Adil Benmoussa
Solutions Manual To
INTRODUCTORY QUANTUM OPTICS By C. C. Gerry and P. L. Knight
May 15, 2005
2
Tab...
593 downloads
2697 Views
983KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Adil Benmoussa
Solutions Manual To
INTRODUCTORY QUANTUM OPTICS By C. C. Gerry and P. L. Knight
May 15, 2005
2
Table of Contents Table of Contents
3
1 Introduction
7
2 Field Quantization 2.1 problem 2.1 . . 2.2 problem 2.2 . . 2.3 problem 2.3 . . 2.4 problem 2.4 . . 2.5 problem 2.5 . . 2.6 problem 2.6 . . 2.7 Problem 2.7 . . 2.8 Problem 2.8 . . 2.9 Problem 2.9 . . 2.10 Problem 2.10 . 2.11 Problem 2.11 . 2.12 Problem 2.12 . 2.13 Problem 2.13 . 3 Coherent States 3.1 Problem 3.1 . 3.2 Problem 3.2 . 3.3 Problem 3.3 . 3.4 Problem 3.4 . 3.5 Problem 3.5 . 3.6 Problem 3.6 . 3.7 Problem 3.7 .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . . 3
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
9 9 9 10 11 12 14 17 18 18 21 22 22 23
. . . . . . .
25 25 26 27 27 28 29 30
4
CONTENTS 3.8 3.9 3.10 3.11 3.12 3.13 3.14
Problem Problem Problem Problem Problem Problem Problem
3.8 . 3.9 . 3.10 3.11 3.12 3.13 3.14
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
4 Emission and Absorption of 4.1 Problem 4.1 . . . . . . . . 4.2 Problem 4.2 . . . . . . . . 4.3 Problem 4.3 . . . . . . . . 4.4 Problem 4.4 . . . . . . . . 4.5 Problem 4.5 . . . . . . . . 4.6 Problem 4.6 . . . . . . . . 4.7 Problem 4.7 . . . . . . . . 4.8 Problem 4.8 . . . . . . . . 4.9 Problem 4.9 . . . . . . . . 4.10 Problem 4.10 . . . . . . . 4.11 Problem 4.11 . . . . . . . 4.12 Problem 4.12 . . . . . . . 4.13 Problem 4.13 . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
Radiation by Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . .
33 36 37 37 38 40 42
. . . . . . . . . . . . .
45 45 46 47 48 49 52 56 59 63 64 65 68 68
5 Quantum Coherence Functions 5.1 Problem 5.1 . . . . . . . . . . 5.2 Problem 5.2 . . . . . . . . . . 5.3 Problem 5.3 . . . . . . . . . . 5.4 Problem 5.4 . . . . . . . . . . 5.5 Problem 5.5 . . . . . . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
71 71 73 74 75 76
6 Interferometry 6.1 Problem 6.1 6.2 Problem 6.2 6.3 Problem 6.3 6.4 Problem 6.4 6.5 Problem 6.5
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
79 79 80 80 81 83
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
CONTENTS 6.6 6.7 6.8 6.9 6.10 6.11
Problem Problem Problem Problem Problem Problem
5 6.6 . 6.7 . 6.8 . 6.9 . 6.10 6.11
. . . . . .
7 Nonclassical Light 7.1 Problem 7.1 . . 7.2 Problem 7.2 . . 7.3 Problem 7.3 . . 7.4 Problem 7.4 . . 7.5 Problem 7.5 . . 7.6 Problem 7.6 . . 7.7 Problem 7.7 . . 7.8 Problem 7.8 . . 7.9 Problem 7.9 . . 7.10 Problem 7.10 . 7.11 Problem 7.11 . 7.12 Problem 7.12 . 7.13 Problem 7.13 . 7.14 Problem 7.14 . 7.15 Problem 7.15 . 7.16 Problem 7.16 . 7.17 Problem 7.17 . 7.18 Problem 7.18 . 7.19 Problem 7.19 . 7.20 Problem 7.20 .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
8 Dissipative Interactions 8.1 Problem 8.1 . . . . . 8.2 Problem 8.2 . . . . . 8.3 Problem 8.3 . . . . . 8.4 Problem 8.4 . . . . . 8.5 Problem 8.5 . . . . . 8.6 Problem 8.6 . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
84 85 86 86 87 89
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
91 91 94 95 97 99 100 103 103 106 108 113 114 115 115 116 117 119 120 124 126
. . . . . .
129 . 129 . 130 . 130 . 131 . 132 . 134
6
CONTENTS 8.7 8.8
Problem 8.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Problem 8.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9 Optical Test of Quantum 9.1 Problem 9.1 . . . . . . 9.2 Problem 9.2 . . . . . . 9.3 Problem 9.3 . . . . . . 9.4 Problem 9.4 . . . . . .
Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Experiments in Cavity QED and 10.1 Problem 10.1 . . . . . . . . . . 10.2 Problem 10.2 . . . . . . . . . . 10.3 Problem 10.3 . . . . . . . . . . 10.4 Problem 10.4 . . . . . . . . . . 10.5 Problem 10.5 . . . . . . . . . . 10.6 Problem 10.6 . . . . . . . . . . 10.7 Problem 10.7 . . . . . . . . . . 11 Applications of Entanglement 11.1 Problem 11.1 . . . . . . . . 11.2 Problem 11.2 . . . . . . . . 11.3 Problem 11.3 . . . . . . . . 11.4 Problem 11.4 . . . . . . . . 11.5 Problem 11.5 . . . . . . . . 11.6 Problem 11.6 . . . . . . . . 11.7 Problem 11.7 . . . . . . . . 11.8 Problem 11.8 . . . . . . . . 11.9 Problem 11.9 . . . . . . . . 11.10Problem 11.10 . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
with Trapped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . .
139 . 139 . 140 . 141 . 141
. . . . . . .
145 . 145 . 145 . 146 . 147 . 148 . 149 . 150
. . . . . . . . . .
153 . 153 . 153 . 156 . 157 . 157 . 158 . 158 . 159 . 160 . 161
Chapter 1 Introduction
7
8
CHAPTER 1. INTRODUCTION
Chapter 2 Field Quantization 2.1
problem 2.1
Eq. (2.5) has the form s Ex (z, t) =
2ω 2 q(t) sin(kz), V ε0
(2.1.1)
∂E . ∂t
(2.1.2)
and Eq. (2.2) ∇ × B = µ0 ε 0 Both equations lead to s −∂z By = µ0 ε0
2ω 2 q(t) ˙ sin(kz), V ε0
(2.1.3)
which itself leads to Eq. (2.6) s By (z, t) =
2.2
2ω 2 q(t) ˙ cos(kz). V ε0
µ0 ε0 k
(2.1.4)
problem 2.2 1 H= 2
Z
¸ · 1 2 2 dV ε0 Ex (z, t) + By (z, t) . µ0 9
(2.2.1)
10
CHAPTER 2. FIELD QUANTIZATION
From the previous problem s Ex (z, t) =
2ω 2 q(t) sin(kz), V ε0
(2.2.2)
ε0 Ex2 (z, t) =
2ω 2 2 q (t) sin2 (kz). V
(2.2.3)
so
Also
s µ0 ε0 By (z, t) = k
and
2ω 2 q(t) ˙ cos(kz), V ε0
1 2 2 By (z, t) = p2 (t) cos2 (kz), µ0 V
(2.2.4)
(2.2.5)
where we have used that c2 = (µ0 ε0 )−1 , p(t) = q(t), ˙ and ck = ω. Eq. 2.2.1 becomes then Z £ ¤ 1 H= dV ω 2 q 2 (t) sin2 (kz) + p2 (t) cos2 (kz) . (2.2.6) V 2x Using these simple trigonometric identities cos2 x = 1+cos and sin2 x = 2 1−cos 2x , we can simplify equation 2.2.6 further to: 2 Z £ ¤ 1 H= dV ω 2 q 2 (t)(1 + cos 2kz) + p2 (t)(1 − cos 2kz) . (2.2.7) 2V R Because of the periodic boundaries both cosine terms drop out, also V1 dV = 1 and we end up by ¢ 1¡ 2 H= p + w2 q 2 . (2.2.8) 2 It is easy to see that this Hamiltonian has the form of a simple harmonic oscillator.
2.3
problem 2.3
Let f be a function defined as: ˆ
ˆ
ˆ −iλA . f (λ) = eiλA Be
(2.3.1)
2.4. PROBLEM 2.4
11
If we expand f as f (λ) = c0 + c1 (iλ) + c2
(iλ)2 + ..., 2!
(2.3.2)
where c0 = f (0) c1 = f 0 (0) c2 = f 00 (0) · · ·
Also ˆ c0 = f (0) = B h i¯ h i ˆ iλAˆ Be ˆ −iλAˆ − eiλAˆ B ˆ Ae ˆ −iλAˆ ¯¯ ˆ B ˆ c1 = f 0 (0) = Ae = A, λ=0 h h ii ˆ A, ˆ B ˆ . c2 = B, The same way we can determine the other coefficients.
2.4
problem 2.4
Let ˆ
ˆ
f (x) = eAx eBx
(2.4.1)
df (x) ˆ Bx ˆ ˆ ˆ Bx ˆ ˆ Ax = Ae e + eAx Be dx ´ ³ ˆ ˆ −Ax ˆ f (x) = Aˆ + eAx Be It is easy to prove that h
i h i n n−1 ˆ ˆ ˆ ˆ ˆ B, A = nA B, A
(2.4.2)
12
CHAPTER 2. FIELD QUANTIZATION h
ˆ ˆ e−Ax B,
i
³ ´n ˆ −Ax ˆ B, = n! i n h X n x n ˆ ˆ = (−1) B, A n! h i X xn n n−1 ˆ ˆ ˆ = (−1) A B, A (n − 1)! h i ˆ ˆ Aˆ x = −e−Ax B,
X
So h i ˆ ˆ ˆ ˆ ˆ −Ax ˆ Aˆ x Be − e−Ax B = −e−Ax B, h i ˆ ˆ Ax −Ax ˆ ˆ ˆ ˆ e Be = B − e B, A x h i ˆ ˆ −Ax ˆ ˆ ˆ + eAx ˆ B ˆ x eAx Be =B A, ˆ −Ax
(2.4.3) (2.4.4)
Equation 4.1.1 becomes df (x) ³ ˆ ˆ h ˆ ˆ i´ = A + B + A, B f (x). dx
(2.4.5)
h i ˆ ˆ ˆ we can solve equation 2.4.5 as an Since A, B commutes with Aˆ and B, ordinary equation. The solution is simply µ h i ¶ h³ ´ i 1 ˆ B ˆ x2 ˆ x exp f (x) = exp Aˆ + B A, (2.4.6) 2 If we take x = 1 we will have eA+B = eA eB e− 2 [A,B ] ˆ
2.5
ˆ
ˆ ˆ
1
ˆ ˆ
(2.4.7)
problem 2.5 ¢ 1 ¡ |Ψ(0)i = √ |ni + eiϕ |n + 1i . 2
(2.5.1)
2.5. PROBLEM 2.5
13 ˆ Ht
|Ψ(t)i = e−i ~ |Ψ(0)i ´ ˆ ˆ Ht 1 ³ Ht = √ e−i ~ |ni + e−i ~ |n + 1i 2 ¢ 1 ¡ = √ e−inωt |ni + eiϕ e−i(n+1)ωt |n + 1i , 2 where we have used
E ~
=ω
n ˆ |Ψ(t)i = a ˆ† a ˆ|Ψ(t)i ¢ 1 ¡ = √ e−inωt n|ni + eiϕ e−i(n+1)ωt (n + 1)|n + 1i 2 hˆ ni = hΨ(t)|ˆ n|Ψ(t)i 1 = (n + n + 1) 2 1 =n+ 2 the same way 2® n ˆ = hΨ(t)|ˆ nn ˆ |Ψ(t)i ¢ 1¡ 2 n + (n + 1)2 = 2 1 = n2 + n + 2
® 2® (∆ˆ n)2 = n ˆ − hˆ ni2 1 = 4
¡ † ¢ ˆ E|Ψ(t)i = E0 sin(kz) a ˆ +a ˆ |Ψ(t)i ¡ † ¢¡ ¢ 1 = √ E0 sin(kz) a ˆ +a ˆ e−inωt |ni + eiϕ e−i(n+1)ωt |n + 1i 2 ´ h ³√ √ 1 n + 1|n + 1i + n|n − 1i = √ E0 sin(kz) e−inωt 2 ³√ ´i √ + eiϕ e−i(n+1)ωt n + 2|n + 2i + n + 1|ni
14
CHAPTER 2. FIELD QUANTIZATION ³ √ ´ √ 1 ˆ hΨ(t)|E|Ψ(t)i = E0 sin(kz) eiωt n + 1 + eiϕ e−iωt n + 1 2 √ = n + 1E0 sin(kz) cos(ϕ − ωt) D E ˆ Eˆ 2 = hΨ(t)|Eˆ E|Ψ(t)i = 2(n + 1)E02 sin2 (kz) ¿³ ´2 À £ ¤ ∆Eˆ = (n + 1)E02 sin2 (kz) 2 − cos2 (ϕ − ωt) ³√ ´ √ 1 h n + 1|n + 1i − n|n − 1i (ˆ a† − a ˆ)|Ψ(t)i = √ e−inωt 2 ³√ ´i √ + eiϕ e−i(n+1)ωt n + 2|n + 2i − n + 1|ni √ h(ˆ a† − a ˆ)i = −i n + 1 sin(ϕ − ωt)
Finally we have the following quantities 1 ∆n = 2 p ∆E = E0 | sin(kz)| 2(n + 1) [2 − cos2 (ϕ − ωt)] ¯ † ¯ √ ¯h(ˆ a −a ˆ)i¯ = n + 1| sin(ϕ − ωt)|. Certainly the inequality in (2.49) holds true since p 2 (2 − cos2 (ϕ − ωt)) > | sin(ϕ − ωt)|.
2.6
problem 2.6 ¡ ¢ ˆ1 = 1 a ˆ+a ˆ† X 2 ¢ ¡ ˆ2 = 1 a X ˆ−a ˆ† 2i ¡ †2 ¢ ˆ 12 = 1 a X ˆ +a ˆ2 + 2ˆ a† a ˆ+1 4 ¡ †2 ¢ ˆ 22 = − 1 a X ˆ +a ˆ2 − 2ˆ a† a ˆ−1 4
2.6. PROBLEM 2.6
15 |Ψ01 i = α|0i + β|1i
where |α|2 + |β|2 = 1. So we can rewrite β = without any loss of generality. D D
ˆ1 X ˆ2 X
E 01
E
01
p
1 − |α|2 eiφ and α2 = |α|2
1 ∗ (α β + αβ ∗ ) 2 1 = (α∗ β − αβ ∗ ) 2i
=
® a ˆ†2 01 = 0 2® a ˆ 01 = 0
hˆ a† a ˆi01 = |β|2 D E ¢ 1¡ ˆ2 X = 2|β|2 + 1 1 4 01 D E ¢ 1¡ ˆ2 X = 2|β|2 + 1 2 4 01 ¿³
´2 À
¤ 1£ 2|β|2 + 1 − (α∗ β)2 − (αβ ∗ )2 − 2|α|2 |β|2 4 01 ¤ 1£ = 3 − 4|α|2 + 2|α|4 − 2|α|2 (1 − |α|2 ) cos(2φ) 4 ¿³ ´2 À £ ¤ 1 ˆ2 ∆X = 2|β|2 + 1 + (α∗ β)2 + (αβ ∗ )2 − 2|α|2 |β|2 4 01 ¤ 1£ 3 − 4|α|2 + 2|α|4 + 2|α|2 (1 − |α|2 ) cos(2φ) = 4 ¿³ ´2 À ˆ1 In figures a and b below we plot ∆X (solid line) for φ = π/2 and 01 ¿³ ´2 À ˆ ∆X2 (doted line) for φ = 0, respectively. Clearly the quadratures ˆ1 ∆X
01
=
in hands go below the quadrature variances of the vacuum in more than one occasion.
16
CHAPTER 2. FIELD QUANTIZATION (a) 0.8
1,2
f=p/2
0.6
2
(Xˆ )
01 0.4
y=0.25
0.2
0.0 0.0
0.2
0.4
(b)
0.6
a
0.8
1.0
2
0.8
2
(Xˆ )
0.6
f=0
1,2
0.4
y=0.25
0.2
0.0 0.0
0.2
0.4
a
0.6
0.8
1.0
2
|Ψ02 i = α|0i + β|2i.
(2.6.1) p Again, where |α|2 + |β|2 = 1. So we can rewrite β = 1 − |α|2 eiφ and α2 = |α|2 without any loss of generality. D E D E ˆ1 ˆ2 X =0= X 02 02 ¿³ ´2 À D E ˆ1 ˆ2 ∆X = X 1 02
=
¿³
ˆ2 ∆X
1³
02
√
2
2
´
|α + 2β| + 3|β| 4 h i p 1 2 2 2 = 5 − 4|α| + 2 2|α| (1 − |α| ) cos φ 4 D E ˆ 22 = X
´2 À 02
02
´ 2β|2 + 3|β|2 4 i p 1h = 5 − 4|α|2 − 2 2|α|2 (1 − |α|2 ) cos φ 4 ¿³ ¿³ ´2 À ´2 À ˆ1 ˆ2 In figures c and d below we plot ∆X for φ = 0 and ∆X =
1³
|α −
√
02
02
2.7. PROBLEM 2.7
17
for φ = π/2, respectively. Clearly the quadratures in hands go below the quadrature variances of the vacuum in more than one occasion. (c) 0.6 2
(DXˆ )
0.5
f=0
1
02
0.4 0.3 0.2
(d)
a
2
0.7 2
(DXˆ )
0.6
2
02
f=p/2
0.5 0.4 0.3 0.2
a
2.7
2
Problem 2.7 |Ψ0 i = N a ˆ |Ψi
|N |2 = hˆ ni =n ¯ 1 N =√ n ¯
1 |Ψ0 i = √ a ˆ |Ψi n ¯
18
CHAPTER 2. FIELD QUANTIZATION n0 = hΨ0 |ˆ n|Ψ0 i 1 = hΨ|ˆ a† a ˆ† a ˆa ˆ|Ψi n ¯ ¢ 1¡ = hΨ|ˆ n2 |Ψi − hΨ|ˆ n|Ψi n ¯ hΨ|ˆ n2 |Ψi = −1 n ¯ hˆ n2 i = − 1. hˆ ni
Notice that n0 6= n − 1 in general, but for the number state |ni, and only of this state we have n0 = n − 1.
2.8
Problem 2.8
1 |Ψi = √ (|0i + |10i) 2 The average photon number, n ¯ , of this state is n ¯ = hΨ|ˆ a† a ˆ|Ψi,
(2.8.1)
(2.8.2)
which can be easily calculated to be 1 n ¯ = (0 + 10) = 5. (2.8.3) 2 If we assume that a single photon is absorbed, our normalized state will become |Ψi = |9i, (2.8.4) then the average photon becomes n ¯ = 9.
2.9
Problem 2.9 E(r, t) = i
X k,s
B(r, t) =
£ ¤ ωk eks Aks ei(k·r−ωk t) − A∗ks e−i(k·r−ωk t)
£ ¤ iX ωk (κ × eks ) Aks ei(k·r−ωk t) − A∗ks e−i(k·r−ωk t) c k,s
(2.8.5)
2.9. PROBLEM 2.9
19
∇ · E(r, t) = i∇ · =i
X k,s
=i
à X
X
ωk eks Aks e
i(k·r−ωk t)
−
A∗ks e−i(k·r−ωk t)
¤
!
k,s
£ ¡ ¡ ¢ ¢¤ ωk eks · Aks ∇ ei(k·r−ωk t) − A∗ks ∇ e−i(k·r−ωk t) £ ¤ ωk eks · ikAks ei(k·r−ωk t) + ikA∗ks e−i(k·r−ωk t)
k,s
=−
£
X
¤ £ ωk eks · k Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t)
k,s
=0
where we have used the vector identity
∇ · (f A) = f (∇ · A) + A · (∇f ) ,
(2.9.1)
eks · k = 0.
(2.9.2)
and
à ! X £ ¤ i ωk (κ × eks ) Aks ei(k·r−ωk t) − A∗ks e−i(k·r−ωk t) ∇ · B(r, t) = ∇ · c k,s X £ ¡ ¢ ¡ ¢¤ i = ωk (κ × eks ) · Aks ∇ ei(kr−ωk t) − A∗ks ∇ e−i(kr−ωk t) c k,s ¤ £ 1X ωk (κ × eks ) · k Aks ei(kr−ωk t) + A∗ks e−i(kr−ωk t) =− c k,s =0
20
CHAPTER 2. FIELD QUANTIZATION Ã X
∇ × E(r, t) = i∇ × =i
X k,s
=i
X
i(k·r−ωk t)
ωk eks Aks e
−
A∗ks e−i(k·r−ωk t)
¤
!
k,s
£ ¡ ¡ ¢ ¢¤ ωk eks × Aks ∇ ei(k·r−ωk t) − A∗ks ∇ e−i(k·r−ωk t) £ ¤ ωk eks × ikAks ei(k·r−ωk t) + ikA∗ks e−i(k·r−ωk t)
k,s
=−
£
X
¤ £ ωk eks × k Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t)
k,s
=−
X ω2 k
c
k,s
=
X ω2 k
k,s
c
£ ¤ eks × κ Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t)
¤ £ κ × eks Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t)
where we have used the vector identity
∇ × (f A) = f (∇ × A) + A × (∇f ) ,
(2.9.3)
and
k=
ωk κ. c
¸ · −i(k·r−ωk t) ∂B iX ∂ei(k·r−ωk t) ∗ ∂e = − Aks ωk (κ × eks ) Aks ∂t c k,s ∂t ∂t ¤ £ 1X 2 = ωk (κ × eks ) Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t) c k,s = −∇ × E
(2.9.4)
2.10. PROBLEM 2.10
21
à ! X £ ¤ i i(k·r−ωk t) ∗ −i(k·r−ωk t) ∇ × B(r, t) = ∇ × ωk (κ × eks ) Aks e − Aks e c k,s £ ¡ ¢ ¡ ¢¤ iX = ωk (κ × eks ) × Aks ∇ ei(k·r−ωk t) − A∗ks ∇ e−i(k·r−ωk t) c k,s £ ¤ iX = ωk (κ × eks ) × ikAks ei(k·r−ωk t) + ikA∗ks e−i(k·r−ωk t) c k,s ¤ £ 1X =− ωk (κ × eks ) × k Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t) c k,s =−
X ω2 k,s
= µ0 ²0
k eks c2
X
£
Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t)
¤
£ ¤ ωk2 eks Aks ei(k·r−ωk t) + A∗ks e−i(k·r−ωk t)
k,s
∂E = µ0 ²0 ∂t
2.10
Problem 2.10
For thermal light Pn =
X n
n(n − 1)...(n − r + 1)Pn =
X n
n ¯n (1 + n ¯ )n+1
n(n − 1)...(n − r + 1)
(2.10.1)
n ¯n (1 + n ¯ )n+1
1 n ¯ r+1 X n ¯ n−r = ( ) n(n − 1)...(n − r + 1)( ) n ¯ 1+n ¯ 1 + n ¯ n
22
CHAPTER 2. FIELD QUANTIZATION
To simplify the last expression, let’s define x =
n ¯ , 1+¯ n
for which x < 1,
1 r+1 X x n(n − 1)...(n − r + 1)xn−r n ¯ n n 1 r+1 ∂ r X n = x x n ¯ ∂xr 1 ∂r 1 = xr+1 r n ¯ ∂x 1 − x 1 r+1 1 = x r! n ¯ (1 − x)r+1 hˆ n(ˆ n − 1)(ˆ n − 1) · · · (ˆ n − r + 1)i = r!¯ nr (2.10.2) X
2.11
n(n − 1)...(n − r + 1)Pn =
Problem 2.11 h
i h i ˆ Sˆ = − i Eˆ + Eˆ † , Eˆ − Eˆ † C, 4 i h ˆ ˆ †i = E, E 2 i ³ ˆ ˆ† ˆ† ˆ´ = EE − E E 2 i = (1 − 1 + |0ih0|) 2 i = |0ih0| 2 h i ˆ Sˆ |ni = i δm,0 δn,0 . hm| C, 2
Obviously, only the diagonal matrix elements are nonzero.
2.12
Problem 2.12
Using equation (2.229) for ρˆ =
1 (|0ih0| + |1ih1|) 2
(2.12.1)
2.13. PROBLEM 2.13
23
we have 1 hϕ|ˆ ρ|ϕi 2π 1 X X 0 −in0 ϕ inϕ = hn |e ρˆe |ni 2π n n0 ¢ 1 ¡ = 1 + eiϕ e−iϕ 2π 1 = . π
P(ϕ) =
This is similar to a thermal state. On the other hand using equation (2.227) for |ψi = 12 (|0i + eiθ |1i) we have 1 |hφ|ψi|2 2π 1 [1 + cos(φ − θ)] . = 2π
P(φ) =
As expected, it is different than a statistical mixture state, the one for the pure state exhibiting a phase dependence.
2.13
Problem 2.13 ρˆth =
∞ X
Pn |nihn|
n=0
1 hϕ|ˆ ρ|ϕi 2π 1 X X 0 −in0 ϕ inϕ = hn |e ρˆe |ni 2π n n0 1 XXX 0 = Pk hn0 |e−in ϕ |kihk|einϕ |ni 2π n n0 k 1 X = Pk 2π k
P(ϕ) =
=
1 2π
(2.13.1)
24
CHAPTER 2. FIELD QUANTIZATION
Chapter 3 Coherent States 3.1
Problem 3.1
Let assume that the eigenvector of the creation operator a ˆ† exists. So we can write a ˆ† |βi = β|βi. (3.1.1) Now let’s write |βi as a superposition of the number states, namely |βi =
∞ X
cn |ni
(3.1.2)
n=0
Now let’s plug the last expression in equation 3.1.1: †
a ˆ |βi =
∞ X
√ cn n + 1|n + 1i
n=0 ∞ X
=β
cn |ni.
(3.1.3) (3.1.4)
n=0
From the last express we deduce that c0 = 0, 1 √ cn+1 = cn n + 1, β which means all cn ’s = 0. 25
(3.1.5) (3.1.6)
26
CHAPTER 3. COHERENT STATES
3.2
Problem 3.2
Using equation (3.29), we can determine ∆φ for large |α|. ® (∆φ)2 = φ2 − (hφi)2 For large α µ P(φ) =
2® φ =
Z Z
π
¶ 12
£ ¤ exp −2|α|2 (φ − θ)2
φ2 P(φ)dφ
−π ∞
µ
= −∞
µ
2|α| = π 1 = 2|α|2 Z
2|α|2 π
2|α|2 π 1 ¶ 2 2
¶ 12
£ ¤ φ2 exp −2|α|2 (φ − θ)2 dφ
√
π 2(2|α|2 )3/2
π
hφi =
φP(φ)dφ −π
¶1 £ ¤ 2|α|2 2 = φ exp −2|α|2 (φ − θ)2 dφ π −π ¶1 Z ∞µ £ ¤ 2|α|2 2 φ exp −2|α|2 (φ − θ)2 dφ = π −∞ =0 Z
π
µ
∆φ = p
1 2|α|2
,
where taking the limit of integration to ±∞ is justified.
(3.2.1)
3.3. PROBLEM 3.3
3.3
27
Problem 3.3
We know that the generating function of the Hermite polynomials is defined as (see for example Arfken): 2 +2tx
e−t
=
∞ X
Hn (x)
n=0
tn n!
(3.3.1)
Eq.(3.46) reads ∞ ³ ω ´1/4 −|α|2 X ( √α2 )n 2 e Hn (ξ). ψα (q) = π~ n! n=0
Replacing x, by ξ and t by
(3.3.2)
α √ , 2
we’ll get ³ ω ´1/4 −|α|2 −( √α )2 +2( √α )ξ 2 ψα (q) = e 2 e 2 . π~
(3.3.3) 2
Completing the square in the last exponent by adding and subtracting ξ2 we would get the needed result: ³ ω ´1/4 −|α|2 ξ2 −(ξ− √α )2 2 e 2 e2e ψα (q) = . (3.3.4) π~
3.4
Problem 3.4
First, we expand |αihα| in number states as n X α∗m −|α|2 α √ √ e |αihα| = |nihm|, n! m! n,m so now we can calculate †
a ˆ |αihα| = a ˆ
†
X n,m
−|α|2
e
αn α∗m √ √ |nihm| n! m!
X
n α∗m 2 α e−|α| √ √ |nihm| n! m! n,m X α∗m αn 2 √ (n + 1)|n + 1ihm| = e−|α| p (n + 1)! m! n,m
a ˆ† |αihα| = a ˆ†
=
∞ X ∞ X
n−1 α∗m 2 α √ (n)|nihm|. e−|α| p (n)! m! n=1 m=0
(3.4.1)
(3.4.2)
28
CHAPTER 3. COHERENT STATES
On the other hand ¶ ¶ µ µ ∂ ∂ X −|α|2 αn α∗m ∗ ∗ √ √ |nihm| e α + |αihα| = α + ∂α ∂α n,m n! m! n n ∗m X X α α∗m 2 α 2 α = α∗ e−|α| √ √ |nihm| − α∗ e−|α| √ √ |nihm| n! m! n! m! n,m n,m n ∗m X α √ 2 α e−|α| √ √ + n + 1|n + 1ihm| n! m! n,m =
∞ X ∞ X
n−1 α∗m 2α e−|α| √ √ n|nihm|. n! m! n=1 m=0
Notice that we have used |α|2 = αα∗ . Also α and α∗ are treated linearly independent. The same way, we can prove the other identity.
3.5
Problem 3.5
The quadrature operators are defined in equations (2.52) and (2.53) as ¡ ¢ ˆ1 = 1 a X ˆ+a ˆ† 2 ¡ ¢ ˆ2 = 1 a X ˆ−a ˆ† 2i Using the following properties of the coherent state a ˆ|αi = α|αi, hα|ˆ a† = α∗ hα|, ˆ 1 |αi = 1 (α + α∗ ) hα|X 2 ˆ 1 |αi = 1 (α − α∗ ) hα|X 2i ¢ 1¡ 2 α + α∗2 + 2|α|2 4 ¢ ¡ ˆ 2 |αi2 = −1 α2 + α∗2 − 2|α|2 hα|X 4 ˆ 1 |αi2 = hα|X
(3.5.1) (3.5.2)
3.6. PROBLEM 3.6
29 ˆ 2 = 1 (ˆ X a+a ˆ† )(ˆ a+a ˆ† ) 1 4 1 2 = (ˆ a +a ˆ†2 + a ˆa ˆ† + a ˆ† a ˆ) 4 ˆ 2 = 1 (ˆ X a2 + a ˆ†2 + 2ˆ a† a ˆ + 1) 1 4 ˆ 2 = −1 (ˆ X a2 + a ˆ†2 − 2ˆ a† a ˆ − 1) 2 4
ˆ 2 |αi = 1 (α2 + α∗2 + 2|α|2 + 1) hα|X 1 4 ˆ 2 |αi = −1 (α2 + α∗2 − 2|α|2 − 1). hα|X 2 4 Quantum fluctuations of the quadrature operators can be characterized by the variance ¿³ ´2 À D E D E 2 ˆ2 . ˆ ˆ 22 − X (3.5.3) 4X21 = X 1 1
From the previous equations we will have ¿³ ¿³ ´2 À ´2 À 1 ˆ1 ˆ2 4X = = 4X , 4 α α
(3.5.4)
which is exactly the same fluctuations for the quadrature operators for the vacuum.
3.6
Problem 3.6
In order to calculate the factorial moments, hˆ n(ˆ n − 1)(ˆ n − 2)...(ˆ n − r + 1)i ,
(3.6.1)
for a coherent state |αi, one needs to write the operator n ˆ (ˆ n −1)(ˆ n −2)...(ˆ n− † r + 1) in the normal order (all a ˆ ’s on the left). The claim is that n ˆ (ˆ n − 1)(ˆ n − 2)...(ˆ n − r + 1) = a ˆ†r a ˆr ,
(3.6.2)
which can be proved using the boson commutation rule, [ˆa, a ˆ† ] = 1, and mathematical induction. Now it is easy to the calculate the factorial moments for a coherent state. hˆ n(ˆ n − 1)(ˆ n − 2)...(ˆ n − r + 1)i = |α|2r
(3.6.3)
30
3.7
CHAPTER 3. COHERENT STATES
Problem 3.7 −|α|2 /2
|αi = e
∞ X αn √ |ni n! n=0
α = |α|eiθ
(3.7.2)
´ ´ 1³ˆ 1 ³ˆ Cˆ = E + Eˆ † , and Sˆ = E − Eˆ † 2 2i
2 hα| Eˆ |αi = e−|α|
2
= e−|α|
0 ∞ X α∗n αn √ √ hn| Eˆ |n0 i n! n0 ! n,n0 0 ∞ X ∞ X α∗n αn √ √ hn|mihm + 1|n0 i n! n0 ! n,n0 m=0 2
= αe−|α|
∞ X n=0
|α|2n √ n! n + 1
³ ´ 1 hα| Cˆ |αi = hα| Eˆ + Eˆ † |αi 2 ´ 1³ hα| Eˆ |αi + hα| Eˆ † |αi = 2 ´ 1³ = hα| Eˆ |αi + hα| Eˆ |αi∗ 2 ∞ X 1 |α|2n ∗ −|α|2 √ = (α + α ) e 2 n! n + 1 n=0 = 0 |Ψ(t)i =
∞ X
∞ X αn √ |ni|ei. n! n=0
(ce,n (t)|ni|ei + cg,n (t)|n + 1i|gi)
n=0
i~
i~
d |Ψ(t)i ˆ II |Ψ(t)i . =H dt
X d |Ψ(t)i = i~ (c˙e,n (t)|ni|ei + c˙g,n (t)|n + 1i|gi) dt
ˆ II |Ψ(t)i = ~λ H
X ³√
n + 1ce,n (t)|n + 1i|gi +
√
´ n + 1cg,n (t)|ni|ei
√ c˙e,n (t) = −iλ n + 1cg,n (t) √ c˙g,n (t) = −iλ n + 1ce,n (t). Similar coupled differential equations have lead to the equation of the form c¨e,n (t) + λ2 (n + 1)ce,n (t) = 0, which has a solution of the form ³ √ ´ ³ √ ´ ce,n (t) = An cos λ n + 1t + Bn sin λ n + 1t
(4.4.2)
(4.4.3)
4.5. PROBLEM 4.5
49
also i cg,n (t) = √ c˙e,n (t) λ n+1 ³ √ ´ ³ √ ´ = −An sin λ n + 1t + Bn cos λ n + 1t . From initial conditions 2
An = ce,n (0) = e−|α|
/2
αn √ , n!
Bn = 0. Thus ³ √ ´ αn √ cos λ n + 1t n! ³ √ ´ n −|α|2 /2 α √ sin λ n + 1t , cg,n (t) = −ie n! ce,n (t) = e−|α|
|Ψ(t)i = e
−|α|2 /2
2 /2
∞ ´ ³ √ ´ i X αn h ³ √ √ cos λ n + 1t |ni|ei − i sin λ n + 1t |n + 1i|gi n! n=0
2 dˆ|Ψ(t)i = de−|α| /2
∞ ´ ³ √ ´ i X αn h ³ √ √ cos λ n + 1t |ni|gi − i sin λ n + 1t |n + 1i|ei n! n=0
2 hΨ(t)| dˆ|Ψ(t)i = −2=(α)de−|α|
∞ X n=0
³ √ ´ ³ √ ´ |α|2n √ cos λ n + 2t sin λ n + 1t , n! n + 1
where =(α) represents the imaginary part of the complex number α.
4.5
Problem 4.5
Let |Ψi = ci (t)|ii + cf (t)|f i
50CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS i
d ˆ II |Ψi. |Ψi = H dt
(4.5.1)
Given that £ ¡ ¢¤ ˆ II |ii = −∆|gihg| + λ σ+ a H ˆ + σ− a ˆ† |ii √ = λ n + 1|f i and £ ¡ ¢¤ ˆ II |f i = −∆|gihg| + λ σ+ a H ˆ + σ− a ˆ† |f i √ = −∆|f i + λ n + 1|ii, we have ˆ II |Ψi = H ˆ II (ci (t)|ii + cf (t)|f i) H ³ √ ´ √ = λ n + 1ci (t) − ∆cf (t) |f i + λ n + 1cf (t)|ii. On the other hand, we have d |Ψi = c˙i (t)|ii + c˙f (t)|f i dt into equation 4.5.1 we obtain the following coupled equations √ ic˙i (t) = λ n + 1cf (t), ³ √ ´ ic˙f (t) = λ n + 1ci (t) − ∆cf (t) . Which we can rewrite as √ c˙i (t) = −iλ n + 1cf (t), ³ √ ´ c˙f (t) = −i λ n + 1ci (t) − ∆cf (t) .
(4.5.2)
Taking the time derivative of the last equation we will obtain ³ √ ´ c¨f (t) = −i λ n + 1c˙i (t) − ∆c˙f (t) . Using equation 4.5.2 we end up by getting a second order differential equation c¨f (t) − i∆c˙f (t) + λ2 (n + 1)cf (t) = 0
4.5. PROBLEM 4.5
51
Assume that cf (t) = eXt , and plug it into the differential equation we obtain the following quadratic equation X 2 − i∆(n + 1) + λ2 (n + 1) = 0, whose solutions are p 1 X = (i∆ ± −∆2 − 4λ2 (n + 1)) 2 p i = (∆ ± ∆2 + 4λ2 (n + 1)). 2 The general solution then is ¡ ¢ i cf (t) = e 2 ∆t AeiΩn t + Be−iΩn t , q 2 where Ωn = ∆4 + λ2 (n + 1). From initial conditions, we have B = −A, so ¡ ¢ i cf (t) = Ae 2 ∆t eiΩn t − e−iΩn t i
= i2Ae 2 ∆t sin (Ωn t) i
= A0 e 2 ∆t sin (Ωn t) , where A0 is just a constant. Also µ ¶ i 0 2i ∆t c˙f (t) = A e ∆ sin (Ωn t) + Ωn cos (Ωn t) , 2 Back to equation 4.5.2 ³ √ ´ ci (t) = (ic˙f (t) + ∆cf (t))/ λ n + 1 µ ¶ A0 ei∆t/2 ∆ = √ − sin(Ωn t) + Ωn cos(Ωn t) + ∆ sin(Ωn t) 2 λ n+1 ¶ µ A0 ei∆t/2 ∆ sin(Ωn t) + Ωn cos(Ωn t) = √ λ n+1 2 Using the second initial condition, ci (0) = 1, we obtain √ λ n+1 0 . A = Ωn
52CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS And finally we have ¶ µ ei∆t/2 ∆ sin(Ωn t) + Ωn cos(Ωn t) ci (t) = Ωn 2 √ λ n + 1 i∆t/2 cf (t) = e sin(Ωn t). Ωn ei∆t/2 |Ψ(t)i = Ωn
µ
√ ¶ ∆ λ n + 1 i∆t/2 e sin(Ωn t)|f i sin(Ωn t) + Ωn cos(Ωn t) |ii + 2 Ωn
The atomic inversion is given by W (t) = |ci (t)|2 − |cf (t)|2 ¯ i∆t/2 µ ¯2 ¶¯2 ¯ √ ¯e ¯ λ n + 1 i∆t/2 ¯ ¯ ∆ = ¯¯ sin(Ωn t) + Ωn cos(Ωn t) ¯¯ − ¯¯ e sin(Ωn t)¯¯ Ωn 2 Ωn # "µ ¶2 1 ∆ = 2 sin(Ωn t) + Ωn cos(Ωn t) − λ2 (n + 1) sin2 (Ωn t) . (4.5.3) Ωn 2 For a general case where we have the sum of n-photon inversions of Eq. 4.5.3 weighted with photon number distribution of the initial fields state we have # "µ ¶2 ∞ X 1 ∆ W (t) = |cn |2 2 sin(Ωn t) + Ωn cos(Ωn t) − λ2 (n + 1) sin2 (Ωn t) . Ω 2 n n=0 (4.5.4) Notice that the last equation is in agreement with Eq. (4.123) for ∆ = 0.
4.6
Problem 4.6
For an atom initially in the excited state and the cavity field initially in a thermal state the atomic inversion is ¶n ∞ µ √ 1 X n ¯ W (t) = cos(2λt n + 1) 1+n ¯ n=0 1 + n ¯ Let
√ Ω(n) = 2λ n + 1.
4.6. PROBLEM 4.6
53
The collapse time is given by tc [Ω(¯ n + ∆n) − Ω(¯ n − ∆n)] w 1. 1/2
For thermal light ∆n = (¯ n2 + n ¯ ) so rather generally · q ¸−1 q 1/2 1/2 tc ' 2λ n ¯ + 1 + (¯ n2 + n ¯ ) − 2λ n ¯ + 1 − (¯ n2 + n ¯) . We can exam two limiting cases : n ¯ >> 1 and n ¯ > 1, ∆n = n ¯ + 1/2 ' n ¯, n ¯+1→n ¯ , and thus 1 tc ' √ √ 2 2λ n ¯ √ For the case where n ¯ 0, the density operator becomes · ¸ · ¸ i ˆ i ˆ ρˆ(t) = exp − Ht ρˆ(0) exp Ht ~ ~ Using results of part b, we easily find that the atomic inversion is given by W (t) =
∞ X n=0
4.7
£ 2 ¤ n ¯n sin (Ωn t) sin2 (Φn ) − cos2 (Ωn t) − sin2 (Ωn t) cos2 (Φn ) . n+1 (1 + n ¯)
Problem 4.7
a. ´ ³ † ˆ ef f = ~η a +a ˆ2† σ ˆ− . H ˆ2 σ ˆ+
(4.7.1)
Let define the following states |ii = |ei|ni |f i = |gi|n + 2i ˆ ef f |ii = 0 hi|H p ˆ ef f |ii = ~η (n + 2)(n + 1) hf |H ˆ ef f |f i = 0 hf |H p ˆ ef f |f i = ~η (n + 2)(n + 1) hi|H µ H
(n)
=
~η
0 ~η (n + 2)(n + 1)
p
p
(n + 2)(n + 1) 0
¶
4.7. PROBLEM 4.7
57 1 |n, +i = √ (|ii + |f i) 2 1 |n, −i = √ (|ii − |f i) 2 p En,± = ±~η (n + 2)(n + 1)
b. Initial field at a number state
|Ψaf (0)i = |gi|n + 2i = |f i 1 = √ (|n, +i − |n, −i) 2
ˆ
|Ψaf (t)i = e−iHt/~ |Ψaf (0)i 1 ˆ = e−iHt/~ √ (|n, +i − |n, −i) 2 ¢ 1 ¡ −iE+ t/~ =√ e |n, +i − e−iE− t/~ |n, −i 2 ´ √ 1 ³ −iη√(n+2)(n+1) =√ e |n, +i − eiη (n+2)(n+1)t |n, −i 2 ´ ³ p ´ ³ p = i sin η (n + 2)(n + 1)t |ii + cos η (n + 2)(n + 1)t |f i
³ p ³ p ´ ´ 2 W (t) = sin η (n + 2)(n + 1)t − cos η (n + 2)(n + 1)t ³ p ´ = − cos 2η (n + 2)(n + 1)t 2
58CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS Initial field at a coherent state |Ψaf (0)i = |gi|αi ∞ X = cn |gi|ni n=0
= |gi(c0 |0i + c1 |1i) + = |gi(c0 |0i + c1 |1i) +
∞ X n=0 ∞ X
cn+2 |gi|n + 2i cn+2 |fn i
n=0
= |gi(c0 |0i + c1 |1i) +
∞ X
1 cn+2 √ (|n, +i − |n, −i) 2 n=0
ˆ
|Ψaf (t)i = e−iHt/~ |Ψaf (0)i = |gi(c0 |0i + c1 |1i) +
∞ X
¢ 1 ¡ cn+2 √ e−iEn,+ t |n, +i − e−iEn,− t |n, −i 2 n=0
= |gi(c0 |0i + c1 |1i) ∞ ³ ³ p ´ ³ p ´ ´ X + cn+2 i sin η (n + 2)(n + 1)t |ii + cos η (n + 2)(n + 1)t |f i n=0
Ã
= |gi c0 |0i + c1 |1i + i
∞ X
´ ³ p cn+2 sin η (n + 2)(n + 1)t |n + 2i
n=0
+ |ei
∞ X
³ p ´ cn+2 cos η (n + 2)(n + 1)t |ni
n=0
W (t) = hΨaf (t)|ˆ σ3 |Ψaf (t)i " # ∞ ³ p ´ X = |c0 |2 + |c1 |2 + |cn+2 |2 sin2 η (n + 2)(n + 1)t " −
n=0 ∞ X
³ p ´ |cn+2 | cos η (n + 2)(n + 1)t 2
n=0
= |c0 |2 + |c1 |2 −
#
2
∞ X n=0
³ p ´ |cn+2 |2 cos 2η (n + 2)(n + 1)t
!
4.8. PROBLEM 4.8
59
c. ρˆaf (0) = ρˆa (0) ⊗ ρˆf (0) ∞ X = Pn |gi|nihg|hn| n=0
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| +
∞ X
Pn |gi|nihg|hn|
n=2
ρˆaf (t) = Uˆ (t)ˆ ρaf (0)Uˆ † (t) Ã∞ ! X = Uˆ (t) Pn |gi|nihg|hn| Uˆ † (t) n=0
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| + Uˆ (t)
̰ X
! Pn |gi|nihg|hn| Uˆ † (t)
n=2
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| +
∞ X
Pn Uˆ (t)|gi|nihg|hn|Uˆ † (t)
n=2
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| ∞ X + Pn (i sin(Ωn t)|ii + cos(Ωn t)|f i) (−i sin(Ωn t)hi| + cos(Ωn t)hf |) n=2
W (t) = Tr (ˆ σ3 ρˆaf (t)) ∞ ∞ X X = Pn sin2 (Ωn t) − Pn cos2 (Ωn t) − P0 − P2 n=2
n=2
= −P0 − P2 −
∞ X
Pn cos(2Ωn t)
n=2
4.8
Problem 4.8
a. ³ ´ † ˆ ef f = ~η a H ˆ2 σ ˆ+ +a ˆ2† σ ˆ− .
(4.8.1)
60CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS Let define the following states |ii = |ei|ni |f i = |gi|n + 2i ˆ ef f |ii = 0 hi|H p ˆ ef f |ii = ~η (n + 2)(n + 1) hf |H ˆ ef f |f i = 0 hf |H p ˆ ef f |f i = ~η (n + 2)(n + 1) hi|H µ H
(n)
=
~η
0 ~η (n + 2)(n + 1)
p
p
(n + 2)(n + 1) 0
¶
1 |n, +i = √ (|ii + |f i) 2 1 |n, −i = √ (|ii − |f i) 2 p En,± = ±~η (n + 2)(n + 1) b. Initial field at a number state |Ψaf (0)i = |gi|n + 2i = |f i 1 = √ (|n, +i − |n, −i) 2 ˆ
|Ψaf (t)i = e−iHt/~ |Ψaf (0)i 1 ˆ = e−iHt/~ √ (|n, +i − |n, −i) 2 ¢ 1 ¡ −iE+ t/~ =√ e |n, +i − e−iE− t/~ |n, −i 2 ´ √ 1 ³ −iη√(n+2)(n+1) |n, +i − eiη (n+2)(n+1)t |n, −i =√ e 2 ³ p ´ ³ p ´ = i sin η (n + 2)(n + 1)t |ii + cos η (n + 2)(n + 1)t |f i
4.8. PROBLEM 4.8
61
³ p ´ ³ p ´ W (t) = sin2 η (n + 2)(n + 1)t − cos2 η (n + 2)(n + 1)t ´ ³ p = − cos 2η (n + 2)(n + 1)t
Initial field at a coherent state
|Ψaf (0)i = |gi|αi ∞ X = cn |gi|ni n=0
= |gi(c0 |0i + c1 |1i) + = |gi(c0 |0i + c1 |1i) +
∞ X n=0 ∞ X
cn+2 |gi|n + 2i cn+2 |fn i
n=0
= |gi(c0 |0i + c1 |1i) +
∞ X
1 cn+2 √ (|n, +i − |n, −i) 2 n=0
ˆ
|Ψaf (t)i = e−iHt/~ |Ψaf (0)i = |gi(c0 |0i + c1 |1i) +
∞ X
¢ 1 ¡ cn+2 √ e−iEn,+ t |n, +i − e−iEn,− t |n, −i 2 n=0
= |gi(c0 |0i + c1 |1i) ∞ ³ ³ p ´ ³ p ´ ´ X + cn+2 i sin η (n + 2)(n + 1)t |ii + cos η (n + 2)(n + 1)t |f i n=0
Ã
= |gi c0 |0i + c1 |1i + i
∞ X n=0
+ |ei
∞ X n=0
! ´ ³ p cn+2 sin η (n + 2)(n + 1)t |n + 2i
´ ³ p cn+2 cos η (n + 2)(n + 1)t |ni
62CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS W (t) = hΨaf (t)|ˆ σ3 |Ψaf (t)i " # ∞ ´ ³ p X = |c0 |2 + |c1 |2 + |cn+2 |2 sin2 η (n + 2)(n + 1)t " −
n=0 ∞ X
³ p ´ |cn+2 | cos η (n + 2)(n + 1)t 2
n=0
= |c0 |2 + |c1 |2 −
#
2
∞ X
³ p ´ |cn+2 |2 cos 2η (n + 2)(n + 1)t
n=0
c.
ρˆaf (0) = ρˆa (0) ⊗ ρˆf (0) ∞ X = Pn |gi|nihg|hn| n=0
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| +
∞ X
Pn |gi|nihg|hn|
n=2
ρˆaf (t) = Uˆ (t)ˆ ρaf (0)Uˆ † (t) Ã∞ ! X = Uˆ (t) Pn |gi|nihg|hn| Uˆ † (t) n=0
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| + Uˆ (t)
̰ X
! Pn |gi|nihg|hn| Uˆ † (t)
n=2
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| +
∞ X
Pn Uˆ (t)|gi|nihg|hn|Uˆ † (t)
n=2
= P0 |gi|0ihg|h0| + P1 |gi|1ihg|h1| ∞ X + Pn (i sin(Ωn t)|ii + cos(Ωn t)|f i) (−i sin(Ωn t)hi| + cos(Ωn t)hf |) n=2
4.9. PROBLEM 4.9
63
W (t) = Tr (ˆ σ3 ρˆaf (t)) ∞ ∞ X X = Pn sin2 (Ωn t) − Pn cos2 (Ωn t) − P0 − P2 n=2
n=2
= −P0 − P2 −
∞ X
Pn cos(2Ωn t)
n=2
4.9
Problem 4.9 ³ ´ † ˆ ef f = ~η a H ˆˆbˆ σ+ +a ˆ†ˆb† σ ˆ− .
Let define the following states |fn,m i = |ei|nia |mib |in,m i = |gi|n + 1ia |m + 1ib
ˆ ef f |in,m i = 0 hin,m |H p ˆ ef f |in,m i = ~η (m + 1)(n + 1) = ~Ωn,m hfn,m |H ˆ ef f |fn,m i = 0 hfn,m |H p ˆ ef f |fn,m i = ~η (m + 1)(n + 1) = ~Ωn,m hin,m |H where we have defined Ωn,m = η
p
(m + 1)(n + 1).
µ (n,m)
H
=
0 ~Ωn,m ~Ωn,m 0
¶
1 |n, m, +i = √ (|in,m i + |fn,m i) 2 1 |n, m, −i = √ (|in,m i − |fn,m i) 2 En,m,± = ±~Ωn,m
64CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS Now for an initial state with the atom at the excited state and the two fields at coherent states, we have |Ψ(0)i = |ei|αia |βib ∞ X ∞ X = ca,n cb,m |fn,m i n=0 m=0
=
∞ X ∞ X
1 ca,n cb,m √ (|n, m, +i − |n, m, −i) 2 n=0 m=0
ˆ
|Ψ(t)i = e−iHef f t/~ |Ψ(0)i ∞ X ∞ ´ X 1 ³ −iHˆ ef f t/~ ˆ ef f t/~ −iH √ = ca,n cb,m e |n, m, +i − e |n, m, −i 2 n=0 m=0 ∞ X ∞ X ¢ 1 ¡ = ca,n cb,m √ e−iΩn,m t |n, m, +i − eiΩn,m t |n, m, −i 2 n=0 m=0 ∞ ∞ XX = ca,n cb,m (−i sin(Ωn,m t)|fn,m i + cos(Ωn,m t)|in,m i) n=0 m=0
W (t) =
∞ X ∞ X
¡ ¢ |ca,n cb,m |2 sin2 (Ωn,m t) − cos2 (Ωn,m t)
n=0 m=0 ∞ X ∞ X
=−
|ca,n cb,m |2 cos(2Ωn,m t)
n=0 m=0
4.10
Problem 4.10
Somehow, the book has no Problem 4.10.
4.11. PROBLEM 4.11
4.11
65
Problem 4.11
a. From equation (4.120) we have |Ψ(t)i = |Ψg (t)i|gi + |Ψe (t)i|ei ∞ X √ αn 2 = −i e−|α| /2 √ sin(λt n + 1)|n + 1i|gi n! n=0 ∞ X √ αn 2 + e−|α| /2 √ cos(λt n + 1)|ni|ei n! n=0 ∞ X = cgN |N + 1i|gi + ceN |N i|ei, N =0
where obviously we have √ αN √ sin(λt N + 1) N! N √ α 2 = e−|α| /2 √ cos(λt N + 1). N! 2 /2
cgN = −ie−|α| ceN
The density operator is then ρˆ = |Ψ(t)i hΨ(t)| . Tracing over the atomic states we obtain ρˆf = TrA ρˆ ∞ X ∞ X ¡ ¢ cgN c∗gM |N + 1ihM + 1| + ceN c∗eM |N ihM | = =
M =0 N =0 ∞ X ∞ X M =0 N =0
¡
¢ cgN −1 c∗gM −1 + ceN c∗eM |N ihM |
66CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS Obviously hN |ˆ ρf |M i = cgN −1 c∗gM −1 + ceN c∗eM s(t) = 1 − Tr(ˆ ρ2f ) X =1− hN |ˆ ρ2f |N i N
XX =1− hN |ˆ ρf |M ihM |ˆ ρf |N i N
=1−
N
=1−
M
XX
|hN |ˆ ρf |M i|2
M
X X e−2|α|2 |α|2(N +M ) N
N !M !
M
¯ ¯√ ¯ NM ³ √ ´ ³ √ ´ ³ √ ´ ³ √ ´¯2 ¯ ¯ sin λt N sin λt M + cos λt N + 1 cos λt M + 1 ¯ ׯ 2 ¯ ¯ |α| b. Q(β) = hβ|ˆ ρf |βi/π ¯ 2 2 1 X X e−|α| −|β| (αβ ∗ )N (α∗ β)M ¯¯ |β|2 = ¯p ¯ (N + 1)(M + 1) π N M N !M ! ³ √ ´ ³ √ ´ ³ √ ´ ³ √ ´¯2 ¯ × sin λt N + 1 sin λt M + 1 + cos λt N + 1 cos λt M + 1 ¯
(b)
(a)
t=6
t=0.001
0.15
0.3
Q(x,y)
0.1
0.2 0.1
5
Q(x,y) 0.05
5
0
0 0 -5 0
x
-5 5
y
0 -5 0
x
-5 5
y
4.11. PROBLEM 4.11
67
(c)
(d) t=12
t=18
0.1
0.1
Q(x,y)0.05
5
Q(x,y)0.05
0
5
0 0 -5 0
y
0 -5 0
-5
x
x
5
(e)
y
-5 5
(f) t=24
t=30
0.1 0.075 0.05 0.025 0
Q(x,y)
5 0 -5 0
x
0.08 0.06 0.04 0.02 0
Q(x,y)
y
5 0 -5 0
-5
x
5
y
-5 5
(h)
(g)
t=40
t=36
0.08 0.06 0.04 0.02 0
0.06
Q(x,y)
5
Q(x,y) 0.04 0.02
5
0 0 -5 0
x
-5 5
y
0 -5 0
x
-5 5
y
68CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS
4.12
Problem 4.12
a. Equation (4.190) is of the form ¯ µ ¶À ¯ 1 ¯Ψ π = √ (|gi| − αi + |f i|αi) , ¯ 2χ 2
(4.12.1)
where we take φ = 0. A detection √ of a superposition of the atomic states of the form |S± i = (|gi ± |f i)/ 2 would collapse the state in equation 4.12.1 to N± hS± |Ψi = N± (hg| ± hf |)(|gi| − αi + |f i|αi) = N± (| − αi ± |αi), where N± is the normalization factor. Notice that the obtained states are just the famous Schr¨odinger states.
4.13
Problem 4.13
0.04
s3 (t ) 0.02
10
20
30
-0.02
-0.04
T
40
4.13. PROBLEM 4.13
69
1
0.75
s2 (t )
0.5
0.25
10
20
30
40
T
-0.25
-0.5
-0.75
0.15
S ( rˆ u ) 0.125
0.1
T
0.075
0.05
0.025
10
20
30
T
40
70CHAPTER 4. EMISSION AND ABSORPTION OF RADIATION BY ATOMS
Chapter 5 Quantum Coherence Functions 5.1
Problem 5.1
Eq. (5.55) reads
n o † † † I(r, t) = |f (r)| Tr(ˆ ρa ˆ1 a ˆ1 ) + Tr(ˆ ρa ˆ2 a ˆ2 ) + 2|Tr(ˆ ρa ˆ1 a ˆ2 )| cos Φ 2
(5.1.1)
a†1 + a ˆ†2 )n |0i1 |0i2 , as For an incident field n-photon state |nia |0ib = √1n! ( √12 )n (ˆ mentioned in equation (5.60). Also can be written as µ ¶n 1 1 √ |nia |0ib = √ (ˆ a†1 + a ˆ†2 )n |0i1 |0i2 2 n! µ ¶ ¶n X n µ 1 1 n √ a ˆ†k ˆ†n−k |0i1 |0i2 =√ 1 a 2 k 2 n! k=0 ¶ µ ¶n X n µ 1 1 n √ p √ k! (n − k)!|ki1 |n − ki2 =√ k 2 n! k=0 µ ¶n X ¶1 n µ 1 n 2 = √ |ki1 |n − ki2 k 2 k=0 It is easy to see that ¶1 µ ¶n X ¶1 µ n X n µ 1 n 2 0 n 2 † Tr(ˆ ρa ˆ1 a hk , n − k 0 |ˆ a†1 a ˆ1 ) = ˆ1 |k, n − ki 0 k k 2 k=0 k0 =0 µ ¶ n 1 X n k (5.1.2) = n k 2 k=0
71
72
CHAPTER 5. QUANTUM COHERENCE FUNCTIONS
To carry out the last sum, let’s consider the following function µ ¶ n X n kx fn (x) = . e k k=0
Using the binomial expansion we can write fn (x) = (1 + ex )n fn0 (x) = nex (1 + ex )n−1 µ ¶ n X n 0 n−1 fn (0) = n2 = k k k=0
Obviously, Eq. 5.1.2 now can be written as Tr(ˆ ρa ˆ†1 a ˆ1 ) =
n 2
(5.1.3)
n . 2
(5.1.4)
with the same technique we can calculate Tr(ˆ ρa ˆ†2 a ˆ2 ) =
we still have to determine Tr(ˆ ρa ˆ†1 a ˆ2 ) µ ¶1 µ µ ¶n X ¶1 n n X 1 n 2 n 2 0 † hk , n − k 0 |ˆ a†1 a ˆ2 |k, n − ki Tr(ˆ ρa ˆ1 a ˆ2 ) = 0 k k 2 k=0 k0 =0 ¶1 µ µ ¶n X ¶1 n µ n X √ 1 n 2 n 2√ = k + 1 n − kδk0 ,k+1 k k0 2 k=0 k0 =0 ¶1 µ µ ¶n X ¶ 12 n µ √ √ 1 n 2 n k+1 n−k = k k+1 2 k=0 s µ ¶n X n 1 n!n!(k + 1)(n − k) = 2 k!(n − k)!(k + 1)!(n − k − 1)! k=0 µ ¶n X n 1 n! = 2 k!(n − k − 1)! k=0 µ ¶n X µ ¶ n 1 n = (n − k) k 2 k=0 n = 2
5.2. PROBLEM 5.2
73
Finally I(r, t) = n|f (r)|2 [1 + cos Φ].
5.2
(5.1.5)
Problem 5.2
Again we use equation (5.55) for thermal light
I(r, t) = |f (r)|
2
n
³ Tr
ρˆth a ˆ†1 a ˆ1
´
³ + Tr
ρˆth a ˆ†2 a ˆ2
´
¯ ³ ´¯ o ¯ ¯ + 2 ¯Tr ρˆth a ˆ†1 a ˆ2 ¯ cos Φ .
Before we compute the traces in the previous equation we need to find what what is the form of ρˆth after the pinholes.
ρˆth = =
X X
Pn |nihn| Pn |ni1 |0i2 1 hn|2 h0|.
From the previous problem we have
|nia |0ib = √
1 (ˆ a†1 + a ˆ†2 )n |0i1 |0i2 , n n!2
which helps us to rewrite ρˆth after the pinholes as ·µ ¶ µ ¶¸1/2 ∞ X n X n X 1 n n Pn |ki1 |n − ki2 1 hk 0 |2 hn − k 0 | ρˆth = 0 n k k 2 n=0 k=0 k0 =0
74
CHAPTER 5. QUANTUM COHERENCE FUNCTIONS
´ ³ Tr(ˆ ρth a ˆ†1 a ˆ1 ) = Tr a ˆ1 ρˆth a ˆ†1 ·µ ¶ µ ¶¸1/2 ∞ X n X n XX 1 n n = Pn n k k0 2 N,M n=0 k=0 k0 =0 × 1 hN |2 hM |ˆ a†1 |ki1 |n − ki2 1 hk 0 |2 hn − k 0 |ˆ a1 |N i1 |M i2 ·µ ¶ µ ¶¸ ∞ n n 1/2 XXXX 1 n n = Pn n k k0 2 0 N,M n=0 k=0 k =0
× 1 hk 0 |2 hn − k 0 |ˆ a1 |N i1 |M i21 hN |2 hM |ˆ a†1 |ki1 |n − ki2 ·µ ¶ µ ¶¸1/2 ∞ X n X n X 1 n n 0 0 = Pn a1 a ˆ†1 |ki1 |n − ki2 1 hk |2 hn − k |ˆ 0 n k k 2 n=0 k=0 k0 =0 µ ¶ ∞ n X 1 X n = Pn n k k 2 n=0 ∞ X
k=0
1 nPn 2 n=0 n ¯ = . 2 The same procedure would lead to =
Tr(ˆ ρth a ˆ†2 a ˆ2 ) =
n ¯ , 2
Tr(ˆ ρth a ˆ†1 a ˆ2 ) =
n ¯ . 2
and
Finally, we find that I(r, t) = n ¯ |f (r)|2 [1 + cos Φ].
5.3
Problem 5.3
For thermal light we have
´ ³ G(1) (x, x) = Tr ρˆTh Eˆ (−) (x)Eˆ (+) (x) ¡ † ¢ = K 2 Tr ρˆa ˆa ˆ = K 2n ¯,
(5.2.1)
5.4. PROBLEM 5.4
75
also G(1) (x1 , x2 ) = K 2 n ¯ ei[k(r1 −r2 )−ω(t2 −t1 )] . So we obtain |g (1) (x1 , x2 )| = 1. Thus the thermal light is first-order coherent. Using Eq. (5.92) hˆ n(ˆ n − 1)i g (2) (τ ) = . (5.3.1) hˆ ni2 For a thermal state, the factorial moments have already been calculated in Eq. 2.10.2. So the second order coherence for the thermal state is g (2) (τ ) =
2¯ n2 = 2. n ¯2
(5.3.2)
Clearly the thermal light is not second-order coherent. It is straightforward to show that thermal light is not higher-order coherent. Using Eq. (5.101) and Eq. (5.102) and the result of Eq. 2.10.2 we can show that ¯ (n) ¯ ¯g (x1 , · · · xn ; xn , · · · x1 )¯ = n!.
5.4
Problem 5.4 |Ψi = C0 |0i + C1 |1i. G(1) (x1 , x2 ) = hΨ|Eˆ (−) (x1 )Eˆ (+) (x2 )|Ψi,
where
Eˆ (+) (x) = iKˆ aei(k·r−ωt) . Eˆ (+) (x)|Ψi = iKˆ aei(k·r−ωt) |Ψi = iKC1 ei(k·r−ωt) |0i G(1) (x1 , x2 ) = hΨ|Eˆ (−) (x1 )Eˆ (+) (x2 )|Ψi = |C1 |2 K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] .
Also G(1) (x, x) = |C1 |2 K 2 .
76
CHAPTER 5. QUANTUM COHERENCE FUNCTIONS G(1) (x1 , x2 )
g (1) (x1 , x2 ) = p
G(1) (x1 , x1 )G(1) (x2 , x2 )
= ei[k·(r2 −r1 )−ω(t2 −t1 )] . Clearly ¯ (1) ¯ ¯g (x1 , x2 )¯ = 1. Since
Eˆ (+) (x2 )Eˆ (+) (x1 )|Ψi = 0,
we have G(2) (x1 , x2 ; x2 , x1 ) = hΨ|Eˆ (−) (x1 )Eˆ (−) (x2 )Eˆ (+) (x2 )Eˆ (+) (x1 )|Ψi = 0. So the second order coherence function vanishes for |Ψi. On the other hand, we can study the statistical mixture of the vacuum and one photon number state, ρˆ = |C0 |2 |0ih0| + |C1 |2 |1ih1|. n
o (−) (+) ˆ ˆ G (x1 , x2 ) = Tr ρˆE (x1 )E (x2 ) ¡ † ¢ = K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] Tr ρˆa ˆa ˆ (1)
= |C1 |2 K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] . G(1) (x1 , x2 )
g (1) (x1 , x2 ) = p
G(1) (x1 , x1 )G(1) (x2 , x2 )
= ei[k·(r2 −r1 )−ω(t2 −t1 )] . Since
© † † ª Tr ρˆa ˆa ˆa ˆa ˆ = 0,
we have G(2) = 0.
5.5
Problem 5.5 1 |Ψi = √ (|αi + | − αi) . 2
5.5. PROBLEM 5.5
77
G(1) (x1 , x2 ) = hΨ|Eˆ (−) (x1 )Eˆ (+) (x2 )|Ψi, where
Eˆ (+) (x) = iKˆ aei(k·r−ωt) . 1 Eˆ (+) (x)|Ψi = iKˆ aei(k·r−ωt) √ (|αi + | − αi) 2 α = iKei(k·r−ωt) √ (|αi − | − αi) 2 G(1) (x1 , x2 ) = hΨ|Eˆ (−) (x1 )Eˆ (+) (x2 )|Ψi = |α|2 K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] ,
where we have used hα| − αi = 0 for large α. Also G(1) (x, x) = |α|2 K 2 . G(1) (x1 , x2 ) g (1) (x1 , x2 ) = p G(1) (x1 , x1 )G(1) (x2 , x2 ) = ei[k·(r2 −r1 )−ω(t2 −t1 )] . Clearly ¯ (1) ¯ ¯g (x1 , x2 )¯ = 1. 1 Eˆ (+) (x2 )Eˆ (+) (x1 )|Ψi = −K 2 ei[k·(r2 +r1 )−ω(t2 +t1 )] a ˆ2 √ (|αi + | − αi) , 2 we have G(2) (x1 , x2 ; x2 , x1 ) = hΨ|Eˆ (−) (x1 )Eˆ (−) (x2 )Eˆ (+) (x2 )Eˆ (+) (x1 )|Ψi = K 4 |α|4 . So the second order coherence function for |Ψi is g (2) =
α4 . |α|4
78
CHAPTER 5. QUANTUM COHERENCE FUNCTIONS On the other hand, we can study the following statistical mixture, ρˆ =
1 (|αihα| + | − αih−α|) . 2
n o G(1) (x1 , x2 ) = Tr ρˆEˆ (−) (x1 )Eˆ (+) (x2 ) ¡ † ¢ = K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] Tr ρˆa ˆa ˆ ¡ ¢ 2 i[k·(r2 −r1 )−ω(t2 −t1 )] =K e Tr a ˆρˆa ˆ† = K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] |α|2 Tr (ˆ ρ) = |α|2 K 2 ei[k·(r2 −r1 )−ω(t2 −t1 )] G(1) (x, x) = |α|2 K 2 G(1) (x1 , x2 )
g (1) (x1 , x2 ) = p
G(1) (x1 , x1 )G(1) (x2 , x2 )
= ei[k·(r2 −r1 )−ω(t2 −t1 )] . ¯ (1) ¯ ¯g (x1 , x2 )¯ = 1. n o G(2) (x1 , x2 ) = Tr ρˆEˆ (−) (x1 )Eˆ (−) (x2 )Eˆ (+) (x2 )Eˆ (+) (x1 ) ¡ † † ¢ = K 4 Tr ρˆa ˆa ˆa ˆa ˆ ¡ ¢ = K 4 Tr a ˆa ˆρˆa ˆ† a ˆ† = |α|4 K 4 Tr (ˆ ρ) = |α|4 K 4 g (2) = 1.
Chapter 6 Interferometry 6.1
Problem 6.1 π ˆ π ˆ Uˆ † a ˆ†0 Uˆ = e−i 2 J1 a ˆ0 ei 2 J1
(6.1.1)
Using the operator identity 2 ˆ ˆ −ξ A ˆ ˆ + ξ[A, ˆ B] ˆ + ξ [A, ˆ [A, ˆ B]] ˆ + ..., eξA Be =B 2!
(6.1.2)
and equation6.1.1 we’ll have (−i π2 )2 ˆ ˆ π ˆ † †ˆ ˆ ˆ0 − i [J1 , a U a ˆ0 U = a ˆ0 ] + [J1 , [J1 , a ˆ0 ]] + .... 2 2! It is easy to see that
(6.1.3)
1 [Jˆ1 , a ˆ0 ] = − a ˆ1 2
(6.1.4)
1 [Jˆ1 , a ˆ1 ] = − a ˆ0 . 2
(6.1.5)
π † π † 1 † Uˆ † a ˆ†0 Uˆ = cos a ˆ0 + i sin a ˆ0 = √ (ˆ a0 + iˆ a†1 ) 4 4 2
(6.1.6)
and Equation 6.1.3 now reads
The same procedure would lead us to 1 Uˆ † a ˆ†1 Uˆ = √ (iˆ a†0 + a ˆ†1 ). 2 79
(6.1.7)
80
6.2
CHAPTER 6. INTERFEROMETRY
Problem 6.2
If we replace θ instead of will get
π 2
in the equation 6.1.3 of the previous problem we
θ † θ † Uˆ † a ˆ†0 Uˆ = cos a ˆ0 + i sin a ˆ 2 2 0
(6.2.1)
θ † θ † a0 + sin a ˆ . Uˆ † a ˆ†1 Uˆ = cos iˆ 2 2 1
(6.2.2)
From the previous equations, it is easy to identify the parameters r, t, r0 , and t0 as: r = cos 2θ t.
6.3
Problem 6.3
Again we repeat the procedure that we have used to solve problem 6.1 a ˆ2 = Uˆ (θ)ˆ a0 Uˆ † (θ) ˆ
ˆ
= eiθJ2 a ˆ0 e−iθJ2 h i (iθ)2 h h ii =a ˆ0 + iθ Jˆ2 , a ˆ0 + Jˆ2 , Jˆ2 , a ˆ0 + . . . 2! µ ¶2 θ 1 θ =a ˆ0 − a ˆ1 − a ˆ0 + . . . 2 2! 2 µ ¶ µ ¶ θ θ = cos a ˆ0 − sin a ˆ1 , 2 2 where we have used the identity of problem 2.3 and the usual Bosonic commutation rules. a ˆ3 = Uˆ (θ)ˆ a1 Uˆ † (θ) ˆ
ˆ
= eiθJ2 a ˆ1 e−iθJ2 ii i (iθ)2 h h h Jˆ2 , Jˆ2 , a ˆ1 + . . . =a ˆ0 + iθ Jˆ2 , a ˆ1 + 2! µ ¶2 θ 1 θ =a ˆ1 + a ˆ1 − a ˆ0 + . . . 2 2! 2 µ ¶ µ ¶ θ θ = cos a ˆ0 + sin a ˆ1 . 2 2
6.4. PROBLEM 6.4
81
Also,
a ˆ†2
µ ¶ µ ¶ θ θ † = sin a ˆ0 − cos a ˆ†1 2 2
a ˆ†3
µ ¶ µ ¶ θ θ † a ˆ0 + sin a ˆ†1 . = cos 2 2
and
For the case of 50:50 beam splitter 1 a ˆ2 = √ (ˆ a0 − a ˆ1 ) , 2 1 a ˆ3 = √ (ˆ a0 + a ˆ1 ) , 2 ´ 1 ³ † ˆ0 − a ˆ†1 , a ˆ†2 = √ a 2 and ´ 1 ³ † † † √ ˆ1 . a ˆ3 = a ˆ0 + a 2
6.4
Problem 6.4
It is straightforward to carry out the computations using the explicit formulae of the J’s operators. 1 † Jˆ1 = (ˆ aa ˆ1 + a ˆ0 a ˆ†1 ) 2 0 1 † aa ˆ0 − a ˆ†1 a Jˆ3 = (ˆ ˆ1 ) 2 0
1 † aa ˆ2 − a ˆ0 a ˆ†1 ) Jˆ2 = (ˆ 2i 0 1 † aa ˆ0 + a ˆ†1 a Jˆ0 = (ˆ ˆ1 ) 2 0
82
CHAPTER 6. INTERFEROMETRY i h 1 † Jˆ1 , Jˆ2 = [ˆ aa ˆ1 + a ˆ0 a ˆ†1 , a ˆ†0 a ˆ2 − a ˆ0 a ˆ†1 ] 4i 0 o 1 n = [ˆ a0 a ˆ†1 , a ˆ†0 a ˆ1 ] − [ˆ a†0 a ˆ1 , a ˆ0 a ˆ†1 ] 4i 1 = [ˆ a0 a ˆ†1 , a ˆ†0 a ˆ1 ] 2i o 1 n a ˆ0 [ˆ a†1 , a ˆ†0 a ˆ1 ] + [ˆ a, a ˆ†0 a ˆ1 ]ˆ a†1 = 2i 1 = (−ˆ a0 a ˆ†0 + a ˆ1 a ˆ†1 ) 2i 1 = (−ˆ a†0 a ˆ0 + a ˆ†1 a ˆ1 ) 2i 1 † = i (ˆ aa ˆ0 − a ˆ†1 a ˆ1 ) 2 0 = iJˆ3 h
i 1 ˆ1 ] ˆ0 − a ˆ†1 a ˆ†0 a ˆ1 + a ˆ0 a ˆ†1 , a a† a Jˆ1 , Jˆ3 = [ˆ 4 0 o 1n † ˆ1 ] ˆ†1 a ˆ0 ] − [ˆ a0 a ˆ†1 , a ˆ†0 a = ˆ1 ] + [ˆ a0 a ˆ†1 , a ˆ1 , a ˆ†1 a ˆ0 ] − [ˆ a†0 a ˆ1 , a ˆ†0 a [ˆ a0 a 4 o 1n † † = ˆ1 ] ˆ†1 a ˆ0 [ˆ a†1 , a ˆ0 ]ˆ a†1 − a ˆ1 ] + [ˆ a0 , a ˆ†0 a a1 , a ˆ†1 a ˆ0 ]ˆ a1 − a ˆ†0 [ˆ ˆ0 a [ˆ a0 , a 4 1 = (−2ˆ ˆ1 + 2ˆ a0 a ˆ†1 ) a†0 a 4 1 † = −i (ˆ ˆ1 − a ˆ0 a ˆ†1 ) aa 2i 0 = −iJˆ2
h i 1 † Jˆ2 , Jˆ3 = [ˆ aa ˆ1 − a ˆ0 a ˆ†1 , a ˆ†0 a ˆ0 − a ˆ†1 a ˆ1 ] 4i 0 o 1 n † = [ˆ a0 a ˆ1 , a ˆ†0 a ˆ0 ] − [ˆ a†0 a ˆ1 , a ˆ†1 a ˆ1 ] − [ˆ a0 a ˆ†1 , a ˆ†0 a ˆ0 ] + [ˆ a0 a ˆ†1 , a ˆ†1 a ˆ1 ] 4i o 1 n † † = [ˆ a0 , a ˆ0 a ˆ0 ]ˆ a1 − a ˆ†0 [ˆ a1 , a ˆ†1 a ˆ1 ] − [ˆ a0 , a ˆ†0 a ˆ0 ]ˆ a†1 + a ˆ0 [ˆ a†1 , a ˆ†1 a ˆ1 ] 4i 1 a†0 a = (−2ˆ ˆ1 − 2ˆ a0 a ˆ†1 ) 4i 1 † aa ˆ1 − a ˆ0 a ˆ†1 ) = −i (ˆ 2i 0 = iJˆ1 .
6.5. PROBLEM 6.5
83
Thus
h i Jˆi , Jˆj = iεijk Jˆk .
(6.4.1)
h i 1 Jˆ1 , Jˆ0 = [ˆ a† a ˆ1 + a ˆ0 a ˆ†1 , a ˆ†0 a ˆ0 + a ˆ†1 a ˆ1 ] 4 0 o 1n † = [ˆ a0 a ˆ1 , a ˆ†0 a ˆ0 ] + [ˆ a†0 a ˆ1 , a ˆ†1 a ˆ1 ] + [ˆ a0 a ˆ†1 , a ˆ†0 a ˆ0 ] + [ˆ a0 a ˆ†1 , a ˆ†1 a ˆ1 ] 4 o 1n † † = [ˆ a0 , a ˆ0 a ˆ0 ]ˆ a1 + a ˆ†0 [ˆ a1 , a ˆ†1 a ˆ1 ] + [ˆ a0 , a ˆ†0 a ˆ0 ]ˆ a†1 + a ˆ0 [ˆ a†1 , a ˆ†1 a ˆ1 ] 4 o 1n † † = a ˆ0 [ˆ a0 , a ˆ0 ]ˆ a1 + a ˆ†0 [ˆ a1 , a ˆ†1 ]ˆ a1 + [ˆ a0 , a ˆ†0 ]ˆ a0 a ˆ†1 + a ˆ0 a ˆ†1 [ˆ a†1 , a ˆ1 ] 4 =0 and h i 1 † ˆ ˆ J2 , J0 = [ˆ a0 a ˆ1 − a ˆ0 a ˆ†1 , a ˆ†0 a ˆ0 + a ˆ†1 a ˆ1 ] 4i n o 1 † † † † † † † † = [ˆ a0 a ˆ1 , a ˆ0 a ˆ0 ] + [ˆ a0 a ˆ1 , a ˆ1 a ˆ1 ] − [ˆ a0 a ˆ1 , a ˆ0 a ˆ0 ] − [ˆ a0 a ˆ1 , a ˆ1 a ˆ1 ] 4i = 0. h
i 1 ˆ ˆ J3 , J0 = [ˆ a†0 a ˆ0 − a ˆ†1 a ˆ1 , a ˆ†0 a ˆ0 + a ˆ†1 a ˆ1 ] 4 = 0.
In fact, Jˆ0 commutes with all Jˆi for i = 1, 2, 3.
6.5
Problem 6.5
First we have to rewrite the input state as, |ini a ˆ†N |ini = |0i0 |N i1 = √ |0i0 |0i1 . N!
(6.5.1)
Using the fact that the J1 type beam splitters do the following transformations |0i0 |0i1 ⇒ |0i2 |0i3 (6.5.2) and
a ˆ†1
³ ⇒
i sin(θ/2)ˆ a†2
+
cos(θ/2)ˆ a†3
´ (6.5.3)
84
CHAPTER 6. INTERFEROMETRY
we will get the following for aˆ †N 1 √1 |0i0 |0i1 ⇒ √ [(i sin(θ/2)ˆ a†2 + cos(θ/2)ˆ a†3 )]N |0i2 |0i3 . (6.5.4) N! N! iN 1 h =√ i sin(θ/2)ˆ a†2 + cos(θ/2)ˆ a†3 |0i2 |0i3 N! ¶ N µ 1 X N =√ ik sink (θ/2) cosN −k (θ/2)ˆ a†k ˆ3†N −k |0i2 |0i3 2 a k N ! k=0 ¶ N µ p 1 X N =√ ik sink (θ/2) cosN −k (θ/2) k!(N − k)!|ki2 |N − ki3 k N ! k=0 ¶1 N µ X N 2 k k = i sin (θ/2) cosN −k (θ/2)|ki2 |N − ki3 k k=0 ¶ 12 N µ X N = cosN (θ/2) ik tank (θ/2)|ki2 |N − ki3 k k=0 ¶1 N µ £ ¤−N/2 X N 2 k 2 i tank (θ/2)|ki2 |N − ki3 = 1 + tan (θ/2) k k=0
6.6
Problem 6.6 |ini = |αi0 |βi1 ˆ ˆ = D(α, a ˆ0 )D(β, a ˆ1 )|0i,
ˆ a, α) is defined as where D(ˆ ˆ a, α) = exp(αˆ D(ˆ a† − α∗ a ˆ).
(6.6.1) (6.6.2)
(6.6.3)
Let Uˆ be the unitary transformation associated with the beam splitter of type Jˆ1 . Using the solution to the problem 6.1, we know that for a 50:50 beam splitter 1 1 Uˆ a ˆ0 Uˆ † = √ (ˆ a2 − iˆ a3 ) , Uˆ a ˆ1 Uˆ † = √ (−iˆ a2 + a ˆ3 ) 2 2 and 1 † 1 a2 + iˆ a†2 + a Uˆ a ˆ†0 Uˆ † = √ (ˆ a†3 ) , Uˆ a ˆ†3 ), ˆ†1 Uˆ † = √ (iˆ 2 2
6.7. PROBLEM 6.7
85
thus ˆ a0 , α)Uˆ † = Uˆ exp(αˆ Uˆ D(ˆ a† − α∗ a ˆ)Uˆ † µ ¶ 1 † † † † ∗ 1 = exp α √ (ˆ a2 + iˆ a3 ) − α √ (iˆ a2 + a ˆ3 ) 2 2 µ ¶ µ ¶ 1 1 † † ∗ † ∗ † a2 − α a ˆ3 ) exp √ (iαˆ a2 − (iα) a ˆ3 ) = exp √ (αˆ 2 2 ˆ a3 , √i α∗ ). ˆ a2 , √1 α)D(ˆ = D(ˆ 2 2 and the same way we can prove that ˆ a3 , √1 β ∗ ). ˆ a0 , β)Uˆ † = D(ˆ ˆ a2 , √i β)D(ˆ Uˆ D(ˆ 2 2
(6.6.4)
With the input state in equation 6.6.2, the state after the beam splitter should be |outi = Uˆ |ini ˆ a0 , α)D(ˆ ˆ a1 , β)|0i = Uˆ D(ˆ ˆ a0 , α)Uˆ † Uˆ D(ˆ ˆ a1 , β)Uˆ † Uˆ |0i = Uˆ D(ˆ ˆ a2 , √1 α)D(ˆ ˆ a3 , √i α∗ )D(ˆ ˆ a2 , √i β)D(ˆ ˆ a3 , √1 β ∗ )|0i = D(ˆ 2 2 2 2 α + iβ iα + β ˆ a2 , √ )D(ˆ ˆ a3 , √ )|0i = D(ˆ 2 2 ¯ À ¯ À ¯ α + iβ ¯ iα + β ¯ √ = ¯¯ √ ¯ 2 2 2 3
6.7
Problem 6.7
¸N · ¸N · 1 1 † aˆ0 †N aˆ1 †N 1 † † † √ (iˆ √ (ˆ ˆ3 ) a3 ) |0i2 |0i3 |N i0 |N i1 = |0i0 |0i1 ⇒ a2 + a a2 − iˆ N! N! 2 2 1 = (ˆ a† + iˆ a†3 )N (iˆ a†2 + a ˆ†3 )N |0i2 |0i3 N !2N 2 iN (ˆ a†2 + iˆ a†3 )N (ˆ a†2 − iˆ a†3 )N |0i2 |0i3 = N N !2 iN iN h † 2 † 2 (ˆ a ) − (ˆ a |0i2 |0i3 . ) = 2 3 N !2N
86
CHAPTER 6. INTERFEROMETRY
It is clear from the last equation that photon are created in pairs, so there will be no odd-numbered photon states in either of the output states.
6.8
Problem 6.8
Using the same technique used in the previous problem we write aˆ0 †N aˆ1 †N |0i0 |0i1 N! · ¸N · ¸N 1 1 1 † † † † √ (iˆ √ (ˆ ⇒ a2 + a ˆ3 ) a2 − iˆ a3 ) |0i2 |0i3 N! 2 2 1 = (ˆ a† + iˆ a†3 )N (iˆ a†2 + a ˆ†3 )N |0i2 |0i3 N !2N 2 iN = (ˆ a†2 + iˆ a†3 )N (ˆ a†2 − iˆ a†3 )N |0i2 |0i3 N N !2 ´N iN ³ † 2 † 2 = (ˆ a ) − (ˆ a ) |0i2 |0i3 2 3 N !2N ¶ N µ iN X N a†3 )2(N −k) |0i2 |0i3 (ˆ a†2 )2k (ˆ = N k N !2 k=0
|N i0 |N i1 =
N √ p iN X N! = 2k! 2(N − k)!|2ki2 |2N − 2ki3 N !2N k=0 k!(N − k)! s r N iN X 2k! 2(N − k)! = N |2ki2 |2N − 2ki3 2 k=0 k!k! (N − k)!(N − k)! "µ ¶ µ ¶µ ¶#1/2 N 2N X 1 2k 2N − 2k = iN |2ki2 |2N − 2ki3 k N −k 2 k=0
6.9
Problem 6.9
Using the result of the problem 6.6 we have ¯ À ¯ À ¯ iα ¯ α ¯ ¯ √ |0i0 |αi1 ⇒ ¯ √ 2 2¯ 2 3 ¯ À ¯ À ¯ −iα ¯ −α ¯ ¯ √ , |0i0 |−αi1 ⇒ ¯ √ 2 2¯ 2 3
6.10. PROBLEM 6.10
87
√ so for |0i0 (|αi1 + | − αi1 )/ 2 an input state the output state would be ¯ µ¯ À ¯ À À ¯ À¶ ¯ α ¯ −iα ¯ −α 1 ¯¯ iα ¯√ ¯√ √ ¯√ (6.9.1) +¯ √ 2 2 2¯ 2 3 ¯ 2 2¯ 2 3 For large α, we have
h−α|αi = 0. (6.9.2) In other words, |αi and | − αi are orthogonal states. Thus, state in equation 6.9.1 is a Bell state, so it is entangled.
6.10
Problem 6.10
1 |ini = √ |0i [|αi + | − αi] 2 µ¯ À¯ À ¯ À¯ À¶ ¯ α ¯ α ¯ ¯ α 1 α ¯√ ¯− √ UˆBS1 |ini = √ ¯¯i √ + ¯¯−i √ 2 2 ¯ 2 2 ¯ 2 µ¯ À ¯ iθ À ¯ À¯ À¶ ¯ ¯ ¯ ¯ 1 ¯ α ¯ αe α ¯ αeiθ ˆ ˆ ¯ √ UP S UBS1 |ini = √ ¯i √ + ¯−i √ −√ 2 2 ¯ 2 2 ¯ 2 |outi = UˆBS2 UˆP S UˆBS1 |ini µ¯ À¯ À ¯ À¯ À¶ ¯ α(1 + eiθ ) ¯ α(1 − eiθ ) 1 ¯¯ α(1 + eiθ ) ¯¯ −α(1 − eiθ ) ¯ ¯ = √ ¯i + ¯−i ¯ ¯ 2 2 2 2 2 Taking into account |α| very large, we have hα| − αi = 0. µ ¶ 1 |α|2 † iθ 2 hout|ˆ aa ˆ|outi = |1 + e | 2 2 |α|2 = (1 + cos θ) 2 and µ 2 ¶ 1 |α| † iθ 2 hout|ˆb ˆb|outi = |1 − e | 2 2 |α|2 = (1 − cos θ). 2 D E † †ˆ ˆ ˆ hOi = a ˆa ˆ−b b = |α|2 cos θ
88
CHAPTER 6. INTERFEROMETRY ³ ´2 ˆ2 = a O ˆ† a ˆ − ˆb†ˆb =a ˆ† a ˆa ˆ† a ˆ + ˆb†ˆbˆb†ˆb − 2ˆ a† a ˆˆb†ˆb =a ˆ† a ˆ† a ˆa ˆ+a ˆ† a ˆ + ˆb†ˆb†ˆbˆb + ˆb†ˆb − 2ˆ a† a ˆˆb†ˆb |α|4 16 |α|4 = 4
hout|ˆ a† a ˆ† a ˆa ˆ|outi =
¯ ¯ ¯1 + eiθ ¯4 ¡
1 + cos2 θ + 2 cos θ
¢
¯4 |α|4 ¯¯ hout|ˆb†ˆb†ˆbˆb|outi = 1 − eiθ ¯ 16 ¢ |α|4 ¡ = 1 + cos2 θ − 2 cos θ 4 ¯ ¯ ¯ ¯ ¯1 − eiθ ¯2 ¯1 + eiθ ¯2
|α|4 hout|ˆ aa ˆ bb|outi = 16 |α|4 = 4 † †ˆˆ
¡
1 − cos2 θ
D E ˆ 2 = |α|2 O
∆O ¯ ∆θ = ¯¯ D E ˆ /∂θ¯¯ ¯∂ O 1
=p
|α|2 | sin θ|
for θ → π/2 and large α we have 1
∆θ = p
|α|2
It is exactly the standard quantum limit.
.
¢
6.11. PROBLEM 6.11
6.11
89
Problem 6.11 ê0ñ
BS1
ê1ñ
M2
a
a b
D2 M1
b
BS2 D1
First, let assume that the transformations associated with beam splitters 0 ˆ ˆ BS1 and BS2 can be described by UˆBS1 = eiθJ1 and UˆBS1 = eiθ J1 , respectively. We are faced with two possibilities in this situation: Either there is an object in the arm b or there is not, see figure above. In the former case the probability that the photon goes through arm a is cos2 (θ/2) and the probability that detector D1 clicks is P1 (θ, θ0 ) = cos2 (θ/2) cos2 (θ0 /2). The second possibility, when there is no object, we have |ini = |1ia |0ib |outi = UˆBS2 UˆBS1 |ini = UˆBS2 UˆBS1 |1ia |0ib = UˆBS2 (cos(θ/2)|1ia |0ib + i cos(θ0 /2)|0ia |1ib ) ¶ µ ¶ µ θ + θ0 θ + θ0 |1ia |0ib + i sin |0ia |1ib = cos 2 2 ¡ 0¢ This time the probability that detector D1 clicks is P2 (θ, θ0 ) = cos2 θ+θ . 2 An efficient detection would make |P1 (θ, θ0 ) − P2 (θ, θ0 )| a maximum. In fact, P1 (θ, θ0 ) − P2 (θ, θ0 ) = 1 for θ = θ0 = π.
90
CHAPTER 6. INTERFEROMETRY
Chapter 7 Nonclassical Light 7.1
Problem 7.1
The general squeezed state of Eq. (7.80) is |α, ξi =
∞ X
cn |ni
n=0
¤n/2 · ¸ £ 1 iθ h ¡ ¢−1/2 i e tanh r 1 1 2 1 ∗2 iθ 2 √ cn = √ exp − |α| − α e tanh r Hn γ eiθ tanh 2r , 2 2 cosh r n! where γ = α cosh r + α∗ eiθ sinh r and Hn is the Hermite polynomials. For α = 0 we get the squeezed vacuum state. Ignoring the ZPE, the time evolving state vector is |α, ξ, ti =
∞ X
cn e−iωnt |ni
n=0
and the wave packet is given by hq|α, ξ, ti =
∞ X
cn e−iωnt hq|ni,
n=0
where hq|ni = ψn (q) = (2n n!)−1/2
³ ω ´1/4 2 e−ξ /2 Hn (ξ), π~ 91
92
CHAPTER 7. NONCLASSICAL LIGHT
where ξ = q density
pω ~
. The evolution of the wave packet is given by the probability
P (q, t) = |hq|α, ξ, ti|2 . For the case where α = 0, we get the squeezed vacuum
|ξi =
∞ X
B2m |2mi,
m=0
where
B2m
p (2m)! imθ 1 =√ (−1)m m e (tanh r)m . 2 m! cosh r
In time
|ξ, ti =
∞ X
B2m e−i2ωmt |2mi.
m=0
Below, we have plotted P (q, t) keeping r = 0.2 for different time. It is obvious from these graphs the centroid is stationary, but the width oscillates at twice the frequency of the harmonic oscillator.
(b)
(a)
P(q , 2π/8ω)
P(q , 2π/8ω)
-3
-2
-1
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
q
1
2
3
-3
-2
-1
q
1
2
3
7.1. PROBLEM 7.1
93 (d)
(c)
P(q , 6π/8ω)
P(q , 2π/4ω)
-3
-2
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
-1
q
1
2
3
-3
-2
-1
q
3
2
3
2
3
P(q , 10π/8ω)
P(q , 8π/8ω)
-2
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
-1
q
1
2
3
-3
-2
-1
q
1
(h)
(g)
P(q , 14π/8ω)
P(q , 12π/8ω)
-3
2
(f)
(e)
-3
1
-2
-1
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
q
1
2
3
-3
-2
-1
q
1
94
7.2
CHAPTER 7. NONCLASSICAL LIGHT
Problem 7.2
For vacuum squeezed state α = 0 and θ = 0 © ª r ∗2 2 exp −|β|2 − tanh (β + β ) 2 Q(β) = π cosh r Z ∗
∗
d2 αQ(α)eλα −λ α £ ¤ Z tanh r 2 (α∗2 + α2 ) λα∗ −λ∗ α 2 exp −|α| − 2 = dα e π cosh r Z 1 2 2 1 2 2 ∗ ∗ = dxdye−x −y − 2 tanh r(x −y )+(λ−λ )x−iy(λ+λ ) π cosh r Z £ ¤ 1 = dx exp −x2 (tanh r + 1) + x(λ − λ∗ )) π cosh r Z £ ¤ × dy −y 2 (1 − tanh r) + −iy(λ + λ∗ )) r r (λ−λ∗ )2 (λ+λ∗ )2 π π 1 e 4(1+tanh r) e 4(tanh r−1) = π cosh r 1 + tanh r tanh r − 1 · ¸ ∗ 2 ∗ 2 1 ((1−tanh r)(λ−λ ) −(1+tanh r)((λ+λ ) )) exp 4 1−tanh2 r q = cosh r (1 − tanh2 r) · ¸ ¡ ¢ 1 2 ∗ 2 ∗ 2 = exp cosh r (1 − tanh r)(λ − λ ) − (1 + tanh r)((λ + λ ) ) 4 1 = exp[− cosh r sinh r(λ2 + λ∗2 ) − cosh2 r|λ|2 ] 2
CA (λ) =
2
CN (λ) = CA (λ)e|λ| 1 = exp[− cosh r sinh r(λ2 + λ∗2 ) − (cosh2 r − 1)|λ|2 ] 2 1 = exp[− cosh r sinh r(λ2 + λ∗2 ) − (sinh2 r)|λ|2 ] 2
7.3. PROBLEM 7.3
95
Z 1 2 W (α) = 2 d2 λCN (λ) exp(λ∗ α − λα∗ )e−|λ| /2 π Z 1 1 1 = 2 d2 λ exp[λ∗ α − λα∗ − cosh r sinh r(λ2 + λ∗2 ) − ( + sinh2 r)|λ|2 ] π 2 2 Z 1 1 1 = 2 d2 λ exp[λ∗ α − λα∗ − sinh(2r)(λ2 + λ∗2 ) − cosh(2r)|λ|2 ] π 4 2 Z 1 1 = 2 dx exp[− (sinh(2r) + cosh(2r)) x2 + (α − α∗ )x] π 2 Z 1 × dy exp[− (sinh(2r) − cosh(2r)) y 2 − i(α + α∗ )x] 2 ¸ · r 1 π (α − α∗ )2 = 2 1 exp π 4 (sinh(2r) + cosh(2r)) (sinh(2r) − cosh(2r)) 2 · ¸ r π −(α + α∗ )2 × 1 exp 4 (cosh(2r) − sinh(2r)) (cosh(2r) − sinh(2r)) 2 · ¸ 2 y2 x2 = q exp −2 2r − 2 −2r e e π (cosh2 (2r) − sinh2 (2r)) ¡ ¢ 2 = exp −2x2 e2r − 2y 2 e−2r π
7.3
Problem 7.3
Displaced squeezed vacuum ˆ ˆ |α, ξi = D(α) S(ξ)|0i
(7.3.1)
Using the following identities ˆ † (α)ˆ ˆ D aD(α) =a ˆ+α ˆ Sˆ† (ξ)ˆ aS(ξ) =a ˆ cosh r − a ˆ† e−2iϕ sinh r We obtain ˆ † (α)ˆ ˆ ˆ Sˆ† (ξ)D aD(α) S(ξ) =a ˆ cosh r − a ˆ† e−2iϕ sinh r + α ˆ † (α)ˆ ˆ ˆ Sˆ† (ξ)D a† D(α) S(ξ) =a ˆ† cosh r − a ˆe2iϕ sinh r + α∗
(7.3.2) (7.3.3)
96
CHAPTER 7. NONCLASSICAL LIGHT
³ ´ † ∗ CN (λ) = Tr ρˆeλˆa eλ aˆ †
∗
= hα, ξ|eλˆa e−λ aˆ |α, ξi ˆ ˆ ˆ † (α)eλˆa† e−λ∗ aˆ D(α) = h0|Sˆ† (ξ)D S(ξ)|0i ˆ † (α)eλˆa† D(α) ˆ ˆ Sˆ† (ξ)D ˆ † (α)e−λ∗ aˆ D(α) ˆ ˆ = h0|Sˆ† (ξ)D S(ξ) S(ξ)|0i † 2iϕ ∗ ∗ † −2iϕ sinh r+α ) |0i = h0|eλ(aˆ cosh r−ˆae sinh r+α ) e−λ (aˆ cosh r−ˆa e ∗ −λ∗ α
h0|eλ(aˆ
λα∗ −λ∗ α
λˆ a†
= eλα
†
cosh r−ˆ ae2iϕ sinh r) −λ∗ (a ˆ cosh r−ˆ a† e−2iϕ sinh r)
e
λ∗ a ˆ† e−2iϕ
|0i
−λ∗ a ˆ cosh r
sinh r sinh r e e ¢ ¡ ¢ † 2iϕ ∗ † −2iϕ × exp [λˆ a cosh r, −λˆ ae ] exp [λ a ˆe sinh r, −λ∗ a ˆ cosh r] |0i 1 2 2iϕ ∗2 2iϕ ∗ ∗ 2iϕ ∗ † −2iϕ sinh r = eλα −λ α e 2 cosh r sinh r(λ e +λ e ) h0|e−λˆae sinh r eλ aˆ e |0i
=e
= eλα
¡
∗ −λ∗ α
λα∗ −λ∗ α
=e
h0|e
cosh r
−λˆ ae2iϕ
e
e 2 cosh r sinh r(λ 1
e
1 2
2 e2iϕ +λ∗2 e2iϕ
) h0|e−λˆae2iϕ sinh r eλ∗ aˆ† e−2iϕ sinh r |0i
cosh r sinh r(λ2 e2iϕ +λ∗2 e2iϕ )
=e
= eλα
∗ −λ∗ α
e
1 2
cosh r sinh r(λ2 e2iϕ +λ∗2 e2iϕ )
e 4 sinh(2r)(λ 1
2 e2iϕ +λ∗2 e2iϕ
n
h0|
n=0 n0 =0
¡ ∗ † −2iϕ ¢n0 λa ˆe sinh r √ × |0i n0 ! λα∗ −λ∗ α
∞ X ∞ X
(−λˆ ae2iϕ sinh r) √ n!
¢n ∞ ¡ X −|λ|2 sinh2 r n! n=0
) e−|λ|2 sinh2 r
7.4. PROBLEM 7.4
97
Z 1 2 W (β) = 2 d2 λCN (λ) exp(λ∗ β − λβ ∗ )e−|λ| /2 π Z 1 1 2 2iϕ ∗2 2iϕ 2 ∗ ∗ 2 ∗ ∗ 2 = 2 d2 λe(λ β−λβ ) e−|λ| /2 eλα −λ α e 4 sinh(2r)(λ e +λ e ) e−|λ| sinh r π Z 1 1 2 2iϕ ∗2 2iϕ 2 2 1 ∗ ∗ ∗ = 2 d2 λeλ (β−α)−λ(β −α ) e 4 sinh(2r)(λ e +λ e ) e−|λ| ( 2 +sinh r) π Z −x2 1 ∗ = 2 dxe 2 [sinh(2r)+cosh(2r)] ex[(β−α)−(β−α) ] π Z −y 2 ∗ × dye 2 [cosh(2r)−sinh(2r)] eiy[(β−α)+(β−α) ] " # r 1 π 1 ((β − α) − (β − α)∗ )2 = 2 1 exp π 2 (cosh(2r) + sinh(2r)) (cosh(2r) + sinh(2r)) 2 # " r π 1 ((β − α) + (β − α)∗ )2 × 1 exp 2 (cosh(2r) − sinh(2r)) (cosh(2r) − sinh(2r)) 2 µ ¶ 2 1 1 = exp − X 2 e2r + Y 2 e−2r , π 2 2 where X the real part of the complex number β − α), and Y, its imaginary part.
7.4
Problem 7.4 a ˆ|0i = 0 ˆ D(α)ˆ ˆ S(ξ) a|0i = 0 ˆ D(α)ˆ ˆ ˆ ˆ ˆ D(α)|0i ˆ =0 S(ξ) aD(−α) S(−ξ) S(ξ) ˆ ˆ ˆ D(α)|0i ˆ S(ξ)(ˆ a − α)S(−ξ) S(ξ) =0 ˆ D(α)|0i ˆ (cosh rˆ a + eiθ sinh rˆ a† − α)S(ξ) =0
(7.4.1)
Let’s define the the squeezed coherent state as ˆ D(α)|0i, ˆ |ξ, αi = S(ξ) µ = cosh r, ν = eiθ sinh r.
(7.4.2)
98
CHAPTER 7. NONCLASSICAL LIGHT
And let write squeezed coherent as an expansion of photon number, namely |ξ, αi =
∞ X
cn |ni
n=0
(µˆ a + νˆ a† − α)|ξ, αi = (µˆ a + νˆ a† − α)
∞ X
cn |ni
n=0
=
∞ X
´ ³ √ √ cn µ n|n − 1i + ν n + 1|n + 1i − α|ni
n=0 ∞ X ¡ √ ¢ √ = µ ncn+1 − αcn + ν ncn−1 |ni n=0
Using equation 7.4.1 we will have the following ∞ X ¡ √ ¢ √ µ ncn+1 − αcn + ν ncn−1 |ni = 0, n=0
which implies √ √ µ n + 1cn+1 − αcn + ν ncn−1 = 0
(7.4.3)
In order to solve the last equation we rewrite cn as µ ¶n/2 1 iθ cn = N e tanh r fn (x) 2 ¶n/2 µ ¶1/2 µ 1 iθ 1 iθ e tanh r e tanh r fn+1 (x) cn+1 = N 2 2 µ ¶n/2 µ ¶−1/2 1 iθ 1 iθ cn−1 = N e tanh r e tanh r fn−1 (x) 2 2 into 7.4.3 ¶1/2 ¶−1/2 µ µ √ √ 1 iθ 1 iθ fn+1 (x) − αfn (x) + ν n fn−1 (x) = 0 e tanh r e tanh r µ n+1 2 2 √ ¡ ¢−1/2 µ n + 1fn+1 (x) − 2α eiθ cosh r sinh(2r) fn (x) + 2νfn−1 (x) = 0 √ ¡ ¢−1/2 Identifying x = α eiθ cosh r sinh(2r) , and fn (x) = Hn (x)/ n!, where Hn (x) are the Hermite polynomials. Thus
7.5. PROBLEM 7.5
99
µ cn = N
1 iθ e tanh r 2
¶n/2
√ Hn (x)/ n!
c0 = N On the other hand we have c0 = h0|ξ, αi ˆ D(α)|0i ˆ = h0|S(ξ) = h−ξ|αi µ ¶ 1 1 2 1 2 iθ =√ exp − |α| − α e tanh r . 2 2 cosh r Finally we have ¢µ ¡ ¶n/2 ³ ¡ ¢−1/2 ´ exp − 12 |α|2 − 12 α2 eiθ tanh r 1 iθ √ cn = e tanh r Hn α eiθ cosh r sinh(2r) . 2 n! cosh r
7.5
Problem 7.5
First we rewrite the state as follows ˆ ˆ ˆ a ˆ† |αi = D(α) D(−α)ˆ a† D(α)|0i ¡ † ¢ ˆ = D(α) a ˆ + α∗ |0i ˆ = D(α) (|1i + α∗ |0i) ,
(7.5.1) (7.5.2)
ˆ where D(α) is the displacement operator. Let |Ψi be the normalized state of the state in Eq. 7.5.1 so that |Ψi = N a ˆ† |αi, where N is the normalization constant which is given by £ ¤−1/2 N = hα|ˆ a† a ˆ|αi ¡ ¢−1/2 = 1 + |α|2 .
100
CHAPTER 7. NONCLASSICAL LIGHT
The normalized state can be rewritten as 1 |Ψi = p a ˆ† |αi 2 (1 + |α| ) 1 ˆ =p D(α) (|1i + α∗ |0i) . (1 + |α|2 ) We consider the quadrature squeezing for this state. Numerically one needs to compute the following quantities. ¡ ¢ hˆ ai = |N |2 α 2 + |α|2 ¡ ¢ hˆ a2 i = |N |2 α2 3 + |α|2 £ ¡ ¢¤ hˆ a† a ˆi = |N |2 1 + |α|2 3 + |α|2 . D E ˆ 1 )2 we have plotted Instead of plotting (∆X D E 2 ˆ s1 = 4 (∆X1 ) − 1 ¡ 2 ¢ ¡ 2¢ = 2< hˆ a i + 2hˆ a† a ˆi − 2< hˆ ai − 2 |hˆ ai|2 . It is obvious that this state is nonclassical since s1 goes negative, an indication of squeezing of the field quadrature. 0.8 0.6
s1
x
0.4 0.2
2
4
y6
8
a
-0.2
7.6
Problem 7.6
Starting from Eq. (4.120) ∞ nh ³ √ ´ ³ √ ´i X |Ψ(t)i = Ce cn cos λt n + 1 − iCg cn+1 sin λt n + 1 |ei n=0
£ ¡ √ ¢ ¡ √ ¢¤ ª + −iCe cn−1 sin λt n + Cg cn cos λt n |gi |ni
7.6. PROBLEM 7.6
101
For the case where the atom is initially at the excited state and the field initially in a coherent state we have 2 /2
Ce = 1, Cg = 0, and cn = e−|α|
αn √ , n!
thus · ³ ¸ √ 2 ∞ ´ X √ ¡ √ ¢ e−|α| /2 αn n √ |Ψ(t)i = cos λt n + 1 |ei − i sin λt n |gi |ni. α n! n=0 Quadrature operators are defined as ¡ ¢ ˆ1 = 1 a X ˆ+a ˆ† , 2 ¡ ¢ ˆ2 = 1 a ˆ−a ˆ† . X 2i Numerically, we want to investigate D E ³ ® ® † ® † ®2 † ®´ ˆ 1 )2 = 1 a (∆X ˆ2 + a ˆ†2 + 2 a ˆa ˆ + 1 − hˆ ai2 − a ˆ − 2 hˆ ai a ˆ , 4 D E ³ ® ® † ® † ®2 † ®´ ˆ 2 )2 = 1 − a (∆X ˆ2 − a ˆ†2 + 2 a ˆa ˆ + 1 + hˆ ai2 + a ˆ − 2 hˆ ai a ˆ 4 to see if any one of them goes below 1/4. Numerically one needs to compute the following quantities: 2 ∞ X √ √ e−|α| α|α|2n h hˆ ai = cos(λt n + 1) cos(λt n + 2) n! n=0 # p √ √ n(n + 1) + sin(λt n) sin(λt n + 1) |α|2 2 ∞ X √ √ e−|α| α2 |α|2n h 2 hˆ a i= cos(λt n + 1) cos(λt n + 3) n! n=0 # p √ √ n(n + 2) + sin(λt n) sin(λt n + 2) |α|2 ¸ · 2 ∞ ³ √ ´ X ¡ √ ¢ e−|α| n|α|2n n † 2 2 hˆ aa ˆi = sin λt n . cos λt n + 1 + 2 n! |α| n=0
102
CHAPTER 7. NONCLASSICAL LIGHT
E E D D ˆ 1 )2 and (∆X ˆ 2 )2 we have plotted Instead of plotting (∆X D E ˆ 1 )2 − 1 s1 = 4 (∆X D E ˆ 2 )2 − 1 s2 = 4 (∆X versus time for different values of α. Obviously if any of the last quantities goes below 0 we have squeezing. In fact the graphs below show squeezing at more than one occasion.
(a)
α=
s2
(b)
5
2
2 1.5
1
1
0.5
0.5 20
30
40
50
60
10
-0.5
-1
t
(c)
α=
30
40
50
60
s2
s1
α=
2.5
2
2 1.5
1
1
0.5
0.5 10
20
30
t
(d)
50
1.5
40
50
s1
10
60
t
-1
100
s2
20
30
-0.5
-0.5 -1
20
-0.5
-1
2.5
s1
2.5
1.5
10
30
s2
s1
2.5
α=
t
40
50
60
7.7. PROBLEM 7.7
7.7
103
Problem 7.7
As in the previous problem, we start from Eq. (4.120) |Ψ(t)i =
∞ nh X
´ ³ √ ´i ³ √ Ce cn cos λt n + 1 − iCg cn+1 sin λt n + 1 |ei
n=0
£ ¡ √ ¢ ¡ √ ¢¤ ª + −iCe cn−1 sin λt n + Cg cn cos λt n |gi |ni,
but this time the atom is initially at the excited state and the field initially in a squeezed state |α, ξi we have Ce = 1, Cg = 0, 1 exp[−(|α|2 + α∗2 eiθ tanh r)/2] cosh r ¢n/2 ¡ 1 iθ £ ¤ e tanh r 2 √ × Hn γ(eiθ sinh(2r))−1/2 , n!
cn = √
where γ = α cosh r + α∗ eiθ sinh r. Now we can write ∞ h ³ √ ´ X ¡ √ ¢ i |Ψ(t)i = cn cos λt n + 1 |ei − icn−1 sin λt n |gi |ni. n=0
The atomic inversion for this state is ∞ h ³ √ ´ X ¡ √ ¢i 2 2 2 2 W (t) = |cn | cos λt n + 1 − |cn−1 | sin λt n n=0
7.8
Problem 7.8
a. ˆ I = ~Kˆ H a†2 a ˆ2 dˆ a 1 h ˆ i = a ˆ , HI dt i~ = −i2Kˆ a† a ˆ2 a ˆ(t) = e−2iKˆa
†a ˆt
= e−2iK nˆ t a ˆ
a ˆ
104
CHAPTER 7. NONCLASSICAL LIGHT b. n ˆ (t) = a ˆ† (t)ˆ a(t) †a ˆt
=a ˆ† e2iKˆa
e−2iKˆa
†a ˆt
a ˆ
†
=a ˆa ˆ=n ˆ (0) So if we start with Poissonian photon-counting statistics, it will remain the same for all times. c. ˆ 1 (t) = 1 (ˆ X a(t) + a ˆ† (t)) 2 ˆ 2 (t) = 1 (ˆ X a(t) − a ˆ† (t)) 2i a ˆ(t)|αi = e−2iK nˆ t a ˆ|αi = e−2iK nˆ t α|αi ∞ X αn 2 =α e−|α| /2 √ e−2iKnt |ni n! n=0 ¡ ¢ ∞ −2iKt n X −|α|2 /2 αe √ |ni =α e n! n=0 ¯ ® = α ¯αe−2iKt ® hα|ˆ a(t)|αi = α α|αe−2iKt 2 −2iKt ) = αe−|α| (1−e where we have used |αi =
∞ X n=0
2 /2
e−|α| µ
αn √ |ni, n!
¶ |α|2 |β|2 ∗ hβ|αi = exp − − +β α . 2 2 ˆ 1 (t)|αi = 1 (hα|ˆ a(t)|αi + hα|ˆ a† (t)|αi) hα|X 2 ´ 2iKt 2 1 ³ −|α|2 (1−e−2iKt ) + α∗ e−|α| (1−e ) = αe 2 ´ ³ ˆ 2 (t)|αi = 1 αe−|α|2 (1−e−2iKt ) − α∗ e−|α|2 (1−e2iKt ) hα|X 2i
7.8. PROBLEM 7.8
105
¢2 1 ¡ 2 ¢ ¡ ˆ 2 (t) = 1 a X ˆ(t) + a ˆ† (t) = a ˆ (t) + a ˆ†2 (t) + 2ˆ n+1 1 4 4 ¡ ¢ ¢ 1 1¡ 2 2 ˆ 2 (t) = − a X ˆ(t) − a ˆ† (t) = −ˆ a (t) − a ˆ†2 (t) + 2ˆ n+1 2 4 4
hα|ˆ a2 (t)|αi = hα|e−2iK nˆ t a ˆe−2iK nˆ t a ˆ|αi = αhαe2iKt |ˆ a|αe−2iKt i = α2 e−2iKt hαe2iKt |αe−2iKt i 2 −4iKt ) = α2 e−2iKt e−|α| (1−e
´ 1 ³ 2 −2iKt −|α|2 (1−e−4iKt ) 2 4iKt α e e + α∗2 e2iKt e−|α| (1−e ) + 2|α|2 + 1 4 ³ ´ ˆ 22 (t)|αi = 1 −α2 e−2iKt e−|α|2 (1−e−4iKt ) − α∗2 e2iKt e−|α|2 (1−e4iKt ) + 2|α|2 + 1 hα|X 4
ˆ 12 (t)|αi = hα|X
¿³ ´2 À 1 h ³ ´ 2 ˆ ∆X1 (t) = 1 + 2|α|2 1 − e−2|α| (1−cos 2kt) 4 ³ ´ 2 2 −4iKt 2 −2iKt ) + α2 e−|α| e−2iKt+|α| e − e−|α| (1−2e ³ ´i ∗2 −|α|2 2iKt+|α|2 e4iKt −|α|2 (1−2e2iKt ) +α e e −e ¿³ À ³ ´ ´2 1h 2 ˆ 2 (t) ∆X 1 + 2|α|2 1 − e−2|α| (1−cos 2kt) = 4 ³ ´ 2 2 −4iKt 2 −2iKt ) − α2 e−|α| e−2iKt+|α| e − e−|α| (1−2e ³ ´i ∗2 −|α|2 2iKt+|α|2 e4iKt −|α|2 (1−2e2iKt ) −α e e −e ¿³ Plotting
¿³ ´2 À ´2 À ˆ ˆ ∆X1 (t) and ∆X2 (t) versus Kt we see that former
goes below 1/4 for short time while the latter does not. See graphs below.
106
CHAPTER 7. NONCLASSICAL LIGHT 3
(DX 1 ) 2 2
1
1
2
3
4
5
6
Kt (DX 2 )2 3
2
1
1
2
3
4
5
6
Kt
7.9
Problem 7.9
Let’s |Ψ± i be the normalized real and imaginary states, defined as follows: |Ψ± i = N± (|αi ± |α∗ i) , hΨ± |Ψ± i = 1 |N± |2 [2 ± (hα|α∗ i + hα∗ |αi)] = 1 N± = [2 ± (hα|α∗ i + hα∗ |αi)]−1/2
(7.9.1)
7.9. PROBLEM 7.9
107 µ
1 1 hα|βi = exp − |α|2 − |β|2 + α∗ β 2 2
¶
h ³ ∗2 ´i−1/2 2 2 N± = 2 ± e−|α| eα + eα ¢ 1 ¡ iθ ˆ a ˆe + a ˆ† e−iθ X(ϑ) = 2
(7.9.2) (7.9.3)
D E ˆ ˆ X(ϑ) = hΨ± | X(ϑ) |Ψ± i |N± |2 © iϑ e [α + α∗ ± (α∗ hα|α∗ i + αhα∗ |αi)] 2 ª +eiϑ [α + α∗ ± (α∗ hα|α∗ i + αhα∗ |αi)] ¡ ¢ ¡ ¢ ¤ |N± |2 £ = (α + α∗ ) eiϑ + eiϑ ± eiϑ + eiϑ (α∗ hα|α∗ i + αhα∗ |αi) 2 h ³ ´i 2 ∗2 2 = |N± |2 cos ϑ α + α∗ ± e−|α| α∗ eα + αeα =
¡ iθ ¢ ¡ iθ ¢ ˆ 2 (ϑ) = 1 a ˆe + a ˆ† e−iθ a ˆe + a ˆ† e−iθ X 4 ¢ 1 ¡ 2 i2θ = a ˆ e +a ˆ†2 e−i2θ + a ˆa ˆ† + a ˆ† a ˆ 4 ¢ 1 ¡ 2 i2θ = a ˆ e +a ˆ†2 e−i2θ + 2ˆ aa ˆ† + 1 4 D
E ˆ 2 (ϑ) = hΨ± | X ˆ 2 (ϑ) |Ψ± i X ¢ |N± |2 £ 2iϑ ¡ 2 e α + α∗2 ± α2 hα∗ |αi ± α∗2 hα|α∗ i 4 ¡ ¢ + e−2iϑ α2 + α∗2 ± α2 hα∗ |αi ± α∗2 hα|α∗ i ¡ ¢ ¤ +2 |α|2 ± α2 hα∗ |αi ± α∗2 hα|α∗ i + 1 ¡ ¢ |N± |2 £ = 2 cos(2ϑ) α2 + α∗2 ± α2 hα∗ |αi ± α∗2 hα|α∗ i 4 ¡ ¢ ¤ +2 |α|2 ± α2 hα∗ |αi ± α∗2 hα|α∗ i + 1 ¢ ¡ |N± |2 £ 1 + 2|α|2 + 2 cos(2ϑ) α2 + α∗2 = 4 ³ ´i 2 ∗2 2 ±2(cos(2ϑ) + 1)e−|α| α2 eα + α∗2 eα =
108
CHAPTER 7. NONCLASSICAL LIGHT
³ ´ † ∗ CN (λ) = Tr ρˆeλˆa e−λ aˆ †
∗
= hΨ± | eλˆa e−λ aˆ |Ψ± i †
∗
= |N± |2 (hα| ± hα∗ |) eλˆa e−λ aˆ (|αi ± |α∗ i) ¡ ∗ ¢¡ ∗ ¢ ∗ ∗ = |N± |2 eλα hα| ± eλα hα∗ | e−λ α |αi ± e−λ α |α∗ i £ ∗ ∗ ¡ ∗ ∗ ∗ ¢¤ ∗ ∗ ∗ = |N± |2 eλα −λα + eλα−λ α ± eλα −λ α hα|α∗ i + eλα−λ α hα∗ |αi h ∗ ∗ ³ ∗2 ∗ ∗ ∗ ´i ∗ ∗ 2 2 ∗ = |N± |2 eλα −λα + eλα−λ α ± e−|α| eα eλα −λ α + eα eλα−λ α Z 1 ∗ ∗ 2 W (λ) = 2 d2 λeλ α−λ α CN (λ)e−|λ| /2 π Z £ λα∗ −λα∗ |N± |2 2 λ∗ α−λα∗ = d λe e π2 ³ ∗2 ∗ ∗ ∗ ´i ∗ ∗ 2 2 ∗ 2 +eλα−λ α ± e−|α| eα eλα −λ α + eα eλα−λ α e−|λ| /2 ·Z Z |N± |2 ∗ ∗ ∗ 2 −|λ|2 /2 2 e d λ + eλ (α−α )−λ(α−α )−|λ| /2 d2 λ = 2 π µ ¶¸ Z Z −|α|2 α∗2 λ∗ (α−α∗ )−|λ|2 /2 2 α2 −λ(α−α∗ )−|λ|2 /2 2 ±e e e d λ+e e dλ ³ ´i |N± |2 h −2(α−α∗ )2 −|α|2 α∗2 α2 = 2π + 2πe ± e 2πe + 2πe π2 ³ ∗2 ´i 2 |N± |2 h −2(α−α∗ )2 −|α|2 α α2 1+e ±e e +e = π where we have used the following identity Z ³ xy ´ π ∗ 2 2 exp(αx + α y − z|α| )d α = exp . z z
7.10
Problem 7.10 ¢ ¡ †2 ˆ1 = 1 a ˆ +a ˆ2 K 2 ¢ ¡ †2 1 ˆ2 = K a ˆ −a ˆ2 2iµ ¶ 1 1 † ˆ K3 = a ˆa ˆ+ 2 2
(7.9.4)
7.10. PROBLEM 7.10
109
a. h i £ †2 ¤ ˆ 1, K ˆ2 = 1 a K ˆ +a ˆ2 , a ˆ†2 − a ˆ2 4i ¤ £ 2 †2 ¤¢ 1 ¡£ †2 †2 = a ˆ ,a ˆ −a ˆ2 + a ˆ ,a ˆ −a ˆ2 4i 1 ¡ £ †2 2 ¤ £ 2 †2 ¤¢ − a ˆ ,a ˆ + a ˆ ,a ˆ = 4i 1 £ †2 2 ¤ =− a ˆ ,a ˆ 2i ¢ 1 ¡ †2 2 =i a ˆ a ˆ −a ˆ2 a ˆ†2 2 ¢ 1 ¡ †2 2 =i a ˆ a ˆ −a ˆ(1 + a ˆ† a ˆ)ˆ a† 2 ¢ 1 ¡ †2 2 =i a ˆ a ˆ −a ˆa ˆ† − (1 + a ˆ† a ˆ)(1 + a ˆ† a ˆ) 2 ¢ 1 ¡ †2 2 ˆ a ˆ −1−a ˆ† a ˆ − 1 − 2ˆ a† a ˆ−a ˆ† a ˆa ˆ† a ˆ =i a 2 ¢ 1 ¡ †2 2 =i a ˆ a ˆ − 2 − 3ˆ a† a ˆ−a ˆ† (1 + a ˆ† a ˆ)ˆ a 2 ¢ 1 ¡ †2 2 =i a ˆ a ˆ − 2 − 4ˆ a† a ˆ−a ˆ†2 a ˆ2 2 ˆ3 = −4iK
h
ˆ 2, K ˆ3 K
i
· ¸ 1 †2 1 2 † = a ˆ −a ˆ ,a ˆa ˆ+ 4i 2 ¤ 1 £ †2 = a ˆ −a ˆ2 , a ˆ† a ˆ 4i 1 ¡£ †2 † ¤ £ 2 † ¤¢ = a ˆ ,a ˆa ˆ − a ˆ ,a ˆa ˆ 4i 1 ¡ † £ †2 ¤ £ 2 † ¤ ¢ = a ˆ a ˆ ,a ˆ − a ˆ ,a ˆ a ˆ 4i ¢ 1 ¡ −2ˆ a† a ˆ† − 2ˆ aa ˆ = 4i ¢ 1 ¡ †2 =i a ˆ +a ˆ2 2 ˆ1 = iK
110
CHAPTER 7. NONCLASSICAL LIGHT ¸ h i 1· 1 †2 2 † ˆ ˆ K3 , K1 = a ˆ +a ˆ ,a ˆa ˆ+ 4 2 £ ¤ 1 †2 = a ˆ +a ˆ2 , a ˆ† a ˆ 4 1 ¡£ †2 † ¤ £ 2 † ¤¢ = a ˆ ,a ˆa ˆ + a ˆ ,a ˆa ˆ 4 1 ¡ † £ †2 ¤ £ 2 † ¤ ¢ = a ˆ a ˆ ,a ˆ + a ˆ ,a ˆ a ˆ 4 ¢ 1¡ = −2ˆ a† a ˆ† + 2ˆ aa ˆ 4 ¢ 1 ¡ †2 = −i a ˆ −a ˆ2 2i ˆ2 = −iK
b. According to section (7.1) ¿³
´2 À ¿ ³ ´2 À 1 ¯D E¯2 ¯ ¯ ˆ ∆Aˆ ∆B ≥ ¯ Cˆ ¯ , 4
(7.10.1)
ˆ B, ˆ and Cˆ satisfying the following commutation relation for any operators A, h
i ˆ ˆ ˆ A, B = iC.
ˆ 1 and K ˆ 2 , we will obtain Applying this to K ¿³
ˆ1 ∆K
´2 À ¿ ³
ˆ2 ∆K
´2 À
¯D E¯2 ¯ ˆ ¯ ≥ 4¯ K 3 ¯ .
c. ˆ 1 |αi = 1 hα|ˆ hα|K a†2 + a ˆ2 |αi 2 1 = hα|ˆ a†2 + a ˆ2 |αi 2 ¢ 1 ¡ ∗2 = α + α2 2
(7.10.2)
7.10. PROBLEM 7.10
111 1 hα|ˆ a†2 − a ˆ2 |αi 2i 1 = hα|ˆ a†2 − a ˆ2 |αi 2i ¢ 1 ¡ ∗2 = α − α2 2i
ˆ 2 |αi = hα|K
1 ˆ 3 |αi = 1 hα|ˆ hα|K a† a ˆ + |αi 2µ 2¶ 1 1 = |α|2 + 2 2 ¡ †2 ¢ ¡ †2 ¢ ˆ 12 |αi = 1 hα| a hα|K ˆ +a ˆ2 a ˆ +a ˆ2 |αi 4 1 = hα|ˆ a†4 + a ˆ4 + a ˆ†2 a ˆ2 + a ˆ2 a ˆ†2 |αi 4 1 = hα|ˆ a†4 + a ˆ4 + a ˆ†2 a ˆ2 + a ˆ†2 a ˆ2 + 4ˆ a† a ˆ + 2|αi 4 ¢ 1¡ = 2|α|4 + α∗4 + α4 + 4|α|2 + 2 4 ¡ †2 ¢ ¡ †2 ¢ ˆ 22 |αi = − 1 hα| a hα|K ˆ −a ˆ2 a ˆ −a ˆ2 |αi 4 1 = − hα|ˆ a†4 + a ˆ4 − a ˆ†2 a ˆ2 − a ˆ2 a ˆ†2 |αi 4 1 = − hα|ˆ a†4 + a ˆ4 − a ˆ†2 a ˆ2 − a ˆ†2 a ˆ2 − 4ˆ a† a ˆ − 2|αi 4 ¢ 1¡ = 2|α|4 − α∗4 − α4 + 4|α|2 + 2 4 ¿³
ˆ1 ∆K
´2 À
ˆ 12 |αi − hα|K ˆ 1 |αi2 = hα|K ¢ 1¡ 2|α|4 + α∗4 + α4 + 4|α|2 + 2 − α∗4 − α4 − 2|α|4 4 ¢ 1¡ = 4|α|2 + 2 4 1 = |α|2 + 2 =
112
CHAPTER 7. NONCLASSICAL LIGHT ¿³
ˆ2 ∆K
´2 À
ˆ 2 |αi − hα|K ˆ 2 |αi2 = hα|K 2 ¢ 1¡ 2|α|4 − α∗4 − α4 + 4|α|2 + 2 + α∗4 + α4 − 2|α|4 4 ¢ 1¡ = 4|α|2 + 2 4 1 = |α|2 + 2 =
ˆ 3 |αi2 = 1 hα|K 4
µ ¶2 1 2 |α| + 2
Obviously, ¿³
ˆ1 ∆K
´2 À ¿³
ˆ2 ∆K
´2 À
¯ ¯2 ¯ ˆ 3 |αi¯¯ . = 4 ¯hα|K
d. From that the squared field quadrature squeezing ¿³part c,´weÀcan deduce D E 2 ˆ 1,2 ˆ3 . ∆K occurs if