H0LOM 0R PHIC AUTO M0R PHISM GROUPS IN BANACH SPACES: AN ELEMENTARY INTRODUCTION
NORTH-HOLLAND MATHEMATICS STUDIES No...
166 downloads
653 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
H0LOM 0R PHIC AUTO M0R PHISM GROUPS IN BANACH SPACES: AN ELEMENTARY INTRODUCTION
NORTH-HOLLAND MATHEMATICS STUDIES Notas de Matematica (97)
Editor: Leopoldo Nachbin Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, and University of Rochester
NORTH-HOLLAND -AMSTERDAM
0
NEW YORK
OXFORD
105
HOLOMORPHIC AUTOMORPHISM GROUPS IN BANACH SPACES: AN ELEMENTARY INTRODUCTION
Jose M. ISIDRO Facultad de Matematicas Universidad de Santiago de Compostela Spain
and LMO
L. STACHO
Bolyai lntezet Szeged Hungary
1985
NORTH-HOLLAND -AMSTERDAM
NEW YORK
OXFORD
@
Elsevier Science Publishers B.V., 1984
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 444 87657 X
Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V. P.O. BOX 1991 1000 BZ AMSTERDAM THE NETHERLANDS
Sole distributors forthe U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 52 VAN DER BILT AVENUE NEW YORK, N.Y. 10017 U.S.A.
Library of Congress Cataloging in Publlcstion Data
Isidro, Joe6 M. Holomorphic automorphism groups in Benach spaces. (North-Holland nrsthematics studies ; 105) ( b a s de matendtics ; 97) Bibliography: p. 1. HolomrpMc functions. 2. Automorphism. 3. Banach spaces. I. StSch6, Lhsz16 L. 11. Title. 111. Series. Iv. s e r i e s : b t a s de m a t e d t i c a (Amsterdam, lctherlends) ; 97. W . n 8 6 no. 97 tQA333 510 s t515.9'83 84-21164 ISBN 0-444-87657-X (U.S. ) PRINTED IN THE NETHERLANDS
PREFACE
Since the early 70's,there has been intensive development in the theory of functions of an infinite number of complex variables. This has led to the establishment of completely new principles (e.g. concerning the behaviour of fixed points) and has thrown new light on some classical finite dimensional results such as the maximum principle, the Schwarz lemma and so on. Perhaps the most spectacular advances occurred in connection with the old problem of the determination of the holomorphic automorphisms of complex manifolds. This book is based on the introductory lectures on this latter field delivered at the University of Santiago de Compostela in October 1981 by the authors. Originally, it was planned as a comprehensive postgraduate course relying on a deep knowledge of holomorphy in topological vector spaces and infinik dimensional Lie groups. However, seeing that some of the undergraduate students were mainly interested in the study of bounded domains in Banach spaces, the authors restricted their attention to these aspects. This proved to be a fortunate idea. We realized that by combining the methods of the theories developed independently by W. Kaup and J . P . Vigu6 with minor modifications, even the main theorems could be derived. This was achieved in a self-contained way from the most fundamental principles of Banach spaces (such as the open mapping theorem), elementary function theory and the pure knowledge of the Taylor series representation of holomorphic maps in this setting. It may often happen in teaching mathematics that avodding the introduction of strong tools leads to abandoning natural heuristics. Probably, this is not the case now. It is enough to V
vi
PREFACE
recall how deeply the early development of the theory of finite dimensional Lie groups and Lie algebras was inspired in Cartan's investigation of the structure of symmetric domains. Moreover, we think that this approach to the automorphism groups of Banach space domains may also serve as motivating and illustrative material in introducing students to the theory of Lie groups and complex manifolds. The text is divided into eleven chapters. In chapter 0 we establish the terminology, and some typical examples of later importance (e.g. the Mtibius group) are studied. In chapter 1 we show the main topological consequences of the Cauchy estimates of Taylor coefficients for uniformly bounded families of holomorphic mappings. These considerations are continued in chapter 2 and applied specifically to the case of the automorphism group, concluding with the topological version of Cartan's uniqueness theorem. The global topological investigations finish in chpater 3, where the Caratheodory distance is introduced to obtain the completness properties of the group AutD. In chapter 4 a completely elementary introduction to Lie theory begins by showing where one-parameter subgroups come from. Chapter 5 is devoted to a description of the Banach Lie algebra structure of complete holomorphic vector fields in order to lay the foundation of chpater 6, in which the Banach Lie groups structure of AutD is studied. In chpaters 7 and 8 we discuss the basic theory of circular domains and determine explicitly the holomorphic automorphism group of the unit ball of several classical Banach spaces. In chapter 9 we introduce the reader to another fruitfully developing branch of these researches by proving Vigue's theorem on the Harish-Chandra realization of bounded symmetric domains. Finally, in chapter 10 and elementary introduction of the Jordan approach to bounded symmetric domains is presented and the convexity of the Harish-Chandra realization is proved. We would like to express our sincere acknowledgement to Prof. L. Nachbin who suggested the idea of writing these notes
PREFACE
vii
and who, together with Prof. E. Vesentini, introduced the authors to infinite dimensional holomorphy and this fascinating branch of mathematics. Thanks are also due to M. Teresa Iglesias €or the careful typing. The authors, August 1984.
J.M. Isidro
Santiago de Compostela Spain.
Stach6 Szeged Hungary.
L.L.
This Page Intentionaiiy Left Blank
TABLE OF CONTENTS
PREFACE
V
CHAPTER
0. PRELIMINARIES.
CHAPTER
1 . UNIFORMLY BOUNDED FAMILIES OF HOLOMORPHIC
§l.
52. 13.
CHAPTER
51. 52. 53.
CHAPTER
51. 52.
53. 54. 55.
1
MAPS AND LOCALLY UNIFORM CONVERGENCE. Cauchy majorizations. Continuity of the composition operation. Differentiability of the composition operation.
5
9 13
2 . TOPOLOGICAL CONSEQUENCES OF THE GROUP
STRUCTURE OF THE SET OF AUTOMORPHISMS. The topological group Aut D Cartan's uniqueness theorem. Topological version of Cartan's uniqueness theorem.
.
17 19 20
3. THE CARATHEODORY DISTANCE AND COMPLETENESS
PROPERTIES OF THE GROUP OF AUTOMORPHISMS. The Poincar6 distance. The Caratheadory pseudometric. The Caratheadory differential pseudometric. Relations between the Carathgodory pseudometric and the norm metric on D.
32
Completeness properties of the group Aut D.
37
ix
29
33 35
TABLE OF CONTENTS
X
CHAPTER 51. 52. 53. 54. 55.
CHAPTER 51.
52.
53. 54. 55.
CHAPTER 51. 52. 53.
54.
55. 56. CHAPTER §I.
52.
53. 54. 55.
4. THE LIE ALGEBRA OF COMPLETE VECTOR FIELDS. One parameter subgroups. Complete holomorphic vector fields. The Lie algebra of complete holomorphic vector fields. Some properties of commuting vector fields. The adjoint mappings. 5. THE NATURAL TOPOLOGY ON THE LIE ALGEBRA OF COMPLETE VECTOR FIELDS. Cartan's uniqueness theorem for autD. Some majorizations on autD. The natural topology on autD. autD as a Banach space. autD as a Banach-Lie algebra.
6. THE BANACH LIE GROUP STRUCTURE OF THE SET OF AUTOMORPHISMS. The concept of a Banach manifold. The concept of a Banach-Lie group. Specific examples: the linear group and its algebraic subgroups. Local behaviour of the exponential map at the origin. The Banach-Lie group structure of AutD. The action of AutD on the domain D. 7. BOUNDED CIRCULAR DOMAINS. The Lie algebra autD f o r circular domains. The connected component of the identity in AutD. Study of the orbit (AutDIO of the origin. 0 The decomposition AutD=(Aut D)(AutoD). Holomorphic and isometric linear equivalence of Banach spaces.
43
49 54
58
61
65 66
69 70
74
77 83 87 101 108 111
113
120 124 126 128
TABLE OF CONTENTS 56. 57.
CHAPTER 51.
52. 53. 54.
55. 56. 57. S8.
CHAPTER §1.
52. 53. 54. 55. 56.
§7.
58. 59.
CHAPTER 51. 92. 53.
54 *
55.
96. 57.
xi
The group of surjective linear isometries of a Banach space. Boundary behaviour and extension theorems.
130 132
a.
AUTOMORPHISMS OF THE UNIT BALL OF SOME CLASSICAL BANACH SPACES. Some geometrical considerations. Automorphisms of the unit ball of LP(Q,p),2#p#m. Automorphisms of the unit ball of some algebras of continuous functions. Operator valued Mijbius transformations. J*-algebras of operators. Minimal partial isometries in Cartan factors. 0
0
Description of Aut B(F1) and aut B(F1). Description of Aut 0 B ( F k ) and aut0B(Pk).
139 142 148 157 164 169
178 183
9. BOUNDED SYMMETRIC DOMAINS.
Historical sketch. Elementary properties 3f svmetric lomains. The canonical decomposition of autD. The complexified Lie algebra of autD. The local representation of autD. The pseudorotations on autD. The pseudorotations on D. The construction of the image domain 8. The isomorphism between the domains D and 8.
191 193 199 20 1 203 207 213 221 224
10. THE JORDAN THEORY OF BOUNDED SYMMETRIC
DOMAINS. Jordan triple product star algebras. Polarization in J*-algebras. Flat subsystems. Subtriples generated by an element. JB*-triples and Hermitian operators. Function model f o r EC. (Ec,*) as a commutative Jordan algebra.
231 235 238
240 242 249 262
x ii
TABLE OF CONTENTS
98.
p o s i t i v e J * - t r i p l e s and t h e c o n v e x i t y of homogeneous c i r c u l a r d o m a i n s .
270
59.
Some p r o p e r t i e s of t h e t o p o l o g y of l o c a l uniform convergence.
280
L I S T OF REFERENCES AND SUPPLEMENTARY READING
285
CHAPTER
0
PRELIMINARIES
Throughout what follows, E and E l denote complex Banach spaces whose norms will be represented indistinctly by ]I I ] , and D is a bounded domain in E.
-
0.1. DEFINITION. A m a p p i n g f: D+E1 i s s a i d t o b e h o l o m o r p h i c i f , for e v e r y aeD, we h a v e f
(a+h)=
. . - ,h)
m
C fLn (h, n=O
i n a n e i g h b o u r h o o d o f a.
Here, for every ndN,
a"
1
(0.1)
f(a+tlhl+. . . + t h 1 n n
is a continuous n-linear operator from En into E l . Remark that, f o r ndN and hcE, we have (0.2)
The family of all holomorphic mappings from D c E into a set D 1 C E 1 is denoted by Hol(D,D1). When E = E 1 and 9=D1 we write H o l ( D ) instead of Hol(D,D ). 1
0.2. DEFINITION. A s u b s e t B c D i s s a i d t o b e c o m p l e t e l y i n t e r i o r t o D, a n d we w r i t e B C C D, if dist(B,aD) > O .
For feHol(D,D1) and B c c D we define
I / f 11
I/ f /I
B=: SUP xeB
IIf
by means of (XI
I1
0.3. DEFINITION. A n e t ( fI. ) , i n Hol(D,D 1 is s a i d t o JCJ c o n v e r g e locally u n i f o r m l y t o a m a p p i n g fcHol(D,E1) i f , f o r 1
CHAPTER
2
0
We denote by 7 the topology on Hol(D,D1) of local uniform convergence over D. If a net (f , ) , in Hol(D,D ) is locally 3
JCJ
1
uniformly convergent to fcHol(D,El), we write T= lim f . = f jeJ
'
0.4. EXERCISE. (a) Let E be the Banach space !Z1 and
function f: E-E is holornorphic on the whole space E and that f is not bounded on the open unit ball B ( E ) of E. Thus we may have 1 1 f / l B =m even if fcHol(D,El) and B c c D. (b) Is T a metrizable topology?. 0.5. DEFINITION. A m a p p i n g fcHol(D) is s a i d to b e an nutomorphism
oS D
if t h e r e exists gcHol(D) s u c h t h a t fg= id
n = gf
Here fg stands f o r the composite of the mappings f and g, and idD represents the identity mapping of D. The family of all automorphisms of D is represented by AutD. 0.6. EXERCISE, (a) Prove that a mapping f: D+E satisfies fcAutD if, and oniy if, f is a surjective bijection of D and, for every asD, the operator ':f is invertible.
invertibility of f
(b) Can the assumption concerning the be weakened?.
(c) Show that AutD with the usual law of composition is a group.
0.7. EXAMPLE. Let A be the open unit disc of E and, for k,ucQ with \ k l = 1 and l u l < l , let us define M as the restrick,u tion to A of the Mdbius transformation
PREL IMI N A R I €3S
3
Then, t h e f o l l o w i n g r e s u l t h o l d s : 0.8.
The g r o u p AutA is g i v e n b y
THEOREX.
P r o o f : F i r s t , l e t us o b s e r v e t h a t w e have
where
1w1 1
I
. After
of t h e argument w e g e t f , + f r e l a i i v e t o I
f j
aicBL-l f o r
k
serveral reiterations
I( - I I B ,
n+ 1
f.+f r e l a t i v e t o 3
. Thus
I / . 11
B2
.
B1 and B2 may be changed, t h e proof i s c o m p l e t e .
#
BOUNDED
FAMILIES AND UNIFORll CONVERGENCE
9
1 . 7 . COROLLARY. T h e t o p o l o g y T o n Hol(D,D ) i s m e t r i z a 1 is a m e t r i c o n Hol(D,D1) //
b l e . F o r any baZZ B c c D ,
We h a v e Tlimf.= f
i n Hol(D,D1) 3 f!k +f(k f o r a l l ],a a kcPI, o r if and o n l y if t h e r e e x i s t s a b a l l B c c D s u c h t h a t
whose a s s o c i a t e d t o p o Z o g y i s 2'.
i f , and onZy if, t h e r e e x i s t s aeD s u c h t h a t
/ I fj-fll, 52.-
+o-
Continuity of the composition operation.
Let D,D1 and D2 be bounded domains in the Banach spaces E, and E 2 . As a first application of the previous theorem we show that the composition of mappings Hol (D,D1)XHol (D1,D2)+Hol (D,D2)
is continuous with regard to the topology of local uniform convergence. The way we shall follow is perhaps not the shortest possible but it provides information that turns out to be useful later. 1.8.
PROPOSITION. L e t feHol(D,D1) and qeHol(D1,D2) b e
h o Z o m o r p h i c m a p p i n g s whose r e s p e c t i v e T a y l o r ' s s e r i e s a t acD and b=: f (a)eD a r e
f(a+h)= f(a)+
...,h)
C fin(h, n=1
f o r a l l kCN.
Here, the detailed interpretation of ( 1 . 4 )
10
CBAPTER
v
1
1
+...+ vm>1
Pnoof: We have the following formal expansion for gf about the point asD (1.5)
gf (a+h)= g(b) +
?
m= 1
.
rjLm[f (a+h)-b;. .;f (a+h)-b]=
We point out that (1.5) is uniformly convergent in a suitable neiqhbourhood of a. Indeed, by ( 1 . 1 ) we have the majorizations
13 where 6=: dist(a,aD) and
E=:
dist(b,aD1
.
v +..+v
Hence
m
BOUNDED FAMILIES AND UlJIFORl4 CONVERGENCE
11
whenever
which i s s a t i s f i e d f o r s u f f i c i e n t l y s m a l l v a l u e s of f o r 1 1 hlI j o . Thus g T 1 + i d D w i t h r e g a r d t o 1
11
- /IB
and t h e result
#
f o l l o w s from t h e o r e m 1 . 6 . 2 . 3 . EXERCISE. Show by e x a m p l e s i n Aut A t h a t t h e c o n s t a n t K i n lemma 2 . 1 , B'
.
2.4.
i n g e n e r a l , must d e p e n d o n b o t h B a n d
REImRK. F o r a b e t t e r u n d e r s t a n d i n g of t h e s i t u a -
t i o n i n lemma 2 . 1
it i s i m p o r t a n t t o n o t e t h a t :
Given a n y b a l l B c c D , t h e r e i s a c o n s t a n t K s u c h t h a t w e have
19
TOPOLOGY ON THE GROUP OF AUTOMORPHISMS
f o r a l l f,gcAut D. Proof: L e t B ' = B
s/2
be d e f i n e d as above,where a g a i n
6=: d i s t ( B , a D ) , a n d c o n s i d e r a n y xsB. NOW, i f t h e p o i n t y = : g - l f ( x ) l i e s i n B ' , t h e n by p r o p o s i t i o n 1 . 4 w e h a v e
T h u s , by t h e a r b t r a r y n e s s o f xsB w e o b t a i n
I/ 2.5.
f-9
EXERCISE. U s i n g t h e f a c t t h a t c o n s t a n t m a p p i n g s
h a v e n u l l d e r i v a t i v e , show
f o r a l l f , gsAut D.
52.-
t h a t w e have
Hint: s h i f t D.
C a r t a n ' s uniqueness theorem. _____-
Next w e i n v e s t i g a t e t h e c o n s e q u e n c e s o f t h e € a c t t h a t , i n Aut D ,
t h e c o m p o s i t i o n c a n be i n f i n i t e l y i t e r a t e d . The p r o o f o f
t h e r e s u l t w e s h a l l o b t a i n s h a d s t h e f i r s t l i g h t on how t h e g e o m e t r y of D d e t e r m i n e s t h e a u t o m o r p h i s m s .
f:'=
9:'
2.6.
THEOREM.
L e t f , geAut D . I f for some acD
and
f ( ' = 9:'
then f = q.
we h a v e
P r o o f : L e t u s c o n s i d e r t h e map h = q - l f . W e h a v e h ( ' = (1
and h a = i d . T h e r e f o r e it s u f f i c e s t o p r o v e t h e s t a t e m e n t o f t h e theorem f o r h=: i d D . Suppose h f i d , .
Then t h e r e e x i s t s some R d N s u c h t h a t
a
CHAPTER
20
h',
C o n s i d e r t h e i t e r a t e d maps h ' ,
2
...
W e show by i n d u c t i o n t h a t
f o r a l l p a . Obviously a
( h p ) ('=
and
(hp)il= id
f o r a l l p m , and t h e a s s e r t i o n of
( 2 . 3 ) f o r p= 1 i s nothing but
t h e d e f i n i t i o n of k . Assume ( 2 . 3 ) h o l d s f o r p. By p r o p o s i t i o n 1 . 8 w e have
vl,.
C o n s i d e r t h e c a s e 2 g k i R . Then, from
f o r k = 1,2,...
(hp)ik=0
( h p ) ( 2 = '.-.=
. , v m 31
and
L e t u s compute ( h P t l ) i ' .
( h P f l ) ('=
(hp)
hJk= 0
w e d e r i v e ( hP + l ) (a= 0
From ( h p ) i 2 = . . = (hP);'-'=
. . , h a( 1] =
[hi'] + ( h p ):'[h;',
hi'cp
0
we get
hi'=
(p+l)h,('
which p r o v e s ( 1 . 3 ) . Hence w e have
lirn
11
(hp)i'II =
m
which c o n t r a d i c t s t h e Cauchy
P*m
majorizations
//
(Chapter 1 , p r o p o s i t i o n 1 . 1 ) ( h p ) ;'I\
6 (
e
)
2
sup(
11 X I \
i
xsD1
f o r a l l p a . I n f a c t w e have p r o v e d t h e f o l l o w i n g : 2.7.
COROLLARY.
L e t hsHol(D) be g i v e n and a s s u m e t h a t (1
t h e r e e x i s t s a p o i n t acD for w h i c h we h a v e h ( O = a , ha = i d . Then h= i d
D
.
e n e s s theorem. Roughly s p e a k i n g , C a r t a n ' s u n i q u e n e s s t h e o r e m s t a t e s t h a t ,
TOPOLOGY ON THE GROUP OF AUTOMORPHISMS
21
g i v e n a p o i n t a e D , t h e a u t o m o r p h i s m s of D d e p e n d o n l y on t h e i r 0 - t h a n d I-st d e r i v a t i v e s a t t h e p o i n t a , i . e . , a n y f s A u t D i s u n i q u e l y d e t e r m i n e d by t h e p a i r f (O a
t
f
('.
d
Is t h i s correspon-
d e n c e c o n t i n u o u s ? . The a n s w e r i s a f f i r m a t i v e . W e h a v e t h e f o l l o w i n g t o p o l o g i c a l v e r s i o n of C a r t a n ' s uniqueness theorem: 2.8.
THEOREM.
L e t asD b e f i x e d a n d a s s u m e t h a t
f , f . c A u t D, jsJ, s a t i s f y I Tlim f = f. I jeJ
,
f o r s= 0 ,1 . T h e n we h a v e
f ! ",a+f:s
P r o o f : E s s e n t i a l l y , w e c a r r y o u t t h e r e a s o n i n g s of t h e p r o o f o f C a r t a n ' s t h e o r e m i n a more g e n e r a l s e t t i n g ( w h e r e t h e r o l e o f f i s now p l a y e d b y f , ) . I D e f i n e h . = : f - ' f . . The r e l a t i o n h ! * = f - ' [ f j ( a ) ] + a 1 I I Observe t h a t also
is clear.
i n a c c o u n t of p r o p o s i t i o n 1 . 1 . N e x t w e s t a b l i s h t h e f o l l o w i n g a x u l i a r y stament LEMMA. I f
2.9.
h i o +a Ira
,
h!'
+id
1 la
and
i s a n e t in H o l ( D ) s u c h t h a t
(h,),
(kl IeJ
h . +O Ira
for k = 2 , .
.., R -I
t h e n we h a v e
An i n m e d i a t e c o n s e q u e n c e w e o b t a i n 2.10.
COROLLARY. F o r a n y n e t
( h . ) , c H o l ( D ) with I IeJ
I n d e e d : I f w e h a d h j f t i d D t h e n by t h e o r e m 1 . 5 t h e r e would be a n R > 2 s u c h t h a t h(.k
-to
3 ,a
Then, b y lemma 2 . 9
f o r 26kSR
and
22
CHAPTER
2
for all j c J and pm. Therefore
-
l i m //(hy);'l/
bpX
jeJ
for pm. But this contradicts the Cauchy estimates (proposition 1.1).
p r o v i n g the corollary. T h u s , in our case f-l f , - + idD whence Tlim f , = f. j
1
e
'
~
Thus, o u r only remainder task i s to prove the lemma. This requires a better overlook on the expansion of h p as a direct iteration of the formula given by proposition 1.8 would lead to very involved expressions. Instead, let us procceed a s follows: Start from
This a s s e r t s that, for f , gsHol(D) a n d for sufficiently small vectors xeE, (gf)(a+x) is the sum of all possible expressions
Let us write (2.4) i n the more visualizable form
/I\
x..x..x
...
/I\
x..x..x
...
/I\
x..x..x
TOPOLOGY ON THE GROUP O F AUTOMORPHISMS
23
I n s u c h a way, it seems t o b e i n t u i t i v e l y c l e a r t h a t f P ( a + x )
i s t h e sum of a l l p o s s i b l e e x p r e s s i o n s c o r r e s o n d i n g t o t h e g r a p h s of t h e form
.....
x
x
x
x
H e r e t h e symbol
7(
.....
.....
x
x
.....
x
x
x
x
x
x
c a n b e i n t e r p r e t e d a s t h e s i g n of s u b s t i t u -
t i o n . Now w e s t a b l i s h t h e p r e c i s e mathematical development of t h i s technique.
I n o r d e r t o be s e l f - c o n t a i n e d ,
w e s h a l l make
no r e f e r e n c e t o t h e u s u a l t h e o r y of t r e e g r a p h s .
2.11.
DEFINITION. L e t nCN b e a r b i t r a r i l y S i z e d . A n-up2.e A =
" t r e e of h e i g h t n r r i s a n
(ao,..,a
n- 1
1 of f u n c t i o n s
such t h a t t h e d o m a i n of a
11 f o r e v e r y p , dom
P
i s a segment
=tl,2,..dp(A)loflN. P r a n g e a,-1= { I } .
c1
31
" o n t o " dom
for Ogpgn-1 LX
Pf 1
I
.
41 for p = I , . . , n
a
P
i s a "monotone i n c r e a s i n g " mapping
we h a v e dom
c1P =
range ap - 1 *
The number d ( A ) i s c a l l e d t h e w i d t h o f A a t t h e h e i g h t p , and W e s a y t h a t d ( A ) i s t h e d e g r e e of
we s h a l l w r i t e d(A)=: d 0 ( A ) . A.
24
CHAPTER 2
2.12.
Note
C o n s i d e r t h e p l a i n graph
EXAMPLE.
t h a t t h e s e q u e n c e of t h e v e r t i c e s i s r e l e v a n t ! This c a n
b e i n t e r p r e t e d a s a t r e - of h e i g h t 3 a s follows:
0
1
a 1 (2)= 1
(I)= 1
a o ( l ) =1
... cx 0 ( 5 ) =
3
,.,
a1(5)= 2
...
~1
0
(10)=5
A t t h i s p o i n t w e c a n p r o v i d e a n e x a c t i n t e r p r e t a t i o n of
2.13.
(2.5).
L e t T r e e s ( n ) d e n o t e Ihe s e t o f a l l
DEFINITION.
t r e e : : o f h e i g h t n. G i v e n g e H o l ( D ) ue d e f i n e t h e " t r e e - d e r i v n t i ves
g i A of g at a c D a s foZZows:
F o r AcTrees ( 1 ) w e s e t g
(A
=:
(d(A) i n t h e u s u a Z s e n s e . ga
giH is a l r e a d y d e f i n e d for a l l BcTrees (n-1) and A=
( C X ~ ~ . ).€ ~ T rC e eX s n- 1
( n ) we s e t
If
TOPOLOGY ON THE GROUP OF AUTOMORPHISMS
25
-1
)sTrees(n-l), a 0 (k)=: {m: ao(m)= k } a n d Jf means cardinality. ljhere B= (al,..,cx
n- 1
2.14. PROPOSITION. T h e series 1 AeTrees (n)
I1
(A
4,
(xr ..rxI
I1
is uniformly convergente o n some neighbourhood o f the origin and we have
Proof: For n= 1 this formula is equivalent to the usual Taylor expansion of g. Remark that by the Cauchy estimates we have
where 6 = dist(a,aD)
and p ~ [ O , m ) .
NOW, assume we had proved (2.71
gn-' (b+x)= g"-' (b)+
C
BeTrees ( n )
gLE(x,* * r x )
for sufficiently small vectors x and
for all
pc[Orm),
where W
w
Y
(PI=
ep
1 [ v = 1 dist (y,aD)
1"
We prove (2.7) and (2.8) for n. Let us begin with (2.8)
CHAPTER
26
2
there exists a But given any BcTrees(n-I) and v l I . . , v d(B) unique (Y. such that (aolR)cTrees(n) and w k = ## a 0- 1 ( k ) f o r 0 k = l,..ld(B). Thus the second member of (2.9) is
which, due to Cauchy's majorizations, is dominated by m
c
c RcTrees(n-1)
V
1
+..tV
d
(R)
By the induction hypothesis the last sum is dominated by
Thus (2.8) is established. Now (2.8) is immediate
c g;* ( X I ,.x)= AeTress (n)
= g n (a+x)-gn
.
(a)
#
27
TOPOLOGY ON THE GROUP OF AUTOMORPHISM
Now w e c a n p r o v e t h e lemma. Proof o f lemma 2 . 9 :
I t f o l l o w s from p r o p o s i t i o n 2 . 1 4
f o r any p,kcW, acD and qcHol(D)
.
that
Consider any AsTrees(p)
with
d ( A ) = R s u c h t h a t A h a s a v e r t e x where t h e number o f e n t e r i n g e d g e s i s d i f f e r e n t from 1 and R , A=
)
( ~ 1 ~ , . . , ~ 1
that is, i f
t h e n t h e r e a r e s , udN w i t h
P-1 # c ~ - ~ ( u ) f ?W . e show t h a t , i n t h a t case, !h
# c ~ ~ ~ ( v and ) f l
+O. 3 ,a
Indeed, it i s
e a s y t o see t h a t
t h a t i s , 11 h! ,(fI/ i s n o t g r e a t e r t h a n t h e p r o d u c t of t h e norms of a l l t h o s e d e r i v a t i v e s t h a t o c c u r a t some v e r t e x o f A i f w e draw h ( A as j,a
I 1
h ( * . . . h a( *
...
I I (*
... h ( * . ..ha
By Cauchy m a j o r i z a t i o n s a l l t h e f a c t o r s o f
(2.10)
are bounded
by a c o n s t a n t i n d e p e n d e n t o f j . A t t h e same t i m e , by c o r o l l a r y 1 . I 1 we have
CHAPTER
28
2
and k f l e n t a i l s h ! k +O = i d ( k a n d h e n c e 3 ,a b e c a u s e h s ( a ) * a . The o n l y t r e e s A i n T r e e s ( p ) w i t h
since k= # a - ' ( v ) < L
-to
h(k
j ,hs ( a )
I t h e p r o p e r t i e s t h a t e a c h of t h e i r v e r t i c e s a d m i t a 1 o r Q e n t e r i n g edge and d ( A ) = L a r e
... ... ... ... ... I
I
I
. . . .. .. .. ..
p
I
1
L e t u s c a l l them AlI...,A
h. (A"
(e
,,a *ha
P
for
2 . 1 5 . EXERCISE. i n t h e g r a p h form.
1
I P
1
R
R
Therefore
/
p . . .
. Observe
V=
1I
.
that
. p , whence
( a ) Write t h e series of f n f n - 1 - .f 1 (b) Prove ( 2 . 1 0 ) .
CHAPTER
3
THE CARATHEODORY DISTANCE AND COMPLETENESS PROPERTIES OF THE GROUP OF AUTOMORPHISMS
51.-
The Poincar6 distance.
3.1. DEFINITION. We s a y t h a t a m e t r i c d o n a b o u n d e d d o m a i n D i s Aut D - i n v a r i a n t i f w e h a v e
f o r a l l x , ysD a n d a l l fcAut D . 3 . 2 . LE+W.The f u n c t i o n
d e f i n e s a n Aut A - i n v a r i a n t
m e t r i c o n A.
As usually, we write tanh(dAl$
I/
x-YII
q ) ( X l Y ) $
p1 II
IK
'
or m o r e
x-YII
f o r a l l x,ycK.
P r o o f : Given yeX, l e t B d e n o t e t h e b a l l of c e n t e r y and r a d i u s diam(D)
.
S i n c e B T D , w e h a v e d B I D s d D .But
d B ( x , y )= t a n h
f o r a l l xsB b e c a u s e t h e f u n c t i o n t a n h - I .is c o n v e x on LO,=)
i t s d e r i v a t i v e a t t h e p o i n t 0 i s equal t o 1 , h e n c e t a n h for a l l t>O.
This proves t h e left-hand
1
and F,>
some aeD we h a v e f , ( a ) + b s D . T h e n THEOREM. L e t
3.15.
there exists
fsAut D
such t h a t T l i m f . = f . I
I
JCJ
P r o o f : C l e a r l y w e h a v e a u n i q u e mapping f e H o l ( D , E ) w i t h Tlim f = f . T h u s , i f were f e A u t D , by t h e o r e m 2 . 2 we would 3 IeJ h a v e T l i m f T 1 = f-l. jeJ
1
We show t h a t -1
( f j )jcJ
(3.7)
i s a T-Cauchy
sequence.
L e t u s w r i t e b . = : f , ( a ) and c h o o s e a n y b a l l s 1
3
B c c D and
B ' c c D c e n t e r e d r e s p e c t i v e l y a t a and b s u c h t h a t f ( B ) c B ' .
From t h e o r e m 3 . 1 3 i t f o l l o w s t h a t
Hence w e c a n f i x 6>0 s o t h a t t h e set C=
i s contained i n B. L e t u s i n t r o d u c e a l s o Cf=: 1 W e may assume w i t h o u t l o s s o f g e n e r a l i t y t h a t d D ( b . , b ) 0 with B g c c D ) . Then
for all xeB and
te[-toIt0]. Therefore
56
4
CHAPTER
f o r all xeB and t , Itl- O w i t h B g C C D a n d that c ~ e h a v e
gl(
,
<m
t h e r e is n n u m b e r r > O such
Bfi t
t k
m
Ftg(x)=:g[f ( x ) ] =
I;
*
(A g ) (x)
k=O
I t l s i . T h e s e r i e s c o n v e r g e : : uniformly o n
w h e n e v e r x8B and
1 -
P r o o f : For t > O w e s e t A =:
. Therefore
Tlim A = A t
t+O
4.17.
(fT-id 1. W e have
t
t h e s t a t e m e n t i s a consequence of L e t A l l A2eAut D b e g i v e n .
THEOREM.
B.
(4.4).
Then A1+A2
a n d A ( ' A ~ - A ; ~ A2 b e Z o n g t o a u t D . 1
= g[exp(tA
)]
(1
=: g+Ag g and F . = : g+qft= 1 where g s H o l ( D , E ) , te2R and j = 1 , 2 . C o n s i d e r t h e
Proof: L e t u s w r i t e
n e t ( gt ) c A u t D d e f i n e d by gt=: f : Tlim(ft-id,)= t+O
A +A 1
2'
A
t
g
f:.
W e show t h a t
I n d e e d , g i v e n any b a l l B E D ,
for
s u f f i c i e n t l y small v a l u e s o f t w e have 'tlB
=
gt2
?:(idg)=
[exp t
*
i22][exp
t A l l ( i d B )=
*
= i d + t ( A Z + A 1 ) ( i d B )+. .= i d + ( A + A 2 ) B B 1
Therefore
t1
(gt-id )
IB
+A +A2 i n 1
(1 - I /
+.
.
B. By t h e a r b i t r a r i n e s s
of B , t h e convergence h o l d s a l s o i n t h e t o p o l o g y T. Then theorem 4 . 5 e s t a b l i s h e s t h a t A +A2&aut D . 1
The proof of A i 1 A 2 - A 2 ( 1A s a u t D i s s i m i l a r 1
by c o n s i d e r i n g t h e
COMPLETE VECTOR FIELDS
n e t h =: t
fi
f:
1
T l i m - (h -id t+O t 2
fit )=
57
fYt and showing t h a t (1
A(1 A2-A2 1
4.18. DEFINITION. G i v e n A1 ,A2eHol(D,E), we d e f i n e (1
[A,,A,I=: A:~A2 - A ~A 1 T h e r e f o r e w e have
for xsD. The o p e r a t i o n A2
c,]
i s c a l l e d t h e L i e p r o d u c t of A1 and
*
For f i x e d AsHol(D,E) , t h e l i n e a r o p e r a t o r [A, .] i s c a l l e d t h e
a d j o i n t of A and w i l l be denoted by A
W '
4.19. PROPOSITION. F o r e v e r y AcHo~(D,E), t h e adjoint of A is d e r i v a t i o n o n a u t D, i . e . , we h a v e
f o r a l l A1,A2cHol(D,E). Proof: Since t h e Lie product i s c l e a r l y anticommutati-
ve, a l l w e have t o prove i s t h e J a c o b 3 i d e n t i t y
f o r a l l A1,A2,A3eHol(D,E). B u t
= A
(1 (1
1
(1 (1
(1
(1
A 2 A3-A1 A 3 A2-(A2 A3-AJ AZ) ('A 1 =
-
Summing up t h e s i m i l a r e x p r e s s i o n s f o r t h e c y c l i c p-errnutations of t h e i n d e x e s w e o b t a i n t h e d e s i r e d r e s u l t . iy
CHAPTER
58
4
4.20. DEFINITION. An a l g e b r a U i t h a p r o d u c t
[,I
is
caZZed a " L i e a l g e b r a " if [,] is a n t i c o m m u t a t i v e a n d sntisfies the Jacvbi i d e n t i t y .
Thus we have proved 4.21. THEOREM. T h e s e t aut D i s a r e a l L,Le a l g e b r a w i t h r e s p e c t t o t h e p r o d u c t IAIIA2]=: A 1( 1 A2-A2( 1A 1 . dk
4.22. EXERCISES. ( a ) Show that dtk
la
(exptAl)..(exptAn)
belongs to the Lie subalgebra of aut D generated by A1,..A,. (b) Prove that we can write
T=
-' in corollary 4 . 1 3 .
811 All
B6
54.- Some properties of commuting vector .fields. __- Now we turn to the investigation of holomorphic vector fields A,BsHol(D,E) with the property %= ii. In general,
i6X=
i ( X ( l B ) = (X ( ' B ) ('A=
2x( 2( B , A ) +x('B('A
and hence
that is,
..
[A,B] = BA-AB
Thus,
and
6
commute if and only if [A,B]= 0 .
Furthermore, we remark that if XcHol(D,E) is an arbitrary vector field then, using the argument leading to (4.7) we get (4.16)
for any open ball B with B 6 c C D , any faHol(D,E) and n m . Therefore we have (exptX)x=
-c
n=O
t" 3
(Xnid,)xeBg
COMPLETE VECTOR FIELDS
6
59
-1
I t \ O s u c h t h a t B f i c C D a n d
k
j o . Then, by ( 5 . 4 ) w e have d
( a ) e B ' = : B,,2 f o r a l l j > j o and k = 1 ,
*
*
lPj
(a)
. Therefore,
by p r o p o s i t i o n 1 . 4
and ( 5 . 2 )
J
whenever j > j o and 1CkCp.. Taking i n t o a c c o u n t ( 5 . 4 ) and t h e I f a c t t h a t /I f,-idDII 0,we can w r i t e 3
B
-+
f o r some c o n s t a n t y ( i n d e p e n d e n t of j , k ) and a l l j ? j k= l , . . , p j .
0'
Hence,
(5.5) f o r ] > l o . I t i s w e l l known from e l e m e n t a r y a n a l y s i s t h a t
R
( l + a . ) I +I
I
whenever a
j
+
0 and
c1
j
P
-+
j
0 . B u t , by ( 5 . 3 1 ,
69
TOPOLOGY ON VECTOR F I E L D S
5.4. B’cCD
B,
COROLLARY.
F o r e v e r y p a i r of ba2l.s B and B ’ w i t h
t h e r e e z i s t s a c o n s t a n t K ’ s u c h t h a t we h a v e
for all f , gsAutD s a t i s f y i n g f ( B ) C B ’ and g ( B ) C B ’ . P r o o f : Given f , gsAutD w i t h f ( B ) c B ’ a n d g ( B ) C B I ,
by
t h e o r e m 5 . 3 a n d remark 2 . 4 w e h a v e
4K2
4CK
2
+K2
w h e r e , by p r o p o s i t i o n 1 . 4 ,
t h e right-hand
s i d e i s d o m i n a t e d by
f o r some c o n s t a n t s K 1 ’ K 2 , K 3 d e p e n d i n g o n l y on B a n d B ’ .
ff
5 . 5 . E X E R C I S E . L o o k f o r c o u n t e r e x a m p l e s t o show t h a t t h e c o n s t a n t K ’ i n c o r o l l a r y 5 . 4 must a c t u a l l y d e p e n d o n B a n d B’
.
53.-
The ~- n a t u r a l t o p o l o g y on a u t g .
From t h e s t r o n g s t a t e m e n t o f t h e o r e m 5 . 3 it i s a l r e a d y e a s y t o deduce a r e s u l t c o n c e r n i n g autD: 5.6.
THEOREM.
Given any b a l l B c c D c e n t e r e d a t a s D ,
t h e r e e x i s t s a c o n s t a n t K B s u c h t h a t we h a v e
70
CHAPTER
5
f o r a l l aeautD. I f B ' c c D is a n o t h e r b a l l c e n t e r e d a t a ' s D ,
ue have
on autD. P r o o f : Theorem 5 . 3 f u r n i s h e s a c o n s t a n t K
such t h a t
B
t
f o r a l l fsAutD. Hence, g i v e n AsautD and w r i t i n g f = : e x p t A r tdF, we have
tm.
But Tlim O't t o A a l s o i n t h e norms for a l l
I
t
( f - i d ) = A whence
11
- /IB
D
and
1
1 t
( 1 *:'I\
C
(ft-idD) tends
. This
proves (5.6).
s=o
To prove t h a t
w e need o n l y t o copy t h e proof of theorem 1 . 6 .
5.7.
* II
REMARK. The e q u i v a l e n c e of two norms on a v e c t o r
s p a c e i m p l i e s t h e e x i s t e n c e of p l
u1 I1 94.-
XI1
xi1
#
2 a l lX I 1
,
p 2 > 0 such t h a t w e have
1 for a l l x-
autD a s a Banach s p a c e .
A f t e r t h e p r e v i o u s theorem, t h e n e x t q u e s t i o n i s a t hand: Is autD endowed w i t h any o f t h e norms
I[ * \ I B
1
C 11 -:'I\ s=o c a u t D with or
a Banach
s p a c e ? . That i s , g i v e n a sequence ( A , ) 3 jm A!' +L(', s = 0 ,1 , does t h e r e e x i s t AeautD s u c h t h a t w e have la (
A,'=
L('
f o r s= 0,1? W e c a n prove a much s t r o n g e r r e s u l t t h a t
h a s c r u c i a l importance i n t h e t h e o r y of symmetric domains.
5.8.
THEOREM.
L e t t h e n e t s ( f j ) j e J C A u t D and
(tj), CIR: b e g i v e n a n d assume t h a t we c a n f i n d some acD, some JCJ such t h a t the n e t L(%E a n d some L ( ' ~ L ( E I E )
TOPOLOGY ON VECTOR FIELDS
A =:
1 t. 1
j
(f.-idD) I
s a t i s f i e s A ( s +L ( s f o r S = O , ? . jra t h a t we h a v e T l i m A , = A . jfJ
71
Then, t h e r e ezists AsautD
such
3
P r o o f : L e t u s f i x a b a l l B c c D c e n t e r e d a t acD and c h o o s e d>O s u c h t h a t B Z d c c D . We may assume
sup j E J
s=o
11
AiZll
<m
Then, by t h e o r e m 5 . 3 t h e r e e x i s t s M > O s u c h t h a t
11
fj-idDI/
6Mt 1
B2d
f o r a l l j c J . For 6 j o ( 6 ) , where M4 i s i n d e p e n d e n t of j , k, 8 a n d t . Applying t h i s r e s u l t t o ( 5 . 7 ) , t h e t r i a n g l e i n e q u a l i t y y i e l d s f n, l. - i d D r /
f kn - i d D k
1
n J. t J. A3.
t h a t is,
nktkAk
.
TOPOLOGY ON VECTOR FIELDS
73
f o r some M4>0, a l l j, k?j0(6) a n d a l l t e ( O , G / M ) .
Prom ( 5 . 9 ) it
r e a d i l y follows(by taking t h e superior l i m i t i n j , k with fixed that
6,t)
l i m sup11 j, k
A 3, - A ~ I ~ -~
< ~ ~ 6
i s a Cauchy n e t w i t h r e g a r d t o t h e ( A j )j e J C o n s e q u e n t l y , w e h a v e ( A , ) ( s + ~ ( s ' x ) , s= O , I , f o r
for a l l 6>0, i.e., norm
.
.
11
3 x
some ~ ( 0 t X ) e Eand L ( l ' X ) c L ( E - l E ) whenever xeB. But t h e n
i s a Cauchy n e t w i t h r e g a r d t o t h e norm
I( . \ I B ,
(A,)
I jeJ
whenever
i s a b a l l c e n t e r e d a t a p o i n t x s B . By r e p e a t i n g t h e
B'CCD
a r g u m e n t , f r o m t h e c o n n e c t e d n e s s of D w e o b t a i n t h a t ( A , ) , 3 IeJ i s a Cauchy n e t w i t h r e g a r d t o t h e norm / I . / I f o r any b a l l B"
B"CC
D,
(Aj)jeJ
i.e.
i s a T-Cauchy n e t . Thus w e h a v e
T l i m A = A f o r some A e H o l ( D , E ) . B u t t h e n , t h e o r e m 4 . 3 e s t a u i s h 3
e$ J t h a t AeatuD. 5.9.
COROLLARY.
L e t B c c D a n y baZZ c e n t e r e d a t aeD.
/ I .I1 B
T h e n a u t D is B a n a c h s p a c e w i t h r e g a r d t o t h e norms s=o
/ I "I;.
and
*
Proof: L e t us suppose t h a t ( A , ) , is a Cauchy s e q u e n I l a ce i n t h e norm /I .;*\I Then A!' * L ( s f o r s= 0 , l .
e
.
s=o
Choose a s e q u e n c e
(E,)
,
I l a
1la
o f p o s i t i v e numbers w i t h
E,*
I
0.
S i n c e w e have
1 T l i m - (exptA.-id ) = A . t I D I t+O
we can p i c k t . > O such t h a t 1
t . < E .
1
1
and
where f . = : e x p t A Obviously we have I j j'
J
f o r s= 0 , l . Now t h e o r e m 5 . 8 e n s u r e s t h a t L('=
A('
f o r some
74
CHAPTER
5
AsautD.
# 5.10.
EXERCISE. Prove c o r o l l a r y 5 . 9 d i r e c t l y by u s i n g
t h e l o c a l uniform c o n t i n u i t y o f t h e s o l u t i o n s o f o r d i n a r y d i f f g r e n t i a l equations with regard t o t h e i n i t i a l values.
5.-
autD a s a Banach-Lie a_ l g e_ bra. ~
L e t u s f i x any b a l l B c c D and 6>0 s u c h t h a t B 6 c c D , and endow
/I .I / B .
We a l r e a d y know t h a t ( a u t D , /I i s a Banach s p a c e . L e t u s now c o n s i d e r i t s L i e - a l g e b r a s t r u c t u re. autD w i t h t h e norm
5 . 1 1 . LEMMA. For a l l AcautD, t h e m a p p i n g A # : X+[A,X]
is a b o u n d e d Z i n e a r o p e r a t o r o n a u t D . P r o o f : The l i n e a r i t y of A f t i s o b v i o u s . On t h e o t h e r hand, by t h e Cauchy e s t mates and t h e f a c t
11 . l \ B ~ \ l
we
have
11
[A,X]
I/
=
/I A'lX-X'lA 1
~ ~ I I A l I lI X
BS
f o r a l l XeautD and some M ( i n d e p e n d e n t of X ) .
5 . 1 2 . COROLLARY. T h e m a p p i n g
# ; A+A#
is a c o n t i n u o u s
Z i n e a r o p e r u t o r on autD. P r o o f : W e have M I
11
A # ( l 6 M ' I I All
f o r a l l AcautD
and some
>O. 5.13.
PROPOSITION. We h a v e exp ( A # ) = (expA)
f o r a l l AcautD.
P r o o f : L e t XcautD be a r b i t r a r i l y f i x e d . By lemma 5.11
w e have t h a t
TOPOLOGY ON VECTOR FIELDS
[exp(tA ) ] X = : #
75
c t k AkX k! #
k=O
'L
i s a w e l l - d e f i n e d element Y ( t ) o f autD. Moreover,
d dt
?(t)= lim 1 "[ Y . ( t + h ) -".Y ( t ) ] = A Y % ( t ) # h+O h %
f o r a l l t6B a n d Y ( O ) = X . But t h e norm c o n v e r g e n c e of 1 [? ( t u h )-Y'L ( t )] means i t s T-convergence i n v i e w of c o r o l l a r y 5.12.
'L
Thus t h e mapping t + Y ( t )
s a t i s f i e s t h e d i f f e r e n t i a l equa-
tion (5.10)
i n t h e Banach space ( a u t D , T). But w e h a v e s e e n i n 5 4 C h a p t e r
IV, t h a t t h e mapping Y ( t ) = ( e x p t A ) # X ,
tm,
satisfies this
e q u a t i o n , t o o , whence t h e r e s u l t follows.
5.14.
LEMMA. L e t
#
@ be a c o n t i n u o u s automorphisrn of t h e
Banach L i e a 2 g e b r a a u t D . Then we h a v e
for a 2 2 A , XcautD. P r o o f : S i n c e @ i s a n automorphism of t h e L i e a l g e b r a autD, w e have
a n d , by r e i t e r a t i n g t h e a r g u m e n t w e o b t a i n
f o r n a . A s 4 i s a c o n t i n u o u s l i n e a r o p e r a t o r on a u t D , by p r o p o s i t i o n 5.13,
#
This Page Intentionaiiy Left Blank
CHAPTER
6
THE BANACH L I E GROUP STRUCTURE O F THE SET O F AUTOMORPHISMS
We have s e e n t h a t A u t D i s a t o p o l o g i c a l group when endowed w i t h t h e t o p o l o g y T of l o c a l uniform convergence. Now w e a r e g o i n 9 t o c o n s t r u c t anokher t o p o l o g y T a on AutD such t h a t (AutD, T a ) c a r r i e s t h e s t r u c t u r e of a r e a l Banach-Lie group which a c t s a n a l y t i c a l l y on D . F i r s t we i n t r o d u c e some p r e p a r a t o r y m a t e r i a l . The concept ___
51.-
of a Banach ___-__ manifold.
L e t M and E be r e s p e c t i v e l y a Hausdorff s p a c e and a Banach space o v e r any of t h e f i e l d s I R o r
which w e i n d i s t i n c t l y r e p r e s e n t
by X .
6 . 1 . D E F I N I T I O N . A " c h a r t V o f M o v e r E is a p a i r
(u,u)
w h e r e U i s a n o p e n s u b s e t of M a n d u is a h o m e o m o r p h i s m of U o n t o a n o p e n s u b s e t o f E.
on M i s a c o l l e c t i o n o f c h a r t s (Ual~ol)aeI E s u c h t h a t t h e foZZozJing c o n d i t i o n s a r e s a t i s f i e d :
An " a n a l y t i c s t r u c t u r e ' '
of M o v e r MI:
The f a m u l y
(Ua)aeI
i s a n o p e n c o v e r o f M.
M ~ : For e a c h p a i r a , ~ e ~ t h ,e m a p i n g l i B v v i l :
I - 1 , ( ~ ~ n ~ , ) +Bl(LJ i a
nu,)
is a n a l y t i c . M3:
T h e c o l l e c t i o n ( U a , ~ a ) a e I is a maximal f a m i l y o f c h a r t s on M f o r w h i c h c o n d i t i o n s M a n d M2hoZd. 1
A
" B a n a c h m a n i f o Z d " i s a p a i r ( M I A ) w h e r e M is a H a u s d o r f f
s p a c e a n d A is a n a n a l y t i c s t r u c t u r e o n M o v e r some B a n a c h s p a c e E. I f t h e r e i s no danger of c o n f u s i o n , w e s h a l l r e f e r t o t h e Banach manifold M w i t h o u t any r e f e r e n c e t o i t s a n a l y t i c s t r u c t u r e A .
77
CHAPTER
78
6
A c c o r d i n g a s t h e f i e l d x i s 3R o r .'U w e s a y t h a t M i s a p e a 2 o r a complex manifold. REMARK. C o n d i t i o n M 3 w i l l o f t e n be cumbersome t o c h e c k
6.2.
i n s p e c i f i c i n s t a n c e s . I n f a c t , i f c o n d i t i o n s M 1 and M2 a r e s a t i s f i e d , t h e f a m i l y (Uct,ucr)aer can be e x t e n d e d i n a unique manner t o a l a r g e r f a m i l y o f c h a r t s f o r w h i c h c o n d i t i o n M3 i s s a t i s f i e d , t o o . Thus, M3 i s n o t e s s e n t i a l i n t h e d e f i n i t i o n o f a Banach m a n i f o l d . 6 . 3 . EXEMPLES. L e t U b e a non v o i d o p e n s u b s e t of a Banach s p a c e E . The p a i r ( U , i d u ) i s a c h a r t o f U o v e r E a n d d e f i n e s a n a l y t i c s t r u c t u r e on U .
The m a n i f o l d so c o n s t r u c t e d i s c a l l e d
t h e c a n o n i c a i : m a n i f o l d on U . L e t M and N b e ,Banach m a n i f o l d s
F respectively. If
o v e r t h e Banach s p a c e s E a n d
( U , u ) a n d ( V , v ) are c h a r t s o f M a n d N , t h e n
(UxV, uxv') , where uxv: ( x , y ) + ( u ( x ) , v ( y ) ) , i s a c h a r t of M x N o v e r ExF. The f a m i l y o f t h e p a i r s So c o n s t r u c t e d i s a n
the pair
a n a l y t i c s t r u c t u r e and t h e c o r r e s p o n d i n g m a n i f o l d i s c a l l e d t h e
p r o d u c t of M and N . L e t M be a Banach m a n i f o l d o v e r a . c o m p l e x Banach s p a c e E. Then E c a n be c o n s i d e r e d a s a r e a l Banach s p a c e ,
by
%.
too, which we denote
Any c h a r t ( U , u ) o f M o v e r E i s a c h a r t o v e r
%
and t h e
f a m i l y o f t h e s e c h a r t s d e f i n e s a r e a l a n a l y t i c s t r u c t u r e on M . The m a n i f o l d so c o n s t r u c t e d i s c a l l e d t h e u n d e r Z y i n g r e a l
m a n i f o l d of M. 6.4.
DEFINITION. L e t a B a n a c h m a n i f o Z d M a n d a p o i n t xcM b e
g i v e n , a n d c o n s i d e r t h e s e t of t h e p a i r s
[ ( U , U ) rh] w h e r e
is a c h a r t of M at x and hsE. Me s a y t h a t [ ( V , U ) , h , ]
(U,u)
and
[ ( V , V ) , h 2 ] a r e " e q u i v a l e n t " i f We h a v e
( v O u - l )( '
u(x)
.h = h 1
2
W e w r i t e T M f o r t h e q u o t i e n t s e t . The e q u i v a l e n c e c l a s s o f t h e
a IX
e l e m e n t [(U,u) rh] which i s d e n o t e d by h au t a n g e n t v e c t o r t o M a t x.
,
is called a
THE L I E GROUP OF AUTOMORPHISMS
79
L e t u s f i x any c h a r t (U,u) of M a t xcM. The mapping E+T M g i v e n
a au. I
by h+ h
X
i s a b i j e c t i o n by means of which w e can
t r a n s f e r theXBanach s p a c e s t r u c t u r e of E t o T M. W e say that TJ4 X
endowed w i t h t h i s Banach s p a c e s t r u c t u r e i s t h e t a n g e n t s p a c e t o M a t x. 6.5.
DEFINITION. L e t a Banach m a n i f o Z d M and a Banach
space F be g i v e n .
We s a y t h a t a mapping f : M+F i s " a n a Z y t i c a t
a p o i n t xcM"if t h e r e i s a c h a r t f0u-I:
(U,u)
o f M a t x such t h a t
u ( U ) + F i s a n a z y t i c . We s a y t h a t f i s " a n a l y t i c o n M " if
i t i s a n a Z y t i c at e v e r y p o i n t xcM and we c a l l
f 0 u - l a "ZocaZ
expression" o f f a t x. L e t f, g: M+F be a n a l y t i c mappings a t a p o i n t XCM,
by f0u-l: u ( U ) + F , yov
-1
and d e n o t e
: v(V)+F t h e i r l o c a l r e p r e s e n t a t i o n s i n
t h e c h a r t s (U,u) and ( V , v ) , r e s p e c t i v e l y . W e s a y t h a t f and 9 a r e e q u i v a Z e n t a t x i f t h e r e i s a neighbourhood W c U f l V of x -1 -1 F on W . W e d e n o t e by B X t h e q u o t i e n t s e t such t h a t f o u = gav and each e q u i v a l e n c e c l a s s i s c a l l e d an a n a l y t i c germ a t x. O F
i s endowed w i t h a v e c t o r s p a c e s t r u c t u r e i n an o b v i o u s manner. NOW, t a n g e n t v e c t o r s t o M a t x can be i n t e r p r e t e d a s d i f k r e n t i a l
o p e r a t o r s a c t i n g on a n a l y t i c germs a t x i n t h e following manner: for f s O F
and h
a au
I x
eT M w e s e t x
a+ au 6.6.
( x ) .h=:
DEFINITION.
h (feu-')'' u (x)
L e t M and N be Banach m a n i f o l d s o v e r
t h e Banach s p a c e s E and F, r e s p e c t i v e l y . We s a y t h a t a continuous mapping f : M-+N i s a " m o r p h i s m " o f Banach m a n i f o l d s i f , for e a c h p o i n t XCM,
t h e r e are charts
y= f ( x ) s u c h t h a t v 0 f o u - l :
(U,u) of M a t x and
(V,v) of N a t
u ( U ) + v ( V ) is a n a l y t i c .
Suppose t h a t f : M+N i s a morphism of Banach m a n i f o l d s . Then (V.
€0
u -1)
(1
u (x)
i s an element of L ( E , F ) and w e c a n d e f i n e a
c o n t i n u o u s l i n e a r mapping d f ( x ) : T x M + T f ( x ) N by s e t t i n g
80
CHAPTER
6
for h e E . I t i s e a s y t o check t h a t df(x) does n o t depend on t h e c h a r t s ( U , u ) and (V,v) w e have chosen. W e say t h a t d f ( x ) i s t h e
d e r i v a t i v e of f a t x and t h a t ( 6 . 1 )
is i t s locuZ e x p r e s s i o n
w i t h r e s p e c t t o t h e c h a r t s ( U , u ) and ( V , v ) . L e t M be a Banach manifold o v e r E and l e t U b e a n open s u b s e t
of M. W e s e t iTxM; xcu)
TU=:
( U , u ) i s a c h a r t of M , w e d e f i n e a mapping T : TU+ u ( U ) x E
If
U
by means of
a
h -
T : u
au
Ix
f
(u(x), h ) .
Then, w e have 6.7.
PROPOSITION. T h e r e e x i s t s
cz
u n i q u e topology on TM
s u c h t h a t Lhc f o l l o w i n g c o n d i t i o n s a r e s a t i s f i e d : ( a ) F o r eZ)Cray o p e n s u b s e t U of M, TU
Cn u n o p e n
:;uhsst o f TX.
(b) For1 e o c r y c h a r t ( U , u ) of M, T u : TU*u(U) X E is a h o m e o m o r p h i s m .
t h e mapping
W e l e a v e t h e proof a s an e x e r c i s e . I t i s c l e a r t h a t TM w i t h
t h i s topology i s a Hausdorff s p a c e . Moreover, if ( U , u ) i s a i s a c h a r t of TM o v e r t h e Banach space
c h a r t of M , t h e n (TU, Tu)
ExE, and w e have 6.8.
PROPOSITION. T h e f a m i l y { (TU,TU):
( u , u ) i s a c h a r t of M I
d e f i n e s a n d analytic s t r u c t u r e o n TM. The Banach m a n i f o l d so c o n s t r u c t e d on TM i s c a l l e d t h e tangent
-
b u n d l e t o M . Obviously, t h e c a n o n i c a l p r o j e c t i m s n 1' TM+M and TI TM-tE, g i v e n by
-
2'
a
nl: h au
Ix
+X
and
a v2: h -
au I x
+h
THE L I E GROUP O F AUTOMORPHISMS
a
81
cTM, are Banach m a n i f o l d morphisms. :x Moreover, i f f : M+N i s a morphism of Banach m a n i f o l d s , i t s
for h
I
d e r i v a t i v e d f : TM+TN i s a morphism o f t h e c o r r e s p o n d i n g t a n g e n t bundles.
6 . 9 . D C F I N I T ~ - O N . ~ ~ A ~ a n a l y t i c v e c t o r f i e l d ” o n a Banach m a n i f o l d M is morphism X: M+TM s u c h t h a t we have
I f X:
M+TM i s a n a n a l y t i c v e c t o r f i e l d on M , t h e n i t s v a l u e
a
Ix
X ( x ) a t xcM i s a t a n g e n t v e c t o r t o M a t x , X ( x ) = h ( x ) - c T M . au The l o c a l e x p r e s s i o n o f X w i t h r e s p e c t t o t h e c h a r t s (U,u) o f M a n d (TU,Tu) o f TM i s g i v e n by
where h: M-tE i s a n a n a l y t i c mapping on M . W e d e n o t e by T ( M ) t h e s e t o f a l l a n a l y t i c v e c t o r f i e l d s o n M .
6.10.
DEFINITION.Let X = :
f(x)
a ax
be a n a l y t i c v e c t o r f i e l d s o n M and l e t
l x and
Y= g ( x )
be g i v e n .
a
AX=: Af ( x ) au
a aulx
W e define
Ix
for xcM. It i s easy t o v e r i f y t h a t X+Y,
AX a n d [ X , Y ]
are elements of
T(M) a n d t h a t , i n t h i s way, T ( M ) becomes a L i e a l g e b r a . W e c a l l
it t h e L i e a l g e b r a of a n a l y t i c v e c t o r f i e l d s o n M . 6.11. manifolds.
DEFINITION. L e t @ :
Y c T ( N ) a r e “ r e l a t e d by
(6.2)
M+N be a morphism of Banach
W e say t h a t t h e a n a l y t i c v e c t o r f i e l d s XcT(M) and if we have
d$.X= Yo@
L e t u s t a k e c h a r t s (U,u) of M a t x a n d ( V , v )
o f N a t y = @ ( x ),
82
6
CHAPTER
and assume t h a t X = f ( x )
a au I x
and
a
Y= g ( y ) -
av IY
are t h e
c o r r e s p o n d i n g local e x p r e s s i o n s of X and Y . Then t h e e x p r e s s i o n
of
( 6 . 2 ) i s g i v e n by
6.12.
PROPOSITION.
L e t ip:
M+N be a m o r p h i s m o f Banach
m a n i f o l d s and assume t h a t X l I X 2 c T ( M ) a r e r e l a t e d b y (t, w i t h Y1,Y2cT(N),
r e s p e c t i v e l y . Then X1+X2,
r e l a t e d by $ w i t h Y 1 + Y z l h Y 1 and
AX1 and
are
[X1,X2]
[Y,,Y,].
W e leave t h e proof as an e x e r c i s e . 6.13.
DEFINITION.
L e t $: M+N b e a m o r p h i s m o f Banach
m a n i f o l d s . Then:
(a) We s a y thal ip i s an nirnmersion” i f , f o r e v e r y x c M , dip ( x ) : TxM*T
ip ( x )
N
i s i n j e c l i v e and t h e i m a g e d $ ( x ) . T M
c Z o s e d topologCcally c o m p l e m e n t e d s u b s p a c e o f T
is a
N.
(t, ( x )
( h ) We s a y t h a t @ i s a ” s u b m e r s i o n ” i f , for e v e r y x e M ,
dip(x) : T x M + T + ( x l N i s s u r j e c t i v e and t h e k e r n e l K e r d g ( x ) i s a ( o b v i o u s l y c l o s e d ) t o p o l o g i c a l l y complemented s u b s p a c e of T M. X
N o w we have ( s e e 12 I 5 5 ) . 6.14.
PROPOSITION. Let
4 : M+N be a m o r p h i s m of Banach
manifolds. Then the f o l l o u i n g statements are e q u i v a l e n t : (a) The mapping @ :
M-tN is a n i m m e r s i o n and a s u b m e r s i o n .
(b) For e a c h x c M , t h e mapping d i p ( x ) : TxM*T i p ( x j N is a
s u r j e c t i v e i s o m o r p h i s m of Banach s p a c e s .
( c ) For e a c h x c M , t h e r e a r e a n e i g h b o u r h o o d U of x in M and a n e i g h b o u r h o o d V o f y= $ ( x )
in N such t h a t
a n a l y t i c homeomorphism of U o n t o V. 6.15. ip:
D E F I N I T I O N . If a m o r p h i s m o f
@ IU
is a n
Banach m a n i f o l d s
M-tN s a t i s f i e s a n y o f t h e a b o v e c o n d i t i o n s , we s a y t h a t ip i s
a “ l o c a l i s o m o r p h i s m ” o f M and N.
83
THE L I E GROUP O F AUTOMORPHISMS
B y a n f ' i s o m o r p h i s m N o f Banach m a n i f o l d s we mean a b i j e c t i v e l o c a l isomorphism 6.16.
4:
M-tN.
PROPOSITION. L e t M , N and
4 be r e s p e c t i v e l y a
t o p o l o g i c a l s p a c e , a Banach m a n i f o l d o v e r E and a mapping
4 : M+N.
Then t h e f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t ( a ) F o r e v e r y XCM,
t h e r e i s an o p e n n e i g h b o u r h o o d U o f
x i n M, t h e r e i s a c h a r t (V,v) o f y = : $ ( x ) in N and t h e r e is a c l o s e d t o p o l o g i c a l l y c o m p l e m e n t e d s u b s p a c e F of E s u c h t h a t v Q $ is a homeomorphism o f U o n t o F n vp# ( U ) ] . (b) T h e r e e x i s t s a Banach m a n i f o l d s t r u c t u r e o n M s u c h t h a t i t s u n d e r l y i n g t o p o l o g y i s t h e t o p o l o g y of M and
M+N
@:
i s an i m m e r s i o n . The m a n i f o l d s t r u c t u r e s a t i s f y i n g t h e s e c o n d i t i o n s i s u n i q u e and i t s c h a r t s a r e t h e p a i r s (V,V,I$
1") , where
U is as i n
(a)
.
W e c a l l it t h e @ - i n v e r s e image of t h e m a n i f o l d s t r u c t u r e i n N . 6.17.
DEFINITION. L e t N be a Banach m a n i f o l d and d e n o t e
by i : M-tN a t o p o l o g i c a l s u b s p a c e M o f N and t h e c a n o n i c a Z inclusion. I f the pair (M,i) s i t i o n 6 . 1 6 , we s a y t h a t M
s a t i s f i e s t h e c o n d i t i o n s of p r o p o endowed w i t h t h e i n v e r s e i m a g e
m a n i f o l d s t r u c t u r e o f t h a t in N is a s u b m a n i f o l d o f N . 52.-
The c o n c e p t o f a Banach-Lie
6.18.
group.
DEFINITION. A " B a n a c h - L i e " g r o u p is a s e t G w h e r e
we h a v e a g r o u p s t r u c t u r e t o g e t h e r Q i t h an a n a l y t i c s t r u c t u r e o v e r a Banach s p a c e E s u c h t h a t t h e mapping GxG+G g i v e n b y ( x , y ) + x y - l is a n a l y t i c . A c c o r d i n g a s E i s r e a l o r complex w e s a y t h a t G i s a r e a l o r a
compZex Banach-Lie
group.
I f e denotes t h e i d e n t i t y element o f G I we have
6.19.
PROPOSITION. L e t t h e s e t G
be endoved w i t h a
g r o u p s t r u c t u r e and an a n a l y t i c s t r u c t u r e o v e r E . T h e n G i s a Banach-Lie satisfied:
g r o u p i f and o n l y i f t h e f o l l o w i n g c o n d i t i o n s a r e
84
CHAPTER
6
L1: P'or nZli xOeG, t h e mapping G-tG g,Luen b y x+x x i s a n a l y t i c . 0
by
L 2 : For a1,l x0@G, t h c mapping G+G g i v e n
cinal'yt'ic .in a n o p e n neighbourhood
L3: T h e mapping GxG-+G o p e n n e i g h h o u r h o o d of
g i v e n by
x
+
x xx - 1
of e .
0
0
.is
(x,y)+xy-' i s a n a Z y t i c and
( e , e ).
P r o o f : I f G i s a Banach-Lie
group, t h e n t h e s e c o n d i t i o n s
a r e obviously s a t i s f i e d . Let
( x O t y 0 ) e G x Gb e g i v e n . Then w e h a v e
xy-i=
f o r a l l x,ysG.
~ x o y ; l ~ y o r ~ x ;( yl ox ~Y ) -1
-1
IY;'
Thus, t h e mapping ( x , y ) + x y - ' c a n be r e p r e s e n t e d
i n a n e i g h b o u r h o o d of
(x,,yo)
as a c o m p o s i t e of mappings o f t h e
t y p e s m e n t i o n e d i n c o n d i t i o n s L 1 , L2 a n d L
3'
whence t h e r e s u l t
follows.
7Y 6.20.
COROLLARY. L e t G b e e n d o w e d w i t h
a group s t r u c t u r e
and uri a n a 1 , y t i c s t r u c t u x a t . . T h e n G is a R a n u c h - L i e o n l y if t h e f o l l o w i n g c o n d i t i o n s a r e s a t i s f i e d :
group is a n d
L;:
T h e m a p p i n g G-tG g i v e n b y x+x-l i s a n a l y t i c o n G .
L;:
The mapping G x G + G g i v e n by
(x,y)+xy i s a n a l y t i c on GxG.
Proof: If ( x , y ) + x y - ' is a n a l y t i c , so a r e t h e m a p p i n g s y + ( e , y ) + e y - l and ( x , y ) - ( x , u - ' ) + x ( y - ' ) -
1
.
I f y-ty-l a n d
( x , y ) + x y a r e a n a l y t i c , so i s ( x , y ) + ( x , y - l ) + x y - l .
7Y 6.21. ~ P O U ~s tJ r
COROLLARY. L e t G b e a B a n a e h - L i e
group. T h e n the
u c t u r e o n G is c o m p a t i b Z e w i t h t h e t o p o Z o g y u n d e r Z y i n g
t h e a n a l y t i c s t r u c t u r e o$ G , 6.22.
i.e.,
G i s a topoZogicuZ group.
EXERCISES. Assume t h a t G i s a Banach-Lie
group.
85
THE LIE GROUP OF AUTOMORPHISMS
Show that the topological group G satisfies the following conditions: (a) G is metrizable. (b) Both the left and right uniform structures of G are complete. 6.23. DEFINITION. L e t G a n d H b e B a n a c h - L i e g r o u p s . We Q m a p p i n g f: G+H is a " m o r p h i s m " of B a n a c h L i e g r o u p s
say t h a t
if f is a m o r p h i s m of b o t h t h e g r o u p s t r u c t u r e s a n d t h e manifold s t r u c t u r e s of G a n d H. 6.24. PROPOSITION.Let G a n d H b e Banach-Lie groupsand denote b y f: G+H a g r o u p h o m o m o r p h i s m . T h e n f i s a morphism of
Banach-
L i e g r o u p s if a n d o n l y i f f: G-tH i s a n a l y t i c i n a n e i g h b o u r h o o d o f e.
Proof: Let x sG be given. If f: G+H is a group homomor0 phism, we have f(x)= f(xilx) for all xcG. Thus, by conditions L' and L; of corollary 6.20,if f is analytic in a neiqhbourhood 1 of e, it is analytic on G. The converse is obvious. 6.25. DEFINITION. L e t t h e B a n a c h - L i e g r o u p G a n d t h e e l e m e n t asG b e g i v e n . We d e f i n e t h e r r Z e f t " a n d " r i g h t t r a n s l a t i o n s " b y a a s t h e m a p p i n g s G+G g i v e n r e s p e c t i v e l y b y
La: x+ax
r
:
x+xa
,
xeG.
Obviously, La and ra are automorphisms of the analytic structure of G. Moreover, the mapping i
:
x+axa
-1
xsG
is a Banach-Lie group automorphism of G. 6.26. DEFINITION. L e t G b e a B a n a c h - L i e g r o u p . We s a y t h a t a s u b s e t H c G i s a " B a n a c h - L i e s u b g r o u p " of G is H is a s u b g r o u p a n d a s u b m a n i f o l d of G w i t h r e s p e c t t o t h e c a n o n i c a l i n c l u s i o n i: H-tG.
86
6
CHAPTER
6.27.
EXERCISES.
( a ) L e t G be a B a n a c h - L i e
t h a t t h e i d e n t i t y component of e i s a B a n a c h - L i e ( b ) L e t H be a B a n a c h - L i e G.
g r o u p . Show subgroup of G. s u b g r o u p of
Show t h a t H i s c l o s e d a n d t h a t t h e c a n o n i c a l i n c l u s i o n
i : H-tG i s a morphism o f B a n a c h - L i e
6.28.
DEFINITION.
groups.
L e t G be n B a n a c h - L i e
g r o u p . We sag
thal an a n a l y t i c u e c l v r f i e i ' d X c T ( G ) i s " l e f t i n v a r i a n t " ,if, for all acG, X i s r e l a l e d t o i t s e l f b y Ra , i.e., i f ZJC h a v e (6.3)
dQ,;X=
aeG
XoK.
a
is t h e local ( U , u ) i s a c h a r t of G a n d X = f ( x ) au / x e x p r e s s i o n of X I t h e n ( 6 . 3 ) i s e q u i v a l e n t t o If
W e d e n o t e by G ( G ) t h e s u b s e t of Y ( G ) c o n s i s t i n g of a l l l e f t
i n v a r i a n t a n a l y t i c v e c t o r f i e l d s on G. A s a n immediate co n s e-
we obtain
q u e n c e of p r o p o s i t i o n 6 . 1 2 , 6.29.
PROPOSITION. L e t G be u Banach-Lie g r o u p .
G ( G ) is a L i e s u b a l g e b r a of
6.30.
Then
T(G).
PROPOSITION. L e t
(Y:
G ( G ) + T e ( G ) b s t h e evaZuaLion
at I h e p o i n t eeG. T h e n a is a s u r j e c t i v e isomorphism of v e c t o r spuces. P r o o f : L e t (U,u) be a c h a r t o f G a t e ; t h u s
by X - + X ( e )
a au
le
f o r XcG(G)
b e c a u s e of d e f i n i t i o n 6 . 1 0 .
some X,YeG(G).
. Clearly
c1
is given i s a l i n e a r mapping c1
Assume t h a t w e h a v e X ( e ) = Y ( e ) f o r ( e )I w e
A s X a n d Y are l e f t i n v a r i a n t and a = R
have
for a l l acG.
Let h
a au
le
Thus X= Y and a
is i n j e c t i v e .
e T e ( G I b e g i v e n . Then w e d e f i n e X ( a ) =: dR (e) .h
a
au
le
87
THE L I E GROUP O F AUTOMORPHISMS
f o r asG a n d it i s i m m e d i a t e t o c h e c k t h a t dRe ( e ): Te ( G ) + T e ( G )
i s t h e i d e n t i t y mapping. Thus
Moreover, X i s a n a l y t i c . Indeed, s i n c e l e f t t r a n s l a t i o n s a r e a u t o m o r p h i s m s of t h e m a n i f o l d s t r u c t u r e o f G ,
(aU, u 0 R - l )
c h a r t o f G a t t h e p o i n t a and t h e l o c a l e x p r e s s i o n of R
a
is a is the
i d e n t i t y map. T h u s , X i s l o c a l l y r e p r e s e n t a b l e a s t h e c o n s t a n t mapping x-th
a au
(x
f o r xsaU a n d X i s a n a l y t i c . B e s i d e s , X i s
l e f t invariant since
X [ R a ( x ) ] = X ( a x ) = dR
ax
(e).h
a au
le
=
f o r a l l a,xsG. T h e r e f o r e , l e f t i n v a r i a n t v e c t o r f i e l d s on a Banach L i e g r o u p a r e a n a l y t i c a n d t h e y a r e u n i q u e l y d e t e r m i n e d by t h e i r v a l u e s a t the point esG. By means of t h e i s o m o r p h i s m a: G ( G ) + T e ( G )
we can t r a n s f e r t h e
Banach s p a c e s t r u c t u r e o f T e ( G ) t o G ( G ) , a n d i t i s i m m e d i a t e t o v e r i f y t h a t , i n t h i s way, G ( G ) becomes a Banach-Lie a l g e b r a . W e c a l l i t t h e Bannck-Lie
53.-
a Z g e b r a of G .
S p e c i f i c ____ e x a m p l e s : The l i n e a r g r o u p a n d i t s a l g e b r a i c subgroups.
L e t A b e a r e a l o r complex Banach a l g e b r a w i t h u n i t e . W e
i n d i s t i n c t l y d e n o t e b y M a n y o f t h e f i e l d s IR o r it.
6.31.
DEFINITION. We d e f i n e t h e " c o m m u t a t o r p r o d u c t " o n
A by m e a n s o f
[x, y] = : xy-yx
x,ycA.
CHAPTER
88
6
I t i s i m m e d i a t e t o see t h a t t h i s p r o d u c t s a t i s f i e s t h e c o n d i -
t i o n s o f d e f i n i t i o n 4 . 2 0 a n d t h a t t h e commutator p r o d u c t
[,I:
AxA-tA
i s c o n t i n u o u s . Thus A i s a Banach-Lie a l g e b r a .
L e t u s d e n o t e by G ( A ) t h e s e t o f r e g u l a r e l e m e n t s o f A ; G(A)
thus,
i s a g r o u p and a n o p e n s u b s e t of A . T h e r e f o r e , G ( A ) i s a
Banach m a n i f o l d i n a c a n o n i c a l manner ( c f . e x a m p l e s 6 . 3 ) .
Now
w e have
6 . 3 2 . LEMMA. W i t h ils c a n o n i c a l structures of g r o u p a n d g r o u p #hose B a n a c h - L i e
B a n a c h manifold, G ( A ) is a B a n a c h - L i e
algebra is A . p r o o f : I t i s i m m e d i a t e t o c h e c k t h a t c o n d i t i o n s L 1 and L
of p r o p o s i t i o n 6 . 1 9 a r e s a t i s f i e d . F o r yeA w i t h 2 we h a v e
)I
y-eI\ < I
m
Y-l=
[ e + ( y - e ) J -l;
x
1"
(-
n=O
t h e series b e i n g c o n v e r g e n t i n t h e norm of A . (x,y)+xy-l i s a n a l y t i c i n a neighbourhood of
T h u s , t h e mapping (e,e), i.e.,
c o n d i t i o n L 3 i s s a t i s f i e d , t o o , a n d G ( A ) i s a Banach L i e g r o u p o v e r t h e Banach s p a c e A. Let a c G ( A ) be f i x e d ; w i t h r e s p e c t t o t h e c a n o n i c a l c h a r t , t h e expression of t h e l e f t t r a n s l a t i o n R a i s R T h u s , i t s d e r i v a t i v e dR
a
( X I - ax f o r x c G ( A ) .
i s g i v e n by
I f X= X(x)
3 -
is a l e f t invariant au v e c t o r f i e l d on G ( A ) , by d e f i n i t i o n 6 . 2 8 w e have f o r a l l xeG(A) a n d hwl.
I
dR (x).X ( x ) = X [ R a ( X I By ( 6 . 4 )
]
t h i s is equivalent t o
f o r a l l a,xeG(A). Taking x= e we o b t a i n X ( a ) = a X ( e ) f o r a c G ( A ) o r , by c h a n g i n g t h e n o t a t i o n ,
THE LIE GROUP O F AUTOMORPHISMS
89
xcG(A)
(6.5)
I t i s e a s y t o see t h a t v e c t o r f i e l d s of t h e
where h = : X ( e ) c A .
form ( 6 . 5 ) a r e a c t u a l l y l e f t i n v a r i a n t . M o r e o v e r , f o r X=:
xh
a
1
z/ x
and
a
xh2
Y=:
[ X , Y ] ( x ) = ( x h h -xh h 2
1
lX
1 2
a au
w e have
Ix
= X[hl,h2]
a au lX
so t h a t t h e mapping T G ( A ) + A o b t a i n e d by e v a l u a t i n g a t e c G ( A ) i s a s u r j e c t i v e Banach-Lie
isomorphism between T G ( A ) and A .
# 6.33.
DEFINITION. We s a y t h a t t h e B a n a c h - L i e
group G ( A )
i s t h e "Zineari g r o u p " o f t h e Banach a l g e b r a A a n d d e n o t e i t b y GL(A;IK).
Assume t h a t A i s complex Banach a l g e b r a ; t h e n it i s a r e a l
.
Banach a l g e b r a , t o o , w h i c h i s d e n o t e by A Thus t h e l i n e = IR group G L ( A , E ) , with i t s underlying r e a l manifold s t r u c t u r e , i s a r e a l Banach-Lie
G.W e
group over
s a y t h a t it i s t h e underZying
reaZ l i n e a r g r o u p o f G L ( A , E ) .
6.34. DEFINITION. For t d R and x c A exptx=:
we d e f i n e
t n xn
C n! n=O
S i n c e A i s c o m p l e t e , w e h a v e e x p t x c A ; a c t u a l l y , e x p t x i s a reg u l a r e l e m e n t of A a n d ( e x p t x ) - I = e x p ( - t x )
,
so t h a t t h e mapping
e x p : I R x A + G L ( A J K ) g i v e n by ( t , x ) + e x p t x i s r e a l a n a l y t i c . F o r t = l
w e s i m p l y w r i t e e x p x i n s t e a d o f e x p l x . The mapping A + G L ( A , I K ) g i v e n by x+expx i s r e a l a n a l y t i c , too. 6.35. @:
PROPOSITION. L e t A , B b e Banach a Z g e b r a s and
G L ( A J K l + G L ( B , I K ) a m o r p h i s m of t h e c o r r e s p o n d i n g
Z i n e a r groups
Then t h e d e r i v a t i v e d @( e ) : TeGL ( A ,lK) +TeGL ( B & ) i s a homomorphism o f t h e B a n a c h - L i e a l g e b r a s A and B and we h a v e @ ( e x p x ) = e x p [d@( e )x]
CHAPTER
90
6
Proof: For any fixed xeA, the mapping f: I R + G L ( B ; I K ) given by t+f(t)=: b(exptx1 is real analytic. Moreover, since $ is a group homomorphism, by setting a=: d$(e)xsB, we have f ( 0 ) =$(e)=e and
=
CP (exptx)lim g1 [+(expsx)-el= $(exptx)a s+o
Thus,f is the solution of the initial value problem
in the Banach space B. Now, we consider the function g: I R + G L ( B , l K ) given by t+g(t)=: expta with a= d@(e)x. It is easy to see that g(0)= e and
Thus g is also the solution of (6.6) and we have f(t)= g(t), i.e. $(exptx)= exptd$(e)x for all tdIR and xcA. NOW, let x,ycA be given and consider the mapping F : I R + G L ( B J K ) given by F(t)=: $(exptx)$(expty), tcTR. A computation similar to the one above gives ( 6-7)
F' (t)= $ (exptx) (a+b)@ (expty)
where we have put a= d@(e)x, derivative of (6.7) at t= 0
b=: dQ(e1y. By taking the
F" ( 0 ) = aL+2ba+bL
Similarly, if G(t) = :
+ (expty)@ (exptx), we
have
THE L I E GROUP O F AUTOMORPHISMS
91
2 2 G " ( O ) = a +2ab+b
so t h a t Y ( t )= : F ( t ) - G ( t )
Also,
satisfies
a p p l y i n g twice t h e c h a i n r u l e a t t = 0 t o compute Y " ( 0 )
we o b t a i n
whence t h e r e s u l t f o l l o w s by comparing w i t h ( 6 . 8 ) .
6.36.
EXERCISE. L e t '4:
A+B b e a Banach-Lie
algebra
homomorphism. Show t h a t t h e r e e x i s t s a unique Banach-Lie homomorphism such t h a t d $ ( e ) = Y . 6.37.
PROPOSITION. L e t H b e a s u b g r o u p o f t h e l i n e a r
g r o u p GL(A,X) a n d l e t B b e a c l o s e d s u b s p a c e of A . A s s u m e t h a t t h e r e a r e a n e i g k b o u r k o o d U of e i n G L ( A , l K ) a n d a n e i g k b o u r k o o d V of
0 i n A s u c k t h a t t h e e x p o n e n t i a l m a p p i n g exp: V n B + U n H i s
a homeomorphism f o r t h e c o r r e s p o n d i n g i n d u c e d t o p o l o g i e s . T k e n B i s a B a n a c k - L i e s u b a l g e b r a of A a n d H i s a B a n a c k - L i e w h o s e L i e a l g e b r a i s B.
group
P r o o f : S i n c e exp ( '= i d , by t h e i n v e r s e mapping theorem 0
t h e r e i s no loss of g e n e r a l i t y i n assuming t h a t ( U , l o g
) IU
,
is a
c h a r t of G L ( A , I K ) a t e l where log d e n o t e s t h e i n v e r s e of exp. Thus ( U n H , 1 0 g l U n H i s a c h a r t of H o v e r t h e Banach s p a c e B . Now, l e t hcH be g i v e n . A s H i s a subgroup of G L ( A , I K ) t r a n s l a t i o n R h maps U l l H o n t o a s e t R , ( U n H ) c H
,
the l e f t
which i s a
neighbourhood of h i n H I and t h e p a i r (6.9) i s a c h a r t of H a t h . I t i s e a s y t o see t h a t t h e f a m i l y g i v e n by ( 6 . 9 )
f o r hcH i s an a n a l y t i c s t r u c t u r e o v e r B . Moreover, f o r
t h i s a n a l y t i c s t r u c t u r e , H i s a Banach-Lie p o s i t i o n 6.30,
B i s a L i e s u b a l g e b r a of A .
group; t h u s by pro-
#
CHAPTER
92
6.30. nach-Lie
6
REMARK. N o t i c e t h a t , i n g e n e r a l , H i s n o t a Ba-
s u b g r o u p o f GL(A,IK) b e c a u s e , a s a m a n i f o l d , H may f a i l
t o be a s b n i f o l d o f GL(AJK): i t s t a n g e n t space a t e is B , which i n g e n e r a l i s n o t a complemented s u b s p a c e o f A . 6.39.
DEFINITION. L e t A b e a Banach a l g e b r a o v e r I K and
l e t H he a s u b g r o u p of G L ( A J K ) . We s a y t h a t H is ::ithgroup of d e g r e e Cn of GL(A,IK) S
(I
IK-algebraic
if t h e r e e z , i s t s a n o n v o i d s e t
of c o n t i n u o u s v e c t o r - U a Z u e d I K - p o l y n o m i a Z s q : AxA-tE
cn w i l h q ( O , O ) =
of
degree
0 s u c h t h a t w e have
Of p a r t i c u l a r i n t e r e s t f o r u s , t h o u g h n o t i n c l u d e d i n t h e a b o v e d e f i n i t i o n , i s t h e s i t u a t i o n i n w h i c h w e h a v e a Banach a l g e b r a o v e r C and a s u b g r o u p H o f G L ( A , t ) , ' b u t t h e e q u a t i o n s ( 6 . 1 0 ) d e f i n i n g H a r e ' l l i - p o l y n o m i a l s q: AxA+E o n t h e u n d e r l y i n g El-struct u r e s of A x A
and E
Notice t h a t , i n a l l t h e s e c a s e s , H is closed i n GL(AJK).
Clear-
l y , a n y f i n i t e p r o d u c t a n d a n y i n t e r s e c t i o n of IK-algebraic s u b g r o u p s o f d e g r e e & n i s a M - a l g e b r a i c s u b g r o u p of d e g r e e Cn. The d e f i n i t i o n i n c l u d e s t h e c a s e i n which H i s d e f i n e d b y a s e t S o f M - p o l y n o m i a l s q : A+E d e p e n d i n g on a s i n g l e v a r i a b l e . A l s o ,
by t h e Hanh-Banach t h e o r e m , t h e p o l y n o m i a l s qcS can b e c h o s e n t o b e IK-valued. 6.40.
ussume t h a t H
THEOREM. L e t A b e a Bunach a l g e b r a o v e r I K and
i s aIK-algebraic
s u b g r o u p of d e g r e e hn of
G L ( A , I K ) . Then H is u Banach L i e g r o u p whose B a n a c h - L i e
algebra
Is
P r o o f : W e w r i t e w=: ( u , v ) f o r t h e e l e m e n t s o f AxAvihich i s a Banach a l g e b r a o v e r I K w i t h r e s p e c t t o t h e norm
/I w J / =:
M-Banach
, //
n
v / / I . L e t u s p u t P = : 9 ~ ~ ( a x . 4f )o r t h e k=l s p a c e o f continuouslK-polynomials p: AxAjlK of d e g r e e
max{// u l /
s n s u c h t h a t p ( O , O ) = 0 . Now w e d e f i n e a mapping
THE L I E GROUP O F AUTOMORPHISMS
@:
93
GL(AJK)+GL(P(P) ,K) by means of [ @ ( x ) p(]u , v ) = : p ( u x , x - l v )
where pcP, Y : A+L(P)
(u,v)eAxA and xcGL A S ) . A l s o , w e d e f i n e a mapping by [Y(x)p] ( u , v ) =:
where pcP,
(u,v)cAxA and xcA.
F i r s t , w e s t u d y some p r o p e r t i e s of 0 and Y . W e have
( a ) 4 i s a Banach-Lie group homomorphism and d + ( e ) = Y. The proof i s a n e x e r c i s e . Thus, by p r o p o s i t i o n 6 . 3 5 w e g e t ( b ) Y i s a Banach-Lie
a l g e b r a homomorphism and
[ @ ( e x p x ) p ] =[ ~ X P + ( X ) ] P
(6.11)
f o r a l l xcA and pep. ( c ) L e t z s A be g i v e n . Then e a c h of t h e s u b s p a c e s P k ( ~ x A ) k, = l , 2 , . . , n r
i s i n v a r i a n t by Y ( z ) , i . e . ,
w e have Y ( z ) c P k ( A x A ) . Moreover, i f z s A i s a r e g u l a r e l e m e n t of A , t h e n Y ( z ) i s a r e g u l a r e l e m e n t of L ( P ) . I n d e e d , l e t pcP(AxA) be g i v e n and suppose t h a t F c L k ( A x A , I K ) i s
its a s s o c i a t e d symmetric k - l i n e a r mapping s o t h a t w e have
Then, t h e mapping f : AxA-+AxA g i v e n by (6.12)
f ( z ) : w= ( u , v )
+
(uz,-zv)
s a t i s f i e s f ( z ) c L ( A x A ) . T h e r e f o r e , from t h e d e f i n i t i o n of y w e get
and Y ( z ) pcPk ( A K A ) .
Now, suppose t h a t zcA i s r e g u l a r . Then f
( 2 ) a s d e f i n e d by ( 6 . l a i s r e g u l a r i n L ( A x A ) and f ( z ) - l = f ( z - I ) . Thus, t h e r e s t r i c t i o n
94
6
CHAPTER
o f Y ( z ) t o each of t h e s u b s p a c e s P ( A x A ) i s a r e g u l a r element k o f L(Pk(AxA)) , t h e i n v e r s e image of pePk(AXA) b e i n g g i v e n by
Therefore Y ( z ) i s r e g u l a r i n L ( P )
,
too.
Next w e show t h a t B i s a c l o s e d L i e s u b a l g e b r a of A . S i n c e H i s a IK-algebraic subgroup of d e g r e e s n of G L ( A , X ) t h e r e i s a s e t of IK-polynomials
,
S c P such t h a t
H= I ~ ~ G L ( A ; I K ) ;q ( z , z - ' ) =
o
VqcS 1
W e d e f i n e a n o t h e r s e t o f polynomial Q c P by means of
(6.13)
Q=:
{pep;
p(h,h-')= 0
VhcH}
C l e a r l y , Q i s a c l o s e d M - s u b s p a c e of P and S c Q : t h u s , i n particular (6.14)
[zcGL(AJK), q ( z , z - ' ) = 0
VqcQ]=>
zeH
We c l a i m t h a t , f o r xeGL(AJK), w e have t h e e q u i v a l e n c e (6.15)
xeH < = > + ( x ) Q c Q
Indeed, l e t xeGL(A,X) be g i v e n and assume t h a t xsH. A s H i s a subgroup of G L ( A , l K )
,
we have Hx= H-lx= H . From ( 6 . 1 3 ) and t h e
d e f i n i t i o n of 4 w e o b t a i n
f o r a l l qcQ and hcH; t h u s @ ( x ) Q C Q by ( 6 . 1 3 ) .
Conversely, l e t
xeGL(A,X) be g i v e n and assume t h a t + ( x ) Q c a . By ( 6 . 1 4 )
it
1
s u f f i c e s t o show t h a t q ( x , x - ) = 0 f o r a l l qcQ. L e t qeQ be given; by assumption we have @ ( x ) q c Q t; h u s by ( 6 . 1 3 ) w e o b t a i n -1 - 1 i . e . , q ( h x , x h ) = 0 for a l l heH, and [ @ ( x ) q ] ( h r h - l ) =0 , t a k i n g h= e s H we g e t q ( x , x - l ) = 0 . Now w e c l a i m t h a t , f o r yeA, w e have t h e e q u i v a l e n c e
95
THE L I E GROUP OF AUTOMORPHISMS
y€B < = > Y ( y ) Q c Q
(6.16)
I n d e e d , l e t ysB be g i v e n . Then we have exptycH f o r a l l tdR a n d , by (6.15)
,
@ ( e x p t y ) Q c Q t; h e r e f o r e , from ( 6 . 1 1 ) w e d e r i v e
[ e x p Y ( y ) ] Q C Q .I f w e f i x any q c Q , t h e mapping IR-tP g i v e n by t-texpY(y)q t a k e s i t s v a l u e s i n t h e closedIK-subspace Q of P a n d , by t a k i n g i t s d e r i v a t i v e a t t = 0 , w e g e t Y!(y)qcQ, whence Y ( y ) Q c Q . Conversely,
l e t yeA be such t h a t Y ( y ) Q c Q . A s Q i s
a c l o s e d x - s u b s p a c e of P , w e have [ e x p t + ( y ) ] Q c Qf o r a l l
tm.
Thus, by ( 6 . 1 1 ) , @ ( e x p t y ) Q c Q ,whence exptysH f o r a l l tdR and t h e r e f o r e ycB. I n p a r t i c u l a r , a s d @ ( e ) =Y i s a Banach-Lie a l g e b r a homomorphism,
( 6 . 1 6 ) e n t a i l s t h a t B i s a c l o s e d L i e s u b a l g e b r a of A . Next, w e show t h a t H i s a Banach-Lie group.
a:
L e t A =: A Q i A & the complexified of (I:
A = A when
IK= a)
. For
xcA
(I:
,
t h e Banach a l g e b r a A ( t h u s
S p ( x ) 1s the spectrum of x
i n A'.
From
t h e s p e c t r a l t h e o r y we know t h a t t h e s e t s
and
a r e , r e s p e c t i v e l y , neighbourhoods of e i n G L ( A J K ) and 0 i n A . According t o t h e holomorphic f u n c t i o n a l c a l c u l u s ( c . f .
11
I ) , on
U w e can s e l e c t a holomorphic b r a n c h of t h e l o g a r i t m i c f u n c t i o n
L e t u s d e n o t e by l o g i t s p r i n c i p a l d e t e r m i n a t i o n . By t h e spectral
mapping theorem, l o g : U+V i s a complex b i a n a l y t i c map ( t h u s , a r e a l b i a n a l y t i c map, t o o , i n c a s e I K = I R ) whose i n v e r s e i s exp: V+U.
T h e r e f o r e , by p r o p o s i t i o n 6 . 3 7 ,
it s u f f i c e s t o show
t h a t we have exp ( V
nB ) c U
H
log(U n H ) c V f l B
NOW, l e t ycV f l B be g i v e n ; from ycV and ycB w e g e t expycu and
exptycH f o r a l l tm, t h u s expycU n H .
CHAPTER
96
6
Next, l e t xcUnH be g i v e n and p u t y=: l o g x . Thus, i n p a r t i c u l a r (6.17)
YCV
M o r e o v e r r f r o m XSU w e d e r i v e
a n d by t h e s p e c t r a l mapping t h e o r e m
W e c l a i m t h a t t h e s p e c t r u m Sp(TY(y)] of ' Y ( y ) i n t h e c o r n p l e x i f i e d algebra L(P)'
of L ( P ) ( o r i n L ( P ) whenlK= C) s a t i s f i e s
Indeed, w e p r o v e . t h a t f o r A r e g u l a r element of L ( P )
'.
d with
(imgX/2v
I
AI-Y(y) i s a
Now w e h a v e
so t h a t
f o r pePk(AxA), k = 1 , 2 , . . , n ,
a n d w= ( u , v ) e A x A . T h u s , it s u f f i c e s
A
i; I - f ( y ) i s r e g u l a r i n L ( A x A ) f o r k = 1 , 2 , . . , n . B u t , due t o t h e d e f i n i t i o n of f ( y ) ,
t o prove t h a t
S i n c e by ( 6 . 1 8 ) ,
I imgh I ? v / n
e n t a i l s h/kgSp ( y ) a n d A/kgSp ( - y ) A A e-y a n d i; e + y a r e r e g u l a r i n
f o r k= I , 2 r . . r n r t h e e l e m e n t s A a n d so i s
Since
x k
I-f ( y ) i n L (AxA)
4 ( x )= 4 ( e x p y ) =
expY ( y )
.
by t h e f u n c t i o n a l c a l c u l u s a n d
t h e s p e c t r a l mapping t h e o r e m i t f o l l o w s t h a t
97
THE L I E GROUP O F AUTOMORPHLSMS
By R u n g e ' s t h e o r e m , t h e r e i s a s e q u e n c e of p o l y n o m i a l s p k c C \ X / , kdN, s u c h t h a t w e have l o g h = limpk(X) u n i f o r m l y when XcSp I @ ( x ) 1
. Then
k+m
I
1 Y ( y ) = log$ ( x ) = [Xe-Q( x ) ]-IlogAdX= 2 ~ i JY
S i n c e xeH, by ( 6 . 1 5 ) w e have @ ( x ) Q C Q a n d , as Q i s a closed s u b s p a c e of PI w e g e t Y ( y ) Q = l i m p k [ + ( x ) ] Q C Q .Then, by ( 6 . 1 6 ) w e a
obtain
k+m
Y ( y )c B
(6.19)
F i n a l l y , from ( 6 . 1 7 ) and ( 6 . 1 9 ) w e deduce Y ( y ) c V n B .
ff 6.41. over
a:
REMARK.
T h e case i n which A i s a Banach a l g e b r a
and H i s a n n - a l g e b r a i c
included i n our considerations.
subgroup of GL(A,E)
c a n a l s o be
Indeed, we can c o n s i d e r t h e
u n d e r l y i n g = - s t r u c t u r e s of A and G L ( A , C ) and d e f i n e n P = @ P ( A x A ) t o b e t h e Banach s p a c e of c o n t i n u o u s l R - p o l y n o m i a l s k=1
P: AxA
k
-t
a:
of d e g r e e Sn w i t h p ( O , O ) = 0 . A s i n o u r c a s e t h e
polynomials defining H belong t o a subset of P I we a r e i n a s i t u a t i o n i n which t h e o r e m 6 . 4 0 i s a p p l i c a b l e . A number o f i n t e r e s t i n g examples o f X - a l g e b r a i c
s u b g r o u p s of
d e g r e e s n of GL(A,IK) are i n c l u d e d i n t h e f o l l o w i n g PROPOSITION. L e t X I Y and f s L ("X,Y)
6.42.
be r e s p e e t i v e z y
t w o Banach s p a c e s 0 v e r . X and a x - r n u Z t i Z i n e a r mapping f : Xx...xX-+Y
.
Let
m= 0 o r m= 1 and s u p p o s e t h a t X= Y when m= 1 .
Then, t h e s e t H o f t h e eZements clcGL(L(X),IK)
satisfying
98
CHAPTER
f
(6.20)
( a x 11 . .
,(YX
n
1 = am f
(XI
I
-
6
* lXn)
XI
1 . .
,x
cx
is u B a n a c h - L i e g r o u p ~ l h o s eBanach-Lie a l g e b r a B is t h e s e t of a1 1. 6 c L ( X ) s a t i s f y i n g f(6x
(6.21)
1
,..,x n ) +..+
f(xl,...,fixn ) = m d f ( x l ,.., x n )
Here am a n d mfi d e n o t e r e s p e c t i v e l y t h e i d e n t i t y a n d t h e z e r o t r a n s f o r m a t i o n on Y when m= 0 . P r o o f : O b v i o u s l y A = : L ( X ) i s a Banach a l g e b r a o v e r K a n d H I a s d e f i n e d by ( 6 . 2 0 ) GL ( L(X)JK)
. We
i s a subgroup of t h e l i n e a r group
c l a i m t h a t H i s a IK-algebraic
s u b g r o u p of d e g r e e
Cn. I n d e e d , f o r f i x e d x 1 , x 2 , . . x ex, t h e mapping : T,(X)+X
PXlI.. lxn
g i v e n by
i s a c o n t i n u o u s n-homogeneous IK-polynomial,
and H i s d e f i n e d by
t h e s e t S of e q u a t i o n s PXlI..,X
( a ) =0
f o r x l , . . , x n ~ X . M o r e o v e r , B a s d e f i n e d by ( 6 . 2 1 ) ,
Banach-Lie
is a closed
s u b a l g e b r a of A = L ( X ) . T h u s , it s u f f i c e s t o show
t h a t H and B are a s i n theorem 6 . 4 0 i . e . w e have B= ( n e L ( X ) ; e x p t a c H
Vtm]
NOW, s u p p o s e t h a t G e L ( X ) s a t i s f i e s e x p t 6 e H f o r a l l
R e p l a c i n g cx b y e x p t d i n ( 6 . 2 0 )
tm.
and t a k i n g t h e d e r i v a t i v e a t
t = 0 w e see t h a t 6 s a t i s f i e s ( 6 . 2 1 ) ; t h u s 6 c B . C o n v e r s e l y , s u p p o s e t h a t 6eB and d e f i n e l i n e a r mappings Fn: L("X,Y)+L(X,Y)
by means o f
THE L I E GROUP OF AUTOMORPHISMS
x1,..,xneX
for GsL("X,Y),
and k = 1 , 2 , . . , n .
99
L e t us w r i t e
F=: (F1+F2+..+Fn)-F0 S i n c e 6 s a t i s f i e s ( 6 . 2 1 ) w e h a v e F ( f ) = 0 and FO,F 1 I
-
*
IFn
commute. T h e r e f o r e
.
( e x p F 1 ) . ( e x p Fn ) f = e x p ( F 1 + . . + F n ) f = ( e x p F o ) ( e x p F , ) f = ( e x p F0 ) f = =
(exp6)mf
which shows t h a t exp6cH. S i n c e B i s a l i n e a r s p a c e , w e c a n d o t h e same a r g u m e n t w i t h t 6 i n s t e a d of 6 , whence w e c o n c l u d e t h a t expt6sH f o r a l l tc3R.
# EXAMPLES. L e t A b e a Banach a l g e b r a o v e r IK ( w h e r e
6.43.
A may h a v e no u n i t a n d f a i l t o b e a s s o c i a t i v e , f o r e x a m p l e , a n y
Banach-Lie
a l g e b r a o f a n y B a n a c h - J o r d a n a l g e b r a ) . Then w e c a n
a p p l y p r o p o s i t i o n 6-42 2
t o t h e case i n which n = 2 , m= 1 , X = Y = A
i s t h e m u l t i p l i c a t i o n on A , i . e . ,
and f c L ( X , X )
f ( x , y ) = x.y.
O b s e r v e t h a t t h e a u x i l i a r y Banach a l g e b r a L ( X ) a p p e a r i n g i n p r o p o s i t i o n 6 . 4 2 i s now L ( A ) which i s a s s o c i a t i v e a n d h a s u n i t e v e n i f A f a i l s t o b e so. T h u s , t h e o r e m 6 . 4 0 a n d p r o p o s i t i o n 6 . 4 2 a r e a p p l i c a b l e . Accordingly, t h e set
w h i c h i s t h e g r o u p of a u t o m o r p h i s m s of A , i s a Banach-Lie g r o u p i n t h e normed t o p o l o g y o f L ( A )
.
The Banach-Lie a l g e b r a of
t h i s group i s
which i s t h e a l g e b r a o f l K - d e r i v a t i o n s M-algebraic equations p
of A. Besides, H i s t h e
s u b g r o u p o f G L ( L ( A ) 3 ) of d e g r e e $ 2 d e f i n e d b y t h e XPY
(a)= 0 where
100
CHAPTER
6
and x,yeA. L e t X b e a complex H i l b e r t s p a c e a n d Y = 5
. Then
can apply
p r o p o s i t i o n 6 . 4 2 w i t h n = 2 , m= 0 t o t h e spaces X a n d Y a n d t h e 2
r e a l b i l i n e a r mapping f c L ( X , E ) X,
f ( x , y ) = ( x l y ) . A c c o r d i n g l y , i f a* d e n o t e s t h e a d j o i n t o f t h e
operator H=:
g i v e n by t h e s c a l a r p r o d u c t on
C X E( X~)
,
t h e set
{ ~ c G L ( ~ ( ,E); x )
(axlay)= -
which i s t h e u n i t a r a y g r o u p of H , i s a r e a l Banach-Lie Banach-Lie
g r o u p whose
algebra is ( 6 X l y ) + ( x l d y ) =0
B= { 6 C L E ( X ) ;
The u n i t a r y g r o u p o f X is a r e a l a l g e b r a i c s u b g r o u p of G L ( L c ( X ) ,lK)
of d e g r e e 6 2 d e f i n e d by t h e e q u a t i o n s p
XIY
( a )= 0
where PX,Y
(a)= ( a x l a y ) - ( x l y )
a n d x,ysX. Let
x
b e a H i l b e r t s p a c e over 6: a n d d e n o t e by Q a n y c o n j u g a -
t i o n on X . Take f e L ( 2 X l C ) t o b e t h e r e a l b i l i n e a r mapping g i v e n by f ( x , y ) = : ( Q x / y ), x , y c X . Then w e c a n a p p l y p r o p o s i t i o n 6 . 4 2 w i t h n = 2 , m= 0 . If a
t
d e n o t e s t h e t r a n s p o s e d of t h e o p e r a t o r
ac,!&(X) , t h e n , t h e s e t
which is t h e o r t h o g o n a l g r o u p of X , i s a r e a l Banach-Lie whose Banach-Lie B = {6CLc(X);
group
algebra is
( Q 6 x / y ) t ( Q X l f i y ) =0
YX,y€X)= { 6 C L E ( X ) ; 6 t 6 t = 0 )
The o r t h o g o n a l g r o u p of X i s a r e a l a l g e b r a i c s u b g r o u p of
THE L I E GROUP O F AUTOMORPHISMS
GL(L (X)
LT
,a)
of d e g r e e c 2 d e f i n e d by t h e e q u a t i o n s p
101
X,Y
(a)= 0
where
and x,ysX.
6.44. EXERCISES. L e t X,Y b e H i l b e r t s p a c e s o v e r (I. i s a c l o s e d complex subspace &of L L T ( X , Y ) such
A J*-algebra
t h a t w e have -*As acGL(L
2 whenever A , B s
a. A
J*-automorphism i s any
,(I) such t h a t w e have LT ( A )
for a l l A , B s A .
Prave t h a t t h e group of a l l J*-automorphisms
of '2 i s a r e a l a l g e b r a i c subgroup o f G L ( L L T ( & ) , C ) of d e g r e e
c 3 . Thus i t i s a r e a l Banach-Lie group. Prove t h a t i t s BanachL i e algebra i s the set
of a l l J * - d e r i v a t i o n s of L a ( h ) .
Now w e t u r n o u r a t t e n t i o n t o t h e c o n s t r u c t i o n of a r e a l BanachL i e group s t r u c t u r e on AutD.
m o u g h o u t t h i s s e c t i o n , B c D and 6 > 0 s t a n d f o r a f i x e d open b a l l and a r e a l number such t h a t B 6 c c D . W e know t h a t (autD,
/I .I(
)
B6
i s a r e a l Banach-Lie a l g e b r a . W e d e n o t e by Holm(B,E) t h e complex Banach s p a c e of holomorphic mappings f : B+E t h a t a r e bounded on B . Thus ( H o l m ( B , E ) ,
11
./IB)
i s a r e a l Banach s p a c e ,
too *
As autD and Holm(B,E) w i l l always be endowed w i t h t h e t o p o l o g i e s
.
.I I B ,
r e s p e c t i v e l y d e f i n e d on them by t h e norms I / /I and I ] B6 w e s h a l l omit any r e f e r e n c e t o t h e s e norms. However, we s h a l l c o n s i d e r s e v e r a l t o p o l o g i e s on AutD H o l m ( B , E ) ; t h u s , i n o r d e r t o a v o i d any p o s s i b l e confusicm,
whenever w e r e f e r t o A u t D w e
102
6
CHAPTER
s h a l l e x p l i c i t e l y m e n t i o n t h e t o p o l o g y w e are c o n s i d e r i n g on i t 6.45.
LEMMA. li'herc i s
neighbourhood
R
i n a u t D s u c h t h a t , f o r any A c M
,
M
of Lhe o r i g i n
the series
13 AnidD
-1; n=O
is c o n v e r g e n t t o (expA) i n t h e s p a c e Holw(BrE). T h e m a p p i n g IB HolB(B,E) g i v e n b y
exp: M
+
(6 . 2 2 )
P r o o f : L e t AeautD b e g i v e n . Then, f o r tCiR a n d ndN, w e
have
t" An A i d e H o l m ( B r E ) ;t h e r e f o r e , w e D n!
can d e f i n e a formal
power s e r i e s IR+Holm(B,E) by means o f
t-t
(6-23)
2;
n t"! i n i d D
n =O
w e have
A s i n t h e p r o o f of p r o p o s i t i o n 4 . 1 ,
f o r a l l ndN, where M = :
/I
M =:
i d D / I B< m i s i n d e p e n d e n t of n . N o w , {AcautD;
11
All,
s 6
i s a n e i g h b o u r h o o d of t h e o r i g i n i n a u t D a n d , f o r a n y f i x e d AE
M
,
t h e r a d i u s of c o n v e r g e n c e o f
( 6 . 2 3 ) is g r e a t e r t h a n 1 .
S i n c e Hol-(B,E) i s c o m p l e t e , m
f(t,A) lB=:
C n=O
i s convergent i n Holm(BrE) t o (exptA) Moreover, i t is e a s y t o see t h a t tn-l
tn
A
n! A n i d B IB
f o r all t c [ - l , + I ] .
f ( t , A ) = C -i n i d D = A[f ( t , a ) ] dt n=l ( n - l ) !
d
THE L I E GROUP OF AUTOMORPHISMS
103
and f ( O , A ) = i d D . T h u s , b y d e f i n i t i o n 4 . 4 ,
Now ( 6 . 2 2 ) d e f i n e s a f o r m a l power s e r i e s b e t w e e n t h e r e a l Ba-
t h i s series
n a c h s p a c e s a u t D a n d H o l m ( B I E ) . S i n c e f o r AEM
i s convergent, exp: M + H o l m ( B I E ) d e f i n e s a real a n l a y t i c mapping on M
. #
6.46.
REMARK. N o t i c e t h a t e x p : M + H o l m ( B , E ) t a k e s i t s
v a l u e s n o t o n l y i n t h e s p a c e H o l m ( B , E ) b u t i n t h e smaller s e t AutD. 6.47.
LEMMA. T h e r e a r e a n e i g h b o u r h o o d
and a n e i g h b o u r h o o d expM
+
N
N
of
idD i n Holm(B,E)
of 0 i n a u t D
M
such t h a t
i s a b i j e c t i o n . Moreover, b o t h exp: M
i n v e r s e log: N
-t
a r e Z i p s c h i t z i a n on M
M
P r o o f : By lemma 6 . 4 5 e x p : M
N
and i t s
.
Holm(BIE) i s a real
+
a n a l y t i c mapping on a n e i g h b o u r h o o d
and
N
+
M of 0 i n a u t D . I t s
d e r i v a t i v e a t t h e o r i g i n i s t h e e l e m e n t of L ( a u t D , H o l m ( B , E ) ) g i v e n by e x p h l A = f; i d D = A T h u s , by t h e i n v e r s e mapping t h e o r e m , t h e r e a r e a n i e g h b o u r h o o d
M ' o f 0 i n autD and a neighbourhood
M'
such t h a t exp:
+
N'
N'
o f i d i n Holm(B,E)
i s a b i a n a l y t i c mapping. By t h e
c o n t i n u i t y of t h e d e r i v a t i v e a t 0 , t h e r e i s a convex neighbourhood
Then, f o r A1,A2e
M
o f 0 i n a u t D i n which e x p '
MI'
w e have
i s bounded
104
CHAPTER
and e x p i s l i p s c h i t z i a n o n M " .
6
A similar a r g u m e n t a p p l i e s t o
i t s i n v e r s e l o g . T h e r e i s no loss of g e n e r a l i t y i n a s s u m i n g
t h a t MI'= M
and N = expM
.
Is N = : expM a T-neighbourhood o f i d
6.48.
QUESTION.
6.49.
EXERCISE. Show t h a t i f q u e s t i o n 6 . 4 8 h a s a n
D
in
AutD?.
a f f i r m a t i v e a n s w e r , t h e n by l e m m a 6 . 4 7 , e v e r y FcAutD a d m i t s a n e i g h b o u r h o o d t h a t i s homeomorphic t o M by A+F expA. However, a s w e s h a l l see i n c h a p t e r 8 , t h e a n s w e r i s n o t a l w a y s a f f i r m a t i v e . 'Thus, i n g e n e r a l , w e may o n l y e x p e c t t h a t f o r some g r o u p t o p o l o g y , w h i c h i s f i n e r t h a n T , t h e m a p p i n g s A-+expA, AcM
, are
l o c a l homeomorphisms o f AutD o v e r a u t D f o r a l l FcAutD.
To e s t a b l i s h t h e e x i s t e n c e o f s u c h t o p o l o g y w e s h o u l d know t h a t t h e c o m p o s i t e mapping expAloexpA2 c a n a l w a y s b e w r i t t e n i n t h e form e x p C f o r some CeautD, whenever A l l A2 a r e S u f f i c i e n t l y n e a r t o 0 i n a u t D . T h i s f a c t i s a s p e c i a l case of o n e of t h e t h e main g o a l s of t h e g e n e r a l L i e t h e o r y , known a s t h e CampbellH a u s d o r f f t h e o r e m ( c f . I3 I ) 6.50.
.
T h e r e a r e a n e i g h b o u r h o o d M of t h e o r i g i n
THEOREM.
-i.n a u t D a n d a r e a l a n a l y t i c m a p p i n g C : M+autD s u e h t h a i w e h a v e
f o r a l l A1,A2eM. By t h e c o n t i n u i t y of C a t t h e o r i g i n , w e c a n f i n d neighbourhccds M l c M and M Z C M of 0 i n a u t D s u c h t h a t
C(M1, M ~ ) C M and
(6.25)
6.51.
C(M2,M2) C M 1
REMARK. The e x p l i c i t f o r m of t h e mapping C i s a l s o
known. One c a n show ( c f . C(slA1,
13 1 ) t h a t g i v e n E c a D , w e h a v e
s2A2]lB= C ( s l A 1 , =
,.
s2A2 ) i dB=
l o g ( e x p s l i l , e x p s 2 5 2 ) id,
THE LIE GROUP OF AUTOMORPHISMS
105
in the sense that the formal power series
L k,R 2 0
s:
si X k t R ( A 1,A21 %.log [id+ (expslAl exps2i2-idl]
,
where Xk, (A1,A2)= : k+1
c
=:
(-1)
n+ 1
1
c
pl+..+pn=k, ql+..+qn=R pl!ql!
n=l
piqi30
1 .. pn!q,!
-p1 3 2 A1 A2
.-
Pi +qi>o
I
"pnAqn
..A1 A2 converges in the norm
11 . I I B
to id
B
whenever
11
slAl11
and
11 s 2 A 2 I l are sufficiently small. (This is not consequence of any majorization!). Then, we necessarily have
where
and the convergence is meant in the topology of autD. Since (A1,A2)eautD for all k,R because they are partial derivatiC k,k ves in the T-sense of the mapping ( s l l ~ 2 ) + C ( s l A 1 1 ~ 2at A 2 )0, Dynkin's identity yields
k+l =
c
n=l
n+l
(-1)
1
Pn - l A ' n - lAPnAqn - 1A P I 'I . .. 1!qn! A1#A2#.-A1# 2# 1# 2
P 1!ql 1
Pn
It would be interesting to have a direct proof for the formula expAl.expA2= exp [ C Ck, (A1,AZ)] kit
in the setting of AutD.
THEOREM.I'?icr~c exists a un-iquc H a u s d o r f f
6.52.
T
6
CHAPTER
106
o n AutD such that (AutD, T a )
topology
-is a topological g r o u p a n d
1 M ; n = 1,2,..} {exp -
n
is n f u n d a m e n t a l . s y s t e m o $ n e i g h b o u r h o o o d s of i d MOreQUcr, 1'
D
for T
a
.
22'.
P r o o f : From t h e g e n e r a l t h e o r y o f t o p o l o g i c a l g r o u p s , it s u f f i c e s t o p r o v e t h a t t h e s t a t e m e n t s ( a ) , (b), ( c ) a n d ( d ) below a r e s a t i s f i e d . m
1
n
exp M= {idgl. n=1 I n d e e d , l e t fCeXpM b e s u c h t h a t f f i d D . Then, t h e r e i s some AcM
(a) W e h a v e
w i t h A 4 0 f o r w h i c h expA= f ; t h e r e f o r e , w e c a n f i n d some nEJN s u c h t h a t At#
S i n c e t h e e x p o n e n t i a l mapping i s i n j e c t i v e on
M,
M , w e h a v e ft#exp
1 n
a,
thus
A!;
f4 n
n=1
exp
n1 M .
( b ) L e t n l a n d n ClN be g i v e n ; t h e n t h e r e e x i s t s some 1 2 1 1
mdN such t h a t exp
fii
M ) fl ( e x p
M c (exp
M)
2
1
I n d e e d , i t s u f f i c e s t o c o n s i d e r m=:
.
max(nl,n2).
( c ) L e t ndN b e g i v e n ; t h e n t h e r e e x i s t s some mdN s u c h t h a t (exp
1 n
M ) . (exp
I n d e e d , by ( 6 . 2 4 ) g i v e n ndN assume M
1 ; M) ' c e x p
1 M.
we have C ( O , O ) = 0 . A s C i s c o n t i n u o u s a t 0,
we can f i n d
mm
such t h a t C (
t o b e s y m m e t r i c , i . e . , M = -M (exp
iii1
M) ( e x p
1 M) - '=
1 E
MI
. Then
1 ; M ) c 1g
M.
We may
-1 M ) = ( e x p ;I;; M I . ( e x p -
m
( d ) L e t geAutD a n d ndN b e given; t h e n t h e r e e x i s t s some mdN such t h a t g . (exp ; 1 M ) .g-'Cexp 1 M.
I n d e e d , once gcAutD h a s b e e n f i x e d , by c o r o l l a r y 5 . 1 2 t h e a d j o i n t mapping gy':
autD+autD o f g - '
i s a n a u t o m o r p h i s m of t h e
107
THE L I E GROUP OF AUTOMORPHISMS
-1
a l g e b r a autD. T h e r e f o r e t h e s e t g # (
Banach-Lie
1 n
M)
is a
neiqhbourhood of 0 i n autD and w e may f i n d some m a such t h a t 1 m
-1
M c q #
so t h a t
1
(
M). Moreover, by p r o p o s i t i o n 5 . 1 3 ,
g.exp(
1
M)q
-1
cexp
I n
M.
I n o r d e r t o show t h a t T >,T it s u f f i c e s t o prove t h a t e v e r y T-neighbourhood of i d D c o n t a i n s a T -neighbourhood of i d
D
.
Now,
t h e f a m i l y of s u b s e t s o f AutD g i v e n by
f o r E > O i s a fundamental system of T-neighbourhoods of i d D . By
lemma 6 . 4 5 t h e mapping exp: M+Holm(B.E) i s c o n t i n u o u s a t t h e o r i g i n ; as
i s a neighbourhood of i d D f o r t h e t o p o l o g y induced by H m ( B , E ) on AutD, t h e r e e x i s t s some ndN such t h a t e x p ( 1 M ) c N ( E ) .
# 6.53.
DEFINITION.
We r e f e r t o t h e t o p o l o g y i n t r o d u c e d by
t h e o r e m 6 . 5 2 on A u t D a s t h e “ a n a Z y t i c t o p o l o g y “ o n AutD. By A u t O D w e d e n o t e t h e connected component o f i d D i n (AutD, T a ) .
6.54.
LEMMA. T h e r e i s a n e i g h b o u r h o o d M o f t h e o r i g i n i n
autD s u c h t h a t exp: M-texpM
i s a homeomorphism when b o t h M and
a r e endowed w i t h t h e i r r e s p e c t i v e t o p o l o g i e s a s s u b s p a c e s of autD and ( A u t D , T). expM
P r o o f : L e t M be as i n theorem 6 . 5 0 .
By lemma 6 . 4 7 ,
exp: M-+Holm(BIE)i s a homeomorphism of M o n t o a neighbourhood
expM of i d D i n H o l m ( B I E ) . Now it s u f f i c e s t o r e a l i z e t h a t exp t a k e s i t s v a l u e s n o t o n l y i n Holm(BIE) b u t i n t h e s u b s e t AutDcHol,(B,E)
and t h a t t h e t o p o l o g y induced by Holm(B,E) on
AutD i s p r e c i s e l y T .
ff
CHAPTER
108
6.55.
6
REMARK. Observe t h a t e x p : M+expM 1s a homeonmrphism,
t o o , f o r t h e t o p o l o g i e s i n d u c e d on M
a n d expM
by autD and
(AutD, T,). Thus, i n p a r t i c u l a r , T and 4 a g r e e on t h e s u b s e t expM o f AutD, b u t from t h i s f a c t w e c a n n o t c o n c l u d e t h a t T a n d I' a g r e e on t h e whole g r o u p AutD: w h e r e a s expM of i d D f o r T I it may f a i l t o be so f o r T . 55.-
i s aneighbourhood
The Banach-Lie o up s t r u c t u r e of AutD. ____ - - - -___-g r-
Now w e are g o i n g t o c o n s t r u c t a r e a l Banach-Lie g r o u p s t r u c t u r e on AutD whose u n d e r l y i n g t o p o l o g y is T For t h i s p m p o s e , l e t and M 2 b e a s i n t h e o r e m 6 . 5 0 and 6 . 5 2 so t h a t M ,M1
.
C ( M 1 , M I1
(6.26)
=M
C ( M 2 , M 2 )= M I
and exp: M-bexpM i s a homeomorphism f o r t h e t o p o l o g i e s i n d u c e d by a u t D and (AutD, T,). L e t u s d e n o t e by l o g : expM-tM i n v e r s e and w r i t e F=: I N ; N
its
open and O e i l r c M ]
Then, t h e f a m i l y IexpN; NcF} i s a f u n d a m e n t a l s y s t e m of n e i g h b o u r h o o d s o f i d D f o r T,. 6.56.
THEOREM. T h e r e is a u n i q u e r e a l a n a l g t i c B a n a c h
r n a n i f o Z d s t r u c t u r e on (AutD, T ) f o r w h Z c h t h e f a m i l y a
is a s y s t e m o f c h a r t s a t t h e i d e n t - i t y e l e m e n t id D' Proof:
L e t geAutD be g i v e n . The l e f t t r a n s l a t i o n
Lg: f + g o f , fcAutD, is a n automorphism o f t h e t o p o l o g i c a l -1 Now w e d e f i n e g r o u p (AutD, Ta) whose i n v e r s e i s ( L g ) - ' = Lg a s y s t e m of c h a r t s a t geAutD a s t h e family of p a i r s
.
C l e a r l y , c o n d i t i o n M1 of d e f i n i t i o n 6 . 1 is s a t i s f i e d b e c a u s e
THE L I E GROUP O F AUTOMORPHISMS
U
109
g.expN
NeF, g e A u t D i s an open c o v e r of A u t D f o r t h e t o p o l o g y Ta. Moreover, t h e s e
l o c a l c h a r t s are a n a l y t i c a l l y c o m p a t i b l e i n t h e r e a l s e n s e ,
i.e.,
t h e y s a t i s f y c o n d i t i o n M 2 , t o o . Indeed, assume t h a t
f o r some g ,g2eAutD and N 1 , N 2 c F . 1
AleN
1
Then, t h e r e are A l c N l
and
such t h a t gl.expA = f = g2.expA2 1
w e have
Thus, f o r AcNl n N 2
=
S i n c e A1,A2cM2
,
log [expAlexp ( -A2) expA]
from theorem 6.50 w e d e r i v e
expAlexp(-A2) = expC(A1 , - A 2 ) = expA 3 where, by ( 6 . 2 6 )
, A 3 =:
C ( A ,-A2) 1
i s a f i x e d e l e m e n t of M
1'
Then,
from theorem 6.50 w e d e r i v e l o g [expA exp (-A 1
2
) expA] = l o g (expA expA) = 3
Whence t h e t r a n s i t i o n homeomorphism c o r r e s p o n d i n g t o t h e c h a r t s (glexPN1 I
and (g2expN2' 1oglg2expN2
i s g i v e n by
A J C ( A ~ , A ) which i s a r e a l a n a l y t i c mapping.
# 6 . 5 7 . THEOREM. The m a n i f o l d
(AutD, T a ) is a r e a l Banach-
L i e g r o u p whose B anach- Li e a l g e b r a i s autD.
110
CHAPTER
6
P r o o f : By p r o p o s i t i o n 6 . 1 9 a n d 6 . 3 0 it s u f f i c e s t o p r o v e t h e s t a t e m e n t s ( a ) , (b) and ( c ) below. ( a ) F o r e v e r y f i x e d gcAutD, t h e mapping Lg: q+gf i s r e a l a n a l y t i c on AutD. I n d e e d , l e t gcAutD b e f i x e d . Choose a n y fcAutD 1
c h a r t ( f .expN, l o g L f ( g f e x p u , l o g L (gf)
and a n y l o c a l
1 of (AutD, T a ) a t f . Then
I gfexpN
i s a l o c a l c h a r t a t g f and t h e
e x p r e s s i o n o f Lg i s t h e s e c h a r t s i s g i v e n by
= l o g expA= A
for A e N . Thus, Lg i s a n a l y t i c . ( b ) For e v e r y f i x e d gcAutD, t h e mapping
Tg: AutD+AutD g i v e n by f + g f g - l i s r e a l a n a l y t i c . I n d e e d , l e t gcAutD be g i v e n . Choose any fcAutD
and a n y l o c a l
1
c h a r t (f.expN, logLf-
) a t f . Since t h e a d j o i n t !f.expN g # : autD+autD o f g i s c o n t i n u o u s , t h e r e i s some N C M 1
t h a t g# (iV,)CrV; t h e r e f o r e ,
mapping such
l o g e x p g # ( A )= g#A
€ o r A c N l . Then ( f . e x p N 1 , l o g L f - l l f e x p N ) a n d (gfg-lexPNl' logL(gf9
-1
1
-1
1
1 are local c h a r t s a t f
Igfg-lexpN 1
and g f g - l . Moreover, t h e e x p r e s s i o n of Tg i n t h e s e c h a r t s i s g i v e n by
for a&N
1'
Thus T g i s a n a l y t i c .
( c ) The mapping F:
(AutD)x(AutD)+AutD g i v e n by
111
THE LIE GROUP OF AUTOMORPHISMS
(f,g)+fg-' is analytic in a neighbourhood of ( idD,idD)
.
Indeed, let M2 be as in (6.26). Then (expM2, loglexpM21 is a chart of AutD at idD and its "Cartesian square" is a chart of AutDxAutD at (idD,idD) By (6.25) we have
.
for all A1,A2eM2. Then, it is easy to check that the expression of F in these charts is given by (A1'A2 which is real analytic. 56.- The action of AutD on the domain D. ~~
We endow the domain D with its underlying real analytic manifold structure and consider DxAutD as a product manifold. Then we define the action of AutD on D as the mapping JI: DxAutD+D given by (x,f)+f (x)
.
6.58. THEOREM. T h e mapping tic o n DxAutD.
+:
(x,f)+f(x) is r e a l a n a l y -
Proof: It suffices to prove its analyticity near the identity element idD. Now, let xcD be given and fix any ball B c c D centered at x. Starting with this ball B we can construct a neighbourhood M of 0 in autD as we did in 54. Then (B, idB)x(expM, log,expM)is a local chart of D AutD at (x,idD). Also, (D, idD ) is a chart of D at x. Thus, it suffices to show that the mapping
which is the expression of JI in these charts, is real analytic in BxM. By lemma 6.45, (y,A)+(y,expA) is real analytic in BxM with
112
CHAPTER
6
v a l u e s in B x H o l m ( B , E ) . O b v i o u s l y , t h e mapping B x H o ~ ~ ( B , +E E ) g i v e n by ( y , f 1 +f (y) is s e p a r a t e l y h o l o m o r p h i c ;
t h e r e f o r e , by H a r t o g ' s t h e o r e m , it is h o l o m o r p h i c a n d , i n p a r t i c u l a r , real a n a l y t i c . But ( 6 . 2 7 ) i s t h e c o m p o s i t e of ( y , A ) + ( y , e x p A ) and (y,f)+f ( y ) , whence t h e r e s u l t follows.
#
CHAPTER
7
BOUNDED CIRCULAR DOMAINS
I n t h i s c h a p t e r w e s h a l l s t u d y t h e group A u t D f o r domains D w i t h some p a r t i c u l a r g e o m e t r i c p r o p e r t i e s .
§I
.- The
L i e a l g e b r a autD f o r c i r c u l a r domains.
7.1.
DEFINITION. We s a y t h a t a b o u n d e d d o m a i n D
is
“ c i r c u l a r ” i f OeD a n d , f o r a l l xcD a n d a l l AcC w i t h I A / = 1
,
we h a v e AxeD. Throughout t h e whole c h a p t e r , D w i l l s t a n d f o r a bounded c i r c u l a r domain.
7 . 2 . LEMMA. L e t D b e a b o u n d e d c i r c u l a r d o m a i n . T h e n t h e v e c t o r f i e l d Z : x + i x i s c o m p l e t e i n D.
tm,
it
x. S i n c e D i s c i r c u l a r , w e have f c A u t D and t h e mapping t + f t i s a T-continuous one-parameter group. By theorem 4 . 5 i t s a s s o c i a t e d v e c t o r f i e l d , which i s o b v i o u s l y 2, i s complete i n D. P r o o f : For
w e d e f i n e f t : x+e
t
# W e c a l l Z t h e c i r c u l a r v e c t o r f i e l d and it w i l l p l a y an i m p o r t a n t r o l e i n t h e s t u d y of c i r c u l a r domains. S i n c e O c D , any (non n e c e s s a r i l y c o m p l e t e ) holomorphic v e c t o r f i e l d X i n D i s u n i q u e l y determined by i t s T a y l o r s e r i e s a t 0 . W e w r i t e Pn f o r t h e space of c o n t i n u o u s n-homogeneous CU
polynomials P: E+E, so t h a t w e have X= C P = : X ( nS P O
n=O n
for nm.
113
P n where
CHAPTER
114
z#=: [ Z , . ] be t h e a d j o i n t of 2 ; and , by r e i t e r a t i n g t h i s o p e r a t i o n
Let
7
t h e n w e may a p p l y Z #
to X
a n d t a k i n g l i n e a r combinations,
w e o b t a i n e x p r e s s i o n s of t h e form P(z#)x= (ao+a
z + . . + ar Z '#) X
1 #
where P ( A ) = a o + a l A t . . + a r A r
i s a polynomial i n t h e indetermi-
nate A .
1.3. LEMMA. LeL P(X)c(I:[A] b e a n y poZynumiaZ i n A a n d m wssume t h a l X = l' P ,is a h o l - o m o r p h i c v e c t o r J i e l d i n D. T h e n n=O n we have
P r o o f : F o r t h e homogeneous components P
of X w e h a v e
By r e i t e r a t i n g t h i s o p e r a t i o n a n d t a k i n g l i n e a r c o m b i n a t i o n s
we o b t a i n t h e r e s u l t .
# m
7.4.
LEMMA.
Assume t h a t X = 1 P n s a t i s f i e : : XeautD. Then
we h a v e P = 0 f o r a l l 1-113.
n=O
n
P r o o f : L e t XeautD b e g i v e n . S i n c e a u t D i s a r e a l L i e a l g e b r a and ZcautD, w e h a v e P ( Z # ) X s a u t D f o r a n y p o l y n o m i a l w i t h r e a l c o e f f i c i e n t s P(A)dR[A].
By t a k i n g P ( A ) = A 3 t A
and
a p p l y i n g lemma 7 . 3 w e o b t a i n
B u t now we h a v e P ( - i ) = P ( 0 ) = P (i) = 0 , so t h a t t h e T a y l o r series of P ( Z # ) X a t 0 i s
BOUNDED CIRCULAR DOMAINS
f o r k= 0 , l a n d , by C a r t a n ' s
[P(Z#)X] (k= 0
Thus, we have
115
0
u n i q u e n e s s theorem, P ( Z # ) X = 0 . However, P ( n i - i ) f O f o r a l l n > 3 ; therefore P = 0 for n>3. DEFINITION. For a n y b o u n d e d c i r c u l a r d o m a i n D , we
7.5.
set 0
a u t D =:
P1
n
aut D=:
(autD)
0
0
(autD)O= { X ( o ) ; XeautDj
E =:
Aut D = :
(POOP2)n autD
{FsAutD, F i s l i n e a r ] .
PROPOSITION. F o r b o u n d e d c i r c u l a r d o m a i n s D ,
7.6.
we
h a v e t h e t o p o Z o g i c a 2 d i r e c t sum d e c o m p o s i t i o n 0
autD= ( a u t o D )8 ( a u t D)
(7.1)
M o r e o v e r , a u t 0 D i s t o p o l o g i c a 2 2 y i s o m o r p h i c w i t h E0 ( c o n s i d e r e d 0 a s a r e a l l i n e a r s u b s p a c e of E l b y t h e m a p p i n g X - t X ( 0 ) a n d a u t D 0
c a n v i e w e d a s t h e L i e a Z g e b r a of Aut D. P r o o f : L e t XcautD be given: by lemma 7 . 4 w e have f o r some P k e P k , k = 0,1, 2 .
X = P +P + P 0
1
2
Applying lemma 7 . 3 t o
t h e polynomial P (1)= h 2 and t h e v e c t o r f i e l d X w e d e r i v e P(Z
#
)x=
2
2
2
1 P(ni-i)P = C (in-i) P = -(Po+P2) n n
n=O
n=O
so t h a t P0+PZ€autDa n d , t h e r e f o r e , P 1= X - ( P 0 + P 2 ) c a u t D . C l e a r l y 0
P + P 2 c a u t D and P l c a u t D ; t h u s autD a d m i t s t h e d i r e c t sum 0 0 0 decomposition autD= ( a u t D ) Q ( a u t o D ) By lemma 5.1 I , t h e c a n o n i -
.
2
c a l p r o j e c t o r s Z#
and
I-Z#
2
are c o n t i n u o u s .
Now, l e t c s E O be g i v e n . Then, t h e r e e x i s t s a unique symmetric b i l i n e a r mapping QccL( E x E I E ) such t h a t t h e v e c t o r f i e l d A:
x + c - Q c ( x , x ) , XCD, b e l o n g s t o autD. I n d e e d , t h e r e i s some
X = P + P +P cautD w i t h c = X ( 0 ) = P o . Then w e have c+P2cautD and 0
1 2
,
requirements. I f t h e r e i s
Q ( x , x )=: -P2
(XI
a n o t h e r Q:
i n t h e same c o n d i t i o n s , from c-QccautD and
I
xcD
c-QA cautD w e g e t Qc-Q:=
satisfies the (c-QA
)-(c-Qc)cautD; t h u s
CHAPTER
116
f o r k= 0 , l
(Qc-QA)Ak= 0
Q,=
7
and, by C a r t a n ’ s u n i q u e n e s s theorem,
QL-
Now, w e show t h a t Eo i s complete and t h a t t h e mapping
E o + a u t D g i v e n by c+c-Q i s a c o n t i n u o u s s u r j e c t i v e i s o m r p h i s m 0 of Banach s p a c e s . Indeed, assume t h a t Q = 0 f o r some c c E A s c-QccautoD, w e have ccautD. From ZeautD we o b t a i n
0’
[ Z , c ] = i c s a u t D . S i n c e autD i s p u r e l y r e a l , w e have c = 0 . Thus,
i s a n isomorphism o n t o t h e image subspace which i s o b v i o u s l y a u t D. NOW, l e t u s t a k e any b a l l B c c D c e n t e r e d a t 0 OeD. By theorem 5.6, t h e r e a r e c o n s t a n t s K 1 , K Z such t h a t w e CW-Q
have
f o r a l l XeautD. Applying t h i s t o t h e v e c t o r f i e l d X = c-Q e a u t D w e o b t a i n 0
for a l l c e E o . Thus c+c-Q
i s a homeomorphism. S i n c e w e know t h a t a u t D i s c l o s e d i n a u t D , Eo i s complete. A s f o r t h e
0 a s s e r t i o n c o n c e r n i n g a u t 0D , w e c a n r e p e a t t h e arguments of
theorems 6.56 and 6.57 r e s t r i c t i n g o u r s e l v e s t o t h e group 0 A u t D i n s t e a d of AutD.
I n t h e c o u r s e of t h e proof w e have e s t a b l i s h e d t h e f o l l o w i n g 7.7.
Eo i s a r e a l s u b s p a c e of E a n d , f o r e a c h a unCque QceL(EXEIE) s u c h t h a t t h e v e c t o r f i e l d
COROLLARY.
c e E O , t h e r e is
x*c-QC(xIx), XCD, b e l o n g s t o a u t D .
7.8.
DEFINITION. Ve r e s e r v e t h e n o t a t i o n Qc f o r t h e
symmetric biZCnear mapping d e s c r i b e d above. 7.9.
PROPOSITION.
For bounded c i r c u l a r dom ai ns D ,
h a ve 0
0
0
[aut D , a u t D] c a u t D ,
0
[aut D , a u t 0 D ] c a u t O D
we
BOUNDED CIRCULAR DOMAINS
0
117
0
[ a u t D , autoD] c a u t D
Mor.eover, 0
( a ) For a l l L c a u t D , c c E o a n d x c E , it holds L c c E O a n d
Q L C ( x , x ) = LQ ( x , x ) - ~ cQ( L x x) 0
( b ) For a l l c 1 , c 2 e E 0 , We h a v e Q
( . , c 2 ) + Q c( c l , . ) c a u t D 2
,1
( c ) For xcE a n d c 1 ,c2eE0 t h e following e q u a l i t y h o l d s
[Q,
Q, 1
( x , x ) , X I = Qc [Qc ( X , x ) , X I . 2
2
1
0 ( d ) For a l l FcAut D , c c E O a n d XEIE, we h a v e FccEO a n d QFc ( x , x ) = FQc ( F - l x ,
F-lx)
.
0
Proof: L e t L , L 2 c a u t D be 9 i v e n ; t h e n
so t h a t Banach-Lie
0
[aut D,
1
0 a u t o D ] c a u t D.
[L 1 , L 2 ]
is l i n e a r
I n p a r t i c u l a r , autoD i s a
s u b a l g e b r a of a u t D .
0 L e t L s a u t D a n d AeautOD b e a r b i t r a r i l y g i v e n ; t h e n w e h a v e
A ( x ) = c - Q c ( x , x ) , X C D , where c s E O a n d Q c i s a s y m m e t r i c b i l i n e a r mapping ExE-tE. An e a s y c o m p u t a t i o n g i v e s
S i n c e t h e mapping x+2Qc(Lx,x)-L[Qc~x,x))is a n e l e m e n t of P 2 , i t $0
2 ZOWS
[L,A] cautOD. B e s i d e s L c =
[L ,A] O s E o
and
which p r o v e s ( a ) . L e t A 1 , A 2 c a u t D b e g i v e n and assume t h a t 0
where c l , c 2 e E
0
follows t h a t
,
and Qc l
e L ( E x E 1 E ) a r e symmetric.
Q C2
It
7
CHAPTER
118
S i n c e t h e mapping x+QC ( x , Q c ( x , x ) 1 -Q, 1
2
1
(Qc ( X , X ) , X I 2
,
XED,
is
a n element of P 3 , by lemma 7 . 4 , it m u s t be i d e n t i c a l l y n u l l . I C ~ +Qc ) ( c l , . ) e a u t 0 D. T h i s p r o v e s ( b ) and
Thus [A1 ,A2] = Q c ( . (c)
.
1
2 0
F i n a l l y , l e t FcAut D and acEO be g i v e n . Then w e have F = expL 0
f o r XCD, Fx i s t h e v a l u e a t t = 1 of t h e
f o r some L s a u t D , i . e . ,
s o l u t i o n of t h e i n i t i a l v a l u e problem
i n t h e space E . By ( a ) w e have L ( E O ) C E o ; t h e r e f o r e , i f t h e i n i t i a l v a l u e i s some C c E o f l D , ( 7 . 2 ) can be i n t e r p r e t e d a s an i n i t i a l v a l u e problem i n E S i n c e E i s complete and t h e 0' 0 s o l u t i o n of ( 7 . 2 ) i s u n i q u e , w e have Fc= (expL)ccE f o r a l l 0 ccEOfl D. A s F is l i n e a r , FceEO for a l l c s E o . Moreover, F#[c-Q, ( x , x ) ] = F[c-Q,
( F - l x , F - ' x ) ] = Fc-FQ, (F-'x,F-'x)
f o r a l l xeE, so t h a t
Q,,
( x , x ) = FQ,
(F-'X,F-'~)
which shows ( e l .
#J 7.10.
COROLLARY.
T h e s u b s p a c e E o is i n v a r i a n t u n d e r t h e
g r o u p A u t 0D. In p a r t i c u l a r , E
0
is a c o m p l e x s u b s p a c e of E . T h e 0
m a p p i n g c+Q is c o n j u g a t e l i n e a r a n d w e h a v e Q , ( c , . ) e a u t D f o r C
a l l ceEo. 0
P r o o f : W e have F=: i d cAut D D
because D i s c i r c u l a r .
Applying (e) we g e t Q i c = -iQc. Then a p p l y (b) w i t h
BOUNDED CIRCULAR DOMAINS
7.11.LEMMA
.
We h a v e E o = t X ( c ) ; c c E O
119
I
XcautDl.
Proof: Let u s set ( a u t0 D ) E = : { L ( c ) ; c c E o l L s a u t 0 D)
I
( a u t o D ) E o = { A ( c ) ; ccEO,AcautoD}
0
F i r s t w e show t h a t (aut$)EocEo. I n d e e d , l e t c c E O be g i v e n and
t a k e any Lcaut 0D . Then A = : c-QccautD so t h a t
a t 0 w e g e t L ( c ) c E O and t h e r e f o r e
By e v a l u a t i n g [L,A] ( a u t0D ) E C E 0
[L,A]cautD. But
0
Now w e show t h a t ( a u t o D ) E o c E o . I n d e e d , l e t c c E O be g i v e n . Then A= c-Q cautD; s i n c e ZsautD, w e have A 2# ( Z ) . = [A,[A,Z]]cautD.
[A, [A,Z]]x=
4iQ (x,c)
But
xcD
S i n c e t h e mapping x + 4 i Q c ( x , c ) i s l i n e a r , w e must have 0 [A, [A,Z]]caut D and by t h e p r e v i o u s s t e p w e g e t Qc ( x , c )cEO
(7.3)
f o r a l l c e E O and xcE t h e symmetry of Q,
0'
I n t e r c h a n g i n g t h e r o l e s of x and c , by
we g e t Qx(c,x)cE0
(7.4)
f o r a l l x,ccEO. As c+Q,
is linear,
Thus, from ( 7 . 3 ) and (7.4) w e d e r i v e Q C ( x + c , x ) c0 ~ f o r a l l x , c e E O . Then, from QC(X+C,X)=
Q C t x , x ) + Q ( c , x ) e E0
and ( 7 . 3 ) we o b t a i n Q c ( x , x ) c E o f o r a l l xcEol SO t h a t
120
7
CHAPTER
( a u t o D )Eo c E O . by p r o p o s i t i o n 7 . 6
NOW,
( a u t o )E g = : { X ( c ) ; ccEO
i t follows
, X c a u t D ] c ( a u t0 D)E o + ( a u t o D )E O c E o .
The c o n v e r s e i n c l u s i o n i s o b v i o u s .
52.-
The c-o.n-n-~~ e c t e d component of t h e i d e n t i t y i n- AutD. -
--~
L e t cT b e a n y H a u s d o r f f t o p o l o g i c a l g r o u p a n d d e n o t e by W a n
o p e n s y m m e t r i c c o n n e c t e d n e i g h b o u r h o o d of t h e i d e n t i t y e l e m e n t e i n J . F o r nCN w e s e t
From t h e g e n e r a l t h e o r y of t o p o l o g i c a l g r o u p s , it i s known that
lY= :
U
W"
nEN
i s a c l o s e d n o r m a l s u b g r o u p of J a n d t h a t H i s t h e c o n n e c t e d
component of e i n J ; t h u s , H d o e s n o t d e p e n d o n t h e c h o i c e o f W.
S i n c e t h e mapping e x p i s a l o c a l homeomorphism a t 0 , i n
p a r t i c u l a r we get. 7.12.
LEMMA. L e t M be t h e n e i g h b o u r h o o d of 0 in a u t D
g i v e n b y Zernma 6 . 5 6 .
Then
is t h e c o n n e c t e d c o m p o n e n t o f i d D i n ( A u t D , T a ) . M o r e o v e r , Aut D i s a c l o s e d norvnul szibgroup of b o t h (AutD,T ) a n d 0 a (AutD,Y). 7.13.
DEFINITION. L e t S and
autD r e s p e c t i v e l y .
G
be s u b s e t s of D and
We d e f i n e t h e " o r b i t " of S b y
I t i s immediate t o check t h a t i f
G
G
by meuns o f
i s a s u b g r o u p of AutD, t h e n
121
BOUNDED CIRCULAR DOMAINS
w e have
GG ( S ) =
G(S).
L e t E o be t h e subspace o f E g i v e n by d e f i n i t i o n 7 . 5 . C l e a r l y E
0
n D i s a bounded open c i r c u l a r s u b s e t of t h e s p a c e E
however, E o n D
-
0'
may f a i l t o be connected
LEMMA. I f D i s a bounded c i r c u l a r domain of E,
7.14.
t h e n ue have
(AutoD) ( E o n D ) c E o f l D .
P r o o f : L e t gcAut D be g i v e n . By lemma 7 . 1 2 w e have 0
g= ( e x p A l ) o .
.O
(expA ) f o r some AkcM,
k = 1 , 2 , . . , n . Thus, i t
s u f f i c e s t o show t h a t
f o r a l l AcM. NOW, l e t AeM and xeEOn D be g i v e n . L e t us c o n s i d e r t h e i n i t i a l
v a l u e problem
(7.5)
i n t h e space E . I t s s o l u t i o n y ( t ) = (exptA)x s a t i s f i e s y ( t ) e D for a l l
tm.
S i n c e xcEO and by p r o p o s i t i o n 7 . 6 Eo i s c o m p l e t e ,
t h e i n i t i a l v a l u e problem ( 7 . 5 ) h a s a s o l u t i o n i n E o , t o o . A s t h e s o l u t i o n i s u n i q u e , w e have (exptA)xcEo f o r a l l t d R ; t h u s , (expA) ( E n~ D ) c E~ n D .
# 7.15. LEMMA. L e t D be a b o u n d e d c i r c u l a r domain of E .
T h e n , i f E n D i s c o n n e c t e d (in p a r t i c u l a r , i f D i s b a l a n c e d ) , 0
we h a v e
Proof: A s E
0
nD
i s assumed t o be c o n n e c t e d , E o n D - i s a
bounded c i r c u l a r domain o f t h e s p a c e E o and it makes s e n s e t o
122
7
CHAPTER
speak
.
of t h e group A u t ( E o n D)
L e t qsAutOD be g i v e n . Then g i s a biholomorphic b i j e c t i o n of D
o n t o D; t h e r e f o r e q
i s a biholomorphic b i j e c t i o n o f
lEon D E o n D o n t o i t s image g ( E o il D)
g(E0n
(7.6)
. From
lemma 7 . 1 4 ,
DICE^^
D
Thus, a p p l y i n g gT1eAut0D t o ( .6) and lemma 7 . 1 4 a g a i n , w e obtain
~~n
E o n Dcg-'
c~-' ( E o n D) = Eo
so t h a t
n D.
D)C
~ , nD
Then g ( E 0 n D ) = E o n D and
.
eAut(E,, fl D ) fl D Observe t h a t , i f D i s b a l a n c e d , t h e n E 'lEO
0
nD
i s balanced t o o ;
hence i t i s connected and t h e lemma h o l d s .
#
7.16. LEMMA. L e t D be a boun ded c i r c u l a r domain of E .
T h e n , if Eo n D is c o n n e c t e d ( i n p a r t i c u l a r , if D is b a l a n c e d ) , the set
( A u t o D ) O i s a n e i g h b o u r h o o d of 0 i n t h e s p a c e E o .
P r o o f : Consider t h e mapping
0:
Eo+aut D g i v e n b y ~ 4 c - Q ~ . 0
i s a neiqhbourhood of 0 i n autD, M n autDo i s a neighbourhood of 0 i n a u t D and, by p r o p o s i t i o n 7 . 6 , Since M
U=:
+-'Mn
0
autoD i s a neighbourhood of 0 i n E o . NOW, c o n s i d e r
t h e composite J of t h e mappings C+C-Q
-t
exp (c-qC)
+
"
By lemma 6.32 w e have J ( c ) = C
1
[exp ( c - ~ , )] o (i:idD)O f o r ceU, where w e
n=O
have p u t A c = :
c-Qc. Moreover, we have ( i : i d D ) = 0 f o r a l l n f l
-1 and (Acid,)O= c
,
so t h a t J ( c ) = c f o r ceU and J f U ) is a neighbourhood of 0 . Thus, by lemma 7 . 1 2 . OeU= J ( U ) =
(expAc)O; csU}c{expA)O;
a n d , by lemmas 7.15 and 7 . 1 4 ,
A e M I c (AutoD)0
BOUNDED CIRCULAR DOMAINS
123
whence t h e r e s u l t f o l l o w s .
# 7.17.
PROPOSITION. L e t D b e a ( n o n n e c e s s a r i z y c i r c u Z a r l
b o u n d e d d o m a i n i n E a n d l e t J b e a s u b g r o u p o f AutD s u c h that, for some XGD, t h e orbit J ( x ) o f x b y J i s a n e i g h b o u r h o o d of x. T h e n J ( x ) = D a n d t h e s u b g r o u p J acts t r a n s i t i v e Z y o n D. P r o o f : F i r s t w e show t h a t J ( x ) i s a n open s u b s e t of D . L e t y s J ( x ) be g i v e n . Then w e have g ( x ) = y f o r some g c J . A s J ( x )
i s assumed t o be a neiqhbourhood of x , t h e r e e x i s t s some open
s u b s e t W c D such t h a t xcWCJ(x) and, a p p l y i n g g w e o b t a i n
S i n c e q i s a homeomorphism, g(W) i s open; t h u s , by t h e a r b i t r a r i n e s s of y , J ( x ) i s open. Now w e show t h a t J ( x ) k a c l o s e d s u b s e t of D. L e t ycD b e any
-
p o i n t of t h e closure J ( x ) of J ( x ) i n D . Then, t h e r e i s a sequence ( y n )n C NJC ( x ) s u c h t h a t y,*y.
T h e r e f o r e , w e have
f o r some q n CJ and ndN. L e t dD be C a r a t h e o d o r y d i s t a n c e i n D . S i n c e w e have assumed t h a t J ( x ) i s a
y,= g,(x)
neighbourhood o f x and, by c o r o l l a r y 3 . 1 4 ,
d,
i n d u c e s t h e norm
t o p o l o g y on D ,
f o r some E > O . Moreover, a s y,+y
it f o l l o w s t h a t
f o r a l l n m 0 . Since dD is J - i n v a r i a n t , dD(x,q,ly)i'
so t h a t , by ( 7 . 7 )
,
from ( 7 . 8 ) w e o b t a i n and t h e r e f o r e
0
J ( x ) = J ( x ) . Thus J ( x ) i s c l o s e d i n D .
ycg, 0
S i n c e D i s c o n n e c t e d , w e have J ( x ) = D and D i s homogeneous
CHAPTER
124
7
under the action of J .
# 7.18. COROLLARY. L e t D b e a b o u n d e d c i r c u l . a r d o m a i n of .if E o n D i s c o n n e c t e d ( i n p a r t i c u l a r , if D i s baZancedJ ~e h a v e (AutoD)O= Eon D. E.
Then,
Proof: Consider the Banach space E the bounded domain 0' 7.15, Aut D is a 0 subgroup of Aut(Eo n D) ; by lemma 7.16 (AutoD)0 is a neighbourhood of 0 in E o n D. Then, proposition 7.17 gives the result. E o n D and the point OcEOn D. By lemma
ff 5 3 . - Study of the orbit origin. ___ (AutD)O of the-___-
In order to make a deeper study of the orbit (AutD)O of the origin we recall some properties of analytic sets. 7.19. DEFINITION. A s u b s e t R of domain D i s s a i d t o b e i n D if, f o r e v e r y p o i n t xcD, t h e r e i s a n e i g h b o u r h o o d U of x a n d t h e r e is a s e t F cHol(U,!l) of h o l o m o r p h i c f u n c t i o n s f: U+E s u c h t h a t we h a v e
complex-analytic
Roughly speaking, a subset D of D is analytic in D if, and only if, R can be locally represented a s the "joint kernel" of a set of holomorphic functions. For a study of the elementary properties of analytic sets see for example 1 4 5 1 p. 50. DEFINITION. L e t D b e a b o u n d e d c i r c u l a r d o m a i n in E. We d e n o t e b y R t h e s u b s e t o f D c o n s i s t i n g of t h e p o i n t s x c D for w h i c h (AutoD)x is a c o m p l e x - a n a l y t i c c l o s e d s e t i n D. 1.20.
LEMMA. L e t D b e a b o u n d e d c i r c u l a r d o m a i n i n E . T h e n , i f Eon D i s c o n n e t e d ( t h u s , i n p a r t i c u l a r , when D i s b a l a n c e d ) , u e h a v e Ll#$ a n d (AutD)R=R. 7.21.
BOUNDED CIRCULAR DOMAINS
125
P r o o f : S i n c e E n D i s assumed t o be c o n n e c t e d , by 0
c o r o l l a r y 7.18 w e have (AutoD)O=E
0
fl D .
Since Eo i s a c l o s e d
complex subspace of E l by t h e Hanh-Banach E
s e p a r a t i o n theorem,
f l D i s a complex-analytic c l o s e d set i n D;
0 and R f $ .
t h u s se have O c R
Let x c ( a u t D ) R ; t h e n t h e r e a r e ycR and gcAutD such t h a t gy= x . S i n c e by lemma 7 . 1 2 AutOD i s a normal subgroup of AutD, w e have ( a u t o D ) x = (AutoD)gy= g ( a u t o D ) y . B u t (AutoD)y i s a complexa n a l y t i c c l o s e d set i n D and t h e s e p r o p e r t i e s a r e p r e s e r v e d by gsAutD; t h u s , xcR and ( A u t D ) R c R . The o p o s i t e i n c l u s i o n i s obvious. 7.22.
# LEMMA. L e t D b e a b o u n d e d c i r c u l a r d o m a i n f o r
w h i c h E fl D i s c o n n e c t e d . 0
T h e n , f o r a l l xcll, we h a v e
P r o o f : I f x=O, t h e n t h e a s s e r t i o n i s t r i v i a l . L e t xcR be g i v e n w i t h x#O and p u t V = :
i
{Act; I A / < I /x / I - 1. S i n c e (AutoD)x
i s a complex-analytic c l o s e d s e t i n D ,
i s a complex-analytic c i r c u l a r group f
t
c l o s e d s u b s e t of V . A s D i s c i r c u l a r , t h e
(y)=: e
it
y , tCR, ysD, i s c o n t a i n e d i n AutoD;
therefore
e
it
xee
it
(AutoD)x= (AutOD)x
f o r a l l t d R , so t h a t { e i t ; t d R } c W .
S i n c e W i s an a n a l y t i c
i s connected (1431 p r o p o s i t i o n 1 page 5 0 ) . Then t h e u n i t d i s c o f t i s c o n t a i n e d i n W , whence t h e r e s u l t s u b s e t of V , V \ W follows.
# 7.23. PROPOSITION. L e t D b e a b o u n d e d c i r c u l a r d o m a i n i n E.
T h e n , if E o n D is c o n n e c t e d ( t h u s , i n p a r t i c u l a r , if D is
b a z a n c e d l , we h a v e
CHAPTER
126
7
(AutD)O= (AutoD)O= R = E fl D 0
Proof: First we show that Rc(AutoD)O. Let xcR be given. By lemma 7 . 2 2 we have Oe(AutO)x; thus, gx= 0 for some gsAut0 D. -1 -1 Then we have x= g Ocg (AutoD)O= (AutO)O and Rc(AutoD)O. Now we show that (AutD)ncQ. Obviously O c R ; by lemma 7.21, R is invariant under AutD, so that applying AutD to the relation OeR we get (AutD)0 c (AutD)R c R.
Thus , we have R c (AutoD)0 C (AutD)O c R and corollary 7 . 1 8 completes the p r o o f .
#
COROLLARY. L e t D b e a bounded c i r c u l a r dom ai n i n E. T h e n , i f E 0 fl D i s c o n n e c t e d ( i n p a r t i c u l a r , i f D i s balanced), t h e orbit (AutD)O is b a l a n c e d . 7.24.
Proof: Let xe(AutD)O and ACE, I A l S l , he given. B y proposition 7 . 2 3 we have xeR; then by lemma 7 . 2 2 we have hxc (AutoD)X C(AutoD)(AutD)O = (AutD)0 .
#
.
0
54 .- The decomposition AutD= (Auk D) (AutoD) I -
7.25. THEOREM. Let D c E and 8=$ be bounded c i r c u l a r d o ma in s i n t h e Banach s p a c e s E and 2 r e s p e c t i v e l y , and assum e % % t h a t f: D+ D is an a n a l y t i c i s o m o r p h i s m of D o n t o D s u c h t h a t f(O)= 0 . T h e n , t h e r e is a s u r j e c t i v e c o n t i n u o u s l i n e a r map FcL(E,2) s u c h t h a t FID= f.
Gt:
' L ' L
Proof: For tdR we define gt: E+E and E+ E by means t 'L t %t of g (x)=: eitx and g ( y ) = : city. Obvioysly g eAutD, GtcAutD 'L and, as f : D+D is a surjective isomorphism, the mapping h=: g -t f-1'Lt g f satisfies heAutD and h(O)= 0. From the chain rule 'Lt % and the fact that we have Lgt= g L for all LeL(E,E) , we derive -t ( 1
hA1= ( g
lo
(f
-1
( 1 'Lt ( 1 -
lo
(g
lo - g
-t
-1
(f
(1 (1 t
lo
f
0
= id
so that, by Cartan's uniqueness theorem, we get h= idD and
127
BOUNDED CIRCULAR DOMAINS
e i t f ( x ) = f ( ei t x ) for a l l
ttB
and xcD. By developi,ng
both
Gtf and
fgt i n t o t h e i r
Taylor series a t 0 we o b t a i n
s i n c e w e have assumed t h a t f ( O ; ) = 0 . Thus, by t h e u n i q u e n e s s of t h e T a y l o r s e r i e s , l e ( n - l ) i t - l ] f o( n ( x , . . , x ) = 0
f o r t d R , 1112, and xeD; t h e r e f o r e f i n = 0 . f ( x )= f ive .
(1
0
(XI
f o r xcD and f = F
It f o l l o w s t h a t (1
ID
'L
where F=: f o c L ( E , E ) i s s u r j e c t -
# 7 . 2 6 . COROLLARY. L e t D a n d
E and
8
8
b e t h e o p e n u n i t b a l l s of
'L
and assume t h a t f : D+D i s a h o l o m o r p h i c map of I) o n t o
'L
D s u c h t h a t f ( O ) = 0 . Then f i s an i s o m o r p h i s m if and o n l y i f we
h a ve f = F
f o r some s u r j e c t i v e l i n e a r i s o m e t r y F : E+8. ID
P r o o f : Assume t h a t f i s a n isomorphism. By theorem 7 . 2 5
w e have f = F
'L
f o r some s u r j e c t i v e F e L ( E , 2 ) . S i n c e f ( D ) = F(D)=D, ID
F i s an i s o m e t r y . The c o n v e r s e i s c l e a r .
# 7 ; 2 7 . DEFINITION. L e t D be a bounded c i r c u l a r domain i n E. We d e f i n e t h e " i s o t r o p y s u b g r o u p " o f t h e o r i g i n , I s o t D, by means of
Obviously I s o t D is a c l o s e d subgroup of A u t D for t h e t o p o l o g i e s T and T a . Moreover, from c o r o l l a r y 7 . 2 6 w e immediately o b t a i n 0
t h a t I s o t D = Aut D. The c i r c u l a r subgroup Z s a t i s f i e s
Z C (Aut'D)
n
(AutoD).
CHAPTER
128
7
7.28. THEOREM. L e t D b e a b o u n d e d circuZar9 domain in E . T h e n , if E IlD is c o n n e c t e d ( i n p a r t i c u l a r , if D i s b a Z a n c e d i , 0 ue h a v e
AutD= (AutOD) (AutoD)= (AutoD)(Aut0D) Proof: Let feAutD be given. From proposition 7.23 we
derive f(O)e(AutD)O= ( A u t o D ) O ; thus we have f(O)= g ( 0 ) for some gsAutoD. Then h=: g-lfcAutD and h(O)= g-'f(O)= 0, whence by theorem 7.25 we obtain h= F for some surjective F a L ( E , E ) , so 0 ID that heAut D. Thus we have f = gh with gaAutOD and hsAut0D. The other equality comes from the fact that AutOD is a normal subgroup of AutD. Remark that the factorization f= g.h, with g and h in the above conditions, is not unique as the circular subgroup satisfies Z c (AutoD)I7 (AutOD)
.
§5.-
ff
Holornorphic and isometric linear equivalence of~Banach___ spaces
.
'L
Let E and 3 be complex Banach spaces and D, D their respective open unit balls. 7.29. DEFINITION. (a) We s a y t h a t E a n d 2 a r e " h o Z o m o r p h i c a Z Z y e q u i v a Z e n t " if t h e r e is some s u r j e c t i v e a n a l y t r ?i ic i s o m o r p h i s m f: D+D. ?i
(b) We s a y t h a t E a n d E a r e " i s o m e t r i c a Z Z y Z,LnearZy e q u i v a l e n t " i f t h e r e e x i s t s some s u r j e c t i v e l i n e a r i s o m e t r y L:
E+$.
7.30. THEOREM. E a n d 2 a r e isomorphically e q u i v a l e n t if and onZy i f t h e y i s o m e t r i c a Z Z y Z i n e a r l y e q u i v a l e n t . Proof: The "if part" is obvious. Thus, let f: "DD be any surjective holomorphic isomorphism. Then, the mapping PI, f#: AutD + AutD given by g-tf-lgf is a surjective isomorphism o f these groups, so that we have Aut8= f-l(AutD)€ and, therefore,
BOUNDED CIRCULAR DOMAINS
,
f (Aut8)= (AutD)f
129
(AutD)= (Aut8)f
f
-'
Let us denote by Eo and 80 the Banach spaces associated with E and 2 by definition 7.5 , so that
8
(AutD)O= E0 n %
,
(AutD)O= E o n D
(7.9)
by proposition 7.23. We claim that (7.10)
2.
(AutD)O = f-' (AutD)0
(AutD)O = f (Aut8)0, 'L
Indeed, from f-'(AutD)f= AutD we get that [f-1 (AutD)f]O=
'L
%
(AutD)O = E o
'
L
nD
'L
is a complex-analytic closed set in D. Let us put < = : f ( 0 ) ; % then f-l(AutD)< is a complex analytic closed set in D and, applying f we obtain that (AutD)< is a complex analytic closed subset of D. Therefore, by proposition 7.23 we have < c E0 n D. Then, as the orbit E o n D of 0 is AutD-invariant,
E" 0 n 8= (nut&)O = =
[f-' (AutD)f] O =
f-l (AutD)CCf-'(AutD) ( E o
n D) c f - l
( E o n D)
so that, applying f we obtain
In a similar manner we get E~ I
t
D c f (80n
8)
.
%
Thus we have E o n D= f ( E o n D) , which is equivalent to (7.10) 'L From the second of these formulas we obtain f - (0)E: (AutD)0 ; 'L % 'L 'L thus we have f-'(O)= q ( 0 ) for some gcAutD. Then h=: fg is an 'L
analytic isomorphism of D onto D with h(0) = fg(0)= 0 the result follows by corollary 7.26.
whence i+
CHAPTER
130
7
The group ~. __ of surjective linear isometries of a Banach space.
56.-
-
Let E be a complex Banach space with unit ball D=: B ( E ) . The group Aut 0 D of all surjective linear isometries of E turns out to be a subgroup of both AutD and GL(L(E)) I the linear group 0 of E. We obtain some properties of Aut D by looking at it a s a subgroup of these two groups. h
Let autD= autUDOaut0 D be the decomposition of the Lie algebra autD given by proposition 7 . 6 . For aeGL(L (El , let a# be the adjoint of CL (cf. definition 4 . 2 6 ) . 7.31.
PROPOSITION. Assume t h a t D Cs h o m o g e n e o u s . Then 0
we have t h e foZZouing c h a r a c t e r i z a t i o n of Aut D a s a s u b g r o u p
of GL(L (El ) :
Proof: Let asGL(L(E)) be such that acAutOD. It is an immediate consequence of the proof of proposition 7 . 9 (d) that aut D is a#-invariant(even if D is not homogeneous). 0
In order to prove the converse statement, we show first that the relation a # (autoD)c autOD
implies a# (AutoD)c AutOD
Indeed, let feAutOD be given; by Lemma 7 . 1 2 we can find Ak eautoD, k= lr2r...,nr such that
Therefore, by proposition 5 . 1 3 we have a f= afcl-'= It
[a(expAl)a-']0.
.O
[a(expAn)a-']=
= a (expA1)a ..oa (expAn)= exp(a#Al),..,exp # #
(a A )
a n
BOUNDED CIRCULAR DOMAINS
131
From the assumptuion a#(autoD)cautOD we get a#AksautoD for k = 1,2,..,n so that, again by lemma 7.12, exp(aA )eAutoD and, # k finally a#f= exp(a#A1)
0 .
.oexp(a#Ao)eAut0D.
NOW, let acGL(L(E)) be such that a# (autoD)C aut D. Since D is 0 assumed to be homogeneous, by proposition 7.23 it follows that
so that cx (D)= [a(Aut D)1 0 c (AutoD)O = D 0
A similar argument with a-'cGL(L(E)) gives a(D)= D. Thus, a is a surjective linear isometry, i.e., mcAut 0 D. 79 7.32'. COROLLARY. If t h e u n i t baZZ D o f E i s h o m o g e n e o u s , 0 t h e n Aut D i s a r e a l a l g e b r a i c s u b g r o u p of d e g r e e 2 of GL(L(E)) In p a r t i c u l a r , Aut 0 D i s a B a n a c h - L i e g r o u p f o r t h e t o p o l o g y of u n i f o r m c o n v e r g e n c e on D.
.
Let AcautOD be given. By proposition 7.6 A(x) = c-Q, (x,x)I
xeD
for some csE. Then a#A has the expression (cf. definition 4.26) (a#A)x= a(c)-aQ ( C X - ~ X a-lx) , , xcD Thus, again by proposition 7.31, a#A belongs to autoD only if. mQ (a-'xp-'x) = Qa(cl(x,x)
VxcD
if, and
132
CHAPTER
7
which i s e q u i v a l e n t t o
NOW,
f o r f i x e d CEE and xeD, t h e mappings L ( E ) X L ( E ) + E g i v e n
re s p e c t i v e l y by
a r e o b v i o u s l y c o n t i n u o u s homogeneous polynomials of d e g r e e 2 and 1 , and ( * ) can be r e f o r m u l a t e d as
w i t h C C E , X E D and acGL(L(E)). T h i s a s e t of e q u a t i o n s d e f i n i n g 0
A u t D a s a r e a l a l g e b r a i c subgroup of d e g r e e 2 of GL(L(E)).
Then, theorem 6 . 4 0 c o m p l e t e s t h e p r o o f .
# 7.33. homogeneous.
EXERCISE. Assume t h a t t h e u n i t b a l l D of E i s 0
Show t h a t , on t h e group Aut D , t h e a n a l y t i c
topology Ta, t h e t o p o l o g y of l o c a l uniform convergence 9' and t h e topology TU of uniform convergence o v e r D c o i n c i d e . 57.-
Boundary behaviour and e x t e n s i o n theorems.
W e r e c a l l t h a t i f D i s a bounded c i r c u l a r domain, t h e n any
AeautD
a d m i t s a unique r e p r e s e n t a t i o n of t h e form
where ceE
0
, LeL(E)
and Q c : E
+
E i s a c o n t i n u o u s symmetric
b i l i n e a r mapping. I n p a r t i c u l a r , A i s and e n t i r e mapping. 7.34.
DEFINITION.
Let AsautD b e g i u e n ; t h e n ue seL
T h u s t h e numbers p and C d e p e n d o n t h e d o m a i n D a n d on t h e
v e c t o r f i e l d AcautD. For any f i x e d EcE and AcautD, w e c a n c o n s i d e r t h e i n i t i a l v a l u e
BOUNDED CIRCULAR DOMAINS
133
Problem d = A[y(t)], 2
(7.11)
y(O)=
5
+5
whose maximal s o l u t i o n $ ( t ) i s d e f i n e d i n a domain dom
5
IR. O f c o u r s e , i f 5eD t h e n w e have
+
5
of
- E. 5-
( t )= ( e x p t A j 5 and dom+
7.35. LEMMA. L e t AsautD a n d SeE b e g i v e n . T h e n : (a1 dom+5=(-c-110g[l + d i s t ( S, O ) -l]
,
-'I)
C-llog [I + d i s t ( 5 , ~ )
( b ) F o r a n y xeD and a n y tdR w i t h I t l < G - l l o g ( l + l l C-x/l - I ) we h a v e
/I
+5(t)-+x 1 1 (Y and o n t y if G"XG2G"YG.
8.19. THEOREM. F o r e a c h AcB, t h e m a p p i n g
is a b i h o l o m o r p h i c autornorphisrn of B a n d we h a v e MA'=
M-A
Proof: Consider the power series of MA M I (xi= (x+A) ? (-A*x)"= A + A
n=O
m
c
n=O
u
(-I)~(I-AA*)xA*xA* .A*X ( 2 n + l l terms
Similarly
.
if
158
CHAPTER
m
M;(x)=
A+
c
n=O
(-I,)"xA*xA*
8
...
L--I
A*X(I-A*A)
(2n+l) t e r m s
Therefore, MA (X) ( 1 -A*A) = ( 1 -AA*)M i (X)
X€D
that is,
MA (X)= (1-AA*) -'MA
(X) ( 1-A*A) '=
( 1 -M*)'Mi ( X ) ( 1 -A*A)
-'
it immediately follows that M A ( X ) * = MA*(X*) holds f o r all XeB. Now we can show that M A ( D ) C E , i . e .
Thusl by applying the previous lemma with G= : ( 1 -A*A)
(8.17) Since
-'
( 1 +A*X) I (8.16) is equivalent to
(x*+A*) ( I - A A * ) - ' ( X + A I S
(I+x*A) (I-AA*)-~ (I+A*x)
AUTOMORPHISMS OF CLASSICAL BANACH SPACES
X*A ( 1 -A*A)-
'-x* 1 -AA * (
-1
A= o=
'
( 1-A*A) - A*X-A* ( 7 -AA* ) -
159
'x
as it can be seen from the corresponding power series expansions, the difference between the right hand side and the left hand side in (8.17) equals l-X*X which is a positive operator whenever / I X 11 ( 1 . Thus (8.16) is established. Clearly, the Potapov-MBbius transformation M A is holomorphic. So it remains to prove that M A ~ M - A =id, and it suffices to see that MA[M-A(Y)]= Y for all Y in some neighbourhood of -A. Now, the relation M (X)= Y is equivalent to A
that is ,
'
Mi (Y)= Ml [ ( 1 -AA* ) 'Y
I/ Y' (1
whenever
L
(8.20)
LeautOB( E ) < = > L is a J*-derivation on E 0
Proof of (8.19): Suppose that LcAut B ( E proposition 7.9(d) we see that
Thus
(LA)(LA)* (LA)= L (AA*A) for all ACE
)
. From
.
Conversely, suppose that L is a J*-automorphism. Then L( E ) = E . Moreover, for XeL(H) with X= JlXl, we have XX*X= J I X I ; therefore
so that
holds for all A c E . Thus 11 L 11 G I . But L-l is also a J*-automorphism of E and, by the open mapping theorem 1 L-leL( E ) Thus / I L- 11 G I and L is a surjective linear isometry of E .
.
.
Proof of (8.20) Suppose that Leaut0B( E ) , and define 0 G =: exptL for tdR. Then GtcAut B( E ) and s o , for each fixed A C E , we have t
AUTOMORPHISMS OF CLASSICAL BANACH SPACES
-
=
( -
=
(LA) A*A+A (LA) *A+AA* ( L A )
dt
lo
G~A)A*A+A(
dt
lo
G ~ A ) * A + A*A(
dt
lo
169
t G A)=
Conversely, let L be a J*-derivation on E and set again t 0 G =: exptL for tdR. We must show that, for tdR, GtcAut B( E ) , or equivalently, that Gt is a J*-automorphism of E For fixed A c E , we have
.
d dt
) G - (~G ~ A , ( G ~ A *,
G ~ A =) - L G ~ ( G ~ A , ( G ~ A *, ) G ~ A +)
*,
+ G - ~( L G ~ A , ( G ~ A )
) + G - ~( G ~ A , ( G ~ A *,
) G ~ A +) G - ~( G ~ A , ( L G ~ A *,
G ~ A +)
LG t A ) =
= - G - t ~ ( G ~ A , ( G ~ A *, )
G ~ A +) G - ~ L( G ~ A , ( G ~ A *) , G ~ A =)
o
for all A c E and tdR. Thus G -(~ G ~ A, ) ( G ~ A *, ) G ~ A =) G O ( G O A , 0
whence GtcAut B( E )
(GOA)
*,
GOA) = (A,A* , A )
. iy
8.31. EXERCISE. Let E l and E 2 be J*-algebras on H and suppose that L c L ( E l l E 2 ) is a bijective mapping. Then L is isometric if and only if it is a J*-isomorphism.
§6.-
Minimal partial isometries in Cartan factors.
Recall that an operator JcL(H) is called a p a r - t i a i ! isometry if, for some subspace H of H, the restriction J is an isometry 0
and J
1
= 0.
IHO
It is a well known consequence of the existence
IHo
of the polar decomposition that
CHAPTER
170
(8.21)
8
A i s a partial isometry < = > AA*A= A,
AeL(H)
From (8.21) we can easily obtain the following 8.32. LEMMA. LeL
h e a J * - a L g e b r a o n H. T h e n a n y
E
linear a u l o r n o r ~ p h i s mo f B ( E ) p r e s e r o e s t h e s e t o f partial i s o t n c t r i e s of
F
.
8.33. DEFINITION. Let.
E
b e n J * - a Z y e b r a and asrjtlme i h a t
c b' a r e p a r t ' i u l isometrics. L e t U S s e t Hk =: ixcH; I/ JkxII = Ilx 11 f u r k = 1,2. We s a y t h a t J 1 is a p a r a t uf J2 if H l c H 2 a n d J = J hie w r i t e
J ,J
1
2
21H1
J1<Jz
if J 1 is p a r t of J
lIH1
.
2'
Clearly, the relation < is a partial ordering on the set of non-zero partial isometries of E . The minimal elements with respect to are called m i r i i m a Z partial i s o m e t r i e s of E
.
We recall that a net ( A , ), in L ( H ) is said to be convergent I JCJ to A with respect to the weak operator topology if we have llm = for all x,yeH. We write Tw for the weak 3 1 operator topology on L(H). 8.34. THEOREM. If t h e J * - a Z g e D r a E is c l o s e d i n L(H) with r e s p e c t to T t h e n E i s t h e T W - c l o s u r e of t h e linear W' h u l l . of p( E ) and mp( E
)=
{AcE ;
AA*A=A+O,
A E*A= QAI
Proof: Let Aet' be arbitrarily fixed and suppose that
where A+P(A) is the spectral measure of l A / , is the polar decomposition of A (cf. I13 1 )
.
Consider the sequence Y =: n Y,+~= A Y ~ A,
n= 0,1,.
.
Since
AUTOMORPHISMS O F CLASSICAL BANACH SPACES
171
h o l d s f o r a l l ndN. T h e r e f o r e , i f t h e sequence of odd polyno-
mials ( p n I n m
i s bounded on [0,
p o i n t w i s e on LO,
1 1 A /I ]
11 A I / ]
and p,
converges
t o some f u n c t i o n J i , w e have
I n p a r t i c u l a r , JP[a,P]cE
f o r e a c h a,BdR
w e l l known t h a t each o p e r a t o r JP [a,P J
.
.
+
I
a,Pm,
However, it i s is a partial
i s o m e t r y , and t h a t T -
~i Bore1 function}= SpanCP[a,B]; a,BclR+}
W
T h e r e f o r e A b e l o n g s t h e T w - c l o s u r e of S p a n ( E ) . ?1
Suppose now t h a t J c m p ( E ) and l e t XeE A=:
% * ' L
be g i v e n . D e f i n e A by
'L
J X J . C l e a r l y A C E and k e r J c k e r A , whence
range(A1 c ( k e r A ) l c ( k e r 5 ) l = {xeH;
[I ?XI/
=
I / x [I 3
Thus, i f t h e p o l a r decomposition of A i s a g a i n A= J / A ] , t h e n
%
T h e r e f o r e w e have J < y J
f o r some yea,
'L
Iyl= 1 , and, a s J i s
2.
minimal, J = y J . But now f o r any s p e c t r a l p r o j e c t i o n P[a,P]
of
\ A \ , t h e o p e r a t o r J P { ~ , R J i s a p a r t i a l isometry c o n t a i n e d i n 'L
J= y J .
I t follows t h a t JP({II All
I)=
J . Therefore
#
172
8
CHAPTER
E
8.35. P R O P O S I T I O N . L e t T -elaced %w
Jcmp( E
)
be a n y J * - a l g e b r a
w h i c h is
a n d a s s u m e t h a t f o r any Jep( E ) t h e r e is s o m e %
B = (Span mp( E
sucrlz t h a t J < J . T h e n
)TTW.
Proof: L e t F be the family of the finite sums 2.
...+J,, ndN, of mutually orthogonal minimal partial isome'L tries Jkc m p ( E ) , lSk$n, i.e.
%
J1+
for all pairs k , & with k f k . Then, the linear hull of F is T -dense in E because, given any Jcp(E 1 , the net W is not empty and it is weakly convergent F(J)=: { ? e F ; J"<J} to J .
8.36. COROLLARY. In p a r t i c u l a r , if e v e r y Jcp( E 1 'L
'L
c o n t u i n s some Jcmp(E) s u c h t h a t dim range J < m
E
=
(Span mp( E 1 )-W
then
.
8.37. P R O P O S I T I O N . A l l Cartan f a c t o r s of L ( H ) a r e
T -cZosed. W
Proof: Given any operators R 1 , R l c L ( H ) and a conjugation Q on H , the mappings L ( H ) + L ( H ) given by
LR1R2
: X - + R ~ X R ~,
T
-
Q'
X+QX*Q
are T W -continuous. On the other hand, if Fk is any Cartan factor of type k, 1skS3, we have
F1= {XcL(H);
X=
XI
for some projectors P 1 , P 2 F 3 = { X s L ( H ) ; T X= -XI
Q
As for Cartan factors F4 page 334.
,
the proof can be found in 1 1 9 1 ,
ff
AUTOMORPHISMS O F CLASSICAL BANACH SPACES
8.38.
DEFINITION.
Given a J*-algebra
E
*
t h a t a n o p e r a t o r A c E i s m i n i m a l if A E A = EA.
for t h e s e t of m i n i m a l e l e m e n t s o f
173
o n H, we s a y
We w r i t e m ( E )
E .
It i s i m m e d i a t e t h a t the set m ( E )
J*-isomorphisms
8.39.
E
L of
THEOREM.
.
i s preserved by a l l Moreover, if E i s T w - c l o s e d , t h e n
L e t P1,P2 and Q b e , r e s p e c t i v e Z y ,
o r t h o g o n a l p r o j e c t o r s w i t h H . = : range P 1
c o n j u g a t i o n on H .
F = { X e L ( H ) ; P2XP1= X I
F3 = { X S L (H)
; QX*Q=
t h e corresponding Cartan f a c t o r s . C a r t a n f a c t o r of t y p e I V . m ( F ) = {f@e*; ecH1,
A2= 0 )
XI
-XI
Furthermore
,
Let F 4 be a n y
Then
fcHZ),
m(F,)= m ( F q ) = {AcF4;
( j = 1 , 2 ) and a
p 2 = I X C : L ( H ) ; QX*Q=
1
1
j
Denote b y
m(F ) = {e@(Qe)*; 2
{f@(Qe)*-e@(Qf)*;
eeH}
erfc.HI
provided t h a t dimF4>l.
Proof: I n g e n e r a l , f o r
e , f c H w i t h efoff, the t w o
relations
C a s e k= 1. From t h e -~
above remarks it i s e a s y t o check
t h a t , f o r e e H l and f e H 2 , w e have f P e * e m ( F 1 ) .
Conversely,
let
A c m ( F 1 ) w i t h AfO be g i v e n . T h e n A= P Z A P l and w e c a n choose some
CHAPTER
174
8
xsH such that P2APlx#0. In particular, the vectors e=: p l x and f=: P,Ae satisfy AefQ and A*ffO so that L
(Ae 0 (A*f)*#O Moreover f@e*cF1, and from the minimality of A we obtain
whence A= (XAe)@(A*f)* for some XeE.
Case -k=
2. Let ecH be given. Then Q[e@(Qe)*]*Q= eP(Qe)* so that e@(Qe)*cFZ and, as remarked at the begining of the proof e@(Qe) * e m ( F 2 )
.
Conversely, let Aem(F2) with AfQ be given, and choose eeH such that AefO. Since,F 2 is *-invariant, re0 (Qe)*] * C P z EA3A[eP(Qe) *JA= (Ae)@(A*Qe) * Moreover, from AcF 2 we derive A*Q= QA, whence A= f@(Qf)* with f = : XAe for a suitable A d . Case k = 3 . For the sake of shortness, we introduce the notation [v,u]=:
v@(Qu)*-LIB(Qv)*
v ,ucH
NOW, l e t f,eeH be given; it is easy to see that [f,eJcF3. For arbitrary AcL(H) Q[f,e]*Q= - [ f , e J , hence [f ,e]A* [f ,el= M-N holds with M= f@(Qe)*+eP(Qf)* N = fO(Qf *+e@(Qe) *
AUTOMORPHISMS OF CLASSICAL BANACH SPACES
175
Since F3 is a J*-algebra, for AeF3 we have [f,e]A*[f,e]eF3. Moreover, from AeF3 we obtain A*Q= -QA; it follows that M= [f ,el eF3 Therefore (8.22)
N= M-[f,e]A*[f,e]cF2 [f,e]A*[f,e]=
n F 3 = 101. Thus, for AeF3
[f,e]cC[f,e]
On the other hand, the relation [f,e]= 0 holds if and only if f,e are linearly dependent. By putting A=: [f,e] in ( 8 . 2 2 ) we obtain
[fie][f,e] * [f,e] =
A
[fie]
with A = /I ell 2 11 flI 2 -l<elf>121whence and [f,e]sm(F3).
[f,e]A*[f,e]=
C[fle]
Conversely, let Aem(F3) with AfO be given. For e,feH we have CA3A[f,e]*A=
(AQe)@(A*f)*-(AQf)@(A*e)"
Now we can choose e l f such that the vectors AQe and AQf are linearly independent. (Indeed, if we had dim range A= 1 , then A would have the form A= u@v* for some u,veH. But u@v*eF3 holds if and only if u@v= 0). Hence QAaf 'Be I *-e '@f * = for some independent couple f',e'eH
[f ' ,e '3 and A= A[f',e'].
# Case k = 4 . Suppose that AeF4 and A XeF4, we have
2
=
0. Then, given any
AX*A= (AX*+X*A)A= [(A+X*) 2-X*2]AeCA i.e., Aem(F4). Conversely, let Aem(F4) be given; then AF*A= CA and A 2 = a1 for some a d : .Thus, for some Bee, 4
CHAPTER
176
8
2 * 2
@A= (A*AA*)*A= A A A
= a2A*
If ct 2 f o r we have A*= yA for some yea. Since we have assumed that dim F4>l, we may fix X c F q \ Q A if afO. But then we get the contradiction
* * * *
2
2
QA3A(A X A ) A= A XA =
CI
2
X
Proof: Exercise 8.41. THEOREM. With t h e p r e c e d e n t n o t a t i o n s , 0
( a ) E v e r y e l e m e n t of Aut B(Pk)' k = 1,2,3, i s a c o n t i n u o u s
operator
w i t h r e s p e c t t o t h e T w - t o p o l o g y o n Fk.
( b ) We h a v e F k = (Span m p ( F k ) ) - T w f o r k= 1,2,3.
Proof: (a) Suppose that ( A ) is a net such that j jeJ TW - 1 i m A I, = A in F k I and let LcAutoB(Fk) and f,ecH be 1
arbitrarily fixed. We have to show that < L ( A , ) f ,e>-+ 3
Case k= 1: Write f'=: P 2 f and e l = : P 1e. Then f'Re'*em(F1) and we can find vectors f " e H 2 e"cH1' such that
For any pair vcHZ
ucHIr and any operator XcFl we have
AUTOMORPHISMS OF CLASSICAL BANACH SPACES
177
(V@U*)X* (V@U*)= VPU* Applying this, first to f'Pe'* and A, and then to fl'@e''* and L(A) , we obtain ,Ae ' >f '@e I *
(8.24)
( f 'Pe' * ) A* ( f 'Qe ' * ) = < f I
(8.25)
(f"@e"*)(LA)*(f"@e"*)= f"@e"*
,
As L is a J*-automorphism, from (8.23) and (8.24) it follows = c (f"Pe"*)(LA)* (fa1@eIt*)
whence, by cornpairing with (8.25) = 0 a n d a t+O
n e i g h b o u r h o o d W I C V of t h e o r i g i n s u c h t h a t G t ( W l ) C V f o r a l l
t , Itlc6. L e t u s s e t W 2 = :
J(W1),
i s d e f i n e d on
so t h a t J G t J - l
W2 f o r I t \ < & NOW, . l e t xeW2 b e g i v e n ; f r o m G-tO=
0 we d e r i v e
( j # G t ) x = ( J G t J - l ) x = JG t ( e x p C x ) O = J G t (expCx)G- t o =
JIGi(expcx)]o=
By t h e o r e m 4 . 2 8
w e have G
t
c
# x
where L # C = [ L , c ] = Y Y
= (exp t L ) # C ~ =
z
t" n !L
~
C
~
n= 0
c
(1
f o r yeE,
i.e.
Lo
f o r ndN. T h u s , ( J # G ~ ) ~ J[expC =
whence
lo=
exp t ~ A l x
( J # L ) x = L o( 1X . The r e s u l t f o l l o w s by t h e i d e n t i t y
principle.
#
205
BOUNDED SYMMETRIC DOMAINS
9 . 1 7 . LENMA. We h a v e [ C x , C y ] =
0 r
[QxrQy]=
0
f o r a22
x,ysE. P r o o f : For a n y U , V C E , c o n s i d e r
N U , v
= : [A, ,Av]
- [Aiu‘Aiv]=
[ C U + Q U , CV+QV] - [ i C U - i Q v
By c o r o l l a r y 9 . 1 0 w e have N
utv
r
iCv-iQ
eL, and therefore
since [ Q ~ , Q( 1~= I (~ Q( 1Q ~ , - Q ~( 1Q,);’=
and
i f s = 0 , l and c c E . I t follows t h a t
J#Nix,y
= 2[cix,Cy];1=
2i[Cx,C
] ( l = iJ#Nx
Y O
IY
i.e. Nix,y
by theorem 4 . 2 5 .
= iNx
Thus
IY
C L n(iL)c(autD) n ( i a u t D ) = {Ol
V
3=
CHAPTER 9
206
9.. 18
.,,PROPOSITION.
( a ) (J Cc)x= c
#
WE have
f o r all ccE a n d xcU
(b) F o r a l l ccE, t h e U e c t o r fieZd J#Q, is a c o n t i n u o u s h o m o g e n e o u s polynomial o f s e c o n d d e g r e e . Proof:
( a ) L e t c c E and xcU b e g i v e n . Then w e have
Whence , by lemma 4 . 2 3 w e d e r i v e
so t h a t J # C c i s a c o n s t a n t v e c t o r f i e l d of v a l u e c .
(b) L e t ceE, xcE and ycU be g i v e n . By t h e p r e v i o u s s t e p w e have x = ( J # C x ) y ; t h e r e f o r e
i s a v e c t o r f i e l d t o which p r o p o s i t i o n 9 . 1 6 a p p l i e s . Thus, w e
have I
.
Now, f o r x i n a neighbourhood of t h e o r i g i n , t h e segment [O,x] E by means of l i e s i n U and w e can d e f i n e + : [0,1] ( J # Q c ) t x . I t i s e a s y t o check t h a t + ( O ) = 0 , so t h a t by $(t)= ( 9 . 8 ) w e have -f
207
BOUNDED SYMMETRIC DOMAINS
which i s a c o n t i n u o u s homogeneous polynomial of second d e g r e e i n x . The r e s u l t f o l l o w s by t h e i d e n t i t y p r i n c i p l e .
56.- ______ The p s e u d o r o t a t i o n s on autD. ~
_
I
_
_
9 . 1 9 . D E F I N I T I O N . For t d R , we i n t r o d u c e t h e m a p p i n g s t
$ :
E autD
+
E autD in t h e f o l l o w i n g m a n n e r :
( a ) L e t AsautD b e g i u e n . T h e n A a d m i t s a u n i q u e r e p r e s e n t a t i o n A= A i L
w i t h Ace& a n d L c L a n d we d e f i n e L
$L:
A= A +L
+
A it +L e c
( b ) Now Qt may b e e x t e n d e d t o EautD b y c o m p l e x l i n e a r i t y
b e c a u s e we h a v e E a u t D = ( a u t D ) @ i ( a u t D ) , t h e sum b e i n g d i r e c t . I n o r d e r t o show t h a t $t i s a L i e a l g e b r a automorphism of a u t D , we introduce an a u x i l i a r y transformation.
9.20. R ~ :E
-+
by
E
For tdIR, we d e f i n e t h e m a p p i n g
DEFINITION.
R ~ :x
+
e
it
x.
L e t AcautD b e g i v e n and d e n o t e by J : V
+
U t h e neighbourhood U
of 0 and t h e isomorphism J g i v e n by d e f i n i t i o n 9 . 1 1 . Thus, A is u n i q u e l y determined by i t s r e s t r i c t i o n t o U and J # $tA i s a holomorphic v e c t o r f i e l d on U = J ( V ) . B e s i d e s , by p r o p o s i t i o n 9.18,
J # A i s a n e n t i r e holomorphic v e c t o r f i e l d ( a c t u a l l y , J # A
i s a polynomial of d e g r e e n o t g r e a t e r t h a n 2 ) so t h a t R t # J # A i s a l s o an e n t i r e holomorphic v e c t o r f i e l d and it makes s e n s e t o t
compare ( R # J # A ) I u
with
J#($tA)
Iu
. We
g e t t h e following
result 9 . 2 1 . PROPOSITION.
f a ) We h a v e R;J#A=
t
J#+ A for a l l tm
208
CHAPTER 9
a n d AeautD. ( b ) F o r all
td[R,
+t i s a Lie a l g e b r a a u t o m o r p h i s m o f
autD. ( a ) S i n c e any AcautD may be w r i t t e n i n t h e form
Proof:
A= Cc+Qc+Lfor some ceE and L c L ,
e q u a l i t y Rt J =J
#
#
#
+
t
it s u f f i c e s t o check t h e
i n these particular vector f i e l d s .
L e t c c E be g i v e n . By p r o p o s i t i o n 9 . 1 8 ,
JC C C i s c o n s t a n t ; t h u s
w e have
~ ~ c ~~ )# x( e=~
(J
~ c , e) ixt = (J
# c ~ )e ~ itc =
# and
Q, i s a homogeneous polynomial of second d e g r e e , w e have
As
(J#$
t Q,)X=
J#Q
it x= J# ( e e c
-it
Q ~ ) X =e
-it(~#~c)x
and t
t
( R # J # Q c ) x = (R
)
(1
-t J#Qc ( R - t x ) = eitJ#Q, ( e - i t x ) = e R x
= e
Since f o r LsL
,
-it
it - 2 i t
e
J# Q, ( x ) =
(J#Qc)x
J L i s l i n e a r , w e have
#
( b ) Obviously, $t i s an isomorphism of autD a s a v e c t o r s p a c e . By s t e p (a), f o r A l t A 2 s a u t D , w e have
BOUNDED SYMMETRIC DOMAINS
209
whence t h e c o n c l u s i o n f o l l o w s by t h e i d e n t i t y p r i n c i p l e .
ff L e t u s d e n o t e by
TI
j
,
j = 0,1,
the canonical projections
a s s o c i a t e d w i t h t h e d e c o m p o s i t i o n a u t D = L@Q.
9.22.
1. I
LEMMA. The norm
d e f i n e d o n a u t D by
\ A / = : max{II ( n . A ) h k l \ ; I
i s i n v a r i a n t under alZ t r a n s f o r m a t i o n s 4
j , k = 0,13 t
,
tdR.
Moreover, i t
d e f i n e s t h e n a t u r a l t o p o l o g y on autD. P r o o f : L e t u s s u p p o s e t h a t w e h a v e An TI,A
I n
\An]
+
+
/I
n.A
jA,l
+
0 i n a u t D , so t h a t
0 . Conversely, i f
I1
1
=
C
k=O
0 then
11
-+
0 i n autD; t h e n
(n.A )
(kll
I n 0
(kl\
" ( 71 j An o
j,k= 0 , l ; t h u s by t h e o r e m 5 . 6 , w e h a v e I T , A
+
I n
0; thus
-+
-+
o
for
0 ( j = 0 , l ) and
A = n A + n A + O . n O n 1 n
Moreover,
from
4 tA=
@
t
+L w e g e t (Ac+L)= A . lt e c
TI^^ t A =
t
4 noA
El$
t A=
4
t
TIA (k-
(k
f o r a l l a e a u t D . From d e f i n i t i o n 9 . 4 w e o b t a i n ( A X c ) O - k ( A c ) O f o r Ad!:,
which completes t h e p r o o f .
ff 9.23.
DEFINITION. L e t B b e a n e i g h b o u r h o o d of t h e o r i g i n
i n autD s u c h t h a t
( a ) t h e mapping A s N
-+
expAsAutD is i n j e c t i v e
(b) N i s i n v a r i a n t u n d e r a 1 2 t r a n s f o r m a t i o n s 4 Then we s e t G = : expN a n d d e f i n e yt: expA
-+
expQtA
t
,
tdR
.
CHAPTER 9
210
for> t m and AsN.
Observe that by lemma 6.47 and lemma 9 . 2 2 such a neighbourhood exists,
Our next task will be to extend the mappings Y ' : G +. G to the identity component AutOD of AutD. By lemma 7.15, any GcAut D 0 admits a representation of the f o r m G= G1G2..Gn with G = expA and AkcN for k = 1,2,..,n so that we could set k
k
.. (YtGn)
Y t G= : ( Y t GI)
The trouble is that the representation of G we have used is not unique. 9.24.
PROPOSITION. L e t G1,G2,..,GneG b e s u c k t h a t
.
G1o G20 . o G n= idD a T h e n fort a l l tdR.
we
have
t t t ( Y GI). (Y G2). ( Y G ) = idD
.
Proof: Let us write
for tdR. We begin with the following observation: Given any XcautD, we have G#tX= X
(9.9)
for a l l tdR. Indeed, by assumption, there are A k e N , k = 1,2,..p such that G = expA Write X = : @ tY where Y=: $-tXcautD and t is k k' kept fixed; then, by proposition 5 . 1 3 and lemma 5.14, we have
= $
t
(GI#..G,#)Y=
From ( 9 . 9 )
$
t
t
t
(G1..Gn ) # Y = @ (idD ) # Y = $ Y = X . t
we c a n deduce G = idD' Indeed, set
21 1
BOUNDED SYMMETRIC DOMAINS
Fh =: Gt+h(Gt)-l for t, hdR. B y (9.9) we have
Fix=
(9.10)
X
for all XcautD and h m . Now we show that the mapping hdIR FhcAutD h= 0. Let A= A +LcautD be fixed; since ccE continuous real-linear mapping, we have -f
d +tA= dt
1 lim ( + t + h ~ - + t ~lim ) = (A h
h+O
is Tderivable at A cautD is a
-A
c
h+O
+
e
it)=
i(t+h)
Moreover, by lemma 6 . 4 5 , the mapping A-texpA, AcN, is real analytic with regard to the T topology on AutD. Thus, considering the composed mapping t + + t +~ exp we get the T derivability of t
+
t
A
I
YLH with H= expA. Applying
t
..
this to each of the Y Gk = expGtAk, k= 1,2,. , n , by lemma 1 . I 5 we get the Tweak derivability of Gt. Therefore, for some neighbourhood B of 0, we have 1
(Gtfh-Gt) converges in the norm
(1 .( I B
or, equivalently, 1 (Fh-idD) converges in the norm
I / .I/ G~ ( B )
whence it follows that
1 (Ft-id ) = A t T lim h D h+O
CHAPTER 9
212
t
for some A eautD, s o that h
-+
Fh is T derivable at h= 0.
Then, theorem 4.28 entails 1
T lim
h (F#x-x)=
h+O
[A~,x]
for all XeautD, so that by (9.10) we have [At,X]= 0 for all XeautD. Thus, by proposition 9.13 O= A
t
=
T lim h+O
1
tth
[Gt+h(Gt)-l-Gt(Gt)-l]= T l i m h (G h+O
t -1
-Gt) (G )
d t whence Gt= 0 for all t d R , that i s , G is constant and Gt= G o= i dD' 9.25. COROLLARY. L e t G1,G2..GncG a n d H1,H2..H,&G g i v e n and a s s u m e t h a t G,oG20..oG = Hl0H o . . ~ H T h 8 n (Y~G,). ( y t c n ) = ( Y tH ~ ) . ( Y ~ H ln~o )r a l , l 2 tm. m
.
.
.
be
Proof: We need o n l y to observe that, if H= expA w i t h AeN , then t
(YtH)-l= (exp$tA)-l=exp(-$A ) = exp[lp =
t
t
t
(-A)]=
-1
Y exp(-A) = $ (H
)
. #
Yt:
9.26. DEFINITION. F o r tCR, w e d e f i n e t h e mapping AutOD AutOD by means of -+
Yt: Gl..Gn w h e n e v e r GI
..
(YtGl) (YtGn)
+
,..,GneG.
We know that AutOD=
u
G";
therefore, in view of the previous
n m
proposition, the mappings Y Moreover, we have
t
are well-defined on AutOD.
BOUNDED SYMMETRIC DOMAINS
(YtG)(Y-tG)= G
and
Yt(GH)= (YtG)( Y t H )
213
,
for G, HcAutOD and tdR. 9.27. EXERCISES. Consider the mapping RxAut0D given by (t,G)
+
Y'G.
+
AutOD
Show that t
(a) For fixed G, the application (t,G) -t Y G is a one-parameter group t
Y G is real analytic when AutOD is endowed with the analytic topology Ta Is it T continuous?. (b) The joint application (t,G)
-f
.
57.- The pseudorotations on D. - ____ We recall that, by proposition 9.8, D is homogeneous under the action of AutoD, so that D = {G(O);
GcAutoD}
D i n the 9.28. DEFINITION. For tdR, w e d e f i n e Tt: D f o l l o w i n g m a n n e r : L e t xcD be g i v e n ; t h e n we h a v e x= G(0) f o r some GcAutoD, a n d we s e t -+
In order to see that this definition makes sense we have to verify that, for G1,G2eAut D with G1O= G20, we have (YtG )0= (YtG2)0. By passing to G=: G I 1G2 we must prove that, 1
t for all GeAutoD, the relation GO= 0 implies (Y G)O= 0 for all
tdR. This will be our next task. 9.29. DEFINITION. We s e t IsotD=: {GcAut D; So
GO= 0 )
far, we have made no u s e of the assumption concerning the
s i m p l e c o n n e c t i v i t y of D. We shall apply it to prove the
following:
CHAPTER 9
214
9.30. PROPOSITION. A s s u m e t h a t t h e b o u n d e d s y m m e t r i c d o m a i n D i s s i m p Z y c o n n e c t e d . T h e n t h e s u b g r o u p IsotD is a r c w i s e c o n n e c t e d v i t h r e g a r d t o t h e t o p o Z o g y Ta.
Proof: It suffices to show that, for any GsIsotD, there continuous path :'I [OJ] IsotD such that r ( O ) = idD and l'(l)= G.
exists a T
-f
Let GeIsotD be given; then we have GeAut D
and
GO= 0.
Therefore, we can find A1,A2,...,A,cN
We divide the interval
k for te [ 5
, k+l
1
such that
[O,l] into n subintervals
and k = 0,l , , , ,n-I . Obviously,
f
is a
T a continuous path which connects id and G in the space AutoD. D
In order to connect them in the subspace IsotD, we project this path f : [ O r I ] + AutOD into D by applying each ? (t)= G to the origin 0, so that we get the path y: [0,1]
t
+
D defined by
Since G belongs to IsotD, y is a closed path: y(O)= id,(O)= 0 and y ( l ) = G ( 0 ) . Thus, as D is assumed to be simply connected, y is homotopic to the origin 0. Let us denote by R=: [O ,I] x [ O r 11 the unit rectangle and denote by f: (s,t)eR + f(x,t)eD a homotopy in D continuously deforming the path y into the origin 0, so that we have
BOUNDED SYMMETRIC DOMAINS
215
f(O,t)= y(t)= Gt(0)
f(l,t)= id,(O)=
f ( s , O ) = idD (O)= 0
f(s,l)=
0
(9.11) G ( O ) = 0.
We shall construct a lifting of f: R + D to AutoD, i.e., a T continuous function f: R + AutOD such that
for all (s,t)cR. Then we shall have F(l,t)O= f(l,t)= 0 for all tc[0,1] , so that F(l ,t)eIsotD for te[0,1] and, by writing
we obtain the path
r:
[0,1]
+
IsotD we were looking for.
Let U be the neighbourhood of the origin in E constructed in the proof of proposition 9.8; thus the mapping (9.12)
g: ceU
-+
(exp Ao)Oeg(U)
is an isomorphism and
Then, we have
for some carathgodorian open ball B E ( 0 ) centered at 0. As the homotopy f: R -+ D is continuous, the mapping
is uniformly continuous on RxR; therefore, there exists an m a such that
CHAPTER 9
216
Now we devide the horizontal side [ 0 , 1 ] into m subintervals
of the rectangle R
and construct recurrently the lifting F of f on each of the k+l subrectangles R =: [ k , ]X[O,l], k = O,l,..,m-l.
m
k
We claim that, for (s,t e R 1
, we have
G;
Indeed, as the caratheodorian distance is AutD-invariant, by
(9.11) we have
Therefore, by ( 9 . 1 2 ) and we define
it makes sense to apply J-l to G;lf(s,t)
c(s,~)=:J - 1 Gt-1 f(s,t)
for (s,t)eRo. Let us set F0(srt)=: GtexpA
c(s,t)
for (s,t)eRO. Then, it is easy to check that Fo is a lifting of f over R o . Now we proceed by induction on k. Assume we had already
constructed a lifting Fk of f over R ; thus
for all (srt)CRk. We claim that, for ( ~ , t ) e R ~,+we ~ have
217
BOUNDED SYMMETRIC DOMAINS
Indeed, by ( 9 . 1 3 )
and the induction hypothesis we have
Thus, it makes sense to apply J-l to Fk- 1 ( ;k;i ,t)f(s,t) and we define
for (s,t)CRk+l.If we set Fk+l(slt)=:Fk(
mk
,t)expA c(s,t)
for ( s , t ) ~ R ~, +then ~ it is easy to check that F k + l lifts f on R k + l . Moreover, Fk+l and Fk agree on the common border of their rectangles of definition:
so that Fk+l extends the previous partial lifting. This
completes the proof.
# Let U and V be the neighbourhoods of 0 in E constructed in definition 9.8 and put R ~ = :x
-t
e itx
for tdIR and xeE. We may assume that U is an open ball centered t at 0 , so that U is invariant under the transformations R By setting
.
it is easy to see that V is invariant under the transformations St. Finally, we recall that, by proposition 9 . 2 1 , we have
21 8
CHAPTER 9
€or a l l AcautD. 9.31.
LEMMA. L e t t d R b e g i v e n .
T h e n , t h e r e a r e a number
6 > 0 and a n e i g h b o u r h o o d W of 0 s u c k t h a t we h a v e
P r o o f : Take a n y 6 > 0 s u c h t h a t t h e b a l l B 2 & ( 0 ) w i t h c e n t e r a t 0 and r a d i u s 2 6 i s c o n t a i n e d i n V;
then
S t [ B 6 ( 0 ) ] C V i s a neighbourhood o f 0 and w e d e f i n e
The p a i r 6,W s a t i s f i e s o u r r e q u i r e m e n t s .
11
I n d e e d : L e t AcautD b e s u c h t h a t
All
and t a k e any x e B 6 ( 0 ) .
Consider t h e i n i t i a l v a l u e problem d dt
y ( t ) = A[y(t)]
I
y(o)= x
whose s o l u t i o n i s d e n o t e d by y ( t ) = ( e x p t A ) x , a n d s e t T(x)=:
inf{t>O;
(1
(exptA)x-xl(
W e claim t h a t , r ( x ) > l . Indeed, f o r OSt