Introduction to the Theory of Linear Partial Differential Equations
STUDIES IN MATHEMATICS AND ITS APPLICATIONS VOLUM...
24 downloads
648 Views
6MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Introduction to the Theory of Linear Partial Differential Equations
STUDIES IN MATHEMATICS AND ITS APPLICATIONS VOLUME 14
Editors: J. L. LIONS, Paris G. PAPANICOLAOU, New York R. T. ROCKAFELLAR, Seattle H. FUJITA, Tokyo
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NEW YORK OXFORD
INTRODUCTION TO THE THEORY OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS
JACQUES CHAZARAIN and ALAIN PIRIOU Professors at the Universite de Nice
English version edited, prepared andproduced by TRANS-INTER-SCIENTIA P. 0.Box 16, Tonbridge, T N l 1 8 0 Y , England
1982
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NEW YORK OXFORD
North- Holland Publishing Company, I982 All rights reserved. N o part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any f o r m or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN 0 444 864.520
Translation of: Introduction a la Theorie des Equations aux Derivees Partielles Lineaires Bordas (Dunod), Paris, 198 I
Publishers: NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM NEW YORK OXFORD Sole distributors f o r the U.S.A.and Canada: ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 5 2 VANDERBILT, NEW YORK, N.Y. 10017
L i b r a r y 0 1 Congress Cataloging in Puhlication I)ata
C h az a r a in , J a c q u e s . I n t r o d u c t i o n t o t h e t h e o r y of l i n e a r p a r t i a l d i f f e r e n t i a l equations. ( S t u d i e s i n mathematics and i t s a p p l i c a t i o n s ;
14 T r a n s l a t i o n 9 f : I n t r o d u c t i o n a l a f h i o r i e des Gquations aux d e r i v e 6 s p a r t i e l l e s l i n e a i r e s Bibliography: p. Includes index. 1. D i f f e r e n t i a l e q u a t i o n s P a r t i a l . I. P i r i o u , Al ai n . 11. T i t l e . 111. S e r i e s . QA374.C4513 1982 515.3'53 82-8226 I S B N 0-444- 86452-0 (Else v i e r )
.
PRINTED IN T H E NETHERLANDS
TABLE
FOREWORD
OF
CONTENTS
................................................
xiii
............. .........................
Chapter 1 : D i s t r i b u t i o n s a n d o p e r a t o r s
. 2.
Spaces of distributions
1
Convolution and Fourier transformation of distributions
................................... 3 . Singular spectrm of a distribution ............. 4 . Operators and kernels ........................... 5 . Operators and support properties ................
.
1 1 13 21
23
30
6
Differential operators with constant coefficients
33
. 8.
Operators and distributions on a manifold
.......
44
7
9
.
Operators and kernel distributions on a manifold
59
Regular open subsets of lRn and manifolds with boundary
62
........................................
.
10
.................. ............ Homogeneous distributions ............... Fourier transform of eiXx / 2 ............ Fundamental solution of the Cauchy-Riemann operator ................................. Fundamental solution of the Laplace operator .................................
Additional notes and exercises 10.1
10.2
10.3 10.4
10.5
10.6
Paley-Wiener-Schwartz theorem
Fundamental solution of the heat operator -v-
71 71 72 73
74 74 76
vi
CONTENTS
10.7
Fundamental solution of the Schrgdinger operator
10.8
Fundamental solution of the wave operator
10.9
............................... ...............................
Inverse image of a distribution
........
77 78 80
....... 1. Dirichlet's principle ......................... 2. The spaces Hs(mn) and HS (X) ................ loc s S 3. The spaces H (X) and Hloc(X) ..................
104
4.
112
S o b o l e v s p a c e s and a p p l i c a t i o n s
Chapter 2 :
.................. 5 . Application to the Dirichlet problem .......... 6. Sobolev spaces and regularisation ............. 7 . Additional notes and exercises ................ 7.1 Poincar6's inequality ................... Trace theorems. spaces HS (X) 0
7.2 7.3 7.4 7.5
7.6
Invariance of H
S
under diffeomorphism
...
....................... ..................... inequalities ................
Strict inclusions
Lax-Milgram theorem Hbnander's
.
1
. 3. 4.
2
83 85
122
126 131
131 132
133 133 134
Local solvability for differential operators of principal type with real principal symbol
135
Symbols. o s c i l l a t o r y i n t e g r a l s and st a t i onary-phase theorems
139
........................
Chapter 3 :
83
............. Introduction .................................. Symbols ....................................... Elliptic symbols .............................. Asymptotic expansions of symbols ..............
139 140
149 152
CONTENTS
.
vii
................. 6. Various generalisations ....................... 7. Oscillatory integrals ......................... 8. Integral operators associated with a phase and an amplitude .................................. 9 . Stationary-phase theorem ...................... 10. Additional notes and exercises ................ 5
Topology on the symbol spaces
10.1 10.2
10.3
10.4
Symbols with uniform upper bounds with respect to x in Bn
............ Oscillatory integrals and decomposition into plane waves ....................... Lacunas of the fundamental solution of the wave operator ......................
. 2. 3. 4. 5
.
6.
182 182 183
184
Stationary-phase theorem for a surface integral
188
...............................
196
...
216
Pseudo d i f f e r e n t i a l o p e r a t o r s
Symbolic calculus of p.d.0.'~ on a manifold Elliptic p.d.o.'s
........ 10. Friedrich's lemma and generalisations ......... 9.
167
187
............................. 8. P.d.0.'~ and Sobolev spaces .................... 7.
159
......... Definition .................................... A characterisation of p.d.0.'~ ................ Symbol of a p.d.0. ............................ Algebra and symbolic calculus of p.d.o.'s ..... P.d.0.'~on manifolds .........................
Chapter 4 : 1
'157
Fundamental solution of the wave operator for space dimension equal to 1. 2 or 3
...........................
10.5
155
Elliptic complexes and Hodge's theorem
191
205 207 211
221 227 243 250
viii
CONTENTS
.
11
................ P.d.o.'s with uniform symbols .......... P.d.o.'s with uniform symbols and dependent on one parameter ............. Second proof of the estimate (7.6.1) of Chapter 2 ........................... Convolution with certain homogeneous distributions ..........................
Additional notes and exercises
256
11.1
256
11.2 11.3
11.4 11.5
Endomorphisms of complexes and traces
11.6
Cotlar-Knapp-Stein lemma
11.7
Calder6n-Vaillancourt theorem
Chapter 5 :
............... ..........
Elliptic boundary-value problems
.....
..................................
.
Introduction
2
.
Regularity of the potential at the boundary
3
.
The Calder6n projector
1
4.
..
...
........................
...................................... 5 . Examples ...................................... 6. Additional notes and exercises ................ 6.2
6.3 6.4
6.5 6.6 6.7 6.8
Example of a p.d.0. which does not satisfy the regularity property of Theorem 2.5
............................ Cauchy's formula and the Hilbert operator ............................... Weakening of assumption (2.1) .......... Local regularity in the neighbourhood of a point of an
264 264 264 266 267
271 271
Application to elliptic boundary-value problems
6.1
261
....................... Global regularity ...................... Converse of the regularity theorem ..... Case of systems which are elliptic in the sense of Douglis-Nirenberg ......... The oblique derivative problem .........
275 290 295 302
307
307
308 310
310
310 311 312 316
CONTENTS
6.9
Chapter 6 :
.
1 2
.
. 4. 3
ix
Elliptic boundary-value problems with interfaces
........................
320
....................
325
Evolution equations
The Cauchy-Kovaleski and Holmgren theorems
....
325
Necessary condition for the Cauchy problem to be well posed
337
Hyperbolic operators with constant coefficients
344
Hyperbolic Cauchy problems with variable coefficients
359
.................................
.................................. 5 . Parabolic Cauchy problems ..................... 6. Semigroups of operators and applications ...... 7. Additional notes and exercises ................ 7.1
Counter-example to the property of finite propagation speed in the non-differential case
....................
7.2 7.3 7.4 7.5 7.6
Generator of a strongly continuous group
....... . Wave equation with Neumann boundary conditions ............................... Equations of the Schradinger type ....... Further discussion of Theorem 6.9
Energy inequality for the wave equation
............. 1. Introduction .................................. 2. Operators and spaces used ..................... 3. The uniform Lopatinski condition .............. 4. Energy inequalities ........................... 5 . Construction of the symmetriser ...............
Chapter 7 :
M i x e d h y p e r b o l i c problems
378 384 402 402 402 403 404 405 407
409 409 411 421 440 448
CONTENTS
X
6
.
S o l u t i o n of t h e problem without i n i t i a l conditions
.................................... 7 . S o l u t i o n of t h e mixed problem ................. 8 . F i n i t e propagation speed ...................... 9 . A d d i t i o n a l n o t e s and e x e r c i s e s ................ 9.1 Spaces eyt H ' ......................... Y 9.2 Energy i n e q u a l i t y i n t h e s c a l a r case .... 9.3 Algebraic p r e l i m i n a r y t o E x e r c i s e 9.4 ... 9.4 P o s i t i v e symmetric systems .............. 9.5
Example of a boundary-value problem f o r a f i r s t - o r d e r d i f f e r e n t i a l system s a t i s f y i n g t h e uniform L o p a t i n s k i condition
...............................
Chapter 8 :
. 2. 3. 4.
1
5
.
Microlocalisation
......................
General p r o p e r t i e s of t h e s i n g u l a r spectrum (WF)
...................... .........................
460
478 483
491 491 493
494 495
499
501 501
The fundamental theorems
508
The c a s e of manifolds
523
..... ................
The c a s e of p s e u d o - d i f f e r e n t i a l o p e r a t o r s
534
A d d i t i o n a l n o t e s and e x e r c i s e s
539
5.1 5.2 5.3
5.4 5.5 5.6
Conclusion of t h e c a l c u l a t i o n of w F ( G ( x ' ) 0 Y ( x n ) )
...................
539
Conclusion o f t h e c a l c u l a t i o n of WF'(v(x-y)) for v E a'(iRn)
540
Construction of a d i s t r i b u t i o n whose s i n g u l a r spectrum i s a d i r e c t i o n i n T*(X)\O
540
.........
.............................. I n t r i n s i c c h a r a c t e r i s a t i o n of t h e s i n g u l a r spectrum ....................... Trace c a l c u l a t i o n s ...................... The Lefchetz-Atiyah-Bott formula ........
541 543
545
CONTENTS
Bibliography
Index
....................................
...................................................
xi
549
555
This Page Intentionally Left Blank
FOREWORD
Since t h e f i f t i e s , t h e t h e o r y of p a r t i a l d i f f e r e n t i a l equations has undergone c o n s i d e r a b l e development , y e t it i s c e r t a i n L y one of t h o s e f i e l d s where w e f i n d b o t h t h e l a r g e s t number o f r e s e a r c h a r t i c l e s and t h e s m a l l e s t number o f works of s y n t h e s i s . The s p e c i a l i s t can come t o terms w i t h such a s i t u a t i o n , b u t t h e student who d e s i r e s an i n t r o d u c t i o n t o t h i s t h e o r y f i n d s it r a t h e r a handicap.
Thus, i n t h e p r e s e n t book, which i s not a
t r e a t i s e b u t an i n t r o d u c t i o n , we aim t o p r e s e n t a r e a s o n a b l y l a r g e range of r e c e n t methods:
pseudo-differential operators,
o s c i l l a t o r y i n t e g r a l s , s t a t i o n a r y phase expansion, m i c r o l o c a l i s ation
....
We show how t h e s e methods permit t h e s o l u t i o n o f
numerous c l a s s i c a l problems i n an e l e g a n t and g e n e r a l manner: e l l i p t i c e q u a t i o n s , boundary problems, e v o l u t i o n e q u a t i o n s , mixed h y p e r b o l i c p r o b l e m s , . . .
, We have a l l o t t e d c o n s i d e r a b l e
room t o t h e e q u a t i o n s of Physics because, h i s t o r i c a l l y , t h i s has been t h e o r i g i n of important problems i n p a r t i a l d i f f e r e n t i a l equations and remains t o t h e p r e s e n t day t h e p r i n c i p a l s o u r c e of interesting questions.
A s r e g a r d s t h e form of t h e book, we have endeavoured t o g i v e very d e t a i l e d p r o o f s i n such a way a s t o r e n d e r t h e work accessi b l e t o a r e a d e r a t post-graduate l e v e l .
With t h i s i n mind, we
have sometimes p r e f e r r e d t o r e s t r i c t t o some degree t h e g e n e r a l i t y of c e r t a i n results i n o r d e r t o avoid o b s c u r i n g t h e ideas- under-
-xiii-
xiv
FOREWORD
l y i n g t h e t e c h n i q u e s b e i n g used.
Each c h a p t e r b e g i n s , i n
g e n e r a l , w i t h a b r i e f d e s c r i p t i o n of t h e s u b j e c t m a t t e r and t h e methods which w i l l b e developed t h e r e i n , and ends w i t h supplements i n t h e form of e x e r c i s e s t o g e t h e r w i t h h i n t s f o r s o l u t i o n ( a n a s t e r i s k i n d i c a t e s t h o s e which w i l l b e u t i l i s e d i n t h e t e x t which follows).
For t h e convenience of t h e r e a d e r , t h e main e x t e n s i o n s
a r e l i s t e d w i t h i n t h e t a b l e of c o n t e n t s .
i s deliberately restricted:
The b i b l i o g r a p h y given
anyone w r i t i n g on such a s u b j e c t
r e f e r s t o such a l a r g e number of s o u r c e s t h a t an e x h a u s t i v e l i s t of t h e s e would be unwieldy.
It seems t o us t o be p o s s i b l e t o use t h i s book a t two l e v e l s ; on t h e one hand t h e f i r s t f o u r Chapters ( D i s t r i b u t i o n s and Operat-
ors; Sobolev Spaces; Pseudo-differential
Symbols and O s c i l l a t o r y I n t e g r a l s ;
O p e r a t o r s ) can s e r v e as t h e b a s i s f o r an
introductory post-graduate course.
On t h e o t h e r hand, t h e l a s t
f o u r Chapters ( E l l i p t i c boundary problems; Mixed h y p e r b o l i c problems;
Evolution equations;
M i c r o l o c a l i s a t i o n ) a r e aimed more
p a r t i c u l a r l y a t Ph.D. s t u d e n t s and a t r e s e a r c h workers who w i l l f i n d c o n t a i n e d t h e r e i n numerous r e s u l t s f o r m e r l y d i s p e r s e d amongst s p e c i a l i s e d j o u r n a l s .
CHAPTER I
D I S T R I B U T I O N S AND OPERATORS
1.
SPACES OF DISTRIBUTIONS The c o n s i d e r a b l e expansion o f t h e t h e o r y of p a r t i a l d i f f e r -
e n t i a l e q u a t i o n s d u r i n g t h e l a s t twenty y e a r s h a s , i n l a r g e measure, i t s o r i g i n i n t h e development by L . Schwartz of t h e theory of d i s t r i b u t i o n s .
T h i s t h e o r y c l a r i f i e s and u n i f i e s
s e v e r a l concepts which were p r e v i o u s l y r a t h e r u n c l e a r , l i k e f o r example t h e concepts o f :
weak d e r i v a t i v e , g e n e r a l i s e d F o u r i e r The t h e o r y of d i s t r i b u t i o n s i s
t r a n s f o r m , fundamental s o l u t i o n . nowadays u n i v e r s a l l y known;
however, f o r t h e convenience of t h e
r e a d e r , we s h a l l h e r e summarise t h e elements of t h i s which will The most s t a n d a r d of t h e p r o o f s w i l l b e
prove u s e f u l l a t e r .
o m i t t e d , t h e s e b e i n g a v a i l a b l e i n SCHWARTZ [11, HORMANDER [11,
TREVES [ll. Letting
c1
.. , a n )
= (a1,,
E
W n be a m u l t i - i n d e x , we p u t
with
= - l-
D
j
I.\
=
a,
+
...
+ a"
9
1
a! = (a,!)x
a
i ax
...
a
x (wn!);
2
DISTRIBUTIONS AND OPERATORS
i f x = (xl,
...,
n x n ) E IR we p u t 1x1 = (x:
We l e t X be an open s u b s e t o f IRn
, and
+
(CHAP. 1)
... + x2n )1 / 2 .
we suppose m
E
IN u { +
3.
m
m
We denote by C ( X ) t h e space of complex-valued f u n c t i o n s whose d e r i v a t i v e s of o r d e r l e s s t h a n or e q u a l t o
m
a r e continuous.
The f a m i l y of semi-norms
where K i s a compact s u b s e t o f X and
j
i s an i n t e g e r such t h a t A subset
0 5 j S m y e q u i p s C m ( X ) w i t h a Frgchet-space t o p o l o g y .
B of C m ( X ) i s s a i d t o b e bounded i f , f o r any semi-norm p have
Sup cp E B
p (cp) K, j
c
+
OD
K , j y we
.
The s u p p o r t of a f u n c t i o n cp
E
C o ( X ) i s by d e f i n i t i o n t h e
s m a l l e s t c l o s e d s u b s e t o f X o u t s i d e o f which t h e r e s t r i c t i o n o f
i s z e r o (or a l t e r n a t i v e l y , t h e c l o s u r e of t h e s e t of p o i n t s of X where Q i s n o n - z e r o ) , and we denote it by supp
C i orBK)t h e
.
If K i s a
o r b K ( X ) (or more con-
compact s u b s e t of X, we denote by C:(X) cisely
cp
c l o s e d t o p o l o g i c a l subspace of C m ( X ) formed
by t h e f u n c t i o n s w i t h s u p p o r t i n K.
The v e c t o r subspace o f
m
C ( X ) formed by t h e f u n c t i o n s w i t h compact s u p p o r t i s denoted by
C t ( X ) or b m ( x ) (or more c o n c i s e l y & ( X )
when m =
+
m);
e q u i p it w i t h t h e i n d u c t i v e l i m i t t o p o l o g y of t h e C"(X)
K
v a r i e s over t h e f a m i l y of compact s u b s e t s of X.
a l i n e a r mapping from
c:(x)
we when K
In p a r t i c u l a r ,
i n t o a t o p o l o g i c a l v e c t o r space F i s
Q
3
SPACES OF DISTRIBUTIONS
(SEC. 1)
m
continuous i f and only i f i t s r e s t r i c t i o n t o each C,(x)
i s contin-
ous, s o it i s s u f f i c i e n t t o b a s e o u r r e a s o n i n g on sequences. bounded s u b s e t o f $ ( X )
i s a bounded s u b s e t of C:(X)
A
for a certain
compact s u b s e t K .
A distribution
DEFINITION 1.1 :
continuous linear form on
c ~ ( x =)
u
on the open s e t X i s a i . e . a linear form u
&(XI,
on B(X) such t h a t f o r any compact subset K C 2 0, j
IN with \ u ( y ) I
E
C
5
The i n j e c t i o n of & ( X )
p
K,j
there e x i s t s
(Q) f o r a l l Q
Bm(X)
into
c X,
E
i s continuous, and a l s o
o f dense image ( c o n s i d e r a r e g u l a r i s i n g sequence, i . e . of f u n c t i o n s p
where p
E
&(IR")
I p ( x ) dx = 1;
i s such t h a t
r
%
+
=
Ju(y)
u in
&'Im(X)
of
a sequence
K o f t h e form
we c o n s i d e r t h e r e g u l a r i s a t i o n s u
u,(x)
&,(XI.
pk[x-y)
Bm(X)i f
k
Bm(X)i s
+
dy
+
k = u
*
pk o f
suppose u u
E
Bm(X);
d e f i n e d by
and we can e a s i l y show t h a t
a).
Thus t h e d u a l t o p o l o g i c a l space
i d e n t i f i e d w i t h a v e c t o r subspace of 8(X)
( w e i d e n t i f y a continuous l i n e a r form on
% . m( X )
with i t s r e s t r i c t -
ion t o & ( X ) ) .
a m ( X ) i s termed t h e space o f d i s t r i b u t i o n s on X
of o r d e r 5 m.
I n p a r t i c u l a r t h e d i s t r i b u t i o n s of o r d e r 5 0 are
measures.
For example, f o r a
E
X , we d e f i n e t h e Dirac measure
4 8 Q
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS E$'(X)
a E
a
a t the point I Let Lloc(X)
B0(X).
< 6 a , Cp > =cp(a) f o r
by
be t h e space of c l a s s e s o f f u n c t i o n s
which a r e i n t e g r a b l e over any compact s u b s e t of X for t h e Lebesgue measure dx = dxl f dx
E
,&''(X)
.. .
dx
n
i n X.
For f
E
1 Lloc(X),
t h e measure
i s i d e n t i f i e d w i t h t h e d i s t r i b u t i o n ( a l s o denoted
f) d e f i n e d by
by
I n p a r t i c u l a r we s h a l l c o n s i d e r t h e c a s e where
i s t h e Heavi-
f
s i d e f u n c t i o n Y i n IR d e f i n e d by Y(x) = 1 i f x 2 0 , and by Y(X)
=
o
if x < 0.
We now i n d i c a t e w i t h o u t proof s e v e r a l t o p o l o g i c a l p r o p e r t i e s
of a ( X ) ,
a'(X )
which w i l l be u s e f u l l a t e r on.
n a t u r a l t o p o l o g i e s on 8 . ' ( X ) :
t h e topology
ence, and t h e s t r o n g d u a l t o p o l o g y ,
"e,, of
There a r e two
rso f
simple converg-
&(XI, i . e . t h e t o p o l -
ogy of uniform convergence on t h e bounded s u b s e t s o f &(X)
(since
a bounded s u b s e t o f b ( X ) i s r e l a t i v e l y compact, t h e t o p o l o g y o f uniform convergence on t h e compact s u b s e t s of 8 ( X ) c o i n c i d e s with
rb). When we
equip a ( X ) with topology
rb,t h e
strong
d u a l of ,#( X ) i s i d e n t i f i e d a l g e b r a i c a l l y and t o p o l o g i c a l l y w i t h
(X).
Furthermore,
a(X)i s
t h a t t h e bounded s e t s of
rb,and t h a t
&'(X)
a b a r r e l e d s p a c e , which means a r e t h e same f o r
Ts
and
t h e y c o i n c i d e w i t h t h e e q u i c o n t i n u o u s s u b s e t s of
"es
We t h e r e b y deduce t h a t
,@'(X).
5
SPACES OF DISTRIBUTIONS
(SEC. 1)
yb c o i n c i d e
and
on t h e
I n p a r t i c u l a r , i n t h e c a s e of a
bounded s u b s e t s of #(X).
sequence of d i s t r i b u t i o n s , convergence i n t h e s e n s e o f convergence i n t h e s e n s e of
b
c o i n c i d e , and we t h e n speak of a
convergent sequence of d i s t r i b u t i o n s .
,
from a m e t r i z a b l e space i n t o #(X) depend upon t h e t o p o l o g y (
Thus, i f A i s a mapping
t h e c o n t i n u i t y of A does n o t
r sor "e,) w i t h
which we e q u i p #(X).
m e same i s a l s o t r u e i f A i s a l i n e a r o p e r a t o r from
a'( X) , where
zs and
B ( Y )i n t o
s i n c e t h e c o n t i n u i t y of
Y i s a n open s u b s e t of IRp
A i s e q u i v a l e n t t o t h a t of i t s r e s t r i c t i o n t o each
BK(Y).
This
b e i n g t h e c a s e , we s h a l l simply r e f e r t o a continuous l i n e a r i n t o #(X).
o p e r a t o r from &(Y)
,&(X) i n t o &(X)
I n p a r t i c u l a r , t h e i n j e c t i o n of
i s c o n t i n u o u s , and we s h a l l s e e t h a t it i s o f
s e q u e n t i a l l y dense image ( s e e Remark 2 . 3 ) .
We can g e n e r a l i s e t o d i s t r i b u t i o n s c e r t a i n o p e r a t i o n s on functions.
I f Y i s an open s u b s e t of X and i f u
ine the restriction u C ulYg cp
> = < u,
distribution u ion a u
E
a'
P(x,
uI
f o r a l l cp
>
#(X)
8 ' ( Y ) of
u E
Ip
> = (-
D) = ,
F
111~1
u
E
U,
C"(X) i s t h e d i s t r i b u t acp
> for all q
E
&(XI.
i s t h e d i s t r i b u t i o n on X d e f i n e d by
c u,
a ( x ) Da
Ilcrcm a c o e f f i c i e n t s aa E c"(x),
The product o f a
&(Y).
and a f u n c t i o n a
aa u of
fl(X), we def-
t o Y by
a ' ( X ) d e f i n e d by e au, cp > = c
The d e r i v a t i v e
dxn
for
cp E
i s s a i d t o be continuous w i t h r e s p e c t t o
xn w i t h v a l u e s which a r e d i s t r i b u t i o n s w i t h r e s p e c t t o x' and we d e f i n e i t s " s e c t i o n a l t r a c e on {x = O}" n
yo u = U(0).
We n o t e t h a t
aa' U.
with t h e function u
yo
IJ
E J'(R"I)
by
a ax ,t u i s t h e d i s t r i b u t i o n a s s o c i a t e d If U
E Ck(R, ,p1(RW1))
we s a y t h a t
i s of class Ck w i t h r e s p e c t t o xn w i t h v a l u e s which a r e d i s t -
r i b u t i o n s w i t h r e s p e c t t o x'.
05 j 5 k
, a,j
u
We n o t e t h a t , for
i s t h e d i s t r i b u t i o n associated with t h e
CONVOLUTION AND F.T.'s
(SEC. 2 )
function
< U * V , Q >
for a l l
Q
E&
The p r i n c i p a l p r o p e r t i e s o f c o n v o l u t i o n a r e summarised i n t h e following :
utions.
u,v are two convoZvabZe d i s t r i b -
Suppose
PROPOSITION 2.2: Then =
u * v aa(u
*
s ~ p p(u
v + u
=
V]
*
aa c
v)
u
*
SUPP u
u
=
v
+
* aa
supp v
v
, where
the right-hand
side i s cZosed.
(2.2.1.)
u
(TX
*
;1(Y1
v
E C" mad
=
REMARK 2.3:
If u
E
a', we
towards
u
in
(u
Y
*
v)(x)
=
, where
4X-Y)
Let p
j
be a r e g u l a r i s i n g sequence ( s e e (1.1.1)). m
can show t h a t t h e C
8';
suppose
xj
functions u n p
j
converge
i s a sequence of t r u n c a t i o n
CONVOLUTION AND F . T . ' s
(SEC. 2 )
f u n c t i o n s as i n ( 1 . 2 . 2 ) ;
Pj
*
E&
( X . u)
J
we can show t h a t t h e f u n c t i o n s
converge towards
sequential density of & i n
2.4
15
u
i n &'
.
This proves t h e
B'.
FOURIER TRAnTSFORMATION:
If
f E L1 = L1(Rn)
,
its
A
F o u r i e r t r a n s f o r m i s denoted by 9 f where f is d e f i n e d by
Let us now d e f i n e a subspace o f 'L
which i s i n v a r i a n t under
Fourier transformation:
We denote by 8 the space of functions
DEFINITION 2.4:
cp
E
'h(V1
C"( IRn ) such t h a t , f o r any i n t e g e r h,
supRn (1
=
1.1
+
1x1')~
1
aa cp(x)l
the quantity i s finite.
o
is
Ih
called the space o f functions which are rapidly decreasing, along with a l l t h e i r d e r i v a t i v e s .
We e q u i p 8 w i t h t h e topology d e f i n e d by t h e f a m i l y o f seminorms q h ( h
E
IN ) .
the following :
8 i s a Fr&chet space.
We r e c a l l without proof
16
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
THEOREM 2.5:
The Fourier transformation 'jl e s t a b l i s h e s a
topological vector isomorphism of 8 onto i t s e l f , with inverse ~ r 's a t i s f y i n g
(T'g l ( x 1
where $ 5 = ( 2 ~ ) -d ~5
.
=
I
eiy*c g(c1
for g E 8
cp, Q E 8 , we have
If
(2.5.1 .)
If we have cp E
B , D e f i n i t i o n ( 2 . 4 . 1 ) f o r + shows t h a t it e x t e n d s
i n t o an e n t i r e f u n c t i o n on C
n
d e f i n e d by
We s h a l l now show t h a t t h e behaviour of
@
i n Cn d e t e r m i n e s t h e
convex envelope o f t h e s u p p o r t o f c p .
To do t h i s , we d e f i n e t h e i n d i c a t o r f u n c t i o n IK of a compact s u b s e t K of R n by
For example, i f K i s t h e b a l l B w i t h c e n t r e 0 and r a d i u s R , we
The i n d i c a t o r of K d e t e r m i n e s , for
ach hyperpl
t h e s m a l l e s t c l o s e d h a l f - s p a c e which c o n t a i n s K .
direction,
Consequently,
t h e Hahn-Banach theorem shows t h a t IK d e t e r m i n e s t h e convex n
envelope K of K and IK =
%.
17
CONVOLUTION AND F . T . ' s
(SEC. 2 )
We can s t a t e t h e f o l l o w i n g :
THEOREM 2 . 6 :
(Paley-Wiener).
Let K be a convex compact
subset of B n . An e n t i r e f u n c t i o n U on Cn i s the Fourier transform of a function belonging t o &K i f and only i f , f o r a l l N,
there e x i s t s CN such t h a t
6=5+i7l E C Proof of n e c e s s i t y .
n
.
For any m u l t i - i n d e x a , t h e e q u a l i t y ( 2 . 5 . 1 )
implies t h a t
which g i v e s t h e upper bound.
and ( 2 . 6 . 1 ) f o l l o w s from t h i s immediately.
Proof of s u f f i c i e n c y .
The upper bounds ( 2 . 6 . 1 ) imply t h a t U(c)
i s of r a p i d d e c r e a s e ;
it i s t h u s t h e F o u r i e r t r a n s f o r m of a C
m
f u n c t i o n Q , g i v e n by
(2.6.2
.) I n o r d e r t o show t h a t supp Q c K , i t i s s u f f i c i e n t t o v e r i f y
t h a t i f # { K we have cp(xo) = 0 .
By Hahn-Banach,
there exists
18
(CrnP. 1)
DISTRIBUTIONS AND OPEFATORS
a hyperplane which s e p a r a t e s x
I n o t h e r words, t h e r e e x i s t s
q
0
0
and t h e compact convex s e t K . E
lRn \ 0 and c
E
lR
such t h a t
A f t e r a l i n e a r change of c o o r d i n a t e s , w e can assume rlo
= (0,..., 0, 1); we put 5 =
( E l ,
6,).
For t > 0 , Cauchy's theorem allows t h e i n t e g r a l ( 2 . 6 . 2 ) t o be r e p l a c e d by
Taking N = n + l , w e deduce from ( 2 . 6 . 1 ) and ( 2 . 6 . 4 ) t h e upper bound
0
Since ( 2 . 6 . 3 ) i m p l i e s xn t e n d s t o 0 when t -+
+
m;
> IK(qo), t h e hence
cp(xo]
right-hand s i d e o f ( 2 . 6 . 5 ) =
0
.
I t can e a s i l y be seen t h a t t h e i n j e c t i o n s
B C>
8 &>
caD
a r e continuous and of dense image ( t o prove
t h a t & i s dense i n 8 , we proceed by t r u n c a t i o n u s i n g f u n c t i o n s
CONVOLUTION AND F.T.'s
(SEC. 2)
x
xj(x) = x(x/j), where
Ix I
B(IRn)i s such t h a t x(x) = 1 f o r
E
S is
Thus t h e d u a l s'of
1).
S
vector subspace o f
19
8' c o n t a i n i n g
n a t u r a l l y i d e n t i f i e d with a
d.
8' i s termed t h e space o f
tempered d i s t r i b u t i o n s .
For u
E
O'and
, and
u atq,
E 8 , we a g a i n denote by t h e v a l u e of
Q
for the pair 8 ,8'
analogous t o t h o s e of t h e p a i r b
we have t o p o l o g i c a l p r o p e r t i e s
, s'
.
Formula ( 2 . 5 . 1 ) p e r m i t s
t h e F o u r i e r t r a n s f o r m a t i o n t o be extended t o 8 ' :
For u
DEFINITION 2.7:
Fu
=
G
E
u by< SJ,$I
E 8 , of
Fourier transformation
81, we define the Fourier transform
>=
c u, Sg > f o r a l l J,
E
The
8 .
3 e s t a b l i s h e s a topo ZogicaZ vector isomor-
phism of 8 , (equipped with one of the two topologies
y so r
'%
onto i t s e l f . .
I n t h e c a s e o f d i s t r i b u t i o n s w i t h compact s u p p o r t , we have:
2.8:
THEOREM
If u
E
&, then Zu is the Cm f u n c t i o n
defined b y
[
~
t
=j
for
g E R"
3 u extends the e n t i r e f u n c t i o n on Cn defined by
[su)(G)
=
for
5 E R"
.
3 u i s a sZowly increasing f u n c t i o n i n B n J i . e . there e x i s t C
and u such t h a t
)
DISTRIBUTIONS AND OPERATORS
20
d
More generaZZy, i f B i s a bounded subset o f
u such t h a t (2.8.1) is vaZid f o r aZZ u
E
( C H A P . 1)
we can f i n d C and
B.
We point out merely that the upper bound (2.8.1) derives from the upper bound of the linear form u on C
m
*
by a semi-norm p
K,!J,
furthermore, we can employ an identical semi-norm for any u because a bounded subset is an equicontinuous part of
E
B
6.
We have the analogue of Theorem 2.6 as follows:
THEOREM 2 . 9 :
(Paley-Wiener-Schwartz). Let K be a convex
compact subset of IRn.
An e n t i r e f u n c t i o n U i s the Fourier trans-
form of a d i s t r i b u t i o n of
i f and onZy i f there e x i s t C and
N such t h a t
We shall not have to make use of this theorem and we postpone a proof until Exercise (10.1).
The principal properties of Fourier transformation in 8'are summarised in the following theorem:
(SEC. 3 )
21
SINGULAR SPECTRUM
Suppose we have u
THEOREM 2.10:
(2.10.1 .)
S(U
*
3(Da
v)
=
U)
=
E
$'and v
E
&'
.
Then
FU.KJ
Fu
2 3 e s t a b l i s h e s a linear homeomorphism of L and we have Parseval's
formula:
Formula ( 2.10.2 ) shows t h a t
, by
Fourier transformat ion , t h e
d i f f e r e n t i a l o p e r a t o r P(D) i s transformed i n t o t h e o p e r a t o r of m u l t i p l i c a t i o n by P([).
This p r o p e r t y makes F o u r i e r transform-
a t i o n a b a s i c t o o l for t h e s t u d y o f d i f f e r e n t i a l o p e r a t o r s .
REMARK 2.11:
Sometimes convolution products can be d e f i n e d
without a s u p p o r t c o n d i t i o n . just as in (2.2.1), (u
u n v
E
C"(IRn),
*
nus, for u
v ) ( x ) = C U,
E
"cx
and we can show t h a t u n v
S' and v
>. E
E
S
, we
put,
We have
8' and t h a t
formula ( 2 . 1 0 . 1 ) remains v a l i d .
3.
SINGULAR SPECTRUM OF A DISTRIBUTION From t h e d e f i n i t i o n o f t h e s i n g u l a r support of u
E
8 ' ( X ) , we
22
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
have t h e equivalence
x
0
4
1
s i n g supp u
t h e r e e x i s t s an open neighbourhood V of
xG such t h a t f o r a l l a
we have au
E
E
1
a(V)
&(V)
and by F o u r i e r t r a n s f o r m a t i o n , t h e c o n d i t i o n ciu E & ( V ) i s equiva l e n t t o t h e e x i s t e n c e f o r a l l N of a c o n s t a n t C such t h a t
Iasll
(3.1 .I.)
5
c
(1 +
ICll4
5
for
F?
E
I n t h e l a t t e r form, we can r n i c r o l o c a l i s e t h e concept of s i n g u l a r support b y d i s t i n g u i s h i n g t h e di r e c t i o n s have an upper b o w d o f t h e t y p e ( 3 . 1 . 1 . )
A point ( x o , g o )
DEFINITION 3.1.
5
i n which we
. E
X x ( IRn
-
n o t within the singuZar spectrum o f the d i s t r i b u t i o n u
0
1) is
E
&'(X)
i f there e x i s t s a neighbowhood V o f xo and a neighbourhood W of
5' such t h a t (3.12.)
for a21
c1 E
IG('T?,)I
B(v) and a22 5
c
7
N there e x i s t s C such t h a t
for
T
2
1 and 5
E
w.
The singuZar spectrum o f u i s a closed subset o f X x ( En - { 0 I ) denoted by m u . This concept w a s i n t r o d u c e d and i n v e s t i g a t e d by HORMANDER [ 5 l (under t h e name "wave-front s e t " ) f o l l o w i n g t h e i n t r o d u c t i o n by SATO of t h e concept of t h e " s i n g u l a r spectrum" of a hyperfunction ( s e e for example SATO 111).
See a l s o
DUISTEWT [l] and GUILLEMIN-STERNBERG [11 f o r t h e concept of a s i n g u l a r spectrum. Knowledge o f t h e s i n g u l a r spectrum determines t h e s i n g u l a r s u p p o r t because
4)
(SEC.
rx (WFu) = s i n g supp u where
(3.1.3.)
'* x x m n \ 0 ) 3 x , & ) c - - , x
77 X
In f a c t , i f x (xo, x
0
4
0
4
E
x.
s i n g supp u , it i s c l e a r t h a t
g o ) 4 W F f~o r a l l g
E
zn - i o I .
r,,(WFu), we a s s o c i a t e w i t h a l l g
/El =
23
OPERATORS AND K2RNELS
Conversely, i f
Bn
-
{ 0
and
0
i n which we have an
E
A
1 neighbourhoods Vt and Wi o f x
i n e q u a l i t y of t h e t y p e (3.1.2).
0
1
such t h a t
If we e x t r a c t a f i n i t e c o v e r i n g
t h a t w i t h t h i s choice o f V we have t h e c o n d i t i o n ( 3 . 1 . 1 ) and consequently x
0
4
s i n g supp u.
EXAMPLE 3 . 2 :
I
I
=
WF(6,)
< Y,
lcy(a)l,
=
{a] x
emix5 >
cy
=
and WF(Y] = {O] x
(R" \ 0)
(R \
0)
OPEWTORS AND KERNELS. n Suppose X , Y a r e open s u b s e t s of lR , Bp; we i n v e s t i g a t e con-
tinuous l i n e a r operators f r o m B ( Y ) i n t o
EXAMPLE
4.1
:
a' ( x ) .
Let K be a f u n c t i o n i n C"(X
x Y).
Then
t h e i n t e g r a l o p e r a t o r A which a s s o c i a t e s w i t h each $ E ~ ( Y t) h e f u n c t i o n A$ d e f i n e d by (ASHXI
i s continuous from.f?(Y)
=
\
K(x9 Y ) $ l Y I dY
i n t o C"(X).
Moreover, A extends i n t o
. L
a l i n e a r o p e r a t o r A f r o m c ' ( Y ) i n t o C"(X)
when w e p u t
U
( A v ) ( x ) = < v , K(x, . ) > f o r v m
'H,j
E
&(Y).
i s a semi-norm on C (X), we have
More p r e c i s e l y , i f
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
24
and s i n c e t h e f u n c t i o n s 3
c4
X
K(x, . ) d e s c r i b e a bounded s u b s e t of OI
m
C ( Y ) when x d e s c r i b e s H , we s e e t h a t A i s a continuous l i n e a r
o p e r a t o r from
& (Y)
r b ) i n t o C"(X).
(equipped w i t h
More g e n e r a l l y , l e t us c o n s i d e r a d i s t r i b u t i o n K
E
With it we a s s o c i a t e an o p e r a t o r A = Op(K) which
r ( X x Y).
i s continuous and l i n e a r from .&Y)
by p u t t i n g
< A$, ep > = c K, ep e3 6 > f o r a l l J, E
(4.1.1.)
&(X
x X)
.
1
x
E
Bcxl
X 1
We denote by 6D t h e d i s t r i b u t i o n on
be t h e d i a g o n a l of X x X.
< 6,,, i >
X x X d e f i n e d by
. a ( y > , rp E
Let D = d i a g ( X x X ) = { (x, x)
EXAMPLE 4 . 2 :
0 E
i n t o &'(X),
@ [ x , x ) dx
L
for a l l
Then it i s c l e a r t h a t Op( 6 ) = I d e n t i t y .
D
EXAMPLE 4 . 3 :
Suppose we have T
E
&'(En).
With it we
n n a s s o c i a t e t h e d i s t r i b u t i o n on IR xJR denoted, by an abuse o f n o t a t i o n , by T(x
< T(x
- y),
-
y ) and d e f i n e d by
i > =
( t h u s 6D = 6(x
-
< T(x),
Then, Op ( T ( x
y)).
convolution w i t h T: $.
@ ( x+ yly)
+
T
*
-
> dy
i E J(F? x R")
9
y ) ) i s t h e operator of
$.
We l e a v e t o t h e r e a d e r t h e t a s k o f v e r i f y i n g t h a t t h e sing-
ular s u p p o r t of a d i s t r i b u t i o n o f t h e form T(x
-
y ) i s equal t o
t h e set
(4.3.1 .]
C
(x, y) E
R" x R"
I
(x
- y>
E s i n g supp T I .
4)
(SEC.
OPERATORS AND KERNELS
25
We now r e t u r n t o t h e l i n e a r mapping K + A = Op(K) from &(X
x Y ) into&@(Y),
B'(X))
d e f i n e d by ( 4 . 1 . 1 ) .
This mapping
We s h a l l now s e e t h a t it i s
i s i n j e c t i v e i n view of Lemma 1 . 3 . surjective: THEOREM
4 . 4 (Sehwartz's kernels theorem)
tinuous linear operator A f r o r n & ( Y ) unique d i s t r i b u t i o n K
E
&'(X
:
For any eon-
i n t o &'( X) , there e x i s t s a
x Y) such t h a t A = Op(K);
K is
ealZed the kernel of the operator A. PROOF :
The b i l i n e a r form
B[x)
X
B(y) 3
(Cp,
$1 ->
< A$,,cp > E c
induces a l i n e a r form K on t h e a l g e b r a i c t e n s o r product
ax)
@
afY).
(X x Y ) we have
E x p l i c i t l y , for 0 N
(4.4.1 .] where N
(4.4.2.) i s a decomposition o f @,
and
(4.4.1) i s
independent o f t h e choice
of t h e decomposition of 0 .
To conclude, it f o l l o w s from Lemma 1 . 3 t h a t it s u f f i c e s t o show t h a t K i s a c o n t i n u o u s l i n e a r form on topology induced b y a ( X x Y ) .
ax) f23 aY) f o r
the
L e t t i n g H , L be compact s u b s e t s
o f X , Y , we show t h a t t h e r e e x i s t s a semi-norm p such H x L,m that
(4.4.3.)
I
I
5
C p,,
L,m ( 9 )
,
f o r CP E f l y ) w i t h supp 0 c H x L .
be compact neighbourhoods o f H , L ; by t r u n c a t i o n ,
DISTRIBUTIONS AND OPERATORS
26
we can always w r i t e ( 4 . 4 . 2 ) w i t h (pj €
BH,(X)
(CHAP. 1)
$ j EBL [y) 1
if
supp
I
,
H x L
C
m
Suppose we have f E Co(X) e q u a l t o 1 on H1 and we p u t H2 = S ~ P Pf ; a3
l i k e w i s e suppose we have g
E
Co(Y) e q u a l t o 1 on L1 and we p u t
c o n s i d e r i n g t h i s i n t e g r a l as an i n t e g r a l o f a f u n c t i o n w i t h values i n b
A I)j
=
( Y ) , t h e c o n t i n u i t y of A p e r m i t s us t o w r i t e
.i;d l .,
fis
eiY.7)
f(x1 eix**
.
i j ( s > A! ,
Likewise, by w r i t i n g
we o b t a i n
where
The c o n t i n u i t y o f
< A$,
[cp, I)) &%(X)
x &,(Y)
(p
A i m p l i e s t h a t t h e b i l i n e a r mapping
>
i s s e p a r a t e l y c o n t i n u o u s from
i n t o C;
a n a l y s i s , it i s c o n t i n u o u s .
t h u s , u s i n g a r e s u l t from f u n c t i o n a l
A l s o , t h e r e e x i s t s C , h , II such
that
I n p a r t i c u l a r , it f o l l o w s from t h e d e f i n i t i o n of F t h a t t h e r e
(SEC. 4 )
27
OPERATORS AND KERNELS
e x i s t s C such t h a t
c
IF(%, S)l
(4.4.5.)
for
(5, 7 ) E R”
By l i n e a r i t y , we deduce from
< K,
[4.4.6. ]
@
>
+ ] 5 l I a (1 +
x RP ,
( 4 . 4 . 1 ) and ( 4 . 4 . 4 ) t h a t
F(5,
=
m
We choose an i n t e g e r
(1
1) k,a) 8 5 8 s
such t h a t
h+&m
c
-
I
;
fwp)
4
i n t e g r a t i n g by p a r t s i n t h e i n t e g r a l d e f i n i n g 9, we o b t a i n :
which a l l o w s us t o m a j o r i s e
( 4 . 4 . 6 ) and o b t a i n ( 4 . 4 . 3 ) by v i r t u e
of ( 4 . 4 . 5 ) .
4.5
TRANSPOSE AND ADJOINT OF A LINEAR OPERATOR: The t r a n -
spose ( r e s p . t h e a d j o i n t ) of a c o n t i n u o u s l i n e a r o p e r a t o r A : ay)+ a ( X )
3 (X) i n t o &‘(Y) (4.5.1.)
C tA
i s t h e l i n e a r o p e r a t o r tA ( r e s p . A*) from
d e f i n e d by
9, d( >
=
C cp, A $
>
( c A* 9, for
(P
T >=
c
Cp,
5 >)
E 4 x 1 , $ E ay’)
We immediately have:
PROPOSITION 4 . 5 :
*
The operators tA and A are continuous
.
Linear operators from B(x)i n t o 8 ( ~The kernel of tA
DISTRIBUTIONS AND OPERATORS
28
(CHAP. 1)
(resp. of A*) is deduced from the kernel K of A (resp. of
i?) by
We have
interchanging the r o l e s of the variables x , y. * I
t(tA)
and (A )
= A
= A.
The operator A is continuous from &(Y) i n t o C"(X) if and only if t A extends i n t o a continuous operator from
(X) i n t o 8(Y) (both
equipped with the topology 'C,,).
For example, i f A i s a d i f f e r e n t i a l o p e r a t o r
,aE
c o e f f i c i e n t s i n X , t h e n tA i s t h e
w i t h C"
rn ).(,a
f ( a a ( x ) . ) and A* i s t h e
d i f f e r e n t i a l operator
IaE
rn D
d i f f e r e n t i a l operator
I& 4.6
*
~
~
.
~
.
rn
REGULARISING OPERATORS:
DEFINITION 4.6: A continuous linear operator A : R(Y)
->
&(XI
i s said t o be regularising if it extends i n t o
a continuous operator from &'(XI i n t o C " ( X ) , equipped w i t h
where &'(Y) is
Zb).
We have t h e f o l l o w i n g c h a r a c t e r i s a t i o n :
THEOREM 4.7:
An operator A i s regularising if and only i f
i t s kernel KA is i n C"(X PROOF:
x
Y).
We saw i n connection w i t h Example
4 . 1 t h a t t h e condition
4)
(SEC.
OPERATORS AND KERNELS
29
To show t h a t it i s n e c e s s a r y , we c o n s i d e r t h e
is sufficient. mapping
x
x Y
3
(x, y )
->
Y)
, . [ a
By h y p o t h e s i s , t h e f u n c t i o n a i s C
=
[A 6 y ) ( x )
E
C
.
m
separately with respect t o
x and y , and t h i s b e i n g s o t h e theorem a r i s e s out of
LEMMP,
PROOF:
4.8:
The function a
We begin
by showing t h a t
is in C"(X
x
Y ) and KA = a.
i s continuous.
a
5
7'.
Furthermore, t h e c o n t i n u i t y o f A i m p l i e s t h e e x i s t e n c e o f Q'' > 0 such t h a t
(4.8.2.)
sup Ix-xo)I
I(A 6 y ) ( x )
T'
- [A
6
)(x)l
I
I Y - YoI The c o n t i n u i t y o f
5
when
YO
a
5
7"
.
f o l l o w s from (4.8.1) and ( 4 . 8 . 2 ) .
I n o r d e r t o prove t h a t
a
is C
m
,
it i s s u f f i c i e n t t o reason
30
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
i n l i k e manner for t h e f u n c t i o n s
. I f we denote by A
regularising; multi-index
1
by c o n s t r u c t i o n , we have for any y
E
Y and any
6
which proves t h a t A = A i o n s of t h e t y p e 6 " ) Y
REMARK
a , it i s t h u s
t h e operator with kernel
4.9:
1
s i n c e l i n e a r combinations o f d i s t r i b u t -
6
a r e dense i n
Theorems
Y).
4.4 and 4 7 a r e i n f a c t a p p l i c a t i o n s
of t h e t h e o r y of n u c l e a r s p a c e s ;
for t h i s approach, s e e f o r
example TREVES [11.
5.
OPERATORS AND SUPPORT PROPERTIES
PROPOSITION 5 . 1 :
K~ E P ( X X Y ]
, we
If we l e t A be an operator w ith kernel have f o r v
E
C;(Y)
there e x i s t s such t h a t
PROOF:
(x,y)
y
E
E
supp K~
supp v
S i n c e supp v i s compact, t h e s e t supp KA
0
supp v i s
(SEC. 5)
OPERATORS AND SUPPORT
c l o s e d in X. those u
supp u
E
31
< Av, u > = 0
We now have t o show t h a t
for
C”(X) which a r e such t h a t 0
n
means t h a t
(supp KA
supp
0
[supp u
4
=
@
now, t h i s c o n d i t i o n
;
supp v) fl supp KA
x
=
, hence
g
the
result.
We denote by p [ r e s p . p
X
Y
) t h e p r o j e c t i o n of X
x
Y on X
(resp. Y ) .
We say t h a t the operator A with kerneZ
DEFINITION 5.2:
KA E R’(X x Y ) i s proper i f the projections an d
a r e ;sroper.
p y l s ~ p pKA
p x l ~ ~ pKAp
We have
Suppose A i s a proper operator;
PROPOSITION 5.3:
i ) For any compact subset K
Y, the s e t
c
supp KA
i s a compact subset of X and consequentZy A sends 0IK,
0
K
then =
K’
a K (Y) t o
(x).
i i ) For a n y compact subset K 1
c
X, there e x i s t s a compact subset
K of Y such t h a t : [SUPP
v
n
K
=
6)
[SUPP
AV
n K*
=
ei).
Consequently, the operator A transforms a ZocalZy f i n i t e suni of functions i n &(Y)
i n t o a ZocaZZy f i n i t e swn o f d i s t r i b u t i o n s i n
32
( C H A P . 1)
DISTRIBUTIONS AND OPERATORS
&' (X). Furthermore, i t extends uniquely i n t o a continuous l i n e a r mapping from C " ( Y ) i n t o &'(X)
PROOF OF i ) :
which again s a t i s f i e s (5.1.1).
We have by d e f i n i t i o n
=
K'
n
pX tP;'c~l
supp K ~ I
so t h i s i s a compact s u b s e t of X because
i s proper. pylsupp KA
PROOF OF i i ) :
K =
I f we p u t
py [ p i ' ( K ' )
'n
, this
supp K,,)
is
a compact s u b s e t o f Y and, by c o n s t r u c t i o n , it i s c l e a r t h a t i f supp v does n o t i n t e r s e c t K t h e n supp Av does not i n t e r s e c t K'.
Let Cp,
(9,) be a
p a r t i t i o n of u n i t y on Y by means of f u n c t i o n s
Ecp1
For v
m
E
C ( Y ) , we have a l o c a l l y f i n i t e sum
; t h u s t h e sum E 'pav U l o c a l l y f i n i t e and we denote it by Av. v
A['?,
=
v)
is also
cy
We have t h u s d e f i n e d an
e x t e n s i o n of A i n t o a l i n e a r mapping, a g a i n denoted by A , from into a ' ( X ) .
C"(Y)
The c o n t i n u i t y o f t h i s e x t e n s i o n f o l l o w s immed-
i a t e l y from t h e d e f i n i t i o n o f t h e s t r o n g t o p o l o g i e s .
The unique-
n e s s comes from t h e d e n s i t y o f C"(Y) i n C " ( Y ) . 0
F i n a l l y , by u s i n g (5.1.11,we have for suppAv C U SUPP A ( ( P ~ tljCU [SUPP KAosupp a cy
ve
v
E
C"[Y)
:
V ) = S U P ~KA
0
s ~ p pv
For t h e s i n g u l a r s u p p o r t w e have
PROPOSITION 5 . 4 : KA
E
.P(X x Y j
.
Let A be an operator with kernel We aesume t h a t A extends i n t o a continuous
(SEC. 6 )
33
D.O.'s WITH CONSTANT COEFFICIENTS
D'(x) such t h a t
operator from &(Y) i n t o A(C:(Y))
c"[x>
C
(5.4.1.)
We then have t h e incZusion
,
s i n g supp A V
s i n g supp K A
C
o
.
v f &"Y) PROOF:
Suppose we have x
hand s i d e o f
(5.4.1);
([x,}
x
0
,
s i n g supp v
which does not belong t o t h e r i g h t -
i n o t h e r words,
s i n g supp v)
n
s i n g SUPP KA
#
=
Since s i n g supp v is compact, t h e r e e x i s t open neighbowhoods U , V of xo and s i n g supp v such t h a t
n
(U x V) Suppose w e have ec s i n g supp v. s i n g supp.
Since
E
C"(V) 0
We w r i t e
AV
K AJU x
v
=
s i n g supp KA
,
=
.
@
i d e n t i c a l t o 1 i n t h e neighbourhood o f
v =
QZ/
+
(I-crJv
, and
s i n g supp A ( W ) s i n c e
we have
E c~(Y)
(I 0 such t h a t
For Q f i x e d , t h e d e f i n i t i o n of r ( Q )shows t h a t t h e r e e x i s t s some
e
E
IR", l e i s 1, such t h a t Q(ze)
(62.2.)
2
c,
,
N(Q)
z
E c
1.
,
= I
.
We t h u s deduce t h a t t h e r e e x i s t s some neighbourhood o f Q i n which I
(6.2.2) remains t r u e w i t h t h e c o n s t a n t C2 = C 2 1' For a l l 5
E
lRn
P6(6) = P ( 5 e x i s t s a 2'
5
, we
d e f i n e t h e t r a n s l a t e d polynomial
+ 5 ) , and
and a neighbourhood V
IP(T)+ z e$l
(6.2.3.)
t h e preceding d i s c u s s i o n shows t h a t t h e r e
5
2
subcovering V,
k '
1
o f 5 such t h a t we have
"pT))
From t h e c o v e r i n g of IRn by t h e V compactness o f t h e s p h e r e s
5
5'
I
Izl = 1 m a g E v
we c a n , by making use o f t h e
= const
which i s l o c a l l y f i n i t e .
, extract
a countable
We l e t ( p , - ) be a n
p a r t i t i o n of u n i t y s u b o r d i n a t e t o t h i s covering and we put
.
Since t h e terms of Q which a r e o f maximal degree 'k are i n v a r i a n t w i t h r e s p e c t t o t r a n s l a t i o n , there e x i s t s some
Bk =
€!
C > 0 such t h a t
5'
(SEC.
6)
D.O.'s WITH CONSTANT COEFFICIENTS
37
which when combined w i t h ( 6 . 2 . 3 ) g i v e s ( 6 . 2 . 1 ) .
We d e f i n e E by p u t t i n g , f o r
Cp
E Cz
:
I t can e a s i l y be shown t h a t E i s a d i s t r i b u t i o n by u s i n g ( 6 . 2 . 1 ) and t h e immediate i n e q u a l i t y
F i n a l l y , Cauchy's formula shows
The e x i s t e n c e o f a fundamental s o l u t i o n E shows t h a t any o p e r a t o r P(D)
#
0 with constant c o e f f i c i e n t s i s l o c a l l y solvable
i n d i s t r i b u t i o n space i . e . f o r any f E b' , t h e e q u a t i o n P(D)u = f admits a t l e a s t one s o l u t i o n
u
a
E
*
f
E B'
.
We can a l s o
38
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
-
investigate the global solvability of P(D), i.e. the surjectivity of the linear mappings 3
u
~ ( x )3
u
C"(X)
depending on the open subset X
c
IRn
.
PfD)u
E C"[X)
p(oju
E
a(x1
For these questions, the
treatises of RORMANDER [11 and TREVES [21 can be referred to.
6.3
HYPOELLIPTICITY OF OPERATORS WITH CONSTANT COEFFICIENTS: After the questions of existence, a further
important question concerns the investigation of the regularity of the solutions. For example, in which cases do the solutions of
P(x, D)u = f have no singularities other than those of f?
We
once again have the inclusion sing supp P ( x , Dju
DEFINITION 6.3:
C
sing supp u
, which leads us to:
A d i f f e r e n t i a l operator P(x, D) with coeff-
i c i e n t s i n C"(X) is said t o be h y p o e l l i p t i c i n the open subset X
if (6.3.1 .)
sing supp P ( x , D) u =
sing SUPP u
9
For operators with constant coefficients, we have:
PROPOSITION 6.4: i)
The following assertions are equivalent:
The operator P(D) is h y p o e l l i p t i c i n TRn
6)
(SEC.
The operator P(D) admits a fundamenta2 s o l u t i o n which
ii)
is
39
D.O.’s WITH CONSTAMT COEFFICIENTS
ern i n I R ~ -
COI.
The operator P(D) admits a parametrix ( i . e . a distrib-
iii)
ution F E d
such t h a t P ( D ’ J F
- do
E Cm(R”))
, which is
Cm
i n IR” - { o } .
PROOF:
i
The i m p l i c a t i o n s
iii
prove t h a t
=$
i
ii a iii
=$
are t r i v i a l .
We now
L e t t i n g F be a p a r a m e t r i x of P(D) , t o
,
8
within t h e m u l t i p l i c a t i o n of F by a f u n c t i o n from
t o 1 i n t h e neighbourhood of 0 , we may assume t h a t F
identical E
this
& I ;
allows us t o w r i t e
(6.4.1 .]
P(D),F
For any open s u b s e t X ion u E & ( X )
c
do
=
,
+
where
e E :C
,
B n , we need t o show t h a t i f a d i s t r i b u t -
E
P(D)u
satisfies
Cm(X)
then u
m
E
C (X).
For
t h i s , it i s s u f f i c i e n t t o show t h a t f o r any open s u b s e t X1 such that
yl c
c X,
we have u
m
E
equal t o 1 i n t h e neighbourhood o f (6.4
2.)
We have
X1.
g
g E C”(X,)
Suppose we have a
C (Xl).
=
n &‘(R”)
TI;we
P(Qu)
Co(X)
put
s
s i n c e a u = u on t h e open s u b s e t
By convolution o f e q u a t i o n (6.4.2)
The k e r n e l d i s t r i b u t i o n F(x
m
E
- y) of
w i t h F , we o b t a i n
t h e o p e r a t o r o f convolution
40
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
(h .3A) an& iii),
by F satisfies, f r o m
sing supp F(x
- y>
C
Diag(R" x
R"')
.
By applying Proposition 5.4, we can thus deduce that sing supp (F
*
g]
C
sing supp g m
The right-hand side of (6.4.3) is therefore C u
ently
. in X and consequ1
is also.
EXAMPLE 6.5: that the operators
The formulas (6.1.3), (6.1.4), (6.1.5)show
aar -
I
A
-A
a,
I
are hypoelliptic.
We now give an important class of hypoelliptic operators.
DEFINITION 6.6:
A d i f f e r e n t i a l operator P(x, D) with Cm
c o e f f i c i e n t s i n an open subset X X
c
IRn is said t o be e l l i p t i c i n
if i t s principal symbol does not vanish on
X x
R"
-
{ 0 ]
.
We shall prove in Chapter IV that elliptic operators are hypoelliptic; for the moment we prove in particular the following:
PROPOSITION 6.7:
If P(D) is an e l l i p t i c operator with
constcmt c o e f f i c i e n t s , then P(D) i s h y p o e l l i p t i c i n IRn
PROOF:
.
We shall now construct a parametrix F of P(D) which will
be Cm in lRn - 101.
If m
is the degree of P(D) , the assumption
of ellipticity is equivalent to
(SEC. 6 )
41
D.O.'s WITH CONSTANT COEFFICIENTS
By homogeneity, we deduce from t h i s t h a t
1
\P,({)
,
151"
c
2
and by choosing R s u f f i c i e n t l y l a r g e , we have t h e lower bound
[6.7.1.)
Ip(5)l
;151m
2
I f we have 6
W
E
C
, identical
5 R , t h e lower bound
, 151
5 E R"
for
151
t o 1 for
(6.7.1)a l l o w s
-1
2
2
.
R
and z e r o f o r
us t o d e f i n e
. This i s a p a r a m e t r i x of P(D), s i n c e we have
P(D)F
-
ho
=
- 1)
s'(e(5)
E 8
The r e g u l a r i t y o f F away from t h e o r i g i n w i l l f o l l o w from
LEMMA 6.8: xa F
For any multi-index
E c~(R")
PROOF OF THE LEMMA:
with
a
q = rn
L)e have
+ 1.1
-n- 1
.
The e q u a l i t y
(6.6.1 .) a e
shows t h a t i n t h e c a l c u l a t i o n of D (-),
S P
t h e t e r m s which i n v o l v e
the d e r i v a t i v e s of t h e function 8 provide a C a
x F.
m
contribution i n
It i s t h u s s u f f i c i e n t t o c o n s i d e r o n l y t h e d i f f e r e n t i a t -
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
42
i o n s which r e l a t e t o
-.1P
We can show by r e c u r r e n c e on la
1
that
f o r 151 2 R we have
=
Di (&)
a l i n e a r combination of terms of t h e form
(6.8 2.1
Furthermore, for any m u l t i - i n d e x
6 we have
c o n s e q u e n t l y , t a k i n g i n t o account (6.7.1) each t e r m on t h e r i g h t hand s i d e of ( 6 . 8 . 2 ) i s bounded above by
151
2 R.
These upper bounds imply t h a t t h e i n v e r s e F o u r i e r t r a -
nsforms a r e c e r t a i n l y i n C q ( I R n ) because r a b l e for
O(I{l-m-lal) for
151
2
I ~~q-m-~cul
R.
This lemma shows t h a t , f o r any i n t e g e r
E Cq(Rn)
1x12p F
F E Cm(Rn
-
{ 0
i s integ-
1)
with
q = rn
+ 2p
p
,
-n-1
;
hence
.
For o p e r a t o r s w i t h c o n s t a n t c o e f f i c i e n t s , H O W D E R h a s given a . c h a r a c t e r i s a t i o n o f t h e h y p o e l l i p t i c i t y of P(D) i n terms of t h e polynomial P ( 5 ) which i s e x p r e s s e d i n t h e f o l l o w i n g theorem:
(SEC.
6)
43
D.O.'s WITH CONSTANT COEFFICIENTS
The following a s s e r t i o n s are equivalent:
THEOkEM 6 . 9 :
The operator P(D) i s h y p o e l l i p t i c
i)
I f we have
ii)
iii)
N = {
6E
C"
There e x i s t s 6 > 0 and C
I
> 0
PROOF OF i)
+ ii):
If F
E
for
such t h a t f o r any multi-
5 E R"
for
, then
P(6) = 0 }
,
151
2
c
.
&' is a parametrix of P(D), and we
Put P(D) F
go
=
+
,
0
where
0
Eb
,
then by Fourier transformation this equality becomes
P[Cj.i(S)
(6.9.3.)
1 +
=
361
for
From the Paley-Wiener theorem, there exists C such that
(6.9.4.)
where A
= x
When 5
E
N, ( 6 . 9 . 3 )
SUP E SUPP
c m
1x1
0
be written
6 E c".
44
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
which, having r e g a r d t o ( 6 . 9 . 4 )
(1 and p r o v e s
+ 1 ~ 1 ~ 5)
c
,
implies
eA l I m
6\
6EN
for
(6.9.1).
The proof o f i i )
a , iii) i s b a s e d on p u r e l y a l g e b r a i c p r o p e r t -
i e s f o r which we r e f e r t h e r e a d e r t o HORMANDER [11 (Chapter IV).
i) i s proved by c o n s t r u c t -
F i n a l l y , t h e implication iii) i n g a p a r a m e t r i x F of P(D) i n t h e form showing t h a t t h i s i s CcD i n IRn
F
=
g’(#)
- (01, proceeding
and by
i n an e n t i r e l y
analogous manner t o t h a t o f t h e proof o f P r o p o s i t i o n 6 . 7 ;
this
i s p o s s i b l e due t o t h e upper bounds ( 6 . 9 . 2 ) .
I n t h e c a s e o f o p e r a t o r s P(D) which a r e n o t h y p o e l l i p t i c , we make use o f q u i t e g e n e r a l theorems t o d e s c r i b e t h e s i n g u l a r suppo r t of
C61
ANDER
7.
u
We r e f e r t o t h e monograph o f HORM-
f o r these questions.
OPERATORS AND DISTRIBUTIONS ON A MANIFOLD
7.1
x
from t h a t of Pu.
:
For
X
+
v
CHANGE OF VARIABLES I N DISTRIBUTIONS:
Let
Y be a diffeomorphism between two open s u b s e t s of I R n .
1 E LlDC(Y) , the
function
u = v
o
x
=
x*
V
1 E hoC(x)
9
(SEC. 7 )
OPERATORS ON A MANIFOLD
considered a s a d i s t r i b u t i o n , s a t i s f i e s f o r
Dx (F) = the
J(rl)
=
of v a r i a b l e s
‘y
E
+
, the
formula (7.1.1)d e f i n e s a d i s t r i b u t i o n
a(X)
denoted by
x x.
v and c a l l e d t h e i n v e r s e image o f If
an open s u b s e t Z o f IRn and i f show t h a t (X,
O
of d i r e c t image
X)* w
x+
REMARK 7.1: 0
J a c o b i a n determinant o f t h e change
)c
under t h e diffeomorphism
cp
:
x = x-’(y)
v E &(Y)
If now u
cp E C r ( X )
< u,cp > =
(7.1.1)
where
45
x-’
i s a diffeomorphism o f Y o n t o
w E &(Z)
* * X (X, w ) .
=
under
x1
x
v
, we
can immediately
We d e f i n e t h e o p e r a t i o n
a s b e i n g t h e i n v e r s e image under
.
x -1
The p r e s e n c e of t h e f a c t o r IJI a l o n g s i d e
i n (7.1.1)shows t h a t it i s n e c e s s a r y t o c o n s i d e r
the t e s t functions measure cp(x] dx
.
Q
n o t as f u n c t i o n s b u t as C
m
d e n s i t i e s of
This remark w i l l b e fundamental t o t h e d e f i n -
i t i o n o f d i s t r i b u t i o n s on a m a n i f o l d .
7.2 C
m
DIRAC MEASURE ON A HYPERSURFACE:
If
S
is a
h y p e r s u r f a c e o f an open s u b s e t X of Fin, t h e E u c l i d i a n s t r u c t -
ure of
mn
induces on S a Riemannian s t r u c t u r e , and we denote by
doS t h e a s s o c i a t e d volume element on S.
46
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
We d e s c r i b e a s t h e Dirac d e l t a f u n c t i o n on S t h e d i s t r i bution 6
S
&(X)
E
< tis, cp >
d e f i n e d by
Is
=
dOs(X1
Q(X)
m
More g e n e r a l l y , l e t f : X +IR be a C
grad f ( x )
S= { x E
x
=
x
..., af
(z(X]t
I
f[X)
=
0 ]
axn
.
putting
< b(f'l, cp >
=
m
n'
hypersurface of
b ( f ] E & (X) on
i,l*l
For example, i f f ( x ) = x
on t h e s e t
Then S i s a C
and w e d e f i n e t h e d i s t r i b u t i o n
8x1
mapping such t h a t
f 0
-(X))
Q E
9
d5&4
S by
cp E
9
w.
we once a g a i n have t h e d e f i n i t i o n of
t h e d i s t r i b u t i o n 6( x = 0). n
I f % i s a diffeomorphism Y
*
+
X such t h a t ( %
f ) ( y ) = yn,
t h e n it can e a s i l y be shown t h a t a d i s t r i b u t i o n % * ( S ( f ) ) i s precisely the distribution S(y = 0 ) .
n
It i s t o obtain t h i s
t r a n s f o r m a t i o n law t h a t w e need t o i n t r o d u c e t h e f a c t o r /grad f
1
i n t o t h e d e f i n i t i o n of 6 ( f ) .
For a thorough s t u d y of
t h i s t y p e o f d i s t r i b u t i o n , w e r e f e r t o GELFAND and. SHILOV c11.
7.3
CHANGE OF VARIABLES I N DIFFERENTIAL OPERATORS:
X be an open s u b s e t of Eln and P(x, D ) =
,@E
aa(x)
D@
Let be a
m
m
d i f f e r e n t i a l o p e r a t o r of degree m w i t h c o e f f i c i e n t s i n C The f o l l o w i n g i s a c h a r a c t e r i s a t i o n of t h e s e o p e r a t o r s :
(x).
7)
(SEC.
47
OPERATORS ON A MANIFOLD
Let P be a continuous Zinear mapping from
PROPOSITION 7 . 3
Then P is a d i f f e r e n t i a 2 operator of
Cz(X) into Cm(X).
degree m if and on2y if f o r aZZ rea2-va2ued functions and any function a
.I
[7.3.1
E
C"(X) 0
R 3
+j
e-iTq ~ [ eiTp)[x) a
Im
with respect t o
The n e c e s s i t y i s obvious.
PROOF:
= x.%
with
5 E Rn
C"(X)
the expression c.--------*
is a poZynomiaZ of degree
cE
T
f o r every x i n X.
Conversely, l e t u s t a k e
and put
m e- i T x.5
(7.32.)
P(a eiTxgj
=
ak(a,
x , 51
,
Tk
k= 0
g j of
The c o e f f i c i e n t ok[a, x,
Tk
is a
m
c
f u n c t i o n o f x and E;
since t h e same i s a l s o t r u e o f t h e l e f t - h a n d s i d e .
5 and we can show (by r e p l a c i n g 5 by t
t
E
IR -
0
T
Moreover,
by t . r w i t h
1 ) t h a t ok i s a homogeneous f u n c t i o n of degree k w i t h
respect t o 5 ; consequently, it i s a homogeneous polynomial o f degree
k with respect t o
5 s i n c e it i s C
m
for
l e t K be a compact s u b s e t of X and we have a 1 i n t h e neighbourhood of K , for u
E
&,(X),
E
5
E
.$'(X)
lRn.
If we
identical t o
w e o b t a i n by
inverse Fourier transformation
By c o n s i d e r i n g t h i s l a t t e r i n t e g r a l as an i n t e g r a l w i t h r e s p e c t m
t o 5 w i t h v a l u e s i n C (X), t h e c o n t i n u i t y o f P. i m p l i e s t h a t
P.1
[XI
=
O
l,i.5 .
e-bsP(a e h c j
and by v i r t u e of ( 7 . 3 . 2 ) , we o b t a i n
c(5)
48
DISTRIBUTIONS AND OPERATORS
( C H A P . 1)
so that
n
E
%
T h e r e f o r e , P i s given by a d i f f e r e n t i a l o p e r a t o r of degree
m
=
(Pu)fx)
(7.3.3.)
ok[a, x, Dx)u
,
for
u
k=o
when it a c t s on f u n c t i o n s from .8 K ' i v e sequence of compact s u b s e t s K
j
By c o n s i d e r i n g an exhaustand a s s o c i a t e d f u n c t i o n s a
2'
t h e e q u a l i t y ( 7 . 3 . 3 ) shows t h a t t h e d i f f e r e n t i a l o p e r a t o r s
m Ok('j,
piece together into a d i f f e r e n t i a l
x, Ox)
k=o
m
o p e r a t o r of degree
w i t h c o e f f i c i e n t s i n C"(X); t h i s
concludes t h e proof o f t h e p r o p o s i t i o n .
The e x p r e s s i o n ( 7 . 3 . 1 ) p r o v i d e s a new means of c a l c u l a t i n g t h e p r i n c i p a l symbol o f P . t h a t t h e c o e f f i c i e n t of P,(x,
dcp(x)) a[x)
i f we p u t dq(x
0
.
T
m
I n f a c t , L e i b n i z ' formula shows i n ( 7 . 3 . 1 ) i s given by
I n p a r t i c u l a r , i f we have x
) = 5, and assume t h a t a ( x0 ) =
e f f i c i e n t o f rm i s given by P (x
m
0'
0
E
X, and
1, t h e n t h e co-
' 0 ) .
If % : X + Y i s a diffeomorphism between two open s u b s e t s of Bn, and P i s a d i f f e r e n t i a l o p e r a t o r of degree define the transported operator v
i.e.
E
C"(Y)
)& P o f P by
x:
m
on X , we
OPERATORS ON A MANIFOLD
(7.3.4.1
X*P
Proposition 7.3 shows immediately t h a t
m
operator of degree
e-iT
t(YOI[,
p)
T
m
=
(ei7e ) ( y o )
Ix,
where x
0
=
P is a differential
no)
E
Y x l R n , we c a l c u l a t e
i n t h e polynomial
where $ i s such t h a t d $ ( y o ) =
(73.5.)
x+
In order t o calculate i t s
on Y .
p r i n c i p a l symbol a t t h e p o i n t ( y o , the c o e f f i c i e n t o f
*
X * o P o X
=
49
P I m (yo'
e-iT
n0. TI,)
p(ei7
$(YO)
e
x I (x-'
0
(Yo)
We o b t a i n
t
=
TI,)
~ l ( ~ , )
x-1( y o ) .
We now g i v e a b r i e f o u t l i n e of t h e g e n e r a l i s a t i o n of t h e preceding d i s c u s s i o n t o t h e c a s e o f systems of d i f f e r e n t i a l operators.
$I d i f f e r e n t i a l systam ( q , r ) o f degree
m
consists
of an o p e r a t o r o f t h e form
where t h e c o e f f i c i e n t s a r e m a t r i c e s a,(x) m
C
dependence on x i n X.
.
C(Cq, C r )
with
It i s c l e a r t h a t such an o p e r a t o r
d e f i n e s a continuous l i n e a r mapping from
Cm(X; C r )
E
m
c0 (x;)'C
into
P r o p o s i t i o n 7.3 g e n e r a l i s e s immediately t o t h i s
case, it b e i n g s u f f i c i e n t t o t a k e t h e f u n c t i o n
a
in
Cz(X; C q ) and t o demand t h a t t h e e x p r e s s i o n (7.3.1)be a polynomial i n T w i t h c o e f f i c i e n t s i n . ' 6
We d e s c r i b e a s t h e p r i n c i p a l symbol o f P at a p o i n t
'1
DISTRIBUTIONS AND OPEmTORS
50
(x, 5 )
E
X
x
(CHAP. 1)
n
IR t h e l i n e a r mapping
The c o e f f i c i e n t o f .rm i n ( 7 . 3 . 1 ) i s e q u a l t o P,(x,
dq(x)).a(x),
which p r o v i d e s a new d e f i n i t i o n o f ? (x, 5 ) and a l l o w s us t o
m
prove t h a t ( 7 . 3 . 5 ) remains t r u e .
7.4 dimension C
m
DISTRIBUTION ON A MANIFOLD:
Let X be a manifold o f
n (we s h a l l assume i n t h i s book t h a t a manifold i s
and c o u n t a b l e a t i n f i n i t y ) .
-
We e q u i p C"(X) semi-norms '9
w i t h t h e t o p o l o g y d e f i n e d by t h e f a m i l y o f
p ( x , q),where cy
charts X : X 3 U
--L
U
x
d e s c r i b e s t h e f a m i l y of l o c a l
c R" o f X , and p m-)
of semi-norms d e f i n e d on C ( U ) .
describes t h e family
By u s i n g a p a r t i t i o n o f u n i t y ,
we can show t h a t it a c t u a l l y s u f f i c e s t o c o n s i d e r o n l y t h e semi-norms a s s o c i a t e d w i t h an a t l a s of X and we can show t h a t
C"(X)
is a Fr6chet s p a c e .
With an obvious n o t a t i o n , we d e f i n e as i n s e c t i o n 1 t h e t o p o l o g i c a l v e c t o r s p a c e s C;(X)
=DK(x),c:(x)
=D(x).
If
7
i s a complex v e c t o r bundle o f rank N on X, we denote by C"(X;
3 )' t h e
space of C
m
s e c t i o n s of
t o p o l o g y as above by r e d u c i n g t o of l o c a l t r i v i a l i s a t i o n s of 3;.
3
and we e q u i p it w i t h a
='* N C (U; C )
= (Cm(z))N
by means
(SEC. 7)
OPERATORS ON A MANIFOLD
R ( X ; 3)
We define s i m i l a r l y t h e spaces
ax; ?I
and
K
.
s)
q x ;
=
51
In o r d e r t o d e f i n e d i s t r i b u t i o n s on a manifold X , we s h a l l need f i r s t t o d e f i n e t h e bundle of d e n s i t i e s on X.
mapping from
A
n
E \ 0 i n t o Q: such t h a t
~ ( h w )= 111
('7A.l.I
,
W(W)
In p a r t i c u l a r , i f vl,..., v
1 E R\O
for
w €An E \ D
and
i s a b a s i s f o r E and i f A
n
we have
~(Av,, A
(7.4.2.)
...
A Av,)
More g e n e r a l l y , i f we have a order a on E i f
is a
n
A d e n s i t y w on a v e c t o r space E of dimension
(7.4.1)i s
= E
ldet A 1 w(v, A
R, we say t h a t
L)
...
E
GL(E),
A v ),
.
i s a density of
s a t i s f i e d when we r e p l a c e IhI by
j h l a ; we t h e n need t o use l d e t
A1
a
(7.4.2.).
in
The s e t o f d e n s i t i e s of o r d e r a on E c o n s t i t u t e s a complex vector space o f dimension 1 which we denote by /El
IRnI1
=
[ a
...
dxl
.
a'
dxn
I
a
E
C
.
f o r example
By m u l t i p l i c a t i o n , w e
define t h e b i l i n e a r mapping
[7.4.3.)
IEI,
X
and t h i s shows t h a t
]El, 3 IE
€3
i d e n t i f y t h e d u a l o f lEla w i
I f X i s a manifold of dimension
XI
spaces / T above x c 1
x
n , t h e family o f v e c t o r
arranges itself naturally into a vector
.
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
52
bundle o f rank 1, termed bundle of d e n s i t i e s of o r d e r
:
I n f a c t , i f X,,
X and w r i t t e n Q ( X ) . a
i s a c h a r t of X , it d e f i n e s a c h a r t AX and hence a b i j e c t i o n
$
:
X 3
U2 7
Ixl I a
5
Rn
C
x
1
3
u1
C
cl =mn
: An'TU1 P
ncy(ul)onto R,(cl]
of
on
a
u
,N
U1 x
An TG,
c.
If
i s another c h a r t o f X , formula
( 7 . 4 . 2 ) ( w i t h ldet A l a ) shows t h a t , i n t h e common open s u b s e t ,
151a
t h e coordinate t r a n s i t i o n function m u l t i p l i c a t i o n by Idet(X 1
o
'
()XI
la)-'
jJ@ .
o
Let p be a d e n s i t y o f o r d e r a on X , i . e . a C
Qu(X); i t s r e s t r i c t i o n c
of o r d e r a on U
.
j'
PjFj)
.
with a . ( ) 3
a "
E
p
I U:J i s
t r a n s p o r t e d by
we denote t h i s by p
*.(:.)
=
C (U. ) J
J
.
J
constitutes
I x.1 J
m
U
section of i n t o a density
and we put
j
ldz.1"
J
The t r a n s f o r m a t i o n l a w of t h e bundle
(x)
i m p l i e s t h a t i n t h e open s u b s e t U1 n Up, we have I -1 cy (7.4.4.) = ddX1 0 $
i2
a
-I
+,I
)I
Formula ( 7 . 4 . 4 ) shows t h a t we can speak o f real-valued d e n s i t i e s and of s t r i c t l y p o s i t i v e d e n s i t i e s .
To l e s s e n t h e n o t a t i o n a l
burden, we put
c"(x; nJx))
=
c"[lx
cy
I
.
1
c"(
Since t h e d e n s i t i e s o f o r d e r 1 a r e measures on X , we can i n t e g r a t e them; having r e g a r d t o ( 7 . 4 . 3 . ) , t h i s allows us t o d e f i n e t h e b i l i n e a r mapping
OPERATORS ON A MANIFOLD
53
r
when a
+ p
= 1. cy =
The p a r t i c u l a r case
0
,
p
= 1 m
define continuous l i n e a r forms on C o (
shows t h a t C"(X)
1x1)
functions
which l e a d s u s , i n
accordance w i t h Remark 7.1, t o s t a t e :
DEFINITION 7.5:
A d i s t r i b u t i o n on the manifold X i s a
continuous linear f o r m on the space C z ( 1 on X.
1x1 )
of d e n s i t i e s of order
&(x)
The space of d i s t r i b u t i o n s i s denoted by
More generally, i f
3 i s a comples vector bundle over X , we
describe as the space of d i s t r i b u t i o n a l sections of of continuous linear forms on
denote i t by
.
&[x;
.
f$(XI 8 3 1
C:(X;
S the space and we
( '3%denotes the dual bundle of
9). We have t h e i n j e c t i o n of
f(x;
9)
in
& ( x i s")
d e f i n e d by
the p a i r i n g
Taking i n t o account ( 7 . 4 . 3 ) and
(7.4.51,we
can show t h a t
the dual of t h e space C z ( X ) i s i d e n t i f i e d w i t h t h e space of d i s t r i b u t i o n a l s e c t i o n s o f Q,(X).
When X i s equipped w i t h a
s t r i c t l y p o s i t i v e d e n s i t y 1-1 (we can always c o n s t r u c t one o f t h e s e by using a p a r t i t i o n o f u n i t y f o r X ) we a r e a b l e t o i d e n k i f y t h e s e spaces, s i n c e we can use t h e t o p o l o g i c a l v e c t o r isomorphism
DISTRIBUTIONS AND OPERATORS
54
( C H A P . 1)
We now give a b r i e f o u t l i n e of t h e p r i n c i p a l p r o p e r t i e s of d i s t r i b u t i o n s on a manifold, l i m i t i n g o u r s e l v e s , f o r s i m p l i c i t y , t o t h e case
3=
c
.
a(X)
We have f o r t h e p a i r
,
PIX)
the
same t o p o l o g i c a l p r o p e r t i e s as t h o s e mentioned i n S e c t i o n 1, f o r t h e c a s e where X i s an open s u b s e t o f I R n .
.
P(X)
We have t h e continuous i n j e c t i o n of L1 ( X ) i n t o loc we l e t V be an open s u b s e t of X , a d i s t r i b u t i o n
u E S(X)
d e f i n e s by r e s t r i c t i o n t o C"( IVI) a d i s t r i b u t i o n
UIV
0
If
E P(V1
The same proof a s was used i n t h e case o f an open s u b s e t of lR
P[v)
shows t h a t t h e spaces
form a sheaf on X.
*
n
The concepts
of s u p p o r t and s i n g u l a r s u p p o r t g e n e r a l i s e i n t h e same way t o t h e c a s e of a manifold:
t h e space &'(X) of d i s t r i b u t i o n s w i t h compact m
support i s i d e n t i f i e d w i t h t h e d u a l of C (
1x1 ) .
--
We can a l s o g i v e a d e f i n i t i o n o f d i s t r i b u t i o n s w i t h t h e a i d of l o c a l c h a r t s .
:
Letting
be a c h a r t of X, t h e n i f
x 3 u
Ly
u E
b(x)
CR"
uLy
t h e diffeomorphism
p o r t s it i n t o a continuous l i n e a r form
w
XLy
[u\u)
x,
on
U i . e . i n t o a d i s t r i b u t i o n Z,on
r,
U,.
xB i s a n o t h e r c h a r t , w e have t h e c h a r t t r a n s i t i o n formula f o r t h e r e s t r i c t i o n s of 5,and
xLy[uen up)
and
ii t o t h e open s u b s e t s
%WLyn up'
B
trans-
If
7)
(SEC.
OPEMTORS ON A MANIFOLD
55
(7.5.2.) c
(x,)
Conversely, if
i s an a t l a s o f X , i n each open s u b s e t U, we N
u
take a d i s t r i b u t i o n
E &(x)
E
&(E@)
such t h a t (7.5.2) i s s a t i s f i e d
Then, t h e r e e x i s t s a unique d i s t r i b u t i o n
f o r a l l a,B. U
u *
such t h a t
N
=
Xcr(Ucy)
4
,
In fact, the distribut-
"@
ions
a
l i f t into distributions u
her i n t o a unique d i s t r i b u t i o n
cy
E &(UCY)
u E P[X)
which p i e c e t o g e t by v i r t u e of t h e
sheaf p r o p e r t y .
DIFFERENTIAL OPERATORS ON A MANIFOLD:
7.6
f o l d of dimension
n
, Proposition 7.3
DEFINITION 7 . 5 : cm(X);
degree
i f f o r a l l real-valued
a
E
l e a d s us t o s t a t e :
Let P be a continuous linear mapping from
~"(x) into 0 m
If X i s a mani-
we say t h a t t h i s i s a d i f f e r e n t i a l operator of rg E C"(X)
and alZ
c~(x), the f u z e t i o n
is a polynomial of degree
m w i t h respect t o
T
for a l l fixed x
i n X.
This d e f i n i t i o n shows t h a t t h e r e s t r i c t i o n P
IU
of P t o an open
subset U o f X i s a d i f f e r e n t i a l o p e r a t o r on U.
Let
X
:
X 3U
P
GCW"
be a c h a r t of X, and P a
56
DISTRIBUTIONS AND OPERATORS
( C H A P . 1)
m
m
l i n e a r mapping from C (X) i n t o C (X); we d e f i n e t h e l i n e a r oper0
ator P
m
X
,-
e
from C o ( U ) i n t o C (U) by p u t t i n g it
With t h i s n o t a t i o n we have:
PROPOSITION 7.7: C I ( X ) i n t o C"( X)
.
Let P be a continuous l i n e a r mapping from
Then, P i s a d i f f e r e n t i a l operator of degree m
i f and only i f f o r any chart P
X
x
from an a t l a s of X the operator
i s a d i f f e r e n t i a l operator of degree m.
The n e c e s s i t y f o l l o w s from P r o p o s i t i o n 7 . 3 .
PROOF:
The s u f f -
i c i e n c y i s immediate by u s i n g a p a r t i t i o n o f u n i t y s u b o r d i n a t e t o t h e c o v e r i n g o f X by c h a r t s from t h e given a t l a s .
We can d e f i n e t h e p r i n c i p a l symbol o f a d i f f e r e n t i a l o p e r a t o r P of degree
x
morphism
m
on X .
If
x
c
U
:
-+
U i s a c h a r t of X, t h e d i f f e o -
*
a l l o w s us t o d e f i n e on t h e c o t a n g e n t space T U a homo-
geneous f u n c t i o n Pu by l i f t i n g t h e p r i n c i p a l symbol o f
m
x
P.
The e q u a l i t y ( 7 . 3 . 5 ) shows t h a t t h e f u n c t i o n s P" combine t o g e t h e r
m
m
into a C
%
f u n c t i o n on T X.
T h i s f u n c t i o n i s denoted by
P m ( x , 5 ) and i s c a l l e d t h e p r i n c i p a l symbol of P ; geneous of degree
m
with respect t o
By c a l c u l a t i n g w i t h
6
E
T
*
X
it i s homo-
X.
a c h a r t , we can show t h a t t h e c o e f f -
i c i e n t o f -cm i n t h e polynomial
(7.6.1)i s
given by
(SEC. 7 )
57
OPERATORS ON A MANIFOLD
The concept o f a d i f f e r e n t i a l system g e n e r a l i s e s i n t o t h e concept of a d i f f e r e n t i a l o p e r a t o r a c t i n g upon t h e s e c t i o n s o f v e c t o r bundles. rank
Suppose
r
and
g
'? and
9
a r e complex v e c t o r bundles of
above X .
7.8: A continuous linear mapping
DEFINITION
P : c ~ ( x ,$1 +~ " ( x , Q) is a
cp E c"(x)
of degree m if for a l l real-valued a
E
is, f o r all x
x,
E
a polynomial of degree
with coefficients in the fibre
3
x
and a l l
F) the function
C:(X;
Let
differential operator
(F, Q)
: U -9
and
C,
i? CR"
f
uxcq
I
X
-
i?
u
with respect to
above x .
3
and g
f
s/
Iu
1
I
u
;
L
ExC'
y
E
-
Taking P t o be a continuous l i n e a r mapping from
C"[X, pf,g
6)
,
T
be a c h a r t above which t h e bundles
admit t r i v i a l i s a t i o n s
-
N
Sx of $
m
1
CI(x; b)
into
we d e f i n e by t r a n s p o r t a continuous l i n e a r mapping
~ l from C ~ ( Cq)
into
C""(r;
C')
by p u t t i n g :
58
( C H A P . 1)
DISTRIBUTIONS AND OPERATORS
17 .8.2.)
=
pf,g
PIUj
g*
0
f*
With t h i s n o t a t i o n , P r o p o s i t i o n 7.7 g e n e r a l i s e s immediately by r e p l a c i n g t h e operators of type P
X
t h e r e i n by o p e r a t o r s o f t h e
t y p e P f , g a s s o c i a t e d w i t h a covering of X by open c o o r d i n a t e
9 and 6 are t r i v i a l i s a b l e .
p a t c h e s above which t h e bundles
(s,$)
If P i s a
d i f f e r e n t i a l o p e r a t o r o f degree
$ and
by u t i l i s i n g l o c a l t r i v i a l i s a t i o n s of
which depends only on dq(x)
and a(x).
f u n c t i o n i s homogeneous of degree
5
dcp(x) =
we can show
c o e f f i c i e n t o f -rm i n ( 7 . 8 . 1 ) i s a f u n c t i o n
t h a t f o r x fixed,’the
iable
, then
m
m
Furthermore, t h i s
w i t h r e s p e c t t o t h e var-
and i s a l i n e a r mapping from
into X
QX
w i t h r e s p e c t t o t h e v a r i a b l e v = a ( x ), and we denote t h i s by Pm(x,
c)
t h i s i s by d e f i n i t i o n t h e v a l u e of t h e p r i n c i p a l
;
symbol o f P a t t h e p o i n t ( x , 6 )
EXAMPLE 7 . 9 : and n-1;
we c o n s i d e r t h e bundles
k *
,
exterior differential
C:(x,
(7.8.1)i s e- i T Q ( X )
k be an i n t e g e r c o n t a i n e d between 0
Let
S = (A T x j 8 c
from
T* X.
E
fl
Q
= (hk+’ T*X) e3
d
c
over X.
The
d e f i n e s a continuous l i n e a r mapping
6)
i n t o C”(X,
.
In t h i s case, the function
given by d(eiTrp.e)[x)
consequently
d
is a
=
(a,Q)
i 7
dcp(x)
A
a(x)
+
da(x)
9
d i f f e r e n t i a l o p e r a t o r o f degree
(SEC. 8 )
KERNEL DISTRIBUTIONS ON A MANIFOLD
1. The c o e f f i c i e n t o f a t t h e p o i n t (x, 5 ) (A
k
*
Tx X) 2' 3 C
E
T
T
*
shows t h a t t h e p r i n c i p a l symbol of
*
Tx X ) 8 & d e f i n e d by l e f t e x t e r i o r
m u l t i p l i c a t i o n by t h e one-form
8.
d
X i s t h e l i n e a r mapping from
(Ak+'
into
59
it.
OPERATORS AND KERNEL DISTRIBUTIONS ON A MANIFOLD
L e t X , Y be manifolds equipped r e s p e c t i v e l y w i t h s t r i c t l y p o s i t i v e d e n s i t i e s y and v. t h e r e s u l t s of S e c t i o n s
4
With any d i s t r i b u t i o n continuous l i n e a r o p e r a t o r
We now show how t h e d e f i n i t i o n s and
and 5 g e n e r a l i s e t o t h i s s i t u a t i o n .
K E a ( X x Y) A :
, we
C:(Yl
can a s s o c i a t e a
J(X)
by p u t t i n g
Conversely, we have t h e k e r n e l s theorem:
THEOREM 8.1: A : C:(Y)
->
KA E P I X x Y)
PROOF:
P(X)
Any continuous l i n e a r operator i s defined by a unique kernel d i s t r i b u t i o n
such t h a t we have (8.1.1).
L e t (Ua) and ( V ) be a t l a s e s o f X and Y .
B
rjith t h e s e c h a r t s , Theorem
By t r a n s p o r t
4.4 shows t h a t f o r any a ,
f3 t h e r e
DISTRIBUTIONS AND OPERATORS
60
e x i s t s a unique d i s t r i b u t i o n
Ku,B E p ( u ,
(CHAP. 1)
such t h a t
X
Making use of t h e bundle p r o p e r t y , we deduce from t h i s t h a t t h e r e e x i s t s a unique d i s t r i b u t i o n KIUu x VB
Kac,B
=
K
f o r any a,@.
E
p [ X x Y)
such t h a t
By p a r t i t i o n of u n i t y , we t h e r e -
by deduce t h a t K s a t i s f i e s ( 8 . 1 . 1 ) .
REMARK
8.2:
I t i s c l e a r from (8.1.1) t h a t t h e k e r n e l KA a,
:
A
of an o p e r a t o r
Co(Y)
d e n s i t y p chosen on X.
x
" : X + X, 0
A :
C:(y]
does n o t depend on t h e
Furthermore, i f we have diffeomorphisms
Y
: Y -+ Y we d e f i n e t h e t r a n s p o r t e d o p e r a t o r
-
ICI
-J"X)
H
&();
o b t a i n e d from A by A = X,.A.e*. N
We s p e c i f y
N
a p o s i t i v e d e n s i t y v on Y ;
we can immediately show t h a t t h e
w
k e r n e l K- o f A s a t i s f i e s
A
c)
where K i s o b t a i n e d by t r a n s p o r t i n g K under t h e diffeomorphism A A Ie , X I : x x Y -X - x zY and where f i s t h e cm f u n c t i o n on Y d e f i n e d by 8+ v =
ry
f. v
.
I n p a r t i c u l a r , a change o f d e n s i t y on Y m a n i f e s t s i t s e l f on t h e k e r n e l K t h r o u g h m u l t i p l i c a t i o n by a s t r i c t l y p o s i t i v e C of t h e second v a r i a b l e .
m
function
(SEC.
8)
61
KERNEL DISTRIBUTIONS ON A MANIFOLD
F i n a l l y we n o t e t h a t i f t h e manifold Y i s n o t endowed w i t h a d e n s i t y , we s t i l l have a k e r n e l s theorem as l o n g a s w e seek K i n t h e space 8( (X x Y ;
no(xj
Q
me
Q, [Y) j
method of proof
used for Theorem 8 . 1 allows u s t o prove t h e f o l l o w i n g :
A continuous l i n e a r operator
THEOREM 8 . 3 :
A : C I I Y ' ) - . P ( x ) i s regularising i f and only i f
its kernel KA is
i n C"(X x Y). m
P(x) I
I f A i s a continuous l i n e a r o p e r a t o r from c 0 ( y ) i n t o
t h e d e n s i t i e s p and v a l l o w u s t o d e f i n e l i n e a r o p e r a t o r s 'A and
fl ( y ]
A* from C z ( X ) i n t o
REMARK
8.4:
, by
putting
P r o p o s i t i o n 4 . 5 g e n e r a l i s e s word f o r word t o
t h i s case.
THEOREM 8.5:
We assume t h a t the manifold Y i s compact.
Then i n t h i s case any regularising operator A :
c"(Y)
PROOF:
c"(x)
i s a compact operator.
Since A extends c o n t i n u o u s l y t o
f o r t i o r i i n t o a continuous o p e r a t o r from
$(yI
c0 ( Y )
8
into
it extends a m
c ( x ) , giving
62
DISTRIBUTIONS AND OPERATORS
(CHAP. 1)
t h e commutative diagram
I t , i s t h u s s u f f i c i e n t t o prove t h e f o l l o w i n g :
LEMMP,
j : c"(Y)
PROOF:
8.6:
->
I f Y is a compact manifozd, then t h e i n j e c t i o n
c"(Y) is compact.
We need t o show t h a t t h e r e e x i s t s a neighbourhood
Y
of 0 i n C"(Y) which is r e l a t i v e l y compact f o r t h e t o p o l o g y induced by Co(Y).
Let ( V . ) be a f i n i t e c o v e r i n g o f Y by open J
c o o r d i n a t e p a t c h e s . We d e f i n e
2/
t o be t h e s e t of f u n c t i o n s
m
v
E
C (Y) which t r a n s p o r t under each c h a r t t o f u n c t i o n s
having t h e i r f i r s t d e r i v a t i v e s bounded by 1.
By c o n s t r u c t i o n ,
m
i s a neighbourhood of 0 i n C ( Y ) composed o f e q u i c o n t i n u o u s functions;
t h u s it i s r e l a t i v e l y compact f o r t h e t o p o l o g y of
CO(Y).
9.
REGULAR OPEN SUBSETS OF IRn AND MANIFOLDS WITH BOUNDARY
We i n t r o d u c e i n t h i s s e c t i o n some c o n c e p t s which w i l l b e u s e f u l i n t h e s t u d y of boundary problems.
(SEC. 9 )
Let X be an open subset of IRn with clo-
DEFINITION 9.1 : sure
5 and
with boundary
ax
subset o f D n i f
ax.
E
ax,
We say t h a t X i s a regular open
i s a hypersurface o f D n and i f X i s locaZZy
situated on onZy one side of x
63
MANIFOLDS WITH BOUNDARY
ax.
This means t h a t f o r any
there e x i s t s an open neighbourhood U of x i n # c
diffeomorphism
x
:
U
+-
U of
and a
CI
u
onto an open subset U of IR" such
X'
ax
hr
u
X
n
X
In t h e preceding s i t u a t i o n we s a y t h a t
?
a t t h e boundary.
t h e hypersurface
ax
We n o t e t h a t
xlU
x
i s a l o c a l c h a r t of
ax
is a local chart of
a t x.
If X is an a r b i t r a r y open s u b s e t of Eln, we denote by
64
DISTRIBUTIONS AND OPERATORS
~ " ( 2t)h e
space of f u n c t i o n s cp
E ~"(ic) such
( C H A P . 1)
a"? E c0ljT)
that
Equipped w i t h t h e f a m i l y o f semi-norms
f o r any multi-index a .
I a@ q ( x ) 1 , where K is an a r b i t r a r y
com-
la/ 5 j p a c t s u b s e t of
?
If K i s a compact s u b s e t of
Frgchet space.
a,(?)=
and j is an a r b i t r a r y i n t e g e r 2 0 , C"(?)
2,
is a
we denote by
t h e (FrBchet) subspace o f C m ( z ) composed o f t h e
C",?)
f u n c t i o n s which a r e z e r o i n X \ K , and by C z ( ? ) =
a(?) the
inductive l i m i t of
8K ( 2 ) when K v a r i e s over t h e f a m i l y o f com-
2.
We h e n c e f o r t h assume t h a t t h e open s u b s e t
pact subsets of
X i s r e g u l a r ; we s h a l l s e e t h a t we can d e f i n e
C"(2)
n of t h e r e s t r i c t i o n s t o X o f Cm f u n c t i o n s inIR
.
a s t h e space More p r e c i s e l y ,
we have :
PROPOSITION 9 . 2 (SEELEY) :
-
There e x i s t s a continuous
Linear extension operator p : c m ( x )
C m o R n ) whose r e s t r i c t i o n
t o .8(X) i s a continuous Linear extension operator (again denoted by p ) p : S(X) +
PROOF:
x
R"+ = {
extension.
smn),
We begin w i t h t h e s p e c i a l c a s e
x
E a"
I
xn
>0 }
,
i n which we use a SEELEY
More p r e c i s e l y , f o r cp
-
E
m n C (IR+), we d e f i n e p ( Q ) by
(SEC. 9 )
x
where
65
W I F O L D S WITH BOUNDARY
i s e q u a l t o 1 i n t h e neighbourhood of 0 and
C;(B)
E
where (A ) i s a sequence o f r e a l numbers such t h a t
k
(9.2.1.)
j E KI
for a l l
>-:
Xk 2 k j
i s an a b s o l u t e l y
k z l convergent s e r i e s w i t h sum ( - 1)j ,
It i s immediately e v i d e n t t h a t t h e o p e r a t o r p s o cons t r u c t e d matches t h e r e q u i r e m e n t . I n t h e c a s e where
of lRn of
ax
charts
, we
c o n s i d e r a l o c a l l y f i n i t e c o v e r i n g of a neighbourhood
i n Bn by ( r e l a t i v e l y compact) open s u b s e t s U
xj
of
x a t t h e boundary.
Suppose we have 'p, Q ,
+
vj
=
j 21 Suppose $ E . j
supp
i s an a r b i t r a r y r e g u l a r open s u b s e t
X
cpj.
E
We p u t
Cm(Uo) and Cpj E
1
C:[uj)
m
c,(uj)
such t h a t
i n t h e neighbourhood of
i s such t h a t $
For c p ~C " ( ? ) ,
3
?.
= 1 in
rp = rp,
we have
Q
+
'pj rp
J We extend
i n t o @ = p ( ~ )E Cm(R")
, where
iP=@,+cPj
of l o c a l
j Uo = X \ (U Uj) . J
.
by p u t t i n g Q0
i s o b t a i n e d by e x t e n d i n g
j p ',
cp by 0 o u t s i d e o f U
0
and where
J
It is immediately obvious t h a t t h e o p e r a t o r p s o c o n s t r u c t e d meets t h e r e q u i r e m e n t . sequence
It remains t o prove t h e e x i s t e n c e of a
Xk s a t i s f y i n g ( 9 . 2 . 1 ) .
Cramer system
With N
E
N , we c o n s i d e r t h e
66
DISTRIBUTIONS AND OPERATORS
(CHAP. 1
A c a l c u l a t i o n o f Vandermonde determinants shows t h a t
2-j
Since t h e s e r i e s
converges, t h e r e e x i s t c o n s t a n t s C
j s l and c > 0 such t h a t
(1
+
2-3
5
c
J=1
,
and
We have t h e upper bounds
and s i n c e
Letting N
1 1 2a-l 2j - 1
-t m,
for R
2 1, we t h e r e b y deduce
we o b t a i n
Consequently ( 9 . 2 . 1 ) follows from ( 9 . 2 . 2 ) , ( 9 . 2 . 3 ) and ( 9 . 2 . 4 ) . We now consider t h e r e s t r i c t i o n o p e r a t o r
dR")-9 m)
It i s c l e a r l y continuous, and P r o p o s i t i o n 9.2 shows t h a t it is
(SEC. 9 )
By t r a n s p o s i t i o n , we o b t a i n an i n j e c t i o n o f t h e
surjective. dual
67
MANIFOLDS WITH BOUNDARY
.PR)
M) i n t o
of
We i d e n t i f y a continuous
ax)w i t h i t s image under t h i s i n j e c t i o n ,
l i n e a r form R on
with t h e d i s t r i b u t i o n
c
(92.5.)
.P[R").
u, ip
u
o n B n d e f i n e d by
>
=
a(~,,]
@ E
for a l l
i.e.
~(R"I,
We t h e n have:
PROPOSITION 9.3 :
By way of the i d e n t i f i c a t i o n ( 9 . 2 . 5 ) ,
the dual P ( y ) o f @) coincides with
J!+'($")
.
This e q u a l i t y
X
is algebraic m d topological, both of these two spaces being
r,,.
equipped e i t h e r with T s or with dual
&'R) of C"R]
coincides with
In the same manner, the
EL(R") X
PROOF: i f supp @
u i s d e f i n e d by ( 9 . 2 . 5 ) , we have < u, Q > =
If C
.
R"\
u E 8. (R")
and t h u s
iT
.
0
Conversely,
we have
(9.3.1.)
Suppose we have
LEMMA:
u E
Ir_(R")
and
ip
E 4R")
X
such t h a t @ = 0 i n X.
Then
< u, @ > = 0 .
This lemma shows t h a t if u E Ir_(R"),
L on
f l ) by
we d e f i n e a l i n e a r form
A
putting
a((p) = < u,
i s an a r b i t r a r y e x t e n s i o n of
cp E
9
>
.
Ed
.Pg) = E[R") X
(z) .
.
4R")
.@i)
Making use o f P r o p o s i t i o n 9 . 2 , w e have and t h u s .f,
@ E
where
a(cp)
=
This proves t h e a l g e b r a i c e q u a l i t y The t o p o l o g i c a l e q u a l i t i e s f o l l o w from t h e
,
68
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
It now remains
c o n t i n u i t y of p and o f t h e r e s t r i c t i o n o p e r a t o r .
f o r us t o prove Lemma (9.3.1): through a p a r t i t i o n of u n i t y , we n can a s b e f o r e reduce t o t h e case X =lR+.
xn
@,(x) =
of
@(XI,
+
x, we have
< u,
>
0 since
< u,
@
=
REMARK 9.4
for all Q E
:
fl)
@
6
> ;.Q @e
E
> 0 , we put
i s z e r o i n t h e neighbourhood
; we t h e r e b y deduce t h a t
e
@
in
&(B(R")
when
E
-f
0.
We have t h e continuous i n j e c t i o n
,
with t h e function fo innn \
; since 0
e)
For
By means of ( 9 . 2 . 5 ) , f E
1 Lloc@in)
i s identified
d e f i n e d by f o = f i n
2, fo
= 0
X.
REMARK 9 . 5
:
&(XI
i s s e q u e n t i a l l y dense i n
& F] : by
a p a r t i t i o n of u n i t y we reduce t o t h e s e q u e n t i a l d e n s i t y of &(XI
in
&L'[R")
n i n t h e case X =B+. I n o r d e r t o e s t a b l i s h
X t h i s d e n s i t y , we proceed by r e g u l a r i s a t i o n ( s e e 1.1.1)by
n choosing p w i t h support i n B+.
REMARK 9.6 : manifold M ,
?
When i n D e f i n i t i o n 9.1 we r e p l a c e #
by a
i s c a l l e d a manifold w i t h boundary imbedded i n M.
A l l t h e preceding d e f i n i t i o n s and p r o p e r t i e s extend t o t h i s case
without d i f f i c u l t y .
(SEC. 9)
69
MANIFOLDS WITH BOUNDARY
We now g e n e r a l i s e t o t h i s s i t u a t i o n t h e r e l a t i o n s h i p s b e t -
x be
Let Y be a manifold and
ween k e r n e l s and o p e r a t o r s .
a
manifold with boundary imbedded i n M: we assume t h a t p o s i t i v e densities
and v a r e s p e c i f i e d on M and Y ; we n o t e t h a t
!J
i s a manifold w i t h boundary imbedded i n M
x Y
from Lemma 1 . 3
and P r o p o s i t i o n 9.2
fi
s e q u e n t i a l l y dense i n
a(iTx
X X Y
E ( ~ ( Y ) , i~ (X))
d
into
p)
is
We have
, afl)=
(M x Y’)
Y) =
and t h a t ,
f l ]8 &Y)
,
.
x Y)
x Y
P(M) and t h e space
iT
of continuous l i n e a r o p e r a t o r s from B(Y)
i s a subspace of
.
fi [M’))
.C(b(Y),
By v i r t u e of
Lemma (9.3.1),it can immediately be shown t h a t t h e o p e r a t i o n of passage t o t h e k e r n e l ( s e e Theorem 8.1) induces a b i j e c t i o n of
L[B[y),
t r u e f o r a l l cp
A
.&fl
f l [ x ) ) onto
E c(&fl),
E
G ),
.s([Y))
the kernel
JI E B(Y)
A
K Ea[Y x
.
NOW
0
suppose
J!(Y)
r : B(M)
; if
ion o p e r a t o r , we have
and t h a t formula (8.1.1) i s
x Y)
is the restrict-
, and
r € E(B[M), & [Y))
we c a l l
M) of A o r t h e k e r n e l of A ; we can show
a s above t h a t t h e o p e r a t i o n o f passage t o t h e k e r n e l i s a b i j e c t i o n of
e[fi),
.s([(v))
Y)
and t h a t it i s for all
x, 7 be two manifolds with boundary
imbedded
If E 4 Y )
Finally, l e t
b ( Y x
>
again c h a r a c t e r i s e d by:
cp€*),
onto
c
A?,
$V
>=c
K, $ v 63
q#h
.
i n manifolds M, N equipped w i t h p o s i t i v e d e n s i t i e s
u,
v.
70
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
A E L(fl),
Suppose we have
fl))
d
;
we d e f i n e t h e k e r n e l K
of A by c o n s i d e r i n g A a s a continuous l i n e a r o p e r a t o r from
m)
fi [M)
into
, or,
which amounts t o t h e same t h i n g , by
c o n s i d e r i n g t h e k e r n e l of t h e o p e r a t o r A
o
r E C[aN],
KEJJ XXTi
Pfl)) .
The above shows t h a t
( M X N ) ~ E [ M X N ) = P( M X N) X x N X V
By
x
u t i l i s i n g Lemma (9.3.1),we can a g a i n show t h a t t h e o p e r a t i o n of passage t o t h e k e r n e l is a b i j e c t i o n o f
i",
q#>
,
We p u t
Show t h a t
and deduce from t h i s t h e upper bound
(2.9.1).
Conversely, l e t U be an e n t i r e f u n c t i o n i n C"
b)
T = rl[U
i n g (2.9.1). We p u t
sequence (see (l.l.l)),w i t h
)
I R" supp p
.
C
Let p
{ 1x1
p u t Tj = p j
*
T. Using Theorem 2 . 6 , show t h a t
c { x
I
dist.(x,
HOMOGENEOUS DISTRIBUTIONS:
t h e two open s e t s 7Rn o r E n \
let
T
x
morphism
E
0 ,
be given by t r a n s p o r t i n g T under t h e d i f f e o -
.&((n)
x
geneous o f degree
x
be a r e g u l a r i s i n g
J
Tj supp T c K .
10.2
.
K) 5 1 ]
j
satisfy-
c---)
m
(with m
.
E
x
E c
We say t h a t T i s homo-
) i n R i f TA = Am T f o r a l l
> 0.
a)
Show t h a t i f T i s homogeneous of degree
i s homogeneous of degree m - la1
Suppose
T
E S*[R")
, then
Da T
.
Show t h a t Da 6 i s homogeneous of degree
b)
m
-
n
-
la1 i n IR"
i s homogeous of degree
m.
I
Show
(SEC. 1 0 ) A
-
t h a t T i s homogeneous o f degree
c)
73
ADDITIONAL N O T E S
T E
Suppose we have
- m
n
(Rn)
A?'
i n IRn.
T
such t h a t
lRn\CO
m
is C
i
and homogeneous.
IR"\lo 3
is
Cm [for
T = UT
function Log 1x1. degree
-1
Suppose p v
-
E
X
1, and t h a t x pv
5 > 0 , and t o i w f o r 6
.I
( * ) 10.3
1 = X
identical t o 1 in the
(1
- U)T
]
i s t h e derivative of t h e
1 is X
odd and homogeneous o f
Deduce from t h i s t h a t t h e
1.
I
f o r a > 0 we have
?U
U c--t Tu = e--CY x2/2
I
.
6U4'2Ie'Re
(r
2
0
,
CY
E
E S'(R1 Show t h a t
Show t h a t t h i s
f 0 , by
Deduce from t h i s t h a t for
2
X
for
We r e c a l l t h a t
> 0 and continuous f o r Re c1 2 0 .
e q u a l i t y remains t r u e f o r
a-'.
i T
--2 i1n (pv; 1 - in 6) .
2 FOURIER TRANSFORM OF e ihx '2.
c1
.
< 0 , and t h a t
F l y
holmorphic f o r Re
3
and t h a t
A is t h e f u n c t i o n e q u a l t o X
Show t h a t t h e mapping
main branch of
+
Jl(CR)
Show t h a t pv
Fourier t r a n s f o r m of pv
(10.2.1
C:(IRn)
c1 E
neighbourhood of 0 , w r i t e
d)
T E 8'[R")
Show t h a t
1R \ {O}, t h e F o u r i e r t r a n s f o r m of ei X x /2 is
taking the
is
74
(CF99. 1)
DISTRIBUTIONS AND OPERATORS
10.4
FUNDAMENTAL SOLUTION OF THE CAUCHY-RIEMA"
We c o n s i d e r i n IRd
t h e Cauchy-Riemann o p e r a t o r
2 Let Q be a r e g u l a r bounded open s u b s e t of IR
a)
OPERATOR:
.
By app-
l y i n g S t o k e s ' formula, show t h a t
for
u,
(+y
,
E C'(5)
an
z = x + iy,
b e i n g given i t s canon-
i c a l o r i e n t a t i o n as t h e boundary of a compact s e t .
b)
Suppose we have zo
u(z) =J& *
E
Q.
By a p p l y i n g (10.4.1)for
a f t e r having removed from Q a d i s k w i t h c e n t r e
zn and w i t h r a d i u s € , t h e n by l e t t i n g
E
t e n d t o 0 , show t h a t
dx dy
0
c)
Deduce from t h i s t h a t
of t h e operator
a az
.
-
1 is E = nz
a fundamental s o l u t i o n
6
d)
By o b s e r v i n g t h a t E i s homogeneous of degree
10.2.,b ) , show t h a t
10.5
-
1 (see
=
FUNDAMENTAL SOLUTION OF THE LAPLACE OPERATOR:
c o n s i d e r i n IRn t h e Laplace o p e r a t o r
A=k-a2
We
,
j=i ax:
a)
L e t R be a r e g u l a r open s u b s e t o f I R n .
Suppose we
ADDITIONAL NOTES
(SEC. 10)
have
u, v E C’[?i]
, at
75
l e a s t one o f t h e two b e i n g assumed t o
have compact s u p p o r t .
By applying S t o k e s ’ formula t o t h e ( n
-
1) - form
show t h a t
Thus, deduce t h a t
n
=
grad u. grad v dx
an
where N i s t h e i n t e r i o r u n i t normal t o
and do i s t h e Riemannian
an (IRn b e i n g equipped w i t h i t s c a n o n i c a l E u c l i d i a n
density on structure).
Deduce from t h i s t h a t
b)
(10.5.1) f o r show t h a t
v
Suppose t h a t n 2 3 and
n= {
x E
R”
I
1x1
>
c]
E
4f]
,
.
By a p p l y i n g
and by p u t t i n g r = 1x1,
76
(CHAP. 1)
DISTRIBUTIONS AND OPERATORS
where un-l
is t h e a r e a o f t h e w i t sphere of l R n .
Deduce from t h i s t h a t
E = (2
- 1nlurr-l
~
x
l
- i s~ a
fundamental s o l u t i o n o f A when n 2 3.
c)
I n t h e c a s e n = 2 , proceed i n a similar manner by
-n+2 r e p l a c i n g 1x1 by Log 1x1 , and show t h a t
is a fundamental s o l u t i o n of A d)
Show t h a t , for n
2
Log 1x1
.
-
= - 1
3, we have
(use
I %I2
10.2, b )
10.6
1
E =
FUNDAMENTAL SOLUTION OF THE HEAT OPERATOR:
c o n s i d e r i n IR
n +1
We
the heat operator
W e put
a)
(with
T = 0
defines a distribution
+ iy, E E
y
0.
e-at
t -y(t) 0
c)
x)
2
0 }
,
Show t h a t t h e F o u r i e r
is
1 a+io
Deduce from t h i s t h a t
and, by u s i n g 1 0 . 3 , t h a t
i . e . t h a t E is t h e ( l o c a l l y i n t e g r a b l e ) function
10.7
FUNDAMENTAL SOLUTION OF THE SCHRVDINGER OPERATOR.
'We c o n s i d e r i n En+'
t h e Schradinger operator
. a ) Show t h a t t h e formula
( where fixed;
cp E B(A"+')
?
=
Q
- iy
,y
c0
) defines a distribution E E S ( R w 1 )
and t h a t t h i s d i s t r i b u t i o n does n o t depend on t h e number y > 0
78
DISTRIBUTIONS AND OPERATORS
chosen.
Show t h a t E i s a fundamental s o l u t i o n o f P, and t h a t supp
b)
(CHAP. 1)
E c { ( t ,x ) E Rn+'
I
t
2
0 ]
.
By proceeding as i n t h e p r e c e d i n g e x e r c i s e , show t h a t
and t h a t
(it w i l l be noted t h a t t h e function
10.8
FUNDAMENTAL SOLUTION OF THE WAVE OPERATOR:
We
c o n s i d e r i n Bn+l t h e wave o p e r a t o r
a)
Show t h a t t h e formula
t h i s d i s t r i b u t i o n does n o t depend on t h e number
y > 0 chosen.
Show t h a t E i s a fundamental s o l u t i o n o f P and t h a t
SUPP
Et
where
c
E C
[t, x)
E R"
By o b s e r v i n g t h a t P(7,
b)
79
ADDITIONAL NOTES
(SEC. 10)
Show t h a t
"'w
=
Et(x)
t
2
0
3
.
5) =
*
E)(;l tn-?
=
I
f o r t > 0 , and t h e r e f o r e
that
A
Show t h a t E, e x t e n d s i n t o t h e e n t i r e f u n c t i o n
c )
Show t h a t I z
lU(c)I SUPP
5
El c
1 1
C 1.l
= 15 I and t h a t / B 1 5
elT1 and 5 13.
IqI.
Thus deduce t h a t
t h e n b y u s i n g 10.1, t h a t
DISTRIBUTIONS AND OPERATORS
80
(CHAP. 1)
By u s i n g (10.8.1),i n f e r t h a t
(10
a 2.1
Supp
E
{ (t, x )
c
I
E R"+'
1x1 I t
.
3
F u r t h e r p r o p e r t i e s of E w i l l be seen i n E x e r c i s e 1 0 . 3 o f Chapter
111.
10.9 f :
R"
-
R
u = f
*
We d e f i n e u = v
v E >([R") 0
# 0 when f ( x ) = 0.
, the
E
.
We s h a l l now
v
under
E C"(P( \ 0)
i n v e r s e image of f
f on t h e open s u b s e t
a l o c a l diffeomorphism
Zn,
v
be such t h a t
neighbourhood of a p o i n t xo
f(x) into
Let
be a Cm mapping such t h a t f ' ( x )
v E &'((R)
Let define
INVERSE IMAGE OF A DISTRIBUTION:
-1
( Rn
\
0)
.
f
.
In t h e
IRn such t h a t f ( x ) = 0 , we consider 0
5
x cc x
x(x)
transporting
of 33"
and we p u t
* 0
Show t h a t t h e d i s t r i b u t i o n s u, u
0
piece together i n t o a distribShow t h a t i f a sequence
u t i o n on l R n , which we denote by f* v.
v
J
E p ( R ) fl C"(R\O)
v -
J
0
in
cw((R\O)
,
m
: vJ-0
i s such t h a t then
f*
v)
=
v
J
-
in
0
&((R)
&(f)
in
Show t h a t (103.1
,I
SUPP(f*
f-l(s"pp
v)
,
, ,
(SEC. 1 0 )
In t h e c a s e where
ADDITIONAL NOTES
v
i s t h e D i r a c d i s t r i b u t i o n i n IR, show
t
that f
v coincides with t h e d i s t r i b u t i o n 6 ( f ) defined i n
Section 7 . 2 .
We s h a l l g i v e i n Chapter V I I I a more g e n e r a l d e f i n i t i o n o f the i n v e r s e image.
81
This Page Intentionally Left Blank
CHAPTER 2.
SOBOLEV SPACES AND A P P L I C A T I O N S
1.
DIRICHLET'S PRINCIPLE
Sobolev spaces a r e spaces of d i s t r i b u t i o n s corresponding
t o a c e r t a i n degree of r e g u l a r i t y and t h e y have, i n a d d i t i o n , a H i l b e r t space s t r u c t u r e .
They a r i s e i n a n a t u r a l manner i n
the study of boundary-value problems f o r d i f f e r e n t i a l o p e r a t o r s , as t h e simple example which f o l l o w s w i l l show.
We l e t X be a
r e g u l a r bounded open s u b s e t of IRn and we c o n s i d e r t h e f o l l o w i n g D i r i c h l e t problem:
Find
where
g
I;
such t h a t Au - u = 0 i n X ,
u / a x = in We can f o r example assume g
i s given.
begin by s e e k i n g u
E
C2(x).
E
C
2
(ax)
and
P h y s i c a l c o n s i d e r a t i o n s l e a d us t o
consider a q u a n t i t y which w e c a l l t h e energy o f u, d e f i n e d by
Then, we have
83
84
SOBOLEV SPACES AND APPLICATIONS
The above Dirichlet problem admits
DIRICHLET’S PRINCIPLE :
a t most one solution.
u i s a solution, i t minimises the
If
energy E over a l l the functions equal t o g
I n f a c t , suppose we have v Let h = v E(v)
-
- u.
i,
2 Re
E
2 C ( X ) such t h a t v
( g r a d u (x)
U(X)
From Green’s formula
-
(where
au denotes an
normal t o
ax),
and s i n c e h
I ax
I ax
= 0.
-
we s e e t h a t E ( v ) = 0.
m ) d x
I x A u . hdx
t h e d e r i v a t i v e of
-
u
+
E(h)
.
i, 2 -
+
- , h d x
along t h e e x t e r i o r unit
E(u) = E(h) since A u
-
u = 0
Now E ( h ) i s always p o s i t i v e o r z e r o , and
i s zero i f and only i f h
-
=
= g.
I ax
-.
+
g r a d u.grad h dx
on the boundary.
u is a solution:
We have, i f
=
E(u)
(CHAP. 2 )
Thus, E ( u )
i s c o n s t a n t , i . e . zero s i n c e
h
5 E ( v ) and t h e e q u a l i t y
i s equivalent
t o v = u.
O f c o u r s e , t h e p r e c e d i n g argument does not prove t h e e x i s t -
ence of a s o l u t i o n and i n f a c t t h e r e does n o t always e x i s t a solution
u
in
c2(?).
It i s t h e r e f o r e n e c e s s a r y t o seek 2 -
i n a space l a r g e r t h a n C ( X ) .
We observe t h a t E(u) i s t h e
norm a s s o c i a t e d w i t h t h e p r e h i l b e r t s t r u c t u r e on C 2 ( ? ) by t h e i n n e r product (u, v),
=
u
( (grad u
.v + grad
)u ;,
dx
defined
.
(SEC. 2 )
85
HS(IRn) AND H s o c ( X )
SPACES
The D i r i c h l e t p r i n c i p l e l e a d s us t o c o n s i d e r t h e completed
1 H i l b e r t s p a c e , which we denote by H ( X ) , and which, as we s h a l l
1-
see, c o i n c i d e s w i t h t h e Sobolev space H ( X )
H”(K~
=
{ u E L ~ ( x )I
aj
E L*(x)
u
1-s jr n
for
>
,
*
We s h a l l a l s o s e e t h a t we can d e f i n e i n a n a t u r a l manner t h e trace v
=
I ax
ax
of v on
{ v E H”(Y)
I
when v vlax
1-
H ( X ) , and t h a t t h e a f f i n e v a r i e t y
E
g
=
}
i s closed i n
$(XI.
nus,
by analogy w i t h t h e D i r i c h l e t p r i n c i p l e , we can c o n s i d e r t h e orthogonal p r o j e c t i o n
4
that
u
u of 0 onto
c;
we s h a l l show i n s e c t i o n
1i s i n f a c t t h e unique element of H ( X ) which i s =
au-u
0
in
u a x = 9
in
such t h a t
2.
THE SPACES
For
E
2
L
s
E
IR, we denote by HS (IRn ) th e
u E S’(Rn)
space of d i s t r i b u t i o n s
I c12)s’z
.
HSDn)
DEFINITION 2.1 :
[I+
X
n
(R )
.
such t h a t
We equip H S ( E n ) w ith th e in n e r
product
and w i t h t h e associated norm
11
1 Is
defined by
86
SOBOLEV SPACES AND APPLICATIONS
-
We c o n s i d e r t h e t o p o l o g i c a l
We s h a l l f r e q u e n t l y p u t H S m n ) = H S .
: 88
v e c t o r isomorphism
(u, ")*
=
.
As u
81
d e f i n e d by we have
s
A
(CHAP. 2 )
v dx
from Theorem 2 . 5 of Chapter I .
HS i s t h u s t h e H i l b e r t space o b t a i n e d by t r a n s p o r t i n g t h e 2 n H i l b e r t space L (B ) by t h e isomorphism icular H
o
2 n = L (IR ) .
9 E IR
Let s,,
R S ;we
have i n p a r t -
be such t h a t s, 5
9 ;it
S
i s immediately c l e a r t h a t HS2 c H S
S
into H
H
and t h a t t h e i n j e c t i o n o f
i s continuous.
=
We put H+
fl
H'
,
s E R H4
=
u
,
8 c Hk
; we have
HS
and, from ( 2 . 8 . 1 ) o f
s E R Chapter I ,
.
&' c H-
upper bound
cy
15
I
I
i s continuous from H
S
From Theorem 2 . 1 0 o f Chapter I and t h e
I I I Icy/
,
a differentiation operator
i n t o Hs-lal.
Da
2 We have seen t h a t Ho = L ;
more g e n e r a l l y we have
For rn
PROPOSITION 2 . 2 :
tributions u
c
B([Rn) such
multi-index a s a t i s f y i n g
E
m y H" is
that
Icy1
D'
rn
S
the space of d i s -
u E L2(R")
,
for any
Moreover, the inner
product i n Hm is equivaZent t o the inner product
PROOF: we'have
-Da u
Suppose E
L
2
u E .B'
; from Theorem 2.10 o f Chapter I ,
i f and o n l y i f
ga ;I
E
L2
,
and i n t h i s
(SEC. 2 )
HS(Bn)
SPACES
AND HS (X) loc
87
e a s i l y be shown t h a t t h e r e e x i s t p o s i t i v e c o n s t a n t s C
such
C
1' 2
hence P r o p o s i t i o n 2 . 2 .
PROPOSITION 2.3
3
continuous;
HS; f o r h
E
E
HS
9
T~ u
4
u
I/f'-,
"11,
=
E
we denote by
IRn, x
-h
CX ,I
HS
In the ease where h = (0,
PROOF:
8
.. .
j '
h
0, h j , 0,
tends t o
-+
0
.. ., 0 ) a.
J
A
S
h
u the
Then
. the d i f f e r -
u in HS-l when
We now show t h a t t h e i n j e c t i o n o f
continuous; s i n c e onto
when
T h U - U
entiaZ quotient
T
I/ul/s
and in
is
c ,HS
the i n j e c t i o n of HS i n t o gr is
u under the t r a n s l a t i o n
image of h'
i s dense i n HS;
Suppose u
continuous.
8
The i n j e c t i o n
:
8 i n t o HS i s
is a t o p o l o g i c a l v e c t o r isomorphism o f
and o f HS o n t o Ho, it i s s u f f i c i e n t t o c o n s i d e r t h e
case s = 0 .
For
Cp
E8
we have f o r example r
6
88
(CHAP. 2)
SOBOLEV SPACES AND APPLICATIONS
so that
which proves t h e c o n t i n u i t y which we seek.
The i n j e c t i o n o f HS i n t o %' i s continuous; in f a c t , as p r e v i o u s l y we reduce t o c o n s i d e r i n g t h e c a s e s = 0 and we observe t h a t f o r u
I
t , and t h a t K is a compact subset of Bn s
H ~ ( R)
t
n
1is
.
E.
:
IR with
Then the i n j e c t i o n
compact.
be a sequence i n H
S
k
such t h a t l/uklls < 1.
We
now show t h a t we can e x t r a c t from t h i s a subsequence which i s convergent i n Ht.
Suppose we have
the neighbourhood of K .
u = TU
,
gu(
= (2~)’~
For u
E
*z ,
cp
E dRn)
equal t o 1 i n
S
HK, we have Da
= ( 2 ~-n) Du Cp A
*2 .
51
t o g e t h e r w i t h t h e e x i s t e n c e of a c o n s t a n t Ca such t h a t
As
(CHAP. 2)
SOBOLEV SPACES AND APPLICATIONS
96
We t h u s have:
(1
2 4 2
+ 151 )
IDcy
Uk[s)l
ccu
5
for a l l
k and a l l 5
E
IR",
a which shows t h a t t h e sequence (D uklk i s uniformly bounded on any compact s u b s e t o f l R n .
By a p p l y i n g t h i s r e s u l t f o r m u l t i -
i n d i c e s a such t h a t ( a (I 1, and by u s i n g A s c o l i ' s theorem, we s e e t h a t we can e x t r a c t from t h e sequence
%
a subsequence ( a l s o
denoted, w i t h an abuse o f n o t a t i o n , by uk ) such t h a t
(2.10.1)
\
converges uniformly on any compact s u b s e t of
We s h a l l now deduce from t h i s t h a t t h e subsequence u in H
t
.
Suppose R > 0 .
We have
where
f
Writing
we o b t a i n , s i n c e
t-s < 0
:
IIUk
-
2
Uallt
=
k
1,
W
n
.
converges
+
5
,
SPACES HS(iRn ) AND Hy,,(X)
(SEC. 2 )
97
so t h a t I2 can b e rendered a r b i t r a r i l y small i f R i s chosen s u f f iciently large.
For R f i x e d i n t h i s manner, I 1 can be rendered
a r b i t r a r i l y small i f k , R are s u f f i c i e n t l y l a r g e , by v i r t u e o f
(2.10.1).
Let sl, s, s2 be such t h a t s1 < s < s2.
PROPOSITION 2.11:
For any
E
> 0 , there e x i s t s
=
P
i . e . by p u t t i n g
a constant c E such t h a t
1
+ l5l2
, that
i.e. that
1 I S P
VS
+
-(Q-sl
) / ( ~ - 4s,-s
a
P
l/S2-S
By p u t t i n g
h = s
, this
i n e q u a l i t y can b e w r i t t e n
(CHAP. 2)
SOBOLEV SPACES AND APPLICATIONS
98
s -s
If ~p
2
1, ( 2 . 1 1 . 1 ) i s s a t i s f i e d s i n c e ( A p )
2 1 s -s
If Xp < 1, ( 2 . 1 1 . 1 ) i s s a t i s f i e d s i n c e ( X p )
2
1.
We now s t u d y d i s t r i b u t i o n s which behave l o c a l l y l i k e elements of
HS
. DEFINITION
suppose s u
E
HS
l 0 C
a'(X)
2.12 :
Let
x be an open stcbset
We denote by H ; o c ( X )
E 7R.
such t h a t
QU
E HS f o r a l l
of I R ~and
the space o f d i s t r i b u t i o n s Q
E
We equip
Cz(X),
( X ) with the topoZogy defined by the f a m i l y of semi-norms
u c ~ I ! ( p u ] /, ~ Q describing C E ( X )
.
I f U i s an open s u b s e t of X , t h e r e s t r i c t i o n o p e r a t o r i s e v i d e n t l y continuous from H
S
S
loc
(X) i n t o H l o c (U).
Furthermore,
we have :
PROPOSITION 2.13 :
( x ) into
i n j e c t i o n of
H~
s > n/2 + k
,
injection.
We have
loc
we have
i s a Frgchet space, and t h e
H;oc(X)
i s continuous.
P(X)
HSl o c (X)
n
,
c Ck(X)
HYoC(X)
=
C"(X)
men with continuous
.
A differ-
s E R entiaZ operator of degree m with Cm c o e f f i c i e n t s i n
x
is
continuous from H'Joe (XI i n t o H~;:(X).
PROOF:
Let K . be an e x h a u s t i v e sequence of compact J
s u b s e t s of X and suppose we have Then t h e sequence o f semi-norms
cpj E u
c--,
f(X)
(IQj
equal t o 1 i n K u(ls s u f f i c e s t o
j'
99
SPACES HS(IRn) AND H!oc(X)
(SEC. 2 )
define t h e topology of H
S
loc(X): in fact, if
,
cp E c:(X)
we
have, f o r j s u f f i c i e n t l y l a r g e ,
wj
cp =
1k9.11,
and
=
lIwj ulIs
C
from Theorem 2 . 6 , C only depending on s and cp is metrizable.
E
all (Pu
k
f(X]
'p
E
, Wk
i s a Cauchy sequence i n H in H
IJ
S
,
%
.
has a l i m i t
and a f o r t i o r i i n
Thus u
E
HS
loc
u in
( X ) and
a', w i t h cpu
\
ulis
Thus H;oc(X)
be a Cauchy sequence i n H
(9
C:[x)
.
Let (\)
possesses a l i m i t
from t h i s t h a t
livj S
loc S
(X) : for
, thus
a' ; it
= u f o r all (9
S
+
follows
u i n Hl o c ( X ) .
The
other a s s e r t i o n s o f t h e p r o p o s i t i o n a r e immediate, by u t i l i s i n g i n p a r t i c u l a r Theorem 2.5.
DEFINITION 2.14 :
We denote by H:omp(X)
th e union of the
spaces H! when K describes the famiZy of compact subsets o f X , and we equip HEomp(X) w i t h t h e i n d u c t i v e l i m i t topology of th e topoZogies of t h e HL.
THEOREM 2.15 :
The i n j e c t i o n s
c"(x)
C z ( X ) i s dense
-
in HS ( X ) and in H:omp(X). loc
H ; (X) ~ ~ and
-
C;(X)
Hs
(X)
COW
are continuous and of dense image and allow us t o i d e n t i f y th e duaZ of H Y o c ( X ) w i t h H-' ( X ) and the duaZ of HEOmp(X) w i t h c omp H;:c(X).
PROOF:
The c o n t i n u i t y of t h e i n j e c t i o n s f o l l o w s immed-
i a t e l y from t h e c o n t i n u i t y o f t h e i n j e c t i o n
R
- HS .
SOBOLEV SPACES AND APPLICATIONS
100
q?j a s i n t h e proof o f Theorem 2.13.
Suppose we have f u n c t i o n s If u
if p
S
Hloc(X),
E
it i s immediate t h a t
cp j u
--
i n HS ( X ) ; loc
u
i s a r e g u l a r i s i n g sequence, we have seen (Theorem 2 . 7 )
k
that
(CHAP. 2 )
pk
*
(cpj u)
-
i n H:oc(X).
t h e d e n s i t y o f C"(X) 0
-
P k * U
k
; hence
E
Similarly, i f
i n HS ( X ) when c omp
l-4
-+
k
i n HS when
cpj u
+=
S
HCD,,(X)
1
; hence t h e
4
i n HEomP(X).
d e n s i t y of C"(X) 0
We s h a l l now show t h a t each space HS ( X ) loc
, HLZmp(X)
is
i d e n t i f i e d w i t h t h e d u a l of t h e o t h e r by means of t h e b i l i n e a r form on HS
(X)
< h, v >
,
loc
x
HcZmp(X) where
x
E
d e f i n e d by
u, v-
=I
i s an a r b i t r a r y f u n c t i o n having
C:(X)
t h e v a l u e 1 i n t h e neighbourhood o f supp v , and where t h e l a s t s n s e t of b r a c k e t s a r e t h o s e o f t h e p a i r i n g between H (B ) and F i r s t , it i s immediately c l e a r t h a t < u, v > depends
HdS(Bn).
This proves t h a t < u , v >
c o n t i n u o u s l y on u for v f i x e d . does n o t depend on t h e f u n c t i o n
x
chosen, and we t h e r e b y deduce
t h a t < u , v > depends c o n t i n u o u s l y on v f o r
u fixed.
Conversely, l e t R be a c o n t i n u o u s l i n e a r form on H and l e t
v
be t h e d i s t r i b u t i o n i n
< cp, v > = k(cp)
-
for all
cp E C"(X)
c'(X)d e f i n e d
ip
0
E
have
= < Xip, v
=.
I
J(Xip)
.
x
m
E
C0 ( X )
Then
depends c o n t i n u o u s l y on
Cz(IRn) f o r t h e topology induced by H S @ i n ) .
v E H-'(R*)
by
; suppose we have
e q u a l t o 1 i n t h e neighbourhood of supp u.
S
loc ( X ) ,
In similar fashion,
We t h e r e f o r e
SPACES HS(IRn) AND H 7 0 c ( X )
(SEC. 2 )
i f R i s a continuous l i n e a r form on H
u E &[X)
distribution
jl
E
Cz(X).
If
rp E C(;X)
depends c o n t i n u o u s l y on by H-‘(IRn),
d e f i n e d by
thus
then @
E C:[R”]
p E HS(R”]
REMARK 2.16 :
S
c omp
101
( X ) , we c o n s i d e r t h e
u, jl > = a ( $ ) f o r a l l
@-
= A(cp5)
f o r t h e topology induced
and f i n a l l y
The preceding i d e n t i f i c a t i o n s a r e a l g e b r a i c .
We can show t h a t t h e y a r e a l s o t o p o l o g i c a l when we equip each dual w i t h t h e topology of uniform convergence on t h e bounded subdomains.
We can i n f e r from t h e t h e o r y of p s e u d o - d i f f e r e n t i a l ope r a t o r s t h e i n v a r i a n c e under diffeomorphism of t h e spaces
HYoc(X)
( s e e C o r o l l a r y 8.9 i n Chapter I V ; s e e a l s o E x e r c i s e
7.2 f o r a d i r e c t p r o o f ) :
I)
THEOREM 2.17 :
let
x:
Let U, U be two open subsets of IRn and
c
U
-t
U be a diffeomorphism.
Then
x+
d e f i n e s a topotN
ogicaZ vector isomorphism of HSl o c ( U ) onto HSl o c (U) as we21 as o f
This theorem allows us t o g e n e r a l i s e t h e d e f i n i t i o n of H Y o c ( X ) t o t h e c a s e where X i s a manifold:
DEFINITION 2.18 :
Let X be a mcmifold.
We denote by
SOBOLEV SPACES AND APPLICATIONS
102
HSoc(X) the space of d i s t r i b u t i o n s f o r any chart equip HS
loc
E
u
X :
(CHAP. 2 )
> (X)
such t h a t
-u
w
u
of X.
We
(X) with the topoZogy defined by the family of conc
tinuous semi-norms o f x w u i n H Y o c ( U ) ,
x
describing the famiZy
x.
of charts of
If U i s an open s u b s e t o f X , t h e o p e r a t o r of r e s t r i c t i o n t o U i s e v i d e n t l y continuous from H
S
loc
(x) i n t o H'l o c ( u ) .
Let X be a manifoZd.
THEOREM 2.19 :
( Sheaf property of HS (X)). loc
(i)
be such t h a t , f o r a22 x U of x in X w i t h
uIu
E
E
Let
HF(xJ
=
E >(X)
X, there e x i s t s a neighbourhood H:oc(U)
.
Then u
( i i ) Let K be a compact subset of X .
subspace
u
c u E H:~~(x) I
HS (X). loc Then the E
3 of IIuI(~,~
c K
supp u
S
Hloc(X) is hiZbertisabZe, and we denote by
an
I f the manifoZd X i s compact,
admissibZe norm in H;(X), S
we put H ~ ~ ~ = ( Hx'(x). ( i i i )Proposition 2.13
and Theorem 2.15 remain vaZid.
For the duaZity properties, we assume X t o be endowed with a positive density.
PROOF:
u E HYo,(Uj)
such t h a t indices J show t h a t
For ( i ) ,c o n s i d e r an a t l a s
.
X
U j'
-J J 5
U
of X
for any j belonging t o t h e s e t of
Let
x.: U
-
Xw u
E H:oc(U)
,
w
U
be an a r b i t r a r y c h a r t o f X ; we i . e . that
cp & u
E
H5
for
(SEC. 2 )
HSDn)
SPACES
me
r~ E C;[U~
n uj),
X(U
c o n s t i t u t e an open c o v e r i n g
c . )
of U; t h u s t h e r e e x i s t s a f i n i t e s u b s e t F o f J such t h a t
u
c
SUPP
x(u n u j ) ,
Let t h e r e be f u n c t i o n s
j E F
n uj))
E C:(X(U
'pj
.
j E F
i s transported i n t o a function $
j
, cpj cp E
X"
0
n UJ.I),
f c"(x.(U O
i s transported i n t o $
j
X
J
J*
y j y )&
F, hence
Q
x,
E HS
.
n
C:(X(U
U.
Ujj)
and
which belongs t o
u
Theorem 2.17 t h u s shows t h a t y . cp X*
HS by h y p o t h e s i s . E
in the
=
We have Q X, u
By t h e c o o r d i n a t e t r a n s f o r m a t i o n X j
for a l l j
1
j E F
neighbourhood of supp cp
yj CP X , u
=
'pj
such t h a t
J
E HS
LJ
Furthermore, we s e e
t h a t , f o r cp f i x e d , t h e r e e x i s t s a c o n s t a n t C such t h a t , f o r a l l
u
E
HS (X), we have loc
Thus
(2.19.1.) If
of
x.J
u i n HS
loc
(j E J)
Xj
i s an atZas of X , the semi-norms
(Uj) are s u f f i c i e n t t o define the topoZogy o f
' s
Hloc(X). W e now proceed t o t h e proof of ( i i )and ( i i i ) .
We can c l e a r l y S
choose J t o be countable i n (2.19.1),which proves t h a t Hloc(X)
i s metrizable.
Let ( \ )
be a Cauchy sequence i n H
u
X : U+U
any c h a r t s
-
(U) , therefore Hloc
of X ,
x \
x* \
S
loc( X ) ; for
i s a Cauchy sequence i n d
h a s a l i m i t u i n HS (U); i f X lot
x'
is
another c h a r t o f X, we can s e e by p r o c e e d i n g ' t o t h e l i m i t t h a t
ux, = [ X I
o
)(-I)* ux ; t h u s t h e r e e x i s t s u
E
8 (X) \
U
X
= X+ u for any c h a r t
x
of X.
We have
such t h a t
SOBOLEV SPACES AND APPLICATIONS
104 i n HS
Uk-
loc
Therefore HS
(X).
loc
U
-
cy
U
K c
(j E F) such t h a t
of X
'pj E C I ( U j )
For
i n t h e neighbourhood of K .
I=
j- E ~ ' j '
X j + ( ~ j u)-
loc ( X ) , and
u
Uj
.
vj
= 1
j E F
j
Let t h e r e be f u n c t i o n s
u =
S
L e t t h e r e be a f i n i t e f a m i l y o f c h a r t s
t h e r e f o r e complete. :
( X ) i s a Fr6chet s p a c e .
i s closed i n H
L e t K be a compact s u b s e t o f X ; H;(X)
xj
(CHAP. 2 )
and u
-f
0 in H
9
0
such t h a t
E HE(X),
u S
loc
we have
( X ) i f and only i f
i n HS f o r every j
F: t h i s i s c l e a r l y
E
n e c e s s a r y , and it i s s u f f i c i e n t from (2.19.1)by c o n s i d e r i n g
an a t l a s of X formed by t h e union of
x j and
complement of t h e neighbourhood of supp
an a t l a s o f t h e
qj.
Thus t h e topology
i n H s ( X ) can be d e f i n e d by t h e norm a s s o c i a t e d w i t h t h e i n n e r
K
product
We l e a v e t o t h e r e a d e r t h e t a s k o f g e n e r a l i s i n g t h e o t h e r p r o p e r t i e s s t a t e d i n P r o p o s i t i o n 2.13
3.
THE SPACES HS ( 2 )
and Theorem 2 . 1 5 .
AND H s o c ( ? ) . n
L e t X be a r e g u l a r open s u b s e t of IR Chapter I ) and l e t s E IR
H5(Rn)
-
&(X)
.
(see Definition 9.1,
The r e s t r i c t i o n o p e r a t o r
1":
d e f i n e d by r u = uIx, h a s f o r i t s k e r n e l
S
t h e c l o s e d subspace H @in) o f H S ( B n ) ; we t h u s have an isoIRL1\X morphism of HS / HS onto I m r . we equip H' / H' with the RT1\X Rn\X H i l b e r t - q u o t i e n t s t r u c t u r e , which t h e p r e c e d i n g isomorphism allows us t o t r a n s p o r t i n t o a H i l b e r t s t r u c t u r e on I m r .
This
leads t o :
Let X be a regular open subset of Bn
DEFINITION 3.1 : and l e t s it E
E
s'(x)
VQ denote by H s ( ? )
1R.
a h i t t i n g m extension
with the norn;
11~11,
il~ll,,
= Inf
the space of d i s t r i b u t i o n s
Z in
we equip
H'(IR~).
where
H'IX)
describes the famiZy
of extensions of u i n H ' (I$).
Tne decomposition i n t o an o r t h o g o n a l d i r e c t . sum
H'(R")
H~
=
(R")
8
R"\ X shows t h a t , for a l l
u E Hsfl],
e x t e n s i o n U o f u such t h a t
we have
I/uIls
=
II~ll,
U
'
[Hs (R") Rn\ X
)'
t h e r e e x i s t s a unique
(HS [I?"))' , and also t h a t Rn\X 2 We have H o ( ? ) = L ( X ) and, more
E
generally:
PROPOSITION 3.2 :
Suppose we have m
i s the space of d i s t r i b u t i o n s
The norm i n H-m(?) defined b y
u E P(X)
E
W.
Then H-m(Z)
of the form
i s equivalent t o the norm
u C-- I u
(CHAP. 2 )
SOBOLEV SPACES AND APPLICATIONS
106
where the lower bound i s taken f o r a l l the decompositions ( 3 . 2 . 1 ) of u.
-
PROOF:
Suppose we have
F
u
a*(fE)
E fi (X)
of t h e form ( 3 . 2 . 1 ) .
f:
E
obtainecl by e x t e n d i n g f a by 0 o u t s i d e o f
x.
u
We p u t
=
Icy
where
5.m
2 n L (R )
is
The d i s t r i b u t i o n
Y
u i s an e x t e n s i o n of u and, from C o r o l l a r y 2 . 9 . , w e have E- H-m(Rn)
with
Conversely, suppose u that
Fa
/\ulLm= \/Ul\-rn 2
E
r
E
H-m(%)
j
we c o n s i d e r
I,Fm IiF,lo .
H-m(IRn)
such
2
-
IUIErn
We s h a l l now s e e t h a t H1(?) eared i n the introduction.
PROPOSITION 3 . 3 :
Then, f o r
E
, From C o r o l l a r y 2 . 9 , t h e r e e x i s t s
n
L (IR ) such t h a t
compact.
U
~f
we p u t
is indeed t h e space which app-
More g e n e r a l l y :
We assume t h a t X = X?: rn E N
,
HmF)
d i s t r i b u t i o n s u E b ( X ) such t h a t
aty
or t h a t
ax
is
i s the space of 2 u E L (X) for lall m.
The inner product i n
e(?) i s equivaZent
t o the inner product
I
(3.3.1
.I
. . )
For t h e moment we s h a l l denote by
PROOF:
of t h e u
8‘(XI such
E
that
acy u
with t h e i n n e r p r o d u c t ( 3 . 3 . 1 ) .
8(?) t h e space
2
E L (x) f o r J c c 1s m , equipped From P r o p o s i t i o n 2 . 2 , we have
Hmg.‘) C PflT) w i t h c o n t i n u o u s i n j e c t i o n . Conversely, we Frnfl] C HmF)w i t h continuous i n j e c t i o n . can show t h a t This amounts t o p r o v i n g t h a t t h e r e e x i s t s a continuous l i n e a r m n e x t e n s i o n o p e r a t o r from Hm(x) i n t o H (B ) . II)
By l o c a l c h a r t s and
a p a r t i t i o n of u n i t y , it can e a s i l y be shown t h a t it i s s u f f n i c i e n t t o c o n s t r u c t such an o p e r a t o r i n t h e c a s e X =B+. We c o n s i d e r t h e continuous l i n e a r e x t e n s i o n o p e r a t o r
p :
a$) -B[R”)
c o n s t r u c t e d i n t h e proof of P r o p o s i t i o n
9 . 2 Chapter I , or even s i m p l e r , t h e e x t e n s i o n p c o r r e s p o n d i n g t o :
I t i s immediately e v i d e n t t h a t p i s continuous w i t h v a l u e s i n
?(Bn) for t h e t o p o l o g y induced by
Vn-n
H [R+) on
m+).
In
o r d e r t o conclude t h e p r o o f , it i s t h u s s u f f i c i e n t t o prove t h a t
m+)
i s dense i n
Tq)
,
which we s h a l l do by t r u n c a t i o n
Let t h e r e b e f u n c t i o n s
and r e g u l a r i s a t i o n .
xk
and pk as i n
t h e s t a t e m e n t of Theorem 2 . 7 , w i t h i n a d d i t i o n SUPP p
c {
X n I
0
]
.
For u
Epm:)
L e i b n i z ’ formula Shows
108
SOBOLEV S P A C E S AND A P P L I C A T I O € J S
a"[\
that
=
U)
\ a" u +
, where
v
(CHAP.
2)
i s a l i n e a r combinat-
v
ion of terms of t h e form
I
k-1"'
(a"' x) (x / k l a""
'pk = ( u
We now p u t of lcll
0
by 0 f o r xn < 0 .
u
*
p
> ,, k IR+
We have
+
"" =
where u
0
p I
"8
5
1)
.
i s t h e extension
vk E C " q )
and, for
s m;
i t s convolution w i t h p choice of p .
-
a' (U0 7
s i n c e , because
Since
k
a
E
Pk-(a' u
2
i n L (By)
Suppose
s E R.
where i : C;(Rn)
there-
Suppose we have
Then the i n j e c t i o n
Hs(T)
x is compact.
c ~ ( R " )i s
-
, and
, we
Then the i n j e c t i o n
The f i r s t i n j e c t i o n can be w r i t t e n r
c;(iT)-
3 ,
i n view of t h e i n L2(Fn)
u)"
a"
p-(,
1
xn = 0
pq) .
R with s > t .
i s compact when PROOF:
cy
c
i s supported by
i s continuous and of dense image.
CI@>-Hs(% s, t
*
u)"
in
P R O P O S I T I O N 3.4:
u)"
n
(a"
'pk-u
fore that
(a'
i s supported by { x I 0
can t h e r e b y deduce t h a t
p :
(a'
u
0
i
-Ht(T) 0
p , where
a continuous l i n e a r e x t e n s i o n o p e r a t o r ,
Hs(Rn)
i s t h e i n j e c t i o n , and where
-
r : Hs(Rn)
is the restriction.
H'fl')
Its continuity thus
follows from t h e c o n t i n u i t y o f i ( s e e P r o p o s i t i o n 2 . 3 ) .
r
second i n j e c t i o n can be w r i t t e n
ps
H'(KJ
:
-H'[R")
o p e r a t o r , where bourhood of
2,
x).
(K = supp
x
E
j
E
, where
S
0
and where J : H-:Ht
is the injection
I t s compactness t h u s f o l l o w s from t h e compactness F i n a l l y , suppose u
H S ( B n ) i s an e x t e n s i o n o f
5 i n HS(IRn ).
+
Xp
C"( Bin) i s a f u n c t i o n e q u a l t o 1 i n t h e neigh-
u
E
HS
(x)and suppose
; we know ( s e e P r o p o s i t i o n
2 . 3 ) t h a t t h e r e e x i s t s a sequence Cp, Cp,
D
i s a continuous l i n e a r e x t e n s i o n
of j ( s e e Theorem 2 . 1 0 ) .
%
D
E
Cz(lRn ) such t h a t
i n Hs(X), and hence t h e d e n s i t y o f C"j?)
in Hs(X).
The dua2 of H s ( x ) (resp: of
PROPOSITION 3.5:
h
Ci
> = < u,
v
>
for u
E
H'R) ,
v
the
,
X
.
We begin by showing t h a t < %, v > does n o t depend on t h e
extension
(3.5.1)
K
E H~'(R")
being an arbitrary extension of u i n t o HS ( Bn )
PROOF:
is
H-'(R")
Hs(T)) by
i d e n t i f i e d with the normed space HIS(Bn) ( r e s p : X pairing v
-
u
~p
We can t h e r e f o r e deduce t h a t
klX
= 0
.
I n f a c t , by l o c a l c h a r t s and a p a r t i t i o n of u n i t y , we can
SOBOLEV SPACES AND APPLICATIONS
110
n reduce t o t h e case X = IR,,
(CHAP. 2 )
Suppose
U having compact s u p p o r t .
we have a r e g u l a r i s i n g sequence p k ( s e e Theorem 2 . 7 ) w i t h supp p
c
f
xn < 0
so t h a t
< U,
v >=lirn
ion
v
. < pk
pk
We know t h a t +6
U, v
> = 0
*
U
-
U in H
S
,
since the distribut-
i s z e r o i n t h e neighbourhood o f t h e s u p p o r t o f t h e t e s t
function pk " "
u , v > i s w e l l d e f i n e d and t h a t
This lemma shows t h a t
I
)
v
lFl\, IlvIl-,
I 5
IN, ~vC, .
l i n e a r form on H s ( X ) .
r : HSIJ?")-HSfl]
E
so t h a t
Since t h e r e s t r i c t i o n o p e r a t o r
r i s a continuous l i n e a r
0
thus it i s i d e n t i f i e d with a d i s t r i b u t i o n
satisfying
n/2
with c o n t i n u o u s i n j e c t i o n , when
n H;,,[R)
=
C"V)
;
loc
(x)i s
an a h i s s i b l e H i l b e r t norm
H;oc(Z)
I t can immediately be shown t h a t
in HE(?).
HS
+
Ck(y)
C
,
;
k
a d i f f e r e n t i a l o p e r a t o r of degree
m
S
w i t h c o e f f i c i e n t s i n C"(?)
H'l-o~(c?).
lo c (2
i s c o n t i n u o u s from HS
into
BY a p a r t i t i o n of u n i t y , we can c o n s t r u c t a c o n t i n u o u s
l i n e a r e x t e n s i o n o p e r a t o r from H
S
loc
(X)i n t o
(MI,and we can H' loc
t h e r e b y deduce t h e c o n t i n u i t y of t h e i n j e c t i o n
C"P)
-
HYocfl)
t o g e t h e r w i t h t h e d e n s i t y of C:(x)
in
We denote by HZ ( M ) t h e union o f t h e H s ( M ) when K X , comp K d e s c r i b e s t h e f a m i l y o f compact s u b s e t s of and we e q u i p
H:oc(?).
X
(M) w i t h t h e i n d u c t i v e l i m i t t o p o l o g y . When we assume X , comp t h a t M i s endowed w i t h a p o s i t i v e d e n s i t y , arguments analogous
:H
t o t h o s e of Theorem 2 . 1 5 S
d u a l of Hloc(X)
(resp:
and P r o p o s i t i o n 3.5 show t h a t t h e of HZs (M)) i s i d e n t i f i e d w i t h X,comp
SOBOLEV SPACES AND APPLICATIONS
112 H
< u, v > = < u, v > .v
E
u
where
loc
3
-
HSR)
'pu E
u
REMARK 3 . 8 :
(x)i s t h e
H[MI I'
I
s' (X)
E
and a l s o t h a t
Let Y be a manifold ( w i t h o r without boundary)
D e f i n i t i o n s 2 . 1 8 and 3 . 6 :
9
N
9
by u s i n g t r i v i a l i s a t i o n s of
CN) = (HSm:))N.
Y.
above
We
) i n a manner analogous t o
HS(Rn;
c o o r d i n a t e p a t c h e s of Y , we a r r i v e a t
above
CN.) = (HS(Rn))N
We l e a v e t o t h e r e a d e r t h e t a s k
of g e n e r a l i s i n g t o t h e c a s e o f s p a c e s
of t h e s p a c e s
and where
I/'pu//, d e f i n e i t s t o p o l o g y .
be a complex v e c t o r bundle o f r a n k
HSm:;
u
space of t h e u
cp E f r X ]
for a l l
n a t u r a l l y d e f i n e t h e space HS ( Y ; loc
4.
E
v
I n t h e c a s e where X i s a r e g u l a r open s u b s e t
we can show t h a t HS
t h e semi-norms
or at
and
i s an a r b i t r a r y e x t e n s i o n of
Hs,,(M)
such t h a t
and l e t
HY~,~)
x,conp
REMARK 3.7: o f E?
u E
of
(CHAP. 2)
H;o,[Y;
3) t h e p r o p e r t i e s
n-1 E R
xn
HYoc(Y) g i v e n e a r l i e r .
TRACE THEOREMS, SPACES H:(X).
We pt
R"
= { x =
(XI,
xnj
I
XI
E R 3
.
We
s h a l l s e e t h a t we can d e f i n e i n a n a t u r a l manner t h e t r a c e on t h e hyperplane { xn = 0 condition s >
i.
1
o f an element
u E Hs(Rn.)
under t h e
-
TRACE THEOREMS , SPACES HE (X)
(SEC. 4)
THEOREM 4.1:
operator y : C:[Rn) ( y ~ ) ( x 'j
-
Let
s E
u ( x ' , 0) extends
B be such t h a t
C;(R"-']
s >
113
f.
The trace
defined by
in a unique manner i n t o a continuous
Zinear operator (again denoted by
y)
from Hs(IRn ) i n t o
HS-'(R"-'
We f u r t h e r observe t h a t t h e change of v a r i a b l e
By i n t e g r a t i n g b o t h s i d e s o f t h i s i n e q u a l i t y w i t h r e s p e c t
t o E ' , we o b t a i n
).
114
(CHAP. 2 )
SOBOLEV SPACES AND APPLICATIONS
$2
and hence Theorem 4 . 1 , s i n c e C " ( B n
trace operator y
ya = Y
0
T~
a
h = (0,
2 . 3 shows t h a t t h e mapping fixed ( s >
2 ) , continuous
, we
a
likewise define the
xn = a }
on t h e hyperplane
, where
8
) i s dense i n H S ( B n ) .
given i n W
For a
REMARK 4 . 2 :
Jplt
cs
llYUll+
..., 0, a )
CL
ya u
;
,
we have
*
thus Proposition
is, for u
from IR i n t o H
s-$ ( Bn-l
E
HS(IRn )
).
The d i s t -
r i b u t i o n a s s o c i a t e d w i t h t h i s f u n c t i o n ( s e e S e c t i o n 1 . 5 , Chapter
I ) coincides with
u
i s obviously t r u e for u
u
E
i n f a c t , t h e formula
;
E
C m ( W n ) , and t h e r e f o r e a l s o f o r a l l 0
HS s i n c e b o t h s i d e s of t h i s e q u a t i o n depend c o n t i n u o u s l y on
u ( t h e c o n t i n u i t y o f t h e right-hand s i d e f o l l o w s from t h e domina t e d convergence theorem by v i r t u e o f t h e upper bound
COROLLARY 4 . 2 :
s-j > Hs(IRn)
2.
L e t there by s
Then the operator
yj = y
If u
i n t o HS-j-'(Bn-').
E
E
IR and j
DJ
xn. Hs(Wn),
E
N such t h a t
i s continuous from then
il
fwzction of class Ck with respect t o xn with values i n Hs-k-i ( Bn-l
) for 0 < k
I
j.
is a
(SEC. 4)
TRACE THEOREMS, SPACES Hz( X )
PROOF: Dj
-
The f i r s t p a r t f o l l o w s from t h e c o n t i n u i t y o f
H"j(Rn)
: HS(Rn)
Xn
C1(R,
H3-17(R
HS, t h e f u n c t i o n
E
n-I
7
x -1 y n corollary.
X
-
The l a s t p a r t of P r o p o s i t i o n 2 . 3 shows
We assume j t 1. that, for u
and from Theorem 4.1.
x
n
i s in
yxn u
)) and a l s o t h a t i t s d e r i v a t i v e i s t h e f u n c t i o n
a
u
t h i s i m p l i e s t h e second p a r t o f t h e
;
Xn
(Trace on a h y p e r s u r f a c e ) . Let X be a mani-
COROLLARY 4.3:
fold, Y a hypersurface o f X, and suppose ator y : cz(x]-
s >
2.
Then the oper-
of r e s t r i c t i o n t o Y e x t e n d s wziqueZy
Cz(Y)
into a continuous l i n e a r o p e r a t o r (again denoted by y i from i n t o H:it(y),
H:oc(x)
-
ry
PROOF:
For xo
E
X : U
Y, l e t
U
be a diffeomorphism o f a
neighbourhood of xo i n X onto an open s u b s e t of IRn
such t h a t
r
X ( U ~ Y ) =
For
'PI,,=,
Exculxn=o};
, we
Q1-
Q,
E Co(Uo) =
(90 *
If u
c o n s i d e r cp E
C:(X),
From Theorem 4 . 1 , we have
weput
E
C"(E) 0
we have
]/yo X,(Yu)\Is+ 0
(9,
such t h a t
d.
Let
x be a mani-
Then the operator
c"(ax> of r e s t r i c t i o n t o ax extends uniquely i n t o 0
a continuous l i n e a r operator y from HS (x)i n t o H s ~ ! ( ax). loc We conclude t h i s s e c t i o n by s t u d y i n g t h e c l o s u r e of C"(X) 0 i n HS loc
(x). To do t h i s ,
we s h a l l need t h e f o l l o w i n g :
(SEC. 4)
TRACE THEOREMS
PROPOSITION 4.6:
IR
, and
v
0
Zet j
Let
and t
E
E
IR
Then, f o r
v
,
?.
For
E
2 n L (R )
E f(Xj
,
which depends c o n t i n u o u s l y on
for t h e topology induced by H m ( X ) , i n view o f P r o p o s i t i o n
3.5 s i n c e U
HIm(IRn).
This proves t h a t t h e d u a l of H:(X) is X -m a l g e b r a i c a l l y i d e n t i f i e d with H ( X ) ; t h e t o p o l o g i c a l i d e n t i E
f i c a t i o n i s o b t a i n e d i n s i m i l a r manner.
REMARK 4.11 Propositions
:
Suppose s
E
R i s such t h a t
s >.
i.
4.6 and 4.8 show t h a t t h e l i n e a r mapping
i s c o n t i n u o u s , i n j e c t i v e and o f c l o s e d image.
I t s t r a n s p o s e , which i s a c t u a l l y t h e r e s t r i c t i o n mapping
122
(CHAP. 2 )
SOBOLEV SPACES AND APPLICATIONS
i s thus surjective.
By p a r t i t i o n of u n i t y and l o c a l c h a r t s a t t h e boundary,
w e can show t h a t t h i s s u r j e c t i v i t y r e s u l t remains v a l i d when
?,
En i s r e p l a c e d by
IRn-l
by
ax,
and y
j
u by
y (+
k)J
,
u
where X i s a r e g u l a r open s u b s e t o f I?? w i t h compact boundary n and where v i s a f i e l d o f v e c t o r s o n B t r a n s v e r s a l t o
ax.
L e t # be a complex H i l b e r t s p a c e .
R E M K 4.12 :
ax,
t h a t t h e p r o p e r t i e s of F o u r i e r t r a n s f o r m a t i o n g e n e r a l i s e
W e know
without
d i f f i c u l t y t o t h e case o f f u n c t i o n s or d i s t r i b u t i o n s w i t h v a l u e s i n 3$ ; f o r example, w e have P a r s e v a l ’ s formula
for
u, v E g($; #)
.
This allows us t o g e n e r a l i s e word f o r
word a l l t h e preceding results and p r o o f s t o t h e c a s e o f Sobolev spaces o f d i s t r i b u t i o n s w i t h v a l u e s i n
5.
3.
APPLICATION TO THE DIRICHLET PROBLEM
We r e t u r n t o t h e example i n t h e i n t r o d u c t i o n , i n a r a t h e r more g e n e r a l form. compact boundary operator P =
-
Let X be a r e g u l a r open s u b s e t o f En w i t h
ax
A +
and l e t P be t h e e l l i p t i c d i f f e r e n t i a l
V(x), where V
E
C”(?)
is such t h a t t h e r e
(SEC.
5)
DIRICHLET PROBLEM
123
e x i s t c o n s t a n t s c and C s a t i s f y i n g 0 < c 5 V[x) IC
for a l l
x.
X E
THEOREM 5 . 1 :
E
ti4 [ax)
Suppose we have f
E
H
-1 -
(X) m d
Then there e x i s t s a ttvlique u E H 1 R) such
,
that
u, v
for
E HIR]
,
From t h e assumptions made concerning
V ( x ) , ( ( u , v ) ) i s an i n n e r product e q u i v a l e n t t o t h e i n n e r product of H1(
2).
We f i r s t prove Theorem 5 . 1 in t h e p a r t i c u l a r c a s e f = 0. Since C ” ( X ) 0
“u, we put
1 i s dense i n H o ( X ) ,
.I)
= =
0
( 5 . 1 . 3 ) i s then equivalent t o
for all
c u EH’(K)
I yu
4 . 5 , 4.9 and Remark 4 . 1 1 show t h a t v a r i e t y i n H1(X)
1 parallel t o Ho(X),
v
=
E HA[X) g
1
.
Theorems
c i s a closed a f f i n e and t h e r e f o r e t h a t
SOBOLEV SPACES AND APPLICATIONS
124
u
E
(CHAP. 2 )
u is the
H1(%) s a t i s f i e s (5.1.1),(5.1.2) i f and o n l y i f
o r t h o g o n a l p r o j e c t i o n ( r e l a t i v e t o t h e i n n e r product ( ( u , v ) ) ) of 0 onto
c,
i s t h e unique element
u
i . e . i f and only i f
which minimises t h e energy E(u) = ( ( u , u)).
of
It remains f o r us t o prove Theorem 5 . 1 i n t h e c a s e g = 0 .
From Theorem 4.9, c o n d i t i o n s (5.1.1), ( 5 . 1 . 2 ) a r e t h e n equivalent t o =
((u, Since f
E
E c:[x)
f o r a l l cp
-1 -
H
( X ) , Theorem 4.10 shows t h a t I
a c o n t i n u o u s l i n e a r form on H (X). 0
q))
=
0 , C 2 0 and
from 10, LJ
0 , such t h a t
2).
into
(SEC.
7)
135
ADDITIONAL NOTES
e ) 'In t h e c a s e where P has c o n s t a n t c o e f f i c i e n t s and where 52 i s a bounded open s u b s e t of R n , prove t h a t
llpll,
=
l)p*
pun,
and t h a t t h e r e e x i s t s C t 0 such t h a t
Thus deduce t h a t i f P is non-zero,
7.6
t h e r e e x i s t s C such t h a t
LOCAL SOLVABILITY FOR DIFFERENTIAL OPERATORS OF PRINCIPAL TYPE WITH REAL PRINCIPAL SYMBOL
n Suppose Q i s an open s u b s e t of IR ; l e t P = P ( x , D ) be a d i f f e r e n t i a l o p e r a t o r o f degree
m
w i t h Cm c o e f f i c i e n t s i n R.
We suppose t h a t P is o f p r i n c i p a l t y p e , i . e . t h a t :
dt P m b l
51 f
where P
i s t h e p r i n c i p a l symbol (homogeneous o f degree
m
0
for
x
~
n ~ E R " \ O
m ) o f P.
With a E Q, we denote by B ( a , L ) t h e open b a l l w i t h c e n t r e a
and r a d i u s L .
a)
Prove t h a t t h e r e e x i s t s c > 0 such t h a t for
5 E R"
Deduce from t h e p r e v i o u s q u e s t i o n and f?om s e c t i o n
,
7.1 t h a t
136
(CHAP. 2)
SOBOLEV SPACES AND APPLICATIONS
t h e r e e x i s t s C t 0 such t h a t
Deduce from t h i s , again by u s i n g s e c t i o n 7 . 1 , t h a t t h e r e e x i s t
C ,C 1
2 0 such t h a t :
We s h a l l a c t u a l l y g i v e l a t e r ( s e e s e c t i o n 1 1 . 3 o f Chapter IV) a simpler proof of ( 7 . 6 . 1 ) . Prove, w i t h t h e a i d of
c)
exists a function L
t o 0 when L 2
+
lly\lwl
(7.6.2.) d)
+-
M ( L ) from
(7.5.1) and ( 7 . 6 . 1 ) t h a t t h e r e
10, L ~ ]i n t o LO,
+
4,t e n d i n g
0 , such t h a t :
5
M(L)
(i/b/\E +
lip*
(pll?)
for tP
c:(e(a~
Ll).
Henceforth we make t h e supplementary assumption t h a t
m are r e a l - v a l u e d .
t h e c o e f f i c i e n t s of t h e polynomial p Prove t h a t t h e r e e x i s t s M
for
Q-
e)
E :C ( s ( a ,
2
0 such t h a t
L)
Deduce from ( 7 . 6 . 2 ) and ( 7 . 6 . 3 ) t h a t t h e r e e x i s t L > 0
and M t 0 such t h a t
(SEC. 7 )
137
ADDITIONAL NOTES
(7.6.4.1 f) With t h e number L chosen i n t h i s manner, suppose f
E
H-(mll(flJ
.
E = { P* cp
We p u t
I
cp € Cz(B(a,
L)]).
Deduce from ( 7 . 6 . 4 ) t h a t
L : E - C
*
g = p cp
*
(f, CPJ
i s a well-defined a n t i l i n e a r form on E , and i s continuous when we e q u i p E w i t h t h e topology induced by L from t h i s t h a t t h e r e e x i s t s
Pu = f i n B ( a , L ) .
2
(B(a,L)).
2 u E L [B(a, L)) such t h a t
Infer
This Page Intentionally Left Blank
CHAPTER 3
SYMBOLS, OSCILLATORY
INTEGRALS
AND S T A T I O N A R Y - P H A S E THEOREMS
1.
INTRODUCTION.
Let P ( x , D ) be a d i f f e r e n t i a l o p e r a t o r of degree m
C
n c o e f f i c i e n t s i n an open s u b s e t X of IR
.
m with
By F o u r i e r t r a n s -
formation, we can e x p r e s s it i n t h e form:
If w e assume t h a t
P = P(D)
i s e l l i p t i c with constant coeff-
i c i e n t s , we have s e e n ( s e e Chapter I , P r o p o s i t i o n 6.7 ) t h a t we can d e f i n e a p a r a m e t r i x F of P i n t h e form F = (5”)
(#).
L e t t i n g Q be t h e o p e r a t o r o f convolution w i t h F , we l i k e w i s e say t h a t t h i s i s a p a r a m e t r i x of P because t h e o p e r a t o r s P o Q and Q o P - I a r e r e g u l a r k i n g .
-
I
The o p e r a t o r Q i s e x p r e s s e d by
f
and we have proved t h a t t h e f u n c t i o n q = l i k e a homogeneous f u n c t i o n of degree -m; any multi-index a , we have
139
e
behaves f o r 151
.+
more p r e c i s e l y , f o r
+
m
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
140
I;?cy
S(5)1
=
d(l+ \I\) -m-l I. )
When P(x, D ) i s e l l i p t i c w i t h v a r i a b l e c o e f f i c i e n t s , we a r e t h u s l e d t o t r y t o c o n s t r u c t a p a r a m e t r i x Q of P i n t h e form
(12.)
(Qu)(x)
=
where q ( x , 5 ) behaves f o r
+
+ = l i k e t h e function c j ( S ) .
For example, as a f i r s t approximation, we may use t h e f u n c t i o n
We a r e t h u s l e d t o d e f i n e and s t u d y a c l a s s o f such f u n c t i o n s q , termed symbols; t h e o p e r a t o r s a s s o c i a t e d w i t h t h e formula
( 1 . 2 ) w i l l be c a l l e d p s e u d o - d i f f e r e n t i a l o p e r a t o r s .
2.
SYMBOLS Let X be an open s u b s e t of Wn ( n 2 0 ) and l e t N be an
integer degree m
1.
2 E
We d e f i n e t h e space Sm(X
x
N
W ) of symbols of
IR.
DEFINITION 2.1 :
We denote by Sm(X x W N ) the s e t of
complex-valued functions a E
~ " ( x x RN ) such t h a t , f o r any
compact subset K of X and any multi-indices C such t h a t (2.1.1.1
laxP a,a
a(x,
ell
5
cIi +
a, 6
there e x i s t s
I.
w1
for x E K , ~
Ve say t h a t 8 i s the frequency variable.
E
.
R
~
(SEC. 2 )
141
SYMBOLS
EXAMPLE 2 . 2
A polynomial
:
5)
p(x,
F
=
ICY
coefficients a a
For m
E
c"(x)
E
9
with
is in S ~ ( X x B").
+
IR, t h e f u n c t i o n (x, 5 )
(1
+ 1%) 2 )m/2
is in
mn).
Sm(X x
I n o r d e r t o g e n e r a l i s e D e f i n i t i o n 2 . 1 t o c e r t a i n open sub-
-
s e t s of X
m u l t i p l i c a t i v e group R (x, 83
The
we n e x t i n t r o d u c e a number of concepts.
X B N ,
+
N
a c t s on X xIR
N
tel
(x,
,
t E $'
by:
A s u b s e t o f X xIR
is s a i d t o
be conic i f it i s i n v a r i a n t under t h i s a c t i o n .
We d e f i n e t h e conic s u p p o r t o f a f u n c t i o n a
E C"(X x
N
p(
o u t s i d e of which
r\o rc =
)
t o be t h e s m a l l e s t c l o s e d conic s u b s e t
i s zero.
a
If
r
cx
{ ( x , e l c r 1 8 4 0 ] ,and We (x, tell (x, el E r, t 5 I 3.
RN
x
,
we p u t
=
c
Let
DEFINITION 2 . 3 : N X xB
.
We denote by
r
N
a l s o p u t I R ~=IR 0
\ 0.
be an open conic subset of
s m ( r )the s e t of complex-valued functions
a E Cm(r) such t h a t , f o r any compact subset K of
r and f o r a n y
multi-indices a , 8, there e x i s t s C such t h a t : (2.3.1.
we p u t
)
\a! a:
s+"(rI
a(x, =
ell
u $(rI m
I CCI
+
, s-(rI
p \ IwI.1 =
for ( x ,
n s"'(rI m
e) E
K'
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
142
m
Sm(I') i s obviously a v e c t o r sub-space of C (I');
a
E
Cm(I')
which i s homogeneous of degree
a function
m with respect t o 0 ,
( i . e . s a t i s f y i n g a ( x , t e ) = tma ( x , e l f o r t > 0, (x, 0 ) A function a
Sm(r).
E
l a r g e i s i n Sum(r).
E
r)
is in
Cm(r) which i s zero f o r 101 s u f f i c i e n t l y
We can immediately show t h e f o l l o w i n g :
c S"(r] c S"'(r) c s+"(r)
We have S'"(r]
PROPOSITION 2 . 4 :
for m < m'. Suppose
a,B
3 e,
6
Suppose a
, b E swl~l(r)
E S"(r)
a
E
cm(r); then
E
E Sm(r \ 0)
a
.
+m
In particular, S
.
(r)
-
b
E
S-OP(I').
then ab E S""'[r)
;
sm(r) if
-
b when a , b
E
I
and only if
i s a commutative a l g e b r a , and S-m(I')
i d e a l of t h i s ; we w r i t e a
a
a E
S"'(r]
+m
S
i s an
( r ) , with
Being a symbol i s a l o c a l p r o p e r t y i n t h e
s e n s e o f open c o n i c s e t s :
Let
PROPOSITION 2.5 :
x
x
N IR
(xol
.
e0)
Suppose E
r\
PROOF: we can assume
r;
0
a
E
c"(r)
, there
r
be an open conic subset
,
I f , f o r m y point
e x i s t s a conic neighbourhood
According t o t h e f i n a l p a r t o f P r o p o s i t i o n 2 . 4 ,
r
we put e =
=
r\
0
el
L e t K be a compact s u b s e t of
101 ; we have
Inf (XI
,
E K
E
> 0.
By h y p o t h e s i s ,
(SEC. 2)
f o r any
r
(xo, go) E 8 ) in
of ( x
0 )
143
SYlmOLS
I
0
t h e r e e x i s t s a c o n i c neighbnurhood V
such t h a t t h e upper bounds ( 2 . 3 . 1 ) a r e
satisfied for (x, 8 )
191
V,
E
By c o v e r i n g K by a f i n i t e
we s e e t h a t we o b t a i n t h e
0'
upper bounds ( 2 . 3 . 1 ) f o r (x, 8)
,
s
2
number of such neighbowhoods V
KC.
E
m
We s h a l l now s e e t h a t symbols of degree
PROPOSITION 2 . 6
N1 R ~ X R , ,J
,
Let f
T,
:
b
PROOF: C
-
__+
el
E srn(F2)I
Let K
1
r. 3
be an open conic sinbset of
,
( j = 1 , 2 ]
(XI
If
Let
:
r2 (Y,
be
wl
and homogeneous of
Cm
degree 2 ( i . e . commuting with the action ofm')
a = b
then
o
E
f
be a compact s u b s e t of
r 1; we
C
1
= (y(X,B),h(x,e))
r e s p e c t t o 8 , and
h
;
N2 , t h e r e 0
exist c, c' > 0
clel I Ih(x, 811 5 cllB1 f o r (x, 8) E K:
thus obtain (x, 9')
la(x, 911 2 C(1
E KY
( 2 . 3 . 1 ) f o r (x, 8 )
.
+
.
We
Ih(x, 911 1" I - C ' ( l + l B l ) m
We now e s t a b l i s h t h e upper bounds C
E
We p u t
i s homogeneous of degree 1 w i t h r e s p e c t
1
for
r2.
have
g i s homogeneous o f degree 0 w i t h
t o 8 ; s i n c e g(K ) i s compact inIR such t h a t
.
srn(r,] ,
f(K1) = K2, w i t h K2 = f ( K ) a compact s u b s e t of f(X,B)
a r e preserved
More p r e c i s e l y :
under c e r t a i n changes o f v a r i a b l e .
n,
0
K1 by r e c u r r e n c e on
/a1 +
161.
We assume
144
(CHAP. 3 )
SYMBOLS AND OSCILUTORY INTEGRALS
them t o be s a t i s f i e d ( f o r any 101
+
.
I p-1
ax j
with Since
,
f
o
3% ( 2 . 3 . 1 ) for
Icy1
m) when
and any
Now, we have
so(rlJ ,
E
b
0
a ‘k
+ 181 5
axj ahk
E
,satisfy
f
p-1
aej
sl(r~)
E
.
s-’(rlI
upper bounds o f t h e t y p e
( f o r degrees r e s p e c t i v e l y
m, m-l), L e i b n i z ’ s formula proves t h a t t h e same i s a l s o t r u e o f
axj
(for degrees r e s p e c t i v e l y m, m - 1 ) .
aej a
thus obtain f o r
We
t h e upper bounds ( 2 . 3 . 1 ) when
The f o l l o w i n g i s a u s e f u l s p e c i a l c a s e of t h i s p r o p o s i t i o n . Suppose
r1 is
an open conic s u b s e t of X
x
IRN and suppose 0
f
is
t h e mapping c o r r e s p o n d i n g t o passage i n t o p o l a r c o o r d i n a t e s i n
: ! R
x
:R 3
e l +->f
(x,
Then i n t h i s c a s e
rl
degree 1,.of
r2
= f
(rl 1
[2.6.1.)
C
a E
f
(x,
ms e IeI) E x
x
sN-,
x
R+
i s a diffeomorphism, homogeneous of
o n t o t h e open conic s u b s e t
X x SN,l
Sm[rlJ
x R+
, and
P r o p o s i t i o n 2 . 6 shows t h a t :
if and o n l y i f a
0
f-”
E
sm(r2)
The two p r e c e d i n g p r o p o s i t i o n s a l l o w us t o g e n e r a l i s e t h e
.
145
SYMBOLS
(SEC. 2 )
d e f i n i t i o n of Sm( r )
.
DEFINITION 2 . 7
manifold
We define a conic m m i f o l d t o be a
:
equipped with a Cw action of the m u l t i p l i c a t i v e
M
-k
group IR such t h a t : (2.7.1 .]
For any h
E
M, there e x i s t s a diffeomorphism
homogeneous of degree 1, of an open conic neighbourhood of A i n M onto an open conic subset
DEFINITION 2.8 :
m
E
t h a t , f o r any h
Suppose we have a conic manifold M and
E
EXAMPLE 2 . 9 :
E
fibre.
B
If
E
a
D
f'
x
satisfying
.
E Sm(r)
i s a v e c t o r bundle on a C
W
manifold,
E \ 0 , t h e bundle E deprived o f i t s 0 - s e c t i o n .
we denote by
+
C w ( M ) such
E
M, there e x i s t s a diffeomorphism
the conditions of (2.7.1)w i t h
For t
r ofnn x IRNa .
Sm(M) denotes the space of f m c t i o n s a
R.
x, u
, we
t
t a k e as a c t i o n m u l t i p l i c a t i o n by
i n each
Then E \ 0 , and any open conic s u b s e t of E \ 0 , i s a
conic manifold.
If M i s a conic manifold, any C
homogeneous of degree
m
W
function,
i n M, i s i n Sm(M).
PROPOSITION 2 . 1 0 :
i) Let M1, M2 be two conic manifolds- and l e t f : MI
_+
then
k$ a = b
be a o
f
C"
mapping of degree 1.
E Sm(M1)
.
If
b E Sm(t$)
,
146
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
i i ) Let M be a conic manifoZd, and Zet
and m' with
aj €
S"'(U~)
a
5
m
%
J
(mod. Sm'(Uj E
PROOF:
n uk, we
n U,)
have
f o r aZZ j, k
E
J.
Then
Sm(M) unique modulo Sm'(M) such t h a t
a .(mod. Sm'(U
J
Iuj
. Let there be
5 m' < m
such t h a t , i n u .
there e x i s t s a a
-=
)J € 3
j
Suppose we have
be a covering of M by upen conic s e t s . r n E B
(U
.))
J
f o r a22 j
E
J.
P a r t ( i ) i s an immediate consequence o f PropI n o r d e r t o e s t a b l i s h ( i i ) ,we f i r s t observe t h a t
o s i t i o n 2.6.
+
t h e q u o t i e n t space M' = M / B
i s a manifold and t h a t t h e
u is J j -1 c o n i c , we have U = p (U!); s i n c e t h e U! form an open c o v e r i n g j J J of M', we know t h a t we can t h e r e f o r e f i n d a l o c a l l y f i n i t e sub-
p r o j e c t i o n p: M
-+
M I i s crn; we p u t U! = p ( u . 1 ; s i n c e J
c o v e r i n g , and hence by i n v e r s e image under p a sub-covering of t h e c o v e r i n g of M by t h e U . which i s l o c a l l y f i n i t e i n t h e J c o n i c s e n s e ( i . e . such t h a t f o r any compact K o f M y t h e r e i s o n l y a f i n i t e number of i n d i c e s c o r r e s p o n d i n g t o a non-empty i n t e r s e c t i o n withIR
4-
K).
It w i l l t h e r e f o r e be s u f f i c i e n t t o
prove ( i i )when t h e c o v e r i n g i s of t h i s form. of u n i t y , we know t h a t t h e r e e x i s t a ' j
SUPP a'. c
E
ui
C"(Ml)
By a p a r t i t i o n such t h a t
I C Y ~ = 1 i n M'; by p u t t i n g CY j = CY' j 0 P J J we o b t a i n f u n c t i o n s a j E f ( M ] homogeneous of degree 0 ,
,
w i t h Supp a . c U j J
,
aj = 1 i n M.
3
I
(SEC. 2 )
We p u t
147
SYMBOLS
a =
aj
cyj
(where
c1
j by 0 o u t s i d e U
mjlu
of
.aj]
3 k
E
J we have:
a
=
We have a E Sm(M), a n d , for
,
c:[m
denotes t h e extension
j “j
E m j l u k ak
=
a.1
j J luk j m’ (mod S”’(u,]) and a a %(mod S (Uk)); hence t h e I’k existence of a . The uniqueness o f a modulo Sm’(M) i s
Iuk j therefore
obvious.
We now c o n s i d e r a c o n i c manifold N , and a c o n i c submanifold M o f N ( i . e . a sub-manifold M of t h e manifold N which 4-
i s s t a b l e under t h e a c t i o n o f IR
in M ) .
of t h e p r e c e d i n g p r o p o s i t i o n shows t h a t
If a
&IM
E
Sm(N) , p a r t ( i )
E Sm(M)
.
Conversely , we have :
Let M be a ZocaZZy cZosed conic sub-
PROPOSITION 2.11 :
manifoZd of a conic mrmifoZd N; for a
ii E
S”’[N)
PROOF:
extending
E
Sm(M), there e x i s t s
a.
We f i r s t show t h a t t h e p r o p o s i t i o n i s t r u e when we
r e s t r i c t o u r s e l v e s t o a s u f f i c i e n t l y s m a l l conic neighbourhood ( i n N) o f any p o i n t of M.
By u s i n g t h e diffeomorphism
x
of
(2.7,1),t h e n by t a k i n g p o l a r c o o r d i n a t e s inIRN ( s e e (2.6.1)), we can reduce t o N = Y xIR
+ , where
0
Y i s a manifold.
The pro-
j e c t i o n on Y of t h e sub-manifold M of N i s a l o c a l l y c l o s e d sub-manifold X of Y and we have M = X x lR
+
since M i s conic.
148
(CHAP. 3 )
SYMBOLS AND OSCILLATORY INTEGRALS
By taking local coordinates in Y we reduce to the case where N = (U x V ) x
R',
{ 0
M = (U x
R ' neighbourhoods of 0 in IRp, I "
we define a = a(y, z ; t )
1) X ' R
.
where U, V are open a = a(y ; t)
If
E
by
N
a(y,
z ;
E
Sm(M)
,
t ) = a(y, t)
In order to prove that the proposition is true globally, we of N which j are locally finite (in the conic sense) and, as in the proof consider a covering of M by open conic subsets W
of Proposition 2.10, we construct functions
CY
aj = 1
and
j
pj E c ~ ( N )
,
c supp B J. c W jl Bj'l J in the neighbourhood of M. We
homogeneous of degree 0, with supp in supp
cyjl
cy.
; now, we have seen that there with a j cuj*a exist a E Sm(Wj) such that EL -- a j j\wj n M jlWj nM * H H If we put a = p j aj then E Sm(N] and
have a
aj
I
N
a d
,
=c .
N
alM
[B,.ZjIIM
-
aj = a
In applications, we encounter symbols which possess an expansion into homogeneous components in the following sense:
DEFINITION 2.12 : a
E
Sm(M) i s a c l a s s i c a l symbol of degree
f o r any j
E
IN a f w l c t i o n
degree m-j, such t h a t
any i n t e g e r k
2
1.
symbols of degree
a,
(a
-
*
E Cm(M), k-I j=o
aj-
We denote by S:l(M) m.
We say that
Let M be a conic manifold.
m i f there e x i s t s
homogeneous of
) E SWk[~)
for
the space of c l a s s i c a l
(SEC. 3 )
149
ELLIPTIC SYMBOLS
I n t h e c a s e of t h e space X
a E C”(X
t h e space of t h e
X I R
x RN)
It i s c l e a r t h a t t h e f u n c t i o n s a
N
, we
m
denote by Scl(X
x
#)
such t h a t
j
a r e uniquely determined f o r
; t h e f u n c t i o n a0 i s ‘ c a l l e d t h e p r i n c i p a l p a r t ,
a E Szl(Uj
m, of
homogeneous of degree
EXAMPLE 2.13 :
a.
We can show t h a t t h e symbols c o n s i d e r e d
i n Example 2 . 2 a r e c l a s s i c a l , and t h a t t h e y admit r e s p e c t i v e l y a s p r i n c i p a l p a r t of degree m:
3.
ELLIPTIC SYMBOLS DEFINITION 3 . 1 :
rn
E
IR.
Suppose M
We say t h a t a symbol a
i f there e x i s t s b
E
S-”(M)
E
-3
a con:> manifold and
Sm(M) i s e l l i p t i c of degree m
with d e b
E
1
(modulo
s-’(M))
Note t h a t t h i s d e f i n i t i o n only depends on t h e c l a s s o f
S~(M)/S“+’ (MI
a
in
.
From P r o p o s i t i o n 2 . 1 0 , e l l i p t i c i t y i s a l o c a l p r o p e r t y i n t h e s e n s e o f conic neighbourhoods; i n o r d e r t o s t u d y t h i s , we can t h e r e f o r e reduce t o t h e c a s e where M i s an open conic s u b s e t
of
x
XIRE.
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
150
X x Bt; a symbol a
r
Let
PROPOSITION 3 . 2 :
be an open conic subset of
s m ( r )i s e l l i p t i c of degree
E
only i f , f o r any compact subset K of
, if and
m
r, there e x i s t s
c > 0 such
that
el\
la(x,
(3.2.1.)
\el"
c
2
(x,
for
PROOF: K1
e] E
We assume t h a t ( 3 . 2 . 1 ) i s s a t i s f i e d ;
c$c
s u b s e t s of
... c r
K.
J
c
...
\el
KC and
2
E E
(u
c2
2
...
2
2
lR+ and t h a t F i s a s u b s e t of
(K5+1<j
)
since
*
be an exhaustive sequence of compact
and we l e t c 1
j 21
C
we l e t
c
2
j
..
be a sequence of
a s s o c i a t e d c o n s t a n t s , i n accordance w i t h ( 3 . 2 . 1 ) . that
-1
K.
J
c c Kj+l
r,
We suppose
and we p u t
.
It can e a s i l y b e shown t h a t A i s c l o s e d , and we t a k e a f u n c t i o n p E C m ( T ) e q u a l t o 1 on A and w i t h support i n B.
n o t v a n i s h on B , we d e f i n e b t o prove t h a t
(x, 0 )
E
r E S-"(r)
I! E c"(r) .
, we
Since
does
We p u t r = ab
-
1;
observe t h a t any p o i n t
T admits a conic neighbourhood To such t h a t f o r E
a
s u f f i c i e n t l y s m a l l , we have To c A , and s i n c e
r
E
> 0,
i s zero i n t h e
neighbourhood of A it s u f f i c e s t o apply P r o p o s i t i o n 2 . 5 .
Like-
(SEC. 3 )
wise, i n o r d e r t o prove t h a t b o r i z e t h e d e r i v a t i v e s of cy
axl 0
151
ELLIPTIC SYMBOLS
b =
a:,(:)
E
S-m(r) it i s s u f f i c i e n t t o m a j -
on A .
b
On A we have
and we have a l r e a d y observed i n Chapter I
( 6 . 8 . 2 ) t h a t t h i s i s a f i n i t e l i n e a r combination of terms of t h e
form
a$1
a
.... aB .
J.a
a
lBJ +
with
j.1-1
....+ le,I
bl
=
;
a
we t h e r e f o r e immediately deduce t h e d e s i r e d upper bound o f 3 . b x,e i n any domain ( K C ) € , w i t h K a compact s u b s e t o f
Conversely, i f w e t a k e a compact s u b s e t K of since
Ir[x,
, there
r E S-I(r)
Q)\ 5
Ib(x, 0 ) \
$
5 1(1
c la.bl 2 1 i n (Kc)' 2
for
exists
+ lQ\)-"
for (x,e)
and f i n a l l y
a
i n ( K C ) € which proves t h a t
DEFINITION 3. 3:
l(1 E
and p u t r = ab
We say t h a t a symbol a
E
S
1,
and
+
Consequently we have
KC.
E
18/)'m
1a(x,Q)1
2
21
s a t i s f i e s (3.2.1).
Suppose M i s a conic manifold, and m +m
-
> 0 such t h a t
E
E (KC)e
(x, 0)
r
r0 .
(M) i s e l l i p t i c of degree
m
E
IR
at a
point of M i f it i s an e l l i p t i c symbol of degree m in an open conic neighbourhood of t h i s p o i n t .
of p o i n t s of M a t which
a
We denote by E l l ( a ) the s e t
i s elliptic;
t h i s i s an open conic
s e t whose complement i s a closed conic s e t called the characteri s t i c s e t of
a
and denoted by c h a r ( a )
.
.
(CHAP. 3)
SYI’BOLS AND OSCILLATORY INTEGRALS
I n t h e c a s e of a symbol
a
#)
Sm(X x
f
, we
define t h e e l l i p t -
i c i t y , E l l ( a ) and c h a r ( a ) by c o n s i d e r i n g a
EXAMPLE 3.4: part a
4.
0’
i s a c l a s s i c a l symbol w i t h p r i n c i p a l
a
If
homogeneous o f degree
, we
m
-1
have c h a r ( a ) = a.
(0).
ASYMPTOTIC EXPANSIONS OF SYMBOLS
We can meaningfully c o n s i d e r a formal s e r i e s o f symbols ( a . ) J with degrees m
j
tending t o
-
,
m
when M i s a c o n i c manifold.
We s t a t e :
DEFINITION
4.1:
Let ( a . ) J
rn.
symbols
a:
be a c o w t a b l e family of j
,
~
E S J [ ~ ) ; we assume t h a t for any r e a l r , there
J
i s only a f i n i t e number of i n d i c e s say t h a t a f u n c t i o n a
E
Cm(M)
j such t h a t m .
satisfies a
-
J
aj
2
r.
We
i f there
J
e x i s t s a sequence of r e a l numbers (JJ) tending t o k f o r a l l k:
such t h a t
For example, w i t h t h e n o t a t i o n o f D e f i n i t i o n 2.12, we have
& - r _ 7 a j . j
2 0
THEOREM 4 . 2 :
Let
(aj)j
be a f a m i Z y of symbols as in
(SEC.
4)
D e f i n i t i o n 4.1.
Then there e x i s t s a
s-"(M), such t h a t a PROOF:
15 3
ASYMPTOTIC EXPANSIONS
-
The uniqueness o f
a
the existence of
, we
, with
aj
a
Sm(M) unique modulo
E
m = max m
j
j.
modulo SVm i s immediate.
To prove
w i l l not r e s t r i c t t h e g e n e r a l i t y , bear-
i n g i n mind P r o p o s i t i o n 2.10 ( T i ) , by assuming t h a t M = open c o n i c s u b s e t o f X x 1R".
r
i s an
We b e g i n w i t h t h e p a r t i c u l a r c a s e
where J = W and where t h e sequence (m.) i s s t r i c t l y d e c r e a s i n g J (and tends t o
-
x(0) = 0 if
m).
S
Suppose we have
X E C=(R~]
1/2, and x(0) = 1 i f 101 2 1.
e x h a u s t i v e sequence o f compact s u b s e t s o f
r.
such t h a t Let (K.) be an J
We can f i n d an
i n c r e a s i n g sequence ( t. ) such t h a t ; J
(we can e a s i l y c o n s t r u c t t h e t that for
j
,
j f i x e d , t h e r e . i s o n l y a f i n i t e number of upper bounds
( 4 . 2 . 1 ) t o b e r e a l i s e d , and t h a t
if 18 I
i n s t e p w i s e f a s h i o n by o b s e r v i n g
)
+
.
(
l i8
i)mj-l rn - 0
We t h e n p u t
+ m
X ( e ) aj(Xt 8 ) which i s c l e a r l y i n C m ( r ) s i n c e j=o j t h e sum i s l o c a l l y f i n i t e ; t h e convergence of t h e s e r i e s B(x, 95
2-j k- 1
a
=
a l l o w s us t o deduce from ( 4 . 2 . 1 ) t h a t
- j=o aj
rnk
E S
(r) for any
i n t e g e r k t 1.
1 54
We now pass on t o t h e e x i s t e n c e o f
p o s s i b l e values of m
bk =
-
rn
j
k bk
i n the general case;
j
j ranges over J .
when
n k E S (r) , and we c o n s i d e r a
aj
=n
a
we
t h e s t r i c t l y d e c r e a s i n g sequence of t h e
denote by ( n k l k
a
(CHAP. 3)
SD3OLS AND OSCILLATORY INTEGRALS
.
Then f o r a l l R
E
We p u t m
E
C
(r)
such t h a t
IN w e have:
k E M
mined by
n
-1
2
r
n
t h e requirements s i n c e
REMARK 4.3:
.
> nr+l
F i n a l l y , t h e symbol
a -+
r+l
'
m
We can confirm d i r e c t l y from t h e d e f i n i t i o n s Let ( J h ) h for h
be an a r b i t r a r y p a r t i t i o n of t h e s e t o f i n d i c e s J ;
%
(note t h a t
-
%
.
a j E J h E
S %(M),
a
Then we have
j mh=
where
m
max j E H
REMARK 4 . 4 :
J
-
]
E
H,
ah h E H
.
I n t h e case where J = TN and where t h e sequence
a
( m . ) i s d e c r e a s i n g , we have J any i n t e g e r k, we have
c a s e where M =
meets
.
- 0
t h a t we have t h e f o l l o w i n g a s s o c i a t i v i t y p r o p e r t y .
suppose
a
r,
[a
-
a
LV
k
J Z O
a.)
J
E
5
i f and o n l y i f f o r
Srnktl(M)
.
In the
j=o t h i s condition i s equivalent t o t h e following:
for any i n t e g e r k , and f o r any compact s u b s e t K o f r , t h e r e e x i s t s k "k+l- 1 c such t h a t la: aB, (a-( )1a j I ( x , I ~ ( +1 \ e l ) j-o
1 55
TOPOLOGY
1.1
f o r (x, 9 ) E KC and
+
k
I n f a c t , i n o r d e r t o majorise t h e d e r i v a t i v e s of o r d e r k' > k , it suffices t o write
k
k'
k'
and t o n o t e t h a t
k'
m
j=k+l
5.
TOPOLOGY ON THE SYMBOL SPACES
Let
r
be an open conic s u b s e t o f X x IR
subset K c
r
N
.
With any compact
j we a s s o c i a t e a semi-norm on
and any i n t e g e r
Sm(r ) by p u t t i n g
m( r ) a metrizable topological vector
t h e s e semi-norms d e f i n e on S
space s t r u c t u r e , because it s u f f i c e s t o consider an exhaustive
(5).
sequence of compact s u b s e t s
We have t h e approximation r e s u l t :
PROPOSITION 5.1:
If a
E
Sm(r), we take
p E
t o 1 i n the neighbourhood of 0 rmd we put p,[ Then
%=
pk.a
E S-(r)
and f o r a l l rn'
>
9)
Cz(lRN -i
p
identical
(j).
m, the sequence %
156
(CHAP. 3 )
SYMBOLS AND OSCILLATORY INTEGiiALS
converges t o
PROOF:
f o r the topology of
a
If CK
i s a semi-norm on
,j,m'
sm'(r). sm' ( r ),
since a
E
sm(r)
t h e r e e x i s t s C such t h a t
For'cc' = 0 , t h e v a l u e of t h e l e f t - h a n d s i d e i s O(km-m') because 18
I
2
k for 8
m-m'
a g a i n O(k
e
E
supp. ( 1
- pk)
) because w e have
-
E supp $(I pk)
.
;
i f a ' # 0 the left-hand side i s
k 5
\el
5 2k for
Consequently, by u t i l i s i n g L e i b n i z ' s
formula, we deduce t h a t
which proves t h e p r o p o s i t i o n . We can t h u s immediately deduce t h e f o l l o w i n g r e s u l t concerning e x t e n s i o n by c o n t i n u i t y :
PROPOSITION 5 . 2 :
space of
Let R be a linear mapping defined on the sub-
s-"(r) , formed
by the functions which vanish f o r
Ie I
large, and with values i n a Frechdt space F. We assume t h a t f o r all m
E
m,
2
i s continuous f o r the topoZogy induced by
Then there e x i s t s a unique extension of
sm(r).
l, : S+"(r] -. F which i s
(SEC. 6 )
conkinuous on each
6.
sm(r ) .
VARIOUS GENERALISATIONS
(6.1.) Up in C
157
GENERALISATIONS
.
t o now, we have considered symbols with v a l u e s
We a r e now going t o d e f i n e t h e symbol-sections
of a
Complex v e c t o r bundle above a conic manifold, under s u i t a b l e assumptions.
Let
M be a conic manifold and l e t m
on M; we s p e c i f y a C
a c t i o n ofIR
+
F be a v e c t o r bundle
on F which commutes, v i a t h e
p r o j e c t i o n of F onto M y with t h a t ofIR
+
in M
We can show t h a t t h e r e e x i s t s , above a conic neighbourhood of any p o i n t of M y a t r i v i a l i s a t i o n of F commuting w i t h t h e
+
allowing a r e d u c t i o n t o M = T ( a n open conic
actions o f B s u b s e t of Rn
N
x
Do) , i . e . F
I
r
d
x C ; we p u t i n t h i s case
Sm(M, F ) = ( S m ( r ) ) d , hence t h e g e n e r a l d e f i n i t i o n of Sm(M, F ) by r e s t r i c t i o n and t r a n s p o r t . If F
a
z(F,,
F),
where F
F
1’ 2
t h e preceding t y p e , we d e f i n e Sm(Y;
a r e two bundles on M of
z(F,,
F2)] accordingly.
158
SYMBOLS AND OSCILLATORY INTEGRALS
We say t h a t
E Sm(M;
a
(CHAP. 3 )
i s r i g h t e l l i p t i c of
s(F1, F,))
degree m ( r e s p : l e f t e l l i p t i c ) i f t h e r e e x i s t s b
E S-”(M; s(FZ,
(resp : ba
-
IF
F,))
such t h a t ab
E
g(F1, F,))
S-’(M;
a
t h e c a s e of a c l a s s i c a l symbol part a
0
- 1F2 E S”(U:
.
e(F2, F,))
We can show t h a t , i n
w i t h homogeneous p r i n c i p a l
of degree m y t h e r i g h t e l l i p t i c i t y ( r e s p : l e f t ) of
a
is e q u i v a l e n t t o t h e r i g h t i n v e r t i b i l i t y ( r e s p : l e f t ) o f ao.
(6.2.)
I n f a c t , t h e r e i s not j u s t one s i n g l e t y p e of
symbols b u t r a t h e r we can s a y t h a t t h e r e a r e almost as many o f them as t h e r e a r e t y p e s of problems, and we need t o be a b l e t o a d a p t one t o t h e o t h e r .
For example, i f P(D) i s a h y p o e l l i p t i c
operator then i n order t o include functions o f t h e type
48
t h e upper bounds ( 6 . 9 . 2 ) i n Chapter I l e a d t o t h e
m
.
( r) With 0 < p < 1 m we d e f i n e t h e space S ( r ) o f symbols o f degree m and of t y p e p P f o l l o w i n g g e n e r a l i s a t i o n of t h e s p a c e s S
by r e p l a c i n g t h e upper bounds ( 2 . 3 . 1 ) by
\a, B a,W
a(x,
where 6 = 1 - p .
ell
I
c
(1
+
\ e l lm-P I 4 + s l e l
We can prove t h a t a l l t h e p r e c e d i n g r e s u l t s
i n t h i s c h a p t e r g e n e r a l i s e , w i t h o n l y minor m o d i f i c a t i o n s , t o symbols of t y p e p ( s e e HORMANDER C31, C51 f o r symbols which a r e
s t i l l more g e n e r a l ) .
(SEC.
7.
7)
OSCILLATORY INTEGRALS
159
OSCILLATORY INTEGRALS
7.1.
INTRODUCTION:
When
2 (5)
i s defined e x p l i c i t l y ,
e x p r e s s i o n (1.1)i s w r i t t e n f o r m a l l y as
however t h i s i n t e g r a l i s n o t a b s o l u t e l y convergent w i t h r e s p e c t to
5.
The o b j e c t i v e of t h i s s e c t i o n i s t o prove t h a t we can i n f a c t work w i t h ” i n t e g r a l s ” of t h e t y p e (7.1.1)and w i t h i n t e g r a l s which are even more g e n e r a l , as i f t h e y were a b s o l u t e l y convergent.
We s h a l l e x p l a i n t h e i d e a u n d e r l y i n g t h e method
i n t h e p a r t i c u l a r c a s e where P ( x , D ) i s t h e i d e n t i t y o p e r a t o r i n one dimension.
I n o r d e r t o g i v e a meaning t o t h e i n t e g r a l
we can c l e a r l y w r i t e it as an i t e r a t e d i n t e g r a l
however t h i s method i s n o t v e r y e a s y t o h a n d l e .
Since t h e
d i f f i c u l t y e x i s t s f o r 151 l a r g e , it i s s u f f i c i e n t , a f t e r truncation with respect t o i n t e g r a t e for 151 t 1.
6, t o o n l y c o n s i d e r t h e case where we We n o t e t h a t :
160
SYMBOLS
AND OSCILLATORY INTEGRALS
(CHAP. 3 )
which l e a d s u s , a f t e r formal i n t e g r a t i o n by p a r t s w i t h r e s p e c t to
y , t o put
Y € B
and t o d e f i n e t h e l e f t - h a n d s i d e by t h e a b s o l u t e l y convergent i n t e g r a l appearing i n t h e right-hand s i d e , t h i s being l e g i t i m a t e because it can e a s i l y be shown t h a t t h e r i g h t - h a n d s i d e o f
(7.1.2.)c o i n c i d e s w i t h t h e i t e r a t e d i n t e g r a l
T h i s t y p e of g e n e r a l i s e d i n t e g r a l h a s been s t u d i e d systema t i c a l l y by H@"DER
C51
under t h e name o f o s c i l l a t o r y
integral.
7.2.
DEFINITION OF OSCILLATORY INTEGRALS:
subset. of.IRn, ( n
2
0), l e t
cp E C"(x
x
#\
0)
Let X be an open be a r e a l - v a l u e d
7)
(SEC.
161
OSCILLATORY INTEGRALS
f u n c t i o n which i s homogeneous o f degree one w i t h r e s p e c t t o
e E R N \ o
and l e t
a E Sm(X x # ) be a symbol; we
consider t h e i n t e g r a l
It i s c l e a r t h a t t h i s i n t e g r a l i s a b s o l u t e l y convergent when
m
-
N , and i n t h i s case it depends continuously on a
E
Sm ;.
w e s h a l l prove t h a t we c a n , u s i n g i n t e g r a t i o n s by p a r t s , make it meaningful f o r a r b i t r a r y
m, i f
Q
We observe t h a t t h e mapping
(7.2
2.)
a E
s-"(x
x RN)
has no c r i t i c a l p o i n t s .
9, :
c
=
a(a)
1~(8u) E
c
i s a l i n e a r form; i n o r d e r t o demonstrate t h e c o n t i n u i t y of R i n t h e sense o f P r o p o s i t i o n 5 . 2 , we e s t a b l i s h t h e f o l l o w i n g :
PROPOSITION 7.3 :
f o r (x, 8) E X x
F?
If we assume t h a t
d x,
e
cp(x, 0)
f
\ 0 , then there e x i s t s a first-order
d i f f e r e n t i a I operator
PROOF:
For an o p e r a t o r o f t h e form (7.3.1), we have
We make t h e right-hand s i d e i d e n t i c a l t o 1 by p u t t i n g
o
p
where
Since
Q
- p)
(1
(CHAP. 3 )
SYMBOLS AND OSCILLATORY INTEGRALS
162
E
i s i d e n t i c a l t o 1 f o r 10 I 5 1 and where
CIIRN)
h a s no c r i t i c a l p o i n t s , it i s c l e a r t h a t
-2
D E S
(X x
N
R )
and c o n s e q u e n t l y t h e c o e f f i c i e n t s
a j y bj, c are i n t h e s p a c e s i n d i c a t e d .
It i s u s e f u l f o r l a t e r work t o n o t e t h a t t h e t r a n s p o s e tL
b J l c ' i n t h e same symbol s p a c e s .
o f L h a s c o e f f i c i e n t s a:,
This lemma l e a d s us t o s t a t e :
DEFINITION 7 . 4 :
x
x(#
\ 0)
r is an open conic subset of
If
rp E
we say t h a t a function
c"(r)
is a
phase function if it is homogeneous of degree 1 with respect t o with r e a l values and such t h a t d
8,
xl
PROPOSITION 7 . 5 : X x[RN
\ 0)
,
If
Q
e
Q(X,
9)
f
0 on
r.
is a phase function on
then:
i ) the linear form 11 in ( 7 . 2 . 2 ) extends uniquely i n t o a
linear form 8 on -s+"(X
x
#) , which is continuous
on any Sm.
This extension is termed an o s c i l l a t o r y integraZ and i s denoted by (7.5.1
.)
A(,)
=
i(f'cx'
" a(x,
0) u(x) dx d 6
.
(SEC.
7)
For a
E
163
OSCILLATORY INTEGFULLS
m
, we
S
have the expression
when k > m + N, where L i s taken as i n 7 . 3 . ii) I f
pk
i s defined as i n Proposition 5.1, then f r
iii) For
a IJ
-
f i x e d i n Sm, the mapping
1 p 1 E
E cp1
C
i s a d i s t r i b u t i o n of order k (for k > m+N) which we denote by
(7.5.4
e
i
5
eiQ(x$ ,.(a)'
0) dQ
and which we caZZ the i n t e g r a l d i s t r i b u t i o n associated with the phase
tp
cmd the amplitude
PROOF OF i ) :
7.3, r e p l a c e e*
If
a
a
E
by Lk(e*)
S-m, we c a n , by v i r t u e of Lemma
i n (7.2.1), and by i n t e g r a t i o n by
p a r t s we o b t a i n
ela(x)ldx
de.
Furthermore, t h e p r o p e r t i e s o f t h e c o e f f i c i e n t s of tL imply t h a t
t~ maps SP c o n t i n u o u s l y i n t o sP-' Consequently, i f t h e i n t e g r a l which
a
E
f o r any r e a l v a l u e p .
Sm and i f we choose k such t h a t k > m+N,
OCCUTS
depends c o n t i n u o u s l y on
on t h e r i g h t - h a n d s i d e of
a
E
(7.5.5)
Sm; t h u s , it s u f f i c e s t o a p p l y
164
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
Proposition 5.2.
I n o r d e r t o prove i i ) , we u t i l i s e t h e c o n t i n u i t y of R on
m'
any subspace S
and we conclude by u s i n g P r o p o s i t i o n 5.1.
To prove i i i ) , we n o t e t h a t t h e r e p r e s e n t a t i o n
7.5.2)
allows us t o m a j o r i s e I ( a u ) by 0
when k > m+N.
O s c i l l a t o r y i n t e g r a l s which depend on one parameter behave l i k e o r d i n a r y i n t e g r a l s , i n t h e s e n s e t h a t we c a n , under c e r t a i n assumptions, d i f f e r e n t i a t e or i n t e g r a t e under t h e i n t e g r a l s i g n
ii* PROPOSITION 7 . 6 : Q
Let Y be an open subset of BP and Zet
be a phase f u n c t i o n on
dx,e Q
(x, y ,
u E C ~ ( Xx Y )
o
0)
,
X x Y x
.
we p u t f o r
If
a y
E
(
E
\~0) ~ such t h a t
S ~ ( Xx Y x
R ~ ) and
Y
cc
Then i ) We have
F E f(y)
and we can d i f f e r e n t i a t e m d e r
(SEC. 7 )
165
OSCILLATORY INTEGRALS .c
A s i n L e m a 7.3 we can again undertake w i t h t h e
PROOF OF ti): parameter
t h e c o n s t r u c t i o n of an o p e r a t o r
y
L[x, y, e, a, a,
J
E
ax)
So[X x Y x
with c o e f f i c i e n t s
#I,b,,J
c
E
S-'(X
x Y x
#)
.
If k > m+N,
then ( 7 . 5 . 2 ) shows t h a t w e have
=
F(Yl
/,/e%
(tlkl[au 1 dx d 0
and s i n c e t h i s i n t e g r a l i s
a b s o l u t e l y convergent , t h e u s u a l Fubini theorem allows us t o d r a w t h e r e q u i r e d conclusion.
PROOF OF i ) : symbol ition
a
By t r u n c a t i o n , we can reduce t o t h e case where t h e
i s zero f o r 18 I 2 1.
If we have p k ( 8 ) as i n Propos-
5 . 1 , we denote by F k ( y ) t h e f u n c t i o n o b t a i n e d when a
replaced by
%
is
= a.pk.
The o p e r a t o r L above allows us t o adapt t h e proof of P r o p o s i t i o n
7.5
i ) and i i ) t o t h e case where we have a parameter, i n o r d e r =
lim Fk(y) uniformly w i t h r e s p e c t t o y. k'w Fk E C y ( Y ] ; if a i s a multiFurthermore, it i s c l e a r t h a t
t o prove t h a t
F[y]
index, we immediately o b t a i n t h e expression
166
SYMBOLS AND OSCILLATORY INTEGRALS
(CHAP.
3)
with
Consequently, t h e argument used f o r Fk can s t i l l be used t o prove that
uniformly w i t h r e s p e c t t o y .
-
Henceforth, we s h a l l omit t h e s i g n
on an o s c i l l a t o r y i n t e g r a l
s i n c e P r o p o s i t i o n 7.6 allows us t o manipulate it l i k e an o r d i n a r y integral.
We can g i v e an i n c l u s i o n f o r t h e s i n g u l a r support of a d i s t r i b u t -
i o n of t h e t y p e ( 7 . 5 . 4 ) .
PROPOSITION 7.7:
We p u t
')a(x,
all
8
Suppose we have
E RoN
;
.
\ 0
X x RN
0
then the d i s t r i b u t i o n
c {x E X I there exists
PROOF:
J?
8)dB s a t i s f i e s
s i n g SUPP A
(7.7.1.)
=
If cp i s a phase f m c t i o n on
and if we have a E sm(x x RN) A = /eiv(xs
R",
x
0
E
X
8f 0
such t h a t
,
Q ~ ( x ,B)
e) f
Q ~ ( X ~ ,
t h e homogeneity and t h e c o n t i n u i t y of
t h a t t h e r e e x i s t s an open neighbourhood V o f xo such t h a t
o Q
I
03 for show
(SEC. 8)
9)
cpL(X,
167
INTEGRAL OPERATORS
-
f 0
f o r (x,
a) E
x
V
N
Ro
.
Furthermore, P r o p o s i t -
7.6 shows t h a t t h e mapping
ion
V 3 x
=
A(x)
eiY(”,
‘)a[x,
9)d8
E C
i s Cm and s i n c e we have
we t h e r e f o r e deduce t h a t inclusion
8.
IV
E
, which
C”[V]
demonstrates t h e
(7.7.1).
INTEGRAL OPERATORS ASSOCIATED WITH A PHASE AND AN AMPLITUDE
CONSTRUCTION 8.1: Q
a
A
E
Let X , Y b e open s u b s e t s o f lRn
be’ a phase f u n c t i o n i n Sm[X x Y x
.K E J1(X
x Y)
N
R )
.
X x ’f x P N
\
0)
Bp ;
let
and l e t
We c o n s i d e r t h e i n t e g r a l d i s t r i b u t i o n
a s s o c i a t e d w i t h t h e phase rg and t h e amplitude
a
i.e. l8.1.1.)
Let
< K, w > =
A : f(Y)
For w E f l y )
icp(x’yse)
J’[X)
, Av
&(x, y,
0 ) w[x, y) dx dy d9,
be t h e o p e r a t o r w i t h k e r n e l K .
i s t h u s t h e d i s t r i b u t i o n i n X d e f i n e d by
168
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
(8.1.2.)
< Av, u z
e+(x,y,el
a(x, y,
e)
u(x) ~ ( y )dx dy d o ,
and A i s termed t h e i n t e g r a l o p e r a t o r a s s o c i a t e d w i t h t h e phase and t h e amplitude
Q
a
i ) If K i s the kernel of A, we have
PROPOSITION 8 . 2 : t8.2.1.)
s i n g supp K
e c
iii) If
d .
.
there e x i s t s
c {(x, y) E X x Y I
~t with
cp(x, y , 0)
Ti(.,
f
0
y,
el
for
=
.
o 3
N
,
(x, Y, 8 ) E X x Y x 3,
x, e then A extends i n t o an operator which i s continuous from E ~ ( Y )into
P(x]
.
PROOF: i) f o l l o w s by a p p l i c a t i o n of ( 7 . 7 . 1 ) t o K . For i i ) , P r o p o s i t i o n 7.6 and ( 8 . 1 . 2 ) show t h a t i f m
t h e n Av i s t h e C
(63.2.)
,
v E f(Y)
f u n c t i o n i n X d e f i n e d by
(Av)(x)
ei~(x9y,91 , . ( a
=
y,
e)
v(y) dy d e
.
The c o n t i n u i t y of A i s o b t a i n e d by m a j o r i s i n g a semi-norm
'K, j
(A) a f t e r having r e p l a c e d ( 8 . 2 . 2 ) by an i n t e g r a l o f t h e t y p e
(7.5.2) with
k
> m+N+j
.
(SEC. 8 )
1.69
INTEGRAL OPERATORS
For i i i ) , we n o t e t h a t t h e o p e r a t o r tA i s o b t a i n e d by permuting t h e r o l e s of x , y i n (8.1.2),b u t i ) shows t h a t tA i s continuous from
c:(x]
into
c"(Y)
and consequently P r o p o s i t i o n 4 . 5 of
Chapter I shows t h a t A e x t e n d s i n t o an o p e r a t o r which i s c o n t i n -
&'(Y)
uous from
into
J~(x)
.
This formula is deduced from t h e F o u r i e r i n v e r s i o n formula by u t i l i s i n g t h e passage t o t h e l i m i t ( 7 . 5 . 3 )
EXAMPLE 8 . 4 :
m
Let P(x, D ) b e a d i f f e r e n t i a l o p e r a t o r w i t h C
c o e f f i c i e n t s on X .
By d i f f e r e n t i a t i n g i n t h e o s c i l l a t i n g i n t e g r a l
(8.3.1 we o b t a i n
(8.4.1
E W L E
8.5:
Composition w i t h a C
We d e f i n e t h e o p e r a t o r
f* : C"(Y]
, (8.3.1)
shows t h a t
For
x E X
m
mapping
+
c"(X)
f
from X i n t o Y .
by f*v = v
o
f.
170
SYMBOLS AND OSCILLATORY INTEGRALS
EXAMPLE 8.6:
Trace Operator.
Suppose we have
and suppose Y i s an open s u b s e t o f T i r . of TRn
(CHAP. 3)
'A
=
R"
X
n'PR
L e t X be t h e open s u b s e t
d e f i n e d by
-
Let y be t h e t r a c e o p e r a t o r on X:
c;(Y)
3
v
yv
E Cp)
,
t h e n we have y = f * w i t h f ( x ) = (x, 0 ) .
4%01
IW1IXl =
i
Therefore Example 8.5
shows t h a t
E W L E 8.7:
Pseudo-differential operators.
These are t h e
o p e r a t o r s P d e f i n e d by ( 8 . 4 . 1 ) when we r e p l a c e t h e polynomial with respect t o p(xl y ,
5)
5, P(x, 5),
E
Sm(X X
by an a r b i t r a r y amplitude
x
X
R")
.
These w i l l be s t u d i e d i n d e t a i l
i n Chapter I V .
8.8
Cp
GENERALISATION TO THE CASE WHERE THE PHASE FUNCTION
I S DEFINED IN AN OPEN C O N I C SET.
set of
X
xPN\
0)
Let
r
be an dpen c o n i c sub-
and l e t Q be a phase f u n c t i o n i n
r.
The
methods of S e c t i o n 7 a l l o w u s , w i t h minor m o d i f i c a t i o n s , t o d e f i n e and study t h e o s c i l l a t i n g i n t e g r a l
ii
eirp(x'
when
a E Sm(X x RN)
a[.,
and when
0 ) u ( x ) dx d e a
satisfies
,
u
E cz(X]
171
STATIONARY PHASE
i s a phase f u n c t i o n i n an open conic s e t
If cp
r
cx
X
Y x(R
N
conic supp a
\
0 ) and a E Sm(X x Y x RN) i s such t h a t
c r u (x
+
o p e r a t o r A : C:(Y) t h e amplitude
y x
{o})
B'(X)
, then,
we define t h e i n t e g r a l
q,
a s s o c i a t e d w i t h t h e phase
and
as i n S e c t i o n 8.1, and we o b t a i n analogous
a
properties.
GENERALISATION TO THE CASE OF SYMBOLS OF TYPE
8.9
(see Section
6).
p >
0
All t h e p r e c e d i n g c o n s t r u c t i o n s and p r o p e r t i e s
remain v a l i d , w i t h minor m o d i f i c a t i o n s , when t h e amplitudes
a
a r e symbols from S:.
9.
STATIONARY PHASE THEOREM
9.1
CASE WHERE THE PHASE IS NEVER STATIONARY. Rp, Rq
be open s u b s e t s o f t h e behaviour f o r
I(xy
(9.1.1.1
where
T
cp E
c"(x
X
Y)
+
7)
+
m
;
Let X, Y
we o f t e n have occasion t o s t u d y
of i n t e g r a l s of t h e t y p e
.iT(x'
a(x, y, 71 dy
i s r e a l - v a l u e d and where a E Sm(X x Y x
I n o r d e r t o avoid any convergence problems, we assume t h a t zero f o r
y
o u t s i d e a compact s e t K c Y.
a
R +). is
172
SYMBOLS AND OSCILLATORY INTEGRAL3
I f the function
cp
(CHAP. 3 )
h a s no c r i t i c a l p o i n t s w i t h r e s p e c t t o t h e i n t -
e g r a t i o n v a r i a b l e y , then I i s of r a p i d decrease with r e s p e c t t o T;
more p r e c i s e l y , we have:
PROPOSITION 9 . 2 :
We asswne t h a t
(p(x, y)
Y
+ , where
x R )
E S-”(X
and i n t h i s case I(x,
d
T
f 0 on X x Y , is t h e frequency
variab t e .
PROOF:
The f i r s t - o r d e r o p e r a t o r
S u b s t i t u t i n g back i n t o ( 9 . 1 . 1 ) we o b t a i n , a f t e r i n t e g r a t i o n by parts ,
I(x,
7)
Since any
k
i.i.p
=
(?Ik
El
E
.
( t L ) k a dy
Swk(X
x Y x
and f o r any compact s e t
R+) H
, we cx
x
t h e n deduce t h a t f o r
R+ w e
have t h e upper
bound
The d e r i v a t i v e s of I are d e f i n e d by i n t e g r a l s of t h e same t y p e as I ;
t h u s we m a j o r i s e them i n t h e same manner, and t h i s proves
the proposition.
9)
(SEC.
9.3
STATIONARY PHASE
CASE WHERE
173
HAS A QUADRATIC CRITICAL POINT.
The
above p r o p o s i t i o n l e a d s us t o s t u d y t h e behaviour o f I when possesses a c r i t i c a l p o i n t . t h a t i n which
We b e g i n w i t h t h e s i m p l e s t c a s e , i . e .
i s a q u a d r a t i c form which is non-degenerate
g,
More p r e c i s e l y , w e assume t h a t
with r e s p e c t t o y .
Y1 where
=
1/2
< Q(x)Y,
Y t
Q ( x ) i s an i n v e r t i b l e symmetric m a t r i x which h a s
ence on x
E
X , and we t a k e Y = Bq
.
.)
I ( x , 71
E swq/2 (x
a
x
R+)
and t h i s symboZ admits an asymptotic expansion
(93.4.) where R(xl
aY )
=
-2i
< Q-’[x)
C
m
depend-
I n t h i s c a s e , we have:
satisfies (9.3.2
cf~
ay, ay >
and s i g n Q ( x ) = ( n m b e r of p o s i t i v e eigenvaZues of
Q(X
(number o f negative eigenvazues of Q ( x We begin w i t h a F o u r i e r t r a n s f o r m c a l c u l a t i o n .
174
SYMBOLS AND OSCILLATORY INTEGRALS
LEMMA 9.4:
(CHAP. 3)
Let Q be an invertibZe symmetric matrix in IRq i
Then the Fourier transform of the f u n c t i o n exp (5 < Qy, y
.
is
given by the f u n c t i o n
PROOF OF THE L E W :
Let M b e an o r t h o g o n a l m a t r i x such t h a t
tM Q M i s d i a g o n a l ;
t h e change o f v a r i a b l e y = Mx i n t h e c a l c u l -
a t i o n o f t h e F o u r i e r t r a n s f o r m t a k e s us t o t-h e c a s e where Q i s 9 2 diagonal. I f we t h u s p u t < Q Y , Y > = h j YJ , we have
i
~ X P ( Z< Q Y , Y
>I
=
We a r e t h u s l e d t o c a l c u l a t e
fi
1
2
exp($ h j y j )
j - 1 S(e
i/2
A j !)
and we have seen
i n E x e r c i s e 10.3 of Chapter I t h a t w e o b t a i n t h e f u n c t i o n
We hence o b t a i n t h e lemma, by o b s e r v i n g t h a t
We now r e t u r n t o t h e proof o f t h e theorem.
We a p p l y P a r s e v a l ' s
formula i n t h e i n t e g r a l (9.3.1),and we o b t a i n
with
(SEC. 9 )
175
STATIONARY PHASE
(where * i n d i c a t e s t h a t we have t a k e n t h e F o u r i e r t r a n s f o r m w i t h respect t o the variable y ) .
The advantage of e x p r e s s i o n
(9.4.2)
l i e s i n t h e f a c t t h a t T appears i n t h e e x p o n e n t i a l v i a t h e f u n c t ion
71.
;
t h u s , we can o b t a i n t h e asymptotic expansion of J by
u t i l i s i n g t h e Taylor expansion o f t h e e x p o n e n t i a l f u n c t i o n .
LEMMA 9.5:
For any i n t e g e r N
2
1, we have
.)
(9.5.1
where the remainder rN s a t i s f i e s the upper bounds
\(z) d j
(9.5.2.)
PROOF OF THE LEMMA:
For j = 0 , t h e upper bound ( 9 . 5 . 2 ) i s i n
f a c t j u s t t h e u s u a l upper bound f o r t h e remainder i n t h e Taylor formula.
We o b t a i n t h e upper bounds ( 9 . 5 . 2 ) f o r N
2
j > 0 from
t h e c a s e j = 0 by d i f f e r e n t i a t i n g t h e e q u a l i t y ( 9 . 5 . 1 )
9.6
CONCLUSION OF THE PROOF OF THE THEOREM:
t h i s l e m a t o the exponential i n the integral s
by--
where
27
< Q-’(x)q,
>
.
We o b t a i n ,
j times.
We a p p l y
(9.4.2),r e p l a c i n g
(CHAP. 3)
SYMBOLS AND OSCILLATORY INTEGRALS
176
and
I a(x,
?,,TI TI
9
; t h u s , i n view of
it s u f f i c e s t o show t h a t t h e remainder RN s a t i s f i e s
t h e upper bounds
uniformly f o r
1.1
+
w i t h i n a compact s u b s e t K c X and f o r
x
5 N
We b e g i n by p r o v i n g t h i s w i t h ci = B = 0.
,
U t i l i s i n g ( 9 . 5 . 2 ) , we o b t a i n :
(9.6.4.)
IRN(x,
Furthermore, s i n c e
a
from ( 9 . 6 . 4 )
E
K.
C T
i s a symbol o f degree
support with respect t o
uniformly f o r x
I
711
y
, we
m
w i t h compact
have f o r any i n t e g e r LI
2
0
By t a k i n g II s u f f i c i e n t l y l a r g e , we deduce
, and ( 9 . 6 . 5 )
the inequality
(SEC. 9 )
STATIONARY PHASE
177
I n t h e g e n e r a l c a s e , L e i b n i z ' s formula shows us t h a t
a:
3;
i s a f i n i t e sum o f terms o f t h e form
R"XI
r
with (y
= a'
+
(y"
1
fi = fi' i-
We can show by r e c u r r e n c e on
$1'
Iff' 1 +
,
\fi'
1
aa' ax8 ' rN( ...)
that
is
a f i n i t e sum of terms of t h e form
By combining Lemma 9.5 and t h e immediate Gpper bound
we e a s i l y o b t a i n t h e upper bound ( 9 . 6 . 3 ) .
EXAMPLE 9 . 7 :
Suppose we have X
n
c
I
Y =
R
n
X
W
n
;
a p o i n t of Y i s denoted by y = ( z , < ) and we d e f i n e Q(x) = Q by
< Qyp y > = < z I 5 > R(x1
i
a,)
e i z~. 5
.
We have d e t Q = 1, s i g n Q = 0 and
n
=
a2 3] azj a6j 1
I n t h i s c a s e Theorem 9 . 3 g i v e s
n
a(x, z ,
=
D
(10.3.3)
w[y) =
-in D rr-2 b ( y )
b)
i f n is even,
Pv;
i f n is odd.
From (10.3.1), (10.3.3) and from (10.9.1)of Chapter I ,
deduce t h a t when
{x E R"
1
1x1
n
i s odd, we have E
< l},
Chapter I ) t h a t
1
= 0 in
and t h e r e f o r e ( s e e s e c t i o n 10. 8 of
supp E l
P
{x E R"
t h i s ( s e e (10.8.1),Chapter I )
I
1x1 = I]
.
I n f e r from
t h a t t h e s u p p o r t of t h e funda-
mental s o l u t i o n E of t h e wave o p e r a t o r i s e q u a l , when odd and 2 3, t o t h e cone
c)
Suppose
for x
E
E?
:
{ ( t , x ) E R*'
1t
f : R-C
i s continuous.
= 1x13
n
is
. Prove t h a t we have,
186
where u
S =
o f En-', i s t h e area of t h e u n i t sphere S n-2
n-2
u0 = 2
d)
(CHAP. 3 )
SYMBOLS AND OSCILLATORY INTEGRALS
sn-l
[Cut
with
up i n t o zones x.o = c o n s t a n t , and p u t
X ,.,I.
W ' e s h a l l h e n c e f o r t h assume t h a t
t o s t u d y t h e r e s t r i c t i o n of E
1
i s even, and we propose
n
.
c 11
t o (1x1
Deduce from (10.3.1), ( 1 0 . 3 . 2 ) and ( 1 0 . 3 . 4 ) t h a t t h i s r e striction is the C
m
function
where, for 0 5 r < 1, we have p u t
n-3
cn
J'
- (2in)-"
-1 (&)I
F""1 and Cn =
=
(1
+
s/r)l-"(l-s2)
on-2
ds
I
.
Prove, by i n t e g r a t i o n by p a r t s , t h a t n
Deduce from t h i s t h a t
a2k-2
t Re c a l l t h a t
'2k4 Calculate d i r e c t l y t h e i n t e g r a l
j
IR2 , 1x1 < 1.
@GI
when x
E
X.D+
1
dm
Deduce from t h i s t h a t
F2(r) =
1
(1
- r)-3
and t h u s , by u t i l i s i n g (10.3.5), t h a t t h e r e s t r i c t i o n of El t o (x
E R"
11x1
+ r
, formula
(1.1.4) of Chapter I shows t h a t
e-i$
a$8
Q ( ~ , D ~ Ie (i 9~
=
> - a,:*' a!
Q ( x , d X f ( x , B ) ) D ~ ( ae * )
CY
and s u b s t i t u t i n g i n t o (2.1.12),we o b t a i n
(2.1.13)
b =
cm 1
CYlB
( D ~as p ) ( x , x , d x t ( x , 8 ) ) . D ~ ( a eir) lY=x'
(SEC. 2 )
203
CHARACTEEiISATION
By i d e n t i f i c a t i o n w i t h (2.1.11)ywe deduce from t h i s t h e which proves t h e formula ( 2 . 1 . 4 ) .
e x p r e s s i o n f o r t h e terms d aa
A s an a p p l i c a t i o n of Theorem 2 . 1 , we give below a c h a r a c t e r i s a t i o n of p s e u d o - d i f f e r e n t i a l o p e r a t o r s on an open s u b s e t
x
c ?Rn.
PROPOSITION 2.2:
Let P be a oontinuous lin e a r operator
from C I ( X ) i n t o C m ( X ) . Then, P e-ixs P(a
(2.2.11
eixsl
E
E
S ~ ( Xx
Lm(x)'if and onZy if we have
R") for a l l
a
E
c:(x).
If we f u r t h e r assume t h a t P is proper, i t s u f f i c e s t o have (2.2.1) with a = 1.
PROOF:
I t remains t o prove t h a t t h e c o n d i t i o n i s s u f f i c i e n t - .
Let ( p . ) be a p a r t i t i o n of u n i t y on X w i t h f u n c t i o n s p J j and l e t
a J.
on supp p j ;
For u
m
be f u n c t i o n s i n C 0 ( X ) , w i t h
w e assume t h a t t h e supp
Rj j
E
Cz(X)
m
E
Co(X) identical t o 1
are also locally f i n i t e .
W
E
C (X),by F o u r i e r i n v e r s i o n we have: 0
J
J
I n t e r p r e t i n g t h i s l a s t i n t e g r a l a s an i n t e g r a l w i t h r e s p e c t t o ,€ with v a l u e s i n C w ( X ) , t h e c o n t i n u i t y o f P allows us t o w r i t e 0
(CHAP.
PSEUDO-DIFFERENTIAL OPERATORS
204
Since
u =
, we
pju
4)
t h e r e f o r e deduce t h a t
J
where t h e amplitude P(X,Y,e;I
-c
J i s c l e a r l y an element of
Pj(xlh)
Pj(Y1
Sm(X x X x
l o c a l l y f i n i t e with respect t o
R")
s i n c e t h i s sum i s
.
y
Since P i s p r o p e r , it d e f i n e s a continuous o p e r a t o r P
Ca(Rn)
* C"(X)
C"(X)
where t h e f i r s t arrow denotes t h e r e s t r i c t i o n t o X.
If we apply
t h i s operator t o the integral
m n c o n s i d e r e d a s an i n t e g r a l w i t h v a l u e s i n C (IR ) , we o b t a i n
r
with
(2.2.4)
p(x1sl =
=-ix[:
,,(,ixl:
) E Sm(X x R")
.
SYMBOL OF A P.D.O.
205
This l e a d s us t o :
I f we Let P be a proper operator taken
PROPOSITION 2 . 3 : from L m ( X ) ,
then there e x i s t s a unique
p E Sm(X x
R")
such
Moreover, i f p ( x , y , S ) is an amplitude f o r
that we have ( 2 . 2 . 3 ) .
P, we have (2.2.5) @
We say t h a t p ( x , S ) i s the complete symbol of P and we w rite P = p(x,D).
PROOF:
We have j u s t proved t h e e.xistence o f
ness a r i s e s o u t o f t h e d e n s i t y o f
&(I?"]
p
.
;
t h e unique-
The expansion
( 2 . 2 . 5 ) f o l l o w s from a p p l i c a t i o n of ( 2 . 1 . 4 ) t o t h e p a r t i c u l a r case ( 2 . 2 . 4 ) .
3.
SYMBOL OF A PSEUDO-DIFFERENTIAL OPERATOR
3.1
COMPLETE SYMBOL:
We s h a l l now e x t e n d t h e n o t i o n o f
a complete symbol t o an a r b i t r a r y o p e r a t o r P i n g P r o p o s i t i o n 1.5, w e can w r i t e P = P'
E
Lm(X).
By u t i l i s -
+ R' and we denote by
p ' ( x , S ) t h e complete symbol of t h e proper o p e r a t o r PI. consider a d i f f e r e n t decomposition o f t h i s t y p e , P = P" the difference p' symbols i s i n
-
S-o(X
If we
+ R",
p" between t h e corresponding complete x
R")
s i n c e t h e o p e r a t o r P'
- P
= R"
- R'
(CHAP. 4)
PSEUDO-DIFFERENTIAL OPERATORS
206
If we denote by o(P)(x,c) the
is both proper and in L--(X).
equivalence class of p' in Sm / S--, we have thus defined a linear mapping
Lm[X) 3 P ->
o(P) E Sm(X x R")
This is clearly surjective, and Proposition
/
S-"(X
x
.
R")
1.4 shows that its
kernel is L-m( X); therefore we have an isomorphism (3.1.1)
Lm /
1-OD
->
0.
Sm
/
S-"
called the isomorphism of the complete symbol.
REMARK 3.1.2.
:
The above shows that any operator be-
m longing to L (x) can be written, to within a regularising operator, in the form p(x,D) with
3.2. PRINCIPAL SYMBOL.
e Sm(x x
p
If P
E
R")
.
Lm(X), it is clear that we
have the equivalence p
E LW1(X)
>-(
a(P] E
s-'
/ s-=
.
Consequently, we deduce from (3.1.1),by passage to the quotient, a simpler isomorphism:
(3.2.1)
Lm
/
Om
LW1
sm / Sm-l
->
s
called the isomorphism of the principal symbol of degree m.
If P = P(x,D) is a differential operator, then om(P) admits a canonical representative in Sm( X part P,(x,E)
x
Bn ) , namely the principal
of the polynomial P ( x , S ) .
(SEC.
4)
ALGEBRA
& SYMBOLIC CALCULUS
207
Lm(X), we s h a l l o f t e n commit t h e n o t a t i o n a l m abuse o f i d e n t i f y i n g u (P) w i t h a r e p r e s e n t a t i v e i n S , and w e m Given P
E
s h a l l do t h e same for c r ( P ) .
4.
ALGEBRA AND SYMBOLIC CALCULUS OF P.D.O. ' s I n Chapter I we encountered t h e d e f i n i t i o n of t h e t r a n s -
pose tP and t h a t of t h e a d j o i n t P* o f an o p e r a t o r P on an open s u b s e t of lRn.
For p.d.o.'s we have:
THEOREM
4.1
:
If P
E
Lm(X) , then
t
P and P* are i n Lm(X)
and the complete symbols admit the following expansions: (4.1.1)
(4.1.2)
a PROOF: m
with C
Since t h e t r a n s p o s e or t h e a d j o i n t of an o p e r a t o r
k e r n e l i s an o p e r a t o r w i t h C
m
k e r n e l , we w i l l n o t
r e s t r i c t t h e g e n e r a l i t y by assuming t h a t P i s p r o p e r .
If we p u t p ( x , h )
t
o(P)[x,S)
, then
P c a n be w r i t t e n
208
(CHAP. 4)
PSEUDO-DIFFERZNTIAL OPEFATORS
By n o t i n g t h a t we have
,
<W,tP">
Q
v
E
,
CIfx)
we o b t a i n
We t h e r e f o r e deduce t h a t tP E Lm(X), and t h e expansion (4.1.1) t h e n f o l l o w s from ( 2 . 2 . 5 )
t
The P
c a s e can be deduced from t h i s s i n c e P
*
=
t-
P.
F o r composition, we have
THEOREM 4 . 2 :
Suppose we have P
E
Lm(X) and Q
E
Lm' (X);
we assume t h a t a t l e a s t one of t h e s e is a proper operator. Then, (4.2.1 )
R
,
P
E LWm' (X)
and for t h e complete symbol
PROOF:
We s h a l l n o t r e s t r i c t t h e g e n e r a l i t y by assuming
t h a t both of these operators a r e proper.
(4.2.3)
e-ixt(Q
p)(eiRs)
e-iXt
Q
rei"!
= eixzQ(u(P)eixz)
We have
e-ixI ~ ( ~ ~ ~ f ) ]
.
Consequently ( 4 . 2 . 1 ) can be deduced from ( 2 . 1 . 3 ) and from Proposition 2.2.
The expansion ( 4 . 2 . 2 ) f o l l o w s from
4)
(SEC.
ALGEBRA & SYMBOLIC CALCULUS
209
a p p l i c a t i o n of ( 2 . 1 . 4 ) t o ( 4 . 2 . 3 ) .
REMARK 4.3 :
The composition o f p r o p e r p . d . 0 . ' ~ i n d u c e s ,
v i a t h e isomorphism of t h e complete symbol, an a s s o c i a t i v e
l a w of composition on
/ s-".
S+w
This l a w i s denoted as
=#
and can be d e f i n e d d i r e c t l y by
(4.3.1)
-
(qSfd(x,g)
1 7 :a
a!
q(x,g)
.
:D P(X,E)
F i n a l l y , we have i n v a r i a n c e o f t h e p.d.0.'~ under diffeomorphism.
THEOREM
4.4
subsets X , Y o f B n .
be a diffeomorphism between two open
Suppose P
operator transported by (4.4.1
x
Let
:
I
x
x*P
E
L ~ ( x )and l e t X*P denote the Then
onto Y.
E
Lrn(Y)
and f o r the complete symbol we have
-
~(GPI(Y,TIcy
(4.4.21
PROOF:
1
7 a;
t
~ ( P H X , x'(X).T)DF(eir)
( Z P X
We w i l l n o t reduce t h e g e n e r a l i t y by assuming t h a t
P i s p r o p e r ; i n t h i s case
x*P i s a l s o proper and we u t i l i s e t h e
c h a r a c t e r i s a t i o n i n Proposition 2.2.
We have
consequently, ( 2 . 1 . 3 ) of Theorem 2 . 1 shows t h a t t h e l e f t - h a n d s i d e of ( 4 . 4 . 3 ) i s i n Sm(Y x B n ) . equal t o taking
g ( ~ P ) ( y , ~ ); in (2.1.4)
:
This l e f t - h a n d s i d e i s a l s o
hence t h e expansion
(4.4.2)by
PSEUDO-DIFFERENTIAL OPERATORS
210
a = 1
4.5
,
,
= u(P)(x,Z>
P(X,Y,$)
(CHAP.
4)
= X(X).T.
*(x,Tl)
For p r i n c i p a l symbols, it
REDUCED SYMBOLIC CALCULUS,
f o l l o w s from t h e e x p r e s s i o n g i v i n g t h e f i r s t t e r m of t h e expan-
(4.1.1.), (4.1.2),(4.2.2),(4.4.2),
sions
t
a,(
(4.5.11
(4.5.31
o,~Pl~x,- 51
=
p)rx,c)
OrrHm~( Q o
(4.2.2),we
A s an a p p l i c a t i o n of
(Q)(x,!I
0 ',
om(%Pl ( Y , 7) = O,(PI
(4.5.4)
t h a t we have
(x,
a,(P)(x,!)
t
X' (XI .Ill w i t h y = X(X]
.
deduce (under t h e c o n d i t i o n s of
Theorem 3 . 2 ) t h a t t h e commutator
(4.5.5)
[P
, Q]
Q
= P
-Q
where t h e Poisson b r a c k e t {
is in
P
L~
ml-I
(XI
and
} i s d e f i n e d by
n
REMARK 4.6
:
Case of vector-valued p . d . 0 . ' ~ .
L e t E , F be f i n i t e dimensional v e c t o r spaces on C
.
We
denote by Lm(X; E , F) t h e space of p . d . 0 . ' ~ of t h e form (1.2.1) when t h e amplitude
p
E Sm(X x R" ; L(E, F)) ca
.
Then, such
m
o p e r a t o r s a c t c o n t i n u o u s l y from C (X; E) i n t o C (X; F ) and 0
p o s s e s s a l l t h e p r o p e r t i e s of s c a l a r - v a l u e d p . d . o . ' s e x c e p t i o n of
(4.5.5) and (4.5.6). For
with t h e
example, Theorem 2.1
f o l l o w s from Remark 9.11 o f Chapter 111; it i s of c o u r s e
P.D.O.'s
a
necessary t o t a k e
< SW(X
x
RN ; F),
P E L ~ ( X ;
E
, F)
b
E Sm(X x
a,(P)
E Sq(X
211
ON MANIFOLDS
x
RN ; E)
and we t h e n f i n d
The p r i n c i p a l symbol of
i s c l e a r l y an element
R" ; f(E, F)) / Sm-'.
For t h e composition,we assume
Q , P E Lmm' (X ; E
Q E L m' ( X ; F, G ) and we f i n d t h a t
, G)
.
F i n a l l y , i f we t a k e i n n e r p r o d u c t s ( r e s p . Hermitian produ c t s ) on E and F, t h e t r a n s p o s e ( r e s p . t h e a d j o i n t ) of
P E Lm(X ; E
, F)
i s an o p e r a t o r tP ( r e s p . P*) belonging t o
L m ( X ; F, E ) .
5.
P.D.O.'s
ON MANIFOLDS
I n t h i s s e c t i o n X denotes a manifold of dimension
n.
Following t h e d e f i n i t i o n of d i f f e r e n t i a l o p e r a t o r s ( D e f i n i t i o n
7.6 o f Chapter I ) and from t h e c h a r a c t e r i s a t i o n o f p . d . o . ' s d e s c r i b e d i n S e c t i o n 2 , it i s n a t u r a l t o s t a t e :
DEFINITION 5 . 1 :
Suppose
m
ER U
;
{-o]
P : C:(X)
L m ( X ) the s e t of continuous operators
-
we denote by C"(X)
which s a t i s f y the following condition: f o r any real-valued f u n c t i o n
*(x,8)
E
C"(X
x
:R 1,
homogeneous of degree 1 with respect t o 6, and f o r any amplitude a
E
Sq(X x
dx$(x,8)
RN )
with compact support i n x such t h a t
f 0 f o r (x,6) E
conic supp a , we have
212
(CHAP. 4)
PSEUDO-DIFFERENTIAL OPERATORS
F i r s t l y , Theorem 2 . 1 and P r o p o s i t i o n 2.2 show t h a t t h i s d e f i n i t i o n c o i n c i d e s w i t h t h e former d e f i n i t i o n when X i s an If X i s a manifold and we have P
open s u b s e t o f IRn,
E
Lm(X),
and i f we l e t U be an open s u b s e t of X , we d e f i n e t h e o p e r a t o r PIu as b e i n g t h e compose
c"(x) 0 ->
->
CpI)
c"(x) ->
c"(u)
where t h e f i r s t arrow i s t h e n a t u r a l i n j e c t i o n and l a s t arrow denotes t h e r e s t r i c t i o n t o U ; D e f i n i t i o n 5 . 1 shows t h a t PIu
E
Lm(u).
D e f i n i t i o n 5.1 i s obviously i n v a r i a n t under diffeomorphism; consequently i f
->
-
%(PI,,)
EL
x :X
transported operator
U
3
s t r i c t l y positive density. P
E
Rn
m N
(u)
.
i s a c h a r t of X , t h e
We assume t h a t X i s equipped w ith a
PROPOSITION 5 . 2 :
of a p . d . 0 .
U c
Then t h e kernel d i s t r i b u t i o n
Lm(X) is Cm outside of Diag ( X
x
X).
= L-"(x)
=
Further-
more, we have the following e q u a l i t i e s : (5.2.1.)
Operators w i t h kerne l s E
PROOF:
Suppose (x
0
neighbourhoods o f x
0'
yo
c"[x
, yo) 8
x
x)]
Diag(X
n P(x) . m
x
X ) and l e t U , V be open
chosen s u f f i c i e n t l y small f o r them t o
be a l s o d i s j o i n t c o o r d i n a t e p a t c h e s .
Consequently i n t h e open
(SEC.
5)
P.D.O.'s
set W = U u V
213
ON MANIFOLDS
c R"
X :W
we can d e f i n e a c h a r t
.
Furthermore, we know ( s e e ( 8 . 2 . 1 ) , C h a p t e r I ) t h a t t h e r e s t r i c t ion o f P t o W
-
W i s t r a n s p o r t e d by
x
(x,x)
into a distribution
K such t h a t N
(5.2-2)
K=KNg
P where
g
is a C
, Since K
m
N
f u n c t i o n and P = x*P.
i s Cm o u t s i d e of t h e d i a g o n a l o f
? X F,
we deduce
P The same method allows
t h a t t h e k e r n e l of P is Cm i n U x V .
us t o prove t h e i n c l u s i o n
n Lrn(X)
c { o p e r a t o r s w i t h k e r n e l i n C"(X x X ) l
rn
.
A proof analogous t o t h a t o f P r o p o s i t i o n 9 . 2 of Chapter I11 m
proves t h e i n c l u s i o n : { o p e r a t o r s w i t h C F i n a l l y , we obviously have
L-=(X)
c
k e r n e l s ) c L-m(X).
n Lrn(X) ,
rn
and t h i s
concludes t h e proof of ( 5 . 2 . 1 ) .
The q u o t i e n t L" / L-m i s a s h e a f
PROPOSITION 5.3 :
s e t s (U ); ci
p
= lUiY
Let there be a covering of X by open
we s p e c i f y operators
Then, there e x i s t s P
pw
E
on X ; t h i s i s
Pcu E
L ~ ( U @ ) such t h a t
L m ( X ) unique modulo L W m ( X ) such t h a t
( t h e sign E s i g n i f i e s moduZo
.
214
PSEUDO-DIFFERENTIAL OPERATORS
PROOF:
(CHAP.
4)
Taking a f i n e r covering where a p p r o p r i a t e , we
w i l l n o t r e s t r i c t t h e g e n e r a l i t y by assuming t h a t t h e Ua are r e l a t i v e l y compact and l o c a l l y f i n i t e .
Suppose ( p a ) i s a
s u b o r d i n a t e d p a r t i t i o n o f u n i t y with f u n c t i o n s p
CY
E
and suppose we have f u n c t i o n s pa
W
Co(Ua)with
f CI(ue)
identical t o 1
c1
on SUPP P,.
We d e f i n e P by
(5.3.1
1
p u
b,
=
pa P&
cz It i s c l e a r t h a t P i s a continuous o p e r a t o r from C"(X)
into
0
s i n c e t h e sum ( 5 . 3 . 1 ) i s f i n i t e f o r a l l u
C"(X) Taking
a
E
C"(X). 0
and $ a s i n D e f i n i t i o n 5 . 1 , we have
(5.3.2) N t h e right-hand s i d e i s a f i n i t e sum o f symbols i n Sm+q(X x iE ) ;
consequently we c l e a r l y have P
We now show t h a t
p
rPP
Lm(X).
E
Since supp p
'
cy
rl
Up
c U, n U
8'
we have (5.3.31
R
where
us
'a p ~ IU l B
x u
=
(pa
- 1)
PB p,
=
a ' (
p
Pp
'8
p~)lUg p,
+ R
aB
i s an o p e r a t o r w i t h C
B r n
S u b s t i t u t i n g (5.3.3) i n t o (5,3.1),
we o b t a i n
m
kernel i n
215
P.D.O.'s ON MANIFOLDS
P
REMARK 5 . 4 :
P*
The above p r o p o s i t i o n and i t s proof remain
v a l i d i f we everywhere r e p l a c e t h e e q u a l i t i e s modulo L
m'
e q u a l i t i e s modulo L
This sheaf
-m
by
w i t h m' < m .
p r o p e r t y a l l o w s us t o g i v e an e q u i v a l e n t form,
which i s p o s s i b l y more n a t u r a l , f o r t h e d e f i n i t i o n of p . d . o . ' s on X.
PROPOSITION 5.5 :
C:(X)
4
x :u
C"( X)
. Then
H
4
u c R"
PROOF: necessary.
, the
Let P be a continuous Linear operator
P E Lm(X)
operator X * ( P
i f and onZy i f f o r any chart mc
IU
i s i n L (u)
We saT7 f o l l o x i n g D e f i n i t i o n
.
5 . 1 t h a t t h i s was
I n o r d e r t o show t h a t it i s a l s o s u f f i c i e n t , it
s u f f i c e s t o apply P r o p o s i t i o n 5 . 3 t a k i n g a c o v e r i n g of X by open c o o r d i n a t e p a t c h e s .
F i n a l l y , we n o t e t h a t P r o p o s i t i o n 1 . 5 and i t s proof remain v a l i d when X i s a m a n i f o l d .
216
(CHAP.
PSEUDO-DIFFERENTIAL OPERATORS
6.
4)
SYMBOLIC CALCULUS OF P.D.O,’s ON A MANIFOLD
6.1.
DEFINITION OF THE PRINCIPAL SYMBOL OF AN OPERATOR P E Lm(X).
x
With each c h a r t
lu)
-
sm(r x R”) / SW1. -1 allows diffeomorphism x
U,,,(&P
the
:U
/
U
cR”
us t o l i f t it t o an element denoted
S”l(T*U
\ 0) independently
x
choice of t h e c h a r t diffeomorphism same r e a s o n we have
we a s s o c i a t e t h e symbol
Formula ( 4 . 5 . 4 ) shows t h a t
E
E Sm(T*U\ 0)
by q,(P)
N
uu(p) = av(P)
of the
d e f i n e d on U. in
T*(U
For t h e
n V) \
0
I
thus
t h e combination p r o p e r t y of t h e symbols ( s e e P r o p o s i t i o n 2 . 1 0 o f Chapter 111) proves t h e e x i s t e n c e of a unique element
cr € Sm(T*X \ 0)
/ Sm-’
rn
for any open sub-
This symbol u i s c a l l e d t h e p r i n c i p a l symbol
set of c h a r t s . of degree
alu = uu
such t h a t
of P and i s denoted by crm(P).
The l i n e a r mapping p E Lm(X)
_I_*
/
E S”(T*X\O)
o,(P)
S-’
is s u r j e c t i v e ; Remark 5 . 4 allows us t o reduce t o c o n s i d r i n open s u b s e t s of IRn i n o r d e r t o prove t h i s . P r o p o s i t i o n 5 . 5 shows t h a t cr,(P) P
E
m- 1 L (X).
sm-l
i f and only i f
Hence w e have t h e isomorphism o f the p r i n c i p a l
symbol of degree
(6. 1. 1)
E sm-I /
Furthermore,
m
Lrn(X)
/ Lnc1[X)
For composition we have:
Om
*
Sm(T*x \O)
/
s”’(T*X
\O)
(SEC. 6 )
SYMBOLIC CALCULUS ON A MANIFOLD
P E Lm(X)
Suppose t h a t
THEOREM 6 . 2 :
217
Q E Lm’ (X)
where one a t l e a s t i s a proper operator; then Q
PROOF:
,P
E LWm1(X)
From D e f i n i t i o n 5 . 1 , we can immediately show t h a t Q
P E Lmcm’(X)
.
The d e f i n i t i o n of t h e p r i n c i p a l symbol shows t h a t i f it is s u f f i c i e n t t o v e r i f y ( 6 . 2 . 1 ) i n an open c o o r d i n a t e patch,U. Suppose we have
cp
bourhood of supp $.
$ Q P
,0
E Cz(U)
w i t h q = 1 i n t h e neigh-
We have
3
$ Q q P
e
6 Q cp P
+
+Q(I-(P)P
since
$ Q(I
- cp)
E L-”(x)
.
m
which concludes t h e proof s i n c e $ i s a r b i t r a r y i n C (U). 0
THEOREM 6 . 3 :
Assume t h a t X i s endowed with a s t r i c t z y
218
(CHAP. 4 )
PSEUDO-DIFFERENTIAL OPERATORS
p o s i t i v e density.
If P
E
(6.3.1)
tP
(6.3.2)
P+ E P ( X )
PROOF:
E
P(X)
L ~ ( x ,) we then have I
q t P 1 (x, 51 =
;
O,(P*I(X,51
=
+I
(X,-C)
m m
I
L e t t i n g U be an open s u b s e t of X , we c l e a r l y have
c o n s e q u e n t l y ( 6 . 3 . 1 ) and ( 6 . 3 . 2 ) f o l l o w from meorem 4 . 1 and from P r o p o s i t i o n 5 . 5 .
PROPOSITION 6 . 4 :
Any p . d . 0 . P
E
L m ( X ) extends contin-
uousLy i n t o an operator from &'(x) i n t o .I?'(x).
PROOF:
We have P = t ( t P ) ; now Theorem 6 . 3 i m p l i e s t h a t
t~ i s continuous from
m
c o (XI i n t o c
m
( X I ; consequently P r o p o s i t i o n
6 . 4 f o l l o w s from Remark 8.4 of Chapter I .
DEFINITION 6.5 :
i f f o r any chart
the operator h ( P
U
lu
A p.d.0.
P
c x &cc
E
R"
L m ( X ) i s called c l a s s i c a l ,
,
the complete symbol of
u ) E L m (U) is c l a s s i c a l .
We denote by
Lm(X) the subspace of c l a s s i c a l p . d . 0 . ' s of degree m. C
Formulas ( 4 . 4 . 2 ) , ( 4 . 1 . 1 ) ,
( 4 . 1 . 2 ) and ( 4 . 2 . 2 ) show t h a t t h i s
c l a s s i s s t a b l e under diffeomorphism, under t r a n s p o s i t i o n , under passage t o t h e a d j o i n t , under r e s t r i c t i o n and under composition, by u s i n g t h e proof of Theorem 6.2.
6)
(SEC.
SYMBOLIC CALCULUS ON A MANIFOLD
219
The p r i n c i p a l symbol o f an o p e r a t o r P E Lm admits a
c
CI(T*X
c a n o n i c a l r e p r e s e n t a t i v e u ( P ) which i s a
rn
f u n c t i o n and i s homogeneous of degree
PROPOSITION
E
(x0,&,)
6.6
T*X \
Suppose P
:
01 ,
with respect t o 5
m
s i n c e t h i s i s t r u e i n any l o c a l c h a r t .
\o)
Moreover, we have
.
E Lz(X)
Then f o r
we have
U
7-
where:
of
a E C:(X)
xo
$ E CO1(X)
PROOF: x
and has the value 1 i n the neighbourhood
,
dJl(xo) =
to
f
d$
on SUPP a.
0
Let U be an open c o o r d i n a t e p a t c h
containing
OD
0,
and suppose we have a , @E Co(U) w i t h a = 1 i n t h e
neighbourhood of supp B and B(x ) = 1. 0
A t the point x = x
0,
we have
e-iT* p(a
eiT9‘)
e-i~* p plCra .i~$>
+
e - i ~ tB P(I-U] iaei T * ) . -m
The second t e r m on t h e r i g h t - h a n d s i d e i s i n S c a l c u l a t e t h e f i r s t t e r m we can r e p l a c e P by P
(B+)and t o
IU
and conse-
q u e n t l y reduce t o t h e c a s e where X’is an open s u b s e t o f IR”. I n t h i s c a s e we can r e p l a c e P by u p ( x , D ) and a p p l y Theorem 2 . 1 ; we o b t a i n
e-iT*p(aeiT’)(xo)
= a,(P)(x,
, T d)(xo))a(xO)
md S”’.(R+)
2 20
(6.6.1).
which proves
REMARK 6.7: bundles.
Case of p . d . o . ' s
f ,9
Let
o p e r a t i n g on s e c t i o n s of
as,$$) t h e vector
denote by
C ~ ( X; 9)
.
9
3; i n t o
C"(X
4
F on C.
and
X
bundle above
rn
f
and
g
9
8 and
of
P :
, $1
if
above a l o c a l
x -
U of X we have ( w i t h t h e n o t a t i o n of ( 7 . 8 . 2 ) o f
-+
E
Lm(i;
E
, F)
We denote by vX t h e c a n o n i c a l p r o j e c t i o n denote by
* nx f
* %g 3
i n v e r s e images o f
modulo Sm-',
(3
U
E
t h e b u n d l e s on and
9
under nX.
. T*X
Sm(T*IJ\o
of t h e choice of
combine i n t o an element o f
\0
* T X\
and
X
which a r e
0
g
.
Sm(T*X \ 0 ; L(n>
independent, These elements
, r;
g e n e r a l i s a t i o n of t h e r e s u l t s of S e c t i o n s 5 and
Definition
,g)
6
5
U
9 ) ) / Sm-'
c a l l e d t h e p r i n c i p a l symbol of P and denoted by u,(P).
Lm(X ; 9
and We
which can be l i f t e d
* , '9))
; $(nu% f
4
The p r i n c i p a l symbol of
S"(c x R" ; L(F,G))
i s an element of
i n t o an element
type
We
of t h e morphisms
i s an element of L (X ; 9
; 9)
Chapter I ) :
Pf,g
E
, having
We s a y t h a t a continuous o p e r a t o r
f o r any t r i v i a l i s a t i o n s chart U
X
be v e c t o r bundles above
as f i b r e f i n i t e - d i m e n s i o n a l v e c t o r s p a c e s
of
(CHAP. 4)
PSEUDO-DIFFERENTIAL OPERATORS
The
t o p . d . 0 . ' ~ of
p r e s e n t s no new d i f f i c u l t i e s .
Likewise,
6 . 5 and t h e p r o p e r t i e s of c l a s s i c a l p . d . o . ' s g e n e r a l i s e
t o t h e spaces
L:(X
;9
, Y)
.
7)
(SEC.
7.
ELLIPTIC P.D.O.'s
221
ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS
I n t h i s s e c t i o n , X d e n o t e s a manifold. To t h e concept of an e l l i p t i c symbol t h e r e corresponds t h e concept o f an e l l i p t i c o p e r a t o r .
DEFINITION
of degree
7.1:
If P
E
L m ( X ) , we say t h a t P i s e l l i p t i c
i f i t s principaZ symboZ o,(P)
m
symboZ of degree m i n
i s an e l z i p t i c
.
Sm(T*X\ 0)
If P i s a d i f f e r e n t i a l o p e r a t o r o r more
EXAMPLE 7 . 2 :
generally a c l a s s i c a l p.d.0.
of degree
m
, t h e n it i s
i f and o n l y i f t h e homogeneous f u n c t i o n a,(P)
elliptic
does n o t v a n i s h on
T* X \ 0.
I n f a c t , e l l i p t i c o p e r a t o r s a r e t h o s e which a r e i n v e r t i b l e i n t h e s e n s e of t h e f o l l o w i n g theorem:
The operator P
THEOREM 7 . 2 :
m
E
Lm(X) i s e l l i p t i c of degree
i f and only i f there e x i s t s a proper operator Q
that P.Q.
1
Identity.
Q.P. E I d e n t i t y ;
E
L-,(X)
such
Such an operator Q then s a t i s f i e s
it i s unique modulo
and i s termed a para-
metrix of P. PROOF:
The e x i s t e n c e o f Q c l e a r l y i m p l i e s t h e e l l i p t i c i t y of
om(P) s i n c e we have
222
(CHAP. 4)
PSEUDO-DIFFERENTIAL OPERATORS
. g,(Q)
o,(P)
-
1 .E
*
-1
S
(T X l 0)
I n o r d e r t o prove t h e e x i s t e n c e o f Q, w e make use o f an approximation
procedure which i s important i n i t s own r i g h t .
By h y p o t h e s i s , we know t h a t t h e r e e x i s t s q
0
E S'"(T*X
\ 0)
such t h a t
(7.2.1) Let
orn(P).qo
Qo
E L'm(X)
-1
-1
E S
*
.
(T X \ O )
be proper such t h a t
,
orn(QO)= q,
then
( 7.2.1) implies
(7.2.2)
P.
- I = A,
0,
.
E L-'(X)
We now prove t h e f o l l o w i n g :
m LEMMA 7.3 :
such t h a t rnk
We take a sequence of p.d.o.'s -0.
k=
i ) There e x i s t s
S
.
Then:
f
L "(X)
Rk E L k ( X )
rn
proper, such t h a t for any
integer h
(s
(7.3.1)
-
h
E
Rk)
Lmh+'(x)
Such an operator S i s m i q u e modulo L--(X)
ii) If
R E L-'(X)
.
and we w r i t e
i s proper, and if
T E Lo(X)
is proper such t h a t (7.3.2)
- &
(-llkRk
then we have
(7.3.3)
(1+ R).T
P
T.(I
+ R)
I
Id
.
7)
(SEC.
ELLIPTIC P.D.O.'s
PROOF:
u
If
x u
223
i s a l o c a l c h a r t of X , we can
-D
rn define
Su E L '(U)
by c o n s i d e r i n g t h e asymptotic sum of t h e CI
complete symbols i n U o f t h e o p e r a t o r s X ( R
*
k1U)
( t h i s being Then, we
p o s s i b l e i n view of Theorem 4.2 of Chapter 111). d e f i n e S s a t i s f y i n g ( 7 . 3 . 1 ) by combining t h e S
U by v i r t u e of
--m
The uniqueness modulo L
Proposition 5.3.
(7.3.1).
i s obvious from
The v e r i f i c a t i o n of ( 7 . 3 . 3 ) i s immediate from t h e -
d e f i n i t i o n of T.
We r e t u r n now t o t h e proof of t h e theorem.
We t a k e
Q = Q0 .T where T is d e f i n e d by ( 7 . 3 . 2 ) and R i s a proper op-0
erator equal t o R
0
modulo L P . Q
(7.3.4)
I
; then Q
Id
E
L-m(X)
i s proper and
.
The same method w i l l a l l o w us t o c o n s t r u c t a proper such t h a t
Q'
(7.3.51
.
P a I d
GI' E )X("'L
.
M u l t i p l y i n g ( 7 . 3 . 5 ) on t h e r i g h t by Q, ( 7 . 3 . 4 ) i m p l i e s t h a t Q e Q '
which proves t h a t Q i s a p a r a m e t r i x o f P and t h a t a p a r a m e t r i x
i s unique modulo L-O0'
REMARK 7 . 4 : bundles
Case of p . d . o . ' s
o p e r a t i n g on s e c t i o n s of
.
We once more adopt t h e n o t a t i o n o f Remark
P
E Lm(X ; 3
,3)
e x i s t s a symbol
;
6.7.
Suppose
we say t h a t P i s r i g h t e l l i p t i c i f t h e r e
PSEUDO-DIFFERENTIAL OPERATORS
224
q,
E
S-m(T*X \ 0
.
o,(P)
q,
- Id
IT?))
; L(?T:$,
E
(CHAP.
such t h a t
*
*
; L(nxY, nx9))
S-'(T*X\O
4)
.
Theproof of Theorem 7.2 shows t h a t P i s r i g h t e l l i p t i c i f and only i f t h e r e e x i s t s
Q
E
; 3, 9 ) such t h a t P . Q E I ;
L-"(X
we say t h a t Q i s a r i g h t parametrix of P.
We have t h e analogue of t h i s "on t h e l e f t " , and we have t h e concept of a two-sided
parametrix when 3 and
9
a r e of t h e
same rank.
For o p e r a t o r s of t h e c l a s s i c a l t y p e , we have a simple c r i t e r i o n of e l l i p t i c i t y ; t h i s i s
PROPOSITION 7.5
P E L:(X
Supposing
:
;9
,'3) ,
then
P is l e f t e l l i p t i c ( r i g h t e l l i p t i c ) if and only if for any
E
(x,5)
T*X \ O
the linear mapping
i s injective (surjective). and
9
a,,,(~)(x,5l
E 4sx
Moreover, if the bundles
9,) 3
are of the same rmk, any Zeft ( r i g h t ) parametrix of P
i s a two-sided parametrix.
To prove t h a t P admits a l e f t p a r a m e t r i x , we s h a l l
PROOF:
t
now d e f i n e t h e a d j o i n t P
of P.
To do t h i s , we endow X w i t h a
s t r i c t l y p o s i t i v e d e n s i t y and we d e f i n e a Hermitian s t r u c t u r e on
3; - a n d on
7
(we can do t h i s l o c a l l y by means of a
(SEC. 7 )
ELLIPTIC P.D.O.'s
225
t r i v i a l i s a t i o n and we re-combine by p a r t i t i o n o f u n i t y ) .
and C i ( X ; 3) a r e each equipped w i t h an
Ci(X,S)
t h e spaces
.
, lg (p u
9
L:(X
=
v$
(u
; 3 , 9)
*
p
9
c;(x,sJ ,
u E
Vl9
whose p r i n c i p a l symbol s a t i s f i e s
operator equivalent t o P
*
and
X
,
.
3 X
i s a proper
*
-*
The p r i n c i p a l symbol P P i s for a l l
*
rn
gEx ;
d*
If P
it t h u s has t h e same p r i n c i p a l symbol
t h e i n j e c t i v e l i n e a r mapping (0 ( P ) ( x , C ) )
Fx i n t o
v € CO"(X,Y)
6 . 7 ) t h a t t h i s i s an o p e r a t o r belonging
f o r t h e Hermitian s t r u c t u r e s on 9
a s P*.
and
The a d j o i n t P* o f P i s d e f i n e d by t h e e q u a l i t y
and we know ( s e e Remark to
, l9
(
i n n e r product denoted r e s p e c t i v e l y as
(
Thus
it i s t h e r e f o r e i n v e r t i b l e .
-*
.
(x,c) E T X \ O
a,(P)(x,S)
Consequently t h e Let Q E L4m(X
o p e r a t o r P P i s e l l i p t i c of degree 2m.
from
;9
, 9)
be a p a r a m e t r i x of t h i s o p e r a t o r ; we have 4
Q. P
(3.5.1) The e q u a l i t y
.P
=
I
+
A
with
R €L--(X;9,9)
(7.5.1) shows t h a t t h e o p e r a t o r Q?* E L-,(X
;9 ,9)
i s a l e f t p a r a m e t r i x of P.
The o t h e r a s s e r t i o n s of t h e p r o p o s i t i o n are immediately obvious,
.
226
PSEUDO-DIFFERENTIAL OPERATORS
7.6
(CHAP.
4)
CASE OF SYSTEMS WHICH ARE ELLIPTIC I N THE SENSE OF DOUGLIS-NIRENBERG
. P =
We s a y t h a t a system
...
where
(‘jk) j=l, J k=Ii*.o9K
rn pJk
E
i s of t h e t y p e ( s , t )
Lcjk (X)
E
IRJ x IRK i f
f o r any ( j , k ) E J x K . We d e s i g n a t e a s t h e mjk = tk - j p r i n c i p a l symbol of P of t y p e ( s , t ) t h e f u n c t i o n from Cm(T*X
\0
;
46
cJ))
d e f i n e d by t h e m a t r i x
A system P of t y p e ( s , t ) i s s a i d t o be l e f t ( r i g h t ) e l l i p t i c i n
t h e sense of Douglis-Nirenberg, if f o r any t h e m a t r i x CT
s, t
(P) ( x ,
THEOREM 7.7 :
5) is
(xi{)
E
injective (surjective).
T*X\ 0
We have :
A system P of type ( s , t ) i s l e f t ( r i g h t )
e l l i p t i c i f and only i f there e x i s t s a system Q of type ( t , s ) which i s proper and such t h a t
Q
.
P t
I
(P
.
Q E
.
I)
Moreover, when K = J , one-sided e l l i p t i c i t y i s equivalent t o the existence of a two-sided parametrix 9.
PROOF:
We equip X w i t h a Riemannian m e t r i c s o a s t o be
a b l e t o d e f i n e t h e l e n g t h 151 of a cotangent v e c t o r .
r
E
With
IR, we denote by A r a proper o p e r a t o r from Lz(X) having 151
f o r i t s p r i n c i p a l symbol.
we denote by A
The o p e r a t o r A
-1 a p a r a n e t r i x of A r r
.
r
r
i s t h u s e l l i p t i c and
With t h e v e c t o r s
E
J B ,
(SEC. 8 )
P.D.O.'s
&
SOBOLEV SPACES
we a s s o c i a t e t h e d i a g o n a l system of t y p e (s,O) matrix A
t
E
S
(ASJjk = As
with
if
227
d e f i n e d by t h e
j = k , and 0 o t h e r w i s e .
For
J
K -1 IR we s i m i l a r l y d e f i n e a d i a g o n a l system A t o f t y p e ( O , t ) .
Then , t h e formula
p l a c e s systems P of t y p e ( s , t ) i n b i j e c t i o n w i t h t h e o r d i n a r y
8 , GJ)
E Lo(X ;
systems
.
Using t h e symbols it can be
immediately shown t h a t P i s l e f t ( r i g h t ) e l l i p t i c i n t h e s e n s e c
( s , t ) i f and o n l y i f P i s l e f t ( r i g h t ) e l l i p t i c .
Consequently,
t o prove Theorem 7.7 it s u f f i c e s t o use P r o p o s i t i o n 7.5 and t o c
CI
observe t h a t i f Q i s a l e f t ( r i g h t ) p a r a m e t r i x o f P , t h e n
-1
Q = At
. -Q .
As
REMARK 7.8 :
i s a l e f t ( r i g h t ) p a r a m e t r i x of P.
Tne d e f i n i t i o n s and r e s u l t s concerning
systems of t y p e ( s , t ) g e n e r a l i s e immediately t o t h e c a s e where
d(
and
GJ
9 and 9 above X which
a r e r e p l a c e d by bundles
decompose i n t o d i r e c t sums o f b u n d l e s :
J
K
9 = 0 Sk k= 1
8.
P.D.O.'s
59.; 0 j=1
AND SOBOLEV SPACES
Let X be an open s u b s e t of IRn. the p.d.o.'s,
gj
To prove t h e c o n t i n u i t y o f
we b e g i n by showing t h a t a p o s i t i v e e l l i p t i c
228
PSEUDO-DIFFERENTIAL OPERATORS
(CHAP.
4)
o p e r a t o r admits a k i n d o f approximate square r o o t .
Let C
LEMMA 8.1 :
E
L o ( X ) be such t h a t
i t s principal
symbol u 0 ( C ) is r e a l and s a t i s f i e s for any compact subset K
Then, there e x i s t s a proper (8.1.2)
C
PROOF:
=
B*B
B
+
R
E
c
X
L o ( X ) such t h a t
with
R E L-"(X)
.
The assumption (8.1.1)means t h a t f o r any compact
s u b s e t K c X , t h e r e e x i s t s c > 0 such t h a t
Thus d ( C ) i s an e l l i p t i c symbol and we can c o n s t r u c t a f u n c t i o n 0
p
E
c"(X
x
R")
of t h e same t y p e a s t h a t u t i l i s e d during t h e
proof o f P r o p o s i t i o n 3 . 2 i n Chapter 111.
bo = p j4 -
E So(X x
R")
Then
and bo i s e l l i p t i c .
i s a proper o p e r a t o r w i t h p r i n c i p a l symbol b
it s a t i s f i e s
c
- Bo* . Bo = R-,
ELqX)
0'
If Bo
Lo(X)
E
by c o n s t r u c t i o n
.
We can t h e n c o n s t r u c t by r e c u r r e n c e proper o p e r a t o r s B
j
E
L-J(X)
such t h a t f o r any i n t e g e r j 2 0 , we have
Knowing t h e B for k < j, t h e c o n d i t i o n (8.1.3) means t h a t B k j must s a t i s f y
(SEC. 8 )
P .D.O.' s & SOBOLEV SPACES
229
(8.1.4)w i l l be
Noting t h a t u- ( R - j ) is r e a l , t h e c o n d i t i o n
j
s a t i s f i e d i f t h e p r i n c i p a l symbol b 2 bo
t h i s i s possible since b
0
of B
u-j(R_J3
=
bj
j
j
satisfies
i
is elliptic.
i n order t o
It now only remains t o t a k e
obtain ( 8 . 1 . 2 ) .
REMARK 8.2 :
The same proof a l l o w s us t o c o n s t r u c t an
approximate square r o o t of C , i . e . a proper B
L o ( X ) such t h a t
E
2
C - B .
REMARK 8 . 3 :
case where C
lgl-m
E
This lemma g e n e r a l i s e s immediately t o t h e
Lm(X).
We need of course t o r e p l a c e u 0 ( C ) by
i n (8.1,1),and we f i n d B i n Lm'2(X).
u,(c)(X,5)
As an a p p l i c a t i o n of t h i s lemma, we have
THEOREM
8.4
:
Let P
E
Lo(X) be proper, such t h a t there
e x i s t s M such t h a t f o r my compact subset K
c
Then, there e x i s t s a proper and seLf-adjoint.R
X
E
L-O0(X) such
that (8.402)
lpu 1,2
sM
IIUIC
+
(R u
,u)
for
u E c:(x).
2 30
PSEUDO-DIFFERENTIAL OPERATORS
I n particular, any p.d.0. into
'Lcow (XI
PROOF: C =
8-
(CHAP.
4)
beZonging t o L o ( X ) i s continuous from
2
Lloc(x1
a
The assumption (8.1.1) i m p l i e s t h a t t h e o p e r a t o r
*
P P s a t i s f i e s t h e assumptions of Lemma 8.'l.
sequently, t h e r e e x i s t s a proper B
E
0
L (X) and R
Con-m
E
L
(X) such
that
( 8.4.3
)
P*P
+
B*B
=
h?
+R
a
The e q u a l i t y ( 8 . 4 . 3 ) shows t h a t R i s s e l f - a d j o i n t and a l l o w s us
where (
,
) denotes t h e i n n e r product i n LL(X); t h i s proves
(8.4.2).
THEOREM 8.5 :
If P
E
L m ( X ) , then f o r any s E D , P i s
I f i n addition P i s continuous from H'c omp (XI i n t o H:,:(x). S proper, it i s continuous from H c omp (X) i n t o HE;Zp(X) and from HSl o c(XI i n t o H;,?X).
PROOF:
Since t h e theorem i s t r i v i a l f o r a r e g u l a r i s i n g
o p e r a t o r , we w i l l n o t r e s t r i c t t h e g e n e r a l i t y by assuming t h a t P i s proper.
We r e c a l l t h a t t h e norm HS of u
E
C:?Bn)
is
d e f i n e d by
1M1,
=
IIAsulb
o p e r a t o r whose complete symbol i s
where
(1
As
h e r e denotes t h e
+ 1512 ) 4
2
L e t A:
(SEC. 8 )
P.D.O.’s
& SOBOLEV SPACES
be a proper o p e r a t o r e q u i v a l e n t t o A
: A’-:
A:
metrix of
IIPu/Is-m = ll~s,mPuli,
but
E
A:-’
P,A ,s
A:
= I
5
IlA&
Lo(X)
S
+ Rs.
and l e t A;
For u
”A:
A u;
E
I, p Rs
I
231
-1
C”(X), 0
+
be a parawe o b t a i n
I l ~ ~ m p ~ s u /I( o
E L - W
.
Consequently Theorem 8.5 follows from Theorem 8 . 4 .
We now g i v e a r e s u l t which i s known by t h e name of
Garding’s i n e q u a l i t y .
THEOREM 8 . 6 :
If P
E
Lm(X) , we assume t h a t there e x i s t s
a > 0 such t h a t f o r any compact subset K c X
Then, f o r any s
m
5,
E
>
0 and any compact subset K, and for aZZ
there e x i s t s c such t h a t
PROOF:
We d e f i n e t h e o p e r a t o r
t h e assumption ( 8 . 6 . 1 ) allows us t o a p p l y Lemma 8 . 1 (or more p r e c i s e l y Remark 8 . 3 ) t o t h i s o p e r a t o r ; t h u s . t h e r e e x i s t s a proper B
E
Lm’*(X)
and R
E
L-“(X)
such t h a t
PSEUDO-DIFFERENTIAL OPERATORS
232
1
* )U
~ ( +p P
= (a
- 2) Am A,, E
*
s z
u
+ 6*B u + R u
(CHAP.
with
4)
u E CI(X)
Taking t h e i n n e r product w i t h u , we o b t a i n
F i n a l l y , f o r any K , t h e r e e x i s t s C2 such t h a t for
u
E B,
,
by s u b s t i t u t i n g t h e hence we deduce ( 8 . 6 . 2 ) w i t h C = C C 12' upper bound f o r
1 (R
REMARK 8.7 :
u, u) I i n t o ( 8 . 6 . 3 ) .
G e n e r a l i s a t i o n s t o t h e c a s e of systems.
Let E,F be Hermitian v e c t o r spaces of f i n i t e dimension. We now g i v e a b r i e f i n d i c a t i o n o f how t h e r e s u l t s of s e c t i o n
8 g e n e r a l i s e t o t h e c a s e where P i s a p . d . 0 . b e l o n g i n g t o Lm(X ; E , F ) .
By s e l e c t i n g b a s e s of E and F , we can reduce t o
t h e s c a l a r c a s e i n o r d e r t o prove t h e c o n t i n u i t y of P from HS (X c omp
j
E ) i n t o HS-m(X loc
j
F).
For Ggrding's i n e q u a l i t y , we
(SEC. 8)
ON SOBOLEV SPACES
P.D.O.'s
assume t h a t
;E
P E L:(X
, E) and we
233
replace the inequality
( 8.6.1) by t h e i n e q u a l i t y
where t h e s i g n 2 i s t a k e n i n t h e s e n s e of t h e o r d e r r e s p e c t i n g t h e Hermitian o p e r a t o r s . Next we n o t e t h a t w e do n o t need t h e f u l l p r e c i s i o n of Lemma I
it s u f f i c e s t o prove t h e
8 . 1 t o prove Ggrding's i n e q u a l i t y ; e x i s t e n c e of a proper
*
C
8 . 8
+
B E Lmj2(X ; C
,
R,
with
, E)
E
RIEL
such t h a t m-I
.
(X;E,E)
To do t h i s , we t a k e for B a p r o p e r o p e r a t o r w i t h homogeneous
Jo,(C)(x,~f
p r i n c i p a l symbol e q u a l t o
(here
J
denotes t h e
p o s i t i v e square r o o t i n t h e p o s i t i v e Hermitian o p e r a t o r s ) .
The
remainder of t h e proof o f ( 8 . 6 . 2 ) i s p r a c t i c a l l y unchanged.
The c o n t i n u i t y o f t h e p . d . o . ' s
allows us t o g i v e a new def-
i n i t i o n of Sobolev spaces :
PROPOSITION 8.8:
u E lfoc(X)@
(8.8.1)
If s
I
E
u E ,f)"X), proper,
Moreover, the semi-norms proper P
E
IR, we have the equivalence P
and for a l l we have
1 1 P~ ullo ,
2
E LIDc(xl
p u
for
E L"(X)
cp
E
Ls ( X ) , also define the topology of H S o c ( X ) .
Cz(X) and
.
234
PSEUDO-DIFFERENTIAL OPERATORS
PROOF:
If
u
E
S
Theorem 8.5 i m p l i e s t h a t P u
Hloc(X),
cp
and t h a t f o r e v e r y
E
C"(X)
t h e r e e x i s t JI f o r every u
Conversely, suppose P
let Q
E
L-'(X)
Thus i f
+
R u
,
and t h i s a l s o shows t h a t f o r
H
S
loc ( X )
L:oc(X)
and C such
C:(X)
For u
E
R E L-"(X)
where
, we
P u E LFo,(X)
E
E
E
4)
.
L s ( X ) i s e l l i p t i c and p r o p e r , and
E
be a p a r a m e t r i x o f Q.
u = QPU
(CHAP.
have u
E
cp E Co(X)
H
S
loc
8 ( X ) , we i s proper
have:
.
( X ) from Theorem 8 . 5 ,
, l l c p ~ I ( ~i s
bounded
I\$,P u \ b + \I$, R u \Io , w i t h
above by a q u a n t i t y of t h e form
From t h i s w e deduce t h e i n v a r i a n c e of Sobolev spaces under d i f f eomorphism.
COROLLARY 8.9 :
Let
x
be a diffeomorphism between two open
subsets X , Y of B n . Suppose u
E
a' ( x ) ;
then
(8.9.1)
moreover,
x
*
defines a homeomo2yphism between these two SoboZev
spaces.
The proof i s immediate i n view of P r o p o s i t i o n 8.8 and t h e i n v a r i a n c e under diffeomorphism o f spaces of proper pseuao-diffe r e n t i a l o p e r a t o r s of g i v e n degree. A s r e g a r d s m a n i f o l d s , w e have
(SEC. 8 )
P.D.O.'s
If X is
THEOREM 8.10:
& SOBOLEV SPACES
a
235
,
of dimension n
Cm manifoZd
then Theorem 8 . 5 generalises word f o r word t o t h i s case.
Let K be a compact s u b s e t o f X and l e t
PROOF:
( Uj)
jtl,.
..,
be a f i n i t e c o v e r i n g o f K by open c o o r d i n a t e p a t c h e s U. of c h a r t s J N xj : u 4 U j of X . We p u t u o = x \ uj. I n view o f N
u
J
i
Theorem 2.19 then Pu
E
o f Chapter 11, we have t o show t h a t i f u
HS-m(U ) and depends c o n t i n u o u s l y on u ( 0 S j loc j
Suppose w e have
E
'pj
C,"(Uj)
the neighbourhood o f supp
rpjPu
=
Since +,u
cpj
pj
'pj
=
o
+
P 4 . u
J
and
R~
P jl. u f o r 1 S j J
Xj
*
(p
lu -1.) -
.
and
Q
j '
R.u
J
S
N.
Co(Uj)
I
N)
.
equal t o 1 i n
We have where
-a,
EL
' m
qj E
H:(X)
E
, we .(XI
Rjt=qjP(1-.qj)
.
are l e d t o study
We have
Consequently Theorem 8.5 t o g e t h e r w i t h
D e f i n i t i o n 2.18 o f Chapter 11, show t h a t
rp P q j u E H T i 3 X )
5
.
The c o n t i n u i t y i s e s t a b l i s h e d i n t h e same manner.
E l l i p t i c p.d.o.'s
THEOREM 8.11:
manifoZd and l e t P
are hypoelliptic;
more p r e c i s e l y we have
(On e l l i p t i c r e g u l a r i t y ) . E
L m ( X ) be a p.d.0.
which i s e Z l i p t i c and
proper. i)
If u
E
Let X be a Cm
&'(X) , we have the equivalences:
236
(CHAP. 4)
PSEUDO-DIFFERENTIAL OPERATORS
more generally
s i n g sup2
I f we have s, t
ii)
E
=
PU
.
s i n g supp u
IR , then for any compact subset K
c
x,
there e x i s t s c such t h a t
PROOF:
Q E Lem(X)
Letting
be a p a r a m e t r i x o f P , t h e proof i s
based on t h e e q u a l i t y
(8.11.4)
Thus
u = Q
.PU +
Ru
,
where
u Eb(X)
and R E L-OJ(X).
(8.11.1.)~ ( 8 . 1 1 . 2 ) and (8.11.3)f o l l o w from t h e c o n t i n u i t y
of t h e p . d . 0 . ' ~ . (8.Il.S)
We always have t h e i n c l u s i o n ( s e e ( 1 . 3 . 2 ) )
P u c s i n g supp u
s i n g supp
and t h e i n v e r s e i n c l u s i o n f o l l o w s from inclusion
(8.11.4)and from t h e
(8.11.5)for Q.
REMABK 8.12:
Let
F
of f i n i t e dimension over X.
and
9
b e complex v e c t o r bundles
Taking
p
E
L ~ ( X;
F
, 3) , we
l e a v e t o t h e r e a d e r t h e t a s k of showing t h a t a proof s i m i l a r t o t h a t of Theorem 8.10 allows us to prove t h a t P i s continuous from
(SEC. 8 )
I-?
a P
P.D.O.'s
( X ; 3) i n t o HSm '
loc
237
& SOBOLEV SPACES
( X ; 3) ,
Furthermore, if P i s proper
and l e f t e l l i p t i c , Theorem 8.11 and i t s proof g e n e r a l i s e immediately.
I n t h e c a s e o f c l a s s i c a l p . d . 0 . ' s , we have a
converse t o t h e i n e q u a l i t y (8.11,3),as f o l l o w s :
PROPOSITION 8.13:
If P E LE(X ; 9
a s s me t h a t f o r any compact s e t K
c
, 9) , and t
< m,
we
X, t h e re e z i s t s C such t h a t
Then, P i s l e f t e l l i p t i c . From P r o p o s i t i o n 7 . 5 , it s u f f i c e s t o prove t h a t for a l l
PROOF: (xo
, so)
from
E T*X \ 0
sx i n t o
, the
gx.
of p.d.0.'~ i n I R n .
,5 )
l i n e a r mapping cr,(P)(X
We b e g i n by reducing t o t h e c a s e of a system Let U b e a neighbourhood o f x
0
which i s an
open c o o r d i n a t e p a t c h o f X o v e r which t h e bundles M N a r e isomorphic t o U x 6 and U x C , Suppose we have i d e n t i c a l t o 1 i n t h e neighbourhood of x t o 1 i n t h e neighbourhood o f supp and i f u
is i n j e c t i v e
9
0
,
and $
E
3; and
cp
9
m
E
Co(U)
Cz(U) i d e n t i c a l
If we f i x K = supp Q ,
m
E
C K ( X ) we have
Pu = P cpu = +$P ( p u Since ( i - $ ) P q
+
(1-JI)Pcpu
,
i s r e g u l a r i s i n g , we can r e p l a c e P by $ P cp
in
t h e i n e q u a l i t y (8.13.1)and t h i s allows us t o work w i t h i n t h e open s e t U.
X=R",
Consequently, w e w i l l n o t reduce t h e g e n e r a l i t y by t a k i n g
3 = X x $ ,
% = X X $
.
238
PSEUDO-DIFFERENTIAL OPERATORS
Suppose we have
E C;(R"
v
; C)'
(CHAP. 4)
and let u (x) = v ( x ) e i7X.go 7
f o r T > 0. We study the behaviour, as T
-+
+
m,
of both sides of
(8.13.1) when we take u = uT.
If we let Am be the p.d.0. with complete symbol (1
, we
+ 1012)rn/2
11
'7
have
Ilm =
11
'7
\b
consequently we obtain
Likewise, we obtain
112
By combining (8.13.1) and these two latter inequalities, we obtain
and as v
is arbitrary, this implies that
I+) 1 and consequently
c
l~,(P)(xtr,~
u (P)(x rn
,
5),
.
V(X)
I
is injective.
We now assume that X is a compact manifold endowed with a
(SEC. 8 )
P.D.O.'s
239
& SOBOLEV SPACES
s t r i c t l y p o s i t i v e d e n s i t y and we l e t 3 be a Hermitian v e c t o r bundle of f i n i t e rank over X. d e f i n e s a continuous o p e r a t o r
]p
in
P from
C"(X
, 9)
it
; 9) i n t o
we can a l s o c o n s i d e r it a s an unbounded o p e r a t o r
; 9) ;
c"(X
P E L"'(x ; 9
If
L2(X ; 9)
of dense domain
D
P
.
Hm(X ; 9)
Under t h e s e c o n d i t i o n s we have
Suppose t h a t P is e l l i p t i c .
THEOREM 8.14:
Then,
i ) The a d j o i n t of t h e unbowzded operator (ByD) i s the unbowzded
operator (P*,D*) associated w i t h t h e e l l i p t i c p . d . 0 .
P*E Lm(X;S)
with
i i ) The operator
dim Ker P
0
.
If P i s an o p e r a t o r w i t h c o n s t a n t c o e f f i c i e n t s t h e
commutator [P, p,*]
i s i d e n t i c a l l y z e r o , and we can reduce t o
c o n s i d e r i n g t h e case where t h e symbol of K .
E H'~
p
is zero for x o u t s i d e
Using F o u r i e r t r a n s f o r m a t i o n , we can w r i t e
hence, for u
E 8 , we
obtain
I n similar f a s h i o n , we o b t a i n
We u t i l i s e t h e Taylor formula up t o o r d e r N t o expand w i t h r e s p e c t to
E
t h e difference
PSEUDO-DIFFERENTIAL OPERATORS
252
( C W .
4)
By s u b s t i t u t i n g (10.1.3) and ( l 0 , l . b ) i n t o t h e l e f t - h a n d s i d e of
(10.1.1)and t a k i n g account of (10.1.51,we o b t a i n
The i n t e g r a l e x p r e s s i o n for t h e remainder rN shows immediately t h a t , for any k
0, t h e r e e x i s t s C such t h a t
2
(10.1.6)
I n a d d i t i o n , t h e assumption concerning t h e s u p p o r t of p ( x , E ) i m p l i e s t h a t for a l l h
2
0 , t h e r e e x i s t s C such t h a t
A (10.1.7)
I P ( M
8
511
To m a j o r i s e t h e norm
c
(1
(IR (e)ull
N
+ 151," (1 +
s+a
, we
l%51)-h
specify
v E 8 and we
c o n s i d e r t h e i n n e r product
Taking account of (10.1.7)and of P e e t r e ' s i n e q u a l i t y , t h e r e
follows
FRIEDRICH'S LEMMA
(SEC. 1 0 )
253
t h e right-hand s i d e of (10.1.8) i s bounded above by
Consequently, by t a k i n g
h
s u f f i c i e n t l y l a r g e , we t h u s deduce
which p r o v e s (10.1.2).
A s a p a r t i c u l a r c a s e , we have F r i e d r i c h ' s Lemma
COROLLARY 1 0 . 2 :
We adopt the same asswnptions as i n the
preceding theorem, together with the f u r t h e r condition P(0) = 1. Then for aZZ s (10.2.1
1
E
B, there e x i s t s C such t h a t
IICP,
P,*3lIS
for
Moreover, PROOF:
[P
, p,*3
5
cIlulls+ncl
u EH~++"
0
and e
in HS when u
>o E
H
s+m-1
E - 0
The i n e q u a l i t y (10.2.1) i s o b t a i n e d by s e t t i n g
254
PSEUDO-DIFFERENTIAL OPERATORS
N = u = 1 and by r e p l a c i n g
If u
E
S
s
i s dense i n H
s +m- 1
-
4)
by s - 1 i n t h e i n e q u a l i t y ( 1 0 . 1 . 2 ) .
u
p,*u
we know t h a t
(CHAP.
in
s
and s i n c e g
O'E
t h e i n e q u a l i t y ( 1 0 . 2 . 1 ) a l l o w s us t o e x t e n d
t h e conclusion t o a l l u
E
H
s +m- 1
We now g i v e t h e proof o f Theorem 6 . 5 o f Chapter I1 w i t h i n a more t h i s i s as f o l l o w s :
general s e t t i n g ;
Let P be a p . d . 0 . a s i n Theorem 10.1; l e t
COROLLARY 1 0 . 3 :
there e x i s t s
E
IR
and
p
s a t i s f y i n g the supplementary condition
( 6 . 3 . 3 ) of Chapter 11, w i t h h > s + l .
Then, there e x i s t s C such
that
PROOF:
We r e p l a c e
[P
we m a j o r i s e each term.
6.4 of Chapter
, p,*Ju For
by i t s e x p r e s s i o n (10.1.1)and
0
0
7 ,
( i n what f o l l o w s , such a l o c a l axn
c h a r t w i l l be c a l l e d a l o c a l c h a r t of
y)
)
, P i s written
and we have t h e jump formula ( c f (l.b.l), Chapter 1):
A l l t h e above c l e a r l y h o l d s f o r an a r b i t r a r y r e g u l a r open
s e t fi and f o r an a r b i t r a r y d i f f e r e n t i a l o p e r a t o r P.
Carrying o u t a l e f t convolution of b o t h s i d e s o f (1.3) with a fundamental s o l u t i o n E of P = P ( D ) we o b t a i n , p u t t i n g P u = f : (1.6.)
u
=
(E * f o )
In
+
(E * F ~ U ) , ~
This formula e x p r e s s e s u as t h e sm of a volume p o t e n t i a l and a s u r f a c e p o t e n t i a l ; we s h a l l show t h a t t h e s e two p o t e n t i a l s a r e in C m ( E ) , so that taking traces i n ( 1 . 6 ) :
274
(CHAP.
ELLIPTIC BOUNDARY PROBLEMS
5)
(1.7.)
In p a r t i c u l a r , i f
u
C : C"(aL2,
o b t a i n yu = C ( y u ) , where
i s d e f i n e d by
c
v
y
=
E c"(E)
[(E
*
and u
c"(an, c")
C")
Cm(ahl,
J
].
~ v ) , ~
C")
It can e a s i l y be
From (1.7),i f u
shown t h a t C i s a p r o j e c t o r .
(l.l), then yu E
s a t i s f i e s PU = 0 , we
E
Cm(?2)
satisfies
satisfies
i s given by ( 1 . 6 ) .
Conversely, i f
and i f we p u t
u E Cm(z)
v E
u = (E
*
cm(an, c"')
follhl
satisfies
+ (E * pt) In '
then
and s a t i s f i e s (1.1).
We t h u s see t h a t (1.1)reduces t o i n v e s t i g a t i n g t h e system
I n what f o l l o w s , we show t h a t t h e p o t e n t i a l s
(SEC. 2 )
275
REGULARITY OF BOUNDARY POTENTIAL
have t h e s t a t e d r e g u l a r i t y a t t h e boundary, and t h e n go on t o i n v e s t i g a t e t h e o p e r a t o r C ( c a l l e d t h e CalderBn p r o j e c t o r ) . F i n a l l y , we apply t h e r e s u l t s o b t a i n e d t o t h e i n v e s t i g a t i o n o f
(1.1)under c e r t a i n e l l i l s t i c i t y assumptions.
2.
REGULARITY OF THE POTENTIALS AT THE BOUNDARY We use t h e n o t a t i o n d e f i n e d a t t h e s t a r t of t h e I n t r o -
duction.
u E J'(L-2).
Let
t r a c e s up t o o r d e r k ( k
x
:
u
v
cnn
of
u has s e c t i o n a l
We say t h a t E
IN) on 30. i f , f o r any l o c a l c h a r t
(fi,
V ) and f o r any cp
t r a n s p o r t e d i n t o a f u n c t i o n o f c l a s s Ck i n x s u f f i c i e n t l y s m a l l ) with values i n J ' [ R X ~ ' ) naturally define the traces
y J. u = y 0
[(l
">j u ]
If u
Ik
E
ulan
('i), then
on ail up t o o r d e r k f o r k < s
for 0 S j
u =
-
a,
(for x
.
We t h e n
u has s e c t i o n a l t r a c e s
and
yj u E Hs- j-$? loc
(an)
has a s e c t i o n a l t r a c e of o r d e r 0 on a R , we
j
a.
Let
(1,v ) , we
IN ; by means of l o c a l c h a r t s of
E
define t h e l a y e r v
8 Dj 6
s e c t i o n a l t r a c e s up t o o r d e r
( 1 . 3 ) , (1.5).
t 0
( s e e Chapter 1 1 ) .
&'(a)
&'(an) and.
n
is
1
n a t u r a l l y d e f i n e i t s e x t e n s i o n u o by 0 o u t s i d e v
TU
as d i s t r i b u t i o n s on as2.
(0 5 j 5 k )
u E Hsoc
For example, i f
yo
n
E c;(u),
E 5'an(R")
.
If u
E
B'(C2)has
m y we a g a i n have t h e jump-formula
276
ELLIPTIC BOUNDARY PROBLEMS
A
Now l e t operator.
< L:(Rn)
(CHAP. 5 )
be a c l a s s i c a l p s e u d o - d i f f e r e n t i a l
We i n t r o d u c e t h e c o n d i t i o n s A i s proper, and each term of the complete symbol
(2.1.)
1 aj(xI j s
of A i s a r a t i o n a l f r a c t i o n i n 5.
5;)
Using t h e formulas of t h e symbolic c a l c u l u s for p . d . o . ' s ,
it can be shown t h a t t h e c o n d i t i o n s ( 2 . 1 ) a r e p r e s e r v e d under diffeomorphism, t r a n s p o s i t i o n , composition, and passage t o t h e parametrix i n t h e e l l i p t i c c a s e . t h u s s a t i s f i e d when
A
In p a r t i c u l a r , they are
i s t h e proper parametrix of an e l l i p t i c
d i f f e r e n t i a l operator.
Suppose we have
THEOREM 2 . 2 : (2.1) and
u
E
B'(Rn]
zero i n a.
A E LE(Rn)
Then (Au)
In
satisfying
has sectional
traces of any order on an.
PROOF:
By p a r t i t i o n of u n i t y and l o c a l c h a r t s we can
n reduce t o t h e c a s e 0 =IR+.
We can assume
u t o have compact
s u p p o r t ; we t h e n know t h a t t h e r e e x i s t c and R such t h a t
1;(5)\ that
5 c[l A'u
A' E LP'(R")
+
151) a for 5
k n C [R )
.
E
IRn, and it can e a s i l y be shown
when k
- -n-1
=
0 ( f o r x describing
supp 0 )
I t m a y be n o t e d , i n view of t h e homogeneity of can choose
rs
contour o f
{ Im
for
&! E r
5'
I
'
=
IS'\r
for
> 0 1.
5' E R"
1
~
~
2
11 ,
We t h e n have
.
\ $1
where
a , t h a t we
r
is a f i x e d
5 c(l
+ 15'1 )
REGULARITY OF BOUNDARY POTENTIAL
(SEC. 2 )
We t a k e i n p a r t i c u l a r SUpp $
C
{ xn > 0 1
.
@ (x)
3
cp(xl) $(xn)
279 with
From ( 2 . 2 . 3 ) , ( 2 . 2 . 2 ) , we o b t a i n
It can be shown t h a t t h e o r d e r o f i n t e g r a t i o n can be changed, s o t h a t we can w r i t e :
where
( B y i n t e g r a t i n g by p a r t s w i t h r e s p e c t t o x ' , we s e e t h a t G(xn,
6') i s o f r a p i d d e c r e a s e w i t h r e s p e c t t o C ' , and hence The
t h a t t h e right-hand s i d e of ( 2 . 2 . 4 ) i s m e a n i n g f u l ) . e q u a l i t y (2.2.4)i s c l e a r l y t r u e f o r deduced f o r imating
u E &'(R")
1
and i s
by proceeding t o t h e l i m i t , approx-
u by i t s r e g u l a r i s e d forms pk
support i n { x s 0 n
,
u E C ;(R')
*
u
, with
p
having
( s e e (l.l.l),Chapter I).
F i n a l l y , ( 2 . 2 . 4 ) and ( 2 . 2 . 5 ) show t h a t , i n
Cx,'OI,
(CHAP. 5 )
ELLIPTIC BOUNDARY PROBLEMS
280
ca
Bu c o i n c i d e s w i t h t h e f u n c t i o n from C
xn C->
(2.2.6.)
y,(Au)
into
&'(an).
P ( R-1 ) )
d e f i n e d by
Tne above proof shows t h a t t h e mapping
i s continuous from ~u
In
I
(cp
REMARK 2.3 : u -->
-+ (R
E
D'(B") I
u =
o
QI
in
THEOREM 2 . 4 : ( R e g u l a r i t y of t h e s u r f a c e p o t e n t i a l s a t t h e boundary )
Suppose we have
A
i ) The operator
E L:(R")
satisfying ( 2 . 1 ) . A(v,@ 6 )
K : v >-t
3,
Then
i s contin-
uous from c"(~Q) i n t o crn(E).
If v E
p(an)
Kv has sectional. traces of a n y order on
I
i i ) The operator
v -->
A f t e r transport b y a local chart of symbol. i s a
0
(XI'
5 ' ) ->
\r
i s the principal. s y m b o l of A, and
the poZes En of
ao(x', 0 ;
iii) For all. s
E
5'' %)
(n,
0 ;
' . ( , a
r
LF+'(an)
i s in
yO(Kv)
an
.
i t s principal.
y),
s', $1 8% ,
where
i s a contour enclosing such t h a t I m 5, > 0 .
IR, K is continuous from H '
loc
(an) i n t o
2 81
REGULARITY OF BOUNDARY POTENTIAL
(SEC. 2 )
For ( i ) ,we can r e p l a c e A by t h e o p e r a t o r B = A - R
PROOF:
used i n t h e previous proof;
u = v(x')
i c u l a r case
taking (2.2.4), (2.2.5) i n the part-
,v
@ b[xn)
€ C:[R*'),
we s e e t h a t f o r
xn > 0 :
(2.4.1.)'
=
(Bu)(x)
k(x,
5') ; ( I 1 )$5'
where
so t h a t ( i ) t h e n f o l l o w s as t h e right-hand s i d e o f ( 2 . 4 . 1 ) i s Cw with r e s p e c t t o x E 7 R n .
For ( i i ) ,w e reduce t o ~ ' i 8 v ti) 1.1'
>-
v
&'mI ([ A ( v @ 6lll"Io
i s the operator
T'
:
Cmm
1
i
> c"(an1
f
t
7
Y , ( [ ~ A ( ~ ~ ~ I , ~ ,I )
288
ELLIPTIC BOUNDARY PROBLEMS
We need t o prove t h a t < f , Kv > = < T'f,
PROOF: f
Cim)
E
.
= Bn \
where
,v
E C;(an)
n
,
We reduce t o t h e c a s e R = IR,
t h e e q u a l i t y i s immediate when f
E
C"(E), 0
-EI
f E
.
C:(n)
;
When
we c o n s i d e r a r e g u l a r i s i n g sequence X
pe(xn) = ] , (p
n
with
Supp p
lim
To c o n c l u d e , we show t h a t i n C"(Q).
v > for
c
xn > 0 ]
yo t Atp,
*
, We have
f o )= y o ( [ t A ( f o ) ] , n r )
e -0 This i s obvious i f A i s a p s e u d o - d i f f e r e n t i a l
o p e r a t o r o f degree l e s s t h a n -n,
so t h a t the required equality
f o l l o w s by a s t r a i g h t f o r w a r d passage t o t h e l i m i t i n (2.5.1).
lFnder the conditions of Proposition 2.7,
COROLLARY 2.8:
the operator T' extends continuouszy from
d (5)t o
ti'(an).
Xhe same is true for the t r a c e operator
T :
f
->
Yo-([
A(fo]]
) when the degree u of A i s l e s s than
In
- 1/2. PROOF: i n t o -C:tc)
Since
, TI
TI
=
+,
K and s i n c e K i s c o n t i n u o u s from C:(an)
e x t e n d s c o n t i n u o u s l y from
8 (z)t o a' (an).
Since T'f
289
REGULARITY OF BOUNDARY POTENTIAL
(SEC. 2)
,
2 (f) Lloc
f O
= Tf
Now t h e o p e r a t o r from
Y'
0
with
RICE) t o B'(an, C") Q i s of degree
Y[Q(f0)],
extends continuously
i n view of C o r o l l a r y 2.8, s i n c e
- 1 a t most f o r 0 5
,
j 5 m-1
f o r e i t s l e f t composition with r B i s continuous from into
C"(an,
Ch)
and i t s l e f t composition w i t h R P A B to
has i t s k e r n e l i n Coo(;
X
cmmn). E)
The o p e r a t o r f
tQ
+
tQ
,
with
( f , g ) i s i n t h e orthogonal of
(f, g)
t
- > [ ~ ( f o ) ] , ~
R
i s therefore
The orthogonal of I m 6 c o i n c i d e s w i t h Ker
tp = I
- tf?(f, g)
E
is
and t h e o t h e r o p e r a t o r s which
appear i n ( 4 . 1 . 2 ) a r e c l e a r l y r e g u l a r i s i n g .
now
#(E)
w
continuous from
regularising.
There-
C"m)
t 6 ;
t
f ? r e g u l a r i s i n g ; hence i f
Im p , we have
x C"(a0,
Cu).
F i n a l l y , i f 52 i s
(SEC. 4)
APPLICATION
bounded, we know t h a t
~"(5) x c"(an,
R is
.
CP)
%us
297
a compact o p e r a t o r from
Im(1
+ e) i s
c l o s e d and of f i n i t e
codimension, and t h e same a p p l i e s f o r Irn p which c o n t a i n s
+ e)
Irn (I
.
formula f o r t~ :
tP(f")
=
( t P f ) O
+ ;;(Yf)
and we t h e r e f o r e deduce t h a t
i s i n Ker
t 33 i f and o n l y i f
We now proceed t o t h e c a s e of Sobolev s p a c e s .
We denote
by m ' t h e s m a l l e s t i n t e g e r 5 m such t h a t B j = 0,
..., p-1.
= 0 f o r k 2 m', j ,k Then B y u i s w e l l d e f i n e d when u has s e c t -
i o n a l t r a c e s on a R up t o o r d e r m'
-
1; from Theorem 2.9, t h i s
i s t h e c a s e , i n p a r t i c u l a r , when u i s an e x t e n d a b l e d i s t r i b u t i o n
Pu
E
Hs(,E)
Let s , u
E
IR w i t h
such t h a t
with
s > rn'
s > rn'
- rn -
o p e r a t o r ( n o t n e c e s s a r i l y bounded)
- rn - 1/2 1/2
.
. We c o n s i d e r t h e
29 8
This domain is dense i n H
U
loc
(5)
; u s i n g Theorem 2 . 9
is c l o s e d .
and Remark 2 . 1 0 , it can be shown t h a t ps
IU
Suppose t h a t
THEOREM 4.3 : s,a
(CHm. 5 )
ELLIPTIC BOUNDARY PROBLEMS
E R
0s,0
a r i g h t quasi-inverse
Q
=lo
,
s > rn'-m-1/2
with
'
:
Hloc
(z)
F is
surjective.
a 5 s+m.
Then Ps 1u a d n i t s
-
i n the sense t h a t Hr61/2 loc
(an)
is continuous, with P s , o ~ s , o = I + l?s,a~ from H ( ,n ;l
orthogonaZ of
r61/2[an)
into
x Hloc
Im ps
,a
(in
H Z
c"(;)
($1
n, cornp
i s the same as the orthogonal of Irn P bozmded, then I m ps (equal t o t h a t of I m
PROOF:
Let
c o n t i n u o u s from H
f S
loc
.
x
c"(ahl,
x
Hemp
HYoc
(-3
continuous
Cp)
.
The
(an)I
If, furthermore, R i s
i s cZosed and has f i n i t e codimension
SU
P
Let
).
7
be an e x t e n s i o n o p e r a t o r ,
( 5 ) i n t o 'H
loc
Dn)
; we d e f i n e
Q
=,a
( f , g]
(SEC. 4 )
APPLICATION
299
as b e i n g t h e r i g h t - h a n d s i d e of formula ( 4 . 1 . 1 ) d e f i n i n g Q ( f , g ) ,
a
c
b u t w i t h f o r e p l a c e d by f .
The c o n t i n u i t y of
SIU
f o l l o w s from P r o p o s i t i o n 3 . 2 and from t h e assumption
05
It can be shown t h a t
S+m
=
I
+
i s d e f i n e d by t h e r i g h t - h a n d s i d e of
fs,u(f, 9)
where
Q s,u N
,;'("C
viously has values i n
f[aQ
x
belongs t o t h e dornaizi
t
thRt
Ker Ker
(F, G) =
c C:fi) t p
SlU
BS,,
t
p
.
t p ( ~ G, )
x C:(aQ
= Ker
Of
Cb)
, which
i s bounded,
es,o i s
HS(E)x H**1/2(a*l
it follo*rs i n m e d i a t e l y
%if,
Since
, we
c B;,,
obtain
g i v e s t h e s t a t e d e q u a l i t y between
L i e o r t h o g o n a l of t h e images o f
R
If (F,G)
Cp)
t
; fs,u ob-
f
in t h i s formula r e p l a c e d by
( 4 . 1 . 2 ) w i t h f0
%U
,p
.
F i n a l l y , when
a compact o p e r a t o r from
,
and t h e r e f o r e I m ps
?U
i s closed,
with f i n i t e c o d h x n s i o n .
Suppose t h a t b
s , E~ R
with
,
u
E p (0)
be extendabZe t o IRn such t h a t
i i ) Suppose
u' < u
injectiue. i ) Let
-
.,
THEOREM 4 . 4 ( E l l i p t i c R e g u l a r i t y ) : Let
s > m1-wI/2
i S
0 5 s+m
and l e t K be a compact subset of
; then there e x i s t s a constant C such t h a t
.
300
(CHAP. 5 )
ELLIPTIC BOUNDARY PROBLEMS
f o r aZZ u with support i n K s a t i s f y i n g the assumptions of ( i ) . iii) We have iv)
K e r ps
If, furthermore,
ta 51
= Ker P
c
C-m]
is bomded, then
,
Ker bJ
st0
= K e r 63
i s of f i n i t e dimension.
For ( i ) ,we p u t Pu = f and
PROOF: we have Pv =
7 , with
N
cp = -(Rf
,
1,
,
v
I
u
- (Gjf),, H
;
I
I n view o f Theorem 2 . 9 ,
v h a s s e c t i o n a l t r a c e s of a l l o r d e r s on a R , and we have P ( v o ) = yo
+ g(yv),
Applying Q on t h e l e f t t o t h i s e q u a l i t y ,
we o b t a i n (4.4.2.
1
(I
')
YV
E c"(an,
C")
@
0 - 6 1/2 Hloc (an1
.
Now t h e i n j e c t i v i t y of t h e p r i n c i p a l symbol o f
i s equivalent t o t h a t of
left-elliptic that
F; t h e r e f o r e
i n t h e s e n s e of Agmon-Douglis-Nirenberg, so
(SEC. 4 )
APPLICATION
301
From ( 4 . 4 . 2 ) and from P r o p o s i t i o n 3 . 2 , we deduce t h a t
E
w
for
, which
HYocfi) u
and y
j
then gives t h e s t a t e d r e g u l a r i t y p r o p er ties
u
u since
-v
=
($9
E)if:H::
,
We prove ( i i ) i n t h e same way by u s i n g t h e e l l i p t i c i n e q u a l i t y
bounded,
(4.4.1)shows
by H'(E)
and H''(E)
4.5
t h a t t h e t o p o l o g i e s induced on Ker 63
a r e c o i n c i d e n t , which gives ( i v ) .
LOPATINSKI'S DETERMINANT AND CONDITION:
The boundary-
w
value problem (1.1)i s s a i d t o be e l l i p t i c i f b i s b i j e c t i v e . me number
u
of s c a l a r boundary c o n d i t i o n s must t h e n be e q u a l t o
m/2, and t h e preceding theorems show t h a t 63 o p e r a t o r s ( w i t h t h e same i n d e x ) when
n is
63s,a
I
bounded.
..
are indexed We conclude
t h i s s e c t i o n by g i v i n g i n v e r t i b i l i t y c r i t e r i a f o r b i n t h e case I.I
= m/2.
Following t r a n s p o r t by a l o c a l c h a r t of
note by p ( x , 5 1 , b j Y k ( x ' ,
(E,v), we
5') t h e p r i n c i p a l symbols of P, B
de-
j ,k
r e s p e c t i v e l y , and we p u t
p+-(x*;
+-
Irn
% ) a r e polynomials i n En whose ze,ros
5 1 ,
>
o
; pf i s o f degree m/2 i n L1.-
1
5')
6
5,.
5n a r e such t h a t
Let denote t h e remainder
(CHAP. 5 )
ELLIPTIC BOUNDARY PROBLEMS
302
of t h e E u c l i d i a n d i v i s i o n of
$1
5''
bj(x';
by
pi(x';
$,I
9. .
E l ) i s i n v e r t i b l e i f and o n l y i f t h e
From P r o p o s i t i o n 3 . 3 ¶ b(x:
o n l y bounded s o l u t i o n U , for x 2 0 , o f n
i s U = 0. S i n c e t h e bounded s o l u t i o n s U , f o r x t 0 o f t h e e q u a t i o n n
5''
p(x1, 0;
tion
+
p
=
0
a r e t h e s o l u t i o n s U o f t h e equa-
U(xn)
=
0
b!(x';
s',
Dxn) U(xn)
[XI;
5''
)
Dx
, and
since
n
b
5',
.(XI;
3
Dxn)U
-p +( x * ;6')5'' i sDx b(x',
(b;, k
=
)U = 0
J
, we
Dx,]U
when
s e e t h a t t h e i n v e r t i b i l i t y of
n
e q u i v a l e n t t o t h a t of t h e m a t r i x
1
5'
1) jyk=o, ~, I p-
1
.
The d e t e r m i n a n t o f t h i s m a t r i x
i s c a l l e d t h e L o p a t i n s k i determinant o f (1.1)r e l a t i v e t o t h e l o c a l chart considered. Lopatinski condition i n
We s a y t h a t (1.1)s a t i s f i e s t h e
(x', 5')
-
i f t h i s d e t e r m i n a n t i s non-zero;
t h i s condition i s equivalent t o t h e i n v e r t i b i l i t y of b ( x ' ,
5.
6').
EXAMPLES The D i r i c h l e t problem i n
o p e r a t o r P of degree
m
is
for the elliptic differential
303
EXAMPLES
We t h u s have i n t h i s c a s e p = m/2
P
!?he corresponding operators 5
Bj,k
= gj,k
I
,
m' = m/2 ,
The D i r i c h l e t problem ( 5 . 1 ) i s e l l i p t i c .
THEOREM 5.2:
u
,
Ps,o
(with s
>
m+l
- -,2
s+m) are therefore indexed ( w i t h the same index) when Q i s
t h i s index is zero when P is formazly s e l f - a d j o i n t or
bounded;
strongZy e l l i p t i c .
PROOF:
Using t h e n o t a t i o n o f
b.(x', 5)
J
=
4
=
p = mj2); t h e r e f o r e
0,
j,k
.,., p-1
,
view of Remark 4 . 2 ,
(f,
g)
(5.2.1
E
c"fi]
x
bv.(xl,
J b1
51
(xl,
4 . 5 , we have for
I*) = BjIk
j,k and t h i s shows t h a t
Ker
c"(an,
t P
cb)
j = 0
,..., G-I( p u t t i n g for
(5.1) is elliptic.
i s t h e s e t of t h e such t h a t
.)
Now, we have l o c a l l y
that (5.2.1) is equivalent t o
In
304
(CHAP. 5 )
ELLIPTIC BOUNDARY PROBLEMS
=
tPf
,
0
yj
=
f
0
- c(yf)
g . b e i n g e q u a l t o t h e c o e f f i c i e n t of D j 6 i n J t h e r e f o r e follows t h a t
cf
K e r tp
(5.2.2.)
E
, yj
o
=
{
E
f
=
Crn(qP*f
t
,
yj
=
f
if P = P
+
~ ( u ,u)
5
G
We t h e r e f o r e deduce t h a t K e r p' = { 0
Ker
t
p'
=
Let s >
{ 0 }
nH1 -2
+ 1.
,
}
E
hence t h e i n d e x o f P'
and u = s+m; t h e n
ps 9 0
REMARK 5 . 3 :
IR such t h a t
E
%(nl
0
6' i s assoc-
I n view o f ( 5 . 2 . 2 ) , we s i m i l a r l y have
, and
Index
Garding's
u
where
G's,o. 1
Index
i s t h e operator
. =
pi
Index p'
9U
I n t h e c a s e i n which P =
we have Green's formula
i s equal t o zero.
PS,,
-
(If, 0) A s t h i s o p e r a t o r i s compact, we have:
p =
63 t h e n
JIUII~
f->
Index
3
2
for all
i a t e d with P' = P
3
We now suppose
i n e q u a l i t y e n s u r e s t h e e x i s t e n c e o f c > 0 and A Re(Pu, u)
that
i s bounded.
t h a t P i s s t r o n g l y e l l i p t i c and t h a t
o
O 5 j 5 p-I
, so
h a s z e r o i n d e x i n t h e c a s e where $2 i s bounded.
(5.2.3.)
f =
for
0
*
Ker p
p
Ker
In particular
0
and it
0 5 j 5 1.1-1
for x
,
Osjsp-I
for
-
=
0
.
A and f2 i s bounded,
-
G&rding's i n e q u a l i t y ( 5 . 2 . 3 )
where N i s t h e inward u n i t normal. t h u s h o l d s f o r A = 0.
P
:
co.rnl
Therefore
cmfi] (-
and
H'(5)
c
AU,
yo u )
1----------b (-
but
Hr1/*(an)
x
Yo u5
w i t h continuous i n v e r s e ( f o r
is bijective
,
u(s+~!)
Now l e t P be e l l i p t i c of degree 2 ;
we c o n s i d e r t h e problem
Pu
=
f
in
0
y, u
=
g
in
an
(5.4.1
p = m/2 = 1
I n t h i s case of
i s an isomorphism,
Hsm>
u
~ > - 3 / 2
c"(an)
-
u *-I
: Bs,o
x
, ,
4.5 , b(x', 5 ) = 5,
m'
= m
b'(x',
.
and, u s i n g t h e n o t a t i o n
5')
=
i-
0 such t h a t 1P,(%rl
2
c
C: f R"
for x
151 = 1
where p
m
i s t h e homogeneous p r i n c i p a l symbol o f degree m o f P .
" Suppose t h a t b i s i n j e c t i v e , and t h a t we have such t h a t S
>
m'-m-&
P u
E H'(E)
,
,
0 5 s
+m
E H O I . (an) ~ ~
BY u
.
4.4.1) i s
fying t h e above assumptions.
5 . 5 remains t r u e f o r
6.6
with
Using Theorem 4 . 4 and a
parametrix of P i n BL-mfJRn), show t h a t u p r i o r i e s t i m a t e of t h e t y p e
u f) :(aH
E
Ha(;)
and t h a t an a
v a l i d for a l l
u
satis-
Deduce t h a t p a r t ( i ) o f Theorem
P and
CONVERSE OF THE REGULUITY THEOREM
Assume t h a t t h e boundary-value problem (1.1)s a t i s f i e s p a r t ( i i )
o f t h e s t a t e m e n t o f Theorem 4 . 4 ( a p r i o r i e s t i m a t e ) .
By
applying t h e i n e q u a l i t y ( 4 . 4 . 1 ) f o r K c Cl and by u s i n g Propo s i t i o n 8.13, Chapter I V Y show t h a t P i s e l l i p t i c i n
By a p p l y i n g t h e i n e q u a l i t y where
v
E &,,(an
, (3 m
E)
,
(4.4.1) f o r
show t h a t :
;
u = (QPv)
.,
ELLIPTIC BOUNDARY PROBLEMS
312 for all
v E
JK,(an
,
.
E)
(CHAP.
Then deduce t h a t t h e o p e r a t o r
injective.
6.7
CASE OF SYSTEMS WHICH ARE ELLIPTIC I N THE SENSE OF DOUGLIS-NIRENBERG
Suppose
5
i s a manifold w i t h boundary, imbedded i n a man-
i f o l d M ( s e e Remark 9 . 6 , Chapter I ) .
J E
L:
0 Ej jt 1
I
,
F =
, where
Fi
@
Let
tne E
i= 1
j'
F. are vectorial 1
bundles above M.
Suppose we have an e l l i p t i c d i f f e r e n t i a l o p e r a t o r P:
, t) E I
(. i.e.
zJ
,'
( s e e S e c t i o n 7.6, Chapter I V ) an o p e r a t o r P o f t h e form
(pi j)i=1,. j-1,
.....,
P i,j
where
,I
Cw(M
Let
G
d 0 Gj
P
j=l
an.
Ej)
Y
* CaD(M, Fi)
J
i s a d i f f e r e n t i a l o p e r a t o r of degree t
above
x
Let
,
j
- si '
with
where G . a r e v e c t o r i a l bundles J
8 : Cm(M
e n t i a l o p e r a t o r of t y p e ( r
, E)
4
, t ) E IRd
Cm(M x
'
IRJ.
, G)
be a d i f f e r -
5)
(SEC.
6)
ADDITIONAL NOTES
313
Consider t h e boundary-value problem
I n o r d e r t o a l l o w t h i s problem t o be s t u d i e d by means of a formalism analogous t o t h a t i n Chapter V , it i s convenient t o introduce a r e a l f i e l d v t r a n s v e r s a l t o
an,
and t o p u t
, f E) ,
where
m
i s an i n t e g e r l a r g e enough t o e n s u r e t h a t t h e f o l l o w i n g two conditions a r e s a t i s f i e d :
(6.7.1.)
t h e boundary c o n d i t i o n
i n t h e form
B(w) = g W
, w i t h B = (Bo,B1
Bk : C"(m,E) * C (W,G) i s (r
...B,-i,
i s expressed where
a d i f f e r e n t i a l o p e r a t o r of t y p e
..., m-1
t-k) for k = 0,
(&)lang
(we p u t ( t - k )
j~
= t.-k for
j = ly...yJ).
(6.7.2.) y j t$
The jump formula for P does n o t i n v o l v e any terms
such t h a t j 2 m.
We can t h e r e f o r e w r i t e t h i s formula i n
the form
~(u") = (pu]
O
+
F(yu )
for
u E
cW(E , E)
,
#u
where P(yu) i s a d i s t r i b u t i o n c a r r i e d by
an
which depends o n l y
on P and YU.
It i s t h e n a simple m a t t e r t o a d a p t S e c t i o n s 3 and taking account of t h e f o l l o w i n g remarks:
4,
314
ELLIPTIC BOUNDARY PROBLEMS
(CHAP.
5)
) i s of type We t a k e a parametrix Q of P such t h a t Q = (Q j ,k
a)
( t , s ) and each o p e r a t o r c o n s t i t u t i n g Q
satisfies (2.1).
j ,k
The e x i s t e n c e of such a parametrix i s immediate: we t a k e Qo of t y p e ( t , s ) having as p r i n c i p a l symbol t h e i n v e r s e matrix of 0
( P ) ; p u t t i n g , f o r example, PQo = I
s ,t
Q
degree -1, and we t a k e
b)
-
R , we have R of
.
Q,Rk
N
We d e f i n e t h e Calder6n p r o j e c t o r C = y Q
, Qm E) * C"(W
C : C"(S
Q
m
,
E)
C
p
p s e u d o - d i f f e r e n t i a l o p e r a t o r of t y p e ( t
o,[c)
Let
[uwSt-a
s
be t h e p r i n c i p a l symbol of
C
('k,
.
F.
(%,A)
-
9
k, t
A3'k1 Iro,
E, F
U
and t h a t t h e mapping onto t h e image of
0
0
,
+.
that
yU
; 5'
... I
m-1
(E,
V)
and
i s a projector,
+
, where S+ ( X I , 5')
(C)(x', 5 ' )
,0
s,t (p)(X'
- a).
i s an isomorphism of S (x', 5 ' )
n
U
, 5')
uo(X'
space o f s o l u t i o n s U , bounded f o r x system
a
Ck,j
It can be shown, following
t r a n s p o r t by a l o c a l c h a r t t o t h e boundary of t r i v i a l i s a t i o n s of
We have
,D
i s the
2 0, of the differential
) U(x,)
= 0,
We then deduce
x"
t h a t t h e image of uo(c)(x'
5')
does not depend on t h e choice
( t o w i t h i n an isomorphism) of t h e i n t e g e r m y and a l s o ( s e e f o r example I N C E [11 ) t h a t t h e rank of a o ( C ) ( x ' , 5 ' ) i s e q u a l t o one h a l f of t h e degree i n 5, i.e. t o
3
(g J
tj
-
dim Ej
of
- j'
det
0
s,t
(P)(x',
dim F . )
J
I
0 ; 5'
, 5") ,
with, i n t h e
c a s e n=2, a r e s t r i c t i o n analogous t o t h a t i n d i c a t e d p r i o r t o t h e statement o f P r o p o s i t i o n 3.3.
(SEC. 6 )
c)
ADDITIONAL NOTES
315
Consider t h e p r i n c i p a l symbol b of B:
b =
- k (Bk))k,o
I...I
and t h e r e s t r i c t i o n
I
i; of
b
"
t o Image
0
0
Thus b i s a morphism o f Image u ( C ) i n t o G.
(C).
0
N
I t can be shown t h a t t h e p r o p e r t y of b b e i n g i n j e c t i v e o r s u r j e c t i v e depends n e i t h e r on t h e i n t e g e r m n o r on t h e f i e l d v chosen,
d)
.. lan
For j = 1,. ,J l e t m! denote t h e s m a l l e s t i n t e g e r f o r
which
bu]
m'
can be e x p r e s s e d by means o f t h e t r a c e s
..
j = 1,. ,J and 0
y u . such t h a t
k J assumption
J
-4
+
X(x')
.
\
and
are
< X'(X') T[x')
Show t h a t t h e L o p a t i n s k i d e t e r m i n a n t of
(6.8.1) i n t h e chart
b)
+{
i a v
i s equal t o
Deduce from t h i s t h a t t h e boundary-value problem (6.8.1)
is a l v a y s e l l i p t i c when n = 2 , and t h a t for n
2
3 it i s
e l l i p t i c i f and o n l y i f t h e v e c t o r v ( x f ) i s nowhere t a n g e n t i a l to
c)
an.
i s bounded; l e t u = Kh denote t h e unique
Suppose t h a t
s o l u t i o n o f t h e D i r i c h l e t problem
Show t h a t
u
i s a s o l u t i o n of t h e oblique d e r i v a t i v e
318
(CHAP. 5 )
ELLIPTIC BOUNDARY PROBLEMS
problem
i f and only i f
T
where
=
1i A av
O
K
i s a ( s c a l a r ) p . d . 0 . of degree 1 i n
an, of which t h e p r i n c i p a l symbol, following t r a n s p o r t by a l o c a l chart
an, i s
I n v e s t i g a t e t h e problem ( 6 . 8 . 1 ) i n t h e case n = 2 ,
d)
Q = ' ~ =z x p
of
xl,&_yv
E
+ iy E
\z\< I 2
2
( i d e n t i f y IR
and C ) .
1
v[z> =
zp f o r z
E
an, where
More p r e c i s e l y , c o n s i d e r t h e
d e f i n e d by
Suppose we have
u E
C"(3)
~ = b ; = ~ () 2. - i 3U
'g i f and only i f we have
with r e a l values.
Put
Show t h a t u i s i n t h e k e r n e l of
(SEC. 6 )
319
ADDITIONAL NOTES
u E cmc2 u
holonorphic i n
R e (zPU(z)) = 0
Deduce from t h i s t h a t
dim Ker p = 2
+ 2i
zP~(z) = a-P
0 ,
when p = 0 .
e n t i r e - s e r i e s e x m n s i o n of U.
121
= 1
d i m Ker p = 1
I n t h e c a s e p < 0 , l e t U( z ) =
for 0
0 ;
we d e f i n e t h e s e t s
~ ~ = { x ~ ~ ~ ~ I m fa i x } ; j < x = ~{ xl ~ ~ + i x ~ I r } ; j f o r r s u f f i c i e n t l y small, we have t h e i n c l u s i o n s
p;CB r C V . The Cauchy-Kovaleski Theorem 1 . 5 and Remark
1 . 4 show t h a t
it i s p o s s i b l e t o f i n d an r 0 s u f f i c i e n t l y small t h a t f o r any h
E ]
0, ro
[
Cauchy problem
and for any polynomial
q(xl,,.,,
x
n-1
1
the
(SEC. 1)
(1,10.4.)
THEOREMS
?(x,
DX)v
=
0
admits an a n a l y t i c s o l u t i o n
v
335
in
Br
i n Br.
X
T
L
we a p p l y Green's formula i n t h e compact domai
n
6;:
I
then t a k i n g account of (1.10.3)and (l.lO.b)y we o b t a i n
where C ( x ' ) i s a f u n c t i o n which depends o n l y on t h e c o e f f i c i e n t s of P and which does n o t v a n i s h .
Equations (1.10.3) and (1.lO.b) imply t h a t t h e l e f t - h a n d s i d e of (1.10.5)i s e q u a l t o z e r o ; for
lx']
4 r h
since
q
consequently u ( x ' , h ) = 0
i s an a r b i t r a r y polynomial;
this
, It i s t h e r e f o r e s u f f i c i e n t t o t a k e
shows t h a t u = 0 i n '.6 rO
W = B r . 0
REMARK 1.11:
The d e t e r m i n a t i o n of ro shows t h a t t h e open
s e t W depends o n l y on t h e open s e t Y , on t h e r a d i u s of converg-
336
(CHAP. 6 )
EVOLUTION EQUATIONS
ence of t h e Taylor s e r i e s expansions a t x
0
of t h e c o e f f i c i e n t s
of P and o f J, and on t h e modulus of t h e c o e f f i c i e n t s as i n Remark 1 . 4 .
REMARK 1 . 1 2 :
I n a l l t h e c a s e s f o r which t h e r e i s an e x i s t -
ence theorem f o r problem (1.10.4),t h e above proof shows t h a t t h e r e i s a l s o a uniqueness theorem (1.10.1).
I n t h e c a s e where P has c o n s t a n t c o e f f i c i e n t s and S i s a Theorem 1.10 and Remark 1 . 8 show t h a t i n
hyperplane,Holmgren's
o r d e r t o have l o c a l uniqueness, it i s n e c e s s a r y and s u f f i c i e n t t h a t S be n o n - c h a r a c t e r i s t i c .
We t h e n a l s o have g l o b a l unique-
ness :
Suppose P(D) is a d i f f e r e n t i a 2 operator
PROPOSITION 1.13:
with constant c o e f f i c i e n t s ;
is qon-characteristic for P. and supp u c
Pu = 0 i n
PROOF: I ) with
suppose t h a t the hype2rpZane xn = 0
Let
8" +
.
u
E .P(R"]
be such t h a t
Then u = 0.
Let p k be a r e g u l a r i s i n g sequence ( s e e (l.l.l), Chapter
p
,
E):R(:C -n
w i t h support i n IR,,
u
The f u n c t i o n
and s a t i s f i e s
P
\
k
= u
*
= 0 in
Pk
.
co
is C
,
A s P has
c o n s t a n t c o e f f i c i e n t s , Holmgren's Theorem 1.10 and Remark 1.11 imply t h a t
\
= 0 and consequently t h a t
u
=
lim k m
uk
=
0
,
337
NECESSARY C O N D I T I O N FOR WELL-POSEDNESS
(SEC, 2 )
NECESSARY C O N D I T I O N FOR THE CAUCHY PROBLEM TO BE WELL POSED
2.
The Cauchy-Kovaleski and Holmgren theorems a r e e s s e n t i a l l y l o c a l r e s u l t s ; i n t h i s s e c t i o n we give a necessary c o n d i t i o n f o r the Cauchy problem t o be w e l l posed g l o b a l l y .
x = [xo,
Let
XI
,...,
xn)
;
E R"+'
we p u t x = (xo, X I ) .
We denote by P ( x , D ) a d i f f e r e n t i a l o p e r a t o r of degree m w i t h X
coefficients i n C ~ ( I R ~ + ' ) .
DEFINITION 2 . 1 :
Let T E D ; we say t h a t th e Cauchy prob-
lem i s we l l posed for P i n t h e half-space xo
,
f E C"(R"+')
a wique u
.I
(2.1 .I
E
gj
E Cm[R")
j
P
0,
..,
m-I
2
T, i f f o r any
,
there e r k t s
Crn(Dn'l) such t h a t ~
u
=
f or
x
for
x
0
0
> T
,
= T
and
O;U=
g3
j = 0,
...,
m-I
.
we say t h a t t h e Cauchy probZern i s w e ll posed i n t h e d irection x
2
N = (1,O
..., 0)
if it i s we12 posed in each h a lf space
T.
It i s p o s s i b l e t o o b t a i n another formulation by r e p l a c i n g t h e i n i t i a l c o n d i t i o n s by a c o n d i t i o n on t h e s u p p o r t . s i m p l i f y t h e n o t a t i o n we t a k e T = 0 .
To
338
(CHAP. 6)
EVOLUTION EQUATIONS
Suppose t h a t the hyperplane x 0 = 0 i s
PROPOSITION 2.2 :
noncharacteristic for P.
Then the Cauchy probZem i s well posed
for P i n the half space x 0
2
f o E C”(Rw’)
with
e x i s t s a unique u
0
(2.2 2.)
supp f o c
E C”(R”+’)
P u*
PROOF:
0 i f and only i f for any
-’R+
= (x
1
x
0
2
o
}
there
c
y’.
such t h a t =
and
fo
supp uo
The proof of necessity is immediate, since all the
derivatives of the solution u of (2.1.1)with g = 0, j m-1 are equal to zero on the noncharacteristic j = 0,
...,
hyperplane x0 = 0.
Conversely, Borel’s Theorem allows us to construct a function v E C”(A”+’)
D’ v = 0
g
j
of which the traces on x0 = 0 satisfy
for j = O,..., m-1 and f = Pv 0
-
f flat on xo = 0 .
Then if uo is the solution of (2.2.2), the function uo + v is a solution of (2.1.1).
The problem of giving a general characterisation of operators for which the Cauchy problem is well posed remains open; nonetheless, a large number of partial results exist.
We give
below a necessary condition on the principal part of P.
THEOREM 2.3 : (Lax-Mizohata)
Suppose t h a t for any T
E
IR,
NECESSARY C O N D I T I O N FOR WELL-POSEDNESS
(SEC. 2)
339
the hyperplane xo = T i s noncharacteristic f o r P , and t h a t the
. . , 0).
Cauchy probZem i s well posed i n the d i r e c t i o n N = (1,0,. We t h e n have t h e i m p l i c a t i o n
We s t a r t by g i v i n g t h e f o l l o w i n g lemma:
n+l
Suppose K i s a compact subset of lR
LEMMA 2 . 4 :
; then
there e x i s t s a number C and an i n t e g e r k 2 0 such t h a t
.I
(2.4.1
lul,
with
=
‘v13
5
c IPul,
I
IDcy
v(x)I
sup
for a l l
u E
cK OD
la1 5 j x 5 0 0
m
PROOF:
L e t f E CK ; t h e S e e l e y e x t e n s i o n ( P r o p o s i t i o n
9.2, Chapter I ) of
C;(R”+’)
f- = flRn+,
-
which w e denote by Sf-.
t o B n + l i s a function i n
Suppose V i s a compact neigh-
bourhood of K ; we can f o r c e Sf- t o have s u p p o r t i n V f o r any f . The c o n t i n u i t y of t h e Seeley e x t e n s i o n shows t h a t f o r any int e g e r k t 0 t h e r e e x i s t C and q such t h a t
I~fl,
(2.4.2.)
For u
m
E
5
c 1f-I;
,
aD
f o r any
f
E cK
C K , we p u t f = Pu, g = Sf- and we d e f i n e , w-ith
.
EVOLUTION EQUATIONS
340 E
(CHAP.
6)
> 0, t h e function
fe
ee
=
f
+
-
(I
E
ee)g
c;
9
X
Oe(x) = e(f)
where x
0
9 E Cm(R)
and
t 1 and e q u a l t o u n i t y f o r xo
Let uE E Cm(TRn+’) =
P U
(where
,
f
E
E
inf
=
a
i s e q u a l t o zero f o r
0.
be t h e unique s o l u t i o n of
c
suppue
lxD.a}
(x
=
H
a
.
xg)
X E V
Since f
n+l = f onB, we have u
E
E
= u onIRy+l and
(2.4.3.)
By h y p o t h e s i s , P i s a continuous b i j e c t i o n of t h e Fr6chet space E
{u I
=
u E
c”(R”+’),
supp u
c H~
1
; consequently
t h e r e e x i s t C , an i n t e g e r k and a compact s e t K’ such t h a t
(2.4.4.)
CY
1u(x)1 S
sup
1.1
xEK
C
( D Pu(x)i
,
f o r any
u E E,
5 k x E K’
Applying ( 2 . 4 . 4 ) t o uE and t a k i n g account of ( 2 . 4 . 3 )
, we
obtain
]uI,
(2.4.5.1
I
c
Furthermore, we have function
(7
c
- g)
ee(f
-
m
Ifelk
,
Ifelk
-
for any u
Igik
E cK ,
e > 0.
since the e‘o g) has support i n t h e s t r i p
(SEC. 2 )
0 5
x0
341
NECESSARY C O N D I T I O N FOR WELL-POSEDNESS
i s f l a t f o r x0 = 0.
5 E and
We t h e r e f o r e deduce from
(2.4.5) that
14;
c
5
Id,
8
and t a k i n g account of ( 2 . 4 . 2 ) we f i n a l l y o b t a i n
I n o r d e r t o prove t h e theorem, we c o n s i d e r t h e p o i n t x ? 0 and we use a method adapted from I V R I I HORMANDER
-
PETKOV [ll
and
C71.
Let Co
E
C be such t h a t
If I m 5 ,
We denote i t s m u l t i p l i c i t y by r .
# 0 , we can
assume for example t h a t I m 5, < 0 , s o t h a t we n e c e s s a r i l y have
5 ' # 0.
The v e c t o r
plane x
0
(Re Go,
5')
= 0 ; hence we can apply a l i n e a r change of v a r i a b l e s
which p r e s e r v e s t h e v a r i a b l e x
0
into (0,
..., 0 ,
5 ' = en = ( 0 , (2.4.6.)
i s t r a n s v e r s a l t o t h e hyper-
1).
..., 0 , P,,,(o;
and which transforms (Re
We t h e r e b y reduce t o 5 , =
5 0' 5 ' )
- i,
1) and we have
D,,
0
,..., D,,)
where Q i s homogeneous of degree m
=
-
[ D + ~ i 0")'
Q ( D ~ , D,,]
r and Q ( - i , 1) # 0.
I n o r d e r t o l o c a l i s e t h e o p e r a t o r a t x = 0 and t o g e t r i d
o f terms o f lower o r d e r , I v r i i and Petkov i n t r o d u c e t h e change
(CHAP. 6)
EVOLUTION EQUATIONS
342
of v a r i a b l e s Yj
j = O
= x j P' j
,.,., n
,
with
p > O
,
sj>0
,
The o p e r a t o r P(x, D ) is transformed i n t o X
The i n e q u a l i t y ( 2 . 4 . 1 ) i m p l i e s t h a t f o r any compact s e t
K there exists
po
1
where S = max s
j
such t h a t
j'
The i d e a behind t h e proof c o n s i s t s of c o n s t r u c t i n g an asymptotic s o l u t i o n u
P
of
pP "p
=
o(p- ")
i n a neighbourhood
of 0 s o as t o c o n t r a d i c t t h e i n e q u a l i t y ( 2 . 4 . 7 ) .
s = 2r
3
if
j = I,..., n-I
and
so = sn = 4 r
then
We seek an asymptotic s o l u t i o n i n t h e form
w i t h v o ( 0 ) = 1.
We p u t
;
(SEC , 2 )
343
NECESSARY C O N D I T I O N FOR WELL-POSEDNESS
Expression ( 2 . 4 . 6 ) l e a d s u s t o t a k e f o r t h e phase f u n c t i o n cp(y) =
(o0 + ID,^
-
- iyo
+
, since
y,
O0cp, on v'l
0
Cp
this satisfies
f
=
; moreover
0
With t h i s choice o f c p t h e asymptotic expansion of P
-
s t a r t s w i t h a term of degree m
q(Do
l e a d s t o t h e equation sufficient t o take v
E
Cm
O
of 0.
+
the
P
r, and s e t t i n g t h i s t o zero
c On)
r
vo(y)
=
0
*It is
e q u a l t o u n i t y i n t h e neighbourhood
K1
The equations which f o l l o w a r e of t h e form
r
q ( D o + i On)
(2.4.8.) where F
j
E
=
Vj(Y)
K1 i s determined from t h e v o ,
Cm
Fj(Y)
. . , vj-1'
We s o l v e ( 2 . 4 . 8 ) i n t h e neighbourhood of 0 by convolution with t h e fundamental s o l u t i o n ( 6 . 1 . 3 ) of Chapter I of t h e Cauchy-Riemann o p e r a t o r
i(D 2
0
+ i On)
.
We can t h u s f i n d an
i n t e g e r J such t h a t t h e p a r t i a l sum
J
J
juo
satisfies
f o r p s u f f i c i e n t l y l a r g e ; t h i s c o n t r a d i c t s ( 2 . 4 . 7 ) and concludes t h e proof of t h e theorem.
REMARK 2.5
:
A completely analogous theorem e x i s t s f o r
344
EVOLUTION EQUATIONS
(CHAP. 6 )
d i f f e r e n t i a l systems, it b e i n g s u f f i c i e n t t o r e p l a c e P by t h e m determinant of t h e p r i n c i p a l p a r t i n c o n d i t i o n ( 2 . 3 . 1 ) ( s e e IVRII-PETKOV c11).
REMARK 2 . 6 :
Apart from t h e c a s e of o p e r a t o r s w i t h con-
s t a n t c o e f f i c i e n t s , a c h a r a c t e r i s a t i o n of o p e r a t o r s f o r which t h e Cauchy problem i s w e l l posed i s known o n l y i n a number of special cases.
For example, i f we assume t h a t t h e r o o t s a t
5, of ( 2 . 3 . 1 ) a r e of c o n s t a n t m u l t i p l i c i t y , we have a c o n d i t i o n which i s n e c e s s a r y (FLASCHKA-STRANG c11) and s u f f i c i e n t (CHAZARAIN [I]) and which i n v o l v e s lower-order terms of P , i . e .
t h e Levi c o n d i t i o n .
If we suppose t h a t t h e r o o t s a t 5
0
a r e of
m u l t i p l i c i t y l e s s t h a n o r e q u a l t o 2 , a g a i n we have a number of v e r y complete r e s u l t s ( s e e IVRII-PETKOV [ L ] , HORMANDER
[TI).
When t h e c o e f f i c i e n t s are a n a l y t i c , BONY and SCHAPIRA 111 have shown t h a t c o n d i t i o n
( 2 . 3 . 1 ) i s s u f f i c i e n t f o r problem ( 2 . 1 . 1 )
t o admit a unique a n a l y t i c s o l u t i o n when t h e d a t a a r e a n a l y t i c .
I n S e c t i o n 4 , we s h a l l show i n p a r t i c u l a r t h a t i f t h e r o o t s
a t 5, are simple, t h e n c o n d i t i o n ( 2 . 3 . 1 ) i s n e c e s s a r y and sufficient.
3.
HYPERBOLIC OPERATORS WITH CONSTANT COEFFICIENTS I n t h e c a s e where P h a s c o n s t a n t c o e f f i c i e n t s , Ggrding
(SEC. 3 )
HYPERBOLIC OPERATORS
345
has given an a l g e b r a i c c h a r a c t e r i s a t i o n of t h e o p e r a t o r s P(D)
for which t h e Cauchy problem i s w e l l posed.
The s u b j e c t i s
d i s c u s s e d i n depth i n HORMANDER [11; however, for completeness, we s h a l l reproduce a p a r t of t h i s d i s c u s s i o n h e r e , s i n c e c e r t a i n
4 i n connection with quest-
r e s u l t s w i l l be needed i n S e c t i o n
i o n s r e l a t i n g t o speed o f p r o p a g a t i o n .
Throughout t h i s s e c t i o n , we s h a l l be i n En.
Assume t h a t the Cauchy problem i s
PROPOSITION 3 . 1 :
well posed f o r the operator P(D) i n the d i r e c t i o n N Then there e x i s t s a r e a l number y
+
[3.1.1.) P ( S
7
PROOF:
#
0 for
En \ 0.
such t h a t
5 E R",
T
E C and I m
7
< Yo.
The g e n e r a l i t y w i l l n o t be r e s t r i c t e d i f we t a k e
.., 0 ,
N = (0,
N]
0
E
1).
The argument used i n proving (2.4-.4)
a p p l i e s p a r t i c u l a r l y i n t h i s c a s e ; consequently, for any compact s e t K t h e r e e x i s t C , an i n t e g e r k and a campact s e t K' such that (3.1.2.)
lU(xj1 I
sup
x
EK
c
ID~(P(D)
sup
I4 s x
E K'
and
Let
T E
put 5 = ( 5 '
,
C be such t h a t P(S', T)
E C~(R"I
~(X)II
k
7)= 10 with
supp u
5'
E
C
En-',
; we s h a l l show t h a t t h e r e e x i s t s yo
xy and
.
346
EVOLUTION EQUATIONS
independent o f 5 ' such t h a t suppose t h a t I m T 5 0.
Im
T
x
n
E
Cm(R)
We can t h e r e f o r e
R:,)
t o t h e function
etx,')
i s e q u a l t o u n i t y for
Since P(D) u(X) = 0 f o r
2 0.
E
e i(x-a).6
u(x)
0
6)
To show t h i s , we apply t h e i n e q u a l i t y
( 3 . 1 . 2 ) ( w i t h K reduced t o a p o i n t a
where
.
Yo
2
(CHAP.
x
n
x
,
an
and zero for
2~
2 -an
and u ( a ) = 1,
2
we o b t a i n
1
c
(1 +
1611k+m e& a,,.Im
T I
or, w i t h r e a l c o n s t a n t s b and c , (3,1,.3.)
b Log(1
+ /GI) + c
Im
T
,
when
P(5',
T)
= 0,
However, a r e s u l t due t o Seidenberg-Tarski ( s e e HORMANDER
[11, Appendix) shows t h a t t h e l o g a r i t h m i n ( 3 . 1 . 3 ) may be replaced by a c o n s t a n t , and t h i s proves t h e p r o p o s i t i o n .
This p r o p o s i t i o n l e a d s t o
DEFINITION 3.2 :
An operator with constant c o e f f i c i e n t s is
said t o be correct i n the sense o f Petrovski i n the direction N = (0,
i/
..., 1) i f
the c o e f f i c i e n t of the term of highest degree i n En i n
P ( 5 ) i s independent o f 5 '
ii/ condition (3.1.1) i s s a t i s f i e d for a certain y o .
(SEC. 3 )
347
HYPERBOLIC OPERATORS
EXAMPLES :
The h e a t o p e r a t o r
- Ax'
3%
The SchrBdinger o p e r a t o r
the direction N.
i s correct i n Q
Xn
-A
X'
i s c o r r e c t i n t h e d i r e c t i o n s N and -N.
Remark 1 . 8 shows t h a t i n g e n e r a l we cannot expect t o have uniqueness o f t h e Cauchy problem for a c o r r e c t o p e r a t o r ; nonet h e l e s s w e have
PROPOSITION 3.3 :
Suppose P is a correct operator in the
d i r e c t i o n N; then it adnits a fundamentaZ s o l u t i o n E with
-
support i n R:
.
PROOF:
By h y p o t h e s i s , t h e polynomial P ( E ' , T ) f a c t o r i s e s P Const. XI (7 Aj(I')) , consequently t h e r e e x i s t s
into
-
j=1
c > 0 such t h a t
(3.3.1.)1
~P(T,Y I I
2
c IIm
7
- Yojp
I
for and
7
5' E '-?I
-< yo
.
This i n e q u a l i t y allows us t o d e f i n e a d i s t r i b u t i o n F E
a'
348
EVOLUTION EQUATIONS
6)
.
1
if E = F
and t h e r e f o r e P(D) E =
(CHAP.
I n o r d e r t o show t h a t Cp E CR (:]: Cp
in (3.3.2).
supp
F
C
- ,
Rn
we t a k e
The Paley-Wiener theorem a p p l i e d t o
i n c o n j u n c t i o n with t h e Cauchy theorem, shows t h a t expression
( 3 . 3 . 2 ) i s independent of y f o r y < y
0
and t h a t t h e r e e x i s t s a
c o n s t a n t C such t h a t
(3.3.3.) where
.1
F, 'P =
5
inf
..
x t SUPP cp upper bound ( 3 . 3 . 3 ) shows t h a t
-
uently t h a t
supp E
REMARK 3.4 :
C
< F,
~p
> = 0
and conseq-
.
We say t h a t P(D) i s an e v o l u t i o n o p e r a t o r i n
t h e d i r e c t i o n N i f it admits a fundamental s o l u t i o n with n support inIR+.
An o p e r a t o r which i s c o r r e c t i n t h e sense o f
P e t r o v s k i i s an e v o l u t i o n o p e r a t o r ; t h e converse does not h o l d , however, and we r e f e r t o HORMANDER
C41
f o r a c h a r a c t e r i s a t i o n of
evolution operators.
Remark 1 . 8 and P r o p o s i t i o n 3 . 1 show t h a t a n e c e s s a r y c o n d i t i o n f o r t h e Cauchy problem t o be w e l l posed f o r P(D) i n t h e d i r e c t i o n N i s t h a t P be h y p e r b o l i c i n t h e sense of t h e following d e f i n i t i o n :
(SEC. 3 )
349
HYPERBOLIC OPERATORS
DEFINITION 3.5
We say t h a t P(D) i s hyperbolic i n the
:
direction N i f
(i)
Pm(N) # 0
(ii)
The condition (3.1.1) i s s a t i s f i e d f o r some yo
.
The l a s t p a r t of t h i s s e c t i o n w i l l be devoted t o proving t h a t t h i s c o n d i t i o n i s s u f f i c i e n t ; t o t h i s end, we r e q u i r e c e r t a i n a l g e b r a i c r e s u l t s r e l a t i n g t o hyperbolic o p e r a t o r s .
F i r s t , we have:
PROPOSITION 3.6 :
Suppose P(D) i s a hyperbolic operator
i n the d i r e c t i o n N; then i t is hyperbolio i n the d i r e c t i o n
-
N
and its principal p a r t Pm (D) is hyperboZio i n the d i r e c t i o n N.
PROOF: P(5 +
Since Pm (N) # 0, t h e sum of t h e r o o t s i n
-T
of
N) i s an a f f i n e f u n c t i o n of 5 of which t h e imaginary
T
p a r t i s bounded above by m y
*
0,
it i s t h e r e f o r e c o n s t a n t .
Consequently, t h e r e e x i s t s some y such t h a t P(S+ T
N) f 0
for
(5,
7)
E R“
x C
and ]Im 71
Y
and t h i s proves t h e f i r s t a s s e r t i o n .
+x
-
PI(, + T N) ; h e + = now t h e r o o t s i n T of t h e l e f t - h a n d s i d e a r e l o c a t e d w i t h i n a
We have
strip
1Im TI
I””
3
T
N)
; therefore the roots i n T
of t h e l i m i t
(CHAP. 6)
EVOLUTION EQUATIONS
350
are real.
rn of P i s h y p e r b o l i c , t h i s does not
If the principal part P
i n g e n e r a l imply t h a t P i s i t s e l f h y p e r b o l i c ( s e e SVENSSON [11); however, we have
Suppose t h a t a12 the r o o t s of the
PROPOSITION 3.7 :
equation i n (3.7.1
.]
:
T
Pm(l+
T
N)
=
0
are r e a l and d i s t i n c t for 5 n o t proportiona2 t o N. P(D) is hyperbolic
Then
We say t h a t it i s
in the d i r e c t i o n N .
s t r i c t Zy hyperbo l i c .
a2 xn
For example, t h e wave o p e r a t o r hyperbolic i n t h e d i r e c t i o n ( 0 , proposition, we t a k e N = ( 0 ,
LEMMA 3.8 :
If
P
,
. ..,O,
PROOF:
.)I
2
c IIm
Let X h ( E ’ )
factorising P
m’
we o b t a i n
is strictly To prove t h e
1).
1);we s t a r t by f i r s t proving
is s t r i c t l y hyperbozic in the
d i r e c t i o n N , then there e x i s t s c (3.8.1.) I P ( S * ,
. .. , 0 ,
Ax,
TI
(
> 0
such t h a t
ISI +
be t h e r o o t s i n
171)”+’
T
of
m (s,,
P
7) =
0 ;
HYPERBOLIC OPERATORS
(SEC. 3 )
Gh(E1,
where
7)
n
=
(7
- Xj(c'))
351
a
and
i s a non-zero
j# h
constant. m
IGhCI1l
The f u n c t i o n
T)I2
does n o t vanish f o r
h=l
( I 1 ,7) E
(R"" x
c )\
0 and i s homogeneous of degree 2(m - 1);
t h e r e t h e r e f o r e e x i s t s c > 0 such t h a t
We now r e t u r n t o t h e proof of t h e p r o p o s i t i o n . P(g',
7) =
bound
pm(!',
lQ(sl,.)I
( 3 . 8 . 1 ) shows t h a t
+ Q(E', 7) Since we C [ltll + lT1)w' I the
7)
I
P[%',
7) f Owhen
1 I m 71
We put
have an upper inequality 2
y
for y
sufficiently large.
N a t u r a l l y , P r o p o s i t i o n 3 . 3 a p p l i e s f o r hyperbolic opera t o r s ; we s h a l l show f u r t h e r t h a t E has support i n a cone of
Q J E o 1
.
(CHAP. 6)
EVOLUTION EQUATIONS
352
Suppose P is a hyperboZic operator i n the
DEFINITION 3.9:
we denote by r(P, N) the connected component o f N
domain N ; the open s e t
c
5
1
5 E R"
and P,(S)
f
]
0
in
.
We s h a l l now show t h a t P i s a l s o h y p e r b o l i c i n each d i r e c t i o n of We s t a r t w i t h t h e following lemma:
r(P, N).
LEMMA 3.10:
r(P, N) i s equaZ t o the s e t o f the 6
such t h a t the poZynomiaZ Pm(5 + roots in
T.
PROOF:
Let
r'
and by d e f i n i t i o n
I n o r d e r t o show t h a t
r'
i s connected. T/ =
then
is+p
r'
C
t h i s s e t i s c l e a r l y open
5 E
for P
,
r1
and f u r t h e r , N
numbers which sum t o u n i t y .
E
and
A
p
5E
are positive real
By h y p o t h e s i s
we have t h e
factorisation
and consequently t h e p o l y n o d a l
P,(v
+
T
N)
= P,(ht
admits t h e r o o t s
h T
+PN +T J
-)z
r N)
< 0
.
= P,(N)
II (p + 1
T
-h
Tj]
F i n a l l y , i f 5 belongs t o t h e boundary of TI, t h e r o o t s of P (5 + m .
T
N) a r e n e g a t i v e or zero and t h e r e e x i s t s a t l e a s t one
zero r o o t s i n c e 5
4 rl.
.
r'
it remains for us t o prove t h a t
More p r e c i s e l y , we s h a l l show t h a t i f
N E ri where
En
N) has onZy s t r i c t l y negative
T
be t h i s l a t t e r s e t ;
Pm(c) 4 0
E
Hence P,(5)
P
0
which proves
re,
(SEC. 3 )
HYPERBOLIC OPERATORS
353
t h a t 5 a l s o belongs t o t h e boundary o f r ( P , N ) and consequently
rl
6
.
q p , N)
The cone r(P, N) depends only on P,;
however we have
Suppose P i s hyperboZic i n the direction N.
THEOREM 3.11:
~ e t 9 E q p , N) ; -then (3.11.1.)
P(5+ T
N
+ P?)
f 0
andImb S PROOF: i e n t of
is
0
7
< yo
.
, ZER"
= 0, t h i s i s condition (3.1.1).
For Im
urn
Im
for
f
P,(n)
0 ;
The c o e f f i c -
consequently t h e number of zeros
p such t h a t I m y < 0 i s c o n s t a n t when t h e parameter T remains i n
t h e h a l f plane I m T equation
P(5 +
(3.11 2.)
7
N
However, f o r
yo.
+ PI)
T - ~P[{
which converges t o P,(N
0
+ +
T(N
A?)'=
Lemma 3.10 shows t h a t
P(,N
'I
l a r g e and p = AT, t h e
i s equivalent t o
+ An))
= 0
0 vrhen Im
T +
+
0
I?)
f
-
m
.
f o r Re h > 0 ,
consequently, t h e same a p p l i e s f o r (3.11.2)when I m
'I
< Y o , and
t h i s proves t h e theorem. A s an a p p l i c a t i o n , we deduce
THEOREM 3 . 1 2 :
I f P i s hyperbolic i n the direction N, it
i s hyperbolic i n my direction of r(P, N) and, moreover, t h i s
(CHAP. 6 )
EVOLUTION EQUATIONS
354 cone is convex.
q E
Let
PROOF:
r ( P , N)
hyperbolic i n t h e d i r e c t i o n
;
we s t a r t by showing t h a t P i s N with
q -k E
E
In fact,
> 0.
Theorem 3.11 i m p l i e s
~ ( +5 ~ ( +7
#
e N))
o
and Lemma 3.10 shows t h a t ing
1 = (51
by t a k i n g
E
-e
+
N)
e
N
Irn T c inf(0, y o
-58
for P,(q
, we
+
e N)
#
0
for
t h e n deduce t h a t
> 0 small enough t o ensure t h a t r-
-
E
E
, 5 > 0.
E Writ-
‘Q € r ( p , N) N remains i n
t h e open s e t r(P, N ) . To prove t h a t t h e cone r(P, N ) i s convex we show t h a t t h e
segment j o i n i n g two of i t s p o i n t s qI and q2 remains i n i t s i n t erior.
I n f a c t we showed d u r i n g t h e proof of Lemma 3.10 t h a t
t h i s segment is i n s i d e t h e cone
r[p,
7,)
= r ( P , N)
An analogous r e s u l t holds for s t r i c t l y hyperbolic o p e r a t o r s ; this is: THEOREM 3.13: N , then
I f P is s t r i c t l y hyperbozic i n the direction
it is s t r i c t l y hyperbolic in any direotion o f the erne
r(P, N).
PROOF:
For 5
f a c t o r i s a t ion
(3.13.1 .)
E
IRn and not p r o p o r t i o n a l t o N , we have t h e
(SEC. 3 )
where t h e
HYPERBOLIC OPERATORS
a r e Cm f u n c t i o n s which a r e mutually d i s t i n c t f o r
T.(*)
g E R" \
355
J
(mN)
the single root
#
, Since P,"] T =
-
h when
, the
0
5 t e n d s towards
J
E r(p,
N)
, not
J
consequently,
h N;
.
t h e f u n c t i o n s T . (5) a r e continuous on lRn Suppose we have
r o o ts T . ( C ) tend t o
p r o p o r t i o n a l t o N , and i-1
E
IR ;
we deduce from ( 3 . 1 3 . 1 ) :
(3.13.2 .) We now show t h a t
The homogeneity and t h e c o n t i n u i t y of t h e f u n c t i o n s
T
j
show t h a t
which proves ( 3 . 1 3 . 3 ) s i n c e Lemma 3.10 t e l l s us t h a t t h e
T
. (TI)
J
are s t r i c t l y negative. The a s s e r t i o n ( 3 . 1 3 . 3 ) and t h e c o n t i n u i t y of t h e f o r any j t h e r e e x i s t s p
j
( 3 . 1 3 . 2 ) shows t h a t t h e p
j
a r e r o o t s of
now only remains t o show t h a t t h e y
5 i s not proportional t o p
j
= pk = y with
Tj(h
X
E
+ pll) IR
.
=
~
J
q.
j
P,(5
imply t h a t
j
+ pJ. 7)
T.(S
such t h a t
T
= 0
+ p7)
, and
= 0
.
It
a r e d i s t i n c t i n p a i r s when
In f a c t , i f there existed
j and k d i s t i n c t , we would have
~ + p7) ( 5= 0
Then t h e e q u a l i t y
shows t h a t A = 0 , 2 . e . t h a t
and consequently
P,[s
s + pl"rl
+ pl"rl) 0
=
'5 +
Pl"rl = h N w i t h
0 = Am p,")
, which
i s a contrad-
(CHAP. 6)
EVOLUTION EQUATIONS
356
iction. We a r e now i n a p o s i t i o n t o prove t h e p r i n c i p a l r e s u l t of t h i s this is
section;
THEOREM 3.14:
direction N ;
Suppose P i s a hyperbolic operator i n the
then P admits a unique fimdamentaZ s o l u t i o n w i t h
support i n the dual cone
r*p, N) PROOF:
=
c x E R" I
x.5
2
o for
rp,
~ Z Z5 E
N)
3
Since P i s , i n p a r t i c u l a r , c o r r e c t i n t h e sense of
P e t r o v s k i i n t h e d i r e c t i o n N , P r o p o s i t i o n 3.3 shows t h a t i t
-
admits a fundamental s o l u t i o n E w i t h support i n By and defined
bY
with
Re y
< y,
.
Theorem 3.11 i m p l i e s t h a t t h e f u n c t i o n
i s holomorphic i n t h e open s e t the fact6risation
shows t h a t
Rn
- i r(P,
N)
.
Furthermore,
(SEC. 3 )
HYPERBOLIC OPERATORS
357
(3.14.2.) when
Re y
.
< y,
The Paley-Wiener theorem a p p l i e d t o cp
implies t h e e x i s t e n c e of C such t h a t exp HJYN
IG(g + iy
(3.14.3.)
,
5 E R"
for
X
+ i ~ 7 1 15
N
and y r e a l .
c
+ 17)
(151 + I Y l +
I~lIW1
We deduce from ( 3 . 1 4 . 2 ) ,
( 3 . 1 4 . 3 ) t h a t we can apply a t r a n s l a t i o n of t h e contour of i n t e g r a t i o n i n ( 3 . 1 4 . 1 ) and o b t a i n
y v v ,] for
369
HYPERBOLIC CAUCHY PROBLEMS
lipj v f
o
>
J
S t r i c t l y hyperbolic s c a l a r operator of
o r d e r m.
Suppose we have
m-I
(4.8.1 .)
where
P ( t , x, Dt'
AWj
Dxl
= a w j (t, x, D,)
suppose t h a t a
=
- j=o
D;
with e
m-j
:D
€ss"s(R"l
x
R"]
0
5 E R" \ 0
and which
i s independent of ( t, x) for 1x1 s u f f i c i e n t l y l a r g e .
The Cauchy problem f o r P i s w r i t t e n f o r m a l l y as f o l l o w s :
(43.2.) PU = f
,
k Dt ulk0
=
k
gk
01.m.s
-1
We s h a l l now reduce t h i s t o a f i r s t - o r d e r system; t o do t h i s , we p u t u
= D5-1 A,,+~ u and j Then, ( 4 . 8 . 2 ) i s e q u i v a l e n t t o
u
;
a (t, x, 5) m-J
admits a p r i n c i p a l p a r t
m- j which i s homogeneous of degree m-j f o r
Am-j
=
(ul,
..., ),u
370 l4.8.3.
EVOLUTION EQUATIONS
)
DtU-AU
=
F
(CHAP.
1
r
U t=o
=
6)
G
where
with
A
B = j
F = G = Consequently B . i s a p . d . 0 . .3
a It, X I *j+l
o f degree 1 w i t h symbol
14(wj) and
11(1 + 151
A h a s as homogeneous
p r i n c i p a l symbol o f degree 1,
It can e a s i l y be shown t h a t p,(t,
x, T,
5)
where p
m
det(23
- Al(t,
X,
5))
=
is t h e p r i n c i p a l symbol of P.
The above a l l o w s us t o s t a t e t h e f o l l o w i n g :
THEOREM AND DEFINITION
4.9
:
The operator P defined i n
(4.8.1) i s said t o be s t r i c t l y hyperbolic i f for a l l (t, x, EJ E '"R
x
[R"
\
03
the zeros i n
of i t s principal
(SEC. 4)
symbol
371
HYPERBOLIC CAUCHY PROBLEMS
x,
p,(t,
~j =
T,
-
7’
0
aWJ [t, x,
5)
are
7’
J=O
real and d i s t i n c t .
We assume i n addition t h a t p is m independent of ( t , x) f o r 1x1 s u f f i c i e n t l y large. Let
,
sE R
f E
Lz([ 0 T
1 ; H’),
j = 1,
g j E H’+*j
..., m.
Then there e x i s t s a unique m-I
n
E
k = o
ck([ o
T
3;
H
such t h a t Pu = f i n & ( ] 0 T [ x R”) Furthemnore, there e x i s t s C
~
,
1
D$’
~
~
~ ( 0 .) ,
=
gd
such t h a t
IT
for a l l
s a t i s f y i n g the above assumptions and
f,gj
.
t E [ O T ]
FinaZZy, i f
have
u E C”([
PROOF:
E C”([
f
0T
3;
Hs”)
0T
.
3;
Hs”)
and
g5
E H*
we
It i s s u f f i c i e n t t o a p p l y Theorem 4.5 t o t h e
system ( 4 . 8 . 3 ) .
The s t a n d a r d example o f a s t r i c t l y h y p e r b o l i c o p e r a t o r i s t h e wave o p e r a t o r
P
~i
2 Dt
-c
2
(X)
4(
where
c
is a strictly
m
positive C large).
f u n c t i o n (which i n t h i s c a s e i s c o n s t a n t f o r 1x1
P h y s i c a l l y , c ( x ) i s i n t e r p r e t e d as b e i n g t h e wave
propogation speed.
We s h a l l show more g e n e r a l l y t h a t we
.
~
372
EVOLUTION EQUATIONS
(CHAP.
6)
have t h e n o t i o n o f a propagation speed when P i s a s t r i c t l y hyperbolic d i f f e r e n t i a l o p e r a t o r .
Consider a d i f f e r e n t i a l o p e r a t o r of degree m, D ) , with C
P = P ( t , x, Dt, of IRn+l.
m
c o e f f i c i e n t s i n an open s u b s e t S2
X
Let p
m
be i t s p r i n c i p a l p a r t ; saying t h a t P i s
s t r i c t l y hyperbolic w i t h r e s p e c t t o s a y i n g t h a t f o r a l l ( t , x) P ~ , ~ ( T ,=~ p], ( t , t o N = (1; 0).
x, 7 ,
E
(see Definition 3.9).
i s equivalent t o
S2 t h e polynomial
5) is
We denote by
t
s t r i c t l y hyperbolic with respect
r(t,
x ) t h e cone T(Pt,xl
N]
We s t a r t by g i v i n g a d e f i n i t i o n of t h e
hypersurfaces which w i l l p l a y a r o l e analogous t o t h a t o f t h e hyperplane t = 0 .
DEFINITION 4.10
:
1 in IRn+l A hypersurface S of c l a s s C
i s said t o be spacelike f o r P a t a p o i n t ( t , x) covectors normal t o
s
a t ( t , x) are i n
r(t,
X)
E S
if the
u (- r(t,
x))
I t i s said t o be spacelike f o r P i f t h i s i s true a t a l l points.
,
(SEC. 4)
HYPERBOLIC CAUCHY PROBLEMS
373
We n o t e t h a t w i t h t h i s d e f i n i t i o n , Theorem 3.13 shows that p
t YX
i s s t r i c t l y h y p e r b o l i c w i t h r e s p e c t t o any non-zero
conormal o f S a t ( t x),
This w i l l form t h e b a s i s of t h e
f o l l o w i n g l o c a l uniqueness r e s u l t .
DEFINITION 4.11 : of degree
m
Suppose P i s a d i f f e r e n t i a l Operator
with Cm c o e f f i c i e n t s which i s s t r i c t l y hyperbolic 0
in a neighbowhood V of a p o i n t ( t o y x 1. surface of '?.
L e t S be a Cm hyper-
Suppose t h a t s is spacelike for P a t ( t o y xo).
Then there e x i s t s a neighbowhood W of ( t o yxo) such t h a t i f u E we
P[v)s a t i s f i e s
have u = 0 i n
PROOF:
Let
bourhood of (to,
~u =
o
in
v
,
D~
uIs =
o
Icy]
Imi
w.
x X
0
be a diffeomorphism d e f i n e d i n t h e neigh-
1 which
transports S into
,
374
(CHAP. 6)
EVOLUTION EQUATIONS
L1
3 I r =0 1.
('E;
S = {
r )
and (to, xo) into 0.
Let P be the op-
erator obtained by transporting P. Now ( 7 . 3 . 5 ) , Chap. I, shows
(7, 3
that
(7, 5 ) ;
= Pt
0'0
0'
0
consequently
is strictly 0'0
~
-
hyperbolic with respect to N = (1; 0). ument shows immediately that
p-t,x
c
c
c
A transversality arg-
is still strictly hyperI)
bolic with respect to N' when (t, x) and N' are respectively .*
sufficiently near 0 and N.
The above allows us to prove the
existence of a neighbourhood W in which uniqueness applies, by proceeding as in the proof of Theorem 1.10 (see Remark 1 . 1 2 ) . We are in fact then led to using an existence theorem for a Cauchy problem of the type (1.10.4). For this, it is suffitcient to apply Theorem 4.9 to P after extending it to the whole of IRn+l.
This is possible by virtue of:
LEMMA 4.12 :
Let Q = Q(t, x, Dt, Dx) be a d i f f e r e n t i a ? ,
operator ( o r pseudo-differential operator w i t h respect t o x) of degree m, with Cm c o e f f i c i e n t s , which i s s t r i c t l y hyperbolic i n a b a l l Br of radius r a t 0.
Then there e x i s t s a s t r i c t l y
c
hyperboZic operator Q of degree m which coincides w i t h Q i n the ball B
r/2
and which has constant c o e f f i c i e n t s outside the b a l l
PROOF: z e r o for s
2
Let
@(s]
E C"(R)
be equal to unity for s
r , and lying between 0 and 1.
The mapping
5
r
-2'
(SEC. 4)
375
HYPERBOLIC CAUCHY PROBLEMS
and i s z e r o o u t c o i n c i d e s w i t h t h e i d e n t i t y map i n t h e b a l l B r/2 s i d e t h e b a l l Br.
x),
Then t h e o p e r a t o r Q w i t h complete symbol Q ( p ( t ,
7,
g)
meets t h e r e q u i r e m e n t s .
This l o c a l uniqueness r e s u l t can be g l o b a l i s e d .
For ex-
t h e f o l l o w i n g theorem e s t a b l i s h e s t h e e x i s t e n c e of a
ample,
f i n i t e wave p r o p a g a t i o n speed for s t r i c t l y h y p e r b o l i c d i f f e r e n t i a l operators :
Suppose P i s a d i f f e r e n t i a l operator of
THEOREM 4.13 :
degree m, s t r i c t l y hyperbolic i n
[ 0, T ]
constant c o e f f i c i e n t s f o r 1x1 large.
u p
x
R"
and with
We put
SUP
t€[ O,T1,xERn
151 = where
T
j
let Let
DJ u t
c s0
E
(to,xo>
= { (t, x ]
=
c
u E C"([ jt=o
j
I
are the zeros with respect t o
For cone
1
=
t
0, T
E
I -
(0, x) ~x 0T
o
I
[
in
s0
1; b )
2
x
R"
O, to [ xo/
'I
of
p,.
we define the backwards
,
< v to
1x
- xoI < v ( t o - tl 3
3 denote
i t s trace on t = 0 .
be such -that Pu = 0 i n C and
f o r j = 0,
..., m-1.
;
Then u = 0 i n
c.
PROOF: For e
C
u E Cm[[
F i r s t we suppose t h a t
E ] 0,
, we
to
tE E
put
t
0
-
0
0
,
5X