Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann Subseries: USSR Adviser: L. D. Faddeev, Leningrad
S. S. A...
142 downloads
1370 Views
7MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann Subseries: USSR Adviser: L. D. Faddeev, Leningrad
S. S. Agaian
Hadamard Matrices and Their Applications
Springer-Verlag Berlin Heidelberg New York Tokyo
Author S.S. Agaian Computer Center of the Academy of Sciences Sevak str. 1, Erevan 44, USSR
Consulting Editor D.Yu, Grigorev Leningrad Branch of the Steklov Mathematical Institute Fontanka 27, 191011 Leningrad, D-11, USSR
Mathematics Subject Classification (1980): 05XX; 0 5 B X X ISBN 3-540-16056-6 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-16056-6 Springer-Verlag New York Heidelberg Berlin Tokyo
This work is subject to copyright.All rights are reserved,whetherthe whole or part of the material is concerned,specificallythose of translation,reprinting,re-useof illustrations,broadcasting, reproductionby photocopyingmachineor similarmeans,and storage in data banks. Under § 54 of the GermanCopyrightLaw where copies are madefor other than privateuse, a fee is payableto "VerwertungsgesellschaftWort", Munich. © by Springer-VerlagBerlin Heidelberg1985 Printed in Germany Printing and binding:Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210
CONTENTS
Introduction § I Chapter
I
definitions,
CONSTRUCTION Methods
§3
Some problems
§ 4
New method
2
notations
OF CLASSIC
§2
Chapter
of construction
HADAMARD for
§6
Construction
of high-dimensional
APPLICATION
OF HADAMARD
3
Hadamard
matrices
and problems
§ 8. H a d a m a r d
matrices
and design
Appendix
1. U N A N S W E R E D
Appendix
2. T A B L E S
References Subject
........
78
. . . . . . . . 103
Theory
matrices
.134
. . . . . . . . . . . . . . 171
MATRICES
178
(PLANE
OF ORDER
(4n) .180
......................................................
Index
134
. . . . . . . . . . . . . . . . . . 166
BLOCK-SYMMETRIC
HADAMARD
103
...114
.................................
OF BLOCK-CIRCULANT,
AND HIGH-DIMENSIONAL)
49
matrices
information
11
..
....................
theory
of H a d a m a r d
PROBLEMS
of
5 11
........
matrices
MATRICES
Hadamard
MATRICES
matrices
applications
...
........................
§ 7. H a d a m a r d
§ 9. O t h e r
matrices
construction
HADAMARD
Generalized
results
............
for Hadamard
matrices
OF GENERALIZED
MATRICES
Hadamard
of c o n s t r u c t i o n
for H a d a m a r d
CONSTRUCTION
and auxiliary
§ 5
Chapter
1
....................................................
Basic
...................................................
192 216
Introduction
The matics
importance
of
orthouonal
a n d its a p p l i c a t i o n s
matrices
is well known;
(for example,
for c o n s t r u c t i o n
of d i s c r e t e
or o r t h o g o n a l
transformations)
one needs
orthogonal elements
matrices
and
-I and +I.
and +I are c a l l e d
in p a r t i c u l a r ,
Square
orthogonal
Hadamard
Investigations
of H a d a m a r d
tion
coding, ction
optimal
out that there
with
the a p p l i c a t i o n s
information training
(information
detection
compression
are also
through
noise,
fruitful.
configurations, graphs.
correcting
These
of d i f f e r e n t
Hadamard
matrices
interrelations
objects
using
matele-
of ques-
constru-
Besides
codes,
with
and n o i s e l e s s
such as b l o c k - d e s i g n s ,
gate the p r o p e r t i e s
-I
by n o n - l i n e
configurations
regular
the
of deter-
and with a n u m b e r
of a signal
chanels)
transfer
rent c o m b i n a t o r i a l
strongly
with
of H a d a m a r d
between
ties,
integer
maximum
interrelations
F-square
fast
initially
are
orthogonal
problems
the e l e m e n t s
finding
theory
of m u l t i p l e - a c c e s s
with
with
with a u t o m a t o n
linear
matrices
of
matrices
(for example,
connected
from i n f o r m a t i o n
consideration
orthogonal
mathe-
realizing
connected
Later on it turned out that
waves,
equipments
were
minant).
ctromagnetic
applied
matrices
algebra problems
in q u e s t i o n s
for many
discrete
matrices.
a linear
rices
in m o d e r n
it turned and diffe-
Latin
finite
square~
geomet-
a l l o w to i n v e s t i -
the analogy
in their
structures. Recently
a considerable
damard matrices neralized,
has occured.
high-dimensional)
till now
it is not known
for all
n
divisible
Historically, Sylvester Hadamard
who
increase
investigation
Some p r o b l e m s Hadamard
if there
connected
matrices
exist
are
devoted with
to Ha-
(classic,
ge-
still unanswered;
Hadamard
matrices
of order
to H a d a m a r d
matrices
was due to
so, n
by 4.
first work
devoted
in 1867 p r o p o s e d
matrices
of
of order
2 k.
a recurrent
method
In XIX century
for c o n s t r u c t i o n
the f o l l o w i n g
papers
of
also appeared: or p = l ( m o d order
4)
p+1
is a p r i m e
and p+3,
the f o l l o w i n g lai,jl ~ M ,
the work of Scarpis
result
ai, j
result
gives
tement
by
4. There
pic u n d e r
discussion
terest
are
some r e a s o n s
This p r o b l e m
1500 papers
that these
are books surveys
a series
difficulty
torial p r o b l e m s
is the
damard matrices
of order
truction For many
Hadamard
for H a d a m a r d
has p r o v e d
matrices.
This
matrix".
and
that
is till now to it.
problem
Ryser
is di-
(1963);
the works
applications
sta-
(so-
unanswered
Introduction
included
of i n t e r e s t i n g
matrix
the reverse
Hadamard
(1970),
have not
lack of u n i f i e d
are a p p l i c a b l e n
of this p r o b l e m
4n
for all
altho-
to the
to-
it should
of Soviet
stimulating
it is u s u a l l y
necessary
sometimes
using
papers
recurrent
methods
where
introduced. number
practically methods.
These m e t h o d s
theory,group no p a p e r s
in-
by a c o m p u t e r
that the m i n i m a l is not k n o w n
order
is 268.
. The k n o w n m e t h o d s "rare"
to develop,
use the
for which
matrices
There
on
n
. of
are only a few
for H a d a m a r d
following
to c o m b i n a t i o n
sequences
of Ha-
of c o n s -
a direct m e t h o d
access.
combinatorial
was given
combina-
for c o n s t r u c t i o n
of c o n s t r u c t i o n
The list of k n o w n H a d a m a r d
constructed
n
the machine
theory,
devoted
and many other
methods
only to r e l a t i v e l y
construction
tics:
Mnn n/2
is c a l l e d
Hall
where
n if A = { a i , j } i , j = 1 ,
to assume
devoted
of
in this problem.
A principal
are
to
"Hadamard
4)
i, j, then the a b s o l u t e va-
reach only
or Paley problem)
are over
and also
the
equal
matrix
(1893)
stated that the order of any H a d a m a r d
ugh there
authors
for any
p=3(mod
is an H a d a m a r d
is stated:
to the term
Sylvester
be n o t e d
if
in p a r t i c u l a r
is less or
is also true.
metimes
there
that
the work of H a d a m a r d
is w i t h i n
rise
proving
respectively;
A
In 1933 P a l e y visible
then
are real numbers
lue of d e t e r m i n a n t that this b o u n d
number
(1898)
branches analysis.
matrices
of m a t h e m a There exist
of direct
and r e c u r r e n t
of order
n, n ~ 4000,
in W a l l i s
the e x i s t e n c e
(1978),
where
he n o t e d
of an H a d a m a r d
matrix
The k n o w n m e t h o d s into W i l l i a m s o n , methods
of H a d a m a r d
This w o r k p r o v i d e s
results
Plotkin
in the topic.
Hadamard
Specifically,
of c o n s t r u c t i o n
of H a d a m a r d
des,
of c o n s t r u c t i o n
the m e t h o d
realization
The work p r e s e n t e d § 2 we will c o n s i d e r ces u n i t i n g Whiteman Wallis
are a r b i t r a r y
propose
a recurrent
of n e w orders.
mard matrices there e x i s t s exist
generalize
for e x i s t e n c e
natural
numbers)
method
we will
solve
we will
construct
simple
The m e t h o d
allows
of o r d e r
fusation
of second P l o t k i n
hypothesis)
existence
of two H a d a m a r d
existence
of an H a d a m a r d
In §§ 2 - 4
we will
matrices,
arrays
matrix
of order
Baumert-Hall, allowing
The block
method
and T - m a t r i c e s
methods
that
there
doesn't
(that
is, the re-
that
ml, m 2
of Hada-
firstly
for w h i c h
and secondly,
of o r d e r
• q2k2
in construction)
to state
this m a t r i x
from the
follows
the
m I • m2/2.
give also r e c u r r e n t
of n e w o r d e r s
matrices.
12
i=I,2
of all orders,
6-codes
construction.
Hada-
gi'
matrices
and r e c u r r e n t
matrices
in this
Hadamard
(sufficiently
matri-
Golay-Turyn,
for an a r b i t r a r y
of
In
and B a u m e r t -
2Sqlkl , 2Sqlkl
generating
of H a d a m a r d
Williamson
of type
D(12,4)
Whiteman
of H a d a m a r d
the direct
a partition
sections.
and s t r e n g t h e n
for c o n s t r u c t i o n
matrix
to a l l o w an
9
combined
a Hadamard
of W i l l i a m s o n
namely,
Besi-
of the computer.
and
to c o n s t r u c t i o n
methods
some n e w
properties.
and has
chapters
gene-
to the q u e s t i o n s
and m e m o r y
from the codes
In § 4 new b l o c k
is p r o p o s e d
3
a theorem allowing
limit
is p a i d
simple
In p a r t i c u l ar ,
problem:
prove
to find a lower
method
methods.
the reverse
m a r d matrices,
(k i
In § 3 we will
and P l o t k i n
section
a new approach
two a b o v e - m e n t i o n e d
method.
must be
of
(classic,
with p r e s c r i b e d
sence of rate
consists
to
and d i s c u s s e s
attention
matrices
in the
approaches.
devoted
matrices
can be d i v i d e d
Paley-Wallis-Whiteman
and J . Wa l l i s
a survey of p a p e r s
high-dimensional)
effective
construction
Baumert-Hall-Goethals-Seidel,
and Golay-Turyn,
ralized,
matrix
formulae
Goethals-Seidel, to c o n s t r u c t posseses
of c o n s t r u c t i o n Wallis,
infinite
a definite
Wallis-
classes
universa-
lity a l l o w i n g algorithms
to c o n s t r u c t
for c a l c u l a t i o n
§ 5 is d e v o t e d
existence
of partial
are given,
generalized
matrices
methods
systems. matrices
conditions
of the
H(p,h)
matrices
fast
Hadamard
(p
of c o n s t r u c t i o n
Hadamard
providing
sums by these
some n e c e s s a r y
Hadamard
recurrent
Fourier
systems
of g e n e r a l i z e d
In p a r t i c u l a r ,
for g e n e r a l i z e d
block-circulant
orthogonal
to i n v e s t i g a t i o n
and B u t s o n problem.
number)
different
is not a prime
of circulant,
of new orders
are ob-
tained. In § 6 the b l o c k which
allows
method
to c o n s t r u c t
irregular
Hadamard
the upper
and lower b o u n d s
(classic
new classes
matrices.
of w e i g h t
pressing,
noiseless
noise,
Hadamard
construction
matrices
for c a l c u l a t i o n s Finally,
delnikov,
where
the
of H a d a m a r d
some u n a n s w e r e d
The author Yablonskiy
coding,
would
on whose
ries of v a l u a b l e
optimal
linear
and
is given,
density
of
are obtained. (information
detection
of the
signals
access
leading
is p l a y e d by fast a l g o r i t h m s
part
channels
com-
of m u l t i p l e -
and so on)
transformations. problems
initiative
notes.
matrices
case
regular
problem
and e x c e s s
some a p p l i c a t i o n s
like to express
V.A.Zinovjev,
of S c h l i c h t a
density
Hadamard
introduce
to a h i g h - d i m e n s i o n a l
of h i g h - d i m e n s i o n a l
A solution
and h i g h - d i m e n s i o n a l )
In §§ 7 - 9 we will
through
is e x t e n d e d
are his
formulated. sincere
gratitude
this work was p r e p a r e d
who have
read the m a n u s c r i p t
to S.V.
and to V . M . S i and made
a se-
of
§
I.
Basic
definitions,
notations
and
auxiliary
results
NOTATIONS• only
ones
I -
(in c a s e
is a u n i t of
need
matrix;
the
J
- is
dimension
a
of
square
matrix
matrix is
containing
indicated
by
a
subscript);
R
It
0 0
...
0
0 0
...
1 0
0
1
0 0 U
=
can
be
000...01 100...01
that
I. F o r
2.
Y2'
"''' of
[120];~
AI,1 =
A2,1
we
have
every
s such There
then
Yn
that
Hadamard
Am,2
n;
.-. -.-
-.-
product
is
an
odd
number,
there
U k,
a matrix
P such
YI
0
...
0
0
0
Y2"'"
0
0
0 0
" " "Yn-1 0
0 0
...
different T
a matrix
A2,2
(uS) 2=
n
that
PUP*=D
where
=
are
AI,2
k=1,2,...n-1,
exists
length is
k,
is
n-th
Yn
roots
defined
XI m Y
:
A2, m
Am, m
[311 ],
of u n i t y , e n = ( 1 , 1 , . . . , 1 )
a transposition
product
At, m
0
i:I
Am,2
* is a n
(1)
0 0
shown
0
=
0 0
a row-vector
A ~ X
0
...
D
product
...
...
a unique
YI'
0 0
I 0
PROPERTY
and
I
...
01
PROPERTY exists
I 0
X m
that
is
sign;
x
is
is
a Kronecker
as A I ,i
* Xl
A 2 ,i
* Xi
A
, X. l
m,i
if A = ( a i , j ) ni,j=1,
(2)
B=(bi,~,j=1
A * B =
L e t A,
B, C, D be
square
w[4]
=
(-I,
+1)
a Williamson
array
B
C
D
-B
A
-D
C
-C
D
=
Goethals-Seidel
BY[4]
B
BR A
-CR
DTR
I
a Wallis-Whiteman
AI x BI
WA[4~A2Rx
denotes
A Radon
of o r d e r
B C A T -D
-C
DT
A
array
BT
4
~ 1 3 ],
D C
(6)
-B T AT
of o r d e r
4
[311],
A1 x B I
A T R x B4
- A 3 R × B3
array
of o r d e r
is d e f i n e d
d 0. l
its m o d i f i c a t i o n s
on a t h e o r e m
has
been
proved
by W i l l i a m s o n
in
1944. THEOREM der
2.1
[120].Let
square
(-I,+I)
matrices
Wi,
i=I,2,3,4,
of or-
m are I. c i r c u l a n t ,
that
m-1 is W. = ~ v ! i ) u j, 1 j=0 3
2.
that
is V (i)• = V (i), , j = 1 , 2 , . . . , m - 1 , m-3 3
symmetric,
i=I,2,3,4
(2.0)
i=I,2,3,4
(2.1)
and meet 4
3.
I i=1
Then order
(2.2)
W ~ = 4mI l m
a Williamson
array
W[WI,
W2,
W3,
W4]
is an H a d a m a r d
matrix
of
4m.
This
theorem
shows
that
the p r o b l e m
of c o n s t r u c t i o n
of H a d a m a r d
mat-
12
rices
of o r d e r
matrices
WI,
4 m c a n be r e d u c e d
i=I,2,3,4
Now consider the
conditions We
of o r d e r
m with
the c o n s t r u c t i o n
of T h e o r e m
conditions
of m a t r i c e s
of
square
(2.0),
WI,
(-I,+I)
(2.1),
i=1,2,3,4
(2.2).
satisfying
2.1.
denote V. = P W P*, l l
where
to the c o n s t r u c t i o n
P is an u n i t a r y
matrix
i=
1,2,3,4
satisfying
(2.4)
the p r o p e r t y
2. We h a v e
from
(2.1)
V
m-1 E V (i)DJ j=1 3
= l
From
(2.5)
the m a t r i c e s
Vi,
i=
1,2,3,4
? V7 = 4mI
4 [
l
, i:
1,2,3,4
are
(2.5)
in p a r t i c u l a r
diagonal
and
(2.6)
m
i=I that
is 4
m-1
2
E Z i=lj=0
Note
is
that
relation
(2.7)
V
(i) 3
Y
is t r u e
4
m-1
5-
E
i:I
j:0
(2.7)
=4m
for e v e r y
Yk h e n c e ,
for ¥k=I
namely,
2
V, (i) 3
= 4m
(2.8;
true. Now we have
the d i f f e r e n c e sum,
that
from relation between
v(i) 6 { - 1 , + 1 } e v e r y 3
the p o s i t i v e
and negative
is a s q u a r e
(n i) t e r m s
of
of the
is 4
2
E i=I On the o t h e r number
(pi)
bracket
hand
Lagrange
is r e p r e s e n t a b l e
if m is odd,
then
(Pi-ni)
as the
(2.9)
: 4m
theorem
[120]shows
s u m of 4 s q u a r e s
4m is r e p r e s e n t a b l e
as the
of
that every
positive
integers;
moreover
4 squares
of o d d
numbers,
13
that
is
4m
So,
we
have
from
(2.8),
2 2 2 2 = ql + q2 + q3 + q4
(2.9)
and
m-1 E j=0 Further,
from
Now verify
we
b)
for
for
Note
(i)
S--I
4 V~it,' = E 3 i=I
symmetry
(Pi-ni)
of W i m a t r i c e s
(2.11)
: + gi
we
have
V (1) O
+ 2
(m-l) /2 (1) Z V j=1 J
: + ql -
V (2) o
+ 2
(m-l) /2 V!2) I j:1 3
= + q2 -
V (3) o
+ 2
(m-l) /2 V!3) E 9= I 3
= + q3 -
V (4) o
+ 2
(m-l)/2 E j=1
= + q4 -
(2.12)
V(4) 3
discuss
the
choice
m~3(mod
4),
s=(m-1)/2
v (i) o
tive
(2.10)
of
sign
for
qi'
i=I,2,3,4,
it
is e a s y
to
that
a)
and
(2.10)
m~1(mod
4),
s l j=1
that
expressions
4)
can
negative are
-qi'
v(i) 3
not
1
[ q i - V ~ i~] /2
is o d d
if
(i)I [qi+Vo j /2
is o d d
: { -qi' qi'
'
if
[ q i + V ~ i)] /2
if
[qi-Vo
[q +V (i)I /2, i- o ]
be e v e n
elements i! I)
if
={
(2.13)
s=(m-1)/2
+ 2
_ (i))
' MS
qi'
v! i) 3
V (i) o
m-=1 (mod and
s z j=1
+ 2
L (2) i
and
i:I
odd
consisting
'
(i)]
2,3
j /2
'
4 for
respectively, the
respectively
'
collection where
is e v e n ,
(2.14) is e v e n
both and
m-=3(mod number
4)
of p o s i -
(VI i) ,V~ i) .....
14 a) for m~3(mod 4) a 1) if ~ V (i)] /2 [qi- o
is odd, then
1 (I) = [m+ qi- V o(i) -I] /4 1 (2) [ " i ' i = m-qi +V(1)-1] o a 2) if [qi +V o(i) ]/2
/4
is odd, then
1!I)i = [m-qi-V(i)-1]o
/4, L(2)=i [m+qi+V(i)-1]o
/4
b) for m~1(mod 4) b 1) if [q -V (i) ] /2 i o
is even, then
1! I) = [m+qi-V(i)-1] l o b 2) if [qir+v(i) ]o
/2
1 (2)= [m-qi+V(i) i o
'
-I] /4
is even, then
l! I) = [m-qi-V(i)-l] 1
/4
/4
O
1 (2) = [m-qi+V(i)-1] '
i
/4
O
Now we will show the solution of the system for the following example. EXAMPLE 2.1. Let m=7 hence,
4-7 = 12+32+32+32 .
Now suppose that v(i)=1, i=I,2,3,4. o Then we can rewrite the system (2.12) as I + 2V~I)+
Hence, we have from
2V~I)+
2V~I)
(2.13) and
(2.14
V~ I) + V~I)
+ V~I
V~ 2) + V~ 2) + V~ 2
= + I
= -I, = I,
~2.15)
V~ 3) + V2(3) + V~ 3) = I,
V~ 4) + V~ 4) + V~ 4) = 1. It is easy to see that all kinds of solutions for systems
(2.15)
in
15
field
(-I.,+I)
are
following
V~1) V~1) V~1) II
-I
-1
1
-1
-1
--li] -1
1
values
VI 2) V2(2) V~2)
VI 3)
V~ 3)
V~ 3)
-I
1
1
-1
1
1
I
-1
1
I
-1
1
-I__]
11
11
I
-1] (2.16)
The
values
So,
the
V,1
1
-I
1
I
I
-I
in b r a c k e t s
from
(2.16)
satisfy
also
W2 = W3 = I + U W4 = I - U
ly
Williamson
matrices
The
(2.12)
system
solvable Let
ons
of
proof
us
even prove
system of
used.
and
convenient
We
of and
means
2.1
will
order
of
2.1
reducing
the
idea
further
show
that
for
large
m
and
allowing
to
study
the
m by of
means
proof
in m o r e
of
for
a computer.
Williamson
informative
it
is h a r d -
form
Note
Lemma
simple
solutithat
for
14.2.11120]
for
proof
investigations
Let
m be
an
odd
the
conditions
if V ( 1 ) + V ( 2o ) + V ( 3 o) + V ( 4 )o= { - o
number, of
suppose
theorem
+ 4,
then
0 2.
,
a computer.
small
it
+ U5 - U6
,
7.
example
for
give
for
2.2.
sytisfying
I.
(2.3).
,
+ U2 - U3 - U4 + U5 + U6
+ U2 + U3 + U4
a theorem
theorem
THEOREM
by
(2.12)
was
rices
condition
matrices
W I = I + U - U2 - U3 - U4 - U5 + U6
are
the
if V ( 1 ) + V ( 2 ) + V ( 3 ) + V ( 4 ) = ~ 2 ' o o o o
then
4 ~ i=I
2.1. Z4 i=I V ~i)"
W i,
i=1,2,3,4,
are
mat-
Then _ v k(i)=
_+ 2
(2 . 17)
k=1,2,...,m-1 4 0
, k=1,2,...,m-1
(2.18)
16
PROOF.
We d e n o t e
by Pi'
i:I,2,3,4,
= I (J+Wi)
Pi
=
a matrix
Uk
Z
(2.19)
v(i): I k that
is m a t r i x
ments;
denote
constructed
f r o m W i by r e p l a c e m e n t
by P. n u m b e r
of n o n - z e r o
elements
-I e l e m e n t s in f i r s t
by 0 e l e -
r o w of
1
we h a v e
1
by c i r c u l a r i t y
of Wi,
i=I,2,3,4,
P.J 1 N o w we get
from
relations
= p.J 1
(2.3),
4 X i=I
P..Then
(2.15)
4 (2Pi-J) 2 = 4
(2.20) and
(2.20)
4
X i=I
P~~ - 4 X P.J l i=I ~
+ 4mJ
(2.21
= 4mI m
Hence,
4 E i:I From
( E Pi)J i=I
+ m(I-J)
(2.19)
p2 = 1 Now
4
-)
P~ : 1
let us r e p l a c e
denote
the
sum
can be r e w r i t t e n
E
(U k) 2
(mod 2)
(uk) 2 by U s in a c c o r d e n c e
(2.23)
(2.23
Vk(i) =I
with new
indexation
with
property
by E'U s. The
(2.2)
relation
and (2.23)
as
P2~[E'uS]
(mod 2)
(2.24
l
So,
from
(2.22)
4 E i=I
According P.) 1
and
[I'U s]
(2.24)
(mod 2)
to s y m m e t r y
we have
=
4 ( E Pi)J(mod i:I
of m a t r i c e s
Wi,
2)
+
i=1,2,3,4,
(I-J)(mod
(hence,
2)
(2.25}
of m a t r i c e s
17
4
4
E i=I
[E'U s]
(mod 2) =[ E p~i)]" J ( m o d %2 i=I
2) + ( I - J ) ( m o d
2)
(2.26)
with
p(i) o N o w we c o n s i d e r CASE positive
I,
if V (i) :1
o 0, if v ( i ) = - 1 o
e a c h of 2 c a s e s of the t h e o r e m .
I. It f o l l o w s elements
a l s o even,
: {
from assumptions
consisting
the sum
of the t h e o r e m
4 v(i) E o i=I
that n u m b e r
is e v e n hence,
4
of
(i)
E Po i=I
is
so, 4
Z p~ij___' ' 0(mod i=I o Then, peats
2)
4 E [E'U s] (mod 2) = (I-J) (mod 2). It f o l l o w s i=I o d d n u m b e r t i m e s hence, for an a r b i t r a r y k h o l d s we have
that U s re-
Vk(1) + VZ(2) + Vk(3) + V(4)n" = +- 2
Case
I is p r o v e d . 4 E v~i)t = + 2, t h e n it f o l l o w s f r o m r e l a t i o n i:I o that 3 items of this sum have the same signs hence,
C A S E 2. L e t V o(i)6{-I,+I}
4 E p~i;~' ~ I (rood 2), o i:I
so, we have,
from
(2.26)
4
E [E'uS]---0(mod 2) i=I that
is U k, k = 1 , 2 , . . . , m - 1
repeats
2 or 4 times.
Hence,
we have
shown
that r e l a t i o n
Vk(1) + Vk(2) + Vk(3) + Vk(4) =#+ 4 ~0
is true,
that
is the t h e o r e m
As a c o r o l l a r y
is c o m p l e t e l y
of t h i s t h e o r e m
proved.
follows Williamson
theorem
[39] n a -
18
mely,
if m is o d d a n d c i r c u l a n t
satisfy
(2.3)
precisely
and t a k e n w i t h
t h r e e of V k
,
and s y m m e t r i c
matrices
such signs t h a t v ( i ) = 1 , o
k
, V
, V
have
Wi,i=I,2,3,4,
i=1.2.3.4,
then
same sign for e a c h k.
It a l s o h o l d s THEOREM 1,2,3,4,
of o r d e r m s a t i s f y
v(i) _ (i) j =Vm_j, Then
2.3. Let m be an o d d n u m b e r
m-1 W = E v!i)uJ,i = i 9= I V31) -' (1) ' (2.1), (2.3) and 3 -- V m-j
and matrices
the c o n d i t i o n s
i=2,3,4, j=I,2, . . .,m-1 .
if 4
a) V ( 1 ) + V ( 2 ) + V ( 3 ) + V ( 4 ) = { ~ 4 o o o o u
, then
b) V ( 1 ) + V ( 2 ) + V ( 3 ) + V ( 4 ) +2 t h e n o o o o = -
~2 w i t h m ~ 1 ( m o d 4) +4 or 0 w i t h m ~ 3 ( m o d
E i=I V i)={
4 Z _ (i) ={ -+4 or 0 w i t h m ~ 1 ( m o d i=I vk ~2 w i t h m ~ 3 ( m o d 4 .
4) 4)
for e v e r y k, k=I,2, ....(m-I)/2. N o w we w i l l c o n s i d e r to
(2.12)
denote
the T h e o r e m
s y s t e m of e q u a t i o n s
2.2 a n d w i l l o b t a i n
with a simpler
form.
an e q u i v a l e n t
To do this let us
[39]: LI(11,12,13,14
= -11+12+13+14
L2(11,12,13,14)
= 11-12+13+14
L3(!1,12,13,14)
= 11+12-13+14
(2.27)
L4(11,12,13,14)
= 11+12+13-14
(2.28)
ti,k=~1 Li(V~I),v(2),V(3)k k 'V(4)k , i = I , 2 , 3 , 4 ,
M k = { t l , k , t 2 , k , t 3 , k , t 4 , k}
~i = I+
(m-I)/2 E k:1
for the v a l u e s
ty of the r e l a t i o n s
follows
above
from
(m-l) 2
1,2, ....
t i k(yk+¥m-k),
X i = Li(~I,~2,~3,~4),
Some r e l a t i o n s
, k=
k = I , 2 , . . !m~1)
(2.29)
i=I,2,3,4
(2.30)
i=I,2,3,4
are g i v e n
(2.12),
(2.31)
in L e m m a
(2.27)
2 .I. The v a l i d i -
and t h e o r e m
2.2.
19
LEMMA
2.1.
Let m be an odd number V(1) o
+ V(2) o
and
+ V(3) o
+ V(4) o
={_+4
Then: I. F o r
2
"
Xi/2
an a r b i t r a r y
=
_ (i)
4 4 3. Z X 2 = I i= I i i=I
COROLLARY
I+2
(m-!)/2 Z ~=1
and
(2.12) Note
chine
that
3
for Y =
I
(2.32)
(2.34)
= ~ qi
'
i=
(2.35)
that
owing
. Then
solutions
of
system
1,2:3,4
(2.35)
system
for the
(2.12)[120].It
following
47 W i l l i a m s o n Baumert, 27,
29
to p r o p e r t i e s
orders
Golomb,
Baumert
Yamada[145].
(p+I)/2,
7. m = p ( p + 1 ) / 2 , Let us define Baumert,Golomb result
p~1(mod
4)
p~1(mod
have
in H a d a m a r d
92 = 7 2 + 5 2 + 3 2 + 3 2
of
does
not
investigations
solution
of
m:
found
of
all
solutions
[28].
is the o r d e r
of a p r i m e
(Turyn,
is t h e o r d e r
of a p r i m e
(Whiteman,
emphasized
matrices
92 = 9 2 + 3 2 + 1 2 + I 2 r e s u l t s
Further
4)
has
b y L I a set of o r d e r s
and Hall
the
[28].
5. m = 29,37, 6. m =
is k n o w n
for m a -
H a l l [29].
Baumert
41
ti, k is e a s i e r
[120].
4. m = 3 , 5 , . . . , 2 3
sumption
i=I,2,3,4
'
2 2 2 2 4m = q1+q2+q3+q4
Let
system
(2.35)
3. m = 25,
on
zero.
are e q u a v a l e n t .
2. m = 23
on
is n o t
v(i)
j=1
t i , k (Yk+Ym-k)
I. m = 37,
(2.10)
of ~
2 ~i = 4 m
2.1.
processing
equation
(m-l)/2 ~
+ 2
v°
k only one element
m from that
not
[120]. F o r
in H a d a m a r d
items
1-7.Note
also
1971) that
all of p r e s e n t a t i o n s
example,
matrix
1972).
the p r e s e n t a t i -
whereas
the p r e s e n t a t i -
[120]. system
(2.10)
were
carried
out
o n the
as-
20
4m :
So,
it w a s
result type
out
proved
in
in H a d a m a r d has
Generalization
of
two
4m
= x
of
m=29,
12
+ y
2
+ x
37,
+ x2 + y2
2
+ y
2
the
order
+ y
2
+ y
2
+ y
2 2
presentation 104
of
whereas
the
first
type
does
presentation
of
not thi~
41.
Williamson
of
conditions
- alteration
of
number
said
2.1
t,q e o r e m
to
be
AA T
(2.1),
of
[ 295].
has
been
generally
carried
(2.2}.
matrices.
Square
Williamson
I. M N T = N M T 2.
2
that
- alteration
m are
+
directions:
DEFINITION
and
= x
matrix for
in
4m
[145]
solution
12
[-I,+I)
matrices
matrices
A,
B,
C,
D of
order
provided
M,N6{A,B,C,D}
+ BB T
+ CC T ~
[2.36)
DD T = 4mI
(2.371 m
Note
that
with
conditions
automatically In can B,
1974
be C,
those
and
D and of
cnndition
7.Wallis
satisfied has
(2.11
[ 288]
both
noted
such
matrices
that
7
condition
12.36)
holds
12.3) . conditions
and
matrices
(item
the
becomes
non-circulant
constructed
Wi]!iamson
(2.2)
(2.37) has
for
and
of
) with
(2.36)
non-syn~etric orders have
and
matrices
coinciding been
(2.37~ A.
with
constructed
by
9~iteman. At
present
the
Wil]iamson
matrices
of
following
orders
have
been
constructed: 1. m ~
100
2.
9k
3.
m(4m+3)
4.
93
5.
2m,
6.
(m+11 (m+2),
symmetric
k
with
exception
is a n a t u r a l
number
. m(4m-1),
mC{1,3,5
(Wa]lis m
the
is
[311 ] .... , 2 3 , 2 5 }
(Wallis
1975) .
[311 ]~
the
Hadamard
35,39,47,53,67,71,73,83,89,941295]
order
of
existing
m~1(mod
4)
is
matrix
[295 ].
Wil]iamson
a prime
and
m+3
matrices is
the
(Wallis[ order
of
311]) some
21
7. 2.39,
2.203,
6a I
8.
10 a 2
a. > 0, a r e
2.303,
- 14 a 3
•
non-negative
2.333,
2.669,
18 a 4
22a5
from where
2.1603
• 26 a 6
(Wa]lis
. m,
in p a r t i c u l a r
[295]).
mEL 1 ,
i=1,2,.
Williamson
.,6,
matrices
of
l-
order
2.35,
2.65,
9. m k ( m + 1 ) ,
2.77
are
m~1(mod
obtained
4)
is the
(Sarukhanian,
order
1978)
of a p r i m e
number,
k~0
Spence,
m satisfying
the
items
1977). 10.
3k
7.3 k, k>0
11. L e t u s d e f i n e
(Mucho~adhyay
[327])
b y L 2 a set of n u m b e r s
I-I0. 1
12. m ~i()2,n
, where
m,nEL,~ i are
arbitrary
non-negative
integers
1
L=LIUL 2 In
(Agaian,
Sarukhanian
1965 C o e t h a l s
trictions
(2.0)
(Such m a t r i c e s
and
and
Seidel
(2 37}
have
been
called
in c o n s t r u c t i n g
matrices
with
such properties
(a,b,c
of n o n - c o m m u t a b i l i t y
hals-Seidel analogu~
array
of T h e o r e m 2.4
THEOREM
del matrices der
instead 2.1.
have
m.
the
later
conditions
of
with
(2.1),
res-
(2.2).
ones.)
They
succe-
m, m E { 3 , 5 , . . . , 6 1 , 2 a . 1 0 b . 2 6 c + 1 }
are n o n - n e g a t i v e of
the m a t r i c e s
Goethals-Seidel
of o r d e r
such matrices
integers
authors
t h a t of W i l l i a m s o n
[111-113]).
have
Be-
to u s e G o e t -
for ~ r e s e r v a t i o n
the
It h o l d s
(Goethals-Seidel
of o r d e r
discussed
discarding
eded
cause
[~I]) .
Then
[111]).
array
GZ
Let A,B,C,D
[4]
be Goethals-Sei-
is an H a d a m a r d
matrix
of o r -
4m. In
[297]
Theorem taken
2.4.
Wallis So,
and Whiteman
matrices
back-circulant,
An Wallis (number
A,
instead
generalisation
in
Instead
of c o n s t r u c t e d matrices)
Williamson
and Goethals-Seidel
generalized
and matrix
[4] t h e y
discussed
BY[4].
Williamson
that
as
used large
array
is a r r a y
were
was proposed
were
times
of W i l l i a m s o n
matrices
method
matrices
is t h r e e
ones,
modifications
circulant
of W i l l i a m s o n
instead
other
taken
of W i l l i a m s o n
Williamson
called
of GZ
F-matrices
and
obtained
B, D w e r e
important [299].
have
WA
analyzed
C was
by
F-mafrices as t h a t
synthesized [4]. in
of
[6,
of from
Finally, 167,
so
208]
22
(The g e n e r a l i z a t i o n replaced ralized
Williamson where
m6L,
number
From logues
of
analysis
where
analoques
and construct - find Williamson
m6L1,
matrices
Now we
turn our that
in
DEFINITION
we c o m e
are matural
which
formulae permit
numbers.
find
matrices
matrix
give
with
2.1.
those -
gene-
that n the
and theorems,
and ana-
questions:
a notation
containing
investigate
to c o n s t r u c t
to the
modifications
2.2.
of c o n s t r u c t i n g
A set of
solution
of
a notation
(-1,+I)
(0,+I)
matrices
matrices matrix
infinite
classes
decomposition
of W i l l i a m s o n
of Williamson
is a s q u a r e
i.e.
of n e w g e n e r a l i z e d
questions
stated
of W i l l i a m s o n
s W W~ ill
The
notation
above.
families
con-
matrices. {W i} i=II
of o r d e r
(s 1 , s 2 , . . . , s l , B m , m )
B m of o r d e r
m will
provided
m, B m ~ 0 s u c h t h a t
(2.38)
1 = M X s I i= I i m
of
(2.39)
family
of w i l l i a m s o n
matrices
of matrices
of
holds
1 X i=I
Williamson
of H a d a -
into product
w.swT w.swT i m 3 3 m I
NOTE
Note
for a g i v e n
to s t u d y of f o l l o w i n g
factorisation,
i,j=1,2,...l,i@j
2.
The
known.
of W i l l i a m s o n
matrices
[5 ] w a s p r o p o s e d
a family
for e v e r y
ar~
is a n a l y z e d :
Williamson
attention
all known
I. T h e r e
matrix-blocks).
are
matrices.
of W i l l i a m s o n
allowing
multipliers.
be called
a,b,c
problem
theorem
such recurrence
sparse
taining
orders
matrices
them.
mard matrices
Note
following
of a l l m o d i f i c a t i o n s
- for n e w g e n e r a l i z e d all known
from circulant
of W i l l i a m s o n
of Williamson
symmetric
n 6 {3,5,...,59,61}
in f a c t a f o l l o w i n g of all k i n d s
that circulant
ones
matrices
(2a10b26c+1)m,
in[145]
here
by block-circulant
-mn,
-
means
for
1=4,
s1=s2=s3=s4=1,
Bm=I m
coincides
2 3
-
8 Williamson matrices
for 1=8, s1=s2=s3=...=s8=1,
-
Yang matrices
-
Williamson matrices obtained by Turyn,
-
Goethals-Seidel
-
Generalized Williamson matrices
for 1=2, s1=s2=1,
matrices
Bm=I m
BmI m
for 1=4, s1=s2=s3=s4=1,
Bm=R m
for 1=4, s1=s2=s3=s4=1,WiWj=WjWi •
Following theorem is true THEOREM 2•5 " Let {W~ i=I 1
be a Williamson
m) and there is an orthogonal consisting of elements
design of type
family
(Sl,S2,..•,Sl,I m,
(Sl,S2,...,s I) of order n
~xi, xi~0. Then there exists an Hadamard matrix
of order mn. NOTE 2.2. All principal ces in particular, Yang
theorems
Williamson
for constructing
of Hadamard matri-
(1944), Baumert-Hall(1965),
(1971), Goethals-Seidel(1967)
Wallis
(1976),
theorems are special cases of theo-
rem 2.5. We note some properties PROPERTY 2.1. Let
of family of Williamson matrices•
(W I, W2, W3, W 4, Bm, m) be a Williamson
family•
Then a)
(11WI, 12W2, 13W3, 14W 4 , Bm,m)
is a Williamson
family,
b)
(WIXH, W2xH, W3xH , W4xH, BmXIn, mn)is a Williamson
i i = +_I
family,
if H
is an Hadamard matrix of order n. PROPERTY 2.2. Let
(WI, W2, W3, W4, Bm, m) be a Williamson
family•
Then a)
(W liT, w2JT, ~3 T, w41T, B m,m) , where i,j,k,l=0,1,
b) there exists a Williamson PROPERTY 2.3. Let
family
W °Tp = Wp, wIT=w T p P
I W3, I W4, I I2m, 2m). (W I , W2,
(WI, W2, W3, W4, Im, m) be a Williamson
Then there exists a Williamson
family
family.
1 W3, I W4, I I2m, 2m). (W I , W2,
Now let us introduce a theorem about existence of Williamson families special cases of which were proved in [44]. n-1 THEOREM 2.6 • Let {Wi}4i=I ' Wi = Z Ai, ~ U k , n is an odd number, k=0 Ai, k are square
(-I,+I) matrices of order m. Then for
(WI, W 2, W 3, W 4,
24
Bm×Rn,
mn)
be a W i l l i a m s o n
n-1 X k=0
Z Ai,kA~,k)l i= 1
n-1
4
4
X
X
k=0 where
family,
i=I
it is n e c e s s a r y
and sufficient
that
co
= 4mnl
(2.40) mn
T A. ,A, +, , I,K ±,n K-3-1 (mod n)
=
0
(2.41)
j=0,1,2,...,(n-1)/2.
NOTE sary a n d (2.0),
2.3.
sufficient
(2.1)
NOTE
For A i , k 6
and
{-I,+I}
conditions
for e x i s t e n c e
(2.40)
of W i l l i a m s o n
and
(2.41)are
matrices
neces-
satisfying
(2.2)
2.4. M a t r i c e s W I = jxI+AIX(U-U2_U3_U4U5_U6 ) , W 2 = AIX(I+U-U2+U3+U4-U5+U6 ) , (2.42) W 3 = J x I + A 2 x ( U - U 2 - U 3 - U 4 - u S - u 6)
,
W 4 = A2x(I+U-U2+U3+U4-U5+U6 ) where
f i r s t rows of c i r c u l a n t (-t
1 -1
(-1
-t
satisfy conditions
1
1 -1
1 -1 -1
(2.40)
1
and
matrices -1 1
-1 1
(2.41)
A I and A 2 are r e s p e c t i v e l y
-1
1
1 -1
1 -1 -1
1)
1 -1)
a n d are W i l l i a m s o n
matrices
of or-
der 91. THEOREM n)
11,
family
2 • 7. L e t
(A I , A 2
,-.-,All
12 = 2,4 be W i l l i a m s o n (WI, W 2 , . . . , W k ,
PROOF. CASE
families.
Imn , mn),
We w i l l c o n s i d e r
, Im, m) and
(B I
,
B2,
.-.,B12
Then there exists
,In,
a Williamson
k=2,4,8.
3 cases.
I. 11 = 12 = 4, k = 8
Introduce
operators
V I = V 2 ( X I , X 2 , Y I , Y 2) = [ X I X ( Y I + Y 2 ) - X 2 x ( Y I - Y 2 ) ] /2 V 2 = V 2 ( X I , X 2 , Y I , Y 2) = [ X I X ( Y I - Y 2 ) + X 2 x ( Y I - Y 2 ) ] /2
(2.43)
25 Put W i : Vi(AI,A2,BI,B2)
, Wi+ 2 = Vi(A3,A4,BI,B 2)
Wi+ 4 = Vi(AI,A2,B3,B 4) Let us show that is introduced
(WI, W2,...,W8,
matrices
Let us examine
satisfy
T I T VIV I = ~[XlXlX(YI+Y2)
, Wi+ 6 : Vi(A3,A4,B3,B4),
Imn , mn)
(2.38)
and
i=1,2
family,
that
(2.39).
(2.39).
(YI+Y2) T+x2x~x (YI-Y2) (YI-Y2)T-2xIX~(YIYI T - Y2Y~)]
1 T V2V ~ = ~[XIXIX(YI-Y2)
is a Williamson
the conditions
the conditions
,
(YI-Y2)
T+
,
T X2X2x(YI+Y2)
T T (YI+Y2)T+2xIX2×(YIYI -
- Y2Y~)]. NOW,
since (YI+Y2) (YI+Y2)T
+ (YI-Y2) (YI-Y2)T
=
T
T
2(YIYI+Y2Y2 )
then T+ T I T (yiy~) VlV 1V2V2= ~[XlXl x I
T+
T T ÷ X2X2 x (YIYI+Y2Y2) ]:
T
2 (XlXl X2X2)x(YIYI
T+
T
(2.44)
Y2Y2 )
Hence, 4
1
4 AiA~x(BIB TI + B2B~ )
1=1 4
T _ I 4 E Wi+4Wi+ 4 2 Z i=I i=I
SO, 8
Z WiW i=I
4
4
'=
) x ( E BiB i=I
= g (
)
26
Further,
since A i and Bi,
i=1,2,3,4,
form Williamson
families,
then
8 I w.wT = 8toni i=lll mn N o w let us examine
the condition WiW ~ = WjW~,
itj=l,2 ..... 8. Note
that T T T T T T +XiXT×(YiY1+2YiY2+Y2Y2) VlV °¼[XlXiXIYiYi-Y2Y21
_x2xT×~ (YIY1_2Y I T Y2T +
T T +Y2Y)x2xxIYiYi-Y2Y21] _ IT T_ y 2 y ~ ) _ X i X 2I× ( Y i Y 1T_ 2TY i Y 2T+ Y 2 Y 2T) + X 2 X 1 ×T ( y V2V TI = ~[XlXl×(YIY1 +
Hence,
y~+
T+ T T T T 2YIY 2 Y 2 Y 2 ) - X 2 X 2 × ( Y I Y I - Y 2 Y 2 ) ]
from definition
Wi,
i=1,2,...,8
and conditions
we have W WT = W wT , i,j=1,2 ..... 8. i 3 3 i The theorem
is proved for 11 = 12 = 4, k=8. Cases 11,12=2,4,
can be proved on the analogy. COROLLARY
2.2•
symmetric matrices are 8-symmetric COROLLARY
This completes
of order m and n respectively,
Williamson
matrices
2.3. There exist
,
(Wallis,
Williamson matrices
and 2-elementa!
8-Williamson
matrices of orders
be a symmetric
(Wallis
[273]).
[219]).
there exist F-matrices symmetric hyperframe
family
Let Ai×Bi,
of order
i=0,I,2,...
T H E O R E M 2.8. Suppose
exists a Williamson
i=I,2,...,8,
(see note 2.1) •
q~l(mod 4), p~1(mod 4) are prime numbers
11 • 7 i , i=1,2,...
PROOF.
then Wi,
are
P~1(mod 4)is a prime power.
-(2r)imk where r,m,k6L,
tion 9)
of order mn
8-symmetric
Note that there were c o n s t r u c t e d
-7 i+I
the proof of the theorem.
If we suppose besides that A i and Bi, i=I,2,3,4,
(p+1)mn, w h e r e m,n6L,
-q(p+1)/2,
k=2,4
of order k. Then there
(WI,W2,W3,W4,Rm×InXIk , mnk).
i=1,2,3,4
hyperframe
of order ran (see Defini-
are F-matrices
of order mn. Let {X,Y}
of order k. Consider matrices
27
Prove Let
that
us
W I = AIXBIXX
+ A2xB2xY
,
W 2 = A2xB2×X
- AlXBlXY
,
W 3 = A3xB3xX
+ A4xB4xY
,
W 4 = A4xB4xX
- A3xB3xY
matrices
Wi,
i=I,2,3,4
form
the
desired
Williamson
family.
calculate
2 WIW2=AIA2xBIB2XXI-A
2 2 2 2 I ×B1 ×XY+A2xB2 xYX-A2A1 xB2B 1 ×X2
W 2 W I = A 2 A I x B 2 B I xX2+A22 xB2 2 xXY-A21 xB21 ×YX-A1A 2 x B I B 2 xy2 From
comparison
prove
the
relations
we
have
one
that W.W. = W W i 3 31
are
WIW 2 = W2W I . By analogy
, i,j
= 1,2,3,4.
hold. Now
let us calculate T
T
T
2
2
T
T
T
2
T
T
T
T
the
relations
Wl ( R m x I n x I k )W2 = A1RmA2XB1B2xX -A1RmAlxB1B lxxY+A2RmA2xB2B2 × T
T
x Y X - A 2 R m A I × B 2 B I xy T
T
T
2
,
W2(RmXIn×Ik)W1 = A2RmAlXB2BlXX +A2RmA2XB2B2xXY-A1RmAlXB1B1×YxT
T
that
all
- A I R m A 2 ×B 1B2 ×Y Similarly
one
can
prove
Wi(Rm×InXIk)W
T
T
T
2
T = Wj(RmXinxIk)W
2
T
T
T
, i,j=1,2,3,4
T
T
T
T y2
W1W1 = A1AlXB1BlXX +A1A2×B1B2xXY+A2AlXB2BlXYX+A2A2×B2B2x W2 W T2
are
T T 2 T T T T T T 2 = A2A2xB2B2xX -A2A lxB2B lxxY-A1A2xB1B2xYx+A1AlxB1BI×Y
true. From
summation
of
obtained
T
T =
WtWI+W2W2 By
analogous
calculations
relations T
T
we
find
T
T
(A1AlxB1BI+A2A2xB2B2 ) x (X2+y 2) we
get
can
28
T = W3W ~ + W4W 4 By
summation
both
sides
4
T T T T (A3A3xB3B3 + A 4 A 4 x B 4 B 4 ) x ( X 2 + y 2 )
of o b t a i n e d
equations
we h a v e
4
E W wT = E (AixBi) ( A i x B i ) T x ( x 2 + y 2) i=I I I i=I The
theorem
is p r o v e d .
COROLLARY
2.4.
(p+1)m,
where
a prime
power.
There
son m a t r i c e s
consider
f r o m the
DEFINITION
2.3.
of f o r m
I. T h e r e element
3 that
Williamson
F-matrices
matrices
of o r d e r
and p~1 (mod 4)
is c o n s t r u c t i n g
is
the W i l l i a m -
ones. square
k=1,2,...,n
exists
in e a c h
1 E w wT i=I i i
2.
NOTE
2.5.
family
Williamson For
a
row
will
(0,-I,+I)
(column)
pendent
ml -n
=
For
{Wi }Ii=I m a t r i c e s be
called
of o r d e r
a parametric
with
ele-
Williamson
Bm,
Bm~0,
occurs
only
then
that
(2.45)
then
give
introduce
matrices
Wi,
the n o t a t i o n
Yang
of p a r a m e t r i c
coincides
with
Willi-
that
of
Williamson
notations: 1=4 w i l l
be c a l l e d
matrices;
for
1=2
de-
they
matrices. W W.:W W , i,j=1,2,...l, i ] 3 1
generalized
two e x a m p l e s
matrices.
following i=I,2,...,i,
parametric
matrices
on p a r a m e t e r s
N o w we w i l l
such
, i,j=1,2 ..... 1
i=1,2,...,n
let us
parametric
If Bm=Rm,
once,
m non-zero
nE X~ I i=I 1 m
on n p a r a m e t e r s ,
be c a l l e d
of o r d e r
(A1A2,...,A1,Bm,m) .
family
ric W i l l i a m s o n
of w h i c h
= W.B wT ]ml
X.=+I, i -
simplicity
dependent
matrix
(Wi,W2,...,Wi,Bm,m,tl,tl,...,~1)
I. If Bm=I m,
2.
question
same
W.B wT im3
will
of e x i s t i n g
A set of
~Xk,
generalized
( W ] , W 2 , . . . , W 1 , B m , m , x l , x 2 , . . . x n) p r o v i d e d
family
amson
exist
m is the p r d e r
N o w we w i l l
ments
= 4mnkImn k
parametric
of d e p e n d e n t
will
Williamson
be c a l l e d
matrices.
on 4 p a r a m e t e r s
paramet-
29
EXAMPLE
2.2.
Q (a,b)
Then
Let
=
a
b
b
-b
b
b
a
-b
-b
-b
-b -b
b
-b
a
b
b
-b
-b
-b
b
a
-b
-b
b
-b
b
-b
a
b
-b
-b
-b
-b
b
a
(2.46)
matrices
A I = Q(Xl,X2)
, A 2 : Q(x2,-Xl)
, A 3 = Q(x3,x4)
,
A 4 = Q(x4,-x3)
are
parametric Note
Williamson
that
dependent
matrices
on
EXAMPLE
matrices
A I and
2 parameters 2.3.
A I (a,b,c)
of
dependent
A 2 are order
on
4 parameters.
parametric
Yanq
matrices
6.
Matrices
=
cJ
c
a
b
b
c
a
A2(a,b,d
b
-a
d
b
-a
-a
d
b
) =
d I
I (2.47)
A3 (a,c,d)
=
c
-
A 4 (b,c,d)
d
c
-b 1
-b
d
c
c
-b
d
-a
are
dependent
ces
of
order
EXAMPLE BixJ 3 are of
order
of
Matrices
parametric 3 i+I
let
parametric
that
4 parameters
square
generalized
parametric
Williamson
matri-
3. 2.4.
Ao Now
on
I
Williamson
matrices
dependent
on
, Ai+1
=
2 parameters
with
= bJ 3 us
Bi+l=Ci+1=Di+1=Aixi3-BixU3+BixU~
, Bo
= Co
= Do
consider
existence
Williamson
matrices
(0,-I,+I)
matrices
= aI 3 - b U 3 + b U ~ (necessary dependent
Vi,j,
and on
sufficient
conditions)
4 parameters.
i,j=1,2,3,4,
of
order
Suppose m
satisfy
30
following conditions: I . Vi, k * V 3 ,P = 0 ' k~p, k,j,p=1,2,3,4. 2•
4 ~ k=1
3.
4 T = mIm' ~ Vk iVk,i k=1 '
4.
4 Z Vk, i , k=I,2,3,4, i=I
(Vk,i VTk,j
vT
+
Vk,j k,
i) = 0
j=1,2
3.
'
i=1,2,3,4.
is
(-I,+I)
5. Vk, l.BmVTp,l' = Vp,iBmVT,i' T 6. Vk, iB mVp,j
i=j+1,
'
+ Vk,jBmVp,i
matrix
(2.48)
i,k,p=1,2,3,4
= Up,iBmVT,j
+ Up,jBmVk, i , i~j,
i,j,k,p=1,2,3,4
7. Vp,iVk, i = Vk,iVp, i , i,k,p=
1,2,3,4
8. Vp,iVk, j + Vp,jVk, i = Vk,iVp, j + Vk,jVp, i, i,j,k,p=
(Wi,W2,W3,W4,Bm,m,al,a2,a3,a4)
it is necessary and sufficient
Vi, j , i,j=1,2,3,4
I-6
for B
b) items
I-8
for B
m m
= I = R
(0,-I,+I)
matrices
m the first part of this theorem.
i= 1,2,3,4 be parametric
order m. Write them in following
Prove that matrices Vk, i satisfy of items
W i l l i a m s o n matrices
of
form:
Wk = Wk(a1'a2'a3'a4)
liamson matrices.
of
m
At first we will prove
Let W1(al,a2,a3,a4),
that validity
existence
Williamson
of order m satisfying
a) items
NECESSITY.
i~j,
1,2,3,4.
T H E O R E M 2.9. For existence family
p~k
4 = i=~laiVk,i
items
1,4 follows
I-6 from
(2.49)
(2.48). Note at once
from definition
Now let us verify validity
of parametric
Wil-
of items 2,3,5 and 6. Cal-
31
culate 4 2 VT 3 4 -i~laiVk,i p i + Z ' j=li=j+1
WkW
!la~.
=
WpW
vT Vp,i k,i
+
i
But WpW k = WkW ~
(2.5o)
a i a j ( V k , .iV T T i) P,3. +Vk,jVp,
X3 £4 3=I i=j+1
ajai(Vk,3
for every k,p=1,2,3,4
.VT VT p,i + Vk,i p,j)
(2.51)
and for every ai,a j hence,
VT .VT Vp,i k,i = Vk,l p,i VT VT Vp,i k,j + Vp,j k,i
= vk,iv , j + vk,jv , i , i j, (2.52)
i,j = 1,2,3,4
Further,
using B m = Im and supposing p~k we get validity
and 6. It is easy to note that for p = k and 3. Indeed,
from
(2.51)
for p = k
4 a2 vT 3 W WT = ~ Vp + ~ P P i=I i ,i p,i j=l from where according to condition
of items 5
we have validity
of items 2
we have
4 E ajai(Vp, .VT VT i=j+1 3 p,i + Vp,i p,j)
4
wT
4
I W = m E a2I p=1 p p i=I i m
we conclude:
4 [ V VT = mI , i = 1,2,3,4 p=1 p,i p,l m
4 T + V p,i Vp,j) T (Vp,j V p,i
= 0
p=1 where
i
=
i+I,
j= 1,2,3.
SO, first part of the theorem is proved.
Second part and sufficien-
cy can be proved by analogy. COROLLARY
2.5.
exist g e n e r a l i z e d ces of order k.
If there exist T-matrices dependent
on 4 parameters
of order k, then there parametric
Williamson
matri-
32
Indeed,
let T I , T 2 , T 3 , T 4 be T - m a t r i c e s
of o r d e r k.
Introduce
follo-
wing notations
Vl, I = T I , V I , 2 = T 2 , V l , 3 = T 3 , V I , 4 = T 4
,
V2, I = T 2 , V2, 2 = -T 2 , V2, 3 = T 4, V2, 4 = -T 3 , V3, 1 = T 3 , V3, 2 = -T 4 , V3, 3 =-T I ,V3, 4 = T 2 , V4, 1 = T 4 , V4, 2
One can v e r i f y Hence,
that matrices
according
are generalized THEOREM
T 3 , V4, 3 = -T 2 ,V4, 4 =-T I
Vi,j,
to t h e o r e m parametric
2.10.
2.9 m a t r i c e s Williamson
If there e x i s t s
m , a l , a 2 , a 3 , a 4) a n d a s y m m e t r i c c2,c3,c4),
then exists
i,j=I,2,3,4 Wk
a Williamson
a Williamson
from
I-8(2.48). (2.49)
of o r d e r k. family
family
family
items
, k=I,2,3,4,
matrices
Williamson
satisfy
( A I , A 2 , A 3 , A 4 , B m,
(CI,C2,C3,C4,In,n,cl,
( W I , W 2 , W 3 , W 4 , B m X I n , mn,c I,
c2,c3,c 4 ) PROOF.
From theorem
Pn.i
satisfying
vely.
Consider
first
6 conditions
following
Qj,k One can p r o v e Hence,
2.9 t h e r e e x i s t
matrices
and all c o n d i t i o n s
Vk, i a n d
(2.48)
respecti-
matrices.
4 = E V9 i=I Pi,k ,i '
that matrices
from theorem
(0,-I,+I)
Qj,k
k j = 1 2,3,4 ' '
(2.53)
s a t i s f y all c o n d i t i o n s
(2.48).
2.9 m a t r i c e s
4
W 3 = k=1 E
f o r m the W i l l i a m s o n theorem
family
(W1,W2,W3,W4,Bm×In,mn,cl,c2,c3,c4)
. The
is p r o v e d .
F r o m note
2.5 a n d t h e o r e m
COROLLARY
2.6.
2.10
If t h e r e e x i s t s
I m , m , a l , a 2 , a 3 , a 4) a n d family
CkQ j ,k ' j : ],2,3,4
follows: Williamson
(Cl,C2,C3,C4,In,n),
(WI,W2,W3,W4,I
i,nml) , i = I , 2 , . . . nm
families
( A I , A 2 , A 3 , A 4,
then t h e r e e x i s t s a W i l l i a m s o n
33
It is known order
[320] that there exist Wi!liamson
matrices A,B,B,B of
7.
Now from example COROLLARY
2.4 and theorem
2.10 follows
2.7. There exist Williamson
type matrices
of order
7"3 l,
i=0,I,2,... THEOREM 2.11. In, n,a,b,c,d)
If there exists a Williamson
and a 2-elemental
exists a parametric
Williamson
hyperframe
family
family
(Ao, Bo, Co, Do,
of order k, then there
(Ai,Bi,C i,Di,Inki,
nkl,a,b,c,d) ,
i=0,I,2,... PROOF.
Let X,Y be a hyperframe
of order k. Consider matrices
A i = Ai_ixX
+ Bi_I×Y
,
B i = Bi_lXX - Ai_ixY
C i = Ci_ixX
+ Di_ixY
,
D i = Di_ixX
Williamson
COROLLARY nH(2ni)a ~ _
matrices
on 4 parameters
of order nk l, i=I,2,...
2.8. There exist Williamson
where n,ni6L
(2.54)
- Ci_ixY
One can show that matrices Ai, Bi, Ci, D i are dependent parametric
,
type matrices
of order
(set of numbers not satisfying conditions
of
i
items
1:10),
aiis a non-negative
COROLLARY
2.9. There exist Williamson
ders 2n, where n 6 V, V ={35, 87, 93, 95, 99, 105, 145,
147,
209, 215,
155,
integer.
161,
217, 221,
111, 165,
even number or-
37, 39, 43, 48, 51, 55, 63, 77, 81, 85,
115, 169,
type matrices
117, 171
119, 175,
121, 185,
225, 231, 243
247, 253,
125,
129,
133,
187,
189,
255
259, 261,
135,
195, 203
143, 207,
273
273,
275,
279, 285, 289,
297, 299,
301
315,
319, 323
325,
325, 333
341,
345,
351,
363,
387
391,
399, 403
405, 407, 425
429,
513,
527
529,
357,
361,
377,
437, 441, 455,
459, 473,
475, 481
483, 493,
551, 555,
559,
561,
567,
575,
583
609, 621, 625
627, 637, 645
651,
667,
675,
693,
713,
725,
729,
759
775,
777,
783
817, 819,
837,
851,
891, 899,
903,
925,
957,
961
989,
999,
1023,
1089, t147,
1161,
495
1073,
1221, 1247, 1333, 1365, 1419, t547,
2013, 2093, 2275, 2457,2639,
525,
2821, 3003, 3367, 3913}
825
1075,
1081,
1591, 1729,1849,
34
Note 2.303,
that
Williamson
2.333,
2.689,
and matrices in
matrices
2.903,
of o r d e r s
2.915,
2.1603
of o r d e r s
2.35,
2.65,
2.77
if t h e r e
exist
Williamson
2.39,
were
were
2.105,
obtained
obtained
2.171,2.203, by W a l l i s ( 1 9 7 4 )
by
Sarukhanian
[208] . Note
that
re e x i s t 2.9
Williamson
is t h a t
knowing
one
the
2.2.
can
matrices
construct
existence
of o r d e r
Williamson
of W i l l i a m s o n
son m a t r i c e s
theorem
but
and not
Williamson
Goethals-Seidel
matrices
method.
(1944)
m,
of o r d e r
The
then
the-
of c o r o l l a r y n without
2n.
root
of the m a t t e r
(construction)
and
(5), W a l l i s - W h i t e m a n
Value
of o r d e r
investigation
array
of o r d e r
2m too.
matrices
Baumert-Hall-Goethals-Seidel
the W i l l i a m s o n
ons:
type
matrices
its d i f f e r e n t
(6), W a l l i s
is
of W i l l i a m modificati-
(7) a n d o t h e r
ar-
rays. The
idea
of the m e t h o d
(A,B,C,D)
of w h i c h
ter
replacement
their
tain
Hadamard First
They ment,
appears
constructed
of H a d a m a r d
L e t us g i v e Baumert-Hall
direction an a r r a y appearing
matrix
was
row
(column)
Williamson
(J.Wallis
made
but
families
in e a c h
precisely
each such one
element that can
afob-
and Hall
row
3 times.
(column)
That
allowed
(1965). a p-eleconst-
156.
of H a d a m a r d
array
containing
notation
of
(1970)).
2.6.[283 ]. An H a d a m a r d
mxm consisting
by B a u m e r t
containing
of o r d e r
a definition
array
DEFINITION of o r d e r
in e v e r y
by c o r r e s p o n d i n g
in this
p6{~A,~B,~C,~D}
ruction
same
of an a r r a y
matrices.
work
have
is the c o n s t r u c t i o n
array
of the e l e m e n t s
H[m,k,l],
of f o r m
k < m is a m a t r i x
~AI,
~ A 2 , . . . , z A k such
that I. E v e r y ZAI,
row
I elements 2. The
rows
A I , A 2 , . . . , A k are NOTE
2.6.
(column) of f o r m and
of H - m a t r i x
~A2,...,I
the c o l u m n s
elements
An Hadamard
has p r e c i s e l y
elements
of H - m a t r i x
of c o m m u t a t i v e array
becomes
of f o r m are
ring.
i elements
of
form
ZA k.
orthogonal
in pairs,
if
35
a)
a Williamson
b)
a Baumert-Hall
c)
a E - array
E =
array
array
f o r k=8,
The
BX[4t] I=1,
m=4
for k=4,
m=8
l=t,
m=4t
where
X2
X3
X4
X5
X6
x7
X8
-X 2
XI
X4
-x 3
x6
-X 5
-X 8
X7
-X 3
-X 4
X1
X2
X7
X8
-x 5
-X 6
-X 4
X3
-X 2
XI
x8
-X 7
X6
-X 5
-X 5
-X 6
-X 7
-X 8
xI
X2
X3
X4
-X 6
X5
-X 8
X7
-x 2
XI
-x 4
X3
-X 7
X8
X5
-X 6
-X 3
X4
XI
-X 2
-X 8
-X 7
X6
X5
-X 4
-X 3
x2
XI
A k in a r o w
matrix,
I=I,
XI
In a b o v e - m e n t i o n e d ferent
for k=4,
work
J.Wallis
proved
that
(column)
of a r r a y
coincides
(2.55)
if the n u m b e r
with
the o r d e r
of d i f m of the
t h e n m is 2.4 or 8. author
of o r d e r
with
12 w h i c h
Sarukhanian
have
is n o t a n a r r a y
constructed
BX[4t]
an
interesting
and consists
of
array
3 parameters.
iIB~xl,x2,x3)D<x2,-x3,xI) D(x3,x2,-xll D(x3,x1,-x2)I A12
A12(x1'x2'x31 tD x3, x2, x11D Ix3, x2xll BIxI D(-x 3,-x I,-x~D
x31
(-x 3 , x 1 , - x ~ D ( X 2 ''X2 XI'X3)
DIx2, xl,x lI B(XI'X2'X3)
where
B(a,b,c)
Note following supposed gonal x/a
=
that
a
b
c
c
a
b
b
c
a
the array
reasons: that
design
2 2 = q1+q2
of type ' q1'
D(a,b,c)
constructed
firstly,
if m = 4 t ,
,
Geramita,
c
b
c
a
c
a
b
Geramita
numbers,
of
interest
(2.56)
also by
and J.Wallis
then
it is n e c e s s a r y
q2 a r e n a t u r a l
b
is a m a t t e r
t is a n o d d n u m b e r ,
(a,a,x)
=
a
and
(1976)
for e x i s t e n c e sufficient
secondly,
have
of o r t h o -
that
all orthogonal
de-
II
36
sign
of
type
(1972),
(s,s,...,s)
Wallis
(s,s,...,s)
(1970)
of o r d e r
constructed,
theorems m,m=is
the n u m b e r
of p a r a m e t e r s
so m u s t
2,4
be
or 8.
some u n c e r t a i n t i e s author
had
DEFINITION element meters
of w h o s e
the
is Zxi,
A-matrices,
,x~2))HT(x~1)
NOTE
2.6.
,x
Jl)
that
if a n d o n l y
in e a c h
row
on n u m b e r
of A - m a t r i c e s .
will
value
.
2m 1
.
1 X i=I
.
but
aland
m, e a c h on
1 para-
X l , X 2 , . . . , x I holds,
.
,...
(1)x(2)i xi i m
includes
is
theorem(1970)
dependent
of p a r a m e t e r s
.
of A - m a t r i c e s
be c a l l e d
that
even
H ( x l , x 2 , . . . , x I) of o r d e r
i=I,2,...,i
_
only
design
of p a r a m e t e r s
definition
Ix I
orthogonal
is not
of C o o p e r - W a l l i s
matrices
, Plotkin
if 1 = 2 , 4 , 8 ,
in p r o o f
(I) ,...,x I
Notation
suppose
limitations
if for e v e r y
H(xll) ,x~1) ..... x ( 1 ) ) s
...
appearing
Square
to
can e x i s t
appearing
2.4.
permit
To a v o i d
to i n t r o d u c e
Cooper-Wallis(1970)
BX[4t],
(2.57)
Yang
and
Plotkin
arrays. Information can
find
theorem
in p a p e r s about
THEOREM ces
about
hyperframe PROOF.
of a u t h o r
existence
2.12.
of o r d e r
construction and
properties
Sarukhanian
of A - m a t r i c e s
[6,11]. Let us give
one only
m it is n e c e s s a r y
of d e p e n d e n t and
on
sufficient
1 parameters
existence
of
A-matri1-elemental
m.
Let A ( X l , X 2 , . . . , X l )
be
an A - m a t r i x
of o r d e r
m. W r i t e
it in
is a 1 - e l e m e n t a l
frame
form 1 A ( X l , X 2 , . . . , X I). = X x K~ i:I ~ l It is e a s y of o r d e r
m. On the
A ( X l , X 2 , . . . , x I) First
to v e r i f y
that
contrary,
the if
is an A - m a t r i x
valuable
a
of A - m a t r i c e s .
For e x i s t e n c e
of o r d e r
and
contribution
set
{Ki}~= I
{Ki}~= I is a frame of o r d e r
of o r d e r
m,
then
m.
to c o n s t r u c t i o n
of BX[4t]
array
(hen-
37
ce,
of A - m a t r i c e s
too)
troduced
an effective
of order
4t u s i n g
ces
of o r d e r Methods
was made method
by Cooper
and Wallis
of c o n s t r u c t i o n
Goethals-Seidel
array
of t h e
GZ[4]
(1970),
They
Baumert-Hall
and notation
inarrays
of T-matri-
t. of constructing
the T - m a t r i c e s
of f o l l o w i n g
orders
are
known: - m6L 3 :{3,5,7,...,59,61} m = 2a10b26c+1,
-
a,b,c
(Cooper, are
1970)
non-negative
integers
(Turyn,1974)
It h o l d s THEOREM amson Then
matrices
(Baumert-Hall,
of o r d e r
a H(A,B,C,D) Note
were
2.13.
Hence,
taking
following
Let matrices
m and H(a,b,c,d)
matrix
that all known
constructed
1965).
is a n H a d a m a r d BX[4t]
arrays
from T-matrices
into account
A,B,C,D
be a B X [ t ] a r r a y matrix
except
2.12,
we c o m e
to
t.
mt.
(Baumert-Hall,
and Goethals-Seidel
theorem
of o r d e r
of o r d e r
t=3
be W i l l i -
array
1965)
of o r d e r
investigation
4.
of
questions.
- introduce teman
notations
arrays
of n e w a r r a y s
and arrays
of o t h e r
(Goethals-Seidel, orders
4t,
t>1
Wallis,Whi-
and construct
them; construct prove
a theorem
ruction One
of n e w o r d e r s ;
allowing
of H a d a m a r d
excellent
about
survey
on o r t h o g o n a l Hadamard
their
problem.
1979
Goethals-Seidel
array
of o r d e r
has
GZ[4t]
arrays
constructed
theorems
for c o n s t -
(1977).
in our o p i n i o n Sarukhanian 4t t u r n i n g for t=6
of o r t h o g o n a l
and application
and Wallis
because, In
all known
is the n o t a t i o n
construction
of H e d a y a t
designs
to u n i t e
matrices.
of t h e g e n e r a l i z a t i o n s
Information
the
T-matrices
has
Here
one
we w i l l
it w o u l d
find not
notation
array
in
dwell
lead away
introduced
into GZ[4]
can
designs.
at t=1
from of and
i
It h o l d s THEOREM
2.14.
If t h e r e
exist
T-matrices
of o r d e r
t and a Goethals-
38
Seidel array of order 4p, then there exists a BX[4pt] For p=1 theore, formation
2.14 coincides
about construction
with the Cooper-Wallis
of Goethals-Seidel
find in papers of author and Sarukhanian constructed
array. theorem.
arrays GZ[4t]
[1,6,11,210
In-
one can
]. Here were also
Wallis arrays of orders 4.6 k, k=I,2,...
An interesting by Matevosian
ides of c o n s t r u c t i o n
(in print).
the GZ[4t]
array is proposed
He p r o p o s e d also notation of Whiteman
of order 4t and its construction
that leads to construction
array
of new
class of Hadamard matrices. Now we will
introduce
a definition
(BX[4t],GZ[4t],WY[4t],W[4t], DEFINITION
containing
A-matrices,
orthogonal
I. Each element of H ( X l , X 2 , . . . , X l ) - m a t r i x ~X i, ~x Ti, ~XiB k, _+X~Bk, where B k is a (0.-1.+])-matrix one non-zero
2. Each row(column)
Xl,Bt,4t]. hasize
is of form
i=I,2,...,i
of order k, B k # 0 each row
(column)
of
element;
T iXi,
{Wi}~= I
contains precisely
si
' zXiB k , +X~Bk} _
3 • H(XI,X2, .. .,XI)HT (XI,X2,...,XI) T T T
T H E O R E M 2.15. Let
- array provided:
of H ( X i , X 2 , . . . , X l ) - m a t r i x
elements of form P, P6{ZXi,
...,Sl,Bm,m),
designs).
2.5. A square matrix H ( X l , X 2 , . . . , x I) of order 4t will
be called an A [ l , S l , S 2 , . . . , S l , X l , X 2 , . . . , X l , B k , 4 t ]
which contains
all known arrays
1 T = i=isiXiXixI4t Z
be a W i l l i a m s o n
family of type
(Sl,S2,
let us have an array of type A [ l , S l , S 2 , . . . , S l , X 1 , X 2 , . . . ,
Then there exists an Hadamard matrix of order 4mt. We emp-
that this theorem unites all theorems
2.1,
2.2, 2.3, 2.4,
2.5
together. Now let us consider sI,XI,X2,...,XI,Bk,4k]. DEFINITION
the construction
of the array A[l,Sl,S2,... ,
For this purpose
introduce
2.6. A set of
(0,-1,+1)-matrices
be called a family of T-matrices by T(l,n,Bn)
provided:
of type
{Ti}~= I of order n will
(I,TI,...,TI,n,B n) and denoted
39 I. T. , T. = 0 i 3
, i~j,
2 . T I T j = TjTi,
i,j=1,2,.°.,l
3. T h e r e for
exists
i,j=1,2,...,l
a square
i,j=1,2,...,l
(2.58)
(0,-1,+1)-matrix
holds
B
of o r d e r
n
n such
that
T.B T T = T.B T T I n 3 3 n i
1
4.
T. l
i=1
(-1,+1)-matrix (2.59)
5.
1 Z i=I
Note matrices
TiTT
that
= nI n
for
coincides
Denote
lar,
with
that
Ti-matrices
notation
of T ( l , n , B n ) -
of T - m a t r i c e s . of d e p e n d e n t
or a set of all k i n d s
(1,1,1,1),
the
and c i r c u l a n t
b y K a set of all k i n d s
4,8) A - m a t r i c e s (1,1),
1=4
(1,1,1,1,1,1,1,1)
on
1 parameters
of o r t h o g o n a l
. Note
that
designs
K contains
of type in p a r t i c u -
array
a bcdll
and also
(1=2,
Williamson,
b
-a
-d
c
c
d
-a
-b
d
-c
b
-a
Yang,
Wallis
(2.60)
arrays.
It h o l d s THEOREM let t h e r e an a r r a y
exists
Let
an a r r a y
i=1,2,...,i,
Define
Denote
matrices
orthogonal of
this
i=I,2,...,I,
W = M ® T
where
be
T(1,m,Bm)-matrices; Then
there
exists
, mn].
the r o w s Wi,
1=2,4,8
A[I,AI,A2,...,AI,Bn,n].
M be an a r b i t r a r y
the K - s e t .
...,i.
L e t Ti,
A[I,WI,W2,..°,WI,Bmn
PROOF. from
2.16.
design
design
by
of type vectors
(i,I,..°,i) Mi,
i=I,2,
from relation
(2.61)
40
T T [W I, W2,
WT =
From the
equation
scalar
(2.61)
product
of
...,
W
follows
rows
the
~
]
TT
,
that
the
matrix
T [TI,
=
T T2,...,
components
M and
the
of
vector
T
]
vector T,
W are
that
is
W = M T 1
WiWj = WjWi, i , j
Obviously, NOW,
l l
= 1,2,...,1
since T B TT lm 3
T .B T ~ 3ml
=
,
i,j
=
1,2,...,i
SO,
WiBmW ]. : (MiTIBmIT M].I , (MjT) B m ( T T M )T
One
can
see
also
WW T =
that
(M ® T) (M ® T) T =
Now,
replacing
have
that NOTE
= WjB m W T
A i in a r r a y
(M ® T) (M T ® T T)
A[I,AI,A2,...,AI,Bn,n]
A[I,WI,W2,...,WI,Bmn,mn] 2.7.
The
- Cooper-Wallis array,
Hence, particular THEOREM
2.16
theorem
is a n
array
by
matrices
of d e s i r e d
W i, w e
type.
Q.E.D.
contains
(1970)
for
1=4,
m=4,
M
is a W i l l i a m s o n
theorem
(1979)
for
1=4,
m=4t,
M is a W i l l i a m s o n
A is a G Z [ 4 t ] - a r r a y .
the
problem
of c o n s t r u c t i o n
to c o n s t r u c t i o n 2.17.
T(4,m,Bm)-matrices.
Let
the
arrays
{X1,X 2} and {Ao,B!,Co,Do}
Then
Let
us
define
of
type
A comes
in
of T - m a t r i c e s .
there
exist
T(4,mnZ,B
following
matrices:
A i = XI×Ai_ I - X2×Bi_ I ,
be T ( 2 , n , B n) and i)-matrices,
mn
PROOF.
W WT i l
A is a G Z [ 4 ] - a r r a y ;
- Sarukhanian array,
theorem
1 E i=I
=
i=1,2,...
41
B i = XlXBi_ I + X2×Ai_ I , C i = XlXCi_ I - X2xDi_ I , D i = XI×Di_ I + X2xCi_ I One ces
can
of order Note
only
mn
that
matrices, ons
see
induction
that
matrices
A±,
B I, C i, D i a r e
T-matri-
.
there
where some
by i
exists
n £{14,
an
26,
algorithm
30,
38,
0
-I
42,
for
construction
50,
54}.
List
of
the
T(2,nIn)-
constructi-
orders,
I. n = 14 X = V 1 x I 7 + R 2 x ( I 7 + U - U 2 + U 3 + U 4 - U 5 + U 6)
,
Y = I 2 x ( I 7 - U + U 2 + U 3 + U 4 + U 5 - U 6) 2. n = 26 X = V1xI13
+ R2x(I13-U-U2-U3+U4-U5+U6+uT-u8+u9-u10-U11-U
y = I2x(I13-U-U2-U3+U4_U5+U6+U7_U8+U9_UI0_U11_U12
12)
,
)
3. n = 50
X = V2xI25
+ R2x(I25-U-U2-U3-U4-U5+U6-U7+U8-U9-U10-UII+uI2+u
_UI4_uIS+u16+UI7_uI9_u20-U21-U22-U23-U24)
13-
,
y = I2x(I25-U+U2+U3-U4+U5-U6+U7+U8+U9_UI0-UI1_u12_U13_U14-U15+ +UI6+UI7+uI8_UI9+U20_U21+U22+U23_U
STATEMENT exist
Let
Ao,Bo,Co,Do
T(4,k,Bk)-matrices
PROOF. 0 0),
2.1.
(0 -I
Let -I
first 0 -I
with
rows -I)
of
24)
be
k=61m, the
T(4,m,Bm)-matrices.
there
i=I,2,...
matrices
respectively.
Then
XI,X 2 are
Introduce
A i = I6xBi_ I + XlXCi_ I + X2xDi_ I ,
of
matrices
form
(0 0 0 I
42
= I 6 x A i _ I - X I xDi-1
Bi
+ X2Tx Ci-1
'
T C i = I6xDi_ I ÷ XlXAi_ I - X2xBi_ I , Di=I6xCi_l One I
can p r o v e
that
. )-matrices, 61m COROLLARY
{63 65 69
+ XlXBi_ I + X2×Ai_ 1
for e v e r y
i matrices
Ai,
Bi,
Ci,
C i are
T(4,61m,
i=I,2,...
2.10.
There
exist
T-matrices
75 77 81 85 87 91 93 95 99
111
of o r d e r 115
117
2n,
119
n6L2,
123
125
L2 = 129
133
135
141
143
145
147
153
155
161
165
169
171
175
177
185
189
205
209
217
221
225
231
235
243
245
247
255
259
265
273
275 285
287
295
297
299
301
303
305
315
323
325
329
343
345
351
357
361
371
375
377
385
387
399
403
405
413
425
427
429
435
437 441
455
459
465
475
481
483
495
505
507
513
525
533
551
555
559
567
575
585
589
603
611
615
621
625
627
637
645
651
663
665
675
689
693
703
705
707
715
725
729
735
741
765
767
771
775
777
779
783
793
805
817
819
825
837
845
855
861
875
885
891
893
903
915
925
931
945
963
969
975
987
999}.
Following
is a l s o
STATEMENT
2.2.
true
There
a) k=m(p+l) i, w h e r e of e x i s t i n g b)
existing
2.18.
a n d an a r r a y exists
STEP
I. D e f i n e
is a p r i m e
Williamson
p=l(mod
generalized If t h e r e
of type
We w i l l
4)
give
power,
type
m - is an o r d e r
matrices; m is an o r d e r
4)
is a p r i m e
power,
of
exist
only
m - is an o r d e r
T-matrices. a 2-elemental
of type
the
hyperframe
of o r d e r
A[I,AI,...,AI,B4t,4t],
A[l,Wl,W2,...,Wi,B4kt,4kt
a matrix
where
T-matrices;
Ho(A1,A2,...,AI)
an a r r a y
PROOF.
p=1(mod
generalized
of e x i s t i n g
T(4,k,Bk)-matrices
n/26{5,7,13,15,19,21,25,27};
c) k = m ( p + l ) i, w h e r e
THEOREM
exist
generalized
k = m n l, w h e r e
195 203
sketch
then
].
of the p r o o f .
4t P = ( a i , j ) i , •=13
elements
of w h i c h
are
k there
43
a 2 i _ 1 , 2 i = I, a 2 i , 2 i _ 1 = - I ,
for i ~ 2r-I,
ai, j = 0
i=1,2,...,2t
j ~ 2r or i ~ 2r,
j ~ 2r-I,
r=1,2,...,2t
Obviously pT = _p STEP
~ . Denote
, ppT = i4 t by H I a m a t r i x
HI=Ho(AI,...,AI)
(IkXP).
Then
HoH1T + H1Ho T = 0 STEP
~ I . One can p r o v e
statement
of the theorem,
COROLLARY
that
the a r r a y A = XxHo
({X,Y}
is a frame
2.11.
There
exist
Hadamard
2.12.
There
exist
arrays
+ YxH I is that of
of o r d e r
matrices
k) .
of o r d e r
8mnk,
where
m,n,k 6 L . COROLLARY
G Z [ n m i] THEOREM and G o l a y there
2.19.
PROOF.
If there
supplementary
exists
, B X [ n m i]
sequences
Let H ( A o , B o , C o , D o )
length
m. Let us c o n s i d e r
a Goethals-Seidel of length
type a r r a y
m
be G o l a y
following
array
of o r d e r
(see D e f i n i t i o n
of o r d e r
be a G o e t h a l s - S e i d e l
4t and A = {ai}T= I , B ={bi}~= I
types
, W Y [ n m i]
exists
a Goethals-Seidel
of f o l l o w i n g
type a r r a y
supplementary
matrices:
m
=
D 3•
=
I m ~[iE=1
bi) ui_ I (a i
+
m
- Zi=I ( a i
-
m xDj_ I + Z (a i i=I
-
bi) ui-1
ui-1 b i)
xD
3 _I
T xC-I
of o r d e r
sequences
1 m bi) ui_ I m ui-1 T ] Bj = ~[ Z (a i + xBj_ I + Z (a i - b i) xA -I ' i=I i=I
C3•
11),then
4tm I.
I m bi) ui_ I m T Aj = ~[ Z (a i + xAj_ I - ~ (a i - b i ) u i - l x B _i ] , i=I i=I
I 2[iZ=1 (ai + b i ) u i - l x c j - 1
4t
]
]
,
of
44
From
definition
conditions
of
2.3
matrices
definition
2.3.
Aj, Bj, Cj, Dj of o r d e r kmj on
Ao,
Bo,
Further,
Co,
it
also satisfy
Do o f
is e a s y
order
m
to n o t e
satisfy that
the
matrices
t h e c o n d i t i o n s of d e f i n i t i -
2.3. Now
Co,
by
Do
substitution
in a r r a y
H(Ao,
matrices Bo,
Co,
Aj, Bj, Cj, Dj f o r m a t r i c e s Ao, Bo,
Do)
we
can
make
sure
that
matrix
H ( A i,
Bj, Cj, Dj) i s a G o e t h a l s - S e i d e l a r r a y of o r d e r 4tm 3, j = 1 , 2 , . . . The
theorem
is p r o v e d .
Information 2.3. of
about
sequence
one
P a l e y - W a l l i s - W h i t e m a n.......... method.
construction
ley
Golay
skew-symmetric
Hadamard
can
This
find one
matrices
in
of
§ 3,
the
based
I.
first on
methods
following
Pa-
construction:
:nll
H =
IT
(2.62)
n
where mard
A
is a b a s e
matrix
with
such
restrictions
that
about
construction
A structure
an
Hada-
matrix. The
interesting
matrix
(nucleus)
Goethals
and
dification
theorems
belomg
Seidel
of
THEOREM
this
2.20.
to
Ryser
(1967)and method
Let
A,
J.Wallis
belongs B
(1950,
1952, (1970,
to J . W a l l i s
(-I.+I)
matrices
1968), 1971,
AT = A
, BT = B
AB T = BA T
the
matrix
, IN T = 1
, N 6{A,
B}
(1965),
Further
mo-
(1972).
of o r d e r
, A A T + BB T = 2 ( m + 1 ) I
of b a s e
Szekers 1972).
conditions
Then
H remains
- 2J
,
m
satisfying
the
45
I
I
1
1
I
-I
-1
i
A
B
1 T -B
A
H :
(2.63) 1 T -i T 1T
is a
symmetric In
Sekenres
used
set
of o r d e r
m and
of o r d e r
In cial
1970
Hadamard
of
order
2(m+I) .
construction
constructed
(2.63)
the
and
notation
skew-symmetric
of
dif-
Hadamard
mat-
[260]. used
matrices,
2.21.
of
mentary
the
of
the
that
construction is HI,
(2.63)
and
H 2 - Hadamard
constructed
matrices
with
specon-
H2H
THEOREM matrices
4(m+1)
J.Wallis
dition H
tor
matrix
1969
ference rices
Hadamard
type
(Wallis-Whiteman I and
difference
let
set
Z be
a type
4 -{2m+I,
consisting
[311]).
m,
of
Let
X,Y
2 incidence
2(m-I) ]. L e t
+I.
and
matrix
also
length
2m+I
-I
-I
-I
-1
1
1
1
1
I
-I
I
-I
-1
1
-i
1
I
-1
-I
1
-1
l
1
-1
1
I
-I
-1
-1
-i
1
1
iT
1T
iT
iT
A
B
C
D
-1 T
1T
-1 T
1T
-B T
AT
-D
C
-1 T
1T
1T
-1 T
-C
DT
A
-B T
-i T
-i T
iT
iT
-D
B
AT
matrix
of
W be
incidence
of
1 be
supple-
a row-vec-
Then
(2.64)
is a n
Hadamard
Note a base
that
mits
instead the In
8(m+I).
Wallis-~iteman
array
of o r d e r
4 was
taken
here
as
matrix.
In p a p e r but
the
order
-C
mentioned
of W a l l i s - W h i t e m a n
construction
1972
an analog
Wallis
of
the
proposed
of
construction
array
a new
Hadamard a
stronger
array
matrix
of
(2.64) was
taken,
order
construction
was
considered that
4(2n+I)
namely,
per-
2
an
Hada-
46
mard
array
H[4t,t]
the construction Spence
in
(Baumert-Hall
of H a d a m a r d
array)
matrix
as a b a s e
of o r d e r
1975 u s e d G o e t h a l s - S e i d e l
array8
that
allows
8. (m+1) .
array
of o r d e r
4 as a b a s e
array. So
in a l l c o n s t r u c t i o n
array
(for e x a m p l e ,
Wallis-Whiteman Hall
in
array
(2.63)
ting
and
supplement
in a n H a d a m a r d
4,
arrays the
essentiality
it is k h e
of o r d e r
and Goethals-Seidel
perties
mentioned
in l a s t
of o r d e r
some number
matrix.
Yang
This
is u s a g e
array,
in
two cases of order
of a base
(2.64)
there
4 with
it is t h e
are Baumertdefined
of n e w r o w s a n d c o l u m n s
is t h e
pro-
resul-
i d e a of P a l e y - W a l l i s - W h i t e m a n
method. Note
that
- in c o n s t r u c t i o n s Williamson Hadamard mal
-
family,
ml,
where
N6{A,
Some
of
different
find
Spence
eldy
theorem. very
a GZ[4]-array THEOREM order t-1
v,
times
and
result
the a r r a y
[64]
containing condition
become the maxi-
in an H a d a m a r d
ml~ m/2
D}
(2.65)
were
used
not give
was
on the
whole
to construc-
matrices. A,B,C,D the
obtained
Let A,B,C,D
that
in m a t r i c e s
I appears B,C,D
be
and on base
statement
by Whiteman
circulant
in e a c h
it a p p e a r s
AA T + BB T + CC T + DD T = 4(2t
Then
to Cohn theorem
form a
array
of t h i s
(1976),
unwi-
with
array.
[317].
suppose
would
on m a t r i c e s
we will
strong
as a base
2.22.
v=2t
Here
matrices
base
the
Hadamard
restriction
(1975).
Finally,
C,
mentioned
skew-symmetric
can not
matrix
satisfy
B,
A,B,C,D
otherwise
but according
m must
- the constructions tion
the m a t r i c e s
of an H a d a m a r d
of o r d e r
IN T = 1
since
matrices,
order
matrix
mentioned
(-1,+1)-matrices
r o w of A m a t r i x
precisely
+ t)I
- 4J
t times.
of
precisely Let also
47
is a n H a d a m a r d
K
_X T
yT
ZT
WT
X
A
BR
CR
DR
Y
-BR
A
Z
-CR
DTR
W
-DR -cTR
matrix
We e m p h a s i z e
-DTR A
instead
-BTR
BTR
of o r d e r
that
cTR
A
4(2t+I) . of c o n d i t i o n
(2.65)
Whiteman
used
in f a c t
the c o n d i t i o n
1A T = -21
In w o r k m e n t i o n e d rices
A,B,C,D
Recently man
theorem
se a r r a y
with
hals-Seidel LEMMA there
with
only
array
2.2.
exists
same
1B T = iC T = 1D T = 0
Whiteman
of o r d e r Aturian
,
constructed
2t, w h e r e
(to a p p e a r )
t and
restrictions
difference of o r d e r
that
4t,
If A is a n a r r a y
a 4-elemental
and
2.23.
l e t A., 1
i=I,2,3,4
are p r i m e
a theorem
(2.66)
array
mat-
to W h i t e -
A,B,C,D
considered
a n d on b a is a G o e t -
t > I. A[4,t,t,t,t,Ai,A2,A3,A4,B4t,4t], 4 {Ki}i= I such
hyperframe
then
that
4 = ~ K i:I l
L e t A be an a r r a y A = A [ 4 , t , t , t , t , A I A 2 , A 3 , A 4 , B 4 t , 4 t ] be circulant
(-1,+I)
matrices
of o r d e r
fying conditions 4 i=I
(2.66))
numbers.
analogous
on m a t r i c e s
the b a s e
A[4,t,t,t,t,l,1,1,1,B4t,4t]
THEOREM
(with c o n d i t i o n
2t-I
proved
(2.66)
A AT = 4(n+1)I - 4J 1 1 n n
,
where
IQ 2 = IQ 3 = IQ 4 = 0
, Qi 6 { A I , A ~}
, i = 2,3,4
n satis-
48
I Q I = -21
Then
the
,
QI 6 { A 1 , A ~}
.
array
[i 4
4
-K I + ~ K i=2 l
E i=I
K × 1 l (2.67)
4 E i=I
is a n H a d a m a r d Note
that
i=I,2,..,
A[2,
secondly, theorems
matrix firstly,
K. × l
of o r d e r this
can be enlarged
t,
t, AI,
A2,
it c o n s i s t s et al.) .
IT
4t(n+1) .
theorem
with
t o the c a s e
B 4 t , 4t]
all
A
first
modified
when
or A =[8,
theorems
array
conditions A is of
for
A i,
form
t, t , . . . , A I , A 2 , . . . , A 8 , B 4 t , 4 t ]
(Whiteman,
Aturian,
Wallis
49
§ 3. some p r o b l e m s of c o n s t r u c t i o n
for H a d a m a r d m a t r i c e s
In this p a r a g r a p h we will give a survey of general a p p r o a c h e s to the c o n s t r u c t i o n s
for classic H a d a m a r d m a t r i c e s namely, Golay-Turyn,
Plotkin and Wallis approaches. zed and strenthened,
Later these a p p r o a c h e s will be g e n e r a l i -
in p a r t i c u l a r a r o r r e l a t i o n between g e n e r a l i z e d
6-codes and T - s e q u e n c e s will be found, a recurrent ruction of g e n e r a l i z e d
formula for const-
6-codes will be given a l l o w i n g to c o n s t r u c t a
new class of T-matrices,
B a u n e r t - H a l l and Wallis arrays and hence, Hada-
mard matrices.
For example we will prove the e x i s t e n c e of H a d a m a r d matk rices of order 2 S . v I ' V 2 , . . . , V k where V >l 3, s_k + t, and
PiPj
= 0,
i # j,
i,j
= 1,2 ..... t;
QiQj
= 0,
i ~ j,
i,j
= 1,2 ..... k; (3.14)
PiQj
= 0,
i = 1,2,...,t,
p2 2 = Qj = q i Now
f r o m the p r o p e r t y
j = 1,2,...,k;
, i = 1,2,...,t
3.4 we h a v e
, j = 1,2,...,k
that
m
V = { (al,iP I + a 2 , i P 2
+...+
at,iPt) i: I , (bl,iQ 1 + b 2 , i Q 2 + . . . +
+ b k , i Q k ) ~ : I] is a
6(t+k,
m+n)-sequence.
COROLLARY ence,
where
3.2.
There
exists
a i are n o n - n e g a t i v e
a 6(4,2
aI
integers.
10a226a3+2a410a526a6)-sequNote
that
a @-sequence
with
57
these
parameters
+I)),
6 ( 4 , 2 a I (10 a 2 + I ) 2
THEOREM
includes
3.4.
If
in p a r t i c u l a r ,
6a3)
there
6(4,2
aI
a3
I0a2(26
+
al +I)I oa226a3) .
, 6(4,(2 exists
sequences
a
d(4,n)-sequence,
then
there
exist
T(4,n,In)-matrices. PROOF. we
have
4 = E V.×X. i:I l I
V
that
the
=
( a i ) ni=I
Xl
satisfy
Let
the
TI
be
a
6(4,n)-sequence.
, X2
conditions
n ui_1 = Z a. i=I i
=
( b i ) ni=I
(3.8).
, X3
Verify X
=
This
theorem
' X4
=
these
matrices
n ui_1 = Z b. i=I l
,
T2
'
T 4 = Z d U i-I i= I i
circulant
only
that
3.2
(di)n : I
, (3.15)
n
5th
{XI,X2,X3,X4}. means
( c i ) in: 1
:
Introduce
n
that
the
vectors
T 3 = E c U i-I i= I 1
Show
From
matrices
condition One
can
in
show
non-diagonal
are
T(4,n,In)-matrices.
definition that
for
elements
of
of
T-matrices.
every
j,
Nx(j)
Denote
= 0 and
Px(J)=0.
matrix
4
E i=I are
0 and
diagonal
elements
T. T T
i l
(according
to
(3.8))
are
n,
that
is
reduce
to
4
i:I
The
theorem Thus,
struction Now and
is p r o v e d . the of
we
construction a
square
vectors
of
a Baumert-Hall
array
we
the
con-
6-sequence.
consider
investigated Let
T.TT = nl I i n
by
the
generalization
the
author
and
Vi(XI,X2,...,Xn)
(-1,+1)-matrices
of
order
of
notation
Sarukhanian
, i=1,2,...,t k,
satisfy
"@-code"
in p a p e r s coordinates
the
conditions
introduced
(1979, of
1981).
which
are
58
Vi VT
= 0,
i ~ j,
i,j
= 1,2 ..... t (3.16)
n
v.vT 33
where
vT
is a r o w - v e c t o r
STATEMENT tors
= Z x.xT i=i I I
3.3.
If
, j = 1,2 ..... t
of f o r m V Ti(xI"T
(A,B,C,D,Ik,k)
VI(A,B,C,D) , V2(-B,A,-D,C)
the c o n d i t i o n s DEFINITION element
,Xn)T
is a W i l l i a m s o n
, V3(-C,D,A,-B)
family,
then
, V4(-D,-C,B,A)
vec-
satisfy
(3.16)• 3.4.
of w h i c h
neralized
X2,T
6-code
A square
matrix
Q ( V I , V 2 , . . . , V t)
is of f o r m V i or -V i w i l l of
length
of o r d e r
be c a l l e d
m = s1+s2+...+st
with
m each
a t-symbolical
density
k, b a s e
ge-
n pro-
vided
Q(Vl' where
1 ' VT2 ' ' "
V2'''''Vt)QT(v
s i is the n u m b e r
of a p p e a r a n c e s
of m a t r i x
Q(Vi,V2,...,Vt)
cods
6(t,m,k,n).
by
If Q ( V i , V 2 , . . . , V t ) be c a l l e d
a circulant
STATEMENT exists
. Let
VI =
is the c i r c u l a n t generalized
Let
there
Consider
Q = V1×
ai,
I,
I,
I)
(3.17)
V i in any
t-symbolical
matrix,
row
(column)
generalized
then
6(t,m,k,n)
6-
will
6-code.
exists
generalized 4 Let V = Z V xX be i=I i 1
(I,
of v e c t o r
us d e n o t e
a circulant
PROOF.
where
3.4.
t = i=1 Z s .1 v .1v T1 xI m
.Vk)
a 6(4,m)-sequence.
Then
there
6(4,m,k,n)-code. a
6(4,m)-sequence
, V2 =
(-I,
1, -I,
I)
V4 =
(-I,
-I,
I)
I,
with
, V3 =
(-I,
I,
I, -I)
,
the m a t r i x
m£ a .ui_ I + mZ b U i-I i=I i V2xi= I i
+
bi,
are
ci,
di,
X2,X3,X 4 respectively•
i=1,2,...,m, According
V3x
~ ciUi - I + V4xim d.Ui-1 i=I i=I i
coordinates
to t h e o r e m
3.2
of the v e c t o r s
they
satisfy
the
'
X I, condi-
59
tions
(3.8).
(3.17)
It is e a s y
hence,
this matrix
It is a l s o e a s y fact,
first
p =
to s h o w t h a t m a t r i x
Q satisfies
the c o n d i t i o n
is 6 ( 4 , m , k , 4 ) - c o d e
to s h o w t h a t
r o w of t h e c i r c u l a n t
the r e v e r s e matrix
statement
is n o t
true.
In
P,
VI×(I+U 5) + V2x(U+U 7) + V3×(U2+U3+U4-U6 ) + V4×U8
of o r d e r
9 is n o t a ~ ( 4 , 9 ) - s e q u e n c e ,
though
the m a t r i x
P is a 6 ( 4 , 9 ,
k,4)-code. THEOREM k,4)-code
3.5.
For
the e x i s t e n c e
it is n e c e s s a r y
T-matrices
of o r d e r
NECESSITY.
and
of a c i r c u l a n t
sufficient
generalized
the e x i s t e n c e
~(4,m,
of c i r c u l a n t
m.
Let Q(VI,V2,V3,V4)
be a c i r c u l a n t
generalized
~(4,m,k,
4)-code
Q ( V I, V 2, V3,
L e t us p r o v e
that
4 = ~ V × x i=I 1 l
V 4)
X. are i
T-matrices
of o r d e r
m.
The conditions
X i , X j = 0,
i ~ j, X i X j = X Xi, i , j = I , 2 , 3 , 4 , a r e t r i v i a l . It is e a s y to 4 3 verify that Z X. is a ( - 1 , + 1 ) - m a t r i x of o r d e r m. T a k i n g i n t o a c c o u n t i=I i t h a t V V. = 0, i ~ j, c a l c u l a t e 13
ooT From
the
definition
SUFFICIENCY It a l s o
holds
THEOREM
3.6.
exists
and
Let
i=1
xix v v
3.4 we h a v e theorem
there
4 I X xT = mI i= I 1 i m
is o b v i o u s .
exist
T-matrices
of o r d e r
m.
Then
there
a 6(4,m,k,4)-code.
STATEMENT n)
of the
4
3.5.
Let
there
exist
(A2,B2,C2,D2,Rk,k) . Then
Williamson
there
exists
families
( A I , B I , C I , D I , I n,
a generalized
6(2,2n,n,4)-
code. COROLLARY
3.3.
There
exists
a symmetric
Williamson
family
60
(A,B,C,D,I
i , n m l) , w h e r e
n 6 LI U L2
,
nm m 6 {14,
STATEMENT code
and
3.6.
a Williamson
family
amson
Let
26,
30,
there
38,
exist
family
42,
50,
54}
a generalized
(A,B,C,D,In,n).
circulant
Then
there
~(4,m,k,4)-
exists
a Willi-
(X,Y,Z,W,RmXIn,mn) . 4
In f a c t ,
let
~(4,m,k,4)-code.
Q(VI,V2,V3,V4)
= E Vi×Xz i:I verify that
Then one can
be
a circulant
generalized
matrices
X = AxX I + BxX 2 + CxX 3 + DxX 4 Y =-BxX I + A×X 2 - DxX 3 + CxX 4 Z =-CxX I + DxX 2 + A×X 3 - BxX 4 W =-D×X 1 - CxX 2 + BxX 3 + AxX 4
form
the
family
THEOREM de and
3.7.
PROOF.
type
Let
@(2,m,k,4)-code order
4t;
VI =
where
there
A ( V I , V 2) and
let
suppose
can
also Let
verify
array
of o r d e r
order
4 t m i,
= VlXK I + V2xK 2 H(AI,A2,A3,A4)
that
generalized
the
vectors
,
V2 :
4t.
be be
of
type
a
array
form
T T T T (-Yo,Xo,-W0,Zo)
(3.18)
family.
the
theorem
3.5 K I and
yT i_ixK2
exists
generalized
a Goethals-Seidel
VI,V 2 satisfy
_
there
a circulant
VI,V 2 are
is a W i l l i a m s o n
following
Then
6(2,m,k,4)-co-
i=I,2,...
vectors
consider
Xi_IK I
a circulant
that
from
=
Xi
of
(Xo,Yo,Zo,Wo)
that
us
exist
type
array
(Xo,Yo,Zo,Wo,Rk,k)
One Note
Let
a Goethals-Seidel
Goethals-Seidel
of
desired.
the
K 2 are
conditions
(3.16).
T(2,n,Bn)-matrices.
matrices:
,
Yi
= Yi-lXK1
T + Xi-lXK2
' (3.19)
T Z i = Zi_IK I - Wi_ixK 2
,
Wi
= Wi-lXK1
+ zTi-lXK2
61
Let us p r o v e
that m a t r i c e s
pQ = Qp
Xi,
P(BkXBn)QT
Yi' Wi'
Zi s a t i s f y
the c o n d i t i o n s
= Q(BkXBn)PT
(3.20) P'Q6{Xi'
Verify
the c o n d i t i o n
(3.20)
Yi'
Zi' Wi}
for
i=I.
"
2 T T TT 2 XIY I = X ~ Y o x K 1 + X o Y o x K i K 2 - Y o y o x K 2 K I - Y o X o x K 2 YiX1
= y o X o x K 2I _ y o y oT× K i K 2 + X ~ X o x K 2 K 1 - X oT Y oTX K 2
Taking that
,
into a c c o u n t
the m a t r i c e s
we have
the c i r c u l a r i t y
Xo,Yo,Zo,Wo
satisfy
of m a t r i c e s
the a n a l o g o u s
K 1, K 2 and the fact conditions
(3.20),
XIY I = YIXI . F u r t h e r
T T T x T T T T X I ( B k X B n ) Y I = X o B k Y o X K I B n K I + XoBnXo K I B n K 2 - Y o B k Y o X K 2 B n K I Y~BkXo xK2BnK ~ Y I ( B k X B n ) X I T = Y o B k X oTX K I B n K I T - YoBkYoX K I B n K ~
+ X oT B k X oTX K 2 B n K TI
XT kYOX 2BnK By c o m b i n a t i o n One can
of these
show a n a l o g o u s l y
relations
we have
that c o n d i t i o n s
XI (BkXBn)Y~ (3.20)
are
= YI(Bk×Bn)XI
satisfied
T
for i > I
too. T + K2K ~ = nI n we have F r o m KIK I Xi IxT + yi Y~l + Zi 1zT + W l wT1 = n(XoXT
+ YoY~ + ZoZ~ + WOWS) xI i
(3.21)
n Hence, Seidel
the m a t r i x
type a r r a y
of o r d e r
has one of the forms iPB,~pTB From
appears
(3.21)
H(Xi,Yi,Zi,Wi)
4tn I. In fact,
~P,JPT,!pB,jpTB,
in e a c h
= H] (Xo,Yo,Zo,Wo)
row
(column)
P6{Xo,Yo,Zo,Wo}; of m a t r i x
we have
H]H TI = 4 t n i ( x o x T
+ YoY~
each element
+ WoW~)xI 4tn I
is a G o e t h a l s of m a t r i x element
H I precisely
HI
+p,+pT,
tn i times.
62
COROLLARY
3.4.
4n i, 8n ~, 40n l,
There
exists
104n l, 8kn l,
a Goethals-Seidel
16kn ~,
type
104kn i, w h e r e
array
k E L 1U L 2
of o r d e r ,n=2,10,26,
i=I,2,... n B ={ b i } i = 1 ,
L e t A = {a i} =I'
~n-t+1 ~-~+I C ={ c i ~ i = 1 , D ={ d i} =
be
(-1,+1)-sequences. DEFINITION ences
3.5.
A,B,C,D
will
be c a l l e d
supplementary
Q(n,t)-sequ-
provided
n-t-j+1 X (aiai+j~ i=I
b i b i + j) = 0
+
b i b i + j~
,
+
C .iC ~i j + d . di i+j
j = 1,2,...,
+
n-j X i = n - t - j + 1 (aiai+j
+
n-t
(3.22)
n-j j = n-t+1,...,
X (aiai+ + bibi+ ) = 0 i=I J J
n-1
'
NOTE
3.2.
For
t = I A,B,C,D
are
NOTE
3.3.
For
t = 2 the n o t a t i o n
supplementary
sequences
of
length
n.
that
of T u r y n In fact,
sequence
for t = 2 the c o n d i t i o n s
alan
tions
that
(3.23)
symmetry Now
of
Turyn with
are
Turyn
+bb
=0
nn-j
A and C
introduce
Turyn
chine
processing
n = 2
: X ={ (+-) , (++) , (+) , (+) }
(3.23)
sequences.
introduced
supplementary
in
with
become
+ cici+ j + d 1d1 +) 3+ a a n n - j
himself
sequences
let us
(3.22)
+ blb n = 0 , j=1,2,...,n-2
for t = 2 A , B , C , D Note
coincides
[203].
n-j-1 Z (aiai+ j + b.b. i=I i l+j
So,
of Q ( n , 2 ) - s e q u e n c e
sequences
requirements
satisfying
namely,
the c o n d i -
symmetry
and
skew-
[203 ]. sequences
[203 ].
n = 3 : X ={ (+++) , (++-) , (+-) , (+-) }
of
length
n, o b t a i n e d
by ma-
63
n : 4
: X ={(++--),(++-+),)+++),(+-+)}
n : 5
: X :{ (++-++) , (++++-) , (++--) , (+-+-) }
n = 6
: X ={ ( + + + - - - ) , (++-+-+) , (++-++) , (++-++I }
n = 7
: X ={ ( + + + - + + + ) , ( + + - - - + - ) , ( + + - + - - ) , ( + + - + - - ) }
n = 8
: X ={ ( + + - + - + - - ) , ( + + + + - - - + ) , ( + + + - + + + ) , ( + - - + - - + ) }
n =
13:
X ={(++++-+-+-++++)
, (+++--+-++-++-)
(+++--+-++---) n =
(+ . . . . + - + - + ÷ + + - )
a
3.8.
Let
,
}
15: X ={ ( + + - + + + - + - + + + - + + )
THEOREM
,(+++-++--+---)
there
, (+++-++---++-++-)
, (++++--+-++ .... ) ,
}
exist
Q(n,t)-sequences.
Then
there
exists
6 (4,2n-t+1) -sequence. PROOF.
Prove
that
. ; . ni=I -t+1 V ={ ( c i , - c i , ~ i., - ( l i is a
6(4,2n-t+1)-sequence.
Nv(j)
2
= 2
From
' ( a i , a i , b i , b i ) n =I }
property
n - t + 1 -j Z ( C i C i + j + d i d i + j) i=1
3.4
for
I < j ( n - l ) ( n + 4 ) / 2 2. W(n) ~ ( n - 2 ) ( n + 6 ) / 2
, for n=47,
t
is an o d d
of v a l u e
number
too.
Note
124
3. W(n)
I + [ n(2n+1)~ ] 2
n(n-1) 2
In 1977 B e s t p r o v e d
2 4. n _
that
( n ) < o(n) < n 3/2
2n
n/2
n 3/2 5. ~
n3/2
~ o(n)
6. ~ (n) = n 3"2 / for H a d a m a r d In
, for n > I
, for s u f f i c i e n t l y
, for a n d o n l y
matrices
[ 94 ] E n o m o t o
for r e g u l a r
w i t h the c o n s t a n t and Miyamoto
large
n
Hadamard
.
matrices,
sum of r o w e l e m e n t s .
h a v e p r o v e d t h a t for l a r g e
I 7. ~([Hn]) ~ n ( ~ )~
In
[127] H a m m e r
a n d all h a d p r o v e d
that
8. ~(n) ~ n 2 ( ( ~ n ) - 2 ) / ( 2 n - 2 n ) 9. ~(22r(
= 23r,
10. o ( 2 2 S ' q 2)
W(22r)
= 22S.q 4
L e t us give k n o w n W(n)
= 23r-1(2r+1) , for
q > 3, s ~ 21og2(q-3)
a n d o(n)
i.e.
for the f o l l o w i n g
n.
n
w(n)
o(n)
n
W(n)
0(n)
2
3
2
36
756
216
4
12
8
40
920
240
8
42
20
44
?
?
12
90
36
48
?
?
16
160
64
52
?
364
20
240
80
56
?
392
24
244
112
60
?
?
28
462
140
64
2304
512
n
hold
125
Let us give
some p r o p e r t i e s
of w e i g h t
and e x c e s s
of H a d a m a r d
mat-
rices:
×
I. o(i) (H I
H 2) =
2. ~(2) (n) =- 0 ( m o d 3. ~(i) (Hn)
~(i)
(HI)O
(i)
(H2)
, i=2,3
4) , n > 2.
= 2w(i) (Hn)-n i, i=2,2
for any H a d a m a r d
matrix
H
n
4. a (i) (-H n) = N i - 2W (i) (-Hn) 5. W (2) (n) ~ 0 ( m o d
2) , n > I
6. W (i) (H n) = n i - 1 ( n + 1 ) / 2 ,
i=2,3
if H
n
is a n o r m a l i z e d
Hadamard
matr ix. 7. W (2) (ran) > m 2 n 2 - n 2 W (2) (m)-m2W (2) (n) +2W (2) (m)W (2) (n) 8. W (2) (n 2) > [n2-W (2) (n) ]2 + [W(2) (n) ]2 9. W (i) (-Hn)
= n i - W (i) (Hn) , i=2,3
H = Qo x I + QI x U +. • "+ Qn-1 x U n-1
10. If
, then
0 (2) (H) = n[o (2) (Qo)+...+0 (2) (Qn_1) ] W
(2)
(H) = n[W (2) (Qo)+...+W(2) (Qn-1) ]
In fact (2) (H) = ~(2) ( n-1 E Qi x U i) = i=0 n-1 E a(2) (Qi x U i) = Z ~(2) (Qi)o(2) (U i) i=0 i=0
n-1
Further,
since o (2) (I) =
so
(2) (U) =...-_0(2) (U n-1 ) = n
t
(2)
By a n a l o g y
n-1 (2) (H) = n Z ~ (Qi) i=0 one can o b t a i n
the v a l i d i t y
of this r e p r e s e n t a t i o n
for
126
W (2) (H). 11.
If the e x c e s s
Hadamard
matrix
H = PO x V O + PI × V1
is of form
+'''+
P n-1 x Vn-I
'
then o(3) (H)
=
n2 n~1
o
(3)
(Pi)
,
i=0 W (3) (H) = n 2 nZIw(3) (Pk) k=0 12. Let us give Note
that
the table
of w(i) (H), o(i) (H),
[HB (i) ] , i=2,3
includes
j
W(2) (Qj)
o(2) (Qj)
0
6
1
i=2,3,
for the m a t r i c e s
H6[HBli)].
Qo,QI,...,Q15,
P0'P1'''"P15 W(3) (pj)
o(3) (pj)
-4
32
0
6
-4
32
0
2
6
-4
32
0
3
6
-4
28
-8
4
6
-4
32
0
5
6
-4
24
-16
6
6
-4
28
-8
7
6
-4
24
-16
8
10
4
40
16
9
10
4
36
8
10
10
4
36
8
11
10
4
32
0
12
10
4
36
8
13
I0
4
32
0
14
10
4
32
0
15
10
4
28
-8
127
13. ~(2) ([HB4t]) -= 0(rood 4t),
0 (3) ([HB4t]) =-0(rood 4t 2)
The p r o o f
f r o m items
of i t e m
13 f o l l o w s
10
12
14. -4t2 < 0 (2) ([HB4t]) < 4t 2 , 6t2 < W (2) ([HB4t]) < 10t 2 15. - 1 6 t 3 < 0 (3) ([HB4t]) _< 16t 3, 16. n(n-1) (n+4)
24t 3 < W (3) ([HB4t]) < 40t 3
< W(3) (n)< n2(n-1) --
+ n[n(2n+1)I/2
--
]
2
2
2
n32-n,n ) _ (3) (n) < n 5/2 ~n/2 < o P where
p
means
t h a t we c o n s i d e r
only three-dimensional
regular
Hada-
of r e g u l a r
Hada-
mard matrices. The p r o o f
of i t e m
mard matrices,
theorem
DEFINITION of H a d a m a r d
16 f o l l o w s
6.6.
matrix
PW (i) (H n)
:
1.3 of
[ 7 ]. A Hn
of H a d a m a r d
~ 7 ] a n d l e m m a of
(maximal)
W (i) (H n)
(PW
(i)
matrix
H
n
of o r d e r
(n) -
n
of o r d e r
n
Note that there sity a n d e x c e s s
of H a d a m a r d
STATEMENT
6.4.
511
Let H
(maximal
+
relation
i
between
po(i)
den-
(Hn)]
be a n o r m a l i z e d
Hadamard
m a t r i x of o r d e r n.
Then
= I-(I 2
the w e i g h t
matrices
n
pW(2) (Hn)
Po (i) (n))
(n)) n
= I
)
(i)
i
pw(i) (H n)
is the r e l a t i o n )
is the r e l a t i o n
is the f o l l o w i n g
density
i=2,3
i
, (Pc (i) (n) = q n
pw(i) (Hn),
Po (i) (Hn) , i=2,3
o(i) (Hn) Po (i) (Hn)
n
W (i) (n)
i
6.7.[ 7 ]. A d e n s i t y
[215].
weight density
(excess d e n s i t y
n DEFINITION
f r o m the d e f i n i t i o n
+ I ~) ; P
(2)
(Hn)
I = n .
128
STATEMENT
6.5.
It is true
3/8 < pw(i) ([HBn ]) < 5/8,
i=2,3
-1/4 < Pa(i) ([HBn ]) < I/4, i=2,3
The proof follows STATEMENT I. lira
6.6.
from items
14 and 15.
It is true
PW (i) (n) = I/2,
i=2,3
n--~ 2. lim
Pa (i) (n) = 0, i=2,3
n-~=
6.3. C o n s t r u c t i o n
of t h r e e - d i m e n s i o n a l 9eneralized
The classes of so called
tion
of a b o v e - m e n t i o n e d
Hadamard matrices
using the algebraical [239]
were c o n s t r u c t e d
apparatus
he overcame
Hadamard matrices
spatial generalized
which are the g e n e r a l i z a t i o n generalized
(high-dimensional)
Hadamard matrices hogh-dimensional
by Egiasarian
of high-dimensional
the difficulties
and
C.O.
matrix multiplica-
in desoription
of different
classes of special Hadamard matrices. The main problem mard matrix
is the construction
of spatial generalized
Hada-
[H(p,m) ]n for natural numbers p, m, n.
We will use a b o v e - m e n t i o n e d d e f i n i t i o n of
(l,~t)- orthogonal
algebraical
apparatus
spatial matrix
for the general
[ 239].
Let us denote by
[A]n
=
II Ail,i 2 ..... in
II
;
[B] r
=
II B.
31,j 2 ..... jrll
,
(il,i 2 ..... in,Jl,j 2 .... ,Jr=l,2 .... ,m)
n-dimensional
and r-dimensional
(l,~)-convolute
matrices of order
product [239] of matrix
[A] n
m
by [B] r
respectively. over the parti-
129
tion
incides
s
and
c
[D] t = II Dl,s,kll
where
will
a matrix
[D] t
provided
= l'g([A]n,[B] r ) =If Zc A 1 ,s,c B c , s , k II
n= x+l+~t , r=v+%,+~,
numbers,
be c a l l e d
i=(11,12,...,Ix) , x,l,b,o
s=(sl,s2,...,s)),
c=(cl,c2,...,c
(6.14)
- non-negative
) , k=(k 1,k2,...,k
),
of o r d e r
m
be a con-
be t r a n s p o s e d
H'
t=n+r-l-2~ • L e t n o w H' b e a n - d i m e n s i o n a l jugate
to H' m a t r i x
ces respectively,
matrix
a n d H ' t a n d H''t
over
the
definite
indices
, H''
a n d H''
matri-
(t is a f i x e d n a t u r a l
num-
ber) . DEFINITION called
a
fied the
6.8.
(l,~)-orthogonal
k=n-l-5,
(H[H[') E(l,k)
in all n o r m a l
= m~E(l,k)
is a
a)
6.3.
The notation
those
Hadamard
the
following
X = 0, matrix.
~ = n-1 The
, for
of
c a n be
satis-
6.15)
unit matrix
and
~ ~ k
, for
~ = k
(l,~L)-orthogonal
Hadamard
of H t'- m a t r i x
spatial
matrix
colnci-
matrix
are p-th
[H(p,m)]n,
roots
of u n i t y .
for Let
cases. we have
system
0,n-1(HiHi,)
where
will be
, t=1,2,...,N
generalized
if the e l e m e n t s
us consider - for
directions
m
of
three-dimensional
~+~ = n - i
axis
of order
{ n!/2X!~!k!
des with
H' t
(l+2k)-dimensional
n!/l!~!k!
N= NOTE
matrix
conditions
t, ~
where
A n-dimensional
(6.15)
(general)
n-dimensional
generalized
becomes
= mn-IE(0,1)
(6.16)
130
H t' = H'
" ' " ~t) ''" ±I
(~I i2 12 13
(~t it+1 , H~'
=
H"
in
"'" in
it
"'"
in-1
t=1,2,...,n
- for I= n-2 generalized n(n-1)/2
, ~ = I
Hadamard
equations
we h a v e c o m p l e t e l y
matrix
if s a t i s f i e s
obtained
n-2'l(Htl,t
from
n-dimensional
the f o l l o w i n g
s y s t e m of
(6.15).
H"
2
proper
)
tt,t 2
=
mE(n-2
'
(6.17)
I)
where (
H' =
H !
tl,t 2
i I i 2 "'" iti-I
it
i2 i3
t11
..- iti
i I i 2 ... i t it (i 2 L 3 i I -I i11 = H" "'" tl
' ' it21t2+1 in it 2
... i n ... in_ I
it i + ... i n in2 it2 1 i ) t2 n-1
H ~
t I ,t 2
t1=1,2,...,n-1
Note
that
equation b) n-l,
for n=2
the
system
f r o m the d e f i n i t i o n
spatial
(special)
a n d if t a k e s p l a c e
, t2=1,2,...,n
(6.15)
coincides
of g e n e r a l i z e d
orthogonal
matrix
the o r t h o g o n a l i t y
w i t h the k n o w n m a t r i x
Hadamard if in
over
matrix.
(6.15)
k=2,3,°..,
set of d i r e c t i o n s
12,
i=1,2,...,n. NOTE
6.4.
it s a t i s f i e s
If the for
system
I =11~o)
Let us g i v e a r e c u r r e n t generalized
(6.15)
Hadamard
satisfies
for I =Io(~=~o) , t h e n
too.
m e t h o d of c o n s t r u c t i o n
matrix
[H] n = II h(n) II il,i2,-..,i n
[H(p,m) ]n
of o r d e r
of n - d i m e n s i o n a l m
,
, il,i 2 ..... in=0,1 .... m-1
131
from
the
generalized
H (p,m)
Hadamard
II
[H] 2 =
Yp h e r e a) order
=
and after Suppose m
II ={ hit,12
denotes
that
matrix
(ii 'i2) }m-1 ii,i2= 0
Yp~
the o r i g i n a l
the k,dimensional
p-th
root
of u n i t y .
generalized
Hadamard
matrix
of
is c o n s t r u c t e d :
[HI k :
we c o n s t r u c t
II h!31,J k) 2 .... , jk 1I
the m a t r i x
=0,1,2,...,mi-I
[A] k =
obtained
from
, j1,j 2 ..... J k = 0 , 1 , 2 ..... m-1
II a(k) L , 11,12,...,in = 11,12,...,i k d i r e c t p r o d u c t of m a t r i x [H] k into
itself. Then
[A] k =
II a(k) m i 1 + J l ....
,mik+ik iI
=
(k) (k) II hll , .... ik " h 31 ' ' ... 'Jk
II (6.18)
il,i2,...,ik,Jl,J2,...,Jk=0,1,2,...,m-1 b)
L e t us d e f i n e
a
(k+1)-dimensional
.
[H]k+ I =
matrix
of o r d e r
m.
a (k)
h (11 k +,i 1 )2 , • . . ilk+ I II =
II
(m+1)i I , (m+1)i2. • . ( m + 1 ) i k _ I ,
ik÷ 1 11
which
is the
Having sional
(6.19)
spatial
the m a t r i x
generalized
generalized
Hadamard
[HI 2 , (6.18)
Hadamard
and
matrix. (6.19)
we o b t a i n
the
n-dimen-
matrix.
n-12n-l- I
[~]n =
Let us n o w g i v e
BIYp
• ~(ii,i2)
+ ~ ( i l , i n)
1=2
an a l g o r i t h m
Ji
for the c o n s t r u c t i o n
of c o m p l e t e l y
pro-
132
per
spatial
Hadamard
[B] 2
be a g e n e r a l i z e d Vandermonde
matrices
[H(p,p) ]n. Let
p-1
: II b!2) II = { ypil,i2} zl,i 2
Hadamard
matrix
matrix
[60].
...,in=0,1,...,p-1
H(p,p)
The matrix
, we define
il,i2 =0
constructed
according
[B]
=If b!n) . n 11,...,l n by the r e c u r r e n t m e t h o d
II b(n) II = II b(n-1) . il,i2,.-.,i n i1+in,i2+in,i3,--.,in_1
to
, ii,i2,...
II
, n>2
(6.21)
or
(2) " II b!n) 11 ..... in II = II b i I +i3+ . .+in,i2+i3+ . . .
=If y p ( i 1 + i 3 + ' " + i n )
One can verify ly p r o p e r Give
spatial
that
the matrices
generalized
an example
lized H a d a m a r d
(i2+i3+'''+in)
of c o n s t r u c t i o n
matrix
H2 =
II Bil,i2,i311 =
(6.22)
n=2,3,...,
matrices
are c o m p l e t e -
of type
of c o m p l e t e l y
proper
[H(p,p) ]n. cubic
[H(3,3) ] 3. Let II
be a g e n e r a l i z e d
=
II
[B]n,
Hadamard
+inI[
H(3,3)
I
I
I I
I
I
I
XI X2
I
X2 X I
Hadamard
I
I
matrix.
Then B=II B . . . II 11,12,13
X I X2
XI I
X2
~
(i I )
X 1X 2
X2 X 1 1
I
1
~
(i3)
X2 XI
I
X2 1
I
I
I
XI
(i2)
ii,i2,i3=0,I,2
genera-
133
is the completely
proper
cubic generalized
Hadamard
matrix
[H(3,3) ] 3.
Chapter
3. A P P L I C A T I O N OF H A D ~ A R D
MATRICES
The m a i n r e s u l t s of first two c h a p t e r s have for d i f f e r e n t b r a n c h e s of m a t h e m a t i c a l We w i l l give
several applications
and e n g i n e e r i n g c y b e r n e t i c s .
some of these a p p l i c a t i o n s
for i n f o r m a t i o n theory,
const-
r u c t i o n t h e o r y etc.
§ 7. H a d a m a r d m a t r i c e s and p r o b l e m s of i n f o r m a t i o n theory
7~I. H a d a m a r d m a t r i c e s and b i n a r y codes.
Let us give the defi-
n i t i o n of a code. DEFINITION n
7.1.
(with c o m p o n e n t s
d i f f e r at least
in
[157 ].
(n,M,d)-code
f r o m some d
is a set M of v e c t o r s of
length
field F9 such that e v e r y two v e c t o r s
p o s i t i o n s and
d
is the g r e a t e s t n u m b e r w i h h
this property. We w i l l c o n s i d e r
the b i n a r y codes that
Let us denote by M=M(n,d) ry
is c o d e s
the g r e a t e s t n u m b e r
for w h i c h F={0,1}
of code w o r d s
in e v e -
(n,M,d)-code. Note
that
in g e o m e t r i c a l
sence
the m a i n p r o b l e m of c o d i n g t h e o r y
is the c h o i c e of p o s s i b l e g r e a t n u m b e r of v e r t i c e s of a cube w i t h a given upper estimate pairwise
distance
( n , M , d ) - c o d e m e a n s the c o n s t r u c t i o n of of r a d i u s
d/2 w i t h c e n t r e s
and the c o n s t r u c t i o n of the M
non-interesting
in v e r t i c e s of a cube,
i.e.
spheres
this p r o b l e m
is the p r o b l e m of packing. Bose and S h r i k h a n d e
(1959), Mc W i l l i a m s
and Sloane
p r o v e d that H a d a m a r d m a t r i c e s a l l o w to c o n s t r u c t
(1979)
have
the f o l l o w i n g
four
codes. T H E O R E M 7.1.
If there e x i s t s the H a d a m a r d m a t r i x H
n
of o r d e r
n
t h e n there e x i s t s I. the
(n-l,n,n/2)-code
(consisting of rows of m a t r i x H
n
without
135
first
column);
2. t h e de a n d
(n-1,2n,n/2-1)-code
their
3. the
(consisting
of v e c t o r s
of p r e v i o u s
co-
complements);
(n,2n,n/2)-code
(consisting
of r o w s
of m a t r i x
H
n
and
their
complements). 4. the Note and
that
secondly, Using
one
(n-2,n/2,n/2)-code. firstly, all
above-mentioned
the m e t h o d s
can construct THEOREM
there
7.2.
exist
(n-l,n,n/2)-code
Let H
codes
with
gers
i= P ~ o and
"P~o
following
(nl-1,
,
2nl,
,
~ i ~ 0,
1961Plotkin
a)
if
d
stated
is e v e n
[1881 from
§ 4
is t r u e .
of o r d e r
n
. Then
parameters:
ni/2-I)
,
,
i=0,I ..... k,
are
arbitrary
inte-
that
then
2[d/(2d-n} ] M(n,d)
I
k > i, t h e n
~(l,n,X)
= 6(l,k,l
[252] • The
following
) = 1/(21-I)
statements
are e q u i v a l e n t
173
I. 6(2,4n-I,11
4n-I
) = (4n-2)/(4n-1)
2. ~(2,4n,i I4n-1)
= (4n-2)/(4n-1)
3. There exists an H a d a m a r d m a t r i x of order 4n.
9.2. H a d a m a r d m a t r i c e s and Barker x
n
Suppose Xl,X2,...,
is any sequence of complex numbers. D E F I N I T I O N 9.1.
[134]. A sequence C I , C 2 , . . . , C n _ I
=
C3 where X cT
n ~ J x l x C T (i + j ) i=I
is the c o m p l e x c o n j u g a t e of
ce of length
n
provided
Note that the sequence cal
se~uencgs.
mod
X
C. 6 {0,-1,+I} 3
,
n
is called a Barker
sequen-
, j=1,2,...,n-1.
{Cj }n-lj=1 ' C 3' £ { - 1 , + 1 }
is
used
in
numeri-
c o m m u n i c a t i o n theory. Turyn and Storer
length
S > 13
(1961) have proved that the Barker sequence of
can exist if and only if there exists a c i r c u l a n t
(hence, regular)
H a d a m a r d matrix of order
ce of length
can also exist only
S
n. Thus,
the Barker sequen-
for s=k 2.
9.3. H a d a m a r d m a t r i c e s and stron~!y regular graphs. A graph is c a l l e d regular g r a p h of power
d
G
if the powers of all verties are
d. In 1963 Bose i n t r o d u c e d a n o t a t i o n of strongly regular graph G = (n,d,A,A)
of power
d that is a graph every two n o n - a d j a c e n t ver-
tices of which are s i m u l t a n e o u s l y a d j a c e n t to ~ v e r t i c e s and every two a d j a c e n t v e r t i c e s are s i m u l t a n e o u s l y a d j a c e n t to A vertices. Note that in G(n,d,A,
), n is the number of vertices,
number of triangles,
A
d is the power,
A
is the
is the number of plugs [329].Information about
strongly regular graphs and their r e l a t i o n s to the c o m b i n a t o r i a l f i g u r a t i o n s one can find in papers of Bose
(1959),
(1963), Seidel
con-
174
(1967-1969), A l i e v et al
(1969), W a l l i s
del
(1972), Delsarte
(1970), Wallis et al
K o z y r e v V.P.
(1969,
1971), Goethals,
(1972),
Zinovjev V.A.
Sei~ and
(1975).
Here we will give only 4 G o e t h a l s - S e i d e l
theorems
(1970) about
the c o n n e c t i o n b e t w e e n H a d a m a r d m a t r i c e s and strongly regular graphs. Note that for strongly regular graphs one can find three e i g e n v a l u e s from the r e l a t i o n s
[329]
I O = d , 11, 2 = ~I(A-A+_ V(A-A) 2
4A+4d
T H E O R E M 9.3. A symmetric H a d a m a r d m a t r i x the c o n s t a n t diagonal of order
s
2
exists
H = A~I, A T = A with
if and only if there exists
a regular graph w i t h e i g e n v a l u e s
11 = 2s Z I,
12 = -2s ~ I
Note that first part of the t h e o r e m is introduced by Menon
[329] .
T H E O R E M 9.4. A regular symmetric H a d a m a r d m a t r i x with the constant d i a g o n a l of order Ls(2 s ) [ 3 2 9 ] or NLs(2 T H E O R E M 9.5.
4s 2
exists
s)[329].
If there exist a BIB design with p a r a m e t e r s v,k,r,
I=I and an H a d a m a r d m a t r i x of order r e g u l a r graph with v+k-1
v(m+1)
then there exist a strongly
v e r t i c e s and with the e i g e n v a l u e s
11 =
If there exist a finite p r o j e c t i v e plane PG(2,m-1)
and an H a d a m a r d m a t r i x of order regular graph with =
m
and 12 = -m.
T H E O R E M 9.6.
i°
if and only if there exist graphs
0,
11
=
m
2
-m+1,
m(m2-m+1) 12
=
m+1
then there exists a strongly
v e r t i c e s and with the e i g e n v a l u e s
-m.
9.4. H a d a m a r d m a t r i c e s and m a x i m u m d e t e r m i n a n t p rpblems. A = {ai, j }n i,j=1
is a real m a t r i x and let
SuppQse
175
= maxldet
A
, for
a
f(n)
= maxldet
A
, for
a
g(n)
= maxldet
A
, for
a
k(n)
= maxldet
A
, for
0 < a.
h(n)
= maxldet
A
,
for
6 {0,1}
1,3
6 {0,-I,+I}
.
1,3
-
l(n)
6 {-I,+I}
1,3
that
is a l l m e n t i o n e d are < -
equivalent
h(n)
problems [171].
= g(n) namely,
In
-
-I < a. -
It is k n o w n
< I
1,3
= k(n)
< I.
lw]
= l(n)
= 2n-lf(n-1),
calculations
1893 H a d a m a r d
-
that
h(n),g(n),...,l(n)
proved
that
h(n)
_ x 2 > _ x 3 _> x 4 , n = 4 ( x 1 + x 2 + x 3 + x 4 ~ •
k
4).
W(n,k) . Note
of H a d a m a r d
n 6{12,20,24,28,32,40}
matrix
of order
is d e n o t e d
by
N
W(n,k)
a
provided
[102].
that that
for
every
k,
k ~ n,
for
k=n
this
construction
and
is p r o v e d
U {2k}u
is c a l l e d
n
problems Prove
matrix
and
WW T = kl
Geramita
problem
= I max{2xl,x1+x2+x3+x4}
is a n o d d
DEFINITION.
n ~ 4(mod
R.Levinston
Po (n) where
8)
= { n
8.
, n ~ 0(mod
{3-2k}u
{ 5 . 2 k}
there
problem
exist
coicides
for
, k > 3 [124].
n,
~
~
~
~
0
0
0
0
~
~
~
~
0
0
0
0
~
~
~
~
0
fD
fD
0
I.-h
N
dO
f'D
0
O 0 P'I i'-,I
(I)
H'-
~
~
0
~
~
~
0
~
t~
0
c~ fD
0
©
m
Q
H
O
rD ct H
m
0 Q
Q
~
N
I
0
Co
0
t~
0
cn
f
~D
Z U H
®
o
~
~
~
~
~
~
~
~
:
o
~
~
~
~
~
~
~
0
~
~
0
0
~
~
it
~
~
o
~
~
~
o
~
~
o
~
~
0
~
~
m
~
~
~
~
~
~
~
~
~
~
~
~
~
o
~
~
0
o
~
~
~
~
X
~
~
~
~
~
~
~
~
n
rO
~
~
~
~
~
~
~
~
~
~
~
~
~
~
0
~
~
~
t
0
0
0
0
0
0
0
0
~
~
0
0
0
0
0
0
0
O
O
~
~
~
~
~
~
~
~
~
it
~
~
~
~
~
~
~
~
o
~
~
-
Z
~
~
o
~
~
~
~
~
®
~
~
~
~
~
o
o
o
~
~
~
~
~
~ 5 ~
~
~
o
~
~
~
o
~
o
~
~
~
~
-
~
o
o
~
-
~
~
~
~
~
~
~
o
~
~
~
~
~
~ o
~
~
o
~
~
5
~
~
~
~
~
~
~
~
~
Z
~
~
~
~
~
~
~
~
Z
o
S
o
~
~
~
~
~
~
~
~
~
5
~
~
~
~ t~
~
~
~
0
~
~
~
~
~
0
0
~
~
~
~
~
0
o
~
~
~
0
~
~
Ii
0
~
~
~
0
0
0
~
~
~
~
8~4=
~
0
186
187
n
~
~
0
~
~
~
0
~
~
188
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
~
~
0
~
189
ii
190
ii
191
A
o r~ -;-I ..~ 0 U
REFERENCES I. Agaian S.S.,
Sarukhanian A.G.
H a d a m a r d matrices. 2. A g a i a n S.S.,
Sarukhanian A.G.
H a d a m a r d matrices.
(1977). A note on the c o n s t r u c t i o n of
D o k l . A k a d . N a u k Arm.
SSR, 65, N 4, 199-203.
(1978). A note on the c o n s t r u c t i o n of
Proc.Fourth Intern.Congr.Cybern.Systems,
21-25
August, Amsterdam. 3. A g a i a n S.S.,
S a r u k h a n i a n A.G.
Fifth.lntern. 4. A g a i a n S.S. Proc.
(1979). G e n e r a l i z e d
M e e t i n g Inf.Theory.
Tbilisi,
6-codes.
Proc.
14-17.
(1980). A l g o r i t h m of o r t h o g o n a l m a t r i c e s fast transform.
Fifth Eur. M e e t i n g on Cybern.
and Systems Res., v.8, Ser.B,
317-321. 5. Agaian S.S.
(1980). W i l l i a m s o n family and H a d a m a r d matrices.
Fifth A l l - U n i o n Conf.
Problems of Theor.Cybern.,
Proc.
Novosibirsk.140-
141. 6. A g a i a n S.S.,
S a r u k h a n i a n A.G.
(1980). G e n e r a l i z e d
struction of H a d a m a r d matrices.
Probl.
Peredachi
~-codes and conInf. XVI, N 3,
50-60. 7. Agaian S.S.
(1981). A new method for c o n s t r u c t i n g H a d a m a r d m a t r i c e s
and the solution of the Shlichta problem.
Sixth H u n g . C o l l . C o m b . ,
July 6-11, 2-3. 8. Agaian S.S.
(1981). On spatial H a d a m a r d m a t r i c e s of W i l l i a m s o n type.
D o k l . A k a d . N a u k Arm. SSR, 72, N 3, 131-135. 9. Agaian S.S., M a t e v o s i a n A.K.
(1981). G e n e r a l i z e d Haar t r a n s f o r m -
ations and a u t o m a t i c systems for q u a l i t y control of p r i n t e d circuits. Acta Cybern.
5, N 3, 345-363.
10. Agaian S.S., S a r u k h a n i a n A.G. lized August,
6-code construction.
(1981). Cyclic and n o n c y c l i c genera-
Proc.Intern.Coll.
Inf. Theory,
24-28
Budapest.
11. A g a i a n S.S.,
S a r u k h a n i a n A.G.
(1981). R e c u r r e n t formulae of const-
r u c t i o n of W i l l i a m s o n type matrices. 12. Agaian S.S.
Mat. Zametki,
30, N 4, 603-617.
(1982). A u n i f i e d c o n s t r u c t i o n m e t h o d of fast o r t h o g o -
nal t r a n s f o r m a t i o n s and signal p r o c e s s i n g problems. In: Progr.Cybern.
193
Syst.Res.
8, 301-307, USA.
13. Agaian S.S.
(1982). On Plotkin hypothesis.
Coll.Techn. Inst.
14. Agaian S.S., Matevosian A.K. Proc.Comput.Cent.
(1982). Fast Hadamard transformations.
Akad.Nauk Arm. SSR, N 12, 73-90.
15. Agaian S.S., Sarukhanian A.G. D(4k,4) partitions. 16. Agaian S.S. matrices.
Proc. 27-th Int.Sci.
Ilmenau, DDR.
(1982). On Plotkin hypothesis about
Kibernetika,
N 4, 15-20.
(1984). Construction of plane and spatial Hadamard block
Proc.Comput.Cent.
Akad.Nauk Arm.SSR,
Erevan Gos.Univ.,
v.XIII, Math.problems of Cybern. and Comput. Eng. Hadamard matrices and adjacent problems. 17. Agaian S.S., Egiazarian K.O. Proc.Comput.Cent.
(1984). Generalized Hadamard matrices.
Akad.Nauk Arm. SSR and Erevan Gos.Univ.,
v.XIII,
Math. problems of Cybern. and Comput. Eng. Hadamard matrices and adjacent problems. 18. Ahrons B.W. and Szekeres G.
(1969). On a combinatorial generali-
zation of 27 lines associated with a cubic surface. J.Aust.Math. Soc., Set.A,
10, 485-492.
19. Aizerman M.A., Braverman E.M., Rosonoer L.I. foundations of potential
function method
(1964). Theoretical
in the problem of auto-
maton training in classification of input conditions.
Avtom. Tele-
mekh. XXV, N 6, 917-936. 20. Alexandrides N.A., Klinger A.
(1971). Walsh orthogonal
in geometrical feature extaction. rib.
functions
IEEE Trans. Electromagn,
Compa-
13, N 3, 18-25.
21. Andres T.H., Stanton R.G. Math., v.622,
(1977). Sequences of Go!ay. Lect.Notes
44-54.
22. Appel K. and Haken W.
(1976). Every planar map is four-colorable.
Bull.Am.Math. Soc., New Ser., 82, 711-712. 23. Arazi Behjamin
(1979). Some properties of Hadamard matrices gene-
rated recursively by Kronecker products.
Linear Algebra Appl.,
25,
27-39. 34. Aslanian L.A.
(1979).
Isoparametric problem and adjacent extremal
194
p r o b l e m s for discrete 25. B a n e r j e e K.S. nomics,
spaces.
Probl.Kibern.
Eco-
Dekker, New York.
(1962). Six i n e q u i v a l e n t H a d a m a r d 1~.~trices of order
2n, n ~ 5. Lett. Pasadena,
, 85-127.
(1975). W e i n i n g Designs for Chemistry, Medicine,
O p e r a t i o n s and Statistics,
26. Baumert L.D.
N 34
Propuls.
Lab.Res.Summary,
36-12.
I, 74-76,J.P.L.,
California.
27. B a u m e r t L.D.
(1966). H a d a m a r d m a t r i c e s of orders
Am.Math. Soc, New Ser., 28. Baumert L.D.
116 and 232. Bull.
72, 237.
(1971). Cyclic Difference
Sets. L e c t . N o t e s Math.,
v.182. 29. Baumert L.D., Colomb S.W. and Hall M.
Jr.
(1962). D i s c o v e r y of an
H a d a m a r d m a t r i x of order 92. Bull.Am. Soc., New Ser., 30. Baumert L.D. and Hall M.Jr. matrices.
(1965a). A new c o n s t r u c t i o n
Bull.Am.Math.Soc.,
31. Baumert L.D. and Hall M.Jr.
New Ser.,
(1950). Theory of 2n-terminal n e t w o r k s with a p p l i c a Electron.Commun.
Ser.I,
82,
13-32.
(1945). A note on d e t e r m i n a n t s and H a d a m a r d ' s
Am.Math.Mon.
on self-dual code. 36. Berman G e r a l d Can.J.Math.,
inequality.
50, 550-551.
35. B e r l e c a m p E.R., W i l l i a m s F.J.,
37. Best M.R.
27, 231-244.
(1965). Conference n e t w o r k s and H a d a m a r d matrices.
Ann. Soc.Sci.Brux, 34. B e l l m a n R.
for H a d a m a r d
169-170.
442-447.
tion to c o n f e r e n c e telephony. 33. B e l e v i t c h V.
71,
(1965b). H a d a m a r d m a t r i c e s of the Wil-
liamson type. M a t h . C o m p u t . 1 9 , 32. B e l e v i t c h V.
68, 237-238.
Sloane N.
IEEE Trans.Inf.
(1972). G l e a s o n ' s t h e o r e m
Theory,
18, 409-414.
(1978). F a m i l i e s of g e n e r a l i z e d w e i g h i n g matrices. 30, N 5, 1016-1028.
(1977). The e x c e s s of H a d a m a r d matrix. Judag.Math.
39,
357-361. 38. Bhat V.N. complete 39. Bhat V.N.
(1972a). N o n - i s o m o r p h i c block designs.
(1972b) . N o n - i s o m o r p h i c
c o m p l e t e block designs.
solutions of some b a l a n c e d in-
II.J.Comb.
Theory,
Ser.A,
12, 217-224.
solutions of some b a l a n c e d
III,J.Comb.
Theory,
Ser.A,
in-
12, 225-252.
195
40. Bhat V.N. and Shrikhande
S.S.
(1970). N o n - i s o m o r p h i c
some b a l a n c e d incomplete block designs.
solution of
I. J . C o m b . T h e o r y ,
Ser.A,
9, 174-191. 41. Blake I.F. and ~ l l i n
R.C.
(1975). The m a t h e m a t i c a l Theory of Co-
ding. A c a d e m i c Press, New York. 42. Blatt D. and Szekeres G. 52. Can.J.Math., 43. Bose R.G.
21,
(1969). A skew H a d a m a r d m a t r i x of order
1319-1322.
(1939). On the c o n s t r u c t i o n of b a l a n c e d incomplete b l o c k
designs. Ann of Eugenice.9,
353-399.
44. Bose R.G. and Shrikhande S.S. theory of code construction. 45. Bose R.G.
(1959). A note on a result in the Inf.Control 2, 183-194.
(1963). Strongly Regular Graphs.
P a r t i a l l y b a l a n c e d Designs.- Pac.J.Math. 46. Bose R.G. and Shrikhande vertices
(1970). Graphs in which each pair of
is a d j a c e n t to the same number
Sci.Math.Hung.
G2(d)
48. Braner A.
d
of other vertices.
Stud.
5, 181-195.
47. Bose R.G. and Shrikhande for
S.S.
Partial G e o m e t r i e s and
13, 389-419.
graphs.
S.S.
(1971). Some further c o n s t r u c t i o n s
Stud.Sci.Math.Hung.
6, 127-132.
(1953). On a new class of H a d a m a r d determinants.
Math.
Z., 58, 219-225. 49. Brenner J. and C u m m i n g s L. nant problem. Am.Math.Mon. 50. Breu~ M., M a q u e h a r d M.
(1972). The H a d a m a r d m a x i m u m determi79, 629-630.
(1972). P o l y n S m e s des points de c e r t a i n s
codes of fonctions th~ta de c e r t a i n s r~seaux. Ann. Sci.Ec.Norm. Sup. 5, 157-181. 51. Bush K.A.
(1971a). U n b a l a n c e d H a d a m a r d m a t r i c e s and finite projec-
tive p l a n e s of e v e n order. J . C o m b . T h e o r y , 52. Bush K.A.
38-44.
(1971b). An inner o r t h o g o n a l i t y of H a d a m a r d matrices.
J.Aust.Math. Soc., 53. Bush K.A.
Ser.A.11,
Ser.A 12, 242-248.
(1971c). Forms of H a d a m a r d m a t r i c e s
projective Applicazoni
planes.
induced by finite
In: A t t i . C o n v e g a e G e o m e t r i a C o m b i n a t o r i a Sue
(A.Barlotti, ed.),
131-136.
Univ.Perugia,
Perugia.
196
54. Bush K.A.
(1973).
Construction
A survey of C o m b i n a t o r i a l Holland,
(1977a).
F.C.
ces of order 58. Butin H. Trans.
36.
(1972).
Comput.
59. Butson A.T.
61. C a m e r o n
Change
A compact
21, N 6,
(1970).
definition
designs.Ars.
to
A. Hedayat.
Symmetric
USA,
175,
of W a l s h
Hadamard
matri-
66.79. functions.
IEEE
590-592.
Generalized
14,
581-588.
Cohn
J.H.E.
Cooper
Cooper
Cooper
Hadamard
matrices.
hogonal
(1980).
Graph
~roc.
Am.Math.
Hadamard
matrices.
theory,
coding
theory
and
Mosk. E.
(1979).
Coding
On the value
(1965).
Hadamard
for
v. IT-25,
T-user
N 6,684-691.
of determinants.
matrices
and
Multiple-Access
Proc.Am.Math. Soc.
some g e n e r a l i z a t i o n s .
Am.
515-518.
J., Milas Math.
J. and W a l l i s N 686,
J. and W a l l i s
J. a n d W a l l i s
J.
W.D.
(1978).
Hadamard
equivalence.
126-135. (1972).
A construction
for H a d a m a r d
arrays.
7, 269-277. J.
(1976a) . A note
on o r t h o g o n a l
designs
in
Ars.Comb. I, 267-274.
J. and Wallis designs.
Dade E.C.
among g e n e r a l i z e d
(1963).
72,
o r d e r eighty. Cooper
Relations
Nauka,
B u l l . A u s t o M a t h . Soc.
69
J.J.
IEEE Trans. Inf.Theory,
Cohn J.H.E.
Lect.Notes
68
81-83.North
15, 42-48.
S. and W e i d o n
Math.Mon.
67
od s e m i - r e g u l a r
P r o c . N a t l . A c a d . Sci.
P., van Lint J.
Chennels.
66
class
communication
and Seidel
(1963).
block-designs,
65
ed.),
In:
13, 894-898.
Can.J.Math.
64
Personal
(1962).
60. Butson A.T.
63
An infinite
(1977b).
57. B u s s e m a r k e r
62
(J.N-Srivastava,
matrices.
3, 293-296.
56. Bush K.A.
Soc.
Theory
Hadamard
Amsterdam.
55. Bush K.A. Comb.
od symmetric
J.
(1976b).
J.Aust.Math.Soc.,
and G o l d b e r g
K.
(1959).
Using
cyclotomy
Ser.A
22,
to c o n s t r u c t
ort-
119-127.
The c o n s t r u c t i o n
of H a d a m a r d
mat-
197
rices. Mich.Math.J. 6, 247-250. 70. Davenport W.B. 71. David A Drake
(1958). Random signals and Noise, New York. (1979). Partial-geometries and generalized Hadamard
matrices over groups. Can.J.Math., v.XXXI, N 3, 617-627. 72. Day A and Ramakrishna
(1977). A note on orthogonal maineffect
plans. Technometrics 19, 511-512. 73. Deal Bruce C.
(1980). Image spot detector using Haar coefficients.
Northerp.Comp. 364/515,
(H04 N 7/12), N 4242733, 37.08.79,N 69882,
30-12-80. 74. Deal Bruce C.
(1980). Image corner detector using Haar Coefficients.
Northerp.Comp. 364/515,
(HO4 N 7/12), N 4242734, 27-09-79,N 69883,
30-12-80. 75. Decker J.A.
(1972). Hadamard-transform spectrometry. A new analy-
tical technique. Anal.Chem. 44, 127-134. 76. Decker J.A., Jr. dustrial Res. 77. Dedo M.
(1973). Hadamard transforms spectrometry. In-
15 (2), 60-64.
(1968). Trattazione geometrica di un problems di Hadamard.
Period.Math.Hung. 46, 107-114. 78. Delsarte P.
(1972). Weights of linear codes and strongly regular
normed spaces. Discrete Math., v.3, 47-64. 79. Delsarte P. and Goethals J.M.
(1969). Tri-weight Codes and genera-
lized Hadamard matrices. Inf.Control 15, 196-206. 80. Delsarte P., Coethals J.M. and Seidel J.J.
(1971). Orthogonal mat-
rices with zero diagonal II. Can.J.Math. 23, 816-832. 81. Diadjunov A.I., Senin A.G.
(1977). Orthogonal and quasiorthogonal
signals. Sviazj, Mosk. 82. Dillon J.F.
(1975). Elementary Hadamard difference sets. Proc. 6th
Southeast.Conf. Combinatorics, Graph Theory and Comput., Boca Raton. Winnipeg, 237-249. 83. Dillon J.P.
(1976). On Hadamard difference sets. Ars.Comb. I,
275-279. 84. Dirstein J., Silberberg T.
(1980). Shape discrimination with Walsh
198
descriptors.
Proc.
5th Int. Conf.
P a t t e r n Recogn.,
New York,
1055-1061. 85. D i s c r e t e m a t h e m a t i c s and m a t h e m a t i c a l p r o b l e m s cybernetics, Nauka,
Mosk.,
v.1,
1974.
86. D o e h l e r t D.H. and Klee V.L. level r e d u c t i o n of the
(1972). E x p e r i m e n t a l designs t h r o u g h
d-dimensional cuboctahodron.
Discrete Math.
2, 309-334. 87. Eades Reter
(1977). Some new c o n s t r u c t i o n s
u s i n g circulants. 88. Eades Reter Aust.Math.
(1978). On the e x i s t e n c e of o r t h o g o n a l designs.
Bull.
18, N I, 157-158.
89. Eades Reter Math.,
for o r t h o g o n a l designs
L e c t . N o t e s Math., N 622, 64-75.
(1979). A note on cyclic q u a s i - H a d a m a r d matrices.
Util.
15, 31-32.
90. Eades Reter,
Wallis J e n n i f e r Seberry
(1977). A note on a s y m p t o t i c
e x i s t e n c e result for o r t h o g o n a l designs.
L e c t . N o t e s Math., N 622,
76-90. 91. E g i a z a r i a n K.O. linear filters.
(1984). The g e n e r a l i z e d H a d a m a r d t r a n s f o r m s and Proc.
Seventh Eur. M e e t i n g Cybern.
Systems Res.
(R.Trappl, ed.). 92. E h l i c h H.
(1964). D e t e r m i n a n t e n s b s c h ~ t z u n g
fur bin~re M a t r i z e n mit
n = 3(mod4). Math. Z., 84, 438-447. 93. E h l i c h H.
(1965). Neue H a d a m a r d Matrizen.
94. Enomoto H. and M i y a m o t o H. matrices.
J. Comb.Theory,
95. Federer W.T.
(1980). On maximal weights Ser.A,
16, 34-36. of H a d a m a r d
23, 94-100.
(1977). On the existence
plete set of o r t h o g o n a l
Arch Math.,
and c o n s t r u c t i o n of a com-
F (4t; 2t; 2t)-square designs. Ann. Stat.
5, 561-564. 96. Federer W.T., Hedayat A., Lowe C.C. and R a g h a v a r a o D. a p p l i c a t i o n of statistical design theory to grop
(1976). An
e s t i m a t i o n with
special r e f e r e n c e to legumes and m i x t u r e s of cultivars. A g r o n o m y J. 68, 914-919. 97. Fine N.J. 372-414.
(1949). On the Walsh functions.
Trans.Am.Math. Soc.,
65,
199
98. Fine N.J.
(1950). The generalized Walsh functions.
Trans.Am.Math.
Soc., 69, 66-77. 99. Folkman J.
(1967). A non-existence
in many variables.
Rand Document.
100. Frangakis G., Tzafestas S. lizer; Electron.Eng. 101. Fraser Donald
theorem for Hadamard matrices D-16326-PR,
(1979). A digital Walsh function ana-
(Gr.Brit.)
51, N 625, 89-91.
(1979). Algorithm 545. An Optimized mass storage
FFZ C6, ACM Trans.Math.
Software,
5, N 4, 500-517.
102. Geramita A.V., Deramita J.M., Wallis J.S. signs. Queen's Math. Preprint,
(1979). Orthogonal designs.
Quadratic forms and Hadanard matrices. 460 p.
(1976). Orthogonal de-
N 1973-37.
103. Geramita A.V. and Seberry Jennifer Dekker,
Rand Corp.
New York-Basel, Marsel
(Lect.Notes Pure Appl.Math.,
104. Geramita A.V., Wallis J.S.
v.54) .
(1974). Orthogonal designs II. Queen's
Math. Preprint, N 1974-7. 105. Geramita A.V., Wallis J.S. hing matrices,
(1974). Orthogonal designs III, Weig-
Queen's Math. Preprint,
106. Geramita A.V., Wallis J.S. Math. Preprint,
N 1974-10.
(1974). Orthogonal designs IV. Queen's
N 1974-11.
107. Geramita A.V., Geramita J.M. and Wallis J.S.
(1976). Orthogonal
designs. Linear Multilinear Algebra 3, 281-306. 108. Geramita A.V. and Verner J.H. diagonal.
Can.J.Math.,
109. Geramita A.V. and Wallis J.S. signs.
(1974). A survey of orthogonal de-
In: Proc. Fourth Manitoba Conf. Numer. Math.
and H.C.Williams, 110. Gilman R.E.
eds.),
121-168; Util.Math.,
(B.L.Harinell
Winnipeg,
Can.
(1931). On Hadamard determinant theory and orthogonal
determinants. 111.
(1976).Orthogonal designs with zero-
28, 215-224.
Bull.Am.Math. Soc. 37, 30-37.
Goethals J.M. and Seidel J.J. zero-diagonal.
Can.J.Math.
112. Goethals J.M. and Seidel J.J. Combinatorial
designs.
(1967). Orthogonal matrices with
19, 1001-1010. (1970). Regular Graphs derived from
Can.J.Math.,
v.22, N 3, 597-614.
2OO
113. G o e t h a l s J.M. and Seidel J.J. order
36. J.Aust.Math. Soc.,
114. Golay M.J.E. v.
(1970). A skew H a d a m a r d m a t r i x of Ser.A 11, 343-344.
(1961). C o m p l e m e n t a r y
series.
IRE T r a n s . I n f . T h e o r y ,
11-7, 32-87.
115. Golay M.J.E.
(1962). Note on c o m p l e m e n t a r y
series. Proc.IRE,
V. 50, 84. 116. G o l d b e r g K.
(1966). H a d a m a r d m a t r i c e s of order cube plus one. Proc.
Am.Math. Soc. 117. Gordon B.
17, 744-746.
(1974). A note on inequivalent H a d a m a r d matrices.
Reine Angev.Math. Math.
274/275,
118. Gruner W.
119. H a d a m a r d J.
120. Hall M.
427-433
(Corrigendum:
93).
WHrfel. C o m m e n t . M a t h . H e l v . 1 2
n - S i m p l e x in das
149,
149-152.
(1893). R ~ s o l u t i o n d'une q u e s t i o n relative aux d~ter-
Bull.Sci.Math.,
17(part I), 240-246.
(1970). C o m b i n a t o r i c s .
121. Hall M.Jr.
J.
JoReine Angev.
(1939-1940). E i n l a g e r u n g des r e g u l ~ r e n
n-dimensionale
minants.
268/269,
Mir, Mosk.
(1961). H a d a m a r d m a t r i c e s of order
Lab. Res. Summ. 122. Hall M.,Jr.
36-10,
1 21-26, J.P.L.,
16. L e t t . P r o p u l s .
Pasadena,
(1965). H a d a m a r d m a t r i c e s of order
Lab. Techn.Rep. 123. Hall M., Jr.
32-761, J.P.L., pasadena,
(1967). C o m b i n a t o r i a l Theory.
Calif.
20. Lett.Propuls.
Calif. Blaisdell
(Ginn),
Waltham, Mass. 124. Hall M. Jr. Appl.Math. 125. Hall M. Jr.
(1969). A u t o m o r p h i s m of H a d a m a r d matrices.
(1977).
Integral m a t r i c e s for w h i c h AA T = mI. Number
T h e o r y and Algebra. Acad.Press, 126. Hall M. Jr. and Knuth D.E. computers.
SIAM J,
17, 1094-1101.
Am.Math.Mon.
New York,
119-134.
(1965). C o m b i n a t o r i a l a n a l y s i s and
72, 21-28.
127. Hammer J., D i v i n g a t o n R. and Seberry J.
(1978). A remark on the
Excess of H a d a m a r d m a t r i c e s and o r t h o g o n a l designs.
Ars.Comb.
5,
327-254. 128. Hartley H.O. and Smith C.A.B.
(1948). The c o n s t r u c t i o n of Youden
201 squares. J.R.Stat.Soc.,
Ser.B 10, 262-263.
129. Harwit M. and Sloane N.J.A. and Spectroscopy. 130. Hedayat A.
(1978). Hadamard Methods in Optics
Unpublished manuscript.
(1978). D-optimal and near
D-optimal exact designs.
Unpublished manuscript. 131. Hedayat A. and John P.W.M. designs. Ann.Stat.2,
(1974). Resistant and susceptible.
BIB
148-158.
132. Hedayat A., Raghavarao D.and butions to the theory of
Seiden E.
(1975). Further contri-
F-squares design. Ann.Stat.
133. Hedayat A. and Seiden E.
3, 712-716.
(1970). F-square and orthogonal
F-squ-
ares design; A generalization of Latin square and orthogonal Latin squares design. Ann.Math. Stat. 41, 134. Hedayat A. and Wallis W.D. applications.
(1978). Hadamard matrices and their
Ann.Stat 6, N 6, 1184-1238.
135. Hotelling H.
(1944). Some improvements
rimental techniques. 136. Huang and Tretiak
Ann.Math.Stat.
in weighing and other expe-
15, 297-306.
(1973). Image processing.
by digital computers. 137. Hunt D.C.
1036-2044.
In: Image processing
17-18.
(1972). Skew-Hadamard matrices of order less than or
equal to 100. In: Proc. First Aust.Conf.Comb.Math. W.D.Wallis, eds.),
23-27, Tunra, Newcastle,
138. Hunt D.C. and Wallis J.
(1972). Cyclotomy,
supplementary difference Numer.Math.
139. Hurwitz A.
Aust. Hadamard array and
sets. In: Proc.Second Manitoba Conf.
(R.S.D.Themas and H.C.Williams,
Math., Winnipeg,
(J.Wallis and
eds.),
351-358. Util.
Can.
(1898). Uber die Komposition der quadratischen Formen
von beliebigen Variabeln.
Nachr.Akad.Wiss.Gott.
II, Math.-Phys.
KI., 309-316. 140. Johnson E.S.
(1966). Skew-Hadamard abeliangroup difference
sets.
J.Algebra 4, 388-402. 141. Jungnickel D.
(1979). On difference matrices, resolvable trans-
versal designs and generalized Hadamard matrices. N I, 49-60.
Math. Z. 167,
202
142. K a s a m i T. and Lin S.
(1978). Bounds on the a c h i e v a b l e rates of
b l o c k coding for a m e m o r y l e s s m u l t i p l e - a c c e s s channel. Inf.Theory,
v. IT-24,
IEEE Trans.
187-197.
143. Kasami T., Tokura N., Ivadari E.,
Inagaki Y.
(1978). Coding theory.
Mir, Mosk. 144. K a t o n a Cy.
(1969). Grafok, v e k t o r o k ~s. Mat.Lapok,
20, N I-2,
123-127. 145.
Kazue Sawade Inf. Eng.,
(1977). H a d a m a r d m a t r i c e s of order
100 and 108. Dep.
147-153.
146. K h a c h a t r i a n G.G.
(1981). C o n s t r u c t i o n of linear u n i q u e l y d e c o d a b l e
pair of codes for n o i s e l e s s c h a n n e l with 2 users. Probl. P e r e d a c h i Inf., v.XVIII, 147. Kido Keniti 245-215
N 2, 98-101.
(1976). J . I n s t . E l e c t r o n and C o m m u n . E n g . J a p .
148. Kiefer J.
(1975a). C o n s t r u c t i o n and o p t i m a l i t y of g e n e r a l i z e d
Youden designs. ed.),
In: S t a t . D e s i g n and Linear M o d e l s
333-353, N o r t h - H o l l a n d ,
149. Kiefer J.
Amsterdam.
(patchwork). A n n . S t a t 3, 109-118.
150. K i r t o n H.C. and Seberry J. o r t h o g o n a l to a
(1978). G e n e r a t i o n of a f r e q u e n c y square
I0xi0 Latin square. L e c t . N o t e s Math., N 686.
151. K o n v a l i n a J., K o s l o v s k i Rodney H. matrices.
Util.Math.,
(1977). Cyclic q u a s i - H a d a m a r d
12, 273-287.
152. Kruse S., G u d m u n d s s o n B., A n t o n s s o n D. filter processor.
Proc.5th I n t . C o n f . P a t t e r n Recogn Miami Beach,
struct B a u m e r t - H a l l arrays. 154. L a n c a s t e r H.O. 36,
155. Leech J.
(1980). FIP - the PICAR II
1-2. N e w York, N.Y, 484-488.
153. Lakein R.B. and Wallis J.S.
Stat.
(J.M.Srivastava,
(1975b) . B a l a n c e d block designs and g e n e r a l i z e d Youden
designs. I. C o n s t r u c t i o n
Fla, v.
59, N 3,
(Jap.) .
(1965).
(1975). On the m a t r i c e s used to conL e c t . N o t e s M a t h . N 452,
Pairwise
statistical
156-170.
independence.
Ann.Math.
1313-1317. (1967). Notes on sphere packing.
156. L e v e n s h t e i n V.I.
Can.J.Math.
19, 251-267.
(1961). A p p l i c a t i o n of H a d a m a r d m a t r i c e s to a
203
problem in coding. Probl.Kibern., N 5, 123-126. 157. Levenshtein V.I.
(1964). Application of the Hadamard matrices to
a problem in coding. Probl.Kibern., N 5, 166-184. 158. Longyear J.Q.
(1976). Criteria for a Hadamard matrix to be skew-
equivalent. Can. J.Math. 28, 1216-1223. 159. Longyear J.Q. ter exactly
(1978). If a Hadamard matrix of order
24 has charac-
2, its transpose is known. Theory and Application of
Graphs. Lect.Notes Math., N 642, 353-363. 160. Longyear J.Q. least
(1979). Order
3. Comb. Theory 27A,
161. Longyear J.Q.
24 Hadamard matrices of character at 100-118.
(1979). There is one Hadamard matrix of order 24 and
both character one. Proc.Math.Acad. Sci. USA, 319, 354-361. 162. Lynch R., Reis J.
(1980). Method and apparatus for implementing a
processor based on the rationalized Haar transform for the purpose of real time compression of video data.
364/724
(H 04N7/12),
N 4224678, 5.04.76, N 673799, 23.09.80. 163. MacWilliams Y., Sloane N.J.
(1979). The theory of error correcting
codes. Sviazj, Mosk. 164. Mann H.S. and McFarland R.L. In: Survey Comb. Theory
(1973). On Hadamard difference sets.
(J.N.Srivastava, ed.), 333-334, North-
Holland, Amsterdam. 165. Margolin B,H.
(1968). Orthogonal main effect 2n3 m
designs and
two-factor interaction aliasing. Technometrics 10, 559-573. 166. Markova E.V., Ezova L.I.
(1979). Youden rectangles and connected
with them plans. Sci.Counsil Complex Cybern.Probl. Akad. Sci.USSR, Mosk., 69 p. 167. Markova E.V., Ezova L.I.
(1981). Combinatorial plans: unification,
classification, analysis. Vopr.Kibern., Mosk., Linear and nonlinear parametrization in experimental design problems, 168. Matevosyan A.K.
(1984). The inverse problem of Karhunen-Loeve.
Proc. Seventh Eur. Meeting Cybern. Systems Res. 169. McCarthy D., Stanton and Vanstone S. of
126-131.
(R.Trappl. ed.).
(1976). On an extremal class
(r,l)-designs related to a problem of Doehlert and Klee. Ars.
204 comb. 2, 305-317. 170
McKay Brenden D.
(1979) . Hadamard equivalence via graph isomor-
phism. Discrete Math. 27, N 2, 213-214. 171
McWilliams F.J. and Sloane N.J.A. correcting codes. North-Holland,
172
Mesner D.M.
(1964). Negative Latin Square Designs. U.N.C.Inst.
Stat. Mimeo, 173
174
(1977). The theory of errorNew York.
Ser. N 410.
Montgomery D.C.
(1980). Experimental design and data analysis.
Sudostr.,
Mosk.
Mood A.M.
(1946). On Hotelling's weighing problem. Ann.Math.Stat.
17, 432-446. 175
Moriguti S.
(1954). Optimality of orthogonal designs.
Appl.Res.Un. 176
Mukhopadhyay A.G.
(1978). Some infinite classes of Hadamard mat-
rices. J.Comb. Theory, 177
Ser. A, 25, 128-141.
Namekawa Hideyo, Akiyama Michio tation of a FFT algorithm, processes.
178. Newman M.
implemen-
(1971). Invariant factors of combinatorial matrices.
179. Norman C,W.
180. Ozeki K.
(1977). Microprogrammed
employing floating-point arithmetic
J.Fac.Eng. Ibaraki Univ. 25, 157-163.
Isr.J.Math.
Theory,
Rep.Stat.
Japan Sci. Engrs 3, 75-98.
10, 126-130. (1976). Non-isomorphic
Hadamard designs.
J.Comb.
Ser. A, 21, 336-344. (1959). A Coordinate-Free
Theory of Eigenvalue Analysis
Related to the Method of Principal Components and the K.-L.Expansion.
Inf.Control, v.42, N 1, 38-59.
181. Ozeki Mishio
(1981). Generalized Hadamard matrices and Related
matrices and their Applications to Construction of the Positive Definite
Integral Hermitian Forms. J.Comb. Theory, Ser. A, 30,
270-275. 182 Paley R.E.A.C.
(1933). On orthogonal matrices.
J.Math. Phys.
12,
311-320. 183. Paradimitriou Christos H.
(1979). Optimality of the fast Fourier
2O5
transform.
J.Assoc.Comp.Math.
184. Payne S.E. Lab.,
EMO
(1973). A maximal d e t e r m i n a n t problem.
73-1095,
185. Peari J.
26, N I, 95-102. A e r o s p a c e Res.
USA.
(1971). W a l s h p r o c e s s i n g of r a n d o m signals.
IEEE Trans.
13, N 3.
186. P e s o t a n
H. and R a g h a v a r a o D. (1975) . E m b e d d e d H a d a m a r d matrices.
Util.Math.
8, 99-110:
187. P e s o t a n H., R a g h a v a r a o D. and Raktoe B.L. b u t i o n s to e m b e d d e d H a d a m a r d matrices. 188. P e t e r s o n W., W e l d o n E.
factorial experiments.
IEEE Trans. 191. P ! o t k i n M.
12, 241-246.
(1973). E r r o r - c o r r e c t i n g codes.
189. P l a c k e i t R.L. and Burman J.P.
190. Plotkin M.
(1977). Further contri-
Util.Math.
Mir, Mosk.
(1946). The design of o p t i m u m multi-
Biometrica
33, 305-325.
(1960). Binary codes with specified m i n i m u m distances. Inf. Theory,
6, 445-450.
(1969). Binary codes s p e c i f i e d minimal distance.
Kibern.
Sb., old Ser, N 7. 192. P l o t k i n M. Theory,
(1972). D e c o m p o s i t i o n of H a d a m a r d matrices.
Ser. A,
193. Posner E.C. nnaissance.
J.Comb.
13, 127-130.
(1968). C o m b i n a t o r i a l
structures
In: Error C o r r e c t . C o d e s
in p l a n e t a r y recco-
(H.B.Mann, ed.),
15-76, Wiley,
New York. 194. Pratt W.
(1982). Digital p r o c e s s i n g of images. V.1,2, Mir, Mosk.
195. Pratt W., Kane Y., Andrews H. transformation.
Proc.
(1969).
Image coding by H a d a m a r d
IEEE, v.57, N I.
196. Rao K.R., Kuo John GoK., N a r a s i m h a n M.A. form.
Int.J.Comb.Math.
197. R a g h a v a r a o D.
(1971). C o n s t r u c t i o n and C o m b i n a t o r i a l P r o b l e m s
Design of Experiments.
199. Rader C.M.
in
Wiley, New York.
198. R a g h a v a r a o D. and Pesotan H. Util.Math.
(1979). Slant-Haar trans-
7, N I, 73-83.
(1977). E m b e d d e d
(Sn ~
In)-matrices.
11, 227-236. (1968). Discrete Fourier t r a n s f o r m when the number of
2O6
data points 200.
is prime.
Robinson P.J.
Soc.,
IEEE 56,
1107-1108.
(1976). A non-existence
signs. Util.Math, 201. Robinson
Proc.
P.J.
v.10,
theorem for orthogonal
(1976). Amicable orthogonal
Ser. A, v.14,
202. Robinson P.J.,
designs.
Bull.Aust.Math.
305-314.
Seberry J.
of some amicable
de-
179-184.
(1978). On the structure
orthogonal
designs.
and existence
J.Aust.Math. Soc.,
Ser.A,
24,
N I, 118-128. 203. Robinson P.J., Wallis J.S. construct Comb.
orthogonal
Kesthely
204. Rudvalis A.
(1976). A note on using sequences
designs.
(Hungary),
(1971).
Colloq.Math.Soc.
1976,
Janos Bolyai.
to 18,
911-932.
(v,k,l)-graphs
and polarities
of
(Sn~In)-de-
signs. Math. Z. 120, 224-230. 205. Rumor V.T.
(1971). On c o n s t r u c t i o n
of ring of residues
of b l o c k - d e s i g n s
to the composed modulus.
from elements
Mat. Zametki
10, N 6,
and Hadamard matrices.
Proc.Am.
649-658. 206. Rutledge W.A. Math. Soc. 207. Ryser H.J. graph,
(1952). Quaternions
3, 625-630. (1963). Combinatorial
N 14), Wiley,
208. Sarukhanian
A.G.
(1978). W i l l i a m s o n
Zap.Erevan Gos.Univ., 209. Sarukhanian
A.G.
Sarukhanian A.G. Goethals-Seidel Kybern.,
211.
June
Sarukhanian Proc.Comp.
Estestv.Nauki,
A.G.
type arrays.
Uch. Zap.
Williamson
Proc. Fifth A l l - U n i o n
type matrices
and
Conf.Probl.Theor.
147-149.
(1982). On partition
of W i l l i a m s o n
type matrices.
Centre Akad. Nauk Arm. SSR, N 12, 91-101.
212. S a r u k h a n i a n A.G.
(1984). On c o n s t r u c t i o n
with zero autocorrelation Comp.
N 2, 3-11.
N I, 12-19.
(1980). Parametric arrays.
18-20,
(Carus Math.Mono-
type g e n e r a l i z e d matrices.
Estestv. Nauki,
(1979). On Goethals-Seidel
Erevan Gos.Univ., 210.
Mathematics.
New York.
functions
of g e n e r a l i z e d
and of Hadamard matrices.
Centre Akad.Nauk Arm. SSR and Erevan Gos.Univ.,
problems Cybern.
and Comp. Eng.
sequences
Hadamard matrices
Proc.
v.XIII,Math.
and adjycent
207
problems. 213
Satoshi Imai
(1969). Synthesis of threshhold date using Walsh ex-
pansion of logical function. Bull.Tokyo 214
Scarpis U.
(1898). Sul Determinant di valore massime.
Fis.Chim.Geol. 215
Schmidt K.W.
(1970). Lower bounds for maximal
Schmidt K.W. nants.
217
(1973). A bound a
SIAM Rev.
4k-order maximal
(0,1)-determi-
15, 673-674.
Schmidt K.W. and Wang E.T.H.
Seberry J.
(0,1)-determinants.
19, 440-442.
rices. J.Comb. Theory, 218
Rend.Sci.Mat.
(2) 31, 1441-1446.
SIAM J.Appl.Math. 216
Inst.Tech., N 92, 67-75.
(1977). The weights of Hadamard mat-
Ser. A, 23, 257-263.
(1978). A computer listing of Hadamard matrices.
Lect.
Notes Math., N 686, 275-281. 219
Seberry J., Wehrhahn K.
(1978). A class of codes generated by cir-
culant weighing matrices. 220
Seidel J.J.
Lect.Notes Math., N 686, 282-289.
(1967). Strongly Regular Graphs
h-type and of trian-
gular type. Koninkl. NED.Akad.Wetenschap.Proc. 221. Seidel J.J.
(1968). Strongly Regular Graphs with
Algebra Appl. 222. Seidel J.J.
(I,1,0). Linear
I, 281-298.
(1969). Strongly Regular Graphs. Recent Progr.Comb.
Acad.Press N-Y, 223. Shannon C.E.
185-198.
(1961). Two-way communication channels.
4th Berkeley Symp.Math. Stat.Probl., 224. Shih-Chun Chang, Weldon E.J. access channels. 225. Shlichta P.J.
226. Shlichta P.J.
In: Proc.
v.1, 611-644.
(1979). Coding for T-user multiple
IEEE Trans. Inf. Theory, v.25, N 6, 684-691.
(1971). Three- and -four-dimensional
ces. Bull.Am. Phys.Soc.,
Trans.
Ser. A 70, 188-196.
Ser.
Hadamard matri-
11, v.16, 825-826.
(1979). Higher dimensional Hadamard matrices.
IEEE
Inf. Theory, v. IT-25, N 5, 566-572.
227. Shrikhande S.S.
(1964). Generalized Hadamard matrices and orthogo-
nal arrays of strength two. Can.J.Math.
16, 736-740.
208
228. Shrikhande
S.S. and B h a g w a n d a s
H a d a m a r d matrices.
(1970). A note on e m b e d d i n g for
In: Essays in Probl. and Stat 673-685.
Univ.of
North C a r o l i n a Press. 229. Shrikhande
S.S. and Singh N.K.
(1962). On a m e t h o d of c o n s t r u c t i n g
symmetrical b a l a n c e d imcomplete block designs.
Sankhya,
Ser.A,24,
25-32. 230. Sidorenko A.P.,
Stechkin B.S.
(1981). Extremal g e o m e t r i c a l con-
stants. Mat. Zametki, v.29, N 5, 691-709. 231. Singhi N.M. designs. 232.
(1974).
J.Comb.
Singhi N.M.
(19,9,4)-Hadamard designs and their residual
Theory,
Ser. A,
16, 241-252.
(1975). N o n - i s o m o r p h i c
solutions of
(4t+3,2t+1,t)-de-
signs. Geom. D e d i c a t a 4, 387-402. 233. Slepian D. and Wolf J.K.
(1973). A coding t h e o r e m for m u l t i p l e
access c h a n n e l s with c o r r e l a t e d Sources.
Bull.Syst.Tech.J.,
v.52,
1037-1076. 234. Sloane N.J.,
Fine T. and P h i l l i p s P.G.
grading spectrometers. 235. Sloane N.J°A.
Optic.
(1970). New m e t h o d s for
spectra 4, 50-53.
(1972). A survey of c o n s t r u c t i v e coding theory and
a table of b i n a r y codes of highest known rate.
Discrete Math.3,
265-294. 236. Sloane N.J.
(1977). Binary codes latices and s p h e r e - p a c k i n g s . P r o c .
Six British Comb.Conf.,
117-164.
237. Sloane N.J.A. and Harwit M° optics/ and w e i g h i n g designs. 238.
S6c V.T.
(1976). M a c k s and H a d a m a r d t r a n s f o r m Appl. Optics
(1970) . On e x t r e m a l p r o b l e m s
Appl. N.-Y., G o r d o n and Breach, 239.
Sokolov N.P.
(1972).
15,
107-114.
in graph theory.
Comb.Struct.
407-410.
Introduction to the theory of h i g h - d i m e n s i o n a l
matrices. N a u k o v a Dumka, Kiev. 240.
Spence E.
(1967). A new class of H a d a m a r d matrices.
Glasg.Math. J.
8, 59-62. 241. Spence E.
(1972). H a d a m a r d design.
242.
(1975a). H a d a m a r d m a t r i c e s from relative
Spence E.
Proc.Am.Math. Soc. 32, 29-31. sets. J.Comb.
2O9
Theory, 243.
Ser. A, 19, 287-300.
Spence E.
(1975b).
type. Can.J.Math. 244.
Spence E.
(1977). An infinite family of W i l l i a m s o n matrices.
Aust.Math. Soc., 245. Spence E. Math.
S k e w - H a d a m a r d m a t r i c e s of the G o e t h a l s - S e i d e l 27, 555-560. J.
Ser. A, 24, 252-256.
(1977). S k e w - H a d a m a r d m a t r i c e s of order
2(q+I).
Discrete
18, 79-85.
246. Spencer J.
(1967). H a d a m a r d m a t r i c e s
k u m e n t D-15925-PR,
in many variables.
Rand Do-
Rand Corp.
247. Stanton R.G. and K a l b f e i s c h J.G. incomplete b l o c k designs.
J.Comb.
248. Stanton R.G. and Mulin R.G. incomplete block designs.
(1968). Q u a s i - s y m m e t r i c b a l a n c e d Theory,
Ser. A, 4, 391-396.
(1969). U n i q u e n e s s theorems
J.Comb.
249. Stanton R.G. and Mulin R.G.
Theory,
in b a l a n c e d
Ser. A, 7, 37-48.
(1976). On the n o n - e x i s t e n c e of a
class of c i r c u l a n t b a l a n c e d w e i g h i n g matrices.
SIAM J.Appl.Math.
30, 98-102. 250. Stanton R.G. and Sprott D.A° Can.J.Math.
sets.
10, I, 73-77.
251. Stark Honry,
252.
(1958). A family of difference
John Woods,
Paul Indraneel
(1981).
IEEE T r a n s . A c o u n s t .
sign.process,
29, N 2, 237-245.
S t e c h k i n B.S.
(1977). Several c o m b i n a t o r i a l problems. Math. Inst.
Belgrad, New Ser.,
129-137.
253. S t i f f l e r J.J. and Baumert L.D. ces. L e t t . P r o p u l s . L a b . R e s .
(1961). I n e q u i v a l e n t H a d a m a r d m a t r i -
Summary 36-39,
I, 28-30, J.P.L.
Pasadena
Calif. 254. Storer T.
(1967). C y c l o t o m y and Difference
Sets. Markham,
Chicago.
255. Storer T.
(1971). Hurwitz on H a d a m a r d designs. B u l l . A u s t . M a t h . S o c .
Ser. A, 4, 109-112. 256. Street A.F. troduction.
and Wallis W.D.
(1977). C o m b i n a t o r i a l
C h a r l . B a b b a g e Res. Center, Winnipeg,
257. Sugawa K., E b i h a r a N.A.
Theory: An InCan.
(1979). A digital noise r e d u c t i o n system
210
for television signals using the Hadamard transform. Telev. Symp. Montreux,
11th Int.
Symp.Rec. Sess. 5, S.L., Ser. A, VB.3/1-
VB 3/4. 258. Sylvester J.J.
(1867). Thoughts on inverse orthQgonal matrices,
simultaneous sign-successions and tesselated pavements
in two or
more colors, with applications to Newton's rule, ornamental-tilework, and the theory of numbers. 259. Sylvester J.J.
(1868). Mathematical Questions from the Ed cational
Times, London, v.VI, 97-99; v.X, 260. Szekeres G. Theory, 261.
Philos.Mag. (4) , 34, 461-475.
74-96.
(1969). A new class of symmetric block designs.
J.Comb.
Ser. A, 6, 219-221.
Szekeres G.
(1971). Cyclotomy and complementary difference
sets.
Acta. Arith 18, 349-353. 262. Tai M.H., Harwit M. and Sloane N.J.
(1975). Errors in Hadamard
spectroscopy or imaging caused by imperfect masks. Appl. Optics 14, 1678-1686. 263. Taki Y.
(1969). Even-shift orthogonal
sequences.
IEEE Trans.
Inf.
Theory IT-15, 293-300. 264. Taussky O.
(1971).
(1,2,4,8)-sums of squares and Hadamard matrices.
In: Proc.Symp.Pure Math.XIX:
Combinatorics,
265. Trakhtman A.M., Trakhtman V.A.
(1975). Foundations of discrete sig-
nals theory on finite intervals. 266. Tseng C.C.
229-234, Am.MathoSOC.
Sviazj, Mosk°
(1971). Signal multiplexing
in surface-wave
using orthogonal pairs of Golay's complementary Trans.
Sonics Ultrasonics SU-18,
267. Turin P.
delay lines
sequences.
IEEE
103-107.
(1970). Applications of graph theory to geometry and
potential theory. Comb.Struct.Appl.
N.Y., Gordon and Breach,
423-434. 268. Turin P.
(1972). On some applications of graph theory to analysis.
Proc. Int.Conf.Construc.Func.Theory,
Varna, May 19-25,
1970, Sofia,
351-358. 269. Turyn R.J.
(1965). Character sums and difference
15, 319-346.
sets. Pac.J.Math.
21t
270
271
Turyn J.
(1968). Sequences with small correlation.
ting Codes
(H.B.Mann, ed.),
Turyn R.J.
(1970). Complex Hadamard matrices.
In:Error Correc-
195-228, Wiley, New York. Comb.Struct°Appl.
Gordon and Breach, New York, 435-437. 272
Turyn R.J.
(1971). On Q-matrices of arbitrary powers. Can.J.Math.
23, 531-535. 273
Turyn R.J.
(1972). An infinite class od Williamson matrices. J.
Comb. Theory, 274
Turyn R.J.
Ser. A, 12, 319-321.
(1973). Computation of certain Hadamard matrices. No-
tices Am.Math.Soc. 275
Turyn R.J.
(1974). Hadamard matrices,
symbol sequences, Comb. Theory, 276. Turyn RoJ.
20, A-2.
pulse compression,
Ser. A.,
278
four-
and surface wave encoding.
J.
16, 313-333.
(1975). Personal communication to A.Hedayat.
277. Turyn R.J. and Storer J. Math.Soc.
Baumert-Hall units,
(1961). On binary sequences.
Proc.Am.
12, 394-399.
Usage of digital methods of signal Processing.
(1960). By edition
of Huang, Mir, Mosk. 279
Verheiden E. Comb. Theory,
280
Vijayan K.
(1982). Hadamard matrices and Projective Planes. J. Ser. A, 32, 126-131.
(1976). Hadamard matrices and submatrices.
J.Aust.Math.
Soc., Ser. A, 22, 465-475. 281
Wallis J.
(1969a). A class of Hadamard matrices.
J.Comb. Theory,
Ser. A, 6, 40-44. 282
Wallis J. Theory,
283
(1969b). A note of a class of Hadamard matrices.
J.Comb.
Ser. A, 6, 222-223.
Wallis J.
(1970). Hadamard designs.
Bull.Aust.Math. Soc., Ser. A,
2, 45-54. 284
Wallis J.
(1971a). Some
(1,-1)-matrices.
J.Comb. Theory, Ser. B,
10, 1-11. 285
Wallis J.
(1971b). Amicable Hadamard matrices.
J.Comb. Theory,
212
Ser. 286.
A,
Wallis
11, 296-298. J.
(1971c) . A s k e w - H a d a m a r d
Math. Soc., 287. W a l l i s Math.
J.
Ser.
(1972a).
J.
Tunra,
290. W a l l i s
J. 3,
Wallis
296
In:
Winnipeg.
Wallis
J.
matrices
advances
Fourth
of order
Hadamard
First 61-84,
28m and 44m.
matrices.
in the c o n s t r u c t i o n
Southeastern
R.B.Levow
Conf.
and R.S.D.Thomas,
(1973d) . Some m a t r i c e s
Wallis
J.
(1974).
Williamson
Proc.
Second Aust.Conf.
Math,
N 403.
Wallis
J.
(1975a).
Comb. eds.),
of W i l l i a m s o n
Wallis
J.
matrices
(D.A-Holton,
Construction
Algebra, (1975b).
J.Comb.
Util.
type.
of H a d a m a r d
Graph T h e o r y 53-89,
Util.
Util.
Math.
3,
of even ed.),
order.
132-142,
of W i l l i a m s o n
In: Comb.Math. Lect.Notes
type matrices.
Linear
197-207.
On H a d a m a r d
matrices.
J.Comb.
Theory,
Set. A,
matrices.
J.Comb.
149-164.
Wallis
Waliis
J.
(1976).
Ser. A, J.
Wallis
Wallis
On the e x i s t e n c e
21,
(1978).
188-195.
A computer
J. and W h i t e m a n
W.D.
of H a d a m a r d
listing
of H a d a m a r d
matrices.
Lect.
N 686.
ces w i t h c o n s t a n t 299
eds.),
147-154.
N o t e s Math., 298
Aequationes
In: Proc.
and W . D . W a ! l i s ,
A note on a m i c a bl e
Proc.
(F.Hoffman,
Theory, 297
sets.
15, 323-328.
(1973c) . Recent
Math.,
18,
difference
(0,1,-1)-matrices.
(J.Wallis
Hadamard
(1973b).
Multilinear 295
92. Bull.Aust.
119-125.
J.
Comp.
294
(1973a).
Ser. A,
matrices.
293.
Orthogonal
on Comb.Math.
J.
Theory,
4,
of order
N e w c a s t l e , Aust.
289. W a l l i s
292.
On s u p p l e m e n t a r y
(1972b).
Aust.Conf.
291.
matrix
5, 203-204.
8, 242-257.
288. W a l l i s
Math.
A,
A.L.
diagonal.
(1969a) . C e r t a i n
(1972).
Some c l a s s e s
Bull.Aust.Math.Soc. graphs
arising
of H a d a m a r d
matri-
7, 233-249.
from H a d a m a r d
matrices.
213
Bull.Aust.Math.Soc. 300
301
Wallis W.D.
(1969b). On the r e l a t i o n s h i p b e t w e e n p a r t i a l l y b a l a n c e d
incomplete block designs and graphs.
B u l l . A u s t . M a t h . Soc.
Wallis W.D.
t h e o r e m for
(1970a). A n o n - e x i s t e n c e
Aust.Math.Soc., 302
Wallis W.D. Theory,
303
304
Ser. A,
1,425-430.
(l,k)-graphs.J.
11, 381-383.
(1970b) . A note on q u a s i - s y m m e t r i c
designs. J.Comb.
Ser. A, 9, 100-101.
Wallis W.D.
(1971a) . Integral e q u i v a l e n c e of H a d a m a r d matrices.
Isr.J.Math°
10, 349-358.
Wallis W.D.
(1971b). Some notes on integral e q u i v a l e n c e of combi-
n a t o r i a l matrices. 305
I, 325-331.
Wallis W.D.
Isr.J.Math.
10, 457-464.
(1971c) . C o n s t r u c t i o n of strongly regular graphs using
affine designs.
Bull.Aust.Math.Soc.
4, 41-49
(Corrigendum: Bull.
Aust.Math. Soc. 5, 431). 306. Wallis W.D.
(1972a) . H a d a m a r d m a t r i c e s
in c a n o n i c a l
First A u s t . C o n f . C o m b . M a t h .
(J.Wallis and W.D.Wallis,
103-106, Tunra, Newcastle,
Aust.
307. Wallis W.D. ces.
H.C.Williams,
matrices.
eds.),
Second M a n i t o b a Conf. Numer.Math. eds.),
383-401, Util.Math.,
(R.S.D.Thomas and
Winnipeg,
Can.
(1972c) . On a p r o b l e m of K . A . B u s h c o n c e r n i n g H a d a m a r d
B u l l . A u s t . M a t h . Soc. 6, 321-326.
309. Wallis W.D. Comb.
In: Proc.
(1972b) ° On the number of i n e q u i v a l e n t H a d a m a r d m a t r i -
In: Proc.
308. Wallis W.D.
form.
(1977).
In the w e i g h t s
of H a d a m a r d matrices.
Ars
3, 287-291.
310. Wallis W.D. Aust.
(1980). H a d a m a r d equivalence.
2308, Congr.Numer.,
311. Wallis W.D.,
v.28, December,
Street A.P. and Wallis J.S.
Room Squares,
Uaig. N e w c a s t l e NSW, Winnipeg,
Can.
(1972). C o m b i n a t o r i c s :
Sum-Free Sets, H a d a m a r d M a t r i c e s . L e c t . N o t e s Math.
N 292. 312. Wallis W.D. and Wallis J.S. ces.
Isr.J.Math.
313. Weldon E.S.
(1969). E q u i v a l e n c e of H a d a m a r d matri-
7, 122-128.
(1978). C o d i n g for a M u l t i p l e Access Channel.
Inf.
214
Control,
N 33, 256-274.
314. Whiteman A.L.
(1971). An
ces. Pac.J.Math. 315. Whiteman A.L.
(1972). Skew H~damard matrices of Goethals-Seidel
type. Discrete Math. 316. Whiteman A.L.
infinite family of skew Hadamard matri-
38, 817-822.
2, 397-405.
(1973). An infinite family of Hadamard matrices of
Williamson type. J.Comb. Theory, 317. Whiteman A.L.
Ser. A, 14, 334-340.
(1976). Hadamard matrices of order 4(2p+I). J.
Number Theory 8, 1-11. 318. Williamson J. four squares. 319. Williamson J. Am°Math.Mon.
(1944). Hadamard's determinant theorem and the sum of Duke Math.J.
11, 65-81.
(1946). Determinants whose elements are
0
and 1.
53, 427-434.
320. Williamson J. (1947). Note on Hadamard's determinant theorem.Bull. Am.Math.Soc. 53, 608-613. 321. Winz P.L.
(1973). Image coding by transformations.
processing by digital computers,
In:
322. Wolfe W. (1976). Amicable orthogonal v.XXVIII, N 5, 1006-1020.
designs-existence.
323. Yamamoto K. (1981). Generalized Williamson matrices. Colloq.Comb. July 6-11, Eger, Hungary. 324. Yang C.H.
(1966). A construction
order 52. Bull.Am.Math.Soc.
Image
78-112.
for maximal
Can.J.Math°
Sixth Hungari.
(+1,-1)-matrix of
72.
325. Yang C.H. (1971). On Hadamard matrices constructible by circulant submatrices. Math.Comp. 25, 181-186. 326. Yang C.H. (1976). Maximal Binary Matrices and Math.Comp. 30, 148-153. 327. Yang C.H.
(1979). Hadamard matrices,
finite sequences and polyno-
mials defined on the unit circle. Math.Comp. 328. Yaroslavskij L.P.
Sum of Two Squares.
33, 688-693.
(1976). Digital image proccessing,
Nauka, Mosk.
215
329. Zinovjev V.A., Kozirev V.M. combinatorial configurations.
(1975). Strongly regular graphs and Proc. 2th All-Union Sem.Comb.Math.
Vopr. Kibern., Mosk., N 16, part I.
SUBJECT
A-array
4
Abelian
group
Agayan
2
M.A.
A-matrix Aturian
7
2, 4 S.M.
2
autocorrelation - matrix automaton
function 7
theory
Back-circulant
8
matrix
balanced
incomplete
Banerjee
K.S.
Barker
2
block
array
2,
L.D.
0,
Baumert-Hall
type
Baumert-Hall
unities
Bellman
9
Berlecamp
Index
E.R.
is g i v e n
Appendix.
(BIB-design)
1,9
9 3, 4
Baumert-Hall-Goethals-Seidel
R.
design
9
sequence
Baumert-Hall
Baumert
*
6
S.S.
Aizerman
INDEX
method
2
I, 2 Hadamard
matrix
4
3
5, 9
by p a r a g r a p h s ,
0 denotes
Introduction,
AI d e n o t e s
217
B e s t M.R.
6, AI
Bhat
8
V.N.
binary
code
7
block-circulant
Hadamard
matrix
4, AI
block-symmetric
Hadamard
matrix
4
-- g e n e r a l i z e d
Hadamard
-- p a r a m e t r i c block-design geometries
Bose
R.C.
circulant
I
5
P.
8 matrix
theory
circulant
1, 2 6
core
- Abelian
5
group
5
-
generalized
Hadamard
-
generalized
6-code
classic Cohn
Hadamard
J.H.E.
Cooper
J.
0
matrix
5
I, 2 theorem
code
Hadamard
- family
5
4
Hadamard
Cooper-Wallis
cubic
2,
5, 8
matrix
correcting
5
3
matrix
analysis
- design
complex
matrix
9
combinatorial
complete
4
5
F.C.
A.T.
coding
matrix
9
Bussemaker
Cameron
Hadamard
5
0
Bose
Butson
matrix
0, matrix
2 3 6
of W i l l i a m s o n
matrix
6
218
cubic
matrix
Cummings
Data
6
L.
9
processing
Delsarte density
P.
7 5, 9
of H a d a m a r d
matrix
density-of-probability design
theory
diagonal
-
1, 5, 8 7
J.P.
8
- decodable discrete
code
7
orthogonal
- Fourier
function 7
7
D(m,n,k)-sequence
3
D(m,n)-partition D.A.
3
5
Egiasarian Ehlich
7
transformation
- system
Drake
C.O.
H.
6
9
eigenvalue
7,
eigenvector entropy
7
2
set
matrix
Dillon
function
8
matrix
difference
6
9
7 7
equivalent
Hadamard
Euclidean
coordinates
- space
matrix I
7
extended
code
5
extremal
geometrical
constants
I
219
Factorable fast
Hadamard
algorithm
filtration finite
matrix
8,
9
7
geometrics
0
- projective F-matrix Fourier
plane
sum
Generalized
5, 7
Williamson
matrix
- Hadamard
matrix
k-elemental
on groups
Williamson
- Yang matrix A.V.
3,
Goethals
J.M.
0, 5,
Goethals-Seidel M.D.E
approach
S.W.
2
Gordon
B.
I
Good matrix
7
9 I, 2,
3, 4
theory
8
group
theory
0, 8
function
3 sequences
graph
2
7
matrix
- array
matrix
0
supplementary
Hadamard
5
9, AI
array
Golomb
Haar
5
5
Geramita
Colay
2
5
hyperframe
- parametric
Golay-Turyn
matrix
3
Hadamard
Golay
9
0
- 6-code
-
8,
2
- matrix
-
5
2,
0, 2, 4, 4
7, 8,
9, AI
220
- function
7
- problem
0
- product
I
system
-
4
- transformation Hammer
A.
0
Hartley
H.C.
Hedeyat
A.
Hermitian
8 0
matrix
7
- function hybrid
7
orthogonal
base
high-dimensional classic
-
Hadamard
Hadamard
- generalized - improper
Hadamard
Image
incidence
-
John
6
3 matrix
theory
0,
P.W.M.
cubic
8
4
7
0
equivalence
irregular
6
7
compressing
integral
matrix
Hadamard
information
6
6
matrix
incomplete
6
9
processing
- coding
matrix
7
H.
Hadamard
6, 6
matrix
matrix
space
Hotelling
Hadamard
design
- Williamson Hilbert
matrix
matrix
Hadamard
- orthogonal - proper
7
I matrix
AI
221
Johnson
E.C.
Jungnical
8
D.
5
Karhunen-Loeve
decomposition
- filter
7
Kasami
T.
7
Kiefer
J.
8
Kirton
H.C.
8
Khachatrian
G.G.
Kotelnikov Kozirev
theorem
V.P.
Kronecker
Lagrange latin
matrix
4
theorem
2
1-elemental
0,
3,
L-distance
Levinston linear
7 V.I. P.
- code
7,
(van
AI
Lint
J)
8 7
9
McWilliams
Markova
0
function
R.
Markov
9
7
Lipshits Lynch
3
algebra
J.
I, 4
4
semi-frame
Levenstein
8
hyperframe
frame
-
Lint
7
9
squares
-
7
F.J.
signals E.V.
Matevosian
A.K.
7,
9
2,
7
7 8
222
maximal
code
maximum
determinant
Milas
J.
7 problem
H.
monomial
permutation
6
m-parallelipiped m-space
channel
multiplicative
non-periodic normalized
0,
Hadamard
C.W.
function
matrix
0-code
theory
]
3 ~-code
3
0
linear
detection
- balanced
chemical
0 plan
7
- linear
filtration
- Wiener
filter design
- array base
matrix
8
I
- generalized
code
7,
autocorrelation
n-symbolical
-
Hadamard
I coding
orthogonal
7
5
generalized
M.
Optimal
0,
group
N-dimensional
noiseless
2
7
multiple-access
number
I
I
A.G.
R.C.
Norman
matrix
I
Muchopadhyay
Newman
9
I
Miyamoto
Mullin
0,
7 7
I,
4
5 7
-Chebyshev-Hadamard
system
3
223
-
-
F-square
design
Hadamard
transformation
- table
0
- F-square
configuration
system
-
0
0
- transformation
Palay
7
5
matrix
-
8
R.E.A.C.
0
0,
4,
7
Palay-Wallis-Whiteman
method
2
parametric
family
2
Williamson
Hadamard
-
matrix
- williamson Yang
matrix
matrix
recognition
partial
factor S.E.
7
design
M.
Plotkin
hypothesis
0,
- array
3,
2
- method
7 3
- partition
3
- theorem
4
autocorrelation E.C.
projective
function
7 plane
Quasi-symmetrix
Radon
7 0
- boundaries
Posner
8
9
Plotkin
periodic
2
2
pattern
Payne
4
function
8
design
I
8
224
Raghavarao
D.
Rao
5
K.R.
rapid
(fast)
9
algorithm
- Hadamard
transformation
Read-Maller
code
rectangular
matrix
regular
graph
7
matrix
relation
reverse
8
7
transformation
Robinson
P.J.
3
Rutledge
W.A.
1
Ryser
I, 4
5
- Hadamard Relay
7
H.J.
0, 8
Sarukhanian
A.G.
Scarpis
U.
Schmidt
K.W.
Seberry
J.
5, 8
Seidel
J.J.
0,
Seiden
E.
3
9
1, 9
8 3
C.E.
Shlichta
2,
0, 4
semi-partition Shennon
7
7
problem
6
Shrikhande
S.S.
5, 6, 8
Sidelnikov
V.M.
0
Singhi
N.M.
8
skew-symmetric Slepian Sloane
D. N.J.
S-matrices spatial
matrix
I
7 7, 9 I, 4
generalized
Hadamard
matrix
225
- Hadamard special
Hadamard
spectral
packing
9
system
Stanton
R.G.
8 8
J.J.
T.
I
8,
9
story-by-story
Kronecker
Street
5, 8
P.
strongly
0,
regular
supplementary -
-
matrix
graph
Golay
m-sequences
sequences 3
of H a d a m a r d
Sylvester
J.J.
symmetric
incomplete
- BIB
I
- hyperframe
2
G.
matrix
8
telemetric
system
t-design
8
T-matrix
0, 2,
Trachtman
A.M.
T-sequences
3 5
Turyn
sequences
Turyn
R. code
7
3
0,
6
block-design
2, 8
Y.
T-user
3
0, 4
design
Szekers
4,7
0, 9
Q(n,t)-sequences
surplus
Taki
6
2, 8
Stainer
Storer
matrix 7
E.
Stiffler
6
analysis
spherical Spence
matrix
3
2, 3, 8, 7
9
(SBIB)
226
-
uniquely
Uniquely unit
decodable
decodable
matrix
T-user
matrix
5,
Vilenkin-Kronecker
Wallis
array
Wallis
J.
Wallis
W.D.
0,
2,
array system
equivalence
Weldon
E.S.
Williamson
0,
array
2,
3
7
2,
8
I,
2,
2,
- method
9
4,
3 6
2
- theorem
2 J.
0,
- family
2,
6,
3,
Hadamard
filter
C.H.
Yang
matrices
I,
matrix
0 6, 2,
2,
6
9
6
7
S.V.
Yang
array
I, 4
I,
- matrices
-
9
7
A.L.
Yablonskiy
8,
function
weight
Wiener
6,
5
Walsh-Hadamard
type
3,
8
- matrix
-
6
system
I,
function
Williamson
code
I
Wallis-Whiteman
Whiteman
code
I
Vandermonde
Walsh
basic
9 5
4
7
227
- theorem Youden
Zinovjev
design
V.A.
5 8
0,
9