This page intentionally left blank
FILTER BAN K TRANSCEIVER S FO R OFD M AN D DMT SYSTEM S Providing key background m...
104 downloads
1043 Views
13MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
This page intentionally left blank
FILTER BAN K TRANSCEIVER S FO R OFD M AN D DMT SYSTEM S Providing key background material together with advanced topics, this self-contained book i s writte n i n a n easy-to-rea d styl e an d i s idea l fo r newcomer s t o multicarrie r systems. Early chapters provide a review of basic digital communication, starting from th e equivalent discrete-time channel and including a detailed review of the MMSE receiver. Later chapters then provide extensive performance analysis of OFDM and DMT systems, with discussion s o f man y practica l issue s such a s implementation an d power spectrum considerations. Throughout, theoretical analysis is presented alongside practical design considerations, whilst the filter bank transceiver representation of OFDM and DMT systems opens up possibilities for further optimization such as minimum bit error rate, minimum transmission power, and higher spectral efficiency . With plenty of insightful real-world examples and carefully designed end-of-chapter problems, this is an ideal single-semester textbook for senior undergraduate and graduate students, as well as a self-study guide for researchers and professional engineers. YUAN-PEI LI N i s a Professor i n Electrical Engineering at the National Chiao Tung University, Hsinchu, Taiwan. She is a recipient of the Ta-You Wu Memorial Award, the Chinese Institute o f Electrica l Engineering’ s Outstandin g Yout h Electrical Enginee r Award, and of the Chinese Automatic Control Society’s Young Engineer in Automatic Control Award. SEE-MAY PHOON G i s
a Professor i n the Graduate Institute of Communication Engineering and the Department of Electrical Engineering at the National Taiwan University (NTU). He is a recipient o f th e Charles H. Wilts Prize for outstandin g independen t doctoral research in electrical engineering at the California Institute of Technology, and the Chinese Institute of Electrical Engineering’s Outstanding Youth Electrical Engineer Award. P . P . VAIDYANATHA N i
s a Professor i n Electrica l Engineerin g a t th e Californi a Institute o f Technology , where he has been a faculty membe r sinc e 1983. He is an IEEE Fellow and has authored over 400 technical papers, four books, and many invited chapters in leading journals, conferences, an d handbooks. He was a recipient o f th e Award for Excellence in Teaching at the California Institute of Technology three times, and he has received numerous other awards including the F. E. Terman Award of the American Society for Engineering Education and the Technical Achievement Award of the IEEE Signal Processing Society.
FILTER BAN K TRANSCEIVER S FO R OFDM AN D DM T SYSTEM S YUAN-PEI LI N National Chiao Tung University, Taiwan
SEE-MAY PHOON G National Taiwan University
P. P . VAIDYANATHA N California Institute of Technology
CAMBRIDGE UNIVERSIT Y PRES S
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information o n this title: www.cambridge.org/9781 107002739 © Cambridge University Press 2011 This publication is in copyright. Subject to statutory exceptio n and to the provisions of relevant collective licensing agreements , no reproduction of any part may take place without the written permission of Cambridge University Press. First published 201 1 Printed in the United Kingdom at the University Press, Cambridge A catalog record for this publication is available from the British Library ISBN 978-1-107-00273-9 Hardbac k
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred t o in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
To our families Yuan-Pei Lin and See-May Phoong
To Usha, Vikram, Sagar, and my parents — P. P. Vaidyanathan
Contents Preface x
i
1 Introductio n 1 1.1 Notation s 7 2 Preliminarie s o f digita l communication s 9 2.1 Discrete-tim e channe l model s 9 2.2 Equalizatio n 1 2.3 Digita l modulatio n 1 2.3.1 Puls e amplitud e modulatio n (PAM ) 1 2.3.2 Quadratur e amplitud e modulatio n (QAM ) 2 2.4 Paralle l subchannel s 2 2.5 Furthe r readin g 3 2.6 Problem s 3
6 7 8 2 8 1 1
3 FI R equalizer s 3 3.1 Zero-forcin g equalizer s 3 3.2 Orthogonalit y principl e an d linea r estimatio n 3 3.2.1 Biase d an d unbiase d linea r estimate s 4 3.2.2 Estimatio n o f multipl e rando m variable s 4 3.3 MMS E equalizer s 4 3.3.1 FI R channel s 4 3.3.2 MIM O frequency-nonselectiv e channel s 4 3.3.3 Example s 5 3.4 Symbo l detectio n fo r MMS E receiver s 5 3.5 Channel-shortenin g equalizer s 5 3.6 Concludin g Remark s 6 3.7 Problem s 6
3 4 9 1 4 5 5 8 0 6 9 5 5
4 Fundamental s o f multirat e signa l processin g 7 4.1 Multirat e buildin g block s 7 4.1.1 Transfor m domai n formula s 7 4.1.2 Multirat e identitie s 7 4.1.3 Blockin g an d unblockin g 7 4.2 Decimatio n filter s 7 4.3 Interpolatio n filter s 8 4.3.1 Tim e domai n vie w o f interpolatio n filte r 8 4.3.2 Th e Nyquist(M ) propert y 8
1 1 3 5 6 9 0 2 2
vn
CONTENTS
Vlll
4.4 Polyphas e decompositio n 8 4.4.1 Decimatio n an d interpolatio n filter s 8 4.4.2 Synthesi s filte r bank s 8 4.4.3 Analysi s filte r bank s 9 4.5 Concludin g remark s 9 4.6 Problem s 9
4 7 9 0 1 1
Multirate formulatio n o f communicatio n system s 9 5.1 Filte r ban k transceiver s 9 5.1.1 Th e multiplexin g operatio n 9 5.1.2 Redundanc y i n filte r ban k transceiver s 9 5.1.3 Type s o f distortio n i n transceiver s 10 5.2 Analysi s o f filte r ban k transceiver s 10 5.2.1 ISI-fre e filte r ban k transceiver s 10 5.2.2 Polyphas e approac h 10 5.2.3 Channel-independen t ISI-fre e filte r ban k transceiver s 10 5.3 Pseudocirculan t an d circulan t matrice s 10 5.3.1 Pseudocirculant s an d blocke d version s o f scala r system s 10 5.3.2 Circulant s an d circula r convolution s 10 5.4 Redundanc y fo r IB I eliminatio n 11 5.4.1 Zero-padde d system s 11 5.4.2 Cyclic-prefixe d system s 11 5.4.3 Summar y an d compariso n 11 5.4.4 IBI-fre e system s wit h reduce d redundanc y 12 5.5 Fractionall y space d equalize r system s 12 5.5.1 Zero-forcin g F S E system s 12 5.5.2 Polyphas e approac h 12 5.6 Concludin g remark s 12 5.7 Problem s 12
5 5 7 7 0 1 1 3 5 6 6 8 1 2 5 9 1 2 4 5 9 9
D F T - b a s e d t r a n s c e i v e r s 13 6.1 O F D M system s 13 6.1.1 Nois e analysi s 14 6.1.2 Bi t erro r rat e 14 6.2 Zero-padde d O F D M system s 14 6.2.1 Zero-forcin g receiver s 14 6.2.2 Th e MMS E receive r 15 6.3 Single-carrie r system s wit h cycli c prefi x (SC-CP ) 15 6.3.1 Nois e analysis : zero-forcin g cas e 15 6.3.2 Th e MMS E receive r 15 6.3.3 Erro r analysis : MMS E cas e 15 6.4 Single-carrie r syste m wit h zero-paddin g (SC-ZP ) 16 6.5 Filte r ban k representatio n o f O F D M system s 16 6.5.1 Transmitte d powe r spectru m 16 6.5.2 Z P - O F D M system s 16 6.6 D M T system s 16 6.7 Channe l estimatio n an d carrie r frequencysynchronizatio n 17 6.7.1 Pilo t symbo l aide d modulatio n 17 6.7.2 Synchronizatio n o f carrie r frequenc y 17
5 6 0 2 7 7 0 2 5 6 7 0 3 6 8 8 8 8 9
CONTENTS 6.8 A historica l not e an d furthe r readin g 18 6.9 Problem s 18 7 P r e c o d e d O F D M s y s t e m s 19 7.1 Zero-forcin g precode d O F D M system s 19 7.2 Optima l precoder s fo r Q P S K modulatio n 19 7.3 Optima l precoders : othe r modulation s 20 7.4 MMS E precode d O F D M system s 20 7.4.1 MMS E receiver s 20 7.4.2 Optima l precoder s fo r Q P S K modulatio n 20 7.4.3 Othe r modulatio n scheme s 20 7.5 Simulatio n example s 21 7.6 Furthe r readin g 21 7.7 Problem s 22
IX
0 1 3 4 8 2 3 4 7 9 1 9 0
8 Transceive r desig n w i t h channe l informatio n a t th e transmitter22 3 8.1 Zero-forcin g bloc k transceiver s 22 3 8.1.1 Zero-forcin g Z P system s 22 5 8.1.2 Zero-forcin g Z J system s 22 6 8.2 Proble m formulatio n 22 8 8.3 Optima l bi t allocatio n 22 9 8.4 Optima l Z P transceiver s 24 0 8.4.1 Optima l G zp 24 0 8.4.2 Optima l A zp 24 1 8.4.3 Summar y an d discussion s 24 3 8.5 Optima l zero-jammin g (ZJ ) transceiver s 24 7 8.5.1 Optima l S^ - 24 7 8.5.2 Optima l A zj 24 9 8.5.3 Summar y an d discussion s 24 9 8.6 Furthe r readin g 25 3 8.7 Problem s 25 4 9 D M T s y s t e m s wit h improve d frequenc y characteristic s 25 9.1 Sidelobe s matter ! 26 9.2 Overal l transfe r matri x 26 9.3 Transmitter s wit h subfilter s 26 9.3.1 Choosin g th e subfilter s a s a D F T ban k 26 9.3.2 D F T ban k implementatio n 26 9.4 Desig n o f transmi t subfilter s 27 9.5 Receiver s wit h subfilter s 27 9.5.1 Choosin g subfilter s a s a D F T ban k 27 9.5.2 D F T ban k implementatio n 27 9.6 Desig n o f receive r subfilter s 28 9.7 Zero-padde d transceiver s 28 9.8 Furthe r readin g 28 9.9 Problem s 28
9 0 3 5 6 6 2 6 7 7 0 5 5 6
X
CONTENTS
10 Minimu m redundanc y FI R transceiver s 29 10.1 Polyphas e representatio n 29 10.2 Propertie s o f pseudocirculant s 29 10.2.1 Smit h for m decompositio n 29 10.2.2 DF T decompositio n 29 10.2.3 Propertie s derive d fro m th e tw o decomposition s 29 10.2.4 Congruou s zero s 29 10.3 Transceiver s wit h n o redundanc y 30 10.3.1 FI R minima l transceiver s 30 10.3.2 II R minima l transceiver s 30 10.4 Minimu m redundanc y 30 10.5 Smit h for m o f FI R pseudocirculant s 30 10.6 Proo f o f Theore m 10. 2 31 10.6.1 Identica l Smit h form s 31 10.6.2 Zero s fro m differen t Bi decoupl e 31 10.6.3 A n exampl e o f derivin g th e Smit h for m o f 5](z ) 31 10.6.4 Smit h for m o f £(z ) 31 10.7 Furthe r readin g 31 10.8 Problem s 31
1 2 3 4 5 6 7 1 1 1 3 8 1 2 3 3 6 9 9
A Mathematica l tool s 32
3
B Revie w o f rando m processe s 32 B.l Rando m variable s 32 B.2 Rando m processe s 32 B.3 Processin g o f rando m variable s an d rando m processe s 33 B.4 Continuous-tim e rando m processe s 33
7 7 9 2 6
References 34
1
Index
355
Preface Recent year s hav e see n th e grea t succes s o f O F D M (orthogona l frequenc y division multiplexing ) an d D M T (discret e multitone ) transceiver s i n man y applications. T h e O F D M syste m ha s foun d man y application s i n wireles s communications. I t ha s bee n adopte d i n I E E E 802.1 1 fo r wireles s loca l are a networks, DA B fo r digita l audi o broadcasting , an d DV B fo r digita l vide o broadcasting. T h e D M T syste m i s th e enablin g technolog y fo r high-spee d transmission ove r digita l subscribe r lines . I t i s use d i n ADS L (asymmetri c digital subscribe r lines ) an d VDS L (very-high-spee d digita l subscribe r lines) . T h e O F D M an d D M T system s ar e b o t h example s o f D F T transceiver s t h a t employ redundan t guar d interval s fo r equalization . Havin g a guar d interva l can greatl y simplif y th e tas k o f equalization a t th e receive r an d i t i s now on e o f the mos t effectiv e approache s fo r channe l equalization . I n thi s boo k w e wil l study th e O F D M an d D M T unde r th e framewor k o f filte r ban k transceivers . Under suc h a framework, ther e ar e numerou s possibl e extensions . T h e freedo m in th e filte r ban k transceiver s ca n b e exploite d t o bette r th e system s fo r variou s design criteria . Fo r example , transceiver s ca n b e optimize d fo r minimu m bi t error rate , fo r minimu m transmissio n power , o r fo r highe r spectra l efficiency . We wil l explor e al l thes e possibl e optimizatio n problem s i n thi s book . T h e firs t thre e chapter s describ e th e majo r buildin g block s relevan t fo r th e discussion o f signa l processin g fo r communicatio n an d giv e th e tool s usefu l fo r solving problem s i n thi s area . Chapter s 4- 5 introduc e th e multirat e buildin g blocks an d filte r ban k transceivers , an d th e basi c ide a o f guar d interval s fo r channel equalization . Chapte r 6 give s a detaile d discussio n o f O F D M an d D M T systems . Chapter s 7-1 0 conside r th e desig n o f filte r ban k transceiver s for differen t criteri a an d channe l environments . A detaile d outlin e i s give n a t the en d o f Chapte r 1 . Thi s boo k ha s bee n use d a s a textboo k fo r a first-year graduate cours e a t Nationa l Chia o Tun g University , Taiwan , an d a t Nationa l Taiwan University . Mos t o f th e chapter s ca n b e covere d i n 16-1 8 weeks . Homework problem s ar e give n fo r Chapter s 2-10 . It i s ou r pleasur e t o t h a n k ou r familie s fo r th e patienc e an d suppor t durin g all phase s o f thi s time-consumin g project . W e woul d lik e t o t h a n k ou r univer sities, Nationa l Chia o Tun g Universit y an d Nationa l Taiwa n University , an d the Nationa l Scienc e Counci l o f Taiwa n fo r thei r generou s suppor t durin g th e writing o f thi s book . W e woul d als o lik e t o t h a n k ou r student s Chien-Chan g Li, Chun-Li n Yang , Chen-Ch i Lo , an d Kuo-Ta i Chi u fo r generatin g som e o f the plots . P P V wishe s t o acknowledg e th e Californi a Institut e o f Technology , the Nationa l Scienc e Foundatio n (USA) , an d th e Offic e o f Nava l Researc h (USA), fo r al l th e suppor t an d encouragement .
XI
1 Introduction T h e goa l o f a communicatio n syste m i s t o transmi t informatio n efficientl y and accuratel y t o anothe r location . I n th e cas e o f digita l communications , the informatio n i s a sequenc e o f "ones " an d "zeros " calle d th e bi t stream . T h e transmitte r take s i n th e bi t strea m an d generate s a n information-bearin g continuous-time signa l x a(t), a s i n Fig . 1.1 . W h e n th e signa l propagate s through th e channel , suc h a s wirelines , atmosphere , etc. , distortio n i s in evitably introduce d int o th e transmitte d signa l x a(t). A s a result , th e receive d signal r a(t) a t th e receive r i s i n genera l differen t fro m th e transmitte d signa l xa(t). T h e tas k o f th e receive r i s t o mitigat e th e distortio n an d reproduc e a bit strea m wit h a s fe w error s a s possible . 01001100... bit stream
xa(t)
transmitter
ra(t)
channel
receiver
0110110 bit strea
Figure 1 . 1 . Digita l communicatio n system .
A digita l communicatio n syste m i n genera l consist s o f man y buildin g blocks. Figur e 1. 2 show s a bloc k diagra m consistin g o f th e majo r buildin g blocks t h a t ar e relevan t t o th e topi c o f signa l processin g fo r communications . At th e transmitter , w e hav e a sequenc e o f bit s t o b e sen t t o th e receiver . T h e bits-to-symbol mapping bloc k take s severa l bit s o f inpu t an d map s th e bits t o a rea l o r comple x modulation symbol s(n). Som e processin g ma y b e applied t o thes e symbol s an d th e discrete-tim e outpu t x(n) i s the n converte d to a continuous-tim e signa l x a(t). T h e transmitte d signa l x a(t) propagate s through th e channel . A t th e receiver , th e receive d signa l r a(t) i s converte d t o a discrete-tim e signa l r(n). Usuall y som e signa l processin g i s applie d t o r(n) before th e receive r make s a decisio n o n th e transmitte d symbol s an d obtain s s~(n) (symbol detection). T h e symbol-to-bits mapping bloc k map s th e symbol s s~(n) back t o bi t stream . T h e reade r ca n fin d relevan t backgroun d materia l i n [50, 67 , 120 , 137] . W h e n a signa l propagate s throug h th e channel , distortio n i s invariabl y 1
1. Introductio n transmitter 01001100... bit strea m
bits-tosymbol mapping
transmitter! signal processing
a?o(0
D/C
Pi(«)
channel
r(n)
»■-(*)
H Pa W
C/D
receiver signal processing receiver
s(n)
i(n)
symbol detection!
symbolto-bits mapping
bit stream
Figure 1.2 . Simpl e bloc k diagra m fo r a digita l communicatio n system .
introduced t o th e t r a n s m i t t e d signal . I n additio n t o channe l noise , ther e is als o interferenc e fro m othe r symbols . A t tim e n th e receive d signa l r(n) depends no t onl y o n s(n) , bu t als o o n pas t t r a n s m i t t e d symbol s s(n — 1), s(n — 2 ) , . . . Thi s dependenc y i s terme d inter symbol interference (ISI) . T h e processing applie d t o r(n) a t th e receive r i s carrie d ou t t o obtai n estimate s of th e t r a n s m i t t e d symbol s befor e symbo l detection . Th e proces s i s generall y known a s equalizatio n an d th e signa l processin g bloc k i s calle d a n equalizer . W h e n th e receive r ca n perfectl y regenerat e th e t r a n s m i t t e d symbol s s(n) i n the absenc e o f channe l noise , w e sa y th e equalizatio n i s zero-forcing. I n man y applications, th e transmitte r als o help s wit h equalization . I n thi s cas e som e signal processin g i s applie d t o th e symbol s s(n) , an d th e resultin g outpu t x(n) is t r a n s m i t t e d a s show n i n Fig . 1.2 . One wa y t h a t th e transmitte r ca n greatl y eas e th e tas k o f equalizatio n a t the receive r i s t o divid e th e t r a n s m i t t e d signa l int o block s an d ad d redundan t samples, als o calle d a guar d interval , t o eac h block . Figur e 1. 3 show s tw o examples o f guar d interval s calle d zero padding an d cyclic prefix. I n th e zero-padding scheme , th e guar d interval s consis t o f "zeros. " W i t h cycli c prefix , the las t fe w sample s o f eac h bloc k ar e copie d an d inserte d a t th e beginnin g o f the bloc k a s show n i n th e figure. Th e guar d interva l act s a s a buffe r betwee n consecutive blocks . I f th e guar d interva l i s sufficientl y long , th e interbloc k interference (IBI ) ca n b e avoide d o r ca n b e late r remove d a t th e receive r b y discarding th e redundan t samples . W h e n ther e i s n o IBI , interferenc e come s only fro m th e sam e block . I n thi s case , intrabloc k interferenc e ca n b e cancele d easily usin g matri x operations . T h e mos t notabl e exampl e o f system s t h a t us e cycli c prefi x a s a guar d interval i s th e D F T (Discret e Fourie r Transform)-base d transceive r show n i n
3 block #1 bloc
(a)
s(n)
•" lllllHIIIII
M
k #2
l
2M
zeros padding
(b)
x(n)
zeros padding
illlllll Ihlllll. copy cyclic prefix
(c)
x(n)
ll l copy
cyclic prefix
M
II■ I
illl.l..ll
F i g u r e 1 . 3 . T w o example s o f guar d intervals , (a ) A signa l s(n) w i t h sample s divide d i n t o blocks ; ( b ) t h e sequenc e x{n) afte r zero s ar e padde d t o eac h bloc k o f s ( n ) ; (c ) t h e sequence x(n) afte
r a cycli c prefi x i s inserte d i n eac h bloc k o f s(n).
Fig. 1.4 . Th e signa l processin g a t th e transmitte r applie s IDF T (Invers e Dis crete Fourie r Transform ) t o th e inpu t bloc k o f modulatio n symbol s an d add s a cycli c prefi x t o th e IDF T outputs . Th e receive r discard s th e prefi x an d performs a DF T o f eac h block . Du e t o th e combinatio n o f cycli c prefi x an d IDFT/DFT operations , zero-forcin g equalizatio n ca n b e achieve d b y onl y a set o f simpl e scalar s calle d frequenc y domai n equalizer s (FEQs) . Whe n IS I is canceled , th e overal l syste m fro m th e transmitte r input s t o th e receive r outputs i s equivalen t t o a se t o f paralle l subchannel s a s show n i n Fig . 1.5 . In genera l th e subchannel s hav e differen t nois e variances . I f th e informatio n of the subchanne l nois e variance s i s availabl e t o th e transmitter , th e symbol s Si(n) ca n b e furthe r designe d t o bette r th e performance . Fo r example , th e symbols o f different subchannel s ca n carr y differen t number s o f bits (bi t load ing) [23] , and th e powe r o f the symbol s ca n als o be differen t (powe r loading) . The transmitte r ca n optimiz e bi t loadin g an d powe r loadin g t o maximiz e th e transmission rat e [24] . The cyclic-prefixe d DFT-base d syste m i s widel y use d i n bot h wire d an d wireless communicatio n systems . I t i s generall y calle d a n OFD M (orthogo nal frequenc y divisio n multiplexing ) syste m [27 ] in wireles s transmissio n an d a DM T (discret e multitone ) syste m [24 ] i n wire d DS L (digita l subscribe r lines) transmission . Fo r wireles s applications , th e channe l stat e informatio n is usuall y no t availabl e t o th e transmitter . Th e transmitte r i s typicall y in -
1. Introductio
n
modulation symbols
s(n)
IDFT
•• •
•• •
parallel to serial conversion
s0(n)
->
cyclic prefix
x(n)
W") transmitter signa l processing
FEQ
r(n)
discard prefix
DFT
§1
receiver signa l processing
Figure 1.4 . DFT-base d transceive r wit h cycli c prefi x adde d a s a guard interval .
dependent o f th e channe l an d ther e i s n o bi t o r powe r loading . Havin g a channel-independent transmitte r i s als o a ver y usefu l featur e fo r broadcastin g systems. Fo r broadcas t applications , ther e i s onl y on e transmitte r an d ther e are man y receivers , eac h wit h a differen t transmissio n p a t h . I t i s impossi ble fo r th e transmitte r t o optimiz e fo r differen t channel s simultaneously . I n O F D M system s fo r wireles s applications , usuall y withou t bi t an d powe r al location, th e transmitter s hav e th e desirabl e channel-independenc e property . T h e channel-dependen t par t o f the transceive r i s the se t o f F E Q coefficient s a t the receiver . I n D M T system s fo r wire d DS L applications , signal s ar e trans mitted ove r coppe r lines . Th e channe l doe s no t var y rapidly . Thi s give s th e receiver tim e t o sen d bac k th e channe l stat e informatio n t o th e transmitter . T h e transmitte r ca n the n allocat e bit s an d powe r t o th e subchannel s t o max imize th e transmissio n rate . Mor e detail s o n DS L transmissio n ca n b e foun d in [14 , 122 , 144 , 145] . Both th e O F D M an d D M T system s hav e bee n show n t o b e ver y usefu l transmission systems . Th e D M T syste m wa s adopte d i n standard s fo r ADS L (asymmetric digita l subscribe r lines ) [7 ] an d VDS L (very-high-spee d digita l subscriber lines ) [8 ] transmission . Th e O F D M system s hav e bee n adopte d in standard s fo r digita l audi o broadcastin g [39] , digita l vide o broadcastin g
^0
S]
'■
Figure 1.5 . Equivalen t paralle l subchannels .
[40], wireles s loca l are a network s [54] , an d broadban d wireles s acces s [55] . A variation o f th e cyclic-prefixe d DFT-base d transceive r i s th e so-calle d cyclic prefixed single-carrie r (SC-CP ) syste m [129] . T h e modulatio n symbol s ar e directly sen t ou t afte r a cycli c prefi x i s added . A s i n th e O F D M system , th e redundant cycli c prefi x greatl y facilitate s equalizatio n a t th e receiver . T h e SC-CP syste m i s par t o f th e broadban d wireles s acces s s t a n d a r d [55] . transmitter receive
\{n) _^ | ftf
wZ
sfo) -► ! fN
W T?
w*)-Httf
7 f~\
Hb o W | H
wZ
r
t
•• •
7 (~\
H *M-\V-) \ transmitting filters
(~\
H M o\z) \
J
U
* jv w
f
^
1
-►| H x{z) \-+\ ±N
(~\
i W|
wU
w
k
i
1
\
•• •• ••
H^M-IOOM^ receiving filters
Figure 1.6 . Filte r ban k transceiver , i n whic h onl y th e transmitte r signa l processin g and receive r signa l processin g part s ar e shown .
T h e insertio n an d remova l o f redundan t sample s ca n b e represente d us ing multirat e buildin g blocks . (Definition s o f multirat e buildin g block s wil l be give n i n Chapte r 4. ) Base d o n th e multirat e formulatio n th e DFT-base d system ca n als o b e viewe d a s a discrete-tim e filter bank transceiver (Fig . 1.6) , or a transmultiplexer. T h e transmitte r an d receive r eac h consist s o f a ban k o f discrete-time filters. Suc h a formulatio n lend s itsel f t o th e frequenc y domai n analysis o f th e transceiver . Fo r example , fo r th e transmitte r sid e i t offer s additional insigh t o n th e effec t o f individua l transmittin g filters o n th e trans mitted spectrum . Fo r th e receive r side , w e ca n analyz e th e subchanne l nois e
6
1. Introductio n
using a frequenc y domai n approach . Thes e observation s ar e ver y usefu l fo r designing th e transceive r fo r differen t criteria . I n DS L applications , goo d fre quency separatio n amon g th e transmittin g filters i s important fo r reducin g th e so-called spectral leakage, whic h i s a n undesire d spectra l componen t outsid e the transmissio n band . W h e n th e transmittin g filters hav e highe r stopban d attenuation, th e t r a n s m i t t e d spectru m ha s a faste r spectra l rollof f an d les s spectral leakage . Fo r th e receivin g filters, frequenc y separatio n i s als o impor t a n t fo r th e suppressio n o f interferenc e fro m radi o frequenc y signal s whic h share th e sam e spectru m wit h DS L signals . T h e filter ban k framewor k i s als o usefu l fo r designin g transceiver s wit h better spectra l efficiency . I n th e DFT-base d transceiver , a lon g guar d interva l is required i f the channe l impuls e respons e i s long. Th e us e o f a lon g redundan t guard interva l decrease s th e spectra l efficiency , s o w e woul d lik e th e guar d interval t o b e a s shor t a s possible . O n th e othe r hand , i t i s desirabl e t h a t th e guard interva l b e lon g enoug h s o t h a t F I R equalizatio n i s possible . Th e filter bank transceive r ca n b e use d t o introduc e guar d interval s o f a ver y genera l form. I n mos t cases , zero-forcin g equalizatio n ca n b e achieve d usin g a guar d interval muc h shorte r t h a n wha t i s neede d i n th e DFT-base d transceiver .
Outline Chapter 2 give s a n overvie w o f a digita l communicatio n system . Fro m a continuous-time channe l impuls e respons e an d channe l noise , th e equivalen t discrete-time channe l an d channe l nois e wil l b e derived . Th e equivalen t discrete-time channe l mode l i s ver y usefu l i n th e analysi s an d desig n o f digita l communication systems . W i t h suc h a model , ther e i s n o nee d t o rever t t o the continuous-tim e channe l an d noise . Terminolog y an d fundamental s suc h as modulatio n symbols , equalization , an d transmissio n ove r paralle l channel s are als o reviewed . Chapter 3 i s a stud y o f channe l equalization . W e wil l discus s th e desig n of F I R equalization , i n whic h th e receive r contain s onl y F I R filters. A ver y powerful too l calle d th e orthogonalit y principl e wil l b e introduced . Th e prin ciple i s o f vita l importanc e i n th e desig n o f MMS E (minimu m mea n squar e error) receivers . I t ca n b e use d fo r th e equalizatio n o f scala r channel s a s wel l as paralle l channels . Chapter 4 give s th e basic s o f multirat e signa l processing . Multirat e build ing block s ar e introduced . Th e operation s o f blockin g an d unblockin g t h a t appear frequentl y i n digita l transmissio n ar e describe d usin g multirat e build ing blocks . I n addition , polyphas e decompositio n o f filters i s reviewed . Base d on th e decomposition , th e polyphas e representatio n o f filter bank s ca n b e de rived an d efficien t polyphas e implementatio n ca n b e obtained . Reader s wh o are familia r wit h multirat e system s an d filter bank s ca n ski p thi s chapter . Chapter 5 formulate s som e moder n digita l communicatio n system s usin g multirate buildin g blocks . Th e filter ban k transceive r i s introduce d an d con ditions o n th e transmitte r an d receive r fo r zer o IS I ar e derived . Usin g th e multirate formulation , redundan t sample s ca n b e inserte d i n th e t r a n s m i t t e d signal. Tw o type s o f redundan t sample s ar e discusse d i n detail : cycli c prefi x and zer o padding . Th e matri x for m representation s o f thes e system s ar e use d frequently i n th e discussion s o f application s i n late r chapters .
7
1.1. Notation s
Chapter 6 i s devote d t o th e stud y o f som e usefu l DFT-base d transceivers . T h e O F D M , D M T , an d SC-C P system s wil l b e presente d an d th e performanc e will b e analyzed . T h e correspondin g filte r ban k representatio n wil l als o b e derived. Thes e transceiver s hav e foun d man y practica l application s du e t o the fac t t h a t the y ca n b e implemente d efficientl y usin g fas t algorithms . Chapter 7 deal s wit h th e desig n o f optima l transceiver s whe n th e trans mitter doe s no t hav e th e channe l stat e information , whic h i s usuall y th e cas e for wireles s applications . A s th e transmitte r doe s no t hav e th e channe l knowl edge, ther e i s n o bit/powe r allocation . W e conside r th e desig n o f minimu m bi t error rat e (BER ) transceiver s b y addin g a unitar y precode r a t th e transmitte r and a post-code r a t th e receive r o f th e O F D M system . W e wil l se e t h a t th e derivation o f th e minimu m B E R transceive r nicel y tie s th e O F D M an d th e SC-CP system s together . Chapter 8 deal s wit h th e desig n o f optima l transceiver s whe n th e channe l state informatio n i s availabl e t o th e transmitter . I n additio n t o bi t an d powe r allocation, th e transmitte r an d receive r ca n b e jointl y optimized . Fo r a give n error rat e an d targe t transmissio n rate , th e transceive r wil l b e designe d t o minimize th e transmissio n power . Chapter 9 describe s a metho d t o improv e th e frequenc y separatio n amon g the subchannel s fo r th e DFT-base d transceivers . Som e shor t F I R filter s calle d subfilters ar e introduce d i n th e subchannel s t o enhanc e th e stopban d atten uation o f th e transmittin g an d receivin g filters . B y usin g a slightl y longe r guard interval , w e ca n includ e th e subfilter s withou t changin g th e ISI-fre e property. W h e n subfilter s ar e adde d t o th e receiver , th e transmissio n rat e can b e increase d considerabl y i n th e presenc e o f narrowban d R F I (radi o fre quency interference) . Fo r th e transmitte r side , th e subfilter s ca n improv e th e spectral rollof f o f th e transmitte d spectru m whil e havin g littl e effec t o n th e transmission rate . Chapter 1 0 i s a stud y o f minimu m redundanc y fo r F I R equalization . Fo r a given channel , w e consider th e minimu m redundanc y t h a t i s required t o ensur e the existenc e o f F I R equalizers . W e wil l se e t h a t th e answe r i s directl y tie d t o what w e cal l th e congruou s zero s o f th e channel . T h e minimu m redundanc y can b e determine d b y inspectio n onc e th e zero s o f th e channe l ar e known .
1.1 Notation
s
• Boldface d lowe r cas e letter s represen t vector s an d boldface d uppe r cas e letters ar e reserve d fo r matrices . T h e notatio n A T denote s th e transpos e of A , an d A ^ denote s th e transpose-conjugat e o f A . • T h e functio n E [y] denotes th e expecte d valu e o f a rando m variabl e y. • T h e notatio n 1M i s use d t o represen t th e M x M identit y matri x an d 0 m n denote s a n m x n matri x whos e entrie s ar e al l equa l t o zero . T h e subscript i s omitted whe n th e siz e of the matri x i s clear fro m th e context . • T h e determinan t o f a squar e matri x A i s denote d a s d e t ( A ) . T h e nota tion diag[A o A i . . . A M - I ] denote s a n M x M diagona l matri x wit h the fcth diagona l elemen t equa l t o Afe .
8
1. Introductio n
• Th e notatio n W i s use d t o represen t th e M x M unitar y DF T matrix , given b y [Wlfcn = —Le-'M* ™ for 0 VM
< k,n < M - 1 .
• Fo r a discrete-tim e sequenc e c(n) , th e z-transfor m i s denote d a s C(z) and th e Fourie r transfor m a s C(e^). Fo r a continuous-tim e functio n xa(t), th e Fourie r transfor m i s denote d a s X a(jQ,).
2 Preliminaries o f digita l communications In thi s chapter , w e shal l revie w som e introductor y material s t h a t ar e usefu l for ou r discussio n i n subsequen t chapters . Fo r convenience , w e reproduc e i n Fig. 2. 1 th e bloc k diagra m fo r digita l communicatio n system s introduce d i n Chapter 1 . transmitter 01001100.. bit strea m
bits-tosymbol mappingl
s(n)
transmitter! signal processing
x(n)
xa(t) D/C
PiW
channel
r«(t)
r
r(n) P2(t)
C/D
receiver signal processing
u(n)
s(n)
symbol detection
receiver
symbolto-bits mapping
bit stream
Figure 2 . 1 . Simpl e bloc k diagra m fo r a digita l communicatio n system .
2.1 Discrete-tim
e channe l model s
In th e stud y o f communicatio n systems , th e transmissio n channe l i s ofte n modeled a s a continuous-tim e linea r tim e invarian t (LTI ) syste m wit h impuls e 9
10
2. Preliminarie s o f digita l communication s Qa(t)
xa(t)
ra(t)
channel
xa{t) Ca(t)
Figure 2 . 2 . LT I channe l model .
qa(f) x(n)
D/C
T
xa(t)
Px(t)
j; r
Ca(t)
a(t)
J
p2(t)
^
C/D
r(»)
T
T
(a)
x(n)
> c(»
-► r(n)
)
(b) Figure 2.3 . (a ) Th e syste m fro m x(n) t o r(n). (b model.
) Equivalen t discrete-tim e channe l
response c a(t) an d additiv e nois e q a(t). Thi s LT I channe l mode l i s show n i n Fig. 2.2 . Give n th e inpu t x a(t), th e channe l produce s th e o u t p u t CO
/
-co
ca(r)xa(t -
r)dr + q
a(t).
Letting th e symbo l V denot e convolution , w e ca n writ e ra{t) =
(x a *c a)(t) +
q
a(t).
Though th e channe l i s a continuous-tim e system , i t i s ofte n mor e convenien t to wor k directl y o n a n equivalen t discrete-tim e system . I n man y aspect s o f digital communications , a discrete-tim e channe l mode l i s ofte n adequat e an d much easie r t o wor k with . I n thi s section , w e shal l sho w t h a t th e syste m fro m x(n) a t th e transmitte r t o r(n) a t th e receive r (Fig . 2.1 ) i s equivalen t t o a discrete-time LT I system . T h e syste m fro m x(n) t o r(n) i s show n separatel y i n Fig . 2.3(a) . Suppos e t h a t th e sample s x{n) ar e space d apar t b y T seconds . Th e D / C converte r take s
11
2.1. Discrete-tim e channe l model s
the discrete-tim e sequenc e x(n) an d produce s a continuous-time impuls e trai n spaced apar t b y T: ^x(n)6a(t-nT), n
where S a(t) i s th e continuous-tim e Dira c delt a function . Afte r th e impuls e train passe s throug h th e transmittin g puls e pi(t) , w e ge t a continuous-tim e signal x a(t): oo
xa{t)= J2 x{k)pi(t-kT). /c= —o o
The signa l x a(t) i s transmitte d throug h th e channel . A t th e receivin g end , the receive d signa l i s oo
ra{t) =
(x a * ca){t) + q a(t) =
Y, x(k)(pi*c
a){t-kT)
+
q a(t).
/ c = — oo
The receive d signa l r a(t) i s first passe d throug h a receiving pulse P2(t), whic h produces oo
Wa{t) = (r a*P2)(t)= Y,
x(k)(
Pi*ca*P2)(t-kT)
+
(q a*P2)(t). (2.1
)
k= — oo
Then w a(t) i s uniformly sample d ever y T second s to produce the discrete-tim e output r(n) = w a(nT). Thi s unifor m samplin g operatio n i s denote d b y th e box labele d C/D . Defin e th e effectiv e continuous-tim e channe l an d effectiv e noise, respectively , a s follows : ce(t) =
(pi * ca *p 2 )(*) an d q e(t) = (q a *P2)(*)-
Then th e receive d discrete-tim e signa l i s oo
r(n) = Y^ x(k)c
e(nT
-
kT) + q e{nT).
A;= —oo
The abov e expressio n ca n b e rewritte n a s oo
r(n) =
y , x(k)c(n — k) + q(n), k= — oo
where c(n) an d q(n) are , respectively , th e discrete-tim e equivalen t channe l and nois e give n b y c(n) = (p i * c a *p2)(t) q{n) = (q
a*P2)(t)
t=nT (2.2
)
t=nT
Thus, th e syste m show n i n Fig . 2.3(a ) ca n b e represente d a s i n Fig . 2.3(b) , which contain s onl y discrete-tim e signal s an d systems . Th e transfe r functio n of th e discrete-tim e channe l i s give n b y oo
C(z)= Y
~n-
12
2. Preliminarie s o f digita l communication s
Observe t h a t c(n) i s th e sample d versio n o f th e cascad e o f th e transmittin g pulse pi (t) , th e channe l c a (t), an d th e receivin g puls e pi (t) . Choosin g differen t transmitting an d receivin g pulse s wil l affec t th e discrete-tim e channel . I n practice, th e channe l i s ofte n modele d a s a finit e impuls e respons e (FIR ) filter. Fro m (2.2) , w e ca n se e t h a t th e channe l lengt h i s inversel y proportiona l to th e samplin g perio d T . Reducin g T b y one-hal f wil l doubl e th e lengt h o f c(n). W h e n th e channe l C(z) ha s mor e t h a n on e nonzer o t a p , sa y c(0 ) an d c ( l ) , i t wil l introduc e interference betwee n th e receive d symbols . T o se e this , suppose t h a t ther e ar e n o "signa l processing " block s a t th e transmitte r an d receiver i n Fig . 2.1 , the n th e t r a n s m i t t e d signa l x(n) = s(n). Th e receive d signal wil l b e r(n) =
c(0)s(n) +
c(l)s(n —
1 ) + q(n);
the curren t symbo l s(n) i s contaminate d b y th e pas t symbo l s(n — 1) . Thi s phenomenon i s know n a s intersymbo l interferenc e (ISI) . Th e tas k o f symbo l recovery i s complicate d b y b o t h th e additiv e nois e q(n) an d ISI . Example 2. 1 Conside r a transmissio n syste m wit h effectiv e continuous-tim e channel c e(t) = (p i * c a *P2)(t) give n i n th e Fig . 2.4 . Vv (Pi*c ^- -
0
a*p2)(t)
^►
1
2t
Figure 2.4 . A n exampl e o f (p± * c a *P2)(t).
Suppose w e sen d on e sampl e o f x(n) pe r second , i.e . th e samplin g perio d T = 1 . The n th e discrete-tim e equivalen t channe l i s c(n) = 5{n — 1), a delay . T h e channe l doe s no t introduc e ISI . W h e n w e increas e ou r transmissio n rat e to tw o sample s pe r second , the n th e samplin g perio d become s T = 0. 5 an d the discrete-tim e equivalen t channe l i s C(z) = O.bz -1 + z~ 2 + 0.5z~ 3. T h e channel become s a three-ta p F I R channel . W e se e t h a t th e faste r w e sen d th e samples x(n), th e longe r th e F I R channe l c{n). ■ Note t h a t ther e i s n o carrie r modulatio n i n th e syste m show n i n Fig . 2.1 . This i s know n a s baseban d communication . I n wireles s communications , th e signal x a(t) i s modulate d t o a carrie r frequenc y f c fo r transmission , a s show n in Fig . 2.5 . Thi s i s know n a s passban d transmission . Fo r passban d commu nications, afte r carrie r modulatio n th e signa l t h a t i s t r a n s m i t t e d throug h th e channel c a(t) i s give n b y
va(t) =
2Re{x
a(t)e^^},
where i?e{« } denote s th e rea l part . A t th e receiver , th e receive d signa l i n thi s case become s y a(t) = (v a * c a)(t) + q a(f). Carrie r demodulatio n i s performe d to obtai n th e baseban d signal 1 ra{t) =
y
a(t)e-^^.
13
2 . 1 . Discrete-tim e channe l model s Va(t])
Xa(t)
x(n) D/C
t
-+
P,(t)
carrier mod.
ya(t)
channel
ra{t)
carrier w demod.
P2(t)
—> C/D
t
T
T
Figure 2.5 . Passban d communicatio n channel .
By followin g a simila r procedure , on e ca n sho w (Proble m 2.3 ) t h a t th e syste m sandwiched betwee n th e C / D an d D / C converter s i n a passban d communica tion syste m i s als o equivalen t t o a discrete-tim e LT I system . I n thi s case , th e equivalent discrete-tim e channe l an d nois e are , respectively , give n b y c(n)
(pi *c a *P2)(t)
q(n)
t=nT
(2.3)
where c a(t) = c a(t)e~j27r^ct an d q a(t) = q a(t)e~j27r^ct. Fro m thi s relation , on e can clearl y se e th e effec t o f carrie r modulation : wha t th e transmitte d signa l xa(t) see s i s a frequency-shifte d versio n o f th e origina l channe l c a(t) an d nois e qa(t). Not e t h a t b o t h th e channe l impuls e respons e c(n) an d th e channe l noise q(n) ar e comple x fo r passban d transmissio n du e t o th e t e r m e _ j 2 7 r ^ c t . For baseban d transmission , thes e quantitie s ar e real . Channel nois e Throughou t thi s book , w e wil l assum e t h a t th e channe l noise q(n) i s a zero-mean wide sense stationary (WSS) Gaussian rando m process. Fo r baseban d transmission , q(n) i s rea l an d th e probabilit y densit y function (pdf ) o f a zero-mea n Gaussia n nois e q(n) i s give n b y
fM
I
V/2A/" 0
(2.4)
where A/ o i s th e nois e variance . Figur e 2. 6 show s th e well-know n bell-shape d Gaussian pd f fo r differen t value s o f A/o, mor e widesprea d fo r a large r variance . For passban d transmission , th e channe l nois e q(n) i s i n genera l modele d a s a zero-mea n circularly symmetric complex Gaussian rando m variabl e whos e pdf i s give n b y
fq(q) = - U - ( « ) M / - o, (2.5 7TA/0
)
where q = qo + jqi an d A/ o i s th e varianc e o f q. T h e rea l an d imaginar y part s are b o t h zero-mea n Gaussia n an d the y hav e equa l variance : E[q^] = E[q\] = AA0/2. Thi s pd f i s show n i n Fig . 2. 7 fo r Af 0 = 1 . In th e following , w e will describ e som e commonl y use d model s o f equivalen t discrete-time channels . Thes e models , thoug h simplified , ar e usefu l fo r th e analysis o f digita l communicatio n systems . The y ar e als o frequentl y employe d in numerica l simulation s t o evaluat e th e syste m performance . 1 T h e high-frequenc y componen t centere d aroun d 2f c i s i n genera l eliminate d b y a low pass filte r i n th e proces s o f carrie r demodulation .
14
2. Preliminarie s o f digita l communication s
0.5 0.4
0.3 0.2 0.1 0 -
4
-
2
0
2
4
q Figure 2.6 . Th e pd f o f a zero-mean rea l Gaussia n rando m variable .
AGN an d AWG N channel s A channe l i s calle d a n AG N (additiv e Gaus sian noise ) channe l whe n th e channe l satisfie s th e followin g tw o properties . (1) It s channe l impuls e respons e i s
c(n) =| v J v= S(n) J ^
1
'U
=
°'
0 , otherwise
.
(2) Th e channe l nois e q(n) i s a Gaussia n rando m process . If i n additio n t o bein g a Gaussia n rando m process , q(n) i s als o white , t h a t is , E{q(n)q*(m)} = 0 wheneve r m ^ n , the n th e channe l i s a n AWG N (additiv e white Gaussia n noise ) channel . W h e n th e channe l i s a n AG N o r AWG N channel, ther e i s n o IS I an d th e transmissio n erro r come s fro m th e channe l noise only . FIR channel s I n man y applications , th e channe l no t onl y introduce s ad ditive nois e q(n), bu t als o distort s th e t r a n s m i t t e d signal . Th e channe l c(n) i s no longe r a n impulse , an d i n genera l i t ha s a causa l infinit e impuls e respons e (IIR). Fo r th e purpos e o f analysis , th e channe l i s ofte n modele d a s a finit e impulse respons e (FIR ) filter, t h a t i s L
C(z) =
J2c(n)z- n. (2.6 n=0
)
2.1. Discrete-tim e channe l model s
15
-5 -
5
Figure 2.7 . Th e pd f o f a circularl y symmetri c comple x Gaussia n rando m variable .
T h e impuls e respons e i s nonzer o onl y fo r a finit e numbe r o f coefficient s (o r taps). T h e integer s L an d L + 1 are , respectively , th e channe l orde r an d channel length . B y makin g L larg e enough , a causa l II R filte r ca n b e wel l approximated b y a n F I R filter . I n th e frequenc y domain , th e magnitud e re sponse o f th e F I R channe l | C ( e j a ; ) | i s no t fla t unles s c{n) ha s onl y on e nonzer o t a p . T h e channe l ha s differen t gains fo r differen t frequenc y components . T h u s such channel s ar e als o know n a s frequency-selectiv e channels . W h e n c{n) has onl y on e nonzer o t a p , i t i s calle d frequency-nonselective . Random channel s wit h uncorrelate d tap s I n man y situations , th e exac t channel impuls e respons e ma y no t b e available , an d onl y th e statistic s o f th e channel i s known . On e o f th e widel y adopte d channe l model s assume s t h a t the tap s ar e zero-mea n uncorrelate d rando m variable s wit h know n variances . In thi s case , c(n) satisfie s th e followin g conditions : (1) E[c(n)} = 0, (2) E[c{n)c*{n-k)] = a
2
J{k).
(2.7)
T h e se t o f quantitie s {cr^} i s calle d th e powe r dela y profile . W e sa y t h a t th e channel ha s a n exponentia l powe r dela y profil e whe n a^ decay s exponentiall y
16
2. Preliminarie s o f digita l communication s
with respec t t o n (se e Fig. 2.8) . I f th e channe l impuls e response s c(n) ar e in dependent identica l rando m variables , i t i s often calle d a n i.i.d . (independen t identically distributed ) channel . Thes e channe l model s ar e ofte n employe d i n numerical simulation s whe n w e want t o lear n th e syste m performanc e "aver aged ove r al l channels. " 1
1/2
2 n
1/4 , 1/ 8 1/ 16 || , 1/3 2 01
2
3
4
5
►
Figure 2.8 . Exponentia l powe r delay profil e with x(n)
Figure 2.9 . LT I equalizer .
where th e syste m dela y n o = 0 i n thi s case . T h e n th e erro r e(n ) = (q * a)(n) consists onl y o f noise . I n practice , th e II R zero-forcin g equalize r 1/C(z) i s not frequentl y use d becaus e th e equalize r 1/C(z) wil l b e unstabl e whe n C(z) has zero s outsid e th e uni t circle . T o avoi d thi s problem , w e ca n us e a n F I R equalizer a(n). T h e outpu t o f th e equalize r i s x(n) =
(a * c* x)(n) + ( a * q)(n).
There ar e tw o commo n way s o f designin g a(n). On e i s t o choos e a(n) suc h t h a t th e IS I i s smal l i n som e sense . T h a t is , w e woul d lik e th e convolutio n (c * a)(n) t o b e a s clos e t o a dela y 5{n — no) a s possible . Anothe r wa y o f designing a(n) i s t o includ e th e effec t o f b o t h channe l nois e an d ISI . Not e t h a t whe n C(z) ha s a zer o zo ^ 0 , th e produc t A(z)C(z) canno t b e a dela y z~n° fo r an y F I R equalize r A(z) becaus e A(z)C(z) wil l hav e a zer o a t ZQ. In particular , whe n a n F I R channe l ha s mor e t h a n on e nonzer o t a p , a n F I R equalizer ca n neve r b e zero-forcing ; th e outpu t erro r wil l contai n b o t h th e channel nois e an d ISI . W e wil l stud y thes e solution s o f F I R equalizer s i n mor e detail i n Chapte r 3 . Signal t o nois e rati o (SNR ) I n a digita l communicatio n system , w e ofte n measure th e performanc e b y evaluatin g th e rati o o f signa l powe r £ x t o th e mean square d erro r a 2e = E[\x(n) — x(n — no)|2 ]. Thi s rati o i s know n a s th e signal t o nois e rati o (SNR ) an d i t i s give n b y
W h e n th e equalize r i s no t zero-forcing , th e erro r e(n ) = x(n) — x(n — no) contains no t onl y noise , bu t als o IS I terms . I n thi s case , /3 is als o know n a s the signa l t o nois e interferenc e rati o (SINR) , bu t w e shal l refe r t o i t simpl y as SNR .
2.3 Digita
l modulatio n
In digita l communicatio n systems , th e transmitte d bi t strea m consistin g o f "zeros" an d "ones, " i s ofte n partitione d int o segment s o f length , say , b. Eac h segment (codeword ) i s the n mappe d t o on e membe r i n a se t o f 2 b rea l o r complex numbers . Thi s proces s i s know n a s digita l modulation . T h e rea l or comple x number s representin g th e codeword s ar e know n a s modulatio n
18
2. Preliminarie s o f digita l communication s
symbols. A t th e receiver , base d o n th e receive d informatio n a decisio n wil l be mad e o n th e symbo l transmitted . Thi s proces s i s calle d symbo l detection . T h e resultin g symbo l i s the n decode d t o a 6-bi t codewor d (symbol-to-bit s mapping). Man y type s o f digita l modulation s hav e bee n developed . I n th e following, w e wil l describ e tw o widel y use d digita l modulatio n scheme s know n as th e puls e amplitud e modulatio n (PAM ) an d q u a d r a t u r e amplitud e mod ulation (QAM) . W e wil l analyz e thei r performanc e fo r transmissio n ove r a n AWGN channel . Not e t h a t i n a baseban d communicatio n system , wher e th e channel i s real , PA M i s ofte n employed , wherea s i n a passban d syste m th e channel i s complex , an d QA M i s usuall y employed .
2.3.1 Puls
e amplitud e modulatio n (PAM )
In 6-bi t puls e amplitud e modulatio n (PAM) , a codewor d o f b bits i s m a p p e d to a rea l numbe r G { 0 , 1 , . . ., 2 b~1 - 1} . (2.8
ek
s = ±(2f c + l ) A , wher
)
Figure 2.1 0 show s th e possibl e value s o f a PA M symbo l fo r b = 2 an d 6 = 3 , respectively [120] . Th e Gra y cod e indicate d i n th e figure wil l b e explaine d later. Suc h figures ar e calle d signa l constellations . Th e minimu m distanc e between tw o constellatio n point s i s 2A . Assum e t h a t al l constellatio n point s are equiprobable . The n th e signa l powe r o f a 6-bi t PA M constellatio n i s give n by gs = E[s 2] =
^-(2 2b-l). (2.9
)
T h e signa l powe r i s proportiona l t o th e squar e o f th e minimu m distanc e 2A . W h e n th e minimu m distanc e i s fixed, th e signa l powe r wil l increas e b y roughl y 6 d B fo r ever y additiona l bit .
(a)
(b)
-3A -
AA
-7A -5
3
A -3 A -
A
AA
3
A5
A7
A
Figure 2 . 1 0 . PA M constellations : (a ) 2-bi t PAM ; (b ) 3-bi t PAM .
Suppose t h a t a 6-bi t PA M symbo l s o f th e for m i n (2.8 ) i s t r a n s m i t t e d through a rea l zero-mea n AWG N channe l wit h nois e varianc e A/o . Th e re ceived signa l i s r = s + q. Assum e t h a t s an d q ar e independent . T h e conditional pd f o f th e receive d signa l r give n t h a t s i s t r a n s m i t t e d i s fr\s(r\s)=
f r\3(s +
q\s) = f
q(q),
2.3. Digita
l modulatio n
19
where f q(q) i s th e Gaussia n pd f give n i n (2.4) . Fro m th e receive d signa l r , w e make a decisio n o n th e transmitte d symbol . T h e commonl y adopte d decisio n rule i s th e neares t neighbo r decisio n rul e ( N N D R ) . I n a n NNDR , w e mak e a decisio n s = (2 z + l ) A , i
f \r- (2 z + 1)A | < \r - (2 j + 1)A | fo r al l j . (2.10
)
T h e decisio n J i s th e constellatio n poin t t h a t i s closes t t o th e receive d sig nal r . Fo r al l th e interio r constellatio n points , th e symbo l wil l b e detecte d erroneously i f th e channe l nois e ha s \q\ > A . Fo r th e tw o exterio r constella tion point s s = (2 b — 1)A an d s = (—2 6 + l ) A , w e wil l mak e a n erro r whe n q < — A an d q > A , respectively . Therefor e th e probabilit y t h a t th e detectio n is erroneou s i s give n b y P(s + s\s) =
( P(q > A ) , fo r s = ( - 2 6 + 1)A ; I P(q< - A ) , fo r s = (2 6 - 1)A ; [ P(\q\ > A ) , otherwise .
Using th e formul a fo r th e Gaussia n pd f give n i n (2.4) , th e conditiona l proba bility o f symbo l erro r i s give n b y
P(s^s\s)
\ Q ^W^W^ for* =
± (2>-l)A;
1 2Q i)l {2»-W 0)>0thCTWiSe '
where th e functio n Q(x) i s th e are a unde r a Gaussia n tail , define d a s
i r°°
Q{x)=
^mL e
~r2/2dT- (2
-n)
For equiprobabl e PA M symbols , th e symbo l erro r rat e (SER ) i s give n b y
SERpam(b) =
\ h E P&*
s
\g) = 2(1 " 2- b )Q(J ( 2 2 b 3 _ g s 1 ) A / - o ). (2.12
)
As th e functio n Q(x) decay s rapidl y wit h respec t t o x , fo r a moderat e SN R value mos t symbo l error s happe n betwee n adjacen t constellatio n points . W e can us e a mappin g i n whic h th e codeword s o f adjacen t constellatio n point s differ b y onl y on e bit . A n erro r betwee n adjacen t constellatio n point s result s only i n on e bi t error . T h e widel y use d Gra y cod e i s a mappin g schem e t h a t possesses thi s property . Figure s 2.11(a ) an d (b ) sho w a Gra y cod e mappin g for 2-bi t PA M an d 3-bi t PAM , respectively . W h e n th e Gra y cod e i s employe d in a 6-bi t PA M modulation , th e bi t erro r rat e (BER ) an d SE R ar e relate d approximately b y [120 ] BERpam(b) «
-SER
pam(b).
(2.13
)
From th e abov e formulas , w e se e t h a t th e bi t erro r rat e depend s o n th e signa l power S s an d th e nois e powe r A/o - T h e B E R curve s ar e ofte n plotte d agains t the SNR . Fo r AWG N channels , th e SN R i s simpl y th e rati o £ 8/N0. I n orde r
2. Preliminarie s o f digital communication s
20
to evaluat e th e accurac y o f th e BE R formul a derive d above , w e comput e th e BER curve s throug h Mont e Carl o simulatio n i n Fig. 2.12 . In the Monte Carlo simulation , sufficientl y man y round s o f simulation ar e carrie d ou t an d the result s ar e average d t o give a n accurate estimat e o f the actua l BER . As a rul e o f thumb, fo r a BER o f 10—z, w e nee d t o generate a t least 10 0 * 10z bits i n th e simulation s to obtain a n accurat e estimate . I n Fig . 2.12 , th e BE R approximations obtaine d fro m (2.13 ) ar e plotte d i n the dotte d curve s an d th e BER curve s obtained fro m th e Mont e Carl o simulation ar e plotted i n the soli d curves (a s the dotte d curve s almos t overla p with th e soli d curves , we see onl y the soli d curve s i n the figure) . Sinc e th e tw o curve s matc h almos t perfectly , the formul a i n (2.13 ) give s a very good approximatio n o f the tru e BE R values . Comparing th e PA M o f different constellatio n sizes , w e se e tha t fo r a BE R of 10~ 4 , w e nee d a n SNR o f around 11. 7 dB , 18. 2 dB , an d 24. 2 d B fo r 1-bit, 2-bit, an d 3-bi t PAM , respectively . T o achiev e th e sam e BER , th e require d SNR increase s roughl y b y 6 dB fo r ever y additiona l bit . (a) "
[V)
00
01
11
10
-3A
-A
A
3A
000
001
011
010
110
-7A -5 A -3 A - A A
3
111
101
A5
100
A7 A
Figure 2 . 1 1 . Gra y cod e mapping : (a ) 2-bit PAM ; (b ) 3-bit PAM .
Equation (2.12 ) relate s th e erro r rat e t o the SN R £ s/Afo. I t can b e used to obtai n th e numbe r o f bits tha t ca n b e transmitted fo r a given SN R an d target erro r rate . B y rearrangin g th e term s i n (2.12), w e ge t >=ilo&(l+
2v ^\
where
r para
L
r
^, ( 2 . 4
)
para
^ J-J -ftpam
2(1-2-^ If on e compare s th e formul a fo r b with th e channe l capacity , whic h i s given by 0.5log2 ( 1 + Ss/Afo) (bit s pe r use) , the quantit y T pam represents th e differenc e i n the require d SN R betwee n th e PAM schem e an d th e channe l capacity . Therefor e T parn is also know n a s th e SNR gap . Fo r a moderate erro r rate , th e inverse Q function i s relatively flat. Therefor e th e SN R ga p is well approximate d b y Tpam « \ [Q- 1 (SER pam/2)]2 .
(2.15
)
The SN R ga p i s a quantity tha t depend s onl y o n th e erro r rate . I n Table 2.1, we list th e value s of Tpam for som e typica l SER parn.
21
2.3. Digita l modulatio n
10 — B — 2-bi t PA M 0 3-bi t PA M 10"
10"' DC LU CO
10"'
10
10
10 1
52 SNR(dB)
0
25
30
Figure 2 . 1 2 . BE R performanc e o f PA M i n a real zero-mea n AWG N channel . Th e soli d curves ar e th e experimenta l value s obtaine d fro m th e Mont e Carl o simulatio n an d th e dotted curve s (almos t indistinguishabl e fro m th e soli d curves ) ar e th e theoretica l value s obtained fro m th e formul a i n (2.13) .
O Hi -LLpam
r L
para
Fpam i n d B
10"
2
2.21
3.44
10"
3
3.61
5.57
10" 4
5.05
7.03
icr icr 6
6.50
8.13
7.98
9.02
7
9.46
9.76
5
lO"
Table 2.1 . Th e SN R ga p T parn in (2.15 )
Binary phas e shif t keyin g ( B P S K ) modulatio n Fo r th e specia l cas e o f PAM wit h 6 = 1 , ther e ar e onl y tw o constellatio n points , + A an d —A , an d thi s is mor e commonl y know n a s binar y phas e shif t keyin g (BPSK ) modulation . For B P S K symbols , th e bi t erro r rat e an d symbo l erro r rat e ar e th e same .
22
2. Preliminarie s o f digita l communication s
T h e formul a (2.12 ) reduce s t o BERbpSk=
SERbp Sk=
Q
Unlike (2.13) , th e abov e B E R formul a fo r B P S K i s exact ; n o approximatio n is made . Example 2. 2 Suppos e th e transmitte r i s t o sen d th e followin g bi t stream : 000 01 0 11 1 11 0 01 0 10 0 10 1 110 . Assume t h a t th e modulatio n schem e i s a 3-bi t PA M wit h Gra y cod e mappin g as i n Fig . 2.10 . Th e "bits-to-symbo l mapping " bloc k take s ever y thre e inpu t bits an d map s t h e m t o a 3-bi t PA M symbol . Th e first thre e bit s ar e "000 " an d thus fro m Fig . 2.1 0 w e kno w t h a t th e first PA M symbo l i s — 7A. The n th e next thre e bit s ar e "010 " an d fro m th e figure w e hav e th e nex t PA M symbo l as —A . Continuin g thi s process , w e find t h a t th e abov e sequenc e o f 2 4 bit s i s m a p p e d t o th e followin g PA M symbols : s(n) :
- 7 A , - A , 3A , A , - A , 7A , 5A , A .
Now suppos e t h a t th e abov e PA M symbol s ar e t r a n s m i t t e d ove r a n AWG N channel an d du e t o channe l nois e th e receive d sequenc e i s r(n) :
- 9 A , - 0 . 7 A , 1.9A , 1.1A , - 1 . 3 A , 6.6A , 4.8A , 2.1A .
Assume t h a t a t th e receive r ther e i s n o additiona l signa l processin g an d t h a t N N D R i s applie d directl y t o r(n). Th e outpu t o f th e symbo l detecto r wil l b e s(n) :
- 7 A , - A , A , A , - A , 7A , 5A , 3 A .
Comparing s~(n) wit h s(n) , w e find t h a t w e hav e mad e tw o symbo l error s out o f eigh t t r a n s m i t t e d symbol s (indicate d b y boldface d symbols) . I n thi s experiment, th e symbo l erro r rat e i s given b y SER = 0.25 . Afte r th e "symbol to-bits mapping " bloc k usin g Gra y code , w e obtai n th e followin g sequence : 000 01 0 11 0 11 0 01 0 10 0 10 1 111 . Comparing th e decode d sequenc e wit h th e t r a n s m i t t e d sequence , tw o bit s (indicated b y boldface d numbers ) ar e receive d erroneously . Th e bi t erro r rat e is BER = 1/12 , whic h i s equa l t o SER/3 i n thi s exampl e becaus e th e tw o erroneously detecte d symbol s ar e adjacen t t o th e actua l t r a n s m i t t e d symbols .
2.3.2 Quadratur
e amplitud e modulatio n ( Q A M )
Unlike PA M symbols , QA M symbol s ar e comple x numbers . Fo r 26-bi t QAM , a codewor d o f 2b bit s i s m a p p e d t o a symbo l o f th e form 2 s = ±(2f c + l ) A ± j ( 2 Z + l ) A , w
h e r e k,
I G { 0 , 1 , . . ., 2 6 _ 1 - 1} . (2.16 )
2 Unless mentione d otherwise , th e QA M symbol s i n this boo k hav e a square constellation . Hence eac h QA M symbo l carrie s a n eve n numbe r o f bits .
23
2.3. Digita l modulatio n
Figure 2.13(a ) an d (b ) show , respectively , th e signa l constellation s fo r 2-bi t and 4-bi t QA M wit h th e correspondin g Gra y codes . T h e specia l cas e o f 2 bit QA M i s als o know n a s q u a d r a t u r e phas e shif t keyin g ( Q P S K ) . Al l th e four constellatio n point s i n Q P S K hav e th e sam e magnitude . Fro m (2.8 ) an d (2.16), w e se e t h a t th e rea l an d imaginar y part s o f a 26-bi t QA M symbo l ca n be viewe d a s tw o 6-bi t PA M symbols . Usin g thi s relation , man y result s fo r the QA M symbo l ca n b e obtaine d b y modifyin g thos e o f th e PA M symbols . For example , th e signa l powe r o f th e 26-bi t QA M symbo l i s
£s=E[\Sf]=
2
-^(2*b-l).
It i s twic e t h a t o f a 6-bi t PA M symbol .
•
01
-A 00
•
• A
• -A
A •
11
10
•
•
0110
1110
0011
•
• A 0111
1111
1011
0001
• -A 0101
1101
1001
•
.-3A
^3A •
0000
(a) (b
#3A_
0010
• I
^A
A •
•
0100
1100
1010
•
3A •
•
1000
)
Figure 2 . 1 3 . QA M constellatio n an d it s Gra y cod e mapping : (a ) 2-bi t QA M (als o known a s QPSK) ; (b ) 4-bi t QAM .
Suppose t h a t a 26-bi t QA M symbo l wit h powe r S s i s transmitted throug h a zero-mean comple x AWG N channe l wit h nois e varianc e A/o - Suppos e t h a t th e noise i s circularl y symmetri c s o t h a t it s pd f i s a s give n i n (2.5) . T h e n th e rea l part an d th e imaginar y par t ar e b o t h Gaussia n wit h varianc e A/o/2. Therefor e the transmissio n o f a 26-bi t QA M symbo l throug h a comple x AWG N channe l with nois e varianc e A/ o ca n b e viewe d a s th e transmissio n o f tw o 6-bi t PA M symbols, eac h wit h powe r £ s / 2 , throug h tw o rea l AWG N channels , eac h wit h noise varianc e A/o/2 . Fro m earlie r discussions , w e kno w t h a t whe n a 6-bi t PAM symbo l wit h powe r £ s/2 i s transmitte d throug h a rea l AWG N channe l
24
2. Preliminarie s of digital communication s
with nois e varianc e A/o/2, th e SE R i s given b y
5£fip„.„(» = 2(l-l)0( v / ( 2 2 t 3 _^ / 2 ). A QA M symbo l i s correctly decode d whe n bot h th e rea l an d imaginar y part s are correctl y decoded . Th e probabilit y fo r this i s (1 — S E Rparn{b))2. Thu s the SE R o f a 26-bit QA M symbo l i s given b y SERqam(2b) =
2SERpam(b) -
2
SER
pam(b).
When th e erro r rat e i s small, w e ca n ignor e th e second-orde r ter m an d th e SER i s well approximate d b y
SERqam{2b) « 2SERpam(b) = 4(l - ^ ) Q ( J^[^J- (
2 17
- )
Similar t o th e PA M case , if we use Gra y code s to ma p th e rea l an d imaginar y parts, respectively , a s shown i n Fig. 2.13 , the n an y QA M symbo l an d its nearest neighbo r wil l diffe r onl y b y on e bit . I n thi s case , th e BE R o f a 26-bit QAM ca n b e approximate d b y 1 -SER qam(2b). (2.18 26~
BERqam(2b) «
)
Figure 2.1 4 show s th e BE R performanc e o f 26-bit QA M fo r differen t b using Monte Carl o simulatio n an d th e formul a i n (2.18). Agai n w e se e tha t the experimental and theoretical BER curves match almos t perfectly . Th e formul a in (2.18 ) give s a very goo d approximatio n o f th e actua l BER . Comparison o f 6-bit PA M an d 26-bi t QA M Usin g the formulas i n (2.12) , (2.13), (2.17) , an d (2.18) , fo r th e sam e SN R £ 8/Af0 we hav e BERqarn(2b) «
BER
parn(b);
the BER s o f a 26-bi t QA M an d a 6-bi t PA M ar e approximatel y th e same , but th e bi t rat e o f QA M i s twice tha t o f PAM. However , w e should not e tha t the compariso n i s based o n differen t channe l settings . Fo r PAM , th e symbol s are rea l an d th e channe l nois e i s also rea l wit h varianc e A/o . Fo r QAM , th e symbols ar e comple x an d th e channe l nois e is complex wit h th e variance s o f both th e rea l and imaginar y part s equa l to A/o/2. I n other words , in passban d communication i f we choose a QAM ove r a PAM o f the sam e bi t rate , w e will have a gain i n SNR. Fo r example , fo r a BER o f 1 0- 4 , w e se e fro m Fig . 2.1 2 and Fig . 2.1 4 tha t a 2-bit QA M need s a n SN R o f aroun d 11. 7 d B wherea s a 2-bit PA M need s a n SNR o f around 18. 2 dB ; w e hav e a saving of 6.5 d B b y using QAM . For QA M symbol s w e can als o expres s 2 6 in term s o f the SNR , £ s/A/o, as we di d fo r PA M symbol s in (2.14). B y rearrangin g (2.17) , w e obtai n 2b = log2 (l + \-
£
-^) ,
L qam J
(2.19
)
25
2.3. Digita l modulatio n
* — 2-bi t QA M e — 4-bi t QA M 3 — 6-bi t QA M
10 1
52 SNR(dB)
0
Figure 2.14 . BE R performanc e o f QA M i n zero-mea n AWG N channels . Th e soli d curves ar e th e experimenta l value s obtaine d fro m th e Mont e Carl o simulatio n an d th e dotted curve s (almos t indistinguishabl e fro m th e soli d curves ) ar e th e theoretica l value s obtained fro m th e formul a i n (2.18) .
where T qarn i s the SN R ga p give n b y SERa 4(1 -2~
b
)
(2.20)
Again fo r moderat e erro r rates , th e followin g expressio n give s a very accurat e approximation o f th e SN R gap : ^qam ~ ~ \Q~ (S E Rqarn / 4)]
(2.21)
In Tabl e 2.2 , w e list th e value s o f Tqarn fo r som e typica l SER qarn. Althoug h the formul a i n (2.19 ) i s derive d fo r even-bi t QA M symbols , th e right-han d side i s als o use d fo r estimatin g th e numbe r o f bit s tha t ca n b e transmitte d when ther e i s n o even-bi t constrain t [38] . Quadrature phase shift keyin g (QPSK ) modulatio n Whe n a QAM sym bol ha s onl y tw o bits , i t i s als o commonl y know n a s a QPS K symbol . Th e constellation an d a Gra y cod e mappin g fo r QPS K ar e show n i n Fig . 2.13(a) . Suppose a QPS K symbo l wit h signa l powe r £ s i s transmitte d throug h a n AWGN channe l wit h nois e varianc e A/o - Fo r equiprobabl e QPS K symbols , we ca n comput e th e BE R b y computin g th e BE R fo r an y constellatio n poin t because o f th e symmetry . Suppos e tha t "11 " is transmitted . Le t q r an d qi
26 2
. Preliminarie s o f digita l communication s 3 -t^ -t^qam 2
ioicr 3 io- 4 io~5 io~6 io- 7
-1- qam
2.63
4.04 5.48
J- qam m
4.19
6.06 7.39
6.95
8.42
9.91
9.96
8.42
9.25
Table 2.2 . Th e SNR gap Tqarn i n (2.21)
be, respectively , th e rea l an d imaginar y part s o f nois e q. The n th e firs t bi t i s in erro r whe n q r < — A an d th e secon d bi t i s i n erro r whe n qi < —A . Thu s the BE R o f QPS K i s given b y BERqpsk=
0.5P(q r < - A ) + 0.5P(f t < - A ) = Q
The abov e BER formula fo r QPS K i s exact an d i t i s identical to that o f BPSK . Other modulatio n scheme s PA M an d QA M ar e th e mos t commonl y used modulatio n scheme s du e t o thei r simplicity . Ther e ar e man y othe r mod ulation schemes , for exampl e phas e shif t keyin g (PSK) , frequenc y shif t keyin g (FSK), differentia l phas e shif t keyin g (DPSK) , minimu m shif t keyin g (MSK) , and s o forth. I n practice , w e may choos e on e modulatio n schem e ove r others , depending o n th e application . Fo r example , i n som e application s i t migh t be desirabl e t o hav e modulatio n symbol s wit h a constan t magnitude , tha t is \sk\ = £ s for al l k. I n thi s case , w e ca n us e PS K modulatio n (show n i n Fig. 2.15) . I n a PS K modulatio n scheme , al l th e constellatio n point s ar e uniformly distribute d o n a circl e an d th e radiu s o f th e circl e determine s th e symbol power . Fo r a mor e detaile d an d complet e coverag e o f variou s digita l modulations, th e reader s ar e referre d t o [120 ] an d [137] . Example 2. 3 Suppos e w e wan t t o sen d th e 24-bi t sequenc e i n Exampl e 2. 2 using 4-bi t QA M symbols . Le t th e constellatio n an d Gra y cod e mappin g b e as show n i n Fig . 2.13(b) . A s eac h symbo l carrie s fou r bits , w e grou p th e 2 4 bits int o codeword s o f fou r bits : 0000 101 1 111 0 010 1 0010 1110 . From Fig . 2.13(b) , w e fin d th e correspondin g si x QA M symbol s s(n). Thes e QAM symbol s ar e sen t ove r a n AWG N channel . Suppos e th e receive d signal s r(n) ar e a s give n i n Tabl e 2.3 . Th e erro r probabilitie s i n thi s exampl e ar e fo r the sak e o f demonstration . Th e actua l error s ar e usuall y muc h smaller , suc h as 1 0 - 2 , 1 0 - 4 , etc . Assum e tha t a t th e receive r ther e i s n o additiona l signa l
2.3. Digita l modulatio n
27
(a)
(b)
Figure 2 . 1 5 . Phas e shif t keyin g modulation : (a ) 8-PSK ; (b ) 16-PSK .
n
s{n)
0 -3A - 3Aj 3A + Aj 1 2 A + 3Aj -A - Aj 3 4 -3A + 3Aj A + 3Aj 5
r(n)
-4.lA-2.6Aj 3.7A + 2.1AJ 0.9A + 2.8Aj -1.1A-Aj -4A + 1.7AJ 2.1A + 1.1AJ
s(n)
-3A - 3Aj 3A + 3Aj A + 3Aj -A - Aj -3A + Aj 3A + Aj
Table 2.3 . Transmitte d QA M symbol s s(n), receive d signal s r(n), an d detecte d sym bols 7i{n).
processing an d th e NND R i s applie d directl y t o r(n). Afte r symbo l detectio n we ge t s"(n) . Comparin g s(n ) wit h s(n) , w e find tha t w e hav e mad e thre e symbol error s (s"(l) , s"(4) , s"(5) ) ou t o f si x transmitte d symbols . Th e symbo l error rat e i s SER = 1 / 2 . Afte r symbol-to-bit s mappin g usin g th e Gra y cod e provided i n Fig . 2.13(b) , w e obtain th e followin g sequence : 0000 101 0 111 0 0101 0011 1011. Comparing th e decode d sequenc e wit h th e transmitte d sequence , fou r bit s (indicated b y boldface d numbers ) ar e receive d erroneously . Th e bi t erro r rat e is BER = 4/2 4 = 1/6 , whic h i s large r tha n SER/A = 1/8 . Thi s i s becaus e s(5) i s not adjacen t t o s(5) , whic h cause s a n erro r o f two bit s rathe r tha n on e
bit. ■
2. Preliminarie s o f digita l communication s
28
+s o
so
+s i
> -s ,
equalizer
channel
Figure 2 . 1 6 . A se t of M paralle l channel s and the corresponding zero-forcing equalizer .
2.4 Paralle
l subchannel s
In man y wideban d communicatio n systems , a wideban d channe l i s divide d into a se t o f subchannels , eac h wit h a smalle r bandwidth . Example s includ e the widel y use d O F D M an d D M T systems , whic h wil l b e studie d i n detai l in Chapte r 6 . I n thes e systems , a n F I R channe l i s converte d t o a se t o f parallel ISI-fre e channel s a s show n i n Fig . 2.16 . Th e receive d signa l o f th e i t h subchannel i s where Si i s th e symbo l t r a n s m i t t e d ove r th e i t h subchannel . Th e quantitie s di an d qi are , respectively , th e i t h subchanne l gai n an d noise . Becaus e eac h subchannel ha s onl y a singl e t a p , zero-forcin g equalizatio n ca n b e don e b y using simpl e scala r multiplier s 1/a ^ (i f ai ^ 0 ) a s indicate d i n th e figure . Le t s an d s " be, respectively , th e inpu t an d outpu t vectors . Defin e th e outpu t erro r vector a s e = s — s. T h e n w e ca n redra w th e paralle l channel s a s i n Fig . 2.17 . I t i s clea r t h a t th e output erro r o f th e i t h subchanne l i s e ^ = qi/ai. Th e erro r varianc e fo r th e i t h subchanne l i s
2_ M
where Mi i s th e varianc e o f q^. Fo r man y applications , th e subchannel s hav e the sam e nois e variance s Mi = A/o , bu t th e subchanne l gain s ca n b e ver y different. Thu s th e erro r variance s a^ ca n b e ver y differen t fo r differen t sub channels. Signal s t r a n s m i t t e d ove r differen t subchannel s encounte r differen t levels o f distortion . Fo r subchannel s wit h larg e erro r variances , th e bi t erro r rate wil l b e hig h an d th e overal l performanc e o f th e paralle l channel s wil l be limite d b y thes e bad subchannels . T o se e thi s effect , le t u s conside r th e following exampl e wit h onl y tw o subchannels .
29
2.4. Paralle l subchannel s
so
S\
£.
-► * o
->A l
S
M-\
Figure 2 . 1 7 . Equivalen t paralle l channel s o f Fig . 2.16 .
Example 2. 4 Suppos e t h a t ther e ar e onl y tw o subchannel s an d th e gain s ar e ao = 1 and a\ = 0.1 , respectively. T h e transmissio n powe r i s fixed a t 10 . T h e subchannel noise s qi ar e AWG N wit h varianc e J\fi = 1 . A quic k calculatio n shows t h a t th e outpu t erro r variance s ar e
Suppose t h a t th e maximu m signa l powe r allowe d o n eac h subchanne l i s £ m a x = 10. Le t th e transmitte d signal s Si b e B P S K symbol s wit h si = ± \ / l 0 s o t h a t the powe r i s Ei = 10 . Fo r B P S K modulation , B E R i s equa l t o SER . Fro m (2.12), th e B E R o f th e zerot h subchanne l i s Q ( \ / l 0 ) = 7.8 3 x 10~ 4 , wherea s the B E R o f th e first subchanne l i s Q ( \ / o T ) = 0.38 . T h e averag e B E R o f th e parallel channel s i s approximatel y 0.5*Q(VoT) = 0.19 . T h e performanc e o f th e syste m i s severel y limite d b y th e first subchannel . Instead o f transmittin g B P S K symbol s o n b o t h th e subchannels , suppos e t h a t we no w transmi t a 2-bi t PA M symbo l o n th e zerot h subchanne l an d th e first subchannel i s no t utilize d fo r transmission ; th e zerot h an d first subchannel s are allocate d tw o bit s an d zer o bits , respectively , s o t h a t th e tota l numbe r o f bits transmitte d i s stil l two . Usin g th e B E R formul a fo r 2-bi t PAM , w e find t h a t BER « 3/ 4 * Q{y/lQ/5)= 0.059 , whic h i s muc h smalle r t h a n 0.19 . ■ From th e abov e example , w e se e t h a t b y properl y loadin g th e bit s amon g the subchannels , w e ca n significantl y improv e th e B E R performanc e fo r th e same transmissio n rate . I n wha t follows , w e wil l sho w ho w t o achiev e this . Bit loadin g W h e n th e power s o n th e subchannel s ar e fixed a t £ m a x an d the subchanne l erro r variance s o 2e. ar e differen t fo r differen t z , the bit s assigne d to th e subchannel s bi can b e adjuste d t o improv e th e erro r rate . Thi s i s calle d bit loadin g (als o know n a s bi t allocation) . Below , w e wil l first conside r bi t loading fo r th e PA M cas e unde r th e pea k powe r constraint . Suppos e t h a t the erro r rate s o f al l th e subchannel s ar e th e sam e an d thei r SER s ar e equa l
2. Preliminarie s o f digital communication s
30
to SERQ. Fo r P A M symbols, w e kno w t h a t t h e numbe r o f bit s i s relate d t o the SN R by (2.14) . Therefor e t h e numbe r o f bit s t h a t ca n be t r a n s m i t t e d o n the i t h subchanne l i s
fc = i l o g 2 ( l +
% ^Y (2.22
)
where o\. i s t h e nois e powe r o f t h e i t h subchanne l output . T h e averag e bi t rate i s give n b y M-l
M^ T h e bit s compute d i n (2.22 ) ar e not intege r i n general . W h e n t h e constrain t of intege r bi t i s applied , t h e averag e bi t rat e i s b = ( 1 / M ) ^2i=^ \pi\, w n e r e [x\ denote s t h e larges t intege r les s t h a n o r equa l t o x. For Q A M symbols, suppos e t h e i th subchannel carrie s 2b i bits . Then , fro m (2.19), w e get t he number o f bits t h a t ca n be sent throug h t h e i th subchanne l as 2bi = log 2 1
\-
+—
%
L qam J
-.
T h e averag e bi t rat e i s give n b y M-l i=0
For t h e cas e o f intege r bi t loading , t h e averag e bi t rat e i s 1 / M ^ - = Q 2 [ ^ J . Example 2. 5 Conside r t h e paralle l channel s i n Exampl e 2.4 . Suppos e t h a t PAM symbol s ar e sent , t h e desire d S E R is SERQ= 1 0 - 7 , and t he m a x i m u m transmission powe r allowe d i s Smax = 1000 . Using Tabl e 2.1 , we have T pam = 9.46. T h e subchanne l SNR s ar e S W ? o = 1000 , SNRi =
10.
T h e maximu m achievabl e bit s fo r t h e two subchannels ar e b0 = 3.37 , 6
i = 0.52 .
T h u s t h e overal l maximu m achievabl e bi t rat e i s b = 1.95 . I f a n intege r bit allocatio n i s desired , thi s valu e become s b = 1.5 . Not e t h a t althoug h b\ = 0.52 , we roun d i t dow n t o zer o s o t h a t t h e desire d quality-of-servic e o f SER0= 1 0 - 7 is not violated . ■ In t h e abov e discussions , w e assum e t h a t t h e pea k signa l powe r o f eac h subchannel i s limite d b y S max. I n som e applications , w e ma y b e concerne d about t h e averag e signa l powe r rathe r t h a n t h e peak signa l power . T h e prob lem o f bit loadin g fo r thi s cas e wil l b e studie d i n Chapte r 8 .
2.5. Furthe r readin g
2.5 Furthe
31
r readin g
Some basi c concept s fo r digita l communicatio n system s wer e briefl y reviewe d in thi s chapter . Ther e ar e man y textbook s t h a t provid e a mor e detaile d an d comprehensive t r e a t m e n t o f thes e topics . T h e intereste d reader s ar e referre d to [50 , 67 , 120] , t o nam e jus t a few .
2.6 Problem
s
2.1 Suppos e w e hav e a communicatio n syste m wit h th e wavefor m (jpi * ca * p2)(t) give n b y ( \u\ f ( P i * ^ **»)(' ) =
-0.5|t-2 |+ l , for0