PAWS LOGIC SYMPOSION Proceedings of the Logic Symposion held at Patras, Greece, August 18-22,1980
Edited by
GEORGE METAKIDES Department of Mathematics University of Patras Greece
1982
NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM. NEW YORK OXFORD
'NORTH-HOLLAND PUBLISHING COMPANY - 1982 All rights reserved. No part of rhis publication may be reproduced, stored in a retrievalsystem, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without rheprior permission of the copyright owner.
ISBN: 0 444 86476 8
Published by:
North-Holland Publishing Company- Amsterdam New York Oxford
Sole distributors for the U.S.A.and Canada:
Elsevier Science Publishing Company, Inc. S2 Vanderbilt Avenue New York, N.Y. 10017
Library ot c ongrras Cataloging in Publication Data
Logic Symposion (1980 : Patrai, Greece) Eatras Logic Symposion. (Studies in logic and the foundatians of mathema:ics 109) Includes bibliographical references. 1. Logic, Symbolic and mathematical--Congresses. I. Metakides, George, 194511. Title. 111. Series. QA9.AlL65 1980 511.3 82-14107 ISBN 0-444-86476-8 (u.s.)
V.
.
PRINTED IN T H E NETHERLANDS
:
ix
PROLOGOS ‘After over two milennia Logicians are returning to meet in Greece’. Thus the headlines ran in the Patras news media during the Logic Symposium from August 18 to August 22, 1980. From all over the world they met indeed, as 23 countries were represented from five continents. In keeping with such cosmopoly we decided to invite a representative selection of topics from most areas of Logic, rather than to focus on a particular aspect. So, h&e you fmd loosely arranged, a broad spectrum of papers ranging from algorithmic troubles to the morasses of set theory.
This was the first International Logic Meeting to be held in Greece. It was sponsored by the International Council to Scientific Unions and the Association for Symbolic Logic and held under the aegis of the Greek Ministry of Culture and the University of Patras. Having the 02-group mept in Patras just before the conference helped to ensure the participation of many eminent Logicians. The Organizing Committee consisted of J.E. Fenstad, A. Kechris, A. Levy, G. Metakides, S. Negrepontis, and G. Sacks. The University officials, the Town officials and its various industries and news media, they all offered their support and hospitality with a generosity that would have pleased Xenios Zeus. Special thanks are owed to Alexandra Pliakoura and Ioanna Riga of Patras who handled the local organizing with efficiency and charm. To Roberto Colon and Marion Lind of Rochester N.Y. belong the credits for the careful typing of this typing together with a personal debt of gratitude. One notable result of the meeting was a proof of the compatibility between having a good time and getting work done. The lectures were very well attended in spite of the lure of the beaches. Theorems were proved and conjectures refuted in classrooms as well as in tavernas and Mediaeval castles.
As Professor Kleene was widely quoted saying to the Press: ‘When I was helping to found the A.S.L. 46 years ago, little did I dream that some day we would have meetings as fine as this one’. May 1982
George Metakides
PATRAS LOGIC SYMPOSION
G . Metakides led.) 0North-Hollandhblishing Company, 1982
1
P.ECURSIVE FVNCTIONALS AND Q U A N T I F I E R S O F F I N I T E T Y P E S R E V I S I T B I ) I11 S. C . Kleene U n i v e r s i t y o f Wisconsin Madison, Wisconsin 53706
9.
INTRODIICTION ANP REVIEW. RFQFTR I 1978 and RFQFTR I 1
9.1. a r e the published versions o f my
l e c t u r e s o f June 13, 1977 a t t h e Second Symposium on Generalized Recursion Theory a t Oslo and June 19, 1978 a t t h e Kleene SvmDosium i n Madison. I n RFQFT I 1959 and RFQFT I 1 s t i t u t i o n of A-functionals In
1978 I proposed
1963,t h e r e
1
were l i m i t a t i o n s on the sub-
and on the use o f the f i r s t r e c u r s i o n theorem.
t o overcome those l i m i t a t i o n s by a l t e r i n g the l i s t o f
schemata and i n t r o d u c i n g new computation r u l e s .
The new schemata i n c l u d e
ones t h a t p r o v i d e d i r e c t l y f o r s u b s t i t u t i o n o f A-functionals and the f i r s t r e c u r s i o n theorem.
The new computation r u l e s do n o t r e q u i r e the values of
p a r t s of expressions being computed t o be computed unless and u n t i l they are needed.
The s t a r k l y formal character which t h i s gives t o the computations
gave reason t o seek a semantics f o r t h e language used i n them. drew the l i n e s I proposed t o f o l l o w i n t h i s semantics.
In
1980, I
Here I s h a l l con-
t i n u e along those l i n e s . I s h a l l endeavor t o repeat enough m a t e r i a l here from the two e a r l i e r
papers
1978 and 1980 o f
t h i s RFQFTR s e r i e s t o enable persons u n f a m i l i a r w i t h
them t o f o l l o w i n the main the present one, though n o t t o appreciate f u l l y how i t f i t s i n t o the c o n t i n u i n g i n v e s t i g a t i o n . Readers f a m i l i a r w i t h
9.2.
In
1978,t h e
may s k i p t o 510.
(An RFQFTR I V i s projected.)
2
primary o b j e c t s were o f the f o l l o w i n g f i n i t e t,ypes:
S.C. KLEENE
2
type 0
=
{O, 1 , 2,...1
( t h e natural numbers);
place functions from type the natural numbers.
i= 1 , For ;
into
SL, yL,.
the superscript
l o , 1 , 2 , ...) . &, b,
. . range over
'lL"
t.ype i t 1 = the ( t o t a l ) one-
type
91,8,
... a r e each
i (i=
over
fl, 1 , 2 , 3 ) .
may be omitted.
,...> )
Then I considered functions ( i n t o (0, 1 , 2 where
c, ... range
+@),
$(w) ,...
a l i s t of variables each ranging over one of the
These functions a r e " p a r t i a l " . A partial function $(a) is
f i n i t e types.
one which, f o r each choice of values of i t s variables from t h e i r respective ostensible ranges, e i t h e r takes as value a natural number o r i s undefined. 3 A partial function which i s defined f o r each such choice i s t o t a l . I defined when a function + @ I )
e
= (0l,...,el)
-
i s p a r t i a l recursive - i 8, ~where
7, > 0 i s a l i s t of "assumed" partial functions
with
(variable o r constant), each of a given l i s t of variables of our f i n i t e types, or equivalently ( w i t h
e variable) when a functional $(ea) i s
partial recursive. Toward developing a semantics t o clothe the bare bones of formal called f o r representing the types
1978,my 1980 proposal
computations a l a 0, 1 , 2 , 3 w i t h i n
types
. . . .
0, 1 , 2, 3.
(Another semantics was developed by
Kierstead in 1980, 1982.) Here type
b = EO,
1, 2
,..., @ I
where
@
= undefined.
For
0, 1 , 2 , type ( L t l ) . = the "unimonotone" p a r t i a l one-place functions it1 a from type 1. i n t o the natural numbers. I shall proceed t o explain
1=
"unimonotone" f o r successive values of
o3
Ishallwrite
= A A ~
type
i-
Take
o o =0 ,
@ ' = A & O @ ,
0, yo
{@'I,
N~ =
> 0
J+l. @2=li1@,
i - I@> = E O , I , 2 , . . . 1 = type 0, i - {Q2>, 13= type 3 - ~ ( 3 ~ 1 .
= type
type
f o r the moment,
Remember t h a t
d
and
l1=
is, being
par-
t i a l functions, need n o t be defined f o r a l l members of t h e i r ostensible
3
Recursive Functionals and Quantifiers of Finite Types Revisited I11
domain type
(i-1)'.
Let
&i=$
( I d
extends
have i t s usual set-
@I1)
t h e o r e t i c meaning, considering t h e f u n c t i o n s as s e t s o f ordered p a i r s w i t h 0 +1 *J I Whenever &i ( 8 ) i s d e f i n e d f o r a given second members E 1 '+1 .i s h a l l wish t h a t t h e f a c t and the value o f aJ ( B ) t o depend o n l y on de-
.
ii,
.
f i n e d values o f $-, never on the absence o f d e f i n i t i o n o f values. So i f '+I .i '+1 .i kJ (B ) i s d e f i n e d and k i 3 $-, then &J ( a ) s h a l l be defined w i t h T h i s being so, I
the same value.
i=
For putting if
kl(
0
8"
I d e f i n e when
0,
:&O = 80
) = E
E
v
monotone l i k e w i s e , a f t e r
b0 =
i s monotone means t h a t ,
&'
1". then
i s the constant f u n c t i o n
&'
i s monotone.
-0
a
h&'n.
&'
i s unimonotone means t h a t which a- 2 ( -a1 )
8'
for
explain.
&'
i s unimonotone means simply t h a t
&'
i s monotone.
i s monotone and, f o r each
w. r. t o &2
The basis
i'
(with
8'
c
&.'
and i 2 ( 8 ' ) = &'(&')),
represents the i n f o r m a t i o n about and
8'
&'
*1
a
for
o u t s i d e of i t s subfunction
&'
as I s h a l l t h a t i s used
being i n t r i n s i c a l l y determined
8'
means t h a t i t i s determined by working from w i t h i n
9.3
0, i . e .
i s defined, t h e r e i s a E i q u e l n t r i n s i c a l l y determined basis
- 2 '1 i n determining t h e value a ( a ),
&'
type
E
without looking a t
8'.
To formulate t h i s , I s h a l l proceed a t once t o t h e n o t i o n o f an "oracle"
f o r a type-;
function
i n i t i o n o f type
&2.4
T h i s n o t i o n served i n
(bottom p. 15).
1980 f o r
the f i n a l def-
The reader should have no d i f f i c u l t y i n
e x t r a p o l a t i n g from t h e f o l l o w i n g account o f oracles f o r type-2 o b j e c t s t o oracles f o r t y p e - i objects, and indeed a d e s c r i p t i o n o f them i s s u b s t a n t i a l l y included i n i t . The major o b j e c t i v e o f t h i s paper i s t o c h a r a c t e r i z e oracles f o r type-3 o b j e c t s ( i n 11.2). An o r a c l e f o r a t y p e - i o b j e c t
i2, or briefly
02 an a -oracle, i s an
agent ( s h a l l we say an agent o f Apollo, and use t h e feminine gender a f t e r
S.C. KLEENE
4
the oracles of Delphi?) who responds t o questions, as follows. t i t l e d t o ask her "What i s &'(&')?",
i1
a question, we p u t an oracle f o r present the envelope t o her. 5
f o r any
;'
E
type
W e a r e en-
i. To
ask such
i n a closed envelope (or chest) and
= -CASE
i2: The i2-oracle pays no a t t e n t i o n t o our envelope ( s t a n d s mute).
Then
&'
Without opening our envelope, the a- 2 -oracle pronounces t h a t
CASE 'L2:
A2(&') is,
@ = @.
i s the t o t a l l y undefined function ;.?
=
&*
CASE 3':
m.
Since she answers
"c"
*1 without knowing what type-; object a
i s the t o t a l constant function
?.&'m.
The &'-oracle opens our envelope, revealing t h a t she will re-1 indeed some values of a , i f she i s to quiresome information about
&',
ll&'(&l)?ll. (Were she willing t o answer
answer our question
without learning some values of
i1,
%'(k')?''
she would do so under Case
T'.)
AS
her f i r s t s t e p toward obtaining such information, she asks the &'-oracle -1 * O who emerges from our envelope a preliminary question 'la ( a ) ? " using an The a* 1-oracle does not reempty envelope (6' = ) . Subcase -1 ) = spond; she stands mute (Case T'). Then so does the a-1 -oracle; a*' ( a
@
m2:
0.
Subcase 3.2': Without opening the envelope, the &'-oracle declares t h a t *1 -0 a ( a ) = n (Case 7'). Thus the i2-oracle learns everything about &',
P
6'
Xi.o!
Depending i n general on the n, she may then -1 ) = m, Subcase stand mute (&2(&') = o r declare t h a t a- 2 (a The a*1-oracle opens the envelope (Case 3'). The a* 2-oracle, observing t h i s , may stand mute, making a- 2( a-1 ) = (She could have been hoping t o get an namely t h a t
=
0)
3.3':
0.
m'.) Or she may pose a f i r s t nonan r, (passing over the f a c t
answer from the &'-oracle under Subcase preliminary question t h a t the ;'-oracle,
'I&'(r ) ? " w i t h -0
E
finding the envelope f o r the preliminary question empty, -1 d i d not answer t h a t ) . Suppose the l a t t e r . As we know, the a -oracle opens
Recursive Functionals and Quantifiers of Finite Types Revisited I11
5
Opening t h i s one, and f i n d i n g r + , i n s i d e , she may stand - 2 01 O r t h e &'-oracle Then so does the &'-oracle, making a (a ) =
a l l envelopes.
0.
mute.
-1 may declare t h a t a ( r ) = + I., I n the l a t t e r event, the a- 2 - o r a c l e may de4 -1 *1 c i d e t h a t t h e information t h a t ( t h e a - o r a c l e opens envelopes) & a (%) =
- 2 -1 a (a )
i s sufficient t o r u l e out
being defined, and accordingly stand mute.
- 2 *1 O r she may decide t h a t i t j u s t i f i e s her d e c l a r i n g t h a t a (a ) may decide t o seek more information by asking another question Altogether, i n t h i s Subcase
r,
3.3',t h e &'-oracle
m. O r she "a * I (q)?".
questions the ;'-oracle
with
a s e r i e s o f d i s t i n c t i n t e g e r s ( p o s s i b l y extending i n t o the t r a n s f i n i t e ) ,
q),
El,
..*, % a
-.-
-1 - 2 - o r a c l e f i r s t asks a question u n t i l e i t h e r (a) t h e a ( i . e . r+ = a -2 *1 -1 which t h e a - o r a c l e does n o t answer, making a (a ) = @,or,with a l l questions
(q)),
%
for
5 < some
- 2 (a - 1 ) -(a
*2 -1 a (a )
=
@)
E < o1 answered, (b) t h e &'-oracle
o r (c), w i t h 5 > 0,
then stands mute
the i 2 - o r a c l e then declares t h a t
m.
Throughout t h e process described, t h e &.-oracle operates determini s t i c a l l y , always doing t h e same t h i n g under t h e same c o n d i t i o n s as she knows them.
Thus,
i n Subcase
ginning, t h e questions f i r s t one
r,
3.3'
w i t h her n o t standing mute a t the be-
%, t--, ..., -5 r , ...
are determined by her, the
o u t r i g h t ( t h e same o f a l l envelope-opening ;'-oracles),
and
r on t h e b a s i s o f t h e e a r l i e r questions and answers ( t h e same -5 of a l l envelope-opening ;'-oracles w i t h h1 3 15
l c < 5 ) 4 B ~ . -5-5 o f a type-; o b j e c t i s a
type-2 o b j e c t .
10. ;'-ORACLE
TREES, SUBORACLES.
10.1.
The program f o r an 1 2 - o r a c l e as described i n 6.3 and 9.3
w i l l do under any circumstance she c o u l d encounter i n t h e l i n e o f her duty
--
can be represented as a t r e e . -2 *1 "a (a ) ? " .
Her d u t y i s t o respond t o questions
A v e r t e x i n t h e t r e e , by i t s p o s i t i o n , i n d i c a t e s ( n o t h i n 9 o r ) somet h i n g about an
&'
For a given ;'-oracle,
as embodied i n an oracle.
we
f o l l o w a path through t h e t r e e from t h e i n i t i a l vertex up through some ver-
A t each vertex n o t the l a s t on
tex, n o t n e c e s s a r i l y t h e l a s t on a branch.
t h i s path, t h e choice of t h e branching from i t which i s taken n e x t represents a new piece o f i n f o r m a t i o n about t h e
&'-oracle.
i n i t i a l vertex, we know n o t h i n g about t h e a* 1- o r a c l e -1 any a - o r a c l e a t a l l . To see how t h e c l a s s o f t h e &'-oracles
I f we a r e a t the
--
we are considering
p o t e n t i a l l y represented i s de-
creased, o r t h e information about t h e ;'-oracle
i n hand i s increased, as we
proceed along a path, suppose we have already proceeded by zero o r more *2 The a - o r a c l e then,
steps from t h e i n i t i a l vertex t o a c e r t a i n v e r t e x . depending o n l y on the i n f o r m a t i o n about t h e ;'-oracle
represented by the
","
path thus far, may stand mute ( t o make which v i v i d , I then w r i t e "MUM" a t 92 -1 t h e vertex), o r d e c l a r e t h e value o f a (a ) t o be 5 ( I then w r i t e there), o r ask a new question
"@'" o r "r?", according
"&'(&')?''
o f the
&'-oracle ( I then w r i t e
as t h e question i s asked w i t h an empty envelope
S.C. KLEENE
10
(Lo
=
0)o r w i t h an envelope c o n t a i n i n g an
1 E lo (&' = r)).
I n the
f i r s t two cases ("MUM" o r "m_P),the branch t h e v e r t e x i s on ends w i t h it. I n t h e t h i r d case, t h e p a t h s p l i t s i n t o d i f f e r e n t branches according t o t h e 1 h - o r a c l e s c o u l d make t o t h e question.
responses d i f f e r e n t
a For an .1
-1
o r a c l e who does n o t respond r e v e a l i n g more i n f o r m a t i o n about a representing t h a t
a -oracle 1
, the
path
ends w i t h t h a t v e r t e x (even though i t i s n o t
t h e end o f a branch of t h e t r e e ) and
h2 ( h1 )
=
a.
W i t h i n t h e compass o f t h i s general d e s c r i p t i o n , l e t us see what happens i n t h e cases and subcases cataloged i n 6.3 and 9.3. I n Cases
i2 and T2,
6.2 - o r a c l e ' s
the
so t h e r e a r e no branchings.
-1 a c t i o n does n o t depend on a ,
The t r e e c o n s i s t s o f a s i n g l e v e r t e x , as shown
i n F i g u r e 1.
-
- .J
MUM
Case
i2.
Case
P.
F i g u r e 1. I n Case
T2,
t h e i n i t i a l v e r t e x and t h e second v e r t e x on each branch
appear as i n F i g u r e 2, f o r some c h o i c e between t h e a l t e r n a t i v e s a t each second v e r t e x .
MUM o r
MUM
MUM
@?
MUM Case
T2 t o second v e r t i c e s
(complete i f t h e t o p second v e r t e x has "MUM"). Ci",...,.
9
q,?
11
Recursive Functionals and Quantifiers of Finite Types Revisited 111
To keep t h e n o t a t i o n simple, I have shown "MUM o r mJ1l a t t h e end of each o f the
lower w branches, although the 1 ( i f it applies) will depend in
n', in
general on t h e branch. The lower w branches a r e f o r Subcase 01 which t h e a -oracle, w i t h o u t opening t h e envelope, declares t h a t &'(&')
=
n (n =
0, 1, 2,
branch i s f o r Subcase
... f o r
3.3'.
the v a r i o u s & ' I s under Case
I n Subcase
3.1'
7').
The top
(no response by t h e &'-oracle),
t h e path d e s c r i b i n g her ends w i t h the i n i t i a l v e r t e x .
*2 second vertex, i f" t?h e) a , - o+r a rc l e( asks ' ; "
A t the top o r o-th
( t h e second of t h e a l t e r -
-1 n a t i v e s shown), then, since our being t h e r e means t h a t the a - o r a c l e opened -1 t h e o r i g i n a l (empty) envelope, and t h e r e f o r e opens any envelope, t h e a o r a c l e ( a f t e r opening t h e envelope c o n t a i n i n g Q ) may e i t h e r n o t respond ( s o her path ends a t t h e top second v e r t e x )
(n+
... f o r
= 0, 1, 2,
-1 v e r t e x and a i n Figure 3. (IIMUMII) "&'(cl)?"
-1 various a I s ) .
With
responding, we g e t t o one o f
,
-0
l l ~ ? l l a t the top second w
t h i r d v e r t i c e s , as shown
02 A t each o f the t h i r d v e r t i c e s , t h e a - o r a c l e may stand mute
o r declare t h a t ("I~?").
02 - 1
a (a ) =
m ("mJ)
o r ask another question
Again, t o keep t h e n o t a t i o n simple, I have n o t i n -
d i c a t e d t h e dependence of the i n the tree.
9 o r respond w i t h n
m
o r the
c
( i f i t a p p l i e s ) on t h e p o s i t i o n
(My n o t a t i o n s here are subscripted
S.C. KLEENE
12
c = o
c = 1
MUM o r
Case when
"
~
T2 t o
or
MUM o r
mJ o r q ?
MUM o r
~4 o r q ?
t h i r d vertices
i s" a t t h e t o p second v e r t e x . Figure 3.
f o r successive p o s i t i o n s i n t h e path belonging t o a given a d d i t i o n a l l y f o r d i f f e r e n t paths.)
.1
a
, but
A t any vertex w i t h "I~?",
not
t h e ;'-or-
a c l e w i l l e i t h e r stand mute (ending i t s path), o r respond w i t h
51, g i v i n g
... t o
w
branches t o f o u r t h verti'ces.
L e t us index by o r d i n a l s
5
t h e v e r t i c e s along any p a t h a f t e r t h e
rise for
r~, = 0, 1, 2,
i n i t i a l vertex.
( k n i t t i n g t h e i n i t i a l vertex makes t h e v e r t e x i n d i c e s agree
w i t h the indices 'of
r's
a t v e r t i c e s above t h e lower
w
?
branches and o f
Recursive Functionals and Quantifiers of Finite Types Revisited 111
n's
13
on the segments i s s u i n g from those v e r t i c e s . A f t e r any stage i n the c o n s t r u c t i o n o f the t r e e a t which we have an
"r ? " a t the end o f a branch, the c o n s t r u c t i o n continues by branchings -5 f o r n = 0, 1, 2, l e a d i n g t o o n e x t v e r t i c e s indexed by ~ + 1 , -5 a t each o f which t h e a' 2 -oracle, responding t o the i n f o r m a t i o n t h a t ( t h e
...
'1
'1
a - o r a c l e opens envelopes) & Wnn1c < El = B what we have done i s t o take 8'
k1
bold
given i2-oracle and
2
8'
u
m
correct.
then as we saw i2(;')
c
i'),
i n perhaps a
new order, so indeed t h e extended branch represents p r e c i s e l y i2(i') =
running
8',
making
-1 I n t h e case t h a t t h e given i 2 - o r a c l e went mute a t B , i s undefined f o r every extension
-1 i1 of 8
And what we have done i s t o c o n s t r u c t a branch representing
71 B u
8'.
u
81 . So
l e t t i n g t h e new o r a c l e go mute t h e r e i s l i k e w i s e c o r r e c t f o r the f u n c t i o n
i 2 , g i v i n g t h e same r e s u l t f o r i1 a t F1 u 8' as t h e given .1 running w i t h a branch through the t o p a t 8 . For b o l d ;'Is i n t h e given i 2 - o r a c l e t r e e ending w i t h
"MUM"
at
g1,
oracle d i d second vertex
we have made no
'2 * 1 change f o r o u r suboracle, which again i s c o r r e c t , since a (y ) - m f o r -1 - 2 1 any extension y of would (by 6,' c give ;( ) = m, contra-
F'
2)
d i c t i n g t h e f a c t t h a t t h e given 2 - o r a c l e gives
"MUM"
at
?.
S.C. KLEENE
20
Finally, consider any
F i r s t , suppose she f a i l s t o answer some question asked of her by the given 2 - o r a c l e ; so 7 i (A-1 ) = whence (by
which i s shy.
i2 c ?) i2(z1)=
0.Let
(bold) d i f f e r from
@,
z1
by h a v i n g 0 as value f o r each argument f o r which i s undefined. The new i2-oracle will question the ;'-oracle w i t h a l l the arguments in 7B 1 u B* 1 , f o r and
i1 determined
F1
; 1
as above from & I .
Her questioning of the a -oracle
zl(t-)
g'
will run the same up t o the f i r s t argument r i n f o r which @ and a- 7 (c) = 0; t h e n the $-oracle does not answer, so the new oracle makes :'-oracle's - 2 -1 a (a ) =
* 2 1'
0, as desired.
=
4'-
answers a l l the questions t o her b u t f a i l s on a question by the given a- 2-oracle, a (a ) =
If the:'-oracle
0.
Then the new i 2 - o r a c l e will f a i l t o e l i c i t a n answer from the -a1 -oracle a t the f i r s t argument r in b' f o r which :'(I) = @ and
-
&l(y) = 0 , which again renders
- 2 -1 ) =
a (a
@,
as desired.v
We recall the notion of a subunion ( o f the sections) of an
(XXII.2) i n 5.4 o r from 9.4.
Subfunctions of
i2
i2 from
which a r e subunions a r e
represented by suboracles whose t r e e s a r e obtained from the t r e e f o r by simply changing
"mJ" t o
preserving monotonicity.
"MUM"
i2
a t the ends of zero o r more branches,
Indeed, I used this in the concluding paragraph
of 6.3 and of 9.4. 11.
TYPE 3, ASSUKED FUNCTIONS WITH TYPE-2 VAPIARLES. 11.1
T h i s subsection presupposes f a m i l i a r i t y with
1980 5.4.
The cursory reader
may skip t o 11.2. Type 3 , according to 5.2 o r 9.2, consists of the "unimonotone" partial one-place functions from type 2 into Paralleling 5.4 f o r type
0
.
i, a p a r t i a l
one-place function
i3
from type
into
i s unimonotone i f f i t is monotone ( a f t e r 5.2 o r 9.2) and has the following further property i n two parts. (After CY- 3-oracles have been introduced i n 1 1 . 2 , this can be condensed.)
For each
i2
of type
f o r which
21
Recursive Functionals and Quantifiers of Finite Types Revisited 111
* 3 .2 a (a )
4'
of B2
i s defined, t h e r e i s a minimum subunion such t h a t
A2
(so
i3(i2)
i s defined.
i2 =u,,
That i s :
8
8'
i2 c i2,
S
cL2?l
i)
and by (XXII.2) o r end 9.4 E type 03 - 2 - 93 - 2 i s d e f i n e d ( s o by monotonicit,y a ( 8 ) - a ( a ) ) ; and, f o r each c
u
S 8 1€rj2"B1
(unique)
with
8'
E2
c
A2
-3 and a ( 8 )
t h e basis f o r
( f o r each such
i2) i s
-2
a
y.
i2 c 2.l1 I
defined, -3
r.
a
.
S
o f t h e sections
2'"
with
-3 *2 and a (B ) =
call this
-2
D
Furthermore, t h e basis
" l n t r i n s i c a l l y determined", as w i l l be formulated i n
11.2. Again, w i t h o u t i n v o l v i n g the i n t r i n s i c a l i t y , we can c a t a l o g the p o s s i b l e
-2
bases f o r
a
-3 w. r . t o a given type-3 o b j e c t a , as
A'
v a r i e s over type
2.
- 13:
i3 i s the
CASE
i3(Q2)
CASE
Z3:
empty u n i c n a 2 =
CASE k2
33:
t o t a l l y undefined f u n c t i o n
o f sections o f &2) -3 - 2 Then -a ( a )
Otherwise.
must be d e f i n e d f o r some
-3 . ~ ~ : basis.
i2 =
Subcase
A% '; .
3 -2
(a )
S
1;
9
are some
of N , 11.2
bases f o r
and (using the
i s defined f o r some A 2 ' s , and each such 3.13:
&'
&'
=
o2
(Case 12 ).
m
i s i t s own basis.
say; so
4'
(For,
then
and we must take t h i s , as the empty union
i2
1
s,
03. Wo bases.
i s t h e basis f o r every a. * 2,
would p u t us back i n Case 2 . ) Subcase 3.33: -2 -1 a ( a ) i s defined f o r some i ' k ~ = type -3 -2 a ( a ) i s defined, then t h e basis = 2 (4.)
a .3 = Aa
i s defined (Case 22 ) , =
i s defined,
c o n s i s t s of one s e c t i o n
o2
il. Subcase
i2(@')
If i
-2
i s defined, = 5 say, so
0
=
hi2@
&'(a')
i-
@'I
EB 2dl SB
I now describe how oracles f o r type-;
objects
This w i l l g i v e a s e l f - c o n t a i n e d d e f i n i t i o n o f type-3.
If
(Case 32). where
i2 under Case 32, i2 for a'3 ( B- 2 ) t o be
w. r. t o
t h e minimum such subunion of
but
i s undefined,
(fl 2 )
2
E
thus members defined.
i3 shall
perform.
22
S.C. KLEENE
I conjectured ( i n the summer of 1977) t h a t an i3-oracle could operate i n the principal case (Subcase
m3)as
an i 2 - o r a c l e does in the correspond-
i n g case (Subcase -23.3 ); t h a t i s , by questioning the i2-oracle w i t h a nonempty s e r i e s of functions
%,
rnl
i", i,,, ..., bK, ..., receiving
,. . . , x m , . . . , with
determined by
K
{lh
By the inductive hypothesis of federation f o r
k element independent s e t s there i s a y in cl(B-{ak+l}) n o t in any c l ( B ' ) f o r B'
a proper subset of
B-Iak+,>.
x in ~ l ( { a ~ + ~ , ynot } ) in cl({y}) or ~ l ( { a ~ + ~ B }y) exchange .
there i s an
y
E
cl ({ak+l,x>) and
y
E
cl({a l , . . . , a k > ) ,
ak+l
E
cl ({x,y}).
Now
so x
E
cl(B) and
suppBx
i s federated by proving would get
x
E
y
E
B = suppBx.
~ l ( B - C a ~ + ~and l ) ak+l
j o i n t l y imply ak+l thesis.
By semiregularity of two dimensional closed s e t s
E
i s defined.
If n o t , some a i E
cl({x,y})
c l ( B - I a k + l > ) . This makes
On the other hand, i f
cl ({ak+l ,y})
.z E
i < k+l,
c l ( k , a k + l } ) , which j o i n t l y imply y
we get E
4
and
suppBx. If
and y
E
B
We verify t h a t
i = k+l, we
cl(B-{ak+l>), which
B dependent, contrary t o hypo-
x
E
cl(B-{ai})
cl(B-{ai>), so
and
suppBy 5 B-Iail,
and
Recursion Theroy on Matroids
4
ai
suppBy,
c o n t r a r y t o t h e choice o f
41
suppBy = B-Cak+l}.
(U,cl)
So
i s feder-
ated. V , V1,
Now f o r ( i i ) l e t
E V.
V = V1 u V2, V1
i V,
be a basis f o r
V1 n V2,
dS+,
V2
Since
V1,
so
V1.
cl({dt+ll).
dt+l
Since
ds+l,
cl(Iz,dt+ll),
dt+l
z
then e i t h e r dt+l
E
V1
i s dependent on
dS+l
E
pendent on
dl,...,ds,
semiregular, and
EXAMPLE 3 . 5 . A,
z V1,
,...,
{bn+,
, bn+2....l,
(U.cl)
let
A
Let
X
(U,cl)
A
E
clA(B)
-
THEOREM 3 . 6 .
W
be
dt+l
in
z
V.
E
V2
indepen-
dt+l
E
or i n By exchange,
i s the union o f
dS+l
E
V1
and
V2,
~ l ( { d ~ + ~ , z5} )V1,
V1 n V2.
So no such
,...,bn},
{bl
A u W.
If
= cl({bi})
and
V1,V2
ds+,
so
i s de-
e x i s t , and
there i s an
iB l
C,
x
let
W
V
is
holds w i t h a non n u l l
be the closure o f
W,
u cl({bj})
and
and
U
note t h a t i f
B
cl(B) (X, c l ) ,
we g e t i n
B i s a f i n i t e independent X
VA
Axiom V d o e s n o t imply axiom 111.
and i n
W.
By
so
u { c l ( B ' ) I B ' ;Bl. so axiom
X,
f a i l s t o s a t i s f y axiom I V
i s independent i n
-
are t h e union o f
X
B 5 X,
while f o r
n z 2, 0 2 i < j < n,
in in
VA
The independent sets o f
To v e r i f y axiom VA,
uIclA(B'):B'
(i)
...,dt ,. where
dl,
be i n f i n i t e dimensional r e g u l a r , l e t
be
then' B n A =
(X,clA),
,...,d,
I n t h e second case
so
and an independent s e t i n
= (Ibi,bjl)
of semiregularity.
x
V1,
dl
i s semiregular,
c l x ( B ) = (B n A ) u c l ( B n W).
r e g u l a r i t y of
certainly
If V
E
Let
cl({ds+,})
We produce S t e i n i t z systems where axiom
any subset o f
set i n
V,
c o n t r a r y t o choice.
be a basis, l e t
cl(Ibi,bj})
not i n
c o n t r a r y t o choice. dS+l
V1.
By f e d e r a t i o n o f two element inde-
I n t h e f i r s t case
V2.
But
but axiom I V f a i l s .
bl,b2
cl({z,ds+ll).
say
V1,
there i s a
cl(IdS+l,dt+ll) are both i n
E
5- V2.
cl({z,dt+,})
in
E
or
g V,
V1
V1 n V 2
we g e t
i s independent. z
E
Since
dl,...,dt+l
pendent sets, t h e r e i s a
dstl
i V1,
V2
extend i t t o a basis f o r
i s defined and n o t i n
dent o f
be f i n i t e dimensional closed sets w i t h
V2
holds.
(ii)
Axiom I 1 1
d o e s n o t i m p l y axiom V . PROOF.
For ( i ) , use
Vm
over any f i n i t e f i e l d ,
For ( i i ) , l e t
bl,b2,
...,
be a
48
A. NERODE and J. REMMEL
base
B for
V_,
that
suppBv
does n o t have e x a c t l y two members.
= cl(Ibi})
cl(ibi,bj})
t h r e e members. of
(V-,
over an i n f i n i t e f i e l d l e t
clI)
n o t i n any
u cl(Cbj}).
clI(F)
n o t i n any
x
Then axiom
V
v
in
such
V
f a i l s since F
has a t l e a s t
r e q u i r e d may be chosen by r e g u l a r i t y
cly(F')
( O f course t h e s e
clI({vi1),
be t h e s e t o f a l l
However, axiom I11 h o l d s i f
F o r t h e n i n f x i o m I11 t h e in
X
x
for
F'
have as
a p r o p e r subset o f
suppFx
the set
F
F,
of
c a r d i n a l i t y > 2).
A x i o m V I implies a x i o m 111, b u t n o t conversely.
THEOREM 3.7.
PROOF. Assume axiom V I , l e t J
I
be an i n f i n i t e independent s e t i n
i s i t s e l f an i n f i n i t e independent s e t , l e t
of
J-I.
an
x
Put
in
F = {y,xo}
clI({y,xo))
f o r axiom 111.
such t h a t
vi
d
vi
and assume a l l
I
such t h a t a l l o f
k t Kn+l
vi
E
clI(Iy,xo}).
,...,vn
E
Given
cli(I
t h e n t h e r e i s no problem e n s u r i n g t h a t
y
J.
Let
xo
vl,...,vnh
vi f c l ( 1 u { X I ) ,
where
be any o t h e r element clI(0),
Now i f vi
U {x}).
(U,clI),
we must f i n d
dclI(Iy,xol),
so we may d r o p t h e s e
Iil,...,ik-2} from
There i s a f i n i t e s e t
,...,ik-2 1 u I x o , y l ) and i n a d d i t i o n n+2. L e t Ki = c l ( { i l ,..., ik-*, vi}), i = 1 ,..., n, l e t = c l ( I i l ,...,ik-2,xo1), l e t Kn+2 = c l ( l i l ,...,i k m 2 , y } ) . Then K1 ,...,Kn+2
are
n+2
v1
c l o s e d subsets o f dimension
,...,i k - 2 , x o , y } )
cl(Iil i n the
k
are i n
cl({il
k,
o f dimension
,
sk-1
a l l contained i n n+2 s k ,
so i f
dimensional space n o t i n any o f t h e
we g e t r e s p e c t i v e l y i n
(U,clI)
that
of axiom 111.
F i n a l l y we need v e r i f y
vi
E
and
x
in
clI(Ixl)
vi
f ~'$31
Ki.
suppFx,
vi f c l I ( { x } ) .
so by exchange
x
E
pendent o v e r cl(Iil,...,ik-2,xo,Y dent over
I,
cl(Iil
x
and
,..., i k - 2 1 ) , I),
or
hence so a r e
vi
both i n
so t h e n
clI({x,vi}) x,vi,
so
x
cl(Iil
cl,(Ivi3).
x f Kn+2,
which v e r i f i e s p a r t
x.
We c l a i m t h i s g i v e s T h i s i s because t h e
~ l ( { i ~ , . . . . i ~ - ~ x ~ , y }and ) inde-
,..., ik-2,x,
=
clI(Ixo,yl),
C
clI(Ivi1).
To see axiom I I I does n o t i m p l y axiom
and
x
Otherwise we have
~l({i~,. vi}), . . ,cio n~ t r ary ~ to , the choice o f
contrary supposition gives
g i v e s an
x f Kn+l
Since
are i n
xo,y
axiom V I
but
vi}) xo,y
= a r e indepen-
V I observe t h a t t h e counterexample used
f o r theorem 3.6 (ii) works h e r e t o o , e x a c t l y t h e same way.
Recursion Theroy on Matroids THEOREM 3.8.
A x i o m V i m p l i e s a x i o m 11.
A x i o m I1 d o e s not i m p l y a x i o m V. The f i r s t two a r e t r i v i a l .
PROOF.
49
A x i o m I11 i m p l i e s a x i o m 11.
A x i o m I1 d o e s not i m p l y a x i o m 111.
Vm
o v e r a f i n i t e f i e l d does t h e t h i r d .
The
same example as f o r theorem 3.6 (ii) works f o r t h e f o u r t h . A x i o m I1 i m p l i e s a x i o m I, b u t not c o n v e r s e l y .
THEOREM 3.9.
As f o r t h e second, l e t
The f i r s t a s s e r t i o n i s t r i v i a l .
PROOF.
f i n i t e dimensional v e c t o r space w i t h b a s i s consist o f a l l
v
(i) v = bk + bk+l (ii)v
bk +
=
...
bo,...,bn,...
Vm
be t h e i n -
GF ( 2 ) .
over
Let
X
o f one o f t h e two forms below.
...
+
bQ + bL + b, + +
To see axiom I1 f a i l s choose
... + bns
J = {bqi
+ b4i+2:
where
k
5
II.
where
k
5
11 < in
i
5
n
2
2).
I t i s easy t o see t h a t i n
o f t y p e (i) span
X
(elements o f t y p e (ii) are
X, c l ( J ) = J , c l ( J u { b o l ) = J u {bo}. Axiom I .
Now we v e r i f y
x
Note t h a t elements
of
X
the sum o f two o f t y p e (i)), so t h e r e i s a subset i s a basis f o r certainly
X
in
dim[X/V]
(X,clv). and
B
i n g axiom I i f t h e r e i s a
z
in
f o r every
IsuppIz(
(X,clv), in
z
b
V,
C
Summarizing
so
(we a r e o v e r
GF(2)!).
x
5
Without pain 111 2 2.
in
1
in = 1,
X,
(X,clv),
We a r e a l r e a d y f i n i s h e d i n v e r i f y -
IsuppIz(
?
(X,clv).
2
in Since
(X,clv).
for all Since
z
z1,z2
So assume
B i s independent i n
and t h e r e i s a u n i q u e
= clv({z})
= clv{il,i23.
o f type ( i ) ,
f i n i t e dimensional closed. C
4.
B with
clv({i(z)))
(We o n l y used t h a t
i s i n f i n i t e independent i n
i s infinite.
lsuppIzl
# z2 i n B, clV{z1,z2)
they a r e elements o f
axiom I .
m,
B we have
we have
suppIz.
z1,z2,z,
E
=
I
Since
B o f elements o f t y p e ( i ) which
in
B.
i(z)
in
I
So i f
a r e elements o f
B,
and t h e i r sum i s of t y p e (ii) o r t y p e (i) suppI(zl
+ z 2 ) = {il,i2}
as r e q u i r e d f o r
A s i m i l a r proof shows t h a t f o r any c o i n Axiom
h o l d s and Axiom I 1 f a i l s f o r
(X,clc).)
RECURSION THEORETIC C O N S E Q U E N C E S Throughout t h i s s e c t i o n
(U,cl)
i s an
n f i n i t e dimensional r e c u r s i v e l y p r e -
A. NERODE and J. REMMEL
50
sented S t e i n i t z system, sets.
A
W 2 U,
in
V
dim(U/W) < = or
and f o r any W1, dim(U,W2v V )
i s maximal i f
L(U)
either
L(U) i s the l a t t i c e of recursively enumerable closed subdim(W/V)
dim(cl(We ) / c l ( C '))
'))
so,
such t h a t
i t easily follows t h a t
Suppose there i s a n o n t r i v i a l ei
and stages
cl(W;"'-')
u {X3)/Cl(CS"+1)1
-,
...,en
d i m [ c l ( W ~ ) / c l ( C s ) ] > dim[cl(W;-')/cl(Cs)].
such t h a t
dim(Ne/C) =
dim[cl(E)/Aol =
eo.
(C ')]
S
x f c l ( C ')
=
since otherwise
sn-1 S by exchange and hence d i m [ c l (We ) u {en3)/cl (C ')I = sn-1 S 5,-1 S ) u I x l / c l ( C ')I = dim[cl(We )/cl(C ")I. By t h e same argument dim[cl(We en
x
E
6
c l (eo,.
. .,en-l
s -1 cl(Wen ) .
That i s ,
sn
E
,x)
Thus We\
C
x
S
cl(Wen)
E
S
and a t some stage
')
t > sn, x
sn > to which c o n t r a d i c t s our choice o f
and
cl(E) n cl(C) = c l ( 0 )
- cl(C
and
hence
A.
E
t c l ( C ).
to. Thus
i s nowhere simple.
(Note t h a t i n our argument i n t h e second p a r t o f Case 2, we are n o t c l a i m i n g that C
E
i s independent over
because
We
C
but only t h a t
i s i n f i n i t e dimensional over
dimensional over
A.
cl(E) C.
i s i n f i n i t e dimensional over
Thus
cl(E)
i s only i n f i n i t e
b u t n o t n e c e s s a r i l y completely d i s j o i n t from
Thus there i s a stronger n o t i o n o f nowhere s i m p l i c i t y , namely, s t r o n g l y nowhere simple i f f f o r a l l an i n f i n i t e dimensional
R
cW
W
E
such t h a t
L(U) R
with
dim(W/A) =
m,
Ao. A
E
L(U)
is
there exists
i s completely d i s j o i n t from
A.
Note
t h a t our argument i n Theorem 5.4 does produce elements which s a t i s f y t h i s stronger n o t i o n o f nowhere s i m p l i c i t y ) .
5.
W E NOW GIVE RESULTS USING AXIOM I,11, 111.
THEOREM 5.1.
A s s u m i n g a x i o m I, t h e r e e x i s t s a m a x i m a l e l e m e n t w i t h n o
basis extendible t o an i n f i n i t e l y l a r g e r r.e. THEOREM 5.2.
independent set.
A s s u m i n g a x i o m I,t h e r e e x i s t s a n r - m a x i m a l e l e m e n t w i t h
Recursion Theroy on Matroids
no basis extendible t o a recursive basis f o r
U.
Next, theorems u s i n g axiom 11.
Assuming axiom 11, there exists a supermaximal element
THEOREM 5.3.
(with the set
degree).
Assuming axiom 1 1 , there exists a nowhere simple element.
THEOREM 5.4.
V
having any prespecified non zero r . e .
V
V
with no basis extendible to a recursive basis f o r
V
every r.e. basis of
U, but with
extendible to an infinitely larger r.e. inde-
pendent set (in every non-zero r.e. degree). Assuming axiom 1 1 , there exists a
THEOREM 5.5.
R
finite dimensional decidable such that f o r all decidable REMARK.
Note such a
i s extendible (i.e., b u t t h a t no b a s i s f o r
U
and
-
and
R
3
A
...I
H u Bs u {ai,ay,
recursive basis f o r Let and t h a t
= U.
R,
I u J
then
B n V
i s a basis f o r
V,
I
basis
U
of
V
extends . I ) (i.e.,
t h e n if x
E
if
B
B-V,
Let
H u B u {ao,a
S
uo,ul,
R
where
A
be a d e c i d a b l e c l o s e d s e t such t h a t i s as i n Axiom 11.
BS and an i n f i n i t e r . e . sequence ai,a; i s a recursive basis f o r
We w i l l ensure t h a t f o r a l l
l,...)
i s a basis for
U
H
,...
we w i l l such
i s some f i x e d
V
l i m af = ai S
B = u BS. S
exists
Thus
R.
be an e f f e c t i v e l i s t o f t h e elements o f
be an e f f e c t i v e l i s t o f a l l r . e . To ensure t h a t
where
i that
where
w i l l be c o m p l e t e l y d i s j o i n t f r o m
...
U
s,
A t each stage
R.
Vs = cl(Bs).
V = u Vs = cl(B) Let
D
we have
and an in-
i s a d e c i d a b l e c l o s e d s e t c o n t a i n i n g V .)
s p e c i f y a f i n i t e independent that
completely disjoint,
i s extendible t o a recursive basis f o r
V
PROOF O F THEOREM 5 . 5 . dim(U/R) =
R
and
i s a recursive basis f o r
J
i s a recursive basis f o r cl(B-ix1)
D 2 V,
in
w i l l have t h e p r o p e r t y t h a t e v e r y r.e.
V
if
V
with
L(U)
V
U.
Let
Io,I
l,...
independent s e t s .
i s c o n t a i n e d i n no p r o p e r d e c i d a b l e c l o s e d s e t we s h a l l
s a t i s f y t h e f o l l o w i n g set o f r e q u i r e m e n t s .
A. NERODE and J . REMMEL
56 F. : If ui i c l ( I . ) , 1,J' J z E c l ( I j u Iuil)
and such t h a t
Note t h a t meeting t h e requirements any proper decidable space.
and z
E
E
B
-
dim(cl(I/RvV)) = V-cl(1)
and
a,
lsuppIu
ui
E
(Recall
Let
{u},
D 2 V,
i s decidable and
then we see t h a t
b u t c l e a r l y t h e r e i s no
rul(~)I
t
z
E
then we can B
for
U.
u f c l ( I ) , c l ( 1 ) 'V,
cl(1 u
Iul)
such t h a t
2.
F. . i s s a t i s f i e d a t stage
s
1 sJ
Let
0 B = 0
i f either
... be an e f f e c t i v e l i s t o f N x N. {ai,ay ,... 1 u H be a r e c u r s i v e b a s i s f o r U.
,, and l e t
H i s a recursive basis f o r
STAGE s+l.
D
CI(I?), J
CONSTRUCTION. STAGE 0.
-
I= B
We say t h a t requirement (i)
Fi,j
D, B1, and extend i t t o a r e c u r s i v e b a s i s
and
B1,
E
That i s , i f
take a r e c u r s i v e b a s i s f o r Now if u
z
d i m ( c l ( I . ) / R v V ) = m, then t h e r e i s a J V - c l ( 1 . ) and lsupp I.u i U i } ( z ) I t 2. J 3 w i l l ensure t h a t V i s n o t contained i n
R.)
(Assume t h e usual tower o f windows p i c t u r e . )
Look for the l e a s t and t h e r e i s a
z
E
e
5
s+l
such t h a t requirement
c l ( I s u Cuj } ) Je e
-
cl(1S ) Je
with
z
Fi 5
s
e Je
i s not satisfied
such t h a t
Recursion Theroy on Matroids Bs u {zl u {a:,
(b)
...,as)e
i s such an
e,
let
corresponding t o
a:
E
let
BS+l = Bs
r
e ( s + l ) . Let
a;
=
e and
for a l l
I f there
k.
z ( s + l ) be the l e a s t z
be the largest integer such t h a t
s u p p s ( z ( s + l ) ) denotes the support of
...1.
t o the basis H u Bs u {a:,a:,a;,
Note our choice of
B = u Bs
Let
are r.e. and i t i s easy t o see t h a t
S
B u
z ( s + l ) relative
r > e.
z ( s + l ) ensures
from i t s window, and l e t things drop.
BS+l = Bs u { z ( s + l ) 1 , remove a:
This completes the construction. V
a;”
and
e ( s + l ) be the l e a s t such
supps(z(s+l)) where
Then l e t
R.
i s independent over
If there i s no such e ,
51
and
V = cl(B).
independent so t h a t
H is
B and
Th’us
R- and
V
are completely d i s j o i n t .
LEMMA 5.6.
I i m a;
- ak
e x i s t s for a l l
k.
S
We proceed by induction on
PROOF.
so t h a t a.so ,. . . .ak-l only i f
and we s a t i s f y requirement
Note t h a t once requirement
E
-
(z)I C l ( I ? ) & (supp J IjU{Ui1
..,F’.e * .J e.
LEMMA 5.7.
PROOF.
r
i
For a l l
e,
requirement
We proceed by induction on
e a r e met and there i s a stage
e ( s ) i s defined then
e(s)
2
e.
t
a t stage -s+l
.
2.
t > s unless u i
s t i l l i s s a t i s f i e d a t stage t. Thus a s+l k # a; f o r s L so a t most
Fi o, jo,.
‘ e ( s + l’ J e ( s + l )
z c BS+l such t h a t
NOW (*) will continue t o hold f o r a l l
Fi,j
s t sO.a;+l # a;
Then f o r
Fi
s+1, there i s a
cw; u hi))
F:
i s a stage large eriough so
i s s a t i s f i e d a t stage s + l , i t ree(s+l ) * J e ( s + l ) t > s + l . T h a t i s , l e t i = i e ( s + l ) and j = j e ( s + l ) ,
mains s a t i s f i e d f o r a l l
(*I z
Assume so
have reached t h e i r f i n a l values.
e(s+l) < k
then a t stage
k.
e.
k
E
t
cl(1.) J
in which case
times, i . e . , once f o r each of
F. . ‘ev’e
i s met.
Assume t h a t a l l requirements
to large enough so t h a t for a l l
‘ir,jr s
L
for
to, i f
A. NERODE and J. REMMEL
58 F i r s t note t h a t i f s a t i s f i e d a t stage f o r a t most one
then requirement
met.
Thus
e(s) t e+l.
f cl(Ij ) e
dim(cl(1. )/Vv R) = Je i t f o l l o w s t h a t we can t h i n
m.
is e’je Thus e ( t ) = e
tl z to such t h a t i f
Next suppose r e q u i r e m e n t
and
Fi
s > t.
t t to and hence t h e r e w i l l be a stage
i s defined, then e
e ( s ) = e,
and w i l l remain s a t i s f i e d f o r a l l
t
e(s)
ui
t t to and
Fi
Because
.
f a i l s t o be
e 3Je
d i m I c l ( I j ) / V v R] = =, I. t o a n i n f i n i t e s e t I e Je such t h a t I u I u i 1 i s independent o v e r Vv R. Now by Axiom 11, we know t h a t e d i m [ c l ( I u I u i 1) - c l ( I ) ] = m. Thus t h e r e must be a z E c l ( 1 u I u i 1 ) - c l ( 1 ) e e such t h a t IsuppIuIui ,(z)I 2 2 and {ao, ae,zl i s independent over V v R.
...,
Thus f o r any
e
s,
Bs u { a o,...,ae,z~
l a r g e enough so t h a t forces
a. = a t ’ 1 1
t
2
tl, t z z, &
i s e.
for all
can meet r e q u i r e m e n t already satisfied.
Fi
.
Since
i s s a t i s f i e d by stage
t
z
E
e(t+l) > e
t+l,
e(t+l) = e
and hence r e q u i r e m e n t
be a stage
t
Note o u r c h o i c e o f
tl
z would w i t n e s s t h a t we
unless requirement
by o u r c h o i c e o f
I f Axiom I 1 h o l d s for
COROLLARY 5.8,
Now l e t
t c l (I. u {ui 1 ) . Je e
Thus a t stage
and hence
eYJe
i s independent.
u H
Fi
we know t h a t
tl,
.
is
eJe Fi
e Je
i s met. Fie,je then
U,
has a supermaximal
U
element.
PROOF.
Consider
dim(W/VvR) = =. u
E
V-W.
z
E
t h e requirements
and
as c o n s t r u c t e d i n Theorem 10. be an r . e . b a s i s f o r
ue f c l ( I ) , c l ( 1 ) 2 V,
V-cl(1) Fi
..
sJ
such t h a t
Now i f
and
t
2
W
W # U,
dim(cl(I)/VvR)
IsuppIuIul(z)I W 2 VVR
Thus i f
&
W.
Suppose
E
L(U)
and
then l e t
= and y e t t h e r e i s
=
which would v i o l a t e one o f
dim(W/VvR) =
-,
then
W = U
-
i.e.,
i s supermaximal.
REMARK 1. sure
I
Let
But then
c l e a r l y no
Vv R
Vv R
I t i s easy enough t o m i x i n p e r m i t t i n g and c o d i n g so t h a t we can en-
d(V) = D ( V ) = d ( R v V ) = D(Rv V ) = 6 where
V.
D ( V ) = dependence degree o f
REMARK 2 .
Note t o produce a
t e n d i b l e b u t no b a s i s o f
V
6 i s any nonzero r . e . degree,
V
E
L(U)
such t h a t e v e r y r . e .
basis o f
i s extendible t o a recursive basis f o r
U,
V
i s ex-
it i s
&
Recursion Theroy on Matroids
enough t o s i m p l y s t a r t w i t h a supermaximal sum o f a d e c i d a b l e space
R
and an r . e .
S
L(U)
E
space
V.
R e t z l a f f w i l l show t h a t t h e r e a r e supermaximal
S'
d i r e c t sum t o two d e c i d a b l e subspaces.
59 and decompose i n t o a d i r e c t
T h a t i s , techniques used by
Moreover such
S'
such t h a t
L(V")
E
is a
can be shown t o e x i s t
S'
under t h e assumption t h a t axiom I 1 h o l d s . Now, a theorem u s i n g axiom 111 THEOREM 5.9.
6. = * .
Let
(U,cl)
(U) be i t s l a t t i c e o f r . e . c l o s e d sets, l e t L F ( U )
s u b l a t t i c e o f f i n i t e dimensional c l o s e d s e t s . mean t h e r e a r e E
LF(U)
Let
A = [A]
*
B
[cl{p))]
*
Without d i f f i c u l t y = B v C.
dim[C/A]
If
is r.e. uniformly in
Ai 0;
A ,A1,...be
5
iii) d(Ai)
such that
d(Ai)
5
d(Ai+l)
d(D(V)i)
a sequence of sets of integers such that: i, i>
for
0;
i >
ii)
0.
5
d(Ai)
d(Ao)
uniformly in
Then there is a n r.e. i > o
uniformly in
and
5
d(Ao)
subspace
i,
V
d(V).
In an attempt t o f i n d a s t r i c t analogue f o r 6.1 of [21 we introduce here a notion, "weakly regular" and show t h a t every weakly r e g u l a r r e c u r s i v e l y presented dependence r e l a t i o n has r e c u r s i v e supermaximal s e t s .
While no natural example
of a weakly r e g u l a r b u t not r e g u l a r dependence r e l a t i o n springs t o mind, the No l o c a l l y f i n i t e
notion has the following apparent advantage over r e g u l a r i t y . algebra i s r e g u l a r .
A p r i o r i , t h e r e may be uniformly l o c a l l y f i n i t e algebras
which a r e weakly r e g u l a r . 22.
Definition.
The dependence r e l a t i o n
k-dimensional subspace of
U
(U,cl)
i s weakly r e g u l a r i f no
can be w r i t t e n a s the union of
k
k-1-dimensional
subspaces. Clearly any r e g u l a r dependence r e l a t i o n i s weakly r e g u l a r and any weakly regular dependence r e l a t i o n i s f e d e r a t e d . of
k-1 dimensional spaces which can cover a
arbitrary. k-1
The choice o f the bound on the number k
dimensional space i s r a t h e r
The l e a s t value which w i l l e a s i l y s u f f i c e f o r t h e next theorem i s
but this seems t o r e l y on the ordering of t h e natural numbers i n making the
construction i n an a r t i f i c i a l way so we f i x e d the value a t over f i n i t e f i e l d s a r e not weakly r e g u l a r . considering
k
k.
Vector spaces
(This becomes more p l a u s i b l e when
much g r e a t e r than the s i z e o f the f i e l d . )
l o c a l l y f i n i t e algebra t o be weakly r e g u l a r the function
For a uniformly f ( n ) = maximal
c a r d i n a l i t y of an n-generated subalgebra must grow very f a s t . 23.
THEOREM.
If
(U,cl)
is recursively presented, infinite dimensional and
weakly regular then there is a supermaximal set of
V
5U
which is recursive as a sub-
U.
T h i s i s the only r e s u l t from [ Z ] where any n o n - t r i v i a l modification of the proof i n [ Z ] i s needed t o extend t h e theorem from r e g u l a r t o our hypothesis. Even here more than two t h i r d s of t h e argument i s i d e n t i c a l .
Thus r a t h e r than
including a complete proof, we w i l l o u t l i n e t h e proof from [ Z ] and then i n d i c a t e our modifications.
J.T. BALDWIN
74
and
(Wi:
a "standard" r e c u r s i v e enumeration o f t h e r . e . c l o s e d subsets o f
U.
24.
Pr6cis.
Vs,(Ws)
Let
(bi:
i < W)
be a r e c u r s i v e b a s i s f o r
V
be t h e e x p l i c i t f i n i t e dimensional subspaces o f
by stage
s.
ent over
Vs.
A t stage
Then
V
s
we w i l l have a sequence
w i l l be
UsVs
and
i n f i n i t e independent sequence w i t n e s s i n g
V,(W)
(a::i
< w)
{ak = l i m s a:; dim[U/V] =
i
:
N ( ~ , ~ ) : l i m S as (e,n> 25.
Definition.
P
= a
=
(e,n>
U then
m
bn
E
cl(We U V)
exists.
requires a t t e n t i o n a t stage
(e,n>
s
i f ( i ) and ( i i ) below
hold. bn f cl,(Wz U V').
(i)
There i s an
(ii)
x 6 Wze such t h a t
x & c l l V s U {a: 26.
...,as(e,n)l
Goal o f t h e C o n s t r u c t i o n .
y Vs+'
= cl(Vs
a t stage
s
{y}).
and
i s the s e t o f a)
u
y
u E
x E
cl
y
E
U with
{x,bnl
u < s.
-
cl
y
E
such t h a t f o r some
i s t h e l e a s t p a i r which r e q u i r e s a t t e n t i o n
Our c o n s t r u c t i o n must guarantee:
Ixl VS
V
c l S{x,bnl - c l V
{uj:j < t l
- c l s{bn)
VS
c)
(e,n)
Vs
i s t h e l e a s t element s a t i s f y i n g Defn. 2 5 ( i i ) and
[x,bn}
cl
We want t o c o n s t r u c t t h e
Suppose
VS
b)
U {bnl!
vs
(u.)
all j < t
J
Now we must show a l l r e q u i r e m e n t s a r e met.
I f a ) , b ) and c ) a r e s a t i s f i e d
and R a r e met e x a c t l y as i n [2: Lemma 6.51, [2: Lemma (2,n) 3 (e ,n> 6.61 and [2: Limma 6.41. (The xi's on l i n e 3 o f t h e p r o o f o f 6.4 s h o u l d then
be
P
ui's.) We must m o d i f y t h e c o n s t r u c t i o n t o guarantee a), b ) , c ) m e r e l y on t h e
hypothesis t h a t
(U,cl)
i s weakly r e g u l a r .
Recursion Theory and Abstract Dependence 27.
Modification o f the construction o f
V.
We w i l l guarantee i n t h e c o n s t r u c t i o n t h a t
Stage 0.
L
s
Stage the l e a s t ’(e,n> least
Let
k
0.
U.
x
Vs.
C
Vs.
Vi
= cl(Vs
as
Now
(U,cl)
subspaces
=
2
s.
bpi.
requires a t t e n t i o n a t stage
(e .n) cl(Vs)
u
Let Vs
and l e t
u
{ui:
i < tI
Ix,bnl
VS+’
s,
choose
I f some
= c l ( V s U {b2k+ll).
where
Vi
{XI).
Let y
Define
=
cl(Vs
u
W
cannot be a u n i o n o f t h e if
{uil)
i < t
mo
by induction s e t t i n g
at:;
=
is
s
such
s+2-dimensional subspack
where
a:+’
{x,bn?
l i s t those numbers l e s s t h a n
and
be t h e l e a s t element o f
Let
a”;
By these c o n d i t i o n s ,
generates an
i s weakly r e g u l a r ,
c1(vs u (y)).
d VS+l.
a;
a:
s a t i s f y i n g Defn. 25 i ) and i i ) .
Since
vS+l
P
d
b2k+l
let
dim[Vs]
r e q u i r e s a t t e n t i o n , choose t h e l e a s t such and f o r t h a t p a i r choose t h e
ui
Vt+l
I f no
such
independent o v e r that
Vo = c l { O I ,
75
W
of
W
t+l 2 s+2
Vt = cl(Vs U {bnI),
-
UVi.
Now d e f i n e
i s l e a s t such t h a t t o be
a;
where
m
is
0
l e a s t such t h a t
a;
Z c l ( V S + l u {a:’
received a t t e n t i o n a t stage The n o t i o n s i n [2],
s
’,...,a;+’]).
(using
x
F i n a l l y , we say
P
(e,n>
and y ) .
[4] and here suggest t h a t t h e r e i s c o n s i d e r a b l e work t o
be done i n i n v e s t i g a t i n g s t r o n g p r o p e r t i e s o f a b s t r a c t dependence r e l a t i o n s . The work i n [l]and (31 shows t h a t r e l a x i n g t h e h y p o t h e s i s o f t r a n s v i t i v i t y a l s o yields a f e r t i l e f i e l d f o r exploration.
Both [21 and t h i s paper suggest t h a t
r e c u r s i o n t h e o r y can b o t h m o t i v a t e and t e s t t h e v a l u e o f such axioms.
For
example, t h e a t t e m p t t o prove 6.1 o f [2] f o r v e c t o r spaces o v e r f i n i t e f i e l d s leads t o t h e d i s c o v e r y t h a t v e c t o r spaces o v e r f i n i t e f i e l d s a r e n o t weakly r e g u l a r b o t h by s p o t l i g h t i n g them as an example t o be c o n s i d e r e d and as a C o r o l l a r y o f Theorem 23 and C o r o l l a r y 20.
I6
[l]
J.T.BALDWIN J . T . Baldwin and S. Shelah ( i n p r e p a r a t i o n ) , Second order q u a n t i f i e r s and the complexity o f t h e o r i e s , Proceedings o f t h e l o g i c y e a r i n Jerusalem, ed. J. A . Makowsky.
[ Z ] G . Metakides and A . Nerode, Recursion Theory on Fields and a b s t r a c t dependence, J. o f Alg. 65, 36-95 (1980). [3]
S . Shelah, C l a s s i f i c a t i o n Theory and t h e Number o f Nonisomorphic Models, North-Holland, Amsterdam, (1978).
[4] 8. I . Z i l b e r , Strongly minimal t o t a l l y c a t e g o r i c a l t h e o r i e s , S i b e r i a n Math. J . , v . 21, (1980) p p . 98-112 (Russian).
PATRAS LOGIC SYMPOSION G. Metakides led.) @North-Holland Publishing Company. 1982
MAJOR SUBSETS IN EFFECTIVE TOPOLOGY
I r a j Kalantari* Western I l l i n o i s University Macomb, IL 61455
One of t h e c h a r a c t e r i s t i c s o f c l a s s i c a l i n t e r e s t o f any branch of mathematics i s the question of constructiveness of i t s content.
I n the l i g h t of development
of recursion theory, the e f f e c t i v e n e s s of these constructions become o f special interest.
In t h i s a r t i c l e we i n v e s t i g a t e e f f e c t i v e l y describable open s e t s i n a
topological space and introduce a measure of t h e
effective addressin3 - a b i l i t y
of t h e i r topological connected components. Work i n t h i s approach t o e f f e c t i v e topology began i n Kalantari & Retzlaff [41 and continued i n Kalantari & Remmel 131. & Leggett t1,21.
For f u r t h e r developments, see Kalantari
Studies in e f f e c t i v e n e s s of r e s u l t s in s t r u c t u r e s o t h e r than
i n t e g e r s began w i t h the work of Specker [ l o ] and Lacombe [51 on e f f e c t i v e a n a l y s i s . The new a c t i v i t y i n study of e f f e c t i v e content of mathematical s t r u c t u r e s has been revived i n Nerode’s program and Metakides & Nerode [7,8] work on vector spaces and f i e l d s .
These s t u d i e s have been extended by Kalantari, Remmel, R e t z l a f f ,
Shore and Smith.
Similar s t u d i e s on e f f e c t i v e content of o t h e r mathematical s t r u c -
tures have been conducted.
These include work on topological vector spaces, boolean
algebras, 1i near o r d e r i ngs e t c . Kalantari & Retzlaff [41 began a study of e f f e c t i v e topological spaces by considering a topological space with a countable b a s i s space X
i s t o be fully e f f e c t i v e ;
A
f o r the topology.
The
t h a t i s , the b a s i s elements a r e coded i n t o w
and the operations of i n t e r s e c t i o n of b a s i s elements and the r e l a t i o n of inclusion among them a r e both computable.
*
A r e c u r s i v e l y enumerable ( r . e . ) open s u b s e t of
X
We wish t o thank the University of P a t r a s , Patras Greece, and Western I l l i n o i s University f o r f i n a n c i a l support f o r making t h e presentation of t h i s paper possible. We wish t o acknowledge valuable conversations w i t h Anne Leggett, George Fletakides, Anil Nerode. J e f f Remel and Ted R e t z l a f f .
I. KALANTARI
78
i s then represented by taking the union of basic open s e t s whose codes l i e i n an r . e . subset of
W.
Similar t o open subsets of
E,
the l a t t i c e of
r.e.
subsets of
X
forms a l a t t i c e
L(X)
under t h e usual operations of union
and i n t e r s e c t i o n .
w,
the c o l l e c t i o n of
For a proof of t h e f a c t t h a t the theory of
ducible t o t h e theory of
r.e.
i s not re-
L(X)
and f o r o t h e r r e l e v a n t f a c t s , we r e f e r t h e reader t o
E
t41.
I n this approach t o topology on
i t y of X
except t h a t i t be i n f i n i t e .
X
we have no r e s t r i c t i o n s on t h e cardinal-
X,
Objects of study a r e ' p i e c e s ' of t h e space
given i n t h e form of a b a s i c open set.
We argue t h a t s i n c e i n most c o n s t r u c t i v e
approaches t o mathematics, i t i s a " s u f f i c i e n t l y small neighborhood" t h a t t h e comput a t i o n h a l t s with, a s opposed t o a s p e c i f i c p o i n t , i t is s u f f i c i e n t t o handle and process neighbrohoods a s primary o b j e c t s of study.
Of course, i t becomes necessary
t o require c e r t a i n p r o p e r t i e s (both topological and recursion t h e o r e t i c ) .
In
Section 1 we l i s t these requirements and o t h e r p r e l i m i n a r i e s i n d e t a i l .
I n Section 2 , we introduce t h e c e n t r a l notion of fragment, discuss o t h e r reasons f o r our approach and define some l a t t i c e t h e o r e t i c p r o p e r t i e s o f open s u b s e t s of mented
r.e.
r.e.
In Section 3 , we use a p r i o r i t y argument t o show noncomple-
X.
open sets have major s u b s e t s and observe some c o r o l l a r i e s .
We con-
clude with some remarks i n Section 4. J1.
PRELIMINARIES W e consider a p a i r
(X,A)
where
X
i s a topological space and
countable basis f o r the topology on
X.
sets, i . e . elements of
A, B, C ,...
A.
We use
ploy standard topological n o t a t i o n ; e.g.
the i n t e r i o r of I. 11. 111,
A
A.
We assume t h a t
A
We use a , B , y,. A
..
is a
A
t o denote b a s i c open
t o denote subsets of
i s t h e c l o s u r e of
A
and
and em-
X
A'
is
s a t i s f i e s t h e following topological axioms:
i s closed under f i n i t e i n t e r s e c t i o n s .
0, X
E
A.
Every b a s i c open s e t 6
i s connected, i . e .
d i s j o i n t union of two open subsets of
X.
d
cannot be w r i t t e n a s a
Major Subsets in Effective Topology
IV.
Every nonempty b a s i c open s e t
6
19
contains two nonempty basic open s e t s
with d i s j o i n t c l o s u r e s and the closures contained i n The f i r s t two axioms a r e n a t u r a l .
6.
Connected components play an important
r o l e i n our r e c u r s i o n - t h e o r e t i c notions, t h e r e f o r e Axiom I11 i s a l s o v i t a l .
I v gives us "room t o work"
i n our constructions s i n c e i t implies t h a t
lower s e m i l a t t i c e (under i n t e r s e c t i o n ) i s atomless. a r a t i o n axioms a r e r e l a t e d a s follows:
A
Axiom as a
Axiom IV and the usual sep-
any r e g u l a r Hausdorff space s a t i s f i e s
while IV does not imply e i t h e r r e g u l a r i t y o r Hausdorffness.
IV,
F i n a l l y , note t h a t
I - IV do not impose a m e t r i c upon X. The following topological spaces of i n t e r e s t s a t i s f y axioms I - IV: R , A = the c o l l e c t i o n of a l l open i n t e r v a l s w i t h
( 1 ) X = the real i n e
r a t i o n a l endpoints. (2)
X = the real plane
R 2 , A = the c o l l e c t i o n of a l l open rectangles with
s i d e s p a r a l l e l t o axes and with r a t i o n a l v e r t i c e s .
(3) X = R n , A defined analogously.
(4) Any separable Banach space. (5)
Any topological vector space w i t h a neighborhood base a t each point con-
s i s t i n g of convex connected s e t s and w i t h a countable dense subset.
W e a l s o r e q u i r e t h a t A s a t i s f y some r e c u r s i o n - t h e o r e t i c p r o p e r t i e s .
First,
set A i n a one-to-one correspondence w i t h the p o s i t i v e integers through a Godel coding.
For
6
E
denotes the Giidel number of
A , '6r
x.
notes t h e Gtidel s e t o f
Thus
Cij'j=
6
and
6;
for
x
E
w.
LXJ
de-
T x ~x.=
We say topology
(X,A)
$(x,y)
such t h a t f o r a l l
x,
has an i n c l u s i o n algorithm i f ( 1 ) There i s a p a r t i a l r e c u r s i v e function
LxJnLyJ
Y
6
E
A)
w, -f
(This means t h a t given computes
(2)
E
converges and $ ( x , Y ) =
($(x.y) E,
6
E
~
X
1
~A L Y ,
1.
A,
t h e r e i s a uniform e f f e c t i v e procedure which
A,
there is a uniform e f f e c t i v e procedure which
n 6).
Given
6,
... ,E,,
E
determines whether o r not
6 5 ~ ~ u . . . u ~ " a whether nd
F 5E,u...uE~.
I. KALANTARl
80
I n t h e presence of c o n d i t i o n s ( 1 ) and ( 2 ) , one can e f f e c t i v e l y t e l l w h e t h e r
6 =
as w e l l as w h e t h e r
E
Furthermore, g i v e n f i n d nonempty
E
,,
such t h a t
A
L
E ~ U . .. U E ~
and w h e t h e r
-
.U 6 m
Flu..
EIU...UEn.
C
we can use t h e i n c l u s i o n a l g o r i t h m and e f f e c t i v e l y
A,
E E E~
61u... udm c
Fl
n
E2 = 0 and El
u
E2
This f a c t
c E.
i s a key s t e p i n o u r c o n s t r u c t i o n s . H e n c e f o r t h we s h a l l assume t h a t inclusion algorithm.
-
s a t i s f i e s axioms I
(X,A)
F o r a v i s u a l a i d , we suggest l o o k i n g a t
I V and has an w i t h the
R2
A
d e f i n e d as above.
and
Let
E
n.
Fix
subsets o f
LWJ
be t h e l a t t i c e o f {W:lerw,
A' 5 A ,
= u { ~ x ~ ~ x E W } . An
r.e.
write
Th;l
K5w
set
is
= {r67j16eA'};
full i f
SEO
This
If
U Us
IJ =
K
e'
K
r.e.
i s an
r.e.
f u l l set,
let
W
for
d i s t i n g u i s h between t h e
r.e.
set
L(X)
r.e.
1
uKs.
K=
r.e.
open s u b s e t o f
open s e t
K
X.
O r d i n a r i l y we w i l l n o t
and i t s e n u m e r a t i o n
K.
Next l e t
L(X).
The
x.
and
Ui
U.
I
fl U . = f~ and
U.
can be
t o g e t h e r w i t h t h e s e o p e r a t i o n s i s r e f e r r e d t o as t h e l a t t i c e of
open s u b s e t s o f
DEFINITION:
if
We
KS = U I L ~ - I I ~ ~ K S } and
The o p e r a t i o n s o f u n i o n and i n t e r s e c t i o n can be w e l l d e f i n e d o v e r
r.e.
w, w r i t e
StW
i s c o n s i d e r e d t o be an
collection
E
the r.e.
= ( X I ~ X ~ ~ ~ Lx W < Zs l~, A
Ue: U:
f u l l superset
{Welecw},
f o r some e f f e c t i v e e n u m e r a t i o n
t h a t any {KSlsrwl, V X [ ( ~ S ) ( ~ X ~ + C xcK]. ~ K ~ ~Observe ) u n i f o r m l y e x t e n d e d t o an
u
s u b s e t s o f t h e n a t u r a l numbers under
an a c c e p t a b l e e n u m e r a t i o n o f
SEW},
For
w.
r.e.
Ui
open s e t s a r e complemented i n
r.e.
u
1
U.
I
i s dense i n
X.
L(X)
I n t h e c o u r s e o f our
c o n s t r u c t i o n s we w i l l n e e d t o f i n d b a s i c o p e n s e t s w i t h c e r t a i n p r o p erty erty
P. P
I f b a s i c open s e t s s a t i s f y i n g
P
exist,
and i f t h e p r o p -
i s e f f e c t i v e l y v e r i f i a b l e f o r each b a s i c open set,
the conventional E
p =
we u s e
o p e r a t o r and w r i t e
ll6P(6).
Here t h e i n t e n t i o n i s that
E
i s t h e f i r s t nonempty b a s i c open s e t
81
Major Subsets in Effective Topology
found to have property P(LOd),
P(LL , P(L2-4)
P
during the dovetailing of computations of
... .
I n class cal topology, any pairwise disjoint collection of basic
open subsets o f collection.
X
can be extended to a maximal pairwise disjoint
The latter is of course dense in A
topology, for an open set
X.
Again in classical
there is a pairwise disjoint collection
, and any such can be extended to
A
of basic open sets dense in
X.
another such which is dense in
We consider
effective versions
of these ideas. K
DEFINITION: Let 15i i and
E
w}
for
is a partition
u 5i
X.
be an open subset of K
if the
is contained and dense in
The collection are pairwise disjo nt
&j's
K.
iew
We can show that every
r.e.
a partition
K
open set
{diliew}
r.e.
partition
I n fact, one can prove that given a
(See Kalantari & Leggett [l]). nonempty
open set has an
r.e.
and any
r.e. Turing degree a,
there is
I
for
K
such that deg(f'5;
liew})
=
a. -
(See
Kalantari 4 Remmel [ 3 ] ) . DEFINITION; an r.e.
Let
K
b e an
partition f o r
r.e.
partition
say that
112
we say that
r.e. K.
open set, and let
Then
is an extension of 111
is extendible if there is an
IT1
112 = { ~ ~ l i e w }f o r
IIl.
111 = Icriliew} be
X
such that If no such
Ill C I 1 2 . IT2
We also
exists for
ill,
is nonextendible.
I n contrast to classical setting we have:
PROPOSITION (1.2):
There is an
r.e.
open set
K
for which no
r.e.
partition is extendible. PROOF:
See Kalantari & Retzlaff 141. If for an r . e . open set K no r.e.
partition is extendible, we say K for K is extendible, we say K
i s nonextendible. If some r.e. partition
extendible.
I. KALANTARI
82 92.
BASIC OPEN SETS A N D INFINITY I n ordinary recursion theory, the objects o f study are the p o s i t i v e integers.
As a s t r u c t u r e ,
w
i s a c o l l e c t i o n o f d i s c r e t e and i n d i v i s i b l e o b j e c t s which can
be enumerated o r addressed t o o n l y by d i r e c t and unique h a n d l i n g o f such.
I n most
s t u d i e s , f o l l o w i n g t h e o r i g i n a l concepts o f Post [ 9 ] , t h e n o t i o n o f a measure o f subsets o f
w
enters.
f i n i t e o r as Post n o t e d two c l a s s e s :
i s an
thin".
thin versus =.
e f f e c t i v e l y enumerable and
of subsets of w
The n a t u r a l measure o f subsets o f
r.e.
w
with
Since subsets o f
not e f f e c t i v e l y
contrasting properties.
i s f i n i t e versus i n -
w
w also f a l l i n t o
enumerable, Post conceived
F o r example a s i m p l e subset of
s e t w i t h a complement which i s " c l a s s i c a l l y t h i c k " b u t " e f f e c t i v e l y
T h i s may be compared t o subsets o f r e a l l i n e which a r e
small and large i n
t h e sense o f measure and category. I n t h e s t u b y of subsets o f
w
t h e two s e t s o f m i x i n g p r o p e r t i e s a r e e f f e c t i v e / Metakides and Nerode [ 7 ] i n s t u d y i n g t h e sub-
n o n e f f e c t i v e and f i n i t e / i n f i n i t e .
s p a c e s o f an i n f i n i t e dimensional v e c t o r space, were o f course m o t i v a t e d b y e f f e c t i v e / n o n e f f e c t i v e as one o f t h e p r o p e r t i e s . needed s p e c i a l a t t e n t i o n .
However, t h e n o t i o n o f f i n i t e / i n f i n i t e
There seemed t o be two f a c t o r s a t work here.
t h e o b j e c t s o f s t u d y were v e c t o r s o v e r an i n f i n i t e f i e l d . o f a d d i t i o n between v e c t o r s was n o t one-to-one.
Firstly,
Secondly, t h e o p e r a t i o n
These f a c t o r s t r a n s l a t e i n t o t h e
f a c t t h a t t h e o b j e c t s o f s t u d y can be p a r t i a l l y addressed
to i n
i n f i n i t e l y many
ways ( t w o v e c t o r s i n t h e same d i r e c t i o n a r e p a r t i a l l y i d e n t i f i e d ) , and t h a t t h e y can be nonuniquely addressed t o ( a v e c t o r a d d i t i o n n o t one-to-one).
Metakides and
Nerode found t h a t t h e c o r r e c t n o t i o n o f f i n i t e / i n f i n i t e was when i t r e f e r r e d t o dimension.
Hence, f o r example, a s i m p l e v e c t o r space was t h a t
which i s c o i n f i n i t e - d i m e n s i o n a l r.e.
r.e.
v e c t o r space
( c l a s s i c a l l y t h i c k ) b u t i t s complement has no
i n f i n i t e dimensional v e c t o r subspace. I n d e f i n i n g t h e n o t i o n o f a maximal (and o t h e r l a t t i c e t h e o r e t i c a l ) subset
of
w,
t h e r o l e o f i n d i v i s i b i l i t y o f o b j e c t s o f s t u d y and t h e i r unique addresses
made t h e t a s k s t r a i g h t f o r w a r d : c o i n f i n i t e and t h e r e a r e no
r.e.
M,
an
r.e.
subsets
W
subset o f
u, i s maximal i f i t i s
w i t h both
W-M
and
w-W
infinite.
83
Major Subsets in Effective Topology Metakides and Nerode c o u l d n o t s i m p l y t a k e t h e s e t d i f f e r e n c e between two v e x t o r spaces i n o r d e r t o examine t h e t h i c k n e s s o f t h e d i f f e r e n c e ; t h e y found t h a t t h e c o r r e c t n o t i o n o f t h i c k n e s s o f t h e d i f f e r e n c e between two v e c t o r spaces i s t h e dimension o f t h e v e c t o r space
A
modulo
A
and
B
B.
The d i s c u s s i o n above suggests t h a t i f we want t o examine analogue of above i n we have t o 1 )
L(X),
examine what a r e t h e atomic o b j e c t s o f s t u d y and 2 )
what i s
thick?
the notion o f
The r e s o l u t i o n comes i n examining t h e o b j e c t o f effectively.
Classically, the objects o f
X
b o t h c l a s s i c a l l y and
a r e p o i n t s and i f
X
t h e r e i s no way t o e f f e c t i v e l y l i s t them a l l .
X
i s uncountable,
T h i s a l s o discourages t h e p o s s i b i l i t y Furthermore, s i n c e most con-
o f d e f i n i n g t h i c k t o be i n f i n i t e i n number o f p o i n t s .
s t r u c t i v e approaches i n mathematics e s s e n t i a l l y employ an i d e a e q u i v a l e n t t o des c r i b i n g neighborhoods, we a r e encouraged t o t a k e neighborhoods as o u r addressing units. The n e x t q u e s t i o n i s what t h e n i s t h e n o t i o n o f if we want
as
A'
i s nonempty, t h e r e i s a 6i
with
C &
t e n d i n g so. jects
X,
6 CAo
A'
infinite)?
t o be nonempty.
Clearly,
B u t as soon
and we can f i n d i n f i n i t e l y many
Ai
s
= 0 f o r i # j. T h i s makes A i n f i n i t e w i t h o u t inJ A t t h i s p o i n t however, i t c o u l d be argued t h a t s i n c e a l l of these ob-
and
(ails)
one o b j e c t of
t o be t h i c k we have t o a l l o w f o r
A
thick ( o r
6i
n6.
came from one o b j e c t
and no more.
(6)
with
6 =A,
t h e y should c o u n t o n l y as
T h i s suggests t h a t an i n d i v i s i b l e o b j e c t of
7.
s h o u l d be a connected component o f
A,
a subset
Since i n o u r c o n s t r u c t i o n s we i g -
nore nowhere dense s e t s , i t f o l l o w s t h a t t h e n o t i o n o f connected components o f i s b e t t e r f o r measuring t h e t h i c k n e s s o f A.
fragments o f otherwise.
If
A
A.
The components o f
A'
has i n f i n i t e l y many fragments, i t i s c a l l e d
Note t h a t fragments o f a s e t a r e always open s e t s .
We g i v e two more d e f i n i t i o n s :
Frag(A) =
I
n
if
A
has e x a c t l y
m
if
A
has i n f i n i t e l y many fragments
n
fragments f o r
n < w
3'
are called
thick; thin
I. KALANTARI
84
I
(read fragments of Frag(A,B) =
n
A)
i f exactly with .'8
n
fragments of
have nonempty intersection
A
i f i n f i n i t e l y many fragments of with Bo. (read fraaments of A met by 8) Formally, we may write
n
Frag(A,B) = sup{n/n=O OR
~ E , . . . E ~ ( ~ $6 .
1
(ifj+Ei
= A 08)
fIEj=O)
A
A
[ ( n-< l ) VWi W j [ ( i # j )
(u 2
have nonempty intersection
A
m
A (U
i s open and connected)
A
k j ) l u 3811.
E i
+
And
Frag(A) = Frag(A,X). Frag(A,B) without proving them;
I n t h i s a r t i c l e we use many properties of
C i s a dense subset of
f o r example i f
B
then
Frag(A,B)
=
Frag(A,C).
Techniques
of elementary point-set topology are the only ones needed t o prove the useful f a c t s on Frag(A,B). Next, using the notion of fragment, we give DEFINITION:
i) and ii)
and ii)
a s u b s e t of
is
r.e.
S
Frag(X-S,U)
DEFINITION:
i)
S,
M
open =
r.e.
is
for or
U 3
M
X
r.e.
for
U
and
Frag(X-M, X-U)
w i l l have
are omitted i n Step B, then
f o r some
recursive l i n e a r orderings w i t h no
f
whose range i s f i n i t e .
Thus there are
Zi dense subsets f o r each of these order-types.
REPRESENTATIONS OF LINEAR ORDERINGS
2.
Many l i n e a r orderings a r e constructed from sets o f i n t e g e r s o r f u n c t i o n s N
-+
N
and thus represent those sets o r f u n c t i o n s .
I t i s i n t e r e s t i n g t o study the
r e l a t i o n s h i p between a l i n e a r o r d e r i n g and the s e t o r f u n c t i o n which i t represents. Sometimes, representations can be used t o prove more general theorems about l i n e a r orderings.
For example, consider the statement:
orderings has a r e c u r s i v e model" where
X
X
"Every
i s a c l a s s i n t h e a r i t h m e t i c a l hierarchy. X = Cy
P e r e t y a t ' k i n [ P I showed t h i s statement t o be t r u e f o r
X = A;
The proof t h a t the statement i s f a l s e f o r
and Lerman and
X = Ci
Schmerl [LS] l a t e r showed t h i s statement t o be t r u e f o r
X = A;.
theory o f l i n e a r
but false f o r
r e l i e s on a represen-
t a t i o n theorem f o r f u n c t i o n s . The simplest types o f representations t o consider are a-representations of sets, where of
A
lists
a
L e t A = {ai
i s an order-type.
i s a l i n e a r o r d e r i n g o f order-type
A
: i
C{a+ai
E
: i
NI. E
An a-representation
If
NI.
: i
{ai
E
NI
i n order o f magnitude, then t h e corresponding a-representation i s s a i d
t o be i n order o f magnitude. a-representations have been s t u d i e d f o r [R],
Fellner
THEOREM 2.1:
Ci
and
a = q
by Rosenstein
[F], and Lerman It]. We l i s t some r e s u l t s which have been obtained. If
s e t has an
THEOREM 2.2:
a = w* + o
If
A
h a s an
w*
+
A
o* + w - r e p r e s e n t a t i o n
A
E
Every
C;.
w - r e p r e s e n t a t i o n i n o r d e r of magnitude. has an q-representation,
A
then
Zi.
E
If t h i s
r e p r e s e n t a t i o n i s i n o r d e r of magnitude, t h e n
A
s e t h a s an q - r e p r e s e n t a t i o n but e v e r y
s e t has an v-represen-
t a t i o n i n o r d e r of m a g n i t u d e .
an v - r e p r e s e n t a t i o n .
Ci(IIi)
There i s a s e t i n
E
A;.
C;
Not every
= A;
A;
w h i c h has
132
M. LERMAN and J. ROSENSTEIN Ne v i l l now i n v e s t i g a t e t h s r e l a t i o n s h i p between the r e c u r s i v e order-type
Clf(q) : q
E
QI
and functions
which are represented by t h i s order-type.
f
Rosenstein [Rl notes t h a t given a r e c u r s i v e l i n e a r o r d e r i n g Zlf(q) : q
E
QI, t h e r e i s a A:
zCg(q) : q
E
F e l l n e r [ F l shows t h a t if f QI.
a r e c u r s i v e order-type. Question 2.3:
If
If
g
such t h a t is
L
has order-typ.
I$ then
Zlf(q) : q
E
QI is
Two questions had been l e f t open.
L i s a r e c u r s i v e l i n e a r o r d e r i n g o f order-type C l f ( q ) : q
i s there a I$ f u n c t i o n Question 2.4:
function
L o f order-type
g
is a
f
such t h a t
L
has order-type
function,.is
A;
Z{f(q) : q
Clg(q) : q
QI
E
E
E
QI,
QI?
a r e c u r s i v e order-
type? We have been unable t o answer Question 2.3.
The next theorem answers
Question 2.4.
THEOREM 2 . 5 :
T h e r e i s a A;
function
f
such t h a t
Clf(q) : q
QI
E
i s n o t a recursive order-type. Let
PROOF:
{We : e
be a r e c u r s i v e l i s t o f a l l r e c u r s i v e l y enumerable
We w i l l d e f i n e a one-one f u n c t i o n
p a r t i a l orderings. oracle.
N3
E
To show t h a t
We
a l l maximal f i n i t e i n t e r v a l s o f
W
are maximal f i n i t e i n t e r v a l s o f
W
enumerated by
f
We note t h a t a
A;
N
using a A'
3
have u n i f o r m l y bounded length, o r t h a t there
e
o f lengths
e
m and
i n t h e reverse o f t h e i r o r d e r i n g i n We.
a recursive l i s t i n g o f
+
we w i l l guarantee t h a t e i t h e r
f,
does n o t represent
f :Q
n
r e s p e c t i v e l y which are Let
{qi
: i E NI
be
Q. o r a c l e can be used t o answer the f o l l o w i n g questions:
(1)
Is We
a t o t a l l i n e a r ordering?
(2)
Does
(3)
I s an i n t e r v a l o f
(4)
Does a given i n t e r v a l o f
We
have an i n t e r v a l o f c a r d i n a l i t y We
of cardinality We
n
n? a maximal f i n i t e i n t e r v a l ?
have c a r d i n a l i t y
A t each stage of the construction,
We
n?
w i l l e i t h e r be undischarged, P a r t i a l l y
discharged, o r discharged and w i l l have associated w i t h i t a f i x e d ,set c a r d i n a l i t y 52
and a moving s e t
M Se o f c a r d i n a l i t y 51.
numbers which we would l i k e t o place i n t h e range o f
f
FE of
These sets w i l l c o n t a i n t o show t h a t
we
cannot
133
Recursive Linear Orderings
represent f. In order to preserve the one-oneness of f and to satisfy the requirements for all We, the construction will preserve the following properties: (5)
x
E
F:
(6) e # n (7)
& y -f
ME+ x
E
u MZ) n ( F i u Mi) # 0.
(F:
e< n & x
(8) e < n & y
x
x
: e < j).
Wj
E
uIM;+l
for all
x
E
I f no such
j e x i s t s , go t o the next i n d u c t i o n step l e a v i n g
n
p a r t i a l l y discharged and s e t t i n g
exists. n.
M? = 0. F i x t h e l e a s t n, ifany, J u(FZ+l : e < jl u Fs and n+l < x f o r a l l
i s p a r t i a l l y discharged and
Wj
FS+l = F? and M;+l = 0. Suppose t h a t n J J Use ( 2 ) t o determine whether W has a f i n i t e i n t e r v a l o f c a r d i n a l i t y
j
I f no such i n t e r v a l e x i s t s , place
and M?+l = J J an i n t e r v a l J?
FS
J
Case 4:
0, of
W . i n the discharged s t a t e , l e t F;+l
J and go t o t h e next i n d u c t i o n step.
W
j
of cardinality
n.
Place
n
=
Otherwise, use ( 4 ) t o f i x E
M?
J
and go t o Case 4.
i s p a r t i a l l y discharged and Mf = 0. Then M; w i l l c o n t a i n one 3 n, and an i n t e r v a l J? o f c a r d i n a l i t y n w i l l have been defined. J Use (3) t o determine whether J s i s a maximal f i n i t e i n t e r v a l o f W If i t i s j j' not, use ( 4 ) t o f i n d an i n t e r v a l 2 J; o f W j o f c a r d i n a l i t y n+l. I n t h i s
W.
J element, say
W . remains p a r t i a l l y discharged; s e t J go t o t h e n e x t i n d u c t i o n step. Suppose t h a t
case,
of
Wj.
For a l l
F?+l = Fs and M;+l = ( n + l l and J j J S i s a maximal f i n i t e i n t e r v a l J Then W becomes discharged, and we s e t FS+l = FS u I n 1 and M;+l = 0. j j J k such t h a t j < k 5 s , Wk r e t a i n s i t s c u r r e n t c l a s s i f i c a t i o n ,
FS+l = Ff, and k L e t Pe and p,
=.
0.
F i x the g r e a t e s t
be t h e two elements o f
-
Q
t < s+l
such t h a t
It was defined.
j o f s m a l l e s t index on which
f
has
FS+l has c a r d i n a l i t y 2; l e t F:+l = Cn,rl. j If I : precedes J? i n t h e o r d e r i n g o f W d e f i n e f ( p e ) = n and f(p,) = r. J j' Otherwise, d e f i n e f ( p e ) = r and f ( p ) = n. Go t o the next stage. m n o t y e t been defined, w i t h
Case 5:
Wj
i s discharged.
pe < pm
W . remains discharged.
J and go t o t h e n e x t i n d u c t i o n step. Step s + l :
Set
FiC1 = Fsj, Wj S+l =
wj
Go t o the next stage.
This completes t h e construction.
f
i s c l e a r l y a A!
function.
We leave
Recursive Linear Orderings the v e r i f i c a t i o n o f (5)-(10) t o t h e reader. one-one.
135
I t f o l l o w s from (5)-(10)
that
is
f
Furthermore, since t h e r e are i n f i n i t e l y many t o t a l l i n e a r orderings
w i t h a r b i t r a r i l y l a r g e maximal f i n i t e i n t e r v a l s b u t no i n t e r v a l s o f order-type or
w
must be t o t a l ( s i n c e each such
f
w*,
W
j
f
causes
t o be defined on
two new elements). Suppose t h a t a contradiction. MStl
J
C{f(q) : q Let
W
can be r e s e t t o
0
- j. k
B
f o r each y
j:
B-degrees can be d e f i n e d as b e f o r e .
It i s
c l e a r l y a monomorphism b u t a f u r t h e r h y p o t h e s i s i s now needed t o stlow t h a t i t i s ,. Onto. Given E 5 s d e f i n e E*, E**, E as i n t h e p r o o f o f Theorem 1. Also, f o r
B
define
C1, C2-cS
B-card(zl
U z2)
is
C*
l,proj(B) j
4
is
u
{p}
= l e a s t ordinal
K
I
For
The s e t s
(syly < yo)
C
are
f o r some
=
8
llcf(B)
Then
is defined as above then
A-degrees and the regular 8-degrees.
j
=
I1(B)
V = L.
-
then
j
A-degree
Suppose
cof(K).
Othenrise l e t
and f o r any
8-reduced.
g(y)
-1
B-reduced.
K,
2
6
c LK. As any x c Sg belongs t o
as i n s e c t i o n 2.
master code f o r D E
ll(B)
g(y)
C* = {6
can d e f i n e
B
K
(if
llcf(B)
o t h e r w i s e use Lemma 1 1 ) .
K;
B
y
B
g
then l e t
But i f
g
B
f o l l o w s from t h e key p r o p e r t y o f
K
such t h a t
be any
I,(B)
in-
i s any such i n j e c t i o n we
c_ SB such t h a t o u r c o n d i t i o n s a r e s a t i s f i e d :
The r e g u l a r i t y of
We have a l r e a d y
g.
B = 1g-l Clearly
yIy < Z,proj(B)
K).
=
K
S.D. FRIEDMAN
156
as
g
I1(B).
is
function
8:
->
K
And,
&cf(B)
Let
= I1(B)-COf(r)
6
f(y) = least
I,(B)
as there i s a
1 by F g-
s.t.
cofina
s6.
Now the existence o f g can be completely analyzed using the techniques of (see the p r o o f o f Theorem 9 o f t h a t paper).
Frienman I1981cJ
This y i e l d s t h e
next r e s u l t . THEOREM 15.
(V
=
L)
Suppose
5 a l l have c o f i n a l i t y -1
such t h a t
g
there is a s e t
= cofinality(K).
r y F S5' A
5K
5-degrees
dl
relative to
is
K-RE
j ( d l ) is
-
d3
is
6-RE
K-RE
(j (9 1' .
for a l l
y
K
a r e isomorphic t o
a r e K-degrees
j(dl)
-
and t h e c r i t i c a l p r o j e c t a of
Moreover t h i s l a s t condition implies t h a t
iff
-
relative to
K
Then t h e r e is an i n j e c t i o n
such t h a t t h e K-degrees
the regular
-
8 has c a r d i n a l i t y
&RE
2
K-degree&)
relative to
r e l a t i v e t o some
j ( 6 ' ) = weak 5-jump
(j(4))
and
then
j(d2)
and
d < 3 -
d s.t. 1
-
j(g") =
The Turing Degrees and the Metadegrees have Isomorphic Cones
157
References Feiner, L.,
The S t r o n g Homogeneity Conjecture, JSL 35, Pages 375-377 (1970).
Friedman, S.D.,
B-Recursion Theory, T r a n s a c t i o n s AMS 255, Pages 173-200 (1979).
, Negative S o l u t i o n s t o P o s t ' s Problem 113, Pages 25-43,
11,
Annals o f Mathematics
(1981a).
, Uncountable Admissibles I :
Forcing,
t o appear, T r a n s a c t i o n s AYS
(1981 b ) .
, Uncountable Admissi b l e s
11: Compactness, t o appear, I s r a e l J o u r n a l of Mathematics, ( 1 9 8 1 ~ ) .
Jockusch, C., Maass,
and Simpson, S., A Degree-Theoretic D e f i n i t i o n o f t h e Ramified A n a l y t i c H i e r a r c h y , Annals o f Math. L o g i c 10, Pages 1-32, (1976).
W., I n a d m i s s i b i l i t y , Tame RE Sets and t h e A d m i s s i b l e Collapse, Annals o f Math. L o g i c 13, Pages 149-170,
,
(1978).
On t h e a- and B-RE Degrees, H a b i l i t a t i o n s c h r i f t , U n i v e r s i t y 6f Munich, ( 1 979).
PATRAS LOGIC SYMPOSION GMetakidex (ed.) @North-Holland Publishing Cornpony. 1982
159
SYMMETRIC GROUPS AND THE OPEN SENTENCE PROBLEM Verena Huber-Dyson U n i v e r s i t y o f Calgary Calgary, A l b e r t a Canada
1.
INTRODUCTION The elementary t h e o r y o f a c l a s s
w
w i l l be denoted by TK.
and
K
o f structures o f f i x e d s i m i l a r i t y type
w i l l stand f o r the sets o f q u a n t i f i e r f r e e
3K
formulas whose u n i v e r s a l o r e x i s t e n t i a l c l o s u r e s b e l o n g t o
IQ
TK,
w h i l e we w r i t e
f o r t h e s e t o f t h o s e t h a t a r e s a t i s f i a b l e i n some K - s t r u c t u r e .
problem f o r
VK
i s what T a r s k i c a l l s t h e open sentence problem f o r
e q u i v a l e n t t o t h e d e c i s i o n problem f o r
The'decision
K.
t h e e q u a t i o n problem f o r
K3,
K, i n
Macintyre's terminology.
If
all finite
t h e n b o t h 'dK and Kf 3 a r e r e c u r s i v e l y enumerable, and
K-structures,
TI(
i s f i n i t e l y a x i o m a t i z a b l e and Kf
It i s
Xf 3 i s d i s j o i n t f r o m t h e s e t
consists o f
o f a l l n e g a t i o n s o f WK-formulas.
If K
is
closed under d i r e c t p r o d u c t s i t s e q u a t i o n problem reduces t o simultaneous s a t i s f i a b i l i t y of f i n i t e systems o f e q u a t i o n s t o g e t h e r w i t h one i n e q u a t i o n . Let
6, F
and B
s t a n d f o r t h e c l a s s e s o f a l l groups, o f a l l f i n i t e groups
and of a l l f i n i t e symmetric groups,
Sn, n
E
N,
denote t h e group of a l l permuta-
t i o n s o f f i n i t e s u p p o r t on a c o u n t a b l y i n f i n i t e s e t by c l a s s o f a l l i n f i n i t e models o f lem
TK.
Su,
and w r i t e
K,
for the
The u n d e c i d a b i l i t y o f t h e open sentence prob-
f o l l o w s f r o m t h e u n s o l v a b i l i t y o f t h e word problem f o r group t h e o r y .
In
1961, 111, Cobham proved t h e h e r e d i t a r y u n d e c i d a b i l i t y o f t h e t h e o r y o f f i n i t e symnetric groups and w i t h i t t h e u n d e c i d a b i l i t y o f f i r s t o r d e r f i n i t e group t h e o r y . I have been i n t r i g u e d by t h e open sentence problem f o r t h a t t h e o r y s i n c e 1963, [21. Since e v e r y f i n i t e group i s embeddable i n a s u f f i c i e n t l y l a r g e s y m n e t r i c one and
Su i s t h e u n i o n o f an ascending c h a i n o f c o p i e s o f t h e Sn's
we have
V. HUBERDYSON
160
More u s e f u l t h a n
So
i s i t s e x t e n s i o n by an automorphism t h a t c y c l i c a l l y p e r -
mutes a g e n e r a t i n g s e t o f t r a n s p o s i t i o n s . t r a n s p o s i t i o n and an i n f i n i t e c y c l e .
T h i s group
S
i s generated by a s i n g l e
T h a t i t s open t h e o r y c o i n c i d e s w i t h
\If: was
Here I s h a l l show how elementary a r i t h m e t i c can be d e f i n e d i n
proved i n [ 3 1 .
S
u s i n g e x i s t e n t i a l p r e d i c a t e s o f t h e language o f group t h e o r y e n r i c h e d by two constants for the generators.
From t h e u n s o l v a b i l i t y o f H i l b e r t ' s t e n t h problem, [51,
follows t h e u n d e c i d a b i l i t y o f t h e open sentence problem f o r S i n t h e extended language.
The f i r s t group t o which t h i s t y p e o f argument was a p p l i e d was t h e two [6].
g e n e r a t o r r e l a t i v e l y f r e e group o f n i l p o t e n c y c l a s s two,
Observe however t h a t
t h e open t h e o r y o f t h a t group i s a p r o p e r e x t e n s i o n o f t h e open t h e o r y o f n i l p o t e n t groups o f c l a s s two, which i s i n f a c t d e c i d a b l e , s i n c e i t i s a x i o m a t i z a b l e and n i l p o t e n t groups a r e r e s i d u a l l y f i n i t e .
The open sentence problem f o r t h e c l a s s o f
a l l n i l p o t e n t groups on t h e o t h e r hand i s s t i l l open t o o . Although I have n o t been a b l e t o e l i m i n a t e t h e two c o n s t a n t s w i t h o u t s p o i l i n g t h e s i m p l i c i t y o f t h e i n t e r p r e t a t i o n , t h e r e a r e a few i n t e r e s t i n g c o r o l l a r i e s , and a r e c o n s t r u c t i o n o f Cobham's r e s u l t , structure o f
S
[ l ] .I hope t h a t a deeper a n a l y s i s o f t h e
and of how i t encodes a r i t h m e t i c and t h e t h e o r y o f f i n i t e symmetric
groups w i l l improve t h e r e s u l t s below.
2.
THE GROUPS I t i s w i s e here t o d e a l w i t h c o n c r e t e groups r a t h e r t h a n w i t h isomorphism
types.
Our p e r m u t a t i o n s range o v e r t h e group
of t h e i n t e g e r s and
fi o f a l l b i j e c t i o n s on t h e s e t
stands f o r t h e subgroup o f
We s h a l l need t h e t r a n s p o s i t i o n
T =
(O,l),
for
i
E
2,
the basic cycles o f order
for
n
E
N,
t h e successor
p:i
H
n+l
generated by t h e s e t
i t s s p e c i a l conjugates 5, = (0,1,
i+land t h e groups
....n ) ,
c-,
T~
Z UC 0.
= (i,i+l),
= (0,-1.
...,-n),
161
Symmetric Groups and the Open Sentence Problem
The p e r t i n e n t p r o p e r t i e s o f these groups and permutations a r e c o l l e c t e d in the next t h r e e lemnas in an o r d e r t h a t leads r i g h t u p t o t h e lemnas of the next s e c t i o n . They a r e easy t o prove, [ 3 ] , by d i r e c t c a l c u l a t i o n s and inspection of diagrams. We use t h e abbreviation [x,y] f o r t h e commutator x-'y-'xy, the derived subgroup of c e n t r a l i z e r of
x
write U '
U generated by i t s commutators and w r i t e Z(G,x) W e c a l l an extension R '
in t h e group G.
for for the
o f a presentation
by a s e t of negations of equations complete i f t h e diagram o f th8 group
<XIR>
gp<XIR> c o n s i s t s of consequences of
R'.
For b r e v i t y we indulge i n t h e abomination
o f concatenating equations. LEMMA 1.
(i)
S
i s the extension of
phism induced by the cyclic permutation (ii) S'
= S ,;
S' =
-
Su 'li
by its outer automorT
{[x,y] ]x,ycS}, S u = S ' U T S ' , and
normal subgroup of Sw (iii) z(s,p) = < p > , Z(S,pcil)
=
o f ~the generators,
~
+
S'
and of S, xSn, and Z(S,pkr)
(iv)
z(sn+l,c.n) = <en>, Z(Sn+l,
for k # 0,
< ckn ~ > ,for O=Sa+l,
( i i i ' ) So k (WX)(WY)-G(X,Y),
iff
t h e s u p p o r t s o f t h e c y c l e s 5 and
iff
rl
i n one p o i n t , (v)
Sa C O(€,,rl)
LEMMA 6.
5= 1
iff
If 6 < a
5
i s a sub c y c l e of t h e c y c l e w + l and c,q,c
E
Sa+l,
€, i s a f i n i t e c y c l e w i t h v(€,)=O,
( I t ) ( 3 g ) (3h) ( S ( t , t ( )
& n=g-'t€,g=h-'n-'h)
then
5.
n intersect
V. HUBER-DYSON
164
4.
COBHAM'S THEOREM Lemma 6 shows how t o define predicates
for ncN, Sc, Sm*, Pr* and O* in Cn, the language of groups so t h a t the axioms of the fragment Ro of arithmetic become true in every i n f i n i t e model of the theory of f i n i t e symmetric groups.
Ro
encodes
the diagram of the arithmetic of the natural numbers under successor, addition, multiplication and the natural ordering, using predicates rather t h a n terms and has the additional axioms
(Vx)
- O*(x,l)
and
(Wx)(Yy)(Vz)(Cn(x)& Sc(x,z) & O*(y,z) => Cn(y)VO*(y,x)), f o r Every f i n i t e subset of
i s undecidable.
Ro
has f i n i t e models, b u t every theory compatible
embeds a copy o f
S
Using the f a c t t h a t every s u f f i c i e n t l y large alternating group
n v i a . t h e diagonal Sn
nating groups where the cycles
2 , and of nilpotency
Symmetric Groups and the Open Sentence Problem
165
class 2 i s not covered by Cobham's theorem.
5.
THE UNDECIDABILITY OF Neither of t h e groups
AND
S
Sw.
In
i s a model f o r t h e theory of f i n i t e groups.
S , Sw
f a c t t h e i r t h e o r i e s a r e compatible with t h e f i n i t e l y axiomatizable e s s e n t i a l l y undecidable fragment Q
of a r i t h m e t i c .
Thus t h e u n d e c i d a b i l i t y of t h e i r elementary
theories follow by t h e c l a s s i c a l methods o f [ 7 ] . relativize t o the predicate N
For
S
i t i s most convenient t o
and use Lemma 4 t o obtain an i n t e p r e t a t i o n of
in the i n e s s e n t i a l extension of the theory TS by t h e constants Sw
relativize t o the predicate
Lemma 6.
a
Q
and b.
For
( 3 z ) S ( z , x ) and use t h e predicates introduced in
The c r u c i a l d i f f e r e n c e between i n f i n i t e models of t h e theory of f i n i t e
symnetric groups and
lies i n Lemma 5 ( i i i ) , ( i i i ' ) .
Sw
i n t e r p r e t a t i o n s of the axioms of f i n i t e group theory and
Ro
Q
The conjunction of the
i s of course t h e negation of a theorem of
has t o be used f o r Cobham's proof, but i n
So
every
cycle has a "successor", and a l l "sums" and "products" e x i s t .
THEOREM 2.
The e l e m e n t a r y t h e o r i e s o f b o t h t h e g r o u p o f a l l p e r -
m u t a t i o n s o f f i n i t e s u p p o r t o n an i n f i n i t e s e t a n d i t s e x t e n s i o n b y a f i x p o i n t f r e e cycle are h e r e d i t a r i l y u n d e c i d a b l e .
6.
THE EQUATION PROBLEM FOR SYMMETRIC GROUPS WITH A DISTINGUISHED PAIR OF GENERATORS Lemma 4 shows how t o a s s o c i a t e w i t h every polynomial equation
integral c o e f f i c i e n t s and v a r i a b l e s $ ( a , b ) of t h e language
L'
f r e e v a r i a b l e s x1 ,...,xk,yl
nl
,...,n k
and only i f
S = Su+l.
t h e equation
x1 ,. . . ,xk,y,
,. . . ,yh
an e x i s t e n t i a l formula
of groups enriched by two constants
,...,y h
P(nl
a, b
and w i t h
such t h a t , f o r every choice o f natural numbers
,..., nk,yl ,...y h )
$(nl,...,n+,yl ,...,y h )
P w i t h positive
has a n o n t r i v i a l s o l u t i o n i n
N
if
i s s a t i s f i a b l e i n t h e permutation group
The u n s o l v a b i l i t y of H i l b e r t ' s t e n t h problem, [51, thus e n t a i l s t h e un-
d e c i d a b i l i t y of t h e equation problem f o r
S
in terms of the generators
T
and
B u t a b i t more can be s a i d upon s c r u t i n y of the language introduced i n 53. All
p.
166
V. HUBER-DYSON
terms t h a t occur in I) will be of t o t a l exponent zero in words of the form v(a,b) s a t i s f i a b l e in
S
t h a t in f a c t belong t o Sw,
so t h a t our formula i s
iff
Sw+l k ~ ( n , ( a , b ),...,~ , ( a , b ) q, ( a , b ) f o r some ml, ...,m h
and the solutions are
b
E
N.
,..., rn+(a,b))
B u t then, there i s an integer
q
(d
such t h a t
Sq+l k I ) ( q ( a , c ),. . . , s ( a , c ) , q ( a , c ) ,. . . ,rn+(a,c)).
q
(9)
d i l l be a p a r t i a l recursive function of the n ' s with the property t h a t i f
(w)
holds then the sentence on the r i g h t will be a logical consequence of the f i r s t q
if
defining relations of
(9)
r > q,
[a,b] # 1 .
and the inequation
So+l
holds f o r a formula of the form indicated, then so will including
w.
On the other hand, (r)
for a l l
Noting the recursiveness of the presentations involved and
modifying the notation of I1 by writing
W', 3'
where the language
i s con-
L'
cerned and attaching a subscript 0 i f we mean r e s t r i c t i o n t o formulas in which only terms of t o t a l exponent 0 i n b
occur we find t h a t
5 30' = 5m3O' = 3$
m
= 3;
s
and t h a t a l l these s e t s are recursively enumerable b u t n o t recursive.
I t follows
t h a t the s e t s 53', 3'5, and 3's a r e recursively enumerable b u t n o t recursive and
t h a t none of the s e t s in the following sequence i s recursive S3' 3 Sm3'
2
3 ' S m 3 3'S3 3 '
V ' g c V'SmC W'S
To see t h a t the inclusions are proper note t h a t b
b9 = 1
in only f i n i t e l y many
Sn's,
i s a commutator in i n f i n i t e l y many b u t n o t in almost a l l of them, for fixed
n , m , c(n,m,y) b
.
s
i s s a t i s f i a b l e i n almost a l l symmetric groups b u t n o t in a l l , and
i s conjugate t o i t s inverse in a l l f i n i t e symmetric groups b u t n o t in
S.
THEOREM 3. The s e t s o f q u a n t i f i e r f r e e f o r m u l a s o f t h e l a n g u a g e o f
g r o u p t h e o r y e n r i c h e d by t w o c o n s t a n t s - - i n t e r p r e t e d by a t r a n s p o s i t i o n and a maximal c y c l e
--
t h a t a r e s a t i s f i a b l e i n some, i n a r b i t r a r -
i l y l a r g e o r i n almost a l l f i n i t e symmetric groups a r e u n d e c i d a b l e , and so i s t h e e q u a t i o n p r o b l e m f o r t h e g r o u p S,
S.
The o p e n t h e o r i e s o f
o f a l m o s t a l l f i n i t e s y m m e t r i c g r o u p s and o f a l l f i n i t e s y m m e t r i c
Symmetric Groups and the Open Sentence Problem
167
groups in the extended language are not recursive. The p r e d i c a t e
E
o f 53 a l l o w s a r e l a t i v e i n t e r p r e t a t i o n o f t h e t h e o r i e s o f
a l l f i n i t e symmetric groups, o f a l l f i n i t e a l t e r n a t i n g groups and o f almost a l l f i n i t e symmetric groups i n t h e t h e o r y o f t h e group
A p p l i c a t i o n s w i l l be i n v e s -
S.
t i g a t e d elsewhere,
7.
REDUCTION TO THE LANGUAGE OF GROUP THEORY I t should be p o s s i b l e t o sharpen theorems 1, 2 and 3, b u t a t t h i s p o i n t t h e
f o l l o w i n g remarks w i l l have t o s u f f i c e .
U s i n g Lemna 5 ( i i i ) and t h e a s s o c i a t i o n o f
86 between p o l y n o m i a l e q u a t i o n s and f o r m u l a s b u i l t up from t h e p r e d i c a t e s and terms
o f 83 one f i n d s t h a t t h e s a t i s f i a b i l i t y i n some f i n i t e symmetric group of t h e 3W3formula
(3a)(3b)(G(a,b)
,... ,n+.y ,,... ,yh))
i s equivalent t o t h & s o l v a b i l i t y
& $J(~I~
of t h e corresponding d i o p h a n t i n e problem.
Moreover, due t o t h e form of
$J.
the
formula i s s a t i s f i a b l e i n some f i n i t e symmetric group i f and o n l y i f i t i s so i n almost a l l o f them and a l s o i n t h e group
THEOREM 4.
S.
The W3W-theories of finite symmetric groups, of almost
all finite symmetric groups and o f the group
S
of permutations gen-
erated by a transposition and a fixpoint free cycle on an infinite set are not axiomatizable. o f 83 and t h e f a c t t h a t 9 t h e u n i v e r s a l t h e o r y o f a l l f i n i t e groups c o i n c i d e s w i t h t h a t o f 5, [3], one o b t a i n s
W i t h t h e p r e s e n t a t i o n s o f Lemma 3, t h e p r e d i c a t e s
R
THEOREM 5. For any quantifier f r e e formula
H
groups let
of the language of
abbreviate the W3-sentence 9 (Vx)(Vy)(Rq(x,y) =' ( 3 2 1 ) ...(3zk)H(x,y,zl,...,zk))'
(i)
H
For each positive integers
q , either
symmetric group of degree greater than of group theory for all
q,
H
9
fails in some finite
or e l s e
Hr
is a theorem
r 2 q.
(ii) The set of quantifier free formulas
H
for which
H is, for 4
V. HUBER-DYSON
168
q, a theorem o f finite group theory is recursively enumerable
some
but not recursive. Finally, the presentation f o r
S
on
exponent z e r o i s an elementary p r o p e r t y o f troducing the predicate (WZ)(X
2
and
T
and t h e f a c t t h a t b e i n g o f
p,
as an element o f
p
S
justifies in-
A(x,y):
2 2 1 = l & [ x ,y13=1& [x ,y1 f l & y f z & ( [ z ,y1 = l & z = l = > z = l ) & ( [z, y1=1=>z=yz=y- v [ z , x l 2 = 1 ) f .
Any two elements o f a group isomorphic t o
S
and
G
that satisfy
A
in
G
w i l l generate a subgroup
A ( T , ~ ) holds i n the f r e e product o f
S
w i t h any group.
From 56 and Theorem 2 o f [3] one o b t a i n s a theorem t h a t , amusingly, has t h e undec i d a b i 1 it y o f Wsgrouptheory as a c o r o l l a r y . THEOREM 6.
by the axiom arithmetic.
The extension (3x)(3y)A(x,y)
T
of the elementary theory of g r o u p s
is compatible with the fragment
Q
of
Its universal theory coincides with that of all groups
and is undecidable while the existential closures of exactly those quantifier f r e e formulas that are finitely satisfiable are theorems of
T.
The set of quantifier free formulas
(Wx) (Wy) (A(x,y) = > (3 zl).
,
H
for which
. (3zk)H(x,y,zl,. . . ,zk))
grouptheory is not recursive.
is a theorem o f
Symmetric Groups and the Open Sentence Problem
169
REFERENCES
A . Cobham, Undecidability in group theory, AMS Notices, vol 9 (1962), 406. V. Huber-Dyson, The word problem and r e s i d u a l l y f i n i t e groups, AMS Notices, vol 11 (1964), 743. V. Huber-Dyson, A reduction of the open sentence problem f o r f i n i t e groups, t o appear in t h e B u l l e t i n of t h e LMS, vol. 13.
A. I . Mal'cev, The u n d e c i d a b i l i t y of t h e elementary theory of f i n i t e groups,
Dokl. _ _ Akad. Nauk, SSSR 138 (1961), 771-774.
Y.
v.
Dokl. Akad. Matiyasevich, Enumerable s e t s a r e Diophantine, - Mauk. -
SSSR 191 (1970), 279-282.
C . F. M i l l e r 111, Some connections between H i l b e r t ' s 10th problem and t h e theory of groups, i n m p r o b l e m s , ed. W . W . Boone, F. 8. Cannonito and R . C . Lyndon, North Holland Co. 1973. A . T a r s k i , A . Mostowski and R. M . Robinson, Undecidable Theories, North Holland Co. 1953. R . L . Vauaht. On a theorem o f Cobham concernina undecidable t h e o r k s . i n t h e Philosophy of Science, ed. E . Nagel, P . Suppes and A. T a r s k i , Stanford Univ. Press 1962.
w ,Methodology and
PATRAS LOGIC SYMPOSION G. Meinkides (ed.) @North-HollandPublithing Company, I982
171
ITERATED INDUCTIVE FIXED-POINT THEORIES: APPLICATION TO HANCOCK'S CONJECTURE Solomon Feferman-11 Department o f Mathematics Stanford University S t a n f o r d , C a l i f o r n i a 94305
Denoting t h e p r o o f - t h e o r e t i c o r d i n a l o f a t h e o r y
ABSTRACT.
A
(IDn(
result gives
T
by
IT(,
t h e main
A
5
where ( i )
an
IDn
i s a t h e o r y o f n-times i t e r a t e d i n d u c t i v e
d e f i n i t i o n s i n which o n l y t h e f i x e d - p o i n t p r o p e r t y i s a s s e r t e d and (ii)a. =
eO,
( 0 ) . M a r t i n - L o f ' s c o n s t r u c t i v e t h e o r y o f types w i t h n u n i v e r ? e s (ML,) an t h u s s e t t l i n g Hancock's c o n j e c t u r e : lMLnl = an. can be i n t e r p r e t e d i n an ID,
an+l = @
A
To
Analogous r e s u l t s a r e proven here f o r p a r t s o f o u r c o n s t r u c t i v e t h e o r y f u n c t i o n s and c l a s s e s .
PART I.
(The r e s u l t s f o r
THE THEORIES
arithmetic
(PA)
A1, and
&(P l,...,Pi) and
...,An Ai
Ai(Pi,x)
,. ..,Pn).
n
t h e language o f
augmented by unary p r e d i c a t e symbols
order language, denoted C (P, by a sequence
n
F o r each
ID,. 1
Ai(Pf,x)
a r e p r e v i o u s l y due t o Aczel.)
UPPER BOUNDS. h
1.
n= 1
of
The axioms o f
IDn
P1,
...,Pn '
for
Pi
Ai.
It i s a f i r s t -
IDn(
B(x).
F(x)
such t h a t
formula which provably enumerates f o r
C1
formulas
Cl
C1
Q(x,y).
Write
Qe(x,y)
for
E(e,x,y).
Given
A
any formula P(t)
B(x),
i n A(P,x).
(1 1
i n C,
1
P
-AC
f o r the r e s u l t o f substituting
t o one of t h e
rl Qe(F,x) i s
B(t)
for
E(z,z,u),x).
has o n l y p o s i t i v e occurences i n A(P,x),
(2)
But
A(uB(u),x)
Now consider t h e formula
A(;
Because
write
Qe(z,x),
with
t-
~(j~(z,z,u),x)
E(e,e,x),
so i f we take
-AC
e
the formula (1) i s equivalenl
found e f f e c t i v e l y from
A:
~,(z,x).
P ( x ) = Qe(e,x)
(3)
we have t h e desired conclusion.
REMARK.
I f one s t a r t s w i t h a formula
A(P,x, ...) w i t h i n d i v i d u a l and/or s e t
parameters the same argument can be r e l a t i v i z e d t o g i v e a
Ei
formula
p(x,
...)
w i t h t h e same parameters such t h a t
,...),x ,... )
A($(u
C i -AC
TDl
Now t o i n t e r p r e t
( C i -AC)
p(x
,... ).
unchanged and 1 Every instance o f Ind(P) i s provable i n C1 -AC since i n t e r p r e t Pl as pl. ,. we are assuming f u l l i n d u c t i o n on pll i n t h a t theory. Thus I D 1 i s contained i n 1 (z1 -AC) have
REMARK.
in
++
under t h i s t r a n s l a t i o n . ,. IDl 5
Obviously
=d
since t h a t i s provably
we leave t h e language
X’
Since a r i t h m e t i c a l formulas are unaffected we
1 Z1 - AC. c a n ’ t be e q u i v a l e n t t o t h e standard 1 TI1- complete.
1
I$d e f i n i t i o n of
However, we can d i a g o n a l i z e j u s t as w e l l
0.
175
Iterated Inductive, Fixed Point Theories w i t h II;
formulas since i f 1
alence i n 1
1
Z1- AC
AC).
C1-
A(F',x)
P'(x).
Z11 - AC
which symbols
i t i s denoted
by s u b s t i t u t i n g the C1 (Pl
,...,Pn)-AC
The
1 Z1
n t 1.
f o r t h e system
i s equivalent
2
C (P
,,..., Pn);
C1
t h i s c o n t a i n s t h e lankuage of
2 2 (P1
formulas o f
1
The 2nd-order language i n
When augmented by t h e unary predicate
f o r s e t parameters i n
Pi
5;
Ol.
2 i s formulated) i s denoted C-.
as a sublanguage.
such t h a t
I t i s n o t obviously excluded t h a t
I$d e f i n i t i o n o f
,...,Pn
P1
(up t o provable equiv-
A(B,x)
p'
formula
Ill
EXTENSION OF THE INTERPRETATION TO
3.
1
1
Thus we o b t a i n a
+P
so a l s o i s
II;,
1
t o the standard
IDn
is
B
1
,. . . ,Pn)
are j u s t thqse obtained
formulas o f C
C1
2
- AC
formulated i n C (P1
2
.
We w r i t e
,...,Pn);
thus i t s
axioms are: fi)
PAo
(ii)
Ind(E2(Pl
,. . . ,Pn))
( i i i ) W r 3 Y Q(x,Y ,...) + 3 X W x Q ( x , ( X ) , ,...) for each
1
Zl
LEMMA 2.
1 Z1(P1,
formula
Q o f c 2 (Pl,...,Pn).
We can find a formula
...,Pn) - AC h
interpretation o f 1
g (Pl,.
. . ,Pn)
pn+,(x)
in
1 C1(P1,.
, , ,Pn)
such that
[An(; P,+,(u),x) *+ Fn+l(x)l. Hence there is an 1 in Z1(P1, Pn)-AC + I D leaving
...,
unchanged and taking
Pn+l
into
Fn+l
PROOF. This i s immediate by t h e Remark t o Lemna 1, t r e a t i n g
P,
,...,P,
as t h e
parameters.
4.
PROOF-THEORETIC LEMMAS.
We s h a l l now extend t o t h e present s i t u a t i o n the
p r o o f - t h e o r e t i c methods f o r t h e e l i m i n a t i o n o f Sieg [1981] (Sec.2).
1
Z 1 - AC
given i n [F,S]
= Feferman,
F a m i l i a r i t y w i t h t h a t work ( o r i t s d e s c r i p t i o n i n t h e subse-
quent paper Feferman, Jager [198l])
i s assumed.
I t i s p l a u s i b l e from the [F,S]
n
approach and Lemma 2 t h a t i f an an+l.
then
1
Z1
- AC
I D n can be reduced t o a standard theory of strength
h
over
IDn
A
(and hence
can be reduced t o one of strength
However, t h e d e t a i l s o f t h e extension r e q u i r e some novel considerations which
are n o t e n t i r e l y r o u t i n e ,
S. FEFERMAN
176
n
Fix
throughout t h i s section.
2 CW1,w(Pl,...,Pn).
ments o f
dard techniques.
,...,Pn),
2
C (P1
We s h a l l c a r r y o u t t h e p r o o f t h e o r y i n f r a g -
T h i s may t h e n be e f f e c t i v i z e d and f o r m a l i z e d by s t a n -
lo2
The b a s i c language o f
( P l,...,Pn) 1 3w t h e atomic f o r m u l a s a r e tl = t2, t
i.e.
a r e p r i m i t i v e r e c u r s i v e terms and
tl, t2, t
b u i l t up b y
-,
M , W, WX m < w m<w
t i o n o f formulas o f length
and 3 X .
i s t h e same as f o r E
and
X
t
i s a s e t variable.
X
,...,Pn)
2 By ESa(P1
Pi
E
where
Formulas a r e
i s meant t h e c o l l e c -
< a ( s i m i l a r l y f o r < a).
The p r o o f system i s t h a t o f t h e Gentzen s e q u e n t i a l c a l c u l u s f o r 2 S~,,~(P~,...,P~)
including the cut-rule.
f i n i t e sequences o f formulas.
F
tl = t2 w i t h
false.
r
FA
i f 10
B
and l e n g t h o f
Q S a
and each
a < a, 1
and s i m i l a r l y f o r t3 :
r k 0
(RAV+l ( X I 1 I (8)
-+
(RAV(X)) 1
RAV(X))
I61 1
( E ~ ) )E
f o r each
(For f i n i t e a
=
and
U = RA
&a+' .6
(X)
explicit definition o f
$a+l
$ o . = X6.w'
from
Y
from
$a
We show
I(')(@)
+
I(u)($a(f3)).
the s h i f t t o
~ ~ ' ~ - 6
The p r o o f of ( 6 ) i s based on t h e
( j u s t as
=
[email protected] C$l
y = l i m y[n],
for
o f the d e r i v a t i o n o f (5) from (3).
we have
U = RA (X); 2.6
i s n e c e s s i t a t e d t o t r e a t t h e l i m i t cases.)
$
RAv(X).
Now t h e general s i t u a t i o n i s as f o l l o w s :
i t i s s u f f i c i e n t t o take
and o f
WO.6
+
T h i s simply comes f r o m t h e f a c t t h a t
(E~).
RAV+,(X).
a, 6 > 0
I(''(6)
we have
i s a l i m i t number, so RAw.,(X)
0.6
(6)
U = RAw.,(X)
and
n
i s d e f i n e d from
B
and f o l l o w s t h e i d e a
F o r f u l l d e t a i l s c f . Feferman [1968] 83.
The
f o l l o w i n g i s a c o r o l l a r y o f (6): (7)
f o r each
a
and
VX
U,
E
U [ R A a+l(X)
For, under t h e h y p o t h e s i s , g i v e n U1 = RA
a+l(X),
w
X
E
5 U]
I(')($a(0)).
U we c e r t a i n l y have
(U1 1 I ( c $ ~ ( O ) ) by (6).
SO
+
But
X
6
U1
I
(U),
(0)
where
so t h i s i m p l i e s
0
I ( $ (O),X); NOTE. a,6
we conclude
I(')($,(O))
since
X
i s arbitrary i n
U.
F o r t h e a p p l i c a t i o n ( 7 ) t o a g i v e n G we need t o e s t a b l i s h ( 6 ) o n l y f o r with
uses o n l y
a
5
I(')(;)
and for
~ " ~ - 46 wa+l.
w
= RA oa+'+l
T h i s i s done by i n d u c t i o n on
TA,,(
= TA + n u n i v e r s e s ) .
a.
and
(XI.
Flow we c o n s i d e r t h e s e statements i n t h e f o r m a l framework o f of t h e
a4
TA
and t h e n
F i r s t of a l l we a p p l y ( 2 ) t o any formula
13
191
Iterated Inductive, Fixed Point Theories of $ ( T i ) .
T h i s a l l o w s us t o show
(8)
kTI(i,0)
Ti
f o r each
TI(wn(0),O)
a
min(Xi).
for all
..a
H
of
I
n I.
H = H^
i s s a i d t o be
M-coded
i f t h e r e e x i s t s an M - f i n i t e s e t
We c l a i m t h a t , i f s e t v a r i a b l e s a r e i n t e r p r e t e d as r a n g i n g
I,
o v e r M-coded subsets o f
then
I
becomes a model o f
c l a i m w i l l complete t h e p r o o f of (ii) since c l e a r l y
ACAO + RT(<w,Z).
This
i s a t i s f i e s a l l t r u e :X
sentences. The n o n t r i v i a l p a r t o f t h e v e r i f i c a t i o n t h a t showing t h a t i f
H
I
satisfies
ACAO
reduces t o
c_ I i s M-coded t h e n so i s
where we employ t h e p a i r i n g f u n c t i o n (x,y) To see t h a t
K
=
1 7
(x
*
H
+
y ) ( x + y + 1) + x.
i s M-coded, c o n s i d e r a p a r t i t i o n
(Cg,Ci)
such t h a t , f o r a l l
203
A Finite Combinatorial Principle
a
< b < c .(max(X),
{a,b,clEC;
wx
0,
E
Pb 5 [ w I w
i . e . r e c u r s i v e l y coded clopen) s e t
A
b
f o r which we can prove t h a t i f
i s r e c u r s i v e i n A.
Hb
then
was c a r r i e d o u t s t r a i g h t f o r w a r d l y i n [16];
0 l i g h t f a c e Al,
a recursive (i.e.
This s t r a t e g y
however, because we are now working i n
ACAO, an a d d i t i o n a l d i f f i c u l t y a r i s e s , as w i l l be seen. We denote by functions from
t h e s e t o f a l l i n f i n i t e sequences o f n a t u r a l numbers, i . e .
w"
into
w
We denote by
W.
o f n a t u r a l nmbers, i . e .
f u n c t i o n s from a f i n i t e i n i t i a l segment o f
u
The l e n g t h o f a f i n i t e sequence
-
nX f o r t h e p r i n c i p a l f u n c t i o n
X
elements o f
A
s
majorizes
E
A
X,
tree i s
a set
f(i)
and
lh(o).
Given
E
A
f
E
for all
i < 1st.
T ~ w " such t h a t every i n i t i a l segment o f an element o f
f
i s an element o f
I X : H(X)I
T
A
path
t h a t every f i n i t e i n i t i a l segment o f
recursive tree
predicate
i s a path through
and t h e corresponding path Ta
H(X)
f
TI.
1-1
ww
such
correspondence between
a r e r e c u r s i v e i n each o t h e r .
ha
E
I t i s w e l l known
Furthermore, i f
be the t r e e associated i n t h i s way t o t h e
has a t most one path, denoted
T.
f
T
we may e f f e c t i v e l y associate a p r i m i t i v e
such t h a t t h e r e i s a canonical
and { f : f
major-
s
we say t h a t
E
i s an i n f i n i t e sequence
0 [8] t h a t t o each n2
we w r i t e
we say t h a t
w',
T
T.
w.
i. The c a r d i n a l i t y o f a f i n i t e s e t
[ o ] < ~and u
ns(i) L o ( i )
and
[a]'
E
through
i s an element o f
cw
X
For
into
w
i . e . t h e f u n c t i o n which enumerates t h e
for all
Is\. Given s
Is1 = l h ( o )
if
2
vA(i)
if
[ w ] < ~ i s denoted a
of
i s denoted
E 0'"
i n i n c r e a s i n g order. f
t h e s e t o f a l l f i n i t e sequences
0
TI2
i f i t exists.
H(X)
For each
predicate
H(a4X).
Furthermore
ha
X:
holds then a
E
0,
let
Ta
Thus
e x i s t s i f and
only i f
Ha
e x i s t s , i n which case they are r e c u r s i v e i n each o t h e r .
that i f
ha
e x i s t s then i t i s r e c u r s i v e i n every s e t which majorizes i t [8].
Note a l s o
All
o f t h i s i s provable i n ACAO. The f o l l o w i n g n o t a t i o n w i l l be convenient.
Given A
E
[wIw
and
s
E
[01 i f o r a l l Pa 5 [o]'
Our r e c u r s i v e s e t s decide whether o r n o t
icsl.
A
E
Pa,
a r e d e f i n e d as f o l l o w s .
let
s1
to
[w]',
E
be t h e s m a l l e s t i n i t i a l segment o f
majorized by
s1
tence o f
f o l l o w s from K o n i g ' s lemma and t h e f a c t t h a t
s1
one path.
have a c m o n i n i t i a l segment
s2
Let
> min(A/sl)
T~
and any two f i n i t e sequences i n
and
o f l e n g t h min(A).
T~
b e t h e s m a l l e s t i n i t i a l segment o f
have a comnon i n i t i a l segment only i f
A
A
Isl\ > min(A) and such t h a t any two f i n i t e sequences i n Ta which a r e
such t h a t
Is21
Given
b o t h e x i s t and
T~
A/sl
Ta
'cl
5
T
~
.
has a t M s t one such t h a t s2
which a r e m a j o r i z e d by
o f l e n g t h min(A/sl).
T~
Ta
The e x i s -
A
Put
into
i f and
Pa
T h i s completes t h e d e f i n i t i o n of
'a' I t s h o u l d be c l e a r t h a t i f
[A]'
and c o n v e r s e l y i f
A.
Thus
Ha
i n which case
5 Pa
A
majorizes a path through
t h e n t h e r e e x i s t s a p a t h through
e x i s t s i f and o n l y i f t h e r e e x i s t s Ha
Ta
A
A.
i s r e c u r s i v e i n e v e r y such
E
[wfil
then
Ta
Pa,
[A]'c
recursive i n
[ A I M 5 Pa
siich t h a t
These statements a r e p r o v a b l e
i n ACAO. I n order t o prove t h a t
Ha
e x i s t s , we need t h e f o l l o w i n g c o m b i n a t o r i a l
1enma.
3.4
LEMMA.
subsets o f
The f o l l o w i n g i s p r o v a b l e i n [wIw
a r e Ramsey.
c l o p e n s u b s e t s of a l l
k
PROOF. R 5 [w]"
E
A Let
and Ri
i.
c o n t r a d i c t i n g t h e f a c t t h a t ( s,Ui)
f o r some
J
and we c l a i m t h a t
[wIw
[A]<W such t h a t
be
t o get
M
Put
i 0
imply
For background material on V of [ 2 6 ] .
(a)=
K ~ ,y
For each ordinal
< B.
r0
Then
define a
B
B > 0.
and, for
ma
K
B
(a)= the a t h
i s the l e a s t ord-
(a) < y. B we assume familiarly with [2] or with Chapter
ro
K
I n particular we assume t h a t a canonical promitive recursive system of
notations ( N ,
f o r the ordinals
1,
are c o u n t a b l e intersections o f differences o f o p e n i n d e x s e t s . ) I t i s open (and d o u b t f u l ) whether even
by open i n d e x s e t s f o r t h e case e.g.,
I$
index sets.
X = ww.
Gg
i n d e x sets 5 o - a l g e b r a generated
Analogously, no normal f o r m i s known f o r ,
231
The Addison Game Played Backwards: Index Sets in Topology
REFERENCES J . W . Addison, The Theory o f h i e r a r c h i e s , L o g i c , Methodology and Philosophy o f Science (Proc. I n t e r n a t . Congr., 1962, pp. 26-37.
1960), S t a n f o r d U n i v . Press, Stanford,
J . W . Addison, Some problems i n h i e r a r c h y t h e o r y , Proc. Sympos. Pure Math., v o l . 5, Amer. Math. SOC.,
Providence, R . I . ,
1962, pp. 123-130.
J . W. Addison, C u r r e n t problems i n d e s c r i p t i v e s e t t h e o r y , Proc. Sympos. Pure Math., v o l . 13, P a r t 11, Amer. Math. SOC., Providence, R . I . , 1974, pp. 1-10. Y . L. Ershov, On a h i e r a r c h y o f s e t s 11, t r a n s l a t e d i n Algebra and.Logic 7 (1968), pp. 212-232. L. Hay, Isomorphism types o f i n d e x s e t s o f p a r t i a l r e c u r s i v e f u n c t i o n s , Proc. Amer. Math. SOC. 17 (1966), 106-110.
,
Index s e t s o f f i n i t e c l a s s e s o f r e c u r s i v e l y enumerable s e t s ,
J . Symbolic L o g i c 34 (1969), 39-44.
K. Hrbacek and S . Simpson, On Kleene degrees o f a n a l y t i c s e t s , t o appear i n Proc. o f Kleene Conference (Madison 1978), N o r t h H o l l a n d , Amsterdam.
A. K e c h r i s , On a n o t i o n o f smallness f o r subsets o f t h e B a i r e space, Amer. Math. 229 (1977), pp. 191-208.
x.
Trans.
D. M i l l e r , Index s e t s and Boolean o p e r a t i o n s , t o appear.
J . Mohrherr, Ph.0. Thesis, U n i v . o f Ill. a t Chicago C i r c l e , 1981. Y. Moschovakis, D e s c r i p t i v e S e t Theory, N o r t h H o l l a n d , Amsterdam, 1980. H. G. Rice, Classes o f r e c u r s i v e l y enumerable s e t s and t h e i r d e c i s i o n problems, J . Symbolic L o g i c 74 (1953), pp. 358-366. H. Rogers, Theory o f R e c u r s i v e F u n c t i o n s , McGraw-Hill, New York, 1967. R. L. Vaught, pp. 269-294.
I n v a r i a n t s e t s i n t o p o l o g y and l o g i c , Fund. Math. 82 (19741,
PATRAS LOGIC SYMPOSION
G. Metakides (ed.) @ North-Holland Publishing Company, 1982
239
A N A L Y T I C EQUIVALENCE RELATIONS AND COANALYTIC GAMES
Jacques Stern UniversitC de Caen Caen, France
§
0
INTRODUCTION The present paper i s an attempt t o cast a bridge between two subjects of
descriptive s e t theory which have been investigated in the past years:
the deter-
minacy of coanalytic games and the study of analytic equivalence relations.
The
f i r s t topic culminated with the following r e s u l t due t o Martin ( 5 ) and Hhrington
(3).
THEOREM 0.1:
The d e t e r m i n a c y of c o a n a l y t i c games i s e q u i v a l e n t t o t h e
hypothesis
Va
(a'
exists).
As f o r the other topic, i t was s t a r t e d by the following deep r e s u l t o f Silver (7):
THEOREM 0.2:
Any c o a n a l y t i c e q u i v a l e n c e r e l a t i o n on
has countably
many c l a s s e s o r a d m i t s a p e r f e c t s e t o f p a i r w i s e i n e q u i v a l e n t e l e m e n t s S i l v e r ' s original proof used an elaborate forcing argument; a simpler proof has been found by Harrington ( 4 ) which yielded the following e f f e c t i v e version of the above theorem: THEOREM 0.3:
Let
E
be a
1 111
e q u i v a l e n c e r e l a t i o n on
w
w
which d o e s
not admit a p e r f e c t s e t o f p a i r w i s e i n e q u i v a l e n t e le m e n ts; t h e n
i s t h e union of t h e
A;
Ow
sets included i n a s i n g l e equivalence c l a s s .
Following Silver, Burgess ( 1 ) found a similar r e s u l t on analytic relations:
THEOREM 0.4: N1
Any a n a l y t i c e q u i v a l e n c e r e l a t i o n on
ww
h a s a t most
many c l a s s e s o r a d m i t s a p e r f e c t s e t o f p a i r w i s e i n e q u i v a l e n t
elements.
J. STERN
240
zi
The proof of t h i s theorem r e l i e s on a structural analysis of relation.
Let
be such a r e l a t i o n and l e t
E
f
equivalence
be a continuous function such
that
then, i f
5
E,(a,B)
iff
5
i s a countable ordinal, one can define a binary relation f(a,B) i s n o t a well-ordering of type < 5.
Clearly E
=
n
E5,
L'H,
furthermore
PROPOSITION 0.5 (Burgess ( 1 ) ) : that
by
EL
The s e t o f c o u n t a b l e o r d i n a l s
5
such
i s a n e q u i v a l e n c e r e l a t i o n i s a c l o s e d unbounded s u b s e t o f
EL
N1'
W e now come t o the main definition of the paper; equivalence r e l a t i o n , we define an analytic s e t A ( E )
A(E) where y'
E 8;
1 I B : V Y E A ~ ( B ) 3 ~ 2' T B
=
zTB
means
as usual
-
of Turing degrees by
E(Y,Y')~
t h a t y' i s recursive in
8. We now attach t o
a coanalytic Turing game G ( E ) : two players I and I1 together produce a real I1 wins i f
B
THEOREM 0.6: if
-
be a given analytic
E
let
E
belongs t o
Player
I
A(E).
The basic r e s u l t on
has a winning s t r a t e g y i n
G(E)
i s the following i f and o n l y
G(E)
admits a p e r f e c t s e t of pairwise inequivalent elements.
The proof of t h i s basic theorem will be given i n J 1 . between
E
and
G(E)
Then the correspondence
will be used in b o t h directions.
I n 5 2 , we will use analytic equivalence relations studied by R. Sami and the 1 games; especially we will prove the a u t h o r in order t o obtain new examples of I$
following THEOREM 0.7
-
i):
F o r any r e c u r s i v e o r d i n a l
5
there is a
game whose d e t e r m i n a c y i s e q u i v a l e n t t o t h e s t a t e m e n t
I$
Turing
fkk i s c o u n t -
able" i i ) : There i s a
1 111
T u r i n g game whose d e t e r m i n a c y i s
24 1
Analytic Equivalence Relations and Coanalytic Games equivalent t o t h e statement.
L
We a l s o d e f i n e a existence o f
; ' 0
TIl
1
is a w e a k l y compact cardinal i n
is countable".
L
w h o s e s u c c e s s o r in
"There
T u r i n g game whose determinacy i s e q u i v a l e n t t o t h e
t h i s game i s d i f f e r e n t f r o m H a r r i n g t o n ' s o r i g i n a l one.
Thus,
theorem 0.7 ii)shows t h a t t h e r e a r e c o a n a l y t i c games whose determinacy i s i n t h e gap between t h e p e r f e c t s e t theorem f o r c o a n a l y t i c s e t s and t h e e x i s t e n c e o f sharps. I n 53, we use o u r correspondence between i.e.
assuming
1 nl-determinacy,
E
and
G(E)
i n the othec d i r e c t i o n
we i n v e s t i g a t e t h e consequences o f t h e e x i s t e n c e o f
a w i n n i n g s t r a t e g y f o r p l a y e r I 1 i n t h e game.
We t h u s o b t a i n a new p r o o f o f a
theorem o f Burgess on t h e enumeration of c l a s s e s of a
1
C1
equivalence r e l a t i o n
w i t h no p e r f e c t s e t o f i n e q u i v a l e n t elements. B e f o r e I c l o s e t h i s i n t r o d u c t i o n , l e t me p o i n t o u t t h a t t h e i d e a s f o r t h i s paper grew o u t a t a t i m e when A . S . K e c h r i s and R. Sami were i n P a r i s and obviousl y t h e i r presence was e x t r e m e l y f r u i t f u l f o r me.
§l.
PROOF OF THE B A S I C THEOREM We assume t h a t
E
is a
Cl
one t o c o v e r t h e general case. elements, we p i c k a code w i n t h e game real
6,
G(E)
TI
1
e q u i v a l e n c e r e l a t i o n ; m i n o r m o d i f i c a t i o n s enable If
P
i s a perfect set o f pairwise inequivalent
f o r this perfect set
by s i m p l y p l a y i n g
TI.
P
and we c l a i m t h a t
Indeed, i f
I
can
I 1 answers b y p l a y i n g a
then
1
and c o u n t a b l e , t h e r e f o r e i t has measure z e r o w i t h r e s p e c t t o t h e 1 s e t o f p o s i t i v e measure c a n o n i c a l measure on P; i t s complement i s a nl(B.a)
is
Z1 (B,TI)
and t h e r e f o r e , by t h e Sacks-Tanaka b a s i s theorem i t has a member shows p r e c i s e l y t h a t t h e r e a l
(B,TI)
i s n o t a member o f
1 A,(R,n).
This
A(E).
We now c o n s i d e r t h e converse i m p l i c a t i o n (whose p r o o f was s u p p l i e d b y Kechris). real
u
Note t h a t a w i n n i n g s t r a t e g y f o r p l a y e r such t h a t
I i n t h e game
G(E)
is a
242
J. STERN
We pick such a real u and we choose a continuous f such that E(a,B) holds if and only if
i(a,B)
is not a well-ordering, Now, if 6 is a real such
that u
is recursive in B , then, B does not belong to A ( E ) 1 a real y which is Al(B) and satisfies the following
@(y,B)
If we let
:
so that there is
be
5 is a linear ordering and, for some real y' recursive in 6, 5
is an initial segment of f(y.y') then, the relation 5 E
@(y,B)
is C11 and given B with u
8, the set
is an initial segment of the set of well-orderings at least for some y 1 in A1(5). From this it follows that
@(y,B)
is a set of well-orderings. This is true also of the set U
1 set of well-orderings to which we may apply the boundedness which is a C1
theorem. We may actually pick a bound 5 for the well-orderings in U,
such
that the corresponding approximation EL of the relation E is an equivalence relation (by proposition 0.5). In order to achieve the proof, it is enough to show that E
5
admits a perfect set of pairwise inequivalent elements or equiva-
lently, by theorem 0.2, that E
5
has uncountably many classes; if this is not
true, one can find a real a such that i) ii)
any real is E -equivalent to some (a),, 5
o
is recursive in a
1 Because o f condition i i ) there is a y which is Al(a), such that
243
Analytic Equivalence Relations and Coanalytic Games i s an i n i t i a l segment o f
$(y,a)
we may assume t h a t t h i s i n i t i a l segment
WO;
i s m i n i m a l ; then, i t c o n s i s t s o f w e l l - o r d e r i n g s o f t y p e
< 5;
from t h i s i t follows
that bn so t h a t
< 5
f(u,(a),)
y
is
E -inequivalent t o a l l reals
5
(a)n;
t h i s g i v e s t h e r e q u i r e d con-
t r a d i c t i o n and f i n i s h e s t h e p r o o f .
52.
SOME NEW
IIi
GAMES
B e f o r e we s t a r t d i s c u s s i n g theorem 0.7 l e t us make t h e f o l l o w i n g remark. REMARK:
I f an a n a l y t i c e q u i v a l e n c e r e l a t i o n
E
h a s c o u n t a b l y many
c l a s s e s t h e n p l a y e r I1 h a s a w i n n i n g s t r a t e g y i n t h e game
G(E).
A c t u a l l y p l a y e r I 1 can ?!in by p r o d u c i n g any r e a l enumerating a s e t o f r e p r e sentatives for the equivalence r e l a t i o n . Obviously, then i s no converse t o t h e above remark; n e v e r t h e l e s s p a r t i ) of theorem 0.7 w i l l f o l l o w f r o m a p a r t i a l converse which a p p l i e s t o s p e c i a l a n a l y t i c r e l a t i o n s i.e.,
t o a n a l y t i c r e l a t i o n s whose c l a s s e s a r e Bore1 o f bounded rank;
these e q u i v a l e n c e r e l a t i o n s have been c o n s i d e r e d and s t u d i e d by t h e a u t h o r ( [ 9 1 ) . One o f t h e main t o o l s which we w i l l use i n o r d e r t o g e t t h e r e s u l t s i s a n o t i o n of f o r c i n g i n t r o d u c e d by S t e e l and we f i r s t r e c a l l some b a s i c f a c t s on t h i s n o t i o n of forcing.
2.1
REVIEW OF STEEL FORCING Given any o r d i n a l
consists o f a l l p a i r s i) T
one can d e f i n e a s e t o f f o r c i n g c o n d i t i o n s
5,. (T,f)
f
i s a function:
long t o
T
and
A condition
t
T
+ W -
5
J
such t h a t
{m}
i s a proper extension o f
(T',f')
which
where
i s a f i n i t e t r e e on o
ii)
Pc
i s smaller than
s,
(T,f)
f(0) =
f(t) < f ( s )
if
T
or
and i f
s,t
f(s) =
i s a subset o f
be-
-.
T' and
J. STERN
244
f'
extends
5 which i s
has countably many classes.
L ( o ) , we prove a lemma.
J. STERN
246
Let
LEMMA 2 . 2 . 4 :
then
a
be s u c h t h a t
there is a condition
in
p
such t h a t , f o r any S t e e l g e n e r i c t r e e a r e a l inequivalent t o a l l r e a l s
i s inequivalent t o a l l r e a l s
ordinal,
i s a Steel generic t r e e over
(a)n. If
(0,~)
say
Now, working in
5‘
belongs t o
a t level
L(a,a)
strategy f o r player
cursive in
extending
p,
11,
e,
Iel(T’al
is
(a)n.
5’ > 5, we may assume t h a t y
i s a winning
T
From the hypothesis, i t follows t h a t some real
PROOF OF THE LEMMA: L(a)
and a r e c u r s i v e i n d e x
IPy
y
c’,
y
in
i s a large enough a-admissible
L , ( a ) , and therefore, i f
5
y
1 A1(a,T).
is
T
Because u
i s actually equivalent t o a real re-
{e)(T’u). L(a,a),
we may find a Borel code
for
8
~x : { e j ( X ’ a ) i s a real inequivalent t o a l l (a)’,, s~ which i s a IIo -5+1 9
Borel s e t and we can find a condition q
such that
A
It
Ah5
3
B);
by proposition 2 . . 2 , we get
s5 Taking
p =
/tA(TC
4‘.
I
i t i s easy to cheek t h a t given a Steel generic t r e e T extending i s inequivalent t o a l l r e a l s
p.
( a ) n , t h i s proves the l e n a .
We now go back t o the proof of the theorem, s t i l l assuming t h a t ably many classes in
L(a).
We consider the product of H~
consists of functions from a f i n i t e subset of standard way.
H~
into
E
copies of
has uncount-
P5 which
P5 , ordered in the
This s e t of forcing conditions s a t i s f i e s the countable chain condi-
tion and adds a sequence
o f Steel generic t r e e s .
We claim t h a t one can
241
Analytic Equivalence Relations and Coanalytic Games mutually inequivalent reals recursive i n u
f i n d N1 A
and one o f t h e t r e e s
TX,
< N 1'
PROOF OF THE CLAIM:
I f t h e c l a i m does n o t h o l d , t h e r e i s a c o u n t a b l e o r d i n a l
such t h a t any r e a l r e c u r s i v e i n a
A.
u and one o f t h e t r e e s
equivalent t o a real recursive i n be f o r c e d by a c o n d i t i o n
q
i s a subset o f
q.
q.
and one o f t h e t r e e s
We p i c k an o r d i n a l
e a s i l y seen t h a t t h e r e i s a r e a l
a
(a),.
TX X < Xo.
is
T h i s may
such t h a t t h e domain of
(P5 )"
which extends
s a t i s f y i n g c o n d i t i o n s i )and ii)of femna
By t h e lemna, t h e r e i s a c o n d i t i o n
f o r any S t e e l g e n e r i c t r e e e x t e n d i n g
X A .
5
I n o r d e r t o prove t h a t o
we show t h a t lemma 2.2.4 holds w i t h
then, by proposition 2.4.2 i ) any
E -inequivalent t o each
5
tree player
such t h a t
Such a
T over some l a r g e enough ordinal I1
B admits an
X in place of 5.
MB
If
CI
i s given and
i s isomorphic t o L HCtl
can be found 5 ; because
i s strong w.r.t.
A;
is
in some Steel generic
u i s a winning s t r a t e g y for
Em-equivalent element r e c u r s i v e in
T,o
say
J. STERN
254
Ie}(Tyu) i s s t i l l we can find a Bore1 code y
E5
classes of
E -inequivalent t o each
It
s e t (remember t h a t the
f o r the following L!y+5+2
E -inequivalent t o a l l
{ x : {e}(xyu) i s a real
q
L(a,o)
no 1 -1+5+1
are
Some condition q
( a ) n . Working in
5
(aln’s}
5
i s such t h a t
A(TI;’Y)
by proposition 2.1.2, we get -A
Taking p
A
11 =
A(T~.Y)
$,
i t i s easy t o see t h a t given any Steel generic t r e e T
p. { e ~ ( T ~ ias ) E -inequivalent t o a l l reals
5
PROOF OF PROPOSITION 2 . 5 . 1 i i ) : L > A;
by proposition 2.4.5,
if
a
(a)n.
We write NL
L
is %+2
L,
cardinal in
we have
5
f o r the l e a s t cardinal in
5+ 1
i s a real such t h a t
then, i f there i s no weakly compact cardinal in i s isomorphic t o
L < N L ~ + ~any , B such t h a t Mg
E -inequivalent t o each
( a ) n . Because A
5
< A
PROOF OF PROPOSITION 2 . 5 . 1 i i i ) :
Let
a
I f the conclusion does not hold then
i s the f i r s t weakly compact cardinal in
L.
be a real such t h a t
We need the following l e m a . LEMW.: T h e r e i s a c o n s t r u c t i b l e t r a n s i t i v e s e t i)
X
ii)
w
i s a n e l e m e n t a r y e x t e n s i o n of
u Iwl
c
X
i s not a
and we can argue exactly as above.
w < A < (W+)L
where w
extending
L
W
X
such t h a t
255
Analytic Equivalence Relations and Coanalytic Games iii)no o r d i n a l b e t w e e n
We l e t
PROOF OF LEMMA: a map f r o m
v
onto
( c x ) XELV *
(crl
)rlzp.
v
and
A+1
< ( v + ) ~ such t h a t i n
be an o r d i n a l
p
is a c a r d i n a l i n
X.
L
P
there i s
Then, we c o n s i d e r a language w i t h c o n s t a n t symbols
A.
By weak compactness we can f i n d a model o f t h e f o l l o w i n g s e t
o f ( i n f i n i t e ) formulas
-
The t h e o r y o f
- wv
-
c
-
Lv
VECx < - > w v YEX rl'
< c
rl
= c
& On(cn)
6 i s w e l l -founded
Such a model i s i s o m o r p h i c t o a t r a n s i t i v e (because
If
p
X
morphic t o
E X)
w i t h the required conditions
. B
i s g i v e n b y t h e lemma, and i f then, because
X,
X
X
i s any r e a l such t h a t
MB i s i s o -
satisfies
'There i s no weakly compact c a r d i n a l ' , ~ ( € 3 )=N1.
Also,
v
i s a cardinal i n
X one i s e x a c t l y Nv+l,
therefore
B is
X
and t h e n e x t one i s €,+,-inequivalent
>'A;
t o each
t h i s next (a),,.
The end
o f t h e p r o o f i s s i m i l a r t o t h e above.
13
THE EFFECT OF SHARPS Throughout t h i s 5,
E
is a
p a i r w i s e i n e q u i v a l e n t elements. a winning strategy
1
C1
e q u i v a l e n c e r e l a t i o n w i t h no p e r f e c t s e t of
We assume t h a t '0
e x i s t s so t h a t p l a y e r
I1 'has
u i n t h e game G ( E ) .
generic extensions o f
L(u).
As i n §§1,2, we i n t e r p r e t f r e e l y E i n 1 O f course what i s done below f o r C1 e q u i v a l e n c e
r e l a t i o n s can be extended t o a n a l y t i c e q u i v a l e n c e r e l a t i o n s p r o v i d e d t h e axiom
~ a ( a #e x i s t s ) i s t r u e .
3.1:
The f o l l o w i n g r e s u l t i s t h e key s t e p towards o u r a n a l y s i s o f t h e equivalence
classes o f
E.
J. STERN
256
PROPOSITION 3.1.1: is a condition
Let of
p
be a r e a l and
a
P A and a r e c u r s i v e i n d e x
any S t e e l g e n e r i c t r e e r e a l equivalent to
and i f
EL, 5 < N 1 ,
p , {e3(T'a)
extending
is a
a.
i s a recursive function such t h a t
f
f ( a , B ) i s n o t a well-ordering of type < 5
pick such a countable ordinal Steel generic t r e e of Level
a Al(6)
such t h a t f o r
i s an equivalence r e l a t i o n f o r uncountably many 5 ;
E5
of type 1
L(a,u)
e,
there
uia");
i s defined by
E (a,B) = i f f 5
then,
over
T
He recall t h a t , i f
PROOF:
the ordinal
X
such t h a t
5,
5 >
c',
S;(6) < 5'
uial').
We l e t
t h e n , in
L5,(T),
5'
therefore we may ++ (5 ) L ; i f T i s a
be
there i s a well-ordering
( j u s t take an L-generic well-ordering).
6 is
EL
equivalence relation which has countably many c l a s s e s , (otherwise E
has perfectly many c l a s s e s ) ; from t h i s i t follows, by Harrington's theorem (0.3), 1 t h a t any equivalence class w . r . t E i s the union of i t s A1(6) subsets; t h i s i s 5 true in particular of the equivalence class of the given a ; hence, by the usual basis theorem a i s EL equivalent t o some A12 ( 6 ) r e a l . Because N:(&) < 5' we
1 A2(T); b u t u i s a winning strategy f o r player I 1 in the game G ( E ) , therefore any A1l ( T ) real i s E-equivalent ( a n d subsequently E
get that any
1
A2(6) real i s
equivalent) t o a real recursive in u
5
and 1.
From the above argument i t follows t h a t f o r some index
{el(Tva) i s a real
e
E -equivalent t o a , 5
or equivalent t h a t f ( { e l ( T ' a ) , a ) i s not a well ordering of type < 5
and therefore (*)
f ( { e l ( T ' u ) , a ) i s not a well-ordering of type
T h e
-+
sequences a r e g i v e n l e x i c o g r a p h i c a l o r d e r i n g and extended t o n - t u p l e s of such sequences.
We l e t
cedures and l e t
RE
{Elx,
< a, be an a - r e c u r s i v e enumeration o f r e d u c t i o n pro-
E
denote t h e
Eth - a-r.e.
set.
We w i l l h e n c e f o r t h r e f e r t o t h e f o l l o w i n g c o n s t r u c t i o n as t h e s t a n d a r d construction.
I t i s a m i n o r s i m p l i f i c a t i o n o f t h a t i n [6], t a k i n g i n t o account
t h e o b s e r v a t i o n o f Posner and E p s t e i n [5, Theorem 11 t h a t i n any c o n s t r u c t i o n of a set
6 o f minimal degree u s i n g s p l i t t i n g t r e e s and f u l l t r e e s , t h e r e i s no
6 # Re.
need t o make s p e c i a l e f f o r t s t o ensure t h a t
The non-r.e.
ness o f
B is
a u t o m a t i c a l l y achieved. We c o n s t r u c t o u r s e t Stage 0:
Set
6 i n stages: Bo = 0.
TE = I d e n t i t y t r e e and
Stage u = p + 1.
Let
nu
be t h e l e a s t
Case 1.
nu
= p
f o r which t h e r e i s
I f such an
6,
on
T.!
Then
B,
has p r o p e r e x t e n s i o n s on
no p r o p e r e x t e n s i o n o f exist, l e t 1 ',
< p + 1
E
B;
let
f
'1U
t o be
does n o t
= p + 1.
+
1.
and t h e r e f o r e has two i n c o m p a t i b l e e x t e n s i o n s Take
E
3f,
= Sp(T:,p,Bu).
= Bp+l.
Let
TZ = TE
for
0
Bp
E
and
< 1 ',
TE,
Bk* and
328
C.T.CHONG
no 5
Case 2. T+:l
As i n [ 6 ] , 'I, = v + 1
p.
i s of t h e f o r m
Sp(Tt,v,B)
1
B;,
Bp
for
v.
extending
B on T t ) r e s p e c t i v e l y w h i c h P
for
P
6,
Tt
I f however t h e r e a r e two e x t e n s i o n s o f
6; on TE which s p l i t 6 not, take
on
Then
By assump-
P'
T ~ T~ ,
(Immediate e x t e n s i o n s o f
B,
split
B 56
f o r some
t i o n t h e n t h e r e a r e no e x t e n s i o n s
v.
f o r some
0
Bp.
t o be
v,
B,
take
6,.1
t o be
If
The argument i n 1.8 o f 161 shows
t h a t such a s e l e c t i o n can be made t o achieve o u r o b j e c t i v e . TZ = T:
Let Stage X
if
l i m i t ordinal.
$
Let
and s e t
< rl,,
E
T'
= Fu(T~,B,).
be t h e l e a s t o r d i n a l
q
5
6
changes unboundedly o f t e n a t stages below
BX = UB,
+ 1,
rl = v
let
0
T:
x,
E.
By t h e f a c t t h a t
or i f
K2
J(
sup J(w) < J ( 5 ) . F o r any o r d i n a l x within;this xv J'(x,v)
i s a splitting tree f o r a l l
Hence we o b t a i n :
E.
U(G,E),
for a l l
x
such
u < 5. By Lemma 1
It follows t h a t
TZ,
b e i n g a sub-
u such t h a t sup J(u) 2 u < J ( 5 ) . By
V x > J'(x? s Z c f ( a ) =
i s s a i d t o be
K,
I t i s c l e a r t h a t t h e p r o o f o f Theorem 1 depends
J.
We now show t h a t i f c o n t i n u i t y i s preserved,
t h e n an a l t o g e t h e r d i f f e r e n t p i c t u r e emerges, a t l e a s t when
i s uncountable.
K
Me w i l l f i r s t i n t r o d u c e t h e f o l l o w i n g obvious e f f e c t i v i z e d v e r s i o n s o f well-known notions.
An a - f i n i t e subset
whenever
K c C and K i s K - f i n i t e .
be s t a t i o n a r y i f
S
C
of
K
i s s a i d t o be c l o s e d i f An a - f i n i t e subset
S
of
sup K E C K
i n t e r s e c t s e v e r y c l o s e d and unbounded subset o f
i s said t o K.
334
C.T.CHONG Lemma 3
S
Let
C K
be stationary.
If
g
v
in
S,
K
S
0.
such
such that
is stationary.
I f n o t , then f o r each
Proof.
a
Let
there i s a closed and unbounded s e t C
whenever w
g(w) # 5
next a-cardinal a f t e r
is in
S
n
C . Since
5 5* C
the map
5 i s a - f i n i t e , hence
g
i s K + - f i n i t e . Then 5 i s a K t - f i n i t e closed and unbounded set. Then any element of K),
C' = {
u5 u(u,x)
=
0,
and s i m i l a r l y f o r t h e function
v.
Now l e t T ( < , E )
denote
the r e l a t i o n
u and v
Using t h e Z2-definition f o r as well.
Thus t h e r e e x i s t s a Z2-selection function
that for all S
in
S,
Clearly
T(S,t(C)).
l o s s of g e n e r a l i t y we may assume t h a t by the c o n t i n u i t y of t ( 5 ) < J(5').
such t h a t
is
f o r each
Now t h e r e l a t i o n
But T'
c l e a r l y C2.
J,
T( s 2 c f ( < ) =
K
is
we know
S choose t ' ( 5 ) t o be the l e a s t 5 '
is a-finite.
By Lema 3 t h e r e i s a 5*
Global and Local Admissibility such t h a t
c*
t'(
=
W.
$,
and no
K
UlJ(c)
U,
take
La
-
U
W
U
S c K be s t a t i o n a r y
for all
5
in
S.
If
U
and
U.
W
such t h a t
V
W >a U.
For
such t h a t
Furthermore t h e r e l a t i o n
z2 - r e l a t i o n .
As
s2p(a) >
K,
p o s s i b l e t o choose an a - f i n i t e sequence n < w.
satisfies
Let
> w.
i s minimal o v e r
V
W
UlJ(a)).
s2p(a) > s 2 c f ( a ) =
i s n o t minimal o v e r
there i s a
where we have
U
R( Us,
For each
5
5
let
To show t h a t
{Ail n < w , a < w l l
and
Then NA!a)la
$I
E '0.
by:
i(n)
then f o r every n ,
= maxI$(ai)I i
E
Let
under
nl =
a < wl}
By making adjustments i f necessary, we can assume t h a t the creasing and t h a t
If
f a ( i ) < f ( i ) f o r uncountably many a's. B u t
i s countable by hypothesis.
( a ) , suppose t h a t
- A?.
An;'
E
w l is an
E
then there would be a
t h i s i s a contradiction, since { a / f a ( i ) < f ( i ) f o r every
n{Af(:)l
{All n , i
sl
5
-+
w
be
Set i s an w l =
< ail i
E
w >
5 n+l}. Notice t h a t
we have
g g ( n ) < max{h (a ) , ...,h5(an,,)} < $ ( n ) . Thus, i f T were uncountable, then given 5 0 any 11 < w1 there would be a 5 E T with 11 < 5 and so g, < g5 < $, contradict ing the hypothesis t h a t the
and
{At[ n < w, a < w l l
g 's
have no upper bound.
5 i s an w,-matrix.
Hence,
T
i s countable,
In view of t h i s r e s u l t , Baumgartner asked the following question:
If there
i s an w-matrix, i s there a 2W-matrix? An independence r e s u l t may be hard t o achieve, since the standard ways of a d d i n g r e a l s a l s o seem t o add a 2W-matrix. With t h i s , the survey of the variations of sections, consistency r e s u l t s are discussed.
A(K,A)
i s a t an end; in the next
A. KANAMORI
3 46 52.
A+(K,X)
CONSISTENCY OF
This s e c t i o n discusses t h e question of consistency f o r
with f i r s t
A+(K,X),
a d i r e c t c o n s t r u c t i o n , then a forcing argument, and f i n a l l y t h e s i t u a t i o n i n
L.
The following enumeration argument i s a natural one i n t h e present c o n t e x t , b u t i t has an antecedent already i n Braun and S i e r p i n s k i [ B S ] , Proposition (Q). If
THEOREM 2.1:
i s a successor cardinal and
K
2K- =
2K- =
s
< s , p such t h a t
K, E
satisfying A+(K,K), every a
forcing extension i n which A + ( K , X )
K
in
i s a successor cardinal
there is a
V,
where (a)
F
i s a function:
axy
(b)
S
i s a s u b s e t of
{<s,pl
f o r some y
E Sn+i+l}-U{sl<s,@> define hi+l by
E
Sn+i},
352
A. KANAMORI
Clearly,
2 hi
hi+l
was changed.
i s a g a i n a c o n s i s t e n t map f o r
fi
fi i s a c o n s i s t e n t map f o r T = j&Sj. we have ~ ( c L ~ =+ ~ ) so t h a t fi i s a c t u a l l y a
Finally, set
Moreover, f o r each
i
c o n s i s t e n t map f o r
TU
w,
E
= Uhi,
so t h a t
1
I<s,$>l. T h i s e s t a b l i s h e s t h e Claim.
A l l t h a t remains i s t o e s t a b l i s h t h e
II K < ~ = K
a y
=
1 p
t
,
E
F &
i
say t h e former.
E
{O,ll
1.
E
F &
IJJ~
F
i
i s regular,
be t h e con-
as above and
E
Either
f: '1-1
{0,11 1.
-+
f-l({01)
By h y p o t h e s i s , t h e r e i s an
Then
s
2
were a con-
or
f '({I}))
E
F with
B u t t h i s i s a c o n t r a d i c t i o n , as t h e r e s h o u l d be i n f i n i t e l y many f ( a ) = 1.
As mentioned i n J1, Chudnovsky had s t a t e d t h a t i f
QK K+
p
have a common lower bound.
There i s one s i t u a t i o n where i t i s c r u c i a l t h a t
If
s, l e t
Given a f a m i l y
{)>~ s
D =
any
F o r any s e t
{i}.
and
such t h a t f o r e v e r y
i t s e l f cannot have a l o w e r bound, f o r suppose
s i s t e n t map f o r
E
and range
consider
K,
i s directed; i n fact,
D F :Q
a
1,
and
is a cardinal.
F(a,O,l). V
F(a,O,O)
PROOF:
We use i n d u c t i o n on
(1) f o r
a+l
v
v
v
= F(a.O.0).
a. Suppose a t f i r s t ( 1 ) - ( 3 ) h o l d f o r
f o l l o w s f r o m Lemma 11.
F o r (2), n o t e t h a t i f
i n case 1 above, t h e n v v v
Ra
be t h e i n v e r s e l i m i t o f
The o r d e r i n g o f
R denote t h e d i r e c t l i m i t o f t h e sequence
LEMMA 13:
a r e de-
= >.
Rv as u-sequences
and o r d e r e d c o o r d i n a t e w i s e .
such t h a t f"(p)
R(h)
be t h e W - l e a s t s e t s u c h t h a t
a < u = uv,
i s defined f o r a l l
u,
and a l l elements of
Ra 8 P ( A,a).
=
We may c o n s t r u e elements o f a
f
i s d e f i n e d , c o n s i d e r t h e f o l l o w i n g two cases:
Ra
p":
>
V
Otherwise: Ra
A)
and d e f i n e
Ra+l
If
E
I n this situation
{@I, = >.
R(a)
CASE 2:
t(a,B)
and o r d i n a l s < X.
Ib g
Ra
5
Ra
A
Ro =
1.
f o r y < 6 and a l l 6 < v:
CASE 1 :
p
then i n
V'
Z(LK)-sentence.
T h i s w i l l end t h e proof o f Theorem 7 .
z c y i n V'.
R(a)
E
as above can be expressed by a
i s an a r b i t r a r y s e t i n
M
x = P(y).
and show t h a t
M
E
But x,
and
< a I F ( ~ , B , W ) ~i s n o t a l i m i t c a r d i n a l ] .
z
i s definable from
as d e s i r e d .
M
A
and some o r d i n a l < a ,
V
by
R,
N
and
whence
Q.E.D.
denotes an e x t e n s i o n o f
then
M
satisfies
the following condition: (*)m
If
N cM
i s a t r a n s i t i v e model o f
cardinals, then Note t h a t PROBLEM 16:
L
Does
and
M
ZFC
and
M
have t h e same
N = M. L[O # I =
'L
have t h i s p r o p e r t y .
satisfy
(*),?
The method o f McAloon [2] y i e l d s a model
M
of
2w = u2 w i t h t h e f o l l o w i n g
J. VANANEN
310
s t r o n g e r property: (*)
If
5
N c M i s a t r a n s i t i v e model of ZFC containing a l l o r d i n a l s and
uN = uM fur. u u
where
MF
5
4
5 5, then N
i s the l e a s t
= M,
5 such t h a t 5
2w = u l .
PROBLEM 17:
Is
(*),
= w
I t i s obvious t h a t
5'
consistent with
MI= Z u
=
(*)1
implies
u,?
Also the following problem remains open:
PROBLEM 18:
Is
(*)-
c o n s i s t e n t w i t h a supercompact c a r d i n a l i n
I t i s not even known t o the author whether w i t h a supercompact c a r d i n a l .
2 A(L1) = A ( L )
However, the construction of [3] f o r a model of
V = HOD + ' a supercompact c a r d i n a l ' a l s o gives a model in which
A(L2),
where G i s the q u a n t i f i e r
GxA(x)
i s consistent
2 I A ( ' ) I = I A ( .)
I+,
and t h e r e i s a supercompact c a r d i n a l .
A(L(1,G)) =
M?
Generalized Quantifiers in Models of Set Theory
371
REFERENCES
[11
P. Lindstrom, F i r s t o r d e r l o g i c w i t h g e n e r a l i z e d q u a n t i f i e r s , T h e o r i a 32
[21
K. McAloon, Consistency r e s u l t s about o r d i n a l d e f i n a b i l i t y , Ann. Mafh. L o g i c 2 (1971) pp. 449-467.
131
T. K. Menas, Consistency r e s u l t s concerning supercompactness, Trans. Amer. Math. SOC. 223 (1976) pp. 61-91.
(1966) pp. 186-195.
[4] J. Vaananen, Eoolean v a l u e d models and g e n e r a l i z e d q u a n t i f i e r s , Ann Math. L o g i c 18 (1980) pp. 193-225.
PA TRAS LOGIC SYMPOSION G. Metakides fed.) 0North-Holland Publishing Company, 1982
313
€-THEOREMS AND ELIMINATION THEOREMS OF UNIQUENESS CONDITIONS Nobuyoshi Motohashi Department o f Mathematics U n i v e r s i t y o f Tsukuba Sakura-Mura, Ibaraki
Nihari-gun
300-31
. JAPAN
I n t h i s paper, we s h a l l show t h a t some forms o f "E-Theorems" ( c f . D e f i n i t i o n 6 below) and some forms o f " E l i m i n a t i o n Theorems o f Uniqueness C o n d i t i o n s " ( c f . Defin i t i o n 12 below) a r e e q u i v a l e n t f o r many l o g i c s i n c l u d i n g t h e c l a s s i c a l p r e d i c a t e l o g i c w i t h e q u a l i t y LK ( c f . Theorem 15 below).
Before g i v i n g a precise explanation
o f o u r main r e s u l t i n t h i s paper, we w i l l g i v e a h i s t o r i c a l and i n t r o d u t t o r y exp l a n a t i o n o f E l i m i n a t i o n Theorems o f Uniqueness C o n d i t i o n s i n t h e l o g i c LK. Let
P be an ( n + l ) - a r y p r e d i c a t e symbol.
Then, P - f r e e ( P - p o s i t i v e ,
f o r m u l a s a r e f o r m u l a s which have no ( n e g a t i v e , p o s i t i v e ) occurrences o f existence condition o f
P, denoted by
uniqueness c o n d i t i o n o f WiWxWy(P(i,x) A P(2,y).
P, 3
THEOREM A .
provable in
denoted by
x=y).
o f Uniqueness C o n d i t i o n s i n
ExP,
LK
i s t h e sentence
UnP,
P.
WijyP(i,y)
The
and t h e
i s t h e sentence
Then, t h e most s i m p l e form o f E l i m i n a t i o n Theorems i s t h e f o l l o w i n g statement.
F o r any P-positive formula
if and only if
LK
P-negative)
Exp
3
A
A,
UnP
A
ExP.
3
is rrovable in
A
is
LK.
T h i s theorem i s a b y - p r o d u c t o f a t r i a l t o reduce F u j i w a r a ' s i n t e r p o l a t i o n theorem (Theorem C below) t o O b e r s c h e l p ' s i n t e r p o l a t i o n theorem (Theorem B below) s y n t a c t i cally.
Suppose t h a t
o f a l l t h e formulas i n polants o f such t h a t
C
si(C)
LK,
...,sm
and whose ranges a r e f a m i l i e s o f s e t s .
i n the logic
s
si(A)
a r e p r o v a b l e i n LK.
a r e f u n c t i o n s whose domains a r e t h e same s e t
LK w i t h r e s p e c t t o
r l si(B)
s , , ~ ~..., , sm a r e formulas
i = 1,2, ...,in,
F r ( a ) , Pr+(A), Pr-(A),
and
o f f r e e v a r i a b l e s i n A, t h e s e t o f p r e d i c a t e symbols o c c u r r i n g i n A
positively,
t h e s e t of p r e d i c a t e symbols o c c u r r i n g i n A
and
and b o t h A 3 C
be t h e s e t
2
Let
f o r each
Then, i n t e r -
Fun(A)
C
B
A 3 B
s1,s2,
n e g a t i v e l y , and t h e s e t of f u n c t i o n
N. MOTOHASHI
314
symbols i n A,
respectively.
THEOREM B (OBERSCHELP
[lo],
In
[lo]).
I f a formula
then t h e r e i s an i n t e r p o l a n t Fr, Pr+, Pr-,
(#)
I
If
of
C
A
3
A
13
in
B
is provable i n
B
LK,
with respect t o
LK
which s a t i s f i e s t h e f o l l o w i n g a d d i t i o n a l c o n d i t i o n ( # ) ;
h a s a t l e a s t one p o s i t i v e ( n e g a t i v e ) o c c u r r e n c e o f t h e
C
1 equality
1 tive)
symbol =, t h e n
A(B)
has a t l e a s t one p o s i t i v e (nega-
occurrence of i t .
[lo],
I n a f o o t - n o t e o f p.271 i n Fun
Oberschelp proved t h e f o l l o w i n g theorem.
i n t h i s theorem.
Oberschelp s a i d t h a t he f a i l e d t o add t h e f u n c t i o n
A f t e r w a r d s , P r o f . F u j i w a r a r e a d h i s paper and proved t h e
f o l l o w i n g f a c t s e m a n t i c a l l y i n [l]. THEOREM C (FUJIWARA [lJ). If a formula
the n t h e r e i s an i n t e r p o l a n t
of
C
A
A 1 B
is provable i n
B
2
in
LK,
with respect t o
LK
F r , Pr',
P r - , Fun,
A t first,
t h e a u t h o r c o n s i d e r e d Theorem C as an immediate consequence o f Theorem B
which s a t i s f i e s t h e c o n d i t i o n
i n Theorem B .
(#)
and t h e usual technique o f r e p l a c i n g " f u n c t i o n symbols" by " p r e d i c a t e symbols", and Then, he found an o b s t a c l e t o i t .
t r i e d t o show t h a t .
I n order t o explain t h i s
o b s t a c l e , we have t o remind o u r s e l v e s o f t h a t t e c h n i q u e i n d e t a i l s ( c f . Kleene [ 3 ] , p.417).
Sub(A,f,P)
any n - a r y f u n c t i o n symbol
P which does n o t o c c u r i n
i c a t e symbol
(i)
A,
F o r any f o r m u l a
A,
f, and any ( n + l ) - a r y pred-
we can a s s o c i a t e a non-empty s e t
o f formulas, which s a t i s f i e s t h e f o l l o w i n g f i v e c o n d i t i o n s ( i ) - ( v ) :
Sub(A # B,f,P)
= IC #
D
I
C E Sub(A,f,P),
D E Sub(B,f,P)I,
where
#
is
3 , A , V.
( i i ) Sub(A,f,P)
=
{A}
if
( i i i ) F o r any formulas LK,
and
A
5
B, B '
B
in
in
Sub(A,f,P),
F o r any f o r m u l a
B
in
iff
LK
Sub(A,f,P),
P r + ( A ) U { P I , Pr-(B)
occurrence o f = o n l y i f (v)
does n o t o c c u r i n A .
i s provable i n
( i v ) F o r any f o r m u l a Pr+(B)
f
A
5
UnP A ExP.
UnP A ExP.
3
13
B
B
=
B'
i s provable i n
i s provable i n
LK.
F r ( B ) = F r ( A ) , Fun(B) = Fun(A)-{fI,
Pr-(A) U {P};
and
B
has a p o s i t i v e (negative)
has a p o s i t i v e ( n e g a t i v e ) one o f i t .
Sub(A,f,P),
P A :B [ f ]
i s provable i n
LK,
where
P BLf1
€-Theorems and Elimination Theorems of Uniqueness Conditions i s the formula obtained from P(?,s)
o f t h e form
by
B
by r e p l a c i n g e v e r y occurrence o f
in
i s provable i n
LK.
Suppose t h a t a
For t h e sake o f convenience, we assume t h a t
Fun(A)-Fun(B) = { f } , Fun(B)-Fun(A) = { g } ,
f
i s n - a r y , and
g
i s m-ary.
5
Also,
we should remark h e r e t h a t we can always add t h e c o n d i t i o n
Fun(C)
i n t h e c o n c l u s i o n o f Theorem B.
B1 E Sub(B,g,Q),
and
Q
nor i n
B.
P
Let
A1 E Sub(A,f,P)
and
Fun(A) U Fun(B) where
a r e ( n + l ) - a r y and ( m + l ) - a r y p r e d i c a t e symbols which o c c u r n e i t h e r i n A (UnQ A ExO.
2
B1)
2
is
By a p p l y i n g Theorem B t o t h i s formula, we have an i n t e r p o l a n t C
LK.
o f t h i s formula w i t h respect t o
C
UnP A ExP A A1
Then, by ( i ) , ( i i ) , ( i i i ) ,
provable i n
that
B
Now, we
Sub(A,f,P).
Sub(A,f,P).
a r e g o i n g t o prove Theorem C from Theorem B by u s i n g A 2 B
P
f(f)=s.
Then, we can e a s i l y see t h a t t h e r e e x i s t s such non-empty s e t
formula
375
A 1 B
Pr-.
By ( i v ) , ( v ) , we can e a s i l y see
A 2 B w i t h respect t o
i s an i n t e r p o l a n t o f
i s an i n t e r p o l a n t o f
F r , Pr',
w i t h respect t o
Fun,
F r , Pr',
Pr-.
Moreover,
C
because
Fun(UnP A Exp A A1) = Fun(UnQ A ExQ. 2 B1) = Fun(A) fl Fun(B).
C
But t h i s
does n o t always s a t i s f y t h e c o n d i t i o n ( # ) , because
UnQ A ExQ.
has a t l e a s t one p o s i t i v e occurrence o f =, and
A
n e g a t i v e occurrence o f =, even i f no n e g a t i v e occurrence o f =.
T h i s i s an o b s t a c l e .
examining t h e usual c o n s t r u c t i o n o f t h e s e t Sub(A,f,P)
P-negative formula.
F o r example, i f
2
A
S(,?,y))
Sub(A,f,P)
from
Sub(B,g,q).
the formula
ExP A
Since the formula
A1.
3
has
By
A,
we
(ExQ 2 B1)
where
S
from
A1
Sub(A,f,P) B1
3
tence i s guaranteed by Theorem B.
Then, t h i s
C
F r , Pr',
Sub(A,f,P).
and a Q - p o s i t i v e formula
i s P - p o s i t i v e and Q - p o s i t i v e ,
i s provable i n
i n LK w i t h r e s p e c t t o
i s an n-.ary
i s a P-positive formula i n
LK w i t h r e s p e c t t o
A 3 B
Sub(B,g,q).
from the formula
i s vXS(x,f(x)),
an i n t e r p o l a n t o f t h i s f o r m u l a i n
formula
and
i s a P-negative f o r m u l a i n
A1
Now, we choose a P-negative f o r m u l a B1
B
To a v o i d t h i s o b s t a c l e , we have
Sub(A,f,P)
p r e d i c a t e symbol, t h e n W a y ( P ( i , y ) A S(x,y)) dxVy(P(x,y)
has a t l e a s t one
has a t l e a s t one P - p o s i t i v e f o r m u l a and one
can e a s i l y see t h a t
and
B1
has no p o s i t i v e occurrence o f = and
t o make more c a r e f u l s e l e c t i o n s o f formulas i n
Sub(A,f,P),
2
UnP A ExP A A1
LK
by Theorem A. Fr,
+ Pr , P r - ,
Let
C be
whose e x i s -
i s a l s o an i n t e r p o l a n t o f t h e
Pr-, Fun,
which s a t i s f i e s ( # ) i n
376
N. MOTOHASHI
Theorem 8. This gives a syntactical proof of Theorem C from Theorem B by using Theorem A (cf. [8] for details). On the other hand, Theorem A is an obvious consequence of Hilbert-Bernays' second €-Theorem (cf. [ZJ), and the following obvious, but important fact: POSITIVE LEMMA.
P
If
and
Q
is a P-positive formula, then the formula is provable in
LK,
B
where
placing some occurrences of
Vi(P(2)
2
Q(X))
is a formula obtained from
P
A
are n-ary predicate symbols and
in
A
by
A
A
A.
3
B
by r e -
Q.
Then, the author tried to give a direct syntactical proof of Theorem A without using Hilbert-Bernays' second €-Theorem, and found a syntactically simple proof of HilbertBernays' second €-Theorem from Theorem A. This shows us that Theorem A, the most simple form of Elimination Theorems of Uniqueness Conditions, is an equivalent expression of Hilbert-Bernays' second E-Theorem with using neither Skolem functions nor the €-symbol (cf. [ 4 ] ) .
This is an origin of our main theorem of this paper,
which is a generalization of the fact mentioned above.
In 5 1 of this paper, we shall define "logics" and "elimination theorems" in a general setting. As examples of elimination theorems, we shall explain two types of them, one of which is "E-Theorems" introduced 52 below, and the other is "Elimination Theorems of Uniqueness Conditions" introduced in 5 3 , 54 below. In 55, we shall state our main theorem, which shows us some equivalency between E-Theorems and Elimination Theorems of Uniqueness Conditions. An outline of the main theorem will be given in 56 below.
51.
LOGIC AND ELIMINATION THEOREMS.
In this paper, we shall consider first order languages with equality, or first order languages with equality and €-symbol. In order to express our results as general as possible, we adopt the following two definitions. DEFINITION 1. A logic in
L
over a language
L
is a set of formulas
L which is closed under modus ponens, generalizations, and substi-
E-Theoremsand Elimination Theorems of Uniqueness Conditions
311
tutions o f predicate symbols by formulas, and contains all the formulas LJ,
provable in the intuitionistic predicate logic (i) (ii) (iii)
A
3
B E L
A(a) E L A
E L
A E L
and
implies
and
B
implies
B E L.
VvA(v) E L.
is a formula obtained from
some occurrences of predicate symbols in L,
(iv)
A A
by replacing by formulas in
B E L.
then
LJZ L.
DEFINITION 2. S
i.e.
is a set of formulas in
L
be eliminable in for any formula
L
Suppose that
B
L.
Then, a formula
with respect to in
L,
is a logic over a language
S
if
A
3
A
in
B E L
L
and
is said to
implies
B E L
S.
The last paragraph of Definition 1 is included here for the sake of convenience only. A formula A in L
is said to be provable in a logic L if A E L.
ination theorems are statements o f the form: "Any
.....formula
Elim-
is eliminable in,
,,,,,,logic with respect to the set of ------formulas." In this paper, we shall introduce two types of Elimination Theorems, one of them is "c-Theorems" and the other is "Elimination Theorems of Uniqueness Condition$'.
5 2.
E
-THEOREMS.
For each E-free language L , adding the €-symbol
E
let LE be the language obtained from L by
as a new logical constant and modifying the formation .rules
and formulas as usual. DEFINITION 3 . LE
For each logic LE,
L
over a €-free language
L,
let
L
as a sublogic.
Since every formula in LE is obtained from a formula in L '
by applying modus
be the least logic over
which includes
ponens and generalizations, we have the following remark, where L '
i s the set of
formulas obtained from formulas in L by replacing predicate symbols by formulas in lE.
N. MOTOHASHI
378 REMARK 4.
formula A
L€
is a conservative extension of L, A E
in
L,
i.e. for any
implies A E L.
L€
Next, we d e f i n e f o u r types o f €-axioms
E-axioms of type ( 0 ) - (3) are sentences of the fol-
DEFINITION 5.
lowing forms (0) - (3), respectively: (0)
Vx(SyA(G,y)
(1)
vGvy(X=y 3
(2)
VxVy(Vz(A(2,z)
=
(3)
VGby(Vz(A(x,z)
: B(y,z)
-
where
x
=
-
y
means
3
A(%, EYA(~,Y))
EVA(~,V) = EUA(~,U))
x1 = y l A x2
Then, k - t h €-Theorems (k=1.2,3)
-,
A(y,z))
3
EvA(~,v)
2
i n a logic
L
=
EuA(~,u)) EuB(~,u))
.......
= y2 A
a r e d e f i n e d by:
The "k-th €-Theorem in L"
DEFINITION 6.
=
EvA(~,v)
is the statement "Any
finite conjunction of E-axioms o f type ( 0 ) and (k), is eliminable in LE
with respect to the set of all the €-free formulas", where
k=l,2,3. By t h i s d e f i n i t i o n , we can e a s i l y o b t a i n t h e f o l l o w i n g f a c t s .
REMARK 7.
in
L,
(i)
The 3-rd €-Theorem in
and 2-nd €-Theorem in
(ii)
L
The 1-st €-Theorem in
Theorem and the 3-rd €-Theorem in
L
implies the 2-nd €-Theorem
implies the 1-st €-Theorem in
L.
LK
E-
LK
is Hilbert-Bernays' second
is Maehara's €-Theorem (cf.
Maehara [S]). The f i r s t i m p l i c a t i o n o f ( i ) o f Remark 7 i s obvious because e v e r y €-axiom o f t y p e (2) i s a l s o o f t y p e ( 3 ) , b u t t h e second i m p l i c a t i o n i s n o t so obvious, because sentences o f t h e form;
V i W y ( i = y ~Wz(A(i,z) z
A(y,z)))
are n o t generally provable i n r e p l a c i n g A(x,z)
by
L'.
(If these formulas are provable i n
z = E v B ( ~ , v ) , we have
LE,
by
€-Theorems and Elimination Theorems of Uniqueness Conditions
~ V j ( i = j EvB(X,V) z
=
EvB(Y,v)) E
319
LE.)
UNIQUENESS CONDITIONS.
53.
I n t h i s s e c t i o n , we s h a l l d e f i n e "uniqueness c o n d i t i o n s " and s t a t e some o b v i -
ous p r o p e r t i e s about them. DEFINITION 8.
pair
(A,a)
of a formula
free variables of length occurs in
L
An n-ary formula in a language A
L
in
n,
is an ordered
5
and a sequence
o f distinct
such that every free variable in
A
a.
An n - a r y f o r m u l a
w i l l be denoted by
(A,:)
i s l i k e l y t o occur.
A(:)
or
i t s e l f , i f no c o n f u s i o n
A
.
Also, we sometimes i d e n t i f y t h e n - a r y p r e d i c a t e symbol
w i t h the n-ary formula
(R(al
,. . . ,an),),
where
al
,. .. ,an
R
are d i s t i n c t
f r e e variables. DEFINITION 9.
A(a,a) ,B(6,b) ,E[a,a') ,G(a,6) , H ( a , c ) ,
Suppose that
K(a,a) are (n+l)-ary formula, (m+l) -ary formula, 2n-ary formula, (n+m)-ary formula, (n+p)-ary formula, (n+q)-ary formula, respectively. Then, ExA
is
UnA
is VxVxVy(A(x,x)
V&yA(x,y), A
Un(A;E)
is
Co(A;E)
is VxVy(E(x,y)
A(x,y). A
V%VyVxVy(E(x,y)
is
VxVyVxVy(G(x,y)
Co(A,B;G)
is
VxViVz(G(x,y)
is
ax(~(x,c)
x=y),
A(x,x)
A A
A
A(y,y).
A(2,x)
B(y,z).
A 3
B(y,y).
Ex(A,ab),
A,
Un(A;E)
2
x=y),
K(x,a)).
A
or
tence c o n d i t i o n o f t h e n - a r y f o r m u l a of
x=y),
A(x,z)),
Note t h a t o u r expressions i n D e f i n i t i o n 9 a r e v e r y rough. be w r i t t e n i n t h e f o r m
3
:A(y,z)),
Vz(A(%,z)
3
Un(A,B;G)
H"K(S,;~)
2
Ex(A(ab)),
A,
UnA
etc.
I n fact, ExA
ExA
i s called the exis-
i s c a l l e d t h e uniqueness c o n d i t i o n
i s c a l l e d t h e uniqueness c o n d i t i o n o f t h e n - a r y formula
r e s p e c t t o t h e 2n-ary f o r m u l a
E,
Co(A;E)
should
A
with
i s c a l l e d t h e congruence c o n d i t i o n o f
N. MOTOHASHI
380
A with respect to E, Un(A,B;G) is called the uniqueness condition of the n-ary formula A and the m-ary formula B with respect to the (n+m)-ary formula G , and Co(A,B;G) i s called the congruence condition of A and B with respect to G. By Definition 9, we have;
REMARK 10. The following sentences are all provable in
14.
(1)
ExA
A
Un(A;E).
(2)
ExA
A
Un(A,B;G).
(3)
Co(A; a = 6 )
(4)
UnA
(5)
k'xVy(E(x,y)
(6)
Un(A,A;E)
(7)
ExA
LJ.
Co(A;E)
3
Co(A,B;G)
3
Un(A; a = 6 )
A
E E(y,x)) E
3
Co(A,A;E) : Co(A;E)
Un(A;E)
Un(A,B;H)
A
Un(A,C;K).
3
Un(B,C;HnK)
ELIMINATION THEOREMS OF UNIQUENESS CONDITIONS. Suppose that R i s an n-ary predicate symbol in a language 1 and L is a
logic over 1. In the following of this section, we assume that; E is an R-free En-ary formula, Q is an R-free m-ary formula, G is an R-free (n+m)-ary formula,
Ro is R,
ko is k, R.1 are R-free k.-ary formulas (i=l 1
R-free (ko+ki)-ary formulas ( i = l ,...,N ) V%y(E(x,y) V%y(Eo(Z,Y)
3
V?(G(X,Z)
3
5
,...,N),
Ei are
such that all the sentences
G(y,?)))
Vfi(Ei(Z,fi) F Ei(j.z.1
are provable in L. DEFINITION 11. Uniqueness conditions their associative sets following table for
S(A)
A
in the logic
k=1,2,3,4,5.
of
L
R
of type
k and
are defined in the
e-Theorems and Elimination Theorems of Uniqueness Conditions
I 1
I
1
UnR
2
Un(R;E)
3
Un (R,Q;GI
14 1
B
I
B
ExRACo(R;E).>B
1
Un(R;E) AUn(R,Q;G)
where
=I
ExR
38 1
ExRA Un(Q;GnG)
A
Co(R,Q;G(. ~
E x R A Un(Q;GnG)
A
3
B
~~
Co(R;E)
A
Co(R,Q;G)B-I
is an R-free formula.
For example, uniqueness conditions of R of type 2 (in the logic L) a+-eformulas for some R-free 2n-ary formula E, and S(Un(R;E))
of the form Un(R;E)
set of formulas of the form ExR
A
Co(R;E).
2
is the
for some R-free formula 6 ,
B
and
uniqueness conditions of R o f type 4 in the logic L are formulas of the form Un(R;E)
A
Un(R,Q;G)
for some R-free m-ary formula Q, some R-free (n+m)-ary
formula G, and some R-free 2n-ary formula E such that the sentence ViVi(E(i,y)
3
VZ(G(j2,Z)
i s provable in L, and S(Un(R;E)
G(y,Z)))
E
A
Un(R,Q;G))
is the set o f formulas of the form ExR
A
Un(Q;GnG)
A
Co(R;E)
A
Co(R,Q;G).
2
B
for some R-free formula B. DEFINITION 12. The "k-th Elimination Theorem o f Uniqueness Conditions in the logic
L"
(abbreviated by "k-ETUC in L")
ment "Any uniqueness condition A
L
is eliminable in
of
R
L with respect to
o f type
S(A)"
k
is the statein the logic
for each
k=1,2,3,4,5.
Then, clearly;
REMARK 13. (ii)
(i)
5-ETUC = > 4-ETUC = > 2-ETUC = > 1-ETUC. 93 - ETUC
In the 5-ETUC in
L,
we can assume VkE(x,x)
E L
without
N.MOTOHASHI
382
l o s s of generality.
J5.
E ( a , 6 ) by
(If not, replace
E(a,6)
V
a=b.)
MAIN THEOREM. DEFINITION 14. A logic over a language
L
is said to be closed
under function substitutions if A E
L
ExR
A
UnR.
for any n-ary function symbol
A,
and any R-free formula A
f E L, A[R]
3
f,
any (n+l)-ary predicate symbol R, f is the formula obtained from A[R]
where
by replacing every occurrence of
f
in
A
by
R
in the usual
manner (cf. I 3 1 ) . A [ Rf] i s obvious, b u t t e d i o u s work.
To g i v e an e x a c t d e f i n i t i o n o f if
g i v e an example here, i . e .
A
is
Wx3y(f(y)=x),
then
Wx3y3z(R(y,z) A z = x ) , ( c f . I n t r o d u c t i o n o f t h i s paper). l o g i c s c l o s e d under f u n c t i o n s u b s t i t u t i o n s , and
f A[R]
So, we o n l y
is
LJ,LK
a r e examples of i s an example
LJ + W x3y(f(y)=x)
o f l o g i c s which a r e n o t c l o s e d under f u n c t i o n s u b s t i t u t i o n s . THEOREM 15.
1,
L
Suppose that
is a logic over an
which is closed under function substitutions.
of the form; Vxay(ZzA(x,z)
L
then 1-st €-Theorem in €-Theorem in
L
2
A(x,y))
-----(*)
€-free language If every sentence
is provable in
is equivalent to 1-ETUC in
L.
is equivalent to 2-ETUC in
L,
L, and 2-nd
If every sentence
of the form; 6[~y(A(x,y)X B(x,y)) is provable in in
L,
A
2yB(%,y).x
~Y((~ZA(~,Z)XA(~,~)) A B(%,y))l---(@
then 3-rd E-Theorem in
L
is equivalent to 5-ETUC
L.
Note t h a t e v e r y sentence o f t h e f o r m (*) o r ( t ) i s p r o v a b l e i n LJ.
A l s o , i f e v e r y sentence o f t h e form
tence o f t h e f o r m ( * ) i s p r o v a b l e i n REMARK 16.
(2)
i s provable i n
L,
LK,
but not i n
t h e n e v e r y sen-
L.
An approximation theorem of uniqueness conditions by
existence conditions in
LK
(cf. [ 6 1 ) gives a proof-theoretic proof
383
€-Theoremsand Elimination Theorems of Uniqueness Conditions Hence, we obtain a new proof-theoretic proof o f
LK.
of 5-ETUC in
Maehara's €-Theorem by Theorem 15 (cf. [ 7 ] , [ 9 ] ) . REMARK 17.
As pointed out by Prof. T. Uesu, 2-ETUC in
L
5-ETUC in
are equivalent for many logics
L
L
and
which satisfy some
natural, but complicated conditions, which will be obtained from a close examination of the proof of 5-ETUC in [ 7 ] .
A PROOF.
16.
I n t h i s s e c t i o n , we o n l y g i v e a p r o o f o f t h e e q u i v a l e n c y between t h e 3-rd €-Theorem i n
L
and t h e 5-ETUC i n
L
i n Theorem 15.
S o , we o m i t them.
15 a r e s i m i l a r l y proved. assume t h a t
L,
i s a l o g i c over a
I n t h e f o l l o w i n g o f t h i s s e c t i o n , we
€ - f r e e language
L, which i s c l o s e d y n d e r
f u n c t i o n s u b s t i t u t i o n s , and e v e r y sentence o f t h e f o r m in
L.
I\ N Un(Ro,Ri;Ei) i=O
i n Theorem 15 i s p r o v a b l e
[ExRoA
2
L h o l d s and t h e sentence;
AN Un(Ri,R.;EJ i, ~ = 1
i
Co(Ro,Ri i=1 i s p r o v a b l e i n L, k 1. - a r y f o r m u l a
.. , N ) ,
WiWY(Eo(i,Y) Let
(2)
[A p r o o f o f t h e 5-ETUC from 3 - r d €-Theorem]
Assume t h a t t h e 3 - r d E-Theorem i n
(i=O,l,.
The o t h e r p a r t s o f Theorem
3
where
(i=1,2, and
Ro
;Ei
1.3 C
l
i s a ko-ary p r e d i c a t e symbol,
...,N ) ,
C
koEj) A Co(RO;EO) A
Ei
i s an
Ro-free (ko+ki)-ary
Ri
i s an Ro-free
formula
i s an R o - p o s i t i v e f o r m u l a such t h a t t h e sentences
Gi(Ei(i,?i)
=
Ei(Y,Zi)),
1=1,2,
...,N,
are a l l provable i n
L.
LE be t h e l o g i c ; LE
+
c - a x i o m o f t y p e (0) and ( 3 ) .
S i n c e t h e 3 - r d €-Theorem i n Remark 3.
L
holds,
LE i s a c o n s e r v a t i v e e x t e n s i o n
A l s o , we use t h e f o l l o w i n g a b b r e v i a t i o n s :
Ex
for
ExRO,
Un
for
N iaOUn(Ro,Ri
Um
for
i,!=lUn(Ri,Rj;EikOEj),
co
for
c ~ ( R ~ , EA ~ i !)j l ~ O ( ~ o , ~ i
B(a,a)
for
ip13ii ( Ei ( a,ii)
;Ei
1,
A Ri
;E~),
(i ,b)), i
L
by
N. MOTOHASHI
384 D(a,a) Since
for
CoAEx.
sentence
3
L.
i s provable i n
3
Wzi(Ei(i,'fi) L,
Co 2 Co(D;E ) 0
t h e sentence
able i n
LE.
able i n
L,
Since
3
Hence,
LE
i s provable i n F o r each
and
L, l e t F*
(2)
LE,
and
3
C*
LE.
L,
then
Un 3 (Ex A Co A Um. L.
Also,
Un(RO,RO;EO)*
Un*
i s prov-
C)
a r e prov-
(Un
So,
i s provable i n
3
F*
A
Ex.
3
C)*
LE.
is
i s c l e a r l y provable from
Co
L.
...........................
(3)
LE.
i,j=1,2
i s provable i n
,..., N, L,
where
t h e formula;
J
ao,al
O
,;.)
R . ( i . , ~ v D ( a ~ , v ) ) . 3 E v D ( ~ ~ , v= )c J J ,..., ;N,61,62 6,c a r e m u t u a l l y d i s j o i n t se-
J
quences o f d i s t i n c t f r e e v a r i a b l e s . U m A Ei(a 0 ,6.) 1 A Ri(fii,c)
i s provable i n
A
,...,
Hence, t h e formula;
A B ( z O , ~ ~ D ( z O , ~ )3 ). EvD(~~,v)=c
LE. T h e r e f o r e , t h e formula;
Urn A Ei(ao,Li)
A Ri(bi,c)
A D ( ~ , , E V D ( ~ ~ , V ) ) .3 E V D ( ~ ~ , V ) = C
LE. By t h e f a c t t h a t t h e sentence (1) i s p r o v a b l e i n L, t h e f o r -
i s provable i n Ex A Co A
um.
Hence, t h e sentence
...,N.
L.
be t h e f o r m u l a i n
i s provable i n
;Ei )*. 3 C*
Co A i!$Un(Ro,Ri
UrnAEi(iO,fii)ARi(fii,c)AE.(i
i=1,2,
i s provable i n
by t h e f a c t t h a t t h e sentence ( 2 ) i s p r o v a b l e i n
Hence, t h e sentence
mula
...,N
i s provable i n
C
3
i s provable i n
Ex*
F
Urn
U n * A Ex*.
Un(RO,RO;EO)* A i!lUn(RD,Ri;Ei)* in
in
F
. Co A
Un A Ex.
t h e sentence
But, c l e a r l y
Co(B;EO)
Note t h a t i f
Un A Ex.
LE.
i=l,
F by r e p l a c i n g e v e r y occurrence o f Ro o f t h e form
EvD(t,v)=t.
i s provable i n
(1 1
.........................................
F o r each f o r m u l a
L.
which i s o b t a i n e d f r o m by
by t h e f a c t t h a t e v e r y sentence o f t h e
L
E Ei(y,?i))),
Hence, t h e sentence
Ro(f,t)
the
L,
So, t h e sentence
are a l l provable i n
i s provable i n
i s provable i n
Since t h e sentences;
LE.
WiWi(Eo(i,y)
RO(x,y)) A 3yRO(x,y)],
.................................................
V i D ( i , ~ v D ( i,V ) )
2
3
i s provable i n
ExD
i s provable i n
Ex A Co.
B(a,a)) A Ro(a,a).
3
Wi[Wy(B(i,y)
3
Co A Ex.
(2)
form
(3vB(a,v)
3
(Ei(a0,Li)
A Ri(fii.c).
Ex A Co A Um.
3
13
Un(Ro,Ri;Ei)*
~ v D ( 0a ,v)=c)
i s provable i n
i s provable i n
By t h e f a c t t h a t t h e sentence ( 3 ) i s p r o v a b l e i n
LE,
LE
LE.
f o r each
t h e sentence
385
€-Theorems and Elimination Theorems of Uniqueness Conditions Ex A Co A U m . 2 C*
i s provable i n
t i o n o f t h i s paper h o l d s i n i s provable i n in
But
LE.
tence
in
Ex A Co.
Ex A Co A C*.
L.
t h e f o r m u l a V ~ ~ X ( E V D ( ~ ~ ,2V R ) =O X( i 0 , ~ ) ) A C * . 2 C
LE,
Hence, t h e sentence w i R O ( ~ , ~ v D ( i , v ) A ) C*.
LE.
i s provable i n
Since t h e p o s i t i v e lemma i n t h e i n t r o d u c -
LE.
2
i s provable i n
C
2
LE.
WiRo(i,~~D(,i,v))
Since
LE.
Ex A Co A Urn.
T h i s means t h a t t h e 5-ETUC i n
L
i s provable i n
2
LE.
Therefore, t h e sen-
Hence, t h e sentence
C
i s provable
C
2
Ex A Co A U m . I C
i s E-free, t h i s sentence i s p r o v a b l e
[A p r o o f o f t h e 3 - r d €-Theorem
holds.
f r o m t h e 5-ETUC] Assume t h a t t h e 5-ETUC i n LE.
Then, t h e r e a r e f o r m u l a s
(0)
every f r e e v a r i a b l e i n
(i)
e v e r y subexpression
L
holds, and an € - f r e e f o r m u l a
Bo(io,a),B1(il Bi
occurs i n
EVB(V)
of
,a),. ai,a
.. ,B(iN,a) f o r each
has t h e form
B
i s provable i n
C
such t h a t : i=O,
...,N,
.
€vBj(f,v)
f,
and some
C
(ii)t h e f o r m u l a
i s provable i n
WiiPuBi(ii,u)
13
LE
from t h e sentences ) ] , i=O,l,
Bi(iii,~viBi(iii'vi
...,N
and t h e sentences
=
B.(y x ) ) 2 €viBi(iii,vi) = ~v.B.(y.,v.)], WiiWy.pjx(Bi(~i,x) J J j' J J J J L e t fo,fl ,. . . ,fN be d i s t i n c t f u n c t i o n symbols such t h a t each fi rences i n
BO,B1,
length o f
ai,
..., Bn,C,
f o r each L
the formula i n subexpression o f
and t h e number o f argument p l a c e s o f
...N.
i=O,l,
o b t a i n e d from F
o f the form
F
j > i
f o r some
For each f o r m u l a
F
in
,...,N.
has no occurfi
LE,
by t h e f o l l o w i n g procedure:
E V ~ B ~ ( ~ ~by, Vf o~( t )o )
i,j=O,l
is
ki,
let
F'
the be
We r e p l a c e every
throughout
F
first,
t h r o u g h o u t t h i s f o r m u l a second, and so on up t o
(N+l)-
t h e n r e p l a c e e v e r y subexpression o f t h e above r e s u l t f o r m u l a o f t h e form E V ~ B ~ ( ~ ~by, V f l~( f )l ) steps.
Then, each
t i o n symbols the formula dii[3uBi(ii,u)'
Bi(ai,a)'
has no occurrences o f t h e o f t h e E-symbol and func-
f . ( j 5 i ) by ( i ) . A l s o , C ' i s C because C J C i s p r o v a b l e i n LE from t h e € - f r e e sentences 2
Bi(ii,fi(ii))'],
i=O,l,
...,N
By (ii),
and t h e € - f r e e sentences
:B.(Y x ) ' ) I f i ( i i ) = f . ( 4 . ) ] , WxiWy.~x(Bi(xi,x)' J J j' J J i s p r o v a b l e i n L f r o m these sentences. L e t D /N\ V x-i p uBi(ii , u ) ' 2 Bi ( i i , f i ( i i ) ) ' 1
i=l
i s €-free.
i,j=O
,..., N.
be t h e formula;
By Remark 4 ,
C
N. MOTOHASHI
386 N diiWy.[Wx(Bi(ii,X)' i,j=1 J
!B . ( ~ . , x ) ' ) 3
J
c.
3
Then,
D
i s provable i n
L
from
fi(ii)
2
f o ( i o ) = fi(yi)],
be t h e ( k i + l ) - a r y
Ei(ai,6i)
be t h e (kotki)-ary
...,N.
i=O,l,
Then,
i=O,l,
( i ,x).
A R
by
we have t h a t
Ro,
0 0
Un(Ro,Ri;Ei),
2
i
)
i s provable i n
. ,N,
i=O,l,..
L,
in
and
L i s c l o s e d under f u n c t i o n s u b s t i t u t i o n s . L,
i s provable i n
WxWY(EO(Z,'Y)
2
L
from
Z I
2
Bo(i,x)'))
is
Ro-positive,
E Ei(j,?i)))
..., N.
and
W~DW~iWxIWu(Bo(~o,u)' i=1,2
,...,N.
(3uBo(i,u)'
i=O,l,
By r e p l a c i n g ExRO,
fo
UnRO.
Bo(i,x)')),
3
because
Un(RO,RO;EO)
...,N.
2
UnRO
A l s o , t h e sentences
are a l l provable i n
A Co(RO;EO) A
i, j = 1
2
L
(3uBo(x,u)'
by t h e d e f i n i t i o n 3
Bo(i,x)'))
AN Co(Ro,Ri;Ei).
=I
.
3
D
i=l V%x(R,(i,x)
i s provable i n
Let
t h e formula
AN Un(Ri,Rj;EikoEj)
ExROA
D.
D
3
Since t h e f o r m u l a Wkx(R,(i,x)
EO,E l,...,EN.
be a
f o r each
Since t h e sentence
ExRO, Un(Ro,Ri;Ei),
Wzi(Ei(i,,Zi)
of
i=1,2,
Ro
the formula
WiWx(Ro(i,x) 2 ( 3 u B o ( i , u ) ' i s provable i n
nor i n
from t h e sentences;
WxWx(Ro(x,x)
Let
5 Bi(6i,x)1),
f o r each L
..., N.
Bo
a, f o r each
i s equivalent t o
x=fi(yi)] D
=
f o r m u l a Wx(Bo(ao,x)'
Un(R ,R.;E O i
Bi(yi,u)
fi(ai)
formula
J
B o ( ~ o , f o ( ~ o ) ) ' l and
new ( k O + l ) - a r y p r e d i c a t e symbol which occurs n e i t h e r in Ri(ai,a)
f.(y.)] J
dx0[3uBo(io,u)'
W~oW~i[Vx(Bo(~o,x)' E B i ( y i , x ) ' ) 2
=
J
L
3
by 5-ETUC i n
( k o + l ) - a r y f o r m u l a 3uBo(i,u)'
3
L.
(3uBo(x,u)'
2
BO(i,x)'))
3
D
By r e p l a c i n g ( k O + l ) - a r y p r e d i c a t e
Bo(a,a)',
which w i l l be denoted by
Ro(a,a) Ao(a,a),
by we
have t h a t t h e f o r m u l a
k Co(A0,Ri;Ei). 2 D Un(Ri,Rj;Ei OEj) A Co(AO;EO) A i, ~ = 1 i=1 i s p r o v a b l e i n L. But, c l e a r l y ExAO and Co(AO;EO) a r e p r o v a b l e i n ExAO A
AN
Wii(3uBi(xi,u)' B.(y x ) ' ) J j' i,j=1,2,
=I
2
fi(ii)
...,N.
that
C
Bi(ii,fi(ii))')
Hence
i s provable i n
Co(Ao,Ri;Ei)
3 Un(Ri,Rj;EikoEj) J i s prov.able i n L .
= f.(y.))
J D
=I
and
L.
=
WiiWyj(Wx(Bi(Ei,x)'
are a l l provable i n
Also,
L
f o r each
By c o n t i n u i n g t h i s process, we see
L. T h i s shows t h a t t h e 3 - r d €-Theorem i n L h o l d s .
€-Theorems and Elimination Theorems of Uniqueness Conditions
381
REFERENCES
T. Fujiwara, A generalization of the Lyndon-Keisler theorem on homomorphism and its applications to interpolation theorem, J. of Math. SOC. Japan, V O .~ 30 (1978), 287-302. Hilbert & Bernays, Grundlagen der Mathematik, vol.1, v01.2, 1934, 1939. S.C. Kleene, Introduction to Metamathematics, Van Nostrand, Princeton, 1952. A.C. Leisenring, Mathematical Logic and Hilbert E-symbol, Gorden & Beich, New York, 1969.
S. Maehara, Equality axioms on Hilbert esymbol, J. of the Faculty of Science, Univ. o f Tokyo, Sect. 1 , vol. 7 (1957), 419-435. N. Motohashi, Approximation Theory of Uniqueness Conditions by Existence Conditions, to appear.
N. Motohashi, Elimination Theorems of Uniqueness Conditions, to appear. N. Motohashi, Some ‘proof-theoretic results on equivalence conditions,’congruence conditions, and uniqueness conditions, to appear. N . Motohashi, Elimination, Axiomatization, and Approximation.
[I01 A. Oberschelp, On the Craig-Lyndon interpolation theorem, J.S.L., vol. 33 (1968), 271-274.
389
LIST OF PARTICIPANTS
ACZEL, P e t e r
GAIFMAN, H a i m
ALVES, C a r l o s S e r r a
GALVIN, F r e d
ANAPOLITANOS,
GANDY, R o b i n
Dionisis
ARGYROS, S p i ros ASH
, Christopher
GROSZEK, M a r c i a GUILLAUME, M a r c e l
BALDWIN, John
HADJILAZAROU
BARWISE, K e n n e t h
HADLEY, M a r t i n
BAUMGARTNER, James
HAJNAL, A n d r a s
BENDS, A n a s t a s i o s
HARRINGTON, L e o
, J.
BUONCHRISTIANI
HARTLEY, John HAY, Louise
BURGESS, J o h n
HERRERA, Jorge CARLSON, T i m
HIRSHFELD, J o r a n
CHONG, Chi T a t
HOOPER, M a r t i n
CICHON, Adam
HRBACEK,
CLOTE, S t e p h e n
HYLAND, M a r t i n
Karel
COOPER, B a r r y IVANOV, L i u b o m i r - L a l o v
COX, Jonathan CROSSLEY, J o h n
JAMBU-GIRAUDET,
Michelle
D E I L , Thomas
JECH, Thomas
DEVLIN, K e i t h
JOHANNESEN, K y r r e
DIETZFELBINGER, M a r t i n DIMITRAcOPOULOS, C o n s t a n t i n o s
KALAMIDAS, N i c h o l a o s
DONNADIEU, M a r i e - R e n e e
KALANTARI, I r a j
DRAKE, F r a n k
KANAMORI, A k i
DYSON-HUBER,
Verena
EBBINGHAUS, H e i n z - D i e t e r
KASTANAS, I l i a s
KECHRIS , Alexander KEISLER, J e r o m e KESSEL, C a t h e r i n e
FEFERMAN, S o l o m o n
KLEENE, S t e p h e n
FENSTAD, J e n s
KLEIJNEN, L e t t y
FIRARIDIS, A n e s t i s
KOLAITIS, P h o k i o n
FRIEDMAN, H a r v e y
KOUMOULIS, G e o r g e
FRIEDMAN, S y
KDYMANS, K a r s t
List of Participants
390
KRANAKIS, E v a n g e l o s
PAPADOPETRAKIS, E f t i c h i o s
KRASNER, M a r c
PAPADOPOULOS PAPAGEORG IOU
LAVAULT, C h r i s t i a n
PARIGOT, M i c h e l
LAVER, R i c h a r d
PELZ, E l i z a b e t h
LENDOUDIS, P a u l
PHIDAS, A t h a n a s i o s
LERMAN, M a n u e l
PHILLIPS, Lain
LEVY, A z r i e l
P L A CARRERA, Josef
LILLIE, Gordon
POGORZELSKI, H e n r y PORTE, J e a n PRIKRY, K a r e l
MAASS, Wolfgang MAGIDOR, M e n a c h e m MAKKAI, M i c h a e l
RAISONNIER, Jean
MAKOWSKY, J o h a n
RAMBAUD, C h r i s t i a n e
MATHIAS, A d r i a n - R i c h a r d D a v i d
REMMEL, Jeff
MEISSNER, W i l f r i e d
RIMSCHA, M i c h a e l
MERKOURAKIS, S o f o k l i s
RODENHAUSEN, H e r m a n n
METAKIOES, G e o r g e
ROTHACKER, H e n r y
MICHAILIDES, T e f k r o s
ROUSSAS, G e o r g e
MIGNONE, R o b e r t
R U I Z , Jose
MIJAJLOVIC, Z a r k o MIKULSKA, M a l g o r z a t a
SACKS, G e r a l d
MILLER, D o u g l a s
SAMI, Ramez
MITCHELL, W i l l i a m
SAPOUNAKIS, A r i s t i d i s
MOLDESTAD, G o r d o n
SCOTT, D a n a
MONRO, G o r d o n
SGOUROVASILAKIS
MORAN,
SHELAH, S a h a r o n
Gadi
MOSCHOVAKIS , Y ianni s
SHEPHERDSON, John
MOTOHASHI, N o b u y o s h i
SHORE, R i c h a r d
MOUTAFAKIS, N i c h o l a s
SIEG, W i l f r i e d
MUELLER, G e r t
SIMCO, N a n c y
MY T I L I N A I O S , M i c h a e l
SIMPSON, S t e p h e n SKORDEV, D i m i t e r SLAMAN, T e d
NAGY, Z s i g m o n d
SMITH, Jan
NEGREPONTIS, S t y l i a n o s
SOARE, R o b e r t
NERODE, A n i l
SPREEN, D i e t e r STANLEY, Lee
NIANIAS, G e o r g e NICOLACOPOULOS, NINO, J a i m e NORMA",
Dag
Pantelis
STEEL, John STERN, J a c q u e s STOLTENBERG-HANSEN,
Viggo
List of Participants
39 I
THIELE, E r n s t - J o c h e n
WEISSPHENING, Wolker
THOMASON, S t e v e n
WILLIAMSON, John
THOMPSON, Simon
WOODS, A l a n ZACHARIADIS, Theodosis
.... ..
ZACHARIOU, A n d r e a s
VAANANEN , Jouko
ZACHOS, S t a t h i s
VISSER, A l b e r t
ZIEGLER, M a r t i n