Platinum
Group
Metals
and Compounds
A symposium sponsored by Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0...
241 downloads
889 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Platinum
Group
Metals
and Compounds
A symposium sponsored by Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
the Division of Inorganic Chemistry at the 158th Meeting of the American Chemical Society, New York, Ν. Y . , Sept. 8-9, 1969. U. V. Rao Symposium Chairman
ADVANCES
IN
CHEMISTRY
SERIES
AMERICAN CHEMICAL SOCIETY WASHINGTON, D. C.
1971
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
98
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
Coden:
ADCSHA
Copyright © 1971 American Chemical Society All Rights Reserved
Library of Congress Catalog Card 76-152,755 ISBN 8412-0135-8 PRINTED IN THE UNITED STATES OF AMERICA In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
A d v a n c e s in C h e m i s t r y Series
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
Robert F. Gould, Editor
Advisory Board Paul N. Craig Thomas H. Donnelly Gunther Eichhorn Frederick M. Fowkes Fred W. McLafferty William E. Parham Aaron A. Rosen Charles N. Satterfield Jack Weiner
AMERICAN CHEMICAL SOCIETY PUBLICATIONS
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.fw001
FOREWORD
ADVANCES
IN CHEMISTRY
SERIES
w a s f o u n d e d i n 1949 b y the
A m e r i c a n C h e m i c a l S o c i e t y as a n outlet for s y m p o s i a a n d c o l lections of d a t a in s p e c i a l areas of t o p i c a l interest that c o u l d n o t b e a c c o m m o d a t e d in the Society's journals. m e d i u m for s y m p o s i a that w o u l d o t h e r w i s e b e
It p r o v i d e s a fragmented,
t h e i r papers d i s t r i b u t e d a m o n g several journals or not
pub-
l i s h e d at all. P a p e r s are refereed c r i t i c a l l y a c c o r d i n g to ACS e d i t o r i a l standards a n d receive the c a r e f u l a t t e n t i o n a n d p r o c essing c h a r a c t e r i s t i c of ACS p u b l i c a t i o n s . in
ADVANCES
IN CHEMISTRY
SERIES
Papers p u b l i s h e d
are o r i g i n a l c o n t r i b u t i o n s
not p u b l i s h e d elsewhere i n w h o l e o r m a j o r p a r t a n d i n c l u d e reports of research as well as r e v i e w s since s y m p o s i a m a y e m b r a c e b o t h types of
presentation.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.pr001
PREFACE
lmost every chemist is aware of the fact that platinum group metal chemistry usually centers around the phenomenon of catalysis. Other interesting phases of the chemistry of the platinum group metals which could be of interest to inorganic chemists are usually obscured by this singular though significant application. When I approached Eugene Rachow, Chairman of the Symposium Planning Committee of the Inor ganic Division of ACS, I had every intention of covering all facets of the platinum group metal chemistry. Because of the limitations of time, I was obliged to limit the symposium to four sessions. The material to be presented at the symposium was divided into four categories: (1) Synthe sis, Structure, Determination, and Study of Magnetic and Thermodynamic Properties of Platinum Group Metal Compounds, (2) Recent Chemistry of σ- and ττ-Bonded Complexes of Platinum Group Metals, (3) Spec troscopic Properties of Platinum Group Metal Compounds, (4) Newer Industrial Aspects of Platinum Group Metals and Their Compounds. Each category, by itself, can be a topic for a separate symposium, and it is hoped that in the future such symposia will be forthcoming. The topics chosen were such that they would cover a broad area of the chemistry of platinum group metals. The session on industrial aspects was included to enable scientists in industry to present their views on the problems that are facing the industry and perhaps stimulate sufficient interest so that newer applications could be developed in the future. It is also hoped that such a forum would enable scientists in industry to summarize broadly the work carried out by them without worry about violation of proprietary nature of the work. I would like to take this opportunity to extend my thanks to all the speakers at the symposium and to all the authors who contributed articles to this volume. I would also wish to express my gratitude to the manage ment of Matthey Bishop, Inc., who kindly permitted me to utilize their time and facilities to arrange this symposium. My special thanks to G. Cohn of Engelhard Industries and L. B. Hunt of Johnson Matthey & Co. for their cooperation and help rendered to find suitable speakers. U. V. RAO
Matthey Bishop, Inc. Malvern, Pa. 19355 December 1970 vii In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1
M a g n e t i c Properties o f the P l a t i n u m Metals a n d T h e i r A l l o y s H. J. ALBERT and L. R. RUBIN
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Engelhard Minerals and Chemicals Corp., Newark, N. J. 07105 Although they are paramagnetic, the platinum metals, especially platinum, palladium, and rhodium, are capable of interacting in alloys with other metals to form ferromagnetic or very nearly ferromagnetic materials. Dilute additions of elements of the iron group and its neighbors with platinum and palladium take on enhanced moments which are interpreted as arising from an interaction of the solute moment with the 4d or 5d host electrons. Ferromagnetic and anti-ferromagnetic structures may result from greater additions of the iron group to the platinum metals. Examples are FeRh, Pt Fe, Pd Fe, and PtCo. Compounds of the rare earths with the platinum metals also form magnetic structures with unusual properties. 3
3
*Tphe platinum metals—ruthenium, rhodium, and palladium in the 2nd long row of the periodic system and osmium, iridium, and platinum in the 3rd long row—are all paramagnetic. That is, none of these elements have a permanent magnetic moment associated with it. However, as shown in Table I, the mass susceptibility of these elements varies widely over two orders of magnitude. Further, the "nonmagnetic" platinum metals are the elements immediately beneath the "magnetic" series iron-cobalt-nickel and, of course, are all in the transition group. Platinum, palladium, and rhodium form a number of ferromagnetic alloys with the iron group metals and with manganese. The present paper is not an exhaustive review but presents some of the more interesting magnetic work on the platinum metals which has appeared in the last 10-20 years. Palladium has the highest magnetic susceptibility of the platinum group, and because it is so high it has been termed an "incipient ferromagnet." The implication is that palladium could be induced to become A
1 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
P L A T I N U M
Table I.
GROUP
M E T A L S
A N D
C O M P O U N D S
Mass Susceptibility of the Platinum Metals (Χ
Ru(+0.427)»
10
- 6
cgs U n i t s )
Rh(+0.9903)
0
Pd(+5.231)
c
c
Os(+0.052) Ir(+0.133) Pt(+0.9712) ° Reprinted from Engelhard Industries Technical Bulletin. Determinations made at 25°C. Determinations made at 20°C. b
6
c
6
e
ferromagnetic.
I n a w e a k l y p a r a m a g n e t i c m a t e r i a l , t h e s u s c e p t i b i l i t y of
the m a t e r i a l is i n d e p e n d e n t of t e m p e r a t u r e .
F i g u r e 1 ( 3 9 ) shows this
to b e q u i t e true f o r r h o d i u m . P a l l a d i u m , o n t h e other h a n d , exhibits a s t r o n g t e m p e r a t u r e d e p e n d e n c e of s u s c e p t i b i l i t y w i t h a p e a k at about Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
7 0 ° K . T h i s has b e e n t a k e n i n the past as évidence f o r a n a n t i f e r r o m a g n e t i c t r a n s i t i o n . H o w e v e r , n e u t r o n d i f f r a c t i o n has s h o w n n o e v i d e n c e of a n t i f e r r o m a g n e t i s m , a n d i t n o w seems l i k e l y that this effect is c a u s e d b y the F e r m i surface of p a l l a d i u m b e i n g associated w i t h a n extremely sharp p e a k i n t h e density-of-states.
T h e s u s c e p t i b i l i t y vs. t e m p e r a t u r e
curve
f o r t h e p a l l a d i u m - 5 % r h o d i u m a l l o y i n d i c a t e s t h e s e n s i t i v i t y of p a l l a d i u m - b a s e d alloys to electron c o n c e n t r a t i o n a n d t h e density-of-states i n r e l a t i o n to the F e r m i l e v e l
(13).
I r o n i m p u r i t i e s g r e a t l y c o m p l i c a t e t h e s u s c e p t i b i l i t y measurements o n p a l l a d i u m . A s n o t e d a b o v e , p a l l a d i u m is close to b e i n g f e r r o m a g n e t i c ,
I200xl0"
6
1000
800
600 mol 400
200
0.
100
200
Temperature,
300
°K
Weiss, J . R. "Solid State Physics for Metallurgists," Pergamon f
Figure 1. The susceptibility (10~ ergs/gauss?/mole) for palladium, rhodium, and paUadium-5% rhodium as a function of temperature (39) e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D R U B I N
50
' ' ΊΟο' '
3
Properties
'
Ι5θ' ' ' T(°K)
ZOO' ' ' 250'
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Journal of Applied Physics
Figure 2. Susceptibility vs. temperature for several "pure" palladium samples (17) φ 3 ppm iron, Ο 2 ppm iron, Δ zone refined, solid line less than 1 ppm iron
TCK)
Journal of Applied
Physics
Figure 3. Susceptibility vs. temperature for phtinum with approximately 3 ppm of iron (17)
a n d s m a l l a d d i t i o n s of i r o n w i l l f o r m f e r r o m a g n e t i c alloys w i t h
Curie
temperatures i n t h e c r y o g e n i c range. T h u s , as s h o w n i n F i g u r e 2 ( 1 7 ) , e v e n parts p e r m i l l i o n of i r o n i n p a l l a d i u m m a y b e n o t i c e d r e a d i l y i n s u s c e p t i b i l i t y measurements
at l o w temperatures.
N e u t r o n scattering
measurements h a v e s h o w n that i r o n i m p u r i t i e s h a v e a n effect f a r b e y o n d the n e a r e s t - n e i g h b o r p a l l a d i u m atoms, e x t e n d i n g p e r h a p s to t h e nearest 100 p a l l a d i u m atoms, a c c o u n t i n g f o r the extreme s e n s i t i v i t y of p a l l a d i u m to i r o n i m p u r i t i e s
(28).
P l a t i n u m , F i g u r e 3 (17), shows b e h a v i o r s i m i l a r t o t h a t of p a l l a d i u m b u t its s u s c e p t i b i l i t y a n d the effect of i r o n i m p u r i t i e s are m u c h s m a l l e r . T h e s m a l l p e a k at 100°Κ is analogous to that f o r p a l l a d i u m .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
Local Moments C o n s i d e r a b l e research i n recent years has b e e n c a r r i e d o u t o n the m a g n e t i c properties of alloys of elements of the s e c o n d a n d t h i r d l o n g r o w s of the p e r i o d i c table w i t h s m a l l amounts of elements i n the
first
l o n g r o w . S o m e of the most i n t e r e s t i n g results of this w o r k are c e n t e r e d o n t h e p l a t i n u m metals. O n e aspect of the results is g i v e n i n F i g u r e 4
(11),
s h o w i n g the m a g n e t i c m o m e n t of a n i r o n a t o m d i s s o l v e d i n the s e c o n d r o w t r a n s i t i o n metals. A n e n h a n c e m e n t of the i r o n m o m e n t is a p p a r e n t for alloys w i t h electron concentrations of a b o u t 5.5 to 7 a n d 8.25 to 9. F o r electron concentrations f r o m 9 to 10.25 there is a v e r y l a r g e e n h a n c e m e n t , the m o m e n t e x c e e d i n g t h a t of i r o n i n its b u l k state ( a b o u t 2.2
μ ). Β
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
A l l o y s s h o w i n g this large e n h a n c e m e n t are r e g a r d e d as h a v i n g " g i a n t moments."
E n h a n c e m e n t effects of the solute m o m e n t h a v e b e e n f o u n d
i n m a n y a l l o y systems, i n c l u d i n g C r (2), C o (9, 10, 38)
M n (2),
F e (10,
11, 18),
and
i n p a l l a d i u m a n d alloys of p a l l a d i u m a n d r h o d i u m . T h e
e x p e r i m e n t a l t e c h n i q u e w i d e l y u s e d to s h o w the existence of s u c h l o c a l m o m e n t s is the m e a s u r e m e n t of s u s c e p t i b i l i t y . T h e s u s c e p t i b i l i t y is m e a s u r e d as a f u n c t i o n of t e m p e r a t u r e , u s u a l l y f r o m 1.4° Κ to r o o m t e m p e r a ture or higher.
T h e d a t a f r o m alloys w i t h
a
temperature-dependent
s u s c e p t i b i l i t y are fitted to a C u r i e - W e i s s t y p e of c u r v e w h i c h leads to 14
3
4
Y
Zr
5
6
Nb
7
Mo
Re
ELECTRON
8
9
10
11
Ru
Rh
Pd
Ag
Ν
CONCENTRATION
Physical Review
Figure 4. iron atom metals and and alloy)
Magnetic moment in Bohr magnetons of an dissolved in various second row transition alloys {one atomic per cent iron in each metal as a function of electron concentration (11)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
1.
A L B E R T
A N D RUBIN
Os . I o.e 0
4
r
Magnetic
I
5
Properties
r
COMPOSITION
p
(ATOMIC
P E R
t
C E N T )
Journal of Applied
Physics
Figure 5. Susceptibility per mole for alloys containing one atomic per cent iron at 3 different temperatures (18) the i n t e r p r e t a t i o n that a l o c a l m o m e n t exists o n the solute a t o m a n d p e r mits the c a l c u l a t i o n of the m o m e n t associated w i t h the a l l o y . A l l o y s of i r i d i u m a n d p l a t i n u m w i t h s i m i l a r s m a l l amounts of i r o n also e x h i b i t e n h a n c e m e n t effects a n d a giant m o m e n t i n the case of i r o n i n p l a t i n u m a n d p l a t i n u m - r i c h alloys as s h o w n i n F i g u r e 5
(18).
It is o b v i o u s that, i n v i e w of the l a r g e m e a s u r e d m o m e n t s o n the solute atoms, there is m o r e i n v o l v e d t h a n s i m p l y the m a g n e t i c
moment
of the solute a t o m . T h e postulate most w i d e l y u s e d suggests a m o d e l i n w h i c h the m o m e n t o n the solute atoms interacts w i t h the m a g n e t i c m o ments o n the i t i n e r a n t 4d or 5d electrons of the host m e t a l . T h i s i n t e r a c t i o n p r o d u c e s a p o l a r i z a t i o n of the spins i n the 4d or 5d b a n d , at t h e same t i m e a l i g n i n g the l o c a l i z e d m o m e n t s on the solute atoms i n the same d i r e c t i o n as the p o l a r i z e d d-electrons.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
U s i n g this l o c a l m o m e n t m o d e l , a n d u s i n g b a n d t h e o r y or its v a r i a tions, a n u m b e r of w o r k e r s h a v e b e e n a b l e to f o r m u l a t e expressions w h i c h represent the m e a s u r e d m a g n e t i c d a t a r e a s o n a b l y w e l l , at least for the case w h e r e w e l l - l o c a l i z e d m o m e n t s are d e v e l o p e d o n the solute atoms (11,
18).
H o w e v e r , c o n s i d e r a b l y m o r e d a t a has b e c o m e a v a i l a b l e o n
o t h e r properties of d i l u t e a l l o y s , i n c l u d i n g d a t a o n resistivity a n d specific heat, n e u t r o n scattering, v a r i o u s m a g n e t i c resonance experiments, M o s s b a u e r measurements, K o n d o effect,
a n d the l i k e .
Measurements have
b e e n e x t e n d e d also to alloys of m a n y other systems besides those i n v o l v -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
i n g the p l a t i n u m metals.
Journal of Applied Physics
Figure 6. ceptibility,
(a) Magnetization (at 5 KOe) and inverse initial sus(b) Electrical resistivity of ordered FeRh for increasing (%) and decreasing (O) temperature (25)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
A N D
R U B I N
Magnetic
7
Properties
T h e scope of this r e v i e w p r e c l u d e s a d e s c r i p t i o n of these d a t a , b u t the results of some of these experiments h a v e s h o w n weaknesses i n t h e o r i g i n a l b a n d m o d e l a p p r o a c h (9, 20, 34). ments (21,
22, 26)
H o w e v e r , n e w e r t h e o r e t i c a l treat-
are p r o v i d i n g m o r e i n s i g h t i n t o the p r o b l e m .
The
subject of l o c a l i z e d m a g n e t i c states i n d i l u t e m a g n e t i c alloys is s t i l l i n a state of v e r y a c t i v e r e s e a r c h a n d t h e o r e t i c a l d e v e l o p m e n t , as s h o w n b y the p r o g r a m s of e v e n the most recent m a g n e t i c conferences, s u c h as the Fifteenth A n n u a l Conference
on Magnetism and Magnetic Materials,
P h i l a d e l p h i a , P a . , N o v e m b e r 1969.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Ordered Alloys I n a d d i t i o n to the d i l u t e alloys a l r e a d y discussed, there are a n u m b e r of alloys of the metals of the p l a t i n u m g r o u p w i t h manganese,
iron,
cobalt, a n d n i c k e l w h i c h have m a g n e t i c properties b a s e d o n t h e f o r m a t i o n of o r d e r e d structures at some p a r t i c u l a r c o m p o s i t i o n . C o n s i d e r i n g i r o n alloys first, the i r o n - r h o d i u m system is a n interesti n g e x a m p l e of m a g n e t i c o r d e r i n g . E a r l y m a g n e t i c measurements i n the system (16)
established that alloys of a b o u t 50 a t o m i c %
rhodium in-
creased i n m a g n e t i z a t i o n as t h e i r t e m p e r a t u r e was r a i s e d t h r o u g h a c r i t i c a l v a l u e . Since 1960, a n u m b e r of w o r k e r s (23, 25, 36) change is o w i n g to a
first-order
h a v e s h o w n t h a t this
a n t i f e r r o m a g n e t i c ( A F M ) to f e r r o m a g -
n e t i c ( F M ) t r a n s i t i o n w i t h i n c r e a s i n g t e m p e r a t u r e , the t r a n s i t i o n t e m p e r a t u r e for a 52 a t o m i c % Figure 6 (25).
r h o d i u m b e i n g a b o u t 350°K, as s h o w n i n
X - r a y d i f f r a c t i o n studies h a v e s h o w n that the c r y s t a l
structure a b o v e a n d b e l o w the t r a n s i t i o n t e m p e r a t u r e is a n o r d e r e d C s C l type, the t r a n s i t i o n b e i n g a u n i f o r m r a p i d v o l u m e e x p a n s i o n of about 1 % w i t h increasing temperature.
C h a n g e s i n l a t t i c e d i m e n s i o n s i n this t y p e
of t r a n s f o r m a t i o n r e s u l t f r o m the differences b e t w e e n the magnetoelastic expansion of the f e r r o m a g n e t i c a l l y o r d e r e d lattice a n d the c o n t r a c t i o n o w i n g to the a n t i f e r r o m a g n e t i c lattice. M e a s u r e m e n t s of the l o w - t e m p e r a t u r e specific heat of i r o n - r h o d i u m alloys a n d i r o n - r h o d i u m - p a l l a d i u m alloys a n d of e n t r o p y changes of the t r a n s i t i o n h a v e s h o w n that the difference i n t h e energies of the F M a n d A F M state is r e l a t i v e l y s m a l l . T h i s suggests a m o d e l i n w h i c h b e l o w the t r a n s i t i o n t e m p e r a t u r e i n the A F M state, r h o d i u m atoms, b y s y m m e t r y , h a v e no net field
exchange
exerted b y the i r o n atoms a n d the energy is d o m i n a t e d b y
iron-
i r o n interactions. A b o v e the t r a n s i t i o n t e m p e r a t u r e , i n the F M state, the r h o d i u m atoms are p o l a r i z e d b y a n exchange field w h i c h i n d u c e s a s i g nificant l o c a l m o m e n t o n the r h o d i u m atoms.
This introduces
another
e n e r g y t e r m w h i c h , i f the s u s c e p t i b i l i t y of the r h o d i u m atoms is l a r g e e n o u g h , w i l l a c c o u n t for the c h a n g e to the F M state (-23).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
P L A T I N U M
300
GROUP
M E T A L S
A N D
C O M P O U N D S
400 Τ (°K) Journal of Applied
Figure
7.
Magnetization in a 12.5 KOe field of FeRh line is for the bulk alloys (27).
filings.
Physics
The dashed
A n i n t e r e s t i n g effect i n i r o n - r h o d i u m alloys is n o t e d i n c o l d - w o r k i n g the a l l o y . F i l i n g a n a l l o y to m a k e p o w d e r is a c o n v e n i e n t w a y of c o l d w o r k i n g . M a g n e t i c measurements o n filings are s h o w n i n F i g u r e 7
(27).
S t a r t i n g at p o i n t A , the a l l o y is c o o l e d o 7 0 ° K a n d t h e n h e a t e d to 500°K. l
I t is e v i d e n t t h a t i n the c o l d - w o r k e d a l l o y there is no trace of the A F M to F M t r a n s i t i o n i n this range. B e t w e e n 500° to 700 ° C , a n o r m a l C u r i e p o i n t b e h a v i o r emerges a n d , o n c o o l i n g , the reappears.
first-order
transformation
X - r a y d i f f r a c t i o n measurements o n the filings i n d i c a t e d t h a t
i n the as-filed c o n d i t i o n the filings h a v e a d i s o r d e r e d fee structure, b u t q u e n c h i n g f r o m temperatures as h i g h as 1 4 0 0 ° C d i d not result i n the a p p e a r a n c e of the fee structure. F i r s t - o r d e r transitions also exist for the compositions P t F e , b a s e d o n the C u A u - t y p e structure. 3
3
P d F e and 3
I n the o r d e r e d state, the
f o r m e r a l l o y is f e r r o m a g n e t i c a n d the latter is a n t i f e r r o m a g n e t i c .
Inter
m e d i a t e compositions b a s e d o n F e ( P d , P t ) h a v e s h o w n the existence of 3
a state at l o w temperatures i n w h i c h , s t i l l b a s e d o n the o r d e r e d C u A u 3
structure, the i r o n m o m e n t s m o v e i n t o a " c a n t e d " s t r u c t u r e as s h o w n i n F i g u r e 8 (24).
F o r the c o m p o s i t i o n F e P d i . P t i . , the t r a n s i t i o n f r o m a 6
4
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D R U B I N
9
Properties
s i m p l e f e r r o m a g n e t i c state to this f e r r i m a g n e t i c state w i t h c a n t e d i r o n m o m e n t s occurs at a b o u t 140 °K. T h e a l l o y P t F e w i t h a d d e d i r o n is a n i n t e r e s t i n g case b y itself ( 1 ). 3
T h e o r d e r e d a l l o y is a n t i f e r r o m a g n e t i c w i t h f e r r o m a g n e t i c sheets of i r o n atoms a r r a n g e d o n ( 1 1 0 )
planes a n t i f e r r o m a g n e t i c a l l y a l o n g the
[001]
axis. A s the i r o n content is i n c r e a s e d over the s t o i c h i o m e t r i c 25 a t o m i c % , a different A F M structure appears w i t h the sheets a r r a n g e d o n ( 100 ) planes. A t 30 a t o m i c % i r o n , this structure p r e d o m i n a t e s . B e t w e e n these t w o extremes, b o t h types of s t r u c t u r e coexist.
F r o m neutron diffraction
e x p e r i m e n t s , i t is c o n c l u d e d t h a t phase coherence of the t w o structures occurs o v e r m a n y u n i t cells a n d t h a t there is a n i n t e r t w i n i n g of t h e t w o structures r a t h e r t h a n s e p a r a t i o n i n t o d o m a i n s
of
one
or
the
other
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
structure. T h e platinum—cobalt system is e s p e c i a l l y i m p o r t a n t i n that i t has the o n l y p r e c i o u s m e t a l a l l o y ever to b e d e v e l o p e d f o r p r a c t i c a l use of its m a g n e t i c p r o p e r t i e s . stoichiometric P t C o .
T h i s a l l o y is b a s e d o n s t o i c h i o m e t r i c or n e a r -
It is d i s t i n g u i s h e d b y a v e r y h i g h - e n e r g y p r o d u c t ,
a r e l a t i v e l y l o w r e m a n e n c e , a n d h i g h c o e r c i v i t y . F i e l d s of 30,000 oersteds or h i g h e r are r e q u i r e d for s a t u r a t i o n a n d P t C o magnets are r e g u l a r l y p r o d u c e d w i t h e n e r g y p r o d u c t s greater t h a n 9 m i l l i o n
gauss-oersteds,
coercive forces of 4300 oersteds, a n d r e m a n e n c e near 6400 gauss.
•
Fe
°Pd,Pt Journal of Applied
Figure
8.
Low-temperature canted-ferrimagnetic ofFePd^Pt^ (24)
Physics
structure
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
FePt
10
P L A T I N U M
DISORDERED
CUBIC
GROUP
M E T A L S
ORDERED
{ll0}
c
A N D
C O M P O U N D S
TETRAGONAL
II ( I O I ) t
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
C
Figure
9.
Crystallographic relationships disordered and ordered PtCo
between
is i s o m o r p h o u s to P t C o a n d p r e s u m a b l y shares m a g n e t i c h a r d e n i n g m e c h anisms. It has never b e e n u s e d p r a c t i c a l l y because
its c o e r c i v i t y a n d
e n e r g y p r o d u c t s are l o w e r t h a n those of P t C o . P t C o is a n o r d e r i n g a l l o y , f o r m i n g a f a c e - c e n t e r e d - t e t r a g o n a l t y p e structure (c/a tice (31).
CuAu-
— 0.98) f r o m a d i s o r d e r e d face-centered c u b i c l a t -
M a x i m u m c o e r c i v e force a n d m a x i m u m energy p r o d u c t are
a c h i e v e d at less t h a n c o m p l e t e o r d e r , a n d at different stages i n the a p p r o a c h to c o m p l e t e order.
O r d e r i n g starts i n the d i s o r d e r e d a l l o y w i t h
the f o r m a t i o n of a system of o r d e r e d platelets, e a c h c o n t a i n i n g a tetrag o n a l c-axis p a r a l l e l to one of the o r i g i n a l o r t h o g o n a l c u b e axes. are (110)
These
platelets; that is, they are not p a r a l l e l to the " c u b e faces" i n
the d i s o r d e r e d m a t e r i a l . I n a n y g i v e n r e g i o n , p r i m a r i l y as a n a c c o m m o d a t i o n to s t r a i n , o n l y t w o of the three possible p l a t e l e t orientations o c c u r F i g u r e 9 s u m m a r i z e s the c r y s t a l l o g r a p h i c aspects of t h i s system.
(8).
E l e c t r o n m i c r o s c o p i c a n d field i o n m i c r o s c o p i c w o r k has s h o w n t h a t m a x i m u m c o e r c i v i t y is a c h i e v e d i n the t e t r a g o n a l phase w i t h p l a t e l e t w i d t h of 2 0 0 - 5 0 0 angstroms a n d w i t h p l a t e l e t thickness of a b o u t 20 angstroms (30, 33).
T h e d i r e c t i o n of easy m a g n e t i z a t i o n ( c - a x i s ) is n o t i n the p l a n e of
the platelet. T h e degree of t r a n s f o r m a t i o n is f a r f r o m c o m p l e t e at m a x i m u m p r o p e r t i e s , p e r h a p s as little as 5 0 % t r a n s f o r m a t i o n b y v o l u m e
(32).
T h e s a t u r a t i o n m a g n e t i z a t i o n of the d i s o r d e r e d a l l o y is 43.5 gauss c m / g m at 30,000 oersteds (14). 3
T h e m a x i m u m internal magnetization
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
320
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Magnetic
A N D R U B I N
220
11
Properties
340
0
20
40
200
180
160
f+0
Engelhard Industries Technical Bulletin
Figure 10.
Magnetic anisotropy in a PtCo single crystal (37)
Journal
of Applied
Physics
Figure 11. Crystallite distribution in ordered PtCo (8)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
12
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
of the o r d e r e d phase has b e e n estimated as 3 5 - 4 0 % l o w e r t h a n t h a t of the d i s o r d e r e d phase (14).
T h e average m a g n e t i c m o m e n t o f d i s o r d e r e d
P t C o at r o o m t e m p e r a t u r e is 1.04 b o h r magnetons w i t h a s p h e r i c a l d i s t r i b u t i o n of m o m e n t ( 8 ) .
T h e easy m a g n e t i z a t i o n d i r e c t i o n i n the or-
d e r e d phase corresponds
to its c-axis a n d the a n i s o t r o p y constant is
a p p r o x i m a t e l y 50 m i l l i o n e r g / c m
3
(8).
S i n g l e - c r y s t a l w o r k b y W a l m e r (37)
(on a fully-ordered crystal)
s h o w e d a m a x i m u m of the coercive force i n the 111 d i r e c t i o n a n d m i n i m a i n the 110 a n d 100 d i r e c t i o n s , the 100 m i n i m u m b e i n g the l o w e r of t h e t w o (Figure 10).
W o r k b y Brissonneau a n d coworkers (8)
o n the d i s t r i b u -
t i o n of platelets i n c o m p l e t e l y - o r d e r e d P t C o has l e d to a m o d e l s h o w n i n F i g u r e 11, w h e r e i n e a c h z o n e s h o w n i n the figure contains a f u l l y Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
d e v e l o p e d n e t w o r k of ( 110) platelets o r i e n t e d i n t w o of the three p o s s i b l e orthogonal directions. T h e z o n e m o d e l p r o p o s e d b y B r i s s o n n e a u is consistent n o t o n l y w i t h his o w n field i o n m i c r o s c o p i c observations, b u t also w i t h l a r g e r scale a n d often p u z z l i n g p h e n o m e n a observed.
P t C o magnets, for instance, f o r m
B i t t e r patterns o n a scale q u i t e easily v i s i b l e u n d e r a l i g h t m i c r o s c o p e . B i t t e r patterns d o not fit the p i c t u r e of a " f i n e - p a r t i c l e " h a r d e n i n g m e c h a n i s m unless t h e y also d e s c r i b e a l a r g e r scale p h e n o m e n o n , s u c h as B r i s sonneau zone boundaries. B e c a u s e of the s e n s i t i v i t y of the platelets to strain energy, t h e i r n u c l e a t i o n s h o u l d be sensitive to the w o r k i n g h i s t o r y of the b i l l e t s f r o m w h i c h the a l l o y s p e c i m e n is m a d e , a n d , n o t s u r p r i s i n g l y , P t C o responds w e l l to c o l d w o r k i n g b e f o r e heat t r e a t i n g . W o r k b y S h i m i z u a n d H a s h i m o t o (35),
w h o t e m p e r e d P t C o u n d e r elastic stress f a r b e l o w its elastic
l i m i t , has s h o w n that the a l l o y develops
considerably lower coercivity
Journal of Applied
Physics
Figure 12. Effects of compressive and tensile stresses on PtCo hysteresis curves (35)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D RUBIN
Δ
MRu
2
RARE-EARTH
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
13
Properties
ELEMENT
I NM R U
2
, M 0S2t Μ ΐ Γ
2
Physical Review
Figure
13. Curie temperatures for MX compounds (M = rare earth, X = Ru, Os, or Ir) (7) 2
( a n d higher remanence)
i n the direction of the a p p l i e d
compressive
stress t h a n at r i g h t angles to i t ( F i g u r e 1 2 ) . T h e y also r e p o r t t h e c o n verse to b e true w h e n tensile stress is a p p l i e d .
Platinum Metal—Rare Earth Alloys T h e m a g n e t i c m o m e n t s o f rare e a r t h elements a r e c a u s e d b y t h e u n p a i r e d electrons i n t h e i r 4f shells. T h e s e shells" are s h i e l d e d b y t h e outer shells so t h a t c h e m i c a l b o n d i n g h a s r e l a t i v e l y l i t t l e effect o n t h e m a g n e t i c m o m e n t s o f these elements. L a v e s phases o f c o m p o s i t i o n M B
2
T h e rare earths f o r m a series o f
( M = rare e a r t h , Β == p r e c i o u s m e t a l )
w h i c h share t h e c h a r a c t e r i s t i c of f e r r o m a g n e t i c c o u p l i n g a t l o w t e m p e r a tures ( 7 ) . F i g u r e 13 shows t h e C u r i e t e m p e r a t u r e s o f a series o f corn-
Table II.
Θ, °K
Compound PrRu PrRh PrOs Prlr PrPt GdRh Gdlr GdPt
40 8.6 >35 18.5 7.9 >77 >77 >77
2 2
2
2
2
2
2
2
° Reprinted from
Ferromagnetic Curie Points
Acta
Crystallographica
a
Compound
Θ, °K
NdRu NdRh Ndlr NdPt
35 8.1 11.8 6.7
2 2
2
2
{12).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
14
P L A T I N U M
-12
-8 -4 H, MAGNETIC
GROUP
0 F I E L D IN
M E T A L S
A N D
4 8 KILO-OERSTEDS
C O M P O U N D S
12
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
(a)
-8
-4
0
4
H, MAGNETIC FIELD IN
8
ΚILO - OERSTEDS
(b) Journal of Applied Physics
Figure 14. Hysteresis loops for 2 GdRu -CeRu ing (a) superconductivity and ferromagnetism, ductivity alone (4) 2
pounds where Β = MgCu
2
2
alloys show (b) supercon
R u , O s , a n d I r . T h e s e c o m p o u n d s f o r m i n the c u b i c
( C 1 5 ) o r the h e x a g o n a l M g Z n
2
( C 1 4 ) structures ( 7 ) .
The Curie
p o i n t is h i g h e s t w i t h c o m p o u n d s c o n t a i n i n g G d a n d decreases w i t h l a r g e r o r s m a l l e r a t o m i c n u m b e r s of the r a r e earths ( F i g u r e 1 3 ) . S i m i l a r results have been obtained w i t h Β =
R h or P t (12)
(Table II).
The variation
i n C u r i e temperatures results p r i n c i p a l l y f r o m the i n t e r a c t i o n b e t w e e n the spins of the 4f shells of the rare earths a n d the c o n d u c t i o n electrons. P s e u d o b i n a r y alloys of ( C e R u - G d R u ) (4), 2
(GdRu^ThRujî)
(6),
(GdOs -LaOs ) 2
2
2
(5),
(YOs -GdOs ) 2
2
(29),
a n d p e r h a p s some others
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
A N D
Magnetic
R U B I N
15
Properties
s h o w s i m u l t a n e o u s f e r r o m a g n e t i c a n d s u p e r c o n d u c t i n g p r o p e r t i e s over a l i m i t e d range of c o m p o s i t i o n .
T h e system G d R u
2
in CeRu
2
has
been
s t u d i e d extensively. T h i s system shows a s u p e r c o n d u c t i n g t r a n s i t i o n w h e n the c o n c e n t r a t i o n of G d R u more than 6 %
GdRu
2
2
is less t h a n 10 a t o m i c % .
c r e a s i n g w i t h c o n c e n t r a t i o n (4). 8 and 4 % G d R u
2
Alloys containing
are f e r r o m a g n e t i c w i t h C u r i e t e m p e r a t u r e s i n F i g u r e 14 shows hysteresis loops
for
a l l o y s , the latter b e i n g s u p e r c o n d u c t i n g a n d the f o r m e r
being simultaneously superconducting and ferromagnetic.
Both
loops
s h o w the e x c l u s i o n of field c h a r a c t e r i s t i c of s u p e r c o n d u c t i n g m a t e r i a l s ,
Table III.
Curie Temperature and Coercive Force of R s P d Compounds (3)
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
2
Θ, °K
Compound Gd Pd 6
Hc(at
4.2°K)oe
335
2
Tb5.10Pd1.90
~30
12,800
Dy5.07Pd1.93
~25
9,700
H o . o P d i •96
~10
1,300
5
4
i.e., n e g a t i v e slope o n i n i t i a l m a g n e t i z a t i o n a n d n e g a t i v e s l o p e n e a r r e m a nence i n the first q u a d r a n t . T h e n o r m a l or n o n f e r r o m a g n e t i c s u p e r c o n d u c t o r exhibits a " r e m a n e n c e " a t t r i b u t e d to " f r o z e n - i n " flux. T h e m a g n e t i z a t i o n c u r v e for the f e r r o m a g n e t i c ( 8 % )
a l l o y lies w e l l a b o v e that
c a l c u l a t e d for a p a r a m a g n e t i c m a t e r i a l of the same G d content, a n d the r e m a n e n c e is also w e l l a b o v e that e x p e c t e d for a p a r a m a g n e t i c s u p e r conductor.
I t is q u e s t i o n a b l e w h e t h e r s u p e r c o n d u c t i v i t y a n d f e r r o m a g -
n e t i s m exist i n the same d o m a i n s i n a g i v e n s p e c i m e n .
T h e minor loop
P Q R S shows t h a t some s u p e r c o n d u c t i v i t y s t i l l exists i n parts of the a l l o y after s u p e r c o n d u c t i v i t y as a w h o l e has b e e n d e s t r o y e d . C o m p o u n d s of n o m i n a l c o m p o s i t i o n Μ Β , w h e r e M is a g a i n a r a r e δ
2
earth ( G d , T b , H o , D y ) a n d Β a precious m e t a l (Pt, P d ) , show m a g netizations close to those c a l c u l a t e d f r o m t h e m o m e n t s of the r a r e e a r t h atoms
(3).
Gd Pd 5
2
is a soft m a g n e t i c m a t e r i a l w i t h a c o e r c i v e
force
less t h a n 100 oersteds b u t w i t h a h i g h s a t u r a t i o n associated w i t h the h i g h m o m e n t of G d ( 3 ) .
T a b l e I I I s u m m a r i z e s the p e r m a n e n t m a g n e t i c p r o p
erties of the p a l l a d i u m alloys. T h e p l a t i n u m alloys are i s o s t r u c t u r a l a n d h a v e t h e same C u r i e t e m p e r a t u r e s ( 19).
E n e r g y p r o d u c t s for T b P d a n d
D y P d at 4.2°K are 20 X
1 0 gauss-oersteds, r e s p e c t i v e l y
5
(3).
1 0 a n d 26 X 6
5
6
W h i l e these e n e r g y p r o d u c t s are h i g h e r t h a n p l a t i n u m - c o b a l t , the
l o w C u r i e t e m p e r a t u r e s p r e c l u d e use of these c o m p o u n d s
i n the u s u a l
platinum-cobalt applications.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
16
PLATINUM GROUP METALS AND COMPOUNDS
Literature Cited (1) Bacon, G. E., Crangle, J., Proc. Roy. Soc. 1963, A272, 387. (2) Barton, E. E., Claus, H., private communication. (3) Berkowitz, A. E., Holtzberg, F., Methfessel, S.,J.Appl. Phys. 1964, 35, 1030. (4) Bozorth, R. M., Davis, D. D., J. Appl. Phys. 1960, 31, 321S. (5) Bozorth, R. M., Davis, D. D., Williams, A. J., Phys. Rev. 1960, 119, 1570. (6) Bozorth, R. M., Matthias, B. T., Davis, D. D., Proc. Intern. Conf. Low Temp. Phys., 7th, Toronto, Canada, 1960, 1961, p. 385. (7) Bozorth, R. M., Matthias, B. T., Suhl, H., Corenzwit, E., Davis, D. D., Phys. Rev. 1959, 115, 1595. (8) Brissonneau, P., Blanchard, Α., Schlenker, M., Laugier, J., J. Appl. Phys. 1969, 39, 1266. (9) Brog, K.C.,Jones, W. H., Booth, J. G.,J.Appl.Phys. 1967, 38, 1151. (10) Cape, J. Α., Hake, R. R., Phys. Rev. 1965, 139, A142. (11) Clogston, A. M.,etal.,Phys. Rev. 1962, 125, 541. (12) Compton, V. B., Matthias, B. T., Acta Cryst. 1959, 12, 651. (13) Doclo, R., Foner, S., Narath, Α.,J.Appl.Phys. 1969, 40, 1206. (14) Dunaev, F. N., Kalinin, V. M., Kryokov, I. P., Maisinovich, V. I., Fiz. Metal i Metaloved. 1965, 20, 460. (15) Engelhard Ind. Tech.Bull.VI, No. 3, December, 1965. (16) Fallot, M., Hocart, R., Rev. Sci. 1939, 77, 498. (17) Foner, S., Doclo, R., McNiff, E. J., Jr.,J.Appl.Phys. 1968, 39, 551. (18) Geballe, T. H.,etal.,J.Appl.Phys. 1965, 37, 1181. (19) Holtzberg, F., Methfessel, S. J., U. S. Patent 3,326,637 (1967). (20) Knapp, G. S.,J.Appl.Phys. 1967, 38, 1267. (21) Knapp, G. S., Phys. Letters 1967, 25A, 114. (22) Kondo, J., Phys. Rev. 1968, 169, 437. (23) Kouvel, J. S.,J.Appl.Phys. 1966, 37, 1257. (24) Kouvel, J. S., Forsyth, J. B.,J.Appl.Phys. 1969, 40, 1359. (25) Kouvel, J. S., Hartelius, C.C.,J.Appl.Phys. 1962, 33, 1343. (26) Lederer, P., Mills, D. L., Phys. Rev. 1968, 165, 837. (27) Lommel, J. M., Kouvel, J. S.,J.Appl. Phys. 1967, 38, 1263. (28) Low, G. G., Holden, T. M., Proc. Phys. Soc. 1966, 89, 119. (29) Matthias, B. T., U. S. Patent 2,970,961 (1961). (30) Mishin, D. D., Greshishkin, R. M., Phys. Status Solidi 1967, 19, K1-K3. (31) Newkirk, J. B., Geisler, A. H., Martin, D. L., Smoluchowski, R.,J.Metals 1950, 188, 1249. (32) Rabinkin, A. G., Tyapkin, Yu. D., Yamaleev, Κ. M., Fiz. Metal i Metaloved. 1965, 19, 360. (33) Ralph, B., Brandon, D. G., Proc. European Conf. Electron Microsco 3rd, Prague 1964 (A) 303. (34) Sarachik, M. P., Phys. Rev. 1968, 170, 679. (35) Shimizu, S., Hashimoto, E.,J.Appl. Phys. 1968, 39, 2369. (36) Tu, P.,etal.,J. Appl. Phys. 1969, 40, 1368. (37) Walmer, M. L., Engelhard Ind. Tech.Bull.1962, 2, 117. (38) Walstedt, R. E., Sherwood, R.C.,Wernicke, J. H., J. Appl. Phys. 1968, 39, 555. (39) Weiss, R. J., "Solid State Physics for Metallurgists," p. 323, Pergamon, New York, 1963. RECEIVED January 16, 1970.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
Platinum Metal Chalcogenides
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
AARON WOLD Brown University, Providence, R. I. 02912
A number of binary platinum metal chalcogenides show interesting electrical and magnetic properties. These are classified according to structure types and their properties related to the formal valence of the platinum metal. A simple one-electron model proposed by Goodenough to explain the properties of the first row transition metal chal cogenides can be applied to the corresponding platinum metal compounds. This theory is successful in correlating new experimental data on these compounds—e.g., crysta structure, resistivity, Seebeck coefficient, and magnetic susceptibility. *"phe electrical and magnetic properties of simple binary platinum metal oxides (15, 19), as well as a number of ternary compounds (4), have shown that these materials can be of considerable interest to both solid state chemists and physicists. A number of the platinum metal oxides are remarkably good electrical conductors and, in addition, magnetic ordering has been observed (4) for several perovskites containing ruthenium. Many of these compounds can be prepared in the form of single crystals (IS), making them suitable for both transport and magnetic measurements. The platinum metal chalcogenides in general are easier to prepare than the corresponding oxides. Whereas special conditions of temperature and pressure are required to prepare many of the oxides, the platinum metals react most readily with S, Se, and Te. A number of additional differences concerning the chemistry of the chalcogenides and the oxides are summarized as follows: The metal-sulfur (selenium, tellurium) bond has considerably more covalent character than the metal-oxygen bond and, therefore, there are important differences in the structure types of the compounds formed. Whereas there may be considerable similarity between oxides andfluorides,the structural chemistry of the sulfides tends to be more closely related to that of the chlorides. The latter compounds 17 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
18
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
f o r m as p r i m a r i l y l a y e r - t y p e structures, a n d a n u m b e r of i m p o r t a n t s t r u c t u r e types are f o u n d i n sulfides that h a v e n o c o u n t e r p a r t a m o n g the o x i d e structures—e.g., p y r i t e , m a r c a s i t e , n i c k e l arsenide. F i n a l l y , m a n y of t h e p l a t i n u m m e t a l c h a l c o g e n i d e s b e h a v e l i k e a l l o y s ; t h e elements d o a p p e a r to h a v e t h e i r n o r m a l valencies a n d , i n a d d i t i o n , the
not
compounds
h a v e a w i d e r a n g e of c o m p o s i t i o n a n d s h o w m e t a l l i c luster, r e f l e c t i v i t y , and conductivity. Goodenough
(10)
has a c c o u n t e d for the m e t a l l i c p r o p e r t i e s of
a
n u m b e r of first r o w t r a n s i t i o n m e t a l c h a l c o g e n i d e s , a n d these ideas are also a p p l i c a b l e to the p l a t i n u m m e t a l chalcogenides.
H e has s h o w n that
t h e f o r m a t i o n of c o n d u c t i o n b a n d s is p o s s i b l e as a result of strong covalent m i x i n g between the cation e
9
a n d a n i o n s,p
a
orbitals. T h i s m i x i n g
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
a l l o w s sufficient i n t e r a c t i o n b e t w e e n o c t a h e d r a l l y c o o r d i n a t e d cations o n opposite sides of a n a n i o n so that the c o n d i t i o n s for l o c a l i z e d d-electrons break down.
T h e r e s u l t i n g d - l i k e c o l l e c t i v e - e l e c t r o n b a n d s , w h i c h are
a n t i b o n d i n g w i t h respect to the a n i o n array, are d e s i g n a t e d σ * b a n d s . M e t a l l i c b e h a v i o r c a n o c c u r w h e n these b a n d s exist a n d are p a r t i a l l y o c c u p i e d b y electrons. M e t a l l i c c o n d u c t i o n m a y o c c u r also i f c o n d u c t i o n b a n d s are f o r m e d b y the d i r e c t o v e r l a p of t r a n s i t i o n m e t a l t
2g
orbitals.
H e r e a g a i n , these b a n d s m u s t b e p a r t i a l l y o c c u p i e d .
et al. (19)
—
t
2g
Rogers
h a v e a p p l i e d the G o o d e n o u g h m o d e l to a c c o u n t for the elec
t r i c a l b e h a v i o r of a n u m b e r of p l a t i n u m m e t a l oxides.
T h e s e concepts
m a y also b e a p p l i e d to t h e p l a t i n u m m e t a l chalcogenides. It w i l l not b e possible, i n this p a p e r , to d e a l w i t h a l l of the p l a t i n u m m e t a l chalcogenides.
I n s t e a d , a n u m b e r of examples w i l l be c h o s e n a n d
t h e i r e l e c t r i c a l as w e l l as m a g n e t i c p r o p e r t i e s c o r r e l a t e d w i t h the a t o m i c positions i n the v a r i o u s structures f o r m e d . T h e first g r o u p of c o m p o u n d s to b e d i s c u s s e d c r y s t a l l i z e w i t h the p y r i t e structure, w h i c h is s h o w n i n F i g u r e 1.
T h i s s t r u c t u r e is s i m i l a r to the N a C l structure i f w e r e p l a c e
N a b y F e a n d each C I b y an S group. H o w e v e r , the S - S distance w i t h i n 2
R.
Figure 1.
W.
Pyrite structure
G. Wyckoff,
"Crystal Structures," Wiley
(20)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2.
Phtinum
W O L D
Table I.
Metal
19
Chalcogenides
Platinum Metal Compounds with the Pyrite Structure Compounds
Properties
Low Spin RuS , OsS , RhPS, RhPSe,
RuSe , OsSe , RhAsS, RhAsSe, RhAsTe, IrPS, IrAsS, IrPSe, IrAsSe, IrAsTe, N i o . P d o .eAsa, PtAs , PtP„ PtBi RhSe~ , RhS~ , IrS^ , IrSe^ IrTe~ 2
2
2
2
2
2
rf
S =
6
0 Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Semiconductor Metallic Semiconductor Metallic Semiconductor Semiconductor Metallic
RuTe OsTe RhSbS, RhBiS RhSbSe, RhBiSe RhSbTe, RhBiTe IrSbS, IrBiS IrSbSe, IrBiSe IrSbTe, IrBiTe PdAs , PdSb PtSb 2
2
2
2
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch002
2
3
3
3
RhTe~
3
3
3
3. 2
2n and k =
2n.
A y e l l o w - b r o w n c o m p o u n d , S r P d 0 , is f o r m e d w h e n t h e 2
3
a p p r o p r i a t e s t a r t i n g m i x t u r e ( i n p e l l e t f o r m ) is fired at 9 5 0 ° C i n a i r for
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
s e v e r a l days. T h e c o m p o u n d is t h e r m a l l y q u i t e stable, e v e n at 1 2 0 0 ° C . It dissolves r a p i d l y i n d i l u t e a c i d s , a n d w h e n b r o u g h t i n contact w a t e r , i t alters to a n u n i d e n t i f i e d h y d r a t e d p r o d u c t . the f o r m u l a .—Sri. Pdi. o0 . 93
0
w i t h χ as h i g h as 0.6.
3+a
an i d e a l f o r m u l a of S r P d 0 2
with
A n a l y s e s l e a d to W e have assumed
for reasons d i s c u s s e d b e l o w .
3
R o t a t i o n a n d W e i s s e n b e r g patterns w e r e t a k e n of a s i n g l e c r y s t a l of S r P d 0 . T h e s i n g l e - c r y s t a l d a t a l e a d to a b o d y - c e n t e r e d o r t h o r h o m b i c 2
3
u n i t c e l l . P o w d e r d a t a (a
=
Q
3.970A, b
=
Q
3.544A, c
0
=
1 2 . 8 4 A ) are i n
g o o d a g r e e m e n t w i t h the s i n g l e - c r y s t a l d a t a . T h e o n l y e x t i n c t i o n s f o u n d w e r e those f o r b o d y - c e n t e r i n g ; t h u s , the f o u r p o s s i b l e space g r o u p s a r e D
2 h
2 5
- J m m m , ό2*-Ι222,
ώ2 -Ι2 2 2 , 9
1
1
and c
1
2 v
2 0
-Irara2.
B o t h s y m m e t r y a n d u n i t c e l l constants are s i m i l a r to t h e c o r r e s p o n d i n g v a l u e s of K N i F 2
4
t y p e c o m p o u n d s , as is s h o w n i n T a b l e I I .
w e h a v e f o u n d t h a t a reasonable s t r u c t u r e c a n b e d e r i v e d for w h i c h is closely r e l a t e d to the K N i F 2
t u r e , t h e space g r o u p D
2 h
2 5
Indeed, Sr Pd0 2
3
s t r u c t u r e . I n this p r o p o s e d s t r u c
4
- Z r a r a r a is a s s u m e d a n d t h e atoms are p l a c e d
as f o l l o w s : 4 S r i n (4i) : OOz, OOF + 2 P d i n (2a) : 000 + 2 Ο i n (26)-: O H +
b.c. w i t h ζ =
0.355
b.c. w i t h ζ =
0.16
b.c. b.c.
4 Ο i n (4i) : 00z, OOz +
W i t h this a s s u m p t i o n , intensities for the p o w d e r p a t t e r n w e r e c a l c u l a t e d i n t h e same m a n n e r as d e s c r i b e d p r e v i o u s l y (8).
A l l tempera
t u r e coefficients w e r e a s s u m e d to b e zero. T h e c a l c u l a t e d intensities are l i s t e d i n T a b l e I I I a n d c o m p a r e q u i t e f a v o r a b l y w i t h the o b s e r v e d i n tensities. T h e i n t e n s i t y d i s c r e p a n c y f a c t o r R = w a s c a l c u l a t e d as 6.6.
100 ( 2 | I
0
—
I | c
h)
I n c a l c u l a t i n g the R - f a c t o r , t h e intensities w h i c h
w e r e too w e a k to b e o b s e r v e d w e r e a s s i g n e d J obs. v a l u e s of zero.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
The
32
P L A T I N U M
Table II.
G R O U P
M E T A L S
Compound
a , A
Sr Ir0 Sr Rh0 Sr Ru0
4
2
4
3.89 3.85 3.870
3
3.970
2
b , A
0
2
4
Sr Pd0
Table III.
0
3.544
Co, A
Ref.
12.92 12.90 12.74
(12) (13) (13)
12.84
present work
Symmetry Space Group Structure Type Tetragonal K NiF 2
4
Orthorhombic
2
0
Space group:
=
Q
D
2 2
h
5
—
Immm;
3.544A, a n d c
Q
=
12.84A
n.o. = n o t o b s e r v e d .
d obs., A
d cale, A
I obs.
I calc.
hkl
6.44 n.o. 3.419 3.217 2.912 2.730 2.643 2.447
6.42 3.793 3.416 3.210 2.911 2.730 2.644 2.445
10.2 n.o. 3.2 2.6 64.0 73.9 100.0 1.8
22.4 0.1 3.3 2.4 67.6 76.2 98.9 2.2 J 10.2 \22.2 14.0 6.4 25.2 1.9 17.2 / 0.6
002 101 011 004 103 013 110 112 105 006 015 114 200 202 020 211 022 204 107 116 017 213 008 024 123 206 215 118 125 026 109 019 220
2.141
g;}»
33.3
2.079 2.041 1.985 1.896 1.772 1 711 '
2.079 2.041 1.985 1.896 1.772 fl-716 \1.708 1.688 1.665 [1.663 1.629
12.8 6.4 25.8 1.5 18.9
1
/
1.663 n.o.
1.605
n.o. 1.513 1.455 1.436 1.368 1.342 1.322
structure
X - R a y Diffraction Powder D a t a for S r P d 0
O r t h o r h o m b i c : a — 3.970A, b Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
C O M P O U N D S
Structural D a t a for Some Strontium-Noble Metal Oxides Unit Cell Constants
2
A N D
1
7
1A
35.2 n.o.
{;5jg 36.8 :
1.551 1.514 1.455 1.436 (1.372 1.369 [1.365 1.343
{}fg
1 0.6
n.o. 20.4 14.3 6.2
21.8 2.9 14.7
0.9 [30.3 0.2 /30.0
1 0.4 5.1 19.7 11.8 7.8 f 9.2 4.6 [ 9.3 2.2 / 3.0 112.2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
3.
M U L L E R
A N D
New
R O Y
Palladium
Table III.
33
Oxides
(Continued)
O r t h o r h o m b i c : a = 3.970A, b — 3.544A, a n d c = 0
Q
Space g r o u p :
2 2
5
h
—
Immm;
n.o.
12.84A
not observed.
d cale, A
I obs.
I calc.
hkl
1.295 1.284
n.o. n.o.
1.264
j}| a n d C d o . 5 P d . o o 0 . . T h e s t r o n t i u m 3
4
3
4
9
3
4
03
c o m p o u n d gives h i g h e r t h a n e x p e c t e d o x y g e n contents, e s p e c i a l l y w h e n the samples are p r e p a r e d at h i g h o x y g e n pressures.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
36
P L A T I N U M
T h e x - r a y p o w d e r d a t a for S r P d 0 3
4
GROUP
M E T A L S
A N D
C O M P O U N D S
are g i v e n i n T a b l e I V . C a P d 0 3
4
a n d C d P d 0 g i v e v e r y s i m i l a r p o w d e r patterns. A l l three patterns c a n b e 3
4
i n d e x e d o n t h e basis of a p r i m i t i v e c u b i c u n i t c e l l w i t h c e l l constants of 5.826, 5.747, a n d 5.742A for S r P d 0 , C a P d 0 , a n d C d P d 0 , respec 3
4
3
4
3
4
t i v e l y . I n t e n s i t y c a l c u l a t i o n s w e r e c a r r i e d out i n a s i m i l a r m a n n e r as for S r P d 0 , a s s u m i n g the N a P t 0 2
3
x
3
4
structure (22,
p l a c e d as f o l l o w s i n space g r o u p
T h e atoms
23).
were
o -Pm3n: 3
h
2 S r ( C a or C d ) i n (2a) : (ΟΟΟ,ΗΙ) 6 P d i n (6c) : ±
(10*, O )
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
8 Ο i n (8e) : ± (ΙΗ,ΗΪΟ) Table V .
Structural D a t a for Compounds with the N a P t 0 x
Cubic, S.G.: o
h
Interatomic
3
-
3
4
Structure
Pm3n
Distances,
A
a
Composition
a, A
Pt-0 or Pd-O, square planar
Pt 0 Mg Pt 0 Na Pt 0
5.585 5.621 5.69
1.974 1.987 2.01
2.418 2.434 2.46
2.792 2.810 2.84
(7) (ID (22,23)
5.64 5.742 5.747 5.826
1.99 2.030 2.032 2.059
2.44 2.486 2.488 2.523
2.82 2.871 2.873 2.913
(16) Present work Present work Present work
3
4
x
3
x
3
Na Pd 0 CdPd 0 CaPd 0 SrPd 0 x
3
3
4
4
4
3
3
4
4
4
0
Me-O, 8-fold, cubic
Shortest, Pt-Pt or Pd-Pd
Reference
The interatomic distances for C d P d s O * , CaPd C>4, and S r P d 0 4 are believed to be accurate to within db 0.002A. This small error is a function only of the accuracy of the do cell edge measurements, since there are no variable positional parameters in the a
3
3
N a x P t 0 * structure. 3
T a b l e I V shows t h a t the i n t e n s i t y a g r e e m e n t is q u i t e g o o d . i n t e n s i t y d i s c r e p a n c y factors R =
100 (%\I
The
— 7 |)/2(J ) were calcu
Q
C
0
l a t e d as 5.8, 7.8, a n d 8.4 for S r P d 0 , C a P d 0 , a n d C d P d 0 , respec 3
tively.
4
3
4
3
4
I n T a b l e V , the i n t e r a t o m i c distances for these c o m p o u n d s
c o m p a r e d w i t h the distances f o u n d for other N a P t 0 - t y p e phases. x
s q u a r e p l a n a r P d - O b o n d lengths a n d t h e c u b i c Sr-O,
3
4
are The
(eight-coordinated)
C a - O , a n d C d - O distances are i n g o o d agreement w i t h the ex
p e c t e d values. S q u a r e p l a n a r c o o r d i n a t i o n is c o m m o n for d i v a l e n t p a l l a d i u m c o m p o u n d s , a n d the e i g h t - f o l d ( c u b i c ) e n v i r o n m e n t for S r , C a , 2 +
and C d
2 +
2 +
is e x p e c t e d f o r these ions. T h e r e l a t i v e l y short P d - P d distances
m a y i n d i c a t e the presence of some i n t e r - m e t a l l i c b o n d i n g . I n these c o m -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3. MULLER AND ROY
New Palladium Oxides
37
pounds, the palladium atoms are apparently completely ordered in the (6c) sites. We have found no x-ray evidence for any noticeable disorder between the two different cations in CaPd 0 . Because of the strong preference of Pd for square planar coordination, it can be assumed that no such disorder exists in SrPd 0 and CdPd 0 , although this could not be proved easily by x-ray methods since the atomic scattering factors for Sr, Cd, and Pd are very similar. Mg Pd0 . When Mg(OH) -Pd black mixtures are heated at high oxygen pressures—e.g., at 900 °C and 200 atm of oxygen—a poorly crystallized spinel phase is formed with a = 8.501A. We have not yet succeeded in preparing this spinel in a pure state, since this phase is always accompanied by some unreacted MgO and PdO. From crystal-chemical considerations and from the x-ray intensities, we have tentatively assigned the stoichiometry Mg Pd0 to this phase. Mg Pd0 is apparently an inverse spinel with Pd occupying octahedral sites. The unit cell constant for Mg Pd0 , a = 8.501A, is slightly smaller than the corresponding value for Mg Pt0 , a = 8.521 A (10), owing to the slightly smaller ionic radius for Pd (17). 3
4
2+
3
2
4
4
3
4
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
0
2 4+
2
4
4
2
4
0
2 4+
4
0
Acknowledgment We thank W. A. Jester for the neutron activation analyses. This work was supported by the Advanced Research Projects Agency, Contract No. DA-49-083 OSA-3140, and by the U. S. Army Electronics Command, Contract DA28-043 AMC-01304 (E). Literature Cited (1) Guiot, J. M., J. Appl. Phys. 1968, 39, 3509. (2) Hoekstra, Henry R., Siegel, Stanley, Gallagher, Francis X., ADVAN. CHEM. SER. 1970, 98, 39. (3) McDaniel, C. M., Schneider, S. J.,J.Res. Natl. Bur. Std. 1968, 72A, 27. (4) Moore, W. J., Pauling, L,J.Am. Chem. Soc. 1941, 63, 1392. (5) Muller, O., Roy, R., Am. Ceram. Soc.Bull.1967, 46, 881. (6) Muller, O., Roy, R.,J.Inorg.Nucl.Chem. 1969, 31, 2966. (7) Muller, O., Roy, R.,J.Less-Common Metals 1968, 16, 129. (8) Ibid., 1969, 19, 209. (9) Ibid., 1970, 20, 161. (10) Muller, O., Roy, R., Mater. Res. Bull. 1969, 4, 39. (11) Muller, O., Roy, R., unpublished data. (12) Randall, J. J., Katz, L., Ward, R.,J.Am. Chem. Soc. 1957, 79, 266. (13) Randall, J. J., Ward, R.,J.Am. Chem. Soc. 1959, 81, 2629. (14) Sabrowsky, H., Hoppe, R., Naturwissenschaften 1966, 53, 501. (15) Scheer, J. J., Dissertation, Leiden, Netherlands, 1956. (16) Scheer, J. J., van Arkel, A. E., Heyding, R. D., Can. J. Chem. 1955, 33, 683.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
38
PLATINUM GROUP METALS AND COMPOUNDS
Shannon, R. D., Prewitt, C. T., Acta Cryst. 1969, B25, 925. Shannon, R. D., Rogers, D. B., Prewitt, C. T., in press. Sleight, A. W., Mater. Res. Bull. 1968, 3, 699. Teske, C. L., Muller-Buschbaum, H., Z. Anorg. Allgem. Chem. 1969, 371, 325. Waser, J., Levy, Η. Α., Peterson, S. W., Acta Cryst. 1953, 6, 661. Waser, J., McClanahan, E. D.,J.Chem. Phys. 1951, 19, 199. Ibid., 1951, 19, 413. RECEIVED February 2, 1970.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch003
(17) (18) (19) (20) (21) (22) (23)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4
Reaction of Platinum Dioxide with Some Metal Oxides
HENRY R. HOEKSTRA, STANLEY SIEGEL, and FRANCIS X. GALLAGHER
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
Argonne National Laboratory, Argonne, Ill. 60439 The structure of platinum dioxide and its reactions with some di, tri, and tetravalent metal oxides have been investigated. Ternary platinum oxides were synthesized at high pressure (40 kilobars) and temperature (to 1600°C). Properties of the systems were studied by x-ray, thermal analysis, and infrared methods. Complete miscibility is observed in most PtO -rutile-type oxide systems, but no miscibility or compound formation is found with fluorite dioxides. Lead dioxide reacts with PtO to form cubic Pb Pt O . Several corundum-type sesquioxides exhibit measurable solubility in PtO . Two series of compounds are formed with metal monoxides: M PtO (where M is Mg, Zn, Cd) and MPt O (where M is Mg, Co, Ni, Cu, Zn, Cd, and Hg). 2
2
2
2
7
2
2
4
3
6
'Tphe literature on anhydrous binary or ternary platinum oxides is relatively limited. Muller and Roy (6) have reviewed the simple platinum oxides and were able to confirm the existence of only two oxides, P t 0 and Pt0 , with the dioxide existing in two crystal modifications. Shannon (13) has discussed the preparation and properties of orthorhombic Pt0 . Ternary oxides of platinum include several with the alkali metals (NaJPtsO^ Na Pt0 , L i P t 0 ) (12) and with the alkaline earths [Ba Pt 0 (18), Sr Pt 0 , and Sr PtO (10)]. More recent work has been reported on T l P t 0 (4) and the rare earth-platinum pyrochlores (3, 17), as well as the spinels Z n P t 0 and M g P t 0 (5). The investigations of platinum pyrochlores have demonstrated the effectiveness of high pressure techniques in the synthesis of anhydrous oxides when one or both reactants have limited thermal stability. The bulk of the work reported here represents a continuation of an exploration of metal oxide-platinum oxide systems at high pressure. 3
4
2
2
2
3
2
7
3
3
2
7
2
2
7
2
3
4
2
e
4
2
4
39 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
40
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
Equipment and Procedure T h e h i g h pressure a p p a r a t u s u s e d i n this w o r k is a t e t r a h e d r a l a n v i l apparatus. D e t a i l s of the e q u i p m e n t , the o p e r a t i n g p r o c e d u r e , a n d the sample assembly have been described previously (2) r e p e a t e d here.
B r i e f l y , the p o w d e r e d
and w i l l not
be
o x i d e samples are w r a p p e d i n
p l a t i n u m or i n g o l d f o i l to isolate t h e m , as m u c h as possible, f r o m r e a c t i o n w i t h m a t e r i a l s other t h a n the reactant m i x t u r e . W e s h a l l see t h a t o n occasion the o x i d e samples w i l l react w i t h the p l a t i n u m f o i l c o n t a i n e r to g i v e l o w e r v a l e n c e p l a t i n u m oxides. A s a r u l e , three o x i d e samples, w h i c h h a v e b e e n w r a p p e d i n f o i l a n d pressed i n t o pellets, are l o a d e d i n t o the s a m p l e c a v i t y (•—1
cc v o l u m e ) of a p y r o p h y l l i t e t e t r a h e d r o n for e a c h
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
h i g h pressure r u n . I n a t y p i c a l e x p e r i m e n t , the t e t r a h e d r o n w i t h its three samples is c o m pressed to 40 k b pressure; the s a m p l e c a v i t y is h e a t e d to 1200 ° C a n d m a i n t a i n e d at that t e m p e r a t u r e for a n h o u r b e f o r e b e i n g q u e n c h e d room temperature.
F i n a l l y , pressure is released s l o w l y .
to
A l t h o u g h the
b u l k of o u r experiments h a v e b e e n r u n at 40 k b pressure, the range i n pressure a p p l i e d has v a r i e d f r o m 20 to 60 k b ; e x p e r i m e n t a l temperatures v a r i e d f r o m 500° to 1600 ° C . W e find that u n d e r these e x p e r i m e n t a l c o n d i t i o n s loss of a n a p p r e c i a b l e a m o u n t of o x y g e n f r o m the s a m p l e p e l l e t occurs v e r y r a r e l y , e v e n t h o u g h the oxides are h e a t e d to several h u n d r e d degrees a b o v e t h e i r d e c o m p o s i t i o n t e m p e r a t u r e at a t m o s p h e r i c pressure.
E x c e p t i o n s to this
r u l e o c c u r w i t h the f o r m a t i o n of a n y stable oxide phase w h i c h does not u t i l i z e a l l of the oxygen present i n the i n i t i a l reactant m i x t u r e . T h i s "excess" o x y g e n is lost r a t h e r r a p i d l y f r o m the s a m p l e enclosure. O u r i n v e s t i g a t i o n of the properties of the p l a t i n u m oxides i n c l u d e s x-ray, i n f r a r e d , a n d t h e r m a l analysis. P o w d e r x - r a y d a t a w e r e o b t a i n e d w i t h a P h i l i p s 114.59 m m c a m e r a , u s i n g either N i - f i l t e r e d C u r a d i a t i o n or V - f i l t e r e d C r r a d i a t i o n . C e l l parameters w e r e o b t a i n e d u s i n g a least squares refinement, a n d are b a s e d o n C u Κα = 2.2909. T h e dta-tga
1.5418 A a n d C r Κα —-
results w e r e o b t a i n e d o n a M e t t l e r r e c o r d i n g t h e r m o -
a n a l y z e r over the t e m p e r a t u r e i n t e r v a l 2 5 ° - 1 4 0 0 ° C , w i t h a h e a t i n g rate of 6 ° / m i n u t e a n d a s e n s i t i v i t y of 100 μΥ.
I n f r a r e d spectra to 200 c m "
w e r e t a k e n w i t h a B e c k m a n I R - 1 2 spectrophotometer.
1
N u j o l mulls were
s p r e a d o n p o l y e t h y l e n e disks for the l o w f r e q u e n c y p o r t i o n of the spec t r u m a n d o n K B r plates for the frequencies a b o v e 400 c m " .
Platinum
1
d i o x i d e w a s p r e p a r e d b y the r e a c t i o n of K P t C l 2
purity) with molten K N 0 s o l u t i o n of the K N 0 for several hours. than 0.2%
3
3
at 4 0 0 ° C .
4
or K P t C l 2
6
(99.9%
T h e dioxide was recovered
by
i n water and purified by heating i n aqua regia
S p e c t r o c h e m i c a l analysis of the p r o d u c t s h o w e d less
of a l k a l i metals, a n d no w a t e r or h y d r o x y l i o n w a s
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
detect-
4.
H O E K S T R A
E T
Reaction
A L .
Table I.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch004
41
Dioxide
X - r a y Powder Data for a - P t 0 a = 3.100(2)
Hexagonal
a
of Platinum
hkl
d
001 100 101 002 102 110 111 003 200 201 112 103 202 113 210 211 203 212 300 301 114 302
4.107 2.664 2.241 2.065 1.637 1.543 1.448 1.381 1.337 1.2734 1.2388 1.2287 1.1255 1.0309 1.0126 0.9841 0.9628 0.9111 0.8945 0.8752 0.8629 0.8218
c = 4.161(3)
2
A
I calcd
I obsd
a
100 100 170 15 100 50 70 10 25 50 40 50 50 40 40 90 45 115 30 60 80 75
60 100 90 10 60 90 70 1 45 50 30 15 35 5 55 55 20 60 35 40 20 100
Based on C d l - t y p e structure. 2
able b y i n f r a r e d analysis. M e t a l oxides u s e d i n the reactions w i t h P t 0
2
w e r e u s u a l l y reagent grade c h e m i c a l s ; exceptions i n c l u d e d oxides s u c h as F e O , C r 0 , M n O , M n 0 , V 0 , a n d M o 0 , w h i c h w e r e p r e p a r e d b y 2
accepted
2
procedures
3
2
2
f r o m reagent grade s t a r t i n g m a t e r i a l s . P u r i t y
of
these p r o d u c t s w a s c o n f i r m e d b y x-ray, t h e r m a l , a n d c h e m i c a l analysis.
Results «-Pt0 . 2
S e v e r a l proposals c o n c e r n i n g t h e structure of the a m b i e n t
pressure f o r m of P t 0
2
h a v e b e e n r e v i e w e d b y M u l l e r a n d R o y (6).
Diffi-
culties arise p r i n c i p a l l y f r o m the p o o r c r y s t a l l i n i t y w h i c h characterizes this phase, regardless of the h e a t i n g t i m e e m p l o y e d i n its p r e p a r a t i o n . D i s o r d e r is p a r t i c u l a r l y t r o u b l e s o m e i n the o d i r e e t i o n of the h e x a g o n a l structure since hkl lines w i t h 1 ^ 0
b e c o m e i n c r e a s i n g l y w e a k a n d diffuse
w i t h increase i n 1. O u r experience w i t h the synthesis of [Os N(NH ) X J X 100°C,Carius (X = Cl,Br) tube
2
[Os NCl (H 0) ] 8
2
[Os N(NH ) 2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
G R O U P
3
3
2
2
8
3
Aq.
3
> [Os N(NH ) 100°C, C a r i u s tube
Cl ] +
8
3
3
2
3
Excess X ~ > [Os N(NH ) Reflux i n a q . soin 2
3
C1 ]C1
8
2
3
X ] +
8
2
3
(X = Br,I,NCS,N ,N0 ) 3
[Ru N(NH ) 2
NH [Ru N 2
3
3
3
C1 ]C1
8
2
2
Aq.
X (H 0) ] ~ 8
2
2
3
Heat [Ru N(NH ) (H 0)Cl ]Cl 2
Figure
1.
Structure
of the anion in
3
6
2
3
2
K [Ru NCl (HgO) ] 3
2
8
2
= N " , N C S " , N 0 " ) . I t appears t h a t other ligands—e.g., N 0 " — w i l l l e a v e t h e c o m p o u n d as a n o c t a m m i n e . Species of t h e t y p e [ R u N ( N H ) ( H 0 ) Y ] Z m a y b e m a d e b y metathesis w i t h Z " i n t h e c o l d ( Z = C 1 , I ) . 3
2
3
2
2
3
2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
6
5.
C L E A R E
E T
Nitrido
A L .
59
Complexes
M o l a r c o n d u c t a n c e s for the o s m i u m a n d r u t h e n i u m o c t a m m i n e s i n aqueous s o l u t i o n w e r e close to the values e x p e c t e d f o r 3:1 (.—360 m h o s c m )
electrolytes
b u t rose o n s t a n d i n g or h e a t i n g to g i v e final values
2
nearer that e x p e c t e d for a 5:1 electrolyte ( ^ 6 0 0 m h o s c m ) .
T h i s is p r e
2
s u m a b l y because of trans a q u a t i o n ; the effect w a s a g a i n less m a r k e d for o s m i u m . S i g n i f i c a n t l y , a l l the h a l o g e n i n the h a l o species [ R u N ( N H ) 2
3
Χ 2 ] Χ δ c o u l d be p r e c i p i t a t e d w i t h silver n i t r a t e f r o m h e a t e d
8
solutions.
C o n d u c t i v i t i e s for the h e x a m m i n e s also v a r i e d s o m e w h a t w i t h t i m e , b u t i n i t i a l values w e r e l o w e r t h a n for the o c t a m m i n e s presence of a 2:1 electrolyte (240 m h o s c m )
and indicated
the
(5)
2
A n x-ray s t r u c t u r a l d e t e r m i n a t i o n has b e e n c a r r i e d out
Structure.
on K [ R u 2 N C l ( H 0 ) 2 ] 3
8
(3)
2
a n d the results are d e p i c t e d i n F i g u r e 1.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
T h e a n i o n has a l i n e a r skeleton w i t h the e i g h t e q u a t o r i a l c h l o r i n e atoms e c l i p s e d so that the o v e r - a l l i d e a l i z e d s y m m e t r y of the a n i o n is D .
Each
4h
r u t h e n i u m a t o m is d i s p l a c e d 0.19 A out of the C l n i t r o g e n atom.
4
plane toward
the
S u c h a d i s p l a c e m e n t of m e t a l atoms t o w a r d s a 7r-donor
l i g a n d has b e e n o b s e r v e d i n other complexes, s u c h as K [ R e O C l i ] 4
2
(18)
0
a n d (Ph^As) [ M o O B r H 0 ] ( 7 ) , as w e l l as K [ O s N C l ] ( I ) , w h i c h has 4
2
2
5
b e e n m e n t i o n e d p r e v i o u s l y . I t has b e e n suggested that this arises m a i n l y f r o m the r e p u l s i o n b e t w e e n the n i t r o g e n a n d c h l o r i n e l i g a n d s w i t h i n t h e molecule. S p e c t r a of
Vibrational Spectra.
t y p i c a l complexes are l i s t e d i n
T a b l e s V a n d V I . T h e c o m p o u n d s e x h i b i t s i m i l a r spectra,
suggesting
that t h e y a l l h a v e the same b a s i c structure. T h e m a i n features a r e : ( a ) T h e presence of a strong sharp b a n d i n the i n f r a r e d i n the r a n g e 1 0 5 0 - 1 1 3 0 c m " , not o b s e r v e d i n t h e R a m a n . T h i s b a n d is l i t t l e c h a n g e d i n f r e q u e n c y o n d e u t e r i a t i o n , b u t shifts d o w n w a r d b y s o m e 30 c m " o n 1
1
Table V .
Vibrational Spectra of Bridging Nitrido Complexes—Anionic Species
(M NX (H 0) y2
s
K (Os N 3
2
VM N
2
2
C1 (H 0) )
2
8
2
R
2
aS
—
2
8
267(10)
J315(4) /295(2) 303s b r
185w
329(4)
J301(10) (294(4)
200w
I R 1137 v s ° I R 1135 v s K (Ru N 3
C1 (H 0) )
2
8
2
R
2
—
R — I R 1078 v s a
a
K (Ru 3
a
2
1 5
N
C1 (H 0) ) 8
2
2
%X-M-X
V MN
330(4)p (315s /289m
I R 1080 v s I R 1046 vs
—
{315s /289m
Indicates aqueous solution measurement.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
60
P L A T I N U M
Table V I .
3 s
2
3
2
2
8
3
(Os N(ND ) C1 )C1 2
3
2
8
3
(Ru N(NH ) C1 )C1 2
3
2
8
a
R — I R 1104 v s
299(10)
2
3
R — I R 1101 v s
286(10)
8
3
267(1) 260s b r
286(3) 282m
430w 440w
254(1) 240s b r
278m 281m
J496(3) 1475(1) 465w
265w b r
280w
258m br
2 8 0 m sh
440vw 430w
250(1) 245s b r
273w 2 7 7 m sh
— 354(1)
R
—
IR
1055
—
R — I R 1054 v s
339(10)
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
2
C O M P O U N D S
455w 465w
—
3
(Ru N(ND ) C1 )C1
A N D
%M—NH
VM-NH
VM N *
2
(Os N(NH ) C1 )C1
M E T A L S
Vibrational Spectra of Bridging N i t r i d o Complexes—Cationic Species
(M N(NH ) X y+ 2
GROUP
—
Figure 2. Bonding in Ο—Ru and Ru—Ν—Ru tems
Ru— sys
Diagram shows 4 d « - 2 p - 4 c L overlap. There will be a sim ilar 4 d x y - 2 p y - 4 d x y ΟΌβ^Ρ ΰ ί right angles to the plane of the paper. e
B
—
-4d =4d
x
z
y 2
EMPTY PAIRED METAL ELECTRONS PAIRED LIGAND ELECTRONS
•U
Figure
3.
Bonding
in bridging
nitride
complexes
The M.O. diagram indicates the formation of two sets of 3-center molecular orbitals with the metal d electrons paired in the nonbonding orbitals
N substitution i n [ O s N ( N H ) B r ] B r and K [ R u NCl (H 0) ]. T h i s b a n d w e h a v e assigned to v M N> the a s y m m e t r i c M — Ν — M stretch. T h i s m o d e consists almost e n t i r e l y of n i t r o g e n m o v e m e n t a n d is expected to o c c u r i n the same r e g i o n as t h e t e r m i n a l m e t a l n i t r i d e stretches. ( b ) T h e presence of a s t r o n g , s h a r p , p o l a r i z e d R a m a n b a n d near 350 c m " f o r the r u t h e n i u m complexes a n d 280 c m " for the o s m i u m c o m 1 5
2
1 5
1 5
3
as
1
8
2
3
3
2
1 5
8
2
1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
2
5.
C L E A R E
E T
Nitrido
A L .
61
Complexes
plexes, w h i c h w e assign to t h e s y m m e t r i c M — Ν — M s t r e t c h , V M N - T h e s e bands are n o t o b s e r v e d i n t h e i n f r a r e d spectra. T h e y shift d o w n w a r d some 13 c m " o n d e u t e r i a t i o n of t h e a m m i n e complexes, b u t this is l i k e l y to b e c a u s e d b y strong c o u p l i n g of V N ( a totally symmetric m o d e ) w i t h the s y m m e t r i c m e t a l a m m i n e stretches a n d deformations h a v i n g t h e same s y m m e t r y species (A ), together w i t h a slight effect a r i s i n g f r o m t h e greater mass of d e u t e r i u m . H e r e t h e m o d e consists m a i n l y of m e t a l m o v e m e n t ; this is c l e a r l y s h o w n b y t h e effect of t h e extra mass of o s m i u m . T h e g e n e r a l l a c k of c o i n c i d e n c e b e t w e e n R a m a n a n d i n f r a r e d bands a n d , i n p a r t i c u l a r , t h e fact that t h e R a m a n - a c t i v e V M N a n d i n f r a r e d - a c t i v e v M N a r e i n a c t i v e i n the i n f r a r e d a n d R a m a n , respectively, strongly s u g gest t h e presence of a center of s y m m e t r y . T h u s , as i n [ R u N C l ( H 0 ) 2 ] ~ t h e a q u o groups l i e trans to the n i t r i d e g r o u p , i t is l i k e l y t h a t the X groups i n [ M N ( N H ) X ] w i l l b e p l a c e d s i m i l a r l y ( 5 ) . S
2
1
S
M
2
lg
S
as
2
2
2
8
3
2
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
2
3
8
2
3 +
E l e c t r o n i c S p e c t r a . A l l these complexes are d i a m a g n e t i c as a result of t h e 7r-bonding, w h i c h is s h o w n i n F i g u r e 2. O f t h e f o u r m e t a l d electrons o n e a c h r u t h e n i u m a t o m ( R u ( I V ) d ) , t w o {d ,d ) w i l l p a i r u p i n t h e n o n b o n d i n g m o l e c u l a r o r b i t a l of t h e set p r o d u c e d b y t h e 3-center o v e r l a p b e t w e e n t h e d a n d d orbitals o n e a c h m e t a l a t o m , a n d t h e 2p a n d 2p orbitals o n t h e n i t r i d e . T h e l o w e r energy n i t r i d e electrons w i l l p a i r i n the b o n d i n g m o l e c u l a r orbitals ( F i g ure 3 ) . T h e r e m a i n i n g t w o electrons p e r r u t h e n i u m a t o m are p a i r e d i n t h e 4 dy o r b i t a l w h i c h remains essentially n o n b o n d i n g . I t is a consequence of this b o n d i n g scheme that t h e M — Ν — M g r o u p s h o u l d b e l i n e a r a n d that t h e e q u a t o r i a l ligands s h o u l d b e i n t h e e c l i p s e d (D ) rather than the staggered ( D ) positions. 4
xy
xz
xy
y
xz
z
Z
4h
4 d
Figure
4.
Electronic
spectra of some bridging complexes
nitrido
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
62
P L A T I N U M
G R O U P
5 0 s 0 + 7NH (llq) I l ^ L ^ 4
M E T A L S
A N D
C O M P O U N D S
Os N 0 H |
3
3
7
9
2
ORIGINAL FORMULATION HN 3
\/
OH
HO
—Os
/\
IR. BANDS
HN
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
NH
\/
3
= O s = 0
/\
OH
2
OH
NH
3
AT 1087, 1025, 970cm SHIFT
1053,997, 935cm
NEW
Ν
/\
OH
3
HO
\/
0 = O s = N HN
OH
, 5
ON
N
TO
SUBSTITUTION
FORMULATION HO
OH
v
\/
H O — Os = H^N
Figure
H^l
\/
HOI
Ν — Os
\>H
5.
OH
\/
Ν =
N^^NH
3
Os
HO^
NH
3
OH ^OH
Trinuclear Os(VI) nitndo plex
com
T h e electronic spectra (350-190 τημ) of three of these complexes are s h o w n i n F i g u r e 4. Jorgensen a n d O r g e l (14)
h a v e suggested that s i m i l a r
bands observed i n K [ R u O C l i ] arise f r o m transitions f r o m the h a l o g e n 4
2
0
l i g a n d s to the a n t i b o n d i n g m o l e c u l a r o r b i t a l f r o m the 3-center b o n d . f o l l o w this assignment for the
[M NX Y2]
system, a l t h o u g h i t is n o t
8
2
We
s t r i c t l y isolectronic w i t h [ R u O X i ] " . T h e R u — O — R u a n d R u — N — R u 2
groupings
are, h o w e v e r ,
4
0
isolectronic.
The
energy
of t h e a n t i b o n d i n g
m o l e c u l a r o r b i t a l is d e t e r m i n e d l a r g e l y b y the extent of the R u — Ο — R u or R u — Ν — R u π-bonding.
T h e b a n d s are seen near 400 τημ for
O C l i o ] " a n d at 397 a n d 330 m ^ ^ ^ H ) [ O s O C l i o ] . 4
4
2
are h i g h e r i n energy (e.g., K [ O s N C l ( H 0 ) ] , 273 τημ; 3
( H 0 ) ] , 294 τημ), 2
2
2
8
2
[Ru 2
In nitride they
2
2
K [Ru NCl 3
2
8
i n d i c a t i n g that M - N ττ-bonding is stronger t h a n for
M - O i n these b i n u c l e a r systems.
Trinuclear Osmium Complex T h e final p r o d u c t of the r e a c t i o n of l i q u i d a m m o n i a w i t h O s 0 the e m p i r i c a l f o r m u l a O s N 0 H i (17,20). 3
r e d s p e c t r u m of the
15
7
9
2
4
has
W e h a v e s t u d i e d the i n f r a
N - s u b s t i t u t e d c o m p o u n d a n d p r o p o s e structure I I
( F i g u r e 5) rather t h a n structure I, w h i c h was suggested o r i g i n a l l y . B a n d s at 1087, 1025, a n d 970 c m " shift to 1053, 997, a n d 935 o n N - s u b s t i t u t i o n 1
15
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
C L E A R E
E T
Nitrido
A L .
63
Complexes
a n d m a y b e assigned to O s — Ν — O s o r O s — Ν s t r e t c h i n g modes. T h e n e w f o r m u l a t i o n accounts f o r t h e o b s e r v a t i o n t h a t o n l y t w o molecules of a m m o n i a are released o n h e a t i n g w i t h a l k a l i , since t w o of the a m m i n e groups are i n a different e n v i r o n m e n t f r o m the other t w o (5), a n d thus p r e s u m a b l y h a v e different stabilities i n respect to m e t a l - n i t r o g e n b o n d strengths.
Trinuclear Iridium Complexes T h e reaction of ( N H ) [ I r C l ] w i t h b o i l i n g sulfuric acid yields a s o l u t i o n f r o m w h i c h green salts o f the f o r m M [ I r N ( S 0 ) e ( H 2 0 ) 3 ] c a n be p r e c i p i t a t e d ( 8 , J 5 ) . I t has b e e n suggested that t h e a n i o n has t h e structure s h o w n o n F i g u r e 6 w i t h a c o p l a n a r I r N u n i t a n d ττ-bonding b e t w e e n t h e 2 p o r b i t a l ( p e r p e n d i c u l a r to t h e I r N t r i a n g l e ) a n d t h e i r i d i u m atoms ( 1 3 , 19). T h e o x i d i z i n g p o w e r o f the species is consistent w i t h it's c o n t a i n i n g o n e I r ( I I I ) a n d t w o I r ( I V ) atoms p e r m o l e c u l e (8, 13). R e d u c t i o n w i t h v a n a d o u s i o n gives a s t r a w - y e l l o w species c o n t a i n i n g three I r ( I I I ) atoms p e r m o l e c u l e . X - r a y studies o n the s o m e w h a t s i m i l a r [ C r 3 0 ( C H C O O ) ( H 2 0 ) ] C l · 5 H 2 0 h a v e s h o w n that t h e C r O u n i t is p l a n a r w i t h a t r i a n g u l a r a r r a n g e m e n t of m e t a l atoms ( 9 ) . 4
3
6
4
3
4
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
z
3
3
6
3
s
m
Figure 6. Proposed struc ture for indium trinuclear nitrides The Ir N unit is believed to be coplanar with the iridium atoms at the corners of an equilateral triangle. A related structure has been found for [Cr 0(Aces
3
Table VII.
Trinuclear Iridium Nitrido Complexes H
S0
2
3(NH ) [Ir Cl ] 4
3
4
> (NH )4[Ir3N(S0 )6(H 0)3]
6
4
2
4
H 0 2
[Ir N(S0 ) (H 0) ] 3
4
6
2
4
3
[Ir N(S0 ) (H 0) ] ~ 3
4
6
2
3
KOH > K [Ir N(S0 ) (OH) ] Cold 7
3
4
Caustic alkali
6
Ir N(OH)
4
3
3
u
· nH 0 2
Boiling / HC1 + C s CI Cs [Ir NCl (H 0) ] 4
3
1 2
2
3
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
64
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
O t h e r reactions of [ I r a N i S O ^ e i H k O ^ ] " are s h o w n o n T a b l e V I I . 4
Cold
c a u s t i c a l k a l i e s react to r e p l a c e
the a q u o g r o u p s ,
giving
[Ir 3
N ( S 0 ) 6 ( O H ) ] " , w h i l e h o t a l k a l i appears to r e p l a c e t h e sulfate l i g a n d s 7
3
4
to g i v e
a hydroxy
precipitate w h i c h probably
Ir N(OH)u · nH 0. 3
m a y be
described
as
T h e I r N g r o u p is s t i l l i n t a c t as r e a c t i o n w i t h s u l -
2
3
f u r i c a c i d regenerates the o r i g i n a l c o m p l e x .
The hydroxy complex
dis-
solves i n H C 1 to g i v e a species w h i c h appears to b e [ I r N C l i ( H 0 ) ] ~ . 3
2
2
3
4
W e h a v e m e a s u r e d t h e i n f r a r e d s p e c t r a of these species c o n t a i n i n g both
N and
1 4
N , a n d i n e a c h case a b a n d n e a r 780 c m " shifts d o w n w a r d
1 5
1
i n f r e q u e n c y b y some 20 c m "
1
on
to t h e a s y m m e t r i c I r N s t r e t c h . 3
1
5
N s u b s t i t u t i o n . W e assign this b a n d
T h e R a m a n s p e c t r a of the c o m p l e x e s
w e r e p o o r , o w i n g to t h e i r u n f a v o r a b l e colors, b u t w e a k b a n d s n e a r 230
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
cm"
m a y b e c a u s e d b y t h e s y m m e t r i c I r N stretch ( 5 ) .
1
3
s p l i t t i n g of the sulfate m o d e s is s i m i l a r to that o b s e r v e d ( S 0 ) ] (10), 4
S0
4
The
complex
in K i [ I r O 0
3
a n d p r e s u m a b l y arises f r o m the l o w site s y m m e t r y of the
9
groups w h i c h f u n c t i o n h e r e as b i d e n t a t e l i g a n d s .
Table VIII.
Vibrational Spectra of O x y and N i t r i d o Complexes X =
X = 0, cmr TERMINAL M-X 900-1060 300-400
VMX $mx
BRIDGING
N, cmr 1
1
950-1180 ca. 350
MmXn
Linear M - X - M V ¥
2
J
A
760-880 200-270
I
Linear VM x VM x 3
3
2
2
M - X - M - X - M
e
Triangular M v x* Mz
a
ca. 820 ca. 220
a e
3
1000-1160 260-370 ca. 1000
X 500-650 180-240
700-800 ca. 230
Comparison of the Vibrational Spectra of Oxy and Nitrido Complexes T a b l e V I I I shows the c h a r a c t e r i s t i c ranges of frequencies f o r s t r e t c h i n g a n d deformation modes for terminal a n d b r i d g i n g oxy a n d nitrido systems. I n e a c h case, t h e frequencies for the s t r e t c h i n g m o d e s are h i g h e r f o r n i t r i d e s t h a n f o r oxides. A l t h o u g h the n i t r o g e n a t o m is l i g h t e r t h a n o x y g e n , i t is l i k e l y t h a t this effect is c a u s e d i n l a r g e p a r t b y t h e f a c t t h a t
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5. CLÉ ARE ET AL.
Nitrido Complexes
65
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch005
the nitride ligand is a more efficient ττ-donor than oxide—it is less electro negative and has more negative charge to impart to the metal atom (5).
Literature Cited (1) Bright, D., Ibers, J. Α., Inorg. Chem. 1969, 8, 709. (2) Chatt, J., Heaton, B. T., Chem. Commun. 1968, 274. (3) Ciechanowicz, M., Skapski, A.C.,Chem. Commun. 1969, 574. (4) Cleare, M. J., Griffith, W. P., Chem. Commun. 1968, 1302. (5) Cleare, M. J., Griffith, W. P.,J.Chem. Soc. 1970, A, 1117. (6) Clifford, A. F., Kobayashi, C. S., Inorg. Syn. 1960, 6, 204. (7) Cotton, F. Α., Lippard, S. J., Inorg. Chem. 1965, 4, 1621. (8) Delepine, M., Ann. Chim. (Paris) 1959, 1115, 1131. (9) Figgis, Β. N., Robertson, Ε. B., Nature 1965, 205, 695. (10) Griffith, W. P.,J.Chem. Soc. 1969, A, 2270. (11) Griffith, W. P.,J.Chem. Soc. 1965, 3694. (12) Jaeger, F. M., Zanstra, J. E., Proc. Acad. Sci. Amsterdam1932,35, 610 (13) Jorgensen, C. K., Acta Chem. Scand. 1959, 13, 196. (14) Jorgensen, C. K., Orgel, L. E., Mol. Phys. 1961, 4, 215. (15) Lecoq de Boisbaudran, Compt. Rend. 1883, 96, 1336, 1406, 1551. (16) Lewis, J., Wilkinson, G., J. Inorg. Nucl. Chem. 1958, 6, 12. (17) McCordie, W.C.,Watt, G. W., J. Inorg. Nucl. Chem. 1965, 27, 1130, 2013. (18) Morrow, J.C.,Acta Cryst. 1962, 15, 851. (19) Orgel, L. E., Nature 1960, 187, 505. (20) Potrafke, E. M., Watt, G. W., J. Inorg. Nucl. Chem. 1961, 17, 248. RECEIVED December 16, 1969.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
Hydrido Group
Complexes of Platinum Metals
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
L. M. VENANZI State University of New York at Albany, Albany, Ν. Y. 12203
The preparation and properties of hydrido complexes of platinum group metals are reviewed briefly. The reactions of the more common hydrido complexes of iridium are sche matically shown. The reactions of complexes [IrHX (PhP)] (X = Cl, Br, and I), I, with the quadridentate ligand (o-Ph P · C H ) P, QP, are described and rationalized on the basis of the following reaction sequence: 2
3
3
2
6
4
3
I—HX [IrX(Ph P) ] heat [IrHX(0-C H PPh )(Ph P) ] 3
3
6
4
2
3
2
QP [IrH(0-C H PPh )(QP)]X +HX [IrHX(Ph P)(QP)]X Complexes of the latter two types have been assigned seven -coordinate structures on the basis of their proton and phos phorus-31 NMR spectra even though the oxidation number of the iridium atom is 3+. 6
4
2
3
A11 platinum group metals give hydrido complexes of general formula M H XpL (X = anionic ligand and L = uncharged ligand). Al though this field of chemistry is relatively new, its main development occurring over the last 10 years, the number of papers describing new compounds, their properties, and their reactions is very large and is growing at an increasing rate. Hydrido complexes also have been the subject of several reviews (9,11, 23, 24, 25,39), and the present one, like its predecessors, will be sadly out of date by the time it appears in print. As its title implies, this review restricts itself to describing and discuss ing compounds of platinum group metals—i.e., of ruthenium, rhodium, palladium, osmium, iridium, and platinum—although the compounds of the other transition elements and even some post-transition elements are either fully analogous or closely related to those of the platinum metals. n
m
q
66 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
Hydrido
V E N A N Z I
Table I.
67
Complexes
Some Better Known Types of H y d r i d o Complex of the Platinum Metals' 1
Square
Planar
[PtH L ] [Ir-HX(LL)]
trans-[MBXL ] [IrH.(LL)] [M'(LL),]X
2
2
Five-Coordinate
[IrH L ] [IrH(CO) L ]
[IrH L ]X [M'H(CO)L,] 2
3
3
Octahedral 2
!
n
2
n
2
2
2
2
2
2
[IrH L 'L ]X [IrH L'L ]X [M'H X _ L ]
2
2
2
2
[PtH X L ] [M HX (CO)L ] [M"H X . (LL) [M"HX(CO)L ] 2
2
3
m
2
3
m
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
3
° M M L m
1
"
M ' = R h or Ir L = monodentate phosphine L L = bidentate phosphine η = 1 or 2
= P d or Pt = R u or Os = C O or monodentate phosphine = 1, 2, or 3
E v e n w i t h i n this l i m i t a t i o n , the subject is vast a n d , therefore, no a t t e m p t is m a d e to give a c o m p r e h e n s i v e d e s c r i p t i o n of the
field.
A s u r v e y of the c o m p o u n d s r e p o r t e d i n the l i t e r a t u r e shows t h a t the f o r m a t i o n of stable h y d r i d o complexes g e n e r a l l y is l i n k e d w i t h the p r e s ence i n the m o l e c u l e of one or m o r e of c e r t a i n types of l i g a n d s , the m o s t frequently occurring being carbon monoxide, phosphorus ( I I I ) senic ( I I I ) d e r i v a t i v e s , a n d the c y c l o p e n t a d i e n e
and ar
group.
I t is u s e f u l to classify the complexes b y t h e i r c o o r d i n a t i o n n u m b e r . T h e m a j o r i t y of t h e m are six-coordinate w i t h o c t a h e d r a l s t r u c t u r e , a l though four- and seven-coordinate
five-coordinate
species are n u m e r o u s , a n d e v e n some
species are k n o w n .
T a b l e I shows a list of the m a i n
types of c o m p o u n d s r e p o r t e d i n the l i t e r a t u r e . P r e p a r a t i v e m e t h o d s for h y d r i d o complexes
vary widely.
Some
the m o r e f r e q u e n t l y u s e d of t h e m a r e : (1)
A c t i o n of c o m p l e x h y d r i d e s ,
e.g., LiAlH
4
as-[RuCl (Me PCH CH PMe ) ] 2
2
2
2
2
>
2
imns-[RuHCl(Me PCH CH PMe ),] 2
(2)
2
2
2
A c t i o n of alcohols i n the presence of a base,
(16)
e.g.,
Ph P 3
(NH ) [OsBr ]< 4
2
6
• [ O s H B r ( C O ) ( P h P ) ] (41) MeOCH CH OH 3
2
(3)
P r o t o n a t i o n of complexes,
3
2
e.g., H+
[Ru (x-C H ) (CO) ] 2
5
5
2
6
> [Ru H(x-C H ) (CO) ]+ 2
5
5
2
6
(20)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
of
68 (4)
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
A c t i o n of h y d r a z i n e , e.g., N H 2
· H 0 > i r a r c s - [ P t H C l ( E t P ) ] (17)
4
2
cie-[PrCl,(Et«P)J
3
2
H y d r i d o complexes are also f o r m e d i n some u n u s u a l r e a c t i o n s : MeOCH CH OH > [ P h A s ] [ P d H C l ( C O ) ] (27) at r o o m t e m p . 2
(1) P d C l + C O + [ P h A s ] C l 2
4
2
4
H 0 > [PtHI (Pr P) ]
2
2
(2) [ P t I ( M g I ) ( P r P ) ] 3
2
3
(19)
2
Some of the p r e p a r a t i v e m e t h o d s are best d e s c r i b e d , at least f o r m a l l y , as i n v o l v i n g a n " o x i d a t i v e a d d i t i o n " of a m o l e c u l e to a c o m p l e x of a m e t a l Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
i o n or a t o m i n a l o w o x i d a t i o n state. E x a m p l e s of this t y p e of r e a c t i o n are shown below. (1)
A d d i t i o n of m o l e c u l a r h y d r o g e n , H
[Rh(Me PCH CH PMe ) ]Cl 2
(2)
2
2
2
e.g.,
2
•aV[RhH (Me PCH CH PMe ) ]Cl
2
2
A d d i t i o n of h y d r o g e n h a l i d e ,
2
2
2
2
2
(12)
e.g.,
HC1 [Rh(Ph PCH CH PPh ) ]Cl 2
(3)
2
2
2
• a s - [ R h H C l ( P h P C H C H P P h ) ] C l (38)
2
2
A d d i t i o n of other h y d r i d e s ,
2
2
2
2
e.g.,
H S [Pt(Ph P) ] — U 3
* m n s - [ P t H ( S H ) ( P h P ) ] (35)
3
3
2
A p a r t i c u l a r l y i n t e r e s t i n g t y p e of o x i d a t i v e a d d i t i o n r e a c t i o n is the " h y d r o g e n a b s t r a c t i o n " r e a c t i o n , some examples of w h i c h are g i v e n b e l o w . (1) [ R u ( M e P C H C H P M e ) ] [ R u H ( C H P ( M e ) C H C H P M e ) 2
2
2
2
2
2
(Me PCH CH PMe )] 2
2
2
2
2
2
2
(U)
heat (2) [ I r C l ( P h P ) ] 3
• [ I r H C l ( o - C H P P h ) ( P h P ) ] (7)
3
6
(3) i m n s - [ P t C l ( E t P ) ] + L i C B 2
3
2
1 0
H
1 0
4
2
3
2
C M e -> [ P t ( C B H C M e ) 1 0
1 0
( C H C H P E t ) ( E t P ) ] (8) 2
2
2
3
T h e s e reactions are of p a r t i c u l a r interest as t h e y c o u l d p r o v i d e the basis f o r a n u m b e r of c a t a l y t i c processes i n v o l v i n g s a t u r a t e d h y d r o carbons. T h e p r o p e r t i e s of h y d r i d o complexes v a r y w i d e l y , r a n g i n g f r o m those w h i c h c a n b e d e t e c t e d o n l y s p e c t r o s c o p i c a l l y to those that s h o w r e m a r k a b l e g e n e r a l c h e m i c a l s t a b i l i t y . S t a b i l i t y g e n e r a l l y tends to b e at a m a x i m u m i n c o m p o u n d s of the t h i r d t r a n s i t i o n series. F u r t h e r m o r e , f o r a g i v e n m e t a l a n d t y p e of c o m p l e x , s t a b i l i t y appears to b e at its h i g h e s t w h e n
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
Hydrido
V E N A N Z I
69
Complexes
p h o s p h i n e l i g a n d s are present i n the m o l e c u l e .
Naturally, it w o u l d
be
f o o l h a r d y to take the a b o v e k i n d of s t a b i l i t y as a g u i d e to t h e r m o d y n a m i c s t a b i l i t y of the m e t a l - h y d r o g e n b o n d , as one w o u l d d r a w a c o r r e l a t i o n b e t w e e n a s t a b i l i t y w h i c h is a c o m p o s i t e of a n u m b e r of t h e r m o d y n a m i c a n d k i n e t i c factors a n d a r e l a t i v e l y s m a l l energy t e r m s u c h as the M - H b o n d energy. I t is regrettable that t h e r m o d y n a m i c d a t a o n h y d r i d o c o m plexes are t o t a l l y l a c k i n g b u t t h e y are almost i m p o s s i b l e to o b t a i n . T h e most c o m m o n l y
quoted physical data on hydrido
are the v i b r a t i o n a l spectra a n d p r o t o n m a g n e t i c resonance
complexes parameters.
H y d r i d o complexes e x h i b i t M - H s t r e t c h i n g v i b r a t i o n s i n the r e g i o n 1 7 0 0 2250 c m
- 1
a n d M - H b e n d i n g m o d e s i n the r e g i o n 6 6 0 - 8 5 0
cm . - 1
The
absence of a b s o r p t i o n i n the a b o v e regions, h o w e v e r , is not to b e t a k e n Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
as a n i n d i c a t i o n t h a t the m o l e c u l e u n d e r e x a m i n a t i o n does not c o n t a i n M - H bonds.
S e v e r a l h y d r i d o complexes are k n o w n w h e r e M - H b o n d s
w e r e not detectable b y i n f r a r e d spectroscopy
(28, 34, 37).
Proton mag
n e t i c resonance, o n the other h a n d , is a m o r e g e n e r a l l y u s e f u l t e c h n i q u e . P r o t o n resonances i n h y d r i d o complexes h a v e v e r y c h a r a c t e r i s t i c τ-values r a n g i n g f r o m 11 to 42 p p m r e l a t i v e to T M S . T h e l i m i t a t i o n here is i n t r o d u c e d b y s o l u b i l i t y a n d b y fast exchange p h e n o m e n a a l t h o u g h , i n m a n y cases, the f o r m e r difficulty c a n be o v e r c o m e b y s p e c t r u m a c c u m u l a t i o n a n d the latter b y l o w e r i n g the s a m p l e t e m p e r a t u r e . H y d r i d o l i g a n d s e x h i b i t a v e r y strong trans effect w h i c h appears to operate m a i n l y b y a l a b i l i z a t i o n of the b o n d i n trans p o s i t i o n to the M - H b o n d . T h i s l a b i l i z a t i o n g e n e r a l l y is associated w i t h a l e n g t h e n i n g of the b o n d w h i c h has b e e n l a b i l i z e d , a n effect o p e r a t i n g m a i n l y b y trans i n fluence
(36)
c a u s e d b y a selective r e h y b r i d i z a t i o n of the m e t a l σ orbitals
l e a d i n g to the M - H b o n d h a v i n g a large d a n d s c o m p o n e n t .
S u c h effects
are most e v i d e n t i n square p l a n a r complexes, b u t t h e y also h a v e observed i n octahedral
been
complexes.
T h e g e n e r a l r e a c t i v i t y of h y d r i d o complexes is h i g h , a n d i t is r e l a t e d m a i n l y to the c o o r d i n a t i o n n u m b e r of the c e n t r a l m e t a l a t o m . four- a n d
five-coordinate
six-coordinate species.
Thus,
complexes u s u a l l y are m o r e r e a c t i v e t h a n r e l a t e d T h e latter, h o w e v e r , o r d i n a r i l y are m o r e r e a c t i v e
t h a n the c o r r e s p o n d i n g complexes
w h i c h d o not c o n t a i n M - H b o n d s .
S u c h r e a c t i v i t y m a y b e i n d u c e d either b y o p e r a t i o n of the trans effect or, w h e r e possible, b y the r e d u c t i v e e l i m i n a t i o n of a m o l e c u l e of h y d r o g e n h a l i d e w i t h or w i t h o u t assistance of a base. T h e c h e m i c a l b e h a v i o r of M - H b o n d s varies f r o m t h a t of a n a c t i v e h y d r i d e to that of a strong a c i d . T h i s w i d e v a r i a t i o n i n p r o p e r t i e s , h o w ever, m a y be a c h i e v e d w i t h a r e l a t i v e l y s m a l l v a r i a t i o n of c h a r g e d i s t r i b u t i o n (4).
A t t e m p t s to correlate c h e m i c a l shifts a n d c o u p l i n g constants
w i t h b o n d distances a n d electron d i s t r i b u t i o n i n M - H b o n d s h a v e l e d
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
70
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
t o t h e c o n c l u s i o n that s u c h correlations m a y b e v a l i d o n l y w h e n v e r y s m a l l changes are m a d e to the l i g a n d s
(3).
T h e f e v e r i s h interest i n h y d r i d o complexes
has, as its m a i n cause,
the t r e m e n d o u s p o t e n t i a l of these reactions i n c a t a l y t i c systems.
In a
r e l a t i v e l y short s p a n of t i m e , h y d r i d o complexes h a v e b e e n f o u n d to p l a y a r o l e i n a significant n u m b e r of c a t a l y t i c processes ( 6 , 9)—e.g., o l i g o m e r i z a t i o n of olefins ( r h o d i u m ) , d e c a r b o x y l a t i o n reactions
(rhodium),
a n d hydrogénation reactions ( r u t h e n i u m , o s m i u m , r h o d i u m , i r i d i u m , a n d p l a t i n u m ) . D i s c u s s i o n of these a p p l i c a t i o n s w o u l d go b e y o n d the scope of the present treatment. T h e r e m a i n d e r of this r e v i e w is d e v o t e d to g i v i n g a closer l o o k at the h y d r i d o complexes of i r i d i u m a n d t h e i r reactions. I r i d i u m gives the Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch006
most extensive a n d versatile range of h y d r i d o complexes of a n y p l a t i n u m metal (29).
T h e m a i n types of c o m p o u n d s
k n o w n a n d some of t h e i r
reactions are s h o w n i n T a b l e I I . T o this, one m u s t a d d the
hydrogen
a b s t r a c t i o n r e a c t i o n m e n t i o n e d earlier. T h e w i d e r a n g e of h y d r i d o complexes f o r m e d b y i r i d i u m is a c l e a r i n d i c a t i o n t h a t this m e t a l has a p a r t i c u l a r l y strong t e n d e n c y to f o r m I r - H bonds.
T h e reason for this affinity is n o t a p p a r e n t as yet, b u t this c o n -
c l u s i o n is r e i n f o r c e d constantly b y n e w d a t a . T h u s , one c a n isolate stable seven-coordinate
complexes
of i r i d i u m ( I I I ) .
T h e quadridentate ligand
( o - P h P · C H ) P , Q P , reacts w i t h [ I r H X ( P h P ) ] ( X = 2
6
4
3
2
3
CI, Br, and
8
I ) i n r e f l u x i n g c h l o r o b e n z e n e to give [ I r H X ( P h P ) ( Q P ) ] X , I , w h i c h is 3
a seven-coordinate h y d r i d o c o m p l e x of i r i d i u m ( I I I ) .
(21)
The infrared
s p e c t r u m does n o t s h o w a n I r - H s t r e t c h i n g v i b r a t i o n , b u t t h e presence of a h y d r i d o l i g a n d is c l e a r l y v i s i b l e i n the p r o t o n m a g n e t i c
resonance
spectrum. T h e f o r m a t i o n of these c o m p o u n d s is p r e c e d e d b y that of a species of c o m p o s i t i o n
[ I r ( P h P ) ( Q P ) ] X , I I , w h i c h reacts w i t h N a [ B P h ] 3
to
4
g i v e the same c o m p l e x i r r e s p e c t i v e of the n a t u r e of the a n i o n X i n the s t a r t i n g m a t e r i a l , [ I r H X ( P h P ) ] . T h e i r N M R s p e c t r a (22) 2
3
[IrHX(Ph P)(QP)]X. 3
indicate
3
the presence of I r - H b o n d s a n d t h e i r r e a c t i o n w i t h H X gives
compounds
C o m p l e x e s I I are, therefore, t e n t a t i v e l y f o r m u -
l a t e d as [ I r H ( o - C H P P h ) ( Q P ) ] X . 6
4
2
I n a n a t t e m p t to g a i n a better u n d e r s t a n d i n g of the factors c a u s i n g t h e f o r m a t i o n of the a b o v e seven-coordinate h y d r i d o complexes, the r e a c t i o n of [ I r H C l ( P h P ) ] w i t h r e f l u x i n g c h l o r o b e n z e n e 2
3
3
was e x a m i n e d .
P r e l i m i n a r y experiments suggest that the p r i m a r y step is t h e e v o l u t i o n of
hydrogen
chloride
and
formation
of
the
unstable
intermediate
[ I r C l ( P h P ) ] , w h i c h reacts f u r t h e r to g i v e a n u m b e r of p r o d u c t s . 3
3
has the c o m p o s i t i o n I r C l ( P h P )
3
III,
compound
3
of
Bennett
and
Milners
One
a n d is l i k e l y to b e a n i s o m e r i c f o r m , (7),
[IrHCl(o-C H PPh )6
4
2
( P h P ) ] . T h e others, s o m e p u r e l y o r g a n i c a n d some i r i d i u m - c o n t a i n i n g , 3
2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
Hydrido
V E N A N Z I
Table II.
Y
Some Iridium H y d r i d o Complexes and T h e i r Reactions
2
3
(44)
HX
->
[IrH L ](C10
20,000
M ' . F o r a p u r e s o l u t i o n , a 10-cm c e l l w i l l y i e l d a n absorbance
1
1
of
0.1 f o r a 0.5 μΜ s o l u t i o n . H i g h sensitivity i n analysis is therefore p o s sible, p r o v i d e d
interferences
P t C U " at 30,000 c m 2
P t B r ~ is 10,000 c m " 6
2
are absent.
is 600 c m
1
1
- 1
The
m o l a r a b s o r p t i v i t y for
M " , whereas t h e m o l a r a b s o r p t i v i t y for 1
M " . It is possible f r o m the spectra, therefore, to 1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
77
Qualities
p l a c e a f a i r l y s m a l l l i m i t u p o n the c o n t a m i n a t i o n b y the P t B r ' w h i c h 2
6
m a y b e present. W h e r e a s the h e i g h t of a s p e c t r a l p e a k is a g o o d measure for the c o n c e n t r a t i o n of the p r e d o m i n a n t species, the a b s o r b a n c e
at a
s p e c t r a l v a l l e y is v e r y sensitive to the presence of i m p u r i t i e s . F o r s y n thetic p r e p a r a t i o n s , one of the most r e l i a b l e c r i t e r i a of p u r i t y is the peak-to-valley ratio i n an absorption spectrum. A very valuable prepara tive technique involves continued fractional recrystallization u n t i l such a p e a k - t o - v a l l e y r a t i o does n o t increase u p o n e a c h s u b s e q u e n t tallization.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
°h
D
4
h
. .η* M c h a r g e transfer. S u c h transitions are expected to l e a d to b a n d s w i t h the m o l a r a b s o r p t i v i t y ,C.,at the p e a k greater t h a n 1000 c m " M " . T r a n s i t i o n s 1
of electrons f r o m t
2g
1
to t * w o u l d b e a l l o w e d b y s y m m e t r y , a n d the lu
p o s s i b i l i t y of t h e i r presence i n the spectra m u s t b e c o n s i d e r e d as w e l l . H o w e v e r , i n most instances t h e y are b e l i e v e d to o c c u r at h i g h e r energy, f r e q u e n t l y b e y o n d the r a n g e of observations w i t h h a l i d e s . T r a n s i t i o n s of a n e l e c t r o n f r o m a t
2g
bidden.
o r b i t a l to e * are d i p o l e - f o r g
B a n d s w i t h a m o l a r a b s o r p t i v i t y of the order of 100 c m " M " 1
1
u s u a l l y are assigned to s u c h d-d transitions i n w h i c h the spins are u n changed—i.e.,
t h e y are s p i n - a l l o w e d .
Since the h e a v y metals h a v e a
h i g h s p i n - o r b i t c o u p l i n g , a n d the s p i n is n o l o n g e r a g o o d q u a n t u m n u m b e r b y the m i x i n g of different m u l t i p l e t states, b a n d s are
observable
b e t w e e n states w h i c h h a v e m a j o r components w i t h different s p i n m u l t i plicities.
T h e s e are d e s i g n a t e d as the s p i n - f o r b i d d e n b a n d s .
the m i x i n g of states is sufficiently great that there m a y b e
Indeed,
considerable
a m b i g u i t y i n the assignment of transitions. T h e s i t u a t i o n is t r e a t e d b y c o n s i d e r i n g the d o u b l e
r o t a t i o n a l groups
o r b i t a l a n d s p i n w a v e functions.
w h i c h encompass
both
the
F o r e x a m p l e , the electron s p i n f u n c -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
M A R T I N
Ultraviolet
Spectroscopic
79
Qualities
tions, + 1 / 2 , — 1 / 2 , are b a s i c f u n c t i o n s f o r t h e y*(e ) 2
irreducible repre
sentation f o r the O ' g r o u p . S i n g l e t a n d t r i p l e t f u n c t i o n s h a v e γ ι ( α ι ) a n d 7 (*i)
symmetry, respectively.
4
T h e a c t u a l states m a y b e f o r m e d
from
a l i n e a r c o m b i n a t i o n o f w a v e functions w i t h different m u l t i p l i c i t i e s . T h e c o n t r i b u t i o n o f m i n o r m u l t i p l i c i t i e s m a y b e sufficiently great t h a t " s p i n a l l o w e d " transitions h a v e a n e n h a n c e m e n t f a c t o r o f o n l y 4 t o 10 over " s p i n - f o r b i d d e n " transitions.
A s the wavelength
decreases,
q u e n t l y possible to observe i n a s p e c t r u m first s o m e symmetry-forbidden
i t is f r e
spin-forbidden,
transitions, t h e n t h e s p i n - a l l o w e d b u t s y m m e t r y -
f o r b i d d e n , a n d finally some c h a r g e transfer b a n d s .
However, only a
f r a c t i o n o f the possible transitions are observable, a n d m a n y are " h i d d e n " u n d e r t h e b r o a d peaks o f m o r e intense transitions i n s o l u t i o n spectra o f Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
the t y p e i l l u s t r a t e d i n F i g u r e 1. T h e o r y has n o t y e t r e a c h e d a stage w h e r e energies o r e v e n t h e o r d e r i n g o f states c a n b e c a l c u l a t e d r e l i a b l y f o r t r a n s i t i o n e l e m e n t plexes.
Therefore,
complementary
com
contributions a n d cooperation b e
tween experiment a n d theory are needed i n the unravelling of energy states a n d t h e d e s c r i p t i o n o f b o n d i n g f o r these i m p o r t a n t systems. T h e ^ - c o n f i g u r a t i o n , w h i c h occurs for t h e m u l t i t u d e o f i n e r t C o ( I I I ) complexes, is i l l u s t r a t e d b y the complexes o f I r ( I I I ) a n d the P t ( I V ) c o m plexes i n F i g u r e 1. T h e g r o u n d state c o n f i g u r a t i o n is p r i m a r i l y t
G
S i n c e the t
2g
—
o r b i t a l s a r e filled, there is n o p o s s i b i l i t y o f a t r a n s i t i o n
2g
f r o m t h e l i g a n d π-orbital i n t o o n e o f these; therefore, charge transfer b a n d s w i l l i n v o l v e o n l y t r a n s i t i o n to t h e a n t i b o n d i n g e *. g
b a n d p e a k i n g at 38,000 c m "
1
w i t h c o f 24,000 c m "
a t t r i b u t e d to s u c h t r a n s i t i o n b y Jorgensen.
T h e strong
M " for P t C l " was
1
1
6
T h e t r a n s i t i o n ir(t )
2
-> ^*
lu
leads to f o u r energy levels w h o s e p r i n c i p a l c o m p o n e n t s are T \ , *T*2 , T±u? 1
T .
3
2u
M
U
3
B e c a u s e o f the £i c h a r a c t e r o f the t r i p l e t s p i n f u n c t i o n s , transitions
to the p r i m a r i l y T , l
lu
T,
3
lu
states a l l h a v e some d i p o l e - a l l o w e d c h a r
T
3
2u
acter. H o w e v e r , n o r e s o l u t i o n i n t o s u c h i n d i v i d u a l states is possible w i t h the o b s e r v e d b a n d n o r c a n a n y d e c i s i o n b e presented as to w h e t h e r a contribution from ττ(ί ) -> e 2ΐί
g
occurs as w e l l .
T h e r e is t h e p o s s i b i l i t y
of a s y m m e t r y - f o r b i d d e n t r a n s i t i o n o f o n e o f t h e t
2g
e *. g
electrons i n t o t h e
T h e e x c i t e d e l e c t r o n i n e i t h e r o f t w o o r b i t a l s a n d the r e s i d u a l h o l e i n
a n y o f three leads to a t o t a l o f six singlet a n d six t r i p l e t states.
However,
these six states i n e a c h case constitute t w o t h r e e - f o l d degenerate sets; t h e l o w e r i n e n e r g y c a n b e d e s i g n a t e d as T
lg
a l l o w e d b a n d s s h o u l d o c c u r , therefore.
and a higher T .
T w o spin-
A s indicated w i t h
Jorgensens
2g
assignment i n F i g u r e 1, o n l y the first t r a n s i t i o n c a n b e seen as a s h o u l d e r o n the m u c h m o r e intense c h a r g e transfer b a n d . T h e s t i l l l o w e r intensities i n t h e r e g i o n o f 19,000 to 24,000 c m "
1
w i l l correspond then to t h e spin-
forbidden symmetry-forbidden bands.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
80
P L A T I N U M
G R O U P
M E T A L S
A N D
C O M P O U N D S
F o r the h e x a b r o m o p l a t i n a t e ( I V ) , there has b e e n a d e c i d e d shift of a l l b a n d s to l o w e r energies or l o n g e r w a v e l e n g t h s , a n d the b r e a d t h of the c h a r g e transfer b a n d definitely suggests m o r e t h a n a single e x c i t e d state. T h i s e n e r g y shift b e t w e e n c h l o r i d e a n d b r o m i d e l i g a n d s is q u i t e a g e n e r a l phenomenon
r e p r e s e n t i n g the p o s i t i o n of these l i g a n d s i n the
c h e m i c a l (sometimes
c a l l e d the F a j a n s - T s u c h i d a ) series.
spectro-
T h e shift of
t h e c h a r g e transfer b a n d reflects the easier o x i d a t i o n or loss of a n elec t r o n b y b r o m i d e i n c o m p a r i s o n w i t h c h l o r i d e . H o w e v e r , the shift i n the d-d t r a n s i t i o n represents the difference i n the c r y s t a l field s t r e n g t h of these t w o l i g a n d s . T h e I r C l " i o n , w i t h the same e l e c t r o n c o n f i g u r a t i o n as t h e 6
3
t w o p l a t i n u m complexes, h o w e v e r , is i n a l o w e r o x i d a t i o n state. A d d i t i o n a l e n e r g y is r e q u i r e d to a d d a n electron to the i r i d i u m , a n d
consequently
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
the charge transfer b a n d has b e e n f o r c e d to m u c h h i g h e r energies. the transitions to the t w o e x c i t e d states, p r i m a r i l y discernable. T h e occurrence
and T , 1
2g
Here,
are c l e a r l y
of the d-d b a n d s at l o w e r energies
corre
sponds to a l o w e r Δ for I r ( I I I ) t h a n for P t ( I V ) , w h i c h is i n a c c o r d a n c e 0
w i t h the u s u a l systematics i n this q u a n t i t y (19). h i g h - i n t e n s i t y b a n d , 31,000-32,000
T h e b r e a d t h of
c m " , p r o b a b l y reflects 1
the
the
higher
s p i n - o r b i t c o u p l i n g of the b r o m i d e l i g a n d s i n c o m p a r i s o n w i t h that of chloride. F o r I r ( I V ) i n I r C l " , there is a h o l e i n the t 6
g r o u n d state, t
5
2g
2
— T . 2
2g
2g
one of t h e l i g a n d ττ-orbitals i n t o a t
2g
proposed
o r b i t a l set for the
T h e r e f o r e , the t r a n s i t i o n of a n e l e c t r o n f r o m o r b i t a l is possible. J o r g e n s e n
(17)
that these c h a r g e transfer b a n d s w e r e the ones seen i n the
v i s i b l e r e g i o n , 20,000-25,000 c m " , w h i c h h a d c's of 2 0 0 0 - 4 0 0 0 c m " M " . 1
1
1
T h e s e b a n d s p r o v i d e the intense color f o r I r C l " so t h a t its presence i n 6
2
m i n u t e amounts c a n b e d e t e c t e d e a s i l y i n solutions of I r C l " . e
T h e pres
3
ence of h y p e r f i n e s t r u c t u r e o n the electron s p i n resonance s p e c t r u m of this ( 8 , 25)
i o n i n d i c a t e d t h a t the t
2g
orbitals were not solely metal
orbitals, b u t that t h e y c o n t a i n e d significant l i g a n d o r b i t a l character. T h i s feature
demonstrated
the
existence
of
some ττ-type
bonding
in
the
complex. F o r O s ( I V ) , there are t w o electrons m i s s i n g f r o m a filled set of orbitals. T h e r e f o r e , t r a n s i t i o n f r o m the l i g a n d ττ-orbitals to the t
2g
s h o u l d a g a i n b e possible.
Since O s ( I V )
t
2g
orbitals
is a m u c h w e a k e r o x i d i z i n g
agent t h a n I r ( I I I ) , i t is e x p e c t e d t h a t these c h a r g e transfer b a n d s w i l l b e s h i f t e d to h i g h e r energies.
T h e spectrum i n F i g u r e 1 indicates that
an a b s o r p t i o n p a t t e r n v e r y s i m i l a r to that f o r I r C l " occurs f o r O s C l " . 6
2
A c c o r d i n g l y , Jorgensen assigned the b a n d s f r o m 28,500-30,000 these L ->
t
2g
to b e o b s e r v e d .
6
cm"
1
2
to
transitions. T h e O s C l " s p e c t r u m is one of the r i c h e s t 6
2
S t i l l , o n l y a h a n d f u l of i n c o m p l e t e l y r e s o l v e d
b a n d s i n the s o l u t i o n s p e c t r u m are seen.
broad
Since a considerably larger
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
Ultraviolet
M A R T I N
Spectroscopic
81
Qualities
n u m b e r of s u c h c h a r g e transfer states m a y b e a t t a i n e d b y d i p o l e - a l l o w e d transitions t h a n are o b s e r v e d , a d e t a i l e d c o n f i r m a t i o n of this a s s i g n m e n t has not b e e n possible. Some v e r y r e c e n t i n f o r m a t i o n , w h i c h w i l l b e d i s cussed later, has b r o u g h t this assignment of these b a n d s i n t o q u e s t i o n . F i g u r e 1 does s h o w t w o v e r y w e a k , r e l a t i v e l y s h a r p b a n d s t h a t o c c u r at a p p r o x i m a t e l y 17,000 c m "
1
for O s C l " w h i c h a r e not o b s e r v e d i n the
other s p e c t r a p r e s e n t e d .
T h e s e are b e l i e v e d to represent a t r a n s i t i o n
6
2
w i t h i n the g r o u n d state c o n f i g u r a t i o n — L e . , t* gTi( T ) 2
w e a k e r transitions (12)
3
-> Γ Ί ^ Α ^ ) .
lg
Still
h a v e b e e n o b s e r v e d at a b o u t 8000, 10,800, a n d
11,780 c m " . 1
M a n y features of t h e s p e c t r a of the o c t a h e d r a l complexes s e e m e d consistent w i t h s i m p l e m o l e c u l a r o r b i t a l m o d e l s .
have
The high sym
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
m e t r y possessed b y these complexes f o r t u n a t e l y has r e d u c e d the n u m b e r of i n d i v i d u a l transitions w h i c h s h o u l d o c c u r because of the m a n y d e generate states for the i o n . T h e broadness of the f e w b a n d s
observed,
h o w e v e r , p r e c l u d e s r e s o l u t i o n of the f a i r l y l a r g e n u m b e r of transitions w h i c h m i g h t b e e x p e c t e d to h a v e m e a s u r a b l e intensities as a c o n s e q u e n c e of s p i n - o r b i t c o u p l i n g .
T h e b r e a d t h of the a b s o r p t i o n b a n d s at least
p a r t i a l l y arises f r o m t h e r m a l l y e x c i t e d of the c o o r d i n a t i o n c o m p l e x .
fluctuations
i n the e n v i r o n m e n t
F o r e x a m p l e , i n the g r o u n d state a b o n d
m a y be lengthened b y a molecular vibration. T h e vibrational energy i n this m o d e w i l l a m o u n t to o n l y a b o u t kT.
H o w e v e r , because
of the
F r a n k - C o n d o n p r i n c i p l e , the e x c i t e d i o n w i l l h a v e the same i n t e r - a t o m i c distances as the g r o u n d state. T h u s , i f the e x c i t e d state i o n has a steep p o t e n t i a l e n e r g y f u n c t i o n for a t o m i c separations at the t r a n s i t i o n c o n figuration,
a v i b r a t i o n a l d i s p l a c e m e n t of m o d e s t e n e r g y i n the g r o u n d
state w i l l p r o d u c e l a r g e energy differences i n the e x c i t e d c o m p l e x .
A
r e d u c t i o n i n t e m p e r a t u r e w i l l l e a d a c c o r d i n g l y to m u c h n a r r o w e r a n d better resolved bands.
Spectrum of
PtCl/'
T h e P t C l " i o n , w i t h the 2 + 4
a 5d
8
2
o x i d a t i o n state for p l a t i n u m , possesses
c o n f i g u r a t i o n . I t has a s q u a r e - p l a n a r c o o r d i n a t i o n , w h i c h is c o m
m o n l y o b s e r v e d w i t h the l o w s p i n complexes of this c o n f i g u r a t i o n .
Its
a b s o r p t i o n s p e c t r u m i n aqueous s o l u t i o n is also s h o w n i n F i g u r e 1.
With
the p l a t i n u m i n a l o w o x i d a t i o n state, the c h a r g e transfer b a n d s
have
b e e n s h i f t e d to b e y o n d 40,000 c m " . 1
S i n c e P t C l ~ absorbs so s t r o n g l y at 38,000 c m " , the a b s o r b a n c e 6
2
1
at
this w a v e n u m b e r c a n b e u s e d to set a v e r y l o w l i m i t of d e t e c t i o n o n the presence of P t ( I V ) i n samples of P t C l " . 4
2
T h i s is e s p e c i a l l y v a l u a b l e ,
since the h i g h e r o x i d a t i o n state has sometimes
been
suspected
catalyst f o r some of its reactions.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
as a
82
PLATINUM
GROUP
T h e m o l e c u l a r o r b i t a l scheme f o r t h e D
4h
METALS
AND COMPOUNDS
s y m m e t r y , possessed b y
this i o n , i s s h o w n i n F i g u r e 2. A l t h o u g h t h e i o n is h i g h l y s y m m e t r i c , the s y m m e t r y is sufficiently l o w that i n f o r m a t i o n f r o m p o l a r i z e d spectra of crystals is v e r y u s e f u l i n e s t a b l i s h i n g assignments f o r t h e transitions. T h e peaks at 25,400 a n d 30,300 c m " , w i t h e a b o u t 60, are c l e a r l y s p i n 1
a l l o w e d d-d transitions. I t w a s n o t c l e a r w h e t h e r t h e s m a l l e r p e a k a t a b o u t 20,000 c m " corresponds 1
s i m i l a r l y to a s p i n - a l l o w e d t r a n s i t i o n o r
to one w h i c h is s p i n - f o r b i d d e n . F i g u r e 2 shows a p o s s i b i l i t y o f three s p i n a l l o w e d transitions f r o m t h e filled d-orbitals i n t o t h e a n t i - b o n d i n g o r the d . 2
x
o r b i t a l . I n s u c h a t r a n s i t i o n , t h e e l e c t r o n leaves a s y m m e t r i c
2
y
( g ) o r b i t a l a n d moves i n t o a s y m m e t r i c ( g ) o r b i t a l , so t h e t r a n s i t i o n is therefore d i p o l e - f o r b i d d e n .
H o w e v e r , these transitions b e c o m e a l l o w e d
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
i n t h e presence o f a n a s y m m e t r i c the c h e m i c a l e n v i r o n m e n t — i . e . ,
field.
S u c h a field m a y r e s u l t f r o m
t h e effect o f n e i g h b o r i n g m o l e c u l e s o r
ions i n a s o l u t i o n o r i n a c r y s t a l . I t c a n also r e s u l t f r o m t h e a s y m m e t r i c vibrations of the complex. vibronically exicited.
I n t h e latter case, t h e t r a n s i t i o n is s a i d to b e
I n quantum mechanical description, the vibration
is c o n s i d e r e d a p e r t u r b a t i o n o n t h e system.
T h u s , t h e electronic
wave
f u n c t i o n , ^ i ct, is represented b y t h e e q u a t i o n e
e
d . . 2
x
2
y
w i t h better r e s o l u t i o n a r e
expected, a n d the v i b r o n i c m o d e l p r e d i c t s l o w e r intensities as w e l l . T h e p o l a r i z e d spectra at l i q u i d h e l i u m temperatures c o n f i r m these p r e d i c t i o n s . T h u s , shoulders a t 24,000 c m "
1
a n d i n the r e g i o n o f 17,000-19,000
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
cm"
1
PLATINUM
84
GROUP
METALS
AND
w h i c h c o u l d not b e r e s o l v e d at r o o m t e m p e r a t u r e n o w clearly.
COMPOUNDS
are r e s o l v e d
A n i n t e r e s t i n g feature is the fine s t r u c t u r e w h i c h a p p e a r e d o n
t h e t w o b a n d s f r o m 23,000-28,000 c m " , w h e r e 17 i n d i v i d u a l p e a k s c a n b e 1
seen.
T h e s e i n d i v i d u a l peaks result f r o m e x c i t a t i o n of the t o t a l l y s y m
m e t r i c , b r e a t h i n g v i b r a t i o n i n the e x c i t e d
electronic
states.
Weaker
v i b r a t i o n a l structure c o u l d b e d i s c e r n e d , e s p e c i a l l y i n ζ p o l a r i z a t i o n for the b a n d c e n t e r e d o n 20,600 c m " . 1
H o w e v e r , n o s u c h structure w a s
e v i d e n t o n t h e strong b a n d a t 29,600 c m " . 1
A n i n t e r e s t i n g conjecture
is t h a t b a n d s for w h i c h t h e v i b r a t i o n a l
structure is m i s s i n g i n v o l v e transitions to e x c i t e d electronic states w h i c h
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
60
Έ υ 7
40 * 20 0
+
2.0
«•
Ο
<
P t C l ( H 0 ) - + C I " 4
2
2
3
(3)
2
the s p e c t r u m is i n t e r m e d i a t e b e t w e e n the t w o s h o w n i n F i g u r e 7.
The
s p e c t r u m for P t C l ( H 0 ) " w a s o b t a i n e d f r o m the o b s e r v e d e q u i l i b r i u m 3
2
s p e c t r u m a n d the e q u i l i b r i u m concentrations of the species.
T h e spec-
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
88
P L A T I N U M
10
Figure 7.
χ
M E T A L S
A N D
C O M P O U N D S
χ cm"
Absorption spectrum in dilute aqueous HCl of the com plexes, PtClf', PtCl (H 0); and PtCl (NH )s
6.00 X I0~
(5
3
M
Rb PtBr 2
8.
3
s
4
BQJJ
40
2
160
TIME IN
Figure
ν
GROUP
180
2ÔÔ
220
MINUTES
Changes in the absorbance solved in H 0
after RbzPtBr^
is dis-
2
Wavelength, 415
πΐμ.
NaNOs added to give an ionic strength of 0.318M. H\ 10- M. S
t r u m of t h e P t C L t " i o n c a n b e e v a l u a t e d f a i r l y a c c u r a t e l y i n solutions 2
w i t h h i g h c h l o r i d e concentrations. A s i m i l a r effect w a s e x p e c t e d for a s o l u t i o n of P t B r " at the c o r r e 4
2
s p o n d i n g b a n d w h i c h occurs at 24,400 c m " . H o w e v e r , i n s u c h a s o l u t i o n , 1
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
M A R T I N
Ultraviolet
Spectroscopic
89
Qualities
as s h o w n i n F i g u r e 8, a l t h o u g h there was i n i t i a l l y a v e r y s m a l l decrease i n the a b s o r b a n c e , this decrease w a s f o l l o w e d b y a m u c h l a r g e r increase (27).
U p o n the a d d i t i o n of excess b r o m i d e i o n , the a b s o r b a n c e r e t u r n e d
to its i n i t i a l v a l u e w i t h a p e r i o d of a b o u t 5 m i n .
This behavior
was
a t t r i b u t e d to the f o r m a t i o n of the P t B r " d i m e r i c i o n i n t h e s o l u t i o n . 2
6
2
T h i s i o n h a d b e e n i d e n t i f i e d p r e v i o u s l y b y H a r r i s et al. ( 9 ) .
The data
i n F i g u r e 8 p r o v i d e d i n f o r m a t i o n a b o u t the rate of f o r m a t i o n a n d r e a c t i o n of this d i m e r . A p p a r e n t l y a n a q u a t i o n r e a c t i o n PtBr ~ + 4
H 0 -> P t B r ( H 0 ) - + B r ~
2
2
3
(4)
2
occurs i n i t i a l l y , b u t this process is f o l l o w e d b y the r e a c t i o n 2 P t B r ( H 0 ) - -> P t B r Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
3
2
2
2
6
- +
2H 0
(5)
2
T h i s d i m e r i c i o n c a n be c o n s i d e r e d i n e q u i l i b r i u m w i t h P t B r ~ i n a c c o r d 4
2
ance w i t h the r e a c t i o n 2 P t B r ~ P t B r 4
2
2
6
2
- +
2Br~
(6)
S i n c e i n the f o r m a t i o n of P t B r " f r o m P t B r ~ t w o b r o m i d e 2
6
2
4
2
ions
are
f o r m e d , there w i l l be a h i g h e r f r a c t i o n of the p l a t i n u m c o n v e r t e d to the d i m e r at h i g h e r d i l u t i o n . F i g u r e 9 illustrates the spectra r e c o r d e d i n a n e x p e r i m e n t i n w h i c h a s o l u t i o n of H P t B r 2
2
was diluted. T h e initial solu-
6
t i o n h a d b e e n f o r m e d b y p a s s i n g the t e t r a e t h y l a m m o n i u m salt of P t B r " 2
t h r o u g h a c a t i o n exchanger i n the h y d r o g e n phase.
6
2
U p o n d i l u t i o n , the
a b s o r b a n c e d e c r e a s e d t o w a r d a s p e c t r u m to be e x p e c t e d for the P t B r 3
( H 0 ) ~ i o n . W i t h the a d d i t i o n of excess K B r , the o b s e r v e d s p e c t r a c o i n 2
c i d e d w i t h that of P t B r " . 4
2
T h e o b s e r v e d s p e c t r a l changes i n d i c a t e d t h a t
the f o r m a t i o n of t h e d i m e r i c species, P t B r " , was too s l o w to a c c o u n t for 2
6
2
the i s o t o p i c exchange b e t w e e n free b r o m i d e i o n a n d the b r o m i d e l i g a n d s i n P t B r " , even t h o u g h the kinetics for s u c h e x c h a n g e i n c l u d e d a t e r m 4
2
w h i c h was s e c o n d o r d e r i n c o m p l e x . I t was c o n c l u d e d that s u c h e x c h a n g e o c c u r r e d t h r o u g h the m a k i n g a n d b r e a k i n g of s i n g l y
bromide-bridged
d i m e r i c complexes.
Spectra
in Organic
Media
A l t h o u g h t h e v i s i b l e a n d u l t r a v i o l e t spectra of the p l a t i n u m m e t a l c o m p l e x e s serve as a v a l u a b l e means to f o l l o w t h e i r reactions, this feature is e s p e c i a l l y d i s t u r b i n g to one w h o is t r y i n g to establish the e n e r g y states for a p a r t i c u l a r species.
S o m e care is necessary
to e s t a b l i s h that t h e
m e a s u r e d s p e c t r u m results f r o m the p a r t i c u l a r c o m p l e x species of interest, a n d not some of its r e a c t i o n p r o d u c t s .
W a t e r is a n effective n u c l e o p h i l e
for these complexes.
T o a v o i d s o l v a t i o n of some p l a t i n u m c o m p l e x e s ,
M a s o n a n d G r a y (21)
h a v e r e c e n t l y r e p o r t e d spectra of t h e t e t r a b u t y l -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
PLATINUM
GROUP
METALS
AND
COMPOUNDS
Figure 9. Spectral changes when an aged solution of H Pt Br in a 1-cm cell (0 min) is diluted 10-fold and added to a 10-cm cell 2
2
6
Dashed curve obtained after the addition of solid KBr. Temp., 25°. NaN0 added to give ionic strength of 0.318M. 3
Figure 10. Spectrum of (NBu ) PtBr^ in a 2:1 mixture of 2-methyltetrahydrofuran and propionitrile at room temperature and at 77° Κ (liquid nitrogen) u 2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
MARTIN
Ultraviolet
Spectroscopic
a m m o n i u m tetrabromoplatinate (II)
91
Qualities
i n a n o r g a n i c solvent m e d i u m c o n
sisting of 2 : 1 m i x t u r e of 2 - m e t h y l t e t r a h y d r o f u r a n a n d p r o p i o n i t r i l e . I n this w a y s o l v a t i o n w a s a v o i d e d . I n a d d i t i o n , t h e y w e r e a b l e to c o o l these solutions as glasses to l i q u i d n i t r o g e n temperatures. T h i s p r o v i d e d m u c h better r e s o l u t i o n of t h e a b s o r p t i o n b a n d s , as is s h o w n i n t h e i r spectra i n F i g u r e 10. Shoulders at 26,500 a n d 33,000 c m the l o w e r temperatures.
- 1
are c l e a r l y r e s o l v e d at
S i n c e v i b r o n i c e x c i t a t i o n is r e d u c e d at l o w e r
temperatures, intensities of t h e s y m m e t r y - f o r b i d d e n b a n d s i n t h e r e g i o n of 20,000-30,000 c m '
1
are l o w e r at t h e l i q u i d n i t r o g e n temperatures. T h e
d i p o l e - a l l o w e d transitions, o n t h e other h a n d , possess a t e m p e r a t u r e i n d e p e n d e n t t o t a l i n t e n s i t y . T h e r e f o r e , as t h e b a n d s n a r r o w at l o w t e m
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
p e r a t u r e , e x t i n c t i o n coefficient peaks b e c o m e h i g h e r .
T h i s is e s p e c i a l l y
Ε ο vu >ι-
α ο (/)
ω
< < -J Ο
2
20000
25000 Z/cnrf
30000
35000
1
Figure 11. Absorption spectrum of Pt(en)Cl in an aqueous 0.3M Cl~ solution and in single crystals with polarized light at 300°Κ and at liquid helium tem peratures (nominally 15°K) 2
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
92
PLATINUM
GROUP
METALS
A N D COMPOUNDS
e v i d e n t i n t h e i r spectra f r o m 33,000-38,000 c m " , the r e g i o n o f the h i g h 1
i n t e n s i t y charge transfer b a n d s .
Spectrum of Diehlorο (ethylene diamine) platinum (II). Metal—Metal Interactions
Evidence for
W e h a v e r e c e n t l y o b t a i n e d some i n t e r e s t i n g spectra o f the n e u t r a l c o m p l e x P t ( e n ) C l . T h e s o l u t i o n s p e c t r u m of this c o m p l e x i n the r e g i o n 2
of the d-d b a n d s i s s h o w n i n F i g u r e 11. T h e charge transfer b a n d s are b e y o n d 48,000 c m " .
Its s o l u t i o n s p e c t r u m is v e r y s i m i l a r t o t h a t of
1
P t ( N H ) C l 2 , except t h a t the m o l a r a b s o r p t i v i t y i n the r e g i o n o f t h e 3
2
a b s o r p t i o n m a x i m u m is t w i c e as h i g h f o r the c i s - d i c h l o r o d i a m m i n e p l a t i -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch007
num(II).
C h a t t , G a m l e n , a n d O r g e l ( 3 ) h a v e assigned the s p e c t r u m o f
t h e d i c h l o r o d i a m m i n e c o m p l e x o n t h e basis o f D
4 f e
symmetry, considering
the l i g a n d field d i s t o r t i o n t o b e a m i n o r effect. T h e p e a k at 33,000 c m " w a s assigned as the first s p i n - a l l o w e d d-d b a n d — i . e . , d
xy
b a n d for d , xz
yz
-> d* *. x
2
y
1
-» d* . . T h e 2
x
2
y
w a s c o n s i d e r e d the s h o u l d e r t o the h i g h energy
side o f this peak. T h e r e w e r e t h e n t w o f a i r l y w e l l r e s o l v a b l e s p i n - f o r b i d d e n b a n d s at l o n g e r w a v e l e n g t h s . T h e c r y s t a l s t r u c t u r e o f P t ( e n ) C l
2
was
recently determined b y x-ray diffraction methods b y Jacobson a n d Benson i n our laboratory ( I I ) .
T h e y f o u n d that the crystals b e l o n g e d
to t h e
o r t h o r h o m b i c system w i t h the molecules stacked i n a n e a r l y l i n e a r a r r a y , as s h o w n i n F i g u r e 12, w i t h a u n i f o r m s p a c i n g o f 3.39A b e t w e e n t h e
A
Β
Figure 12. A. Stacking of Pt(en)Cl molecules in the orthorhombic cry stab. B. Anticipated order of 1-electron orbital energies with their symmetry designations for the à-orbitals under the D and the C groups. 2
ih
2y
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
MARTIN
Ultraviolet
p l a t i n u m atoms.
Spectroscopic
93
Qualities
T h i s s p a c i n g is o n l y 0.14A greater t h a n b e t w e e n t h e
ions i n M G S . V e r y t h i n crystals,
>
10 H z . C o n s e q u e n t l y , d e t e r m i n a t i o n
of the P M R s p e c t r u m suffices for the s t r u c t u r e assignment. c o u p l i n g s c h e m e has b e e n o b s e r v e d
A
similar
for o c t a h e d r a l i r i d i u m ( I I I )
com-
p o u n d s of the t y p e [ I r X Y ( P M e P h ) ] ( X a n d Y are u n i n e g a t i v e a n i o n s ) 2
2
3
(28). P r o t o n N M R has b e e n u s e d to s t u d y the g e o m e t r i c a l isomers of the 2,5-dithiahexane complexes [RhCl L ] 2
2
+
of R h C l
3
i n D 0 s o l u t i o n . C a t i o n i c species 2
are o b t a i n e d , a n d the trans a r r a n g e m e n t of c h l o r i d e s
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
assigned o n the basis of v i b r a t i o n a l spectra (58).
was
B e c a u s e of t h e possible
d i t h i a h e x a n e l i g a n d c o n f o r m a t i o n s , u p to five different isomers c a n exist w i t h trans c h l o r i d e s . doublets w i t h 1 0 3
3
/(
1 0 3
T h e p r o t o n resonance s p e c t r u m shows a series of
Rh- H) 1
=
1.05 H z .
B y i r r a d i a t i o n at t h e
proper
R h resonance f r e q u e n c y , the doublets c a n b e c o l l a p s e d one b y
g i v i n g the
1 0 3
R h c h e m i c a l shifts i n the different complexes
different species w e r e i d e n t i f i e d w i t h
1 0 3
(38).
one,
Seven
R h c h e m i c a l shifts over the r a n g e
0 - 2 9 6 p p m , i n d i c a t i n g t h a t some cis isomers also w e r e present. S t r u c t u r e X X I was assigned to the i s o m e r w i t h a shift of 38 p p m r e l a t i v e to t h e lowest
field
resonance,
m e t h y l resonances
because the s p e c t r u m
showed
three
different
w i t h one t w i c e the i n t e n s i t y of the other t w o , c o n -
sistent w i t h this geometry.
XXI
Solvation and Solvent Effects S o m e studies u s i n g oxygen-17 N M R spectroscopy w i t h aqueous ions.
solutions of p l a t i n u m ( I I )
have been
and organoplatinum ( I V )
M a n y years ago, it was r e p o r t e d t h a t treatment of
w i t h a n aqueous s o l u t i o n of A g N 0
3
or A g S 0 2
4
made cat-
PtCl (NH ) 2
2
2
gave c o n c e n t r a t e d s o l u -
tions of a species p r e s u m e d to b e the d i a q u o d i a m m i n e p l a t i n u m ( I I ) c a t i o n Solutions of the p e r c h l o r a t e salt s h o w a b o u n d w a t e r
oxygen-17
resonance s i g n a l 92.6 =t 1 p p m u p f i e l d f r o m the b u l k w a t e r
resonance
(30). (20).
T h i s l a r g e c h e m i c a l shift for the w a t e r b o u n d to p l a t i n u m m a y b e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
110
PLATINUM
GROUP
METALS
AND
c o m p a r e d w i t h t h e v a l u e of ca. —11 p p m for A 1 ( C 1 0 ) 4
COMPOUNDS
solutions
3
(9).
T h e r e w a s n o c h a n g e i n the c h e m i c a l shift over the t e m p e r a t u r e r a n g e 29° to 8 5 ° , i n d i c a t i n g that the w a t e r is r e l a t i v e l y i n e r t to s u b s t i t u t i o n . I n t e g r a t i o n of the b o u n d a n d b u l k w a t e r resonances gave the h y d r a t i o n number
as 1.9
±
[(H N)2Pt(OH )2] 3
2
0.1, c o n f i r m i n g the f o r m u l a t i o n of 2 +
.
the
cation
as
U n d o u b t e d l y , this c a t i o n is sufficiently i n e r t t h a t
the s o l v a t i o n n u m b e r c o u l d be d e t e r m i n e d b y conventional—e.g.,
isotope
dilution—techniques. T h e h y d r a t i o n of the t r i m e t h y l p l a t i n u m c a t i o n also has b e e n s t u d i e d by
1 7
0 N M R of aqueous solutions of ( C H ) P t C 1 0 3
3
4
Although
(20, 21).
m a n y p l a t i n u m ( I V ) complexes are n u m b e r e d a m o n g the most i n e r t co o r d i n a t i o n c o m p o u n d s k n o w n , the w a t e r molepules b o u n d to ( C H ) P t 3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
exchange r a p i d l y w i t h the b u l k solvent at r o o m t e m p e r a t u r e . 0 ° C is i t possible to r e c o r d a b o u n d w a t e r resonance.
3
+
O n l y near
E m p l o y i n g the
m o l a l shift of the b u l k w a t e r solvent c a u s e d b y a d d e d D y ( C 1 0 ) , i t w a s 4
possible to d e t e r m i n e the h y d r a t i o n n u m b e r to b e 3.0 ±
is f o r m u l a t e d c o r r e c t l y as o c t a h e d r a l [ ( C H ) P t ( O H ) ] . 3
the l a r g e q u a d r u p o l e m o m e n t of the w i t h the
1 9 5
3
0 nucleus, 1 =
1 7
2
3
0.1. T h e c a t i o n 3
Because
+
of
5/2, no coupling
P t n u c l e u s w a s detected i n a n y of the spectra d e s c r i b e d above.
T h e s e experiments i l l u s t r a t e the v e r y great l a b i l i t y of some of the organo d e r i v a t i v e s of the p l a t i n u m g r o u p metals. C l e g g and H a l l (8)
n o t e d that the a d d i t i o n of s u l f u r i c a c i d to a n
aqueous s o l u t i o n of [ ( C H ) P t ( N H ) ] C l caused a shift of 0.5 p p m i n 3
3
3
3
the m e t h y l p r o t o n resonance a n d a n increase i n the v a l u e of / ( 2
1 9 5
Pt-CH ) 3
f r o m 71.0 to 79.7 H z because of r a p i d f o r m a t i o n of the t r i a q u o species. A d d i t i o n of a n excess of the l i g a n d s H C N H , p y r i d i n e , S C N " , N 0 " , a n d 3
2
C N " a l l gave rise to spectra c h a r a c t e r i s t i c of the c o m p l e x e d platinum ( I V ) cation
2
trimethyl
(7).
S a w y e r a n d c o w o r k e r s have s t u d i e d the p r o t o n resonance s p e c t r a of aqueous solutions of the 1:1 a n d 1:2 complexes f o r m e d f r o m P t ( I I ) Pd(II)
(53),
and Rh(III)
(52)
(51),
w i t h nitrilotriacetic acid, N - m e t h y l -
i m i n o d i a c e t i c a c i d , a n d i m i n o d i a c e t i c a c i d as a f u n c t i o n b o t h of
tem
p e r a t u r e a n d of p H . T h e acetate m e t h y l e n e protons e x h i b i t a n A B p a t t e r n i n a l l of the complexes, i n d i c a t i n g that the lifetimes of m e t a l - o x y g e n a n d m e t a l - n i t r o g e n b o n d s are r e l a t i v e l y long—i.e., that the
complexes
are s t e r e o c h e m i c a l ^ r i g i d . B o t h the m o n o X X I I a n d bis X X I I I
complexes
of p l a t i n u m ( I I )
show
1 9 5
Ρ ί - Ή c o u p l i n g s t h r o u g h three b o n d s to
the
acetate m e t h y l e n e protons a n d to the N - s u b s t i t u t e d groups. N o analogous c o u p l i n g s w e r e f o u n d w i t h the R h ( I I I ) chelates. C o m p l e x changes as the p H is r a i s e d w i t h the c o n c o m i t a n t f o r m a t i o n of h y d r o x o a n d p r o b a b l y p o l y n u c l e a r species.
occur
complexes
T h e s e changes c a n b e f o l l o w e d
con
v e n i e n t l y w i t h the p r o t o n resonance spectra, a l t h o u g h a d e t a i l e d i n t e r p r e t a t i o n of the effects is v e r y difficult.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8.
TOBIAS
NMR
Spectra
of
111
Compounds
E M
2XHI
T h e i n t e r a c t i o n of cations f o r m e d f r o m the p l a t i n u m g r o u p metals Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch008
w i t h solvents l i k e a c e t o n i t r i l e , d i m e t h y l s u l f o x i d e , a n d other c o n t a i n i n g m e t h y l protons is s t u d i e d easily w i t h Ή complexes
are r a t h e r inert. O ' B r i e n , G l a s s , a n d R e y n o l d s
m i n e d the s o l v a t i o n n u m b e r of ( H N ) P t 3
2
2 +
molecules
N M R , since these deter
(42)
i n acetonitrile solution from
the p r o t o n resonance spectra of solutions of a n h y d r o u s ( H N ) P t ( C 1 0 ) . 3
2
4
2
B o t h b o u n d a n d b u l k a c e t o n i t r i l e resonances w e r e o b s e r v e d w i t h n o e v i d e n c e for a n y exchange b r o a d e n i n g to 8 1 ° , the b o i l i n g p o i n t of aceto n i t r i l e . C o u p l i n g of the l i g a n d protons w i t h the p l a t i n u m n u c l e u s leads to the u s u a l 1:4:1 t r i p l e t , / ( 4
1 9 5
Ρί-Ή)
=
12.1 H z . I n t e g r a t i o n of
c o m p o n e n t of the t r i p l e t for the b o u n d solvent r e l a t i v e to the b a n d of the b u l k solvent gave a s o l v a t i o n n u m b e r of 2.0 ±
1 3
one
C side
0.1. It also
was possible to d e t e r m i n e a p p r o x i m a t e l y the r e l a t i v e integrals of
the
amine and
are
a c e t o n i t r i l e protons,
v e r y b r o a d because of the
1 4
a l t h o u g h the
a m i n e resonances
N quadrupole moment.
a s o l v a t i o n n u m b e r of 2.0 =b 0.1, too.
T h i s m e t h o d gives
T h e r e was no shift i n the b u l k
solvent resonance as the c o n c e n t r a t i o n of [ ( H N ) P t ( N C C H ) ] ( C 1 0 ) 3
2
3
2
4
2
was v a r i e d , suggesting that there are no significant solvent interactions i n the a x i a l positions of p l a t i n u m . Anhydrous ( H N ) P t ( C 1 0 ) 3
3
4
2
also has b e e n s t u d i e d i n d i m e t h y l s u l f
oxide s o l u t i o n ( 5 5 ) , since M e S O is a n a m b i d e n t a t e l i g a n d a n d p r o b a b l y 2
coordinates via s u l f u r r a t h e r t h a n o x y g e n as is k n o w n to b e the case w i t h p a l l a d i u m . T h e m e t h y l p r o t o n resonance for the b o u n d D M S O is s h i f t e d 2.54 p p m u p f i e l d f r o m the b u l k solvent, a n d the l i g a n d exchange rate is n e g l i g i b l e at 3 5 ° . the b o u n d D M S O n u m b e r s of 2.0 ±
Integrations of the b u l k a n d b o u n d D M S O signals or a n d a m i n e p r o t o n resonances 0.1. T h e c o u p l i n g constant / (
1 9 5
b o t h gave s o l v a t i o n Ρΐ-Ή)
=
23.2 H z ,
a n d this l a r g e a v a l u e suggests that D M S O is b o u n d via s u l f u r a n d n o t oxygen—i.e., t h a t the c o u p l i n g is t h r o u g h o n l y three a n d n o t f o u r b o n d s . U n d o u b t e d l y , i s o l a t i o n of the c r y s t a l l i n e a d d u c t s ( H N ) P t ( C 1 0 ) 3
2
4
2
· 2B
f r o m s o l u t i o n w o u l d c o n f i r m these s t o i c h i o m e t r i c s ; h o w e v e r , these c o m p o u n d s are v e r y explosive.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
112
PLATINUM
M c F a r l a n e and W h i t e (37)
GROUP
METALS
2
COMPOUNDS
h a v e n o t e d that d i m e t h y l s u l f o x i d e w i l l
replace M e S and M e S e w h e n [ ( M e L ) P t C l ] ( L = 2
AND
2
2
S, S e )
2
complexes
are d i s s o l v e d i n D M S O a c c o r d i n g to R e a c t i o n s 4 a n d 5. (Me L) PtCl 2
2
+
2
D M S O )
άω =
1
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
ο If t h e lattice is a s s u m e d to h a v e a D e b y e f r e q u e n c y s p e c t r u m w i t h c o = k6 /h, then DW
m
where 6
DW
is t h e effective D e b y e t e m p e r a t u r e .
s p e c t r u m , G (ω),
Since t h e r e a l f r e q u e n c y
m a y b e c o n s i d e r a b l y different f r o m a h a r m o n i c
Debye
s p e c t r u m , t h e effective D e b y e t e m p e r a t u r e a p p r o p r i a t e to a n y other q u a n t i t y i n v o l v i n g a different average over t h e s p e c t r u m m a y b e a p p r e c i a b l y different f r o m 6 DW
T h u s , for example, the D e b y e temperature 0 perti C
nent to the heat c a p a c i t y w i l l v a r y m u c h m o r e r a p i d l y w i t h t e m p e r a t u r e than 0 . DW
I n p r i n c i p l e , h o w e v e r , f r o m k n o w l e d g e of t h e heat c a p a c i t y ,
lattice constants, a n d elastic constants as a f u n c t i o n of t e m p e r a t u r e , one c a n l e a r n e n o u g h a b o u t the f r e q u e n c y s p e c t r u m to p r e d i c t t h e D e b y e W a l l e r factor.
F e l d m a n a n d H o r t o n ( 7 ) have m a d e s u c h a c a l c u l a t i o n
in the quasiharmonic approximation i n w h i c h the lattice potential i n P t m e t a l is a s s u m e d to b e h a r m o n i c , a n d of a l l a n h a r m o n i c effects, o n l y the
_ 240
^23I°K
229 K>^ e
Ξ 230 ο ®
225 K^^ e
220 210 0
100
50
150
200
250
300 Physical Review
Figure 4. Flot of ^ ( T ) vs. T . The solid line gives the value of ^ D W ( T ) referred to the 0°K volume. The broken line shows the effect of thermal expansion ( 7 ) . D
W
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
140
PLATINUM
t h e r m a l expansion is t a k e n i n t o account. D e b y e temperature should b e 0
DW
=
GROUP
METALS
A N D COMPOUNDS
T h e i r conclusions are that the
(231 ± 3 ) ° K at 0 ° K a n d s h o u l d
have a very slight temperature dependence ( F i g u r e 4 ) . Experimentally, f r o m the analysis of the t e m p e r a t u r e d e p e n d e n c e of the a b s o r p t i o n s p e c t r a o b t a i n e d w i t h a source o f
1 9 5
A u embedded in a natural platinum matrix
a n d a n a t u r a l p l a t i n u m absorber, H a r r i s , R o t h b e r g , a n d B e n c z e r - K o l l e r (JO) obtained an extrapolated 0
DW
=
(234 ± 6 ) ° K at 0 ° K i n excellent
a g r e e m e n t w i t h t h e o r e t i c a l p r e d i c t i o n s f o r the p l a t i n u m c u b i c l a t t i c e . A c t u a l l y , the q u a n t i t y t h a t is m e a s u r e d is f/(l
+ a), n a m e l y a c o m b i n a
t i o n o f the recoilless f r a c t i o n / a n d o f the c o n v e r s i o n coefficient « . T h e determination of 6
DW
is t h e n v e r y sensitive to the c h o i c e o f a ( F i g u r e 5 ) .
If the e x p e r i m e n t a l 2 W is fitted to the t h e o r e t i c a l p r e d i c t i o n s o f F e l d m a n Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
a n d H o r t o n , t h e n a v a l u e for the c o n v e r s i o n coefficient a c a n b e o b t a i n e d , a = 7.0 ± 0.3. T h i s v a l u e o f the i n t e r n a l c o n v e r s i o n coefficient is m o r e
β no
K)
2030405060708090100 TfK) Physical Review
Figure 5. Experimental values ( 9 ) of 0 for various values of the internal conversion coefficient vs. temperature. The solid line was obtained from the analysis of specific heat measurements and other thermody namic data ( 7 ) . D W
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
B E N C Z E R - K O L L E R
Survey of Mossbauer
141
Spectroscopy
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
10.
Physics Letters
Figure 6.
Mossbauer spectra with Pt in ferromagnetic
alloys
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(2)
142
GROUP
METALS
AND
COMPOUNDS
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
PLATINUM
Physical Review
Figure
7. Mossbauer spectra for Pt-Fe absorbers in different field configurations (1)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
10.
BENCZER-KOLLER
Survey of Mossbauer
143
Spectroscopy
Physical Review
Figure 8. Mossbauer spectra for absorbers of Pt-Co, Pt-Ni, and Pt (1) precise t h a n t h a t w h i c h c a n b e o b t a i n e d b y a n y of the n u c l e a r spectroscopy m e t h o d s a v a i l a b l e to date.
Hyperfine Interaction T h e M o s s b a u e r a b s o r p t i o n of scattering experiments w e r e c a r r i e d out b y B e n c z e r - K o l l e r , H a r r i s , a n d R o t h b e r g ( 3 ) , A t a c , D e b r u n n e r , a n d F r a u e n f e l d e r (2),
Agresti, Kankeleit, a n d Persson ( J ) , a n d B u y r n , G r o d -
zins, B l u m , a n d W u l f f (6) Pt-Fe
w i t h a single l i n e source a n d absorbers
alloys r a n g i n g i n c o m p o s i t i o n
from
P t - C o , a n d P t - N i alloys as w e l l as P t F e . 3
Pto.03Feo.97 to
of
Pt .5oFe .5o, 0
0
A t y p i c a l s p e c t r u m is s h o w n
i n F i g u r e 6. T h e e x p e c t e d 6-line p a t t e r n c o r r e s p o n d i n g to a 3 / 2 - »
1/2
m a g n e t i c d i p o l e t r a n s i t i o n is not r e s o l v e d , a n d o n l y t w o peaks c a n b e o b served. F r o m a 6-line fit to the o b s e r v e d p a t t e r n , H a r r i s et al. ( 3 )
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
were
144
PLATINUM
Table I.
GROUP
AND
COMPOUNDS
Magnetic Moment of the 99 k e V Excited State in T.,
Absorber
°K
T.,
°K
Pto.iFeo.9 Pt Fe
229 418
20 20
20 20
Pto.sFeo.7 Pto.07Coo.93 Pto.07Nio.93
166 71.5 140
29 29 29
29 29 29
Pto.03Feo.97 Pto.03Coo.97 Pto.03Nio.97
30-60 50 50
4.2 4.2 4.2
4.2 4.2 4.2
Pto.03Feo.97 •
52
4.2
4.2
3
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
METALS
• 521
Pto.50Feo.50
Calorimetric determination P o l a r i z e d n e u t r o n - s p i n resonance
Pto.03Feo.97 Pto.iFeo.9 Average
Table II.
W i d t h , Isomer Shift, Magnitude of the A u in Various Matrices and 1 9 5
(Mv\
t Source Matrix
\Cm2J
Pt
Cu Be Ir Pt 195mp
t
p
m
t
T.,
°K
Foil
326 326 610 104
4.2 4.2 4.2 20.0
4.2 4.2 4.2 20.0
326
4.2
4.2
o n l y a b l e to o b t a i n a r e l a t i o n s h i p b e t w e e n H n u c l e u s , a n d the r a t i o μ*/μ
ΰ
i n t
2.04 ± 0.10 ~2.5 3.05 ± 0.15 2.1 =fc 0.2
, t h e effective field at the
of m a g n e t i c m o m e n t s
of the e x c i t e d
and
g r o u n d states. T h e three o t h e r groups a l t e r e d t h e a b s o r p t i o n or s c a t t e r i n g patterns b y p o l a r i z i n g t h e absorbers w i t h a n e x t e r n a l field a p p l i e d e i t h e r p a r a l l e l or p e r p e n d i c u l a r to the g a m m a r a y e m i s s i o n ( F i g u r e s 7 a n d 8 ) . T h e y thus w e r e able to o b t a i n u n i q u e v a l u e s for the s i g n a n d m a g n i t u d e of μβ a n d H
i n t
.
T h e s e results, as w e l l as i n t e r n a l fields o b t a i n e d f r o m a
c a l o r i m e t r i c d e t e r m i n a t i o n (11)
a n d a p o l a r i z e d n e u t r o n s p i n resonance
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10. 1 9 5
Spectroscopy
145
P t and Internal Magnetic Field for Various P t - F e Alloys
μ
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch010
Survey of Mossbauer
B E N C Z E R - K O L L E R
Hint MG
β
Ref.
-0.9 iridium) established (2) for 150 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
R Y L A N D E R
Bond
151
Isomerization
1-pentene, for the t e n d e n c y to p r o m o t e d o u b l e b o n d m i g r a t i o n d u r i n g hydrogénation, is p r o b a b l y g e n e r a l for most olefinic systems.
T h e extent
of i s o m e r i z a t i o n also d e p e n d s i m p o r t a n t l y o n t h e substrate.
For migra-
t i o n to occur, the a l l y l i c h y d r o g e n
to b e r e m o v e d
m u s t be
sterically
accessible to the catalyst a n d o n the same side of the m o l e c u l e as t h e entering hydrogen ( 5 ) .
T h e m e c h a n i s m i n v o l v e d m a y be c o m p l e x
M i g r a t i o n is d i m i n i s h e d b y the presence of h e a v y metals, amines, a n d e l e v a t e d pressure Selectivity
Among
Olefinic
(3).
hydroxides,
(15). Types
A u s e f u l g e n e r a l i t y i n p r e d i c t i n g selectivity is that the rate of h y d r o -
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
génation falls, b o t h a b s o l u t e l y a n d c o m p e t i t i v e l y , as steric a r o u n d the d o u b l e b o n d is i n c r e a s e d (23).
hinderance
O n this basis i n a m i x t u r e of
olefins, t e r m i n a l olefins w o u l d b e e x p e c t e d to be s a t u r a t e d p r e f e r e n t i a l l y to i n t e r n a l olefins, i f a p r i o r r a p i d e q u i l i b r a t i o n b y i s o m e r i z a t i o n d i d not ensue. T h i s thesis was d e m o n s t r a t e d the pairs of
olefins
shown
(1)
in Table
i n the selective hydrogénation of I, over r u t h e n i u m - o n - c a r b o n ,
a
catalyst w i t h r e l a t i v e l y l o w i s o m e r i z a t i o n a c t i v i t y . T h e experiments
were
c a r r i e d out b y p a r t i a l hydrogénation of a m i x t u r e of 1 m o l e of
each
olefin, a n d the r e a c t i o n was i n t e r r u p t e d a n d a n a l y z e d after of 1 m o l e of h y d r o g e n .
absorption
Those compounds underlined i n Table I were
r e d u c e d w i t h h i g h s e l e c t i v i t y i n preference
to the other m e m b e r of the
p a i r . T h i s h i g h degree of selectivity w a s l i m i t e d to those pairs of olefins
Table I.
Competitive Hydrogénation of Olefins by Ruthenium on Carbon 2-methyl-2-pentene
Selective
a n d 2 - m e t h y l - 1-pentene a n d 2-octene a n d cyclohexene and 2-methyl-1-pentene
Selective Selective
4-Methyl-1-pentene and 4-Methyl-l-pentene 4-Methyl-l-pentene 4-Methyl-l-pentene 2-Methyl-2-pentene
2 - M e t h y l - 2 - p e n t e n e a n d 2-octene 2 - M e t h y l - 2 - p e n t e n e a n d 1-octene 2 - M e t h y l - 2 - p e n t e n e a n d cyclohexene 2 - M e t h y l - l - p e n t e n e a n d 2-octene 2 - M e t h y l - l - p e n t e n e a n d 1-octene 2 - M e t h y l - l - p e n t e n e a n d cyclohexene 2-Octene a n d 1-octene 2-Octene a n d cyclohexene 1-Octene a n d cyclohexene
Selective N o t selective N o t selective Selective N o t selective N o t selective Selective N o t selective Selective N o t selective Selective
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
152
PLATINUM
GROUP
METALS
AND
COMPOUNDS
c o n t a i n i n g one t e r m i n a l a n d one i n t e r n a l olefin; other pairs w e r e r e d u c e d w i t h a m u c h l o w e r selectivity. T h i s same t y p e of d i s c r i m i n a t i o n b e t w e e n i n t e r n a l a n d t e r m i n a l olefins also has b e e n d e m o n s t r a t e d w h e n the t w o types of d o u b l e b o n d s w e r e i n the same m o l e c u l e . T h e s e hydrogénations w e r e c a r r i e d out w i t h w a t e r as a solvent, i f i n d e e d solvent is the correct w o r d to use w i t h olefins, b u t i f there w e r e no w a t e r present there w a s n o r e d u c t i o n . T h i s is a c o m m o n c h a r a c t e r i s t i c of r u t h e n i u m catalysis at l o w pressure. A t h i g h pressure, m a n y solvents c a n be u s e d , b u t e v e n here w a t e r sometimes has a s t r i k i n g l y b e n e f i c i a l effect o n the rate ( 3 2 ) . S e l e c t i v i t y of the t y p e f o u n d w i t h r u t h e n i u m w a s not possible w h e n p a l l a d i u m catalysts w e r e u s e d . F o r instance, hydrogénation of a m i x t u r e of 1- a n d 2-octene was c o m p l e t e l y nonselective over p a l l a d i u m catalysts. Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
T h i s l a c k of s e l e c t i v i t y r e s u l t e d f r o m the h i g h i s o m e r i z a t i o n a c t i v i t y of p a l l a d i u m ; w h e n the r e a c t i o n w a s s t o p p e d at o n l y one-tenth of
comple-
t i o n , a l l 1-octene h a d d i s a p p e a r e d b y m i g r a t i o n of the t e r m i n a l d o u b l e bond inward.
Migration to Inaccessible Positions T r i v i a l r e d u c t i o n s at times m a y b e r e n d e r e d difficult or i m p o s s i b l e b y i m p r o p e r selection of catalysts. T h i s is d e m o n s t r a t e d
(13)
b y the
hydrogénation of p u l c h e l l i n , I. O v e r p l a t i n u m oxide i n e t h a n o l , p u l c h e l l i n w a s r e d u c e d to d i h y d r o p u l c h e l l i n , I I . O n the other h a n d , r e d u c t i o n of p u l c h e l l i n over p a l l a d i u m - o n - c a r b o n or p a l l a d i u m - o n - c a l c i u m c a r b o n a t e afforded d i h y d r o p u l c h e l l i n i n 6 0 - 8 0 % y i e l d a c c o m p a n i e d b y the i s o m e r i z e d p r o d u c t , i s o p u l c h e l l i n , I I I . T h e s e results are i n k e e p i n g w i t h the greater t e n d e n c y of p a l l a d i u m to cause d o u b l e b o n d m i g r a t i o n . It w o u l d b e most difficult to convert i s o p u l c h e l l i n to d i h y d r o p u l c h e l l i n b y c a t a l y t i c hydrogénation, f o r a n y a t t e m p t to d o so p r o b a b l y w o u l d result i n h y d r o genolysis of the a l l y l i c c a r b o n - o x y g e n b o n d .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
R Y L A N D E R
Bond
153
Isomerization
T h e r e are m a n y other examples of d o u b l e b o n d m i g r a t i o n to a t e t r a s u b s t i t u t e d p o s i t i o n , a n d these i n c l u d e hydrogénations e v e n over p l a t i n u m , a catalyst w i t h a r e l a t i v e l y l o w i s o m e r i z a t i o n a c t i v i t y (24).
One
example, the a t t e m p t e d hydrogénation of the e x o c y c l i c d o u b l e b o n d of h y s t e r i n o v e r p l a t i n u m oxide, r e s u l t e d i n i s o m e r i z a t i o n to i s o h y s t e r i n , w h i c h w a s resistant to hydrogénation u n d e r the c o n d i t i o n s of the r e a c t i o n . H y s t e r i n (39)
w a s r e d u c e d successfully over r u t h e n i u m d i o x i d e at ele-
v a t e d temperatures a n d pressures. It is e x p e c t e d that the e l e v a t e d p r e s sures u s e d w i t h r u t h e n i u m w o u l d d i m i n i s h i s o m e r i z a t i o n , a n d t h e v i g o r o u s c o n d i t i o n s w i t h r u t h e n i u m also m i g h t be sufficient to r e d u c e i s o h y s t e r i n if i t f o r m e d .
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
Changes
in the Organic
Function
I s o m e r i z a t i o n d u r i n g hydrogénation m a y a l t e r the f u n c t i o n a l g r o u p s present i n the m o l e c u l e . 5%
F o r instance, r e d u c t i o n of c y c l o h e x e n - 2 - o l
over
p l a t i n u m - o n - c a r b o n o c c u r r e d w i t h r a p i d a b s o r p t i o n of 1 m o l e
of
h y d r o g e n at s u b s t a n t i a l l y constant rate a n d q u a n t i t a t i v e f o r m a t i o n of cyclohexanol.
O n t h e other h a n d , r e d u c t i o n over p a l l a d i u m ceased
ab-
r u p t l y at about t w o - t h i r d s of a m o l e , a n d the p r o d u c t w a s a m i x t u r e of c y c l o h e x a n o l a n d c y c l o h e x a n o n e , the latter a r i s i n g t h r o u g h d o u b l e b o n d m i g r a t i o n to the e n o l of c y c l o h e x a n o n e OH
Λ,
(29). OH
Ο
Λ
Λ,
5% P d / C
67%
33%
5% P t / C
100%
0%
T h i s t y p e of t r a n s f o r m a t i o n m a y o c c u r also b y a n exchange r e a c t i o n . C a t a l y t i c hydrogénation of
5-cyclodecen-l-ol
over
p l a t i n u m oxide
m e t h a n o l r e s u l t e d i n a b s o r p t i o n of 0.97 m o l a r e q u i v a l e n t s of
in
hydrogen
a n d f o r m a t i o n of the s a t u r a t e d a l c o h o l . H o w e v e r , w h e n 1 0 % p a l l a d i u m o n - c a r b o n i n a l c o h o l was u s e d as a catalyst, r e d u c t i o n w a s i n c o m p l e t e o w i n g to f o r m a t i o n of c y c l o d e c a n o n e .
T h e authors (8)
e x p l a i n e d the
e x c e p t i o n a l ease o f this t y p e of r e a c t i o n b y the s p a t i a l p r o x i m i t y of t h e a l c o h o l a n d olefin g r o u p s , f a v o r i n g a n i n t r a m o l e c u l a r h y d r o g e n transfer. P r e s u m a b l y , p a l l a d i u m is v e r y m u c h m o r e effective i n this transfer r e a c t i o n t h a n p l a t i n u m , b u t s i m i l a r transfer b y p l a t i n u m m i g h t pass u n o b s e r v e d , as this catalyst w o u l d r e d u c e the ketone so f o r m e d to a l c o h o l ; p a l l a d i u m is a r e l a t i v e l y p o o r catalyst for hydrogénation a l i p h a t i c ketones
(6).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
the of
154
PLATINUM
GROUP
METALS
AND
COMPOUNDS
OH
OH
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
Catalyst
Inhibition
W i t h sufficient use, a l l catalysts u n d e r g o d e a c t i v a t i o n .
Two
broad
types of i n h i b i t i o n m a y be d i s t i n g u i s h e d . I n the first, the catalyst b e comes i n h i b i t e d t h r o u g h the i n t r o d u c t i o n of catalyst i n h i b i t o r s c a r r i e d i n t o the system b y the substrate, solvent, h y d r o g e n , o r e v e n f o r m e d
by
d i s s o l u t i o n of the reactor. I n the second t y p e , d e a c t i v a t i o n arises t h r o u g h some i n h i b i t o r f o r m e d i n the r e a c t i o n itself. A n e x a m p l e of the t y p e is p r o v i d e d b y the w o r k of N i s h i m u r a a n d H a m a (21).
second
These work-
ers f o u n d , c o n t r a r y to w h a t one m i g h t expect b y a n a l o g y to s i m i l a r s i t u a tions, that b e n z y l a l c o h o l w a s r e d u c e d m o r e s m o o t h l y to c y c l o h e x y l c a r b i n o l over
p l a t i n u m oxide
t h a n over
r h o d i u m catalysts.
The
rate
of
hydrogénation over r h o d i u m decreased m a r k e d l y d u r i n g the course
of
the r e a c t i o n , a c c o m p a n i e d
b y the f o r m a t i o n of i n c r e a s i n g amounts
of
cyclohexanecarboxaldehyde,
a strong i n h i b i t o r . R e d u c t i o n s over p l a t i n u m
catalyst, o n the other h a n d , p r o c e e d e d at a m o r e n e a r l y constant rate a n d w i t h the a c c u m u l a t i o n of less a l d e h y d e .
The inhibiting
b o x a l d e h y d e arose f r o m i s o m e r i z a t i o n of i n t e r m e d i a t e
cyclohexanecar-
1-cyclohexenylcar-
b i n o l . P l a t i n u m catalysts w e r e less i n h i b i t e d t h a n r h o d i u m b y t h e a l d e h y d e o n t w o counts.
T h e i n t e r m e d i a t e u n s a t u r a t e d c a r b i n o l w a s isomer-
i z e d less over p l a t i n u m t h a n r h o d i u m , a n d the a l d e h y d e once f o r m e d w a s h y d r o g e n a t e d a b o u t four to five times m o r e r a p i d l y over p l a t i n u m .
CH OH 2
CH OH 2
CHO
S i m i l a r isomerizations h a v e been o b s e r v e d i n the hydrogénation of p h e n y l e t h a n o l over r h o d i u m , w h e r e one of the i n t e r m e d i a t e p r o d u c t s is cyclohexylmethylketone.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
R Y L A N D E R
Double
Bond
155
Isomerization
T h i s ketone, u n l i k e c y c l o h e x a n e c a r b o x a l d e h y d e ,
is not a n i n h i b i t o r a n d
c a n b e o b t a i n e d as a n i n t e r m e d i a t e i n about 4 0 % y i e l d f r o m hydrogénat i o n of a c e t o p h e n o n e over r h o d i u m ; f u r t h e r r e d u c t i o n affords h i g h y i e l d s of c y c l o h e x y l m e t h y l c a r b i n o l
(28).
Hydrogenolysis of Carbon-Oxygen Bonds C a r b o n - o x y g e n b o n d s are not c l e a v e d r e a d i l y b y c a t a l y t i c h y d r o genolysis unless t h e y are i n some w a y a c t i v a t e d b y p r o x i m i t y to another function.
Benzylic, vinylic, and allylic oxygen bonds undergo a facile
h y d r o g e n o l y s i s , b u t f u n c t i o n s r e m o v e d f r o m the d o u b l e unless a p r i o r i s o m e r i z a t i o n occurs.
b o n d do
not
A n e x a m p l e of i s o m e r i z a t i o n l e a d i n g
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
to h y d r o g e n o l y s i s p r o d u c t s is f o u n d i n the hydrogénation of h e p t - 3 - y n e 1,7-diol over 5 % p a l l a d i u m - o n - b a r i u m sulfate; i n a d d i t i o n to t h e expected d i o l , a c o n s i d e r a b l e a m o u n t of 1-heptanol w a s f o r m e d ( 9 ) .
The forma-
t i o n of 1-heptanol is best a c c o u n t e d for b y the a s s u m p t i o n of r e d u c t i o n of the acetylene to the c o r r e s p o n d i n g olefin f o l l o w e d b y i s o m e r i z a t i o n of the d o u b l e b o n d i n t o a n a l l y l i c p o s i t i o n .
P l a t i n u m , or better r h o d i u m ,
w o u l d b e p r e f e r r e d to p a l l a d i u m i n examples of this t y p e .
Rhodium
w o u l d seem p a r t i c u l a r l y d e s i r a b l e o n t w o counts. T h e i s o m e r i z a t i o n a c t i v i t y of r h o d i u m is m u c h l o w e r t h a n that of p a l l a d i u m , a n d less a l l y l i c a l c o h o l w o u l d be f o r m e d i n the hydrogénation. A d d i t i o n a l l y , r h o d i u m has f o u n d c o n s i d e r a b l e use i n the r e d u c t i o n of a l l y l i c a n d v i n y l i c systems w h e n h y d r o g e n o l y s i s was to be a v o i d e d
(27).
H O C H C H C = C C H C H C H O H -> 2
2
2
2
2
HOCH CH CH = CHCH CH CH OH
->
HOCH CH = CHCH CH CH CH OH
-*
2
2
2
2
2
2
2
2
2
2
CH CH = CHCH CH CH CH OH 3
2
2
2
2
->
CH3CH CH CH CH CH CH OH 2
2
2
2
2
2
Hydrogenolysis of Carbon-Carbon Bonds A s t r i k i n g e x a m p l e of the effect i s o m e r i z a t i o n m a y h a v e is f o u n d i n the hydrogénation of car-3-ene ( 7 ) .
T w o different p r o d u c t s are o b t a i n e d
i n nearly quantitative yield, depending p l a t i n u m - o n - c a r b o n at 1500 p s i g , cis-carane
on
the
catalyst u s e d .
Over
was obtained i n 9 8 % y i e l d ,
whereas over p a l l a d i u m - o n - c a r b o n , q u a n t i t a t i v e y i e l d s of 1,1,4-trimethylcycloheptane could be achieved.
H y d r o g e n o l y s i s w i t h f o r m a t i o n of the
s e v e n - m e m b e r e d r i n g s w a s b e l i e v e d to be p r e c e e d e d b y i s o m e r i z a t i o n to car-2-ene.
If i s o m e r i z a t i o n is a p r e r e q u i s i t e for h y d r o g e n o l y s i s , i t is to b e
e x p e c t e d that less of the h y d r o g e n o l y s i s p r o d u c t w o u l d b e f o r m e d
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
over
156
PLATINUM
GROUP
METALS
AND
COMPOUNDS
p l a t i n u m , since p l a t i n u m is n o t as a c t i v e as p a l l a d i u m for d o u b l e b o n d
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
migration.
F o r m a t i o n of 1,1,4-trimethylcycloheptane f r o m car-3-ene d e p e n d s o n t w o properties of p a l l a d i u m , the strong t e n d e n c y of p a l l a d i u m to p r o m o t e i s o m e r i z a t i o n a n d to h y d r o g e n o l y z e v i n y l c y c l o p r o p a n e systems.
I n the
b i c y c l i c u n s a t u r a t e d a c i d , I V , p r i o r i s o m e r i z a t i o n is not necessary
to
m o v e the d o u b l e b o n d i n t o c o n j u g a t i o n , yet here, too, p l a t i n u m a n d p a l l a d i u m g i v e q u i t e different results. T h e s a t u r a t e d b i c y c l i c a c i d is f o r m e d over p l a t i n u m , w h e r e a s over p a l l a d i u m a m i x t u r e of c y c l o h e x a n e carboxylic acid and benzoic disproportionation
COOH
a c i d results t h r o u g h h y d r o g e n o l y s i s a n d
(20).
COOH
COOH
COOH
Disproportionation D i s p r o p o r t i o n a t i o n is a s p e c i a l f o r m of d o u b l e b o n d m i g r a t i o n i n w h i c h the d o u b l e b o n d is t r a n s f e r r e d f r o m one m o l e c u l e to another. R e a c t i o n s of this t y p e are e s p e c i a l l y l i a b l e to o c c u r over p a l l a d i u m , a n d for this reason p a l l a d i u m sometimes is best a v o i d e d i n olefin hydrogénat i o n w h e n the d o u b l e b o n d is c o n t a i n e d i n a n i n c i p i e n t a r o m a t i c system. D i s p r o p o r t i o n a t i o n a c t i v i t y i n the hydrogénation of c y c l o h e x e n e
(and
p r e s u m a b l y other i n c i p i e n t a r o m a t i c systems w i l l f o l l o w the same o r d e r ) decreases w i t h the m e t a l i n the o r d e r p a l l a d i u m > > p l a t i n u m > r h o d i u m (16).
A n e x a m p l e of the c o m p l i c a t i o n t h a t c a n be c a u s e d b y d i s p r o p o r -
t i o n a t i o n d u r i n g hydrogénation is f o u n d i n t h e a t t e m p t e d r e d u c t i o n of
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.
Double
RYLANDER
Bond
157
Isomerization
the d i e n o n e , V , to the saturated ketone over p a l l a d i u m - o n - c a r b o n i n ether. T h e p r o d u c t m i x t u r e consisted of a b o u t 2 0 % i n d a n e , 2 0 % 1-indanone,
and 4 5 %
4,5,6,7-tetrahydro-l-indanone
o x y g e n f u n c t i o n w o u l d be
expected
(14).
once the c o m p o u n d
cis-hexahydroL o s s of has
a r o m a t i c , for p a l l a d i u m makes t h e best k n o w n catalyst for
the
become selective
hydrogénation of a n a r o m a t i c ketone to a n a r o m a t i c a l c o h o l a n d
for
h y d r o g e n o l y s i s of the a r o m a t i c a l c o h o l to t h e a r o m a t i c h y d r o c a r b o n .
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
0
Ο
Ο
Loss of Optical
Activity
U n s a t u r a t e d o p t i c a l l y active c o m p o u n d s h a v i n g a n a s y m m e t r i c center accessible
to a m i g r a t i n g d o u b l e
hydrogénation (4).
bond may undergo
a c t i v e olefin ( — ) - 3 , 7 - d i m e t h y l - l - o c t e n e oxide, a catalyst of racemization, but
low
over
product was 4 3 - 5 2 %
(15).
R e d u c t i o n over p l a t i n u m
isomerization activity, resulted i n only v a r y i n g amounts
racemized.
of
3%
palladium-on-carbon,
the
R a c e m i z a t i o n , a n d therefore b y i n f e r -
ence i s o m e r i z a t i o n , w e r e decreased a n d b y bases.
racemization on
A n e x a m p l e is the hydrogénation of the o p t i c a l l y
b y pressure, b y catalyst i n h i b i t o r s ,
R e d u c t i o n at 1500 p s i g over p a l l a d i u m - o n - c a r b o n gave
o n l y 2 3 % r a c e m i z e d p r o d u c t , over a L i n d l a r catalyst (19)
at 1 a t m gave
1 6 % , a n d over p a l l a d i u m - o n - c a r b o n i n the presence of s m a l l q u a n t i t i e s of p o t a s s i u m h y d r o x i d e or p y r i d i n e gave 12 a n d 1 8 % r a c e m i z a t i o n , respectively.
C e r t a i n l y , i n this c o m p o u n d , m i g r a t i o n of the d o u b l e b o n d
afford t h e 2-octene w i l l result i n r a c e m i z a t i o n i f the olefin is before
saturation, but
other
pathways
to
to
desorbed
r a c e m i z a t i o n also m a y
be
operative. Stereochemistry T h e extent of d o u b l e b o n d m i g r a t i o n d u r i n g r e d u c t i o n of a n olefin m a y influence m a r k e d l y the stereochemistry of the r e s u l t i n g p r o d u c t .
A
s t r i k i n g e x a m p l e is p r o v i d e d b y the w o r k of S i e g e l a n d S m i t h ( 3 5 )
on
hydrogénation of 1,2-dimethylcyclohexene.
O v e r p l a t i n u m oxide i n acetic
a c i d , this olefin afforded 8 2 % cis- 1,2-dimethylcyclohexane, whereas
over
palladium-on-alumina
The
the p r o d u c t
contained
73%
trans-isomer.
e x p l a n a t i o n for this u n e x p e c t e d l y large percentage of trans-isomer lies i n d o u b l e b o n d m i g r a t i o n to the 2 - p o s i t i o n or to the m e t h y l e n e p o s i t i o n . T h e stereochemistry of the p r o d u c t is i n a sense t h e r e s u l t a n t of c o m p e t i -
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
158
PLATINUM
GROUP
METALS
AND
COMPOUNDS
t i o n b e t w e e n rates of hydrogénation a n d rates of i s o m e r i z a t i o n of the i n d i v i d u a l olefinic species. I n general, it seems easier to r a t i o n a l i z e a s t e r e o c h e m i c a l r e s u l t t h a n it is to p r e d i c t i t . T h e stereochemistry of hydrogénation of olefins is s u c h that h y d r o g e n u s u a l l y is a d d e d as i f b y cis a d d i t i o n f r o m the catalyst to the side of the m o l e c u l e that is a d s o r b e d o n it (34),
but unfortunately it
is not a l w a y s easy to d e c i d e w h i c h side of t h e m o l e c u l e w i l l a d s o r b o n the catalyst. T h e consequence of d o u b l e b o n d m i g r a t i o n o n the stereochemistry of the p r o d u c t is f r e q u e n t l y , therefore, not easy to p r e d i c t .
Hydrogénation of Aromatic Rings
Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch011
A r o m a t i c c o m p o u n d s are r e d u c e d over the six p l a t i n u m m e t a l g r o u p catalysts at w i d e l y different rates, as expected, b u t a d d i t i o n a l l y t h e p r o d ucts of r e d u c t i o n f r e q u e n t l y v a r y w i t h the m e t a l used.
M a n y of these
results m a y be c o r r e l a t e d i n terms of t w o parameters not o b v i o u s l y c o n n e c t e d to a r o m a t i c p r o p e r t i e s : the r e l a t i v e tendencies of these catalysts to p r o m o t e
d o u b l e b o n d m i g r a t i o n i n olefins a n d to p r o m o t e
hydro-
genolysis of v i n y l i c a n d a l l y l i c functions.
Hydrogenolysis of Vinylic and Allylic Functions A g e n e r a l i z a t i o n d e r i v e d f r o m m a n y studies is that the toward
hydrogenolysis
of
vinylic
and
allylic
h a l o g e n increases i n the o r d e r r u t h e n i u m ^ platinum