Aut.
Vol. A C - 2 7 , n o . 5, 1096-1108.
KOKOTOVIC,
P.V.,
O'MALLEY,
R.E.
a n d SANNUTI,
P,
(1976)
p e r t u r b a t i o n a n d o r d e r r e d u c t i o n in c o n t r o l t h e o r y • An o v e r v i e w ,
Singular
Automatica,
Vol. 12, 123-132. (KRO-67) KROFT, (KWA-72)
D. (1967) All p a t h s t h r o u g h a maze, P r o c . IEEE, Vol. 55, 88-90.
KWAKERNAAK,
Wiley I n t e r s c i e n c e , (LAN-64)
H. a n d SIVAN,
R.
(1972)
L i n e a r optimal c o n t r o l s y s t e m s
New-York.
LANCASTER,
P.
(1964) On e i g e n v a l u e s of m a t r i c e s d e p e n d e n t o n a p a r a -
m e t e r , N u m e r i s c h e M a t h e m a t i k , Vol. 6, 377-387. (LEV-70) LEVINE, W.S. a n d ATHANS, M. (1970) On t h e d e t e r m i n a t i o n of t h e optimal constant output Aut. Cont., (LIA-69)
LIN,
f e e d b a c k g a i n s for l i n e a r m u l t i v a r i a b l e s y s t e m s ,
Vol. AC-15, no. 1, 44-48.
P.M.
and
System Theory, (LIE-83)
IEEE T r a n s .
ALDERSON,
G.E.
Urbana, U.S.A.,
LINNEMANN,
A.
(1983)
(1969)
7th
Alberton
Conf.
Circuit and
196.
Fixed
modes
in
parametrized
systems,
Int.
J.
C o n t . , Vol. 38, no. 2, 319-335. (LIE-84) LINNEMANN,
A.
(1984) D e c e n t r a l i z e d c o n t r o l of d y n a m i c a l l y i n t e r c o n n e c t e d
s y s t e m , IEEE T r a n s . (LIN-74) LIN, C . T .
Aut. Cont.,
(1974) S t r u c t u r a l
Vol. A C - 2 9 , n o . 11, 1052-1054. controllability,
IEEE T r a n s .
Aut.
Cont.,
Vol.
AC-19, n o . 3, 201-208. (LIU-68) LIU, C . L .
(1968) I n t r o d u c t i o n to c o m b i n a t o r i a l m a t h e m a t i c s , C h a p t e r 11, Mc
Graw-Hill, N e w - Y o r k . (LOC-77) LOCATELLI, m e n t : role
A.,
and
SCHIAVONI,
choice of
the
N. a n d T A R A N T I N I ,
underlying
A.
information
(1977) Pole p l a c e -
pattern,
Ricerche
di
A u t o m a t i c a , Vol. 18, n o . 1, 107-126. (LOC-83)
LOCATELLI,
A.,
SCATTOLINI,
R.
a n d SCHIAVONI,
N.
(1983)
Two p r o -
blems in t h e d e s i g n of d i s c r e t e d e c e n t r a l i z e d c o n t r o l s y s t e m s s u b j e c t to finite perturbations, (MAC-76)
4 t h IMA C o n f e r e n c e , C a m b r i d g e , E n g l a n d .
MACFARLANE,
A.G.3.
and
KARCANIAS,
linear multivariable systems : a survey plex-variable theory, Int. J. Cont.,
N.
(1976)
of t h e a l g e b r a i c ,
Poles a n d
zeros
of
g e o m e t r i c a n d com-
Vol. 24, n o . 1, 33-?4.
(MAL-85) MALINOWSKI, K. a n d SINGH, M.G. (1985) C o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y of e x p a n d e d s y s t e m w i t h o v e r l a p p i n g d e c o m p o s i t i o n s ,
A u t o m a t l c a , Vol. 21, no.
2, 303-308. (MAS-56)
MASON,
graphs,
S.J.
(1956)
Feedback
P r o c . I n s t . Radio E n g r . ,
theory-further
properties
of s i g n a l
flow
no. 44, 920-926.
(MEE-73) MEERKOV, S.M. (1973) V i b r a t i o n a l c o n t r o l , A u t o m a t i o n a n d Remote c o n t r o l , Vol. 31, 201-209. (MEE-80)
MEERKOV,
S.M.
(1980)
a p p l i c a t i o n , IEEE T r a n s .
Principle
Aut. cont.,
of
vibrational
control :
Vol. A C - 2 5 , n o . 4, 755-762.
Theory
and
374
(MIC-78) MICHEL, A . N . , interconnected IEEE T r a n s .
MILLER, R . K .
systems :
a n d TANG, W. (1978) L y a p u n o v s t a b i l i t y of
decomposition
Circ. Syst.,
(MOM-83) MOMEN, S. a n d EVANS, F . J . lized s y s t e m s ,
Part
into
strongly
connected
subsystems,
Vol. CAS-25, 799-809. (1983) S t r u c t u r a l l y f i x e d modes in d e c e n t r a -
I : Two c o n t r o l s t a t i o n s ,
Part
II : G e n e r a l c a s e ,
Proc.
IEE, Vol. 130, p a r t D . , no. 6, 313-327, (MOO-81)
MOORE,
B.C.
Controllability,
(1981)
Principal
observability
and
component
analysis
model r e d u c t i o n ,
in
linear
IEEE T r a n s .
systems :
Aut.
cont.,
Vol. A C - 2 6 , no. 1, 17-32. (MOG-66) MORGAN, B . S .
(1966)
Computational procedure
for t h e s e n s i t i v i t y of a n
e i g e n v a l u e , E l e c t r o n i c s L e t t e r s , Vol. 26, 197-198. (MOR-73) MORSE, A . S .
(1973) S t r u c t u r a l i n v a r i a n t s of l i n e a r m u l t i v a r i a b l e s y s t e m s ,
SIAM J. C o n t r o l , Vol. 11, n o . 3, 446-465. (MOA-80)
MORARI,
M.
and
STEPHANOPOULOS,
G.
(1980)
Part
II
a s p e c t s a n d t h e s y n t h e s i s of a l t e r n a t i v e f e a s i b l e c o n t r o l s h e m e s ,
:
Structural
A.I.
Ch.
E.
J 1 , Vol. 26, 245. (OZG-82) OZGUNER, U. a n d DAVISON, E . 5 . structural perturbations,
(1982) D e c e n t r a l i z e d r e t u n a b i l i t y u n d e r
A m e r i c a n C o n t r o l C o n f e r e n c e , A r l i n g t o n , VA, U . S . A .
(OZG-85) OZGUNER, U. a n d DAVISON, E . J .
(1985) Sampling a n d d e c e n t r a l i z e d fixed
modes, A m e r i c a n C o n t r o l C o n f e r e n c e , B o s t o n , MA, U . S . A . (PAP-84)
PAPADIMITRIOU,
structurally (PAR-74)
H.
and
J.
(1984),
fixed modes, Systems & Control Letters,
PARASKEVOPOULOS,
Eigenvalue
TSITSIKLIS,
P.N.,
TSONIS,
s e n s i t i v i t y of l i n e a r
e i g e n v a l u e s , IEEE T r a n s . (PEK-79) PETKOVSKI,
D.B.,
time-invariant
Aut. Cont., a n d RAKIC,
g a i n s for o u t p u t - c o n s t r a i n e d
C.A.
A simple c r i t e r i o n for
Vol. 4, 333-337.
a n d TZAFESTAS, control
systems
S.C. with
(1974)
repeated
Vol. AC-19, 610-612. M.
(1979) A s e r i e s s o l u t i o n of f e e d b a c k
regulators,
Int.
J.
Cont.,
Vol. 30, n o .
4, 661-
668. (PEK-83) PETKOVSKI,
D.B.
(1983) R o b u s t d e c e n t r a l i z e d c o n t r o l s y s t e m d e s i g n s w i t h
a p p l i c a t i o n to D C / A C p o w e r
systems,
IFAC/IFORS
Symposium on L a r g e - S c a l e
S y s t e m s : T h e o r y a n d A p p l i c a t i o n , Warsaw, P o l a n d , 11-15. (PEK-84a)
PETKOVSKI,
D.B.
linear perturbation tion T h e o r y ,
(1984) R o b u s t n e s s
of d e c e n t r a l i z e d c o n t r o l s u b j e c t to
in t h e s y s t e m d y n a m i c s ,
P r o b l e m s of c o n t r o l a n d I n f o r m a -
Vol. 13, n o . 1, 3-12.
(PEK-84b) PETKOVSKI,
D.B.
ling u n c e r t a i n t i e s ,
(]984) R o b u s t u n s s of c o n t r o l s y s t e m s s u b j e c t to model-
R.A.I.R.O.
A u t o m a t i q u e / S y s t e m s A n a l y s i s a n d C o n t r o l , Vol.
18, no. 3, 315-327. (PET-84)
PETEL,
R.V.
and
M-rSRA, P.
(1984)
z e r o s with a p p l i c a t i o n in c h a r a c t e r i z i n g
f e r e n c e on Decision a n d C o n t r o l ( G . D . C . ) , (PIC-83a)
PIGHAI,
structurally
V.,
SEZER,
A numerical
test
for
d e c e n t r a l i z e d fixed modes,
transmission 23rd C o n -
Las V e g a s , U . S . A .
M.E. a n d SILJAK, D . D .
(1983) A g r a p h i c a l t e s t for
fixed m o d e s , Mathematical Modelling, vol. 4, 339-348.
375
(PIC-83b)
PICHAI,
V.,
SEZER,
M.E.
and
SILJAK,
D.D.
(1983)
A graph-theoretic
a l g o r i t h m f o r h i e r a r c h i c a l d e c o m p o s i t i o n of d y n a m i c s y s t e m s with a p p l i c a t i o n to e s t i m a t i o n a n d c o n t r o l , IEEE T r a n s .
Syst.
Man. & C y b . ,
Vol. SMC-13, n o .
3,
197-207. (PIC-84)
PICHAI,
V.,
characterization
SEZER, of
M.
and
SILJAK,
D.D.
modes,
(1984)
structurally
fixed
ANDERSON,
B . O . a n d MORSE, A . S .
A
Automatica,
graph-theoretic
Vol.
20,
no.
2,
247-250. (POT-79) P O T T E R ,
J.M.,
c o n t r o l of a t w o - c h a n n e l s y s t e m ,
IEEE T r a n s .
Aut.
(1979) S i n g l e - c h a n n e l
Cont.,
Vol. A C - 2 4 ,
491-
492. (PUR-82) PURVIANCE, J . E . a n d TYLEE, J . L . in d e c e n t r a l i z e d
(1982) S c a l a r s t n u s o i d a l f e e d b a c k laws
control,
21th IEEE C o n f e r e n c e on Decision a n d C o n t r o l ,
Flo-
R.
PEARSON,
Rice
rida, U.S.A. (PRE-81)
PRESCOTT,
and
J.B.
(1981)
Private
V.G.K.
(1969)
Proc.
communication,
U n i v e r s i t y , H o u s t o n , TX. (RAO-69)
RAO,
En~rs., (REI-81)
V.V.B.
and
MURTI,
Inst.
Elec.
Electron.
Vol. 57, 700.
REINSCHKE,
K.J.
(1981) S t r u c t u r a l l y
complete s y s t e m s w i t h minimal i n p u t
a n d o u t p u t v e c t o r s , LarFe Scale S y s t e m s , Vol. 2, 235-242. (REI-83) REINSHKE,
K.J.
(1983) G r a p h - t h e o r e t i c a p p r o a c h to c o n t r o l s y s t e m s , T h i r d
C o n f e r e n c e on System S c i e n c e , L e r c h e n d a l , (REI-84a)
REINSCHKE,
K.J.
(1984)
Norway.
Graph-theoretic
in c e n t r a l i z e d a n d d e c e n t r a l i z e d c o n t r o l ,
Int.
c h a r a c t e r i z a t i o n of f i x e d modes J.
Cont.,
Vol. 39, n o .
4, 715-
729, (REI-84b)
REINSCHKE,
K.J.
(1984)
Graph-theoretic
characterization
of s t r u c t u r a l
p r o p e r t i e s of p a t h s a n d cycle families, 9th world c o n g r e s s of I . F . A . C . , pest, (ROS-65a)
Buda-
Hungary. ROSENBROCK,
H.H.
(1965)
Transfer
m a t r i x of l i n e a r d y n a m i c s y s t e m ,
E l e c t r o n i c s L e t t e r s , Vol. 1, n o . 4, 95-96. (ROS-65b) ROSENBROCK,
H.H.
(1965) S e n s i t i v i t y of a n e i g e n v a l u e to c h a n g e s in t h e
matrix, Electronics Letters, (ROS-70)
ROSENBROCK,
Vol. 1, n o . 10, 278-279.
H.H.
(1970) S t a t e s p a c e a n d m u l t i v a r i a b l e t h e o r y ,
H.H.
(1973) T h e z e r o s of a s y s t e m s ,
Nelson,
London. (ROS-74) 18,
ROSENBROCK, no.
2,
297-299.
(1974)
Correction
to
'The
zeros
Int.
J.
Cont.,
of a s y s t e m ' ,
Vol.
Int.
J.
C o n t . , Vol. 20, 525. (ROY-70)
ROY,
B.
(1970) A l ~ b r e
moderne et th~orie des ~raphes,
Dunod,
Paris,
France. (RUN-85) R U N O L F S S O N ,
T. and M E E R K O V
S.M. (1985) Vibrational-feedback control
of decentralized systems : a design algorithm, IFAC Errors, Boston, MA, U.S.A.
Workshop
on Model|in~
376
(SAE-79) SAEKS, R. (1979) On t h e d e c e n t r a l i z e d c o n t r o l of i n t e r c o n n e c t e d s y s t e m s , IEEE T r a n s . (SEN-79)
SENNING,
Aut. cont.,
M.F.
(1979)
dynamical
Vol. A C - 2 4 , n o . 2, 269-271.
Feasibly
decentrlaized
control,
Ph.
D.
Thesisp
ETH, Z u r i c h , S w i t z e r l a n d . (SER-82)
SERAJI,
H.
(1982) On f i x e d modes in d e c e n t r a l i z e d c o n t r o l s y s t e m s ,
Int.
J . Cont., Vol. 35, no. 5, 775-784. (SEZ-81a) SEZER, M.E. a n d SILJAK,
D.D.
(1981) S t r u c t u r a l l y f i x e d m o d e s ,
Systems
& C o n t r o l L e t t e r s , Vol. 1, n o . 1, 60-64. (SEZ-81b)
SEZER,
M.E.
a n d HUSEYIN,
O.
f e e d b a c k s t a b i l i z a t i o n ' , IEEE T r a n s . (SEZ-81c)
SEZER,
M.E.
stabilization
a n d SILJAK,
of l a r g e
scale
(1981)
Comment on ' D e c e n t r a l i z e d
Aut. Cont.,
D.D.
Vol. A C - 2 6 , no. 2, 547-549.
(1981) o n s t r u c t u r a l
systems,
IEEE
state
Trans.
Aut.
decomposition cont.,
Vol.
and
AC-26,
439-444. (SEZ-83) SEZER, M.E. (1983} Minimal e s s e n t i a l f e e d b a c k p a t t e r n s f o r pole a s s i g n m e n t u s i n g d y n a m i c c o m p e n s a t i o n , 22th IEEE C o n f e r e n c e on Decision a n d c o n t r o l . (SHI-76)
SHIELDS,
multi-input
R.W.
linear
and
PEARSON,
systems,
IEEE
J.B.
(1976)
Trans.
Aut.
Structural Cont.,
Vol.
c o n t r o l l a b i l i t y of AC-21,
no.
2,
203-212. (SIL-73)
SILJAK,
D.D.
perturbations, (SIL-75) SILJAK,
(1973)
On s t a b i l i t y of l a r g e - s c a l e
IEEE T r a n s .
D.D.
Syst.
Man & C y b . ,
system under
structural
415-147.
(1975) C o n n e c t i v e s t a b i l i t y of c o m p e t i t i v e e q u i l i b r i u m ,
Auto-
matica, Vol. 11, 389. (SIL-76) SILJAK, D.D.
a n d SUNDARESHAN, S . K .
l a r g e - s c a l e dynamic s y s t e m s , IEEE T r a n s . (SIL-77) SILJAK,
D.D.
(1976) A multilevel o p t i m i z a t i o n of
Aut. Cont.,
Vol. AC-21, 80.
(1977) On r e a c h a b i l i t y of d y n a m i c s y s t e m s ,
Int.
J.
Cont.,
(1978) L a r g e scale s y s t e m s : S t a b i l i t y a n d s t r u c t u r e ,
North-
Vol. 8, 321-338. (SIL-78) SILJAK, D.D.
Holland, N e w - Y o r k , (SIL-80) SILJAK D . D . Cont.,
U.S.A.
(1980) Reliable c o n t r o l u s i n g multiple c o n t r o l s y s t e m s ,
Int. J.
Vol. 31, 303-329.
(SIL-82a) SILJAK, D.D. a n d al.
(1982) T h e i n c l u s i o n p r i n c i p l e for d y n a m i c s y s t e m s ,
Final r e p o r t DE-ACO37 ET 29138-34, S a n t a Clara U n i v e r s i t y , U . S . A . (SIL-82b)
SILJAK,
analysis
of
D.D., dynamic
PICHAI,
V.
systems,
and
Report
SEZER,
M.E.
DE-ACO37
ET
(1982)
Graph-theoretic
29138-35,
Santa
Clara
University, U.S.A. (SIN-76)
SINGH,
large
M.G.,
HASSAN,
interconnected
M. a n d T I T L I ,
dynamical
systems
A. (1976) A f e e d b a c k s o l u t i o n for
using
the
prediction
principle,
IEEE
Trans. Syst. Man & Cyb., Vol. SMC-6, 223-239. (TAO-84) TAROKH, M. (1984) Fixed modes in decentralized control systems, First European Workshop on Real Time Control of Large Scale Systems, University of Patras,
Greece.
377 (TAR-84) TARRAS, A.M. and TITLI, of d e c e n t r a l i z e d
fixed
modes,
A. (1984) On a new a l g e b r a i c c h a r a c t e r i z a t i o n IEEE I n t e r n a t i o n a l
C o n f e r e n c e on
Computers,
S y s t e m s & Signal P r o c e s s i n g , B a n g a l o r e , I n d i a . (TAR-85)
TARRAS,
modes
fixes,
A.M.
(1985)
sensibilit6
et
Commande
decentralis~e
des
robustesse
param6trique
(in
grands
syst~mes :
French),
Doctorat
t h e s i s no. 5, U n i v e r s i t ~ Paul S a b a t i e r , T o u l o u s e , F r a n c e . (THI-71)
THIRIEZ,
M.
(1971)
proach, R.A.I.R.O., (TRA-84a)
TRAVE L . ,
The
set
covering problem : A group
theoretic ap-
Vol. 3, 84-103.
TARRAS A . M . ,
TITLI A . ,
"Some p r o b l e m s in d e c e n t r a l i z e d
c o n t r o l in p r e s e n c e of f i x e d m o d e s " , 9th world c o n g r e s s of I . F . A . C . ,
Budapest
( H u n g a r y ) , J u l y 1984. (TRA-84b)
TRAVE L . ,
Notion
de
modes
"Commande p a r
retour
de s o r t i e /~ s t r u c t u r e d ~ c e n t r a l i s ~ e :
fixes",
Th~se
de
Doeteur-Ing~nieur,
TARRAS
A.M.,
TITLI
I.N.S.A.
Toulouse
( F r a n c e ) , 1984. (TRA-85)
TRAVE
control
to
L., cancel
unstable
A.,
decentralized
"An
fixed
application
modes",
IEEE
of
vibrational
Trans.
Auto.
C o n t r . , vol. AC-30, n ° 3, p p . 283-286, 1985. (TRA-86a)
TRAVE, L. and TITLI,
structural
A.
(1986) A s e q u e n c i a l algorithm to c o n c l u d e on
c o n t r o l l a b i l i t y of l a r g e scale s y s t e m s ,
I n t e r n a l r e p o r t 85312,
LAAS
d u CNRS, Toulouse, F r a n c e . (TRA-86b)
TRAVE,
L.
and
TITLI,
A.
(1986)
S e q u e n c i a l d e t e r m i n a t i o n of minimal
f e e d b a c k p a t t e r n s avoiding s t r u c t u r a l l y f i x e d m o d e s , 25th IEEE C o n t e r e n c e on Decision and C o n t r o l , A t h e n s , G r e e c e . (TRA-87) TRAVE, L . , TARRAS, A.M. and TITLI, A. (1987) ~4inimal f e e d b a c k s t r u c ture
avoiding
structurally
fixed modes,
Int.
J.
Control.,
Vol.
46,
no.
1,
313-325. (VAN-68)
VAN TRESS,
H.L.
(1968)
Detection,
estimation
ana
moeiulation t h e o r y ,
P a r t I, J o h n Wiley & S o n s , N e w - Y o r k , U . S . A . (VID-83) VIDYASAGAR, M. and VIS~qANADHAM, N. (1983) A l g e b r a i c c h a r a c t e r i z a t i o n of d e c e n t r a l i z e d f i x e d modes, S y s t e m s & C o n t r o l L e t t e r s , Vol. 3, 69-73. (WAN-73a) WANG, S . H .
a n d DAVISON, E . D .
(1973)
P r o p e r t i e s of l i n e a r t i m e - i n v a -
r i a n t m u l t i v a r i a b l e s y s t e m s u b j e c t to a r b i t r a r y o u t p u t and s t a t e f e e d b a c k , IEEE T r a n s . A u t . C o n t . , Vol. AC-18, 24-32. (~/AN-73b) WANG,
S.H.
and DAVISON, E . D .
(1973)
On t h e s t a b i l i z a t i o n of d e c e n -
t r a l i z e d c o n t r o l s y s t e m s , IEEE T r a n s . A u t . G o n t . , Vol. AC-18, 437-478. (~qAN-78a) ~qANG, S . H . a n d DAVISON, E . D .
(1978) Minimization of t r a n s m i s s i o n cost
in d e c e n t r a l i z e d c o n t r o l s y s t e m s , I n t . J . C o n t . , Vol. 28, no. 6, 889-896. (~rAN-78b)
~ANG,
S.H.
(1978)
An example in d e c e n t r a l i z e d c o n t r o l ,
A u t . C o n t . , Vol. AC-23, no. 5, 938.
IEEE T r a n s .
378
(WAN-8Z)
WANG,
S.H.
time-varying
(1982)
controllers,
Stabilization IEEE T r a n s ,
of Aut.
decentralized Cont.,
control
Vol. A C - 2 7 ,
systems no.
3,
via 741-
744,. (WIL-70) ~ILLEMS, J . L .
(1970) S t a b i l i t y t h e o r y of d y n a m i c a l s y s t e m s ,
Nelson, Lon-
don. (~OL-73a) W O L O V I C H ,
BT.A. (1973) O n determining the zeros of state-space systems,
1EEE Trans. Aut. Cont., Vol. AC-18, 542-544. (WOL-73b) ~ O L O V I C H ,
W.A. (1973) O n the numerators and zeros of rational transfer
matrices, IEEE Trans. Aut. Cont. Vo]. AC-18, 544-546. (WOL-74) W O L O W I C H ,
W.A.
(1974) Linear multivariable systems, New-York : Sprin-
ger. (~ON-67) %VONHAM, W.M. (1967) On pole a s s i g n m e n t in m u l t i - i n p u t c o n t r o l l a b l e l i n e a r s y s t e m s , IEEE T r a n s . (WON-74)
WONHAM,
proach,
W.M.
Aut. Cont., (1974)
Springer-Verlag,
(XIN-82) XINOGALAS, T . C . ,
Vol. A C - 1 2 , 660-665.
Linear
multivariable
control :
A
geometric
ap-
Berlin. MAHMOUD, M.S. a n d SINGH, M.G.
(1982) H i e r a r c h i c a l
c o m p u t a t i o n of d e c e n t r a l i z e d gain for i n t e r c o n n e c t e d s y s t e m s ,
Automatica,
Vol.
18, no. 4, 473-478. (YAH-77) Y A H A G I ,
T. (1977) Optimal output feedback control with reduced perfor-
mance index sensitivity, Int. J. Cont., Vol. 25, no. 5, 769-783. (ZlIE-84) Z H E N G ,
Y.F. (1984) The study of local controllabi]ity and observability of
decentralized systems via polynomial models, Internal Report 84-002, Department of M a t h e m a t i c s , E a s t C h i n a Normal U n i v e r s i t y , (ZOU-70) ZOUTENDIJK, G. directions, J.L.
in N o n - l i n e a r P r o s r a m i n $
and RITTER),
Shanghai, China.
(1970) Some a l g o r i t h m s b a s e d on t h e p r i n c i p l e of feasib]e
Academic P r e s s .
( E d i t e d b y ROSEN,
J.B.,
MANGASARIAN
AUTHOR
INDEX
17, 21, 37, 38, 39,
ACKERMANN
296
ALBERT
296
40, 51, 53, 54, 61,
ALDERSON
212
63, 72, 73, 80, 82,
ALOS
296
84, 85, 92, 97, 102,
ANDERSON
39, 48, 50, 72, 76,
115, 150, 155, 175, 179,
87, 95, 98, 99,
180, 197, 235, 236, 260,
i01, 103, 135, 150,
265, 267, 2?0, 271, 2?2,
DAVISON
296, 297, 298, 299, 322
151, 155, 156, 157, 159, 160, 1?2, 175,
DESOER
323
247, 248, 249, 277,
DJOROVIC
289
305, 340
EVANS
21 110, 111, 115, 116, 117, 118, 119, 142, 228
AOKI
39, 236, 289
ARMENTANO
87, 182, 183, 197,
FADDEEV
55
236, 243, 245, 254,
FADDEEVA
55
280,
FERGUSON
97, 267, 296
ATHANS
234, 232, 346
FESSAS
49, 50, 236
BARTELS
281
FLETCHER
241
BARTON
21, 23, 26, 27, 30,
FOSSARD
31
GEROMEL
BOGLIVBOV
172
BRASCH
8, I0, 46, 172
GESING
2, 8, 10 233, 236, 237, 238, 239, 242, 245, 246, 253, 350 61, 267, 271, 272
BRISK
21, 23, 26, 27, 30,
HANAFUSA
110, 111, 112, 113, 150
31
HARARY
23
BURROWS
21
HASSAN
CALOVIC
289
CARTWRIGHT
23
HOSKINS
CHEN
242, 244, 245, 281,
HU
63, 67, 69, 70
285, 288
HUSEYIN
236
CHANG
260, 267, 270
IKEDA
236, 290, 291, 293
CLEMENTS
50, 76, 87, 95, 103,
ISAKSEN
289
135, 15o, 340
JAMSHIDI
20, 157, 236, 241
39, 41, 43, 44, 46,
JIANG
63, 67, 69, 70
48, 49, 50, 76, 77,
BERNUSSOU
233, 236, 237, 238, 239,
CORFMAT
235, 243
242, 245, 253, 380
87, 97, 112, 114, 115 170, 298, 305, 340
2?3, 275, 2??, 281, 282, 285, 288
JOHNSTON
21, 23, 26, 27, 30, 31
380 KAILATH
2, 5, 156
MORGAN
55
KALMAN
3, 4, 6
MORSE
39, 41, 43, 44, 46, 48,
KARCANIAS
321
KATTI
voir (KAT-81)
112, 114, 115, 170, 172,
KAUFMANN
189, 216
298, 305, 323, 340
KAWASAKI
248
MORARI
KERKOVIAN
216
MURTI
145, 212
KLEINMAN
247, 346, 348
NORMAN
23
KOBAYASHI
110, 111, 112, 113,
O'MALLEY
256
150
OZGUNER
80, 82, 84, 85, 92, 97,
49, 50, 76, 77, 87, 97,
23, 55
KOKOTOVIC
256
102, 155, 175, 297, 298,
KROFT
145, 212
299
KRUSER
21, Iii, 115, 117,
KWAKERNAAK LANCASTER
56, 60
PAYNE
289
LEVINE
234, 232, 346
PEARSON
8, I0, 14, 15, 18, Zl,
LI
236
LIN (C.T.)
14, 16, 17,23, 120
PERES
236, 245, 246
LIN (P.M.)
212
PETKOVSKI
247, 256, 257, 258
LINNEMANN
48, 122, 206
PETEL
78, 85
LIU
21
PICHAI
22, 52, 78, 122, 123,
LOCATELLI
138, 202, Z27, 296, 297, 308, 313
POTTER
39, 48, 172
321
POWELL
241
MACFARLANE
PALMAY
267
118, 119, 142, 228
PAPADIMITRIOU
127, 128, i36, 137
65, 248
PARASKEVOPOULOS
59
23, 46, 120, 172
125, 127, 206
242, 244, 245, 273
PURVIANCE
155, 158, 175
279, 280
PRESCOTT
21
MALINOWSKI
291
RAKIC
247
MAN
235
RAO
MAHMOUD
MASON
118, 142
RAV
MEEK
235, 243
REINSCHKE
MEERKOV
161, 162, 163, 164, 166, 169, 172, 174,
145, 212
267 142, 143, 144, 216, 217, 219, 222
ROSENBROCK
43, 45, 49, 55, 319, 320, 322, 323
175 MICHEL
22
ROY
MILLER
22
RUNOLFSSON
189 169, 172, 174, 175
MISRA
78, 85
SAHINKAYA
21
MITROPOLSKY
172
SANNUTI
MOMEN
110, III, 115, 116
SCATTOLINI
296, 297
MOORE
155, 156, 157, 158,
SCHIAVONI
138, 202, 227, 296, 297,
SCHULMAN
323
159, 160, 175, 247, 248, 249, 277, 288
308, 313
381 SEAKS
86
SENNING
199, 200, 202, 227, 228, 230
54, 55, 57, 58, 61, 131,
SERAJI
63, 69, 71
194, 197, 206, 212, 214,
SEZER
22, 51, 52, 78, 120, 122, 123, 125, 127,
233, 273, 274, 275, 277,
135, 170, 190, 206, 208, 215, 218, 219, 222, 236, 309
• TITLI
132, 161, 167, 175, 186, 215, 222, 223, 224, 225, 282
TRAVE
14, 15, 18, 21, 23, 120
SHIMEMURA
248
SILJAK
17, 21, 22, 23, 28, TSITSIKLIS 51, 52, 78, 120, 122, TSONIS TYLEE 123, 125, 127, 135, TZAFESTAS 180, 206, 236, 277, 289, 290, 291, 293, VAN TRESS VIDYASAGAR 296 14 VISWANADHAM WALTON 87, 182, 183, 197, WANG 236, 242, 242, 244,
SINGH
245, 254, 273, 274, 275, 277, 279, 280,
65, 248
SUNDARESHAN
277 STEPHANOPOULOS 23, 55 STEWART 281 TANG 22 TARANTANI 138, 202, 227, 308, 313 TARRAS 54, 55, 57, 58, 59, 60, 61, 131, 132, 161, 166, 167, 175, 186, 190, 194, 195, 197, 206, 209, 210, 211, 212, 214, 215, 247, 249, 250, 346 TAROKH 63, 64, 66, 69, 70, 75 THIRIEZ
189
190, 206, 212, 214, 215, 222, 223, 224, 225, 299 3O8 127, 128, 136, 137 59
155, 158, 175 59 159 63, 69, 70, 71, 74, 306 63, 69, 70, 71, 74, 306 235, 243 37, 38, 39, 40, 50, 51, 53, 61, 63, 72, 73, 115, 150, 162, 154, 175, 179, 180, 197, 236, 265, 267,
281, 282, 285, 288, 291 SIVAN
21, 22, 24, 25, 26, 31, 61, 161, 166, 167, 175,
SHIELDS
SILVERMAN
21, 22, 24, 25, 26, 31,
270, 271, 272, 303, 322 WILLEMS
2
WHTIE
290, 291, 293
WOLOVICH
49, 322, 323
WONHAM
8, 41, 49
XINOGALAS YAHAGI
273, 279, 280
YOSHIKAWA
110, 111, 112, 113, 150
250
ZHENG
95
ZOUTENDIJK
236
SUBJECT
cactus generalized
126, 127
input-
125
output-
125
INDEX
static-
64, 117, 228, 230. 231
time invariant
262
time v a r y i n g -
117, 155
cycle
16, 118, 122, 125, 129,
canonica] form
4. 6. 7
138, 139, 140, 148, 203,
chain condition number
125
213, 308, 309, 314
contraction
289, 290. 291, 295
158
control decentralized-
-family
142, 143, 144, 145, 212, 213, 214, 224
digraph
16, 17, 19, 20. 42, 118,
34, 35. 38, 40, 48.
122, 125, 126, 142, 148,
58 75. 78, 91. 98.
206, 211, 212, 216, 224,
I00. 103, 112, 116. 142. 151, 184, 194,
297. 298, 308, 313 dilation
236, 245, 255, 260, 274, 284, 289, 293, 296, 304 feasibly decen-
17, 19, 20, 21, 27, 30, 213
generalized-
22, 24, 26, 27. 28, 30
essential -input set
215, 220, 222, 223, 224
-output set
215, 220, 222, 223, 224
tra/ized
198
feedback-
111
expansion
289, 290, 291, 293, 294
optimal-
198, 278, 297
feedback control
38, 175, 177, 178, 206,
robust-
247, 255, 262, 264, 273, 313, 318
time-varyingvibrational-
218, 227, 230, 302, decentralized- 38, 44, iii, 114, 117,
117. 120, 156, 158,
151, 155, 181, 273, 297,
175
306
169, 175
gene~c rank
vibrational feedback-
15, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 116,
169, 174, 175
118, 120, 127, 136, 214,
controllability
216. 222, 223, 224
-index
3
inclusion
structural-
14, 19, 22, 23, 24,
information
30, 31, 104. 110,
transfer
117, 119, 137, 220
link125, 178, 179, 186, 187,
controller dynamic-
33, 318 190, 191, 195, 198, 202,
41, 48, 51, 53, 64, 114, 117, 152, 230
robust-
289, 290
206, 210, 214, 221, 227 matrix
247, 264, 267, 270,
adjacency-
16, 216
277, 295
gradient-
233, 234, 236, 237, 238, 254, 346
383
reachability-
20
sensitivity-
57, 186, 187, 195, 197, 207
optimization -parametric-
236, 295
overlappin g
structural
-decomposition 291, 293
sensitivity-
131, 132, 333
structured-
14. 128
path
transfer
7, 61, 63, 64, 88,
pole4, 7, 10, 14, 63, 69, 91,
function-
91, 95, 98, 113. 135,
115, 116, 120, 138, 140,
137, 148, 320
148, 154, 177, 248, 288,
-subsystems
289 16, 208, 21fl
mode
308, 309
centralized
pole assignment
8, 10, 31, 34, 37, 41,
fixed-
39, 84, 86, 150
75, 86, 103, 117, 118,
decentralized
37, 39, 40, 50, 76,
142, 198, 228, 255, 269
fixed-
77, 78, 80, 81, 82, 84, 86, 87, 92, 155, 179, 249, 263, 298. 340
fixed-
decentralized- 39, 269 polynomial c h a r a c t e r i s t i c - 41, 63, 64, 65, 69, 89,
90, 118, 119 131, 142, 143, 144, 306, 320
37, 50, 51, 52. 53, 54, 57, 58. 59. 60.
decentralized
63, 64, 66. 67, 69,
fixed-
37, 38, 41
70, 72, 73, 75, 90,
fixed-
70, 89, 114, 181, 182, 306
138, 144, 151. 155, 177, 227, 297, 324,
invariant-
43, 45, 319, 320, 321
330, 333
-matrix
88, 94, 319
non s t r u c t u -
104, 105, i13, 115,
non s t r u c t u -
rally fixed-
150, ]77, 309
rally r o b u s t -
306, 307
structurally
31. 104, 105, 107,
remnant-
43, 44, 114
fixed-
113, 115, 117, 129,
teachability input-
20, 24, 208
137, 145, 155, 177,
-matrix
20, 195, 196, 197, 206,
output-
20, 24, 208, 225
190, 205, 214, 309 structurally
303. 304. 305. 308.
robust-
314, 318
model frequencydomain
120
120. 125. 127, 132,
208, 211 robustness
229
parametric-
229, 296
structural-
296
sample and hold
152, 153, 154
state-space-
34, 88 2, 142
sen sitivity
33O
time-domain-
34, 75
eigenvalue-
55
mode-
54, 186
observability -index
5
structural-
20, 104, 110, 137,
stability
2, 22
220
stabilization
8, 31, 34, 37, 39, 41,
structural-
130, 137, 333
48, 75, 177, 248, 304
384
decentralized-
229, 265
station local-
33 126
stem input-
125
input-output-
125
output-
125
strongly connected -components
210, 216, 220
-subsystems
43
structural -constraint
151
-perturbation
296, 297, 298, 299, 303, 306, 307, 308, 318
-robustness
303
subsystems complementary- 44, 76, 78, 79, 90, 114, 125, 136, 148, 157, normal-
68, 69
overlapping-
289
strongly connected-
30, 43, 44, 48, 112, 115
system complete-
43, 44
large scale-
24, 30, 31, 33, 34, 63, 137, 148, 219, 227, 247, 268, 296
structured-
14
quotient-
113, 115
decoupling-
320 320 320 63, 321 63, 65, 67, 69. 70. 71, 72, 73, 75. 78,
zero elementinvariantsystemtransmission-
82, 84, 139, 140, 148, 149, 299, 321, 323.