FOUNDATIONS OF ANALYSIS OVER SURREAL NUMBER FIELDS
NORTH-HOLLAND MATHEMATICS STUDIES Notas de Matematica (117)
Edito...
27 downloads
535 Views
14MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
FOUNDATIONS OF ANALYSIS OVER SURREAL NUMBER FIELDS
NORTH-HOLLAND MATHEMATICS STUDIES Notas de Matematica (117)
Editor: Leopoldo Nachbin Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro and University of Rochester
NORTH-HOLLAND -AMSTERDAM
NEW YORK
OXFORD .TOKYO
141
FOUNDATIONS OF ANALYSIS OVER SURREAL NUMBER FIELDS Norman L. ALLING University of Rochester Rochester, NY 14627, U S.A.
1987
NORTH-HOLLAND -AMSTERDAM
0
NEW YORK
0
OXFORD 0 TOKYO
Elsevier Science Publishers B.V., 1987 AN rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 444 70226 1
Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V. P.O. BOX 1991 1000 BZ AMSTERDAM THE NETHERLANDS
Sole distributorsforthe U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 52 VANDERBILT AVENUE NEW YORK, N.Y. 10017 U.S.A
PRINTED IN THE NETHERLANDS
For H. L. Alling
This Page Intentionally Left Blank
vi i
PREFACE
I t i s well-known t h a t t h e f i e l d R of a l l r e a l numbers i s a real-
c l o s e d f i e l d and t h a t , up t o iscmorphism, i t i s t h e o n l y Dedekind-complete ordered field.
A r t i n and S c h r e i e r g e n e r a l i z e d t h e a l g e b r a i c p r o p e r t i e s of
the r e a l s t o form t h e r i c h , i n t e r e s t i n g t h e o r y o r r e a l - c l o s e d f i e l d s .
Among o t h e r t h i n g s , t h e y showed t h a t a n y o r d e r e d f i e l d has an a l g e b r a i c extension t h a t i s r e a l - c l o s e d , isomorphism. known.
a n d w h i c h i s u n i q u e l y d e t e r m i n e d up t o
Many i n t e r e s t i n g non-Archimedean, r e a l - c l o s e d f i e l d s F a r e
Under t h e i n t e r v a l t o p o l o g y , a n y o r d e r e d f i e l d i s a t o p o l o g i c a l
field.
Under t h a t t o p o l o g y , F i s n o t Dedekind-complete, i s not l o c a l l y
c o n n e c t e d , and i s not l o c a l l y compact. Using t h e T a r s k i Theorem, we know t h a t every f i r s t o r d e r theorem t h a t is t r u e f o r R is a l s o t r u e f o r any other r e a l - c l o s e d f i e l d , and c o n v e r s e l y .
However, R has many h i g h e r o r d e r p r o p e r t i e s which a r e q u i t e d i f f e r e n t from t h o s e of F.
For example, R i s D e d e k i n d - c o m p l e t e ; a s u b s e t of R i s con-
n e c t e d i f and o n l y i f i t i s a n i n t e r v a l i n R ; and c l o s e d bounded i n t e r v a l s i n R a r e compact.
None of these p r o p e r t i e s a r e t r u e f o r F.
Over t h e l a s t q u a r t e r c e n t u r y , a number of examples of f i e l d s F t h a t are
q
5
- s e t s f o r 6 > 0 have been found.
d e g r e e of d e n s i t y . )
( T h e s e f i e l d s have a v e r y h i g h
However, t h e r e seemed no compelling r e a s o n t o choose
o n e of t h e s e f i e l d s o v e r any o t h e r .
The o n l y n a t u r a l r e g u l a r i z i n g
hypotheses f o r s u c h a f i e l d seemed t o be t h a t ( i ) i t i s o r d e r - i s a n o r p h i c t o H a u s d o r f f ' s normal
q
5
- t y p e , o r ( i i ) t h a t i t i s of power w
5'
While ( i )
seemed r e a s o n a b l e , i t was not c l e a r f o r sane time how s u c h examples could be c o n s t r u c t e d without assuming ( i i ) . Assumption ( i i ) i s e q u i v a l e n t t o a
Norman L. A l l i n g
viii
l o c a l v e r s i o n of t h e g e n e r a l i z e d continuum h y p o t h e s i s ( = G C H ) . appearance of
After t h e
t h e work o f P a u l J . Cohen o n t h e C o n t i n u u m H y p o t h e s i s
(c.19631, t h e GCH seemed, a t l e a s t t o t h e a u t h o r , v e r y f a r f r o m b e i n g a n a t u r a l assumption. Conway p u b l i s h e d
I n 1976 J . H .
0" Numbers
a n d Games, i n w h i c h h e
d e f i n e d a p r o p e r c l a s s No of " n u m b e r s " . w h i c h , t o g e t h e r w i t h i t s r i n g o p e r a t i o n s , was d e f i n e d i n d u c t i v e l y i n o n l y a few i n c i s i v e l i n e s .
He
s u b s e q u e n t l y s k e t c h e d p r o o f s t h a t showed t h a t No is a r e a l - c l o s e d f i e l d . What is much more i m p o r t a n t , i n t h e a u t h o r ' s o p i n i o n , i s t h a t C o n w a y T s f i e l d No h a s some v e r y s t r o n g a d d i t i o n a l p r o p e r t i e s which grow o u t of its construction.
Conway showed t h a t No i s a c o m p l e t e b i n a r y t r e e o f h e i g h t
O n , (On b e i n g t h e c l a s s o f a l l o r d i n a l n u m b e r s ) . numbersT1, a p p l i e d t o No, w a s c o i n e d by D.E.
( T h e term ' ' s u r r e a l
Knuth.)
F o l l o w i n g Conway, we have c a l l e d t h e h e i g h t of an element i n No, i n t h e t r e e s t r u c t u r e on No, i t s b i r t h d a y , a n d t h e h e i g h t s t r u c t u r e o n No i t s b i r t h - o-rder structure. -
One way of s e e i n g j u s t how r i g i d No is, u n d e r i t s
b i r t h - o r d e r s t r u c t u r e , is t h e f o l l o w i n g : No c l e a r l y h a s a g r e a t many f i e l d a u t m o r p h i s m s ; however i t has o n l y o n e b i r t h - o r d e r p r e s e r v i n g a u t a n o r p h i s m . Conway a l s o s u c c e e d e d i n p r o v i n g t h a t No h a s a c a n o n i c a l power s e r i e s structure. Given any o r d i n a l number 5
>
0 , f o r which w
5
is regular, one can
d e f i n e a s u b f i e l d E N 0 o f No, w h i c h h a s a g r e a t many of No's p r o p e r t i e s . For example, gNo is a real-closed f i e l d which is a c o m p l e t e b i n a r y t r e e of height w
5'
F u r t h e r , gNo c a n b e d e s c r i b e d v e r y e a s i l y i n terms of i t s
n a t u r a l formal power series s t r u c t u r e . I t has been known s i n c e a t l e a s t 1960 t h a t any o r d e r e d f i e l d of power
bounded above by w , , c a n be embedded i n a n y r e a l - c l o s e d f i e l d t h a t i s a n 5
n 5- s e t ;
t h u s a l l s u c h f i e l d s may be embedded i n €,No.
With t h i s knowledge in hand t h e a u t h o r d e c i d e d t o t r y t o l e a r n how t o d o a n a l y s i s o v e r 6 1 0 . The p r e s e n t volume i s a r e p o r t on t h e p r o g r e s s , t o d a t e , of t h i s p r o j e c t . More r e s u l t s a r e under s t u d y .
Preface
ix
The f i r s t q u e s t i o n c o n s i d e r e d w a s t h e f o l l o w i n g :
can one modify t h e
i n t e r v a l t o p o l o g y o n CNo i n s u c h a way t h a t t h e r e s u l t i n g "topologyTf has more a t t r a c t i v e p r o p e r t i e s .
The r e s u l t i n g s t r u c t u r e , c a l l e d t h e
t o p o l o g y , i s c o n s i d e r e d a t l e n g t h i n Chapter 2 and 3.
5-
There we f i n d , f o r
example, t h a t t h e c-connected s u b s e t s of CNo a r e e x a c t l y t h e i n t e r v a l s of CNo ( 2 . 2 0 ) .
Conway's book g i v e s an i n s p i r e d s k e t c h of t h e n e c e s s a r y p r o o f s .
On
page 1 7 , h e writes of several of h i s p r o o f s as f o l l o w s : IfProofs l i k e these we c a l l 1 - l i n e p r o o f s e v e n when as h e r e t h e t q l i n e l t i s t o o l o n g f o r o u r We s h a l l meet s t i l l l o n g e r 1 - l i n e p r o o f s l a t e r o n , but t h e y do n o t
pages.
g e t h a r d e r - one s i m p l y t r a n s f o r m s t h e l e f t - h a n d s i d e t h r o u g h t h e d e f i n i t i o n s a n d i n d u c t i v e h y p o t h e s e s u n t i l o n e g e t s t h e r i g h t hand s i d e " .
In
Chapter 4, p a r t of Chapter 5, and a l i t t l e of Chapter 6. we h a v e t r i e d t o c o m p l e t e a l l of Conway's s u g g e s t e d I ' l - l i n e p r o o f s r f , a d d i n g a few new i d e a s h e r e and there.
S i n c e sane v a l u a t i o n t h e o r y seemed t o b e of u s e we h a v e
i n v o k e d q u i t e a l o t of i t .
I n p a r t i c u l a r , t h e t h e o r y o f pseudo-convergent
sequences has been developed and a p p l i e d t o EN0 i n Chapter 6.
We have a l s o
s u p p l i e d a primer of v a l u a t i o n t h e o r y i n Chapter 6. Neumann c o n s i d e r e d formal power s e r i e s , a t a v e r y h i g h
I n 1949 B.H.
l e v e l of g e n e r a l i t y .
Let K be a f i e l d a n d l e t C b e an o r d e r e d Abelian
Let F be t h e f u l l f i e l d K((G)) of formal power series w i t h c o e f f i -
group.
c i e n t s i n K and 71exponents1fi n G.
Let 0 be t h e v a l u a t i o n r i n g of W and l e t M be i t s maxi-
v a l u e group i s C . mal i d e a l .
Let a o ,
one can show t h a t (7.22).
Chapter 7.
F has on i t a n a t u r a l v a l u a t i o n W , whose
... , a n , ... b e
i n K.
Using o n e of Neumann's r e s u l t s ,
&Ioanxn is a w e l l - d e f i n e d
element i n F, f o r a l l XEM,
T h i s we c a l l "Neumann's Theorem", and we g i v e a proof of i t i n Neumann's Theorem c a n e a s i l y b e g e n e r a l i z e d t o c o v e r f o r m a l
power s e r i e s i n s e v e r a l v a r i a b l e s over K ( 7 . 4 1 ) . I t i s not a t a l l d i f f i c u l t t o see t h a t a f o r m a l power s e r i e s f i e l d
e x t e n s i o n of a f o r m a l power s e r i e s f i e l d o v e r K , i s a formal power s e r i e s f i e l d over K ( 7 . 8 0 ) .
What i s p e r h a p s s u r p r i s i n g , a n d i s c e r t a i n l y more
i n t e r e s t i n g , i s t h a t CNo c a n be w r i t t e n as a f o r m a l power series f i e l d
Norman L . A l l i n g
X
e x t e n s i o n of a formal power series f i e l d o v e r R , i n a g r e a t many i n t e r e s t i n g ways (7.81).
The Main Theorem (7.82) i s an a p p l i c a t i o n of t h e s e i d e a s
combined w i t h t h e g e n e r a l i z a t i o n of Neumann's Theorem d e s c r i b e d a b o v e . S t a t e d v e r y r o u g h l y , The Main Theorem asserts t h a t , g i v e n any formal power
...
series A(X,,
,
X n ) i n a f i n i t e number of v a r i a b l e s X 1 ,
...
,
X
n
with
c o e f f i c i e n t s i n LNo, there e x i s t s a non-zero prime i d e a l P i n t h e v a l u a t i o n r i n g 0 of t h e l l f i n i t e l l elements of CNo s u c h t h a t f o r each element ( x , ,
, x n ) i n Pn , A(x~,
A(xl,
... , X n )
... , x n )
i s a w e l l - d e f i n e d element i n CNo.
i s hyper-convergent over P
.. .
We say t h a t
n
I t i s n o t d i f f i c u l t t o show t h a t s u c h theorems as t h e i m p l i c i t func-
t i o n theorem g e n e r a l i z e o v e r f o r m a l power s e r i e s f i e l d s ( 7 . 7 0 - 7 . 7 4 ) . T h e s e r e s u l t s take o n added i n t e r e s t h e r e because of t h e Main Theorem; f o r when t h e Main Theorem a p p l i e s , t h e r e s u l t i n g formal power s e r i e s h a v e nonz e r o r e g i o n s of hyper-convergence. C l e a r l y one can d e f i n e a 5-continuous f u n c t i o n a s b e i n g a n a l y t i c i f l o c a l l y i t s v a l u e s a r e g i v e n by a hyper-convergent formal power s e r i e s . Such d e f i n i t i o n s are made and i n v e s t i g a t e d i n Chapter 8, which s e r v e s a s a primer on t h a t s u b j e c t . Throughout t h e m a n u s c r i p t , g r e a t e f f o r t s have been made t o m a k e t h i s volume f a i r l y s e l f c o n t a i n e d . a r e cited.
Much e x p o s i t i o n i s g i v e n .
Many r e f e r e n c e s
While e x p e r t s may want t o t u r n q u i c k l y t o new r e s u l t s , s t u d e n t s
s h o u l d be a b l e t o f i n d t h e e x p l a n a t i o n of many elementary p o i n t s of i n t e r -
est herein.
On t h e o t h e r h a n d , many new r e s u l t s a r e g i v e n , a n d much
m a t h e m a t i c s i s b r o u g h t t o b e a r on t h e problems a t hand.
As a f u r t h e r a i d
t o t h e r e a d e r , t h e T a b l e of C o n t e n t s is q u i t e d e s c r i p t i v e , and t h e Index is extensive.
N.L.A.
R o c h e s t e r , NY December 1 1 , 1986
xi
TABLE OF CONTENTS
Page
Section PREFACE
vii
TABLE OF CONTENTS
xi
CHAPTER 0 : INTRODUCTION 0.00
The real numbers
1
0.01
q -fields
2
0.02
The 5 - t o p o l o g y o n a n 0 -set
0.03
Conway's f i e l d No of s u r r e a l numbers
3
0.04
V a l u a t i o n t h e o r y a n d s u r r e a l number f i e l d s
5
0.05
Neumann's theorem and hyper-convergence
5
0.06
The main theorem
6
0.07
A p p l i c a t i o n s of t h e main theorem
7
0.10
E x p o s i t i o n v e r s u s research
7
0.11
References and indexing
9
0.20
P r e r e q u i si t e s
9
0.30
Acknowledgements
5
5
3
10
CHAPTER 1 : PRELIMINARIES 1 .OO
Class t h e o r y a n d s e t t h e o r y
13
1.01
O r d e r e d s e t s and o r d e r t y p e s
16
1.02
W e l l - o r d e r e d s e t s : C a n t o r ' s and von Neumann's o r d i n a l numbers
17
xi i
Norman L . Alling
1.03
Equipotent s e t s , choice, and cardinal numbers
20
1.10
The i n t e r v a l topology
23
r e l a t i ve topology
24
1 .ll The
1.20
C u t s and gaps
25
1.30
Cofinal and c o i n i t i a l sets, c h a r a c t e r s and s a t u r a t i o n
28
1.40
rl
-classes 5
31
1.50
Canpact ordered spaces
33
1.60
Ordered Abelian groups
33
1.61
Hahn valuations on ordered groups
40
1.62
Pseudo-convergent sequences i n Abelian groups w i t h valuation
47
1.63
Skeletons, Hahn groups, and extensions of ordered groups
50
1.64
Hahn's embedding theorem
53
1.65
Ordered d i r e c t sums i n 5H
61
1.66
Canplete and incomplete ordered groups
62
1.70
Ordered r i n g s and f i e l d s
63
1 .71
The Artin-Schreier theory of real-closed f i e l d s
66
1.72
Polynomials i n one v a r i a b l e over real-closed f i e l d s
75
1.73
Rational functions i n one v a r i a b l e over real-closed f i e l d s
78
1.74
Rolle's theorem and a p p l i c a t i o n s
82
1.75
Embedding an ordered f i e l d i n a real-closed rl - f i e l d
5
a4
CHAPTER 2 : THE 5-TOPOLOGY 2.00
The interval topology o n an rl - c l a s s
85
2.01
The 5-topology
85
2.02
A comparison of 5-topologies and w -additive spaces
90
5
2.10
5 The 5-topology on ordered sets and c l a s s e s
2.1 1
€,-closed
92
subclasses of X
94
2.12
The r e l a t i v e 5-topology
94
2.13
On t h e possible non-existence of 5-closures and 5 - i n t e r i o r s
96
2.20
The main theorem on 5-connected subspaces of rl - c l a s s e s
97
2.21
That open subclasses of
2.30
The main theorem on E-compact subspaces of rl - c l a s s e s
101
2.31
5-compact subspaces t h a t a r e not E-closed
103
5
E
-classes a r e E-locally connected
E
101
T a b l e of c o n t e n t s
xiii
2.40
c-continuous maps of o r d e r e d c l a s s e s
104
2.41
An a d d i t i o n a l theorem on c-continuous maps
106
CHAPTER 3: THE c-TOPOLOGY ON AFFINE n-SPACE
3.00
The s t r o n g topology and s e m i - a l g e b r a i c s e t s
109
3.10 The a f f i n e l i n e
111
3.20
The c-topology on R n
112
3.21
c-continuous maps between a f f i n e s p a c e s
3.30
c-connected subspaces of CR
3.40
R as a t o p o l o g i c a l f i e l d i n t h e c-topology
3.41
R
3.42
The f i e l d C
3.43
Other examples of c-continuous maps
n
112
n
113 114
as a t o p o l o g i c a l v e c t o r s p a c e over R , i n t h e c-topology =
115 115
R ( i ) , as a topological f i e l d
116
CHAPTER 4: INTRODUCTION TO THE SURREAL FIELD No 4.00
S u r r e a l numbers
4.01
Conway's c o n s t r u c t i o n
117 119
4.02
The Cuesta D u t a r i c o n s t r u c t i o n of No
121
4.03
An a b s t r a c t c h a r a c t e r i z a t i o n of a f u l l class of surreal numbers
127
4.04
S u b t r a c t i o n i n No
4.05
Addition i n No
4.06
M u l t i p l i c a t i o n i n No
131 133 138
4.07
Order and m u l t i p l i c a t i o n i n No
141
4.08
The a s s o c i a t i v e law f o r m u l t i p l i c a t i o n i n No
149
4.09
On numbers g i v e n by r e f i n e m e n t s of ( t i m e l y ) Conway c u t s
152
4.10
P r o p e r t i e s of d i v i s i o n i n No
154
4.20
D i s t i n g u i s h e d s u b c l a s s e s of No
160
4.21
Elements of No having f i n i t e b i r t h d a y
161
4.30
165
MU
x
+
4.40
The map XCNO+ w ENO
4.41
F i n i t e l i n e a r combinations of w -x(l)
168
,
...
1
w
over R
171
xiv
Norman L . A l l i n g
4.50
The sign-expansion
175
4.51
The s t r u c t u r e of Z and t h e sign-expansion
178
4.52
The n e a r e s t common p r e d e c e s s o r of a s u b c l a s s of Z
180
4.53
The t r e e s t r u c t u r e of a f u l l c l a s s of s u r r e a l numbers
182
4.54
The predecessor c u t r e p r e s e n t a t i o n of a s u r r e a l number
183
4.60
A l t e r n a t i v e axioms f o r a f u l l class of s u r r e a l numbers
184
4.61
Conway c u t s , o r d e r e d by e x t e n s i o n , and Cuesta D u t a r i c u t s
189
CHAPTER 5: THE SURREAL FIELDS € N O , AND RELATED TOPICS
5.00
The d e f i n i t i o n of €,No
5.10
€,NO and H a u s d o r f f ' s normal
5.11
The c a r d i n a l number of CNo
5.20
The map XESNO + w EENO
5.30
The s t r u c t u r e of 0 w
x
191 rl
5
-type
192
+
, for
192
193
a l i m i t ordinal
A
195
A
5.40
Rank, u n i v e r s e s , g a l a x i e s , and Conway's c o n s t r u c t i o n
196
5.41
Another d e s c r i p t i o n of CNo
199
5.50
The Dedekind-completion of 0
5.51
The s t r u c t u r e of D
A'
f o r a non-zero l i m i t o r d i n a l A
200 202
A
CHAPTER 6: THE VALUATION THEORY OF ORDERED FIELDS, APPLIED TO NO AND €,NO
Introduction
207
6.01
Examples of f i e l d s w i t h v a l u a t i o n
209
6.10
The v a l u a t i o n t h e o r y of No and SNo
21 1
6.20
Formal power s e r i e s f i e l d s
21 3
6.21
A s k e t c h of Hahn's proof
21 5
6.22
EK(
21 7
6.00
(G)1
and gK((G))
6.23
Algebraic p r o p e r t i e s of K((G))
6.30
Maximal f i e l d s w i t h v a l u a t i o n
21 9
6.40
Pseudo-convergent sequences
221
6.41
Pseudo-convergent sequences i n CNo
223
6.42
Pseudo-convergent sequences i n No
227
21 7
Table of c o n t e n t s
xv
6.43
Normal forms and w-power s e r i e s i n No
6.44
Pseudo-convergent sequences i n K( (C)) and E K ( (C))
232
6.50
Conway's normal form
235
6.51
The i d e n t i t y theorem f o r normal forms i n No
239
6.52
The v e c t o r s p a c e s t r u c t u r e of normal forms
240
6.53
Normal forms i n CNo
242
6.54
M u l t i p l i c a t i o n of normal forms i n No
245
6.55
That t;No i s R-iscmorphic t o a f i e l d of formal power s e r i e s
246
6.56
No a s t h e union of a f a m i l y of formal power series f i e l d s
247
6.57
The c a n o n i c a l n a t u r e of the power s e r i e s s t r u c t u r e on No
248
6.60
That No i s a u n i v e r s a l l y embedding o r d e r e d f i e l d
248
6.70
The i d e a l t h e o r y of v a l u a t i o n r i n g s
250
6.80
B i b l i o g r a p h i c n o t e s on c h a p t e r 6
252
227
CHAPTER 7 : POWER SERIES: FORMAL A N D HYPER-CONVERGENT
7.00
Introduction
255
7.10
Surcomplex number f i e l d s
255
7.11
Cx and formal power series
258
7.20
Neumann' s 1emma
260
7.21
A proof of Neumann's lemma
261
7.22
Neumann's theorem, Neumann s e r i e s , and hyper-convergence
266
7.30
A p p l i c a t i o n s of Neumann's theorem
268
7.31
The a l g e b r a of Neumann s e r i e s
27 1
a formal power s e r i e s f i e l d
7.32
The form of a n i n v e r s e i n
7.33
The binomial series
272
7.34
Powers and v a l u e s of Neumann s e r i e s
275
7.35
C a n p o s i t i o n of Neumann series
27 7
7.36
The e x p o n e n t i a l s e r i e s and t h e l o g a r i t h m i c series
278
7.40
Formal power s e r i e s r i n g s i n a f i n i t e number of v a r i a b l e s
280
7.41
Neumann series i n a f i n i t e number of v a r i a b l e s
28 1
7.50
Trigonometric f u n c t i o n s
28 4
7.51
Elementary f u n c t i o n s over r e a l and complex c o n s t a n t f i e l d s
20 5
7.60
D e r i v a t i v e s of formal power s e r i e s
28 8
7.61
I n f i n i t e s i m a l e x t e n s i o n s of a n a l y t i c f u n c t i o n s , I
289
7.62
The v a l u a t i o n topology
290
272
Norman L . Alling
xvi 7.63
The interval topology and t h e v a l u a t i o n topology
7.64
The modified valuation topology and t h e c-topology on
7.65
I n f i n i t e s i m a l extensions of a n a l y t i c f u n c t i o n s , I1
295
7.70
The formal i m p l i c i t f u n c t i o n theorem i n two v a r i a b l e s
29 6
7.71
The formal i m p l i c i t f u n c t i o n theorem i n n v a r i a b l e s
29 8
7.72
The formal i m p l i c i t mapping l e m m a
301
7.73
The formal i m p l i c i t mapping theorem and t h e Jacobian
303
7.74
The formal inverse mapping theorem
304
7.75
Related theorems on Neumann s e r i e s
306
292 TI
E
-fields
292
7.80
Formal power s e r i e s f i e l d s over formal power s e r i e s f i e l d s
309
7.81
Decomposition of c e r t a i n formal power s e r i e s f i e l d s
31 4
7.82
The main theorem
31 4
7.83
Independence of represent a t i on
31 8
7.84
Prime d i s k s of hyper-convergence of formal power s e r i e s
32 0
7.90
An i n t e r e s t i n g example
32 1
7.91
Fran Maclaurin s e r i e s t o Taylor s e r i e s
322
7.92
Fran Maclaurin s e r i e s t o Taylor s e r i e s over L , I
323
7.93
From Maclaurin s e r i e s t o Taylor s e r i e s over L , I1
327
CHAPTER 8: A PRIMER ON ANALYTIC FUNCTIONS OF A SURREAL VARIABLE
8.00
Introduction
333
8.01
Local p r o p e r t i e s of power s e r i e s i n one v a r i a b l e , I
336
8.02
Local p r o p e r t i e s of power s e r i e s i n one v a r i a b l e , I1
341
8.03
Local p r o p e r t i e s of power s e r i e s i n one v a r i a b l e , I11
3 42
8.04
Local properties of power s e r i e s i n one v a r i a b l e , I V
345
8.05
Local theory of a n a l y t i c functions of one s u r r e a l v a r i a b l e
347
8.10
Local p r o p e r t i e s of power s e r i e s i n s e v e r a l v a r i a b l e s
349
BIBLIOGRAPHY
353
INDEX
359
1
CHAPTER 0
INTRODUCTION
0.00
THE REAL NUMBERS
The f i e l d R of a l l real numbers i s c e n t r a l t o a g r e a t deal of mathe-
matics; s o much s o t h a t i t i s h a r d t o t h i n k of many t o p i c s i n m a t h e m a t i c s w i t h o u t , i n o n e way or an o t h e r , t h i n k i n g about t h e r e a l s .
The f o l l o w i n g
i s well-known: (0)
Up t o isanorphism, R is t h e o n l y Dedekind-complete o r d e r e d f i e l d . One of t h e most s u c c e s s f u l g e n e r a l i z a t i o n s of t h e r e a l s was made by
A r t i n a n d S c h r e i e r i n 1927 [ l o ] ,
i n w h i c h t h e y d e v e l o p e d t h e t h e o r y of
f o r m a l l y real f i e l d s , and of r e a l - c l o s e d f i e l d s .
Thus t h e y g e n e r a l i z e d t h e
a l g e b r a i c t h e o r y of t h e real f i e l d . Given an o r d e r e d ( - l i n e a r l y o r d e r e d ) ( = t o t a l l y o r d e r e d ) g r o u p C , t h e n t h e f o l l o w i n g i s well-known, and w i l l be shown i n due course: (1)
If G is Dedekind-complete t h e n i t is Archimedean, and hence Abelian.
Let K be a n o r d e r e d f i e l d t h a t i s n o t i s a n o r p h i c t o R; t h e n by (01, i t is not Dedekind-complete.
0 , and l e t S
-
{acOn:
Assume t h a t a class X has t h e f o l l o w i n g p r o p e r t i e s : ( i ) OcX; ( i i )
i f acX and i f a
+
1
=
Since A is an o r d e r e d group we know t h a t
Suppose t h a t ( 6 ) h o l d s ; t h e n y (xy
Since g is
g.
, a n d we s e e t h a t x
n x ) ; t h e n L ( x ) and R ( x ) a r e non-
Let A E L ( x ) a n d l e t p e R ( x ) .
m,EZ and n o , n,eN such t h a t
Then
Norman L. A l l i n g
44 ( i ) m,a S n,x,
(9)
Thus, mOnla 5 nonlx
< m,/n,
0 i n G such t h a t
The e q u i v a l e n c e class of o r d e r e d g r o u p s , under o r d e r - p r e s e r v i n g
isomorphisms t h a t p r e s e r v e
0.
I f A = {O) t h e n l e t h ( 0 ) =
Assume now t h a t A f (01.
L e t aEA
S i n c e A i s Archimedean v ( a ) = A , and t h e l a r g e s t proper convex
s u b g r o u p of A is ( 0 ) .
By Theorem 1 , ha i s a homomorphism of A i n t o (R,+)
which p r e s e r v e s S , and has k e r n e l {O).
Thus ha i s a monomorphism of A i n t o
(R,+) which p r e s e r v e s t a ( 4 1 , f o r a l l a < A , showing t h a t x Conversely l e t y = x + b , f o r s a n e beB. Then u ( y - aa) = v ( ( x
-
2
y i s i n B.
- aa)
+ b)
-
m i n . ( t , v ( b ) ) = ta ( 1 . 6 1 : 2 ( i v ) ) , p r o v i n g Lemma 2. a LEMMA 3. tive t o
V,
( i ) Let ( a a ) a < a b e a pseudo-convergent
sequence i n G r e l a -
and l e t beG; t h e n ( b f aa)a
i s a Hahn v a l u a t i o n o n H ( r e s p . CHI; and t h a t ,
(i)
p
(ii)
for each i d , p-'([t,-))/p-'((t,=))
( i i i ) (Hi)iEI
i s i s a n o r p h i c t o Hi.
i s t h e s k e l e t o n of H w i t h r e s p e c t t o p .
It
Norman L. A l l i n g
52
1.63
(Here B may b e a p r o p e r
Let A be a s u b g r o u p of a n o r d e r e d g r o u p 8.
class.)
The o r d e r o n B i n d u c e s a n o r d e r on A , u n d e r w h i c h i t i s a n o r d e r e d A w i l l b e r e f e r r e d t o as
group.
an o r d e r e d s u b g r o u p of B , a n d B w i l l b e
r e f e r r e d t o a s a n e x t e n s i o n of A.
ext(A') (5)
=
[bcB: t h e r e e x i s t s
Let A ' be a convex s u b g r o u p of A.
s u c h t h a t ( b ( S. l a [ ) .
aEA'
e x t ( A ' ) i s a convex s u b g r o u p of B. C l e a r l y e x t ( A ' ) , which we w i l l d e f i n e t o be B ' ,
PROOF.
v a l i n B a n d c l e a r l y i t i s c l o s e d under s u b t r a c t i o n . d e f i n i t i o n there e x i s t a,, a l E A ' C l e a r l y Ib,
Let
5
+ b,I
p r o v i n g t h a t b, aEA
+
Ib,I
+
18 a n i n t e r -
Let b a r b , c B ' .
Ib,I 2 lao[
+
lalI
=
Ilaol
+
I a l l [ (1.60:3),
blEB'.
and l e t A ' = (xEA:
t h e r e e x i s t s nEN s u c h t h a t 1x1 S n l a l ) :
Then
t h e p r i n c i p a l convex s u b g r o u p of B g e n e r a t e d by a .
ext(A') is
ext(A')
PROOF.
By
s u c h t h a t l b o l 5 l a o l a n d Ib,I 5 l a , ] .
i . e . , l e t A ' be t h e p r i n c i p a l convex s u b g r o u p of A g e n e r a t e d by a .
(6)
Let
Then
=
{ x c B : t h e r e e x i s t s nEN s u c h t h a t 1x1 5 n l a l ) .
L e t a b e a Hahn v a l u a t i o n of A a n d l e t B be a Hahn v a l u a t i o n of 9. For each t E V C a ( A ) ,
ext(a
-1
( [ t , m ) ) )
a-'([t,m))
i s a p r i n c i p a l convex s u b g r o u p of B.
t h e form B - ' ( [ j ( t ) , - ) ) , VCB(B).
I f j maps VCcr(A) o n t o VC ( B ) ,
B
extensio n of -
Such g r o u p s are of
Define g
i t i s an o r d e r e d group.
0 i f ng
>
For each geG' t h e r e e x i s t s
0 i n A.
Under t h i s o r d e r i n g o n
In a d d i t i o n , i t i s an o r d e r e d v e c t o r s p a c e
o v e r Q : i . e . , a v e c t o r s p a c e o v e r Q and an o r d e r e d group s u c h t h a t f o r a l l gEG' and q E Q , t h e n g
>
0 and q
>
0 i m p l i e s t h a t qg
>
0.
Clearly
G I
is an
Archimedean e x t e n s i o n of A ( 1 . 6 3 ) .
In 1936 Reinhold Baer [ l l ] proved t h i s i n a more
HISTORICAL REMARK,
e l e m e n t a r y way, a s f o l l o w s . ( a d d i t i v e ) Abelian group.
Let C
For t h e moment, l e t A b e a t o r s i o n - f r e e =
He d e f i n e d an e q u i v a l e n c e r e l a t i o n
my.
A x N , and a
l e t ( x , m ) and ( y , n ) be i n C.
on C a s f o l l o w s : ( x , m )
a
( y , n ) i f nx
Addition i s d e f i n e d a s f o l l o w s : ( x , m ) + ( y , n ) = (nx + my, m n ) .
b e d e f i n e d t o be C/a.
Then G i s an Abelian group.
=
Let G
F u r t h e r , t h e map acA
+
( ( a , l ) / a ) c G i s a monomorphism of A i n t o C , w h i c h we w i l l r e g a r d a s a n identification.
L e t ueZ a n d l e t V E N .
(ux,vm); then C i s a v e c t o r s p a c e over Q.
Let ( u / v ) . ( x , m ) be d e f i n e d t o be
Furthermore, C i s t h e s m a l l e s t
54
Norman L . A l l i n g
subspace of i t s e l f t h a t c o n t a i n s A . o r d e r e d group.
Define (x,m)
o r d e r e d v e c t o r s p a c e over Q .
>
1.64
Assume, i n a d d i t i o n , t h a t A i s a n
0 if x
>
0.
Under t h i s o r d e r , G i s an
T h i s c o n s t r u c t i o n i s , of c o u r s e , v e r y much
l i k e t h e u s u a l c o n s t r u c t i o n of Q f r o m Z .
G is order-isanorphic t o the
o r d e r e d v e c t o r s p a c e GI, c o n s t r u c t e d above. L e t v be a Hahn v a l u a t i o n on C , and l e t T the skeleton of C .
=
VC (C).
Let ( C t ) t c T
be
Let H be t h e f u l l Hahn g r o u p g e n e r a t e d by ( G t ) t e T
(1.63).
For each t c T , l e t h v
-1
([t,-))/v-’((t,-)),
t
be t h e c a n o n i c a l homomorphism of v
-1
([t,m))
which we d e f i n e t o be Ct (1.61: Theorem 1 ) .
onto After
p o s s i b l y r e p l a c i n g G t with a n i s a n o r p h i c copy of i t i n (R,+), we may assume that ~
S i n c e C i s v e c t o r s p a c e o v e r Q, and ht i s Z - l i n e a r , we
E (G1 . 6~1 ) .
may g i v e Gt t h e s t r u c t u r e of a v e c t o r s p a c e o v e r Q i n s u c h a way t h a t ht i s
Q-linear.
C o n s i d e r t h e f o l l o w i n g s h o r t e x a c t sequence i n t h e c a t e g o r y of
Q-spaces and Q - l i n e a r maps:
S i n c e Q is a f i e l d , we know t h a t (0) s p l i t s : i . e . , t h e r e e x i s t s a Qlinear injection k
-1 t of Ct i n t o v ( [ t , - ) ) such t h a t h t * k t i s ’ t h e i d e n t i t y
map of C t , and s u c h t h a t f o r a l l g e v - ’ ( [ t , - ) ) , Thus we c a n write v of Ct and v
(1)
-1
((t,m))
-1
([t,m))
(1.60).
(g
-
kt(ht(g))Ev
-1
( ( t , m ) ) .
as t h e ( l e x i c o g r a p h i c a l l y ) o r d e r e d d i r e c t sum Note t h a t
t h e c o n s t r u c t i o n of kt u s e s t h e axiom of c h o i c e .
1.64
55
Preliminaries
-1
Let e t = k t ( l ) ( c v
t ' l e t r e t be
For a l l rcG
( [ t , m ) ) ) , f o r each t E T .
d e f i n e d t o be k t ( r ) .
For g&*,
LEMMA 0 .
h (g - re
PROOF.
t
l e t v(g)
-
(g
0,
=
t
t and h t ( g )
=
ret)€"
-1
r.
=
- ret) >
u(g
-
( ( t , - ) ) , and v ( g
v(g).
>
ret)
t.
For each t c T , l e t f t be t h e e l e m e n t of H whose s u p p o r t i s It] a n d such t h a t f t ( t )
=
1.
Assume t h a t t h e r e e x i s t s a p r o p e r
[45]).
M A I N LEMMA (Hausner-Wendel
s u b s p a c e Go of G t h a t c o n t a i n s [ r e t t:
tcT and r cG 1, and assume t h a t a map
t
t
F, of C, i n t o H has been d e f i n e d having t h e f o l l o w i n g p r o p e r t i e s : F, i s Q - l i n e a r ;
(i)
( i i ) f o r each
and f o r each rcGt, F , ( r e
tET
=
t
rft;
( i i i ) F, i s i n j e c t i v e ;
f o r e a c h f E F ( G , ) , and e a c h c u t C
(iv)
where C f ( t )
f ( t ) for
=
(v)
f o r a l l gcG,, u ( F , ( g ) )
(vi)
F, p r e s e r v e s
Let XEG
-
and C f ( t )
tEL, =
( L , R ) of T , t h e n CfEF(C,),
=
=
0 f o r tcR;
v ( g ) ; and
t .
=
[v(x
-
number A , and a n i n j e c t i o n a c W ( h )
+
T h e r e e x i s t s a non-zero l i m i t o r d i n a l a EG,
such t h a t acW(h)
is o r d e r - p r e s e r v i n g map, f o r which [ t : a a
(B) rnin.{v(a
a
Let -
XI,
Let ~ E G ,
A s a c o n s e q u e n c e we s e e
Since r e € G o , y + r e t c G , . t
t h a t T o h a s no g r e a t e s t e l e m e n t .
taET,
Clearly To f 0.
y ) : YEC,].
A s we saw i n Lemma 0 , t h e r e exists rcC t such t h a t
< 6
-y'.
=
> -y.
0 then 0
If q
>
0; then x
>
-y/q.
y (resp. x < y) implies x' > y' ( r e s p . x' < y ' ) . P r o c e e d i n g by c o n t r a d i c t i o n , a s s u m e t h a t x > y and x' < y ' . Let t = p(y' - X I ) . S i n c e t h e o r d e r o n H is t h e l e x i c o g r a p h i c o r d e r , we know t h a t x ' ( t ) < y ' ( t ) , a n d we know t h a t x ' ( t 1 I ) = y ' ( t " ) , f o r a l l t"ET w i t h t " < t . Assume f o r a moment, ( a ) t h a t t > ta f o r
X I ) ,
Thus, i t s u f f i c e s t o prove t h a t x
Let C XI.
t h e n C i s a c u t i n T.
= ((-m,t),[t,+m));
By ( i v ) Cy'cH,;
thus x'EH,,
i n j e c t i v e ( i i i ) ; thus (a) is false. that t
< ta.
Since t
which i s a b s u r d s i n c e F , i s
Hence ( b ) t h e r e e x i s t s sane a
By d e f l n i t i o n ( 3 , i ) , x l ( t )
~ ( y '
=
- ata(t),
and p(yl
-
+
0,
hB (1).
62
h(t)
Norman L. A l l i n g
>
0.
>
If t E T A then hA
TA; then tcTB#, hA
=
0 , and h A
0 , and hg
=
+
hg
>
1.65 Assume t h a t t i s n o t i n
0.
Thus hA + hg
h.
>
0.
Hence we see t h a t
C , a n d t h e ( l e x i c o g r a p h i c a l l y ) o r d e r e d d i r e c t sum A + B ,
are order-
i s a n o r p h i c ; t h u s t h e Theorem i s proved. A w i l l be c a l l e d
1.66
the c a n o n i c a l
d i r e c t summand of B i n G .
COMPLETE AND INCOMPLETE ORDERED GROUPS
Let C be an o r d e r e d group. EXAMPLE. (0)
(Z,+)
(a,+) a r e
and
complete, o r d e r e d group.
L e t C be a complete, Archimedean, o r d e r e d group; t h e n G is i s a n o r p h i c
t o one and o n l y one of t h e f o l l o w i n g : {O}, (Z,+) o r (R,+). PROOF.
U s i n g H B l d e r ' s Theorem ( 1 . 6 0 1 , we know t h a t G i s o r d e r -
i s o m o r p h i c t o a s u b g r o u p of (R,+). I G I = 1 , G = (01.
Let us i d e n t i f y t h e s e two groups.
I f G has a l e a s t p o s i t i v e element n , t h e n G
hence G i s order-isomorphic t o (Z,+).
no l e a s t p o s i t i v e element; then
C is
Assume t h a t
IGl
>
=
If
Z - n ; and
1 and t h a t C has
S i n c e C is c o m p l e t e , G
dense i n R .
=
(R,+); e s t a b l i s h i n g ( 0 ) . LEMMA.
Assume t h a t G is a m u l t i p l i c a t i v e o r d e r e d g r o u p ( w h i c h n e e d
not be A b e l i a n ) .
Then t h e f o l l o w i n g h o l d s :
(i)
i f G is non-Archimedean t h a n i t i s incomplete; t h u s
(ii)
i f G is complete i t i s Archimedean. PROOF.
Then t h e r e e x i s t s b
Assume t h a t t h a t G i s non-Archimedean.
a > 1 i n G such t h a t b n such t h a t g 4 a 1.
>
Let R
a", f o r a l l ncN. =
t h e union of L and R is C .
{gEC: g > a
n
, for
Let L
=
{gcG: t h e r e e x i s t s ncN
all mN}.
EL and bcR; t h u s C
=
Clearly L
Let
Let c be a c u t p o i n t
of C ; t h e n , b y d e f i n i t i o n , c i s e i t h e r ( a ) t h e g r e a t e s t element of L , o r ( B ) t h e l e a s t element of R .
For gcL, t h e r e e x i s t s ncN s u c h t h a t g 6 a n .
Preliminaries
1.66
Since a hold. h 5 a
n
0 and y
>
A w i l l be c a l l e d a n o r d e r e d
0 i m p l i e s xy
r i n g i s n e c e s s a r i l y a n i n t e g r a l domain.
>
0.
ring
Note t h a t an o r d e r e d
A f i e l d t h a t i s an ordered r i n g
w i l l be c a l l e d a n ordered f i e l d .
EXAMPLE.
2 is an o r d e r e d r i n g .
The f i e l d Q of r a t i o n a l numbers a n d
t h e f i e l d R of a l l r e a l numbers are o r d e r e d f i e l d s . Let A ( r e S p . F ) be an o r d e r e d i n t e g r a l domain ( r e s p . f i e l d ) , a n d l e t
P*
=
(x~A:x> 0).
( A s u s u a l , we d e f i n e A* t o b e A
-
(01.)
c a l l e d t h e s e t of s t r i c t l y p o s i t i v e elements of A ( r e s p . F ) .
P* w i l l be
Note t h a t P*
has t h e f o l l o w i n g p r o p e r t i e s :
(O*)
(i)
0LP*;
( i i ) f o r a l l XEA* then e i t h e r XEP* o r -xEP*; ( i i i ) P* is c l o s e d under a d d i t i o n ; and
(iv)
P* i s c l o s e d under m u l t i p l i c a t i o n .
I t i s a l s o c o n v e n i e n t t o d e f i n e P t o b e P * u n i o n (01.
c a l l e d t h e set of p o s i t i v e e l e m e n t s of A.
Let P b e
Then we have t h e f o l l o w i n g :
Norman L. A l l i n g (i)
1.70
P + P is a s u b s e t of P ,
( i i ) P-P is a subset of P,
( i i i ) t h e u n i o n of P a n d
(iv)
-P i s A , a n d
t h e i n t e r s e c t i o n of P a n d -P i s (0).
Let A b e a i n t e g r a l d o m a i n , a n d l e t P* b e s s u b s e t of A s a t i s f y i n g (Ox).
Let u s d e f i n e x
y z ; e s t a b l i s h i n g ( i v ) . ( v ) can b e r e s o l v e d b y t r e a t i n g PROOF.
=
1
=
t h e s e v e r a l cases s e p a r a t e l y .
(3)
o
For a l l X E A , ( i ) x 2 h 0 , a n d ( i i ) i f x f 0 , x z
>
0.
65
P r e l iminari es
1.70 if x L 0 then x2
PROOF.
L
I f x 5 0 t h e n -x 2 0.
0.
Thus x 2
2 0 ; e s t a b l i s h i n g ( i ) . To p r o v e ( i i ) , assume t h a t x 6 0 . i n t e g r a l domain, x 2 # 0.
(-x)~
=
S i n c e A i s an
Using t h i s f a c t and ( i ) , p r o v e s t h a t x 2
>
0.
a
=
a
Using ( 3 ) and ( O * , ( i i i ) ) , we s e e t h a t we have t h e f o l l o w i n g :
(4)
... ancA,
Given a l ,
such t h a t
n Ii=, a.’ 1
=
0, then a l
An i n t e g r a l domain B w i l l be c a l l e d f o r m a l l y
=
real i f
...
=
n
0.
( 4 ) h o l d s ; hence
a l l o r d e r e d i n t e g r a l domains are f o r m a l l y r e a l . (5)
( i ) B i s f o r m a l l y r e a l i f and o n l y i f
i s n o t a sum of s q u a r e s i n B.
( i i ) -1
Assume t h a t B is not f o r m a l l y r e a l ,
PROOF.
and b , ,
... bncB*,
n o t e t h a t -1
=
such t h a t
1.i =n 2 c i ’; t h u s
I,,,n
bi2
=
0.
Let c .
1
Then t h e r e e x i s t n =
>
1,
b . / b l , f o r a l l i , and 1
n o t ( i ) impiies not ( i i ) . Hence ( i i ) i m p l i e s
Now assume t h a t not ( i i ) h o l d s ; t h u s t h e r e e x i s t m 2 1 a n d d . i n B J m m d j 2 = 0 ; thus not ( i ) holds. d.’. Hence 1 ’ + such t h a t -1 = (i).
J
I,=,
Hence ( i ) i m p l i e s ( i i ) . S u p p o s e , f o r a moment, t h a t a f o r m a l l y r e a l domain were of c h a r a c t e r i s t i c p , f o r s a n e prime number p; t h e n 0 1 f 0.
=
lip1 1
=
1.’ 1’. 1=1
However,
Thus we c o n c l u d e t h a t t h e c h a r a c t e r i s t i c of e v e r y f o r m a l l y r e a l
domain i s 0. L e t A be a n o r d e r e d i n t e g r a l d o m a i n .
Let F be i t s f i e l d of q u o t i e n t s .
t e g r a l domain. a , b d , with b
(6)
>
0 , such t h a t f = a / b .
A s n o t e d a b o v e , A is a n i n Given f c F * , t h e r e e x i s t
D e f i n e f t o be p o s i t i v e i f a
T h i s d e f i n i t i o n of o r d e r on F i s i n d e p e n d e n t of r e p r e s e n t a t i o n .
>
0.
66
Norman L . A l l i n g
PROOF.
Let a / b
ab'
a'b.
Thus, a
(7)
Let P*(F)
>
=
f = a'/b',
w i t h a , b , a ' , b'cA
0 i f a n d o n l y i f a'
ifsF: f
=
>
1.70
>
0.
and b , b '
>
Let a , b , c a n d d be i n P*, l e t f =
ac/bd.
Then
0 ) ; t h e n P*(F) s a t i s f i e s ( 0 " ) .
S i n c e P * s a t i s f i e s ( O * , ( i ) & ( i i ) ) , P*(F) s a t i s f i e s ( O * , ( i )
bc)/bd and f g
0.
o
=
a/b, and l e t g = c/d.
S i n c e P* s a t i s f i e s ( O w ,
f
+
& (ii)).
g
=
(ad
+
( i i i ) & ( i v ) ) , s o does
P*(F); e s t a b l i s h i n g ( 7 ) .
(8)
P * ( F ) endows F w i t h t h e o n l y o r d e r under which F is a n o r d e r e d f i e l d whose o r d e r i n d u c e s t h e o r d e r g i v e n by P* on A.
l e t P * ' ( F ) be a s u b s e t of F t h a t s a t i s f i e s ( O * ) and t h a t
PROOF.
contains P*. Let f e F , and l e t f = a / b , w i t h a , b e A , a n d b f 0 . W i t h o u t l o s s o f g e n e r a l i t y we may assume t h a t b > 0. Assume t h a t f c P * ' ( F ) . S i n c e beP*, which is c o n t a i n e d i n P * * ( F ) , and s i n c e a Conversely, l e t fEP*(F).
Let F+ d e n o t e {xEF: x
Note t h a t F 1.71
+
f b , acP*.
Hence f E P * ( F ) .
If f i s n o t i n P * I ( F ) t h e n - f c P * ' ( F ) .
j u s t seen t h i s i m p l i e s t h a t -acP*;
(9)
=
>
which i s a b s u r d .
A s we h a v e
Thus f e P * ' ( F ) .
01.
is a s u b g r o u p of F* of i n d e x 2 .
THE ARTIN-SCHREIER THEORY OF REAL-CLOSED FIELDS
Let F be a f i e l d .
Let S ( F ) , o r S f o r s h o r t , b e t h e s u b c l a s s o f F
t h a t c o n s i s t s of 0 and a l l sums of s q u a r e s of elements of F*.
Then we have
t h e following:
(0)
(i)
oes;
is c l o s e d under a d d i t i o n a n d m u l t i p l i c a t i o n ; ( i i i ) F is f o r m a l l y r e a l i f and o n l y i f -1 is not i n S ; and ( i v ) f o r all a&* ( - S - [ O ] ) , l / a i s i n S*. (ill
o
S
P r e l i m i n a r i es
1 .71
( i ) is t r u e by d e f i n i t i o n .
PROOF.
be i n S .
Then a
Let a
b i s c l e a r l y i n S, as i s a.b
+
l i s h i n g ( i i ) . ( i i i ) follows frcm (1.70:4). then l / a
=
67
=
=
m lj=, aj2
m
n
1j=lI.‘k=l
and b
=
n 1k=l
b
k
( a . - b k ) * ; estabJ
A s t o ( i v ) , assume t h a t a # 0;
m ljSl (aj/a)2~S.
a(l/a)‘ =
Let F be an ordered f i e l d , and l e t P* be t h e s e t of a l l i t s p o s i t i v e elements.
EXAMPLE 0.
if F
Q then
=
i n Section 1.70, S* is a subset of P*.
As remarked
S*
If F
=
R, t h e r e a l number f i e l d , t h e n S*
=
P*.
However
i s a proper subset of P”.
A f i e l d F i s c a l l e d r e a l - c l o s e d i f F is formally r e a l and i f
i t has
no proper a l g e b r a i c extensions t h a t a r e formally r e a l . EXAMPLE 1 .
C l e a r l y t h e f i e l d of a l l r e a l numbers R i s a f o r m a l l y
We know t h a t t h e only a l g e b r a i c extension of R i s C , t h e f i e l d
real f i e l d .
of a l l complex numbers.
Since -1
=
i 2 , we s e e t h a t C is not formally r e a l ;
t h u s R i s real-closed. THEOREM 0.
Every e l e m e n t i n F* is
Assume t h a t F i s r e a l - c l o s e d .
e i t h e r a square o r i s t h e negative of a square. Since F is formally r e a l t h e r e e x i s t s CEF ( e . g . , - 1 )
PROOF.
n o t a square. that Y2
=
Let K be t h e s p l i t t i n g f i e l d of X 2
c ; thus K
formally r e a l .
F(Y).
=
-
c over F .
that is
Let YEK such
Since F is assumed t o be r e a l - c l o s e d , K i s not
T h u s t h e r e e x i s t n elements a and b . i n F , not a l l zero, j J
such t h a t
(1)
(i) (ii)
J=1
n
(a. J (a.’ J
b:Y)’ J
+
+
b.2.c) J
0: i . e . ,
=
=
-2.1
n j=1
( a . .b. ) .Y J J
Since Y i s not i n F we s e e from ( 1 , i i ) t h a t
2.1j=1n
( a .b j
j
) = 0 ; hence
68
Norman L. A l l i n g
n
a,'
+
J
n
c.1. b.* J=1 J
1 .71
0.
=
Since F is formally r e a l ,
(3)
n
bj2 f 0.
Assume f o r a moment t h a t t h e e x p r e s s i o n i n ( 3 ) i s 0.
PROOF.
is f o r m a l l y r e a l , each b . formally r e a l each a
j
=
Since ( 2 ) holds,
0.
J
0.
1.J =n1
a
J
*
= 0.
Since F
S i n c e F is
However, t h i s v i o l a t e s t h e c o n d i t i o n t h a t n o t
a l l a . and b . a r e z e r o . J J
(ii)
-cES,
( i i i ) c t S , hence (iv)
CES i m p l i e s t h a t
PROOF.
( 2 ) and
c is a square.
( 3 ) imply ( i ) .
By ( O , ( i v ) & ( i i ) ) ,-ceS; e s t a b -
l i s h i n g ( i i ) . Were CES t h e n by ( 0 , i v ) l / c would be i n S .
S i n c e -cES,
see t h a t C E S i m p l i e s - l e S , which i s absurd; e s t a b l i s h i n g ( i i i ) . have proved t h e f o l l o w i n g : t r a p o s i t i v e of
(A)
(A) C E F n o t a s q u a r e i m p l i e s c L S .
which i s t h e f o l l o w i n g :
we
Thus we The c o n -
(B) CCS i m p l i e s c i s a s q u a r e ;
establishing (iv). As t o t h e s t a t e m e n t of Theorem 0 , i f c is
-c&.
not a s q u a r e t h e n by ( 4 , i i )
By ( 4 , ( i i ) & ( i v ) ) , - c i s a s q u a r e ; t h u s c i s t h e n e g a t i v e o f a
s q u a r e ; proving Theorem 0. THEOREM 1 .
A r e a l - c l o s e d f i e l d F may be o r d e r e d i n one and o n l y o n e
way, namely w i t h t h e o r d e r g i v e n by P* = { x z : X E F * } .
F u r t h e r , any a u t a n o r -
phism of F is o r d e r - p r e s e r v i n g . PROOF.
Let P * b e d e f i n e d t o be { x ' :
(1.70:0(i)) holds. ( 1 . 7 0 : 0 ( i i ) ) holds.
XEF*}.
C l e a r l y OtP*;
thus
Let C E F - P*; t h e n by Theorem 0 , - c i s i n P*; t h u s
Let a , bEF*; t h e n a 2 - b 2
= (ab)2,
we s e e t h a t a'eb'
is
1 .71
Preliminaries
i n P*, hence ( 1 . 7 0 : 0 ( i v ) ) h o l d s .
Were a '
69 + b 2 n o t i n P * t h e n we would
know, b y Theorem 0 . t h a t i t was - c 2 , f o r s a n e C E F ; t h u s a' Since F is formally real t h i s i m p l i e s t h a t a
=
b = c
=
b2
+
+
p o s i t i v e e l e m e n t s of F .
=
0.
0 ; which i s a b s u r d .
Thus P* is c l o s e d under a d d i t i o n , showing t h a t ( 1 . 7 0 : 0 ( i i i ) ) h o l d s . we know t h a t (1.70:O) h o l d s .
c2
Hence,
As a r e s u l t P * may be t a k e n a s a c l a s s of
S i n c e any s e t of p o s i t i v e e l e m e n t s of F must
c o n t a i n t h e n o n - z e r o s q u a r e s ( 1 . 7 0 : 3 ) , we s e e t h a t t h e o r d e r on F i s unique. P*,
Let h be an automorphism of F.
Since h preserves squares h(P*)
=
t h u s h i s o r d e r - p r e s e r v i n g ; proving Theorem 1 . Henceforth i n t h i s S e c t i o n assume t h a t a l l f i e l d s under c o n s i d e r a t i o n
are sets. Let A be a f o r m a l l y r e a l f i e l d and l e t C be an a l g e b r a i c
THEOREM 2.
c l o s u r e of A .
There e x i s t s a r e a l - c l o s e d f i e l d B t h a t i s a s u b f i e l d o f C
and t h a t c o n t a i n s A . PROOF.
contain A.
L e t E be t h e s e t of a l l f o r m a l l y r e a l s u b f i e l d s of C t h a t
Since A i s f o r m a l l y r e a l A C E , t h u s E f 0 . Let
r
t h e u n i o n F of
r
inclusion.
Let E be o r d e r e d by
b e a non-empty ( t o t a l l y ) o r d e r e d s u b s e t of E.
i s a g a i n i n E ; thus E is inductive.
has a maximal e l e m e n t , B.
Clearly
By Zorn's Lemma, Z
By c o n s t r u c t i o n , B i s r e a l - c l o s e d , p r o v i n g
Theorem 2. (5)
Let A be a f o r m a l l y r e a l f i e l d ; t h e n A c a n be embedded i n a r e a l c l o s e d f i e l d B such t h a t B is a l g e b r a i c over A . PROOF.
(6)
Apply Theorem 2 .
o
I f A i s f o r m a l l y r e a l , t h e n i t can be o r d e r e d . PROOF.
Apply ( 5 ) .
S i n c e B is r e a l - c l o s e d , we may a p p l y Theorem 1
and t h u s we know t h a t B has a unique o r d e r on i t , g i v e n by P*
=
{x':
XCB*).
Let P*, be t h e i n t e r s e c t i o n of P* and A ; t h e n P*, s a t i s f i e s ( 1 . 7 0 : 0 ) , a n d t h u s B can be o r d e r e d by P*,.
a
Norman L. A l l i n g
70 THEOREM 3.
degree.
1.71
Let F be a r e a l - c l o s e d f i e l d .
Let f ( X ) i n F[X] be of odd
Then f ( X ) has a r o o t p i n F .
PROOF.
Let n be t h e d e g r e e of f ( X ) .
I f n = 1 then c l e a r l y f ( X ) h a s
Assum e t h a t n i s an odd number g r e a t e r t h a n 1 f o r which a l l
a root i n F.
elements i n FCX] of odd d e g r e e l e s s t h a n n h a v e r o o t s i n F .
Were f ( X )
r e d u c i b l e t h a n i t would f a c t o r i n t o two polynomials a(X) and b(X) of lower degree i n F[X].
Since n i s odd, t h e d e g r e e of a(X) o r b ( X ) i s o d d .
t h a t p o l y n o m i a l has a r o o t i n F .
generality, that f ( X ) is irreducible.
Thus
H e n c e , we may assume, without loss of Let L b e a f i e l d e x t e n s i o n of F such
t h a t f ( X ) has a r o o t p i n L , f o r w h i c h L
=
S i n c e L i s a proper
K(p).
a l g e b r a i c e x t e n s i o n of F , a r e a l - c l o s e d f i e l d , L is n o t f o r m a l l y r e a l . Thus t h e r e exist c . E L , J
c
j
... , m ,
for j = 1 ,
with
m lj=, cj
S i n c e each
= -1.
i s i n L we know t h a t f o r e a c h t h e r e is a p o l y n o m i a l p (X)eF[X], of
J
d e g r e e l e s s t h a n n . such t h a t p ( p ) j
=
c.. J
Thus, t h e r e e x i s t s a g ( x ) ~ F [ X l
such t h a t t h e f o l l o w i n g h o l d s :
m
=
-1
f(X)g(X
i-
I t i s e a s i l y s e e n t h a t t h e l e a d i n g c o e f f i c i e n t of i s a s u m of s q u a r e s i n F , a n d hence i s p o s i t i v e .
s ( X ) i s even and i s bounded above by 2 ( n
-
1).
1J = 1
p (XI2
J
=
s(X),
F u r t h e r , t h e degree of
It follows t h a t t h e d e g r e e
of g ( X ) i s odd and i s bounded above by 2 ( n - 1 ) - n
=
n
-
2.
t h e i n d u c t i o n h y p o t h e s i s , we know t h a t g ( X ) h a s a r o o t B E F .
On invoking
Hence ( 7 )
gives rise t o
B u t ( 8 ) i s a b s u r d s i n c e F i s a r e a l - c l o s e d f i e l d and hence i s a f o r m a l l y
real f i e l d .
T h u s f ( X ) has a r o o t p i n F ; proving Theorem
THEOREM 4 .
3.
Let F be an o r d e r e d f i e l d s u c h t h a t ( i ) every p o s i t i v e
element i n F is a s q u a r e and ( i i ) every p o l y n o m i a l of odd d e g r e e i n F [ X l
P r e l i m i nar i es
1 .71
has a r o o t i n F.
Then P ( X )
S P l t t i n g f i e l d of f ( X
=
X2
+
71
IEF[XI is i r r e d u c i b l e .
L e t C be t h e
over F ; t h e n C is a l g e b r a i c a l l y c l o s e d . A s we h a v e
S i n c e F is an o r d e r e d f i e l d i t i s f o r m a l l y r e a l .
PROOF.
s e e n , F h a s c h a r a c t e r i s t i c 0 ; t h u s C i s a normal s e p a r a b l e e x t e n s i o n of F. C l e a r l y i t s C a l o i s group Go i s t h e two element group.
of f ( X ) i n C .
L e t x ( p ) be defined t o be a - b i ; t h e n
a + bi.
Let k i be t h e r o o t s
Given ~ E C ,t h e r e e x i s t unique a and b i n F such t h a t p
Let f ( X ) E C ( X ) , by t a k i n g X t o X .
=
x and x 2 c o n s t i t u t e
Let t h e F-automorphism
x
Go.
of C e x t e n d t o
an F-autanorphism
x of
Since X(h(X))
h ( X ) , ~ ( X ) E F [ X ] . If h(X) h a s a r o o t i n C t h a n f ( X ) has a
root i n C .
(9)
=
Let g(X)
C[X].
=
X ( f ( X ) ) , and l e t h(X) = f ( X ) * g ( X ) .
Thus,
t o show t h a t C i s a l g e b r a i c a l l y c l o s e d i t s u f f i c e s t o show t h a t e v e r y polynomial w i t h c o e f f i c i e n t s i n F has a r o o t i n C . U s i n g c o n d i t i o n ( i i ) of Theorem 4, we know t h a t t h i s i s t r u e f o r a l l
pol ynom i a 1s of odd d e g r e e w i t h c o e f f i c i e n t s i n F .
(10)
Every element p i n C has a s q u a r e r o o t i n C .
PROOF r o o t i n F.
If p
>
0 t h e n , by c o n d i t i o n ( i ) i n Theorem 4 , p h a s a s q u a r e
Assume t h a t p
such t h a t B 2
=
are i n F , with b 6 0. 2cdi.
(11)
0 , then f ( s )
0 f o r a l l s c R , and.
( i i ) if a
0, let vx(q(X)) be t h e
L e t u s d e f i n e ~ ( 0 )=
1 , r is c a l l e d a s i m p l e zero of q ( X ) .
s i m p l e p o l e of q ( X ) .
an e l e m e n t
m,
0 , q ( X ) i s s a i d t o h a v e a z e r o of o r d e r
s a i d t o h a v e a pole of o r d e r - n a t A.
If n
=
-1,
If n
+ 0.
(0,O)
and g ( q ( x , y ) )
>
Norman L . A l l i n g
116
(3)
(q-'(T))*
is a €,-open
3.42
Thus q is 6-continuous on C*.
s u b s e t of C * .
( 1 ) and ( 3 ) being t h e c a s e , we w i l l say t h a t C a t o p o l o g i c a l f i e l d i n t h e 6-topology. -
3.43
OTHER EXAMPLES OF c-CONTINUOUS MAPS
Let u s c o n s i d e r a few examples of s p e c i a l maps fran R m t o R n . be a l i n e a r map form R (0)
(1)
t o Rn.
Then, by ( 3 . 2 1 : 0 ) ,
f i s a €,-continuous map. Let M n x m ( R )
R.
m
Let f
d e n o t e t h e s e t of a l l mxn m a t r i c e s w i t h c o e f f i c i e n t s i n
A s a c o r o l l a r y t o (3.21:O) we s e e t h a t
m
t h e map t h a t takes ( A , X ) E M ~ ~ ~ ( R )t X o RAXER
where h e r e we t h i n k of R
n
, is a c-continuous map,
m and R n as a s p a c e of column v e c t o r s .
Let G L ( n , R ) d e n o t e t h e g e n e r a l l i n e a r group, of n by n m a t r i c e s over
A.
(3)
A s another c o r o l l a r y t o ( 1 ) we see t h a t
n
t h e map t h a t takes (A,x)cGL(n,R)xR
t o AXER n is a 6-continuous map,
where h e r e we t h i n k of R n as t h e s p a c e of column v e c t o r s .
117
CHAPTER 4
I N T R O D U C T I O N T O THE SURREAL NUMBER F I E L D No
4.00
SURREAL NUMBERS
In J . H . Conway's book, On Numbers and Games C241, t h e b a s i c c o n s t r u c t i o n o f numbers i s t h e f o l l o w i n g : (0)
I f L a n d R a r e two s e t s of n u m b e r s , a n d i f no member of L is t any
member of R , t h e n ( L I R } i s a number.
A l l numbers are c o n s t r u c t e d i n
t h i s way [ 2 4 , p . 41.
How t h e n d o e s o n e g e t s t a r t e d c o n s t r u c t i n g n u m b e r s u s i n g C o n w a y ' s
construction?
The empty s e t is a s e t of numbers which we know e ists.
L and R be empty. (01,
Note t h a t no member of L is 2 any member of R
[LIR] i s a number.
Let u s c a l l t h i s number 0 .
Let
t h u s , by
Conway C24, p . 41
adopted t h e following n o t a t i o n a l convention:
If x
=
( L I R } w e w r i t e xL f o r a t y p i c a l member of L , a n d
t y p i c a l member of R ; t h u s x e, f , e, f ,
... ) , ... 1 .
option _---
of x.
we mean t h a t x
L R {x Ix 1 .
= =
If we write x = ( a , b , c ,
... I d ,
and R
=
Id,
x L i s c a l l e d a l e f t o p t i o n of x , a n d x R i s c a l l e d a r i g h t If L ( r e s p . R ) i s empty, we may i n d i c a t e t h i s by l e a v i n g t h e
p l a c e where L ( r e s p . R ) would a p p e a r b l a n k . =
... }
( L I R ) , where L = [ a , b , c ,
xR for a
Hence ( ( 0 1 l a }
=
([O}
I],
and 0
[I). I n K n u t h ' s m a t h e m a t i c a l n o v e l l a o n s u r r e a l n u m b e r s [52] he u s e s
s l i g h t l y d i f f e r e n t n o t a t i o n i n t h e body of t h e t e x t . writes x
=
(X
X 1. L' R
For example, Knuth
We have c h o s e n t o a d o p t most of Conway's n o t a t i o n .
is n o t o n l y v e r y compact a n d e a s y t o u s e , b u t i t s u g g e s t s
feels
-
t h e r i g h t way t o t h i n k a b o u t t h e s u b j e c t .
-
It
t h e author
118
Norman L . A l l i n g
4.00
Conway t h e n d e f i n e s o r d e r between numbers a s f o l l o w s :
(1)
( 1 ) x 6 y i f and O n l y i f ( i i ) no y R 2 x and x S no x
L
.
Note t h a t ( 1 , i ) is a s t a t e m e n t about n u m b e r s , a n d t h a t ( 1 , i i ) i s a s t a t e m e n t a b o u t s e t s of n u m b e r s .
Conway d e s c r i b e s 0 as t h e t l s i m p l e s t t t
number t h a t was ttborn on day 0" [24, p.
111.
T h i s seems f i t t i n g i n d e e d ,
{*I.]. The numbers 1 = Conway s a y s of them t h a t
s i n c e i t i s b u i l t up fran t h e empty s e t u s i n g o n l y
{Ol) and -1
-
(10) a r e a l i t t l e more c o m p l e x .
t h e y were e a c h " b o r n o n d a y 1 " [ 2 4 , verify t h a t ( 1 , i i ) holds. and t h a t ( b ) 0 < j l ) ,
p . 111.
To s e e t h a t 0 2 1, w e m u s t
To do t h a t i t s u f f i c e s t o show t h a t ( a ) lo)
x i f and o n l y i f x < y.
(ii)
(iii)
Perhaps t h e o n l y s u r p r i s e i s t h a t ( 2 , i i ) is a definition.
Conway
y, -x,
and xy
ends h i s s h o r t l i s t of remarkable s t a t e m e n t s by d e f i n i n g x
+
i n d u c t i v e l y f o r all numbers x and y as f o l l o w s . L R R I x L + y , x + y Ix + y , x + y 1 .
(3)
x + Y
(4)
-x = (-x
(5)
x y - ( x y + x y
=
R
L
1-x I .
L
L x Y
+
L
L L R R R R - x y , x y + x y - x y J R L R R L X Y - x y , x y + xy - x Ry L ) *
A t f i r s t g l a n c e t h e s e d e f i n i t i o n s may l o o k c i r c u l a r .
Note, f o r
example, i n ( 4 ) i f we know how t o form t h e n e g a t i v e of a l l t h e o p t i o n s of x used t o d e f i n e x , t h e n (4) i s n o n - c i r c u l a r .
S i m i l a r l y , i n ( 3 ) i f we c a n
p r e f o r m a l l t h e i n d i c a t e d a d d i t i o n s among o p t i o n s of x and y and y and x
I n t r o d u c t i o n t o t h e s u r r e a l number f i e l d No
4.00
t h e n w e c a n compute t h e s e t s on t h e l e f t i n ( 3 ) .
119
The same may b e s a i d of
(5). Conway a l s o showed C24, p p . 16-17] t h a t , i f x
(6)
L
q n ,
>
q,
4.05
>
and w
... ,
B1,
Bn > 0.
R e g a r d i n g s u c h s u m s as f o r m a l power s e r i e s a l l o w s u s t o a d d a n d
Let u s a l s o r e g a r d t h e o r d i n a l number 0 as t h e empty expan-
m u l t i p l y them.
s i o n ( 0 1 , a n d l e t i t b e a d d e d a n d m u l t i p l i e d a s a formal power series. Such sums and p r o d u c t s g i v e r i s e t o t h e n a t u r a l numbers.
a n d p r o d u c t of o r d i n a l
C55, pp. 246-2611.)
(See e.g.,
Note t h a t we have y e t t o p r o v e t h a t x we know t h a t i t is a game ( 4 . 0 4 ) .
t i o n of a d d i t i o n between games.
+
y i s a l w a y s a number; however
F u r t h e r , we may r e g a r d (0) as a d e f i n i -
As s u c h we c a n e s t a b l i s h p r o p e r t i e s a b o u t
F i r s t note that
it.
(3)
0
+
x
=
PROOF.
x , f o r a l l XENO. Assume t h a t 0
+
u = u is t r u e f o r a l l UEO
U’
and l e t b ( x ) = a.
(Note that i f a
=
0, t h e i n d u c t i o n h y p o t h e s i s i s empty, x
noted i n ( 2 ) , 0
+
x
+
xR I .
Since 0
x.)
By d e f i n i t i o n , 0
+
x
(0
=
+
xLIO
L R h y p o t h e s i s ) i s {x Ix 1, which i s x .
x
(4)
+
y
=
PROOF.
+
x = {OL
+
x, 0
+
L R x 10
+
x, 0
( 1 1 , t h e r e a r e n o 0L , o r 0 R : i . e . , 0 h a s n o o p t i o n s
=
Thus 0
(4.00).
=
0 , a n d , as
=
+
R x 1 , which ( u s i n g o u r i n d u c t i o n
o
y + x , f o r a l l x , YENO. Let x a n d y be chosen s o t h a t f o r a l l U , V E N O ,
n a t u r a l sum, b ( u )
+
(Note t h a t i f
b ( v ) , i s less t h a n b ( x )
f o r which t h e
b(y) = a; then u
v
v
=
(Y
=
0, t h e n t h i s i s t h e empty i n d u c t i o n h y p o t h e s i s ,
x
y , and hence x
+
y
+
+
+
u.
= 0 =
x.)
S i n c e any o p t i o n z of x ( r e s p . y ) i s s i m p l e r
than x (resp. y): i.e., b ( z )
< b ( x ) ( r e s p . b ( z ) < b ( y ) ) , we c a n u s e t h e
=
y
+
i n d u c t i o n h y p o t h e s i s t o show t h a t x [y
t
L
x , y
L + x I y + x R , yR
+ XI
=
y
+
y
+
x.
=
IxL 0
+
y, x
+
yLlxR
+
y,
x
+
yR)
=
I n t r o d u c t i o n t o t h e surreal number f i e l d No
4.05
135
Let u s now c o n s i d e r two s t a t e m e n t s which we w i l l p r o v e f o r a l l u, v ,
a n d z i n No.
w,
The f i r s t o f t h e s e , we w i l l c a l l P ( u , v : w , z )
is the
following: ( i ) u 2 v a n d ( i i ) w 5 z, implies ( i i i ) u
(5)
w 2 v
+
(iv) Strict
z.
+
i n e q u a l i t y i n ( i ) or ( i i ) i m p l i e s s t r i c t i n e q u a l i t y i n ( i i i ) . O u r i n d u c t i o n w i l l be w i t h r e s p e c t t o rnax.(b(u) + b ( v ) , b(w) + b ( z ) ) , Let N ( x , y ) b e t h e s t a t e m e n t t h a t
which we w i l l d e f i n e t o be b ( P ( u , v : w , z ) ) .
x
(6)
+
L
y i s a number: i . e . , t h a t {x
+
Let b ( N ( x , y ) ) be d e f i n e d t o be b ( x )
y, x +
+
L
y 1
< {xR
t
R
y , x + y }.
b ( y ) , and consider t h e f o l l o w -
ing statement:. ( 5 ) a n d ( 6 ) h o l d , f o r a l l u, v , w , z , x , a n d y i n No.
(7)
PROOF.
To e s t a b l i s h ( 7 ) , we w i l l p r o c e e d b y i n d u c t i o n o n
max.(b(P(u,v:w,z)),
b ( N ( x , y ) ) ) , w h i c h we w i l l c a l l b ( Q ( u , v : w , z : x , y ) ) .
(Note t h a t i f b ( Q ( u , v : w . z : x , y ) ) Let a
(5) and ( 6 ) a r e t r u e . )
>
= 0,
then u
=
v = w
=
z =
x
=
y
=
0, and
0 , a n d assume t h a t f o r a l l u, v , w , z , x ,
xy.
xyL
-
xRyL 2 xR'y + xyL'
-
xR'yL'
> xy.
f o r e a c h xL, t h e r e e x i s t s xL' 2 x L ; a n d f o r each y L t h e r e
By ( O ) ,
L'
xLyR h xL'y
xL' a n d y R ' f o r w h i c h
4).
PROOF of
exists y
-
xy.
F o r each xR a n d yL t h e r e e x i s t x R ' a n d y L ' f o r w h i c h X Y +
(i)
xyR
- x R' y R '
xy t h u s xy
< xL ' y
exists Y
L'
+
2 Y
L
consequence, 0
>
R' x y
+
t h u s xy
(x -
-
2 xy
R'
)(y
-
y
L'
) 2 (x
-
.
R
; a n d f o r e a c h yL t h e r e
1 L (x
-
R
L
x ) ( y - y 1.
AS
a
R ' L' R xy - x y - x y L ' + x y L xy x y - xyL + x R y L , a n d L' R ' L' R L R L xy x y 5 x y + xy - x y i p r o v i n g ( 4 ) . R'
-
-
To c o m p l e t e t h e proof of ( 3 ) , we c a n r e a s o n as we d i d i n t h e proof of (1).
a
PROPERTIES OF DIVISION I N No
4.10
THEOREM. t h a t xy = 1 .
Were x then -x(z)
-
Let x b e i n No, w i t h x n o t 0.
T h e r e e x i s t s y i n No s u c h
Thus, No i s a n o r d e r e d f i e l d .
Assume t h a t x
0 in
No.
T h e r e e x i s t s a YENO s u c h t h a t xy = 1 .
I n t h i s s e c t i o n , t h e f o l l o w i n g r e s u l t w i l l a l s o b e of u s e . (1)
T h e r e e x i s t s u b s e t s L and R of t h e s e t of p o s i t i v e elements of No such t h a t L
Since x
timely (4.02).
[x
L
0 , and s i n c e 0
Let L
t h a t 0 5 xL ( 4 . 0 2 : 1 4 ) .
=
=
L
[ x : xL
R x 1 , the r e p r e s e n t a t i o n being
I
[I},
=
155
t h e r e must e x i s t a n xL s u c h
> 01, and
let R
=
[x
R
1.
Then x
=
[O,LIR}; e s t a b l i s h i n g ( 1 ) .
( 1 ) We may write x a s [ O , x L l x R } , w i t h e a c h
Conway d e f i n e d t h e m u l t i p l i c a t i v e i n v e r s e y of x as f o l l o w s
being timely. [24,
xL > 0 , t h e r e p r e s e n t a t i o n
p . 211.
(1
+
(xL
L L x)y ) / x , ( 1
-
+
(xR
-
R R x)y ) / x I.
Conway writes t h e f o l l o w i n g a f t e r t h i s d e f i n i t i o n .
"Note t h a t ex-
p r e s s i o n s i n v o l v i n g yL and yR a p p e a r i n t h e d e f i n i t i o n o f y . t h a t r e q u i r e s u s t o ttexplaintt t h e d e f i n i t i o n .
It is this
The e x p l a n a t i o n i s t h a t we
r e g a r d t h e s e p a r t s of t h e d e f i n i t i o n as d e f i n i n g new o p t i o n s f o r y i n terms So even t h e d e f i n i t i o n of t h i s y is an i n d u c t i v e one. t [ T h i s
of o l d o n e s .
i s i n a d d i t i o n t o t h e t t o t h e r t l i n d u c t i o n s by which we s u p p o s e t h a t i n v e r s e s L
for the x
and x
R
have a l r e a d y been f 0 u n d . 1 ~ ~C24, p . 21.1
In a footnote t
[24, p . 211 Conway g i v e s t h e f o l l o w i n g v e r y i n s t r u c t i v e example. Example 0. as [0,21}.
Let x R
=
3.
Thus x c a n be w r i t t e n , as i t is above i n ( l ) ,
.
Hence [ x ) i s empty, and xL
=
2.
By (21, t h e g e n e r a l f o r m u l a
for y is
Let yoL
=
0.
Note t h a t yoL
BY ( 3 ) , we s e e t h a t y I R
=
Let us make no c h o i c e of a y o
S i n c e t h e r e i s no y o R , t h e r e i s n o y 1
1/2.
U s i n g ( 3 ) , we s e e t h a t y Z L = 1 / 4 . y S R = 11/32, y G L = 21/64, y,R
< 1/3.
=
T h i s t h e n y i e l d s y,R = 318, y,L
43/128,
...
=
R
L
. .
5/16,
Writing t h i s i n t h e customary
Norman L. A l l i n g
156
way g i v e s y = ( 0 , 1/4, 5/16, 21/64,
... I
4.10
1/2,
3/8,
11/32,
The decimal v e r s i o n of t h i s i s even more i n s t r u c t i v e . {O,
0.25,
0.3125,
0,328125,
... I
0.5,
0.375,
0.34375,
431128,
...
I.
It is t h e following: 0.3359375,
... ) .
I n t r y i n g t o u n d e r s t a n d ( 2 ) more f u l l y , n o t e t h a t e x c e p t f o r 0 t h e o p t i o n s g i v e n i n (2) a r e d e t e r m i n e d i n p a r t by t h e c h o i c e of w h i c h o p t i o n o n e c h o o s e s t o c o n s i d e r , r i g h t or l e f t .
Let u s make t h e f o l l o w i n g
def i ni t i o n s .
(4)
(i)
R
-
x)y ) / x ,
be d e f i n e d t o be ( 1 + ( x L
-
x)y ) / x ,
Let [R:Ll(y) b e d e f i n e d t o be ( 1 + ( x
( i i ) l e t [L:R](y)
L
R
R
L
( i i i ) l e t [ L : L l ( y ) b e d e f i n e d t o be ( 1
+
( x L - x ) y L ) / x L , and
l e t [R:Rl(y) b e d e f i n e d t o be ( 1
+
(xR
(iv)
-
R R x)y )/x
.
Then, a c c o r d i n g t o (21,
PROOF of ( 0 ) .
-
Note t h a t (0) i s t r u e i f x
is.
(4)
D e f i n e z t o be [x
(5)
22 = z + z =
(6)
z
+
x
-
2-"
X I . S i n c e by d e f i n i t i o n t h e r e e x i s t s nEN s u c h t h a t -n < x < n , L and R a r e non-empty. Clearly
( i i i ) Let L = { q E Q : (0)
-
-
R x )(Y
-
(x
and y = { y
y , x + y + 2 - m ) ; showing t h a t x + y i s
{xy - ( x {xy
( i i ) Let x a n d y b e r e a l
Using (4.08:19) we know t h a t xy =
L L x ) ( y - y 1,
-
L
-
xy
(x
2-"1
may be w r i t t e n as
a n d t h u s - x i s a r e a l number i n No.
a r e a l number i n No. {xy
-
(x
=
2-"),
+
dED
By ( 4 . 0 9 : 1 ) , x i s r e a l .
n u m b e r s i n No, w i t h x
(X
4.30
L and {x
coinitial. (4.02:16),
-
2-"]
q
a r e m u t u a l l y c o f i n a l a n d R and { x + 2-"]
By ( 4 . 0 2 : 1 6 ) , x { L I R ) is real.
As we have
=
(LIR].
are mutually
( i v ) Let ( L , R ) b e a g a p i n Q .
o
see i n S e c t i o n 4.21, 0
w
i s t h e r i n g D of d y a d i c n u m b e r s .
- D
S i n c e D i s d e n s e i n t h e f i e l d of real numbers R , a number r i n R associated w i t h s u b s e t s L
Clearly L < R.
=
{acD: a
< r)
a n d R = {bED: b
>
i s a t i m e l y r e p r e s e n t a t i o n of x.
Let x
=
= w.
c a n be
r ] of O w .
Let x = { L I R ] , a n d n o t e t h a t x i s n o t i n 0
{No, 0 and Y > 0 .
uy.
(4)
X
=
{O,aw
X
L bw
X
b(y), let X
=
w
X
and l e t Y
By d e f i n i t i o n ,
L
R
+
171
R
] and Y = (0,cwy IdaY ) , where a , b , c , d a r e i n R t .
Then XY =
L
L
(5)
10. awx
(6)
L (0, a w x ty
+'
+
+
cw '+Y
cw '+Y
L
L
-
acw
-
acw
L
R
L
ty
ty
~
L
ty
bw
, bw
R
+'
R
t
dw"Y
t
dw"y
R
-
bdwX ty
R
R
I
-
R R bdwX ty
I
S i n c e ( 5 ) and ( 6 ) a r e i d e n t i c a l , t h e Theorem is proved. Applying t h e Theorem, we o b t a i n t h e f o l l o w i n g c o r o l l a r y :
(7)
For a l l XENO, w
-X
=
l/w
X
.
F u r t h e r , t h e map t h a t takes XENO t o w x i s
a n o r d e r - p r e s e r v i n g homomorphism o n t o t h e class A of a l l l e a d e r s i n
No; t h u s A i s an o r d e r e d group, under m u l t i p l i c a t i o n , t h a t is o r d e r l s u n o r p h i c t o t h e a d d i t i v e group (No,+) of No.
4.41
FINITE LINEAR COMBINATIONS OF w - x ( 1) ,
... , w - x ( n )
OVER R
We w i l l be concerned i n t h i s s e c t i o n w i t h f i n i t e l i n e a r combinations
Norman L . A l l i n g
172
of elements of t h e form w Y o v e r R.
4.41
Let aeR, and l e t Y E N O .
The f o l l o w i n g
a r e obvious.
(0)
(i)b 0.~')
= 0,
0
f o r all YENO, and ( i i ) b ( a w 1 = b ( a ) , f o r all aeR.
Since b ( - x ) = b(x), and having c o n s i d e r e d ( O , ( i ) ) ,
L
f i e l d of Mu.
R
Since b ( a ) 4
Let a = { a la J E R .
W,
w e know ( b y c o n v e n t i o n
R L t h a t ( a L , a ) i s a t i m e l y r e p r e s e n t a t i o n f o r a: t h u s each a
(4.02:15)),
and each a
F u r t h e r , w e saw i n (4.30) t h a t R i s a sub-
Ow.
=
0.
A s we
As b e f o r e , l e t D denote t h e r i n g of a l l dyadic numbers ( 4 . 2 1 ) .
saw i n S e c t i o n 4 . 2 1 , D
>
assume t h a t a
R . is i n D.
Since a { aL wY
LEMMA.
awy
PROOF.
Let {a
=
L'
I
>
0 , we may a l s o assume t h a t each aL
0.
aR wY I .
{dcD: 0
=
>
c
9,.
W i t h o u t l o s s of g e n e r a l i t y we may assume t h a t ( i )
f o r a l l SES.
sor of S, s^(B) =
There e x i s t s o ,
B)
Thus s
=
+,
Were t h e r e
8,hS
f o r a l l SES.
w i t h s,^(B) = 0 , s,
Hence
BEr,
which i s
absurd.
PROOF. so S c 6
bt(c)
x and b(y)
a , x is not i n
is a Cuesta Dutari c u t i n F ( < , a ) .
{La(x)l Ra(x)}, and n o t e that x a c F ( = , a ) .
Let xu
S i n c e B > a , x f x a'
=
Recall
(4.50) t h a t Conway C24, p.291 c a l l s xa t h e u t h a p p r o x i m a t i o n t o x.
Let us c a l l yeF a p r e d e c e s s o r ( c f . ( 4 . 5 0 ) ) of x , a n d write y
( c f . ( 4 . 5 1 ) ) i f there e x i s t s a
< 8.
Note t h a t x ( a ) =
+
(resp. -1 i f f x
(resp. y
xu ( r e s p . x
thus y[B = x.
The f o l l o w i n g w i l l be c a l l e d t h e p r e d e c e s s o r
< x and a
x and a
x
iff
Since b ' ( y ) 5
cut r e p r e s e n t a t i o n
of x:
< 61).
(1)
((xu: xa
(2)
Let (L,R) be t h e p r e d e c e s s o r c u t r e p r e s e n t a t i o n of x.
a
y , t h e n l e t R**
(L**,R**)
-
which i s a b s u r d .
R*.
0, t h e r e e x i s t a
, using
0.
Following t h e same a r g u m e n t as t h a t u s e d
t o prove Lemma 1 , i n S e c t i o n 4.40,
e x i s t s a unique yL ( r e s p . y R L R w i t h u Y ( r e s p . wY
=
we see t h a t f o r each x
L
R
(resp. x ) there
L
i n CNo s u c h t h a t xL
R
( r e s p . xR
a W'
a
u Y 1,
R
a t l e a s t as s i m p l e as xL ( r e s p . x 1.
I f x i s commens u r a t e w i t h one of its o p t i o n s , s a y x ' , t h e n ( i i i ) i s p r o v e d , i n t h e c a s e
under consideration.
Assume t h a t x i s c o m m e n s u r a t e w i t h n o n e of i t s
rwYL XI.
Given X E O , l e t L ( x ) =
S i n c e x i s i n 0, ( L ( x ) , R ( x ) ) is
S i n c e t h e f i e l d R i s Dedekind c o m p l e t e , t h e r e exists
a unique c u t p o i n t p ( x ) i n R f o r ( L ( x ) , R ( x ) ) .
Then o n e e a s i l y sees t h a t
(0)
p is a p l a c e of No a s s o c i a t e d w i t h 0 .
(1)
R is a s u b f i e l d of 0 t h a t p maps R - i s o m o r p h i c a l l y o n t o t h e r e s i d u e c l a s s f i e l d of p .
Norman L. A l l i n g
21 2
6.10
Let 5 b e a p o s i t i v e r e g u l a r index (1.30:3).
R e c a l l t h a t (No ( 5 . 0 0 )
R e c a l l a l s o t h a t R is a s u b f i e l d of CNo
i s a s u b f i e l d o f No ( 5 . 0 0 ) .
Let < p d e n o t e plFNo, a n d l e t 50 d e n o t e 0 i n t e r s e c t e d w i t h gNo;
(5.00).
then R i s a s u b f i e l d of 50 t h a t c p maps R - i s a n o r p h i c a l l y o n t o t h e r e s i d u e
(2)
class f i e l d R of (p.
I f i t i s u n l i k e l y t h a t c o n f u s l o n w i l l a r i s e we may use p t o d e n o t e s p and use 0 t o d e n o t e 50.
R e c a l l t h a t t h e w-map was d e f i n e d on No i n ( 4 . 4 0 ) .
According t o Lemma 2 of S e c t i o n 4.50. f o r a l l y i n No t h e r e e x i s t s a unique XENO such t h a t y
a
w
-X
,
where
a
d e n o t e s t h e e q u i v a l e n c e r e l a t i o n o n No
between commensurate e l e m e n t s ( 4 . 1 0 ) . element XENO s u c h t h a t I y I
(3)
a
w
-X
For a l l YENO*, l e t V ( y ) b e t h e
.
V i s a homomorphism of t h e m u l t i p l i c a t i v e group No* o n t o t h e
(i)
a d d i t i v e group (No,+) of No. ( i i ) The k e r n e l of V is U.
( i i i ) For a l l y and Y'ENo*, l y l
v(o)
(iv)
PROOF.
holds.
By Theorem 4.40, =
-X
wX+'
we s e e t h a t V - l ( O )
=
>
V(y*).
Finally,
w X w y , f o r a l l x and y i n No, t h u s ( i )
IyI = w
0 iff
f r a n Lemma 1 of S e c t i o n 4 . 4 0 . I,I
V(y)
= NO+.
For ycNo, V ( y )
(6.00:4),
0 ) ) ( b y Theorem 4.40).
6.50
Notice f u r t h e r m o r e , t h a t t h e map
V ( W - ~ ) E N O i s t h e i d e n t i t y map of No ( 6 , 1 0 : 3 , i ) ;
t h u s V is a n o r d e r -
p r e s e r v i n g isomorphism of E o n t o t h e v a l u e group of V . I n S e c t i o n 6.43 we began t o develop Conway's i d e a of t h e
Let X E N O * .
normal form f o r x , b u t broke o f f our d i s c u s s i o n a f t e r p r o c e e d i n g a f i n i t e number of s t e p s , i n o r d e r t o develop t h e i d e a of an a-power series i n No. Having developed these i d e a s i n S e c t i o n 6 . 4 3 , l e t us s y n t h e s i z e t h e t w o ideas i n t h e following.
Assume t h a t f o r some A i n On, an w-power s e r i e s S A h a s been g i v e n s u c h ' t h a t , f o r a l l 0 S A ,
be c a l l e d t h e
Let a w
a-term
V(x
-
-- la
.
xi).(^,,,
( bj ) x j ) , w h i c h by
By t h e Lemma ab o v e we see t h a t
1 ; t h e n ( ( 1 + x ) 1'k)k
=
1 + x.
We w i l l c a l l a n o r d e r e d f i e l d K a r o o t - c l o s e d f i e l d i f f o r e a c h k s N and each a
>
0 i n K t h e r e e x i s t s bsK s u c h t h a t b
f i e l d , l e t F have t h e l e x i c o g r a p h i c o r d e r .
we w i l l p u t on F , e a c h t g COROLLARY 2.
>
k
=
a.
I f K is a n o r d e r e d
Under t h i s o r d e r , t h e o n l y o n e
0.
Assume t h a t K i s a r o o t - c l o s e d f i e l d , a n d t h a t C i s
Power s e r i e s : formal and hyper-convergent
7.33
275
d i v i s i b l e ; then F is r o o t - c l o s e d .
PROOF.
r i s i n K and i s p o s i t i v e .
=
r-'at-g
c l o s e d , t h e r e e x i s t s scK such t h a t s b
k
=a.
Let V(a)
Let aEF be p o s i t i v e and l e t kEN.
1 + x , where XEM.
=
k
=
r.
Let b
=
=
g ; then p ( a t - g ) Since K is r o o t -
stgIk.(l
+
x)'Ik;
then
~3
Combining t h e s e r e s u l t s we see t h a t we have proved Conway's Theorem 24 C24, p . 401, namely t h e f o l l o w i n g . COROLLARY 3 .
Every p o s i t i v e a i n No h a s a u n i q u e n-th r o o t , f o r
every p o s i t i v e i n t e g e r n. T h e r e e x i s t s a p o s i t i v e r e g u l a r index gcOn, s u c h t h a t accNo.
PROOF.
t h e r e i s a n a t u r a l R-isomorphism
By T h e o r e m 6 . 5 5 , gR(((No,+))). root-closed.
f of
By C o r o l l a r y 2 , @ ( ( ( N o , + ) ) ) i s r o o t - c l o s e d ;
gNo o n t o t h u s gNo is
S i n c e F is an o r d e r e d f i e l d , c i s u n i q u e , e s t a b l i s h i n g t h e
C o r o l l a r y , and hence Conway's Theorem 24, i n t h e way t h a t h e s u g g e s t s . POWERS AND VALUES OF NEUMANN SERIES
7.34
F o r t h e moment l e t us drop t h e assumption t h a t t h e c h a r a c t e r i s t i c of K is n e c e s s a r i l y 0.
Let ( a n ) n L Obe a s e q u e n c e i n K , a n d c o n s i d e r t h e
f o l l o w i n g Neumann series:
(0)
~ ( x =)
In,, W
anxn , f o r each x c ~ .
By Neumann's Theorem (7.211, A(x) i s an element of 0, t h e v a l u a t i o n r i n g of K ( ( x ) ) .
Thus XEM + A(x)EO i s a w e l l - d e f i n e d mapping f r a n tl i n t o 0 ,
w h i c h we w i l l d e n o t e by A .
~ ' ( 1 anx ~ :n-~1 ) ,
(7.31:1,v).
we see t h a t (1)
xcH
+
A(X)EM + a,.
Assume t h a t a, Since
I,,:,
-
0.
We know t h a t A ( x ) =
anx n- 1 is an element i n 0 (7.301,
276
Norman L. A l l i n g
7.34
Now l e t x b e any non-zero element i n F.
Let S d e n o t e t h e s u p p o r t o f
x ; t h e n S i s a n o n - e m p t y , w e l l - o r d e r e d s u b s e t of G .
Let g o be t h e l e a s t
element of S.
(2)
n For a l l XEF*, t h e l e a s t element of s u p p ( x ) i s n - g o , f o r a l l nsN. C l e a r l y t h e s t a t w e n t b e f o r e t h e s e c o n d comma i n ( 2 ) is t r u e
PROOF.
for n
=
Let i t be t r u e f o r s a n e neN.
1.
tained i n supp(x)
+
W e know t h a t supp(xn+'
i s con-
n
supp(x ) ( 6 . 2 0 : 5 ) , whose l e a s t e l e m e n t i s ( n + l ) . g , .
By d e f i n i t i o n (6.201, x n + ' ( ( n
+
-
l).g,)
X"(n*g,)*X(g,) b 0.
0
L e t V be t h e Hahn v a l u a t i o n o n F ( 6 . 2 0 ) ; t h e n
(3)
n
V(x ) = ng,,
(i)
( i i ) For XEM
-
for all
nEZ.
[ O J , V(A(x))
such t h a t a
n
=
ng, = n - V ( x ) , where nEZ(L0) is minimal
f 0.
f , t h e K-monmorphism d e f i n e d i n Theorem
For each keN, A ( X ) k =
In:o
7.30, m a p s A(X) t o A ( x ) E F .
an,kXn, where t h e a
n ,k
are i n K .
(4)
( A ( x ) ) ~ is an element i n 0 of t h e f o l l o w i n g form:
(5)
I f a, f 0 , t h e n XEH
PROOF. an(xl
-
A(x,))
=
n
+
A(x)EH
+
Thus,
n an,kx
a, is a n i n j e c t i o n .
Let x, and x, be d i s t i n c t e l e m e n t s i n M; t h e n A ( x , )
- x,").
V ( x , ) fi
Assume ( i ) t h a t x, = 0 ; t h e n x , f 0. m;
t h u s A(x,) f A ( x , ) .
-
-
A(x,)
=
By ( 3 1 , V(A(x,)
Assume ( i i ) t h a t x, f 0 f x , ;
t h e n u s i n g ( 3 1 , we know t h a t V ( A ( x , ) - A ( x , ) ) = V(x, f 0 , we s e e t h a t V(A(x,)
.
A ( x , ) ) b -, and hence A ( x , )
-
xo). f
S i n c e x,
A(x,).
-
xo
7.35
27 7
Power s e r i e s : formal and hyper-convergent
7.35
COMPOSITION OF NEUMANN SERIES
Let
and (bn)neZ(20)
(am)mEN
be sequences i n K , and l e t t h e f o l l o w i n g
be d e f i n e d :
Let W denote t h e Hahn v a l u a t i o n of K ( ( X ) )
W(a)
=
0, f o r a l l
n
aEK*.
(6.20); t h e n W ( X )
= 1,
and
Note t h a t W ( A ( X ) ) 2 1 ; t h u s
) l n E Nis a s t r i c t l y i n c r e a s i n g sequence i n N .
(1)
(W(X
(2)
Assume, f o r a moment, t h a t bn
t h e n B ( X ) is a polynomial i n X .
=
>
0, for a l l n
k;
C l e a r l y t h e r e i s no d i f f i c u l t y i n d e f i n i n g
B ( A ( x ) ) , e s t a b l i s h i n g t h a t i t i s an element C ( X ) E K [ [ X ] ] ,
and t h a t B(A(x))
=
C ( x ) , f o r a l l XEM. Now l e t u s d r o p a s s u m p t i o n ( 2 ) . element C ( X )
ljmo cjXJ
=
i n K[[X]]
I s t h e r e any hope of d e f i n i n g a n
t h a t i s , i n some s e n s e , " B ( A ( X ) ) " ?
S i n c e ( 1 ) h o l d s , t h e o n l y powers of A ( X ) t h a t may c o n t a i n non-zero terms of t h e form c X J ,
f o r sane CEK, a r e t h e following: A ( X )
0
,
A(X)
1
,
...
,
A(X)J.
Thus we s e e t h a t
(3)
expanding
lnIobn(l,z,
t h e form c X J ,
LEMMA.
PROOF.
g i v e s r i s e t o an element C ( X )
For a l l x i n M, B ( A ( x ) )
Let x be i n M.
Recall t h a t f o r gEC InEN:
mn amX ) f o r m a l l y , and adding t o g e t h e r terms of
gEn-S) ( 7 . 2 2 ) .
-
was,
Thus
=
=
1." J=o
C.XJEK"XI]. J
C(x).
S = s u p p ( x ) i s a w e l l - o r d e r e d s u b s e t of .'C
m(g) = 0 , and f o r gcw.S, m(g) = 1 + max.
Norman L . A l l i n g
278
7.35
We have s e e n ( 7 . 2 2 ) t h a t s u p p ( A ( x ) ) , which we w i l l d e f i n e t o be T , i s
a s u b s e t of t h e w e l l - o r d e r e d s e t w - S of G'. a n d f o r gew*T, l e t n ( g ) = 1 + rnax.{neN: B(A(x))(g) =
)1 ;:
For g E ( G gEn.T).
- w*T),
l e t n(g) = 0,
Then, by d e f i n i t i o n ,
bn(A(xIn(g)) (7.22:2).
Fran (4) we see t h a t
On expanding t h e r i g h t hand s i d e of (51, a d d i n g a l l terms of t h e form c x J ( g ) , and r e c a l l i n g ( 3 1 , we see t h a t B(A(x)) = C ( x ) .
7.36
THE EXPONENTIAL SERIES AND THE LOGARITHMIC SERIES
Assume t h a t t h e c h a r a c t e r i s t i c of t h e f i e l d K is 0.
Let x b e i n M,
and c o n s i d e r t h e f o l l o w i n g d e f i n i t i o n :
By Neunann's Theoren we know t h a t e x p is w e l l - d e f i n e d on M a n d maps M
i n t o 0. We w i l l c a l l t h e Neumann series o n t h e r i g h t i n (0) t h e exponent i a l series. We w i l l c a l l exp t h e e x p o n e n t i a l f u n c t i o n . C l e a r l y
-(1)
t h e e x p o n e n t i a l f u n c t i o n maps M i n t o 1 + M.
PROOF.
Let x and y be i n M; t h e n , by ( i ' . 3 1 : 1 ) ,
exp(x)*exp(y) =
7.36
Power s e r i e s : f o r m a l a nd h y p e r-c o n v e rg e n t
A companion
27 9
series t o t h e exponential s e r i e s i s t h e logarithmic
s e r i e s , namely t h e f o l l o w i n g Neumann series: l e t x b e i n M and d e f i n e
we know t h a t t h e series o n t h e r i g h t of F u r t h e r , i t t e l l s u s t h a t l o g maps 1 + n i n t o M.
By Neuman n's Theorem (7.221,
(2) i s hyper-conve r ge nt.
For a l l XEM t h e f o l l o w i n g h o l d : (i) l o g ( e x p ( x ) )
THEOREM 1 . ( i i ) exp(log(1 maps 1
+
+
x))
=
1 + x.
Thus, ( i i i ) e x p maps M o n t o 1
+
=
x, and
H, a n d l o g
U onto M.
PROOF.
Using Lemma 7.35 we know t h a t t h e c o e f f i c i e n t s of t h e Neumann
series f o r l o g ( e x p ( x ) ) , and e x p ( l o g ( 1 + X I ) , expanded i n powers of x c a n be computed by c o n s u l t i n g t h e c o m p o s i t i o n s of t h e c o r r e s p o n d i n g f o r m a l power
series.
That t h e s e f o r m a l power series w i t h r a t i o n a l c o e f f i c i e n t s h a v e t h e
r e q u i r e d p r o p e r t i e s f o l l o w s f r o m t h e f a c t t h a t t h e same power s e r i e s , r e g a r d e d a s c o n v e r g e n t power s e r i e s o v e r t h e c o m p l e x numbers, h a v e t h e required properties. THEOREM 2 .
PROOF.
M , and exp(x) =
Thus t h e r e q u i r e d i d e n t i t i e s i n Q must h o l d .
For a l l u a nd v i n 1
Let l o g ( u ) =
=
+
x and l o g ( v )
u , a n d exp(y)
=
log(exp(x).exp(y)) = log(exp(x
v. +
H, l o g ( u * v ) =
=
log(u)
+
log(v).
By Theorem 1 , x a n d y a r e i n
y.
Using Theorem 0, we know t h a t l o g ( u . v ) y))
=
x
+
y
=
log(u)
+
log(v).
Norman L . A l l i n g
280
7.40
FORMAL POWER S E R I E S R I N G S I N A F I N I T E NUMBER OF VARIABLES
7.40
L e t K be any f i e l d and l e t ncN.
Let V E Z ( > O ) ~ , be thought of as a
Throughout t h i s Section v w i l l be i n Z ( 2 0 ) n .
multi-index,
d e f i n e d t o be
lif=l,v i ~ Z ( > O ) .
Z ( L 0 ) " i n t o K:
t h u s i f A is a K-valued c o e f f i c i e n t , A ( v , ,
Let s u m ( v ) b e
Let a K-valued c o e f f i c i e n t be a map
...
,vn)
A
fran
=
A(v)
i n K . f o r a l l v€Z(LO). By a formal power s e r i e s i n n v a r i a b l e s w i t h coef-
ficients
(O)
2 K,
"sum(v)=k
'k10
where X
w i l l be meant t h e following k i n d of expression:
=
(Xl,
A(vl,
... , X n )
... ,vn)X1 v1 ... * X n
V
")
=
i s a v e c t o r of n i n d e t e r m i n a t e s .
( F o r a more
p r e c i s e d e f i n i t i o n , d e f i n e t h e map A t o be t h e f o r m a l power s e r i e s i n q u e s t i o n , and proceed i n t h e obvious way.) Let A ( X ) be such an expression (0).
Let K[[X,,
... ,Xn]],
or simply K[[X]],
s i o n s of the k i n d given i n (0). K[[X,,
denote t h e s e t of a l l expres-
... , X n ] ]
and K"Xl1
w i l l be c a l l e d
t h e r i n g of f o r m a l power s e r i e s i n n v a r i a b l e s and c o e f f i c i e n t s 1_;
K.
Under formally defined o p e r a t i o n s , KCCXl] is an i n t e g r a l domain, a s well as
being a vector space over K . Assume t h a t A(v) C 0 .
Then, A(v)XV i s s a i d t o be of degree v and order
I f swn(v) = 0 then t h e monomial i n q u e s t i o n w i l l be i d e n t i f i e d
sum(v).
w i t h t h e c o n s t a n t A(v) i n K.
sum(v)
Let u s c a l l A(v)XV a monomial i n A ( X ) .
-
If sum(v) = 1 , then A(v)Xv i s l i n e a r .
2 , then A(v)Xv i s c a l l e d q u a d r a t i c , e t c .
If
Let A ( X ) C 0 , and l e t
its o r d e r , o r d ( A ( X ) ) , b e t h e l e a s t k, in Z ( L 0 ) such t h a t t h e r e e x i s t s a non-zero monomial A(v,)Xvo
i n A ( X ) with sum(v,)
order k, if and only i f A ( X ) =
-
0, and sum(vo) = k,.
mEZ(LO),
+
= m,
and B(X) i n KCCXII,
- --
= k,.
C l e a r l y A ( X ) is of
(Isum(v)=k A(v)x"),
-
with sane A ( v , ) c
Let ord(0) be d e P i n e d t o be -, w i t h > m, for a l l and + n = n + -, f o r a l l nEZ(L0). Given A ( X ) ,
Power series : formal and hyper-convergent
7.40
(1)
(i)
ord(A(X).B(X))
(ii)
ord(A(X) + B ( X ) ) I m i n . ( o r d ( A ( X ) ) , o r d ( B ( X ) ) ) ,
=
ord(A(X))
+
28 1
ord(B(X)),
e q u a l i t y o c c u r r i n g i f o r d ( A ( X ) ) C o r d ( B ( X ) ) , and ord(r)
(iii)
Let M
=
=
0 , f o r a l l reK*.
>
01.
C l e a r l y M i s t h e maximal i d e a l
F u r t h e r , M is t h e i d e a l g e n e r a t e d by X 1 ,
of t h e r i n g K [ [ X ] ] . K[
ord(A(X))
{A(X)EK[[X]]:
... , Xn
in
[ X I 1. Although t h e r e i s no r e a s o n , a - p r i o r i ,
t o t h i n k t h a t we c a n
p v e v a l u a t e f va formal power series A ( X ) , g i v e n as i n (01, a t any o t h e r p o i n t we can d e f i n e
but 0 i n K n
OEK",
evaluated
t o be t h e c o n s t a n t term A ( 0 ) of
'sum(v)=k A(v)Xv).
7.41
NEUMANN SERIES I N A FINITE NUMBER OF VARIABLES
L e t K be any f i e l d , l e t F = K ( ( C ) ) ( r e s p . CK((G))), l e t M be t h e
maximal i d e a l of t h e v a l u a t i o n r i n g 0 of F .
Let nEN, l e t x
=
(xl,
...
, x n ) ~ Mn ,
and l e t S
j
=
s u p p ( x j ) ; then S . is J
a well-ordered s u b s e t of G+ ( r e s p . i s a w e l l - o r d e r e d s u b s e t of C + of power less than
LO
5
1.
L e t S be t h e union of (Sj)lsjsn.
Although a n a b u s e of
n o t a t i o n , s i n c e x is a v e c t o r of elements i n F and hence i s n o t a n e l e m e n t of F , l e t us d e f i n e (0)
s u p p ( x ) t o be S, t h e union of s u p p ( x , ) ,
By Lemma 2 of S e c t i o n 7.21
, we
... , s u p p ( x n ) .
know t h a t S is a w e l l - o r d e r e d s u b s e t
of C+ ( r e s p . i s a w e l l - o r d e r e d s u b s e t of Gt of power l e s s t h a n w 1. 5 n o t e d i n Neumann's Lemma ( 7 . 2 0 ) ,
As w a s
t h e subsemi-group w * S of C g e n e r a t e d by S
282
Norman L . A l l i n g
7.41
is a w e l l - o r d e r e d s u b s e t of Ct ( r e s p . i s a w e l l - o r d e r e d s u b s e t o f
G+
of
power l e s s t h a n w 1.
5
For a l l veZ(LO)", s u p p ( x
(1)
PROOF. vl
t
... + vn V
s u p p ( x ). hold:
Let v
(v
1'
is a s u b s e t of s u m ( v ) - s u p p ( x ) .
... , v n ) ;
t h e n sum(v) h a s been d e f i n e d t o be
Then t h e r e must exist g , ,
... + g n , and
A s we h a v e s e e n (6.201,
V
-
...
.
Let g b e i n
... , g n i n C s u c h t h a t
the following
( 7 . 4 0 ) . By d e f i n i t i o n , x
(1) g = g , +
... , n .
=
V
V
(ii) g
=
j
x1
1
f o r each j = 1 ,
J
s u p p ( x '1
.i
is c o n t a i n e d i n v j * s u p p ( x 1,
J
.i
j
j
'n n
i s i n s u p p ( x ' 1,
whereby O.supp(x ) is meant {O] ( 7 . 2 0 ) ; t h u s e a c h g i n t u r n c o n t a i n e d i n v 0s.
o x
is i n v V S
.lj '
A s a r e s u l t , g is i n v l = S +
...
+
which i s
v n - S , which
is d e f i n e d t o be s u m ( v ) * S (7.20).
we know t h a t , f o r a l l gsC, InsN: g c ( n * S ) l is f i n i t e . A s u s u a l l e t m(g) = 0 , for a l l g s S - w a s ; a n d f o r e a c h g e w * S l e t m ( g ) b e d e f i n e d t o be 1 + max (neN: g s ( n * S ) ] ( 7 . 2 2 ) . Using ( 1 ) we c a n es t a b l i s h t h e f o l l o w i ng By Neumann's Lemma (7.201,
.
(2)
For a l l v ~ Z ( t 0 ) " , w i t h sum(v
PROOF.
Since k
>
m ( g ) , g is n o t i n koS.
s u b s e t of k - S ; t h u s g is n o t i n s u p p ( x v ) .
Let A ( X )
-
a
k -0 ( 'Sun (V ) -k
By ( l ) , s u p p ( x v ) i s a V
Hence, x ( g )
A(v)Xv) be i n
-
0.
KCCXII ( 7 . 4 0 ) .
0
28 3
Power series : f o r m a l and hyper-convergent
7.41
C l e a r l y supp(A(x)
-
A ( 0 ) ) i s a s u b s e t of w.S, w h i c h we know t o b e a
w e l l - o r d e r e d s u b s e t o f G + ( r e s p . a well-ordered s u b s e t of G + power l e s s t h a n w ) ; t h u s A(x) is i n F.
Further, since (2) holds,
5
where we i n t e r p r e t t h e sum of any number of 0 ' s i n ( 4 ) t o be 0.
From t h i s
we see t h a t we have proved t h e f o l l o w i n g .
Let A ( X ) and B ( X ) b e e l e m e n t s of K[[X]]
(7.401, a n d l e t
PEK;
then t h e
following hold:
J u s t a s i n S e c t i o n 7.22, i t i s well t o keep i n mind t h e f a c t t h a t t h e
sum i n ( 3 ) i s always a f i n i t e sum. proved t h e f 011owi ng THEOREM.
.
A(X)EK[CX~, ,
..,Xn]]
Let t h e image of K[[X,
d e n o t e d by K[[x 1
A s a r e s u l t of (5) o n e see t h a t we have
,...,xn]],
+
A(x)EF i s a K - l i n e a r homomorphism.
,...,X n ] ]
( 7 . 4 0 ) u n d e r t h i s homomorphism be
or s i m p l y by K[[x]],
f o r short.
Norman L . A l l i n g
284 7.50
7.50
TRIGONOMETRIC FUNCTIONS
Let K be a f i e l d of c h a r a c t e r i s t i c 0 , l e t F
=
K((G))
( r e s p . CK((G))),
and l e t H be t h e maximal i d e a l of t h e v a l u a t i o n r i n g 0 of F .
Let x be i n
M.
We c a n a l s o d e f i n e g e n e r a l i z a t i o n s of t h e c l a s s i c t r i g o n o m e t r i c f u n c t i o n s , i n t h i s c o n t e x t , as f o l l o w s .
Using Neumann's Lemma ( 7 . 2 0 ) , we see t h a t c o s ( x ) and s i n ( x ) a r e w e l l d e f i n e d elements i n F. (1)
For a l l x and y i n M t h e f o l l o w i n g hold:
(i)
cos(x + y)
=
cos(x)cos(y)
-
sin(x)sin(y),
(ii)
s i n ( x + y)
=
sin(x)cos(y)
+
c o s ( x ) s i n ( y ) , and
(iii) cos2(x)
PROOF.
+
sinz(x)
= 1.
S i n c e s i m i l a r r e s u l t s h o l d f o r t h e c l a s s i c a l s i n e and c o s i n e
f u n c t i o n s over t h e complex numbers, t h e y must h o l d as f o r m a l power s e r i e s i n t w o v a r i a b l e s w i t h r a t i o n a l c o e f f i c i e n t s . Using Theorem 7.41, we see t h a t t h e s e o b s e r v a t i o n s s u f f i c e t o prove ( 1 ) .
o
Note t h a t f o r a l l XEM, (2)
(ii)
c o s ( x ) is i n 1 + H, s i n ( x ) is i n M , and
(iii)
s i n ( x ) = 0 i f and o n l y i f x
(i)
PROOF.
= 0.
( i ) and ( i i ) f o l l o w from (7.34:1), and ( i i i ) f r a n (7.30).
Power series : formal and hyper-convergent
7.50
285
We can d e f i n e o t h e r t r i g o n o m e t r i c f u n c t i o n s a s f o l l o w s :
(3)
tan(x)
=
s i n ( x ) / c o s ( x ) , f o r a l l ; XEH;
cot(x) s ec(x) (iii) (iv) csc(x)
= =
c o s ( x ) / s i n ( x ) , f o r a l l : XEH*; l / c o s ( x ) , f o r a l l XEM;; and
=
l / s i n ( x ) , f o r a l l XEM?.
(i) (ii)
C l e a r l y t h e c o s i n e a n d t h e s e c a n t f u n c t i o n s a r e e v e n , whereas t h e
s i n e , t h e t a n g e n t , t h e c o t a n g e n t , a n d thje c o s e c a n t f u n c t i o n s a r e o d d functions.
C l e a r l y t h e u s u a l addition formula f o r t h e tangent, t h e half
angle formula,
...
, hold f o r t h e s e f u n c t i o n s .
F o r a l l X E M we c a n a l s o
define the following functions:
(5)
(1 -3..
.. (2n -
/ ( 2.4..
.. (2111) ( 2 n + l ) .
( i i)
arcsin(x)
(if
s i n and a r c s i n map M o n t o M, and are i n v e r s e s t o o n e a n o t h e r ,
=
1))
9
( i i ) t a n and a r c t a n map M o n t o M , and a r e i n v e r s e s t o one a n o t h e r .
PROOF. 7.51
The argument u s e d t o prove Theoren 1 , of (7.361, s u f f i c e s . ELEMENTARY FUNCTIONS OVER REAL A N D COMPLEX CONSTANT FIELDS
Assume now t h a t K gC((C))).
0
- R.
Let u s i d e n t i f y F ( i ) w i t h C ( ( C ) ) ( r e s p .
Let W be t h e e x t e n s i o n t o F ( i ) of t h e v a l u a t i o n V of F , d e f i n e d
i n (7.1 1 :6). Consider t h e f o l l o w i n g c l a s s i c a l e n t i r e f u n c t i o n s : t h e e x p o n e n t i a l f u n c t i o n , zcC
Z
e cC*, t h e c o s i n e f u n c t i o n , and s i n e f u n c t i o n . Let O c x be t h e v a l u a t i o n r i n g of W a n d l e t Flex be its m a x i m a l i d e a l +
( d e s c r i b e d i n a n o t h e r way i n ( 7 . 1 1 : 8 ) ) . (0)
(1)
C l e a r l y we have t h e f o l l o w i n g :
For wgOCx t h e r e e x i s t unique CEC and Zencx s u c h t h a t w
( i i ) For ucO t h e r e e xist unique rcR and x€Hcx such t h a t u
-
=
c
+
r
+
x.
z.
7.51
Norman L. Alling
286
Let us extend the exponential function from C to using (O,i), let Exp(w)
Exp(c
=
+ z)
=
ocx as
follows:
ec-exp(z) (7.36), for a l l weOcx.
Then, using classical results, and those of Section 7.36, one can see that (1)
(i)
Exp maps Ocx onto C**(l
(ii)
for all w, and w 1 in Ocx, Exp(w,
(iii)
~ x pis a one-to-one mapping of
(iv)
for a l l W E O ~ and ~ , for all neZ, Exp(w + 2nin)
(v)
Exp(w)
1
=
+
Mcx);
if and only if w
=
w,)
+
o
=
Exp(w,).Exp(w,);
onto R + - ( I + MI: =
Exp(w); and
2nin, for some ncZ.
Given WEO let w = c + z (O,i), and define an extension of the cx’ cosine and sine as follows: let (2)
(i)
(ii)
= =
Cos(c Sin(c
+ z) = + z) =
cos(c)cos(z) sin(c)cos(z)
- sin(c)sin(z), and let +
cos(c)sin(z).
extended t o Ocx, these functions have the following properties:
As
(3)
Cos(w) sin(w)
Cos(w,
(ii)
Sin(w, + w,) = Sin(w,)Cos(w,) + Cos(w,)Sin(w,); and Cos2(w) + Sin2(w) = 1, for all w o , w l , and w in Ocx.
(iii)
PROOF.
w,)
+
=
~os(w,)Cos(w,)
- Sin(w,)Sin(w,);
(i)
COS(W, +
(i),
W,) = cOS(C, + C, + Zo + 2 , )
-
cos(c,
+
c,)cos(z,
+ z,)
- sin(c, -
( c o s ~ c , ~ c o s ~-c sin(c,)sin(c, ,~ ))(cos(z, (sin(c,)cos(c,)
+
+
c,)sin(z,
+ z,)
)cos(z,) - sin(z,)sin(z.,
cos(c,)sin(c,))(sin(z,)cos(z,)
+
1)
-
cos(z,)sin(z,))
cos(c,)cos(c,)cos~z,~co~~z,) - c o s ~ c , ~ c o s ~ c , ~ s i n ~ z , ~ s-i n ~ z , ~
sin(c, )sin(c, )cos(z, )cos(z,)
+
sin(c, )sin(c, )sin(z, )sin(z, 1 -
- sin~c,~cos~c,)cos~z,)sin~z, 1cos(c,)sin(c, )sin(z,)cos(z,) - cos(c,)sin(c, )cos(z,)sin(z, 1
sin(c,)cos(c, )sin(z,)cos(z,)
-
Power series : formal and hyper-convergent
7.51
)COS(Z,
COS(C,)COS(Z,)COS(C,
287
1 - cos(c,)cosfz,)sin(c,)sin(z,)
sin(c, )sin(z, )cos(c, )cos(z,
+
sin(c,)sin(z, )sin(c, )sin(z,)
- sin(c,)cos(z,)cos(c,)sin(z,) )sin(c, )cos(z, 1 - cos(c,)sin(z,)cos(c, )sin(z, ) -
sin(c,)cos(z,)sin(c,)cos(z,) cos(c, )sin(z,
( c o s ~ ~ , ~ c o s- ~s zi n, (~c , ) s i n ( z , ) ) ( c o s ( c , ) c o s ( z , ) (sin(c,)cos(z,)
+
-
-
sin(c,)sin(z,))
-
cos(c,)sin(z,))(sin(c, )cos(z,) + cos(c,)sin(z,))
cos(c,
+
z,)cos(c,
+
z l ) - sin(c,
+
z,)sin(c,
+
z,)
-
Cos(w,)Cos(w,)
-
Sin(w,)Sin(w,);
establishing ( i ) . For a more conceptual p r o o f , n o t e t h a t ( i ) c o u l d be deduced f r o m t h e f a c t t h a t t h e a d d i t i o n formulas f o r t h e c o s i n e and t h e s i n e f u n c t i o n s o v e r C are e q u i v a l e n t t o similar s t a t e m e n t s a b o u t formal power s e r i e s w i t h
rational coefficients, i n several variables.
These s t a t e m e n t s , a f t e r
s u i t a b l e s u b s t i t u t i o n s and a p p e a l t o r e s u l t s proved i n t h i s C h a p t e r , i m p l y ( i ) . S i m i l a r p r o o f s may be g i v e n f o r ( i i ) and ( i i i ) .
(4)
For a l l zcMCX, E x p ( i z ) = Cos(z) + i S i n ( z ) .
R e c a l l i n g t h e f a c t t h a t (7.22:2)
PROOF.
Exp(iz) =
m
n ( i z ) /n! =
(-1)"(2)~"/(2n)! +
(5)
lnIo( i z l 2 " / ( 2 n ) !
&Io ( i ~ ) * ~ + l / ( 2 n + l ) ! =
i*lnIo( - 1 ) ~ ( 2 ) ~ ~ + ~ / ( 2 n =+ lc )o !s ( z )
For all W E O ~ ~ Exp(iw) ,
PROOF.
+
i s a f i n i t e sum, we s e e t h a t
-
+
iSin(z).
Cos(w) + i S i n ( w ) .
Exp(iw) = E x p ( i c + i z )
-
eiC*Exp(iz)
I
(cos(ic) + isin(ic))*(cos(iz)+ isin(iz)) I
( c o s ( ic ) c o s ( iz)
- s i n (ic ) s i n ( iz))
+ i ( s i n ( ic)cos ( iz ) + cos (ic ) s i n ( iz 1) I
cos(iw)
+
iSin(iw).
o
o
288 7.60
DERIVATIVES OF FORMAL POWER SERIES
L e t K be any f i e l d , l e t F = K ( ( G ) )
( r e s p . gK((G))),
. ..
n ,xn)€M
.
and l e t M be t h e
Let n be i n N and l e t x =
maximal i d e a l of t h e v a l u a t i o n r i n g 0 of F.
(x,,
7.60
Norman L. A l l i n g
and l e t A(x) be i n K[[x]].
Let A ( X ) be i n K[[X]],
L e t us
S e c t i o n s 7.40 and 7.41 f o r n o t a t i o n a l conventions and d e f i n i t i o n s . ) d e f i n e t h e formal p a r t i a l d e r i v a t i v e , a A ( X ) / a X i ,
of A ( X ) t o be
V
IkmO (Isum(v)=k v 1. A ( v l ,
(See
... ,vn)X1 1 ... -Xi
v
i
- 1 *
...
V
").
o x n
C l e a r l y a l l t h e f a m i l i a r p r o p e r t i e s of p a r t i a l d e r i v a t i v e s h o l d f o r formal p a r t i a l d e r i v a t i v e s : e . g . , partial derivatives,
... .
K - l i n e a r i t y , c o m r n u t a t i v e l y o f mixed
F u r t h e r , T a y l o r s e r i e s expansions of formal
power series e x i s t and have t h e f a m i l i a r p r o p e r t i e s .
Let u s c o n s i d e r t h e case i n which n l e t dA(X)/dX = k- 1 Ikml ka)(x =
.
(A(k)(x))t,
lkI, kakXk- 1 .
-
Let A(X)
1.
Assume now t h a t XEH.
f o r a l l kcZ(2O), A(k)(0)
=
Note t h a t A(0)
=
lkm akXk, O
and
Let dA(x)/dx =
Further, l e t
T h i s w i l l a l s o be denoted by A ' ( x ) .
f o r all keZ(L0).
=
a o , A'(0)
=
A
(k+l)
a l , and t h a t
k!ak; t h u s we have t h e f o l l o w i n g :
lkIo (A(k)(0)/k!)Xk,
and A(x) =
lkZO
( A ( k ) ( 0 ) / k ! ) xk
.
(2)
A(X)
(3)
D i f f e r e n t i a t i o n commutes w i t h t h e K - l i n e a r s u b s t i t u t i o n homomorphism X
=
=
(X,,
.. . , X n )
+
x
=
(x,,
.. .
, xn) (7.41).
Power series: formal and hyper-convergent
7.61 7.61
28 9
INFINITESIMAL EXTENSIONS OF A N A L Y T I C FUNCTIONS, I
L e t F = C((C)) ( r e s p . gC((G))) and l e t U be a non-empty open s u b s e t Let f be an a n a l y t i c f u n c t i o n on U.
of t h e complex p l a n e C .
For e a c h C E U ,
f c a n , of c o u r s e , be w r i t t e n as f o l l o w s :
-
f o r a l l ~ E Ca n d 1s l e t z be i n Mcx.
cI
-
x
+
x
-
x , ) L min.(V(x,
-
t h e n h = V(x,
x ) , V(x
-
-
x,)
=
x l ) } L min.{g,g}
g ; which i s
=
o
absurd.
Addition i n F is c o n t i n u o u s , i n t h e m o d i f i e d v a l u a t i o n
LEMMA 1 . topology
. Let x, a n d y , € F ,
PROOF.
Then V ( ( x
y~B(y,,Lg). min.{V(x
=
S u p p o s e , f o r a mo me n t , t h a t t h e r e i s a
h.
p o i n t x i n B(x,,Lg) a nd i n B ( x,,Lg) ; V(x,
- x,)
a n d x , be d i s t i n c t p o i n t s i n F , a n d l e t V(x,
Let gEG s u c h t h a t g
-
x,),
V(y
-
+
Y)
a n d l e t geC.
- (x,
+
Let x e B ( x , , L g )
y o ) ) = V((x
y o ) ) ] t g; showing t h a t x
+
-
x,)
YEB(X,
+
(Y
+
and let
-
yo)) L
y,,Lg).
M u l t i p l i c a t i o n i n F is continuous, i n t h e modified valua-
LEMMA 2 .
t i o n t o p o l o g y on F.
Let x, and y,cF,
PROOF.
l e t gEC, a n d l e t hEC s u c h t h a t h
(2)
Let YEF be s u c h t h a t V(y
-
yo) L g
(3)
L e t XEF be s u c h t h a t V(x
-
x,) L max.{g
-
xy,
Then V(xy v((x
-
x,)y,)}
-
x,y,)
= V(xy
= min.IV(x)
+
V(y
-
+
-
>
V (x , ).
V(x,).
xy,
y o ) , V(x
-
-
-
V(Y,), h l .
x,~,)
L min.{v(x(y
x,)
V(y,)l.
+
Lemma 2 of S e c t i o n 7.62, ( 2 ) a n d (3) a g a i n , we see t h a t V ( x y
-
Y,)),
Applying
-
(31,
x o y o ) 2 g.
0
LEMMA
3.
t o p o l o g y on F.
Division i n F is continuous i n t h e m o d i f i e d valuation
Norman L . A l l i n g
294
Let x,EF*, and l e t gEG, and l e t hEG s u c h t h a t h
PROOF.
Let XEF* s u c h t h a t V(x
(4)
7.64
-
Then V ( l / x
l/x,,)
=
-
x , ) L min.{g
V((x, - x)/xx,)
Lemma 2 of S e c t i o n ( 7 . 6 2 1 , V( / x
( 4 ) , we see t h a t V ( l / x
-
-
l / x o ) L g.
l/x,
V(x,).
2V(x,), h ) .
+
=
>
V(x, - X ) - V(X) - V ( X , ) .
-
V(x,
-
-
x)
2V(x,).
By
Applying
0
Combining t h e s e r e s u l t s we see t h a t we have proved t h e f o l l o w i n g .
F is a t o p o l o g i c a l f i e l d , i n t h e modified v a l u a t i o n
THEOREM 0 .
topology on F .
Let F be a n o r d e r e d f i e l d , l e t V be t h e o r d e r - v a l u a t i o n on F (6.00) and l e t G be t h e v a l u e group of V. THEOREM 1 .
The i n t e r v a l t o p o l o g y o n F a n d t h e m o d i f i e d v a l u a t i o n
topology on F a r e i d e n t i c a l .
PROOF.
Let gEG.
S i n c e B(0,Lg) (7.62) i s an o p e n i n t e r v a l i n F , we
s e e t h a t i t i s a n open s e t i n t h e i n t e r v a l t o p o l o g y .
Let I be a non-empty
S i n. c e I i s an open i n t e r v a l i n F , t h e r e e x i s t i n t e r v a l i n F , and l e t ~ ~ € 1
x , a n d x , i n I , f o r w h i c h x, < x1 V(x,
- x,).
Let h
>
max.{g,,
< x,.
Define g o
PROOF.
-
x , ) and g, =
L e t X,EF and l e t gEG.
B(x,,Lg)
Clearly t h e u n i o n of ( ( x o
-
Hence I
o
i s a c-open s u b s e t of F.
nu-g, x,
+
where u - ~i s d e f i n e d t o be an element i n F such t h a t g.
V(x,
g 2 } ; t h e n B(x,,Lh) is a s u b s e t of I .
is a n open s e t i n t h e i n t e r v a l t o p o l o g y o n F. LEMMA 4.
=
nu -g ) ) n E N is Bfx,,Lg), U J - ~
>
0 and V ( U J - ~ ) =
0
Let u s d e f i n e t h e c-topology g e n e r a t e d by [ B ( x , , > g ) : gEG, X,EFI t o be t h e m o d i f i e d c-topology o n F .
Each s e t i n t h i s s e t of s e t s w i l l be c a l l e d
a modified C ws u b s e t of F.
As a consequence of Lemma 4, we see t h a t we
have proved t h e f o l l o w i n g .
7.64
Power series : formal and hyper-convergent
29 5
Each s e t i n t h e m o d i f i e d c - t o p o l o g y o n F i s i n t h e 5-
THEOREM 2.
t o p o l o g y on F.
(5)
For grC there i s no l e a s t element YEF s u c h t h a t B(0,Bg)
(i)
( i i ) For grG t h e r e i s no g r e a t e s t element
( i i i ) For a
< [y].
z i n B(0,Lg).
< bEF, no x o c F and no gcC e x i s t f o r ( a , b )
=
B ( x o , h g ) ; and
t h e r e is no X,EF and no gEG s u c h t h a t [ a , b ] = B ( x , , L g ) .
(iv)
S i n c e B(0,Lg) is a non-zero convex s u b g r o u p o f ( F , + ) , t h e r e
PROOF.
i s no l e a s t element ycF s u c h t h a t B(O,2g)
< { y ] , and no g r e a t e s t e l e m e n t
z
i n B(0,Lg); p r o v i n g ( i ) and ( i i ) . Concerning ( i i i ) , s u p p o s e f o r a moment t h a t s u c h x,
and g e x i s t ; t h e n (a
-
xo,b
-
x,) = B(O,Lg), which v i o l a t e s
( i ) . Concerning ( i v ) , s u p p o s e f o r a moment t h a t s u c h xo and g e x i s t ; t h e n
[a
-
x,,b
-
x,]
=
B(O,hg), which v i o l a t e s ( i i ) .
Let a
EXAMPLE 1 .
O)"-l,
there are only a
7.71
Power series: formal and hyper-convergent
29 9
f i n i t e number of terms i n ( * ) of degree u ( 7 . 4 0 ) ( c f . ( 7 . 7 0 ) . quence we s e e t h a t ( * ) i s a wel.1-defined formal power series.
As a
conse-
( C f . Section
7.35.) PROOF.
Note t h a t A(0,
-F(X)/A(O,
... , 0,
(l)
=
1).
... , 0,
1 ) = ( a F / a X n ) ( 0 ) f 0.
Let C ( X ) =
Then, V
- 'n
+
1 ... .x n ... , (0, . . , 0, 1 ) .
lkml l s u m ( i ) = k B(vl,
where t h e prime i n d i c a t e s t h a t v A
W e m u s t show t h a t t h e r e e x i s t s a unique g ( X l , K[[X,,
... , X n _ , ] ] ,
t
G l Llln(v)=k
B(vl,
... , vn)X1
'
... , X n e l )
in
V .. 'xn-l n- 1 *(g(X , ... , X n - 1 ) )
V
1.
0,
Let us examine t h e l i n e a r terms of g.
Since v A (0,
n
such t h a t t h e f o l l o w i n g holds:
where t h e primes i n d i c a t e t h a t v b
k.
V
Vn)X1
... , 0,
... , 0,
'n
,
1)
These o c c u r o n l y f o r m = 1
=
1 ) i n ( 2 1 , t h e l i n e a r terms i n g do n o t i n v o l v e
any of t h e c o e f f i c i e n t s of g i n t h e s e c o n d e x p r e s s i o n i n ( 2 ) ; h e n c e i f sum(u) = 1 , C(u) i s a polynomial i n t h e B ( v ) s , w i t h c o e f f i c i e n t s i n 2.
Having d e a l t w i t h t h e l i n e a r terms i n ( 2 ) above, l e t U O Z ( L O ) ~ - ~ .w i t h sum(u) = m
>
1 ; t h e n C ( u ) X u i s a n o n - l i n e a r term i n t h e f i r s t e x p r e s s i o n i n
(2), which m u s t e q u a l t h e sum of
second expression i n (2). k , and assume t h a t v b ( 0 ,
terms, g i v e n by v a r i o u s V O Z ( L O ) " i n t h e
Let VEZ(LO)" be s u c h a n element.
... , 0,
1).
Let sum(v)
I f , f o r a l l s u c h v , vn
-
=
0, then
t h e r e a r e n o c o e f f i c i e n t s C(u), w i t h sum(u) = m, i n t h e second e x p r e s s i o n in ( 2 ) . Thus, C(u) is a polynomial i n t h e B ( v ) s , w i t h c o e f f i c i e n t s i n Z.
7.71
Norman L . A l l i n g
300
Our c o n c e r n is w i t h
Assume now t h a t s u c h v e x i s t f o r which vn b 0 .
Let psZ(LO)"-'
t h e c o e f f i c i e n t s , C(ul) of s u c h terms.
... , n
for a l l j
=
qcZ(L)"-l
and u
1,
=
p
-
Then p 5
1.
u in Z ( L 0 )
n- 1
.
such t h a t p j
Let q = u
-
=
v
j'
p; t h u s ,
Then we see t h a t t h e f o l l o w i n g i s a term i n Xu i n
+ q.
t h e second e x p r e s s i o n i n ( 2 ) :
(3)
... , vn)X1P1 ... ... , qhEZ(20)n- 1 , surn(qj
B(vl, ql,
for all j and w i t h p . = v J j' Since p definition
(4)
Pn- 1C ( q l ) *
axn-
+
q
lj=lq j
sum(qi)
... , 0,
F u r t h e r , s i n c e , by
0 ; hence p f 0 , and t h u s s u m ( p )
sum(u)
-
sum(p)
t h a t vn
>
1.
sum(qi)
0.
... , n =
Since each sum(q.) 2 1 and s i n c e v n ( = h ) J sum(qh)
=
0.
Assume
- 11. such
Clearly sum(qi) 5 s u m ( q ) =
sum(u); e s t a b l i s h i n g ( 4 1 , i n case v n
+
>
1 ) ( ( 1 ) a n d (211, and s i n c e , by
1 , t h e r e must e x i s t a j c { l ,
>
...
vn'
... , h.
that v. J
L a s t l y assume 1 , we s e e t h a t
sum(q) 5 sum(u); e s t a b l i s h i n g ( 4 ) .
Using ( 4 ) and t h e e a r l i e r r e s u l t s o b t a i n e d i n t h i s S e c t i o n , we s e e that
(5)
C(u) i s a polynomial w i t h c o e f f i c i e n t s i n Z i n t h e
B(V)'S
C(ul)s, f o r which sum(ul) < sum(u). T h u s , by i n d u c t i o n on s u m ( u ) , t h e Theorem has been proved.
and t h e
Power series: formal and hyper-convergent
7.71
301
The development i n t h i s S e c t i o n i s q u i t e c l o s e
BIBLIOGRAPHIC NOTE,
t o o n e g i v e n b y Gunning a n d R o s s i [40, p p . 14-151, s t r i p p e d of c o u r s e of all analysis.
7.72
THE FORMAL IMPLICIT MAPPING LEMMA
Let K be a f i e l d .
Let k and n be i n N , w i t h k
... , f n E K [ [ X 1 , ... , X n ] l a l l j = k + 1 , ... , n; and
Let f k + l ,
LEMMA.
for
n.
K[[XIl,
(i)
f.(O) J
(ii)
( a f . / a X i ) ( 0 ) = 6 : . f o r a l l i and j = k + 1 , , n. J , Xk) i n K[[Xl, Then t h e r e e x i s t unique g ( X
such t h a t
...
all
j = k
( i i i ) g.(O)
J
(iv)
= 0,
=
0.
t h e n caA
>
>
0.
0.
Let a ^ be t h e l e a s t e l e m e n t
Let b ^ b e t h e l e a s t e l e m e n t i n
S i n c e G i s t h e o r d e r e d d i r e c t sum of A a n d B , a n d
31 4
Norman L . A l l i n g
since j ( x , )
c
=
a,b
t a + b ,a ^
~ > 0 , ~j ( x , ), > 0.~
Since c
7.81
+
bA
7.80
i s t h e l e a s t element of s u p p ( j ( x , 1).
~
DECOMPOSITION OF CERTAIN POWER SERIES FIELDS
Let T be a non-empty ordered s e t , a n d l e t (GtltET be a f a m i l y of non-
z e r o , Archimedean o r d e r e d g r o u p s . Let H be t h e f u l l Hahn g r o u p g e n e r a t e d by ( G t ) t r T ( 1 . 6 3 1 , a n d l e t C = H ( r e s p . E H ) ( 1 . 6 3 : l , i i i ) . L e t B be a convex subgroup of G .
Let v be t h e Hahn v a l u a t i o n o f C ( 1 . 6 3 ) ;
then v(B)
i s a n u p p e r - s a t u r a t e d s u b s e t TB# (1.30) of t h e e x t e n d e d v a l u e s e t T# of v
(1.61).
Let TAN = ( t s T C : ( t ] < TB#]; t h e n i t is a l o w e r - s a t u r a t e d s u b s e t
of T I .
Let A
=
(hc5H: s u p p ( a ) is a s u b s e t of TA%l. Then, as we saw i n
S e c t i o n 1.65, C is t h e o r d e r e d d i r e c t sum of A and B (1.60). Let K be a f i e l d . (resp. EK((C))).
( r e s p . f,F,((A))).
Let F,
-
Let F be t h e formal power s e r i e s f i e l d K ( ( G ) )
K((B))
isanorphism j of F , o n t o F.
t i o n of -
( r e s p . CK((B))),
and l e t F,
=
F,((A))
I n S e c t i o n 7.80 we saw t h a t there e x i s t s a n a t u r a l KT h i s w i l l be c a l l e d a power series d e c o m p o s i -
F.
What a decomposition a c c o m p l i s h e s is t h a t i t a l l o w s u s t o w r i t e F as
a f i e l d of f o r m a l power s e r i e s o v e r a f i e l d of f o r m a l p o s e r series. 7.82
THE M A I N THEOREM
B e c a u s e o f t h e c a n o n i c a l f o r m a l power series s t r u c t u r e of ENo and
ECx, we w i l l be able, w i t h o u t m o d i f i c a t i o n , t o a p p l y t h e Main Theorem t o these fields. I n o r d e r t o p r o v e t h e Theorem f o r a wider r a n g e of examples, l e t u s proceed as f o l l o w s . (0)
(i)
Let E be a p o s i t i v e r e g u l a r i n d e x ,
(ii)
l e t T be an ordered s e t whose l o w e r c h a r a c t e r is a t l e a s t
(iii) let
w
E' be a f a m i l y of non-zero Archimedean o r d e r e d g r o u p s ,
7 .a2
Power series : formal and hyper-convergent l e t H b e t h e f u l l Hahn g r o u p o f ( G t I t E T ,
(iv) (v)
l e t K be a f i e l d ,
(vi)
a n d l e t L = SK(
(See, e.g.,
and l e t G = gH,
f o r a r e f e r e n c e t o t h e meaning of ( i ) , ( 1 . 3 0 )
(1.30:3
f o r ( i i ) , ( 1 . 6 0 ) f o r ( i i i ) , ( 1 . 6 3 ) f o r ( i v ) , and ( 6 . 2 2 ) for t h e n o t a t i o n of (7.401,
...
1
IkmO l s u m ( v ) = k C(v).X1
=
vi).)
Recall
l e t neN, and l e t V
F(X)
315
L e t hcZ(>O) a n d l e t u s d e f i n e F(X)
"n a x n
h t o be
... , X n l l .
be i n LCEX,,
lkIhIsum(v)=k C(v) *xv.
S i n c e e a c h C(v) is i n L, C(v) may be w r i t t e n as f o l l o w s :
c ( v ) - t g ( a ' V ) , with c ~ ( v ) E K ,g ( a , v ) e G , and h ( a ) a
Iu
B(IIhI;
then P ( I l h is a
Power series: f o r m a l and hyper-convergent
7.04
Assume t h a t 111
LEMMA.
0:
Norman L. A l l i n g
322
k -n In=, w /n!
(I )
+ w
-w
+
Thus, V(ea - Sk) Further, e
(Sk)osk.
., .
+
terms of larger v a l u e .
k + 1 , f o r a l l ksN.
a
7.90
Hence ea i s a pseudo-limit of
is t h e simplest pseudo-limit
of (Sk)osk,
t t s i m p l e s t t *i s u s e d in t h e s e n s e of Conway [24, p. 231.
I,,,m
(w
k (In,,
m
7.91
(See a l s o ( 6 . 4 1 )
We conclude t h a t
and (6.431.)
(2)
where
-1
(w
w
-n
+
w
-1
-W
w
+
-W
n
In! is
not
t h e s i m p l e s t pseudo-limit of
n 1
/n! is.
FROM MACLAURIN SERIES TO TAYLOR SERIES
Let K be a f i e l d of c h a r a c t e r i s t i c 0 , a n d l e t G be a n o n - t r i v i a l
ordered group.
Let F
K ( ( G ) ) ( r e s p . gK((G)).
=
i d e a l i n t h e v a l u a t i o n r i n g 0 of F.
in K , and l e t y be i n M.
In:o
(0)
L e t M d e n o t e t h e maximal
L e t (an)Osn be a sequence of e l e m e n t s
By Neumann's Theorem,
anyn is a w e l l - d e f i n e d element i n F.
Let ( 0 ) b e d e f i n e d t o be a Maclaurin-Neumann series.
i n F such t h a t x
f(x)
f1)
-
- lnlO OD
an(x
-
x,)" is a w e l l - d e f i n e d element i n F,
which we w i l l d e f i n e t o be a Taylor-Neumann series. x1
-
x o is i n M.
Let x and x, be
x, is i n M ; t h e n
Let X ~ E sFu c h t h a t
Consider t h e f o l l o w i n g well-defined element i n F:
Power s e r i e s : formal and hyper-convergent
7.91
(3)
Let bk
In=, ( n+k )*an+,(x, m
=
x,)
n
32 3
EF.
We would l i k e t o a r g u e t h a t t h e l a s t e x p r e s s i o n i n ( 2 ) e q u a l s t h e
following:
w h i c h we would l i k e t o d e f i n e ; however, since we do n o t know t h a t t h e b k f s
a r e i n K , we can n o t invoke Neumann's Theorem t o e v a l u a t e ( 4 ) ! T h e c o n t e x t t h a t i n t e r e s t s u s t h e m o s t , of c o u r s e , is t h e o n e i n which t h e power s e r i e s f i e l d F is CNo o r ~ C X . I n t h e n e x t S e c t i o n we w i l l
c o n s i d e r t h i s q u e s t i o n s over t h e f i l e d L , d e f i n e d i n S e c t i o n 7.82.
FROM MACLAURIN SERIES TO TAYLOR SERIES OVER L , I
7.92
L e t t h e s e t t i n g be as i t was i n S e c t i o n 7.82, w i t h t h e e x c e p t i o n t h a t
we w i l l assume i n a d d i t i o n t h a t t h e ground f i e l d K has c h a r a c t e r i s t i c 0 . Let ( a n ) 0 6 n be a s e q u e n c e of e l e m e n t s i n L ( 7 . 8 2 : 0 ) ,
and consider the
f o l l o w i n g formal power series:
In10 any
i n L"YII.
Let P be t h e prime d i s k of hyper-convergence of ( 0 ) ( 7 . 8 4 ) ; t h e n
f o r a l l PEP, f , ( p )
L e t P E P , x ~ E L ,and l e t x
f(x
=
an(x
n
=
- x,) n
anp =
p
+
i s a w e l l - d e f i n e d element i n L .
x,.
Note t h a t x
- xg
=
is a well-defined element i n L .
PEP.
Hence,
324
Norman L. A l l i n g
7.92
P + x, w i l l be d e f i n e d t o be t h e prime d i s k of h y p e r - c o n v e r g e n c e o f
f ( x ) (cf. (7.84)).
R e c a l l t h a t g i v e n any p r i m e i d e a l PI of 0 , t h a t i s
c o n t a i n e d i n P , t h e n PI
+
x, i s c a l l e d a prime d i s k of hyper-convergence of
f ( x ) (7.84). L e t f ( k ) ( x ) be t h e k ' t h f o r m a l d e r i v a t i v e of f ( x ) ; w h i c h i s t h e
following:
(3)
m
ln,kn(n - l ) ( n - 2).
Note P
+
...*( n
-
k + l ) a (x
n
- x,)"-~.
x, i s a l s o t h e p r i m e d i s k o f h y p e r - c o n v e r g e n c e of f ( k ) ,
s i n c e t h e v a l u e of t h e elements i n Z * i s always z e r o . t h a t x1
(4)
-
x,EP.
(i)
bk =
Let X ~ E Lbe s u c h
By t h e Main Theorem (7.821, we know t h a t
-
lnPo(n+k ) * a n + k ( x l -
( i i ) Note a l s o t h a t bk
-
x,)" i s a w e l l - d e f i n e d element i n L.
f ( k ) ( x l ) / k ! , f o r each ksZ(20).
The e x p r e s s i o n s on t h e r i g h t i n ( 5 ) a r e power s e r i e s e x p a n s i o n s i n L:
We want t o c o n s i d e r t h e f o l l o w i n g :
Recall t h a t i t was e x a c t l y a t t h i s p o i n t t h a t we reached a n impasse i n S e c t i o n 7.91.
F u r t h e r , r e c a l l t h a t i n S e c t i o n 7.82 we d e f i n e d A t o be
t h e c a n o n i c a l d i r e c t summand o f B i n G, and noted t h a t t h e a n ' s (0) a r e a l l
in EK((B)).
Note a l s o t h a t t h e power s e r i e s i n ( 1 1 ,
c o n s i d e r e d t o be i n E K ( ( B ) ) ( ( A ) ) .
(21, a n d ( 3 ) may be
The problem t h a t c o n f r o n t s u s in (6) is
7.92
325
Power series: f o r m a l and hyper-convergent
t h a t t h e c o e f f i c i e n t s b k n e e d n o t b e i n CK((B))!
In order avoid t h i s
d i f f i c u l t y , l e t u s proceed a s f o l l o w s . Let 8
v(i)
< w 5'
=
[ h ( a , i ) : i = 0, 1 , and a
f o r i = 0 and 1 ; t h u s 101
subgroup of G t h a t contains
r
<
m(z),
h , which
n+k )*an+,(x, then { (
is j u s t sum(k,n).
-
x,)
n
*(x
-
x,)
k
}(z) =
Thus, we have t h e f o l l o w i n g :
This being t h e c a s e one s e e s t h a t t h e f o l l o w i n g is t r u e : D ( y ) ( z ) =
IkIo
(Inso{(n+k k )'an+k(xl
g ( x ) ( z ) , since supp(x
-
x,)
xO)nm(x
( = S,)
-
k '1)
I('))
=
lk,O (la,(' -
is a s u b s e t of S .
Thus,
xl)k}(z)
=
Power series: f o r m a l and hyper-convergent
7.92
S i n c e x - x, S, f ( x ) ( z ) = =
0.
lj:o
=
x - x1
+
327
x i - x , , and s i n c e S , a n d S, a r e s u b s e t s of
{ a . ( x - x a ) J ] ( z ) ; and f o r a l l j J
>
m(g),
[a.(x J
-
x,)j](z)
Thus, t h e f o l l o w i n g sums have o n l y a f i n i t e number of non-zero terms:
f(x)(z)
=
ljlo l a j ( x
- x,) j ~ ( z )=
ljIo Ia:C(x
- x,)
+
(x,
-
x , ) l j ~ ( z )=
J
lj=o
{aj.lkJ=o(:I(.
lkIo (In=, I( m
- x,) k ( x , - x , ) j - k
n+k ).an+,(x,
- x,) n - ( x
-
I(Z)
=
x , ) k } ( z ) ) = D(Y)(z); t h u s
Taken t o g e t h e r , ( 1 5 ) and ( 1 6 ) p r o v e t h e Theorem. 7.93
o
FROM MACLAURIN S E R I E S TO TAYLOR SERIES OVER L , I1
Let t h e s e t t i n g b e as i t w a s i n S e c t i o n 7,82,
with t h e exception that
we w i l l a g a i n assume t h a t t h e ground f i e l d K has c h a r a c t e r i s t i c 0.
In this
S e c t i o n we w i l l g e n e r a l i z e t h e r e s u l t s o b t a i n e d i n t h e last s e c t i o n t o Taylor-Neumann series i n s e v e r a l v a r i a b l e s . S i n c e t h e proofs are v i r t u a l l y t h e same a s t h o s e g i v e n i n S e c t i o n 7 . 9 2 ,
t h e y w i l l h e r e be s l i g h t l y
abbreviated.
L e t A(v) have t h e f o l l o w i n g power series e x p a n s i o n i n L:
Let B be t h e smallest convex s u b g r o u p o f G t h a t c o n t a i n s t h e s e t { g ( a , v ) : v ~ Z ( t 0 ) " and a
B}.
we saw i n S e c t i o n 7.82,
Irl
0 ( r e s p . cm < 0 ) ;
t h e n f is a c o n t i n u o u s , C-continuous, a n a l y t i c , O n - a n a l y t i c , i n j e c t i o n o f
P
+
x, o n t o P
+
c,;
which p r e s e r v e r s ( r e s p . r e v e r s e s ) o r d e r .
A p r i m e r o n a n a l y t i c f u n c t i o n s of a s u r r e a l v a r i a b l e
8.05
349
( i i ) Assume t h a t m is e v e n a n d t h a t cm > 0 ( r e s p . cm < 0 ) ; t h e n f i s
a continuous, €-continuous, order-preserving ( r e s p . order-reversing) t i o n of P(LO)
+
( r e s p . o r d e r - p r e s e r v i n g ) i n j e c t i o n of P ( S 0 ) + x,
and a n o r d e r - r e v e r s i n g o n t o P(L0)
+
injec-
x, o n t o P(L0) + c, ( r e s p . of P(L0) + x, o n t o P ( S 0 ) + c , ) ;
c, ( r e s p . of P ( S 0 )
+ c,
o n t o P(S0) + c , ) ; which is, con-
t i n u o u s , € - c o n t i n u o u s , a n a l y t i c a n d O n - a n a l y t i c o v e r P + x,. PROOF.
Let x
=
p
+
x 0 s P + x , , and n o t e ( 0 ) t h a t f(x)
- c,
=
f,(p)
=
c . ( g , ( ~ ) ) ~ .T h u s , f o i s t h e c o m p o s i t i o n of g o , ( d i s c u s s e d i n ( I ) ) , and m
x ~ g N o-+ xm ( d i s c u s s e d i n (211, m u l t i p l i e d by cm; t h u s t h e o r d e r p r o p e r t i e s From t h e s e we s e e t h a t the two k i n d s of
a s s e r t e d i n t h e Theorem h o l d .
c o n t i n u i t y , as d e s c r i b e d i n t h e Theorem, h o l d . t h a t f is On-analytic;
lnzocn.(x -
be
x,)
n
Concerning t h e a s s e r t i o n s
t h i s follows from t h e f a c t t h a t f ( x ) was d e f i n e d t o
, for a l l
XEP +
x,, and from Theorem 8.00.
o
8.1 0 LOCAL PROPERTIES OF POWER SERIES I N SEVERAL VARIABLES Assume t h a t L i s a s g i v e n i n S e c t i o n 7.82, and l e t V
(O)
FO(X)
=
l s u m ( v ) = h A v).X1
lh:,
... s X n
1
V
n
be i n L"X,,
Let Pn be t h e prime polyd s k of hyper-convergence of F,.
Theorem, we know t h a t f o r a l l p is a w e l l - d e f i n e d e l e m e n t i n L. =
=
(x,, 'hz0
...
, xn)
(Isum(v)=h L e t A and B
Let
IT,
=
p
+
B,
(PI
9
"'
L e t x,
x,; t h u s , x - x,
A(v)(x
=
=
- x,)')
* pn)Epn, (xo,,,
=
=
pep".
... , X n l l . By t h e Main
( l s u m ( v ) = h A ( v ) p")
... , X ~ , ~ ) E L "a,n d
let x
Let A ( 0 ) = CEL; t h e n F ( x )
i s a well-defined element o f L.
b e d e f i n e d as t h e y have b e e n , s a y i n S e c t i o n 7.92.
and n 2 b e t h e c a n o n i c a l p r o j e c t i o n s o f G o n t o A a n d B r e s p e c t i v e l y .
By Neumann's Lemma ( 7 . 2 0 ) , g i v e n gEG t h e r e e x i s t s rn(n,(g))EZ(ZO), s u c h t h a t
Norman L. Alling
350
= h , v = 0 , v '1 1 2'
A(v)(x - x,)')
...
= h , v1=0, v2=0,
n lj=l (xj -
X ~ , ~ ) * ~ ~ (where X ) ,
,Vn-l=O,
g (x)EO*.
J
+
8.10
... +
vnLl
A ( v ) (x
- x,) V )
=
Thus we see t h a t
Let Ln b e given t h e product topology of t h e v a l u a t i o n topology on L.
S i n c e G is t h e ordered d i r e c t sum of A and B, A is c o f i n a l i n G : t h u s ( 1 proves LEMMA 0.
Limx+x,F(x)
= F(X,).
I n S e c t i o n 8 . 0 3 we showed t h a t Lemma 0 , of t h a t s e c t i o n , c o u l d be combined w i t h Theorem 7.92, t o prove Theorem 0 of S e c t i o n 8.03. Using t h e same l i n e of r e a s o n i n g , we may u s e Lemma 0 (above), and Theorem 7.93 t o prove THEOREM 0.
F is a continuous map of P" + x, i n t o P
+
c.
I n S e c t i o n 8 . 0 3 we a l s o c o n s i d e r e d d i f f e r e n t i a t i o n . Let us now c o n s i d e r j ' t h p a r t i a l d e r i v a t i v e s , 3F(x,)/3xj, of F e v a l u a t e d , a t x,. Let xi
-
x ~ , for ~ , all i C
lhI, A ( h X ( j ) ) ( X
-
X,)
j , and
let x
hXIJ1
I
(xj
j
- F(x,) = - ~ ~ , ~ A)( h*~ ( lj l )~( x-:x,)~ (h-1)xI.j) # x
0,j;
t h e n F(x)
where x ( j l is t h e characteristic f u n c t i o n of (jI d e f i n e d on I 1
Since
&,Il A ( h x I j f ) ( x - x,) ( h - l ) X ( j 'is i n On,
we see t h a t
,
.. .
9
, nl .
8.10
35 1
A primer on a n a l y t i c f u n c t i o n s of a s u r r e a l v a r i a b l e
C l e a r l y t h e second e x p r e s s i o n i n ( 2 ) e q u a l s t h e f o l l o w i n g : A ( x ( j 1 ) +
lhm2A ( h x ( j l ) ( x -
x,) ( h - 2 ) X ' J 1 i s i n O^, f o r each
jEIl,
... , n ] ,
Hence we have proved t h e f o l l o w i n g . LEMMA 1 ,
Let xi
=
x
0,i'
f o r a l l i f j , and l e t x
f x
j
-
0,j'
then
Proceeding a s we d i d i n S e c t i o n 8.03, l e t u s c o m b i n e Lemma 1 a n d Theorem 7.93. and o b t a i n
THEOREM 1 . P
+
( i ) F i s a d i f f e r e n t i a b l e f u n c t i o n from Pn
+
x, i n t o
c , whose j ' t h p a r t i a l d e r i v a t i v e a t x , i s t h e j ' t h f o r m a l p a r t i a l
derivative aF(x,)/ax f e r e n t i a b l e over P
J' n
evaluated a t x,. + x,.
Thus ( i i ) F i s i n f i n i t e l y d i f -
F i n a l l y , ( i i i ) f o r a l l xlcPn
+
x,, F has a
Taylor series e x p a n s i o n , given by p a r t i a l d e r i v a t i v e s , which i s e q u a l t o t h e formal Taylor expansion g i v e n i n Theorem 7.93.
This Page Intentionally Left Blank
35 3
BIBLIOGRAPHY
On Ordered D i v i s i b l e Groups, Trans. Amer. Math. SOC. 94
Alling, N.L.,
(1960) 498-514.
_ _ - _ - - - - - _,_A- C h a r a c t e r i z a t i o n
o f Abelian qa-Groups i n terms of
t h e i r Natural Valuations, Proc. Nat. Acad. Sci. 47 (1961) 711-713.
-_---------_, On of Power w
4
a'
t h e Existence of Real-Closed F i e l d s t h a t a r e q -Sets a
Trans. Amer. Math. SOC. 1 0 3 (1962) 341-352.
- - - - - - - - - _ _,-
The {-Topology on
Algebraic Geometry, C . R .
q
5
-Classes w i t h Application t o Real
Math. Rep. Acad. S c i . Canada 6 ( 1 9 8 4 ) 145-
150.
___-------__ , Conway's
F i e l d of S u r r e a l Numbers, T r a n s . Amer. Math.
SOC. 287 (1985) 365-386.
Alling, N.L.
and Ehrlich, P . , An Alternative Construction of Conway's
S u r r e a l Numbers, C . R . -_--^-----------------------
Math. Rep. Acad. Sci. Canada 8 (1986) 241-246.
, An Abstract Characterization o f a F u l l
Class o f S u r r e a l Numbers, C . R .
Math. Rep. Acad. S c i . Canada 8 (1986)
303-308. 8
Apostol, T.M., New York, 1967).
C a l c u l u s , vol. I , Second Edition (John Wiley & Sons,
Norman L. A l l i n g
354 9
_--_---------, C a l c u l u s ,
v o l . 11, Second E d i t i o n (J o h n Wiley & S o n s ,
New York, 1969). 10
A r t i n , E. a nd S c h r e i e r , O . ,
A l g e b r a i s c h e K o n s t r u k t i o n r e e l l e r KBrper,
Abh. Math. Sem. Univ. Hamburg 5 (1927) 85-99.
11
Baer, R . ,
The S u b g r o u p of E l e m e n t s of F i n i t e O r d e r o f a n A b e l i a n
Group, Ann. of Math. ( 2 ) 37 (1936) 766-781. 12
Eanaschewski, E., T o t a l g e o r d n e t e Moduln, A r c h . M a t h . 7 ( 1 9 5 6 ) 430-
440. 13
Barwise, J . e d . , Handbook o f M a t h e m a t i c a l L o g i c ( N o r t h - H o l l a n d , Amsterdam, 1977).
14
Bourbaki, N . ,
Elements d e Mathematique, A l g e b r e ,
C h a p i t r e I11
(Hermann, P a r i s , 1948).
15
_____-__-___ , Elements
de Mathematique,
Algebre, Chapitre V I
(Hermann, P a r i s , 1952).
16
Brumfiel, G.W.,
P a r t i a l l y Or de r e d R in g s a n d S e m i - A l g e b r a i c G e o me t ry
(Cambridge U n i v e r s i t y P r e s s Cambridge, 1979).
17
Cantor, C.,
Beitrlge
zur B e g r u n d u n g d e r t r a n s f i n i t e n M e n g e n l e h r e ,
P a r t I , Math. Ann. 46 (1895) 481-512.
18
---------- , B e i t r l g e
zur B e g r u n d u n g d e r t r a n s f i n i t e n M e n g e n l e h r e ,
P a r t 11, Math. Ann. 49 (1897) 207-246.
19
Chevalley, C.,
I n t r o d u c t i o n t o t h e Theory of A l g e b r a i c F u n c t i o n s of
One V a r i a b l e (Math. Amer. Math. SOC., New York, 1951). 20
C l i f f o r d , A.H.,
Note on H a h n ' s Theorem on O r d e r e d A b e l i a n C r o u p s ,
Proc. Amer. Math. SOC. 5 (1954) 860-863.
355
Bibliography 21
Cohen, P . J . ,
S e t Theory and t h e Continuum H y p o t h e s i s (Banjamin,
Reading, 1966). 22
Cohn, L.W.
a n d Goffman, C . ,
Theory of T r a n s f i n i t e Convergence, T r a n s .
Amer. Math. SOC. 66 (1949) 65-74. 23
Embedding Theorem f o r A b e l i a n G r o u p s w i t h V a l u a t i o n s ,
Conrad, P.F.,
Amer, J. Math. 75 (1953) 1-29. 24
Conway, J . H . ,
25
C u e s t a D u t a r i , N., Algebra O r d i n a l , Rev. Acad. C i e n c i s . Madrid 48
On Numbers a n d Games (Academic P r e s s , London, 1976).
(1954) 103-145. 26
Ehrlich, P.,
An A l t e r n a t i v e C o n s t r u c t i o n of Conway's O r d e r e d F i e l d
No, t o a p p e a r i n Algebra U n i v e r s a l i s . 27
___________ ,
The A b s o l u t e A r i t h m e t i c a n d Geometric C o n t i n u a , i n :
F i n e , A. a n d Machamer, P. ( e d s . ) ,
P h i l . Sci. Assoc. : 1986 v o l . 2 ,
t o a p p e a r 1988. 28
_ _ _ _ _ _ _,_The _ _ -D e d e k i n d Uni v e r s a 1i s
C o m p l e t i o n o f No, s u b m i t t e d t o A l g e b r a
.
29
_____-_--_, On-Saturated
30
---__------, U n i v e r s a l l y
31
E n d l e r , 0.. V a l u a t i o n Theory ( S p r i n g e r - V e r l a g , New York, 1972).
32
ErdBs, P . ,
Models, s u b m i t t e d t o A l g e b r a U n i v e r s a l i s . Extending C o n t i n u a , s u b m i t t e d t o Fund. Math.
G i l l m a n , L. a n d H e n r i k s e n , M . ,
An Isomorphism Theorem f o r
Real-Closed F i e l d s , Ann. of Math. ( 2 ) 61 (1955) 542-554. 33
F e l g n e r , U., Comparison o f t h e Axioms o f Local a n d U n i v e r s a l Choice, Fund. Math. 71 (1971) 43-61.
34
Fraenkel, A.A.,
A b s t r a c t S e t Theory ( N o r t h - H o l l a n d , Amsterdam, 1953).
356 35
Norman L . A l l i n g Fuchs, L . ,
P a r t i a l l y O r d e r e d A l g e b r a i c S y s t e m s (Pergamon P r e s s ,
Oxford, 1963). 36
C i l l m a n , L . and J e r i s o n , M . ,
Rings of Continuous Functions (van
Nostrand, P r i n c e t o n , 1960). 37
C l a y z a l , A . , T r a n s f i n i t e Real Numbers, P r o c e e d i n g s o f t h e N a t i o n a l Academy o f S c i e n c e 23 (1937) 581-587.
38
Conshor, H . ,
An I n t r o d u c t i o n t o t h e T h e o r y o f S u r r e a l Numbers
(Cambridge U n i v e r s i t y Press, 1986).
39
G r a v e t t , K.A.H.,
Ordered A b e l i a n G r o u p s , Q u a r t . J . Math. O x f o r d 7
(1956) 57-63. 40
Cunning, R . C .
and Rossi, H . , A n a l y t i c F u n c t i o n s o f S e v e r a l Complex
Variables ( P r e n t i c e - H a l l ,
Englewood C l i f f s , 1965).
41
Hahn, H . , Uber d i e n i c h t a r c h i m e d i s c h e n G r d s e n s y s t e m e , S . - B e r . Wiss. Wein math. naturw. K1. Abt. I I a 116 (1907) 601-655.
42
Hall, M.,
43
Harzheim, E., B e i t r l g e z u r T h e o r i e der Ordnungstypen, i n s b e s o n d e r e
Akad.
The Theory o f Groups (Macmillan, New York, 1959).
der q -Mengen, Math. Ann. 154 (1964) 116-143. a 44
Hausdorff, F.,
CrundzUge der Mengenlehre ( V e r l a g von Veit, L e i p z i g ,
1914). 45
H a u s n e r , M . a n d Wendel, J . G . ,
Ordered V e c t o r S p a c e s , Proc. Amer.
Math. SOC. 3 (1952) 977-982.
46 47
Hille, E . ,
A n a l y t i c Function Theory, v o l . I (Ginn, Boston, 1959).
Holder, O . , Die Axiome der Q u a n t i t l t und d i e L e h r e vom Mass, B a r .
Verh. S l c h s . Ges. Wiss. L e i p z i g Math. Phys. C1. 53 (1901) 1-64.
Bibliography 40
357
Lectures i n Abstract Algebra, vol . I11 (van N ost rand,
Jacobson, N . ,
N e w York, 1964).
49
Kaplansky, I . , Maximal F i e l d s w i t h V a l u a t i o n s , Duke Math. J . 9 ( 1 942) 303-321.
General Topology (van Nostrand, New York, 1955).
50
Kelley, J . L . ,
51
Knopp, K., Theory and A p p l i c a t i o n of I n f i n i t e S e r i e s ( B l a c k i e , Glasgow, 1928 1.
52
Knuth, D.E.,
Surreal Numbers (Addison-Wesley, Reading, 1974).
53
K r u l l , W., Allgemeine Bewertungstheorie, J . r e i n e angew. M a t h . 176
(1931) 160-196. 54
Kuratowski, C . ,
T opol ogi e, v o l . I ( P o l s k a Akademia N a u k , Warsaw,
1952). 55
Kuratowski, K . a n d Mostowski, A . ,
S e t T heory ( N o r t h - H o l l a n d ,
Amsterdam, 1968). 56
................................
,
Set Theory, Second Edition (N ort h-
Holland, Amsterdam, 1976). Basic Set Thoroy (Springer-Verlag, New York, 1979).
57
Levy, A . ,
58
MacLane, S . , The U n i v e r s a l i t y of Formal Power S e r i e s Fi el ds, Bull. Amer. Math. SOC. 45 (1939) 888-890.
59
Mendelson, E . , I n t r o d u c t i o n t o Mathematical Logic, Second Edition (van Nostrand, N e w York, 1979).
60
Monk, J . D . ,
61
Neumann, B.H.,
Introduction t o Set Theory (Krieger, N e w York, 1980).
(1949) 202-252.
On Ordered Division Rings, Trans. Amer. Math. Soc., 66
Norman L. A l l i n g
358 62
Ostrowski, A . , Untersuchungen zur a r i t h m e t i s c h e n Theorie d e r K b r p e r , Math. 2. 39 (1935) 296-404.
63
S c h i l l i n g , O.F.C.,
The Theory of V a l u a t i o n s (Amer. Math. S o c . , N e w
York, 1950). - S t r u k t u r e n , Math. Z . 158 (1978) 147-155.
64
Schwartz, N . ,
rl
65
Sikorski, R . ,
Remarks on Some Topological Spaces of High Power, Fund.
Math. 37 (1950) 125-136.
66
- - - - _ _ _ _ _,_ On --
a n O r d e r e d A l g e b r a i c F i e l d , Warsaw, Towarzyztwo
Naukowe Warszawskie 4 1 (1948) 69-96. 67
van d e r Waerden, B . L . ,
Modern A l g e b r a , v o l . I ( U n g e r , N e w York,
1949). 68
Z a r i s k i , 0. and S a m u e l , P . ,
Commutative Algebra, vol. I (van
Nostrand, P r i n c e t o n , 1958). 69
.......................... Nostrand, P r i n c e t o n , 1960).
,
Commutative A l g e b r a , v o l . I 1 ( v a n
359
INDEX
A
A*
(=
s e t of non-zero elements of a r i ng A )
1.1 ( = absolute value i n an ordered group), 1.60 1.1 ( = a n a l y t i c norm i n a surcomplex f i e l d ) , 7.10 1.1 ( = cardinal number o r power), 1.03 1 1 . 1 1 ( = norm i n R n 1, 3.00 AC (axiom of ch o i ce) , 1.00
Addition ( i n No), 4.05 Addition theorem ( f o r binomial c o e f f i c i e n t s ) , 7.33 A d d i t i v e subgroup
of a r i ng o r a f i e l d -1, 1.60
( ( a , + )
A f f i n e l i n e , 3.10
Affine n space, 3.00 a-term, 6.50 a t h approximation, 4.50
Analytic a t a p o i nt , 8.00 Analytic norm ( = l * l ) , 7.10 Analytic on U, 8.00 e q u ip o ten t) , 1.03
a
(=
a
(=
commensurate), 1.61
a
(=
order e q u iv al ent ) , 1.01
I
4.30, 4.40
Archimedean ordered group, 1.60 Archimedean complete, 1.63 Archimedean extension, 1.63 Archimedean (ordered group, r i ng o r f i e l d ) ) , 1.60 Arcsine (over c e r t a i n formal power s e r i e s f i e l d s ) , 7.50 Arctangent (over c e r t a i n formal power s e r i e s f i e l d s ) , 7.50 Artin-Schreier Theory, 1.71 Associative law f o r m ul t i pl i cat i on ( i n No), 4.08
Norman L. A l l i n g
360
B
(B) ( = b i r t h - o r d e r axiom), 4.60 b ( = b i r t h d a y map), 4.01, 4.02. 4.03, f.60
Ball a b o u t a p o i n t of r a d i u s g r e a t e r t h a n g, 7.62 Binomial c o e f f i c i e n t s , 7.32 Binomial c o e f f i c i e n t s ( g e n e r a l i z e d ) , 7.93 Binomial series, 7.33 B i r t h - o r d e r axiom, 4.60 B i r t h - o r d e r f u n c t i o n , 4 . 0 1 , 4.02, 4.03, 4.60 B i r t h d a y , 4.01, 402 Born on day 0 , 4.00
(*I*), [.I
4.00,
4.01, 4.02.
4.03, 4.60
( = t h e convex subgroup g e n e r a t e d by
-1, 7.21
Breadth (of a pseudo-convergent s e q u e n c e ) , 1 . 6 2 , 6.40 C
C
( = Kuratowski c l o s u r e of
-1, 2.02
Canonical ( n a t u r e of power s e r i e s s t r u c t u r e o n No), 6.57 C a n t o r ' s normal form, 4.04, 6 . 4 3 C a r d i n a l (number, CC(.)
(=
=
power), 1 . 0 3
s e t of a l l Conway c u t s i n -1, 4.61
CD(.) ( = s e t of a l l C u e s t a Dutari c u t s i n * ) , 4.01, 4.02 Change s i g n ( a p o l y n o m i a l ) , 1.72
Cuesta D u t a r i c o m p l e t i o n o f -1, 4.02 Class of surreal numbers (No), 4.03 x ( - ) (=
Class of s u r r e a l numbers of h e i g h t 6, 4.03 C l a s s t h e o r y , 1.00 Closed c l a s s ( i n t h e i n t e r v a l t o p o l o g y ) , 1 .10 Closed s e m i - a l g e b r a i c s e t , 3.00 C l o s e d , s e m i - a l g e b r a i c s e t , 3.00 Closure operator
+
C
,
2.02
C o f i n a l ( s u b c l a s s i n a n o r d e r e d c l a s s ) , 1.30 C o i n i t i a l ( s u b c l a s s i n a n o r d e r e d c l a s s ) , 1.30 Commensurate ( e l e m e n t s i n a n o r d e r e d g r o u p ,
a),
4.40
Index Common p r e d e c e s s o r , 4.52 Compact o r d e r e d s p a c e s , 1.50 Complete ( = Dedekind-complete), 1.20 Complete o r d e r e d g r o u p s , 1. 66 C onj ugat e ( r o o t s ) , 1.72 Connected, 1 .20 C ont i nue t o change s i g n ( i n D 1, 5.51
A
Convex ( s u b g r o u p ) , 1.60 Convex ( s u b s p a c e ) , 3.30 Conway c u t r e p r e s e n t s , 4.02 Conway c u t s , 1.20 Conway's Normal Form, 6. 50 Conway's S i m p l i c i t y Theorem, 4.02, 4.03, 4.60 C os ecant ( o v e r c e r t a i n form a l power series f i e l d s ) , 7.50 Cosine ( o v e r c e r t a i n form a l power series f i e l d s ) , 7.50 C os i ne ( = ext ende d cosine f u n c t i o n o v e r E,Cx), 7.51
C r i t i c a l p o i n t , 1.74 C ues t a D u t a r i com ple tion ( = C D ( . ) ) , 4.02 C ues t a Dut ari c u t , 1. 20 C ues t a D u t a r i c u t r e p r e s e n t a t i o n ( o f a p o i n t ) , 4.02, 4.03 Cut p o i n t , 1.20 c u t s , 1.20
D D ( = d y a d i c numbers), 4.21 +
ad
( = wg-additive c l o s u r e o p e r a t o r ) , 2.02
a / a x i , 7.60 Decomposition ( o f f o r m a l power series f i e l d s ) , 7.81 Dedekind-complete,
1.20
Dedekind c u t , 1.20 Degree
m
( p o l y n o m i a l ) , 7.70
Degree ( o f V E Z ( > O ) ~ ) , 7.40 Dense i n i t s e l f , 1.10 Dense ( s u b c l a s s of a n o r d e r e d c l a s s ) , 1. 10
362
Norman L. A l l i n g
Dedekind-completion of O x , 5.50 D e r i v a t i v e (of a formal power s e r i e s ) , 7.60 Disconnected, 1 .20 Distance f u n c t i o n ( d ( - , . ) =
1.
*I
-
i n a surcomplex f i e l d ) , 7.10
D i s t i n g u i s h e d base, 2.01 D i s t i n g u i s h e d base of open sets, 2.01 D i s t i n g u i s h e d s u b b a s e , 2.01 D
x
(-
t h e s i m p l e s t Dedekind-completion of 0 ) , 5.50
x
Dyadic, 4.21 E
( E ) ( e t a axiom), 4.60
Embedding of q - f i e l d s , 1.75 F End p o i n t s (of a n i n t e r v a l ) , 1.10 € - t r a n s i t i v e , 1.02 Equipotent, 1.03 Equivalent ( s e t s ) , 4.02 Eta axiom, 4.60
q-character (- t r u e q-character) Q
5
,
1.40
- f i e l d , 0.03
11 -c ass, 1.40
E
EVCv
EVS
extended v a l u e c l a s s ) , 1.62
( 0
-
extended v a l u e s e t ) , 1.61
1 , 1 10
Exp
(s
extended e x p o n e n t i a l f u n c t i o n o v e r SCx)), 7.51
Exponential f u n c t i o n , 7.36 Exponential series, 7.36 Extended v a l u e c l a s s (EVC") of a group (C,vl with v a l u a t i o n , 1.62 Extended v a l u e set ( - EVS), 1.61 Extension ( o f a Conway c u t ) , 4.61 Extension ( o f a f i e l d with v a l u a t o n ) , 6.30 Extension (of an o r d e r e d s e t ) , 1 . 0 Extension ( o f a s e t ) , 8.00
Index
36 3
F
(F)
(=
f u l l n e s s a x i o m ) , 4.60
I F , < , b , B l , 4.03, 4.60 I F , < , b l , 4.03, 4.60 F a c t o r , 1.61 F a c t o r i a l ( g e n e r a l i z e d ) , 7.93 (FE)
(=
f u l l e t a a x i o m ) , 4.60
F i e l d of f o r m a l power series, 6.30
F i l l (a c u t ) , 4.02 F i n i t e i n t e r s e c t i o n property
(=
f.i.p.1,
2.30
F i n i t e o r d i n a l s , 1.02 F i r s t k i n d ( o r d i n a l s ) , 1.02 Formal i m p l i c i t f u n c t i o n theorem, 7.70, 7.71 Formal i m p l i c i t mapping theorem, 7.72 Formal i n v e r s e mapping theorem, 7.74 Formal power series ( i n n v a r i a b l e s ) , 7.40 Formal power s e r i e s o v e r f o r m a l power series f i e l d s , 7.80 Formally r e a l ( f i e l d ) , 1.70 F u l l ( c o n d i t i o n ) , 4.03 F u l l b i n a r y t r e e o f h e i g h t On, 4.50 F u l l e t a axiom
(=
F E ) , 4.60
F u l l f i e l d of f o r m a l power series, 6.30 F u l l Hahn group, 1.63 F u l l n e s s axiom
(=
F ) , 4.60 G
Game, 4.04 G a l a x i e s , 5.40 GCH ( = G e n e r a l i z e d Continuum H y p o t h e s i s ) , 1 . 3 0
G e n e r a l i z e d binomial c o e f f i c i e n t s , 7.93 G e n e r a l i z e d f a c t o r i a l s , 7.93 H
Hahn g r o u p , 1.63
Norman L. A l l i n g
364
Hahn v a l u a t i o n , 1.61
,
6.20
Hahn's Embedding Theorem, 1.64 Harzheim's Theorem, 4.02 Hausdorff ( s p a c e ) , 2.10, 7.62 Hausdorff's Normal
9 -type,
5
5.10
Height f u n c t i o n , 4.50
Hessenberg product ( = N a t u r a l p r o d u c t ) , 4.05 Hessenberg sum ( = N a t u r a l sum), 4.05 Hion's Lemma , 1.61 Htilder's Theorem, 1.60 ( = Hausdorff's normal n - t y p e ) , 5.10 5 F Hyper-convergent, 7.22
H
Ideal of i n f i n i t e s i m a l e l e m e n t s , 6.00 Ideal theory of a v a l u a t i o n r i n g , 6.70
I d e n t i t y Theorem ( f o r normal f o r m s ) , 6.51 Imaginary p a r t , 7.10 Immediate e x t e n s i o n , 1.63, 6.30 I m p l i c i t f u n c t i o n theorem ( f o r formal power series), 7.70, 7.71 I m p l i c i t f u n c t i o n theorem (for Neumann s e r i e s ) , 7.75 I m p l i c i t mapping theorem ( f o r f o r m a l power s e r i e s ) , 7.73 I m p l i c i t mapping theorem ( f o r Neumann s e r i e s ) , 7.75 ( I N ) ( - axiom: t h e r e is a s t r o n g l y i n a c c e s s i b l e c a r d i n a l number
Incomplete
(=
n o t Dedekind-complete),
1.20
Incomplete o r d e r e d groups, 1.66 Independence of r e p r e s e n t a t i o n (of Neumann s e r i e s ) , 7.83 I n f i n i t e l y l a r g e , 1.60 I n f i n i t e l y s m a l l , 1.60 I n f i n i t e s i m a l expansion (of a n a n a l y t i c f u n c t i o n ) , 7.65
*-, fa
1.10
( i n D A ) , 5.51
I n j e c t i o n ( = one-to-one map) I n j e c t i v e ( - being one-to-one)
.
I n t e r v a l , 1 10
1 1 , 1.00
Index I n te r v a l topology, 1 .10 I n te r v a l (c-closed), 2.12 I n t e r v a l (c-open), 2.12 Inverse mapping theorem ( f o r formal power s e r i e s ) , 7.75 Inverse mapping theorem ( f o r Neumann s e r i e s ) , 7.75 Is o late d I,
(= a
(=
convex subgroup), 1.60
strongly inaccessible car di nal number), 5.40
Jacobian ( matr ix) , 7.73
K K-valued c o e f f i c i e n t , 7.40 Kuratowski closure operator
(.
+
C
1, 2.02 1
Leader (of y ) , 4.40 Left c h a r acte r , 1 .30 Left-option, 4.00 Length (of a pseudo-convergent sequence), 6.41, 6.44
01, w i t h
an ordered group o r f i e l d )
P o i n t of s t a b i l i t y , 5.51 P o l e of o r d e r - n , 1.73 P o s i t i v e element
i n a o r d e r e d g r o u p , r i n g o r f i e l d ) , 1 . 6 0 , 1.70
Positive regular
ndex ( = p r i ) , 1 . 3 0
P o s s i b l y u n t i m e l y ( c u t r e p r e s e n t a t i o n ) , 4.09 Power (of a s e t = i t s c a r d i n a l number), 1.03
Index P r e d e c e s s o r , 4.50, 4.51, 4.53 Predecessor c u t r e p r e s e n t a t i o n , 4.54 Preserves
D e r i v a t i v e T e s t , 1.74 S e c t i o n (of an o r d e r e d c l a s s ) , 1.02 Semi-algebraic s e t , 3.00 Sequence ( i n a s e t ) , 7.21 S e t t h e o r y , 1.00 E ( = class of a l l s i g n e x p a n s i o n s ) , 4.50
No t o i t s s i g n expansions i n Z), 4.50 Sign-expansion ( f u n c t i o n 0 1 , 4.50 o ( = a map form
Simple d e n s i t y axiom ( = ( S D ) ) , 4.60 Simple z e r o , 1.73 Simpler
(=
of I b i r t h d a y ) , 4.01
Simplest Dedekind-completion, 5.50 S i n e ( o v e r c e r t a i n formal power series f i e l d s ) , 7.50 S i n e ( = extended s i n e f u n c t i o n o v e r ~ C X ) ,7.51 S i n g u l a r ( c a r d i n a l number), 1 .30 S k e l e t o n (of an o r d e r e d g r o u p ) , 1.63 S t a b l e v a l u e , 5.51
*
(=
.*
= IXE.:
x # 0))
S t r i c t l y d e c r e a s i n g ( s e q u e n c e ) , 7.21
Index
37 1
S t r i c t l y increasing (sequence), 7.21 Strictly-order-preserving (mapping), 1 . 0 1 , 1.60 Strictly-order-reversing (mapping), 1.01 S t r i c t l y p o s itive element ( i n an ordered group, ring o r f i e l d ) , 1.60, 1.70 Strong topology, 3.00 Strongly inaccessible ( car di nal number L), 5.40 Subsequence, 7.21
Subtraction ( i n No), 4.04 Successor, 4.50, 4.51, 4.53 n th e support of a vector .EM ) , 7.41 s u p p ( * ) ( = th e support of 1.63, 6.20 Support, 1.63, 6.20 supp(.)
(=
a ) ,
Surjection
(=
a map of one set onto another)
S u r j e c t i v e ( = a mapping t h a t is a s u r j e c t i o n )
Surcomplex number f i e l d s (Cx, and ~ C X ) ,7.10 Surreal monomorphism, 4.03 Surreal number f i e l d s (No, and CNo), 5.00 Sylow Theorems, 1.71 Symmetric, 4.21 T T,,
4.02
Tangent (over c e r t a i n formal power s e r i e s f i e l d s ) , 7.50 Tarski-Seidenberg Theorem, 3.00 Taylor-Neumann series, 7.91 The canonical d i r e c t summand, 1.65 The l i m i t (of a pseudo-convergent sequence), 1.64, 6.41, 6.42 Timely ( c u t r ep res ent at i on) , 4.02, 4.09 Topological f i e l d (under t he 6-topology), 3.40 Totally ordered s e t (=ordered s e t ) , 1.01 T ra n s f in ite inducti n , 1.02 Tree o r d er , 4.50, 4 51, 4.53 Triangle eq u alit y, .61 Triangle inequality 1.61 True n-character, 1 40
Norman L . A l l i n g
372
U U ( = group of
u n i t s of a v a l u a t i o n r i n g 01, 6.00
UCF ( u n i v e r s a l c h o i c e f u n c t i o n axiom), 1.00
U(g), 3.00 U n i v e r s a l l y embedding, 6.60 U n i v e r s e s ( i n s e t t h e o r y ) , 5.40 Upper c h a r a c t e r , 1 .30 Upper-saturated,
U^
1.30
( = U extended t o
Y), 8.00 V
V ( = v a l u a t i o n ) , 6.00
Value group, 6.00 Value s e t , 1.61 V a l u a t i o n r i n g , 6.00 V a l u a t i o n t o p o l o g y , 7.62 V a l u a t i o n t o p o l o g y and t h e i n t e r v a l t o p o l o g y , 7.63 VS ( = v a l u e s e t ) , 1.61
W
Weak c - t o p o l o g y , 2.01 Weakly i n a c c e s s i b l e ( c a r d i n a l number), 1.30 Well-ordered
( c l a s s ) , 1.02
W(g), 3.00
X x
f - t h e a t h approximation t o x ) , 4.50
E,B ( = t h e t;-topology g e n e r a t e d by a base B), 2.01 E,-closed,
2.01
c - c l o s e d s u b c l a s s e s of R n ,