Extractive and Azeotropic Distillation
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; ...
178 downloads
1430 Views
15MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Extractive and Azeotropic Distillation
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Extractive and Azeotropic Distillation
Based on papers presented at two symposia sponsored by the Division of Industrial and Engineering Chemistry of the American Chemical Society at the 160th Meeting, Chicago, Ill., Sept. 17, 1970, and the 163rd Meeting, Boston, Mass., April 14, 1972. Dimitrios P. Tassios Symposia
Chairman
115
ADVANCES IN CHEMISTRY SERIES
AMERICAN CHEMICAL SOCIETY WASHINGTON,
D.
C.
1972
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
ADCSAJ 115 1-176 (1972)
Copyright 1972 American Chemical Society All Rights Reserved
Library of Congress Catalog Card 72-92811 ISBN 8412-0157-9 PRINTED IN THE UNITED STATES OF AMERICA
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Advances in Chemistry Series Robert F . G o u l d ,
Editor
Advisory Board Bernard D. Blaustein Paul N. Craig Gunther Eichhorn Ellis K . Fields Fred W. McLafferty Robert W. Parry Aaron A. Rosen Charles N. Satterfield Jack Weiner
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
FOREWORD
A D V A N C E S
I N
C H E M I S T R Y
SERIES
w a s f o u n d e d i n 1 9 4 9 b y the
A m e r i c a n C h e m i c a l S o c i e t y as a n outlet for s y m p o s i a a n d c o l lections of d a t a i n s p e c i a l areas o f t o p i c a l interest that c o u l d n o t b e a c c o m m o d a t e d i n the Society's journals. m e d i u m for symposia that w o u l d otherwise be
It provides a fragmented,
t h e i r p a p e r s d i s t r i b u t e d a m o n g s e v e r a l journals o r not p u b l i s h e d at a l l . P a p e r s are refereed c r i t i c a l l y a c c o r d i n g t o A C S e d i t o r i a l standards a n d r e c e i v e the c a r e f u l a t t e n t i o n a n d p r o c essing c h a r a c t e r i s t i c of A C S p u b l i c a t i o n s . in
A D V A N C E S
I N
C H E M I S T R Y
SERIES
Papers p u b l i s h e d
are o r i g i n a l c o n t r i b u t i o n s
not p u b l i s h e d elsewhere i n w h o l e o r major p a r t a n d i n c l u d e reports o f research as w e l l as r e v i e w s since s y m p o s i a m a y e m b r a c e b o t h types of presentation.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
CONTENTS
PREFACE DIMITRIOS P. TASSIOS
ix-xi
1 Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation C. BLACK and D. E. DITSLER
1-15
2 Process Design Considerations for Extractive Distillation: Separation of PropylenePropane ROMESH KUMAR, JOHN M. PRAUSNITZ, and C. JUDSON KING 16-34 3 Extractive Distillation by Salt Effect WILLIAM F. FURTER
35-45
4 Rapid Screening of Extractive Distillation Solvents: Predictive and Experimental Techniques DIMITRIOS P. TASSIOS 46-63 5 Azeotropic Distillation Results from Automatic Computer Calculations CLINE BLACK, R. A. GOLDING, and D. E. DITSLER
64-92
6 Prediction of Isobaric Vapor-Liquid Equilibrium Data for Mixtures of Water and Simple Alcohols A. ANDIAPPAN and A. Y. McLEAN 93-107 7 Demulsification of Crude Oils: Use of Azeotropic Distillation LESLIE L. BALASSA and DONALD F. OTHMER
108-121
8 Distillation Calculations with Nonideal Mixtures JOSEPH A. BRUNO, JOHN L. YANOSIK, and JOHN W. TIERNEY
122-135
9 Isobaric Vapor-Liquid Equilibrium in the Acetic Acid-Acetone System R. JOE BURKHEAD and J. THOMAS SCHRODT
136-147
10 Separation of Water, Methyl Ethyl Ketone, and Tetrahydrofuran Mixtures HUGH M. LYBARGER and HOWARD L. GREENE 148-158 11 Prediction of Vapor Composition in Isobaric Vapor-Liquid Systems Containing Salts at Saturation D. JAQUES and W. F. FURTER 159-168 INDEX
171-176
PREFACE z e o t r o p i c a n d extractive d i s t i l l a t i o n s h a v e b e e n u s e d t h r o u g h the years i n the c h e m i c a l i n d u s t r y to separate m i x t u r e s w h e r e the r e l a t i v e v o l a t i l i t y o f the k e y c o m p o n e n t s is v e r y close, o r e q u a l , to u n i t y .
Appli-
cations f r o m the c l a s s i c a l d e h y d r a t i o n o f a l c o h o l w i t h b e n z e n e
(J)
m o r e recent ones s u c h as the p r o p y l e n e - p r o p a n e s e p a r a t i o n
(2)
to and
aromatics recovery from hydrocarbon mixtures w i t h N-methylpyrrolidone ( 3 ) , i n d i c a t e a c o n t i n u o u s interest t h r o u g h the years i n this area. T h e s e s e p a r a t i o n m o d e s h a v e n o t b e e n u s e d as f r e q u e n t l y as t h e y s h o u l d i n i n d u s t r y , a n d the often u s e d reasons o f h i g h i n v e s t m e n t a n d h i g h o p e r a t i n g costs are often w e a k w h e n one does a n i n - d e p t h s t u d y . T h e r e a l reason lies w i t h t h e t i m e a n d m o n e y r e q u i r e d to o b t a i n a satisfactory d e s i g n (4).
B e c a u s e o f the h i g h n o n i d e a l i t y o f the systems
involved,
solvent selection, d e s c r i p t i o n o f the n o n i d e a l i t y o f the phases, a n d trayto-tray c a l c u l a t i o n s are rather difficult. R e c e n t d e v e l o p m e n t s i n this area, h o w e v e r , s h o u l d g r e a t l y f a c i l i t a t e this task, e s p e c i a l l y for e x t r a c t i v e d i s tillation.
S o l v e n t selection for a z e o t r o p i c d i s t i l l a t i o n is b a s e d o n r a t h e r
qualitative criteria discussed b y B e r g
( 5 ) , but
for e x t r a c t i v e
l a t i o n the q u a l i t a t i v e a p p r o a c h o f P r a u s n i t z a n d A n d e r s o n (6) e m p i r i c a l correlations o f P i e r o t t i et ah (7),
distil-
a n d the
W e i m e r and Prausnitz
(8),
H e l p i n s t i l l a n d V a n W i n k l e ( 9 ) , a l o n g w i t h the t e c h n i q u e u s i n g g a s l i q u i d c h r o m a t o g r a p h y b y Tassios (10, 11)
give reliable, r a p i d methods
for solvent selection. F o r e x a m p l e , f o u r to five solvents c a n b e screened i n one d a y b y u s i n g g a s - l i q u i d c h r o m a t o g r a p h y . e x t r a c t i v e agents (12)
A l s o use o f salts as
provides a n e w dimension i n extractive distillation
separations. T h e d e v e l o p m e n t o f e q u a t i o n s t h a t successfully p r e d i c t m u l t i c o m p o n e n t phase e q u i l i b r i u m d a t a f r o m b i n a r y d a t a w i t h r e m a r k a b l e a c c u r a c y for e n g i n e e r i n g purposes not o n l y i m p r o v e s the a c c u r a c y o f tray-tot r a y c a l c u l a t i o n s b u t also lessens the a m o u n t of e x p e r i m e n t a t i o n r e q u i r e d to e s t a b l i s h the p h a s e e q u i l i b r i u m d a t a . S u c h equations are: the W i l s o n e q u a t i o n ( 1 3 ) , the n o n - r a n d o m t w o - l i q u i d ( N R T L ) e q u a t i o n (14), the l o c a l effective m o l e fractions ( L E M F ) parameter
v e r s i o n o f the
L a r s o n a n d Tassios (17)
e q u a t i o n (15,
b a s i c a l l y three-parameter
16),
and
a two-
NRTL
equation.
s h o w e d that the W i l s o n a n d N R T L
equations
p r e d i c t a c c u r a t e l y t e r n a r y a c t i v i t y coefficients f r o m b i n a r y d a t a ; H a n k i n s o n et al (18)
d e m o n s t r a t e d t h a t the W i l s o n e q u a t i o n p r e d i c t s a c c u r a t e l y ix
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
m u l t i c o m p o n e n t v a p o r c o m p o s i t i o n s — u p to five c o m p o n e n t s — f r o m b i nary data.
T h e s a m e s t u d y i n d i c a t e s that w h e n l i m i t e d b i n a r y d a t a
a v a i l a b l e , t h e one p a r a m e t e r T a s s i o s - W i l s o n e q u a t i o n (19)
are
predicts m u l -
t i c o m p o n e n t — u p to five c o m p o n e n t s — d a t a w i t h g e n e r a l l y g o o d a c c u r a c y . T h e W i l s o n e q u a t i o n c a n also b e u s e d successfully to c o r r e l a t e p h a s e e q u i l i b r i u m d a t a i n the presence o f salts (20).
The N R T L and
LEMF
equations c a n also p r e d i c t successfully t e r n a r y l i q u i d - l i q u i d e q u i l i b r i u m d a t a f r o m the b i n a r y d a t a w i t h the latter p r o v i d i n g b e t t e r results
(21).
R e g a r d i n g v a p o r p h a s e n o n i d e a l i t i e s , the e m p i r i c a l c o r r e l a t i o n o f O ' C o n n e l l a n d P r a u s n i t z (22)
p r o v i d e f u g a c i t y coefficients o f sufficient a c c u r a c y
for e n g i n e e r i n g purposes.
D e s i g n considerations o f a z e o t r o p i c d i s t i l l a t i o n
schemes are d i s c u s s e d b y R o b i n s o n a n d G i l l i l a n d ( 2 3 ) , H o f f m a n a n d r e c e n t l y b y B l a c k et al.
(25),
w h o present a c o m p u t e r
(24),
oriented
approach. F o r e x t r a c t i v e d i s t i l l a t i o n t h e presence o f the s e c o n d feed
(solvent)
presents s o m e c o m p u t a t i o n a l c o m p l i c a t i o n s i n m a i n t a i n i n g s t a b l e c o n v e r g e n c e i n the s o l u t i o n b y c o m p u t e r s o f the a p p r o p r i a t e system o f e q u a tions—i.e., m a t e r i a l a n d e n t h a l p y balances a n d e q u i l i b r i u m r e l a t i o n s h i p . T h e a l g o r i t h m s t h a t c a n i n h e r e n t l y c o p e w i t h m u l t i p l e feeds are m a t r i x o r i e n t e d , a n d the N e w t o n - R a m p h s o n p r o c e d u r e o f s o l v i n g these e q u a tions shows the m a x i m u m d e g r e e o f s t a b i l i t y (4).
S e v e r a l p a p e r s discuss
computational approaches for extractive distillation calculations ( A m u d s o n a n d P o n t i n e n (26),
N a p h t h a l i (27),
R o c h e (4),
B r u n o et al.
(28),
Black and Ditsler ( 2 9 ) , a n d others). I n c o n c l u s i o n , r e c e n t d e v e l o p m e n t s i n solvent selection, p h a s e n o n i d e a l i t y d e s c r i p t i o n , a n d tray-to-tray c a l c u l a t i o n schemes
have
f a c i l i t a t e d the d e s i g n o f e x t r a c t i v e a n d a z e o t r o p i c d i s t i l l a t i o n
greatly schemes,
a n d use o f salts g i v e n e w m e t h o d s f o r extractive d i s t i l l a t i o n separations. F i n a l l y , the w o r k o f G e r s t e r ( 3 0 ) , B l a c k a n d D i t s l e r ( 2 9 ) , a n d B l a c k et al. (25)
c o m p a r e these t w o schemes. DIMITRIOS P. TASSIOS
Newark College of Engineering Newark, N . J. 07102 July, 1972
Literature Cited 1. Guinot, H., Clark, F. W., Trans. Inst. Chem. Engr. (London) (1938) 16, 187. 2. Hasflund, E. R., Chem. Eng. Progr. (1969) 65, 9. 3. Mueller, E., Hoehfeld, G., WorldPetrol.Congr., 8th, Moscow (June 1971). 4. Roche, Ed., 160th Natl. Meet. Amer. Chem. Soc., Chicago, 1970. 5. Berg, L., Chem. Eng. Progr. (1969) 65, 9, 52. x
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6. Prausnitz, J. M., Anderson, R., A.I.Ch.E. J. (1961) 7, 96. 7. Pierotti, G. I., Deal, C. H., Derr, E. L., Ind. Eng. Chem. (1955) 51, 95. 8. Weimer, R. F., Prausnitz, J., Petrol. Refiner (1965) 44, 9, 237. 9. Helpinstill, J. G., Van Winkle, M., Ind. Eng. Chem. Process Des. Develop. (1968) 7, 213. 10. Tassios, D. P., Hydrocarbon Process. (1970) 49, 7, 144. 11. Tassios, D. P., Ind. Eng. Chem. Process Des. Develop. (1972) 11, 43. 12. Furter, W. F., Cook, R. Α., Int.J.Heat Mass Transfer (1967) 10, 23. 13. Wilson, G. M.,J.Amer. Chem. Soc. (1964) 86, 127. 14. Renon, H., Prausnitz, J. M., A.I.Ch.E.J.(1968) 14, 135. 15. Marina, J., Dissertation, Newark College of Engineering, Newark, 1972b. 16. Marina, J., Tassios, D. P., Ind. Eng. Chem. Process Des. Develop., in press. 17. Larson, C. D., Tassios, D. P., Ind. Eng. Chem. Process Des. Develop. (1972) 11, 35. 18. Hankinson, R. W., Langfitt, B. D., Tassios, D. P., Can. J. Chem. Eng., in press. 19. Tassios, D. P., A.I.Ch.E. J. (1971) 17, 1367. 20. Taques, D., Furter, W. F., Advan. Chem. Ser. (1972) 115, 159. 21. Marina, J., Tassios, D. P., Ind. Eng. Chem. Process Des. Develop., sub mitted for publication. 22. O'Connell, J., Prausnitz, T. M., Ind. Eng. Chem. Process Des. Develop. (1967) 6, 245. 23. Robinson, C. S., Gilliland, E. R., "Elements of Fractional Distillation," p. 312, McGraw-Hill, New York, 1950. 24. Hoffman, E. S., "Azeotropic and Extractive Distillation," Wiley, New York, 1964. 25. Black, C., Golding, R. Α., Ditsler, D. E., ADVAN. CHEM. SER. (1972) 115, 64. 26. Amudson, N. R., Pontinen, A. J., Ind. Eng. Chem. (1958) 50, 730. 27. Naphthali, L. M., 56th A.I.Ch.E. Meet., San Francisco (May 1965). 28. Bruno, J. Α., Yanosik, J. L., Tierney, J. W., ADVAN. CHEM. SER. (1972) 115, 122. 29. Black, C., Ditsler, D. E., ADVAN. CHEM. SER. (1972) 115, 1. 30. Gerster, J. Α., Chem. Eng. Progr. (1969) 65, 9, 43.
xi In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1 Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation C. BLACK and D. E. DITSLER Shell Development Co., Emeryville, Calif. 94608
Although nonidealities in vapor and liquid phases complicate the separation of components from mixtures, a knowledge of these nonidealities can be applied to design an extractive distillation step. Ethylene glycol is added to an aqueous ethanol mixture to produce the overhead separation of ethanol from water. Methods published earlier by one of the authors are applied to calculate phase equilibria in a computer calculation of the separation. The extractive distillation results are tabulated, represented graphically, and discussed to illustrate extractive distillation as a method for dehydrating aqueous ethanol mixtures. The results are compared with corresponding results obtained by azeotropic distillation with n-pentane as entrainer. They show extractive distillation with ethylene glycol is more expensive than azeotropic distillation with n-pentane.
C e p a r a t i n g c o m p o n e n t s f r o m m i x t u r e s is c o m p l i c a t e d b y n o n i d e a l i t i e s i n ^
the l i q u i d a n d v a p o r phases. N e v e r t h e l e s s , a k n o w l e d g e o f t h e factors
c o n t r i b u t i n g to the n o n i d e a l i t y of the m i x t u r e s h e l p s to p r o d u c e a j u d i c i o u s d e s i g n for the s e p a r a t i o n step. S o m e t i m e s c o m p o n e n t s are a d d e d t o the m i x t u r e to alter the n o n i d e a l i t y b y c h a n g i n g the m o l e c u l a r e n v i r o n m e n t . E x t r a c t i v e d i s t i l l a t i o n is u s e d because the c o m p o n e n t s are d i s t r i b u t e d differently b e t w e e n c o n t a c t i n g l i q u i d a n d v a p o r phases i n e q u i l i b r i u m w h e n a h i g h - b o i l i n g n o n i d e a l c o m p o n e n t is a d d e d to the m i x t u r e .
The
a d d e d c o m p o n e n t is i n t r o d u c e d i n the u p p e r p a r t of a d i s t i l l a t i o n c o l u m n a b o v e the f e e d a n d r e m a i n s i n a p p r e c i a b l e c o n c e n t r a t i o n i n the l i q u i d o n a l l of the l o w e r trays.
It is r e m o v e d f r o m the c o l u m n w i t h one of the
c o m p o n e n t s b e i n g separated as t h e bottoms p r o d u c t . A l t h o u g h a n o n i d e a l c o m p o n e n t is also i n t r o d u c e d for a z e o t r o p i c d i s t i l l a t i o n , t h e a d d e d c o m 1 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2
E X T R A C T I V E
Table I.
A N D
DISTILLATION
Constants for Calculating Imperfection-Pressure Coefficients E'
m
X
0.089 0.089 0.026
4.75 4.75 4.75
75.9 79.2 24.7
P ,Atm. c
Ethanol Ethylene glycol Water β
A Z E O T R O P I C
516.3 761.11 647.00
63.1 84.04 218.0
Α11 δα coefficients have been taken equal to zero.
p o n e n t is, i n that case, m o r e easily v o l a t i l i z e d f r o m t h e m i x t u r e t h a n one of the c o m p o n e n t s b e i n g separated. C o n s e q u e n t l y i t is r e m o v e d o v e r h e a d from the column. I n either case the r e l a t i v e d i s t r i b u t i o n s b e t w e e n t h e s e p a r a b l e l i q u i d a n d v a p o r phases are p r e d i c t e d f r o m t h e p u r e c o m p o n e n t v a p o r pressures Pi°,
l i q u i d p h a s e a c t i v i t y coefficients, γ/s, a n d i m p e r f e c t i o n - p r e s s u r e co
efficients 0/s.
U s i n g these three q u a n t i t i e s , the r e l a t i v e d i s t r i b u t i o n is
expressed as y*Pi°fl,°
m
E x t r a c t i v e d i s t i l l a t i o n has b e e n extensively u s e d for n e a r l y decades i n l a b o r a t o r y , p i l o t p l a n t , a n d c o m m e r c i a l p l a n t operations.
three Cal
c u l a t i o n or p r e d i c t i o n of p h a s e e q u i l i b r i a for s u c h separations has often b e e n d i s c u s s e d ( I , 2, 3 ) .
S o m e h a v e d i s c u s s e d t h e selection of solvents
f o r e x t r a c t i v e d i s t i l l a t i o n (4, 5 ) .
O t h e r s h a v e d i s c u s s e d its r e c e n t a p p l i
c a t i o n t o p a r t i c u l a r separations (6, 7, 8 ) .
A c o m p a r i s o n of
extractive
d i s t i l l a t i o n , as a s e p a r a t i o n m e t h o d , w i t h a z e o t r o p i c d i s t i l l a t i o n a n d w i t h l i q u i d - l i q u i d e x t r a c t i o n has r e c e n t l y b e e n d i s c u s s e d briefly b y G e r s t e r
(9).
T h e use of d i g i t a l c o m p u t e r s to c a r r y o u t c o m p l e t e c a l c u l a t i o n s i n the d e s i g n of s e p a r a t i o n processes has b e e n the g o a l of m a n y . T o d o this effectively, s u i t a b l e m e t h o d s for p h a s e e q u i l i b r i a a n d tray-to-tray d i s t i l l a t i o n c a l c u l a t i o n s are r e q u i r e d . R e s u l t s c a l c u l a t e d b y t h e a p p l i c a t i o n of s u c h m e t h o d s to d e h y d r a t e a q u e o u s e t h a n o l m i x t u r e s u s i n g e t h y l ene g l y c o l as the extractive d i s t i l l a t i o n solvent is d i s c u s s e d b e l o w .
A
b r i e f r e v i e w of t h e m e t h o d s u s e d for p h a s e e q u i l i b r i a a n d e n t h a l p i e s is f o l l o w e d b y a d i s c u s s i o n of t h e results f r o m d i s t i l l a t i o n c a l c u l a t i o n s . T h e s e are c o m p a r e d for extractive d i s t i l l a t i o n w i t h c o r r e s p o n d i n g results o b t a i n e d b y a z e o t r o p i c d i s t i l l a t i o n w i t h n-pentane. Phase
Equilibria
T h e i m p o r t a n t q u a n t i t i e s n e e d e d to represent the n o n i d e a l p h a s e e q u i l i b r i a for extractive d i s t i l l a t i o n are v a p o r pressures Ρ*°, l i q u i d - p h a s e a c t i v i t y coefficients
y% a n d i m p e r f e c t i o n - p r e s s u r e
coefficients
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
ft.
The
1.
B L A C K
A N D
Dehydration
DITSLER
Table II.
of Ethanol
Constants for Vapor Pressure Equations A
Ethanol Ethylene glycol Water a
5
3
Mixtures
B
8.16280 7.71147 20.844*
Antoine equations. Log Ρ = A - BIT -
0
C 1623.22 1816.34 2817.4*
228.98 178.603 4.04859*
C log Τ ; P, mm Hg, T , °K.
c r i t i c a l constants a n d other coefficients for c a l c u l a t i n g the i m p e r f e c t i o n pressure coefficients (1)
are g i v e n i n T a b l e I. E q u a t i o n s a n d coefficients
for c a l c u l a t i n g v a p o r pressures are g i v e n i n T a b l e II.
As binary vapor
i n t e r a c t i o n s h a v e b e e n neglected, the values for t h e δ*, coefficients
have
a l l b e e n t a k e n e q u a l to z e r o as s h o w n i n T a b l e I. T h e M o d i f i e d v a n L a a r equations ( I ) t h e l i q u i d phase a c t i v i t y coefficients. are g i v e n i n T a b l e III.
h a v e b e e n u s e d to c a l c u l a t e
Coefficients at three
temperatures
T h e s e are u s e d b y t h e c o m p u t e r to c a l c u l a t e ac
t i v i t y coefficients at a n y c o m p o s i t i o n a n d t e m p e r a t u r e i n the d i s t i l l a t i o n column. E n t h a l p i e s for s a t u r a t e d l i q u i d s a n d v a p o r s are g i v e n i n T a b l e for the p u r e c o m p o n e n t s r e f e r r e d to z e r o for t h e l i q u i d s at 32 ° F .
IV
Vapor
m i x t u r e s are c a l c u l a t e d a s s u m i n g z e r o heat of m i x i n g . L i q u i d e n t h a l p i e s for the m i x t u r e s are c a l c u l a t e d to i n c l u d e t h e i n t e g r a l heat of m i x i n g , g i v e n a c c o r d i n g to
(2)
H^^^iU), w h e r e t h e differential heat of m i x i n g (Li)
x
(L«). = Table III.
is g i v e n as
2.303#(Δ l o g γ < ) . / Δ ( 1 / Τ )
(3)
Modified van Laar Coefficients for the System Ethanol-Ethylene G l y c o l - W a t e r
Binary % Ethanol-ethylene glycol Ethanol-water Ethylene gly col-water Ethanol-ethylene glycol Ethanol-water E t h y l e n e glycol—water Ethanol-ethylene glycol Ethanol-water Ethylene glycol-water
Ai,
A»
c«
0.276000 0.728000 0.001680 0.251000 0.74600 0.00142 0.23000 0.76050 0.00130
0.259279 0.407000 0.001000 0.23579 0.40080 0.00081 0.21607 0.39250 0.000714
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
t,°C 75.0 75.0 75.0 87.8 87.8 87.8 100.0 100.0 100.0
4
E X T R A C T I V E
Table IV.
Ethylene
glycol
Water
Distillation
A Z E O T R O P I C
DISTILLATION
Enthalpies for Liquid and Vapor h (liquid) Btu/lb. mole
t °F Ethanol
A N D
H ( vapor) Btu/lb. mole
32 100 200 300
0.00 2506.1 6034.9 10365.3
19800.0 20937.9 22573.3 23969.2
100 200 300 400
3637.0 7535.0 11600.0 15889.0
30724.0 32828.0 35193.0 37700.0
100 200 300
1225.0 3027.0 4820.0
19916.0 20649.0 21290.0
Calculations
C a l c u l a t i o n s for t h e extractive d i s t i l l a t i o n o f aqueous e t h a n o l m i x tures c o n t a i n i n g 8 5 . 6 4 % m e t h a n o l h a v e b e e n c a r r i e d o u t w i t h t h e a i d of a U N I V A C 1108 c o m p u t e r .
T h e c o m p u t e r p r o g r a m calculates a l l p h a s e
e q u i l i b r i a a n d tray-to-tray m a t e r i a l a n d heat balances for e a c h c o m p o n e n t
250
,71.43%
-
I Ο
ζ < χ ι— LU Ζ eg LU
200
S/F = 2.5 (MOLE)
150 y
75%
100 h•
^^77.78%
50 -
i
: .0 Figure I . 99%
1 1.8
— — — r
ι , 2.6 R/F (MOLE BASIS)
— 80% 1 3.4
Effects on product purity of changing solvent-feed feea ratios
and reflux-
recovery of ethanol in the extractive distilfotion with ethylene glycol at 14.7 psia
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
2 Figure 2.
DITSLER
Dehydration
of Ethanol
5
Mixtures
3 4 ETHYLENE GLYCOL/ΕΤΗANOL (MOLE BASIS) Effect of solvent-feed ratio on product purity in the distillation of aqueous ethanol with ethylene glycol
5 extractive
i n the feed. F o r fixed e t h y l e n e - g l y c o l f e e d ratios c a l c u l a t i o n s w e r e m a d e for a n e t h a n o l r e c o v e r y of 9 9 % m i n the o v e r h e a d at f o u r different r e f l u x f e e d ratios i n the r a n g e 1-θ
+
m o l e basis. E a c h series o f c a l c u l a t i o n s w a s
m a d e at the constant s o l v e n t - f e e d
ratios o f 2.5, 3.0, 3.5, a n d 4.0 m o l e
basis. T h e pressure d r o p p e r tray w a s a s s u m e d t o b e 0.1 p s i w i t h the r e b o i l e r pressure set a t 14.7 p s i a .
A drop o f two psi from top tray t o
condenser w a s a s s u m e d for t h e c a l c u l a t i o n . T h e reflux t e m p e r a t u r e w a s set at 104.0°F. A t o t a l of 46 trays w i t h solvent a d d e d o n 43 a n d f e e d at t r a y 2 2 w a s u s e d for the c a l c u l a t i o n s . T h e f e e d a n d t h e solvent w e r e i n t r o d u c e d as l i q u i d at 110° a n d 173°F, respectively. T h e s e results h a v e b e e n u s e d to s h o w the effects o f c h a n g i n g r e f l u x f e e d r a t i o at fixed values of the s o l v e n t - f e e d ratio. I n F i g u r e 1 the w a t e r i n t h e e t h a n o l p r o d u c t is p l o t t e d vs. t h e r e f l u x - f e e d r a t i o , b o t h expressed o n a m o l e basis. F o u r curves are s h o w n , e a c h r e p r e s e n t i n g a different solvent-feed
ratio. E a c h c u r v e goes t h r o u g h a m i n i m u m as the r e f l u x -
f e e d r a t i o changes. pronounced.
A t low solvent-feed
A t high solvent-feed
ratios t h e m i n i m u m i s m o r e
ratios i t i s s h a l l o w , s h o w i n g
only
s m a l l changes as t h e r e f l u x - f e e d varies f r o m 1.4-1.8, m o l e basis. A t the r e f l u x - f e e d
r a t i o o f 1.5545 t h e w a t e r
content o f the
top
p r o d u c t , e t h a n o l , is near the m i n i m u m for e a c h s o l v e n t - f e e d r a t i o s h o w n . F o r this r e f l u x - f e e d r a t i o , t h e w a t e r content o f the t o p p r o d u c t has b e e n p l o t t e d vs. the ethylene g l y c o l - e t h a n o l ratios i n F i g u r e 2.
This curve
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
24 REBOILER 20
16 CONDENSER 12 8
2
1
4 ETHYLENE GLYCOL/ETHANOL RATIO, MOLES 3
Reboiler and condenser heat loads vs. solvent-feed
Figure 3. 99%
ratio
recovery of ethanol, feed rate 242.02 moles ethanol/hour reflux/feed = 1.5545 mole basis
defines the w a t e r c o n t e n t o f the e t h a n o l p r o d u c t as a f u n c t i o n o f t h e solvent-ethanol ratio. If the f e e d rate is fixed at 242.02 moles o f e t h a n o l p e r h o u r a n d t h e heat loads for r e b o i l e r a n d condenser are c a l c u l a t e d , t h e effect o f c h a n g i n g s o l v e n t - e t h a n o l r a t i o c a n b e o b t a i n e d . T h e s e results are s h o w n i n F i g u r e 3.
Since ethanol is recovered
a t 9 9 % m o l e i n e a c h case a n d t h e
Table V . Extractive Distillation Column Ethanol-Ethylene G l y c o l - W a t e r at 14.7 Psia Material
Components
Feed/Moles
top
e
Balance
b
Solvent/Moles
Top Product Moles
Bottom Product Moles
Ethanol Ethylene glycol Water
0.8564 0.0000 0.1436
3.5000
0.856315 0.000001 0.000014
0.000085 3.499999 0.143586
Totals
1.000
3.5000
0.856330
3.643670
"Reboiler load 73,969 Btu/unit time, top load 46,433 Btu/unit time. * Liquid feed at 110°F on tray 22, liquid solvent at 173°F on tray 43.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
Dehydration
DITSLER
of Ethanol
7
Mixtures
Table VI. Extractive Distillation Column Ethanol-Ethylene G l y c o l - W a t e r Temperature,
Tray
No.
Condenser 46 44 43 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1
Composition,
and Volatility
Profiles
t, °F
Ethanol in Vapor, Mole Fraction
Water in Liquid, Mole Fraction
Ρ psia
a W/E
104.0 156.9 158.7 195.3 195.8 196.6 197.5 198.4 199.2 200.0 200.9 201.7 202.7 203.7 194.8 195.5 196.3 197.0 197.7 198.5 199.5 202.0 218.5 246.2 297.9 362.1
0.999983 0.999984 0.999793 0.987189 0.987120 0.98696 0.98677 0.98648 0.98601 0.98517 0.98356 0.98037 0.97395 0.96087 0.93873 0.93854 0.93827 0.93772 0.93615 0.93079 0.91132 0.83701 0.53735 0.07283 0.00349 0.00054
0.000016 0.000015 0.000013 0.000011 0.000019 0.00005 0.00011 0.00024 0.00051 0.00107 0.00220 0.00454 0.00934 0.01926 0.04539 0.04546 0.04561 0.04600 0.04731 0.05201 0.06951 0.13805 0.35352 0.46407 0.19499 0.03941
8.20 10.20 10.4 10.5 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.6
— 1.11 1.09 0.485 0.486 0.488 0.489 0.490 0.492 0.493 0.493 0.492 0.489 0.482 0.532 0.533 0.534 0.535 0.535 0.532 0.516 0.452 0.274 0.208 0.311 0.428
p r o d u c t is a l w a y s h i g h p u r i t y e t h a n o l , the t o p l o a d for the
condenser
r e m a i n s n e a r l y constant. T h e r e b o i l e r l o a d , h o w e v e r , reflects the c h a n g e as t h e s o l v e n t - e t h a n o l r a t i o varies. C h a n g i n g the r e c o v e r y of e t h a n o l f r o m 9 9 - 9 9 . 9 9 % m p r o d u c e s o n l y m i n o r increases i n t h e heat loads.
A s u m m a r y of the c o l u m n m a t e r i a l
b a l a n c e for one m o l e of feed is s h o w n i n T a b l e V w h e n t h e r a t i o is 3.5 m o l e basis.
solvent-feed
T h i s c a l c u l a t i o n w a s m a d e for a r e c o v e r y
of
9 9 . 9 9 % m e t h a n o l u s i n g 46 e q u i l i b r i u m trays w i t h t h e solvent o n 43 a n d t h e f e e d o n 22. T h e r e f l u x - f e e d r a t i o w a s 1.5537 m o l e basis. T h e corre s p o n d i n g d a t a for t e m p e r a t u r e , c o m p o s i t i o n , a n d v o l a t i l i t y profiles summarized in Table VI.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
are
8
E X T R A C T I V E
Figure 4. 99.99%
Temperature
A N D
A Z E O T R O P I C
DISTILLATION
profile in extractive distillation of aqueous
recovery of ethanol, ethylene glycol/ethanol feed 1.5537 moles
ratio =
ethanol
4.08688 moles, reflux-
NUMBER OF TRAYS (EQUIL.) Figure
5.
EG/Ε
Volatility =
profiles in the extractive distillation ethanol with ethylene glycol
4.08688, R/F
=
of
aqueous
1.5537 moles, 99.99% recovery, ethanol
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
DITSLER
Dehydration
of Ethanol
9
Mixtures
T h e t e m p e r a t u r e profile for the extractive d i s t i l l a t i o n results of T a b l e V I has b e e n p l o t t e d i n F i g u r e 4.
T h e h i g h solvent i n p u t t e m p e r a t u r e
a n d the l o w f e e d i n p u t t e m p e r a t u r e cause s l i g h t l y h i g h e r
temperatures
i n m u c h m o r e of the r e c t i f y i n g section t h a n i n the u p p e r p a r t of
the
s t r i p p i n g section. T h e c o r r e s p o n d i n g v o l a t i l i t y profile for t h e c o l u m n is s h o w n i n F i g u r e 5. T h e i n d i v i d u a l Κ values are also s h o w n there. A s t h e t e m p e r a t u r e increases u p o n a p p r o a c h i n g t h e r e b o i l e r , the r e l a t i v e v o l a t i l i t y for w a t e r w i t h respect to e t h a n o l w o u l d decrease i f t h e
solvent
c o n c e n t r a t i o n r e m a i n e d fixed. H o w e v e r t h e ethylene g l y c o l c o n c e n t r a t i o n i n the l i q u i d increases, t e n d i n g t o m a k e t h e r e l a t i v e v o l a t i l i t y increase. These
two
opposing
influences m a k e the r e l a t i v e v o l a t i l i t y c u r v e
go
t h r o u g h a m i n i m u m n e a r t r a y n u m b e r four, as seen i n F i g u r e 5.
MOLE FRACTION Figure EG/Ε
6. =
Composition profiles in the extractive distillation aqueous ethanol with ethylene glycol 4.08688 moles, R/F
of
= 1.5537 moles, 99.99% recovery ethanol
C o m p o s i t i o n profiles for the same extractive d i s t i l l a t i o n c o l u m n are s h o w n i n F i g u r e 6. T h e w a t e r c o n c e n t r a t i o n i n the l i q u i d goes t h r o u g h a p r o n o u n c e d m a x i m u m at a b o u t t r a y n u m b e r f o u r (see
T a b l e V I ) , cor
r e s p o n d i n g to t h e m i n i m u m i n the relative v o l a t i l i t y of w a t e r w i t h respect to e t h a n o l . I n this r e g i o n the e t h a n o l c o n c e n t r a t i o n i n t h e v a p o r increases r a p i d l y , c h a n g i n g f r o m less t h a n 2 % at tray n u m b e r three to m o r e t h a n 50%
at t r a y n u m b e r six. T h i s r a p i d increase c o n t i n u e s to a b o u t t r a y
n u m b e r t e n w h e r e the c o n c e n t r a t i o n of e t h a n o l i n t h e v a p o r is a b o u t
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10
E X T R A C T I V E
91 %m.
A N D
A Z E O T R O P I C
DISTILLATION
W a t e r d r o p s o u t of the v a p o r i n the r e c t i f y i n g section b e t w e e n
the f e e d t r a y a n d the solvent i n p u t t r a y w h i l e e t h a n o l c o n t i n u e s
to
concentrate. A b o v e the solvent i n l e t the ethylene g l y c o l d r o p s out r a p i d l y , so i n three e q u i l i b r i u m trays it is r e d u c e d f r o m a b o u t 1.3% m to less t h a n 2 p p m . T h e w a t e r content of the t o p p r o d u c t , e t h a n o l , is a b o u t 16 p p m o n a m o l e basis, as c a l c u l a t e d f r o m the results of T a b l e V . T h e b o t t o m p r o d u c t f r o m the extractive d i s t i l l a t i o n c o l u m n is aqueous ethylene g l y c o l w i t h 3 . 9 4 % m water.
T h i s is f e d to a solvent r e c o v e r y
c o l u m n w h e r e w a t e r is s t r i p p e d f r o m the e t h y l e n e g l y c o l w h i c h is t h e n r e c y c l e d as solvent to the extractive d i s t i l l a t i o n c o l u m n . C a l c u l a t e d results for the solvent r e c o v e r y c o l u m n w i t h n i n e t o t a l trays h a v i n g the f e e d i n l e t o n tray five are g i v e n i n T a b l e V I I .
T h e re
b o i l e r pressure has b e e n t a k e n as 14.7 p s i a . T h e pressure d r o p p e r tray has b e e n set at 0.09 p s i . A d r o p of 1.7 p s i f r o m t h e t o p tray to the c o n Table VII. Solvent Recovery Column Ethanol-Ethylene G l y c o l - W a t e r Temperature
Tray
No.
10 C o n d . 9 Top 8 7 6 5 Feed 4 3 2 1 Reboiler
t,
°F
and Composition
Water in Vapor, Mole Fraction
Ethylene Glycol in Liquid, Mole Fraction
Ρ psia
a EG/W
0.99936 0.99936 0.99830 0.93928 0.42680 0.15285 0.04343 0.01103 0.00265 0.00056
.00004 .00176 .06686 .64743 .95536 .98755 .99763 .99919 .99981 .99996
12.28 13.98 14.07 14.16 14.25 14.34 14.43 14.52 14.61 14.70
.0216 .0224 .0352 .0627 .0699 .0723 .0731 .0734 .0736
104.0 209.5 213.3 264.6 356.8 379.6 387.6 390.2 391.1 391.7
Material Components
Profiles
FeedMoles
a
Balance
Top Product
Moles
Bottom
Product
Ethanol Ethylene glycol Water
0.000085 3.499999 0.143586
.000085 .000006 .143442
.000000 3.499993 0.000144
Totals
3.643670
.143533
3.500137
R e b o i l e r l o a d 3,3015 B t u / U n i t Top load 2,8709 B t u / U n i t
—
Moles
Time Time
Based on one mole of feed to the extractive distillation column which precedes the solvent recovery column. a
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
Figure
DITSLER
7.
Dehydration
Temperature
of Ethanol
11
Mixtures
profile for solvent recovery
column
Stripping water from aqueous ethylene glycol
denser has b e e n a s s u m e d . T h e reflux t e m p e r a t u r e w a s set at 104° F a n d t h e r e f l u x - f e e d r a t i o at 1.33491, m o l e basis. T h e f e e d t e m p e r a t u r e w a s 358 ° F , a f e w degrees less t h a n the b o t t o m t e m p e r a t u r e of the extractive d i s t i l l a t i o n c o l u m n . M a t e r i a l b a l a n c e a n d c o l u m n profiles are g i v e n i n T a b l e V I I for the r e c o v e r y c o l u m n . T h e t e m p e r a t u r e profile for this c o l u m n is s h o w n i n F i g u r e 7.
The
c o m p o s i t i o n profiles are p l o t t e d i n F i g u r e 8. T h e s e s h o w the e x p e c t e d trends, w a t e r i n the v a p o r i n c r e a s i n g a n d e t h y l e n e g l y c o l i n the l i q u i d d e c r e a s i n g as one proceeds f r o m the r e b o i l e r to t h e t o p of the c o l u m n . W i t h t h e n u m b e r of trays s h o w n a n d the r e f l u x - f e e d r a t i o g i v e n , e t h y l e n e g l y c o l i n the t o p p r o d u c t ( w a t e r ) is r e d u c e d to a b o u t 42 p p m , m o l e basis. E t h a n o l i n the w a t e r p r o d u c t is a b o u t 0 . 0 6 % m . R e d u c i n g e t h y l e n e g l y c o l i n the w a t e r p r o d u c t to a s i g n i f i c a n t l y l o w e r v a l u e r e q u i r e s o n l y the a d d i t i o n of one or m o r e r e c t i f y i n g trays i n t h e recovery
c o l u m n . A n increase i n the r e f l u x - f e e d
r a t i o w i l l d o as a n
alternate m e t h o d , b u t to c h a n g e t h e e t h a n o l i n the w a t e r p r o d u c t , the extractive d i s t i l l a t i o n c o l u m n w o u l d h a v e to b e o p e r a t e d for h i g h e r or l o w e r e t h a n o l r e c o v e r y t h a n the 9 9 . 9 9 % m v a l u e . T h i s c a n b e d o n e w i t h o u t difficulty. T h e b o t t o m p r o d u c t f r o m the solvent r e c o v e r y c o l u m n is e t h y l e n e g l y c o l w i t h a b o u t 41 p p m of w a t e r , m o l e basis. B y c h a n g i n g the n u m b e r of s t r i p p i n g trays i n the solvent r e c o v e r y c o l u m n , this w a t e r c o n t e n t c a n r e a d i l y be d e c r e a s e d or i n c r e a s e d .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
I f t h e t o p p r o d u c t ( w a t e r ) f r o m t h e solvent r e c o v e r y c o l u m n is to be discarded, the two distillation columns w o u l d be operated to reduce e t h a n o l a n d e t h y l e n e g l y c o l to l o w c o n c e n t r a t i o n s , as i l l u s t r a t e d i n the c a l c u l a t i o n s s h o w n here.
H o w e v e r , w h e r e the o v e r a l l p l a n t s c h e m e is
s u c h t h a t t h e w a t e r p r o d u c t m i g h t b e r e c y c l e d a n d used—e.g>, as solvent to a n a q u e o u s extractive d i s t i l l a t i o n , i t m i g h t u n d e r some c o n d i t i o n s b e m o r e e c o n o m i c a l to leave m o r e e t h a n o l i n the w a t e r p r o d u c t . T h e e t h a n o l w o u l d b e r e c o v e r e d i n the series of s e p a r a t i o n steps w h i c h f o l l o w i n the flow
scheme. W a t e r m i g h t b e rejected at a m o r e s u i t a b l e p o i n t i n the
flow s c h e m e t h a n f r o m the t o p of the solvent r e c o v e r y c o l u m n . T h e best o p e r a t i n g c o n d i t i o n s c a n b e d e t e r m i n e d o n l y w h e n the e n t i r e p l a n t
flow
scheme is k n o w n .
Comparison of Extractive
with Azeotropic
Distillation
A l t h o u g h e t h a n o l is o b t a i n e d as a t o p p r o d u c t f r o m a n extractive d i s t i l l a t i o n w i t h e t h y l e n e g l y c o l , it is o b t a i n e d as a b o t t o m p r o d u c t f r o m a n a z e o t r o p i c d i s t i l l a t i o n c o l u m n u s i n g a n entraîner s u c h as n-pentane. B a s e d o n a n e t h a n o l rate of 242.02 moles p e r h o u r , a r o u g h c o m p a r i s o n w i l l b e m a d e of the t w o s e p a r a t i o n m e t h o d s .
CONDENSER 10τ
1
MOLE FRACTION Figure
8.
Composition
profiles for solvent recovery
column
Stripping water from aqueous ethylene glycol
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
B L A C K
A N D
DITSLER
Table VIII.
Dehydration
Distillation,
14.7
Ethanol psia
(85.64%m Azeotropic
13
Mixtures
Comparing Extractive and Azeotropic
Feed: Aqueous Extractive
of Ethanol
Distillation
Ethanol) Distillation,
50 psia
S o l v e n t = ethylene g l y c o l M o l e s s o l v e n t - e t h a n o l = 4.08688 R e f l u x - f e e d r a t i o = 1.55369 46 T r a y s t o t a l i n e x t r a c t i v e d i s t . c o l . S o l v e n t o n t r a y 43 F e e d on t r a y 22 R e b o i l e r l o a d = 20.9 m i l l i o n Btu/hour T o p l o a d = 13.12 m i l l i o n Btu/hour T o w e r d i a m e t e r = 5.3 feet Ethanol product: W a t e r 16 p p m (mole basis) S o l v e n t 1.2 p p m (mole basis) E t h a n o l recovery f r o m feed = 99.99%
Entraîner = n-pentane Moles n-pentane-ethanol =
S o l v e n t recovery c o l u m n 9 T r a y s , R / F = 1.33491 (mole) R e f l u x on t r a y 9 Feed on t r a y 5 R e b o i l e r l o a d = 9.33 m i l l i o n Btu/hour T o p l o a d = 8.11 m i l l i o n Btu/hour T o w e r d i a m e t e r = 4.1 feet
Stripping column
T o t a l heat to reboilers = 30.23 million Btu/hour T o t a l t o p loads = 21.23 m i l l i o n Btu/hour
T o t a l heat t o reboilers < 13 m i l l i o n Btu/hour T o t a l t o p loads < 14 m i l l i o n Btu/hour
e
e
3.214
18 T r a y s t o t a l i n azeotropic dist. c o l . Entraîner o n t r a y 18 F e e d o n t r a y 16 R e b o i l e r l o a d = 10.7 m i l l i o n Btu/hour C o n d e n s e r l o a d — 11.33 m i l l i o n Btu/hour T o w e r d i a m e t e r < 5 feet Ethanol product: W a t e r < 3 p p m ( m o l e basis) n - P e n t a n e < 1 p p m (mole basis) E t h a n o l r e c o v e r y f r o m feed >99.99% β
Reboiler load i ^ fFlosh \ H^T^ D r u m
Solvent Recovery Column
Propylene Product
Steam
Solvent Cooler Figure 10.
Extractive
distilhtion
with alternate solvent recovery
cooler, this m o d i f i c a t i o n also l o w e r s the a m o u n t o f f e e d t o t h e r e c o v e r y c o l u m n a n d h e n c e leads t o a s m a l l e r s e c o n d a r y tower. H o w e v e r , s u c h a m o d i f i c a t i o n r e q u i r e s v a p o r c o m p r e s s i o n o r r e f r i g e r a t i o n to p r o v i d e reflux for t h e r e c o v e r y c o l u m n . Conclusions T h e costs o f s e p a r a t i n g p a r a f f i n - o l e f i n m i x t u r e s b y e x t r a c t i v e d i s t i l l a t i o n are g r e a t l y affected b y t h e solvent selectivity, the paraffin a c t i v i t y coefficient,
a n d t h e solvent v o l a t i l i t y ; t h e y d e p e n d
m o s t l y u p o n sol
v e n t characteristics. F o r a solvent t o b e effective t o separate k e y c o m ponents A a n d B , t h e solvent m u s t h a v e a h i g h v a l u e o f y™A/y™Β w h i l e i t m u s t also h a v e a l o w y°° A
F u r t h e r , t h e solvent v a p o r pressure s h o u l d b e
l o w e r , b u t n o t several orders o f m a g n i t u d e l o w e r , t h a n that o f the less volatile hydrocarbon. F o r the propane—propylene—solvent system, for the solvents e x h i b i t i n g the functional relationship between S
00
a n d y°°c3H s h o w n i n F i g u r e 3, 8
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2.
K U M A R , PRAUSNITZ,
A N D
Process Design
K I N G
33
Considerations
i t does n o t seem l i k e l y t h a t extractive d i s t i l l a t i o n costs c a n b e r e d u c e d b e l o w those of b i n a r y f r a c t i o n a l d i s t i l l a t i o n . F i g u r e 7 s h o w s d e c r e a s i n g costs w i t h i n c r e a s i n g s e l e c t i v i t y b u t the slope of the c u r v e of cost vs. S seems to be
flattening
out at S
0 0
0 0
of a b o u t 2, w h e r e e x t r a c t i v e d i s t i l l a t i o n
costs are s t i l l a b o u t 6 5 % greater t h a n t h e costs for b i n a r y d i s t i l l a t i o n . H o w e v e r , for solvents w h i c h g i v e a h i g h selectivity at r e l a t i v e l y l o w e r y°°C3H8> F i g u r e 9 shows a cost vs. S
œ
c u r v e w h i c h i n d i c a t e s a l o w e r cost
for t h e extractive d i s t i l l a t i o n process at a solvent s e l e c t i v i t y h i g h e r t h a n a b o u t 2.6. It is e v i d e n t therefore t h a t the t h e r m o d y n a m i c characteristics ( S , 00
γ°°θ3Η8> S, yc H > etc. ) of the p r o p a n e - p r o p y l e n e - s o l v e n t system a r e m o s t 3
8
i m p o r t a n t i n d e t e r m i n i n g the e c o n o m i c s of extractive d i s t i l l a t i o n for this separation. A c c u r a t e p r e d i c t i o n ( o r e x p e r i m e n t a l d e t e r m i n a t i o n ) of these factors is essential for e c o n o m i c analysis of a n extractive d i s t i l l a t i o n process. H a f s l u n d (6)
reports that extractive d i s t i l l a t i o n has b e e n u s e d c o m
m e r c i a l l y i n one p a r t i c u l a r case to separate p r o p a n e - p r o p y l e n e . T h e f e e d to the s e p a r a t i o n process w a s the off-gas f r o m a r e a c t o r i n a n e w process for m a k i n g a c r y l o n i t r i l e a n d c o n s i s t e d of 40 w t % inerts, 39 w t %
C H , 3
e
8 w t % C H , 7 w t % acrylonitrile, 5 w t % water, a n d 1 w t % by-product 3
8
i m p u r i t i e s . T h e p r o p y l e n e w a s to b e r e c o v e r e d for r e c y c l e to the reactor, a n d the p r o p a n e a n d inerts w e r e to b e p u r g e d f r o m t h e system. A c r y l o n i t r i l e w a s c h o s e n as the solvent for extractive d i s t i l l a t i o n . T h e t o p m o s t section of the p r i m a r y c o l u m n w a s r e p l a c e d b y a w a t e r s c r u b b e r to r e c o v e r t h e a c r y l o n i t r i l e i n the v e n t gas. T h e process r e p o r t e d b y H a f s l u n d ( 6 ) is therefore s o m e w h a t different f r o m the processes i l l u s t r a t e d i n F i g u r e s 1, 8, a n d 10. E x t r a c t i v e d i s t i l l a t i o n is c o m m e r c i a l l y u s e d for s e p a r a t i n g m i x t u r e s of butanes, butènes, b u t a d i e n e s , a n d v a r i o u s acetylenes w i t h f o u r c a r b o n atoms
(13).
S e p a r a t i n g these m u l t i c o m p o n e n t m i x t u r e s b y f r a c t i o n a l
d i s t i l l a t i o n is v e r y difficult b e c a u s e the n a t u r a l v o l a t i l i t i e s p f t h e v a r i o u s c o m p o n e n t s , paraffinic as w e l l as olefinic, o v e r l a p c o n s i d e r a b l y . F o r i n stance, η-butane is less v o l a t i l e t h a n 1-butene b u t m o r e v o l a t i l e t h a n cisa n d imrw-2-butenes. T h u s , s e p a r a t i o n of butanes f r o m butènes is m o r e difficult b y f r a c t i o n a l d i s t i l l a t i o n t h a n b y extractive d i s t i l l a t i o n w h e r e the solvent increases the v o l a t i l i t i e s of a l l the butanes to m a k e t h e m greater t h a n the b u t e n e volatilities. F o r 1,3-butadiene r e c o v e r y extractive dist i l l a t i o n is also m o r e attractive t h a n o r d i n a r y d i s t i l l a t i o n b e c a u s e the large p o l a r i z a b i l i t y of the c o n j u g a t e d d o u b l e b o n d s interacts s t r o n g l y w i t h t h e p o l a r solvent. A l s o , i n C
4
h y d r o c a r b o n separations the solvent often o n l y
enhances a n d does not reverse the n a t u r a l r e l a t i v e v o l a t i l i t y for m a n y of the c o m p o n e n t s ; h o w e v e r , e v e n for those c o m p o n e n t s for w h i c h the r e l a -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
34
E X T R A C T I V E
A N D A Z E O T R O P I C
DISTILLATION
t i v e v o l a t i l i t y is r e v e r s e d b y the solvent, the solvent-free r e l a t i v e v o l a t i l i t y is closer to u n i t y t h a n is that o f p r o p y l e n e to p r o p a n e i n the a b s e n c e of solvent.
A l l these factors c o m b i n e to e x p l a i n w h y extractive d i s t i l l a t i o n
is r e l a t i v e l y m o r e attractive for C
4
h y d r o c a r b o n m i x t u r e s t h a n for C
3
hydrocarbon mixtures. Acknowledgment F o r financial s u p p o r t the authors are grateful to the N a t i o n a l S c i e n c e F o u n d a t i o n . T h i s w o r k is b a s e d , i n part, o n a p r e v i o u s u n p u b l i s h e d s t u d y b y Ε . M . B a r r i s h ( U n i v e r s i t y of C a l i f o r n i a , B e r k e l e y , 1 9 6 4 ) .
Literature Cited 1. Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibria," p. 193, Prentice-Hall, Englewood Cliffs, N. J., 1969. 2. Tassios, D., Chem. Eng. (1969) 76 (3), 118. 3. Weimer, R. F., Prausnitz, J. M., Hydrocarbon Process. Petrol. Refiner (1965) 44 (9), 237. 4. Pierotti, G. T., Deal, C. H., Derr, E. L., Ind. Eng. Chem. (1959) 51, 95. 5. Gerster, J. Α., Gorton, Τ. Α., Eklund, R-B., J. Chem. Eng. Data (1960) 5, 423. 6. Hafslund, E. R., Chem. Eng. Progr. (1969) 65 (9), 58. 7. King, C. J., "Separation Processes," Ch. 10, McGraw-Hill, New York, 1971. 8. Reamer, H. H., Sage, Β. H., Ind. Eng. Chem. (1951) 43, 1628. 9. Treybal, R. E., "Mass Transfer Operations," 2nd ed., p. 151, McGraw-Hill, New York, 1968. 10. American Institute of Chemical Engineers, "Bubble-Tray Design Manual," p. 63, New York, 1958. 11. Rudd, D. F., Watson, C. C., "Strategy of Process Engineering," p. 80, Wiley, New York, 1968. 12. Peters, M. S., Timmerhaus, K. D., "Plant Design and Economics for Chem ical Engineers," 2nd ed., McGraw-Hill, New York, 1968. 13. Happel, J., Cornell, P. W., Eastman, DuB., Fowle, M. J., Porter, C. Α., Schutte, A. H., Trans. Amer. Inst. Chem. Eng. (1946) 42, 189. RECEIVED November 24, 1970.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3 Extractive Distillation by Salt Effect WILLIAM F. FURTER Department of Chemical Engineering, Royal Military College of Canada, Kingston, Ontario A salt dissolved in a mixed solvent is capable, through such effects on the structure of the liquid phase as preferential association and others, of altering the composition of the equilibrium vapor. Hence salt effect on vapor-liquid equilibrium relationships provides a potential technique of extractive distillation. A review is presented of the use of dissolved salts, rather than liquid solvents, as separating agents for extractive distillation.
V l T T h e n a salt is d i s s o l v e d i n a b o i l i n g s o l u t i o n o f t w o l i q u i d c o m ponents, there are s e v e r a l salt effects that m a y o c c u r . T h e s e i n c l u d e a l t e r i n g o f the b o i l i n g p o i n t , the m u t u a l s o l u b i l i t i e s o f the t w o l i q u i d c o m p o n e n t s i n e a c h other, a n d the c o m p o s i t i o n of the e q u i l i b r i u m v a p o r phase.
T h i s p a p e r discusses the latter effect.
The
t e c h n i q u e o f u s i n g a salt rather t h a n a l i q u i d as a s e p a r a t i n g
agent for extractive d i s t i l l a t i o n is n o t n e w , b u t s u c h processes h a v e n o t been w i d e l y used.
T h e t e c h n o l o g y has t e n d e d to b e p r o p r i e t a r y , a n d
the c h e m i s t r y i n v o l v e d has n o t b e e n w e l l u n d e r s t o o d . A l s o the systems w h e r e a d i s s o l v e d s o l i d s e p a r a t i n g agent c a n b e a p p l i e d are l i m i t e d i n n u m b e r b y s o l u b i l i t y restrictions. L i t e r a t u r e r e l a t i n g to this t e c h n i q u e a n d its c h e m i s t r y has t e n d e d to b e f r a g m e n t a r y rather t h a n i n t e r r e l a t e d , a n d m u c h o f i t has n o t b e e n w i d e l y c i r c u l a t e d . T h e r e is n o w g o o d e v i d e n c e to s h o w that this t e c h n i q u e s h o u l d r e c e i v e m o r e attention. F o r s u c h a process the
flowsheet
is b a s i c a l l y the same as that for a
n o r m a l extractive d i s t i l l a t i o n . T h e o n l y r e a l difference is that the separ a t i n g agent is a salt i n s t e a d o f a l i q u i d .
S i n c e a d i s s o l v e d salt is n o n -
v o l a t i l e , a l l of i t is c o n t a i n e d i n the l i q u i d phase, a n d a l l o f i t w i l l
flow
d o w n w a r d i n the c o l u m n . H e n c e , for i t to o c c u r t h r o u g h o u t the c o l u m n , it must b e f e d at o r near the top. T h e n o r m a l p l a c e is i n the r e e n t e r i n g 35 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
36
E X T R A C T I V E
EXTRACTIVE DISTILLATION COLUMN
REFLUX AND SALT
5
A N D
A Z E O T R O P I C
DISTILLATION
OVERHEAD PRODUCT DISSOLVER
SALT RECYCLE
FEED
BOTTOMS PRODUCT
Figure 1.
Flowsheet for extractive distillation as the separating agent
using a dissolved
salt
reflux stream, as s h o w n i n F i g u r e 1. T h e salt, w h i c h m u s t b e soluble t o some extent i n b o t h l i q u i d c o m p o n e n t s , is f e d b y d i s s o l v i n g i t at a steady rate i n t o the h o t reflux just before r e e n t e r i n g the c o l u m n .
It is then
r e m o v e d f r o m the bottoms p r o d u c t for reuse, as is a l i q u i d s e p a r a t i n g agent, b u t here i t is r e c o v e r e d b y e v a p o r a t i n g or d r y i n g i n s t e a d o f b y a subsequent rectification step. T h e i n t r o d u c t i o n , use, recovery, a n d r e c y c l e of the s e p a r a t i n g agent otherwise is the same for a d i s s o l v e d salt as i t is for a l i q u i d solvent. I n the simplest case the c h e m i c a l system i n v o l v e d w o u l d b e a f e e d s o l u t i o n c o n s i s t i n g o f t w o v o l a t i l e components
(the
key
components),
w h i c h are t o b e separated f r o m e a c h other, a n d a n a d d e d agent
(the
process.
third component),
separating
w h i c h circulates i n t e r n a l l y w i t h i n t h e
U s i n g the rectification o f e t h y l a l c o h o l - w a t e r
mixtures as a n
example, c u r r e n t i n d u s t r i a l processes use s e p a r a t i n g agents s u c h as b e n zene, toluene, o r 1-pentane i n a z e o t r o p i c d i s t i l l a t i o n or ethylene g l y c o l i n e x t r a c t i v e d i s t i l l a t i o n . I n the t e c h n i q u e d e s c r i b e d here, one o f several effective salts c a p a b l e o f e l i m i n a t i n g the e t h a n o l - w a t e r azeotrope, w o u l d b e u s e d as the s e p a r a t i n g agent i n a n extractive d i s t i l l a t i o n to concentrate e t h a n o l - w a t e r solutions to absolute a l c o h o l . A n e x a m p l e o f a p a r t i c u l a r l y
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
F U R T E R
37
Salt Effect
effective salt w i t h this system is p o t a s s i u m acetate;
there are
several
others. Besides u s i n g a single d i s s o l v e d salt as the s e p a r a t i n g agent,
there
are other w a y s a n d c o m b i n a t i o n s i n w h i c h salt is u s e d . F o r e x a m p l e , the s e p a r a t i n g agent c o u l d consist of a m i x t u r e of t w o or m o r e salts, or one or m o r e salts a d d e d to a l i q u i d s e p a r a t i n g agent to m a k e i t m o r e effective a n d to r e d u c e the a m o u n t of the l i q u i d n e e d e d , o r one or m o r e salts d i s s o l v e d i n a n i n e r t l i q u i d solvent w h i c h acts o n l y as a c a r r i e r for the salt.
A l l possibilities h a v e
either b e e n u s e d or c o n s i d e r e d i n v a r i o u s
a p p l i c a t i o n s of this t e c h n i q u e .
H o w e v e r , o n l y the s i m p l e s t case, t h a t i n
w h i c h the s e p a r a t i n g agent consists o n l y of one c o m p o n e n t , a single salt, is d i s c u s s e d here. Advantages and
Disadvantages
W h y use a d i s s o l v e d salt i n s t e a d of a l i q u i d as a s e p a r a t i n g agent for extractive d i s t i l l a t i o n ? F i r s t w e w i l l c o n s i d e r the disadvantages.
A
l i q u i d is s u p e r i o r to a s o l i d w h e n c o n s i d e r i n g ease of t r a n s p o r t a b o u t the system, degree of s o l u b i l i t y i n the f e e d components, a n d rate of m i x i n g at its feedpoint.
L i q u i d s m i x q u i c k l y , b u t a salt has to dissolve first. T h e r e
are also m e c h a n i c a l p r o b l e m s to b e o v e r c o m e i n m e t e r i n g a
finely-divided
s o l i d at a constant rate to a b o i l i n g or n e a r b o i l i n g l i q u i d m i x t u r e , a n d i t m a y also b e difficult to a c h i e v e r a p i d d i s s o l v i n g of the salt after i t has b e e n fed. B e c a u s e of s o l u b i l i t y l i m i t a t i o n s r e s t r i c t i n g the c h o i c e of a salt, i t is also m o r e p r o b a b l e that a l i q u i d agent, r a t h e r t h a n a s o l i d , w h i c h is effective a n d s o l u b l e w i l l exist for a g i v e n system. H o w e v e r , i n the r e l a t i v e l y l i m i t e d n u m b e r of systems for w h i c h there is a salt w h i c h is s o l u b l e a n d effective, some major advantages o v e r a l i q u i d s e p a r a t i n g agent exist.
The
salt, b e i n g c o m p l e t e l y
nonvolatile,
exists o n l y i n t h e l i q u i d phase, a n d a l l of i t flows d o w n the c o l u m n a n d o u t i n the bottoms p r o d u c t . A p r i n c i p a l a d v a n t a g e is that the o v e r h e a d p r o d u c t , p r o v i d e d n o r m a l p r e c a u t i o n s are t a k e n against e n t r a i n m e n t , w i l l b e c o m p l e t e l y free of s e p a r a t i n g agent. H e n c e there is n o n e e d for a n o t h e r section of c o l u m n ( a solvent k n o c k b a c k section ) to b e l o c a t e d a b o v e the f e e d p o i n t of the s e p a r a t i n g agent to s t r i p s e p a r a t i n g agent f r o m o v e r h e a d p r o d u c t stream, as there is for a l i q u i d agent.
die
A l s o , less e n e r g y
is r e q u i r e d for the o p e r a t i o n since not e v e n p a r t of t h e s e p a r a t i n g agent is v a p o r i z e d a n d c o n d e n s e d i n its c y c l e t h r o u g h the extractive d i s t i l l a t i o n c o l u m n , as it w o u l d b e i f it w e r e a l i q u i d . A n o t h e r p r i n c i p a l a d v a n t a g e is that the effect c a n b e large, times m u c h larger t h a n is possible w i t h l i q u i d s e p a r a t i n g agents. is because m u c h stronger forces
of association w i t h f e e d
someThis
component
m o l e c u l e s c a n b e exerted b y salt ions t h a n b y molecules o f a l i q u i d agent.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
38
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
T h e r e s u l t is t h a t m u c h less s e p a r a t i n g agent w o u l d n o r m a l l y b e n e e d e d ; p e r h a p s o n l y a f e w p e r c e n t as c o m p a r e d w i t h the t y p i c a l 5 0 - 9 0 % o f the l i q u i d p h a s e w h i c h is c o m m o n f o r s e p a r a t i n g agent c o n c e n t r a t i o n i n extractive d i s t i l l a t i o n operations u s i n g l i q u i d t h i r d c o m p o n e n t s .
A re-
d u c e d r e q u i r e m e n t i n s e p a r a t i n g agent c o n c e n t r a t i o n a l l o w s savings t o be made i n reduced c o l u m n diameter, reduced recovery
and recycle
c a p a c i t y for the s e p a r a t i n g agent, a n d r e d u c e d e n e r g y r e q u i r e d f o r the r e c o v e r y a n d r e c y c l e step.
LIQUID COMPOSITION , MOLE % ETHANOL Figure 2. Vapor-liquid equilibrium data at atmospheric pressure for the boiling ethanol-water system containing potassium acetate at saturation and at various constant concentrations T o i l l u s t r a t e h o w large the effect of a d i s s o l v e d salt c a n be, F i g u r e 2, c a l c u l a t e d f r o m the d a t a o f M e r a n d a a n d F u r t e r ( J ) , i s i n c l u d e d t o d e m o n s t r a t e b y h o w m u c h p o t a s s i u m acetate alters t h e v a p o r - l i q u i d e q u i l i b r i u m r e l a t i o n s h i p o f the system, b o i l i n g e t h a n o l - w a t e r at a t m o s p h e r i c pressure. T h e d o t t e d c u r v e represents t h e e t h a n o l - w a t e r system alone, w h e r e the azeotrope o c c u r s a t a b o u t 87 m o l e % e t h a n o l .
The
other
c u r v e s are for v a r i o u s concentrations o f p o t a s s i u m acetate, a n d a l l are
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
F U R T E R
39
Salt Effect
c a l c u l a t e d o n a salt-free basis to p r o v i d e a c o m m o n basis f o r c o m p a r i s o n . T h e upper curve, labelled # 5 i n the
figure,
acetate d i s s o l v e d i n the l i q u i d phase.
Its s a t u r a t i o n
its s o l u b i l i t y — r a n g e s
from
49 mole
is for s a t u r a t e d p o t a s s i u m concentration—i.e.,
% i n pure boiling water d o w n to
10 m o l e % i n p u r e b o i l i n g e t h a n o l , a n d i t increases r e l a t i v e
volatility
o v e r m u c h o f the r a n g e s h o w n b y a factor o f f o u r o r five times. T h e i n t e r m e d i a t e curves, l a b e l l e d # 2 ,
3, a n d 4, are for salt concentrations
h e l d constant at 5, 10, a n d 20 m o l e % respectively.
E v e n small concen-
trations o f this p a r t i c u l a r salt c o m p l e t e l y e l i m i n a t e t h e azeotrope. F i g u r e 3, t a k e n from t h e d a t a o f D o b r o s e r d o v
(2),
gives another
e x a m p l e of t h e s u b s t a n t i a l effect t h a t a salt, e v e n at r e a s o n a b l y c o n c e n t r a t i o n , c a n h a v e i n c e r t a i n systems.
The
moderate
key components
are
a g a i n e t h a n o l a n d water, b u t h e r e t h e salt is c a l c i u m c h l o r i d e , present at a constant c o n c e n t r a t i o n of 10 g r a m s / 1 0 0 m l of a l c o h o l - w a t e r s o l u t i o n . T h e azeotrope has b e e n c o m p l e t e l y
eliminated, a n d relative
volatility
increased substantially.
LIQUID COMPOSITION , MOLE % ETHANOL Figure 3. Vapor-liquid the boiling ethanol-water
equilibrium data at atmospheric pressure for system containing calcium chloride at constant concentration
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
40
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
A l t h o u g h most p r e v i o u s investigators of salt effect i n v a p o r - l i q u i d e q u i l i b r i u m h a v e u s e d s a t u r a t e d r a t h e r t h a n constant salt concentrations to measure the largest salt effect possible at e a c h v a l u e of l i q u i d c o m p o s i t i o n for a g i v e n salt i n a g i v e n system, this c o n d i t i o n is not representat i v e o f salt c o n c e n t r a t i o n i n a n extractive d i s t i l l a t i o n c o l u m n u s i n g diss o l v e d salt as t h e s e p a r a t i n g agent.
M o l a l salt c o n c e n t r a t i o n i n the l i q u i d
p h a s e w o u l d r e m a i n essentially constant f r o m t r a y to t r a y w i t h i n e a c h of t h e r e c t i f y i n g a n d s t r i p p i n g sections just as constant as the a s s u m p t i o n of constant m o l a l o v e r f l o w is v a l i d . F r o m a k n o w l e d g e of salt effect at saturation, h o w e v e r , its effect at a constant c o n c e n t r a t i o n b e l o w s a t u r a t i o n is c a l c u l a t e d u s i n g the. salt effect e q u a t i o n
{3,4).
Chemistry of the Salt Effect I n extractive d i s t i l l a t i o n a n a d d e d s e p a r a t i n g agent c a n m o d i f y
the
v a p o r - l i q u i d e q u i l i b r i u m r e l a t i o n s h i p o f the c o m p o n e n t s to b e s e p a r a t e d i f it c a n a c h i e v e selective
m o l e c u l a r association w i t h one of t h e
key
c o m p o n e n t s o v e r t h e other i n the l i q u i d phase. T h e m o l e c u l e s o f a l i q u i d s e p a r a t i n g agent o r the ions of a salt t e n d to f o r m association c o m p l e x e s m o r e w i t h the m o l e c u l e s of one of the f e e d c o m p o n e n t s to b e separated t h a n w i t h t h e m o l e c u l e s of the other f e e d c o m p o n e n t .
It c a n alter the
v a l u e o f r e l a t i v e v o l a t i l i t y a n d the ease of s e p a r a t i o n of the system a n d shift o r e v e n e l i m i n a t e a n a z e o t r o p e i f p r o p e r l y chosen. S i n c e the a d d e d agent p r o b a b l y complexes to some extent w i t h b o t h k e y components, the v o l a t i l i t i e s of b o t h w i l l m o s t l i k e l y t e n d to b e l o w e r e d , b u t b y differing a m o u n t s d e p e n d i n g o n h o w selective the agent is i n its preference c o m p l e x i n g w i t h one k e y c o m p o n e n t o v e r t h e other.
for
Since a separating
a g e n t for extractive d i s t i l l a t i o n n o r m a l l y is chosen so t h a t it prefers t h e less v o l a t i l e of the f e e d c o m p o n e n t s , the v a l u e of r e l a t i v e v o l a t i l i t y is a c t u a l l y i n c r e a s e d b y the agent e v e n t h o u g h t h e i n d i v i d u a l v o l a t i l i t i e s of b o t h feed components may have been reduced i n value. T h e earliest references
to the p h e n o m e n o n of a salt i n t h e l i q u i d
i n f l u e n c i n g v a p o r c o m p o s i t i o n go b a c k to the 1 3 t h c e n t u r y A D chemists e x p e r i m e n t i n g w i t h the d i s t i l l a t i o n of a l c o h o l f r o m
when
fermented
m a s h r e c o r d e d t h a t t h e presence of p o t a s s i u m c a r b o n a t e i n the s t i l l p o t e n r i c h e d t h e a l c o h o l content of the v a p o r ( 5 ) .
M o s t of the w o r k d o n e i n
the field o f salt effect i n d i s t i l l a t i o n is g r o u p e d i n t o three g e n e r a l categories:
salt effect
o n v a p o r - l i q u i d e q u i l i b r i u m , extractive
distillation
u s i n g d i s s o l v e d salts as s e p a r a t i n g agents, a n d s o l u t i o n theory of electrolytes—e.g., d i s s o l v e d s a l t s — i n m i x e d solvents of t w o or m o r e components. T h e first t w o categories h a v e t e n d e d to interest c h e m i c a l engineers a n d chemists, w h i l e the t h i r d , g e n e r a l l y n e g l e c t i n g the effect o n v a p o r c o m -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
41
Salt Effect
F U R T E R
p o s i t i o n , has p r i m a r i l y interested p h y s i c a l chemists. A l l three categories, h o w e v e r , are i n t e r r e l a t e d . K a b l u k o v (6, 7, 8 )
i n 1891 a n d M i l l e r ( 9 )
i n 1897 o b s e r v e d
the
effects o f various salts, d i s s o l v e d i n t h e l i q u i d phase, o n the v a p o r - l i q u i d e q u i l i b r i u m r e l a t i o n s h i p of t h e s y s t e m e t h a n o l - w a t e r .
M o s t of the salts
t h e y i n v e s t i g a t e d w e r e m o r e s o l u b l e i n w a t e r t h a n i n e t h a n o l , a n d these w e r e o b s e r v e d t o e n r i c h the e q u i l i b r i u m v a p o r i n e t h a n o l . H o w e v e r ,
one
salt, m e r c u r i c c h l o r i d e , w h i c h is m o r e s o l u b l e i n e t h a n o l t h a n i n w a t e r , has the reverse effect.
B o t h investigators c o n c l u d e d t h a t a salt t e n d e d
to e n r i c h the v a p o r phase i n that c o m p o n e n t of the l i q u i d i n w h i c h i t w a s less s o l u b l e . T h e y also o b s e r v e d t h a t the m a g n i t u d e of t h e selective effect of a salt—i.e.,
the a m o u n t b y w h i c h i t alters v a p o r
r e l a t e d to the degree of difference
composition—is
i n its s o l u b i l i t i e s i n p u r e w a t e r a n d
p u r e a l c o h o l . M a g n i t u d e of salt effect is also a f u n c t i o n of t h e a m o u n t o f salt present a n d is l i m i t e d b y the d e g r e e of s o l u b i l i t y of the salt i n the l i q u i d phase. T h e s e b a s i c observations, m a d e o n this p a r t i c u l a r system, h a v e t e n d e d to b e c o n f i r m e d as g e n e r a l i n other systems b y m o r e recent investigators. T h e most p o p u l a r system i n w h i c h the effects of v a r i o u s salts h a v e b e e n i n v e s t i g a t e d o v e r the years has b e e n that of e t h a n o l - w a t e r .
Other
systems w h i c h h a v e b e e n s t u d i e d are e t h y l e n e g l y c o l - w a t e r , acetic a c i d water,
methanol-water,
acetone-methanol,
1-
and
2-propanol-water,
1-octane-propionic
nitric
acid, phenol-water,
acid-water, and
formic
a c i d - w a t e r . A q u e o u s systems h a v e b e e n choices for s u c h studies b e c a u s e of salt s o l u b i l i t y considerations. L i t e r a t u r e p e r t a i n i n g to salt effect i n v a p o r - l i q u i d e q u i l i b r i u m a n d to extractive d i s t i l l a t i o n u s i n g salt effect w a s r e c e n t l y r e v i e w e d b y F u r t e r a n d C o o k ( 1 0 ) , a n d the t h e o r y a n d t e c h n i c a l aspects w e r e r e v i e w e d F u r t e r (11).
by
V a p o r - l i q u i d e q u i l i b r i u m d a t a for 188 systems c o n t a i n i n g
salt w e r e p r e v i o u s l y c o m p i l e d b y C i p a r i s (12),
w h o has also p u b l i s h e d a
recent b o o k w i t h D o b r o s e r d o v a n d K o g a n o n t h e theory a n d p r a c t i c e of extractive d i s t i l l a t i o n b y salt effect
(13).
T h e c h e m i s t r y r e l a t i n g to the use of d i s s o l v e d salts as s e p a r a t i n g agents has not yet b e e n f u l l y u n d e r s t o o d . A p r i n c i p a l reason for this is the c o m p l e x i t y o f effects that the salt c a n h a v e , a n d h o w these c a n v a r y not o n l y f r o m system to system b u t , m o r e significantly, w i t h i n a g i v e n system as the concentrations of a n y or a l l of the system c o m p o n e n t s are varied.
F o r the a p p a r e n t l y s i m p l e system defined earlier, c o n s i s t i n g of
t w o v o l a t i l e c o m p o n e n t s p l u s a d i s s o l v e d salt, t h e salt c o u l d t h e o r e t i c a l l y range f r o m f u l l y d i s s o c i a t e d into t w o types of ions to t o t a l l y associated. If its d i s s o c i a t i o n is a n y w h e r e b e t w e e n these t w o extremes as i t p r o b a b l y is, it exists as three species: t w o types of ions, p l u s u n d i s s o c i a t e d salt molecules.
A l l three species c o n t r i b u t e t o the salt effect o n t h e ac-
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
42
E X T R A C T I V E
t i v i t y of
each volatile component,
A N D
A Z E O T R O P I C
DISTILLATION
a n d t h e i r parts are p r o b a b l y a l l
different b u t are i n t e r r e l a t e d . H e n c e , the effect of a salt e v e n i n a g i v e n s y s t e m is a f u n c t i o n o f its d e g r e e of d i s s o c i a t i o n , w h i c h i n t u r n is a f u n c t i o n o f l i q u i d p h a s e c o m p o s i t i o n , w h i c h varies f r o m p o i n t to p o i n t w i t h i n the r e c t i f i c a t i o n c o l u m n . T h e forces w h i c h cause association complexes w i t h i n the l i q u i d p h a s e to f o r m m a y also differ f r o m system to system a n d f r o m salt to salt, a n d c a n i n c l u d e , for e x a m p l e , forces s u c h as v a n d e r W a a l forces, electrostatic i n t e r a c t i o n s of a t t r a c t i o n a n d r e p u l s i o n , h y d r o g e n b o n d i n g , o r c o m b i n a tions of s u c h forces. T o c o m p l i c a t e matters m o r e , the association tendencies of salt ions i n f o r m i n g association complexes w i t h m o l e c u l e s o f the f e e d c o m p o n e n t s , besides a l t e r i n g t h e i r v o l a t i l i t i e s , t e n d to r e d u c e t h e s o l u b i l i t y of
one
v o l a t i l e c o m p o n e n t i n the other. U s i n g the o l d m a x i m of p h y s i c a l c h e m i s t r y t h a t " l i k e dissolves l i k e , " t h e selective c o m p l e x i n g of t h e salt w i t h t h e m o l e c u l e s of one v o l a t i l e c o m p o n e n t o v e r those of the other c a n
be
v i s u a l i z e d as m a k i n g the m o l e c u l e s of the t w o v o l a t i l e c o m p o n e n t s c h e m i c a l l y m o r e d i s s i m i l a r to e a c h other i n s o l u t i o n . T h e effect c a n b e so great i n extreme cases that t w o l i q u i d phases c a n b e m a d e to f o r m e v e n i n b o i l i n g solutions o f w h a t are n o r m a l l y h i g h l y m i s c i b l e l i q u i d s .
One
e x a m p l e o f a s y s t e m w h e r e this has b e e n o b s e r v e d is e t h a n o l - w a t e r c o n t a i n i n g a m m o n i u m sulfate d i s s o l v e d to s a t u r a t i o n . T h e r e are o t h e r c o m p l i c a t i o n s . T h e salt, besides f o r m i n g association complexes
w i t h s o l u t i o n m o l e c u l e s , p o s s i b l y c o u l d also alter or
even
destroy a l r e a d y - e x i s t i n g self-interactions of the m o l e c u l e s of a v o l a t i l e c o m p o n e n t e i t h e r w i t h themselves or w i t h those o f the other f e e d c o m ponent. A n e x a m p l e is the associated s t r u c t u r e i n w h i c h l i q u i d w a t e r a n d to a lesser extent s o m e alcohols exist. T h e effects of salt ions o n w a t e r w a t e r , w a t e r - a l c o h o l , a n d a l c o h o l - a l c o h o l c o m p l e x i n g , for e x a m p l e , m u s t b e p r o f o u n d at h i g h e r salt concentrations, a n d w i l l v a r y i n a g i v e n system w i t h salt c o n c e n t r a t i o n a n d w i t h a l c o h o l - w a t e r p r o p o r t i o n a l i t y i n t h e l i q u i d . A l s o , associations of several, r a t h e r t h a n just p a i r s , of l i q u i d - p h a s e species m a y f o r m .
T h e f u l l c o m p l e x i t y of w h a t i n i t i a l l y seems to b e a
r a t h e r s i m p l e s y s t e m finally becomes e v i d e n t w h e n i t is c o n s i d e r e d that t h e s u m of i n d i v i d u a l effects w h i c h m a k e u p the o v e r a l l effect of t h e salt o n t h e c o m p o s i t i o n o f the e q u i l i b r i u m v a p o r e v e n i n a g i v e n system are f u n c tions o f t h e r e l a t i v e p r o p o r t i o n s of a l l c o m p o n e n t s present a n d v a r y w i t h l i q u i d p h a s e c o m p o s i t i o n o v e r the entire r a n g e i n v o l v e d i n t h e s e p a r a t i o n . V a r i o u s theories h a v e b e e n p r o p o s e d a n d tested to e x p l a i n salt effect i n v a p o r - l i q u i d e q u i h b r i u m , i n c l u d i n g models based o n hydration, intern a l pressure, electrostatic i n t e r a c t i o n , a n d v a n d e r W a a l forces. A l t h o u g h the electrostatic t h e o r y o f D e b y e as m o d i f i e d for m i x e d solvents has h a d l i m i t e d success, n o s i n g l e t h e o r y has y e t b e e n a b l e to a c c o u n t for or to
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
43
Salt Effect
F U R T E R
p r e d i c t salt effect o n v a p o r - l i q u i d e q u i l i b r i u m f r o m
pure-component
p r o p e r t i e s alone. P r e v i o u s investigators h a v e g e n e r a l l y a g r e e d that s u c h effects are c a u s e d b y a c o m p l e x i t y of forces a n d i n t e r a c t i o n s , n o o n e of w h i c h has b e e n f o u n d significant e n o u g h i n r e l a t i o n to a l l of the others to correlate w e l l other t h a n i n extremely l i m i t e d c i r c u m s t a n c e s . Nevertheless, this a b i l i t y of a salt, w h i c h is not present i n the v a p o r phase, to alter v a p o r
c o m p o s i t i o n , has n o t w h o l l y e s c a p e d
industrial
a t t e n t i o n a l t h o u g h its a p p l i c a t i o n s h a v e b e e n r e l a t i v e l y l i m i t e d .
Some Applications D o n a l d F . O t h m e r w h i l e at E a s t m a n K o d a k d u r i n g the 1920's e x p e r i m e n t e d u s i n g salts to concentrate a c e t i c a c i d ( 1 4 ) .
H e also d e v e l o p e d a n
i n d u s t r i a l process for d i s t i l l i n g acetone f r o m its a z e o t r o p e w i t h m e t h a n o l b y p a s s i n g a c o n c e n t r a t e d c a l c i u m c h l o r i d e b r i n e d o w n t h e rectification column (J5).
P u r e acetone w a s c o n d e n s e d o v e r h e a d , a n d acetone-free
m e t h a n o l was r e c o v e r e d i n a separate s t i l l f r o m the b r i n e w h i c h w a s t h e n recycled.
T h e i m p r o v e d O t h m e r r e c i r c u l a t i o n s t i l l (16)
has b e e n
the
a p p a r a t u s g e n e r a l l y f a v o r e d b y investigators w h o h a v e s t u d i e d the effects of salts o n v a p o r - l i q u i d e q u i l i b r i u m . C o o k a n d F u r t e r (17, 18)
r e p o r t e d the results of a s e m i w o r k s s t u d y
i n w h i c h aqueous e t h a n o l feedstocks w e r e f r a c t i o n a t e d i n a 12-tray b u b b l e c a p c o l u m n i n a n extractive d i s t i l l a t i o n u s i n g p o t a s s i u m acetate as t h e s e p a r a t i n g agent. A m e t h o d w a s d e v e l o p e d i n w h i c h the salt w a s f e d as a g r a n u l a r s o l i d b y p o s i t i v e - d i s p l a c e m e n t m e t e r i n g s c r e w to the h o t reflux, a l l o w i n g salt to b e f e d successfully at a steady rate w i t h o u t
backflow
o r loss of v a p o r a n d a v o i d i n g a n y c l o g g i n g o f salt b y c o n d e n s e d d u r i n g feeding.
R a p i d d i s s o l v i n g of the salt i n the reflux w a s
vapor
achieved
b y e s t a b l i s h i n g a fluidized b e d of d i s s o l v i n g salt at the salt feedpoint. e n t r a i n m e n t of salt i n t o t h e o v e r h e a d
product was encountered.
No The
a z e o t r o p e was e l i m i n a t e d c o m p l e t e l y b y as l i t t l e as 5 m o l e % salt present i n the l i q u i d phase, a l l o w i n g 9 9 . 9 % +
anhydrous alcohol,
completely
salt-free, to b e p r o d u c e d f r o m e v e n r e l a t i v e l y d i l u t e feedstocks
i n the
12-tray c o l u m n . T h e l o w salt c o n c e n t r a t i o n r e q u i r e d is i n s t r i k i n g c o n trast to the 1:1 to 4:1 r a n g e of t y p i c a l s o l v e n t - f e e d r a t i o r e q u i r e d for this system u s i n g l i q u i d s e p a r a t i n g agents e v e n w i t h h i g h l y
concentrated
e t h a n o l feedstocks. F o r m a n y years D E G U S S A i n G e r m a n y l i c e n s e d a t e c h n i q u e k n o w n as the H I A G process (19, 20)
for d i s t i l l i n g absolute e t h a n o l , u s i n g m i x e d
acetate salts as the s e p a r a t i n g agent, i n the days w h e n e t h a n o l w a s u s e d as a f u e l u p g r a d i n g a d d i t i v e i n a u t o m o t i v e gasolines p r o d u c e d i n c e r t a i n
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
44
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
countries. O v e r 100 s u c h p l a n t s w e r e b u i l t b e t w e e n 1930 a n d 1950. U s e r s c l a i m e d l o w e r c a p i t a l costs a n d l o w e r e n e r g y r e q u i r e m e n t s i n c o m p a r i s o n w i t h c o n v e n t i o n a l processes w h i c h use b e n z e n e o r e t h y l e n e g l y c o l as the s e p a r a t i n g agent, a n d the 9 9 . 8 % e t h a n o l p r o d u c e d r e q u i r e d n o f u r t h e r p u r i f y i n g or solvent k n o c k b a c k to r i d i t of traces of s e p a r a t i n g agent. A n e x a m p l e of a c o m m e r c i a l extractive d i s t i l l a t i o n o p e r a t i o n i n c u r r e n t major use u s i n g a salt is t h e c o n c e n t r a t i o n of aqueous n i t r i c a c i d u s i n g m a g n e s i u m n i t r a t e as t h e s e p a r a t i n g agent i n s t e a d of t h e earlier process which
h a d used a l i q u i d separating
agent,
sulfuric acid.
developers of this process h a v e b e e n H e r c u l e s a n d Tennessee
Principal Eastman
i n the U n i t e d States a n d I m p e r i a l C h e m i c a l I n d u s t r i e s i n B r i t a i n .
Her-
cules, w h i c h i n s t a l l e d the process at P a r l i n , N . J . , 13 years ago, c l a i m s s e v e r a l s t r o n g advantages
for u s i n g m a g n e s i u m n i t r a t e , a salt, as the
s e p a r a t i n g agent i n s t e a d of s u l f u r i c a c i d (21).
T h e y report
operating
costs r e d u c e d b y h a l f l a r g e l y t h r o u g h savings i n r e d u c e d e n e r g y r e q u i r e ments, c a p i t a l costs r e d u c e d 3 0 to 4 0 % , a h i g h e r y i e l d of p r o d u c t at h i g h e r q u a l i t y , a n d less p o l l u t i o n of the atmosphere. O t h e r i n d u s t r i a l a p p l i c a t i o n s h a v e existed, a n d these are elsewhere
reviewed
(10).
Conclusions E x t r a c t i v e d i s t i l l a t i o n u s i n g a d i s s o l v e d salt i n p l a c e of a l i q u i d solvent as t h e s e p a r a t i n g agent is a n u n u s u a l u n i t o p e r a t i o n for a p p l i c a t i o n i n c e r t a i n specific systems w h e r e r e l a t i v e l y s m a l l concentrations of salt are c a p a b l e of a l t e r i n g c o n s i d e r a b l y t h e v a p o r - l i q u i d e q u i l i b r i u m r e l a t i o n s h i p . T h e systems to w h i c h the t e c h n i q u e is a p p l i c a b l e are r e l a t i v e l y l i m i t e d i n n u m b e r b y the a v a i l a b i l i t y of a n effective salt f o r a g i v e n system w h i c h is a d e q u a t e l y s o l u b l e i n t h e system o v e r the c o m p o s i t i o n r a n g e i n v o l v e d a n d is selective. W h e r e a p p l i c a b l e , h o w e v e r , the effect c a n sometimes b e v e r y large a n d as a result c a n g r e a t l y r e d u c e t h e a m o u n t of s e p a r a t i n g agent r e q u i r e d , a l o n g w i t h y i e l d i n g a n o v e r h e a d p r o d u c t c o m p l e t e l y free of s e p a r a t i n g agent d i r e c t l y f r o m the t o p of t h e c o l u m n without the requirement
for a k n o c k b a c k section.
T h i s t e c h n i q u e is
d e s e r v i n g of m o r e a t t e n t i o n t h a n the relative o b s c u r i t y to w h i c h i t has b e e n r e l e g a t e d to date. Acknowledgment T h e c o n t i n u e d r e s e a r c h p r o g r a m s o n extractive d i s t i l l a t i o n b y salt effect a n d o n salt effect i n v a p o r - l i q u i d e q u i h ' b r i u m at t h e R o y a l M i l i t a r y C o l l e g e of C a n a d a are s u p p o r t e d b y t h e D e f e n c e
R e s e a r c h B o a r d of
C a n a d a , G r a n t N o . 9530-40.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3.
FURTER
Salt Effect
45
Literature Cited 1. Meranda, D., Furter, W. F., Can.J.Chem. Eng. (1966) 44, 298. 2. Dobroserdov, L. L., Il'yina, V. P., Tr. Leningradskogo Tekhnol. Inst. Pish chevoi Prom. (1956) 13, 92. 3. Johnson, A. I., Furter, W. F., Can. J. Chem. Eng. (1960) 38, 78. 4. Meranda, D., Furter, W. F., A.I.Ch.E. J. (1971) 17, 38. 5. Lescoeur, H., Ann. Chim. Phys. (1896) 9 (7), 541. 6. Kablukov, I. Α., Zh. Russk. Fiz.-Khim. Obshch. (1891) 23, 388. 7. Kablukov, I. Α., ibid (1903) 35, 548. 8. Kablukov, I. Α., ibid (1904) 36, 573. 9. Miller, W. L., J. Phys. Chem. (1897) 1, 633. 10. Furter, W. F., Cook, R. Α., Intern. J. Heat Mass Transfer (1967) 10, 23. 11. Furter, W. F., Chem. Engr. (London) (1968) 219, CE 173. 12. Ciparis, J. N., "Data of Salt Effect in Vapour-Liquid Equilibrium," Lith uanian Agricultural Academy, Kaunas, Lithuania, USSR (1966). 13. Ciparis, J. N., Dobroserdov, L. L., Kogan, V. B., "Salt Rectification," Khimiya, Leningrad (1969). 14. Othmer, D. F., personal communication (April, 1969). 15. Othmer, D. F., personal communication to J. P. Hartnett (March 7, 1966). 16. Othmer, D. F., Anal. Chem. (1948) 20, 763. 17. Cook, R. Α., Furter, W. F., "Extractive Distillation Employing a Dissolved Salt as Separating Agent," A.I.Ch.E. 63rd National Meeting, St. Louis (Feb. 18-21, 1968). 18. Cook, R. Α., Furter, W. F., Can. J. Chem. Eng. (1968) 46, 119. 19. Intern. Sugar J. (1933) 35, 266. 20. "Herstellung von absolutem Alkohol nach dem HIAG-VERFAHREN DER DEGUSSA," Degussa, Deusche Gold-und-Silber-Scheideanstalt, Vormals Roessler, Frankfurt (Main), Germany. 21. Chem. Eng. News (June 9, 1958), 40. RECEIVED November 24, 1970.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4 Rapid Screening of Extractive Distillation Solvents Predictive and Experimental Techniques
DIMITRIOS P. TASSIOS Newark College of Engineering, Newark, N. J. 07102 Rapid predictive and experimental techniques for screening extractive distillation solvents are reviewed. In pre paring a list of potential solvents the method of Scheibel is recommended for non-hydrocarbon systems; for hydro carbon systems solvents of high polar cohesive density should be considered. For screening the potential sol vents the method of Pierotti, Deal, and Derr is recom mended. If it is not applicable, the method of Helpinstill and Van Winkle should be considered next. Finally, re liable screening is accomplished through a simple, rapid technique recently developed that uses gas-liquid chro matography.
" E x t r a c t i v e a n d a z e o t r o p i c d i s t i l l a t i o n i n different types o f c h e m i c a l i n d u s t r y has b e c o m e m o r e i m p o r t a n t as m o r e separations of c l o s e - b o i l i n g m i x t u r e s a n d a z e o t r o p i c ones are e n c o u n t e r e d . E x t r a c t i v e d i s t i l l a t i o n is u s e d m o r e because i t is g e n e r a l l y less expensive, s i m p l e r , a n d c a n use m o r e solvents t h a n a z e o t r o p i c d i s t i l l a t i o n . S o l v e n t s e l e c t i o n for a z e o t r o p i c d i s t i l l a t i o n has r e c e n t l y b e e n d i s c u s s e d b y B e r g ( I ) .
T h e r e f o r e , solvent
s c r e e n i n g for extractive d i s t i l l a t i o n is d i s c u s s e d here. T h e ease of s e p a r a t i o n o f a g i v e n m i x t u r e w i t h k e y c o m p o n e n t s i a n d / is g i v e n b y the r e l a t i v e v o l a t i l i t y :
w h e r e χ is the l i q u i d phase m o l e fraction, y is the v a p o r p h a s e m o l e f r a c t i o n , y is the a c t i v i t y coefficient, a n d P ° is the p u r e c o m p o n e n t v a p o r pressure. 46 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Library American Chemical Society 4.
Extractive
TASSIOS
Distilfotion
47
Solvents
T h e solvent is i n t r o d u c e d t o c h a n g e t h e r e l a t i v e v o l a t i l i t y ( α # ) as far a w a y f r o m one as possible. S i n c e the r a t i o
(P°i/P° )
is constant for s m a l l
;
t e m p e r a t u r e changes, t h e o n l y w a y t h a t t h e r e l a t i v e v o l a t i l i t y i s affected is b y i n t r o d u c i n g a solvent w h i c h changes the r a t i o
(yi/γ,).
This ratio, i n
the presence o f the solvent, is c a l l e d selectivity (S^) : Sii—
[yi/r;] solvent
(2)
I n some cases a significant c h a n g e i n o p e r a t i n g pressure, a n d h e n c e t e m p e r a t u r e , changes
e n o u g h t o e l i m i n a t e a n azeotrope ( 2 ) .
Besides a l t e r i n g t h e r e l a t i v e v o l a t i l i t y , t h e solvent s h o u l d also b e easily s e p a r a t e d
from
the distillation products.
Other
criteria—e.g.,
toxicity, cost, e t c . — d i s c u s s e d b y V a n W i n k l e ( 2 ) a n d others m u s t b e c o n s i d e r e d . R e l a t i v e v o l a t i l i t y e n h a n c e m e n t is d i s c u s s e d i n this p a p e r . S e l e c t i n g the p r o p e r solvent b y c o n s i d e r i n g this c r i t e r i o n is s t i l l b a s e d o n e m p i r i c a l a p p r o a c h e s because o f t h e large n o n i d e a l i t y o f the r e s u l t i n g mixtures.
However,
g e n e r a l selection patterns a n d r a p i d e x p e r i m e n t a l
techniques have been made presents a r e v i e w
a v a i l a b l e t h r o u g h t h e years.
o f some o f these m e t h o d s
This
paper
t o f a c i l i t a t e t h e solvent
selection process i n t h e c h e m i c a l i n d u s t r y . Q u a l i t a t i v e aspects a r e first considered, followed
b y e m p i r i c a l correlations a n d r a p i d e x p e r i m e n t a l
techniques. Qualitative
Considerations
Since the type
o f solutions e n c o u n t e r e d
i n extractive d i s t i l l a t i o n
i n v o l v e m i x t u r e s o f p o l a r c o m p o u n d s o r p o l a r w i t h n o n p o l a r ones, t h e solutions a r e u s u a l l y n o n i d e a l , a n d p r e d i c t i n g t h e phase e q u i l i b r i u m f r o m p u r e c o m p o n e n t d a t a o n l y is p r a c t i c a l l y i m p o s s i b l e . T h e o r e t i c a l a n d e x p e r i m e n t a l studies t h r o u g h the years, h o w e v e r , h a v e e s t a b l i s h e d c e r t a i n trends w h i c h are u s e d to s e a r c h f o r a n d screen p o t e n t i a l solvents. Non-Hydrocarbon Mixtures: The Scheibel Method. S c h e i b e l ( 3 ) has suggested that the p r o p e r solvent c a n b e f o u n d a m o n g t h e m e m b e r s o f the h o m o l o g o u s series o f either k e y c o m p o n e n t s , i o r /
close t o o n e ) .
A n e x a m p l e p r e s e n t e d b y S c h e i b e l . ( 3 ) best demonstrates this a p p r o a c h . C o n s i d e r i n g the separation o f the m e t h a n o l - a c e t o n e azeotrope, t h e p o t e n t i a l solvents a c c o r d i n g t o this m e t h o d a r e presented i n T a b l e I. A n y m e m b e r o f either h o m o l o g o u s series c a n b e u s e d . T h e reason b e h i n d this a p p r o a c h is that w h i l e the m e m b e r s o f a h o m o l o g o u s series f o r m essen t i a l l y i d e a l solutions, t h e y f o r m n o n i d e a l solutions w i t h t h e other c o m ponent. with
F o r e x a m p l e w h i l e m e t h a n o l forms essentially i d e a l solutions
ethanol,
1-propanol,
a n d 1-butanol,
n o n i d e a l solutions w i t h t h e m .
acetone
forms
increasingly
W h i l e t h e p a r t i a l pressure o f m e t h a n o l
decreases i n t h e presence o f a h i g h e r a l c o h o l , that o f acetone increases.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
48
E X T R A C T I V E
Table I.
A N D
A Z E O T R O P I C
Potential Solvents for the Acetone "-Methanol
B.P.,
Solvent Methylethyl
ketone
102.0
M e t h y l i s o b u t y l ketone M e t h y l n - a m y l ketone,
etc.
6
Separation
B.P.,
Solvent
°C
79.6
M e t h y l η-propyl ketone
DISTILLATION
°C
Ethanol
78.4
Propanol
97.8
115.9
Water
100.0
150.6
Butanol A m y l alcohol
117.0
Ethylene
197.4
137.8
glycol
"Boiling point: 54.6°C. B o i l i n g point: 64.7°C. b
So that a n a z e o t r o p e w i t h acetone does not f o r m , the a l c o h o l u s e d m u s t h a v e a h i g h e n o u g h b o i l i n g point.
T h i s r e q u i r e m e n t is r e l i a b l y
l i s h e d o n l y i f v a p o r - l i q u i d e q u i l i b r i u m d a t a for at least two,
estab
preferably
three, of the m e m b e r s of the series w i t h acetone are k n o w n . T h e P i e r o t t i Deal-Derr
method
(4)
( d i s c u s s e d l a t e r ) o r the T a s s i o s - V a n
Winkle
m e t h o d ( 5 ) c a n b e u s e d i n this case. I n the latter m e t h o d a l o g - l o g p l o t of y°i vs. P°i s h o u l d y i e l d a straight line. F i g u r e 1 presents results for n-alcohols a n d b e n z e n e f r o m t h e i s o b a r i c ( 7 6 0 m m H g ) Coates (6).
d a t a of W e h e a n d
R e l i a b l e infinite d i l u t i o n a c t i v i t y coefficients are established
for the o t h e r η-alcohols f r o m d a t a for at least t w o , a n d p r e f e r a b l y three, of t h e m . T h e s e y° or W i l s o n (7)
values are u s e d w i t h equations l i k e those of V a n L a a r to generate a c t i v i t y coefficients
at i n t e r m e d i a t e
composi
tions a n d to c h e c k for a n e x i s t i n g a z e o t r o p e o r a difficult separation c u r v e close to t h e 45°
(x-t/
line).
F r o m the t w o series the one of t h e alcohols is p r e f e r r e d because here acetone is the o v e r h e a d p r o d u c t a n d u s i n g a ketone causes the v o l a t i l i t y to invert.
Scheibel (3)
recommends
relative
that the lowest b o i l i n g
h o m o l o g , w h i c h does not f o r m a n azeotrope, is chosen.
An
alternative
a p p r o a c h suggests the h o m o l o g w h i c h b a r e l y meets the m i s c i b i l i t y re q u i r e m e n t , for this results i n h i g h selectivity
(8).
T h e choice between
these c o n f l i c t i n g suggestions m u s t b e m a d e o n the basis of
economical
considerations. Hydrocarbon Mixtures. H e r e i t is u s u a l l y n o t the existence of a n azeotrope b u t r a t h e r the close v a p o r pressure of the k e y
components
that often necessitates u s i n g extractive d i s t i l l a t i o n . T h e q u a l i t a t i v e c r i t e r i a for solvent selection for h y d r o c a r b o n tures h a v e b e e n d i s c u s s e d b y P r a u s n i t z a n d A n d e r s o n ( 9 ) a n d P r a u s n i t z (10). (II),
and
mix
Weimer
S i n c e a r e v i e w was p r e s e n t e d r e c e n t l y b y Tassios
o n l y the c o n c l u s i o n s are discussed here.
T h e types of possible interactions b e t w e e n a m i x t u r e of h y d r o c a r b o n s a n d a p o l a r solvent are:
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Extractive
TASSIOS
Distillation
49
Solvents
1. p h y s i c a l ( d i s p e r s i o n a n d d i p o l e - i n d u c e d d i p o l e ) 2. c h e m i c a l ( r e s u l t i n g f r o m t h e f o r m a t i o n of l o o s e l y b o u n d aggre gates) U s i n g p h y s i c a l i n t e r a c t i o n alone, P r a u s n i t z a n d A n d e r s o n ( 9 ) a n d W e i m e r a n d P r a u s n i t z (10)
h a v e d e v e l o p e d this s i m p l i f i e d expression
for h y d r o c a r b o n selectivity, S° 3, at infinite d i l u t i o n i n a solvent: 2
lnS°2s
oc ( r x W e - V a )
(3)
w h e r e η is the p o l a r cohesive e n e r g y d e n s i t y of the solvent, w h i c h is rer e l a t e d to the p o l a r i t y a n d t h e m o l a r v o l u m e of t h e solvent. References 10 a n d 11 e x p l a i n h o w to c a l c u l a t e τ. T h e s e l e c t i v i t y is h i g h e r , t h e l a r g e r the difference i n m o l a r v o l u m e b e t w e e n the h y d r o c a r b o n s a n d the l a r g e r the p o l a r cohesive e n e r g y d e n s i t y ( τ ) of t h e solvent. P r a u s n i t z a n d c o w o r k e r s (9, 10),
Gerster a n d his coworkers (12), Pierroti, D e a l , a n d D e r r
a n d D e a l a n d D e r r (14) conclusions.
F o r e x a m p l e , the selectivities of the p a i r h e x a n e - b e n z e n e
at 2 5 ° C w i t h v a r i o u s solvents (14) for τ
χ
(13),
g i v e e x p e r i m e n t a l e v i d e n c e to s u p p o r t the a b o v e are p r e s e n t e d a l o n g w i t h the values
i n T a b l e I I a n d p l o t t e d against e a c h other i n F i g u r e 2.
Here
3.0L.
l.ol 5.0
I
I
I
I
I 6.0
ι
ι
I
I
I 7.0
I
I
L
lnP°
Figure 1. Prediction of infinite dilution activity coefficients for numbers of a homologous series m a common solvent: n-Alcohols in Benzene at 1 atm
A 7°B
vs. P°B
·
7°A vs. P°A
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
50
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
( V 3 - V 2 ) is constant, a n d the s e l e c t i v i t y tends to increase w i t h τ ,
indi
2
χ
c a t e d b y E q u a t i o n 3. L o o s e l y b o u n d aggregates ( c h e m i c a l effects) are f o r m e d w i t h the h y d r o c a r b o n s a c t i n g as e l e c t r o n d o n o r s ( L e w i s b a s e ) a n d t h e acting
as
electron
acceptors
(Lewis
acid).
The
forms the m o s t stable c o m p l e x w i t h the solvent experiences a i n volatility.
E l e c t r o n donors
are r a t e d b y
solvents
hydrocarbon
that
decrease
ionization potential,
e l e c t r o n acceptors are r a t e d b y t h e i r e l e c t r o n affinities.
The
and
selectivity
w i l l b e h i g h e r , the l a r g e r the difference i n i o n i z a t i o n p o t e n t i a l b e t w e e n the h y d r o c a r b o n s a n d the l a r g e r the e l e c t r o n affinity of the solvent While
data
(15, 16),
on
ionization potentials
of
hydrocarbons
can be
(9). found
e l e c t r o n affinities d a t a are r a r e because of difficulties i n t h e i r
experimental
determination.
Prausnitz and Anderson
that the s i g m a scale, p r o p o s e d b y H a m m e t t (17),
(8)
b e u s e d to
recommend determine
a p p r o x i m a t e l y the s o l v e n t s r e l a t i v e a b i l i t y to f o r m complexes w i t h the two hydrocarbons.
A t t e m p t s b y this a u t h o r , h o w e v e r , to use this scale
w e r e n o t c o n c l u s i v e . P r a u s n i t z a n d A n d e r s o n (8)
s h o u l d b e c o n s u l t e d to
u n d e r s t a n d better the p h y s i c a l a n d c h e m i c a l effects. The Effect of Solvent and Solute Concentration. T h e effect of solvent c o n c e n t r a t i o n o n selectivity is q u a l i t a t i v e l y d e s c r i b e d b y three types
(2,
11 ) s h o w n i n F i g u r e 3. I n the first t y p e the s e l e c t i v i t y increases a l m o s t l i n e a r l y w i t h solvent c o n c e n t r a t i o n , a n d this seems to represent the p r e d o m i n a n t p a t t e r n 19).
(18,
I n the s e c o n d t y p e the s e l e c t i v i t y increases m o r e t h a n l i n e a r l y w i t h
solvent c o n c e n t r a t i o n , b u t it is h a l t e d b y i m m i s c i b i l i t y at h i g h solvent c o n c e n t r a t i o n s (20).
T h e t h i r d t y p e shows a m a x i m u m a n d is a n u n u s u a l
p a t t e r n . O n e s u c h case was o b s e r v e d b y H e s s et al. (21)
i n s t u d y i n g the
s e p a r a t i o n of 1-butane f r o m butenes-2 w i t h the f u r f u r a l solvent Table II.
(96.5%
Selectivities and Polar Cohesive Energy Densities for the Hexane ( l ) - B e n z e n e (2) System at 25°C (12) Solvent
M E K Acetone Pyridine Aniline Acetonitrile Propionitrile Nitromethane Nitrobenzene Phenol Furfural Dimethyl-sulfoxide D i m e t h y l formamide
S°2J 3.6 3.8 5.2 12.2 9.4 6.5 15.0 5.8 6.0 10.9 22.0 12.5
T (cal/cc)
m
t
5.33 6.14 3.71 6.37 8.98 7.17 9.44 4.89 9.84 7.62 9.47 8.07
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
TASSIOS
Extractive
Distilfotion
51
Solvents
1.4
•
1.2
-
1/1
•
•
1.0
0.8
0.6
1
1
•
•
•
•
•
•
•
•
•
•
20
I
1
I
40
60
80
ι
1
I g.molel Figure
2.
Variation of selectivity with solvent's polar cohesive system: hexane (l)-benzene (2) at 25°C (12)
weight furfural and 3 . 5 % water). that
selectivity
H o w e v e r , G e r s t e r et al
i n c r e a s e d w i t h solvent
c o n c e n t r a t i o n for
density;
(22)
report
the
system
b u t a n e - b u t e n e - 1 w i t h p u r e f u r f u r a l as solvent. C o n s i d e r i n g the extensive e x p e r i m e n t a l w o r k of the s e c o n d s t u d y , the results s h o u l d b e c o n s i d e r e d m o r e r e l i a b l e . A n o t h e r case i n v o l v e s the s e p a r a t i o n of e t h y l b e n z e n e f r o m e t h y l c y c l o h e x a n e w i t h h e x y l e n e g l y c o l as solvent ( 2 3 ) .
The maximum
appears i n this case i f definite, a n d t h e d a t a are r e p r o d u c e d . T h i s decrease i n s e l e c t i v i t y at h i g h e r solvent c o n c e n t r a t i o n results f r o m the
higher
temperatures r e s u l t i n g f r o m l a r g e r solvent c o n c e n t r a t i o n , for as t e m p e r a t u r e increases, s e l e c t i v i t y decreases. S e l e c t i v i t y is also affected b y the r e l a t i v e concentrations of the k e y c o m p o n e n t s . If c o m p o n e n t ( 1 ) forms a m o r e n o n i d e a l s o l u t i o n w i t h t h e solvent t h a n c o m p o n e n t ( 2 ) , a decrease i n Xi w i l l affect y χ m u c h m o r e t h a n a decrease of x w i l l affect y . 2
2
more rapidly than w h e n x
2
H e n c e , as X i decreases, οi2 increases
decreases.
Experimental evidence
(19,
20)
c l e a r l y shows this. F o r e x a m p l e , c o n s i d e r h o w p r o p a n o l affects the r e l a tive v o l a t i l i t y of the n-hexane ( l ) - b e n z e n e ( 2 )
system. H e x a n e forms a
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
52
E X T R A C T I V E
0 0
0.2
04
0.0
02
0.4
Figure •
A N D
A Z E O T R O P I C
Solvent Mole Fraction 06 08
0.6 Solvent V o l u m ^
1 0
0 8 y d r e e
1.0 V
o
|
3. Variation of refotive volatility with solvent Hydrocarbon ratio is 1:1. P: Constant. ethylcyclohexane (l)-ethyl
DISTILLATION
amount.
benzene (2)/hexylene glycol (22)
A n-hexane (l)-~benzene (2)/l-propanol (18) φ 2-4 dimethylpentane (l)-benzene (2)/aniline (19)
m o r e n o n i d e a l system w i t h p r o p a n o l t h a n b e n z e n e (xi/xo)
(19).
A s the r a t i o
decreases, Si increases. T h i s w a s o b s e r v e d e x p e r i m e n t a l l y 2
(19)
(see F i g u r e 4 ) . Mixed Solvents Effect.
U s i n g m i x e d solvents c a n i m p r o v e selectivity.
F o r e x a m p l e , a d d i n g s m a l l a m o u n t s o f w a t e r has i m p r o v e d the selectivity of f u r f u r a l i n s e p a r a t i n g C (25)
4
h y d r o c a r b o n s (24). B a u m g a r t e n a n d G e r s t e r
h a v e s t u d i e d h o w v a r i o u s solvents affect the selectivity o f f u r f u r a l
for t h e p e n t a n e - p e n t e n e p a i r . T h e y c o n c l u d e d t h a t for o n l y a f e w solvents some i m p r o v e m e n t w a s o b s e r v e d .
T h e r e s u l t i n g s e l e c t i v i t y lies b e t w e e n
t h e s e l e c t i v i t y of the p u r e solvents ( see T a b l e III ). T o a v o i d i m m i s c i b i l i t y at h i g h solvent c o n c e n t r a t i o n s , a s e c o n d solvent is sometimes a d d e d
(25).
The Effect of Temperature. T h e t e m p e r a t u r e effect o n s e l e c t i v i t y is given by:
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Extractive
TASSIOS
Distilfotion
53
Solvents
d(logS° ) 12
_
tf(l/T)
~
L \ - L \ 2.303R
v
'
w h e r e L° is p a r t i a l m o l a r heat of s o l u t i o n , c o m p o n e n t k at infinite d i l u t i o n i n the solvent. k
F o r h y d r o c a r b o n pairs i n different solvents a n d over m o d e r a t e t e m p e r a t u r e ranges (to 1 0 0 ° C ) , a l i n e a r d e p e n d e n c y of l o g S ° i o n ( 1 / T ) c a n b e a s s u m e d (12, 14, 26). A n e x a m p l e is s h o w n i n F i g u r e 5, w h e r e l o g S° for t h e h e x a n e - b e n z e n e p a i r i n five different solvents is p l o t t e d against t h e r e c i p r o c a l absolute temperature. T h e r e l a t i o n s h i p c a n b e c o n s i d e r e d l i n e a r for e n g i n e e r i n g a p p l i c a t i o n s . S e l e c t i v i t y decreases w i t h i n c r e a s i n g temperature, a n d this explains t h e u n u s u a l m a x i m u m i n t h e v a r i a t i o n of selectivity w i t h solvent c o n c e n t r a t i o n s h o w n b y t h e system e t h y l b e n z e n e - e t h y l c y c l o h e x a n e w i t h h e x y l e n e g l y c o l as solvent ( F i g ure 3 ) . 2
30
i.ol
0.0
ι
I
02
I
I
04
ι
I
1
0.6
1 0 8
1—
1.0
M. Van Winkle, "Distillation," McGraw-Hill Figure 4. Variation of relative volatility with composition (2). Sys tem: hexane (l)-benzene (2)/l-propanol (3) at 760 mm (18). x,/x : · 2
1:3, A
1:1, •
3:1
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
54
E X T R A C T I V E
Table III.
Mixed
1-Pentene(2)
P r o p a n e (3) P r o p y l e n e (2) α
A Z E O T R O P I C
DISTILLATION
Selectivity of Pure and Mixed Solvents
Solute
n-Pentane(3)
A N D
Solvents
B;
Vol%
s
a
A
Β
M e t h y l Cellosolve M e t h y l Cellosolve M e t h y l Cellosolve
Nitromethane Nitromethane Nitromethane
0 5 100
1.69 1.70 2.49
Pyridine Pyridine Pyridine
-Butyrolactone -Butyrolactone -Butyrolactone
0 32.1 100
1.60 1.79 2.17
E t h y l m e t h y l ketone E t h y l m e t h y l ketone E t h y l m e t h y l ketone
-Butyrolactone -Butyrolactone -Butyrolactone
100 50 0
2.17 1.79 1.62
Acetonitrile Acetonitrile Acetonitrile
Water Water Water
0 50 100
1.64 1.34 .98
Acetonitrile-water data from Reference 41, all others from Reference
Quantitative
Methods
Infinite d i l u t i o n a c t i v i t y coefficients are p r e d i c t e d b y several methods (4,5,10,
27,28, 29, 30, 31).
method
(4),
method
(10),
T h e m o s t g e n e r a l are the P i e r o t t i - D e a l - D e r r
the p a r a c h o r m e t h o d modified
(27),
a n d the
Weimer-Prausnitz
by Hellpinstill and V a n Winkle
a c c u r a c y is l i m i t e d i n these m e t h o d s
Since
(28).
a n d noninfinite dilution
tions p r e v a i l i n a c t u a l operations, the infinite d i l u t i o n a c t i v i t y
condi
coefficients
o b t a i n e d s h o u l d o n l y be u s e d for s c r e e n i n g purposes. Pierotti-Deal-Derr Method (4). (γ°)
Infinite d i l u t i o n a c t i v i t y
coefficients
of s t r u c t u r a l l y r e l a t e d systems are c o r r e l a t e d i n this m e t h o d to the
n u m b e r of c a r b o n atoms of the solute a n d solvent (n
x
m e m b e r s of the h o m o l o g o u s series H ( C H 2 )
w l
a n d n^).
F o r the
X i ( s o l u t e ) i n the m e m b e r s
of the h o m o l o g o u s series H ( C H ) „ Y 2 : 2
log o y
x
_
A
+
l l
+
n
2
2
B
2
^ + ^ no
w h e r e the constants are functions of t e m p e r a t u r e , B of t h e solvent series, C
x
of b o t h , a n d D
Q
(5)
+ Dofa-n*)* U\ 2
and F
is a f u n c t i o n of the solute series, A
lt2
2
are f u n c t i o n s is a f u n c t i o n
is i n d e p e n d e n t of b o t h .
F o r z e r o m e m b e r s of a series—e.g., w a t e r for a l c o h o l s — n o infinite v a l u e for y°
is o b t a i n e d .
Instead, b y c o n v e n t i o n , a n y terms c o n t a i n i n g
a n η for the z e r o m e m b e r are i n c o r p o r a t e d i n the c o r r e s p o n d i n g cient. So for η-alcohols i n w a t e r :
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
coeffi
4.
TASSIOS
Extractive
Distilhtion
l o g y\ Notice
= Κ + B % + 2
that the t e r m D
(%-n )
0
constant because D
G
55
Solvents
2
x
was
2
(6)
CJn
i n c o r p o r a t e d i n t o the
Κ
is s m a l l e r t h a n the other coefficients b y a factor of
1 0 ; therefore, this t e r m is insignificant. I n E q u a t i o n 6 o n l y Κ is a f u n c 3
t i o n of the solute a n d solvent, as stated before.
B
2
is a l w a y s the same
w h e n w a t e r is the solvent a n d C i is the same for η-alcohol solutes.
This
is s h o w n better f r o m t h e f o l l o w i n g h o m o l o g o u s series i n w a t e r at 100°C: η-Alcohols:
l o g y\
=
-0.420 +
(0.517)% +
(0.230)/%
η-Aldehydes: l o g y ° = - 0 . 6 5 0 + ( 0 . 5 1 7 ) % + ( 0 . 3 2 ) / % 1
T h e coefficient Β is the same i n b o t h cases. E q u a t i o n 6 assumes a different f o r m for c y c l i c c o m p o u n d s i n a solvent.
F o r unalkylated cyclic (aromatic
and/or naphthenic)
fixed
hydro
c a r b o n s i n fixed solvents: log y\ where
B
a
and B
n
=
Κ + Bn
are
solvent
a
+ Bn
a
n
n
+ C [l/r -
dependent
r
1]
constants, C
(8) r
is
constant,
d e p e n d i n g o n the t y p e of ring ( d i p h e n y l l i k e or n a p h t h a l e n e l i k e ) , r is the n u m b e r of rings, a n d n
a
bers, respectively.
a n d η% are a r o m a t i c a n d n a p t h e n i c c a r b o n n u m
F o r e x a m p l e for d i p h e n y l l i k e h y d r o c a r b o n s i n p h e n o l
at 2 5 ° C : logy\ =
0.383 + 0.1421 n + 0 . 2 4 0 6 n a
n
+
1.845[l/r -
1]
30 I
(9)
~
1
1.0 I
I.JU
Figure 5. Dependence of selectivity on temperature. System: hexane (1}benzene (2). φ nitrobenzene, A acetonitrile, + furfural, ψ dimethyl sulfolane, Ο diethylene glycol
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
56
E X T R A C T I V E
A N D AZEOTROPIC
DISTILLATION
C o r r e l a t i o n s f o r various systems, d e v e l o p e d b y u s i n g e x p e r i m e n t a l d a t a o n 2 6 5 systems, are a v a i l a b l e ( I I , 2 6 ) . T h e r e l a t i o n s h i p s u s e d , the n u m e r i c a l values o f t h e constants, a n d t h e c a l c u l a t e d a n d e x p e r i m e n t a l values f o r y° are a v a i l a b l e ( 1 3 ) a n d s h o u l d b e u s e d t o s t u d y solvent selection. The Parachor Method ( 2 7 ) . Infinite d i l u t i o n a c t i v i t y coefficients are o b t a i n e d a c c o r d i n g to this m e t h o d f r o m the f o l l o w i n g r e l a t i o n s h i p ( 2 7 ) :
^-^άκτ^ - ^
10
1/2 €υ
2
(10)
w h e r e 17* is p o t e n t i a l e n e r g y o f c o m p o n e n t i c a l c u l a t e d f r o m : C7< · = ( A H a p ) i — R T , Δ Η ρ is e n t h a l p y o f v a p o r i z a t i o n , c a l / g r a m m o l e , C is a constant, a f u n c t i o n o f temperature, t h e p a r a c h o r r a t i o o f the t w o c o m ponents, a n d t h e n u m b e r o f c a r b o n atoms i n t h e solute a n d solvent m o l e c u l e s ; R is t h e gas constant. V
ν Λ
E q u a t i o n 10 generalizes t h e expression o f E r d o s ( 3 1 ) a p p l i c a b l e to c o m p o n e n t s i n v o l v i n g t h e same f u n c t i o n a l g r o u p . R e t u r n i n g to t h e c o n stant C i n E q u a t i o n 10, u s u a l l y t h e n u m b e r o f c a r b o n atoms does n o t d i r e c t l y affect t h e constant. A p p a r e n t l y this effect is c o r r e c t e d b y t h e p a r a c h o r w h i c h changes w i t h t h e n u m b e r of c a r b o n atoms. F o r example, for aromatics i n f u r f u r a l : C — (0.5632 + 0.03 X 10" *) (Pi/P ) 4
2
02222
(11)
a n d f o r naphthenes i n f u r f u r a l : l o g C = (0.2658 + 14.53 X 10" £) (log P i / P 4
2
- 0.5982) - 0.2679 (12)
w h e r e P i is p a r a c h o r o f c o m p o n e n t i a n d t is temperature, ° C . A b o u t t h e same v a r i e t y o f systems, c o v e r e d i n t h e P D D m e t h o d , is c o v e r e d i n this a p p r o a c h , a n d t h e expressions f o r C are g i v e n elsewhere ( 2 7 ) . A c o m p a r i s o n b e t w e e n t h e P D D a n d t h e p a r a c h o r m e t h o d seems to suggest t h a t t h e latter is n o w o r s e t h a n t h e former, a n d often better ( 2 7 ) . F o r t h e systems c o n s i d e r e d , t h e p a r a c h o r m e t h o d gives l o w e r m a x i m u m deviations i n 11 cases, t h e P D D i n 7. A l s o , t h e authors o f t h e p a r a c h o r m e t h o d c l a i m better a c c u r a c y w h e n e x t r a p o l a t i o n w i t h respect to tempera ture is r e q u i r e d . F o r example, t h e case o f n-heptane ( 1 ) i n 1-butanol ( 2 ) is c i t e d . V a l u e s f o r y° c a l c u l a t e d b y e x t r a p o l a t i n g t h e P D D constants to temperatures r a n g i n g f r o m 114.5°C-171.9°C y i e l d error r a n g i n g f r o m 1 0 0 - 2 0 0 % ; t h e errors f o r t h e p a r a c h o r m e t h o d range b e t w e e n 0 . 5 - 3 . 6 % . H o w e v e r , this is t h e o n l y c o m p a r i s o n a v a i l a b l e ( 2 7 ) a n d m a y n o t a l w a y s b e v a l i d . T h e p a r a c h o r values are estimated f o r different c o m p o u n d s b y a g r o u p c o n t r i b u t i o n m e t h o d (32, 33). The Weimer-Prausnitz (WP) Method (10). S t a r t i n g w i t h t h e H i l d e b r a n d - S c h a t c h a r d m o d e l f o r n o n p o l a r mixtures (34), W e i m e r a n d P r a u s -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Extractive
TASSIOS
DistiUation
Solvents
57
n i t z d e v e l o p e d a n expression for e v a l u a t i n g values of h y d r o c a r b o n s i n p o l a r solvents: R T lny°
-
2
RT[
ν [(λχ -
λ )
2
2
In V / V i + 2
+
2
η
2
-
2ψ ]
+
12
V2/V1]
1 -
(13)
w h e r e V * is t h e m o l a r v o l u m e of p u r e i, c c / g r a m m o l e , λ* is t h e n o n p o l a r s o l u b i l i t y parameter, c o m p o n e n t i , a n d r is the p o l a r s o l u b i h t y p a r a m e t e r , {
c o m p o n e n t i . T h e s u b s c r i p t 1 represents the p o l a r solvent a n d s u b s c r i p t 2 is the h y d r o c a r b o n solute w i t h f
1 2
—fc'n
(14)
2
Later H e l p i n s t i l l and V a n W i n k l e (28)
suggested that E q u a t i o n 13
is i m p r o v e d b y c o n s i d e r i n g the s m a l l p o l a r s o l u b i l i t y p a r a m e t e r of
the
h y d r o c a r b o n (olefins a n d a r o m a t i c s ) : RTZny
o
2
-V [(Ai -λ ) 2
2
2
R T [ l n V2/V1 +
+
(η -
τ*) 2
2ψ ] 12
+
V2/V1]
1 -
(13a)
A l s o E q u a t i o n 14 b e c o m e s : ψ
12
=
1ϊ(τ
1
-
τ ) 2
(14a)
2
T h e v a l u e of k was o b t a i n e d b y c u r v e - f i t t i n g e x p e r i m e n t a l
infinite
d i l u t i o n a c t i v i t y coefficients of paraffins, olefins, a n d aromatics i n several p o l a r solvents. Table IV.
T h e v a l u e of k for e a c h h y d r o c a r b o n g r o u p is g i v e n i n
T h e values for λ are t a k e n f r o m plots ( 2 8 ) . {
c a l c u l a t i n g ^ is also a v a i l a b l e T h e term ψ
12
The method
for
(28).
corresponds to the i n d u c t i o n e n e r g y b e t w e e n the p o l a r
a n d n o n p o l a r , or s l i g h t l y p o l a r , species.
S i n c e n o c h e m i c a l effects
are
i n c l u d e d , the c o r r e l a t i o n s h o u l d not b e u s e d for solvents s h o w i n g s t r o n g hydrogen bonding. Rapid Experimental
Techniques
T h e safest m e t h o d u s e d to choose extractive d i s t i l l a t i o n solvents is to m e a s u r e d i r e c t l y m u l t i c o m p o n e n t v a p o r - l i q u i d e q u i l i b r i u m d a t a of the c o m p o n e n t s i n v o l v e d w i t h the solvents b e i n g c o n s i d e r e d . T h i s , h o w ever, is a tedious, t i m e c o n s u m i n g a p p r o a c h . T h e r e are r a p i d e x p e r i m e n t a l t e c h n i q u e s w h i c h c a n at least be u s e d i n the s c r e e n i n g stage of selecting t h e solvent.
T w o m e t h o d s are d i s c u s s e d h e r e ; b o t h use g a s - l i q u i d c h r o
m a t o g r a p h y , a n d t h e y are s i m p l e a n d r a p i d . T h e first ( 3 5 ) to screen; the s e c o n d (36), tive volatilities.
is o n l y u s e d
besides screening, gives infinite d i l u t i o n r e l a
B o t h methods
r e q u i r e a solvent w i t h a l o w e r
pressure t h a n the solutes as i n extractive d i s t i l l a t i o n .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
vapor
58
E X T R A C T I V E
A N D A Z E O T R O P I C
Values for k in Equation
Table IV.
DISTILLATION
(14a)
System
k
% Average Absolute Error in γ°
Paraffins Olefins Aromatics
0.399 0.388 0.447
11.6 8.5 13.5
Screening Solvents through G L C . I n g a s - l i q u i d (GLC)
separating mixture components
l i q u i d b e i n g a b l e to i n t e r a c t w i t h different w i t h t h e v a p o r pressure differences.
chromatography
is b a s e d o n the p a r t i t i o n i n g strengths w i t h t h e m , a l o n g
T h e same is true for a n extractive
d i s t i l l a t i o n solvent. It seems l o g i c a l , therefore, that extractive d i s t i l l a t i o n solvents c o u l d b e r a t e d o n t h e i r p e r f o r m a n c e as p a r t i t i o n i n g l i q u i d s w i t h the m i x t u r e u n d e r c o n s i d e r a t i o n . W a r r e n et al. (37)
a n d Sheets a n d M a r c h e l l o (38)
have
suggested
u s i n g g a s - l i q u i d c h r o m a t o g r a p h y to s t u d y extractive d i s t i l l a t i o n solvents. I n t h e first s t u d y (37) a n i n d i v i d u a l c o l u m n w a s p r e p a r e d f o r e a c h solvent b y u s i n g this solvent as a p a r t i t i o n i n g l i q u i d .
It is a tedious,
time-
c o n s u m i n g m e t h o d a n d w a s r e s t r i c t e d to solvents o f h i g h b o i l i n g p o i n t . F i n a l l y t h e e x p e r i m e n t a l e v i d e n c e b a s e d o n l i m i t e d d a t a is n o t c o n c l u s i v e . Sheets a n d M a r c h e l l o (38)
significantly s i m p l i f i e d i t b y r e p l a c i n g t h e
p r e p a r i n g o f i n d i v i d u a l c o l u m n s f o r e a c h solvent w i t h d i r e c t l y i n j e c t i n g the solvent i n a c h r o m a t o g r a p h c o n t a i n i n g a g e n e r a l p u r p o s e c o l u m n . N o e x p e r i m e n t a l e v i d e n c e w a s g i v e n to s u p p o r t a p p l y i n g G L C t o rate extractive d i s t i l l a t i o n solvents.
R e c e n t l y Tassios
( 3 5 ) has p r o v e d
that
the m e t h o d is effective for screening. T h e t e c h n i q u e consists o f i n j e c t i n g a c e r t a i n a m o u n t (e.g., 3 c c ) of the solvent b e i n g c o n s i d e r e d i n t o the c h r o m a t o g r a p h c o n t a i n i n g a g e n e r a l p u r p o s e c o l u m n o r a c o l u m n c o n t a i n i n g a n inert s u p p o r t . N e x t , f o u r o r five 5 - m l samples o f a m i x t u r e of t h e k e y c o m p o n e n t s are injected, a n d t h e s e p a r a t i o n factor, F , 12
is m e a s u r e d f o r e a c h s a m p l e : F
12
(15)
= D /£>i 2
w h e r e D is distance b e t w e e n a i r p e a k a n d p e a k f o r c o m p o n e n t i as s h o w n {
i n F i g u r e 6. T h e o b t a i n e d values o f F
12
f o r these samples a r e p l o t t e d
against
t i m e f r o m solvent injection to establish t h e m a x i m u m v a l u e f o r t h e sepa r a t i o n factor, F12 ( m a x ) .
F u r t h e r details a b o u t t h e e x p e r i m e n t a l t e c h
n i q u e are i n t h e o r i g i n a l p a p e r ( 3 5 ) . T h e larger t h e v a l u e o f F
12
(max),
the better t h e solvent c a n separate t h e m i x t u r e , i n d i c a t i n g a better ex t r a c t i v e d i s t i l l a t i o n solvent.
T h i s w a s v e r i f i e d b y c o m p a r i n g values f o r
F12 ( m a x ) a n d infinite d i l u t i o n r e l a t i v e v o l a t i l i t i e s ( « ° i 2 ) for t h e system n-hexane—benzene
w i t h six different solvents.
T h e results p r e s e n t e d i n
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
TASSIOS
Extractive
Distilhtion
59
Solvents
1 Figure 6.
Evaluation
of the separation
factor
Fjg
T a b l e V a n d p l o t t e d i n F i g u r e 7 suggest t h a t the l a r g e r the v a l u e of a°i2, the l a r g e r the v a l u e of F
(max).
12
T h e deviations observed w i t h
d i e t h y l e n e g l y c o l m u s t r e s u l t f r o m the l i m i t e d s o l u b i l i t y of n-hexane a n d benzene i n this solvent ( 3 5 ) .
C o m p a r i n g the solvents b a s e d o n the same
v o l u m e is r e c o m m e n d e d because i t is easier a n d seems m o r e c o n c l u s i v e . Infinite Dilution Relative Volatilities through G L C . If the solvent a m o u n t injected i n the c o l u m n is h i g h e n o u g h so t h a t i n f i n i t e d i l u t i o n c o n d i t i o n s for the i n j e c t e d solute p r e v a i l , it is r e a d i l y s h o w n ( 3 8 ) the s e p a r a t i o n factor
becomes
e q u a l to the infinite d i l u t i o n
that
relative
volatility: (16)
<x ij =
D o r i n g ( 3 9 ) has s h o w n t h a t infinite d i l u t i o n r e l a t i v e v o l a t i l i t i e s c a n b e e v a l u a t e d t h r o u g h G L C . H e p r e p a r e d a s p e c i a l c o l u m n for solvent u n d e r c o n s i d e r a t i o n , a tedious project. M a r c h e l l o (38)
each
A y e a r l a t e r Sheets a n d
s h o w e d t h a t s e p a r a t i o n factors increase w i t h i n c r e a s e d
a m o u n t s of injected solvent. L a t e r Tassios ( 3 5 )
f o u n d o u t the same to
Table V . Separation Factors and Infinite Dilution Relative Volatilities for the System w-Hexane ( l ) - B e n z e n e (2) at 67°C (35) Fj2° Solvent Pyridine Propionitrile Furfural Nitromethane N-methylpyrrolidone Diethyleneglycol a
ο « 12 3.70 4.80 6.55 7.00 8.20 9.10
0.03 gram
moles
5.85 6.10 6.40 6.95 8.40 4.70
Calculated for two solvent amounts.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Sec 5.40 6.40 7.50 7.95 8.40 4.50
60
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
b e true b u t o b s e r v e d that at h i g h e r solvent amounts, 5 - 6 c c for the c o l u m n u s e d i n that s t u d y , the separation factor seems to l e v e l off a p p r o a c h i n g the infinite d i l u t i o n v a l u e w h i c h was f o u n d f r o m static measurements. I n a later s t u d y Tassios (36)
u s e d a 6 ft c o l u m n c o n t a i n i n g o n l y c h r o m o -
sorb G a n d a 10 ft c o l u m n c o n t a i n i n g glass beads a n d f o u n d t h a t constant values for the separation factor w e r e o b t a i n e d at solvent levels e q u a l or a b o v e 2.0 cc. F o r four solvents w i t h t w o h y d r o c a r b o n b i n a r y m i x t u r e s , the separation factor m e a s u r e d at 2 c c of solvent agree w e l l w i t h e x p e r i m e n t a l infinite d i l u t i o n relative volatilities. T h e m a x i m u m d e v i a t i o n was 2 3 . 8 % , the m i n i m u m 3 . 1 % .
T h i s a p p r o a c h of d i r e c t solvent
injection
eliminates the tedious c o l u m n p r e p a r a t i o n .
•
4
1
3
5
7
9
C*Ï2
^
Hydrocarbon Processing Figure 7. Relationship between maximum separation factors and infinite dilution rehtive volatilities for the system: n-hexane-benzene with various solvents at 67°C (35)
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
TASSIOS
Figure
Extractive
8.
Distilfotion
Variation
61
Solvents
of selectivity with solvent's energy density
φ propane (l)-propene Δ pentane (l)-pentene J . butyronitrile 2. acetone 4. acetonitrile 5. furfural
polar
cohesive
(2) at 27°C (24) (2) at 25°C (10) 3. propionitrile 6. DMF
LHscussion T h e c r i t e r i o n of h i g h solvent p o l a r i t y s h o u l d b e c a u t i o u s l y a p p l i e d ( E q u a t i o n 3 ) i n p r e p a r i n g a list o f p r o s p e c t i v e
solvents.
There are
exceptions a m o n g solvents s h o w i n g h y d r o g e n b o n d i n g w h i c h p r o d u c e s h i g h e r values o f p o l a r cohesive energy d e n s i t y t h a n t h e p h y s i c a l i n t e r a c tions alone. T h i s explains, f o r example, t h e r e l a t i v e l y l o w selectivities o b s e r v e d w i t h t h e t w o ketones a n d p h e n o l ( T a b l e I I a n d F i g u r e 2 ) . H a n s o n a n d V a n W i n k l e (40)
m a d e a s i m i l a r o b s e r v a t i o n for 2 - b u t a n o l w i t h t h e
binary hexane-hexene-1.
A s a general
r u l e solvents
showing
strong
h y d r o g e n b o n d i n g affect l o w selectivities. A n o t h e r e x c e p t i o n to t h e a b o v e c r i t e r i o n is p r e s e n t e d i n F i g u r e 8 w h e r e In S ° f o r t h e p r o p y l e n e - p r o p a n e p a i r w i t h six different solvents at 2 7 ° C (41)
is p l o t t e d against τ . D e 2
c r e a s i n g selectivity tends to o c c u r w i t h i n c r e a s i n g solvent p o l a r cohesive energy density.
I n t h e same figure t h e d a t a o n p e n t a n e - p e n t e n e
(12)
w i t h t h e same solvents a r e also p l o t t e d . H e r e a c l e a r t r e n d of i n c r e a s i n g selectivity w i t h i n c r e a s i n g solvent p o l a r cohesive energy d e n s i t y is o b -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
62
E X T R A C T I V E
served.
A N D A Z E O T R O P I C
DISTILLATION
Because of the similarity between t h e t w o hydrocarbon
pairs
a n d because the d a t a o n the C p a i r are s u p p o r t e d b y f u r t h e r e x p e r i m e n t a l 5
evidence ( 3 9 ) , the C data are of questionable accuracy. 3
T h e p r e d i c t i v e t e c h n i q u e s a r e r a t h e r accurate.
H o w e v e r , significant
errors h a v e b e e n o b s e r v e d i n f e w cases (4, 13, 27, 40).
N o direct com
p a r i s o n b e t w e e n t h e three p r e d i c t i v e m e t h o d s is a v a i l a b l e .
T h e authors
of the p a r a c h o r m e t h o d (27) c l a i m that t h e i r m e t h o d y i e l d s e q u a l o r better results t h a n t h e P D D m e t h o d f o r t h e cases c o n s i d e r e d i n t h e i r s t u d y ; i t is b e l i e v e d (42), mended.
h o w e v e r , that t h e latter is m o r e r e l i a b l e a n d i t is r e c o m
T h e Weimer-Prausnitz
m e t h o d p r o b a b l y gives less a c c u r a c y
t h a n t h e P D D m e t h o d , b u t i t is m o r e general.
F o r example, H a n s o n a n d
V a n W i n k l e (40) r e p o r t t h a t t h e i r d a t a o n t h e h e x a n e - h e x e n e p a i r w e r e not successfully c o r r e l a t e d
b y the W P method.
W i n k l e m o d i f i c a t i o n is r e c o m m e n d e d N u l l a n d P a l m e r (43)
The Helpinstill-Van
over t h e W P method.
Recently,
h a v e presented a m o d i f i c a t i o n o f t h e W P m e t h o d
w h i c h p r o v i d e s better a c c u r a c y b u t i t is less general.
The P D D
method
s h o u l d b e u s e d c a u t i o u s l y w h e n e x t r a p o l a t i o n w i t h respect t o t e m p e r a t u r e is u s e d (27). expected. mended
W h e n t h e G L C m e t h o d is u s e d , r e l i a b l e results are
E v a l u a t i o n of infinite d i l u t i o n relative v o l a t i l i t i e s is r e c o m (36).
Literature Cited 1. Berg, L., Chem. Eng. Progr. (1969) 65, 9, 52. 2. Van Winkle, M., "Distillation," p. 436, McGraw-Hill, New York, 1968. 3. Scheibel, E. G., Chem. Eng. Progr. (1948) 44, 927. 4. Pierotti, G. I., Deal, C. H., Derr, E. L., Ind. Eng. Chem. (1955) 51, 95. 5. Tassios, D. P., Van Winkle, M.,J.Chem. Eng. Data (1967) 12, 555. 6. Wehe, A. H., Coates, J., A.I.Ch.E. J. (1955) 2, 241. 7. Orye, R. V., Prausnitz, J., Ind. Eng. Chem. (1965) 57, 96. 8. Oliver, E. D., "Diffusional Separation Processes: Theory, Design and Evalu ation," p. 189, Wiley, New York, 1966. 9. Prausnitz, J. M., Anderson, R., A.I.Ch.E. J. (1961) 7, 96. 10. Weimer, R. F., Prausnitz, J., Petrol. Refiner (1965) 44, 9, 237. 11. Tassios, D. P., Chem. Eng. (1969) 76, 3, 118. 12. Gerster, J. Α., Gordon, J., Eklund, R. B.,J.Chem. Eng. Data (1960) 5, 423. 13. Pierotti, G. I., Deal, C. H., Derr, E. L., Document No. 5782, American Documentation Institute, Washington, D. C., 1958. 14. Deal, C. H., Derr, E. L., Ind. Eng. Chem. Process Design Develop. (1964) 3, 394. 15. Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibria," p. 63, Prentice-Hall, Englewood Cliffs, 1969. 16. Watanabe, K.,J.Chem. Phys. (1954) 22, 1564. 17. Hammet, L. P., "Physical Organic Chemistry," McGraw-Hill, New York, 1940. 18. Murti, P. S., Van Winkle, M., A.I.Ch.E. J. (1957) 3, 517. 19. Prabhu, P. S., Van Winkle, M., J. Chem. Eng. Data (1963) 8, 14, 210. 20. Stephenson, R. W., Van Winkle, M.,J.Chem. Eng. Data (1962) 7, 510. 21. Hess, Η. V., et al., "Phase Equilibrium," Amer. Inst. Chem. Engrs. Symp. Ser. 2 (1962) 72-79.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
TASSIOS
Extractive Distillation Solvents
63
22. Gerster, J. Α., Mertes, T. S., Colburn, A. P., Ind. Eng. Chem. (1947) 39, 797. 23. Quozati, Α., Van Winkle, M., J. Chem. Eng. Data (1960) 5, 269. 24. Jordan, D., Gerster, J. Α., Colbum, A. P., Nohl, K., Chem. Eng. Progr. (1950) 46, 601. 25. Baumgarten, P. K., Gerster, J. Α., Ind. Eng. Chem. (1964) 46, 2396. 26. Mertes, T. S., Colburn, A. P., Ind. Eng. Chem. (1947) 39, 787. 27. Balakrishnan, S., Krishnan, V., International Symp. on Distillation (1969), p. 49, Inst. Chem. Eng., Brighton, England. 28. Helpinstill, J. G., Van Winkle, M., Ind. Eng. Chem. Process Design De velop. (1968) 7, 213. 29. Wilson, G. M., Deal, C. H., Ind. Eng. Chem. Fundamentals (1962) 1, 20. 30. Deal, C. H., Derr, E. L., Papadopoulos, M. N., Ind. Eng. Chem. Funda mentals (1962) 1, 17. 31. Erdos, E., Collection Czech. Chem. Commun. (1956) 21, 1521. 32. Quale, O. R., Chem. Rev. (1953) 53, 439. 33. Reid, R. C., Sherwood, T. K., "The Properties of Gases and Liquids," p. 373, McGraw-Hill, New York, 1966. 34. Hildebrand, T. H., "Solubility of Non-Electrolyles," p. 131, Dover, New York, 1964. 35. Tassios, D. P., Hydrocarbon Process. Petrol. Refiner (1970) 49, 7, 114. 36. Tassios, D. P., Ind. Eng. Chem. Process Design Develop. (1972) 11, 43. 37. Warren, G. W., Warren, R. R., Yarborough, V. Α., Ind. Eng. Chem. (1959) 51, 1475. 38. Sheets, M. R., Marchello, J. M., Petrol. Refiner (1963) 42, 99. 39. Doring, C., Z. Chem. (1961) 1, 347. 40. Hanson, D. O., Van Winkle, M.,J.Chem. Eng. Data (1967) 12, 319. 41. Hafslund, E. R., Chem. Eng. Progr. (1969) 65, 9. 42. Prausnitz, J. M., private communication, 1970. 43. Null, H. R., Palmer, D. Α., Chem. Eng. Progr. (1969) 65, 9, 47. RECEIVED November 24, 1970.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5 Azeotropic Distillation Results from Automatic Computer Calculations CLINE BLACK, R. A. GOLDING, and D. E. DITSLER Shell Development Co., Emeryville, Calif. 94608
In azeotropic distillation the added component, or entrainer, is taken overhead with one of two or more components being separated in a distillation column. If a second liquid phase forms upon condensing the overhead vapors, the entrainer-rich phase is refluxed or recycled back to the col umn. The other liquid phase is discarded, recycled to some suitable point in the plant, or processed further to recover dissolved components before being discarded. Methods pre sented earlier by one of the authors are applied to calculate two and three phase equilibria required in a computer pro gram for calculating azeotropic distillations. A brief descrip tion of the program is given; a sample output is listed and described. Calculated results for dehydrating aqueous etha nol mixtures are compared for the entrainers, n-pentane, benzene, and diethyl ether. Column flows, heat loads, and stage requirements are lowest for n-pentane. The entrain ers are rated in decreasing order of suitability: n-pentane, benzene, and diethyl ether.
T ^ V i s t r i b u t i o n of c o m p o n e n t s b e t w e e n separable phases is the basis for **** most c o m m o n l y u s e d separation methods. R e g a r d l e s s of the t y p e of s e p a r a t i o n step, its d e s i g n d e p e n d s o n accurate d i s t r i b u t i o n coefficients for the c o m p o n e n t s b e t w e e n the c o n t a c t i n g phases.
T h e s e are g i v e n i n
c o m p o s i t i o n s or m o r e f u n d a m e n t a l properties of the e q u i l i b r i u m phases. In
d i s t i l l a t i o n the c o m p o n e n t s are d i s t r i b u t e d b e t w e e n
v a p o r a n d l i q u i d phases.
separable
T h e d i s t r i b u t i o n coefficients or Κ values are
the ratios o f the v a p o r - l i q u i d c o m p o s i t i o n s i n the e q u i l i b r i u m
phases.
T h e y are expressed as the l i q u i d phase a c t i v i t y coefficients, γ / s , the v a p o r 64 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5.
BLACK,
GOLDiNG,
Computer
A N D DITSLER
65
Calcufotions
pressures of t h e p u r e c o m p o n e n t s Ρ*° s, t h e t o t a l pressure P, a n d t h e i m p e r f e c t i o n - p r e s s u r e coefficients 0/s, as
T h e r e l a t i v e d i s t r i b u t i o n of c o m p o n e n t s i a n d ; is an = KJKt
-
yiP ° β , / τ Λ * 4
(2)
0
A z e o t r o p i c d i s t i l l a t i o n is a c c o m p l i s h e d b y a d d i n g t o t h e l i q u i d p h a s e a v o l a t i l e t h i r d c o m p o n e n t w h i c h changes t h e v o l a t i l i t y o f o n e of t h e t w o c o m p o n e n t s m o r e t h a n t h e other, so t h e c o m p o n e n t s a r e s e p a r a t e d b y d i s t i l l a t i o n . T h e t w o c o m p o n e n t s to b e s e p a r a t e d often are close b o i l i n g c o m p o n e n t s w h i c h d o o r d o n o t azeotrope i n t h e b i n a r y m i x t u r e , b u t sometimes t h e y are c o m p o n e n t s w h i c h d o a z e o t r o p e a l t h o u g h t h e y a r e n o t close b o i l i n g c o m p o n e n t s . T h e a d d e d t h i r d c o m p o n e n t , sometimes c a l l e d the entraîner, m a y f o r m a t e r n a r y azeotrope w i t h the t w o c o m p o n e n t s b e i n g separated. H o w e v e r , i t m u s t b e sufficiently v o l a t i l e f r o m t h e s o l u t i o n so t h a t i t is t a k e n o v e r h e a d w i t h one of the t w o c o m p o n e n t s i n the d i s t i l l a t i o n .
If
the entraîner a n d the c o m p o n e n t t a k e n o v e r h e a d separate i n t o t w o l i q u i d phases w h e n the v a p o r o v e r h e a d is c o n d e n s e d , t h e entraîner p h a s e is refluxed b a c k to the c o l u m n . T h e other phase c a n b e f r a c t i o n a t e d t o r e m o v e the d i s s o l v e d entraîner a n d the r e s i d u a l a m o u n t of the o t h e r c o m p o n e n t before i t is d i s c a r d e d . A l t e r n a t i v e l y , this s e c o n d l i q u i d p h a s e is r e c y c l e d to some a p p r o p r i a t e p l a c e i n t h e m a i n process scheme. A z e o t r o p i c d i s t i l l a t i o n has often b e e n d i s c u s s e d i n recent l i t e r a t u r e ( J , 2, 3 ) .
M e t h o d s for p r o v i d i n g phase e q u i l i b r i a f o r a z e o t r o p i c a n d
extractive d i s t i l l a t i o n h a v e b e e n s t u d i e d extensively ( J , 4, 5, 6, 7,
8,9).
S o m e h a v e d i s c u s s e d the d e s i g n ( J O ) o r c a l c u l a t i o n of a z e o t r o p i c d i s t i l l a tions ( 2 , 3 ) ; others o n l y d i s c u s s e d c h o o s i n g t h e entraîner for a z e o t r o p i c d i s t i l l a t i o n processes
(11).
A n u n d e r s t a n d i n g of the phase e q u i l i b r i a i n v o l v e d is also v i t a l i n c h o o s i n g the entraîner.
T h i s not only depends on k n o w i n g the pure
c o m p o n e n t v a p o r pressures b u t also k n o w i n g n o n i d e a l i t i e s of the c o m ponents i n the l i q u i d a n d v a p o r phases. T h e m e t h o d s u s e d here to g i v e t h e phase e q u i l i b r i a are r e v i e w e d , a n d the A z e o t r o p i c D i s t i l l a t i o n P r o g r a m A D P / A D P L L E is d e s c r i b e d . A p p l i c a t i o n of the p r o g r a m to c a l c u l a t e a n a z e o t r o p i c d i s t i l l a t i o n p r o b l e m is s h o w n a n d d i s c u s s e d , a n d a s a m p l e c o m p u t e r o u t p u t is g i v e n a n d is briefly discussed. F i n a l l y , c a l c u l a t e d a z e o t r o p i c d i s t i l l a t i o n results are c o m p a r e d for d e h y d r a t i n g a q u e o u s e t h a n o l f o r t h e three entrainers, n pentane, benzene, a n d d i e t h y l ether.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
66
E X T R A C T I V E
Phase
A N D
A Z E O T R O P I C
DISTILLATION
Equilibria
T o c a l c u l a t e p h a s e e q u i l i b r i a s u i t a b l e for m o s t a z e o t r o p i c d i s t i l l a t i o n p r o b l e m s , the m e t h o d s s h o u l d b e a p p l i c a b l e to three-phase e q u i l i b r i a . V a p o r - l i q u i d a n d l i q u i d - l i q u i d e q u i l i b r i a are u s u a l l y r e q u i r e d . A suit a b l e m e t h o d for this p u r p o s e has a l r e a d y b e e n d i s c u s s e d ( 5 ) .
It is a p p l i e d
here to c a l c u l a t e c o m p l e t e l y a l l p h a s e e q u i l i b r i a i n v o l v e d i n the u s u a l a z e o t r o p i c d i s t i l l a t i o n process. F r o m E q u a t i o n s 1 a n d 2, the phase e q u i l i b r i a d e p e n d u p o n k n o w i n g the p u r e c o m p o n e n t v a p o r pressures Pi°,
l i q u i d p h a s e a c t i v i t y coefficients
ji a n d i m p e r f e c t i o n - p r e s s u r e coefficients 0 . T h e c o m p u t e r p r o g r a m w h i c h 4
has b e e n d e v e l o p e d uses a n y of f o u r different v a p o r pressure e q u a t i o n s for p r o v i d i n g Ρ °. 4
It uses the m o d i f i e d v a n L a a r E q u a t i o n s ( 5 )
to g i v e
l i q u i d phase a c t i v i t y coefficients a n d a M o d i f i e d v a n d e r W a a l s E q u a t i o n of State (4, 6) to g i v e i m p e r f e c t i o n - p r e s s u r e coefficients 0> 3
6) e 6) s
7) 3
KNTRL < KNTRL (
KNTRL KNTRL
3 7) 3
1 2
4) a 4) a
KNTRL KNTRL
» 2 3)
PRESENT MOT PRESENT
CALCULATION
ACCUMULATOR
ISOTHERMAL
M
UTILITY
PROGRAMMED
C O M P ( 2 ) / C O P ( 3 > *AT10 A S FEEO CARD INPUT )
ACCUMULATOR ACCUMULATOR
MEATER/SUBCOOLER HEATER/SJBCOOLER
A
F!.)S f-TFR
IN T O P S VAPOR IN REFLUX
Λ
TRAY AT SAME T ^ A V 3Y D A T A
SOMTFNT ΞΟΜΤΕΝΤ
ρ Τ
PNTANj.>ETHMOL-VfATE«
Λί-L C O M P O N E N T C0MP C«MP(3)
SET F E E D SET F E E O
SET SET
A
LO D
S Y S T E M 14 S Y S T E M i5 SYSTEM 1 6 S Y S T E M i7 SySyEM 1 8
13
9
SY5TEM SYSTEM SYSTEM
SYSTEM
4 5 6 7 β
SYSTEM SYSTEM
1 2 3
SYSTEM SYSTEM SYSTEM
ADPLLE PROGRAM C O M B I N A T I O N OF A D P / A O P L L E
ADP
AVAILABLE.
SYSTEM OF UTILITY SUBROUTINES! W J T H
(ADP/ADPLLE)
Ternary Azeotropic Distillation Program ( A D P / A D P L L E )
AZEOTROPIC DISTILLATION PROGRAM
CONTROL OPTIONS ARE
1) 3 1) a 1) 8
KNTRL KNTRL KNTRL KNTRL KNTRL
TERNARY
PROGRAM USES A SPECIAL
KNTRL KNTRL KNTRL
THESE
THIS
Table I.
Computer Output Page 1
to
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
THROUGH
QUANTITIES
A L L COMPONENT
BUILT
INTO
THE
PROGRAM
THE USE OF PPMTR-CAROS.
ARE
PRINT
DATA P
N
NJ
*,0
f,0
3.0 25.0
χ) » 2) -
Ρ(
8
S
B
R
C
C°MP(3)
D
C
FAHRENHEIT MOLE F R A T I 0 N MOLES/HR MOLE F R A CT TION MOLE F R A CΓ I ON
T
FRACT
F^RENHEH
MOLE
MOLFS/HR
T
A
FORM T
FORMAT FORMAT FORMAT FORMAT FORMAT FORMAT FORMAT < I F KNTRL FORMAT FORMAT
Y
MOLF
C
Γ I ON FRA T
FORMAT (IF KNTRL(4)«2> FORMAT FORMAT ION FORMAT I ON C0MPÎ2) FORMAT ION C0MP(3) FORMAT ION 0 M P ( R (D I F KNTRL(5)P2> FORMAT T (IF K N T R L ( 5 ) « 2 ) FORMAT DP (TOP PRESS-AC PRESS) P S H FORMAT HFATER/SUBCOOLER TEMP FAHRENHEIT FORMAT NUM E ° F C C L E S FOR A ° L L E (IF KNTRL(7)«2) FORMAT
8
REFLUX
C0MP(2) C0MPÎ2)
V
»2#3 AND KNTR^(7)sj.) MAX CYCLES(JF KNTRL(l)s2.3 AND KNTR.(7),2> FEED TRAY DISPLACEMENT(ONLY IF KNTRL(Î)=3) MAXIMUM AQP PASSES ALLOWED (IF KNTRL«3>
TMESE
KNTRL ( f t ) * 1 KNTRL < C) s 2
BP
CHANGED BY
THE USER
2
Computer Output Page k
Computer Output Page 3
Computer Output Page
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
R
L
C
T
C
T
D(1C> WHEN KNTFL(1>«3
EC
L )
U
T
FORMAT
T
R
E
mP
T U
E
A
£15.8
MOLES/MR
T
FOR THIS
CALCULATION
0
(2l)
0(15) 0(16) D(17> 0(18) 0(19) 0(20)
8!»
0( 9 ) 0(1C) 0 ( H ) 0(12)
o( a)
0( 2 ) 0( 3 ) Oi 4 ) D( 5 ) 0( 6 ) 0< 7 )
0 ( 1>
.00000000
0
.24202000*03 .85640000*00 ,11000000*03 .50000000*02 .14000000*00 ,15445000*03 .34999999*01 .80000000*03 ,61999999-06 ,25560000*03 .13850000*00 .15000000*02 .99999999* 5 ,89999999*04 .99990000*00 .00000000 .15445000*03 ,00000000 .00000000 .0
SET FEED A * AT SAME C O M P ( 2 > / C O M P ( 3 > R A T I O S F E E O ACCUMULATOR CALCULATION ISOTHERMAL ( I F KNTRL«2»3) HE ATFR/S.jBCOOL N N Ç T P R E S E N T S T R I P P E R P R E S E N T (PROGRAM C Y C L E S ONCE I F KNTRL*1>«2|3> P R I N T A L L COMPONENT DATA
A P EUSED
COMP(?)
DATA
S E T AS FOLLOWS
C O M B I N A T I O N O F ADP/ADPLLE PROGRAMS SYSTEM 7 3NTAN2-ETHNOL-WATER S £ T cChP(2) ; C M T £ K T I N T O P S VAPOR
BEEN
TEST OF AQP/ADPLLE OPTION KNTRL(1>«3
OPTIONS HAVE
1) 2) 3) 4> b) 6) 7) t)
FOLLOWING
( ( ( < < ( < (
E C
OF
W
w
TERNARY AlEOTROPIC DISTILLATION PROGRAM ( A D P / A D P L L O
VALUE
n FL
T
h OLE FRACT I ON COMP(2) FAHRENHEIT FEEO TEMPERATURE (SUBCOOLED L I Q U I D ) PS I A REB°ILEP PRESSURE PSIA P R E S S U R E DROP P E R TRAY FAHRENHEIT REFLUX TEMPERATURE MOLE F R A C I 3 N ( I F KNTRL(3>«2> REFLUX OMP MOLES/HR R E B I L E P VAPOP MOLF. F R A C T I BOTTOMS COMP(i) MOLE F R A C T I BOTTOMS COMP(3) (IF KNTRL(3)«1) MOLE F R A C T I TOPS VAPOR C0MP(2) (IF KNTRL»2> F E E D TRAY L O C A T I O N MOLE FRACTI ON DISTILLATE COMPtj) MOLE FRACTI DN DISTILLATE C0NP{2) MOLE FRACTI ON DISTILLATE tOMP
l 2
0
WATER WATER WATER
ETHNOL ETHNOL ETHNOL
T
PN AN2
PNTAN2
PNTAN2
A
PNT N2 ETHNOL WATER
F
100.000 200.000 300Ό00 100.000 200.000 300.000 100.000 200.000 300,000
TEMP
TC Κ .470300*03 .516300*03 .647000*03
B
0 C
.13747500-00 •22500000*00 .00000000
9
EPR
,000000 .890000-01 .260000-01
9
VAP BTU/MOL ,ΐ5ΐ5ΐ500+θ5 ,17748900*05 .'20346300*05 .20 37 00+05 ,22573300*05 .23969200*05 .19916000*05 .20649000*05 .21290001*05
C4I CC/GM ,141000*03 ,759000*02 ,247000*02
R?SSURE EQUATIONS ,273160*03 ,525l7o*01 ,228980+03 .000000 ,273160*03 ,404859*01
L I O BTU/^OL •39682500*04 ,82972500*04 .132756 *Q5 .25061000*04 ,60349000*04 .10365300*05 .12250000*04 .30270000*04 ,48200000*04
PC ATMS ,331000*02 ,631000*02 ,218000*03
7 CLASSES COEFFICIENTS FOR VAPOR .226933*02 ,208645*04 PNTAN2 .816290*01 .162322*04 ETHNOL .208440*02 ,28i740*04 WATER
3
AI J
•475000*01 .475000*01
•oooooo
AMPR
,οοοοοο •oooooo
.0000 .0000 .0000
I J PNTAN2-ETHN0L PNTANs-WATER ETHNOL-WATER
,159785*01
TEMP lOOtOOQ
AJI .82406500-00 •2Q3noooo*oi .39250000-00
.83367725-00 . 77 936* i ,76050000-00
AI J
ciJ
1J PNTAN2-ETHN0L PNTAN2-WATER ETHNOL-WATER
TEMP 87,800 87,800 87.800
CÏJ .15507600-00 .25800000-00 .00000000
.87359000-00 .22125185*01 .40080000-00
.88388000-00 .39480000*01 .74600000-00
AJI
PNTAN2-ETHN0L PNTÂN2-WATER EfHNOt««ATER
.93892120-00 .41365440+01 .72799999-00
AI J
TEMP 75.000 C 75.000 C 75i00Q C
RUN CVCLES - 1
TEMP « 154,430 F
CU .17486900-00 .29700000-00 .00000000
PRESENT
CALCULATION
PRESENT
A JI .92929000-00 .24165000*01 .40700000-00
STRIPPER
NOT
ACCUMULATOR
HEATER/SUBCOOLER
ISOTHERMAL
MODIFICATION OF PROGRAM TO CALCULATE PHASE EQUILIBRIA B* ?R2£f5^?^?βίϊϊ2 COEFFICIENTS USED IN iVLE» PROGRAM, USES MODIFIED VAN L*A* COEFFICIENTS AT 3 TEMPS. CALCULATES THETAS. GAMMAS AND COMPLETE PHASE EQUILIBRIA AT EACH STAGE.
AZEOTROPIC
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
E
C
0MP(2) C0MP(3) TOTAL VALUE
COMP(l)
C0MP C0MP(3) TOTAL C0MP
COMP(l)
R
T
A
e
S
S )
MOLE
A
WA
2
2
2
2
2
2
0
PRESSURE^ 49.7 0 TE^P« 234.558 VAPOR M/HR LIO M/HR LIQ BTU/M .5139 ,5i41 9921,9861 797.7091 1039,7 54 7421.5674 .0024 .0030 3639.4535 798. ?54 2425 77 ι5 3·4
F R A C T Τ ON
FTMNOL WATER TOTAL
PMTAN2
COMP
KTRAYs 2
T
KTRAYs J PRESSURE* 49.860 TE»lPe 234.74P CONP VAPOR M/MR LlQ M / H R LIQ βΤΙΙ/Μ PN AN2 ,0558 .0559 9944.2387 FTHNOL 799,1022 1C41.U86 7440.7544 WATER .O0 3 .00 e 3647.64i7 TOTAL 799,1602 1041,1773 7747273,7 MOI Ε FRACTION V TER (ENTRAINER FREF BASIS)
w
V
• W12) • VUl> •
2
V< 1 ) V< V( 3 ) V( 4 ) V( 5 ) V( 6 ) V< 7)
VAP BTU/M 18655,6430 23087.8140 20883,2230 18470220,0
MOLES/H MOLEE/WR MOLES/HR OF D(10> ^ H E N KNTPL«3
MOLES/HR MOLES/HP MOLES/HR KOLES/HR MOLES/HR MOLES/HR MOLES/HR MOLES/HR MOLES/HR
REBOILER PRESSURE* 50.00C TEMPt 234.910 C0*P VAPOR M/HR L.!0 M/WR LIS BTU/M PNTAN2 ,0059 ,0061 9961,3993 FTHNOL 799.992C 1042.0083 7455.5545 WATER .0021 .0026 3653.9526 TOTAL 800.0000 1042,0l70 7768820.1 MOLE FACTION A E * <ENTR tNER F ^ E 3 A 1
BOTTOMS BOTTOMS DISTILLATE DlSTiLLAT DISTILLATE DISTILLAIE
BOTTOMS BOTTOMS
FEED FEED FEED FEED
PROGRAM HAS CALCULATED THE FOLLOWING VARIABLES
(
ENTWALPr EQUATION COEFFICIENTS VAPOR «.·335498*02 324675-01 ,125541+05 25974 *02 ,372529-08 '.232640*02 .400800-01 .190630*05 ,199465*02 *.119750*01 .l8l55o*02 -.450000-03 .l909lO*Q5 ,«71000*01 ·.460000-02
PREl IMINAPY RESULTS FOLLOW
— LIQUIO PNTAN2 288600+03 ETHNOL -'.221100*03 WATER -.566000*03
1,000000 2.41Î380
GAMMA 6,004698
GAMMA 6,θ·θ7ΐ0 i,000000 2«4l0589
6,076075 1,000000 2,410122
GAMMA
. TMËTA 1,146209 ,999943 ,913646
Ï.146420 ,999994 •983646
THïTA
THETA 1,144542 ,999999 ,983621
Computer Output Page 8
Computer Output Page 7
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
A
5
A
7
T
E
R
o
·
•««In» r i M o ΧΓΟΓΖΜ ^MOI? O -- · i_ii_im
J oç " * î S JTrî JC€oo»4 ««a>IO«M O ---
£ °£ I; 5V .
οι «Η ο ο
» -o
« H O m «e «
» H » »o tviHIH ·*• νοο ο ο »IH O O
mco m « » IO ν αβα CO-HO
T.JW
ΙΛ (MO CO
Π
Ο
/HevHiH «Μ ~- κ»*> Η κι m» ο ο χ«οη ο ο
Ο -« Ο fir*. »l(-etrt ^ui«-iofO (ΤΙ-·-·
04010» ril-ΑΟα >Ίϋ·ηκιο act----
C ·« ·© CM Μ> »-t »- CM Κ> ΙΛ ^ojtfOcn ÛC »- - · -
^
"Ο Γ Ο Ο ΟΟ ZDiftrtOH oto * Η
ο ΓΟΟΟΟ Ζ D » τΗΌ »-· *O»CM»
«-t
ο ^ οάοάο ^
x>o«-«oco
X «4 CM CM H rntn o n
X
«*CMCM~4
r o * « N
X
v-KM CM »4
s: «HED (M t*.
' «
^ « * «
Η Β- ΙΟ CO »*CM*CMJ an»o κ . n7r^ Λ (ν κ j ^ * e « κ locu ν * μim*ct k-xoo