INFINITE DIMENSIONAL HOLOMORPHY AND APPLICATIONS
This Page Intentionally Left Blank
NORTH-HOLLAND MATH E MATICS STU...
10 downloads
650 Views
18MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
INFINITE DIMENSIONAL HOLOMORPHY AND APPLICATIONS
This Page Intentionally Left Blank
NORTH-HOLLAND MATH E MATICS STU D I ES
12
Notas de Matematica (54) Editor: Leopoldo Nachbin Universidade Federal do Rio de Janeiro and University of Rochester
Infinite Dimensional Holomorphy and Applications Edited b y
MARIO C. MATOS Universidade Estadusl de Campinas.Brazil
1977
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NEW YORK OXFORD
@North-Holland Publishing Company - 1977
All rights reserved. N o part ofthis publication may be reproduced,stored in a retrievalsystem, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission ofthe copyright owner.
North-Holland ISBN: 0 444 85084 8
PUBLISHERS:
NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM, NEW YORK,OXFORD SOLE DISTRIBUTORS FORTHE U.S.A.ANDCANADA:
ELSEVIER/ NORTH HOLLAND, INC. 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017
Library of Congress Cataloging in Publication Data
I n t e r n a t i o n a l Symposium on I n f i n i t e Dimensional Holomorphy, Universidade E s t a d u a l d e Campinas, 1975. I n f i n i t e dimensional holomorphy and a p p l i c a t i o n s . (Notas d e matem&ica * 54) (North-Holland mathematics s t u d i e s j 12j Includes index. 1. Holomorphic functions--Congresses. 2. Domains of holomorphy--Congresses. I. Matos, M h o Carvalho de. 11. T i t l e . 111. S e r i e s . QAl.N86 no. 54 [QA3jl] 510'.8s [ 5 1 5 ' . 9 ] ISBN 0-444-85084-8 7 7 -2 0010
PRINTED IN THE NETHERLANDS
F 0REWORD
'This book c o n t a i n s t h e P r o c e e d i n g s
of
Syn,sosium on I n f i i i i t e D i m e n s i o n a l Holomorphy
the International held a t
the
Vni-
v e r s i d a d e E s t a d u a l d e Campinas, B r a z i l , d u r i n g August 4 - 3 , 1 9 7 5 . I t c o n t a i n s t w e n t y f i v e o r i g i n a l r e s e a r c h a r t i c l e s COrreS?Ondin[J
t o t h e l e c t u r e s g i v e n a t t h e Synposium a n d some p a p e r s by i n v i t e d
or an-
ICC~U~:CI-S who c o u l d n o t a t t e n d t'lc m e e t i n g f o r o n e r e a s o n oi:!icr.
T!ie
articles include complete p r o o f s
and t h e y cover tho
c u r r e n t m o s t a c t i v e r e s e a r c h l i n e s o f I n i f i n i t e D i m e n s i o n a l HC 10ilorphy a n d i t s a p ? l i c a t i o n s . The m e e t i n g r e c e i v e d s u p n o r t from t h e
ds P e s q u i s a s (CNPq)
I'
I
'Conselho l,-zional
"Coordenaqao do A p e r f e i q o a n e n t o d o P a r s o a l
cle l J i v e l S u ; 2 e r i o r ( C A P E S )
' "Fundaqao d e Amparo 2 P e s q u i s a do
7:s-
cado d e S a o P a u l o (FAPESP) ' I I " F i n a n c i a d o r a d e E s t u d o s e ? r o - j e t o s ( P I i J E P ) " , a n d " U n i v e r s i d a d e E s t a d u a l d e Campinas (UNICAMP) m
i
m
'.
o r q a n i z i n q committee f o r t h i s m e e t i n g w a s formeci
J. A . B a r r o s o , G .
I. Katz, IT.
C . Matos ( c h 3 i r m a n ) ,
L.
by
IJadihin
a n d 9. P i s a n e l l i . T h e r e Tiere p a r t i c i p a n t s from Brazil
Chile
France,
the
Sermany, I r e l a n d
Yugoslavia.
V
following Sweden
countries U . S.A.
and
VI
FOREWORD
I would l i k e t o r e g i s t e r my t h a n k s t o t h e f o l l o w i n g p e r -
s o n s : P r o f e s s o r U b i r a t a n D'Ambrosio, d i r e c t o r
of Mathematics
of
UNICAMP,
of
the Institute
whose s u p p o r t made t h e m e e t i n g pos-
s i b l e ; M i s s E l d a M o r t a r i , who t y p e d
t h i s volume: M r .
R o d r i g u e s Q u e i r o z , who p r o v i d e d a l l technical
Gilbert0
f a c i l i t i e s for t h e
t y p i n g of t h e m a i i u s c r i p t .
Pilsrio C . Matos
TABLE OF CONTENTS
R i c h a r d M. Aron
Approximation o f d i f f e r e n t i a b l e
i
f u n c t i o n s on a Banach s p a c e . Volker Aurich
F o n c t i o n s meromorphes s u r C
A
.
Jorge Alberco Barroso,
On holomorphy v e r s u s l i n e a r i t y
M6rio C . Matos
in classifying locally
and Leopoldo Nachbin
spaces.
Paul Berner
T o p o l o g i e s on s p a c e s o f h o l o
convex
31
morphic f u n c t i o n s
of
-
certain 75
surjective l i m i t s . I 0 such t h a t i f < 6
-
,
I[y'
-
y
11
< 6
:jf(x') (y') 1
0,
E
we claim
and x ' , y ' E E
K
x
L
,
j
5 k)
then
(f F a
("1.
)
9
APPROXIMATION OF DIFFERENTIABLE FUNCTIONS
I n f a c t , i f t h i s i s f a l s e , t h e n f o r some and (y;)
s e q u e n c e s (x;)
& such
s p e c t i v e l y , and ( f n ) i n
II yn - YA I/
< l/n,
- , K2
K1 = (x,)
and
, (x,)
in E
,
L1 =
5
in K
and (y,)
exist
k, there
- i Jf n ( x J
w,
( y ~1 )2
E
and L2 =
re-
and L
t h a t f o r a l l n E N,//xn-x;
/dJfn(xn)(yn)
=
j
. are
/ / < lh, Now ,
compact
i n E , so t h a t t h e seminorm p d e f i n e d by
{I
p ( f ) = sup
k
is
-
and
~ / 2 ,c o n t r a d i c t i n g t h e p r e c o m p a c t n e s s o f
fm)
n
,
zf.
Thus
- x 11
< 6.
holds.
(*)
Let
T E El 0 E
&IT(E)
of functions i n
s i o n a l space T ( E ) . S i n c e k
C (T(E))
, which
(y)
KUL, llTx
& restricted
;k / T ( E )
t o t h e f i n i t e dimen-
i s a precompact s u b s e t of
has t h e approximation property, t h e r e e x i s t s a
such t h a t f o r a l l /&(XI
E
@ ( f )= f o T. C o n s i d e r now the far&
c o n t i n u o u s l i n e a r mapping of f i n i t e r a n k
sup I
x
such t h a t f o r a l l
I$ : Ck ( E ) -+ Ck ( E ) by
Define ly
d’f(xA) (yA)l : n E N 1
c o n t i n u o u s . However, f o r i n f i n i t e l y many m
T~
p (fn
-
d J f ( x n ) (y,)
g E
& I T (El
- ;iJ+(g)(x) ( y ~/ :
$ : C k ( T ( E ) ) + Ck(T(E))
I
(x,y) E T(K)
F i n a l l y , t h e mapping taking f E $(El
x
T(L) , j
into $(f
i s f i n i t e r a n k , l i n e a r and c o n t i n u o u s , and i f f E&,
k~
0 , t h e following holds:
satisfying
(i)
I[
(ii)
9, o
nn
11 5
+
11.
(iii) n n ( x )
-+
( n E N).
C I$,
x
in
E'
( i= 1,.
. . , k ) , and
(x E E ) .
C o n d i t i o n (+) i s c e r t a i n l y a weaker a s s u m p t i o n t h a n f o l l o w i n g , which i s found i n There e x i s t s a sequence linear projections satisfying
in
9 5 p n - + 9
E'
1141 ( c f 171 1 . (P,l) of f i n i t e r a n k Pn(x) ($ E
-+
s a t i s f i e s (+)
.
continuous
x ( x E E ) and
(++I
E).
I n f a c t , c o n d i t i o n !++) i m p l i e s t h a t E '
L1
the
i s separable,
while
11
APPROXIMATION OF DIFFERENTIABLE FUNCTIONS
k
k
c0mpLete.
(C ( E l , T ~ ) LO
PROPOSITION 3.1.
k = l , t h e proof f o r k > 1 being
W e s k e t c h t h e proof f o r
similar. L e t (fa)
(C1( E ) ,
be a Cauchy n e t i n
A
1
T ~ ) .
is
It
e a s y t o see t h a t t h e r e a r e c o n t i n u o u s f u n c t i o n s f : E + R
g : E
f = lim f
such t h a t
+ E'
x
d f = g . I n f a c t , i f t h i s f a i l s , then there
and a s e q u e n c e (h,)
E E,
If(x+hn) - f ( x ) -g(x)(hn)I > and e a c h
1)
h,
[I
n E N,
sup{Ilsfa(z)
u [x,
that
a,B >
-
fa(x)
-
zfB(z)
11
:
z
un
E
f B ( x + hn)
-
-
fa(x)
f B ( x + hn)
a0 E A, so t h a t
some
-
f B ( x )1 5
a o . Also, f o r a > scane
a b e any i n d e x l a r g e r t h a n b o t h
. Therefore,
0
I f ( x + hn)
< If(x +
+ I f a (X < 3
-
f(x1
-
hn)
+ hn)
II hn I1
E
-
[ f a ( x t hn)
such t h a t n 2 n
-
f(x)
-
for
fa(X)
-
fa(x)
cto
and
all
E.
al,
there i s
0
and a l l
E
+
E
> 0, there is
6 > 0
if
such t h a t f o r
1lxllLM1 IIh11(6,
x , h E E , Ig(x
If
> 0,
x E El
s u c h t h a t if then
E
h)
-
g(x)
-
i g ( x ) (h)
-
... - 'ng(x) n.
(h)l 'E)I
h
Iln
.
is r e f l e x i v e , t h e n t h e weak compactness of t h e b a l l of E
i m p l i e s t h a t a f u n c t i o n which i s weakly c o n t i n u o u s on
sets i s u n i f o r m l y weakly c o n t i n u o u s on bounded s e t s .
bounded Further,
w e have t h e f o l l o w i n g . PROPOSITION 4 . 1 .
d u c h 2haA: g
Zg,..
bounded
16 g
Zng
id
betd.
[ 1 4 , Theorem
(cf
.,in-'g id
61).
Let
g : E
g
be
c o n t i n u v u s o n baunded
ohdeh n,then
06
be.td.
W e d o n o t know i f t h e c o n v e r s e h o l d s , even i n
n = 1. That i s , i f
F
ahe u n i d o h m l y loeakly c o n t i n u o u d on
u n i ~ o h m l yd i d d e h e n t i a b l e
u n i d o h m l y Ltleakly
-f
and d g a r e u n i f o r m l y weakly
bounded s e t s , i s g u n i f o r m l y d i f f e r e n t i a b l e
of
the
case
continuous on
order
1 on
I 0
and
...
(x,y E B, i=l, ,k),
Consider t h e s u b s e t {$(XI : x
such t h a t f o r a l l
E B
$i(x)
E
F.
06
E B}
in
compactness, t h e r e exx E B , t h e r e i s some x
l,... ,k) < 6 / 2 .
j Now,defining
APPROXIMATION OF DIFFERENTIABLE FUNCTIONS
U j = {(Y1r.-.ryk) E Rk : Iyi
.. ,nr let
j = 1,.
-
oi(xj) I < 6
15
(i= l,...,k)}
for
.
cl,.. ,cn be continuous functions from Rk to
R such that k rn), cj(y) 2 0 (y E R r j = l , n E cj(y) = 1 (y = $ ( X,I for some x
...
i) ii)
E
j=1
iii) spt c
j
c Uj
B) ,
(j=l,...,n).
Define
Finally, there exists a polynomial p : Rk
-f
R
such that
REFERENCES
[ 1 1 R. M. ARON
-
Compact polynomials and compact differen-
tiable mappings between Banach spacesfto appear.
[ 2
1
R.
M. ARON'AND R. M. SCHOTTENLOHER
-
Compact holanorphic
mappings on Banach spaces and the
approximation
property, to appear in J. Funct. Anal.
[
3
] F. BOMBAL GORDON
-
Differentiable function spaces
with
the approximation property, to appear.
[
4
] F. BOMBAL GORDON AND J. L. G. LLAVONA
-
La propiedad
de
aproximaci6n en espacios de functions diferencia bles, to appear.
R. ARON
16
151
S. DINEEN
-
Runge domains in Banach spaces, Pr0C.R.I.A.
,
71, Sect. A, nQ 7(1971).
[ 6 ] J. KURZWEIL
-
On approximation in real Banach spacesfst:
dia Math. 14 (1954), 214 - 231.
[ 7]
J. LESMES
-
On the approximation of continuously differ+
tiable functions in Hilbert spaces,Rev. Colanbiana de Matemdticas 8, (1974), 2.17 - 223.
[ 8 ] J. L. G. LLAVONA
-
Aproximacicn de funciones diferencia-
bles, Thesis, Universidad Complutense, Madrid.
[
9
1
-
C. MATYSZCZYK
Approximation of analytic and continuous
mappings by polynomials in Frechet spaces, to a2 pear in Studia Math.
[ 101 N. MOULIS
-
Approximation de functions differentiables sur
certains espaces de Banach, Ann. Inst. Fourier 21 (1971), 293
[ 113 Ph. NOVERRAZ
-
- 345.
Pseudo- convexite, convexite polynomiale,
et domaines d'holomorphie en dimension infinie, Mathematics Studies 3, North Holland (1973).
[ 121 J. B. PROLLA
-
On polynomial algebras of continuously
dif
ferentiable functions, Rend. dell'Accad. dei Lincei,
to appear.
[ 131 J. B. PROLLA AND C. S. GUERREIRO
-
An extension of Nachbin's
theorem to differentiable functions
on
Banach
spaces with the approximation property, to appear.
[ 1 4 1 G. RESTREPO
-
An infinite dimensional version of a theo-
rem of Bernstein, Proc. A.M.S. 23 (19691, 193-198.
17
APPROXIMATION OF DIi~PEI'SZiJ'rIABLEFUNCTIONS
-
[ 1 5 ] J. WELLS
Differentiable functions on co, Bull,
A.M.S.
75 (1969), 117 - 118.
[ 1 6 1 J. H. M. WHITFIELD
-
Differentiable functions with bound
ed nonempty support on Banach spaces, Bul1.A.M.S. 72 (1966), 145
[ 1 7 1 D. WULBERT
-
- 146.
Approximation by Ck
- functions in
approxima
tion Theory, Proc. of Intern. Symp., G. G. Lorentz (ed.) , Acd. Press (1973), 217
- 239.
School of Mathematics, 39 Trinity College,
Dublin 2 , Ireland.
ADDED IN PROOF:
4.1 all
The questions raised after Proposition
have affirmative answers. In addition, W. B. Johnson has pointed out that condition
(+)
is equivalent to E' having the
bounded
approximation property. A much fuller investigation of the completion of spaces of polynomials, containing the material cussed in Sections 3 and 4 of this paper as well as
dis-
the above
points, is contained in a joint paper by the author and
J. B.
Prolla, "Polynomial Approximation of Differentiable Functionson Banach Spaces", to appear.
This Page Intentionally Left Blank
Infinite Dimensional Holomorphy and Applications, M a t 5 (ed.) @ North-Holland Publishing Company, 1977
PONCTIONS MEROMORPEIES SUR CA
par V O L K E R A l l R l C H
INTRODUCTION Toute fonction holomorphe sur un domaine 6ta16
p:X+
C
A
013 A est un ensemble arhitraire se factorise 5 travers un doma&
ne de dimension finie ( 5 savoir son domaine d'existence).
Cela
reste vrai pour toute fonction mdromorphe. En utilisant des r6sultats en dimensions
finies on obtient que toute fonction mg
romorphe sur un domaine dta16 au-dessus de CA est le
quotient
de deux fonctions holomorphes et se prolonne 5 l'enveloppe d'hg lomorphie. Donc il suffit d'btudier les fonctions
m6romorphes
sur un domaine de Stein. On sait qu'un domaine de Stein au-dessus de C h est isomorphe 5
S x CA-'
03 'Y C A est fini et
un domaine de Stein 6ta 6 au-dessus de trons que l'espace S x CA-'
%CS
est la limite
x
C
Y
S
([l] , [3] 1 . Nous d&oF
des fonctions m6romorphes
nductive des n(S
est
CO-'),
4, 3
Y
sur fini.
Un thbort5me analogue pour les donn6es de Cousin n'est pas vrai. Dans [ 4 ] DINEEN a ddmontrg que s u r tout ouvert de C m
il existe
une donnde de Cousin I non rdsoluble. Cependant, une
propri6tb
de factorisation pour certaines classes de donn6es de CousinpeL met d'6noncer des conditions ndcessaires et suffisantes 19
pour
q u ' u n e donnbe d e Cousin s u r un domaine d e S t e i n s o i t r 6 s o l u b l e . La n o t a t i o n e s t p o u r l a p l u p a r t l a m e m e q u e c e l l e
dam
[I]. II d b s i g n e t o u j o u r s un ensemble e t F i n A e s t l ' e n s e m b l e d e s sousensembles f i n i s d e A .
S i p:X
-+
C A e s t un domaine 6 t a l b
ou simplement
0
1. PROPRIETES
FONDAMENTALES DES FONCTIONS 14t?R3"HEs SUR @'
Ux
e s t l e f a i s c e a u d e s f o n c t i o n s holomorphes.
S o i t p:X * CA un domaine Q t a l 6 . Pour t o u t o u v e r t
s o i t M ( U ) l'anneau t o t a l des f r a c t i o n s de @ ( U ) .
U C X
M e s t un
prG-
f a i s c e a u s u r X. L e f a i s c e a u a s s o c i 6 e s t a p p e l g l e f a i s c e a u f o n c t i o n s mbromorphes s u r X e t n o t 6
Vx ou
f o n c t i o n m6romorphe s u r X I c ' e s t - G - d i r e
simplement
@.
toute section m
f i , f i ) iEI
p e u t Ztre r e p r e s e n t g e p a r une f a m i l l e ( U i
e s t un recouvrement o u v e r t d e X e t f i , f i
E
@(Ui)
oC
des
Toute
n(X)
E
(Ui)
t e l s que
l'in
Uin
t b r i e u r d e { f i = 0) s o i t v i d e e t f
= f . f . sur U i j 1 1 j. p e u v e n t Ztre c h o i s i s comme d e s polydisques I n v e r s e m e n t ,
Les
t e l l e f a m i l l e d b t e r m i n e une f o n c t i o n mbromorphe. Evidemment,
Ux
Ui
p e u t Gtre c o n s i d b r 6 comme un s o u s f a i s c e a u d e x E X
qxIx est
le corps des f r a c t i o n s de
A chaque m E % ( X I
qx.Pour
une
chaque
ox,,.
on a s s o c i e une f o n c t i o n :
{y E X : rn E axry1. Parce q u e x E D~ s i e t s e u l e m e n t Y s i i l s e x i s t e n t une f a m i l l e ( U i r f i r f i ) i E I r e p r e s e n t a n t m e t un
S o i t Dm:=
i E I t e l s que
fi
# 0 l a v a l e u r F m ( x ):= f i ( x ) / f i ( x ) e s t b i e n dE
f i n i e . A i n s i on o b t i e n t une f o n c t i o n Fm:Dm
-+
C.
C o m e en d i m e n s i o n s f i n i e s on v e r i f i e q u e l ' e s p a c e de phe.
btalg
e s t s 6 p a r b . Donc on a le p r i n c i p e du prolonqement mbromog
FONCTI ONS FEROMORPHES
Soient u c
11. PROPOSITION
s i Re4 4 e c . t i o n 4 m e t !en
v o k t non v i d e
un c o t p 4
h i
eLle4
V
4 i
O0Alo
e6.t
[7
E Fin A,
e s t i r r g d u c t i b l e dans E
%?o
~ c x ) re.
et tout x
E I
mic44
entap
DEM.:
Soit ( V j l g j l s )
E
I
cX
V
u u v ~ t t ,e 6 . t
connexe.
ou bien en u t i l i s a n t que
0A 0(I: @
que
= l i m ind 0 EFinA
l o
si e t
I0
seulement
*
ui
4 o ~ ut n
ui [ e n gehmes [ f i ]
( L J ~ ~ ~I ~ ~ ? ~
p o l y d i h q u e e t que p u ~ r et
L Ti:
no-cent p t t -
eiix.
j j FJ
une f a r n i l l e r e p r g s e n t a n t m. Pour cha-
q u e x E X c h o i s i s j (x) E: J t e l q u e
x
E
,
V.
11s e x i s t e n t
p o l y d i s q u e Wx o u v e r t d e c e n t r e x e t u n e f o n c t i o n h j
t e l l e que
@@ (11) (I:
1 0
e x i n t e u ~ l ed u m i t e e
4 e p 4 Z s e n f a n t m t e e e e q u e chuque tout i
'&..(v)
oO@lo est i r r g d u c t i b l e d a n s
1.3 LEMMA s o i t m
b u n t ~ g u R e odunb u n
Fn
e 4 t un anneuu z ( u c t o k i e l .
est factoriel pour t o u t
si q
Fm e t
ZguRen. V a n c
40n.t
Ou b i e n comme d a n s
E
E %(XI.
n 4 v n . t ZguRe4 e n u n p o i n t ~ L e e n h, v n t e g u -
e t neuRemen2
1 . 2 PROPOSITION
e t que q
u n o u v e t t c o n n e x e ~t m,n
U . S i Re4 I ; o n c R i o n 4
dUnb
DEM. :
x
21
h J. ( X ) - l X
s o i t le plus grand
diviseur
.
(XI
E
commun
qu'il
1.f x-I Y
s o i e n t p r e m i e r s e n t r e e u x e n t o u t p o i n t y E Ux.
Evi-
d e m e n t ( U x lf
lux,FX lux)
Nous d i r o n s que x
x
de
tel que
e x i s t e un p o l y d i s c o u v e r t U
mais m - l
U(WJ
-
n ' o n t p a s d e d i v i s e u r s communs, d o n c on s a i t (1.5-1 , p . 1 4 9 )
et
un
E QylX
X
de c e n t r e x , U x C W x l
reprssente m E X
.
e s t un pu^Re d e m
e t que x e s t un
E
%!
p o i n t d'indZte4rn
V. AURICH
22
1.4 PROPOSITION
Soit m
comme d a m 1.3.
ALohb
(i)
x
e.6t
(ii)
x
E
E
R(X). (Uirfir?i)iEIb a i t
o n equivaLe.nce. enthe
u n p6Pe. d e m.
ui c n t a a i n e
+
fi(x)
D
e t Fi(x) = 0.
(iii) Pouh t o u t e b u i t e (xnInEm d a n b Dm x
On
DeM.:
Fm(xn) t e n d V e h A
a equivalence
Q U ~c o n w e h g e
weM
m.
enthe
u n point d ' i n d E t e h m i n a t i o n d e m.
(iv)
x
ebt
(v)
x
E
(vi)
Pou4 t o u t v o i d i n a g e V d e x O n a F,(V
ui entaraine
fi(x) = 0
=
-
fi(x).
C o m e en d i m e n s i o w finies en utilisant
1.5 COROLLAIRE
choibie
I51
Dm)
= C.
6.2.3.
L'enbtmble deb p o i n t b d'i.ndetehmination
et
l ' e n b e m b l e deb p 6 l e b e t deb p o i n t b d ' i n d Z t e t m i n a t i o n b o u t
deb
endembleb anaLi4tique.b.
C o m e dans [7!
p . 23 on prouve
1.6 COROLLAIRE
Pout t o u t m
E
m ( X ) Dm e b t u n o u v e h t
1.7 COROLLAIRE
Pouh t o u t m
E m(X)
Fm
ebt
connexe.
une ( o n c t i o n holmoh
phe. A
Pour une fonction holomorphe f sur une varidte q: Y-C et x
E
Y on dgfinit depx f:= l'intersection Ae tous les sousen-
sembles
0
de A tels que f depend au voisinaae Ae x
des variables qj,j
E 0.
depx f est un
connexe depx f ne dipend pas de x
E
seulement
ensemble fini. Si 4!
est
Y, et sa valeur constante
sera not6e dep f . (voir rl]). Pour Q, E Finh et U ouvert dans X nous d6finissons %'(U)
/zn'
:=
{m
E a ( U ) :
dep, Pm c 0
pour chanue
est un faisceau. 11 est le faisceau associg au
x
E
U}.
prefaisceau
23
FONCTIONS MEROMORPHES
u
+
l'anneau total ctes fractions de
1.8 PROPOSITION
m(U) =
u{ %'(U)
8@ (u) .
: @ E
Fin A ) pouh
05
tout
v e h t U c o n n e x e d a n b X. DEM.:
Parce que Dm est connexe depx Fm est constant sur Dm,
2. LE PROBLEMME DE POINCARE ET L'ENVELOPPE DE Mf?ROMORPMIE 2.1 DEFINITION domaine q:Y
+
Soient p:X CAI A C A,
+
C A un domaine et m E m(X).
est appel6 un domaine d'existence de
m s'ils existent une fonction m6romorphe n phisme p : X
+
Un
E
M ( Y ) et un
mor-
Y tels que les conditions suivantes soient satis-
faites: (i)
m = n o p
(ii)
Etant donn6s un domaine q':Y'
un morphisme u ' : X me
$:Y'
+
+
Y' tels que m
=
+
CA '
, n'
E
'&?(Y')et
n'o 1-1' i l existe un morphis
Y tel que 1-1 = $ o 1.1'.
Le domaine d'existence d'une fonction mdrornorphe est unique ii un isomorphisme prgs (s'il existe). 2.2 PROPOSITION
T o u t e d o n c t i o n mhhomohphe m b ~ uhn
p : j ~t * a d m e t un d o m a i n e d ' e x i a t e n c e pm:Xm j ~ F , M . : Choisis x E
X. m induit un germe q
E
C
den Fm
Tc@ (XI ,@ I?
xm
domaine
= dep Fm.
soit la con2osante connexe de q dans l'espace 6tal6 de Elle est un domaine &a16
au-dessus de
C'.
ncQ.
Dans la
n i k e usuelle on dgmontre cru'elle satisfait (i) et (ii)
ma(voir
p.ex. [ 8 ] ) . 2 . 3 REMAROUE
11 est connu ffu'un domaine d'existence d'une f o F
tion mGromorphe en dimensions finies est pseudoconvexe
(
[2] ,
p . 86, consgquence du "Rontinuitatssatz" cle Hartoss-Kneser dans
24
V . AURICH
,
161 )
donc il e s t un domaine d e S t e i n .
2 . 4 THGOR&TZ
T o u t e donction mZtomotphe n u t
(Poincarg)
m a i n e z t a l z au - d e n n u n d e C A e h t l e q u o t i e n t d e deux
un do-
donctionn
hotomotrphen. D ~ M . : Appliquer 2 . 2 ,
7.4.6.
;tale
n e ptrolonge a l ' e n w e l o p p e d'hvLomotphie.
CA
Consgquence immgdiate de 2 . 4 .
DEM.:
2.6.
au
[5]
T o u t e 1;onction mztomotphe h u t un domaine
2 . 5 . THEOREME au - d e n n u h d e
2.3 e t
L ' e n v e l o p p e de m e t o m o t p h i e d l u n domaine Z t a l Q
COROLLAIR~
-
d e b b u h de
a l'enweloppe d ' h o l o m o t p h i e .
e n t ;gale
CA
3 . LES FONCTIONS MROMORPHES SUR UN DOMAINE DE STEIN
3 . 1 LEMME
T o u t e 1 ; o n c t i o n metomotphe m n u t un domaine p : X
admet un t e p t r e n e n t a n t ( U i l ~ i , G i ) i
t e l q u e c h a q u e Ui
I
-f
CA
noit u n
m e t dep Gi c d e p Fm p o u t c h a q u e i E I. E n p l u n o n p e u t o b t e n i t q u e [ g i I x e t L G i I x h o i e n t pdydinc ouvett
e t q u e d e p gi
dep F
CI
ptemietrn enthe tux en t o u t p o i n t DEFT.:
N :=X-Dm
$J
: = d e p Fm. C h o i s i s un r e p r g s e n t a n t
de m c o m e dans 1.3. S o i t p/Ui
+
Pi
E
a
1
U
c
Ui-N
de c e n t r e
(Uirfilfi)
i E I . On p e u t s u p p o s e r q u e
p ( U . ) s o i t topo1ogique.Choisis
ouvert
x
ui.
x E
a.
e t un p o l y d i s q u e
E Ui-N
a := n A - ) z ) .
On d e f i n i t
pour
-1 et Gi(X) := ( ? T @o P ( X ) r a ) g i ( x ) := fi o (pIui) -1 o ( P IUi) ( T o ~ p ( x ) I a ) . A c a u s e du p r i n c i p e d u p r o l o n g e m e n t
ui
analytique l ' i n t e r i e u r de U gi
/ gi
= Fm = fi
/ fi
( U i l g i l ~ , ) d g t e r m i n e m.
isi
= O}
e s t v i d e . Parce que
on o b t i e n t s u r
Ui
giZi
=
figi
sur donc
En p r o c g d a n t m a i n t e n a n t d a n s l a manis-
re de 1 . 3 on dgmontre la deuxisme p a r t i e du lemme.
FOIWTI ONS ME ROMORP HE S
E t a n t donne6 u n damuine q:Y
3 . 2 PROPOSITION
F i n A e A u n p u t ? y d i h q u e u u v e t l t P t CAL-',
Y x P
-f
a!'
t e e que
Lu p t l o j e c t i o n
Y i n d u i t un ibomohphibme a * d e
hut
@(U)
un isomorphisme de
%(Y)
a*:
phisme
:=
(Ui)
0
.
n'(X).C h o i s i s
E
Pour
x
- -1 ( x ) n gi(u
fii(x) :=
I1 r e s t e
/n2'(X).
+
m
jective. Soit
sur @@(UxP)
vi
E
soient
et
U i ) .hi
{fii
p h e s e t l ' i n t g r i e u r de
5,
,
m@(X).
m ( Y ) huh
donc
0
+
U induit
i n d u i t un monomog
5 d s m o n t r e r que a* est
(UifgilG,) c o m e dans
hi ( x ) : = gi ( a-1 ( x ) f l
Dm = a (D,)
Pour x
E
Par consequent F
vi
V.
-1 F m ( o ( x ) n Ui) nuit6 h . h
1 1
7
n a (D,)
s . (x)= 1
m se f a c t o r i s e 5 t r a v e r s o (D,).
-1 ( x ) /I U j ) = h . / h j ( x ) , donc p a r c o n t i g./i.(a 1 1 3 =h.G. sur Vir) V Cela prouve que ( V i , h . , 6 . ) r e p r g =
1'
1 1
S o i e n t q:Y
d i n q u e o u v e t l t dann
-+
a!'
d-@e t
1
% s u r Y. Evidemment
dep f
c@. Aboth
DEM.:
Soient a = (a',a")
que l e segment
a * ( $ ) = m.
E
A u n en4emb8e
a n a l y t i g u e duns Y
A = o ( A ) x P ou a cbt
[a,bl
1
u n d o n i u i n e , Q,
Fin A ,
q u i d o i t 1ucnLernen.t d 4 6 i n i n b u b l e pah line donct-ion
E A
et
:= { ( a ' , a "
f
poey-
un
P
teLet?
v e r t s U1,...,Un
fi
E
Ui+l
-1 ( O ( A 0
0
# $
00 (ui)
P
que
b = (a',b'') E a-l(a(a)).Parce
+ t(b" - a")): t
avec l e s propriEt6s suivantes: a
E [ O J ] )
E
U1,
est OU-
b E Un,
e t a(Ui) = U ( U ~ + ~pour ) t o u t i, i l s e x i s t e n t des A 0 ui = fyl(o). P a r c o n s g q u e n t A Q ui =
t e l s que
ui)
x
p h o j e c t i o n de Y X P + Y .
compact il e x i s t e un r e c o u v r e m e n t f i n i p a r d e s p o l y d i s q u e s
ui f l
donc
x P,
on o b t i e n t hi/hi ( x )=gi/Gi (0-l( x ) CI u i ) =
s e n t c une f o n c t i o n mGromorphe 3 . 3 LEIWE
et
l'ensemble
D'aprgs l e l e m m e 2 . 3 ci-dessous N = o ( N )
x P.
2.1.
ui)
d e s p 6 l e s e t d e s p o i n t s d ' i n d s t e r m i n a t i o n d e m = { x E X: 0 s i x E Ui}.
s 5
s o n t b i e n d s f i n i e s e t holomor
est vide. S o i t N:=
= O}
E
d e X :=
G
Pour t o u t p o l y d i s q u e U Ca!' la p r o j e c t i o n U x P
DEM.:
Vi
25
fl ui
pour t o u t
i
.
Cel'a e n t r a i n e
V. AURICH
26
a
-1
(o(AnUi))
n
UiflUi+, = AflUiflUi+l=
5
-1
(Ar)Ui+l))flUi
(
Parce que U i R Ui+l ast cylindrique et non vide
0 'i+l.
u ( A nui) n u ( U i / l Uitl) = u (A QUi+l) fl a (Uin Uitl)
que a(Ui) = U ( U ~ " U ~ + ~= )0 on obtient o(A Cela implique a' 3 . 4 REMARQUE
donc b
u(Af)IJn)
E
p:X
E
X A o i t ibomohphe a S
e n t x,:=
s
e t o@:x
c'-'
En
obssrvant
Ui) = a(Ar)Uitl).
A.
Fin A e t un d o m a i n e d e S t e i n
t e l b yue
x
E
.
u n d o m a i n e d e S t e i n . On b a i t ([l],
-+ C A d o i t
yu'il~e x i b t e n t Y
[3])
0
-+
x CA-'.
x, la
POU4
q:S
0 E Fin A ,
+
Q:
Y
@ 3'4,AoL
ptojecti.on.
3 . 2 et 3 . 4 entrahe le corollaire suivant.
3.5 COROLLAIRE @ E
Fin A,
p:X
# PY,
+
CA d o i t
un d o m a i n e d e S t e i n . Pouh
tout
'M(X,)
a # i n d u i t un i b o m o h p h i d m e a t d e
huh
'nz@(XI . Pour Y
C # C - @ 'E
X, sur X,
Fin A on a des morphismes canoniques a, "
tels que
3.6 COROLLAIRE
4.
I
,'
(a,
)*)
soit un systgme inductive.
S u h u n d o m a i n e d e S t e i n p:X
Limite inductive de DEM.:
@(X,)
(
(
fl(XQ)
,' (0,
)*)
de
I
Y c 0
-+
CA @(X)
c 0'
E
ebt
La
Fin A .
Consgquence de 3 . 5 et 1.8.
LES PRORLEMES DE COUSIN S U R UN DOMAINE DE STEIN p:X
+
CA
soit un domaine 6tal6. On a les suites
de faisceaux 0 0
($* ( @ * I
-b
-+
o - + mv a/@
0
wy@*
0
**
-+
b*
-+
w * -+
-+
-+
est le faisceau des fonctions holomorphes
exactes
(fonctions
mgromorphes) ne s'annulant dans aucun point de X (dans aucun 02 vert non vide de X)
. Une section dans r (X,
(dans
FONCTIONS MEROMORPHES
e s t a p p e l g e u n e donnze de Couhin 1 ( C o u s i n 1 I ) s u r
r(X,%*/@*)) X.
E l l e p e u t stre r e p r e s e n t g e p a r une f a m i l l e ( U i , m i )
-
Oii
I
e s t un r e c o u v r e m e n t de X p a r d e s p o l y d i s q u e s o u v e r t s e t
(Ui)iEI
mi
27
m
j
0 (ui f~ u j )
E
(mi/m
0*(ui
E
j
0 u j ) ) . Inversement,
une
t e l l e f a m i l l e d g t e r m i n e t o u j o u r s une s e c t i o n . Une donnge de Cousin I (11) e s t d i t e tZ4oLubt.e
si elle est
u(fl*). Nous a p p e l o n s une donnce
c o n t e n u e d a n s l ' i m a g e de
de
Cousin de d i m e n s i o n a i n i e s i e l l e admet un r e p r s s e n t a n t ( U i , m i )
t e l que l e s Ui
s o i e n t des polydisques e t U I d e p F m , , i E I } soit 1
f i n i . A c a u s e d e 1 . 8 on a l e l e m e s u i v a n t .
4.1 LEi"IME
Une d o n n g e de C o u n i n k h o L u b L e enA de d i m e n h i o n
6.i
-
nie.
d e s donnges (Uilm. 1 1
de Cousin I (11) q u i a d m e t t e n t
reprcsentant
p o u r t o u t i . Evidemment
0
r (x,w@/@ @ I e t r, (x,w * / u * ) r (x,c~')*/c
X := Y x Cn-'
A.
@ F: F i n
e t cf : X
t e L que Ui
@I
q :Y
-+
@@)*I.
u n domaine c?AtaLz,
6oiA
Y n o i t La p k o j e c t i o n . A e o k n Aoute dunnee
+
de C o u s i n duns r m( Y ,/n7/@ (Ui,mi)iEI
un
l'ensemble
i
Soit
LEFVIE
c
d e p Fn
t c l que
i e I
r Q ( x lWu 4.2
(r@(X,m*/@*)) dgsigne
l ? @ ( X , m/,)
Pour 0 C A ,
7
)
ori
r @( X I % * / @ * I
u (Vi)
x
C
admet un kepkEnentanR
/I-@
e t dep
C
F
9
p o ~ tl o t d i.
"i
DEM.: Cousin I : T : x
+
p r s s e n t a n t (Vi2ni)iEI v e r t s e t ni
E fi@(Vi).
t i o n mEromorpne m
m x
i i
-
m
j
E Vi
i
a''-'
s o i t l a p r o j e c t i o n . 11 e x i s t e un re-
t e l q u e l e s Vi
s o i e n t d e s p o l y d i s q u e s ou-
3 ' a p r z s 3 . 2 chaque n i d g f i n i t une
sur U
i
:= a(Vi) x
a*-'.
fonc-
I1 f a u t d g m o n t r e r q u e
S o i t x E Ui n U Choisis 1' j * o ( x i ) = ~ ( x . =) o(x). L e segmnt 3
s o i t holomorphe s u r Ui f l U
et
{ ( u ( x ) , 7(xi)
x. E V 1 1
+
t e l s que
t ( T ( x . 1 - T ( x ~ ) ) : t E [O,I;} 3
peut S t r e recouvert
28
V.
d ' u n nombre f i n i d e s V k l
vk fl v
~ # ~B .
AURICH
-
d i s o n s Vi
P+a r c e~ q u e
- n nkV
V
L
- m
mi
consgquent
i, O ( V k
)
x
t e l que
1 '
e s t holomorphe s u r
kv+l
e s t holomornhe s u r
fv
Uk
v=l
"=l
j
v =1
= V
I
C
=
r
vklr-ivk
=
v
cA-0.
V
C o u s i n 11: a n a l o g u e .
p:X
-f
Stein
Une d o n n z e d e C o u b i n 7 h u t u n d o n i u i n e d e
4 . 4 THEOF&.IE
C A e n t aiP.noBubLe n i
e t hsuLemer~Z hi. e.kLe.
de. d i m e n s i o n
ebt
64riie.
4 .I. ijous p r o u v o n s
D ~ M .:
=3
tout
Q E F i n A,
:
@ 3 Y
t
.
~ ' a p r e s3. /1 e t 4 . 2
ona pour
u n diagramme coi-xiuta-kive
I
1 11 e n r G s u l t e le t G o r Z m e n a r c e q u e H (x@,@)
= 0,
X@ G t a n t u n e
v a r i g t i de S t e i n . 4.5
S o i t p:X
THfhREPIE
-f
(II
n un d o m a i n s d e S t e i n .
e x i s t e un domuine d e S t e i n q:S chaniofiplze a
n
E
s
x
c'-*.
+
Q , Y c A d i n i , t e L que X l o i t 2
s u p p o s o n s que H ( S x Q",z) =
IN. ALofin u n e d o n n e e d e C o u n i n 1 1
n e u L e m e n R b i eLLe DEN.:
ebt
Analogue 4 . 4 ,
On b a i t q u ' i l
YJ
Aufi
o
pout t o u ~
X s n t fiZhutubLe
b i
de d i n i e n b i o n 6 i n i e . car
H
1
( x Q r@*I
-
2
= H
(x@,z) =
o
(
[s]).
eX
29
FONCTIONS MEROMORPHES
BIBLIOGRAPHIE
V.
AURICII:
The s p e c t r u m as e n v e l o p e of holomorphy o f
a
domain over a n a r b i t r a r y p r o d u c t of complex l i n e s . P r o c e e d i n g s on i n f i n i t e d i m e n s i o n a l holomorphy, p . 1 0 9 , S p r i n g e r L e c t u r e Notes 364. H.
BEHNKE, P. THULLEN: T h e o r i e der F u n k t i o n e n
mehrerer
k o m p l e x e r V e r a n d e r l i c h e n . S p r i n g e r 1970. G.
ZOEURE:
A n a l y t i c f u n c t i o n s and m a n i f o l d s i n
dimensional s p a c e s . North-Holland S . DINEEN:
infinite
1974.
C o u s i n ' s f i r s t problem on c e r t a i n l o c a l l y
con-
v e x t o p o l o g i c a l vector s p a c e s . M a t h e m a t i c s Resear& R e p o r t No.
75-2,
January 1975, U n i v e r s i t y
of
Maryland. L . HORMANDER:
An i n t r o d u c t i o n of complex a n a l y s i s i n
sevg
r a l v a r i a b l e s . Van N o s t r a n d . H.
KNESER: E i n S a t z bber d i e M e r o m o r p h i e b e r e i c h e
analy-
t i s c h e r F u n k t i o n e n von m e h r e r e n V e r a n d e r l i c h e n . Math. Ann. 1 0 6 , p . 648-655. J.P.
RAMIS: Sous-ensembles a n a l y t i q u e s d ' u n e v a r i g t d banac h i q u e complexe. S p r i n g e r 1970.
M.
SCHOTTENLOHER: D a s L e v i p r o b l e m i n u n e n d l i c h d i m e n s i o n a l e n Rxumen m i t S c h a u d e r z e r l e g u n g . Munchen 1974.
Habilitationsschrift
This Page Intentionally Left Blank
Infinite Dimensional Holomorphy and Applications, Matos (ed.) 0 North-Holland Publishing Company, 1977
ON HOLOMORPHY VERSUS LINEARITY
I N CLASSIFYING LOCALLY CONVEX SPACES
By
J O R G E ALBERT0 BARROSO , MARIO C . MATOS
and
LEOPOLDO NACHBIN
1.
INTRODUCTION
I n t h e l i n e a r t h e o r y of l o c a l l y convex s p a c e s , c l a s s i c a l t o study bornological , b a r r e l e d , i n f r a b a r r e l e d
it is and
Mackey s p a c e s . I n t h e holomorphic approach , t h e corresponding concepts have been i n t r o d u c e d r e c e n t l y a s holomorphically bornologi c a l , ho lomorphica 1l y b a r r e l e d , ho lomorph i c a l l y i n f r ab a r r e l e d and holomorphically Mackey s p a c e s , t h a t a r e more restrid_ ed c l a s s e s t h a n t h e corresponding l i n e a r ones. I n t h i s reasonably self-contained,
e x p o s i t o r y paper, w e p r e s e n t some
basic
r e s u l t s i n such a s t u d y . L e t us i n t r o d u c e t h e following a b b r e v i a t i o n s f o r
pro
p e r t i e s of a complex l o c a l l y convex s p a c e : B = B a i r e , S =Silva,
sm
=
semirnetrizable, hba = holomorphically b a r r e l e d , hbo = ho-
lomor ph i ca 1l y bo r no 1o g i ca 1, h i b = ho 1om0rph i ca 1l y i n f mbarreled ,
31
BARROSO, MATOS
32
hM = h o l o m o r p h i c a l l y Mackey
. We
& NACHBIN
have t h e f o l l o w i n g i m p l i c a t i o n s
f o r t h e named p r o p e r t i e s :
B\hba S s h b o > h i b
-3hm
sm t h a t c o r r e s p o n d t o c l a s s i c a l o n e s d e a l i n g w i t h c o n t i n u o u s linear mappings, i n p l a c e o f h o l o m o r p h i c mappings. An i n t e r e s t i n g h i a h l i g h t i s t h e holomorphic Banach-Steinhaus theorem
on
a
F r 6 c h e t s p a c e , t h a t c o n t a i n s a s a p a r t i c u l a r c a s e t h e classical l i n e a r Banach-Steinhaus
theorem o n s u c h a s p a c e .
W e s h a l l u s e f r e e l y t h e n o t a t i o n and t e r m i n o l o g y [8];
see a l s o t h e r e f e r e n c e s g i v e n t h e r e . L e t u s make a
r e v i e w o f what w i l l b e needed h e r e . U n l e s s s t a t e d
of brief
,
otherwise
w e s h a l l a d h e r e t o t h e f o l l o w i n g c o n v e n t i o n s . E and F
denote
complex l o c a l l y convex s p a c e s ; and U i s a nonvoid open
subset
o f E . The s e t of a l l c o n t i n u o u s seminorms o n E i s d e n o t e d CS(E)
. We
by
d e n o t e by Ea t h e v e c t o r s p a c e E seminormed by a .
We
r e p r e s e n t by wF t h e weakened s p a c e F , t h a t i s , t h e v e c t o r space F endowed w i t h t h e weak t o p o l o g y o ( F , F ' ) d e f i n e d on F by F'
.
I f I i s a s e t and F i s a seminormed s p a c e , w e d e n o t e by l m ( I ; F ) t h e seminormed s p a c e o f a l l bounded mappings o f I i n t o F ;
and
by c o ( I ; F ) t h e seminormed s u b s p a c e o f a l l mappings o f I i n t o F t e n d i n g t o 0 a t i n f i n i t y . A mapping f : U i f 6 o f i s l o c a l l y bounded f o r e v e r y 6
+
E
F i s amply bounded
CS(F) : more g e n e r a l -
l y , a c o l l e c t i o n o f mappings o f U i n t o F i s amply bounded the collection B o W e d e n o t e by
8 (U;F)
if
i s l o c a l l y bounded f o r e v e r y B E C S ( F ) .
t h e v e c t o r s p a c e o f a l l holomorphic
map
019 HOLOMORPHY
VERSUS L I N E A R I T Y
p i n g s o f U i n t o F ; and by H ( U ; F )
33
t h e v e c t o r s p a c e of a l l
map-
p i n g s o f U i n t o F which are h o l o m o r p h i c when c o n s i d e r e d a s map p i n g s of U i n t o a f i x e d c o m p l e t i o n t h e a d j e c t i v e holomorphic r e f e r s t o f: U
I
f
-t
E
o f F. U n s p e c i f i e d u s e
%,
of
not t o H. W e say t h a t
F i s a l g e b r a i c a l l y holomorphic i f t h e r e s t r i c t i o n
(U f l
S)
i s h o l o m o r p h i c , f o r e v e r y f i n i t e d i m e n s i o n a l vector
s p a c e S o f E m e e t i n g U , where S c a r r i e s i t s n a t u r a l t o p o l o g y .
To t h e
On f u n c t i o n s p a c e s from U i n t o F , w e r e p r e s e n t by
pology of u n i f o r m c o n v e r g e n c e o n compact subsets; and by
to-
zof
t h a t f o r f i n i t e d i m e n s i o n a l compact s u b s e t s o n l y . When F = C it i s not included i n t h e notation €or function spaces;
z(U)s t a n d s 2.
for
,
thus
@(U;C).
HOLOMORPHICALLY BORNOLOGICAL SPACES
DEFINITION 1.
A given E
i n a "hoPomohphicaLLy b o h n o P o g i c a l
bpacel' id, d o h e v e h y U a n d e v e h y F, we h a v e t h a t e a c h m a p p i n g f: U
-t
FbePangb t o
E ( U ; F ) LA l a n d u l w a y n o n l y id) f
b t r a i c a L l y h o l u m o t p h i c , avid f 4e.t
i 4
ii6
alge-
bounded o n evehy compact
4ub-
o h u.
R e m a r k 4 b e l l o w m o t i v a t e s t h e above d e f i n i t i o n , b u t w e need the
f o l l o w i n g p r e l i m i n a r y m a t e r i a l which i s known.
LEMMA 2 .
F o h a g i v e n E, t h e 6 o l L o w L n g c o n d i . t i o n h
ahe e q u i v a -
Len.t: (Ib) .to
F o h e v e h y F, me h a v e . t h a t e a c h m a p p i n g f : E &C(E;F)
-f
F belong4
id l a n d a L w a y a v n L y id) f io L i n e a h , a n d f ia bound
34
BARROSO, MATOS & NACHBIN
ed o n e v e h y b o u n d e d 4 u b 4 e t a d E .
Fox evehy F , w e h a v e t h a t e a c h m a p p i n g f : E
(Ic) t o
&,(E;F)
.id
( a n d a t w a y s o n R g id) f
ed o n e v e h y cornpacR 4 u b 4 e . t
a i s bounded o n
E a c h seminohm
(2c)
id)
a i h bounded o n
PROOF.
F
Linea4, and f
belongs i d
bound -
E.
E a c h beminohm a o n E i c l c o n t i n u o u d id
[2b)
id)
06
i 4
-f
( a n d aLways
onLy
evehy bounded 4ub4e.t o d E. c1
on E
i 4
continuoun
id ( a n d a t w a y h
ontg
evehy c o m p u c t s u b s e t o d E .
W e s h a l l p r o v e t h e f o l l o w i n g imp1 i c a t i o n s
. This
( l c ) =>
(lb)
( l b ) =>
(2b). L e t
i s clear. c1
b e a seminorm o n E t h a t i s bounded
on e v e r y bounded s u b s e t o f E . P u t F = E a . f = I: E
-f
The i d e n t i t y mapping
F i s l i n e a r , and f is bounded on e v e r y bounded sub-
s e t of E . By ( l b ) , f i s c o n t i n u o u s . T h u s , a i s c o n t i n u o u s . ( 2 b ) =>
( 2 c ) . L e t a b e a seminorm on E t h a t i s bounded
on e v e r y compact s u b s e t o f E . W e c l a i m t h a t a i s bounded
on
e v e r y bounded s u b s e t X of E . I n f a c t , l e t xm E X ( m E IN) b e ag b i t r a r y . F o r any Am E C (m E E?) s u c h t h a t A m
A mxm
-+
0, a s m
-f
m.
Then,
c1
+
0 , w e have t h a t
i s bounded on {Amxm: m
E IN}
,
sirce
t h i s s u b s e t t o g e t h e r w i t h 0 i s compact: t h a t i s , { A m a(m);mElN}
i s bounded. W e deduce t h a t { a ( x m );m E IN} i s a l s o bounded, since (A,)
i s a r b i t r a r y . Thus a ( X ) i s bounded, b e c a u s e
o n e v e r y d e n u m e r a b l e subset of X . By ( 2 b ) ,
c1
c1
i s bounded
is c o n t i n u o u s .
35
ON HDLOIORPHY V E W U S LINEARITY
( 2 c ) --->
.
(lc) L e t f : E
+
F b e l i n e a r and bounded o n ev-
e r y compact s u b s e t o f E . I f 6 E CS(F) , t h e n 6 o f i s a
semi-
norm on E t h a t i s bounded o n e v e r y compact subset o f E .
By
( 2 c ) I (3 o f i s c o n t i n u o u s . Thus f is c o n t i n u o u s , s i n c e 6 i s a g
bitrary
. The p r o o f c a n a l s o b e c a r r i e d o n w i t h t h e same r e a s o g
i n g , by r e v e r s i n g the a r r o w s . QED The f o l l o w i n g d e f i n i t i o n i s c l a s s i c a l , p a r t i c u l a r l y i n terms o f ( l b ) or ( 2 b ) .
DEFINITION 3 . isdieb
A g i v e n E is a " b o a n o E u g i c a L space"
t h e tqu.ivatent conditions
REMARK 4 .
D e f i n i t i o n 1 was
06
.id it
Lemma 2 .
formulated i n analogy t o D e f i n i -
t i o n 3 t h r o u g h ( l c ) I r a t h e r t h a n ( l b ) , o f Lemma 2 . The
i s t h a t each f
E
sat -
reason
(U;F) i s a l w a y s bounded o n e v e r y compact
subset o f U; w h e r e a s it may o c c u r t h a t some f bounded o n some bounded s u b s e t o f E (see [ 7 ] a s a consequence of t h e J o s e f s o n
-
,
i s un-
E
(E)
p.28)
. Actually,
Nissenzweig theorem
[5]
,
it i s known t h a t , i f E i s a n i n f i n i t e d i m e n s i o n a l normed
IIlO],
s p a c e , a n d X C E h a s a non v o i d i n t e r i o r , t h e r e i s some f E
8 (E)
which i s unbounded o n X (see [ 5 ] ) .
PROPOSITION 5 .
A h o l o m a a p h i c a t L y b o a n o t o g i c a L d p a c e E 0 &no
a bohnoLogicaL s p a c e .
PROOF.
I t s u f f i c e s t o compare D e f i n i t i o n s 1 and 3 , by
using
( l c ) o f Lemma 2 , and by r e m a r k i n g t h a t a l i n e a r mapping i s a l g e b r a i c a l l y h o l o m o r p h i c . QED
36
BARROSO, MATOS
PROPOSITION 6 .
&
NACHBIN
A bemimethizabf?e Apace E i n a ho~omohphicak!.ty
b o h n o l o g i c a l 6 pa c e..
PROOF.
Let f: U
-f
F b e a l g e b r a i c a l l y h o l o m o r p h i c , and bound-
ed on e v e r y compact s u b s e t o f U. S i n c e E i s s e m i m e t r i z a b l e , i t f o l l o w s t h a t f i s amply bounded. Hence f E
%$ (U;F), b e c a u s e
f
i s a l g e b r a i c a l l y h o l o m o r p h i c and amply bounded. QED
REMARK 7 .
P r o p o s i t i o n s 5 and 6 imply t h e known f a c t t h a t
a
semimetrizable space E i s a bornological space. The f o l l o w i n g i s a by now known d e f i n i t i o n .
E
=
'm
U
Em
E IN
and t h a t E c a h h i e o t h e i n d u c t i v e l i m i t t o p o l o g y .
REMARK 9 .
A S i l v a s p a c e i s known t o b e e s s e n t i a l l y t h e
t h i n g a s t h e d u a l of a F r z c h e t - S c h w a r t z s p a c e , o r FS-space s h o r t ; t h u s i t i s a l s o known a s a DFS-space.
More
same for
explicitly,
t h e s t r o n g d u a l s p a c e of a F r s c h e t - S c h w a r t z s p a c e a S i l v a space; t h e s t r o n g d u a l s p a c e of a S i l v a space i s a Frzchet-Schwartz s p a c e ; and b o t h S i l v a s p a c e s and F r g c h e t - S c h w a r t z s p a c e s reflexive.
are
ON tIOLOPlORPIIY VERSUS LINEARITY
A S i l v a space
PROPOSITION 1 0 .
E
ih
37
a holomuhphicaLLy bohno-
logical Apace. The p r o o f w i l l r e s t o n t h e f o l l o w i n g lemma.
L e t E b e a c o m p e e x w e c t o h h p a c e , Em a c o m p l e x Loco..&
LEMMA 11.
l y c a n v e x s p a c e , p,
: Em
+
E u Eiiieaa m a p p i n g , and
a c o m p a c t Lineah t n a p p i n g s u c h t h a t p,
= P,,~
o a m f o r m E IN.
A s ~ u m et h a t
und endow E w i t h t h e i n d u c t i v e L i m i t t o p v e o g y . l e t U c E a p e n . P u t Um = p,-1 ( U )
,
and ahhume t h a t Uo
and Um ahe n o n v o i d d o & m s p a c e and f : U
then f
F,
8Ej (u,;F)
E
f o ,p
->
E IN.
i(uh
E
16 F
be
i s non-void; hence
i n a conipeex k o c u l l y
% (U;F) id and o n l y id
f
conwex E
m
evehy m E IN.
As-
N e c e s s i t y b e i n g c l e a r , l e t us p r o v e s u f f i c i e n c y .
PROOF.
U
sume t h a t f m E Z ( U m ; F ) f o r e v e r y m
€ IN.
W e claim t h a t f is a l
g e b r a i c a l l y h o l o m o r p h i c . I n f a c t , l e t S b e a f i n i t e dimensional vector subspace of E, w i t h U 0 S
= S . Thus,
p,
E
1
a
and
i s a v e c t o r s p a c e isomorphism b e t w e e n Sm
and S . W e h a v e p m ( U m S i n c e f,
E IN
o f Em, o f same d i m e n s i o n a s S , s u c h t h a t
v e c t o r s u b s p a c e S, p,(S,)
# g. T h e r e a r e m
(umnsm)
Sm) = U E
n S.
%(urn n s,;
8 ( U fl S ; F) b e c a u s e p,
I n p a r t i c u l a r , U, /I Sm# g.
F) , i t f o i i o w s t h a t f
is a homeomorphism b e t w e e n S,
j
(uns)
and S ,
where Sm and S c a r r y t h e i r n a t u r a l t o p o l o g i e s . Thus, t h e f i r s t c l a i m i s t r u e . I d e n e x t c l a i m t h a t f is amply bounded. I t
is
enough t o t r e a t F a s b e i n g seminormed. W e may assume t h a t 0 E U,
38
BARROSO, MATOS
% . NACHBIN
and i t s u f f i c e s t o show t h a t f i s l o c a l l y bounded a t 0 . S i n c e f o i s l o c a l l y bounded a t 0 , choose a convex neighborhood V, 0 in U
0
of
s u c h t h a t a o ( V o ) h a s a compact c l o s u r e i n El c o n t a i n e d h e n c e p o ( V o ) c U , and s u c h t h a t
i n U1,
f o r some M
E
IR. A s s u m e t h a t , f o r some m E IN, w e h a v e d e f i n e d
a convex neighborhood Vm o f 0 i n Urn s u c h t h a t om(Vm) h a s a co_m p a c t c l o s u r e i n Em+l c o n t a i n e d i n
hence pm(Vm)
C U,
and
such t h a t
t h i s i s i n d e e d t h e case f o r m = 0 , by ( 1 ) .S i n c e fm+l i s l o c a l l y bounded a t t h e c l o s u r e o f u m ( V m ) i n Em+l, h e n c e
uniformly
c o n t i n u o u s t h e r e , and s u c h a c l o s u r e i n convex, u s e ( 2 ) choose a convex neighborhood Vm+l
of t h a t c l o s u r e , hence of 0 ,
s u c h t h a t U ~ + ~ ( V , + ~h )a s a compact c l o s u r e i n Em+2 con
in
tained i n
hence P , + ~ ( V , + ~ ) t U , and s u c h t h a t SUP {
II
fm+l(X)
w e also have p m ( V m ) c pm+ fVm+l). letting
P r o c e e d i n g i n t h i s way and
w e g e t a neighborhood V o f 0 i n U s u c h t h a t every x f
to
E
and f,
f(x)11
< M
V . Hence t h e s e c o n d claim i s t r u e . I t f o l l o w s
E %;(U;F).
REMARK 1 2 .
11
for
that
QED
I t i s known t h a t Lemma 11 i s t r u e i f w e r e p l a c e f
b e i n g holomorphic by them b e i n g c o n t i n u o u s ; b u t Lemma 11
39
ON HOLOMORPHY VERSUS L I N E A R I T Y
i s f a l s e i f w e r e p l a c e f and f m b e i n g h o l o m o r p h i c by them
b e i n g amply bounded, a s w e see even when E = C(N)
REMARK 1 3 .
and F = C.
I t c a n b e s e e n t h a t , i n Lemma 11, E i s
neces-
s a r i l y a S i l v a space. PROOF OF PROPOSITION 1 0 . n i t i o n 8. L e t f : U
+
C o n s i d e r t h e s e q u e n c e (Em) o f D e f i -
F b e a l g e b r a i c a l l y h o l o m o r p h i c , and bound
e d on e v e r y compact subset o f U . S e t Urn = U
g,
t h a t Uo # g, h e n c e Um #
n Em;
w e may assume
f o r a l l m E p7. Then f
Um i s a l g e -
b r a i c a l l y h o l o m o r p h i c , and bounded o n e v e r y compact subset Um.
By P r o p o s i t i o n 6 , f
Um i s holoinorphic f o r e v e r y
of
m E IN.
By Lemma 11, f i s h o l o m o r p h i c . QED
REMARK 1 4 .
i f Ei
Lemma 11 is a r e m i n i c e n s e o f t h e known f a c t t h a t ,
( i E I ) i s any f a m i l y o f l o c a l l y convex s p a c e s , E
vector space, pi:
Ei
-f
E ( i E I) i s a l i n e a r mapping,
endowed w i t h t h e i n d u c t i v e l i m i t t o p o l o g y , and F i s a convex s p a c e , t h e n a l i n e a r mapping f: E and o n l y i f f o p i :
Ei
+
+
a
is E
is
locally
F is c o n t i n u o u s
if
F is c o n t i n u o u s for e v e r y i E I.Lemia
11 may b r e a k down i n o b s e n c e o f c o m p a c t n e s s
( s e e Example
18
below) or d e n u m e r a b i l i t y (see Example 20 below) c o n d i t i o n s .
REMARK 1 5 .
P r o p o s i t i o n 10 i s a r e m i n i s c e n s e of
the
known
f a c t t h a t any i n d u c t i v e l i m i t o f b o r n o l o g i c a l s p a c e s i s a b o r n o l o g i c a l s p a c e . A d e n u m e r a b l e i n d u c t i v e l i m i t whose connecti?g mappings u a r e n o t compact (see Example 1 8 below)
,
o r a non-dg
numerable i n d u c t i v e l i m i t w i t h compact c o n n e c t i n g mappings
(see Example 20 below)
,
cs
of holomorphically bornological spaces
may f a i l t o b e a h o l o m o r p h i c a l l y b o r n o l o g i c a l s p a c e .
40
BARROSO, MATOS
PROPOSITION 1 6 .
16 E . i b a h o l o m o t p h i c a C l y buanologicai? b p a c e ,
@ (U;F)
then F
i h
& NACHBIN
id
carnpLete doh. t h e campact-open t o p d o g y -r0
campeete.
i h
d
PROOF. f: U
@ (U;F) b e t h e v e c t o r s p a c e o f a l l mappings
Let
+
F which are a l g e b r a i c a l l y h o l o m o r p h i c a l l y h o l o m o r p h i c d
and bounded o n t h e compact s u b s e t s o f U . Then p l e t e f o r t h e compact-open t o p o l o g y
T
~
(U;F) i s com-
s, i n c e F i s c o m p l e t e .
Since E i s a holomorphically bornological space, then a ( U ; F ) = N
= % ( U ; F) a l g e b r a i c a l l y and t o p o l o g i c a l l y . QED
I t i s known t h a t , i f F i s a b o r n o l o g i c a l s p a c e
REMARK 1 7 .
& (E;F)
then ogy
,
,
i s c o m p l e t e f o r t h e s t r o n g , o r compact-open,tapol-
i f F i s c o m p l e t e . P r o p o s i t i o n 1 6 c o r r e s p o n d s t o t h e sec-
ond h a l f o f t h i s r e m a r k .
L e t Xo b e a s e p a r a t e d i n f i n i t e d i m e n s i o n a l mmplex
EXAMPLE 1 8 .
l o c a l l y convex s p a c e . I t i s known t h a t a n %-bounding o f Xo
subset
( t h a t i s , a s u b s e t of Xo on which e v e r y member o f f $ ( X o )
i s bounded) h a s a n empty i n t e r i o r [ 5 ] . T h e r e f o r e , i f Xo i s me-
t r i z a b l e , t h e r e i s a s e q u e n c e y,
E
(m = 1,2,
e(Xo)
t h a t , g i v e n any neighborhood V o f 0 i n Xo
,
where Xm = C ( m = 1,2,...).
i f x = (xm) mEN
E E.
C
' m=O m
I
Define f : E
If we let
-+
such
t h e n some gm is un-
bounded on V . C o n s i d e r t h e t o p o l o g i c a l d i r e c t sum E =
. ..)
C by
ON HOLOMORPHY VERSUS L I N E A R I T Y
Em =
41
Xo @. ..@Xm
and c o n s i d e r it a s a v e c t o r s u b s p a c e o f E l t h e n f l E m E
8$
(Em)
f o r m E IN. N o t i c e t h a t e a c h Em i s m e t r i z a b l e , and e v e n normable i f Xo i s normable. We claim t h a t f i s n o t l o c a l l y bounded a t 0 . I n f a c t , i f V i s a n e i g h b o r h o o d o f 0 i n Xo and
1,2,,..,
xo
E~
m =
> 0 €or
d e f i n e W a s t h e set o f a l l x = (xmImElNE E s u c h
E V and
that
.
lxml 5 ~ ~ ( m = 1 , 2 , .. ) . IT w e c h o o s e k s o t h a t gk
is
unbounded on V , t h e n f i s unbounded on t h e s e t o f a l l x E E w i t h xo E V, xk = ck, and xm = 0 f o r m
1, m
#
k; t h u s f
is
S i n c e a l l s u c h W form a b a s i s o f n e i g h b o r h o o d s
unbounded o n W .
o f 0 i n E l o u r c l a i m i s p r o v e d . Hence f f
&:(El
. This
shows
t h a t Lemma 11 b r e a k s down i f t h e sm a r e assumed t o b e l i n e a r and c o n t i n u o u s , b u t n o t compact, a l t h o u g h d e n u m e r a b i l i t y o f the f a m i l y i s p r e s e r v e d . Such an example a l s o shows t h a t a
denu-
merable i n d u c t i v e l i m i t E of holomorphically bornologicalspaces Em (m E IN) may f a i l t o b e a h o l o m o r p h i c a l l y b o r n o l o g i c a l
space.
I n f a c t , f i s a l g e b r a i c a l l y h o l o m o r p h i c on E ; and it i s bounded on t h e compact s u b s e t s o f E l s i n c e e a c h s u c h s u b s e t i s cont a i n e d i n some Em. However, f
8 (E) .
?j
Thus, E i s n o t a h o l o -
morphically bornological space. Actually,
@ ( E l i s n o t complete,
dir even s e q u e n t i a l l y c o m p l e t e , f o r t h e compact-open t o p o l o g y
To. To
see t h i s , it i s enough t o
ntroduce t h e truncated f u n s
d e f i n e d by
tion f k E %(E)
k
c
fk(X) =
gm x 0 ) x m
m=l for k = 1 , 2 , .
s e t of E as k
.; -+
since f k
m,
+
f u n i f o r m l y on e v e r y compact
but f $ %(E),
not s e q u e n t i a l l y complete f o r
w e conclude t h a t % ( E l
TO.A c t u a l l y ,
subis
i f w e look a t
E
42
BARROSO, MATOS
NACHBIN
&
as E = X
Q: (IN
x
0
,
w e see t h a t E is a b o r n o l o g i c a l s p a c e , a s t h e C a r t e s i a n produ c t o f two b o r n o l o g i c a l s p a c e s . Hence, a b o r n o l o g i c a l s p a c e may f a i l t o b e a h o l o m o r p h i c a l l y b o r n o l o g i c a l s p a c e . W e
also
see t h a t a C a r t e s i a n p r o d u c t o f two h o l o m o r p h i c a l l y b o r n o l o g i c a l s p a c e s may f a i l t o b e a h o l o m o r p h i c a l l y b o r n o l o q i c a l s p a c e .
We s h a l l need t h e f o l l o w i n g lemma i n Example 20 below.
l e t E be
LEMMA 1 9 .
dimenbion
i b
at
a compRex v e c t o f i
leUbt
b p U C e UJhobc?
(algebfiaicl
equaR t o t h e c o n t i n u u m . Endow E w i t h it.5
LatLgebt RocaRRy c o n v e x t o p o l o g y . 7 h e n t h e h e i n a 2-homogeneoub p o l y n o m i a l P: E
+
C w h i c h i6 n o t c o n t i n u o u s .
,
L e t B b e a b a s i s f o r E . S i n c e B is i n f i n i t e
FIRST PROOF.
t h e r e i s a set S o f f u n c t i o n s s : B
+
IN s u c h t h a t S h a s t h e pow_
er o f t h e continuum; and s u c h t h a t , f o r e v e r y f u r c t i o n t:3 t h e r e i s some s E S f o r which s
5
+
B+,
c t i s f a l s e f o r a l l c E IR+.
I n f a c t , f i x a n i n f i n i t e d e n u m e r a b l e s u b s e t I o f B , and c a l l S t h e set of a l l functions s: B Then S h a s t h e power o f e v e r y t: B
-t
+
IN v a n i s h i n g o f f t h a t s u b s e t .
18, that
IR+ , w e c a n f i n d s
i s , o f t h e continuum. For E S
such t h a t s
5
c t is f a l s e
on I , h e n c e on B , f o r a l l c E B+ . S i n c e t h e power o f B
is a t
l e a s t e q u a l t o t h e continuum, t h e r e i s a s u r j e c t i v e mapping b E B
+
sb E S . D e f i n e
f o r bl,b2 E B;
then
43
ON HOLONORPHY VERSUS LINEARITY
r(b2,bl)
= r(bl,b2)
W e c l a i m t h a t t h e r e is no t: B t ( b l ) . t ( b 2 ) f o r a l l bl,b2 choose s E S s u c h t h a t s
bl
E B.
Sbl
-+
(b21
2
0.
lR+ s u c h t h a t
r(bl,b2)
5
I n f a c t , i f t did e x i s t , we a u l d
5 c t is
f a l s e f o r a l l c E IR+.
Let
.
so t h a t s = sb Then s ( b 2 ) = sb ( b 2 ) 5 r ( b l , b 2 ) 5 1 1 t ( b l ) . t ( b 2 ) f o r a l l b 2 E B; t h u s s 5 c t i f c = t ( b l l , a c o n t r a E B
d i c t i o n . Now, d e f i n e t h e s y m m e t r i c b i l i n e a r form A: E L
f o r x1,x2 E E l where b
x
E E
*
+
C
by
i s t h e l i n e a r form o n E which t o every
a s s o c i a t e s i t s b-component by B ,
i s f i n i t e . L e t t h e 2-homogeneous
i f b E B ; t h e above sum
p o l y n o m i a l P: E
+
Q: b e g i v e n
by P(x) = A ( x , x ) f o r x E E . W e c l a i m t h a t P i s n o t c o n t i n u o u s . O t h e r w i s e , A would b e c o n t i n u o u s t o o , t h a t i s , w e would h a v e a seminorm
c1
I 5 a(x,) .a(x2)
for all
B and x2 = b 2
B , w e would
on E such t h a t ]A(x1,x2)
x1,x2 E E . Then, l e t t i n g x1 = bl get r(bl,b2)
E
5 cl(bl) .ci(b2) f o r a l l b l , b 2
E B,
E
a contradiction.
QED
SECOND PROOF.
L e t X b e a n i n f i n i t e d i m e n s i o n a l complex vector
s p a c e , and Y b e i t s ( a l g e b r a i c ) d u a l s p a c e . A s s u m e f i r s t l y t h a t E = X x Y . L e t P: E
-+
C b e t h e 2-homogeneous p o l y n o m i a l defined
by P ( x , y ) = y ( x ) f o r a l l x E X I y E Y . W e claim t h a t P is
not
c o n t i n u o u s i f E i s g i v e n i t s l a r g e s t l o c a l l y convex t o p o l o g y . I n f a c t , assume t h a t P i s c o n t i n u o u s . Now, t h e l a r g e s t l o c a l l y convex t o p o l o g y o n E i s t h e C a r t e s i a n p r o d u c t o f t h e l a r g e s t l o c a l l y convex t o p o l o g i e s o n X and Y ; and P i s a b i l i n e a r form
44
EARROSO, XATOS & NACHBIN
on X and P on Y s u c h t h a t
on X x Y . Then, t h e r e a r e seminorms
LY
IP(x,y) I
y E Y . Once t h e seminorm a
5 a(x) .B(y)
for a l l x
E X,
i s g i v e n , and X i s i n f i n i t e d i m e n s i o n a l , t h e r e i s a l i n e a r form
b on X which i s n o t c o n t i n u o u s f o r a. However I b ( x ) I < c . a ( x ) f o r a l l x E X, where c =
=
IP(x,b)l
6 ( b ) , showing t h a t b i s conti
nuous f o r a , a c o n t r a d i c t i o n . Hence, P i s n o t c o n t i n u o u s . Comi n g back t o any E, i n o r d e r t o f i n i s h t h e p r o o f , w e a r g u e t h a t i t i s enough t o prove t h e lemma when t h e dimension o f
is
E
e q u a l t o t h e continuum; i n f a c t , t h e g e n e r a l c a s e r e d u c e s
to
t h i s o n e b e c a u s e E i s a d i r e c t sum o f t w o v e c t o r s u b s p a c e s , one of which h a s dimension e q u a l t o t h e continuum.
NOW,
if
the
above X h a s a n i n f i n i t e denumerable dimension, t h e c o r r e s p n i i i n g Y h a s dimension e q u a l t o t h e continuum; h e n c e X x Y h a s dimen-
s i o n e q u a l t o t h e continuum t o o . QED
EXAMPLE 20.
L e t E b e a complex v e c t o r s p a c e whose dimension
i s a t l e a s t e q u a l t o t h e continuum. Endow E w i t h i t s l a r g e s t l o c a l l y convex t o p o l o g y ; E i s t h e i n d u c t i v e l i m i t o f i t s
i t e d i m e n s i o n a l v e c t o r s u b s p a c e s . By Lemma 1 9 , l e t f : E
fin+
C be
a 2-homogeneous polynomial which i s n o t c o n t i n u o u s . For e v e r y f i n i t e d i m e n s i o n a l v e c t o r s u b s p a c e X o f E , it is c l e a r t h a t f IX
E
%(XI.
However, f E B ( E ) .This shows t h a t Lemma 11 breaks
down i n a b s e n c e of d e n u m e r a b i l i t y o f t h e f a m i l y , a l t h o u g h comp a c t n e s s o f t h e c o n n e c t i n g mappings o i s p r e s e r v e d . Such example a l s o shows t h a t a non-denumerable i n d u c t i v e l i m i t
an of
h o l o m o r p h i c a l l y b o r n o l o g i c a l s p a c e s may f a i l t o b e a holomorpk i c a l l y b o r n o l o g i c a l s p a c e , even i f t h e c o n n e c t i n g mappings a r e compact.
u
45
ON HOLOMORPH Y VE RS U S L I N E A R I T Y
REMARK 2 1 .
I n Example 1 8 , i f Xo i s n o t normable, t h e n
every
bounded s u b s e t of X h a s an empty i n t e r i o r . I n t h i s c a s e , gm may be chosen t o b e a c o n t i n u o u s l i n e a r form. Thus, f
a
is
2-homogeneous p o l y n o m i a l . T h i s i s t o b e compared t o Example 20, where f i s a l s o a 2-homogeneous p o l y n o m i a l . The f o l l o w i n g
ex-
ample is t h e n i n o r d e r ( b u t X c o u l d n o t b e a m e t r i z a b l e l o c a l l y convex s p a c e which is n o t a normable s p a c e , i n i t ) .
EXAMPLE 22.
W e now show t h a t E may f a i l t o b e a h o l o m o r p h i c a l
l y b o r n o l o g i c a l s p a c e , and y e t have t h e f o l l o w i n g p r o p e r t y : f o r e v e r y U and e v e r y F, w e h a v e t h a t e a c h polynomial f : E is continuous i f
p a c t s u b s e t of
+
F
( a n d always o n l y i f ) f i s bounded o n e v e r y m
u.
I n f a c t , l e t X be a n i n f i n i t e d i m e n s i o n a l o q
p l e x normed s p a c e Y = C ( N )
and E = X x Y . L e t f : E
+
F be a pg
l y n o m i a l t h a t i s bounded on e v e r y compact s u b s e t of U .
It
is
enough t o t r e a t F as b e i n g seminormed, and U a s b e i n g V
x W
,
where V C X I W
cY
a r e open and non-void.
W e w r i t e , f o r x E X,
Y E y,
f(x,y) =
c
ga(x)ya
a
u n i q u e l y , where a i s any s e q u e n c e of p o s i t i v e i n t e g e r s a l l b u t f i n i t e l y many o f which are z e r o , and each g a : X nomial. I f y
F i s a poly-
-
X -+ F by by f ( x ) = f ( x , y ) for Y' Y Hence x E X . Each ga i s a f i n i t e l i n e a r c o m b i n a t i o n of t h e f Y' ga i s bounded on e v e r y compact s u b s e t of V . S i n c e X i s a normed E
Y,
define f
+
s p a c e , t h e n ga i s c o n t i n u o u s on X , h e n c e bounded on e v e r y born+ ed subset of X. S e t
ca = SUP{II g c l ( x )II and
E
b e a sequence
Em
> 0
:
I I X l I I
1)
( m E IN) s u c h t h a t
BARROSO, MATOS
46
11 5 11 f(x,y) 11 5
then
1 and Iyml
x
5
E~
&
NACHDIN
f o r e v e r y m E IN imply t h a t
1, t h a t i s , f is bounded on a neighborhood f o r 0
i n E . Hence, f i s c o n t i n u o u s . We now show i n Example 26 below t h a t i t is n o t
t o u s e only F
= C i n Definition
emugh
1; see however P r o p o s i t i o n s 5 4
and 76 below. To t h i s e n d , w e s h a l l need t h e f o l l o w i n g r e s u l t s .
A*(il,..
.,im)= A ( e i , .. .,e i 1
d o t ill
...,imE
I , w h e h e m E IN. T h e n A,
E
m
m c o ( I 1;
i n pahtieu-
v a n i h h e b o d d a denurnetabee A u b o e t 0 6 Im.
h h , A,
F o r m = 0 , t h e lemma i s t r u e , s u b j e c t t o t h e conven
PROOF.
t i o n that co(Io) i s reduced t o 0 . L e t m > 1. I n case m sumed t h a t t h e lemma i s t r u e for m-1 x1
, .. .,xm E
(1)
A(xlf
E,
..
2, a s
t o a r g u e by i n d u c t i o n . I f
then -
.,Xm)
c
2
-
A*(il,..
i l l. . . , i m E I
.,im)
xli
. . . xm i
m
where t h e series i s c o n v e r g e n t by p a r t i a l summation o v e r
all
f i n i t e subsets of Im t h a t a r e C a r t e s i a n p r o d u c t s . W e must prove t h a t , f o r every
E
. ..,im) I 1.
IA, (ill
> 0 , t h e s e t of t h e ( i l l. E
. .,i,)
E I
m
f o r which
h a s t o b e f i n i t e . Assume t h a t t h i s s e t
is
ON HOLOMORPHY VERSUS LINEARITY
i n f i n i t e f o r some
. Let
E
t h e n ( i l n , ...,imn) € Imbe
d i s t i n c t , and s u c h t h a t \ A * ( i l n , . . . , i m n ) l F o r each f i x e d h
=
1,.
47
.. , m ,
E
pairwise
f o r n=1,2,.
w e must h a v e t h a t ihn+
.. .
as n
meaning t h a t e v e r y f i n i t e s u b s e t of I c o n t a i n s ihn f o r
,
+
only
f i n i t e l y many v a l u e s of n; t h i s i s c l e a r i f m = 1, and i f m
1. 2
t h i s f o l l o w s from t h e a s s u m p t i o n t h a t t h e l e m m a h o l d s for m-1. By p a s s i n g t o s u b s e q u e n c e s , w e may assume, f o r e a c h f i x e d h = 1, . . . , m ,
2
t h a t t h e ihna r e p a i r w i s e d i s t i n c t . I n case m
2,
i n view of t h e a s s u m p t i o n t h a t t h e lemma h o l d s f o r l , . . . , m - 1 , and by p a s s i n g t o s u b s e q u e n c e s , we may a l s o assume i n d u c t i v e l y that
1
-
m 'V
for n
2
2n
kl...km
2, where summation is o v e r a l l k l ,
..., km E
{l,*..,d ,
o n e a t l e a s t b u t n o t a l l of them b e i n g e q u a l t o n. I n case m = 1, t h e above s t e p of t h e r e a s o n i n g i s t o b e a b o l i s h e d . i n e xl,.
.. , xm tkl..
f o r kl,
€
E i n d u c t i v e l y as f o l l o w s . S e t
.km
-
... ,km -- 1,2,..., 'n
and -
-
' tkl..
.km
where summation i s over a l l k l , . . . , k m Then r e q u i r e :
Deg
E
{l,...,n~ f o r n
2
1.
BRRROSO, MATOS
48
1)
f o r h = 1,
2,
tn...n
3)
xhi
...,m
&
NACHBIN
and k = 1,2,
...
h a s the same argument as s
= 0 f o r h = 1,
...,m
~ f o-r n~ 2 2 ,
and t h e r e m a i n i n g i E I .
W e have
It,.
, we
and, by u s i n g ( 2 )
bnI ? proving t h a t sn
-+
..nl
> E/n,
C l/h
h=l m,
E
r
get
n E
2
Is11
n
-
C
h= 2
,
1/2h
a g a i n s t s n * A(xl , . . . , x m ) a s n *
m,
b y (1).
QED
S e t E = co(I). Let
DEFINITION 2 4 .
z
b e t h e t o p o L u g y on
E
d e i i n e d b y d h e BULL supkernurn n o t m x E E
wheheas L e t
+
IjxII
= sup \ X i \
iEI
E
IR
be t h e t o p o l o g y o n E d c { i n c d b y t h e 6 a m i d y
t h e dcnurnembl e hupkemum s ~ m i v i o t r n s
06
19
ON HOLOPIORPHY VERSUS LINEARITY
The f o l l o w i n g r e s u l t i s due t o J o s e f s o n [ 4 ] .
1 6 E = c o ( I ) and U c E
LEMMA 2 5 .
z
hence dotr
, then
t h a t we endow E w i t h
in n a n v a i d a n d a p e n d o h 8 ,
%(u)
i n t h e name r r e g a h d L e n n
8 oh
c.
06
t h e duct
I n t h e f o l l o w i n g , an i n d e x J d e n o t e s t h a t w e a r e
PROOF.
t a k i n g a c o n c e p t w i t h r e s p e c t t o t h e seminorm o n E d e f i n e d b y t h e denumerable s u b s e t J of I; w h e r e a s l a c k o f t h a t i n d e x means t h a t w e a r e u s i n g the f u l l supremum norm (see D e f i n i t i o n 2 4 ) . I t i s enough t o c o n s i d e r f E
f E
z
%(U)
(m
E
for
8 . Fix
5
for
%(U) U.
E
7 and c o n c l u d e t h a t
P u t Am = d m f ( S ) E d l ( m E )
for
T h e r e is E > 0 s u c h t h a t BE ( 5 ) c U and
IN).
u n i f o r m l y f o r x E B E ( 5 ) . Moreover,, (1) h o l d s t r u e p o i n t w i s e l y o n t h e l a r g e s t 6-balanced
subset U
5
o f U . From t h e Cauchy-Hadg
mard f o r m u l a , it f o l l o w s t h a t
i s bounded. By Lemma 2 3 , t h e r e i s a d e n u m e r a b l e s u b s e t J o f such t h a t
)I
,
nuous f o r
11
Am
=
I/
Am
11
I
a n d , i n p a r t i c u l a r , Am i s c o n t L
f o r a l l m E IN. I t f o l l o w s t h a t
( m = 1,Z , . . . I i s bounded. , S i n c e U i s o p e n f o r
l a r g e enough and
and
Em*
11
Am
11
E
J
8 , we
may assume t h a t J
i s s u f f i c i e n t l y s m a l l so t h a t BJE
(5) C
is U
( m F IN) is bounded. Then, (1) h o l d s n o t only
50
BARROSO, PIATOS 8r IJACHBIN
p o i n t w i s e l y on B J E ( C ) C Us b u t a l s o uniformly on B JE/~(') proving t h e claim. QED
L e t E b e a complex v e c t o r s p a c e . A s s u m e t h a t
EXAMPLE 2 6 .
and
z
8
a r e two l o c a l l y convex t o p o l o g i e s on E such t h a t :
1.
4
Cz
2.
3
and
d # 'L:
and
z
;
have t h e same compact s u b s e t s o f E ,
hence
t h e same bounded s u b s e t s of E . 3.
f o r every nonvoid s u b s e t U C E
,
hence f o r
then
that w e endow E with 4. with
i s t h e same r e g a r d l e s s of t h e f a c t
Pf&(LJ)
d
or
,
t h a t i s open f o r
z.
E is holomorphically b o r n o l o g i c a l when i t i s endowed
T. Then, i f E is endowed w i t h
& ,
w e c l a i m t h a t E is not
b o r n o l o g i c a l , hence n o t holomorphically b o r n o l o g i c a l . f o r every nonvoid s u b s e t U C E t h a t i s open f o r tion f: U
-+
%(U)
C belongs to
8 , each
ping I : ( E ,
$C
s)
+
funs
i f f is a l g e b r a i c a l l y holomor-
p h i c , and f i s bounded on every compact s u b s e t of U . E endowed w i t h
However,
In
fact,
is n o t b o r n o l o g i c a l s i n c e t h e i d e n t i t y (El
c) i s
map-
l i n e a r , and i t maps bounded s u b s e t s
i n t o bounded subsets, but i t is n o t continuous. Now l e t U C E b e nonvoid and open f o r
8 ,
and l e t f : U
-t
C be a l g e b r a i c a l l y
holomorphic and bounded on every s u b s e t of U which i s compact for
8 . Since
U i s open f o r
,
and f is a l g e b r a i c a l l y holomog
p h i c and bounded on every s u b s e t of U which i s compact f o r then f f
E
E
%(U)
%(U)
i f E i s endowed w i t h '1:. I t follows t h a t
i f E is endowed w i t h
8 . An
i n s t a n c e of t h i s s i t u a -
,
ON HOLOMORPHY VERSUS L I N E A R I T Y
51
3
t i o n is t h e f o l l o w i n g . Take a nondenumerable s e t I , and u s e and
z of
D e f i n i t i o n 2 4 o n E = c o ( I ) . Then, a l l t h e a b o v e f o u r
c o n d i t i o n s c a n b e checked; t h e t h i r d c o n d i t i o n f o l l o w s from Lemma 25.
REMARK 2 1 .
Example 2 6 a l s o shows t h a t i t i s n o t enough t o u s e
o n l y F = Q: i n D e f i n i t i o n 3 v i a (lb) o r ( l c ) o f Lemma 2 . However, i n t h i s case there a r e simpler c l a s s i c a l conditions.
3.
HOLOMORPHICALLY BARRELED SPACES
A g i v e n E i a a "haComohphicaLLy b a h t e l e d
DEFINITION 28.
n p a c e " ib,
60.t
tian
%(U;F) i b ampLy bounded id ( a n d alwayn o n t y id)
C
ewehy U and e v e h q F, w e h a v e t h a t each c o t l e c -
in baunded o n ewehy 6 i n i . t e REMARK 2 9 .
dimenaionat compact aubaet ad
x
U.
I t w i l l f o l l o w from P r o p o s i t i o n 38 below t h a t , i n
D e f i n i t i o n 28 and i n s i m i l a r s i t u a t i o n s , it i s e q u i v a l e n t t o c o n s i d e r o n l y t h e a f f i n e o n e d i m e n s i o n a l compact s u b s e t s o f U . REMARK 30.
x
C E ( U ; F ) i s amply bounded i f and o n l y i f
35
i s e q u i c o n t i n u o u s and bounded a t e v e r y p o i n t o f U . Thus DefinL t i o n 28 may b e r e p h r a s e d by r e q u i r i n g t h a t
is equicontinuous
i f it i s bounded on e v e r y f i n i t e d i m e n s i o n a l compact s u b s e t o f U;
t h e n t h e r e i s no "and a l w a y s o n l y i f " .
REMARK 33.
below m o t i v a t e s t h e above d e f i n i t i o n , b u t w e need
t h e f o l l o w i n g p r e l i m i n a r y m a t e r i a l which is known.
L E W 31.
Foh a
given E, t h e da&Lowing canditionn a t e equiva-
BARROSO, llATOS
52
& NACHBIN
Lent: F o t e w e t y F, w e h a v e t h a t each c o L L e c t i o n %
( lp)
i n ampLy b o u n d e d , ways o n l y id) X ( IC)
F
O
04
c
L(E;F)
e q u i w a l e n t L y e q u i c o n t i n u o u n , iQ ( a n d
i n bounded a t evehy p o i n t
04
aL-
E.
35 C L( E ; F ) i n
e~ w e t y F, w e hawe t h a t e a c h c o L L e c t i o n
amply b o u n d e d , o t e q u i v a L e n t C y e q u i c o n t i n u o u n , iQ ( a n d aLwayn
o n L y id)
i n b o u n d e d o n e w e t y Q i n i R e d i m e n n i o n a l c o m p a c t nub-
net ad E
W e s h a l l prove t h e following implications
PROOF.
(lp) =>
( 2 ) . L e t cx b e a seminorm o n E t h a t i s
t h e c o l l e c t i o n of t h e continuous linear
semicontinuous. C a l l
h r m s f on E such t h a t I f ( x ) I 5 a ( x ) f o r a l l x
x
E E.
Since
uous, by ( l p ) (2)
=>
By
E E.
theorem, w e h a v e a ( x ) = s u p { I f ( x ) 1 ;
Hahn-Banach
lower-
the
f F Z } for all
i s bounded a t e v e r y p o i n t of E , i t i s W C O n t i E
. It
f o l l o w s t h a t cx i s c o n t i n u o u s .
.
(lc) L e t
5 C 6, ( E ; F )
b e bounded o n e v e r y
f i n i t e d i m e n s i o n a l compact subset o f E , h e n c e a t e v e r y p o i n t of E. I f 6 E C S ( F ) , then a ( x ) = sup{P[f(x)];
f E
x
1
d e f i n e s a l o w e r s e m i c o n t i n u o u s seminorm cx o n E . By ( 2 ) tinuous. I t follows t h a t
(lc)
=>
(lp)
5 is
. Let x c
for x E E
,
a i s mg
equicontinuous a s B is arbitrary. ( E ; F ) b e bounded a t e v e r y
ON HOLOHORPHY VERSUS LINEARITY
5
p o i n t o f E . Thus
53
is 'bounded o n e v e r y f i n i t e d i m e n s i o n a l s i g
p l e x , h e n c e o n e v e r y f i n i t e d i m e n s i o n a l compact s u b s e t , o f E . BY
(IC)
, 5 is equicontinuous
.
The p r o o f c a n also b e c a r r i e d o n w i t h t h e same r e a s o r i n g , by r e v e r s i n g t h e a r r o w s . QED The f o l l o w i n g d e f i n i t i o n is c l a s s i c a l i n terms o f
particularly
(lb) o r ( 2 ) . A g i v e n E is a " b a h h e l e d n p a c e "
DEFINITION 32.
t h e e q u i v a l e n t condi.tionh REMARK 33.
,
06
.id it saLL5,$Le~
Lemma 3 1 .
D e f i n i t i o n 28 was f o r m u l a t e d i n a n a l o g y t o D e f i n i -
t i o n 32 t r o u g h ( l c ) , r a t h e r t h a n ( l p ) , o f Lemma 31. The r e a s o n
i s t h a t , by a c l a s s i c a l example, it c a n o c c u r t h a t a s e q u e n c e f,
E
(C)
(m
E IN)
i s bounded a t e v e r y p o i n t o f C , and y e t i t
f a i l s t o b e bounded on some compact subset of C , t h a t i s ,
it
i s n o t l o c a l l y bounded.
A h o l o m o h p h i c n k ' l y b u h h e l e d Apace
PROPOSITION 3 4 .
is
alno
u
batixeled b p a c e .
PROOF.
I t s u f f i c e s t o compare D e f i n i t i o n s 28 and 32, b y u s i n g
( E ; F ) C I f e ( E ; F ) . QBl
( l c ) of Lemma 31, and by r e m a r k i n g t h a t
Foa a g i w Q n E t o b e a h o l o m o t p h i c a l k ' y baa
PROPOSITION 35.
aei'ed s p a c e , i t LA n e e e s s a h y and h u h d i c i e n t t h a t , we h a v e t l i a t e a c h c o l l e c t i o n (and always o n l y
compact s u b s e t
06
C%&(U)
i6
,504
-
e v e k y U,
LocaLL'y b o u n d e d
id
i d ) & LA bounded o n evetry d i n i t e d i m e n b i o n d U.
BARROSO, IUlTOS
54
& NACHBIN
N e c e s s i t y b e i n g c l e a r , l e t us p r o v e s u f f i c i e n c y . L e t
PROOF.
cd
(U;F) b e bounded on e v e r y f i n i t e d i m e n s i o n a l compact
s u b s e t of U . Given any R E CS(F) , l e t
3
be t h e c o l l e c t i o n
of
t h e l i n e a r forms $ on F s u c h t h a t I $ ( y ) I < @ ( y )f o r a l l y E F. By t h e Hahn-Banach t h e o r e m , w e h a v e t h a t B ( y ) = s u p { f o r a l l y E F. S i n c e t h e c o l l e c t i o n $ E
8
and f E 5
,
a.
REMARK 3 6 .
8
of a l l $ o f , where
i s bounded on e v e r y f i n i t e d i m e n s i o n a l com-
pact subset of U, t h e r e r e s u l t s t h a t f o r every
7 3 o
I $ ( y ) I;$€ 1
I t follows t h a t
5
J
S i s l o c a l l y bounded,
is amply bounded. QED
I t i s known t h a t i t i s enough t o t a k e F = C i n ( l p )
o r ( l c ) o f Lemma 31, when u s i n g them i n D e f i n i t i o n 3 2 . F o r t h e c a s e of ( l c ) , P r o p o s i t i o n 35 c o r r e s p o n d s t o t h i s r e m a r k .
PROPOSITION 3 7 .
A R a i h e Apace E
i b
a h m f o m v 4 p h ~ c a k ? f ybahheted
bpUCe.
PROOF.
I t i s enough t o t r e a t F a s b e i n g a seminormed s p a c e .
W e s t a r t w i t h two c l a s s i c a l r e m a r k s . I f X i s a nonvoid B a i r e s p a c e , and
2 is
a pointwise
bounded s e t o f c o n t i n u o u s mappings o f X t o F, t h e r e i s a t least a p o i n t o f X where I f p: E
+
ai s
l o c a l l y bounded.
F i s a n m-homogeneous p o l y n o m i a l ( m E IN) and
i n f a c t , b y t h e maximum p r i n c i p l e , w e may r e p l a c e / A / 5 1 by
ON HOLOMORPHY VERSUS L I N E A R I T Y
1x1
= 1, and t h e n e q u a l i t y i s c l e a r v i a
X
+
55
1/X,
by m-homogene
i t y . In particular
11
p(b)11
5
supCII p(a+Ab) 1 1
Now, l e t
sc
;
X
\ X I 5 1).
E C,
(U;F) b e bounded on e v e r y a f f i n e
one
d i m e n s i o n a l compact subset of U, which i s t h e c a s e i f bounded o n e v e r y f i n i t e Fix 5 that
E
is
d i m e n s i o n a l compact s u b s e t o f U .
U. Take a b a l a n c e d o p e n neighborhood V of 0 i n E s u c h
5 +
V C U . By t h e Cauchy i n t e g r a l , t h e s e t
i s p o i n t w i s e bounded on V , b e c a u s e
X
i s bounded o n e v e r y a f -
f i n e o n e d i m e n s i o n a l compact subset 1 5 +
AX
:
E
1x1
< 11
o f U , where x E V . By t h e f i r s t remark a b o v e , t h e r e i s a a E V where
/u i s
l o c a l l y bounded, s i n c e V i s a nonvoid B a i r e s p a c e .
L e t W b e a b a l a n c e d n e i g h b o r h o o d of 0 i n E s u c h t h a t a
and
@ is
bounded on a
+
W . By t h e s e c o n d remark a b o v e ,
+
W
/u.
bounded on W . Then T a y l o r s e r i e s e x p a n s i o n a t 5 shows t h a t i s bounded on 5
PROPOSITION 3 8 .
+
W/2. Hence
C V
is
x
i s l o c a l l y bounded. OED
C %%(U;F) is b o u n d e d o n evetry b i n i t e d i m en
b i o n a e c o m p a c t n u b s e t 0 6 U id and o n l y id
32 i n b o u n d e d o n e x
e h y a d d i n e o n e d i m e n b i o n a l compact n u b o e t a d U. PROOF.
Only s u f f i c i e n c y r e q u i r e s j u s t i f i c a t i o n . I t i s enough
t o r e s t r i c t a t t e n t i o n t o t h e case when E i s f i n i t e d i m e n s i o n a l , h e n c e a B a i r e s p a c e . Then, a n i n s p e c t i o n o f t h e p r o o f o f Prop o s i t i o n 35 g i v e s t h e argument f o r t h e p r e s e n t p r o o f . QED
BARROSO, MATOS
56
REMARK 3 9 .
ti XACHBIN
P r o p o s i t i o n s 34 and 37 imply t h e known f a c t t h a t
a B a i r e s p a c e E i s a b a r r e l e d s p a c e . P r o p o s i t i o n s 37 and
38
c o n t a i n as a p a r t i c u l a r case t h e f o l l o w i n g g e n e r a l i z a t i o n t h e c l a s s i c a l Banach-Steinhaus
PROPOSITION 4 0 . i4
of
Theorem.
( H a t o m a h p h i c B a n a c h - S t Q i n h a u n Theohem)
.
16 E
a F h e c h e t n p a c e , each c o l l e c t i o n 5 C Z ( U ; F ) i n e q u i c o n f i E
uciun id nubnet
bounded o n eveay addine one d i m e n n i o n d compact
id
U.
06
PROPOSITION 4 1 .
a h o L o r n o h p h i c a L L y bct4aeLed
A SiCva npace
npace. The p r o o f w i l l r e s t on t h e f o l l o w i n g lemma.
LEMMA 4 2 .
1n t h e notation
06
ampLy bouvtded id a n d o n L g
.id
ampLy b o u n d e d d o h eveaty m
E IN.
PROOF.
Lemma I T , t h e n
x m5
o p,
C
X
in
C &(U;F)
urn;^)
i 4
N e c e s s i t y b e i n g c l e a r , l e t us p r o v e s u f f i c i e n c y . I t i s
enough t o t r e a t F a s b e i n g a seminormed s p a c e . S i n c e e a c h
is p o i n t w i s e bounded, it f o l l o w s t h a t too. Consider g: U
x E U and f E
-f
X,
i s p o i n t w i s e bounded
l w ( 2 & ; F ) d e f i n e d by g ( x ) ( f ) = f ( x ) f o r
x . Since
each
bounded, w e see t h a t g o pm: Um
xmC % (U,;F) -f
L"(5;F)
is l o c a l l y
i s holomorphic
for
e v e r y m E IN. By Lemma 11, w e c o n c l u d e t h a t g i s h o l o m o r p h i c . Thus, q i s l o c a l l y bounded, t h a t i s , 2 i s l o c a l l y bounded. OED
REMARK 4 3 .
Lemma 4 2 may b e p r o v e d d i r e c t l y , by a r e a s o n i n g
q u i t e c l o s e t o t h a t o f t h e p r o o f o f Lemma 11, s e e Lemma 3,
ON HOLOMORPHY VERSUS L I N E A R I T Y
[l]
. Notice
4 2 when
57
t h a t Lemma 11 i s n o t t h e p a r t i c u l a r c a s e of Lemma
3E i s r e d u c e d t o o n e e l e m e n t , a s t h e n Lemma 4 2 i s t r i -
vial.
PROOF OF P R O P O S I T I O N 4 1 .
C o n s i d e r t h e s e q u e n c e (Ern) o f Def-
i n i t i o n 8, and u s e n o t a t i o n o f Lemma 4 2 . L e t 2E C % (U;F) bounded on e v e r y f i n i t e d i m e n s i o n a l compact subset o f U .
Then
m ;F) i s bounded on e v e r y f i n i t e d i m e n s i o n a l compact
% C g ( U
s u b s e t of Urn. By P r o p o s i t i o n 37 ( o r e l s e 4 0 1 , bounded f o r e v e r y m E IN. By Lemma 4 2 ,
E
E mi s amply
i s amply bounded. QED
Lemma 4 2 i s a r e m i n i s c e n s e o f t h e known f a c t t h a t ,
REMARK 4 4 .
i f Ei(i
be
I) i s any f a m i l y of l o c a l l y convex s p a c e s , E
v e c t o r space, pi
: Ei
-t
is
a
E ( i E I ) i s a l i n e a r mapping, E i s el!
dowed w i t h t h e i n d u c t i v e l i m i t t o p o l o g y , and F i s a l o c a l l y convex s p a c e , t h e n a c o l l e c t i o n
35C d ( E , F ) i s amply bounded,
o r e q u i v a l e n t l y e q u i c o n t i n u o u s , i f and o n l y i f
c
E
Z€ o p i
i s amply bounded, o r e q u i v a l e n t l y e q u i c o n t i n u o u s ,
(Ei:F)
f o r every i
Zi
E
I . Lemma 4 2 may b r e a k down i n a b s e n c e o f compact
n e s s (see Example 65 below) o r d e n u m e r a b i l i t y ( s e e Example 6 6 below) c o n d i t i o n s .
REMARK 45.
P r o p o s i t i o n 4 1 i s a r e m i n i s c e n s e o f t h e known
f a c t t h a t any i n d u c t i v e l i m i t o f b a r r e l e d s p a c e s i s a b a r r e l e d s p a c e . A d e n u m e r a b l e i n d u c t i v e l i m i t whose c o n n e c t i n g mappings
u a r e n o t compact (see Example 65 b e l o w ) , o r a non-denumerable i n d u c t i v e l i m i t w i t h compact c o n n e c t i n g mappings u (see Example 6 6 below)
of h o l o m o r p h i c a l l y b a r r e l e d s p a c e s may f a i l t o b e a
holomorph c a l l y b a r r e l e d s p a c e , o r e v e n t o b e a h o l o m o r p h i c a l l y
BARROSO, 1LhTOS
58
&
NACHBIN
i n f r a b a r r e l e d s p a c e i n t h e s e n s e of t h e n e x t s e c t i o n .
4 . HOLOMORPHICALLY INFRABARRELED SPACES A g i v e n E i n a "holomohphicalLy i n , j x a b a ~ ~ f i e f o d
DEFINITION 4 6 .
n p a c e " id, doh ewehy
tAon ~ C % ( U ; F )
Ah
u and
-
amply bounded ih ( a n d a l u ~ a y h o n l y id]
in bounded o n e v e h y compact REMARK 47.
e v e a y F , we h a v e t h a t each c o l l e c
hubhet
0 6 U.
F o r t h e r e a s o n g i v e n i n Remark 30, D e f i n i t i o n 46
may b e r e p h r a s e d by r e q u i r i n g t h a t
is equicontinuous if it
i s bounded o n e v e r y compact s u b s e t of U ; t h e n t h e r e is no "and always o n l y if". Remark 50 below m o t i v a t e s t h e above d e f i n i t i o n , b u t
w e n e e d t h e f o l l o w i n g p r e l i m i n a r y m a t e r i a l which i s known. F o h a g i w e n E , t h e ~ o ~ l o w i ncgo n d i t i o n n a h &
LElllMA 4 8 .
equi-
uaLent: (Ibl
F o h e u e h y F, we h a v e t h a t each c a l e e c t i o n X c L ( ( e ; F )
in amply bounded, ox e q u i w a e e n t l y equicon-t.inuoun, id ( a n d a l wayh o n l y i d 1 5 [Ic)
Fox euehy F, we h a v e t h a t each c o l e e c t i o n X c d : ( E ; F )
in ampLy bounded waqn o n l y id1
(2b)
i n bounded o n eueay bounded h u b h e t od E
ah
e q u i v a l e n t l y e q u i c o n t i n u o u b , Ad ( a n d a L -
g i h bounded on euehy compact
hubnet
06
E.
Each heminohm u o n E i4 c o n t i n u o u b id ( a n d a l w a y b
o n L y id 1 u i n ~ o w e h h e m i c o n t i n u o u h and bounded o n e u e h y bounded nubnet
06
(Zc]
E.
Each heminohm u o n E i n c o n t i n u o u n id ( a n d a l w a y n
59
ON HOLOMORPHY VERSUS L I N E A R I T Y
W e s h a l l prove t h e following implications
. This
-->
(lb)
-
(2b). Let
>
i s c le a r. c1
b e a seminorm on E t h a t i s lowersemi
c o n t i n o u s and bounded on e v e r y bounded subset o f E . C a l l
the
c o l l e c t i o n o f t h e c o n t i n u o u s l i n e a r forms f on E s u c h t h a t
I f ( x ) I -
i s continuous.
c1
( 2 ~ ) .L e t a b e a seminorm on E t h a t i s lowersemi
c o n t i n u o u s and bounded on e v e r y compact s u b s e t of E; t h e n
is
c1
a l s o bounded on e v e r y bounded subset o f E ( s e e t h e same s t e p i n t h e p r o o f of Lemma 2 ) (2c)
=>
(lc)
. Let
p a c t s u b s e t o f E . If D f E
1 for x
E E
. By
( 2 b ) , a is c o n t i n u o u s .
X c I(E;F) E CS(F),
b e bounded on e v e r y corn
then a ( x )
=
-
:
sup{p[f(x)]
d e f i n e s a lowersemicontinuous seminorm a on
E t h a t i s bounded on e v e r y compact subset of E . By ( 2 c )
continuous. I t follows t h a t
,
ff
is
i s equicontinuous as B i s a r b i -
trary. The p r o o f can b e a l s o c a r r i e d on w i t h t h e same r e a s o n i n g , by r e v e r s i n g t h e a r r o w s . QED
BARROSO, -MATCIS
60
&
NACHBIN
The f o l l o w i n g d e f i n i t i o n i s c l a s s i c a l , p a r t i c u l a r l y i n t e r m s of
( l b ) or ( 2 b )
DEFINITION 49. hatin6ieh
REMARK 5 0 .
.
A given E
i b
i d
a n " i n ~ ~ . a b a ~ ? c hl pe adc e "
t h e e q u i v u f e n t cond.i.tionn
0 6 Lemmu
it
4b.
D e f i n i t i o n 46 w a s f o r m u l a t e d i n analogy t o D e f i n i -
t i o n 4 9 t h r o u g h ( l c ) , r a t h e r t h a n ( l b ) , o f Lemma 4 8 . The reason
i s t h e same g i v e n i n Remark 4 . A h ~ d ~ m o ~ ~ p h i c ai nLddhya b u 4 k e d e d b p a c e
PROPOSITION 5 1 .
&o
an i n 6 ~ . a b a h ~ . e L es~pda c e .
PROOF.
I t s u f f i c e s t o compare D e f i n i t i o n s 4 6 a n d 4 9 , u s i n g
( l c ) o f Lemma 48, a n d b y r e m a r k i n g t h a t
(E;F) C
(E;F).
BED
F O R . a g i v e n E RO b e a h ~ d ~ m ~ h p h i c a il nl dyh a -
PROPOSITION 5 2 .
bahteled hpace,
u,
it
i h
n e c e h a u h y a n d o u 6 d i c i e n R t h a t , doh e u e h y
we have t h a t e a c h coLdectian
X
C (U)~ i b
id ( a n d a d w u y i i a n d y i d ) S i s b o u n d e d a n oh
L o c a l l y bounded
elte4y
compact hubnet
u.
PROOF.
T h e a r g u m e n t i s s i m i l a r t o t h a t of t h e p r o o f o f P r o p o -
s i t i o n 35. OED
REMARK 5 3 .
in
I t i s known t h a t it i s enough t o t a k e F = C
(lb) o r ( l c ) of Lemma 4 8 , when u s i n g t h e m i n D e f i n i t i o n 4 9 . F o r t h e case of remark.
( l c ) , P r o p o s i t i o n 52 c o r r e s p o n d s
to
this
61
ON HOLOMORPHY VERSUS L I N E A R I T Y
Foh E t o b e a h o l o m o h p h i c a L L q b o h n o L a g i c u L
PROPOSITION 5 4 .
n p a c e it i n n e c e n s u h q and s u 6 6 i c i e n t f h c i t E b e a h o L o m o f i p h i c u L
L y indhabahkeled n p a c e , and mofiLcuv?.t t h a t , d o h e v e h q U , w e have
u
t h u t euch 6 u n c t i o n f :
+
c
be1’nvigb
to
$$(u) i d
un-Q!i il;) f i n
aCgebxuicaLLq h a l o m u h p h ~ c , a n d
evehy compact
hubbet
PROOF.
06
( u n d uPu~!qr,
€ i n bounded
OM
U.
L e t us p r o v e n e c e s s i t y , and assume t h a t E is a holomog
phically bornological space. L e t
5C
(U;F) b e bounded o n
i s pointwise
t h e compact s u b s e t s o f U . I t f o l l o w s t h a t
bounded t o o . I t is enough t o t r e a t F a s b e i n g a seminormed space. Consider g: U
x
E
U and f E
2
+
P”(
. Since
X
;F) d e f i n e d by g ( x ) ( f )
= f(x) for
i s bounded on the compact subsets of U, i t
f o l l o w s t h a t g i s bounded on t h e compact subsets o f U .
In
Dar
t i c u l a r , g l (U flS ) i s l o c a l l y bounded f o r e v e r y f i n i t e dimens i o n a l v e c t o r s u b s p a c e S o f E m e e t i n g U ; h e n c e g i s algehraicall y h o l o m o r p h i c . S i n c e E i s a h o l o m o r p h i c a l l y b o r n o l o a i c a l space, t h e n g i s h o l o m o r p h i c , h e n c e l o c a l l y bounded. I t f o l l o w s t h a t
6
i s l o c a l l y bounded. T h i s shows t h a t E i s a h o l o m o r p h i c a l l y
i n f r a b a r r e l e d s p a c e . The rest of n e c e s s i t y i s c l e a r . L e t p r o v e s u f f i c i e n c y , and assume t h a t f : U
-+
us
F is algebraically
h o l o m o r p h i c and bounded on e v e r y compact s u b s e t o f U . F o r any fixed B E CS(F) , l e t on F s u c h t h a t
I$ (y) I
b e t h e c o l l e c t i o n of t h e l i n e a r forms $
5 6 (y) f o r a l l y
E F . Each s u c h )I
0
f is
a l g e b r a i c a l l y h o l o m o r p h i c and bounded on t h e compact s u b s e t s of U;
t h u s i t i s h o l o m o r p h i c . Moreover,
bounded on e v e r y compact s u b s e t of U .
2
Thus
‘7J60
x is
f C %(U)
is
locallybound&
s i n c e E i s a h o l o m o r p h i c a l l y i n f r a b a r r e l e d s p a c e . By t h e Hahn-
BARROSO, PIATCIS
62
& NACHBIN
-Banach t h e o r e m , w e h a v e B ( y ) = $up[ I J , ( y ) I ; J, E
11
for a l l
y E F . I t f o l l o w s t h a t B o f i s l o c a l l y bounded. Thus f i s am p l y bounded. S i n c e f is a l s o a l g e b r a i c a l l y h o l o m o r p h i c ,
it is
h o l o m o r p h i c . Thus E i s a h o l o m o r p h i c a l l y b o r n o l o g i c a l space. QED
REMARK 55.
I t i s known t h a t , f o r E t o b e a b o r n o l o g i c a l s p a c e
i t is n e c e s s a r y and s u f f i c i e n t t h a t E b e a n i n f r a b a r r e l e d s p a c e , and moreover t h a t e a c h f u n c t i o n f : E
-+
C belongs t o E'
i f ( a n d a l w a y s o n l y i f ) f i s l i n e a r , and f i s bounded on e v e r y bounded, o r compact, s u b s e t of E . P r o p o s i t i o n 54 c o r r e s p o n d s t o t h e s e c o n d h a l f o f t h i s remark.
DEFINITION 5 6 .
A g i v e n E had t h e "E.lonRel p h o p e h t y "
id,
doh
e.vehy U and e v e h y F, w e h a v e t h a t each c o l l e c t i o n E c H(U;F) h e l a t i v e l y compact doh
i d
To id
land a l w a y s o n l y id1
X
bounded on e v e h y d i n i t e d i m e n s i o n a l compact h u b b e t 0 6 U, g(x) C F
REMARK 57.
i d
i d
and
h e l a t i v e t y cornpact d o h e v e h y x E U.
The t e r m i n o l o g y i n D e f i n i t i o n 56 comes, o f c o u r s e ,
from t h e c l a s s i c a l Montel theorem s a y i n g t h a t , i f E i s f i n i t e d i m e n s i o n a l and F = C , t h e n for
yo i f and o n l y X
C
@(U)
i s r e l a t i v e l y compact
i s bounded o n e v e r y compact subset o f
U. W e s h o u l d d i s t i n g u i s h between Montel p r o p e r t y o f D e f i n i t i o n
56 and by now c l a s s i c a l Montel p r o p e r t y of E r e q u i r i n g t h a t
ev
e r y bounded s u b s e t o f E b e r e l a t i v e l y compact (see Example 67 below).
PROPOSITION 5 8 .
Foh E t o b e a holamohphicalLy b a h h e l e d h p a c e
ON HOLOMORPHY VERSUS LINEARITY
63
i-t i n n e c e b b a h y a n d n u 6 ~ i c i e n - tthat E b e a h o L o m a t p h i c a 1 1 y i n d k a b a h t e t e d s p a c e , and m 0 5 e o u e t that E had -the M o n t e 1 phope/r -tY*
PROOF.
L e t us p r o v e n e c e s s i t y , and assume t h a t E i s holomor-
p h i c a l l y b a r r e l d . Then, c o m p a r i s o n o f D e f i n i t i o n s 28 and 4 6
let
shows t h a t E i s h o l o m o r p h i c a l l y i n f r a b a r r e l e d . N o r e o v e r ,
x
c H(U;F) c
(U;P)
b e bounded on t h e f i n i t e d i m e n s i o n a l
compact subsets o f U. Then, 5 i s amply bounded, h e n c e e q u i c o n tinuous
. If,
i n addition,
( x ) C F i s r e l a t i v e l y compact
f o r e v e r y x E U , t h e n A s c o l i ' s theorem i m p l i e s t h a t
ZC H (U;F)
i s r e l a t i v e l y compact. Thus E h a s l l o n t e l p r o p e r t y . L e t u s t u r n
t o s u f f i c i e n c y , and assume t h a t E i s h o l o m o r p h i c a l l y i n f r a b a r r e l e d h a v i n g Plontel p r o p e r t y . I f
c a ( U ) i s bounded on ev-
e r y f i n i t e d i m e n s i o n a l compact subset o f U , t h e n
XC
z(U)
r e l a t i v e l y compact f o r
xo by
X i s bounded f o r
t h a t i s , bounded on e v e r y compact
z,
is
Monte1 p r o p e r t y ; i t f o l l o w s t h a t
sub-
s e t o f U . S i n c e E i s h o l o m o r p h i c a l l y i n f r a b a r r e l e d , t h e r e res u l t s t h a t Z&
i s l o c a l l y bounded. B v P r o p o s i t i o n 35, E
is
hg
l o m o r p h i c a l l y b a r r e l d . OED
REMARK 5 9 .
W e may t h i n k o f a v a r i a t i o n of t h e H o n t e l p r o p e r -
t y w i t h j u s t F = C; namely t h a t e a c h compact f o r
zo i f
X
C %(U)
( a n d always o n l y i f ) 2E
is r e l a t i v e l y
i s bounded on e v e r y
f i n i t e d i m e n s i o n a l compact s u b s e t of U. The proof of P r o p o s i t i o n 58 shows t h a t t h e Monte1 p r o p e r t y w i t h a r b i t r a r y F i s e q u i v a l e n t t o s u c h a v a r i a t i o n of i t w i t h j u s t F = C when E i s h o l o m o r p h i c a l l y i n f r a b a r r e l . e d . However , t h e y a r e n o t equivalent by t h e m s e l v e s (see Example 6 8 b e l o w ) .
64
BARROSO, FlATOS & NACHBIN
REMARK 6 0 .
P r o p o s i t i o n 5 8 and Remark 59 c o r r e s p o n d t o t h e
f o l l o w i n g known f a c t s . F o r E t o b e a b a r r e l e d s p a c e it i s c e s s a r y and s u f f i c i e n t t h a t E b e a n i n f r a b a r r e l e d s p a c e ,
neand
moreover t h a t , f o r e v e r y F, w e h a v e t h a t e a c h c o l l e c t i o n
X C & ( E ; F ) i s r e l a t i v e l y compact f o r i s p o i n t w i s e bounded, and
if)
x
2;,
if
(and always o n l y
( x ) C F i s r e l a t i v e l y com-
p a c t f o r e v e r y x E E . I t i s enouqh t o t a k e F = C i n t h e above s t a t e m e n t : t h e two c o n d i t i o n s on 3E. a r e e q u i v a l e n t when E is i n f r a b a r r e l e d ; however , t h e y are n o t e q u i v a l e n t by t h e m s e l v e s .
DEFINITION 6 1 .
4 given E
hub t h e
I ’ i n B k u - M o n t e L pxopektg” i6,
6 o x evetry U a n d e u e k y F , we h a v e t h u t e u c h c o L L e c t i o n C
id) 2
H(U;F) i n ? r e t a t i v P L y c o m p a c t d o h
ToL6
( a n d aLwayn o d g
06
and X ( x ) t F
bounded o n euekg compact n u b n e t
i.4
i n keLatiweLy c o m p a c t
auk
U,
e v e h q x E U.
The t e r m i n o l o g y i n D e f i n i t i o n 6 1 i s m o t i v a t e d
as
i n R e m a r k 5 7 , a n b y c o m p a r i s o n b e t w e e n P r o p o s i t i o n s 58 a n d
63
below. I t i s c l e a r t h a t E h a s t h e i n f r a - M o n t e 1 p r o p e r t y i f
it
REMARK 6 2 .
h a s t h e Montel p r o p e r t y . Except f o r t h a t , w e s h o u l d d i s t i n g u i s h b e t w e e n Montel p r o p e r t y , i n f r a - M o n t e 1 p r o p e r t y and c l a s s i c a l Monte1 p r o p e r t y ( s e e Example 6 7 below)
PROPOSITION 6 3 .
A hoCornohphicaLLy i n d h a b a k h e l e d s p a c e E
had
t h e in6ta-Mantel pfiopektg.
PROOF.
The argument i s a minor m o d i f i c a t i o n o f t h e p r o o f of
t h e c o r r e s p o n d i n g a s s e r t i o n o f P r o p o s i t i o n 58. QED
ON HOLOMORPHY VERSUS L I N E A R I T Y
REMARK 6 4 .
65
W e may t h i n k o f a v a r i a t i o n o f t h e i n f r a - M o n t e 1
p r o p e r t y w i t h j u s t F = @; t i v e l y compact f o r
yo i f
namely t h a t e a c h X c % ( U ) i s r e l a ( a n d always o n l y i f )
x
i s bounded
o n e v e r y compact s u b s e t of U . T h i s amounts t o s a y i n g t h a t e a c h x(U)h a s t h e c l a s s i c a l Monte1 p r o p e r t y f o r
zo. The
infra-Pdog
t e l property with a r b i t r a r y F i s not e q u i v a l e n t t o such a v a r i g t i o n of i t w i t h j u s t F = C ( s e e Example 6 8 b e l o w ) .
EXAMPLE 6 5 .
C o n s i d e r Example 1 8 . C a l l
t i o n of t h e f k f o r a l l k = 1,2,.
3 c %(El the collec-
. . . Then % i s
bounded on
ev-
e r y compact s u b s e t of E . Hence S I E m i s l o c a l l y bounded f o r
m f IN. However, .X i s n o t l o c a l l y bounded a t 0 , b e c a u s e f n o t l o c a l l y bounded a t 0 and f k
+
f pointwisely as k
+
00.
is This
shows t h a t Lemma 4 2 b r e a k s down i f t h e om a r e assumed t o b e l& n e a r c o n t i n u o u s , b u t n o t compact, a l t h o u g h d e n u m e r a b i l i t y o f t h e f a m i l y i s p r e s e r v e d . Such a n example a l s o shows t h a t a denumerable i n d u c t i v e l i m i t E o f h o l o m o r p h i c a l l y b a r r e l e d s p a c e s E m ( m E IN) may f a i l t o b e a h o l o m o r p h i c a l l y i n f r a b a r r e l e d
s p a c e . I n f a c t , i f Xo i s a F r z c h e t s p a c e , t h e n each Em i s a F r g c h e t s p a c e , h e n c e h o l o m o r p h i c a l l y b a r r e l e d (by P r o p o s i t i o n s
37 o r 4 0 ) . However, E i s n o t h o l o m o r p h i c a l l y i n f r a b a r r e l e d .
EXAMPLE 6 6 .
C o n s i d e r Example 2 0 . F i x a b a s i s B f o r E . F o r ev-
e r y f i n i t e s u b s e t I of B , c a l l pI t h e p r o j e c t i o n d e f i n e d by B , o f E o n t o t h e v e c t o r s u b s p a c e of E g e n e r a t e d by I . C a l l
c %(El
t h e c o l l e c t i o n o f t h e f I 5 f o pI f o r a l l s u c h I .
Then 5 i s bounded on e v e r y compact s u b s e t of E . However,
i s n o t l o c a l l y bounded a t 0 , b e c a u s e f i s n o t l o c a l l y bounded a t 0 and f I
+
f p o i n t w i s e l y a s I i n c r e a s e s . T h i s shows
that
BARROSO, MATOS
66
& NACHBIN
Lemma 4 2 b r e a k s down i n a b s e n c e of d e n u m e r a b i l i t y o f t h e fami-
-
l y , a l t h o u g h compactness o f t h e c o n n e c t i n g mappings u i s p r e s e r v e d . Such a n example a l s o shows t h a t a non-denumerable
in-
d u c t i v e l i m i t o f h o l o m o r p h i c a l l y b a r r e l e d s p a c e s may f a i l t o b e a holomorphically i n f r a b a r r e l e d s p a c e , even i f t h e connect i n g mappings u a r e compact.
EXAMPLE 6 7 .
An i n f i n i t e d i m e n s i o n a l Banach s p a c e E h a s t h e
Montel p r o p e r t y , by P r o p o s i t i o n s 3 7 o r 4 0 , and 5 8 . However, E f a i l s t o h a v e t h e c l a s s i c a l Montel p r o p e r t y , by a t h e o r e m
of
R i e s z . C o n v e r s e l y , assume t h a t t h e l o c a l l y convex space E h a s t h e c l a s s i c a l Montel p r o p e r t y . I t may o c c u r t h a t t h e r e i s some
c %(El pact f o r
which i s bounded f o r
zo;t h e n E
To,b u t
i s n o t r e l a t i v e l y com-
does n o t have t h e infra-Monte1 p r o p e r t y .
An i n s t a n c e o f t h i s s i t u a t i o n i s d e s c r i b e d i n Example 6 5 ,
if
Xo i s assumed t o h a v e t h e c l a s s i c a l Montel p r o p e r t y . A n o t h e r i n s t a n c e o f t h e same s i t u a t i o n i s d e s c r i b e d i n Example 6 6 . F i n a l l y , l e t t h e l o c a l l y convex s p a c e E b e m e t r i z a b l e , b u t
not
b a r r e l e d . Then E i s a h o l o m o r p h i c a l l y i n f r a b a r r e l e d s p a c e , by P r o p o s i t i o n s 6 and 5 4 ; t h u s E h a s t h e i n f r a - M o n t e 1 p r o p e r t y
,
by P r o p o s i t i o n 6 3 . However, E d o e s n o t h a v e t h e Monte1 p r o p e r t y , by P r o p o s i t i o n s 3 4 and 58; i n f a c t , E i s h o l o m o r p h i c a l l y i n f r a b a r r e l e d , b u t E i s not holomorphically b a r r e l e d because
i t i s n o t b a r r e l e d . An i n s t a n c e o f t h i s s i t u a t i o n i s E = C (IN) w i t h t h e supremum norm. W e now show i n Example 68 below t h a t i t i s n o t enough t o u s e F = C i n D e f i n i t i o n s 56 and 6 1 .
ON HOLOMORPHY VERSUS L I N E A R I T Y
EXAMPLE 68.
and
z
67
&
L e t E b e a complex v e c t o r s p a c e . Assume t h a t
are two l o c a l l y convex t o p o l o g i e s on E such t h a t condi-
t i o n s 1, 2 and 3 of Example 26 a r e s a t i s f i e d , and moreover:
4.
E i s holomorphically b a r r e l e d when i t i s endowed w i t h
5.
There are a Banach s p a c e F and a c o l l e c t i o n
C
& ( E l & ) ; F ) t h a t is bounded on every compact s u b s e t of E and i s
such t h a t X ( x ) CF i s r e l a t i v e l y compact f o r every x yet
x C L(E,8
E; and
E
;F) is n o t r e l a t i v e l y compact f o r t h e p o i n t w i s e
topology. Then, i f E i s endowed w i t h
C$
, we
sat-
claim t h a t E
i s f i e s D e f i n i t i o n 56 w i t h F = Q: (see Remark 5 9 ) , hence Definit i o n 6 1 w i t h F = C (see R e m a r k 6 4 ) ; b u t E does n o t have t h e i" fra-Monte1 p r o p e r t y of D e f i n i t i o n 6 1 , hence does n o t have
the
,
Monte1 p r o p e r t y of D e f i n i t i o n 5 6 , w i t h a r b i t r a r y F . I n f a c t
l e t U b e nonvoid and open € o r
4 ,
hence
open
.
for
If
2& C a ( ( U , d ) ) i s bounded on every f i n i t e dimensional compact s u b s e t of U , t h e n Z € C @ ( ( U , ' C ) )
is bounded on every
dimensional compact s u b s e t of U . Hence for ( U , Z ) .
I t follows t h a t
5
x
i s l o c a l l y bounded
is equicontinuous f o r ( U , Z ) ,
and a l s o p o i n t w i s e bounded. By A s c o l i ' s theorem, 5 C
i s r e l a t i v e l y compact f o r v e l y compact f o r for
yo. W e t h e n s e e t h a t
for
2,.
F and
T o ;hence E c % (
$ because 86
finite
((U,
z)1 i s
Z C f 8 ( ( U , ~1 )
(
(U,
1
( U , T)1 i s r e l a t i -
closed i n & ( ( U , z 1 )
i s r e l a t i v e l y compact
This proves t h e f i r s t h a l f of t h e claim. Consider now quoted i n c o n d i t i o n 5. T h e n X C
B ( ( E , b);F)
is
bounded on every compact s u b s e t of E , and %(x) C F i s r e l a t i -
68
BARROSO, MATOS & NACHBIN
v e l y compact f o r e v e r y x E E . However, r e l a t i v e l y compact f o r
To,a s
ZC, @ ((E,d) ; F ) i s n o t
c %( (
~) ;,F )ji s n o t r e l a t i v g
c&(( E , 3);F)
l y compact f o r t h e p o i n t w i s e t o p o 1 o g y ; i n f a c t ,
i s n o t r e l a t i v e l y compact f o r t h e p o i n t w i s e t o p o l o g y , &.((El 3 ) ; F ) i s c l o s e d i n
and
% ( ( E , d ) ; F ) f o r t h a t topology.
This
p r o v e s t h e s e c o n d h a l f of t h e c l a i m . An i n s t a n c e of t h i s s i t u a t i o n i s t h e same E = co(I) w i t h t h e t o p o l o g i e s cf
and
ample 2 6 . Then, a l l t h e above f i v e c o n d i t i o n s c a n
be
of Exchecked.
L e t us v e r i f y 5 , as t h e o t h e r f o u r c o n d i t i o n s a r e c l e a r by now.
W e t a k e F = c ( I ) w i t h t h e f u l l supremum norm. F o r e v e r y
denu-
0
merable J C I , l e t f yi = x
i
Then f J
if E
: E + F be d e f i n e d by f J ( x ) = y , where j i E J and y i = 0 i f i E I - J , f o r e v e r y x E E .
J((E,d);F).
a l l such J.
X(K)
Then
t h e c o l l e c t i o n of t h e
Call
fJ
i s compact f o r e v e r y compact
s i n c e K i s b a s e d on a denumerable s u b s e t o f I . Y e t
K C El
X d ( E , & ); F )
i s n o t r e l a t i v e l y compact f o r t h e p o i n t w i s e t o p o l o g y . I n t n e i d e n t i t y mapping I : E
-+
i n the vector space
fact,
$: ( ( E l 5 )
F does n o t belong t o
b u t i t belongs t o t h e c l o s u r e of
for
IF);
f o r t h e pointwise topology
FE of a l l mappings from E
to
F
.
5 . HOLOIIORPHICALLY MACKEY SPACE
A g i v e n E i n a " h o ~ o m o t p h i c a 4 ' L g Mackeg h p a c e
DEFINITION 6 9 .
idl
box C v e h y
U
und e v e t g F , w e l i u v e t h a t each m a p p i n g f:U
b e e o n q n t o H(U;F) id
( a n d ciLwayn o n g g
p h i c , t h a t i n , d,
E a ( U )
tion:
o f
,504
+
"
F
id) f i n w e a k l y h o l o m o t -
e w e t g J, E F ' ;
i n othet
notu -
H(U;F) = H ( U ; criF). Remark 7 2 below m o t i v a t e s t h e above d e f i n i t i o n
,
but
69
ON HOLOMORPHY VERSUS LINEARITY
w e need t h e f o l l o w i n g p r e l i m i n a r y m a t e r i a l which i s known.
Foh
LEMMA 7 0 .
a g i v e n E, t h e ,3ollowing c o n d i t i o n s a4e egui-
vatent:
F o h e v e h y F , we h a v e t h a t e a c h m a p p i n g f : E
[ 1)
t o ~ ( E ; F )id [ a n d a L w a y d o n l y id) f continuouh, t h a t i n , $ o f
.L(E;F)
notation:
=
L
E El
404
i 4
+
F belbngo
l i n e a k , a n d f is weakey
evehy
J, E
F';
i n
otheh
(E;~F).
( 2 ) A l o c a l l y c o ~ v e xt o p o l o g y ;3 o n E i n smrceleh t h a n t h e g i v en t o p o t o g y
z
tinuous L i n e a h
o n E L,3 ( a n d UbUCcyO o n t y dokm4
than
on E
44
2on
The g i v e n t o p o l o g y
ha4 ,3ewck c o n -
t h e gfientent l o c a l l y
t o p o l o g y o n E among t h o h e d e d i n i n y t h e [ 2m)
3
z.
z
The g i v e n topology
129)
id)
4uwe
COMUQX
dual space E ' .
E io maximaL among t h e l o c a l l y
c o n v e x t o p o l o g i e o o n E d e d i n i n g t h e name d u a l n p a c e E ' .
(3)
The g i v e n t o p d o g y
z
on E i 4 t h e topology
04
unidohm
CUM
uehgence o n t h e u(E',E)-compact c u n u e x n u b h e t n 0 6 E l . PROOF.
(2)
(2m)
W e s h a l l prove t h e f o l l o w i n g i m p l i c a t i o n s
=> =>
(2g)
=>
( 3 ) . Call
( 2 m ) . This i s c l e a r .
3
t h e topology o f uniform convergence
o n t h e o ( E ' , E ) - c o m p a c t convex s u b s e t s of E l ; w e may r e s t r i c t a t t e n t i o n t o s u c h s u b s e t s t h a t are a l s o b a l a n c e d . W e c l a i m that
xed . I n
fact, i f V i s a 2-closed
convex b a l a n c e d neighbor-
70
BARROSO,
,
hood of 0 f o r
MATOS & NACHBIN
t h e n i t s p o l a r Vo i n E ' i s u ( E ' , E l -compact,
by t h e Alaoglu-Bourbaki
is
theorem, and a l s o convex. S i n c e V
t h e p o l a r of Vo i n E l t h e n V i s a neighborhood of 0 f o r
3-
This p r o v e s o u r c l a i m . W e n e x t c l a i m t h a t a l i n e a r form $ on E t h a t is continuous f o r
4
Z.
i s a l s o continuous f o r
In fact,
t h e r e i s a a ( E ' , E ) - c o m p a c t convex b a l a n c e d subset K C E ' t h a t 1 9 1 ~ 1)
5
such
1 i f x E KO, where KO i s t h e p o l a r o f K i n E ;
t h u s $ E KOo, where KOo d e n o t e s t h e p o l a r o f KO i n t h e a l g e b r a i c dual space E
*
of E . However, K i s b a l a n c e d ,
convex
and
u ( E ' , E ) - c o m p a c t , hence u ( E ' , E ) - c l o s e d i n E*; t h u s KOo = K
and
showing t h a t
@ E K C E',
z
and
't: =
4.
o u r c l a i m . Hence (2m)
, we
(31
have
z.
T h i s proves
4 d e f i n e t h e same d u a l s p a c e
(1). L e t f : E
=>
i s continuous f o r
+
El.
By
F b e l i n e a r and weakly c o n t i n u o u s .
We have t h e t r a n s p o s e d l i n e a r mapping t f : J, E F'
t h a t i s c o n t i n u o u s from u (F',F) t o u ( E ' , E l
. Let
-f
$ o f E E'
W b e any closed
convex b a l a n c e d neighborhood o f 0 i n F . I t s p o l a r Wo i n F' convex and
0
is
(F' ,F)-compact, by t h e Alaoglu-Bourbaki theorem.
Thus K z tf(Wo) i s convex and o ( E ' , E ) - c o m p a c t . Hence, t h e p l a r V E KO o f K i n E i s a neighborhood o f 0 i n E . Now, x E V implies
l$[f (x)] I < 1 f o r e v e r y J, E Wo,
t h a t i s f ( x ) E Woo
= W , where
i s t h e p o l a r o f Wo i n F . Thus f i s c o n t i n u o u s .
Woo
(1) =>
than
z
(2).
. Put
Let
8
h a v e fewer c o n t i n u o u s l i n e a r forms
F = ( E 1 3 1 . Then t h e i d e n t i t y mapping I : E
weakly c o n t i n u o u s . By (1), i t is c o n t i n u o u s . Thus
3C z
+
F is
.
The proof c a n a l s o b e c a r r i e d on w i t h t h e same r e a s o n i n q , by r e v e r s i n g t h e a r r o w s . OED
-
71
ON HOLOPIORPHY VERSUS LINEARITY
The f o l l o w i n g d e f i n i t i o n i s c l a s s i c a l , p a r t i c u l a r l y
i n terms of ( 2 9 ) . A g i v e n E i n a "Mackey space" id id s a t i n 6 i e n
DEFINITION 7 1 .
d h e e q u i v a l e n t c a n d i t b n b 0 6 lernmu 66. REMARK 7 2 .
D e f i n i t i o n 6 9 was f o r m u l a t e d i n a n a l o g y t o DefinA
t i o n 7 1 through
(1). A holomoxphically Mackey s p a c e is a & b a u
PROPOSITION 7 3 .
Muchey space. I t s u f f i c e s t o compare D e f i n i t i o n 6 9 and 7 1 , b y u s i n q
PROOF.
(1) o f Lemma 7 0 , and by r e m a r k i n g t h a t
d ( E ; F ) C % e ( E ; F ) . OED
A holvma~phically in6xabuxxeled space E i s u
PROPOSITION 7 4 .
halomohphically Muckey space. Let f: U
PROOF. @
o f F
+
F b e weakly h o l o m o r p h i c , t h a t i s ,
86 (U) f o r e v e r y
I t f o l l o w s t h a t f i s alqebrai-
$ E F'.
c a l l y h o l o m o r p h i c i n t h e H-sense
(not necessarily i n t h e
8% -
- s e n s e ) ; i n o t h e r words, w e a r e u s i n g h e r e t h e f a c t t h a t , i f E
i s f i n i t e d i m e n s i o n a l , t h e n it i s a h o l o m o r p h i c a l l y Plackey s p a c e , a s i t i s known. W e n e x t p r o v e t h a t f i s amply bounded. NOW, c l e a r l y f ( K ) i s weakly bounded, h e n c e bounded, i n F
e v e r y compact s u b s e t K o f U .
Thus
ed on a l l comnact s u b s e t s o f U ,
set
3
of F '
. There
results that
%=
{$ o f; $ E
1)
i s bound
f o r e v e r y s t r o n g l y bounded sub_
X
i s l o c a l l y bounded, because
E i s holomorphically i n f r a b a r r e l e d . I t follows t h a t , i f
CS(F) and
9 is
for
l3 E
t h e s e t o f a l l l i n e a r forms @ o n F s a t i s f y i n g
72
1 $. ( y ) I 2
BARROSO, MATOS
& NACHBIN
B ( y ) f o r e v e r y y E F, t h e n
t h e Hahn-Banach
i s l o c a l l y bounded. By
theorem, w e h a v e P ( y ) = s u p { I $ ( y l I ; ii, E
31
for
a l l y E F . Thus 13 o f i s l o c a l l y bounded f o r e v e r y s u c h 6 .
H e n c e f i s amply bounded. I t f o l l o w s t h a t f E H(U;F)
REPIIARK 75.
. OED
I t is known t h a t an i n f r a b a r r e l e d s p a c e i s
a
Mackey s p a c e . P r o p o s i t i o n 7 3 c o r r e s p o n d s t o t h i s r e m a r k .
PROOF.
L e t us p r o v e n e c e s s i t y .
I f E i s a holomorphically bor
n o l o g i c a l s p a c e , t h e n it f o l l o w s from P r o p o s i t i o n s 5 4 and
74
t h a t E i s a h o l o m o r p h i c a l l y Mackey s p a c e . The r e s t of n e c e s s i t y i s c l e a r . L e t us p r o v e s u f f i c i e n c y , and assume t h a t f:U
+
F
i s a l g e b r a i c a l l y h o l o m o r p h i c and bounded on e v e r y compact subs e t of U . Then $ o f i s a l g e b r a i c a l l y h o l o m o r p h i c a n d bounded on e v e r y compact s u b s e t of U , f o r e v e r y t h a t $. o f
REMARK 7 7 .
E
%(U)
)I
E F ' . It follows
f o r e v e r y such $..Hence f E H ( U ; F ) . QED
I t i s known t h a t , f o r E t o b e a b o r n o l o g i c a l s p a c e
it i s n e c e s s a r y and s u f f i c i e n t t h a t E b e a Mackey space, and
moreover t h a t each f u n c t i o n f : E
-+
C belongs t o E ' i f
(and a l -
, sec
ways o n l y i f ) f i s l i n e a r , and f i s bounded on e v e r y bounded o r compact, s u b s e t o f E . P r o p o s i t i o n 76 c o r r e s p o n d s t o t h e
73
ON HOLOMORPHY VERSUS LINEARITY
ond h a l f of t h i s r e m a r k .
ACKNOWLJEDGEMENTS
6.
The a u t h o r s g r a t e f u l l y acknowledge p a r t i a l f i n a n c i a l s u p p o r t from FAPESP and FINEP.
B IBLIOGFiAP HY
1.
J . A . BARROSO, M .
C . MATOS & L . N A C H B I N , On bounded s e t s
of h o l o m o r p h i c mappings, P r o c e e d i n g s on I n f i n i t e Dimensio n a l Holomorphy ( E d i t o r s : T .L.
Hayden & T . J . Suf f r i d g e ) ,
L e c t u r e Notes i n Mathematics 364 ( 1 9 7 4 ) , 1 2 3 - 1 3 4 . 2.
S . D I N E E N , Holomorphic f u n c t i o n s o n l o c a l l y convex s p a c e s ,
Annales d e 1 ' I n s t i t u t F o u r i e r 2 3 ( 1 9 7 3 )
3.
,
19-54,
153-185.
S . D I N E E N , Holomorphic F u n c t i o n s o n S t r o n g D u a l s o f
Frgchet-Monte1 s p a c e s I n f i n i t e D i m e n s i o n a l Holomorphy and A p p l i c a t i o n s ( E d i t o r : M.C.
M a t o s ) , North-Holland
Mathema-
tics Studies (1977). 4.
B . JOSEFSON, A c o u n t e r e x a m p l e i n t h e Levi problem,
d i n g s on I n f i n i t e Dimensional Holomorphy Hayden & T .
J.
Proceg
(Editors: T. L.
S u f f r i d g e ) , L e c t u r e Notes i n Mathematics
364 ( 1 9 7 4 1 , 168-177. 5.
B:
JOSEFSON, Weak s e q u e n t i a l c o n v e r g e n c e i n t h e d u a l of a
Banach s p a c e d o e s n o t imply norm c o n v e r g e n c e , A r k i v f o r Mathematik 1 3 ( 1 9 7 5 ) , 79-89.
BARROSO. MATOS
74
6.
M.
&
NACHBIN
C . Matos, On L o c a l l y Convex S p a c e s w i t h t h e Monte1 P r o
p e r t y , Functional Analysis ( E d i t o r : D.
de Figueiredo)
,
Marcel Dekker ( 1 9 7 6 ) .
I.
L . NACHBIN, T o p o l o g y o n s p a c e s o f h o l o m o r p h i c m a p p i n g s Springer-Verlag
8.
,
(1969).
L. NACHBIN, A g l i m p s e a t I n f i n i t e D i m e n s i o n a l Holomorphy, P r o c e e d i n g s on I n f i n i t e D i m e n s i o n a l Holomorphy ( E d i t o r s : T.L.
Hayden & T . J .
S u f f r i d g e ) , L e c t u r e Notes i n Mathemat-
i c s 3 6 4 ( 1 9 7 4 ) , 69-79. 9.
L. NACHBIN, Some h o l o m o r p h i c a l l y s i g n i f i c a n t p r o p e r t i e s
of l o c a l l y c o n v e x spaces, F u n c t i o n a l A n a l y s i s ( E d i t o r : D . d e F i g u e i r e d o ) , Marcel Dekker ( 1 9 7 6 ) 10.
A . NISSENZWEIG, W*
s e q u e n t i a l convergence, Israel J o u r n a l
of M a t h e m a t i c s 2 2 ( 1 9 7 5 ) , 266-272.
D e p a r t a m e n t o d e Matemstica P u r a Universidade Federal d o R i o d e J a n e i r o Rio d e J a n e i r o
-
R J ZC-32
Brasil
D e p a r t a m e n t o d e Matemztica U n i v e r s i d a d e E s t a d u a l de Campinas Campinas
SP
Brasil
D e p a r t m e n t of M a t h e m a t i c s U n i v e r s i t y of R o c h e s t e r R o c h e s t e r NY 1 4 6 2 7
USA
.
Infinite Dimensional Holomorphy and Applications, Matos (ed.) @ North-Holland Publishing Company, 1977
TOPOLOGIES ON SPACES OF HOLOMORPHIC FUNCTIONS
OF CERTAIN
SURJECTIVE LIMITS
By P A U L B E R N E R
I n t h i s p a p e r w e s t u d y t o p o l o g i e s o n s p a c e s of
holomor-
p h i c f u n c t i o n s d e f i n e d i n an open s u r j e c t i v e l i m i t o f convex s p a c e s , e s p e c i a l l y s u c h s p a c e s a s
a‘
locally
(Schwartz’s
t r i b u t i o n s ) which are open compact c o u n t a b l e s u r j e c t i v e
dis-
limits
o f Dual F r e c h e t N u c l e a r s p a c e s . To do s o w e i n t r o d u c e a n i n d u c t i v e l i m i t t o p o l o g y as f o l l o w s : I f U i s a convex b a l a n c e d s u b s e t o f an open surjective l i m i t E = s u r j limaeA(E,na)
t n a ( H ( n a (U) ) ) where
(see d e f i n i t i o n 2 . 1 ) i s t h e map f
E
then H ( U ) =
H (na(U) )
+
UaEA
f o na
E
H(U).
So w e may d e f i n e a n i n d u c t i v e l i m i t t o p o l o g y on H ( U ) by t h e f o g
mula
(H(U)
,T
I)
E ind limaEA((H(na(U))
, T ~ ,) t n a ) .
If U C E
is
open and c o n n e c t e d b u t n o t convex o r b a l a n c e d , t h e n w e may have that H(U) #
UaEAtna
(H(na (U) ) 1
. For
t h i s reason w e are
t o c o n s i d e r domains s p r e a d o v e r t h e s p a c e s Ea i n s t e a d
sets v a ( U )
(see Theorem 2 . 1 ) i n o r d e r t o o b t a i n a good
t i o n of
on H ( U ) f o r a l l open c o n n e c t e d s e t s U.
T~
forced of
the
defini-
When E i s a n o n - t r i v i a l open c o n p a c t c o u n t a b l e s u r j e c t i v e l i m i t of Q@ s p alc e s , w e show t h a t -rI 75
i s a s t r i c t (LI.”)-Montel
P.
76
s p a c e and c o i n c i d e s w i t h t h e
BERNER
T~~
and
-t6
t o p o l o g i e s . W e t h e n use
?ru
i s quasi-complete,
t h i s f a c t t o show, f o r example, t h a t ?r
ob
but
i s n o t quasi-complete. I n S e c t i o n 1, w e g i v e some p r e l i m i n a r y r e s u l t s c o n c e r n i n g
domains s p r e a d . I n S e c t i o n 2 w e d e f i n e d i r e c t e d s u r j e c t i v e l i m -
i t s and t h e t o p o l o g y
The
-t1.
T~
t o p o l o g y on h o l o m o r p h i c
t i o n s d e f i n e d o n a domain s p r e a d o v e r a
@g# s p a c e
func-
is
stud-
i e d i n S e c t i o n 3 and t h e r e s u l t s a r e a p p l i e d t o g i v e o u r theorem c o n c e r n i n g t h e
-tI
main
t o p o l o g y . S e c t i o n 4 d e a l s w i t h a l l the
v a r i o u s t o p o l o g i e s f o r h o l o m o r p h i c f u n c t i o n s on a compact c o u n t a b l e s u r j e c t i v e limit o?
@g
#
non-trivial
s p a c e s and
w e con-
elude t h i s f i n a l s e c t i o n w i t h a d i s c u s s i o n o f f u r t h e r r e s u l t s .
W e s h a l l u s e t h e s t a n d a r d n o t a t i o n o f i n f i n i t e dimensional holomorphy, and 1 . c . s . w i l l always mean complex H a u s d o r f f locall y convex l i n e a r s p a c e ( s )
.
Some o f t h e s e r e s u l t s a p p e a r e d i n t h e a u t h o r ' s U n i v e r s i t y o f R o c h e s t e r Ph.D t h e s i s (1974). The a u t h o r w i s h e s t o thank D r s . S . Dineen and R .
Aron f o r t h e i r h e l p f u l comments and t o acknow-
l e d g e t h e f i n a n c i a l s u p p o r t of a Department o f E d u c a t i o n ( I r e l a n d ) Post-Doctoral Fellowship.
1.
DOMAINS SPREAD
DEFINITION 1.1
-
PRELIMINARY RESULTS
A c o n n e c t e d Hausdoh56 n p a e e R t o g e t h e t l w i t h a
Lacak homeomotphinm 0 6 R i n t o a 1.c.s. E l $ : R
a domain nptlead ( a w e t
E),
+
E,
in caLLed
and denoted b y [ R , $ , E l a t l j u n t Q .
A c o n n e c t e d non-empty open subset W c Q o f a domain spread
(R,$,E)
i s called a chatlt i f
$IM
: W
+
$(W) i s a homeomorphism.
77
TOPOLOGIES ON SPACES OF HOLOMORPHIC FUNCTIONS
L e t ( R , $ , E ) and ( C , + , F ) b e two domains s p r e a d o v e r 1.c.s.
E and F r e s p e c t i v e l y , and l e t
IT
: E
+
F be a c o n t i n u o u s
open
l i n e a r ( a n d c o n s e q u e n t l y s u r j e c t i v e ) map of E o n t o F . A c o n t i l l uous map J : R If J : R
-+
Z i s c a l l e d a IT-mokphinm i f f
C i s a IT-mohphism, tJ w i l l d e n o t e
-t
tJ : f E H ( C )
f o J
-f
E
+
o J =
the
o c$.
IT
map
H(Q).
S i n c e a Ir-morphism J i s " l o c a l l y t h e same as"
REMARK
the
c o n t i n u o u s l i n e a r map IT, i t i s e a s y t o see t h a t tJ i s w e l l d e f ined. Since
TT
i s open, J i s a l s o o p e n , so by t h e u n i q u e n e s s of
a n a l y t i c c o n t i n u a t i o n i t f o l l o w s t h a t tJ i s i n j e c t i v e . I f R i s a domain s p r e a d o v e r a n l . c . s . , T*
w i l l d e n o t e , r e s p e c t i v e l y , on H ( R )
,
then
T
~ T,
~
t h e compact-open
l o g y , t h e t o p o l o g y g e n e r a t e d by semi-norms p o r t e d
by
and ,
topocompact
s e t s , and t h e t o p o l o g y g e n e r a t e d by semi-norms p o r t e d by count a b l e c o v e r s (see 1161
, [9]) ,
and
and
T~~
b o r n o l o g i c a l t o p o l o g y a s s o c i a t e d t o -r0 and
w i l l denote T~
respectively.
F o r t h e remainder of t h i s s e c t i o n , E and F fixed 1.c.s.
,
: E
IT
+
the
will
denote
F w i l l b e a c o n t i n u o u s open l i n e a r
map
o f E o n t o F , and ( Q , + , E ) w i l l b e a f i x e d domain s p r e a d o v e r E .
PROOF
If KC
II t ~ ( f ) II K
=
R i s compact, t h e n J ( K ) C C i s compact and
II f
0 J I IK =
II f I I j ( K )
-
I: i s c l e a r from t h i s t h a t
t~ i s To-continuous. Now suppose p i s a -cg-continuous semi-norm on H ( R )
,
it
s u f f i c e s t o show t h a t p o tJ i s r * - c o n t i n u o u s on H ( C ) .Let {VnIn
78
P . BERNER
be any i n c r e a s i n g c o u n t a b l e open c o v e r o f C ,
then
J
-1
n is
(Vn)
an i n c r e a s i n g c o u n t a b l e c o v e r of R s o t h e r e e x i s t s a C > O and N
IN s u c h t h a t p ( h )
E
2
ClI
hlI J-l
for a l l h
(VN,
E
t h i s i m p l i e s t h a t p c t J ( f ) 5 C I l f c J ( I J- l( vn) = CII f all f
E
But
\IvN
for
for the
I t i s e a s y t o show t h a t tJ i s a l s o c o n t i n u o u s
T
topologies.
-cub ,
~
DEFINITION 1 . 2
g
H(R).
H ( C ) so p c t~ i s Tg-continuous on H ( c ) .
E
REMARK
'ob'
and
L(n,R) = {f
. ..flW
H ( I T o $(W))
E
I
H(R)
= g o
T
o
3
a chaht
W
C
R
$ 1 ~ w~ i 1L L d e n o t e t h e n e t
holomoxphic AuncZionh o n R which d u c t o x LocaLey t h x o u g h A IT-morphism,
dactoxization
(doh
J :
R
(C,JI,F), i s c a l l e d a
-t
ad
IT.
06
IT-domain
R ) i f f t J ( I - I ( C ) 13 L ( I T , R ) .
A IT-domain of f a c t o r i z a t i o n , J : 0
tnuL IT-domain
and
-t
C is called t h e m i n i
dactvhizativn [ d o t 0) i f f J i s s u r j e c t i v e
06
and
s a t i s f i e s t h e following universal property: If K : R
-+
( r , r l , F ) i s any o t h e r IT-domain o f f a c t o r i z a t i o n
such t h a t K i s s u r j e c t i v e , t h e n t h e r e e x i s t s a u n i q u e phism,
:
r
E
C such t h a t R o K = J .
Let x
LEMMA 1 . 2
Let f
-+
E
n, LeeZ w be a c h a x t i n R c o n t a i n i n g
H ( R ) . 16 D a f I I v :o d o h euch a
^1
D f ( x ) :d f ( X ) ( a ) , t h e n f
a
PROOF D f
IdF-mor-
E
E
T-'(o),
x , and
whexe
L(.rr,0)
By s h r i n k i n g , w e may assume t h a t $(W) i s convex. S i n c e -1 ( 0 ) , w e have t h a t f o ( $ F o f o r a l l a E IT is local-
a Iw l y c o n s t a n t on e a c h s e t o f t h e form ( $ ( y )
where y
E
W. B u t , by t h e c o n v e x i t y o f
+ $(W) ,
IW
v-lfo))
each s u c h
connected, so t h e function g:zEITO$(W)'fO
($
/I $(W)
-1
set
I
is
TOPOLOGIES ON SPACES O F HOLOMORPHIC FUNCTIONS
i s w e l l d e f i n e d and e v i d e n t l y G-holomorphic.
p i n g , s o g i s a l s o continuous, hence g
$Iw
so f
PROPOSITION 1.1
16 J
f
IW
= g
71 0
0
E
E
79
i s a n open map-
77
H ( n o $ (W))
.
Now
L(n,R).
ization d o h R , t h e n t J t Suppose { J ( f A
PROOF to h
is a net i n t J ( H ( C ) )
which c o n v e r g e s
H ( R ) i n t h e T~ t o p o l o g y . We may assume t h a t t h e r e
E
is a
c h a r t W c Q s u c h t h a t 4 (W) i s a b a l a n c e d n e i g h b o u r h o o d of Let
and a
-
=
Wlh
$(W) ,
E
h=P
($(W))). F o r e a c h x
(@lw)-’(‘/2
WI/~o , < p
0 and K C C compact s u c h t h a t p ( f )
5 1)
f
(IK
all f
E
II(C)
.
By Propo-
sition 1.2,
t h e r e i s a g C Q compact s u c h t h a t J ( R ) = K .
semi-nom. h
H(2)
11
fo
2.
JII
t.
=
+
h
1 1 t J ( f ) 1 1 it ,
(IR
is
7
- a n t i n w s on H(2)
o(f) 5 C /If ((J(K)=
hence p can be continuously extended.
SURJECTIVE LIMITS AND THE T~-TOPOLOGY
A 1.c.s. E
DEFINITION 2 . 1
Limit
I(
The
06
i h
caLLed a d i a i e c t e d o u & ; e c t i v e
1 . c . s . { E a I a E A id t h e h e
a n d d o t u L L a,@
E
A ouch t h a t D
2
a ditrected pteoadeh 2 on A
a ,thehe a 4 e c o n t i n u v u b
but-
TOPOLOGIES ON SPACES OF HOLOMORPHIC FUNCTIONS
j e c t i v e map4
TI^
: E
Ecl and
-f
TI
aB
: EB
+
81
TI^
6ati66ying
Ea
=
detehmined nap O TIB, and E ha5 t h e p h o j e c t i v e Limit t o p o L o g y b y t h e map4 { n a I c l E A . We d e n o t e t h i n nituation b y w h i t i n g E = s u r j l i m a E A ( E c l , ~ a , ~ a B ) B > a [ o h E = s u r j l i m c l E A Ea when t h e TI ' s and t h e TI ' s a t e u n d e t n t o o d ) . F u ~ t h e t m o h eiue n a y a di-
aa
c1
kected bu4jective L i m i t E [a)
i6:
o p e n id na i n a n o p e n map, a L L a
i d
TI
i n a n o p e n map aLL a,B
a6
E
E
A,
A [equivaLentLy:
B
2
(b)
compact id r a i n compactLy phopeh, aLL
(c)
c o u n t a b e e id ( A ,-> )
= IN
(d)
n o n - t f i i v i a L id
each a
604
a). A.
c1 E
w i t h i t n uduae o h d e h i n g . E
A, ncl i n n o t a homeomor
phi4m. The s t r o n g d u a l o f a F r e c h e t l l o n t e l s p a c e w i l l b e c a l l e d
a@g#
s p a c e , and i f i t i s a l s o N u c l e a r , a M x s p a c e .
REMARK
S u r j e c t i v e l i m i t s a r e e x t e n s i v e l y s t u d i e d i n [7]
,
where t h e f o l l o w i n g r e s u l t is p r o v e d :
76 F
PROPOSITION 2 . 1
i d
a
b t 4 i C t
inductive Limit 0 6 a 4 e q u e ~
c e 0 6 Fhechet Monted dpacen { F n I n , . t h e n t h e n t 4 o n g d u a l Fi i6 an o p e n compact countabLe n u h j e c t i v e Limit space4 (F,)
06 thc
=#
F,
i.
EXAMPLE 2 . 1
L e t U C I R m b e open and l e t CVn) b e a
fundamen-
t a l s e q u e n c e of r e l a t i v e l y compact open subsets of U
-
06
i n g V n c Vn+l,
n
E
satisfy-
IN, t h e n t h e s p a c e o f d i s t r i b u t i o n s
(U)
i s a n o n - t r i v i a l open compact c o u n t a b l e s u r j e c t i v e l i m i t o f the @$#spaces
c 8 ' (vn)l n . m
EXAMPLE 2 . 2
Z j=,
C
m
x
IIi,o
a: i s a n o n - t r i v i a l open
c o u n t a b l e s u r j e c t i v e l i m i t o f t h e @%#spaces
compact
.{Irn CXII:~ j=o
eln.
82
P.
BERNER
Every d i r e c t e d s u r j e c t i v e l i m i t o f
NOTE
@@
s p a c e s i s nec-
e s s a r i l y open by t h e open mapping t h e o r e m . For t h e remainder o f t h i s s e c t i o n , E = s u r j l i m
CXEA
( E a l n a , ~ , B ) B > a w i l l b e a f i x e d open d i r e c t e d s u r j e c t i v e l i m i t . -
7 6 ( Q , $ , E ) io a domain 4 p t e a d o v e h E l
DEFINITIOIJ 2 . 2 An = { a
E
$(w)
c h a h t W C Q. nuch t h a t
A1 3 a
$(w) +
nil(o)1 .
By d e f i n i t i o n of t h e t o p o l o g y of a d i r e c t e d s u r j e c t i v e
REIIARK
l i m i t , e v e r y neighbourhood i n E c o n t a i n s a -1
satisfying V = V a E An,
=
Let
B
E
+ n,
and
A,
4
(0)f o r
>
a
=3
some a
3
E
An
E
A.
neighbourhood
V
I t i s obvious t h a t :
. Hence
cofinal i n
(AQ,,)is
(A,?).
The f o l l o w i n g r e s u l t i s proved i n 14-1:
L e t ( Q , $ , E ) b e a domain sphead O u c h a n open
THEOPW.1 2 . 1
hected huhjectivc? l i m i t E = s u r j limuEA(Ea,n (1) F v h each a doh
51, J,
:
Q
E +
A ~ ,t h e
miniinaL na-doiiiain
Then:
at71aB Ba '
ol;
~actohizafion
(Ral$alEa)l e x i n t n .
( 2 ) F o h each a I B ~ A Q 4uch t h a t
i L y u n i y u e ) n,gmotphidm, 6 u h t h e t m o h e , JClB: Q B t o h i z a t i o n doh Q
1
di-
-+
Jaa
aa
i 4
4> : .QR
a , thetre e x i n t n +
Qal
a
(nece44ah-
4 u c h t h a t J~ =
t h e minimal n
aB
J,~OJ@;
-domain 0 6
6ac-
8'
( 3 ) Q ha4 t h e ptojectiwe l i m i t t o p o l o g y d e t e h m i n e d b y t h e mapn
With t h e n o t a t i o n o f Theorem 2 . 1 w e make t h e f o l l o w i n g d e f i n i ti on : DEFINITION 2 . 3
We d e d i n e t h e t o p o L o g y - c ~o n H ( Q )
to
be
the
( L v c a L l y c o n v e x ) i n d u c t i w e L i m i t t o p o L o g y o n H ( Q ) detehmined
TOPOLOGIES ON SPACES OF HOLOMORPHIC FUNCTIONS
Let Q be a domain nphead o v e h E . Then o n
PROPOSITION 2 . 2 H(0) :
T~
2
In particular PROOF
83
i s a Hausdorff topology.
T~
BY Lemma 1.1, 'J
€or each a
E
: ( H ( R ~ r) T o )
( H ( R ) , T ~ )i s
-f
continwus
An, h e n c e t h e r e s u l t . 14 E
THEOREM 2 . 2
a l n o a compact d i h e c t e d n u a j e c t i v e L i m i t
ih
and R LA a d o m a i n n p h e a d o v e h E , t h e n ( H ( R ) , T ~ ) i n a n t h i c t i n d u c t i u e L i m i t o 4 c l o n ed n ubn pacen t a J ( H
PROOF
Suppose a,B
(nu) IacAR
An and B 1. a . I f K C Ea i s compact, t h e n
E
s i n c e va i s compactly p r o p e r , t h e r e e x i s t s a s u c h t h a t va ( 8 ) = K.
T
B
(R)
C
R
C E,
compact
E D i s compact and v a B ( r B (R)) = K
s o C o r o l l a r y 1.1 a p p l i e s t o JaB : R B
Ra showing t h a t
-t
s t r i c t . P r o p o s i t i o n 1.1 and Theorem 2 . 1 ( p a r t 2 )
is
T~
show
that
a J ( I I ( Q a ) )i s c l o s e d i n ' J ( H ( R B ) , T ~ ) .
Let
DEFINITION 2 . 4
main nphead o u e h a 1 . c . s . amply-bounded)
v 06 x i n
cH(Cl)
=
id4 doh each x
H(C),
w h e t e C i d a do-
in n a i d t o b e e y u i - b o u n d e d E
i . W e now have t h a t :
-
1
-n. (supid '(Da
f)
(5) ( x . ) 1 )
5
impossible i f Therefore
3C
> i for all i
7
j
IN
,
b u t t h i s is
i s ru-bounded b e c a u s e o f Lemma 3 . 1 .
nJ(H(Qn)
f o r some n
IN R.
E
i s a l s o -io-bounded h e n c e by c o r o l l a r y 1.1,
-i0
5
5
C n J ( H ( R n ) , ~ O ) i s bounded. Every bounded s e t i n ( H ( R J , T ~ )
-iu
so
i s equi-bounded
(corollary 3.1)
,
s o ("J1-l
on Q n . I t i s immediate now t h a t
i s equi-bounded
i s equi-bounded so the proof
i s complete.
4.
OTHER TOPOLOGIES ON H
(a)
I n t h i s s e c t i o n we study t h e
T~
and
T~
topologies i n
relation
t o t h e r I t o p o l o g y on H ( R ) under t h e h y p o t h e s i s o f t h e o r e m 3.1. I n [3] w e showed t h a t i f E was a n o n - t r i v i a l c o i i n t a b l e s u r j e c t i v e l i m i t of
@F#
spaces then
T ob
#
Tu
#
Tub
on H ( E )
when r e s t r i c t e d t o t h e s u b s p a c e o f 2-homogeneous lynomials
@(2E)
and
,
continuous pg
n e i t h e r T~ n o r -rob a r e b a r r e l l e d . A smallm-
d i f i c a t i o n of t h e proof
(see 12-1) shows t h a t t h e same i s
true
TOPOLOGIES ON SPACES O F HOLOMORPHIC FUNCTIONS
89
on H ( R ) when R i s a domain s p r e a d o v e r s u c h a 1 . c . s . E . W e w i l l use t h i s information i n proving:
L e t ( R , @ , E ) b e a d o m a i n 4 p t r e a d a v e h a non-LbLuiaP
THEORE?% 4.1
compact c o u n t a b l e 4 u h j e c t i u e L i m i t 0 6 E = surj l i m TWb
(I)
= T*
n
E
IN n '
E
= T
[hebp.
@3@ 4p,ace~, 7,
Then on H ( Q ) : ( L F ) -h(on.teL
i 4 u 4tfiict
I
@%#
( h e n p . 8 ~ u c ~ e aopace. h)
1 2 ) T h e b o u n d e d ~ ~ - b ~ u n d4 e td4 ufie p h e c i s e l y t h e e q u i - b o u n d e d
and
T
~
T ~ % ,f T~
#
T~~~
net4
T,
~
and ,
T ~ I*)
c i U c o i n c i d e on h e equi-bounded
T~~
4Qt4.
(3)
.te ( a n d id R (4)
T~~
(5)
T~
i 4
and
i b 4emi-montelI hence quani-cumpee-
T~
a b,ulanced n u b s e t
i n n o t bufifieVled, hence,
in
06
El
T~
ib c o m p l e t e ) .
n o t 4e.mi-complete.
v ~ o tbahtreLLed n o & b e m i - c o m p l e t e .
( 6 ) J h e f i e a h e no u l t h a b u f i n o l v g i c u l t o p a l o g i e n w e a k e h t h a n
T
~
S t a t e m e n t (1) i s j u s t t h e o r e m 3 . 1 where w e a l s o showed
PROOF
t h a t a subset i s
T~
bounded i f f i t i s e q u i - b o u n d e d .
S i n c e each
equi-bounded s e t i s c o n t a i n e d i n a d e f i n i n g s u b s p a c e n J ( H ( R n )1, and
=
T~~
is s t r i c t ,
T
InJH(12
= nJ(H(nn)
, T ~ )= -ro
n
wb
I nJ H ( R n )
(see C o r o l l a r y 1.1) s o s t a t e m e n t ( 2 ) i s v e r i f i e d . The 'rw t o p o l o g y on r w - c l o s e d and bounded subsets c o i n c i d e s by ( 2 ) w i t h which i s compact on s u c h s u b s e t s s i n c e i s semi-montel.
If
T~~
i s Montel. Hence
R i s a b a l a n c e d subset o f E l t h e n
p l e t e by c o r o l l a r y 2 . 2 o f
T~~
T~
-rw i s COIJ
161 which u s e s a T a y l o r s e r i e s a r g u -
ment. The r e m a i n d e r o f s t a t e m e n t ( 3 ) f o l l o w s from t h e
remarks
beginning t h i s s e c t i o n . Let
is
5 T~
E
R be fixed, then for a
E
E l t h e map f & H ( Q )
+
-2
d f ( 5 ) (a)E C
continuous because f o r s u f f i c i e n t l y s m a l l s > 0 ,
~
.
90
BERNER
P.
l d 2 f (6)( a ) I
5
-2
2!
11 f 11 ,
where B i s t h e a p p r o p r i a t e
morphic image o f t h e compact s e t { $ ( E l T
0
( r e s p . -rob) w e r e b a r r e l l e d t h e n f supx
E
+
+
A a1
11
-2 d f (E))o(bII
Ihl
homeoNm i f
= s}. 5
-2 K Id f ( E ) (@(x)) I would b e c o n t i n u o u s f o r e a c h K C R
2
compact. Hence { f o @ I f
E
@ ( E)
H ( Q ) v i a t h e mapping f
E
H(R)
+
1 would b e a d i r e c t s u b s p a c e o f ( d 2 f ( S ) ) o @ , so {fo$lf E @ ( ~ E ) }
would a l s o be b a r r e l l e d f o r t h e . r o ( r e s p . -rob)
t o p o l o g y . But a s
p r e v i o u s l y remarked, t h i s i s n o t t h e c a s e , so
T
0
and
are
T~~
n o t b a r r e l l e d . A s a semi-complete b o r n o l o g i c a l s p a c e i s b a r r e l l e d , t h e p r o o f of ( 4 ) i s c o m p l e t e . The b o r n o l o g i c a l t o p o l o g y a s s o c i a t e d t o a semi-complete
space
so t h e p r o o f o f ( 5 ) i s c o m p l e t e .
i s semi-complete
S i n c e a c o n t i n u o u s map from a n ( L F ) - s p a c e o n t o an u l t r a b o r n o l g
g i c a l s p a c e i s n e c e s s a r i l y open ( 6 ) i s t r i v i a l . REMARKS
Examples 2 . 1 and 2 . 2 b o t h s a t i s f y t h e h y p o t h e s i s
Theorem 4 . 1 .
I n p a r t i c u l a r , w e have an example o f a s p a c e w i t h
two d i s t i n c t n o n - t r i v i a l N u c l e a r t o p o l o g i e s : I f R i s a spread over a space of d i s t r i b u t i o n s
& I ,
then ( H ( R ) ,
domain T
~
a s t r i c t ( L F ) - N u c l e a r s p a c e , and, by t h e r e s u l t o f Boland Waelbroeck
of
[5], (H(R),
-io)
i s a l s o Nuclear, b u t not
i~ s
and
barrelled
o r semi-complete. FURTHER RESULTS sidered H(R,G)
,
I f G i s a normed 1 . c . s .
,
we c o u l d h a v e
con-
t h e space o f h o l o m o r p h i c mappings from a domain
s p r e a d R w i t h v a l u e s i n G I i n p l a c e o f H ( R ) . I n t h a t case
all
o u r r e s u l t s would remain v a l i d ( w i t h v i r t u a l l y t h e same proofs), except f o r corollary 3.1,
and t h e o r e m s 3 . 1 and 4 . 1 ,
where
we
would h a v e t o r e q u i r e t h e c o m p l e t e n e s s o f G and d r o p t h e words Monte1 and N u c l e a r from t h e c o n c l u s i o n s ( u n l e s s G were
finite
)
91
TOPOLOGIES ON SPACES OF HOLOMORPHIC FUNC'I'IONS
dimensional)
.
I n t h e o r e m 4.1 w e r e q u i r e d . E t o be a c o u n t a b l e s u r j e c t i v e l i m i t . I f w e allow t h e more g e n e r a l case of a compact i - s u r j e c t i v e l i m i t of t h e n -rl
@$&
s p a c e s (see [7]
symmetric
i s n o longer an ( L F ) - s p a c e , b u t w e s t i l l h a v e
that
and s t a t e m e n t s (2), (31, (4) a n d (5) are I s a t i s f i e d (see a l s o [ 8 ] ) . 'ub
=
8 '
,
for definitions)
still
=
REFERENCES
1.
J. Barroso, M. Platos, and L . N a c h b i n , o n b o u n d e d
hetb
h o l o m o t p h i c m a p p i n g b , L e c t u r e n o t e s i n Math., V o l . 364
,
(1974), 123-133.
Springer-Verlag
2.
oh
P , B e r n e r , UoLomokphy o n b u f i j e c t i v e L i m i t b
eocaLly c o ~
v e x b p a c e n , T h e s i s , U n i v e r s i t y o f R o c h e s t e r (1974). 3.
P . Berner, S U X
l a t o p o l o g i e d e Nuchbi-n d e c e t t a i n n e b p a c e
de d o n c t i o n h h o l o r n o t p h e s , C.R. Acad. S c . P a r i s , t . 280 (1975), 431-433. 4.
P. Berner, A gLobal d a c t o t i z u t i o n ptopehty
aunctionb
06
a domuin
bptead oveA
h a t hoeomohphic
a b u h . j e c t i . v e L i m i t , S6-
m i n a i r e P.Lelong,1974/75.Notes i n Math. 524, Springer-Verlag(1976)
5.
P . B o i a n d and L. W a e l b r o e c k , '3!t t h e n u c L e a 4 i t y
.
0 6 H(U) ,
C o l l o q u e D ' a n a l y s e F o n c t i o n e l l , 9 o r d e n u x , Elai 1975. 6.
S.
Dineen, Uolomofiphic aunc-tionb ud l o c a l l y e u n v e x hpaceh :
I. P o c u l L y convex t o p o l o g i e d a d H(U), Ann. I n s t . F o u r i e r , G r e n o b l e , t . 23, f a s c 3 (19731, 155-185. 7.
S. D i n e e n , Subjective l i m i t s ad Luca.LLy convex npucels and
t h e i 4 application t o i n d i n i t e d i m e n n i o n a L h o l o m o t p h y ,
92
P.
BERNER
B u l l . S O C . math. F r a n c e T . 1 0 3
8.
(1975).
oh
S . D i n e e n , H o ~ o m v 4 p h i c ~ u n c ~ ~ oo nn b h t t o n g duaLh
Fhzchet-ManReL b p u c e b , T h e s e proceedings. 9.
L. Nachbin, S u t t e n e n p u c e b w e c t o t i e t n f o p o . t o g i y u e b d ' u p -
p l i c u t i o n h c o n - t i n u e b , C.R. Acad. S c i . P a r i s , t . 2 7 1 ( 1 9 7 0 1 , 596-598.
10.
M. S c h o t t e n l o h e r , R i e m a n n d o m u i n o ; R u n i c p t o b t e m n , L e c t u r e n o t e s i n Plath., V o l . -Verlag
(1974)
,
hebU&b
and o p e n
364, S p r i n g e r
-
196-212.
S c h o o l of Mathematics
,
T r i n i t y College, Dublin 2 ,
IRELAND.
C u r r e n t address: D e p a r t m e n k of M a t h e m a t i c , L e lloyne C o l l e g e L e lloyne H e i g h t s
S y r a c u s e , New Y o r k 1 3 2 1 4
Infinite Dimensional Holomorphy and Applications, Matos (ed.) @ North-Holland Publishing Company, 1977
NUCLEARITY AND THE SCHWARTZ PROPERTY I N THE THEORY OF HOLOMORPHIC FUNCTIONS ON METRIZABLE LOCALLY CONVEX SPACES
By K L A U S - D I E T E R B l E R S T E V T ANU RElNHOLV M E I S E
PREFACE:
I n w r i t i n g t h i s p a p e r , t h e a u t h o r s were
by t h e t w o r e c e n t a r t i c l e s
[lo]
Boland and Waelbroeck
[lo]
and
[22].
influenced
F i r s t l t h e work of
on n u c l e a r i t y of
(H(U)
for
open s u b s e t s U of q u a s i - c o m p l e t e d u a l - n u c l e a r l o c a l l y convex spaces E
i n d i c a t e d t h a t c e r t a i n s t r o n g t o p o l o g i c a l vector space
properties of
-
(E o r I r a t h e r ) E '
f a r from t h e Banach space casc,
h o w e v e r - m i g h t l e a d t o i n t e r e s t i n g s t r o n g r e s u l t s € o r t h c spacx:x
of h o l o m o r p h i c f u n c t i o n s on s u b s e t s o f
E
.
( T h i s i d e a was a l s o
[6] t h a t
,TJ
is
i s t h e s t r o n g d u a l of a n s - n u c l e a r
(F)-
s u p p o r t e d by t h e t h e o r e m c o n t a i n e d i n even s - nuclear i f
E
(H(U)
s p a c e . ) The main r e s u l t s of t h e p r e s e n t paper confirm the strength of t h e g e n e r a l p r i n c i p l e .
The s e c o n d s o u r c e of i n f o r m a t i o n f o r o u r paper w a s Mujica's
thesis [22J on H ( K )
and
(H(U)
f o r compact s u b s e t s K a n d
open s u b s e t s U of m e t r i z a b l e l o c a l l y convex s p a c e s E .
Al-
t h o u g h w e make u s e o f many d e f i n i t i o n s , i d e a s , c o n s t r u c t i o n s and r e s u l t s from
[22]
here, our general impression
is
,
that
M u j i c a w a s c h i e f l y i n t e r e s t e d i n t h e Banach s p a c e case and hence
93
BIERSTEDT
94
& DIEISE
h i s main c o n d i t i o n s are s o r e s t r i c t i v e as
exclude
even
( H o w t h i s c a n b e r e m e d i e d i s sham
Frschet-Schwartz spaces E . i n P r o p . 4 below)
to
.
A c o m b i n a t i o n o f t h e i d e a s w e g a t h e r e d from a s t u d y
[lo]
t h e two p a p e r s
and
of
l e a d u s f i r s t to i n v e s t i g a t i o n s
[2 2 ]
on t h e s p a c e H ( K ) o f h o l o m o r p h i c germs on a compact of a m e t r i z a b l e S c h w a r t z s p a c e E
. It
subset
K
t u r n e d o u t i n t h i s case-
by a r a t h e r e l e m e n t a r y a p p l i c a t i o n of t h e Cauchy i n e q u a l i t i e s , and of t h e A r z e l ~ - A s c o l i theorem by t h e w a y - t h a t H ( K ) with i t s u s u a l topology i s i n f a c t a S i l v a space.
f see
(a)
Theorem 7
]
8. (a) h e r e
show t h e (DFN)
3,75,-327 ( 1 9 7 6 ) . )
- property
of H ( K )
Acad. S c i . P a r i s
A s w e then proceeded
t o t h e p r o o f of p a r t ( b ) of Theorem 7
-
analogous
and b a s e d on t h e "exten
t h a t i s a l s o needed a t some o t h e r p l a c e s i n t h i s
d e v e l o p e d a t t h e same t i m e . I t s h o u l d be
paper-was
to
f o r n u c l e a r m e t r i z a b l e E (W-
orem 7 (b)), a ( s l i g h t l y ) d i f f e r e n t proof o f 7 ( a )
s i o n " lemma 6
of
was s k e t c h e d i n a announce-
ment of some r e s u l t s of t h i s p a p p r i n C . R . S h r i c A, t . 2 8 3 ,
(This f i r s t proof
t h a t an e s s e n t i a l p a r t of t h e
remarked
Boland-Waelbroeck theorem is made
u s e o f i n t h e p r o o f of 7 ( b ) , too. Theorem 7
i s o u r f u n d a m e n t a l r e s u l t , and s e v e r a l c o n s e -
q u e n c e s a r i s e from it: F o r i n s t a n c e , t h e s p a c e
(H(U),T~)
of
a l l h o l o m o r p h i c f u n c t i o n s on an open s u b s e t U of a m e t r i z a b l e Schwartz pology
fresp. nuclear
T~
i s a complete Schwartz
(Prop. 1 6 . ) . I f open
U c E
space E w i t h Nachbin's p o r t e d to-
-
H(U)
fresp. s-nuclear
i s t o p o l o g i z e d by
t h i s t o p o l o g y i s d e n o t e d by
r e m a r k e d , T~ and
' I ~c o i n c i d e
]
space
p 5 o j KC=" H ( K )
for
as ; Mujica
had
T
~
f o r open s u b s e t s " w i t h t h e Runge
95
NUCLEARITY AND THE SCHWARTZ PROPERTY
-
property"
then t h e sheaf
m e t r i z a b l e Schwartz
of holomorphic f u n c t i o n s
[ r e s p . nuclear]
space E
is
convex ( t o p o l o g i c a l ) s h e a f o f c o m p l e t e S c h w a r t z ar
]
on
a
locally
[ resp.
s-nuclg
s p a c e s (Theorem 1 9 ( a ) ) . F o r some o t h e r c o r o l l a r i e s , r e s u l t s of t h e a u t h o r s
9
]
the
a
and
[ 71
from
a r e used. W e o b t a i n e . g . t h e r e p r e s e n t a t i o n s of
€-products
H(Kl) c H ( K 2 ) = H(K1 x K7) rcsp. (H(U1) , T ~ ) (H(U2) E
, T ~ ) =
( H ( U 1 x U 2 ) , T ~ )f o r compact s e t s
K . C E . r e s p . open subsets 3 3 U . C E . of m e t r i z a b l e S c h w a r t z s p a c e s E j , j = 1 , 2 ( C o r . 2 2 ( c ) 3 3 and P r o p . 2 3 . ) . Moreover, w e would a l s o l i k e t o m e n t i o n t h e m v e r s e of Theorem 7
(Prop. 9 )
,
t i o n p r o p e r t y of H ( K ) and ( H ( U ) 2 0 ) and on v e c t o r
- valued
some r e m a r k s on t h e approxima, T ~ )
( C o r . 11
,
f u n c t i o n s (Prop. 2 1
,
Prop. 25 1 .
The l a s t p a r t of t h e a r t i c l e d e a l s w i t h p o s s i b l e a r i t y t y p e s of H ( U ) : Among t h e power series s p a c e s i n f i n i t e t y p e ) , P r o p o s i t i o n 26
, Prop.
Prop. 1 2
nucle-
Am(a)
g i v e s a r a t h e r r e s t r i c t i v e (neg
e s s a r y ) c o n d i t i o n f o r t h e sequences a with t h e p r o p e r t y (H(U)
, T ~ )
[resp.
(H(U) , T ~ > ] i s
anced open s u b s e t s U
open
U C Cm
,
AJa)
]
space E
( H ( U ) , T ~ )i s i n d e e d
if
- nuclear
for all
that bal-
o f an i n f i n i t e d i m e n s i o n a l F r S c h e t or S i l v a
[ r e s p . m e t r i z a b l e Schwartz 28. p r o v e s t h a t
(of
.
On t h e o t h e r h a n d , Prop.
AJa)
- nuclear
for
a s a t i s f i e s t h e c o n d i t i o n of 26.
each
(Examples
o f s u c h s e q u e n c e s a are e x h i b i t e d i n Remark 27 ( b ) ) .
ACKNOWLEDGEMENT:
We t h a n k R i c h a r d Aron and M a r t i n Schottenloher
f o r some h e l p f u l c o r r e s p o n d e n c e (and s e v e r a l r e m a r k s ) d u r i n g the p r e p a r a t i o n of t h i s p a p e r and Dietmar Vogt f o r a remark l e d t o t h e p r e s e n t form o f P r o p . 9 .
which
96
BIERSTEDT & MEISE
For o u r n o t a t i o n from t h e t h e o r y of locally coz
PRELIMINARIES:
vex (1.c. ) t o p o l o g i c a l v e c t o r s p a c e s (which i s q u i t e s t a n d a r d ) ,
,
w e r e f e r t o Horvzth [lS]
1191
Kothe
,
and
Floret
-
Wloka
[ 151 . The r e a d e r may a l s o c o n s u l t G r o t h e n d i e c k [16] , P i e t s c h [ 271 , and Martineau
[16]
a r i t y . W e mention
c o n c e r n i n g n u c l e a r i t y and s
[20]
,
[31]
Schwartz
g i c a l t e n s o r p r o d u c t s and t h e
,
and
- nucle-
1 9 1 f o r topolo-
€ - p r o d u c t . Concerning
holomor-
p h i c f u n c t i o n s and mappings on i n f i n i t e d i m e n s i o n a l s p a c e , t h e books of Nachbin
[23]
and Noverraz
and t h e i r
notarion
a r e u s e d . W e remind t h a t , f o r complex 1 . c . s p a c e s E
and F and
U C E
open, a mapping
f : U
i s c a l l e d holomorphic i f and
F
-f
[24]
o n l y i f i t i s G - a n a l y t i c ( i . e . G z t e a u x - a n a l y t i c ) and c o n t i n y ous. We d e n o t e by f : U
3
H(U,F) t h e s p a c e of a l l holomorphic mappings
and d e f i n e
F
H(U) : = H(U,C)
g i e s can be i n t r o d u c e d on
H(U)
,
. Several
e. g . t h e topology
uniform convergence on compact s u b s e t s of ed t o p o l o g y
U
T ~ ( = C O )of
o r Nachbin’s p o r t
which i s d e f i n e d by a l l semi-norms p on
T~
t h a t a r e p o r t e d by a compact s u h s e t K of K i f f o r e a c h V open w i t h
such t h a t
n a t u r a l topolo-
5
p(f)
U .
K C V C U, there
C ( v ) s u p If (x) I
for a l l
H(U)
(p is ported exists
f E H(U) .)
by
C(V) > 0
For m e t r i
XEV
zable spaces E and
‘cW
,
f o r i n s t a n c e , i t i s known ( c f .
have t h e same bounded s e t s , b u t
nological. I f t e r m i n o l o g y of
E
then
that
and
T~
T~
need n o t be bor-
( i . e . a S i l v a space i n
i s a (DFS) - s p a c e
p ]) ,
T~
[12])
the
c o i n c i d e on H ( U ) , For
more i n f o r m a t i o n on t h e s e t o p o l o g i e s see Barroso-Matos-Nachbin [4].
F o r any l o c a l l y convex s p a c e E
, G(mE)d e n o t e s
t h e space
of a l l c o n t i n u o u s m - homogeneous c o m p l e x - v a l u e d p o l y n o m i a l s on E. If
E
i s a ( s e m i - ) n o M space,
Q
(mE) w i l l be endowed
with
NUCLEARITY AND THE SCHF7ARTY PROPERTY
97
i t s n a t u r a l ( c o m p l e t e ) norm t o p o l o g y . O t h e r d e f i n i t i o n s w i l l be given l a t e r on.
From now o n , l e t a l w a y s E b e a m e t r i z a b l e
1 . c . s p a c e o v e r E . The t o p o l o g y o f E system
(P,)
of s e m i - norms.
Em
. Let
1
(Hausdorff)
i s g i v e n by an increasing denotes t h e set
Bi
b e t h e s p a c e E , endowed with (n) t h e semi-norm pn o n l y , and l e t E n b e the quotient space E/ -1 Pn (0) w i t h t h e norm 11 * I I n i n d u c e d by p, : i t s c o m p l e t i o n i s denoted {x E E; pn(x) < 6
by
(in, /I * ) I n
rnm :
- EnEm
+
Gn
En,
m > n
for
-+
-
:E
E n , r n m* ,Em
-+
-+
and
En
a r e t h e c a n o n i c a l mappings. Obviously d
n
En;
fine
I/
= {y E En;
rn(B6)
{y E
rn :E
1.
E
/In
Ily =
U
lIn
y
< 6
1
= : B"
holds t r u e .
+
Bg
and
UnI6
c
-
rn(UnI6)
Bg
i n E we
< 6 1 . For a f i x e d compact s e t K
K
/'n
Let
+
= Tn(K)
r, B6 .
=
de-
"1
1.
K w i l l alwayn d e n o t e a non
DEFINITIONS:
bet od
E
(a)
,
Y
Foh
-
empzy compac-t nub-
a complex Banach npuce.
i n t h e l o u p - n o t m e d l Baruch
U C E open, Hm(U,Y)
Apace o h a l l b o u n d e d h o e o m o h p h i c m a p p i n g n dham i n t o Y and (b)
Let
Hw(U)
= Hm(U,E).
( r n I n E be a o t h i c t l y d e c t e a b i n g
06 ponitive H(U,Y)
u
-
flumbetd rn. We dedine U n = U
= ind Hw(UnrY)
and
H(K)
AtqUtnCe
r i a
C
V
,U =Un
nfrn n
= H(K,E).
,
,rn (An
n-+
one c a n e a n i l y d e e , t h i n d e a i n i t i o n d o e n n o t depend on t h e neyuence p1 < p 2
0 , t h e mapping
m
m -
( U n I 6 ) -+ H ( U n I 6 )
,
g i v e n by
An(f) = f
i s a ( s u r j e c t i v e ) i s o m e t r i c isomorphism, see
Lemma 2 . 2 .
nn,
0
[zzJ,
T h i s i s o f c o u r s e s t i l l t r u e f o r Banach
s p a c e v a l u e d mappings. (b)
2.4
In
,
Def.
Thm. 3 . 1 , M u j i c a p r o v e s r e g u l a r i t y o f t h e
in-
H ( K ) = i n d ( H ( U n ) , T ~ )by n+ and P r o p . 2 . 3 .
W e a l s o have
[22]
,
[22J
m
H ( K ) = i n d H ( U n ) . I n h i s Def. 1 . 5 ( b ) he defines n+ t h e t e r m "Cauchy r e g u l a r i t y " f o r i n d u c t i v e l i m i t s and shows i n
ductive l i m i t
Theorem 3.2 t h a t
H ( K ) i s even Cauchy r e g u l a r , i f
t h e c o n d i t i o n (B) of
[22]
,
Def. 3.1
satisfies
( S e e Remark 5 ( a ) below.)
On t h e o t h e r h a n d , w e i n t r o d u c e d t h e n o t i o n of edlyretractive inductive l i m i t " i n
E
[8],
" s t r o n g l y bow-
§ 1,l. The two notions
c o i n c i d e i n many i m p o r t a n t c a s e s :
3. a&
LEMMMA:
L e t { F a , iaB 1 b t an i n j e c t i v e i n d u c t i v e
Ranach n p a c e n
ayntem
F a . T h e n t h e i n d u c - t i v e Limit i n n-OLtrrangLg bound
edeg h e t h a c t i v e .id and o n l y i& it in Cauchy h e g u l a h .
PROOF:
From t h e d e f i n i t i o n i t i s immediate t h a t e a c h s t r o n g l y
boundedly r e t r a c t i v e i n d u c t i v e l i m i t o f Banach s p a c e s i s quasi c o m p l e t e * ) and h e n c e Cauchy r e g u l a r . The c o n v e r s e c a n
be seen
.............................................................. *)
Note t h a t two 1.c . t o p o l o g i e s which c o i n c i d e on a convex b a l anced s u b s e t even induce the s m uniform structure on this set.
NUCLEARITY AND THE SCHWARTZ PROPERTY
99
as follows: Let B be the closed unit ball of Fa. Then is bounded in F bounded in F
a
hence there exists
I
2
such that
c1
F -Cauchy net. Therefore the completeness of F a R that the topology on B, induced by F coincides with Fa
Ba
is
and such that each F - Cauchy net in Ba is already
an
induced by
i,(Ba)
implies the
one
.0
Mujica's condition ( B ) is satisfied (trivially) for normed spaces. Among distinguished Frgchet spaces E with a continuous norm, however, only normable spaces satisfy (B).
Therefore
it
that for
a
is important to take into consideration once more
set M bounded in some ed in @CmE (n))
for
Hm(Un) , {img ( 5 ) ; g E M,5
m = 0,1,.
..
(Here we follow the terminology of
by the Cauchy
Corollaries in
[22])
inequalities.
1221 . ) Hence (after analyz-
ing the proofs of Lemmas 3.1, 3.4, and 3.5) Mujica's main results
K} is bound-
E
(like Theorems 3.2
it turns and
remain true under the
3.3
out that and
their
weaker
condition
bjmce
bntib,(i/inq
(BM) mentioned in our first proDosition.
4.
PROPOSITION:
L e t B be u methizuble R . c .
th e A o l L u i u i n il c o n d i t i a n :
*)
We thank J. Mujica and P. Aviles for pointing out that uniformness in m is necessary here.
We would also like tonote
that Prop. 4 was proved independently in Thesis de Magister.
Patricio
Aviles
100
BIERSTEDT
&
MEISE
H(K) = i”,d Hm(Un) i n u 6 . t t o n g L q bouvt dud /rc?Rkactiwe n i n d u c - t i u e L i n i i t 0 6 Eunuch n p c t c e n and h e n c e u c vm pk e t e u L t t u b u R. -
Then
nokogicak (DF)- s p a c e . 5.
REMARKS: (a) Mujica’s condition ( B ) requires that the inductive limits ind (?(mE (n ) are strict. For m = 1, for iE n+ stance, this means that ind (En) = ind (En); is n+ n+ strict). Hence (BE{) is weaker than ( B ) . And for (FS)spaces E , ( B ) is satisfied if and only if all the spaces En if
are finite dimensional, i.e. if and n E = C” or E = c for some n E IN.
(b) Condition (BPI)
E For then the induc-
is always satisfied,
is a metrizable Schwartz space:
only
however, if
in+d @fmEn) are even compact (i. e. n Silva), as an argument similar to the one used in tive limits
the proof of the theorem of Schauder Wloka
[15
(see Floret-
] , 19, 2.1) immediately shows.Yet we will
prove much more for such spaces E in 7
below.
The ideas used in the proof of the next lemma are already well - known (see e. CJ. Schottenloher 1291 ) . We shall need this lemma several times in the proofs of our main results, however,
PROOF:
For
f E Mm(U,Y), x
converqent Taylor expansion
E
K f (x
and
+
h E FrCF, m
h)
=
C
n=O
we have
the
r
li(x , h) ,
where
101
NUCLEARLTY K13 THE SCHPJARTZ PROPERTY
l nf ( x ) = l nf ( x ,
n-homogeneous con
is a (uniquely determined)
)
t i n u o u s p o l y n o m i a l on F w i t h v a l u e s i n Y
and
( n = O,l,. . . I .
by t h e Cauchy i n e q u a l i t i e s
Now e x t e n d 1; ( x ) t o some c o n t i n u o u s n-homogeneous p o l y w f n o m i a l ln on j? ; t h e e s t i m a t e s above a r e p r e s e r v e d . Hence t h e 00 f c (--)t n c o n v e r g e s €or series c l l l n ( x p h ) l l 2 I1 f lLm(u,y) n=O n=O
.
- -
all
, + 6)
w
=
L
fx(x
If
x,y E K satisfy
(by d e n s i t y o f
f Y)
n (x,G) i s holomorphic w i t h
I
n=O (x
d e f i n e d on
+ ir
x
-
by
and
fx
t < r , and t h e f u n c t i o n
h E Bt
(x
+
Br)
+ 6,)
+ Gr)
(7 ( y
f) ( y
+
(x+Br).
i t i s e a s y t o see
-
and by c o n t i n u i t y o f
Br)
fx
t h a t t h e r e s t r i c t i o n s of
+ g,
fxl (xtBr) = f l
and
-f Y
to the
fx
inter-
ez
s e c t i o n c o i n c i d e . A s holomorphy i s a l o c a l p r o p e r t y , t h e r e
i s t s some
2
E H(V) with
f p
nu
=
qv
n U,
and
h o l d s by d e n s i t y a g a i n . Then i t i s o b v i o u s t h a L F : f
-$
f
i s well-defined,
THEOREM:
mapping
c o n t i n u o u s , l i n e a r , and i n j e c t i v e a
The n e x t i s o u r main t h e o r e m on
7.
the
H(K).
L4.t
E
b e a mettrizabPe 1 . c . d p a c e and F
E
i d
u S c h w a f i t z bpace., t h e bpe&uni
cE
cum
pact. W
(a)
16
h conipact
UMd
heWt H(K) a (DFS)-JpUCe.
H (Un); )p,
102
BIERSTEDT
&
MEISE
I n t n e n o t a t i o n i n t r o d u c e d i n 1. ( b ) wemy assume r
PROOF:
1.
C:
1 -
...
I t i s enough t o show t h a t t h e s y s t e m of semi-norms p , < _ p 2 1
c a n be c h o s e n i n s u c h a way a s t o g e t a l l t h e c a n o n i c a l
(un)
: H"
pnln+l
pings
l u t e l y summing
]
(n
E
m
H
-L
.
IY )
see F l o r e t - W l o k a
space
s
~a b +s o - ~
,
F o r t h e n H(K) i s a ( D F S ) - [ r e s p .
(DFN)d
[resg.
Un+l
Un+;,]
.
W e fix
n E IN
rn+l < s < rn and d e f i n e V
= en(K) +BE
En.
C
I n t h i s case w e may assume w i t h o u t l o s s of g e n e r a l -
a)
nnln+l
ity that
~
fi
IR w i t h
E
P
-
[ 1 5 ] ) , b e c a u s e n o component o f Un h a s
a void intersection with and
( u ~ + compact ~ ) [ resp.
map
. *
En+l
,.
-* En i s p r e c o m p a c t a n d h e n c e
'il
n,n+l
compact, Then
i s a compact s u b s e t o f leLmma 6 .
,
because of
V
we n o t i c e , t h a t
Here A n ,
An+l
pn
5
Using 2 . ( a ) a n d
can be represented
'n,n+l
--
Pn,n+l
are l i k e i n 2 . ( a ) , F i s d e f i n e d as i n
6.
,
A
and B i s g i v e n by
B(f) = f
0
u,u
B can be w r i t -
= n n , n + l , UI n - +l. m
t e n i n a n a u r a l way a s Bo
: C(Q)
-+
CB(U,+l)
B = B0
0
R , where
R : H (V)
[ C B = c o n t i n u o u s a n d bounded]
by R ( f ) = f 0 a n d B o ( f )
=
f
e
+
C(Q)
are defined
u . A s a l l mappings a r e l i n e a r
c o n t i n u o u s , i t i s enough t o show c o m p a c t n e s s of
R
and
only.
and This,
i n t u r n , f o l l o w s form a s i m p l e a p p l i c a t i o n o f t h e Cauchy i n t e g r a l f o r m u l a a n d of t h e t h e o r e m of A r z e l s - A s c o l i : in f
En
b e 3 6 , and f i x x , y E Q
E Hm(V)
with
Ilx-y
t h e following estimate h o l d s :
/In
L e t dist(Q,
6. Then f o r
-
1 03
NUCLEARITY AND THE SCHWARTZ PROPERTY
Hence
R maps t h e u n i t b a l l o f
Hm(V)
o n t o a u n i f o r m l y bounded
a n d e q u i c o n t i n u o u s f a m i l y of c o n t i n u o u s f u n c t i o n s on t h e p a c t s e t Q , a n d so R (b)
i s compact by A r z e l s - A s c o l i .
The ? r o o f o f
( b ) proceeds s i m i l a r l y . W e assume
o u t loss of g e n e r a l i t y t h a t ( p k ) k E~
1 2 1
,
Gk,k+l
:
8 . 6 . 1 Thm.)
Satz 8.2.6) Hence f o r r
,
6k+l
.
-f
canonical
b e o f c l a s s 1" w i t h p < 1 (cf.Pietsch
A s mappings o f c l a s s 3."
are precompact
([27]
-
t h e set Q1=
E 1R
Ek
with
i s c h o s e n i n s u c h a wayas
t o make a l l t h e Ek H i l b e r t s p a c e s and t o l e t a l l t h e mappings
com-
T ~ + ~ , ~ + ~ ( U E ~n + +l ~ i) s p r e c o m p a c t .
n+ 1 t h e r e e x i s t m E Il -in+ 1 B~ I and so we have:
w i t h r n + 2< r < r
and
~~
with
Q1
c mu
j =1
(kj
+
A f t e r t h e s e p r e p a r a t i o n s w e are g o i n g t o show now, how a s u i t -
a b l e factorization allows us t o use a r e s u l t Waelbroeck t o p r o v e t h a t t o r i z a t i o n of
Pn ,n+2
PnIn+2
H(V)
,
Boland
and
i s a b s o l u t e l y summing. The f a g
w e need i s given as follows:
(Here, f o r a compact s u b s e t
t h e space
of
S
of
V
,
endowed w i t h t h e s e m i
w e d e n o t e by
- norm
(H(V),pS)
p S ( f ) = s u p l f (x)l X E S
104
BIERSTEDT & I E I S E
J d e n o t e s t h e c o n t i n u o u s i n c l u s i o n , R t h e i d e n t i c a l mapping,
and B a r e as i n p a r t ( a ) of t h e p r o o f w i t h e . g . B ( f ) = f
0
F
u ,
N
(5
IUn+2
= I T" n , n + 2
L3
As f o r
and L i s t h e compact s e t
,
L a l l mappings i n t h e above f a c t o r i z a t i o n a r e
co"
i n s u c h a way t h a t R be
t i n u o u s , i t w i l l s u f f i c e t o choose comes a b s o l u t e l y summing.
TO d o t h i s , w e remark f i r s t t h a t by well-known
theorems
on t h e r e p r e s e n t a t i o n o f compact o p e r a t o r s i n H i l b e r t (cf.
[ 271 , 8.3) t h e condition
n,n+l
normal s y s t e m s
i n En w i t h t h e a d d i t i o z
4
l i m (1 + j ) x
j +m ( e j )j E IN
-
in En.
= 0
j
and
o f c l a s s IP" implies that
-
f o r an a p p r o p r i a t e s e q u e n c e ( x j )
a1 Property t h a t
spaces
E N in
(fj)
( F o r some o r t h o
En+l
1
resp.
m
and a s e q u e n c e
('j)j E N with
and
0
hj\
1 A T j=1
m
get
'n , n + l ( y ) =
~ ( +1 j l 2 h j
fj
1 A . ( y [ e j ) f j . Now t a k e j=1 3
and n o t i c e t h a t
C =
m
C
1 b u c h t h a t
geMehaLity ( b y trepLacivzg (L,)
KE
E'
d,th the inductive L i m i t t a p o -
H(Uo)
Let U
in
bet
w i L L deno,te
H~(K:)
endow
c e n b a h y ) , w e may abbume
in
(K,)
g i v e n in U e a i r z i t i o n
5U
Ln = a n K n
.
U
w i t h a bubnequence
nuch t h a t
Uo
=
2
3.
Without
a n iMCkeUbiflg b e q u e n c e a 6
s o l u t e l y convex compact b u b b e t b o Q
4
ne
ab-
L , '
and
and
Xn
= lim H ~ ( L ~ ) .
H(u')
+
Now suppose
such that Tm = T
let
Tm
El
.in
be ,the bpctce o & holomu4phic ge4mb on
Uo
e a c h n , chaobe
Fah
i n compact
compact i n
i d
Apace 0 6 bounded holomohphic 6UnCtionb on bupkemum
K
E
P' (mE)
T(f)
T
I 5
P (mE) '
E Hi(U).
CT
Kn
Then
Now let
Fm
(f)
Then t h e r e exist
for a l l
Trn(p)
5
CIT
Kn
f E HN(U).
C > 0
For each m we
( p ) for a l l p
E
P(mE), and
= B T E~ P ( ~ E ~ )(see Proposition
2).
DUALITY AND SPACES OF HOLOMORPHIC FUNCTIONS
1 Tm(@m ) 1 5
IFm(@)1 =
Then
CTI (@m) for all Kn
135
Finally
$ E El.
L-r
define F on L,'
by
F(@)=
m
m
c
JF(+)J5
m= 0 that F E Hm(L:) where
and
TFEOREM 1.
(IF I]
w i t h t h e bpace
06
PROOF.
8
(a)
@ is well defined, and
getrmb
8
need only show
06
E
for all
(%) p
(bttrong
Uo.
P'(mE) and
1 - 1. To show that
P(mE') for each m
2
,
f3 is
it fol
is an isomorphism,
H(Uo). There exist n and
M
=
F
) I F 1)
E
Hm(K,')
such that m
I
and
F
=
X Fm be m= 0
For each m let
BTm = Fm It follows that Tm(p) 5 Mn (p) Kn P(mE). We now define T on HN(U) by
be such that
E
scu'.
/T(f)I 5 MrK (f) for all f E HN(U) ,and hence T E n E T = F, we have shown that 2 is an isomorphism between
Clearly Since
we
is onto.
i s the germ of F on Uo. Let
E P'
the
HN(U) may be idevttidied
the Taylor series representation of F in K,'.
Tm
06
is an isomorphism. Since by Proposition 2
is
Let
on
is
H(u').
Hence ,the driat
an isomorphism between lows that
.
d e d i n e b a homeomotphibm b e t w e e n Hi(U) H(Uo).
Now
(a l m
L e t U be an abboLutei?y conuex opehi n u b b e t
Then
E.
.
0
Ln
@ E
= (Can)/(an-l). It is clear n 5 (Can)/(an- 1). We define 8 T = F,
HE;(U) to
t o p u t o g y ) and
F
m=O
Fm(@) for all
is the germ of F on Uo
a linear map from
&FN
c c
I F ~ ( $ )5I
C
m= 0
Hi(U) and
H(Uo).
(b) tinuous. Let
i s a homeomorphism. First we show that
Ta
+
0
in
8
is con
-
HA(U) , and we will show that @T,=Fa
-+
0
136
P . J. BOLAND
i n H ( U O ) . Suppose now t h a t W i s a n e i g h b o r h o o d o f 0 i n and l e t W n = 1;'
(W)
f o r e a c h n where
In
Hm ( L z )
t h e r e e x i s t s a s e q u e n c e ( bn ) o f p o s i t i v e c o n s t a n t s s u c h Vn = {F : F E H m ( L z )
,
11 2
IlF
f o r each n
Wn
bn)
t o show t h e r e e x i s t s a' s u c h t h a t when
Fa
has a r e p r e s e n t a t i o n
there exist
a 2 a'
C > 0
f E HN(U).
,
T~ E BO. s u p p o s e now
and K n
] T a ( f )[
such t h a t
Ta E Bo,
But a s
ITa(f)
. Since
= ,8Ta
$ is
I L
5
CrK (f)
Then
a'.
for
n
(f)
for
'n it fol-
Fa E Hm(LZ) I ) V n ,
t h i s axpletes the proof
continuous.
i s c o n t i n u o u s . As
in
2
(l/Cn)r
3-l
W e c o m p l e t e t h e p r o o f by showing t h a t
that i f {
a
I] Fa!/-< (an/Cn)/(an - 1) =bn
lows t h a t there exists Fa E Hm(LZ) such t h a t
that
.
From t h e c o n s t r u c t i o n i n D e f i n i t i o n 4
f E HN(U).
Fa
3T
=
.
s u c h t h a t when
and
Fa
-
f o r each n }
all
suffices
B = i f : f E H ~ ( u ) , rK ( f ) < cn = a n / ( b n ( a n 1)) n Then B i s bounded i n H N ( U ) and w e may f i n d a '
Define
all
f o r some n
that
. It
a > a', t h e n
E H m ( L Z ) f'l Vn
,
. Therefore
H (Uo)
-+
H(Uo)
H(Uo)
: H(Uo)
s(U)
-+
i s bornological, it s u f f i c e s t o
Fa
}
i s bounded i n
{
Fa
} be bounded i n
-
-1 Fa 1 i s H ( U o ) , t h e n { f3 A
show
bounded
Hi(U). Let
{ F a } bounded i n
H(Uo)
. Then
Fa
Hm(KZ) such t h a t
t h e r e e x i s t Kn
i s t h e germ o f Fa on Uo
/ / F aI [ . From t h e a p a r t of t h i s proof, it follows t h a t t h e r e e x i s t Ta E f o r each a
f o r each a
(see I M u j ] ) .
such t h a t
M = sup
Let
,8Ta =
Fa
f E H N ( U ) . Hence w e see t h a t i f t h e n V i s a neighborhood o f each a
. Hence
0
and
IT,(f)
I 5
MrK
n
V = { f : f E H N ( U ) ,r
in
{Ta} i s bounded i n
and
Hi(U)
(f) f o r a l l (f)
Kn
H N ( U ) s u c h t h a t TaE
Hi(U).
first
2
lm, for
DUALITY AND SPACES OF HOLOMORPHIC FUNCTIONS
I37
BIBLIOGRAPHY
[BMN]
J . A.
BARROSO, M.
nets
C. MATOS AND L. NACHBIN
-
On
baunded
h o l o m o h p h i c m a p p i n g s , P r o c . 1973 I n t e r n a t .
06
Conf. on I n f i n i t e D i m e n s i o n a l Holomorphy,
Lecture
Notes i n M a t h . , v o l . 3 6 4 , S p r i n g e r - V e r l a g , B e r l i n and N e w York, 1974.
[
Bl]
P . J . BOLAND
-
M a l g h a n g e Theohem dax e n t i h e 6 u n c t i v n s a n
nucleah spaceb, Proc.,
1 9 7 3 I n t e r n a t . Conf. on I n -
f i n i t e D i m e n s i o n a l H o l o m o r p h y , L e c t u r e N o t e s in Math., v o l . 364, S p r i n g e r - V e r l a g ,
B e r l i n and
New
York,
1974.
[ B2] P. J.
BOLAND
-
Holamahphic Fuflctions an n u c l e a h
TAMS, v o l .
[ B3]
P . J . BOLAND
-
npace~,
209, 1975.
An example
06
a n u c e e a h Apace i n i n d i n i t e
dimi?nniond hoLomotphy, Arkiv €or matematik, 1 5 : l (1977).
[
G
]
A.
GROTHENDIECK
-
Sufi CehtaiMA edpaced d e d o n c t i a n s h o l g
mahphes, I and 11, C r e l l e s J o u r n a 1 , v o l . 192, 1953.
[
K
]
G . KOETHE
- Qualitat i
n detr F u n k t i a n t h e o h i e , C r e l l e s J o u r -
n a l , v o l . 1 9 1 , 1953.
[
M
] A.
MARTINEAU
-
S U La ~ t o p o d o g i e deb U p a c e d d e 6 o n c t i o n s
h o l o m o h p h e s , Math. A n n a l e n , Band 163, Heft 1, 1966. [Muj]
J. M U J I C A
-
Spaces
06
gehmb
06
hoLamohphic 6 u n c t i o n n , t o
a p p e a r i n Advances i n M a t h e m a t i c s .
P. J. BOLAND
J 38
IN
1
L. NACHBIN
-
T o p o L o g y on npacen
06 halomohphic
Ergebnisse der Mathematik und ihrer
mappingn,
Grenzgebiete,
Ban 47, Springer-Verlag New York, 1969.
[ P ] A. PIETSCH
-
NucLeah L o c a L l y c o n v e x
ApUCeA,
Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 66, SpringerVerlag, New York, 1972.
[S
C. L. DA SILVA DIAS
-
Enpacon VectohiaiA T o p a l o g i c o n
e
nua a p p L i c a C a e n nun eApaCon d u n c i o n a i b a n a l i t i c o n ,
Boletim d a Sociedade de Matematica d e Sao
Paulo
,
vol. 5, 1952.
Department of Mathematics University College, Dublin 4, Ireland.
A HOLOMORPHIC CHARACTERIZATION OFBANACH SPACES WITH BASES
BY s v o 8 a n g Chae
ABSTRACT:
Let E be a Banach space with a monotone normalized
basis i bn 1 .Every holomorphic automorphism on the open m
ball El of E is of the form
C xnbn n=l
W
+
C n=l
---
n
unit bn
W
C a b E E l ; lhnl = 1 (n E: N); a permutation of n=l n n if and only if €3 is isometrically isomorphic to co.
where
AMS (1970) Subject Classifications. Primary
32A30,
N
461145,
46B1.5, 46699. Key Words and Phrases. Holomorphic maps on Banach Spaces,Basis, Mobius transformations, automorphism, isometry.
139
140
S.
1. INTRODUCTION:
B.
CMAE
On the open unit ball El of a. complex Banach
space E with a normalized basis { bn}, we define
the
MZbiuh
t f i a n nd o h m a t i o n $a : El
+
E
by xn-a n 1 1 - B x bn n=l n n m
m
$a( 1 xnb,) n=1
=
m
where a =
C anbn E El. Then $a is an irjective holomorphic n=l (Frgchet differentiable) map on El. St.and.artresults about hg
lomorphic functions on Ranach spaces may he found. in [ 2 ] .
If
E = C, it. i s well known that the Mobius transformat.ion charac-
terizes the injective analytic maps (i.e., the conformal maps) of the open unit disk onto itself. In this paper w2 show that for the Mobistransformations to characterize the holomorphic automorphisms of El onto itself it is necessary and sufficient that the Ba.nach space E is :is0 metrically isomorphic to the Banach space co of sequences cog verging to 0. 2. AUTOMORPIIISMS:
Let E be a complex Banach space
U C E be a nonempty open set. A mapping f : U be
+
and
U is said
h o l v r n o h p h i c a u t o m o t p h i n m if f is a bijective
let to
holomorphic
map with the holomorphic inverse. A u t ( U ) will denote the space of the automorphisms on U and I s o ( E ) 1irill dcnote thet set of the linear isometries of E onto itself. Unlike the finite dimensiofl a 1 case, J. bijective map may not have the holomorphic inverse.
LEMMA 1 :
1c.t
El b e Rhe a p c n u n i R b a L L
04
a Ranach b p u c e
E
HOLOMORPHIC CHARACTERIZATION
1. 4 1
o u c h t h a Z & a h ewehy N E El t h e h e e x i b t h fa E Rut(E1)
f,(o)
= a
.
q
Then 604 evehy
E
Aut(El) Z l z e h e
ex&&
With
sE
ISO(E)
ouch th&
g
PROOF:
We have
lemma [l]
=
fN
s,
0
g(0)
=
a
.
-1 -1 fa (a) = 0 and fa o g ( 0 )
there exists
=
By
0.
S E I s o ( E ) such that
S
=
Schwarz's fil o g
on
*
Let I3 be a Banach space with an unconditional basis {bn}. The norm
1) x 1)
is called Aymrne,t'Lic
N and for any sequence
if for any permutation 4 on
{An 1 in C with lhnl
=
equality holds: m
m
We state the following lemma from [3],
m
m
$(I x b ) = C A x n=l n n n=l n n(n)bn
fn (x)
=
xn
X
(n)-"n n n (n)
1-8 x
p . 265.
1, the following
142
S. B.
PROOF:
Let
=
ct
( an ) =
@,(XI
E B.
c n=l
i s a n automorphism and
CHAE
Then t h e Mgbius t r a n s f o r m a t i o n
x -a
n n e 1-Bnxn n (0) =
-
en 1 d e n o t e s t h e
ct (
standard
b a s i s f o r c o ) . I t i s a n e a s y matter t o c h e c k t h a t
f E Aut(B)
Let
f = @
(y.
. Then
such
that
o S by Lemma 1, a n d h e n c e w e o b t a i n t h e d e s i r e d r e p r e -
f
s e n t a t i o n of
a s a c o n s e q u e n c e of Lemma 2 .
3 . A CHARACTERIZATION OF co: basis
S E Isc ( c o )
there exists,
{bnl
E
be a Banach s p a c e w i t h
a
i s s a i d t o be m o n o t o n e i f
bnl
*
Let
k
k+ 1
for a l l k
[4].
THEOREM 2 :
L e t E b e a Banach ~ p c ~ cwei t h n m o n o t o n e n o l r m a d i z e d
baAih
{
bnl
06
E
i d
El
.
7 6 evetry a u t v m o l r p h i ~ m f
m
f ( 1 xnbn) = C A n n= 1 n=l T
,
bade
0 6 t h e dokm m
(iuhehe
o n t h e open u n i t
an
,
An
caddy i d o m o k p h i c t o
ahe
ad
X
-a
l-d 1,
n n n bn n n(n)
i n Theotreni I ) , t h e n E in i n o r n e t h i -
co.
W e need t h e f o l l o w i n g lemmas.
1.4 3
HOLOMORPHIC CHARACTERIZATION
Let
LEMMA 3 :
n
2
2
b e u 6 i x ~ di r z t e g e h . 2
(a)
1
E R hUCh t h a t
X
(b)
a =
F v / r O ( h z n + 2 ,
Let
m~
Zhe/ze
N.
QXihth
= ) -x - q
1-ax
X
5
n
, thehe
2
n
E R hr
-a 1- x1-ax 1
and h =
m m+n+2 ,a=mtn m + l n+
z h ,that
1 x( ( lil+
'
and
.
W e u s e t h e f a c t t h e tl6bius t r a n s f o r m a t i o n on t h e
PROOF:
'
m+ 2
F O R each A , O z h 5 x
eXihth
n +2n-2
open
u n i t d i s k of t h e complex p l a n e n a p s c i r c l e s t o c i r c l e s and l i n e segments t o l i n e segments. I n p a r t i c u l a r , t h i s
transformation
maps a r e a l l i n e segment t o a n o t h e r r e a l l i n e s e g m e n t . W e prove o n l y ( b ) s i n c e ( a ) c a n b e shown i n e x a c t l y t h e same way a s (b). For
a =
m , let m+n
W e d e n o t e by S ( r ) t h e c i r c l e
lz
E C
: IzI
1
= r
m+ 1 m+ 2 Then c a r d 4 a ( S ( m + n + 1)) 0 S ( m + n +2 ) = 2
.
.
In fact,
m+ 1 m + 2 m+l m+2 -1 < a =$Ic1 (- m + n + l1 < - m + n + 2 < 0 < b = @ a (-m + n + l ) < m + n + 2 and t h e i n t e r v a l m+ 1 @a (' (m + n + 1) )
[ a , b]
. Therefore,
1x1 5
LEMMA 4 :
i s t h e d i a y o n a l of t h e c i r c l e
m + l
m+n+l
we can f i n d
and
-A
x E R such t h a t
X - a
=- 1-ax
U n d e f i t h e h y p O t h Q h i h v d Thevheni 2 ,
a
we lzave
144
/I
bl
S . B . CHAE
+
..,+bn
11
= 1
d o h each
n E N.
I t i s s u f f i c i e n t t o show t h a t f o r e a c h
PROOF: A libl
+
b2
...
+ b2 +
11
+ bn
A
< 1. L e t 0 < A < 1. Then
,
0
0 be arbitrary and suppose X 2 ,
so that
K
C XiBiC U and i=1
Let L1 =
... X K
such
have been
that
chosen
Y
K
C XiBi and let E ' > 0 be arbitrary. Choose 61 > 0 so i=1K that L2 = C A B + 61BK+1C U. Since L2 is a compact subsetd i=1 i i we can find 6 2 > 1 such that S2L2c U. Hence
is a To-continuous semi-norm on H(U) (to check this use Cauchy's
inequalities and the fact that U is balanced). Since B is bound ed we can find a posltive
For f E H(U) let
integer N such that
&%?-?denote the n!
continuous symnetric n-linear
form which is canonically associated with the
n-homogeneous
152
S.
DINEEN
polynomial d"fn!( 0 ) ' For X > 0, we have, by expanding each polynomial,
-
Since L1CL2 we have n-1-n El sup I I I: -~ d f (0) -< Y + E Y - . fcB n=O n! Since B is bounded
so that A,+1
Hence we can choose
< 61 and
It now follows that
Since
E
sup IIL1 + A B < M + E + E' fEB K+1 K+1 and E' were arbitrary we may follow an inductive
pro-
m
cess to find a sequence of positive integers, (Xn)n=l,such that
I/
00
C XnBn - 0, we can find 6 > 0 such that
sup Ifn(xo) - fn(XO + x’l: E . n>l XF6V m This shows that the seouence (fn)n=l is equicontinuous.
By
a
simple argument it follows that {fn)iZ1 converqes at all points of U to a function which we call fo. By the classical theorem Eo is G-holomorphic and since the seauence (fn);=l locally bounded the function fo is a s o locally bounded
Monte1 is and
hence continuous. m
By Ascoli’s theorem the sequence (fn n=0 is a compact subset of m (H(U), To). Hence (fn)n=l contains a converqent subseouence and
154
S.
DINEEN
t h i s completes t h e proof. The above method shows t h a t equibounded s e t s o f holo-
REMARK
morphic f u n c t i o n on a r b i t r a r y l o c a l l y convex s p a c e s
are
equi-
continuous. We now show t h a t weak and s t r o n g holomorphic f u n c t i o n s c o i n c i d e
o n open s u b s e t s o f
@5
P
spaces.
l e t E and F d e n o t e ahrbithah!t l!acaUrt c o n v e x
LEMMA 9
14 ( o h each o p e n n u b d e t U a,( E t h e bounded b u b h e t h
ahe e q u i b o u n d e d t h e n H ( U : F )
= H(U: (F, u ( F ' ,
F))
04
dpaced. (H(U),TO)
.
W e may suppose t h a t F i s a normed l i n e a r s p a c e . L e t
PROOF
d e n o t e t h e u n i t b a l l o f F ' . Suppose f i s a compact s u b s e t of U and $
E
II(U;
E
B
(F, a ( F ' , F ) ) . I f K
F ' t h e n ( $ o f ) ( K ) i s a bound-
ed s u b s e t on C. Hence f ( K ) i s a weakly bounded s u b s e t o f F
and
by Mackey's theorem t h i s i m n l i e s f ( K ) i s .a s t r o n 7 l Y b o d e d
sub-
set of F . Thus ( $ o f
$ EB
( H ( U ) , To). By o u r hypo-
i s a bounded s u b s e t o f
t h e s i s t h i s i m p l i e s t h a t ( $ o f ) $ € * i s a n equibounded s u b s e t of H ( U ) and hence w e can f i n d , f o r e a c h
xo
E
U , a neighbourhood o f
x o r V, such t h a t sup I I f ( x ) l I = sup x EV x EV @ EB
o f(x)l
5
M,
i . e . f i s l o c a l l y bOu4
ed and hence c o n t i n u o u s . S i n c e H(U;F) C H(U;(F, u ( F ' , F ) )
for
any p a i r of l o c a l l y convex s p a c e s E and F w e have comnleted t h e proof. COROLLARY 1 0
Let F d e n o t e a n aRbithahr{ Locatl!i{ c o n v e x
t h e n Y ( L J ; F ) = H(U;(F, a ( F " , F)) L i
11 i h n n open a u b h e t
hpace od
a
HOLOMORPHIC FUNCTIONS COROLLARY 11
155
Let F d e n o t e am a h b i t h a h y t o c a t L y c o n v e x
and L e i U d e n o t e an o p e n b u b d e t 0 6 a
m+
Apace
F
s p a c e . Then f: U-
i b hoLomohphic i d and o n L q id f i b bounded o n t h e compact
sub-
s e t s 0 4 u and i b G - h o t o m o h p h i c . PROOF
We may assume that U is convex and balanced.If f : U - + F
is G-holomorphic and bounded on the comnact
U
subsets of
it
suffices by proposition 1 and corollary 10 to show @ o f is con tinuous on each comnact subset of U for each @ in F'. Let @ denote a fixed element of F ' and let B denote a compact subset of U. By Cauchy's inequalities there exists a X > 1 such that
Hence it suffices to show n. Let Pn =
-2
h n! q
( 0 ) and let
(0) is continuous for
6n denote the
each
associated sym_
metric n-linear form. As in proposition 6 it suffices to prove the following; if K and L are convex balanced compact of E and
1 (PnlI K 5
M then for each
E
subsets
> 0 we can find h > 0 such
n
(xli-lsup IPn(x)"-i(y)il x EL YEK follows and sup IPn(x)n-i(y)il < = for all i, 0 5 i 5 n, this xeL YEK immediately. J:
i=l
COROLLARY 12
A locatLrr c o n v e x v a l u e d p o l i { n n a i a l d e 4 i n e d
e i b c o n t i n u o u b id and on!!{ i4 s p a c e s EB i b c o n t i n u o u s n PROOF
A
40h
itb
hebthiction to t h e
on
Ranach
e a c h n.
polynomial on a Banach space is continuous
only if it is bounded on bounded sets and each bounded
if
and
subset
156
DINEEN
S.
of E is contained and norm bounded in some Bn. Restating corollary 11 we have the following result. COROLLARY 13
E = 1 3 EB
COROLLARY 14
S e p a 4 a t e l y continuoub polynomialb dedined
i n t h e CategOhy 0 6 l o c a l e y n n Apace4 and c o n t i n u o u s p o l y n o m i a l m a p p i n g & .
phoduct oil
@F$&s p a c e d
convex
on
a
a t e eontinuoub.
w$!
then and F = l=r FCn are spaces n E x F is also a&~+~space and E x F = 9E inFCn n Bn ductiue limits being taken in the category of locally convex PROOF
If E = 1 2 EB
spaces and continuous linear mappings). If P is a separatelycan x F n n' separately continuous for each n and hence is continuous
is
tinuous polynomial on E x F then P restricted to EB
(by
Hartogs' theorem on separate analyticity for Banach spaces (see [lo])). Hence P is continuous by corollary 11. COROLLARY 15
76 F
b p a c e and ( U , V )
a bequentially complete l o c a l l y
i d
convex
a 6 - e x t e n b i o n p a i t ( * ) 0 6 domainb bphead o v e t
i b
E t h e n (U,V) i h a n f - e x t e n h i o n p a i t .
PROOF
Apply corollary 10. m
m
1 6 ($n)n=l i
COROLLARY 16
ib and o n L q id $n
+
o a6
n
b
a sequence i n E' then
-+
m
If
Hence $n
-+
m
C 4: n=l 0 as n
E
H(E) then
+ m
Conversely suppose $n 370 (*)
L$~
+
0 as
n
+
In
)X(,$I
C n=1
n f o r a l l n. -~ (x)I f n and K p 3 KQ lx Q ( n ) 'mn 1 . n+ 1 n Next choose mn+l such t h a t mn+l > m and x n Q ( n + l ) rmn+l f o r i = 1,
and K Q
i+ 1
u
u
and fn+l a p l u r i s u b h a r m o n i c f u n c t i o n on U s u c h t h a t ) > 2"+1 > 1 > sup fn+,(X) -- 2n+1 -- X E K . fn+l ( x (~ n + l ) ,mn+l
_> 0 .
S. DINEEN
162
m
By induction we then define the senuence (fn):=l.
Let f
=
By our construction this sum converqes at all points of U
1 frI n=l and
isunbounded on each neiqhbourhood of xn, n arbitrary. Each fn is a positive function and a finite sum of plurisubharmonic tions is plurisubharmonic, hence it suffices to show upper semi-continuous to complete the proof. Since
U
func-
f
is is
a
k-mace it suffices to show that f is unper semi-continuous on each compact subset of U. Let I< denote an arbitrary comDact sub set of U and let C denote some real number. B y our construction < -1 K - 2" V. Choose M
we can find a Dositive integer N such that I Ifn/I
for
all n > N. Let V = Ix E K, f(x) < C). Let xo E N M+ 2 1 such that 3 < C - f(xo). Since C fn is plurisubharmonic 2 n=l there exists a neighbourhood of xo in K, W, such that M+ 2 1 sup T fn(x) < c X E W n=l 2M+ 1 !I+2 flence sup f (x) 5 sup I: fn(x) X EIJ XEW n=l
+
w 1
-- 1
n=r1+3 2"
Thus flK is plurisuhharmonic and U is the natural domain
of
existance of f.
j e c t i v e hephesentation bv open suhneto
Xunctions PROOF
+
I.( E , a PocatPfr c o n v e x s p a c e , has
PROPOSITION 19
04
@s h p a c e s
then the
E a h e domains 0 4 e x i s t a n c e 0 4
an o p e n huh -
pneudo-convex ptutihuhhahrnonic
I
Let 9
tation of E by
= ( E a , ~ a ) a Edenote A
s , snaces and
open subset of E. By [4]
the open surjective represeg
sunpose U is a
there exists an a in
nseudo-convex A
such
that
HOLOMORPHIC FUNCTIONS
U =
na-1 (n,(U))
163
and na.(U) is a pseudo-convex open subset of Ea..
By proposition 18 there exists a plurisubharmonic
function
on
f, which is unbounded on each neiqhbourhood of each b u g
s,(U),
ary point of na. (u) If 5
. Let f
U.
rats)
E
6 ( n a . ( U ) ) and a,(V)
Hence
1 I f ! ! na.(")
=
D
n a. .Iis a plurisubharmonic func
and V is a neiThbourhood of 6 in E
tion on
E 6U
= f
and
then
is a neighbourhood of na.(E) in na(EL
I I?' lv
=
I If
9
na.l
I" -- I I f 1 In#)
-
m.
Thus U is the natural domain of existance of f. This completes the proof.
For the sake of oonpleteness we include the folladng p u l t s . (a) is proved in [4] and (b) is proved for @gc#spaces in [ 6 ] . PROPOSITION 19
&&+s p a c e
(a) A holomohphicall"
c o n v e x o p e n dubbe-t 0 4
i n t h e d o m a i n 0 4 e x i b t a n c e 0 4 a holomohphic
a
(unc-
ti0n.
(b) 14 t h e l o c a t l r r convex s p a c e E ha6 a n 0pe.n b u 4 j e c t i V e t e p t e -
nentation by
=#b p a c e b
each
0 4 which
hub a S c h a u d e t
habin
t h e n t h e pneudo-convex open b u b b e t b 0 4 E a 4 e damaina 0 5 tance
04
holomohphic { u n c t i o n b . (b) Use the result in [S] for
PROOF
eXh-
W+ spaces and
exactly
the same method as used in pronosition 18. We have been unableto prove or disprove the following conjecture. CONJECTURE
tions on
+
Do8
SiPva
(04
hlackerr) COntinUOUb G - h o l o m o t p h i c
bpaceb a t e c o n t i n u o u b .
If this conjecture were true then it would follow
w#
(unc-
that
spaces are Zorn spaces (i.e. the set of points of continui
ty of G-holomorphic functions on open subsets of@# open and closed).
spaces is
S. DINEEN
164
This conjecture requires a deep study of
convergent se-
quences which are not Mackey convergent.Indeed it is equivalent
to showing that convergent sequences are bounding subsets
for
Silva holomorphic functions and a counterexample may not
be
found by usinq the usual techniques (this follows by corollary 15). Grothendieck's example of a
@$ space does not provide
a
=#space E which
is
not
counterexamnle.
This results from the following facts about E (which
do
not appear to be common to all @ 1) E =
9En n
a
$ spaces which are not @@
):
and each En is isometrically isomorphic to
9 00. m
n=l
2) If B denotes the unit ball in Pmthen Tn(Bn C,)
is
a fundamental seauence of bounded subsets of E. 3 ) Every element of H ( X B )
, X
> 1, is bounded on B n C o ([B]).
The results on surjective limits parallel some those in section 7 of [4]
of
and loosely speakinq we have
shown that results for the T o topoloqy can be extended to the To)topoloqy without the extension
requirement
on the surjective limit. The method of proposition 16 m a y also he combined techniaues in [2]
+
to study holomorphic functions
snread over surjective limits of
on
spaces and this
gation has subseauently been carried out in [ 2 ] .
with domains investi-
HOLOMORPHIC FUNCTIONS
165
B I B L IOC?.APHY
[l]
J. BARROSO, M. PqATOS and L. NACHDIN; On bounded sets of ho-
lomorphic maminrjs, Lecture Notes in Vaths, Vol. 365, Sprinqer-Verlan, (1973), 216-224. [2] P. RERNER;
A
nlobal factorization pronerty for
holomornhic
functions of a damain spread over a surjective limit,Seminaire P.Lelong,1974/75.Lecture Notes inMaths,524 Springer-Verlag(1976) [3] P. BERNER; Topoloqies on spaces of holomorphic functions of certain surjective limits (this proceedings). [4]
S.
DINEEN; Surjective limits of locally convex spaces
and
their application to infinite dimensional holomorphy. Bull. SOC. Yath. Fr. t103, 1975 (to appear). [5]
S.
DINEEN; Holomornhic Functions on locally convex snaces I, Locally convex topoloqies on €I(U), Ann Inst. Fourier, Grenoble, t23, 3, (19731, 155-185.
[6]
S.
DINEEN; PH. NOVERRAZ and M. SCHOTTENLOHER; Le nrohlemede Levi dens certains espace vectoriels toaoloqicyes localement convexes,Bull SOC. Math. Fr. t. 104(1976).
[7] A. GROTIIENDIECK; Sur les espaces (F) et (DF). Summa
Bras.
Math. 3, 57-123, (1954). [8]
B. JOSEFSON; Boundinq Subsets of Rm(A) , Thesis,
Uapsala,
1975. [g]
G , ROETIIE; Tonoloqical vector spaces I ,
Bd 159, 1969.
Springer-Verlaq,
S. D I "
166
[lo]
PM. NOVERRAZ ; Pseudo-Convexite , convexite polynomiale
et
domains d'holomorphie en dimension infinil, North-HoL land, 1973. limit
[11J PH. NOVERRAZ; On a particular case of surjective (this nroceedinqs) [12]
.
L. SCHWARTZ ; Radon measures on arhitrarv tonoloTica1 spaces and cylindrical measures, Oxford Universit~r
Press,
1973.
DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE DUBLIN nUBLIN 4 , IRELAND.
Infinite Dimensional Holomorphy and Applications, Matos (ed.) @ North-Holland Publishing Company, 1977
D I F F E R E N T I A L EQUATIONS OF I N F I N I T E ORDER I N VECTOR-VALUED HOLOMORPHIC FOCK S P A C E S
BY T H O M A S A .
w.
P W Y E R ,7 r r
CONTENTS INTRODUCTION
1. Vector-valued holomorphic Fock spaces and their duals
2. Vector-valued convolution operators and their adjoints 3. Vector--valueddivision theorems
4. Vector-valued existence and approximation theorems 5 . Application to entire functions with entire function values
6. Application to vector-valued variational equations REFERENCES
INTRODUCTION
Various situations where power series in infinite
dimen-
sional domains naturally arise a l s o involve infinite - dimension a1 ranges: e.g., the Volterra series representation of the out-
puts of non-linear systems as analytic functions of input signal LlU, 2,3], [Bol. 1,2,3,4,5], [Br. 1,2,3], [w],and the variational equations related
to the representation of solutions of well posed boundary value
167
T. A. W. DWYER
168
problems as functional power series, where the variable is the boundarv value function IDL]
.
This last reference especiallv shaws
the desirability of extending the existence and
approximation
theorems on convolution equations and partial differential equa tions in infinite dimension of [ G 1 , 2,3]
IN
2 , 3 , 4 , < ~ , rDil,2]
[Mat 1,2], [ Dw 1,2,3,5,6,7,8], [ Bol 5 . 2 , 3 , 4 , 5 ] and [Bd
I
to vec -
tor-valued functions. Existence theorems do not hold for general convolution q u a tions
? * 3
-+
= g,
6
where $ and
are mappings from a (dual)vec
tor space E ' to a vector space F and
%
is an F-valued linear
m -
ator on functions from E' into F, even in finite dimension. The case when
+
T = T B A , where T is a scalar-valued form acting on
scalar-valued functions on E ' and A is a linear operator on was shown in [ Dw 9,101
to be more manageable: in the first ref%
ence the Malgrange-Gupta existence and approximation were shown to hold for
T
8
A
*
in the space
theorems
HNb(E';F)of F-Val
ued entire functions on E' of nuclear bounded tvpe, when in the dual of
F,
HNb(E';F) and A is the identity operator
is
T
on
F
(where E and F are Banach spaces). In the second reference those results were extended to surjective bounded linear operators A , and a basis was constructed for a dense subspace of the spaceof solutions of the homogeneous equation, associated with the zeros of A and those of the Fourier-Bore1 transform of T: the problem was approached by the representation of
T
8 A*
in
the
form
g'(d) C3 A , where g ' is the Fourier-Bore1 transform of T and the "differential operator of infinite order" g'(d) is defined
as
the sum of the homogeneous operators gA(d) given by gA(d)f ( X' =
0
defined spaces
3
( E ' ; F ) of F-valued e n t i r e f u n c t i o n s
11
inl(0)
on E '
11
o
F p '' ( E ; F ' )
,
(11:
111 NiPiP1 P>O'
e q u i p p e d w i t h the lo-
c a l l y convex i n d u c t i v e l i m i t t o p o l o g v i n d u c e d bv t h e n a t u r a l i"
173
DIFFERENTIAL EQUATIONS OF INFINITE ORDER
j e c t i o n s FP'(E;F ) P'
+
F;'(E;F').
The s p a c e F E : o ( E )
as
(defined
Fp' ( E ) b u t f o r t h e n u c l e a r holomorphy t y p e o n E ) i s n o t r e p r e 0
s e n t a b l e as t h e d u a l of F E ( E ' )
-
( d e f i n e d as F g m ( E ' ) b u t f o r t h e r
c u r r e n t t y p e ) , and t h e q u e s t i o n o f t h e r e g u l a r i t y o f i t s
open
s e t s i s a s y e t u n s e t t l e d , e x c e p t when E i s a H i l b e r t s p a c e o r a F r s c h e t - S c h w a r t z s p a c e . However, a n a l o g u e s o f a l l t h e r e s u l t s on c o n v o l u t i o n o p e r a t o r s g i v e n i n t h i s a r t i c l e are a l s o v a l i d
F::N
on
( E ; F ' ) a l t h o u g h t h i s case w i l l b e o n l y b r i e f l y o u t l i n e d ( c f .
[Dw 8 1
,
sec.l.6
and 2 . 6 ) . A d e t a i l e d
through 1.9,2.2,2.5
o f t h e s p a c e s F i ( E ' ) and
studv E and
( E ) f o r l o c a l l y convex domains
IEw 6,8] .
v e r y general h o l m r p h y t p s 0 and dual types 9 ' is t r e a t e d i n
W e b e g i n b y e x t e n d i n g t h e F o u r i e r - B o r e 1 d u a l i t y t o t h e Firs FErp
(E';F) , F F : (E;F') and
FEtw(E';F),
F E ' (E;F') , where as i n
[Dw 9 , 1 0 1 t h e F o u r i e r - B o r e 1 t r a n s f o r m KT: E
a1 o f F) o f a n a n a l y t i c f u n c t i o n a l T: by
< y,
8T(x) > : = T ( e X
*
F* ( a l g e b r a i c du-
FEIp(E';F)
y E F
y) for
-f
+
x
and
a!
is defined where
E E,
eX : = e x p o < x , > : B i n un i n o -
PROPOSITION 1.1. T h e Fautlietl-BatleL t t l u n b d o t l m a t i u n
m e t t l y dtlom F; PROOF:
r P
(E';F)
FF: ( E ; F ' ) .
onto
I
One f i r s t s h o w s , p a r a l l e l t o t h e case p = l ([mg], Prop.
11. 2) t h a t
< y , BT(x) >
i 5 11
T
/I
exp($llx
I/y 11
11')
x E E a n d y E F , ~ . ~ . , I I B T ( x ) I I5- IlTIl e x p ( $ l l x l , P ) BT(E) C F ' whenever
T E Fp
NrP
(E' ;F)
I .
p o l y n o m i a l t r a n s f o r m o f t h e r e s t r i c t i o n of T t o checks t h a t
m
t i n g w e a k * - c o n v e r g e n c e t o 8T ( x )
series i s s t r o n g b e c a u s e
m
/I Cn=o
+
1'
Pnl (x)
+
Pnl
that
be the
PN(nE';F)
< y , BT(x) >
. Moreover ,
so
<m,
Letting then
for all
as
m
+
a
one r
get
t h e convergence o f t h e
11 5 1 1
T
exp
??
IIx
lip
174
f o r a l l m , hence
BT
W.
T. A.
&
BT(x)
DWYER
7$A(x)
m
= Cn=o
in
F.
To show
71,
F p ' ( E ; F ' ) one emplovs t h e F-valued a n a l o g u e o f [Dw
Lem
51, Lemma on p . A 1 4 4 1 , which has an i d e n t i c a l proof,
= [Dw
ma 2 . 1 . 1
that
and p r o c e e d s a s i n t h e p r o o f o f [Dw 7 3 , Prop. 2.1.3 =[Dd 511, P r o p .
2 . 1 . F i n a l l y , t o show t h a t B
i s s u r j e c t i v e and lliBTlllp',pl
=I1
11
T
( h e n c e 8 i n j e c t i v e ) o n e f o l l o w s v e r b a t i m t h e s c a l a r - v a l u e d proof o f [Dw
5,7],
loc. c i t .
73
, P r o p s . 2.1.3', + P r o p . 2 . 2 , l e t t i n g >F: = T ( f ) o n e h a s : A s i n t h e s c a l a r case o f I D w
Ff: , ( E ' ; F ) (lredp. F i , m ( E ' ; F ) ) a n d F F : ( E ; F ; )
COROLLARY :
F':
(E:F')
6okm < < ,
3' E
a t e i n nepatating duaeity w i t h
>>F
1
-adj o i n t of
(a/av)"
( d i r e c t i o n a l d e r i v a t i v e along v E E ) i s multi-
p l i c a t i o n by v" =
v
,>n
(which d o e s n o t f o l l o w from P r o p s i t i o n
2.3). W e d e r i v e t h e s e r e s u l t s from t h e a n a l o g u e s o f P r o p o s i t i o n s
2.1., 2 . 2 and 2 . 3 f o r t h e o p e r a t o r s P n ( d ) on P ( m + n E )
on
and g ( d )
d e f i n e d below.
F:'(E)
Given Pn E P N ( n E ' ) I by P n ( d ) w e mean t h e l i n e a r on
P (mtnE) g i v e n by
PROPOSITION 2 . 1 ' .
P,(d)Q;+,(x)
5
(ii)
PROOF:
operator
.
>
: = < P n l d Q;+,(x)
P n ( d ) E L ( P (m+nE) : P (%))
Qk+n E P ( m + n E ) , Qm E P , ( % ' ) (i)
^n
and
doh
each
we. h a v e
Gn
IIPn(d)GnlI m _m = (m n 1 < Pn
$-
mn
The argument i s d i f f e r e n t from t h a t f o r P r o p o s i t i o n 2 . 1
i n u s i n g t h e Hahn-Banach t h e o r e m o n t h e b i d u a l of P N ( % ' )
fol-
lowed by Alaoglu's theorem ( d e n s i t y o f PN ( m E ' ) i n i t s b i d u a l ) ,t o f i n d polynomials
1 /lPn(d) E
QA+Jm
E
QmrE
n, g ' = + a vn -+ >F ,
as well as >F = >
by
[DW
9j , Prop. 11. 4,
DIFFERENTIAL EQUATIONS OF INFINITE ORDER
Given f '
COROLLARY:
i n E, doh each n
,
$ 1
3' E vn
( u ) = >
F '
1. The a n a l o g u e of the corollary above holds on F p
REMARKS:
NJrn
(E';F) ,
a s f o l l o w s from P r o p o s i t i o n 2 . 3 , b u t w i l l n o t b e u s e d . A d i r e c t proof f o r p = l
i s given i n
~ o J ,Lemma
3.1.
~ D W
2 . The a n a l o g u e s o f t h e e s t i m a t e i n P r o p o s i t i o n 2 . 2 '
)I A I/
the factor
Proposition 2.3' g E FZ(E')
,
as i n P r o p o s i t i o n 2 . 2 ) , and 2 . 4 ' ,
as w e l l
h o l d f o r g ( d ) on
as
those of with
FE:o(E;F')
and are l i k e w i s e d e r i v e d from P r o p o s i t i o n 2 . 1 .
[Dw 81, S e c . 1 . 6 t h r o u g h 1 . 9 when
(with
I :
cf
F = Q.
A f a m i l y o f s o l u t i o n s o f homogeneous equations f o r g ' ( d ) % A
i s g i v e n by t h e f o l l o w i n g p r o p o s i t i o n . PROPOSITION 2 . 4 : G i v e n u and v # 0 i n E ad weLL a d y i n F , t h e + y i d a n o L u t i o n 0 6 g ' ( d ) 8 A? = 0 d u n c t i o n f = eU vn id
-
and o n l y i6 e i t h e h Ay = 0 o h u in a z e h o than n i n t h e dihection
06
v . Moheoveh, d u c h dunc,tionb
e a h l y i n d e p e n d e n t d o h d i d t i n c t exponenth PROOF:
g ' w i t h oadeh k i g h m
06
and atib&ahy
u
ahe L i n n , v ,y.
The argument i s t h e same a s f o r t h e c a s e p = 1 i n [DWlO],
P r o p s . 3 . 1 and 3.2:
-
e'
t h e conditions f o r
vn
y
to be a sg
l u t i o n f o l l o w from c o n s i d e r i n g t h e i d e n t i t y g' (d) 8 A (eu
vn
y) = {ZL=o
n -k
t h e l i n e a r independence of
(vn-k),
The l i n e a r i n d e p e n d e n c e o f
{eUj
continuous polynomials
6i '-
E'
+
g ' (u) (v)eu
v"'~>
Ay
,
and t h e n o n - v a n i s h i n g of eU P .} j
j
f
i n fact for arbitrary
F and d i s t i n c t u ' s ,
from d e r i v i n g by i n d u c t i o n t h e i d e n t i t y
.
j
follows
180
T . A. W .
DWYER
. gj
from t h e h y p o t h e s i s C jk+l =l euj
= 0 through
differentiation
a l o n g u 1 E E ' c h o s e n s o t h a t ( a / a u ' ) n+ Pk+l = 0 and for j
5
#
< U ~ - ~ + ~ , U ' >0
k.
1. I n t h e p r e c e d i n g p r o p o s i t i o n ,
REMARKS:
l i n e a r independence + and h o l d s f o r f u n c t i o n s eU P w i t h d i s t i n c t e x p o n e n t s u E E -+ a r b i t r a r y c o n t i n u o u s p o l y n o m i a l s P : E ' + F a s shown i n the proof.
-
The a n a l o g u e s o f a l l p r o p o s i t i o n s up t o t h i s p i n t are
2.
t r u e f o r v e r y g e n e r a l holornorphy t y p e s and t h e i r d u a l t y p e s (ill c l u d i n g t h e compact, c u r r e n t and H i l b e r t - S c h m i d t t y p e s i n l o c a l l y convex s p a c e s ) a t l e a s t i f F = Q: cf [Dw 5,6,7
I
81.
The r e s u l t s
i n t h e n e x t t w o s e c t i o n s are c o m p l e t e l y known o n l y f o r t h e c u r r e n t type-nuclear t y p e p a i r i n g (and p a r t i a l l y f o r t h e Schmidt t y p e :
3 . VECTOR
cf [Dw 1 , 2 , 3 , 4 ] ,
- VALUED
[Bon],
[K 1 , 2 , 3 , 4 , 5 ] .
DIVISION THEOREMS.
The d i v i s i o n theorem f o r t h e o p e r a t o r g i v e n i n [Dw 101, Th. 4 . 1 on ponential type) r e s u l t on
,
Hilbert-
g'
+
A'
0
g'
-+
*
h',
E x p ( E ; F ' ) ( e n t i r e mappings o f ex-
F':
i s now e x t e n d e d t o
(E;F')
.
The
analogous
P ' ( E ; F ' ) w i l l a l s o be d e s c r i b e d . W e b e g i n Fm
with
a
s t r e n g t h e n e d v e r s i o n o f [Dw 1 0 3 , P r o p . 4 . 1 : PROPOSITION 3 . 1 . A E L(F;F)
Given
buch t h a t
f
l
E ff(E;F')
,
g ' E ff ( E ) buck ththat g ' f 0 ,
and a t o t a l b u b b e t Y
AF = F -+
l e t t h e " b c a l a h componentd" f 1 y Y'
E
F
06
06
A-l(O)
,
+ f ' have t h e 6 o L t o ~ n g
phopehtieb: ( i ) 16 y ji! Y t h e n
3' in Y
divinibLe by g'
a6
an e n t i h e duns
t i a n along a l e complex L i n e d i n E Whehe g ' d o e b n o t Vanid h . ( i i ) 16
y E Y
then
2;
= 0.
181
DIFFERENTIAL EQUATIONS OF INFINITE ORDER
From the case F = Q
PROOF:
Lemma 2.3.1 with Er
=
of [G 2 3
, 58, Prop. 2, or [Dw
81
,
E, it follows from the hypothesis (i) that
z' .
Y there is some h' E H (E) such that g' h' = (Y) (Y) Y By the hypothesis (ii), if y E Y then ?;l= 0 and we may set for each y
+ = 0. We now observe: h' (Y)
2' - 8' =I1
lows from the hypothesis (ii) that
=O y1 y2 y1-y2 (because y1 - y2 can be approximated by linear comb&
nations of elements of Y) , so that g' Since g' # 0, there is neighborhood
# 0, so that h'(yl)'U = hiy,)
g'[
by [ H I ,
I u'
*
h' = g t * h' (Y$ (Y,) U C-E such that hence h'(y,) ="'ry,)
111. 1.3, th. 3 ( b ) .
Th. 4.1, we may then define 6 ' : E + (algebraic dual) by < z , h' ( X I > : - hiy, (x) for every x E E Following [Dw lo],
z
=
AY
E
-+
F*
and
F. AS in [DW 101, loc. cit., we get:
(b) A'
0
&'
g'
=
3'
(from the definition of
C-x' (by considering
+
(c) h' (E)
6').
+
h' (x) = limr,g' (xnylg'(xn)EF'
on a sequence xn + x where g ' (x,) # 0, using [ H] ,lot. cit. and the uniform boundedness principle). (d)
2'
is Gzteaux-analytic -
(by the
analyticity
of
~
< z , > 0 6 ' = h' for each z = Ay in F). Y + (e) h' is bounded on compact - -sets (by showing -f
1 (z"
0
z"
F"
E
;I)
(K) I < 1
that
+
max {,hi (x)l: x E K I for each (Y) and each compact K C E, where z = Ay E F is
chosen in the unit ball with center
z"
in
F"
by
Alaoglu's theorem. It follows from (d), (e) and [H],III.
2.2,
Prop. 1
(ii)
T. A. W.
182
that
g'
E
DWYER
H(E;F').
The n e x t p r o p o s i t i o n d i f f e r s f r o m [Dw 103 , Lemma 4 . 1 t h a t t h e M a l g r a n g e - G u p t a estimate o n q u o t i e n t s
exponential
r e p l a c e d by t h e T a y l o r - B o l a n d
estl
o n maximum m o d u l i o f q u o t i e n t s o f e n t i r e
func
g r o w t h estimates i n
m a t e i n [ B o l 21
4 is
of
in
[G
t i o n s o f bounded t y p e . PROPOSITION 3 . 2 .
With A
g'
then t h e r e are c o n s t a n t s C
-f
,f
'
and
'1'
a s i n P r o p o s i t i o n 3.1,
> 0 (depending
PIPIV
only
on p
and
(depending only on A) such t h a t
Ill '1' Ill V I P The proof r e q u i r e s t h e e s t i m a t e s i n t h e lemma below,where M ( R , f ' ) : = Max{ f ' ( x ) 1
:
IIx
11 5
R}
H b ( E ; F ' ) i s t h e space of
and
e n t i r e f u n c t i o n s f r o m E t o F ' w h i c h a r e bounded o n bounded s e t s (same f o r
F =
( i )Id
LEMMA:
a): f ' E F p : ( E ) t h e n 6 0 l ~ e a c h R > 0 we h a v e P
M ( R -"pI ( i i )G i v e n
f '
f') 5 and
t h e n ,504 e a c h
~
g'
and
PROOF:
h' E
v >
Hb ( E ; F ' ) p > 0
~
i n Hb(E)
R > 0
M(R,f'/g') 5 lg' (0) (iii)16
~
~ (1F R P~ ) .
exp
, id
f'/g'
I
E H(E)
I and g'(O)#O
we h a v e
{1+M(2Rtf')
I3
C1+M(2RIg')l3
t h e n h a t each nequence
( i ) f o l l o w s from t h e d e f i n i t i o n of M (
06
,)
and of
Rn > 0
456 a n d [Bol 2 1 , Lemma 4 . 4 .
f r o m t h e Cauchy estimates o f
"11,
111
~ ~ ~ l l p l :
The e s t i m a t e ( i i ) i s
d u e t o T a y l o r when E = C a n d B o l a n d when E i s a Banach p.
.
we h a v e
cf [Dw 8 3 , Lemma 2 . 3 . 3 = [ D w 6 3 , Lemma 2 . 6 .
cf [ T a l l
I
Finally,
5 6 , P r o p . 3: c f
space :
(iii) f o l l o w s
LDW 81,
Lemma
~
DIFFERENTIAL EQUATIONS OF INFINITE ORDER
183
2 . 3 . 5 = [Dw 6-1, Lemma 2.5. The e s t i m a t e ( i i i ) i n t h e lemma
REMARK:
is the onlv point
t h i s e n t i r e a r t i c l e w h e r e t h e Cauchy e s t i m a t e s a r e u s e d , t h e o n l y r e a s o n f o r t h e r e s t r i c t i o n of t h e
in
hence
d i v i s i o n theorem t o
t h e c u r r e n t holomorphv t y p e ; c f t h e same d i f f i c u l t v i n [G 1 , 2 , 3 _ 1 ,
, [Bol
[N 2 , 3 ]
1,2,3],
f e r t o [Dw 1,2,3 ]
[Mat
(But w e
re-
functions
of
polynomialsfand to [ D i
1,A
and [Dw 5,6,7,8,9,10].
1,2]
f o r t h e d i v i s i o n of
H i l b e r t - S c h m i d t t y p e by H i l b e r t - S c h m i d t
entire
f o r t h e d i v i s i o n o f p o l v n o r n i a l s bv p o l v n o m i a l s f o r more g e n e r a l holomorphy t y p e s . 1 PROOF OF PROPOSITION 3 . 2 .
S i n c e AF = F , t h e image u n d e r
A
of
t h e u n i t b a l l i n F h a s non-empty i n t e r i o r by the open mapping t h e 2
rern, i . e . , t h e r e i s some Iy
IIAYII
E F:
6A > 0
5 1l3tzl
hence f o r each z E F w i t h
11 y I /
51
have
I
11
such t h a t
E F:
z
11
I/
z1
11
5 6Alf
5 1 t h e r e i s some
s u c h t h a t Ay = zl: = 8 A z f t h u s f o r e a c h + -1 -t < z , h ' (x) > 1 = 6A IhAy(x) I , so t h a t M(R~P-'/P
,
?it)
Z
= 6-1 M(R,P A
-Vp,
'Ip
R = 2R,p
as f ' : = g '
M(Rnp-l'p,?i;)
we
Setting
as w e l l
we g e t
(where w e used
1
1 1 + M(2Rnp1/p,g') 3
III?;IIlpl
-
,p, -
Ill$' Illpl
> F
in
(c) >F - a d j o i n t
map h '
A'
+
*
g'
0
h ' ( I H ] ,111.
'>F -weakly c l o s e d c h a r a c t e r o f
the range
FP'(E;F') f o l l o w s from i t s r e p r e s e n t a t i o n as t h e i n t e r 0
g'
s e c t i o n of t h e sets { f ' E F:'(E:F'):
2
lutions
of g ' ( d ) 0 A
2
= 0 in
6
F =
f o r p = 2 , a p p r o x i m a t i o n and
a n d [Bon]
2.6.2.
P FE140(E';F) onlv i n t o F (E';F) NiP
S i n c e g ' ( d ) B A maps
2
DWYER
of
( b u t see
n
p = 2
Hilbert-Schmidt tvpe with
f o r polvnomials g ' i n I D w 1 1 2 , 3 ] ) .
5 , APPLICATION TO ENTIRE FUNCTIONS WITH E N T I R E FUNCTION VALUES.
W e b e g i n by e x t e n d i n g t h e p r e c e d i n g t h e o r v t o more general r a n g e s p a c e s : i f F i s a F r g c h e t s p a c e w i t h a c o n t i n u o u s mrm then
i t s t o p o l o g y i s d e t e r m i n e d by a f a m i l y o f norms
Ilr
iradexed by
a n o r d e r e d s e t w i t h a c o u n t a b l e c o f i n a l s u b s e t ( i t i s enough t o a d d t h e c o n t i n u o u s norm t o s u f f i c i e n t v manv c o n t i n u o u s semirmrms determining t h e topology of F ) . F i s t h e n a complete
countably
normed s p a c e i n t h e s e n s e o f G e l f a n d . L e t t i n g Fr d e n o t e t h e cog p l e t i o n of F w i t h r e s p e c t t o I / mappings F
+
I/r
it follows t h a t t h e n a t u r a l
Fr a r e i n j e c t i v e and F h a s t h e p r o j e c t i v e l i m i t
p o l o g y i n d u c e d by t h e s e m a p p i n g s . W e mav t h e n d e f i n e FE
as
n
F$,,(E';F,)
and
ff
(E;F') as
u
(E;FA)
o b v i o u s i d e n t i f i c a t i o n o f mappings i n t o F ( r e s p . F;) p i n g s i n t o Fr
(rerp. F')
.
Fp
Nim
( E l ;F) is then s t i l l
,
l m
to
(E';F)
with t h e w i t h map-
a
Fr6chet
s p a c e when r e g a r d e d a s a p r o j e c t i v e l i m i t o f t h e F f e c h e t s p a c e s F P w ( E ' ; F r ) , and t h e p a i r i n g of Nt
F:lm(E';F)
w i t h Ff(E;F')
given
by t h e c o r o l l a r y t o P r o p o s i t i o n 1.1 s t i l l h o l d s : now I