H A N D B O O K
O F
Special Functions Derivatives, Integrals, Series and Other Formulas
H A N D B O O K
O F
Speci...
147 downloads
1978 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
H A N D B O O K
O F
Special Functions Derivatives, Integrals, Series and Other Formulas
H A N D B O O K
O F
Special Functions Derivatives, Integrals, Series and Other Formulas
Yury A. Brychkov Computing Center of the Russian Academy of Sciences Moscow, Russia
Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2008 by Taylor & Francis Group, LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-58488-956-4 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com
Contents
The Derivatives # " # $!%" & ' & !! ( ( )* ' !!"!! '' **, + + * *, " " & +**,!"! & ( # +**,!"! ( ' +**,!"! . & +**,!"! . . ! ! ( +* *, " . !!"!! **, -- + " " , * * + ! ! / , " * * / + ! ! 0 +* *, " # 1
1.1.
Elementary Functions
1.2.
The Hurwitz Zeta Function ζ (ν, z )
1.3.
The Exponential Integral Ei (z )
1.4.
The Sine si (z ) and Cosine ci (z ) Integrals
1.5.
The Error Functions erf (z ) and erfc (z )
1.6.
The Fresnel Integrals S (z ) and C (z )
1.7.
The Generalized Fresnel Integrals S (z, ν ) and C (z, ν )
1.8.
The Incomplete Gamma Functions γ (ν, z ) and Γ(ν, z )
1.9.
The Parabolic Cylinder Function Dν (z )
!!"!! ****, .. + + , " 0 ! ! , " * * + +**,!"!0 !!"!! ****, + + , " 0 !!"!! **, + 0 , " * * + !!"!! ****, ## + + , " 0 !!"!! ****, '' + + , " 0 !!"!! ****, && + + , " 0 !!"!! ****, (( + 0 + , " - +**,!"! / +**,!"! . +**,!"! !!"!! ****, + + , " " !!"!! ****, + + , " " !!"! ****, + + , "" 1
1.10.
The Bessel Function Jν (z )
1.11.
The Bessel Function Yν (z )
1.12.
The Hankel Functions Hν(1) (z ) and Hν(2) (z )
1.13.
The Modified Bessel Function Iν (z )
1.14.
The Macdonald Function Kν (z )
1.15.
The Struve Functions Hν (z ) and Lν (z )
1.16.
The Anger Jν (z ) and Weber Eν (z ) Functions
1.17.
The Kelvin Functions berν (z ), beiν (z ), kerν (z ) and keiν (z )
1.18.
The Legendre Polynomials Pn (z )
1.19.
The Chebyshev Polynomials Tn (z ) and Un (z )
1.20.
The Hermite Polynomials Hn (z )
1.21.
The Laguerre Polynomials Lλn (z )
1.22.
The Gegenbauer Polynomials Cnλ (z )
1.23.
The Jacobi Polynomials Pn(ρ,σ ) (z )
' ' / / ' & &. # # # #' #' ##( #-#' '& '& '/ '/ & & & & && && && &/
/ & ! ! # +* *, " &./ (. ! ! ' , " * * ' + +**,!"" (( ( ! ! ' **, " && + ( ! + * *, " " ( (& ! ! , " * * (( + (& +**,!"" -. (( - +**,!"! -. -. ! ! / -. **, " / + ! + * *, " " --' !!"! --&& **, .. + + * *, "" ( /' /' /' !!0 0
! ** 0 /' 0"% /' # !! % 0 //&& ' ! !% !*" & $"% /( ( !"% /( - !"%! //. !"% / $%" // " .. !! . 0
# . !## # . 1
1.24.
The Complete Elliptic Integrals K (z ), E (z ) and D (z )
1.25.
The Legendre Function Pνµ (z )
1.26.
The Kummer Confluent Hypergeometric Function
1 F 1 (a ; b ; z )
1.27.
The Tricomi Confluent Hypergeometric Function Ψ(a; b; z )
1.28.
The Whittaker Functions Mµ,ν (z ) and W µ,ν (z )
1.29.
The Gauss Hypergeometric Function 2 F1 (a, b; c; z )
1.30.
The Generalized Hypergeometric Function p Fq ((ap ); (bq ); z )
Limits
2.1.
Special Functions
H
Indefinite Integrals
3.1.
Elementary Functions
3.2.
Special Functions
L
!!*00 .' # % .' ./ " ## ! & ### $%" ( ! ! ' '' ##& )* 0 ( ## ))0 ( / ( 0 ! ! -. ### ))0* -. -- 0 ## ))0 - 00!! - ### )) 0 * 0 - ' # )" --# 0 0! --'## #### )) 0 " ! -& ! ##### )) 0 0* ( ##' ) ---( 0 0 " ##& ) -/
00 -/ ##'' )) 0! ! /. ' / ##'# )) 0 / ' ' 0 / ##'& )) 0!! / / 00! / ##&& )) 0" / / #& ) 1 H
L
Definite Integrals
4.1.
Elementary Functions
4.2.
The Dilogarithm Li2 (z )
4.3.
The Sine Si (z ) and Cosine ci (z ) Integrals
4.4.
The Error Functions erf (z ), erfi (z ) and erfc (z )
4.5.
The Fresnel Integrals S (z ) and C (z )
4.6.
The Incomplete Gamma Function γ (ν, z )
0!! /' #&#' ) 0 0 /' #& ) #&& ) " /' /& 0 /& #( ) 00!" //( #( ) ! ! //( #( ) 0 // #(#' ) 0 0 .. * #( ) #(& )"0 . #(( ) . 0 .## #-- ) .# # ) 0 .' 0 .' #// ) 0!" .& #/ ) 00! ! .#/ ) 0 . #/#' ) 0* #/ ) " 0 #/& )" # ( ) & 0
. 0 & #. ) # ) " & ( 0 ( # ) 0! / %" # ) 0 / 0! ! . # ) 0 ##' ) * # )
0 # ) 0 0 # )" 0 ## ) 00! ! ## ) & ## )
4.7.
The Bessel Function Jν (z )
4.8.
The Bessel Function Yν (z )
4.9.
The Modified Bessel Function Iν (z )
4.10.
The Macdonald Function Kν (z )
4.11.
The Struve Functions Hν (z ) and Lν (z ) H L H H L H L H L
4.12.
The Kelvin Functions berν (z ), beiν (z ), kerν (z ) and keiν (z )
4.13.
The Airy Functions Ai (z ) and Bi (z )
4.14.
The Legendre Polynomials Pn (z )
0 0 #####' )) " # 0 ' 0 ##' )) # #' )0" #& 00 # ##&& )) # # 0
##&&# ))"0 #& #& 00! #( ##(( )) -/ " #( # 0 0 '# ##((# )) 0
' ##((& ))"0 ' ' '# 0 '# #-- ) 0 '' #- ) 0 '& #- ) ## ) "0 '& '( 0 '( #// ) 0 '( #/ ) # ) "0 & & ! !0 & #.. ) !0 & #. ) 0! & #. ) # # ) "0 ' !0! 0 &&' ## )) " %" &( 0 ! ! ### )) 0* &( #' ) 0 (#
4.15.
The Chebyshev Polynomials Tn (z )
4.16.
The Chebyshev Polynomials Un (z )
4.17.
The Hermite Polynomials Hn (z )
4.18.
The Laguerre Polynomials Lλn (z )
4.19.
The Gegenbauer Polynomials Cnλ (z )
4.20.
The Jacobi Polynomials Pn(ρ,σ ) (z )
4.21.
The Complete Elliptic Integral K (z ) K K K K K
0 (# #& ) 0 (' #-( ) 0 (' #/ ) 0 (' # . ) 0 (& #) 0 (( #) 0 0 (#) # ) " (-/ 0 ((/ # ) !"!%"0 # ) 0 ! ! - & # ) 0* ##' ) 0 -/ # ) 0 / #& ) 0 / #-( ) 0 / #/ ) 0 / # . ) 0 / # # #) 0 / & #) 0 / / #)"00 /& //& #)"0 # #) .. 0% .. # ) . # ) "0 0 . 0 . ## ) 0 .# ## ) 0!! .& ## ) 0 .& ###' ) # # ) "0 .& ./ ./ ' ./ ' " 0 ' K K K K K K
H
L
K
K
4.22.
The Complete Elliptic Integral E (z ) E E E E E E E E E E E
H
L
E
E E
4.23.
4.24.
K
The Complete Elliptic Integral D (z ) D D K
The Generalized Hypergeometric Function p Fq ((ap ); (bq ); z )
K
Finite Sums
5.1.
E
The Psi Function ψ (z )
E
'' 0 " ' # ' 0 # ' " # ' ''# 0 0 '' "0 '## " ( ''''
- 0
" '' "0 / / '& 0 / . ''( 0 . ' 0 " '(( " ' '(# & ''(' 0 (& " / ''-- 0 / "
''-- 0 '-#' ' " '-& ' ( ''// 0 0 " #.( '/ # ''//#' " ## '/& "0 ## ## '. ##
5.2.
The Incomplete Gamma Functions γ (ν, z ) and Γ(ν, z )
5.3.
The Bessel Function Jν (z )
5.4.
The Modified Bessel Function Iν (z )
5.5.
The Macdonald Function Kν (z )
5.6.
The Struve Functions Hν (z ) and Lν (z ) H L
5.7.
The Legendre Polynomials Pn (z )
5.8.
The Chebyshev Polynomials Tn (z ) and Un (z )
5.9.
The Hermite Polynomials Hn (z )
5.10.
The Laguerre Polynomials Lλn (z )
#& '. #'. 0" '' '.# '( '.' "0 '/ '.& 0" & '.( & '.- "0 & & ' ' &' ' &' 0" ( '# '' "0 ( - '& '( 0" -'- "0 /. / ' !! / ' / ' !0" #. '# "0 ! #.' '' ! #.' '& ! 0" #.'( "0 ! #. ' # # # ''# # 00" '## # " # # '''' # 0 " ## # '& # ##
5.11.
The Gegenbauer Polynomials Cnλ (z )
5.12.
The Jacobi Polynomials Pn(ρ,σ ) (z )
5.13.
The Legendre Function Pνµ (z )
5.14.
The Kummer Confluent Hypergeometric Function
1 F 1 (a ; b ; z )
5.15.
The Tricomi Confluent Hypergeometric Function Ψ(a; b; z )
5.16.
The Gauss Hypergeometric Function 2 F1 (a, b; c; z )
'& 00" ' '& " # #('(
0 # # # '( '(
" # 0 '(# " ## '(' "0 ' '(& ##' #& ''-- # & ! " % #( #/ / # / && # ! / " # ! . # &&# %" # # & 0 # 0 && ##( ##( " &# ##'/ # & #''
# ##'' &# #0 #' &# #' &&### "0# # #'
#
#00 ##' &&'' #'' # #
0
' # # # #'&' 0 & # "
#0 # #'/ #'/
&& "0 #'/. && #& 1
5.17.
The Generalized Hypergeometric Function p Fq ((ap ); (bq ); z )
5.18.
Multiple Sums
Infinite Series
6.1.
Elementary Functions
6.2.
The Psi Function ψ (z )
6.3.
The Hurwitz Zeta Function ζ (s, z )
6.4.
The Sine Si (z ) and Cosine ci (z ) Integrals
6.5.
The Fresnel Integrals S (x) and C (x)
6.6.
The Incomplete Gamma Function γ (ν, z )
. #& 0 &( % #&. #& &-- #& , &- ! #&' &- #& &-#' 0 #&& &- # #&( &-& #0 #&( &--( "0 # #(.. &-/ "0 #0 #( &- . #0 # #( &- # #0 # #( &- #( &- #( #(# &- & # #('' #(' / &/ 0 #( &/ "0 #(& &/ #(( -. 0 &/#' " # & #-. - # 0 #- &.. # #- &.
0 #- &. ## &.#' # 0 # #0 # #--# &. #0 # #-'# &.& "0 # #-' # &( -& # 0 #--& & #& & 0 " & #- #-&# -/ # 0 #-/ & #-/ & 1
6.7.
The Parabolic Cylinder Function Dν (z )
6.8.
The Bessel Functions Jν (z ) and Yν (z )
6.9.
The Modified Bessel Function Iν (z )
6.10.
The Struve Functions Hν (z ) and Lν (z ) H L H H H H H H
6.11.
The Legendre Polynomials Pn (z )
6.12.
The Chebyshev Polynomials Tk (z ) and Uk (z )
0 #/. & #/. &# / # 0 / && # 0 " #/
0 #/ & #//# " &#' 0
" ## & /' # #/' &# #/& 0" &# "0 #/( &# "0 # #/( &##' #/( &# 0" #/ &#& 0 &#( " #/// # #// &'' '.. 0" &' 0 " '. &' '. &'#' & 0" '.# '.' ! && ! 0 '.' '.& " && 0 && "! ! '. ( '. &&#' ! 0 '.( && " ( '.
'.&&(( ' 0
0 ' " &&((# "0 '#( # '( &&((&' '
0" ' &(-( " 0 '& &( 1
6.13.
Hermite Polynomials Hn (z )
6.14.
The Laguerre Polynomials Lλn (z )
6.15.
The Gegenbauer Polynomials Cnλ (z )
6.16.
The Jacobi Polynomials Pn(ρ,σ ) (z )
6.17.
The Generalized Hypergeometric Function p Fq ((ap ); (bq ); z )
' ( ' '( ( ' ( '( ! " (( !" 0 '-( %0! ! ' ( !!" 0 '/ 0 ((#' ! '# * ! 0 ''#' ((&( ! % 0 # !
* ((/ !0"% 0 ''#& / # ! ! ! 0 %" *" '''#/ % ((. !$ % % '' " ( !! "%! '' ( ! ''' "% ((#' !"% ! % '' ! " " ''/ ((&( ! " " '&. ! 0 (- '& ''& '& -- !!!!%" & '-/ - !!%" &. --#' !!!!%" & %" &-/ --& !!!!%" %" & & --( !!%" & %"
!%" & --/. !! ! %" & -- !!!!%" &' &/ - !!%" &/ %" --#' !!!!%"
& & %" -& !!%" & 1 The Connection Formulas
7.1.
Elementary Functions
7.2.
Special Functions
H
J
L
E
K E
Representations of Hypergeometric Functions and of the Meijer G Function
8.1.
The Hypergeometric Functions
---( !!!!%" & & %" --/. !!!!%" & &'# -- !!!!%" & %" && %" - ! 0! %" &( & & -- &/ ' -- % &&' " &'' &&/ 0 &(/ ))00 % &( (a p ) (b q )
8.2.
The Meijer Function Gm,n z p,q
8.3.
Representation in Terms of Hypergeometric Functions
1
Preface
$!% &'(!#%)!"* +" ,&")-.!%&!"-)/" * !"#! ,& )!-$,.))!%?7A@CB
U4. & - U ')( $ XW4. ' + & + 0& ¤¤4¤ $ $ L V V L
U4 J 1 XW4 J (_BB B?7R@CB 13.
0 f / ' & f a 1
I+ 1A- . & -21 $9% '6 ')5 ( $ $ ! ! 43fI - - & - -21 f / = '*>?7R@CB m ! 20. ' & f a 1 - + a 1 . & -21 $9% '6')5 ( $ $ ! ! 3PfI - - a f / &- 1
= '*>?7R@CB m ! 21. '%& f a 1 - + a 1 . & -21 $&% '6' 5 ( $ $ ! ! 43fI - - -;&-21 0f / = '*>?7R@CB 19.
1.1.5. Trigonometric functions 1.
0fI& f
F fI
' ¤ G
7R@CB ¢ 43 3 1 &-21 3 £! 4f;/ = ? S 25. 0f;/ ' & S £) a ¤ £) 43 ¢ ( & '% & m '#" 3 8 J $ L 3 1 &-21 4 3 4 f / 22.
26. 27. 28.
29.
30.
31.
m 2! m a . H 3 ¢ / *F G 1 - + 1 a a 1 0f / ¤ ! m m a . ED H / *F G 1 - + 1 a -;&-21 f;/ ¤ a / ?F ( G 1 7 ( &B BB ( 5 9BB B 5 #$ & 1 1 1 1 Y a N a
& 1 & ( &B BB & ( & 5 &B B B & 5 ! ( 7
' %
% ] ( 7X ! ' ' %
¢ a D H 3 1 ' & '%& 7 V( &B BB V( &B B B ( 7 #$ ! Y a N a
& 7 ( &B BB #7( #7?7A@CB
38.
f / = '8>?7A@CB
39.
0f / = '8>?7A@ B
H a 1;D H a D H a & D H D H a 1 D H
41.
42.
43.
44.
45.
RED
40.
R R R R R
3#
3#
643 ¢ £ a 1
3V
3 ¢ a 1 £ a 1
3V
¤
¤
¤
& ¤
& ¤
& ¤
R a & D
47.
R a D
46.
48.
49.
50.
51.
H 643 ¢ £ a 1
:
H 3 ¢ a 1 £ a 1
¤
a 1
& ¤
m . 0f;/ ¢ / 8 G F I +
A 1 f;/ Q ' 5 ! £ £ ?7R@CB
F f f GIH ) ' (87! % ) ' (:7X! % m f f9
-; j & -21 F 5 m G 3 m m 5
ED m (8?7R@CB = '8>?7A@CB
m 5 m ( ?7R@CB = '8>?7A@CB = '8>?7A@CB m 5 ¤ m (
m 5 ¤ m ( m 5 ¤ m ( = '8>?7A@CB = '8>?7A@CB ¢ 3hfI& ¤
m fI& 0 3A &-21 3 ¢ f ¢ h 3 f9
-; j &-21 F 7( m G ' >?7R@CB =* 3
2.
3.
4.
5.
6.
7.
0 fI& m 3 ¢ &-21 3 ¢ f ¢ h 3 f9
-; j & -21 F 7 ( m
fI& 0 7 43 ¢ £ 3 ¢ f9 a 1 ; ¢ f9 O
-;&-21
&-21 F 7?7R@CB G
= '*>?7R@CB 7
¤ 7?7R@CB = '*>?7R@CB = '*>?7R@CB f;/ ¤ 0f / ¤ 0f;/ ¤
14.
15.
16. 17. 18. 19. 20. 21.
22.
23.
24.
k a 1 ¢ h 3 f & a 1 k -21 ¢ h 3 f & -21 f;/ f9 f / ¤ a 1 ¢ 3hf9
& -21 -21 ¢ 3hf9
& &-21 f / £ 3 m ¢ 3hf9
& -;&-21 f;/ ¤ , ) k 1 ¢ 3hf9
& &-21 &-21 f;/ 0 ¡ = '8>?7A@CB
k &-21 ¢ f9
& P f;/ ¡ k -21 ¢ f9
& Pk &-21 f / £ F3 k a 1 ¢ f9
& Pk -21 f;/ £ k &-21 M ¢ f & &-21 f;/ F 7 G f -21
k a 1 k -21 ¢ f9
& &-21 F 7 G f9
7 G -;&-21
0f;/ ¤
f / ¤
¢ f & -;&-21
f;/ ¤
0f;/ ¢ 9f
& -;&-21
f;/ ¤
3 m , )
1.2.1. Derivatives with respect to the argument
2.
fI& EDM &-21 F
3PfI ; ?7A@CB
1.2. The Hurwitz Zeta Function ζ(ν, z) 1.
= '8>?7A@CB = '8>?7A@CB
k &-21 ¢ h 3 f9
& 1 ¢ h 3 f9 O& &-21 0f / ¡ k &-21 ¢ 3hf & &-21 f;/ ¡ k 1 ¢ f9
& &-21 f;/ ¡
2.
3. 4.
5.
6.
7 ' a $ £) 3 £ F '*G 7 - 1 3 $ ' " £! 3 £ ( 7X! " & -21 . ( 7! " ] $ (:7X! % " 3 ' ! ' + -21 F 'PG 3 O' ! " 1 7 Y & -21 ' F £) ' G ' " 43 £! ¢ = ' 7 1
F G a 3 ' ' £ 1A- 3 ¢ 3 £ ¢ - 1 C7( " ' ! 7 F G a C7( " ' !0' - 1 ( 7X! ' 7 ] ' " ' # ' " '#" + &-21 . F G 3 ' " ' (:7 3 £ ¢ C7 (* " ' ! 7 G a ' F
C7( - " ' ! 1 ( 7! " . 7 £ % ' & # ' " # ' " 3 ' " ' + &-21 F G 7( 3 '#" 3 £ ¢ C7( " ' !AC7?7A@ B
$! "!$ #
" & -21 m ]! ¢ GH Q 3 3 -21 - R $&% 3. EDM &-21 F 3 9 3 ¢ 3 ¢ -21 -R -; F mG 4. &-21 " & -21 ( 7X! "'& $&% f 43fI& f m ]! 5. 3fI& 0 m 6. EDM &-21 R F]3 GIH 43fI -;&-21 R F]3 m G 43 ¢ f &-21 -; & -21 3 ¢ F G m 3 ¢
-;&-21 43fI& ¤ 7. -21 - P 3PfI& a - R ED -21 R F3 m G9H H 43 ¢ 4 F]3 m G ¤ 8. EDM 1 f 3PfI& ¤ 9. V- 3PfI& m m 10. ED - R PED &-21 R F]3 GIHOH f -;&-21 F]3 G ¤
m
= '8>?7A@ B = '8>?7A@ B = '8>?7A@ B = '*>h7A@ B
1.4. The Sine si (z) and Cosine ci (z) Integrals 1.4.1. Derivatives with respect to the argument 1. 2.
3. 4.
5.
')(:7X! % -; 0fI& m EDM &-21 F GIH 7! % 43 ¢ ' (8 D ')(:7X! % -; 0fI&
&-;-2 1 3AfI& 3 V -
m G 3 #- R R -; &-21 F 3 -; 43 AfI& - &-21
&-;-2 1 AfI&
= '8>?7A@ B
m ;&- -2 1 F 9G H &-;-2 1 AfI&
= '*>?7R@CB = '8>?7A@ B
m EDM &-21 F G9H 4 3 ¢ ')O(8 7! % D R ;- F3 m G #- R ;- F m G9H &2- 1 &2- 1 & h7A@ B
= '*>h7A@ B
m - R & 1 2- 1 -; F IG H > 7R@CB = '*?
1.7. The Generalized Fresnel Integrals S(z, ν) and C(z, ν) 1.7.1. Derivatives with respect to the argument 1.
2.
3.
fI ; ') 0 3 (: 7X! % f# -; -; 3AfI& 3 - -; AfI& &-21 &-21 m D &-21 F GIH 43 ¢ &-21 ')(: 7! % f V - -21 D R -; F3 m G 3 - R ;- F m &-21 &2- 1 0fI ') (:7X! % 3 f# -;
&;- -2 1 3AfI&
,9N
-
&;--2 1 AfI&
= '*>?7R@CB G9H = '*>?7R@CB = '*>?7R@CB
4.
m EDM & -21 F G9H 7! % m 43 ¢ &-21 ')(: fV - 2- 1 D R -; F 3 G 3 & -21
m - R & -;-2 1 F 9G H ' >?7R@CB =*
1.8. The Incomplete Gamma Functions γ(ν, z) and Γ(ν, z) 1.8.1. Derivatives with respect to the argument
fI& 0 3 ¢ fV -; - & -;-2 1 fI& m 3 ¢ 3 ¢ f# - -21 -R -; F m 2. EDM &-21 F GIH &-21 ¢ < ¤ 43 - -; fI& 3. - fI& 0 m -21 F ?7A@ B
1.
11. 12. 13. 14. 15. 16. 17.
G
G ¤ ¤
m F G ¤
fI& 0 ; 43fI fI& ¤ m m ED &- R PED a -21 F GIHOH 3fI -;&-21 R F G ¤ -21 - ?7A@ B &-21 ¢ _ ¤ 3 - -; - fI& m GIH -21 F ?7R@CB F m G ¤
7 ' m ¢ ED &-21 F IG H J $ LF G F G &m m m . ED -21 F GIH F G - + -21 F G ¤ ( 7X! ' m m m ¤ . EDI+ &- a 1 F GIH F G &-21 -;&-21 F G 7 m m m . EDI+ &- -;&-21 F GIH F G &-21 -;&-21 F G ¤ m . EDI+ &-21 a 1 F GIH m ¤ 43 ¢ / 8F m G a 1 -21 a F m G G F 1
-;&-21
m ! '#" &-21 &-21 fI& 0 &-2 1 = '8>?7A@ B m
14.
N1
,9:
16. 17. 18. 19.
20. 21. 22. 23.
24. 25. 26.
27.
( 7! ' £ = '8>?7A@ B D -21 R &-21 F 9G H If &-21
- R m ! '#" &-21 fI& &-21 fI& 0 &-21 £ fI& ¤ m ! ']" &-21 0fI& &-21 fI& 0 &-21 £ fI& = '8>?7A@ B m ! '#" ¢ a &-21 fI& 1 -; fI& 0 3 1 &-21 £ fI& = '*>?7A@ B m ! '#" ¢ &-21 0fI& 1 -; fI& 0 3 &-21 £ fI& ¤ m ¤ m ( 7X! ' £ m D -21 &-21 F GIH fI &-21 - m m m ( 7X! ' £ ED -21 &-21 F GIH = '8>?7A@ B fI &-21 - ' m 0f;/ F G 43 ¢ J $ L a f;/ -; a 0f;/ ¤ m ']" . £ &-21 & -21 0f;/ = '8>?7A@ B I+ &!- & &-21 f;/ m ']" . &-21 1 -; 0f / 3 I+ &-!& &-21 £ f / = '8>?7A@ B &-21 &-21 0f;/ 1 -; 0f;/ '#" . m £ '*>?7R@CB I+ &!- & 1 -; f;/ = m '#" . £ ¤ &-21 0f / a 1 0f / I+ &-21 a 1 f / ( 7X! ' m m . a D -21 & -21 F GIH
+ f F & 2 1 1 &-21 G '*>?7R@CB = % ' & ( X 7 ! m m . D -21 1 -; F GIH f &-21 - + a 1 &-21 F G = '*>?7R@CB m m D -21 &-21 F G 1 -; F G9H ' m ¤ ( 7X! f &-21
- + a 1 . 1 -; F G
m
28.
29.
30.
,
h7A@CB
G ¤
+ (
11.
. EDI+ &- . D + &-21
12.
13. 14. 15.
16.
17.
m F -;&-21 m F
-;&-21 3 / *F
7 m G9H F G &-21 -;&-21
m F G ¤
G9H
m a 1
m G -21 a 1 F G ;- &-21
m ! '#" ¢ a &-21 1 -; fI& 0 3 1 &-21 m m ! '#" D -21 R 1 -; F GIH 3 - R m ']" . ¢ a &-21 1 -; 0f;/ 3 1 I+ &!- & 1 -; £ f;/
m F G ¤ = '8>?7A@ B = '8>?7A@ B = '*>?7R@CB
&-21 &-21 0f;/ 1 -; 0f;']/ " . 3 ¢ a 1 m '8>?7A@ B £ I+ &-!& & -21 f;/ = &-21 0f;/ a 1 0f;/ '#" . 43 ¢ a 1 m £ ¤ I+ &-21 -;&-21 f;/ m m m '#" . ED -21 1 -; F GIH 3 - + a 1 1 -; F G = '8>?7A@ B m m D -21 &-21 F G 1 -; F G9H ']" m ¤ . 3 m - + a 1 &-21 F G m m ED -21 &-21 F G a 1 F G9H m ¤ 3 7 f &-21 - + a & . F -;&-21 G &-21 &-21 0f / 1 -; 0f ']/ " . 3 ¢ a 1 m £ '8>?7A@ B I+ &!- & &-21 f / =
18. 19.
20.
21.
22.
&-21 1 -; 0f;/ & -21 0f;']/ " . 3 ¢ a 1 m £ I+ &-!& &-21 ;f / 3 N
= '8>?7A@ B
, 3 8 , 3 8
23.
24.
25.
26.
&-21 &-21 0f;/ &-21 0 f;/ ( 7X! ' . f &-21
I+ &-!& 1 -; &-21 0f / -;&-21 0f / ( 7X! ' . f &-21
I+ &-21 a 1
£ f / ¤ £ f;/ ¤
a 1 0f;/ 1 ;- 0f;/ '%& ( 7X! f &-21
I+ &-21 . a £ f;/ ¤ 1
m m D -21 &-21 F G &-21 F G9H ]' " m ¤ m a . - + 1 1 -; F G m m ED -21 1 -; F G &-21 F G9H ']" m ¤ 3 m a . - + 1 &-21 F G m ¤ m m m '#" a . D -21 &-21 F G -;&-21 F GIH - + & a 1 F G m m ED -21 a 1 F G 1 -; F G9H ']" m ¤ . 3 m a f
+ F & 2 1 & a 1 G
27.
28. 29.
1.11.2. Derivatives with respect to the order 1. 2.
" "' ' M ]! % 3 ¢ & ¢ & -21 $&J % ')L ( $ ! & ¤ M]! 3 0& 43 ¢ M! ¤
1 1
2?7R@CB 2 m m m 7 ' $ L F G F G ¤ G 10. D &-21 F G9H F 3 J &m F]3 m G - + . -21 F m G ¤ 11. ED -21 F G9H ( 7! ' m m . &-21 -;&-21 F m G ¤ I G H G F F 12. EDI+ &- a 1
( 7X! ' m m . &-21 -;&-21 F m G ¤ I G H G 13. EDI+ &- F F -;&-21
m . 14. D I+ &-21 a 1 F G9H m ¤ 3 ¢ / *F m G a 1 -21 a F m G F G 1
-;&-21
m ! '#" 15. &-21 &-2 1 = '8>?7A@CB &-21 0fI& m ! " '#" -;&-21 £ ¢!!£ fI& ¤ 16. k &-21 - a 1 fI& 5n'65 5n'65 1 L £ J 17. k &-21 fI& fI # -21 5_ 7X! 1 N 1 5_7 m 1 ¤ ! ' ( X 7 ! m £ fI &-21 - R '8>?7A@CB I G H F = 18. ED -21 R
&-21 m ! " '#" £ ¢) m ¤ m ¢ G F 19. D -21 V - R a 1 H 43 7 m 20. ED R F GIH 5n'65 #$ 5n'65 1 ¤ 3 ¢ £ fI # - -;&-21 J 5_ 1 7XL! N 1 1 5_7 ! 7.
3 3
+ (
21. 22. 23. 24. 25.
26. 27. 28.
29. 30.
m ! ']" &-21 0fI& &-21 0fI& &-21 £ fI& ¤ m ! '#" &-21 0fI& &-21 0fI& &-21 £ fI& m ¤ m m ( 7! ' £ ED -21 &-21 F GIH fI &-21
- m m m ( 7! ' £ D -21 &-21 F G9H fI &-21 - m ' V f / F G J $ L a 0f / -; a 0f / ¤ m '#" . £ &-21 V& -21 f;/ 0 I+ &!- & &-21 f;/ m '#" . £ &-21 V1 -; f / 0 I+ &-!& &-21 f / &-21 &-21 f;/ 1 -; f;/ ']" 0 . m £ I+ &!- & 1 -; f;/ m ']" . £ &-21 0f / a 1 f / 0 I+ &-21 a 1 f / m ED &-21 F GIH F3 mG -; -21 ' $L a F m G a -; KJ ' ( 7! m m . D -21 V& -21 F G9H f &-21
- + a 1 &-21 F G ( 7! ' m m . a
+ ED -21 1 -; F G9H f F & 2 1 1 &-21 G
31
= '8>?7A@CB = '8>?7A@CB
= '8>?7A@CB = '8>?7A@CB = '*>?7R@CB ¤ F m G ¤
31.
= '*>?7R@CB
32.
33.
m m ED -21 &-21 F G 1 -; F' GIH m ( 7X! f &-21
- + a 1 . F 1 -; G m m ED -21 &-21 F G a 1 F GIH ' ( 7! f &-21
- + a & . a 1
34.
395
= '*>?7R@CB = '8>?7A@CB m
F G ¤
35. 36.
37. 38.
39. 40.
41. 42.
0fI& F m ED &- - R PED a &-21 R F GIHOH F 7 G 7 &- P - 0fI& F 3 a - P -
7 G £ fI - 0fI& ¤ m £ fI - ;- &-21 -R F G ¤ G 3 £ fI - fI& ¤
m ED a R ED &- 2- 1 V-R F GIHOH F 7 3 G 3 £ fI -;&-21 R F mG ¤ 7 £ &- - @CB $&J % ')( $ ! H- & = Q
3.
4.
5.
M]!
3 ¢ a 1 0& #' " ; - "' ¢ 4 3 &
! _!¡
H
L
H
"" ' ' % & -21 ( L 3 J$&% ' ( $ !
H M! 1 * Y C £ & 3 £ & 0
£ & 3 £
H
- & = Q> @CB
0& = = @ B #O !C@CB
H M! *
1 Y £ & 3 £ & 0&3 £ & @CB 9 $ ( ! '#" "' L M]! ¢ 3 &
¡\ !
; - ""' ' % & -21 ( L 3 $&J % ')
( $ ! L- 0& = Q> @CB 7 7 L M]! £ £ 0& 3 F
C ,G - & ?7A@ B m ! / fI H = &-21 D m m 10. ED &-21 A F
0 I f & 3 &-21
&-21 fI& G9H '#" ! O ) ' 8 ( 7 ! m £ '8>?7A@ B / fI H = &-2 1 D m m
11. D &-21 F
&m -2 1 fI& m 3 &-21 fI& G9H # ' " ' (87! m ! £ fI / £ fI &-21 D / O')(87! £ fI / £ fI H ¤ / 3 m m
12. D &-21 F
&m -2 1 fI& m &-21 fI& G9H ] ' " O')(:7X! m ! £ fI / £ fI &-21 D / O')(87! £ fI / £ fI H ¤ / m ']" . f < 3 f I +
13. k &-21 / / & ! & ( O ' ! % m m -; 1 ( L ' J
. E S a j
+
S 13. ED 0 3hf F ( m GIH 1 43 ¢ 5n% '! % 3hf9
- + SEa a 1 . j SEa F ( m 3.
;
?7A@CB 0 I f & = -; 7 ¢ F G -;&-21 0fg3h& ¤
3h
S -; m m , 3 f9
S -;
m 5 S -; ) m (8 , ! % ( O'! % f9 5 m S -; ) ( m ,
= > 'I@ B = > 'I@CB
m
D0 f 3h S S F m (8 GIH m (*! % '! % 0f 3h S -; S > I' @ B F (8 G = m
- m
a 1;D0 f9 3h
S S:F m (8 GIH ! % m (* ' 5 R7 @CB O')(:7X! % ; f9 3h
S -;&-21 S - &- F m (* G = > g ;9P
+ (
m
ED0 f9 3h
SEa 1 SEa 1 F m (8 GIH m (* 5_'g75 ! % 7! % f9 3h O S ;- a 1 S m (8 a F
- 1 S 8. ED0 3hf9 O - S:F ( m G9H ')(:7X! % . 3 5n(: 7X! % 3hf9
- + SEa SEa F ( m G S S 9. EDM &- -21 3hf9
S F ( m GIH
(*!O% '! % f9 - S -21 3 f9
S -; S ( m F
- a S S 10. 1;D &- 0 3hf9 O S F ( m GIH
! % 3 (* ' (87! % f9 a
- S -21 3hf9
S -;&-21 S - &- F
P1
7.
= > 'I@CB G
= 5n'*>?7R@CB G
= > 'I@CB
( m G ' 5_7R@CB = > 6
ED &- S - 0 3hf9
SEa 1 SEa 1 F ( m GIH ( O5_'67X5_! % 7X! % f9 - S - 0 3hf9
S -; a 1 S a F ( m G
- 1 = > 'I@ B m 5 S 12. ED &-21 PED fT3h& S:F m (8GIHOH £ - (*!O% '! % -21 ] fg3h& S -; S F m 5n * ( G = > 'I@ B m -; m 5 S a S 13. D 1 D &- -21 fg3 S F m (8 GIHOH (*! % '! % F m G - S -21 fg3h& S -; S F m 5(8G = >_'I@CB -; m m 5 S a 14. ED 1 PED -21 0fg3h& - S8F m (8GIHOH £ - £ fT3h - S -; SEa F m 5(8 G ¤
m SEa &-21 fT3h& - S S F m 5(8 GIHOH 15. ED &-21 PED m £ - £ f S -21 0fg3h& - S -; SEa F m 5(8 G ¤
m £ fI a 1 0fI& = > 'I@CB 16. ST0fI& S -; 11.
: N
17.
18.
5 m n S ; f9 3h
S ) m (* , 5n ! % (* '65n ! % ;0f9
m S S &- - f9 3h
S ) m 5nO! % (* '65nO! % f - S - 0f
T n (z )
3h
S ;- S ;- 5n (* , 3h S -; S -;
U n (z )
m 5 ) m (8 ,
= > 'I@ B
m 5 ) m (8 ,
= > 'I@CB
m
D;0f h 3 S S F m (8 9G H m (*O5_'675 ! % 7! % ; f9 3h O S -; S F
- m (* G SEa 1 SEa F m (* G9H 20. ED;0f9 3h
1 m 5:O! % m (* O'65n ! % ; f9 3h
S -; a 1 S - a 1 F m (8 G S 21. D 0 3hf - -21 S F ( m GIH 43 ¢ 5n% '! % 3hf9
- + SEa . -21 SEa F S S 22. ED &- - 0 3hf9
S:F ( m G9H
( O5_'67X5_! % 7X! % f9 - S - 3hf9
S -; S
- F ( m G S - & 0 3_f SEa 1 SEa F ( GIH 23. D &- ! m
1 ( O58' O58! % O! % f9 - S !- & 0 3_f9
S -; a 1 S a F (
- 1 19.
24.
25.
26.
m 5 D & -21 P D &- S 2- 1 fg3h& S S F m (8 G9H H m S m 5nO! % * S ( 'g5:O! % F G - -!&4 0fg3h& -; S -; F m m 5 D a 1 D 0fg3h& S S F m (8 GIHOH 5:O! % m £ - (* O'65n ! % 1 fT3h& S -; S -; F m m 5 D a 1 D SEa a 1 0fg3h& - S - S F m (8 GIHOH 5:O5_'67X5_! % 7X! % F m G SEa 1 fg3h& - S -;&
:1
= > 'I@ B = > 'I@CB ( m G ¤ = > 'I@CB m G = >:'I@ B
5 (8G
= > 'I@CB
5n (* G
= > 'I@ B
m 5 ¤
ES a F m 8 ( G
+ (
27.
,9N1
m 5 ED &-21 PED 1 0fg3h& - S - : S F m (8GIHOH ' 5 7! % ¤ £ - 5n 5_g S -;&- ES a F m 58 7 ! ( G % g f h 3 & m
1.20. The Hermite Polynomials Hn (z) 1.20.1. Derivatives with respect to the argument
% £ * ( '! % fI S -; 0fI& = > 'I@CB 1. ST fI& 0 2. -21
7
ST0f / 4 3 ¢ SEa £ S _ F 3 G -;&-21 S-;&-21 0f9
& ¤ 3. SEa 0f;/
1 3 ¢ SEa £ SEa 1 ? F3 7 3 G fI -; a 1 -; a 1 0f & ¤ S ! % S S T f;/ 0 (* '! % - S -21 S - 0f;/ = > 'I@CB 4. &- -21 S 5. &- -!&4
SEa 1 f / 0 5_7X! % (* '65_7! % - S -!&4 S - a 1 f;/ = > 'I@ B m % m ( '2! % 43 £ fI -;&-21 S -; F G = > 'I@CB 6. &-21 S F G m S S:F m GIH 43 ¢ ( !O% '! % S -; S = > 'I@CB 7. EDM
- F G SEa 1 SEa F m GIH 8. DM
1 m 3 ¢ (* 5_'67X5_! % 7X! % S -; a 1 S > 'I@ B a F
- 1 G = 7 m m ¤ ¢ £ _ S S 9. DM &-21
F 3 G -21 S-;&-21 ) ,
S F GIH 3
m 10. ED &-21
SEa 1 F G9H 3 ¢ S £ SEa 1 _ F]3 7 3 G fI -!&4 -; a 1 m ¤ S ) , W W W W 11. ED - S 0fI& H 3PfI - SEa fI& ¤ W W W W m m S F G9H f -;&-21 - SEa F G ¤ 12. D &-21 - :,
13.
14.
15. 16. 17.
18.
19.
20.
W
# . '/
ST0f;/ H 3 ¢ S £ S -I&-21 - W -;&-21 f9
& ¤ ES a W ED V- SEa 1 0f;/ H 3 ¢ S £ SEa 1 fI -I a 1 #- W -; a 1 0f & ¤ SEa ' W W ( X 7 ! D SEa &-21 - ST f / H ' S -21 - SEa 0f / ¤ W W ( 7X! ' S E S a ' V- SEa a 0f;/ ¤ D V- SEa 1 0f;/ H
1 W m D &-21 - S F GIH 3 ¢ SEa £ S -1 - W -;&-21 m ¤ SEa ) , W m ED &-21 - SEa 1 F GIH 43 ¢ SEa £ SEa 1 fI - &4 - W -; a 1 m ¤ SEa ) , W m S D - -21 - S F G9H 7 ' - S -;&-21 - W SEa F m G ¤
W m ED - S -21 - SEa 1 F G9H 7 ' - S -;&-21 #- W SEa a F m G ¤
1 ED -21 -
1.21. The Laguerre Polynomials Lλn (z) 1.21.1. Derivatives with respect to the argument 1. 2. 3. 4. 5. 6.
(Q(*')(:7 '65_7 c & c 0& c & 'I@CB
¤ Sc -; 0fI& Sc -; fI&
= > I' @CB = > 'IC@ B
+ (
m m EDM &- c -21 Sc F GIH 3Pd 3 - c -21 Sc -; F G ¤ m ¢ m S 8. DM Sc F GIH 4 3 43Pd 3 S -; Sc -; F G 43fI - c a fI& ¤ 9. - Sc 0fI& S n 5 ' ! % c -;a fI& ¤ 10. c - Sc 0fI& % c -; - SE a2SEa - Sc fI& 0 5n% '! % c a2S - SEc a fI& ¤ 11. c m m ¤ a 12. &-21 - R Sc 0 f - R Sc F G 5:'! % m ¢ G 3 % - c -21 -R SEc -;a 13. &- c -21 -R Sc F m S 14. - c - -21 #-R Sc F G 3 ¢ 5n% '! % - c - S -;&-21 -R
, ,
7.
= > 'I@CB
m F G ¤ m ¤ SEc a F G
1.21.2. Derivatives with respect to the parameter 1.
-/' M! & -21 7 ')( $
= @ B
c &
1.22. The Gegenbauer Polynomials Cnλ (z) 1.22.1. Derivatives with respect to the argument 1. 2. 3. 4. 5. 6.
7.
S c 0fI& £ fI 0d2 S c a -; 0fI& = > 'I@CB &c a2SEa &-21 c S 0f;/ 0d2 &c a2S -21 c S a f;/ ¤ c a2SEa &-21 c SEa 1 f / 0 d2 c a2S -21 c SEa a 1 f / ¤ &- S -21 c S 0f / 0d2 - S -21 c S a - 0f / = > 'I@CB &- S !- &4 c SEa 1 0f;/ 0d2 - S -!&4 c S a - a 1 f;/ = > 'I@CB 5n'! % 5nO')(:7X! % % (87! % % SEa &-21 ¢ 3hf & 4c -21 c S 0f;/ £ -; % 7 Y C7 ( &! ' S -21 ¢ 3hf9
& c -;&-21 c SE-;a f / ¤ n 5 ' ! n 5 O 6 ' _ 5 7X! % % % 5 7! % % SEa ¢ 3hf9
& c -21 c SEa 1 0f;/ £ -; % 7 Y C7 ( &! ' S ¢ 3hf9
& c -;&-21 c SE-;a a f;/ ¤ 1 :95
0 ' /
£ fI d2 -;&-21 c a F m G = > 'I@CB S -; m S c F ¢ 3 G9H 9. (* 6( ! ' m C7 ( &! ' &- c fT3 £ & c -;&-21 ES c -;a F ¢ 3 G ¤ 5 m 5 £ m n ( G
d2 f 0fg3h& -;&-21 S c a -; F m * 10. D 0fg3h& &-21 S c F m (8 GIH = > 'I@ B m 5 11. D&c -21 fg3h& &- c S c F m (8 GIH &! ( ( 43 ¢ 5n% '! % Q(*J O 1 '! ( L ' c -;&-21 fT3h& &- .c c -; F m 5(8 G ¤ &(' SEa m m 3 ¢ S d2 S -; c a F m G S = > 'I@CB 12. D c S F GIH
S - SEa 1 c SEa F m GIH 3 ¢ 0d2 S -; a 1 c S a a F m G 13. ED
1
- 1 = > 'I@ B m S 14. D - c - 0Q3hf 4c -21 c S F GIH
7 3 £ -I 5n% '! % 5nO(8')7(:! % %7X! % % C7 ( &! ' - S - c Y 0Q3hf c -;&-21 c SE-;a F m G ¤
m S 15. ED - c - -21 0Q3hf9
c -21 c SEa F G9H
1 43 £ -; 5n% '! % 5n 5_'67X5_! % %7! % % C7 (7 9! - c - S -21
' Y 0f9 3h& c -;&-21 c SE-;a a F m G ¤
1 5 m S S 16. D 0fg3h& &- -21 S c F m GIH ! ( C7 (* Q( ! ' 5 m . C( 7 9( > 'I@CB Q( ! ' (9! ( "' f
I+ S -; fg3h& - S -21 S c F -; m G = a2SEa &-21 S c F 5 m GIH S 17. ED - c - 0fg3h& c m n 5 ' ! % 43 ¢ SEa . fg3h& c a2S -21 SEc a F 5 m G ¤ %
+ f c m S 18. ED 0 3hf9
- c - S c F ( m GIH 3 ¢ 5n% '! % 3hf9
- c - + SEa . c F G ¤ SEa ( m 8.
m EDM &-21 S c F IG H 43 DM &- cI fg3 £ & 4c -21
£ -; 5n% '! % C7
:;
+ (
, , ,
1.22.2. Derivatives with respect to the parameter 1.
2.
' / M! 5n')(* $ d2 3 d2 c & $ ( 5n')( $ ! &c - & 1 = = @ O!C@CB 7 D F d 7 G 3 Fd G 3 £ £ d2 £ £ d £ H c & '#")" $ 5 9! & -21 7,5hC( 7X! £ ')( $ ! P5 $ 5:'! c & = @CB
3.
4.
£ £ d2 'I@ B 0fI& ¤
&' 3 465 78
. M ¢ 3hfI& ¢ If & j S + l5n 0fI& 43 £ If % '! % ¢ 3hfI& -; ¢ fI& -; j + -;9lV-; . fI& ¤ SEa ¢ SEa a ¢ fI& j S + l . fI& 10. M 3hfI& 43 £ fI 5n% '! % ¢ 3hfI& a2S ¢ fI& -; j + lV-; . fI& ¤ SEa . ¢ a 11. M fIQ3 j + lC-;&-21 fI& m 5_7 ¤ 5_5 77! ! ' f fIQ3 ¢ a 1
, ' ) * . k a 1 j S + lM1 - S 5 -;7 ! ¢ ( fI(:
7X ! 12. ( (*'65_ 7! ( ' - a 1 j + -;9lM1 - SEa . ¢ fI
¤ S . m 13. ED &-21 j S + l F G9H - ¢ F3 mG -;&-21 j + a 9l a . F mG = > 'I@ B S -; . m 14. &- -21 $ f9 j S + l F G . m f 4 3 83 - -21 0 fI -;2j S + a 9l V-; F G ¤ . m S S 15. D 0 fI &- -21 j S + l F GIH f 3:3 S -; 0 fI - S -21Oj + a 9l . F m G = > 'I@ B S -; S fI a a2SEa j S + l . F m G9H 16. ED - - V- -21 0 . m 43fI ¢ - - V- S -;&-21 0 a a2S j S + a 9l F G ¤ I f . m a 17. ED - - &-21 Q3hfI 0 fI j S + l F GIH . m £ fI 5n% '! % - - a &-21 0Q3hfI -; $ fI V-; j SE+ a -; 9l V-; F G ¤ . m SEa a S 18. ED - - V- -21 0Q3hfI fI j S + l F GIH £ fI 5n% '! % - - V- S -21 0Q3hfI a2S fI V-; j + l -; . F m G ¤ SEa . ¢ m 19. ED &-21 j S + l F 3 G9H F mG ¢ -I&-21 j + a 9l a . F ¢ 3 mG = > 'I@ B S -; 9.
:
'I@ B m . ED - - V- S -21 j S + l F ¢ 3 G9H 43 ¢ ¢ - - V- S -;&-21 j + l a . F ¢ 3 m G ¤ S m . ED &- -21 j S + l F ¢ 3 GIH 3 ¢ 3 ¢ - -21 j + -;9l a . F ¢ 3 m G ¤ S m . ED S 0fg3 £ & j S + l F ¢ 3 G9H m . £ 3 83 S fg3 £ & -; j S + l V-; F ¢ 3 G ¤ m . ED S 0fg3 £ & &- S -21 j S + l F ¢ 3 G9H . m f 4 3 83 S -; 0fg3 £ & - S -21 j S + -;a 9l F ¢ 3 G = > 'I@ B m . ED S 0fg3 £ & &- S - -21 j S + l F ¢ 3 GIH m . 43 £ 3 g3 S 0fg3 £ & - - S -21 j S + -;9l F ¢ 3 G ¤ m . D - - V- S -21 0fg3 £ & j S + l F ¢ 3 GIH £ 5n% '! % - - - S -21 fT3 £ & V-; j + l-; . F ¢ 3 m G ¤ SEa m . D &- - V-21 fg3 £ & j S + l F ¢ 3 GIH £ 5n% '! % &- - -21 0fg3 £ & V-; j + -;9l -; . F ¢ 3 m G ¤ SEa m . ED - - V- S -21 0fg3 £ & a2SEa j S + l F ¢ 3 G9H £ 5n% '! % - - - S -21 fT3 £ & a2S j + -;9l . F ¢ 3 m G ¤ SEa . m 5n ED a 0fg3h& j + lC- -;&-21 F m (* G9H 5 5_77X! ! ' f D a 1 F " ¢ 3 G9H ¤ ' m . 5 m D - -;&-21 63hf9 2j + lC- -;&-21 F E( m GIH 3 ¢ 5_5 77! ! ' - -;&-21 D a 1 F " ¢ 3 mQG9H ¤ ' : L
K
E
D
1.23.2. Derivatives with respect to parameters
' 3 465 78 M]! . £ ¢
7 @ @CB = ! =
(*')( (
7 @ @CB = ! =
!
1.26.2. Derivatives with respect to parameters
m ' 5! 7 L H SEa D1N 1Jg 5n% ' ' % ! %
1.
a 1 ¢ ?7R@CB 3O 3P& - 3P& " 7#7 ¤ 7 ( N ( ! L J m! D J ' L H S 36 # J ' ! L " ( &- S -21 ')( (87 ¢ $ L 3 - (:7X! % J ( ! " ( &- S -21 ')( (:7 ¢ $ 3 (:7! % J L 3 43&
2.
3.
<
?7A@ B
!
= '8>?7A@ B
9 = '*>?7R@CB
I = '*>?7R@CB
O
= '*>?7R@CB
Z
7.
m 5 0f O m 0 f O 7 Z 3
& -21 0f O 3 m
31 , Z
m 5
f O ¤
3.2. Special Functions 3.2.1. The Bessel functions Jν (x), Yν (x), Iν (x) and Kν (x)
4-4# $ Z 3 a a 1
1. 2.
3.
4.
5.
6.
= " £ a a 1 ( 9$ 7% ! F G a a ¤ & - 1 Z £ (*'65_7 G &- a a 1
F ( '65_7 Z £ * G F a ¤ '& Z ¢ a 1 5_7X! £ X a 1 ¢ ¢ 3 ¢ X a 1 1 £ 3 1 a 1 ¢! ¤
3 ) ¢ ! ¢ ! ¡ \ ) ¢ & Z 3 3 £
£ ¤ 3 1 Z 3 £
£ ¤ 3 1 7 Z " ! " ! ! F !6G 3 N F !6G = ! !C@MB
7.
Z
8.
Z
9.
Z
10.
Z
! ! F !G
']" = !C@ !C@ ' & = " '#" = !C@ !C@ ' & 3 =
7
&-21
! F V! G ! ! D " !H ¤ ! ¤ !H ' 7 ¤
2- 1
N ' O' D
N,
= ! !C@MB
11. 12. 13. 14. 15. 16. 17.
18. 19. 20.
21.
22.
23.
24.
7 -; &-21 a 1 3 ' -; ¤ Z " ! ¤ !
Z '& ! 3 ¤ !
' !& ! Z !& !C@ ']" = O' D " ! H ¤ 2 -21 0 = " !C@ '%&
Z 7 ! ! ! 3 ¤ D !H Z 7 !C@ 7 '& ! ! ¤ = " ! !& !
" '#" Z = !C@ ! '%& ' ! !7 ( ! ! ) 7 ! ! Z 3 8 3 8 3 N ! , ! ) ! ,
) 7 Z 3 8 ! 3 8 ! ! ! ,
N ! , ) ) 7 Z 3 8 ! 3 8 !
N ) 3 8 ! , = 3 8 !C@ ) 3 8 ! , Z & -21 (65_7 G - a a 1 £ F Z (65_7 £ G F " ' (
! Z 1a - L' J
(65_7 Y Z a 3 £ &- F 3 G -; &1 Z V ?7A@CB
£ If
£ If 0&3 ¤
£ £ fI
£ / £ fI ¢ ¤
f
0f
£ If 3
£ If 0 ¤
f
0f
£ If 3
£ If 0 ¤
31
+
Z
92.
93.
Z
94.
Z
f
f
] f
f
¢ 3
£ If 3
.
+
0f f
5) ;
£ If 0 ¤
£ / £ If ¤
£ fI ¤ 4
4.1.5. The logarithmic function
1
1.
Z
2.
Z
3.
Z
1
1
(
7
(
7 7 D 3 F £ G F £ G 3 F £ G F £ 9G H ¤
7 ¤
(
3
S Z " 1 V7#7 #$ ¢ 7 m &C7 ( ! !
"
@CB
¢
@ B
@CB
B
B
B
#$ 1 # 7 # 7#7 ! (
m N & # 7 ( # 7
# 7 ( # , 7 5 ! &
" V7#7 #7V7 #$ Z 1 ! m N & V7 ( #7
Z m 5 m ( F £ f 7 G / f I
7 ¢ &C7 ( f * m 3 / f I 3 f = m ! Z m 5 m ( -!&4
/ f / f g3 7
2.
1 -21
Z
!>
m 5 & L
! 5 7J ! 5n
f
7 5_7 5 Y N 5n 5n & 3 ¢ N
m &
&
! 7 #7 #7 5 ¢ #' N & 5n /
7 #7 5 & n 5 m ! & = C7 ( m ! @ B m!
4.3. The Sine Si (z) and Cosine ci (z) Integrals 4.3.1. Integrals containing Si (z) and algebraic functions 1.
m m 0fg3 £ / f F #" G 3 £ m m m / f D 1 F #" G H F#" G 3 F #" G H1 F #"
Z
-21
/ £ 1 F#" m GIH
m
G
=m
@CB
4.3.2. Integrals containing Si (z) and trigonometric functions 1.
7
Z
£
m ( !
£
m
D fI
2.
3.
m ( !
Z
£ 3
f
4.
" " 5n ! - a & a a & J L J
Z O' ! 0f
m
m m F G m 0fI H F G
m m 3 F G m m m D fI Z
12.
!>
" " C7 ( !
7( 5 7 ( ( Y F G F G &N
W #$ ;1 - a ! ( 1- # 7 (
=
1 1;- & &
7R@CB
4.3.3. Integrals containing Si (z) and the logarithmic function 1.
Z
-21
Y
2.
Z
Z
¢ N & m 5 m (
m 5 m (
&
3.
& m 9a 1 L 5_7X! J 5_7
L J W W W W #$
#$ 9a 9a 9a 1 1! ( 1 1! ( 3 N & 5 7 9a
& & 5_7 & &
= m ! ( 7R@CB m £ f # f 0f O 3 0f O
1 ¢ 0f9 3 1 f O H 0f O 3 0f O H1 f O 0 = m @ B
m 5 m (
m ] 1 0f O £ f # f ]0f9 ¢ 0 f O 3 f9 m f 2 1 f O H 0f O 3 0 f O H1 f O 0 = m
@CB
4.3.4. Integrals containing Si (z) and inverse trigonometric functions 1.
1 -21
Z
0f
m 5_7 L ] 5_7! J 9 a & L J
3 £ f
m
2.
1
Z
&N
1 9 a 1 5_7 ! (
& & 9a & 9a &
W #$
=
( 7A@ B
£ 0f9 ¢ fI 3 £ f fI 1 ¤ f9 ] 1 fI H 0fI 3 0fI H1 0fI L 3
+
5) 31 ;
4.3.5. Integrals containing products of Si (z) and ci (z) Z
-21 £ 3 £ 0
" " V 3 ¢ 0
7?7A@ B
=m
@CB
# #
Z
21.
43 ¢ Z
-21 j ) " ¢ ' (87! % a 1 1 J L' " 7( m (
5) 5) ,
3 0fg3 ,
m m m F G 1 * j ) * , 3 j a 1 ) * ,
" ¢ 3 0f63 ,
j a ! 1 ) 43 ¢ ' % j a
1 &L ' J
7,5 m ( ! Z 3 j ) 7( m ( ! ,
-21 ¢ 3 0fg " ' 3 ' % -21 ] f 3 £ a 1 j a
1 ) * & J L'
22.
23.
Z
-21 fT3 -!&4 j
24.
W
Z
-;&-!&#-R j F G
25.
=m
@CB
m , ) *
=m
m m (* ,
=m
@CB
@ B
0f63
¢ 3 m 43 ¢ / £ J 1' L % ' j
*
"' " m ' & V -R W F m G
=m
@CB
= m
@CB
4.14.2. Integrals containing Pn (z) and trigonometric functions 1.
Z
0f j
f " 65_7X! 1 L ' 3 ¢ ' % 5 7 L J a 5_7 L - _ J J
(' ]'65 1 a 1 Y N 5 7 & 1 - _
, ,9:
0f £ £ f 5_7 #$ ! a 5_7
=
( 7R@CB
& '
" " 65nO! & L ' 0 f ¢ j a 1
43 ' % 2. a J a & L f - a &L
#$ J
( ' ] '65 5_7 J a £ & & ! Y 0f £ N = (X@ B & - a & a a & f &
'#" ' )(*'65_7! Z 1 0f G J L ' 5_7 j F 3. ' _ 5 7 a % f - - L - L J J
" # $ ( a _ 5 7 £ 1;- - 1 - ?')(:7A@CB ! Y 0f £ N =
* ( ' _ 5 7 a _ 5 7 & f - - - 1
(' '65 #$ m ! Z 1 & ¤ ¢ 4. f j 7 ( m &N
F G
&- & a ! (
SZ 0f j
5.
f ( ' ]'65 1 #7 ¤ 3 ¢ ' J 1% L ' m f £ £ N ! m f & 7 ( #7, 5
SZ 0f j
6.
f 3 ¢ m f £ £ N ( ' 7]( '65_V7?7 ! m , , ) & -21 ) m ( ! " Z " m ¢ ¢ 0f 3
j ) , =m 75 m ( ! a 1
0fg3 -21 fg3
& 5_7X! 43 ¢ m 5 &L &N
J
Z
@CB
@ B
( ' ]' _ 5 7 W 1 5 & !
=m
( 7 @CB
!
0fg3 -21 a fg3
1 ( ' ]'65_7 5 #$ '65_7! m & 5 & L 43 ¢ W &
& 5nJ ! & N
& 5n !
=m !
Z
@CB
9.
=m
10.
0fg3 -21 " ¢
) & 5_7! m 5 &L &N
J
" m ( ! Z a " ¢ , 7 5 ( !
1 ) m & 5_7X! m 5 &L &N
J
Z
11.
fg3 ,
(' ' ] _ 5 7 1 5 & (
!
fg3 ,
( ' ]'65_7] 5_7 1 5 & ! (
,9 3;
=m
=m
!
!
( @CB
( 7 X@ B
( 7 @CB
# #
5) !; ,
4.15.2. Integrals containing Tn (z) and trigonometric functions 1.
Z
0f
f " 43 ¢ - 5_7 L J
Y N
2.
£ g5 7 ! f a 5_7 L 0f £ J ( ' ' a 5_7 #$ 1 ! & 1 - 5 7 a 5_7
=
( 7R@CB
0f a
f 1 " ]" '65_7! g5n ! £ 3 ¢ 0f a a & L f £ - a &L J (' J '65_ 7 5_7 a #$ & ! Y N = ( & - a & a a & &
( ' ]' #7 #$ m ! Z & ! ( ¢ f 7( m N &
F G
1 &- & a
Z m ! a F ¢ G
< 7 5
1 ( ' ]'65_7#7 & ! ( 7 ( m ! N m & 1 &- & a
'#" ' )(*'65_7! Z 0f F G a - 5 7L f - - 5_7 L J J
" #$
( £ 1;- - a 1 - 5_7 ! Y 0f £ N = ( 0f & 7 (*' - - 5_7 a - 5_7
SZ 0f
f 3 ¢ m f £ £ N 7( ( ' ]' ##7
( ' ] ' #7 ( £ £ & N 7 ( # 7,! 5 ¤
G
m
f a F ¢ 7,5
1 0f m f £ £ m f 7 ¢ f ) 7
" ¢ 7
#$
!
@CB
m
4.15.3. Integrals containing Tn (z) and special functions Z
0 f a 1
1
1.
2.
1
Z
3.
1
Z
7! m m '65_ D V;- &-21 F G 3 # a 1 F IG H m = m
3 fI 1
-21 3hfI -21 j a 1 / E F#" m G £ f ¢ h
@CB 7R@CB
m = h
-21 3hfI -21 j a / E a 1 F#" m G £ f a 1 ¢ 3hfI 1
= hm
7R@CB
4.16. The Chebyshev Polynomials Un (z) 4.16.1. Integrals containing Un (z) and algebraic functions
j ¢ 3 £ f9
0f9 32
-21 3 ¢ P
1.
Z
2.
Z
3.
4.
0f 3 -21 3 -;&-21 F G
43 ¢ 3hf9
-;&-21 j a ¢ 3 m ,
1 ) *
=m
=m
!
m
@ B
7R@CB
&L ' 1 C7 ( ! ' & 3 ¢ J6 '
5_7X! % f - &-!& f9 ¢ -;&-21
5 m
= m @CB C7 ( ! Z1 ' 3 ¢ ' % J & '6L 5n ! f - &!- & f9 ¢ -;&-!&4
a
5 m ' &
1 = m @CB Z
,!5)
# #
5.
Z
-21 0fg3 -21 fg3
5) :1 ,
43 ¢ j ¢ 3 m , )
=m
@CB
4.16.2. Integrals containing Un (z) and trigonometric functions 1.
Z
Y
0f f
f £ £ 0f
43 ¢
( ' ]'65_7 a J
1 N & 1 - 5_7 a
" 65_7! 5 7L a 5 7L J 5 7 #$
! = ( 7A@ B _ 5 7
0f a
f 1 " '65_7X! g5:O! m 0f £ f £
' % a a &L - a &L J ( ' '65n 5_7 a #$ J
& ! Y N = ( @CB
a a a & & - & &
Z 3. f F ¢ G
£ ¢ m ! N (' 'g5 7 #7 ! ( ¤ 7 ( m &
&- & a
Z m ! a F ¢ G
4. < 7 5
1 £ ¢ 7 ( m ! N (' 'g5: #a 7 ! ( ¤ m &
&- & '#" (*'65 7!
Z 0f F G
5. a - 5_7 L
f - - 5_7 L ( - a J1 - 5_7 " J#$
£ ; 1 0 f ?')(:7A@ B ! Y = £ N
( ' _ 5 7 a 5 7 & f - - -
SZ 0f 6.
f 43 ¢ m f £ £ N (' 7 ( '65_#7,7 #5 7 ! ¤ m f &
,!5, 2.
Z
+ * '
7.
8.
SZ
SZ
0f f
£ m f f
7
f f
&43 ¢ 9.
SZ
7
10.
f 0f
11.
£ 12.
SZ
13.
SZ
7,5
7
f f
m
F m
( ' ]'65n #7 #$ £ 6 ' 5_7 1 ! ¤ £ m N & & 7 ( # 7,5 #
a 1
m f f
f 0f £
¢
f m f
f 0f
£
SZ
m
0f 0f
SZ
a 1
( ' ]'65_7 #7 7 #$ £ O '65_7 1 ! ¤ £ m N & & 7( #7< 5 #
m
F G
f f
¢
f 0f
( ' ]'65n #7 7 #$ £ 6 ' 5_7 1 ! ¤ £ m N & & 7( V7< 5 #
( ' ]'65n V7 ( #$ £ 6 ' 5_7 1 ! ¤ £ m N & & #7( V 7
G
O'9!! % ' ¢ 3 # - S m , ;9P
#$
¤
# #
17.
18.
SZ
SZ
19.
20.
Z
Z
22.
Z
23.
Z
24.
Z
"
7,5
Z
21.
-
c a F ¢ G
1 ( ' # : 5 'g5 7 1 #7 ( $# !' & ¢ '6& 5_ ¤ ! S 7X! % m 3 #- N & P 5 1 # 7( # ,7 5
7
¢
-
c
-
c a
1
"
-
"
-
5) P1 ,
c )
= m @CB
43 ¢ ' (9 ! '5 & 7 N ( ' P5n '6 5_a 7 # 7 ! % m &
D c F
-
¢
5) ,9N1
¢
D c F
¢
9! '
D ' % H N
G9H
"( 7( m
c
7 D ' 9% ! ' H N m
( ' ] '65n # 1 V7 ( #$ ! ¤ 5 1 ] #7 ( #7 2.
1
Z
¢ f;/ E K / 3 E
K
D f F m G 3 £ F m G F m G hf F m GIH ¤ 1 1
4.21.7. Integrals containing K (z) and erf (z) 1.
1 -21 0 f;/ E
Z
/ ¢ 3 E
5 5 m 5 1L ( m 1 1 1 ! J 5_7X! N 5_7 5 7 & & &
¢ 3
0f;/ E K / K
#$
=
2.
W 1 -21
Z
m 5 1L
7 5 1 5 1 m ! J 5_7! & N & & 5_7 5 7
#$
=
( 7 X@ B
( 7 X@ B
4.21.8. Integrals containing K (z), S(z) and C(z) 1.
1 -21 f;/ E
Z
/ ¢ 3
5 & 7 m L J 5 N * & J L K
2.
1 -21 0f / E
Z
/ ¢ 3
5 " m J 1 L N
5 & & J L K
W
& 5 & 5 & ! ( & 5 5
#$
=
( @ B
=
( 7 @ B
1 5 1 5 1! ( 1 5 & 5 &
W #$
4.21.9. Integrals containing K (z) and γ(ν, z) 1.
1 -21 f K / m 5 5 5 J
Z
!
¢ 3
5 5 ( m N & 5_7 5 5 1 ! 5 5 1 & 1L
, < ;
= 5 !
@CB
+
2.
1 -21
Z
f K / m 5 ! 5 5 1L & J
5) , N
¢ 3
7 5 5 m N & 5_7 5 5 1 5 ! 5 1
= 5 !
@CB
4.21.10. Integrals containing K (z), Jν (z) and Iν (z) 1.
1 -21
0 f;/ E f;/ E
Z
K
Y 0 f;/ E f;/ E
K
/
1 f;/ E
K
/
1 0 f / E
K
1
2.
Z
3.
Z
4.
Z
5.
Z
1
1
1 -21
f
1
Z
7.
Z
8.
Z
0 f;/ E
f;/ E
N & 5
5
a
/ ¢ 3 m H fI ?7A@ B N 1 J 6 £ f 3 £ If £ f 0fI 3 £ ;- £ 0f 0f$ ¤ - T 1 3 N P
+
¢ '$ L 3 J 1 m !" ¢ 9. $&% !" 10. $&% O m !" ! 11. " fI ( 7 5_7X! K3 ¢ m
F £ 3 '7 G
8.
7
m
C
;
7 F¢ 3 ' G
= '8>?7A@CB
¢
m 5 7 ! ' ' % m f ¢ ?7A@CB 5_7')! (: 7X! 5_% ' 7% ! ' ']" 3P& & -21 0& = 9.
5.2.2. Sums containing products of γ(ν
k, z)
' $ L 1 & - £ 3 1 3 & J * W #$ '& ' '65 1 '65_7 5n' £ ! ¤ ! ' & 5n'! & N a 1 5n' 5:'g5 7 5n'6 5 7 1
a 1 O'65_7 £ ¢ 2. & 3 3& nJ $ L W #$ '& 8 '& '%& '65 & '65n 5n'65_7 3 ¤ £ £ ! 5n'65_7! N ! '& & a & 5n' 5n'65n 5n'65n &
5.2.3. Sums containing Γ(ν k, z) ' 1 & - 77( ( 5n ' L ¤ $ L 4 3 & T3 1. ! J J ' ¢ 1 ¢ ¢ '8>?7A@CB 2. J $ L 3 ; T3 & 3 &-21 3 -; V- & -;-2 1 & = C7 ( ! " ' % a '65_7 ¤ ' C 7 ( * ( ' ! ! 3. & " 3& T3 ' V- J 5:'g!5 7 L J $ L ')(:7X! % ¢ ' 7 ! " 1 & 3 ! ' - & -21 & $ 4 3 L = '8>?7A@CB 4. J 1.
313
+
; 31
5.3. The Bessel Function Jν (z) 5.3.1. Sums containing Jν
nk (z)
1.
( &$'% ! " £ & - a 0& * -; 1
2.
( &$'% ! " 43 £ & - 3 ¢ & * &- -21
3.
!" ' £) n 5 ' 6 _ 5 X 7 ! $ L a a " 0& 1 F G J ;
4.
!" ¢ ' £) ' 5_7! " $ 4 3 L ; 5n6 J
FO$
' ¤ G
' ¤ G
F
a 0 & ¤
a
& W " " 5 '65 1 ( #$ n ¤ ! ! 1 N 5 ] 5n
7
6 ' _ 5 1
5.
"
( L ( L J J (*'65_7X! ( ! ' J $ L " a 0 & '
'
¤ -; &
5.3.2. Sums containing products of Jν 1.
2.
3.
¢ 4 3 ; a & 1 ( 7! ' a
nk (z)
7
£ ¢
& ?7R@CB
& - - #$ W ¤ 1 W
! -Q1 & - - #$ " ¤ 1! (
= '8>?7A@CB
+
11.
12.
13.
14.
15.
16.
17.
18.
19.
7 O' 5n'65_7 ) ' ( $ $ J 3 R
; L1
' '& L a & O '65 7 ¤
1
¢ a 0&
1 7 M : ( 7X! £ ¢ a 1 0& 3h & 0 ¤ 7 ' ' & ¤ ')( $ ! % $ 5n'65_7! % a 1 & O'65_7X! % $ 5_7 ' ¢ ¢ ')( $ ! % $ 5n'65_7X! % a 1 & '! % 3h ¤ 43 ' m !" ¢ - a 0& $ h 3 O
L 1 J & J L" #$ ( ' (')( 1 1;- - & - - " ¤ m ! ' a 1 ¢ 3h -; N ' & 1 ( m (*' #7( m (* 1! ( &L ' J
m !" ¢ ')( $ ! % $ 5_7X! % F G a 1 0& 3 ( ' (*' - - #$ ! 7 * ( '
1 & m O'! % 1A- W ¤ , N & 7 ( m ( ' & ( m (*' & W )
! -Q1 C7,5 m 5n'! " ¢ ')( $ ! % $ 5n'65_7X! % C7 ( m ( '! " a 1 & 4 3 ] 5n7 '!A ! 0& ¤ m m ' a 1 3 ¢ ' $L C7 ( m ! ( " '! & ] ' %! ' & m m " &-
J ' m ! ' ( 7! ' ¤ C7 ( * ( ' ! m
'
l
( ' 8 ( 7 & J $& & % L)" & j + -I & lC- & . F G &-!& ( L ' 7 ¤ & & l J & % 3 3 N
&
20.
21.
22.
23.
) ' * '
(*' " ( O! ' . 43 ¢ $&% OJ ') 1 (* $ L 5_ X7 ! &- a 1 & O '65_7Qj + 1 lC-;&-21 ¢ 3 # O ¤
¤ £ S J $ L SEa &- & & & O'65_7 £ $ 5_7 L & - &- a 1 0& J O' ']" " (:7 $ L O]! " &- 0& J
O'65_7 ' '#" 0& ¤ ' ! ']" 1A- &-21 &
= '8>?7A@CB
5.8.2. Sums containing products of Tm+nk (z) 1.
2.
')( 1 L " ¢ J
43 ')( $ ! % $ 5:'! % J ]' 7 ! % ¢ 43 a 43 ¢
( ' L " 0 &
& * 7
( 1 L ' 1 L ' j 0& 3h j &-21 & 0
J J
7(8 7?7A@ B
7,5 , G
(')(* '65_7 ¤ 1 1 ! 7(8
5.8.3. Sums containing Tn (ϕ(k, z)) 1.
2.
3.
¢ ' ¡ $ 4 3 L T S & J ' ¢ 3 J $L SEa & S £ &-21 ;3P& a ¢ ' $ L S S:F ¢ $ G 3 ¢ S _ S 3 £ S -21 4 3 l J 1 3 31
= 'I@CB
S
! " a ' S Q ¤ $ 5n = '8>
>?7A@CB
+
4.
5.
6.
7.
8.
9.
¢ ' / 43 J $ L S ¢ ' 43 J $ L -21
1
1
1
10.
11.
12.
13.
¢ S £ S SEa _
SEa 1 / 4 3 1 S l 3 43 ¢
5.8.4. Sums containing Um+nk (z) 1.
= '8>
>?7A@CB
¢ S £ = '*> @CB
' S $ L S F $ G ? S l 3 £ S 2- 1 S = '8> >?7A@B ' SEa _ $ L
E S a F 1 1 $ G £ ¢ S l 3 £ S SEa 1 = '*> @CB ' 43 ¢ J $ L S S:F" ¢ $ G 43 ¢ S _ S l 3 £ S -21 S = '*> >?7R@CB ( & ' $ ¢ 43 J $L $ 5n SEa 1 F#" ¢ $ G 3 ¢ S ? S l 3 #& S = '*> @CB ' = '8> @CB 43 ¢ J $L & S S ) * $ 5n , _ S l 3h S 1 ' ¢ E S a
5 1 43 J $ L &
SEa 1 )+* $ , 1 43 ¢ SEa 1 _ £ ¢ A/ S 3h SEa 1 = '8> @CB l ' $ 43 ¢ J $ L & S S ) * $ 5n , 3 ¢ S ? S l 3 3P& S 1 = '*> @CB $ ' 43 ¢ J $ L -21 & SEa 1 SEa 1 ) * $ 5 , 43 ¢ S ? S l 1 3 £ ¢ X3P& S = '8> @ B
¢ 4 3 J 1 ¢ 4 3 J 1
3 ¢ S ? £ S 2- 1 S S l
; L1 5
" ' 5 7 $ L & J $
7?7A@CB J
5.8.5. Sums containing products of Un (z) 1.
2.
¢
X & 7 7(8 £ & 0 3 £ ¢ X £ 4 0& a ¢ & 5h' L " ¢ J
43 '8( $ ! % $ 5h' 5h ! % & ( ' L " 0& J ' ' % C7E(_ ! " ' 5h ! % ( 1 L' j 0& 3 J
5.8.6. Sums containing Un (ϕ(k, z)) 1.
2.
1 0 & ¤ a 1 0& j a 1 & 0 ¤
¢ ' & ¡ 'I@CB S $ L 4 3 = J S ¢ '$ L E & 43 £ & £ & a a 1 Q ¤ 4 3 S a S a J 3 3;
+
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
¢ ' 43 J $ L S ¢ ' $L S 4 3 J 1 ¢ ' 43 J $ L 1
; L1 :
¢ & 3 £ & S S l ¢ 3 ¢ S ¢ S 3 £ & S S F $ G l $ 5 3h& S S:F $ (8G 43 ¢ S ¢ i S l 3 ¢ & S
¢ ' S / $ L 4 3
J ¢ ' 43 J $L -2 1
1
43 ¢ S _ £ & 4 S S l
¢ S _ £ & 4 SEa
SEa 1 / 3 3 £ 3 ¢ S ? ¢ ' S S F $ G S l 3 £ & 4 S $ L 4 3
J 1 ¢ ' $L SEa 1 SEa F G £ ¢ S 4 3
1 $ l J 1
= '8> = '8>
= '8>
@CB
= '8>
@ B
= '*>
¢ ' $ L S S #F " ¢ $ G 3 ¢ S ? £ ¢ S 3 V& S 3
l J 1 = '*> ¢ ' $ ( & ¢ $ G £ 3 ¢ S ¢ S E $ 4 3 L S a F " n 5 $
1 l J 1 £ S E a S 3 1 = '8> ¢ ' 5 , 43 ¢ SEa 1 ? S l $ $ 4 3 L & S S )+* J 1 3 £ ¢ S = '8> ¢ ' SEa n 5 , $ $ 4 3 L & 1 SEa 1 ) * J 1 £ 43 ¢ S ¢ / S 3 £ 43 ¢ S ¢ 4 SEa 1 = '*> l 3 3 :
@CB
= '8> 3 £ & SEa 1
@CB
= '8> 1 S l ¢ 4
@CB
@CB
@CB
@CB
@CB
@CB
@CB
14.
15.
16.
, '
$ ¢ ' 43 ¢ S ? £ S $ L 4 3 & S * $ 5 , ) J 1 3 $ ¢ ' & SEa 1 SEa 5 , $ $ L
4 3 2 1
1) * J 1 £ 3 ¢ S ¢ S 3 £ ¢ l " ( 7! O' ¢ f ¢ # 5 7 $ L $ f &- -21 ) J
¢ S l S 43& = '*>
@CB
X3& S = '8> @CB $ m 5_7 $ m 5_7X! 5 , ( ! ' O'65_7X!A ' m 5_7X! ¤
5.9. The Hermite Polynomials Hn (z) 5.9.1. Sums containing Hm 1.
2.
& -21
3.
4.
5.
6.
7.
"
nk (z)
2(:7X! ' ¢ ')( $ ! % $ ! % & O'! % 3 * 2(:7 , ¤ ) ')( $ ! ' '" £ ')( $ ! % $ ! % 0& & ')(* $ ! % £ & - ¤ ' " " ' % $J L m ! " & 43 ¢ m ! ' 1 - -; O ¤ ( ( #$ 1 (*' L " 1 ' L ; 1 ¤ ')J ( $ ! % $ ! % - & J ' % - N &
1 1 !&
m !" ')( $ ! % $ ! % 3P
- & (' #$ 1- - &- - ¤ m' ! % ' - N & & 7 ( m ( ' 1 ( m (*' 1 !
( ' ( ' ' ' -21 7 ' % ')( $ ! % $ ! % 0& O'! % N 1 V7 ¤ J$ L J $ L
! (' m ( m !' m !" ')( $ ! % $ ! % ! " 0& ' % ! ' N m ( (*'6! 5_7 1 ¤
3 3
?7A@CB
7 7 $ ! % 'T( $ 5_7X! % 0 f63 0& O'65:O! % fg3 3 ¢ (' ( '65 1 V7#7 ! ' Y £ & a 3 "
a 0& O'! % m (*')(:7X! N m (*' ] ! ( 7 7 $ 5_7X! % ')( $ 5_7! % 0fg3 a 1 & O'65 ! % fg3 3 ¢ ( ' ( ' ( 1 V7#7 O]! '%& Y £ & a & 3 "
6 ' _ 5 7 ! * ( ) ' : ( X 7 ! a % 0 & N m
&
m ( ' ] ! ( C7 ( m ! " ¢ C7 ( m ! " ¢ a ! O ' ! $ % 0fg3 & 43 1 % ')( m 5_7X! £ & 43 ( ' ( 'g5 m (*')(87 ( " 1 ( ' Y fT3 3 ¢ fg3 3 ¢ N ! m
& 1 (' V('65 1 m (*')(:7 m (*')(:7 N
m (* ' m (*' ! ( " ¢ C7 ( m ! " $ 5_7X! % 0fg3 a 1 & 4 3 43 ¢ a 1 '65_C7X7 ! % ( ')m (! ' 5 7! £ & 4 a 1 m 395N
¤
¤
¤
, '
(' V(')( 1 m (*')(:7 m (*' ! ( " (' V(')( 1 m (*')(:7 m (*')(:7 N
¤ m (* ' m (*' ! ( " ( 7! ' ¢ ' ")" £ 5_7! " a / & & 5_7X! ' a / £ & ¤ 7. 43 J $L ' £ & A& 3 £ ¤ / G $ L F 8. - / & J " ( (:7 ' ( $ ! % $ ! % j &- Q & 9. W W # ( ' ( ' ( $ ! £ J 1 L ' 3 ¢ N ¤ W
' % ! -Q1 (1 *' 1
" ( (:7 ')( $ ! % $ 5_7X! % j &- Q a 1 & 10. W W # ( ' ( ' ( $ ! £ a 1 J ' 1 L ! ' 3 ¢ N ¤ W
% -Q1 (1 *' &
' 7 ( X 7 ! ')( $ ! % ( 5 7! c 3 ¢ ¤ 11. " &- 0& ( P5_7! ' - c -; 0& Y
0fg3 3 ¢ fg3 3 ¢ & N 1
5.9.3. Sums containing products of Hm
"
1.
2.
3.
4.
nk (z)
' J( 1L $ ! % & 0 3# -21 -; ¤ $ L J " ( 7X! ' '%& ' J( 1L
5 7! O'65 7 1 -;
¤ J $L $ % a 1 & ' $ 43 A J L &- A& -21 & 1 £ + &-21 . 43A W £ E3 W / -;&-21 ' ¤ J $ L Q &- & 43V
395)
& A& ¤
+
5.
6.
' J $ ' J $
7.
£
8.
£
9.
£
L & L &-
a Q
1 Q
; P1 5
¢ £ a ¤
a 1 0& 43 Q
a 1 & 43 ¢ £ a 1 1 O ¤ ' 1 (*' L " J$ ! % ')( $ ! % Q &- 0& ' %
) 1 (*' L" J 7X! % ')( $ ! % a Q $ 5_
1
&- & ' '& ' ( % 7XO! '6 5_7X!
a 1 a F
1 ( 1 (*' L " J $ 5_7X ! % ')( $ ! % a 1 Q &- a 1 & ' '%& ( 7X'6! 5_ 7X! %
a 1 a F
1 5
(
, ¤
5 G ¤
5 G ¤
5.9.4. Sums containing Hn (ϕ(k, z)) 1.
2.
3.
4.
¢ ' 43 J $ L ¢ ' 43 J $ L
= 'I@CB
ST & ¡ S /
" S 43 ¢ S £ i £ & 4 -; (*') ( ( $ ! % ! $ 5n '! % ¤ a
( 7! " ' / 4 3 ¢ SEa 1 £ SEa 1 F $ L E S a $
1 J 1 S ¢ £ ¢ i £ & a 1 -; 43 S a ¢ ' $ L SEa / 4 3
J S 43# SEa a 395,
G S
( ! " ( ' ( $ ! % $ 5n '65_7! % ¤
(]! " $ 5:'! %
a ¤ S - & -21 Q
5.
, '
( X7 ! " $ 5 3 ¢
' J $ L ES a a SEa £ SEa a
1 / S ! " a a 1 $ ( n ¤ 5 ' ! % S 1 Q a -
£ S ¢ ' S $ 4 3 L S F $ G 3 & 4
J 1 S -; ¢ "'' &('
£ i £ S $ 5n'! % (*O')(* $ ! % £ & -
& 4 - 3 £ SEa ¢ ' SEa $ L E S a 4 3
F 7. 1
1 $ G 3Q & 1 J 1 S -; ¢ "'' &('
£ ¢ i £ S a $ 5n'! % ( O')(* $ 5_7X! % £ & -
& 4 - 1 3 ¢ '$ L 8. 3 f O SEa SEa F $ m 5 G J " ( ' % 5n '! % ( L" S 1 m f S a '65 J $ ! % ( $ ! % F G S - F G 1 ( J L ¢ ' $L f O SEa a 1 SEa a F 4 3 9. $ m 5 G
1 J " ( ' % 5:O'65_7X! % f SEa 1
& ( J L ( ( S L " 1 Y a F G a '6J 5 $ ! % ( $ ! % F m G S
- 1 6.
5.9.5. Sums containing Hm 1.
2.
nk (ϕ(k,
$ m ! " $ m ( ! ']")"" F $ G ')( $ ! % $ ! %
3953
¤
¤
¤
z))
' ]' " ' ( X7 ! ' % O'! % ' m ( ! F " m " $ "'& $ m ( ! ']")"" ')( $ ! % $ 5_7X! % a F
1 $ G ' '#" " '%& 1 # ( 7! ' % O'6m 5_7X! % ' ( ! a OF " m
1
1
¤
m ¤ G m ¤ G
+
3.
4.
5.
6.
7.
8.
$ ']" O')(* $ ! % &- F $ G $ & % 1 $ '#")" $ 5_7! "" O')( $ ! % &- F $ & $ % 1 $ '#")"'& $ 5_7X! "" O')(* $ 5_7X! % &- a $&% 1 $ '#" O ) ' * ( _ 5 X 7 ! $ % &- a &$ % 1 $ m 5_7X! '#" ')( $ ! % $ ! % F $ m 5 $ m 5 7! ']" ')( $ ! % $ 5_7X! % a 1 F
; P1 :
]! '#" O O') (* ! %
O]! ' ( 7X! ' G 3 O'! % O'! % A& ¤ F1 $ G ( 7! ' ! ' & 3 O '6 5_7X! % 3 '65_7X! % a 1 A& ¤ ! ']" ' >?7A@CB ')(:7X! % =8 1F $ G O]! ' 7 G '! % ' m 5 7! ¤ O]! '%& O'65 7! % ' m 5_7! ¤ $ m 5_7 G
5.9.6. Sums containing products of Hm 1.
2.
3.
= '8>?7A@CB
¢ ' ¡ 43 J $ L& ST & ( 7! " $ 5_7X! '#" 5_7X! % O'T(* $ ! % &- F $ 5_7 $ '%& O'6 5n ! % a
( 7! " $ 5_7X! ' $ 5_7X! % O'T(* $ 5_7X! % &- a 1 F '%& '65 ! % D a 43 ¢
nk (ϕ(k,
z))
G
=
a F $ _ 5 7
1 a 3
1 $ 5_7 G a 1 F a
1
G a 1) $ 5_7 G
'I@CB
(8 5 , ¤
a F 5 GIH ¤
5.10. The Laguerre Polynomials Lλn (z) λ nk 5.10.1. Sums containing Lm
1.
(z)
( ! ' ('! " '! " 5 ! 5n' ! % S ;- & $&% $ % S 0& 395 5
= > 'I@CB
# . '/
2.
¢ ' a 0& 43 ¢ $ L 4 3 Sc J $ ' 5 _ 5 7! " 3P& Sc a $ L J % 5 7 5_7!
3.
4.
5.
6.
7.
8.
Sc a -; 0&
= > 'I@CB
0&
a ¤ Sc a & - 0& ' 3 3 E
1 ' ! " m ¢ (E5 : 5 7! " Sc a & $ L 3 J ( m 58' 5:7 ¤ (E5n7! (% (E( 5n( 7Xm ! 5n7! ' N ( 5*' 5n 7 ( m 5n! 7 L '
J (]! " 5n'! % ' ¤ ( Q(*'65_7X! " Sc a & 43 ¢ % ( &! ' SE $ c L ; & a J 5n'! % ( ! " ' ¤ ( P5 5_7! " Sc a & % ( P5 5_7! ' SE $ L c 0 & a J ( 5 7! ( ( ( ' m 5n' ¤ ' m 5 5n'! " m ! " ( P5 5 7! " 43& Sc a & $ % L N
J 5_7 m ! L J ( g5 5h' 5 7X! " ' ( g5 7X! " ( 65 5 7! " 3 Sc a 0& $ L J ' % % ( g 5 5h7X! '! ( % g( g5 5 7X! 7X( ! ( c 3& c & ¤ ' & ' SEa
Sc - & ¢ ' 10. 43 J $L ¢ ' 11. 43 J $L ¢ ' 12. 43 J $L 9.
SEc a 1 0 & 3 Sc - &
¤ SEc -;a &1 -21 0&
Sc -; 0&
= > 'I@CB
' ( Q( ! " C7 (Q(*'! " Sc - 0 & ( 9! ' Sc a ;- 0 & = > 'I@CB ( 6( ! " C7 ( m ( '! " Sc - & ( 9! ' ( # 6( m 5_7 ¤ ( P5_7! ( % m ! % ( '6! 5_7 L m '
N J 5 7 # 6( m * 395;
.
13.
14.
15.
16.
' (' ( J $ L
!" m 5 m !"
58'! "
3.
4.
5.
6.
( ' ] ( ( m 58' ¤ ` m ! ( "
nk (z)
I5_7X! ' 4 ')( $ ! % (P5_7! " c 0& ( 5 7! ' c F I5_7 G ¤ ')( $ ! ' ' ¤ & -21 ¢ ')( $ ! % ( P5_7! " c 0& ' % (P5_7! ' 3 43 3 d)3 ')( $ ! % ( ' (' ¤ ¢ 5_7#! 7 L 43 = ')( $ ! % @ ( P5_7! " c & N J m !" ')( $ ! % ( P5_7X! " - c & ( ' _ 5 7 ¤ a ! ' m c - - 1 c - - ' % -; N ! & & 5_7V( m (*'65_7#6 ( m (*'65_7 ( m !' m !" (' m ¢ ) ' ( ! ! ( 5 7 ! ' % ! ' N m ( (*'65_! 7# 5_7 L ¤ $ % " 4 3 c 0& " J '( 6( '! " ')( $ ! % ( P5_7! " 3P& - c & #$ ( 7X! ' 1;- ! ( ( P5_ ' % -; N & a 5_7 # P5_7 ¤ c 1 c
395: "
2.
¢ ' ('6( ! " m ! " Sc - & $ 4 3 L J ( 6( m ( ¤ (P5 m 5 % ! ! ' ( ]! N ( 7 (%V( 6Q( ( ( #7 ( ( m ' m ' ! ( " ` & 1 ^ 5n'! % ' - Sc - 0& % 3P& -; SEc - a 0& ¤ $ L 3 2 d J " (]! ' ( 5 5_7X! " $ 5 7! Sc a 0& $ L J " 7X! % 'g 5 7 D d c -21 0& 3 % ( P5n5 '65_5_ 7X! ' SEc -2a 1 a 0 & H ¤ S 1
5.10.2. Sums containing Lλ m 1.
Sc - & ( (]! % N ( & 1 ^
-
; N1 ,
# . '/
(']")"'&
( ' ( ' (% &BB B ¤ (]! ' (P5_7X! " c & ' % ( P5_7X! ' ES a 1 N S 2- 1 7 &B B B V7 ( " 7. ` ^ ! ( 6( '! " ) ' ( $ ! % ( P5_7X! " 3P& - c & 8. #$ ( 7X! ' 1;- ! ( (P5_ ' % -; N & a 5_7 #P5_7 ¤ c 1 c
' $ ! % ' O ] ! % ¢ ' ( P5_7! " c 0& ( P5_7X! ' c a F ,G ¤ 9.
43 J $ L ¢ ' 3 ¢ c -; & ¤ $ L 10. 4 3 c a2S & SEa J ' $ 5 !% % ¢ ' ( P5 5_7! " c a2S 0& ( 5 5_7X! ' Sc a 0& ¤ 11. 43 J $L m 5 !" ¢ ' ( P5 5_7! " c a2S 0& $ L 12. 4 3 J 7X! ( ( (*' m ¤ C7 ( m ! ' 5n( P'5_ ! % N J 5 7 m (*! ' L S ( Q(*'! " 5 ! 13. a2S $ % &c - 0& ( & ' "( S ( P5n'65_7X! ( 43 ¢ C$&7 % ( $ !( $ ! % c ¤ 7 ( G $ F E S a " ( ! ')( $ ! % $ ! % 3Pd 3 Sc - & 14. #$ ( ' ( ( 6( ]'65 1 (]% ' ! % N " = > 'I@CB
( & 1 1 "
! ( ! ) ' ( ! % $ 5_7X! % 3 d 3 Sc - 0& $ 15. ( ' #$ ( ( 6( ]'65 & (]% ' ! % N " = > 'I@CB
& 1 & ! (
¢ ' - S -21 0& S- S -;&-21 0& = > 'I@CB 16. 43 J $ L S
395
?7A@ B ' S -;&-21 S -21 ( '65 #$ ( ]! " ( P5_7X! ( & a > 'I@CB ')( $ ! % $ 5_7X! % Sc & ' % N P5_7 % = & !
395P
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
' J $ L
.
)" " ( Q(* ! " a (1 Q (* (*' c S - &
( L " ( V( 6( V( 6( ! % N " ( Q ( (* ' ( & 1 ^ ! " 7 ')( $ ! % c - 0& c -; F Q3 G ¤ (' V( m ! ' ( &! ' ' % -; N 7( m (*' 0fI 4 3& - c - 0& J
J
4 3Pd 3 S&- a ')( $
; N1 3
(*' `
= > 'I@ B
m ( ' ! Q(*'65_7 L ¤
¢ 3P& - c - & 43Pd2 43& -; c -; a 1 & ¤ ( &! ' (' &B BB 1 3P& - c - 0& ' % -; S N S J Q(*'65_7 #7&B B ! B #7 L ¤ 7 ' ¤ ! % C7 ( Q(*'! " c - 0& ' % ( 9! '
( 1;- V( ( 7X! " ( ! ' ')( $ ! % (Q(*'65_7X! " c - 0& ' % ( &! ' & N ¤
" ' ¤ ('! " & -21 ')')( ( $ ! ! ( ' &! ' ; $ % % P 3 & (Q(*'65_7X! " 43& c - & ( m !' m !" (' m V( ( " ¤ ')( $ ! % ! " - c - & ' % ! ' & N 1 m ( (*'6! 5_7 ` ^ " ) " ')( $ ! % m ( $ ! c - 0& (' #7 ' % ( &(*! ' '! 3P& -; N * ( 6 ' 5_7 #Q! (*'65_7 L ¤ m m
J )" " ' % ')( $ ! % $ ( m ! & - & ( m ! ' & 3P& -; -; 0& ¤ m 5 1 L' '( 9! ' ( ! "' 1 ( m (*' L" J ' % ( J
m ')( $ ! % & (*' L " - c - & 1L' J
J
(' m (' m Y £ fg3 ¢ N ! ! 'g5 7 ¤ N # 6 * ( 6 ' _ 5 7 5 # 6 ( ( m m
1 1
3;9N
# . '/
( Q ( 1 L" J
31. c - & * ( ' ) ' ( ! $ % & " L J ( &! ' (]! "' £ ¢ ¤ a #( Q(*'65_7X! ( 1 L ' d c -;&-21 & c -; 1 & J
' $ L 0& SEc a 0& ¤ 32. c a2 S J ' - c a2- S & $ L I f 33. J ( ( ¤ ( m 5_5n7! '' ! % (]! N ( (*( ' m ( ( ' V((' 6 " ` m & 1 ^ ! ( P5_7X! ( ' ( 9! ' " ' ' (6(*'65_7X! ( SEc - a 0& ¤ $ L 3 2 d & 34. c a2 S J ' ( Q( ! " $ # & L 35. Sc - & ( * ( ' J 1 L " ( J
( ( (*' V'( 6( ( ! ( (*O' ( " % N ` = > '8>?7A@CB & 1 ^ ! ' 5 & A ! ( 9 ! ( &! ( & $ " a ( 5 _ 5 X 7 ! ( P n 5 6 ' _ 5 7 ! ( P n 5 '65_7! ( Sc a &
36. " " Sc - 0& J $L = > 'I@ B " ( 5 7! ( ( 5 5_7X! " Sc a 0& 37. % ( #$ ' ( #$ c 5_7'g5 c 5_7 ( ! ' & ( ! '%& ! ! Y N ( P5_7X! ' & N '65 5: '65 5n
c 5_7 3 c
= > 'I@B W " ( ' J ' L 5 5_7! Sc a & $ L 38. ( * ( " J 1 L" J
( P _ 5 7 ! ( V( (*' ( > 'I@CB ! % N
J ( (* ' # 5_7 L = " ( ' m ( J L ( 5 7! ' a ! 7 ¤ ! ' % N m (:7# 1 5_ 39. $9% m " &c -
& 3;
.
40.
41.
42.
43.
44.
45.
46.
47.
48.
; N1 3
(' c * ( ' #$
7 # 6! ( O' ¤ ( g ' 5 c
7 F]3 G c - & F G F G
c - R a 1 & ¤ ('9! " ( O'! " F]3 G c - & ' m ¤ m ' ! % ' '( ! 9! ' - N (# 6 ( O'6! 5_7 L m ' m
J ( 9! " 'g( $ ! % m ! " - c - & #$ (' a c - a c - a 1 ! ¤ ' ( % 9! ! ' 3P& -; N m ' & & c a 1 ( ' c ( ' 5n7 m 5 ( '
' ( &! " 'Q( $ ! % c - & ( 5 4 , 5 5 ¤ 3 c - , c - ) , ) '( 9! " )" " ( &! '%& £) ')( $ ! % ')(P5_7X! " c - & ' % 43& -; ¤ 3 2 d J m 5n')( 1 L)" ( &! " G c - & ')( $ ! % m ! " ] F 3 ' 7 % N ( O' O'65n( m " (:7V( ` ¤ m! & 1 ^ O')( $ 5 m !A '( 9! " ')( $ ! % C7 ( m ( '! " - c - 0& " ' (' c - (*' c - a 1 (*' #$ '( 9' ! % ' m !
( m (*O! '65_7 ¤ m ' & N & c a 1 (*' c (*'65_7# 6
C7 ( m (*'! " ( &! " £) % ( 5n'! " 43& - c - & 3 d2 m ( 9! ' (' m (:7 & m % m ! ' '( % & ! ' 3P& -; N J m # Q(*O' ! L ¤ m ( &! ' 3P& - 4 P 3 2 d ( Q( 1 L" J ') ')( $ ! % J1 ( m ( ' L" ') ( $ ! % C7 ( m
('9! ' c - 0& ' % ;- N
3; ,
49.
50.
51.
52.
53.
54.
55.
56.
# . '/
$ ( ( 9! " ')( $ ! % ')(P5_7X! " - c (6(* $ ! : ( 7 &! '%& ' (Q ( * ( O'! (:7 3P& -; %
& ( ' #7 N c a 1 ( ' c ! a & (*' ¤
1 ( m L " ('9! " J ')( $ ! % C7 ( m (*'! " F]3 G c - & ( ('9! J 1 ' m % L ' ! ' F]3 G N ((*O ' ' m Q(*(*' ! '6 5_7 L ¤ m '
J m ( &! " £ - c - & ) ' ( ! ! ( % ( 6 * ( ' $ % m " & m L" J
(' m 5 5:' (87 ( m (%6(*' C ( & ! ' ¤ 6( 'g5 7 ( 1 ' % m ! ' m 5 6( 1 L ' F G & N 1 ! J
C ( & ! " £ - c - & ) ' ( ! C 7 ( * ( ' ! ( P 5 $ % m m " 1 L " J
( & ! (' ] m ( P5n' #6( m ( '65_7 ¤ ' G Q (*'65_7 ( " F ` ' % m ! ' m (P5 1 L ' &N 1 ^ ! J
m ! " ! " ( &! " £! ')( $ ! % C7 ( m % ( 9! " C7 ( ( &! " ') ( P5_7X! " - c - & 3 2 d ! ' '( 9! ' & ( ' V7 ( m ( % ( ¤ ' % C7 ( m ! ' ( & ! C 7 ( ( & ! 7 ( ( ' V 7 ( (*! ' L P 3 & N ; ' ' m m
J W " ( ' J ' L 5 5_7! Sc a & $ L ( * ( " J 1 L" J
( 5 7 ! ( V( ( ' ( > '8>?7A@CB ! %
N J ( (*O' # P5_7 L = ' 7 $ L F G 3 d 3 F]3 G c a2- S & J ( (]! % N ( ( O' 5 5n7 '6( 5_" 7'( 6( ` ¤ & 1 ^ ! 7 7 $ @& !C@CB ')( $ ! % (P5_7X! " c - 0& (P5_7! ' c &
$ L = = J
3;93
.
57.
C7 ( m (*'! " ')( $ ! % (P5_7! " - c - &
; N1 3
V7 ( m (* ' ¤ m ! ' O '( ! % ! ' ;- N ( Q' (* '65_7 ( L
Jm !
58.
59.
5n'65 1 L" ' JP ( 5 7! " £ c - 0& $ L J
P5 1 J 5_ 7XL ! ' ' C7 (* m (*'! " 1 L " ')( $ ! % C7 ( m (*'! J " 5_7X! "
60.
61.
62.
63.
64.
( ' ('6( O' V(6(* ' ¤ ] ! ' O'! % & N 1 (6( ' ( " ` ^ ! c & W #$ ( ' 1 ( m ( ' ! ( & ! ' ' m ' % m ! ' 43V& -; N & m 5 a ! 5_7 ¤ 1 c - 1 c -
Q( $ 1 L " ( c L " '65 1;- c L " ')( $ ! % J (*J ' ')J ( 5_ 7 F G c - & c L" 1 J L" J
' % ( £ 3 ¢ a 1 J c L '%& F G D + c -21 . - F ,G9H ¤ 1 J L' O' ' ( $ 'I@CB ( ' S 3;!5
# . '/
65.
m !" 2d 5 7 L " ( &$ % c ( m _ J
66.
c a J 5n L '6" 5_7X! (9! " "'& &c - & ( ' a ( #$ c 1 m! ( 5 ' % 7! ' N
c a 1 Q (* m 5_7
) ' * ( ! ( ' ( $ % 1 " L 43 ¢ £ 3 ¢ J%
- &-21 & & $ &-
£ a 1 F 7 G -;&-21 F G a 1 (' c & #$ ( &! '%& cL" & 0d ) $&% ( 5n ¤ ! a J & '65_7X! " & c & ' % N
c c & a 1 &!- &
C 7 ( * ( ' ! n 5 O ) ' ( " m m 1 " L ')( $ ! J % ( 5 7! " F G c - & & ( ' ( #7( m ! ' m 5:O')( 1 L ' m ( ' V'( 6(* ' #$ m 1 £ 'J ! % ( P5_7X! ' & & N
m (:7 ] (* m ( O' ( ! ! ' ( 5 " m m 1L" ')( J $ ! % ( P5_7 ! " F]3 G c - & & m ! ' ')( m 5 1 L ' ( &! ' J '! % F3 G ( ' m ( O' ( m (*' Y N ( ' V7 (* (*1 ' Q(*! '65_7 m
& & m ¤
¤
67.
68.
69.
¤
¤
nk 5.10.4. Sums containing Lλ m pk (z) and special functions
1.
2.
¢ ' ¢ 43 J $ L c 0& 3 ¢ ¢ c -; & & -21 ')( 7 $ c -; & ¤ C7 ( m ! ' C7 ( m ! " ( P5_7X! " fg3 c 0& ' % ( P5_7X! ' ')( m 5_7! 3P& (' m (*')(:7 V('6(*' Y 3hf- ¢ fg3 3 ¢ N ` m (*' ! ( " & 1 ^ (' m (*')(:7 m ( ')(:7 V('6(*' ¤ 3 N ^ ` m ( ' m (*' ! ( " 3; ;
.
; N1 5
( 7! " ')( $ 5_7 ! % (P5 7 ! " 0fg3 c & 3. '& ( 5 7 7 ! fg3 3 ¢ '6 5_7! % 3 ¢ c & '& a 1 ' (' ('6(*' #7V7 ( ! 1 ¤ ' % ( 5_7X! ' m (*')(:7X! N
m (*' )" " ('9! ' ) ' ( ! ' % 3P& -; fg3 $ % 0f63 c - & 4. ( &! '#" 7 (*' V7#7 3 3 ¢ ')(:7X! % m ( '! 1A-; & N & J m (*'65_7 #Q(*'6! 5n] L = >_'I@CB ( &! ' )" " ')( $ ! % 0f63 £! c - 0& ' % 43& -; 5. 7( ' V7#7 '2 Y 0fg3 £ m (* '!A(Q(*'65_7! N ! 5n * ( 6 ' 5_7Q(*'6 & &
7 (*' V7#7 '2 * ( O 6 ' _ 5 X 7 A ! ( Q * ( 6 ' _ 5 X 7 ! m N& & a & (*' # 6(*'6! 5n ¤
" ' m ( O' ( ( 7! " ')( $ ! % 0fg3 1 & & - 3P& 3 ¢ m (*' 1 N 1 m ( '6! 5_7 L ¤ 6. J ( ! ' ¢ ( 7! " a ' % 3 d2 d 3 _ & ¤ & $ % d & P 3 & 7. c -; & C7% ( 9! ' ( 7! " ')( $ ! % d 3 1 & c - 3P& O' % 0d 3 _ & ¤ 8. " / £ c 0& 9. ')( $ ! % Q(*O'65 & L " c - a a 1
J
( 7X! ' £ ¤ ' % ( Q( 1 L ' c a a 1 / J
" " 5 8 ( 7 j Q c a 0& 9 $ % 10. & " ' (' ( ' '( 6(*' #$ ' ! '! % (87 N ¤ W % : ( 7 ( * ( ' , & 1 ) 1 ! - W -Q1
-Q1 3;9:
11.
12.
13.
14.
15.
16.
17.
# . '/
$ 5_7 7 ( $ 5n6 ' 5_7X! % j Q a 1 & ' % F G ¤ & ( ' 1 $ 5_7 7 a
5n'65_7X! % j Q 0 1 & ' % N 7#7 ( ¤ $ &! ' $ 5_7 ( 7X! $ 5n'65_7X! % a 1 Q a 1 0& '! % F 63 G ¤ & $ 5_7 ( 7X! ' a $ 5n'65_7X! % 43& Q 1 0& O'! % / ¤ & 5 ! ' a ¢ '( 6(*'! " 5 G ¤
c 1 $ ! % 4 3 Q F c & P 5
& 1L ' J
¢ '( 6(*'! " $ 5 7! % a 1 Q &c - & 43 ' & 5 ]! c a a 1 F 5 G ¤ 5 1
1 L '%& J
( P5_7! ' (' 5n O ¤ . ( ! " $ 5_7X! % j + - lM1 c a 0& ' % N
# 5_7 ! L J &
nk 5.10.5. Sums containing products of Lλ m pk (z)
1.
2.
( 7! " ( 7! ' O' @ @CB ')( $ ! % (P5_7! " c 0& ( 5_7X! ' ' L c -; 0& ==
J ( 7! ' " ' ¢ $&% " " O')( $ ! % &- -21 0& ' (*' -;&-21 #& ¤ 4 3 1 J L ¢ $&% ')( $ ! % - c - & - 0& 4 3 (' a (*' a (*'65_7 ' ( 9 ! ( ! ' ' c c 43 ¢ - ¤ ! ' % & N & Q(*'65_7 )(*'65_7 P5)(* '65_7 $&% ')( $ ! % - c - 0& c - 43& #$ ' ( 1;- ( ( 9 ! ' % - N ¤ !
& c - a 1 c - 5 7 # 6( 'g5 7
3.
4.
3;
'I@B
J 5n' ( ]! " a 0& c a2SE a & 9 $ % = > 'I@CB 16. Sc J L SEc a & &3;9L
# . '/
17.
J
18.
19.
20.
21.
22.
23.
(]! ' a > 'I@CB ' % Sc & $ L SEc - a 0& -;&- c 4 3& = -; & ( ]! " a 5n' > 'I@CB $9% Sc 0& c -; a & J L SEc -;a 0& = & ( 6( ! ' 5 $ S > 'I@CB ' % Sc -; & = J $ L SEc - a 0& &- - - c -21 43& $9% (Q(* $ ! '( 9! " ')( $ ! % ') ( 5 7! " 43 Q& - c - Q c - & 3 43Pd2 a Q& -; c - & ¤ 1 ( & ! " £) d2 ( P5n'65_7X! " F]3 G &c a - Q - c - & ( 9!' ' % & F ¢ G ¤ m 5n'! " ( &! " £ ) 3 d2 ')( $ ! % $ $&! %% ! C7 ( P5n'! " C7 ( m ( Q(*'! " Y - c - 0& c - 43& (' '65 V( m c 1; - c 1 ( #$ ¤ O' ! m % ! ' ! ( &! 5 '%& 9! N '
m ' m m 5 1 V( ! "
$&% ( 9! " £ ) d2 ( P5n '65_7X! " F 3 G - c - 3 Q - c - Q c a & & ( ' c c a 1 ( 9!' ' % & N " ¤ & 1 !
5 $
nk 5.10.6. Sums containing Lλ m pk (ϕ(k, z))
1.
2.
3.
¢ ' 43 J $ L Sc ¢ ' 43 J $ L c & ¢ ' 43 J $ L Sc &
= 'I@CB
& ¡ ¤
S ( ! " ¤ ' % % (( P5 5_77! ! ( -; 5 ' L ( 5:g : ' 5 7 ! " ' a J $ 3;9P
.
¢ 4. 4 3 1 ¢ 43 S
' J $ L S Sc F ' % ( P5_7X! ( % ( P5_7X! ( "'
( ¢ E S a $ G 3 1 % S -; 5 ' S -; a J $ : S & a 7 G c - & ' m 5
; N1 :
L 3 3 d2 -
= > 'I@CB
(]! " ' ¢ a a Q ¤ n 5 ' ! $ $ % L 4 3 5. c SE Sc a J m $ m 5 ! ']")"" m ')( $ ! % F G c -; F3 m G ¤ 6. F $ "" a ( 5:O! ']" ')(:7X! % = '8>?7A@ B 7. $&% &c - & 1 ( &! ' ( ]! "' ¤ $ m 5_7X! '#")"" ¢ ')( $ ! % - c - f & ' % ' m 5_7X! 8. 7 ( ! ' 7 $ " $ 5n'! % &-
& 3 # ' % ! -;&-21 F G ¤ 9. 1 7 7 $ "'& (]! ' $ 5n'! % & D -;&- F G 3 -;&-!& F G9H = '8> X@CB 10. & &-
&-21 1 "" $ $ 5n'! % &- & #')(:7X! % ¤ 11. 1 $ "" n 5 ' ! ) ' * ( O ! # ) ' (:7X! % ¤ $ % % 12. &-
& 3 1 $ "" $ 5n'! % &-
& ]')( ! % 3 ]')(* ! % #'T(:7! % ¤ 13. 1 " ( ' V7 ( m m" $ " $ 5n'! % &-
& #' % ! N 7( m !V7
@CB
0 ' /
4.
5.
6.
¢ ¢ &- -21 3:3 43 Q - c - 4 Q F $ 5_7 G &'%& ( ' : ( 7 V ( Q : ( 7 V( (*')(:7 ( ! '6_ " " 5 7X! % (P5_7!A 65:'g5 7! D & N L J '( 6(*'! " ¢ &-21 65_7X! " c F $ 5 7 G F $ 5_7 G & ' '& " ' ( 7 ! '65 7! % ( P5n'65_7X! 65 7! ( 5:'g5 7!Ij + c lC- c - - &- . F ¢ ' a 1 $ 5 7! "" ( g5 7X! " 43& c F $ 5 7 G a 4 3 & &!" $ 5 7 ! % ( 6 5 7! " a &-
3 ¢H ¤
G ¤
¢ 4& ¤
"
7.
J L 5_7 c - ¢ Q a 4 3 4 & $ & $ ( 5_9! 7X" ! % F3 G a 4 ¢ 4& ¤ & -
5.11. The Gegenbauer Polynomials Cnλ (z) λ nk
5.11.1. Sums containing Cm 1.
2.
3.
(z)
('! " '! " S 5 ! $&% $ % S - - 0 & ')( S '65 43 ¢ S ( % ! ' ! ' % £ & S - N '6 5_7
1 ! m !" ¢ ' C7 ( 9! " S c - 0& $ L 4 3 J ( (QS S V7 (Q( m ( 5n' 7% ( 6( m ( ! ' 1 ! ( 9% ! (C7C(% 6( ! ' ( Q ( 5n' #7(Q( m (
7 &N
S "1; - ¤
!
" ¤
(9! " (&! ( (P5 ! " c S a 0 & 4 3 ¢ SEa 1 -
1 ( J L£ . a ¢ Y D j SE+ -!a &4 l c &-21 3
'I@ B & ( J L ( 9! " ( P5 5_7! " c SEa a &
1 &! ( & P5 -21 D (P(5n '! ( & c SEa a & ?7R@CB
( 9! ' & $ 5 9!&'! " ¢ ')( $ ! % (Q(*'65_7X! " (P5n'65_7X! " c 0& ' % ( &! ' & ¤ 4 3 $ 5 P5_7X! & L" ¢ J
43 ')( $ ! % 5 1 L " ( P5n'65nO! " c a 1 & J
£ d2 ( 5 7! ' & ¢ 3h ¤ ' % 5 1L' J
( ( 9 ! C 7 ( * ( 9 !" " ¢ ' £) £! ')( (P5_7X! " S c & $ L 4 3 3 d 3 -
J 3 £ 3 £ d2 43 3 d2 a ¢ 3h c a & = > O'I@B S - 1 Q(*'! " C7 (* Q(*'! " 43 ¢ $ L0d 3 £) ')( $ ! % ( (* c 0& ') ( P5_7X! " &-
J 3 £ S 3 £ 0d2 4ST3Pd 3 4SEa ¢ 3h
S c a2S & = 'I@CB 1 &- S
λ 5.11.3. Sums containing Cm
1.
pk (z)
nk pk (z)
")" ' & -21 ')( $ ! ')( $ ! % C7 (& ! " 63 ¢ - c - 0& ( ('! " Q(*'! " (:7 ¤ ' J % C 1 7( L &' ! F 7(8 G F G ' (*'65 1 Q " L J
3 :;
.
; 3
7 $ ')( $ ! C7 (*&! " ')( $ ! % C 7(%9! " F 7(8 G c - & F 3 d G ( 7 ) : 1
2.
3.
4.
5.
6.
7.
8.
m !" C7 (& ! " $9% )" " C7 ( &! "
,
= '*>?7R@CB
( ' m (
7! ' 1 ! £ - ¢ 3h& - c - & m 5_ ¤ ' % &N
m 5 7 # 7( 1 -
¢ 3h& - c - & 7! % . 5 2 CP7 5_(87 ! D ¢ 3 ('65_ &! '%& j + -a c -21Rl c -;&-!&4 F E(:7 GIH 1 (9! " S a2S $ 5 ! % c a 0& &"( % C7 (&! ( S 43 ¢ $ L c - S F $ G SEa J ' (9! " $J L P5 ! " £ 0 ¢ S c a - 0& 7 S 9! ( F 5_ a &-21 lC- c - S -; . F 7 ' !
> @CB
1L " 3 ¢ S a - 1 & L $ 5 J ! % ( 1 L)" O' ' J%
7 . ' L D 5n'! % j S + 9lC-;&-21 £ 3 ¢ _'I@CB J ( 9! " S a2S $ 5 ! % c a &
&-
"( S % C7 ¢ $ L ¢ 3 SEa c - S F G ¤ ( 9! ( 3
SEa 7( $ J S 5n')(* $ " ( &! " ¢ ( $ L $&% &! " 3h
SEc a a & J &-
5n9! ' ' > @CB &! ' S c 0& c & = * m !" ¢ ' C7 ( &! " c - a S & $ 4 3 L
J 3 ¢ S ( m 5_5n7X'! ' ! % ( 9! ( N ( (*( ' m ( ( ' # 5 ¤ m &
1
! 3 : L
26.
27.
28.
29.
30.
31.
32.
33.
34.
0 ' /
¢ ' J 5 1L " C 7(%9 ! " c - a S 0& $ 4 3 L
J 3 ¢ SEa ( 9! ( j + -;&-21 l c -21 . ¢ 3 £
¤ SEa 1L( J
¢ ' ( P5n 5n'! " C7(&! " c - a S & c SEa & ¤ $ L 4 3 J
m !" ' C7% ( 9! " 0 3 ¢ - c - a S & $ L
J ( # (*' m ( 1 (Q( $ C 7 ( 5 ! ( & ! ( ' m ¤ W 5n'! % 3 ¢ S & N
m ( (*' 1 ! W
-Q1 J & L " . C7( &! " c - a & £ d2 j + &4 l c -;&-!&4 ¢ 3 £
¤
1 ('])" "'& C7 ( &! " c - a &
1 ( ' ( 1 (*' 9BB B 9! ' & £ 43 ¢ ( '6 a 5_7! % & 1 SEa 1 N S '( 6(*' #7 &B BB #7 " ¤ ! " " ' & ;5_7X! c -;a ;5 7 , ¤ ')( $ ! % C7 ( &! " c - a 0& C7 ( &! '
1 ) *
1 I 1 ( L' 7 ¤ ¢ ')( $ ! % C7 ( &! " 0 3 - c - a 0& ' J% & L ' ) (87 ,
1 J
J&L" ¢ C7 ( &! " 3h
- c - a &
1 3 ¢ £ d2; ¢ 3h O -; j + c -;&-21 l &4 . £ 3 ¢ ¤ ')( $ ! ' &-21 ¢ ')( $ ! % C7 ( &! " c - a 0& 43
1 ( '! " ( 1 (*' L " #( &! '%& a 1 3 ¢ J (* '! " - = '*>?7R@CB '6 ( ' % & L ' J
3 : P
.
35.
36.
37.
38.
; 3
7 ¢ ' ' 2- 1 ')( $ ! % C 7 (&! " c - a & $ $ L L 4 3 J J
1 £ d2 O' '% ! % N ( ' 7 ( ' P 5_7 ¤ &
& !
' &L " C7(%9! " J ' ( $ 5_7! 3 ¢ - c - a & 'g5 7 0 3 ¢ -;&-21 $ L J
1 . ' L ¢ £ ¢ Y '( J 9 ! ' & c -;a &-21 0& 3 43 j + c a -;&!- &4 lC-;&-21 3 ¤ & 1 m !" ¢ ')( $ ! % ! " C7 (9! " c - a 0& 4 3
1 # 5 7 £ d2 ' % ( m ! ! ' N ( ' ( m (* ' 5_7 ! & ¤ ' & m 6
&L " ¢ ')( $ ! % J m ! " C7(&! " c - a 0& 4 3
1 9! j + c a !- &4 lC- -; a &4 . £ 3 ¢ ¤ m '
'65 7! % $&% C7(&! " c - a & -21 D ¢ 3 C7 (&! '%& c -;a & -21 0& H ¤
1 ( 1 (*' L " J ')( $ ! % C7 ( &! " ( Q(*' ! " - c - a & 40.
1 ( #$ L' 1;- P5_7 1 (% ¤ £ d ' % ( J & 5_ 7X! ' 1A- N &
& &
! ( L" &L" ( P 5_7 $ 1 J ( Q(:7X!A $ (*P5 ! ')( $ ! % ' % 41. ( 5 &J L " ( &! "'& $ J 1 ( L '% & Y ¢ 3h - c - a & 3 ' % ')(* Q(:J 7 !A ')(* 5 !A '( 9! ' ¢ 3h -;
1 (' #7 # Q(*'65_7 7 (8 ¤ Y N ! & c a 1 (*' c a (*' 39.
3 'I@CB & ( J L 5n'! %
3 ' ! > @CB O' 1L " ¢ a 1 0& ' ( $ L $ 5 ! J% ( (
3 J
S - a 1 1L" 1 7 O' J ' L D ' 5n% '! % j + 9 lM1 -; . £ 3 ¢ 'I@CB S
1 J ')(&! " (& ! '%! & 0& ¤ 3 £) d2 m $9(% C97 ! ( " ((* ' ! c 0 & " m m ' &-
WX\ X\]W . (:7 5n ' & 5n')( $ G &c !- & 0& ] d j + l F G ¤ $9% F3 3 ¢ ')( $&% $ ! % d2 7(* c a 0& ,
)
&- (' V(')( 1 V('65 1 #$ &! ' F G N ¤ (
' 8 ( 7 # 5 1 (* "
& 1 J L'
! 43 ¢ ')( $&% $ ! % d2 7(8 c a & ,
)
&- a 1 " ' (' V(')( 1 V(')( 1 #$ 9! '%& a 1 N " ¤ & ( O')(:7# 5 1 ! (*
&L ' J
$ 5n Q(:7X!A m ! " c -Q1 " ( &! " J 5 L (*' ¢ 3h
c a 0& a ( : 5 g ' & $ %
&-
c & m L" 1L " 1 L " J J J
( ' ]'65 #$
c a 1 ( m Q(:O'7X!! % ' & N ¤ & c a 1 # 6(* m 5 1 ! 7(*
$ 5n 6(87!A m ! " c -Q1 L " ( 9! " ¢ 3h c a 0& J5 ( : 5 6 ' ( ( ' a 9 $ %
&- a 1
c & mL " 1L " 1 L " J J
J
( ' ]'65 P5_7 #$
c a 1 ( m ¤ Q (:'675_! 7'%! & % N & c a 1 Q(* m 5 1 ! 7(*
3< ,
51.
52.
53.
54.
55.
56.
57.
0 ' /
5 7 $ (:7X! c -Q1 L " (9! " a ¢ h & 3 ¢ J & c & 3
5 '65 1 L " 1 (*' L " 9$ % Pn
&J
J
(' 5 ' #$
c -Q1 # : 6(8 '7!! % '%& N W ¤ a & c -Q1 c 1 ! &- &
58.
59.
5 7 $ (:7X! c & 3 ¢ 5n'65 1 J $9% P L " J
J
-Q1 L " (9! " ¢ 3
& c &a ( 1 (*' L " h
(' 6(87! '%&
c '65_7! % & N
c -Q1
λ
5.11.4. Sums containing Cm 1.
2.
3.
4.
nk pk (z)
a 1 & #$ -Q1 # 5:'65_7 W ¤
c a 1 &- &
!
and special functions
']" " (:7! ')(* $ ! % C7 (&! " #& - &- c - 0&
]! " ' 3 ]C7 (% 9! '#" c - a 1 & = '*>?7R@CB
& -21 " " " ' ]! ]! ')(* $ ! % '( 9! "'& &- c - a 0& 3 # '( 9! ' c - a 1 & ¤
1 m 5_7! ' m !" C7 ( &! " fI c - & ' %
7 Y D 0f$ ¢
$ 5 !A $ 5_7! % ¢ 3
' 5 L " ( 1 (*' L " h 6 J J Y a a &
&- 1
7 (
N & 7
*
N &
j a 1 ) * ¢ X £ X £ Y
N &
7 @CB $ 4 3 L l J 1 ¢ ' ¢ S £ d2 S S 3 9! % ( S S c F $$ 5n * ( G $ L 4 3 h 3 & 3 S l J 1 = '*> @CB (9! ( % ( &! ( ¢ ' c S / 43 ¢ S ! % £ & 4 S S l 3 43 ¢ S % $ L 4 3
J 1 = '*> @CB % ( 9! ( & ¢ ' c SEa / 3 ¢ S 5_7! % £ & SEa 1 S l $ L
4 3 2 1
1 J #( &! ( & '8> @ B 1 3 43 ¢ S = % ( 9! ( ¢ ' S '8> @CB c S F $ G d2 S S l 3 ! % £ & S $ L 4 3 =
J 1 3 L1
.
¢ ' ES a c SEa F $ G £ 0d2 SEa $ L 4 3
1
1 J 1 3 % ¢ ' c S / ¢ ! % 0d2 S $ L 10. 4 3
J 1 ( 7! " ' c SEa / ¢ 3 ¢ S $ L 11. , 7 5 $
1 J 1 9.
; :
1 S l (&! ( & 5_7X! % £ & SEa 1 = '8> @ B &! ( S 43V& S l 3 ! % = '*> @CB ( & % 5_7X! % 0d2 SEa 1 S S l 9! ( & 3 5 7! % = '8> C@ B
¢ ' $ L S c F G 3 (& ! ( ! % £ & S
S $ J S -; (P5 ! ( "' £ S O')(* ! " (* '! % ( P5_7! " £ & -
& - a $ 5:'! % ')(* = '*> @CB ¢ ' SEa c SEa F $ G $ 4 3 L
1
1 J ( &! ( & ' % ( &! ( & ( P5 5_7! ( "' £ S 1 (* '! % 3 5_7! % £ & SEa 1 & - a 1 S ')(* ! " Y -; a $ 5n'! % 'T(* ( &! " (* ')(* $ 5_7! £ & - = '*> @CB ( 7X! ( % £ ¢ ' S ¢ c S #F " $ G ! % d2 S S l
43 J $L ( 9! ( 1 3 ! % V& S = '8> @B ( ¢ ' $ & ¢ G 43 J $ L $ 5n ( c SEa 1 F " $ 1 ( & £ SEa S '8> @ B ( 7! 5_ 7X! % % £ d2 SEa S 3 ( &! 5_ 7! % 1 =
1 l $ ¢ ' 43 ¢ S % ! % £ d2 S S S $ L 4 3 & c S * $ 5 ,
l
) J ( 9! ( 1 % 3& S = '8> @CB 3
12. 43 ' % (&1 ! (
13.
14.
15.
16.
3 L,
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
0 ' /
$ ¢ ' & SEa 1 c 5 , $ $ L 4 3
2 1 E S a
1) * J 1 3 ¢ S 5 % 7! % £ d2 SEa S 3 #(&! ( % & 3P& S = '*> @CB
1 l ¢ ' d2 S S 3 &! ! ( % S S 5 $ $ 4 3 L & c S , l
) * J 1 = '*> @CB ¢ ' SEa 5 , $ $ L 4 3 & 1 c SEa
1 )+* J &! ( & 1 43 ¢ SEa 1 £ / 0d2 SEa 1 S l 43 ¢ S 5_7! % SEa 1 = '*> @B 7 $ 7 ¢ ' S S c * " $ , 43 ¢ S d2 SQ - S S $ L 4 3
l ) J (9! ( S 1 8 ' 3 % = > @CB &! '%& ¤ $ "" a ¢ £ ) ' : ( 7! % P5_7X! 9 $ % c 0d2 3 & &- & 3 1 m $ m 5 ! '#)" "" ')( $ ! % C7 ( &! " F OG c - ¢ & ' L ' 5 J !A C7 (&! c -; F ¢ 3 G ¤ ' m m " ) " ¢ ')( $ ! % C7 ( &! " f &- -21 c - f & ' 1 ( ' % ' 5 J 5_7X!ACL 7 ' (* &! ¤ ' m ! )" " ¢ ¢ O')( $ ! % C7 ( 9! " f &- -21 c - 4 f 4& " ' O'! % J ' 1 L ' 5_7!AC7 (%9! ¤ ' m (&! ']" $ ']" c a F $ G O')( O! % £ & &-
& $ % = '8>?7A@CB 0 2 d
&-
1 (&! ' $ ']" a '8>?7A@CB c a F $ G ')(:7X! % £ & &-21 9 $ % 2 d =
&- 1 1 3 L 3
.
27.
28.
29.
30.
7X! ¤ 1L " a ¢ 3 '6')5_ J
1 : ( 7X! % G
F
$ n 5 '! % 1 (*' L "
&-
1 J
" 1L " ¢ a J
1
F G , 7 5 $ a 5 n ' ! ( ' ( $ %
&- 1 1 L" 1 J
3 '6')5 (:7X!! % ¤ " 1L " a 1 F ¢ G
$ 5nJ ' ! % * ( '
&-
1 1 J L)" 7 O'65 ! 7! 3 '65_ D ')(:7! % ')(*O! % H ¤ " 1L " J a
$ 5n'! % ( ' ( , 7 5 $
&1 L" 1 J
3 '65 1 J ! % L " (*'
n 5 ' $ 1 1 J '65 L
6 ' _ 5 7 A ! 3 #')(
31.
" !AO'Q5 !%
33.
34.
1
a 1F !
" 1L " a J
1
, 7 5 $ n 5 ' ! ( ( ' $ % 1 L"
&- a 1 J 5 !AO'Q5 ! # '65 3 '65 !A #'6 ') ( !% 7 3 ( 1L " $ " J
(*' a 1 F ¢ 5 $ n 5 ' ! $ % m
&-
1 L" 1 "m J
"m 3 ' % ! 3 '65_7X! % ')(:7! N &
$ 1
¢ G
7 O'65 ! D ')(:7! % ')(*O! % H ¤
a 1 F ¢ G
&-
O! # '65_7X!AO'65 ! '65_7X! ¤ 7 ')( O! % 3 3 ')(87! %
32.
; :
F1 ¢ G !AO'65 O! '65 ! ¤ ')( O! % 3 ')(87! %
G
( ' : ( 7')( m ( m m !
" $ " 1 ¢ a " L 5 m $ 5n'! J % ( * (1 ' L " 7 @CB 1L " $ "'& $ 5n'! J % ( (*' a 1 a F ¢ G , 7 5 $
&- 1 1 L" 1 J
* ( ' ] 6 ' 5 O 6 ' 5 V ! ')(* ! % £ # & N ` & ^ 7 (*' 'g5 ` 3 ')(:7 & N ^ = '*> @CB ( &! " 5 1 " L " £) a a ¢ £! d2 d2 -21 $9% ( P5n'6J 5_7X! " (*' c 1
1 L " &-
" ' J
P5_7X! ' ¤ ' % 1 L ' J
" # ' " ) " " ( ! ( ! $ $ m m ')( $ ! % C7 ( &! " c - F $ G
' ']" 1 ( ! ' m ¤ ( 7! ' % ' m ( !AC7 (9! ' c -; F " G
"$ '& ( m ! " $ m ( ! ']")"" c - a F $ G ')( $ ! % C7 ( &! " ' ']" 9 1 1 # ( 7 ! ( 7! ' m " ' & m ¤ ' % ' m ( !AC7 (9! ' c -;a FO" G
1 " $ 5 ! '#)" "" ( ! m m 'Q( $ ! % C7( 9! " _& c - ) $ 5* , *
' m ' 5 ( !Am C7]!( 9! c -; ¤ ' )+* m ( , m 3 L :
50.
51.
52.
53.
54.
55.
56.
0 ' /
( m ! " $ m 5 ! ]' ")"" ) ' ( $ ! % C7 (& ! " & a 1 c - a 5 , $
1 )+* ' & m " m ( ! ' & ( 7 ! m ¤ c -;a ' m 5 !AC7 (9! ' ( , m
1 ) * ( 7X! " (9! ' O]! ' ¤ ¢ ')( $ ! % C7 ( &! " f &-21 c - F $ m 5_7 G '! % ' m 5_7X! ( 7X! " ¢ ')( $ ! % C7 (&! " f &-21 c - a F $ m 5_7 G
1
9! ' & O]! '%& ¤ ( '6 5_7! % ' m 5_7X!
$ m 5:7! '])" "" 'g( $ ! % C7,( &! " 43& - ¢ f ¢ 4& c
)
7 75 $ m 5:7! , ( L' 1 O'J ! % ' 5n7X! F3 G ¤ m
$ m 5 7 ! ']")"" ')( $ ! % C7 (&! " 3& - ¢ f- 7 Y c - a
1 ) 7 'I@CB & l S J 5 65 5_7X! " (:7 a . '
5 5 7! " $ 5_7! F G j S + l & J $ L '65_7X!A 5 g 5 !AC7(*]! 5n'65_7X! . Y D - j S + -21Rl & 'I@ B &
5_7 m ! 1;-
a . ' . j + l 0& j S + a 9l V-; 0& 46. = > 'I@CB J $L S . ' j S + a l 0& $ L 47. J S F 7 (8 S a . 5 G 43 F (:7G j S + - - - -21Rl -; F (:7;G 1 = > ' ! > @CB 5_7 ¢ ' ¢ a a . 0& $ L 4 3 3 F G j S + l 48. J . 3 3 83 j S + -;a 9l & = > 'I@CB ' 5 7 a a . . G j S + l 0& j S + a 9l 0& $ L = > 'I@CB 49. F J 41.
3 P L
&' 3 465 78
' 5 g5 5_7X! " 5_7 a a . )(*'65_7! " F G j S + l 50. & J $ L ( ( ( ! ! ' j + a 9lV- . & = >_'I@CB ' S 5 65_7! " 1 ( m L "
. ')( J $ ! % C7 ( m ( '! " 5_7X! " £ 63 ¢ j + a l V- & 51. (
5 g5_7X! ' ( O' m (*' V( (* ' 43 ¢ J 1 ' % m L'! 5_7X! ¢ Q3 & N m (*O' V( ( (* ' ¤ ' m ' ! 1;-
5 g5_7X! "
£ - ¢ & - j + a l V- . & 4 3 52. ) ' ( ! ! 5
( * ( ) ' ( $ % m " m L " J ( ! '
5 g _ 5
7X! ' £ ¢ ' % m ! ' m ( ( ( & L ' -; & -; J ( ' ] m ( ( g5n' 5 (* m ( 'g5 ¤ Y N * ( ) ' : ( 7 ( ( ( ' a &
! 1
C( ( ! "
. ' £ ¢ - j + a l V- & 53. S J $L 1 ( (*' L " C( ( ( ! " - $ ( V( (*' ( ( 5 g5J 5_7X! ( 5_7 S
G % F N
( (*O' V( ( (*! 1 a = > '*>?7R@CB 5 g5 5_7X! " ' J 5n'65 1 L "
£ 63 ¢ j + a l - . 0& 5 5_7X! " $ L 54. a2S J 5 g5 5_7 ¤ 5_7X% ! ( N ( (*O' 5_5n7 O'65 5_7 7
&
! 1;-
C( ! " . a j + l - 0& 55. ')( $ ! % C7 ( m (*'! " m ( g5 1 L " 3# ( ' ] m ( g5:' ( m ( 'g5 7 5 g5_7X! ' J 5_7
( 2! '
¤ G ' % m ! ' m ( g5 1 L ' F & N (*'65_7( ( ( ' ! a J 1
( ( ! " m 1 L" . ')( $ ! % J C7 ( m ( '! " ( ( ! " F 5_7G j + - l - 0& 56. ( m L ' ( ! ' 1 43 ¢ ' J % ! ( ( ! F 5_7 G N ( ' (* Om ' ( ' ( O5 '6 5_(*7 'ga 5 7 ¤ ' m ' & m ! 1
3 P P
.
5 g5 5 7! " 5_ 7 ' a l a . & + G j $ L 57. F S ( ' g5 5 7! " J 1 ( * J g5_7! L " ( V( ( ' 5 g5 5 7 ( 43 ¢ S % N ( (*O' g5_7 a 1 = &
!
( 2! " a . +
l j 3 # & 58. ) ' ( ! ! ( ( * ( ' $ % m " & m )" L J
5 65n')(:7 (* m ( ! ' 5 g5_7X! ' F 7 '*>?7R@CB
( (*' ¤ a1
( !
= 1;- > 'I@ B
C7(* m (*'! " 1 L " J 7X! " ( ( 2! " F]3 7,5n G j + - l- . 0& ')( $ ! % C7 ( m (*'! " g5_
, 7 5 ! 5 g _ 5 7 ! ' ' m ' % ! g5_7X! F G ' m ' ( ' 1 ( m (*' ( a 1- - Y N & m 5 1 V( a a 1;- - K- ! . W
+1 a m ! " 1 L " . J +
l- 0& , 7 n 5 G j
] F 3 ')( $ ! % - a 1 L " g5_7X! " ( ( 2! "
J m ! ' ( 2! ' £ ¢ ' % 1;- - L ' ( ( 2! ' 43 -; & -; J
(' a - a 1 a K- 5_7 - Y N W & 7 ( a K- a 1 K- 5 7 ! + 1 a .
C7( m (*'! " . ')( $ ! % 65_7! " ( ( ! " F3 7,5 G j + - l - 0&
( O ' #7( m (*O'
5 )(*'65_7 ! ( ! O'm ! % ' ( ( ' ! F]3 7 'I@ B
&
5:'g5 7 5n'65_7 ! 1;-
5 g5 5_7! " (87 a a . a .
+ l & j + -;9l a -; & j 9 $ % S , ) & 5:' L j + -;9l V-; . 0& ¤ SEa J 5 g5 5_7! " (87 . .
+ a l a & j + a a2S l a -; & j 9 $ % S , ) & 5n' L j + l -; . 0& ¤ SEa J
5.12.5. Sums containing Pm
(ρ pk, σ qk) (ϕ(k, nk
1.
¢ ' . j S + l & ¡ $ 4 3 L J
z))
= 'I@CB 5N;
.
2.
3.
4.
5.
6.
7.
8.
9.
; !, ;
¢ ' $ L j + l . & ¢ F3 G 3 ES a J S 5 g5 5n 'g5 7! " a a a a . ¤ Y a $ 5n'! % F ,G j S + - 9l Q ¢ ' S j + l . F $$ 5n (* G 3 ¢ S ¢ S S l $ L 4 3 h 3 & S J 65_7! ( S '8> @CB 1 3 = % . $m 5 ¢ '$ L 4 3 f & SEa j SE+ a l F $ m 5 G J S ( !" . - ¢ 43fI S F3 mG ( $ 5n + l a a F G ¤ ' ! j % a S "$ " ¢ F3 G j + a l a . ¢ & & $ % &5 g5n'65 7! ¤ 1 3 5nO! ']" # ')
(87! % m . $ m 5 ! '])" "" ')( $ ! % ( ( 2! " F 8G j + - l - ¢ & '
' 5 J !A ( L ( ! j + -;9lV-; . F ¢ 3 G ¤ ' m m ] ' " ) " " . $ m 5 7! ')( $ ! % ( ( 2! " F G j + - l- ¢ f ¢ 4& ' ( ! ' ( L ' % ' 5_7X!AJ ( ( 2! ¤ ' m " ( L . ¢ $ " ¢ J $ 5n '! % j + l
& 5 $ m & 1 "m " (')(:7 g5n' #7 3 ]' % ! 3 '65_7X! m % g5:'! N W 3 ¢ ¤ V ( m m &
!
. ¢ 65n'65_7! " $ 5n'! % F3 ,G j + l O&
& 1 ]7' % ! N (' g5n'65_7 #7 3 ¢ ¤ &
5N :
&' 3 465 78
10.
11.
65n'65_7X! " $ 5:'! % F 3 G
1 5 ' 5n7X! " 8 $ 5*'! % F]3 , G
1
g 5n'65_7X! . j + l ¢
& 3 ')(87! % ¤ &-
. j + l ¢
& & ' 5n7X! 3 Q58' 5:]7!A'g ( 58 ! ' % 58 ! 3 Q 5* 'g(*7X! % ¤
. 65n'65_7X! " $ 5:'! % F3 G j + l ¢
&
&1 65n'65_7!A 65n'65n !A g5n'65 ! ] g5:'g5 7 !A 65n'65nO! 3 #')( !% 7X ')(* ! % 3 g 5n'65_7X! ¤ ')(87! % 3
12.
13.
14.
15.
16.
17.
)£ ! " 65 m 5n'65_7X! " a . ¢ )£ I -21 9$ % m 5n'65_7! " F]3 G j & + - l I & 5 7X! ' ¤ '_ % a . ¢ £! ¢ £) ¢ 65n'65nO! " n 5 6 ' 5 7 ! $ %
F3 G j &+ - 1Rl & !- & '65nO! ' 7 % # 6V5n ')(:7X! % ¤ a . ¢ £! ¢ )£ ¢ 65n'65nO! " 5n'65 7! % F 3 ,G j + 1Rl 4
& 4 - $ & 7 # g5n'65n ! !A g5n'65 ' % 7 ')(:7X! % 65n'6O5n #')( O! % $ 5_7X! "'& g5n'65n ! " a . ¢ £! ¢ 5n'65_7! % F3 G j + 1Rl & $ 5 7! 5 m $ & " ( ' (:7#7 g5:'g5 #'65_7X! g5:'g5 7! ¢ 3 N W % m & 1- 1 a !
. $ ']" a F¢ $ G & $ % 3 g3 j + l &1 5 65n'65_7! ']" 5n'! 3
')(:7! % F G 5N
&-
(')(:7V(')( 5 #$ ! '%& " 1 ¢ ¤ '65_7! % O'65 7!A
5 2! & N 1 3
! W
( 1 (*' L " ¢ &-21 ')J ( $ ! % 5_7! " Y a F $ 5_7 GTj + lV- . F ¢ $ 5_7G
&- 1 (')(:7V(')( 5 #$ '%& " & ! ¢ ¤ '65_7! % O'65 !A
5 2! & N 1 3
W !
¢ 1. 3 &- -21 1 Y j + l V- . F ¢ '65 7 ¢ £ G 3 Q F 2.
; !, :
5N L
4.
$ 5_7! "" 5 7! "
&' 3 465 78
. a a ¢ Q j + l- F ¢ & - ¢ D ! 7 '& . ¢ a ¢ c 4 Q j + l V- F $ & ]! " '6 5_ 7! % 5 ! ¢ 3
$ 5_7 G
7 -2a 1 1 ]F 3 G 3 '65 7! % H ¤ $ 5_7! "" 5 7 ! _ 5 7G 5. " ( ' (87 5 ¤
N ! (
. ¢ $ 5_7! "" a 5 7! " 43 Q c 4 3 Q j + lV- F $ 5_7G 6. & 7X! " F 3 G $ 5_5 7X! g% 5_5_ 7! " c a ¢ Q ¤ & ('6(*'! " . ¢ ¢ 7. &-21 5_7! " c F $ 5 7 GTj + l V- F $ 5_7 G & % ' & " (')(:7V( 6( ' (87
5 43 ¢ '65 7! % ( P5n'65_ ¢ ¤ 7X!A 5 2! & N 1 3 !
. ¢ ¢ &-21 - -; &-21 F $ 5_7Ggj + l - F $ 5_7G 8. &' " '& a ] ( 7X5 ! 1 - a - -;&-21 F]3 !G ¤ 6 ' _ 5 7 ! , G % 3 F 1 ( (*'! " ¢ a . F ¢ $ 5_ 7G &-21 C7(%9! " c - F $ 5_7 GTj + l 9.
& "'#" 65_7! '%& " '%& '65_ 7X! % 5 5
g5_7X! ' 5n'65_7!A( Q(:7X! ( ' (:7# 6(:7V( ( ' (87 W ¤ Y ¢ 3 N ( ( ( ( O')(: 7 ( &
1 !
¢ 5 g5n'65_7! " -21 C7 ( 9! " 10. F3 G Y c - F $ 5_7 GTj + a l a . ¢ ¢
&- ! " ( ')(:7 # Q(:7 5 g5n' _ 5 X 7 ! ' '65_ 7X! % ( Q(:7!A
¢ W 3 &N
¤ 5 g5:'! V( 1 ! (
5N P
.
; !,
X@ B
(' 5 $ I m !5 $ $ 5 7X! $ 5 7! "" m ! " '*( $ ! % $ 5 7 ! % ! " a 1 N !25 $ # ! $ h 5 ` ^
4.
m ' % 3 #'*(?7! % ¤
7
5.
( 'g5 $ m 9! 5 $ ' $ m 5 !" m !" 5m _7 ! " a 1 N !&5 $ $ m _ 5 7X! ` $ $ L J ^ !
6.
( ¢ ' S a N $ L 4 3 1 ^ J 1
( ' & m ! 1 C7( ! #$ ¤ ! a N a 1 ! 1 5_7
m ! ¢ ? S l ! ! ` 3 S m !( 3 ! ( 3P& S
5, ,
=
'I@ B
7.
8.
9.
¢ ' S a N 1 4 3 J $ L 1 ¢ S S 3 -;
' ( $ V m ! ! f O &- -21 a 1 N J $L 43 fI ! 1 ' 3 &-21 ' 5 a N ( ' ! V ( m ! ¤ m 1 !
( $ m ! ' ¢ -21 &- -21 a 1 N ! J $L fg3 ! a 1 ' ( ' 5 7 ! m m '65_7!& (*'! a N ! m 1 ! a (:7! m 5_7! ' ¢ 3 a '65_7! m (:7X!
11.
12.
m !( m ! ¢ E S a S ! ` 3 1 ! ( ! ^ m ! ( "' S -; ¢ a a 1. ! ( " ' a J $ 5n' L43 + ' ( ( 5_7! Y ' ( ( 5 7! " = > 'I@ B " m
(
10.
! 1
( ' m ! (:7 ¤ 1 N !(87 ! a 1
( $ & m ! ' m !' ¤ ¢ ' ¢ f &-21 a 1 N ! ' m 5_7 ! ' 43 J $L ! a 1 ( m ! #$ ¢ ' ; 1 ¢ f 4 &-21 a N ! W 43 J $*L ! a . + 1 ! ' J 1 L 5_' 7 m ' ¤ !' m ( m ! ; 1
a 1 ¢ O '65_7 ¢ f 4 a N ! W 3 J $ L ! a . + 1 5,93 #$
¡\¤
.
; !?7 ! ! ( " ¢ S ] (:7X! % (87! - -21 ¢ ¢ £ a ! 43 % 3 = >?7 ( (
¢ 4 3 S # 1. 1 ( " "" Y 4 3 ¢ S 2- 1 ] ( $ ( ! % 43 ¢
2.
$ ( "
( $" ! ¢ 3 4 3 $ 1 S S - ( 7X! " "'& 3 $ 5 7! % $ 5 7! Y £ 3 £ 3 £) 3 £
!
!
"'& 5 7! % $ 5 7! £ 3 !£ 3 £ C@ B (
SEa &
(
@CB
6.4.4. Series containing products of Si (kx) 1.
2.
( " ( 7( ! " ¢ S 3 # (:7! % $ 1 S - ( 7X! " "'& S - -21 ¢ 3 $ 5_7X! % $ 5_7X! 43 Y ¢ 3 £ a - SEa & £ 3 £ 3 = >?7 ! ( ( 7' ! " 3 7 $ 1 1 1
(:7X!
& 5 7! % _ 5 7! £) 3 £ ( !
!
'
(
@CB
B
6.5. The Fresnel Integrals S(x) and C(x) 6.5.1. Series containing S(ϕ(k)x), C(ϕ(k)x) and algebraic functions 1.
( 7X! " 7 " £ $ $ : E ( 7X!
5;93
h7 ( ( (
3 ¢ S S - -21 43 3 £ =
!
!
!
( " ( O! % ( ! & ¢ ! % 5_7X! ¢ 3 £ a - E S a & >_ ( ( (
"' F G 1
4&
7 1
3 F G 1 1
'
!
!
1.
2.
" ! $&% " - & # -
B
B
'
k, z)
&
¢ ¢ & ¤
7 ! " 1 & )3 ¢ -21 - 3 )3 ¢ X T3h63 ¢ )3 )¢ & ¤ 5;9P
@CB
6.6. The Incomplete Gamma Function γ(ν, z) 6.6.1. Series containing γ(ν
@CB
!
3.
4.
5.
6.
7.
8.
:1 :1 ,
(]! " ¢) $9% ! " & ¢ £ Q3 ¢ £ &
& 1 & 0 ¤
0 &
L J 5 7 !
5 1;- ( 5_7 ¤ 5 7 ( m 5_7 (O
N _ !
! " (87 $9% a & " " " (:7X! ! + -!& . + . - F m ! " ! " ! " ¢ ( 5_7X! " ( 5 7! " a & 43 ; $&% m L J ! - N 5 1 ( 5_( 7m ( ( m
5 ( 5 7 ¤ ! " L ; 1 J _ 5 X 7 !
N 5 7 (65_7 ! ( $&% a &
4.
5.
5< ;
7 3 £G ¤ 5_7 O ¤ 5_! 7
6.
7.
4 3 1
¢ J
J 7 3 F
a 1L & a &L
Z
7 G &
¢ a 0& 4 3
L J 5 7 ! 1 N
.
+
:1 P1 ,
W
!
#$
£
(87 ( 6 _ 5 X 7 ! " L ¢ ! £ J ! ! 4 3 a 0 &
8. " 1N
!" a 1 L " 1 L " !£ ¢ J J
9. 43 $9% 5 1 L" a & L)" a & J J a £ -21 1 J ! & L ( m !" !" L £) J ( 5 7! " a 0&
! - 1 N 1 10. ; $&% m
W !
11.
¤
¤
V+ 2- 1 . F G ¤ m 5 1! ¤ (* m 5_7
" S 2a S $ 5 ! %
3 - S I + -
K
¤
5_7
/ £
a &
( " S S . 43 ¢ $ 9$ I5% ]! ( 3 $ ! % 8 S
; £! & ¤
6.9.2. Series containing Ik+ν (z) and ψ(z) 1.
J( L $9 %
"
fI a 0&
L J 5_7! 0 fI
3 2.
!&
W #$ 7 #7 L J n 5 ! m N & m 5_7 ! n 5 ¤
" J( L $ 5_ 7 ! % fI 0 & 3 fg3 ¢ 1 0& ¢ ¤ fg3 F G - 0& 5?7 (
!
"'&(!& ( X7 ! " L $ 5 &LJ $ 5 5 &L J J
S Ea & £ 3 £ 3 )£ 3 £ ( ( C@ B
!
6.10.5. Series containing Hν (kx), S(kx) and C(kx) 1.
2.
(!& 7X ! " $ 1
( 7! " $ ( & '& 1 ( 7! ( S - -21 J ¢ Y 3
" " !& 3 H 5 &L J =
5
!
!
4.
( @ B
E H "'&(!& ( &( " " S - ( 7! L L 5 1 L J 5 5 1 L 3 * $ 5 & L J $ 5 5 & L J J
J&
a SEa £ £ £) £ ¢ £ 5_7X! % 5 ! 3 - & 3 3 3 = >?7 ! ( ! ( ( @CB " " '& (!& 7X ! " H 3 5 &L $ 1 J 5 (X@ B =
3.
!
( 7X! " ( & " H $ ( & " 1 ( ( 7!
S - ( L J 5 1 5 5 1 3 * $ 5 L L J J
J
5L95
!
"'& '& L J
&L $ 5 5 &L
J
7X! "
Y
H
L
& S - 2- 1 ¢ ! % _ 5 7! ¢ 3 £ a - ES a & £ 3 £ 3 )£ 3 £ 3 = >?7 ! ( ! ( (
@CB
6.10.6. Series containing Hν (ϕ(k)x) and Jµ (kx)
( 7X! "
1.
2.
(& !& $ 1
H
'&
L L 3 J 6 5_7XJ ! 5 & L J
= 5
!
!
65 !
4.
!
!
6.10.7. Series containing product of Hν (kx) 1.
(X@ B
7 $ 5 X7 ! Q a 1 Q H £! ¢ & ! " Z £ ¤ 5 1 L 3 2
-21 1
J
7 $ 5_7X! a Q H 4 £! ¢ & 1 O]! " Z ¤ £ 5 1 L 0 32
-21 H
J
( 7X! " H $ ( && " ( & " "'& '& 1 ( ( 7! ( 7X! " L S L L
J 5_7J !
$ 5 &LJ $ 5 5 &L 5 1 L 6 5 5 1 L 3 J J J &J
S - -21 ¢ L ¢ £ a SEa £ £ 3 £) 3 £ Y J 3 % 565_7X! 3 - & 3 = >?7 ( ( ( @CB
3.
( 7! " $ ( && H H 1 ( 7X! ( " ( &" !& S - ( L L J J $ 5 5 1 L 5 & L 5 g5 1 L 3 J J
J J 5L;
"'&& L J
& L $ 5 g5 & L
J
7X! "
+
S Y - 2- 1 43 ¢ Y £ 3 £ 3 £! J 3 ( ''7& ! " H $ 1 1
L 5 J & L 5 5 £ = J h > 7 ( ! " ' " 3 ' ' 5 J
2.
&(!&
:1
¢ 3 £ a - E S a & &L (
!
a 1 &L ' 1
!
(
!
@CB
( 7 B
6.11. The Legendre Polynomials Pn (z) 6.11.1. Series containing Pnk+m (z) 1.
2.
3.
1
$ _ 5 7 5 7X!;j $ $ _
7 (
=( 7
3 ¢
7 = @ @ B !
$ _ 5 7 7?7 !
!
6.14. The Laguerre Polynomials Lλn (z) λ lk 6.14.1. Series containing Lnk+m (z) 1.
2.
3.
4.
" (P5n'65_7X! " c $ m 5 !( (P5 5_7! " (P5_7X! ( S S %
' a 0& 5: '
&c -21 &
Sc a 0 &
= '8>?7A@CB
( 5 _ 5 7 m % 5 7 7 8 ( ` $J L F G ( 5_X7 ! 1 N 1 ^ 5 _ ! = R7 @CB ('6(*'! " $ 5n'! % c - & d ¢ 3 ( 6( O'! " a Y ¢ 3 c a c a 0Q3 & 3 43 & -21 $&% c &- & = R7 @CB " (P5_7X! " c & d ¢ X & - c c £ / ¤
5P;
+
5.
6.
7.
8.
" ( P5n ! " c a 0& ¤ m !" m! ¤ m 5_7! " ( 5 7! " c a & 1 N 1 5_ 7L J m !" !" a V & c &
N m m 5 5 1 L " ( 5 7! " J
$ 5:' ¢ 3 - c -;&-21 A + -21 . $ L 0 & c a J
:1 5) ,
m 5 5 1 ¤
! ( G c F 7
=
" £ 3h& ] 9 $ % & 9. P5n'65_7 #Q( m 5n'65n $ 5n'! % a m ! " c a & d ¢ N
5 7m 9 $ % L 10. J ! (P 5_7! ' m (*' ')(* m m ! " J 1 ( m 5n' L " ( P 5n'65_7! " #& c aa 0& ' % N '65 7 # 5 7 9 $ % 11. J !
7A@CB
= @ B
¤
5_7 ¤ L
lk 6.14.2. Series containing Lλ nk+m (z) and special functions
1.
2.
3.
4.
5.
7 a 1.
¢ ! ¢ £ ¤ + c (P5_7X! " d Q c 0& 0d F G c a 1 / Q 7 ( 1 (P5_7X! " Q c & 1 N P5_! 7 5_7 L ¤ J 7 ( P5_7X! ' ( ' V7 $&% & c a & ' % N J P5_7 ! 5_7 L ¤ " W #$ Q J L L a J 5_7X! N 5 7 5_7 ¤ ( P5_ 7X! " c 0&
a Q
)£ 3P& - a Q 3 2 d ; 4 P 3 2 d Q c - 0& c W / #$ # 7 ( L c c ; 1 3 65_7! J C 7 (%6(! N g5_7#7(%6! ( ¤
5P :
# . '/
6.
j Q &
-21 + -
.
A )
4 7 (
,
5
7(
!
7B
lk 6.14.3. Series containing products of Lλ nk+m (z)
1.
2.
3.
" " a S a 3 a 9 $ % 9 $ % Q 0 & Sc Sc $&% ( P5_7X! " c Q c 0& R 5 ! !" / d ¢ 7 ( 7 ( G D (87 H c F
c 0& - c Z Z c #- - £ / £ c c /
a Q3 &-
=
£ 9 /
'I@CB
7 = @ #B #C7 !C@MB !
=
=
7 = @ @CB !
6.14.4. Series containing products of Lλ n (kx) 1.
$
!
c 43 c 1 ( " ('! ( " (P5n'65_7X! ( " 3 (P' 5_! 7 ! ' # ! (:7! % ] (:7X! % (P5_7X! ( ( 5 J & 7L! ( ( " " " % ( (P5_7! ' S - " ( '! " ( 5:'g5 7! " " "" ¢ S ( P5_7! " ( 5 7! " 43 - -21 # (* $ ( ! % ' % ! $9% S - -21 ¢ £ £ £) £ ! 3 43 % 3 3 = >?7 ! ! ( @CB
$ ( "
lk 6.14.5. Series containing Lλ nk+m (ϕ(k, z))
1.
" " ¢ 5 7 c - 4 4& (P5_7X! $
5P
?7
8.
$
!
!
3 ¢
!
¢ S
!
( " S ] ! (87 ! % ( " "" -21 ] (* $ (
£ 3 £ 3 £! 3 £ !
!%
m
!
1 !
m ! (E $ 5 m ! ( 7 ! " ! !& ! N a ` 1^ $ 1 m ! ( m m 3 7 N a ! 1 ^ !& ! `
; ,9P
!
m 9! 5 7 ( m N a 1 ^ !& &! ! 5_7 `
( 7 !
( !
#$
m ! (E $ 5 m ! 7 m ! ( m ¢ ! !& ! ` 3 N a 1 ^ ! !& ! ` 4 3 N a 1 ^ h7 h7 1 !
10.
(
m ! ( m m ! K( $ 5 m ! 7 ! !& ! N a ` 3 N a 1 ^ ! !& ! ` 1^ 1 !( 7 m !( 1 = !& !C@ m 1! ( " !& !( N a 1 !& !( 1 = m !C@
h7 h7
9.
m !( " !& ! ( "
B B
B
B
+
:1 !?7R@CB & 2 1 ! 3 3 &-21 F 3 G
N & 7 (*' V7 ( (*'65_7 a 1 & = ')( $ 'g5 $ ! % a 1 & 43 ¢ * 3 ¢ $&% ')( $ ! % £ & - FO$ G ¤ ¢ 'g5 $ ! % £ 'g5 $ ¤ ) ' ( ! G FO63 & $ % $ % & 3 & * -;&-21
S . & -;&-21 F G + S -21 . + -21 3 ¢ a $ L &-21
J S ' %
W U a [ ¢ ¤ a Y & % B B B ( % 3 0 & Z Z Z
-21 [, 1 a U a ZZZa 1
1 £ & £ -;&-21 & 1 ' $ L& &-21
-21 & &- -21 & J 3?3 ¢ 1 - 0& -; a 1 0& ¤
a & ; F G N & 3 ¢ &-21 F G &-21
;93 P
#
?7R@CB & 2 1 ! 3 &-21 F G
N & 7 (*' #7( ( 'g5 7 a 1 & = a 1 & " O 43 £ & -; - - &-21 £ & ¤ &-21 & . S ' % -;&-21 IF G + S -21
% B BB ( % -21 & ¤ , [ U a ZZZa 1 £ & 63 £ -; & 1 43 ¢ ' $L ¤ & 0 &
&-21
< 1 2 1 J ¤ £ -; F G 1 ' $L 0 & 0 & 2- 1
&- -21
J ;!5)
24.
25.
#
?7R@CB
( ( ; 1 ! F 3 G N & ( ' V ( (*'65_7 H 0& #7( ( ; 1 & 2 1 ! F3 G
N & 7 (*' V7 ( (*'65_7 H a 1 0& ( 1;- ( (*'65_7! " '8>?7A@CB ! 5 $ (*'65 L N & ( $ ]')( $ ( ( 'g5 7 = J
¤ 7 & -21 ¢ 1 L "
& -21 J , G
6. L & L & -; 43 1 L '#)" " F J
']" 7 L F G F G ¤ J ' % & 0 & 3 4 3 7. L a 1
-;&-21
¤ 8. L -;&-21 & a 1 0& ( ; 1 ; F 3 G N & (' V7 ( ! (*' L 0& 9. L a & V7 ( ; 1 ¢ & 2 1 &-21 F 3 G N & 7 (*' 5_7 #7 ( ! ( ' L -21 0&
!& '#" ( 1;- C7 ( (*'! " L & 2 1 G N & ( $ ( $ 5n ' #7! ( (*' 3 J ( $ 5:'g5 1 L F J
= '*>?7R@CB ( ; 1 10. L 3 ; F]3 G N & (' ( (*! '65_7 L 0& -; 0& #7 ( ; 1 ¢ & 2 1 3 ; &-21 F]3 G N & 7 (*' #7( ( ! 'g5 7 L a 1 &
"'%& ( 1;- (*'65_7! " L & 2 1 '8>?7A@CB ! J 5 $ (*'65 L N & ( $ ]')( $ ( ( 'g5 7 = J
5. H ; - 0& 4 3 3 ¢ 3 &-21 "'%& L & -21 J
7.2.6. The Anger Jν (z) and Weber Eν (z) functions
¤ - 0 & J 43& ¤ J 0& 0&
1. J 2.
;!53
#
?7R@CB 3 E 43& ¤ 5. E 0& - . 7 # ' " 7 +
& 2 1 ')(:7! % % G G G 3 H 0& ¤ 6. E 0& F F 3 F]3 . 7 '#" 7 +
& 2 1 ¢ O ) ' : ( X 7 ! G G G % % F F 3 F3 43 7. E & -; 3 43 ¢ H-; & ¤ ¢ ¢ ¤ 8. E a 1 0& 43 ¢ J -;&-21 & 3 ¢ J a 1 43& ¤ 9. E a -; 1 0& 43 J&-21 & 3 J -; a 1 43& #7( ( ; 1 ¢ & 2 1 ! 10. E a & &-21 F G
N & 7 (*' 5_7# 7(*')( E 0& 7 ( ( & £ 3 &- F G &- N & (*' 5n #7! ( ' ( E a 1 0& 7 & - ¢ ¢ a ¢ 3 )3 43 ( ( Y F]3 G a 1 N ( $ ( $ 1;5n- ' #! 7(*')( = '8> X@CB
& - ¢ F G 3. J a 0& & -21 3 - £ &- F G & ! & - ¢ ¢ 43 3 )3
;!5 5
( ( 1 ! G N & ( ' ( (*'65_7 E & 11. #7( ( 1 ; & 2 1 ! G
N & 7 (*' V7 ( (*'65_7 E a 1 0& a 43 ¢ a )3 ¢ F G 1 ( ( Y N ( $ ]')( $ 1( - ! (*'65_7 = '*>?7R@CB
& ( 7X! ' & -21 ¢ O')( $ 5 a G F G 1 12. J a 1 0& 3 F 7 ' -21 $ (:7 S 3 J $ L F G -21 J L F G S F G S - -21 Y &S 1 0& 43 ¢ a -21
a -; &-21 & &- a 1 0& ¢ ¢ S 3 3 1 - S 0& 43 ¢ -;&-21 & ?7A@CB
+ 5.
6. 7. 8. 9. 10.
11.
12.
13. 14. 15.
16.
17.
18. 19. 20. 21. 22.
' c ' % 1 J L' 0&
#
7 ¤ c & . j + -21 lC-21 0& ¤
£ ¢ ¤ 3 3 ¢ F ¢ h 3 G ¤
£ 0& 3 ¢!¤ 43 ¢ a 1 7 7 ¢ £ * 3h 1 , ) ' (:7 ¤ % '65 1 L ' 1 - ) , J
' % j + -21 lC- . F 3 ¢ G ¤ 1 J L' 7?7A@CB
( 7X! ' a F ¢ 3h G ¤ & 7 8 (
1 3 ' % O'65_7X! a 1 0 3 ¢ -21 -21 - ¢ 3 a 'g5 1 L '%&
1 ) * J
' % j + 1 lC-21 . £ 3 ¢ ¤ 1 J L' O' '% ! ! % £ & j + 1 lC- &-21 . F 3 ¢ G ¤ £ £ ¢ ¤
a 1 & 3 ¢ 43 ¢ 3h G ¤ 7 (8 a 1 F 3 #'65 7! % ¢ a '65 ! '65 & L' 0 3 -21 -! &4a 1 - ) * J
' 6 ' _ 5 X 7 ! % % '65_7! % £ & a 1 j + 1 lC- &- . F 3 ¢ G ¤ 7 ¢ & 7 8 ( 3 a 1 0& ¤ ¢ 0& a F ¢ 3h G a 0& F 3 G
1
1
&-21 3 ¢ ¢
23.
24.
25.
26. 27. 28.
29.
30. 31. 32.
2. 3. 4.
7 , ¤
¢ 3 7 ¤ ,
3h
= '8>?7A@ B
¢ 0& 3 43& ¤ 0& 3 ¢ £ -21 0
¤
a 1 & 3 ¢ £ a 1 1 ¤
¤4¤¤ ]S 0
1
[ X@CB
23.
25.
?7A@ B
33.
1 -; & F ,G 1 -; F ¢ 3 G ¤
34.
a -;&a -21 0& 3 F G 1 -;&-21 F ¢ 3 G ¤
1
35.
&L ' £ ¢ a
J
7X! % @ 3 1 a 1 ) -;&-21 0&
&-21 = '65_
36.
37.
c ¤4¤¤ ]S 1 U
[?7A@CB + C l ' 5 ! j % 18. j + lC- - -; & = S -21 n 5 ' ! % S .S ' % 5n'65_7X! ( F 5_7G j + lC- S . & ¤ 19. j + l & SEa . 5_7X! ' (:7 ¤ ' % F G 20. j + -;9l & A. j 0& ¤ 21. j + l 0&
; ;9:
22. 23. 24.
25.
26.
27. 28. 29.
30. 31. 32. 33.
34.
35.
36.
37.
7 . j + Cl -21 0& j & -21 & j 7 . j + lM1 0& 7 (8 j 0& 3 j . j + lM1 0& F 5_7 G 1 j a 5_7 . j + lC-21 0& j * , )
& 0 a 1 0 & ¤ _ 5 7 ¤ 1) * , ¤
&L ' . j + 1 lM1 0 & '6J 5_7X! % 0& ¤ 1L' . j + -21 lC-21 0& J ' % & ¤ . . j + -21 lM1 0& 43 ¢ j + 1 lC-21 3P& ¤ 7(8 ¤ 43 ¢ J 1' L % '
) * , 5 7 J '1 L % ' F 5_ 7 G 1 a 1 * , ¤ ) 5_7 5 . j + lC-;&-21 & F G j 5_7 , ¤ ) _ 5 7 ( . j + lC- &-21 0& 43 ¢ F G j F 5_7G ¤ 5_7 . j + lC- &-21 0& F G j * 5_7 , ¤ ) 5_7 a . j + lC- &!- &4 0& F G 1 j a 1 * 5_7 , ¤ ) '! % 5_7 . j + 1 lC- &-21 0& ' % ! F G ) * 5_7 , ¤ ((:7X! '%& (:7 . £ j + 1 lC- &!- &4 0& 43 -; C7(8! j a 1 ) * 5_7 , ¤ '65_7X! % 5 7 a . j + 1 lC- &- 0& ' % '65_7X! % F G 1 a 1 ) * 5_7 , ¤ ; ;
?7A@CB
3. 4. 5. 6. 7. 8.
4 3 ¢ A F ¢ G ¤ a A &
1
' ( 7X! a F ¢ G ¤ A & 7?7A@CB 7 ( '
&-21 / H & !
( ' (*' #$ 1 0Q3 ¢ ¤ : ( 7
1 ,
)+*
! (' ( ' 7 1 ¢ j 7 3h& F 7 (8 G ¤ ! ( ' (*' #$ 1 'g7 5 7 -21 0Q3 ¢ a 1 a ¤ E : ( 7
& ,
1 ) *
! ( ' ( ' ( #$ 1 ¤ ¢ 8 ( 7 0 Q 3
,
)+* 1
! ( ' ( ' ( #$ 7 1 ¢ a 1 a ] 6 ' _ 5 X 7 ! 8 ( 7 , ¤
6 3 2 1
1 )+* & !
( ' (*' #$ 1 O'! % F G j F 7 G ¤
1 ( O ' ! 1L ' J
( ' ( ' ( #$ O'65_7X! % a 7 1 £ 1 j a 1 F G ¤ - ( 1 (*O'
& ! J L '
(' m ( 7! ' ' % O(:7 . !a + 1A- -; F (8 G ¤
h 3 & - 1 1;- -
J L' ;
60.
N 1
61.
N 1
62.
N 1
( ' (' ( 7! ' ' % 3h& j F (1 *' 1 !
J L' (' V(')( 7 1 ( O' F 3 G ) * ¢ 3 , ! ( 1 1 ¢ 1
E 7 / 5_7 !
#$ 1 1
N 1 &! ( 7 Y K
63.
E(:7 ¤ (8 G ¤
¤
J & L / / ¢ -21 " 7 " g5 5_7! K 3 65 _ 5 7V!
#$
N 1 1!
Y £ 1 ¢ / 1 -21
C 7,5 ! K 5hC7,5 ! C7 ( ! £ ¢ 1 3 / 1 -21 K 5hC7 ( !
65.
66.
¤
F G F G
1 &
64.
¤
1 &
N 1 7! 7 ( 7(* ¤
2 1 £ ¢ ¢ / " 3 / 3h , K 5 7( 7(8 ) L J 1 &
N 1 7 ! ( 7 , 7 5 _ 5 7 1 ¤ £ £ / ¢ 2- 1 K 3 £ 2- 1 ) 5n5n 5_7 ,
67.
1
N 1 &!
#$
&L ¢ J / -21 7 " Y K 6 5_7!
; < ;
K
" ¤ 3 65_7X! 7
68.
69.
L1
7 7 2 IF G 1 K , K 3 , ) * ) * " 7h7A@CB G 9 G H L D F F 3 = J # m - - - $ £ - -21 £ f / £ 3hf ¤ 100. N
1 a ?7 ! = @ B !C@CB ' (' V( 'g5 #$ ( ! O')(87! ' 7 7 7 < G F]3 G H 105. N ( 1 L ' 1 L ' DXF]3
1 1! ( & J & J& & '= 8>?7 = @ B O!C@CB ! 96.
; ! = @ B 7 !C@CB
&A -21
l & 1 J L' #$ ' 1 ¢ @ B 7 C! @MB 43 '65_7 ==
( ' ( ' ( (
N 1 !
108.
&
( ' (87 V(')(
N 1 ! (
109.
N
111.
N
&
!
= = @ B 7O!C@MB
'& a 1 '65 !A '65 !
7
= = @ B 7 !C@MB
G 2 IF G F ?7 = @ @CB
3 N 1
!
5 1 m 1 #$ !
N 1 ( m 5n '65 &
F G S C7 !% ( ( m Y
126.
1 ( m! 127. N 5 '65
1 ( m n ( m 5n'65_7! " Y
#$
&
m ( ( J
a a . 7 1 F G #$ 1m! 1 ¤ N 1 ( m 5 $ 5n 6 ' 5 &
( " ( S ( 5n '6( 5_! 7X! ( $ L 3
m J #$ m 1 ( '! ( ")" ( m 5n'65 & L)" 1 ¤ ! J
N 1 ( m 5 $ 5n 6 ' 5 & m 5:'g5 & L "
1 1 N 1 &
! 1 #$
1
#$
" F 7 G
128.
1
S " " j + -2 1 lC-!& - SEa $9% S 5n'65_7X! " ( m 5n'65 & L" ( m 5:J 'g5 & L "
J
= = @ @CB
129.
N 1
&1 !
= = @ @CB
m ! 1 #$ a J
N 1 a a - J
7 Y a a 1 J L
130.
a L
£ - 0fI $ L 4 3 J
L' J
a - L
;9L,
'
7
¤ a L a - _ 5 7L J
J
131.
m ')( m N 1 1 £ & - / !
Y a J
! ( m ! ' 7 a - L J
'
$J ,L 3 £ - f K3
- a - a 1L
7 a a - a 1L - a J J
! 7 . / m 5 ! ' $9% j &+ - a l - -; ¡ 7 7 a a - a 1L - - 1 L J J J
m ( 5n'! ( ! ' ( ! ' m (* ! (
¤
- L
m V (')( m £ 132. N 1
1 !
Y a - L J
m m (* 5 133. N
1 m ( 5n' ! 1
' Y £ - $ L& fI fg3 £ O 3hfT3 & J S £ 0fg3 £ ' S Y L 0f J 7 7 Y a a ( a a a a a a ( a a 1 L 1L L J J J J
m m (* (*' 134. N m ( ! 1
1 " "
/ m ! ( ! $&% fI fT3 £ O j + a -21Rl - a -; . ¡ ' & 7 7 Y a a a ( a a a ( 1L L 1 L J
J
J
J
5 7 '65_7 3 ¢ -21 £ SEa a 1 F 3 ¢ G 135. N 5
1 ! 1 S ( ! " 3 ¢ G j + l a a - S -;&- . ¡ Y % F 3 S ( O! )" " a a a . ¢ Y -;&- ¡ & $ % 3 j + l &
¤
L
¤
L
;9L 3
L
¤
Y
2- 1 3 £
D £ ¢ H
a a - ( 7! 7 &B BB 7 &BB B ')(:7 P5 3 = ! ! ( #$ 7 1 1 " ¤ G G G I G H F F F D F 136. N 7
1 ! 1
#$ 1 1 1 1 ( 5n J L J & L 137. N &
1 1! 1 1L 1 L J J
1 #$ 1 1 1
g(* 6( J L J L J & L 138. N &
1 &! 1 1& J L
#$ 7?7A@ B = , 7 5 7 8 ( 7 ( 7 8 ( , , ) )
8.
: N,
( ' ( 1 ( ' ( 1 ( ' 1 (*' #$ 15. N ( 1 (*O ' V( ' 1 & ! £ - R&2- 1 a 1 a a 7 ( 7 8 ( < 7 5 7 (8 , ¤ ,
1 ) *
1 ) * #$ ( ' % 1- m m 5 1 ] C 7 * ( m !' 16. N
1 1 &
& !
( '! Y -; 1 ' 43V m m ! ' ' ¢ 1
Y 1 - -; , ¤ < 7 5
) # ( $ 1?7A@ B mJ 5:' L 3 &-21 3 1A- ;- &1A--2 1 -; & m! ¢ ( ' 6. J m L 3 7 Y ¢ 3_f & -;&-21 3& 23 1A- $ a -;&-21 3P& 1A- - 0& ¤ &2- 1 1 m ! ( 7! ' 5n' L 7. 1 - -; A
J m ( ! ¤ Y -;& - a 1 & a
2 1 % G 3 L F F
2- 1 G J & 5.
:,93
+
m 'g5 ! 1 £ 43& -; A
( 7X! " Y $9% -;& - a 1 0& & J -21 £ £ Y 3 ¢ /
& l -
$
L1 N
L ¢ h 3 fI - P5 ! % Q( ! ]& - £ If
£ ¤ / - -
Y
m !(*' m 5 1 1
J L' £ Y 3 ¢ /
l -
10.
'
7 G L F J & £ & - -21 % P 5 ( ! ! #& - £ If
5n7 7 ( ! ( 1A- 3 !¢ & S1A L J ! S 3
11.
5_7 'g5 7! L 3 J Y 3P& - a2 S
7
Y
12.
m ! ( 7! ' ' % (*' L C 7 ( m ! ' 1 - A
J m " ( ! a $ ¤ Y
; & 2 1 G F3 J L - a -21 F G $9% &
8.
9.
1
£ ¤ / - -
43& 7 $ S - - a 1 3P&
' % ! J $ L 4 3P& a2S (] ! - S 43 & - 2- 1 0& 43& a2 1 :,!5
- 2- 1 0& ¤ -21
'I@CB = ?
5 '65 Y /
13.
1!
1
#$
( "' ' % (! ]% ! $
/ - a2S -21 3P&
5
!% $&% -; a 1 & & a2S ( ]! £ - S -21 43& % a2 1 P5 ! ?'I@CB Y -21 % Q( ! £ / - - = / - -21 7 7 G -;&-21 43& F SEa 1 (*' L ( & ' J
SE a 7 a 3 1 $ SE-;a &&-2- 1 3P& & -2- 1 a 1 & ¤ 1 " ( S 3 ¢ S £ 1A-; S -; J ' ! " L $ L J a 5n'65 ! '8>?7A@ B Y &-21 % $ $ 5n')( ! £ / - a 0 / = & 2 1
14.
1 ( !
'65 1
15.
5 1 ! 1 (* '
#$
#$
#$ 1 ( ! 16.
1 (*'
( &(' S '! % ( 7! ' % % $ 5n 9 $ % S -21 0 & X / 0 / a ( ! -21 5 ! £ £
; & 2 1 % a 3P& % ( ! / - &1
17.
1! 1 &
#$
£ & V 1 / A
- a ;- &-21 43& - -21 / 0 = _'I@ B
& ¤ F G , )
8.1.11. The hypergeometric function 1 F2 (a1 ; b1 , b2 ; z) 1.
7 ! 1N 5 1
(8 7 £ / N (: 7 ! 3 £ K3 ¢ 1 1
:, ;
( 1 £ / N
5 1
1
!
&
#$
¤
+
L1
( #$ 1 £ £ ! 1 N 5 ! 7 & / 1 N 5 ¤ 2. / 1 1
" " " C7( ! 3. Y 3 £ O - 9- £ 3 £ 3 £ / ?7 ' m ( 7 9BB B B !m " ( ! ! ! 7]&B B B $ 7 &BB B ' ! = @&#B 7! SEa a 1Rl a a 1 f f 3 ¢ - SEa a 1Rl 0 f 1Rl ) f , l 1 ) , >?7 ' m ( V( 7 V(9BB B B ! m " ( ! 7 &B B B ! $ 7 &B BB ' ! = @ #B O! ! f 0f 43 ¢ - SEa 1Rl 0f f S a a l a1
l 1) , , l a 1 ) >?7 ' m ( V( 7 V(9BB B B m " ( 7 &B B B ! $ 7 &B BB ' = @ #B ! !
3.
!
: 3 L
( 5 5 ' 6
0 f £f £ E S a R 1 l - l a 1 ) O 1 ¡\ £ , £f £ £ E S a - - a 1Rl
1 ¡\ £ , l 1 ) ( 5_7 P5 5 7 ! ( * ( ' (* m 5 ( ( 'g5 7 ! = @ 7X! B
0f
SEa R1 a l ¡ l £ -
4.
f 0f S Ea R1 a l ¢ £ !¡
l
£ - - SEa 1Rl £ O 1 ¡ £ f £ , l a 1 ) £ 3 £ - - SEl a a 1Rl 1 ) £ - O 1 ¡\ f £ O , ( 5_7 ! P5 5_7X! ( ( ' ! (* m 5 ( ( 'g5 7 ! = @ 7X! B
5.
6.
SEa a R1 l \¡ 0 f , l 1 ) £ E S a
l R1 a l ) 3 £ V-
SEl a 1Ra l )
£ £ ¡ 0 f £ f £ ¢ £ f £ 3 0 f ¡\ £ £ ¢ ( P 5_7 5 ! ( m 5 Q(
¢ £ £¢ £ ¢ £ £ 3 ¢ 5_7! (*'
,
£ , ( !
( ' * ! = @C7 O! B
8.2.2. Various Meijer G functions 1. 1 M 5 7! !¡
Y
K
7
7
*
_ 5 7
3
7 7 3 5_7 *
K
: 3 P
= M 5_7X! @CB
3.
4.
L1 , ,
1 ¡\ P3 f f 3 f f 7 £ £ £ £ ¤ / - / E3 / - /
A7 @CB 3 2 IF 7 G K 7 3 7 / ¢ 3h = 1& & ¡!¡ , * )
2.
3 / 0/ 0/ / 0/ 0 ¤ 1 1 1L ¢
¡!¡ J 3 2 l & 0 7 7 E(:7 7 7 E(:7 ( 7 O !C@CB Y K 3 3 K * = *
1 & ¢!¢!!¡
5.
6.
7.
8.
9.
10.
1 ¡\)¡\
3Pfg3
3Pfg3
f f f ) ¡ f
f f ! ¡
7 7
# 1 E 3
7
£ 1 ¤
f - 2- 1 £ / 0f a 1 f - -21 £ / f - -21
£ / ¤ £ / ¤
f 7 f
)¡ 1 - 0/ 3hf fT3 f £ £ 1 - / 1 - 0/ 0f
/ ¤
1 f f
!¡ 3Pfg3 f f f 7 C 7 m 5_7X! £ a £ &4 O 1 6D
1
- -21 &4 O 1 C7X m 5 ! £ - -21 &4 1 :95N
£
7
11.
7
7
13.
&
5 7 ! 5 7 !
£ £
a & 4 1 6D
1
- -21 &4
1 C 7X m 5_7! £ 3
- -21 &4
1 _ 5 X 7 ! m £ £ &4 1
- -2 1 m 5_ X 7 ! £ £ - -21 &4 O 1 f f ¡ f 3Pfg3 f f C7X m 5_7! £ £ a &4 1 6D
1 - -21 &4 1 C7 m 5_7X! £ 3
- -21 &4 1 _ 5 X 7 ! m £ 3 £
&4
1
-21
_ 5 X 7 ! m £ 3 £ - C7 m -2 5 1 7! &4
1 H £ £ a &4
1 QD
1 - -21 &4
1 C7X m 5_7! £
- -21 &4
1 _ 5 7 ! m £ £
&4
1 - -2 1 m 5_ X 7 ! £ 3 £ - -21 &4 1 F3 / & G ¤ ¡
¡ &
&
( 5 5 ' 6
£
- -21 4&
1 £ - C7 m -2 5 1 7! 4&
1 H
m m
12.
14.
3 £
f f-
7 F G 1 &
¡ !¡\ !¡!¡
3 & ) *
,
3 & ) *
,
H¤
H¤
¤
h 3 f 3Pf ! m
:95)
# 1 K 3
£ f
V 1 ¤
15.
1 &1 ¡_ !¡
L1 , ,
43 ¢ '#" 43 ¢ ' $ L 0/ 0/ ¤ J &
¢
1 &1 3 $#>?@.A B 'C'D FE # ' HGIJGIJGI !#" $K! '&6(*++,+$.-L/1- M -N(3O : ,=!#"P8 9 ':.;,=< >$#'?@.A 'C*D Q
B FE # ' HGIJGIJGI !#" $! '&R(*++,+$.-S/1-3T-PU0< VL(3O : ,=!#"'8 9 ':.;,=< >$# ?@.A 'C
B D FE # ' HGIJGIJGI !#" $W! '&X(*++,+$.-%/1-ZY-\['! O" !3:+^] ! >$;_+< +5R$#`?@.A 'C
B D FE # ' HGIJGIJGI !#" $a! ' &(*++,+$.-b/1-3c-R>d#++$.a['! O" !3:+X] ! >$;_+< +5R$#?@.A
'C'D FE # ' B eJf Xg h HJi j k@, l +] ! >$ :++'&+!#"8>9 ':.;,=< >$Vmb/N- 2P@?@.A #e >C ''n JD ZAoQg j j; HGIJGI k@, B l +p] ! >$ :++'&+!#"q8>9 ' :. ;,=< >$Vmr/N-#M1q?@.A #e >C ' B n ZD JAoQg j j s 3f JA etq vue.w @k! '&xl3$Vmv! '&\U0!#;l +5\!#;,=:V!#"v]!x " +$#>?@.A V>C> L tJ > P]Pl 4 +< @8>9 ':.;,=< 13 e eVe >j F|# . @ 3u j u u V J ]l 6(3 O : ,=!#"v8 9 ':.;,=< >$F! '&q;l +, 6
HO3O><J , 5\!#;,=< >$VmF/1-2P1?@.A >C @ B Jf B R Z. w N s> V . e e w# | #u 8< +5}9 " ! $S! '&F]Pl < V+5}$*_+< S;l o(3O : ,=!#" 8 9 ':.;,=< >$`9 ':.;,=< >$#>?@.A >C # Zf j j ' Su +#A ee@ ;
Sn;:.;,=< z$S{1,;;l6(*++,+$# ?@ .A >C @Jj Su #e g # g #
r] V!#;, $.S< 0~S+*+!#;, 8>9 ':.;,=< >$# ?@.A >C B g 3j e z Z.
Journal papers
3 fR S% 3j e #e.w 3j |ZJj e DSQ +e # e e Z. -H1< 5O>9 -*
HO3O" -Uz!#;l - >? K HGI Zj # j #w e+ f #e.w 3j . 'C11 C @ Jf R Z. Lj Qu # # s ? L 3 j j X u u # e X + e 3f j e Z # e \ B f e .g -* Uz !#; A eV w3 f} l -
@'!#" ->
HO3O" - ? : : P
j .K ? 3 > e
w# 3j t 6# > w# fR.e @ Z. 1Z 3j +e .v
HO3O" -HU0!#;l -L|< 5LO>9 - ? HGI fK fR j # 0 bZs> M! w# M! +e .} !#" J ] ! >$;_+< +5}$(3O :J-8>9 ':J- >E? HGID ZS #e e # > w# fR.e +e oA eV Z>Z +eoe } JQ 3fR.e J 'C1< R
x+$+;!3:.*! '&
HO3O" ,&S
@'!#" 7 $V, $VmkL! '< , mH/P, ;'! 5z Lw >u w# 3C V j zu #e > R S j et S` > +e eA 6 j e #> 3j* j f 3j .|? S@ n w Q ' Iu 3Q w>'u #e 6g >u fK s>j Q Z #e e Z # e %w#B e w e Jj e V .v
HO3O" -HU0!#;l -o[* =- ? S@ ' Z w>u #e 6g ' h >j e 3j e h| j Jj e zV fR. ]Pl v! 56! >9 ! 0 - ? SS Jj o = } fK Z| #e w K !;( K ! TK !( E !0! + e 3j Z 1 -1< 5O>9 -1
HO3O" -|U0!#;l - P? h e ng FeV > s j e e+} 3fRHi }i .e e ' -o1< 5O*-*
oO3O" Uz!#;l - >? HGI3u fK .AV f}f e VfK j |e+Lw# 3j t. n# > w# fR.e +e w * -H|< 5LO*-*
oO3O" -U0!#;l - >? HGI3?@.A # > w# fR.e e Vf e .P -H|< 5LO*-P
HO3O" -U0!#;l - >?
S Jj >
f h Lj . V j e e V j j t 3 ee 3J N Jj j K #s j > r
S=;,1
@:V:J-(': ,-o]>< +, ' HGI3oJj e | #e Lj Zv j fKZ @ # 3s w @.eHg@ Vf e3
S:.!RUz!#;l - B S n S` Z # > w# fK.e ` Z Fe VfR f j S Z.*| @ ; >Vf j* h g P w6 F fK`e w#V f\f e fR j #. " " , '< , $L -NUz!#;l - >? D 3 K u fR .A #e.w 3j w f f eVJf e 3j># ==3(>, 56< (+dZ, 1
:# . ' R*(>, 5\< 0(+dZ, 1
? D j j L #u fKSs f 3j Z 3s e \s3`eV@ QfK.e+ *3
S& d#-
HO3O" ->Uz!#;l - HGI3u ZP Zj 3Jj Jj e e L 3f VfK j # P ; Z#ee*C > 3j 3 f w j j HGI s e .A 3f 3Qe >% Z. 4 +O*-`Uz!#;l - o?
HGI D e
fR) 3f fR j #. H ! 5\! >9 ! -
HGI3g@ > w# fR.e
L?
#e e Z e W 3f 3Qe >z Z.]Pl v! 5 ! >9 ! 0 - ? \ D e I u fRRV f} .w# n # 3s P j f 3j .NU0!#;l -o< l +5F- B ? o J +nD u P +J } = u >Z 3j 3j Z e+I# > w# fR.e e .HUz!#;l 1, 5\< 0(+dZ, 1 >? HGI3@j 3 %# > w# fK. e \ Z`A e+ #s> j T 7 | -HU0!#;l -|
@'!#" -1
oO3O" - ? SJj s> * Ju + ee+j N@ s> .og #e.w 3j fRJj #e ' F, $V$. -@]k " 5F+'! 9 >? Z #e e Z 3f j Z e+ # w 3j j f 3j }>Z 3j +e . !#"v] ! >$;_+< +5}$L(3O :J-8 9 ':J- ? ee #eV 3j I Su # ) X L e
f e 0w# e # > w# fK.e #e e ZHs3Re+s>.e #e. w 3j>fR.eV * -11< 5O*->
HO3O" -'Uz!#;l - 3?
HGI 3 3j
g JAr 0AH\Z #> S f Jj e .v -vU0!#;l -|(' ? + e ) Z6 #e w eV w3f}f +e ' j j o u f}f e 6 -1l37 $.-*
U0!#;l -H~S+*- j j L 3f} + I u *S e Z e+\g A etRt..e +e e 3j w fR #e.* -H|< 5LO>9 -*
oO3O" -U0!#;l - >? zt g . j j 3fRv u Ze e } h1 e Lt..e e e+v 3j e
fK . e #e.w 3j .'
@:.!\
@+,;;l35F- >? A Q fK 3 jH Z Jj e ae w Vj W 1u f}f w Q ae eVRh| j @ Z.* -H|< 5LO>9 -*
oO3O" -U0!#;l - ? HGIJGI H Z
Jj e `e eVSh| j Z. -P|< 5LO>9 -
oO3O" - Uz!#;l - ? HGIJGI3u fK e@ Z Jj e Ke ` . f w 3f}. -1< 5O>9 -
oO3O" ->Uz!#;l -
? L e Ke Vf e VfK j # Ls # }# > w# Q S 3 f b | f fK.e Z.v] ! >$.-*
S56+Z-NUz!#;l -P(' e +eV.
Un > ? > e HGI # e.w 3 j Z Z # e e H +eV.
Un > ? S #eeVs I e Q V fV j Z o # . 3j
e .
LUz e 1 e P@ s \
Q
+e e
L e
Q
+e Ig JJj o f`s j . !#"v] ! >$;_+< +5F-P(3O :J-8>9 ':J- >? Suoi +.t QS tW t e Z +e fR j j w^ Z D.w# 3s 3 o j B f 3j .*
oO3O" -U0!#;l -[* =++$# >? %u #3QS Nu #e 0g * wb 3Q 'Nu fR 3f j Z # > w# fK.e eB f e Lw# e w +e .3U0!#;l +5\!#;,=:V!#"! '&L:V< 5O>9 +|5\ +e
e A be w fR.e e F ) Z j w |ZJj +e . -@
S'!#"
@>{o+'& 9 +1 >? SutZf`eV JASV ` e+ e e+ .w# +e e+@ ev }A e+ Z>Z eoe e .w.3* -|l37 $.-*
U0!#;l -H~SB +*- 3 #u j j e j f w H J j3e K j e # >.ee B 3j' 3fRB .e > @ w# fK.e + *L f\fK H t Jj j F #s j > @? HGI J + D u S J j Z
Z ( ' 5 ( ' !
f}fR #e e q #ee*C
w # s
#e 3j q# > s j e .(>
U e+ 3j e e+ #e.w 3j H! 5\! >9 ! q - >?
:< ,
Index of Notations for Functions and Constants
M]!
L @eV e J e w fK.e +e
' eV | j j fKs> ' M! eV | j j * j f 3j M! M! M! M! M! ; 5 M]!
"
M]! e+RJj L @ eV e L J B B B @eV}h| j @ e #e
+e
( KC7! J 7 C M! Z oe+K Z Jj' 3 #e.w 3j M ! Z " = 7R@ oe+w# 3j t 0 Z Jj* 3 # e.w 3j
s j ` 3 # e.w 3j
@eVK 3 #e.w 3j Z ( L oe+K@j 3 #e.w 3j
M]!
M! (
V
J
m $ ! Z ! @eVK f}>j .e`Jj j e # e.w 3j D ! :j JfR #e F +e
;M!
Z
Z
W @eV` +e f w
w fR #e
" ! "" $ "
%! ! % m " !! " Z " " C7( 4! " " C7 (4]! " " oe+RD 3 S# > w# fR.e +e m ! m ! N !! ` N ^ ! ` N #40f E & ^ ! m ! " m ! " B B BX m ! " " n ¤ 4 ¤ 4 ¤ n 4 ¤ ¤ 4 ¤ ! ! B B BX ! " $9% f 1 6& N f 1 " " oe+w# 3j t. z# > w# fK.e e " " ] ! m " $ " %e+^L f\fK a ! #e ! ! ! # > w# fK.e e " ] 7 B B B @eVK e 3j I e #e G " ( ' ## m ! ! ` " !( ' ## m &&B B B B BB m ` " ! ^ ## ^ ## Z % ( % ' " %$ '%& % ( & %
&
:
#
@eV}I D e !& 7 ( W #$ @ eVRue V e ! M]! H 5 & & & 3 8 M]! M]!5 M] ! 3 8 M! M;! ( M! oeVSg JJj e
eV e nZ z ;eV |ZJj +e eV`eV z W ' W ' M]! ( 7X! ' ' " e+Kg@ Vf eK j f 3j M]! ` 5_7 ` " eV@f |ZJj ! ^ ^
e Ve eS M]! L 5 7 ( ` @ eV |ZJj e e+ eS ! ^ J Z (* ! o e+ #w +e M! J
K
$ ! Z oe+` fR>j .e`Jj j e #e.w 3j +e eS ! M! " ! ' M! ' M!
e+R # 3j +e e+Kf |ZJj +e e+eV z M]! M]! M]! M]! ;M! M! eV}SJj +e M]! " 3 '& 8 H @eVRf zue V e L ' M]! ' M]! e+ B w ` j f 3j " ' -/' M]! / ' ' & / " eV`w# 3j t. B w ` j f 3j " M! ! " Z " = ! C7(:]! @ e+} j j #w e+ f eV
M! oe+Rh| j j #w e+ f κ 5 M! & " κ 1 |eVS ee 3J | ! #eH# > w# fK.e
e "' ' ' M! ' M (87! ' eV B .w# ` j f 3j Ne+ .w# e eV M! M! B 1;- eS
:< ;
#
M! L J 1-
( M! M (87! ( ( M]! J L ! 99 L J 1;
9 ( ! ( 7! ( C7 ( ! ( ( ! 9 J 9 L
oe+ # e B .w# e e+ eS ' ' ' 3 465 78 M! ' C7 (8! " 4 C7,5n]! " 7 ' C7(8! 4 &(' C7,5n]! 7 & '
M!
"']"
!
65
5_7
565_7 " ! (65_7 9 ( L ! ( ! (
3j
= 7A@ oe+w# 3j t 0 Z Jj* #e.w 3j '#" ( '65 $ (87 O')( " ( z ' 3 ( 8 ( X7 ! " ' ( 5 $ L ) ' ( ( $ L '#" &" eVque Vj w fKs> " J J e+ eS
Z "
M !
oe+ # e B .w# e +e `Z n M]! Z ! @ eVK Z Jj' 3 #e.w 3j
! ! ( ( ( 7! C 7 ( ! J 9 5 7 ( 7! ( ( _
' eV` # 3s * j f 1;- oe+ B .w# +e eV KZ z M! a a 1 a 65 5 7 " " " M (:7! '&
& 1 W 5
M]! '%&
a a & a a " ]"']" M (:7! 1W - " "
5 !&5 ( !
M]!
: s j K # e.w 3j Z ! M! @Ve ` #e.w 3j Z ! M]! M!( ( @eVK #e.w 3j
&
0eV%@Zs3 V j f 3j eV ' M! ' ! eS 1 1;- 'g 5?7X! ReV6@Zs3 V j Q ! ' M]! & 1;- f 3j eVK Z z
& " 1 M ] ! R + e n ee 3J } ! #e6# > w# fK.e κ κ5
e
" M]! = 'I@ ' M]! ' M! ! oe+K?@J f +e e+ |ZJj e e+`Z n ( @eVKs>.e +e ! =
" " C7 ( 4! KeV fR>j .ens>.e +e M! Z R" " oe+w3f\f e ]]! Z " " @eVK f}>j JfR #e fR>j .eKw3f}f e !
Z
#!
e = m !C@ "
!E(
#! Z " "
m " !
g $ m ! g $ & m !0! ( 5 ' 7
&B BB &B BB ' oe+R Z J o fKs j '
:<
j .e
w3f\f
#
M! ( @eVR Jf Ft .e e " M ! @eVRg A ett..e +e " ! 7 > @eVKg@ +e " m m ]]! " $ " "
"'& !! "5 " ]]! $ " " "
m "'& !! "5 ( ( )" " ' '( " ( 7X! J $ L $ e+Kue Vj w fKs> eVKZ z " M ! ! " "'& $ " " m #! !! " 5 $ "'&
" ]]! $ "" "'& !! "5 " #! " " "
!! " 5 "'& m ]! ! ! ! $ = " " 5 ! oe+ f ' ! #e# > w# fK.e e M]! K ! !( 9 M]! !( D !C@ K 9 =K 9 9 !;( M]! !( D !C@ K 9 =K ! 7 (* !( 7 ( 5 9 9 D K
]]! ! ! "5 m ]! ! ! "5 KM]! = M]!C@
m
"'& $ " " " "
" "'& " "
@eVK +e :