DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN
HANDBOOK OF
GRAPH THEORY EDITED BY
JONATHAN L. GROSS JAY YELLEN
CRC PR E S S Boca Raton London New York Washington, D.C.
© 2004 CRC Press LLC
DISCRETE MATHEMATICS and ITS APPLICATIONS Series Editor
Kenneth H. Rosen, Ph.D. AT&T Laboratories Middletown, New Jersey
Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs Charalambos A. Charalambides, Enumerative Combinatorics Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications with Maple Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search Charles C. Lindner and Christopher A. Rodgers, Design Theory Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography Richard A. Mollin, Algebraic Number Theory Richard A. Mollin, Fundamental Number Theory with Applications Richard A. Mollin, An Introduction to Crytography Richard A. Mollin, Quadratics
© 2004 CRC Press LLC
Continued Titles Richard A. Mollin, RSA and Public-Key Cryptography Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary Approach Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding Design Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography
© 2004 CRC Press LLC
8522 disclaimer.fm Page 1 Tuesday, November 4, 2003 12:31 PM
Library of Congress Cataloging-in-Publication Data Handbook of graph theory / editors-in-chief, Jonathan L. Gross, Jay Yellen. p. cm. — (Discrete mathematics and its applications) Includes bibliographical references and index. ISBN 1-58488-090-2 (alk. paper) 1. Graph theory—Handbooks, manuals, etc. I. Gross, Jonathan L. II. Yellen, Jay. QA166.H36 2003 511'.5—dc22
2003065270
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microÞlming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of speciÞc clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58488-090-2/04/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. SpeciÞc permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identiÞcation and explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com © 2004 CRC Press LLC No claim to original U.S. Government works International Standard Book Number 1-58488-090-2 Library of Congress Card Number 2003065270 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
© 2004 CRC Press LLC
PREFACE
! " "
# $
% & Format
' (
) $ * ( ) + (
" $ ,- + . /
! ) ( . 0 '
) ' !
1 ( " Terminology and Notations
2 3 4 . ) ( 5
0 ( 6 ' 7 ' ) 8 / 7 " ) ) *
© 2004 CRC Press LLC
' 2(
9 ( ) : Æ 6 7 * ( ;
6 ) 2 ) . Feedback
" (
(
Acknowledgements
+ ( ( 5 * +
= 0 8
# ! ($ 32 &4 '2 2 . $ /0
= >
# ! $
? /F
# ! $ /
© 2004 CRC Press LLC
3 / # # ! *$ / !
2
/ '
# ! - %1$
? E
# ! / $
? @
# ! $
#
2
@
< E (
5 =
"
/ ==
E %E"& "
# ! &$ / !
3 >
) "*+ $ + **+ * ," *+ $ ++ **+ * ," + *$ ," ,- +$ ** , + 6 ,
References 5A;7 " " H/4 " CA; 5CA7 #I "
" " CCA 5?C@7 ? ?!" " - " 4" CC@ +2 - " J= J#" C:C,
© 2004 by CRC Press LLC
Section 1.1
Fundamentals of Graph Theory
19
5DCC7 K ? K D"
" J" CCC 54C7 2 4"
" J " CC +2 - " % /=" C@C, 5 C 7 L 8 H "
" K = M " CC 5667 = "
" # " 666 5=6 7 ="
" - " J/4" 66 +2 - " CC@,
© 2004 by CRC Press LLC
20
Chapter 1
INTRODUCTION TO GRAPHS
© 2004 by CRC Press LLC
1.2
FAMILIES OF GRAPHS AND DIGRAPHS
! ' /
/ . ; ; DEFINITIONS
) % # + , " & +2 " &½ , ' , $ " # ,$
© 2004 by CRC Press LLC
Section 1.2
Families of Graphs and Digraphs
25
) % # . & ' , $" &
) % ) # ) +
, &
) % ) )/ & > % ' ) ½ " &½ ¾
" ," & EXAMPLES
) )
- #
- # #" # #
)
/ & /
Figure 1.2.7
&" +"" & . *
FACTS
(
) 5 3 7 % # + " 5DCC" ;7,
( ) % )/# )/ ( ) 2 ) " # )/ HJ/ k-Connectivity and k-Edge-Connectivity
# 3 $$ *$$ : . DEFINITIONS
) " - + ," # /
) " - + , # /
© 2004 by CRC Press LLC
26
Chapter 1
INTRODUCTION TO GRAPHS
# 0 1 - " - . - - "
)
% - ) ) -9" )/ ) /
) % / - ) " ) )/ /
) % ) + ) , )
) % ) + ) , ) Minimum Genus
# 3 DEFINITIONS
) + , # # # / + : , /
)
% 6
1.2.4 Criterion Qualification % " " # . DEFINITIONS
) % ! . + . ,
) % + ; . ,
) % )/ ) # + ; ,
) % )/ ) . + ,
/
) % )/ / ) // + ,
) 0+ , B 0+ , & . %" # . 0+ ,
© 2004 by CRC Press LLC
Section 1.2
27
Families of Graphs and Digraphs
) % . # + Ü, EXAMPLE
) Figure 1.2.8
"
FACTS
() ¯
5? 37 9)
¯ 5L7 # # . ¯ 5:67 H 2 C #
Figure 1.2.9
()
!& !
%
EXAMPLE
)
Figure 1.2.10
© 2004 by CRC Press LLC
"!" %" " ! '"&
28
Chapter 1
INTRODUCTION TO GRAPHS
References 5:67 ? = !" 3 "
C + C:6,"
CP ; 5DCC7 K ? K D"
" J" CCC 5L7 K L3" Q R IQ = I." ;6 + C," :;PAC 5=CA7 K =" ! " (. F J" CCA
© 2004 by CRC Press LLC
Section 1.3
1.3
29
History of Graph Theory
HISTORY OF GRAPH THEORY
!" #
# ; %
Introduction % A:A" / # #! :; ? - + :6:/A, LS # # # 3 2 # 5?=CA7 5=CC7
1.3.1 Traversability # #! -T ! LS # # # + :;," #9 " # J L! + A6@/C;, = 4 + A6;/@;, " The Königsberg Bridges Problem
#. " " 2 " ! / ! # LS # . O " ! # Ü . " C
c
d g
A
c
D
a B
Figure 1.3.1
© 2004 by CRC Press LLC
b
' 78
30
Chapter 1
INTRODUCTION TO GRAPHS
FACTS 5?=CA" 7
() ( @ % :; ? - 0 #/ 1 % J# " " ! # () ' :@" - " / # () - 5-) :@7 # " # 0 # / 1 % :@" : " # :; () -T " # #"
LS # #
() - #" # # 9 %" " " + , % % & + # # % # % ," % " " & & 4 # 9 ." # LS # # # () ' #" - # # #
. %" " " # # / 0 ! 1" ./ 9 #
() -T ) ¯ ' & #
# # "
¯ ' # # . " & # ¯ '" " # # " 9 & # /"
"
() - " # "
#" # " # % # 43 54) A:7 A: Diagram-Tracing Puzzles
% * $ "%% " 9 # # ! 33 # #! P ." % .
© 2004 by CRC Press LLC
Section 1.3
31
History of Graph Theory
FACTS 5?=CA" 7
( ) ' A6C ? J 5J) A6C7 #)
" 9 $.# # # " & 9 J # # " # ' " 9
( ) ( / 33 # 5) A7 K ? 5?) A:7 #! $ " 0 1 () ' AC" ( 9 ! # # # " # 8 5) A: /7 #
&
() # LS # # # /
33 3 C ' # = = 5) AC 7
% # # 2 # C g
c d e
A b
D f
a B
Figure 1.3.2
" 78
Hamiltonian Graphs
% # # # & . 4T $" " + Ü;," & # L!" # 4T " # FACTS 5?=CA" 7
() % . # / " " ! T # " @ 9 & # # #!
© 2004 by CRC Press LLC
32
Chapter 1
" 5 2 A H
H
H
H
H
H
C
C
C
C
H
H
H
H
H H
C
H
C H
H
H
C H
Figure 1.3.8
© 2004 by CRC Press LLC
C H
H
H
% > !" !"
Section 1.3
35
History of Graph Theory
() 5) A:7 / Æ +!,
# " B # # ! * A 2 H#
;
C
A
() = L > # # #
# 9 " # ' A:A" 5) A::/A7 & # " ! ) - # .# # " L!I
" /
( ) ' A:A" 5) A:A7 !
" ( ) ?
C 6 C6 % ? K L 5? C7 3 " JI T #/ #
1.3.3 Topological Graphs -T 5-) :;67 " ' . ' C6" 3 # # # L33 L ! + AC@/ CA6," ! P # # H #" J " P . Euler’s Polyhedron Formula
! " # ! # # " " 1 )
G1 *
' : " I " # -T # 4 " " # !
© 2004 by CRC Press LLC
36
Chapter 1
INTRODUCTION TO GRAPHS
FACTS 5?=CA" ;7 5CC7
() " H# :;6" - # # " +, & + , # " " " ' # # # . # # " G * G
() - # ' :; # / " # # %/8 ? 5?) :C7 :C" () ' A " %/? 5) A 7 # -T # /
&
() % " /%/K ? 5?) A 7
. " # 4 -T P " " / + " RT , 2 / " ?
G1 * 6 . " # "
G 1 * # & &$" 9 1 $ $ $ + : ,
() ' A@ / " ? 5?) A@ / 7 '
( " ./
." > 3 # -T ! # $ #9 ' " 4 JI ! ? T AC;/ C6 #
() ! JIT ! " /
# 8 J 4 5 46:7 + , / ) '
* ! 4 # ( + A@ / C@ , # " # 4 3 + AA6/ C@, /# " # # # D 4 & C@6 H # J 3 L !T CA6 FACTS 5?=CA" :B :7
() ' AC6" 4 54) AC67 #
&
4 # # " #
() ' AC " ? 4> 54) AC 7 #
# " 4 T #
() ' C 6" 4 3 5 67 . 4>T // # " 8S # # & " / 4 4 # L #" # # J 2! 527 C" . ' C;" ' L 5L;7 /# " " @ () 4 /# C; #
# # Æ" 66 8 / C@6" C@A # D 5D@A7" = T 5@7 # C@ $ " " # K ? 5:7 3 # #&" 3 " + Ü:," + = ! 5:7,
() ' 9 CA6 " #
5A;7 " # " 0# # 1 + Ü::, 4 " " # # # " 2 /# " " C:C 4 4 " K J 4!" = 54=:C7 # 6 # # &
© 2004 by CRC Press LLC
Section 1.3
History of Graph Theory
39
1.3.4 Graph Colorings - ! " " # / # # 2 A; " # +, 01 # % L A:C ' # L % = 4! C:@" # ! L" !>" 4 4" " #9 # H #" " J " # 5 CC7 8 " # " 5 AA67" 5 7 # ) " )" $ $ "
() ' C
" 2! 52
7 # # / " / #
;
() % C;6 4 # # / ( . " 4 54@C7 #
© 2004 by CRC Press LLC
Section 1.3
41
History of Graph Theory
() ' C:@" % 4! 5%4::" %4L::7" K L"
# # A # " # / 9 # / #
() % CC" #" " " 5C:7 /
F # # # " 3 %/ 4! " # # @ #
Other Graph Coloring Problems
% ! / #" #
#
FACTS 5?=CA" @7 52=::7 5KC;7
( ) ' A:C " L 5L) A:C7 # & > / ! # 4 = C # #9 ! / #
( ) ' AA6" 5) A:A/A67 / 9 # .
() ' C @" LS 5LS @7 # . #
+ Ü
,
() & > C6" ! =" J () ' C " ? ! 5 7 #
. G " + Ü; ,
9
() ' C;6" # ./ # % " $ $ "
() ' C@" " % # " ! + C ," P@
5 7 !>" # " ; + C ,"
;P A
5?@7 !> ? " " " @6 + C@," ;;P; 5 @7 ( !" ( &I #I I I" " " & 2 + C @," :P;A 5 7 ? !" ( !" # # " : + C ," CP C: 5) A 7 %/? " Q / I" ) #0 C + @, + A ," @APA@ 5) A;:7 % " ( " # +, + A;:," : P :@ 5) A:7 % " ( " # +, : + A:," P@ 5) A:C7 % " ( " # % " + + A:C," ;CP @
,
5) AAC7 % " % " + # + AAC," :@P :A 5: 7 % !" . / " ; P ;A # . "
! " %8" H D!" C: 5) A7 " 5 7 #" & + A," 6CP @ 5CC7 J " #
" # F J" CCC 5 A 7 3 " # " 3 % + CA ," PA 5 2K;7 3 " 2! 8 K" / / #" 3 % + C;," CP 6 5 46:7 8 J 4 " % " ) '
* ! + C6:," ;P 6 5 8) A@67 % 8 " % " " # = = " "
H @C + A@6," ;6 P;6
© 2004 by CRC Press LLC
Section 1.3
45
History of Graph Theory
5 ;C7 - = &!" % # . " & + C;C," @CP : 5 ; 7 % " # " # " +, + C; ," @CPA 5 7 4 - " J." " @ +K C ," C ,"
6 +%
5- @;7 K - " J" $ " : + C@;," CP@: 5-) :@7 ? -" + :@, # " 0 " # A + :; ," AP 6 5-) :;C7 ? -" T 9 9 Q " " 4 ; + :;C," 6P: 52=::7 2 K =" ) 0 ! " J" C:: 522;@7 ? 2 2!" 8. $ A + C;@," CCP6
!"
52
7 J 2!" #" + C
,"
;P @ 527 J 2!" % . #" # + C," @P@C 5K:C7 8 K"
! " = 4 2 " C:C 54F=:C7 4 4 " K J 4! = " 6 # & "
+, : + C:C," P:6 54@ 7 - 4" 8/ ! $ " " C + C@ ," ;; P;;@ 5:7" K ? " % $" " "
&" P ) . # &&" ) # ! )+&&" ) ) " " #
) )/ ' -+ , - + , &" P ) + , # &&"'"$ ) #
&"&$ )+&"& ) # ) / #
+ Ü; ,
&"&$ )+&&" ) .
+ Ü ,
)
&"&$ )+ +&&" ) /
+ Ü ,
)
/
&! ) " $ " &!) " $ &!"+ ) # &!"") $* ( &!"+'"1 + $",) . #
&$&) &$& ) /. "
&$& ) P
+ , G + ,
* + ,
+ , ) # + ,
+ $, P . " +,) #
# / +2 " 9 # #,
#!& P ) 9 # . /
" '"1
* + ,) . " #
© 2004 by CRC Press LLC
52
Chapter 1
INTRODUCTION TO GRAPHS
* + ,) ./ " # /
"
" P ) . $$ $" ! + $ ",) ) & &" "& . " . P )
"
!
&" + $,)
" ' "
&" ) " &" P ) "& P # ) ! # &&"&"$ '"1 P ) .
) # " * + , +& P ) / $
""!") / # # " $
+&" P ) ./
"
+ ,
)+ +&&" ) #
+&&"'"$ '
-+ ¼
,
) # - + ,
)
)
)/ /
+""' ) "$ & ) ") " ! ) ! .
+ . ,
! " P ) &" P ) # )+&" P ) )/ # ") " P ) B
) # / / . .
© 2004 by CRC Press LLC
53
Chapter 1 Glossary
!)
* + ,) $ " "
"
" ) + Ü; . ,
Ü
) $ $&! + ) /! / # $&! ) / +½ , 6 , &&) # P . ) # !& ! P * ½ ) # ./
'" P " " '"1 P ) . 6 & ) # H/ )
*
'" P ) B " #
) #& ) ) " & #& &
+, +,
) #& ) "
+, +,
@½ + " ,)
+ +
G , * + , + , G , * + , + , + ,
G
+ ,
@¾) G 0&1 @¿) 0&1 " %)) # ½ P ) 0+ , ./ / " & .
¾) % # " .
0+
,
) &* " ) &* " ! ! + !, ) # # # H) 2 + , 2 + ,
© 2004 by CRC Press LLC
/ + :
,
/
54
Chapter 1
INTRODUCTION TO GRAPHS
1 ) "
$ " !"+&) !"+ ) " !" ) / . " # /
P .) & . " P ' ) ' ! ) ./ / B &¼ &" ) / / &¾ " '"1 P )
+, *
P ) + , * !" P . ) #
"
"$ &" ) # 3+"" ) ./ 3 # ½ + " ," #
&
"" ") 3*" ") . " &) $ . " ) " . " () /. " +N " # # ,
(
5" ) 6/. / " ;/ "
/ &
) 6" " #
"& ) ! "& ) / O " #" " "
!&") $ " $ ) & +& ) / &
'"1+& ) ./ &
! P ) $$ $" ! ! ) . ' )* . )
© 2004 by CRC Press LLC
55
Chapter 1 Glossary
+) & +!. + P ) & % *
%
) / / ) / / 1) . / Æ - ' )* " (
)" +
/ * ) G * , )/. & )
&
! P ) # . " P ) # " A'"1B P ) # # # # 6
# #
" $ &&" ) . .
!
! )
"
!) - ") $ ") ! ") " P ' ) ' "' &½ ) . "' %). ". ") ! 3 !$ P . #) # + " / ,
) ./ / & " " ./ /
! " P
'&) '"1 ""!") ./ # #
'"1+& P
) ./
$
'"1) # " * + , '"1+""' ) %) P ) 9 * ¼ ½ ½ ½ "
* "
" &) " )
!
!
½
. .
. > .
%)$ &&" ) " % " P ) + $ , #
© 2004 by CRC Press LLC
Chapter
2
GRAPH REPRESENTATION 2.1
COMPUTER REPRESENTATIONS OF GRAPHS
2.2
THE GRAPH ISOMORPHISM PROBLEM
2.3
2.4
THE RECONSTRUCTION PROBLEM
RECURSIVELY CONSTRUCTED GRAPHS
! ! " " " GLOSSARY
© 2004 by CRC Press LLC
Section 2.1
2.1
57
Computer Representations of Graphs
COMPUTER REPRESENTATIONS OF GRAPHS
Introduction
! "
# # $ % #
2.1.1 The Basic Representations for Graphs # & ' & DEFINITIONS
(
(
) * + ! ,
- * +
) * + ! , -
( . ) * +, ' ' * + & ( . ) * +, ' ' & ( / *½ ¾+, *¾ ¿+,, * ½ + ' ½ ' ( ) * + # ¾ ( ) * + # ¾
© 2004 by CRC Press LLC
58
Chapter 2 GRAPH REPRESENTATION
( ) * + ' , # 0 1 ) ' ' 2 0 1 ) 3 #
(
) * +
, ' 4 ' , % & %
(
' , # ' 0 1 ) ' 3 #
4 , 0 1 )
) * +
3 #
EXAMPLES
( 4 # & ' &
! "# # ! !
Figure 2.1.1
(
' ' # #
)
* +
3 3
* + * + * + * + 3 3 3 3 3 3 3 3
FACTS
$(
& '
$(
) * + # % *
& ) * + %
© 2004 by CRC Press LLC
*
5
¾+
+
Section 2.1
59
Computer Representations of Graphs
REMARKS
%
(
4 , 06781, 0
6791, 0:;
¾
) *
/
+ , & ' &
*
+ 6# , # & ', #
# ' , # # & #
*
+ 4 , & '
#
%
(
? &
# & ( '
,
'
2.1.2 Graph Traversal Algorithms @ % A ! ! /
/
4
/ , & # % #
Depth-First Search ALGORITHM A ! . , % B#C > ' , % BC A ! # % # ' &
, % ,
# B ! C
# * + % #
DEFINITIONS A , !
%
, # (
(
(
*
*
+ #
! '
+
* + '
!
(
*
+ '
!
(
© 2004 by CRC Press LLC
60
Chapter 2 GRAPH REPRESENTATION
&$# '
Algorithm 2.1.1:
# ( ) * +, # ) 01 & ' $ # ( !
!( *+ ! () ! !
01 () 2
! () ! ! 01 ) 2 *+2
!( *+ 01 () 2
! ' 01 ! 01 ) *+2
FACTS
$( $(
+ ) * + . # ! ' # B*C B+C, / ! A ! %
*
5
' #
$(
. ! , % REMARKS
%
( A ! =D3 08 681 Æ !
%
( A ! !
Breadth-First Search
! / ' . ! ' # . !
' ,
© 2004 by CRC Press LLC
Section 2.1
61
Computer Representations of Graphs
ALGORITHM
! ! ! ! ! * "+ ' % / " ! ! *"+ / " !
, % 5 . , ! % % Algorithm 2.1.2:
) &$# '
# ( ) * +, # ) , 01 & ' , ! ' $ # ( !
!( # * + ! () ! !
01 () 2 01 () 2 01 () "2
01 () 2 01 () 32 " / "2
! ! * "+2 *" " ! () ! ! *"+2 ! ' 01 ! 01 ) 01 () 2 01 () 01 5 2 01 () 2
! ! * "+2
DEFINITION
"
( ; #$ # , 01 , * 01 + 01 #$ # * +
"
FACTS
$(
! %
© 2004 by CRC Press LLC
*
5
+ ) * +
62
# * + 01
$(
Chapter 2 GRAPH REPRESENTATION
REMARKS
%( ; % ! , ! =D3 -
! " #
%( ! % A &% E E !
2.1.3 All-Pairs Problems # ( #
4 & '
All-Pairs Shortest-Paths Algorithm
< # # # # # %# %# > # A &% E ALGORITHM
# 4> # 4> & ' # ) * + 4 # ' % 0 1 * + . % 0 1, # % 0 1 ! >
4>
, # 0 1
' ' 4 # %
, FACT
$( 4> ' # ) * + * ¿+ * ¾+ REMARKS
% ( 4 4> 06781 0:; 4, =8 *8=1, > , *+ @ ! , . & $ DD9, < , =8G 078G1 K 7, , %# $ *=8G+, J
© 2004 by CRC Press LLC
Section 2.3
2.3
79
The Reconstruction Problem
THE RECONSTRUCTION PROBLEM
# :& * + ! * +
#
# % * + ) * + * +
>
# !
$( $( $ ( $ (
6 # !
The Characteristic and the Chromatic Polynomials DEFINITION
( #
4
, * +
* +
FACTS
$(
0 ; F , @ , *=9+, 3J F9D1 > ; F , @ , % E N K 7 981+
$( $( $(
# # & %%
# ( < # 0 , 0 , ' ! 0½ 0 0 , 0 %( = > " 6 !
Figure 3.2.4 && %'
2 = > ! #
" # #
!
! ! 6 # 6 # B #"! # )! # ! " # "
&
2 $ % " !
! ! # A
" # 6 = > L
# 3 " " A /! - - 0! )
&
FACTS
2 7" ) 6 2 7" ) 4 ! !
2 7" ) ) 2 " ) ) 2 ) " # 6 2 ) " !
1 !
/ # 6 $% C (0 $ H,(
7 # " - " " = -> 6 = " "> " / H #0 "! 6 < !
- /! $&'(0 DEFINITIONS
2 " - -
2 "
- -
" " !
" " !
2 % ! % ! " " 6 % " 6 FACTS
2
$G C( 7" 6 3 ! " " 6 $% C (
2 %
$ H,( " % ! - # 6 % ! % 5 ! /% 0 5 /9 90 / $H(0
© 2004 by CRC Press LLC
Section 3.3
Tournaments
169
2 $H,( , % ! - #
6! ! " 6
# A2 /0 % ? ! /0 5 % 5 ! / 0 5 % 5 5 9 % ! ! ! /90 / % 0 / 9 0! /C 9 ,0! /: ' 0 / $ & ( 0 %
2 $H9( %- " 9% ? " "!
# 4" 2 /0 %- /9% ? 0 /0 /9% ? 90 /9% ? 90 6#- B / 0
/9% ? 0- 2 $ H,( 3
" " 6 / $ 'H(0 3 ! " %!
%- $H9( REMARKS
2 " 1 -
# 6 " # $H( $+ H9( ) #
" ) 6 - # $H,( # 6 6 $&'(
2 A ! 6 ! Tournaments Containing Oriented Trees
/ 0 ! / 0 - #
" CONJECTURE
7 * + / $+ H (02 7" / 0- " " EXAMPLE
2
H 9 # C '-
Figure 3.3.5 " REMARK
2 8
#
Æ 1! 4 = - > 4½ ½E
/ 0- " ."
© 2004 by CRC Press LLC
170
Chapter 3
DIRECTED GRAPHS
, "
/ $B ,,(0!
# 1 FACTS
2 $B ,,( 3 + / 0 - " -- -
" " ! + / 0 /: C0' /7 @ + / 0 $BU
&( + / 0 ' $B ,,(0
2 $%+ I ,,( 7" - ! H,,! - ! # !
" " -
2 $I,( 7 / ? 0-
? # ! # 2 $ &( - -
-1 ! A " !
/ 0 ! / 0 -
- 3 - - ! " " ! - 1 - Arc-Colorings and Monochromatic Paths CONJECTURE
0 ? + / $ + H(02 " %! " /%0 " - " " %
/%0 " # " " ! " REMARK
2 1 " " ! /0 5 C' # /0 5 &- - # - # / 0 / $ + H(0 3
! 7U
6 / 0 5 3 " 6 # /%0 A % 1 # / $% &'( $,,(
" 4 0 FACTS
2 $ + H( 3 # # ! " " " 5 ! / $H9( 0 2 $HH( 3 #
- " - #
! " " " 5 !
© 2004 by CRC Press LLC
Section 3.3
171
Tournaments
3.3.6 Domination 3 "
" B #"! !
# 5 / 0 5 % " % 6 #! # "! " 6 #
" % /0 Ü& DEFINITIONS
2 " "
" "
2 "- ! 1 #"
2 /0 # #
" "!
2 ! 5 / 0 EXAMPLE
2
% " - # "- # #" " / 0 - # " " " - ! " / 0 " - / " 0 ! 6 !
" " ! 5 / 0 5 FACTS
2
$):( " %!
%¾¾ ¾! # / 90 4 - % / $BB,(0
2
$%&H( 6 # #
"!
3
! - ! 6 # #
"
2
$%&&(
6 ! !
# "
" 1 " # " "
=#> "
" 7 - ! " ! 4 # 2 "
/
0! " " 1 ! " # 6 " ! # " = > " /
0! " "
" = ">
! "
© 2004 by CRC Press LLC
174
Chapter 3
DIRECTED GRAPHS
" - / 6 0! "
/ 4 0 K- % F $% &:( DEFINITIONS
2 / "0 " / "0 ! " 1 "
2 & - !
# " ! "- ! " " & 1 -
2 & " & 1
" &! " /
" " " & @ " " 0
2 " /! 6 0!
" F 1 /! 1 0 REMARK
2 3 A 1 ! " A = ">! - # " =" > ! 1 " F 1 " 3 " ! 1 EXAMPLE
2 :
1 " C- ½ ! ¾ ! ¿ 3 # ½ ! ¾ ! ¿ ! ## " " # ! ! " " "
! " " ! ! " 1
! #
1 " ! 1 "! ! 1 "
Figure 3.3.7
© 2004 by CRC Press LLC
" + )
Section 3.3
Tournaments
175
Tournaments That Are Majority Digraphs FACTS
2
$C&( 7" - /! " 0 1
? ! ! ? ! "
% -/ 0
-" 1
-/ 0 # " ! */ 0
- 1
*/ 0 # "
2
! -/ 0 /CC ' * 0 $C&(! " -/ 0 ! /" ' * 0 $7 '9(
2
$ 'H( */ 0 # ! */ 0 5 */90 5 */C0 5 ! */ ? 0 */ 0 ? ! -/ 0 */ 0
2
$ &&( 3 1 ! ! ' ! !
- ! "
8 "
! / 0 8 # 3 ! (
" -
Agendas DEFINITIONS
2 " /! " 1 0
2 " 4 " #! " /½ 0 "! " A " ! # " ! # " !
2 )" 1 - / 0 " " " ! " ""
" /! / 0 " 0 " 1 "
3 ! ! ! " 6 / 0 EXAMPLE
2
)" / " 0 1 # H! " " #
© 2004 by CRC Press LLC
176
Chapter 3
Figure 3.3.8
DIRECTED GRAPHS
-+ )
FACT
2 $::( ! " "
/ ! $& (0 Division Trees and Sophisticated Decisions DEFINITIONS
2 )" /½ ¾ 0! /½ ¾ 0
!
! ! "
- 4 /½ ¾ 0E
/½ ¾ 0E ! , ! " " #
4 /½ ¾ 0! /½ ¾ ¿ 0! # " " ? !
/½ ¿ 0!
/¾ ¿ 0
2 % 1 - /½ ¾ 0 " " " "
" /½ ¾ 0 ! #
" " " 1 # # " 6
" " E " ! , ! !
" " " 1 #
# " " ? FACTS
2
$ HC( " "
" 4 " " -
2
8 " " /." $::( $H,( " $&(0
2
$&:( # "
" - !
!
EXAMPLES
2
" / $ 0 # & )" 1 #! " , "
© 2004 by CRC Press LLC
Section 3.3
177
Tournaments
"
!
" 8 $ ! #
:
Figure 3.3.9 / + )
2 1 9- # ,
"
: ! / 0!
Figure 3.3.10 + ) # Inductively Determining the Sophisticated Decision
# # A /
2 /$ 0 - " $ 0 FACT
2 $+H9( % 1 - /½ 0
" 6 " 3" A 4 $ $ $
#2 $ 5 ! ! !
$ 5 $
#
2 /$ 0
$
References T T ! I ! MH ' " ! ! $'9( T $ !
! T I + ! - - " ! &! ! / : /&&H0! HM&' $)G &:( * ) % G 6 ! ! ! %! :& /&&:0! :M C $B ,, ( B "! . B ! &! ! / /,,,0! M $BU & ( BU 6"! B ! ! ! ! /&& 0! CM $B ''( B % ! ! ! %! % : /&''0! M9' $B 8 'C( B ! R 8 ! #! $ % ' ! K + O ! &'C
© 2004 by CRC Press LLC
Section 3.3
181
Tournaments
$B ,, ( B " T! . B 2 F 1! &! ! / :H /,,,0! 9 M: $B ,,( B " T! 2 F 1! &! C /,,,0! 99MC' $BU &( BU 6" ! ! /&&0! M , $BU &:( BU 6" ! . B ! &M C " " 8 " 1559:!
J" I! &&: $3&C( ) 3
6! 6 ! 7 &! ! /&&C0! & $K :( . K 6 ! &:
! ! J" !
$K%&H( ) K< K %! # ! ! /&&H0! M $% C ( B ) % ! .
333 ! /! %! / ! C /&C 0! 9 M9H $% &:( K- % ! $ %. ;! ! &&: $% &'( G %6 ! - ! ! 99 /&&'0! CMH $%+ I ,,( X %! -+ + K I ! ! ' /,,,0! 9M9: $ H,( ! 6 6 ! %! %! C /&H,0! ':MH, $ &&( K
! . - 1 " ! %! $! $! : /&&&0! &M99 $ &( * 6! - A B ! ! %! ' /&&0! &&M, $::( 8
! ) - " ! ! &! ! $! /&::0! :'&MH, $H,( 8
! # 1 " 2 - " ! ! &! ! $! 9 /&H,0! 'HM&' $&C( ! 6 ! ! %! % , /&&C0! ' :M' & $ 'H( K + ! ! B ! ! + ! &'H
© 2004 by CRC Press LLC
182
Chapter 3
DIRECTED GRAPHS
$ '( K + % !
! %! /! C /&'0! 'M'C
!
$8&9( G 8 % ! I 6 ! ! , /&&90! ' M '' $I :,( 7 I 6 N ! 1 7U ! &! ! & /&:,0! CM H $I,( G I "! C&'
# ! ! /,,0! C&M
$IH9( G I "! B ! C&M'& " $" 15
%!
$H,( N ! # 6 ! ! & /&H,0! H,&MH' $H( N ! 7" " 6!
%!
H /&H0! & M&H
$H9( N ! ! " ! $ ; 3 % ,: /&H90! M $HC( N ! # # - ! :M ! " C %! $!! 8 -B
! &HC $& ( N ! 1 2 " ! %! $! $! /&&0! M& $&( N !
# # " 1 " # ! ! %! /&&0! MH $&'( N ! 2 ! 6! < ! ! C /&&'0! :M
$&:( N ! 74 2 " ! $ 0 ' 9 /&&:0! ' M :H $:&( N % + 6! ! '&M,9 ! I! % ! &:&
© 2004 by CRC Press LLC
$
Section 3.3
183
Tournaments
$:( N 7 #!
4" 6# B ! &! ! /&:0! M H $H9( N
! 6 ! :MH ! I! &H9 $BB,( N ! ! B B! ! ! ,, $+ H ( N 8 + ! 7 - ! $ $! %! H /&H 0! ::M H: $ :9( ! - B ! / ' /&:90! 9M9
&! !
$ '9( B K !
# ! @
'
#
' = > ! @
' = >
FACTS
' A !
'
Vertex- and Edge-Connectivity
6 ! B ,- ' - DEFINITIONS
' 6 = > !
' 6 = > !
+ # ! C D " = > = >
= > = >
EXAMPLE
'
( ! # !
© 2004 by CRC Press LLC
? ?
196
Chapter 4
Figure 4.1.1
CONNECTIVITY and TRAVERSABILITY
?
?
FACTS
'
?
? 1
½ ½
½
? 1
½
$
#
?
?
'
"
?
!
'
"
?
"
"
8 !
½ =
> ? 1
! !
'
6
Relationships Among the Parameters
6
! !
Æ
Æ
=
> + #
="
Æ
=
>
>
FACTS
'
-+0 (
'
Æ
-* 730 (
!
?
?
Æ ?
1
#
DEFINITIONS
'
! ? Æ
'
!
!
'
?
!
?
Æ
!
Some Simple Observations 6 ! ,
FACTS
'
© 2004 by CRC Press LLC
AB
Section 4.1
'
"
'
197
Connectivity: Properties and Structure
·½
?
!
E
!
'
A & !
Internally-Disjoint Paths and Whitney’s Theorem DEFINITIONS
'
# ,
#
'
6
=
½ ¾
5
>
!
# 6
=
>
=
> ?
?
FACTS
'
-+ 0
'
!
+ % &
'
!
5 ! 5
! & !
Strong Connectivity in Digraphs ( # #& -:/70 -* F 730 -8 210
DEFINITIONS
'
"
'
! &
! &
!
'
(
?
=
>
, !
?
=
> =
>
!
'
:
6
=
> =
> C D
© 2004 by CRC Press LLC
=
> !
198
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
" # ! !
" = > ? = >
! = > ? = >
Æ Æ 6 , Æ ? Æ Æ
'
F Æ 6 ! 2 * = > ( 9 FACT
'
-2* 910 (
Æ
!
! ? Æ
? ? Æ
An Application to Interconnection Networks
6 !& = > ! ! & = > - & !& 8 *
-8* 3/0 " # !& 6 B = >
!& Æ
B = > # !&
4.1.2 Characterizations + ! 5 5 " 6 ! 5 5 + ! & Menger’s Theorems DEFINITION
' : ! 5 => => !
@
( 5 =>
© 2004 by CRC Press LLC
?
=>
Section 4.1
199
Connectivity: Properties and Structure
( ! 5
=>
#
FACTS
' '
? => ' 5 -$% $90 ( 5 => ? => ' => $ , ! B (
'
'
-$ 90 A 5 ! => ? => =>
( => !
= > @
=> # ' -'.
' '
=A $% > -A(47((470 => ? => (
= > ? =>
REMARKS
'
. $% #
'
6 $% ! ( (& -((470 & "-/& F!& )! Other Versions and Generalizations of Menger’s Theorem
" ! # $% # -. /90 -(/40 -$3 0
$% -;10 DEFINITIONS
'
2 # #
'
= = > > #
' '
! ?
# = B
# >
'
# ! 5
6 # = > 5 = > = > = >
© 2004 by CRC Press LLC
200
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
'
6
5
'
"
6
=
> ?
=
=
=
>
>
'
6 $ B
" # # !
'
=
> ?
=
>
2 -2 70 5 ( 4 C# D
!
=
=
# 5
B #
>
>
=
> : G
-:970 5
=
>
> 8 5 ! $
'
-$ 93$ 930
=
>
=
>
=
>
=
>
REMARK
'
6 $% =( 3> (
&
5
Another Menger-Type Theorem
(
=
> #
5
B
5
=
(
>
FACTS
'
6 # ! ! B
*!
?
=
>
=
> !
=
>
=
>
=
> ?
=
>
6 $ B
( /
'
-AH 99:F 930 6 # 5
B = @
>
Whitney’s Theorem " # ! # ! 5 ! ! =( >
$% !
&
! !
+ "
FACTS
'
-+ % +0
=
© 2004 by CRC Press LLC
5
>
Section 4.1
201
Connectivity: Properties and Structure
# 5
' =A + % >
= > : 6 # ½ ¾ ? ½ ¾ 5 = ! # > = > ? ?
' =6 ( : > :
Other Characterizations
! 5 ( & $ 6 5 ! : G
2I =! !& > ( =( > FACTS
! E ½ ¾ ½ ¾ ½ E ¾ E E ? ½ ¾ = > ? = >
' -:992930
!
? = > ½ ¾ 5 = > ½ ¾
' -/90
4.1.3 Structural Connectivity
* ,
Cycles Containing Prescribed Vertices
6 , . ! ( 4 FACTS
' -. 710 :
6
! 6 ! E ! ? !
' -+ $790 :
Cycles Containing Prescribed Edges — The Lovász-Woodall Conjecture
: G -:9 0 + -+990 5 '' ' = ! # >
© 2004 by CRC Press LLC
202
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
' : G -:9 :990 , ! +01-(' . ? 6 5 ! ! ? -A234:/10 ? 4 - /70 B *I & 6 -* 630
= E > =! > $ 5 J ! = ! > FACT
'
! -J 1 J 1 J 1J 10 :
6
$
Paths with Prescribed Initial and Final Vertices
2 ! # 5 = > $% $% ! 5 ,# = > F! ! # ! DEFINITIONS
' B ½ ¾ ½ ¾ @ # ? # 5 ' = > #
5
' ,
5 !
' 6 ! FACTS
' '
& ! = > -: $ 910 -H910 = > ( # => => &
'
6 -631 0
& 6 , -340
( => => ! & &
© 2004 by CRC Press LLC
Section 4.1
203
Connectivity: Properties and Structure
CONJECTURE
= E > ? => ? E
-631 0 ( FACTS
' -;&3 ;&34;&390 " ½ ¾ ½ ¾ = > ! 7 = > = > # 5 ' -*/0 ( = E > E => E ' -;&33;&/1 0 (
= E > = E > E => => = E > E ' -610 A => =, ( /> ! # & ' -/90 : 6 =½ ½ ½> =¾ ¾ ¾> = > ! ½ ¾ ½ ¾
½ ¾ @ ? = > ? # 5 = > ? = >
Subgraphs
* =( 9> =( 3> *! # FACT
' -$ 9 0 A
REMARK
' ! 6 -6330 " $
4.1.4 Analysis and Synthesis B ! = > C D 6% ! ! ! & +
!
( !
© 2004 by CRC Press LLC
204
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Contractions and Splittings DEFINITIONS
' 6 ,
=& 5 ? > :
' 6 ' # ! Æ ! 5 ! 5 5 $ ! ? Æ E ! &
' ( # 5 # ! ½ FACTS
'
" #
! = > " ! ! ? Æ
' '
-6310 A
-630 A - = >
'
-670 A ! , B # EXAMPLE
'
" ( " ! #
Figure 4.1.2
!" "
REMARKS
'
" #
© 2004 by CRC Press LLC
Section 4.1
205
Connectivity: Properties and Structure
'
6 ( 3 J !& % ( 3 6% =( 41>
' 6% # ( 5 ! -J10 ! = !>
'
( 41 ! -670' ! !
'
-9 0 B ( 4 *! : G -:9 0 $ -$ 93 0 = !> Subgraph Contraction
6 DEFINITION
' # FACTS
'
/
'
-$;/ 0 A !
-6630 A !
'
-J110 A
CONJECTURE
-$;/ 0 ( Æ Edge Deletion DEFINITION
' # = #> FACTS
'
-$ 9 0 A !
© 2004 by CRC Press LLC
! E =! >
206
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
-;&330 : ! : ½ ? = ? > 6 = > 6 # => 6 # ' -;&/10 : ! "
! ? ? = ? > ! E # ' -*;&/0 ( # ! # ! #
REMARK
' ( ;& -;&/40 B
Vertex Deletion FACTS
'
-J : 90 A
#
' -630 A = E > => ! ' -A390 A = E > ! REMARK
'
( 4/ ! 5 : G 6 ( /
Minimality and Criticality
B # = > !
# ! DEFINITIONS
'
= > = >
= > = >
'
# => ? => ?
FACTS
'
-$ 9$ 90 A = E
© 2004 by CRC Press LLC
>
Section 4.1
207
Connectivity: Properties and Structure
'
-$ 90 A #
'
'
E
A # !
! -* 30 A
REMARKS
'
* -* 7/* 110 # # ! : & -: 90 8 ! $ =( 7>
' ( 7 * = > $ % =( 7> # 6 # # J -J 9 0 Vertex-Minimal Connectivity – Criticality
$ -$ 990 '
' - ' ! ! DEFINITION
'
= >
# ! ! = > ? + ? !
FACTS
' '
-$ 990 6 = >
½
6 C& D = ¾·¾ - 0> = > = E >
' -330 6 E B !
'
-$ 990 " = > 7 ¾ 6 , = >
REMARKS
'
= > ! 5 -$ 3 0
'
( 77 5 ·½ = > $ ! ! , =( 79> ' ( 73 ! $ , !
© 2004 by CRC Press LLC
208
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Connectivity Augmentation
+ -(/ 0
* " ' - * * !
? = > , ! ¼ ? = > . !&
! ! + F & -+ F 390 ,
" Æ 6 B ! -(/0
References -. / 0 . $% =// > 4K47 -8 210 H 8 H 2 2 L : 11 -8970 8 F! 19K -* 730 2 ( * 2 ! 7K 7 !""# F! 7K73 -:/70 2 : : &
* :MF! 9K/ -A390 9K99
© 2004 by CRC Press LLC
>
Section 4.1
209
Connectivity: Properties and Structure
-AH 990 A . H & 2 (*** % =/99> 71K 7 -A2340 : AI A 2I
$ 7 =/34> K -((470 : ( . (& $ # )! !& $ 3 =/47> //K 1
+
-(/10 ( & & K 9K11 8 J : : G * H I 5 =A> -. /0%(0 8 //1 -(/0 ( & B $ 4 =//> K4
%($ +
-(/ 0 ( & !& K7 H 8 J2 $ =A> $ 1 % !!2 6 N $ // -(/40 ( & !& )! K99 2 $ 2I : : G =A> A 8L //4 -2 70 6 2 $ # $ I
( & 2 $ % =/7> K9 -2* 910 . 2 ( * 8 =/91> 14K
0 ' $
37
-2 340 2 N //7 -2 41K
-* 30 K1 -* F 730 ( * Q F . ! 5 4 . /73
© 2004 by CRC Press LLC
( 3 4
210
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-* 630 *I
& 6 , $ =/3> /K
-* 2 110 $ * * 2 ! # ' ! B + =111> K41 -*/0 *& Æ ! & & 9 =//> K4
-*;&/0 *& * ;& # 5 $ , 3 =//> 4K43 -H910 * H A L Q I 2 $ 39 =/91> /4K1 -J 1 0 J J ! ; ! 5 ' : G
+ 5 + % , 3 =11> K -J 1 0 J J ! 6! ' : G
+ 5 -J 10 J J ! A# ! ' : G + 5 -J 10 J J ! : G
+ 5 -J 9 0 6 J F * % +
% , 9 =/9 > K -J110 $ J % , 31 =111> K 3
+
-J10 $ J # 3 =11> K1 -: $ 910 . 2 : $ ; # , ! & 0 $ % 1 =/91> K71 -: 90 . : & $ =/9> 93K3 -:9 0 : : G 4
$
+ ) . $
=/9 > 3
-:970 : : G ; $
% 3 =/97> /K3 -:990 : : G
% 1 =/99> K4
$
-:/10 $ L : / =//1> 4K
© 2004 by CRC Press LLC
4
Section 4.1
211
Connectivity: Properties and Structure
-:/0 : : G
//
*6 A F *
-:F 930 : : G L F : $ . $ $ / =/93> 7/K97
$
-$ 90 + $ $ & I 2 ,# / =/9> K3
-$ 9 0 + $ A# I 6 2 I J $ % 7 8 9 =/9> 37K/9 -$ 90 + $ A& 2 I 2 $ ,# =/9> /K -$ 90 + $ 2 & Q 2 14 =/9> /K -$ 9 0 + $ J + 2 7 8 =/9 > 39K1 -$ 990 + $ A & I
I K4
& 2
$ %
$
-$ 93 0 + $ $ =/93> 4K7 I -$ 930 + $ N $ # & 5& ,# 1 =/93> 4K7 I -$ 930 + $ N $ # & ,# =/93M9/> 39K 1
+
+
$
/ =/99>
$
$
-$ 9/0 + $ , 77K/4 * ! 2 3 * /9/ : $ : F 3 /9/ -$ 3 0 + $ ; 3/K/3 ! 4( 5 6789: 6 ;F /3 -$ 990 8 $ H ; $ 1 =/99> 44K7
-$3 0 + . $ $% 6 =/3 > 9K /
+ 3
-$;/ 0 + . $ J ; % , 71 =// > 13K -$90 J $ Q J
+
- $ 1 =/9> /7K4
-;10 ; ; L $% 6 : + 8 & H + =A> %
© 2004 by CRC Press LLC
212
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-;/70 ; ; ' ' 7 =//7> K4 -;&3 0 * ;& + , 9 =/3 > 4K9 -;&340 * ;& "" 9K4 H & =A> ' + , /34 -;&390 * ;& """' # =/39> 4/K3/ -;&330 * ;& + % , 4 =/33> 4K44 -;&/1 0 * ;& A ! & & 7 =//1> 9/K34 -;&/10 * ;& 4 /K44 8 & * =A> L * //1 -;&/40 * ;& = E > =//4> K91 -340 F . 2 R 4K9 % 8 !9: =2 ! /34> : $ : F 1 N /34 - /70 . ; , $ 4/ =//7> //K 4 -9 0 H , 3K/3
+ 9 =/9 >
-330 H H % 5 ;6 * # =/33> 794K793 -/90 S /K/7 -610 6 6 AI G =11> K -631 0 6 & * + =/31> 9K93 -6310 6 , , +
% , / =/31> K9 -630 6 F + 4 =/3> 4K4
© 2004 by CRC Press LLC
Section 4.1
Connectivity: Properties and Structure
213
-6330 6 /9K : + 8 & H + =A> % ((( : /33 -6630 6 8 6 F + , =/3> //K -670 + 6 6 ' K 44 -6770 + 6 6 8 N 6 : /77 -+ $790 $ A + & . $ $
+ $ / =/79> /K3 -+ F 390 6 + F & A + % % 4 =/39> /7K -+0 * + + $
4 =/> 41K73 -+ /0 + 6 # K " $ *
L J& =A> 0 ' % 7/ $ ( // 8 // -+990 . + , + % , =/99> 9 K93
© 2004 by CRC Press LLC
214
4.2
Chapter 4
CONNECTIVITY and TRAVERSABILITY
EULERIAN GRAPHS 8 ., A 6 A 6 A ; 2 2 4 L 6 A 6 . 7 6 A 6
Introduction A JI 8 ' ( ( = > A
C
D
B
(a)
(b)
Figure 4.2.1
! &
! & T : A ! 97 -A970U 6 ! C , D ( # -(/1 (/0
4.2.1 Basic Definitions and Characterizations
6 #
? = > ! #
= >
5 C D C D CD
© 2004 by CRC Press LLC
Section 4.2
215
Eulerian Graphs
DEFINITIONS
' = > ! & = > , # #
' ' '
# #
" # B
" ** !
B
' = # > = # >
' = > = > = > Some Basic Characterizations FACTS
( ! -69 $3 +/1 (3/ (/10
'
1 =-A970 -* 390 -L L0>
:
6 ! B
'
= >
=>
=>
' ' ' ' '
? = > = > =-9/ (3/ (/10>
' = > => =>
(
% ! B
% % %
© 2004 by CRC Press LLC
216
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
( A =-A970> ! ( = > ( => ! * -* 390 6 B
( => ( => L =-L L0>
'
8 ( ( 7 !
' '
F
6 # # ( Characterizations Based on Partition Cuts DEFINITIONS
' : = > 6 ! = > ! ? = > # ,
'
# ! = >
' 6 = # > = > ! = > 6 = > ! = >
' : # # 6 Ú = > ! ?
"
Ú Ú FACTS
' '
' = > => =>
= > :
= > = > = > ? = >
# 6 ! B
'
= > ¬ = > = >¬ = > ¬
¬
REMARKS
' + ( => ( 9=> = > = > # ( 1=> =! ( 3 / >
© 2004 by CRC Press LLC
Section 4.2
217
Eulerian Graphs
' ( 1
! # & "-/& ; , % U % -((70
4.2.2 Algorithms to Construct Eulerian Tours + ! !
= -(/10> Algorithm 4.2.1: #"$%"& $!"' (#)*
#' ! 5'
# + # # % A % #
, '-< = 1> ! & EXAMPLE
' 6 & !
R CD 6 ? & & & & % ? ! ( 6 ! % # ¼ ? & & & & # ¼ ½
Figure 4.2.2 REMARKS
' 6 * % -
© 2004 by CRC Press LLC
218
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
6 (% ! !
(%
-:3/ 0 Algorithm 4.2.2:
$"& $!"' ( $)*
! ' = ? ¼ : ? ( ? ' : ? = > " = > ? : ? = >
#' A 5' A
A
>
? = > A# ?
The Splitting and Detachment Operations
6 ' * DEFINITIONS
' : ! # => 6 !
# ! ¼ ¼ 5 6 = ( >
Figure 4.2.3
$! " "! $
' : # ! => => => => ! ! ? => =! > 6 6 = ( >
© 2004 by CRC Press LLC
Section 4.2
219
Eulerian Graphs e3 e3 e4
e2 e1
e4
v
e5
G
Figure 4.2.4
e2 e1
v1 v3
v2 e5
H
+" '
' B # = > ( -F 9/ F 34 F 340 FACTS
'
+** : # ! => ½ ¾ ¿ Ú = > " # ½¾ ½¿ => " # ½ ¿ @ & ½¿
' : # = > ! => " ½¾ ½¿ ½¾ ½¿ # ( " ½¾ ½¿
' '
REMARKS
' 6 : =( >
= -(/10> " !
= ! > ( : -(110
' ., ( ! ! " = > & = 5 > ! -' @ =>
' 6 ! ! # ! ! # !
© 2004 by CRC Press LLC
220
Chapter 4
Algorithm 4.2.3:
CONNECTIVITY and TRAVERSABILITY
,$! $!"'
#' A ! ' = > 5' A " ? ? ¼ : ? ( ? ' " = > ? : ? = > = > A " # ? = > = > A ? @ & '? = E > A# ?
REMARKS
'
K '
' 6 @ ! (% # 1 ' B (% !
" ! : ! = -(/10> ;
4.2.3 Eulerian-Tour Enumeration and Other Counting Problems 6 8A6 6 # " , * =( 4>
= > 6 ! ! # ! +
) 8 5 = >
.F B
B .8 5 DEFINITIONS
' 1
!
' : % =%> 5 # ! =%> ? 6 =%> ! ,
?
© 2004 by CRC Press LLC
? ? = > U
Section 4.2
221
Eulerian Graphs
'
: ? ½ ! ! B ! # B
' : 6 % = > ! U ½ ( ! ½ % 5
# ½ ½ # ¾
( # = > #
!
FACTS
'
, * 2 % =%> ? ½ ? =%> J @ # 6 %
' " % B
' '
% ? 3) - * -A84 6 0 : % =%> 6 ! =)= > >V (
' ( ! * ' = > = > ,# ,
'
6 8 5 %
=% >> !
= >
==> ? )=> ?
' 6 ! 8 5 B 8 5 % B
8A6 6 8 5 B
½ = V>
EXAMPLE
' 6 8 5 10>
© 2004 by CRC Press LLC
% % ! (
4 = -;/
222
Chapter 4
CONNECTIVITY and TRAVERSABILITY
0000
000
1000 D 2,4 :
00
D 2,3 :
001
0100
010
1100
10
01
1101 011
11
0010
010
1010
101 110
0001
1001
100
001
100
000
0101 1011
101
0110 110
111
0011
011
1110
0111 111
1111
Figure 4.2.5
-". !" % %
REMARK
'
.8 5 ? ! ! B 6 % ! .F B 6
! ! ! B ' % J ! ! = -S10>
4.2.4 Applications to General Graphs " ! U
# !* ! * = > " ! B ! B Covering Walks and Double Tracings DEFINITIONS
' = >
! &
' ! & # ! !
© 2004 by CRC Press LLC
Section 4.2
223
Eulerian Graphs
'
! & ½ ? = ? >
' '
6 !
= >
= >
FACTS
'
: ! $ 1 6 ! B U ?
' A "
' - 990 = >
' -6390 " !
B
' -6770 -6390 ! = > 1
'
-L940 : = > = > ! = > ; ( = & ? = > REMARKS
'
6 =., /> ! ! ! ! ! ! !
'
6 B ( 4 , ! 5 Maze Searching
" # *1 ! ! # 6 % 5 *1- * = -(/0 # >
" => ! # , =>
© 2004 by CRC Press LLC
224
Chapter 4
CONNECTIVITY and TRAVERSABILITY
""& $!"' ( ) *
Algorithm 4.2.4:
#' 5'
Ú
=
"
>
? 1
?
=
> ?
+ =
+ =-
>
=
>0
=
?
'?
'?
:
>
?
>
-
=
A#
>0
=
>
E
?
?
=
>
'?
'?
E
Covers, Double Covers, and Packings DEFINITIONS
'
+
'
+
# !
+
'
.
+
=.>
5
!
'
+
+
!
+
CONJECTURES
! "
!
=.>' A .
' A
.
#
!
'
A .
Three Optimization Problems DEFINITIONS
6
'
:
! ! !
!
! &
'
'
+
6
$%
6
+ =
+
© 2004 by CRC Press LLC
=
! !
>
=
> ?
¾
=
=
> ?
'
,
=
¾
>
= >
6
>
& =$+ >
,
>
$ %
&
! + +
+ =
& &
> #
=$+ > ,
Section 4.2
'
225
Eulerian Graphs
6 & & , ! ! & ! => = >
FACTS
'
-(370 : 6 . & + . + 6 . 5
'
-(2340 6 N $ # + &
$ +
'
-(2340 : ! ! ! " N + $ # + & =+ > ? = > = > ! = > ! = > '? => ¾
'
-(2340 ( + $ + N =+ > ? = >
'
( ! ! N + $ + =+ > = > 6 = > ! B ==+ > ? = > ? 1 >
Nowhere-Zero Flows DEFINITIONS
' : ' =%> , = > ? = > =%> ¾ ¾
%
6
'
' : ' = > - : % !
=%> = > , = > '? => 6 ' )! % ' )! ( => ? 1 = > ' ' )! => = > ¼
¼
CONJECTURE
)* +, 4 )! -64 0
=FQ4(> A !
FACTS
' '
-30 A ! 7 )!
-64 0 " => ! )!
' ! )!
! )!
© 2004 by CRC Press LLC
226
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' 6 FQ4( . !
'
-9/0 : ' = > ! ! B
' = > 6 # + = >
.
6
# => + => ( = >
¾ ¼
= >
¾
= >
# =>'
¼
REMARKS
'
. K A ! ! # -2Q/ 0 -Q/90 )!
' F! )! ! = = >> => !
4.2.5 Various Types of Eulerian Tours and Cycle Decompositions DEFINITION
' : % " = >
%
% FACTS
'
-J470 : ! # = > ? 6 5 ! ½ = > ? ¾ = > U ! !
'
-3 ((/10
&
'
: # # !
'
6
-A840 : %¼ !
% ? =%¼ > 6 # %
© 2004 by CRC Press LLC
Section 4.2
227
Eulerian Graphs
'
- (/40 : ½ = > ! ? ½ #
= > / U = > / ! /
REMARKS
' '
( 3 : =( >
( / # = -Q/90>
' % -(+3/ (/10 *!
%¼ ! = =%¼ >> + (
= 8A6 6 -( 30> Incidence-Partition and Transition Systems DEFINITIONS
' ( # => ?
6 = > ?
Ú => ==>>
¾
' 0 = > 0 = > ? => = > => ?
=> A => ' + 0 0 ! A 0 0 ! + 0 0 + ' : = > = > = = >> => = > = > , ' + 0 0 ?
¾
6 C D C D
' = > ,
# = > , = > => = > => = >
© 2004 by CRC Press LLC
228
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
' -J730 = > Ú = >
=
> ,
+ > # +
' -(310 2
=
' -(310 :
=
! =>
$
" => 1 > #
' -((/10 :
=
> 6
! > = > ,
=
' -(310 : " => $ = > EXAMPLE
' 6 ( 7 ! 0 = > ? E ¼ = E >¼ ' 4 7 ? 0 = > ! ! ( 7 1
5
3’ 5’
1’ 2’
2
4’
4
3
Figure 4.2.6
/! 0 =>"! $ $ '
REMARKS
' 6 + ! => 1 = > H - 3/0' W%
W% ! ' ( 4 ! ( 3 =( > ' (
( + = # > &! '= * . "
. 5 F! Q 4 (! 5 -(:3 (33 (1 (10
© 2004 by CRC Press LLC
Section 4.2
229
Eulerian Graphs
' ( 7 ! # # ' ( ! ( 7 &
' + ( 7 9 # ! = -Q/90>
' = > -(/10 F ! ., # = > Orderings of the Incidence Set, Non-Intersecting Tours, and A-Trails DEFINITIONS
' 2 # ,# B ½ Ú Ú Ú 1 => " 1 => &!
' : # ! => ! Ú 1 => ? Ú 0 = > 1 => ! 2 0 = > 6
0 = > 0 =
>
'
: ! 1 => 0 = > 0 = > ! 1 => ! => + 0 0
'
: ! 1 => 0 ? E ? = =>>
' ! # #
'
= >
EXAMPLE
'
B ! ( 9 ! 7 1 3 / 9 4
© 2004 by CRC Press LLC
230
Chapter 4
CONNECTIVITY and TRAVERSABILITY
2
1 11
10 9 8 7
12
6 4
5 3
Figure 4.2.7
" $ "
FACTS
' 2 #
1 => =
' " ! => B
=
>
>
' -(/40 6 ! - ' -(/30 U ' :
# Æ = > 3 ! 3
# ! # 5
# 6 REMARKS
' ( 3 : =( > B : , = > ' 6 ! 0 = >
= > ' ! U : &! , 0 = > = 0 = >> 5 0 = >
© 2004 by CRC Press LLC
Section 4.2
231
Eulerian Graphs
4.2.6 Transforming Eulerian Tours The Kappa Transformations 6 &
6
( -(/10
DEFINITIONS
'
6
? ?
+ + + '
:
?
?
B
'
=
=
?
=
+
'
:
?
=
> ?
'
¼ =
>
+
=C ! D>
?
=
>
>
!
=
>
=
> #
:
=
? =
> 6 ! !
+
>
2
6
+
6
>
> 6
6
?
'
=
> ?
> ?
=
A ¼¼= >
¼ : £ ¼ £ ¼ ? = > # = > ? ¼ ¼¼ ¼ £ ¼ ¼¼ + + ? + + 6 ? = > ? = = >> '
'
:
!
'
6!
0½ 0¾
?
@
© 2004 by CRC Press LLC
=
>
6
?
=
>
£ ?
=
>
@ ?
232
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
' 6
, !
# *
FACTS
' : ½ ! @ > = -J310 -&30 -(/10>
B
= #
' : ! = >
@ = > 6 B ! + ! + ? B = > ! 1 => > @ 6 B ! + ! + ? B
' :
=
' : ! @ B
6
=! > ! = >
# 6
' "
EXAMPLES
' 6 ! ? 3 =!
B> ! ( 3= > 6 & ! 6 ¼ ? 3 9 7 4 = > = ( 3=>>
Figure 4.2.8
' 6 A# 4 8
+ ? ! ?
? 4 7 9 3 =! B> =( /= >> © 2004 by CRC Press LLC
Section 4.2
/=>>
233
Eulerian Graphs
¼¼
? 9 3 4 7
=(
Figure 4.2.9 Splicing the Trails in a Trail Decomposition
+ ! 6& ! = > Algorithm 4.2.5: 0"& $!"' (*
#' 5'
: ? ½ + ! ? = > = > ? : ¼¼ : ? = > '?
'?
References -J310 H J 6 A $ =/31> 74K7/ -2Q/ 0 8 : 2 O Q 2 ! $ % ) =// > K4 -(/40 : . * ( 6 F , ,
$
=//4> 1K -(/30 : . * (
$ =//3> //K
© 2004 by CRC Press LLC
234
Chapter 4
CONNECTIVITY and TRAVERSABILITY
- (/40 $ * ( , + =//4> 9K -;/0 2 ; ;
" $ $2 ! * // -A840 6
A F 2 8 5 % %8 =/4> 1K9 -A970 : A =97> 9 3K 1 ? ; " L 9 K1 -(330 ( .# + 33 49K7
-(310 * ( A : J I & . I J + - ) =/31> 4K79 -(3 0 * (
. H 8 N $ =A> /3 K 7 -(370 * ( 5 +
-) =/37> /K1 -(330 * ( ! ' =/33> 3K 3
-(3/0 * ( A = > - $ % /39
$ =/3/> F K 4K/ -(/10 * ( * ) $ F * //1
/
-(/0 * ( * ) $ F * //
/ = .
.
8 1 * ) )57('1 %
$ . =A> J!
-(110 * (
111 /K39
-(10 * ( = > 6 = > $ =11> K -(10 * ( 8 % 5 $ =11> 99K3 -((/10 * ( ( & ; + - =//1> 4K4
© 2004 by CRC Press LLC
Section 4.2
Eulerian Graphs
235
-(2340 * ( $ 2 ; ! =/34> 7K79 -(+3/0 * ( A + $ , # =/3/> 44K71
%
-((70 : ( . (& -. '. N FH /7 I -* 390 * N $I & : + N $ 12 =39> 1K -J470 J A ? ! B =
&> $ -> %8 =/47> F K7 ? -J730 J $ ! $ -> =/73> F 97K31 G : )4 4 $4 (/ 2 KL , -:3/ 0 $ A 3/ -$3 0 6 $J ' " ! $ =/3 > 9K -F 9/0 H F + H + =A> ; N U $ J /93 ) ' $ ( =/9/> 39K/9 -F 34 0 H F + . A % 8 " =A> /34 $ % 0 ' % N : =/34> 9K4 -F 340 H F + A + 0 $ % =/34> F 9K/ - 3/0 H . 6 I 2 $ =3/> /K1 - 990 2 6 ! & & $ 5 ) @@/ * =A> ( ; N * K /97 -9/0 . ) H 8 N $ =A> F! 9K3 -30 . F! 7 )! + - =/3> 1K4 -9/0 * & =/9/> 19K13
© 2004 by CRC Press LLC
236
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-&30 . J & A
- % J $ J * < =A> $ /3 : F $ 8 F! /7 -270U
C D H & A =-A74 0>
4.3.1 The Basic Problem and Its Variations DEFINITIONS
'
! &
'
2 , ? = > ! ! ' & & & !
.
6
' 6
' 6
&& - && && ! &&
' 6 && $ && *,' FACTS
' '
N .
= > $ F = >
© 2004 by CRC Press LLC
238
Chapter 4
CONNECTIVITY and TRAVERSABILITY
The Eulerian Case DEFINITIONS
'
= > ! & , # ! &
= >
#
'
#
'
! &
'
"
? =
B
" #
!
> #
( 3 3 (
& =
*! # C D
>
=
>
( 3
FACTS
'
#
'
'
"
= #>
REMARK
'
# $ #
Variations of CPP DEFINITIONS
'
'
6 B
= >
'
. '
,
; '
'
. '
, B
= >
'
'
" N
6 !
# CD = !
>
" ! ! @ !
'
'
&' * *
6
! B
© 2004 by CRC Press LLC
Section 4.3
239
Chinese Postman Problems
6 ! ! ! => # !
'
'
6 #
FACTS
'
6
"
½
¾
, = > B , #
!
4
!
4
½
¾
! = , > !
Æ
, ! !
"
U
* >
'
½
! ,
¾
&"
=
(
! , B
=
'
-AH90>
-+ /0 6 ! F
'
6 F
M ! = -2 H9/0>
REMARK
'
" # #
!
# -A 2: /4 0 -A 2: /4 0 A#
-(/0
4.3.2 Undirected Postman Problems 6 2 ! # = >
6
) ! ! A =-A74 0> !
DEFINITIONS
'
$
# =$
'
© 2004 by CRC Press LLC
! !
>
#
240
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Algorithm 4.3.1: ,$ 5677 #' 5' $ !
! !
: ! ( ( 3 ( ! ( 3 ( # ! ! ( ! 4 ( 4 . :
6
! ! @ ! !& A = -A74 0-A74 0> 6 , 6 ! ( = -J 790> ' 2 ! & #
! =(%
> EXAMPLE
' ( U ! , 6 ! !' L#
: 4
Figure 4.3.1 $ $!"'
! ( ! 4 6
© 2004 by CRC Press LLC
Section 4.3
241
Chinese Postman Problems
½ ½
6 ! ( 6
= ! 1> ! & !'
REMARKS
' 6 !
# ! ! ! & = & > ! = -2 H9/0>
' " ( B
B # ! A H =-AH90>
' 6 # ! & N ! * , ! ! , ' !
! ! &
" !
8 ! ! ! = > ! ! !
4.3.3 Directed Postman Problems 6 . " !
6
FACTS
' ! &
' 6
! U
6 & " /& ; = >
© 2004 by CRC Press LLC
242
Chapter 4
Algorithm 4.3.2:
CONNECTIVITY and TRAVERSABILITY
,$ 677
#' ! !
5' $ ! " A
( ? 5= > )&5= > ! '
¾
(
(
¾
( 1
¾
( ?
( ( = >
Producing an Eulerian Tour in a Symmetric (Multi)Digraph
B = > 6 ! = -A840> DEFINITION
' ! # Algorithm 4.3.3:
7"! " $" !"
#' A 5' A
# £ ( £ ( # ? £ : ! 5 = > : £ # £ ! !
!
? £ ' # = > = > # U © 2004 by CRC Press LLC
!
Section 4.3
Chinese Postman Problems
243
EXAMPLE
' ( , #
#
# , ! ' ( ? ( ? U ( ? U ( ? 1 ! ! , = > # ! ( 6 ! Æ# ! # , = > ! # B'
Figure 4.3.2 $ $!"' REMARKS
' 6 !& )! A H =-AH90>
' 6 B ' " B ! # # ( # (
!
4.3.4 Mixed Postman Problems FACTS
' 6 # $ - U 6"("8":"6< = - 970>
© 2004 by CRC Press LLC
244
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' $ - ! # = > # ! ! = -2 H9/0
Deciding if a Mixed Graph Is Eulerian DEFINITIONS
' 6 #
' '
#
# # # B
#
' # , + = > @ ! + = > + = > + + 5 +
= > + = -((70> FACTS
'
=> # ,
'
$ #
EXAMPLE
'
# ! # 6 ( , # B ½
Figure 4.3.3
$" 89 +"
6 = > B #
, # ! 6 ! & ! , 6 !& )! !
© 2004 by CRC Press LLC
Section 4.3
245
Chinese Postman Problems
! 89 +" 2 $"
Algorithm 4.3.4:
#' # 5'
( ? 5= > )&5= > : ! ! !& )! '
¾
(
(
1 (
( ?
= >
" = > ( " ( ? ; A ( ? ; A : A = >
EXAMPLE
'
6 = #> ( ( " ,
! # # 6
( ( , = > = > ! , 6 # !
Figure 4.3.4
$ $!"' !" !"
© 2004 by CRC Press LLC
246
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
6 ., & & = @ ! > 5
'
" !
= > ! =! @> # ! = -AH90>
The Postman Problem for Mixed Graphs
$ F ! + & ! !
,* * ! ! , ; # *! ! B @ # ! = -A 2: /4 0 -A 2: /4 0> DEFINITION
' , REMARK
' " $ !
# " = ( 4> ! ;! ! M FACT
'
#
6 # = > 6 , # ! ( & =-(9/0>
© 2004 by CRC Press LLC
Section 4.3
247
Chinese Postman Problems
EXAMPLE
' 6 B # # ( 4 U ! " # ! F! ! ! ,U ! B ; ! ' U N !
Figure 4.3.5 2" : ''" /!"
" ! ! !
!& )! U
-AH90 " # @ ! ! M
Approximation Algorithm ES
6 ! # ! 5 M 6 ! = -AH90 -(9/0> 4 C M D Algorithm 4.3.5: "9' $!"' ,
#' #
5'
! M !
N # , : ; M :
6 # 4 /#
© 2004 by CRC Press LLC
248
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
' = > & A " ! ! ( & FACT
' -(9/0 6
A
# "
A# 7 ! EXAMPLE
' # ( 7 ! ! , 6 A = > ; ! ! E 6 6 ! * ! ! 6 , ! " ! E 16
Figure 4.3.6 $ "9' $!"' ,
Approximate Algorithm SE
# A ! =#/> = -(9/0>
6
7 = -(9/0> M 4
© 2004 by CRC Press LLC
Section 4.3
249
Chinese Postman Problems
Algorithm 4.3.6: "9' $!"' ,
#' #
5'
! M !
# # : N : = >
EXAMPLE
' ( 9 A *!
Figure 4.3.7 $ "9' $!"' , Some Performance Bounds FACT
' -(9/0 6 A
! # A# 9
! EXAMPLE
' ( 3
A ! A ! ! A
Figure 4.3.8 $!"' , , "& :"
© 2004 by CRC Press LLC
250
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
' " ! # 4 =A>
7 =A> *! A# 3 ' # ! A = > ! A ! ! ! A
' 6 A# 3
B !
!' + A A ! @ T "
C D ! + !& @ B @
6 , ( & =-(9/0> ! ! ! ! ! !
# ' " =-(9/0> ( & 6 ! !
' +
-(9/0 ! U ! ! ( / ! 8 /// ! , ( & # !
L = L//0> ! 6 ( /
Figure 4.3.9 :" " ' $!"' , ,
' (! $ &
*! !
F #
! B &
6 $
" , '
$ B @ = -8 6/0 -8 6/0 1 > 6 - - &'-
© 2004 by CRC Press LLC
Section 4.3
Chinese Postman Problems
251
References -889 0 A : 8 : . 8 F!& L $ + '. =/9 > 74K/ -8 6/0 8 8 & 6 . . 2 %($ + $ =//> 3K41 -8 6/0 8 8 & 6 2 : 6 . 2 ( 9 =//> 444K43 -8310 8& 6 $ # F!& ( 9 -A74 0 H A$ # $ ! 1 L + ) ' , % 7/8 =/74> 4K1 -A74 0 H A 6 (! + $ 9 =/74> /K 79 -AH90 H A A H $ A 6 $ 4 =/9> 33K -A840 6
A F 2 8 6 ; : 2 % %8 3 =/4> 1K9 -A 2: /4 0 A $ 2 2 : "' 6 5 ) =//4> K -A 2: /4 0 A $ 2 2 : ""' 6 5 ) =//4> //K -(/0 * ( A 2 6 L $ 41 F * =//> -((70 : ( . (& -. '. N FH =/7>
© 2004 by CRC Press LLC
252
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-(9/0 2 ( & # +
$ 7 =/9/> 43K44 -2 H9/0 $ 2 . H ( 1 ' +* ( F! -270 $ 2 2 N A ; $ =/7> 9K99 -23 0 $ 2 + $ ) *6 =/3 > K/ = > -23 0 $ 2 ; +
$ / =/3 > K 7 -J J9/0 J 2 J 6 $ #
$ =/9/> 3/K1 -J 790 J - F! -: Q330 7 K7 3 -F /70
- 970 * ; # A 6 + $ =/97> 4 K44 - / 0 + :
& $ # F!& 5 ) 0 7 =// > K - :/40 + : $ : $ # F!& 5 ) =//4> 9/K 3/ - L//0 8
H L ¾¿ # $ # %($ + $ =///> 4K - /0 6 J ; $ # 5 ) 0 =//> K9 -+ 3/0 Q + ; + A 2 $ =/3/> /9K
© 2004 by CRC Press LLC
Section 4.4
4.4
253
DeBruijn Graphs and Sequences
DEBRUIJN GRAPHS AND SEQUENCES $ %&' ( ' .8 5 2 8 2 8 5 B F 2
Introduction F 8 5 , = > ( ! 8 5 " ! 8 5 ! 8 5 B
4.4.1 DeBruijn Graph Basics DeBruijn Sequences DEFINITIONS
'
5 , & #
? !
6! 8 5 B C BD
' " 7 / $ & &¼ & 6 ! ¼ 7 & , 7
' " 7 / $ B ! ! 7
/
' ? ½ ¾ ¿ ? ·½ ? 6
' '
½ ¾ ½ ¾
© 2004 by CRC Press LLC
½ ¾
½ ¾
? ½
?
½
254
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
'
! 8 5 B @ B
' 6 8 5 &
& 8 5 B
EXAMPLES
'
1111 8 5 B " 111 11 11 1 1 1 11
'
11111111 8 5 B
DeBruijn Graphs
8 5 B
! B DEFINITIONS
'
=> !
! B L# 5 #
8 5 =>
A ,
# ! ! # !
' 6 8 5
' 6 8 5 8 5 EXAMPLE
'
( ! 8 5
FACTS
' 6
8 5
' A # 8 5 6 , ! 1 ,
' '
A # 8 5 A 8 5
© 2004 by CRC Press LLC
Section 4.4
255
DeBruijn Graphs and Sequences 0000
000 0001
1000 1001
001 0010
100 0100
010 0011
0101
1100
1010 101
1011 011
1101
0110
0111
110 1110
111
1111
Figure 4.4.1 -". !" ""
' A 8 5
' 6 = > 8 5 => ! 8 5 B 6 B , # ' -".& "' -8 90 ( 8 5 B
½
¾
4 7 7 1 3 791337
¾
½
REMARKS
' 8 5
8 5 *! 8 5% ! 8 5 B
' 8 5 8 5 => ! 8 5 ! #
4.4.2 Generating deBruijn Sequences Æ 8 5 B , 8 5 & A 8 5 #
© 2004 by CRC Press LLC
256
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
' -2 70' ! # A ' " 8 5 => B #
# =6 B , , 8 5 > ' 6 B A 8 5
8 5 B E
EXAMPLE
' ( 8 5 B 8 5
0000
000 0001
1000 1001
001 0010
100 0100
010 0011
0101 1011
011
1100
1010 101
0110
0111
1101 110 1110
111
1111
Figure 4.4.2 $" "
=>
REMARKS
' 6 ( ( Æ A =>
# ! ! ( ( ! B 8 ( ( ! W1%
W% ALGORITHM
' 6 8 5 B (% =B > A 8 5 = > 6 B A =(% >
© 2004 by CRC Press LLC
Section 4.4
257
DeBruijn Graphs and Sequences
Necklaces and Lyndon Words
( & J -(J990 & 8 5 B DEFINITIONS
' = B
>
' B
' 0 & ! : & + & #
B
& FACTS
'
& : ! ! !
' 8 8 & 8= >
! 8= >
- 0
'
-(J990' " =# > : ! ! # ! 1 8 5 B # REMARK
' 6 - = > & ! # ! + - =1> ? 13 - =4> ? /
-
=4> ? 3 !
EXAMPLES
'
( , B
4 01101 11010
0
1
1
10101 01011
0
1
10110
Figure 4.4.3
'
0$ ""
6 : ! 1 + 11 8 5 B
© 2004 by CRC Press LLC
258
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
6 : ! 11 1 + 1111 8 5 B
'
+ ! ( (4 ? : !
" #
111 11 1 1 " ! ! ! ! # 8 5 B 11111111
4.4.3 Pseudorandom Numbers ( $ = >
@ 8 $ B .8 5 B ! ! DEFINITIONS
' B B
' -2790 6 1 B
!'
6 %
@ 1%
B 6 ! 5 = E > ! ! = E 11 11>
' B ! ' 1 2 8 5 B # 1% # %
'
-390 6 .
+
,
= >
7 / /
! 7=/> 6 , / B +
© 2004 by CRC Press LLC
Section 4.4
259
DeBruijn Graphs and Sequences
FACTS
'
; 8 5 B
B
'
8 5 B , 2% , ! (
% # B 1% !
B #
'
" = # > 8 5 B
&
;
B 2 5 8 5 B ! ! B
'
-H/0' 6 !
B
8 5 B
4.4.4 A Genetics Application 6 .F # Æ 8 # # !& 6
.F ! 6 #
, B # ! .F B B #
6 Æ 6
+ - 6 + 10 , 8 5 !
B 7
B
DEFINITIONS
!)
'
'
( + ?
, B 2 6
½
7 7¾ 7
.F B ! , +
+
6!
5 .F B 7 ! ,
REMARK
'
A B & +
8 5 Æ !
6 = > B
! # ! @ + 8 5
© 2004 by CRC Press LLC
260
Chapter 4
CONNECTIVITY and TRAVERSABILITY
References -;0 " & & : ! 8 5 B
!!! M M M&MF& M -390 2 H ( N /39 -. 70 F 2 8 5 ' 943K97
/
-(J990 * ( & " J :# 8 5 B + % =/99> 9K1 -H10 H H ; B /7K1 8 * B!A = : 8 . > L 11 -2 H9/0 $ 2 . H ( 1 ' + * ( X /9/ -2790 + 2 % ) % * . /79 -2 70 " H 2 F + 0 $ % =/ 7> 79K 9 -22$ ://0 H ( 2 Æ + $ 2 H * $ :! $ + * ( /// -2
© 2004 by CRC Press LLC
Section 4.5
4.5
261
Hamiltonian Graphs
HAMILTONIAN GRAPHS '
' )*
4 * 4 6 & 4 A# 4 $ 6 ; * T 44 2 47 (
4.5.1 History F = -2 H9/0> ! F + ! * 341 * # # *
. 349 6 ,
6 ! & ! 34/ ! , ! * % 4 * , B " -J 470 344 6 J & B ' 2 ! , => # 6 J & & B * N J & ! ( -8 :+ 370 DEFINITIONS
' ' '
= >
4.5.2 The Classic Attacks 6 @ 6 & Æ U #
© 2004 by CRC Press LLC
262
Chapter 4
CONNECTIVITY and TRAVERSABILITY
6 # ( Degrees
6 # Æ = >
Æ =
>
DEFINITIONS
' + = > ! 6 = >
' 6 ! = > 5 5 !
' ( ' ? = 9 > = ? 9 > 5 5 ( 3 9 ! E
6 ! '
: =
>?
/ (
(½ (
FACTS
' '
-. 40 " :
-;710 " : = >
Æ = >
: = >
-;70 " := > E
EXAMPLE
'
! ! # , = ( 4> 6 * Æ = > ? =* > := > ? * . % 6 ;% 6 =( > 6 ! Æ = > ? * : = > ? * ! ; = ( 4>
Figure 4.5.1
' -H 310 :
2$$" ! " " & ;"& "$
© 2004 by CRC Press LLC
!
Section 4.5
263
Hamiltonian Graphs
' -$$70 " ? = 9 > = > ! => E => E 5 9
'
-8970 :
! =
6
> ! ,
!½=
!=
>
>
' -*/0 REMARK
'
6 # 6 => & , *!
! " #
1 6 ! ! ! =! >
Other Counts DEFINITION
' 6 # ( - =(>
5 ( - =+ > + 5 # +
! "
+ ! ,
' 6 = > !
#
'
= >
EXAMPLE
' 6 =5 *> ! * # + ! + ? ? 5 ? * 5 ! ! 5 + * + Y ¾ ( 4 ! ! = 7> = 4> © 2004 by CRC Press LLC
264
Chapter 4
Figure 4.5.2
+"
= 7>
CONNECTIVITY and TRAVERSABILITY
= 4>
FACTS
'
-;70 " ½ E ( ! # E
= > = 4> "
'
-( 3 0 "
/ / (=> => = > ?
' -8 8L: 3/0 " := > E = >
'
-A90 :
=
>
= > = > " = > = > " = > = > E ' -+930 " + - =+> ' -(370 : " # & + ! & ! - =+ > "
'
-8L/0 -( 2H :/0 "
- =+ > + ! REMARK
'
6 #
1
Powers and Line Graphs
! & = >
DEFINITIONS
' 6 ;= > ! ! ! ! ;= >
5 5 = >
© 2004 by CRC Press LLC
Section 4.5
265
Hamiltonian Graphs
' !
#
!
' + 5 = ½ > 5 ' 6 ! = > ? = > ! = > = >
'
= # 5 > = >
"
FACTS
' -* F+740 : ! 6 ;= > ½
' -2*//0 : ! 6 ;= >
! = >
'
' '
-+ 90 " -(9 0 "
" -8930>
! Æ = >
; =
> ? ;=;= >>
= > =
Planar Graphs FACTS
'
-630 A = -6470>
' -2730 : ! ! " 5 ! 5¼ # ! = >=5 5¼ > ? 1
4.5.3 Extending the Classics Adding Toughness DEFINITION
' " # + + ! & &
, & =+ > + ! =+ > & 6 #
FACTS
'
-H930 :
© 2004 by CRC Press LLC
:= >
6
266
Chapter 4
'
-8 $L/10 :
CONNECTIVITY and TRAVERSABILITY
'
-8L/10 : 6
:= > 6
! Æ = >
REMARK
'
G 5 & & ( & ? *! -8 8: L110 # =/ 6> 6 $ 1 !
More Than Hamiltonian DEFINITIONS
' '
2 2
' ! / # / E =! > ( # #
2
' = > B = > B
FACTS
'
=> Æ = > => := > !
-8( 2:/90 "
EXAMPLE
' 6 ! 6 FACTS
'
-8990 "
'
! = > ¾
-*/10 " := > # ! : = > = 4> # ( Æ = > = E > #
'
-*/0 " ? = 9 >
5 ( 3 9 ! =(> E =3> E
© 2004 by CRC Press LLC
Section 4.5
267
Hamiltonian Graphs
' -*/0 : / " ? = 9 > Æ = > / = > $ ¾ / E /¾
' -J /70 -J /30 6 # Æ = > = E > ! ' -J //0 : " => E # ' -( 2J: 0 : ! " => E => E = /> 5 REMARK
' 8 !
N# . ! ;
4.5.4 More Than One Hamiltonian Cycle? A Second Hamiltonian Cycle FACTS
' A 6 = -6 70>
' -6/30 "
/ ! / 11
! ! : # ! ! '* =! > = - => = =! >>> 6 ! ¼ ! ¼ ? ! # ! ! ¼ ! !
' -6/90 :
' -*110 ( # =>
! Æ = > => Æ = > Æ E " =Æ = >Æ = >>
' -$ 970 -2$ 970 6 #
! 5
!
Æ =
>
' -Q 970 -3/0 6 # , # 4
= > !
© 2004 by CRC Press LLC
268
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
'
( 6 -6930 # % 5 ! 5 = ! > 6 # =( >
Many Hamiltonian Cycles FACTS
'
-6/70 :
! ' (½ 3½ (¾ 3¾ ( 3 (½
= > " 3½ 3 (½3½
=> " 3½ 3 $ ½ ¾ =1 ' > ! 3 ½ (3 ·½ = '>V ½
'
71¾ :¾ = > E
-( 340 :
= > "
5 => " 7 ¾ ½ E 5
' -A/0 : ! = > " ! :¾= > Æ = > 5
Uniquely Hamiltonian Graphs DEFINITION
'
#
FACTS
' -A!310 6 # , B !
'
-H +3/0 B # = E /> B #
'
-8H /30 A B #
¾ =3 > E ! ? = ¾ > ½ ( B !
© 2004 by CRC Press LLC
Section 4.5
269
Hamiltonian Graphs
Products and Hamiltonian Decompositions DEFINITIONS
' = E >
'
A ! & # = ½> = ¾> 6 ? ½ ¾
=
> ? =½ ¾>=½ ¾> ½ ? ½ ¾¾
=
6
=
> ? =½ ¾>=½ ¾> ½½
?
=
¾> ½ ½>
¾ ? ¾
¾
½½ =
?
¾ ¾
=
¾>
¾ = > ? =½ ¾>=½ ¾> ½ ? ½ ¾¾ ¾ ¾ ? ¾ ½½ = ½ > ½ ½ = ½ > ¾¾ =
6
½>
½
¾>
6 = ! > ? ½- ¾0
=
> ? =½ ¾>=½ ¾ > ½ ½
=
½ ? ½ ¾¾ =
½>
¾>
REMARK
'
H & -H 9/0 5 E B ' " ½ ¾ ½ ¾ T
FACTS
' -/0 : ½ ¾ ! 7 & ! & 7 6 ½ ¾ ! '
7 & => & =>
=>
¾
= >
½
'
77&
" ½ ¾ * ½
¾
'
-8/10 -Q3/0 ½ ¾ " ½ ¾
© 2004 by CRC Press LLC
270
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
-( : /30 6 ½
'
-8 30 6 # !
' -J/90 = > "
=> =>
= > - 0 " = > - 0 " = > - 0
=> " =>
= > - 0
= > - 0 " = > - 0 " = E > = > E - 0 " # = > - 0
=> " =>
#
4.5.5 Random Graphs + 5= > ! - ? DEFINITIONS
'
=3 > 1 * : - ! * ' =3 . ( > 4 ? 4 = > ! &
6 7 ? @ ! 4 # + ! 7
' ! @ B = >
& & ? 1 -
' " Z ! Z " 5="> F B
"
' 6 4 2 %
# 2 6 %
© 2004 by CRC Press LLC
Section 4.5
271
Hamiltonian Graphs
FACTS
'
- 970 -J970 6 # ¾ ' -J970 -J30 * ? E E 4 = > ? E E 6
'
4 = > ? = E
1 E >' 5= > ? ' ' ' -+/ +/ 0 ( 5 5 ' -(/ 0 % ' -(110 % " % ; % % -J30 (
REMARKS
'
" - V =! B > ! C D = *> AI ! , 5 ! & 6 ! , 8G
' " & ! # !
, 8G
( ( -8((340
'
B
4.5.6 Forbidden Subgraphs DEFINITION
'
= > 6 - # 5 ! => 6 => 6
; ! # 5 5 # # = &>
Figure 4.5.3
© 2004 by CRC Press LLC
!" - ;
272
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
'
-.2H 30 "
½ -
= >
=>
'
U
-8.J110 6 # ,
-
'
-8L/10 "
'
-2H 30 "
'
-8/0 "
'
-( 2/40 "
-
-
-
1
Other Forbidden Pairs B ' T 6 ! -8/0 -( 2/90 1 + !
FACTS
'
,
?
+
+
6
, +
-
, +
?
=
-
>
-
=
-
!
1>
'
-( 2/90 :
, +
,
'
?
+ 9
?
1 6
-2: 0 :
9
?
= > A
, + ? > , + - -
=
=>
,
-8/0 -( 2/90 :
9
'
9
?
!
>
?
;
-( 2/90 "
!
Claw-Free Graphs " !
=
6 ! B
'
9 - - - - ?
6 B '
!
" !
T 6 ! ! -( 2H :10 ! !
!
&
Æ
( -( 2H 0
Æ ! 8& -810 ! ! " -( 2H 0
!
© 2004 by CRC Press LLC
Section 4.5
273
Hamiltonian Graphs
DEFINITIONS
' ( # ( -- =(>0
( -- =(>0 =- =(>> =; ! ! >
' 6 ! 2= > , # (
' 6
5/=
>
FACTS
'
-( 2/90 : , + =, + ? > 1 6 , + # , ? + - -
-
' -/90 "
'
-/90 :
2=
> ! ,
=>
5/=
! 6
= > =>
> ? 5/=2= >>
2=
> ?
REMARKS
'
6 ! @ = -8970> ( -8110
' 8 ( 73
!
2=
>
'
6
! ( -8930 -8930 -+ 2 3 0 -8/40 -2 /70 -2/0 -210
References -8 30 Q 8 2 * # + % , =/3> 4K7 -8 8: L110 . 8 * H 8 : * H L F
$ // =111> 9K -8 8L: 3/0 . 8 * H 8 * H L :
* & F + % , 9 =/3/> F 9K
© 2004 by CRC Press LLC
274
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-8 $L/10 . 8 $ A * H L : ! $ 9/ =/3/M/1> 4/K91 -8970 H 8 L G
=/97> K4
$
4
-8( 2:/90 8 2 H ( H 2 : : & ; + =//9> 74K9 -8/0 8 - . 6 $ N //
-8930 H 8 * % 8 & + A : =/93> -8 :+ 370 F : 8 A J : H + N ;# =/37>
:
DE" !E" ;#
-8((340 8 8G 6 " ( $ ( ; $ % F! 49K9
$ %
-8H /30 H 8 8 H & L B + % , 9 =//3> 74K94 -8990 H 8
+ % , =/99> 31K3
-8930 H 8 * ! % *
F SS" =/93> K3 -8/40 H 8 8 K ( A =//4> 4K1 -8/10 H 8 &
J! =//1>
-810 H 8& ( $ 4 =11> 9K97 -8.J110 8 I ( ( . A JI : = ! > %($ + 1 =111> 77K 799 -8110 * 8 Q 5G [& " ' 7 =111> 9K 3 -8L/10 * H 8 * H L ½¿ $ 8 & A 8" + L $ + Q =//1> 3K /
© 2004 by CRC Press LLC
Section 4.5
275
Hamiltonian Graphs
-8L/0 * H 8 * H L : ! + 4 =//> /K3 -+ 90 2 A + ; # % $ 3 =/9> K 3 -A90 L G AI =/9> K
%
$
-(/ 0 $ ( * + % , 7 =// > 4K7 -(110 $ ( * ) % 7 =111> 7/K 1 -2 /70 H H 2 *
$ 47 =//7> K3 -. 40 2 . =/4> 7/K3
0 $ %
-.2H 30 . .@ H 2 $ H (
2 H . 2 : : & . : & =/3> /9K7 -A/0 4K41
%7 + $
-A!310 A * ! +
% , / =/31> 1K1/ -( 3 0 2 * ( F! Æ , 9 =/3 > K9
+ %
-( : /30 ( H : * / =//3> 4K44
+
-( 2/90 H ( H 2 $ 9 =//9> 4K71 -( 2H 0 H ( H 2 $ H ( ' -( 2H 0 H ( H 2 $ H ( ' Æ -( 340 H ( A 5 .
% =J $ /3 > + F! K / -( 2H :/0 H ( H 2 $ H : : & ;
. % $ 14 =//> 7K9
© 2004 by CRC Press LLC
276
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-( 2H :10 H ( H 2 $ H : : & ! $ / =11> 9K3 -( 2J: 10 H ( H 2 J& : : & "
. + F =11> //K1 -( 2/40 H ( H 2 Q 5G [& " ( ' 1/ =//4> K -(9 0 * ( 6 B ! + % , 7 =/9 > /K -(370 ( ! Æ + 1 =/37> 14K 1/ -2 H9/0 $ 2 . H ( 1 ' ( F! -2: 0 H 2 6 : \ & ( ' -2/0 H 2 N K + 4 =//> K49 -210 H 2
K / F =11> 9K4 -2*//0 H 2 A * ,
( 7 =///> 7K 3 -2H 30 H 2 $ H ( $ =/3> 3/K/7 -2730 A H 2 ! 08 $ F =/73> 4K43 -2$ 970 8 2 H $ & 5 $ =/97> /K/7 -* F+740 ( * H F + ; $ , =/74> 91K91 -*/10 2 * A# $ 34 =//1> 4/K9 -*/0 2 * A# + % , 4 =//> /K -*110 * & : ! $ =111> 94K31
© 2004 by CRC Press LLC
Section 4.5
277
Hamiltonian Graphs
-H 9/0 8 H & A 5 +
0 $ % => / =/9/> K7 -H 310 8 H & * + % , / =/31> 9K 7 -H +3/0 8 H & + + ! B + =/3/> 499K431 -H930 * H ; # , $ =/93> /K -J //0 * J 2 F G &I &! ; + =///> 9K4 -J 470 6 J & ; ) % =:> 7 =347> K 3 -J30 H JG A G : # $ =/3> 44K7 -J /70 H JG 2 F G &I A G ; B ) / =//7> /K -J /30 H JG 2 F G &I A G 5 =//3> K71 -J970 . J AI G * %8 $ 9 =/97> 971K97 -J/90 $ J # +
0 =//9> 4K3 -$ 970 $ $ =/97> 9K 1
#
-$$70 H $ : $ ; ( +
$ =/7> 7K74 -;710 ; ; $ $ 79 =/71> 44 -;70 ; ; * + $
=/7> K9 - 970 : G * $ =/97> 4/K7 -+/0 + F + ) % =//> 9K4 -+/ 0 + F + ) % 4 =// > 7K9
© 2004 by CRC Press LLC
278
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-3/0 $ 5 4 $ 3 =/3/> 41K44 -/90 Q 5G
[& ; ! + % , 91 =//9> 9K -/90 ( 8 * ! + % , 4 =//> 9K/ -/0 * $ /1 =//> 7/K/1 -6930 2 6 * B
$ =/93> 4/K73 -630 6 + 9 =/3> 7/K97 -6/70 6 ; 4 =//7> 9K -6/90 6 + %
, 9 =//9> K -6/30 6 " + % , 9 =//3> 1 K1/ -6 70 + 6 6 ; + 0 $ % =/ 7> /3K1 -6470 + 6 6 $ % 3 =/47> //K7 -+ 2 3 0 . + H 2 K * $ 4 =/3 > /K1 -+930 . + Æ + % , 4 =/93> 3 K37 -Q 970 H Q & 4 +
% , =/97> 7K -Q3/0 $ Q . 3 =/3/> 43K73
© 2004 by CRC Press LLC
Section 4.6
4.6
279
Traveling Salesman Problems
TRAVELING SALESMAN PROBLEMS
& +' $
7 6 6 7 A# 7 * 7 " * 74 6 2 6 77 6 L
Introduction 6 6 =6 > " 6 Æ 6
# - 10 " ! 6 2 6 L
4.6.1 The Traveling Salesman Problem J $ -$0 ! , 6 =6 > * # ! ! & " ! ! ! ! ! =( ! 6 -*+340> " 6 Symmetric and Asymmetric TSP DEFINITIONS
' # 3#& =#3#&>' 2 = > ! ! , = > !
'
3#& =3#&>'
2
!
© 2004 by CRC Press LLC
! ! ,
280
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' 6 / 3#& 6 ! A ! A !
'
6
#
8 3#& ! 6 6 Matrix Representation of TSP
A 6 ! # ! # 6
6 DEFINITIONS
' 6 = > 6 # % ? - 0 ! ! ! 6
6 # % ? - 0 ! !
' 6 E EXAMPLES
'
6 ! 1 % ? 9
# 7 4 1 1 9 4
1 / 3 1
! ( 7 6 V ? 7 ! / 9 1 9 6 !
Figure 4.6.1
'
,7
6 ! # 1 1 9 1 1 / % ? 9 / 1 9 7 / 4 1
© 2004 by CRC Press LLC
9 7 4 / 1 1 7 7 1
Section 4.6
281
Traveling Salesman Problems
! ( 7 4 V ? 6 4 !
Figure 4.6.2
,,7
Algorithmic Complexity FACTS
' 6 # 6 ! !' ! 1 U ! 6
'
( 6 F B
8 ! 1 ! 5 ( ! !
'
- 2970 ( 5 ?F
! ! 5
Exact and Approximate Algorithms DEFINITIONS
' '
!
= > &
: ! # 6 = 6 == > == > == > ! ! =
' 6 * -Q30 ! #! =!> = == > == >>= == > == >> & 6 = ! == > ? == > FACT
'
-* J10 6 #
#! =!> 6 ! #! =!> © 2004 by CRC Press LLC
! 6 !
282
Chapter 4
CONNECTIVITY and TRAVERSABILITY
The Euclidean TSP
. ( 4 ! ! A 6 ! 6 6 ! , -/30 //7 = ( 7> $ -$ //0 ! = -10> FACTS
' - 992 2H970 A 6 F 6 $ 1 !" A 6 , E 6
' -10 (
' ! =6>> - /30
!" #
1= E
6
!" ! 6 -10
' -6/90 6 # 5 $ A 6 1= > A , 5 F REMARKS
' % =( 7> A
*! ( 3 ' A# B
= # >
# ! ( # !
' 6 ! ' 4 * * 4 $ ! 6 -2340 -H2$ -8 /30 ( 6 ! # -: 10
© 2004 by CRC Press LLC
Section 4.6
283
Traveling Salesman Problems
FACT
' 6 - # # 6 @
=
>V @
°
Integer Programming Approaches
L 6 6 + , =-8:110> '* ** =- 30> -'' -'- = -8 6340 -( :610 -F 10> 6 ! &! =-+/30> 6 = > 6 . (& H -. (H4 0
' .,
( ?
(
= > 1 !
: ! = > 6 6 # ' > ?
( 5 ( ? ? ( ? ?
( + 1 + ¾ ¾ ( ? 1 ?
FACTS
' 6 , #
# # # 6 ! ! 5 # *! " ! # 5 = - >
' 6 - * B
+
+
' 6 ! * ! * 1= > -+/30 ! # 5
! !
© 2004 by CRC Press LLC
°
"
&
? 6
284
Chapter 4
CONNECTIVITY and TRAVERSABILITY
;! ! ( # ! B 6 6
4.6.3 Construction Heuristics #
!
Greedy-Type Algorithms
6 6 ! # #
Algorithm 4.6.1: # 5 => + '? +
EXAMPLE
' + >> 6 A# !
( 7 # >> # # # 6 ! 1 =! ! >
© 2004 by CRC Press LLC
Section 4.6
285
Traveling Salesman Problems
Figure 4.6.3
,7
# -H2$> U ! 111] # 6 -H$10 ! >> ! A 6 >> 6 Insertion Algorithms
, 6 ( 6 !
! # ( 6 ! 6 # !
6 ! 5 B ! 6 DEFINITION
' : ! ? ½ ¾ ½ # B # ! ( = > ! = > = > ! = > = > = ( 7 > 6 ! = > 6 = > ? = ·½> / ! = > ? ½ ¾ ½ = > ? = ½> ! = > ? ½ ¾ ½
Figure 4.6.4
2" /"9 " =
>
REMARK
'
'* , , , ! , ! @ # A ! -^0 #
© 2004 by CRC Press LLC
286
Chapter 4
Algorithm 4.6.3:
CONNECTIVITY and TRAVERSABILITY
1"9 2" 3124
#' # - 0 5' 6 ½ : ! " ! ? ( 7 ? : # ! -^0 " # = > ! ? ! ! = > ! = > = > ! ! '? ! = >
2 # ! = ! >
!
= ! > ?
DEFINITIONS
' '
6 567 # !
6 )67 # 6 = ! > ? = ! >
' 6 ,67 # ! # 6 = ! > ? # = ! >
6 # B
! A 6 = -H$10> # ! # 6 -22 =-H2$ 6 #
" , : J -210 : J 6 6 6 = -H2$ DEFINITIONS
'
( 6 8 ! 5 ! ! = ( 74> ; ! 6 = #>
Figure 4.6.5
!
2
" "$
2
' ( #
= >
' 6 , U @ => => =
> 6
© 2004 by CRC Press LLC
Section 4.6
289
Traveling Salesman Problems
FACT
'
- $ J 10 & # ,
= > !
1= >
6
Exponential Neighborhoods 8
_=
>
# #
= >
'
6
( 6
! # !
=
>
" # 6
!
1= > =1= >>
6
-A; 10 -.+110 -2
4.6.5 The Generalized TSP 6
1' !
# 6 -( 610
DEFINITIONS
'
6
1 ( 3 # & 13#&'
2 !
,
! # = > #
?
'
6
# = >
#
'
6
1 ( # 3 # & 1#3#&
!
REMARK
'
; B W % W# % 26
26 ! B
6 W# %
26 26
© 2004 by CRC Press LLC
290
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Transforming Generalized TSP to TSP ; ! 2 6 6
6 Æ 26 6
26 6 -F8/0 -: //0
FACTS
'
" -F8/0 26 6
+ , 6
# 6
4
! " ! #
'
" -: //0 26 6
! , Æ ! ! ( #
!
4 !
!
4
¼
6 !
!
!
?
!
½ ½ ½ 4 ¼
¼
¼
"
!
26
6 ! ! !
! 26
6 ! !
4
=
4
> !
! 8 #
¼
!
26
'
( -: //0 -F8/0 5 !
*
&
#
Exact Algorithms FACTS
'
# =-82 !
-F8/0 -: //0 2 6 *! B 6 % = > ! =>
'
26
-( 610 : 26 -F8/0 6 # 5 &
6 26
'
% ? = > ½ ¾ % #
# ½ ¾ F ? = # B > -2 :
=
>
B
8
8
8
! ½ ¾
# #
# 26 -82 6
!
! >
=> ( !
!
=" -( 610
-82 :
8
B
*! -82 6 L L ) 6 B
"
DEFINITIONS
'
2 !
1
! ! ! " ¾ ?
# 1
© 2004 by CRC Press LLC
"
!
1
65&
! !
?
292
Chapter 4
'
6
CONNECTIVITY and TRAVERSABILITY
6 5 & 65&'
E
2 !
1 ?
! " , L ! !
REMARKS
'
; '
! = #> !
* &'&
! @
@ - J + //0
'
" L =
½ >
F
= W %> L -L /70
Exact Algorithms FACTS
'
6 Æ # L
=-8*110 -F 10 - J 60>
'
( L #
-6L 16L 10
'
L 6
3 ! " -
L ! -8 10
6 # ! L
6 ! 11
# ! L ! ! 4 - J 66L 10 ; L
& #
6
L
Heuristics for CVRP L ! '
L
B &U
6 &
@ ! B
=-A;0 -2: 10 -6 /0 -6L /30>
( L
B & )# # ! L '
&-
+
REMARK
'
6 ! L
L ! W % W % W % W%
© 2004 by CRC Press LLC
Section 4.6
293
Traveling Salesman Problems
Savings Heuristics
6 & + -+7 0 &! L * ! ! -2 /0 -+7 0 -: 10
= > ( # + &=+ > = # > !
6 + => 6 # + =+ > ?
¾
DEFINITIONS
' !½ !¾ =!½ !¾> ! # B =!½> =!¾> 6 !½ !¾ # " = = =!½> =!¾>> ">
' 2 !½ !¾ =!½ !¾> 7=!½ !¾> 7=!½ !¾> ? &= =!½>> E &= =!¾>> &= =!½> =!¾>>
°
'
: , ? !½ !¾ ! / ! ! # 1 6 %=,> ! /
!½ !¾ ! =! ! > # = =!½> =!¾>> "
! =! ! > 7=! ! > REMARKS
'
" "-( * =-+7 0-: 10> !
! &= =! >> 6 #
&= =! >> ! 6 =! > !
' 6 ! !½ !¾ & +
" = 1> !½ # 1 =1 > !¾ # 1 ! = > ! = ( 77>
Figure 4.6.6
6$ "0>"! '"! $ !½ !¾
REMARKS
' 6 ! 4 =! ! > ! # 7=! ! > 4 " ! 4 -: 10
© 2004 by CRC Press LLC
294
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Algorithm 4.6.5: , /! #" 3,#4
#' # - 0 ? "
5' L , ? !½ !
" / ? ! ? 1 1 ? / " , ? !½ ! + / $
%=,>
4 %=,> ! 4 / ( =! ! > 4 , '? =, ! ! > =! ! >
/ '? /
' ; , ,
6 = 7 > ( # -: 10 L & + Insertion Heuristics
" L -: 10 ! ! ? 1 1 6 B 6 ! W % # ! ! , " B !
! ! 6 # ! &= =! > > &= =! >> REMARKS
' # , $ 6 -$ 69/0 ' ( H & -( H 30 6 1' * ! * , W % Two-phase Heuristics
6 &- ½ 6 1 ? + * -+*90 ! B A L ! 1 A A !
+ !
! =1 > 6 # ? =8 > ! 8 ! 1 1 6 ! !
© 2004 by CRC Press LLC
Section 4.6
295
Traveling Salesman Problems
Algorithm 4.6.6: ,:! #"
#' # - 0 8 ? " 5' L
!
?
½ ¾ 8
" + ? ?
?
(
7
?
" =+
>
'?
8 ½
7
?
$ "
E
'? + ?
+
(
:
6 +
!
1
REMARK
' # L -8 /40 # ! -*$ 69/0
References -A; 10 J 5 ; A H 8 ;
B
$ =11> 94K1 -2 /0 J & 8 2 5 ) / =//> 47K 7/ -8 /30 . A 8 # L G
+ & ; 6 $ + $/ *6 / ($ , !!9 ((( =//3> 7 4K747 6 M4M///
-/30 # A 6 +$ 4 =//3> 94K93 9 "AAA ( //7 3 "AAA ( //9 -10 # 6 " 8 % / =2 2 A> J! 11 -8 6340 A 8 6 8 8 $ " 8 % 1 5 > =A : : ! H J : * 2 J . 8 A> + /34
© 2004 by CRC Press LLC
296
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-8:110 8 : # ( % $ 111 -82 J! 11 -( 610 $ ( H H 2G
6 6 2 6 ; 8 % / =2 2 A> J! 11 -( H 30 $ : ( H & '. =/3> 1/K -2 2H970 $ 2 : 2 . H F 9 $ % =/97> 1K
© 2004 by CRC Press LLC
Section 4.6
Traveling Salesman Problems
297
-2: 10 $ 2 2 : H + /34 -2 K1 -: 10 2 : ( * L / ) = 6 . L A> "$ 11 -: 10 : 6 ! " 8 % / =2 2 A> J! 11 -$0 J $ . * * $ ; =/> K -$ //0 H 8 $ 2 # ' # 6 $6 %($ + 3 =///> /3K1/ -F 10 . F 6 8 6 8 % / =2 2 A> J! 11 -F 10 . F 2 8 L / ) = 6 . L A> "$ 11 -F8/0 A F H 8 : 5 ) / =//> 7K7 -F8/0 A F H 8 Æ ('-5) =//> /K - 990 * 6 A F % =/99> 9K - 30 * J 5 > * /3 - J + //0 2 J $ + A N A " A //3M - 10 6 6 ' ( L 8 % / =2 2 A> J! 11 - $ J 10 ( $ J 6 '
# 4 =11> K9
© 2004 by CRC Press LLC
Section 4.6
299
Traveling Salesman Problems
- J 60 6 J : J + & : A 6 ; $
- /30 + # C D C D EA $ % =//3> 4 1K441 -210 ( 2 : $ 8 % / =2 2 A> J! 11 -90 L " & A 6 ' $ =/9> 3K = > - 2970 6 2 # +$ =/97> 444K474 - 970 L "
; / '8 ,%%) % - > $ '8 =/97> 9K = > -6 /0 A 6 ' . =//> 77K79 -6 310 6 + 6 * % , / =/31> 73K9
¾ / 3 +
-6L 10 6 . L 8 8 L " / ) = 6 . L A> "$ 11 -6L 10 6 . L $ # #
$ =11> 39K4 -6/90 : 6 + * A ' # 6 $6 =! $ % =//9> K/ -L /70 . L * + 5 ) 3/ =//7> 13K7 -+/30 : + ( + //3 -+*90 + * 5 ) I =/9> K -Q30 A Q $ B # $ 5 ) 7 =/3> /K
© 2004 by CRC Press LLC
300
4.7
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FURTHER TOPICS IN CONNECTIVITY
9 * 9 8 9 9 2
Introduction ! =Æ > ! ( ! # = # > F# ! ! = !> ( C D ( #
4.7.1 High Connectivity ! C D ! # , ! C D . @ ! ' = > L ! => = > => = > => : = > 6 ! # # Minimum Degree and Diameter
: ? = > ! Æ = # > " Æ Æ Æ ` DEFINITIONS
' 6 ! ,
© 2004 by CRC Press LLC
Section 4.7
' '
301
Further Topics in Connectivity
6
# 7& = > ¾
6
#
* # *
' = > = > FACTS
' '
-:9
? Æ
' ' ' ' '
Æ B Æ 0 " 5 => E =>
-770 "
% ? ? Æ -L330 " Æ E ? Æ -L3/0 " * =* > ½ Æ ? Æ -6L/0 " * =* > Æ ? Æ -. L/40 " B < * Æ ? Æ - 940 "
!
REMARKS
' ' '
( ( ( 4 * ?
! ( (
" ( 9 -. L/40 Æ B ! - Q3/0 Degree Sequence
( # # ! B ? Æ ( # - => 5 FACTS
' -2+930 " # = > = C D # > = > E = > ? ? Æ
'
'
, 4 => 9 4
-2A9/0 " #
? Æ
¾
-89/0 : ! " B ? Æ , = E > ! Æ ? Æ
© 2004 by CRC Press LLC
302
Chapter 4
'
-. L/90 " Æ Æ Æ ! Æ ? Æ
CONNECTIVITY and TRAVERSABILITY
= E Æ
'
-L10 7 ! B ! ? ? 1 ! " Æ Æ Æ # Æ ? Æ =Æ E > #
> = > E
< * : ? ?
REMARKS
'
F ( 3 ( ! ( / ( $ ! # - Q3/0 ( / ( (
' ( 1 ( ! ! - Q3/0 ( /
'
(
S -S/ 0 ! = ( > ! ( ( 1
' ( -L330 -L3/0 ! ( 9 (
! -*L10 ( # U => ? => => Distance DEFINITIONS
' 6 7& = > ! ! 7& = > ! >
= > =+
' 6 ; ! 5 5 = > FACTS
'
: ? ? 6 ! ; , $= > ? = > E ; %=; > %= > E
'
- Q3/0 :
'
-8 ( ( /70 :
# #
! , 7&= > 6 = ? Æ > 6
; " ;
!
= > "
=>
!
© 2004 by CRC Press LLC
Æ
;
# = ? Æ >
# = ? Æ >
Section 4.7
303
Further Topics in Connectivity
REMARKS
'
6 Æ ( # ( ( Æ B ! ( 4= >
'
( & ( 4= > ( ( = &% >
Super Edge-Connectivity
* ! DEFINITION
' # U # EXAMPLE
'
( 9 ! #
6 e
g
Figure 4.7.1
f
' 9' $$ ! "
FACTS
'
-:9 0 :
=>
'
¾ ¾ " 5 ?
" 5
' '
-J90 "
Æ E
=> E
=> E => E
-( /0 " ! Æ ! => ? Æ = >
'
-/0 :
! # ` "
$ Æ E `
REMARKS
'
( 9 3 ! ( B ( 7
© 2004 by CRC Press LLC
304
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
( / , ( =! B > ( 1
Digraphs
** ' =
B
>
DEFINITIONS
' 6 = >
# !
' 6 = >
!
= > => -' 5 * # => -'
5 # U Æ => ? => => => Æ ? ¾ => Æ ? ¾ => => Æ ? ¾ Æ => ? Æ Æ = > ( #
! ` #
=
(
5
>
= >
#
FACTS
' '
% ? ? Æ -S/ 0 : " = @>
= > Æ = > E Æ = > ? ? Æ ' -*L10 : ! ! 6 => ? => => ' -*L1 0 : ! Æ " # # 9 # # 9 ? Æ ' -*L10 : * Æ ! * " =*Æ >=* > => ? => =>
' -*L10 : ¼ ¼¼ Æ ! " =(> E =3> = E > ( 3 ¼ ( 3 ¼¼ => ? => => -H90 "
!
REMARKS
'
F Ga&% =( > B H =( > ( ( 3
© 2004 by CRC Press LLC
Section 4.7
305
Further Topics in Connectivity
'
( ! . & L& ! B -. L/9. L110 ! !
' ( ! ! # $ H % =( > -(;!110
'
B ( (
Oriented Graphs DEFINITIONS
' # ! 5 # !
' = > ! ! = > == > = >> EXAMPLE
'
( 9 ! # " ? ( 3 = - 0 > =
5 # ! >
u
x
v
Figure 4.7.2
y
' 9' $$ "
FACTS
'
-(910 :
!
Æ = E > ? Æ
Æ "
' -( /0 " !
'
-( /0 "
! !
© 2004 by CRC Press LLC
Æ E
306
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
( 9 3 ( ! ( / (
B ( /
' " Æ -(910 -( /0 =( 9 3> ! Æ E Æ Æ E Æ E ( ! ( 3 /
'
* * !
Semigirth
6 H % =( > !
! " # = > DEFINITIONS
' -( ( 3/( ( A/10 ( ? = > ! % @= > @ ! % = > 7&= > @ ! & B ! & 7&= > E
7&= > ? @ ! & ' ( * ! #
=>
* 5 # 6
EXAMPLE
'
( 9 ! ! @ ? % ?
Figure 4.7.3
© 2004 by CRC Press LLC
,'!" @ ? % ?
@ B
Section 4.7
307
Further Topics in Connectivity
FACTS
'
-( ( 3/0 :
'
-( ( /7 8 210 :
!
@ = > " % @ ? Æ => " % @ ? Æ => " % @
Æ $ %
* =* >
% @ E * ? Æ " % @ E * ? Æ " % @ E *
= > " => =>
'
! #
REMARKS
' 6 ( 1 @ ! ! ( = > ! Æ
7&= > 7&= > @ * @ #
' '
@ ( ( 1= >
( H % =( > " = > Æ E % ( (
Line Digraphs DEFINITION
' 6 ; ; =; > = >
# = > 5 # = > > ? = ' = > = > > > 6 ; , ; ? ;; ½ FACTS
'
6 ; B =; > ? = > Æ =; > ? Æ = > ? Æ $ =; > ? = >
'
" $ % @ ;
%=; > ? %= > E @=; > ? @= > E - 790-( ( 3/0-( " => =>
'
? Æ ? Æ
-8 ( ( /7 ( //0 :
: 6
%=; > " %=; > " %=; >
= > " => =>
'
;
! Æ $ ! %=; >
? Æ ? Æ
-( ( /7 0 ! #
REMARKS
'
Æ $
( 7 B ., 4 ( 1
© 2004 by CRC Press LLC
Section 4.7
309
Further Topics in Connectivity
' ( 3 ( ! Ga&%
Cages DEFINITIONS
' = > !
' ? = > 9
# ? # # ! EXAMPLE
'
6 : ! ( 9 = 7> !
Figure 4.7.4
# : !"
FACTS
' -(*/9S+ + 10 = > = > #
' '
-. //H $/30 A = > !
' '
-$ 8 ( 1T0 A = > !
1 -+ S+ 10 A = > ! #
' '
-$ 8 1T0 A = > !
-$ 8 1T$ 8 10 A = >
B
-$ 8 1T0 = 7> = 3> #
CONJECTURE
-(*/90 A = > #
© 2004 by CRC Press LLC
310
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Large Digraphs
6 ! = > DEFINITION
%
' ( ! # ` $ =` %> =` %> ? E ` E `¾ E E `% FACTS
' '
# ! # ` % =` %> -+ 790 6 = > ! $ % ,
=% > E
'
-";&340
Æ - =` % > E ` E 0 " Æ - =` % > E `0
= > " =>
'
$ =Æ >- =` % > E ` E 0 ? Æ " $ =Æ > - =` % > E `0 ? Æ
= > " =>
'
-( /0
Æ - =` % > E 0 E ` " Æ - =` % > 0 E ` E
= > " =>
' = > =>
-( /0 :
" $ % ½ E ? " $ % E ?
'
-/( / 0 :
= > "
$
=> "
$
% ½ E %
¾ E % ½ E %
% ? ¾ E E ¾ E % % ? ¾ E E ¿ E ¾ E %
EXAMPLE
'
( 94 ! ! ? 7 ` ? Æ ? ? % ? $ % ½ E $ % E ( 4 # = ? ? >
© 2004 by CRC Press LLC
Section 4.7
311
Further Topics in Connectivity
Figure 4.7.5
? ??
REMARKS
'
6 &! ( 9 + & ! , ! % ! = > " ! 5 ! % $%
' ! / = > ! / % *! Æ =6
%' ? ! % ! ? ! ! C D %>
'
" ! & $ , " ! ! & C&D ! ( 3 =
( /> ( 41
' ( 41 ( 3 F ! ( 41=> ! $ =` %>
? `
Large Graphs
! A -A340 &
-F " 390 -/0 -( /0 -( / 0 DEFINITION
' 6 $ ! # `
% =` %> ? E ` E `=` > E E `=` >% FACTS
' = > " =>
-F " 390 $
=Æ >- =` % > E 0 E `
" $ =Æ >=` >%
© 2004 by CRC Press LLC
E
? Æ
? Æ
312
'
Chapter 4
-/( / 0
%
= > :
=> :
Æ
"
CONNECTIVITY and TRAVERSABILITY
$ Æ - =` % > E 0 E =` >%
½
% Æ 4 " $ =Æ >- =` % > E `0 ? Æ
4.7.2 Bounded Connectivity 6 B = > " ! #
A-Semigirth 6 ! , =., > DEFINITION
' -( ( 3/0 : ? = > ! Æ %
A 1 A Æ 6 A @& = > @& ! %
7&= > @& B A ! & 7&= > E 7&= > ? @& ! &
= > =>
FACT
' -( ( 3/0 : ! Æ $ % A @& 1 A Æ ! ; 6 = > " % @& Æ A => " % @& Æ A => " % @& =; > Æ A => " % @& E =; > Æ A REMARKS
'
A @&
'
A Æ !
F @ @ $ ! , ! 6 , @&
Imbeddings
* ! ; & - Q/30 - Q10
© 2004 by CRC Press LLC
Section 4.7
313
Further Topics in Connectivity
DEFINITION
'
+ !
+
!
FACT
' -90 : $ 1 =! " ' - 90> 6 =4 E E 3> Adjacency Spectrum
2 = > ! # ! 6 5 5 = 74 #& -8 / 0 - . /40> DEFINITIONS
' 2 ? = > # # ! ? 5
? 1 !
' 6 & # =
, & ? + = + > ! + + > +
FACTS
'
-/48/40 : #
6 & $ %¾ # ! # ! ! =6 -8 ( ( /70>
2
'
-( 2 =? Æ > $ $ $ : =(> '? =( >= > ¾ Æ 6 = > Æ ' ' ¾ Æ REMARKS
' 8 ( 49 8! -8/70 #
' ( !& -8* J 30 -: 10
' F ( 4=> ! ( 43
© 2004 by CRC Press LLC
% ?
# ;
314
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Laplacian Spectrum DEFINITION
' 2 0 , ; ? % ! % # # 5 # = -8 / 0> 6 0
: #
6 :
B½ ?
= > !
, FACTS
'
; ,
! , B " Æ ! = >
=? Æ > $ $ :
B B B ! B ? Æ ? 5
'
-( 90 :
! :
1 ? 1 => ( ! = > = > => ( # ! = > = > ' : Æ ! % $ :
B =? 1> B B B " Æ (((½ (¾½¾(½ ((½( ? Æ = >
REMARK
'
( 7 5 B ( 43 :
4.7.3 Symmetry and Regularity Boundaries, Fragments, and Atoms
6 = > ! ( ! + & -+ 910 $ -$ 90 6 ! -970 , # * -* 990 -* 310 -* 30 8 !
! , =( , > DEFINITIONS
'
6 # C 5 * C 5
© 2004 by CRC Press LLC
Section 4.7
'
315
Further Topics in Connectivity
6
EXAMPLE
' ( ( 97 ? = > ! = > = > &> ? =( > =3 > < = > ? => (> =& 3> " # F
z
x y t
u
v
Figure 4.7.6
" !'
FACT
'
" C ? - C ? 0 C -C 0 # => 5
'
-* 310 " !
= > D #
Æ · = Æ
>
REMARKS
' ! !
!
'
( 79 H % =( >
Graphs with Symmetry
2 ! CD
" ! ! 2
7 7 DEFINITION
'
= >
= > ! = > = > >
>
© 2004 by CRC Press LLC
Section 4.7
317
Further Topics in Connectivity
FACTS
' '
-$ 9+ 910 :
'
-$ 910 :
A # # ! 6 ?
? E (
?
! 6
?
'
-+ 910 : # ! 6 -0 # $
= >
'
-* 990 : # ! = > 6 -0 # ( = > = >
' -* 30 : # ! = > 6 ? $ REMARKS
'
6 , ! ( 7/ B ( 7 6 $
' ( ( 9 9 = > B # = > ! # = ? ? Æ > " &! = > = >
'
8 ( 77 * -* 990 J % # -J 9 0 * # Cayley Graphs
6 # = > ! = 7 7> " & ! & ! &! . ' " *
! . E ? . E E DEFINITIONS
' : b , ! + b 6 ? =b + > ! b = > ! + " ! + ? + =! + ? ( ' ( + > !
+
' ' ¼
" b
+ b ! + b
© 2004 by CRC Press LLC
318
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' 6 c
' : ( !
6
( ? (EE
FACTS
'
-"9/0 : + b ? c ! 4 (+( ½ ? + ( b 6 =b + > # = ? + >
'
-* 3 0 : b , ! + : = > =b + > 6 b + = > =b + > b !
'
-* 3 0 : b , ! + : 6 =b + + > #
+ + ½
'
-* /70 : b + b + 1 : % ? =b + > 6
# = = >>% ! ? $ ! B =3+ > ½½ = >
REMARKS
' '
( 94 * ( 9
( ( 97 ! 2 -230 B & J -&J390 * : G -* : /0 -/0 = > ! = ! , , E > Circulant Graphs
8 !& ! & " " # !& = -8*/40-86 3 0> FACTS
' -* 3 0 : b . : + B 7 = ?>½ ¾ = > ·½ ½ ? 7 6 =b + > # = ? 7>
' -* 3 0 : b . : + B 7 = ?>½ ¾ = > ·½ ½ ? 7 + + ! + = > + 6 =b + + > # = ? + + >
© 2004 by CRC Press LLC
Section 4.7
319
Further Topics in Connectivity
'
6 . B
+ . * =. + > # = ? + >
REMARKS
'
6 + ¼ ? + ( 9/ = > ! -8(910 C # D ½ ½ = -86 3 0>
' ( 31 * ! =( 5 ! -* /70> Distance-Regular Graphs
6 ! 8 /91 . ! ! ! " # DEFINITIONS
'
: ! % ! % 2 ! ! 7&= > ? 5 ! E ' # = U > !
5 ! 5
FACTS
' : 6 !
' '
A # -8$340 A #
CONJECTURE
-8/70 A # REMARKS
' '
( 3 B ( 3
6 5 '' 1 = = >
5 , >U -2/0 " 5 ! 5 2 -230 #
#
© 2004 by CRC Press LLC
320
Chapter 4
CONNECTIVITY and TRAVERSABILITY
4.7.4 Generalizations of the Connectivity Parameters 6 @ ! -8 8: 390 -8; 10 -* 30 -+90 * ! ! # !
!& Conditional Connectivity
6 # ! , DEFINITIONS
'
2 ? = > 7 # ¼ C = > ! 7¼ 7¼ 7 ¼ 7 ! 7¼ 7¼ 7
' 6
7 6 7 FACT
' = > => => =>
-( ( 3/( ( A/1( ( / 0 :
!
% : @ ? ) ½ 6 " % @ ? Æ " % @ ? Æ Æ " % @ Æ Æ " % @ Æ
Æ $
CONJECTURE -( ( / 0
% @ 7 =7 E >Æ 7 " % @ 7 =7 E >Æ 7
= > " =>
REMARKS
' * -* 30 " # ! ! ,
' F = ( 3 ( 7> " $ Æ
$ Æ
'
6 5 ! 7 = Æ $ @ $ =7 E>> -( ( /70 $ 7 ! Æ Æ ! -8 ( ( /90 -8 //0
© 2004 by CRC Press LLC
Section 4.7
321
Further Topics in Connectivity
Distance Connectivity
* ! = > -( ( / 0 -8 ( /70 ! & ! DEFINITIONS
' : ? = > 2 = > =
> + => + => => => => => ' : ? = > ! % 2 & & % & =&U > ? =&> , =&> ? => ' 7&= > & & => ? ! & =&U > ?
=&> ? => ' 7&= > & & FACTS
' = > =>
? => ? => => =%>
? => => =%>
' : > 6
!
Æ $ @ = .,
Æ % @ E ? =@ E > " Æ % @ ? =@>
= > " =>
'
? Æ % @ =@ E > Æ => ? Æ % @ =@> Æ ' A ! => Æ # = >
'
:
!
&
=&U
> ? =&U >
' = > =>
=&U > ? =&U >
Æ $ % ? => " Æ % ? = > % ? = > " Æ % ? = > :
!
© 2004 by CRC Press LLC
322
Chapter 4
' = > =>
=> Æ
? Æ % % = > Æ = > Æ ? Æ % % = > Æ
'
CONNECTIVITY and TRAVERSABILITY
! => Æ #
REMARKS
' " ( 39 =&> =&> , & % ! Æ
'
( 37= > ( 33 ! H % =( >
'
( /1 ! ( 37 ( 3/ @= > ? = >
High Distance Connectivity DEFINITIONS
' 2 # => ? #Ú¾ 7&= > => ? # ¾ 7&= > ' ( & & % & Æ =&> ? Æ =&> Æ =&> ! Æ =&> ? ¾ => ' => & Æ =&> ? ¾ => ' => & ' ! % 7 7 % ! 5 B 7 " 7 ? % = -8JQ730- Q9 0> FACTS
' Æ ? Æ=> ? ? Æ=5> Æ=5 E > Æ=%> ' ( & & % =&> =&> Æ=&>
& ! =&> ?
& ! =&> ? Æ =&>
=&> ? Æ =&>
'
" & 5
'
#
# &
7 6 = > =&> ? Æ =&> =@ E > & 7 E => =&> ? Æ =&> =@> & 7 ' -8 ( ( /9 0 : 7 = > # & & 7 % @ => # & & 7 E % @ -8 ( ( /9 0 :
© 2004 by CRC Press LLC
Section 4.7
' = > =>
323
Further Topics in Connectivity
% 6 & % % # & % % # & % :
!
Maximal Connectivity
" & ! = > ! # 6 !
. # = # > FACTS
' ' - : *370 (
! # ( 2 ` ' - : *370 : # ! Æ = > " Æ Æ => " Æ = E > ! = E > => " Æ = E > ! = E >
` ? !
Hamiltonian Connectivity DEFINITIONS
! ' = > $ + = > ! ? + # ! + = ' *
> FACTS
'
"
'
-2+ 370 : 5 ! =>E=> E
= >E
-2+ 370 ( ! = E > = > REMARK
'
6 =., 9> $ F 2 2
© 2004 by CRC Press LLC
324
Chapter 4
CONNECTIVITY and TRAVERSABILITY
References - 790 $ ; $ G 1 =/79> 47K7 -&J390 8 & 8 J ; (*** 7 =/39> 334K333 -/40 F 6 ! +
=//4> 3/K/4 -/0 8 ! (*** =//> 9K/ -(910 HF "6 ( ; (*** 6 9 =/91> /K41 -8 //0 $ 8 A# 7 $ /4 =///> /K4 -8 8: 390 J 8 :+ 8 & $H : A ; ' 71 =/39> K -8 ( ( /70 $ 8 H (P $ ( ; '. 3 =//7> /9K14 -8 ( ( /9 0 $ 8 H (P $ ( ;
7 ! $ 9 =//9> /K9 -8 ( ( /90 $ 8 H (P
$ ( A# ! $ 79M73 =//9> 34K11 -8 ( /70 $ 8 $ ( .
+ =//7> 3K/ -8*/40 H 8 ( .( * . !&' + =//4> K1 -8; 10 :+ 8 & ; ; A 6 $ 4 =11> K 4 -8 / 0 F 8 N // -89/0 8 8G ; ! B $ 3 =/9/> K -8(910 ( 8 ( '. =/91> 7K3
© 2004 by CRC Press LLC
Section 4.7
Further Topics in Connectivity
325
-8* J 30 ( 8 ( * H J 2 !& ' '. =/3> 49K7 [ QG +
-8JQ730 H 8G & J 4 =/73> 91K97 -86 3 0 ( 8 6 + 3 =/3 > 39K // -8/40 A 8! 6 0
7 3 =//4> 79K9 -8/70 A 8! 9K 1 -8$340 A 8! .$ $ 6 * + 7 =/34> 4K7 - ( //0 $ 8 H (P
; '. =///> /9K14 -770 2 %($ +
$ =/77> 993K93 -970 2 ; # = > ;> =/97> /K1 -: 10 A $H : L '
$ 3 =11> 7K9/ -90 H & * !% $ 0 1 =/9> 1K19 - . /40 . & G $ . d * %
6 H 8 L : //4 -. //0 $ . = > $ // =///> 19K4 -. L/40 . & : L& F! Æ B 1 =//4> 91K93 -. L/90 . & : L& . B # + 7 =//9> 9K -. L110 . & : L& . B # B $ =111> 9K -A340 * A :! + / =/34> 41K4 -( ( 3/0 H (P $ ( $ # + =/3/> 749K773
© 2004 by CRC Press LLC
326
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-( ( / 0 H (P $ ( A# ! $ 9 =// > 7K91 -( ( /7 0 H (P $ ( 8 ! #
$ 7/ =//7> 7/K99 -( ( /70 H (P
$ ( ; # $
44 =//7> /K49 -( 90 $ ( > $ + =/9> /3K14 -( /0 $ ( ; + 7 =//> 4 4K444 -( /0 $ ( 6 + 9 =//> K 4 -( / 0 $ ( 6 $
=// > 79K93 -( ( / 0 $ ( H (P ; $ 4 =// > 7/K97 -( ( A/10 $ ( H (P $ A /8 =//1> 9K -( 2
!
?
'
#
? =
> #
= >
? 1
!
$! " / K #
'
:
''" !" 3" " !" 4'
!
"9' 3" "9' 4 $!"''
&
" "' '
''" !" ' '
''" ,7 3,74' !
' K '
$ K #
+
=
>
+
'
+
=
> @ !
5
-". !" "" B
' !
U #
+
5 #
=
>
+ + +
=
>
!
8 5 U
, # ! ! # !
$ !" ' '
$ " K
= # >'
= # >
$ /"9 K ' # ! B " !" $"' 5 5
(
3 9
!
E
" !" ' ! ! # = > " 9 K ' !
$0 K ' # " K # ' ! " !' ' "! K ' ! U
-'
© 2004 by CRC Press LLC
331
Chapter 4 Glossary
!
>
=
'
!
6 $ 34!"
+
K b !
' = > !
, ! b
6 7' 7" $'
½
!
b
' ,
! U
$ :" $"
'
*
$? ' "
K
' #
'½ ' !" " $$
K ' # K ' # ' ! # ! & !
=
>
'
'$ ! " !
=
>
#
' ! !
' !
' !
' , = >
'
,
5
!"
-
?
>
' ,
" $ ! " $ !"
'
=&
!
'
!
/"! : $0
=
* >'
K
' ! &
" $$ !" ! ' /"9 617 "
'
'
'
K ' # ! K ! ! #
1 '
! ! ! "
!
1
# 1
$ /"
K
'
$ '
>
?
!
"
! !
+
+
¾
?
K = >
'
=
= >
$ $ /" 36 64 # !
© 2004 by CRC Press LLC
+
'
+
332
Chapter 4
! / = / E =! >
$ 9 $'
CONNECTIVITY and TRAVERSABILITY
> #
$$' # #
$ 0! K ' 5 $ K ½ ¾ ½¾ ' ? ½ -". K ½ ¾ ½¾ ' ? ½ $'
!" $"' 5 5 ! !" ? K
' = >
' " ' ., ' K ' B #
=
'" K = > ' # ! !" ' ! U ' '
>U
''" K ' ! = > = > ' $ ' ! U * '
*-
' ! U &"
' " $$ ' = >
= >
"!$ ' !
'
#
! & U
3"!$4 ' ! U - - '
''"½' ! = > # ''"¾' = #
> B
! !½ K
' !
! !¾ K
' !
! 3/"94 K
' !
=> K ' = # > !
@
© 2004 by CRC Press LLC
333
Chapter 4 Glossary
! 3/"94 K
' !
& / 7& = > !
=
>
K = >
&
' "9
6 ' #
!
½
K !
5
¾
"!$ " !" '
' ! "'
!
! =
2
>
!
? - 0 !
= >
7&
%
!
U ,
K ! #
!
'
'
2
'
! & !
1
#
$ " !' ! & # ! " $'
!
"!' ! ' ! 5 ? = >
=
>
! " ' ! " K #
?
E
?
' #
!/½ K '
U
!/¾
!
=
>
K '
!
U
!' ' ' - !. ' !''" !" ' !
$ ,7' ! $" !" 3" !" " '9 !" 4' $" " K = >' ! & = > ,
# ! &
#
/ !" ' ! 9 $!"''
½ ¾ "'
"
K
'
>U
"
© 2004 by CRC Press LLC
*
=
' = # 5 >
> ?
=
> =
=
>
334
Chapter 4
" !' K
CONNECTIVITY and TRAVERSABILITY
'
!" $% *$' = > ! # * ! = *>
!" $% ,7' ! 7! !" ' 9 ., 4 !" K ' $ !" K # ' '$ ' ! ! '$ $' '$ ''
= E>
'$ !" ' ""' B
B
?$' #
' ! K + ' ! + ! " K = >' ! U
= >
K # ' = > ! =
? U >
" '' ., 7 !" K # ' 5 &' # ! & ' "' K ' ! 5 /"' ! ! !" 3" !" 4 ' # = >
! #
U = > - 0
" K # ' # 7&= >
"" /"9 K ' # ! 5 " $$. ' ! #
"' ! !" 3" !" 4' = > ! ! !" 3" !" 4' = > !
© 2004 by CRC Press LLC
Chapter 4 Glossary
335
" $'' ½ ¾ ½ ¾ ! # 5 ½ ¾ ? ' ' ' 5 =! > 5 0 " "' '
U U 7 @ $ ' "9 K ' # ; ? =2 > ! 2 ? => 5 2 ? 1 ! $ !" K ' !
# = > 5 # = > " K ' $ !" K ' ! ! ! ! ;= > 5 $0 !" ' B @ ½ ¾ ½ ¾ # ? # 5 "$0 !" ' ! , 5 ! $ $ '$ K # ( -- =(>0 ' -- =(>0 =- =(>> ' !' ! ! # " K ' # ' 9' $$ !" 3" !" 4' = > ! B ' 9' $$ ! !" 3" !" 4' = > ! B ' 9'' !" K = > ' # = > '' $$ !" 3" !" 4' = > = > = > '' $$ ! !" 3" !" 4' = > = > = > ''' 3&4!" K = > ' & = > ''' !" K = > ' = >
''' !" K = > ' = >
© 2004 by CRC Press LLC
336
Chapter 4
'9 !" ' 8" K
CONNECTIVITY and TRAVERSABILITY
' #
#
! /
D" !'
K
'
!
! / ' K ' ! / " K # !
! / ! " K
! / " !' K
!
#
! , #
'
'
' !
! "½ K # (' 5 ( ! "¾ K + ' 5 # + " K = >' !
· =
U
>
!" K # ' 5 &' # ! & " K # ' #
7& =
>
"' ' $' = > * " !" ' ! # * #
" K
!
'
? =
> !
?
=
=
>
>' U
=
! & ! & ! ,
'
/
K
D" !'
#
'
5
K
'
#
!
/ ' K ' ! / " K # '
/ ! " K # ! #
/ " !' K
© 2004 by CRC Press LLC
U ,
>
'
' !
337
Chapter 4 Glossary
' " $'' , = ! >
"' '9' # =!
> "" $' # = #> ! 0" " ' # ! "' ! :' ! = >
' " = &">' K ' ! &
:" K ' ! = = > = >
> ?
=
> !
? !" '
# ! ? # # !
"" K ! &
·½
? ·½ =
' ! & ½ ½ >
·½ ?
·½
"" " : $0' ! & " "' # 5 # 5 ; -
'!" @ K ' @& A ? 1 '!") A K '
' = > 7&= > @ ! & B A ! & 7&= > E U => 7&= > ? @ ! &U @&
" ! K #
'
3$4 " K
½¾
'
? ½ ¾ ¿ ? ·½ ?
! !" 3" !" 4 K
' = >
$! " ' ., 0" " " $'' # !
"!$ !" ' ' "!$ "!$ " !" ' ! ! !" " '
© 2004 by CRC Press LLC
338
Chapter 4
CONNECTIVITY and TRAVERSABILITY
" !" ' # ! 5 # U ,
" !" ' # ! # U ,
''" !" ½' ' ''" !" ¾' ' ''" !" ¿' ! #
9
U
''" !" ' ! # ''" ,7 3,,74 K = > ! ' !
$ !" K # #
,
'
$$ " ! ' 2 # ! K ' # & & =+ > + ! =+ > + " $' " '' ., 9 " /$! $' " $'' , ! ! ! U ** !
" !$ ? $ K ! = >' E ! ! #
# = ! >
,7' * * ''" 3,74' , ! !
* '
= >
$ '
!" $% K !
6 ! A ! A !
½ ' , ! # = > # ?
=>3!4 ' '
' # #
/$ "! " $') 36174 K ! E ! 1 ?
! ! " ' , L ! !
© 2004 by CRC Press LLC
339
Chapter 4 Glossary
3/"94/½ K '
!
U
3/"94/¾
Ú
K '
!
U
Ú
/"9 $!'
! #
! 5
5
!
# U
: $0'
/"9''" !" '
! 5
#
B
B
: 0$ $0 !" '
=
> #
5
: 0$ !" '
:$'
! U
' '
#
!
© 2004 by CRC Press LLC
!
# 5
Chapter
5
COLORINGS and RELATED TOPICS 5.1
GRAPH COLORING
5.2
FURTHER TOPICS in GRAPH COLORING
5.3
INDEPENDENT SETS and CLIQUES
5.4
FACTORS and FACTORIZATION
!" # $ 5.5
PERFECT GRAPHS
% &' ( % 5.6
APPLICATIONS to TIMETABLING
) ( % & " *+ ,
) #"+ - ./ GLOSSARY
© 2004 by CRC Press LLC
Section 5.1
5.1
341
Graph Coloring
GRAPH COLORING ! !" # $ % & ' () *'
Introduction ' " $ ' " $ + ,
- # - ' + ' , - .+ !' / 0 ,
' 1
2 341 5 6 , ' ' + , / 77
% + - - ' 315&6 381 556
9 " , '!
- - + + , + )
5.1.1 General Concepts , , '
' + ' , ) - .+ 0 % ' ' + - , + , , 2 , # 1 . 0+ - ' ' ' Proper Vertex-Coloring and Chromatic Number DEFINITIONS
:
; '
< . 0 ' :
' ' - ' = >
© 2004 by CRC Press LLC
342
Chapter 5
COLORINGS and RELATED TOPICS
' , ? - : ; - ! , (' - + , . )
, 0
< :
1
:
;
! -, 0 ½
, ?
! 0
:
+ + " ,
." 0 J." 0 ." 0
¼¼
.0
¼¼
¼
: %& ./A A ; A " N F0 # - + , - " ¼ .0 < ¼.0 : .- EL0 E ? &+ ' - ,!'
, - " .0 < .0
O : ." + 8 2 9
A 4-+ E @22 -2A F 4 0 # -
+ " .0 < ¼¼
¼¼
.0
: .8 2 9
0 E ? +
' ' -
© 2004 by CRC Press LLC
"
.0
0 !+ !! ' + !! REMARK
:
; , - /K + ' ' J.0 J.0C+ - F+ 2 - ' ' 1 L 2 , - ) @- ' , ' ' ' + + 38 76 3 E*@ 5B6
FACTS
: 3 B 6 (' - ? . &$0 '+ 2 ' B
:
3 B6 (' !V , ? . 0 '+ !! 2 ' &
:
38 5$6 # - (
( !! 2 '
Uniquely Edge-Colorable Graphs DEFINITION
: ; < . 0 ' ? ! , < ¼ .0 . ' ' 0 EXAMPLES
:
1 ! 1 ! - 1 !! . / - ' < 0
:
31&$6 1 ' , 5! 2 2 2 3 3 3 ' 23 . 5+ 50 !! 1 2 , !' ! ' <
FACTS
:
31&B6 1 ! + '
: (' ! ! + ' , =YIJ > ! ! D
© 2004 by CRC Press LLC
Section 5.1
355
Graph Coloring
* - ½ ¾ ½¿ ¾¿ ' <
' - ,
, -
½ ¾ ¿
Further -Bound Graph Classes CONJECTURES
:
:
/+
.N 'N A @0 # -
'
3B&6 1
/
! '
! ' ' ' , -
FACTS
:
38S56 ;
! ' '
'
:
/
3@5&6 # -
/ + '
/ + ! ' ' /
- '
5.1.6 Coloring and Orientation Paths and Cycles FACTS
:
3$B+ * $&6 ;
:
3E$6 ;
:
'
'
.0 ' ' ' ' '
-
,
0 ' -
.
,
'
3156 ( Æ E K - ? ' ' .
0
.1 I* 1 +
0
E - -+ '
! ' ' ( ' +
-+ + '
:
!
3" &$6 ( - '
'
! . 0+
Eulerian Subgraphs DEFINITION
4 < . 4 0 4 < . 4 0 ' 4 , - + , .0 < .0 ' " 4 A + 4 < , - 4 .@ - ' " :
;
0
© 2004 by CRC Press LLC
'
·
356
Chapter 5
COLORINGS and RELATED TOPICS
FACT
4 3;156 (' ' ' , - ' L ' ' , ' 4 ! ,- ) .0 ' + .1 - 0
:
Choosability and Orientations with Kernels FACTS
4 < . 4 0 - "4 ! @
* ' - * ' "4
* (' , .0 ' +
:
:
1 - - ; , * . % 0 ' ! % 3 " . 0 ( + Æ , !
: (' - ' - + , ! + ' + - 8M IF ( + ' ) -! + " .0 C E - ! . 0 Acyclic Orientations DEFINITION
: . ' 3E1 B6 3;BB+ 60 1 , ( + S ; .Q;K0 ! ! ' + S @ .Q@ K0 +
1 - , ? ' 1 ' 5
) ', + , 6 2
9
#.0 ' ,
5 6
FACTS
:
3;115 6 (' < . 0 $ - , #.0 < +
& ' ' .(
2 ,+ ,-+ , #.0 C . 0 '
- 0 : 3;115 6 # - (+ < . 0 , ( #.0
+ '
© 2004 by CRC Press LLC
Section 5.1
357
Graph Coloring
: 3;15 6 # , - + #. 0 < R. 0 , .0
,- 7 ) # + #. 0 < . 0
5.1.7 Colorings of Infinite Graphs FACTS
' ' - : 34 56 # + ) " .0 ' ' - ) ' !
: 3" &&6 (' .0 < + ' - ) 5 + :
3" 6 # + ) ) ' !
,
:
.0
5
38 56 1 .0 ,!) ' - + - !
9!% 1 A - + - ; '
:
38 BB6 1 ' , : 1 < + .0 < + ." 0 ,- ." 0
< . 0
Coloring Euclidean Spaces DEFINITIONS
:
1 ' - A
' ,
: - .) ) 0 = > 7 < + .70 - A , - ? ' ' 7 FACTS
: : : : : : :
&
3F 6 ( + . 0
3E E $6 " ! - - + . 0
3 76 ( ! + . 0
; ! 5 - . 0 3D* &6 ;
+ . 0 . C .00
3#9B6 ; + . 0 . C .00 3@5 6 1 " . 0 ) ' ' <
< .() , ) - 341 5 60
: # - ) 7+ ..700 7 C : # - 7 , 7 < + ..700 .3T760 # +
,-+ ' !
/ '
© 2004 by CRC Press LLC
358
Chapter 5
COLORINGS and RELATED TOPICS
: 3 @2B 6 (' 7 ' + ..700 < E -+ ..7 00 < ..7 00 <
: .W 8 / A 3*1 76A W S 9 @0 D 7
' - + ' ' 7 < ' (' 7+ ..700 ) '
7A ' < 7+ 7 ..700 <
References 3;BB6 E ;+ 4$ " + 9I1+ 5BB 3;115 6 E ;+ 1+ T 1/+ @ ' ' + * !"5 .55 0+ I7 3;?8 @/B76 E ;? + 4 8 N
+ @/N+ ;
* + .5 4$5 " 5 5 .5B70+ I$7 3;56 ; + * ' + I 8 92 . 0+ 4$ + S " '+ D E @ D
@ B&+ - S+ 55 3;776 ; + + 5 5 $ .7770+ $I$B 3;8@556 ; + E 8--+ " @2 -+ D ' ! + 4$ 5 .5550+ I& 3;156 ; E 1+ ' + 4$ .550+ I 3;15 6 ; T 1/+ 1 + 3 5 5 $ .55 0+ $I$B 3"N &B6 ( "NN+ ;
' ' 8K ? + .5 4$5 " 5 .5&B0+ I$ 3" &&6 " " N+ + (5 !"5 5 5 .5&&0+ 5&I5B 3" &B6 " " N + + .5 4$5 " 5 ( .5&B0+ I$ 3" BB6 " " N + 1 ' + 4$ B 5BB+ 5I 3" B76 " " N+ S ; + S H + F,K ? ' - + ) 5 .5 4$5 .5B70+ 5 I55 3" &$6 4 ; " + ? ' D + .5 !"5 5 .0 .5&$0+ &&IB
© 2004 by CRC Press LLC
Section 5.1
359
Graph Coloring
3" 8 &&6 % " ; 8 2+ % ' K + K + .5 4$5 " 5 ( .5&&0+ &I 7 3"76 @ " + ; ! ' !' + * !"5 .770+ I$ 3"6 * D "
2+ % ' , 2+ # 5 4$ #"5 5 & 5+ 5I5& 3" 6 "? S H + ; ' ) ' + & 5 %5 ,"5 # 5 5 .5 0+ &I& 3 &B6 S ; + ; ' + * !"5 .5&B0+ BIB 3 &56 S ; + F?N
K ! ? : - + .5 4$5 " 5 ( $ .5&50+ $BI& 3 E*@ 5B6 ; - + E E+ " *+ # @ + ; - 2 , : + + .5 " " B .55B0+ &IB$ 3 B6 ; + %
- !! + S 1+ - ' 9
+ + 5B 3 $56 S + % + .5 43 $5 " $ .5$50+ &I&B 3 76 + ; ! ' !
+ * !"5 $ .770+ BI57 3B6 " + @
2 5+ ) % 7 .5B0
3 6 ; + ; ' ! 2 + .5 !"5 5 & .5 0+ B I5 3 &6 ; + ; ' * D "
2 ? ' F F,+ # 5 !"5 5 162 & .5 &0+ $I5 3 @2B 6 * "
+ S H
+ 8 @2 + + .5 5 .5B 0+ B$I77
4$5 " 5 (
3 5$6 E D + D ' !' / + 4$ $ .55$0+ I 3 56 S H + + 45 .5 !"5 .5 50+ IB 3 $&6 S H + @ 2 + 4+5 !"5 $ .5$&0+ I $ 3 F$$6 S
H
; F?+ % ' ! +
& .5$$0+ $I55
© 2004 by CRC Press LLC
360
Chapter 5
COLORINGS and RELATED TOPICS
3 *1&56 S H + ; D *+ F 1 +
+ S 9 ! ' + 1 + ; + ! ' + 4 5 & 5 XX( .5&50+ I & 3#9B6 S #2 * E 9 + ( , ! + 4$ .5B0+ &I$B 3$6 1 + 8 (+ #$5 !"5 75 5 5 5 B .5$0+ $ I5 3$B6 1 + % + IB S H
% F 8 . 0+ " " + E @ 4 " + 1 .F0+ 5$$+ ; S+ @ + 5$B 35 6 # -+ 1 ' + .5 4$5 " 5 ( $ .55 0+ I B 38 56 # - S 8 ?N + ' + # !"5 5 .550+ &I& 3 B 6 D + ; ' - ? + I$ + !F E @ + 5B 35$6 @ -+ ; F?N
!2 ' + * !"5 .55$0+ 55I7 3D &6 , D D -N/+ ; ' + !"5 5 5 5 .5&0+ I7 3B&6 ; N'N+ S ' , ' + X(X .5B&0+ I M 3F6 F F,+ 8)2 @ 22 + 8" "5 & "5 5 9 " BB .50+ I M 3F 6 F F,+ 2 2 * 2 E+ # 5 !"5 .5 0+ BI 3F@/&76 ; F? @/N+ S
' ' ? ' H
+ $7I$ S H + ; *N+ 1 @N . 0+ 4$ " 5 77 + E @ 4 " + !F + 5&7 M 3F$6 F?N
+ 8 2 !'M + ,5 5 ! 3 " 35 3,$ !"53& 5 " + 7 .5$0+ $I& 341 5 6 1 * 4 " 1 ' + " 4 # $+ 9!( + 55 34 5$6 ; 4 + ; - ' ' + E + 4 55$ 34 5$6 ; 4 + 1 ' + S - + ; 55$
© 2004 by CRC Press LLC
Section 5.1
Graph Coloring
361
34 56 S 4 + 1 ' + $ .550+ I B 3856 4 8+ !? , C . 0 + .5 4$5 " 5 5 .550+ I5 385$6 4 8+ ;
! + .5 4$5 " 5 & .55$0+ I 5 388 6 4 " 8 D E 8+ S + &$ .5 0+ &B$I&5
38S56 F ; 8 @ S+ * , ' ! + .5 " " B .550+ 5I5 38@B6 F ; 8 4 F @+ @ ' /K
- ' + * !"5 .5B0+ &&IB 385 6 4 F 8+ % "
2K ' + 4$5 # $$5 45 .55 0+ 5&I 38 5$6 E 8 + @2 , + .5 4$5 " 5 ( $& .55$0+ I& 38 76 E 8 + @ ' , ,!/
!V ,+ ) 5 .5 4$5 .770+ BI7$ 38 BB6 S 8 ?N + ) + 7 .5 !"5 $ .5BB0+ B I5 M 38M
$6 8M + ;, ' E+ !"5 5 && .5$0+ I$ 38 &B6 ; 8 2+ + + $&5I$5$ ; F?! 1 @N . 0+ 4$ + E @ 4 " B+ 8/ .F0+ 5&$+ !F + 5&B 38 B6 ; 8 2+ 1 F, ' , - ' - + ! *% 5 5 B .5B0+ &I B . *0 38 B6 ; 8 2+ % F, ' + &I ; F?+ D D -N/+ 1 @N . 0+ - 7: + E @ 4 " &+ .F0 5B+ !F + 5B 38 E&&6 ; 8 2 S E/ -+ ; ' + ! *% 5 5 7 .5&&0+ I5 . *0 381 556 4 8 -NY+ T 1/+ E + , ' :
+ BI5& * D . 0+ 4 * !" + (E; @ @ E 1 @ 5+ ; E @ + 555
© 2004 by CRC Press LLC
362
Chapter 5
COLORINGS and RELATED TOPICS
38776 E 8--+ 1 ' + 4$5 # $$5 45 5 .7770+ 5I$ 3D* &6 D ; * + 1 / ' , + !"% 5 .5&0+ I 3D&B6 4 D,+ - - ' , ' + * !"5 .5&B0+ $I$B 3D $B6 D D -N /+ % ' ) ! + !"5 5 5
5 5 .5$B0+ 5I$& 3D &6 D D -N /+ ( + 5 !"5 3 5 B .5&0+ $ I$B 3D &B6 D D -N/+ 8K ? + +
.5 4$5 " 5 .5&B0+ 5I 3DS@BB6 ; D
/2+ * S + S @2+ *? + 4$ B .5BB0+ $I&& 3E1 B6 E E 1 + 1 L ' ' F
' - + # 5 ; .0 < 2 (.0 < 3 ' (' (.0 < ' - - + , EXAMPLE
: # - $ + ' .$ C $0!
.3;1 5&60 ' C FACTS
: # - + , -
.0 ( + '
' +
: # - < . 0+ , -
. 0 . 0
.0 < .0
.0 .0
: # - - + -
.0 <
'
.3 4 &B60+ ' .' $50 ) ' , ' .3#5 60
: 3*@5B6 # - $+ '
.0 $+ ' . ' F,K ? 0
: 3D & 6 # - + .0 . C .00 ; + - 0
." 0
." 0
- C .,
'
: 3*576 # ' ' + 1
? .'
0 + +
.0 J.0 C ' -
: 38776 1
' + + ' - 7 < .0 .0 " .0 . C 0 .0+ ' - : 3;1 5&6 # - + - ' 23 .2 30!
.0
: ."
2K 1 ' 0 3 *1&56 @ +
' 2 (' .0 ' ' - - + !
: $ % 31 5$6 # 5+ .& &0!
' & : 1 D * . 31 5&6
+
0 ' .& &0!
: 31 5$6 - !
.& &0!
+ ' - &
© 2004 by CRC Press LLC
Section 5.2
367
Further Topics in Graph Coloring
OPEN PROBLEMS
: : " .
3 *1&56 ( - .2 30!
.2& 3&0!
' 3 *1&56 - '
" 0 " .0" ." 0P
& P
" ' - +
REMARK
:
; Æ - , S , Æ - , S ! ' ' - 31 5$6
5.2.2 Graphs on Surfaces F + ' ' + ' , ' ' + , - - ! ' + ,
' ' ' ' ;?
' ' ' A ' -
, ' ,2 DEFINITIONS
: :
; , -
; . '0 ' ' '
: ;
' - ,2 ' ' FACTS
: : :
.#- 1 0 3F:B576 - ! .# 1 0 3; F&&+ ; F8 &&6 - !
31:BB76 ;
! ' ' !!
:
3" &56 - ! '
, '
: :
.M
/K 1 0 3 56 -
¿ !' !
3F:B5B6 ; ! ' ' ' - - -
: - !
.31560+ !!
! .3 560
: :
38156 -
¿ !' !
315 6 ; ' )- !
© 2004 by CRC Press LLC
368
Chapter 5
: : :
COLORINGS and RELATED TOPICS
3;156 ; !
3 5 6 1 !!
¿ !'
3 F&6 - - , ,
: 3F56 1 ' , REMARK
:
;
' # 1 - 3* @@15&6A '
' , - ' 2 ,
Heawood Number and the Empire Problem DEFINITION
:
1 ! " ' '
". 0 <
&C
E + ' -
" . &0
< : < 1 ! ' < ' - >
© 2004 by CRC Press LLC
392
Chapter 5
COLORINGS and RELATED TOPICS
REMARKS
: ' + # $ - ' - !
- ' ' ! ' ! - ' + ,
' ! '
3" "SS556
: 1 - ' ! ' ! ' ' !, ! ! + , -! ' , / ) 3@576
!$ -:
+
+ < ?
< 7 ' < 7 <
@ 3@576 -
'
Two More Formulations of the Maximum-Clique Problem
9 ' - - ' ,+ ' , E
/2 @ 3E @ $ 6 - DEFINITIONS
:
1 J J < , :
#
5 "
,
) ' ,:
7
<
, ? 5
<
-
,
+ (.0
< .!T S E S + 0+ 8,+ 555 3" $6 * " + % + I
) , "
B .5$0+
3"8&6 " 4 8 + ; &: # ' + $ .5&0+ & I && 3"6 E "+ " ' +
+
3 &56 W + , + 1 * + 1!;-- + 5&5 3 B 6 1 /2+ ; .5B 0+ 7I
36 - ' :GG G GG G -G 3 6 -N + % ' + $IB
+! .50+
3#6 #+ ; - + E + 77 3#F9B56 #+ ; F /+ E 9+ @1;"D@: ; ) , .5B50+ I 3W556 4 D 4 W+ 555
© 2004 by CRC Press LLC
+ * S+
400
3B56 # -+ 1 I S (+
Chapter 5
COLORINGS and RELATED TOPICS
/, .5B50+ 57I$7
3576 # -+ 1 I S ((+
/, .5570+ I
3EE776 + + E + ( E + , 2 + / .7770+ I& 3ET-6 + + E + ; T- - + , 2 + +
3W76 + ; + ; W + ; ' % / S + 5 .770+ I 7 3F5B6 E FN
+ ; ' + *,/
[email protected]+ .55B0+ I
* *2
3F4576 E!F F 4+ 1 ' - ' ! ' ? + * , .5570+ I 3F4576 S F " 4+ ; ' ' + .5570 &5I7 3FS56 4 F+ S S S + 2 2+ 1 ' + / .550+ $IB 3F* &6 # F ( * + ; ' + 7 .5 &0+ 7 I 3F556 4 F_ + , ½ + .5550+ 7 I 3F 4 B 6 * ; F * 4 + 5 5B
B
+ - S+
3F @2B56 * F 1 @2 + @ ' + 777 * .5B50+ $BIB7 34 15$6 @ 4 + E 12 . 0+ = 0 % 2 + (E; @ $+ ;E@+ 55$ .
:GG G G $ 0 38&6 * E 8 + * + 5 2 .* E 4 9 1 + 0+ S S+ 5& 38 6 8H + /+
+! B .50+ $I5
38 *B&6 * 8 ' *+ ; ' , ' + $ 7 .5B&0+ $&IB7
© 2004 by CRC Press LLC
Section 5.3
401
Independent Sets and Cliques
3D176 F W D F # 1+ 1
: Æ ' + / .770+ I7 3D B6 D 22+ ; , 2 2 ' ' ' ' + 5 .5B0 BI B5 3D 1B6 D 22 1 + ; ) '! ' ' + & .5B0+ 5I$$ 3E@&56 4 E9 4 ; @ + !F + 5&5
7 +
3E E $ 6 4 9 E
D E + % + IB
.5$ 0+
3E @ $ 6 1 @ E
/2 @ + E ' ,
' '
' 1N+ & .5$ 0+ I 7 31&6 D D 1
+ S ' - 2 ! + * $ .5&0+ BI$ 31& 6 D D 1
+ 2: @ + * B .5& 0+ IB M 3%76 @ 2 S * 4 % _ + K + 7+ 2 += ! 3 " = , 1B+ 77+ 1 ' - ' ( M 3%76 S * % _ + ; , ' !, + & B .770+ I$ M 3%76 S * % _ + ; ' ' + 7 .770+ 5&I7&
3SS576 S E S ; 1 S + ; / ' -
+ .5570+ 75I$ 3S 56 E S @ F + E/ ' ) , ' + ,7 7 !B .5 50+ $I$& 3S45 6 E S ; 4
+ # ' ! ' + & &'! .55 0 I7 3* B$6 4 E * + ; ' + .5B$0+ I7
&
3* @76 # * @ @ + ; !! ' ! + / , + B .770+ $I& 3@6 " @ *
+ E , - + S + 77
© 2004 by CRC Press LLC
402
Chapter 5
COLORINGS and RELATED TOPICS
3@1 W76 @ @2+ E 1 2+ 8 W/2+ ;
'
, + $ .770+ I 3@56 @ E @2 ,+ ; , ' + .550+ $I$ 3@576 T @ + "
+ / .S E S 4 " * + 0+ / , .5570+ $I$B 3@ 5$6 S @ E + 1 ' + 34 15$6+ I+ 55$ 311&&6 *
1? ;
.5&&0+
1 ? ,2+ # + &I $
31 11BB6 1 + ; 12 F 12+ 1 , ! ' ) + , 372,28 5BB 31(;-@&&6 @ 12+ E (+ F ;- ( @2,+ ; , ' + $ .5&&0+ 7 I & 39B6 8 9+ ; , ' + " D 1 E + B!&!5+ 5B 39$&6 F @ 9'+ 1 - ' + .5$&0+ 7I
+
39B$6 F @ 9'+ 1 ' ' + ) 7 .5B$0+ I&
© 2004 by CRC Press LLC
Section 5.4
5.4
403
Factors and Factorization
FACTORS AND FACTORIZATION !" # $
S !# # # # / *'
Introduction 1 - ' , 2 ' ' / ,
' (+ ' / ) - ' 3 .' Ü 0+ ' ! ? E -+ $ .' Ü 0 -, ' !' + , , ' ' : - + - , ) ' ' ' '
5.4.1 Preliminaries DEFINITIONS
: - . + 0 + , " ' ' " ' : ; ' !
: ; ' ) ' ' -
: ; ' ' !
-
: (' !? ' ' ½ + , ' ' FACTS
1 , 2 )
' ' / , ! ' 4 S 1 ' "M ' '
)'
: 3SB56 ; ! , !' . !' 0
© 2004 by CRC Press LLC
404
Chapter 5
COLORINGS and RELATED TOPICS
: 3SB56 - ! !' .+ + ' / !' 0
:
3"M B6 - !! . C 0! !'
REMARKS
: 1 ' , ' ' ;2 8 3;28B 6
:
1 , - # + ) !' ) ' ' ,
: ; - ' S K ' / ' ' 3 5 6
5.4.2 1-Factors 1 ' ' , 9 - Ü ( + , ' !' ' ' Conditions for a Graph to Have a 1-Factor DEFINITIONS
:
; . 0 ' ' - !? , .0 : 1 ½ ¿ ' " ; ½ ¿
"
: - ' - ' - - ? : 1 ' +
.0+ ) C ,
,
6 #. 6 0 6 .0 , 2 - 6 .0 #. 6 0
' ' 6
:
1 ' B . 0
- ' ' ? - 0
'
:
1 '
:
; '
+
.0+ / '
' - -
: 1 ' - '
© 2004 by CRC Press LLC
+
G.0+ / '
432
Chapter 5
COLORINGS and RELATED TOPICS
: ; + $ + ' -
!?
: 1 ' +
.0+ / '
: ; ' ' - - ' 1 / ' ! - '
.0
: 1 ' +
.0+ ' - ' @ . Ü 0 + / ' ! -
: 1 . 0 . < . . 0 ' < . 0 - ): . C0 . ' ' . C0
FACTS
: @
. + ' ,
? -
.0 < .. 0 .0 < ..0
:
#
.)0
+ .0 < G.. 0
G.0 < .. 0
.))0
: ( ! - ' - ' + ' L @+ - L 1+
.0 .0 .0 G.0
.) ) )0
EXAMPLE
: 1 ' # ' / + + 1 . ' / + + 3 1 ' / + + 3 1 . ' / + + !? 1 ! - .2 #0+ .3 0+ .! 0 ' + - .2 #0+ .3 0+ .! 0 '
. b
a
c
a f
f
e
c
e
d
d c
G b
Figure 5.5.1
© 2004 by CRC Press LLC
G
#$ * & -#- .,
Section 5.5
433
Perfect Graphs
5.5.2 Graph Perfection " + " 3"$6 ) 3 ' .0 < G.0 ' ' - . ! 0 - ! " ' + ." 0 < G." 0 " , .f0 .ff0 -+ " , ! ' @ "K ' ' ' 3"5&6 ; , ? ! ' ! ' - + " ? ' ' @ S' ? 1 - , , , ' ' + ' .fff0 - - .f0 .ff0 I + + - , I DEFINITIONS
:
; " < . ¼ ¼0 ' < . 0 ' , - C ¼ + . C0 ¼ ' ' . C0
: ; ' ' - . ! 0 - ! " ' . " < 0+ ." 0 < G." 0 : ; ' ' - . ! 0 - ! " ' . " < 0+ ." 0 < ." 0 : :
;
' ! ' ! '
; ' , ! - -
: :
, + +
; ' ; / ,
FACTS
: #$ $-: .D -N/ 3D &60 ; ! ' ' ' ! '
: 1 S' 1 : ; ! ' ' ' ! ' .F+ , ' ' - + , ! ' ! ' 0
: .D -N/0 3D &60 ; ' ' ' ." 0." 0 ." 0 ' - . ! 0 - ! " '
: $ ! #$ $-:
. -2+ * + @ + 1 3 * @1760 ; ' ' ' "
© 2004 by CRC Press LLC
434
Chapter 5
COLORINGS and RELATED TOPICS
EXAMPLE
:
- ' # < .½ 0+ -
.0 < .0 < ! + - - - @
+ - /
5.5.3 Motivating Applications ( + , , ' 1 ) + + ,
- ' "K
) ' ' 1 ' 1 , - ' , .0+ .0+ .0 G.0+ Æ + - DEFINITIONS
: 1 . 0
- ' L - , ,
- ' ' ,
-
: 1 " ' , " ) ' , # - ' - C ' " + - C " + , C ¼C¼ " ' ' ? ¼ C < C¼
C ? C¼ " < ¼ : 1 " ' ' , '
: .@ 3@ $60 ; S ' ' + , - .. 00 < .. 00
: .@ 3@ $60 1
' ) .. 00
EXAMPLE
:
& 4 4" 1 ! ! ' , +
' ' - . 0 ' 1 / ' ! '
+ , ' / .. 00
+ ' -
+ 2 ,
, 2
!
# + )- . 0 ! + ' , .. 00 < ; ' ! - ' + +
( ! + ' 1 , . 0+ !
© 2004 by CRC Press LLC
Section 5.5
435
Perfect Graphs
' L ! ' ! .. 00 %- ' ! , , ! +
' , ' ' L ! # + - ' ! 1 ' . . 00½ + ' .. 00 ! ' ' + '
' . . 00½
' .. 00 1+ , " ' + .. 00½ REMARKS
: D -N/ 3D &56 - @ ' ! - ½ < ( . 0 : 1 .. 00
. . 00
/ ' ! (' S ' + .. 00 < .. 00+ @ .. 00
: % ,
.. 00 . . 00 G. . 00 G.. 00 ' , ' , ' . 0 ' + . . 00 < .. 00
'
: 1 / , !
- 2
' L
1
' @ 3@76 ' EXAMPLE
6 - .- 0 ,2+ , $ % 2 ' ! 2 ' ,2 - ' # + ' ,2
- , 1 Æ
- + ) , ! ,2 ! '
, # )- , 2 - L P 1
' : " 4 " 1 '
B
Tour B Tour C Tour A
Tour E
A
E C D
Tour D
Figure 5.5.2 7 & 0 & * $ &&* #$,
© 2004 by CRC Press LLC
436
Chapter 5
COLORINGS and RELATED TOPICS
- ' + ' , - ' 1, - ? ' , - 9 + L , 2+ - . 0 '
# )+ !
- ,
) ' ' ! 1 ' ' ' Æ + ' , ' + + ) ' , 2 2 '
" ,! - @ S' ? +
2 '
5.5.4 Matrix Representation of Graph Perfection ' ' /!
1 ' ' , , +
7 .
0 '
!
1 .
0 '
9 ' +
7 .
0+ , '
'
@+
1 .
0
DEFINITIONS
:
1
- ' '
'
:
! -
; 7!
7
!- -
8
1
.
0 '
A + .
7! , , 0 '
!
' ' - !- -
+
- - ' :
78 1 E
:
7
8
?
.
0 '
, , - ' '
' '
! -
7!
A + .
0
!
FACTS
7 1 . :
# ' + ' ,
.
0
88GD 8B:A ;* -::-= = ) = = < ;+ & = > -9B: 8B:A 88GD ;* -::-= = ) = = < ;+ & = > -9B: ;* -::-= = ) = = < ;+ & = > -9B:
9 &
( ( ) %
9 ( %
9 $ (
9 )
& EXAMPLES
2 ) ¼ ( C (
) E ( % 5 % (
%
2 3 ) ) ( ) $ % (
& = ( % (
& $ (
+ ) , 2 3 + , 4 ( + , +, , +, H , +, B, +, H B, , ( ) 7
: 5+ , 4
2 % + % ,
¼
2
> + , & : &( +
, : &( +
, & & : &
2 ) +(
&, & ( ) & Strips
© 2004 by CRC Press LLC
Section 6.1
499
Automorphisms
DEFINITIONS
2
%+ ,,
+
2
& )
+ , %+ ,
+ ,
%
( ½ + ,(
+ ,
%
REMARK
2
$
(
) % %
½
(
$
9 +5 6K1!!8,
FACTS
2
7 % ( : 2
1- ( 1 1 ( E ) % ( # ! +?"?,( M " 61""8 K > # > 1- ( C %
( +?"",( ?M B 6 "8 $ -( N % ( $% &' +?",( ?MBB L 6= 8 = ( ') 1 (
+?
,( M!
6= "8 = ( N #& C C 1 ( ( +? ",( ?M! 6= !8 = ( % % ( $ " +?!,( M"
© 2004 by CRC Press LLC
502
Chapter 6
ALGEBRAIC GRAPH THEORY
6= "8 7 = > # ( E ( # 5 = +? ",( M ? L 6=! 8 N =C ( ') L N TL ) ( ! $ !+ ( ?!
) *
6= "8 N 7 = ( ) ( +?",( BMB L 6$ ?8 1 $ ( ') & - - ( ! +? ?,( "M
#
6$ !B8 1 $ ( ) ( 2 &! ! +I : # 5 KS A I : A U ( = ? ?,( >U ( ( P 5S ( J = ( ( ?!B( M 6$ !8 1 $ ( C - ( ( / &&( +?!,( BM?
+ ,! - .!!
6$ $C!8 1 $ = $C) - ( ( +?!,( !!M" 6$ G BB8 1 $ 5 G VC( 1 D 5 ( $( J Q -( BBB
!
# !* % " ( K
6$ 5""8 1 $ J 5 ( ( +?""R"?,( M! 6$"!8 P $ ( E ) & ( +?"!,( !M" 6K"8 = K( % ( "M"" 6K?8 = K( E % %& % ( M
)!
! )!
+?",(
)! +??,(
6KJ ?8 = K J ( N % ( ( +??,( "MB 6K1!!8 = K # > 1- ( E % % ( ! +?!!,( M 6K1!!)8 = K # > 1- ( E % & ( )! ( M 6K1"8 = K # > 1- ( 7 % ( ! +?",( ?M 6K1"?8 = K # > 1- ( %
( +?"?,( M !
© 2004 by CRC Press LLC
Section 6.1
503
Automorphisms
6GL 8 N GL ( ( 3 C ( ?
# ( -
P
6J "8 3 J C( E & C ( +? ",( ?M 6J 1!8 3 J C # > 1- ( ) ( $( +?!,( ??MBB" 6J 1!)8 3 J C # > 1- ( ) ( $$( +?!,( BB?MB" 6 1?8 J # > 1- ( E ) ( " +??,( M
65!8 5) ( ( +?!,( M 65 B8 5) ( (
0! +?
65 8 5) ( & ( !M!" 65 8 5) ( P& ( 65 !8 5) ( W (
B,( M!
) - +?
! +?
% ( J
,(
,( M"
( # ? !
65?8 J 5 (
( +??,( M
65?!8 J 5 P $ % ( : ( +??!,( BMB 61"?8 I # > 1- ( $% & ( ( ( +?"?,( "M 6"8 P $ % (
( $% - +?",( J ( BM! 6 8 1 (
# !( ' ( ( ?
61!8 # > 1- ( E ) (
+?!,( ?MB
61!8 # > 1- ( E 1( 2 # &! !( +Q ( N 3 -( 1 ( , 5 P ( A ( ?!( BM 61!8 # > 1- ( (
(
( 1 +?!,( BMB 61! 8 # > 1- ( (
+?! ,( !M
© 2004 by CRC Press LLC
504
61?8 # > 1- ( > ( BM!
Chapter 6
ALGEBRAIC GRAPH THEORY
+??,(
61B8 # > 1- K > ( C %
( ( L 61!8 # 1 ( ') L ( ?M
+?!,(
618 = 1 ( I ( +?,( BM "
© 2004 by CRC Press LLC
Section 6.2
6.2
505
Cayley Graphs
CAYLEY GRAPHS I $
5) 7 C 7
Introduction :
: E
I )9
6.2.1 Construction and Recognition 1 % ( % ( ) ) % 1 I % I % ( I % I % ( DEFINITIONS
2 3 ) % 3 ) ) 4 ½ ( ( ½
( I+ < ,( %2 I+ < , < 9 2 < I+ < , < 4 2
1 : $ ) ) ( ) ( 4 < 4 2 H
I
I+ ,
2 I 1 I +< ,
2 2 2 2
) 2 +,(
2
#
+ ,(
4
!
Figure 6.2.1
)
-
- "- .' $ *"" "
FACTS
2
> I &
2
I I+
2
65"8
) / + >
/>
2
/ > < ¾ > 4 / ( > 4 < > 4 H / / 4 > 4 / 4 H < / 4 !( > 4
/
# + ,
/
4 !(
/
# > # + ,(
/
# > # + ,(
/
4 !(
>
/>
/ + >
ALGEBRAIC GRAPH THEORY
>
# + ,
>
4 <
) / + > + />
/>( / > ) ( />( / > ) ) 2 ·½ /> 4 + H ,+ H ,( $<
/>
/>
4 + H ,+ ,(
4
H ,)
/>
4 + ,)
4 +> H ,)
,)(
/
< / > /
>
4 +/ H ,)
>
4 + ,)
/
4 / H (
4 +' H ,)+' H ,(
'
/
/
4
'
' H (
/
/ ( >
/ ( >
4
4 +' ,)+' ,(
) +'
4
H (
)
,)+' ,( 4 +' ,)+' ,(
)
4 ( 4 H ( 4
4
4 ?<
/
4 !(
>
4 !
4 !
RESEARCH PROBLEM
42 $ ) ' ( B ' Y - C )
6.2.3 Isomorphism 5 - I :
I
© 2004 by CRC Press LLC
Section 6.2
509
Cayley Graphs
DEFINITIONS AND NOTATIONS
2
I I+ < , " I+ < , 4 I+ < ,( & %+ , 4 +,
2 2
" I
I$
3
2
3 4 /½½ /¾ / ) C 7 , B , + ( + , 4 +, , , ,
,
: $
,
# ,+ / , B ,
+ /
( 4 $
3 & +, 4 ,+, 2 B , + 7 ) & $( & +, & +, , 4 B " 1 ( & & 2 3 4 /½ /¾ / ) C $ 4 + , $
+ , J
4 B( 4 $
3 + , )
( & $ $ ( &( 4 ( ( +&, 4 +&,) $ ( +&, 4 +&,( +&,
&
EXAMPLES
2 I +!< , I +!< , - 2 2 N% ) ( )
2
7
4 ( 6 4
4
? ? B 8
? B ?
I +< , I +< , ) E (
4 % ( I$ FACTS
2 6A!!8 3 ) I % I$ ) + , 9 + ,
© 2004 by CRC Press LLC
510
Chapter 6
2 63 B8 $
I$ (
ALGEBRAIC GRAPH THEORY
)
2 6#?!8 I$ 4 ,( :
B (
,
" ? "
2 3 / ) / I$
E (
/ 4
/ H
( I$ :
E I$ I I$ ) S * 6A 8 &
2 6 !8 $ / ( ) & /
;+, /
+/ ,) ; >
2 6 # B8 $
4 / / / ( / 4 ( )
/ / /
;+,
½ ¾
;+,;+ , ;+,
& Ê
- ) ( - ) & $ / 4 ( & 4
& - ) EXAMPLE
2 1 7 4 B ) +(,( +(,( +(,( +(,( +(, +(, ( & ( +(, 5 / 4 ( & 4 ( ) & 4 +, 4 7 & 4 ( +&, 4 & 4 - ) 7 & 4 ( +&, 4 & 4 "( ) ) 7 ( & 4 ( +&, 4 & 4 " ) 1 ) % B RESEARCH PROBLEM
42 7 /(
I$
© 2004 by CRC Press LLC
Section 6.2
511
Cayley Graphs
6.2.4 Subgraphs : ) I 5
& (
$ 9 &
& )
DEFINITIONS
2
½
( (
2
)
(
( 4 ( ! "( ( ! " ! "
%&
)
! "
4
(
=
(
$
- +
2
0 4
)
4(
0
=
FACTS
2
3
$
2
)
(
$
& $
(
&
& (
2
6#!( 1!B8 $
&
2
6 ?8 $
I+
2
2
I
( =
/ ( /
512
Chapter 6
ALGEBRAIC GRAPH THEORY
6.2.5 Factorization DEFINITIONS
2 2
( ) ½ )
2 =
( =
2
) ) FACTS
2
65"8 > I 2 4 '<
) <
C
2
65"8 I
I C 2
I 2 $( )! +BB,( !M? 6A!!8 3 A) ( $ )
( " ? +?!!,( ?M
6A?8 3 A) ( ( ( (
- 2
! 3 &&( 3 ( # L 3 3 SC( #$ J = ( ??( !MB 6A 8 J A 9( S * ( I ( 1 ( J Q -( ?
© 2004 by CRC Press LLC
!(
514
Chapter 6
ALGEBRAIC GRAPH THEORY
6IZ"8 I I I J Z ( E
) ( I ) # P$$$( ( ! ! ( 5 P ( ?"( M 67 ?B8 K 7 -( E ) ( +??B,( BM 6"!8 K 3 1 -( ?"!
#
" # ( 1 ( J Q -(
6$B8 # $ I > ( E I & ( +BB,( M? 63 ??8 I = 3 ( 7 I$ ) ( ?M
63 B8 I = 3 ( E % I \ ( +BB,( BM
+???,(
)!
63 ? 8 K 3 ( =
I ) ( ( +?? ,( !M" 63 B8 K 3 ( =
I ) ( ( 63?8 3) C-( I 2 ( & -( ( +??,( M"? 6#!8 1 #( > > ( +?!,( M S * 9 ( 6#?!8 # #C-( E S +??!,( ?!MB
!
)!
V 6 > B8 A ( K 5 S V( K9( - # 1- ( I ( 6 !8 (
( 5 P ( J Q -( ?!
65"8 5) ( E %& ( +?",( "BBM"B 65"8 5 ( E C) I ( +?",( ?"MB!
6 !8 K (
) ( +? !,( M 61!B8 # 1- ( I ( M? 61B8 1 ( # ! 2 # ! = ( ( BB
© 2004 by CRC Press LLC
2!(
+?!B,(
# 5 ( J
Section 6.2
515
Cayley Graphs
61 "8 N 1 ( I
(
6[B8 K [(
+?",( B!M
" !! 2 & (4 -!
( G (
N ( BB
6OB8 [ O( I )2 ( B
© 2004 by CRC Press LLC
)!
+BB,( !M
516
6.3
Chapter 6
ALGEBRAIC GRAPH THEORY
ENUMERATION
! I I I I I
5 # N I
I 5
Introduction $ - I ) C :
(
- ) C
$( ( : & ) # : ) ?! - S + 6S "!8 > , 7= 6=8 & (
( (
) I 6I!( I"?8( % ./ #
) A =C 6A =( A =)8
) S 6S "!8( E 6E"8( = 6=?8 & ( ) )
( ) 6=!8 ( - % :( : - % 65 ?8
6.3.1 Counting Simple Graphs and Multigraphs DEFINITIONS
2 ) ( ½ ¾ ( ) )
)
2 4
© 2004 by CRC Press LLC
Section 6.3
517
Enumeration
2
. ) .
% ) 2 ' . +, . +, .
2
. .
)
FACTS
2
) ) , )
5 ) Æ ,
2
+ , 7 , ( ¾ ( ) ) , ) ) ,
2
) )
Table 6.3.1 ,
B
5 )
5$*" * - 2 " "
B B B B B B
(B
B
! " ? B
+¾ ,
"
,
!
"
B ( (BB (BB ( ( (BB (BB ( B
B (B (?" B(? ( ("B B(?B ?(?B (! (! ?(?B B(?B ("B
" !" (! B(! ?"("B ! (!B ("(BB (B"(B (?B (?BB ((B (!("B B((! !(( B B( ( BB
(! "
(B?!(
2 6 8 ) )
4
+¾ ,
4
+¾ ,
"((
(
)
5 )
2 S * ( ( +* , 4 * )
© 2004 by CRC Press LLC
518
Chapter 6
Table 6.3.2
ALGEBRAIC GRAPH THEORY
1 " *$*" * - 2
"
!"
! (!B
("
(
" ("(?
) - C ' +* ,( ' 4 7 & ( +* , !( * 4 ( * 4 ( * 4 * 4 * 4 * 4 * 4 B
2
5 + ,
( ( + , 4
]
] ' * ]
+ ,+
¾ ¾·½ ,
¾
= - +* , ( + , + ,
( >& + , 2
4 4 4 H ]
H
]
]
]
4 H ? H " H
4 H B H B H 4 H
H B H B H
H B H B H "B H B
H H B H B
2
) )
+¾ ,
2 +, 4
) ,
2
6=( S "!8 2 +, & ) ) ) & + , ) ) H 5 )
2
) )
& + , ) ) ) 5 )
© 2004 by CRC Press LLC
Section 6.3
519
Enumeration
Table 6.3.3 /* -
, B
! " ? B
2 "
, "
? ?
!
"
B ?! " " ?!
B ?"B ( (! (
(B
(
+¾ ,
2 ( ) % 2 )
, +, 4
)
)
, 2 6=( S "!8 , +, &
) ) ) & + , ) ) % H H H H 5 )
9
½ 9
Table 6.3.4 5
* * -
, B ! " ? B
© 2004 by CRC Press LLC
2 " , "
! " B
! ! ! ? ? ? ?!
" " ! B
" ! ( " (!
520
Chapter 6
ALGEBRAIC GRAPH THEORY
EXAMPLES
2 7 0 0 ) % ) B 0 )
Figure 6.3.1
/* - 2 " "
2 7
7 & 0
Figure 6.3.2
0"" * *
* * - 2 " "
6.3.2 Counting Digraphs and Tournaments DEFINITIONS
2 ) ( ½ ( ) ) )
2 + , ( ( ( & ) )
2 + , ( ( &
2
. ) . 4 % ) . 2 + , ' +. +, . +,
2
)
. . FACTS
2 ) ) , )
Æ 5 )
2
7 , ( ( ) ) , ) ) + , ,
© 2004 by CRC Press LLC
Section 6.3
521
Enumeration
2 " ,
Table 6.3.5 5$*" *
* " -
,
B
B ?B (B (" (B "(! B !!(B (?!B !(? B "(! (B"(!
B
B ? !? ? !? ? B
! " ? B
(B?
2 ) ) )
5
+¾ ,
2 ) )
)
(
2 5 + ,
( ( + , 4
]
] ' * ]
+¾ ,
= - +* , ( + , + ,
(
>& + , 2
4 4 H
]
]
]
H " H H
]
]
4 H H 4 H
4 H B H B H H B H B H
4 H H B H
H ?B H B
H H H ?B H B H B
© 2004 by CRC Press LLC
522
Chapter 6
ALGEBRAIC GRAPH THEORY
2 +, ) )
+, 4
) ,
2
6=( S "!8 +, &
) ) ) & + , ) ) H 5 )
2
) )
& + , ) ) ) 5 )
Table 6.3.6
- 2 " ,
,
B
! " " " !
!? !B! ( (?B ( !B
"
?( B"
! " ? B
2 2
( ) %
´ ½µ
6N8 ) " ) ] " 4 ] ' * ] +* , C ) -(
+* , 4
+ ,* *
*
5 ) !
2
6# "8 3 " +, 4 H H H H H H ) ( 7 +, 4 H H H H H )
" +, +, 4 H " +, 5 ) ! J &
© 2004 by CRC Press LLC
Section 6.3
523
Enumeration
Table 6.3.7
" - 2
5
(""B ?( ?(!(B ?B(!(" (B"(( "
B
! " ? B
(BB" !"( ?((?? ""( (?B (B(?(!
EXAMPLES
2 7 0 ) % ) B 0 )
Figure 6.3.3
*
* " - 2 "
2 7 E
Figure 6.3.4
- 2
6.3.3 Counting Generic Trees DEFINITIONS
2 ) ( ½ ¾ ( ) ) ) )
2 &( ( %
© 2004 by CRC Press LLC
524
Chapter 6
ALGEBRAIC GRAPH THEORY
2 + , FACTS
2 1%*% * 6I"?82 )
5 ) "
2
) ) 5 ) "
Table 6.3.8
5$*" "
" *$*" - 2
3)
3)
? !(!! !( ? (B?!( (B (! (BBB(BBB(BBB (?!(( B !(BB"(!B( "" (?"(B"((" !?(!(!!(( ?(?(? (B(?B( ((?(B( B (" (?"B
! " ? B
2
)
(? ("B! ( (!"(? ? BB(BBB(BBB (!(?!( ? (?!( ( (!?( B(?(B! ( ?(?(!(? (? (?(B "(?(! !(B!(?(B!(?!(?
) &
+, 4
½ &
4 H H H H ? H B H
2 6I!8 Æ & +, )
+, 4
½
+ ,
½
% & S + 6S "!8,
+, 4 & 5 ) ?
© 2004 by CRC Press LLC
+ ,
Section 6.3
525
Enumeration
2 ) "
$+, 4
½
" 4 H H H H H H
2 6 * 6E"82 Æ " $+, )
+, 7 ! )
$+, 4 +, +, +,
5 ) ?
2 I : &
+, 4
½
7 4 H H H H H H B H
2 Æ 7 & )
+, 4
½
+ , H
% &
+ , 4
H
&
½
+ ,
2 ) !
) ) % ) )
2 & ) )
2
) & B
REMARKS
2 2
$ (
E
( ) ) ( )
© 2004 by CRC Press LLC
Section 6.3
529
Enumeration
Table 6.3.10 #
" # " # -
! " ? B ! " ? B ! " ? B ! " ? B
2 "
+ ,
+ -,
" ! ? "? B! (" (B! !( ? ?( "(" (?B (?" "B(? ( (BB ( (B? (!(" "( ?( B("(?! ?(BB(" !( ( ! ("?(??( (B(!B("" ((!("B (" (B(" ? ?(??( ("" !((" (B ?B(?"((B ("!("((? (BB(B( B!( (" (B(B!( ? (B("(B(!" ?"("B(!!?(!B(" ("((BBB(!! !B("B!(?! ("(! (?(BB(BB( ("?
? " ! ? "B ("" (! B(? ("? B( "(" (? ?B(! (!"( " (!("B (?B( (!?!("" ?("?( B(("B !(B( (?B(B!( ((" (! B( B(B!(!? !(!((! ? !((B""( B ""( ( (? ?(!"(?(?B (?(?!(""(" (B(?B(!"B( "(? (!!(!(? ( !(!"(?(? ? ("("B(!(
2 A E )
© 2004 by CRC Press LLC
530
Chapter 6
ALGEBRAIC GRAPH THEORY
2 3 : & ( ) ) H ( ( ( (
FACTS
2 % )
4
4
4
H H
H
+,] 4 H + H ,] ]
B
5 )
1* 8$
Table 6.3.11
I J )
I J )
? (B (" (!? "(!" B"(B !(?BB ( !(B ?( ?(" (!( !B
! " ? B ! " ? B
?( (!?B !!( "(!BB (! !( (?B ( (B(B ( ( !(BB ?("( ( B (B?( ( B ("?(?B(!( (" (? (B( "( !((B!( ?((B(? (BB (!!(?(!B( B (BB(( ( ( " ("(?" (B(B?(B (( (B?( (?B? ((B ("!!(B"(?"
! " ? B
2 ) I ) 5 )
2 ) ) 5 ) 2 ) H 5 ) EXAMPLES
2 7 ! ( 7 " ) ( 7 ? !
© 2004 by CRC Press LLC
Section 6.3
531
Enumeration
Figure 6.3.7
Figure 6.3.8
Figure 6.3.9
"" - 2
$% - 2
*# - 2
References 6A =8 I # A = =C( ) ( +?,( BMB 6A =)8 I # A = =C( ) )
( +?,( B!!MB" 6I!8 I ( E ( +"!,( ?MB 6I"?8 I ( (
6 +""?,( !
6N8 3 N ( 5
(
MB
! "
M!"
!
+?,(
6=8 7 =( ) ( ( ( ( ! !" +?,( M 6= ?8 7 =(
# ( 1 ( ?
6=!8 7 = > # ( #
© 2004 by CRC Press LLC
?
(
( ?!
532
Chapter 6
ALGEBRAIC GRAPH THEORY
6=?8 7 = ( ) ) ( ( B +??,( M 6 8 > J )( > ) ( 6# "8 K 1 # (
! !( = ( 1 ( ?
6E"8 E( ) (
"
2 ? +?",( "M??
6S "!8 S I ( !( 5 P ( ?"! 6 "8 K (
" +? ,( BM
2 # !* # !*
& !!( 1 ( ?"
65 ?8 J K 5 5 0(
( ??
© 2004 by CRC Press LLC
2 &" 1 !(
Section 6.4
6.4
533
Graphs and Vector Spaces
GRAPHS AND VECTOR SPACES "!# ! $ A I N% I 5) ' I 5) ' ) I I 5) I I 5 N I RIA ! C I I 5
Introduction > )
) ) 2 G 0* ( G 0* E * > ) ( ( ) ) G 0* : ) C ( G 0* : ) C ( % ) ) ( $ ( ( 9
5
) % ) ) ) & ) T # )
C
6.4.1 Basic Concepts and Definitions
( ( )
) I 7 - ( ) ) % 7 ( 6Q??8 65?8
' %(
(
4 ½ ¾ (
© 2004 by CRC Press LLC
,
(
4 + , + , 4 ½ ¾
534
Chapter 6
ALGEBRAIC GRAPH THEORY
$ + , ( ) ( ) + , DEFINITION
2 &
) ) ^ REMARK
2
$ + ( ,
EXAMPLE
2
>& ? 7
v1 e1
e3
v2
v3 e2
e4
e5
e7 e6
v5
e8
v4
Figure 6.4.1 Subgraphs and Complements DEFINITIONS
2
4 + , 4 + ,
2
> ) % : ) 4 + , 4 + ,( ) % J )
2
> ) % : ) 4 + , 4 + ,( ) & J & )
2
) 4 + , 4 + ,( ) , + ,
© 2004 by CRC Press LLC
4 +
Section 6.4
535
Graphs and Vector Spaces
EXAMPLES
2 7
4 ½ ( )
7 7 +, 7 4 ( & ) 7 +),
v1 e1
e3
v2
v3
v5
v4
e8
(a) An edge- induced subgraph of the graph G
v1 e1 v2
v4 (b) A vertex-induced subgraph of the graph G
Figure 6.4.2 0 "#"" $ " 23#"" $
2 )
7 +),
7 +,
v1
v1 e3
v2
e1 v3
v2
v3
e2 e4
e5
e7 e6
v5
v4
v5
(a) Subgraph G'
Figure 6.4.3 0 $
© 2004 by CRC Press LLC
e8
v4
(b) Complement of G' in the graph G
" *
7
536
Chapter 6
ALGEBRAIC GRAPH THEORY
Components, Spanning Trees, and Cospanning Trees DEFINITIONS
2
-
( N% B
2 &
5 $
(
% N% !
2 2
)
& ) & )
2 ) $
"
2 / (
/
2 "
"
2 3 ) & , / 8+ , + , ) 8+ , 4 / + , 4 , H /
EXAMPLE
2
" 7 v1 v1
7
e1
e3
v2
v3
v2
v3
e2 e4
v5
v4 (a) A spanning tree T of G
Figure 6.4.4
e5
e7
v5
e6
e8
v4
(b) The cospanning tree with respect to T
0 " "
FACTS
2
& )
© 2004 by CRC Press LLC
Section 6.4
537
Graphs and Vector Spaces
2 & ) , H / / ) , H / REMARK
2
' (
Cuts and Cutsets DEFINITIONS
2 I 4 + , 3 ½ ) 9 ) 4 + ( , & ! " & (
2 $ (
( >: (
EXAMPLE
2
7 7 ( ! "( 4 4 ( ( 7 +, 5 ( ! " (
7 +),
v1 v3
e1 e2
v2 e4 e7
v5
v4
e8 (a) A cut of the graph G
v1 v2 v3
e5 e4 e6
v5 v4
e7 (b) A cutset of the graph G
Figure 6.4.5
© 2004 by CRC Press LLC
0 "
538
Chapter 6
ALGEBRAIC GRAPH THEORY
The Vector Space of a Graph under Ring Sum of Its Edge Subsets DEFINITIONS
2
5 4 ½ ) ) )
7 & ( ) + B B B B, ) 7
2
+ ' , ( ( ) ) )
2 , 4 + , 4 + , 4 +? ? ? ? ? , ( ? 4 ) ) ( + + ( ) B 4 < B ) 4 < B ) B 4 B< ) 4 B, FACT
2 , ) , ) , ) + , , 7+,( % (
) + ) , ) _+ , REMARKS
2 2
)
$ ) ) , + , ) ) , ) E) + ^, B _+ ,
2 2
$ ( 6 8
) & 65 8( 6I!)8( 6N!8( 65?8( 65"8
6.4.2 The Circuit Subspace in an Undirected Graph DEFINITIONS
2 & I (
2
) ` + , $ ( ` + ,
9 ^,
© 2004 by CRC Press LLC
+
Section 6.4
539
Graphs and Vector Spaces
FACTS
2 2
)
9 ( ) ) )
2
) ( ` + ,
2 ` + , ) _+ ,
EXAMPLE
2 7 ( ( 7 v1 e1
v1 e3
v2
e1
e3
v3 v 2
v3
v2
e2
v3
e2 e4
e7
e7
e4
e6
e6 v5
v4 v 5
e8 (a) Circ G1
Figure 6.4.6
e8
v4
(b) Circ G2
v5 (c) G1
G2
- "
REMARKS
2 2
7 ) P) 6P8
( + Ü,
( ( &
Fundamental Circuits and the Dimension of the Circuit Subspace DEFINITION
2 " : (
$
" (
FACTS
2
" ( , H ( "
© 2004 by CRC Press LLC
540
Chapter 6
ALGEBRAIC GRAPH THEORY
2 " ( (
"
2
+, H , ` + , )
2 $ ( ) &
2
) ) ` + ,( ( ` + ,
: , H ( + ,
2
) ` + , : + , 4 , H /
/
EXAMPLE
2
7
"
4
½
I I I I
4
4
4
4
$ ) % ( ( ( ( ( 7
6.4.3 The Cutset Subspace in an Undirected Graph % 5 ) ) & DEFINITION
2 9
) 6+ , ^ ) 6+ , FACTS
2
> 9 ( 6+ ,
2 2
6+ , ) _+ ,
< ( 6+ ,
© 2004 by CRC Press LLC
Section 6.4
541
Graphs and Vector Spaces
EXAMPLE
2
I 7 ½ 4 !½ " 4 ! " 7 ( 4 ( 4 ( 4 4 4 ( 4 ( 4 # ( ) 4 !0 4 "( 0 4 4 ( 4
4 4 (
4 4 (
4 4
$ ( ) 7 Fundamental Cutsets and the Dimension of the Cutset Subspace DEFINITIONS
2
3 " ) ( ) ) " $ & " ( ! "
) "
$ ) )
2 &
"
(
FACTS
2
( ) "
"
(
2
) " )( ( ) ) "
2
& ) 6+ ,
2 $ ) ( ) & 5
2
) ) 6+ , ( 6+ ,
: ( - 8+ ,
2 ) 6+ , : 8+ , 4 /
/
2 & ) ) 6+ ,
© 2004 by CRC Press LLC
542
Chapter 6
ALGEBRAIC GRAPH THEORY
EXAMPLE
2 7 7 ( " 4 ½ A A A
4 (
4 (
4
,(
A 4 $ ) % 4 ) ( ( ( ( ( ( 7 B
6.4.4 Relationship between Circuit and Cutset Subspaces A ) ( 7 7 5 - ) & & Orthogonality of Circuit and Cutset Subspaces DEFINITIONS
2 ) , < ) < ,
,
2
)
+ , C J C ) ) FACTS
2
)
=( )
2 7+, C
2 ) ) ) )
) ) >: (
2
) ) ) )
) ) >: (
© 2004 by CRC Press LLC
Section 6.4
2
543
Graphs and Vector Spaces
)
Circ/Cut-Based Decomposition of Graphs and Subgraphs DEFINITION
2
)
) & J C
FACTS
2
$ ) (
2
6I!8 )
)
2
$ ) ( ) + , ) &
2
6I!)( 1 #!8 > ) $ ) : '( EXAMPLES
2
I 7 ! $ ) % ) ) 5 )
) _+ , E ) ½ ( ( ( 2
4 + B B B
B,
4 +B B B
B,
4 +B B B
B ,
4 +B B B
B B ,
4 + B
B B,
4 + B B
B B,
4 +B B
B B ,
$ ) ) & ( 7
© 2004 by CRC Press LLC
544
Chapter 6
ALGEBRAIC GRAPH THEORY
7 ( +B B B ,( ) ) ( ) & 2 +B B 4
+
B ,
B B B
4
B B, + B ,
+ B B B B B ,
( + B ,
e4
e7 e3
e2
e5
e6
e1 Figure 6.4.7 9
**
2 I
7 " $ ( ( ( = ) ) ) & = ( 7 ( ) % 2
+ ,
4
+ B B
B, +B B
+ B B B , ( ( ( (
B
( +B B B ,
v1 e1 e6 v2 Figure 6.4.8 9
© 2004 by CRC Press LLC
e4
e2 v4 e5 e3
,
v3
**
Section 6.4
545
Graphs and Vector Spaces
6.4.5 The Circuit and Cutset Spaces in a Directed Graph $ ( A(
&( 0
:
$ (
)
&
( (
)
( ( ( (
Circuit and Cut Vectors and Matrices DEFINITIONS
2
) ( -
- + ,
2
3 ) 4 + ,
(
% )
2
+ , ) (
2
( 4 + ,
% )
2
3 ) 4
½ ¾ (
)
,
+½ ¾ ,(
4
2
B
3 ) 4
½ ¾ (
)
,
+½ ¾ ,(
4
2
B
3 ) 4
½ ¾
3 ½ ¾
½ ¾ ) ( (
© 2004 by CRC Press LLC
$
,
&
546
Chapter 6
ALGEBRAIC GRAPH THEORY
,
&
The Fundamental Circuit, Fundamental Cutset, and Incidence Matrices
J&( % & REMARK
2
% % )( ( ( & + ( ,( & ( & ) +½ ,(
4 B
+ ,
+ ,
DEFINITIONS
2
) " ( ) ( ( +, H , ) & & 5
( & " ( ) 1 ( + , ) & & 3
"
2 ( 0 ( ) & & ) & & ) 0
2 & )
: ) & & : ( B EXAMPLES
2 I 7 ?+, ) 7 ?+), +,( + B B B , + B B B B ,(
2 I " 7 ?+, ( ( ( " &
& 2 7 I # &2 I I I
© 2004 by CRC Press LLC
B
B
B
B B B B B B B B
Section 6.4
547
Graphs and Vector Spaces
v5 e4
e7 v1 e3
v3
v2
e1
v1
v4 e2
e2
e2
v3
e6
e5
v4
v2 e5
e5
v5
e6 v3 v1
e3
v4
v2
e1 (a) A directed graph.
(b) A circuit with orientation
(c) A cut with orientation
Figure 6.4.9 0 "" 7 7 " - 7
I # &2 A A A A
$ # &2 J J J J J
½
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B B
B
Orthogonality and the Matrix Tree Theorem
)
)
FACTS
2
)
'
$
( )
'(
( C
( + ,
3
)
) +,
,
)
% ) ` + +),
% )
6+ ,
© 2004 by CRC Press LLC
)
548
Chapter 6
2
$
2
ALGEBRAIC GRAPH THEORY
% $ ( ) &
) Æ
)
) &
5
(
)
Æ )
2
` + , 6+ , $ (
(
2
` + , 6+ ,
%
) ) ( : ,
H /(
( :
/(
- ( / )
2
)
2
2
I "
½
)
)
4
& 4
& C ,
5
4
H 4
C
1
1
4 6@
) & 1
2
1
@
4 64
( 8( @
) & 4
) & 1
8(
" 5
(
@
&
" # ( 1
4
4
&
) 5
( &
2
+
( ! !
& 0 0
, 7 (
: )
EXAMPLE
2
>&
7
REMARKS
2
A
)
% (
2 +,
- H ,(
+ N% ,
© 2004 by CRC Press LLC
& +
% -
,
Section 6.4
Graphs and Vector Spaces
549
2
& 0 0 ( $ ) % + , & : & 0 + * , : ) & & + , 7 ) 65?8 &
65"8 Minty’s Painting Theorem
+ , ) DEFINITIONS
2
2
2
&( ( 4 1 C ( ) ( ( ) ( & ) - FACTS
2
+ ! , 6# 8 3 ) 7 ( & 2 & - ) ) ( - & - ) ( -
2
> ( ) ) )
REMARK
2
# * + - , )
+ 65?8, 7 7 E - ) # ) % 6# B( # 8 5
) ) 6PI"B( I! ( 1 !B8
6.4.6 Two Circ/Cut-Based Tripartitions of a Graph $ Ü A ) 9
© 2004 by CRC Press LLC
550
Chapter 6
ALGEBRAIC GRAPH THEORY
1 ) ) Bicycle-Based Tripartition DEFINITION
2 ) ) ( ) EXAMPLE
2
½ ( ( ( 7 " )
FACT
2
6 !"8
2
)
)
)
% ) 7
REMARK
2
6 !"8 7 ) 6?8
A Tripartition Based on Maximally Distant Spanning Trees DEFINITIONS
2 ( +" ",( ) % +" ", 4 +" , +" , 4 +" , +" ,
"
2 " " +" ", " "
+
"
" "
,
& ) )
2 & " " 5
" " ) 2
3 A ) " % ) 3 A ) " % ) A
© 2004 by CRC Press LLC
Section 6.4
551
Graphs and Vector Spaces
) ( ) : A½ ( A A 4 A ) A + & -
2
) N%
)
2
+
& " " , ')
) ')
) FACTS
2
6G G ?8 3 " " & " " % )
" "
) " " % )
) " "
2
6G G ?8 I 4 + , 3 ) ( ( 4 + , + , ( ( + , + , &
EXAMPLE
2 $ ) % " 4 " 4
& 7 B 2 4 ( 4 ( 4
e1
v2
v3
e5 v1
e8 e4
e2
e6 e7
v4
e3
v5
Figure 6.4.10 REMARKS
2 $ ) + - , : , H ) ) ) )
, H
) : ) :
© 2004 by CRC Press LLC
552
Chapter 6
ALGEBRAIC GRAPH THEORY
) ) ) C : ) ) , H ( - E- ( $ C- ( 1) 6E$1!B8 ) ( & ) ( (
) ) : ) ) )
- ) G G9 6G G ?8 ) E- ( $ C- ( 1) 6E$1!B8 ) - 5 65"8 & )
2 3 63 ! 8 A 1 ) 6A1!8 &
6.4.7 Realization of Circuit and Cutset Spaces $ ) ( & -
&
& ) ) 6?8 I) 6I"8 6 "8 ) ) 1 Æ C) & & 5 65 8
) ( & Æ * C) DEFINITIONS
2
7
& - +
v5
v6
v4
v1 v2
v3 (a)
Figure 6.4.11
2
v5
v1
v4 v2
v3 (b)
- & - +
& 7 7 4 67 @ 8( @ &( )
© 2004 by CRC Press LLC
Section 6.4
553
Graphs and Vector Spaces
7
2 &
) Æ ( ( B 2
9
(
( B(
& ) + Æ ( ( B, C + , ) C
2
)
& ) * * -
FACTS
2
7 (
&
2 2
0
"
&
7
& ( ( B ( * ) * - ) + - & ,
7
2 & & (
B 4 B B
B
7
B
2
7
2
7
& C) & & G - 7
7
& C) &
& G - 7
7
REMARKS
2
# 6#!B8 * C) ( * ( !
2 > - % 6 B( 8 A 6A!B8 % & ) & & ) &
& C ) A * 65"8
2
& C )
- $ & I)
6I"( I?8 C ) $ ( A 6A!B8 A Q 6A Q 8 C
© 2004 by CRC Press LLC
554
Chapter 6
ALGEBRAIC GRAPH THEORY
& & N A * ) ) 65"8 Whitney and Kuratowski
1 ) - ) 1 618 G - 6GB8 1 ) ) ( 1 ) = % ) + 65?8, - ) N% : DEFINITION
2 ¾ ½ ) ¾ ¾ ½ ½ FACTS
2
$ ) ¾
½( ½
2 2
¾
618
$ -( G - 6GB8 ) G - REMARK
2
5 61B8 G - * $ : G - * C) & C )
References 6A!B8 P P A ( 5 2 (4 - &! !( N ( N > > ( $ $ ( #( $ ( ?!B 6A Q 8 7 A N I Q ( 5 -( ! +? ,( MB
&
6A1!8 K A 3 1 )(
( " &! ! +!,( !M 6I"8 $ I) ( # )
( B( ! +",( M 6I?8 $ I) ( & ) - ( +??,( !M!
© 2004 by CRC Press LLC
&% !
Section 6.4
555
Graphs and Vector Spaces
6I!8 1 G I( E ( B +?!,( M? 6I!)8 1 G I(
# ( J =
&
( ( ?!
6I! 8 3 E I N # (
-( & ! ! !! +?! ,( ?M 6N!8 J N ( # = ( ?!
4 ! " " (
6> 8 3 > ( 5 ) 5 ( " +! ,( "MB 6 "8 3 ( ( 6Q??8 K 3 K Q ( ???
! " +?",( ?M
# &! !( II (
6G G ?8 G Q G9 ( #& ( & ! +? ?,( MB 6GB8 I G - ( 5 ) I ) ( 7 +?B,( !M" 63 ! 8 # 3 ( ( & ! !! +?! ,( M" 6#!B8 1 #( * C) ( ! +?!B,( B M 6# B8 K # ( # -(
&
& !
% * !+?
B,( ?M
6# 8 K # ( 5 - a * ( &% ! " +? ,( ??MB 6# 8 K # ( E & ( - -
( +? ,( "MB 6E$1!B8 E- ( Q $ C- ( = 1)(
& -( & ! ! +?!B,( ?M?? 6?8 G ( ! ( J N ( $ ( ??
# ( #=
6 8 # A ( 2 ) ( I" +? ,( !M
) I
& !
6 !"8 I ( E ( ! 2 )! ! +?!",( ?M
© 2004 by CRC Press LLC
556
Chapter 6
65 8 5 5 # A ( 1 ( ?
ALGEBRAIC GRAPH THEORY
# ! (4 -!(
65"8 # J 5 5 G ( 1 +$ ,( ?"
# !* (4 -! " !(
65?8 G # J 5 5 ( 1 +$ ,( ?? 6?8 1 ( # ( !M
# !8 " !(
! 2
?B +??,(
6 B8 1 (
) ( +? B,( ?BM?! 6 8 1 ( 7 (
+? ,( B"M!
6PI"B8 K P 3 E I( ) ( & ! ! !! ! +?"B,( " M" 6P8 E P) (
!! !( # 5 ( ?
61B8 N A 1(
& # ( =
618 = 1 ( (
( BB
7 +?,( !M"
61 #!8 1 1 3 # #& (
) ( & B +?!,( "M"? 61 !B8 N = 1 ( -( & ! ! !! ! +?!B,( M!
© 2004 by CRC Press LLC
Section 6.5
6.5
557
Spectral Graph Theory
SPECTRAL GRAPH THEORY
%& & A # & 1 - 5
3 ( 5 ( > A N 5 I C 3
Introduction 5 + , + ) ,
A
& ) B 9 & )9 ) 3 I C ' 5 C 6I 5 !8 ?! 5 )9 ( )
6.5.1 Basic Matrix Properties # & - & ) 6# # 8 6 B8 DEFINITIONS
2 ) + , : & 0 + 0 , 0 4
! B
9
2
9 &
2 2
+C
0,
6 )
2 7 (
© 2004 by CRC Press LLC
558
Chapter 6
ALGEBRAIC GRAPH THEORY
2 6 0 4 6 FACTS
2 ) 9 &
( . ( ( : & 9 + =
& ,
2 2 2
) :
9 & 0 ) C( ( :
& @ + , @ 0@ 4 @ 0@ ½ &
2 9 & ( ( ( B( 9 & B
2 ( 9 ) - 9 &
2 $ ( 6 6 +5 9 & ) ( - 7 ) M 6# # 8,
2 $ ( $ + : 7 ) , 5 9 &
( )
: ) )
2 3 ) )
2
1 ) )
) +
7 ?,
2 6
)
B( (
6
REMARK
2
A 7 (
) ) (
EXAMPLES
& + (
- ,
2 2
+ ,½ ½ * ½ ) 2 , B
© 2004 by CRC Press LLC
2
*,
Section 6.5
2 2
559
Spectral Graph Theory
2
+'#) H ,½ ' 4
2
-
2 +'#),½ ' 4 J (
(
2 I+, 5 2 + ,½ B ½
2 2
)
2
1
+ ',+, ' 4 B
+ H , 9 * & 5 2 +'#),½ ' 4 H
2
2
+ + 4 I+,,2 B * * 2 B * *
2 )
1
2
6.5.2 Walks and the Spectrum Walks and the Coefficients of the Characteristic Polynomial DEFINITIONS
2 )
2
& 9 %
FACTS
2
2
$ '
$ 0 9 & ( ' &
2 2 2 2
) -
9 & ( & 0
0
) -
0
) -
0
0
0
'
)
& )
65 8 $ H H H H
( 4 4 B ( ) ) + &
+C 0,,
© 2004 by CRC Press LLC
560
Chapter 6
2
ALGEBRAIC GRAPH THEORY
65 8 $ H ½ ½ H H ½ H
( 4 +, ( ) % ' ( +4 , ) 4 ( +4 , ) 4 REMARK
2
7 " Æ! $
6IN 5?8 $ & 7 ! Æ
Æ )
) & ' %& + , 7 ( + , + , (
Æ ) % ' 7 ( ) %( )
+ - ( - , )
Walks and the Minimal Polynomial DEFINITIONS
2
>+, ( >+0 , 4 B
2 * + ) + , H FACTS
2
,+, 4 -
+ 6 ,
2 $ 9 & 0( 0 4 B ' + $( 0 4 B
2
$ , ( , H ) ) $ 7 B
2 2
+ , &
2
) +
7 ( ) \ - \ : ) , EXAMPLES
2
J & ( ( ( I+,( - ( ( 1 )
2
& )
© 2004 by CRC Press LLC
Section 6.5
561
Spectral Graph Theory
OPEN PROBLEM
4
I C ) : E (
) Regular Graphs DEFINITION
2 ' (
+ 6 , ) ,
2 2
D
2
0
D
9 & : 0 C = 6 ( 6 0 :
6= 8 7 9 &
) / $
! + ,(
+ ,
9 ( (
)
) ) ( ( 0
2
$
,
D + ,(
)
9 ( )(
) ' ( )(
'
EXAMPLES
2
! + , ) 1
$
2
D + , A+ , $
© 2004 by CRC Press LLC
566
Chapter 6
ALGEBRAIC GRAPH THEORY
Distance-Regular Graphs and the Hoffman Polynomial
+ / , ( = 0
DEFINITIONS
2
F
) % 0 4 C "
0 4 0 9 &( 0
&(
& + *,
F B
2
F
/
& -
+ *,
FACTS ABOUT THE MATRIX 0"
2
( 2
0
7 ( 0 0
0
4 D (
/ 0
&
) )
4
0
0 0
H + 0
,
0
) ' 4 B
2
) 9 & 0
H
2
= 0
2
)
FACTS ABOUT THE PARAMETERS /
2
- -
4
/ - (
) )
)
2
0 0
- -
0 - ( 0 -
2
-
2
(
Strongly Regular Graphs DEFINITION
2
+ 6 , ) ( ( 6 4 / 4
/
(
EXAMPLES
2
2 A+ , ++
2
3 2 A+
© 2004 by CRC Press LLC
,) ,
, +
,
Section 6.5
567
Spectral Graph Theory
2
2 - +/ , % % 7+/ ,
9 ( % ( 0 : +
)
/
+/ +/
,) +/
,) +/
) , ,),
FACTS
- &
) & 0
&(
) ( 9 &(
2 +
6
7 + 6 ,( +
, 4
6,
¾
2
5 0( 0 ( C (
+ : ( 9( 9 , * C = 0
$
( + 6 ,(
¾
0
2
H +
6,0 H +
,C 4 D
+ 6 ,
2
¾
H +
6, H +
,
$ ( ( ( 0 B
2
7 + 6 ,(
6½ 4 ( 6¾ 4 +6
,) H F
½¾
6¿ 4 +6
,)
F
½¾(
¾
¾
F 4
6 H 6
6 ( ,¾ ( ,¿ ,¾ H ,¿ 4
,¾ 6¾ H ,¿ 6¿ 4
2
$ F 7 ! :( ,¾ 4 ,¿ 5
2
E
5 6¾ 4 6¿ ( ,¾ ,¿ :
+ 6 ,
)
,¾ ,¿
EXAMPLE
2
¾
7 (
½¾ + /
¾,(
H +
,¾ 4 ,¿ 4 +/
6, H + , 4 ¾ H +/ ,)
H ,)(
6¾ 6¿ 4
FURTHER READING 7 ) &
6 B8
6AI J"?8
© 2004 by CRC Press LLC
568
Chapter 6
ALGEBRAIC GRAPH THEORY
6.5.5 Spectral Characterization E : - 2 C ) Y 7 )
EXAMPLES
2 7 (
½ B & ) : + - ) , )
5
( : )
)
Figure 6.5.3
** *
2 7
) + ,+ H ,+ H ,
Figure 6.5.4
** " *
2 7 ) )
+ , B
+ H ,+ ,
Figure 6.5.5 1 * - $ 2
© 2004 by CRC Press LLC
Section 6.5
569
Spectral Graph Theory
2
7 ½ 5 ( ( % $ ( 9 A+ , + , A ( + - " , ) a
b
c
d
a
e
e
f
f
g
g
a
b
c
d
a
0 *% * *
Figure 6.5.6
Eigenvalues and Graph Operations
E ) DEFINITIONS
2 ( ) ( & ) + , & & 9 ( ( 9
2
+ 9 , ( ( ) ( ( ) & 9
FACTS
2
&
2 6
) ) H 6( 6 6
2
3 ) 7 $ 4 B ,( % ! ) - I ) ) ) ) ) $ , $ !
2
65!8 3
+ , )
-#
+ , 4 - ½ +,- ¾ ¾ +, H - ½ ½ +,- ¾ +, - ½
-½ ¾
2
!
½ -¾
¾
65!8 ) ( ))
© 2004 by CRC Press LLC
570
Chapter 6
ALGEBRAIC GRAPH THEORY
EXAMPLES % & ) K = 0
+ K = 0 6# !8, 3 ½ )
2
N% !
) - $ ,
( $ 4 B , !
$ -
( (
2
=
! + ,
) )
( )
REMARK
2
) C J>5 ) N I- S
6IN 5?8
6.5.6 The Laplacian 3 9 & ) 9
$ ( (
- )
3 (
- )
DEFINITIONS
2
-
: &
&< 0
$ ( A 4
0
9 B 0(
&
9 &
$ ( 4 C ( 0 A ) )
9 &
3
2
67 !8
6
6
6
3 A
% ) 6
FACTS ) 3 ) 3 ;
4 ; + , ) )
) ) * A
3 A
) &
(
9 A )
9 A
+A ,
2
; + , 4 +
2
9+A, 4 ; D
2
B A )
,
2
6
4 ; + ,
© 2004 by CRC Press LLC
Section 6.5
571
Spectral Graph Theory
2 5 6¾ 4 6¿ 4 4 6 4 ( ; + , 4 ¾ 2 ) 2
+
6¾ ½
) ¾, 4
6¾+ ½ , 6¾+ ¾ ,
2 6JBB8 $ (
½ + ,
6¾
EXAMPLES
2
6¾ -
2
6¾
2 2
6¾
2
6¾
+
, 4 + +#),,
+
, 4 + +#),,
6¾ 1
+
, 4
+
, 4
+ , 4
,
FURTHER READING
3 ) A # 6# ?8 & ) # J 6JBB8
References 6AI J"?8 > A ( # I ( J ( )! 5 P ( ?"? 6I"?8 1 I(
%" # !(
# ! 2 ( K 1 D 5 ( ?"?
6I 5 !8 3 I C ' 5 C( 5 - ( $ " +?!,( !M
6IN "8 N I- S(* # N )( $ ( E 1 5 N J >& + H ,½¾( ! +?",( M? 6IN5"8 N I- S( # N )( 5 5
S( C ( +?",( "M?? 6IN 5?8 N I- S( # N )( = 5( A( ??
#
2 # !( K )
6I5 ?8 N I- S 5 5
S( E * & + ,)( )! +??,( M! 6N?8 > N ( ( " +??,( ?M
" !
6N=B8 > N 1 = = ( 1
) Y( " &! (
© 2004 by CRC Press LLC
572
Chapter 6
ALGEBRAIC GRAPH THEORY
6N !B8 # N )( ( 2 *
* ( +?!B,( M 67 !8 # 7 ( ) ( ?"MB 6 B8 7 (
'! - +?!,(
2 !* P $( $$( I ( ?
B
6I55! 8 K # ( I ( K 5 ( > 5 ( 3 ( ( " +?! ,( BM! 6 ?8 I ( "
!( I =
6 B8 I ( "
( ??
" ( 5 P ( BB
6=?8 1 = ( $ ( " ! # +??,( ?M 6= 8 K = 0 ( E
( BM
+?
6= !8 K = 0 ( > ( M ! &&( N 7 - ( >( # +?!B,
,(
# *
63 ?8 K 3 ( " ! 2 " !( N ( ' # )( ?? 6# # 8 = # # #( 2 5 ( 1) D 5
( ? 6# ?8 A # ( 3 \ ( !M"
5 &1 !(
)! +??,(
6# !8 # C(
( +?!,( !!M? 6JBB8 # J ( # )( BBB
! 2 " !* # ( '
6B8 # S O 9 S( 5 ( ' G9( BB
! " !( 7
65 8 = 5( AC C G -
( ) +? ,( ?M 65!8 K 5-( !
! ! ( J N +>2 7 =,(
( ?!( !MB! 65 ?8 * 5 5
S( 5 + ,)( " +??,( ?M!
© 2004 by CRC Press LLC
Section 6.5
573
Spectral Graph Theory
65 !B8 K = 5
( 5 ( BMB ! !( >2 ( = = ( J 5( K 5L ( A +?!B, 61 J?8 E M" +??,( !!M?
© 2004 by CRC Press LLC
*
(
" !
574
6.6
Chapter 6
ALGEBRAIC GRAPH THEORY
MATROIDAL METHODS IN GRAPH THEORY ' $( ) # 2 A N% >& & 5
N # ' $ I : 7 E ! I # " ' # ? >& # I C B 1 ( 1 ( 5
) I # ' # I
Introduction > (
: ( E ( C
- ) 1 +?!MBB, 6!?82 .$ ) ) & )) & % )
/ )
6.6.1 Matroids: Basic Definitions and Examples
&
= 1 +?B!M?"?,
% ? 618 DEFINITIONS
2 9 % +9 , + 9 , +9 , ) ) ( ½ ¾ ) +9 , ½ ¾( ) ¿ +9 , ¿ +½ ¾ ,
7: ( +9 , +9 , ))
© 2004 by CRC Press LLC
Section 6.6
575
Matroidal Methods in Graph Theory
2 ) ) (
2 2
+ , &
9½
G +9½ , +9¾ ,
G+ , 9¾
( 9½ 4 9¾(
9½
9¾
) -+9 ,(
9
) ,+9 ,
REMARK
2
$ % ) EXAMPLES
2
0 & )
$* 3* " #E$N 9
+ ,( %* "
E'JN 5> +9 ,
9
I$I'$5 +9 ,
$JN>>JN>J 5>5( ,+9 ,
A5>5 -+9 ,
C + , 2 C
7 2
) 0
C 2 C )
&
2 4 , H
C 2 C ,
4 2 4 4 ,
+ ,(
2 " 6 8(
9 0
& 0 % 7
) "( @
+B , ,
2
3 9 ) +9 , 4 +9 , 4 9 4 9 + ½ , 4 9 + ¾,( ½ ¾ 7 -+9 , 4 ( 9 4 9 608( 0 &
B B B
© 2004 by CRC Press LLC
B B
B B
B B
B B
576
Chapter 6
ALGEBRAIC GRAPH THEORY
1 1 2
3
4
2 G
3
1
5
4 G 2
6 5
6
Figure 6.6.1 9 ½ " %*" " 9
2 $ ) ( % 9 % % $* / * " I
I
9 4 9 + ,
)
9 4 9 608 & 0 %
)
) 7 +,( %
) 7 +,
) %
FACTS
$ ( 9
2 : @ 2 $ 9 ( 9 4 9 + , 2 +1 * $ 618,
) ) ) : 2 + , & < +
, + ,< +
, ) ) 9 ) ( ) ( (
:
2 :
) 2 $ 9 ( 9 2 9 9 ) ) ) ( & )
B
© 2004 by CRC Press LLC
Section 6.6
577
Matroidal Methods in Graph Theory
6.6.2 Alternative Axiom Systems # ) C ) 0 & & E ) ( & ( 6E&?8 (
% $ )
"" 3 ) , $
:; ,< :; ) ) , , +, ,< :; , (
,
& 6 8 6
© 2004 by CRC Press LLC
8
580
Chapter 6
ALGEBRAIC GRAPH THEORY
2 2 (
) %& % ( (
$* /* " * )
)
9 9
"
9
9
9
9
9
9
REMARKS
2
) )
)
2
# $ ( & ) 9 + , 9 + , ( &( &
6.6.5 Matroid Union and Its Consequences ( ) J1 6J 8( :
DEFINITION
2 9½ 9 9
) C C C C ,+9 , +5 7 ", $ ) 9 . 9 . . 9 FACTS
2 3 9 9 9 )
) C C C C ,+9 , ( %
2
$
9
- ( -
9
. 9 . . 9
+ , H 2
Covering and Packing Results
- ) - ( 7 ) ) 7 B ( ( J 7 B
© 2004 by CRC Press LLC
Section 6.6
581
Matroidal Methods in Graph Theory
FACTS
2
9 ' 9 ) ( ) '+ , H +9 , '+9 , 2 6> 8 9 ' +9 ,
( ) +9 ,( '+ , +9 ,(
6> 8
2
'
6 ( J 8 9
( + ,( ) 9 0 + , )
#
' #
2
#
6 8 ( ) + ,(
#
) ' 9
'
+ 6 8, + ,
2
6> 8 3 ) 4
) )
) 4 4
4 +)
) , : 2 + ,
% 4
)
9 +
, 7 # + ,( ) 9 +# , +
,
6.6.6 Fundamental Operations N ) ) ( ( % ) ) ( ( C > C DEFINITIONS
9"
9)"
9 + " , 9+ " , 9 " 2 B 9 B ) ) 9 ) :
B B 4 9 2 ! ! ) ) ) :
2
( (
7 :
9
© 2004 by CRC Press LLC
9)
9 ( 9 9)
582
Chapter 6
$* #
+9 , "
"
"
C +9 , " C , +9 ,
+9 , "
"
9½ 9¾ (
+9½ , +9¾ ,
2
+9½ , +9¾ ,
4
-+9 " ,
C½ C¾
" 9½
2
C 4 , +9 ,
)
9
C +9 , "
+9 ,
2
9
2
+9 ,
9)" (
,
+9 , "
"*
$ "
5
9 " (
ALGEBRAIC GRAPH THEORY
2
C , +9 ,
9¾ (
+9½ , +9¾ ,
4
EXAMPLES
2 9 + , 4 9 + ,( ) ) 2 9 + ,) 4 9 + ),( ) ) )
(
( )
2 @ 4 @
½
2 @ ) 4 @ ½
½
,4
,4B
@
@ ½
½
@ ) 4 @
½
4
2 9 608 & ) )
&
0
2
$
0(
& ) ) )
2
$
½
¾
9 608)
& 9 (
9 + ½, 9 + ¾,
½ ¾ # ( ½ & ½ ¾ & ¾ ( 9 + ½ , 9 + ¾ , ) ) ½ ¾ ( ) ½ ¾
) ) - 9
FACTS $
2
(
9)" ,
+
9 ( 9½ (
4
9 "
&
@
@
)
@
@ 7 7
I
>&
@ @ 7 7
@ 7 7 9
+ , 9 + ,
+
,
+
@ 7 7 9 9
,
2
)
CONJECTURES
9 )
© 2004 by CRC Press LLC
588
Chapter 6
ALGEBRAIC GRAPH THEORY
1! + * I 9 6 !8, 7 % % ( % &
) 1! 7 % % ( /
) ( % &
/ REMARKS
2
7 " )) (
Æ 7 ? 7 " & 9 ) 7 " ) &)
2
7 ) ( > ( &
7 +>, ) % ( ( G 6GBB8 7 +,( ) & &
* I 9 > & 5 I 9 I ) ) 1 61B8 ) ( ( 1 61B8
6.6.10 Wheels, Whirls, and the Splitter Theorem 6 8 % ) ) ) - 5): ( C 6 8 5 ( C ( ) 5 65"B8 ( ( ) J
6J"8 DEFINITIONS
2 7 ( 0 ) & 9 ) + , &
2
7 ( 0 0 0 & ( -
2 3 9
B
B
)
9
B
9
2
/ - ½
/ ( ' ( ' - ' H
EXAMPLES
2
7 0 ( ( 9 +0 , 0 9 +0 , 0
© 2004 by CRC Press LLC
Section 6.6
589
Matroidal Methods in Graph Theory 1 5
1
6
1
(a)
(b)
6
5
(c)
6
5
2
3
2
4
Figure 6.6.5 :;
3
2
3
4
0
4
" :$; 9 +0 , " :; 0
2 A 7 7 & - 2 : - ) - & 6C C 8 +, C & ) ) C
& C (
7
FACTS
2 6 8 3 : 2
)
+ , 7 ( +
,
) )
-
2 6 8 3 9 ) : 2
+ , 7 +
,
9
9 9)
9 +0 , 0
9
(
2 + 5 65"B8, 3 9 B )
B
9 ( +B , ( 9 5 B 4 9 +0 ,( 4 0 ( 9 0
< B 9 9 +0 ,
: 9 9 9
9 4 9 < 9 4 B < ( ( 9
9
) 5 ( I 6I "8 + 6I E&?8,( 5 * 5 ) $ - 7 ) ( % 5
2 61 B8 3
7
!
)
) 4 !( ! #L
Figure 6.6.6
© 2004 by CRC Press LLC
# .' $ *""7
!
590
Chapter 6
2 6=8 3 ) 4
ALGEBRAIC GRAPH THEORY
2 65"B8 3 9 ) ) 9 9 4 7
2
3 4 0
2
)
6E&"?8 3
9
7
0
)
0
+ ,
7 !< +
, ' ( ) ) 9 & )
Figure 6.6.7
- #-*
) 6?8 ( ( (
2
6E E&?8 7
B
2
( B
0
6N E E&P?!8 7 ( B B
@
@
+
9
, 9 + , 9 +0 , 0
-
6.6.11 Removable Circuits # ' ) '
C ' 4 = ( #* DEFINITIONS
2 ' & )
) '
'
2 7 ' (
© 2004 by CRC Press LLC
' 9 &
9
Section 6.6
Matroidal Methods in Graph Theory
591
FACT
2 +#, 6#!8 $ '
' H ( ) #* + , ½ +' H , + , &
) )
& )
2 63E&??8 3 9 ) ) 9 $ +9 , +9 , H +9 ,( 9 9 9 +9 , 4 +9 , $ ( + , 4 +9 , +9 , +9 , H ( 9 ) 2 63E&??8 3 9 ) ) 9 $
+9 ,
"
+9 , H +9 , 4 +9 , H ( +9 , H +9 ,
9 9 9 +9 , 4 +9 , & ) )
2 3 ) ) $ + ,
+ , + ,( )
$ (
+ , + ,( ) 2 3 ) ) 5
+ ,
"
+ ,
( + , + ,
2 6 #?!8 3 )
$
( 9 )
2 6#BY8 3 ) $
( ) ) 7 ( #* +7 B, ) ) )
2 65 ?"8 3 )
%
) >& >? ) C & C ) & )
2 6 K??8 3 9 ) ) % $ 9
) 7 7 ( 9 ) +9 , 4 +9 ,
© 2004 by CRC Press LLC
592
Chapter 6
ALGEBRAIC GRAPH THEORY
REMARKS
2 7 ( )
)
2 7 ) ) ( (
( ) ) ( ( (
2 = )) ) ) - >
) EXAMPLES
2 63E&??8 I 2 )
& ! " ? B< ) ! " ? B( & E& 9 ) ) C 9 + , C A 9 + , ) ) ) C 7 B
) ' 4
2 K- 6K"B8 ( ( ) + 6K"B8, = ))* : +?, ) % 7 "+, 2 6 #?!8 7 ) ( 7 "+),
) ) ) 9( # 7
2 7 ( @ ( H ( )
(a) G 1
(b) G 2
Figure 6.6.8 8
+
9
,
9
+ ,
2$*
PROBLEMS
4:;! 6 K??8 $ $ ) $ ) Y 4:;! 6 K??8 $ 9 ) (
© 2004 by CRC Press LLC
9
) Y
Section 6.6
593
Matroidal Methods in Graph Theory
6.6.12 Minimally '-Connected Graphs and Matroids 7 ' ( ' ' ' 7 ' ( DEFINITIONS
2 7 ' ( ' '
'
2 7 ' ( ' 9 '
2 3
9
9
)
9
9
'
EXAMPLES
2
$ , ' (
' 7 ( - 0
0
2
7 7 )
FACTS FOR ARBITRARY CONNECTIVITY
2 6#!8 7 & '
'
(
'
2
6#!?8 7 ' ( )
'
'
'
'
+' , + , H ' '
2
6E&")8 7 ' ( ) + , + , H ' REMARKS
!
7 !B ' 4 ) N 6N !8
6 "8( ( ' 4 ) = 6= ?8 7 ! )
!
) 7 !( ) 7 ? )
( : ) 7 !B
!
6#? 8 ) - ) 9 &
)
& 7 ? ) ) '
© 2004 by CRC Press LLC
594
Chapter 6
ALGEBRAIC GRAPH THEORY
FACTS FOR SMALL CONNECTIVITY
2 $ 9 9 4 9 + ,
( ) +9 , 9 & 2 6N !( "( = ?8 7 ' (
'
'
2 6E&"( E&")8 7 ' ( + , +
,
9
2 61?"8 3
9
9
2 6= ?8 3
+9 , H + '
)
)
+ , +
,
)
'
' < , ' '
9
9
A &)( G - * 1* (
+?!!,( M
6A !?8 > A &)( E * C (
+?!?,( !MB
6AE&?8 A - K E& (
( M + J 1 ,( I ) ' ( ??
6I "8 I I ( .# # 9 A # /( N ( J ' ( ?" 6I E&?8 I I K E& ( >& * 1 1 ( +??,( BMB 6I"8 1 = I ( E ( +?!?,( ?M??
B
6N E E&P?!8 N ( A E - ( K E& ( N P ( ' )
( ! +??!,( M?? 6> 8 K > ( 3 * J 1 ( %! ( ! ?A +? ,( !M! 6>?8 >U ( E & ( " B +??,( !M
61B8 K 1 ( A * 9( " +BB,( MB
© 2004 by CRC Press LLC
596
Chapter 6
ALGEBRAIC GRAPH THEORY
6GBB8 K 7 ( # = ( G ( &
7 +,M ) (
!? +BBB,( !M?? 61B8 K ( # = ( 1 ( A : ( " +BB,( "!
6 K??8 3 A K- ( ) ) ( +???,( ?M
6 #?!8 3 ( K = ( 5 # ( )
( ! +??!,( BM 6?8 A 5 )(
( )! ?M! 6=8 N 1 = (
- ( M!
B +??,(
? +?,(
6= ?8 = ( ' L)
( " +? ?,( !M""
C
L
6= ?8 = ( O C
L ( $ " +? ?,( M 6$1"8 $- 3 1 )( 1 ( )! ! +?",( M
& "
6K"B8 A K- ( )
( 9 +?"B,( "M? 6GB8 G G - ( 5 ) d ) ( 7 +?B,( !M" 63"8 3C ( ) ( +?",( M 63 8 3 ( 5 ( +? ,( "!M! 63!?8 3 ( E : ( BM!
& !
" " !
+?!?,(
63E&B8 # 3 K E& ( ) C ( ! +BB,( B?MB 6#!8 1 #( >-
( +?!,( ?M
C
L
6#!8 1 #( GC 1 ( " +?!,( "!MB
$
6#!?8 1 #( I % ( M? ! ! + A A )S,( I ) ' ( ?!?
© 2004 by CRC Press LLC
Section 6.6
597
Matroidal Methods in Graph Theory
6#? 8 1 #( E
( !* :
! ! " 3 9 + N # - S( P 5S ( 5CU ,( KS A # 5 ( A ( ?? ( M? 6#BY8 5 # ( I &
( )
6#BY8 5 # ( I ) ) ( )
6J 8 I 5K J1 ( > 9 % ( +? ,( MB
6J 8 I 5K J1 ( (
2 # ! +$ 5 ( ,( N ( ( ? ( M 6J"8 5 J
( C ( +?",( ?M! 6J '??8 P J 3( > I ( K ' ( ) ( )! ?!R?" +???,( M 6E E&?8 A E - ( K E& ( ( ) ( ! +??,( ?M! 6E&"8 K E& ( E C ( ?B +?",( B!M 6E&"8 K E& ( E ( ?MB"
6 ,52 9 +?",(
6E&")8 K E& ( E ( +?",( !M"
!
6E&"?8 K E& (
( +?"?,( ?MB
( E& ' ( ??
6E&?8 K E& (
6E&B8 K E& ( E ) ( ! !* 9;;< + K 1 = ,( 3 # 5 3 J ""( I ) ' ( BB( ??M? 6 !8 I ( I ) ( ( +J ( 5 ?!B,( P ( ( ?!( ?M
& "
6 5BY8 J ) N 5 (
[[ 1* 9( ( 65" 8 5 9(
2 &" " "( 1 ( ?"
65!?8 N 5 ( # +?!?,( ?M!
© 2004 by CRC Press LLC
7 +,(
598
Chapter 6
ALGEBRAIC GRAPH THEORY
65"B8 N 5 ( N ( +?"B,( BM?
"
65 ?"8 5 ( .5 5- > I /( N ( ' 3 ( ??" 6"8 1 ( $( ! +?",( M B 6"8 1 ( $$( "" +?",( M! 6?8 1 ( # ( !M
""
!
!
+??,(
6 8 1 ( E ) ( +? ,( MB 6 8 1 ( 3 ( +? ,( M!
%! ( !
6 8 1 ( I (
" +?
L 61!8 G 1( ') > 5C G - ( +?!,( "BM" 61 B8 G 1( A - C = P ( M 61??8 N 1 (
( BM" 618 = 1 ( (
?A
,( BM
)
+? B,(
% ! " !
+???,(
+?,( M
618 = 1 ( E ) ( ! +?,( B?M
61?"8 = 1( E & ) (
! +??",( "M?!
61?!8 3 1( ) ) (
+??!,( B!M 61BB8 3 1( >& ) ( )! +BBB,( ??MB"
© 2004 by CRC Press LLC
599
Chapter 6 Glossary
GLOSSARY FOR CHAPTER 6 "?% 3 M
2 B & 0
( )
9 (
F # "2
%
9 &(
0"
0
4
C
&(
F
* 2 M % 2
% )
4
0
B
*$ 2% 3 6
* 2 2
0
& + * ,
6
6
2
%$+ ,
#2
-
# 2 2
+ ,
% 2
2
M
(
(
M (
%$+ ,
2
$ "" M % 2
) ) &
$ @2 $
& 9 %
M
$%*
92
&
9
M 2 ) )
$% 2 M ) 2 B $* + M
)9 2 )
1
(
# +4 ,
2*2
4
(
)9 # 1 (
(
4
) -
9
4
( ( )9
$ "
M
2
)
$
M &
$
M 2
2
"2
& )
1* $ 2 : ) % ) 4 4 H H H 1%*% " M
% 2 % ( %
( +% ,
© 2004 by CRC Press LLC
&
&
I
600
Chapter 6
1%*% ½2
ALGEBRAIC GRAPH THEORY
I
1%*% 2
I
1%*% 2
)
1%*%
2 ) ) (
*% * M
2
+C
0, 9
&
"
M 2
1#2 1# 2
% 2 , +% 2 , 4 +% 2 ,( %+%, 4 + ,
I +
&
%
%
I
I$
M 2 9
(
M 2 )
""
M 2
(
2$*
M ' 9 2 '
(
9
9 '
3
M + ,2 &
(
M 2
)
$
` + , % ( )
M 2
<
` ) + ,
2
M 2 ) ,
2
M 2 , <
* 2
I
* " " "*% *
M
/
/
2
)
/
M 9 2 & ) +9 ,
-
* 2
M + 9 , (
) <
(
M 9 2
+* %
I+,2
9
+
* $
M 2
7 >
2
-
7 " $*% 22
)9
7 22 ) -
7 *2 )
7 *2 %
( : 2
1 %&
) ) %
)
)
**% ""2 ( *#2 ) & B ( ""2 & : $½ $¾ $ , B ) (
& 9
)
)
""2 (
"2 &( ( (
%
© 2004 by CRC Press LLC
609
Chapter 6 Glossary
2* 2
&
"* 32
&
& :
M
(
9½ 9 9
9
2 " 32
*
2
C C
) &
)
<
*3 ; *3 !" " $$ " !0 $ N 3 # ! =$> #! #! 0
! ! ( ! + & &
& + + ! AO F D
© 2004 by CRC Press LLC
622
Chapter 7
TOPOLOGICAL GRAPH THEORY
EXAMPLES
* / & # ! 2 0 / ! !
! !0 ! & + ! ! ! 2 + ! ! ! ! !
!
3 " $"
$"
$"
$
3 " $" $" $" $" $" $
! ! ! 6 #! 0 + #!! ! #1 ! N !
!0 & ! # ! &
*
! #
!
! ! 0 F0
* / ! 2 ! " ! ! / ! ! ! # ! ! ! + a
c
b
a
c
b
Figure 7.1.11 # ,& !
"
" !+ ! % ! #1
3 " $
3 " $
3 " $
+ & + ! % !
3 # * "$
* " $
* / ! 2 ! " ! / ! ! ! # ! ! +
© 2004 by CRC Press LLC
Section 7.1
623
Graphs on Surfaces
a c
b
b
c a
Figure 7.1.12 ,& !
"¿
/ #1 + ! ! %
3 " ½ ½ ½$
! % !
3 # * "$
* " ½ ½ ½ $
* / ! 2 ! "¿ ! 7 / ! ! ! # ! ! +
a
c
b
b
a c
Figure 7.1.13 ) & ,& !
"¿
/ #1 + ! ! %
3 " ½ ½ ½$
( ! % !
3 # * "$
* " ½ ½ ½ $ L 3
FACTS
"*
! ! 6 & #! !
+ ! !
* O (
*
! ! % ( ! #!
© 2004 by CRC Press LLC
624
Chapter 7
TOPOLOGICAL GRAPH THEORY
References A/HCD /! + ! ! ? & + & ! ! " 2 + /+ HHK$ "HHC$+ KPK
+ ! ! + ! N& + HCF
A/CFD O / +
A:;! HD I G : + / ;! + GGI + N&
+ H H
+
ACCD / 1 + ! + + : !+ ! " "HCC$+ F PF AO--D ! ! # % !
! ! & & +
! + !
! N + ! # ! ! ! & ! "$
1*
/ &
2 C # & ! A HHD ! ! ! M !
A !H D ' ! ! !+ ! ! + & & ! 3 + &
!
! ! ( ! ! ! 2 C Complete Forbidden Sets for Maximum Genus
! & 2 + ! 4 % # 0
" + ! ! #! & # 0
$ ! ! " " + ! ! A# D #
0
# + & $ Q # & + & ! "% $ 3 #! ""$ 3 - ! + 7 # 10 ! & 2 C DEFINITIONS
* G ! 0 & #! # ! # 3 "# 3 ! & $ ; ! ! ¼ ! & ¼ & ! & ! # ! & # 3
© 2004 by CRC Press LLC
636
Chapter 7
TOPOLOGICAL GRAPH THEORY
* # ! ½ !
!
! 0 & ! # ! ! ! !& ! ! FACTS
* *
/ 0 0 ! ! -
AI ;! D / ! ! - & # M ! ! !
*
A!OHD / 0 ! !
! ! ! 1 ! ! 2
Figure 7.2.3
5 ! ,- ,,
*
/ ! ! 0 ! & + ! 0 ! ! ! 1 ! ! 2
7.2.5 Algorithmic Issues 2 # G A2 GFFD ! ! ! !
&
R ! ! + ! ! # ! ! !
+ ! ! ! ! ! !
Minimum Genus Testing DEFINITION
* / ! & ! ! I ! #! ! & ! FACTS
*
AQ D ! 0 ! ! ! 0 & ! ! ! !
"*
AQ ; D ! ! ! !
! !
* A2 HD ! ! #! ! ! !
#! 4" $
© 2004 by CRC Press LLC
Section 7.2
Minimum and Maximum Imbeddings
637
* A HKD G ) % ! ! ! ! & ! #! ! )
* 2 !
+ ! ! ! ! ! !
* A HHD 2 ! % + ! 0 ! !+ &
! + !
! " ! & ! % & ! 2 ! 0 ! $
* A !FHD ! # I 0 * & ! + #! ! "$ * A !H D ! #! ! ! !
& I 0
* A HFD ! #! ! ! !
& I 0 Maximum Genus Testing FACTS
* A2OFFD ! ! !
& ! " ! S I 1T ! ( 4 ! 0 ! ! + #!!
& AOFKD$
* A!HD 2 % + ! ! !
#! ! & ! ! +
+ ! ! ! !
"* A!HD 2 % + !
! ! ! * AOHD !+ ! 4
0! 0 ! & ! & 0 ! ! ! + ! ! ! = >
* AOHD ! = > ! ! + ! !+ & 0
REMARK
1* 2 F F ! ! M !
© 2004 by CRC Press LLC
638
Chapter 7
TOPOLOGICAL GRAPH THEORY
References A/Q CD 7 / ; Q1 + .& 0 + " F "H C$+ P
&
A/FD /! + / 7 # 1 ! ! 6 & + ! % K "HF$+ PC A/,-D /! + ! !& 4& & + ! 1
! ! #
7.3.1 Ranges and Distributions of Imbeddings DEFINITIONS
* ! ! & ! ! ! ! ! ! "$
*
! ! ! ! ! ! ! ! "$
* *
! + ! & A "$ "$D
! + "$+ ! 4&
! + 4& " $+ ! ! !
*
! . ! ! 4 #! "$+ #! "
$ 4 ( + # ! 4 ! + ! % 4 (
© 2004 by CRC Press LLC
Section 7.3
*
643
Genus Distributions
!
5 "
½
$ 3
"$
* !
+
1 # ! ! ! ! ! ! ! ! "$ * !
+
1 # ! ! ! ! ! ! ! ! "$ " *
! *
+ !
!
"$ "$D
& A
+ "$+ ! !
4&
. ! ! 4 #! "$+ #! "
$ 4 ( + # ! *
!
4 !
+ ! % 4 (
*
!
5 " $ 3
*
/
½
"$
# 6 ! ) # & # & ) I * )
#
Figure 7.3.1
*
/
# &',, !
# 6 ! ) # & ) I * )
0
&
Figure 7.3.2
*
!
# 6-',, !
! 4 ! 4
© 2004 by CRC Press LLC
#!
644
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
* ACCD 2 &
#! ! !
+ + #! &
"$ "$+ ! "$ &
* G
! 4
! ! 4&
½
"$ 3
¾
A "$ DX
! ! ! ! ! ! & & + ! & 5 "$ & !
* A FD 2 &
"$
"
#! !
! + + #! & $+ ! "$ &
* G ! ! ! 4&
" $ 4
½
"$ ,
½
"$
3
¾
A "$ DX
! ! ! ! ! ! & ! ! ! !
!
&
* AO2F D ! 0 # ! 0
! & ! & + 4 ! ! ! & ! !
* ! & 0 ) # ! #
4 ! ! 0 ) ! +
" ) $ 3 " ) $
* ! & 0 ) # ! ! 4 ! ! 0 ) ! + " ) $ " ) $ " ) $ , * .& ! 4 & 0 )
# ! ! ! 0 ) EXAMPLES
/ ! # ! " $ !
*
! !
! ! # 4 * - -
© 2004 by CRC Press LLC
Section 7.3
*
645
Genus Distributions
! 4
%¾
! ! # 4 * - -
*
!
"
! ! # 4 * - -
*
! !
! ! # 4 *
- - - -
*
! 0
! ! # 4 *
"- F- C-F C - - $
*
! 0
! ! 4
" - - - $ ! & 0
! ! 4
" - - $
RESEARCH PROBLEM
1 /&,
* ! ! ! & # ! REMARK
1*
! & !+ & + ! & + &
! C
7.3.2 Counting Noncellular Imbeddings ! ! # ! 0 ! !
&
1 ! DEFINITIONS
* / + #!! !& !
* / !
© 2004 by CRC Press LLC
#!
646
Chapter 7
*
TOPOLOGICAL GRAPH THEORY
/ & ! !
! !
! !
*
/ & !
& #!! !
.4& + ! !
"
*
O& !
+ !
! 0
0 & ! ! #! 1
*
O& !
+
"
0
& ! ! ! ! ! ! !
* O& ! + !
! 0 0 & ! ! #! 1
FACTS
*
.& ! ! !
4 ! !
"
*
! ! 6 &
#! ! !
*
.& ! ! ( &
*
.& ! 0
! 4 ! !
*
! ! 6 & 0
#! ! ! ! ! &
*
/
!
! +
! ! ! ! + ! ! ! ! & !
!
EXAMPLES
*
! !
! & + !
C 3 F - -
Figure 7.3.3
© 2004 by CRC Press LLC
! + !
! 4
Section 7.3
647
Genus Distributions
*
.! ! # ¾ ! %& 2& %& # " + ! 0 $ ! + !
%& M
! + ! + F + . + F
$
* .! ! ! ! %& #
! ! N !
3 + ! 4 . 3 K + # ! ! " $ 4 K , F 3 C / ! + # FF
7.3.3 Genus Distribution Formulas for Special Classes .& ! ! & + # ! & !4 # M ! &
! DEFINITIONS
* ! 6 ! ! ! ( ! ! ! !+ 2
Figure 7.3.4
' ' 6
* ! 7 ! ! & ! 0& ! ( + 2 K
Figure 7.3.5
© 2004 by CRC Press LLC
&& 7
648
Chapter 7
TOPOLOGICAL GRAPH THEORY
* ! . % ! ! #! & 0
+ 2 C
+, &.
Figure 7.3.6 FACTS
* A2OFHD ! 0 !& ! # ! *
"6 $ 3
-
½
,
! #
! # ! # !
!
6 6 6 F - C 6 C F 6 FF K C F -
C C KC -
*
A2OFHD ! ! !& ! # ! *
"7 $ 3
,
-
! # ! # !
! ! 7 C 7 C C 7 C F C 7 KC - C HC
*
AO FHD ! 4 !& ! # ! 0 *
"% $ 3 " $X #! !
"$ 3 8
8Y
"$
8 ! + " & $ $ A8 3 ! Æ $ D
#! ! % !
© 2004 by CRC Press LLC
Section 7.3
649
Genus Distributions
& ! & + #!! & 1
67
7 6 , - & 2 + A!OHD ! + ! !
Figure 7.3.9 2
*
#! ! + 2 -
! = > &
7
Figure 7.3.10 *&&
* 1 + 2 ! # ! # ! C M ! !
Figure 7.3.11 / ,& !
: R G
.! ! ! ! ! & ! 0
© 2004 by CRC Press LLC
Section 7.3
653
Genus Distributions
+
& ! " ! ! $0 4&
+ 2
Figure 7.3.12
! , ,
7.3.5 The Unimodality Problem DEFINITIONS
*
/ 4
"
! ! ! ½ / ·½ / & #!
* / 4
4 4 FACTS
*
/ 4 % ! + 2
Figure 7.3.13
*
# , . ! ,- ,
A7 O D / 4& !
© 2004 by CRC Press LLC
¾ ·½
½
/
654
Chapter 7
*
A2OFHD
TOPOLOGICAL GRAPH THEORY
! & 0 !
*
A2OFHD
! & ! 0
*
AO
FHD
! & 4
REMARKS
1
*
+
; & ! ! 4 % ! +
! , ! !
! +
& +
! ! ! ! 4 %
! ! 4
,
#!! 4
1
*
AHD
! !
& !
+
1
*
AH-D
! ! 4 %
! 4
!
! !
RESEARCH PROBLEM
1 /&,
* #! ! ! & !
7.3.6 Average Genus DEFINITIONS
*
!
! +
"$+ ! & & !
! + 1 &
* ! ! + $"$+ ! , ? !
! !
*
AO7HD /
"* 0$ * , 00
* 6 ! 0
! ! 0 & !
*
G ! ; ! #
!
# # # & # ! ! # ! ! # # & !
*
;
!
! # # & 3 ! & 3 ! !
! ! 0
3
© 2004 by CRC Press LLC
Section 7.3
655
Genus Distributions
* ; ! * 0 ! ! ! + ! # ! #
GENERAL FACTS ABOUT AVERAGE GENUS
*
AO7HD ! & ! #! & !
*
AO7HD ! & ! ! &
!
"*
A!OHKD 2 0 !
*
+
"$ "$
A!OHKD 2 0 !
! ! +
"$ C $ "$
*
A!HD
! ! & ! &
*
AO2F D ! & ! 0 # !
4 "$ , ") $
* A!OHD G 0 !+
! !
"$
" $
)
!
"$ ,
FACTS ABOUT SMALL VALUES OF AVERAGE GENUS
* / ! ! & -
! ! & ! # AI ;! D
* *
! 1
! # AS HD
AO7HD ! & 1 "* 0$
© 2004 by CRC Press LLC
656
Chapter 7
TOPOLOGICAL GRAPH THEORY
* AO7HD .! !
& & (
1 2 ! & ! # ! ( ! !
Figure 7.3.14 1 8 ! - , 6 6
! 6
* A!OHD . 1 + ! ! 0 ! &
! ! 4 %¿ + ! " + ! ! !& &
K C
F
& 2 K ! # ! ! %& ! ! ! &
Figure 7.3.15 6 '
( 6
"* 2 H !
% ! &
! * A!OHD
! ! 0 ! #! & 4
Figure 7.3.16 '
( 6 .
FACTS ABOUT CLOSE VALUES OF AVERAGE GENUS
* AO7HD / ! ! 0 !
!& ! &
© 2004 by CRC Press LLC
Section 7.3
*
A!OHD 2 !
&
!
*
657
Genus Distributions
*
A!OHD 2 !
!& &
!
*
*+
% 0 ! !&
*+ % 0 !
FACTS ABOUT LIMIT POINTS OF AVERAGE GENUS
*
AO7HD
! !
&
&
*
A!OHD
!
& & 0 ! !
*
A!OHD
!
& & 0
! !
*
A!OHKD G # &
REMARKS
1
*
2 & +
!
1
*
/ & & AHCD+ AHHD+ AHKD+
AHKD
7.3.7 Stratification of Imbeddings 6 !
M
! ! #! ! # & !
!
DEFINITIONS
:½ : ! ! ! ! & 0 Æ : : * # ! ! ! ! ! ! & ! 0 : : * 2 ! + ! ! ! ! 06 ! 06 "* ! ! ! !
! * / ! ! & ! !
*
#
! &
M & !
! !
FACTS
*
!
© 2004 by CRC Press LLC
"$
658
Chapter 7
TOPOLOGICAL GRAPH THEORY
"* AO HD ! ! % !+ ! + !
* AOHD ! !& ! * AOHD I +
!
0 + & ! ! ! #
* AO HKD 2 & & ! % ! + ! ! !
! & ! ! REMARKS
1*
! #! A !FHD+ #!! & ! ! I 0
1* ! #! A2OOFFD+ #!! ! 0 0 ! 1"* AO HKD
! # # ! #!
!& 1 M ! % !
! !
! + ! !! 0
References A/$ ! + & ! ( !
7.4.1 Regular Voltage Graphs ! & ! ! / + & ! ! ! & ! !
& + ! ! 6 DEFINITIONS
! & ! # # AO D ! % ! ! K C &
*
G 3 " $ ! / ; * ! ! #! & ;"$
! * O! ! ! ! " $ ! * !
#! & & ! 3 " $ * % # * " $ 3 3 + ! " $ 3 3 ! & & + ! ! 3 " $ ;
;
;
! &
© 2004 by CRC Press LLC
#
#
3 "# $ ! &
3 " ;"$$
662
Chapter 7
TOPOLOGICAL GRAPH THEORY
E ! & ! % ! + ! ! ! ! & & ! ! + + ! & + " $ !
!
! ! &
& 0 +
* ! / " $ #! ! !
& ! & ; #
! & ! /! ! & " + ! $ &
+ +
# # !
! C+ ! #
EXAMPLES
*
2 ! # ! # ! !
! K K ! # 0
Figure 7.4.1
# 6
,
*
%
! *
2 "$ & ! ; * ! & !
Figure 7.4.2
+ 2
"$
# 6
, 6
.! 0 ! & ! 6 # #0& + ! ! 0
& # ! & + !
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
663
& 0 !
! ! & # & + ! ! 0 ! & !
#0& 0& ! ! 4 ! 0 + & - TERMINOLOGY
0 6 6
/
& ! &
0
& ! ! ! 0 ! & ! ! + ! & & #! ! · ·
!
! ! ! ! + #! " $ ! REMARK
1*
! & ! # ! + #!
Fibers DEFINITIONS
*
G ! & ! & ! 3 " $ ; * ! & 3 * ! $% &
+ ! 3 * ! $% &
* G 3 " $ ; * & ! ! ! ! & ! ! & ! & ! & & + ! " ! + ! 6 & = >$ EXAMPLE
7 * 2
+ ! #¼ #½ #¾ " $ "#! # # ! =#0& >$ ! & % & # ! ¼ ½ ¾ " $ "#! # # ! =0 >$ ! % & FACT
*
! % ! & ! ! ! & 0 ! & ! % + ! #! & + ! 0 ! & ! % + ! #! & Bouquets and Dipoles
2 + ! ! #! # &
© 2004 by CRC Press LLC
664
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
* *
! . % ! 0& ! #! 0
! " ! # 0& ! #! 6 ! # &
EXAMPLE
E ! ! & ! # #!
+ ! ! %
*
2 ! # ! 2 + ! & !+ % &
Figure 7.4.3
6
, 6
2 "$ & #! 0& % + 2 ! + # !& =
! > ! & % ! & !+ ! #
! & + # !&
! ! & ! 2 "$ & #! 0& " N ! #
& ! ! & ! & ! ! + #!
+ ! ! & ! ! ! % 6 & #! M ! 2 "$ & ! #
! ! ! #! 0& " ! ! / AO F D AOB HHD FACTS
*
! ! #! "$
0 ! ! & ! % ! 4 % #! &
& 0
* ! ! &
! & ! ! ! 4 % " !
2 $
* ! ! &
! & ! ! ! 4 % +
! ! ! &
© 2004 by CRC Press LLC
Section 7.4
665
Voltage Graphs
* ! ! &
&
- ! ! ! "
* ! 0 ! &
! & ¾ ! ! "
7.4.2 Net Voltages, Local Group, and Natural Automorphisms Net Voltages DEFINITIONS
* / #1+ ! & ! # ! !
0 ! ! ! &
* ! . #1 = 3 ¼ ½ ½ ¾ ! 4
& ½ + #! 3 ;" $ ;" $ ½ + #! ! & ! # 1# + &
"
* ! & ! ! ! & 4 EXAMPLE
7 * ; ! & ! 2 &
Figure 7.4.4
+ !
# 6
, 6
! #1 = 3 # # # ! & , - , 3 ; & ! ! #1 #¼ ¼ ½ ½ #½ ½ ¾ ! & !+ #!! # ! #1 = + ! & % & ! ! K The Local Group DEFINITION
* !
& & ! 3 " $ ; *
! ! ! & #1 !
& G
© 2004 by CRC Press LLC
666
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
*
A/O CD ! & + ! ! ! & & 0 + ! ! & 6 ! ! &
* A/O CD 2 & ! ; * + !
! & ! 4 ! A * G D ! ! &
*
A/O CD ! ! & !
!
EXAMPLE
7 *
! 2 "$ ! 0 #! & R ! ! # ¿ ! + ! #
! & ! REMARKS
1*
#
& * ! !+ ! ! ! & ! ! & * "! + ( ! + & 0 $ & ! & !
1
* ! ! ! # & A/O CD ! Natural Automorphisms
! ! ! ( & ! ! & ! DEFINITION
* G ; * & !+ > * & !
#
#
!
! + & # & ! !+ ! & # & ! & ! FACTS
AO F D
"*
! % & ! + ! & ! & ! ! & + & + #! ! % " ! ! % $
*
! & ! & #! ! & % & ! #! ! %
*
G ; * & ! / ! & ! ! & ! % & ! ! > G
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
667
EXAMPLE
7
* ! ! >!" 2 "$ 0 ! & ! ! & R
7.4.3 Permutation Voltage Graphs ! & ! AO D ! 6 ! + ! ! ! ! & ! ! "2 K$ DEFINITIONS
* G 3 " $ ! / Y ; * Y ! ! #! !
! ; Y
O! ! Y ! ! ;"$ ! * ! $Y %
#! & ! 3 " $ ; * Y % # * " $ 3 3 + ! "$ 3 3
! & # & ! ! 3 " $ ! & # 3 "# $ ! & 3 " ;" $$ EXAMPLE
*
2 K ! # Y0 & ! ! & !
Figure 7.4.5
9 : # ;¿'6 4 9 : 6
! % & 0
& # ! ! ! "# # # $+ ! & "$ ! % & 0
# 6 " $" $+ ! & "$"$ & # & ! !+ ! ! % &
! & % & # ! & % & + ! & #! ! & "$
© 2004 by CRC Press LLC
668
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
*
AO D .& ! & %
0 & ! 4 % "
A1FKD$
*
2 :5 R ! A:5 FD " 2 C K$+ # ! & 0 0 " , $0 ! %
& ! 4 % + 0 ! % &
*
/ ! & &
& & ! # ! ! ! !
REMARKS
1
* / ! + ! & 0 0 Y0 & ! & & 0% + ! #! & + 0% + ! #! / + 6
1
* 2! & ! & AO F D AOB HHD
1
* & ! # #! + #! ! ! & & & 2 & + ! & ! % 2 & + ! X &
1
* +
! 4 %¾ #! ! # ! "#! ! :6 $
! ! & ! ! 0 :6 ! ! & ! ! &,,% 3 !
7.4.4 Representing Coverings with Voltage Graphs & + & & ! %
& ! & 0 & ! & + ! ! !
+
! ! & ! & & ! ! & & % + ! Coverings and Branched Coverings of Surfaces DEFINITIONS
*
G 9 + 9 * 9 + ! ! ! # ! * .& ! ! !
? ! ! ! 9 "? $ ! ! 9 ? ! 9 * 9 ! 9
© 2004 by CRC Press LLC
Section 7.4
669
Voltage Graphs
*
G 9 * 9 & 6 2 ! ! &
+ ! 9 ½" $
*
9 % 9 ! ! G 9 + % 9 9 9 & 6 ! ! ! 9 * !% ! 9 * 9
! 9 ! %9 !
! ! !
EXAMPLES
*
! & 6 ! ! ! % & ! #$ #$ & + ! ! & ! 1 ! + #!! - ! !
* * *
!
! & ! A/-D .& ! & ! !
! ! 3 " $ @ * , , 3 - ! " $ " $ ! 4 ! ! ! & 6 ! 6 & & + ! ! & 6 ! # ! =
> ! = > & 6 !
5
REMARK
1*
! ! & ! ! + ! !
!
Using Voltage Graph Constructions
/ # & ! & ! FACTS
G 3 " $ ; * & ! !
* * *
"$ 3 "$
! ! #
"$ 3 "$
! % & & "$+ & & ! !
/ ! ! % ! & !+ ! # * & & ! % & & "$
! "/ ! #! 0
!& $
*
9 AO HD G + ! !
0& + !
& ! +
© 2004 by CRC Press LLC
670
Chapter 7
TOPOLOGICAL GRAPH THEORY
EXAMPLES
*
! ! & ! !+ # & ! ! ! ! - & K ! & &
- K K+
2 C+ # 1 ! #! &
! ! ! #! 2 + ! ! 0& + #!! # !
# ! '
! # + ! "¿ + 0 : 2 F+ ! ! ! ! & ! + ! # 2 C+ !
!
% $,
Figure 7.4.6
# 6
, ! /
; 1 0& ! !+ ! K : 2 H+ #
! & - ! 2 C ! # !
"
* : + # ! ! !
& & & ! ! & C +
! & &
: !
. H+ # # !
# ! !+ # # !
& /
- 0
! % 0
/
! & ! 0
0& C0 ! #! # 6 + #! 0 + Action of the Group of Covering Transformations
! % ! #!! & ! &
& ! 4 #! ! DEFINITIONS
* G 9 * 9 & 6 / ! ! 9
9 3 9 '
! ! ! ! + % ! %
"*
* / ) & & 6 9 * 9
) ! ! % 9 / ) & & 6 9 * 9
! % &
*
/ & 6 9 * 9 ! ! ! & ! + ! 9
© 2004 by CRC Press LLC
Section 7.4
671
Voltage Graphs
! ! = & ! > &
( ! ! 9 ! ! ! ! 9 ! & 6
+ + 0
#! (
EXAMPLE
! ! #$ #$ & ! + &
! % & & ! ! + ! & 6 !
"7 *
FACTS
"* AO D G ; & ! & !
! ! & !
* AO D G
( ! !+ 9 & ! ! ! ! ( ! & ! &
"=.& & ! ( &
>$
* AO D G ; & !
& !
! ! & !
* AO D G ( ! !+
9 & ! ! ! ! ( ! & ! &
"=.& & ! ( &
>$
* G ; & !+ #! & !
! ! & !
! ! & ! ! Y0 & ! ; Z + #! Z ! ! ! Y "=.& &
&
>$
* G ; & !+
! ! & + ! & ;"$ & ;"$ + ! ! & !
! ! & !
* G
9 * & 6 ! + ! ! ! ! & ! 9 * ! & ! 1 + #!! - ! ! ! - ! ! !
7.4.5 The Kirchhoff Voltage Law ; ! ! 7!! M & #
! ! & ! ( ! ! + & ( + ( ( !
© 2004 by CRC Press LLC
672
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
* G = 3 #1 & ! ; * + & 4 G ! ! #1 =
3 " $ " $ " $ "
! #1
*
=
$ " $ " $
G = 3 #1 & ! ; * Y + A A & 4 G ! ! #1
! #1
=
" $
A
A
" $
A
"A" $$
" "A" $$$
A
" "A " $$$
A
* G = #1 & ! ! & = ! ! & + ! # ! 0 $12% ! = FACTS
*
AO + O D G = #1 & ! ! 7!! M & # ! = + ! & = = #1 ! & !
* AO D G = #1 & ! ; * + #! & G !& ! & ! ! !
4 = =% =% =% #1 ! & !
N ! ! ! 2 F+ ! ! #1 = 0 ( 4 + ! + #!
#1 ! & ! ! #1 ! 0 =
* AO D G = #1 & ! ; * Y + #! & A G A !& ! & Y ! ! ! 4 = =& =& =& #1 ! & !
N ! ! ! 2 H+ ! ! #1 = 0 ( 4 + ! + #!
#1 ! & ! ! #1 ! 0 = + !
7.4.6 Imbedded Voltage Graphs & ! ! + ! + ! ! & ! & ! " $+ ! " K$+ " C$
© 2004 by CRC Press LLC
Section 7.4
673
Voltage Graphs
DEFINITIONS
* G [ ! #1 ! & ! ! ! [9 ! + #! [+ !
* G ; & ! ! ! ! ! " $ ! ! ; ?
+ ; ! + !
;
=
*
=
9 ! #1 ! & ! 0 G [ & ! ; ! 0 ! % 9 ! #1 [ "#! 4 ! ! ! ! #1$ ! !
* G ; & !
! 6 * ! + ! 6 9 ! ! ! "#! ! #1 ! $+ #! 2 F ! !
9
* "*
/ #! #1 ! ! 4 / #! #1 ! ! 4
FACTS
"*
G ; & ! ! ! & + ! & ? & + !
+ !
! &
* AO/ + O D G ; & ! ! 7!! M & # ! ! #1 & ! + ! ! 6 9 * 9 & 6 7EG ! + ! ! 6 ! &
EXAMPLES
*
2 ! # & ! #!! ! ! ! 4 %¾ + ! ! + ! & ! B ! & ! ! ! ! & ! ! + 7EG ! #1 ! + ! ! & ! ! ! + ! 6 & 6
Figure 7.4.7
9 : ,& 6 4 9 : 6 ,&
© 2004 by CRC Press LLC
674
Chapter 7
TOPOLOGICAL GRAPH THEORY
*
2 F ! # ! & ! #!! ! ! ! 4 %¾ ! & ! B + ! ! ! ! & ! ! !
Figure 7.4.8
# ,& 6
%
! ! + + # + 7EG !
! #1 ? + ! & ! #1 !
K ! B ! + ! ! & ! K
! +
! # K0 -0 ? ! 6 ! & 6 + #! ! ! ! . ! ! & 3 K -,+ # ! ! &
*
AO D .& \0 #! 3 1 3 1 01 3 0 0 1 0
! ! / & E ! !
!& & #! ! & !
7.4.7 Topological Current Graphs ! & ! # ! % " AO/ D AO D$ ! --0 0B
AB CFD "
A D$ ! 4&% ,2 $ , AQ *FH-D+ #!! ! !
& ! ! & & ! ! !& DEFINITIONS
* G ! #! & 0 0 + / ; ! & ;"$ ! ! ; + !
* G 3 " $ ; * ! ! & ! #! + ! ! "#!! & & & ! +
$ 2 ! + # % ; " $ 3 ;"$
&
* ! ; * ! ! & + ! + ! & ! ;
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
675
* G & ! ! ! ! + ! # ! 0 $/2% ! " + ! ! ! ) # 0 + ! ! ! $ EXAMPLE
* 2 H+ ! # ! # + #! ! ! ! !+ ! ! ! & #! ¾ # +
! 1 ! ; & ! 7EG ! ! ! & ! #! + 7G ! ! & ! !
Figure 7.4.9
6 ,& !,
REMARKS
1*
O R AOCD+ ! # 0 ! #! & # 1 #! & #1 ! & + #! # 1 #! 0 B O R = > "B R $ & !+ ! #! % + #! & ! ! &
& ! Q #
! 0 & # ! ! & ! #1 # " $ ! % 0 !
1"
* ! ! ! AO/ D ( ! & 0 ! 1 H % + 6 ! + # & ! #! 0 + % ! ! & ! !
& ! AO D ! ! + #!! & 00 4 ! + . H ! ! & ! AO D !
© 2004 by CRC Press LLC
676
Chapter 7
TOPOLOGICAL GRAPH THEORY
1
* ;! ( ! 6 ! & & !+ ! 6 ! ! & !
! !+ #!! & ! A CD ! 0 ! ! & ! ! ! # A
3 * ? $# @ ) 4
712
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
½
½
½
½
!
!
!
! !
" ! !
! ! ! #
!
$ ! ! %
! ! ! & '
()*'+ (,-*+ . ! ! ! !/
!
$ !
!
.!
0 /
! 1 2! !
()*'+
½ ½ 5
!
½¾
-34
/ !
6 ($ 7809+ ! !
#
(,*:+ 1 !
( !
4-
; & ' 3
! !
!!
!
> !
. !
'
!
¼ ½¾ ¼½¾½
1 ! !
!
> ? (>?4-+
© 2004 by CRC Press LLC
¿
! -399 !
4 4
!
Section 7.6
713
Maps
¾
"#$%"&#$% '
¾
!
(
) $ !
7.6.8 Enumeration * "+,% $#+)- .
/
"0 1,(% "2##%
! 3 "4#5%
DEFINITIONS
6
(
EXAMPLES
'
!
7
' 5+$+ !
( (
8
' 5+$+
9
Figure 7.6.16
© 2004 by CRC Press LLC
7
!
9
714
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
!" # $ %&'
(
) (
+ +
) $
*
·¾
¾
7.6.9 Paths and Cycles in Maps * *$* ,$
- .
/ 0
* $, $ / $ ,$ " $ $ 1 2 , "
DEFINITIONS
3
"
3 / , $, $ / , * . ,
* " 3
4 $ "
¼
¼
,
$
0
* ,"
© 2004 by CRC Press LLC
Section 7.6
715
Maps
EXAMPLE
¾
¾
Figure 7.6.17
FACTS
! "#
$
$
%
$
&"'# !
%
$
$
$
% $
! ( )
*+ ,'#
% -
$
! ( )
./",# 0
0 0 ) 1
2 3
%
./"# 3 4$
(
'
© 2004 by CRC Press LLC
716
Chapter 7
¼
!
#$ %
&!
¼
,
$
'
!" &
!"
!" !
¼
()#* +
!"
TOPOLOGICAL GRAPH THEORY
- ,
-
-
!" . /
, &! $
( 0 ! " 1
! ! ! $& ! $& ! $&
½ ¾
2#3 #$ .
!
4 -,
!
-
&
!!
! !
!
5 + 3*
½
#- " ! ! Æ ! " 5
½
! !" !
6
6
REMARK
&"
! !&!&7
8 !
/ !
References %#' 8 % 9 ! 9
3 -##' -':-#$
%3- % % 9! 5 ,& ! '&
¿
!
- -#3- ,--:,$
%(* % % ! ; ( - $ 2 /2 2
!"(!
630( + 60 > 302 % / 1
& '
30 0 ?- @7
((
6<(( + 6 = < .; $ 2 $ /
' '
&
' ((( '!"'!
4 4 A-( . A 6 -% . 2 $ ,0 ,0
((
'"
1 B ? 1 - B A% 0 $
&
! ! " !
1 B ? 1 - B A% 0 $ ,0 ,
"
.C ) . ? ,+ 0 * ,
%1 !"##($ 11-&1#
." 3 @ A ;0 , , , + , 0
" !%.."$
!
-&-%
. + * B + , +5 , ,
% # !"#.$ "%#&"
"" !"#.($
"# $ %
1 !"#%%$
C .( ) 5 >
)+ +
+ (&
%% ) 5 + + , "&"1#
'#. ; ' ) , , = + +
!"##.$ "
&"--
'#" ; ' '+ , 8+ + 0 7* 0 , D7
'#1 ; ' 60*+ ,
1%1 !"##"$ (. &(1
#
!"##1$ #&".
'#- ; ' ;+ * + , D7
-. !"##-$ (-&"..
'- 2 '
& '!&
> 0
E 3 "#-
'1 ' 2 '? #9
.' !'(0$ (%)''.
82 7 8 4 : 2- -
>@@? :
. !'((1$ %)%
8;(' 7 8 8 ;- A - B
' !'(('$ .1&).'(
8>(1 7 8 8 > 8 - %(/) /%
!"#!
" B 6 6C D 5 4 E -
2 2 +> " '((1
2(% 2 A F
'8 9
© 2004 by CRC Press LLC
+ # *#
) * *)* *)
758
Chapter 7
TOPOLOGICAL GRAPH THEORY
!" #$%#!&
'($! ) ' ) ( * +, ,
!&
#$$!" .&%/&
&. ) 0 1 ,
!&." #2%#.
3 4 35 6 7
/$
!" !/%!/
3! 4 35 8
!!
!!"
!./%!//
3 && 4 3 9 : * ; ',, ,
"
" ,,/% 6 :9 49 '9 2$
!&" /#%#
/! 4 /
? 6 @/&$$#? A @
!$" #/2&%#/.2
0# 0=9 > ; , , B; ,
/.
!#" !%#$
04& 0=9 4 ( > , = , , !2/
!." 2&%2
66 # : 6C 6
/
!#" !.&%!.
64/ : 6 4
4" .
-
!/" /&%&
6 4D$2 6 : 49 < D * +, 3 ,
,
6 4$2 6 : 49 * +, 3 , B; , ,,
© 2004 by CRC Press LLC
Section 7.8
759
Triangulations
!""
# $% #% &
!"
' ( &% )
)) ")!")
+ '" ' * ', + - &%% . % $$
/" ' 0 . % $%
)) /" 1!/
/) ' 0 .2 %2 $ 345$
"1 /) /!"
/) ' 67 15 5 $%
51
/)
8 ' ' 8 #
) !11
) ' # 9$
" )
!"
:1 ' ; : & < 25%
)" 1 !)
; ' ; ; =5
))
)!
/ ' # 9$ $$
) / "!)
' # 9$ 42
' >
) $ !)
) $ !
' # 9$ $ 5
) / !1
' ' ? '> 56
$ . %
)
/ !"
= ( = 8 % % @A % A % & # >
© 2004 by CRC Press LLC
!"
" " !"1
760
Chapter 7
TOPOLOGICAL GRAPH THEORY
!"#!" $ ! "! ! !" !
%% & ! ' ( ) "! !! (!# ! "! ( * +# !*
,%%- ./.%
! 0 ! !1 ( 2 ( " " 3 + ( (
* (
4
" 5 "1"6 "! # ( "$# 7# 8"( "! ! "$# !
). 9 ) 4 6" 1" $+ + +! ,.- :./:
© 2004 by CRC Press LLC
.
Section 7.9
7.9
761
Graphs and Finite Geometries
GRAPHS AND FINITE GEOMETRIES
Introduction !
" ! # $%
&
% " ! '
7.9.1 Finite Geometries % ( % ) ( ! DEFINITIONS
* + , & & %
* *
+
! "
, "
&
+ ,& +%% , + , " - " *
. /
. /
. % /
* * *
+ ,&0$01
-
+ ,&0$01 "
- -
+ ( ½ ¾,& 2 ) 0$01! / % / ! " " &2 + 2, % / ½ + ¾ , +%% ,
© 2004 by CRC Press LLC
762
Chapter 7
TOPOLOGICAL GRAPH THEORY
! " #
½ " $ ¾ #
! " #
%
& #
&
#
'
Æ
( $
& $ (
(
)
( $
( $
(
( * #
FACTS
+
,+,- ! " #.,+,- ! " #,-
¿
&
/
0 ( 0
'
* #
(
1
&
'
2 3 /
4 ) $
'
5 )6 )#" ( % 1 )
7,8209 +
# ' 2
$
1 )
' ¾ ¾ * * # #,+,- : ¾
( * * # ( Æ
© 2004 by CRC Press LLC
Section 7.9
763
Graphs and Finite Geometries
EXAMPLES
! " Æ
"
'
#
'
#
#
(
#
$
$
#%%&
$"# !
"# !
) * * * * +# !
, , + +- "#(%%& . /0 1 ¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
( "
&
* * * +# !
+ +- "#(%%& . /0 1
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
&
"
2 ! Æ $ " ¾ ¾ 3 3 "#%%& * 4 $ " # Æ +# " $# Æ $ $" 5#
! 4 6 " * $ " ¾ 3 3 ¾ 3 3 3 3 "#%%& * 4
2
$ " # +# " $#
4 6 Æ 6
¼
6" Æ
$ " $ "
© 2004 by CRC Press LLC
764
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
""# $ !
%
Figure 7.9.1
&
%
!! ' % (
) *%
" *
+ ( % ! , % * ! ! -. ! & *% ! % %
!
! )! * * ! /
,
! * %
0
1 *% 2 * ! &
+
)
%
+ * % % 1 1 4 & & 5 1 & - . 1 4 & - * ! ! + ! 3 !
! ( ¼
& - . .
¼
¼
# !! ! 3 !
+6
)! / & ! ! ! !
+ 7)
! - & % # !
+ % +
! *
+
/
/ +
+ / &
+ - /
-
&
+ +
/ -
+
& /
& +
-
-
+
+ /
7 * * ! 8!!
+ +
© 2004 by CRC Press LLC
Section 7.9
765
Graphs and Finite Geometries
7.9.2 Associated Graphs DEFINITIONS
½
!
"
! "
FACTS
# $#$%
&
"'" (
&
!)" *
! "
)"
+**,
- . * ! /
-
- .
) 0
/ - . * ! /
-
- .
1 . !$% "
# &
EXAMPLES
!
# &
/ /
2! (
2 /. &
/ / 3 "'" 4 * ! "!
2!
4 1 . / ! "
4! 5 ! "
& * 6 / 4 1 . !7$#$% 87 )" 9 5" 2:/ ! & 4!)"
© 2004 by CRC Press LLC
766
Chapter 7
Figure 7.9.2
¿
TOPOLOGICAL GRAPH THEORY
¿
´¿µ
7.9.3 Surface Models DEFINITIONS
!
"
#
!
!
$ % " & !
# #
#
#
% # %
%
% %
'%
FACTS (
$ % % %
# # #
! !
# )
© 2004 by CRC Press LLC
!
Section 7.9
767
Graphs and Finite Geometries
!" #$%&
!' ())& * +
+ ,
- -
!(./& 0
-
¾ 1 1 2
1
3 1 ¾ 1 1 ¾ 1 1
3
)
- 3
¾ 1 1
¾ 1 1
4
¾ · ·½
3 , 5- 3
¿
, !()& ,
3 3 3-
¾ 2 ) *77+
6
8
9 * ,
: 3 5- , 3
3 , 3 3 ; - 3
-
3 ,
, ; 8
- 5- 3 3 3 ;
EXAMPLES
:
3 4
-
<
'
<
3
<
' 6.
- " = 3
© 2004 by CRC Press LLC
¾ ¿
3 3
768
Chapter 7
Figure 7.9.3
TOPOLOGICAL GRAPH THEORY
¯ ¯ ¯ ! "# Ü$%& ' ( ) ' * + ( , - .
# " ' -
, $% ,
, $% , /
Ü$%" , $%
Figure 7.9.4
References
012%3 2 - 14 - 5 2 ' 6
" "%% 778% © 2004 by CRC Press LLC
Section 7.9
769
Graphs and Finite Geometries
!"# $"%&$'$
( ) * ( + , - .
+
!%/ # $'&$$0
+ 1
2 3 % !%/
# ' &''"
/0 4Æ . 5 3
!'# 6 !%//0# ''&00
%
7
, + % "%
" !""# $6/&$/'
© 2004 by CRC Press LLC
! "$$
770
Chapter 7
TOPOLOGICAL GRAPH THEORY
GLOSSARY FOR CHAPTER 7
!
© 2004 by CRC Press LLC
"
"
"
"
771
Chapter 7 Glossary
½ ·½
! "
#
$
$
Æ
¾ ½ ¾ ¾
%
© 2004 by CRC Press LLC
772
Chapter 7
TOPOLOGICAL GRAPH THEORY
½
½ ¾
½
¼
¾
!
"
¼
!
!
!
#
½ !
$
¾ !
$ $
$
!
!
$
© 2004 by CRC Press LLC
!
½
$
$
773
Chapter 7 Glossary
$ %
$
(
'
$ &
"#
½
!
)
$
*
$
+ $ !
!
$
/
,
© 2004 by CRC Press LLC
&
Ê
/
,
- .
,
/
/
774
Chapter 7
TOPOLOGICAL GRAPH THEORY
! " ! " ! ! # ! # $ % ! % ! ´ µ !! ! ! ! ! $ % ! % !
´µ !!
$
½
$ &'
¾
( *
)
) +
,
)!
,
!
,
-
-
)
. /
! %
!
!
© 2004 by CRC Press LLC
775
Chapter 7 Glossary
¼ ¼ ½ ½
¼ ½
¾
!
"#
$
%
½
'
'
(
'
'
)
%
)
%
&
(
© 2004 by CRC Press LLC
776
Chapter 7
TOPOLOGICAL GRAPH THEORY
½
!
"
# $
!
%
!
!
&
½
& ' &
! & '
(
(
*
)
+,-
© 2004 by CRC Press LLC
777
Chapter 7 Glossary
¾ ¾ ¾
!
! " # $
$ !
½ ¾ ½ ¾
¾
% &
¾
% "
© 2004 by CRC Press LLC
778
Chapter 7
TOPOLOGICAL GRAPH THEORY
¾ ¾ ¾
!
"
!
# !
!
! $ %
& '
(
$ Æ )
$ $
!
'
$
$ (
© 2004 by CRC Press LLC
$ *
779
Chapter 7 Glossary
!
!
"
## " $ $ $ $ $ $
% & ' (
)
© 2004 by CRC Press LLC
780
Chapter 7
TOPOLOGICAL GRAPH THEORY
½
·½
!
"#
½
!
"#
$
%
%
& '
*
&
(
$
$
)
· ·
&
· ·
&
+
+
,
© 2004 by CRC Press LLC
781
Chapter 7 Glossary
½
¾
½
½ ! ¾
! ½
! " "#
# # © 2004 by CRC Press LLC
782
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
! "!
$
# # !
$
%
Ê $
! &
' '
¼
Ê ¿
!
© 2004 by CRC Press LLC
¾
¾(
¾ ( ¾ ( ¾ ) "
783
Chapter 7 Glossary
!
"
# $
$ $
$
&
%
!
'
(
$ ) $
$
!
*
½
&
&
#
+
-
© 2004 by CRC Press LLC
,
+
½
!
+
½
784
Chapter 7
TOPOLOGICAL GRAPH THEORY
! ½ ¾ ¿ " ! " # !
$ % ½ ¾ ¿ ½¾¿ $ % "
© 2004 by CRC Press LLC
785
Chapter 7 Glossary
½
·½
¾ ¾ ¾ ¾ ! !
" ¾ ¾ !
!
#
¼ ½ ¾
$ %
$
& '
' (
& ¼ ½ ½ ¾ ½ & ½
© 2004 by CRC Press LLC
786
Chapter 7
TOPOLOGICAL GRAPH THEORY
© 2004 by CRC Press LLC
Chapter
8
ANALYTIC GRAPH THEORY 8.1
EXTREMAL GRAPH THEORY
8.2
RANDOM GRAPHS
8.3
RAMSEY GRAPH THEORY
! 8.4
THE PROBABILISTIC METHOD
" # GLOSSARY
© 2004 by CRC Press LLC
788
8.1
Chapter 8
ANALYTIC GRAPH THEORY
EXTREMAL GRAPH THEORY ! " #$! %!&' ( ) ! * + !& & , -!! & & . / 0 ' !1 2!! . 3 4 !& ! 5! ( ( &
Introduction / ! && %! ! 6!! / &! / !7! & ! 6!! ! 4&&!/ 8 ! ! %! 8 ! & / 7 8 ! & ! !9 & : ! ! ! 7! % % &! % ! !& % / 8 7 / !/ & ! &! !& ! ! 7 8 ! %!& % && !& / !7! & !' 8 ! !! / 8 & &!7! 8 &!6 8 ! & 8 / ; & & ! NOTATIONS AND CONVENTIONS
2 !&! 8 / 9 7 ?@ / %! 7 !& ? @ / %! 7 !& ?A B@ / ?A # B@ 8 A! ! > ?@ %! 8 7 7 / 8 ! -!!B 7 / !! / ! -!!
?@ ?@ 7 !& / ! /
© 2004 by CRC Press LLC
Section 8.1
789
Extremal Graph Theory
C?@ Æ ?@ ! !! / ! 7 / 8 D ? @ ! ! !/8 D
? @
! ! / E
%!& /
½
½
E
/
? @ D
¾
!F! /8
½ ¾
? &! @8 !8 !
% / F!!/ 7 7
D? @ !
? @ >
? @ % ! ! &
! !
/
¾
? @
?@
½
7 7
½ G ¾ $
¾ / %!
&! & /
!
DEFINITIONS
:
!7 /
8 %
! !
: 4 ! & / 7 !& &!6 /
:
!7 /
:
:
4 / !
?@
& &
!
8 ?@
7
& &
?@
?@ 6
8
! ! / &!6
! &!6 ! &
! ! %
& &!7!
/ !!&
/
! 7 !& 7 !
! !
&
EXAMPLES . ! !H & % %! % ! ! / %! %
:
.
?@
!! !/ &7 /
& / %!
7 !&
?@
!
6! !H ! ! ! ! / 8
:
! A 7 & & / %!
! /
&! & & %! !
7 !& B
! !
7 !& ! ! ! &
! / %! % ! !: ! ! ! !77!/ 7 !& 8 !! / 8 & &!7! 8 &!& & ? ! / & & @
8.1.1
Turán-Type Problems
6! ! ! / ! %!/ 6 ! : /!7
I
8
© 2004 by CRC Press LLC
?@
?@I
% ! ! !' /
6!7 8 % ! ! !'
&!
790
Chapter 8
ANALYTIC GRAPH THEORY
DEFINITION ! / !'
:
½
.
/
?@
7
? @ ! &
&!
/
! & 8 !!
! 9 ! &
6 & !! /8 J? @
J? @ %!&
½
?@
? @
>
&
? @
6 & &
½
! / !
!! ! /
Turán’s Theorem and Its Extensions !7!/ & /
!
&
DEFINITIONS
:
.
! /
?@
! &
!
/ % & 6 !
:
?@
! !' /
?@
FACTS
:
G
>
?3
@8 ?@
8
& &!!
?@
>
"
?@
:
?@8
?@
!
"
8 >
?@
!
K !
?@ "
8
> ?@ ! 8 ?@ > ? ?@@ &
?@ ?@K
?@
/ 8 ! ! / ?@8 & ? @ ? @ 7 ?@ ! & /8 & ? @ ? @ ?@
? @
!
> ?@
:
& &!!
G
>
?@
!"##
7
<M,,=8
>
# $
?@
© 2004 by CRC Press LLC
? ?@ G @ · ? @ ! ! Æ&! / -% 7 8 L& // ! ! ! 8 / % %
& !
$: $:
N !$!7 % L& * 7
! L& + &9 &F & N 3 ! !Æ& 6 ! ! Æ ? @ ½ ?@ ?@ ? 8 /8 ?@ ! & ! . ?@ ! ! 7 4 / > ?@ ! & ! . ?@ > " + , ?@
( . . 1
: 7 ?& " @ 0 ?@8 & ? Æ @ ! ! %
?@ C? @ C
Applications of the Uniformity and Blow-up lemmas
2!! . N% . % ! / E % ! !&! 8 ! &8 &! ! &! ! !/ % FACTS
):
. & 2". &"#
<M0 = L 7 3 ! > ? @8 & !
> ?@ Æ ?@
G
/ &! % -!! & &
)+: 9 B ? 2@8 & ! ! / 2 %! *? @ >
> ?2@ Æ ?@
G 2
/ &! &
):
. & 2". &"# <M3= . / 2 *? @ > ! > ? @ > ? @ & ! > ?2@ Æ ?@
2 G
&! &
):
. & 2". &"#
<M3= L 7 38 ! & 8 7 / > ?@ %! Æ ?@ ? G @ &! 7 & C ? @ /
8.1.10 Asymptotic Enumeration 4 !!/!/ 6 ! ! % / %! /!7 ! L & ! ! !$ A ! B A !& / !!& B !& % 7 ! DEFINITIONS
:
4 ! / ! & !!
© 2004 by CRC Press LLC
Section 8.1
805
Extremal Graph Theory
: 4 / / ! & /
! / !! / 7
: 4 / / ! & !& /
! / !! / 7
:
L / / 8 / > : / ?@ > / ! 7
?/ @ > ?/ / @
: . 3 ! / 4 / ! & ? @ ! ! 7 !& & & ! &8 7 !& & %! & & &!6 & 8 ! %!
: ?/ @ ! / ! / ! / & 8 ! / &! 7 ? @ & / NOTATION
!7 ! / 8 ? / @ ! / ! / > ?@ %!& ! / > ?@ %! ? @ > ? @ 0 ? @ 0 ?@ > 8 7 / %! / /
FACTS
) . # . $-#
:
G +?@
): . . $2 2 / ! /!7 !&
/ 2 >
)
G
G +?@
##. ?2. $-#
: <M ( ,= L 7 / ?@ 2 &!& / ?@ !
2
>
):
4 / ! ! ! ! 6 & / & / ! & &! / 7!/ / !!&
):
4 / ! ! ! ! ! 6 & / & / ! & &! / 7!/ !& / !!& &!/ ?/ @ ! & ! & 3 ! ? @ &
© 2004 by CRC Press LLC
806
Chapter 8
) : ?2 &8
?@
%
> 3 8
< 0= !
.
%! !&
>
> ? G
ANALYTIC GRAPH THEORY
&
! /!7
¾ +?@@
)): ?2 &8 < 0=8 < 0= L!
8 B
/
! A !& / !!&
? / @
!
>
/
?/ @
++: 9
!
?/ @
!
+: &-# #