Springer Series in
solid-state sciences
170
Springer Series in
solid-state sciences Series Editors: M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. St¨ormer The Springer Series in Solid-State Sciences consists of fundamental scientif ic books prepared by leading researchers in the f ield. They strive to communicate, in a systematic and comprehensive way, the basic principles as well as new developments in theoretical and experimental solid-state physics.
Please view available titles in Springer Series in Solid-State Sciences on series homepage http://www.springer.com/series/682
Sitangshu Bhattacharya Kamakhya Prasad Ghatak
Fowler-Nordheim Field Emission Effects in Semiconductor Nanostructures
With 79 Figures
123
Dr. Sitangshu Bhattacharya Indian Institute of Science, Ctr. Electronics Design and Technology Nano Scale Device Research Laboratory Bangalore, India
[email protected] Professor Dr. Kamakhya Prasad Ghatak University of Calcutta, Department of Electronic Science Acharya Prafulla Chandra Rd. 92, 700009 Kolkata, India
[email protected] Series Editors: Professor Dr., Dres. h. c. Manuel Cardona Professor Dr., Dres. h. c. Peter Fulde∗ Professor Dr., Dres. h. c. Klaus von Klitzing Professor Dr., Dres. h. c. Hans-Joachim Queisser Max-Planck-Institut f¨ur Festk¨orperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany ¨ Physik komplexer Systeme, N¨othnitzer Strasse 38 Max-Planck-Institut fur 01187 Dresden, Germany
∗
Professor Dr. Roberto Merlin Department of Physics, University of Michigan 450 Church Street, Ann Arbor, MI 48109-1040, USA
Professor Dr. Horst St¨ormer Dept. Phys. and Dept. Appl. Physics, Columbia University, New York, NY 10027 and Bell Labs., Lucent Technologies, Murray Hill, NJ 07974, USA
Springer Series in Solid-State Sciences ISSN 0171-1873 ISBN 978-3-642-20492-0 e-ISBN 978-3-642-20493-7 DOI 10.1007/978-3-642-20493-7 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011942324 © Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specif ic statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
This book is dedicated to Mr. Ishwar Prasad Bhattacharya and Mrs. Bela Bhattacharya, parents of the first author, and Late Dr. Abhoyapada Ghatak and Mrs. Mira Ghatak, parents of the second author
•
Preface
With the advent of modern quantized structures in one, two, and three dimensions (such as quantum wells, nipi structures, inversion and accumulation layers, quantum well superlattices, carbon nanotubes, quantum wires, quantum wire superlattices, quantum dots, magneto inversion and accumulation layers, quantum dot superlattices, etc.), there has been a considerable interest to investigate the different physical properties of not only such low-dimensional systems but also the different nanodevices made from them and they unfold new physics and related mathematics in the whole realm of solid state sciences in general. Such quantum-confined systems find applications in resonant tunneling diodes, quantum registers, quantum switches, quantum sensors, quantum logic gates, quantum well and quantum wire transistors, quantum cascade lasers, high-resolution terahertz spectroscopy, single electron/molecule electronics, nanotube-based diodes, and other nanoscale devices. At field strengths of the order of 108 V/m (below the electrical breakdown), the potential barriers at the surfaces of different materials usually become very thin resulting in field emission of the electrons due to the tunnel effect. With the advent of Fowler–Nordheim field emission (FNFE) in 1928 [1, 2], the same has been extensively studied under various physical conditions with the availability of a wide range of materials and with the facility for controlling the different energy band constants under different physical conditions and also finds wide applications in solid state and related sciences [3–39]. It appears from the detailed survey of almost the whole spectrum of the literature in this particular aspect that the available monographs, hand books, and review articles on field emission from different important semiconductors and their quantum-confined counterparts have not included any detailed investigations on the FNFE from such systems having various band structures under different physical conditions. The research group of A.N. Chakravarti [38, 39] has shown that the FNFE from different semiconductors depends on the density of states function (DOS), velocity of the electrons in the quantized levels, and the transmission coefficient of the electron. Therefore, it assumes different values for different systems and varies with the electric field, the magnitude of the reciprocal quantizing magnetic field under magnetic quantization, the nanothickness in quantum wells, wires, and dots, the vii
viii
Preface
quantizing electric field as in inversion layers, the carrier statistics in various types of quantum-confined superlattices having different carrier energy spectra and other types of low-dimensional field-assisted systems. The present monograph is divided into three parts. The first part consists of four chapters. In Chap. 1, the FNFE has been investigated for quantum wires of nonlinear optical, III–V, II–VI, bismuth, IV–VI, stressed materials, Te, n-GaP, PtSb2 , Bi2 Te3 , n-Ge, GaSb, and II–V semiconductors on the basis of respective carrier energy spectra. Chapter 2 deals with the field emission from III–V, II–VI, IV–VI, and HgTe/CdTe quantum wires superlattices with graded interfaces have been studied. The same chapter also explores the FNFE from quantum wire effective mass superlattices of aforementioned constituent materials. In Chap. 3, the FNFE from nonlinear optical, III–V, II–VI, bismuth, IV–VI, stressed semiconductors, Te, n-GaP, PtSb2 , Bi2 Te3 , n-Ge, GaSb, and II–V compounds under strong magnetic quantization has been studied. In Chap. 4, the FNFE from III–V, II–VI, IV–VI, and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices of the aforementioned constituent materials under magnetic quantization have also been investigated. The Part II contains the solo Chap. 5 and investigates the influence of light waves on the FNFE from III–V compounds covering the cases of magnetic quantization, quantum wires, effective mass superlattices under magnetic quantization, superlattices with graded interfaces in the presence of quantizing magnetic field, quantum wire effective mass superlattices, and also quantum wire superlattices of the said materials with graded interfaces on the basis of newly formulated carrier energy spectra. Chapter 6 of the last part deals with the FNFE from quantum confined optoelectronic semiconductors in the presence of external intense electric fields. It appears from the literature that the investigations have been carried out on the FNFE under the assumption that the band structures of the semiconductors are invariant quantities in the presence of intense electric fields, which is not fundamentally true. The physical properties of nonparabolic semiconductors in the presence of strong electric field which changes the basic dispersion relation have relatively been less investigated [40]. Chapter 6 explores the FNFE from ternary and quaternary compounds in the presence of intense electric fields on the basis of electron dispersion laws under strong electric field covering the cases of magnetic quantization, quantum wires, effective mass superlattices under magnetic quantization, quantum wire effective mass superlattices, superlattices with graded interfaces in the presence of quantizing magnetic field, and also quantum wire superlattices of the said materials with graded interfaces. Chapter 7 contains different applications and brief review of the experimental results. In the same chapter, the FNFE from carbon nanotubes in the presence of intense electric field and the importance of the measurement of band-gap of optoelectronic materials in the presence of light waves have also been discussed. Chapter 8 contains conclusion and future research. Besides, 200 open research problems have been presented which will be useful for the researchers in the fields of solid state and allied sciences, in general, in addition to the graduate courses on electron emission from solids in various academic departments of many
Preface
ix
Institutes and Universities. We expect that the readers of this monograph will not only enjoy the investigations of the FNFE for a wide range of semiconductors and their nanostructures having different energy-wave vector dispersion relation of the carriers under various physical conditions as presented in this book but also solve the said problems by removing all the mathematical approximations and establishing the appropriate uniqueness conditions, together with the generation of all together new research problems, both theoretical and experimental. Each chapter except the last two contains a table highlighting the basic results pertaining to it in a summarized form. It is needless to say that this monograph is based on the iceberg principle [41] and the rest of which will be explored by the researchers of different appropriate fields. It has been observed that still new experimental investigations of the FNFE from different semiconductors and their nanostructures are needed since such studies will throw light on the understanding of the band structures of quantized structures which, in turn, control the transport phenomena in such k space asymmetric systems. We further hope that the readers will transform this book into a standard reference source in connection with the field emission from solids to probe into the investigation of this particular research topic.
Acknowledgments Acknowledgment by Sitangshu Bhattacharya: I express my gratitude to my teacher S. Mahapatra at the Centre for Electronics Design and Technology at Indian Institute of Science, Bangalore, for his academic advices. I offer special thanks for having patient to my sister Ms. S. Bhattacharya and my beloved friend Ms. R. Verma and for standing by my side at difficult times of my research life. I am indebted to the Department of Science and Technology, India, for sanctioning the project and the fellowship under ”SERC Fast Track Proposal of Young Scientist” scheme 20082009 (SR/FTP/ETA-37/08) under which this monograph has been completed. As always, I am immensely grateful to the second author, my friend, philosopher, and PhD thesis advisor. Acknowledgment by Kamakhya Prasad Ghatak: I am grateful to A.N. Chakravarti, my PhD thesis advisor and mentor who convinced an engineering graduate that theoretical semiconductor physics is the confluence of quantum mechanics and statistical mechanics, and even to appreciate the incredible beauty, he placed a stiff note for me to understand deeply the Course of Theoretical Physics, the Classics of Landau–Lifshitz together with the two volume Classics of Morse– Feshbach 35 years ago. I am also indebted to P.K. Choudhury, M. Mitra, T. Moulick, and S. Sarkar for creating the interest in various topics of Applied Mathematics in general. I consider myself to be rather fortunate to learn quantum mechanics directly from the Late C.K. Majumdar of the Department of Physics of the University of Calcutta. I express my gratitude to M. Green, D.J. Lockwood, A.K. Roy, H.L. Hartnagel, Late P.N. Robson, D. Bimberg, W.L. Freeman, and W. Schommers
x
Preface
for various academic interactions spanning over the last two decades. I am grateful to S.N. Sarkar, EX-Head of my Department, who has been playing a supportive role in my academic career. The well-known scientist Late P.N. Butcher has been the main driving force since 1985 before his demise with respect to our scripting the new series in band structure-dependent properties of nanoscale materials. He strongly influenced me regarding it and to satisfy his desire, myself with the prominent members of my research team wrote the Einstein Relation in Compound Semiconductors and Their Nanostructures, Springer Series in Materials Science, vol. 116, 2009, as the first one, Photoemission from Optoelectronic Materials and Their Nanostructures, Springer Series in Nanostructure Science and Technology, 2009, as the second one, Thermoelectric Power in Nanostructured Materials: Strong Magnetic Fields, Springer Series in Materials Science, vol. 137, 2010, as the third one, and the present monograph as the fourth one. I am grateful to R.K. Poddar, Ex-Vice Chancellor of the University of Calcutta, S.K. Sen, Ex-Vice Chancellor of Jadavpur University, and D.K. Basu, Ex-Vice Chancellor of Burdwan and Tripura Universities, the three pivotal persons in my academic career, Myself and D.De are grateful to UGC, India for sanctioning the research project (No-F 40-469/2011(SR)) in this context. Besides, D. De and myself are grateful to DST, India for sanctioning the fellowship SERC/ET-0213/2011. My wife and daughter deserve a very special mention for forming the backbone of my long unperturbed research career. I offer special thanks to P.K. Sarkar of Semiconductor Device Laboratory, S. Bania of Digital Electronics Laboratory, and my life-long time tested friend B. Nag of Applied Physics Department for always standing by me and consoling me at turbulent times. Joint acknowledgments: Dr. C. Ascheron, Executive Editor Physics, SpringerVerlag, is our constant source of inspiration since the inception of our first book from Springer-Verlag and we are grateful to him for his priceless technical assistance and right motivation. We owe truly a lot to Ms. A. Duhm, Associate Editor Physics, Springer, and Mrs. E. Suer, assistant to Dr. Ascheron. We are indebted to Dr D. De, the prominent member of our research group for his academic help. We offer special thanks to S.M. Adhikari, S. Ghosh, and N. Paitya for critically reading the manuscript. The production of error-free first edition of any book from every point of view permanently enjoys the domain of impossibility theorems although we are open to accept constructive criticisms for the purpose of their inclusion in the future edition, if any. Bangalore Kolkata July 2011
S. Bhattacharya K.P. Ghatak
References
xi
References 1. R.H. Fowler, L. Nordheim, Proc. Roy. Soc. London A 119, 173 (1928) 2. A. Van Der Ziel, Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, 1957), p. 176 3. B. Mitra, K.P. Ghatak, Phys. Lett. A, 357, 146 (1990) 4. B. Mitra, K.P. Ghatak, Phys. Lett. A 142A, 401 (1989) 5. K.P. Ghatak, M. Mondal, J. Mag. Mag. Mat. 74, 203 (1988) 6. K.P. Ghatak, B. Mitra, Phys. Lett. 156A, 233 (1991) 7. K.P. Ghatak, A. Ghosal, S.N. Biswas, M. Mondal, Proc. SPIE 1308, 356 (1990) 8. V.T. Binh, Ch. Adessi, Phys. Rev. Lett. 85, 864 (2000) 9. R.G. Forbes, Ultramicroscopy 79, 11 (1999) 10. J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys. 45, 487 (1973) 11. J.M. Beebe, B. Kim, J.W. Gadzuk, C.D. Frisbie, J.G. Kushmerick, Phys. Rev. Lett. 97, 026801 (1999) 12. Y. Feng, J.P. Verboncoeur, Phys. Plasmas 12, 103301 (2005) 13. W.S. Koh, L.K. Ang, Nanotechnology 19, 235402 (2008) 14. M. Razavy, Quantum Theory of Tunneling (World Scientific, Singapore, 2003) 15. S.I. Baranchuk, N.V. Mileshkina, Sov. Phys. Solid State 23, 1715 (1981) 16. P.G. Borzyak, A.A. Dadykin, Sov. Phys. Docklady 27, 335 (1982) 17. S. Bono, R.H. Good, Jr., Surf. Sci. 134, 272 (1983) 18. S.M. Lyth, S.R.P. Silva, Appl. Phys. Lett. 90, 173124 (2007) 19. C. Xu, X. Sun, Int. J. Nanotechnol. 1, 452 (2004) 20. S.D. Liang, L. Chen, Phys. Rev. Lett. 101, 027602 (2008) 21. E.C. Heeres, E.P.A.M. Bakkers, A.L. Roest, M. Kaiser, T.H. Oosterkamp, N. de Jonge, Nano Lett. 7, 536 (2007) 22. L. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, M. Coulter, Appl. Phys. Lett. 82, 1096 (2003) 23. S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, J. Appl. Phys. 95, 3711 (2004) 24. N.N. Kulkarni, J. Bae, C.K. Shih, S.K. Stanley, S.S. Coffee, J.G. Ekerdt, Appl. Phys. Lett 87, 213115 (2005) 25. K. Senthil K. Yong, Mat. Chem. Phys. 112, 88 (2008) 26. R. Zhou, H.C. Chang, V. Protasenko, M. Kuno, A.K. Singh, D. Jena, H. Xing, J. Appl. Phys. 101, 073704 (2007) 27. K.S. Yeong, J.T.L. Thong, J. Appl. Phys. 100, 114325 (2006) 28. C.H. Oon, S.H. Khong, C.B. Boothroyd, J.T.L. Thong, J. Appl. Phys. 99, 064309 (2006) 29. B.H. Kim, M.S. Kim, K.T. Park, J.K. Lee, D.H. Park, J. Joo, S.G. Yu, S.H. Lee, Appl. Phys. Lett. 83, 539 (2003) 30. Z.S. Wu, S.Z. Deng, N.S. Xu, J. Chen, J. Zhou, J. Chen, Appl. Phys. Lett. 80, 3829 (2002) 31. Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005) 32. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83, 144 (2003) 33. S. Bhattacharjee, T. Chowdhury, Appl. Phys. Lett. 95, 061501 (2009) 34. S. Kher, A. Dixit, D.N. Rawat, M.S. Sodha, Appl. Phys. Lett. 96, 044101 (2010) 35. I. Shigeo, W. Teruo, O. Kazuyoshi, T. Masateru, U. Satoshi, N. Norio, J. Vac. Sci. Technol. B: 13, 487 (2009) 36. C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47, 5248 (2009) 37. Q. Fu, A.V. Nurmikko, L.A. Kolodziejski, R.L. Gunshor, J.W. Wu, Appl. Phys. Lett. 51, 578 (2009) 38. C. Majumdar, M.K. Bose, A.B. Maity, A.N. Chakravarti, Phys. Stat. Sol. (b) 141, 435 (1987) 39. M.K. Bose, C. Majumdar, A.B. Maity, A.N. Chakravarti, Phys. Stat. Sol. (b) 143, 113 (1987) 40. P.K. Chakraborty, S. Choudhury, K.P. Ghatak, Phys. B 387, 333 (2007) 41. A. Pais, J. Robert, Oppenheimer (Oxford University Press, Oxford, 2006), p. xviii
•
Contents
Part I
Fowler–Nordheim Field Emission from Quantum Wires and Superlattices of Nonparabolic Semiconductors
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.1 The Field Emission from Quantum Wires of Nonlinear Optical Semiconductors . . . .. . . . . . . . . . . . . . . . . . . . 1.2.2 The Field Emission from Quantum Wires of III–V Semiconductors .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.3 The Field Emission from Quantum Wires of II–VI Semiconductors .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.4 The Field Emission from Quantum Wires of Bismuth . . . . . . 1.2.5 The Field Emission from Quantum Wires of IV–VI Semiconductors .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.6 The Field Emission from Quantum Wires of Stressed Semiconductors .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.7 The Field Emission from Quantum Wires of Tellurium .. . . . 1.2.8 The Field Emission from Quantum Wires of Gallium Phosphide . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.9 The Field Emission from Quantum Wires of Platinum Antimonide . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.10 The Field Emission from Quantum Wires of Bismuth Telluride . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.11 The Field Emission from Quantum Wires of Germanium.. . 1.2.12 The Field Emission from Quantum Wires of Gallium Antimonide . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.2.13 The Field Emission from Quantum Wires of II–V Materials . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
3 3 7 7 11 18 19 24 26 28 29 31 32 34 37 38 xiii
xiv
Contents
1.3 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1.4 Open Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
39 53 63
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 71 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 71 2.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 72 2.2.1 The Field Emission from III–V Quantum Wire Superlattices with Graded Interfaces . . . . .. . . . . . . . . . . . . . . . . . . . 72 2.2.2 The Field Emission from II–VI Quantum Wire Superlattices with Graded Interfaces . . . . .. . . . . . . . . . . . . . . . . . . . 77 2.2.3 The Field Emission from IV–VI Quantum Wire Superlattices with Graded Interfaces . . . . .. . . . . . . . . . . . . . . . . . . . 82 2.2.4 The Field Emission from HgTe/CdTe Quantum Wire Superlattices with Graded Interfaces .. . . . . . . . . . . . . . . . . . 87 2.2.5 The Field Emission from Quantum Wire III–V Effective Mass Superlattices .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 92 2.2.6 The Field Emission from Quantum Wire II–VI Effective Mass Superlattices .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 94 2.2.7 The Field Emission from Quantum Wire IV–VI Effective Mass Superlattices .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 96 2.2.8 The Field Emission from Quantum Wire HgTe/CdTe Effective Mass Superlattices . . . . . . . . . . . . . . . . . . . . 99 2.3 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 101 2.4 Open Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 106 3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2 Theoritical Background .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.1 The Field Emission from Nonlinear Optical Semiconductors Under Magnetic Quantization .. . . . . . . . . . . . . 3.2.2 The Field Emission from III–V Semiconductors Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.3 The Field Emission from II–VI Semiconductors Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.4 The Field Emission from Under Bismuth Magnetic Quantization . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.5 The Field Emission from IV–VI Semiconductors Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.6 The Field Emission from Stressed Semiconductors Under Magnetic Quantization .. . . . . . . . . . . . .
109 109 110 110 112 119 119 124 129
Contents
xv
3.2.7
The Field Emission from Tellurium Under Magnetic Quantization . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.8 The Field Emission from n-Gallium Phosphide Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.9 The Field Emission from Platinum Antimonide Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.10 The Field Emission from Bismuth Telluride Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.11 The Field Emission from Germanium Under Magnetic Quantization . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.12 The Field Emission from Gallium Antimonide Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.2.13 The Field Emission from II–V Semiconductors Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.3 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 3.4 Open Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4.2.1 The Field Emission from III–V Superlattices with Graded Interfaces Under Magnetic Quantization . . . . . . 4.2.2 The Field Emission from II–VI Superlattices with Graded Interfaces Under Magnetic Quantization . . . . . . 4.2.3 The Field Emission from IV–VI Superlattices with Graded Interfaces Under Magnetic Quantization . . . . . . 4.2.4 The Field Emission from HgTe/CdTe Superlattices with Graded Interfaces Under Magnetic Quantization . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4.2.5 The Field Emission from III–V Effective Mass Superlattices Under Magnetic Quantization . . . . . . . . . . . . . . . . . 4.2.6 The Field Emission from II–VI Effective Mass Superlattices Under Magnetic Quantization . . . . . . . . . . . . . . . . . 4.2.7 The Field Emission from IV–VI Effective Mass Superlattices Under Magnetic Quantization . . . . . . . . . . . . . . . . . 4.2.8 The Field Emission from HgTe/CdTe effective mass superlattices under magnetic quantization . . . . . . . . . . . . . 4.3 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 4.4 Open Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
130 131 133 135 136 138 139 140 152 153 157 157 157 157 161 165
168 172 173 175 177 178 181 184
xvi
Part II
Contents
Fowler–Nordheim Field Emission from QuantumConfined III–V Semiconductors in the Presence of Light Waves
5 Field Emission from Quantum-Confined III–V Semiconductors in the Presence of Light Waves.. . . . .. . . . . . . . . . . . . . . . . . . . 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.2.1 Field Emission from III–V Semiconductors Under Magnetic Quantization in the Presence of Light Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.2.2 Field Emission from Quantum Wires of III–V Semiconductors.. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.2.3 Field Emission from Effective Mass Superlattices of III–V Semiconductors in the Presence of Light Waves Under Magnetic Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.2.4 Field Emission from Quantum Wire Effective Mass Superlattices of III–V Semiconductors . . . . . . . . . . . . . . . . 5.2.5 Field Emission from Superlattices of III–V Semiconductors with Graded Interfaces Under Magnetic Quantization . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.2.6 Field Emission from Quantum Wire Superlattices of III–V Semiconductors with Graded Interfaces .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.3 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 5.4 Open Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . Part III
187 187 187
187 192
194 200
204
210 215 221 230
Fowler–Nordheim Field Emission from QuantumConfined Optoelectronic Semiconductors in the Presence of Intense Electric Field
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 6.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 6.2.1 Field Emission from Optoelectronic Semiconductors Under Magnetic Quantization .. . . . . . . . . . . . . 6.2.2 Field Emission from Quantum Wires of Optoelectronic Semiconductors . . . . . . .. . . . . . . . . . . . . . . . . . . . 6.2.3 Field Emission from Effective Mass Superlattices of Optoelectronic Semiconductors Under Magnetic Quantization . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
233 233 234 234 248
249
Contents
xvii
6.2.4
Field Emission from Quantum Wire Effective Mass Superlattices of Optoelectronic Semiconductors .. . . . . 6.2.5 Field Emission from Superlattices of Optoelectronic Semiconductors with Graded Interfaces Under Magnetic Quantization .. . . . . . . . . . . . . . . . . . . . 6.2.6 Field Emission from Quantum Wire Superlattices of Optoelectronic Semiconductors with Graded Interfaces . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 6.4 Open Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7 Applications and Brief Review of Experimental Results . . . . . . . . . . . . . . . . 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2.1 Debye Screening Length .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2.2 Carrier Contribution to the Elastic Constants . . . . . . . . . . . . . . . . 7.2.3 Effective Electron Mass . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2.4 Diffusivity–Mobility Ratio . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2.5 Measurement of Bandgap in the Presence of Light Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2.6 Diffusion Coefficient of the Minority Carriers .. . . . . . . . . . . . . . 7.2.7 Nonlinear Optical Response . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.2.8 Third-Order Nonlinear Optical Susceptibility . . . . . . . . . . . . . . . 7.2.9 Generalized Raman Gain . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.3 Brief Review of Experimental Works . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7.3.1 Field Emission from Carbon Nanotubes in the Presence of Strong Electric Field . .. . . . . . . . . . . . . . . . . . . . 7.3.2 Optimization of Fowler–Nordheim (FN) Field Emission Current from Nanostructured Materials . . . . . . . . . . . 7.3.3 Very Brief Description of Experimental Results of FNFE from Nanostructured Materials .. . . . . . . . . . . . . . . . . . . . 7.4 Open Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
253
256
262 267 280 280 281 281 281 281 284 291 295 299 302 303 303 303 304 304 309 312 323 323
8 Conclusion and Future Research.. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 329 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 333 Material Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 335 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 337
•
List of Symbols
˛ ˛11 ; ˛22 ; ˛33 ; ˛23 ˛N 11 ; ˛N 22 ; ˛N 33 ; ˛N 23 ˇ1 ; ˇ2 ; ˇ4 ; ˇ5 1; 2; 3; 4 ı ıN0 jj ? 0 1 0c ; 00c "O " " "sc "0 .2r/ N0 .j C 1/ !0 N f1 .k/ f2 .k/ aN ac a13 a15
Band nonparabolicity parameter Energy band constants System constants System constants Energy band constants Crystal field splitting constant Band constant Spin–orbit splitting constant parallel to the C -axis Spin–orbit splitting constant perpendicular to the C -axis Isotropic spin–orbit splitting constant Interface width in superlattices Energy band constant Spectrum constants Wavelength Strain tensor Trace of the strain tensor Energy as measured from the center of the band gap Eg0 Semiconductor permittivity Permittivity of vacuum Zeta function of order 2r Constant of the spectrum Complete gamma function Cyclotron resonance frequency Frequency System constants Warping of the Fermi surface Inversion asymmetry splitting of the conduction band Constant of the spectrum Nearest neighbor C–C bonding distance Nonparabolicity constant Warping constant xix
xx
a0 b0 A10 ; B10 B B2 c cN C0 C1 C2 dx ; dy ; dz e E
Eij E EF1 EFB
EFs
Ei En z EF1D
Eg0 Fsz Fj ./ f .E/ G G0 gv h „ H I0 I
List of Symbols
The width of the barrier for superlattice structures The width of the well for superlattice structures Energy band constants Quantizing magnetic field Momentum matrix element Velocity of light Constant of the spectrum Splitting of the two-spin states by the spin–orbit coupling and the crystalline field Conduction band deformation potential Strain interaction between the conduction and valance bands Nanothickness along the x-, y-, and z-directions Magnitude of electron charge Total energy of the carrier as measured from the band edge in the absence of any quantization in the vertically upward direction for electrons or vertically downward directions for holes Subband energy Energy of the hole as measured from the top of the valance band in the vertically downward direction Fermi energy as measured from the mid of the band gap in the vertically upward direction in connection with nanotubes Fermi energy in the presence of magnetic quantization as measured from the edge of the conduction band in the absence of any quantization in the vertically upward direction Fermi energy as measured in the presence of intense electric field as measured from the edge of the conduction band in the vertically upward direction in the absence of any field Energy band constant Energy of the nth subband Fermi energy in the presence of two-dimensional quantization as measured from the edge of the conduction band in the vertically upward direction in the absence of any quantization Band gap in the absence of any field Surface electric field along z-axis One parameter Fermi–Dirac integral of order j Fermi–Dirac occupation probability factor Thermoelectric power under strong magnetic field Deformation potential constant Valley degeneracy Planck’s constant Dirac’s constant. h= .2// Heaviside step function Light intensity System constants
List of Symbols
k0 kB k lx N m; l; N nN L0 LD l m0 mc mjj m? m1 m2 m3 m02 mt ml m?;1 ; mk;1 mr mv mv m˙ t
xxi
Constant of the energy spectrum Boltzmann’s constant Electron wave vector Sample length along x-direction Matrix elements of the strain perturbation operator Period of the superlattices Debye screening length Band constant Free electron mass Isotropic effective electron mass at the edge of the conduction band Longitudinal effective electron mass at the edge of the conduction band Transverse effective electron mass at the edge of the conduction band Effective carrier mass at the band-edge along x-direction Effective carrier mass at the band-edge along y-direction The effective carrier mass at the band-edge along z-direction Effective mass tensor component at the top of the valence band (for electrons) or at the bottom of the conduction band (for holes) The transverse effective mass at k = 0 The longitudinal effective mass at k = 0 Transverse and longitudinal effective electron mass at the edge of the conduction band for the first material in superlattice Reduced mass Effective mass of the heavy hole at the top of the valance band in the absence of any field Effective mass of the holes at the top of the valence band Contributions to the transverse effective mass of the external LC 6 and ! ! L bands arising from the k p perturbations with the other bands 6
m˙ l
taken to the second order Contributions to the longitudinal effective mass of the external LC 6 and ! ! L bands arising from the k p perturbations with the other bands 6
mtc mlc mtv mlv N1D .E/ Nc nx ; ny ; nz
taken to the second order Transverse effective electron mass of the conduction electrons at the edge of the conduction band Longitudinal effective electron mass of the conduction electrons at the edge of the conduction band Transverse effective hole mass of the holes at the edge of the valence band Longitudinal effective hole mass of the holes at the edge of the valence band Density of states function per subbands in 2D quantization Effective number of states in the conduction band Size quantum numbers along the x-, y-, and z-directions
xxii
E n x ; E n y ; En z n0 N2D .E/ N2DT .E/ n nN P0 PN Pk ; P? N RN Q; RG r rN0 SN0 sN s0 T tc ti tij i v vN 0 ; wN 0 V0 jVG j x; y Z0
NP .!1 ; !2 ; !3 /
List of symbols
The quantized energy levels due to infinity deep potential well along the x-, y-, and z-directions Carrier degeneracy 2D density of states function per subband Total 2D density of states function Landau quantum number/chiral indices Band constant Momentum matrix element Energy band constant Momentum matrix elements parallel and perpendicular to the direction of C -axis Spectrum constants Generalized Raman gain Set of real positive integers whose upper limit is r0 or s0 Radius of the nanotube Entropy per unit volume Spectrum constant Upper limit of the summation Temperature Tight binding parameter Energy band constants Transmission coefficient Integer Velocity of the electron Constants of the spectrum Equal to the addition of the Fermi energy in the corresponding case and the work function w of the material Constant of the energy spectrum Alloy compositions The nonlinear response from the optical excitation of the free carriers Third-order nonlinear optical susceptibility
Part I
Fowler–Nordheim Field Emission from Quantum Wires and Superlattices of Nonparabolic Semiconductors
•
Chapter 1
Field Emission from Quantum Wires of Nonparabolic Semiconductors
1.1 Introduction The Fowler–Nordheim field emission (FNFE) is a well-known quantum-mechanical phenomenon that involves tunneling of electrons through a surface barrier due to the application of an intense external electric field. Normally, at field strengths of the order of 108 V=m (below the electrical breakdown), the potential barriers at the surfaces of metals and semiconductors usually become very thin and result in field emission of electrons due to the tunnel effect [1, 2]. This has been well investigated with reference to three-dimensional electron gases in metals and semiconductors and the FNFE from quantum-confined structures has also been studied in this context [3–37]. Some of significant features of the FNFE which have emerged from these investigations are as follows: 1. The FNFE increases with increasing electron concentration in bulk materials and are significantly influenced by the carrier energy spectra of different electronic materials. 2. The FNFE increases with increasing electric field. 3. The FNFE oscillates with film thickness for quantum-confined systems. 4. The FNFE oscillates with inverse quantizing magnetic field in the presence of magnetic quantization due to the Shubnikov–de Haas effect. 5. For various types of superlattices of different materials, the FNFE shows composite oscillations with different system variables. In recent years, with the advent of fine lithographical methods [38, 39], molecular beam epitaxy [40], organometallic vapor-phase epitaxy [41], and other experimental techniques, the restriction of the motion of the carriers of bulk materials in one (quantum wells in ultrathin films, NIPI structures, inversion, and accumulation layers), two (quantum wires), and three (quantum dots, magnetosize quantized systems, magneto-accumulation layers, magneto-inversion layers quantum dot superlattices, magneto-quantum well superlattices, and magneto-NIPI structures) dimensions have in the last few years, attracted much attention not only for their S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 1, © Springer-Verlag Berlin Heidelberg 2012
3
4
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
potential in uncovering new phenomena in nanoscience, but also for their interesting quantum device applications [42–45]. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film (say, the z direction) may be viewed as carrier confinement in an infinitely deep 1D rectangular potential well, leading to quantization [known as quantum size effect (QSE)] of the wave vector of the carrier along the direction of the potential well, allowing 2D carrier transport parallel to the surface of the film representing new physical features not exhibited in bulk semiconductors [46–50]. The low-dimensional heterostructures based on various materials are widely investigated because of the enhancement of carrier mobility [51]. These properties make such structures suitable for applications in quantum well lasers [52], heterojunction FETs [53, 54], high-speed digital networks [55–58], high-frequency microwave circuits [59], optical modulators [60], optical switching systems [61], and other devices. The constant energy 3D wavevector space of bulk semiconductors becomes 2D wavevector surface in ultrathin films or quantum wells due to dimensional quantization. Thus, the concept of reduction of symmetry of the wavevector space and its consequence can unlock the physics of low-dimensional structures. It is well known that in quantum wires (QWs), the restriction of the motion of the carriers along two directions may be viewed as carrier confinement by two infinitely deep 1D rectangular potential wells, along any two orthogonal directions leading to quantization of the wave vectors along the said directions, allowing 1D carrier transport [62–64]. With the help of modern fabrication techniques, such onedimensional quantized structures have been experimentally realized and enjoy an enormous range of important applications in the realm of nanoscience in quantum regime. They have generated much interest in the analysis of nanostructured devices for investigating their electronic, optical, and allied properties [65–72]. Examples of such new applications are based on the different transport properties of ballistic charge carriers which include quantum resistors [73–75], resonant tunneling diodes and band filters [76,77], quantum switches [78], quantum sensors [79,80], quantum logic gates [81, 82], quantum transistors and subtuners [83, 84], heterojunction FETs [85], high-speed digital networks [86, 87], high-frequency microwave circuits [88], optical modulators [89], optical switching systems [90], and other nanoscale devices. In this chapter, we shall study the FNFE from QWs of nonparabolic semiconductors having different band structures. At first we shall investigate the FNFE from QWs of nonlinear optical compounds which are being used in nonlinear optics and light-emitting diodes [91, 92]. The quasi-cubic model can be used to investigate the symmetric properties of both the bands at the zone center of wavevector space of the same compound.Including the anisotropic crystal potential in the Hamiltonian, and special features of the nonlinear optical compounds, Kildal [93] formulated the electron dispersion law under the assumptions of isotropic momentum matrix element and the isotropic spin–orbit splitting constant, respectively, although the anisotropies in the two aforementioned band constants are the significant physical features of the said materials [94–96]. In Sect. 1.2.1, the FNFE from QWs of nonlinear optical semiconductors has been investigated by considering the combined influence of the anisotropies of the said energy band constants together with the
1.1 Introduction
5
inclusion of the crystal field splitting respectively within the framework of k p formalism. The III–V compounds find applications in infrared detectors [97], quantum dot light-emitting diodes [98], quantum cascade lasers [99], quantum well wires [100], optoelectronic sensors [101], high electron mobility transistors [102], etc. The electron energy spectrum of III–V semiconductors can be described by the three- and two-band models of Kane [103, 104], together with the models of Stillman et al. [105], Newson and Kurobe [106], and Palik et al. [107], respectively. In this context, it may be noted that the ternary and quaternary compounds enjoy the singular position in the entire spectrum of optoelectronic materials. The ternary alloy Hg1x Cdx Te is a classic narrow gap compound. The band gap of this ternary alloy can be varied to cover the spectral range from 0.8 to over 30 m [108] by adjusting the alloy composition. Hg1x Cdx Te finds extensive applications in infrared detector materials and photovoltaic detector arrays in the 8–12 m wave bands [109]. The above uses have generated the Hg1x Cdx Te technology for the experimental realization of high mobility single crystal with specially prepared surfaces. The same compound has emerged to be the optimum choice for illuminating the narrow subband physics because the relevant material constants can easily be experimentally measured [110]. Besides, the quaternary alloy In1x Gax Asy P1y lattice matched to InP, also finds wide use in the fabrication of avalanche photodetectors [111], heterojunction lasers [112], light-emitting diodes [113] and avalanche photodiodes [114], field effect transistors, detectors, switches, modulators, solar cells, filters, and new types of integrated optical devices are made from the quaternary systems [115]. It may be noted that all types of band models as discussed for III–V semiconductors are also applicable for ternary and quaternary compounds. In Sect. 1.2.2, the FNFE from QWs of III–V, ternary, and quaternary semiconductors has been studied in accordance with the said band models and the simplified results for wide gap materials having parabolic energy bands under certain limiting conditions have further been demonstrated as a special case and thus confirming the compatibility test. The II–VI semiconductors are being used in nanoribbons, blue green diode lasers, photosensitive thin films, infrared detectors, ultrahigh-speed bipolar transistors, fiber optic communications, microwave devices, solar cells, semiconductor gammaray detector arrays, and semiconductor detector gamma camera and allow for a greater density of data storage on optically addressed compact discs [116–123]. The carrier energy spectra in II–VI compounds are defined by the Hopfield model [124] where the splitting of the two-spin states by the spin–orbit coupling and the crystalline field has been taken into account. Section 1.2.3 contains the investigation of the FNFE from QWs of II–VI compounds. In recent years, Bismuth (Bi) nanolines have been fabricated and Bi also finds use in array of antennas, which leads to the interaction of electromagnetic waves with such Bi-nanowires [125, 126]. Several dispersion relations of the carriers have been proposed for Bi. Shoenberg [127] experimentally verified that the de Haas–Van Alphen and cyclotron resonance experiments supported the ellipsoidal parabolic model of Bi, although the magnetic field dependence of many physical properties
6
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
of Bi supports the two-band model [128]. The experimental investigations on the magneto-optical and the ultrasonic quantum oscillations support the Lax ellipsoidal nonparabolic model [129]. Kao [130], Dinger and Lawson [131], and Koch and Jensen [132] demonstrated that the Cohen model [133] is in conformity with the experimental results in a better way. Besides, the hybrid model of bismuth, as developed by Takaoka et al. also finds use in the literature [134]. McClure and Choi [135] derived a new model of Bi and they showed that it can explain the data for a large number of magneto-oscillatory and resonance experiments. In Sect. 1.2.4, the FNFE from QWs of Bi has been formulated in accordance with the aforementioned energy band models for the purpose of relative assessment. Besides, under certain limiting conditions all the results for all the models of 1D systems are reduced to the well-known result of the FNFE from QWs of wide gap materials. This above statement exhibits the compatibility test of our theoretical analysis. Lead chalcogenides (PbTe, PbSe, and PbS) are IV–VI nonparabolic semiconductors whose studies over several decades have been motivated by their importance in infrared IR detectors, lasers, light-emitting devices, photovoltaics, and high-temperature thermoelectrics [136–140]. PbTe, in particular, is the end compound of several ternary and quaternary high-performance high-temperature thermoelectric materials [141–145]. It has been used not only as bulk but also as films [146–149], quantum wells [150], superlattices [151, 152], nanowires [153], colloidal and embedded nanocrystals [154–157], and PbTe films doped with various impurities have also been investigated [158–165]. These studies revealed some of the interesting features that had been seen in bulk PbTe, such as Fermi level pinning in the case of superconductivity [166]. In Sect. 1.2.5, the FNFE from QWs of IV–VI semiconductors has been studied taking PbTe as an example. The stressed semiconductors are being investigated for strained silicon transistors, quantum cascade lasers, semiconductor strain gages, thermal detectors and strained-layer structures [167–170]. The FNFE from QWs of stressed compounds (taking stressed n-InSb as an example) has been investigated in Sect. 1.2.6. The vacuum deposited Tellurium (Te) has been used as the semiconductor layer in thinfilm transistors (TFT) [171], which is being used in CO2 laser detectors [172], electronic imaging, strain-sensitive devices [173, 174], and multichannel Bragg cell [175]. Section 1.2.7 contains the investigation of FNFE from QWs of Tellurium. The n-gallium phosphide (n-GaP) finds applications in quantum dot lightemitting diode [176], high efficiency yellow solid-state lamps, light sources, and high peak current pulse for high gain tubes. The green and yellow light-emitting diodes made of nitrogen-doped n-GaP possess a longer device life at high drive currents [177–179]. In Sect. 1.2.8, the FNFE from QWs of n-GaP has been studied. The Platinum Antimonide .PtSb2 / is used in device miniaturization, colloidal nanoparticle synthesis, sensors, detector materials, and thermo-photovoltaic devices [180–182]. Section 1.2.9 explores the FNFE from QWs of PtSb2 . Bismuth telluride .Bi2 Te3 / was first identified as a material for thermoelectric refrigeration in 1954 [183] and its physical properties were later improved by the addition of bismuth selenide and antimony telluride to form solid solutions [184–188]. The alloys of Bi2 Te3 are useful compounds for the thermoelectric industry and have been
1.2 Theoretical Background
7
investigated in the literature [184–188]. In Sect. 1.2.10, the FNFE from QWs of Bi2 Te3 has been considered. The usefulness of elemental semiconductor Germanium is already well known since the inception of transistor technology, and it is also being used in memory circuits, single photon detectors, single photon avalanche diode, ultrafast optical switch, THz lasers, and THz spectrometers [189–192]. In Sect. 1.2.11, the FNFE has been studied from QWs of Ge. Gallium Antimonide (GaSb) finds applications in the fiber optic transmission window, heterojunctions, and quantum wells. A complementary heterojunction field effect transistor in which the channels for the p-FET device and the n-FET device forming the complementary FET are formed from GaSb. The band gap energy of GaSb makes it suitable for low power operation [193–198]. In Sect. 1.2.12, the FNFE from QWs of GaSb has been studied. The II–V semiconductors are being used in photovoltaic cells constructed of single crystal semiconductor materials in contact with electrolyte solutions. Cadmium selenide shows an open-circuit voltage of 0.8 V and power conservation coefficient is nearly 6% for 720-nm light [199]. They are also used in ultrasonic amplification [200]. The development of an evaporated TFT using cadmium selenide as the semiconductor has also been reported [201, 202]. In Sect. 1.2.13, we shall study the FNFE from QWs of II–V semiconductors. Section 1.3 contains the result and discussions pertaining to this chapter. Section 1.4 contains open research problems.
1.2 Theoretical Background 1.2.1 The Field Emission from Quantum Wires of Nonlinear Optical Semiconductors The form of k p matrix for nonlinear optical compounds can be expressed extending Bodnar [94] as # " H1 H2 ; (1.1) H D H2C H1 where 3 Pk kz 0 7 6 p 60 .2jj =3/ . 2? =3/ 0 7 7 6 H1 6 7; p 6 P kz . 2? =3/ .ı C 1 / 0 7 5 4 k 3 k 0 0 0 0 2
Eg 0 0
2
0 f;C 0 f;
6 6f 6 ;C H2 6 6 0 4 f;C
0 0 0
3
7 0 0 7 7 7; 0 0 7 5 0 0
in which Eg0 is the band gap in the absence of any field,Pjj and P? are the momentum matrix elements parallel and perpendicular to the direction of crystal axis, respectively, ı is the crystal field splitting constant, and jj and ? are the
8
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
spin–orbit splitting constants parallel and p p perpendicular to the C -axis, respectively, f;˙ .P? = 2/.kx ˙ iky / and i D 1. Thus, neglecting the contribution of the higher bands and the free electron term, the diagonalization of the above matrix leads to the dispersion relation of the conduction electrons in bulk specimens of nonlinear optical semiconductors as .E/ D f1 .E/ks2 C f2 .E/kz2 ;
(1.2)
where
2 .E/ E E C Eg0 .E C Eg0 /.E C Eg0 C jj / C ı E C Eg0 C jj 3 2 2 jj 2? ; C 9 „2 Eg .Eg0 C ? / 1 E C Eg0 C E C E ı E C E f1 .E/ 0 C g0 g0 jj 3 2m? Eg0 C 23 ? 2 1 2 C jj C jj 2jj ; 3 9
where E is the total energy of the electron as measured from the edge of the conduction band in the vertically upward direction in the absence of any quantization, 2 „ E .E C / 2 g g jj 0 0 2 2 2 ks D kx C ky , f2 .E/ h i .E C Eg0 / E C Eg0 C 3 jj , 2m E C 2 jj
g0
3
jj
h D h=2; h is the Planck’s constant, and mjj and m? are the longitudinal and transverse effective electron masses at the edge of the conduction band, respectively. For two-dimensional quantization along the x and y directions, (1.2) assumes the form kz2 D A11 .E; nx ; ny /; (1.3) nx 2 whereA11 .E; nx ; ny / D Œf2 .E/1 Œ.E/1 .nx ; ny /f1 .E/, 1 .nx ; ny / D dx ny 2 C , nx D .1; 2; 3; : : :/; ny D .1; 2; 3; : : :/ are the size quantum numbers dy along the x and y directions, respectively, and dx and dy are the nanothickness along the x and y directions, respectively. The quantized subband energy .E11 / is given by .E11 / D f1 .E11 /1 .nx ; ny /:
(1.4)
The electron concentration per unit length can be expressed as n0 D
nxmax nymax X
2gv X B11 EF1D ; nx ; ny C B12 EF1D ; nx ; ny ; n D1 n D1 x
y
(1.5)
1.2 Theoretical Background
9
where gv is the valley degeneracy, B11 .EF1D ; nx ; ny / D ŒA11 .EF1D ; nx ; ny /1=2 , r0 P Z1D .r/ŒB11 .EF1D ; nx ; ny /, Z1D .r/ D 2.kB T /2r .1212r / B12 .EF1D ; nx ; ny / D rD1
@2r .2r/ 2r ; kB is the Boltzmann constant, T is the temperature, r is the set of real @EF 1D positive integers whose upper limit is r0 , .2r/ is the Zeta function of order 2r [203], and EF1D is the Fermi energy in the presence of 2D quantization as measured from the edge of the conduction band in the vertically upward direction in the absence of any quantization. The current .I / due to Fowler–Nordheim fFNgfield emission can be written as 2 1 3 nxmax nymax X Z 1 X 4 Œe vn1 t11 5 ; I D 2 nx D1 ny D1
(1.6a)
E11
where e is the magnitude of the electron charge, v is the velocity of the electron and given by v D .1=„/.@E=@kz /, n1 D N1D .E/:f .E/dE, N1D .E/ is the 1D densityof-states function per subbands and can be written as N1D .E/ D .2gv =/.@kz =@E/, f .E/ is the Fermi–Dirac occupation probability factor and is given by f .E/ D Œ1 C exp.E EF1D =kB T /1 , and t11 is the transmission coefficient. From (1.6a), it appears that I is a function of the product of the carrier velocity, concentration, and transmission coefficient. These three quantities in turn depend totally on the dispersion relation of the material. As the basic E–k relation changes, all the aforementioned quantities will change and the current due to FN field emission will be different consequently. Thus, the field emission will change all together in 1D, 2D, and 3D quantization of the wave vector space encompassing the whole arena of quantized structures. Thus, from (1.6a) one can write 2 1 3 nxmax nymax X Z e @E 2gv @kz 1 X 4 f .E/dE t11 5: I D : 2 „ @kz @E nx D1 ny D1
(1.6b)
E11
The term @E=@kz from velocity and the term @kz =@E from the density-of-states function per subbands cancel each other leaving the constant prefactor. Therefore, (1.6b) assumes the form 2 1 3 nxmax nymax X Z e gv X 4 Œf .E/dE t11 5 : I D „ nx D1 ny D1
(1.6c)
E11
The term t11 in this case can be expressed by using the method as given in [204] as t11 D exp.ˇ11 /
(1.7)
10
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
in which ˇ11
3=2 4 A11 V0 ; nx ; ny
0 : D 3eFsz A11 V0 ; nx ; ny
(1.8)
Fsz is the electric field along the z-axis, A11 .V0 ; nx ; ny / D Œf2 .V0 /1 Œ.V0 / 1 .nx ; ny /f1 .V0 /; V0 is equal to the addition of the Fermi energy in the corresponding case and the work function w of the material, f2 .V0 / h
„2 Eg0 .Eg0 C jj / 2 i .V0 C Eg0 / V0 C Eg0 C 3 jj ; 2mjj Eg0 C 23 jj
h .V0 / V0 V0 C Eg0 V0 C Eg0 V0 C Eg0 C jj 2 2 2 2 C ı V0 C Eg0 C jj C jj ? ; 3 9 „2 Eg0 .Eg0 C ? / 1 ı V0 C Eg0 C jj f1 .V0 / 3 2m? Eg0 C 23 ? 2 1 2 2 jj jj ; C .V0 C Eg0 / V0 C Eg0 C jj C 3 9 A11 .V0 ; nx ; ny /f20 .V0 / A011 .V0 ; nx ; ny / D C Œf2 .V0 /1 Œ 0 .V0 / f2 .V0 / f10 .V0 /1 .nx ; ny / ; " 1 2 0 2 f2 .V0 / D Œ„ Eg0 .Eg0 C k / 2mk Eg0 C k 3 2 2V0 C 2Eg0 C k ; 3 " 1 2 f10 .V0 / D Œ„2 Eg0 .Eg0 C ? / 2m? Eg0 C ? 3 2 2V0 C 2Eg0 C k C ı ; 3 and 0 .V0 / D
.V0 /.2V0 C Eg0 / C .V0 .V0 C Eg0// 2V0 C 2Eg0 C k C ı : V0 .V0 C Eg0 /
1.2 Theoretical Background
11
Thus, we can write nxmax nymax X 2gv ekB T X F0 . 11 / t11 ; I D h n D1 n D1 x
(1.9)
y
where 11 D .EF1D E11 /=kB T ,F0 . 11 / is the special case of the one-parameter Fermi–Dirac integral of order j which can be written as Fj . / D
1
.j C 1/
Z
1 0
x j dx ; 1 C exp.x /
j > 1
(1.10)
or for all j , analytically continued as a complex contour integral around the negative x-axis Z C0 x j dx
.j / Fj . / D ; (1.11) p 2 1 1 1 C exp.x / where is the dimensionlessx independent variable,
.j C 1/ D j .j /;
p 1 D ; and .0/ D 1:: 2
Therefore, the field-emitted current is given by nxmax nymax X 2gv ekB T X F0 . 11 / exp.ˇ11 /: I D h n D1 n D1 x
(1.12)
y
1.2.2 The Field Emission from Quantum Wires of III–V Semiconductors The dispersion relation of the conduction electrons of III–V compounds are described by the models of Kane (both three and two bands) [103, 104], Stillman et al. [105], Newson and Kurobe [106], and Palik et al. [107], respectively. For the purpose of complete and coherent presentation, the FNFE from QWs of III–V semiconductors have also been investigated in accordance with the aforementioned different dispersion relations for indicating the relative comparison as follows:
1.2.2.1 The Three-Band Model of Kane Under the conditions, ı D 0, k D ? D (isotropic spin–orbit splitting constant) and mk D m? D mc (isotropic effective electron mass at the edge of the conduction band), (1.2) gets simplified into the form
12
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
2 E E C Eg0 E C Eg0 C Eg0 C „2 k 2 3 ; D I11 .E/; I11 .E/ 2 2mc Eg0 .Eg0 C / E C Eg0 C 3 (1.13) which is known as the three-band model of Kane [103, 104] and is often used to study the electronic properties of III–V, ternary, and quaternary semiconductors. The 1D E–kz relation can be expressed as kz2 D A12 .E; nx ; ny /;
(1.14)
c I .E/ 1 .nx ; ny /: where A12 .E; nx ; ny / D 2m „2 11 The quantized subband energy .E12 / is given by
„2 I11 .E12 / D 1 .nx ; ny /: 2mc
(1.15)
The electron concentration per unit length can be written as n0 D
nxmax nymax X
2gv X B13 EF1D ; nx ; ny C B14 EF1D ; nx ; ny ; n D1 n D1 x
(1.16)
y
1=2 and B14 .EF1D ; nx ; ny / D where B13 EF1D ; nx ; ny D A12 EF1D ; nx ; ny r0 P Z1D .r/ŒB13 .EF1D ; nx ; ny /. rD1
The field-emitted current can be expressed as I D
nxmax nymax X 2gv ek B T X F0 . 12 / t12 ; h n D1 n D1 x
(1.17)
y
where 12 D .EF1D E12 /=kB T , t12 D exp.ˇ12 /, ˇ12 D 43 ŒA12 .V0 ; nx ; ny /3=2 ŒeF sz A012 .V0 /1 , 2mc I .V / .n ; n / ; A12 .V0 ; nx ; ny / D 11 0 1 x y „2 2 V0 .V0 C Eg0 /.V0 C Eg0 C / Eg0 C 3 I11 .V0 / and 2 Eg0 .Eg0 C / V0 C Eg0 C 3 1 1 2mc 1 0 A12 .V0 / D I11 .V0 / C C 2 „ V0 V0 C Eg0 V0 C Eg0 C 1 : V0 C Eg0 C .2=3/
1.2 Theoretical Background
13
Therefore, the field-emitted current is given by nxmax nymax X 2gv ekB T X F0 . 12 / exp.ˇ12 /: h n D1 n D1
I D
x
(1.18)
y
1.2.2.2 Two-Band Model of Kane Under the inequalities Eg0 or Eg0 , (1.13) assumes the form E.1 C ˛E/ D .„2 k 2 =2mc /;
˛ 1=Eg0 :
(1.19)
Equation (1.19) is known as the two-band model of Kane where ˛ is known as band nonparabolicity parameter and should be as such for studying the electronic properties of the semiconductors whose band structures obey the above inequalities [103, 104]. The 1D E–kz relation can be expressed as kz2 D A13 .E; nx ; ny /;
c where A13 .E; nx ; ny / D 2m fE.1 C ˛E/g 1 .nx ; ny / : „2 The quantized subband energy .E12 / is given by 2 „ E13 .1 C ˛E13 / D 1 .nx ; ny /: 2mc
(1.20)
(1.21)
The electron concentration per unit length can be written as n0 D
nxmax nymax X
2gv X B15 EF1D ; nx ; ny C B16 EF1D ; nx ; ny ; n D1 n D1 x
(1.22)
y
1=2 where B15 EF1D ; nx ; ny D A13 .EF1D ; nx ; ny / and B16 .EF1D nx ; ny / D
r0 X
Z1D .r/ B15 EF1D ; nx ; ny :
rD1
The field-emitted current can be expressed as I D
nxmax nymax X 2gv ekB T X F0 . 13 /t13 ; h
(1.23)
nx D1 ny D1
3=2 4
where 13 D .EF1D E13 /=kB T , t13 D exp.ˇ13 /, ˇ13 D A13 V0 ; nx ; ny 3
1 2mc eFsz A013 .V0 / ; and A013 .V0 / D 2 .1 C 2˛V0 / : „
14
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Therefore, the field-emitted current assumes the from nxmax nymax X 2gv ekB T X F0 . 13 / exp.ˇ13 /: I D h n D1 n D1 x
(1.24)
y
1.2.2.3 Parabolic Energy Bands The expressions for the electron concentration per unit length and the FNFE from QWs having parabolic energy bands can, respectively, be written as n0
p nxmax nymax X 2gv 2 mc kB T X D F1=2 . 14 /; h n D1 n D1 x
(1.25)
y
" nxmax nymax X 4 2mc 1=2 2gv ekB T X F0 . 14 / exp I D h 3eF sz „2 n D1 n D1 x
3=2 V0
y
„2 1 .nx ; ny / 1 2mc V0
3=2 #
;
(1.26)
i h „2 1 .nx ;ny / where 14 D EF1D ŒkB T 1 : 2mc Converting the summations over nx and ny to the corresponding integrations, (1.26) gets transformed as ) ( gv e 2 Fsz2 2mc 1=2 3=2 4 J D exp w : 8hw 3eF sz „2
(1.27)
Equation (1.27) is the well-known expression of the FNFE from bulk semiconductors having parabolic energy bands [205, 206].
1.2.2.4 The Model of Stillman et al. In accordance with the model of Stillman et al. [105], the electron dispersion law of III–V materials assumes the form E D t 11 k 2 t 12 k 4 ;
(1.28)
2 „2 m c 2 „2 22 ˚ 3Eg0 C 4 C : Eg 0 C ; t 12 1 2mc i m0 2mc Eg0 1 .2 C 3Eg0 / ; and m0 is the free electron mass.
where t 11
1.2 Theoretical Background
15
Equation (1.28) can be expressed as „2 k 2 D I12 .E/; 2mc
(1.29)
where I12 .E/ a11 Œ1 .1 a12 E/
1=2
and a11
The 1D E–kz relation can be written as
4tN12 „2 tN11 , and a12 2 . 4mc tN12 tN11
kz2 D A14 E; nx ; ny ;
(1.30)
2mc where A14 .E; nx ; ny / D fI12 .E/g 1 .nx ; ny / : „2 The quantized subband energy .E14 / is given by
„2 I12 .E14 / D 1 nx ; ny : 2mc
(1.31)
The electron concentration per unit length can be expressed as n0 D
nxmax nymax X
2gv X B17 EF1D ; nx ; ny C B18 EF1D ; nx ; ny ; n D1 n D1 x
(1.32)
y
r0
1=2 P and B18 EF1D ; nx ; ny D where B17 EF1D ; nx ; ny D A14 EF1D ; nx ; ny rD1
Z1D .r/ B17 EF1D ; nx ; ny : The field-emitted current can be written as nxmax nymax X 2gv ekB T X I D F0 . 15 / exp.ˇ15 /; h n D1 n D1 x
(1.33)
y
3=2 4
A14 V0 ; nx ; ny where 15 D .EF1D E14 / =kB T; ˇ15 D ŒeFsz A0 14 .V0 /1 , 3 2mc 0 2mc fI12 .V0 /g 1 .nx ; ny / ; A014 .V0 / D I .V0 /; and A14 .V0 ; nx ; ny / D 2 „2 12 a a „ 11 12 0 .1 a12 V0 /1=2 . I12 .V0 / D 2 1.2.2.5 The Model of Newson and Kurobe In accordance with the model of Newson and Kurobe [106], the electron dispersion law in this case assumes the form
16
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
ED
a13 kz4 C
„2 2 „2 2 C a14 ks kz2 C ks Ca14 kx2 ky2 Ca13 kx4 C ky4 ; 2mc 2mc
(1.34)
where a13 is the nonparabolicity constant, a14 . 2a13 C a15 /, and a15 is known as the warping constant. The 1D E–kz relation can be expressed as kz2 D A15 .E; nx ; ny /;
(1.35)
where A15 .E; nx ; ny / D .2a13 /1 ŒL1".nx ; ny /CŒfL1 .nx ; ny#/g2 4a13 ŒL2 .nx ; ny / ny 2 „2 nx 1=2 C a14 ; and L2 .nx ; ny / D C E/ ; L1 .nx ; ny / D 2mc dx dy " " ## „2 ny 4 nx ny 2 nx 4 1 .nx ; ny / C a14 C a13 C : 2mc dx dy dx dy The quantized subband energy .E16 / is given by E16 D L2 .nx ; ny /:
(1.36)
The electron concentration per unit length can be written as n0 D
nxmax nymax X
2gv X B19 EF1D ; nx ; ny C B20 EF1D ; nx ; ny ; n D1 n D1 x
(1.37)
y
1=2 where B19 EF1D ; nx ; ny D A15 EF1D ; nx ; ny and B20 .EF1D ; nx ; ny / D
r0 X
Z1D .r/ŒB19 .EF1D ; nx ; ny /:
(1.38)
rD1
The field-emitted current assumes the form I D
nxmax nymax X 2gv ekB T X F0 . 16 / exp.ˇ16 /; h n D1 n D1 x
(1.39)
y
3=2
eFsz A015 .V0 ; nx ; where 16 D .EF1D E16 / =kB T , ˇ16 D 43 A15 .V0 ; nx ; ny / 1 ; and A015 .V0 ; nx ; ny / D ŒfL1 .nx ; ny /g2 4a13 ŒL2 .nx ; ny / V0 /1=2 . ny 1.2.2.6 Model of Palik et al. The energy spectrum of the conduction electrons in III–V semiconductors up to the fourth order in effective mass theory, taking into account the interactions of heavy hole, light hole, and the split-off holes can be expressed in accordance with the model of Palik et al. [107] as
1.2 Theoretical Background
17
ED where B 11 D
„4 4Eg0 .mc /2
„2 k 2 B 11 k 4 ; 2mc
(1.40)
3 2 x11 61 C 2 7 7 .1 y11 /2 ; x11 D 1 C 6 ;1 and x11 5 4 E g0 1C 2 2
mc : mo Equation (1.40) gets simplified as
y11 D
„2 k 2 D I13 .E/; 2mc
(1.41)
2 1=2 „ 2 N where I13 .E/ D b12 aN 12 .aN 12 / 4EB 11 and aN 12 D ; and bN12 D 2m c aN 12 : 2B 11 The 1D E–kz relation can be written as kz2 D A16 .E; nx ; ny /;
(1.42)
2mc where A16 .E; nx ; ny / D fI13 .E/g 1 .nx ; ny / : „2 The electron concentration per unit length can be expressed as nxmax nymax X
2gv X B21 EF1D ; nx ; ny C B22 EF1D ; nx ; ny ; n0 D n D1 n D1 x
(1.43)
y
1=2 and B22 EF1D ; nx ; ny D where B21 EF1D ; nx ; ny D A16 EF1D ; nx ; ny r0
P Z1D .r/ B21 EF1D ; nx ; ny : rD1
The field-emitted current can be written as I D
nxmax nymax X 2gv ekB T X F0 . 16 / exp.ˇ16 /; h n D1 n D1 x
(1.44)
y
where 16 D .EF1D E17 / =kB T and E17 is the root of „2 1 .nx ; ny / D I13 .E17 /; 2mc
(1.45)
18
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
1 0 3=2
4
2mc 0 eFsz A016 .V0 / ; A16 .V0 / D I .V0 /; A16 V0 ; nx ; ny 3 „2 13 h i1=2 0 .V0 / D 2bN12 B 11 .aN 12 /2 4V0 B 11 . and I13
where ˇ16 D
1.2.3 The Field Emission from Quantum Wires of II–VI Semiconductors The carrier energy spectra in bulk specimens of II–VI compounds in accordance with Hopfield model [124] can be written as E D A0 ks2 C B0 kz2 ˙ C0 ks ;
(1.46)
where A0 „2 =2m? , B0 „2 =2mk , and C0 represents the splitting of the two-spin states by the spin–orbit coupling and the crystalline field. The 1D dispersion relation for quantum wires of II–VI semiconductors can be expressed as E D B0 kz2 C G3;˙ .nx ; ny /;
(1.47)
# " 2 2 2 2 1=2 n n y y nx nx C dy C dy where G3;˙ nx ; ny A0 . ˙ C0 dx dx The FNFE in this case is given by nxmax nymax hn n X
o egv kB T X F0 .kB T /1 EF1D G3;C nx ; ny I D h n D1 n D1 x
y
o n i
o exp ˇ 016;C CF0 .kB T /1 EF1D G3; nx ; ny exp ˇ 016; (1.48) and ˇ 016;˙ D
4 3
q 3=2 V0 G3;˙ nx ; ny ŒeFsz „1 2mk .
The 1D electron statistics can be written as n1D
nxmax nymax X gv X D p t7 EF1D ; nx ; ny C t8 EF1D ; nx ; ny ; B0 n D1 n D1 x
(1.49)
y
1=2 C ŒEF1D ŒG3; .nx ; where t7 EF1D ; nx ; ny EF1D G3;C nx ; ny 0
1=2 P and t8 EF1D ; nx ; ny D Z1D .r/ t7 .EF1D ; nx ; ny / ny 1
1.2 Theoretical Background
19
1.2.4 The Field Emission from Quantum Wires of Bismuth 1.2.4.1 The McClure and Choi Model The dispersion relation of the carriers in Bi can be written, following the McClure and Choi [135], as py2 py2 py4 ˛ p2 m2 p2 C z C ˛E 1 C E .1 C ˛E/ D x C 2m1 2m2 2m3 2m2 m02 4m2 m02
˛px2 py2 4m1 m2
˛py2 pz2 4m2 m3
;
(1.50)
where pi „ki , i D x; y; z, m1 ; m2 , and m3 are the effective carrier masses at the band edge along the x, y, and z directions, respectively, and m02 is the effective mass tensor component at the top of the valence band (for electrons) or at the bottom of the conduction band (for holes). The 1D dispersion relation of the carriers in Bi in this case assumes the form " ( # ˛„2 ny 2 „2 kx2 1 C G12 E .1 C ˛E/ D 2m1 2m2 dy ) ny 2 „2 m2 C ˛E 1 ; (1.51) 2m2 m02 dy where nz D 1; 2; 3; : : : is the size quantum number along the z direction, dz is the nanothickness along the z direction, and ( ny 2 ny 4 „2 ˛„4 „2 nz 2 C C G12 2m2 dy 2m3 dz 4m2 m02 dy ) 2 2 „ ny nz 2 ˛ : 4m2 m3 dy dz Using (1.51), the 1D electron statistics can be expressed as p nymax nzmax X 2gv 2m1 X n1D D t27 EF1D ; ny ; nz C t28 EF1D ; ny ; nz ; „ n D1 n D1 y
where
(1.52)
z
8" #1=2 " < ˛„2 ny 2 1 EF1D .1 C ˛EF1D / G12 t27 EF1D ; ny ; nz : 2m2 dy 9 2 #1=2 = 2 „ny „ m2 ˛EF1D 1 ; 2m2 m02 dy
20
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
and
so
X Z1D .r/ t27 EF1D ; ny ; nz : t28 EF1D ; ny ; nz rD1
The field-emitted current is given by I D
nzmax nymax X 2gv ekB T X F0 . 17 / exp.ˇ17 /; h n D1 n D1 z
(1.53)
y
EF1D E19 and E19 is the root of kB T ( ) ny 2 „2 m2 ˛E19 1 E19 .1 C ˛E19 / D G12 C ; 2m2 m02 dy
where 17 D
(1.54)
4 ŒA17 .V0 ; nz ; ny /3=2 ŒeF sz A017 .V0; nz ; ny /1 ; 3 " 2 #1 ˛„2 ny 2 „ m2 1 ˛V0 1 V0 .1 C ˛V0 / G12 2m2 dy 2m2 m02 ) # 2 1 ny 2 „ D A17 V0; ny; nz ; dy 2m1
ˇ17 D
and "
˛„2 1 2m2
ny dy
(
2 #1 " .1 C 2˛V0 /
„2 2m1
1
)# ny 2 m2 „2 ˛ 1 2m2 m02 dy
D A017 V0; ny; nz :
1.2.4.2 The Hybrid Model The dispersion relation of the carriers in bulk specimens of Bi in accordance with the Hybrid model can be written as [134] 2 ˛0 „4 ky4 0 .E/ „ky „2 kz2 „2 kx2 E .1 C ˛E/ D C C C ; (1.55) 2M2 2m1 2m3 4M22 where 0 .E/ Œ1 C ˛E.1 0 / C ı 0 ; 0 are defined in [134].
M2 m2 ; ı 0
M2 ; M20
and the other notations
1.2 Theoretical Background
21
The 1D dispersion relation in this case assumes the form „2 „2 kx2 C G14 C E .1 C ˛E/ D 2m1 2M2
ny dy
2 ˛E .1 0 / ;
(1.56)
# ny 2 ny 4 „2 „2 nz 2 ˛0 „4 : 1 C ı 0 C 4M 2 where G14 D C 2 2m3 dz 2M2 dy dy The use of (1.56) leads to the expression for the electron concentration per unit length as "
nD1 D
2gv
p
nymax nzmax X 2m1 X t31 EF1D ; ny ; nz C t32 EF1D ; ny ; nz ; „ n D1 n D1 y
(1.57)
z
where #1=2 " „2 ny 2 ˛EF1D .1 0 / ; t31 EF 1D ; ny ; nz EF1D .1 C ˛E1DF / G14 2M2 dy so
P and t32 EF1D ; ny ; nz Z1D .r/ t31 EF1D ; ny ; nz : rD1
The field-emitted current is given by nzmax nymax X 2gv ekB T X F0 . 18 / exp.ˇ18 /; I D h n D1 n D1 z
(1.58)
y
EF1D E20 . kB T is the root of
where 18 D E20
E20 .1 C ˛E20 / D G14 C
„2 2M2
ny dy
2 ˛E20 .1 0 / ;
(1.59)
4 ˇ18 D ŒA18 .V0 ; nz ; ny /3=2 ŒeF sz A018 .V0; nz ; ny /1 ; 3 " ( ) # 2 1 ny 2 „ „2 V0 .1 C ˛V0 / G14 ˛V0 f1 0 g 2M2 dy 2m1 D A18 V0; ny; nz ; ( " ) # 2 1 ny 2 „2 „ ˛ f1 0 g D A018 V0; ny; nz : and .1 C 2˛V0 / 2M2 dy 2m1
22
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
1.2.4.3 The Cohen Model In accordance with the Cohen model [133], the dispersion law of the carriers in Bi is given by ˛Ep2y py2 .1 C ˛E/ ˛py4 p2 px2 C z C C : 2m1 2m3 2m02 2m2 4m2 m02
E .1 C ˛E/ D
(1.60)
The 1D carrier dispersion law in this case can be written as ˛E 2 C El7 G15 D "
„2 kx2 ; 2m1 #
(1.61)
˛„2 ny 2 ˛„2 ny 2 C where l7 D 1 2m2 dy 2m02 dy " # ny 4 „2 ny 2 ˛„4 „2 nz 2 C C and G15 D : 2m3 dz 2m2 dy 4m2 m02 dy The 1D electron concentration per unit length assumes the form n1D D
2gv
p nymax nzmax X 2m1 X t35 EF1D ; ny ; nz C t36 EF1D ; ny ; nz ; „ n D1 n D1 y
(1.62)
z
2 1=2 C EF1D l7 G15 and t36 EF1D ; ny ; nz D where t35 EF1D ; ny ; nz D ˛EF1D so
P Z1D .r/ t35 EF1D ; ny ; nz . rD1
The field-emitted current is given by I D
nzmax nymax X 2gv ekB T X F0 . 19 / exp.ˇ19 /; h n D1 n D1 z
(1.63)
y
E21 where 19 D EF1D : kB T E21 is the root of
E21 .l7 C ˛E21 / D G15 ; ˇ19 D
(1.64)
ŒeFsz A021 .V0; nz ; ny /1 ; 2 1
4 ŒA21 .V0 ; nz ; ny /3=2 3
ŒV0 .l7 C ˛V0 / G15
„ 2m1
„2 Œ.l7 C 2˛V0 / 2m1
D A21 .V0; ny; nz /;
1
D A021 .V0; ny; nz /:
and
1.2 Theoretical Background
23
1.2.4.4 The Lax Model The electron energy spectra in bulk specimens of Bi in accordance with the Lax model can be written as [129] E .1 C ˛E/ D
py2 p2 px2 C C z : 2m1 2m2 2m3
(1.65)
The 1D dispersion relation in this case can be expressed as „2 kx2 C G16 ; 2m1 ny 2 „2 „2 nz 2 where G16 D C : 2m2 dy 2m3 dz The 1D electron statistics is given by p nymax nzmax
2gv 2m1 X X t37 EF1D ; ny ; nz C t38 EF1D ; ny ; nz ; n1D D „ E .1 C ˛E/ D
(1.66)
(1.67)
ny D1 nz D1
where t37 EF1D ; ny ; nz D ŒEF1D .1 C ˛EF1D / G16 1=2 and t38 EF1D ; ny ; nz so
P Z1D .r/ t37 EF1D ; ny ; nz .
D
rD1
The field-emitted current in this case assumes the form I D
nzmax nymax X 2gv ekB T X F0 . 20 / exp.ˇ20 /; h n D1 n D1 z
(1.68)
y
EF1D E22 . kB T is the root of
where 20 D E22
E22 .l7 C ˛E22 / D G16 ; 3=2 ŒeF sz A022 .V0 /1 ; ˇ20 D 3 A22 .V0 ; nz ; ny / 2 1 „ D A22 V0; ny; nz ; and ŒV0 .1 C ˛V0 / G16 2m1 2 1 „ Œ.1 C 2˛V0 / D A022 .V0 / : 2m1
(1.69)
4
It may be noted that under the conditions ˛ ! 0; M20 ! 1 and isotropic effective electron mass at the edge of the conduction band, all models of Bismuth convert into isotropic parabolic energy bands. Thus under the aforementioned conditions and the conversion of the summations over the quantum numbers to the corresponding integrations, all the equations for FNFE for Bismuth lead to the well-known expression of the FNFE as given by (1.27).
24
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
1.2.5 The Field Emission from Quantum Wires of IV–VI Semiconductors The dispersion relation of the conduction electrons in IV–VI semiconductors can be expressed in accordance with Dimmock [207] as „2 kz2 Eg 0 „2 ks2 D P?2 ks2 C Pjj2 kz2 ; C "C C 2 2m 2m t l (1.70) where " is the energy as measured from the center of the band gap Eg0 , and m˙ t and m˙ represent the contributions to the transverse and longitudinal effective masses l ! of the external LC and L bands arising from the k :! p perturbations with the other
Eg „2 ks2 „2 kz2 " 0 2 2m 2m t l
6
6
bands taken to the second order. „2 Eg0 „2 Eg0 2 , and P D (mt and ml are the Using " D E C Eg0 =2 ; P?2 D jj 2mt 2ml transverse and longitudinal effective electron masses at k D 0) in (1.70), we can write # " „2 kz2 „2 kz2 „2 ks2 „2 kz2 „2 ks2 „2 ks2 E C ˛ C : (1.71) 1 C ˛E C ˛ D 2m 2m 2mt 2ml 2mC 2mC t t l l The 1D dispersion relation can be expressed from (1.71) as kz2 D A23 .E; nx ; ny /;
(1.72)
where A23 .E; nx ; ny / D .2h4 /1 h6 E; nx ; ny h26 E; nx ; ny C 4h4 h7 1=2 i ˛„4 ; ; h4 D E; nx ; ny 4x3 x6 C 3m 3mC t ml t ml ; x D ; 6 C 2m 2mC l C mt l C mt " # " ny 2 „2 nx 2 „2 ˛E„2 ˛„2 h6 E; nx ; ny D C 2x6 2x6 dx 2x1 dy 2x2 " # # ny 2 „ 2 „2 nx 2 „2 ˛„2 .1 C ˛E/ „2 ; C 2x3 dx 2x4 dy 2x5 2m3 2x3
x3 D
x1 D m t ; x2 D
C m mC 3m m t C 2ml t C 2ml ; x4 D mC ; m3 D t l ; t ; x5 D 3 3 mt C 2ml
1.2 Theoretical Background
25
" " # ny 2 „2 nx 2 „2 h7 E; nx ; ny D E .1 C ˛E/ C ˛E C dx 2x4 dy 2x5 " " 2 2 2 2 # ny nx nx 2 „2 „ „ .1 C ˛E/ C ˛ dx 2x1 dy 2x2 dx 2x1 # " # ny 2 „2 ny 2 „2 nx 2 „2 C C dy 2x2 dx 2x4 dy 2x5 " 2 2 2 2 ## ny „ „ nx ; C dx 2m1 dy 2m2 m1 D mt ;
and m2 D
mt C 2ml 3
:
The electron concentration is given by n0 D
nxmax nymax X 2gv X ŒB32 .EF1D ; nx ; ny / C B33 .EF1D ; nx ; ny /; n D1 n D1 x
(1.73)
y
where B32 .EF1D ; nx ; ny / D ŒA23 .EF1D ; nx ; ny /1=2 and B33 .EF1D ; nx ; ny / D r0 P Z1D .r/ŒB32 .EF1D ; nx ; ny /: rD1
The field-emitted current can be written as I D
nxmax nymax X 2gv ekB T X F0 . 22 / exp.ˇ22 /; h
(1.74)
nx D1 ny D1
EF1D E22 . kB T The subband energy E22 assumes the form
where 22 D
2 E22 D .2˛/1 Œ 70 .nx ; ny / C Œ 70 .nx ; ny / C 4˛ 71 .nx ; ny /1=2
in which # " " ny 2 „2 nx 2 „2 70 nx ; ny D 1 C ˛ C dx 2x4 dy 2x5 " ˛
nx dx
2
„2 C 2x1
ny dy
2
„2 2x2
## ;
(1.75)
26
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
71 nx ; ny D
""
# " ny 2 „ 2 nx 2 „2 „2 C˛ C 2x1 dy 2x2 dx 2x1 2 2 # " 2 2 2 2 # ny ny nx „ „ „ C C dy 2x2 dx 2x4 dy 2x5 ## " ny 2 „ 2 nx 2 „2 C ; C dx 2m1 dy 2m2 nx dx
2
3=2
1 4
eF sz A023 .V0 ; nx ; ny / ; A23 .V0 ; nx ; ny / 3 " 0 # h6 V0 ; nx ; ny h6 C 2h4 h07 V0 ; nx ; ny 0 1 0 A23 .V0 ; nx ; ny / D .2h4 / h6 1=2 ; h26 V0 ; nx ; ny C 4h4 h7 V0 ; nx ; ny ˛„2 1 1 h06 D ; 2 x6 x3 ˇ22 D
and # ny 2 „2 „2 nx 2 D 1 C 2˛V0 C ˛ C 2x4 dx dy 2x5 " ## ny 2 „2 „2 nx 2 ˛ C : 2x1 dx dy 2x2 "
h07 .V0 ; nx ; ny /
"
1.2.6 The Field Emission from Quantum Wires of Stressed Semiconductors The dispersion relation of the conduction electrons in bulk specimens of stressed semiconductors can be written as [208–211] ky2 k2 kx2 C C z 2 D 1; 2 2 Œa .E/ Œb .E/ Œc .E/
(1.76)
where
2 a .E/ D
K0 .E/ ; M0 .E/ C 12 N0 .E/ "
K0 .E/ D E C1 "
2C22 "2xy 3Eg0 0 .E/
#
3Eg0 0 .E/ 2B22
! :
1.2 Theoretical Background
27
C1 is the conduction band deformation potential constant, " is the trace of the 3 2 "xx "xy 0 strain tensor "O which can be written as "O D 4 "xy "yy 0 5, C2 is a constant 0 0 "zz which describes the strain interaction between the conduction and valance bands, Eg0 0 .E/ D Eg0 C E C1 ", Eg0 is the band gap in the absence of stress, B2 is the momentum matrix element, " # .aN 0 C C1 / " 1 3bN0 "xx bN0 " M0 .E/ D 1 N ; ; aN 0 D bN0 C 2m C 0 0 0 Eg0 .E/ 2Eg0 .E/ 2Eg0 .E/ 3 1 N 1 N 2nN N ; l; m; N nN are the matrix elements l C 2m N bN0 D l m N ; and dN0 D p 3 3 p3 " xy , of the strain perturbation operator, N0 .E/ D dN0 3 Eg0 0 .E/
aN 0 D
2 K0 .E/ K0 .E/ ; c .E/ D ; 1 L0 .E/ M0 .E/ N0 .E/ 2 " # .aN 0 C C1 / " 3bN0 "zz bN0 " L0 .E/ D 1 : C Eg0 0 .E/ 2Eg0 0 .E/ 2Eg0 0 .E/
b .E/
2
D
and
The 1D dispersion relation of the carriers in stressed materials in this case can be written as kz2 D A24 .E; nx ; ny /; "
(1.77)
# ny 2 nx 2 2 2 Œa .E/ Œb .E/ : where A24 .E; nx ; ny / D Œc .E/ 1 dx dy The subband energy E23 assumes the form " # 2 2 ny 2 nx 2 a .E/ b .E/ C D 1: (1.78) dx dy
2
Using (1.77), the 1D electron statistics can be expressed as n1D D
nymax nzmax X
2gv X B34 EF1D ; ny ; nz C B35 EF1D ; ny ; nz ; n D1 n D1 y
(1.79)
z
so p P A24 .EF1D ; nx ; ny / and B35 EF1D ; nx ; ny D where B34 EF1D ; ny ; nz D rD1
Z1D .r/ B34 EF1D ; ny ; nz .
28
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
The field-emitted current is given by I D
nxmax nymax X 2gv ekB T X F0 . 23 / exp.ˇ23 /; h n D1 n D1 x
(1.80)
y
where 3=2
1 EF1D E23 4
A24 .V0 ; nx ; ny / eF sz A024 .V0; nx ; ny / ; ; ˇ23 D kB T 3 " 2 0 M0 .V0 / C 12 N00 .V0 / K00 .V0 / K0 .V0 /L00 .V0 / nx 0 A24 V0; nx; ny D L0 .V0 / dx L0 .V0 / L20 .V0 /
23 D
C
2 ny 2 L00 .V0 / L0 .V0 / 1 nx 02 2 M0 .V0 / C N0 .V0 / C dx 2 dy L0 .V0 / L0 .V0 /
# ny 2 1 1 1 M00 .V0 / N00 .V0 / ; M0 .V0 / N0 .V0 / 2 dy L0 .V0 / 2 "" K00
.V0 / D
1C
#
2C22 "2xy 3fEg0 0 .V0 /g2
" C V0 C1 " " M00
.V0 / D
3Eg0 0 .V0 /
!
2B22 2C22 "2xy
#
3Eg0 0 .V0 /
3 2B22
# ;
# .aN 0 C C1 / " bN0 " 3bN0 "xx ; C .Eg0 0 .V0 //2 2.Eg0 0 .V0 //2 2.Eg0 0 .V0 //2
p N00 .V0 / D dN0 3
and
"xy : .Eg0 0 .V0 //2
1.2.7 The Field Emission from Quantum Wires of Tellurium The dispersion relation of the conduction electrons in Te can be expressed as [212] ED
2 1 kz
C
2 2 ks
˙Œ
2 2 3 kz
C
2 2 1=2 ; 4 ks
(1.81)
where 1 ; 2 ; 3 , and 4 are system constants. From (1.81), the1D dispersion relation can be written as kz2 D A25;˙ .E; nx ; ny /;
(1.82)
1.2 Theoretical Background
29
where h
1=2 i ; ks2 D 1 .nx ; ny /; A25;˙ .E; nx ; ny / D . 5 .E/ 6 ks2 ˙ 7 8 .E/ ks2
1=2 E E 2 C ; 7 D .2 12 /1 4 32 1 2 4 12 42 ; and ; 6D 5 .E/ D 2 2 1 1 1 4 2 4 C 4E 3 1 : 8 .E/ D 4 32 1 2 4 12 42 The subband energies are given by E26;˙ D
2 1
nx ; ny ˙
4
1=2 : 1 nx ; ny
(1.83)
The electron concentration per unit length can be expressed as n0 D
nxmax nymax X
gv X B36;˙ EF1D ; nx ; ny C B37;˙ EF1D ; nx ; ny ; n D1 n D1 x
(1.84)
y
p p where B36;˙ EF1D ; nx ; ny D A25;C .EF1D ; nx ; ny / C A25; .EF1D ; nx ; ny / and so X
B37;˙ EF1D ; nx ; ny D Z1D .r/ B36;C EF1D ; nx ; ny C B36; EF1D ; nx ; ny : rD1
The field-emitted current assumes the form I D
nxmax nymax X gv ekB T X ŒF0 . 24;C / exp.ˇ24;C / C F0 . 24; / exp.ˇ24; /; (1.85) h n D1 n D1 x
y
3=2 h EF1D E26;˙ 4
eF sz A025;˙ ; A25;˙ V0 ; nx ; ny ; ˇ24;˙ D kB T 3 1=2 0 7
.V / ; n .V / .V0 nx ; ny / 1 , A025;˙ V0 ; nx ; ny D 11 ˙ n 8 0 1 x y 8 0 ; 2 i h 4 2 and 80 .V0 / D 4 2 341 2 2 where 24;˙ D
3
1 2
1
4
1.2.8 The Field Emission from Quantum Wires of Gallium Phosphide The energy spectrum of the conduction electrons in n-GaP can be written as [213] #1=2 " i „4 k02 2 „2 h 0 2 „2 ks2 2 2 2 C A ks C kz C jVG j ; (1.86) ks C kz C jVG j ED 2m? 2mjj m2 jj
30
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors 0
where k0 and jVG j are constants of the energy spectrum and A D 1. The 1D dispersion relation assumes the form kz2 D A26 .E; nx ; ny /;
(1.87)
where h
1=2 i A26 E; nx ; ny D t1 E C t2 t3 1 nx ; ny t4 1 nx ; ny C t6 E C t5 ; t1 D .b0 /1 2 ˇ ˇ
1 b0 D „2 =2mk ; t2 D Œ2b0 D0 C C 2b02 ; D0 D ˇVg ˇ; C D „2 k0 =mk ; h i t3 D .a0 =b0 / ; a0 D „2 =2m? C A„2 =2mk ; t4 D aN 1 = 4b04 ; aN D 4b0 C .b0 C / ; t6 D aN 3 = 4b04 ; aN 3 D 4Cb0 ; t5 D aN 2 = 4b04 ; and
aN 2 D C 2 C 4b02 D02 4b0 CD0 : The subband energy E27 can be written as E27 D a0 1 .nx ; ny / .C 1 .nx ; ny / C D02 /1=2 C D0 :
(1.88)
The electron concentration per unit length can be expressed as nxmax nymax X
2gv X n0 D B38 EF1D ; nx ; ny C B39 EF1D ; nx ; ny ; n D1 n D1 x
(1.89)
y
so p P where B38 EF1D ; nx ; ny D A26 .EF1D ; nx ; ny / and B39 EF1D ; nx ; ny D rD1
Z1D .r/ B38 EF1D ; nx ; ny . The field-emitted current assumes the form
I D
nxmax nymax X 2gv ekB T X ŒF0 . 26 / exp.ˇ26 /; h
(1.90)
nx D1 ny D1
3=2
1 EF1D E27 4
A26 V0 ; nx ; ny ; ˇ26 D eF sz A026 V0 ; nx ; ny ; kB T 3 1=2 1
. and A026 V0 ; nx ; ny D t1 t6 t4 1 nx ; ny C t6 V0 C t5 2
where 26 D
1.2 Theoretical Background
31
1.2.9 The Field Emission from Quantum Wires of Platinum Antimonide The dispersion relation for n PtSb2 is given by [214] " #" # .a/2 2 .a/2 2 .a/2 2 .a/2 2 I .a/4 4 E C 0 k l ks k n ks D k ; E C ı0 4 4 4 4 16 (1.91) where 0 ; a; l; ı0 ; ; n, and I are system constants. The 1D dispersion relation can be written as h 2 ii1=2 n 2
1 h y ; kx2 D 2A9 A10 .E; nz /C A10 .E; nz / C 4 A9 A11 .E; nz / dY (1.92) where .a/4 I1 D I ; 16 "
A9 D .I1 C !1 !3 / ; "
A10 .E; nz / D !3 E C !1 E C ı0 !4 C !2 !3
nz dz
2
C 2I1
nz dz
nz dz
2 #
2 # ;
! i .a/2 h .a/2 .a/2 .a/2
0 l ; !2 D 0 ; and ; !3 D .n C / ; !4 D !1 D 4 4 4 4 " " # nz 2 A11 .E; nz / D E E C ı0 !4 dz " # # nz 2 nz 2 nz 4 E C ı0 !4 I1 : C !2 dz dz dz Therefore, (1.92) can be expressed as kx2 D A27 E; ny ; nz ;
(1.93)
where h 2 ii1=2 1 h A10 .E; nz /C A10 .E; nz / C 4 A9 A11 .E; nz / A27 E; ny ; nz D 2A9
ny dy
2 :
32
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
The electron concentration per unit length assumes the form nxmax nymax X
2gv X B40 EF1D ; nx ; ny C B41 EF1D ; nx ; ny ; n D1 n D1
n0 D
x
(1.94)
y
so p P where B40 EF1D ; nx ; ny D A27 .EF1D ; nx ; ny / and B41 EF1D ; nx ; ny D rD1
Z1D .r/ B40 EF1D ; nx ; ny . The field-emitted current can be written as
I D
nxmax nymax X 2gv ekB T X ŒF0 . 27 / exp.ˇ27 /; h n D1 n D1 x
(1.95)
y
EF1D E28 . E28 is the root of the equation kB T h 2 ii1=2
1 h 2A9 A10 .E28 ; nz / C A10 .E28 ; nz / C 4 A9 A11 .E28 ; nz /
where 27 D
ny dY
2 D 0;
(1.96)
4 ŒA27 .V0 ; nx ; ny /3=2 ŒeF sz A02 7.V0 ; nx ; ny /1 ; 3 h 2 i1=2
1 h .A10 /0 C A10 .V0 ; nz / C 4 A9 A11 .V0 ; nz / A027 E; ny ; nz D 2A9 h 0 0 ii A10 .V0 ; nz / A10 C 2 A9 A11 .V0 ; nz / ; ˇ27 D
A010 D .!1 C !3 /; and
" 0
.A11 .V0 ; nz // D 2V0 C ı0 !4
nz dz
2
C !2
nz dz
2 # :
1.2.10 The Field Emission from Quantum Wires of Bismuth Telluride The dispersion relation of the conduction electrons in Bi2 Te3 can be written as [215–217] E.1 C ˛E/ D !N 1 kx2 C !N 2 ky2 C !N 3 kz2 C !N 4 kz ky ;
(1.97)
1.2 Theoretical Background
33
„2 „2 „2 „2 ˛N 11 ; !N 2 D ˛N 22 ; !N 3 D ˛N 33 ; and !N 4 D ˛N 23 in which 2m0 2m0 2m0 2m0 ˛N 11 ; ˛N 22 ; ˛N 33 , and ˛N 23 are system constants. The 1D electron energy spectrum assumes the form where !N 1 D
kx2 D A28 .E; ny ; nz /; "
ny dy
where A28 .E; ny ; nz / D E .1 C ˛E/ !N 2 nz .!N 1 /1 . dz The subband energy .E30 / can be expressed as
(1.98)
2
!N 3
nz dz
2
!N 4
ny dy
q E30 D .2˛/1 1 C 1 C 4˛™32 .ny ; nz / ; "
(1.99)
# ny 2 ny nz 2 nz C !N 3 C !N 4 . where ™32 .ny ; nz / D !N 2 dy dz dy dz The electron concentration per unit length is given by n0 D
nzmax nymax X
2gv X B42 EF1D ; nz ; ny C B43 EF1D ; nz ; ny ;
(1.100)
nz D1 ny D1
p D where B42 EF1D ; nz ; ny A28 .EF1D ; ny ; nz / and B43 EF1D ; nz ; ny so
P Z1D .r/ B42 B EF1D ; nz ; ny .
D
rD1
The field-emitted current in this case can be written as nzmax nymax X 2gv ekB T X I D ŒF0 . 28 / exp.ˇ28 /; h n D1 n D1 z
(1.101)
y
where 28 D
EF1D E30 ; kB T
ˇ28 D
A028 .V0 / D .!N 1 /1 Œ1 C 2˛V0 :
1 3=2
4
eFsz A02 8.V0 / ; A28 V0 ; ny ; nz 3
and
34
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
1.2.11 The Field Emission from Quantum Wires of Germanium It is well known that the conduction electrons of n-Ge obey two different types of dispersion laws since band nonparabolicity has been included in two different ways as given in the literature [218–220]. (a) The energy spectrum of the conduction electrons in bulk specimens of n-Ge can be expressed in accordance with Cardona et al. [218] as " 2 #1=2 Eg20 „2 kz2 E g0 „ C ; (1.102) ED C C Eg0 ks2 2 2mk 4 2m? where in this case mk and m? are the longitudinal and transverse effective masses along the h111i direction at the edge of the conduction band, respectively. The 1D electron energy spectrum assumes the form ky2 D A29 .E; nx ; nz /; where
(1.103)
# # nx 2 2 ; 2m2 =„ A29 .E; nx ; nz / D 15 .E; nz / dx " 2 „ nz 2 15 .E; nz / D E .1 C ˛E/ .1 C 2˛E/ 2m3 dz 3 " # 2 „2 nz 2 5 C˛ ; 2m3 dz ""
m1 D m? ; m2 D
m? C 2mk 3
„2 2m1
and m3 D
3m? mk
m? C 2mk
:
The quantized energy levels .E31 / can be expressed through the equation p E31 D .2˛/1 Œ91 .nz / C 91 .nz /2 4˛92 .nz /; (1.104) where
# nz 2 „2 and 91 .nz / D 1 2˛ 2m3 dz 2 3 " 2 2 #2 2 2 „ „ n n z z 5: 92 .nz / D 4 ˛ 2m3 dz 2m3 dz "
1.2 Theoretical Background
35
The electron concentration per unit length is given by nxmax nzmax X 2gv X ŒB44 .EF1D ; nx ; nz / C B45 .EF1D ; nx ; nz /; n0 D n D1 n D1 x
(1.105)
z
where B44 .EF1D ; nx ; nz / D so P Z1D .r/ ŒB44 .EF1D ; nx ; nz / :
p A29 .EF1D ; nx ; nz / and B45 .EF1D ; nx ; nz /
D
rD1
The field-emitted current assumes the form I D
nxmax nzmax X 2gv ekB T X ŒF0 . 29 / exp.ˇ29 /; h n D1 n D1 x
where 29 D
(1.106)
z
EF1D E31 , kB T
3=2
1 4
eF sz A02 9.V0 / ; and A29 .V0 ; ny ; nz / 3 # "" 2 # „ nz 2 2 0 : 2m2 =„ A29 .V0 ; nx ; nz / D 1 C 2˛V0 ˛ m3 dz
ˇ29 D
(b) The dispersion relation of the conduction electron in bulk specimens of n-Ge can be expressed in accordance with the model of Wang and Ressler [220] and can be written as „2 kz2 „2 ks2 ED C cN1 2mjj 2m?
„2 ks2 2m?
2
dN1
„2 ks2 2m?
! „2 kz2 eN1 2mjj
„2 kz2 2mjj
!2 ;
(1.107)
2 m? 2 N , d1 D dN where cN1 D C 2m? =„2 , C D 1:4A, A D 14 „4 =Eg0 m2 1 ? m0 ! 2 4m? mk N , dN D 0:8A, eN1 D eN0 2mk =„2 ; and eN0 D 0:005A. 4 „ The 1D electron energy spectrum assumes the form ky2 D A30 .E; nx ; nz /; "" where A30 .E; nx ; nz / D
I29 .E; nz /
„2 2m1
nx dx
(1.108) 2 #
2m2 =„2
#
,
36
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
I29 .E; nz / D 2C1 A5 .nz / D
„2 2m3
1
" A6 .nz / D 1 dN1
h 2 i 12 A6 .nz / C A6 .nz / 4C 1 E C 4 C1 A5 .nz /
nz dz
„2 2m3
2 "
1 eN1
nz dz
„2 2m3
nz dz
2 # X n
Xi2 ;
;
and
i D1
2 # :
The quantized energy levels .E32 / can be expressed through the equation E32 D A5 .nz / C
2 3 " 2 #2 2 2 2 N C n n C „ „ 1 x 1 x 4 5: 2A6 .nz / m1 dx m1 dx 4C 1 1
(1.109) The electron concentration per unit length is given by nxmax nzmax X 2gv X ŒB46 .EF1D ; nx ; nz / C B47 .EF1D ; nx ; nz /; n0 D n D1 n D1 x
(1.110)
z
where B46 .EF1D ; nx ; nz / D B47 .EF1D ; nx ; nz / D
p A30 .EF1D ; nx ; nz / and so X
Z1D .r/ ŒB46 .EF1D ; nx ; nz /:
rD1
The field-emitted current assumes the form nxmax nzmax X 2gv ekB T X I D ŒF0 . 30 / exp.ˇ30 /; h nx D1 nz D1
where 30 D
1 3=2
EF1D E32 4
eFsz A030 .V0 / , A30 V0 ; ny ; nz ; ˇ30 D kB T 3
0 A030 .V0 ; nx ; nz / D .2m2 =„2 /I29 .V0 ; nz /; and h i1=2 2 0 : .V0 ; nz / D A6 .nz / 4C 1 V0 C 4 C1 A5 .nz / I29
(1.111)
1.2 Theoretical Background
37
1.2.12 The Field Emission from Quantum Wires of Gallium Antimonide The dispersion relation of the conduction electrons in n-GaSb can be written as [221] " # 12 2„2 k 2 1 EN 0 go „2 k 2 E 0 go 1 1C C ED ; 2m0 2 2 E 0 go mc m0
(1.112)
5:105 T 2 eV: where E 0 go D Ego C 2.112 C T / Equation (1.112) can be expressed as „2 k 2 D I16 .E/; 2mc
(1.113)
where I16 .E/ D ŒE C E 0 g0 .mc =m0 /.E 0 g0 =2/ Œ.EN 0 g0 =2/2 C Œ..E 0 g0 /2 =2/.1 .mc =m0 // C Œ.E 0 g0 =2/.1 .mc =m0 //2 C EE 0 g0 .1 .mc =m0 //1=2 : The 1D electron energy spectrum assumes the form kz2 D A31 .E; nx ; ny /;
(1.114)
where A31 .E; nx ; ny / D ŒI16 .E/.2mc =„2 / 1 .nx ; ny /. The quantized energy levels .E33 / can be expressed through the equation 2 „ I16 .E33 / D (1.115) 1 .nx ; ny /: 2mc The electron concentration per unit length is given by n0 D
nxmax nymax X
2gv X B48 EF1D ; nx ; ny C B49 EF1D ; nx ; ny ; n D1 n D1 x
y
where q B48 EF1D ; nx ; ny D A31 .EF1D ; nx ; ny /
and
so
X B49 EF1D ; nx ; ny D Z1D .r/ B48 EF1D ; nx ; ny : rD1
(1.116)
38
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
The field-emitted current can be written as nxmax nymax X 2gv ekB T X ŒF0 . 31 / exp.ˇ31 /; I D h n D1 n D1 x
(1.117)
y
3=2
1 EF1D E33 4
eF sz A031 .V0 / ; and A31 V0 ; nx ; ny ; ˇ31 D kB T 3 A031 .V0 / D Œ1 .mc =m0 /.E 0 g0 =2/Œ.E 0 g0 =2/2 C Œ..E 0 g0 /2 =2/.1 .mc =m0// C where 31 D
Œ..E 0 g0 /2 =2/.1.mc =m0 //CŒ.E 0 g0 =2/.1.mc =m0//2 CV0 E 0 g0 .1.mc =m0 // 1=2.2mc =„2 /:
1.2.13 The Field Emission from Quantum Wires of II–V Materials The dispersion relation of the holes are given by [222–224] E D 1 kx2 C 2 ky2 C 3 kz2 C ı4 kx
n
5 kx2
C
6 ky2
C
7 kz2
C ı5 kx
o2
C
G32 ky2
C
23
12
˙ 3 ;
(1.118)
where kx ; ky , and kz are expressed in the units of 1010 m1 , 1 1 1 1 .a1 C b1 /; 2 D .a2 C b2 /; 3 D .a3 C b3 /; ı4 D .A C B/; 2 2 2 2 1 1 1 1 5 D .a1 b1 /; 6 D .a2 b2 /; 7 D .a3 b3 /; ı5 D .A B/; and 2 2 2 2 ai .i D 1; 2; 3; 4/; bi ; A; B; G3 ; and 3 are system constants:
1 D
The 1D electron energy spectrum assumes the form kz2 D A32;˙ .E; nx ; ny /;
(1.119)
where A32;˙ .E; nx ; ny / D ˛4;˙ .nx ; ny / C ˇ4 E ˙ Œˇ5 E 2 C Eˇ6;˙ .nx ; ny / C ˇ7;˙ 1 .nx ; ny / 2 ,
1
˛4;˙ .nx ; ny / D 2 32 72 27 ˛2 .nx ; ny / 2˛1; .nx ; ny /3 ; ny 2 nx 2 nx C 2 C ı4 3 ; ˛1; .nx ; ny / D 1 dx dy dx " # ny 2 nx 2 nx ; C 6 C ı5 ˛2 .nx ; ny / D 5 dx dy dx
1.3 Result and Discussions
39
1 2 2 ˇ4 D 23 2 32 72 ; ˇ5 D 2 32 72 47 ; 1
; ˇ6;˙ .nx ; ny / D 83 7 ˛2 .nx ; ny / 872 ˛1; .nx ; ny / 2 32 72
2
2 472 ˛22 .nx ; ny / 87 3 ˛2 .nx ; ny /˛1; .nx ; ny / ˇ7;˙ .nx ; ny / D 2.3 72 / C 432 ˛3 .ny / C 472 ˛1; .nx ; ny / 4˛3 .ny /72 ; and 2 2 ny C 23 : ˛3 .ny / D G3 dy The quantized energy levels .E34;˙ / can be expressed through the equation 1
E34;˙ D ˛1; .nx ; ny / ˙ Œ˛22 .nx ; ny / C ˛3 .ny / 2 :
(1.120)
The electron concentration per unit length is given by n0 D
nxmax nymax X
gv X B49 EF1D ; nx ; ny C B50 EF1D ; nx ; ny ; n D1 n D1 x
(1.121)
y
p
p A32;C .EF ID ; nx ; ny / C A32; .EF ID ; nx ; ny / where B49 EF 1D ; nx ; ny D so
P and B50 EF 1D ; nx ; ny D Z1D .r/ B49 EF 1D ; nx ; ny . rD1
The field-emitted current assumes the form nxmax nymax X gv ekB T X ŒF0 . 32;C / exp.ˇ32;C /CF0 . 32; / exp.ˇ32; /; (1.122) I D h n D1 n D1 x
y
3=2 h EF1D E34;˙ 4
A32;˙ .V0 ; nx ; ny / ; ˇ32;˙ D eFsz A032;˙ .V0 ; kB T 3 1
1
2ˇ5 V0 C ˇ6;˙ .nx ; ny / : ˇ5 V02 ; and A032;˙ .V0 ; nx ; ny / D ˇ4 ˙ nx ; ny / 2 12 i Cˇ6;˙ .nx ; ny /V0 C ˇ7;˙ .nx ; ny / . where 32;˙ D
1.3 Result and Discussions Using (1.5) and (1.12) and taking the energy band constants as given in the Table 1.1, we have plotted the FNFE current from QWs of CdGeAs2 (an example of nonlinear optical materials) as a function of dy as shown by the dotted plot of Fig. 1.1, in which the plot corresponds to the solid line represents the same for the two-band model of Kane. Figure 1.2 exhibits the plot FNFE current from QWs of n-InSb as a function of film thickness in accordance with the three- and two-band models of
40
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Kane together with the models of Stillman et al., Newson et al., and Palik et al., respectively for the purpose of assessing the influence of dispersion relations on the FNFE current from QWs of III–V semiconductors. Figure 1.3 exhibits the variation of the field-emitted current with electric field which is normal to the two directions of quantizations in the wavevector space of the material for all cases Fig. 1.2. Figure 1.4 presents the FNFE current as function of film thickness for two different Table 1.1 The numerical values of the energy band constants of few materials 1
Materials (a) The conduction electrons of n-Cadmium Germanium Arsenide can be described by three types of band models
(b) The conduction electrons of n-Cadmium Arsenide can be described by three types of band models
Numerical values of the energy band constants 1. The values of the energy band constants in accordance with the generalized electron dispersion relation of nonlinear optical materials (as given by (1.2)) are as follows: Eg0 D 0:57 eV, k D 0:30 eV, ? D 0:36 eV, m k D 0:034m0 , m? D 0:039m0 , T D 4 K, ı D 0:21 eV, gv D 1 [47, 225], "sc D 18:4"0 [226] ("sc and "0 are the permittivity of the semiconductor material and free space, respectively), and W .electron affinity/ D 4eV [227–229] 2. In accordance with the three-band model of Kane (as given by (1.13)), the spectrum constants are given by D .jj C ? /=2 D 0:33eV; Eg0 D 0:57eV; mc D .m jj C m? /=2 D 0:0365m0 ; and ı D 0eV 3. In accordance with two-band model of Kane (as given by (1.19)), the spectrum constants are given by Eg0 D 0:57 eV and mc D 0:0365m0 1. The values of the energy band constants in accordance with the generalized electron dispersion relation of nonlinear optical materials (as given by (1.2)) are as follows: jEg0 j D 0:095 eV; k D 0:27 eV; ? D 0:25 eV, m k D 0:00697m0 , m? D 0:013933m0 , T D 4 K; ı D 0:085 eV; gv D 1 [47, 225], and "sc D 16"0 [227–229] 2. In accordance with the three-band model of Kane (as given by (1.13)), the spectrum constantsˇare given by ˇ ˇ ˇ D D 0:26 eV; Eg0 D 0:095 eV, jj C ? =2 mc D m jj C m? =2 D 0:020903m0 , and ı D 0 eV
2
n-Indium Arsenide
3
n-Gallium Arsenide
3. In accordance with two-band model of Kane (as given by ˇ the spectrum constants are given by ˇ(1.19)), ˇEg ˇ D 0:095 eV and mc D 0:020903m0 0 The values Eg0 D 0:36 eV; D 0:43 eV, mc D 0:026m0 ,gv D 1; "sc D 12:25"0 [103, 104], and W D 5:06 eV [230] are valid for three-band model of Kane as given by (1.13) The values Eg0 D 1:55 eV; D 0:35 eV; mc D 0:07m0 ,gv D 1, "sc D 12:9"0 [103, 104], and W D 4:07 eV [231] are valid for three-band model of Kane as given by (1.13). The values a13 D 1:97 1037 eVm4 and a15 D 2:3 1034 eVm4 [106] are valid for the Newson and Kurobe model [106] as given by (1.34) (continued)
1.3 Result and Discussions Table 1.1 (continued) Materials 4 n-Gallium Aluminium Arsenide 5 n-Mercury Cadmium Telluride
6
n-Indium Gallium Arsenide Phosphide lattice matched to Indium Phosphide
7 n-Indium Antimonide 8
n-Gallium Antimonide
9
n-Cadmium Sulphide
10
n-Lead Telluride
11 Stressed n-Indium Antimonide
12 Bismuth 13
Mercury Telluride
41
Numerical values of the energy band constants Eg0 D .1:424 C 1:266x C 0:26x 2 /eV, D .0:34 0:5x/eV; gv D 1, mc D Œ0:066 C 0:088x m0 ; "sc D Œ13:18 3:12x "0 [232], and W D .3:64 0:14x/eV [233] 4 2 Eg0 D .0:302 C 1:93x 0:810x C C 5:35 10 .1 2x/T 0:832x 3 /eV; D 0:63 C 0:24x 0:27x 2 eV; 1
mc D 0:1m0 Eg0 .eV/ ; gv D 1;2 "sc D 20:262 14:812x C "0 [234], and 5:22795x W D 4:23 0:813 E 0:083 eV [235] g 0 2 eV, 0:73y C 0:13y Eg0 D 1:337 D 0:114 C 0:26y 0:22y 2 eV, y D .0:1896 0:4052x/=.0:1896 0:0123x/, mc D .0:08 0:039y/ m0 ; gv D 1; "sc D Œ10:65 C 0:1320y "0 ; and [231] W .x; y/ D Œ5:06 .1 x/ y C 4:38.1 x/ .1 y/ C 3:64xy C 3:75 fx.1 y/g eV Eg0 D 0:2352 eV; D 0:81 eV; mc D 0:01359m0 , gv D 1; "sc D 15:56"0 [103, 104], and W D 4:72 eV [230] The values of Eg0 D 0:81 eV; D 0:80 eV, P D 9:48 1010 eVm; &N 0 D 2:1; vN 0 D 1:49, !N 0 D 0:42, gv D 1 [238], and "sc D 15:85"0 [239] are valid for the model of Seiler et al. [238] as given by (R1.5).) 8 eVm; gv D 1 m k D 0:7m0 ; m? D 1:5m0 ; C0 D 1:4 10 [103, 104], "sc D 15:5"0 [240], and W D 4:5 eV [230] The values m t D 0:070m0 ; ml D 0:54m0 ; C mC D 0:010m ; m D 1:4m 0 0 , Pjj D 141 meVnm, t l P? D 486 meVnm; Eg0 D 190 meV; gv D 4 [103, 104], "sc D 33"0 [103, 104, 241], and W D 4:6 eV [242, 244] are valid for the Dimmock model [207] as given by (1.70) The values m1 D 0:0239m0 ; m2 D 0:024m0 ; m02 D 0:31m0 , and m3 D 0:24m0 [243] are valid for the Cohen model [133] as given by (1.60) The values mc D 0:048mo , Eg0 D 0:081 eV; B2 D 9 1010 eVm, C1 D 3 eV, C2 D 2eV, aN 0 D 10 eV, bN0 D 1:7 eV, dN0 D 4:4 eV; Sxx D 0:6 103 .kbar/1 , Syy D 0:42 103 .kbar/1 , Szz D 0:39 103 .kbar/1 , Sxy D 0:5 103 .kbar/1 , "xx D Sxx , "yy D Syy , "zz D Szz , "xy D Sxy , is the stress in kilobar, and gv D 1 [208–211] are valid for the model of Seiler et al. [208–211] as given by (1.76) Eg0 D 0:0153 eV; m1 D 0:00194m0 ; m2 D 0:313m0 , m3 D 0:00246m0 ; m02 D 0:36m0 ; gv D 3 [245, 246], M2 D 1:25m0 , M20 D 0:36m0 [247], and W D 4:34 eV m v D 0:028m0 ; gv D 1; "1 D 15:2"0 [248], and W D 5:5 eV [249] (continued)
42
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Table 1.1 (continued) Materials 14 Platinum Antimonide
15
n-Gallium Phosphide
16 Germanium 17 Tellurium
18
Graphite
19 20
Lead Germanium Telluride Cadmium Antimonide
21
Cadmium Diphosphide
22
Zinc Diphosphide
23
Bismuth Telluride
24
Carbon Nanotube
Numerical values of the energy band constants For valence bands, along the h100i direction, N 0 D .0:02=4/eV, lN D .0:32=4/eV, N D .0:39=4/eV,
nN D .0:65=4/eV, aN D 0:643 nm; I D 0:30 .eV/2 , ıN0 D 0:02 eV, gv D 6 [214], "sc D 30"0 [250], and w 3:0 eV [214, 251] For conduction bands, along the h111i direction, gv D 8 [214, 251], N 0 D .0:33=4/eV; lN D .1:09=4/eV; N D .0:17=4/eV, and
nN D .0:22=4/eV m m ? D 0:25m0 ; jj D 0:92m0 ; 15 1 k0 D 1:7 10 m ; jVG j D 0:21 eV; gv D 6 [213], and W D 3:75 eV [230] Eg0 D 0:785 eV; m m ? D 0:0807m0 [230], jj D 1:57m0 ; W D 4:14 eV [231], and gv D 4 The values 1 D 6:7 1016 meVm2 , 16 meVm2 ; 3 D 6 108 meVm, and 2 D 4:2 10 8 D .3:6 10 meVm/ [212] are valid for the model of 4 Bouat et al. [212] as given by (1.81) N D 0:0002 eV, N1 D 0:392 eV, The values N5 D 0:194 eV, c6 D 0:674 nm, N2 D 0:019 eV, a6 D 0:246 nm, N0 D 3 eV, N4 D 0:193 eV; 3 D 0:21 eV [252], and W D 4:6 eV [253] are valid for the model of Brandt et al. [252] as given by (R.1.12) The values gv D 4 [254] and w 6 eV [255] are valid for the model of Vassilev [254] as given by (R.1.10) The values a1 D 32:3 1020 eVm2 , b1 D 60:7 1020 eVm2 , a2 D 16:3 1020 eVm2 , b2 D 24:4 1020 eVm2 , a3 D 91:9 1020 eVm2 , b3 D 105 1020 eVm2 , A D 2:92 1010 eVm, B D 3:47 1010 eVm, G3 D 1:3 1010 eVm, 3 D 0:070 eV [222], and w 2 eV [256] The values ˇ1 D 8:6 1021 eVm2 , ˇ2 D 1:8 1021 .eVm/2 , ˇ4 D 0:0825 eV, ˇ5 D 1:9 1019 eVm2 [257], and w 5 eV [258] are valid for the model of Chuiko [257] and is given by (R.1.20) The values ˇ1 D 8:7 1021 eVm2 , ˇ2 D 1:9 1021 .eVm/2 , ˇ4 D 0:0875 eV, ˇ5 D 1:9 1019 eVm2 [257], and W 3:9 eV [258] are valid for the model of Chuiko [257] and is given by (R.1.20) The values Eg0 D 0:145 eV, ˛N 11 D 4:9, ˛N 22 D 5:92,˛N 33 D 9:5, ˛N 23 D 4:22, gv D 6 [215–217], and w D 5:3 eV [259] are valid for the model of Stordeur et al. [215–217] using (1.97) The values ac D 0:144 nm [260], tc D 2:7 eV [261], rN0 D 0:7 nm [262, 263], and W D 3:2 eV [265] are valid for graphene band structure realization of carbon nanotube [262, 263] (continued)
1.3 Result and Discussions Table 1.1 (continued) Materials 25 Antimony
26
Zinc Selenide
27
Lead Selenide
43
Numerical values of the energy band constants The values ˛11 D 16:7, ˛22 D 5:98, ˛33 D 11:61, ˛23 D 7:54 [265], and W D 4:63 eV are valid for the model of Ketterson [265] and are given by (R.1.13) and (R.1.14), respectively mc2 D 0:16m0 ; 2 D 0:42 eV; Eg0 2 D 2:82 eV [231], and W D 3:2 eV [266] C m t D 0:23m0 ; ml D 0:32m0 ; mt D 0:115m0 , C ml D 0:303m0 ; Pjj 138 meVnm, P? D 471 meVnm; Eg0 D 0:28 eV [267], "sc D 21:0"0 [231], and W D 4:2 eV [268]
Fig. 1.1 Plot of the FN field emission current as a function of film thickness dy for QWs of n CdGeAs2 . The dotted and solid curves correspond to the generalized and the two-band models of Kane, respectively, where dz D 30 nm
values of alloy composition for QWs of n Hg1x Cdx Te. Figure 1.5 shows the carrier concentration dependence of FNFE current from QWs of n Hg1x Cdx Te, n-InSb, n-InAs, and n-GaAs, respectively, for the purpose of assessing the influence of different energy band constants on the field-emitted current from QWs of III–V materials. In Fig. 1.6, exhibits the film thickness dependence of FNFE current from QWs of n In1x Gax Asy P1y in accordance with the three- and two-band models of Kane together with the models of Stillman et al., Newson et al., and Palik et al., respectively. Figure 1.7 shows the dependence of FNFE current on alloy composition from QWs of ternary and quaternary materials in accordance with the two-band model of Kane. Figure 1.8 exhibits the film thickness dependence of FNFE current from QWs of II–VI materials taking p-CdS as an example. Figure 1.9 shows the FNFE current as a function of carrier concentration for the case of Fig. 1.8. In Fig. 1.10, we have plotted the FNFE current from QWs of Bismuth as a function of film thickness in accordance with the models of McClure and Choi, Hybrid, Cohen, and Lax, respectively. Figure 1.11 exhibits the variation of the FNFE current as a function of film thickness for QWs of stressed materials taking stressed n-InSb
44
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Fig. 1.2 Plot of the FN field emission current as a function of film thickness dy for QWs of n-InSb in accordance with the three and two-band models of Kane together with the models of Stillman et al., Newson et al., and Palik et al., respectively, where dz D 30 nm
Fig. 1.3 Plot of the FN field emission current as a function of electric field for QWs of n-InSb in accordance with all the cases of Fig. 1.2
Fig. 1.4 Plot of the FN field emission current as a function of film thickness dy for QWs of n Hg1x Cdx Te in accordance with the two-band model of Kane for two different values of alloy composition
1.3 Result and Discussions
45
Fig. 1.5 Plot of the FN field emission current as a function of carrier concentration for QWs of n Hg0:7 Cd0:3 Te, n-InSb, n-InAs, and n-GaAs in accordance with the two-band model of Kane at the lowest subband Fig. 1.6 Plot of the field current as a function of film thickness dy for quantum wires of n In1x Gax Asy P1y in accordance with the three- and two-band models of Kane together with the models of Stillman et al., Newson et al., and Palik et al. respectively, where dz D 30 nm
as an example. Figures 1.12 and 1.13 explore the stress dependence of the FNFE current from QWs of stressed n-InSb for different values of doping for the purpose of assessing the influence of carrier concentration on the field-emitted current in this case. In Fig. 1.14, the field-emitted current as a function of film thickness has been plotted for QWs of n-Ge (in accordance with both types of band models of n-Ge), n-GaP,Te, n-PbTe, and p Bi2 Te3; respectively. The plot (a) of Fig. 1.15 shows the
46
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Fig. 1.7 Plot of the field-emitted current as a function of alloy composition for QWs of n Hg1x Cdx Te and In1x Gax Asy P1y in accordance with the two-band model of Kane
Fig. 1.8 Plot of the field-emitted current as a function of film thickness dy for QWs of CdS
variation of FNFE current on the electric field for QWs of PbTe and Te, while (b) exhibits the same for QWs of Ge, GaP, and Bi2 Te3 , respectively. The salient features of the above figures are described as follows: From Fig. 1.1, we observe that the field emission current exhibits a stepfunctional decreasing dependence with increase in film thickness for QWs of n CdGeAs2 . The combined influence of the anisotropies of the energy band constants and the crystal field splitting is to enhance the field-emitted current as compared with the same as obtained on the basis of two-band model of Kane in the whole range of thicknesses as considered in Fig. 1.1. The periodicity with respect to the film thickness is same in both the cases and is invariant of the energy band constants. It should be noted that the field-emitted current in general, is a product of two quantities inside the summation signs. One of them is F0 . ij /, .i D 1; 2; 3: : : and j D 1, 2, 3, . . . ) and the other one is exp(ˇij ), where both of them are functions
1.3 Result and Discussions
47
Fig. 1.9 Plot of the field-emitted current as a function of concentration for QWs of CdS
Fig. 1.10 Plot of the field-emitted current as a function of film thickness for QWs of Bi in accordance with the models of Mc Clure and Choi, Hybrid, Cohen, and Lax, respectively
of Fermi energy, effective mass, and various parameters of the system in a complex way. Thus, we observe that field-emitted current depends totally on the product of these two functions within the summation signs and a prefactor outside the summation signs. The product of these two functions ultimately determines the behavior of the field-emitted current. Although we know [247] that the Fermi energy of low-dimensional systems decreases with increasing size, one cannot be always certain that I will decrease with increasing film thickness due to the particular form of field-emitted current in case of QWs. If the rate of increase of F0 . ij / overcomes the rate of change of exp(ˇij ), I will increase, whereas, for the opposite case, I will decrease. This important physical fact determines the magnitude of the fieldemitted current and its dependence with respect to any other physical variable. From Fig. 1.2, we observe that I decrease with increasing film thickness for the three- and two-band models of Kane together with the models of Stillman et al.,
48
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Fig. 1.11 Plot of the field-emitted current as a function of film thickness for QWs of stressed n-InSb for different values of dy
Fig. 1.12 Plot of the field-emitted current as a function of stress for QWs of stressed n-InSb for two different values of carrier concentration as shown
Newson et al., and Palik et al., respectively. The I exhibits different magnitudes which is the direct signature of the dispersion relation on the field-emitted current. Numerical computations reflect the fact that the field-emitted current for a 30 10 nm2 size quantum wire can reach nearly 160 A for n-InSb at low temperatures and at a field strength of 5 108 V m1 with carrier concentration of 109 m1 . From Fig. 1.3, it can be stated that field strength of nearly 107 V m1 is sufficient to produce a tenth of microampers. Incidentally, due to the velocity saturation phenomena, we observe that beyond 108 V m1 , I saturates converging to a unique value and becomes invariant of dispersion relations. The field-emitted current from QWs of n Hg1x Cdx Te as function of film thickness has been exhibited in Fig. 1.4 and can be compared with the corresponding cases of earlier figures. It appears that for lower values of film thickness, I increases for a particular subband. As thickness increases, generation of different subbands occurs which
1.3 Result and Discussions
49
Fig. 1.13 Plot of the field-emitted current as a function of stress for QWs of stressed n-InSb for two different values of carrier concentration as shown
Fig. 1.14 Plot of the field-emitted current as a function of film thickness for QWs of Ge (in accordance with both types of band models), GaP, Bi2 Te3 , PbTe, and Te, respectively
leads to the overall decrease in I . The variation of I over a large range of carrier concentration has been plotted in Fig. 1.5 for the quantum limit case. It appears that I initially increases due to low value of Fermi energy, and as the concentration increases, the magnitude of the current decreases sharply exhibiting a peak. The amount of broadening is highly sensitive to the spectrum parameters of a particular semiconductor. It appears that for n-GaAs, the broadening is more as compared with others as shown in the figure. Figure. 1.6 exhibits the variation of I as function of
50
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
Fig. 1.15 Plot of the field current as a function of electric field for quantum wires of (a) PbTe and Te and (b) GaP, Bi2 Te3 , and Ge, respectively
film thickness for QWs of n In1x Gax AsP1y in accordance with the three- and two-band models of Kane together with the models of Stillman et al., Newson et al., and Palik et al. respectively. Figure. 1.6 shows almost a constant step-functional dependence of the current for a particular regime of film thickness for all types of band models. This implies that the difference in the Fermi energy and the quantized subband energy is almost invariant of film thickness. From Fig. 1.7, one observes that as alloy composition increases, the field-emitted current decreases for QWs of both ternary and quaternary compounds. For lower values of alloy composition, I from QWs of quaternary semiconductor is more than that of the corresponding ternary one, whereas for higher value of alloy composition, it converges. Stepfunctional dependence of field-emitted current with film thickness for QWs of CdS has been observed in Fig. 1.8. We note a nearly constant field-emitted current per subband, until a new subband is being occupied. Comparing with the earlier figures on the thickness dependence, we observe in this case an opposite trend because of the fact of overriding of the term F0 . ij / by exp(ˇij ). Figure. 1.9 exhibits the fact that for p-CdS, the field current is of the order of a few nano amperes even at field strength of 5 109 V m1 . Composite oscillations in the field-emitted current from QWs of Bi with film thickness has been exhibited in Fig. 1.10 for the models of McClure and Choi, Hybrid, Cohen and Lax, respectively. We observe that for nz D 1, electrons will be populated in the various other subbands corresponding to ny . After a certain value of film thickness, when nz D 2, the redistribution of the electrons in the quantized
1.3 Result and Discussions
51
energy levels is being repeated leading to a composite oscillations. It should be noted that this behavior is a general feature in thickness dependence of field emission from quantum wires. The energy band parameters determine the composite periodicity. The effect of film thickness on the field current in stressed InSb has been plotted in Fig. 1.11 in the quantum limit case, where the current decreases with increase in dz for different values of dy . For dy D 5 nm, the field-emitted current is highest although is an approximately a constant quantity with respect to dz : We observe here that the product of the two terms namely F0 . ij / and exp(ˇij ) becomes independent of dz for large values. The effect of stress on the field-emitted current has been exhibited in Figs. 1.12 and 1.13 for different values of carrier concentration. From Fig. 1.12, it appears that with the increase in stress, the current increases having a magnitude of few tenths of microamperes. With the increase in carrier degeneracy, the current almost reduces to about 10 times. From Fig. 1.14, we observe that the field current from QWs of Ge (in accordance with the models of Cardona et al. and Wang et al. respectively), Bi2 Te3 , and GaP decreases as film thickness increases because of the fact that the term exp(ˇij ) dominates over the term F0 . ij / in the whole range of thickness as considered here. For QWs of PbTe and Te, the current initially increases since the term exp(ˇij ) dominates over the term F0 . ij / and then decreases exhibiting the fact that the opposite dominancy exists. For QWs of Ge and Bi2 Te3 , the field current has been observed to be in theorder of hundreds of microampere, where as for other 1D systems as considered in this figures the currents are in the order of few nanoamperes exhibiting the influence of the carrier dispersion relation of a particular semiconductor. In Fig. 1.15 (a), the cut-in electric field for the field currents are in the order of 109 V m1 for QWs of PbTe and Te, while about 107 –108 V m1 field strength is sufficient for field current to reach few microamperes. The influence of quantum confinement is immediately apparent from Figs. 1.1, 1.2, 1.4, 1.6, 1.8, 1.10, 1.11, and 1.14 since the field-emitted current depends strongly on the thickness of the quantum-confined materials in contrast with the corresponding bulk specimens. The current changes with increasing film thickness in an oscillatory way with different numerical magnitudes. It appears from the aforementioned figures that the FNFE exhibits spikes for particular values of film thickness which, in turn, depends on the particular band structure of the specific semiconductor. Moreover, the FNFE from QWs of different compounds can be smaller than of bulk specimens of the same materials, which is also a direct signature of quantum confinement. This oscillatory dependence will be less and less prominent with increasing film thickness. For bulk specimens of the same material, the FNFE will be found to increase continuously with increasing electron degeneracy in a non-oscillatory manner. The appearance of the discrete jumps in the respective figures is due to the redistribution of the electrons among the quantized energy levels when the size quantum number corresponding to the highest occupied level changes from one fixed value to the others. With varying electron degeneracy, a change is reflected in the FNFE through the redistribution of the electrons among the size-quantized levels. It may be noted that at the transition zone from one subband to another, the height of the peaks
52
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
between any two subbands decreases with the increasing in the degree of quantum confinement and is clearly shown in all the curves. It should be noted that although, the FNFE changes in various manners with all the variables as evident from all the figures, the rates of variations are totally band structure dependent. It is imperative to state that the present investigation excludes the many-body, hot electron, broadening, and the allied effects in the simplified theoretical formalism due to the absence of proper analytical techniques for including them for generalized systems as considered here. We have also approximated the variation of value of the work function from its bulk value in the present system. Our simplified approach will be appropriate for the purpose of comparisons when the methods of tackling the formidable problems after inclusion of the said effects for the generalized systems emerge. The results of this simplified approach get transformed to the well-known formulation of the FNFE for wide gap materials having parabolic energy bands. This indirect test not only exhibits the mathematical compatibility of the formulation but also shows the fact that this simple analysis is more generalized one, since one can obtain the corresponding results for materials having parabolic energy bands under certain limiting conditions from the present derivation. For the purpose of computer simulations for obtaining the plots of FNFE versus various external variables, we have taken very low temperatures since the quantization effects are basically lowtemperature phenomena together with the fact that the temperature dependence of all the energy band constants of all the semiconductors and their nanostructures as considered in this chapter are not available in the literature. Our results as formulated in this chapter are valid for finite temperatures and are useful in comparing the results for temperature variations of FNFE after the availability of the temperature dependences of such constants of various dispersion relations in this context. The experimental results for the verification of theoretical formulations of FNFE are still not available in the literature. It is worth noting that the nature of the curves of fieldemitted current with various physical variables based on our simplified formulations as presented here would be useful to analyze the experimental results when they materialize. The inclusion of the said effects would certainly increase the accuracy of the results although the qualitative features of FNFE would not change in the presence of the aforementioned effects. It can be noted that on the basis of the dispersion relations of the various quantized structures as discussed above the effective electron mass,the Debye screening length,the plasma frequency, the activity coefficient, the carrier contribution to the elastic constants, the diffusion coefficient of minority carriers, the thirdorder nonlinear optical susceptibility, the heat capacity, the dia- and paramagnetic susceptibilities, and the various important dc/ac transport coefficients can be probed for all types of QWs as considered here. Thus, our theoretical formulation comprises the dispersion relation dependent properties of various technologically important quantum-confined semiconductors having different band structures. We have not considered other types of compounds in order to keep the presentation concise and succinct. With different sets of energy band parameters, we shall get different numerical values of the FNFE. The nature of variations of the FNFE as shown here would be similar for the other types of materials and the simplified analysis of
1.4 Open Research Problems
53
this chapter exhibits the basic qualitative features of the FNFE. It may be noted that the basic aim of this chapter is not solely to demonstrate the influence of quantum confinement on the FNFE for a wide class of quantized materials but also to formulate the appropriate carrier statistics in the most generalized form, since the transport and other phenomena in modern nanostructured devices having different band structures and the derivation of the expressions of many important carrier properties are based on the temperature-dependent carrier statistics in such systems. For the purpose of condensed presentation, the carrier statistics and the FNFE from different QWs as considered in this chapter have been presented in Table 1.2.
1.4 Open Research Problems The problems under these sections of this monograph are by far the most important part and few open research problems from this chapter till end are being presented. The numerical values of the energy band constants for various semiconductors are given in Table 1.1 for the related computer simulations. (R.1.1) Investigate the FNFE from all the bulk semiconductors whose respective dispersion relations of the carriers are given in this chapter by converting the summations over the quantum numbers to the corresponding integrations by including the uniqueness conditions in the appropriate cases and considering the effect of image force in the subsequent study in each case. (R.1.2) Repeat R.1.1 for the bulk semiconductors whose respective dispersion relations of the carriers in the absence of any field are given below: (a) The electron dispersion law in n-GaP can be written as [269] 2 31=2 !2 2 2 2 2 N N „ ks „ ks ED C ˙4 C P1 kz2 C D1 kx2 ky2 5 ; 2mjj 2m? 2 2
(R1.1)
N D 335 meV, P1 D 21010 eVm, D1 D P1 a1 , and a1 D 5:41010 m. where (b) In addition to the Cohen model, the dispersion relation for the conduction electrons for IV–VI semiconductors can also be described by the models of Bangert et al. [270] and Foley et al. [271], respectively. 1. In accordance with Bangert et al. [270], the dispersion relation is given by
.E/ D F1 .E/ ks2 C F2 .E/ kz2 ; where .E/ 2E, F1 .E/
R12 S12 Q12 C C , E C Eg E C 0c E C Eg
(R1.2)
2. III–V materials, the conduction electrons of which can be defined by five types of energy wave vector dispersion relations as described in the column of carrier statistics
Type of materials 1. Nonlinear optical materials
(b) Two-band model of Kane: In accordance with the two-band model of Kane (1.19), ymax xmax nP 2gv nP n0 D ŒB15 .EF1D ; nx ; ny / nx D1 ny D1 C B16 .EF1D ; nx ; ny / (1.22) (c) The model of Stillman et al.: In accordance with the model of Stillman et al. (1.28), ymax xmax nP 2gv nP ŒB17 .EF1D ; nx ; ny / n0 D nx D1 ny D1 C B18 .EF1D ; nx ; ny / (1.32) (d) The model of Newson and Kurobe: In accordance with the model of Newson and Kurobe (1.34), ymax xmax nP 2gv nP ŒB19 .EF1D ; nx ; ny / n0 D nx D1 ny D1 C B20 .EF1D ; nx ; ny / (1.37)
The carrier statistics In accordance with the generalized electron dispersion relation as given by (1.2), ymax xmax nP 2gv nP ŒB11 .EF1D ; nx ; ny / n0 D nx D1 ny D1 C B12 .EF1D ; nx ; ny / (1.5) (a) Three-band model of Kane: In accordance with the three-band model of Kane (1.13), which is the special case of (1.2) ymax xmax nP 2gv nP ŒB13 .EF1D ; nx ; ny / n0 D nx D1 ny D1 C B14 .EF1D ; nx ; ny / (1.16)
On the basis of (1.37), ymax xmax nP 2gv ekB T nP I D F0 . 16 / exp.ˇ16 / h nx D1 ny D1
On the basis of (1.32), ymax xmax nP 2gv ekB T nP I D F0 . 15 / exp.ˇ15 / h nx D1 ny D1
On the basis of (1.22), ymax xmax nP 2gv ekB T nP I D F0 . 13 / exp.ˇ13 / h nx D1 ny D1
On the basis of (1.16), ymax xmax nP 2gv ekB T nP F0 . 12 / exp.ˇ12 / I D h nx D1 ny D1
The Fowler—Nordheim field emission current On the basis of (1.5), ymax xmax nP 2gv ekB T nP F0 . 11 / exp.ˇ11 / I D h nx D1 ny D1
(1.39)
(1.33)
(1.24)
(1.18)
(1.12)
Table 1.2 The carrier statistics and the Fowler–Nordheim field emission current from quantum wires of nonlinear optical, III–V, II–VI, Bismuth, IV–VI, stressed materials, Te, n-GaP, PtSb2 , Bi2 Te3; n-Ge, GaSb, and II–V Compounds
54 1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
4. Bismuth, the carriers of which can be defined by four types of energy band models as described in the column of carrier statistics
3. II–VI materials as described by the Hopfield model
(b) The Hybrid model: In accordance with (1.55), p ymax nP zmax
2gv 2m1 nP n1D D t31 EF1D ; ny ; nz „ ny D1 nz D1 (1.57) C t32 EF1D ; ny ; nz (c) The Cohen model: In accordance with (1.60), p ymax nP zmax
2gv 2m1 nP n1D D t35 EF1D ; ny ; nz „ ny D1 nz D1 (1.62) C t36 EF1D ; ny ; nz (d) The Lax model: with (1.65), p In accordance ymax nP zmax
2gv 2m1 nP n1D D t37 EF1D ; ny ; nz „ ny D1 nz D1 (1.67) C t38 EF1D ; ny ; nz
(a) The McClurepand Choi model: In accordance with (1.50), ymax nP zmax 2gv 2m1 nP n1D D Œt27 .EF1D ; ny ; nz / „ ny D1 nz D1 C t28 .EF1D ; ny ; nz / (1.52)
(e) The model of Palik et al.: In accordance with the model of Palik et al. (1.40), ymax xmax nP 2gv nP n0 D ŒB21 .EF1D ; nx ; ny / nx D1 ny D1 C B22 .EF1D ; nx ; ny / (1.43) In accordance with (1.46), ymax xmax nP gv nP Œt7 .EF1D ; nx ; ny / n1D D p B0 nx D1 ny D1 C t8 .EF1D ; nx ; ny / (1.49) (1.44)
(1.68)
(1.63)
(1.58)
(continued)
On the basis of (1.67), ymax zmax nP 2gv ekB T nP F0 . 20 / exp.ˇ20 / I D h nz D1 ny D1
On the basis of (1.62), ymax zmax nP 2gv ekB T nP F0 . 19 / exp.ˇ19 / I D h nz D1 ny D1
On the basis of (1.57), ymax zmax nP 2gv ekB T nP F0 . 18 / exp.ˇ18 / I D h nz D1 ny D1
On the basis of (1.49), n ymax hn xmax nP egv kB T nP F0 .kB T /1 ŒEF1D I D h nx D1 ny D1
exp ˇ 016;C G3;C nx ; ny n
o
C F0 .kB T /1 EF1D G3; nx ; ny (1.48) exp ˇ 016; On the basis of (1.52), ymax zmax nP 2gv ekB T nP I D F0 . 17 / exp.ˇ17 / (1.53) h nz D1 ny D1
On the basis of (1.43), ymax xmax nP 2gv ekB T nP F0 . 16 / exp.ˇ16 / I D h nx D1 ny D1
1.4 Open Research Problems 55
10. Bi2 Te3 , which follows the model of Stordeur et al.
9. PtSb2 , as defined by the Emtage model
8. n-GaP as described by the Rees model
7. Tellurium the conduction electrons of which can be defined by the model of Bouat et al
6. Stressed materials, as defined by the model of Seiler et al.
Table 1.2 (Continued) Type of materials 5. IV–VI materials, the carriers of which can be defined by the model of Dimmock
The carrier statistics In accordance with the model of Dimmock (1.70), ymax xmax nP 2gv nP n0 D ŒB32 .EF1D ; nx ; ny / nx D1 ny D1 C B33 .EF1D ; nx ; ny / (1.73) In accordance with (1.76), ymax nP zmax 2gv nP n1D D ŒB34 .EF1D ; ny ; nz / ny D1 nz D1 C B35 .EF1D ; ny ; nz / (1.79) In accordance with (1.81), ymax xmax nP gv nP ŒB .EF1D ; nx ; ny / n0 D nx D1 ny D1 36;˙ C B37;˙ .EF1D ; nx ; ny / (1.84) In accordance with (1.86), ymax xmax nP 2gv nP n0 D ŒB38 .EF1D ; nx ; ny / nx D1 ny D1 C B39 .EF1D ; nx ; ny / (1.89) In accordance with (1.91), ymax xmax nP 2gv nP ŒB40 .EF1D ; nx ; ny / n0 D nx D1 ny D1 C B41 .EF1D ; nx ; ny / (1.94) In accordance with (1.97), ymax zmax nP 2gv nP ŒB42 .EF1D ; nz ; ny / n0 D nz D1 ny D1 C B43 .EF1D ; nz ; ny / (1.100)
(1.80)
(1.74)
On the basis of (1.100), ymax zmax nP 2gv ekB T nP ŒF0 . 28 / exp.ˇ28 / I D h nz D1 ny D1
On the basis of (1.94), ymax xmax nP 2gv ekB T nP ŒF0 . 27 / exp.ˇ27 / I D h nx D1 ny D1
(1.101)
(1.95)
On the basis of (1.84), ymax xmax nP gv ekB T nP I D ŒF0 . 24;C / exp.ˇ24;C / h nx D1 ny D1 C F0 . 24; / exp.ˇ24; / (1.85) On the basis of (1.89), ymax xmax nP 2gv ekB T nP I D ŒF0 . 26 / exp.ˇ26 / (1.89) h nx D1 ny D1
On the basis of (1.80), ymax xmax nP 2gv ekB T nP I D F0 . 23 / exp.ˇ23 / h nx D1 ny D1
The Fowler—Nordheim field emission current On the basis of (1.73), ymax xmax nP 2gv ekB T nP I D F0 . 22 / exp.ˇ22 / h nx D1 ny D1
56 1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
13. II–V materials, as defined by the model of Yamada
12. Gallium Antimonide, the carriers of which can be defined by the model of Mathur et al.
11. n-Ge, the conduction electrons of which can be defined by two types of energy band models as described in the column of carrier statistics
On the basis of (1.110), xmax nP zmax 2gv ekB T nP I D ŒF0 . 30 / exp.ˇ30 / h nx D1 nz D1
(b) In accordance with the model of Wang and Ressler (1.107), xmax nP zmax 2gv nP n0 D ŒB46 .EF1D ; nx ; nz / nx D1 nz D1 C B47 .EF1D ; nx ; nz / (1.110) In accordance with (1.112), ymax xmax nP 2gv nP n0 D ŒB48 .EF1D ; nx ; ny / nx D1 ny D1 C B49 .EF1D ; nx ; ny / In accordance with (1.118), ymax xmax nP gv nP n0 D ŒB49 .EF1D ; nx ; ny / nx D1 ny D1 C B50 .EF1D ; nx ; ny / (1.121)
(1.117)
(1.111)
(1.106)
On the basis of (1.121), ymax xmax nP gv ekB T nP ŒF0 . 32;C / exp.ˇ32;C / I D h nx D1 ny D1 C F0 . 32; / exp.ˇ32; / (1.122)
On the basis of (1.116), ymax xmax nP 2gv ekB T nP I D ŒF0 . 31 / exp.ˇ31 / h nx D1 ny D1
On the basis of (1.105), xmax nP zmax 2gv ekB T nP I D ŒF0 . 29 / exp.ˇ29 / h nx D1 nz D1
(a) In accordance with the model of Cardona et al. (1.102), xmax nP zmax 2gv nP n0 D ŒB44 .EF1D ; nx ; nz / nx D1 nz D1 C B45 .EF1D ; nx ; nz / (1.105)
1.4 Open Research Problems 57
58
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
F2 .E/
2C52 .S1 C Q1 /2 C ; E C Eg E C 00c
R12 D 2:3 1019 .eVm/2 ; C52 D 0:83 1019 .eVm/2 ; Q12 D 1:3R12 ; S12 D 4:6R12 ;
0c D 3:07 eV; 00c D 3:28 eV; and gv D 4. It may be noted that under the „2 Eg „2 Eg 2 substitution S1 D 0; Q1 D 0, R12 , C , (R1.2) assumes the 5 m? 2mjj „2 kz2 „2 ks2 C , which is the simplified Lax model. form E.1 C ˛E/ D 2m? 2mk 2. The carrier energy spectrum of IV–VI semiconductors in accordance with Foley et al. [271] can be written as Eg EC D E .k/ C 2
"
Eg EC .k/ C 2
#1=2
2 C
P?2 ks2
C
Pjj2 kz2
;
(R1.3)
„2 kz2 „2 ks2 C represents the 2m 2m 2mC 2mjj ? jj ? contribution from the interaction of the conduction and the valance band edge states with the more distant bands and the free electron 1 1 1 1 1 ˙ . For n-PbTe, term, 1=m? D Œ1=mtc ˙ 1=mtv, D m1c ˙ 2 2 m m˙ 1v jj P? D 4:61 1010 eVm, Pjj D 1:48 1010 eVm, m0 =mtv D 10:36, m0 =m1v D 0:75, m0 =mtc D 11:36, m0 =m1c D 1:20, and gv D 4.
where EC .k/ D
„2 ks2
C
„2 kz2
, E .k/ D C
(c) The hole energy spectrum of p-type zero-gap semiconductors (e.g., HgTe) is given by [272] ˇ ˇ ˇkˇ 3e 2 2EB „2 k 2 (R1.4) C k ln ˇˇ ˇˇ ; ED 2mv 128"1 k0 where mv is the effective mass of the hole at the top of the valence band, "1 is the semiconductor permittivity in the high-frequency limit, EB m0 e 2 =2„2 "21 , and k0 m0 e 2 =„2 "1 . (d) The conduction electrons of n-GaSb obey the following two dispersion relations: 1. In accordance with the model of Seiler et al. [238] Eg Eg
&N 0 „2 k 2 vN 0 f1 .k/„2 !N 0 f2 .k/„2 2 1=2 ED C C ˙ 1 C ˛4 k ; C 2 2 2mo 2mo 2mo (R1.5)
1.4 Open Research Problems
59
1 where ˛4 4P 2 Eg C 23 Eg2 Eg C , P is the isotropic momentum h i 2 2 2 2 2 kx ky C ky kz C kz2 kx2 represents the warping matrix element, f1 .k/ k hn o1=2 of the Fermi surface, f2 .k/ k 2 kx2 ky2 C ky2 kz2 C kz2 kx2 9kx2 ky2 kz2 i k 1 represents the inversion asymmetry splitting of the conduction band, and &N 0 ; vN 0 , and !N 0 represent the constants of the electron spectrum in this case. 2. In accordance with the model of Zhang et al. [273] h h i i .1/ .2/ .1/ .2/ E D E2 C E2 K4;1 k 2 C E4 C E4 K4;1 k 4 h i .1/ .2/ .3/ C k 6 E6 C E6 K4;1 C E6 K6;1 ;
(R1.6)
# " kx4 C ky4 C kz4 3 5p , where K4;1 21 4 k4 5 " ! # r 1 kx4 C ky4 C kz4 3 1 639639 kx2 ky2 kz2 K6;1 C , the 32 k6 22 k4 5 105 a coefficients are in eV, the values of k are 10 times those of k in 2 .1/ .2/ .1/ atomic units (a is the lattice constant), E2 D 1:0239620, E2 D 0, E4 D .2/ .1/ .2/ 1:1320772, E4 D 0:05658, E6 D 1:1072073, E6 D 0:1134024, and .3/ E6 D 0:0072275. (e) In addition to the well-known band models as discussed in this monograph, the conduction electrons of III–V semiconductors obey the following three dispersion relations: 1. In accordance with the model of Rossler [274] ED
h i „2 k 2 4 N10 k 2 k 2 C k 2 k 2 C k 2 k 2 C ˛ N k C ˇ 10 x y y z z x 2m h i1=2 ˙ N10 k 2 kx2 ky2 C ky2 kz2 C kz2 kx2 9kx2 ky2 kz2 ;
(R1.7)
where ˛N 10 D ˛N 11 C ˛N 12 k, ˇN10 D ˇN11 C ˇN12 k, and N10 D N11 C N12 k, in which ˛N 11 D 2132 1040 eVm4 , ˛N 12 D 9030 1050 eVm5 , ˇN11 D 2493 1040 eVm4 , ˇN12 D 12594 1050 eVm5 , N11 D 30 1030 eVm3 , and N12 D 154 1042 eVm4 .
60
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
2. In accordance with Johnson and Dickey [275], the electron energy spectrum assumes the form " #1=2 Eg Eg „2 k 2 fN1 .E/ „2 k 2 1 1 1C4 C C ED C ; (R1.8) 2 2 m0 mb 2 2m0c Eg " # 2 C .Eg C / E C Eg C 2 E m0 g 3 3 2 N , , f1 .E/ where 0 P mc Eg .Eg C / C / Eg C 2 3 .E C Eg 2 1 1 m0c D 0:139m0, and mb D . m0c m0 3. In accordance with Agafonov et al. [276], the electron energy spectrum can be written as 9" 8 2 #3 p 2 2 < N Eg k 3 3B = kx4 C ky4 C kz4 5 D „ 41 ; (R1.9) ED ; 2 2 m N : 2 „2 k4 2m
where N .Eg2 C .8=3/P 2 k 2 /1=2 , B 21
2 „2 „ , and D 40 . 2m0 2m0
(f) The dispersion relation of the carriers in n-type Pb1x Gax Te with x D 0:01 can be written following Vassilev [254] as
E 0:606ks2 0:0722kz2 E C E g C 0:411ks2 C 0:0377kz2
D 0:23ks2 C 0:02kz2 ˙ 0:06E g C 0:061ks2 C 0:0066kz2 ks
(R1.10)
where E g .D 0:21 eV/ is the energy gap for the transition point, the zero of the energy E is at the edge of the conduction band of the point of the Brillouin zone and is measured positively upwards, kx ; ky , and kz are in the units of 109 m1 . (g) The energy spectrum of the carriers in the two higher valance bands and the single lower valance band of Te can, respectively, be expressed as [277] h i1=2 E D A10 kz2 C B10 ks2 ˙ 210 C .ˇ10 kz /2 and E D jj C A10 kz2 C B10 ks2 ˙ ˇ10 kz ; (R1.11)
where E is the energy of the hole as measured from the top of the valance and within it, A10 D 3:77 1019 eVm2 , B10 D 3:57 1019 eVm2 , 10 D 0:628 eV, .ˇ10 /2 D 6 1020 .eVm/2 , and jj D 1004 105 eV are the spectrum constants. (h) The dispersion relation for the electrons in graphite can be written following Brandt [252] as
1.4 Open Research Problems
ED
61
1=2 1 1 ; ŒE2 C E3 ˙ .E2 E3 /2 C 22 k 2 2 4
(R1.12)
2 2 N where E2 p 2N1 cos 0 C 2N5 cos 0 ,0 c6 kz =2,E3 2N2 cos 0 , 3 N N0 , and 2 a6 .N0 C 2N4 cos 0 /in which the band constants are , 2 N1 ; N2 ; N4 ; N5 , a6 , and c6 , respectively.
(i) The dispersion relation of the conduction electrons in Antimony (Sb) in accordance with Ketterson [265] can be written as 2m0 E D ˛11 px2 C ˛22 py2 C ˛33 pz2 C 2˛23 py pz
(R1.13)
and 2m0 E D a1 px2 C a2 py2 C a3 pz2 C a4 py pz ˙ a5 px pz ˙ a6 px py ;
(R1.14)
1 1 where a1 D .˛11 C 3˛22 /, a2 D .˛22 C 3˛11 ˛22 C 3˛11 /, a3 D ˛33 , a4 D ˛33 , 4 4 p p a5 D 3, and a6 D 3.˛22 ˛11 /in which ˛11 , ˛22 , ˛33 , and ˛23 are the system constants. (j) The dispersion relation of the holes in p-InSb can be written in accordance with Cunningham [278] as p 1 p p p E D c4 .1 C 4 f4 /k 2 ˙ Œ2 2 c4 16 C 54 E4 g4 k; 3
(R1.15)
where c4 „2 =2m0 C 4 , 4 4:7.„2 =2m0 /, 4 b4 =c4 , b4 Œ3=2.b5/ C 24 , 1
b5 2:4.„2 =2m0 /, f4 sin2 2 C sin4 sin2 2 , is measured from the 4 1 positive z-axis, is measured from positive x-axis, g4 sin cos2 C 4 sin4 sin2 2 , and E4 D 5 104 eV. (k) The energy spectrum of the valance bands of CuCl in accordance with Yekimov et al. [279] can be written as Eh D .6 27 /
„2 k 2 2m0
(R1.16)
and " 2 #1=2 „2 k 2 21 „2 k 2 1 7 „2 k 2 ˙ C 7 1 El;s D .6 C 7 / C9 ; 2m0 2 4 2m0 2m0 (R1.17) where 6 D 0:53; 7 D 0:07, and 1 D 70 meV:
62
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
(l) In the presence of stress, 6 along the h001i and h111i directions, the energy spectra of the holes in semiconductors having diamond structure valance bands can be respectively expressed following Roman [280] et al. as h 2 i1=2 (R1.18) E D A6 k 2 ˙ B 7 k 4 C ı62 C B7 ı6 2kz2 ks2 and
1=2 D6 2 ; (R1.19) E D A6 k 2 ˙ B 7 k 4 C ı72 C p ı7 .2kz2 ks2 / 3 where A6 , B7 , D 6 , and C6 are inverse mass band parameters in which ı6 l7 S 11 SN12 6 , S ij are the usual elastic compliance constants, p 2 B 7 .B72 C c62 =5/, and ı7 .d8 S44 =2 3/6 . For gray tin, d8 D 4:1 eV, l7 D 2:3 eV, A6 D 19:2.„2 =2m0 /, B7 D 26:3.„2 =2m0 /, D6 D 31.„2 =2m0 /, and c62 D 1112.„2=2m0 /.
(m) The dispersion relation of the carriers of cadmium and zinc diphosphides are given by [257] ˇ2 ˇ3 .k/ 2 ˇ2 ˇ3 .k/ E D ˇ1 C k ˙ ˇ4 ˇ3 .k/ ˇ5 k2 8ˇ4 8ˇ4 1=2 ˇ 2 .k/ ˇ2 .k/ (R1.20) ˇ2 1 3 k2 C 8ˇ42 1 3 4 4 where ˇ1 ; ˇ2 ; ˇ4 , and ˇ5 are system constants and ˇ3 .k/ D kx2 C ky2 2kz2 =k 2 . (R1.3) Investigate the FNFE from quantum wells, wires, and dots of all the semiconductors as considered in R1.1 and R1.2, respectively. (R1.4) Investigate the FNFE from bulk specimens of heavily doped semiconductors in the presence of Gaussian, exponential, Kane, Halperian, Lax, and Bonch-Burevich types of band tails [103, 104] for all systems whose unperturbed carrier energy spectra are defined in R1.1 and R1.2, respectively. (R1.5) Investigate the FNFE from quantum wells, wires, and dots of all the heavily doped semiconductors as considered in R1.4. (R1.6) Investigate the FNFE from bulk specimens of the negative refractive index, organic, magnetic, and other advanced optical materials in the presence of an arbitrarily oriented alternating electric field. (R1.7) Investigate the FNFE from quantum wells, wires, and dots of the negative refractive index, organic, magnetic, and other advanced optical materials in the presence of an arbitrarily oriented alternating electric field. (R1.8) Investigate the FNFE from the multiple quantum wells, wires, and dots of semiconductors whose unperturbed carrier energy spectra are defined in R1.1, R1.2, and heavily doped semiconductors in the presences of Gaussian, exponential, Kane, Halperian, Lax, and Bonch-Burevich types of band tails [103, 104] for all systems whose unperturbed carrier energy spectra are defined in the same problems respectively.
References
63
(R1.9) Investigate the FNFE from all the appropriate low-dimensional systems of this chapter in the presence of finite potential wells. (R1.10) Investigate the FNFE from all the appropriate low-dimensional systems of this chapter in the presence of parabolic potential wells. (R1.11) Investigate the FNFE from all the appropriate systems of this chapter forming quantum rings. (R1.12) Investigate the FNFE from all the above appropriate problems in the presence of elliptical Hill and quantum square rings. (R1.13) Investigate the FNFE for the appropriate accumulation layers for all the materials whose unperturbed carrier energy spectra are defined in R1.1and R1.2, respectively. (R1.14) Investigate the FNFE from wedge shaped, cylindrical, ellipsoidal, conical, triangular, circular, parabolic rotational, and parabolic cylindrical quantum dots in the presence of an arbitrarily oriented alternating electric field for all the materials whose unperturbed carrier energy spectra are defined in R1.1 and R1.2, respectively. (R1.15) Investigate the FNFE from wedge shaped, cylindrical, ellipsoidal, conical, triangular, circular, parabolic rotational, and parabolic cylindrical quantum dots of the negative refractive index, organic, magnetic, and other advanced optical materials in the presence of an arbitrarily oriented alternating electric field. (R1.16) Formulate the time delay for all the appropriate systems of this chapter. (R1.17) Formulate the reflection time for all the appropriate systems of this chapter. (R1.18) Formulate the minimum tunneling, Dwell and Phase tunneling, Buttiker and Landauer, and intrinsic times for all the appropriate systems of this chapter. (R1.19) Investigate all the appropriate problems of this chapter for a Dirac electron. (R1.20) Investigate all the appropriate problems of this chapter by including the many body, image force, broadening, and hot carrier effects, respectively. (R1.21) Investigate all the appropriate problems of this chapter by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions.
References 1. R.H. Fowler, L. Nordheim, Proc. Roy. Soc. London A 119, 173 (1928) 2. A. Van Der Ziel, Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, 1957), p.176 3. B. Mitra, K.P. Ghatak, Phys. Lett. A 357, 146 (1990) 4. B. Mitra, K.P. Ghatak, Phys. Lett. A 142A, 401 (1989) 5. K.P. Ghatak, M. Mondal, J. Mag. Mag. Mat. 74, 203 (1988) 6. K.P. Ghatak, B. Mitra, Phys. Lett.156A, 233 (1991) 7. K.P. Ghatak, A. Ghosal, S.N. Biswas, M. Mondal, Proc. SPIE USA 1308, 356 (1990) 8. V.T. Binh, Ch. Adessi, Phys. Rev. Lett. 85, 864 (2000) 9. R.G. Forbes, Ultramicroscopy 79, 11 (1999)
64
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
10. J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys 45, 487 (1973) 11. J.M. Beebe, B. Kim, J.W. Gadzuk, C.D. Frisbie, J.G. Kushmerick, Phys. Rev. Lett 97, 026801 (1999) 12. Y. Feng, J.P. Verboncoeur, Phys. Plasmas 12, 103301 (2005) 13. W.S. Koh, L.K. Ang, Nanotechnology 19, 235402 (2008) 14. M. Razavy, Quantum Theory of Tunneling (World Scientific, Singapore, 2003) 15. S.I. Baranchuk, N.V. Mileshkina, Sov. Phys. Solid State 23, 1715 (1981) 16. P.G. Borzyak, A.A. dadykin, Sov. Phys. Docklady 27, 335(1982) 17. S. Bono, R.H. Good, Jr., Surface Sci. 134, 272 (1983) 18. S.M. Lyth, S.R.P. Silva, Appl. Phys. Lett. 90, 173124 (2007) 19. C. Xu, X. Sun, Int. J. Nanotechnol. 1, 452 (2004) 20. S.D. Liang, L. Chen, Phys. Rev. Lett. 101, 027602 (2008) 21. E.C. Heeres, E.P.A.M. Bakkers, A.L. Roest, M. Kaiser, T.H. Oosterkamp, N. de Jonge, Nano Lett. 7, 536 (2007) 22. L. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, M. Coulter, Appl. Phys. Lett. 82, 1096 (2003) 23. S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, J. Appl. Phys. 95, 3711(2004) 24. N.N. Kulkarni, J. Bae, C.K. Shih, S.K. Stanley, S.S. Coffee, J.G. Ekerdt, Appl. Phys. Lett. 87, 213115 (2005) 25. K Senthil, K. Yong, Mat. Chem. Phys. 112, 88 (2008) 26. R. Zhou, H.C. Chang, V. Protasenko, M. Kuno, A.K. Singh, D. Jena, H. Xing, J. Appl. Phys. 101, 073704 (2007) 27. K.S. Yeong, J.T.L. Thong, J. Appl. Phys. 100, 114325 (2006) 28. C.H. Oon, S.H. Khong, C.B. Boothroyd, J.T.L. Thong, J. Appl. Phys. 99, 064309 (2006) 29. . B.H. Kim, M.S. Kim, K.T. Park, J.K. Lee, D.H. Park, J. Joo, S.G. Yu, S.H. Lee, Appl. Phys. Lett. 83, 539 (2003) 30. Z.S. Wu, S.Z. Deng, N.S. Xu, J. Chen, J. Zhou, J. Chen, Appl. Phys. Lett. 80, 3829 (2002) 31. Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005) 32. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83, 144(2003) 33. S. Bhattacharjee, T. Chowdhury, Appl. Phys. Lett. 95, 061501 (2009) 34. S. Kher, A. Dixit, D.N. Rawat, M.S. Sodha, Appl. Phys. Lett. 96, 044101 (2010) 35. I. Shigeo, W. Teruo, O. Kazuyoshi, T. Masateru, U. Satoshi, N. Norio, J. Vac. Sci. Technol. B 13, 487(2009) 36. C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47, 5248 (2009) 37. Q. Fu, A.V. Nurmikko, L.A. Kolodziejski, R.L. Gunshor, J.W. Wu, Appl. Phys. Lett. 51, 578 (2009) 38. P.M. Petroff, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984) 39. J.M. Gaines, P.M. Petroff, H. Kroemar, R.J. Simes, R.S. Geels, J.H. English, J. Vac. Sci. Technol. B 6, 1378 (1988) 40. J. Cilbert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1986) 41. T. Fujui, H. Saito, Appl. Phys. Lett. 50, 824 (1987) 42. H. Sasaki, Jpn. J. Appl. Phys. 19, 94 (1980) 43. P.M. Petroff, A.C. Gossard, R.A. Logan, W. Weigmann, Appl. Phys. Lett. 41 635 (1982) 44. H. Temkin, G.J. Dolan, M.B. Panish, S.N.G. Chu, Appl. Phys. Lett. 50, 413 (1988) 45. I. Miller, A. Miller, A. Shahar, U. Koren, P.J. Corvini, Appl. Phys. Lett. 54, 188 (1989) 46. L.L. Chang, H. Esaki, C.A. Chang, L. Esaki, Phys. Rev. Lett. 38, 1489 (1977) 47. K. Less, M.S. Shur, J.J. Drunnond, H. Morkoc, IEEE Trans. Electron. Devices ED-30, 07 (1983) 48. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted, Les Ulis, Les Editions de Physique, New York, 1988)
References
65
49. M.J. Kelly, Low Dimensional Semiconductors: Materials, Physics, Technology, Devices (Oxford University Press, Oxford, 1995) 50. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Boston Academic Press, Boston, 1991) 51. N.T. Linch, Festkorperprobleme;23, 27 (1985) 52. D.R. Sciferes, C. Lindstrom, R.D. Burnham, W. Streifer, T.L. Paoli, Electron. Lett. 19, 170 (1983) 53. P.M. Solomon, Proc. IEEE, 70, 489 (1982) 54. T.E. Schlesinger, T. Kuech, Appl. Phys. Lett. 49, 519 (1986) 55. D. Kasemet, C.S. Hong, N.B. Patel, P.D. Dapkus, Appl. Phys. Lett. 41, 912 (1982) 56. K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984) 57. S. Tarucha, H.O. Okamoto, Appl. Phys. Lett. 45, 16 (1984) 58. H. Heiblum, D.C. Thomas, C.M. Knoedler, M.I. Nathan, Appl. Phys. Lett. 47, 1105 (1985) 59. O. Aina, M. Mattingly, F.Y. Juan, P.K. Bhattacharyya, Appl. Phys. Lett. 50, 43 (1987) 60. I. Suemune, L.A. Coldren, IEEE J. Quant. Electronic. 24, 1178 (1988) 61. D.A.B. Miller, D.S. Chemla, T.C. Damen, J.H. Wood, A.C. Burrus, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. 21, 1462 (1985) 62. P. Harrison, Quantum Wells, Wires and Dots (John Wiley and Sons, Ltd, 2002) 63. B.K. Ridley, Electrons and Phonons in Semiconductors Multilayers (Cambridge University Press, Cambridge, 1997) 64. V.V. Martin, A.A. Kochelap, M.A. Stroscio, Quantum Heterostructures (Cambridge University Press, Cambridge, 1999) 65. C.S. Lent, D.J. Kirkner, J. Appl. Phys. 67, 6353 (1990) 66. F. Sols, M. Macucci, U. Ravaioli, K. Hess, Appl. Phys. Lett. 54, 350 (1980) 67. C.S. Kim, A.M. Satanin, Y.S. Joe, R.M. Cosby, Phys. Rev. B, 60, 10962 (1999) 68. S. Midgley, J.B. Wang, Phys. Rev. B 64, 153304 (2001) 69. T. Sugaya, J.P. Bird, M. Ogura, Y. Sugiyama, D.K. Ferry, K.Y. Jang, Appl. Phys. Lett. 80, 434 (2002) 70. B. Kane, G. Facer, A. Dzurak, N. Lumpkin, R. Clark, L. PfeiKer, K. West, Appl. Phys. Lett. 72, 3506 (1998) 71. C. Dekker, Phys. Today 52, 22 (1999) 72. A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 77, 4612 (1996) 73. Y. Hayamizu, M. Yoshita, S. Watanabe, H.A.L. PfeiKer, K. West, Appl. Phys. Lett. 81, 4937 (2002) 74. S. Frank, P. Poncharal, Z.L. Wang, W.A. Heer, Science 280, 1744 (1998) 75. I. Kamiya, I.I. Tanaka, K. Tanaka, F. Yamada, Y. Shinozuka, H. Sakaki, Physica E 13, 131 (2002) 76. A.K. Geim, P.C. Main, N. LaScala, L. Eaves, T.J. Foster, P.H. Beton, J.W. Sakai, F.W. Sheard, M. Henini, G. Hill et al., Phys. Rev. Lett. 72, 2061 (1994) 77. A.S. Melinkov, V.M. Vinokur, Nature 415, 60 (2002) 78. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404, 974 (2000) 79. L. Kouwenhoven, Nature 403, 374 (2000) 80. S. Komiyama, O. Astafiev, V. Antonov, H. Hirai, Nature 403, 405 (2000) 81. E. Paspalakis, Z. Kis, E. Voutsinas, A.F. Terziz, Phys. Rev. B 69, 155316 (2004) 82. J.H. Jefferson, M. Fearn, D.L.J. Tipton, T.P. Spiller, Phys. Rev. A 66, 042328 (2002) 83. J. Appenzeller, C. Schroer, T. Schapers, A. Hart, A. Froster, B. Lengeler, H. Luth, Phys. Rev. B 53, 9959 (1996) 84. J. Appenzeller, C. Schroer, J. Appl. Phys. 87, 31659 (2002) 85. P. Debray, O.E. Raichev, M. Rahman, R. Akis, W.C. Mitchel, Appl. Phys. Lett. 74, 768 (1999) 86. D. Kasemet, C.S. Hong, N.B. Patel, P.D. Dapkus, Appl. Phys. Lett.41, 912 (1982) 87. K. Woodbridge, P. Blood, E.D. Pletcher, P.J. Hulyer, Appl. Phys. Lett. 45, 16 (1984) 88. S. Tarucha, H.O. Okamoto, Appl. Phys. Lett. 45, 16 (1984) 89. M.I. Nathan, Appl. Phys. Lett. 47, 1105 (1985)
66
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
90. I. Suemune, L.A. Coldren, IEEE J. Quant. Electronic. 24, 1178 (1988) 91. J.L. Shay, J.W. Wernick, Ternary Chalcopyrite Semiconductors – Growth, Electronic Properties and Applications (Pergamon, London, 1975) 92. J.W. Rowe, J.L. Shay, Phys. Rev. B, 3, 451 (1973) 93. H. Kildal, Phys. Rev. B, 10, 5082 (1974) 94. J. Bodnar, in Proc. Int. Conf. of the Physics of Narrow-gap Semiconductors (Polish Science Publishers, Warsaw, 1978) 95. G.P. Chuiko, N.N. Chuiko, Sov. Phys. Semicond. 15, 739 (1981) 96. K.P. Ghatak, S.N. Biswas, Proc. of SPIE, 1484, 149 (1991) 97. A. Rogalski, J. Alloys Comp. 371, 53 (2004) 98. A. Baumgartner, A. Chaggar, A. Patan`e, L. Eaves, M. Henini, Appl. Phys. Lett. 92, 091121 (2008) 99. J. Devenson, R. Teissier, O. Cathabard, A.N. Baranov, Proc. SPIE 6909, 69090U (2008) 100. B.S. Passmore, J. Wu, M.O. Manasreh, G.J. Salamo, Appl. Phys. Lett. 91, 233508 (2007) 101. M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, Y. Yakovlev, Proc. SPIE 6585, 658526 (2007) 102. W. Kruppa, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, D. Park, R. Bass, Electron. Lett. 42, 688 (2006) 103. B.R. Nag, Electron Transport in Compound Semiconductors (Springer Verlag, 1980) 104. E.O. Kane, in Semiconductors and Semimetals, Vol. 1, Ed. By R.K. Willardson, A.C. Beer (Academic Press, New York, 1966), p. 75 105. G.E. Stillman, C.M. Wolfe, J.O. Dimmock in Semiconductors and Semimetals, Ed. R.K. Willardon, A.C. Beer 12 (Academic, New York, 1977), p. 169 106. D.J. Newson, A. Karobe, Semiconductor. Sci. Technol. 3, 786 (1988) 107. E.D. Palik, G.S. Picus, S. Teither, R.E. Wallis, Phys. Rev. 122, 475 (1961) 108. P.Y. Lu, C.H. Wung, C.M. Williams, S.N.G. Chu, C.M. Stiles, Appl. Phys. Lett. 49 (1986) 1372 109. N.R. Taskar, I.B. Bhat, K.K. Prat, D. Terry, H. Ehasani, S.K. Ghandhi, J. Vac. Sci. Technol. 7A (1989) 281 110. F. Koch, Springer Series in Solid States Sciences, vol. 53 (Springer-Verlag, Berlin, 1984), pp. 20 111. L.R. Tomasetta, H.D. Law, R.C. Eden, I. Reyhimy, K. Nakano, IEEE J. Quant. Electron. 14 (1978) 800 112. T. Yamato, K. Sakai, S. Akiba, Y. Suematsu, IEEE J. Quantum Electronics 14 (1978) 95 113. T.P. Pearsall, B.I. Miller, R.J. Capik, Appl. Phys. Lett. 28 (1976) 499 114. M.A. Washington, R.E. Nahory, M.A. Pollack, E.D. Beeke, Appl. Phys. Lett. 33 (1978) 854 115. M.I. Timmons, S.M. Bedair, R.J. Markunas, J.A. Hutchby, Proceedings of the 16th IEEE Photovoltaic Specialist Conference (IEEE, San Diego, California 666, 1982) 116. J.A. Zapien, Y.K. Liu, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 90, 213114 (2007) 117. M. Park, Proc. SPIE 2524, 142 (1995) 118. S.-G. Hur, E.T. -Kim, J.H. -Lee, G.H. -Kim, S.G. -Yoon, Electrochem. Solid-State Lett. 11, H176 (2008) 119. H. Kroemer, Rev. of Mod. Phys. 73, 783 (2001) 120. T. Nguyen Duy, J. Meslage, G. Pichard, J. Crys. Growth, 72, 490 (1985) 121. T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, Solar Energy Mat. Solar Cells, 75, 211 (2003) 122. H.B. Barber, J. Elect. Mat. 25, 1232 (1996) 123. S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda, Elect. Lett. 32, 552 (1996) 124. J.J. Hopfield, J. Appl. Phys. 32, 2277 (1961) 125. R.V. Belosludov, A.A. Farajian, H. Mizuseki, K. Miki, Y. Kawazoe, Phys. Rev. B, 75, 113411 (2007)
References
67
126. J. Heremans, C.M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield, Phys. Rev. B 61, 2921 (2000) 127. D. Shoenberg, Proc. Roy. Soc. (London) 170, 341 (1939) 128. B. Abeles, S. Meiboom, Phys. Rev. 101, 544 (1956) 129. B. Lax, J.G. Mavroides, H.J. Zieger, R.J. Keyes, Phys. Rev. Lett. 5, 241 (1960) 130. Y.-H. Kao, Phys. Rev. 129, 1122 (1963) 131. R.J. Dinger, A.W. Lawson, Phys. Rev. B, 3, 253 (1971) 132. J.F. Koch, J.D. Jensen, Phys. Rev. 184, 643 (1969) 133. M.H. Cohen Phys. Rev. 121, 387 (1961) 134. S. Takaoka, H. Kawamura, K. Murase, S. Takano, Phys. Rev. B 13, 1428 (1976) 135. J.W. McClure, K.H. Choi, Solid State Commun. 21, 1015 (1977) 136. G.P. Agrawal, N.K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993), p. 547 137. S. Chatterjee, U. Pal, Opt. Eng., Bellingham, 32, 2923 (1993) 138. T.K. Chaudhuri, Int. J. Energy Res. 16, 481 (1992) 139. J.H. Dughaish, Physica B 322, 205 (2002) 140. C. Wood, Rep. Prog. Phys. 51, 459 (1988) 141. K.-F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004) 142. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, M.G. Kanatzidis, Adv. Mater., Weinheim, Ger. 18, 1170 (2006) 143. P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, M.G. Kanatzidis, Angew. Chem., Int. Ed. 45, 3835 (2006) 144. P.F. Poudeu, J. D’Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006) 145. J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, M.G. Kanatzidis, Chem. Mater. 18, 4993 (2006) 146. A.J. Mountvala, G. Abowitz, J. Am. Ceram. Soc. 48, 651 (1965) 147. E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, A. Yu. Sipatov, V.A. Volobuev, M.S. Dresselhaus, Appl. Phys. Lett. 78, 3238 (2001) 148. H.S. Lee, B. Cheong, T.S. Lee, K.S. Lee, W.M. Kim, J.W. Lee, S.H. Cho, J.Y. Huh, Appl. Phys. Lett. 85, 2782 (2004) 149. K. Kishimoto, M. Tsukamoto, T. Koyanagi, J. Appl. Phys. 92, 5331 (2002) 150. E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.A. Us, M.S. Dresselhaus, S.B. Cronin, Nanotechnology 14, 53 (2003) 151. E.I. Rogacheva, O.N. Nashchekina, A.V. Meriuts, S.G. Lyubchenko, M.S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett. 86, 063103 (2005) 152. E.I. Rogacheva, S.N. Grigorov, O.N. Nashchekina, T.V. Tavrina, S.G. Lyubchenko, A.Yu. Sipatov, V.V. Volobuev, A.G. Fedorov, M.S. Dresselhaus, Thin Solid Films 493, 41 (2005). 153. X. Qiu, Y. Lou, A.C.S. Samia, A. Devadoss, J.D. Burgess, S. Dayal, C. Burda, Angew. Chem., Int. Ed. 44, 5855 (2005) 154. C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62, 1957 (2001) 155. B. Poudel, W.Z. Wang, D.Z. Wang, J.Y. Huang, Z.F. Ren, J. Nanosci. Nanotechnol. 6, 1050 (2006) 156. B. Zhang, J. He, T.M. Tritt, Appl. Phys. Lett. 88, 043119 (2006) 157. W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, M. B¨oberl, G. Springholz, F. Sch¨affler, K. Koike, H. Harada, M. Yano, Appl. Phys. Lett.88, 192109 (2006) 158. B.A. Akimov, V.A. Bogoyavlenskiy, L.I. Ryabova, V.N. Vasil’kov, Phys. Rev. B 61, 16045 (2000) 159. Ya. A. Ugai, A.M. Samoilov, M.K. Sharov, O.B. Yatsenko, B.A. Akimov, Inorg. Mater. 38, 12 (2002) 160. Ya. A. Ugai, A.M. Samoilov, S.A. Buchnev, Yu.V. Synorov, M.K. Sharov, Inorg. Mater. 38, 450 (2002)
68
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
161. A.M. Samoilov, S.A. Buchnev, Yu.V. Synorov, B.L. Agapov, A.M. Khoviv, Inorg. Mater. 39, 1132 (2003) 162. A.M. Samoilov, S.A. Buchnev, E.A. Dolgopolova, Yu.V. Synorov, A.M. Khoviv, Inorg. Mater. 40, 349 (2004) 163. H. Murakami, W. Hattori, R. Aoki, Phys. C 269, 83 (1996) 164. H. Murakami, W. Hattori, Y. Mizomata, R. Aoki, Phys. C 273, 41 (1996) 165. H. Murakami, R. Aoki, K. Sakai, Thin Solid Films, 27, 343 (1999) 166. B.A. Volkov, L.I. Ryabova, D.R. Khokhlov, Phys. Usp. 45, 819 (2002), and references therein 167. F. H¨ue, M. H¨ytch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100, 156602 (2008) 168. S. Banerjee, K.A. Shore, C.J. Mitchell, J.L. Sly, M. Missous, IEEE Proc., Circuits Devices Syst. 152, 497 (2005) 169. M. Razeghi, A. Evans, S. Slivken, J.S. Yu, J.G. Zheng, V.P. Dravid, Proc. SPIE, 5840, 54 (2005) 170. R.A. Stradling, Semicond. Sci. Technol. 6,C 52 (1991) 171. P.K. Weimer, Proc. IEEE, 52, 608 (1964) 172. G. Ribakovs, A.A. Gundjian, IEEE, J. Quant. Electron. QE-14, 42 (1978) 173. S.K. Dey, J. Vac. Sc. Tech. 10, 227 (1973) 174. S.J. Lynch, Thin Solid Films, 102, 47 (1983) 175. V.V. Kudzin, V.S. Kulakov, D.R. Pape’, S.V. Kulakov, V.V. Molotok, IEEE, Ultrasonics Symposium, 1, 749 (1997) 176. F. Hatami, V. Lordi, J.S. Harris, H. Kostial, W.T. Masselink, J. Appl. Phys. 97, 096106 (2005) 177. B.W. Wessels, J. Electrochem. Soc. 122, 402 (1975) 178. D.W.L. Tolfree, J. Sci. Instrum. 41, 788, (1964) 179. P.B. Hart, Proc. the IEEE, 61, 880, 1973 180. M.A. Hines, G.D. Scholes, Adv. Mater. 15, 1844 (2003) 181. C.A. Wang, R.K. Huang, D.A. Shiau, M.K. Connors, P.G. Murphy, P.W. O’Brien, A.C. Anderson, D.M. DePoy, G. Nichols, M.N. Palmisiano, Appl. Phys. Lett, 83, 1286 (2003) 182. C.W. Hitchcock, R.J. Gutmann, J.M. Borrego, I.B. Bhat, G.W. Charache, IEEE Trans. Electron. Devices, 46, 2154 (1999) 183. H.J. Goldsmid, R.W. Douglas, Brit. J. Appl. Phys. 5, 386 (1954) 184. F.D. Rosi, B. Abeles, R.V. Jensen, J. Phys. Chem. Sol. 10, 191 (1959) 185. T.M. Tritt (ed.), Semiconductors and Semimetals, Vols. 69, 70 and 71: Recent Trends in Thermoelectric Materials Research I, II and III (Academic, New York, 2000) 186. D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics (CRC, New York, 1995) 187. D.M. Rowe, C.M. Bhandari, Modern Thermoelectrics (Reston, Virginia, 1983) 188. D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC, New York, 2006) 189. H. Choi, M. Chang, M. Jo, S.J. Jung, H. Hwang, Electrochem. Solid-State Lett. 11, H154 (2008) 190. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35, 1956 (1996) 191. H.W.H. Lee, B.R. Taylor, S.M. Kauzlarich, Nonlinear Optics: Materials, Fundamentals, and Applications (Technical Digest, 12, 2000) 192. E. Brundermann, U. Heugen, A. Bergner, R. Schiwon, G.W. Schwaab, S. Ebbinghaus, D.R. Chamberlin, E.E. Haller, M. Havenith, 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, 283 (2004) 193. A.N. Baranov, T.I. Voronina, N.S. Zimogorova, L.M. Kauskaya, Y.P. Yakoviev, Sov. Phys. Semicond. 19, 1676 (1985) 194. M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, Jpn. J. Appl. Phys. 17, 2091 (1978) 195. F.S. Yuang, Y.K. Su, N.Y. Li, Jpn. J. Appl. Phys. 30, 207 (1991) 196. F.S. Yuang, Y.K. Su, N.Y. Li, K.J. Gan, J. Appl. Phys. 68, 6383 (1990) 197. Y.K. Su, S.M. Chen, J. Appl. Phys. 73, 8349 (1993) 198. S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, P.J. Walker, Semicond. Sci. Technol. 3, 315 (1988) 199. C. Young, W.W. Anderson, L.B. Anderson, Trans. Electron Dev., IEEE, 24, 492 (1977) 200. R.L. Gordon, V.I. Neeley, H.R. Curtin, Proc. IEEE, 54, 2014 (1966)
References
69
201. P.K. Weimer, Proc. IRE, 50, 1462 (1962) 202. M.J. Lee, S.W. Wright, C.P. Judge, P.Y. Cheung, Display Research Conference, International Conference Record, 211 (1991) 203. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965) 204. A. Haung, Theoretical Solid State Physics, vol. 1 (Pergamon, Oxford) 205. S. Flugge, Practical Quantum Mechanics (Springer Verlag, Berlin,1974) 206. M. Razavy, Quantum Theory of Tunneling (World Scientific, Singapore 2003) 207. J.O. Dimmock in The Physics of Semimetals and Narrow Gap Semiconductors Ed. by D.L. Carter, R.T. Bates (Pergamon, Oxford, 1971) 208. D.G. Seiler, B.D. Bajaj, A.E. Stephens, Phys. Rev. B 16, 2822 (1977) 209. A.V. Germaneko, G.M. Minkov, Phys. Stat. Sol. (b) 184, 9 (1994) 210. G.L. Bir, G.E. Pikus, Symmetry and Strain – Induced Effects in Semiconductors (Nauka, 1972) (in Russian) 211. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, K21 (1986) 212. J. Bouat, J.C. Thuillier, Surface Science, 73, 528 (1978) 213. G.J. Rees, Phys. of Compounds, Proc. of the 13th Inter. Nat. Conf. Ed. F.G. Fumi, pp. 1166, North-Holland Company (1976) 214. P.R Emtage, Phys. Rev. 138, A246 (1965) 215. M. Stordeur, W. Kuhnberger, Phys. Stat. sol. (b), 69, 377(1975) 216. D.R. Lovett, Semimetals and Narrow-Bandgap Semiconductor (Pion, London, 1977) 217. H. Kohler, Phys. Stat. Sol.(b), 74, 591(1976) 218. M. Cardona, W. Paul, H. Brooks Helv, Acta Phys. 33, 329 (1960) 219. A.F. Gibson in “Proceeding of International school of physics “ENRICO FERMI” course XIII, Ed. R.A Smith, Academic Press, 171 (1963) 220. C.C. Wang, N.W. Ressler, Phys. Rev. 2, 1827 (1970) 221. P.C Mathur, S. Jain, Phys. Rev. 19, 1359(1979) 222. M. Singh, P.R. Wallace, S.D. Jog, E. Arushanov, J. Phys. Chem. Solids, 45, 409 (1984) 223. Y. Yamada, J. Phys. Soc. Japan, 35, 1600(1973), 37, 606(1974) 224. J. Cisowski, J.C Portal, E.K Erushanov, J.M Broto, S. Huant, L.C Brumel, Phys.Stat.Sol(b), 121, 289 (1984) 225. E.A. Arushanov, A.A. Kaynzev, A.N. Natepov, S.I. Radautsan, Sov. Phys. Semicond. 15, 828 (1981) 226. K.S. Hong, R.F. Speyer, R.A. Condrate, J. Phys. Chem. Solids, 51, 969 (1990) 227. M. Mondal, S. Banik, K. P. Ghatak, J. Low. Temp. Phys. 74, 423 (1989) 228. M.J. Gelten, C.V.M. VanEs, F.A.P. Blom, J.W.F. Jongencelen, Solid State Commun. 33, 833 (1980) 229. A.A. El-Shazly, H.S. Soliman, H.E.A. El-Sayed, D.A.A. El-Hady, J. Vac. 47, 53 (1996) 230. S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, New York, 2005) 231. O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Springer-Verlag, Berlin, 2003) 232. S. Adachi, J. Appl. Phys. 58, R1 (1985) 233. S. Adachi, GaAs and Related Materials: Bulk Semiconductors and Superlattice Properties (World Scientific, New York, 1994) 234. G.L. Hansen, J.L. Schmit, T.N. Casselman, J. Appl. Phys. 63, 7079 (1982) 235. J. Wenus, J. Rutkowski, A. Rogalski, IEEE Trans. Elect. Dev. 48, 1326 (2001) 236. S. Adachi, J. Appl. Phys. 53, 8775 (1982) 237. S.K. Sutradhar, D. Chattopadhyay, B.R. Nag, Phys. Rev. (b) 25, 4069(1982) 238. D.G. Seiler, W.M. Beeker, L.M. Roth, Phys. Rev. 1, 764 (1970) 239. I.V. Skryabinskii, Yu. I. Ukhanov, Sov. Phys. Solid State, 14, 2838 (1973) 240. S. Tiwari, S. Tiwari, Cryst. Res. Technol. 41, 78 (2006) 241. J.R. Lowney, S.D. Senturia, J. Appl. Phys. 47, 1771 (1976) 242. W.E. Spicer, G.J. Lapeyre Phys. Rev. 139, A565 (1965) 243. G.M.T. Foley, P.N. Langenberg, Phys. Rev. B, 15, 4850 (1977) 244. D.R. Lovett, In: Semimetals and Narrow Band Gap Semiconductors (Pion, London, 1977) 245. C.C. Wu, C.J. Lin, J. Low. Temp. Phys. 57, 469 (1984)
70
1 Field Emission from Quantum Wires of Nonparabolic Semiconductors
246. J. Rose, R. Schuchardt, Phys. Stat. Sol.(b), 117, 213 (1983) 247. K.P Ghatak, S. Bhattachaya, D. De, Einstein Relation in Compound Semiconductors and Nanostructures (Springer Series in Material Sciences, 116, 2009) 248. V.I. Ivanov-Omskii, A.Sh. Mekhtisev, S.A. Rustambekova, E.N. Ukraintsev, Phys. Stat. Sol. (b) 119, 159 (1983) 249. H. Kim, K. Cho, H. Song, B. Min, J. Lee, G. Kim, S. Kim, S.H. Kim, T. Noh, Appl. Phys. Lett. 83, 4619 (2003) 250. R.A. Reynolds, M.J. Brau, R.A. Chapman, J. Phys. Chem. Solids 29, 755 (1968) 251. J. O’Shaughnessy, C. Smith, Solid State Commun. 8, 481 (1970) 252. N.B. Brandt, V.N. Davydov, V.A. Kulbachinskii, O.M. Nikitina, Sov. Phys. Sol. Stat. 29, 1014 (1987) 253. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, J. Mater. Chem. 15, 974 (2005) 254. L.A. Vassilev, Phys. Stat. Sol. (b), 121, 203 (1984) 255. D.L. Partin, Superlattices and Microstructures, 1, 131 (1985) 256. W.J. Turner, A.S. Fischler, W.E. Reese, Phys. Rev. 121, 759 (1961) 257. G.P. Chuiko, Sov. Phys. Semicond. 19(12), 1381 (1985)252 258. W.E. Swank, P.G. Le Comber, Phys. Rev. 153, 844 (1967) 259. D. Haneman, J. Phys. Chem. Solids, 11, 205 (1959) 260. N. Wei, G. Wu, J. Dong, Phys. Lett. A 325, 403 (2004) 261. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejo’n, Phys. Rev. B, 66, 035412 (2006) 262. M.S. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, New York, 2006) 263. J.W. Mintmire, C.T. White, Phys. Rev. Lett. 81, 2506 (1998) 264. F. Buonocore, F. Trani, D. Ninno, A. Di Matteo, G. Cantele, G. Iadonisi, Nanotechnology, 19, 025711 (2008) 265. J.B. Ketterson, Phys. Rev. 129, 18 (1963) 266. R.C. Vil˜ao, J.M. Gil, A. Weidinger, H.V. Alberto, J. Piroto Duarte, N.A. de Campos, R.L. Lichti, K.H. Chow, S.P. Cottrell, S.F.J. Cox, Phys. Rev. B, 77, 235212 (2008) 267. I. Kang, F.W. Wise, Phys. Rev. B, J. Opt. Soc. Am. B, 14, 1632 (1997) 268. D. Cui, J. Xu;S.-Y. Xu, G. Paradee, B.A. Lewis, M.D. Gerhold, IEEE Trans. Elect. Dev. 5, 362 (2006) 269. E.L. Ivchenko, G.E. Pikus. Sov. Phys. Semicond. 13, 579 (1979) 270. E. Bangert, P. Kastner, Phys. Stat. Sol (b) 61, 503(1974) 271. G.M.T. Foley, P.N Langenberg, Phys. Rev. B, 15B, 4850 (1977) 272. V.I. Ivanov-Omskii, A.Sh. Mekhtisev, S.A. Rustambekova, E.N. Ukraintsev, Phys. Stat. Sol. (b) 119, 159 (1983) 273. H.I. Zhang, Phys. Rev. B, 1, 3450 (1970) 274. U. Rossler, Solid State Commun. 49, 943 (1984) 275. J. Johnson, D.H. Dickey, Phys. Rev. 1, 2676 (1970) 276. V.G. Agafonov, P.M. Valov, B.S. Ryvkin, I.D. Yarashetskin, Sov. Phys. Semiconduct. 12, 1182 (1978) 277. N.S. Averkiev, V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev, Sov. Phys. Semicond. 18, 379 and 402 (1984) 278. R.W. Cunningham,Phys. Rev. 167, 761(1968) 279. A.I. Yekimov, A.A. Onushchenko, A.G. Plyukhin, AI.L. Efros, J. Expt. Theor. Phys. 88, 1490 (1985) 280. B.J. Roman, A.W. Ewald, Phys. Rev. B. 5, 3914 (1972)
Chapter 2
Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
2.1 Introduction In recent years, modern fabrication techniques have generated altogether a new dimension in the arena of quantum effect devices through the experimental realization of an important artificial structure known as semiconductor superlattice (SL) by growing two similar but different semiconducting materials in alternate layers with finite thicknesses. The materials forming the alternate layers have the same kind of band structure but different energy gaps. The concept of SL was developed for the first time by Keldysh [1] and was successfully fabricated by Esaki and Tsu [2–5]. The SLs are being extensively used in thermal sensors [6,7], quantum cascade lasers [8–10], photodetectors [11, 12], light-emitting diodes [13–16], multiplication [17], frequency multiplication [18], photocathodes [19,20], thin-film transistor [21], solar cells [22,23], infrared imaging [24], thermal imaging [25,26], infrared sensing [27], and also in other microelectronic devices. The most extensively studied III–V SL is the one consisting of alternate layers of GaAs and Ga1x Alx . As owing to the relative easiness of fabrication. The GaAs and Ga1x Alx . As layers form the quantum wells and the potential barriers, respectively. The III–V SLs are attractive for the realization of high-speed electronic and optoelectronic devices [28]. In addition to SLs with usual structure, other types of SLs such as II–VI [29], IV–VI [30], and HgTe/CdTe [31] have also been investigated in the literature. The IV–VI SLs exhibit quite different properties as compared to the III–V SL due to the specific band structure of the constituent materials [32]. The epitaxial growth of II–VI SL is a relatively recent development and the primary motivation for studying the mentioned SLs made of materials with the large band gap is in their potential for optoelectronic operation in the blue [32]. HgTe/CdTe SLs have raised a great deal of attention since 1979 as promising new materials for long wavelength infrared detectors and other electro-optical applications [33]. Interest in Hg-based SLs has been further increased as new properties with potential device applications were revealed [33, 34]. These features arise from the unique zero-band gap material HgTe [35] and the direct band gap semiconductor CdTe, S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 2, © Springer-Verlag Berlin Heidelberg 2012
71
72
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
which can be described by the three-band mode of Kane [36]. The combination of the aforementioned materials with specified dispersion relation makes HgTe/CdTe SL very attractive, especially because of the tailoring of the material properties for various applications by varying the energy band constants of the SLs. We note that all the aforementioned SLs have been proposed with the assumption that the interfaces between the layers are sharply defined, of zero thickness, i.e., devoid of any interface effects. The SL potential distribution may be then considered as a one-dimensional array of rectangular potential wells. The aforementioned advanced experimental techniques may produce SLs with physical interfaces between the two materials crystallographically abrupt; adjoining their interface will change at least on an atomic scale. As the potential form changes from a well (barrier) to a barrier (well), an intermediate potential region exists for the electrons. The influence of finite thickness of the interfaces on the electron dispersion law is very important, since the electron energy spectrum governs the electron transport in SLs. In addition to it, for effective mass SLs, the electronic subbands appear continually in real space [37]. In this chapter, we shall study the FNFE from III–V, II–VI, IV–VI, and HgTe/CdTe quantum wire SLs with graded interfaces in Sects. 2.2.1 to 2.2.4, respectively. From Sects. 2.2.5 to 2.2.8, we shall investigate the same from III–V, II–VI, IV–VI, and HgTe/CdTe effective mass quantum wire SLs. In Sect. 2.3, the result and discussions have been written with respect to the dependences of the FNFE as functions of various variables by taking GaAs/Ga1x Alx As, CdS/CdTe, PbTe/PbSnTe, and HgTe/CdTe quantum wire SLs with graded interfaces and the corresponding effective mass SLs as examples. Section 2.4 contains open research problems.
2.2 Theoretical Background 2.2.1 The Field Emission from III–V Quantum Wire Superlattices with Graded Interfaces The energy spectrum of the conduction electrons in bulk specimens of the constituent materials of III–V SLs whose energy band structures are defined by three-band model of Kane can be written as „2 k 2 D EG.E; Egi ; i /; 2mci
(2.1)
mci is the effective electron mass at the edge of the conduction band, i D 1 and 2 and G.E; Egi ; i / .ŒEgi C .2=3/i .E C Egi C i /.E C Egi //= .Egi .Egi C i /ŒE C Egi C .2=3/i /:
2.2 Theoretical Background
73
Therefore, the dispersion law of the electrons of III–V SLs with graded interfaces can be expressed, following Jiang and Lin [38], as cos.Lo k/ D
1 ˆ21 .E; ks /; 2
(2.2)
where L0 . a0 C b0 / is the period length, a0 and b0 are the widths of the barrier and the well, respectively, ˆ21 .E; ks / 2 coshfˇ21 .E; ks /g cosf21 .E; ks /g C "21 .E; ks / sinhfˇ21 .E; ks /g sinf21 .E; ks /g 2 K21 .E; ks / C 21 3K22 .E; ks / coshfˇ21 .E; ks /g sinf21 .E; ks /g K22 .E; ks / fK22 .E; ks /g2 C 3K21 .E; ks / sinhfˇ21 .E; ks /g cosf21 .E; ks /g K21 .E; ks / C 21 2 fK21 .E; ks /g fK22 .E; ks /g2 coshfˇ21 .E; ks /g cosf21 .E; ks /g 1 5fK22 .E; ks /g3 5fK21 .E; ks /g3 C C 34K22 .E; ks /K21 .E; ks / 12 K21 .E; ks / K22 .E; ks / sinhfˇ21 .E; ks /g sinf21 .E; ks /g ; ˇ .E; k / K21 .E; ks /Œa0 21 , 21 is the interface width, K21 .E; ks / h 21 0 s i1=2 2mc2 E G.E V o ; ˛2 ; 2 / C ks2 , E 0 .V 0 E/, V 0 is the potential barrier „2 encountered by the electron .V 0 jEg2 Eg1 j/, ’i 1=Egi , 21 .E; ks / K22 1=2 .E; ks /Œb0 21 , K22 .E; ks / 2m„c12 E G.E; ˛1 ; 1 / ks2 , and ks2 D kx2 C ky2 . The electron dispersion law in III–V quantum wire superlattices (QWSLs) can be written following (2.2) as " # 2
1 1 1 .nx ; ny / ; (2.3) kz2 D cos1 f21 .nx ; ny ; E/ 2 L20 where the function 1 .nx ; ny / has already been defined in Chap. 1, f21 .nx ; ny ; E/ " D 2 coshfg21 .nx ; ny ; E/g cosfg22 .nx ; ny ; E/g
74
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
˚ C Q21 .nx ; ny ; E/ sinhfg21 .nx ; ny ; E/g sin g22 nx ; ny ; E ! " ˚ 2 J21 nx ; ny ; E 3J22 nx ; ny ; E C 21 J22 nx ; ny ; E ˚ cosh g21 nx ; ny ; E sinfg22 .nx ; ny ; E/g fJ22 .nx ; ny ; E/g2 C 3J21 .nx ; ny ; E/ J21 .nx ; ny ; E/ # sinhfg21 .nx ; ny ; E/g cosfg22 .nx ; ny ; E/g "
C 21 2 fJ21 .nx ; ny ; E/g2 fJ22 .nx ; ny ; E/g2 coshfg21 .nx ; ny ; E/g cosfg22 .nx ; ny ; E/g 5fJ21 .nx ; ny ; E/g3 1 5fJ22 .nx ; ny ; E/g3 C C 12 J21 .nx ; ny ; E/ J22 .nx ; ny ; E/ f34J21 .nx ; ny ; E/J22 .nx ; ny ; E/g ## sinhfg21 .nx ; ny ; E/g sinfg22 .nx ; ny ; E/g
;
g21 .nx ; ny ; E/ J21 .nx ; ny ; E/Œa0 21 ; 1=2 2mc2 E 0 J21 .nx ; ny ; E/ G.E V ; ˛ ; / C .n ; n / ; 0 2 2 1 x y „2 g22 nx ; ny ; E D J22 nx ; ny ; E Œb0 21 ; 1=2 2mc1 E G.E; ˛ ; / .n ; n / ; and J22 .nx ; ny ; E/ 1 1 1 x y „2 J21 .nx ; ny ; E/ J22 .nx ; ny ; E/ Q21 .nx ; ny ; E/ J22 .nx ; ny ; E/ J21 .nx ; ny ; E/ (2.3) can be expressed as kz2 D L21i.E; nx ; ny /, where L21 .E; nx ; ny / D hTherefore, 2 ˚ 1 cos1 12 f21 .nx ; ny ; E/ 1 .nx ; ny / . L2 0
The electron concentration per unit length is given by n0 D
nxmax nymax X 2gv X D21 .EF 1D ; nx ; ny / C D22 .EF 1D ; nx ; ny / ; n D1 n D1 x
y
(2.4)
2.2 Theoretical Background
where D21 .EF 1D ; nx ; ny / D so P Z1D .r/ŒD21 .EF 1D ; nx ; ny /.
75
p L21 .EFID ; nx ; ny / and D22 .EF 1D ; nx ; ny / D
rD1
The field-emitted current assumes the form I D
nxmax nymax X 2gv ekB T X F0 .N 21 / exp.ˇN21 / ; h
(2.5)
nx D1 ny D1
where N 21 D .EF 1D E 21 /=kB T , and E 21 is the lowest positive root of the equation. h i 1 f21 .E 21 ; nx ; ny / D 2 cos L0 .1 .nx ; ny // 2 ;
(2.6)
4 ˇN21 D ŒL21 .V0 ; nx ; ny /3=2 ŒeFsz L21 .V0 ; nx ; ny /1 ; 3
12
1 2 1 1 1 L21 .V0 ; nx ; ny / D 1 f21 .nx ; ny ; V0 / cos f21 .nx ; ny ; V0 / 2 4 L20 ! fN21 .nx ; ny ; V0 / fN21 .nx ; ny ; V0 / 0 .nx ; ny ; V0 / sinhfg21 .nx ; ny ; V0 /g cos fg22 .nx ; ny ; V0 /g D 2g21 ˚ 0 2g22 .nx ; ny ; V0 / sinfg22 .nx ; ny ; V0 /g cosh g21 nx ; ny ; V0 ˚ ˚ 0 C Q21 nx ; ny ; V0 sinh g21 nx ; ny ; V0 sin g22 nx ; ny ; V0 0 ˚ nx ; ny ; V0 cosh g21 nx ; ny ; V0 C Q21 nx ; ny ; V0 g21 ˚ ˚ 0 nx ; ny ; V0 cos g22 nx ; ny ; V0 sin g22 nx ; ny ; V0 C g22 ˚ sinh g21 nx ; ny ; V0
0 .nx ; ny ; V0 / J221 .nx ; ny ; V0 /J022 .nx ; ny ; V0 / 2J21 .nx ; ny ; V0 /J21 C 21 J22 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / ˚ ˚ 3J022 .nx ; ny ; V0 / cosh g21 nx ; ny ; V0 sin g22 nx ; ny ; V0 ˚ ˚ 0 J221 .nx ;ny ;V0 / .nx ;ny ;V0 / sinh g21 .nx ;ny ;V0 / 3J22 .nx ;ny ;V0 / g21 C J22 .nx ; ny ; V0 / ˚ ˚ 0 sin g22 nx ; ny ; V0 C g22 nx ; ny ; V0 cos g22 nx ; ny ; V0
76
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
˚ cosh g21 nx ; ny ; V0 C 21 2J221 .nx ; ny ; V0 / 2J222 .nx ; ny ; V0 / ˚ ˚ ˚ 0 nx ; ny ; V0 sinh g21 nx ; ny ; V0 cos g22 nx ; ny ; V0 g21 ˚ ˚ 0 nx ; ny ; V0 sin g22 nx ; ny ; V0 cosh g21 nx ; ny ; V0 g22 ˚ C 4J21 .nx ; ny ; V0 /J021 .nx ; ny ; V0 / 4J22 .nx ; ny ; V0 /J022 .nx ; ny ; V0 / ˚ ˚ ˚ cosh g21 nx ; ny ; V0 cos g22 nx ; ny ; V0 1 15J222 .nx ; ny ; V0 /J022 .nx ; ny ; V0 / 5J322 .nx ; ny ; V0 /J021 .nx ; ny ; V0 / C 12 J21 .nx ; ny ; V0 / J221 .nx ; ny ; V0 /
15J221 .nx ; ny ; V0 /J021 .nx ; ny ; V0 / 5J321 .nx ; ny ; V0 /J022 .nx ; ny ; V0 / C J22 .nx ; ny ; V0 / J222 .nx ; ny ; V0 /
34J021 .nx ; ny ; V0 /
J22 .nx ; ny ; V0 /
34J21 .nx ; ny ; V0 /J022 .nx ; ny ; V0 /
˚ ˚ ˚ sinh g21 nx ; ny ; V0 sin g22 nx ; ny ; V0
3 5J22 .nx ; ny ; V0 / 1 5J321 .nx ; ny ; V0 / C 34J21 .nx ; ny ; V0 / C 12 J222 .nx ; ny ; V0 / J221 .nx ; ny ; V0 / ˚ ˚ ˚ 0 J22 .nx ;ny ;V0 / g21 .nx ; ny ; V0 / cosh g21 .nx ; ny ; V0 / sin g22 .nx ; ny ; V0 / 0 C g22
˚ ˚ nx ; ny ; V0 cos g22 nx ; ny ; V0 sinh g21 nx ; ny ; V0
0 0 nx ; ny ; V0 D J21 nx ; ny ; V0 Œa0 21 ; g21 h mc2 0 nx ; ny ; V0 D ŒJ21 nx ; ny ; V0 1 2 G.V0 V 0 ; ˛2 ; 2 / J21 „ i mc2 0 C 2 .V 0 V0 /G .V0 V 0 ; ˛2 ; 2 / ; „ " 1 0 G .V0 V 0 ; ˛2 ; 2 / D G.V0 V 0 ; ˛2 ; 2 / .V0 V 0 C Eg2 C 2 / C
1
1
;
#
; .V0 V 0 C Eg2 / .V0 V 0 C Eg2 C 23 2 / 0 0 nx ; ny ; V0 D J22 nx ; ny ; V0 Œb0 21 ; g22 i 1 h mc1 mc1 0 0 .nx ; ny ; V0 / D J22 .nx ; ny ; V0 / G.V ; ˛ ; / C V G .V ; ˛ ; / J22 0 1 1 0 0 1 1 „2 „2 G.V0 V 0 ; ˛2 ; 2 / D G.E; ˛2 ; 2 /jE!.V0 V 0 / ;
2.2 Theoretical Background
77
and 0 Q21 .nx ; ny ; V0 /
" 0 .V n ; n / J 0 .V0; nx ; ny / J21 .nx ; ny ; V0 / J22 J 0 .nx ; ny ; V0 / 0; x y 22 21 2 J22 .V0; nx ; ny / J21 .nx ; ny ; V0 / J22 .V0; nx ; ny / # 0 .n ; n ; V / J .V n ; n / J21 x y 0 22 0; x y C : 2 .V n ; n / J21 0; x y
2.2.2 The Field Emission from II–VI Quantum Wire Superlattices with Graded Interfaces The energy spectrum of the conduction electrons of the constituent materials of II–VI SLs is given by ED
„2 kz2 „2 ks2 C ˙ C0 ks 2m?;1 2mk;1
and
„2 k 2 D EG.E; Eg2 ; 2 /: 2mc2
(2.8)
The electron dispersion law in II–VI SLs with graded interfaces can be expressed as cos.Lo k/ D
1 ˆ121 .E; ks /; 2
(2.9)
where ˆ121 .E; ks / " 2 coshfˇ121 .E; ks /g cosf121 .E; ks /g C "121 .E; ks / sinhfˇ121 .E; ks /g sinf121 .E; ks /g ! " 2 .E; k / K321 s C 21 3K421 .E; ks / coshfˇ121 .E; ks /g sinf121 .E; ks /g K421 .E; ks / # ! fK421 .E; ks /g2 C 3K321 .E; ks / sinhfˇ121 .E; ks /g cosf121 .E; ks /g K321 .E; ks / " C 21 2.fK321 .E; ks /g2 fK421 .E; ks /g2 / coshfˇ121 .E; ks /g cosf121 .E; ks /g 1 C 12
"
5fK421 .E; ks /g3 5fK321 .E; ks /g3 C 34K421 .E; ks /K321 .E; ks / K421 .E; ks / K321 .E; ks / ##
sinh fˇ121 .E; ks /g sinf121 .E; ks /g
;
#
78
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
ˇ121 .E; ks / K321 .E; ks /Œa0 21 ; 1=2 2mc2 E0 2 G.E V ; ˛ ; / C k ; K321 .E; ks / o 2 2 s „2
˛i 1=Eg i ;
121 .E; ks / K421 .E; ks /Œb0 21 ; " " ##1=2 2mk;1 „2 ks2 K421 .E; ks / C0 k s : E 2m?;1 „2
The electron dispersion law in II–VI QWSLs can be written as " kz2
D
# 2
1 1 1 1 .nx ; ny / cos f212 .nx ; ny ; E/ 2 L20
(2.10)
where f212 .nx ; ny ; E/ " D 2 coshfg212 .nx ; ny ; E/g cos fg222 .nx ; ny ; E/g C Q212 .nx ; ny ; E/ sinhfg212 .nx ; ny ; E/g sinfg222 .nx ; ny ; E/g fJ212 .nx ; ny ; E/g2 C 212 3J222 .nx ; ny ; E/ J222 .nx ; ny ; E/ ˚ coshfg212 .nx ; ny ; E/g sin g222 .nx ; ny ; E/ fJ222 .nx ; ny ; E/g2 C 3J212 .nx ; ny ; E/ J212 .nx ; ny ; E/ # sinhfg212 .nx ; ny ; E/g cosfg222 .nx ; ny ; E/g "
˚ C 212 2 fJ212 .nx ; ny ; E/g2 fJ222 .nx ; ny ; E/g2 cosh g212 .nx ; ny ; E/ ˚
5fJ222 .nx ; ny ; E/g3 5fJ212 .nx ; ny ; E/g3 C J212 .nx ; ny ; E/ J222 .nx ; ny ; E/ f34J212 .nx ; ny ; E/J222 .nx ; ny ; E/g 1 cos g222 .nx ; ny ; E/ C 12
˚ ˚ sinh g212 nx ; ny ; E sin g222 .nx ; ny ; E/
##
2.2 Theoretical Background
79
g212 nx ; ny ; E J212 nx ; ny ; E Œa0 212 ; 1=2 2mc2 E0 J212 nx ; ny ; E G.E V 0 ; ˛2 ; 2 / C 1 nx ; ny ; „2 g222 nx ; ny ; E D J222 nx ; ny ; E Œb0 212 ; " " ##1=2 q 2mk;1 „2 1 .nx ; ny / C0 1 .nx ; ny / ; and E J222 .nx ; ny ; E/ „2 2m?;1 J212 .nx ; ny ; E/ J222 .nx ; ny ; E/ : Q212 .nx ; ny ; E/ J222 .nx ; ny ; E/ J212 .nx ; ny ; E/ Therefore, (2.10) can be expressed as kz2 D L212 .E; nx ; ny /;
(2.11)
h ˚ i 2 where L212 .E; nx ; ny / D L12 cos1 12 f212 nx ; ny ; E 1 .nx ; ny / . 0 The electron concentration per unit length is given by nxmax nymax X gv X D212 .EF 1D ; nx ; ny / C D222 .EF 1D ; nx ; ny / ; n0 D n D1 n D1 x
(2.12)
y
p L212 .EF ID ; nx ; ny / and D222 .EF 1D ; nx ; ny / D where D212 .EF 1D ; nx ; ny / D so P Z1D .r/ŒD212 .EF 1D ; nx ; ny /. rD1
The field-emitted current assumes the form nxmax nymax X gv ekB T X I D ŒF0 .N 22 / exp.ˇN22 / h n D1 n D1 x
(2.13)
y
where N 22 D .EF 1D E 22 /=kB T , and E 22 is the lowest positive root of the equation. 1
f212 .E 22 ; nx ; ny / D 2 cosŒL0 .1 .nx ; ny // 2 ;
(2.14)
4 ˇN22 D ŒL212 .V0 ; nx ; ny /3=2 Œ3eF sz L212 .V0 ; nx ; ny /1 ; 3
1 1 1 f L212 .V0 ; nx ; ny / D .n ; n ; V / cos 212 x y 0 2 L20 ! 1=2
1 2 fN212 .nx ; ny ; V0 / 1 f212 .nx ; ny ; V0 / 4
80
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
fN212 .nx ; ny ; V0 / 0 .nx ; ny ; V0 / sinhfg212 .nx ; ny ; V0 /g cos fg222 .nx ; ny ; V0 /g D 2g212 0 .nx ; ny ; V0 / sinfg222 .nx ; ny ; V0 /g coshfg212 .nx ; ny ; V0 /g 2g222 0 C Q212 .nx ; ny ; V0 / sinhfg212 .nx ; ny ; V0 /g sinfg222 .nx ; ny ; V0 /g 0 C Q212 .Nx ;ny ;V0 / g212 .nx ;ny ;V0 / coshfg212 .nx ;ny ;V0 /g sinfg222 .nx ;ny ;V0 /g 0 C g222 .nx ; ny ; V0 /: cosfg222 .nx ; ny ; V0 /g sinhfg212 .nx ; ny ; V0 /g
2J212 .nx ; ny ; V0 /J0212 .nx ; ny ; V0 / J2212 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 / C 212 J222 .nx ; ny ; V0 / J2222.nx ; ny ; V0 /
3J0222 .nx ; ny ; V0 /g coshfg212 .nx ; ny ; V0 /g sinfg222 .nx ; ny ; V0 /g
2 J .nx ; ny ; V0 / 0 .nx ; ny ; V0 / 3J222 .nx ; ny ; V0 / fg212 C 212 J222 .nx ; ny ; V0 / 0 sinhfg212 .nx ; ny ; V0 /g sinfg222 .nx ; ny ; V0 /gCg222 .nx ; ny ; V0 /
cosfg222 .nx ; ny ; V0 /g coshfg212 .nx ; ny ; V0 /gg
J2 .nx ; ny ; V0 / 0 C 3J0212 .nx ; ny ; V0 / C 222 J .nx ; ny ; V0 / J2212 .nx ; ny ; V0 / 212 ffJ212.nx ; ny ; V0 /g1 f2J0222 .nx ; ny ; V0 / J222 .nx ; ny ; V0 /gg 0 .nx ; ny ; V0 / fsinhŒg212 .nx ; ny ; V0 / cosfg222 .nx ; ny ; V0 /g C fg212 ˚ coshfg212 .nx ; ny ; V0 /g cos g222 nx ; ny ; V0 ˚ 0 nx ; ny ; V0 sin g222 nx ; ny ; V0 g222 sinhŒg212 C 212
J2 .nx ; ny ; V0 / nx ; ny ; V0 gf3J212 nx ; ny ; V0 222 J212.nx ; ny ; V0 /
)#
4J212 .nx ; ny ; V0 / J0212.nx ; ny ; V0 / 4J222 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 /g
˚ ˚ ˚ cosh g212 nx ; ny ; V0 cos g222 nx ; ny ; V0 0 nx ; ny ; V0 C f2J2212 .nx ; ny ; V0 / 2J2222 .nx ; ny ; V0 /gfg212 ˚ sinhŒg212 .nx ; ny ; V0 / cos g222 .nx ; ny ; V0 / ˚ 0 g222 .nx ; ny ; V0 / sin g222 .nx ; ny ; V0 / 1 15J2222 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 / coshŒg212 .nx ; ny ; V0 / C 12 J212 .nx ; ny ; V0 /
2.2 Theoretical Background
81
5J3222 .nx ; ny ; V0 /J0212 .nx ; ny ; V0 / 5J3212 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 / J2212.nx ; ny ; V0 / J2222.nx ; ny ; V0 /
15J2212 .nx ; ny ; V0 /J0212 .nx ; ny ; V0 / 34J0212 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / J0212 .nx ; ny ; V0 /
˚ ˚ ˚ 34J212 .nx ;ny ;V0 /J0222 .nx ;ny ;V0 / sinh g212 .nx ;ny ;V0 / sin g222 .nx ;ny ;V0 /
C
1 5J3222 .nx ; ny ; V0 / 5J3212 .nx ; ny ; V0 / C C 34J222 .nx ;ny ;V0 /J212 .nx ;ny ;V0 / 12 J212.nx ; ny ; V0 / J222 .nx ; ny ; V0 / ˚ ˚ 0 nx ; ny ; V0 cosh g212 nx ; ny ; V0 sin g222 nx ; ny ; V0 g212 ˚ ˚ 0 nx ; ny ; V0 cos g222 nx ; ny ; V0 sinh g212 nx ; ny ; V0 C g222 0 0 g212 nx ; ny ; V0 D J212 nx ; ny ; V0 Œa0 21 h m c2 0 J212 nx ; ny ; V0 D ŒJ212 .nx ; ny ; V0 /1 2 G.V0 V 0 ; ˛2 ; 2 / „ i mc2 C 2 .V 0 V0 /G 0 .V0 V 0 ; ˛2 ; 2 / „ " 1 0 1 G .V0 V 0 ; ˛2 ; 2 / D G.V0 V 0 ; ˛2 ; 2 / .V0 V 0 C Eg2 C 2 / # 1 1 C .V0 V 0 C Eg2 / .V0 V 0 C Eg2 C 23 2 / 0 0 nx ; ny ; V0 D J222 nx ; ny ; V0 Œb0 21 ; g222 " # 1 m k;1 0 J222 nx ; ny ; V0 D ŒJ222 nx ; ny ; V0 „2 G.V0 V 0 ; ˛2 ; 2 / D G.E; ˛2 ; 2 /jE!.V0 V 0 /
and
0 .nx ; ny ; V0 / Q212 0 0 0 J212 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / J212 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / 2 J222 .nx ; ny ; V0 / J212 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / 0 J222 .nx ; ny ; V0 / J212 .nx ; ny ; V0 / 2 J212 .nx ; ny ; V0 /
82
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
2.2.3 The Field Emission from IV–VI Quantum Wire Superlattices with Graded Interfaces The E–k dispersion relation of the conduction electrons of the constituent materials of the IV–VI SLs can be expressed as [39] " ED
ai ks2 Cbi kz2 C
ci ks2
C
di kz2
2 #1=2 Eg 2 2 Egi i; C ei ks Cfi ky C 2 2
(2.15)
h 2 i
2 2 „2 2 2 and where ai 2m„ , bi 2m„ , ci P?;i , di P?;i , ei C 2m?;i ?;i k;i 2 „2 fi . C 2mk;i
The electron dispersion law in IV–VI SLs with graded interfaces can be expressed as cos.Lo k/ D
1 ˆ2 .E; ks /; 2
(2.16)
where ˆ2 .E; ks / ˚ 2 cosh ˇN2 .E; ks / cos fN2 .E; ks /g C "N 2 .E; ks / ˚ sinh ˇN2 .E; ks / sin fN2 .E; ks /g ! " ˚ 2 ˚ K 5 .E; ks / 3K 6 .E; ks / cosh ˇN2 .E; ks / sin fN2 .E; ks /g C 21 K 6 .E; ks / # 2 ! ˚ ˚ K 6 .E; ks / C 3K 5 .E; ks / sinh ˇN2 .E; ks / cos fN2 .E; ks /g K 5 .E; ks / h ˚ 2 ˚ 2 ˚ cosh ˇN2 .E; ks / cos fN2 .E; ks /g C 21 2 K 5 .E; ks / K 6 .E; ks / 1 C 12
" ˚ 3 5 K 5 .E; ks /
˚ 3 5 K 6 .E; ks /
#
C 34K 6 .E; ks / K 5 .E; ks / K 6 .E; ks / K 5 .E; ks / ˚ sinh ˇN2 .E; ks / sin fN2 .E; ks /g ; # " K 5 .E; ks / K 6 .E; ks / "N 2 .E; ks / ; ˇN2 .E; ks / K 5 .E; ks / Œa0 21 ; K 6 .E; ks / K 5 .E; ks /
2.2 Theoretical Background
83
K 5 E; kx ; ky .E V 0 /H12 C H22 kx ; ky C H32 .E V 0 /2 1=2 i1=2 C .E V 0 /H42 kx ; ky C H52 kx ; ky 1 H1i D bi : bi2 fi2 ; 1 Egi bi C di C fi Egi i D 1 and 2; H2i kx ; ky D 2.bi2 fi2 /
i fi 2 C 2 .ci fi ai bi / kx2 C ky2 ; H3i D 2 ; bi2 fi2 1 2 H4i kx ; ky D 4.bi2 fi2 /2 4bi Egi C 4bi di C 4bi fi Egi C 4fi2 Egi
i C 8 kx2 C ky2 bi2 ai C Ci fi bi ai2 bi 1 2 2 2 8ai bi Ci fi C 4bi2 Ci2 C 4fi2 ai2 H5i kx ; ky 4.bi2 fi2 /2 kx Cky 4fi2 Ci2 C kx2 C ky2 Œ8di Ci fi 4ai bi di 4ai bi fi Eg i i C 4bi2 Ci C 4bi2 ei Eg i 4ai fi2 Egi 4fi2 ei Egi h ii C Eg2i bi2 C di2 C fi2 Eg2i C 2Egi fi di ; N2 .E; ks / D K 6 .E; ks / Œb0 21 ; K 6 E; kx ; ky EH11 C H21 kx ; ky H31 E 2 C EH41 kx ; ky 1=2 i1=2 C H51 kx ; ky and h i1=2 K 6 E; kx ; ky .E V0 /2 H32 C .EV0 / H42 kx ; ky CH52 kx ; ky 1=2 .E V0 / H12 C H22 kx ; ky : The electron dispersion law in IV–VI QWSLs can be written from (2.16) as " kz2
D
# 2
1 1 1 cos I23 .nx ; ny ; E/ 1 nx ; ny ; 2 L20
(2.17)
where ˚ ˚ I23 nx ; ny ; E D 2 cosh ˇN23 nx ; ny ; E cos N23 nx ; ny ; E C "N 23 nx ; ny ; E ˚ ˚ sinh ˇN23 nx ; ny ; E sin N23 nx ; ny ; E
84
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
! " ˚ 2 ˚ K 53 nx ; ny ; E C 21 3K 63 nx ; ny ; E cosh ˇN23 nx ; ny ; E K 65 nx ; ny ; E 2 ! ˚ ˚ K 63 nx ; ny ; E sin N23 nx ; ny ; E C 3K 53 nx ; ny ; E K 53 nx ; ny ; E ˚ ˚ sinh ˇN23 nx ; ny ; E cos N23 nx ; ny ; E h ˚ ˚ 2 cosh ˇN23 nx ; ny ; E C 21 2 fK 53 nx ; ny ; E g2 K 63 nx ; ny ; E 3 3 ˚ ˚ ˚ 5 K 63 nx ; ny ; E 1 5 K 53 nx ; ny ; E cos N23 nx ; ny ; E C C 12 K 63 nx ; ny ; E K 53 nx ; ny ; E ˚ 34K 53 nx ; ny ; E K 63 nx ; ny ; E ˚ ˚ sinh ˇN23 nx ; ny ; E sin N23 nx ; ny ; E " # K 53 nx ; ny ; E K 63 nx ; ny ; E ; "N23 nx ; ny ; E K 63 nx ; ny ; E K 53 nx ; ny ; E ˇN23 nx ; ny ; E K 53 nx ; ny ; E Œa0 21 ; K 53 nx ; ny ; E .EV 0 /H12 CH22 nx ; ny C .EV 0 /2 H32 C.EV 0 / 1=2 i1=2 ; H2i nx ; ny H42 nx ; ny C H52 nx ; ny 1 Egi bi C di C fi Egi C 2 .Ci fi ai bi / 1 nx ; ny D 2.bi2 fi2 / 1 2 H4i nx ; ny D 4.bi2 fi2 /2 4bi Egi C 4bi di C 4bi fi Egi C 4fi2 Egi C 81 nx ; ny bi2 ai C Ci fi bi ai2 bi 1 2 1 nx ; ny 8ai bi Ci fi C 4bi2 Ci2 H5i nx ; ny 4.bi2 fi2 /2 C 4fi2 ai2 4fi2 Ci2 C 1 nx ; ny Œ8di Ci fi 4ai bi di 4ai bi fi Egi C 4bi2 Ci C 4bi2 ei Egi 4ai fi2 Egi 4fi2 ei Egi h ii C Eg2i bi2 C di2 C fi2 Eg2i C 2Egi fi di ; N23 nx ; ny ; E K 63 nx ; ny ; E Œb0 21 h 1=2 K 63 .nx ; ny ; E/ E 2 H31 C EH41 .nx ; ny / C H51 .nx ; ny / 1=2 C EH11 C H21 .nx ; ny / :
2.2 Theoretical Background
85
Therefore, (2.17) can be expressed as kz2 D A3 .E; nx ; ny /;
(2.18)
h ˚ i 2 where A3 .E; nx ; ny / D L12 cos1 12 I23 .nx ; ny ; E/ 1 .nx ; ny / . 0 The electron concentration per unit length is given by nxmax nymax X 2gv X D 3 .EF 1D ; nx ; ny / C D 4 .EF 1D ; nx ; ny / ; n0 D n D1 n D1 x
(2.19)
y
q so P Z1D .r/ where D 3 .EF 1D ; nx ; ny /D A3 .EFID ; nx ; ny / and D 4 .EF 1D ; nx ; ny /D rD1
ŒD 3 .EF 1D ; nx ; ny /. The field-emitted current assumes the form nxmax nymax X 2gv ekB T X I D ŒF0 .23 / exp.ˇ23 /; h n D1 n D1 x
(2.20)
y
where 23 D .EF 1D E 23 /=kB T , and E 23 is the lowest positive root of the equation. 1
I23 .E 23 ; nx ; ny / D 2 cosŒL0 .1 .nx ; ny // 2 ;
(2.21)
4 ŒA3 .V0 ; nx ; ny /3=2 Œ3eF sz A4 .V0 ; nx ; ny /1 ; 3
1 1 1 I A4 .V0 ; nx ; ny / D .n ; n ; V / cos 23 x y 0 2 L20 !
1=2 1 2 1 I 23 .nx ; ny ; V0 / I 23 .nx ; ny ; V0 / 4 ˇ23 D
I 23 .nx ; ny ; V0 / D 2ˇN02 .nx ; ny ; V0 / sinhfˇN23.nx ; ny ; V0 /g cos fN23 .nx ; ny ; V0 /g 0 .nx ; ny ; V0 / sinfg222 .nx ; ny ; V0 /g coshfg212 .nx ; ny ; V0 /g 2g222 0 C Q212 .nx ; ny ; V0 / sinhfg212 .nx ; ny ; V0 /g sinfg222 .nx ; ny ; V0 /g 0 C Q212 .nx ; ny ; V0 /Œg212 .nx ; ny ; V0 / coshfg212 .nx ; ny ; V0 /g
sinfg222 .nx ; ny ; V0 /g 0 C g222 .nx ; ny ; V0 /: cosfg222 .nx ; ny ; V0 /g sinhfg212 .nx ; ny ; V0 /g
2J212 .nx ; ny ; V0 /J0212 .nx ; ny ; V0 / C 212 J222 .nx ; ny ; V0 /
86
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
J2212 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 / J2222 .nx ; ny ; V0 /
3J0222 .nx ; ny ; V0 /g coshfg212 .nx ; ny ; V0 /g sinfg222 .nx ; ny ; V0 /g
2 J .nx ; ny ; V0 / 0 .nx ; ny ; V0 /: C 212 3J222 .nx ; ny ; V0 / fg212 J222 .nx ; ny ; V0 / sinhfg212 .nx ; ny ; V0 /gsinfg222 .nx ; ny ; V0 /g 0 .nx ; ny ; V0 / cosfg222 .nx ; ny ; V0 /g coshfg212 .nx ; ny ; V0 /gg C g222
C f3J0212 .nx ; ny ; V0 / C
J2222 .nx ; ny ; V0 / 0 :J .nx ; ny ; V0 / J2212 .nx ; ny ; V0 / 212
ffJ212 .nx ; ny ; V0 /g1 :f2J0222 .nx ; ny ; V0 /:J222 .nx ; ny ; V0 /gg :fsinhŒg212 .nx ; ny ; V0 /: cosfg222 .nx ; ny ; V0 /gg ˚ 0 0 C fg212 .nx ; ny ; V0 /: coshfg212 .nx ; ny ; V0 /g: cos g222 nx ; ny ; V0 g222 nx ; ny ; V0 )# J2222 .nx ; ny ; V0 / ˚ sin g222 nx ; ny ; V0 : sinhŒg212 .nx ; ny ; V0 / f3J212 nx ; ny ; V0 J212 .nx ; ny ; V0 / C 212 ŒŒ4J212 .nx ; ny ; V0 /:J0212 .nx ; ny ; V0 / 4J222 .nx ; ny ; V0 / ˚ ˚ J0222 .nx ; ny ; V0 /gfcosh g212 nx ; ny ; V0 cos g222 nx ; ny ; V0 g 0 C f2J2212 .nx ; ny ; V0 / 2J2222 .nx ; ny ; V0 /gfg212 nx ; ny ; V0 sinhŒg212 nx ; ny ; V0 ˚ ˚ 0 nx ; ny ; V0 sin g222 nx ; ny ; V0 : cos g222 nx ; ny ; V0 g222 " 1 15J2222 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 / : coshŒg222 nx ; ny ; V0 C 12 J212 .nx ; ny ; V0 /
5J3222 .nx ; ny ; V0 /J0212 .nx ; ny ; V0 / 5J3212 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 / J2212 .nx ; ny ; V0 / J2222 .nx ; ny ; V0 /
C
15 J2212 .nx ; ny ; V0 /J0212 .nx ; ny ; V0 / 34J0212 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / J222 .nx ; ny ; V0 /
˚ o ˚ 34J212 .nx ; ny ; V0 /J0222 .nx ; ny ; V0 /fsinh g212 nx ; ny ; V0 sin g222 nx ; ny ; V0
5J3222 .nx ; ny ; V0 / 5J3 .nx ; ny ; V0 / C 212 34J222 .nx ; ny ; V0 /J212 .nx ; ny ; V0 / J212 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / ˚ ˚ 0 :fg212 nx ; ny ; V0 cosh g212 nx ; ny ; V0 sin g222 .nx ; ny ; V0 / ˚ ˚ 0 nx ; ny ; V0 : cos g222 nx ; ny ; V0 sinh g212 nx ; ny ; V0 g; C g222 C
1 12
0 ˇN02 .nx ; ny ; V0 / D g212 .nx ; ny ; V0 /;
ˇN23 .nx ; ny ; V0 / D g212 .nx ; ny ; V0 /;
0 N02 .nx ; ny ; V0 / D g222 .nx ; ny ; V0 /;
N23 .nx ; ny ; V0 / D g222 .nx ; ny ; V0 /;
2.2 Theoretical Background
87
K 53 .nx ; ny ; V0 / D J212 .nx ; ny ; V0 /;
0 K 05 .nx ; ny ; V0 / D J212 .nx ; ny ; V0 /;
0 K 65 .nx ; ny ; V0 / D J222 .nx ; ny ; V0 /; K 06 .nx ; ny ; V0 / D J222 .nx ; ny ; V0 / 0 0 0 .nx ; ny ; V0 / D J212 nx ; ny ; V0 Œa0 212 ; J21 nx ; ny ; V0 g212
D Œ2K 53 nx ; ny ; V0 1 "
.V0 V 0 /H32 C ŒH42 .nx ; ny /=2
#
H12 C 1=2 ; .V0 V 0 /2 H32 C .V0 V 0 /H42 .nx ; ny / C H52 .nx ; ny / 0 0 nx ; ny ; V0 D J222 nx ; ny ; V0 Œb0 21 ; g222 0 J222 .nx ; ny ; V0 / D Œ2K 06 nx ; ny ; V0 1 " # .V0 /H31 CŒH41 .nx ; ny /=2 H11 1=2 .V0 /2 H31 C.V0 /H41 .nx ; ny /CH51 .nx ; ny / and 0 Q212 .nx ; ny ; V0 /
0 0 .nx ; ny ; V0 / J222 .nx ; ny ; V0 / J212 J222 .nx ; ny ; V0 / J212 .nx ; ny ; V0 /
0 0 .nx ; ny ; V0 / J222 .nx ; ny ; V0 /:J212 .nx ; ny ; V0 / J212 .nx ; ny ; V0 /:J222 : 2 2 J222 .nx ; ny ; V0 / J212 .nx ; ny ; V0 /
2.2.4 The Field Emission from HgTe/CdTe Quantum Wire Superlattices with Graded Interfaces The dispersion relation of the conduction electrons of the constituent materials of HgTe/CdTe SLs can be written as ED
3 jej2 k „2 k 2 C 2mc1 128"sc
and
„2 k 2 D EG.E1 Eg2 ; 2 /: 2mc2
(2.22)
The electron energy dispersion law in HgTe/CdTe SL is given by cos.Lo k/ D where
1 ˆ3 .E; ks /; 2
(2.23)
88
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
ˆ3 .E; ks / Œ2 cosh fˇ3 .E; ks /g cos f3 .E; ks /g C "3 .E; ks / sinh fˇ3 .E; ks /g sin f3 .E; ks /g ! " fK7 .E; ks /g2 3K8 .E; ks / cosh fˇ3 .E; ks /g sin f3 .E; ks /g C 21 K8 .E; ks / # ! fK8 .E; ks /g2 C 3K7 .E; ks / sinh fˇ3 .E; ks /g cos f3 .E; ks /g K7 .E; ks / h C 21 2 fK7 .E; ks /g2 fK8 .E; ks /g2 cosh fˇ3 .E; ks /g cos f3 .E; ks /g ### " 1 5 fK8 .E; ks /g3 5 fK7 .E; ks /g3 C 34K7 .E; ks / K8 .E; ks / C 12 K7 .E; ks / K8 .E; ks / sinh fˇ3 .E; ks /g sin f3 .E; ks /g ; K7 .E; ks / K8 .E; ks / ; "3 .E; ks / K8 .E; ks / K7 .E; ks /
ˇ3 .E; ks / K7 .E; ks / Œa0 21 ; 3 .E; ks / D K8 .E; ks / Œb0 21 ; 31=2 2 q 2 2 B C 2A E B B C 4A E 0 0 0 0 7 6 0 K8 .E; ks / 4 ks2 5 ; 2A20 B0 D
AD
3 jej2 ; 128"sc
1=2 „2 2mc2 E0 2 and K7 .E; ks / G.EV ; E ; /Ck ; E 0 DV 0 E: 0 g2 2 s 2mc1 „2
The electron dispersion law in HgTe/CdTe QWSLs can be expressed as
˚ 1=2 1 ˚ ; 11 nx ; ny ; E 1 nx ; ny kz D L20 where
2 1 1 ; 11 nx ; ny ; E D cos 11 nx ; ny ; E 2 ˚ ˚ cos 11 nx ; ny ; E 11 nx ; ny ; E D 2 cosh ˇ11 nx ; ny ; E ˚ C "11 nx ; ny ; E sinh ˇ11 nx ; ny ; E
(2.24)
2.2 Theoretical Background
89
! " ˚ 2 K13 nx ; ny ; E 3K14 nx ; ny ; E K14 nx ; ny ; E ˚ ˚ cosh ˇ11 nx ; ny ; E sin 11 nx ; ny ; E ˚ 2 ! K14 nx ; ny ; E C 3K13 nx ; ny ; E K13 nx ; ny ; E ˚ ˚ sinh ˇ11 nx ; ny ; E cos 11 nx ; ny ; E h ˚ 2 ˚ 2 ˚ K14 nx ; ny ; E cosh ˇ11 nx ; ny ; E C 21 2 K13 nx ; ny ; E ˚ sin 11 nx ; ny ; E C 21
3 3 ˚ ˚ 5 K14 nx ; ny ; E 1 5 K13 nx ; ny ; E C cos 11 nx ; ny ; E C 12 K14 nx ; ny ; E K13 nx ; ny ; E ˚ ˚ 34K14 nx ; ny ; E K13 nx ; ny ; E sinh ˇ11 nx ; ny ; E " # ˚ K13 nx ; ny ; E K14 nx ; ny ; E ; "11 nx ; ny ; E sin 11 nx ; ny ; E K14 nx ; ny ; E K13 nx ; ny ; E ˇ11 nx ; ny ; E K13 nx ; ny ; E Œa0 21 ; 11 nx ; ny ; E D K14 nx ; ny ; E Œb0 21 ; 31=2 2 q 2 2 7 6 B0 C 2A0 E B0 B0 C 4A0 E ˚ K14 nx ; ny ; E 4 1 nx ; ny 5 ; 2 2A0 ˚
K13 nx ; ny ; E
˚ 1=2 2mc2 E0 : G E V 0 ; Eg2 ; 2 C 1 nx ; ny „2
Therefore, (2.24) can be expressed as kz2 D A5 .E; nx ; ny /;
(2.25)
h ˚ i 2 where A5 .E; nx ; ny / D L12 cos1 12 11 .nx ; ny ; E/ 1 .nx ; ny / . 0 The electron concentration per unit length is given by nxmax nymax X 2gv X n0 D D 5 EF 1D ; nx ; ny C D 6 EF 1D ; nx ; ny ; n D1 n D1 x
(2.26)
y
q so P where D 5 .EF 1D ; nx ; ny /D A5 .EFID ; nx ; ny / and D 6 .EF 1D ; nx ; ny /D Z1D .r/ rD1
Œ D 5 .EF 1D ; nx ; ny /. The field-emitted current assumes the form
90
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors nxmax nymax X 2gv ekB T X I D ŒF0 .24 / exp.ˇ24 /; h n D1 n D1 x
(2.27)
y
where 24 D .EF 1D E24 /=kB T , and E24 is the lowest positive root of the equation. A5 .E24 ; nx ; ny / D 0;
(2.28)
4 ŒA5 .V0 ; nx ; ny /3=2 Œ3eF sz A6 .V0 ; nx ; ny /1 ; 3
1 1 1 N 11 .V0 ; nx ; ny / n A6 .V0 ; nx ; ny / D Œ ; n ; V cos 11 x y 0 2 L20
1! 2 1 2 N 11 nx ; ny ; V0 : 1 nx ; n y ; V 0 4 11 D 2ˇ011 nx ; ny ; V0 ˚ ˚ sinh ˇ11 nx ; ny ; V0 cos 11 nx ; ny ; V0 2011 nx ; ny ; V0 ˚ ˚ sin 11 nx ; ny ; V0 cosh ˇ11 nx ; ny ; V0 ˚ ˚ C "011 nx ; ny ; V0 sinh ˇ11 nx ; ny ; V0 sin 11 nx ; ny ; V0 ˚ C "11 nx ; ny ; V0 Œˇ011 nx ; ny ; V0 cosh ˇ11 nx ; ny ; V0 ˚ sin 11 nx ; ny ; V0 ˚ ˚ C 011 nx ; ny ; V0 : cos 11 nx ; ny ; V0 sinh ˇ11 nx ; ny ; V0 ŒK13 .nx ; ny ; V0 /2 K014 .nx ; ny ; V0 / C 21 3K014 .nx ; ny ; V0 / K14 .nx ; ny ; V0 /
2K13 .nx ; ny ; V0 /K013 .nx ; ny ; V0 / 3K014 .nx ; ny ; V0 / : K14 .nx ; ny ; V0 / ˚ ˚ cosh ˇ11 nx ; ny ; V0 sin 11 nx ; ny ; V0
2 K13 .nx ; ny ; V0 / 3K14 .nx ; ny ; V0 / fˇ011 nx ; ny ; V0 : C K14 .nx ; ny ; V0 / ˚ ˚ sinh ˇ11 nx ; ny ; V0 sin 11 .nx ; ny ; V0 / ˚ ˚ C 01 .nx ; ny ; V0 / cos 11 nx ; ny ; V0 cosh ˇ11 nx ; ny ; V0 g ˇ24 D
C f3K013 .nx ; ny ; V0 / C
2 .nx ; ny ; V0 / K14 :K013 .nx ; ny ; V0 / 2 K13 .nx ; ny ; V0 /
ffK13 .nx ; ny ; V0 /g1 :f2K14 .nx ; ny ; V0 /:K014 .nx ; ny ; V0 /gg ˚ :fsinhŒˇ11 nx ; ny ; V0 : cos 11 nx ; ny ; V0 gCf3K13 .nx ; ny ; V0 /
2.2 Theoretical Background
91
2 ˚ K14 .nx ; ny ; V0 / :Œˇ011 nx ; ny ; V0 cos 11 nx ; ny ; V0 K13 .nx ; ny ; V0 / ˚ ˚ : cosh ˇ11 nx ; ny ; V0 011 nx ; ny ; V0 sin 11 nx ; ny ; V0 : sinhŒˇ11 nx ; ny ; V0 C 21 ŒŒ4K13 .nx ; ny ; V0 /:K013 .nx ; ny ; V0 / ˚ 4K14 .nx ; ny ; V0 /K014 .nx ; ny ; V0 /gfcosh ˇ11 nx ; ny ; V0 ˚ 2 2 .nx ; ny ; V0 / 2K14 .nx ; ny ; V0 /g cos 11 nx ; ny ; V0 g C f2K13 ˚ fˇ011 nx ; ny ; V0 sinhŒˇ11 nx ; ny ; V0 cos 11 nx ; ny ; V0 ˚ 011 nx ; ny ; V0 sin 11 nx ; ny ; V0 : 2 .nx ; ny ; V0 /K013 .nx ; ny ; V0 / 1 15K13 : coshŒˇ11 nx ; ny ; V0 C 12 K14 .nx ; ny ; V0 /
3 3 5K13 .nx ; ny ; V0 /K014 .nx ; ny ; V0 / 5K14 .nx ; ny ; V0 /K013 .nx ; ny ; V0 / 2 2 K14 .nx ; ny ; V0 / K13 .nx ; ny ; V0 /
2 15K14 .nx ; ny ; V0 /K014 .nx ; ny ; V0 / 34 K013 .nx ; ny ; V0 / K14 .nx ; ny ; V0 / K13 .nx ; ny ; V0 / ˚ 34 K13 .nx ; ny ; V0 /K014 .nx ; ny ; V0 /fsinh ˇ11 nx ; ny ; V0 ˚ ˚ sin 11 nx ; ny ; V0 g C fˇ011 nx ; ny ; V0 cosh ˇ11 nx ; ny ; V0 ˚ ˚ sin 11 nx ; ny ; V0 C f011 nx ; ny ; V0 cos 11 nx ; ny ; V0
3 ˚ .nx ; ny ; V0 / 1 5 K13 sinh ˇ11 nx ; ny ; V0 C 12 K14 .nx ; ny ; V0 /
C
3 .nx ; ny ; V0 / 5 K14 34 K13.nx ; ny ; V0 /K14 .nx ; ny ; V0 /g K13 .nx ; ny ; V0 / ˇ011 nx ; ny ; V0 D K013 nx ; ny ; V0 Œa0 21 h m c2 K013 .nx ; ny ; V0 / D ŒK13 .nx ; ny ; V0 /1 2 G.V0 V 0 ; ˛2 ; 2 / „ i mc2 C 2 .V 0 V0 /G 0 .V0 V 0 ; ˛2 ; 2 / ; G 0 .V0 V 0 ; ˛2 ; 2 / „ " 1 D G.V0 V 0 ; ˛2 ; 2 / .V0 V 0 C Eg2 C 2 / # 1 1 C .V0 V 0 C Eg2 / V0 V 0 C Eg2 C 23 2 011 nx ; ny ; V0 D K014 nx ; ny ; V0 Œb0 21 ; K014 nx ; ny ; V0 i h D ŒK14 nx ; ny ; V0 1 AV00 BA00 fB02 C 4A0 V0 g=2 ;
C
92
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
and "
K013 nx ; ny ; V0 K014 nx ; ny ; V0 K14 nx ; ny ; V0 K13 nx ; ny ; V0 # K14 nx ; ny ; V0 :K013 nx ; ny ; V0 K13 nx ; ny ; V0 :K014 nx ; ny ; V0 : 2 2 nx ; ny ; V0 nx ; ny ; V0 K14 K13
"011
nx ; ny ; V0
2.2.5 The Field Emission from Quantum Wire III–V Effective Mass Superlattices Following Sasaki [37], the electron dispersion law in III–V effective mass superlattices (EMSLs) can be written as kx2 D
2 1 ˚ 1 2 cos f E; k ; k k 21 y z ? ; L20
(2.29)
in which f21 E; ky ; kz D a1 cos Œa0 C21 .E; k? / C b0 D21 .E; k? / a2 cos Œa0 C21 .E; k? / 2 D ky2 C kz2 ; b0 D21 .E; k? / ; k? r 2 " #1 mc2 1=2 mc2 4 a1 D C1 ; mc1 mc1 2 " #1 r mc2 1=2 mc2 4 a2 D 1 C ; mc1 mc1
1=2 Emc1 2 G E; Eg1 ; 1 k? and C21 .E; k? / „2 1=2 Emc2 2 G E; E k D21 .E; k? / ; g2 2 ? „2
The electron dispersion law in III–V effective mass quantum wire superlattices (EMQWSLs) can be expressed as kx2 D 21 ny ; nz ; E ; in which 2 ˚ 1 21 ny ; nz ; E D 2 cos1 f22 ny ; nz ; E 2 .ny ; nz / ; L0
(2.30)
2.2 Theoretical Background
93
(
) ny 2 nz 2 2 .ny ; nz / D C ; dy dz f22 ny ; nz ; E D a1 cos a0 C22 ny ; nz ; E C b0 D22 ny ; nz ; E a2 cos a0 C22 ny ; nz ; E b0 D22 ny ; nz ; E ; ˚ 1=2 2mc1 E G E; Eg1 ; 1 2 ny ; nz C22 ny ; nz ; E „2 ˚ 1=2 2mc2 E and D22 ny ; nz ; E : G E; Eg1 ; 2 2 ny ; nz „2 The electron concentration per unit length is given by nzmax nymax X 2gv X D 7 EF 1D ; nz ; ny C D 8 .EF 1D ; nz ; ny / ; n0 D n D1 n D1 z
(2.31)
y
so p P Z1D .r/ where D 7 .EF 1D ; nz ; ny /D 21 .EFID ; nz ; ny / and D 8 .EF 1D ; nz ; ny /D rD1 D 7 EF 1D ; nz ; ny . The field-emitted current assumes the form nzmax nymax X 2gv ekB T X I D ŒF0 .26 / exp.ˇ26 /; h n D1 n D1 z
(2.32)
y
where 26 D .EF 1D EN 26 /=kB T , and EN 26 is the lowest positive root of the equation. 21 .E26 ; nz ; ny / D 0;
(2.33)
4 Œ21 .V0 ; nz ; ny /3=2 Œ3eF sz N21 .V0 ; nz ; ny /1 ; 3 2 ˚ 1 cos Œf22 nz ; ny ; V0 fN22 .V0 ; nz ; ny / N21 .V0 ; nz ; ny / D 2 L0 :f1 f222 nx ; ny ; V0 g1=2 / ˇ26 D
fN22 .V0 ; ny ; nz / D Œa1 sin fa0 C22 .V0 ; ny ; nz /Cb0 D22 .V0 ; ny ; nz /gfa0 C 22 .V0 ; ny ; nz / C b0 D 22 .V0 ; ny ; nz /g a2 sin fa0 C22 .V0 ; ny ; nz / b0 D22 .V0 ; ny ; nz /gfa0 C 22 .V0 ; ny ; nz / b0 D 22 .V0 ; ny ; nz /g
94
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
m c1
C 22 .V0 ; nz ; ny / D "
"
1 C V0
„2
1 1 1 C .V0 C Eg1 C 1 / .V0 C Eg1 / .V0 C Eg1 C 23 1 /
m c2
D 22 .V0 ; nz ; ny / D "
1 C V0
ŒC22 .V0 ; nz ; ny /1 ŒG.V0 ; Eg1 ; 1 /
„2
###
ŒD22 .V0 ; nz ; ny /1 ŒG.V0 ; Eg2 ; 2 /
1 1 1 C .V0 C Eg2 C 2 / .V0 C Eg2 / V0 C Eg2 C 23 2
### :
2.2.6 The Field Emission from Quantum Wire II–VI Effective Mass Superlattices Following Sasaki [37], the electron dispersion law in II–VI EMSLs can be written as kz2 D
2 1 ˚ 1 2 ; k k cos f E; k 23 x y s ; L20
(2.34)
in which f23 E; kx ; ky D fa3 cos Œa0 C23 .E; ks / C b0 D23 .E; ks / a4 cos Œa0 C23 .E; ks / b0 D23 .E; ks /g; 2s 32 2 !1=2 31 mc2 mc2 5 ; C 15 44 a3 D 4 mk;1 mk;1 2
s
a4 D 41 C
C23 .E; ks /
2mk;1 „2
D23 .E; ks /
32 2
!1=2 31 mc2 5 44 mc2 5 ; mk;1 mk;1
!1=2 "
„2 ks2 C0 ks E 2m?;1
#1=2 and
1=2 2mc2 EG.E; Eg2 ; 2 / ks2 : 2 „
The dispersion law in II–VI, EMQWSLs can be expressed as
ks2 D kx2 C ky2 ;
2.2 Theoretical Background
kz2 D
95
2 ˚ 1 1 1 nx ; ny ; cos f24 nx ; ny ; E 2 L0
(2.35)
in which f24 nx ; ny ; E D a3 cos a0 C24 nx ; ny ; E C b0 D24 nx ; ny ; E a4 cos a0 C24 nx ; ny ; E Cb0 D24 nx ; ny ; E ; C24 nx ; ny ; E
2mk;1
!1=2 "
( E
„2
˚ 1=2 C0 1 nx ; ny D24 nx ; ny ; E
) „2 1 nx ; ny 2m?;1 #1=2 and
1=2 2mc2 : EG E; Eg2 ; 2 1 nx ; ny „2
Equation (2.35) can be written as kz2 D 22 nx ; ny ; E ;
(2.36)
2 where 22 .nx ; ny ; E/ D L12 cos1 f24 .nx ; ny ; E/ f1 .nx ; ny /g. 0 The electron concentration per unit length is given by nxmax nymax X gv X D 9 EF 1D ; nx ; ny C D 10 .EF 1D ; nx ; ny / ; n0 D n D1 n D1 x
(2.37)
y
so p P where D 9 .EF 1D ; nx ; ny /D 22 .EF ID ; nx ; ny / and D 10 .EF 1D ; nx ; ny /D Z1D .r/ rD1
ŒD 9 .EF 1D ; nx ; ny /. The field-emitted current assumes the form I D
nxmax nymax X gv ekB T X ŒF0 .27 / exp.ˇ27 /; h n D1 n D1 x
(2.38)
y
where 27 D .EF 1D E 27 /=kB T , and E 27 is the lowest positive root of the equation. 22 .E 27 ; nx ; ny / D 0;
(2.39)
96
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
4 Œ22 .V0 ; nx ; ny /3=2 Œ3eF sz N22 .V0 ; nx ; ny /1 ; 3 2 ˚ 1 cos Œf24 nx ; ny ; V0 fN24 .V0 ; nx ; ny / N22 .V0 ; nx ; ny / D 2 L0 :f1 f242 nx ; ny ; V0 g1=2 ˇ27 D
fN24 .V0 ; nx ; ny / D Œa3 sinfa0 C24 .V0 ; nx ; ny / C b0 D24 .V0 ; nx ; ny /g fa0 C 24 .V0 ; nx ; ny / C b0 D 24 .V0 ; nx ; ny /g a4 sinfa0 C24 .V0 ; nx ; ny / b0 D24 .V0 ; nx ; ny /gfa0 C 24 .V0 ; nx ; ny / b0 D 24 .V0 ; nx ; ny /g C 24 .V0 ; nx ; ny / D
m k;1 „2
! ŒC24 .V0 ; nx ; ny /1
m c2 D 24 .V0 ; nx ; ny / D ŒD24 .V0 ; nx ; ny /1 ŒG.V0 ; Eg2 ; 2 / „2 " ### " 1 1 1 1 C V0 C .V0 CEg2 C2 / .V0 CEg2 / .V0 CEg2 C 23 2 /
2.2.7 The Field Emission from Quantum Wire IV–VI Effective Mass Superlattices Following Sasaki [37], the electron dispersion law in IV–VI, EMSLs can be written as 2 1 ˚ 1 2 2 kx D k? (2.40) cos f26 E; ky ; kz L20 in which, f26 E; ky ; kz D a5 cos a0 C42 E; ky ; kz C b0 D42 E; ky ; kz a6 cos a0 C42 E; ky ; kz b0 D42 E; ky ; kz ; "s #2 " #1 m2 m2 1=2 2 C1 ; k? D ky2 C kz2 ; a5 D 4 m1 m1 " # „2 ˚ 2 ai ai Ci C ai ei Egi C Ci2 Egi mi D 2 2 ai Ci
h i1=2 2 2 2 2 2 2 Egi ai CCi Cei Egi C2Ci ai Egi C2Egi ei Ci C 2ei ai Egi
2.2 Theoretical Background
"
97
s
#2 " #1 m2 1=2 a6 D 1 C ; 4 m1 i hh C42 E; ky ; kz ky2 C ER21 C R31 .kz / m2 m1
1=2 i1=2 E 2 R41 C EH 51 .kz / C R61 .kz / ; i D 1; 2 1 ; R2i D ai : ai2 Ci2 2 1 Egi ai C Ci C ei Egi C 2kz2 .Ci fi ai bi / ; R3i .kz / D 2.ai Ci2 / Ci2 R4i D 2 ; ai2 Ci2 2 2 kz .2bi Ci2 C 2Ci fi ai / C Ci ai C ei Egi ai R5i .kz / D .ai2 Ci2 / 2 h R6i .kz / 2.ai2 Ci2 / .kz /4 8ai bi fi 2 C 4ai2 fi2 C 4bi2 Ci2 C kz2 4ai Ci bi 4ai bi ei Egi C 4ai Ci fi Egi C 4fi2 Ci2 C4Ci fi ei Egi C 4ai2 di C 4ai2 fi Egi 4bi Ci2 Egi 4Ci2 di C 4Ci2 fi Egi h ii C Eg2i ai2 CCi2 Cei2 Eg2i C 2Egi ai Ci C 2Egi ei Ci C2Eg2i ai ei ; i hh D42 E; ky ; kz ky2 C ER22 C R32 .kz / 1=2 i1=2 E 2 R42 C ER52 .kz / C R62 .kz / The dispersion law in IV–VI, EMQWSLs can be expressed as kx2 D 29 ny ; nz ; E in which, 2 ˚ 1 2 ny ; nz ; 29 ny ; nz ; E D 2 cos1 f29 ny ; nz ; E L0 f29 ny ; nz ; E D a5 cos a0 C44 ny ; nz ; E C b0 D44 ny ; nz ; E a6 cos a0 C44 ny ; nz ; E b0 D44 ny ; nz ; E ; " ny 2 C44 .E; ny ; nz / D C ER21 C R31 .nz / ŒR41 E 2 dy CR51 .nz /E C R61 .nz /1=2
(2.41)
98
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
R3i .nz / D
1 2.ai2 Ci2 /
"
nz Egi ai CCi C ei Egi C2 dz
#
2
.Ci fi ai bi / ;
2 R5i .nz / D .ai2 Ci2 / .nz dz /2 .2bi Ci2 C2Ci fi ai /C Ci ai C ei Egi ai 2 R6i .nz / 2.ai2 Ci2 / .nz dz /4 8ai bi fi 2 C 4ai2 fi2 C 4bi2 Ci2 C .nz =dz /2 Œ4ai Ci bi 4ai bi ei Egi C 4fi2 Ci2 C 4Ci fi ei Egi C 4ai2 di C 4ai2 fi Egi 4bi Ci2 Egi 4Ci2 di C 4Ci2 fi Egi ii h C Eg2i ai2 CCi2 C ei2 Eg2i C 2Egi ai Ci C 2Egi ei Ci C2Eg2i ai ei D44 .E; ny ; nz / D Œ.ny =dy /2 C ER22 C R32 .nz / ŒR42 E 2 C R52 .nz /E C R62 .nz /1=2 1=2 The electron concentration per unit length is given by nymax nzmax 2gv X X D11 EF 1D ; ny ; nz C D12 EF 1D ; ny ; nz n0 D n D1 n D1 y
(2.42)
z
where, D11 .EF 1D ; ny ; nz / D so P Z1D .r/ŒD11 .EF 1D ; ny ; nz /
p
29 .EFID ; ny ; nz / and D12 .EF 1D ; ny ; nz / D
rD1
The field-emitted current assumes the form nymax nzmax 2gv ekB T X X ŒF0 .28 / exp.ˇ28 / I D h n D1 n D1 y
28 D
EF 1D E 28 ; kBT
(2.43)
z
E 28 is the lowest positive root of the equation.
29 .E 28 ; ny ; nz / D 0; 4 Œ29 .V0 ; ny ; nz /3=2 Œ3eFsz 30 .V0 ; ny ; nz /1 ; 3 2 ˚ 1 cos Œf29 ny ; nz ; V0 f30 .V0 ; ny ; nz / 30 .V0 ; ny ; nz / D 2 L0 :f1 f292 ny ; nz ; V0 g1=2 / ˇ28 D
f30 .V0 ; ny ; nz / D Œa5 sinfa0 C44 .V0 ; ny ; nz / C b0 D44 .V0 ; ny ; nz /gfa0 C 44 .V0 ; ny ; nz / C b0 D 44 .V0 ; ny ; nz /g a6 sinfa0 C44 .V0 ; ny ; nz /
(2.44)
2.2 Theoretical Background
99
b0 D44 .V0 ; ny ; nz /gfa0 C 44 .V0 ; ny ; nz / b0 D 44 .V0 ; ny ; nz /g C 44 .V0 ; ny ; nz / D Œ2C44 .V0 ; ny ; nz /1 # " R41 V0 C 12 R51 .nz / : R21 ŒR41 V02 C R51 .nz /V0 C R61 .nz /1=2 D 44 .V0 ; ny ; nz / D Œ2D44 .V0 ; ny ; nz /1 # " ŒR42 V0 C 12 R52 .nz / : R22 ŒR42 V02 CR52 .nz /V0 C R62 .nz /1=2
2.2.8 The Field Emission from Quantum Wire HgTe/CdTe Effective Mass Superlattices Following Sasaki [37], the electron dispersion law in HgTe/CdTe EMSLs can be written as 2 1 ˚ 1 2 ; k k (2.45) cos f E; k kx2 D 31 y z ? L20 in which, f31 E; ky ; kz D a7 cos Œa0 C47 .E; k? / C b0 D47 .E; k? / a8 cos Œa0 C47 .E; k? / b0 D47 .E; k? / ; r 2 " #1 mc2 1=2 mc2 C1 ; 4 a7 D mc1 mc1 r 2 " #1 mc2 1=2 mc2 a8 D 1 C ; C47 .E; k? / 4 mc1 mc1 2
31=2 q 2 2 B C 2A E B B C 4A E 0 0 0 0 6 0 27 k? 4 5 2 2A0 D47 .E; k? /
1=2 2Emc2 2 ; ; G E; E k g2 2 ? „2
2 k? D ky2 C kz2
The dispersion law in HgTe/CdTe, EMQWSLs can be expressed as kx2 D 30 ny ; nz ; E in which,
(2.46)
100
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
2 ˚ 1 30 ny ; nz ; E D 2 cos1 f32 ny ; nz ; E 2 ny ; nz ; L0 f32 ny ; nz ; E D a7 cos a0 C48 ny ; nz ; E C b0 D48 ny ; nz ; E a8 cos a0 C48 ny ; nz ; E b0 D48 ny ; nz ; E ; 2 31=2 q 2 2 6 B0 C 2A0 E B0 B0 C 4A0 E ˚ 7 2 ny ; nz 5 C48 ny ; nz ; E 4 2A20 and D48 ny ; nz ; E
˚ 1=2 2Emc2 n ; ; n : G E; E g2 2 2 y z „2
The electron concentration per unit length is given by n0 D
nzmax nymax X 2gv X D15 EF 1D ; nx ; ny C D16 EF 1D ; nz ; ny n D1 n D1
(2.47)
y
z
where, D15 .EF 1D ; nz ; ny / D so P Z1D .r/ŒD15 .EF 1D ; nz ; ny /
p
30 .EFID ; nz ; ny / and D16 .EF 1D ; nz ; ny / D
rD1
The field-emitted current assumes the form I D
nzmax nymax X 2gv ekB T X ŒF0 .30 / exp.ˇ30 / h n D1 n D1 z
(2.48)
y
30 D .EF 1D E 30 /=kB T , and E 30 is the lowest positive root of the equation. 30 .E 30 ; nz ; ny / D 0;
(2.49)
4 Œ30 .V0 ; nz ; ny /3=2 Œ3eF sz 31 .V0 ; nz ; ny /1 ; 3 2 ˚ 1 cos Œf32 nz ; ny ; V0 f33 .V0 ; nz ; ny / 31 .V0 ; nz ; ny / D L20 :f1 f322 nz ; ny ; V0 g1=2 / ˇ30 D
f33 .V0 ; nz ; ny / D Œa7 sin fa0 C48 .V0 ; nz ; ny /Cb0 D48 .V0 ; nz ; ny /gfa0 C49 .V0 ; nz ; ny / C b0 D49 .V0 ; nz ; ny /g a8 sin fa0 C48 .V0 ; nz ; ny / b0 D48 .V0 ; nz ; ny /gfa0 C49 .V0 ; nz ; ny / b0 D49 .V0 ; nz ; ny /g
2.3 Result and Discussions
101
B0 2 1 1=2 C49 .V0 ; nz ; ny / D Œ2C48 .V0 ; nz ; ny / : .B C 4A0 V0 / A0 A0 0
m c2 D49 .V0 ; nz ; ny / D ŒD48 .V0 ; nz ; ny /1 Œ „2 1 1 1 C V0 C (2.50) .V0 C Eg2 C 2 / .V0 C Eg2 / ## 1 G.V0 ; nz ; ny /: .V0 C Eg2 C 23 2 / 1
2.3 Result and Discussions Using Table 1.1 and 21 D 0:4 nmŒ9:16 together with the (2.4), (2.5); (2.12), (2.13); (2.19), (2.20); and (2.26), (2.27), we have plotted the field-emitted current in Figs. 2.1–2.3 as functions of film thickness, electron concentration per unit length and electric field for GaAs/AlGaAs, CdS/CdTe, PbTe/PbSe, and HgTe/CdTe quantum wires superlattices with graded interfaces, respectively. Using (2.31), (2.32); (2.37), (2.38), (2.42); (2.43), (2.47) and (2.48) we have plotted the fieldemitted current as function of film thickness, electron concentration per unit length, and electric field for GaAs/AlGaAs, CdS/CdTe, PbTe/PbSe, and HgTe/CdTe quantum wire effective mass superlattices in Figs. 2.4–2.6, respectively. It appears from Fig. 2.1 that the field-emitted current increases with the film thickness for quantum wires of GaAs/AlGaAs superlattices with graded interfaces exhibiting step functional dependence. For PbTe/PbSe quantum wire superlattices with graded interfaces, the said dependence is relatively much less in magnitude as compared with the previous one, whereas for CdS/CdTe and HgTe/CdTe quantum
Fig. 2.1 Plot of the field-emitted current as a function of film thickness for quantum wire superlattices of GaAs/AlGaAs, CdS/CdTe, PbTe/PbSe, and HgTe/CdTe with graded interfaces
102
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
Fig. 2.2 Plot of the field-emitted current as a function of carrier concentration per unit length for quantum wire superlattices of CdS/CdTe, PbTe/PbSe, and HgTe/CdTe with graded interfaces
Fig. 2.3 Plot of the field-emitted current as a function of electric field for quantum wire superlattices of GaAs/AlGaAs, CdS/CdTe, PbTe/PbSe, and HgTe/CdTe with graded interfaces
wire superlattices with graded interfaces, the field-emitted current is relatively large and invariant with respect to thickness variation. This behavior is the direct consequence of the carrier dispersion relation in the respective cases. From Fig. 2.2, we observe that the field-emitted current increases with increasing concentration for PbTe/PbSe and HgTe/CdTe quantum wire superlattices with graded interfaces, whereas for CdS/CdTe quantum wire superlattices with graded interfaces, the current increases with increasing concentration and decreases after a carrier degeneracy of about 109 m1 . Comparing the individual curves, we note that the numerical values of field current for PbTe/PbSe and HgTe/CdTe quantum wire superlattices with graded interfaces are much greater as compared with CdS/CdTe quantum wire superlattices with graded interfaces. Figure 2.3 explores the fact that the cut-in value of the electric field for quantum wire superlattices of HgTe/CdTe with graded interfaces is even less than 106 Vm1
2.3 Result and Discussions
103
Fig. 2.4 Plot of the field-emitted current as a function of film thickness for quantum wire effective mass superlattices of GaAs/AlGaAs, CdS/CdTe, PbTe/PbSe, and HgTe/CdTe
Fig. 2.5 Plot of the field-emitted current as a function of carrier concentration per unit length for quantum wire effective mass superlattices of CdS/CdTe, PbTe/PbSe, and HgTe/CdTe
and saturates beyond 107 Vm1 . For the other cases, the cut-in values are larger well beyond 107 Vm1 . From Fig. 2.4, we observe that the variations of the field-emitted current with film thickness in GaAs/AlGaAs and CdS/CdTe quantum wire effective mass superlattices are in opposite trend with that of the PbTe/PbSe and HgTe/CdTe. The reason for this variation has already been discussed in “Result and Discussions” of Chap. 1. We note that HgTe/CdTe quantum wire effective mass superlattices exhibits a maximum field current as compared with that of the others. Figure 2.5 exhibits the fact that the field-emitted current becomes very small beyond 109 m1 for CdS/CdTe quantum wires of effective mass superlattices. The Fig. 2.6 indicates that the cut-in field for quantum wires of effective mass superlattices HgTe/CdTe is nearly 106 Vm1 rather than that of CdS/CdTe which is beyond 108 Vm1 . For the
104
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
Fig. 2.6 Plot of the field-emitted current as a function of electric field for quantum wire effective mass superlattices of GaAs/AlGaAs, CdS/CdTe, PbTe/PbSe, and HgTe/CdTe
purpose of condensed presentation, the carrier statistics and the FNFE from different quantized materials as considered in this chapter have been presented in Table 2.1.
2.4 Open Research Problems (R.2.1) [(a)] Investigate the FNFE from all the superlattices whose respective dispersion relations of the carriers are given in this chapter by converting the summations over the quantum numbers to the corresponding integrations by including the uniqueness conditions in the appropriate cases and considering the effect of image force in the subsequent study in each case. (b) Investigate the FNFE in the presence of an arbitrarily oriented nonquantizing magnetic field for all types of quantum wire superlattices as considered in this chapter by considering the electron spin. (R.2.2) Investigate the FNFE in the presence of an additional arbitrarily oriented electric field for all types of quantum wire superlattices. (R.2.3) Investigate the FNFE for all types of quantum wire superlattices as considered in this chapter under arbitrarily oriented crossed electric and magnetic fields. (R.2.4) Investigate the FNFE in III–V, II–VI, IV–VI, and HgTe/CdTe quantum well superlattices with graded interfaces, (R.2.5) Investigate the FNFE for all problems of R.2.1 to R.2.3 for III–V, II–VI, IV–VI, and HgTe/CdTe quantum well superlattices with graded interfaces. (R.2.6) Investigate the FNFE for III–V, II–VI, IV–VI, and HgTe/CdTe quantum well effective mass superlattices. (R.2.7) Investigate the FNFE for all problems of R.2.1 to R.2.3 for III–V, II–VI, IV–VI, and HgTe/CdTe quantum well effective mass superlattices.
(2.47)
(2.48)
ymax zmax nP 2gv ekB T nP ŒF0 .30 / exp.ˇ30 / h nz D1 ny D1
On the basis of (2.47) I D
HgTe/CdTe effective mass superlattices ymax zmax nP 2gv nP n0 D D15 .EF1D ; nx ; ny / C D16 .EF1D ; nz ; ny / nz D1 ny D1
(2.38)
(2.43)
ymax xmax nP gv ekB T nP ŒF0 .27 / exp.ˇ27 / h nx D1 ny D1
(2.32)
ymax nP zmax 2gv ekB T nP ŒF0 .28 / exp.ˇ28 / h ny D1 nz D1
On the basis of (2.37) I D
ymax zmax nP 2gv ekB T nP ŒF0 .26 / exp.ˇ26 / h nz D1 ny D1
On the basis of (2.42) I D
(2.37)
(2.31)
On the basis of (2.31) I D
IV–VI effective mass superlattices ymax nP zmax 2gv nP n0 D D11 .EF1D ; ny ; nz / C D12 .EF1D ; ny ; nz / (2.42) ny D1 nz D1
II–VI effective mass superlattices ymax xmax nP gv nP n0 D D 9 .EF1D ; nx ; ny / C D 10 .EF1D ; nx ; ny / nx D1 ny D1
III–V effective mass superlattices ymax zmax nP 2gv nP n0 D D 7 .EF1D ; nz ; ny / C D 8 .EF1D ; nz ; ny / nz D1 ny D1
(2.26)
(2.27)
ymax zmax nP 2gv ekB T nP ŒF0 .24 / exp.ˇ24 / h nz D1 ny D1
On the basis of (2.26) I D
HgTe/CdTe superlattices with graded interfaces ymax xmax nP 2gv nP n0 D D 5 .EF1D ; nx ; ny / CD 6 .EF1D ; nx ; ny / nx D1 ny D1
(2.13)
(2.20)
ymax xmax nP gv ekB T nP ŒF0 .N 22 / exp.ˇN22 / h nx D1 ny D1
ymax xmax nP 2gv ekB T nP ŒF0 .23 / exp.ˇ23 / h nx D1 ny D1
On the basis of (2.12) I D
(2.5)
On the basis of (2.19) I D
(2.12)
(2.4)
The Fowler–Nordheim field emission current ymax xmax nP 2gv ekB T nP On the basis of (2.4) I D ŒF0 .N 21 / exp.ˇN21 / h nx D1 ny D1
IV–VI superlattices with graded interfaces ymax xmax nP 2gv nP n0 D D 3 .EF1D ; nx ; ny / CD 4 .EF1D ; nx ; ny / (2.19) nx D1 ny D1
II–VI superlattices with graded interfaces ymax xmax nP gv nP D212 .EF1D ; nx ; ny / C D222 .EF1D ; nx ; ny / n0 D nx D1 ny D1
III–V superlattices with graded interfaces ymax xmax nP 2gv nP D21 .EF1D ; nx ; ny / CD22 .EF1D ; nx ; ny / n0 D nx D1 ny D1
The Carrier Statistics
Table 2.1 The carrier statistics and the Fowler–Nordheim field emission current from III–V, II–VI, IV–VI, HgTe/CdTe quantum wire superllatices with graded interfaces, and effective mass quantum wire superlattices of the aforementioned materials
2.4 Open Research Problems 105
106
2 Field Emission from Quantum Wire Superlattices of Non-parabolic Semiconductors
(R.2.8) Investigate the FNFE for short period, strained layer, random, and Fibonacci quantum wire superlattices. (R.2.9) Investigate the FNFE for short period, strained layer, random, and Fibonacci quantum well superlattices in the presence of an arbitrarily oriented magnetic field by considering electron spin and broadening. (R.2.10) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth superlattices in the presence of an arbitrarily oriented electric field. (R.2.11) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth superlattices in the presence of an arbitrarily oriented crossed electric and magnetic field. (R.2.12) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth quantum well and quantum wires superlattices in the presence of an arbitrarily oriented electric field. (R.2.13) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth quantum well and quantum wires superlattices in the presence of arbitrarily oriented crossed electric and quantizing magnetic fields. (R.2.14) [(a)] Formulate the minimum tunneling, Dwell and phase tunneling, Buttiker and Landauer and intrinsic times for all types of superlattices as discussed in this chapter. (b) Investigate all the appropriate problems of this chapter for the Dirac electron. (c) Investigate all the problems of this chapter by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions.
References 1. L.V. Keldysh, Sov. Phys. Solid State 4, 1658 (1962) 2. L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970) 3. G. Bastard, Wave Mechanics Applied to Heterostructures (Editions de Physique, Les Ulis, 1990) 4. E.L. Ivchenko, G. Pikus, Superlattices and Other Heterostructures (Springer, Berlin, 1995) 5. R. Tsu, Superlattices to Nanoelectronics (Elsevier, Amsterdam, 2005) ´ am, J. Zettner, I. B´arsony, Superlatt. Microstr. 35, 455 (2004) 6. P. F¨urjes, Cs. D¨ucs, M. Ad´ 7. T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, S.S. Pei, Microscale Thermophys. Eng. 5, 225 (2001) 8. B.S. Williams, Nat. Photonics 1, 517 (2007) 9. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, F. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008) 10. M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, Appl. Phys. Lett. 92, 201101 (2008) 11. G.J. Brown, F. Szmulowicz, R. Linville, A. Saxler, K. Mahalingam, C.-H. Lin, C.H. Kuo, W.Y. Hwang, IEEE Photon. Technol. Lett. 12, 684 (2000) 12. H.J. Haugan, G.J. Brown, L. Grazulis, K. Mahalingam, D.H. Tomich, Phys. E Low Dimens. Syst. Nanostr. 20, 527 (2004)
References
107
13. S.A. Nikishin, V.V. Kuryatkov, A. Chandolu, B.A. Borisov, G.D. Kipshidze, I. Ahmad, M. Holtz, H. Temkin, Jpn. J. Appl. Phys. 42, L1362 (2003) 14. Y.-K. Su, H.-C. Wang, C.-L. Lin, W.-B. Chen, S.-M. Chen, Jpn. J. Appl. Phys. 42, L751 (2003) 15. C.H. Liu, Y.K. Su, L.W. Wu, S.J. Chang, R.W. Chuang, Semicond. Sci. Technol. 18, 545 (2003) 16. S.-B. Che, I. Nomura, A. Kikuchi, K. Shimomura, K. Kishino, Phys. Stat. Sol. B 229, 1001 (2002). 17. C.P. Endres, F. Lewen, T.F. Giesen, S. Schlemmer, D.G. Paveliev, Y.I. Koschurinov, V.M. Ustinov, A.E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007) 18. F. Klappenberger, K.F. Renk, P. Renk, B. Rieder, Y.I. Koshurinov, D.G. Pavelev, V. Ustinov, A. Zhukov, N. Maleev, A. Vasilyev, Appl. Phys. Lett. 84, 3924 (2004) 19. X. Jin, Y. Maeda, T. Saka, M. Tanioku, S. Fuchi, T. Ujihara, Y. Takeda, N. Yamamoto, Y. Nakagawa, A. Mano, S. Okumi, M. Yamamoto, T. Nakanishi, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, J. Cryst. Growth 310, 5039 (2008) 20. X. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, T. Koshikawa, Appl. Phys. Express 1, 045002 (2008) 21. B.H. Lee, K.H. Lee, S. Im, M.M. Sung, Org. Electron. 9, 1146 (2008) 22. P.-H. Wu, Y.-K. Su, I.-L. Chen, C.-H. Chiou, J.-T. Hsu, W.-R. Chen, Jpn. J. Appl. Phys. 45, L647 (2006) 23. A.C. Varonides, Renew. Ener. 33, 273 (2008) 24. M. Walther, G. Weimann, Phys. Stat. Sol. B 203, 3545 (2006) 25. R. Rehm, M. Walther, J. Schmitz, J. Flei ˇ ner, F. Fuchs, J. Ziegler, W. Cabanski, Opto-electron. Rev. 14, 19 (2006) 26. R. Rehm, M. Walther, J. Scmitz, J. Fleissner, J. Ziegler, W. Cabanski, R. Breiter, Electron. Lett. 42, 577 (2006) 27. G.J. Brown, F. Szmulowicz, H. Haugan, K. Mahalingam, S. Houston,Microelectron. J. 36, 256 (2005) 28. K.V. Vaidyanathan, R.A. Jullens, C.L. Anderson, H.L. Dunlap, Solid State Electron.26, 717 (1983) 29. B.A. Wilson, IEEE J. Quantum Electron. 24, 1763 (1988) 30. M. Krichbaum, P. Kocevar, H. Pascher, G. Bauer, IEEE J. Quantum Electron. 24, 717 (1988) 31. J.N. Schulman, T.C. McGill, Appl. Phys. Lett.34, 663 (1979) 32. H. Kinoshita, T. Sakashita, H. Fajiyasu, J. Appl. Phys. 52, 2869 (1981) 33. L. Ghenin, R.G. Mani, J.R. Anderson, J.T. Cheung, Phys. Rev. B 39, 1419 (1989) 34. C.A. Hoffman, J.R. Mayer, F.J. Bartoli, J.W. Han, J.W. Cook, J.F. Schetzina, J.M. Schubman, Phys. Rev. B. 39, 5208 (1989) 35. V.A. Yakovlev, Sov. Phys. Semicond. 13, 692 (1979) 36. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957) 37. H. Sasaki, Phys. Rev. B 30, 7016 (1984) 38. H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624 (1987) 39. G.M.T. Foley, P.N. Langenberg, Phys. Rev. B 15B, 4850 (1977)
•
Chapter 3
Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
3.1 Introduction It is well known that the band structure of semiconductors can be dramatically changed by applying the external fields [1–68]. The effects of the quantizing magnetic field on the band structure of compound semiconductors are more striking and can be observed easily in experiments. Under magnetic quantization, the motion of the electron parallel to the magnetic field remains unaltered, while the area of the wave-vector space perpendicular to the direction of the magnetic field gets quantized in accordance with the Landau’s rule of area quantization in the wavevector space [40–68] The energy levels of the carriers in a magnetic field (with the component of the wave-vector parallel to the direction of magnetic field be equated with zero) are termed as the Landau levels and the quantized energies are known as the Landau subbands. It is important to note that the same conclusion may be arrived either by solving the single-particle time-independent Schr¨odinger differential equation in the presence of a quantizing magnetic field or by using the operator method. The quantizing magnetic field tends to remove the degeneracy and increases the band gap. A semiconductor, placed in a magnetic field B, can absorb radiative energy with the frequency .!0 D .jejB=mc //. This phenomenon is known as cyclotron or diamagnetic resonance. The effect of energy quantization is experimentally noticeable when the separation between any two consecutive Landau levels is greater than kB T . A number of interesting transport phenomena originate from the change in the basic band structure of the semiconductor in the presence of a quantizing magnetic field. These have been widely investigated and also served as diagnostic tools for characterizing the different materials having various band structures. The discreteness in the Landau levels leads to a whole crop of magneto-oscillatory phenomena, important among which are (1) Shubnikov– de Haas oscillations in magneto-resistance; (2) de Haas–Van Alphen oscillations in magnetic susceptibility; and (3) magneto-phonon oscillations in thermoelectric power, etc.
S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 3, © Springer-Verlag Berlin Heidelberg 2012
109
110
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
In this chapter in Sect. 3.2.1, of the theoretical background, the FNFE has been investigated in nonlinear optical semiconductors in the presence of a quantizing magnetic field. Section 3.2.2 explores the FNFE from III–V, ternary and quaternary compounds under magnetic quantization in accordance with the three- and the twoband models of Kane and forms the special case of Sect. 3.2.1. In the same section, the well-known result of FNFE from semiconductors having parabolic energy bands in the absence of any field has been noted and the magneto-FNFE in accordance with the models of Stillman et al. and Palik et al. have farther been presented for the purpose of relative comparison. Section 3.2.3 contains the study of the magnetoFNFE from II–VI semiconductors. In Sect. 3.2.4, the magneto-FNFE from Bismuth has been investigated in accordance with the models of the McClure and Choi, the Cohen and the Lax nonparabolic ellipsoidal respectively. In Sect. 3.2.5, the FNFE in IV–VI semiconductors under magnetic quantization has been discussed in accordance with the model of Dimmock, Bangert and Kastner, and Foley and Landenberg, respectively. In Sect. 3.2.6, the magneto-FNFE for the stressed Kanetype semiconductors has been investigated. In Sect. 3.2.7, the FNFE in Te has been studied under magnetic quantization. In Sect. 3.2.8, the magneto-FNFE in n-GaP has been studied. In Sect. 3.2.9, the FNFE in PtSb2 has been investigated under magnetic quantization. In Sect. 3.2.10, the magneto-FNFE in Bi2 Te3 has been studied. Section 3.2.11 contains the formulation of FNFE from Ge under magnetic quantization in accordance with the models of Cardona et al. and Wang et al., respectively. In Sects. 3.2.12 and3.2.13, the magneto-FNFE in n-GaSb and II–V compounds has respectively been investigated. Section 3.3 contains the result and discussions and Sect. 3.4 explores open research problems for this chapter in this context.
3.2 Theoritical Background 3.2.1 The Field Emission from Nonlinear Optical Semiconductors Under Magnetic Quantization E along the z-direction, the In the presence of a quantizing magnetic field (B) magneto-electron energy spectrum can be expressed as follows [69]: # " eB„k Eg0 Eg0 C ? 2eB 1 2 .E/ D f1 .E/ nC C f2 .E/kz ˙ „ 2 6 m? Eg0 C 23 ? " E C Eg0 C ı C
2k 2? 3k
# ;
where n.D 0; 1; 2 : : : :/ is the Landau magnetic quantum number.
(3.1)
3.2 Theoritical Background
111
Equation (3.1) can be written as kz2 D A31; .E; n/; where
(3.2)
"
"
eB„k Eg0 1 2eB nC „ 2 6 " # " ### 2 k 2? Eg0 C ? : E C Eg0 C ı C : 3k m? .Eg0 C 23 ? / 1
A31; .E; n/ D Œf2 .E/
.E/ f1 .E/
The field-emitted current density under magnetic quantization from nonlinear optical materials is given by max 1X J D 2
n
Z1 e
nD0E n31 ;˙
1 @E gv eB @kz f .E/t31 ; „ @kz 2 2 „ @E
(3.3)
where En31˙ is the Landau subbands in this case, t31 is the transmission coefficient in this case, which can be written as 2 3 Zzt 31 t31 D exp 42 ŒA31;˙ .V0 ; n/ eFs zB31;˙ .V0 ; n/1=2 dz5; (3.4) 0
where
"
" 2eB A31; .V0 ; n/f20 .V0 / 1 1 B31;˙ .V0 ; n/ D 0 .V0 / f10 .V0 / nC C f2 .V0 / f2 .V0 / „ 2 " ### eB„k Eg0 Eg0 C ? ; 6 m? Eg0 C 23 ? A31; .V0 ; n/ ; and eFS B31; .V0 ; n/ ! eB„k Eg0 Eg C? 2eB 1 .En31 ;˙ / D f1 .En31 ;˙ / nC ˙ „ 2 6 m? .Eg0 C 23 ? / ! 2k 2? : En31 ;˙ C Eg0 C ı C 3k zt;31 D
Therefore t31 D exp Œˇ31;˙ ; where ˇ31;˙ D
4ŒA31; .V0 ; n/3=2 : 3eFsz B31;˙ .V0 ; n/
(3.5)
112
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
Therefore J D
nmax e 2 gv BkB T X ŒF0 .31;C / exp Œˇ31;C C F0 .31; / exp Œˇ31; ; 4 2 „2
(3.6)
nD0
where 31;˙ D .kB T /1 ŒEFB En31 ;˙ and EFB is the Fermi energy in the presence of magnetic quantization as measured from the edge of the conduction band in the absence of any quantization in the vertically upward direction. The electron concentration can be expressed as max eBgv X ŒY31 .EFB ; n/ C Z31 .EFB ; n/; 2 2 „ nD0
n
n0 D
(3.7)
p p where Y31 .EFB ; n/ D Œ A31;C .EFB ; n/ C A31; .EFB ; n/ and Z31 .EFB ; n/ D
s0 X
ZB .r/ŒY31 .EFB ; n/; ZB .r/
rD1
D 2.kB T /.1 212r /.2r/.@2r =@2r EFB /:
3.2.2 The Field Emission from III–V Semiconductors Under Magnetic Quantization 3.2.2.1 Three-Band Model of Kane Under the conditions, mk D m? D mc ; k D ? D ; and ı D 0, (3.1) assumes the form [70, 71] „2 kz2 1 eB„ ; (3.8) ˙ I11 .E/ D n C „!0 C 2 2mc 6mc E C Eg0 C 23 which is the well-known dispersion relation of magneto-three-band Kane model. From (3.8), we can write # " 2m 1 eB„ c : kz2 D 2 I11 .E/ n C „!0 ˙ „ 2 6mc E C Eg0 C 23 Thus,
2mc A32;˙ .E; n/; „2 eB„ where A32;˙ .E; n/ D I11 .E/ n C 12 „!0 ˙ 6m ECE . 2 c. g0 C 3 / kz2 D
(3.9)
3.2 Theoritical Background
113
Transmission coefficient t32 is given by 8 9 p Zzt;32 < 2mc = ŒA32;˙ .V0 ; n/ eFsz zB32;˙ .E/1=2 t32 D exp 2 dz ; : ; „ 0
A32;˙ .V0 ; n/ and eFsz B32;˙ .V0 / !# (" 1 1 1 1 I11 .E/ C C B32;˙ .V0 / D E E C Eg0 E C Eg0 C E C Eg0 C 23 2 ) ˇˇ 2 .eB„/ ˇ : E C Eg0 C ˇ ˇ .6mc / 3 where zt;32 D
EDV0
Thus, we can write t32 D exp Œˇ32;˙ ; where ˇ32;˙ D
(3.10)
p 4 2mc ŒA32; .V0 ; n/3=2 ; A32;˙ .V0 ; n/ D I11 .V0 / n C 12 „!0 ˙ 3eFsz „B32; .V0 /
eB„ ; 6mc .V0 C Eg C 23 / I11 .V0 / D
V0 .V0 C Eg0 /.V0 C Eg0 C /.Eg0 C 23 / ("
Eg0 .Eg0 C /.V0 C Eg0 C 23 /
;
and
1 1 1 1 I11 .V0 / C C B32; .V0 / D V0 V0 CEg0 V0 CEg0 C V0 CEg0C 23 2 ) 2 .eB„/ V0 C Eg0 C : .6mc / 3
!#
The field-emitted current density under magnetic quantization is given by nmax e 2 gv BkB T X ŒF0 .32;C / exp Œˇ32;C C F0 .32; / exp Œˇ32; ; (3.11) J D 4 2 „2 nD0
where 32;˙ D .kB T /1 ŒEFB En32 ;˙ , and En32 ;˙ is the lowest positive root of the equation. 1 eB„ : I11 .En;32˙ / D n C „!0 ˙ 2 6mc En;32˙ C Eg0 C 23
(3.12)
114
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
The electron concentration can be expressed as p n0 D
nmax p p 2mc eBgv X Œ A32;C .EFB ; n/ C A32; .EFB ; n/ C Z32 .EFB ; n/; 2 2 2 „ nD0 (3.13)
where Z32 .EFB ; n/ D
s0 X
p p ZB .r/Œ A32;C .EFB ; n/ C A32; .EFB ; n/:
rD1
3.2.2.2 Two-Band Model of Kane Under the condition ! 0, (3.8) assumes the form „2 kz2 1 1 „!0 C E.1 C ˛E/ D n C ˙ 0 g B; 2 2mc 2
(3.14)
where 0 is the Bohr magneton and g is the effective g factor as the edge of the conduction band. From (3.14), we can write kz2 D
2mc A32;˙ .E; n/; „2
(3.15)
where A32;˙ .E; n/ D E.1 C ˛E/ .n C 12 /„!0 12 0 g B: Transmission coefficient t33 is given by t33 D exp Œˇ33;˙ ;
(3.16)
p 4 2mc ŒA32; .V0 ; n/3=2 where ˇ33;˙ D : 3eFsz„.1 C 2˛V0 / The field-emitted current density can be written as J D
nmax e 2 gv BkB T X ŒF0 .33;C / exp Œˇ33;C C F0 .33; / exp Œˇ33; ; 4 2 „2 nD0
(3.17)
where 33;˙ D .kB T /1 ŒEFB En33 ;˙ , and En33 ;˙ is the lowest positive root of the equation. " En33 ;˙ D .2˛/
1
"
1=2 ## 1 1 1 C 1 C 4˛ nC : „!0 ˙ 0 g B 2 2
(3.18)
3.2 Theoritical Background
115
The electron concentration can be expressed as p n0 D
where Y32 .EFB ; n/ D s0 P
nmax 2mc eBgv X Y32 .EFB ; n/ C Z32 .EFB ; n/; 2 2 „2 nD0
q
A32;C .EFB ; n/ C
q
(3.19)
A32; .EFB ; n/ and Z32 .EFB ; n/ D
ZB .r/ŒY32 .EFB ; n/:
rD1
3.2.2.3 Parabolic Energy Bands For parabolic energy bands the expressions of the electron concentration and the field-emitted current density under magnetic quantization can, respectively, be written as, nmax X F1=2 .0B;˙ /; (3.20) n0 D .gv Nc =2/ nD0
and JD
nmax
e 2 gv BkB T X F0 .0B;C / expŒˇ34;C .V0 ; n/CF0 .0B; / expŒˇ34; .V0 ; n/ ; 2 h nD0 (3.21) E
.nC 1 /„! ˙ 12 0 g B
0 2 where Nc D 2.2 mc kB T = h2 /3=2 ; D .„!0 =kB T /; 0B;˙ D FB kB T and p 4 2mc ŒV0 .n C 12 /„!0 ˙ 12 0 g B3=2 : ˇ34;˙ .V0 ; n/ D 3eFsz „
,
In the absence of spin and under the condition of extreme degeneracy, we get J D
nmax 1 2e 2 Bgv X n C „! E FB 0 h2 nD0 2 p 3=2 ## 4 2mc 1 exp V0 n C „!0 3eFsz „ 2 "
and p n0 D
nmax 2mc eBgv X 2 „2 nD0
(3.22)
s
1 „!0 : EFB n C 2
(3.23)
116
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
In the absence of magnetic field B ! 0, (3.22) gets simplified into the form as given in (1.27). Besides in the absence of magnetic quantization, (3.23) assumes the form gv n0 D 3 2
2m EF 0 „2
3=2 :
(3.24)
It may be noted that (3.24) is the well-known expression of the Fermi energy in bulk semiconductors having parabolic energy bands under the condition of extreme degeneracy.
3.2.2.4 The Model of Stillman et al. In accordance with model, the electron energy spectrum in III–V semiconductors in the presence of the quantizing magnetic field BE along the z-direction can be written following (1.29) as 2mc 1 2 kz D 2 I12 .E/ n C „!0 : (3.25) „ 2 Therefore, kz2 D
2mc A33 .E; n/; „2
(3.26)
where A33 .E; n/ D I12 .E/ .n C 12 /„!0 . The field-emitted current density can be written as J D
nmax e 2 gv BkB T X ŒF0 .34 / exp Œˇ34 ; 2 2 „2
(3.27)
nD0
where 34 D .kB T /1 ŒEFB E34 . E34 can be expressed as 1 1 2 2eB 2eB ; nC tN2 nC „ 2 „ 2 p 4 2mc ŒA33 .V0 ; n/3=2 aN 11 aN 12 0 .V / D .1 aN 12 V0 /1=2 ; ; I ˇ34 D 12 0 0 3eFsz „ŒI12 .V0 / 2 1 „!0 ; (3.28) A33 .V0 ; n/ D I12 .V0 / n C 2 E34 D tN1
and
I12 .V0 / D a11 1 .1 V0 a12 /1=2 :
3.2 Theoritical Background
117
The electron concentration is given by p n0 D
nmax 2mc eBgv X ŒY33 .EFB ; n/ C Z33 .EFB ; n/; 2 „2 nD0
(3.29)
s0 p P where Y33 .EFB ; n/ D Œ A33 .EFB ; n/ and Z33 .EFB ; n/ D ZB .r/ŒY33 .EFB ; n/: rD1
3.2.2.5 The Model of Palik et al. To the fourth order in effective mass theory and taking into account the interactions of the conduction, light-hole, heavy-hole, and split-off hole bands, the electron energy spectrum in III–V semiconductors in the presence of a quantizing magnetic field BE can be written in accordance with the present model extending (1.40) as „2 kz2 1 1 mc 1 ˙ „!0 C .„!0 /2 „!0 g0 ˙ k30 ˛ n C E D J31 C n C 2 2mc 4 m0 2 ˙ k31 ˛„!0
„2 kz2 2mc
2 „2 kz2 1 C C k32 ˛ „!0 n C ; 2 2mc
(3.30)
where J31 D 12 ˛„!0 .1 y11 /=.2 C x11 /2 J32 ,
1 1 2 2 2 J32 D 1x11 .1Cx11 /.1 C y11 / ; .1x11 / 2Cx11 .2Cx11 / y11 C 3 2 .1 y11 / .1 x11 / g0 D 2 1 ; .2 C x11 / y11 3 .1 y11 / 2 2 2 C x11 C x11 y11 ; k30 D .1 y11 /.1 x11 / 2 .2 C x11 /2 3 .1x11 / 3 2 .1y11 / 2 k31 D .1y11 / 2C x11 Cx11 .1x11 /y11 ; and .2Cx11 / 2 .2Cx11 / 3 1 2 1 k32 D 1 C x11 1 C x11 .1 y11 /2 : 2 2 Equation (3.30) assumes the form J34 kz4 C J35;˙ .n/kz2 C J36;˙ .n/ E D 0
(3.31)
118
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
h 2 2 „ where J34 D ˛k32 „2 =2mc , J35;˙ .n/ D 2m ˙ ˛k31 „!0 c 1 nC 2 ,
„2 2mc
C ˛k32 „!0
„2 2mc
1 mc 1 2 J36;˙ .n/ D J31 ˙ „!0 g0 ˙ k30 ˛.„!0 / n C 4 m0 2 # 1 2 C k32 ˛ .„!0 / n C 2 From (3.31) we get 2J34 kz2 D J35;˙ C
q .J35;˙ /2 4J34 ŒJ36;˙ E;
kz2 D A35;˙ .E; n/;
(3.32)
i h p where A35;˙ .E; n/ D .2J34 /1 J35;˙ .n/ C .J35;˙ .n//2 4J34 ŒJ36;˙ .n/E The field-emitted current density is given by J D
nmax e 2 gv BkB T X ŒF0 .35;C / exp Œˇ35;C C F0 .35; / exp Œˇ35; ; h2 nD0
(3.33)
where 35;˙ D .kB T /1 ŒEFB E35;˙ , and E35;˙ is the lowest positive root of the equation. E35;˙ D J36;˙ .n/
(3.34)
4ŒA35;˙ .V0 ; n/3=2 ; A35;˙ .V0 ; n/ 3eFsz ŒA36;˙ .V0 ; n/ q 1 2 J35;˙ .n/ C .J35;˙ .n// 4J34 ŒJ36;˙ .n/ V0 ; D .2J34 /
ˇ35;˙ D
A36;˙ .V0 ; n/ D p
1 .J35;˙ .n//2 4J34 ŒJ36;˙ .n/ V0
:
The electron concentration can be expressed as max eBgv X ŒY34 .EFB ; n/ C Z34 .EFB ; n/; 2 2 h nD0
n
n0 D
(3.35)
hp i p A35;C .EFB ; n/ C A35; .EFB ; n/ and Z34 .EFB ; n/ D where Y34 .EFB ; n/ D s0 P ZB .r/ŒY34 .EFB ; n/. rD1
3.2 Theoritical Background
119
3.2.3 The Field Emission from II–VI Semiconductors Under Magnetic Quantization The magneto-dispersion relation assumes the form E D E36;˙ .n/ C B0 kz2 ; where E36;˙ .n/ D A0
2eB „
nC
1 2
˙ 12 0 g B ˙ C0
(3.36a) q
2eB „
n C 12 .
Therefore, kz2 D
E E36;˙ .n/ : B0
(3.36b)
The field-emitted current density is given by J D
nmax e 2 gv BkB T X ŒF0 .36;C / expŒˇ36;C C F0 .36; / expŒˇ36; ; h2 nD0
(3.37)
where 36;˙ D .kB T /1 ŒEFB E36;˙ , and E36;˙ is the lowest positive root of the equation. q 4 2mk ŒV0 E36;˙ 3=2 : ˇ36;˙ D 3eFsz „ The electron concentration can be written as q nmax eBgv 2mk X n0 D ŒY35 .EFB; n/ C Z35 .EFB ; n/; 2 2 „2 nD0
(3.38)
p p where Y35 .EFB ; n/ D Œ EFB E36;C .n/ C EFB E36; .n/ and Z35 .EFB ; n/ D s0 P ZB .r/ŒY35 .EFB ; n/ rD1
3.2.4 The Field Emission from Under Bismuth Magnetic Quantization 3.2.4.1 The McClure and Choi Model The electron energy spectrum in Bi in accordance with the model of McClure and Choi under magnetic quantization upto the first order can be expressed following [72, 73] as
120
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
2 2 1 ˛„ ! .E/ 1 2 E.1 C ˛E/ D n C „!.E/ C .n C 1 C n/ ˙ 0 g B 2 4 2 # " 1 ˛ n C 2 „!.E/ „2 kz2 ; (3.39) 1 C 2m3 2 where !.E/ D Therefore,
p eB m 1 m2
h
1 C ˛E 1
m2 m02
i 12
:
kz2 D A36;˙ .E; n/;
(3.40)
where #1 " ˛ n C 12 „!.E/ 2m3 E.1 C ˛E/ A36;˙ .E; n/ D 2 1 „ 2 2 2 ˛„ ! .E/ 1 1 „!.E/ .n2 C 1 C n/ 0 g B : nC 2 4 2 The field-emitted current density is given by J D
nmax e 2 gv BkB T X ŒF0 .37;C / exp Œˇ37;C C F0 .37; / exp Œˇ37; ; h2 nD0
(3.41)
where 37;˙ D .kB T /1 ŒEFB E37;˙ .n/, and E37;˙ .n/ is the lowest positive root of the equation. 1 .E37;˙ .n//Œ1 C ˛.E37;˙ .n// D n C „!.E37;˙ .n// C .n2 C 1 C n/ 2 2 2 ˛„ ! .E37;˙ .n// 1 ˙ 0 g B; (3.42a) 4 2 where !.E37;˙ .n// D
p eB m1 m 2
h
1 C ˛.E37;˙ .n// 1
m2 m02
i 12
;
#1 " ˛ n C 12 „!.V0 / 4ŒA36;˙ .V0 ; n/3=2 2m3 ; A36;˙ .V0 ; n/ D 2 1 ˇ37;˙ D 3eFsz ŒA37;˙ .V0 ; n/ „ 2 2 2 1 1 ˛„ ! .V0 / „!.V0 / .n2 C 1 C n/ 0 g B ; V0 .1 C ˛V0 / n C 2 4 2
3.2 Theoritical Background
121
1 eB m2 2 !.V0 / D p ; 1 C ˛.V0 / 1 0 m1 m2 m2 eB m2 1 // ˛ 1 .2!.V ; !1 .V0 / D p 0 m1 m 2 m02 and A37;˙ .V0 ; n/ 3 !2 #1 " ˛ n C 12 „!1 .V0 / ˛ n C 12 „!.V0 / A 2m .V ; n/ 36;˙ 0 3 4 5C D 1 ˛ .nC 12 /„!.V0 / 2 „2 2 1 2
2 1 ˛„ !.V0 /!1 .V0 / 2 .1 C 2˛V0 / n C „!1 .V0 / .n C 1 C n/ : 2 2
The electron concentration can be written as p nmax eBgv 2m3 X n0 D ŒY36 .EFB ; n/ C Z36 .EFB ; n/; 2 2 „2 nD0
(3.42b)
p p where Y36 .EFB ; n/ D Œ A38;C .EFB ; n/ C A38; .EFB ; n/, A38;˙ .EFB ; n/ #1 " ˛ n C 12 „!.EFB / EFB .1C˛EFB / D 1 2 ˛„2 ! 2 .EFB / 1 1 nC „!.EFB / n2 C1Cn ˙ 0 g B ; 2 4 2 and Z36 .EFB ; n/ D
s0 P
ZB .r/ŒY36 .EFB ; n/:
rD1
3.2.4.2 The Cohen Model The magneto-dispersion relation for the conduction electrons in Bi in accordance with the Cohen model can be written as [72, 73] „2 kz2 1 3˛ 1 1 „!.E/C ˙ 0 g B: E.1C˛E/ D nC C„2 ! 2 .E/ n2 C C n 2 2m3 2 8 2 (3.43)
122
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
From (3.43), we get, 2m3 ŒA38;˙ .E; n/; (3.44) „2
where A38;˙ .E; n/ D E.1 C ˛E/ nC 12 „!.E/ „2 ! 2 .E/ n2 C 12 Cn 3˛ 8 12 0 g B . The field-emitted current density under magnetic quantization for this model can be expressed as kz2 D
J D
nmax e 2 gv BkB T X ŒF0 .38;C / expŒˇ38;C C F0 .38; / expŒˇ38; ; h2 nD0
(3.45)
where 38;˙ D .kB T /1 ŒEFB E38;˙ , and E38;˙ is the lowest positive root of the equation. 1 3˛ 2 2 2 E38;˙ Œ1 C ˛.E38;˙ / D n C „!.E38;˙ / C „ ! .E38;˙ /.n C 1 C n/ 2 8
where ˇ38˙
1 ˙ 0 g B; 2 p D .4ŒA38;˙ .V0 ; n/3=2 2m3 /=.3eFsz„ŒA39 .V0 ; n//,
(3.46)
p !.E38˙ / D .eB= m1 m2 /Œ1 C ˛.1 .m2 =m02 //.E38˙ /1=2 1 A38;˙ .V0 ; n/ D V0 .1 C ˛V0 / n C „!.V0 / 2 1 1 3˛ 2 2 2 „ ! .V0 / n C C n 0 g B ; 2 8 2 1 A39 .V0 ; n/ D 1 C 2˛V0 n C „!1 .V0 / 2 3˛ 1 2 2 ; „ !.V0 /!1 .V0 / n C C n 2 4 12 eB m2 !.V0 / D p 1 C ˛ 1 0 .V0 / ; and m1 m2 m2 m2 eB 1 ˛ 1 .2!.V : !1 .V0 / D // p 0 m1 m2 m02 The electron concentration is given by n0 D
p nmax eBgv 2m3 X ŒY37 .EFB ; n/ C Z37 .EFB ; n/; 2 2 „2 nD0
(3.47)
3.2 Theoritical Background
123
p p where Y37 .EFB ; n/ D Œ A38;C .EFB ; n/ C A38; .EFB ; n/ and Z37 .EFB ; n/ D s0 P ZB .r/ŒY37 .EFB ; n/: rD1
3.2.4.3 The Lax Model In accordance with this model, the magneto-dispersion relation assumes the form [72, 73] „2 kz2 1 1 ˙ 0 g B; (3.48) E.1 C ˛E/ D n C „!03 C 2 2m3 2 p where !03 D eB= m1 m2 : Therefore 2m3 kz2 D 2 ŒA40;˙ .E; n/; (3.49) „ where A40;˙ .E; n/ D E.1 C ˛E/ n C 12 „!03 12 0 g B: The field-emitted current density is given by J D
nmax e 2 gv BkB T X ŒF0 .39;C / expŒˇ39;C C F0 .39; / expŒˇ39; ; h2 nD0
(3.50)
where 39;˙ D .kB T /1 ŒEFB E39;˙ , and E39;˙ can be determined from the equation "
1=2 # 1 1 „!03 ˙ 0 g B 1C 1C4˛ nC ; E39;˙ D .2˛/ 2 2 p 4ŒA40;˙ .V0 ; n/3=2 2m3 ˇ39;˙ D 3eFsz „ŒA41 .V0 / 1 1 „!03 0 g B ; and A40;˙ .V0 ; n/ D V0 .1 C ˛V0 / n C 2 2 1
A41 .V0 / D Œ1 C 2˛V0 :
(3.51)
The electron concentration can be expressed as n0 D
p nmax eBgv 2m3 X ŒY40 .EFB ; n/ C Z40 .EFB ; n/; 2 2 „2 nD0
(3.52)
p p where Y40 .EFB ; n/ D Œ A40;C .EFB ; n/ C A40; .EFB ; n/ and Z40 .EFB ; n/ D s0 P ZB .r/ŒY40 .EFB ; n/: rD1
124
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
3.2.4.4 Ellipsoidal Parabolic Energy Bands For ˛ ! 0, from (3.48) we get „2 kz2 1 1 E D nC ˙ 0 g B: „!0 C 2 2m3 2
(3.53)
The expressions of J and n0 for this model are the special cases of the models of McClure and Choi, Cohen and Lax, respectively.
3.2.5 The Field Emission from IV–VI Semiconductors Under Magnetic Quantization 3.2.5.1 The Dimmock Model In accordance with Dimmock model, the electron energy spectrum in IV–VI semiconductors in the presence of a quantizing magnetic field BE along the z-direction can be written following (1.71) as # " „2 kz2 ˛„2 kz2 „2 2eB 2eB 1 1 „2 E nC nC C 1C˛EC˛ 2m „ 2 2m „ 2 2mC 2mC t t l l „2 kz2 1 „eB : (3.54) C D nC mt 2 2ml Thus, (3.54) assumes the form kz2 D A42 .E; n/;
(3.55)
2
.E; n/ 4C31 fC33 .E; n/ E where A42 .E; n/ D Œ2C31 1 C32 .E; n/ C C32 1=2 , .1 C ˛E/g "
˛„3 eB ˛E„2 1 C n C 2 2mC 2mC l l mt # „2 1 .1 C ˛E/ „2 ˛„3 eB C n C ; and C C C 2ml 2 2ml 2m l mt „eB ˛E„eB 1 1 C33 .E; n/ D n C n C mt 2 2 mC t # ˛.„eB/2 1 1 2 .1 C ˛E/ „eB C C nC : nC C m 2 2 mt m t t C31
˛„4 D ; 4mC l ml
C32 .E; n/ D
3.2 Theoritical Background
125
The field-emitted current density is given by nmax e 2 gv BkB T X ŒF0 .40 / exp Œˇ40 ; J D 2 2 „2 nD0
(3.56)
where 40 D .kB T /1 ŒEFB E40 ,and E40 is the root of the following equation:
E40 D
C34 .n/ C
q 2 C34 .n/ C 4˛C35 .n/ 2˛
;
(3.57)
where "
˛„eB
C34 .n/ D 1 C " C35 .n/ D
ˇ40 D
mC t
# 1 1 ˛„eB nC nC ; 2 mt 2
# „eB ˛.„eB/2 „eB 1 1 1 2 C nC C C nC nC ; m 2 mt 2 2 mt m t t
4ŒA42 .V0 ; n/3=2 ; 3eFsz ŒA43 .V0 ; n/
2 A42 .V0 ; n/ D Œ2C31 1 C32 .V0 ; n/ C C32 .V0 ; n/ 4C31 fC33 .V0 ; n/ V0 .1 C ˛V0 /g " 1
A43 .V0 ; n/ D Œ2C31
1=2 ;
# fC32 .V0 ; n/C36 .n/2C31 fC37 .n/ .1C2˛V0 /gg C36 .n/C
1=2 ; 2 C32 .V0 ; n/4C31 fC33 .V0 ; n/V0 .1C˛V0 /g
# ˛„2 ˛„2 C36 .n/ D C ; 2m 2ml l "
and
C37 .n/D
" ˛„eB mC t
# ˛„eB 1 1 : C nC nC 2 mt 2
The electron concentration can be written as n0 D
where Y41 .EFB ; n/ D
eBgv 2„
X nmax
ŒY41 .EFB ; n/ C Z41 .EFB ; n/;
(3.58)
nD0
hp i s0 P A42 .EFB ; n/ and Z41 .EFB ; n/ D ZB .r/ŒY41 .EFB ; n/. rD1
126
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
3.2.5.2 The Model of Bangert and Kastner The electron energy spectrum of IV–VI materials in accordance with the model of Bangert and Kastner can be written as [70]
.E/ D F 1 .E/ks2 C F 2 .E/kz2 ; where .E/ D 2E, F 1 .E/ D 2 .SCQ/ , and EC00
2
.R /
ECEg0
C
.S /
2
EC0l
C
2
. Q/
EC00 l
(3.59)
, F 2 .E/ D
2
2.A/ C ECEg0
l
R; S ; Q; A; 0l ; 00l are the electron energy spectrum constants. In the presence of a quantizing magnetic field BE along the z-direction, (3.59) assumes the form
.E/ D F 1 .E/
1 2eB nC C F 2 .E/kz2 : „ 2
(3.60)
Therefore, kz2 D A44 .E; n/;
(3.61)
.E/F 1 .E/2eB.nC 12 / where A44 .E; n/ D . F 2 .E/ The field-emitted current density is given by
J D
nmax e 2 gv BkB T X ŒF0 .41 / exp Œˇ41 ; 2 2 „2 nD0
(3.62)
where 41 D .kB T /1 ŒEFB E41 , and E41 can be determined from the equation 2eB 1 nC ;
.E41 / D F 1 .E41 / „ 2 ˇ41 D
4ŒA44 .V0 ; n/3=2 ; 3eFsz ŒA45 .V0 ; n/
.V0 / D 2V0 ; "
A44 .V0 ; n/ D
(3.63)
.V0 / F 1 .V0 /2eB.n C 12 /
# .S/2 .Q/2 .R/2 F 1 .V0 / D C C ; V0 C Eg0 V0 C 0l V0 C 00l # " .S C Q/2 2.A/2 ; and F 2 .V0 / D C V0 C Eg0 V0 C 00l
F 2 .V0 /
;
3.2 Theoritical Background
A45 .V0 ; n/ (
127
"
# .S C Q/2 2.A/2 1 D A44 .V0 ; n/ C 00 2 C 2 .V0 C Eg0 / .V0 C l / F 2 .V0 / ##) " " .S /2 .Q/2 1 .R/2 2eB C C nC : 2C „ 2 .V0 C Eg0 /2 .V0 C 0l /2 .V0 C 00l /2
The electron concentration can be expressed as nmax eBgv X n0 D ŒY42 .EFB ; n/ C Z42 .EFB ; n/; 2 „ nD0
(3.64)
s0 p P ZB .r/ŒY42 .EFB ; n/. where Y42 .EFB ; n/ D Œ A44 .EFB ; n/ and Z42 .EFB ; n/ D rD1
3.2.5.3 The Model of Foley and Landenberg In accordance with the model of Foley and Landenberg, the electron energy spectrum in IV–VI semiconductors can be written as [71] 31=2 2" #2 2 2 2 2 k „2 kz2 „ Eg0 E „2 ks2 k „ g0 z s EC D C C4 C C C Pk2 kz2 C P?2 ks2 5 ; C 2 2m 2m 2 2mC 2m ? k ? k where
1 m˙ ?
D
1 2
h
1 mt c
˙
1 mt 2
i
,
1 m˙ k
D
1 2
h
1 mlc
˙
1 ml2
i
(3.65) , mtc and mlc are the transverse
and longitudinal effective electron masses of the conduction electrons at the edge of the conduction band, and mt 2 and ml2 are the transverse and longitudinal effective hole masses at the edge of the valence band. In the presence of magnetic quantization BE along the z-direction, (3.65) assumes the form Therefore kz2 D A46 .E; n/; (3.66)
2 .E; n/ C 4ŒE.E C Eg0 / D33 where A46 .E; n/ D .2D31 /1 D32 .E; n/ C D32 12 .E; n/D31 , " # „4 „4 ; D31 D 2 4.m /2 4.mC k k / ( " ) 2„eB „3 eB „2 1 1 2 E D32 .E; n/ D C C P n C n C g0 k 2 m 2 2mC mC ? mk ? k # „2 ; and C Eg0 C 2E 2m k
128
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
2
2 ( ) 2 „eB „eB 1 1 1 „eB D33 .E; n/ D 4 C Eg0 C2E C nC nC nC m 2 m 2 2 mC ? ? ? C Eg0
„eB
mC ?
1 nC 2
C
# 1 nC „ 2
2eB P?2
The field-emitted current density is given by J D
nmax e 2 gv BkB T X ŒF0 .42 / exp Œˇ42 ; 2 2 „2 nD0
(3.67)
where 42 D .kB T /1 ŒEFB E42 , and E42 can be determined from the equation
E42 D h where D45 .n/ D Eg0 2
D45 .n/ C
2„eB m ?
q 2 D45 .n/ C 4D44 .n/ 2
nC
1 2
i
;
(3.68)
,
2 ( ) 2 1 1 1 „eB „eB „eB nC nC C D44 .n/ D 4 C .Eg0 / n C m 2 m? 2 2 mC ?
?
C Eg0
„eB mC ?
# 1 1 2 2eB ; nC C P? nC 2 „ 2
4ŒA46 .V0 ; n/3=2 ; 3eFsz ŒA47 .V0 ; n/
2
.V0 ; n/ C 4D31 ŒV0 .1 C ˛V0 / A46 .V0 ; n/ D .2D31 /1 D32 .V0 ; n/ C D32 ˇ42 D
1 D33 .V0 ; n/ 2 ;
2 A47 .V0 ; n/ D .2D31 /
D46 .n/ D
„2 ; m k
1
3 ŒD32 .V0 ; n/D46 .n/C2D31 Œ1C2˛V0 D47 .n/ 4D46 .n/C 5 1 ;
2 D32 .V0 ; n/C4D31 ŒV0 .1C˛V0 /D33 .V0 ; n/ 2
and D47 .n/ D
2„eB 1 n C : m 2 ?
3.2 Theoritical Background
129
The electron concentration can be expressed as n0 D
eBgv 2„
X nmax
ŒY43 .EFB ; n/ C Z43 .EFB ; n/;
(3.69)
nD0
s0 p P ZB .r/ŒY43 .EFB ; n/. where Y43 .EFB ; n/ D Œ A46 .EFB ; n/ and Z43 .EFB ; n/ D rD1
3.2.6 The Field Emission from Stressed Semiconductors Under Magnetic Quantization The electron energy spectrum under magnetic quantization can be written following (1.76) as 1=2 1 2eB 1 2 2 nC C L0 .E/kz2 D k0 .E/: M0 .E/ N0 .E/ 2 „ 4
(3.70)
Therefore, (3.70) can be expressed as kz2 D A48 .E; n/;
k0 .E/ 2eB n C 12 M02 .E/ 14 N02 .E/ 1=2 „ . where A48 .E; n/ D L0 .E/ The field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .43 / exp Œˇ43 ; 2 2 „2 nD0
(3.71)
(3.72)
where 43 D .kB T /1 ŒEFB E43 , and E43 is the root of the equation. 1=2 2eB 1 2 1 2 k0 .E43 / D ; nC M0 .E43 / N0 .E43 / „ 2 4
(3.73)
4ŒA48 .V0 ; n/3=2 ; 3eFsz ŒA49 .V0 ; n/ 1=2 2 1 Œk0 .V0 / 2eB M0 .V0 / 14 N02 .V0 / „ nC 2 and A48 .V0 ; n/ D L0 .V0 / 1 eB A48 .V0 ; n/ 0 1 A49 .V0 ; n/ D k00 .V0 / nC L0 .V0 / C L0 .V0 / L0 .V0 / „ 2 1=2 1 1 2M0 .V0 /M00 .V0 / N0 .V0 /N00 .V0 / : M02 .V0 / N02 .V0 / 4 2 ˇ43 D
130
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
The electron concentration can be expressed as n0 D
eBgv 2„
X nmax
ŒY44 .EFB ; n/ C Z44 .EFB ; n/;
(3.74)
nD0
s0 p P ZB .r/ŒY44 .EFB ; n/: where Y44 .EFB ; n/ D Œ A48 .EFB ; n/ and Z44 .EFB ; n/ D rD1
3.2.7 The Field Emission from Tellurium Under Magnetic Quantization The dispersion under magnetic quantization can be written following (1.81) as E D ‰1 kz2 C ‰2
1 1 1=2 2eB 2eB : nC ˙ ‰32 kz2 C ‰42 nC „ 2 „ 2
(3.75)
Therefore, kz2 D A50;˙ .E; n/;
(3.76)
h
1i where A50;˙ .E; n/ D .2‰12 /1 ‰5 .E; n/ ˙ ‰52 .E; n/ 4‰12 ‰6 .E; n/ 2 , 1 2eB 2 nC C ‰3 ; and ‰5 .E; n/ D 2‰1 E ‰2 „ 2 " # 1 2 1 2eB 2 2eB nC nC ‰6 .E; n/ D E ‰2 ‰4 „ 2 „ 2 The field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .44;C / expŒˇ44;C C F0 .44; / expŒˇ44; ; 4 2 „2 nD0
(3.77)
where 44;˙ D .kB T /1 ŒEFB E44;˙ m, " # 1 1 1=2 2eB 2eB nC ˙ ‰4 nC ; E44;˙ D ‰2 „ 2 „ 2 4ŒA50;˙ .V0 ; n/3=2 ; A50;˙ .V0 ; n/ 3eFsz ŒA51;˙ .V0 ; n/ 2 1
2 12 2 D 2‰1 ‰5 .V0 ; n/ ˙ ‰5 .V0 ; n/ 4‰1 ‰6 .V0 ; n/ ;
ˇ44;˙ D
3.2 Theoritical Background
131
1 2eB 2 ‰5 .V0 ; n/ D 2‰1 V0 ‰2 nC C ‰3 ; „ 2 " # 2eB 1 2 1 2 2eB ‰4 ; nC nC ‰6 .V0 ; n/ D V0 ‰2 „ 2 „ 2
1 A51;˙ .V0 ; n/ D .2‰12 /1 ‰7 ˙ ‰52 .V0 ; n/ 4‰12 ‰6 .V0 ; n/
‰5 .V0 ; n/‰7 2‰12 ‰8 .V0 ; n/ ; and 1 2eB ‰7 D 2‰1 ; ‰8 .V0 ; n/ D 2 V0 ‰2 nC : „ 2 The electron concentration can be expressed as n0 D
nmax eBgv X ŒY45 .EFB ; n/ C Z45 .EFB ; n/; 2 2 „ nD0
(3.78)
p p where Y45 .EFB ; n/ D Œ A50;C .EFB ; n/ C A50; .EFB ; n/ and Z45 .EFB ; n/ D s0 P ZB .r/ŒY45 .EFB ; n/: rD1
3.2.8 The Field Emission from n-Gallium Phosphide Under Magnetic Quantization The magneto-electron energy spectrum can be written following (1.86) as 2 3 1 2 2eB 2eB 1 1 nC C b0 kz2 4 C nC C jVG j2 C kz2 5 C jVG j ; E D a0 „ 2 „ 2 (3.79) „2 A„2 „2 „4 k02 where a0 D C , b D , and C D . 0 2m? 2mk 2mk .mk /2 Therefore kz2 D A52;˙ .E; n/;
(3.80)
h
2 1 i .E; n/ 4b02 ‰12 .E; n/ 2 ; where A52;˙ .E; n/ D .2b02 /1 ‰11 .E; n/ ˙ ‰11
132
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
‰11 .E; n/ D Œ2b0 ŒE ‰9 .n/ C C ;
‰12 .E; n/
1 2eB nC ; and D ŒE ‰9 .n/2 ‰10 .n/ ; ‰9 .n/ D jVG j C a0 „ 2 1 2eB nC C jVG j2 : ‰10 .n/ D C „ 2
The field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .45;C / exp Œˇ45;C C F0 .45; / exp Œˇ45; ; 4 2 „2 nD0
(3.81)
where 45;˙ D .kB T /1 ŒEFB E45;˙ ,
E45;˙
# " 1=2 1 2eB 1 2eB 2 D a0 C jVG j ; nC C nC C jVG j „ 2 „ 2 (3.82)
ˇ45;˙ D
4ŒA52;˙ .V0 ; n/3=2 ; 3eFsz ŒA54;˙ .V0 ; n/
A52;˙ .V0 ; n/ 1
2 D .2b02 /1 Œ‰11 .V0 ; n/ ˙ Œ‰11 .V0 ; n/ 4b02 ‰12 .V0 ; n/ 2 ;
‰11 .V0 ; n/ D Œ2b0 ŒV0 ‰9 .n/ C C ; ‰12 .V0 ; n/ D ŒV0 ‰9 .n/2 ‰10 .n/ ; 1
2 A54;˙ .V0 ; n/ D .2b02 /1 Œ‰13 ˙ Œ‰11 .V0 ; n/ 4b02 ‰12 .V0 ; n/ 2
Œ‰11 .V0 ; n/‰13 2b02 ‰14 .V0 ; n/; and ‰13 D 2b0 ; ‰14 .V0 ; n/ D 2ŒV0 ‰9 .n/. The electron concentration can be expressed as n0 D
nmax eBgv X ŒY46 .EFB ; n/ C Z46 .EFB ; n/; 2 2 „ nD0
(3.83)
p p where Y46 .EFB ; n/ D Œ A52;C .EFB ; n/ C A52; .EFB ; n/ and Z46 .EFB ; n/ D s0 P ZB .r/ŒY46 .EFB ; n/. rD1
3.2 Theoritical Background
133
3.2.9 The Field Emission from Platinum Antimonide Under Magnetic Quantization The magneto-dispersion relation can be written following (1.91) as # N a/ N 2 eB N 0 .a/ 1 1 N 0 .a/ N 2 eB N 2 2 l. nC C nC EC kz 2„ 2 4 2„ 2 . N a/ N 2 eB N a/ N 2 eB 1 . N a/ N 2 2 n. 1 E C ıN0 nC nC kz 2„ 2 4 2„ 2 1 2 I.a/ N 4 2 2eB kz C nC D : 16 „ 2 "
(3.84)
Therefore, kz2 D A55;˙ .E; n/;
(3.85)
h
2 1 i where A55;˙ .E; n/ D .2‰17 /1 ‰18 .E; n/ ˙ ‰18 .E; n/ 4‰17 ‰19 .E; n/ 2 ; h 4 i N N a/ a/ N N 4 C 0 . ; ‰17 D I.16 16 " ‰18 .E; n/ D
# N 2 . N a/ N 2 N 0 .a/ I.a/ N 4 eB 1 nC C ‰15 .E; n/ ; ‰16 .E; n/ 4„ 2 4 4
. N a/ N 2 ; 4 ‰21 .E; n/ D Œ‰16 .E; n/ C ‰15 .E; n/ ; ‰20 D
2 ! I.a/ N 4 e 2 B 2 n C 12 ; ‰19 .E; n/ D ‰15 .E; n/‰16 .E; n/ 4„2 " N 2 # N 0 .a/ 1 l.a/ N eB 1 N 2 eB ‰15 .E; n/ D E C ; nC nC 2„ 2 2„ 2 and . N a/ N 2 eB 1 n. N a/ N 2 eB 1 nC nC : ‰16 .E; n/ D E C ıN0 2„ 2 2„ 2 The field-emitted current density is given by nmax e 2 Bgv kB T X J D ŒF0 .46;C / expŒˇ46;C C F0 .46; / expŒˇ46; ; 4 2 „2 nD0
(3.86)
134
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
where 46;˙ D .kB T /1 ŒEFB E46;˙ , and E46;˙ is the root of the equation. ‰22 .n/ ˙ E46;˙ D where ‰22 .n/ D n C 12 ,
hN
0 .a/ N 2 eB 2„
nC
q
2 ‰22 .n/
C 4‰23 .n/ ;
2 1 2
N N 2 eB l.a/ n C 12 CıN0 2„
. N a/ N 2 eB 2„
(3.87)
nC
1 2
n. N a/ N 2 eB 2„
"
2 " N 2 # I.a/ N 4 e 2 B 2 nC 12 N 2 eB N 0 .a/ l.a/ N eB 1 1 C nC nC ‰23 .n/ D 4„2 2„ 2 2„ 2 . N a/ N 2 eB 1 n. N a/ N 2 eB 1 ıN0 C nC C nC ; 2„ 2 2„ 2 4ŒA55;˙ .V0 ; n/3=2 ; 3eFsz ŒA56;˙ .V0 ; n/
2 1 A55;˙ .V0 ; n/ D .2‰17 /1 ‰18 .V0 ; n/ ˙ ‰18 .V0 ; n/ 4‰17 ‰19 .V0 ; n/ 2 ; ˇ46;˙ D
"
‰18 .V0 ; n/
‰15 .V0 ; n/ ‰16 .V0 ; n/ ‰19 .V0 ; n/
# N 2 . N a/ N 2 N 0 .a/ I.a/ N 4 eB 1 D nC C ‰15 .V0 ; n/ ; ‰16 .V0 ; n/ 4„ 2 4 4 " N 2 # N 0 .a/ l.a/ N eB 1 1 N 2 eB D V0 C ; nC nC 2„ 2 2„ 2 . N a/ N 2 eB 1 n. N a/ N 2 eB 1 D V0 C ıN0 nC nC ; 2„ 2 2„ 2 2 ! I.a/ N 4 e 2 B 2 n C 12 D ‰15 .V0 ; n/‰16 .V0 ; n/ 4„2
2 1=2
.V0 ; n/ 4‰17 ‰19 .V0 ; n/ A56;˙ .V0 ; n/ D .2‰17 /1 ‰20 ˙ ‰18 Œ‰18 .V0 ; n/‰20 C 2‰17 ‰21 .V0 ; n/ ; and ‰20 D
. N a/ N 2 ; ‰21 .V0 ; n/ D Œ‰16 .V0 ; n/ C ‰15 .V0 ; n/: 4
The electron concentration can be expressed as n0 D
nmax eBgv X ŒY47 .EFB ; n/ C Z47 .EFB ; n/; 2 2 „ nD0
(3.88)
3.2 Theoritical Background
135
p p where Y47 .EFB ; n/ D Œ A55;C .EFB ; n/ C A55; .EFB ; n/ and Z47 .EFB ; n/ D s0 P ZB .r/ŒY47 .EFB ; n/: rD1
3.2.10 The Field Emission from Bismuth Telluride Under Magnetic Quantization In the presence of a quantizing magnetic field BE along the kx direction, the magnetodispersion relation of the carriers in Bi2 T e3 can be written following (1.97) as E.1 C ˛E/ D where !31 D
eB M31
and M31 D h
!N 1 kx2
1 C „!31 n C ; 2
m0 ˛N 22 ˛N 23
.˛N 23 /2 4
(3.89)
i1=2 .
Therefore kx2
E.1 C ˛E/ „!31 n C 12 D : !N 1
The field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .47 / exp Œˇ47 ; 2 2 „2 nD0
(3.90)
where 47 D .kB T /1 ŒEFB E47 , and E47 is the root of the equation. s
" E47 D .2˛/
ˇ47
1
1 C
# 1 1 C 4˛ n C „!31 ; 2
4ŒA57 .V0 ; n/3=2 D ; 3eFsz ŒA58 .V0 /
V0 .1 C ˛V0 / „!31 n C 12 ; A57 .V0 ; n/ D !N 1
(3.91)
and
A58 .V0 / D Œ.1 C 2˛V0 /=!N 1 : The electron concentration can be expressed as n0 D
eBgv 2„
X nmax nD0
ŒY48 .EFB ; n/ C Z48 .EFB ; n/;
(3.92)
136
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
where Y48 .EFB ; n/ D EFB .1 C ˛EFB / .n C 12 /„!31 =!N 1 and Z48 .EFB ; n/ D s0 P ZB .r/ŒY48 .EFB ; n/. rD1
3.2.11 The Field Emission from Germanium Under Magnetic Quantization 3.2.11.1 The Model of Cardona et al. The dispersion relation of the conduction electrons in n Ge in accordance with the model of Cardona et al. in the presence of a quantizing magnetic field BE the along z-direction can be written following (1.102) as „2 kz2 1 C 2˛E C E.1 C ˛E/ D „!? n C 2 2mk
„2 kz2 2mk
! ˛
„2 kz2 2mk
!2 ;
(3.93)
where !? D meB : ? Equation (3.93) can be written as D
kz2
2mk „2
A69 .E; n/;
(3.94)
h
1=2 i : where A69 .E; n/ D .2˛/1 1 C 2˛E 1 C 4˛ n C 12 „!? The field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .48 / exp Œˇ48 ; 2 2 „2 nD0
(3.95)
where 48 D .kB T /1 ŒEFB E48 , and E48 is the root of the equation. s
" E48 D .2˛/
ˇ48 D
1
1 C
# 1 1 C 4˛ n C „!? ; 2
q 4 2mk ŒA69 .V0 ; n/3=2 3eFsz „ "
A69 .V0 ; n/ D .2˛/
1
;
and
1=2 # 1 1 C 2˛V0 1 C 4˛ n C : „!? 2
(3.96)
3.2 Theoritical Background
137
The electron concentration can be expressed as n0 D
where Y49 .EFB ; n/ D
eBgv 2„
q 2m k „
X nmax
ŒY49 .EFB ; n/ C Z49 .EFB ; n/;
(3.97)
nD0
s0 p P Œ A69 .EFB ; n/ and Z49 .EFB ; n/ D ZB .r/ŒY49 rD1
.EFB ; n/. 3.2.11.2 The Model of Wang and Ressler The magneto-dispersion law in n Ge in accordance with the model of Wang and Ressler can be written following (1.107) as kz2 D
2mk „2
ŒA71 .E; n/;
(3.98)
i h
where A71 .E; n/ D ‰24 .n/ 21eN1 Œ‰25 .n/ 4eN1 E1=2 ; ‰24 .n/ D .2eN1 /1 1 dN1 h˚ 2 ˚ 1 dN1 n C 12 „!? C eN1 n C 12 „!? cN1 n C 12 „!? ; and‰25 .n/ D ˚ 2 oi . The field-emitted current density is given by n C 12 „!? J D
nmax e 2 Bgv kB T X ŒF0 .49 / exp Œˇ49 ; 2 2 „2 nD0
(3.99)
where 49 D .kB T /1 ŒEFB E49 , and E49 is the root of the equation. 2 1 1 (3.100) „!? cN1 „!? ; nC E49 D n C 2 2 q 4 2mk ŒA71 .V0 ;n/3=2 1 ˇ49 D Œ‰25 .n/ 4eN1 V0 1=2 ; ; A71 .V0 ; n/ D ‰24 .n/ 3eFsz „ŒA72 .V0 ; n/ 2eN1 and A72 .V0 ; n/ D Œ‰25 .n/ 4eN1 V0 1=2 The electron concentration can be expressed as n0 D
where Y50 .EFB ; n/ D .EFB ; n/:
eBgv 2„
q 2m k „
X nmax
ŒY50 .EFB ; n/ C Z50 .EFB ; n/;
(3.101)
nD0
s0 p P Œ A71 .EFB ; n/ and Z50 .EFB ; n/ D ZB .r/ŒY50 rD1
138
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
3.2.12 The Field Emission from Gallium Antimonide Under Magnetic Quantization The magneto-dispersion relation in this case can be written as kz2 D
2mc 1 .E/ n C „! I ; 16 c „2 2
(3.102)
where I16 .E/ has been defined in (1.113). The magneto-field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .50 / expŒˇ50 ; 2 2 „2 nD0
(3.103)
where 50 D .kB T /1 ŒEFB E50 .n/; 3 2 ( ) 1=2 0 0 „eB Eg0 Eg0 1 4„eB 1 1 1 5; C 1C 0 nC E50 .n/ D 4 nC 2 m0 2 2 Eg0 2 mc m0 ˇ50 D
p 4 2mc ŒA73 .V0 ; n/3=2 ; 3eFsz „ŒA74 .V0 ; n/
1 A73 .V0 ; n/ D I16 .V0 / n C „!c ; 2
(3.104)
and A74 .V0 ; n/ 2
2 !2 " 0 2 # 0 .E E / m m 1 g0 g0 c c 0 4 C 1 1 D 41 Eg0 2 m0 2 2 m0 " C
3 3 #2 1=2 mc mc 5 7 0 C V0 Eg0 1 1 5: 2 m0 m0
0 Eg0
The electron concentration can be expressed as n0 D
where Y 50 .EFB ; n/ D .EFB ; n/:
eBgv 2„
X nmax
ŒY 50 .EFB ; n/ C Z 50 .EFB ; n/;
(3.105)
nD0
p p 2mc „ Œ A73 .EFB ; n/
and Z 50 .EFB ; n/ D
s0 P rD1
ZB .r/ŒY 50
3.2 Theoritical Background
139
3.2.13 The Field Emission from II–V Semiconductors Under Magnetic Quantization The magneto-dispersion law in II–V semiconductors in the presence of a magnetic field BE along the ky direction can be written as ky2 D A75;˙ .E; n/; where A75;˙ .E; n/ D ŒI35 E C I36;˙ .n/ ˙ 2 I33;˙ .n/ ; I36;˙ .n/ D ; 2 2 . 2 5 / 2. 22 52 /
(3.106)
p E 2 C EI38;˙ .n/ C I39;˙ .n/, I35 D
I38;˙ .n/ D .4 52 /1 4 2 I33;˙ .n/ C 8 22 I31;˙ .n/ 52 I31;˙ .n/ ;
2 I39;˙ .n/ D .4 52 /1 I33;˙ .n/ C 4 22 I34;˙ .n/ 4 52 I34;˙ .n/ ;
I33;˙ .n/ D G32 C 2 5 I32 .n/ 2 2 I31;˙ .n/ ;
2 1 ı2 .n/C23 I31;˙ .n/ ; I31;˙ .n/ D nC I34;˙ .n/ D I32 „!31 4 ˙ 3 ; 2 4 1 1 ı2 „!32 5 ; I32 .n/ D n C 2 4 5 eB eB „2 „2 ; !32 D p ; M31 D ; M32 D ; !31 D p 2 1 2 3 M31 M32 M33 M34 M33 D
„2 ; 2 5
and M34 D
„2 2 7
The magneto-field-emitted current density is given by J D
nmax e 2 Bgv kB T X ŒF0 .51;C / exp Œˇ51;C C F0 .51; / exp Œˇ51; (3.107) 2 2 „2 nD0
where 51;˙ D .kB T /1 ŒEFB E51;˙ , and E51;˙ is the root of the equation.
2 .n/ C 23 ; E51;˙ D I31;˙ .n/ ˙ I32 ˇ51;˙ D
4ŒA75;˙ .V0 ; n/3=2 ; A75;˙ .V0 ; n/ D ŒI35 V0 3eFsz „ŒA76;˙ .V0 ; n/ q C I36;˙ .n/ ˙ V02 C V0 I38;˙ .n/ C I39;˙ .n/ ;
(3.108)
140
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
2
and
3
V0 C 6 7 A76;˙ .V0 ; n/ D 4I35 ˙ q 5: 2 V0 C V0 I38;˙ .n/ C I39;˙ .n/ 1 I .n/ 2 38;˙
The electron concentration can be expressed as n0 D
nmax eBgv X ŒY51 .EFB ; n/ C Z51 .EFB ; n/; 2 2 „ nD0
(3.109)
s0 p p P where Y51 .EFB ; n/ D Œ A75;C .EFB ; n/ C A75; .EFB ; n/ and Z51 .EFB ; n/ D rD1
ZB .r/ŒY51 .EFB ; n/.
3.3 Result and Discussions Using the appropriate equations and taking the values of the energy band constants for n-CdGeAs2, we have plotted J as a function of inverse quantizing magnetic field as shown in the plot of Fig. 3.1 in accordance with the generalized band model and two-band model of Kane. Figure 3.2 explores the current density as a function of 1=B for n-InSb for the models of Stillman et al., Newson et al., Palik et al., and Kane (both three and two bands), respectively. Figures 3.3 and 3.4 cover all the cases of Fig. 3.2 as functions of carrier degeneracy and electric field, respectively. Figures 3.5 and 3.6 exhibit the variation of J as functions of 1=B and alloy composition for Hg1x Cdx Te in accordance with three- and two-band models of Kane. Figures 3.7–3.8 explore the dependence of the current density on 1=B, carrier concentration, and
Fig. 3.1 Plot of the field-emitted current density as a function of inverse magnetic field for n-CdGeAs2 in accordance with the generalized and two-band model of Kane
3.3 Result and Discussions
141
Fig. 3.2 Plot of the field-emitted current density as a function of inverse magnetic field for n-InSb in accordance with the models of Stillman et al., Newson et al., and Palik et al. together with the three- and two-band models of Kane
Fig. 3.3 Plot of the field-emitted current density as a function of carrier concentration for n-InSb in accordance with the models of Stillman et al., Newson et al., and Palik et al. together with the three- and two-band models of Kane. The magnetic quantum limit case has further been shown
electric field, respectively, for CdS. Figure 3.9 shows the plot of the term ˇ as functions of 1=B and carrier concentration for Bismuth in accordance with the Cohen model. Figures 3.10–3.11 exhibit the field-emitted current density from stressed InSb as functions of 1=B, carrier degeneracy, and electric field, respectively. Figures 3.12–3.13 show the influence of 1=B, carrier degeneracy, and electric field on J from Ge (in accordance with the models of Wang et al. and Cardona et al.), GaSb, Bi2 Te3 , GaP, and Te, respectively. From Fig. 3.1, we observe that the current density is an oscillatory function of inverse quantizing magnetic field. The oscillatory dependence is due to the crossing of the Fermi level by the Landau subbands in steps, resulting in successive reduction of the number of occupied Landau levels as the magnetic field is increased. For each coincidence of the Landau level with the Fermi level, there would be a discontinuity in the density-of-states function, resulting in a peak of oscillation. These peaks
142
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
Fig. 3.4 Plot of the field-emitted current density as a function of electric field for n-InSb in accordance with the models of Stillman et al., Newson et al., and Palik et al. together with the three- and two-band models of Kane
Fig. 3.5 Plot of the field-emitted current density as a function of inverse magnetic field for n-Hg0:7 Cd0:3 Te in accordance with the three- and two-band models of Kane
should occur whenever the Fermi energy is a multiple of the energy separation between the two consecutive Landau levels. Thus, we observe that the origin of the oscillations in the field-emitted current density is the same as the Shubnikov–de Haas oscillations. With the increase in magnetic field, the amplitude of oscillations will increase and ultimately at very large value of the magnetic field, the conditions for magnetic quantum limit will be reached. From Fig. 3.2, we observe that J exhibits oscillatory dependence on 1=B and the influence of energy band models is to change the magnitude of J , although the periodicity remains same for all of the respective curves. We also note that with the application of a magnetic field, the current density reduces to a large extent about 105 Am2 . Fig. 3.3 expresses the fact that the J oscillates with the carrier concentration for n-InSb for all types of band models as considered in Fig. 3.2. Under the condition of magnetic quantum limit, the current density initially increases, reaches a peak, and finally decreases with increasing degeneracy.
3.3 Result and Discussions
143
Fig. 3.6 Plot of the field-emitted current density as a function of alloy composition for n-Hg01x Cdx Te in accordance with the three and two-band models of Kane
Fig. 3.7 Plot of the field-emitted current density as a function of 1=B for CdS
The reason for this has been discussed in “Result and Discussions” in Chap. 1. Incidentally, with more and more subband generation, the periodicity dominates over the falling nature of the J . With the application of the magnetic field, the cut-in values in n-InSb reach about 109 Vm1 , a value comparable to that of the metals, as appears from Fig. 3.4. Similar nature has been observed for the material n Hg0:7 Cd0:3 Te with respect to the periodic variation of current density with 1=B in Fig. 3.5. As the alloy composition increases, J decreases which we note from Fig. 3.6. The influence of the spin–orbit splitting constant reduces J . At x D 0:7, we observe that J is being reduced to almost half of its value at x D 0:3. Influence of spin on the field-emitted current density from Cds can be accessed from Fig. 3.7. We observe that the electron spin splits the peak like an “up-down” fashion. For the purpose of condensed presentation, we have not included the effect of spin on J in the previous figures. The influence of electron concentration on J from CdS at the magnetic quantum limit has been exhibited in Fig. 3.14. We note that with the increase in magnetic field, magnitude of J increases with a shift in the
144
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
Fig. 3.8 Plot of the field-emitted current density as a function of electric field for CdS
Fig. 3.9 Plot of the term ˇ as a functions of 1=B and concentration for Bi in accordance with Cohen model
peak. The value reduces almost zero beyond 1025 m3 at B D 10 Tesla, whereas for B D 7 Tesla, the same phenomenon happens beyond 6 1024 m3 . Besides, the magnitude of the peak reduces almost one third when B changes by 3 Tesla. The influence of electric field on J from CdS has been shown in Fig. 3.8 where for high carrier degeneracy, very small current is obtained even at field strength nearly 3 109 Vm1 . Since the magnetic field is very prominent in reducing J , in Fig. 3.9, we have shown the effect of magnetic field and concentration on the function ˇ for bismuth. We note that ˇ increases nonlinearly with both the 1=B and concentration and is extremely large in both the cases, making the J very low. The effect of magnetic field on J from stressed n-InSb has been shown in Fig. 3.10 where J exhibits the SdH oscillations as also previously discussed. It is important to note that stress enhances J and the application of stress of 4 Kbar results in nearly 109 Am2 field-emitted current density at 5 1010 Vm1 electric
3.3 Result and Discussions
145
Fig. 3.10 Plot of the field-emitted current density as a function of 1=B for stressed n-InSb
Fig. 3.11 Plot of the field-emitted current density as a function of electric field for stressed n-InSb
field. The effect of application on stress on the field-emitted current density can also be observed from Fig. 3.15. We note that J oscillates with the carrier degeneracy. Very high cut-in electric field is required to obtain the field-emitted current density from stressed n-InSb and about 109 Am2 current density can be achieved at 5 1010 Vm1 field strength, which appears from Fig. 3.11. From Fig. 3.12, we note that J oscillates with 1=B for Te, GaP, Bi2 Te3 , GaSb, and Ge (for both types of band models). The relative magnitudes are the signatures of the different dispersion relations of the different compounds. Same oscillatory dependence of J with degeneracy has been plotted for the aforementioned materials in Fig. 3.16 realizing different magnitudes in J . Relatively smaller cut-in field is needed for GaSb as can be observed from Fig. 3.13, whereas a higher cut-in field is required for Bi2 Te3 in the present case.
146
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
Fig. 3.12 Plot of the field-emitted current density as a function of 1/B for Te, GaP, Bi2 Te3 , GaSb, and Ge (in accordance with the models of Wang et al. and Cardona et al.)
Fig. 3.13 Plot of the field-emitted current density as a function of electric field for Te, GaP, Bi2 Te3 , GaSb, and Ge (in accordance with the models of Wang et al. and Cardona et al.)
Fig. 3.14 Plot of the field-emitted current density as a function of carrier concentration for CdS
3.3 Result and Discussions
147
Fig. 3.15 Plot of the field-emitted current density as a function of carrier concentration for stressed n-InSb
Fig. 3.16 Plot of the field-emitted current density as a function of carrier concentration for Te, GaP, Bi2 Te3 , GaSb, and Ge (in accordance with the models of Wang et al. and Cardona et al.)
Although the effects of collision are usually small at low temperatures at which the quantum effects are prominent, the sharpness of the amplitude of the oscillatory plots would be reduced by collision broadening. Nevertheless, the present analyses remain valid since the effect of collision broadening can be taken into account by an effective increase in temperature. Besides, in a more rigorous statement, the many body effects should be considered along with a self-consistent procedure. This simplified analysis exhibits the basic qualitative features of J in degenerate semiconductors under magnetic quantization with reasonable accuracy. For the purpose of condensed presentation, the specific carrier statistics for a specific semiconductor having a particular electron energy spectrum and the corresponding field-emitted current density under magnetic quantization have been presented in Table 3.1.
(3.20)
(d) The model of Stillman et al.: In accordance with the model p of Stillman et al (3.25), max 2mc eBgv nP n0 D ŒY33 .EFB ; n/ 2 „2 nD0 C Z33 .EFB ; n/ (3.29)
nD0
J D
J D
max
e 2 gv BkB T nP F0 .32;C / expŒˇ32;C 4 2 „2 nD0 C F0 .32; / expŒˇ32; (3.11)
max e 2 gv BkB T nP ŒF0 .34 / expŒˇ34 2 2 2 „ nD0
(3.27)
max e 2 gv BkB T nP ŒF0 .0B;C / expŒˇ34;C .V0 ; n/ 2 h nD0 C F0 .0B; / expŒˇ34; .V0 ; n/ (3.21)
max e 2 gv BkB T nP ŒF0 .33;C / expŒˇ33;C 4 2 „2 nD0 C F0 .33; / expŒˇ33; (3.17)
) JD
(c) Parabolic energy bands nP max F1=2 .0B;C / n0 D .Nc =2/
(a) Three-band model of Kane: In accordance with the three-band model of Kane (3.8), which is the special case ofp(3.1) max p 2mc eBgv nP n0 D Œ A32;C .EFB ; n/ 2 „2 2 nD0 p C A32; .EFB ; n/ C Z32 .EFB ; n/ (3.13)
2. III–V materials, the conduction electrons of which can be defined by five types of energy wave vector dispersion relations as described in the column beside J D
In accordance with the generalized electron dispersion relation as given by (3.1), max eBgv nP n0 D ŒY31 .EFB ; n/ C Z31 .EFB ; n/ (3.7) 2 2 „ nD0
1. Nonlinear optical materials
The Fowler–Nordheim field emission max e 2 gv BkB T nP ŒF0 .31;C / expŒˇ31;C J D 4 2 „2 nD0 C F0 .31; / expŒˇ31; (3.6)
(b) Two-band model of Kane: In accordance with the two-band p model of nKane (3.14), max 2mc eBgv P n0 D Y32 .EFB ; n/ 2 2 2 „ nD0 C Z32 .EFB ; n/ (3.19)
The carrier statistics
Type of materials
Table 3.1 The carrier statistics and the Fowler–Nordheim field emission under magnetic quantization from nonlinear optical, III–V, II–VI, Bismuth, IV–VI, stressed materials, Te, n-GaP, PtSb2 , Bi2 Te3; n-Ge, GaSb, and II–V materials
148 3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
J D
J D
J D
J D
(a) The McClure and Choi model: In accordance with (3.39), p max eBgv 2m3 nP ŒY36 .EFB ; n/ n0 D 2 2 2 „ nD0 C Z36 .EFB ; n/ (3.42b)
(b) The Cohen p model: In accordance with (3.43), max eBgv 2m3 nP n0 D ŒY37 .EFB ; n/ 2 2 2 „ nD0 C Z37 .EFB ; n/ (3.47)
(c) The Lax model: p In accordance with (3.48), max eBgv 2m3 nP ŒY40 .EFB ; n/ C Z40 .EFB ; n/ n0 D 2 2 2 „ nD0 (3.52)
(a) The Dimmock model: In accordance with (3.54), n0 D max eBgv nP ŒY41 .EFB ; n/ C Z41 .EFB ; n/ (3.58) 2 „ nD0
4. Bismuth, the carriers of which can be defined by five types of energy band models as described in the column of carrier statistics
5. IV–VI materials, the carriers of which can be defined by the model of Dimmock, Bangert and Kastner, and Foley and Landenberg
J D
In accordance with q (3.36a), eBgv 2m max kc nP n0 D ŒY35 .EFB ; n/ C Z35 .EFB ; n/ 2 2 2 „ nD0 C Z35 .EFB ; n/ (3.39)
J D
3. II–VI materials as described by the Hopfield model
(e) The model of Palik et al.: In accordance with the model of Palik et al. (3.30), max eBgv nP n0 D ŒY34 .EFB ; n/ C Z34 .EFB ; n/ (3.35) 2 2 h nD0
max e 2 gv BkB T nP ŒF0 .40 / expŒˇ40 2 2 „2 nD0
(continued)
(3.56)
max e2 gv BkB T nP ŒF0 .39;C / expŒˇ39;C 2 h nD0 C F0 .39; / expŒˇ39; (3.50)
max e 2 gv BkB T nP ŒF0 .38;C / expŒˇ38;C 2 h nD0 C F0 .38; / expŒˇ38; (3.46)
max e 2 gv BkB T nP ŒF0 .37;C / expŒˇ37;C h2 nD0 C F0 .37; / expŒˇ37; (3.41)
max e 2 gv BkB T nP ŒF0 .36;C / expŒˇ36;C h2 nD0 C F0 .36; / expŒˇ36; (3.37)
max e 2 gv BkB T nP ŒF0 .35;C / expŒˇ35;C 2 h nD0 C F0 .35; / expŒˇ35; (3.33)
3.3 Result and Discussions 149
In accordance (3.85), with max eBgv nP n0 D ŒY47 .EFB ; n/ C Z47 .EFB ; n/ 2 2 „ nD0
9. PtSb2 , as defined by the Emtage model
(3.88)
(3.83) J D
J D
In accordance (3.80), with max eBgv nP ŒY46 .EFB ; n/ C Z46 .EFB ; n/ n0 D 2 2 „ nD0
8. n-GaP as described by the Rees model
(3.78)
J D
In accordance (3.76), with max eBgv nP n0 D ŒY45 .EFB ; n/ C Z45 .EFB ; n/ 2 2 „ nD0
7. Tellurium the conduction electrons of which can be defined by the model of Bouat et al.
max e 2 Bgv kB T nP ŒF0 .46;C / expŒˇ46;C 2 2 4 „ nD0 C F0 .46; / expŒˇ46; (3.86)
max e 2 Bgv kB T nP ŒF0 .45;C / expŒˇ45;C 2 2 4 „ nD0 C F0 .45; / expŒˇ45; (3.81)
max e 2 Bgv kB T nP ŒF0 .44;C / expŒˇ44;C 4 2 „2 nD0 C F0 .44; / expŒˇ44; (3.77)
(3.72)
max e 2 Bgv kB T nP ŒF0 .43 / expŒˇ43 2 2 „2 nD0
J D
(3.67)
max e 2 gv BkB T nP ŒF0 .42 / expŒˇ42 2 2 „2 nD0
(3.62)
J D
The Fowler–Nordheim field emission max e 2 gv BkB T nP ŒF0 .41 / expŒˇ41 J D 2 2 „2 nD0
In accordance (3.70), with max eBgv nP ŒY44 .EFB ; n/ C Z44 .EFB ; n/ (3.74) n0 D 2 „ nD0
(c) The Foley model In accordance with (3.66) andLandenberg max eBgv nP n0 D ŒY .E (3.69) 43 FB ; n/ C Z43 .EFB ; n/ 2 „ nD0
(b) The Bangert and Kastner model In accordance with (3.61) max eBgv nP n0 D ŒY42 .EFB ; n/ C Z42 .EFB ; n/ (3.64) 2 „ nD0
The carrier statistics
6. Stressed materials, as defined by the model of Seiler et al.
Table 3.1 (continued) Type of materials
150 3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
nD0
(3.109)
J D
In accordance with (3.106),
nP max eBg ŒY51 .EFB ; n/ C Z51 .EFB ; n/ n0 D 2 2 „v
13. II–V materials, as defined by the model of Yamada
(3.104)
max e 2 Bgv kB T nP ŒF0 .50 / expŒˇ50 2 2 „2 nD0
J D
In accordance with (3.102),
nP max eBg ŒY50 .EFB ; n/ C Z50 .EFB ; n/ n0 D 2 „v
12. Gallium Antimonide, the carriers of which can be defined by the model of Mathur et al. nD0
max e 2 Bgv kB T nP ŒF0 .49 / expŒˇ49 (3.99) 2 2 „2 nD0
J D
(b) In accordance with the model of Wang and Ressler (3.98), max eBgv nP ŒY50 .EFB ; n/ C Z50 .EFB ; n/ (3.101) n0 D 2 „ nD0
max e 2 Bgv kB T nP ŒF0 .51;C / expŒˇ51;C 2 2 2 „ nD0 C F0 .51; / expŒˇ51; (3.107)
(3.103)
(3.95)
max e 2 Bgv kB T nP ŒF0 .48 / expŒˇ48 2 2 2 „ nD0
J D
(3.90)
(a) In accordance with the model of Cardona et al. (3.94), max eBgv nP n0 D ŒY49 .EFB ; n/ C Z49 .EFB ; n/ (3.97) 2 „ nD0
max e 2 Bgv kB T nP ŒF0 .47 / expŒˇ47 2 2 2 „ nD0
11. n-Ge, the conduction electrons of which can be defined by two types of energy band models as described in the column of carrier statistics
(3.92)
J D
In accordance (3.89), with max eBgv nP n0 D ŒY48 .EFB ; n/ C Z48 .EFB ; n/ 2 „ nD0
10. Bi2 Te3 , which follows the model of Stordeur et al.
3.3 Result and Discussions 151
152
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
3.4 Open Research Problems (R.3.1) (a) Investigate the FNFE from all the bulk semiconductors as considered in this chapter in the absence of any field by converting the summations over the quantum numbers to the corresponding integrations by including the uniqueness conditions in the appropriate cases and considering the effect of image force in the subsequent study in each case. (b) Investigate the FNFE both in the presence of an arbitrarily oriented quantizing magnetic field including broadening and the electron spin (applicable under magnetic quantization) for all the bulk semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R.3.2) Investigate the FNFE in the presence of quantizing magnetic field under an arbitrarily oriented (a) nonuniform electric field and (b) alternating electric field respectively for all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 by including spin and broadening respectively. (R.3.3) Investigate the FNFE under an arbitrarily oriented alternating quantizing magnetic field by including broadening and the electron spin for all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R.3.4) Investigate the FNFE under an arbitrarily oriented alternating quantizing magnetic field and crossed alternating electric field by including broadening and the electron spin for all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R.3.5) Investigate the FNFE under an arbitrarily oriented alternating quantizing magnetic field and crossed alternating nonuniform electric field by including broadening and the electron spin whose for all the semiconductors unperturbed carrier energy spectra are defined in Chap. 1. (R.3.6) Investigate the FNFE in the presence and absence of an arbitrarily oriented quantizing magnetic field under exponential, Kane, Halperin, Lax, and Bonch-Bruevich band tails [71] for all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 by including spin and broadening (applicable under magnetic quantization). (R.3.7) Investigate the FNFE in the presence of an arbitrarily oriented quantizing magnetic field for all the semiconductors as defined in (6) under an arbitrarily oriented (a) nonuniform electric field and (b) alternating electric field respectively whose unperturbed carrier energy spectra are defined in Chap. 1. (R.3.8) Investigate the FNFE for all the semiconductors as described in (6) under an arbitrarily oriented alternating quantizing magnetic field by including broadening and the electron spin whose unperturbed carrier energy spectra as defined in Chapter 1.
References
153
(R.3.9) Investigate the FNFE as discussed in (6) under an arbitrarily oriented alternating quantizing magnetic field and crossed alternating electric field by including broadening and the electron spin for all the semiconductors whose unperturbed carrier energy spectra as defined in Chap. 1. (R.3.10) Investigate all the appropriate problems of this chapter after proper modifications introducing new t (R.3.11) heoretical formalisms for functional, negative refractive index, macro molecular, and organic and magnetic materials. (R.3.12) Investigate all the appropriate problems of this chapter for p-InSb, p-CuCl, and stressed semiconductors having diamond structure valence bands whose dispersion relations of the carriers in bulk semiconductors are given by Cunningham [74], Yekimov et al. [75], and Roman and Ewald [76], respectively. (R.3.13) (a) Formulate the minimum tunneling, Dwell and phase tunneling, Buttiker and Landauer and intrinsic times for all types of systems as discussed in this chapter. (b) Investigate all the appropriate problems of this chapter for the Dirac electron. (c) Investigate all the problems of this chapter by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions.
References 1. N. Miura, Physics of Semiconductors in High Magnetic Fields, Series on Semiconductor Science and Technology (Oxford University Press, USA, 2007) 2. K.H.J Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Springer, New York, 2003) 3. D. Sellmyer, R. Skomski (Ed.) Advanced Magnetic Nanostructures (Springer, New York, 2005) 4. J.A.C. Bland, B. Heinrich (Ed.) Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism (Pt. 3) (Springer-Verlag, Germany, 2005) 5. B.K. Ridley, Quantum Processes in Semiconductors, Fourth Edition (Oxford publications, Oxford, 1999) 6. J.H. Davies, Physics of Low Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998) 7. S. Blundell, Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics (Oxford University Press, Oxford, 2001) 8. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Publishers, New York, 1991) 9. D. Ferry, Semiconductor Transport (CRC, New York, 2000) 10. M. Reed (Ed.) Semiconductors and Semimetals: Nanostructured Systems (Academic Press, New York, 1992) 11. T. Dittrich, Quantum Transport and Dissipation (Wiley-VCH Verlag GmbH, Berlin, 1998) 12. A.Y. Shik, Quantum Wells: Physics & Electronics of Two Dimensional Systems (World Scientific, New York, 1997) 13. K.P. Ghatak, M. Mondal, Z. Naturforschung A 41a, 881 (1986)
154
3 Field Emission from Quantum Confined Semiconductors Under Magnetic Quantization
14. K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987) 15. K.P. Ghatak, S.N. Biswas, Phys. Stat. Sol. (b) 140, K107 (1987) 16. K.P. Ghatak, M. Mondal, J. Mag. Mag. Mat. 74, 203 (1988) 17. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 139, 195 (1987) 18. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1988) 19. K.P. Ghatak, B. Mitra, A. Ghoshal, Phys. Stat. Sol. (b) 154, K121 (1989) 20. K.P. Ghatak, S.N. Biswas, J. Low Temp. Phys. 78, 219 (1990) 21. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 160, 673 (1990) 22. K.P. Ghatak, B. Mitra, Phys. Lett. A 156, 233 (1991) 23. K.P. Ghatak, A. Ghoshal, B. Mitra, Nouvo Cimento D 13D, 867 (1991) 24. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1989) 25. K.P. Ghatak, B. Mitra, Int. J. Elect. 70, 345 (1991) 26. K.P. Ghatak, S.N. Biswas, J. Appl. Phys. 70, 299 (1991) 27. K.P. Ghatak, A. Ghoshal, Phys. Stat. Sol. (b) 170, K27 (1992) 28. K.P. Ghatak, Nouvo Cimento D 13D, 1321 (1992) 29. K.P. Ghatak, B. Mitra, Intt. J. Elect. 72, 541 (1992) 30. K.P. Ghatak, S.N. Biswas, Nonlinear Optics 4, 347 (1993) 31. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 175, 113 (1993) 32. K.P. Ghatak, S.N. Biswas, Nonlinear Optics 4, 39 (1993) 33. K.P. Ghatak, B. Mitra, Nouvo Cimento 15D, 97 (1993) 34. K.P. Ghatak, S.N. Biswas, Nanostruct. Mater. 2, 91 (1993) 35. K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 185, K5 (1994) 36. K.P. Ghatak, B. Goswami, M. Mitra, B. Nag, Nonlinear Optics 16, 9 (1996) 37. K.P. Ghatak, M. Mitra, B. Goswami, B. Nag, Nonlinear Optics 16, 167 (1996) 38. K.P. Ghatak, D.K. Basu, B. Nag, J. Phys. Chem. Sol. 58, 133 (1997) 39. K.P. Ghatak, B. Nag, Nanostruct. Mater. 10, 923 (1998) 40. D. Roy Choudhury, A.K. Choudhury, K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b) 98, K141 (1980) 41. A.N. Chakravarti, K.P. Ghatak, A. Dhar, S. Ghosh, Phys. Stat. Sol. (b) 105, K55 (1981) 42. A.N. Chakravarti, A.K. Choudhury, K.P. Ghatak, Phys. Stat. Sol. (a) 63, K97 (1981) 43. A.N. Chakravarti, A.K. Choudhury, K.P. Ghatak, S. Ghosh, A. Dhar, Appl. Phys. 25, 105 (1981) 44. A.N. Chakravarti, K.P. Ghatak, G.B. Rao, K.K. Ghosh, Phys. Stat. Sol. (b) 112, 75 (1982) 45. A.N. Chakravarti, K.P. Ghatak, K.K. Ghosh, H.M. Mukherjee, Phys. Stat. Sol. (b) 116, 17 (1983) 46. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 133, K143 (1984) 47. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 126, K47 (1984) 48. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 126, K41 (1984) 49. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 129, K745 (1985) 50. M. Mondal, K.P. Ghatak, Phys. Scr. 31, 615 (1985) 51. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, 239 (1986) 52. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 93, 377 (1986) 53. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, K21 (1986) 54. M. Mondal, S. Bhattacharyya, K.P. Ghatak, Appl. Phys. A 42A, 331 (1987) 55. S.N. Biswas, N. Chattopadhyay, K.P. Ghatak,Phys. Stat. Sol. (b) 141, K47 (1987) 56. B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b) 149, K117 (1988) 57. B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 150, K67 (1988) 58. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 147, K179 (1988) 59. M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 146, K97 (1988) 60. B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 153, K209 (1989) 61. B. Mitra, K.P. Ghatak, Phys. Letts. 142A, 401 (1989) 62. B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 154, K147 (1989) 63. B. Mitra, K.P. Ghatak, Sol. State Elect. 32, 515 (1989) 64. B. Mitra, A. Ghoshal, K.P. Ghatak, Phys. Stat. Sol. (b) 155, K23 (1989) 65. B. Mitra, K.P. Ghatak, Phys. Letts. 135A, 397 (1989)
References
155
66. B. Mitra, K.P. Ghatak, Phys. Letts. A 146A, 357 (1990) 67. B. Mitra, K.P. Ghatak, Phys. Stat. Sol. (b) 164, K13 (1991) 68. S.N. Biswas, K.P. Ghatak, Int. J. Elect. 70, 125 (1991) 69. P.R. Wallace, Phys. Stat. Sol. (b),92, 49 (1979) 70. K.P. Ghatak, S. Bhattacharya, D. De, Einstein Relation in Compound Semiconductors and Their Nanostructures, Springer Series in Materials Science, Vol. 116 (Springer-Verlag, Germany, 2009) 71. B.R. Nag, Electron Transport in Compound Semiconductors, Springer Series in Solid-State Sciences, Vol. 11 (Springer-Verlag, Germany, 1980). 72. C.C. Wu, C.J. Lin, J. Low Temp. Phys. 57, 469 (1984) 73. M.H. Chen, C.C. Wu, C.J. Lin, J. Low Temp. Phys. 55, 127 (1984) 74. R.W. Cunningham, Phys. Rev. 167, 761 (1968) 75. A.I. Yekimov, A.A. Onushchenko, A.G. Plyukhin, Al.L. Efros, J. Expt. Theor. Phys. 88, 1490 (1985). 76. B.J. Roman, A.W. Ewald, Phys. Rev. B 5, 3914 (1972)
•
Chapter 4
Field Emission from Superlattices of Nonparabolic Semiconductors Under Magnetic Quantization
4.1 Introduction The importance of magnetic quantization on the electronic properties of different semiconductors having various band structures has already been described in [1–12] and Chap. 3, respectively. In this chapter, we shall study the FNFE from III–V, II–VI, IV–VI, and HgTe/CdTe SLs with graded interfaces in Sects. 4.2.1–4.2.4 under magnetic quantization. From Sects. 4.2.5 to 4.2.8, we shall investigate the same from III–V, II–VI, IV–VI, and HgTe/CdTe effective mass SLs under magnetic quantization, respectively. In Sect. 4.3, the dependences of the FNFE with respect to various variables have been studied by taking GaAs/Ga1x Alx As, CdS/CdTe, PbTe/PbSnTe, and HgTe/CdTe SLs and the corresponding effective mass SLs as examples. Section 4.4 contains open research problems.
4.2 Theoretical Background 4.2.1 The Field Emission from III–V Superlattices with Graded Interfaces Under Magnetic Quantization The dispersion law of the electrons of III–V SLs with graded interfaces can be written, following (2.2), under magnetic quantization as " kz2
D
# 2 1 1 1 1B .n/ ; cos f21B .n; E/ 2 L20
S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 4, © Springer-Verlag Berlin Heidelberg 2012
(4.1)
157
158
where
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
"
f21B .n; E/ D 2 coshfg21B .n; E/g cosfg22 .n; E/gCQ21B .n; E/ sinhfg21B .n; E/g ! fJ21B .n; E/g2 sin fg22B .n; E/g C 21 3J22B .n; E/ J22B .n; E/ cosh fg21B .n; E/g sinfg22B .n; E/g C 3J21B .n; E/ "
# fJ22B .n; E/g2 .sinhfg21B .n; E/g cosfg22B .n; E/g J21B .n; E/ C 21 2.fJ21B .n; E/g2 fJ22B .n; E/g2 / coshfg21B .n; E/g 5fJ21B .n; E/g3 1 5fJ22B .n; E/g3 C cosfg22B .n; E/g C 12 J21B .n; E/ J22B .n; E/ # f34J21B .n; E/J22B .n; E/g sinhfg21B .n; E/g sinfg22B .n; E/g ; g21B .n; E/ J21B .n; E/Œa0 21 ; 1=2 2mc2 E 0 G.E V ; ˛ ; / C .n/ ; J21B .n; E/ 0 2 2 1B „2 2eB 1 1B .n/ D nC ; g22B .n; E/ D J22B .n; E/Œb0 21 ; „ 2 1=2 2mc1 E J22B .n; E/ G.E; ˛ ; / .n/ ; and 1 1 1B „2 J21B .n; E/ J22B .n; E/ Q21B .n; E/ : J22B .n; E/ J21B .n; E/ Therefore, (4.1) can be expressed as kz2 D A21B .E; n/;
(4.2)
"
# 2 1 1 1B .n/ . where A21B .E; n/ D cos1 f21B .n; E/ 2 L20 The electron concentration is given by max eBg X n0 D 2 v ŒD21B .EFB ; n/ C D22B .EFB ; n/ ; „ nD0
n
(4.3)
4.2 Theoretical Background
where D21B .EFB ; n/ D
159
p A21B .EFB ; n/, EFB is the Fermi energy in this case, and
D22B .EFB ; n/ D
so X
ZB .r/ŒD21B .EFB ; n/:
rD1
The field emitted current density assumes the form J D
nmax gv Be2 kB T X F0 .21B / exp.ˇ21B / ; 2 2 „2 nD0
(4.4)
where 21B D .EFB E21B /=kB T , and E21B is the lowest positive root of the equation. h i 1 f21B .E21B ; n/ D 2 cos L0 .1B .n// 2 ; (4.5) 1 4 ; ŒA21B .V0 ; n/3=2 eFsz A21B .V0 ; n/ 3 1=2 1 2 1 1 1 A21B .V0 ; n/ D .n; V / 1 .n; V / cos f f 21B 0 0 2 4 21B L20 fN21B .n; V0 / ; ˇ21B D
" 0 0 .n; V0 / sinh fg21B .n; V0 /g cos fg22B .n; V0 /g 2g22B .n; V0 / fN21B .n; V0 / D 2g21B 0 sin fg22B .n; V0 /g cosh fg21B .n; V0 /g C Q21B .n; V0 /
sinh fg21B .n; V0 /g sin fg22B .n; V0 /g C Q21B .n; V0 / 0 .n; V0 / cosh fg21B .n; V0 /g sin fg22B .n; V0 /g g21B 0 C g22B .n; V0 / cos fg22B .n; V0 /g sinh fg21B .n; V0 /g C 21 0 2 0 2J21B .n; V0 /J21B .n; V0 / J21B .n; V0 /J22B .n; V0 / 2 J22B .n; V0 / J22B .n; V0 / 2 J .n; V0 / 3J022B .n; V0 / cosh fg21B .n; V0 /g sinfg22B .n; V0 /gC 21B J22B .n; V0 / ˚ 0 .n; V0 / cosh fg21B .n; V0 /g cos fg22B .n; V0 /g 3J22B .n; V0 / g22B
0 .n; V0 / sin fg22B .n; V0 /g sinh fg21B .n; V0 /g Cg21B 2 J22B .n; V0 / ˚ 0 C 3J22B .n; V0 / g21B .n; V0 / cosh fg21B .n; V0 /g J21B .n; V0 /
160
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization 0 cosfg22B .n; V0 /g g22B .n; V0 / sin fg22B .n; V0 /g 0 .n; V0 / 2J22B .n; V0 /J22B 0 sinh fg21B .n; V0 /gg C 3J21B .n; V0 / J21B .n; V0 / 2 .n; V0 / J 0 .n; V0 /J22B sinhfg21B .n; V0 /g cosfg22B .n; V0 /g C 21B 2 J21B .n; V0 / 2 ˚ 0 2 C 21 2J21B .n; V0 / 2J22B .n; V0 / g21B .n; V0 / 0 .n; V0 / sinh fg21B .n; V0 /g cos fg22B .n; V0 /g g22B ˚ 0 sin fg22B .n; V0 /g cosh fg21B .n; V0 /g C 4J21B .n; V0 /J21B .n; V0 /
0 4J22B .n; V0 /J22B .n; V0 / fcosh fg21B .n; V0 /g cos fg22B .n; V0 /gg 2 0 3 0 .n; V0 /J22 .n; V0 / 5J22B .n; V0 /J21B .n; V0 / 1 15J22B C 2 12 J21B .n; V0 / J21B .n; V0 / 3 0 0 .n; V0 /J22 .nx ; ny ; V0 / 5J21B 15J 221B .n; V0 /J21B .n; V0 / C 2 J .n; V / J22B .n; V0 / 22B 0 0 0 34J21B .n; V0 / J22B .n; V0 / 34J21B .n; V0 /J22B .n; V0 /
fsinh fg21B .n; V0 /g sin fg22B .n; V0 /gg 3 5J 3 .n; V0 / 5J22B .n; V0 / C 21B 34J21B .n; V0 /J22B .n; V0 / C J21B .n; V0 / J22B .n; V0 / ˚ 0 0 .n; V0 / g21B .n; V0 / cosh fg21B .n; V0 /g sin fg22B .n; V0 /g C g22B ## cos fg22B .n; V0 /g sinh fg21B .n; V0 /gg
;
0 0 .n; V0 / D J21B .n; V0 / Œa0 21 ; g21B mc2 mc2 0 J21B .n; V0 / D ŒJ21B .n; V0 /1 2 G.V0 V 0 ; ˛2 ; 2 / C 2 .V 0 V0 / „ „ G 0 .V0 V 0 ; ˛2 ; 2 / ;
" 0
G .V0 V 0 ; ˛2 ; 2 / D G.V0 V 0 ; ˛2 ; 2 / C
1 .V0 V 0 C Eg2 /
1 .V0 V 0 C Eg2 C 2 / 1
#
; V0 V 0 C Eg2 C 23 2
4.2 Theoretical Background
161
0 0 0 g22B .n; V0 / D J22B .n; V0 / Œb0 21 ; J22B .n; V0 / D ŒJ22B .n; V0 /1 hm i mc1 c1 0 G.V ; ˛ ; / C V G .V ; ˛ ; / ; 0 1 1 0 0 1 1 „2 „2 1 1 C G 0 .V0 ; ˛1 ; 1 / D G.V0 ; ˛1 ; 1 / .V0 C Eg1 / .V0 C Eg1 C 1 / # 1 ; V0 C Eg1 C 23 1
and 0 Q21B .n; V0 /
0 0 J21B J 0 .V0; n/ J21B .n; V0 / J22B .n; V0 / .V0 ; n/ 22B 2 J22B .V0 ; n/ J21B .n; V0 / J22B .V0 ; n/ J 0 .n; V0 / J22B .V0 ; n/ : C 21B 2 J21B .V0 ; n/
4.2.2 The Field Emission from II–VI Superlattices with Graded Interfaces Under Magnetic Quantization The electron dispersion law in II–VI superlattices can be written following (2.9) under magnetic quantization as " kz2
D
# 2 1 1 1 1B .n/ ; cos f212B .n; E/ 2 L20
(4.6)
where " f212B .n; E/ D 2 cosh fg212B .n; E/g cosfg222B .n; E/g C Q212B .n; E/ sinh fg212B .n; E/g sin fg222B .n; E/g " ! fJ212B .n; E/g2 C 21 3J222B .n; E/ cosh fg212B .n; E/g J222B .n; E/ ! fJ222B .n; E/g2 sin fg222B .n; E/g C 3J212B .n; E/ J212B .n; E/ # sinh fg212B .n; E/g cos fg222B .n; E/g C 21 2 fJ212B .n; E/g2
162
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
fJ222B .n; E/g2 cosh fg212B .n; E/g cos fg222B .n; E/g 1 5 fJ222B .n; E/g3 5 fJ212B .n; E/g3 C f34J212B .n; E/ 12 J212B .n; E/ J222B .n; E/ # J222B .n; E/g sinh fg212B .n; E/g sin fg222B .n; E/g ;
C
Q212B .E; n/ D
J212B .E; n/ J222B .E; n/ ; J222B .E; n/ J212B .E; n/
g212B .n; E/ J212B .n; E/ Œa0 21 ; 1=2 2mc2E 0 G.E V ; ˛ ; / C .n/ ; J212B .n; E/ 0 2 2 1B „2 g222B .n; E/ D J222B .n; E/ Œb0 21 ; 1=2 p 2mk;1 „2 J222B .n; E/ E 1B .n/ C0 1B .n/ : „2 2m?;1 Therefore, (4.6) can be expressed as kz2 D A212B .E; n/;
(4.7)
"
# 2 1 1 1 1B .n/ . where A212B .E; n/ D cos f212B .n; E/ 2 L20 The electron concentration is given by nmax eBgv X n0 D ŒD212B .EFB ; n/ C D222B .EFB ; n/ ; 2„ 2 nD0
where D212B .EFB ; n/ D
p
(4.8)
A212B .EFB ; n/ and
D222B .EFB ; n/ D
so X
ZB .r/ ŒD212B .EFB ; n/ :
rD1
The field emitted current density can be written as J D
nmax gv Be2 kB T X F0 .22B / exp.ˇ22B / h2 nD0
where 22B D .EF1D E22B /=kB T , and E22B is the root of the equation.
(4.9)
4.2 Theoretical Background
cos1
163
1 f212B .E22B ; n/ 2
2 D L20 1B .n/
(4.10)
1 4 ŒA212B .V0 ; n/3=2 3eFsz A212B .V0 ; n/ ; 3 1=2 1 2 1 1 1 A212B .V0 ; n/ D 1 f212B .n; V0 / cos f212B .n; V0 / 2 4 L20 fN212B .n; V0 /
ˇ22B D
fN212B .n; V0 / 0 .n; V0 / sinh fg212B .n; V0 /g cos fg222B .n; V0 /g D 2g212B 0 0 2g222B .n; V0 / sin fg222B .n; V0 /g cosh fg212B .n; V0 /g C Q212B .n; V0 / 0 sinh fg212B .n; V0 /g sin fg222B .n; V0 /g C Q212B .n; V0 / g212B .n; V0 / 0 .n; V0 / cos fg222B .n; V0 /g cosh fg212B .n; V0 /g sin fg222B .n; V0 /g C g222B 0 2J212B .n; V0 /J212B .n; V0 / sinh fg212B .n; V0 /g C 21 J222B .n; V0 / 2 0 J212B .n; V0 /J222B .n; V0 / 0 3J222B .n; V0 / cosh fg212B .n; V0 /g 2 J222B .n; V0 / 2 ˚ 0 J212B .n; V0 / .n; V0 / 3J222B .n; V0 / g212B sin fg222B .n; V0 /g C J222B .n; V0 / 0 sinh fg212B .n; V0 /g sin fg222B .n; V0 /g C g222B .n; V0 / cos fg222B .n; V0 /g 0 .n; V0 / J 2 .n; V0 /J212B 0 .n; V0 / C 222B 2 cosh fg212B .n; V0 /gg C 3J212B J212B .n; V0 / 0 .n; V0 / J222B .n; V0 /gg fsinhŒg212B .n; V0 / ffJ212B .n; V0 /g1 f2J222B ˚ 0 cosfg222B .n; V0 /ggC g212B .n; V0 / coshfg212B .n; V0 /gcosfg222B .n; V0 /g 0 .n; V0 / sin fg222B .n; ; V0 /g sinh Œg212B .n; V0 /g 3J212B .n; V0 / g222B
2 J222B .n; V0 / J212B .n; V0 /
C 21
0 4J212B .n; V0 / J212B .n; V0 / 4J222B .n; V0 /
˚ 2 0 .n; V0 / fcosh fg212B .n; V0 /g cos fg222B .n; V0 /gg C 2J212B .n; V0 / J222B
˚ 0 2 2J222B .n; V0 / g212B .n; V0 / sinhŒg212B .n; V0 / cos fg222B .n; V0 /g
164
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization 0 g222B .n; V0 / sin fg222B .n; V0 /g sinhŒg212B .n; V0 / 2 0 3 0 1 15J222B .n; V0 /J222B .n; V0 / 5J222B .n; V0 /J212B .n; V0 / C 2 12 J212B .n; V0 / J212B .n; V0 / 3 0 2 0 .n;V0 /J222B .n;V0 / 15J212B .n;V0 /J212B .n;V0 / 5J212B 0 C .n;V0 / 34J212B 2 J222B .n; V0 / J222B .n; V0 / 0 J222B .n; V0 / 34J212B .n; V0 /J222B .n; V0 / fsinh fg212B .n; V0 /g
3 5J222B 5J 3 .n; V0 / .n; V0 / C 212B J212B .n; V0 / J222B .n; V0 / ˚ 0 34J222B .n; V0 /J212B .n; V0 /g C g212B .n; V0 / coshfg212B .n; V0 /g
1 sinfg222B .n; V0 /gg C 12
0 sinfg222B .n; V0 /g g222B .n; V0 / cos fg222B .n; V0 /g sinh fg212B .n; V0 /g
0 0 .n; V0 / D J212B .n; V0 / Œa0 21 ; g212B 1=2 2mc2 J212B .V0 ; n/ D ; .V 0 V0 /G.V0 V 0 ; ˛2 ; 2 / C 1B .n/ „2 h m c2 0 .n; V0 / D ŒJ212B .n; V0 /1 2 G.V0 V 0 ; ˛2 ; 2 / J212B „ i mc2 C 2 .V 0 V0 /G 0 .V0 V 0 ; ˛2 ; 2 / „ " 1 G 0 .V0 V 0 ; ˛2 ; 2 / D G.V0 V 0 ; ˛2 ; 2 / .V0 V 0 C Eg2 C 2 / # 1 1 C .V0 V 0 C Eg2 / V0 V 0 C Eg2 C 23 2 0 0 g222B .n; V0 / D J222 .n; V0 / Œb0 21 ;
J222B .n; V0 / D 0 Q212B .n; V0 /
0 J222B .n; V0 / D ŒJ222B .n; V0 /1
hm i
1=2 2mk;1 „2 1=2 V .n/ C Œ .n/ 0 1B 0 1B „2 2m?;1
0 0 0 J212B .n; V0 / J222B .n; V0 / J212B .n; V0 / J222B .n; V0 / 2 J222B .n; V0 / J212B .n; V0 / J222B .n; V0 / 0 J222B .n; V0 / J212B .n; V0 / : C 2 J212 .n; V0 /
k;1
„2
;
4.2 Theoretical Background
165
4.2.3 The Field Emission from IV–VI Superlattices with Graded Interfaces Under Magnetic Quantization The electron dispersion law under magnetic quantization in IV–VI SLs with graded interfaces can be expressed following (2.16) as " kz2
D
# 2 1 1 1 1B .n/ ; cos I23B .n; E/ 2 L20
(4.11)
where I23B .n; E/jEDV0 " ˚
D 2 cosh ˇN23B .n; V0 / cos fN23B .n; V0 /g C "N 23B .n; V0 /
˚ sinh ˇN23B .n; V0 / sin fN23B .n; V0 /g C 21
" ˚
2 K 53B .n; V0 /
K 63 .n; V0 / ˚
3K 63B .n; V0 / cosh ˇN23B .n; V0 / sin fN23B .n; V0 /g C 3K 53B .n; V0 / # ˚
2 !
˚ K 63B .n; V0 / sinh ˇN23B .n; V0 / cos fN23B .n; V0 /g K 53B .n; V0 / ˚ ˚
2
cosh ˇN23B .n; V0 / C 21 2 fK 53B .n; V0 /g2 K 63B .n; V0 /
1 cos fN23B .n; V0 /g C 12
3 ˚ 5 K 53B .n; V0 / K 63B .n; V0 /
C
˚
3 5 K 63B .n; V0 / K 53B .n; V0 /
#
˚
˚ N 34K 53B .n; V0 / K 63B .n; V0 / sinh ˇ23B .n; V0 / sin fN23B .n; V0 /g ˇN23B .n; V0 / K 53B .n; V0 / Œa0 21 ; h K 53B .n; E/ .E V 0 /H12 C H22 .n/ C .E V 0 /2 H32 C .E V 0 /H42 .n/ C H52 .n/
1=2 i1=2
;
fi2 „2 „2 ; i D 1; 2; f D ; b D ; H3i D i i 2 2m 2mC bi2 fi2 k;i k;i 1 2 H4i .n/ D 4.bi2 fi 2 /2 4bi Egi C 4bi di C 4bi fi Egi C 4fi2 Egi
166
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
C 1B .n/ 8bi2 ai C 8Ci fi bi 8ai bi ; „2 „2 2 ; C D P ; a D ; i i ?;i 2m 2mC ?;i ?;i 1 2 H5i .n/ 4.bi2 fi2 /2 1B .n/ 8ai bi Ci fi C 4bi2 Ci2 C 4fi2 ai2 4fi2 Ci2 C 1B .n/ 8di Ci fi 4ai bi di 4ai bi fi Egi C 4bi2 Ci C 4bi2 ei Egi ii h 4ai fi 2 Egi 4fi2 ei Egi C Eg2i bi2 C di2 C fi2 Eg2i C 2Egi fi di ; 2 ; di D Pk;i
ai D
1 bi ; H2i .n/ D 2.bi2 fi2 / H1i D 2 Egi bi C di C fi Egi 2 bi fi C 2 .Ci fi ai bi / 1B .n/ ; N23B .n; E/ K 63B .n; E/ Œb0 21 ; K 63B .n; E/ E 2 H31 C EH41 .n/ i1=2 ; C H51 .n/1=2 C ŒEH11 C H21 .n/ # " K 53B .E; n/ K 63B .E; n/ ; "N 23B .E; n/ D K 63B .E; n/ K 53B .E; n/ ) kz2 D A3B .E; n/;
(4.12)
"
# 2 1 1 where A3B .E; n/ D 1B .n/ . cos1 I23 .n; E/ 2 L20 The electron concentration is given by nmax eBgv X n0 D 2 D 3B .EFB ; n/ C D 4B .EFB ; n/ ; „
(4.13)
nD0
where D 3B .EFB ; n/ D
q
A3B .EFB ; n/ and D 4B .EFB ; n/ D
s0 P
ZB .r/ŒD 3B .EFB ; n/.
rD1
The field-emitted current density can be written as J D
nmax Bgv e 2 kB T X F0 .23B / exp.ˇ23B /; 2 2 „2 nD0
(4.14)
where 23B D .EFB E23B /=kB T , and E23B is the root of the equation. i h 1 I23B .E23B ; n/ D 2 cos L0 .1B .n// 2 ; ˇ23B D
3=2 1 4 A3B .V0 ; n/ 3eFsz A4B .V0 ; n/ ; 3
(4.15)
4.2 Theoretical Background
A4B .V0 ; n/ D
167
1=2 1 2 1 1 1 .n; V / 1 .n; V / cos I I 23B 0 0 2 4 23B L20 ! I 23B .n; V0 / ;
I 23B .n; V0 / " ˚
D 2ˇN023B .n; V0 / sinh ˇN23B .n; V0 / cos fN23B .n; V0 /g ˚
2N023B .n; V0 / sin fN23B .n; V0 /g cosh ˇN23B .n; V0 / C "N 023B .n; V0 / ˚
sinh ˇN23B .n; V0 / sin fN23B .n; V0 /g C "N 23B .n; V0 / ˇN023B .n; V0 / ˚
cosh ˇN23B .n; V0 / sin fN23B .n; V0 /g C N023B .n; V0 / cos fN23B .n; V0 /g "( 2 ˚
K 53B .n;V0 /K 063B .n;V0 / N sinh ˇ23B .n; V0 / C21 2 K 63B .n; V0 / ) 2K 53B .n;V0 /K 053B .n;V0 / 3K 063B .n;V0 / C K 63 .n; V0 / ( 2 )
˚ K 53B .n; V0 / N cosh ˇ23B .n; V0 / sin fN23B .n; V0 /g C 3K 63B .n; V0 / K 63B .n; V0 / ˚ ˚
ˇN023B .n; V0 / sinh ˇN23B .n; V0 / sin fN23B .n; V0 /g C N023B .n; V0 / ( ˚
K 63B .n; V0 / N cos fN23B .n; V0 /g cosh ˇ23B .n; V0 / C 3K 053B .n; V0 / C 2 K 53B .n; V0 / n˚
1 ˚
o 2K 63B .n; V0 / K 063B .n; V0 / K 053B .n; V0 / K 53B .n; V0 /
˚ ˚
fsinhŒˇN23B .n;V0 / cosfN23B .n;V0 /g C ˇN023B .n;V0 / cosh ˇN23B .n;V0 /
cos fN23B .n; V0 /g N023B .n; V0 / sin fN23B .n; V0 /g sinh ˇN23B .n; V0 / " )# ( 2 K 63B .n; V0 / C 21 4K 53B .n; V0 / K 053B .n; V0 / 3K 53B .n; V0 / K 53B .n; V0 /
˚ ˚
4K 63B .n; V0 /K 063B .n; V0 /g cosh ˇN23B .n; V0 / cos fN23B .n; V0 /g n 2 o 2 2K 53B .n; V0 / 2K 63B .n; V0 / fˇN023B .n; V0 / sinhŒˇN23B .n; V0 / cos fN23B .n; V0 /g N023B .n; V0 / sin fN23B .n; V0 /g cosh ˇN23B .n; V0 /
168
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
1 C 12
"
2
15K 53B .n; V0 /K 063B .n; V0 / K 63B .n; V0 /
2
5K 63B .n;V0 /K 053B .n;V0 /
3
5K 53B .n; V0 /K 063B .n; V0 / 2
K 63B .n; V0 /
2
C
15K 53B .n;V0 /K 063B .n;V0 /
34K 053B .n;V0 / K 53B .n; V0 / ˚
K 63B .n; V0 / 34K 063B .n; V0 /K 53B .n; V0 / fsinh ˇN23B .n; V0 / 2
K 53B .n; V0 /
( 3 3 1 5K 63B .n; V0 / 5K 53B .n; V0 / sinfN23B .n;V0 /gg C C 34K 53B .n;V0 / 12 K 53B .n; V0 / K 63B .n; V0 /
˚ ˚
K 63B .n; V0 / ˇN023B .n; V0 / cosh ˇN23B .n; V0 / sin fN23B .n; V0 /g # ˚
C N023B .n; V0 / cos fN23B .n; V0 /g sinh ˇN23B .n; V0 / ; ˇN023B .n; V0 / D K 063B .n; V0 / Œa0 21 ; h 2 1 V0 V 0 H32 C V0 V 0 H42 .V0 ; n/ K 063B .n; V0 / D Œ2K 53B .n; V0 /1 2 1=2 C H52 .V0 ; n/ 2 V0 V 0 H32 C H42 .V0 ; n/ H12 ; N023B .n; V0 / D K 063B .n; V0 / Œb0 21 ; " # 1 Œ2V0 H31 C H41 .n/ H11 K 063B .V0 ; n/ D 2K 63B .V0 ; n/ 1=2 ; V02 H31 C V0 H41 .n/ C H51 .n/ " K 053B .n; V0 / K 063B .n; V0 / K 53B .n; V0 / K 063B .n; V0 / "N023B .n; V0 / 2 K 063B .n; V0 / K 53B .n; V0 / K 63B .n; V0 / # K 63B .n; V0 / K 053B .n; V0 / : 2 K 53B .n; V0 /
4.2.4 The Field Emission from HgTe/CdTe Superlattices with Graded Interfaces Under Magnetic Quantization The electron dispersion law in HgTe/CdTe SLs under magnetic quantization can be expressed following (2.23) as
4.2 Theoretical Background
169
kz D
1=2 1 .n; E/g .n/g ; f f 11B 1B L20
1 where 11B .n; E/ D cos1 2
(4.16)
2 11B .n; E/
,
11B .n; E/
"
D 2 cosh fˇ11B .n; E/g cos f11B .n; E/g C "11B .n; E/ "
! fK13B .n; E/g2 3K14B .n; E/ sinhfˇ11B .n; E/g sinf11B .n; E/gC21 K14B .n; E/ ! fK14B .n; E/g2 cosh fˇ11B .n; E/g sin f11B .n; E/g C 3K13B .n; E/ K13B .n; E/ sinh fˇ11B .n; E/g cos f11B .n; E/g C 21 2 fK13B .n; E/g2
fK14B .n; E/g2 cosh fˇ11B .n; E/g cos f11B .n; E/g ! 5 fK14B .n; E/g3 1 5 fK13B .n; E/g3 C f34K14B .n; E/K13B .n; E/g C 12 K14B .n; E/ K13B .n; E/ # sinh fˇ11B .n; E/g sin f11B .n; E/g
;
K13B .n; E/ K14B .n; E/ ; "11B .n; E/ K14B .n; E/ K13B .n; E/ ˇ11B .n; E/ K13B .n; E/ Œa0 21 ; 11B .n; E/ D K14B .n; E/ Œb0 21 ; 2 31=2 q 2 2 C 2A E B B C 4A E B 0 0 0 0 6 0 7 K14B .n; E/ 4 f1B .n/g5 ; 2A20 K13B .n; E/
2mc2 E 0 „2
E 0 D V 0 E:
1=2 ; G E V 0 ; Eg2 ; 2 C f1B .n/g
170
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
Therefore, (4.16) can be written as kz2 D A5B .E; n/;
(4.17)
"
# 2 1 1 1 1B .n/ : where A5B .E; n/ D cos 11B .n; E/ 2 L20 The electron concentration is given by nmax eBgv X n0 D 2 D 5B .EFB ; n/ C D 6B .EFB ; n/ ; „ nD0
where D 5B .EFB ; n/ D
q
A5B .EFB ; n/ and D 6B .EFB ; n/ D
so P
(4.18)
Z1D .r/ŒD 5B .EFB ; n/.
rD1
The field-emitted current density assumes the form J D
nmax gv Be2 kB T X F0 .24B / exp.ˇ24B /; 2 2 „2 nD0
(4.19)
where 24B D .EFB E24B /=kB T , and E24B is the root of the equation. A5B .E24B ; n/ D 0;
(4.20)
3=2 1 4 A5B .V0 ; n/ 3eFsz A6B .V0 ; n/ ; ˇ24B D 3 1 1 1 N 11B .V0 ; n/ cos A6B .V0 ; n/ D .n; V / 11B 0 2 L20 1=2 ! 1 2 .n; V0 / ; 1 4 11B N 11B .n; V0 / " D 2ˇ011B .n; V0 / sinh fˇ11B .n; V0 /g cos f11B .n; V0 /g 2011B .n; V0 / sin f11B .n; V0 /g cosh fˇ11B .n; V0 /g C "011B .n; V0 / sinh fˇ11B .n; V0 /g sin f11B .n; V0 /g C "11B .n; V0 / Œˇ011B .n; V0 / cosh fˇ11B .n; V0 /g sin f11B .n; V0 /g C 011B .n; V0 / cos f11B .n; V0 /g sinh fˇ11B .n; V0 /g 2K13B .n; V0 /K013B .n; V0 / C 21 3K014B .n; V0 / K14B .n; V0 / 2 .n; V0 /K014B .n; V0 / K13B cosh fˇ11B .n; V0 /g sin f11B .n; V0 /g K14B .n; V0 /
4.2 Theoretical Background
171
2 .n; V0 / K13B C 3K14B .n; V0 / fˇ011B .n; V0 / sinh fˇ11B .n; V0 /g K14B .n; V0 / sin f11B .n; V0 /g C 011B .n; V0 / cos f11B .n; V0 /g cosh fˇ11B .n; V0 /gg K 2 .n; V0 / C 3K013B .n; V0 / C 14B K013B .n; V0 / ffK13B .n; V0 /g1 2 K13B .n; V0 / f2K14B .n; V0 /:K014B .n; V0 /gg fsinhŒˇ11B .n; V0 / cos f11B .n; V0 /gg K 2 .n; V0 / Œˇ011B .n; V0 / cos f11B .n; V0 /g C 3K13B .n; V0 / 14B K13B .n; V0 / cosh fˇ11B .n; V0 /g 011B .n; V0 / sin f11B .n; V0 /g sinhŒˇ11B .n; V0 / C 21 4K13B .n; V0 / K013B .n; V0 / 4K14B .n; V0 /K014B .n; V0 /g ˚ 2
2 fcosh fˇ11B .n; V0 /g cos f11B .n; V0 /gg C 2K13B .n; V0 / 2K14B .n; V0 / fˇ011B .n; V0 / sinhŒˇ11B .n; V0 / cos f11B .n; V0 /g 011B .n; V0 / 2 .n; V0 /K013B .n; V0 / 1 15K13B sin f11B .n; V0 /g coshŒˇ11B .n; V0 / C 12 K14B .n; V0 /
3 3 .n; V0 /K014B .n; V0 / 5K14B .n; V0 /K013B .n; V0 / 5K13B 2 2 K14B .n; V0 / K13B .n; V0 /
2 15K14B .n; V0 /K014B .n; V0 / 34K013B .n; V0 /K14B .n; V0 / K13B .n; V0 / 34K13B .n; V0 /K014B .n; V0 / fsinh fˇ11B .n; V0 /g sin f11B .n; V0 /gg
C
C fˇ011B .n; V0 / cosh fˇ11B .n; V0 /g sin f11B .n; V0 /g C f011B .n; V0 / 3 3 5K14B .n;V0 / .n;V0 / 1 5K13B C cos f11B .n; V0 /g sinh fˇ11B .n; V0 /g 12 K14B .n; V0 / K13B .n; V0 / # 34K13 .n; V0 /K14 .n; V0 / ; ˇ011B .n; V0 / D K013B .n; V0 / Œa0 21 ; " mc2 K013B .n; V0 / D ŒK13B .n; V0 /1 2 G V0 V 0 ; ˛2 ; 2 „ " 1 mc2 C 2 .V 0 V0 /G V0 V 0 ; ˛2 ; 2 „ .V0 V 0 C Eg2 C 2 /
172
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
C
1
##
1
.V0 V 0 C Eg2 /
V0 V 0 C Eg2 C 23 2
;
011B .n; V0 / D K014B .n; V0 / Œb0 21 ; B0 2 1 V0 1=2 fB C 4A0 V0 g ; K014B .n; V0 / D ŒK14B .n; V0 / A0 A0 0 and "011B
.n; V0 /
K013B .n; V0 / K014B .n; V0 / K13B .n; V0 / K014B .n; V0 / 2 K14B .n; V0 / K13B .n; V0 / K14B .n; V0 / K14B .n; V0 / K013B .n; V0 / : 2 K13B .n; V0 /
4.2.5 The Field Emission from III–V Effective Mass Superlattices Under Magnetic Quantization The electron dispersion law in III–V effective mass superlattices (EMSLs) can be written following (2.29) under magnetic quantization as kx2 D Œ21B .n; E/; where 21B .n; E/ D
(4.21)
2 1 1 cos .f22B .n; E// f1B .n/g, 2 L0
f22B .n; E/ D a1 cosŒa0 C22B .n; E/ C b0 D22B .n; E/ a2 cosŒa0 C22B .n; E/ b0 D22B .n; E/; 1=2 2mc1 E C22B .n; E/ G E; E ; .n/g ; f g1 1 1B „2 1=2 2mc2 E G E; Eg1 ; 2 f1B .n/g D22B .n; E/ : „2
and
The electron concentration is given by n0 D
nmax eBgv X ŒD 7B .EFB ; n/ C D 8B .EFB ; n/; 2 „ nD0
(4.22)
so p P where D 7B .EFB; n/ D 21B .EFB; n/ and D 8B .EFB; n/ D ZB .r/ŒD 7B .EFB ; n/. rD1
4.2 Theoretical Background
173
The field-emitted current density assumes the form J D
nzmax Bgv e 2 kB T X F0 .26B / exp.ˇ26B /; 2 2 „2 n D1
(4.23)
z
where 26B D .EFB E26B /=kB T , and E26B is the root of the equation. 21B .E26B ; n/ D 0;
(4.24)
4 Œ21B .V0 ; n/3=2 Œ3eFsz N21B .V0 ; n/1 ; 3
˚
1=2 2 ˚ 1 2 N N21B .V0 ; n/ D ; cos Œf22B .n; V0 / f22B .V0 ; n/: 1 f22B .n; V0 / L20 ˚ fN22B .V0 ; n/ D a1 sin fa0 C22B .V0 ; n/ C b0 D22B .V0 ; n/g a0 C 22B .V0 ; n/
C b0 D 22B .V0 ; n/ a2 sin fa0 C22B .V0 ; n/ b0 D22B .V0 ; n/g
˚ a0 C 22B .V0 ; n/ b0 D 22B .V0 ; n/ ; ˇ26B D
C 22B .V0 ; n/ m c1 1 .V ; n/ G.V0 ; Eg1 ; 1 / D ŒC 22B 0 „2 2 2 6 6 41 C V0 4
1 1 C .V0 C Eg1 C 1 / .V0 C Eg1 /
333 777 555; 2 .V0 C Eg1 C 1 / 3 1
D 22B .V0 ; n/ m c2 1 .V ; n/ D G.V0 ; Eg2 ; 2 / ŒD 22B 0 „2 ### " " 1 1 1 : C 1 C V0 .V0 C Eg2 C 2 / .V0 C Eg2 / .V0 C Eg2 C 23 2 /
4.2.6 The Field Emission from II–VI Effective Mass Superlattices Under Magnetic Quantization The electron dispersion law in II–VI EMSLs can be written following (2.34) under magnetic quantization as kz2 D
2 1 1 cos .f24B .n; E// f1B .n/g; 2 L0
(4.25)
174
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
where f24B .n; E/ D a3 cos Œa0 C24B .n; E/ C b0 D24B .n; E/ a4 cos Œa0 C24B .n; E/ C b0 D24B .n; E/ ; ) !1=2 " ( #1=2 2mk;1 „2 1=2 1B .n/ C0 f1B .n/g ; C24B .n; E/ E „2 2m?;1 and D24B .n; E/
1=2 2mc2 : EG.E; Eg2 ; 2 / 1B .n/ „2
Equation (4.25) can be expressed as kz2 D Œ22B .n; E/ ;
(4.26)
1 Œcos1 .f24B .n; E//2 f1B .n/g. L20 The electron concentration is given by
where 22B .n; E/ D
nmax eBgv X D 9B .EFB ; n/ C D 10B .EFB ; n/ ; n0 D 2 2 „ nD0
(4.27)
so p P where D 9B .EFB ; n/ D 22B .EFB ; n/ and D 10B .EFB ; n/ D ZB .r/ŒD 9B .EFB ; n/. rD1
The field-emitted current density can be written as J D
nmax gv e 2 BkB T X F0 .27B / exp.ˇ27B /; h2 nD0
(4.28)
where 27B D .EFB E27B /=kB T , and E27B is the root of the equation. 22B .E27B ; n/ D 0;
(4.29)
4 Œ22B .V0 ; n/3=2 Œ3eFsz N22B .V0 ; n/1 ; 3
2 ˚ 1 N24B .V0 ; n/f1 f 2 .n; V0 /g1=2 ; f Œf .n; V / cos N22B .V0 ; n/ D 24B 0 24B L20 fN24B .V0 ; n/ D a3 sinfa0 C24B .V0 ; n/ C b0 D24B .V0 ; n/gfa0 C 24B .V0 ; n/ ˇ27B D
C b0 D 24B .V0 ; n/g a4 sinfa0 C24B .V0 ; n/ b0 D24B .V0 ; n/g
4.2 Theoretical Background
175
fa0 C 24B .V0 ; n/ b0 D 24B .V0 ; n/g;
C 24B .V0 ; n/ D
mk;1
!
„2
D 24B .V0 ; n/ D
m c2 „2
ŒC24B .V0 ; n/1 ;
" ŒD24B .V0 ; n/1 G.V0 ; Eg2 ; 2 / "
"
1 C V0
1 1 1 C .V0 C Eg2 C 2 / .V0 C Eg2 / V0 C Eg2 C 23 2
## # :
4.2.7 The Field Emission from IV–VI Effective Mass Superlattices Under Magnetic Quantization The electron dispersion law in IV–VI, EMSLs can be written under magnetic quantization following (2.40) as kz2 D
1 Œcos1 .f26B .n; E//2 f1B .n/g; L20
(4.30)
where f26B .n; E/ D a5 cosŒa0 C42B .n; E/ C b0 D42B .n; E/ a6 cosŒa0 C42B .n; E/ b0 D42B .n; E/, s #2 " " #2 " #1 #1 m2 m2 m2 1=2 m2 1=2 a5 D C1 ; a6 D 1 C ; 4 4 m1 m1 m1 m1 " # 2 „ ˚ 2
bi bi di C bi fi Egi C bi2 Egi Egi bi2 C Egi fi2 mi D 2 2 bi fi i1=2 h bi2 Egi2 C di2 C fi2 Egi2 C 2bi di Egi C 2Egi di fi C 2bi fi Egi2 ; "s
h
1=2 i1=2 U1 .E; n/ U12 .E; n/ 4V1 .E; n/ ; i D 1; 2; =2 Egi 2eB 2eB 1 1 Ui .E; n/ D 2bi E ai nC C C di C 2 ei n C „ 2 2 „ 2 1 Egi fi bi2 fi2 ; C 2
C42B .E; n/
176
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
" Vi .E; n/ D
D42B .E; n/
Egi 2 1 1 2eB 2eB Ci nC C nC „ 2 2 „ 2 # 1 Egi 2 2 2eB 1 ; ei .n C / C bi fi2 „ 2 2
E ai
h
1=2 i1=2 U2 .E; n/ U22 .E; n/ 4V2 .E; n/ : =2
From (4.30), we get kz2 D Œ26B .n; E/;
(4.31)
2 1 1 cos .f26B .n; E// f1B .n/g. 2 L0 The electron concentration is given by
where 26B .n; E/ D
n0 D
nmax eBgv X ŒD 19B .EFB ; n/ C D 20B .EFB ; n/; 2 „ nD0
(4.32)
s0 p P where D 19B .EFB ;n/ D 26B .EFB ;n/ and D 20B .EFB ;n/ D ZB .r/ŒD 19B .EFB ;n/. rD1
The field-emitted current density can be written as J D
nmax 2gv e 2 BkB T X F0 .28B / exp.ˇ28B /; h2
(4.33)
nD0
where 28B D .EFB E28B /=kB T , and E28B is the root of the equation. 26B .E28B ; n/ D 0;
(4.34)
4 Œ26B .V0 ; n/3=2 Œ3eF sz N26B .V0 ; n/1 ; 3
˚
1=2 2 ˚ 1 2 N Œf .n; V / f .V ; n/: 1 f .n; V / ; cos N26B .V0 ; n/ D 26B 0 26B 0 0 26B L20 ˚ fN26B .V0 ; n/ D a6 sin fa0 C42B .V0 ; n/ b0 D42B .V0 ; n/g a0 C 42B .V0 ; n/
b0 D 42B .V0 ; n/ C a5 sin fa0 C42B .V0 ; n/ C b0 D42B .V0 ; n/g ˚
a0 C 42B .V0 ; n/ C b0 D 42B .V0 ; n/ ; ˇ28B D
2
3
p U1 .V0 ; n/&01 2V 1 .V0 ; n/ 7 6 C 42B .V0 ; n/ D Œ2 2C42B .V0 ; n/1 4&01 q 5; U12 .V0 ; n/ 4V1 .V0 ; n/
4.2 Theoretical Background
177
2 2 1 1 2eB 2 2 1 &0i D 2bi bi fi ;V i .V0 ; n/ D 2 bi fi nC C Egi ; V0 ai „ 2 2 2 3 p U2 .V0 ; n/&02 2V 2 .V0 ; n/ 7 6 D 42B .V0 ; n/ D Œ2 2D42B .V0 ; n/1 4&02 q 5: U22 .V0 ; n/ 4V2 .V0 ; n/
4.2.8 The Field Emission from HgTe/CdTe effective mass superlattices under magnetic quantization The electron energy spectrum under magnetic quantization in HgTe/CdTe, EMSLs in the presence of a quantizing magnetic field BE along x-direction can be written from (2.45) as kx2 D
2 1 ˚ 1 cos .f .E; n// .n/ ; 27B 1B L20
(4.35)
where f27B .n; E/ D a7 cosŒa0 C43B .n; E/ C b0 D43 .n; E/ a8 cosŒa0 C43B .n; E/ b0 D43B .n; E/, r a7 D
2 " #1 mc2 mc2 1=2 C1 4 ; mc1 mc1
2 " #1 r mc2 mc2 1=2 a8 D 1 C ; 4 mc1 mc1
2
31=2 q 2 2 C 2A E B B C 4A E B 0 0 0 0 2eB 1 7 6 0 C43B .n; E/ 4 nC 5 ; „ 2 2A20 1 1=2 2eB 2Emc2 n C G.E; E ; / : g2 2 „2 „ 2 E C Eg2 E C Eg2 C 2 Eg2 C 23 2 : G E; Eg2 ; 2 D Eg2 Eg2 C 2 E C Eg2 C 23 2
D43B .n; E/
Equation (4.35) can be expressed as kx2 D Œ24B .n; E/; where 24B .n; E/ D
2 1 ˚ 1 .f .E; n// .n/ . cos 27B 1B L20
(4.36)
178
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
The electron concentration can be written as max gv eB X G 14B .EFB ; n/ C G 15B .EFB ; n/ ; n0 D 2 „ nD0
n
(4.37)
s0 p P where G 14 .EFB ;n/ D 24B .EFB ;n/ and G 15B .EFB ;n/ D ZB .r/ŒG 14B .EFB ;n/. rD1
The field emitted current density is given by J D
nmax gv e 2 BkB T X F0 .29B / exp.ˇ29B /; 2 2 „2
(4.38)
nD0
where 29B D .EFB E29B /=kB T , and E29B is the root of the equation. 24B .E29B ; n/ D 0;
(4.39)
4 Œ24B .V0 ; n/3=2 Œ3eF sz N24B .V0 ; n/1 ; 3
˚
1=2 2 ˚ 1 2 N D Œf .n; V / f .V ; n/ 1 f .n; V / ; cos 27B 0 27B 0 0 27B L20 ˚ D a8 sin fa0 C43B .V0 ; n/ b0 D43B .V0 ; n/g a0 C 43B .V0 ; n/
b0 D 43B .V0 ; n/ C a7 sin fa0 C43B .V0 ; n/ C b0 D43B .V0 ; n/g
˚ a0 C 43B .V0 ; n/ C b0 D 43B .V0 ; n/ ; 1=2 B0 2 1 1 D Œ2C43B .V0 ; n/ ; B C 4A0 V0 A0 A0 0 " 1 1 1 C D Œ2D43B .V0 ; n/ .V0 C Eg2 C 2 / .V0 C Eg2 / # 1 1 : C V0 V0 C Eg2 C 23 2
ˇ29B D N24 .V0 ; n/ fN27B .V0 ; n/
C 43B .V0 ; n/ D 43B .V0 ; n/
4.3 Result and Discussions Using Table 1.1 and 21 D 0:4 nm together with (4.3), (4.4); (4.8), (4.9); (4.13), (4.14); and (4.18), (4.19), we have plotted the field-emitted current density as functions of 1=B, electron concentration, and electric field in Figs. 4.1–4.3 for GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe superlattices with graded interfaces.
4.3 Result and Discussions
179
Fig. 4.1 Plot of the current density as a function of 1=B for GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe superlattices with graded interfaces in accordance with two-band energy band model of Kane
Fig. 4.2 Plot of the current density as a function of carrier concentration for GaAs/AlGaAs, CdS/CdTe, andPbTe/PbSe superlattices with graded interfaces in accordance with two-band energy band model of Kane
Using (4.22), (4.23), (4.27), (4.28), (4.32), (4.33); and (4.37), (4.38), we have plotted the field-emitted current density as functions of the said variables in Figs. 4.4–4.6 for GaAs/AlGaAs, CdS/CdTe and PbTe/PbSe effective mass superlattices respectively. From Fig. 4.1, it appears that the current density oscillates with the inverse quantizing magnetic field due to SdH effect. We observe that in superlattices with graded interface under magnetic quantization, the frequency of oscillations is less as compared with the constituent materials of each of them. The magnitude of the current density is greatest in the case of GaAs/AlGaAs SLs and least for CdS/CdTe SLs, which is the signature of the band structure of the respective superlattices. Figure 4.2 shows that J oscillates with carrier degeneracy under the application of a strong magnetic field for superlattices with graded interfaces. The effect of subbands
180
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
Fig. 4.3 Plot of the current density as a function of electric field for GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe superlattices with graded interfaces
Fig. 4.4 Plot of the current density as a function of 1=B for GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe effective mass superlattices in accordance with two-band energy band model of Kane
enhances the field-emitted current density even at the degeneracy of 1024 m3 . The effect of electric field on J at the lowest subband is shown in the Fig. 4.3. It appears that the cut-in field for GaAs/AlGaAs SLs is lowest and highest for CdS/CdTe SLs. From Fig. 4.4, we observe that the field-emitted current density oscillates with 1=B in the case of GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe effective mass superlattices under magnetic quantization and can be compared with that of the corresponding superlattices with graded interfaces. This is particularly due to the difference in the analytical and fabrication techniques that mismatches the current densities in the two cases respectively as we observe from Fig. 4.5. We note that the current density is less in all types of effective mass superlattices as considered in this chapter. From Fig. 4.6, it appears that the current density in effective mass superlattices needs relatively higher electric cut-in field to generate a
4.4 Open Research Problems
181
Fig. 4.5 Plot of the current density as a function of carrier concentration for GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe effective mass superlattices in accordance with two-band energy band model of Kane
Fig. 4.6 Plot of the current density as a function of electric field for GaAs/AlGaAs, CdS/CdTe, and PbTe/PbSe effective mass superlattices in accordance with two-band energy band model of Kane
considerable amount of current density as compared with the corresponding cases of the superlattices with graded interfaces. For the purpose of condensed presentation, the specific carrier statistics for a specific superlattice having a particular electron energy spectrum and the corresponding field-emitted current density under magnetic quantization have been presented in Table 4.1.
4.4 Open Research Problems (R.4.1) (a) Investigate the FNFE from all the superlattices as considered in this chapter in the absence of any field by converting the summations over
The Carrier Statistics III–V superlattices with graded interfaces max eBg nP ŒD21B .EFB ; n/ C D22B .EFB ; n/ n0 D 2 v „ nD0 II–VI superlattices with graded interfaces max eBgv nP ŒD212B .EFB ; n/ C D222B .EFB ; n/ n0 D 2 2„ nD0 IV–VI superlattices with graded interfaces max eBg nP D 3B .EFB ; n/ C D 4B .EFB ; n/ n0 D 2 v „ nD0 HgTe/CdTe superlattices with graded interfaces max eBg nP D 5B .EFB ; n/ C D 6B .EFB ; n/ n0 D 2 v „ nD0 III–V effective mass superlattices max eBg nP D 7B .EFB ; n/ C D 8B .EFB ; n/ n0 D 2 v „ nD0 II–VI effective mass superlattices max eBgv nP D 9B .EFB ; n/ C D 10B .EFB ; n/ n0 D 2 2 „ nD0 IV–VI effective mass superlattices max eBg nP D 19B .EFB ; n/ C D 20B .EFB ; n/ n0 D 2 v „ nD0 HgTe/CdTe effective mass superlattices max gv eB nP G 14B .EFB ; n/ C G 15B .EFB ; n/ n0 D 2 „ nD0
(4.4)
(4.9)
(4.14)
(4.19)
(4.23)
(4.28)
(4.33)
(4.38)
max gv Be2 kB T nP F0 .21B / exp.ˇ21B / 2 2 2 „ nD0 max gv Be2 kB T nP F0 .22B / exp.ˇ22B / h2 nD0 max Bgv e 2 kB T nP F0 .23B / exp.ˇ23B / 2 2 „2 nD0 max gv Be2 kB T nP F0 .24B / exp.ˇ24B / 2 2 „2 nD0 zmax Bgv e 2 kB T nP F0 .26B / exp.ˇ26B / 2 2 2 „ nz D1 max gv e 2 BkB T nP F0 .27B / exp.ˇ27B / h2 nD0 max 2gv e 2 BkB T nP F0 .28B / exp.ˇ28B / h2 nD0 max gv e 2 BkB T nP F0 .29B / exp.ˇ29B / 2 2 „2 nD0
J D
J D J D J D J D
J D J D J D
(4.3)
(4.8)
(4.13)
(4.18)
(4.22)
(4.27)
(4.32)
(4.37)
The Fowler–Nordeim Field Emmission
Table 4.1 The carrier statistics and the Fowler–Nordeim Field Emmission in superlattices under magnetic quantization
182 4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
4.4 Open Research Problems
183
the quantum numbers to the corresponding integrations by including the uniqueness conditions in the appropriate cases and considering the effect of image force in the subsequent study in each case. (b) Investigate the FNFE in the presence of an arbitrarily oriented nonquantizing magnetic field for all types of quantum wire superlattices as considered in this chapter by considering the electron spin. (R.4.2) Investigate the FNFE in the presence of an additional arbitrarily oriented electric field for all types of quantum wire superlattices. (R.4.3) Investigate the FNFE for all types of quantum wire superlattices as considered in this chapter under arbitrarily oriented crossed electric and magnetic fields. (R.4.4) Investigate the FNFE in III–V, II–VI, IV–VI, and HgTe/CdTe quantum well superlattices with graded interfaces. (R.4.5) Investigate the FNFE for all problems of R.2.1 to R.2.3 for III–V, II–VI, IV–VI, and HgTe/CdTe quantum well superlattices with graded interfaces. (R.4.6) Investigate the FNFE for III–V, II–VI, IV–VI, and HgTe/CdTe quantum well effective mass superlattices. (R.4.7) Investigate the FNFE for all problems of R.2.1 to R.2.3 for III–V, II–VI, IV–VI, and HgTe/CdTe quantum well effective mass superlattices. (R.4.8) Investigate the FNFE for short period, strained layer, random, and Fibonacci quantum wire superlattices. (R.4.9) Investigate the FNFE for short period, strained layer, random, and Fibonacci quantum well superlattices in the presence of an arbitrarily oriented alternating magnetic field by considering electron spin and broadening. (R.4.10) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth superlattices in the presence of an arbitrarily oriented alternating electric field. (R.4.11) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth superlattices in the presence of an arbitrarily oriented crossed electric and magnetic fields. (R.4.12) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth quantum wells and quantum wires superlattices in the presence of an arbitrarily oriented electric field. (R.4.13) Investigate the FNFE for strained layer, random, Fibonacci, polytype, and sawtooth quantum wells and quantum wires superlattices in the presence of arbitrarily oriented crossed electric and quantizing magnetic fields. (R.4.14) (a) Formulate the minimum tunneling, Dwell and phase tunneling, Buttiker and Landauer, and intrinsic times for all types of superlattices as discussed in this chapter (b) Investigate all the appropriate problems of this chapter for the Dirac electron. (c) Investigate all the problems of this chapter by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions.
184
4 Field Emission of Nonparabolic Semiconductors Under Magnetic Quantization
References 1. N. Miura, Physics of Semiconductors in High Magnetic Fields,Series on Semiconductor Science and Technology (Oxford University Press, Oxford, 2007) 2. K.H.J Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Springer, New York, 2003) 3. D. Sellmyer, R. Skomski (eds.), Advanced Magnetic Nanostructures (Springer, New York, 2005) 4. J.A.C. Bland, B. Heinrich (eds.), Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism (Pt. 3) (Springer-Verlag, Berlin, 2005) 5. B.K. Ridley, Quantum Processes in Semiconductors, 4th edn. (Oxford, Oxford, 1999) 6. J.H. Davies, Physics of Low Dimensional Semiconductors (Cambridge University Press, UK, 1998) 7. S. Blundell, Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics(Oxford University Press, Oxford, 2001) 8. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, New York, 1991) 9. D. Ferry, Semiconductor Transport (CRC, New York, 2000) 10. M. Reed (ed.), Semiconductors and Semimetals: Nanostructured Systems (Academic, New York, 1992) 11. T. Dittrich, Quantum Transport and Dissipation (Wiley-VCH, Berlin, 1998) 12. A.Y. Shik, Quantum Wells: Physics and Electronics of Twodimensional Systems (World Scientific, New York, 1997)
Part II
Fowler–Nordheim Field Emission from Quantum-Confined III–V Semiconductors in the Presence of Light Waves
•
Chapter 5
Field Emission from Quantum-Confined III–V Semiconductors in the Presence of Light Waves
5.1 Introduction In the presence of strong light waves, the basic band structure of a semiconductor changes profoundly and consequently all the physical properties get radically modified. In this chapter, in Sect. 5.2.1, the field emission under magnetic quantization from the III–V compounds has been investigated in the presence of external photoexcitation whose unperturbed electron energy spectra are, respectively, defined by the three- and two-band models of Kane together with parabolic energy bands and the importance of III–V semiconductors have already been written in Chap. 1. In Sect. 5.2.2, the FNFE in the presence of light waves from quantum wires of III–V semiconductors has been studied. In Sect. 5.2.3, the FNFE from effective mass super lattices whose constituent materials are III–V semiconductors has been investigated in the presence of light waves under magnetic quantization. The FNFE from quantum wire effective mass super lattices of the said materials in the presence of light waves has been studied in Sect. 5.2.4. The FNFE from superlattices of III–V semiconductors with graded interfaces in the presence of light waves under magnetic quantization has been investigated in Sect. 5.2.5. The FNFE from quantum wire superlattices of the said materials with graded interfaces in the presence of light waves has been studied in Sect. 5.2.6. Section 5.3 contains result and discussions. Section 5.4 presents open research problems pertinent to this chapter.
5.2 Theoretical Background 5.2.1 Field Emission from III–V Semiconductors Under Magnetic Quantization in the Presence of Light Waves The simplified electron energy spectra in III–V materials up to the second order in the presence of external photoexcitation whose unperturbed dispersion relations of S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 5, © Springer-Verlag Berlin Heidelberg 2012
187
188
5 Field Emission from Quantum-Confined III–V Semiconductors
the conduction electrons are defined by the three- and two-band models of Kane together with parabolic energy bands can, respectively, be expressed as [1] „2 k 2 D ˇ50 E; ; Eg0 ; ; 2mc
(5.1)
„2 k 2 D !50 E; ; Eg0 ; 2mc
(5.2)
„2 k 2 D 50 E; ; Eg0 ; 2mc
(5.3)
where ˇ50 E; ; Eg0 ; I50 E; Eg0 ; 50 E; ; Eg0 ; ; E E C Eg0 E C Eg0 C Eg0 C 23 ; I50 .E; Eg0 ; / Eg0 Eg0 C E C Eg0 C 23 C50 .; Eg0 ; / 50 E; ; Eg0 ; D '50 .E/
2 50 .E/;
2 e2 I0 2 Eg0 Eg0 C ˇ 50 50 2 ; C50 .; Eg0 ; / t50 C p p 96mrc 3 "sc "0 Eg0 C 23 4 2 mr is the reduced mass and is given by m1 D .mc /1 C m1 r v , mv is the effective mass of the heavy hole at the top of the valance band in the absence of any field, I0 is the light intensity of wavelength , c is the velocity of light, "0 is the permittivity of vacuum, "sc is the permittivity of the material, 50 6Eg20 C 9Eg0 C 42 ;
1=2 ˇ 50 6.Eg0 C 2=3/.Eg0 C / =50 ; 1=2 ; t50 6.Eg0 C 2=3/2=50 50 .E/ Eg0 "
1=2 50 42 =350 ; ! 1=2 mc I50 E; Eg0 ; ; 1C2 1C mv E g0
E g0 ı 0 1C 50 .E/ C ı 0
1 1 C .Eg0 ı / 50 .E/ D 0 50 .E/ C ı E g0 C ı 0
1 # Eg0 C ı 0 2 1 50 .E/ C ı 0 .Eg0 ı 0 /2 ı 0 Eg20 .50 /1 ; !50 E; ; Eg0 E .1 C ˛E/ B50 .E; / ; 0
12
5.2 Theoretical Background
189
2 C51 .; Eg0 / 51 e 2 I 0 2 E g0 .E/ ; ; C51 .; Eg0 / p 51 .E/ 384c 3 mr "sc "0
2Eg0 2mc E.1 C ˛E/ 1=2 ; ; 51 .E/ Eg0 1 C 51 .E/ D mr Eg0 51 .E/
2mc E 3=2 50 E; ; Eg0 E C52 1 C and mr Eg0
B50 .E; / D
C52 D
e 2 I0 2 : p 96c 3 mr "sc "0
Thus, under the limiting condition kE ! 0, from (5.1), (5.2), and (5.3), we observe that E ¤ 0 and is positive. Therefore, in the presence of external light waves, the energy of the electron does not tend to zero when kE ! 0, whereas for the unperturbed three- and two-band models of Kane together with parabolic energy bands reflects the fact that for kE ! 0, E ! 0. As the conduction band is taken as the reference level of energy, the lowest positive value of E for kE ! 0 provides the increased band gap .Eg / of the materials due to photon excitation. The values of the increased band gap can be obtained by computer iteration processes for various values of I0 and . The dispersion relation of the conduction electrons in III–V semiconductors under light waves can be written in the presence of quantizing magnetic field B along x-direction whose electron energy spectra are defined by (5.1)–(5.3) as 1 „2 kx2 nC D ˇ50 .E; ; Eg0 ; /; (5.4) „!c C 2 2mc 1 „2 kx2 „!c C nC D !50 .E; ; Eg0 /; (5.5) 2 2mc 1 „2 kx2 nC D 50 .E; ; Eg0 /: (5.6) „!c C 2 2mc The density-of-states function per valley assumes the forms p nmax 0 ˇ50 .E; ; Eg0 ; / eB 2mc X ; NB .E/ D q 2 2 „2 nD0 ˇ .E; ; E ; / n C 1 „! 50 g0 c 2 p nmax 0 !50 .E; ; Eg0 / eB 2mc X q ; NB .E/ D 2 2 2 „ nD0 ! .E; ; E / n C 1 „! 50 g0 c 2 and
p nmax 0 50 .E; ; Eg0 / eB 2mc X NB .E/ D q ; 2 2 2 „ nD0 .E; ; E / n C 1 „! 50 g0 c 2
(5.7)
(5.8)
(5.9)
190
5 Field Emission from Quantum-Confined III–V Semiconductors
where 0 0 0 ˇ50 E; ; Eg0 ; I50 E; Eg0 ; 50 E; ; Eg0 ; ; " # 1 1 1 1 0 I50 .E; Eg0 ; / D I50 .E; Eg0 ; / C ; C E ECEg0 ECEg0 C ECEg0 C 23
0 2 0 .E/ .E/ 0 ; E; ; Eg0 ; D 50 E; ; Eg0 ; 50 C 50 50 50 .E/ 50 .E/ mc 0 0 50 .E/ D Eg0 1 C .E; Eg0 ; /; Œ50 .E/ 1 I50 mv " 12
0 .Eg0 ı 0 /50 .E/ 1 1 1 0 .E/ D 1 C 50 .50 .E/ C ı0 /2 2 50 .E/ C ı0 Eg0 C ı 0
.Eg0 C ı 0 / 1 50 .E/ C ı0 .Eg0 ı0 /2
0 !50 .E; ; Eg0 / 0 .E; / B50 0 51 .E/
0 50 E; ; Eg0
12
1
12 # Eg0 Cı0 2 1 1 1 1 C 2 50 .E/Cı 0 .Eg0 ı 0 /2 50 .E/Cı 0 Eg0 Cı0 0 D 1 C 2˛E B50 .E; / ;
0 0 2B50 .E; / 51 B50 .E; /51 .E/ .E/ ; C D 51 .E/ 51 .E/
51 .E/ 0 mc Eg0 .1 C 2˛E/ 0 51 .E/ ; 51 ; D .E/ D 51 .E/ mr 51 .E/ # "
2mc E 3=2 C52 3mc : 1C D 1C mr mr Eg0
Combining (5.7), (5.8), and (5.9) with the Fermi–Dirac occupation probability factor, the electron concentration can, respectively, be expressed as p nmax gv eB 2mc X n0 D ŒM 51 .EFB ; ; n/ C N 51 .EFB ; ; n/ ; 2 „2 nD0
(5.10)
n0 D
(5.11)
p nmax gv eB 2mc X ŒM 52 .EFB ; ; n/ C N 52 .EFB ; ; n/ ; 2 „2 nD0
and p nmax gv eB 2mc X n0 D ŒM 53 .EFB ; ; n/ C N 53 .EFB ; ; n/ ; 2 „2 nD0
(5.12)
5.2 Theoretical Background
191
where
12 1 M 51 .EFB ; ; n/ D ˇ50 .EFB ; ; Eg0 ; / n C „!c ; 2 N 51 .EFB ; ; n/ D
s0 X
ZB .r/ŒM 51 .EFB ; n/ ;
rD1
12 1 M 52 .EFB ; ; n/ D !50 .EFB ; ; Eg0 / n C „!c ; 2 N 52 .EFB ; ; n/ D
s0 X
ZB .r/ŒM 52 .EFB ; ; n/ ;
rD1
12 1 M 53 .EFB ; ; n/ D 53 .EFB ; ; Eg0 / n C „!c 2 N 53 .EFB ; ; n/ D
s0 X
and
ZB .r/ŒM 53 .EFB ; ; n/ :
rD1
The field emitted current density in three cases can, respectively, be written as J D
nmax e 2 BkB Tgv X F0 . 51;B / exp.ˇ 51;B /; 2 2 „2 nD0
(5.13)
J D
nmax e 2 BkB Tgv X F0 . 52;B / exp.ˇ 52;B /; 2 2 „2 nD0
(5.14)
J D
nmax e 2 BkB Tgv X F0 . 53;B / exp.ˇ 53;B /; 2 2 „2 nD0
(5.15)
and
where 51;B D
EFB E 51;B , kB T
where E 51;B is the lowest positive root of the equation
1 „!c D 0; ˇ50 .E 51;B ; ; Eg0 ; / n C 2 ˇ 51;B D
3 p 4 2mc Œˇ50 .V0 ;;Eg0 ;/.nC 12 /„!c 2 0 3eF sx „ˇ50 .V0 ;;Eg0 ;/
; 52;B D
EFB E 52;B ; Fsx kB T
(5.16)
is the electric field
along x-direction, E 52;B is the lowest positive root of the equation 1 „!c D 0; !50 .E 52;B ; ; Eg0 / n C 2
(5.17)
192
5 Field Emission from Quantum-Confined III–V Semiconductors p
3
4 2mc Œ!50 .V0 ;;Eg0 /.nC 12 /„!c 2 ˇ 52;B D ; 53;B D 0 3eFsx „!50 .V0 ;;Eg0 / positive root of the equation
EFB E 53;B kB T
; E 53;B is the lowest
1 50 .E 53;B ; ; Eg0 / n C (5.18) „!c D 0 2 3 p 4 2mc 50 .V0 ; ; Eg0 / n C 12 „!c 2 ˇ 53;B D ; 0 3eFsx „50 .V0 ; ; Eg0 / ˇ 0 0 ˇ50 .V0 ; ; Eg0 ; / D ˇ50 .V0 ; ; Eg0 ; /ˇEDV0 ; ˇ ˇ 0 0 0 0 .V0 ; ; Eg0 / D !50 .V0 ; ; Eg0 /ˇEDV0 ; 50 .V0 ; ; Eg0 /D 50 .V0 ; ; Eg0 /ˇEDV0 : !50
5.2.2 Field Emission from Quantum Wires of III–V Semiconductors From (5.1), (5.2), and (5.3), the dispersion relation of the conduction electrons for quantum wires of III–V materials in the presence of light waves can be expressed as „2 kz2 D ˇ50 .E; ; Eg0 ; /; 2mc „2 kz2 D !50 .E; ; Eg0 /; G5 .nx; ny / C 2mc G5 .nx; ny / C
and G5 .nx; ny / C
„2 kz2 D 50 .E; ; Eg0 /; 2mc
(5.19) (5.20)
(5.21)
where G5 .nx; ny / D „2mc Œ.ny =dy /2 C .nx =dx /2 , The electron concentration per unit length assumes the forms 2 2
n0 D
p nxmax nymax X 2mc 2gv X ŒS51 .EF1D ; ; nx ; ny / C T51 .EF1D ; ; nx ; ny / (5.22) „ n D1 n D1 x
y
where 1=2 S51 .EF1D ; ; nx ; ny / D ˇ50 .EF1D ; ; Eg0 ; / G5 .nx ; ny / T51 .EF1D ; ; nx ; ny /
S0 X
Z1D .r/ S51 .EF1D ; ; nx ; ny / ;
rD1
Z1D .r/ D 2.kB T /2r .1 212r /.2r/
@2r ; @E 1D 2r
5.2 Theoretical Background
193
p nxmax nymax X 2mc 2gv X n0 D ŒS52 .EF1D ; ; nx ; ny / C T52 .EF1D ; ; nx ; ny / (5.23) „ n D1 n D1 x
y
where 1=2 S52 .EF1D ; ; nx ; ny / D !50 .EF1D ; ; Eg0 / G5 .nx ; ny / ; T52 .EF1D ; ; nx ; ny /
S0 X
Z1D .r/ S52 .EF1D ; ; nx ; ny / ;
rD1
and p nxmax nymax X 2mc 2gv X n0 D ŒS53 .EF1D ; ; nx ; ny / C T53 .EF1D ; ; nx ; ny / (5.24) „ n D1 n D1 x
y
where 1=2 ; S53 .EF1D ; ; nx ; ny / D 50 .EF1D ; ; Eg0 / G5 .nx ; ny / T53 .EF1D ; ; nx ; ny /
S0 X
Z1D .r/ S53 .EF1D ; ; nx ; ny / ;
rD1
The field emitted current in the three cases can respectively be written as I D
nxmax nymax X egv kB T X F0 . 51;1D / exp.ˇ 51;1D / „ n D1 n D1
(5.25)
nxmax nymax X egv kB T X F0 . 52;1D / exp.ˇ 52;1D / „ n D1 n D1
(5.26)
x
I D
x
y
y
and nxmax nymax X egv kB T X F0 . 53;1D / exp.ˇ 53;1D / I D „ n D1 n D1 x
51;1D D
EF 1D E51;nx ;ny kB T
;
(5.27)
y
E51;nx ;ny is the root of the equation
ˇ50 .E51 ; nx ; ny ; ; Eg0 ; / G5 .nx ; ny / D 0 3=2 p 2mc 4 S51 .V0 ; ; nx ; ny / ˇ 51;1D D 0 3eFsz ˇ50 .V0 ; ; Eg0 ; /„
(5.28)
194
5 Field Emission from Quantum-Confined III–V Semiconductors
52;1D D
EF1D E52;nx ;ny kB T
; E52;nx ;ny is the root of the equation
!50 .E52 ; nx ; ny ; ; Eg0 / G5 .nx ; ny / D 0 3=2 p 4 S52 .V0 ; ; nx ; ny / 2mc ˇ 52;1D D 0 3eFsz !50 .V0 ; ; Eg0 /„
53;1D D
EF1D E53;nx ;ny kB T
(5.29)
; E53;nx ;ny is the root of the equation
50 .E53 ; nx ; ny ; ; Eg0 / G5 .nx ; ny / D 0 3=2 p 4 S53 .V0 ; ; nx ; ny / 2mc ˇ 53;1D D 0 3eFsz 50 .V0 ; ; Eg0 /„
(5.30)
5.2.3 Field Emission from Effective Mass Superlattices of III–V Semiconductors in the Presence of Light Waves Under Magnetic Quantization The dispersion relation of the conduction electrons in effective mass superlattices of III–V materials can be expressed following Sasaki [2] as a1 cosŒc15 .E; ; Eg1 ; 1 /a0 C c25 .E; ; Eg2 ; 2 /b0 a2 cosŒc15 .E; ; Eg1 ; 1 /a0 c25 .E; ; Eg2 ; 2 /b0 D cos.L0 k/ (5.31) where 2
3
2 " r 1=2 #1 r m m c2 c2 5; 4 a1 D 4 1 C m c1 m c1 2
3
2 " r 1=2 #1 r mc 2 m c2 5; 4 a2 D 4 1 C mc 1 m c1 2mci 2 2 ci25 E; ; Eg0i ; i D 2 Œˇi 50 E; ; Eg0i ; i k? ; i D1; 2; k? Dky2 C kz2 ; „ ˇi 50 E; ; Eg0i ; i D ŒIi 50 E; Eg0i ; i i 50 .E; ; Eg0i ; i / ; E E C Eg0i E C Eg0i C i Eg0i C 23 i ; Ii 50 E; Eg0i ; i D Eg0i Eg0i C i E C Eg0i C 23 i
5.2 Theoretical Background
195
Ci 50 .; Eg0i ; i / i 50 E; ; Eg0i ; i D 'i 50 .E/
Ci 50 ; Eg0i ; i
2 i 50 .E/;
2 e2 I0 2 Eg0i Eg0i C i ˇ i 50 i 50 2 t D C p ; p i 50 96mri c 3 "sci "0 Eg0i C 23 i 4 2
1 mri is the reduced mass and is given by m1 C m1 ri D .mci / vi , mvi is the effective mass of the heavy hole at the top of the valance band in the absence of any field,
1=2 6.Eg0i C 2i =3/.Eg0i C i / =i 50 ; D 6Eg20i C 9Eg0i i C 42i ;
ˇ i 50 i 50
1=2 1=2 ti 50 D 6.Eg0i C 2i =3/2 =i 50 ; i 50 D 42i =3i 50 ; 1=2 mci Ii 50 .E/ ; i 50 .E/ D Eg0i 1 C 2 1 C mvi Eg0i "
1=2 Eg0i ıi0 50 1 1 0 .E/ D ı / 1C C .E i 50 g0i i 50 i 50 .E/Cıi0 50 i 50 .E/Cıi0 50 Eg0i Cıi0 50 1 #
Eg0i C ıi0 50 2 1 i 50 .E/ C ıi0 50 .Eg0i ıi0 50 /2 ıi0 50 D Eg20i i .i 50 /1 In the presence of a quantizing magnetic field B, along x-direction the magnetoenergy spectrum assumes the form kx2 D ! 15 .E; ; n/
(5.32)
where
1 2eB 1 2 1 ! 15 .E; ; n/ D 2 Œcos ff 15 .E; ; n/g nC L20 ; „ 2 L0 f 15 .E; ; n/ D Œa1 cosŒc 15 .E; ; Eg01 ; 1 ; n/a0 C b0 c 25 .E; ; Eg02 ; 2 ; n/ a2 cosŒc 15 .E; ; Eg01 ; 1 ; n/a0 b0 c 25 .E; ; Eg02 ; 2 ; n/ ;
2eB 2mc1 1 1=2 c 15 .E; ; Eg01 ; 1 ; n/ D ; nC Œˇ150 .E; ; Eg01 ; 1 / „2 „ 2
1 1=2 2eB 2mc2 n C Œˇ c 25 .E; ; Eg02 ; 2 ; n/ D .E; ; E ; / : 250 g 2 02 „2 „ 2
196
5 Field Emission from Quantum-Confined III–V Semiconductors
The electron concentration assumes the form n0 D
nmax gv eB X ŒS54 .EFB ; ; n/CT54 .EFB ; ; n/ 2 „L0 nD0
(5.33)
where S54 .EFB ; ; n/ D T54 .EFB ; ; n/ D
h
cos1 f 15 .EFB ; ; n/
S0 X
i2
2eB „
1=2 1 nC L20 2
ZB .r/ ŒS54 .EFB ; ; n/
rD1
The transmission coefficient in this case can be written as t D exp. 15 /
(5.34)
where 15 D
4Œ! 15 .V0 ; ; n/ 3=2 ; 3eFsx f! 15 .V0 ; ; n/g0
f! 15 .V0 ; ; n/g0 D 2ff 15 .V0 ; ; n/g0 L2 0 cos1 Œf 15 .V0 ; ; n/ Œ1 f 15 .V0 ; ; n/ 1=2 ; ff 15 .V0 ; ; n/g0 D Œa1 sinŒc 15 .V0 ; ; Eg01 ; 1 ; n/a0 C b0 c 25 .V0 ; ; Eg02 ; 2 ; n/ ŒŒc 15 .V0 ; ; Eg01 ; 1 ; n/ 0 a0 C b0 Œc 25 .V0 ; ; Eg02 ; 2 ; n/ 0 a2 sinŒc 15 .V0 ; ; Eg01 ; 1 ; n/a0 b0 c 25 .V0 ; ; Eg02 ; 2 ; n/ ŒŒc 15 .V0 ; ; Eg01 ; 1 ; n/ 0 a0 b0 Œc 25 .V0 ; ; Eg02 ; 2 ; n/ 0 fc 15 .V0 ; ; Eg01 ; 1 ; n/g0 D
mc1 0 Œˇ .V0 ; ; Eg01 ; 1 /=fc 15 .V0 ; ; Eg01 ; 1 ; n/g ; „2 150
mc2 0 Œˇ .V0 ; ; Eg02 ; 2 /=fc 25 .V0 ; ; Eg02 ; 2 ; n/g ; „2 250 ˇi0 50 .V0 ; ; Eg0i ; i / D Ii050 .V0 ; Eg0i ; i /i050 .V0 ; ; Eg0i ; i / ;
1 1 1 C C Ii050 .V0 ; Eg0i ; i / D Ii 50 .V0 ; Eg0i ; i / V0 V0 C Eg0i V0 C Eg0i C i # 1 ; i D 1; 2; V0 C Eg0i C 23 i fc 25 .V0 ; ; n/g0 D
5.2 Theoretical Background
197
i050 .V0 ; ; Eg0i ; i / 2 i050 .V0 / D i 50 .V0 ; ; Eg0i ; i / ; C i 50 .V0 ; ; Eg0i ; i / i 50 .V0 / !1=2 mci Ii050 V0 ; Eg0i ; i 0 ; 1C i 50 .V0 / D Eg0i mvi i 50 .V0 / "
12 .Eg0i ıi0 50 /i050 .V0 / 1 1 1 0 1 C .V / D i 50 0 .i 50 .V0 / C ıi0 50 /2 2 i 50 .V0 / C ıi0 50 Eg0i C ıi0 50
i050 .V0 ; ; Eg0i ; i /
1 .Eg0i C ıi0 50 / 2 1 i 50 .V0 / C ıi0 50 .Eg0i ıi0 50 /2
1 Eg0i C ıi0 50 2 1 1 C 2 i 50 .V0 / C ıi0 50 .Eg0i ıi0 50 /2 12 #
1 1 i 50 .V0 / C ıi0 50 Eg0i C ıi0 50
The field-emitted current density in this case is given by nmax e 2 BkB T gv X J D F0 . 51BSL / exp.ˇ 51BSL / 2 2 „2 nD0
where 51BSL D
EFB E51BSL , kB T
(5.35)
E51BSL is the root of the equation ! 15 .E51BSL ; ; n/ D 0 ˇ 51BSL D 15
The electron concentration when the dispersion relations of the constituent materials are defined by the perturbed two-band model of Kane can be expressed as n0 D
nmax gv eB X ŒS55 .EFB ; ; n/CT55 .EFB ; ; n/ 2 „L0 nD0
where S55 .EFB ; ; n/ D
h
cos1 f 151 .EFB ; ; n/
i2
2eB „
1=2 1 ; nC L20 2
f 151 .E; ; n/ D Œa1 cosŒc 151 .E; ; Eg01 ; n/a0 C b0 c 251 .E; ; Eg02 ; n/ a2 cosŒc 151 .E; ; Eg01 ; n/a0 b0 c 251 .E; ; Eg02 ; n/ ;
(5.36)
198
5 Field Emission from Quantum-Confined III–V Semiconductors
2mc1 !150 E; ; Ego1 2 „
2mc2 c 251 .E; ; n/ D ! E; ; E 250 g o2 „2 c 151 .E; ; n/ D
1 1=2 ; nC 2 1 1=2 2eB ; nC „ 2 2eB „
Ci 51 .;Eg0i / i251 .E/ !i 50 E; ; Eg0i E .1C˛i E/ Bi 50 .E; / ; Bi 50 .E; /D ; i 51 .E/ e 2 I0 2 Eg0i ; p 384c 3 mri "sci "0
1 2mci E.1C˛i E/ 1=2 ; ˛i D ; i 51 .E/ Eg0i 1C mri Eg0i Eg0i
Ci 51 .; Eg0i /
T55 .EFB ; ; n/ D
S0 X
i 51 .E/D
2Eg0i ; i 51 .E/
ZB .r/ ŒS55 .EFB ; ; n/
rD1
The transmission coefficient in this case can be written as t D exp. 16 / where 16 D n C 12 L20 ,
4Œ! 16 .V0 ;;n/ 3=2 , 3eFsx f! 16 .V0 ;;n/g0
! 16 .V0 ; ; n/ D
1 L20
(5.37) h
Œcos1 ff 151 .V0 ; ; n/g 2
f! 16 .V0 ; ; n/g0 D 2ff 151 .V0 ; ; n/g0 L2 0 cos1 Œf 151 .V0 ; ; n/ Œ1 f 151 .V0 ; ; n/ 1=2 ; Œf 151 .V0 ; ; n/ D Œa1 sinŒc 151 .V0 ; ; Eg01 ; n/a0 C b0 c 251 .V0 ; ; Eg02 ; n/ ŒŒc 151 .V0 ; ; Eg01 ; n/ 0 a0 C b0 Œc 251 .V0 ; ; Eg02 ; n/ 0 a2 sinŒc 151 .V0 ; ; Eg01 ; n/a0 b0 c 251 .V0 ; ; Eg02 ; n/ ŒŒc 151 .V0 ; ; Eg01 ; n/ 0 a0 b0 Œc 251 .V0 ; ; Eg02 ; n/ 0 mc1 Œ!150 .V0 ; ; Eg01 / 0 =fc 151 .V0 ; ; Eg01 ; n/g; „2 mc2 fc 251 .V0 ; ; Eg02 ; n/g0 D 2 Œ!250 .V0 ; ; Eg01 / 0 =fc 251 .V0 ; ; Eg02 ; n/g; „ !i050 .V0 ; ; Eg0i / D 1 C 2˛i V0 Bi050 .V0 ; / ;
2Bi 50 .V0 ; / i051 .V0 / Bi 50 .V0 ; /i051 .V0 / 0 ; C Bi 50 .V0 ; / D i 51 .V0 / i 51 .V0 / fc 151 .V0 ; ; Eg01 ; n/g0 D
2eB „
5.2 Theoretical Background 0 i 51 .V0 /
199
i 51 .V0 / 0 D .V0 / ; i 51 .V0 / i 51
mci Eg0i .1 C 2˛i V0 / : mri i 51 .V0 /
i051 .V0 / D
The field emitted current density in this case is given by J D where 52BSL D
nmax e 2 BkB T gv X F0 . 52BSL / exp.ˇ 52BSL / 2 2 „2 nD0
EFB E52BSL , kB T
(5.38)
E52BSL is the root of the equation ! 16 .E52BSL ; ; n/ D 0
(5.39)
ˇ 52BSL D 16 The electron concentration when the dispersion relations of the constituent materials are defined by the perturbed parabolic energy bands can be expressed as n0 D
nmax gv eB X ŒS56 .EFB ; ; n/ C T56 .EFB ; ; n/ 2 „L0
(5.40)
nD0
where S56 .EFB ; ; n/ D
h
cos1 f 152 .EFB ; ; n/
i2
1=2 2eB 1 nC L20 „ 2
f 152 .E; ; n/ D Œa1 cosŒc 152 .E; ; Eg1 ; n/a0 C b0 c 252 .E; ; Eg2 ; n/
c 152 .E; ; Eg1 ; n/ c 252 .E; ; Eg2 ; n/ i 50 E; Eg0i ;
a2 cosŒc 152 .E; ; Eg1 ; n/a0 b0 c 252 .E; ; Eg2 ; n/
1 2eB 2mc1 1 2 D .E; ; E / ; n C Œ 150 g01 „2 „ 2
1 2eB 2mc2 1 2 D ; nC Œ250 .E; ; Eg02 / „2 „ 2
3=2 2mci E D E Ci 52 1 C ; mri Eg0i
Ci 52 T56 .EFB ; ; n/ D
e 2 I0 2 ; p 96c 3 mri "sci "0 S0 X
˛i D
1 ; Eg0i
ZB .r/ ŒS56 .EFB ; ; n/
rD1
The transmission coefficient in this case can be written as t D exp. 17 /
(5.41)
200
5 Field Emission from Quantum-Confined III–V Semiconductors
where 4Œ! 17 .V0 ; ; n/ 3=2 ; 3eFsx f! 17 .V0 ; ; n/g0
1 1 2eB 2 1 nC L20 ; ! 17 .V0 ; ; n/ D 2 Œcos ff 152 .V0 ; ; n/g „ 2 L0 17 D
f! 17 .V0 ; ; n/g0 D 2ff 152 .V0 ; ; n/g0 L2 0
cos1 Œf 152 .V0 ; ; n/ Œ1 f 152 .V0 ; ; n/ 1=2 ;
f 152 .V0 ; ; n/ D Œa1 sinŒc 152 .V0 ; ; Eg1 ; n/a0 C b0 c 252 .V0 ; ; Eg2 ; n/ ŒŒc 152 .V0 ; ; Eg1 ; n/ 0 a0 C b0 Œc 252 .V0 ; ; Eg2 ; n/ 0 a2 sinŒc 152 .V0 ; ; Eg1 ; n/a0 b0 c 252 .V0 ; ; Eg2 ; n/
ŒŒc 152 .V0 ; ; Eg1 ; n/ 0 a0 b0 Œc 252 .V0 ; ; Eg2 ; n/ 0 mc1 fc 152 .V0 ; ; Eg1 ; n/g0D 2 Œ150 .V0 ; / 0=fc 152 .V0 ; ; Eg1 ; n/g; „ m c2 fc 252 .V0 ; ; Eg2 ; n/g0 D 2 Œ250 .V0 ; / 0 =fc 252 .V0 ; ; Eg2 ; n/g; „
5=2 3mci 2mci E 0 1C i 50 E; Eg0i ; D 1 C Ci 52 mri mri Eg0i The field emitted current density in this case is given by J D
nmax e 2 BkB T gv X F0 . 53BSL / exp.ˇ 53B / 2 2 „2
(5.42)
nD0
where 53BSL D
EFB E53BSL , kB T
E53BSL is the root of the equation ! 17 .E53BSL ; ; n/ D 0 ˇ 53BSL D 17
(5.43)
5.2.4 Field Emission from Quantum Wire Effective Mass Superlattices of III–V Semiconductors The dispersion relation of the conduction electrons for quantum wire effective mass superlattices in accordance with the perturbed three-band model of Kane is given by kx2 D ! 19 .E; ; ny ; nz /
(5.44)
5.2 Theoretical Background
201
where ! 19 .E; ; ny ; nz / D
1 L20
h
1
cos ff 3
i2 E; ; ny ; nz g H.ny ; nz / .
f 3 .E; ; ny ; nz / D Œa1 cosŒe 1 .E; ; Eg1 ; 1 ; ny ; nz /a0 C b0 e 2 .E; ; Eg2 ; 2 ; ny ; nz / a2 cosŒe 1 .E; ; Eg1 ; 1 ; ny ; nz /a0 b0 e 2 .E; ; Eg2 ; 2 ; ny; nz /
e 2i .E; ; Eg0i ; i ; ny ; nz / D
2mci „2
Œˇi 50 .E; ; Eg0i ; i / H ny ; nz
(5.45)
and
2 ny 2 nz C . where H ny ; nz D dy dz
The expression of the electron concentration in this case can be written as n0 D
nymax nzmax h X i 2gv X Q23 EFIDEMSL ; ; ny ; nz C Q24 EFIDEMSL ; ; ny ; nz n D1 n D1 y
z
(5.46) where q Q23 EFIDEMSL ; ; ny ; nz D ! 19 EFIDEMSL ; ; ny ; nz ; X0 RDR Q24 EFIDEMSL ; ; ny ; nz D Z .RIDEMSL / Q23 EFIDEMSL ; ; ny ; nz ; RD1
EFIDEMSL is the Fermi energy in the present case and Z.RIDEMSL / D 2.kB T /2R .1 212R /.2R/
@2R @EFIDEMSL
:
The field emitted current assumes the form I D
nymax nzmax X egv kB T X F0 . 17 / exp 17 „ n D1 n D1 y
where 17 D
EFIDEMSL E 15 . kB T
(5.47)
z
E 15 is the root of the equation ! 19 E 15 ; ; ny ; nz D 0
(5.48)
202
5 Field Emission from Quantum-Confined III–V Semiconductors
3=2 4 ! 19 V0 ; ; ny ; nz 17 D 0 ; 3eFsx ! 19 V0 ; ; ny ; nz h i1=2 2 Œ! 19 V0 ; ; ny ; nz 0 D 1 f 3 V0 ; ; ny ; nz h n ih oi 2Œf 3 V0 ; ; ny ; nz 0 cos1 f 3 V0 ; ; ny ; nz ; Œf 3 .V0 ; ; ny ; nz / 0 D a1 sin a0 e 1 .V0 ; ; Eg1 ; 1 ; ny ; nz / C b0 e 2 .V0 ; ; Eg2 ; 2 ; ny ; nz / a0 Œe 1 .V0 ; ; Eg1 ; 1 ; ny ; nz / 0 C b0 Œe 2 .V0 ; ; Eg2 ; 2 ; ny ; nz / 0 a2 sin a0 e 1 .V0 ; ; Eg1 ; 1 ; ny ; nz / b0 e 2 .V0 ; ; Eg2 ; 2 ; ny; nz / a0 Œe 1 .V0 ; ; Eg1 ; 1 ; ny ; nz / b0 Œe 2 .V0 ; ; Eg2 ; 2 ; ny ; nz / 0 and mci ˇi 50 V0 ; ; Eg0i ; i : Œe i V0 ; ; Eg0i ; i ; ny ; nz D 2 „ e i V0 ; ; Eg0i ; i ; ny ; nz
0
In accordance with the perturbed two-band model of Kane, the electron concentration per unit length is given by n0 D
nymax nzmax X 2gv X Q25 EFIDEMSL ; ; ny ; nz C Q26 EFIDEMSL ; ; ny ; nz n D1 n D1 y
z
(5.49) Where
q Q25 EFIDEMSL ; ; ny ; nz D ! 20 EFIDEMSL ; ; ny ; nz ; X0 RDR Q26 EFIDEMSL ; ; ny ; nz D Z .RIDEMSL / Q25 EFIDEMSL ; ; ny ; nz ; RD1
i2 1 h 1 ! 20 E; ; ny ; nz D f ; n H n ; n ; cos E; ; n y z y z 4 L20 f 4 E; ; ny ; nz D a1 cos a0 g 1 E; ; Eg1 ; ny ; nz b0 g 2 E; ; Eg2 ; ny ; nz a2 cos a0 g 1 E; ; Eg1 ; ny ; nz b0 g 2 E; ; Eg2 ; ny ; nz ;
and
2mci : g 2i E; ; Eg0i ; ny ; nz D ! ; n E; ; E H n i 50 g y z 0i „2
5.2 Theoretical Background
203
The field emitted current can be written as, nymax nzmax egv kB T X X F0 . 18 / exp 18 I D „ n D1 n D1 y
where 18 D
EFIDEMSL E 16 , kB T
(5.50)
z
E 16 is the root of the equation
! 20 E 16 ; ; ny ; nz D 0 (5.51) 3=2 0 4 ! 20 V0 ; ; ny ; nz ; 18 D 3eFsx Œ! 20 V0 ; ; ny ; nz 0 h 1 i ; ; n ; n f ; ; n ; n cos 2Œf V V 0 y z 0 y z 4 4 ; Œ! 20 V0 ; ; ny ; nz 0 D q 2 1 f 4 V0 ; ; ny ; nz Œf 4 V0 ; ; ny ; nz 0 D a1 sin a0 g 1 V0 ; ; Eg1 ; ny ; nz C b0 g 2 V0 ; ; Eg2 ; ny ; nz a0 Œg 1 V0 ; ; Eg1 ; ny ; nz 0 C b0 Œg 2 V0 ; ; Eg2 ; ny ; nz 0 a2 sin a0 g 1 V0 ; ; Eg1 ; ny ; nz b0 g 2 V0 ; ; Eg2 ; ny ; nz a0 Œg 1 V0 ; ; Eg1 ; ny ; nz 0 b0 Œg 2 V0 ; ; Eg2 ; ny ; nz 0 ; and
0 0 mci !i 50 V0 ; ; Eg0i : gi V0 ; ; Eg0i ; ny ; nz D 2 „ g i V0 ; ; Eg0i ; ny ; nz
In accordance with the perturbed parabolic energy bands, the electron concentration per unit length is given by n0 D
nymax nzmax 2gv X X Q251 EFIDEMSL ; ; ny ; nz C Q261 EFIDEMSL ; ; ny ; nz n D1 n D1 y
z
(5.52) where
Q251 EFIDEMSL ; ; ny ; nz D
q
! 201 EFIDEMSL ; ; ny ; nz ;
X0 RDR Q261 EFIDEMSL ; ; ny ; nz D Z .RIDEMSL / Q251 EFIDEMSL ; ; ny ; nz ; ! 201
RD1
i2 1 h 1 ; cos f ; n H n ; n E; ; ny ; nz D E; ; n y z y z 41 L20
204
5 Field Emission from Quantum-Confined III–V Semiconductors
f 41 E; ; ny ; nz D a1 cos a0 g 11 E; ; Eg1 ; ny ; nz b0 g 21 E; ; Eg2 ; ny ; nz a2 cos a0g 11 E; ; Eg1 ; ny ; nz b0g 21 E; ; Eg2 ; ny ; nz and
2mci E; E g 2i1 E; ; Eg0i ; ny ; nz D ; H n ; n i 50 g y z 0i „2
The field emitted current can be written as, nymax nzmax egv kB T X X F0 . 181 / exp 181 I D „ n D1 n D1 y
where 181 D
EFIDEMSL E 161 , kB T
(5.53)
z
E 161 is the root of the equation
(5.54) ! 201 E 161 ; ; ny ; nz D 0 3=2 4 ! 201 V0 ; ; ny ; nz ; 181 D 3eFsx Œ! 201 V0 ; ; ny ; nz 0 h i 2Œf 41 V0 ; ; ny ; nz 0 cos1 f 41 V0 ; ; ny ; nz 0 q ; Œ! 201 V0 ; ; ny ; nz D 2 1 f 41 V0 ; ; ny ; nz Œf 41 V0 ; ; ny ; nz 0 D a1 sin a0 g 11 V0 ; ; Eg1 ; ny ; nz C b0 g 21 V0 ; ; Eg2 ; ny ; nz a0 Œg 11 V0 ; ; Eg1 ; ny ; nz 0 C b0 Œg 21 V0 ; ; Eg2 ; ny ; nz 0 a2 sin a0 g 11 V0 ; ; Eg1 ; ny ; nz b0 g 21 V0 ; ; Eg2 ; ny ; nz a0 Œg 11 V0 ; ; Eg1 ; ny ; nz 0 b0 Œg 21 V0 ; ; Eg2 ; ny ; nz 0 ; and
gi1 V0 ; ; Eg0i ; ny ; nz
0
0 mci i 50 V0 ; Eg0i ; : D 2 „ g i1 V0 ; ; Eg0i ; ny ; nz
5.2.5 Field Emission from Superlattices of III–V Semiconductors with Graded Interfaces Under Magnetic Quantization The energy spectrum in superlattices of III–V compounds with graded interfaces in the presence of light waves whose constituent materials are defined by perturbed three-band model of Kane can be written following [3] as
5.2 Theoretical Background
205
cos.L0 k/ D
1 ˆ115 .E; ks / 2
(5.55)
where ˆ115 .E; ks / " D 2 cosh fX215 .E; ks /g cos fY215 .E; ks /g C "215 .E; ks / sinh fX215 .E; ks /g
sin fY215 .E; ks /g C 21
2 .E; ks / K215 3K225 .E; ks / K225 .E; ks /
cosh fX215 .E; ks /g sin fY215 .E; ks /g # ! fK225 .E; ks /g2 C 3K215 .E; ks / sinh fX215 .E; ks /g cos fY215 .E; ks /g K215 .E; ks / " C 21 2 fK215 .E; ks /g2 fK225 .E; ks /g2 cosh fX215 .E; ks /g cos fY215 .E; ks /g # " 1 5 fK225 .E;ks /g3 5 fK215 .E;ks /g3 C C 34K225 .E;ks / K215 .E;ks / 12 K215 .E; ks / K225 .E; ks / ## sinh fX215 .E; ks /g sin fY215 .E; ks /g X215 .E; ks / D K215 .E; ks / Œa0 21 ;
1=2 2mc2 K215 .E; ks / 2 ˇ150 .E V0 ; ; Eg02 ; 2 / C ks2 ; „
K215 .E; ks / K225 .E; ks / ".E; ks / ; ks2 D kx2 C ky2 ; K225 .E; ks / K215 .E; ks / Y215 .E; ks / D K225 .E; ks / Œb0 21 ;
K225 .E; ks / D
and
2mc1 ˇ150 .E; ; Eg01 ; 1 / ks2 „2
1=2 :
In the presence of a quantizing magnetic field B along z-direction, the simplified magneto-dispersion relation can be written as kz2 D !215 .E; ; n/
(5.56)
206
5 Field Emission from Quantum-Confined III–V Semiconductors
where
"
!215 .E; ; n/ D
2 #
2 B 1 1 1 jej ; nC cos1 f215 .E; ; n/ 2 „ 2 L20
f215 .E; ; n/ " D 2 cosh fM215 .n; E/g cos fN215 .n; E/g C Z215 .n; E/ sinh fM215 .n; E/g " sin fN215 .n; E/g C 21
fI215 .n; E/g2 3I225 .n; E/ I225 .n; E/
!
fI225 .n; E/g2 cosh fM215 .n; E/g sin fN215 .n; E/g C 3I215 .n; E/ I215 .n; E/ #
!
sinh fM215 .n; E/g cos fN215 .n; E/g "
C 21 2 fI215 .n;E/g2 fI225 .n;E/g2 coshfM215 .n;E/g cosfN215 .n;E/g 1 C 12
5 fI225 .n; E/g3 5 fI215 .n; E/g3 C f34I225 .n; E/ I215 .n; E/g I215 .n; E/ I225 .n; E/ ##
!
sinh fM215 .n; E/g sin fN215 .n; E/g
I215 .n; E/ I225 .n; E/ ; Z215 .n; E/ I225 .n; E/ I215 .n; E/ M215 .n; E/ D I215 .n; E/ Œa0 21 ;
1 1=2 2mc2 2 jej B I215 .n; E/ D 2 ˇ250 .E V0 ; ; Eg02 ; 2 / C nC „ „ 2 N215 .n; E/ D I225 .n; E/ Œb0 21 and
1=2 2mc1 2 jej B 1 I225 .n; E/ ˇ150 .E; ; Eg01 ; 1 / : nC „2 „ 2 The electron concentration is given by "n # max gv eB X no D 2 ŒQ .EFBGISL ; ; n/CQ28 .EFBGISL ; ; n/ „ nD0 27
(5.57)
5.2 Theoretical Background
207
Q27 .EFBGISL ; ; n/ D Œ!215 .EFBGISL ; ; n/ 1=2 ; EFBGISL is the Fermi energy in the present case, Q28 .EFBGISL ; ; n/ D
RDR X0
Z .RBGISL / Q27 .EFBGISL ; ; n/
RD1
and Z .RBGISL / D 2 .kB T /2 1 212R .2R/
@2R : @EFBGISL
The field emitted current density is given by, J D where 19 D
EFBGISL E 19 , kB T
nmax e 2 BkB T gv X F0 . 19 / exp. 19 / 2 2 „2 nD0
(5.58)
E 19 is the root of the equation !215 .E 19 ; ; n/ D 0
(5.59)
4 Œ!215 .V0 ; ; n/ 3=2 ; 0 3eFsz !215 .V0 ; ; n/
1=2 1 1 2 0 1 1 !215 .V0 ; ; n/ D 2 cos f215 .V0 ; ; n/ 1 f215 .V0 ; ; n/ 2 4 L0
19 D
0 f215 .V0 ; ; n/ ; 0 f215 .V0 ; ; n/ " 0 .n; V0 / sinh fM215 .n; V0 /g cos fN215 .n; V0 /g D 2M215 0 C Z215 .n; V0 / M215 .n; V0 / cosh fM215 .n; V0 /g 0 sin fN215 .n; V0 /g 2N215 .n; V0 / sin fN215 .n; V0 /g cosh fM215 .n; V0 /g 0 .n; V0 / sinh fM215 .n; V0 /g sin fN215 .n; V0 /g C Z215 0 C Z215 .n; V0 /N215 .n; V0 / cos fN215 .n; V0 /g sinh fM215 .n; V0 /g ! " ˚ ˚ 2 0 0 .n;V0 / .n;V0 / I215 .n;V0 /I225 2I215 .n;V0 / I215 0 .n;V0 / C 21 3I225 2 I225 .n; V0 / I225 .n; V0 /
cosh fM215 .n; V0 /g sin fN215 .n; V0 /g ! fI215 .n; V0 /g2 0 C 3I225 .n; V0 / C .n; V0 / sinh fM215 .n; V0 /g fM215 I225 .n; V0 / 0 .n; V0 / cosh fM215 .n; V0 /g cos fN215 .n; V0 /g sin fN215 .n; V0 /g C fN215
208
5 Field Emission from Quantum-Confined III–V Semiconductors
C
! ˚ ˚ 2 0 0 2I225 .n;V0 /I225 .n;V0 / .n;V0 / I225 .n;V0 /I215 0 C 3I215 .n;V0 / C 2 I215 .n; V0 / I215 .n; V0 /
sinh fM215 .n; V0 /g cos fN215 .n; V0 /g ! fI225 .n; V0 /g2 0 fM215 C C3I215 .n; V0 / .n; V0 / cosh fM215 .n; V0 /g I215 .n; V0 / # cos fN215 .n; V0 /g " C 21 4
0 N215 .n; V0 / sin fN215 .n; V0 /g sinh fM215 .n; V0 /gg
˚ ˚ 0 0 I215 .n; V0 / I215 .n; V0 / I225 .n; V0 /I225 .n; V0 /
cosh fM215 .n; V0 /g cos fN215 .n; V0 /g 0 .n; V0 / C 2 fI215 .n; V0 /g2 fI225 .n; V0 /g2 fM215 sinh fM215 .n; V0 /g cos fN215 .n; V0 /g 0 .n; V0 / cosh fM215 .n; V0 /g sin fN215 .n; V0 /gg N215 ˚ 2 0 0 .n; V0 / I225 .n; V0 / 5 fI225 .n; V0 /g3 I215 .n; V0 / 1 15 I225 C 2 12 I215 .n; V0 / I215 .n; V0 / ˚ 2 0 0 15 I215 .n; V0 / I215 .n; V0 / 5 fI215 .n; V0 /g3 I225 .n; V0 / C 2 I225 .n; V0 / I225 .n; V0 / ! ˚ 0 0 34I225 .n; V0 /I215 .n; V0 / 34I225 .n; V0 /I215 .n; V0 /
sinh fM215 .n; V0 /g sin fN215 .n; V0 /g 5 fI225 .n; V0 /g3 5 fI215 .n; V0 /g3 C 1=12 C f34I225 .n; V0 /I215 .n; V0 /g I215 .n; V0 / I225 .n; V0 / 0 0 fM215 .n; V0 / cosh fM215 .n; V0 /g sin fN215 .n; V0 /g C N215 .n; V0 / ##
sinh fM215 .n; V0 /g cos fN215 .n; V0 /gg 0 0 M215 .n; V0 / D I215 .n; V0 / Œa0 21 ; 0 mc2 ˇ250 V0 V 0 ; ; Eg02 ; 2 0 ; I215 .V0 ; n/ D „2 I215 .V0 ; n/ 0 mc1 ˇ150 V0 ; ; Eg01 ; 1 0 I225 .V0 ; n/ D ; „2 I225 .V0 ; n/
;
!
5.2 Theoretical Background
I215 .V0 ; n/ D
2eB „
nC
209
1 2
2mc2 ˇ250 V0 V 0 ; ; Eg02 ; 2 „2
12 ;
N215 .V0 ; n/ D I225 .V0 ; n/ Œb0 21 ; " # 12 2mc1 ˇ150 V0 ; ; Eg01 ; 1 1 2eB I225 .V0 ; n/ D nC ; „2 „ 2 0 .V0 ; n/ Z215
0 0 0 0 0 .V0 ; n/ I225 .V0 ; n/ I225 .V0 ; n/I215 .V0 ; n/ I .V0 ; n/ I215 .V0 ; n/I225 D 212 2 2 I225 .V0 ; n/ I215 .V0 ; n/ I225 .V0 ; n/ I215 .V0 ; n/
For perturbed two-band model of Kane, the forms of the electron concentration and field emitted current density remain same where
1 2 2eB 1 2mc2 ; nC 2 !250 E V 0 ; ; Eg02 I215 .E; n/ D „ 2 „ " # 12 2mc1 !150 E; ; Eg01 1 2eB nC I225 .E; n/ D ; „2 „ 2 0 mc2 !250 V0 V 0 ; ; Eg02 0 ; I215 .V0 ; n/ D „2 I215 .V0 ; n/ " # 0 V m ! ; ; E c1 0 g 01 150 0 .V0 ; n/ D I225 „2 I225 .V0 ; n/ For perturbed parabolic energy bands, the forms of the electron concentration and field emitted current density remain same where
1 2 2eB 1 2mc2 I215 .E; n/ D ; nC 2 250 E V 0 ; ; Eg02 „ 2 „ " # 12 2mc1150 E; ; Eg01 1 2eB nC I225 .E; n/ D ; „2 „ 2 0 mc2 250 V0 V 0 ; ; Eg02 0 .V0 ; n/ D I215 „2 I215 .V0 ; n/ and
" 0 .V0 ; n/ I225
D
# 0 mc1 150 V0 ; ; Eg01 „2 I225 .V0 ; n/
210
5 Field Emission from Quantum-Confined III–V Semiconductors
5.2.6 Field Emission from Quantum Wire Superlattices of III–V Semiconductors with Graded Interfaces The dispersion relation in accordance with the perturbed three-band model of Kane, in this case is given by kx2 D !225 .E; ; ny ; nz /
(5.60)
where
!225 E; ; ny ; nz D
"
#
2 1 1 1 H ny ; nz ; cos f135 E; ; ny ; nz 2 L20
f135 E; ; ny ; nz " ˚ ˚ D 2 cosh M315 ny ; nz ; E cos N315 ny ; nz ; E
˚ C Z315 ny ; nz ; E sinh M315 ny ; nz ; E ! " ˚ 2 ˚ I315 ny ; nz ; E 3I325 ny ; nz ; E sin N315 ny ; nz ; E C 21 I325 ny ; nz ; E ˚ ˚ cosh M315 ny ; nz ; E sin N315 ny ; nz ; E ˚ 2 ! I325 ny ; nz ; E C 3I315 ny ; nz ; E I315 ny ; nz ; E # ˚ ˚ sinh M315 ny ; nz ; E cos N315 ny ; nz ; E " C 21 2
˚ 2 ˚ 2 I325 ny ; nz ; E I315 ny ; nz ; E
˚ ˚ cosh M315 ny ; nz ; E cos N315 ny ; nz ; E 3 3 ˚ ˚ 5 I315 ny ; nz ; E 1 5 I325 ny ; nz ; E C C 12 I315 ny ; nz ; E I325 ny ; nz ; E ! ˚ 34I325 ny ; nz ; E I315 ny ; nz ; E ## ˚ ˚ sinh M315 ny ; nz ; E sin N315 ny ; nz ; E
5.2 Theoretical Background
211
"
# I315 ny ; nz ; E I325 ny ; nz ; E ; Z315 ny ; nz ; E I325 ny ; nz ; E I315 ny ; nz ; E M315 ny ; nz ; E D I315 ny ; nz ; E Œa0 21 ;
1=2 2mc2 I315 ny ; nz ; E D 2 ˇ250 .E V0 ; ; Eg02 ; 2 / C H.ny ; nz / ; „ N315 ny ; nz ; E D I325 ny ; nz ; E Œb0 21 and
1=2 2mc1 I325 ny ; nz ; E ˇ150 .E; ; Eg01 ; 1 / H.ny ; nz / : „2 The electron concentration per unit length is given by nymax nzmax X 2gv X n0 D Q29 EFQWGISL ; ; ny ; nz C Q30 EFQWGISL ; ; ny ; nz n D1 n D1 y
z
p where Q29 .EFQWGISL ; ; ny ; nz / D Œ !225 .EFQWGISL ; ; ny ; nz / ,
(5.61)
X0 RDR Q30 EFQWGISL ; ; ny ; nz D Z RFQWGISL Q29 EFQWGISL ; ; ny ; nz ; RD1 2R
@ and EFQWGSL is the Fermi Z.RFQWGSL / D 2.kB T /2R .1 212R /.2R/ @EFQWGSL energy in the present case. The field emitted current can be written as nymax nzmax X egv kB T X I D F0 . 20 / exp 20 „ n D1 n D1 y
20 D
EFQWGISL E 20 ; E 20 kB T
(5.62)
z
is the root of the equation
!225 .E 20 ; ; ny ; nz / D 0 (5.63) 3=2 4 !225 V0 ; ; ny ; nz ; 20 D 0 V0 ; ; ny ; nz 3eFsx !225 ˚ 0 2f135 V0 ; ; ny ; nz cos1 12 f135 V0 ; ; ny ; nz 0 !225 V0 ; ; ny ; nz D ; q 2 4 f135 V0 ; ; ny ; nz
212
5 Field Emission from Quantum-Confined III–V Semiconductors
0 V0 ; ; ny ; nz f135 " ˚ 0 D 2M315 ny ; nz ; V0 sinh M315 ny ; nz ; V0 0 ˚ ny ; nz ; V0 cos N315 ny ; nz ; V0 C Z315 ny ; nz ; V0 M315 ˚ ˚ cosh M315 ny ; nz ; V0 sin N315 ny ; nz ; V0 ˚ ˚ 0 2N315 ny ; nz ; V0 sin N315 ny ; nz ; V0 cosh M315 ny ; nz ; V0 ˚ ˚ 0 C Z315 ny ; nz; V0 sinh M315 ny ; nz ; V0 sin N315 ny ; nz; V0 0 .ny ;nz ;V0 / cosfN315 .ny ;nz ;V0 /g sinhfM315 .ny ;nz ;V0 /g C Z315 .ny ;nz ;V0 /N315
0 2 0 .ny ; nz ; V0 /g fI315 .ny ; nz ; V0 /I325 .ny ; nz ; V0 /g f2I315 .ny ; nz ; V0 /I315 C 21 2 I325 .ny ; nz ; V0 / I325 .ny ; nz ; V0 / 0 3I325 .ny ; nz ; V0 /
˚ ˚ cosh M315 ny ; nz ; V0 sin N315 ny ; nz ; V0 ˚ 2 ! I315 ny ; nz ; V0 0 fM315 ny ; nz ; V0 C 3I325 ny ; nz ; V0 C I325 ny ; nz ; V0 ˚ ˚ sin h M315 ny ; nz ; V0 sin N315 ny ; nz ; V0 ˚ ˚ 0 ny ; nz ; V0 cosh M315 ny ; nz ; V0 cos N315 ny ; nz ; V0 C fN315 0 0 f2I325 .ny ; nz ; V0 /I325 .ny ; nz ; V0 /g .ny ; nz ; V0 /g fI 2 .ny ; nz ; V0 /I315 C C 325 2 I315 .ny ; nz ; V0 / I315 .ny ; nz ; V0 / ! ˚ ˚ 0 C 3I315 ny ; nz ; V0 sinh M315 ny ; nz ; V0 cos N315 ny ; nz ; V0 ˚ 2 ! ˚ 0 I325 ny ; nz ; V0 M315 ny ; nz ; V0 C C3I315 ny ; nz ; V0 I315 ny ; nz ; V0 ˚ ˚ cosh M315 ny ; nz ; V0 cos N315 ny ; nz ; V0
0 N315
˚ ˚ ny ; nz ; V0 sin N315 ny ; nz ; V0 sinh M315 ny ; nz ; V0
#
" 0 0 C 21 4.fI315 .ny ; nz ; V0 /I315 .ny ; nz ; V0 /gfI325 .ny ; nz ; V0 /I325 .ny ; nz ; V0 /g/
˚ ˚ cosh M315 ny ; nz ; V0 cos N315 ny ; nz ; V0 ˚ 2 ˚ 2 ˚ 0 M315 ny ; nz ; V0 C 2 I315 ny ; nz ; V0 I325 ny ; nz ; V0
5.2 Theoretical Background
213
˚ ˚ sinh M315 ny ; nz ; V0 cos N315 ny ; nz ; V0 ˚ ˚ 0 ny ; nz ; V0 cosh M315 ny ; nz ; V0 sin N315 ny ; nz ; V0 N315 2 0 0 .ny ;nz ;V0 /gI325 .ny ;nz ;V0 / 5fI325 .ny ;nz ;V0 /g3 I315 .ny ;nz ;V0 / 1 15fI325 C 2 12 I315 .n; V0 / I315 .ny ; nz ; V0 / 0 ˚ 2 15 I315 ny ; nz ; V0 I315 ny ; nz ; V0 C I325 ny ; nz ; V0 3 0 ˚ ny ; nz ; V0 5 I315 ny ; nz ; V0 I325 2 ny ; nz ; V0 I325 ˚ 0 0 34I325 ny ; nz ; V0 I315 ny ; nz ; V0 34I325 ny ; nz ; V0 I315 ny ; nz ; V0 ˚ ˚ sinh M315 ny ; nz ; V0 sin N315 ny ; nz ; V0 C
˚ ˚ 3 3 5 I325 ny ; nz ; V0 5 I315 ny ; nz ; V0 C I315 ny ; nz ; V0 I325 ny ; nz ; V0
˚ 34I325 ny ; nz ; V0 I315 ny ; nz ; V0
!
˚ 0 ˚ ˚ M315 ny ; nz ; V0 cosh M315 ny ; nz ; V0 sin N315 ny ; nz ; V0 C
0 N315
˚ ˚ ny ; nz ; V0 sinh M315 ny ; nz ; V0 cos N315 ny ; nz ; V0
0 0 M315 ny ; nz ; V0 D I315 ny ; nz ; V0 Œa0 21 ; 0 mc2 ˇ250 V0 V 0 ; ; Eg02 ; 2 0 ; I315 V0 ; ny ; nz D „2 I315 V0 ; ny ; nz 0 0 ny ; nz ; V0 D I325 ny ; nz ; V0 Œb0 21 ; N315 0 mc1 ˇ150 V0 ; ; Eg02 ; 2 ; ny ; nz 0 I325 V0 ; ny ; nz D ; „2 I325 V0 ; ny ; nz
1=2 2mc2 I315 ny ; nz ; V0 D 2 ˇ250 .V0 V0 ; ; Eg02 ; 2 / C H.ny ; nz / ; „ N315 ny ; nz ; V0 D I325 ny ; nz ; V0 Œb0 21 ;
1=2 2mc1 ˇ .V ; ; E ; / H.n ; n / I325 ny ; nz ; V0 D 150 0 g01 1 y z „2
and
## ;
214
5 Field Emission from Quantum-Confined III–V Semiconductors
0 V0 ; ny ; nz Z315 " 0 I 0 V0 ; ny ; nz I315 V0 ; ny ; nz I325 I 0 V0 ; ny ; nz V0 ; ny ; nz 325 D 315 2 V0 ; ny ; nz I325 V0 ; ny ; nz I315 V0 ; ny ; nz I325 0 # I325 V0 ; ny ; nz I315 V0 ; ny ; nz C 2 V0 ; ny ; nz I315
For perturbed two-band model of Kane, the form of electron concentration per unit length and the field emitted current remain same where
1=2 2mc2 ; I315 ny ; nz ; E D H.ny ; nz / 2 !250 .E V 0 ; ; Eg02 / „ 0 V0 V 0 ; ; Eg02 mc2 !250 0 I315 V0 ; ny ; nz D ; „2 I315 V0 ; ny ; nz
1=2 2mc1 I325 ny ; nz ; V0 D H.ny ; nz / C 2 !150 .V0 ; ; Eg01 / ; „ and 0 I325
V0 ; ny ; nz
0 V0 ; ; Eg01 mc1 !150 : D „2 I325 V0 ; ny ; nz
For perturbed parabolic energy bands, the form of electron concentration per unit length and the field emitted current remain same where
1=2 2mc2 ; I315 ny ; nz ; E D H.ny ; nz / 2 250 .E V 0 ; ; Eg02 / „ 0 V0 V 0 ; ; Eg02 mc2 250 0 I315 V0 ; ny ; nz D ; „2 I315 V0 ; ny ; nz
I325 ny ; nz ; V0
2mc1 D H.ny ; nz / C 2 150 .V0 ; ; Eg01 / „
and mc1 0 V0 ; ; Eg01 0 : V0 ; ny ; nz D 2 150 I325 „ I325 V0 ; ny ; nz
1=2 ;
5.3 Result and Discussions
215
5.3 Result and Discussions Using the appropriate equations, we have plotted the field emitted current density from n-InSb under magnetic quantization as functions of 1=B, concentration, wavelength, intensity, and electric field as shown in Figs. 5.1–5.5 in accordance with both three- and two-band models of Kane. Figures 5.6–5.8 represent the field emitted current from quantum wires of n-InSb in accordance with the three- and two-band models of Kane as functions of film thickness, concentration, and electric field, respectively. Figures 5.9 and 5.10 exhibit the field emitted current density from GaAs/AlGaAs superlattices with graded interfaces and also its effective mass counterpart under magnetic quantization as functions of 1=B and carrier concentration, respectively. Figures 5.11 and 5.12 exhibit the field emitted current from GaAs/AlGaAs quantum wire superlattices with graded interfaces and also its effective mass counterpart as functions of film thickness and concentration, respectively. From Fig. 5.1, we observe that the field emitted current density from n-InSb under magnetic quantization exhibits oscillations with 1=B, the background physics of which has already been explained. When compared with that of the corresponding Fig. 3.2 as given in Chap. 3, it appears that the effect of light waves enhances the field emitted current density to a very large extent, almost about 1,000 times. We note that although the generation Landau subbands remains same within the given bandwidth, nature of the orientation of the curves is radically different. It appears that when the wavelength of the incident light waves stays in the regime of radio wave zone and whose intensity lies within that of the solar intensity at the earth surface, the degeneracy increases. This implies that in the presence of radio waves, the Fermi energy increases leading to a decrease in the variation of the field emitted current density per subband. This was not in the case with the corresponding
Fig. 5.1 Plot of the field emitted current density as a function of inversing magnetic field for n-InSb in the presence of light waves for both three- and two-band models of Kane
216
5 Field Emission from Quantum-Confined III–V Semiconductors
Fig. 5.2 Plot of the field emitted current density as a function of carrier concentration for n-InSb in the presence of light waves and external magnetic field for both three- and two-band models of Kane
Fig. 5.3 Plot of the field emitted current density as a function of wavelength for n-InSb in the presence of light waves and external magnetic field for both threeand two-band models of Kane
figure in Chap. 3. From Fig. 5.2, exhibits the variation of the field emitted current density at magnetic quantum limit as function of carrier concentration for the said case. We observe a peak in the current density near the value of the electron concentration 1025 m3 at low temperatures for both the models. The field emitted current density remains almost constant below the degeneracy of about 1024 m3 . Besides, the said peak may alter its position with the variation of both wavelength and intensity. Similar nature of the dependence of the field emitted current density on the wavelength has been shown in Fig. 5.3. We note that the peak happens in the radio wave zone for an intensity of 1; 500 Wm2 . In Fig. 5.4, we observe an almost constant field emitted current density with respect to the light intensity up
5.3 Result and Discussions
217
Fig. 5.4 Plot of the field emitted current density as a function of intensity for n-InSb in the presence of light waves and external magnetic field for both threeand two-band models of Kane
Fig. 5.5 Plot of the field emitted current density as a function of electric field for n-InSb in the presence of light waves and external magnetic field for both three- and two-band models of Kane
to 104 Wm2 . As the intensity level increases, the current density start increasing initially slowly, while beyond 104 Wm2 exhibits very large rise. The effect of the electric field on the field emitted current density has been plotted in Fig. 5.5, and it appears that an application of radio waves increases the cut-in field in n-InSb under magnetic quantization as exhibited in the same figure. Composite oscillations in the field emitted current as function of film thickness in the presence of light waves has been exhibited for quantum wires of n-InSb in Fig. 5.6. Few tenths of microamperes of current has been observed in the same figure
218
5 Field Emission from Quantum-Confined III–V Semiconductors
Fig. 5.6 Plot of the field emitted current as a function of film thickness from quantum wires of n-InSb in the presence of light waves for both three- and two-band models of Kane
Fig. 5.7 Plot of the field emitted current as a function of electron concentration from quantum wires of n-InSb in the presence of light waves for both threeand two-band models of Kane
for 0.1 m wavelength and 1;500 Wm2 for a carrier concentration of 1010 m1 . In this case, we note that there exist both increment and decrement in the field emitted current, the reasons of which have already been stated in Chap. 1 and the curves can be compared with the corresponding figures there in. The influence of electron concentration on the field emitted current in this case has been shown in Fig. 5.7 for the quantum limit for the two- and three-band models of Kane in the presence of light waves. We observe that the current rises to a peak near the value of about 109 m1 after which the field emitted current falls sharply. From Fig. 5.8, we note that the field emitted current from quantum wires of n-InSb increases with increasing surface electric field in the electric quantum limit. The cut-in fields in
5.3 Result and Discussions
219
Fig. 5.8 Plot of the field emitted current as a function of electric field from quantum wires of n-InSb in the presence of light waves for both three- and two-band models of Kane
Fig. 5.9 Plot of the field emitted current as a function of inverse magnetic field from GaAs/AlGaAs effective mass superlattices (EM SL) and superlattices with graded interfaces (GI SL) in the presence of light waves, the constituent materials of which obey the unperturbed two-band model of Kane
the present perturbed case are near 107 Vm1 , which can be compared with the unperturbed one. The influence of light waves increases the magnitude of the field emitted current density in both effective mass superlattices and superlattices with graded interface, respectively, which appears from Figs. 5.9 and 5.10 in the presence of quantizing magnetic field as compared with the corresponding case in Chap. 4. With the increase in the electron concentration, the field emitted current density increases with nonperiodic manner. In the case of quantum wire superlattices with graded interfaces and quantum wire effective mass superlattices, the drastic reduction of field emitted current to an order of nanoamperes is due to the high increase in the
220
5 Field Emission from Quantum-Confined III–V Semiconductors
Fig. 5.10 Plot of the field emitted current as a function of carrier concentration in the presence of a magnetic field from GaAs/AlGaAs effective mass superlattices (EM SL) and superlattices with graded interfaces (GI SL) in the presence of light waves, the constituent materials of which obey the unperturbed two-band model of Kane
Fig. 5.11 Plot of the field emitted current as a function of film thickness from GaAs/AlGaAs quantum wire effective mass superlattices (EM QWSL) and quantum wire superlattices with graded interfaces (GI QWSL) in the presence of light waves, the constituent materials of which obey the unperturbed two-band model of Kane
Fermi energy in Fig. 5.11. Incidentally, for low values of electron concentration per unit length, from Fig. 5.12 it appears that the field emitted current increases slowly and sharply falls off above a carrier degeneracy of 109 m1 for both types of quantum wire superlattices as discussed in this chapter. It may be noted that although ternary and quaternary materials are known, primarily known as optoelectronic materials, their conduction electron energy band models in the absence of any field is the same as that of III–V semiconductors whose electron energy spectrum obey the three and two and models of Kane. All the results of this chapter are also equally valid for ternary and quaternary materials and only the numerical values will be different. For the purpose of condensed presentation, the specific carrier statistics for a specific
5.4 Open Research Problems
221
Fig. 5.12 Plot of the field emitted current as a function of carrier concentration per unit length from GaAs/AlGaAs quantum wire effective mass superlattices (EM QWSL) and quantum wire superlattices with graded interfaces (GI QWSL) in the presence of light waves, the constituent materials of which obey the unperturbed two-band model of Kane
system having a particular electron energy spectrum and the corresponding field emitted current have been presented in Table 5.1.
5.4 Open Research Problems All the following problems should be investigated in the presence of external photoexcitation which changes the band structure in a fundamental way together with the proper inclusion of the variations of work function in appropriate cases. (R5.1) (a) Investigate the FNFE from all the bulk semiconductors and the corresponding superlattices whose respective dispersion relations of the carriers are given in this chapter by converting the summations over the quantum numbers to the corresponding integrations by including the uniqueness conditions in the appropriate cases and considering the effect of image force in the subsequent study in each case. (b) Investigate the FNFE for bulk specimens of all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of arbitrarily oriented photoexcitation by incorporating the appropriate changes. (R5.2) Investigate the FNFE in the presence of an arbitrarily oriented nonquantizing nonuniform electric field and photoexcitation respectively for all the cases of R5.1. (R5.3) Investigate the FNFE in the presence of arbitrarily oriented nonquantizing alternating electric field and photoexcitation respectively for all the cases of R5.1.
(b) Perturbed two-band model of Kane max gv eB nP n0 D 2 ŒS55 .EFB ; ; n/ C T55 .EFB ; ; n/ „L0 nD0
(a) Perturbed three-band model of Kane max gv eB nP n0 D 2 ŒS54 .EFB ; ; n/ C T54 .EFB ; ; n/ „L0 nD0 (5.36)
(5.33)
(3) Effective mass superlattices of optoelectronic materials under magnetic quantization:
(2) Perturbed three- and two-band models of Kane and perturbed parabolic energy bands p under 2D quantization: ymax xmax nP 2mc 2gv nP ŒS51 .EF1D ; ; nx ; ny / C T51 .EF1D ; ; nx ; ny / (5.22) n0 D „ nx D1 ny D1 p ymax xmax nP 2mc 2gv nP n0 D ŒS52 .EF1D ; ; nx ; ny / C T52 .EF1D ; ; nx ; ny / (5.23) „ nx D1 ny D1 p n ymax xmax P 2mc 2gv nP ŒS53 .EF1D ; ; nx ; ny / C T53 .EF1D ; ; nx ; ny / (5.24) n0 D „ nx D1 ny D1
(1) Perturbed three- and two-band models of Kane and perturbed parabolic energy bands underpmagnetic quantization: max gv eB 2mc nP n0 D ŒM 51 .EFB ; ; n/ C N 51 .EFB ; ; n/ (5.10) 2 2 p „ nD0 n max gv eB 2mc P ŒM 52 .EFB ; ; n/ C N 52 .EFB ; ; n/ (5.11) n0 D 2p „2 nD0 n max P gv eB 2mc n0 D ŒM 53 .EFB ; ; n/ C N 53 .EFB ; ; n/ (5.12) 2 „2 nD0
The carrier statistics (5.13)
nx D1 ny D1
J D
max e 2 BkB Tgv nP F0 . 52BSL / exp.ˇ 52BSL / 2 2 „2 nD0
max e 2 BkB T gv nP J D F0 . 51BSL / exp.ˇ 51BSL / 2 2 „2 nD0
I D
(5.38)
(5.35)
ymax xmax nP egv kB T nP F0 . 52;1D / exp.ˇ 52;1D / (5.26) „ nx D1 ny D1 n nxmax ymax eg k T P P I D v„B F0 . 53;1D / exp.ˇ 53;1D / (5.27)
J D
max e 2 BkB Tgv nP F0 . 52;B / exp.ˇ 52;B / (5.14) 2 2 „2 nD0 2 n max P e BkB Tgv J D F0 . 53;B / exp.ˇ 53;B / (5.15) 2 2 „2 nD0 nP ymax xmax nP egv kB T F0 . 51;1D / exp.ˇ 51;1D / (5.25) I D „ nx D1 ny D1
The Fowler–Nordheim field emission max e 2 BkB Tgv nP F0 . 51;B / exp.ˇ 51;B / J D 2 2 „2 nD0
Table 5.1 The carrier statistics and the Fowler–Nordheim field emission from quantum confined optoelectronic materials in the presence of light waves
222 5 Field Emission from Quantum-Confined III–V Semiconductors
(5.40)
(6) Superlattices of optoelectronic materials with graded interfaces under 2D quantization: ymax nP zmax h 2gv nP n0 D Q29 EFQWGISL ; ; ny ; nz ny D1 nz D1 i (5.61) C Q30 EFQWGISL ; ; ny ; nz
nD0
I D
max e 2 BkB Tgv nP F0 . 19 / exp. 19 / 2 2 „2 nD0
J D
ymax nP zmax egv kB T nP F0 20 exp 20 „ ny D1 nz D1
(5.62)
(5.53)
(5.50)
(5.47)
(5.42)
(5.58)
ymax nP zmax egv kB T nP F0 181 exp 181 „ ny D1 nz D1
I D
(c) Perturbed parabolic energy bands ymax nP zmax 2gv nP Q251 EFIDEMSL ; ; ny ; nz n0 D ny D1 nz D1 C Q261 EFIDEMSL ; ; ny ; nz (5.52)
(5) Superlattices of optoelectronic materials with graded interfaces under magnetic quantization: nmax g eB P n0 D v2 „ Œ ŒQ27 .EFBGISL ; ; n/ C Q28 .EFBGISL ; ; n/ (5.57)
ymax nP zmax egv kB T nP F0 18 exp 18 „ ny D1 nz D1
ymax nP zmax egv kB T nP F0 17 exp 17 „ ny D1 nz D1
max e 2 BkB Tgv nP F0 . 53BSL / exp.ˇ 53B / 2 2 „2 nD0
I D
I D
J D
(b) Perturbed two-band model of Kane: ymax nP zmax 2gv nP n0 D Q EFIDEMSL ; ; ny ; nz ny D1 nz D1 25 (5.49) C Q26 EFIDEMSL ; ; ny ; nz
(a) Perturbed three-band model of Kane ymax nP zmax 2gv nP n0 D ŒQ EFIDEMSL ; ; ny ; nz ny D1 nz D1 23 C Q24 EFIDEMSL ; ; ny ; nz (5.46)
(4) Effective mass superlattices of optoelectronic materials under 2D quantization:
nD0
(c) Perturbed parabolic energy bands: nmax g eB P ŒS56 .EFB ; ; n/ C T56 .EFB ; ; n/ n0 D 2v„L0
5.4 Open Research Problems 223
224
5 Field Emission from Quantum-Confined III–V Semiconductors
(R5.4) Investigate the FNFE for arbitrarily oriented photoexcitation from the heavily doped semiconductors in the presence of Gaussian, exponential, Kane, Halperin, Lax and Bonch–Bruevich types of band tails for all materials whose unperturbed carrier energy spectra are defined in Chap. 1. (R5.5) Investigate the FNFE from all the semiconductors in the presence of arbitrarily oriented nonquantizing nonuniform electric field and photoexcitation for all the appropriate cases of problem R5.4. (R5.6) Investigate the FNFE from all the semiconductors in the presence of arbitrarily oriented nonquantizing alternating electric field and photoexcitation for all the appropriate cases of problem R5.4. (R5.7) Investigate the FNFE from negative refractive index, organic, magnetic, disordered, and other advanced materials in the presence of arbitrarily oriented photoexcitation. (R5.8) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and alternating nonquantizing electric field for all the problems of R5.7. (R5.9) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing nonuniform electric field for all the problems of R5.7. (R5.10) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and alternating nonquantizing electric field for all the problems of R5.7. (R5.11) Investigate the FNFE from quantum dots of all the semiconductors whose bulk dispersion relations are given in Chap. 1, in the presence of arbitrarily oriented photoexcitation and quantizing magnetic field respectively. (R5.12) Investigate the FNFE from quantum dots of all the materials whose bulk dispersion relations are given in Chap. 1, in the presence of an arbitrarily oriented nonquantizing nonuniform electric field, photoexcitation and quantizing magnetic field, respectively. (R5.13) Investigate the FNFE from quantum dots of all the semiconductors whose bulk dispersion relations are given in Chap. 1, in the presence of an arbitrarily oriented nonquantizing alternating electric field, photoexcitation and quantizing magnetic field respectively. (R5.14) Investigate the FNFE from quantum dots of all the semiconductors whose bulk dispersion relations are given in Chap. 1, in the presence of an arbitrarily oriented nonquantizing alternating electric field, photoexcitation and quantizing alternating magnetic field respectively. (R5.15) Investigate the FNFE from quantum dots of all the semiconductors whose bulk dispersion relations are given in Chap. 1, in the presence of an arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields respectively. (R5.16) Investigate the FNFE for arbitrarily oriented photoexcitation and quantizing magnetic field from the heavily doped semiconductors in the presence of Gaussian, exponential, Kane, Halperin, Lax, and Bonch–Bruevich types of band for all semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R5.17) Investigate the FNFE for arbitrarily oriented photoexcitation and quantizing alternating magnetic field for all the cases of R5.16.
5.4 Open Research Problems
225
(R5.18) Investigate the FNFE for arbitrarily oriented photoexcitation and nonquantizing alternating electric field and quantizing magnetic field for all the cases of R5.16. (R5.19) Investigate the FNFE for arbitrarily oriented photoexcitation and nonuniform alternating electric field and quantizing magnetic field for all the cases of R5.16. (R5.20) Investigate the FNFE for arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields for all the cases of R5.16. (R5.21) Investigate the FNFE from negative refractive index, organic, magnetic, heavily doped, disordered, and other advanced optical materials in the presence of arbitrary oriented photoexcitation and quantizing magnetic field. (R5.22) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, quantizing magnetic field, and alternating nonquantizing electric field for all the problems of R5.21. (R5.23) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, quantizing magnetic field, and nonquantizing nonuniform electric field for all the problems of R5.21. (R5.24) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, alternating quantizing magnetic field, and crossed alternating nonquantizing electric field for all the problems of R5.21. (R5.25) Investigate the FNFE from all the quantum confined materials (i.e., multiple quantum wells, wires and dots) whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of arbitrary oriented photoexcitation and quantizing magnetic field respectively. (R5.26) Investigate the FNFE in the presence of arbitrary oriented photoexcitation and alternating quantizing magnetic field respectively for all the problems of R5.25. (R5.27) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, alternating quantizing magnetic field, and an additional arbitrary oriented nonquantizing nonuniform electric field respectively for all the problems of R5.25. (R5.28) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, alternating quantizing magnetic field, and additional arbitrary oriented nonquantizing alternating electric field respectively for all the problems of R5.25. (R5.29) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, and crossed quantizing magnetic and electric fields respectively for all the problems of R5.25. (R5.30) Investigate the FNFE for arbitrarily oriented photoexcitation and quantizing magnetic field from the entire quantum confined heavily doped semiconductors in the presence of exponential, Kane, Halperin, Lax, and Bonch–Bruevich types of band tails for all semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R5.31) Investigate the FNFE for arbitrarily oriented photoexcitation and alternating quantizing magnetic field for all the cases of R5.30.
226
5 Field Emission from Quantum-Confined III–V Semiconductors
(R5.32) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation, alternating quantizing magnetic field, and an additional arbitrarily oriented nonquantizing nonuniform electric field for all the cases of R5.30. (R5.33) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, alternating quantizing magnetic field, and additional arbitrary oriented nonquantizing alternating electric field respectively for all the cases of R5.30. (R5.34) Investigate the FNFE in the presence of arbitrary oriented photoexcitation, and crossed quantizing magnetic and electric fields respectively for all the cases of R5.30. (R5.35) Investigate the FNFE for all the appropriate problems from R5.25 to R5.34 in the presence of finite potential wells. (R5.36) Investigate the FNFE for all the appropriate problems from R5.25 to R5.34 in the presence of parabolic potential wells. (R5.37) Investigate the FNFE for all the above appropriate problems for quantum rings. (R5.38) Investigate the FNFE for all the above appropriate problems in the presence of elliptical Hill and quantum square rings respectively. (R5.39) Investigate the FNFE from carbon nanotubes in the presence of arbitrary photoexcitation. (R5.40) Investigate the FNFE from carbon nanotubes in the presence of arbitrary photoexcitation and nonquantizing alternating electric field. (R5.41) Investigate the FNFE from carbon nanotubes in the presence of arbitrary photoexcitation and nonquantizing alternating magnetic field. (R5.42) Investigate the FNFE from carbon nanotubes in the presence of arbitrary photoexcitation and crossed electric and quantizing magnetic fields. (R5.43) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of arbitrary photoexcitation for all the materials whose unperturbed carrier dispersion laws are defined in Chap. 1. (R5.44) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of nonquantizing alternating electric field and arbitrary photoexcitation for all the materials whose unperturbed carrier dispersion laws are defined in Chap. 1. (R5.45) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of nonquantizing alternating magnetic field and arbitrary photoexcitation for all the materials whose unperturbed carrier dispersion laws are defined in Chap. 1. (R5.46) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of arbitrary photoexcitation and nonuniform electric field for all the materials whose unperturbed carrier dispersion laws are defined in Chap. 1. (R5.47) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of arbitrary photoexcitation and alternating quantizing magnetic fields for all the materials whose unperturbed carrier dispersion laws are defined in Chap. 1.
5.4 Open Research Problems
227
(R5.48) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of arbitrary photoexcitation and crossed electric and quantizing magnetic fields for all the materials whose unperturbed carrier dispersion laws are defined in Chap. 1. (R5.49) Investigate the FNFE in the presence of arbitrary photoexcitation for all the appropriate nipi structures of the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R5.50) Investigate the FNFE in the presence of arbitrary photoexcitation for all the appropriate nipi structures of the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented nonquantizing nonuniform additional electric field. (R5.51) Investigate the FNFE for all the appropriate nipi structures of the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and nonquantizing alternating additional magnetic field. (R5.52) Investigate the FNFE for all the appropriate nipi structures of the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and quantizing alternating additional magnetic field. (R5.53) Investigate the FNFE for all the appropriate nipi structures of the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields. (R5.54) Investigate the FNFE from heavily doped nipi structures for all the appropriate cases of all the above problems. (R5.55) Investigate the FNFE in the presence of arbitrary photoexcitation for the appropriate inversion layers of all the materials whose unperturbed carrier energy spectra are defined in Chap. 1. (R5.56) Investigate the FNFE in the presence of arbitrary photoexcitation for the appropriate inversion layers of all the materials whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented nonquantizing nonuniform additional electric field. (R5.57) Investigate the FNFE for the appropriate inversion layers of all the materials whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and nonquantizing alternating additional magnetic field. (R5.58) Investigate the FNFE for the appropriate inversion layers of all the materials whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and quantizing alternating additional magnetic field. (R5.59) Investigate the FNFE for the appropriate inversion layers of all the materials whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields by considering electron spin and broadening of Landau levels.
228
5 Field Emission from Quantum-Confined III–V Semiconductors
(R5.60) Investigate the FNFE in the presence of arbitrary photoexcitation for the appropriate accumulation layers of all the materials whose unperturbed carrier energy spectra are defined in Chap. 1 by modifying the above appropriate problems. (R5.61) Investigate the FNFE in the presence of arbitrary photoexcitation from wedge shaped and cylindrical QDs of all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1. (R5.62) Investigate the FNFE in the presence of arbitrary photoexcitation from wedge shaped and cylindrical QDs of all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented nonquantizing nonuniform additional electric field. (R5.63) Investigate the FNFE from wedge shaped and cylindrical QDs of all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and nonquantizing alternating additional magnetic field. (R5.64) Investigate the FNFE from wedge shaped and cylindrical QDs of all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and quantizing alternating additional magnetic field. (R5.65) Investigate the FNFE from wedge shaped and cylindrical QDs of all the semiconductors whose unperturbed carrier energy spectra are defined in Chap. 1 in the presence of an arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields. (R5.66) Investigate the FNFE from wedge shaped and cylindrical QDs for all the appropriate cases of the above problems. (R5.67) Investigate all the problems from R5.25 to R5.66 by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions. (R5.68) Investigate the FNFE from quantum confined III–V, II–VI, IV–VI, HgTe/CdTe effective mass superlattices together with short period, strained layer, random, Fibonacci, polytype and sawtooth superlattices in the presence of arbitrarily oriented photoexcitation. (R5.69) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and quantizing magnetic field respectively for all the cases of R5.68. (R5.70) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing nonuniform electric field respectively for all the cases of R5.68. (R5.71) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing alternating electric field respectively for all the cases of R5.68. (R5.72) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields respectively for all the cases of R5.68. (R5.73) Investigate the FNFE from heavily doped quantum confined superlattices for all the problems of R5.68.
5.4 Open Research Problems
229
(R5.74) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and quantizing magnetic field respectively for all the cases of R5.73. (R5.75) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing nonuniform electric field respectively for all the cases of R5.73. (R5.76) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing alternating electric field respectively for all the cases of R5.73. (R5.77) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields respectively for all the cases of R5.73. (R5.78) Investigate all the problems from R5.68 to R5.77 by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions. (R5.79) Investigate the FNFE from quantum confined III–V, II–VI, IV–VI, HgTe/CdTe superlattices with graded interfaces together with short period, strained layer, random, Fibonacci, polytype and sawtooth superlattices in this context in the presence of arbitrarily oriented photoexcitation. (R5.80) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and quantizing magnetic field respectively for all the cases of R5.79. (R5.81) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing nonuniform electric field respectively for all the cases of R5.79. (R5.82) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing alternating electric field respectively for all the cases of R5.79. (R5.83) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields respectively for all the cases of R5.79. (R5.84) Investigate the FNFE from heavily doped quantum confined superlattices for all the problems of R5.79. (R5.85) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and quantizing magnetic field respectively for all the cases of R5.84. (R5.86) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing nonuniform electric field respectively for all the cases of R5.84. (R5.87) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and nonquantizing alternating electric field respectively for all the cases of R5.84. (R5.88) (a) Investigate the FNFE in the presence of arbitrarily oriented photoexcitation and crossed electric and quantizing magnetic fields respectively for all the cases of R5.84. (b) Investigate the FNFE from multiple wall carbon nanotubes in the presence of an arbitrarily oriented alternating electric field.
230
5 Field Emission from Quantum-Confined III–V Semiconductors
(c) Investigate the FNFE from heavily doped semiconductor nanotubes in the presence of an arbitrarily oriented alternating electric field for all the materials whose unperturbed carrier energy spectra are defined in R1.1 and R1.2 respectively. (R5.89) (a) Formulate the minimum tunneling, Dwell and phase tunneling, Buttiker and Landauer and intrinsic times for all types of systems as discussed in this chapter. (b) Investigate all the appropriate problems of this chapter for the Dirac electron. (c) Investigate all the problems of this chapter by removing all the mathematical approximations and establishing the respective appropriate uniqueness conditions.
References 1. K.P. Ghatak, S. Bhattacharya, D. De, Einstein Relation in Compound Semiconductors and Their nanostructures, Springer Series in Materials Science, vol. 116 (Springer-Verlag, Berlin, 2008) 2. H. Sasaki, Phys. Rev. B 30, 7016 (1984) 3. H.X. Jiang, J.Y. Lin, J. Appl. Phys. 61, 624 (1987)
Part III
Fowler–Nordheim Field Emission from Quantum-Confined Optoelectronic Semiconductors in the Presence of Intense Electric Field
•
Chapter 6
Field Emission from Quantum-Confined Optoelectronic Semiconductors
6.1 Introduction With the advent of modern nanodevices, there has been considerable interest in studying the electric field-induced processes in semiconductors having different band structures. It appears from the literature that the studies have been made on the assumption that the carrier dispersion laws are invariant quantities in the presence of intense electric field, which is not fundamentally true. In this chapter, we shall study the FNFE from quantum-confined optoelectronic semiconductors under strong electric field. In Sect. 6.2.1, the FNFE from the bulk specimens said compounds under strong electric field has been investigated in the presence of magnetic quantization whose unperturbed electron energy spectra are, respectively, defined by the three- and two-band models of Kane together with parabolic energy bands. Section 6.2.2 contains the investigation of the FNFE from quantum wires of optoelectronic semiconductors. In Sect. 6.2.3, the FNFE field emission from effective mass superlattices of optoelectronic semiconductors in the presence of strong electric field under magnetic quantization has been studied. In Sect. 6.2.4, we have investigated the FNFE from quantum wire effective mass superlattices of optoelectronic semiconductors. In Sect. 6.2.5, FNFE from superlattices of optoelectronic compounds with graded interfaces under magnetic quantization has been investigated. In Sect. 6.2.6, the FNFE from quantum wire superlattices of optoelectronic semiconductors with graded interfaces has been studied. Section 6.3 contains the result and discussions pertinent to this chapter. Section 6.4 presents a single challenging open research problem.
S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 6, © Springer-Verlag Berlin Heidelberg 2012
233
234
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
6.2 Theoretical Background 6.2.1 Field Emission from Optoelectronic Semiconductors Under Magnetic Quantization Let the wave vector kN be in the direction with the polar angle (; ) referred to the crystal symmetry axes and the spin-up and spin-down functions are written as " and #, respectively. The uk1 r / and uk2 r / are the wave functions for the conduction N .N N .N and light-hole/spin–orbit splitting valence band and can, respectively, be expressed as [1, 2] 0 X iY 0 0 uk1 " C ckC ŒZ 0 #0 r / D akC Œ.is/#0 C bkC p (6.1) N .N 2 and uk2 r / D ak Œ.i s/"0 bk N .N
X 0 C iY 0 0 # C ck ŒZ 0 "0 p 2
where rN is the position vector of the electron, 1=2 2 .Eg ı 0 / Eg k˙ ak˙ D r0 Eg C ı 0
(6.2)
(6.3)
1=2 .E C 2 /.E C/ r0 D 6 g 3 g ; Eg is the band gap in the absence of any field, is the spin–orbit splitting constant, D 6Eg2 C 9Eg C 42 ; bk˙ D s0 k˙ ; s0 D h 2 i1=2 4 ; s is the s-type atomic orbital in both unprimed and primed coordinates, 3 X 0 ; Y 0 , and Z 0 are the p-type atomic orbitals in the prime co-ordinates, ck˙ D 1=2 h i1=2 p E2 6.Eg C 2 E 3 / tk˙ ; t D ; i D 1; k˙ D 2.Cıg0 / ; ı 0 D g ; is the energy difference between the conduction and the h i valence bands and can be written as 2 2 1=2 E EV .k/g E D E 2 C Eg „ k E is k-dependent energy of the D fEC .k/ ; EC .k/ g mr E is the k-dependent energy of the heavy electron in the conduction band (CB), EV .k/ hole band (VB), mr is the reduced effective mass and is given by mr D .m1 c C 1 m1 / ; m is the effective electron mass at the edge of the conduction band and mq c q is the effective mass of the heavy hole at the top of the heavy hole band. The electron energy spectrum of optoelectronic materials in the absence of any field can be expressed in accordance with the three-band model of Kane as [3] .E/ D where .E/ D
E.aEC1/.bEC1/ I .cEC1/
„2 k 2 2mc
(6.4)
a D 1=Eg ; b D 1=.Eg C /; c D 1= Eg C 23 .
6.2 Theoretical Background
235
Using (6.1) and (6.2), we can write the expression for interband transition matrix element, X12 , as Z X12 D i
uk1 r/ N .N
@ u N .Nr /d3 r @kx k2
(6.5)
In the case of the presence of an external electric field, F along x-axis, the interband transition matrix element, X12 , has finite interaction band same band, e.g., hS jS i D hX jX i D hY jY i D hZjZi D 1 hX jY i D hY jZi D hZjX i D 0 hS jX i D hX jS i D 0I hS jY i D hY jS i D 0 and hS jZi D hZjS i D 0 N We also know for the arbitrary orientation of the k-vector that "
"0 #0
#
" D
# " # " i =2 i =2 e # sin =2 e cos =2 ei =2 cos =2
3 2 cos cos X0 4 Y 0 5 D 4 sin Z0 sin cos 2
ei =2 sin =2
cos sin cos sin sin
3 2 3 X sin 0 5 4Y 5 Z cos
(6.6)
(6.7)
The spin-vector can be expressed as „ (6.8) SE D E 2 0 1 0 i 1 0 where x D ; y D ; and z D . Using the appropriate 1 0 i 0 0 1 equations we can write 0
@ X iY 0 d3 r akC Œ.iS/#0 C bkC p "0 C ckC Z 0 #0 @kx 2 0 0
X C iY 0 D ak .iS/"0 bk p C ck Z 0 "0 # 2 Z
@ i d3 r akC ak .iS/#0 .iS/"0 @kx
bk @ ak .X 0 iY 0 /"0 .iS/"0 C pC @k 2 x
@ C ckC ak .Z 0 #0 / .iS/"0 @kx Z
X12 D i
236
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
akC @ Ci d r p bk : .iS/#0 .X 0 C iY 0 /#0 @k 2 x ! bkC @k@x bk 0
.X iY 0 /"0 .X 0 C iY 0 /#0 2 Z
3
! )# ckC @k@x bk 0 0 0 0 0 .Z # / .X C iY /# p 2 Z
@ akC ck .iS/#0 Z 0 "0 D i d3 r @kx
bk @ ck .X 0 iY 0 /"0 Z 0 "0 C pC @k 2 x
@ C ckC ck .Z 0 #0 / Z 0 "0 @kx Therefore, X12 D i
˝ ˛ @ ak hiSjiSi #0 j"0 akC @kx ˛ ˝ 0 0˛ ˝ 0 bkC @ 0 p ak .X iY /jiS " j# C 2 @kx ˝ ˛ ˛˝ @ C ckC ak Z 0 jiS #0 j"0 @kx ˛˝ 0 ˝ ˛ akC @ 0 0 0 p bk iSj.X C iY / # j # 2 @kx ˛ ˛˝ ˝ bkC @ bkC .X 0 iY 0 /j.X 0 C iY 0 / "0 j #0 C 2 @kx ˛˝ 0 ˝ 0 ˛ ck @ 0 0 0 C p bk Z j.X C iY / # j # 2 @kx ˝ ˛˝ ˛ @ ck iSjZ 0 #0 j "0 C ak @kx ˝ 0 ˛˝ 0 ˛ bkC @ 0 0 0 p ck .X iY /jZ " j " C 2 @kx ˝ ˛˝ ˛ @ ck Z 0 jZ 0 #0 j "0 C ck @kx
(6.9)
6.2 Theoretical Background
237
From (6.9), we can write the terms ˛ ˝ ˛ ˝ hiSjiSi D hS jS i D 1; .X 0 iY 0 /jiS D X 0 jiS hiYjiSi : From (1.7), we obtain ˛ jX 0 D cos cos jX i C cos sin jY i sin jZi Thus, ˝ 0 ˛ X jiS D cos cos hX jiSi C cos sin hY jiSi sin hZjiSi D 0 Since, ˛ hX jS i D hY jS i D hZjS i D 0; jY 0 D sin jX i C cos jY i C 0 Therefore, ˝ ˛ ˝ 0 ˛ iY jiS D Y 0 jS D C sin hX jS i cos hY jS i D 0: Thus, ˝ 0 ˛ .X iY 0 /jiS D 0 ˝ 0 ˛ Z jiS D sin cos hX jiSi C sin sin hY jiSi C cos hZjiSi D i fsin cos hX jS i C sin sin hY jS i C cos hZjS ig D 0 ˝ 0 ˛ ˝ ˛ ˝ ˛ ˛ ˝ .X iY 0 /j.X 0 C iY/ D X 0 jX 0 iY 0 jX 0 C X 0 jiY 0 hiYjiYi ; ˛ jX 0 D cos cos jX i C cos sin jY i sin jZi Therefore, hX 0 jX 0 i D 1 since hX jX i D hY jY i D hZjZi D 1 Similarly hY 0 jY 0 i D 1 and hX 0 jY 0 i D 0 Therefore, h.X 0 iY 0 /j.X 0 C iY 0 /i D 1 0 C 0 1 D 0 and hZ 0 j.X 0 C iY 0 /i D hZ 0 jX 0 i C i hZ 0 jY 0 i D 0 Besides hZ 0 jZ 0 i D sin2 cos2 hX jX iCsin2 sin2 hY jY iCcos2 hZjZi D 1 Therefore, we can write,
X12
˝ 0 0˛ ˝ 0 ˛ @ @ 0 D i akC ak ck # j " C ckC # j" @kx @kx
(6.10)
From the relation (6.6), we obtain "0 D ei =2 cos
" Cei =2 sin # and #0 D ei =2 sin " Cei =2 cos # 2 2 2 2
238
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
˝ ˛ Now #0 j "0 i =2 i =2 i =2 i =2 sin " Ce cos # e cos " Ce sin # D e 2 2 2 2 D eCi =2 sin " Cei =2 cos # ei =2 cos " Cei =2 sin # 2 2 2 2 D sin cos h" j "i C ei cos2 h# j "i 2 2 2 h" j #i C cos sin h# j #i 2 2 2 Therefore, h#0 j "0 ix D sin 2 cos 2 h" j "ix Cei cos2 2 h# j "ix ei sin2 2 h" j #ix C cos 2 sin 2 h# j #ix From (6.1) ˝we can ˛ write, h" j "ix D 0I h# j "ix D 1 and h# j #ix D 0 Therefore, #0 j"0 x D cos cos i sin . Similarly, h#0 j #0 iy D i cos C sin cos and h#0 j #0 iz D sin Thus, h#0 j "0 i D iO h#0 j "0 ix C jO h#0 j "0 iy C kO h#0 j "0 iz D .Or1 C i rO2 /, where, rO1 and rO2 are the unit vectors in the primed axes and are given by rO1 D iO cos cos C jO cos sin kO sin and rO2 D iO sin C jO cos kO 0 in which iO ; jO, and kO are unit vectors along x-, y- and z-axes, respectively. Considering the 12 -spin, we can write ei sin2
˝
˛ 1 #0 j"0 D .rO1 C i rO2 / 2
(6.11)
Therefore from (6.10) and (6.11), we get
X12
˝ 0 ˛ @ @ D i akC ak C ckC ck # j "0 @kx @kx @ @ iA.k/ 1 D i akC ak ckC ck .rO1 C i rO2 / D .rO1 C i rO2 / @kx @kx 2 2 (6.12)
where @ @ A.k/ D akC ak ckC ck @kx dkx From (6.12), we find, jX12 j2 D
1 2 1 A .k/.1 C 1/ D A2 .k/ 4 2
Œsince jOr1 j D jOr2 j D 1
(6.13)
6.2 Theoretical Background
239
Considering spin-up and spin-down, we have to multiply by 2 1 jX12 j2 D 2 A2 .k/ D A2 .k/ 2
(6.14)
We can evaluate X11 and X22 in the following way: Z
@ u N .Nr / d3 r @kx k1 Z @ @ @ 3 Di d r akC ak bk ck C bkC C ckC @kx C @kx C @kx C Z @ 1 .ak2 C bk2 C ck2 / D i d3 r 2 @kx Z 1 @ 3 2 2 2 D i d r .1/ D 0; since akC C bkC C ckC D 1: 2 @kx
X11 D i
uk1 r/ N .N
Therefore X11 D 0, and similarly we can prove X22 D 0. Thus, we conclude that intraband momentum matrix element due to external electric field .XCC / is zero. From the expression of ak˙ , we can write " ak2C D r0 2 and
Eg k2C .Eg ı 0 /
#2
Eg C ı 0
2 2 .Eg ı 0 / Eg k : Eg C ı 0 h
i 2
2 @k E ı 0 r02 Eg ı0 @ak 1 @k Therefore, 2ak @k@x ak D r02 EggCı0 and D 0 @kx @kx 2 Eg Cı ak @kx
2 r02 Eg ı0 akC @k Combining we can write akC @a@kk D 2 E Cı0 a @k x g x k 2 D r02 ak
Similarly, ckC D tkC andck D tk . Therefore, ckC @k@x ck D
r2 A.k/ D 0 2 Now,
akC ak
2 D
Eg ı 0 Eg C ı 0
2 Eg kC .Eg ı 0 / 2 Eg k .Eg ı 0 /
D
akC t 2 ckC ak 2 ck
Eg Eg
Eg .Eg 2.Cı 0 / CEg .Eg 2.Cı 0 /
D
2Eg . C ı 0 / . Eg /.Eg ı 0 / 2Eg . C ı 0 / . C Eg /.Eg ı 0 /
D
.Eg C ı 0 / C Eg .Eg C ı 0 / .Eg C ı 0 / Eg .Eg 3ı 0 /
2 @k @kx
ı0 / ı0 /
2 t 2 ckC @k 2 ck @kx
240
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Therefore, q
CEg Eg0
akC ak
2
CEg
D
Eg
similarly,
ckC ck
D
Eg 3ı 0 Eg Cı 0
kC k
8
. C ı / Eg C Eg ;
.E/ D
c c .E/ and 21 D ŒEg2 C Eg 2m .E/. When F ! 0, we have from (6.31), k 2 ! 2m mr „2 Using the method of successive approximation, one can write
„2 ky2 „2 kz2 „2 kx2 „2 kx2 C C C ˆ.E; F / (6.32) 2mc .E/ 2mc .E/ 2mc .E/ 2mc .E/
2 F 2 „2 Eg2 .Eg ı 0 /2 1 1 CEg 1=2 1 Eg 1=2 1 c where ˆ.E; F / D 2m C Q P 0 3 0 4 mr 4mr 1 E 1 CEg .1 Cı / 1D
g
1
Therefore, the E–k dispersion relation in the presence of an external electric field for III–V, ternary, and quaternary materials whose unperturbed energy band structures are defined by the three-band model of Kane can be expressed as [5]
2mc „2
h
kx2 .E/ 1Cˆ.E;F /
iC
ky2 2mc .E/ „2
C
kz2 2mc .E/ „2
D1
(6.33)
In (6.33), the coefficients of kx , ky , and kz are not same and for this reason, this basic equation is “anisotropic” in nature together with the fact that the anisotropic dispersion relation is the ellipsoid of revolution in the k-space. From (6.33), the expressions of the effective electron masses along x-, y-, and zdirections can, respectively, be written as ˇ @kx ˇˇ 2 mx .E; F / D „ kx @E ˇky D0;kz D0
D mc Œ1 C ˆ.E; F /2 Œ1 C ˆ.E; F / 0 .E/ .E/ˆ0 .E; F / (6.34) ˇ @ky ˇˇ my .E; F / D „2 ky D m0 0 .E/ (6.35) @E ˇkx D0;kz D0 ˇ @kz ˇˇ D m0 0 .E/ (6.36) mz .E; F / D „2 kz @E ˇkx D0;ky D0 where 0 .E/ D
@ @E ..E//
and ˆ0 .E; F / D
@ @E Œˆ.E; F /.
6.2 Theoretical Background
243
It may be noted from (6.34) that the effective mass along x-direction is a function of both electron energy and electric field, respectively, whereas from (6.35) and (6.36) we can infer the expressions of the effective masses along y- and z-directions are same and they depend on the electron energy only. Thus, in the presence of an electric field, the mass anisotropy for Kane type semiconductors depends both on electron energy and electric field, respectively. The use of the usual approximation [3] kx2
1 2 k 3
(6.37)
in (6.33), leads to the simplified expression of the electron energy spectrum in the present case as 2 F 2 „2 Eg2 Eg ı 0 2mc 1 1 „2 k 2 C .E/ .E/ D 2mc 12mr mr 1 .1 C ı 0 /4 8 92 !1=2 < 1 Eg 1=2 = 1 C Eg P CQ : ; 1 Eg0 1 C E g
(6.38)
The (6.38) can be written as ˇ.E; F / D
„2 k 2 2mc
(6.39)
where 1 ˇ.E; F / D .E/ 1 ˆ.E; F / 3
(6.40)
Special Cases: I) The E–k dispersion relation of III–V, ternary, and quaternary materials in the presence of an external electric field whose unperturbed band structures are defined by the two-band model of Kane. Under the condition ! 0, the (6.33) assumes the form
2mc „2
h
kx2 0 .E/ 1Cˆ1 .E;F /
iC
ky2 2mc .E/ „2 0
C
kz2 2mc .E/ „2 0
D1
(6.41)
where 0 .E/ D E .1 C ˛E/ with ˛ D 1=Eg and 2mc 0 .E/ 5=2 „2 F 2 ˆ1 .E; F / D 1C 4mrEg2 0 .E/ mr Eg
(6.42)
244
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Equation (6.41) represents the electron energy spectrum of III–V, ternary, and quaternary materials in the presence of an external electric field whose unperturbed band structures are defined by the two-band model of Kane. From (6.33) along with the substitution ! 0 we get 1 „2 k 2 (6.43) ˇ1 .E; F / D 0 .E/ 1 ˆ1 .E; F / D 3 2mc where (6.43) represents the approximate E–k dispersion relation of III–V, ternary, and quaternary compounds in the presence of an external electric field whose unperturbed band structures are defined by the two-band model of Kane. The dispersion relation of the conduction electrons in optoelectronic materials under electric field can be written in presence of quantizing magnetic field B along x-direction whose unperturbed electron energy spectra are defined by the three- and two-band models of Kane as 1 „2 kx2 nC D ˇ11 .E; F / (6.44) „w0 C 2 2mc 1 „2 kx2 nC D ˇ12 .E; F / (6.45) „w0 C 2 2mc eB (6.46) !0 D mc where, .E/ T12 .E/ ˇ11 .E; F / D .E/ C1 ; 3 .E/ ..E/ C ı 0 /4 mc .„eFEg /2 .Eg ı 0 /2 C1 D 6m2r mc 2 .E/ D Eg2 C Eg .E/ ; mr 2 3 !1=2 .E/ Eg 1=2 .E/ C Eg 5; CQ T1 .E/ D 4P .E/ Eg0 .E/ C Eg "
5# mr Eg 2 ˇ12 .E; F / D E.1 C ˛E/ ı5 E.1 C ˛E/ C ; 2mc # " 3=2 1=2 „2 F 2 mr Eg ı5 D 12.2mc /5=2
(6.47)
From (6.44) and (6.45) we get, kx2 D w11 .E; F; n/
(6.48)
6.2 Theoretical Background
245
and (6.49) kx2 D w12 .E; F; n/
c ˇ11 .E; F / n C 12 „!0 and w12 .E; F; n/ D 2m „2
c where w11 .E; F; n/ D 2m „2i h ˇ12 .E; F / n C 12 „!0 The density of states function for both the cases can, respectively, be expressed as
p nmax 0 ˇ11 .E; F /H.E En1 / gv eB 2mc X N.E/ D p 2 2 „2 nD0 ˇ11 .E; F /
(6.50)
p nmax 0 fˇ12 .E; F /g0 H.E En1 / gv eB 2mc X q N.E/ D 2 2 „2 nD0 ˇ12 .E; F /
(6.51)
and
where gv is the valley degeneracy, the primes denote the differentiation of the differentiable functions with respect to E, H denotes the Heaviside step function, En1 is the root of the equation 1 „!0 D ˇ11 .E; F / nC 2
(6.52)
En2 is the root of the equation 1 „!0 D ˇ12 .E; F / nC 2
(6.53)
Combining (6.50) and (6.51) with the Fermi–Dirac occupation probability factor, the electron concentration can, respectively, be expressed as max gv eB X ŒQ11 .EFB ; F; n/ C Q12 .EFB ; F; n/
2 „ nD0
(6.54)
nmax gv eB X n0 D 2 ŒQ13 .EFB ; F; n/ C Q14 .EFB ; F; n/
„ nD0
(6.55)
n
n0 D and
where Q11 .EFB ; F; n/ D Œ!11 .EF ; F; n/1=2 ; Q12 .EFB ; F; n/ D
R0 P
Z.R/ŒQ11 .EFB ;
RD1 2R
@ F; n/; Z.R/ D 2.kB T /2R .1 212R /.2R/ @E 2R ; .2R/ is the Zeta function of FB
246
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
order 2R, R is the set real positive integers whose upper limit is R0 , Q13 .EFB ; F; n/ D Œ!12 .EF ; F; n/1=2 and Q14 .EFB ; F; n/ D
R0 X
Z.R/ŒQ13 .EFB ; F; n/:
RD1
The velocity of the electron along x-axis under magnetic quantization can, respectively, be expressed from (6.48) and (6.49) as vx .E/ D
0 .E; F; n/ !11 p .2„/ !11 .E; F; n/
(6.56)
vx .E/ D
0 .E; F; n/ !12 p .2„/ !12 .E; F; n/
(6.57)
So that
The net current density due to field emission in the x-direction is given by max eX Œvn .E/ .n0 / t 2 nD0
n
J D
(6.58)
where (1=2) is introduced due to the fact that the half of the electrons which are enable to contribute the emission will migrate back into the lattice, vn .E/ is the velocity of the electrons in the Landau subband characterized by the Landau quantum number n, n0 is the electron concentration in that particular level, and t is the transmission coefficient. The transmission coefficient for the perturbed threeand two-band models of Kane in this case are, respectively, given by t D exp.11 /
(6.59)
t D exp.12 /
(6.60)
and where 4Œ!11 .V0 ; F; n/3=2 ; 0 3eF!11 .V0 ; F / 2mc 1 w11 .V0 ; F; n/ D 2 ˇ11 .V0 ; F / n C „!0 ; „ 2 11 D
6.2 Theoretical Background
247
2mc 0 ˇ .V0 ; F /; „2 11 " 2C 1 .V0 /T1 .V0 /T10 .V0 / T12 .V0 / C 1 0 .V0 / 0 C ˇ11 .V0 ; F / D 0 .V0 / 3 0 4 .V0 / Œ.V0 / C ı 3 .V0 /Œ.V0 / C ı 0 4 # 4C 1 .V0 /T12 .V0 / 0 .V0 / 4C 1 .V0 /T12 .V0 / 0 .V0 / ; C 3 .V0 /Œ.V0 / C ı 0 5 3 .V0 /Œ.V0 / C ı 0 5
0 !11 .V0 ; F / D
# 1 1 1 1 .V0 / D .V0 / ; C C C V0 V0 C Eg V0 C Eg C V0 C Eg C 23 "
0
0 .V0 / D 0 .V0 / D
Eg mc 0 .V0 / ; 2mr .V0 /
0 .V0 / 2
12 D
2QEg Œ.V0 / Eg 1=2 Œ.V0 / C Eg 3=2
.Eg0 C Eg /P Œ.V0 / C Eg 1=2 Œ.V0 / Eg0 3=2
4Œ!12 .V0 ; F; n/3=2 ; 0 3eF!12 .V0 ; F /
0 .V0 ; F / D !12
2mc N Œˇ12 .V0 ; F /0 ; „2
and
"
# 7 2 E m 5 r g ŒˇN12 .V0 ; F / D .1 C 2˛.V0 / 1 C ı5 V0 .1 C ˛V0 / C 2 2mc 0
Using the appropriate equations, the field emitted current density in this case can be expressed as: nmax e 2 BkB Tgv X F0 .11 / exp.11 / 2 2 „2 nD0
(6.61)
nmax e 2 BkB Tgv X F0 .12 / exp.12 / J D 2 2 „2 nD0
(6.62)
J D
n1 n2 , 12 D EFBkBE , Fj ./ is the one parameter Fermi–Dirac integral of 11 D EFBkBE T T order j which has been written in (1.10) of Chap. 1.Under the condition of extreme of degeneracy and in the absence of band nonparabolicity and also neglecting the modification of band structures of the semiconductors under intense electric field, the summation over n can be converted to the integral over n leading to the wellknown result as given by (1.27) of Chap. 1.
248
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
6.2.2 Field Emission from Quantum Wires of Optoelectronic Semiconductors From (6.44) and (6.45), the one-dimensional motion of the electron for quantum wires of optoelectronic materials can be expressed as „2 kx2 D ˇ11 .E; F / 2mc „2 kx2 D ˇ12 .E; F / G.ny; nz / C 2mc
G.ny; nz / C
(6.66) (6.67)
where G.ny; nz / D „2m c Œ.ny = dy /2 C .nz = dz /2 The electron concentration per unit length assumes the forms 2 2
nzmax nymax X 2gv X ŒQ15 .EF1D ; F; ny ; nz / C Q16 .EF1D ; F; ny ; nz / n0 D
n D1 n D1 z
(6.68)
y
nzmax nymax X 2gv X ŒQ17 .EF1D ; F; ny ; nz / C Q18 .EF1D ; F; ny ; nz / (6.69)
n D1 n D1 z y p c where Q15 .EF1D ; F; ny ; nz / D !15 .EF1D ; F; ny ; nz /; !15 .EF1D ; F; ny ; nz / D 2m „2 R 0 P Œˇ11 .EF1D ; F / G.ny ; nz /; Q16 .EF1D ; F; ny; nz / D Z.R1D /ŒQ15 .EF1D ; F; ny;
n0 D
RD1 2R
nz /; Z.R1D / D 2.kB T /2R .1212R /.2R/ @E@ 2R , EF1D is the Fermi energy for oneF1D dimensional system in the present case as measured from the edge of the conduction band in vertically upward direction in the absence of any quantization, Q17 .EF1D ; F; ny ; nz / D D Q18 .EF1D ; F; ny ; nz / D
q !16 .EF1D ; F; ny ; nz /; !16 .EF1D ; F; ny ; nz / 2mc N Œˇ12 .EF1D ; F / G.ny ; nz / „2 R0 X
Z.R1D /ŒQ17 .EF1D ; F; ny ; nz /
RD1
The transmission coefficient for both the cases can, respectively, be expressed as
where 13 D
/3=2
4Œ!15 .V0 ;F;ny ;nz 0 3eF!15 .V0 ;F /
t D exp.13 /
(6.70)
t D exp.14 /
(6.71)
; !15 .V0 ; F; ny ; nz / D
2mc Œˇ11 .V0 ; F / „2
G.ny ; nz /;
4Œ!16 .V0 ;F;ny ;nz /3=2 0 0 c !15 .V0 ; F / D 2m Œˇ11 .V0 ; F /; 14 D ; !16 .V0 ; F; ny ; nz / 0 „2 3eF!16 .V0 ;F / 2mc N 0 N Œˇ12 .V0 ; F / G.ny ; nz /, and !16 .V0 ; F / D „2 Œˇ12 .V0 ; F /0
D
2mc „2
6.2 Theoretical Background
249
The field emitted current in this case can respectively be written as nymax nzmax X egv kB T X F0 .13 / exp.13 /
„ n D1 n D1
(6.72)
nymax nzmax X egv kB T X I D F0 .14 / exp.14 /
„ n D1 n D1
(6.73)
I D
y
y
13 D
EF1D E1;ny ;nz kB T
z
z
; E1;ny ;nz is the root of the equation 0 D Œˇ11 .E1;ny ;nz ; F / G.ny ; nz /
14 D
EF1D E2;ny ;nz kB T
(6.74)
; E2;ny ;nz is the root of the equation 0 D ŒˇN12 .E2;ny ;nz ; F / G.ny ; nz /
(6.75)
6.2.3 Field Emission from Effective Mass Superlattices of Optoelectronic Semiconductors Under Magnetic Quantization The dispersion relation of the conduction electrons in effective mass superlattices of optoelectronic semiconductors can be expressed following Sasaki [5] as a1 cosŒc1 .E; F; Eg1 ; 1 /a0 C c2 .E; F; Eg2 ; 2 /b0 a2 cosŒc1 .E; F; Eg1 ; 1 /a0 c2 .E; F; Eg2 ; 2 /b0 D cos.L0 k/ (6.76) # i2 q 1=2 1 mc2 , where a1 D 1 C 4 mc1 " # q i2 q 1=2 1 h m mc2 a2 D 1 C mcc12 4 , mc1 " h
q
mc2 mc1
2mci 2 ; i D 1; 2; ci2 E; F; Egi ; i D 2 Œˇ1i E; F; Egi ; i k? „ 2 k? D ky2 C kz2 ; ˇ1i E; F; Egi ; i " " ## L Egi ; i ; mri E; Egi ; i Ti2 E; Egi ; i D E; Egi ; i i3 E; Egi ; i Œi E; Egi ; i C ıi0 4
250
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
E E C Egi E C Egi C i Egi C 23 i ; E; Egi ; i D Egi Egi C i E C Egi C 23 i 2 .„eF/2 Egi ıi0 mci ; L Egi ; i ; mri D 6m2ri
ıi0
.Egi /2 i D ; i
2 i D Œ6 Egi C 9Egi i C 42i ; 2
"
Ti .E; Egi ; i / D 4Pi
fi .E; Egi ; i / C Egi g fi .E; Egi ; i / Egi0 g
C Qi Pi D
2 Egi ıi0 r0i ; 2 Egi C ıi0
1 D mri
1 1 C ; mci mvi
#1=2
fi .E; Egi ; i / Egi g fi .E; Egi ; i / C Egi g
1=2 #
2 r0i2 D 6 Egi C i .Egi C i / Œi 1 ; i2 .E; Egi ; i / 3
D ŒEgi2 C Egi .mci =mri /.E; Egi ; i /; Egi0
Egi .Egi 3ıi0 / D ; .Egi C ıi0 /
t2 Qi D i 2
and
" # 6 Egi C 23 i : D i
ti2
In the presence of a quantizing magnetic field B, along z-direction the magnetoenergy spectrum assumes the form kx2 D !17 .E; F; n/ where !17 .E; F; n/ D
2 1 Œcos1 ff1 .E; F; n/g L20
2eB „
(6.77)
nC
1 2
,
f1 .E; F; n/ D Œa1 cosŒc1 .E; F; Eg1 ; 1 ; n/a0 C b0 c2 .E; F; Eg2 ; 2 ; n/ a2 cosŒc1 .E; F; Eg1 ; 1 ; n/a0 b0 c2 .E; F; Eg2 ; 2 ; n/ and ci2 .E; F; Egi ; i ; n/ D
2mci „2
2eB
1 nC : ˇ1i .E; F; Egi ; i / „ 2
The electron concentration assumes the form "n # max gv eB X ŒQ19 .EFB ; F; n/CQ20 .EFB ; F; n/ no D 2
„ nD0
(6.78)
6.2 Theoretical Background
251
where Q19 .EFB ; F; n/ D Œ!17 .EFB ; F; n/1=2 and Q20 .EFB ; F; n/ D
RDR X0
Z.R/ŒQ19 .EFB ; F; n/
RD1
The transmission coefficient in this case is given by t D exp.15 / 15 D
(6.79)
4Œ!17 .V0 ; F; n/3=2 ; 0 3eF!17 .V0 ; F; n/
where 0 !17 .V0 ; F; n/ D Œ.2=L20 /f10 .V0 ; F; n/ cos1 Œf1 .V0 ; F; n/Œ1 f12 .V0 ; F; n/1=2
f10 .V0 ; F; n/ D Œa1 sinŒc1 .V0 ; F; Eg1 ; 1 ; n/a0 C b0 c2 .V0 ; F; Eg2 ; 2 ; n/ Œc10 .V0 ; F; Eg1 ; 1 ; n/a0 C b0 c20 .V0 ; F; Eg2 ; 2 ; n/ a2 sinŒc1 .E; F; Eg1 ; 1 ; n/a0 b0 c2 .E; F; Eg2 ; 2 ; n0 / Œc10 .E; F; Eg1 ; 1 ; n/a0 b0 c20 .E; F; Eg2 ; 2 ; n0 / m ci 0 .V0 ; F; Egi ; i / ci0 .V0 ; F; Egi ; i / D Œci .V0 ; F; Egi ; i /1 Œˇ1i „2 0 .V0 ; F; Egi ; i / ˇ1i "
D 0 .V0 ; Egi ; i /
L.Egi ; i ; mri / 0 .V0 ; Egi ; i /Ti2 .V0 ; Egi ; i / i3 .V0 ; Egi ; i /Œi .V0 ; Egi ; i / C ıi0 4
2L.Egi ; i ; mri /.V0 ; Egi ; i /Ti .V0 ; Egi ; i /Ti0 .V0 ; Egi ; i / i3 .V0 ; Egi ; i /Œi .V0 ; Egi ; i / C ıi0 4
C
3L.Egi ; i ; mri /.V0 ; Egi ; i /Ti2 .V0 ; Egi ; i /i0 .V0 ; Egi ; i / i4 .V0 ; Egi ; i /Œi .V0 ; Egi ; i / C ıi0 4
4L.Egi ; i ; mri /.V0 ; Egi ; i /Ti2 .V0 ; Egi ; i /i0 .V0 ; Egi ; i / i3 .V0 ; Egi ; i /Œi .V0 ; Egi ; i / C ıi0 5 1 1 1 0 .V0 ; Egi ; i / D .V0 ; Egi ; i / C C V0 V0 C Egi V0 C Egi C i 1 V0 C Egi C 23 i C
i0 .V0 ; Egi ; i / D
Egi mci 0 .V0 ; Egi ; i / 2mri i .V0 ; Egi ; i /
252
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Ti0 .V0 ; Egi ; i / 0 " i .V0 ; Egi ; i / 2Egi Qi Œi .V0 ; Egi ; i / Egi 1=2 D 2 Œi .V0 ; Egi ; i / Egi 3=2
#
.Eg0 i C Egi /Pi Œi .V0 ; Egi ; i / Egi 1=2 Œi .V0 ; Egi ; i / Eg0 i 3=2 The photo-emitted current density in this case is given by J D where 15 D
EFB En3 , kB T
nmax e 2 BkB Tgv X F0 .15 / exp.15 / 2 2 „2 nD0
(6.80)
En3 is the root of the equation !17 .En3 ; F; n/ D 0
(6.81)
The electron concentration and the field emitted current density in this case when the dispersion relations of the constituent materials are defined by the perturbed two-band model of Kane, can respectively be expressed as # "n max gv eB X ŒQ21 .EFB ; F; n/CQ22 .EFB ; F; n/ (6.82) n0 D 2
„ nD0 and J D
nmax e 2 BkB Tgv X F0 .16 / exp.16 / 2 2 „2 nD0
where Q21 .EFB ; F; n/ D Œ!18 .EFB ; F; n/1=2 , Q22 .EFB ; F; n/ D
(6.83) RDR Po
Z.R/ŒQ21
RD1
.EFB ; F; n/ !18 .E; F; n/ D
2eB 1 1 2 1 Œcos ff .E; F; n/g n C 2 L2o „ 2
f2 .E; F; n/ D Œa1 cosŒD1 .E; F; Eg1 ; n/ao C bo D2 .E; F; Eg2 ; n/ a2 cosŒD1 .E; F; Eg1 ; n/ao bo D2 .E; F; Eg2 ; n/ 2eB 2mci 1 2 Di .E; F; Egi ; n/ D 1i .E; F; Egi / nC ; „2 „ 2 " 5# mri Egi 2 ; 1i .E; F; Egi / D E.1 C ˛i E/ ı5i E.1 C ˛i E/ C 2mci # " 3=2 .„eF/2 mri .Egi /1=2 ı5i D 12.2mci/5=2
6.2 Theoretical Background
16 D
EFB En4 , kB T
253
En4 is the root of the equation
0 .V0 ; F; n/ D Œ.2=L20 /f20 .V0 ; F; n/ cos1 Œf2 .V0 ; F; n/ !18
Œ1
(6.84)
f22 .V0 ; F; n/1=2
f20 .V0 ; F; n/ D Œa1 sinŒD1 .V0 ; F; Eg1 ; n/a0 C b0 D2 .V0 ; F; Eg2 ; n/ ŒD10 .V0 ; F; Eg1 ; n/a0 C b0 D20 .V0 ; F; Eg2 ; n/ a2 sinŒD1 .E; F; Eg1 ; n/a0 b0 D2 .E; F; Eg2 ; n0 / ŒD10 .E; F; Eg1 ; n/a0 b0 D20 .E; F; Eg2 ; n0 / mci 0 .V0 ; F; Egi / Di0 .V0 ; F; Egi ; n/ D 2 1i „ Di .V0 ; F; Egi ; n/ and " 7=2 # E m 2V 5 ri gi 0 0 1i .V0 ; F; Egi / D 1 C 1 C ı5i V0 .1 C ˛i V0 / C Egi 2 2mci
6.2.4 Field Emission from Quantum Wire Effective Mass Superlattices of Optoelectronic Semiconductors The dispersion relation of the conduction electrons for quantum wire effective mass superlattices in accordance with the perturbed three-band model of Kane is given by kx2 D !19 .E; F; ny ; nz / where, !19 .E; F; ny ; nz / D
h
1 L20
(6.85)
i
1 ˚ 2 cos f3 E; F; ny ; nz H.ny ; nz /
f3 .E; F; ny ; nz / D Œa1 cosŒe1 .E; F; Eg1 ; 1 ; ny ; nz /ao C bo e2 .E; F; Eg2 ; 2 ; ny ; nz / a2 cosŒe1 .E; F; Eg1 ; 1 ; ny ; nz /ao bo e2 .E; F; Eg2 ; 2 ; ny; nz /; D
2mci
(6.87) ˇ1i .E; F; Egi ; i / H ny ; nz „2
2
ei2 .E; F; Egi ; i ; ny ; nz /
where H ny ; nz D
(6.86)
ny
dy
C
nz
dz
2
254
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
The expression of the electron concentration in this case can be written as nymax nzmax 2gv X X n0 D ŒQ23 EFIDEMSL ; F; ny ; nz C Q24 EFIDEMSL ; F; ny ; nz
n D1 n D1 y
z
(6.88) q where Q23 EFIDEMSL ; F; ny ; nz D !19 EFIDEMSL ; F; ny ; nz , X0 RDR Q24 EFIDEMSL ; F; ny ; nz D Z .RIDEMSL / Q23 EFIDEMSL ; F; ny ; nz ; RD1
EFIDEMSL is the Fermi energy in the present case and Z .RIDEMSL / D 2 .kB T /2R 1 212R .2R/
@2R @EFIDEMSL
:
The field emitted current assumes the form nymax nzmax egv kB T X X F0 .17 / exp .17 / I D
„ n D1 n D1 y
where 17 D
EFIDEMSL E15 . kB T
E15 is the root of the equation
!17 E15 ; F; ny ; nz D 0 17
(6.89)
z
(6.90)
3=2 4 !19 V0 ; F; ny ; nz
0 ; D 3eF !19 V0 ; F; ny ; nz
1=2 0 V0 ; F; ny ; nz D 1 f32 V0 ; F; ny ; nz !19
˚ .2=L20 /f30 V0 ; F; ny ; nz cos1 f3 V0 ; F; ny ; nz ; f30 .V0 ; F; ny ; nz /
D a1 sin a0 e1 .V0 ; F; Eg1 ; 1 ; ny ; nz / C bo e2 .V0 ; F; Eg2 ; 2 ; ny ; nz /
a0 e10 .V0 ; F; Eg1 ; 1 ; ny ; nz / C bo e20 .V0 ; F; Eg2 ; 2 ; ny ; nz /
a2 sin a0 e1 .V0 ; F; Eg1 ; 1 ; ny ; nz / bo e2 .V0 ; F; Eg2 ; 2 ; ny; nz /
a0 e10 .V0 ; F; Eg1 ; 1 ; ny ; nz / bo e20 .V0 ; F; Eg2 ; 2 ; ny ; nz /
6.2 Theoretical Background
255
and ei0
V0 ; F; Egi ; i ; ny ; nz D
mci ˇ1i V0 ; F; Egi ; i : „2 ei V0 ; F; Egi ; i ; ny ; nz
In accordance with the perturbed two-band model of Kane, the electron concentration per unit length is given by, n0 D
nymax nzmax
2gv X X Q25 EFIDEMSL ; F; ny ; nz C Q26 EFIDEMSL ; F; ny ; nz
n D1 n D1 y
z
(6.91) hq i where, Q25 EFIDEMSL ; F; ny ; nz D !20 EFIDEMSL ; F; ny ; nz ; Q26 EFIDEMSL ;
RDR P0 Z .RIDEMSL / Q25 EFIDEMSL ; F; ny ; nz , F; ny ; nz D RD1
2 1 1 cos f4 E; F; ny ; nz H ny ; nz ; !20 E; F; ny ; nz D L20
f4 E; F; ny ; nz D a1 cos a0 g1 E; F; Eg1 ; ny ; nz C b0 g2 E; F; Eg2 ; ny ; nz
a2 cos a0 g1 E; F; Eg1 ; ny ; nz b0 g2 E; F; Eg2 ; ny ; nz
and 2mci E; F; E H n gi2 E; F; Egi ; ny ; nz D ; n 1i gi y z „2 The field emitted current can be written as, nymax nzmax X egv kB T X I D F0 .18 / exp .18 /
„
(6.92)
ny D1 nz D1
where, 18 D
EFIDEMSL E16 , kB T
E16 is the root of the equation
!20 E16 ; F; ny ; nz D 0
3=2 4 !20 V0 ; F; ny ; nz ; 18 D 0 V0 ; F; ny ; nz 3eF !20
.2=L20 /f40 V0 ; F; ny ; nz cos1 f4 V0 ; F; ny ; nz 0 !20 V0 ; F; ny ; nz D ; q 1 f42 V0 ; F; ny ; nz
(6.93)
256
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
f40 V0 ; F; ny ; nz D a1 sin a0 g1 V0 ; F; Eg1 ; ny ; nz C b0 g2 V0 ; F; Eg2 ; ny ; nz
a0 g10 V0 ; F; Eg1 ; ny ; nz C b0 g20 V0 ; F; Eg2 ; ny ; nz
a2 sin a0 g1 V0 ; F; Eg1 ; ny ; nz b0 g2 V0 ; F; Eg2 ; ny ; nz
a0 g1 V0 ; F; Eg1 ; ny ; nz b0 g2 V0 ; F; Eg2 ; ny ; nz ; and gi0
V0 ; F; ny ; nz D
mci 1i0 V0 ; F; Egi : „2 gi V0 ; F; Egi ; ny ; nz
6.2.5 Field Emission from Superlattices of Optoelectronic Semiconductors with Graded Interfaces Under Magnetic Quantization The energy spectrum in superlattices of optoelectronic compounds with graded interfaces in the presence of electric field whose constituent materials are defined by perturbed three-band model of Kane can be written following [5] as cos .L0 k/ D where
1 ˆ11 .E; ks / 2
(6.94)
"
ˆ11 .E; ks / D 2 cosh fX21 .E; ks /g cos fY21 .E; ks /g C "21 .E; ks / sinh fX21 .E; ks /g sin fY21 .E; ks /g 2 K21 .E; ks / C 21 3K22 .E; ks / cosh fX21 .E; ks /g K22 .E; ks / ! fK22 .E; ks /g2 sin fY21 .E; ks /g C 3K21 .E; ks / K21 .E; ks / sinh fX21 .E; ks /g cos fY21 .E; ks /g "
C 21 2 fK21 .E; ks /g2 fK22 .E; ks /g2 cos h fX21 .E; ks /g 1 cos fY21 .E; ks /g C 12
"
5 fK21 .E; ks /g3 5 fK22 .E; ks /g3 C K21 .E; ks / K22 .E; ks / # ##
34K22 .E; ks / K21 .E; ks / sinh fX21 .E; ks /g sin fY21 .E; ks /g
;
6.2 Theoretical Background
257
X21 .E; ks / D K21 .E; ks / Œa0 21 ; 1=2 2mc2 2 K21 .E; ks / 2 ˇ012 .E V0 ; F; Eg2 ; 2 / C ks ; „ ˇ012 E V0 ; F; Eg2 ; 2 # " L.Eg2 ;2 ;mr2 /.E V0 ;Eg2 ;2 /T22 .E V0 ;Eg2 ;2 / ; D .E V0 ;Eg2 ;2 / 23 .E V0 ; Eg2 ; 2 /Œ2 .E V0 ; Eg2 ; 2 / C ı20 4 K1 .E; ks / K2 .E; ks / " .E; ks / ; K2 .E; ks / K1 .E; ks / ks2 D kx2 C ky2 ; Y21 .E; ks / D K22 .E; ks / Œb0 21 1=2 2mc1 ˇ11 .E; F; Eg1 ; 1 / 2 ks : K22 .E; ks / D „2
and
In the presence of a quantizing magnetic field B along z-direction, the simplified magneto-dispersion relation can be written as
where !21 .E; F; n/ D "
h
kz2 D !21 .E; F; n/ 1 Œcos1 Œ 12 f11 .E; F; n/2 L20
(6.95)
2jejB „
nC
1 2
i
,
f11 .E; F; n/ D 2 cos h fM21 .n; E/g cos fN21 .n; E/g C Z21 .n; E/ sin h fM21 .n; E/g sin fN21 .n; E/g ! " fI21 .n; E/g2 3I22 .n; E/ C 21 I22 .n; E/ cos h fM21 .n; E/g sin fN21 .n; E/g # ! fI22 .n; E/g2 sin hfM21 .n; E/g cosfN21 .n; E/g C 3I21 .n; E/ I21 .n; E/ "
C 21 2 fI21 .n; E/g2 fI22 .n; E/g2 cos h fM21 .n; E/g cos fN21 .n; E/g
! 5fI21 .n;E/g3 1 5fI22 .n;E/g3 C f34I22 .n; E/I21 .n; E/g C 12 I21 .n; E/ I22 .n; E/ ##
sinh fM21 .n; E/g sin fN21 .n; E/g
258
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
I21 .n; E/ I22 .n; E/ Z21 .n; E/ ; M21 .n; E/ D I21 .n; E/ Œa0 21 ; I22 .n; E/ I21 .n; E/ 2mc2 2 jej B 1 1=2 I21 .n; E/ D 2 ˇ012 .E V0 ; F; Eg2 ; 2 / C nC „ „ 2 N21 .n; E/ D I22 .n; E/ Œb0 21 and I22 .n; E/
1=2 2mc1 2 jej B 1 ˇ .E; F; E ; / : n C 11 g1 1 „2 „ 2
The electron concentration is given by # "n max gv eB X ŒQ27 .EFBGISL ; F; n/CQ28 .EFBGISL ; F; n/ n0 D 2
„ nD0
(6.96)
Q27 .EFBGISL ; F; n/ D Œ!21 .EFBGISL ; F; n/1=2 ; EFBGISL is the Fermi energy in the present case, Q28 .EFBGISL ; F; n/ D
RDR X0
Z .RBGISL / ŒQ27 .EFBGISL ; F; n/
RD1
and
Z .RBGISL / D 2 .kB T /2 1 212R .2R/
@2R : @EFBGISL
The field emitted current density is given by, nmax e 2 BkB Tgv X J D F0 .19 / exp.19 / 2 2 „2 nD0
where 19 D
EFBGISL E19 ; E19 kB T
is the root of the equation
!21 .E19 ; F; n/ D 0
(6.98) 3=2
19 D " f110
(6.97)
4 Œ!21 .V0 ; F; n/ ; 0 3eF!21 .V0 ; F; n/
0 .V0 ; F; n/ D 2M21 .n; V0 / sinh fM21 .n; V0 /g cos fN21 .n; V0 /g 0 .n; V0 / cosh fM21 .n; V0 /g sin fN21 .n; V0 /g C Z21 .n; V0 /M21 0 2N21 .n; V0 / sin fN21 .n; V0 /g cosh fM21 .n; V0 /g 0 .n; V0 / sinh fM21 .n; V0 /g sin fN21 .n; V0 /g C Z21
6.2 Theoretical Background
259
0 C Z21 .n; V0 /N21 .n; V0 / cos fN21 .n; V0 /g sinh fM21 .n; V0 /g " ˚ ˚ 2 0 0 I21 .n; V0 /I22 2I21 .n; V0 /I21 .n; V0 / .n; V0 / C 21 2 I22 .n; V0 / I22 .n; V0 / ! 0 3I22 .n; V0 / cosh fM21 .n; V0 /g sin fN21 .n; V0 /g
! fI21 .n; V0 /g2 0 .n; V0 /gsinhfM21 .n; V0 /g C 3I22 .n; V0 / C fM21 I22 .n; V0 / ˚ 0 sinfN21 .n;V0 /gC N21 .n;V0 / coshfM21 .n;V0 /g cosfN21 .n;V0 /g ˚ 2 0 0 I22 .n; V0 /I21 .n; V0 / .n; V0 /g f2I22 .n; V0 /I22 C C 2 I21 .n; V0 / I21 .n; V0 / ! 0 C 3I21 .n; V0 / sinh fM21 .n; V0 /g cos fN21 .n; V0 /g
! fI22 .n; V0 /g2 ˚ 0 M21.n; V0 / cosh fM21 .n; V0 /g C C3I21 .n; V0 / I21 .n; V0 / # 0 cosfN21 .n;V0 /gN21 .n;V0 / sinfN21 .n;V0 /g sinhfM21 .n;V0 /g " C 21 4
˚ ˚ 0 0 .n; V0 / I22 .n; V0 /I22 .n; V0 / I21 .n; V0 /I21
cosh fM21 .n; V0 /g cos fN21 .n; V0 /g
˚ 0 .n;V0 / sinh fM21 .n;V0 /g C 2 fI21 .n;V0 /g2 fI22 .n;V0 /g2 M21 0 .n;V0 / coshfM21 .n;V0 /g sinfN21 .n;V0 /g cosfN21 .n;V0 /g N21 0 ˚ 2 0 .n; V0 / I22 .n; V0 / 5 fI22 .n; V0 /g3 I21 .n; V0 / 1 15 I22 C 2 12 I21 .n; V0 / I21 .n; V0 / ˚ 2 0 0 15 I21 .n; V0 / I21 .n; V0 / 5 fI21 .n; V0 /g3 I22 .n; V0 / C 2 I22 .n; V0 / I22 .n; V0 / ! ˚ 0 0 34I22 .n; V0 /I21 .n; V0 / 34I22 .n; V0 /I21 .n; V0 / sinh fM21 .n; V0 /g sin fN21 .n; V0 /g
! 5 fI21 .n;V0 /g3 5 fI22 .n;V0 /g3 C f34I22 .n;V0 /I21 .n;V0 /g C I21 .n; V0 / I22 .n;V0 /
260
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors 0 fM21 .n; V0 / cos h fM21 .n; V0 /g sin fN21 .n; V0 /g ## 0 C N21 .n; V0 / sin h fM21 .n; V0 /g cos fN21 .n; V0 /gg
0 .n;V0 / M21
0 ˇ012 .V0
C C
D
0 I21 .n;V0 / Œa0 21 ;
0 I21
;
0 mc2 ˇ012 V0 V 0 ;F;Eg2 ;2 ; .V0 ; n/ D „2 I21 .V0 ; n/
" V 0 ; F; Eg2 ; 2 / D 0 .V0 V 0 ; Eg2 ; 2 /
L.Eg2 ; 2 ; mr2 / 0 .V0 V 0 ; Eg2 ; i /Ti2 .V0 V 0 ; Eg2 ; 2 / i3 .V0 V 0 ; Eg2 ; 2 /Œ2 .V0 V 0 ; Eg2 ; 2 / C ı20 4
2L.Eg2 ; 2 ; mr2 /.V0 V 0 ; Eg2 ; 2 /T2 .V0 V 0 ; Eg2 ; 2 /T2 0 .V0 V 0 ; Eg2 ; 2 / 23 .V0 V 0 ; Eg2 ; 2 /Œ2 .V0 V 0 ; Eg2 ; 2 / C ı20 4 3L.Eg2 ; 2 ; mr2 /.V0 V 0 ; Eg2 ; 2 /T22 .V0 V 0 ; Eg2 ; 2 /20 .V0 V 0 ; Eg2 ; 2 / i4 .V0 V 0 ; Eg2 ; 2 /Œ2 .V0 V 0 ; Eg2 ; 2 / C ı20 4
4L.Eg2 ; 2 ; mr2 /.V0 V 0 ;Eg2 ;2 /T22 .V0 V 0 ;Eg2 ;2 /20 .V0 V 0 ;Eg2 ;2 /
#
23 .V0 V 0 ; Eg2 ; 2 /Œ2 .V0 V 0 ; Eg2 ; 2 / C ı20 5
"
1
0
.V0 V 0 ; Eg2 ; 2 / D .V0 V 0 ; Eg2 ; 2 / C
V0 V 0
1 V0 V 0 C Eg2 C 2
C
;
1 V0 V 0 C Eg 2 1
V0 V 0 C Eg2 C 23 2
# ;
V0 V 0 V0 V 0 C Eg2 V0 V 0 C Eg2 C 2 Eg2 C 23 2
; V0 V 0 ;Eg2 ;2 D Eg2 Eg2 C 2 V0 V 0 C Eg2 C 23 2
2 2 Eg2 2 .„eF/2 Eg2 ı20 mc2 0 L Eg2 ; 2 ; mr2 D ; ı2 D ; 6m2r2 2 i h 2 1 1 1 ; 2 D 6 Eg2 C 9Eg2 :2 C 422 ; D C mr2 mc2 m v2 2 " #1=2 f2 .V0 V 0 ; Eg2 ; 2 / C Eg2 g T2 .V0 V 0 ; Eg2 ; 2 / D 4P2 fi .V0 V 0 ; Eg2 ; 2 / Eg0 2 g " C Q2
f2 .V0 V 0 ; Eg2 ; 2 / Eg2 g f2 .V0 V 0 ; Eg2 ; 2 / C Eg2 g
#1=2 3 5
6.2 Theoretical Background
261
2 D 6 Eg2 C 2 .Eg2 C 2 / Œ2 1 ; ; 3 h i 22 .V0 V 0 ; Eg2 ; 2 / D Eg22 C Eg2 .mc2 =mr2 /.V0 V 0 ; Eg2 ; 2 / ; " # 0 2 6 Eg2 C 23 2 .E 3ı / t E g g 2 2 2 0 2 2 Eg2 D ; Q2 D ; t2 D ; .Eg2 C ı20 / 2 2 r2 P2 D 02 2
Eg2 ı20 Eg2 C ı20
20 .V0 V 0 ; Eg2 ; 2 / D
ro22
Eg2 mc2 0 .V0 V 0 ; Eg2 ; 2 /
; 2mr2 2 .V0 V 0 ; Eg2 ; 2 / " # 0 .V V ; E ; / 0 0 g 2 2 2 T20 .V0 V 0 ; Eg2 ; 2 / D 2 " 2Eg2 Q2 Œ2 .V0 V 0 ; Eg2 ; 2 / Eg2 1=2 Œ2 .V0 V 0 ; Eg2 ; 2 / Eg2 3=2 .Eg0 2 C Eg2 /P2 Œ2 .V0 V 0 ; Eg2 ; 2 / Eg2 1=2 # Œ2 .V0 V 0 ; Eg2 ; 2 / Eg0 2 3=2 ;
0 mc1 ˇ11 V0 ; F; Eg1 ; 1 D ; „2 I22 .V0 ; n/ 1 2 2eB 1 2mc2 ; nC 2 ˇ012 V0 V 0 ; F; Eg2; 2 I21 .V0 ; n/ D „ 2 „
0 .V0 ; n/ I22
N21 .V0 ; n/ D I22 .V0 ; n/ Œb0 21 ; I22 .V0 ; n/ " # 12 2mc1 ˇ11 V0 ; F; Eg1 ; 1 2eB 1 D ; nC „2 „ 2 0 0 .V0 ; n/ I .V0 ; n/ I21 .V0 ; n/I22 0 Z21 .V0 ; n/ D 21 2 I22 .V0 ; n/ I22 .V0 ; n/ 0 0 I22 .V0 ; n/I21 I .V0 ; n/ .V0 ; n/ C 22 2 I21 .V0 ; n/ I21 .V0 ; n/ For perturbed two-band model of Kane, the forms of the electron concentration and field emitted current density remain same where 1 2 1 2mc2 2eB I21 .E; n/ D nC 2 012 E V 0 ; F; Eg2 ; „ 2 „
262
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
"
012 E V 0 ; F; Eg2 D
" ı52 D
E V 0 1 C ˛2 E V 0
# mr2 Eg2 5=2
ı52 .E V0 / 1 C ˛2 E V 0 C 2mc2 1=2 #
3=2 .„eF/2 mr2 Eg2
; 12 .2mc2 /5=2 " # 12 2mc1 11 E; F; Eg1 2eB 1 I22 .E; n/ D ; nC „2 „ 2 " 5# mr1Eg1 2 1 ; ; ˛i D 11 E; F; Eg1 D E.1 C ˛1 E/ ı51 E.1 C ˛1 E/ C 2mc1 Eg i " 1=2 # 3=2 0 mc2 012 V0 V 0 ; F; Eg2 .„eF/2 mr1 Eg1 0 ; ; I21 .V0 ; n/ D ı51 D „2 I21 .V0 ; n/ 12 .2mc1 /5=2
5 0 012 V0 V 0 ; F; Eg2 D 1 C 2˛2 V0 V 0 1 C ı52 V0 V 0 2 # mr2 Eg2 7=2
1 C ˛2 V0 V 0 C 2mc2 " # 0 V0 ; F; Eg1 2mc1 11 0 I22 .V0 ; n/ D 2 „ I22 .V0 ; n/ and 0 11
V0 ; F; Eg1
"
mr1Eg1 5 D Œ1 C 2˛2 .V0 / 1 C ı51 .V0 / Œ1 C ˛1 .V0 / C 2 2mc1
7=2 # :
6.2.6 Field Emission from Quantum Wire Superlattices of Optoelectronic Semiconductors with Graded Interfaces The dispersion relation in accordance with the perturbed three-band model of Kane, in this case is given by kx2 D !22 .E; F; ny ; nz / h
2 i where !22 E; F; ny ; nz D L12 cos1 21 f13 E; F; ny ; nz H ny ; nz , 0
(6.99)
6.2 Theoretical Background
263
" ˚ ˚ f13 E; F; ny ; nz D 2 cosh M31 ny ; nz ; E cos N31 ny ; nz ; E C Z31 ny ; nz ; E sinhfM31 .ny ; nz ; E/g sinfN31 .ny ; nz ; E/g " ˚ ! 2 I31 ny ; nz ; E 3I32 ny ; nz ; E C 21 I32 ny ; nz ; E ˚ ˚ cosh M31 ny ; nz ; E sin N31 ny ; nz ; E 2 ! ˚ I32 ny ; nz ; E C 3I31 ny ; nz ; E I31 ny ; nz ; E ˚ ˚ sinh M31 ny ; nz ; E cos N31 ny ; nz ; E h ˚ 2 ˚ 2 C 21 2 I31 ny ; nz ; E I32 ny ; nz ; E ˚ ˚ cosh M31 ny ; nz ; E cos N31 ny ; nz ; E ˚ ˚ 3 3 5 I31 ny ; nz ; E 1 5 I32 ny ; nz ; E C C 12 I31 ny ; nz ; E I32 ny ; nz ; E ! ˚ 34I32 ny ; nz ; E I31 ny ; nz ; E ˚ ˚ sinh M31 ny ; nz ; E sin N31 ny ; nz ; E
##
"
# I31 ny ; nz ; E I32 ny ; nz ; E ; I32 ny ; nz ; E I31 ny ; nz ; E M31 ny ; nz ; E D I31 ny ; nz ; E Œa0 21 ; 1=2 2mc2 ; I31 ny ; nz ; E D 2 ˇ012 .E V0 ; F; Eg2 ; 2 / C H.ny ; nz / „ N31 ny ; nz ; E D I32 ny ; nz ; E Œb0 21 Z31 ny ; nz ; E
and 1=2 2mc1 ˇ11 .E; F; Eg1 ; 1 / H.ny ; nz / : I32 ny ; nz ; E „2 The electron concentration per unit length is given by nymax nzmax
2gv X X n0 D Q29 EFQWGISL ; F; ny ; nz C Q30 EFQWGISL ; F; ny ; nz
n D1 n D1 y
z
(6.100)
264
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
p where Q29 .EFQWGISL ; F; ny ; nz / D Œ !22 .EFQWGISL ; F; ny ; nz /, X0 RDR
Z RFQWGISL Q29 EFQWGISL ; F; ny ; nz ; Q30 EFQWGISL ; F; ny ; nz D RD1 2R
@ Z.RFQWGSL / D 2.kB T /2R .1 212R /.2R/ @EFQWGSL and EFQWGSL is the Fermi energy in the present case. The field emitted current can be written as nymax nzmax X egv kB T X I D F0 .20 / exp .20 /
„
(6.101)
ny D1 nz D1
20 D
EFQWGISL E20 ; kB T
E20 is the root of the equation
(6.102) !22 .E20 ; F; ny ; nz / D 0
3=2 4 !22 V0 ; F; ny ; nz ; 20 D 0 V0 ; F; ny ; nz 3eF!22
2f130 V0 ; F; ny ; nz cos1 f 12 f13 V0 ; F; ny ; nz g 0 !22 V0 ; F; ny ; nz D q ; L20 4 f132 V0 ; F; ny ; nz f130 V0 ; F; ny ; nz " ˚ ˚ 0 ny ; nz ; V0 sinh M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 D 2M31 0 ˚ C Z31 ny ; nz ; V0 M31 ny ; nz ; V0 cosh M31 ny ; nz ; V0 ˚ ˚ 0 ny ; nz ; V0 sin N31 ny ; nz ; V0 sin N31 ny ; nz ; V0 2N31 ˚ ˚ 0 cosh M31 ny ; nz ; V0 C Z31 ny ; nz; V0 sinh M31 ny ; nz ; V0 0 ˚ ny ; nz ; V0 sin N31 ny ; nz; V0 C Z31 ny ; nz ; V0 N31 ˚ ˚ cos N31 ny ; nz ; V0 sinh M31 ny ; nz; V0 " ˚ 0 ny ; nz ; V0 2I31 ny ; nz ; V0 I31 C 21 I32 ny ; nz ; V0 ! ˚ 2 0 I31 ny ; nz ; V0 I32 ny ; nz ; V0 0 3I32 ny ; nz ; V0 2 I32 ny ; nz ; V0 ˚ ˚ cosh M31 ny ; nz ; V0 sin N31 ny ; nz ; V0 ! ˚ 2 I31 ny ; nz ; V0 0 fM31 ny ; nz ; V0 C 3I32 ny ; nz ; V0 C I32 ny ; nz ; V0 ˚ ˚ sinh M31 ny ; nz ; V0 sin N31 ny ; nz ; V0
6.2 Theoretical Background
˚ ˚ 0 C fN31 ny ; nz ; V0 cosh M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 ˚ 0 2I32 ny ; nz ; V0 I32 ny ; nz ; V0 C I31 ny ; nz ; V0 ! 0 ˚ 2 ny ; nz ; V0 I32 ny ; nz ; V0 I31 0 C C 3I31 ny ; nz ; V0 2 I31 ny ; nz ; V0 ˚ ˚ sinh M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 2 ! ˚ ˚ 0 I32 ny ; nz ; V0 C C3I31 ny ; nz ; V0 M31 ny ; nz ; V0 I31 ny ; nz ; V0 ˚ ˚ 0 ny ; nz ; V0 cosh M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 N31 # ˚ ˚ sin N31 ny ; nz ; V0 sinh M31 ny ; nz ; V0 " C 21 4
˚ 0 I31 ny ; nz ; V0 I31 ny ; nz ; V0
˚ 0 I32 ny ; nz ; V0 I32 ny ; nz ; V0 ˚ ˚ cosh M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 ˚ 2 ˚ 2 C 2 I31 ny ; nz ; V0 I32 ny ; nz ; V0 ˚ 0 ˚ ˚ M31 ny ; nz ; V0 sin h M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 ˚ ˚ 0 ny ; nz ; V0 cosh M31 ny ; nz ; V0 sin N31 ny ; nz ; V0 N31 0 ˚ 2 ny ; nz ; V0 I32 ny ; nz ; V0 1 15 I32 C 12 I21 .n; V0 / 3 0 ˚ ny ; nz ; V0 5 I32 ny ; nz ; V0 I31 2 I31 ny ; nz ; V0 0 ˚ 2 ny ; nz ; V0 I31 ny ; nz ; V0 15 I31 C I32 ny ; nz ; V0 3 0 ˚ ny ; nz ; V0 5 I31 ny ; nz ; V0 I32 2 ny ; nz ; V0 I32 ˚ 0 34I32 ny ; nz ; V0 I31 ny ; nz ; V0 34I32 ny ; nz ; V0 ! ˚ ˚ 0 I31 ny ; nz ; V0 sinh M31 ny ; nz ; V0 sin N31 ny ; nz ; V0
265
266
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
3 3 ˚ ˚ 5 I32 ny ; nz ; V0 5 I31 ny ; nz ; V0 C .1=12/ C I31 ny ; nz ; V0 I32 ny ; nz ; V0 ! ˚ 0 ˚ M31 ny ; nz ; V0 34I32 ny ; nz ; V0 I31 ny ; nz ; V0 ˚ ˚ 0 cosh M31 ny ; nz ; V0 sin N31 ny ; nz ; V0 C N31 ny ; nz ; V0 ## ˚ ˚ ; sinh M31 ny ; nz ; V0 cos N31 ny ; nz ; V0 0 0 0 M31 ny ; nz ; V0 D I31 ny ; nz ; V0 Œa0 21 ; I31 V0 ; ny ; nz 0 V0 V 0 ; F; Eg2 ; 2 mc2 ˇ012 ; D „2 I31 V0 ; ny ; nz 0 0 0 N31 ny ; nz ; V0 D I32 ny ; nz ; V0 Œb0 21 ; I32 V0 ; ny ; nz 0 V0 ; F; Eg2 ; 2 ; ny ; nz mc1 ˇ11 ; D „2 I32 V0 ; ny ; nz 1=2 2mc2 I31 ny ; nz ; V0 D 2 ˇ012 .V0 V0 ; F; Eg2 ; 2 / C H.ny ; nz / ; „ N31 ny ; nz ; V0 D I32 ny ; nz ; V0 Œb0 21 ; I32 ny ; nz ; V0 1=2 2mc1 D ˇ012 .V0 ; F; Eg1 ; 1 / H.ny ; nz / „2 and 0 Z31 V0 ; ny ; nz " 0 0 0 I32 I31 V0 ; ny ; nz I32 I31 V0 ; ny ; nz V0 ; ny ; nz V0 ; ny ; nz D 2 I32 V0 ; ny ; nz I31 V0 ; ny ; nz I32 V0 ; ny ; nz 0 # V0 ; ny ; nz I32 V0 ; ny ; nz I31 C 2 I31 V0 ; ny ; nz For perturbed two-band model of Kane, the form of electron concentration per unit length and the field emitted current remain same where 1=2 2mc2 ; I31 ny ; nz ; E D H.ny ; nz / 2 012 .E V 0 ; F; Eg2 / „
6.3 Results and Discussion
0 I31
267
0 mc2 012 V0 V 0 ; F; Eg2 V0 ; ny ; nz D ; I32 ny ; nz ; V0 2 „ I31 V0 ; ny ; nz 1=2 2mc1 D H.ny ; nz / C 2 11 .V0 ; F; Eg1 / ; „
and 0 .V0 ; ny ; nz / D I32
0 mc1 11 .V0 ; F; Eg1 / : 2 „ I32 .V0 ; ny ; nz /
6.3 Results and Discussion Using (6.54 and 6.61) and (6.55 and 6.62) together with the energy band constants as given in Table 1.1, the field emitted current density under magnetic quantization have been plotted with inverse quantizing magnetic field in accordance with the perturbed three and two-band models of Kane in the presence of electric field for InSb, InAs, Hg1x Cdx Te and In1x Gax Asy P1y lattice matched to InP as shown in Figs. 6.1 and 6.2 respectively. The band gap of InSb and the lattice constant (a) N of the said material will determine the maximum allowable value of the electric field, where Fm D Eg =ea. The use of the said energy band constants leads to the numerical value of the maximum allowable electric field as Fm D 3:63 108 V=m. It is important to note that one cannot use arbitrary values of electric field F . This is because of the fact that if F is greater than Fm , the electrical breakdown of the aforementioned compound will occur. Therefore, one has to select those values of F for various materials, so that the electrical breakdown does not occur. As a result, for different compounds, the values of the electric field are different since the values of the band gap and the lattice constants are different for different materials. From Table 1.1, we can write that the values of Fm for InAs, Hg1x Cdx Te.x D 0:2/ and In1x Gax Asy P1y .x D 0:2 and y D 0:9/ lattice matched to InP are 7 108 V=m, 1 108 V=m, and 1:5 109 V=m, respectively. The value of the electric field should be less than Fm and since the numerical values of Fm are different for different materials, the value of F will also be selected accordingly to maintain the constraint. Figure 6.1 shows that the difference between the perturbed three- and two-band models of Kane at high values of the magnetic field is less. It appears that with the increase of the magnetic field strength, the effect of band nonparabolicity merges with each other due to the suppression of the spin–orbit splitting constant and the energy band gap by the respective high value of the Fermi energy. It also appears that the periods of oscillations are constant, together with the fact that with the decrease in the magnetic field strength, the magnitude of the peak of oscillation decreases. Figure 6.2 also exhibits the same phenomena for n-InSb and GaAs for both perturbed three- and two-band models of Kane. The oscillatory dependence
268
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Fig. 6.1 Plot of the field emitted current density as a function of inverse quantizing magnetic field in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-InSb and n-GaAs at field strength of 106 V m1 and electron concentration of 1022 m3 respectively
of the field emitted current density is due to the SdH effect as discussed already. The nature of variation of the curves is due to the fact that for large values of the Fermi energies, the exponential part of the field emitted current density as given by (6.61) and (6.62) dominates as compared with the F0 .11 / and F0 .12 / respectively. This tends to make an exponential fall of the magnitude of J for each crossing of the Landau subbands. Besides for low values of the Fermi energies, the opposite phenomenon happens and, in turn, the variations become more sharper near the discontinuities. It appears from the Figs. 6.1 and 6.2 that at high magnetic field, both the materials InSb and InGaAsP are more prone to exhibit quantized oscillations in the field emitted current density with higher magnitude than that of the GaAs and HgCdTe. The reason behind this behavior is the very low effective masses of InSb and InGaAsP, which marks significant peak in oscillations than that of the other heavy effective electron mass systems. Figures 6.3 and 6.4 exhibit the variation in the field emitted current density as function of the carrier concentration for aforementioned materials. Sharp drop in the field current density is due to the high value of the Fermi energy which makes the exponential part to dominate. From the said figures, it appears that with the increase in the carrier concentration, both the perturbed three- and two-band models of Kane merge with each other. Figure 6.5 exhibits the field emitted current density as function of electric field for the said materials. It appears that the field current saturates above 106 V m1 for
6.3 Results and Discussion
269
Fig. 6.2 Plot of the field emitted current density as a function of inverse quantizing magnetic field in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-HgCdTe and n-InGaAsP at field strength of 106 V m1 and electron concentration of 1022 m3 respectively
Fig. 6.3 Plot of the field emitted current density as a function of carrier concentration in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-InSb and n-GaAs at field strength of 106 V m1 where B D 10 T
270
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Fig. 6.4 Plot of the field emitted current density as a function of carrier concentration in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-HgCdTe and n-InGaAsP at field strength of 106 V m1 where B D 10 T
Fig. 6.5 Plot of the field emitted current density as a function of electric field in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-InSb, n-GaAs, n-HgCdTe and n-InGaAsP at magnetic field strength of 10 T and carrier concentration of 1022 m3 respectively
6.3 Results and Discussion
271
all the materials. Thus, we observe the effect of saturation of electron velocity. Since the graphs are presented for the lowest occupied subband, no oscillations are being observed in this case. Incorporating several higher subbands, one would expect the oscillatory velocity saturation curves. At this point, we note that the velocity of the carriers at the Fermi level can also be a function of the magnetic field, which in general, will oscillate if the field is varied. We have not shown such curves in this case. One can generate this by numerically solving the (6.54) and (6.55) of carrier statistics respectively for both the bands. It should be noted that the effect of electron spin has not been considered in obtaining the oscillatory plots. The peaks in all the figures would increase in number with decrease in amplitude if spin splitting term is included in the respective numerical computations. Although in a more rigorous treatment, the self-consistent procedure should be used, the simplified analysis as presented here exhibits the basic qualitative features of the field emitted current density in nonparabolic materials having perturbed three- and two-band model of Kane in the presence of electric field under the magnetic quantization with reasonable accuracy. We also do not increase the field strength beyond 107 V m1 , since many other high field transport effect such as hot phonons and hot electrons will arise signifying the issues of transverse negative differential resistance, etc., and transforming the mathematical analysis into a formidable one for the generalized systems as considered here and is clearly beyond the scope of the present literature. Using (6.69) and (6.70), the field emitted current as function of electric field has been plotted for quantum wires of n-InSb and n-InGaAsP as shown in Fig. 6.6 which exhibits the fact that the field emitted current is more for InSb than that of InGaAsP. Spatial oscillations in the current are clearly exhibited in Fig. 6.6 due to the existence of van-Hove singularity in the density of states function in such 1D structures. On comparing Fig. 6.6 with Fig. 6.5, we observe that the cut-in value of the field current in quantum wires are more than that of the bulk case under magnetic quantization. Physically, this is due to the spatial confinement of the carriers along the two orthogonal directions. It appears that the field current increases with the increase in the well width because of the generation of the subband levels in the presence of size quantization. The close inspection signifies that for a particular subband, the field current actually decreases. This is logical, since with the increase in the film thickness the Fermi energy reduces, which consequently reduces the field current. With the increase in the film thickness along both the directions, the current starts to saturate at their respective bulk value. The field emitted current as function of film thickness in quantum wires has been plotted in Fig. 6.7 in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-InSb and n-InGaAsP respectively. One immediate conclusion about the tunneling conductance can also be drawn from the Fig. 6.7. It appears that with the increase of lateral dimension, the transmission of the carriers decays, although the carriers present at the different higher sub-bands participate in the conduction process. This tends to increase the transverse conductance due to tunneling, although for each subband, the conductance decreases. It appears that the magnitudes of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned.
272
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Fig. 6.6 Plot of the field emitted current as a function of electric field in quantum wires in accordance with the perturbed three-band model of Kane, where the materials are quantum wires of n-InSb, and n-InGaAsP respectively
Fig. 6.7 Plot of the field emitted current as a function of film thickness in quantum wires in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-InSb and n-InGaAsP respectively
6.3 Results and Discussion
273
Fig. 6.8 Plot of the field emitted current as a function of carrier concentration in quantum wires in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for n-InSb and n-InGaAsP
Figure 6.8 exhibits the variation of the filed current as function of the carrier density per unit length in this case. Similar trend of variation has been observed when one compares Fig. 6.8 with Fig. 6.5. Since, we have taken the lowest subband, it is logical to assume that almost all the carriers at low temperatures occupy the lowest energy subband, we cannot observe any oscillatory behavior in the field current. We find that a smooth increase and a sharp decrease in the field current with carrier density are the characteristic behavior of the FNFE. With large carrier distribution, we observe negligible deviation between the two types of band nonparabolicity. It also appears from the Fig. 6.7 that the field current in quantum wires exhibits a step like manner as considered here although the numerical values vary widely and determined by the constants of the energy spectra. The step dependence is due to the crossing over of the Fermi level by the size quantized levels. For each coincidence of a quantized level with the Fermi level, there would be a discontinuity in the density of states function resulting in a peak. With large values of film thickness, the height of the steps decreases and the current decreases with increasing film thickness in nonoscillatory manner and exhibit monotonic decreasing dependence. The height of step size and the rate of decrement are totally dependent on the band structure. The numerical values of the field current in accordance with the perturbed three-band model of Kane is lower than that of the corresponding two-band model, which reflects that fact that the presence of the spin orbit splitting constant decreases the magnitude of the tunneling field current.
274
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
It may be noted that the presence of the band nonparabolicity in accordance with the perturbed two-band model of Kane enhances the peaks of the ladder type field current for all cases of quantum confinements. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. The variation of field current density for the effective mass superlattices for InGaAs/InGaAsP and InAlSb/InSb as function of inverse magnetic field, carrier density and electric field have been plotted in Figs. 6.9–6.11 respectively. It appears that the variation in the field currents for all the present cases resembles a similar shape of their corresponding bulk part under magnetic quantization. The decaying rates of the currents in all the aforementioned cases are sharper than that of their bulk counterpart. We also observe a significant increase in the magnitude of the current in the aforementioned figures when compared with their bulk. This is due to the very narrow value of the barrier width which makes a high transmission of carriers. With the increase in the width, the current reduces and tends to its bulk counterpart. Figures 6.12–6.14 exhibit the variation in the field current as function of film thickness, carrier density and electric field respectively for quantum wire effective mass superlattices and quantum wire superlattices with graded interfaces. High suppression of the field current is exhibited with the increase in the lateral
Fig. 6.9 Plot of the field emitted current density as a function of inverse magnetic field in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for InAlSb/InSb and InGaAs/InGaAsP effective mass superlattices
6.3 Results and Discussion
275
Fig. 6.10 Plot of the field emitted current density in the presence of magnetic field as a function of carrier concentration for InAlSb/InSb and InGaAs/InGaAsP effective mass superlattices respectively in accordance with the perturbed three- and two-band models of Kane in the presence of electric field
Fig. 6.11 Plot of the field emitted current density as a function of electric field for the InAlSb/InSb and InGaAs/InGaAsP effective mass superlattices respectively in accordance with the perturbed three- and two-band models of Kane in the presence of electric field
276
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
Fig. 6.12 Plot of the field emitted current as a function of film thickness in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for (a) quantum wire effective mass superlattices and (b) quantum wire superlattices with graded interface.The superlattices taken are InAlSb/InSb and InGaAs/InGaAsP respectively
Fig. 6.13 Plot of the field emitted current as a function of carrier density in accordance with the perturbed three- and two-band models of Kane in the presence of electric field for (a) quantum wire effective mass superlattices and (b) quantum wire superlattices with graded interfaces. The superlattices taken are InAlSb/InSb and InGaAs/InGaAsP respectively
6.3 Results and Discussion
277
Fig. 6.14 Plot of the field emitted current as function of electric field in accordance with the perturbed (a) three and (b) two band models of Kane in the presence of electric field for InAlSb/InSb quantum wire effective mass superlattices and InGaAs/InGaAsP quantum wire superlattices with graded interface respectively
Fig. 6.15 Plot of the field emitted current density as a function of alloy composition in accordance with the perturbed three band model of Kane in the presence of electric field for InGaAs/InGaAsP superlattices with graded interfaces where B D 10 T and F D 105 V m1 respectively
dimension. Although, many higher subbands levels are considered, still, we do not observe such high quantum jumps as shown for the quantum wire systems. In the present case, we see composite spatial oscillations in the current due to the selection rules in the quantum numbers along the three confined directions. Figure 6.15
2gv
n0 D
(b) Perturbed two-band model of Kane
gv eB Œ
2„
gv eB Œ
2„
n0 D
n0 D
(b) Perturbed two-band model of Kane
nD0
nP max
nD0
nP max
ŒQ21 .EFB ; F; n/ C Q22 .EFB ; F; n/
ŒQ19 .EFB ; F; n/ C Q20 .EFB ; F; n/
(6.82)
(6.78)
ŒQ17 .EF1D ; F; ny ; nz / C Q18 .EF1D ; F; ny ; nz /
nz D1 ny D1
nP ymax zmax nP
(6.55)
(6.54)
ŒQ15 .EF1D ; F; ny ; nz / C Q16 .EF1D ; F; ny ; nz /
ŒQ13 .EFB ; F; n/ C Q14 .EFB ; F; n/
ŒQ11 .EFB ; F; n/ C Q12 .EFB ; F; n/
nz D1 ny D1
(a) Perturbed three-band model of Kane
Effective mass superlattices of optoelectronic materials under magnetic quantization
2gv
n0 D
(a) Perturbed three band model of Kane
nD0
nP max
nD0
nP max
nP ymax zmax nP
gv eB
2„
n0 D
(b) Perturbed two-band model of Kane
Quantum wires of opto electronic materials
gv eB
2„
n0 D
The carrier statistics
(a) Perturbed three-band model of Kane
Type of materials Opto-electronic materials under magnetic quantization:
(6.69)
(6.68)
J D
J D
I D
I D
J D
J D
nD0
nP max
nD0
nP max
e2 BkB Tgv 2 2 „2
nD0
nP max
nD0
nP max
F0 .16 / exp.16 /
(6.73)
(6.72)
(6.83)
(6.80)
F0 .14 / exp.14 /
F0 .15 / exp.15 /
ny D1 nz D1
nP ymax nP zmax
ny D1 nz D1
(6.62)
(6.61)
F0 .13 / exp.13 /
F0 .12 / exp.12 /
F0 .11 / exp.11 /
nP ymax nP zmax
e2 BkB Tgv 2 2 „2
egv kB T
„
egv kB T
„
e2 BkB Tgv 2 2 „2
e2 BkB Tgv 2 2 „2
FNFE
Table 6.1 The carrier statistics and the FNFE from different quantized of optoelectronic materials under intense electric field
278 6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
n0 D
n0 D
no D
n0 D
(a) Perturbed three-band model of Kane
(b) Perturbed two-band model of Kane
Superlattices of Optoelectronic materials with graded interfaces under magnetic quantization Perturbed three-band model of Kane
Quantum wire superlattices of optoelectronic materials with graded interfaces Perturbed three-band model of Kane
Quantum wires effective mass superlattices of Optoelectronic materials
ny D1 nz D1
nP ymax nP zmax
ny D1 nz D1
nP ymax nP zmax
ny D1 nz D1
(6.100)
Q29 EFQWGISL ; F; ny ; nz
ŒQ27 .EFBGISL ; F; n/ C Q28 .EFBGISL ; F; n/
nP ymax nP zmax
nD0
nP max
CQ30 EFQWGISL ; F; ny ; nz
2gv
gv eB Œ
2„
(6.91)
Q25 EFIDEMSL ; F; ny ; nz
CQ26 EFIDEMSL ; F; ny ; nz
2gv
(6.88)
Q23 EFIDEMSL ; F; ny ; nz
CQ24 EFIDEMSL ; F; ny ; nz
2gv
(6.96)
I D
J D
I D
I D
egv kB T
„
ny D1 nz D1
(6.92)
(6.89)
F0 .20 / exp .20 /
(6.101)
(6.97)
F0 .18 / exp .18 /
F0 .17 / exp .17 /
F0 .19 / exp.19 /
nP ymax nP zmax
nD0
nP max
ny D1 nz D1
nP ymax nP zmax
ny D1 nz D1
nP ymax nP zmax
e 2 BkB Tgv 2 2 „2
egv kB T
„
egv kB T
„
6.3 Results and Discussion 279
280
6 Field Emission from Quantum-Confined Optoelectronic Semiconductors
exhibits the field emitted current density as function of alloy composition for the perturbed three-band model of Kane electron dispersion relation of the constituent materials in superlattices with graded interfaces. It appears that with the increase in the alloy composition, the current density decreases for low carrier degeneracy, while for higher values of the electron concentration, the field current density is relatively invariant of alloy composition. It may be noted that the experimental results for the verification of the theoretical analyses of this chapter are still not available in the literature. For the last time, the carrier statistics and the FNFE from different quantized optoelectronic materials have been presented in Table 6.1.
6.4 Open Research Problem (R.6.1) Investigate the FNFE for all the systems as discussed in this book in the presence of very strong electric field which changes the original band structure and consider the effect of image force in the subsequent: study in each case.
References 1. E. Haga, H. Kimura, J. Phys. Soc. Japan 18(6), 777 (1963) 2. E. Haga, H. Kimura, J. Phys. Soc. Japan 19(4), 471 (1964) 3. B.R. Nag, Electron Transport in Compound Semiconductors (Springer-Verlag, Berlin, 1980) 4. L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968) 5. P.K. Chakraborty, S. Choudhury, K.P. Ghatak, Phys. B 387, 333 (2007)
Chapter 7
Applications and Brief Review of Experimental Results
7.1 Introduction In this monograph, we have investigated many aspects of FNFE based on the dispersion relations of the semiconductor nanostructures of different technologically important quantum-confined materials having different band structures. In this chapter, we shall discuss few applications in this context in Sect. 7.2 and also present a very brief review of the experimental investigations in Sect. 7.3 which is a sea in itself. Section 7.4 contains the single experimental open research problem.
7.2 Applications The investigations as presented in this monograph find nine different applications in the realm of modern quantum effect devices.
7.2.1 Debye Screening Length The Debye screening length (DSL) of the carriers in the semiconductors is a fundamental quantity, characterizing the screening of the Coulomb field of the ionized impurity centers by the free carriers. It affects many special features of the modern semiconductor devices, the carrier mobility under different mechanisms of scattering, and the carrier plasmas in semiconductors [1–14]. The DSL .LD / can, in general, be written as [4–14] LD D
jej2 @n0 "sc @EF
1=2 (7.1)
where n0 and EF are applicable for bulk samples. S. Bhattacharya and K.P. Ghatak, Fowler–Nordheim Field Emission, Springer Series in Solid-State Sciences 170, DOI 10.1007/978-3-642-20493-7 7, © Springer-Verlag Berlin Heidelberg 2012
281
282
7 Applications and Brief Review of Experimental Results
It is well known that the thermoelectric power of the carriers in semiconductors in the presence of a classically large magnetic field is independent of scattering mechanisms and is determined only by their energy band spectra [15]. The magnitude of the thermoelectric power G can be written under the condition of carrier degeneracy [15] as GD
2 kB2 T 3jejn0
@n0 @EF
(7.2)
Using (7.1) and (7.2), one obtains 1=2 LD D 3jej3 n0 G="sc 2 kB2 T
(7.3)
Therefore, we can experimentally determine LD by knowing the experimental curve of G versus carrier concentration at a fixed temperature. It is evident that the DSL for a system can be investigated if the functional dependence between the electron concentration and the Fermi energy of that particular material is known. For the purpose of completeness, we present a few results of DSL as written below: 1. In the presence of external light waves, the DSL in optoelectronic materials whose unperturbed conduction electrons obey the three- and two-band models of Kane together with parabolic energy bands can, respectively, be expressed as " LD D
e2 3 2 "sc
2mc „2
3=2 #1=2
0 G70 EF l ; ; Eg0 ;
1=2 0 EF l ; ; Eg0 ; C H70 " LD D
e2 3 2 "sc
2mc „2
3=2
#1=2
(7.4) 0 G71 EF l ; ; Eg0
1=2 0 EFl ; ; Eg0 C H71 " LD D
e2 3 2 "sc
2mc „2
3=2
#1=2
1=2 0 C H72 EF l ; ; Eg0
(7.5)
0 G72 EF l ; ; Eg0 (7.6)
where the primes indicate the differentiation of the differentiable functions with respect to the Fermi energy, G70 .EF l ; ; Eg0 ; / D Œˇ50 .EFl ; ; Eg0 ; /3=2 , s P H70 .EF l ; ; Eg0 ; / D zt .r/G70 .EFl ; ; Eg0 ; /zt .r/ D 2.kB T /2r .1 212r / rD1 2r
@ .2r/ @E 2r ; t D l or Fs , EFl is the Fermi energy as measured in the presence of light Fl
7.2 Applications
283
waves as measured from the edge of the conduction band in the vertically upward direction in the absence of any field, G71 .EFl ; ; Eg0 / D Œ!50 .EFl ; ; Eg0 /3=2 , s X H71 EFl ; ; Eg0 D zt .r/G71 EFl ; ; Eg0 ; G72 EFl ; ; Eg0 rD1 s 3=2 X D 50 EFl ; ; Eg0 ; H72 EFl ; ; Eg0 D zt .r/G72 EFl ; ; Eg0
n0 D
1 3 2
1 n0 D 3 2
2mc „2 2mc „2
3=2 3=2
and 1 n0 D 3 2
rD1
G70 .EFl ; ; Eg0 ; / C H70 .EFl ; ; Eg0 ; / ; G71 .EFl ; ; Eg0 / C H71 .EFl ; ; Eg0 /
2mc „2
3=2
G72 .EFl ; ; Eg0 / C H72 .EFl ; ; Eg0 /
2. In the presence of intense electric field, the DSL in optoelectronic semiconductors in accordance with the perturbed three- and two-band models of Kane can, respectively, be expressed as " LD D " LD D
e2 3 2 "sc e2 3 2 "sc
2mc „2 2mc „2
3=2 #1=2 3=2 #1=2
0 g70 .EFs ; F / C h070 .EFs ; F /
0 .EFs ; F / C h071 .EFs ; F / g71
g70 .EFs ; F / D Œˇ .EFs ; F /3=2 ; h70 .EFs ; F / D
s X
1=2
1=2
(7.7)
(7.8)
zt .r/g70 .EFs ; F /
rD1
EFs is the Fermi energy as measured in the presence of intense electric field as measured from the edge of the conduction band in the vertically upward direction in the absence of any field g71 .EFs ; F / D Œˇ1 .EFs ; F /3=2 , h71 .EFs ; F / D s P zt .r/g71 .EFs ; F /, rD1
1 n0 D 3 2 1 n0 D 3 2
2mc „2 2mc „2
3=2 Œg70 .EFs ; F / C h70 .EFs ; F / ; 3=2 Œg71 .EFs ; F / C h71 .EFs ; F /
284
7 Applications and Brief Review of Experimental Results
In the absence of any field, the expressions for the DSL and the electron concentration for optoelectronic semiconductors whose energy band structures are defined 1 by the unperturbed two-band model of Kane, under the condition .EF Eg0 /