GRAPHS, GROUPS AND SURFACES
NORTH-HOLLAND MATHEMATICS STUDIES
NORTH-HOLLAND -AMSTERDAM
NEW YORK
OXFORD
8
GRAPHS...
238 downloads
1340 Views
12MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
GRAPHS, GROUPS AND SURFACES
NORTH-HOLLAND MATHEMATICS STUDIES
NORTH-HOLLAND -AMSTERDAM
NEW YORK
OXFORD
8
GRAPHS, GROUPS AND SURFACES ArthurT. WHITE Western Michigan University Kalamazoo, Michigan U.S.A.
Completely revised and enlarged edition
1984
NORTH-HOLLAND -AMSTERDAM
0
NEW YORK
OXFORD
Elsevier Science Publishers E.V., 1984
All rights reserved. No part of this publication may be reproduced, stared in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
First edition: First printing 1973 Revised edition: First printing 1984
ISBN: 0 444 87643 x
Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V. P.O. BOX 1991 1000 EZ AMSTERDAM THE NETHERLANDS
Soledistributors forthe U.S.A.andCanada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 52VANDERBILT AVENUE NEW YORK, N.Y. 10017 U.S.A.
Library of Congress Cataloging in Publlcation Data
White, Arthur T. Graphs, groups, and surfaces. (North-Holland lllathematics studies ; 8)
Bibliography: p. Includes indexes.
1. Graph theory. 2. Groups, Theory of. 3. Combinat o r i a l topolo I. Title. 11. Series. W66.W45 19% 511'. 5 84-18853 ISBN 0-444-87643-X
.
PRINTED IN THE NETHERLANDS
V
FOREWORD TO THE FIRST EDITION
This text is based on a course that I taught at Western Michigan University in 1971. The material is suitable for presentation at the graduate or advanced undergraduate level, and assumes only an introductory knowledge of group theory and of point-set topology.
One of
the features of the subject matter is that many results of the general theory can be readily visualized, or modeled, so that the student is constantly reassured that what he is doing has meaning, is more than a formal manipulation of symbols. The focus of attention is an interaction amoung graphs, groups, and surfaces (see Figure 0-1). After a brief introduction to the theory of graphs, the relationship between graphs and groups will be explored.
For every graph there is an associated group, called the
automorphism group of the graph.
Conversely, for every group presen-
tation, there is an associated graph, called a Cayley color graph of the group. Both associations will be studied, with emphasis on the latter.
An excursion into combinatorial topology will follow;
Euler's generalized polyhedral formula and the classification theorem for closed 2-manifolds will be discussed. Imbedding problems in graph theory will be examined at some length (here a graph and a surface come together, often with the aid of a group); it will be seen that the famous four-color conjecture can be stated in this context. The five-color theorem will be established. The Heawood mapcoloring theorem will then be studied in detail. (This theorem determines a chromatic number for every closed 2-manifold except the sphere
--
a truly astounding result!)
The theory of quotient graphs
and quotient manifolds (and quotient groups) is at the heart of the proof of this theorem (as well as many others) and will be presented; this theory relies upon each of the concepts mentioned in this paragraph and serves as the unifying feature of this text.
Foreword t o t h e F i r s t E d i t i o n
vi
Several peripheral (but s i g n i f i c a n t ) r e s u l t s a r e s t a t e d without proof.
An e f f o r t h a s been made t o p r o v i d e t h o s e p r o o f s of theorems
which a r e most i n d i c a t i v e o f t h e charm and b e a u t y o f t h e s u b j e c t and which i l l u s t r a t e
t h e t e c h n i q u e s employed.
Proofs missing i n the
t e x t c a n be s u p p l i e d by t h e r e a d e r , a s p a r t o f t h e problem s e t s (problems marked
lo*"
a r e d i f f i c u l t ; t h o s e marked
s o l v e d ) , o r c a n be found i n t h e r e f e r e n c e s .
"**'I
a r e a s y e t un-
A bibliography is pro-
v i d e d , f o r f u r t h e r r e a d i n g : items ( c ) o r ( j ) , ( g ) , and ( h ) r e s p e c t i v e l y are p a r t i c u l a r l y s u i t a b l e f o r more e x t e n s i v e t r e a t m e n t s of t h e t h e o r i e s o f g r a p h s , g r o u p s , and s u r f a c e s , which a r e s e e n i n t e r a c t i n g in this text.
A.T.W.
vii
FOREWORD TO THE SECOND EDITION
The field of topological graph theory has greatly expanded in the ten years since the first edition of this book appeared, with many able mathematicians contributing to this expansion. As with the first edition, I have tried to focus on those aspects of the subject germane to the interaction of the structures listed in the title. I apologize in advance, for any omissions of relevant material. The nine chapters of the first edition have been revised and updated. Thirty-two new problems have been distributed among these chapters. Six new chapters have been added, dealing with: voltage graphs (extending the work of Jacques even further), non-orientable imbeddings (emphasizing parallels to the orientable theory and results), block designs associated with graph imbeddings (tying topological graph theory securely to more traditional combinatorics) , hypergraph imbeddings (as generalizing graph imbeddings and as depicting block designs), map automorphism groups (groups acting (primarily) on graphs of groups on surfaces), and change ringing (finding how to ring church bells by picturing the right graph of the right group on the right surface.) Several new problems have been given for each new chapter, so that there are now 181 problems in all; 22 of these have been designated as "difficult" ( * ) and 9 as "unsolved" ( * * ) . Three of the four unsolved problems from the first edition have been solved during the ten years between editions; they are now marked as "difficult." I wish to thank everyone who read the first edition, particularly those who sent me comments and corrections, and especially Jonathan Gross. I also owe thanks (but delegate no responsibility) to many, including the following, for their contributions to my
viii
Foreword t o t h e Second E d i t i o n
u n d e r s t a n d i n g of tlic m a t e r i a l in t h e new c h a p t e r s as i n d i c a t e d :
Thomas T u c k e r ( l o ) , S a u l Stahl (11) a n d ( 1 3 ) , S e t h A l p e r t (12), D e r e k Waller
(13) and ( 1 4 )
,
Norman B i g g s ( 1 4 )
J o a n H u t c h i n s o n , a n d T. J e f f e r s o n Smith (15).
,
a n d Sabra Anderson, Finally,
1 thank
Margo J o h n s o n f o r t y p i n g t h e m a n u s c r i p t , a n d P a u l H i m c l w r i g h t €or drawing t h e f i g u r e s .
A.T.W.
Figure 0-1
This Page Intentionally Left Blank
xi
TABLE OF CONTENTS
Chapter 1: Chapter 2 : 2.1 2.2 2.3 2.4 2.5
Chapter 3: 3.1 3.2 3.3 3.4 3.5 3.6
. . . . . . . . A Brief Introduction to Graph Theory . . . Definition of a graph . . . . . . .. Variations of Graphs . . . . . . . Additional Definitions . . . . . . .. Operations on Graphs . . . . . . . Problems . . . . . . . . . . . The Automorphism Group of a Graph . . . .. Definitions . . . . . . . . . . Operations o n Permutation Groups . . . .. Computing Automorphism Groups of Graphs Graphs with a Given Automorphism Group . .. Problems Other Groups of a Graph . . . . . . . . . . . . . . . . . Historical Setting
Chapter 4: 4.1 4.2 4.3 4.4 4.5 4.6
Chapter 5: 5.1 5.2 5.3 5.4 5.5 5- 6
. . .. .. . . ... .. .
The Cayley Color Graph of a Group Presentation
... . ..
..
.. ..
. . .. . .
Definitions Automorphisms Properties Products Cayley Graphs Problems
.. ... .
... .. .
... .. .
... .. .
... .. .
... .. .
... .. .
An Introduction to Surface Topology
. . . . . . . . . .
. ...
. ...
. ...
. ...
Definitions Surfaces and Other 2-manifolds The Characteristic of a Surface Two Applications Pseudosurfaces Problems
... ...
... .. . . .. .. ..
... .. . . .. .. ..
. . . 6.1 . Answers to Some Imbedding Questions 6 . 2 . Definition of "Imbedding" . . . . . 6.3 . The Genus of a Graph . . . . . . . 6.4 . The Maximum Genus of a Graph . . . . 6.5 . Genus Formulae for Graphs . . . . . . . . 6.6 . Edmonds' Permutation Technique 6.7 . Imbedding Graphs on Pseudosurfaces . . 6.8 . Other Topological Parameters for Graphs 6.9 . Applications . .. .. .. .. .. .. .. .. .. 6.10 . Problems
Chapter 6:
. . .. .. . . ... .. .
Imbedding Problems in Graph Theory
... .. . . .. .. ..
. ... ... .. ..
1
. 1 9 12
15 15 17 18 20 20 21 23
... .. . . .. .. ..
. ... ... ... .
23 26
28 32 35 36 39 39 41 42 47 53 54 57 58 60 61 64 67 70 73 75 79 81
xi i
Table of Contents
. . . . . . . . . 1 . 7 . Imbeddings of Cayley Color Graphs . . . . 2 . Genus Formulae for Groups . . . . . . . . 7 3 . 7 . Related Results . . . . . . . . . . 4 . The Characteristic of a Group . . . . . . . 7 5 . Problems . . . . . . . . . . . . . . 7 Chapter 8: Map-coloring Problems . . . . . . . . . 1 . 8 . Definitions . . . . . . . . . . . . 8 . 2 . The Four-color Conjecture . . . . . . . 8.3 . TheFive-color Theorem . . . . . . . . 8 . 4 . Other Map-coloring Problems; the Heawood Map-coloring Theorem . . . . . . . . 5 . 8 . A Related Problem . . . . . . . . . . 86. . Four-color Theorem for the Torus . . . . 7 . A Nine-color Theorem f o r the Torus and . 8 Klein Bottle . . . . . . . . . . . .. k-degenerate Graphs . . . . . . . . . Coloring Graphs on Pseudosurfaces . . . . 8.10 . The Cochromatic Number of Surfaces . . . . 8.11 . Problems . . . . . . . . . . . . . Chapter 9: Quotient Graphs and Quotient Manifolds (and Quotient Groups!) . . . . . . . . 9 . 1 . The Genus of Kn . . . . . . . . . . Theory of Quotient Graphs and Quotient . TheManifolds. as Applied to Kn . . . . . . . . . . . . 9 . 3 . The Genus of Kn (again) 9 . 4 . Extending the Theory . . . . . . . . . . The General Theory . . . . . . . . . 9 . 6 . Applications to Known Imbeddings . . . . . 9 . 7 . New Applications . Problems . . . . .. .. .. .. .. .. .. .. .. Chapter 10: Voltage Graphs . . . . . . . . . . . 10.1 . Covering Spaces . . . . . . . . . . 10.2 . Voltage Graphs . . . . . . . . . . . 10.3 . Examples . . . . . . . . . . . . . 10.4 . The Heawood Map-coloring Theorem (again) . . 10.5 . Strong Tensor Products . . . . . . . . 10.6 . Problems . . . . . . . . . . . . . Chapter 11: Nonorientable Graph Imbeddings . . . . . . 11.1 . General Theory . . . . . . . . . . . 11.2 . Nonorientable Covering Spaces . . . . . . 11.3 . Nonorientable Voltage Graph Imbeddings . . . 11.4 . Examples . . . . . . . . . . . . . 11.5 . The Heawood Map-coloring Theorem, Nonor ientable Version . . . . . . . . 11.6 . Other Results . . . . . . . . . . . 11.7 . Problems . . . . . . . . . . . . .
Chapter 7:
The Genus of a Group
A
88.
89.
9.2
95.
98.
83 83 88 95
97 98
101 102
102 106
107 111 114 117 118 120 122 123
125 125 127 131 136
142 149 152 154 157
157 160 164 171 173
171
177 177 180 180 182 184 185
187
xiii
Table of Contents
. . . . . . . . . . . . . 12-1. Balanced Incomplete Block Designs 1 2 - 2 . BIBDs and Graph Imbeddings . . . . . . 1 2 - 3 . Examples . . . . . . . . . . . . 1 2 - 4 . Strongly Regular Graphs . . . . . . . 1 2 - 5 . Partially Balanced Incomplete Block Designs . . . . . 1 2 - 6 . PBIBDs and Graph Imbeddings 1 2 - 7 . Examples . . . . . . . . . . . . 12-8. Doubling a PBIBD . . . . . . . . . 1 2 - 9 . Problems . . . . . . . . . . . . Chapter 1 3 : Hypergraph Imbeddings . . . . . . . . 3-1. Hypergraphs . . . . . . . . . . . . . . . . 3-2. Associated Bipartite Graphs 3-3. Imbedding Theory for Hypergraphs . . . . 3-4. The Genus of a Hypergraph . . . . . . 3 - 5 , The Heawood Map-coloring Theorem, for Hypergraphs . . . . . . . . . . . . . . 1 3 - 6 . The Genus of a Block Design 1 3 - 7 . An Example . . . . . . . . . . . . . . . . . . 1 3 - 8 . Nonorientable Analogs 1 3 - 9 . Problems . . . . . . . . . . . . Chapter 1 4 : Map Automorphism Groups . . . . . . . 1 4 - 1 . Map Automorphisms . . . . . . . . . 1 4 - 2 . Symmetrical Maps . . . . . . . . . 1 4 - 3 . Cayley Maps . . . . . . . . . . . 1 4 - 4 . Complete Maps . . . . . . . . . . 14-5. Other Symmetrical Maps . . . . 1 4 - 6 . Self-complementary Graphs . . . . . . 1 4 - 7 . Self-dual Maps . . . . . . . . . . 14-8. Paley Maps . . . . . . . . . . . 14-9. Pr ob 1ems . . . . . . . . . . . . Chapter 15: Change Ringing . . . . . . . . . . 15-1. Definitions . . . . . . . . . . . 1 5 - 2 . Notation . . . . . . . . . . . 15-3. General Theory . . . . . . . . . . 1 5 - 4 . Four-bell Extents (Minimus) .. .. .. .. .. 15-5. Five-bell Extents (Doubles) 1 5 - 6 . A New Composition . . . . . . . . . 15-7. Problems . . . . . . . . . . . . References . . . . . . . . . . . . . . . Bibliography . . . . . . . . . . . . . . . Index of Symbols . . . . . . . . . . . . . Index of Definitions . . . . . . . . . . . . Chapter 1 2 :
Block Designs
I
.
1
. .. .. ... .. . .. .. ... .. . .. .
. .. .. . .. .
189 189 190 191 192 194 197 198 201 203 205 205 207 207 211 212 213 215 217 217 219 219 225 229 233 236 237 239 243 254 257
... .
257 260 262 266 270 272 276
.
279
.
. . .
303 305 309
This Page Intentionally Left Blank
1
CHAPTER r HISTORICAL SETTING
In coloring the regions of a map, one must take care to color differently any two countries sharing a common boundary line, so that the two countries can be distinguished.
One would think that an
economy-minded map-maker would wish to minimize the number of colors to be used for a given map, although there appears to be no historical evidence of any such effort. Nevertheless a conjecture was made, over thirteen decades ago, to the effect that four colorswould always suffice for a map drawn on the sphere, the regions of which were all connected.
The first reported mention of this problem (see [ B C L l ]
and [Ol]) was by Francis Guthrie, through his brother Frederick and Augustus de Morgan, in 1852. Cayley, in 1878 and 1879.
The first written references were by
Incorrect "proofs" of the Four Color Con-
jecture were published soon after by Kempe and Tait. The error in Kempe's "proof" was found by Heawood [ H 3 ] in 1890; this error has reappeared in various guises in subsequent years.
Ore and Stemple [Osl]showedthat any counterexample to the conjecture must involve a map of at least 72 regions. The conjecture continued to provide one of the most famous unsolved problems in mathematics, until Appel and Haken affirmed it in 1976 [ A H l ] . It is an astonishing fact that several related, seemingly much more difficult, map-coloring problems have been completely solved. Chief among these is the Heawood Map-coloring Conjecture, which gives the chromatic number for every closed 2 -manifold other than the spere; we state the orientable case:
where
k
is the genus of the closed orientable
Heawood showed in 1980 [ H 3 ] that
x(sk) 5
f (k) ,
2 -manifold
Sk.
and in 1891 Heffter
[H4] showed the reverse inequality for a possibly infinite set of natural numbers k ; almost eight decades passed before it was shown that x(Sk) 1. f (k) , for all k > 0 . In 1965 this problemwasgiven the place of honor on the dust jacket for Tietze's Famous Problems
2
Chapt. 1
Historical Setting
of
Mathematics [T2]. An outline of the major portion of the solution now follows. The dual of a map drawn on S k is a pseudograph imbedded in
Sk
,
for
and it can be shown (see Section 8-4) that k > 0 ,
provided the complete graph
Heawood established ( * ) for
n = 7
Kn
x(Sk)
2 f (k) ,
has qenus given by
in 1890, and Heffter for
8 5 n 5 12 in 1891; Ringel handled n = 13 in 1952. The first major breakthrough occurred in 1954, when Ringel showed ( * ) for n : 5 (mod 12). During 1961-1965, Ringel treated the residue cases 7 , 10 , and 3 (mod 12) , while independently Gustin settled the cases
3 ,4
,
and
7
.
Gustin's method involved the powerful and
beautiful idea of quotient graph and quotient manifold, and relies can be regarded as a Cayley color graph for upon the fact that Kn a group presentation; thus graph theory, group theory, and surface topology are combining to solve this famous problem of mathematics. case cases
23;
In 1965, Terry, Welch, and Youngs announced their solution to 0. Gustin, Ringel, and Youngs finished the remaining residue
,
except for the isolated values n 1 8 , 2 0 , and their work was announced in 1968 [RYl]. In 1969, Jean Mayer (mod 12)
(a Professor of French Literature) [M4] eliminated the last three obstinate graphs by ad hoc techniques. Much of the work of Ringel, Terry, Welch, and Youngs was made possible by Gustin's theory of quotient graphs andquotientmanifolds; this theory was developed and modified by Youngs, who also introduced the theory of vortices [ Y 3 ] .
The theory is considerably more
general than was needed to prove the Heawood Map-coloring Theorem, and has been unified and developed in more generality by Jacques [JZ], in 1969. Jacques' results will be presented in Chapter 9, together with many applications to other imbedding problems in graph theory.
This will be a focal point of the text, and it
illustrates vividly the fruitful interaction among graphs, groups, and surfaces. We continue this development through the theory of voltage qraphs and by extending to nonorientable imbeddings. We consider the related structures of block designs and hypergraph imbeddings. In map automorphism groups we study groups acting on graphs ofgroups on surfaces. Finally, in studying change ringing, we use graphs of
Chapt. 1
Historical Setting
3
groups on surfaces to compose pieces of music. The conjunctions of graph theory, group theory, and surface topology described above are foreshadowed, in this text, by several pairwise interactions among these three disciplines. The Heawood Map-coloring Theorem is proved by finding, for each suface, a graph of largest chromatic number that can be drawn on that surface. Equivalently (as it turns out) we find, for each complete graph, the surface of smallest genus in which it can be drawn.
The extension of
this latter problem to arbitrary graphs is natural; the solution is particularly elegant for graphs which are the Cayley color graphs of a group. We are led in turn to the problem of finding, for a given group, a surface of minimum genus which represents the group in some way. Dyck [D5] (see also Burnside [B18], Chapters 18 and 19) considered maps, on surfaces, that are transformed into themselves in accordance with the fixed group r , acting transitively on the regions of the map. Any such map gives an upper bound for the parameter y ( T ) discussed in Chapter 7 of this text, as a "dual" formed in terms of Burnside's white regions gives a Cayley color graph for
r . (Cayley [C4] defined his color graphs as complete symmetric digraphs, corresponding to the choice r less the identity element as a generating set for r ; it is sensible to extendhisdefinition to any generating set for the group in question.) Brahana [B15] studied groups represented by regular maps on surfaces; these maps correspond to presentations on two generators, one of which is of order two.
In this context the group acts transitively on the edges
of the map, and again an upper bound for
y(T)
is obta.ined. In
Chapter 7, we regard r as acting transitively on the vertices of the map induced by imbedding a Cayley color graph CA(r) for r in a surface; in Chapter 4 , we show that the automorphism group of CA(T) is isomorphic to r , independent of the generating set
A
selected for r , so that in this sense C A ( r ) provides a "picture" of r . But more: many properties of r , such as commutivity, normality of certain subgroups, the entire multiplication table, can be "seen" from the picture provided by CA(T) . Thus it is natural to seek the simplest surface on which to draw this picture; this is given by the parameter y ( r ) . This point of view may give a surface of lower genus for a given group than the other two approaches listed above; for example, the group r = Z x Z 4 is toroidal for Dyck (or Burnside) and for
4
Historical Scttinq
y ( Z 2 x 2,)
Brahana, yet
=
0
Chapt. 1
.
There is one correspondence depicted in Figure 0-1 which we do riot discuss in this text:
unique group, the groups by
Lk
relation
il(Sk)
Q(Sk)
generators albla;lb;'.
,
to every surface
Sk
there corresponds a
called the fundamental qroup of the surface;
have been coniplrtely determined a1
, bl , .
..
--
they are yivcn
..
, a k , bk arid thc single defining -1 -1 a b a bk = e (see, for example, l S 6 1 . )
Each of the other five correspondences illustrated in Figure 0-1 (where the inner triangle commutes, for proper choice of A ) is germdne, as outlined a b o v e , to the conjunction of qraph theory, group theory, and surface topology described in this introduction and which we now begin to develop.
5
CHAPTER 2 A BRIEF INTRODUCTION TO GRAPH THEORY
In this chapter we introduce basic terminology from the theory of graphs that will be used in this text.
We will give several
binary operations on graphs; these will enable us to construct more complicated graphs, and hence to build up our store of examples of frequently encountered graphs. We emphasize that the material introduced here is primarily for the purpose of later use in this text; for a considerably more thorough introduction to graph theory, see [BCLl] or [H2].
Definition of a Graph
2-1.
A graph
Def. 2-1.
G
consists of a finite non-empty set
V(G)
of
vertices together with a set E(G) of unordered pairs of distinct vertices, called edges. If x = [u , v] E E(G) ,
u , v E V(G) , we say that u and v are adjacent vertices, and that vertex u and edge x are incident with each other, as are v and x . We also say that the edges [ u , v] and [u , w] , w # v , are adjacent. The degree, d(v) , of a vertex v is the number of edges with which v is incident. (Equivalently, d(v) is the number of vertices to which v is adjacent; i.e., for
If the vertices of
G
are labeled,
G
is said to be a
labeled graph. As a matter of notation, we usually write p = Iv(G) I ; q =
size of
~
G
IE(G)
1
is given by
.
The order of q .
G
uv for is given by
[u , v ] ; p . The
Example:
Chapt. 2
A B r i e f I n t r o d u c t i o n t o Graph T h e o r y
6
Let
be d e f i n e d b y :
G
then
G
may be r e p r e s e n t e d by e i t h e r F i g u r e 2 - l a
or 2-lb,
w h e r e t h e l a t t e r r e p r e s e n t a t i o n i s more a c c u r a t e , i n a sense we w i l l d e s c r i b e i n Chapter 6 .
F i g u r e 2-1.
Note : -
A g r a p h may b e more b r i e f l y d e f i n e d as J. f i n i t e o n c -
d i m e n s i o n a l s i m p l i c i a 1 complex.
Proof:
I n summing t h e d e g r e e s , e a c h e d g e i s c o u n t e d
e x a c t l y twice. Cor. 2 - 3 .
I n any g r a p h
t h e number of v e r t i c e s of odd d e g r e e
G ,
i s even.
2-2.
Dcf. 2 - 4 .
A
V a r i a t i o n s of G r a p h s
loop i s a n e d g e of t h e f o r m
vv
.
A multiple
a n e d g e t h a t a p p e a r s more t h a n o n c e i n E ( G ) edye i s a n o r d e r e d p a i r of d i s t i n c t v e r t i c e s . g r a p h allows m u l t i p l e e d g e s . and m u l t i p l e e d g e s . edge d i r e c t e d .
.
edge i s Adirected A multi-
A pseudograph a l l o w s loops
A d i r e c t e d graph
(digraph) has every
The c o r r e s p o n d i n g g r a p h ( w i t h a l l e d g e
d i r e c t i o n s d e l e t e d ) i s c a l l e d t h e underlying graph. graph h a s i n f i n i t e v e r t e x set. infinite -
F o r e x a m p l e , see F i g u r e 2 . 2 .
An
Additional Definitions
Sect. 2 . 3
loop
multiple edge
7
directed edge
a directed pseudograph
Figure 2-2.
The term "graph," unless qualified appropriately, disallows any and all of the above variations.
2-3.
Additional Definitions
Def. 2-5.
A graph H is said to be a subgraph of a graph G if V(H) g V(G) and E(H) c E(G) If V(H) = V(G) , H is called a spanning subgraph. For any $I # S G V(G) I the induced subgraph (S) is the maximal subgraph of G with vertex set S .
Notation:
For v E V(G) , G - v denotes (V(G) - v) For x E E(G) I V ( G - x ) = V(G) , and E(G - x ) = E(G) - x .
.
.
Certain subgraphs are given special names. by a series of definitions. Def. 2-6.
We indicate these
A of a graph G is an alternating sequence of vertices and edges vo , x l , v l I l ~ n - l ,l~v n (or, and ending briefly: vo , v l I l ~ n - l , ~ nbeginning ) with vertices, in which each edge is incident with the two vertices immediately preceding and following it; n is the length of the walk. If vo = vn I the walk is said to be closed; it is said to be open otherwise. The
...
...
8
A Brief Introduction to Graph Theory
Chapt. 2
walk is called a trail if all its edges are distinct, and a path if all the vertices are distinct. A gycle_ is a closed walk with n 3 3 distinct vertices (i.e., but otherwise the vi are distinct). vo = v n '
Two famous problems in graph theory may be described in terms of the above definitions. A graph is said to be eulerian if the graph itself can be expressed as a closed trail. (This corresponds to the "highway inspector" problem; eulerian graphs have been completely and simply characterized: see Harary IH21, p . 6 4 - 6 5 . ) A graph is said to be hamiltonian if it has a spanning cycle. (This corresponds to the "traveling salesman" problem; hamiltonian graphs have not been completely characterized. See Harary, p. 65-69, for some partial results.) Def. 2-7.
A graph G is connected if u , v E V ( G ) implies there exists a path in G joining u to v . A component of G i s a maximal connected subgraph of G .
Def. 2-8.
The distance, d(u,v) , between two vertices u and v of G is the length of a shortest path joining them if such exists; if not, d(u,v) = m .
Thm. 2-9.
A connected graph may be regarded as a (finite) metric
space. Proof:
See Problem 2 - 7 .
#
For a partial converse to the above theorem, see Chartrand and Kay LCKl]. By Theorem 2-9, every connected graph may be regarded as a topological space. (Actually, since the metric induces the discrete topology, we knew this already.) In Chapter 6 we will see that this is true in another sense also: that is every graph may be regarded as a subspace of R 3 , with all edges represented as straight lines. If we consider G as a topological space in this latter sense, then G is connected as a graph if and only if it is connected as a topological space (see Problem 2-8). The term "component" is easily seen to mean the same in both contexts. Furthermore, a graph (as a subspace of R3) is connected if and only if it is path connected; (see Problem 2.9.)
Additional Definitions
Sect. 2.3
Def. 2-10.
Two graphs
(G ;G2 1
,
Note : ___
uv
and
or
onto map is,
G1
G1
=
0 : V(G1) t
E(G1)
G2
are said to be isomorphic
if there exists a one-to-one,
G2) +
9
V(G2)
preserving adjacency; that
if and only if
O(u)B(v)
E
.
E(G2)
Isomorphism is an equivalence relation on the set of a l l graphs.
Notation:
Def. 2-11.
6(G) = minId(v) lv E V(G) 1 A(G) = max{d(v) / v E V(G) 1
If
6(G) = A(G) = r , r
degree Thm. 2-12.
Let
@ :
.
+
G
we say that
(If r = 3
V(G1)
.
.
, G
V(G2)
is regular of
is said to be cubic.)
give
GI
G2
2
then
;
~~
d(@(v)) = d(v)
Cor. 2-13.
Cor. 2-14.
,
for all
v
Proof:
See Problem 2-10.
If
G1
is regular of degree
G2
is regular of degree
V(G1)
E
. #
r
and
G1
G2,
then
r.
Let the vertices of a graph G1 have degrees and the vertices of a graph dl 5 d2 5 < dn ,
. ..
have degrees some
c1 5 c2
1 5 i 5 n ,
5
. ..
- cn
.
G1
and
G2
then
If
di # ci ,
G2 for
are not isomorphic.
The inverse of the above corollary need not be true; see Problem 2-3. Def. 2-15.
The complement G of a graph G has E(G) = {uvlu # v and uv ,d E(G)}
V ( G ) = V(G)
.
2-4.
Operations on Graphs
We now define several binary operations on graphs. follows, we assume that
V(G1)
n V(G2)
= @
.
In what
and
Chapt. 2
A Brief Introduction to Graph Theory
10
Notation:
2.)
2G nG
The joill G
=
=
= G
G U G (n-l)G U G, n F 3.
+
G2
has:
V(C) = V(G1) U V(G2) E(G) = E ( G ~ )u E ( G ~ ) u 3.)
The Cartesian product V(G) E(G)
4.)
= =
{v1v2/vic v ( G ~ ) ,i = 1 , 2 1 . G
=
G
x
G2
has:
V(G1) X V(G2) ~[(ul,u2),(vl,v2)l~ul = v1 and u2v2E E(G2) or u 2 = v2 and ulvl E E ( G 1 ) 1 .
The composition (or lexicoqraphic product) G = G1[G2] has: V(G) E(G)
= =
V(Gl) x V(G2) or { t (ul,u2),(vlfv2) 1 \ u l v l E E(G]) (u, = v1 and u2v2 E E(G2) 1 3 .
For additional products, see Harary and Wilcox [HWI]. We are now in a position to conveniently define several infinite families of graphs. Def.
2-17.
a.) b.) c.)
Pn denotes the p a t h of length n-1 ( i . e . of order n . ) Cn denotes the cycle of length n. Kn denotes the complete graph on n vertices; that is a l l
d.)
(;)
possible edges are present.
Kn denotes the totally disconnected graph on vertices; that is, E(En) = 9. Km,n denotes a complete bipartite graph:
-
KmIn = Km + (Equivalently,
K m,n
En.
is defined by:
n
Sect. 2.4
Operations on Graphs
f.)
K
P1'P2 graph:
I
denotes a complete n-partite
n'
* . -
an iterated join.
In the special case where
- pn ( = m, p1 = p2 = * . - complete n-partite graph:
We introduce for this graph. g.)
Q,
11
Kn (m)
say), we get a regular
as a shorter notation
denotes the n-cube and is defined recursively:
The complete bipartite graphs are a subclass of an extremely
--
important class of graphs
the bipartite graphs.
Def. 2-18.
A bipartite graph G is a graph whose vertex set V(G) can be partitioned into two non-empty subsets V' and V" so that every edge of G has one vertex in V' and the other in V".
Thm. 2-19.
A nontrivial graph G its cycles are even. Proof:
(i).
tite graph that
Let
G,
v1 E V ' ;
is bipartite if and only if all
v1v2..-vnv1
be a cycle in a bipar-
and assume, without loss of generality, then
vn E V",
and
n
must be even.
(ii). We may assume that G is connected, with only even cycles, since the argument in general follows directly from this special case. Consider a fixed vo t V(G). Let vi = {u t V(G) ld(u,vo) = i > , i = 0,1, n. Then n is finite, since G is connected, and
...,
A B r i e f I n t r o d u c t i o n t o Graph Theory
12
Vo
,V1 , . . . ,Vn
p r o v i d e s a p a r t i t i o n of
no t w o v e r t i c e s i n c e n t , or cycle.
are a d j a c e n t , s i n c e
I n f a c t , every edge i n
Letting
, v E Vi+l
,
.
NOW,
contains
G
a r e adja-
V2
Vi
i = 0,l , . . . , n - 1 .
for
Vi
for
uv,
i s of t h e f o r m
G
f o r some
be t h e u n i o n of t h e
V'
be t h e union of t h e
V"
V(G)
would c o n t a i n e i t h e r a 3 - c y c l e o r a 5-
G
u 6 Vi
where
G
V1
A l s o , no two v e r t i c e s i n
no 3 - c y c l e s .
Chapt. 2
i
odd,
and
e v e n , w e see t h a t
i
#
is bipartite.
T h i s c o m p l e t e s o u r b r i e f i n t r o d u c t i o n ; o t h e r t e r m s w i l l b e def i n e d , and t h e o r e m s d e v e l o p e d , a s n e e d e d .
2.5.
Problems
-G
is n o t connected, then
G
i s connected.
2-1.)
Prove t h a t i f
2-2. )
Given a n example t o show t h a t t h e c o n v e r s e n e e d n o t h o l d . A g r a p h i s s a i d t o be p e r f e c t i f no t w o v e r t i c e s h a v e t h e same d e g r e e .
2-3. )
of o r d e r 2-4.)
P r o v e t h a t no g r a p h i s p e r f e c t , e x c e p t
Show t h a t , e v e n t h o u g h 6
G2
and
K2
x
G = K 1' are b o t h r e g u l a r
K3
3, t h e y a r e not i s o m o r p h i c . i s b i p a r t i t e i f and o n l y i f b o t h
and d e g r e e
Prove t h a t and
K3 , 3
GI
x G2
are b i p a r t i t e .
G1
Give a n example t o show t h a t a
similar r e s u l t need n o t h o l d f o r t h e l e x i c o g r a p h i c p r o d u c t .
1-
2-5. )
Show t h a t
2-6.)
Show t h a t
2-7.)
P r o v e Theorem 2-9.
2-8.)
Consider t h e graph
G1
=
-+
G1[c21,
G2 = G1 U G
c2.
as a subspace of
R
3
.
Show t h a t
G
i s c o n n e c t e d as a t o p o l o g i c a l s p a c e i f a n d o n l y i f i t i s conn e c t e d as a g r a p h .
2-9. )
Show t h a t t h e f i r s t o c c u r e n c e of "connected" i n P r o b l e m 2-8 may be r e p l a c e d w i t h " p a t h - c o n n e c t e d . ' '
(Recall t h a t a path-
c o n n e c t e d t o p o l o g i c a l s p a c e m u s t be c o n n e c t e d , b u t t h a t t h e c o n v e r s e does n o t a l w a y s h o l d .
However, a c o n n e c t e d s p a c e
f o r which e v e r y p o i n t h a s a p a t h c o n n e c t e d n e i g h b o r h o o d must be p a t h - c o n n e c t e d . )
Sect. 2.5
2-10.) 2-11.)
Problems
13
Prove Theorem 2-12. Show that the set of all graphs, under the operation of Cartesian product, forms a commutative semigroup with unity
2-12.)
2-13.)
(i.e. a commutative monoid). Let G and H both be hamiltonian. Show that G[H] and G x H are hamiltonian also. Show that Qn is hamiltonian, for n 2 2. The line graph H = L(G) of a graph G is defined by V ( H ) = E(G), E ( H ) = {efle and f are adjacent, e,f E E(G)}. Show that L(Km,n) = K x Kn. (This result appears in Palmer
[P21 . )
This Page Intentionally Left Blank
15
CHAPTER 3 THE AUTOMORPHISM GROUP OF A GRAPH
In this chapter we show that there is associated, with each graph, a group, known as the automorphism group of the graph.
We
introduce various binary operations on permutation groups to aid in computing automorphism groups of graphs. Several powerful results relating graph and group products are stated, sometimes without proof (see [ ~ 2 ] for a further discussion); these results will not be used in the sequel. Indeed, the concept of automorphism group of a graph is, in the main, peripheral to the present course; it is introduced here primarily as one example of an interaction between graphs and groups. (In Section 2 of Chapter 4 we find a more direct bearing on subsequent material.)
3-1.
Def. 3-1.
Definitions
A one-to-one mapping from a finite set onto itself is
called a permutation. A permutation group is a group whose elements are all permutations acting on the same finite set, called the object set. is composition of mappings.) and
A
If
(The group operation X
the permutation group, then
the group, and
1x1
is the object set / A \ is the order of
is the degree.
A permutation P partitions its object set by the k equivalence relation x G y if and only if P (x) = y for some integer k. The equivalence classes are called
the orbits of X I under the action of P. If there is just one orbit in the action of A on X, then A is said to be transitive on X. If / A \ = 1x1, and if A is transitive on X, then A is said to be a regular permutation group. Def. 3-2.
Two permutation groups A and B are said to be isomorphic - (A B ) if there exists a one-to-one onto map
16
0 : A + B such that al , a 2 E A.
Def. 3 - 3 .
Chapt. 3
The Automorphism Group of a Graph
O(alaZ)
=
b(al)u(a,)
,
for all
Two permutation groups A and B (acting on object sets X and Y respectively) are said to be identical (or equivalent) (A 5 B ) if: (i) A B (given by 0 : A B) (ii) there exists a one-to-one, onto map f: X Y such that f(ax) = o(a)f(x), for all x t X and a t A. -f
-f
For a general treatment of permutation groups acting on combinatorial structures, see Biggs and White [BWl]. Here, we consider only the graph automorphism case. Def. 3-4.
Remark.
Def. 3-5.
An automorphism of a graph G is an isomorphism of G with itself. (The set of all automorphisms of G forms acting on the object set a permutation group, G ( G ) , V(G) .) G(G) is called the automorphism group of G . An automorphism of G, which is a permutation of V ( G ) , also induces a permutation of E ( G ) , in the obvious manner. An identity is a graph G having trivial automorphism group: that is, the identity permutation on V(G) is the only automorphism of G.
It is easy to see that the graph pictured in Figure 3-1 is an identity graph. That there is no identity graph of smaller order (other than K1) is established in Problem 3-1.
Figure 3-1
S e c t . 3-2
O p e r a t i o n s on P e r m u t a t i o n Groups
G(G)
Thm. 3 - 6 .
5
11
G(G).
proof:
Let
0:
G(G)
+
G(G)
and
f: V(G)
+
V(G)
b o t h be
i d e n t i t y maps, a n d o b s e r v e t h a t a d j a c e n c y i s p r e s e r v e d i n #
a g r a p h i f and o n l y i f n o n - a d j a c e n c y i s p r e s e r v e d .
3-2.
O p e r a t i o n s on P e r m u t a t i o n Groups
From a t h e o r e m d u e t o C a y l e y , w e r e c a l l t h a t a n y f i n i t e g r o u p
i s a b s t r a c t l y isomorphic ( a s opposed t o n e c e s s a r i l y b e i n g i d e n t i c a l ) with a permutation group; i n f a c t , i f t h e group then
is isomorphic t o a subgroup of
G
Sn.
h a s order
G
n
,
In this light, the
o p e r a t i o n s soon t o be d e f i n e d c o u l d be regarded as a p p l y i n g t o g r o u p s i n g e n e r a l ; however,
t h e d e f i n i t i o n s w i l l be g i v e n i n t e r m s
of a c t i o n upon a s p e c i f i e d o b j e c t set. Let X
and
A
Y
and
b e p e r m u t a t i o n g r o u p s a c t i n g o n o b j e c t sets
B
respectively.
W e d e f i n e t h r e e b i n a r y o p e r a t i o n s on t h e s e
permutation groups as f o l l o w s : Def. 3-7.
1.)
sum,
The
+
A
B
d i s j o i n t union
,
(or d i r e c t p r o d u c t ) a c t s on t h e X U Y; A + B = { a + b l a E A ,b E B I ,
and
(a+b)
r {
(2) =
az, bz,
2.)
The p r o d u c t , X
A
b) ( x
if z E Y . ( o r C a r t e s i a n p r o d u c t ) a c t s on
x
B = { a x b l a E A , b E B},
X
, yl
and
=
( o r w r e a t h p r o d u c t ) a c t s on a E A and a n y seq u e n c e b l t b 2 r . . . , b d ( w h e r e d = 1x1) i n B , t h e r e i s a u n i q u e p e r m u t a t i o n i n A[B] , w r i t t e n X
Y
as f o l l o w s :
(a;bl , b 2 , ( a ; b l ,b 2 , Note:
,
z E X
(ax , b y ) . The c o m p o s i t i o n , A[B] , (a
3.)
Y;
X
A x B
if
The o r d e r of
A[B]
f o r each
... , b d )
,
.. .
and , b d ) ( x i , y j ) = (axi
is
(A1
(Bid.
,b . y . ) , 1 3
18
The Automorphism Group of
Thm. 3-8.
A
+
B
A
x
Let
Proof:
Graph
a
Chapt. 3
B. O:A + B
-f
A
B
x
be given by
O(a+b) = ( a x b ) . #
A + B
Note that, in general, we cannot claim
~
B.
A
Computing Automorphism Groups of Graphs
3-3.
The following theorems indicate some connections between the graphical operations defined in Section 2-4 and the group operations defined above. The groups Sn , An , Zn , Dn are respectively the symmetric and alternating groups of degree
n
order n , and the dihedral group of order is due to Frucht [ F 5 ] . Thm. 3-9. Thm. 3-10.
If
G
is a connected graph, then
If no component of of
G2
Proof: Thm. 3-11.
Any graph G r = nr = 1 ,
Thm. 3-12.
then
G1
2n.
The first theorem
G(nG)
Sn[G(G)I,
is isomorphic with a component
G(G1 Li G2) = Ci(G1) + G(G2).
See Problem 3-2.
Let G = n 1G 1 u n2G2 U number of components of
Proof:
Note:
,
, the cyclic group of
#
... u G
nrGr , where n i isomorphic to Gi.
is the Then
Apply Theorems 3-9 and 3-10, using induction.
#
may be written as in Theorem 3-11, but if the theorem gives no information.
-
If no component of G1 Of G2 I then G(G1 +
is isomorphic with a component G2)
f
G(G1) + G(G2).
Proof: Apply Theorems 3-6 and 3-10, together with problem 2-6.
#
Sect. 3-3
The following two theorems are due to Sabidussi respectively). Def. 3-13.
19
Computing Automorphism Groups of Graphs
( [ S 2 1 and [ S 2 1
A non-trivial graph G is said to be prime if G = G1 x G2 implies that either G1 or G2 must be trivial (1.e. = K1). If G is not prime, G is composite. Two graphs G1 and G2 are relatively prime if GI = G3 G4 and G2 = G3 x G5 i m p l y G3 = K1.
Thm. 3-14.
b(G1 x
G2)
?
G(G1) x G(G2)
if and only if
G1
and
G2
are relatively prime. Def. 3-15.
Thm. 3-16.
The neighborhood of a vertex
u
N(u)
The closed neighborhood
=
is
“u]
If
G1
{v t V(G) [ uv =
E(G) J
.
is given by:
N(u) U {ul.
is not totally disconnected, then , if and only if:
G(G~[G~]) Z
G(G1) [ f i ( G 2 ) l
(i) if there are two vertices in same neighborhood, then
G2
G1
with the
is connected.
and (ii)
if there are two vertices in G1 with the same closed neighborhood, then G2 is connected.
We are now able to list the automorphism groups for several common families of graphs.
The Automorphism Group of a Graph
20
3-4.
Chapt. 3
Graphs with a Given Automorphism Group
Every finite group is the automorphism group of some
Thm. 3-18.
graph. For a proof of this theorem, due to Frucht [ F 4 ] , see Section
4-2.
Other Groups of a Graph
3-5.
Two rjraphs
Def. 3-19.
and
G
H
(with non-empty edge sets) are
said to he edge-isomorphic if there exists a one-to-one, onto map
$:
E(G)
+
E(EI)
preserving adjacency; that is
share a vertex in G if and only if @(x) , $ ( y ) share a vertex in H. 4 is called an edge-isomorphism.
x , y
If
Thm. 3-20.
G
and
€1
are isomorphic (with non-empty edge sets),
then they are edge-isomorphic. Proof: Def. 3-21.
See Problem 3 - 6 .
An induced edge-isomorphism is an edge isomorphism
E(H) determined by $ ( u v ) = OuOv , where * V ( 1 I ) is an isomorphism. An edge-automorphism of a non-empty graph G is an edge-automorphism of G with itself. (The set of all edge-automorphisms of G forms a permutation group, Gl(G), acting on the object set E(G) . ) G1(G) is called the edqe-automorphism group of G. Similarly, the induced 9 - a u t o m o r p h i s m group of G , G * ( G ) , is the set of all induced edgeautomorphisms of G under composition. $:
E(G)
$J:
V(C)
+
We note that G * ( G ) is a (possibly proper; see Problem 3-8) subgroup of G1(G). However, in almost every case, the three groups introduced in this chapter are isomorphic (see, for example, [ B C L L I ) ; denote the graph obtained by adding one edge to let Klf3
K1,3:
+
x
Sect. 3-6
Thm. 3-22.
Problems
21
# K1 , C ( G ) G*(G) if and only if G contains K2 as a component nor two or more isolated vertices. For
G
neither
Thm. 3-23.
Let (1)
(2)
Thm. 3 - 2 4 .
Let G(G)
E ( G ) # 0; then G1(G) G*(G) if and only if: not both C3 and K are components of G , and 1r3 none of K + x , K 4 - x , K4 is a component lI3 of G .
G
be a connected graph of order G1(G)
G # K1,3 + X
2
G*(G)
r
K4 -
p
2 3; then
if and only if X
r
K4.
Thus it is customary to focus attention on the automorphism group,
G(G). 3-6.
3-1.)
3-2.) 3-3.) 3-4.) 3-5.) 3-6.) 3-7.) 3-8.)
Problems
K1) of order five or less? (Hint: Check to see that every graph in Appendix 1, Harary [H2], with p 5 5, has at least one nontrivial automorphism.) Prove Theorem 3-10. Prove Theorem 3-17. Let G = K find G ( G ) . P,q,r' G(K4) z S4, yet K 4 is the 1-skeleton of the tetrahedron, and the symmetry group of the tetrahedron is A4. Explain! Prove Theorem 3-20. Show that the converse of Theorem 3-20 is false. Show that not all edge-automorphisms are induced. Does there exist
-
an identity graph (other than
This Page Intentionally Left Blank
23
CHAPTER 4 THE CAYLEY COLOR GRAPH OF A GROUP PRESENTATION I n t h i s c h a p t e r w e see t h a t a n y g r o u p may be d e f i n e d i n terms o f g e n e r a t o r s a n d r e l a t i o n s and t h a t c o r r e s p o n d i n g t o s u c h a p r e s e n t a t i o n t h e r e i s a u n i q u e g r a p h , c a l l e d t h e C a y l e y c o l o r g r a p h of t h e presentation.
A "drawing" o f
t h i s graph gives a " p i c t u r e " of t h e
g r o u p , from w h i c h may b e d e t e r m i n e d c e r t a i n p r o p e r t i e s o f t h e g r o u p . W e w i l l e s t a b l i s h some b a s i c r e s u l t s a b o u t C a y l e y c o l o r g r a p h s , i n -
c l u d i n g a r a t h e r n a t u r a l correspondence between d i r e c t p r o d u c t s o f g r o u p s and C a r t e s i a n p r o d u c t s o f a s s o c i a t e d C a y l e y c o l o r g r a p h s .
In
C h a p t e r 7 w e w i l l a s k which g r o u p s h a v e Cayley c o l o r g r a p h s t h a t c a n be r e p r e s e n t e d p r o p e r l y i n t h e p l a n e , and a s s o c i a t e d q u e s t i o n s .
In
C h a p t e r 9 a p p r o p r i a t e a n s w e r s w i l l solve t h e Heawood m a p - c o l o r i n g p r o b l e m , a s w e l l a s many o t h e r s .
The v o l t a g e g r a p h t h e o r y o f Chap-
t e r 1 0 , t h e b l o c k d e s i g n c o n n e c t i o n of C h a p t e r 1 2 , a n d t h e map automorphisms o f C h p a t e r 1 4 w i l l be e s p e c i a l l y n a t u r a l i n t h e cont e x t of Cayley g r a p h s .
And, e a c h c h a n g e - r i n g i n g
graph of Chapter
1 5 w i l l be a C a y l e y c o l o r g r a p h .
4-1. Def.
4-1.
r
Let
b e a g r o u p , w i t h {g1,g2,g3,...)
word
element set of
G.
f i n i t e product
flf2-. .fn
set
tgl , g 2 , g 3
element of
.. . for
,
then
r.
r
I
A
...
W
,
, g1-1
in
a s u b s e t of t h e
g1 , g 2 , g 3
where e a c h
-1 -1 ,g2 ,g3 ,
fi
...1 .
, ...
is a
is i n the If every
c a n b e e x p r e s s e d a s a word i n g 1 ' 4 2 ' 4 3 g1
, g2
I
g3 I . .
.
I
are s a i d t o be g e n e r a t o r s
A r e l a t i o n i s an e q u a l i t y between t w o words i n
91 ' 4 2 I 4 3 Thm. 4 - 2 .
Definitions
I . . .
-
Given a n a r b i t r a r y s e t o f symbols and a n a r b i t r a r i l y p r e s c r i b e d s e t ( p o s s i b l y e m p t y ) of r e l a t i o n s i n t h e s e symb o l s , t h e r e i s a unique ( u p t o isomorphism) group w i t h t h e
24
The C a y l e y C o l o r Graph o f a Group P r e s e n t a t i o n
Chapt. 4
symbols a s g e n e r a t o r s and w i t h s t r u c t u r e d e t e r m i n e d by the prescribed relations.
see [MKSl]. )
(For a proof,
Dcf.
4.3.
~-
i'
If
g1 , g 2
i s g e n e r a t e d by
relation in
#
I
, . ..
yj
and i f e v e r y
c a n b e d e d u c e d from t h e r e l a t i o n s
G
.
R' , . . , P' , Q = Q ' , R
, R
P =
I ' = ( g1 , g 2 , R' }, and t h e r i g h t hand s i d e o f t h e e q u a t i o n i s said t o be a p r e s e n t a t i o n PI
,Q
= Q'
g3 ,
. .. 1
of
I'
P =
.
then we w r i t e
...
=
A p r e s e n t a t i o n i s said t o be a f i n i t e l y gener-
a t e d ( f i n i t e l y r e l a t e d ) i f t h e number of g e n e r a t o r s ( d e fining relations) is finite.
A finite presentation is
boLh f i n i t e l y y e n c r a t e d a n d f i n i t e l y r e l a t e d .
Thm. 4 - 4 .
Every f i n i t e group has a f i n i t e p r e s e n t a t i o n . Proof:
Take
' i t s e l f a s t h e s e t of g e n e r a t o r s , w i t h all
r e l a t i o n s o f t h e form group o p e r a t i o n .
gig,
= qk
,
a s d e t e r m i n e d by t h e
(1.e. t h e m u l t i p l i c a t i o n t a b l e s e r v e s #
as a f i n i t e presentation.) pef.
4-5.
For e v e r y group p r e s e n t a t i o n t h e r e i s a s s o c i a t e d a Cayley c o l o r graph:
. -
t h e group;
t h e v e r t i c e s c o r r e s p o n d t o t h e e l e m e n t s of
next,
imacjine t h e g e n e r a t o r s o f t h e g r o u p t o
be a s s o c i a t e d w i t h d i s t i n c t c o l o r s .
v2
correspond t o group elements
If vertices
q1
and
g2
v1
and
respec-
t i v c l y , then t h e r e i s a d i r e c t e d edge (of t h e color (or l a b e l ) of g e n e r a t o r glh
= g2;
h)
from
see F i g u r e 4 - 1 .
F i g u r e 4-1.
vl
to
v2
i f and o n l y i f
Sect. 4-1
Definitions
Let P be a presentation for the qroup Cayley color graph of P for r by C p ( r ) , by
C?(;'),
where
A
25
; we denote the or (when convenient)
denotes the generating set.
(Since a group
may have more than one generating set, the Cayley color graph depends on A , as well as 1'). Then CA(r ) is a labeled, directed graph, with a color (or label) assigned to each edge.
We
observe that the following correspondences occur: Group element
vertex
generator
a set of directed edges of the same color
inverse of a generator
the same set of edges (now
word
directed against the arrow) walk
multiplication of elements identity word
closed walk
solvability of
(weakly) connected di-graph
Note:
~
Cayley Color Graph ____--
rx = s
succession of walks
A characterization is given in [MKSl] of those graphs
G
which can be oriented and colored so as to form Cayley color graphs. Historical
note:
Max Dehn (in 1911) formulated three fundamental decision problems concerning group presentations. One of these is: "determine in a finite number of steps, f o r two arbitrary words
W
and
W'
in
the generators, whether W = W' or not." Equivalently: "construct the Cayley color graph for a given group presentation." The term "Connected" may have a "stronger" meaning for directed graphs than for graphs in general, since we may be allowed to travel only in the direction of the arrow along a given directed edge. Def. 4-6.
A directed graph
D is said to be strongly connected if, for every pair u , v of distinct vertices, there is a directed path from u to v. D is said to be unilat-
erally connected if, for every pair of distinct vertices, one is joined to the other by a directed path.
D
is
The C a y l e y C o l o r Graph of a Group P r e s e n t a t i o n
26
Chapt.
4
c a l l e d weakly connected i f t h e ( u n d i r e c t e d ) pseudograph underlying
i s connected.
D
F o r e x a m p l e , see F i g u r e 4-2, D'
where
D
is strongly connected,
--
i s u n i l a t e r a l l y connected ( b u t n o t s t r o n g l y c o n n e c t e d ) and
D"
i s weakly connected ( b u t n o t u n i l a t e r a l l y c o n n e c t e d ) .
D:
A
D':
D":
F i g u r e 4-2.
4-2.
Autornorphisrns
W e h a v e p r e v i o u s l y d e f i n e d a n automorphisrn of a g r a p h
V(G)
p e r m u t a t i o n of
preserving adjacency).
G
(as a
An a u t o m o r p h i s m of a
d i r e c t e d g r a p h m u s t p r e s e r v e d i r e c t e d a d j a c e n c y ; a n d a n autornorphisrn
of a C a y l e y c o l o r g r a p h m u s t a l s o p r e s e r v e t h e c o l o r c o r r e s p o n d i n g t o e a c h a d j a c e n c y . We summarize i n :
Def.
4-7.
An a u t o m o r p h i s m mutation in
T
ti
and
of h
of a
Cayley c o l o r graph
V(CA(I'))
in
such t h a t ,
glh = g 2
A,
CA(T)
f o r each
i s a per-
g1 , g 2
i f and o n l y i f
0 (gl)h = 8(G2).
E q u i v a l e n t l y (see P r o b l e m 4 - l ) , C,(i')
B(gh)
i f and o n l y i f : = B(g)h;
i.e.
f o r each
g
8 in
i s a n autornorphism of
r
and g e n e r a t o r
t h e d i a g r a m i n F i g u r e 4-3
I 0 t
% 4-=
0 (g
F i g u r e 4-3
commutes.
h
in
A,
Automorphisms
S e c t . 4-2
21
A s e x p e c t e d , t h e c o l l e c t i o n o f a l l automorphisms of
forms a g r o u p , c a l l e d t h e automorphism g r o u p of n o t e d by Thm. 4 - 8 .
.
G(Cb(I') )
r
and de-
be any Cayley color g r a p h f o r t h e f i n i t e
:
r
t i ( C A ( l ' ) )2
then
sentation selected for Proof:
,
The n e x t r e s u l t i s p e r h a p s n o t e x p e c t e d .
C,(I')
Let
group
CA(r')
CA(T)
Define
r
ii:
( i n d e p e n d e n t of t h e p r e -
G.)
+
G(CA(l'))
rz(g) = 8
by
where
9'
u . v ( C A ( I ' ) ) + V ( C A ( r ) ) i s g i v e n by 0 ( g i ) = g g i . 4' 9 E G(CA(T)). Clearly 0 i s oneF i r s t w e show t h a t e 4 9 t o - o n e and o n t o ( a n d hence p e r m u t e s V(CA(T))). A l s o , 0 (g.h) = g ( g . h ) = ( g g i ) h = tI ( g i ) h , 4 1 9 well-defined.
so t h a t
a
is
preserves products: a(gg*) = 8 * degg * ( g i ) = g g * g . = 0 ( g * g i ) = 8 ( 6 *(gi)) = 99 1 g 9 9 ( 0 0 * ) (gi) ; t h a t i s ( r ( g g * ) = a ( g ) t x ( g * ) . g q I t i s c l e a r t h a t u i s one-to-one, s i n c e
u
Now,
0
f i n e d by
ker
= {el.
N
I t r e m a i n s t o show t h a t 0
t G(CA(r)).
r.
t i t y of
Let
U(e)
Now any
g*
i n the generators for where
h,
e = o
4 ' proof.
=
i.e.
is a generator f o r
so t h a t
is onto.
a
where
r
in
r' ;
is onto.
a g ,
r
Let
e
i s t h e iden-
c a n b e w r i t t e n a s a word a a a m g* = h l h hm , 1 2 and a: = ?- 1. Then
This completes t h e
#
From t h e above t h e o r e m ( a n d i t s p r o o f ) it i s e v i d e n t t h a t any v e r t e x of
CA(r)
can b e l a b e l e d w i t h t h e i d e n t i t y
e
of
r ,
and
t h a t o n c e t h i s h a s been done ( f o r f i x e d a s s i g n m e n t o f c o l o r s t o t h e generators) a l l o t h e r vertex labelings a r e determined; t h a t i s ,
C,(r)
is vertex transitive.
p e r m u t a t i o n g r o u p , on
We 3-18:
Moreover,
V (C, (I') )
G(CA(T))
is a regular
.
a r e now a b l e t o p r o v i d e a p r o o f of F r u c h t ' s Theorem, Theorem Every f i n i t e g r o u p i s t h e automorphism g r o u p of some g r a p h .
The C a y l e y C o l o r Graph of a Group P r e s e n t a t i o n
28
Proof:
Let
set for 4-8,
1'
.
Form t h e C a y l e y c o l o r g r a p h
w e know t h a t t o a graph
Cn(l')
Replace each edge
,u i j ,u i j
, v 3. .
1'
G(CA ( 1 ' ) )
.
(gi
A
let
,9 . 1 , 2k
-
=
, A 2 , . .. ,
{A,
uij (u. . 11
1'.
An}.
gj - gidk , by a p a t h : w e a t t a c h a new p a t h
5
1 ( 2 k ) (1 5 k
n) ;
see F i g u r e 4 - 4 ,
I n t h i s way t h e " n o n - g r a p h i c a l "
of d i r e c t i o n and l a b e l , p r e s e n t i n G.
: by Theorem
I t only remains t o c o n v e r t
where
3
A t vertex
P. . (P. . ' ) of l e n g t h 11 1 3 f o r t h e case k = 2 . i n t o t h e graph
be a g e n e r a t i n q
C,(l')
h a v i n g t h e same a u t o m o r p h i s m g r o u p ,
G
T h i s i s done as f o l l o w s : vi
A
b e a f i n i t e g r o u p , and l e t
I'
4
Chapt.
,
C,(I')
It is clear that
features
a r e incorporated
G(G)
G(CA(I'))
#
1'.
?
V.
u..
17
u
v
i j
j
F i g u r e 4-4
4-3
Properties
I t i s c l e a r t h a t e v e r y Cayley c o l o r g r a p h i s b o t h r e g u l a r and
c o n n e c t e d ( a s a g r a p h ) ; t h e c o n v e r s e i s not t r u e
(see P r o b l e m 4 - 1 0 ) .
F o r t w o c h a r a c t e r i z a t i o n s of g r a p h s w h i c h may b e r e g a r d e d as C a y l e y c o l o r g r a p h s , see [ J 2 ] a n d [MKSl]. W e may s t u d y a d d i t i o n a l p r o p e r t i e s f o r
r
( a p a r t from t h e
m u l t i p l i c a t i o n t a b l e so c o n v e n i e n t l y s u m m a r i z e d i n
cA(T)
Cn(l'))
from
as follows:
Thm. 4 - 9 .
r
i s c o m m u t a t i v e i f a n d o n l y i f , f o r e v~. e r y p a i r of g e n e and
h. 3 '
t h e walk
rators
hi
Proof:
See Problem 4-2.
-1 -1 h.h.hi h 1 3 j
i s closed. #
S e c t . 4-3
Def.
4-10.
Properties
29
r
An e l e m e n t o f a g e n e r a t i n g s e t f o r a g r o u p
is said
t o b e r e d u n d a n t i f i t c a n be w r i t t e n a s a word i n t h e A generating set i s said t o be
remaining g e n e r a t o r s .
minimal i f it c o n t a i n s no redundant g e n e r a t o r s . Example:
{x2
, x3 i
i s a minimal g e n e r a t i n g s e t f o r
Thm. 4-11.
r
Let
2 = (x1x6 = e), 6 i s a g e n e r a t i n g set w i t h fewer elements.
{x }
even though
be a f i n i t e ( i n f i n i t e ) group.
i s redundant colored
h
A generator
h
i f and o n l y i f t h e d e l e t i o n o f a l l e d g e s in
l e a v e s a s t r o n g l y (weakly) con-
Ca(T)
nected d i r e c t e d graph. Proof: Thm.
4-12.
If
#
S e e P r o b l e m 4-3.
i s n o t r e d u n d a n t , t h e r e m o v a l of a l l e d g e s col-
H
ored
h
leaves a c o l l e c t i o n of isomorphic d i s j o i n t
r
subgraphs, each r e p r e s e n t i n g t h e subgroup of r a t e d by t h e g e n e r a t i n g s e t o f
T
Let
#
b e a f i n i t e g r o u p w i t h minimal g e n e r a t i n g s e t
{hl , h 2 ,
... , h r l
,
R
and
group w i t h g e n e r a t i n g set C1
gene-
h.
See Problem 4 - 4 .
Proof: Thm. 4-13.
minus
r'
, C 2 , . . . , Ck ,
graph chl(r) edges c o l o r e d
a ( n e c e s s a r i l y p r o p e r ) sub{h2
, h3 , . . .
hr].
Let
b e t h e weak c o m p o n e n t s o f t h e d i r e c t e d
CA(T)
o b t a i n e d from hl.
R
Then
is
by d e l e t i n g t h e
r
normal i n
i f and
o n l y if t h e d e l e t e d d i r e c t e d e d g e s f r o m a n y g i v e n component
Ci
Proof:
( i ) Assume t h e c o n d i t i o n h o l d s .
a l l l e a d t o a s i n g l e o t h e r component
be t h e component c o n t a i n i n g
r
f
T.
W e m u s t show t h a t
...
bl b2 al a 2 b . = t 1.
b . = +1
bm a m r If
and
where
hl
v
ai
occurs i n
t i m e s with
corresponding t o
r
w -v
ending i n
components,
,
e rgr
-1
C1
Let
g E C1
let E C1.
exactly
b . = -1 1
l e a d s from
e
cl+w-v'
,
j'
= R
and
We write
r =
r
and
i s a g e n e r a t o r of
r
C
w
t i m e s with
t h e n t h e walk
(in
C1)
The w a l k
through
The C a y l e y C o l o r Graph of a Group P r e s e n t a t i o n
30
4
ChapL.
now l e a d s t o a n o t h e r -b -b -b v e r t e x i n ClSw-" , and t h e w a l k a ... "2 2"1 1 ' m -1 correspondins to r , r e t u r n s u s t o cl.
corresponding t o
in
q
cl+w-v
( i i ) Suppose t h a t e d g e s c o l o r e d
C1
to
Ci
and
Then t h e r e e x i s t s that
3 , 9 E Cl
I t now follows t h a t , f o r
is obtained. =
hr
.
#
r,
t h e cle-
hl
( t h i s can be
I,/\)
a Cayley color g r a p h o f
by Theorem 4 - 1 3 ) ,
( T h i s " s h r i n k i n g " may be d e s c r i b e d by a d j o i n i n g , t o G
,
the additional relations
h2 = h j =
= e.)
I n g e n e r a l , given a Cayley c o l o r graph i? of
group
I'
,
CA(r)
w h e t h e r a sub-
i s normal o r n o t , w e o b t a i n a S c h r e i e r ( r i g h t )
!I
t h e v e r t i c e s a r e t h e r i g h t cosets o f
coset g r a p h a s f o l l o w s : -_I
r ,
so
U. 3 '
(i.e. the right cosets) are the
T/i2
the defining relations f o r
...
-1
(as above) normal i n
62
l e a d from
c F Cl.)
hl qhl
such t h a t
and r e s t o r i n g t h e e d g e s c o l o r e d
done unambiguously,
hl
(Ariain a s s u m e
By s h r i n k i n g t h e s e c o m p o n e n t s , e a c h t o a
(G).
single vertex,
# j.
i s n o t n o r m a l i n !~
0
ments of t h e f a c t o r g r o u p components of
1
C.
and t h e r e i s a n e d g e d i r e c t e d f r o m
6 E A , i f and o n l y i f 6 F 9-1S29'.) T h a t Rgd t h e r i g h t c o s e t s of
Qg t o
i2g'
,
in
labeled with
Qg6 = S2g' ( i . e . i f a n d only i f is a r i g h t cosct f o l l o w s f r o m t h e f a c t t h a t
R
in
I'
partition
r .
N o t e t h a t a Schreier
c o s e t g r a p h may a c t u a l l y be a p s e u d o g r a p h , a s l o o p s a n d / o r m u l t i p l e e d g e s may r e s u l t f r o m t h i s p r o c e s s .
R
For t h e s p e c i a l c a s e
=
{el,
t h e S c h r e i e r coset g r a p h is j u s t t h e C a y l e y color g r a p h
CA(r). S e v e r a l of t h e i d e a s d i s c u s s e d a b o v e a r e i l l u s t r a t e d i n F i g u r e
4-5.
Note that
R = Z3
S3 ,
i s normal i n
Z2 x Z4
Note t h a t t h e s u b g r o u p of o r d e r
i n Figure 4-6.
i s normal i n
Z2
Z4
,
see
S 3 = D3
Z2 x
( i n Figure 4-5);
normal h e r e , e i t h e r .
D4.
but not i n
o b v i o u s way t o t h e g r o u p s
Zn
and
A4.
but not i n
A s a f u r t h e r example, c o n t r a s t t h e groups
and
6
,
n
2
3.
[ g ,461
and *
(96 , g )
in
Cc\(T)
r
For example,
of o r d e r
2
,
r is not we a d o p t
t h e s t a n d a r d convention of r e p r e s e n t i n g t h e t w o d i r e c t e d edges (g ,g6)
, as
T h i s comment e x t e n d s i n a n Dn
t h e s u b g r o u p g e n e r a t e d by
For a g e n e r a t o r
D4
g e n e r a t e d by
2
by a s i n g l e u n d i r e c t e d e d g e
Sect.
4-3
31
Properties
r = (12)
*
rs
rs
1
13)
s3’z3
A4
F i g u r e 4-5.
3
r = (13) s = (1234)
rs
sr rs2
z2
x
z4:
r 2 = s4 = r s r s - l = e
D ~ :r 2 = s4 = ( r s ) 2 = e
F i g u r e 4-6
I n F i g u r e 4-7 w e g i v e t h e S c h r e i e r c o s e t g r a p h f o r in
!’
= D4
(see Figure 4-6).
F i g u r e 4-7.
i2 =
{e,r},
The C a y l e y C o l o r Graph of a Group P r e s e n t a t i o n
32
W e close t h i s s e c t i o n w i t h a theorem due t o G r o s s
Thm. 4 - 1 4 .
Chapt. 4
[G4].
Every connected r e g u l a r graph of even d e g r e e u n d e r l i e s a S c h r e i e r c o s e t graph.
Products.
4-4.
W e now d e v e l o p a r e l a t i o n s h i p b e t w e e n t h e d i r e c t p r o d u c t f o r Recall t h e following
g r o u p s and t h e C a r t e s i a n p r o d u c t f o r g r a p h s . from g r o u p t h e o r y : Def.
4-15.
Let
rl
1
with
E 12.
h d
r2
and
Il
ri
Then
subgroup of
b o t h b e s u b g r o u p s o f t h e same g r o u p
I2 Il
= {el
and
gh = hg
I 2 ={qhlg c
x
g F l1
for all
,
l l
il
called t h e direct product of
I ,
,
is also
6 i
h
and
r2. If
=
T2
= (
rl
then
r2
,,..
(kl
l1
km+l
=
(kl
,kmlwl
. - -=
=
, . . . , k n l ~ r + l -, ...
,knlwl
=
w
- *
*..
=
= =
w
for
II
,
x
and
wr + s rfs
e!, I J
1
J
j
5 n>
called t h e standard presentation
!'
2' T h i s b i n a r y o p e r a t i o n may b e e x t e n d e d t o t h e c l a s s of a l l i Y 1
rl
g r o u p s , by n o t i n g t h a t t i t y of
r2'i
and d e f i n i n g
r;
, T2
=
l V 1
ri
=
rl
{(g , e 2 )lg E
= { ( e , , h ) Ih E
{(q , h ) lq E
(ql , h l ) ( g 2 , h 2 ) = (q1g2 , h l h 2 )
,el
rl
,h E
,e2
i s t h e iden-
i s t h e i d e n t i t y of I,,)
with
giving t h e group operation.
A l s o r e c a l l t h e f o l l o w i n g ( s e e , f o r e x a m p l e [ B M l , P. Thm.
,
= k.k.k_lkT1 = e
1c i - m
for all
is a presentation for
e)
4-16.
3481):
(The F u n d a m e n t a l Theorem of F i n i t e A b e l i a n G r o u p s ) : Let
I = Z m i = 2
be a f i n i t e a b e l i a n g r o u p of o r d e r
I'
1
'm
2
, ... , r
. * .
and
'm r ir
where 1
m. = n ;
i=l decomposition is unique.
m
i
n;
divides
furthermore,
then
m
i-1
this
rl},
S e c t . 4-4
Products
rn
( W e assume
rn Def.
4-17.
> 1
,
33
unless
n = 1
,
i n which c a s e
r = 1.)
=
r
The number
t h e abelian group Theorem 4 - 1 6
is called the
o f Theorem 4-15
of
1'.
c o m p l e t e l y s p e c i f i e s t h e s t r u c t u r e o f f i n i t e abe-
The n e x t t h e o r e m s p e c i f i e s , a s a c o r o l l a r y , a C a y l e y
l i a n groups.
W e f i r s t e x t e n d t h e de-
c o l o r graph f o r every f i n i t e abelian group.
f i n i t i o n o f C a r t e s i a n p r o d u c t f o r g r a p h s t o Cayley color g r a p h s , i n t h e n a t u r a l way.
Def.
4-18.
The C a r t e s i a n p r o d u c t ,
CA
1
(rl)
C a y l e y color g r a p h s i s g i v e n b y : v(C,
(rl))
1 (9; ,g;)
(i)
x
V(C
(r2));
A2 by a n e d g e c o l o r e d g1
in
=
g;
V(C,
o of t w -
(rl)
1 (9, , g 2 )
and
,
CA2(r,)
X
cn2(r2)) = is joined to
h
i f and o n l y i f e i t h e r :
and
g2h
gi
,
for
h
a generator
and
g l h = g;
,
for
h
a generator
=
A2
or ( i i ) g 2 = gi
in F i g u r e 4-8 and
shows
Al.
CA1(z3)
x
cA2(z2)
Z2 = ( y l y 2 = e ) .
Figure 4-8
I
where
Z 3 = ( x l x 3 = e!
The C a y l e y C o l o r Graph of a Group P r e s e n t a t i o n
34
Thrn. 4 - 1 9 .
Let
C
i'
(I'i)
4
be t h e C a y l e y c o l o r g r a p h a s s o c i a t e d w i t h
PI
presentation
f o r group
r1 ,
be t h e s t a n d a r d p r e s e n a t l o n f o r
F i r s t we note t h a t
Proof
Chapt.
V(C,
1
,.
1 ,2
1 =
l1
I
( I l )
A
*.
P
Let
Then
CP2(l2))
=
11)) ' v(c ( 2)) = v(cP(ll 1 2 ) ) . We now show 1 p2 t h a t t h e e d g e s e t s of t h e two C a y l e y c o l o r g r a p h s c o i n -
v(cp
cide ( i n colored directed adjacency.) (1)
,<ji)
Let
edqe c o l o r e d
some
1
i
generator of
so t h a t
5
(gl , q 2 ) h e 301ned t o (gi by a n for h in Cp(ll 12). Then h = k 1 ' n. If 1 I_ i 2 m , t h e n h 1 s a
rl ,
gi = ylh
c o l o r e d e d g e in
and
gi = g 2 ;
and DP(!'l
y,
r2)
i.e.
t h i s directed,
i s al.so i n c p l ( " l ) '
i t h e r
or
0.
(Furthermore,
y ( C ) = *,M(G)
i f a n d only i f
- 0
y,(C)
G
Fi
i f and o n l y i f
is a c a c t u s w i t h v e r t c x -
disjoint cycles.) Dcf.
A ___ c a c t u s i s a connected
6-30.
block is Def.
c y c l e or an cdge.
d
A splittinq
6-31.
trec
Tor
T
G - C(T)
( p l a n a r ) qraph i n which every
tree o f G
a connected graph
Thm.
is a spdnning
h a s odd s i z e .
?'he f o l l o w i n y c h a r a c t e r i z a t i o n Junqerman
G
s u c h t h a t a t most o n e c o m p o n e n t of
i s due,
independently,
to
[ J 7 1 a n d Xuong [X2].
6-32.
A graph
G
i s u p p e r imbeddable i f a n d o n l y i f
G
has
a splitting tree, T h u s , f o r e x a m p l e , w e g e t a n i m m e d i a t e p r o o f of T h e o r e m 6 - 2 5
m e r e l y by t a k i n q
T = K
1,n-1. h a s qiven a s u f f i c i e n t c o n d i t i o n f o r upper
"11
Ncbesky irnbeddability.
F i r s t , w e need
_ Def. _6_ - 3 3_ . A graph
every
G
is said to b e l o c a l l y connected i f , f o r
v E V(G),
t h e sct
NG(v)
of v e r t i c e s
Genus Formulae f o r G r a p h s
S e c t . 6-5
adjacent t o induced by Thm.
6-34.
If
v
i s non-empty
NG(v)
67
and t h e s u b g r a p h o f
G
is connected.
is c o n n e c t e d and l o c a l l y c o n n e c t e d , t h e n
G
G
is
upper imbeddable. A l t h o u g h n o w o r k a b l e f o r m u l a i s known f o r t h e g e n u s of an a r b i t r a r y graph, maximum g e n u s . graph
Xuong [ X l l d e v e l o p e d t h e f o l l o w i n g r e s u l t f o r Let
CO(H)
d e n o t e t h e number of c o m p o n e n t s of
o f o d d s i z e , and f o r
H
< ( G ) = min
G
connected set
f,o
(G
-
E(T)),
t h e minimum b e i n g t a k e n o v e r a l l s p a n n i n g t r e e s Thm. 6 - 3 5 .
T
The maximum g e n u s of t h e c o n n e c t e d g r a p h
of
G.
G
Then:
is given
by
H:
Q:
0
F i g u r e 6-3
6-5.
Genus F o r m u l a e f o r G r a p h s
P r i o r t o t h e work of Jungerman a n d Xuong, Theorems 6-25, 6-26,
6-27,
and 6-28 a n d t h e work of R i n g e i s e n [ R 6 ] r e f e r r e d t o
above g a v e t h e o n l y known n o n - t r i v i a l
f o r m u l a s for maximum g e n u s .
68
I m b e d d i n g P r o b l e m s i n Graph T h e o r y
Chapt. G
N o t v e r y many more f o r m u l a s a r e known f o r t h e g e n u s p a r a m e t e r ;
we
l i s t some of t h e s e below.
F o r m o s t of w h a t e l s e was known u p t o
1 9 7 8 , see T a b l e 1 of S t a h l
[S91.
Thm.
6-36.
( R i n g e l [RlO] ; B e i n e k e a n d H a r a r y y(Qn)
+
1
=
[BHl])
~ " - ~ ( n - 4 ) n, 1 2 .
Thm. 6 - 3 7 .
Thm.
6-38.
( R i n q e l and Y o u n q s
Thm.
6-39.
(White [W51; see a l s o [ R Y S ] , f o r t h e case
Th.
6-40.
[RYl])
2
=
6-42.
(n-2) , 2
(3n-2) (n-1) 2
6-43_.
n
2
2.
,
n 1.1.
( J u n g e r m a n [ J 5 ] ; see a l s o Garman [Gl])
m # 3.
Y ( K ~ ( ~) ) = ( m - 1 ) 2 , Thm.
even,
n
for
(St-ah1 a n d White [ S W l l ) ~ ( ~ 2 n , 2 n , n=)
Thm.
1)
=
( S t a h l a n d White [SWlJ) Y(Kn,n,n-2)
Thm. 6 - 4 1 .
m
(Junyerman and Rinqel
[ J K 4 ] ; see also Gross and A l p e r t
[GA11) Y(Kn(2)) = Thm.
6-44.
,
for
n
2
z ',
(mod 3 ) .
( R i n g e l [R16]) For
Thm. 6 - 4 5 .
( n - 3 ) (n-1) 3
2
5 n
J 5,9
(White [W71) gree, cycles.
q
Let
edges,
Let
(mod 1 2 ) , y ( K 2
H
G
k
have
d e c j r e e less t h a n t w o .
have
Then
= JI -( n - 2 ) (n-3))
6
1 '
v e r t i c e s of p o s i t i v e de-
p
non-trivial
2n ( n
Kn)
x
2
c o m p o n e n t s , and n o 3-
1)
v e r t i c e s a n d maximum + n(ny - p)
y ( G [I11 ) = k
.
S e c t . 6-5
Genus F o r m u l a e f o r G r a p h s
Cor. 6-46.
G
Let
have n o 3 - c y c l e s .
Then
69
y(G[K2])
= y(G[K2])
= 6(G).
The s p e c i a l c a s e o f Theorem 6-45 when and
H =
i? m
is b i p a r t i t e ,
G
m
h a s been g e n e r a l i z e d t o i n c l u d e
2
p
3,
o d d , b y Abu-Sbeih
and P a r s o n s [APl].
see B e h z a d ,
F o r a v e r y r e a d a b l e p r o o f of Theorem 6-36, C h a r t r a n d and L e s n i a k - F o s t e r
[BCLl].
Theorems 6-37
are
a n d 6-39
p r o v e d u s i n g s c h e m e s i d e n t i c a l or s i m i l a r t o t h a t d i s c u s s e d i n t h e next section.
Theorem 6 - 3 8 w i l l b e d i s c u s s e d a t l e n g t h i n C h a p t e r 9 .
Theorems 6 - 4 0 a n d 6 - 4 1
a r e o b t a i n e d b y means o f v o l t a g e g r a p h c o n -
s t r u c t i o n s (see Chapter 1 0 ) .
Theorems 6-42
,
u s i n g c u r r e n t graph c o n s t r u c t i o n s (see Chapter 9 ) 6-43
-
are e s t a b l i s h e d
and 6-44
a s i s Theorem
although t h e l a t t e r i s i n t h e c o n t e x t of branched c o v e r i n g
s p a c e s (see C h a p t e r 1 0 . ) F o r an o u t l i n e o f t h e s u r g i c a l p r o o f o f Theorem 6 - 4 5 , f i r s t w e n o t e t h a t w e may assume
the following:
( t h e g e n e r a l r e s u l t w i l l t h e n f o l l o w from t h e B a t t l e , and Youngs T h e o r e m ) .
W e t h e n show t h a t
G[H]
has
H
with
qH
H a r a r y , Kodama,
can have a t m o s t
G[H]
2pGqH t r i a n g u l a r r e g i o n s i n a n y i m b e d d i n g ( w h e r e and
we offer
t o b e connected
G
G
has order
pG
e d g e s ) , and p r o c e e d t o c o n s t r u c t an imbedding of
r 3 = 2pGqA a n d
r 4 = r - r3.
The e u l e r f o r m u l a shows
t h a t t h i s imbedding w i l l b e minimal, and g i v e s t h e desired f o r m u l a f o r t h e genus. c o p i e s of
To c o n s t r u c t t h e imbedding, w e b e g i n w i t h
e a c h q u a d r i l a t e r a l l y imbedded i n
K2n,2n,
qG
S
(n-1) d e s c r i b e d by R i n g e l ( s e e Theorem 6 - 3 7 ) .
H
see [ W 7 ] ) , w e
q u a d r i l a t e r a l l y imbedded i n t h e d e s i r e d
The c o n s t r u c t i o n t h u s f a r a l l o w s t h e
surface. copy o f
G[KZ],
as
By m a k i n g s u i t a b l e v e r t e x
i d e n t i f i c a t i o n s ( a n d t h i s i s t h e h e a r t of t h e p r o o f : obtain t h e graph
2
qH
e d g e s of e a c h
t o be a d d e d ; e a c h s u c h e d g e c o n v e r t s o n e q u a d r i l a t e r a l
r e g i o n o f t h e i m b e d d i n g of
G [ x ]
i n t o t w o triangular regions.
This gives the r e s u l t . F o r t h e above c o n s t r u c t i o n , o n e c a n compute t h e g e n u s o f t h e r e s u l t i n g s u r f a c e d i r e c t l y , without r e c o u r s e t o any e u l e r - t y p e formula.
The c o n t r i b u t i o n s o t t h e g e n u s a r e o f t h r e e t y p e s :
( i ) q G ( n - l ) ',
r e p r e s e n t i n g t h e c o l l e c t i v e g e n e r a of t h e
qG
2 - m a n i f o l d s w i t h which w e began o u r c o n s t r u c t i o n : (ii) correspondong t o every v e r t e x
s e t s of
2n
v
of
G,
w e make ( d e g G v - l )
v e r t e x i d e n t i f i c a t i o n s each, each set
Chapt. G
Imbedding P r o b l e m s i n Graph 'l'heory
70
requirmq a
" b u n d l e " of
n
( 2 q G - p,)
t h i s contributes
t u b e s j o i i i l i i g two 2 - m a n i f o l d s ; (n
- 1)
t o Lhe g e n u s ;
pG + 1 , r e p r e s e n t i n g t h e c o n t r i b u t i o n o f t h e tubes t a k e n c o l l e c t i v e l y .
W e mention t h a t Bouchet
"generative m-valuations.
m
n(mod 1 2 ) and
"
(mod 6 )
[I3131 h a s s t u d i e d
y(Kn (m))
,
usinrj
He c o n s i d e r e d t h e r e s i d u e c l a s s e s of and d e t e r m i n e d
for
y(Kn(m))
32
of
t h e s e 7 2 c a s e s , by c o n s t r u c t i n g t r i a n g u l a r i m b e d d i n g s . P a r s o n s , P i s a n s k i , a n d J a c k s o n ( [PPJI]) and "wrapped q u a s i - c o v e r i n g s " Thm. 6 - 4 6 a .
Let
G
[ J F P I ] ) employed
t o establish:
have a t r i a n g u l a r imbedding n F N
a r e i n f i n i t e l y many
in
then t h e r e
So;
G(Fn)
such t h a t
has
a
t r i a n g u l a r imbedding. F i n a l l y , w e comment t h a t J a c k s o n
[Jl] h a s c o n s t r u c t e d t r i -
a n g u l a r i m b e d d i n q s , a s b r a n c h e d c o v e r i n g s p a c e s ( s e e S e c t i o n l o ) , for some c o m p l e t e n - p a r t i t e g r a p h s o f t h e f o r m
6-6.
. . ,m) .
K ( (n-Z)m,m,.
Edmonds' P e r m u t a t i o n T e c h n i q u e
Before l e a v i n g t h e t h e o r y of g r a p h imbeddings and c o n s i d e r i n g s p e c i f i c imbedding p r o b l e m s , w e p r e s e n t a p o w e r f u l t o o l f o r s o l v i n g such problems:
t h e Edmonds' p e r m u t a t i o n t e c h n i q u e ( [ E l l ; see a l s o
Youngs [ Y l ] . )
T h i s amounts t o a n a l q e b r a i c d e s c r i p t i o n , f o r a n y 2-
c e l l imbedding of a g r a p h i n t h e p r o o f s of many
Of
G.
the
It i s used,
i n o n e f o r m or a n o t h e r ,
theorems l i s t e d above.
Denote t h e v e r t e x s e t of a c o n n e c t e d g r a p h 11,2
,...,n l . pi:
Let
n.
=
For each
V(i)
IV(i)
1
.
->
V(i)
i E V(G),
let
G
by
V(G)
V ( i ) = {k € V ( G )
b e a c y c l i c p e r m u t a t i o n on
Then t h e r e i s a o n e - t o - o n e
V(i)
,
=
1 [i,kl
E E(G)}.
of l e n g t h
correspondence between
Edmonds ' Permu t a t i o n T e c h n i q u e
S e c t . 6-6.
2 - c e l l i m b e d d i n g s of
Thm. 6 - 4 7 .
a n d c h o i c e s of t h e
G
,...
Each c h o i c e
(p,
G(M)
in a surface
of
G
o r i e n t a t i o n on
pi
g i v e n by: imbedding
such t h a t t h e r e i s an
M,
which i n d u c e s a c y c l i c o r d e r i n g o f
M
[i,kl
at
i
cessor t o
[i,k]
is
[i,pi(k) j ,
,...
(p,
,
determines a 2-cell
,pn)
t h e edges f a c t , given
71
i n which t h e immediate suc-
,pn),
i = 1
, ...
In
t h e r e i s an a l g o r i t h m
which p r o d u c e s t h e d e t e r m i n e d imbedding. g i v e n a 2-cell imbedding
,n.
Conversely,
in a surface
G(M)
with
M
a given o r i e n t a t i o n , t h e r e is a corresponding
, .. . , p n )
(p,
____ Proof:
determining t h a t imbedding.
D*
Let
P*: D*
-f
D*
=
by:
{(a,b)1
[a,bl E E ( G ) 1,
P*(a,b) = (b,pb(a)).
and d e f i n e Then
is a
P*
of d i r e c t e d e d g e s of
p e r m u t a t i o n on t h e s e t
D*
(where each edge o f
i s a s s o c i a t e d w i t h two oppo-
G
sitely-directed directed edges)
and t h e o r b i t s u n d e r
I
d e t e r m i n e t h e ( 2 - c e l l ) r e g i o n s of t h e c o r r e s p o n d i n g
P*
imbedding.
--
G
T h e s e r e g i o n s may t h e n b e " p a s t e d " t o g e t h e r
with (a,b)
matched w i t h
t o form a s u r f a c e
M
(Since every edge
(a,b)
(b,a)
i n which
G
i s 2 - c e l l imbedded.
i n t h e b o u n d a r y of a g i v e n re-
g i o n i s matched w i t h an e d g e
--
--
(b,a)
in the
b o u n d a r y of a n o t h e r ( o r p o s s i b l y t h e same) r e g i o n ,
is closed. not with
Since (a,b)
--
(a,b) M
genus o f . M with
r
i s matched w i t h
is orientable.
i s a c y c l i c permutation,
--
a s i n F i g u r e 6-4
M
M
--
(b,a)
Since each
i s a 2-manifold.)
and Pi
The
may now b e d e t e r m i n e d by t h e e u l e r f o r m u l a ,
g i v e n b y t h e number o f o r b i t s u n d e r
P.
The
#
c o n v e r s e f o l l o w s from s i m i l a r c o n s i d e r a t i o n s . A s an e x a m p l e , c o n s i d e r t h e i m b e d d i n g o f
p i c t e d i n F i g u r e 6-5.
v(1)
Let
= v(2) = V ( 3 ) = {4,5,61;
V(KJI3)
K3,3
= {1,2,3,4,5,61,
in
S1
de-
with
V ( 4 ) = V(5) = V(6) = { 1 , 2 , 3 1 .
Then
12
Imbedding P r o b l e m s i n G r a p h T h e o r y
Chapt. 6
3
F i g u r e 6-4
F i g u r e 6-5
d e s c r i b e t h i s imb
(1) (2)
(3)
(Note t h a t
P * ( 4 , 1 ) = (1,s); P*(3,5) = ( 5 , l ) ; P * ( 4 , 2 ) = (2,5).)
A s a m a t t e r of n o t a t i o n ,
from t h i s p o i n t o n , w e w i l l a b b r e v i a t e
a n o r b i t such a s (1) a b o v e b y : p 4 ( 3 ) = 1,
and
p1(4)
1-5-2-6-3-4;
it i s i m p l i c i t t h a t
= 5.
I t now f o l l o w s t h a t t h e g e n u s of a n y c o n n e c t e d g r a p h ( a n d
h e n c e , by C o r o l l a r y 6-19,
of a n y g r a p h ) c a n be c o m p u t e d , b y selec-
n ting,
f r o m among t h e
T
(ni-l) !
possible permutations
P*,
one
i=l
w h i c h g i v e s t h e maximum number o f o r b i t s , a n d h e n c e d e t e r m i n e s t h e g e n u s of t h e g r a p h ( c o m p o n e n t ) . i m b e d d i n g must b e a 2 - c e l l by C o r o l l a r y 5 - 1 5 ,
r
( S i n c e , b y Theorem 6-11,
a minimal
i m b e d d i n g , it c o r r e s p o n d s t o some
w i l l b e minimal f o r t h i s imbedding.)
P*;
The
Sect. 6-7.
Imbedding G r a p h s on P s e u d o s u r f a c e s
13
o b v i o u s d i f f i c u l t y i n a p p l y i n g t h i s p r o c e d u r e i s t h a t of s e l e c t i n g
a suitable
from t h e
P*
( u s u a l l y ) v a s t number o f p o s s i b l e o r d e r e d
n - t u p l e s of l o c a l v e r t e x permutations Each
pi
pi. i s c a l l e d a r o t a t i o n , and P
c a l l e d a r o t a t i o n scheme f o r
=
*,..., p n )
is
(pL,p
G.
S t a h l h a s s t u d i e d " p e r m u t a t i o n p a i r s " as a p u r e l y c o m b i n a t o r i a l g e n e r a l i z a t i o n of graph imbeddings, and h i s powerful approach s u f f i c e s t o e s t a b l i s h many of t h e c l a s s i c a l r e s u l t s ( T h e o r e m s 6 - 1 8 and 6 - 2 1 ,
f o r e x a m p l e ) as w e l l a s t o o b t a i n new i n f o r m a t i o n a b o u t
t h e genus of t h e and
amalgamation of g r a p h s ;
see [ S l O ] , [ S 1 2 ] ,
[Sl3],
[S141.
6-1.
Imbedding Graphs on P s e u d o s u r f a c e s
I n S e c t i o n 5-5 w e i n t r o d u c e d t h e p s e u d o s u r f a c e s
...,n t ( m t ) ) .
S ( k ; n (m ) ,
1
R e c a l l t h a t f o r a n y i m b e d d i n g of a g r a p h
pseudosurface
w e assume t h a t e a c h s i n g u l a r p o i n t o f
S',
o c c u p i e d by a ( s i n c j u l a r ) v e r t e x o f
G.
The number
2
-
ni(mi-l)
g i v e s t h e c h a r a c t e r i s t i c of
S',
denoted by
is
S'
2k
-
t
1
1
in a
G
X I
(sl).
i=l
Def.
6-48.
x' ( G ) , of
The p s e u d o c h a r a c t e r i s t i c ,
largest i n t e g e r which
G
G
x"(G),
G
f o r a l l pseudosurfaces
c a n be imbedded.
acteristic, that
x'(S')
a graph
is the in
S'
The g e n e r a l i z e d p s e u d o c h a r -
is t h e l a r g e s t integer
x ( S " ) such
imbeds i n t h e g e n e r a l i z e d p s e u d o s u r f a c e
S".
A s u r f a c e can be c o n s i d e r e d as a ( d e g e n e r a t e ) p s e u d o s u r f a c e ,
and a p s e u d o s u r f a c e a s a ( d e g e n e r a t e ) g e n e r a l i z e d p s e u d o s u r f a c e . Hence w e h a v e
The s e c o n d i n e q u a l i t y may be s t r i c t ( i . e . p s e u d o s u r f a c e s may be m o r e e f f i c i e n t , f r o m t h e p o i n t o f view of m a x i m i z i n g c h a r a c t e r i s t i c , imbedding g r a p h s i n t o ) : f o r example shows.
( N o w , see P r o b l e m 6 - 1 0 . )
x' (K5) =
1,
as F i g u r e 6-6
for
14
Imbedding P r o b l e m s i n Graph T h e o r y
Chapt. 6
Figure 6-6
Petroelje
[P4] h a s found
t h a t many of t h e b a s i c t h e o r e m s f o r
i m b e d d i n g g r a p h s i n s u r f a c e s c a r r y o v e r for p s e u d o s u r f a c e s .
For
example : Thm. 6 - 4 9 .
Let
G
b e a c o n n e c t e d g r a p h m i n i m a l l y imbedded i n t h e
pseudosurfaces Thm. 6-50.
If
S';
t h e n t h e i m b e d d i n g must be 2 - c e l l .
i s c o n n e c t e d , t h e n x ' ( G ) 5 p-q/3; equality G h a s a t r i a n g u l a r imbedding i n
G(p,q)
h o l d s i f and o n l y i f
some p s e u d o s u r f ace. P e t r o e l j e also d e v e l o p e d a n a n a l o g u e of Edmonds
technique f o r pseudosurfaces
,
permutation
and f o u n d t h e f o l l o w i n g f o r m u l a e
(among o t h e r s ) : Thm. 6-51.
x'(Kn
,n,n,n
)
= 2n(2-n).
( T h i s i s c o n s i s t e n t w i t h Theorem 6 - 4 2 t h a t , f o r n # 3 , 2 Y ( K n,n ,n ,n ) = ( n - 1 ) , w i t h r = r3: see a l s o P r o b l e m 9 - 1 0 . ) Thm.
6-52.
x ' ( K ~ ~ , ~= ~ Z(m+n-mn) , ~ )
-
R i n g e i s e n a n d White [ R W l ] showed:
r(m-l),
where
2m22n r )
21.
O t h e r T o p o l o g i c a l P a r a m e t e r s f o r Graphs
6-8
Sect.
m
I n t h e cases w h e r e n
(mod 4 ) ,
2
and
n
75
a r e b o t h even o r e i t h e r
m
or
the pseudocharacteristic agrees with the character-
i s t i c o f Theorem 6 - 3 7 ; i n a l l o t h e r c a s e s , x'(K,,~) = x(K ) = 1. m, n T h a t i s , i n t e r m s o f p s e u d o c h a r a c t e r i s t i c t h e s e i m b e d d i n g s a r e more e f f i c i e n t t h a n t h o s e f o r t h e g e n u s case. Thm. 6-54.
x'(Qn
+ Kr)
=
n-2 (n+r-4)2
-
r
,
for
0
5 r 5 n, n 2
2.
Generalized pseudosurface imbeddings w i l l have r e l e v a n c e i n Chapter 12.
6-8.
Other Topological Parameters f o r Graphs
W e h a v e s e e n t h a t , i f a g r a p h i s n o t p l a n a r , w e c a n s t i l l make
a " p r o p e r " d r a w i n g o f t h e g r a p h i n some s u r f a c e a n d / o r p s e u d o surface.
Two common t o p o l o g i c a l p a r a m e t e r s ( o t h e r t h a n g e n u s ) w h i c h
a r i s e i f m o d i f i e d d r a w i n g s are a l l o w e d a r e t h e t h i c k n e s s a n d c r o s s i n g number. Def.
6-55.
The t h i c k n e s s
of a g r a p h
O(G)
G
i s t h e minimum
number o f p l a n a r s u b g r a p h s whose u n i o n i s
G.
union is u s u a l l y taken over spanning subgraphs)
(The
.
For sample formulae w e have: Thm. 6-56. _____
( B e i n e k e a n d H a r a r y [ B H 2 ] ; A l e k s e e v a n d Gonchakov [ A G l ] ; Vasak
[Vll)
O(Kn)
Thm. 6-57. -__
(Beineke B(Kn,n)
Thm. 6-58. -___
=
=
(Kleinert O(Qn)
=
r
-
n+5
L T ~ [Kl])
n+l
-
6,
n+7
1
,
except t h a t
Imbedding Problems i n Graph ‘I’heory
76
Chapt. 6
Some t h i c k n e s s r e s u l t s h a v e b e e n o b t a i n e d f o r s u r f a c e s o f p o s i t i v e genus. Def.
6-59.
thickness The -
of a graph
ijn(G)
G
i s t h e minimum
number of s u b g r a p h s , e a c h i m b e d d a b l e on union i s Thus
The n o n o r i e n t a b l e t h i c k n e s s
8(G) = iiO(G).
is defined s i m i l a r l y , for
ill(Kn
-
Cn)
On(G) ( n
I
=
=
n+2-\ I
LTJ
n- 1
( i i i ) 01(K4 ( n )
,
for
n
a n odd p r i m e .
n+l tT] 1-
The c r o s s i n g number
v(G)
of a g r a p h
G
i s t h e minimum
number o f p a i r w i s e i n t e r s e c t i o n s of i t s ( o p e n ) e d g e s , among a l l d r a w i n g s o f
G
i n t h e plane.
One m i q h t s a y t h a t t h e c r o s s i n g number t e l l s u s , i f w e i n s i s t upon d r a w i n g
G
on
So,
0)
[A51)
= -
(ii) “1(K3(n))
E m . 6-63.
whose
Nn.
Thm. 6-62. ( A n d e r s o n [A31, [ A 4 ] , ~-
(i)
Sn,
G.
j u s t how b a d t h i s d r a w i n g m u s t b e .
For
Sect.
6-8
77
O t h e r T o p o l o g i c a l Parameters f o r Graphs
t h i s p a r a m e t e r , e x a c t v a l u e s a r e scarce: w e m e n t i o n t h e f o l l o w i n g bounds (see [ G g ] ) :
n
-
10.
m
-
6.
A s an i n d i c a t i o n o f t h e k i n d of t e c h n i q u e s t h a t m i g h t b e em-
ployed, w e prove t h e following: v ( K ~ , ~ , =~ 2)
Thm. 6 - 6 6 . -__
Proof: graph o f
K3,2,2'
Problem 6 - 3 ) . drawing of graph (If
G,
r
v ( K ~ , ~ , =~ )x.
Suppose
=
Thus
i s a sub-
K
313 (by t h e h i n t f o r
> 1 y ( K 3, 2 , 2 ) x 2 1. C o n s i d e r s u c h a n o p t i m a l
in K 3,212 with p = 7
r3
Since
t h i s g i v e s rise t o a p l a n e
So;
+
x,
q = 16
+
2x,
t h e c o n f i g u r a t i o n i n F i g u r e 6-7a,
x 1. 1,
must e x i s t s i n c e
r # r3.
and
which
must c o r r e s p o n d t o t h e con-
f i g u r a t i o n i n F i g u r e 6-7b,
which c a n n o t o c c u r i n any
complete t r i p a r t i t e graph.)
Hence
2 q = 32
+
4x
x F i g u r e 6-7
4
+
3(r-1) = 3r
31 + 3 3
-
+
25 2 = 3
1,
+
4 3
and X,
9
+ x
Thus
= q
-
p = r
2 < 1 x, 3 - 3
-
2
so t h a t
1. x 2 2.
I m b e d d i n g P r o b l e m s i n Graph T h e o r y
Figure
6-8
shows t h a t
x 2 2,
Chapt. 6
to complete t h e proof.
F i g u r e 6-8
A n a t u r a l e x t e n s i o n of
the c o n s t r u c t i o n i n F i g u r e 6 - 8 g i v e s
the follow in9 : Thm. 6-67. -
Thm. __
6-68.
V(Km,n,r
)
:.
V(Kn,n,n
)
5 a3 ( n - 2 ) ( n - 1 ) 2 ( n + 2 ) ;
+
f(m,n)
f(m,r)
+
f(n,r),
where
f(x,y)
=
equality holds for
n = 1,2. The e x a c t results b e l o w a r e d u e t o U c i n e k e a n d R i n g e i s e n ([HRl]
Thm.
and [ R B l ] ) :
6-68a.
The f o l l o w i n g C a r t e s i a n p r o d u c t s h a v e c r o s s i n g n u m b e r s
as i n d i c a t e d :
(i)
v(C3
(ii)
v(C4
(iii) V(K4
x
1
Cn)
=
n,
for
2
n
3;
4;
Cn) = 2n,
for
n
= 3n,
for
n - 3.
Cn)
-
O t h e r e x a c t r e s u l t s h a v e b e e n f o u n d f o r c r o s s i n g n u m b e r s on s u r f a c e s of p o s i t i v e g e n u s .
Def. __- 6 - 6 9 .
The c r o s s i n g number
vn(G)
of a g r a p h
G
is the
minimum number of p a i r w i s e i n t e r s e c t i o n s of i t s ( o p e n ) edges,
among all d r a w i n g s of
G
in
'n'
#
Applications
S e c t . 6-9
Thus
v ( G ) = vo ( G )
vn(G) ( n > 0 ) Thm.
6-70.
Thm.
6-71.
.
The n o n o r i e n t a b l e c r o s s i n g number
is d e f i n e d s i m i l a r l y , f o r
(Guy and J e n k i n s
(Gross Let
79
Nn*
[GJl])
[G5]) =
(n-1) (n-4) 4
p r i m e power;
,
where
is a
1 (mod 4 )
n
then
W e d e d u c e f r o m Theorem 4 - 2 2
t h a t t h e graphs
Cayley g r a p h s f o r a l l f i n i t e H a m i l t o n i a n p-groups
are 414 ( i n f a c t , as w e
Qnx K
w i l l see i n C h a p t e r 7 , t h e s e g r a p h s a r e o f minimum g e n u s f o r t h e s e ) = 1 + n2", From P r o b l e m 6 - 1 1 w e see t h a t y ( Q n x K 484 and f r o m P r o b l e m 11-8 w e w i l l l e a r n t h a t t h e c o r r e s p o n d i n g nonn+l ) = 2 + n2 o r i e n t a b l e genus i s T ( Q n x K 414
groups.)
.
Thm.
6-72.
( K a i n e n a n d White [KWl]) Let
with
h = y(Qn n
2
x
K4,4)
-
m,
and
k =
T(Qn
x
K4,4)
-
2m,
then
0;
6-9.
Applications
F o r a p p l i c a t i o n s of t h e f o u r b a s i c t o p o l o g i c a l p a r a m e t e r s d i s c u s s e d i n t h i s c h a p t e r , c o n s i d e r t h e problem o f p r i n t i n g an e l e c t r o n -
i c c i r c u i t on a c i r c u i t b o a r d .
I f t h e associated graph
p l a n a r , one board w i l l s u f f i c e , w i t h o u t m o d i f i c a t i o n .
is
G If
G
is not
p l a n a r , a t l e a s t f o u r a l t e r n a t i v e s are available t o a v o i d s h o r t circ u i t s ( t h e c h o i c e d e p e n d i n g upon r e l e v a n t c o n s i d e r a t i o n s o f an e n g i n e e r i n g and/or economic n a t u r e ) :
1.)
t h e c i r c u i t can b e accom-
m o d a t e d by d r i l l i n g h o l e s t h r o u g h t h e b o a r d : imun number o f h o l e s ;
2.)
y(G)
g i v e s t h e min-
some o f t h e v e r t i c e s c a n be p r i n t e d on
b o t h s i d e s o f t h e b o a r d , w i t h c o n n e c t i o n s made t h r o u g h t h e b o a r d
80
Imbedding P r o b l e m s i n Graph Theory
Figure 6-9
Chapt.
6
S e c t . 6-10
Problems
d l
b e t w e e n c o r r e s p o n d i n g i m a g e s o f t h e s a m e v e r t e x ; h e r e we s e e k t h e minimum
n
such t h a t
n(2));
S(0;
can b e imbedded i n t h e p s e u d o s u r f a c e
G
h o w e v e r , i t may o c c u r t h a t n o s u c h
P r o b l e m 6-9.)
e x i s t s (see
n
I f a g i v e n v e r t e x c a n a p p e a r a r b i t r a r i l y o f t e n , i;ith
c o n n e c t i o n s made t h r o u g h t h e b o a r d among c o r r e s p o n d i n g i m a g e s o f t h e same v e r t e x , a n d i f i n a d d i t i o n h o l e s c a n b e d r i l l e d as i n t h e n w e s e e k t h e v a l u e o f t h e p a r a m e t e r \ ' (G), f o r maximum efficiency;
3.)
If s e v e r a l c i r c u i t b o a r d s are u s e d ,
I.),
e a c h con-
t a i n i n g a p l a n a r p o r t i o n o f t h e c i r c u i t , and jumpers are run betiieen s u c c e s s i v e b o a r d s t o c o n n e c t c o r r e s p o n d i n g i m a g e s o f t h e same j u n c -
'.'(G); 4 . )
then w e are s t u d y i n g t h e p a r a m e t e r
tion,
If the circuit
( w i t h no holes l ' e t
i s s t a m p e d on o n e s i d e o f o n e c i r c u i t b o a r d
d r i l l e d ) a n d i f w h e r e v e r t w o c o n n e c t i o n s cross e x t r a n e o u s l y tt,.o
pass t o
h o l e s a r e now d r i l l e d t o a l l o w o n e c o n n e c t i o n t o t e m p o r a r i l : .
t h e o t h e r s i d e o f t h e b o a r d , e n a b l i n g i t t o " c r o s s " t h e s e c o n d con-
v(G)
nection while avoiding a s h o r t c i r c u i t , it is t h e parameter t h a t d i c t a t e s economy o f e f f o r t h e r e . A s an example,
consider the modified wheatstone bridyo cii-cuit
o f F i g u r e 6-9 ( a ) ; t h e a s s o c i a t e d q r a p h i s ( e ) c o r r e s p o n d r e s p e c t i v e l y to: I'(K3,3)
G-1.
)
=2,
and
\
(K3, 3)
G =
=
1,
K ,
F i i l u l - e s 6-3 (b)-
3,3'
'
( i i 3 j) = 1 ,
v ( K ~ , ~ = )1.
Show t h a t t w o i j r a p l i s arc h o i n e o i i i o r \ ~ h i ci n tlic. t ~ r a t ' h -t h e o r e t are ical s e n s e i f a n d only i f t h c i r r e a l i z a t i o n s i n I 2.
-
'-
Thm. 7-13.
~(€1,)
=
Proof:
1
+
2n-2 ( n - 2
By Theorem 2 19, Problem 2-4, and a trivial in-
duction argument,
Hn
is a bipartite graph.
a quadrilateral imbedding for using Corollary 6-15.
For
Hn,
Eln,
We produce
and compute
let
p (n)
and
y(Gq) ,(n)
denote the number of vertices and edges respectively. gree 2n, 2nnM(n' . of
is regular of deit is a simple matter to compute q(n) =
p(") = 2"M'");
Then
and since
Hn
Let the statement S(n) be: there is an imbedding Hn for which r = r4 = n2n-lM(n), including two
disjoint sets of
2n-2M(n)
mutually vertex-dis joint
quadrilateral regions each, both sets containing all 2 " ~ ' ~ ) vertices of Hn' We claim that S(n) is true for all n 1. 2, and we verify this claim by mathematical induction. That S ( 2 )
is true is apparent from Figure
7-4
(which shows an imbedding of C4 x C 6 in S1), with the regions designated by (1) making up one set, and those designated by (2) making up the other. assume n
2 2.
S(n)
to be true and establish
We now
S(n+l) ,
for
Chapt. 7
The (;enus of a Group
90
(2)
Figure 7-4
For the graph
lIn+l, we start with
LmIl+l copics
of t i n , minimally imbedded as described by S(n). We parti tion the corresponding surfaccs irito m n+l of one orientation, and mn+l copies of the reverse orientation, corresponding to the vertex set partition of the bipartite graph
C2m
n+l
.
rrom each copy, two
joins of p (n) edges each must be made, both to copies of opposite orientation, in order to construct I1n+l. From the statement S(n), it is clear thaC these two joins can be made, each one over iny four edges each.
2"-'M(")
tubes carry-
(Attach one end of a tube in the
intcrior 01 each region designated by (1) for one join; u s e the recjions designated by (2) for the second join.)
Each new region formed by this process is a quadrilateral. In this fashion the required
2m,+l
joins can be made to
imbed H n + l , with r = r4. Now form one set of regions by selecting opposite quadrilaterals from each tube added in alternate joins in this construction. Form the second set by selecting the remaining quadrilaterals on the same tubes. It is clear that the two sets oL regions thus selected are disjoint, and that each contains ( 2 ) . (mn+l)(2n-2M(n)) = 2n-lM fn+l) mutually vertex-dis joint 2n+lM(n+l) quadrilaterals; both sets contain all 2m (n) vertices of Hn+l. Furthermore, r (n+l) n+lr + Or, where Ar = ( 2 m n + l ) (2n-2M(n)) ( 2 ) , where 2mn+l joins have been made, with 2n-2 M ( n ) tubes p e r join, and a net increase in r of 2 per tube. Hence, ~
Sect.
Genus F o r m u l a e f o r Groups
7-2
and w e h a v e e s t a b l i s h e d t h a t Therefore,
S(n)
91
f o l l o w s from
S(n+l)
holds, f o r a l l
S(n).
n 2 2.
W e c a n now compute:
#
For t h e s p e c i a l c a s e w h e r e n
m ,
M(n)
=
Cor.
7-14.
K2
K2r
H(") n
The g e n u s of
m
Furthermore, i f
Hn( 2 )
is the
w i t h Theorem 6-36 Cor.
7-15.
m . = m,
i = 1
,...
,n ,
w e have
and:
= 2
i s q i v e n by:
i n t h e above formula, s i n c e
2n-cube,
C4 =
and w e o b t a i n t h e r e s u l t (compare
:
y(Q2n) = 1
+ 2 2n-2 ( n - 2 )
F o r f u r t h e r r e s u l t s c o n c e r n i n g t h e g e n u s of r e p e a t e d C a r t e s i a n p r o d u c t s of b i p a r t i t e g r a p h s , see [W61, a n d a l s o P i s a n s k i ,
Now, l e t
for
); '1
H ( ~ ) , m
graph n
2.
C o r . 7-16.
[P5]. be t h e a b e l i a n g r o u p w i t h minimal C a y l e y color
2
2;
i.e.
and
Z2m,
rAm)
(m) = '2m
'n-1'
Then w e have: y(rLm)) = 1
+
2n-2(n-2)m
n
.
The r e a d e r may w i s h t o combine Theorems 4 - 1 6 ,
4-19,
o b t a i n genus formulae f o r a d d i t i o n a l a b e l i a n groups. u s i n g t h e n o t a t i o n of Theorem 4 - 1 6 ,
consider
where
a n d 7-13 t o
For example,
mr
i s even.
Using c u r r e n t graph c o n s t r u c t i o n s , r a t h e r t h a n t h e s u r g e r y t e c h n i q u e s
of Theorem 7 - 1 3 ,
Jungerman a n d W h i t e [JWl] f o u n d t h e g e n u s o f
"most" of t h e remaining f i n i t e a b e l i a n groups: summarizes t o i n c l u d e p r e v i o u s r e s u l t s as w e l l .
t h e n e x t theorem
The Genus of a Group
92
Thm. 7-17.
Chapt.
7
x zm x . . . ~ Z , where f o r 2 5 i 2 r ml 2 "r m. divides mi-l (and mr > 1, unless 11'1 = 1.) Let N ( T ) = 1 - (r-2) lrl/4: then
r
Let
= Z
(i) If
r
(ii) If
=
1,
r = 2
then and
mr
y ( T ) = 0, =
then
2,
y ( r ) = 0.
(iii) If N ( T ) is an integer, m r > 3, either mr even or r # 3 , then (iv) If N ( T ) is an integer, then y ( T ) 5 N ( 1 ' ) .
mr
r 1, and y(r) = N(l ) . and
= 3,
1
r # 3,
c
The argument of Theorem 7-12 can be modified to assist in the computation of the genus for certain hamiltonian groups; the following results are due to Himelwright [ H 7 ] : n
+
Thm. 7-18.
y ( Q x (Z,)
Thm. 7-19.
y ( Q x Zm
Cor. 7-20.
The groups Q xZm x ( Z 2 ) 8 , asymptotic to the order.
) =
n 2"
(Z2)n )
x
=
1.
mn2n + 1,
for
for
m
m
odd.
odd, have genus
By Theorems 4-16 and 4-22, if G is a hamiltonian group, then Zm x ... x Zm x ( z ~ ) ~where , the mi are odd (i = 1, 1 r , r) and m.L Imi-1 (i = 2, ... , r). Himelwright has also shown:
G = Q x
...
Thm. 7-21.
The genus of the hamiltonian group
zm
r 1 (r
x
(z,)n (n
is asymptotic to
Q x Z
x
-
1)
2n(r + n
m,I
...
E
i=l
x
mi,
if
+ 1.
There are many open questions in this area. If a generalization of Theorem 1-13 for products of arbitrary (not necessarily even) cycles could be found, then the genus of any abelian (and also of any hamiltonian) group could be easily computed. What is y(Sn)? y(An)? The following theorem produces upper bounds for these group genera.
Genus F o r m u l a e f o r Groups
S e c t . 7-2
Thm. 7 - 2 2 .
If
{q,
i s f i n i t e a n d i s m i n i m a l l y g e n e r a t e d by
,...
Proof:
and s a t i s f i e s a t l e a s t t h e r e l a t i o n s
,gn}
P 4
Select
f o r all
g E G.
=
-1 -1 (gql,qql r g g 2 r g g 2 ,
. . ., s g n g g , l )
An o r b i t c o n t a i n i n g t h e d i r e c t e d e d g e p - l ( a ) = agy2: agi
continues with
qqi = q' regions:
(If mi = 2,
m..
and
g'gi
= g,
-1
(a,aqi
)
hence t h i s o r b i t
m. gil = e
A
corresponds t o t h e r e l a t i o n length
I
a l g o r i t h m (see
Then, u s i n g E d m o n d ' s
w e compute o r b i t s as f o l l o w s :
Theorem 6 - 4 2 ) , (i)
93
and h a s
w e draw edges f o r b o t h obtaining
2-sided
f o r e a c h s u c h r e g i o n , t h e t w o s i d e s may b e
i d e n t i f i e d a n d t h e arrows r e m o v e d , so t h a t t h e region i s destroyed b u t t h e genus i s u n a f f e c t e d . ) ( i i ) An o r b i t c o n t a i n i n g t h e d i r e c t e d e d g e tinues with
P
agi
( a ) = agigi+l;
(a,ag.)con-
hence t h i s o r b i t n
corresponds t o t h e r e l a t i o n has length
( IT
j=1
g,)k = e
and
J
A s t h e r e are no o t h e r o r b i t s , w e
nk.
find: n
r =
1
rm
i=l
i
+ I nk
t h e e u l e r f o r m u l a now g i v e s t h e g e n u s
y
t h e o r e m f o r t h i s i m b e d d i n g of
for this
presentation
y ( c A ( r ) )5 Y.
P
for
r.
CA(T),
Hence
of t h e
~ ( 1 ' )5
#
The Genus o f a Group
94
Chnpt. 7
W e n o t e t h a t a n e q u i v a l e n t f o r m u l a w a s obtained by B u r n s i d e
[BIG, p . 3981 i n a d i f f e r e n t c o n t e x t . Theorem 7 - 2 2 g i v e s )(GI exactly, for I = 2 , A4 , S4 , A5 , o r Z j Z3. We a l s o obtain the followiny t w o c o r o l l a r i c s : Cor.
7-23.
2
y(sn) Proof:
(ni2) ‘
1 + ___ ( n 2 - 5 n + 2 ) , n
Take
erators f o r Cor.
...
s = (1 2 3
Sn;
s
then
n
2.
.>
n)
t = ( 12) n-1
and
t2 = (st)
=
a s gen-
#
= e.
7-24.
i
Proof:
For
n
(1 n-1) ( 2 n ) For
n
8
s = (1 2
odd, generate
even,
generate
(n-1)( n - 3 ) ! (n2 -6n+4),
+
An,
. ..
s n-l
with
n-2)
n-1) ( 2 n )
= t 2 =
and
( s t ) ” - l= c
odd
t =
and
sn-2 - t
and
An‘
s = (1 2
...
n
=
( s t ) n= e.
t = (I 2 ) ( 3 n ) (see [ 9 1 ) . #
The two f o r m u l a s g i v e n a b o v e f o r a l s o f o u n d by B r a h a n a
Sn
and
r e s p e c t i v e l y were
An
[ B 1 5 ] , u s i n g a d i f f e r e n t method and i n a
s l i g h t l y different context.
see [WE].
For r e l a t e d r e s u l t s ,
T h e r e h a s b e e n much a c t i v i t y i n t h e s t u d y of t h e g e n u s p a r a m e t e r f o r g r o u p s , i n r e c e n t y e a r s , p e r h a p s a t l e a s t i n p a r t m o t i v a t e d by C h a p t e r 7 of t h e f i r s t e d i t i o n of t h i s book. s e n t e d Theorem 7-16. Thm. 7-25.
W e have a l r e a d y pre-
Here is a c o n t i n u e d s a m p l e of t h i s r e s e a r c h .
(Proulx [P9])
y(~,)
5 1 +
$,
n
for
T h i s improves on C o r o l l a r y 7-23,
for
even,
n
n
even.
2
4. For
n
odd,
a s h a r p e r bound t h a n t h a t of C o r o l l a r y 7 - 2 3 w a s d e v e l o p e d i n [WSl: b u t t h e n e x t r e s u l t s d e t r a c t from t h e i n t e r e s t t h a t m i g h t a c c r u e t o t h e improvement of b o u n d s f o r
y(Sn):
Sect. 7-3
95
Related Results
Thm. 7 - 2 6 .
( P r o u l x [PSI ) Y(S5) = 4.
(The p r o o f i s n o t e a s y ! ) Thm. 7 - 2 7 .
(Tucker [T4] ) Y(Sn) = 1 +
&,
for
n
+ 5 3 3 6 , for
n
2
168.
We a l s o f i n d
Thm. 7-28.
(Tucker [T4] ) y(An)
During and White
1
t h e p e r i o d 1972-77,
Gross
[G6],
168 Gross a n d Lomonaco [ G L l ] ,
[W81 showed t h a t c e r t a i n m e t a c y c l i c a n d d i c y c l i c g r o u p s
are toroidal. Baker
c
Then i n 1977 P r o u l x [ P S I c o m p l e t e d work b e g u n by
i n 1931 [B3], t o c l a s s i f y
all t o r o i d a l
g r o u p s i n a major e f f o r t .
The c l a s s i f i c a t i o n c o n s i s t s o f n i n e t e e n p r e s e n t a t i o n s o n t w o g e n e r a -
t o r s , t e n p r e s e n t a t i o n s on t h r e e g e n e r a t o r s , a n d o n e p r e s e n t a t i o n on four generators.
7-3.
Related Results
I n 1 9 7 7 B a b a i [B2] s o l v e d a p r o b l e m p o s e d i n t h e f i r s t e d i t i o n o f t h i s book, when h e e s t a b l i s h e d : Thm. 7-29. Since
If
Sn
I'l
i s a s u b q r o u p of
r2,
then
i s i s o m o r p h i c t o a s u b g r o u p of
An+*,
y (rl)
5
y(T2).
we obtain
F o r e x a m p l e , w e l e a r n from Theorem 7-25 t h a t
y ( A 7 ) ->- 4 . D e s p i t e t h e f a c t t h a t t h e r e a r e i n f i n i t e l y many p l a n a r g r o u p s
( M a s c h k e ' s Theorem) and i n f i n i t e l y many t o r o i d a l g r o u p s ( P r o u l x ' s c l a s s i f i c a t i o n ) T u c k e r [ T 3 ] showed, i n 1978:
The Genus o f a Group
96
Thm. 7-3L.
For each
4 - 2,
t h e r e a r e a t m o s t f i n i t e l y many q r o u p s
{(r)
such t h a t
1
Chapt. 7
= g.
The f o l l o w i n c j 1 9 8 1 r e s u l t , also d u e t o T u c k e r
[ T 5 ] , is e v e n
more s u r p r i s i n g : Thrn. 7-32.
There is e x a c t l y o n e g r o u p o f cjenus t w o . It has order 96 and p r e s e n t a t i o n ( x , y , z ~ 2x= y 2 = z2 = ( x y ) 2 =
4
( y z ) 3 = (xz)8 = y ( x z ) y(xz)
4
.
e>
=
The ( u n i q u e ) g r o u p of y e n u s t w o i s t h e a u t o m o r p h i s m g r o u p of t h e generalized Petersen graph W a t k i n s [FGWl]
see F r u c h t , G r a v e r , a n d
G(8, 3 ) ;
.
We m e n t i o n t h a t o t h e r d e f i n i t i o n s of t h e " q e n u s of a q r o u p " appear i n t h e l i t e r a t u r e , due t o Levinson [ L 2 ] and B u r n s i d e lBl8J.
meters
by
pctrameter, qards
r
yL(7),
For
and
yB(!')
l i k e the parameter
y(l')
Sk;
b r a n c h e d ) cover o f some
respectively.
Sk
but
is always an
(1.e.
Sn
r
( p o s s i b l y b r a n c h e d ) c o v e r of some S n'
v i a i t s a c t i o n on the Riemann s u r f a c e
meler, i L i s a l w a y s t h e case t h a t
The L e v i n s o n
GA(I')
minimally im-
II'I-fold ( p o s s i b l y
t h e imbedding i s index o n e . )
M a c h l a c h l a n and B u r n s i d e p a r a m e t e r s a l s o r e g a r d fold
[Ml] ,
a d v o c a t e d i n t h i s c h a p t e r , re-
as being d e p i c t e d b y a Cayley graph
bedded on a s u r f a c e
Machlachlan
a f i n i t e group, w e denote t h e s e para-
I
y,(i'),
,
Sk
as an
The
1 r 1-
b u t represent t h e group Sk;
f o r t h e Burnside para-
The f o u r p a r a m e t e r s are
n = 0.
r e l a t e d a s f o l l o w s , where t h e e q u a l i t y h o l d s e x c e p t f o r c e r t a i n
small
I':
zhm. 7-33.
1 a f i n i t e g r o u p , ~ ( 1 ' ) 5 y L ( l ' ) = yM(r) 5 yB(r); all a r e bounded a b o v e by t h e bound of Theorem 7 - 2 2 .
For
Thus t h e most e f f i c i e n t g c n u s , among a11 t h e s e , i s t h a t g i v e n by
y(r).
We remark t h a t b o t h t h e i n e q u a l i t i e s of Theorem 7 - 3 3 c a n T = (ZZn) 4 , for n 2 indicate:
be s t r i c t , a s t h e groups Thm.
7-34-.
Let
I'
(i)
y(T) = 1
(ii)
v,(I')
( i i i ) y,(l')
=
2
n
(Z2n)4,
+
8n
2;
then
4
yM(T) = 1 t 16n 1
+
3 4n (611-5)
4
97
The Characteristic of a Group
Sect. 7-4
7-4.
The Characteristic of a Group
If we allow nonorientable surfaces also, as our "drawing boards" for"picturing"groups, then we are led naturally to the parameter of
this section. surface S = N
S
is
Recall from Section 5-3 that the characteristic of a i(
(S) = 2 - 2 k ,
if
S = Sk;
x
(S)
= 2
-
k,
if
k'
Def. 7-35.
The characteristic of a graph G, denoted by x ( G ) , is the maximum surface characteristic X ( S ) such that G imbeds in
S.
For example, a graph has characteristic two if and only if it is planar:
K5
and
have characteristic one:
K6
K7
has character-
istic zero: and so forth. Def. 7-36.
The characteristic of- a r _group ___
x (r)
=
is given by:
max{X (GA(T))I ,
where the maximum is taken over all generating sets for
A
r.
Thus a group has characteristic two if and only if it appears in Maschke's list (Theorem 7-3.) Here are some less obvious sample results. Thm. 7-37.
(White [WlO]) Let r be finite and abelian:
x (r)
0,
otherwise.
then
'Thm. 7 - 3 8 . _____
( W h i t e [WlO])
(1'1,
Let
G)
=
I, w i t h
lf a n d o r i l y if
where 7-39.
2k+l - b2n+l =
7-40.
~~
7-41.
I 168,
n
n
' -
Wc o b s e r v e t h a t ,
(An )
168,
2 168
0
=
e ) ,
.
)
( 1
= -1.
for
n
*
-n'
.
A
84
1G8,
(Sn )/,(A n ) =
\,
Show: that a n y p r e s e n t a t i o n
for
P
All].
t o r s , n e i t h e r c o n l x of o r d c r
2;
t h e q u a t e r n i o n s , has
Q,
P
h a s e x a c t l y t w o cjencra-
and thaL
e x a c i l y t h r e e g c n e r a t o r s , e a c h of o r d e r
(C ( Q ) )
ISn:
Prohleins
a t lcast t w o cjenerators; t h a t ? f
7-2. )
)
1
=
(S ) n
7-5.
1
=
-1 abab
ur
hnvlii, we see that K 2,212 is a Cayley color graph for Z6. (Here, x = 1 and y = 2, with e = 0; y is clearly redundant, but its presence as a generator enables us to picture Z 6 with K 2 , 2 , 2 . ) We try for an index one imbedding. This requires a quotient graph K having four directed edges (corresponding to 1,5,2,4) and one region in its quotient manifold. But then K has two edges; no such K is possible. Next we try for an index two imbedding. This requires a quotient manifold having two quadrilateral regions, and hence a
Sect. 9-4
Extending the Theory
137
quotient graph with four undirected, and eight directed, edges. The quotient graph is shown in Figure 9-9, imbedded in its quotient manifold, the sphere.
R1
Figure 9-9
Then :
0:
1 , 5 , 4, 2
2:
3,
4:
2,
1, 0 , 4
3:
4 , 5 , 1, 2
5 , 3 , 2, 0
5:
0,
gives a triangular imbedding of The orbits are: 0-1-2
1, 3 , 4
K2,2,2'
1-3-2
0-2-4
1-5-3
0-4-5
2-3-4
0-5-1
3-5-4.
Figure 9-10 shows this imbedding of
in
3, 5, 0
1:
K
2,212
So.
Figure 9 - 1 0
(the octahedral graph)
Q u o t i e n t Graphs and Q u o t i e n t M a n i f o l d s
138
S u p p o s e now t h a t w e t a k e K
2,212
I
= S
Chapt. 9
then 3 = ((23), (12), (132) j; An i n d e x o n e i m b e d d i n g 2
is a g a i n a C a y l e y c o l o r g r a p h .
possible,
i n t h i s c a s e , a s shown by F i g u r e 9 - 1 1 ,
whcrc t h e
F i g u r e 9-11. q u o t i e n t graph i s given.
Note t h a t t h e v e r t e x of d e g r e e o n e h a s a
c u r r e n t of o r d e r t h r e e g o i n g i n t o i t ; t h e two s i n g u l a r e d g e s c a r r y c u r r e n t s of o r d e r t w o , a n d t h e v e r t e x of d e g r e e t h r e e s a t i s f i e s t h e KCL:
(23)(12)(132) = (1) (2)(3) = e. There i s one coset, = S3. W e h a v e :
e:
(23), (12), (132), (123)
(12):
(132)r e , (23), (13)
(23):
e
(13):
(123), (132), (12)I (23)
, (123), (13), (12)
(123):
(13), (23), e l (132)
(132):
(12), (13), (123), e .
The o r b i t s a r e :
-
e-(23)-(123)
(12) (13)- (23)
e- (12)-(23)
(12)- (132)-(13)
e- (132)- (12)
(23)- (13)-(123)
e- (123)-(132)
(13)-(132)- (123)
F i g u r e 9-12 shows t h i s i m b e d d i n g , w h i c h a g r e e s w i t h F i g u r e 9-10,
except for labeling.
Sect. 9-4
Extending the Theory
139
Figure 9-12
K (for the 414 quaternions) given in Figure 7-3. We find the quotient graph for this imbedding and choice of groups. Looking at the dual, we find 2 2 2 3 that e l y I x , and x y have the same boundary: x, x y , x , y. 2 2 2 2 Furthermore , = {eryIx ,x y] is a subgroup of Q , since x = y 2 3 3 3 "x = {x,x y,x ,xy} is a and x y = y , with y4 = e. Also, .I , and each of these regions (in coset of Q with respect to the dual) has boundary: x2 y r x I y 13x Hence this imbedding of K = 2.) We "mod (for Q) is of index two ( ( Q : f i ] = / Q ( / I ? 414 out" regions (in the dual) with identical boundaries, and form the quotient graph, in its quotient manifold S1 , as indicated in Figure 9-13. To make the appropriate identification, we use the general relationship: Example 2:
Consider the quadrilateral imbedding of
.
to match the edge g in the boundary of the region for coset The computations for this situation are: (",x) (i I X
2
-1
Y)
3 = ( 1x,x )
-1
= (\)lY)
((Q,x3)-1 = (\Qx,x) -1 2 (iiX,Y) = (Rx,x y).
X.
140
Q u o t i e n t Graphs a n d Q u o t i e n t N a n i f o l d s
2 X Y
xL-lx3
C
Chapt.
2 X
{
;
[ 3 x
Y
X
Y
F i g u r e 9-13
Y
9
141
Extending the Theory
Sect. 9-4
Finally, we find a quadrilateral imbedding of K Z 1 in (with r = r4 = 105). It is an easy exercise to check that
Example 3: S43
this imbedding is compatible with the euler formula.
Let us hope
1 = Z for the best, and try for an index one imbedding with 21' Then we seek a quotient manifold with r = r = 1. This requires
a quotient graph
K
with
20
directed, or
20
For a quadrilateral imbedding, we would like
10
undirected, edges.
K
to be regular, of
A likely candidate is K = K5. Now we must make an as' * : K* Z21 - 0, satisfying the KCL: then we must signment inducing a single orbit, of length make a selection (pl,p2,...,p5)
degree
4.
+
20,
for
K5.
We find the assignment, using the fact that
eulerian; the selection is made, using the fact that (i.e.
S3
will be the quotient manifold), with
Figure 9-14. a
b
e
C
Figure 9-14 The local vertex permutations are:
The single orbit is:
a:
(b,c,d,e)
b:
(a,c,d,e)
c:
(a,b,d,e)
d:
(a,b,c,e)
e:
(a,c,d,b)
K5
is
yM(K5) = 3
r = r20 = 1;
see
Quotient Graphs and Quotient Manifolds
142
Chapt. 9
a-b-c-d-e-b-a-c-b-d-c-e-d-a-e-c-a-d-be,
giving rise to: 0:
1,2,3,4,5,10,19,7,18,9,17,6,16,8,20,15,14,13,12,11
1:
2,3,4,5,6,11,20,8,19~10,18,7,17,9,0,16,15,14,13,12
which in turn gives r = r4 = 105, for K21 on S 4 3 1 using Edmonds' permutation technique. Although this imbedding may be of little general interest, it does give further indication of the economy of effort possible by seeking quotient graphs in quotient manifolds, rather than graphs in manifolds. Moreover, minimal imbeddings have been found by first finding non-minimal imbeddings of related graphs. For example, Youngs [Y4] on
S
imbeds
K12s+7
on
S
12s + 1 3 s + 3
i
to find
KIZs+10
12s + 1 3 s + 4
9-5.
The General Theory
As we have seen, the standard proof-technique for establishing a genus or maximum genus formula is to first use the Euler formula p - q + r = 2
-
2k,
describing a 2-cell imbedding of the graph G in the surface S k l to find a bound for the parameter under the study. For y ( G ) , we get a lower bound (see, for example, Corollaries 6-14 and 6-15); for we get an upper bound (Theorem 6-24). The second step is to construct an imbedding of G attaining the bound obtained. Inductive constructions are particularly useful for graphs which can be defined as repeated Cartesian products (as in the proofs of Theorems 6-36 and 7-13). A local vertex permutation scheme, such as that discussed in Section 6-6, is frequently helpful (as in the proofs of yM(G)
Sect. 9-5
The General Theory
Theorems 6-25, 6-37, and 6-39).
143
Ad hoc techniques have occasionally
been successful (see the proof of Theorem 6-45). But the most powerful and efficient technique (when it applies, and this is reasonably often!) is the method of quotient graphs and quotient manifolds. In the preceding sections of this chapter, we have discussed this theory, as introduced by Gustin and developed by Youngs, and its application to triangular imbeddings of complete graphs. We have also hinted at a generalization of this theory, and to this we now devote out attention. The material in this section is based on work by Jacques [J2]. Given a finite group
I
with a set
h
of generators for
r ,
recall that the Cayley color graph
C,(l) has vertex set I', with a directed edge -- labeled with generator h . -- if and -1 !f A, unless only if g ' = gc 3 ) ,
=
151
Then
GA(Sn)
5n+2),
Sk
in
with
,
-
r n = nn! =
The s i d e c a r r y i n g c u r r e n t
( T h i s i n d e x o n e imbedding
[W8], and g i v e s a n u p p e r bound f o r t h e appears i n f o r n even.) g e n u s o f t h e s y m m e t r i c g r o u p Sn ,
F i g u r e 9-22 A p p l i c a t i o n 5:
Take
r
M(Z7/Z7)
=
"t
= Z7,
and
A =
{1,2,3}.
i n F i g u r e 9-23 g i v e s
Gn(Z7)
Then = K7
in
S3,
F i g u r e 9-23
r 3 = 7 a n d r I = 3. ( T h i s i n d e x o n e imbedd i n g solves t h e r e g u l a r p a r t of t h e p r o b l e m , f o r
with
finding
y(Kl0);
see S e c t i o n 9-3.
152
Quotient Graphs and Quotient Manifolds
Chapt. 9
New Applications
9-7.
Further connections between the theory and imbedding problems can be explored. For example: Thm. 9-17.
G
is a quotient graph for an imbedding of a graph
K
If
o € index one or two, then
Proof:
=
yM(K)
'L FP (~K )
.
8-
This is a direct consequence of Theorem 6-24.
#
Every Cayley graph has an index one imbedding; in fact Gd(l') has ( I d ? * 1-1) ! index one imbeddings. When are these minimal? A partial answer is provided in: Thm. 9-18.
Let the finite group
...
I
and
An},
I
n
If
subset of
Cor. 9-19.
(G*
(r
)
Let
=
n-1 (
71
i=l in the
=
c
9-20.
Let
n
3
=
,
n
has an index one imbedon
or if
where
Sk
n
=
4
k = 1 t
and no proper
contains a redundant generator, then
A
(zn)n- 1
,
I
n 2 3,
where
E~
with
is the
3 =
{
E
,~ ...
.
I
tn-l,
(n-1)-tuple having
ith position and 0 elsewhere. Then n- 1 .1+" (11-31 , equality holds for
r
3
k.
)-I
-
Cor.
,
A =
is of order
tSi
GA(T)
r = rn = 21rI
(n-3).
I
Then
'
ding, with
be generated by
where each
6 . = e.
IT
i=1
T
1
n = 3,4.
= (3,3 13'3) in the notation of Coxeter and [CMl] (i.e. r is the non-abelian group of order 2 7 , generated by s,t and subject to the relations 2 s 3 = t3 = (st)3 =(s-'t13 = el; let A = {s,t, (st) 1; then y ( G 3 ( r ) ) = 1. Moreover, r is a toroidal group.
Moser
Cor. 9 - 2 1 .
153
New Applications
Sect. 9 - 7 .
Let with
7 ~
=
A
,
the alternating group of degree four, 1; then
= I ( 1 2 3 ) ,( 3 2 4 ) , ( 1 3 4)
, (G (A4)) = 1. (However, A4 is not toroidal, as there exist planar Cayley graphs for A 4 . ) In Section 7 - 2 we saw that we could find the genus of any abelian group ,’ = Z x Zm , where m r i s even zm2 x “1 r
...
...
divides m 1-1 . i = 2 , , r.) The argument used Cm x Cm x Cm = GA(T), for the standard 1 2 r presentation for r , and Theorem 7-13. The techniques employed fail if even one order m is odd. The theory of quotient graphs i and quotient m a n i f o l d s provides a new approach to the genus problem for general cycles, and hence to the genus of an arbitrary finite (assuming mi the fact that
abelian group.
...
(See also Theorem 7 - 1 7 ) .
For example,
M((Z3
where Z 3 , Z2n , and respectively, shows that
9-24,
t
Zln
y
>:
Z2m
Z2m)/(Z3
2 .
Zn
x
Zzm))
are generated by
we conjecture equality for this formula. Figure 9-25, where
x
Also,
r
,
in Figure s
,
M ( (Z3)n/(Z3)n)
is a generator for the ith copy of
shows that
Figure 9-24.
and
Z3,
in
154
Quotient Graphs and Quotient Manifolds
Chapt. 9
Figure 9 - 2 5
b
a
f
d
b C
e d
b
a
f
Figure 9-26
9-8. *9-1.)
9-2.)
Problems
Show that seven "different" minimal imbeddings of K 5 are compatible with the formula of Theorem 9-1. (For example, r3 = 4, r8 = 1: r4 = 5 give two "different" imbeddings of K~ on s1 , since the regions are distributed differently). How many of the seven can you actually find? (Hint: not all seven exist!) Find the quotient manifold and the quotient graph f o r the given (for r = z 8 ) in quadrilateral imbedding of K 4,4
*9-3.)
Figure 9-26. There are twelve different quotient graphs S ( r / f i ) for in s1 with Q # {el; i.e. twelve different K 2,2,2,2 Find these twelve ordered pairs ( r , Q ) for K 2! 2 r 2 I 2 ' ordered pairs and then obtaln an M ( r / i I ) for each nontrivial index.
Problems
Sect. 9-8
9-4.)
155
Use the theory of quotient graphs and quotient manifolds to find a quadrilateral imbedding of
9-5.)
*
9-6.)
K5. Use the theory of quotient graphs and quotient manifolds to find a hexagonal imbedding (r = r6) for K 3 , 3 .
Generalize Example 3 of Section 9-4, to find r = r4n imbcddings of K4n ( 4 n + l )+ I ' where 4n+l is prime. Is this an infinite class of graphs? (In fact, only the parity of
9-7.) 9-8.)
4n+l
is required.)
Prove Theorem 9-15. Find , (Q,) in three ways:
(1) by a construction, such as that employed in the proof of Theorem 7-13; (2) by selecting an appropriate (p, , p2 , , p ) and using 2"
...
Edmonds' algorithm (see Theorem 6-47) to show that every orbit has length 4; (3) by finding an appropriate M ( T / \ ' ) . 9-9.)
*
9-10.)
We see from Theorem 6-25 that K5 has a 2-cell imbedding Show that the theory of this chapter is of no in S 3
.
aid in find this imbedding. Find a triangular imbedding for surface
(n # 3 . )
K
n,n,n,n
in a suitable
This Page Intentionally Left Blank
157
CHAPTER 10 VOLTAGE GRAPHS
In t h e p r e c c c d i n g c h a p t e r , f o l l o w i n g t h e h i s t o r i c a l d e v e l o p m e n t of G u s t i n , Youngs, R i n g e l , J a c q u e s , e t a l , w e g e n e r a t e d g r a p h i m b e d d i n g s by means o f c o n s t r u c t i n g ( s i m p l e r ) c u r r e n t g r a p h i m b e d d i n g s . These l a t t e r were v a r i o u s l y c a l l e d " q u o t i e n t g r a p h i n q u o t i e n t Inanif o l d " and " r e d u c e d c o n s t e l l a t i o n .
Each a p p r o a c h h a s t h e a d v a n t a g e
"
o f economy o f c o n s t r u c t i o n ; e a c h a p p r o a c h h a s t h e d i s a d v a n t a g e o f g e n e r a t i n g r e g i o n s by v e r t i c e s and v e r t i c e s by r e g i o n s .
Moreover,
t h e mode of " g e n e r a t i o n " i s n o t made e x p l i c i t , i n a way t o g i v e maximum a i d t o i n t u i t i o n . These d e f e c t s a r e c o r r e c t e d b y t h e v o l t a g e g r a p h t h e o r y i n i t i a t e d by G r o s s [G3] i n 1 9 7 4 and by i t s i n t e r p r e t a t i o n i n t h e c o n t e x t o f b r a n c h e d c o v e r i n g s p a c e s ( s e e p a p e r s by Gross a n d A l p e r t : [GA2],
[GAl],
and [AG2] . )
I n t h i s c h a p t e r w e p r e s e n t j u s t enough c o v e r i n g s p a c e t h e o r y f o r t h e i m m e d i a t e c o n t e x t ( f o r more d e t a i l s , see [ M 3 ] ) t r o d u c e v o l t a g e g r a p h s , w i t h examples. Map-coloring
and t h e n i n -
W e t h e n r e v i s i t t h e Heawood
Finally, we
Theorem f r o m t h i s a d v a n t a g e o u s v i e w p o i n t .
describe the strong tensor product construction f o r graphs;
this is
an i t e r a t i v e p r o c e s s t h a t o f t e n p r o d u c e s a n i n f i n i t e tower of g r a p h i m b e d d i n g s f r o m o n e v o l t a g e g r a p h i m b e d d i n g a t t h e base.
10-1. Def.
10-1.
A function
Covering Spaces
-
0 :X
-f-
from o n e t o p o l o g i c a l s p a c e t o
X
another is c a l l e d a covering projection i f every point h a s a neighborhood
x C X
i.e.
p
c a l l y onto maps to
-
Y.
$
Ux
maps e a c h component o f Ux.
If
Y
E
X
and
homeomorphically o n t o
which i s e v e n l y c o v e r e d ; p
-1
(Ux)
? c 2 Y,
we say t h a t
x
We call
x
homeomorphi-
i s such t h a t
a covering space f o r
X.
Y
p
lifts
158
V o l t a g e Graphs
Chapt.
10
A s t a n d a r d r e s u l t i n t h e t h e o r y of c o v e r i n g s p a c e s i s t h d t
Ip-l(x) = n,
x E X.
i s i n d e p e n d e n t of t h e c h o i c e o f
~
then
1s c a l l e d an n - f o l d
p
1
Ip-'(x)
If
Here a r e
covering projection.
some s t a n d a r d e x a m p l e s of c o v e r i n g s p a c e s and c o v e r i n g p r o j e c t i o n s :
0:
R
t , s i n t ) . Then p "wra s" t h e a r o u n d t h e u n i t c i r c l e S1 i n f i n i t e l y many times,
where
Sl,
K
real line
b i ( t )
w i t h each half-open
= (cos
[r, r
interval
+
S1
"covering"
277)
exactly
once. I f we pick (1,O) E S1 and ( s a y ) U = { ( x , y ) E s1 1 -1 - -1 2 < y ' -1 l , i s e v e n l y c o v e r e d - a s (! 2 then "(LO) u(l.o)
Q (2ni i€I (2ni
-
-
ii/6,
n:6,
271i
211i
+
+
71/61
=
and e a c h open i n t e r v a l
11/6)
i s c l e a r l y homeomorphic t o
U
(1,O).
The c o v e r i n g p r o j e c t i o n o f t h e p r e c e e d i n q e x a m p l e f a i l s t o b e n-fold,
f o r cach
n
n F N
However, € o r c v c r y
N.
it i s a simple
m a t t e r t o c o n s t r u c t an n - f o l d c o v e r i n g p r o j e c t i o n . Example 2 :
Define
p
: S1
+
S1
by
n,
ip(z) = z
where
z
wraps
S1
t i m e s around i t s e l f , and
n
-
-
f o r example
(I
is
S1
r e g a r d e d a s a complex number. (Recall Chat, i f z = cis8 = n ( c o s o , s i n O ) , t h e n z = c i s nB = ( c o s n 6 , s i n n t i ) . ) Thus
p
-1 (1,O) con-
s i s t s p r e c i s e l y of t h e n t h r o o t s of u n i t y . The above e x a m p l e i s s i g n i f i c a n t f o r t h e s e q u e l , as it d e s c r i b e s how r e g i o n b o u n d a r i e s o f a d e s i r e d g r a p h i m b e d d i n q w i l l p r o j e c t t o
t h o s c of a v o l t a g e g r a p h i m b e d d i n g , i n t h e s i m p l e s t o f cases ( c o r r e s p o n d i n g t o t h e KCL Example 3 :
-
Recall t h a t
is t h e p r o j e c t i v e p l a n e
see S e c t i o n 9-2 So
-
holding.)
R3),
is the sphere ( i n
and t h a t
N1
( n o n o r i e n t a b l e s u r f a c e of g e n u s o n e , or
sphere with one crosscap.)
Define
p : So
+
N1
by
antipodal
identification; i.e.
o(x,y,z) = (-x,-y,-z);
then
(1
is a 2-fold
covering p r o j e c t i o n .
I n t u i t i v e l y , w e could regard
ti
as f i x i n g the
bottom hemisphere
and
d e p r e s s i n g t h e t o p hemisphere i n " r e v e r s e
fashion; the antipodal i d e n t i f i c a t i o n along t h e equator t h e n "sews on" t h e c r o s s c a p . (This takes place i n R4, n o t R3 . )
overlapping
"
S e c t . 10-1
159
Covering Spaces
The f o l l o w i n g r e s u l t i s w e l l known
( b y t h e Riemann-Hurwitz
Theorem.)
Thm. 10-2. -___
If
S
-
i s an n - f o l d c o v e r i n g p r o j e c t i o n f o r
S
s u r f a c e s , t h e n t h e s u r f a c e c h a r a c t e r i s t i c s are r e l a t e d by:
x(S)
=
nu(S).
This relationship is quite natural: in
S,
with
5 .w i t h
p
np
-
+ r
q
then
= ,y(S),
vertices,
nq
e d g e s , and
-
x ( S ) = n p - nq + n r = n ( p
+
q
r)
if
p
-1
is 2-cell
G
imbedded
i s 2 - c e l l imbedded i n
(G)
r e g i o n s , so t h a t
nr
nX(s).
=
T h u s , f o r e x a m p l e , o n l y t h e t o r u s c a n cover t h e t o r u s ( s i n c e h = 1
k = 1.)
forces
covering space is
An i m p o r t a n t g e n e r a l i z a t i o n of t h e c o n c e p t o f
r e q u i r e d , t o c o v e r t h e c a s e w h e r e t h e KCL d o e s n o t h o l d .
(See also
and i t s t w o c o r o l l a r i e s . )
Theorem 9 - 1 4
Def.
A function
10-4.
: X
p
from one t o p o l o g i c a l s p a c e t o
X
a
_ I _
a n o t h e r i s called a branched c o v e r i n g p r o j e c t i o n
-
(and
i s a b r a n c h e d c o v e r i n g s p a c e o f X) i f t h e r e e x i s t s a f i n i t e set B X such t h a t t h e r e s t r i c t e d f u n c t i o n X
2 -
p:
p-l(B)
and
-f
B
p o i n t s of
X
-
i s a covering projection.
B
are c a l l e d b r a n c h p o i n t s .
-.
p:
some c a r d i n a l number
n
branching a t
-1 ( U b
-
b
Ib})
in
Ub
-
Ub
-
b,
is n-fold,
{b]
the for
called the multiplicity of
.
where X.
+
The
b E B
a s u f f i c i e n t l y small n e i g h b o r h o o d of
Ub
restricted f u n c t i o n
p
For
Ub
i s a component of n = 1,
(If
t h e n t h e r e i s no
branching.) Standard examples h e r e are : Example 4 : give
P:
Let D
+
D
a c o m p l e x number,
D = { ( x , y ) E R2
by
p ( z ) = zn
Then
p
I
+
x2
y2 < 11,
w h e r e , as b e f o r e ,
“wraps“
D
t h e u n i t d i s k , and z
around i t s e l f
i s r e g a r d e d as n times,
except t h a t t h e o r i g i n i s f i x e d (and t h u s i s a branch p o i n t of multiplicity
n. )
Example -5 :
Define
p:
p(l,O,@) = (l,n",$).
So
+
Then
i n s p h e r i c a l c o o r d i n a t e s , by
So, p
10
Chapt.
Voltage Graphs
160
"wraps"
around i t s e l f
So
times,
n
e x c e p t t h a t t h e n o r t h a n d s o u t h p o l e s are b o t h f i x e d ; e a c h i s t h u s a b r a n c h p o i n t of m u l t i p l i c i t y
n.
Both of t h e e x a m p l e s a b o v e a r e i m p o r t a n t f o r w h a t i s t o f o l l o w ,
a s t h e f o r m e r g i v e s t h e p r o t o t y p e d e s c r i p t i o n of t h e p r o j e c t i o n o f r e g i o n s i n ( p o s s i b l y b r a n c h e d ) c o v e r i n g s of o n e g r a p h i m b e d d i n g by
-
another
-
the local picture
w h i l e t h e l a t t e r i s o n e i n s t a n c e of
t h e p r o j e c t i o n between t h e c o r r e s p o n d i n q a m b i e n t s u r f a c e s
-
the
qlobal picture.
10-2. be a p s e u d o g r a p h .
K
Let
a s s o c i a t e two o r i e n t e d set
K*
= { ( u , ~J )u v
Dcf. 1 9 - 5 . __-
edges
E E(K)
V o l t a g e Graphs With e a c h e d g e
e = (u,v)
and
uv E E ( K ) , w e -1 e = ( v , u ) , and w e
1.
A voltage graph is a t r i p l e
where
(KIT,@),
r
i s a group, and (I: K* ~ ( e - l )= ( @ ( e ) ) - ' f o r a l l e E K*.
pseudograph,
W e remark t h a t t h e p s e u d o g r a p h
q u o t i e n t graph
Def. 1 0 - 6 .
S(l'/S?)
K
satisfies
i s c l o s e l y related t o t h e
of S e c t i o n 9-3.
The c o v e r i n g g r a p h
Kx
r
4,
V(K)x
r
edges
( u , g ) ( v , g ( I ( e ) ) of
and each edge
for
e = uv
Kx$r
(K,l','$)
of
,
K
has vertex set determines t h e
for all
Irl -
f o l d covering space of
covering space of
K
K;
r .
g
For p s e u d o g r a p h s r e g a r d e d a s t o p o l o g i c a l s p a c e s , t h e n
i s an
is a
K
Kx
@
r
i n f a c t , every regular
c a n b e o b t a i n e d i n t h i s manner (see
[GTZ] )
.
( F o r a d d i t i o n a l i n f o r m a t i o n on c o v e r i n g p r o j e c t i o n s of g r a p h s , see W a l k e r [ W l ] , F a r z a n a n d Waller [FWl] , C l a r k e , Thomas, a n d Waller [CTWL]
,
S i t [S5], and B i g g s [Bll]. )
F o r a n y walk (K.
r,b),
w e set
w: e l , e2 , . . . , e m b e g i n n i n g a t
v E V(K)
in
Sect. 1 0 - 2
V o l t a g e Graphs
161
m
and d e f i n e t h e l o c a l g r o u p a t
rV
Then
r
[r:
thus
and
v,
if
NOW l e t S,
(P,
(K,r,@)
i s g i v e n by
K x I'
v E V(K).
@
be 2 - c e l l imbedded i n an o r i e n t a b l e s u r f a c e
... if
f o r each
g
Thus
r @
f o r any
t h e number of
(K,r,$),
a s d e s c r i b e d a l g e b r a i c a l l y by t h e r o t a t i o n scheme P = of P to Kx r P2 I , P P L W e d e f i n e t h e lift
I
follows:
Kx
,
a r e con-
Tv
is connected.
K
components o f t h e c o v e r i n g g r a p h
[T: I v l
and
a r e i n t h e same component of
v
i s i n d e p e n d e n t of
v}.
Tu
and m o r e o v e r u
For a c o n n e c t e d v o l t a g e g r a p h
10-7.
Thm.
!'v]
if
by:
i s a c l o s e d walk a t
w
i s a s u b g r o u p of
j u g a t e s u b g r o u p s of K;
I
= {$(w)
Tv
v
.
4)
pv(vlu) = (v,w),
E .'l
then
(See F i g u r e 10-1.)
Then
d e t e r m i n e s a 2 - c e l l i m b e d d i n g o f e a c h component of
P
The power o f v o l t a g e g r a p h t h e o r y i s t h a t t h e s i m p l e r i m -
bedding of
K
b e l o w g i v e s much i n f o r m a t i o n a b o u t t h e more c o m p l i -
c a t e d imbedding of
Kx
of t h e imbedding o f t h e o r d e r of walk i n
as
K
@(w)
K
in
$
r
above. on
r
S
To see t h i s , l e t
i n d u c e d by
where
w
=
PI
el
e2
and l e t
, . . . ,em
c o n s i s t i n g of t h e o r d e r e d b o u n d a r y of
is u n i q u e u p t o i n v e r s e s and c o n j u g a c y , t h e o r i e n t a t i o n of
R
/R/
R
R.
be a region
lRl@
be
is a closed (Since
@(w)
i s i n d e p e n d e n t of w.) We then
and o f t h e i n i t i a l v e r t e x of
have t h e f o l l o w i n g c e n t r a l r e s u l t , due t o Gross a n d A l p e r t [GAl]:
162
Chapt.
10
b e a v o l t a g e g r a p h w i t h r o t a t i o n scheme
P
Voltage Graphs
V
( i n K)
F i g u r e 10-1
Thm. 1 0 - 8 . ___-
Let
(KrT,g)
and
P
I
P
t h e l i f t of
to
Kx I .
-
d e t e r m i n e 2 - c e l l i m b e d d i n g s of orientable surfaces
S
and
Q,
S
K
Let
P
and
KX
and $-
P
I
on t h e
respectively.
Then
t h e r e e x i s t s a ( p o s s i b l y branched) covering p r o j e c t i o n
S
p:
S
such t h a t :
-1
(K) = Kx 1'; @ (ii) i f b i s a b r a n c h p o i n t of m u l t i p l i c i t y n , t h e n b i s i n t h e i n t e r i o r of a r e g i o n R s u c h / R / *= n ; that (1)
p
(iii) i f
R
is a r e g i o n of t h e i m b e d d i n g of
i s a k-yon,
then
p
-1 (R)
has
p o n e n t s , e a c h o f w h i c h is a of t h e c o v e r i n g i m b e d d i n g of
W e remark t h a t , f o r mapped b y
p
onto
R,
/RIQ, = n,
p:
D
+
which com-
k ( R ( @- yon r e g i o n Kx
Q,
r.
e a c h component of
e s s e n t i a l l y by
K
Irl/\Rl$-
D, p ( z ) =
p
-1(R) i s n z , as
d e s c r i b e d i n Example 4 o f S e c t i o n 1 0 - 1 .
Note t h a t Theorem 1 0 - 8
of Theorem 9 - 1 3 t h e following:
(iii) i s j u s t t h e v o l t a g e graph analog
for c u r r e n t graphs.
Now compare D e f i n i t i o n 9-3 w i t h
Sect. 10-2
V o l t a g e Graphs
Def. 1 0 - 9 .
:)(w) = e
If
region
of
R
Law
S
ii:
on
K
+
bounding
S,
s a t i s f i e s t h e Kirchoff
R
i f the
(KVL);
KVL
holds f o r a l l regions
w e s a y t h a t t h e i m b e d d i n g of
(K,I',$)
satisfies the
then
KVL.
( i . e . t h e r e i s no
is a covering projection
S
(K,T,O)
KVL.
I f t h e i m b e d d i n g of
10-10.
w
f o r t h e c l o s e d walk
we say t h a t
s a t i s f i e s the Cor.
r
i n t h e v o l t a g e g r a p h i m b e d d i n g , so t h a t
R
lRi,$ = 1, Voltage
in
163
branching.) I n e i t h e r c a s e ( b r a n c h i n g or n o t ) , i f the voltage graph b e d d i n g of
Kx
9
r
K
m
i s an i n d e x
m,
has order
i s s a i d t o have i n d e x
(K,T,@)
m,
then
and t h e im-
i m b e d d i n g ( c o m p a r e Theorem 9-10
( 3 ).) V o l t a g e g r a p h t h e o r y i s e v e n more g e n e r a l t h a n t h e " g e n e r a l theory" of Section 9-5, be a C a y l e y g r a p h .
in t h a t the covering graph
Kx
R
c e r n e d w i t h t h e Cayley g r a p h c a s e ; t h i s w i l l arise f o r g r o u p of
r
and v o l t a g e g r a p h
(K,Q,$)
-
where
.
S c h r e i e r c o s e t graph f o r 9 i n 1' Then Kx@R D = {@(k)1 k K*} (reduced a s i n Section 9-5.)
(X,T,@); t h e n
v o l t a g e graph j o i n t c o p i e s of
need n o t
I'
0.
I n t h i s b o o k , h o w e v e r , w e are p r i m a r i l y c o n -
C, ( 1')
.
In the simplest case
-
Kx
@
r
K*
$:
=
-
K
a sub-
-
1'
a
where
CA(T),
O r , w e could use
would c o n s i s t o f
index 1
+
lrl/lQl
h a s one v e r t e x ,
r
= R, the
two a p p r o a c h e s c o i n c i d e , and t h e c o n s t r u c t i o n i s q u i t e c l e a r : each
g C T,
then
V(KX
r)
we identify = V(K)X
r
2
(v,g)
r
and
with
g
(where
dis-
for
V(K) = {v}),
E(Kx@T) 5 I [ g , g @ ( e ) ]1 g E
and
r,
e = ( u , v ) E K*}. F i n a l l y , w e remark t h a t e v e n v o l t a g e g r a p h t h e o r y h a s b e e n q e n e r a l i z e d ; see Gross a n d T u c k e r [ G T 2 ] .
Also, see B o u c h e t [ B 1 4 1
( a f o l d i s a 1analog of t h e 0-dimensional branching.) And, see
f o r g r a p h i m b e d d i n g s as c o v e r i n g s p a c e s w i t h f o l d s diraensional
P a r s o n s , P i s a n s k i , and Jackson
( [ P P L : l ] a n d [ J P P l ] ) f o r g r a p h imbed-
d i n g s a s b r a n c h e d c o v e r i n g s p a c e s , where t h e r e s t r i c t i o n s o f t h e b r a n c h e d c o v e r i n g s t o t h e imbedded g r a p h s a r e "wrapped q u a s i - c o v e r ings.
"
164
V o l t a g e Graphs
10-3.
Chapt. 1 0
Examples
C o n s i d e r t h e i n d e x one v o l t a g e g r a p h ( a " b o u y u e t " of two
Example 1:
c i r c l e s ) of F i g u r e 1 0 - 2 ,
shown imbedded on t h e t o r u s
W e take
S1.
I< -Ic
Figure 10-2 A = {a,b}
r
for
=
Sl
(IrI 2 5),
abelian
CA(T) = Kx
C o r o l l a r y 1 0 - 3 , w e see t h a t torus as w e l l .
Irl.
so t h a t t h e
t h e r e i s no branching.
h o l d s ; t h u s , by C o r o l l a r y 1 0 - 1 0 ,
r
@
KVL
Then, by
w i l l b e imbedded on t h e
t h i s imbedding w i l l have
By Theorem 1 0 - 8 ,
r = r4
=
Thus F i g u r e 1 0 - 2 c o m p l e t e l y d e t e r m i n e s an i n f i n i t e f a m i l y of
q u a d r i l a t e r a l imbeddings on t h e t o r u s .
We m e n t i o n t h r e e s p e c i a l
c a s e s b e low. a)
Let
a = 1
b = 2
and
bedding i s s e l f - d u a l
r
in
= Z5;
then
GA(I') = K5.
This im-
and i s t h e g r o u n d case f o r s e v e r a l i n f i n i t e
f a m i l i e s of i m b e d d i n g s a p p e a r i n g i n t h e l i t e r a t u r e :
(i)
-
imbedding i n
has a self-dual
S = S
n (4n-3) (see [WS]); h e r e t h e v o l t a g e g r a p h imbedding i s j u s t t h e
K4n+l
normal form r e p r e s e n t a t i o n f o r
( i i ) . ) The c o v e r i n g p r o j e c t i o n i s indeed
-
x(S) = 2
( i i ) The imbedding of m e r s i o n of number for
-
2 n ( 4 n - 3 ) = ( 4 n + l ) (2-211) K5
S1
on
k = (p-1) ( p - 4 ) / 4
=
(4n+l)x(S).
c a n b e augmented t o an i m -
attaining the toroidal crossing
on S1
Kg ( 2 ) v ~ ( K ~ ( ~= ) 10. )
see Theorem 6-71.
( s e e Theorem 5-5 n ( 4 n + l ) - f o l d , and
S = S
Similarly, and
p
v ~ ( K ~ ( ~= ) p) ( p - 1 ) / 2 ,
a p r i m e power
3
1 (mod 4 ) ;
Sect.
Ex amp les
10-3
( i i i ) T h e imbedding of
K5
on
165
c a n also b e m o d i f i e d t o
S1
G5 = K
o b t a i n a g e n u s imbedding f o r t h i s e x t e n d s t o show
y (G,)
less a 1 - f a c t o r ;
5,5
1
I, which
= i(n-1) (n-4) /4
will
be u s e f u l i n C h a p t e r 13. We o b s e r v e t h a t t h e r o t a t i o n scheme f o r r e a d i l y o b t a i n e d from F i g u r e 1 0 - 2 .
K5
S1
in
can be
First, we find
A s i s customary f o r i n d e x one imbeddings, w e i d e n t i f y
(v,g)
N e x t , as K5 h a s no loops o r as permuting t h e P ( v , g ) - 69 r a t h e r t h a n t h e e d g e s a t g. Finally, taking
w i t h g i n t h e c o v e r i n g graph. m u l t i p l e edges, we regard each neighbors of
a = 1
and
g
we get:
b = 2,
(In practice,
t h e above i s w r i t t e n down d i r e c t l y f r o m t h e f i g u r e . )
The c o v e r i n g p r o j e c t i o n i s 5 - f o l d : a n d o n e 4-gon
for
K
in
t e n e d g e s , a n d f i v e 4-gon b)
Now l e t
a = (1,O)
GA(T) = Cm x Cn
and
S1
t h e s i n g l e v e r t e x , two e d g e s ,
l i f t respectively t o five vertices,
regions f o r b = (0,l)
for
and f i n d s a s e l f - d u a l ,
Kx
4
r
r
= K5
= Z
( a l s o i n S1.)
x Zn;
quadrilateral,
then toroidal
i s i l l u s t r a t e d i n F i g u r e 10-3. The c o v e r i n g s p a c e n a t u r e o f t h i s i m b e d d i n g i s r e a d i l y a p p a r e n t : imbedding.
The case
m = n = 3
t h e s i n g l e v e r t e x , two e d g e s , and o n e 4-gon now l i f t , r e s p e c t i v e -
l y , t o n i n e v e r t i c e s , e i g h t e e n e d g e s , and n i n e 4-gons, t h i s nine-fold
projection
p.
under
166
Chapt. 10
Voltage Graphs
Figure 10-3
c)
Now l e t
I' = II(S,)
= (a,b
1
So
-lb4
R
2,
S1,
of
R2
i n t h e sense t h a t
thus
GA(T)
b)
x
t h e funda-
2,
G A ( l ' ) h a s a n imbed-
Gn(I')
a s b e i n g imbedded
a s o n e of t h e t h r e e r e g u l a r t e s s e l l a t i o n s of t h e
(Recall t h a t
plane.
e ) = 2
( i f w e a l l o w t h e v e r t e x set to have l i m i t p o i n t s ) ,
b u t it i s more n a t u r a l t o c o n s i d e r in
=
I n t h i s case
mental group of t h e t o r u s . d i n g on
aba
in
R2
is t h e universal covering space f o r
R2
c o v e r s any s p a c e which c o v e r s
a l s o covers e a c h
CA(Zm
Zn)
SI;
imbedding
a b o v e , i n a n a t u r a l way.
W e mention t h a t
n(Sl)
i s also t h e g r o u p of o n e of t h e
s e v e n t e e n w a l l p a p e r d e s i g n s ( i .e. a p l a n a r c r y s t a l l o g r a p h i c group.)
The v o l t a g e g r a p h t h e o r y i s a p p l i c a b l e t o e a c h of t h e
seventeen p l a n a r i n f i n i t e wallpaper groups ( a s p r e s e n t e d , f o r e x a m p l e , i n [ B 1 7 ] ) ; of t h e s e i m b e d d i n g s i n one branched c o v e r s o f
of
So,
So,
R2,
s i x are index
s i x a r e i n d e x t w o b r a n c h e d covers
o n e i s an i n d e x two u n b r a n c h e d c o v e r of
i n d e x t w o u n b r a n c h e d c o v e r s of
S1,
So,
t h r e e are
and t h e p a t t e r r ! d e s c r i b e d
by
!I
167
Examp 1es
Sect. 10-3
(S1)
Example 2 : ____-_
i s an i n d e x o n e u n b r a n c h e d c o v e r o f
s l i g h t l y , t o o b t a i n Figure 10-4.
Now m o d i f y F i g u r e 1 0 - 2
b
V
sl'
V
-6
Figure 10-4
r
We still require with
11'1 2
r =
index one
t o b e a b e l i a n , b u t now t a k e
Then
7.
S1;
r 3 imbedding i n
= {a,b,a+b}
a g a i n i n f i n i t e l y many s u c h
i m b e d d i n g s a r e d e t e r m i n e d , o n e f o r e a c h c h o i c e of
dual
e a c h of t h e s e h a s b i c h r o m a t i c c h r o m a t i c number t w o , where
A
i s r e g u l a r o f d e g r e e s i x and h a s a n
G l z ( I')
G = G
Ll
I'
.
( t h e geometric dual
( r ) );
Moreover, G*
has
t h e indicated 2-coloring
o f t h e r e g i o n s of F i g u r e 1 0 - 4 l i f t s t o a 2 - c o l o r i n g of t h e r e g i o n s for a)
GA(T).
For
(This w i l l be u s e f u l i n Chapter 1 2 . )
a = 1
and
b = 2
in
T
= Z7,
Gn(I') = K7;
t h i s is t h e
s a m e famous t o r o i d a l i m b e d d i n g o b t a i n e d b y t h e d u a l F i g u r e 9-3 (see a l s o F i g u r e 9-5.) ( i ) A f a i r l y n a t u r a l e x t e n s i o n of t h s v o l t a g e g r a p h g i v e s
o r i e n t a b l e t r i a n g u l a r imbeddings f o r
s 6 N.
( i i ) By t a k i n g f i r s t b = 5 i n
r =
a = 1
Z13,
and
=
14,
where
s = 0.)
and t h e n
a = 2
and
t o r o i d a l imbeddings are o b t a i n e d f o r
t w o complementary g r a p h s i n N(1,l)
b = 3
for a l l
K12s+7,
(The d u a l i s b i c h r o m a t i c o n l y f o r
N(y,y')
K13;
t h i s shows t h a t
i s t h e least i n t e g e r such
168
V o l t a g e Graphs
t h a t e v e r y graph
of o r d e r a t l e a s t
G
see a l s o
and
[A21
a = 1
ding f o r If
i s two
(fj1(K13)
=
(ii).)
6-60
c)
S
see B e i n e k e [ B 6 ] and R i n g e l [ R 1 3 ] ; see a l s o Theorem
2;
If
. 4 shows
in
It also
[ACl].)
K13
t h a t t h e t o r o i d a l t h i c k n e s s of
b)
Sy , G
irnbeddable i n
10
is not
N(y,y') -
(G
( v , y ' ) bi-imbeddable (See [ A w l ] ;
Chapt.
and
b
I' = Z
for
2
=
w e o b t a i n a g e n u s imbed-
8'
K 4( 2 ) * b = (0,l)
a = (1,O) and K3 ( 3 )
bedding f o r
r
for
= Z3
%
a genus i m -
Z3,
results.
V o l t a g e g r a p h c o n s t r u c t i o n s are b y n o means u n i q u e f o r a g i v e n F o r e x a m p l e , t h e d u a l of F i g u r e 10-4 s e r v e s a s an
g r a p h imbedding.
I' = Z ) f o r an i m b e d d i n g of K 3 313 t h e d u a l of t h i s imbeddinq t h e n s e r v e s
i n d e x two v o l t a g e g r a p h ( u s i n g on
S1
r = r
having
= 3;
6 a s an index t h r e e voltage graph (again using
l a r l y imbed Theorem 4.2
on
K3(3)
in
S1
! = Z3)
[KRWI].
W e a l s o mention t h a t t a k i n g
+
but replacing
a
b
imbedding f o r
K3(3)
5
with
a = 1 and
in
r
= Zg,
b = 2
as
K3(3)
= 9,
e x a m p l e of a b r a n c h e d c o v e r i n g i n t h i s s e c t i o n : wraps around a t r i a n q l e W e keep
a
(1,O)
=
below
R
9
r = r Z 7= 2
(iii)); t h i s g i v e s and i s o u r f i r s t e a c h 27-gon
t i m e s , since
b = (O,l),
and
in Figure 10-4,
g i v e s an
( a s s e e n from Theorem 1 0 - 8
t h e maximum g e n u s of
d)
to triangu-
T h i s i s t h e g r o u n d case o f
again.
b u t now i n
Ga(r)
t h e r e s u l t i n g t r i a n g u l a r i m b e d d i n g of
above
/RIib = 9.
r
wj.11
= :i4
x Z4;
b e of
i n t e r e s t -in S e c t i o n 1 2 - 7 . e)
I n [ S 2 0 1 t h e f o l l o w i n g c o n j e c t u r e i s a t t r i b u t e d t o Grunbaum: a graph
G
dual graph number
G*
A,(G*)
(consider the (consider
if
h a s an o r i e n t a b l e t r i a n g u l a r i m b e d d i n g , t h e n t h e h a s a T a i t c o l o r i n g ( t h a t is, h a s edge chromatic = 3.)
G*
G* = P ,
We r e m a r k t h a t
G
c a n n o t b e allowed l o o p s
of F i g u r e 8 . 2 i n [ B C L l ] ) o r m u l t i p l e e d g e s t h e Petersen graph, i n
S1)
and t h a t t h e
c o n j e c t u r e i s f a l s e a l s o f o r n o n o r i e n t a b l e t r i a n g u l a r imbeddings (consider
G = K6
in
N1,
where
G* = P . )
However t h e
Ex amp1es
S e c t . 10-3
169
c o n j e c t u r e i s t r u e , as f o r m u l a t e d , f o r 3 - d e g e n e r a t e g r a p h s
a s a n e a s y i n d u c t i o n a r g u m e n t shows. y(G*) = 2: factorable
x,(G*)
if
It is a l s o t r u e i f
i s c u b i c and b i p a r t i t e ,
G*
( s e e , f o r e x a m p l e , Theorem 8 - 7
= 3.
Moreover, any
G,
then
in
[BCLl])
GA(T) t r i a n g u l a t i n g
i s 1-
G*
S1
,
so t h a t
as a
c o v e r i n g s p a c e o f F i g u r e 1 0 - 4 h a s a n e d g e c o l o r i n g i n d u c e d by the labels
a, b,
a
and
+
now c o l o r t h e d u a l e d g e s
b;
t o a g r e e w i t h t h e c o l o r s on t h e e d g e s of
t h e y cross.
G
( i n G*) Thus
t h e v o l t a g e graph of F i g u r e 10-4 a l s o p r o v i d e s an e a s y a l g o r i t h m i n f i n i t e l y many t o r o i d a l t r i -
f o r GrGnbaum's c o n j e c t u r e , f o r angulation s, Example 3: n # 3,
The g r a p h s
K4(n)
Y ( K ~ ( ~ )= ) ( n - 1 )
have genus
as e s t a b l i s h e d by Jungerman
, for
[ J S ] and i n d e p e n d e n t l y ( f o r
( S e e Theorem 6 - 4 2 . )
e v e n ) b y Garman [ G l l .
2
n
Jungerman d i d n o t
a n n o u n c e Y ( K ~ ( ~ ) ) a, l t h o u g h h e d i d r e p o r t t h a t Y ( K 4 ( 3 ) ) > 4. The i n d e x t h r e e ( t h i s i s n o t a C a y l e y g r a p h c o n s t r u c t i o n ) t o r o i d a l v o l t a g e graph of Figure 10-5, =
5,
using
( R e f e r t o Theorem 1 0 - 8
r
= Z3,
shows t h a t
v(K4 (3)) r3 = 6 a n d r g = 4 . K 3( 3 ) ( i i i ) : t h e r e a r e f o u r branch p o i n t s -
by f i r s t i m b e d d i n g
in
S5
with
0
a
F i g u r e 10-5 i n d i c a t e d by d o t s i n s i d e r e g i o n s d e t e r m i n i n g o n e 9-gon;
-
e a c h of m u l t i p l i c i t y t h r e e a n d
t h e t w o regions having no branch p o i n t each
l i f t to three triangles.)
I t i s e a s i l y v e r i f i e d t h a t e a c h 9-gon
bounded b y a h a m i l t o n i a n c y c l e i n
K3(3).
is
(For example, t h e clock-
w i s e b o u n d a r y o f t h e l i f t of t h e s h a d e d r e g i o n
R
is:
170
V o l t a y e Graphs
Chnpt. 1 0
(bO,aO, c O , b l , a l , c l , b 2 , a 2 , ~ 2 ) - w h e r e , f o r e a s e o f n o t a t i o n , w e w r i t e ( v , g ) a s vg; t h e f a c t t h a t [ R [ += 3 a s s u r e s t h a t t h e l i f t of R wraps around
R
t h r e e times u n d e r b r a n c h e d p r o j e c t i o n b y
Now
b j . )
add a new v e r t e x i n t h e i n t e r i o r o f e a c n of t h e f o u r 9-cjons,
and
join e a c h new v e r t e x t o d l l n i n e b o u n d a r y v e r t i c e s , € o r t h e regLon In The r e s u l t i s an imbeddinrj of K 4(3) w i t h r3 = 3 3 and rg = 1. Note t h a t t h c c o n s t r u c t i o n i s s5 r e a d i l y augmented t o g i v e a t r i a n g u l a r ( a n d h e n c e g e n u s ) i m b e d d i n g for t h e c o m p l e t e 4 - p a r t i t e g r a p h K 4 , 3 , 3 , 3 ' containinq t h a t vertex.
Example 4 :
For
a q r a p h and
G
w e mean t h a t m u l t i g r a p h replaced by the again
11
w h i c h r e s u l t s when e a c h e d q e
uv.
edges
a n a t u r a l n u m b e r , by n - f o l d
n
S = S2).
e x t e n s i o n q i v e n below (where
-
for
T
abelian
uv
of
The c o n s t r u c t l o n of k i g u r e 1 0 - 4
(n
=
1 1
- 7)
and
A
W e take K
G
G
is
suggests
= ia,b,a+b]-
a bouquet of n i n e
a+b
Figure 10-6
circles in
S2,
Gi,(i')
on
Sn+l,
r = r3,
with
c o v e r i n g s p a c e i s an
r = r3
KVL,
and b i c h r o m a t i c d u a l .
having bichromatic dual.
The g r o u n d c a s e
( j i v e s a n o r i e n t a b l e t r i a n g u l a r imbeddinq €or 3 - f o l d a = 1, b = 2 ) .
Junqerman
a l l o w e d ) for m-fold
K,,
The
i m b e d d i n g of t h e 1 8 - r e g u l a r 3 - f o l d K,
(n = 7)
(using
[JSI h a s f o u n d g e n u s i m b e d d i n g s ( n o d i y o n s f o r a l l m and n ( i n b o t h t h e o r i e n t a b l e
and t h e n o n o r i c n t a b l e c a s e s .
)
Sect. 10-4
171
The Heawood Map-coloring Theorem ( a g a i n )
The s p h e r i c a l i n d e x two v o l t d g e g r a p h o f F i g u r e 1 0 - 7
Example 5 :
a l s o appears i n
it uses
[SWl];
I
= 2
n
t o imbed
K
n,n
= K
2(n)
in
n- 1
F i g u r e 10-7 where k = n ( n - 1 ) / 2 , with n ; now a p p l y Theorem 1 0 - 8 ( i i i ). ) Moreo v e r , e a c h r e g i o n boundary i s a h a m i l t o n i a n c y c l e . ( F o r example, Sk
( a s a branched covering s p a c e ) ,
r = r2 n = n
(each
lRl$ =
t h e r e g i o n c o v e r i n g t h e shaded d i g o n h a s c l o c k w i s e b o u n d a r y ( a O , b l , al,b2,a2,
. ..
,
a ( n - 1 ) ,bO).)
augmented t o g i v e an the case
n = 3
r
=
Thus t h i s imbedding i s r e a d i l y
r3
imbedding f o r
K3(n)
i n Example 2 c ) a b o v e ) , so t h a t
(we discussed
Y (K3 (nl 1
= n (n-1) / 2 ;
t h i s p r o o f i s f a r s h o r t e r ( a n d more e l e g a n t ) t h a n t h o s e of e i t h e r [RY5] o r [ W 5 1 .
r = r3
I t i s e a s y ( s e e Problem 1 0 - 1 )
imbedding f o r
t o show t h a t e v e r y
has bicnromatic dual; t h i s w i l l be
K3( n ) important i n Section 12-1. Moreover, t h e s e i m b e d d i n g s t h u s a l l s a t i s f y t h e Grllnbaum c o n j e c t u r e .
( I n f a c t , t h e t h r e e t y p e s of e d g e s
i n t h e complete t r i p a r t i t e graph
G = K
edge c o l o r i n g f o r t h e d u a l
10-4.
3(n)
d e t e r m i n e a n a t u r a l 3-
G*.)
The Heawood Map-coloring Theorem
(again)
W e r e c o n s i d e r t h e c r u x of t h e p r o o f of t h e Heawood m a p - c o l o r i n g
theorem:
t h e c o n s t r u c t i o n of g e n u s i m b e d d i n g s o f c o m p l e t e g r a p h s by
t h e u s e of c u r r e n t g r a p h s ; o u r c o n t e x t now w i l l b e t h a t of b r a n c h e d c o v e r i n g s p a c e s , and w e u s e t h e v o l t a g e g r a p h c o n s t r u c t i o n .
This
v i e w p o i n t t r e a t s o n l y t h e r e g u l a r p a r t of e a c h case; t h e a d d i t i o n a l
v o l t a g e Graphs
172
Chapt.
adjacency p a r t s continue t o be handled a s before [GTl]
,
[W121 , a n d [ R 1 4 I .
(see S e c t i o n 9-3,
)
R e c a l l t h e c u r r e n t g r a p h of F i g u r e 9 - 3 , the torus.
10
The d u a l of F i g u r e 10-4
f o r imbedding
K,
on
( i n p a r t i c u l a r , see Example 2 a )
i s the correspondinq voltage graph.
From e i t h e r t h e s i n g l e r e g i o n
of F i g u r e 9-3 or t h e s i n g l e v e r t e x o f F i g u r e 1 0 - 4 , w e r e a d t h e r o t a -
tion
po:
scheme
(1,3,2,6,4,5);
P = (p,
(Note t h a t t h e
,pl
t h i s generates the e n t i r e rotation
, . . . , p,)
KCL/KVL
and i n t u r n t h e t r i a n g u l a r i m b e d d i n g .
holds.)
In g e n e r a l , t h e c u r r e n t graph
+
p = 1, q = 6 s
3,
and
r = r3 = 4 s
t h e c u r r e n t g r a p h , i s imbedded i n (since the
K(s)
for
h o l d s ) and i s
KVL
+
2;
Ss+l.
(12s
+
with 12s+7' t h e v o l t a g e g r a p h , a s was I' = 2
The c o v e r i n g i s u n b r a n c h e d 7 ) - f o l d , g i v i n g an imbedding
as b e f o r e , w i t h p = 1 2 s 2 1 2 s +2s+l q = ( 1 2 s + 7 ) ( 6 s + 3 ) , and r = r 3 = ( 1 2 s + 7 ) ( 4 s + 2 ) . of
in
K12s+7
S
The c u r r e n t g r a p h for with
I' = Z 7
r3 = 7
and
K10
(see, f o r example,
r7
= 3
+
7,
it is used,
a p p e a r s i n F i g u r e 9-23;
K7
[W12]) t o imbed
(determined by t h e v o r t i c e s
in
S3
with
x,
y,
and
S3
by
K7 + F3 =
T h i s i s r e a d i l y augmented t o a t r i a n g u l a t i o n of
K10 - { x y , x z , y z } ;
(as given i n
K12s+7
h a s as i t s d u a l a v o l t a g e g r a p h f o r
S e c t i o n 9-3)
z.)
t h e n t h e a d d i t i o n a l a d j a c e n c y p a r t o f t h e con-
s t r u c t i o n a d d s t h e t h r e e m i s s i n g e d g e s over o n e e x t r a h a n d l e . The c o r r e s p o n d i n g v o l t a g e g r a p h i s g i v e n i n F i g u r e 1 0 - d .
Figure 10-8 The r o t a t i o n
po = ( 1 , 6 , 4 , 3 , 2 , 5 )
i s e a s i l y read f r o m e i t h e r f i g u r e .
The o u t e r r e g i o n o f F i g u r e 1 0 - 8 s a t i s f i e s t h e
KVL
Sect. 10-5
(1
+
4
+
2
S t r o n g Tensor P r o d u c t s
=
in
0,
173
s o b y Theorem 10-8 ( i i i ) it l i f t s , w i t h -
Z7),
o u t b r a n c h i n g , t o seven t r i a n g l e s i n t h e c o v e r i n g imbedding of
K7.
Each o f t h e t h r e e monogons, h o w e v e r , h a s v o l t a g e sum o f o r d e r
1 R / $ = 7 , s o t h a t e a c h i s c o v e r e d , w i t h b r a n c h i n g , by o n e s e v e n i s imbedded i n S3 a s a sided region ( a heptagon.) Thus K, branched covering space over
Moreover,
So.
s i n c e each voltage
generates
Z7,
each heptagonal region boundary i s a h a m i l t o n i a n
cycle for
K7.
T h u s , i f o n e v e r t e x i s a d d e d i n t h e i n t e r i o r of e a c h
h e p t a g o n , a t r i a n g u l a r i m b e d d i n g of
K,
+ E,
results.
The a d d i t i o n -
a l adjacency c o n s t r u c t i o n i s as b e f o r e . The t h r e e v o r t i c e s f o r e a c h c u r r e n t g r a p h i n case 1 0 ( s e e [ R 1 4 ] ) become monogons i n t h e v o l t a g e g r a p h i m b e d d i n g , w i t h t h e s i n g l e boundary edges always c a r r y i n g a v o l t a g e which g e n e r a t e s by a h a m i l t o n i a n c y c l e for
s
as f o r t h e c a s e
'12 s+7' bounded
( 1 2 s + 7 ) -gon,
Thus e a c h monogon i s b r a n c h - c o v e r e d b y a s i n g l e
and t h e c o n s t r u c t i o n proceeds
K12s+7,
0.
=
F o r a d i s c u s s i o n of a l l t w e l v e c a s e s i n t h i s v o l t a g e g r a p h / b r a n c h e d c o v e r i n g s p a c e s e t t i n g , see Gross a n d T u c k e r [ G T l ] .
10-5.
S t r o n g Tensor Products
In [GRWl] t h e following product operation f o r graphs w a s i n t r o duced: Def.
10-11.
F o r two g r a p h s product
G1
edge set u2vz Thus
GI
3
G1
G2
or
c o n s i s t s of
the strong tensor
G2,
has v e r t e x set
{ ( u , , u 2 ) (v, , v 2 )
E(G2))
G2
and
(u1V1
1 V(G1) I
1
(ul
E(G1)
V(G1)
x
= v1
and
and
V(G2)
u 2 v 2 E E(G2))1.
d i s j o i n t c o p i e s of
t o g e t h e r with a l l t h e t e n s o r product edges.
and
G2
,
The f o l l o w i n g t w o p r o -
p e r t i e s of t h e s t r o n g t e n s o r p r o d u c t f o l l o w f r o m t h e d e f i n i t i o n :
Thm. 1 0 - 1 3 .
G1
G2
G2 [ G 1 ] ,
i s a subgraph of t h e l e x i c o g r a p h i c p r o d u c t w i t h e q u a l i t y i f and o n l y i f
G1
i s complete.
174
V o l t a g e Graphs
The t h e o r e m b e l o w f r o m
[GRWl]
C h a p t . 10
i s e s p c c i a l l y germane i n t h e
p r e s e n t work : Thm. 10-14.
Let
h a v e a t r i a n g u l a r imbedding i n an o r i e n t a b l e
G2
surface, with bichromatic dual; l e t
he connected
G2
a n d b i c h r o m a t i c , w i t h maximum d e g r e e a t m o s t two. Then
'5'
G1
h a s a t r i a n g u l a r imbedding i n an o r i e n t -
G2
able s u r f a c e , w i t h b i c h r o m a t i c d u a l . I n C h a p t e r 1 2 w e w i l l f i n d t h a t o r i e n t a b l e t r i a n g u l a t i o n s of strongly r e g u l a r graphs w i t h bichromatic d u a l s can b e p a r t i c u l a r l y useful.
We s h a l l see t h a t e a c h
we take
G1
= K2,
Kn(m)
is s t r o n g l y regular; thus i f
Theorems 10-12 a n d 10-14 w i l l combine t o p r e s e r v e
t h i s u s e f u l n e s s under t h e s t r o n g t e n s o r product o p e r a t i o n . F o r t h e p r e s e n t , w e o b s e r v e t h a t e a c h c o v e r i n g i m b e d d i n g of Figure 10-4
(with
g i v e s rise t o an i n f i n i t e c o l l e c t i o n
GA(I') = G2)
of b i c h r o m a t i c d u a l t r i a n g u l a t i o n s , v i a r e p e a t e d a p p l i c a t i o n o f
-
Theorem 1 0 - 1 4
f o r each graph
G1
In p a r t i c u l a r , w e can t a k e
G1
as i n t h a t theorem. and e x t e n d Examples
= K2
orientable bichromatic dual triangulations and
K
2a,
r e s p e c t i v e l y t o o b t a i n , f o r each nonnegative i n t e g e r
2b, a n d 2 c
1-
3 ( 3. 2 K )
for
K
.
k,
k ' K 4 ( 2 k + l )' 7(2 )
F i n a l l y , w e remark t h a t Theorem 1 0 - 1 3 c o m b i n e s w i t h Theorem
6-45 t o y i e l d t h e s u r p r i s i n g l y g e n e r a l f o r m u l a o f : Thrn. 1 0 - 1 5 .
Let
k
have
G
v e r t i c e s of p o s i t i v e degree,
p
n o n t r i v i a l components, and n o 3 - c y c l e s .
q
edges,
Then
Y ( K ~ ~ ! ? ?G ) = k + n ( n q - p ) .
10-6. 10-1.)
Show t h a t t h e i d e n t i t y map Show t h a t i f
p: X
X
and
R2,
-f
X
i s always a covering
pxq:
are c o v e r i n g p r o -
q: Y
+
Y
X x Y
-+
X x Y,
.
(pxq) ( X , Y ) = ( p x , q y ) . Regard t h e t o r u s as S1 = C x C ,
circle i n
X 5
+
j e c t i o n s , t h e n so i s 10-3.)
i:
-
projection. 10-2.)
Problems
Show t h a t
-
where
C
where
is the unit
R2 = R x R , R x C ,
and
Sect.
10-6
S1 = C
175
Problems
x
C
all c o v e r
S1.
Try t o v i s u a l i z e p
,
i n each
case. 10-4.)
Show t h a t e v e r y o r i e n t a b l e t r i a n g u l a r i m b e d d i n g f o r
K
3 (n)
h a s bichromat i c d u a l . 10-5.)
Find t h e v o l t a g e g r a p h c o r r e s p o n d i n g t o F i g u r e 9-11.
10-6.)
F i n d t h e v o l t a g e g r a p h c o r r e s p o n d i n g t o F i g u r e 9-13.
10-7.)
What i m b e d d i n g
( a n d of w h a t g r a p h ) c o v e r s t h e v o l t a g e g r a p h
i m b e d d i n g of F i g u r e 1 0 - 9
(r'
= Z8)?
Is t h e r e b r a n c h i n g ?
Where, a n d of w h a t m u l t i p l i c i t y ?
3
F i g u r e 10-9
*
10-8.)
Answer t h e q u e s t i o n s o f P r o b l e m 1 0 - 7 , b u t now f o r F i g u r e 10-10,
with
r
= Z 12.
Then show t h a t
Figure 10-10
y(K 6,6,3)
=
7.
176
*
10-9.)
V o l t a g c Graphs
Chapt. 1 0
t o show t h a t
E x t e n d t h c c o n s t r u c t i o n of P r o b l e m 1 0 - 8 ,
Y ( K 2 n ,2 n , 2n-2
2 ) = 2(n-1) ,
for
n
1 , 2 (mod 3 ) .
(Scc
a l s o [SWl].)
10-10.)
Show t h a t i f w e b e g i n w i t h an a r b i t r a r y 2 - c e l l
a Cayley c o l o r graph
I
and u s e v o l t a g e g r o u p
I;'\ 10-11.)
imbedding o f
as a v o l t a g e qraph imbedding,
Ct!(I)
,
t h e c o v e r i n g s p a c e c o n s i s t s of
d i s j o i n t c o p i e s of t h e b a s e c o n f i g u r a t i o n .
A graph
G
of s i z e
i s s a i d t o be c o n s e r v a t i v e (see
q
Bange, B a r k a u s k a s , and S l a t e r [BBSl]) i f t h e e d g e s c a n b e
1
o r i e n t e d and d i s t i n c t l y l a b e l e d w i t h
, 2 , . . . ,q
so t h a t
a t e a c h v e r t e x t h e sum of t h e numbers on t h e i n w a r d l y d i r e c t e d e d g e s e q u a l s t h a t on t h e o u t w a r d l y d i r e c t e d e d g e s . Show t h a t i f s u c h a g r a p h h a s a 2 - c e l l
t h e n it s e r v e s as a n i n d e x one a u r r e n t g r a p h , w i t h
r = 1,
r
c u r r e n t s from of
Gi,(: )
for
r = r n-1 G
n - 4, :I
n :> 2 y + 1.
= Zn,
determined,
the special cases that,
imbedding w i t h
n = 2q Kn
i: = {1
for
+
S t u d y t h e imbedding
, 2 , . .. ,y } .
1, n = 2y
+
2.
Consider
Use t h e f a c t
i s c o n s e r v a t i v e ( s e e [BBSl]) t o f i n d
imbeddings f o r
,
K
n L 1 ,2
(mod 4 ) .
If
n -n+l
i s c u b i c , show t h a t , i n g e n e r a l , t h e c o v e r i n g i m b e d d i n g
i s minimal f o r
GL ( 1 ' ) .
10-12. )
Prove Theorem 10-12.
10-13. )
P r o v e Theorem 1 0 - 1 3 .
CHAPTER I 1 NONORIENTABLE GRAPH IMBEDDINGS
W e r e i t e r a t e t h a t o u r p r i m a r y m o t i v a t i o n f o r t h i s e n t i r e work
is t o depict graphs
-
a n d i n p a r t i c u l a r q r a p h s o f g r o u p s - on s u r -
f a c e s ( l o c a l l y 2 - d i m e n s i o n a l d r a w i n g b o a r d s ) , u s u a l l y as e f f i c i e n t l y
I n k e e p i n g w i t h our d e s i r e t o s t u d y s t r u c t u r e s t h a t
as p o s s i b l e .
s p a c e , w e h a v e c o n c e n t r a t e d on t h e o r i e n t -
e x i s t i n three-dimensional able surfaces
Sk ( k
orientable surfaces
e q u a l i t y h o l d s i f a n d o n l y if a non-
2;
o r i e n t a b l e t r i a n g u l a r imbedding can b e f o u n d f o r Proof:
Let
i s 2-cell,
-
q
+
b y Theorem 1 1 - 3 .
-
with equality i f
and o n l y i f
T(G)
+
r = r 3'
2.
Thus
-
G
If
where
-
r 5 p
> q/3
then
q
=
-
p
-
-
p
q/3
+
2,
X(NT(G))
2 >
(using
2
q/2 - p
2
=
-
?(G)
2q > 3r
i m b e d d i n g on
3r
n o t 2-cell,
11-8.
p
then
A s i n t h e o r i e n t a b l e case,
q/3 - p
Cor.
be imbedded i n N ? ( G )
G
G.
+
2;
p
2
3,
and h a s n o t r i a n g l e s ,
e q u a l i t y h o l d s i f and o n l y
i f a n o n o r i e n t a b l e q u a d r i l a t e r a l i m b e d d i n g can b e f o u n d for
G.
(The p r o o f i s e n t i r e l y a n a l o g o u s t o t h a t o f C o r o l l a r y 11-7.) Cor. 11-9.
Let
be n o n o r i e n t a b l y , minimally, 2-cell
Kn
imbedded i n
( T h e p r o o f is a n a l o g o u s t o t h a t o f Theorem 9 - 1 . ) T h e n o n o r i e n t a b l e a n a l o g s t o Theorem 6-18 a n d C o r o l l a r y 6-19
are a l s o f a l s e , a s y(2K7) = 2y(K seen,
Y(K7)
7
=
G = 2K7
= 2,
3,
Y(2K7)
so t h a t
shows:
< 5, Y(2K7)
s i n c e , by C o r o l l a r y 6-19, b y Theorem 11-2.
# 2?(K7).
B u t , as w e h a v e
What i s t r u e f o l l o w s
i n t w o d e f i n i t i o n s and o n e t h e o r e m , d u e t o S t a h l and B e i n e k e [SBl]:
Nonor i e n t d b l e Graph Imb e d d i n 9s
180
Def. 1 1 - 1 0 . ____-
The i n a n i I o l d number o f a g r a p h max{2-2.( (G) ,
Def.
11-11.
A graph
Let
G1
G
’((G)
=
11fG)
# 2 -
:
2y(G).
,:
If
G
i s o r i e n t a b l y simple,
then
Nonorientable Covering Spaces
R e c a l l from Example 3 o f S e c t i o n 1 0 - 1 t h a t t h e s p h e r e c o v e r i n g s p a c e of t h e p r o j e c t i v e p l a n e .
2-fold
,i(G)
be a g r a p h w i t h b l o c k s ( o r components)
, G2 , . , , ,Gk.
11 - 2 .
p(G)
IS
2-; ( G )1 .
is o r i e n t a b l y s i i n p l e i f
G
that is, if Thm. 1 1 - 1 2 .
G
C h a p t . 11
is a
So
I n g e n e r a l (see
Stahl [ S S ] , f o r c x a m p l e j , t h e r e i s a 2 - f o l d c o v e r i n q p r o j e c t i o n p: Sk Nk+l, f o r e v e r y n o n n e g a t i v e i n t e g e r k. Thus e v e r y non+
o r i e n t a b l e s u r f a c e h a s an o r i e n t a b l e c o v e r i n g s u r f a c e .
Trivially,
each nonorientable s u r f a c e has a t l e a s t one n o n o r i e n t a b l e covering s u r f a c e , namely i t s e l € ( s e e Problem 10-1.)
see an e x a m p l e o f a n o n o r i e n t a b l e s u r f a c e
I n S e c t i o n 11-4 w e s h a l l (N3)
with i n f i n i t e l y
many n o n o r i e n t a b l e c o v e r i n g s u r f a c e s
“n+2, n -- 7 ) . I n c o n t r a s t , i f t h e b a s e s p a c e i s an o r i e n t a b l e s u r f a c e , t h e n
e v e r y covering s u r f a c e must b e o r i e n t a b l e a l s o .
-
where e a c h base s p a c e i s o r i e n t a b l e
-
Thus i n C h a p t e r 1 0
each covering space is
o r i e n t a b l e and h e n c e u n a m b i g u o u s l y d e t e r m i n e d by i t s c h a r a c t e r i s t i c . I n t h i s c h a p t e r , h o w e v e r , s i n c e t h e b a s e s p a c e w i l l a l w a y s b e nono r i e n t a b l e , i f t h e c o v e r i n g s u r f a c e h a s even c h a r a c t e r i s t i c , t h e n i t s o r i e n t a b i l i t y c h a r a c t e r needs t o be a s c e r t a i n e d t o s p e c i f y t h e
surface uniquely. I n t h e n e x t s e c t i o n w e s h a l l s e e how t o d o t h i s , i n t h e c o n t e x t of n o n o r i e n t a b l e g r a p h imbeddings.
11-3.
N o n o r i e n t a b l e V o l t a g e Graph I m b e d d i n g s
‘To e x t e n d t h e v o l t a g e g r a p h t h e o r y t o n o n o r i e n t a b l e i m b e d d i n g s , w e augment t h e r o t a t i o n scheme
P
o f S e c t i o n 10-2 t o a p a i r
(PIX)
Sect. 11-3
N o n o r i e n t a b l c V o l t a g e Graph I m b e d d i n g s
':
c a l l e d an i m b e d d i n g scheme:
K*
181
g i v e s a voltage graph
Z2
.
The r e g i o n b o u n d a r i e s a r e computed a l m o s t a s i n t h e -1 ( s e e S e c t i o n 6-6), e x c e p t t h a t s o m e t i m e s Pv ( v , u ) orientable case (K,
)
Z2,
i s u s e d i n s t e a d of let
P
and l e t by:
1)
(K, I ,
-
b e t h e l i f t of
l(e) =
see [S8] a n d [SWl] f o r d e t a i l s .
Pv(v,u);
be a v o l t a g e g r a p h w i t h i m b e d d i n g scheme to
P
( c ) , f o r each l i f t
t o b e t h e l i f t of
,I
(P
to
)
Kxi,l
e
e E E(K).
of
Kx I .
A:
define
;
(Kx
Define
9
Now
,A)
(P
r
) *
Z2
-f
A)
(P,
Then t h e c o n c l u s i o n s of Theorem
9
1 0 - 8 and C o r o l l a r y 1 0 - 1 0 c a n b e shown t o f o l l o w v e r b a t i m .
Thm. 1 1 - 1 3 .
(K, i',
Let
scheme Kx 1'.
(6 , i f
and
(P , A )
Let
9
be a v o l t a g e graph w i t h imbedding
(li)
,A)
(P
beddings of
and
K
respectively.
and Kx i'
b
, i) d e t e r m i n e
on t h e s u r f a c e s
Q
61:
S
+
S
(iii) i f
=
R
n 1.
then
p
-1
(R) h a s
t h e c o v e r i n g i m b e d d i n g of I f t h e imbedding o f S
f
S
such t h a t
R
i s a r e g i o n of t h e imbedding of
i s a k-gon,
p:
n, t h e n
~
p o n e n t s , e a c h of w h i c h i s a
Cor. 1 1 - 1 4 .
S
such t h a t :
i s i n t h e i n t e r i o r of a r e g i o n
~
im-
and
S
is a b r a n c h p o i n t of m u l t i p l i c i t y
b
1
to
2-cell
Then t h e r e e x i s t s a ( p o s s i b l y b r a n c h e d )
covering projection
(ii) i f
(P , A)
t h e l i f t of
(P
f , q3)
(K,
1 T1//RI(li k 1 RI -gon
Kx@l'.
9
which
K
comregion of
s a t i s f i e s t h e KVL,
is a covering projection
(i.e.
then
t h e r e i s no
branching. ) Of c o u r s e , t h e i m b e d d i n g scheme
only when
S
scheme
alone s u f f i c e s , and
P
is nonorientable;
as o b s e r v e d a b o v e .
If
S
o r i e n t a b i l i t y c h a r a c t e r of Def. 11-15.
if S
,A )
i s used i n p r a c t i c e
is orientable, the rotation
is n e c e s s a r i l y o r i e n t a b l e also,
i s n o n o r i e n t a b l e , w e must determine t h e
-
t o t h i s end w e g i v e :
S;
For a v o l t a g e graph K
(P S
is s a i d t o b e
(K,
T , n),
11-trivial
if
a c l o s e d walk q(c) = e
in
c I .
in
182
N o n o r i e n t a b l e Graph Imbeddings
Thm.
11-16.
Chapt.
Under t h e h y p o t h e s i s of Theorem 1 1 - 1 3 ,
-
surface
S
11
the derived
i s o r i e n t a b l e i f and o n l y i f e v e r y
@ - t r i v i a l c l o s e d walk i n
is a l s o
K
A-trivial.
W e mention t h a t Garman [ G l ] h a s f u r t h e r e x t e n d e d t h e t h e o r y of v o l t a g e g r a p h s , a s o u t l i n e d i n t h e p r e v i o u s and p r e s e n t c h a p t e r s , t o
In p a r t i c u l a r , Theorems 1 0 - 7 ,
p s e u d o s u r f a c e imbeddings. and 1 1 - 1 6 ,
and C o r o l l a r i e s 1 0 - 1 0 and 1 1 - 1 4
pseudosurface;
in t h i s case,
11-13,
10-8,
a l s o apply f o r
S
a
i s n e c e s s a r i l y also a p s e u d o s u r f a c e
S
( o r a g e n e r a l i z e d p s e u d o s u r f a c e ; see D e f i n i t i o n 5 - 2 6 . )
Examples
11-4.
Example 1:
Let
m : 2 (mod 4 ) .
F i g u r e 11-1 p r e s e n t s a p r o j e c t i v e
p l a n e imbedding of a p s e u d o g r a p h loops:
X (e)
$(e) = 1
= 1
f o r each loop
a s indicated.
Let
Kxb Z n
Then
m/2
w i t h o n e v e r t e x and
K
e.
I' = Zn
(n
even)
,
and
i s a graph with v e r t e x set
F i g u r e 11-1 {(v,i)I 0 < i < by
m/2
below,
n-11
i n which
edges f o r each IRI+ = n/2,
i.
(v,i)
and
For each region
s o t h a t t h e r e g i o n s of
+
1)
of
K
(v, i R
Kx$ Zn
a r e joined imbedded
imbedded above
Examples
Sect. 11-4
a r e a l l n-gons; (m/2)2
=
m
183
i n f a c t each i s a hamiltonian cycle.
There a r e
Thus i f w e p l a c e a new
such r e g i o n s i n a l l (above.)
v e r t e x i n t h e i n t e r i o r of e a c h s u c h r e g i o n , j o i n i t by n o n - i n t e r s e c t i n g e d g e s t o a l l t h e v e r t i c e s on i t s b o u n d a r y , and t h e n d e l e t e a l l t h e o r i g i n a l e d g e s of
Km, n is a l s o
a q u a d r i l a t e r a l i m b e d d i n g of
Kx Z n ,
9
It i s clear t h a t every
results.
it i s i n t o
b y Theorem 1 1 - 1 6 ;
$ - t r i v i a l c l o s e d walk i n
K
so t h a t t h e c o v e r i n g imbedding i s o r i e n t a b l e ,
A-trivial,
Sk,
k = (m-2) (n-2)/4.
where
g i v e s a p a r t i a l p r o o f o f Theorem 6-37;
t h e approach
This
appears i n
[SWlI. Example 2 . (
~
Y1
N3.
= n
).
In F i g u r e 11-2 w e t a k e A
7)
and
K
=
{a,b,a+b}
for
r
abelian
a s a b o u q u e t o f t h r e e c i r c l e s imbedded i n
The s i n g l e v e r t e x h a s b e e n g i v e n a n o r i e n t a t i o n a s i n d i c a t e d .
a
b
F i g u r e 11-2 Then t h o s e e d g e s w h i c h are c o h e r e n t l y o r i e n t e d , a s i n d u c e d b y t h e v e r t e x o r i e n t a t i o n , are a s s i g n e d A = 0 ( t h e r e are n o n e ) ; a l l o t h e r edges
-
i n t h i s case t h e t h r e e e d g e s b o u n d i n g t h e h e x a g o n
a s s i g n e d X = 1. but not
A-trivial;
b y Theorem 11-16. The s p e c i a l c a s e
N9'
Then t h e c l o s e d w a l k
a
+
b
thus the covering surface Moreover,
n = 7
-
(a+b) S
x ( S ) = n x ( S ) = -n,
produces a s e l f - d u a l
is
-
are
@-trivial
is nonorientable, so t h a t
imbedding o f
-
S = N
K7
n+2 on
184
Non o r i e n t a b l e Graph Imbeddi n y s
Example 3 .
Now m o d i f y F i g u r e 1 1 - 2
Chapt. 11
s l i g h t l y , t o g i v e F i g u r e 11-3.
a
b F i g u r e 11-3 s t i l l on
The c o v e r i n g i m b e d d i n g , the 12-regular 2 - f o l d e d g e s of of
A
qives
K
= {1,2,3,n-3,n-2,n-l}
7(2)
On
i s now t r i a n g u l a r and of Nn+2, F i n a l l y , change 9 (i.e. relabel the
see Problem 1 1 - 4 1
N3;
of c h a r a c t e r i s t i c
GA(I')
where
on
K
GA(T').
-2n;
t o give 1-fold triangulations
f o r example, c o n s i d e r
ancl s t i l l
7.
n
GA(Z2n),
The c a s e
n
7
=
N16.
11-5.
The Heawood M a p - c o l o r i n g Theorem, Nonorientable Version
If w e apply Corollary 11-7 t o t h e graphs Lemma 1 1 - 1 7 .
Y(Km)
1.
{(m-3k(m-4)j,f o r
m
2
G = K
= 3.
,
we obtain:
3.
W e h a v e n o t e d t h a t e q u a l i t y does n o t h o l d f o r Y(K,)
m
m
= 7
and t h a t
However, e q u a l i t y d o e s h o l d i n e v e r y o t h e r case:
Thm. 1 1 - 1 8 This
on
s , of c o u r s e , e s t a b l i s h e d b y f i n d i n g an i m b e d d i n g of
).
Km
h = ((m-3) (m-4)
The f i r s t p r o o f w a s b y R i n g e l l R 8 1 , w i t h Nht o u t t h e b e n e f i t of c u r r e n t g r a p h s . L a t e r p r o o f s do employ c u r r e n t g r a p h t h e o r y ( i n p a r t i c u l a r , t h e t h e o r y of c a s c a d e s ) , a n d a g a i n s p l i t n a t u r a l l y i n t o t h e r e s i d u e cases of
m
modulo 1 2 ( s e e [ R 1 4 ] ,
[LYl],
Sect. 11-6
[J41 . )
185
Other R e s u l t s
Lemma 1 1 - 1 7 and Theorem 1 1 - 1 8 c o m b i n e t o form t h e n o n o r i e n t -
a b l e v e r s i o n of t h e complete g r a p h theorem: Thm.
11-19.
I _
(m-3) (m-4) =* 1 i(K7) = 3 ,(Km)
Now w e l e t (7
+
v/49-24n)‘/2;
Mn
=
here
1,
for m
i n Theorem 8 - 1 3 ,
Nh
;3
and
m # 7;
recalling that
f(n) =
n = 2-h:
To c o m p l e t e t h e p r o o f o f t h e Heawood M a p - c o l o r i n g Theorem, nono r i e n t a b l e v e r s i o n , w e need t h e f o l l o w i n g : Lemma 1 1 - 2 1 .
);(Nh)
[ f ( 2 - h ) ] = i ( 7 + J1+24h)/2It
Proof;
Consider
Nh,
and now c o n s i d e r also
so t h a t N. (K,)
*
j((Nh)
2
X(N?(~,))
h
# 2.
NY(K,)
m
=
Note t h a t
[f(2-h)], T(Km)
*
m
)
If(2-h)
Define
Now
2 y(Nh).
h # 2.
Km
h,
imbeds i n
[f(2-h)],
=
5
so t h a t
I.
S i n c e F r a n k l i n [ F 3 ] showed t h a t
x(N2)
=
6,
we c a n now c o m b i n e
L e m m a s 11-20 a n d 1 1 - 2 1 t o r e s t a t e Theorem 8-10. Thm. 1 1 - 2 2 .
j((Nh)
=
[(7
+
11-6.
-h)/21,
for
h # 2;
x ( N 2 ) = 6.
Other R e s u l t s
W e g i v e a few o f the a n a l o g s t o t h e o r i e n t a b l e r e s u l t s of
Chapter 6 .
F o r m o s t of t h e o t h e r n o n o r i e n t a b l e g e n u s r e s u l t s known
by 1 9 7 8 , see T a b l e 2 o f S t a h l [ S 9 ] . Thm. 1 1 - 2 3 .
(Ringel [R12])
186
C h a p t . 11
N o n o r i e n t a b l e Graph I m b e d d i n g s
Thm.
(Jungcrrnan [J6])
11-24.
?(Qn)
+ 2n-2(n-4), n
= 2
i(Q,)
and
-
T(Q,)
except t h a t
2,
= 3
11.
Thm. 1 1 - 2 5 .
Thm. 1 1 - 2 6 .
11-27.
Thm.
( S t a h l a n d W h i t e [SWl]) n ;' 4
For
Bouchet Section 6-5) of
m
Y (Kn, n , n - 4 )
=
(n-2) (n-3)
(see
[B13] h a s a l s o u s e d h i s " g e n e r a t i v e m - v a l u a t i o n s "
to study
7 (Kn
(m) )
.
He c o n s i d e r e d t h e r e s i d u e c l a s s e s
n (mod 6 ) and c o n s t r u c t e d t r i a n g u l a r i m b e d d i n g s f o r
and
of t h e s e
and e v e n ,
36
cases, thus determining
f o r those
Y(K,(~))
18
18
cases. We now t u r n o u r a t t e n t i o n t o t h e maximum n o n o r i e n t a b l e g e n u s parameter. Def.
11-28.
The maximum n o n o r i e n t a b l e g e n u s , graph
G
i s t h e maximum
imbedding i n
h
yM(G)
f o r which
,
of a c o n n e c t e d
G
h a s a 2-cell
Nh.
I n c o n t r a s t t o t h e o r i e n t a b l e case, t h e v a l u e o f t h i s p a r a m e t e r
( s e e R i n g e l [R15]
is r e a d i l y c a l c u l a t e d f o r each connected graph
G
a n d S t a h l [ S 8 ] ) ; r e c a l l t h a t t h e B e t t i number
B(G)
= q
-
p
+
1.
T h i s means t h a t e v e r y c o n n e c t e d g r a p h h a s a n o n o r i e n t a b l e 2 - c e l l imbedding w i t h
r = 1.
The f o l l o w i n g t h e o r e m , a l s o d u e t o S t a h l , g i v e s an a n a l o g t o
Duke's Theorem ( 6 - 2 1 ) ______ Thm. 1 1 - 3 0 .
and t o C o r o l l a r y 6 - 2 2 .
A connected graph
and o n l y i f
T(G)
G
5h
h a s a 2-cell
i U(G).
imbedding i n
Nh
if
Problems
Sect. 11-7
187
We give a nonorientable analog to the famous Kuratowski Theorem (6-6); this result is due to Glover, Huneke, and Wang [GHWl] and to
Archdeacon [A7]. Thm. 11-31.
A graph
G
imbeds in the projective plane
N1
if and
only if, for each graph H in a prescribed list of 103 graphs, G contains no subgraph homeomorphic with H. It has long been conjectured that there is a finite number of graphs obstructing imbedding into each surface, whether orientable or nonorientable (by Theorem 6-6 there are two for 11-31 there are 103 for
So;
by Theorem
Recently Seymour [S4a] has affirmed
N1.)
this conjecture: Thm. 11-32.
For each closed 2-manifold M I there is a finite set SM of graphs such that a graph G imbeds in M if and only if G contains no subgraph homeomorphic from at least one member of sMM'
Finally, we mention that Pisanski [P6] has expanded the surgery techniques he used to generalize work of
[W6]
(see Theorem 7-13,
for exam2le) in the orientable case, to apply to the nonorientable case as well.
11-7.
Problems
11-1.) 11-2.)
Prove Corollary 11-8. Prove Corollary 11-9.
11-3.)
Describe the 2-fold
11-4.)
k 1 1. Relabel the edges of K in Figure 11-3, to yield the imbedding suggested in Example 3. G I ) ( Z2n)
11-5.)
1):
Sk
-+
Nk+l
of Section 11-2, for
What imbedding, and of what graph, covers the voltage graph imbedding of Figure 11-4 ( 1 = Z9)? Is there branching? Where, and of what multiplicity?
188
Nonorientablc Graph Imbeddings
Chapt. 11
1
Figure 11-4 11-6,)
**
11-7.)
11-8.) 11-9.)
11-10.)
Answer the questions of Problem 11-5, but now for
=
Zl0.
Try to prove Theorem 11-19 by the use of nonorlentable voltage graphs. n+l Show that v(Qn x K ) = 2 + n2 I n ;1. 414
Show that the 2-metacyclic group r = 2n ' D m (a,blam = b2n = abab-l = e ?, for n odd and 1, is toroidal. (Hint: use Theorem 7-3 and the voltage graph imbedding that results when the right side arrow is reversed in Figure 10-2.) What other toroidal groups can you find, using the hint of Problem 1 1 - 9 ?
189
CHAPTER 12 BLOCK DESIGNS
Block d e s i g n s a r e c o m b i n a t o r i a l s t r u c t u r e s o f i n t e r e s t i n t h e i r own r i g h t , w i t h a p p l i c a t i o n s t o e x p e r i m e n t a l d e s i g n a n d t o s c h e d u l I i e f f t e r [I151 w a s t h e f i r s t t o o b s e r v e
i n g problems.
imbeddings of c o m p l e t e g r a p h s d e t e r m i n e B I B D s w i t h 3
= 2
(and sometimes
)
c o r r e s p o n d e n c e between
Alpert
= 1.)
BIBDs w i t h
t i o n systems f o r complete qraphs. i2 =
2 ( a n d sometimes
s t r o n g l y regular graphs.
,A2
=
x
3
and
[All e s t a b l i s h e d a o n e - t o - o n e
k = 3
and
X
= 2
and t r i a n g u l a -
I n [Wll] t h i s c o r r e s p o n d e n c e i s
e x t e n d e d t o P B I B D s on two a s s o c i a t i o n c l a s s e s w i t h and
that certain k
1)
k = 3,
X1
= 0
and t r i a n g u l a t i o n s y s t e m s f o r
The g r o u p - d i v i s i b l e d e s i g n s o f H a n a n i
[Ill]
a r e used t o c o n s t r u c t t r i a n g u l a r imbeddings ( i n g e n e r a l i z e d pseudos u r f a c e s ) f o r t h e groups
i n e a c h case p e r m i t t e d b y t h e
Kn(m),
Conversely, t r i a n g u l a r imbeddings o f K are n (m) c o n s t r u c t e d ( b y o t h e r m e a n s ) w h i c h l e a d t o new g r o u p - d i v i s i b l e
e u l e r equation. designs.
A process,
usinq t h e s t r o n y t e n s o r product o p e r a t i o n f o r
g r a p h s , i s d e v e l o p e d f o r " d o u b l i n g " a cjiven P B I B D o f an a p p r o p r i a t e form.
12-1.
Def.
12-1.
A
Balanced I n c o m p l e t e Block D e s i g n s
( v , b , r , k , A)-balanced incomplete block design
(BIBD)
i s a s e t of
v
o b j e c t s and a c o l l e c t i o n of
b
s u b s e t s of t h e o b j e c t s e t , e a c h s u b s e t b e i n g c a l l e d a block, satisfying:
(i) e a c h o b j e c t a p p e a r s i n e x a c t l y (ii) each block contains e x a c t l y
(iii)
k
r (k
blocks: v)
objects;
e a c h p a i r of d i s t i n c t o b j e c t s a p p e a r s t o g e t h e r i n exactly
X
blocks.
190
C h a p t . 12
Block D e s i g n s
If
k = v,
t h e d e s i g n would b e c o m p l e t e ;
complete designs a r c
t r i v i a l t o c o n s t r u c t , b u t have l i t t l e a p p l i c a t i o n . t h e design is "incomplete.
r, k,
f o r m i t y c o n d i t i o n s on
Hence f o r
k
a:
v,
The " b a l a n c e " comes f r o m t h e t h r e e u n i -
I'
and
respectively.
A
A t r i v i a l e x a m p l e of a E I E D ,
v > 1
f o r each
and
0
k < v,
:'
i s o b t a i n e d by t a k i n g t h e b l o c k s t o b e a l l t h e k - s u b s e t s of t h e v-set;
then
b =
[z]
,
\;I:]
r =
,
X
and
ik-2] v- 2
=
.
I n g e n e r a l , e l e m e n t a r y c o u n t i n g a r g u m e n t s ( s e e Problems 1 2 - 1 and 1 2 - 2 )
e s t a b l i s h t h e f o l l o w i n g well-known
Thm. 1 2 - 2 .
result:
(v, b, r, k, X )-BIBD e x i s t s , then:
If a
( i ) v r = bk; ( i i ) X(v-1) = r ( k - 1 ) . T h e s e n e c e s s a r y c o n d i t i o n s h a v e a l s o b e e n shown t o b e s u f f i c i e n t , for
k
=
( a n d f o r some o f t h e cases
3,4,5
and f o r f i x e d
k
1,
and
12-2.
with
v
k = 6,7)
by H a n a n i [ H l ] ,
l a r g e e n o u g h , by W i l s o n [W151.
B I B D s a n d Graph I m b e d d i n g s
What H e f f t e r and A l p e r t o b s e r v e d i s t h a t a t r i a n g u l a r i m b e d d i n g of
i n an a p p r o p r i a t e s u r f a c e ( t h i s i s p o s s i b l e e x a c t l y when
Kn
n E 0,l (mod 3 ) ,
s e e S e c t i o n s 9-1 a n d 1 1 - 5 ) , w i t h t h e
n > 1;
r e g i o n s d e t e r m i n i n g t h e b l o c k s i n t h e n a t u r a l f a s h i o n , s e r v e s as an since:
(i)
every vertex i s adjacent
(n, n(n-1)/3,
n-1,
3, 2)-BIBD,
t o exactly
-
o t h e r v e r t i c e s and h e n c e i s i n e x a c t l y
regions:
n
1
n
-
1
(ii) each region contains e x a c t l y t h r e e v e r t i c e s , by
a s s u m p t i o n ; and ( i i i ) e a c h p a i r o f d i s t i n c t v e r t i c e s c o n s t i t u t e s a n edge ( s i n c e t h e graph i s c o m p l e t e ) and h e n c e b e l o n g s t o e x a c t l y t w o b l o c k s ( t h e two r e g i o n s c o n t a i n i n g t h a t e d g e i n t h e i r b o u n d a r y . ) C o n v e r s e l y , a B I B D on 2-fold
t r i p l e system)
v
objects with
k
=
3
and
X
d e t e r m i n e s a t r i a n g u l a r imbedding o f
a generalized pseudosurface,
as f o l l o w s .
= 2
(a
KV
in
Each b l o c k becomes a 3 -
s i d e d 2 - c e l l r e g i o n , w i t h v e r t i c e s l a b e l l e d b y t h e o b j e c t s of t h e block.
Since
X
= 2,
so t h a t a 2-manifold
e a c h p a i r o f v e r t i c e s a p p e a r s e x a c t l y twice
-
( p o s s i b l y w i t h s e v e r a l components) r e s u l t s from
t h e s t a n d a r d i d e n t i f i c a t i o n p r o c e s s of c o m b i n a t o r i a l t o p o l o g y .
Sect. 12-2
191
BIBDs and Graph Imbeddings
Then identify identically labelled vertices, to form a generalized pscudosurface triangular imbedding for Thm. 12-3.
K\,.
We summarize, in:
The 2-fold triple systems on v objects are in one-to-one correspondence with triangular imbeddings of generalized pseudosurfaces.
If the triangular imbedding of
Kv
Thm. 12-4.
Steiner triple systems on
in
has bichromatic dual, then
the 2-fold triple system splits naturally into two systems (Steiner triple systems, having
Kv
k = 3
v
and
1-fold triple
h
=
1):
objects are in two-to-one
correspondence with triangular imbeddings of Kv in generalized pseudosurfaces having bichromatic dual. Letting k = 3 and I, = 1 or 2 in Theorem 12-2, and invoking the work of iianani (or others) mentioned following that Theorem, we obtain: Thm. 12-5.
v
(1) Steiner triple systems on only if
v = 2, 3 (mod 6 ) ;
(ii) 2-fold tri2le systems on only if
objects exist if and
v
v
objects exist if and
0, 1 (mod 3 ) .
For independent verification of (ii) above, we follow Apert in
observing that triangular imbeddings of Kv (see Sections 9-3 and 11-5) give 2-fold triple systems on v objects for all v 0, 1 ~
[GRWl] it is observed that the orientKn, n 3 (mod 12), a l l have bichromatic dual; thus Steiner triple systems are independently produced for these values of n. (mod 3 ) ,
v # 1.
Moreover, in
able genus imbeddings for
12-3.
Examples
Example 1:
Refer to Example la of Section 10-3; the quadrilateral im-
bedding of
K5
in
S1
obtained there yeilds a
This is atypical in that
k > 3
and
X > 2,
(5,5,4,4,3)-BIBD.
but it does indicate
that the scope of the connection between BIBDs and graph imbeddings is even wider than indicated in Section 12-2. This imbedding is a geometric realization of the "all 4-subsets of a 5-set" abstract design.
Block D e s i g n s
192
Chapt. 1 2
Example 2: -___
R e f e r t o Example 2a o f S e c t i o n 1 0 - 3 ; t h e t r i a n g u l a r im-
bedding of
K7
in
S1
( 7 , 1 4 , 6 , 3 , 2)-
obtained there yields a
BIBD a n d , s i n c e t h e d u a l is b i c h r o m a t i c , t w o ( 7 , 7 , 3 , 3 , l ) - U I U D s . One of t h e s e l a t t e r is g i v e n a b s t r a c t l y i n T a b l e 1 2 - 1 ; 0
1
3
1
2
4
2
3
5
3
4
6
4
5
0
5
6
1
G
O
2
T’able 1 2 - 1 t h e b l o c k s may b e r e a d o f f from t h e s e v e n r e g i o n s c o v e r i n g t h e uns h a d e d r e g i o n i n F i g u r e 10-4
( n o t e t h a t t h e y a r e a l s o h a l f of t h e The b l o c k s may a l s o b e r e g a r d e d as
“blocks“ l i s t e d i n Section 9-2.)
t h e l i n e s of t h e Fano P l a n e ( t h e f i n i t e p r o j e c t i v e p l a n e of o r d e r
two.)
The d e s i g n c o u l d b e employed t o s c h e d u l e f i r e m e n ( s a y ) i n a
w e e k l y s c h e d u l e ( t h r e e men p e r d a y , c t c . ) v o l t a g e g r a p h of F i g u r e 1 0 - 4
to
K12+7
which is
not
The e x t e n s i o n o f t h e
(12s+7, ( 1 2 s + 7 ) .
gives a
of b i c h r o m a t i c d u a l f o r
(4s+2),
12s+6, 3, 2)-BIBD,
s > 0;
h e n c e w e o b t a i n n o a d d i t i o n a l S t e i n e r t r i p l e s y s t e m s from
t h i s figure.
~Example 3:
R e f e r t o Example 3 o f S e c t i o n 11-4: t h e t r i a n g u l a t i o n of
2-fold
K7
in
Example
4:
R e f e r t o E x a m p l e 4 of S e c t i o n 10-3;
3-fold
K7
in
N9
S8
obtained there gives a
o b t a i n e d t h e r e g i v e s one
and, s i n c e t h e dual is bichromatic, t w o
12-4. F o r v a l u e s of Theorem 1 2 - 2
( 7 , 2 8 , 1 2 , 3 , 4)-BIBD.
t h e t r i a n g u l a t i o n of ( 7 , 4 2 , 1 8 , 3 , 6)-BIBD
( 7 , 2 1 , 9 , 3 , 3,)-BIBDs.
S t r o n g l y R e g u l a r Graphs
v , b , r, k ,
X
n o t m e e t i n g t h e c o n d i t i o n s of
( a n d p e r h a p s e v e n f o r t h o s e t h a t d o ) , it i s n a t u r a l t o
attempt a construction of a related design.
For t h i s reason, p a r t i -
a l l y b a l a n c e d i i i c o m p l e t e b l o c k d e s i g n s were i n t r o d u c e d by Bose a n d
Sect. 12-4
Nair
S t r o n g l y R e g u l a r Graphs
193
The p a r t i a l b a l a n c e o c c u r s i n t h a t t h e r e a r e
[BNl].
attention primarily to the case
?
A s t h e a s s o c i a t i o n classes
2.
=
P
(for the case
a p p r o p r i a t e b a l a n c e w i t h i n each c l a s s concept.
x
Let
y
and
e i t h e r non-adjacent
(h
-
l), adjacent t o y y
=
(i
_____ Def. 1 2 - 6 .
=
-
t o e n s u r e an
we f i r s t define t h i s latter
be d i s t i n c t v e r t i c e s i n a graph or adjacent
1)
=
(h = 2).
b e t h e numher of v e r t i c e s w h i c h a r e n o n - a d j a c e n t
y (i = j
are determin-
= 2)
ed by a d j a c e n c i e s w i t h i n a " s t r o n g l y r e g u l a r g r a p h "
and
adjacent t o
x
y (i = 2,
but not to
x ( i = 1, j
but not to
=
Let
t o both
G,
h p. . (x,y) 17 x and
j = l),
2 ) , or a d j a c e n t t o b o t h
x
j = 2).
I f a graph
v,
yet
G
i s r e g u l a r o f degree
G
# Kv
or
1, 2 ,
then
n 2 and i s o f o r d e r h p . . ( x , y ) i s indepen11 y, f o r h , i, j =
and i f
Kv,
d e n t of t h e c h o i c e o f
x
and
is s a i d t o be a s t r o n g l y r e g u l a r graph.
G
I t i s w e l l known t h a t t h e e i g h t c o n d i t i o n s i n v o l v i n g
y
1
t
v a l u e s , one f o r each " a s s o c i a t i o n class;" w e restrict o u r
lambda
x
and
c a n b e r e p l a c e d by two o f them ( s e e P r o b l e m 1 2 - 4 ) :
_____ Thm. 1 2 - 7 .
If
G
i s a r e g u l a r g r a p h which i s n e i t h e r c o m p l e t e n o r
e m p t y , t h e n G i s s t r o n g l y r e g u l a r i f and o n l y i f h x and y , for h = 1 , 2 . ~ ~ ~ ( x ,i sy i)n d e p e n d e n t of h For s t r o n q l y r e g u l a r g r a p h s , i t i s convenient t o w r i t e P ij h f o r p . . ( x , y ) , a s t h e choice of x and y i s i m m a t e r i a l ( e x c e p t 11 for h = 2, and a d j a c e n t i n G , t h a t t h e y must b e a d j a c e n t i n G , for
h = 1.)
Two v e r t i c e s
( o b j e c t s ) of a s t r o n g l y r e g u l a r g r a p h a r e
s a i d t o b e f i r s t a s s o c i a t e s i f t h e y are n o n - a d j a c e n t i t h associates
( i = 1, 2 ) ,
and s e c o n d
Thus e a c h v e r t e x h a s e x a c t l y
associates i f they a r e adjacent. and
n1
+
-
n2 = v
n.
1.
A s a major c l a s s o f examples o f s t r o n g l y r e g u l a r g r a p h s , w e
give : Thm. 1 2 - 8 .
The r e g u l a r c o m p l e t e n - p a r t i t e g r a p h s a l l strongly regular, Proof: Since
Clearly m > 1,
G G
for
m, n
2
G = K
is r e g u l a r , of degree i s n o t complete;
n (m)
arc
2.
since
n2 = m ( n - 1 ) . n1 > 1, G
194
Block D e s i g n s
Chapt.
i s n o t empty. F i n a l l y , w e observe t h a t 2 p22 = m(n-2).
pi,
=
12
m(n-1) #
arid
F o r t h e e x d m p l e s of S e c t i o n 1 2 - 8 , If we start with
w i l l be crucial.
t h e following observation
--
Gl
and t h e s t r o n g l y r e q u l d r
Kr
G1
then t h e s t r o n g t e n s o r product
G2 = Kn(m)
&
is s t r o n g l y
G2
r e q u l a r a l s o , by Theorems 10-12 a n d 1 2 - 8 . O t h e r s t a n d a r d e x a m p l e s of s t r o n g l y r c g u l a r g r a p h s i n c l u d e
and
G = L(Kn)
of g r a p h
G = I,(K2(m)),
where
(We m e n t i o n in p a s s i n q t h a t
il.
denotes t h e l i n e qraph
L(I1)
Km
L(K2(m)) =
s e e Problem 2 - 1 3 . )
12-5.
Def. 1 2 - 9 .
A
P a r t i a l l y B a l a n c e d I n c o m p l e t e B l o c k Desicjns
1 , X 2 ) - -p a r t i a l l y balanced incomplete
( v , b, r , k ;
b l o c k d e s i g n ( P B I B D ) i s a s e t of
v
oblects, pairwise
a s s o c i a t e d i n t o two a s s o c i a t i o n c l a s s e s ( a s d e t e r m i n e d by a s t r o n g l y r e g u l a r g r a p h c o l l e c t i o n of
b
G
of o r d e r
v)
and a
s u b s e t s of t h e o b j e c t s e t , e a c h s u b -
set being c a l l e d a block, s a t i s f y i n g : r
( i ) each o b j e c t appears i n e x a c t l y
blocks;
k (k
( i i ) each block c o n t a i n s e x a c t l y
c:
v)
objects;
( i i i ) e a c h p a i r of i t h a s s o c i a t e s a p p e a r t o g e t h e r i n exactly Again, t h e r e q u i r e m e n t
Ti
blocks
k
v
corresponds t o t h e incomplete-
n c s s of t h e d e s i g n ; t h e r e q u i r e m e n t
n1n2 =
_I
G
#
Kv
-
or
Kv
e n s u r e s that
s o t h a t t h e PBIBD d o e s n o t c o l l a p s e t o a EIBD
0,
1 2 ,
( k = 1, 2 ) .
and t h e r e q u i r e m e n t t h a t
G
-
unless
be s t r o n g l y r e g u l a r i s an
d t t e m p t t o r e s t o r e some of t h e b a l a n c e t o t h e e x p e r i m e n t t h a t w a s
lost whcn o n e
X
c o u l d n o t b e found f o r
d l l
pairs
x,y.
We now g i v e a d d i t i o n a l t e r m i n o l o g y , some of w h i c h a p p l i e s t o both Def.
D I B D s and P B I U D s .
12-10.
A PBlBD i s s a i d t o b e group-divisible
r e g u l a r graph
G
i f the strongly
upon which t h e d e s i g n i s b a s e d h a s a
p a r t i t i o n of i t s v e r t e x s e t i n t o
n
y r o u p s of
m
S e c t . 12-5
195
P a r t i a l l y Balanced I n c o m p l e t e Block D e s i g n s
v e r t i c e s e a c h so t h a t t w o v e r t i c e s are f i r s t associates i f and o n l y i f t h e y are i n t h e s a m e group. C l e a r y t h i s i s p o s s i b l e i f and o n l y i f Def.
12-11
G = K
n(m)
A g r o u p - d i v i s i b l e PBIBD i s a t r a n s v e r s a l d e s i g n i f each b l o c k c o n t a i n s e x a c t l y o n e v e r t e x from e a c h g r o u p .
Clearly t h i s requires Def.
12-12.
A design
k
=
n.
is said to be resolvable i f
( B I B D o r PBIBD)
t h e s e t of
s e t s , of
b
r
b l o c k s c a n be p a r t i t i o n e d i n t o
v/k
sub-
b l o c k s e a c h , each s u b s e t c o n t a i n i n g each
ob je c t e x a c t l y o n c e . F o r e x a m p l e , i f w e t a k e t h e e d g e s of a s t r o n g l y r e g u l a r g r a p h G
( k = 2 ) , t h e r e s u l t i n g PBIBD i s r e s o l v a b l e i f and o n l y
a s blocks
if
is 1-factorable.
G
(mn, m2n(n-1)/2,
m(n-1)
,
In particular,
G = K
2;
which i s r e s o l v a b l e (see
0,
l)-PBIBD,
H i m e l w r i g h t and W i l l i a m s o n I H W 2 1 )
m
= 1,
t h e B I B D on
G = K
n(1)
n(m)
g i v e s an
mn i s e v e n ( f o r i s r e s o l v a b l e i f and o n l y i f n
i f and o n l y i f
= Kn
i s e v e n ) and i n f a c t i s a t r a n s v e r s a l d e s i g n i f and o n l y i f
The t r a n s v e r s a l d e s i g n o n
n = 2.
f o r example, is used i n d u p l i -
K2(2w+l),
cate bridge scheduling t o ensure t h a t ,
in
rounds, each north-
2wtl
s o u t h c o u p l e p l a y s e x a c t l y o n e r o u n d a g a i n s t e a c h east-west c o u p l e . Def.
12-13.
( B I B D or P B I B D )
A design
is s a i d t o be z-resolvable
i f t h e b l o c k s e t c a n be p a r t i t i o n e d s o t h a t e a c h s e t i n t h e p a r t i t i o n contains each v e r t e x e x a c t l y
z
times.
Thus, a 1 - r e s o l v a b l e d e s i g n i s r e s o l v a b l e .
Def. 1 2 - 1 4 . _____
Two b l o c k d e s i g n s
D1
and
D2
-
a r e s a i d t o be iso-
morphic i f t h e r e e x i s t s a one-to-one O1
O2
between t h e i r o b j e c t s e t s such t h a t
...
,
xk}
{ t ) ( x l ), t i ( x 2 ) ,
...
0:
Ix,,
Clearly i f v, b ,
r, k, A
correspondence
+
x2,
D1
(or
and
X1
and
D2
is a block i n
, O(xk)
}
D1
if
is a block i n
and o n l y i f D2.
are isomorphic, t h e i r p a r a m e t e r s
X2)
must a g r e e ; t h e c o n v e r s e i s n o t
19G
C h a p t . 12
Block Designs
t r u e , a s w e s h a l l see i n S e c t i o n 1 2 - 6 . F o r a n e x a m p l e of a l l t h e s e d e f i n i t i o n s , c o n s i d e r t h e d e s i g n s of T a b l e s 12-2 and 12-3; map
sending
'-I
( 6 , 8, 4,
The
i
c l e a r l y t h e s e arc isomorphic, under t h e
t o the i t h letter of t h e alphabet,
1 3)
Kn
determined
d e t e r m i n e s i n t u r n an
(n2,2nb,2n-2,k;O,X)-PBIBD as f o l l o w s . The l i n e g r a p h L ( K 2 ( n ) ) - Kn x Kn ( s e e P r o b l e m 2 - 1 3 ) i s s t r o n g l y r e g u l a r , a n d t h e C a r t e s i a n product
Kn
x Kn
a t e l y among
2n
{ ( i , j )11 5 j 1' -o,(G) =
G
is
[[3(G)/2].
The next result could be useful in seeking a genus imbedding
for a self-complementary graph:
Thm. 14-52,
239
Self-dual Maps
Sect. 14-7
(Clapham [C51) The number of triangles in a selfcomplementary graph of order if p p(p-2) ( p - 4 ) / 4 8 , p(p-1) (p-5)/48, if p numbers are attained.
p
is at least
0 (mod 4), 1 (mod 4).
and at least These minimum
Finally, we comment that self-complementary graphs determined by the quadratic residues of a finite field have been used to give lower bounds for the Ramsey numbers [GG1] and Burling and Reyner
r(k,k); BR21.
see Greenwood and Gleason
See also Clapham [C61 , for a
more general construction; he finds a self-complementary graph of order 113 containing no K7, giving the improved bound r(7,7) 2 114.
14-7.
Self-dual Maps
The “self-complementary‘‘property for a graph depends only upon the abstract structure of the graph itself. To obtain an analog in terms of a geometric realization f o r the graph, we first imbed the graph on a surface, form the dual graph for this imbedding, and then compare the original graph with its dual. (In a sense, duality is a higher-dimensional analog of complementation:
in taking a dual, we
fix 1-dimensional subsets, while interchanging 2- and 0-dimensional subsets; in taking a complement, we fix 0-dimensional subsets, while interchanging 1-dimensional subsets and “(-1)-dimensional“ subsets
-
the “non-edges. ” ) Def. 14-53.
Let inap
PI = M ( G , p )
then
is said to be self-dual if
M
have dual map
M* = M(G*,p*);
G
G*.
For example, the maps of Figures 5-4 ( b ) , 7-4, and 10-3, and the map of Example la in Section 10-3 are all self-dual. The first and last of those are special cases of: Thm. 14-54.
(Heffter [H6], Biggs, [ E 9 1 , White [W9], Pengelley [P3], Stahl, [ S 7 ] , and Bouchet [ B l Z ] ) The complete graph has a self-dual imbedding if and only if n E 0 or
1 (mod 4). (Compare with Theorem 14-43.)
Kn
Chapt. 14
Map Automorphism Groups
240
[W9].
W e now o u t l i n e t h e d e v e l o p m e n t of
L e t the f i n i t e abelldn
...
b e g e n e r a t e d by = f a 1 , bl , a2 , b2 , , ah , bhl , group where no g e n e r a t o r h a s o r d e r 2 . Take as t h e r e d u c e d c o n s t e l l a t i o n
(see S e c t i o n 9-5)
(C')*
i n Theorem 5 - 5 ) :
t h e normal form f o r
a r e g u l a r polygon of
4h
.. .
Sh ( h
-
1)
( a s given
s i d e s , with clockwise
.
'rhen a l , bl, a -1 l , b -1 l , , a h , b h , ah-1 , bh-1 (C')* h a s one v e r t e x , 2h e d g e s , and o n e r e g i o n o n S h and s a t i s f i e s t h e
boundary KCL
-
s i n c e e a c h c u r r e n t a p p e a r s e x a c t l y o n c e , on a l o o p , and
abelian.
Also,
Figure 14-6,
(C')*
i s an i n d e x o n e q u o t i e n t m a n i f o l d ; h = 2.
f o r the case
(The c o n d i t i o n t h a i n o g e n e r a t o r
h a v e o r d e r two e n s u r e s t h a t p r o p e r t y 4 (Theorem 9 - 1 0 ) o t h e r four p r o p e r t i e s hold t r i v i a l l y h e r e . ) and 9-13, space
-
,
and some r o u t i n e c a l c u l a t i o n ,
bedding of
C, (
)
on
S , , (h-l)+l,
w i t h no b r a n c h i n g
bedding has
r = r4h =
-
over
1 1;
holds; the
T h e n , by Theorems 9 - 1 1
(C')*
which i s a
determines an im-
j
1-fold c o v e r i n g
M o r e o v e r , t h e c o v e r i n g im-
Sh.
and, i n € a c t :
V
V
Figure 14-6 Thm. 1 4 - 5 5 .
'rhe map
M ( G r s ( I ' ) , i,)
is
see
c o n s t r u c t e d above i s s e l f - d u a l .
Sect.
14-7
Self-dual Maps
Thus for each
h - 1,
241
the normal form for
Sh
determines a
variety of self-dual imbeddinas of Cayley graphs (see Problem 14-18.) This has many ramifications. Thm. 14-56.
For h - 1 , there is a self-dual imbedding of some graph G of order p on Sp(h-l)+l if and only p - 4h+l.
if
Proof:
G
(1) ror the necessity, we let
dual imbedded on
Sp (h-l)+l;
(Theorem 5-14) gives
q = 2ph
be self-
the euler equation
-
p(p-1)/2
p 2
and
4h+l. ror the sufficiency, choose
(11) \
=
1:
Cor. 14-57.
h.
, 2h1; that is, al
= Z
= 21-1,
p
bl = 21,
Now apply the construction of Theorem 14-55.
on the torus if and only if
The finite abelian group
1
self-dual imbedding f o r some a generating set property that if Cor. 14-59.
1
Thm. 1 4 - 6 0 .
If
= Z
n
4
(n
and
P
There is a self-dual imbedding of some graph order
Thm. 14-58.
...
11, 2, 1 1
..
~
A 14
for E A,
divides
m(n-1
imbedding.
,
of
is self-dual (1.e. has a Ga ( 1 ) )
if there exists
of even order with the -1 then 6 f? A. I-
is se f-dual if and only if
1)
G
p 2 5.
then
K
n (m)
n
L
4.
has a self-dual
with A* consisting of I' mn' less all multiples of n; then (since the multiples of n induce the graph nKm, the complement of Kn (m)) Since 4 divides m(n-1) , A has G,, ( 1 ' ) = K n (m)' even order; moreover, if m n / 2 E T , mn/2 5? A. Thus Proof:
Take
I'
= Z
the construction of Theorem 14-55 applies. Now Theorem 14-54 follows as an immediate corollary. additional corollaries, we have:
#
For
,
Map Automorphism Groups
242
Cor.
14-61.
Cor. 14-62.
K
m
has a s e l f - d u a l imbedding, for
mrm
For
Chapt. 14
n r 3 (mod 4) ,
if and only if
m
Kn(m) is even.
0 (mod 4).
has a self-dual imbedding
Cor. 1 4 - 6 3 .
K has a self-dual imbedding if and only if mlmlm is even.
Cor. 1 4 - 6 4 .
The 1-skeleton of the n-dimensional octahedron, has a self-dual imbedding for
n
odd.
m
K
n(2)
In [Sll] Stahl (see also Bouchet [B12]) established the following:
Thm. 14-65.
If m-1 = n
0 (mod 4), then
K
imbedding.
has a self-dual
n (m)
(And, in [all QuittG added: Thm. 1 4 - 6 6 .
If
n
1
0 (mod 8) and m : 2 , 3
(mod 4 )
I
has a self-dual imbedding. )
then
Kn (m)
1 (mod 4 ) , the complete maps constructed in the proof of Theorem 1 4 - 3 5 are self-dual.
Thm. 1 4 - 6 7 .
For
n
Thm. 1 4 - 6 8 .
The fundamental group
rr(Sk), k
I,
has a self-dual
imbedding in the plane. Thm. 14-69.
The finitely generated abelian group dual imbedding if and only if T # Z2
has a selfor =3*
All of the self-dual imbeddings considered thus far have been Stahl [ S l l l considered the non-orientable
into orientable surfaces. case as well: Thm. 14-70.
n ' 1, has a nonorientable selfK n (m)' dual imbeddinq if any one of the following holds:
The graph
(1)
m : 0 (mod 4)
and
n > 2;
Paley Maps
Sect. 14-8
(ii) m (iii) m
2 (mod 4) =
(iv) m of
1
and
n
and
243
n $ 2 (mod 4);
0 (mod 4), n # 4;
1 (mod 2), n Z, 2 (mod 4 ) ,
2,
and
n
is not a power
(m,n) # ( 1 , 3 ) , ( 1 , 5 ) , or
(3,3).
Thm. 14-71.
The fundamental group '(Nh), h imbedding in the plane.
Thm. 14-12.
The finitely generated abelian group I has a nonorientable self-dual imbedding if and only if 171 2 6.
14-8.
1,
has a self-dual
Paley Maps
The properties for graphs and maps we have been discussing are symmetry properties; in the self-complementation or self-duality case, the symmetry is external ( G compares with G or G* respectively), while in the context of symmetrical maps, the symmetry is internal (M = (G,p) compares with itself.) In this section we attempt to tie these three properties together. First we recall, from Definition 3-3, that two permutation groups ( l ' , X ) and (r',X') are equivalent if there exist a bijection 6: X -t X ' and a group isomorphism i! : r + r ' such that, for each x E X and y E T I @(y) (ii(x)) = G ( y ( x ) ) ; that is @(y)C = By, so that $(y) = 13yB-l and Q, is induced by B, which may be regarded as a relabelling. For example, ( ( i ( G ) , V(G)) and ( G ( G ) , V(G ) ) are equivalent, with P as the identity function, inducing I$ as the identity function also. A s a less trivial example, if If = M ( G , p ) is a map, with dual map M* = M(G*,p*) , then ((;(M) , D*) and (G(M*), (D*)*) are equivalent, under B: D* (D*)* assigning, to each s E D*, the unique S* E (D*)* 'crossing' s (recall that D* = { (u,v) Iuv E E ( G ) } ) . However, ((;(MI, V(G)) and (G(M*), V ( G * ) ) need not be equivalent; in fact, it is quite possible that / V ( G ) 1 # I V ( G * ) I . We combine the symmetry properties of self-complementation, self-duality, and symmetricality, and proceed with the development as in [W131. -+
244
Def.
Chapt.
Map Automorphism Groups
14-73.
T h e map
14
i s s a i d t o bc s t r o n y l y s y m m e t r i c
14 = M ( G , . )
if: -
G
(i)
G;
=
(ii)
(;*
= C;
( i ii )
M
is syriunetrical
(iv)
c(M)
and
a r e e q u i v a l e n t , under
fL(M*)
V(G*)
: V(G)
an anti-isomorphism
.
We need o n e p r e l i m i n a r y r e s u l t , b e f o r c c h a r a c t c r j z i n g s t r o n g l y s y m m e t r i c maps a s t o o r d e r ; Thm. 1 4 - 7 4 .
compare Theorem
( J o r d a n ; see B u r n s i d e [B18, p .
1,
'Yhm. 1 4 - 7 5 .
thcn
1721)
Tf
n = IX~ - 6
F r o b e n i u s g r o u p of d e g r e e n(n-1) / 2 = j
14-33.
n
is a
,X)
(
and o r d e r
i s a p r i m e power.
?'here e x i s t s a s t r o n g l y s y m m e t r i c map of o r d e r
n
and o n l y i f Proof:
M = M(G,
Let
(A)
map, w i t h
n = IV(G)
1
-
1 (mod 4 )
is symmetrical,
Since
so t h a t
1
n
+(2) = n ( n - 1 ) / 4 ;
is self-dual,
M
gives
1 (mod 8 ) .
M
Since
W e show t h a t
n
0
M
( b y Theorem
f = n,
-
2n
= 2 / C ( G )1 = n(n-1)/2,
thus
on
C,
is
G
But s i n c e
(n-1)/2,
imbed
M
so t h a t
with
Sk,
f
and t h e e u l c r
n(n-1)/4
=
2
-
2k,
i s symmetrical,
and
t i v e p e r m u t a t i o n g r o u p of o r d e r n - 9.
Since
I .
is vertex-transitive
G
e q u a t i o n (Theorem 5 - 1 4 ) G(M)
E(G)
n
see a l s o 'Theorem 14-43.
Now l e t
1 (mod 4 ) .
regions.
I
e =
and h e n c e r e g u l a r of d e g r e e
14-18)
n
=
if
1 (mod 8 ) .
be a s t r o n g l y s y m m e t r i c
)
and
e
self-complementary,
or
n
i s a p r i m e power c o n g r u e n t t o
G(M)
n(n-1)/2
is a t r a n s i and d e g r e e
i s a F r o b e n i u s group and
G(M)
t h c n a p p l y Theorem 1 4 - 7 4 , t o see t h a t , i n f a c t ,
n
is
a p r i m e power. So, l e t (u) = u
L
and
EG(M)
,
u # v E V(G)
with
, ( v ) = v.
u v E E(G) ,
If
t h e i d e n t i t y p e r m u t a t i o n , by Lemma 1 4 - 1 4 . then we apply the anti-isomorphism equivalent to between
G(M)
C(M*).
and
Then G(M*)
,
I
such t h a t then If
giving
i
is
uv f! E ( G ) G(M)
i n d u c e s an isomorphism -1 i ) = I rT
so t h a t 1 (
.
,
Sect.
14-8
245
P a l e y Maps
-1
(u)) = ( (u)) = z(U) = (u); similarly, ( ) also f i x e d , ( v ) . B u t , s i n c e L , i s a n a n t i - i s o m o r p h i s m and uv f E(G) , , ' ( u )I ( v ) e E(G*). IIence, by Lemma 1 4 - 1 4 a g a i n , ( L ) is the identity i n CL (M*) ; b u t s i n c e i s a g r o u p isomorphism, i i s t h e and G(M) 1s a F r o b e n i u s g r o u p . i d e n t i t y i n 6 (M) Thus
(
) ) (
(
For t h e c o n v e r s e , l e t
(B)
prime and
- G
Gn
(
r
E N.
n)
,
1 (mod 8 )
,
p
a
We c o n s t r u c t a C a y l e y g r a p h
where
n
n i n the Galois f i e l d element for
n = pr = (Zp)r
GF(pr).
GF(pr)/
-
t h e a d d i t i v e group
Take
so t h a t
x
as a p r i m i t i v e
x
generates the multi2 4 n-3 }, t h e p l i c a t i v e g r o u p , a n d l e t I * = {l,x ,x , . . . , x n set o f a l l s q u a r e s i n G F ( p r ) . ( E q u i v a l e n t l y , uv C E ( G n ) i f and o n l y i f
Cayley graph
v Gn
-
u
is a square i n
GF(Pr) . )
The
i s c a l l e d a P a y l e y g r a p h (see [ P l l ,
where t h e i d e a s b e h i n d t h i s c o n s t r u c t i o n w e r e i n t r o -
We r e m a r k t h a t P a l e y g r a p h s a r e d e f i n e d f o r
duced.)
a l l prime powers
pr
1 (mod 4 ) ,
c i s e l y t h e c a s e s f o r which
-
u n d i r e c t e d edges a r e well-def pr
~
s i n c e t h e s e a r e pre-
is a square
so t h a t
a r e s e l f - d u a l imbeddings p o s s i b l e . by r n ( S ) = x 2 I' , Next w e d e f i n e r n : A * + :I,
1 (mod 8 )
t h a t Mn
rn
induces vertex r o t a t i o n s
i n a c c o r d a n c e w i t h D e f i n i t i o n 14-23;
-
r : il*
n
+
so
M ( I n, j n , r n ) i s a C a y l e y map- w h i c h w e now
=
c a l l a P a l e y map;
n
-
b u t o n l y i n t h e case
ned;
LA:,
and t h e p e r m u t a t i o n
g i v e n by
i n a c c o r d a n c e w i t h t h e r e m a r k s p r e c e e d i n g Theorem 1 4 - 2 8 . We o b s e r v e t h a t P a l e y maps a r e i n f a c t d e f i n e d f o r a l l
n
= pr
case pr
1 (mod 4 ) , b u t w e c o n t i n u e t o s p e c i a l i z e t o t h e r . n = p - 1 (mod 8 ) . We c l a i m t h a t , f o r n =
1 (mod 8 ) , t h e P a l e y map
s t r o n g l y symmetric.
Mn
= M ( l n , . l n , r n1
1s
246
Chapt. 14
Map Autornorphism Groups
(i) The permutation 1 , : (Zp) (ZP)' given by [')(v) = xv is an anti-automorphism for Gn - since w = 2k u + xZk if and only if ~'(w)= xw = x(u + x ) = xu + x 2k+1 = [:(u) t x2k+1; note the use of the distri-+
butive law in the field GF(pr) - so that Gn is selfcomplementary. We remark that Paley graphs, being Cayley graphs of odd order, not only have a 2-factor (as required by Theorem 14-46), but in fact are 2-factorable (the edge set partitons into 2-factors): see Problem 4-14. We also observe that the anti-automorphism ii has exactly one fixed point (the vertex 0) and one orbit of length n - 1 : 0 (mod 4) , as required by Theorem 14-44. (ii) To show that M(Gn,p) is a self-dual map, we study the corresponding imbedding of Gn into Sk, r 2 where n = p = 8m + 1 and k = 8m -7m, for m = 1, 2, 3, 5, 6, 9, This imbedding is an (8m+l)fold covering space (no branching) of a voltage graph imbedding which is the following alternative normal form .a(Note that the values for sm: ala2. a2ma;1a;1. 2m' n = 8 m + l , h = m are consistent with Theorem 14-56 and that Theorem 14-69 is also illustrated by this construction.) The 2m directed edges bounding this 4mgon are labelled with generators from An by the c i - 2m. This assignment a . 1-f x (1-1)(4m-2), 1 1 assignment describes each region boundary (and each vertex rotation) in the covering space, the map (Gn,p), by the voltage graph theory; in particular, the single 4m-gon below lifts to 8m+l 4m-gons above. Figure 10-3 (letting b in Figure 10-2 be 1, -a = x 2) depicts the entire situation for m = 1 , using x2 = 2x + 1 in G F ( ~ : ) al I+ 1 = 01, a2\+ x2 = 21; x = 10; for just the voltage graph for the case m = 2, replace the labels in Figure 14-6 with: 1, x6, x 12, x 2 , -1, -x 6 , -x 12 , -x 2 We now utilize a method introfiuced by Bouchet [B12] for showing self-duality. Each region in the covering space imbedding has a unique lift of the directed edge a l from the normal-form voltage graph in its boundary;
. .. .
..
.
.
247
Paley Maps
Sect. 14-8
is this lift is a side (g,g+l) in Gn, where g uniquely determined for that region; label the region
g*. It is now routine to check that, for each r g 6 (Zp) , the region g* (g* E V(Gt) ) has neighbors 2 k N(g*) = { ( g + w ( - x ) ) * 1 0 - k 2 4m-11 in G;, where 2 2 In fact, the dual is a Cayley map w = (1-x )/(l+x ) . 2 where r*(W ) = -x w&(b E An), Mn * = M n (In , w ' ~ ,r;), n
with
.
r* to that of rn n being taken in the sense opposite r Thus if w is a square in GF(p ) , then G* = G On n n the other hand, if w is a non-square, then G* n = Gn =
.
Gn* (iii) Using the distributive law in rn r = (Zp) ;
GF(n)
again,
we readily see that the permutation
of
to a group automorphism of
thus Theorem
extends
A;
14-27 applies, to show that Mn(Tn,An,rn) is a symmetrical map. In fact, G(Mn) is a Frobenius group with Frobenius kernel the regular normal subgroup I'n and Yg: I'n + I'n, 'g (h) = g+h I g E rn = V(Gn ) 1 Frobenius complement the cyclic group stablizing the {
generated by the autonorphism c0 extending 2 (See Theorems 14-32 and 14-15.) The rn, cO(h) = x h.
vertex
0,
other vertex stabilizers are conjugate, with (G(Mn))g -1 generated by r, = y < y O f course, IG(M,) I = 9 g 0 9 ' /!'nl lAnl = 2/E(Gn)1 . Finally; we emphasize that G(Mn) contains a subgroup isomorphic with T n , as required by Theorem 14-24, 0: (G,)
,
this subgroup must be proper, in
by Theorem 14-48.
(iv) If
2 2 w = (1-x ) / (l+x )
the anti-isomorphism
I;:
V(Gn)
+
is a non-square , then V(GR)
[~(g)= g* G(M;)
,
gives an equivalence between -1 since if u* = Iitul? , where N
given by G(Mn) and is one of the
generating automorphisms c0 or yg ( G E rn) of G(M,) N* preserves oriented region one readily checks that boundaries in Mi. If, however, w E On, then we take ~;(g)= (xg)*, to again see that
G(Mn)
equivalent, under an anti-isomorphism B.
and
G(MA)
are #
,
Map Automorphism Groups
248
The Paley maps Mn = ( n, tional properties of interest.
Chapt. 1 4
n, rn) constructed above have adcliWe use the following facts & o u t
Galois fields, taken from Storer [S171. Thm. 1 4 - 7 6 .
x
Let
be
il
primitive element for
GF(pr),
where
pr = 2f+l and f is even. L e t ( i , ] ) denote the number of ordered pairs (s,t) such that x 2s+i + 1 =
t
-
f-1;
(1)
(0 0)
=
(f-2)/2;
(ii)
(0 1)
=
(1,O)
0 L s
.2t+’,
Thm. 1 4 - 7 7 .
For
n = 4m+
i :
then:
=
(1,l) = €/2.
the Paley graph
I
1
p22 = m
with parameters
and
Cn
is strongly regular,
7
p;2
= m-1
f = 2111. From Theorem 1 4 - 7 6 (i) we see that ( 0 , O ) = f-2)/2 = m-1. Now clearly x2’+l = x2t if and only if x 2 ~ + 2 k + ~ 2=k 2 X 2t+2k; it follows that p 2 2 = m-1 €or Gn. Similarly, we use Theorem 1 4 - 7 6 (ii) to deduce that p22 1 (1,l) = f/2 = m. # From
Proof:
n = 4m+l = 2f+l,
we find
This result overlaps with the next: Thm. 1 4 - 7 8 ,
If
G
is self-complementary and has a symmetrical map
then
G
Proof:
is strongly regular. In fact, for any graph
having a symmetrica
G(M) is transitive on edges and is well-defined. But if G is selfcomplementary, then G ( G ) is transitive on non-edges
map
M,
since
G
2
G ( M ) 5 G(G), p22
also, so that
1
p22
is well-defined too.
Thus the Paley graphs Gnl for n = pr dates for determining association classes for
~
#
1 (mod 8 ) , are candiPBIBDs, and in fact
the Paley maps give such designs: Thm. 1 4 - 7 9 .
Let
x
be a primitive element for
the Paley map
Mn,
for
n = 8m+l,
(8m+1,8m+1,4m,4m;X1,X2)-PBIBDl
GF(n) , where n = pr; yields an
where
X1
=
2m
and
Sect. 14-8
249
Paley Maps
2m-1 = 2m-1 =
Proof:
if
and
xi tl =
is a square In GF(n), while 2m if x 2+1 is a non-square.
See Problem 14-20.
#
It can be shown that, in a Paley map, either each region bounary consists of neighbors N(v) , v E (ZP)l, or each region boundary consists of neighbors in the complementary graph, so that the designs
constructed above a l s o exist in a natural, topology-free, context. The topological context, however, does facilitate the next observation:
d u a l of
these designs are also self-dual, in a very strong sense.
The
a design has as its objects the blocks of the oriqinal
design, and a block in the dual design contains all those objects of the dual design which represent blocks of the original design to which one fixed object of the original design belongs. Thm. 14-80.
Given a Paley map, the dual of the design of the map and the design of the dual of the map coincide, and both are isomorphic to the design of the Paley map itself. Proof:
See Problem 14-21.
#
We make several additional comments relevant to Theorem 14-75. Firstly, we observe that self-dual imbeddings of self-complementary graphs need not be unique for a given order. need not be a prime power,
Moreover, the order
(We are temporarily relinquishing the
symmetricality condition for strongly symmetric maps.)
For the first
A = ~5;1,6,11,16,211 in i' = Z 2 5 , S O that G(,(T) example, take i s the composition C5 [C,]. Since C5 = C5 and G [ H ] = G[H] i n general (see Problem 2-51, C 5 [ C 5 1 is self-complementary. dual imbedding is constructed by the use of Theorem 14-55.
A selfSince C,[C,l is not strongly regular, the map M is not symmetrical, by Theorem 14-78; thus M differs from the Paley map M25 of the same order. In fact, G ( M ) 2 I = 225 and i s equivalent to G(M*) (both are Frobenius groups) under the anti-isomorphism CJ (4) = (2g)*. (Every map M of a Cayley graph GA(T) covering a normal-form voltage graph has r j ' - G(M) ; in this case the fact that there are no additional automorphisms follows from the observation that each region boundary contains repeated vertices.) We mention that Theorem 14-55 also provides a self-dual imbedding, but not a
250
Chapt. 14
Map Automorphism Groups
symmetrical map, for the Paley graph
G25.
For the second example, we take ?> = { 1 3 : 5 , 2 0 , 1 5 ; 1 , 4 , 1 6 ; 3 , 1 2 , - 1 7 ; 7,28,-18;11,-21,-191 in -- Z65; ! , ( g ) = 29 gives an anti-automorphism, so that G , ( i ’ ) is self-complementary. Again a self-dual imbedding is constructed by Theorem 14-55, and again the map fails to be symmetrical, by Theorem 14-78. Again, G ( M ) and G ( M * ) are equivalent under the anti-isomorphism ( ~ ( g=) (2g)*, and both are Frobenius groups isomorphic to
I
=
ZG5.
The non-prime-power order
is possible, because the autonorphism group is not large enough for the Jordan theorem (Theorem 14-74) to apply. Next we present another sufficient condition to give primepower order (see Problem 14-22.) Thm. 14-81.
2 22 = 2m, p22 = 2m-1), M = (G,,,) a symmetrical map yielding an (Emtl,8mtl14rn,4 m ; 2m-l12m)-PBIBD. ‘Then 1 V (G)1 = 8m+l Let
be strongly regular (with
G
p1
is a prime power. We remark that, for the Paley graphs QG,)
Gn(n = p
consists not only of the map automorphisms
r
1 (mod 4 ) ) ,
G(Mn) as in
(111)
of the proof of Theorem 14-75, but also of the field automorphisms, generated by (G(M),
Thm.
I
’
(Zp)r
:
(ZP)r ,
O ( g ) = gp;
in fact,
G(G,)
=
>:
14-82.
(Carlitz [C3])
The automorphism group of the Paley S
graph 0
-
s
is
Gn
G(G,)
= fg
2kgp +a [ 0
1 - b ~
2 k 5 4m-1,
L
-
r-1, a E (Zp) 1 .
We use this result to study the reflexibility of the Paley maps. Def. 14-83.
If a map that
is symmetric but not reflexible, we say
M
M
is chiral.
Thm. 14-84. The Paley map thus Proof:
Mn
If
must have Since
Mn
is reflexible if and only if
is chiral i f and only if
0’
Mn
is reflexible, with
r = 2s and O s ( g ) fixes both 0 and
= gPs
1,
n = 9;
n # 9. n = prl
then we
giving a reflection we must have
Sect. 14-8
Paley Maps
s (x2 )
251
2 x2Ps = p . 2 s - 3 (since L j 0 - (1,x X Thus p2’-3 = 2ps, so that p divides 3 ; hence p = 3 and s = 1 (or else 3 divides 1); that is, n = 9. Conversely, (g) = g3 is readily seen to be a
,...,
=
reflection for
M9;
refer to Figure 10-3.
As we have seen, the Paley maps
#
- defined for prime powers con-
gruent to 1 (mod 8) - have several interesting properties: they are regular (symmetrical), self-dual imbeddings of strongly regular, self-complementary graphs which produce self-dual block designs, for example. Now we see how closely we can approximate these properties by similar maps, for all other prime power orders. For pr 1 5 (mod 8 ) , the Paley graphs Gn are defined, and are both self-complementary and strongly regular, as before. The euler equation disallows self-dual surface imbeddings, S O we utilize pseudosurfaces. Again we use a normal-form voltage graph but, for n = 8m+5, it is a (4m+2)-gon and thus has two vertices; see Figure 14-7 for the case m = 1. The (8m+5)-fold covering imbedding has
1
Figure 14-7. 16m+10 vertices, each of degree 2m+l. For each g 6 GF(n), we identify the two vertices (a,g) and (b,g); the result is a symmetrical, self-dual pseudosurface imbedding of Gn, f o r m > O . consists of five disjoint loops. For the pseudosurface (G; = C; theory of voltage graphs, see Garman [ G l ] .) In fact, the map is a r n (6) = x4 , having Cayley map PI(Tn,An,rn), with rn: :A A;, +
252
Map Autornorphisin G r o u p s
two c y c l e s . or
-
if
G
The d u a l
w
is
G*
w = (1-x
if
C
Chapt.
4
4
14
is a square,
) /(l+x )
The autornorphism g r o u p i s F r o b e n i . u s ,
i s a non-square.
w i t h F r o b e n i u s k e r n e l 2 ( Z ) r . The s t a b l i z i e r o f v e r t e x 0 i s P 2 g e n e r a t e d by C J -x. g , w h i c h a l t e r n a t c s b e t w e e n t h e t w o o r b i t s of the vertex rotation at results i f
0.
(8m+5,8m+5,4m+2,4m+2;2m,2m+l)-PBIBD
An
is non-square;
l+x4
otherwise,
the two
values inter-
change. For
pr
3 (mod 4 ) , -1 = x 2m+1
fined, since
the Paley graphs
'rn,
d e f i n e t h e Paley tournament if
g2 :
- g1
is a square i n
I n s t e a d , we
(g1,g2) E E(Tn)
if and o n l y
of c o u r s c , w e s t i l l t a k e
GF(n);
as our v e r t e x set.
(ZP)l-
~ { ( g l , g 2 ) ,( y 2 , g 1 ) i
by:
a r e no l o n g e r de-
Gn
not
a square.
is
( p r = 4ni+3)
g1 # g2
Then
gives
E(T,) I = 1, s o t h a t w e do h a v e a t o u r n a m e n t . The u n d e r l y i n g u n d i r e c t e d q r a p h i s t h u s c o m p l c t e , a n d h e n c e d e q e n e r fl
ately "strongly regular.
"
The Paley t o u r n a m e n t s a r e s e l f - c o n v e r s e , I: gl-, xg.
under t h e anti-automorphisrn
metrical imbeddinqs o f t h e associated e a c h of l e n c j t h where
rn(g)
=
2m+1;
having
K4m+3
t h e s e a r e C a y l c y maps
M ( 1'
,
xg.
regions,
- i0 i ,
rn),
(4m+3,4m+3,2m+l ,2 m + l , m ) - B I R D S .
W e now m o d i f y t h i s map t o f o r m a
('The l a t t e r a r e Iladamard d e s i g n s . ) p s e u d o s u r f a c e i m b e d d i n c j of
e x a c t l y one edge corresponding t o
Each region c o n t a i n s
X4m+3;
1 E (Zp)
,
i n one o f t h e t w o
p o s s i b l e scnses ( c l o c k w i s e o r c o u n t e r c l o c k w i s e . )
In fact, this
d i s t i n c t i o n d e t e r m i n e s t h e 2 - c o l o r i n g of t h c d u a l .
g* ( g Cr ( Z )r)
i f either:
The r e g i o n i s
( i ) (g,g+l)
P r e g i o n i n t h e c l o c k w i s e s e n s e , or ( i i ) (g-a,g-a-1) r e g i o n i n t h e clockwise s e n s e , where
a
=
bounds t h e
bounds t h e
2/ ( ~ ~ ~ - T 1h )u s. e a c h
a p p e a r s e x a c t l y t w i c e a s a r e g i o n label, a n d i f t h e s e
the self-converse
tournament
Tn,
w i t h each v e r t e x neighborhood
q*
o n e c o n s i s t s of t h o s e v e r t i c e s d o m i n a t e d b y
o t h e r c o n s i s t s of t h o s e d o m i n a t i n g F i n a l l y , we consider 1
i m b e d d i n g of
p a r t i t i o n e d i n t o t w o sets (corresponding t o t h e
fication):
is a square
(1
=
x2r-1 )
pseudo-
M o r e o v e r , i f t h e edge d i r e c t i o n s are
K4m+3.
carried. o v e r i n t o t h e d u a l , t h e n w e h a v e a s e l f - d u a l
N(g*)
g
pairs o f
n
v e r t i c e s i n t h e d u a l are i d e n t i f i e d , w e o b t a i n a s e l f - d u a l s u r f a c e imbecldinq of
directly,
Hence w e o b t a i n o n e
(4m+3,8m+6,41n+2,2m+l,2m)- B I R D a n d t w o
assigned label
8m+6
n, n T h u s t h e i m b e d d i n g s c a n n o t be s e l f - d u a l
although the dual i s bichromatic.
self-dual
w e f i n d sym-
I n B i g g s [B9]
p = 2, in
g*,
identithe
g*. so t h a t
GF ( 2 r ) ,
p r = 2r.
Here n o t e v e n
so o u r p r e v i o u s
Sect. 14-8
Paley Maps
However, if we use the planar
constructions seem not to apply. voltage graph of Figure 14-8, with covering imbedding of a 2-fold
253
Kn,
n
=
,'2
with
we obtain an n-fold n
(n-1)-gons and
/;]
If each digon is closed (by identifying its two edges), a syrmnetrical, self-dual imbedding of the "strongly regular" Kn ( s e l f -
digons.
complementary i n the 2-fold Kn) results. (In fact, r*, = r for n this case.) The concomitant design 1s an (n,n,n-l,n-l,n-2)-BIBD which, of course, can a l s o be constructed by taking complements of singletons a s blocks.
... Figure 1 4 - 8
We close this lengthy section by discussing conditions under Self-duality, strong regularity, and designs do not enter into the characterizations given, but as it is Paley maps being characterized, these additional properties persist - except that self-duality fails €or n . 5 (mod 8). For proofs of the following two theorems, refer to [W13] or to Section 14-9.
which the Paley maps are, in some sense, unique.
Thm. 14-85.
If M = ( G , r i ) is vertex-transitive and if ( G ( M ) , V ( G ) ) is self-equivalent under an anti-automorphism 0 of G, then
M
is isomorphic to a Cayley map
)I,) = /V(G)[
Thm. 14-86.
,
/ A * ] =(/V(G)
I-
M(I',A,r), where
1)/2.
There exists a symmetrical imbedding of a self-complementary graph C, of order n, with ( G ( t . l ) , V ( G ) )
Map Automorphism Groups
254
Chapt. 1 4
self-equivalent under an anti-automorphism I\ of if and only if n is a prime power Congruent to 1 (mod 4). Moreover, if (i2 E ( M ) , the maps are essentially unique, with at most six exceptions. Cor. 1 4 - 8 7 .
G,
For each prime p 1 (mod 4 ) , there exists a unique symmetrical imbedding of a self-complementary graph G of order p having G ( M ) = G(G).
Proof:
The Paley maps give existence. But if G(M) then K 2 and B n R - ' (for each IY. E G ( M ) and where [i is an anti-automorphism of G ) are both i n G ( M ) , so that Theorem 1 4 - 8 6 (and its proof) show
= G(G),
that
M
is a Paley map.
#
The strength of this uniqueness claim is illustrated by Theorem 1 4 - 4 5 : the Paley maps of orders 13 and 17, for example, are unique among 5 , 6 0 0 and 1 1 , 2 2 0 , 0 0 0 self-complementary graphs respectively, with respect to being symmetrical, with G ( M ) = G ( G ) . Cor. 1 4 - 8 8 .
If there exists a symmetrical imbedding of a s e l f complementary graph G of order n, with G ( M ) = G ( G ) , then (with at most six exceptions) n is a prime congruent to 1 (mod 4 ) .
As in the proof of Corollary 1 4 - 6 7 ,
we find by Theorem 1 4 - 8 6 that n is a prime power congruent to 1 (mod 4); moreover, the maps (with at most s i x exceptions) are unique and thus are Paley maps. But if n = pr with r -' 1, then G(M) is a proper subgroup of G(G), by Theorem 1 4 - 8 2 ; thus r = 1, and n is
Proof:
prime
.
#
14-9.
1
n Il (ni-l)! i=l
14-1.)
Show that
14-2.)
Prove Theorem 14-5. Show that G ( M ) = A 4 ,
14-3.)
IR(G)
=
Problems
for
M
as in Figure 1 4 - 2 .
Sect.
14-9
Problems
255
P r o v e t h a t t h e f o l l o w i n g a r e e q u i v a l e n t , f o r a map
14-4. )
(G,,)
M =
:
(i) M
is reflexible; and i t s mirror image
(ii) M
(iii) t h e r e e x i s t s an
E V(G)
V
:i
G(G) such t h a t , f o r a l l
E
= ( t i 1
I ) , ~ ( ~ )
r
-1 -1 CY
V
14-5.)
Show t h a t t h e map o f F i g u r e 1 0 - 3
14-6. )
P r o v e Theorem 1 4 - 1 3 .
14-7.)
Verify t h e e n t r i e s
14-8. )
Show t h a t ICL*(M)
1
.
is reflexible.
i n Table 14-2.
/G*(M)1
divides
Thus a n o n o r i e n t a b l e map if
are equivalent;
M
1.
= 4jE(G)
1.
( S e e Theorem 5 - 2 5 . )
is d e f i n e d t o be symmetrical
M
I f w e augment F i g u r e 8 - 7 ( a ) i n t h e
K6
o b v i o u s way t o imbed
41E(G)
N1,
in
i s t h e r e s u l t i n g map
symmetrical?
*
Prove o r d i s p r o v e :
14-9. )
If
is a strongly regular graph,
G
0
then there e x i s t s a rotation i s a r e g u l a r map. 14-10. )
Let
M
(Hint:
be t h e imbedding o f
l a of S e c t i o n 1 0 - 3 .
IG(M)
1
= 20)
I
for
K5
Show t h a t
on M
M = (G,p)
but not reflexible
S1 g i v e n i n Example is symmetrical (i.e.
(i.e.
Show t h a t t h e c o r r e s p o n d i n g d e s i g n Section 12-3)
so t h a t
G
consider t h e Petersen graph.)
is chiral.)
M
(Example 1 o f
D
h a s automorphism g r o u p
G(D)
Does
2 S5.
t h i s c o n t r a d i c t Theorem 1 4 - 1 3 ?
*
14-11.)
P r o v e Theorem
14-12.)
P r o v e Theorem 1 4 - 3 7 .
14-13.)
P r o v e Theorem 1 4 - 3 8 .
14-11.)
P r o v e Theorem 1 4 - 3 9 .
14-15.)
Show t h a t
*
map f o r
14-36.
M(Zgr {1,2,4},
3 ( 3 )' F o r what o t h e r v a l u e s o f
14-16.)
i s a symmetrical
(1,2,4,8,7,5))
U s e t h i s map t o show t h a t
K
n
does
K
3 (n)
('3,3,3,6 ) = 7. have a symmetrical
map ? 14-17. )
L e t map
a description of where
b e d u a l t o map
M* = M ( G * , [ i * )
i n t e r m s of
IJ*,
D* = [ ( u , v ) Iuv € E ( G )
1
and
p
M = M(G,p).
and
: D*
+
(u,v) = (v,u).
Find
D*, (See
B i g g s [BlO]. T4-18. )
Show t h a t
14-19.)
*
14-20.
P r o v e Theorem 1 4 - 5 5 . yM(Gn)
g r a p h of o r d e r )
=
(n-1) ( n - 4 ) / 8 ,
n = pr
P r o v e Theorem 1 4 - 7 9 .
Z
1 (mod 8 . )
where
Gn
i s t h e Paley
256
Map A u t o m o r p h i s r n C r o u p
*14-21.)
Prove T h e o r e m 1 4 - 8 0 .
14-22.)
P r o v e Theorem 14-81.
?4-23.)
P r o v e Theorem 14-85.
14-24.)
P r o v e Theorem 1 4 - 8 6 .
*
Chapt.
14
251
CHAPTER 15 CHANGE RINGING
T h e ancient and continuing art of change ringing, or campanology
(how the British ring church bells), is here studied from a mathematical viewpoint.
An "extent" on
n
bells is regarded as a hamilton-
ian cycle in a Cayley color graph for the symmetric group bedded on an appropriate surface.
Sn, T'hus - perhaps surprisingly
im-
-
graphs, groups, and surfaces combine to model something musical. After making this model explicit, we discuss two ringing methods for variable n (Plain Bob for all (mod 4)); and a new method for n methods
(n = 4)
n and Grandsire for n 3 odd is introduced. All minimus
and five doubles methods
(n = 5)
are depicted,
one of these being the new "No Call" Doubles. The material here also appears in IW141.
15-1.
Definitions
In the science of change ringing (sometimes called campanology), the central problem is to ring a full extent on signate the
n
bells by the natural numbers
n
bells.
1, 2,
...
,
We den,
arranged in order of descending pitch. Def. 15-1.
Bell 1
is called the treble, bell
ringing of the
n
n
the tenor.
Each
bells, once each in some order, is
called a change; the special change called rounds. An extent consists of changes, satisfying:
1, 2,
n!
...
+ 1
,
n
is
successive
(i) the first and last change are both rounds; (ii) no other change is repeated (so that each possible change other than rounds is rung exactly once); (iii)
from one change to the next, no bell moves more than one position in its order of ringing (positions 1 and
n
are
not
adjacent, unless n = 2);
Change Ringing
258
Chapt. 15
no bell rests in the same position for more than two successive changes; each bell (except perhaps the treble) does the same amount of "work" (hunting, plain hunting, dodging, etc.); the method employed is palindromic, or self-reversing (this will be made more precise in Section 15.2.) Conditions (iv) and (v) are occasionally relaxed in practice, but the other conditions appear to be inviolable. 1 venture to guess that rule (i) is for musicality, rule (ii) for thoroughness, rule (iii) for mechanical considerations (dealing with how the bells are hung and rung) , rules (iv) and (v) to keep the performance interesting for the ringers, and rule (vi) to ease the memory burden for the ringers. Typically the number of bells is in the range 3 2 n 5 12, with names assigned to the extents as in Table 15-1. The odd-bell names reflect the maximum number of pairs of bells that could be exchanged, in their order or ringing.
n
name
n!
+
1
Singles Minimus
7 25
Doubles Minor
721
Triples Major Caters
5,041 4 0 ,321 362,881
11
Royal Cinques
3,628,801 39,916,801
12
Maximus
479,001,601
3
4 5
6
7 8
9 10
121
Table 15-1
As an extent of Major takes approximately eighteen hours to
ring (the ringers are allowed no visual aids to memory, so this must surely rank as one of the "major" physical
intellectual feats of
Sect. 15-1
mankind),
259
Definitions
extents on more than eight bells are clearly beyond the
limits of human endurance; even on eight bells they are extremely rare. Much more tractable, an extent of triples requires under three hours of concentrated ringing.
For this reason peals are often
attempted, and often succeed; a peal consists of at least 5000 and,
5 1n 7, exactly 5041 successive changes satisfying rules (i) through (vi) above (but not (ii), if n < 7.) For n < 7, a peal consists of several extents strung together; for n = 7 a for
peal fi an extent; and for n 3 7, a peal is a partial extent. If tower bells are being rung, then each ringer operates one bell (a huge amount of practice is required for the beginner to learn to ring his or her bell even individually, let alone in rounds with the other bells, let alone through all the changes of a peal or an extent); if handbells are employed, then each ringer rings two bells. There is also a bell-ringing machine (designed and constructed by John Carter, a gunsmith and bell-ringer, and currently on loan to the Science Museum in London); it mechanically rings twelve hand bells suspended in a cabinet, after being "programmed" for method. As generally an even number of bells is provided, for the odd bell methods a "covering" bell
-
always the tenor
-
rings last in
every change, in forgiven violation of rules (iv) and (v). It might even be argued that the stability and regularity thus produced is musically pleasinq. Change ringing, as described above, began in England in the middle of the seventeenth century and remains almost exclusively a British art.
Today there are over five thousand bell towers in
Great Britain, about a half dozen in Canada and a dozen in the United States, and perhaps twice that in Australia. On July 27 and 28, 1963, the first extent of Plain Bob Major was successfully rung on tower bells at the Loughborough Bell Foundry in England. On
December 27 and 28, 1977, the same extent was accomplished on handbells in a private home in Farnham, Surrey, England. Change ringing has been popularized, to an extent, by Dorothy Sayers in her novel The Nine Tailors [ S 4 ] and, more recently, as part of the festivities at the Royal Wedding of Prince Charles and Princess Diana. Only recently have mathematicians begun to study change ringing from their vantage point, although curiously the early composers of peals and extents were doing coset decomposition in symmetric groups a full century before Lagrange.
The reader could
260
Chapt. 15
Change Ringing
consult works by Rankin
[R2], Fletcher [ F ’ l ]
,
Dickinson [D2], Price
[P7], Budden [B17], and White [WlO]. For more on the history and practice of change ringing, the reader should seek out Wilson [Wl7], Camp [CZ], and the weekly publication “The Ringing World” (published in Guildford, Surrey, England.)
15-2.
Notation
It would be easy to confuse the number of a given bell with the number of the position it occupies in a particular change.
To avoid
this confusion we regard each change as a function from the set of n
positions to the set of
n
bells, so that domain elements de-
scribe positions and range elements describe bells.
Thus a change f (n), would indicate that bell f ( 1 ) is to be rung first, bell f(2) second, and so on. Rounds is given by r(i) = i, 1 c i - n. In order to satisfy condition (iii) of Section 1, we describe a potential transition from one change to the next by a permutation on the set of n positions which either fixes a given position or interchanges it with an adjacent position. Conversely, each transition satisfying (iii) is of this type. Thus each transition is represented by an involution (that is, by a product of disjoint transpositions) in the symmetric group Sn. Now let t(n) give the number of possible transitions for n bells, and let F(n) give the nth Fibonacci number (where F ( 0 ) = F ( 1 ) = 1) ; then we have the following well-known result: f,
recorded as
Thm. 15-2.
For
f (1), f (2),
n 1 2,
Proof:
... ,
t(n) = F(n)
- 1.
It is easy to verify that
t (2) = 1
and that
k and cont(3) = 2 , so we assume the result for n sider t(k), k - 4 . Since there are t(k-1) allowable transitions fixing position k , t(k-2) allowable transitions exchanging positions
k
and
k
-
1
and at least
one other pair, and the single transposition we have:
(k-1,k),
261
Notation
Sect. 15-2
t(k) = t(k - 1)
-
=
F(k
=
F(k)
1)
-
+ t(k - 1 +
+
- 2)
F(k
-
1 2)
- 1 +
1
1 #
Now, if d l , d2 , in an extent, then the
... , dk
represent the first k transitions (k+l)st change is the function rdld2,..dk,
where - in accordance with the standard notation for function composition - we take products in Sn from right to left. Let (Sn); then we have the immediate but absolutely central
result: Thm. 15-3.
An "extent" on n bells, satisfying conditions (i)(iii and using transition rules from A , can be rung if and only if
C.(Sn)
is hamiltonian.
d E: has order two, CA(Sn) has no directed edges by convent on (see, for example, White [w101): hence Since each
hamiltonian cycles in C,(Sn) coincide with those in the underlying Cayley graph G , j (Sn). We retain the edge colors of Cii(Sn), however, as they are valuable in constructing the extent itself from the hamiltonian cycle and in checking the palindromic condition (vi). Each method is based upon a principle, which usually (but not always) consists of
2n
changes.
juxtaposed transitions
The word in
Sn
describing the
2n
- 1
of the principle should be a palindrome:
dld2...dn-1dndn-l...d2dl. These ideas are illustrated in Figure 5-1, with
A
= {
(12), (23))
for the case n = 3, The hamiltonian cycle and the extent it gives rise to shown in Table 15-2 describe the interior clockwise region boundary of the spherical imbedding of C A ( S 3 ) depicted. The extent is called "quick six"; the clockwise boundary of the exterior region produces "slow six", the only other extent possible on 3 bells.
(Not surprisingly, "slow six" is just "quick six" in the
opposite order.)
If we let
a = (12)
(denoted by solid edges) and
b = (23) (denoted by dashed edges), then "quick six" is completely described by the identity word (ab)3 in S 3 and "slow six" by (ba)3 . In the former case the relevant palindrome is ababa; in the latter it is babab.
262
Chapt. 15
Change Ringing
\ \ \
\
Figure 15-1
Table 15-2
15-3.
General Theory
In [R4], Rapaport provided an inductive construction, to establish the following: Thm. 15-4.
Let then
1)
= {
(12) (12)(34) (56).. . I (23) (45) (67).
Ci.(Sn)
is hamiltonian.
.. 1
for
Sn;
Sect. 15-3
263
General Theory
In [wlo], we required only conditions (i), (ii), and (iii) for an extent, and gava the following two ramifications of the Rapaport construction: Thm. 15-5.
An extent on
n
bells exists, for all
n.
Moreover,
only three transition rules are required. Thm. 15-6.
For
n
odd an extent exists which also satisfies condi-
tion (iv) at all but position n, where (at the worst) no bell rests for more than four successive changes. In [WlO] we also displayed an imbedding of C A ( S 4 ) , for Rapaport's !i, in the projective plane. (This is essentially Figure 15-2 below.) In this imbedding the three left cosets of D 4 bound regions which link together nicely to trace out the in S4
hamiltonian cycle giving the extent, in extension of the idea behind Figure 15-1. This suggests the efficacy of picturing extents on surfaces, and as we naturally wish to do this as efficiently as possible, we make the following definition: Def. 15-7.
The characteristic of an extent (on n transition rules
A
)
bells, with
is the maximum characteristic of
all surface imbeddings for
C A(Sn).
As certain transition rules (the "calls"
-
so called because
the conductor calls them at the appropriate time, while all other transitions are trusted to the memory of the ringers - known as "bobs" and "singles") are used infrequently in a particular extent (a single is perhapsemployed only twice among the n! transitions, for example) we take A to include only the other generators for this has the effect of avoiding unnecessary clutter in Cn(Sn). Sn; Thus, in the event that A does not qenerate Sn, a characteristic imbedding of an extent may be on a disconnected surface. For example, the Rapaport
..,
A = {a,b,c}
...
(where a = (12),
and c = (23)( 4 5 ) (67) ) b = (12)(34)(56). involves no "call" generators and the relators
for Sn (n 5) (ab)*, (ac)6-, and
(bc)" bound regions for an imbedding (orientable if and only if n 1 3 (mod 4)) of C, (Sn) of characteristic (n-1)! (3-n)/ 6 , which is thus a lower bound for the characteristic of the extent. single relator
(abc)n-l
Or, the
can be taken to bound regions for an
Change R i n g i n g
264
C ,( S n )
o r i e n t a b l e i m b e d d i n g of
b u t t h i s i s less e f f i c i e n t .
Chapt.
of characteristic
Note t h a t
n ( n - 2 ) ! (3-n) / 2 ,
Sn,
does generate
.'
15
a r e known t o d o s o ; see C o x e t e r a n d Moscr
a
and
bc
For
n = 4 , t h e imbedding i n t h e p r o j e c t i v e p l a n e cannot b e improved
(as C , (S4)
c o n t a i n s a homeomorph of
,
K3,3)
JCM1, p.
as
631.
so t l i a t t l i e c h a r a c t e r -
i s t i c of t h i s e x t e n t i s e x a c t l y o n e . W e now c o n s i d e r
c
=
(23) (45) (67)
P l a i n Bob -b
c
and
n
i s always
regular
n-gon
n
2n(n-1)
changes.
1
.. . )
2n
n -5,
Finally, for
...
and,
(bc)",
(bd)
- (n-2)
! (n2
-
5n
+
,
is used
d
tlie c a l l g e n e r a t o r s ( t h e
the single
2
,
+
n! and
2) /4;
f =
1 c h a n g e s of bound
(cd)"-'
r e g i o n s f o r dn always n o n o r i e n t a b l e imbedding o f characteristic
...
t o g i v e a "touch" of
n 2 6,
for
1,2,4,6,
Thc g e n e r a t o r
are added t o produce t h e f u l l
Here t h e r e l a t o r s
extent.
changes.
of t h e s e b l o c k s t o g e t h e r ,
e = ( 2 3 ) (56) (78)
...,
various
the
( a s c a n be s e e n from i t s a c t i o n o n a
Dn
with v e r t i c e s labeled, i n order,
g i v i n g a b l o c k of
(56) (78)
[or
Here t h e h u n t i n g g r o u p g e n e r a t e d by
bells.
7,5,3),
bob
b = ( 1 2 ) (34) (56)
...,
to link
-
where
d = ( 3 4 ) ( 5 6 ) (78)
and
e x t e n t s on
,
= 'b,c,cl~
"
...,
C, ( S n )
t h i s is for
n
of
-
4.
This
a p p e a r s t o b e t h e most u s e f u l i m b e d d i n g f o r P l a i n Bob e x t e n t s , a s t h e relator
e x a c t l y p o r t r a y s t h e p r i n c i p 1 . e embodied i n t h e
(bc)"
h u n t i n g group, and r e p l i c a t e d i n t h e l e f t cosets o f t h a t g r o u p , Aaain we n o t e t h a t
generates
.'
as
Sn,
bc
a r e known t o
a n d bd
do so. Next c o n s i d e r
ib,c,gi,
i. =
c = ( 2 3 ) ( 4 5 ) ( 6 7 ) ...,
and
Grandsire e x t e n t s on
n
where
b = ( 1 2 ) (34) ( 5 6 ) . . . ,
...
g = ( 1 2 ) ( 4 5 ) (67) (odd)
for the various
Here w e see t h a t
bells.
(a,c) =
i s used as a l i n k i n g permutation. The b o b f o r G r a n d s i r e i s c o n s t r u c t e d f r o m L , b u t t h e s i n g l e i s t h e new h =
Dn
and
g
(45) (67) (89)
... .
we observe t h a t
(mod 4 ) ) ,
a l t e r n a t e l y by I ( 1 2 k ) 13
b
and
1k 1 ni;
But t h e n (cb)"
T o see t h a t
(An,q) = S
g
g c = (123)
and t h a t c o n j u g a t i n g
[ C M l , p . 661
W e use t h e relators Cc,(Sn)
to generate 3 n-2 ( g c ) ,( g b ) ,
(orientable for
n o n o r i e n t a b l e and i n t w o components f o r single
3
An.
and
( t h e l a t t e r i s u s e d i n t h e p r i n c i p l e f o r G r a n d s i r e ) t o bound
r e g i o n s f o r a n i m b e d d i n q of
istic
n
( a n d t h e n t a k i n g irwerses) p r o d u c e s
t h i s i s known
n'
is connected ( f o r
Cr,(Sn)
- ( n - 1) ( n - 3 ) ! ( n 2 h
i s odd,
so t h a t
-
5n
+
(A,,h)
3) /3.
n For
= Sn.
n
3 (mod 4 )
,
1 (mod 4 ) ) o f c h a r a c t e r n : 1 (mod 4 ) t h e
Sect. 15-3
General Theory
265
Finally, we endeavor to improve on the Rapaport generating set, so as to satisfy condition (iv) universally. Mer construction is based upon the following lemma: Lemma 15-8:
A connected graph regular of degree three has a
hamiltonian cycle if there is a set and a set
of polygons
P
of squares, each set partitioning the
Q
vertex set of the graph and such that no member of contains every vertex of a member of For the Rapaport (12)(34)(56)...,
of
n!/12
(bc)")
=
i a,b,c 1 ,
where
a = (12), b =
c = (23)(45)( 6 7 ) ..., the set P 6 (ac) (or, we could use (n-1)!/2
and
12-gons
and the set
0 consists of
squares
n!/4
P
Q.
is composed
2n-gons (ab)2 The
.
Rapaport construction of a hamiltonian cycle uses b edges to combine 12-gons from P (or a edges to combine 2n-gons from k h (or P); thus the cycle consists of partial words (ac) b(ca) (bc)ka(cb)h) and we see that condition (iv) is uniformly satisfied, if
n
is odd.
If we modify d
=
J:
. .,
(34)(56)(78).
applies, to show that
This strengthens Theorem 1 5 - 6 . to
.[d,b,cj as in Plain Bob (so that
=
,',I
instead of
(12)), then Lemma 15-8
still
is hamiltonian (it is clear that
C!,(Sn)
A'
generates Sn, since A does.) But now the hamiltonian cycle cdc which fixes the bell found by Rapaport always involves
... ...,
in position one unduly.
To retain the constant movement of Plain Bob (that is, to avoid a = (12),
the "stagnation" of Rapaport's
which fixes
but to avoid the dawdling in position one, we now try where
...,
h = (45)( 6 7 ) (89)
first check that
h"
argument fails if
n
determined by (say)
and where
generates
hamiltonian cycle in which
and b
-
1
0
-
2
bells)
= {b,c,hl,
is odd.
Sn = (ch, (bc)2m-3 )
is even.) (bc)"
n = 2m
n A"
We
(this
Lemma 15-8 then applies, with P 2 by (ch) Then we obtain a
.
alternates throughout; as
b
moves
every position but the last, which is moved by both c and h, we see immediately that condition (iv) is satisfied. Moreover, there is an efficiency here (over Plain Bob), as only three generators are used; there are no bobs or singles.
However, conditions (v)
and (vi) have not been checked, and indeed it appears difficult to do so from this inductive construction. The special case n = 5 will be considered in detail in Section 5.
Change R i n g i n g
266
Chapt.
15
The i m b e d d i n g of t h e " n o c a l l " e x t e n t d e s c r i b e d a b o v e is nono r i e n t a b l e , of c h a r a c t e r i s t i c
- (n-1) 2 (n-4)
(n-3) !/ 4 .
Thus t h e v a r i o u s e x t e n t i m b e d d i n g s w e h a v e c o n s t r u c t e d i n t h i s n!/k,
s e c t i o n h a v e had c h a r a c t e r i s t i c s a s y m p t o t i c t o k
where
E 12,3,4,6~.
15-4.
Four-bell
E x t e n t s (Minimus)
The e l e v e n minimus e x t e n t s [ S S l ] a r e a l g e b r a i c a l l y d e s c r i b e d and g r a p h i c a l l y d e p i c t e d i n t h i s s e c t i o n .
We s e e f r o m Theorem 15-2
t h a t t h e r e are f o u r a l l o w a b l e t r a n s i t i o n r u l e s f o r f o u r b e l l s ;
they
are : a
=
( 1 2 ) (34)
b = (23)
- ---- -- -
c = (34)
. . . . . . ..
d = (12)
sfttiftt-
Each e x t e n t i s d e s c r i b e d , i n T a b l e 1 5 - 3 , in
S4
by t h e i d e n t i t y word
g i v i n g t h e hamiltonian c y c l e i n t h e Cayley c o l o r graph.
S i n c e a l l Cayley c o l o r g r a p h s are v e r t e x - t r a n s i t i v e ,
the i n i t i a l
v e r t e x of t h e h a m i l t o n i a n c y c l e c a n be a r b i t r a r i l y s e l e c t e d ; t h e r e m a i n d e r of t h e c y c l e i s t h e n u n i q u e l y d e t e r m i n e d . Minimus E x t e n t
Algebraic Description
Double B o b
3 3 ( ( a b ) ac) 2 3 (abad(ab) ) (abadabac ) 3
Canterbury
( a b c d c b a b )3
Reverse C a n t e r b u r y
( d b ( a b )2 d c )
P l a i n Bob R e v e r s e Bob
Double C a n t e r b u r y
(dbcdcbcd)
S i n g l e Court
( d b ( a b )2 d b ) 2 3 (ab(cb) ab)
Reverse Court Double C o u r t
( d b ( c b )2 d b )
S t . Nicholas
(dbadabdc)
Reverse S t . Nicholas
(abcdcbac) T a b l e 15-3
3
Sect. 15-4
Four-bell Extents (Minimus)
261
Obviously, each word uses twenty-four symbols, but it is worth noting that only Plain Bob requires as few as four letters to be written down in its algebraic description. We observe that none of the minimum extents satisfies a l l six of the conditions given in all fail (v), and only the first three listed satisfy
Section 15-1:
(iv). Now follow the graphical pictures of the corresponding Cayley cjraphs. Figure 15-2 serves directly for Plain Bob Minimums and Reverse Court Minimus; it also applies to Reverse Bob and Single Court, with istic one.
d
replacing
c.
These four extents a l l have character-
Figure 15-3 pictures Double Court and Double Canterbury;
these two extents have characteristic two. planar extents.)
(They are the only
Figure 15-4 depicts Reverse St. Nicholas, St.
Nicholas, Reverse Canterbury, Canterbury, and Double Bob; these are immersions and not imbeddings, as the redundant generator a is allowed to diagonalize six quadrilaterals. In the language of topological graph theory, this immersion shows that, for A = {a,b,c,d}, the crossing number of
is at most six.
CA(S4)
a
a Figure 15-2
268
Change R i n g i n g
F i g u r e 15-3
Chapt.
15
Sect. 15-4
Four-bell Extents (Minimus)
Figure 15-4
269
Chanqe Ringing
270
15-5.
Chapt.
15
Five-bell Extents (Doubles)
There are sixteen doubles extents given in [ S S l ] ; there are undoubtedly many more. Theorem 15-2)
The
seven possible transitions (see
are: a
=
(12)( 3 4 )
b
=
(23)(45)
-i-/+k;*t
c = (34)
. .. . . .. .
d = (23)
++++++++
e
=
f =
(12) (12) ( 4 5 ) (45)
.
We shall not need to represent
e
=
,+>F>,,>
-------for the extents discussed in this
section, which are: Plain Bob = (((ab)4 ac) 3 (ab)4 ad) 3
i
Grandsire Stedmdn
=
(fb(ab)4 fb(ab)3fb) 2fb(ab)4 fb(ab) 3fg) 2 (fba(f (bf)2ab(fb)2a)4f (bf)2abfd)2
No-Call
=
((ag)3 (ab)3ag(ab) 2 (ag)2ab) 5
Figure 15-5
=
(
shows
CA(S5)
.
for Plain Bob Doubles
(
I? =
a,b,cl) imbedded on the nonorientable surface N 5 , of characteristic -3. Indeed Plain Bob Doubles & characteristic ,,-3, as the graph which results when each decagon is contracted to a vertex is K less a 1-factor, for which the resulting quadrilateral
{
616
imbedding is necessarily optimal, and contraction cannot decrease characteristic. If we start the hamiltonian cycle at the distinguished vertex in Figure 15-5 and call the
bob
d
as indicated by the
superimposed edges, then the 121 rows of the extent can be readily obtained: see Problem 15-2.
Sect.
15-4
Five-bell E x t e n t s ( D o u b l e s )
F i g u r e 15-5
271
Chanqe R i n q i n q
272
C (A5),
F i g u r e 15-6 s h o w s orientable surface
N6,
-
15
Ckiapt.
d,b,€
i m b e d d e d o n the non-
-4.
of c h a r a c t e r i s t i c
The f i r s t
59
s y m b o l s of t h e i d e n t i t y w o r d f o r G r a n d s i r c D o u b l e s t r a c e a17 b u t o n c edge of a hamiltonian c y c l e f o r
C
on
(A5)
another, d i s j o i n t , surface
(Thus
N6.
C
C (A5)
on t h i s second s u r f a c e , and t h e s i n g l e
g
on
has t w o components,
(S5)
The samc h a m i l t o n i a n p a t h
As.)
o n e f o r e a c h coset o f
9
The s i n q l e
N6.
t h e n s h u n t s u s a c r o s s t o a s e c o n d c o p y o f t h e Lame
i b
repeated
returns us to the inLtial
The r e s u l t i s a h a m i l t o n i a n c y c l e i n
v e r t e x on t h e f i r s t s u r f a c e .
d e p i c t e d on a t o p o l o g i c a l space c o n s i s t i n g of d i s -
CL , , , , ( S 5 ) ,
c o n n e c t e d s u r f a c e whose two h o m e o m o r p h i c c o m p o n e n t s dre j o i n e d by a p a i r of l i n e s e q m e n t s . F i g u r e 15-6 a l s o s e r v e s f o r manner, i f we u s e
d
i n t h e same
Stcdnian D o u b l e s ,
f o r the single instead of
e x t e n t s have c h a r a c t e r i s t i c a t l e a s t
-8.
W e n o t e t h a t t h e same s u r f a c e ( t w o c o p i e s of 2 3 2 f o r S t . Simon D o u b l e s - ( ( a b ( a f ) a b a c ) a b ( a f ) a b a d ) c
,
i s u s e d n i n e t i m e s (of 1 2 0 ) a s p a r t of
bob t h r e e t i m e s ; N6
y6), Li
and
can be used except that
is u s e d a s a
t h e hamiltonian c y c l e , due t o t h e a c t i o n o f
d o e s n o t r e s p e c t t h e cosets of from one
'i'hus b o t h t h e s e
g.
A5
-
c,
t h a t i s , it t r a n s f e r s f r e q u e n t l y
to the other,
15-6.
A New composition
F i n a l l y , F i g u r e 15-7 shows
C
(S5),
Ii=
i a,b,g /,
imbedded on
The t h e n o n o r i e n t a b l e s u r f a c e NlO, 2also o f c h a r a c t e r i s t i c - 8 . 3 3 2 i d e n t i t y word ( ( a g ) ( a b ) a g ( a b ) ( a g ) a b ) 5 f o r "No-call'' D o u b l e s
( s o named by t h e a u t h o r , a s n o b o b s o r s i n g l e s a r e r e q u i r e d ) t r a c e s o u t a h a m i l t o n i a n c y c l e in
Ct(S5).
( I n f a c t , the c y c l e w a s found
i n t h i s f i g u r e f i r s t , as s u g g e s t e d by t h e f i v e - f o l d t h e n the word w a s w r i t t e n down f r o m t h e p i c t u r e ; d i c a t e d verter,,
f o r example.)
e x t e n t a r e given i n Table 15-4.
The c o r r e s p o n d i n g
symmetry, and
start a t 121
t h e in-
rows o f t h i s
Sect. 15-6
A New Composition
h
Figure 1 5 - 6
273
274
Change R i n g i n g
Figure 15-7
Chapt.
15
Sect. 15-6
275
A N e w Composition
"No C a l l " Doubles 12345
45123
23451
51234
34512
21435
54213
32541
15324
43152
21453
54231
32514
15342
43125
12543
45321
23154
51432
34215
12534
45312
23145
51423
34251
21354
54132
32415
15243
43521
21345
54123
32451
15234
43512
51324
34152
12435
45213
23541
14253
42531
25314
53142
31425
41523
24351
52134
35412
13245
45132
23415
51243
34521
12354
54312
32145
15423
43251
21534
53421
31254
14532
42315
25143
35241
13524
41352
24135
52413
35214
13542
41325
24153
52431
53124
31452
14235
42513
25341
51342
34125
12453
45231
23514
15432
43215
21543
54321
32154
14523
42351
25134
53412
31245
41253
24531
52314
35142
13425
41235
24513
52341
35124
13452
14325 14352
42153
25431
53214
31542
42135
25413
53241
31524
41532
24315
52143
35421
13254 12345
Table 15-4
276
Chanqe Ringi.ng
Chapt. 15
From the table it is a simple matter to check not only that conditions (i) through (iv) arc satisfied (of coursc, (i)-(iii) must hold, by Theorem 15-3, if we designate the first (and last) vertex of the hamiltonian cycle as rounds; this is always possible, since Cayley graphs are vertex-transitive. Moreover, we get immediate algebraic verification of (iv) by analyzing the identity word for No-call Doubles: a alternates throughout, moving every position but 5, and both b and g move position 5 ) , but that condition (v) holds as Well: each bell does the same amount of work as every other. In particular, the path of bell 1 in column i is exactly mimicked by that of bell 4 in column i + 1, bell 2 in column i + 2, bell 5 in column i + 3, and bell 3 in column i + 4, 1 -5 i 2 5 (arithmetic in Z 5 , writing "5" for "O".) Unfortunately, condition (vi) just fails, as agagagabababagababagaga is not palindromic. There are four pairs of symbols (such as the third "g" and the second "b") that could be switched to obtain a palindrome, but sadly each such switch destroys the much more crucial hamiltonian property. Perhaps the efficiency of "No-call" - in that only three transition rules are required (no other doubles extent uses this few) - would argue its merit, in spite of the failure of the final condition. But our final paragraph indicates that such argument is not needed! John Elliott , in his article "Doubles Principles" [ E 2 ] , generated by computer eight doubles extents not requiring bobs or singles. Each of these is palindromic, and in fact satisfies all conditions (i) - (iv): but it appears that none employs fewer than five generators. In the June 12, 1981 issue of "The Ringing World," a writer identified only as S. J. P. commented that the Central Council of Church Bell Ringers relaxes rule (iv) by allowing a bell to rest in the same position €or up to four successive changes and abolishes rule (vi) - removed "some years ago" - altogether! This latter, the writer continues, allows "any old rubbish to qualify as a method. "
15-7. 15-1.)
Problems
The planar imbedding of Figure 15-3 is a 12-fold branched covering space of an index two voltage graph imbedding; find this latter configuration.
Problems
Sect. 15-7
15-2.)
** 15-3.) ** 15-4.) ** 15-5.)
277
Use Figure 15-5 and the corresponding identity word in to write the rows for Plain Bob Doubles.
s5
Find the characteristic of Plain Bob Minor. Find the characteristic of Plain Bob Major. Find
F(n),
(We know that
the characteristic of Plain Bob on F ( 4 ) = 1, F ( 5 ) = - 3 ,
n
bells.
and in general
F(n) - -(n-2) L (n2-5n+4)/4. 15-6.)
If the principle for an extent on n bells corresponds to a subgroup of Sn (as is the case for Plain Bob), then contracting each coset of the principle to a single vertex produces a Schreier coset graph. Discuss the ramifications, for the calculation of the characteristic of the extent.
15-7.)
Show that the lead-ins (coset leads) for Plain Bob Minor To what extent correspond to a 1-factorization of K 6 .
(i.e. other minor extents, other even values of this generalize, and why?
n)
does
This Page Intentionally Left Blank
279
REFERENCES
Each reference item is followed by one or more numbers in brackets, indicating the pages on which the item is referenced. Abu-Sbeih, M. LAP1 1 (with T. D. Parsons) Embeddings of bipartite graphs, -J. Graph Theory 7(1983), 325-334. [ 6 9 ] Alekseev, V. €3. [AG1I (with V. S. Gonchakov) Thickness of arbitrary complete graphs, Mat. Sbornik 101 (143) (1976), 212-230. [751 Alpert, S. R. [All Two-fold triple systems and graph imbeddings, 2. Combinatorial Theory A 18 (1975), 101-107. [189] (AG21 (with J. L. Gross) Components of branched coverings of current graphs, 2. Combinatorial Theory B 20 (1976), 283-303. [157] See also [GAl] and [GA2]. Anderson, I. [A2I Infinite families of biembedding numbers, 2. Graph Theory 3 (1979), 263-268. [168] Quadrilateral embeddings of bipartite graphs, 3. Graph [A3I Theory 5 (19811, 355-361. [76] On the toroidal thickness of graphs, 2. Graph Theory 6 [A41 (1982)I 177-184. [76] [A51 The toroidal thickness of the symmetric quadripartite graph, 3 . Combinatorial Theory B 33 (19821, 57-59.[76,199]
References
280
LAC11
(with R. J. Cook)
Bi-embeddings of graphs, Glasgow
LAW1 1
Math. 5. 15 (1974), 162-165. [1681 (with A. T. White) Current graphs and bi-embeddings, J. Graph Theory 2 (1978), 231-239. [I681 -
Anderson, S. [A6I Graph Theory and Finite Combinatorics, Markham, Chicago, 1970.
[831
A p p e l , K.
[AH11
(with W. Haken) Every planar map is four colorable, Bull. Amer. Math. S O C . 82 (1976), 711-712. [1,105] - -
Archdeacon, D. [A7I A Kuratowski Theorem for t h e projective plane, Theory 5 (19811, 243-246. [1871
2.
Graph
Atneosen, G. On the Embeddability of Compacta & n-Books: Intrinsic [A81 and Extrinsic Properties, Ph.D. Thesis, Michigan State University, East Lansing, 1968. [59] Auslander , L . [ABYl] (with T. A. Brown and J. W. T. Youngs) The imbedding of graphs in manifolds, 2. Math. Mech. 12 (1963), 629-634. j1781 Babai, L. [B11 [B21
Private communication, 1974. [591 Chromatic number and subgraphs of Cayley graphs, Theory and Applications of Graphs (Y. A. Alavi and D. R. Lick, editors) , Springer-Verlag, Berlin (1977), 11-23. [38,95,1241
Baker, R. P. Cayley diagrams on the anchor ring, IB3 1 ( 1 9 3 1 ) , 645-699. [95]
=.
2. Math. 53
Bange, D. W. [BBSI] (with A. E. Barkauskas and P. J. Slater) Conservative graphs, 2. Graph Theory 4 (1980), 81-91. [1761
References
281
Barkauskas, A. E. See [BBSl]. Battle, J. [BHKYl] (with F. Harary, Y. Kodama, and J. W. T. Youngs) Additivity of the genus of a graph, B u l l . Amer. Math. G. 68 (1962), 565-568. [641 Behzad, M. [BCLl] (with G. Chartrand and L. Lesniak-Foster) Graphs and Digraphs, Prindle, Weber and Schmidt, Boston, 1979. [1,5,20,69,102,103,106,168,1691
Beineke, L. [B41 Complete bipartite graphs: decomposition into planar subgraphs, A Seminar in Graph Theory ( F . Harary, editor), Holt, Rinehart and Winston, New York, 1967. [75,761 [B5I The decomposition of complete graphs into planar subgraphs, Graph Theory & Theoretical Physics (F. Harary, editor), Academic Press, London, 1967. [761 [B61 Minimal decompositions of complete graphs into subgraphs with embeddability properties, Canad. 2. Math. 21 (1969), 992-1000. [76,1681 (with F. Harary) The genus of the n-cube, Canad. 2. Math. 17 (1965), 494-496. 1681 (with F. Harary) The thickness of the complete graph, Canad. 2. Math. 21 (1969), 850-859. [751 (with R. D. Ringeisen) On the crossing numbers of products of cycles and graphs of order four, 2. Graph Theory 4 (1980), 145-155. [781 See a l s o [RBI] and [SBl] Berge, C. [B7I
Graphs
and
Hypergraphs, North-Holland, Amsterdam, 1973. [2061
Biggs, N. L. [B81 Automorphisms of imbedded graphs, 2. Combinatorial Theory 11 (1971), 132-138. [2191 Classification of complete maps on orientable surfaces, [Bg1 Rend. Mat. V14 (19711, 645-655. [219,234,235,239,2~21
-
282
[B101 [B111 [BW11
References
Cayley maps and symmetrical maps, E .Cambridge Philos. SOC. - 72 (9172), 381-386. [219-2551 Algebraic Graph Theory; Cambridge University Press, Cambridge, 1974. [1601 (with A. T. White) Permutation Groups and Combinatorial Structures, Cambridge University Press, Cambridge, 1979. [16,219,222,234,236]
Birkhoff, G. [BMlI (with S. MacLane)
Algebra, Macmillan, New York, 1967.[32]
Borodin, 0. V. [BM21 (with L. S. Mel'nikov) The chromatic number of a pseudosurface, Diskret. Analiz. 24 (1974), 8-20. [121] Bose, R. C. [BN1I (with K. R. Nair) Partially balanced incomplete block designs, Sankhya 4 (1939), 337-372. 11931 Bouchet, A. [BIZ1 Immersions autoduales de graphes de Cayley dans les surfaces orientables, 2. g. Paris 280 (1975), 1669-1672. [239,2421 [B131 Triangular imbeddings into surfaces of a join of equicardinal independent sets following an eulerian graph, Theory and Applications of Graphs (Y. Alavi and D. R. Lick, editors), Springer-Verlag, New York, 1978, 86-115. [70,186,2001 Constructions of covering triangulations with folds, 2. [B141 Graph Theory 6 (19821, 57-75. [1631
e. s.
Brahana, H. R. [B151 Regular maps on an anchor ring, 225-240. 13, 941 [B16I Regular maps and their groups, 268-284. [237]
=.
2. Math.
48 (1926),
s.2. 9. 49 (19271,
Brown, T. A. See [ABYl]
References
283
Budden, F. J. The Fascination of Groups, Cambridge University Press, [B171 __ Cambridge, 1972. [166,260] Burling, J. P. [BR21 (with S . W. Reyner) Some lower bounds of the ramsey numbers n(k,k), 2. Combinatorial Theory B 13 (1972), 168-169.
[2391
Burnside, W. [B181 Theory of Groups of Finite Order, Second Edition, Cambridge University Press, Cambridge, 1911.[3,94,234,2441 Cairns, E. S. [C11 Introductory Topology, Ronald Press, New York, 1968. [148] Camp, J. [C21
Discovering Bells and Bellringing, Shire, Aylesbury, 1975. [26c1
Carlitz, L. [C31 A theorem on permutations in a finite field, Proc. Amer. Math. E. 11 (1960), 456-459. [2501 Cayley, A. [C41 The theory of groups: a graphical representation, J. Math. 1 (1879), 174-176. [31 Chao, C. Y. [CWII (with E. G. Whitehead, Jr.) mentary graphs, Arch. Math.
z.
Chromaticity of self-comple32 (1979), 296-304. [2381
Chartrand, G. [CK1I (with D. C. Kay) A characterization of certain ptolemaic graphs, Canad. 2. Math. 17 (1965), 342-345. [81 [CK21 (with H. V. Kronk) The point-arboricity of planar graphs, J. London Math. G. 4 4 (1969), 612-616. [1181 - ~[CKWl] (with H. V. Kronk and C. E. Wall) The point-arboricity of a graph, Israel J. Math. 6 (1968), 168-175. [1181 See also [BCLl].
References
284
Clapham, C. R. J. [C51 Triangles in self-complementary graphs, 2. Combinatorial Theory B 15 (1973), 74-76. [2391 A class of self-complementary graphs and lower bounds of [C61 some Rarnsey numbers, 2. Graph Theory 3 (1979), 2 8 7 - 2 8 9 .
12391 Clarke, F. W. [ CTWl 1 (with A. D. Thomas and D. A. Waller) Embeddings of covering projections of graphs, 2. Combinatorial Theory B 28 (19801, 10-17. [1601 Cook, R.
J.
See LAC11
.
Coxeter, H. S. M. [CM11 (with W. 0. Moser) Generators and Relations & Discrete Groups, Springer-Verlag, Berlin, 1957. [35,264] Dewdney, A. K. [Dl1 The chromatic number of a class of pseudo-2-manifolds, Manuscripta Math. 6 (1972), 311-320. [120] Dickinson, D. J. ID21 On Fletcher's paper "Campanological groups," Monthly 64 (1957), 331-332. [1601
Amer. Math.
Dirac, G. A. [D31 A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. ~London Math. E. ( 3 ) 7 (1957), 161-195. [1151 [DSll (with S. Schuster) A theorem of Kuratowski, Indaq. Math. 16 (1954), 343-348. [841 Duke, R. A. [D4I The genus, regional number, and Betti number of a graph, Canad, J. Math 18 (1966), 817-822. [641 Dyck, W. [D51
Gruppentheoretische Studien,
Math. Ann,
20 (18821, 1-45. [31
285
References
Edmonds, D. [El1
A combinatorial representation for polyhedral surfaces, Notices Amer. Math. -Soc. 7 (19601, 646.[70]
Elliott, J. [Ell Doubles principles,
The Ringing
World, May 8, May 15,
and July 24, 1981. [2761 Fan, K.
See [FFlI. Farzan, M. [FW1I
(with D. A. Waller)
Antipodal embeddings of graphs,
2.
London Math. SOC. (2) 15 (1977), 377-383. [1601
_I_-
Fletcher, T. J. [F1I Campanological groups, Amer. Math. Monthly 63 (1956), 619-626. [ 2 6 0 1 Fox, R. H. [F21 Covering spaces with singularities, Algebraic Geometry
A
Symposium in Honor of 2. Lefschetz, Princeton University Press, Princeton, 1957. [I491
and Topology: -
Franklin, P. [F31 A six colour problem, J. Math. Phys., Massachusetts Inst. Technol. 13 (1934), 363-369. [108,1851 F r k h e t , M. [FFlI (with K. Fan) Initiation 2 Combinatorial Topology, Prindle, Weber and Schmidt, Boston, 1967. [42,101,109] Frucht , R. [F41 Berstellung von Graphen mit vorgegebener abstrakten Gruppe, Compositio Math. 6 (1938), 239-250. [ 2 0 ] [F51
On the groups of repeated graphs, B u l l . h e r . Math.
e.
55 (1949), 418-420. [ 1 8 ]
[FGWl]
(with J. E. Graver and M. E. Watkins) The groups of the generalized Petersen graphs, Cambridge Philos. SOc
%.
70 (1971), 211-218.
[961
References
286
Garman, B. L. [GI1 Voltage graph embeddings and the associated block designs, J. Graph Theory 2 (1978), 181-187. [68,169,182,199,200, 201 ,2511 [GRWlI (with R. D. Ringelsen and A. T. White) On the genus of strong tensor products of graphs, Canad. 2. Math. 28 (1976), 523-532. [173,174,191,2001 Gibbs, R. A. [G21 Self-complementary graphs, (1974), 106-123. [2371
2.
Combinatorial Theory B 16
Gleason, A. M. See IGGll Glover, H. [GI-iWl] (with J. P. Huneke and C. S. Wang) 103 graphs that are irreducible for the projective plane, 2. Combinatorial Theory - B 27 ~ (19791, 332-370. Gonchakov, S. See [AGl]
.
Graver, J. E. See [FGWl]
.
Greenwood, R. E. (with A. M. Gleason) Combinatorial relations and chromatic graphs, Canad. 2. 7 (1955), 1-7. [2391
-.
L. Voltage graphs, Discrete Math. 9 (1374), 239-246. [1571 Every connected regular graph of even degree is a Schreier coset graph, 2. Combinatorial Theory B 22 (1977), 227-232. [321 An infinite family of octahedral crossing numbers, 2. Graph Theory 2 ( 1 9 7 8 ) , 171-178. I791 Imbeddings of metacyclic Cayley graphs, Theory and Applications of Graphs (Y. Alavi and D. R. Lick, editors), Springer-Verlag, Berlin (1978), 194-203. [951
287
References
Branched coverings of graph
(with S. R. Alpert)
[GAl]
imbeddings, _ Bull. Amer. Math. SOC. (19731, _ _ _ 79 ~ ~ 942-945. [68,1S7,161] [GA21
(with S. R. Alpert) graphs,
2.
[1571 (with S. J. Lomonaco)
[GLlI
k-metacyclic groups, [GTll
The topological theory of current
Combinatorial Theory B 17 (19741, 218-233. A determination of the toroidal
2. Graph Theory 4 (1980), 165-172.
[951 (with T . W. Tucker) Quotients of complete graphs: revisiting the Heawood map-coloring problem, Pacific J. Math. 55 (1974), 391-402.
[172,1731
~
IGT2 1
(with T. W. Tucker)
Generating all graph coverings by
permutation voltage assignments, Discrete (1977), 273-283.
Math.
18
[160,1631
See also [AG2].
.
Grotz s ch , H [G71 Zur Theorie der diskreten Gebilde, VII, Ein Dreifarben-
=. z. w.Reihe
satz f;'r dreikreisfreie Netze auf der Kugel, Martin-Luther-Univ. Halle-Wittenberg, Math. 8 (1958/59), 109-120.
[1141
Gustin, W. [G81 Orientable embedding of Cayley graphs, Bull. Amer. Math. SOC. 69 (1963), 272-275.
[125,1441
Guy, R. K . [G9I The decline and fall of Zarankiewicz's theorem, Proof Techniques in Graph Theory (F. Harary, editor), Academic [771
Press, New York, 1969. [GJlI
(with 7'. A. Jenkyns) The toroidal crossing number of J. Combinatorial Theory 6 (1969), 235-250. [793 Km,n -
Haken , W. See [AH11 Hanani, H. IH11 Balanced incomplete block designs and related designs, Discrete Math. 11 (19751, 255-369. [189,190,2001
Re ference s
288
Harary, F. [H21
Graph Theory, Addison-Wesley, Reading, Mass., 1969. 15,8,
[IlWl ]
15,651 (with G. Wilcox) Boolean operations on graphs, Scand.
20
See also
@.
(1967), 41-51. [lo] BEIKYl],
[BHl], and [BH2].
Heawood, P. J. [I131 Map-colour thcorcm, Quart. [l,101,121
2. Math. 24
Hcfftcr, L. [A41 h e r das Problem der Nachbargebiete,
(1890), 332-338.
Math. Ann.
38 (1891),
477-580. [ll [!I51 1H61
iber Tripelsysteme, Math. Ann. 49 (1897), 101-112. [1891 ijber metacycklische Gruppen und Nachbar-configurationen, Math.
Ann.
50 (1898), 261-268. [2391
IIimclwright, 1'. On thc-Genus [I171 - of Hamiltonian C r o u p s , Specialist Thesis, [HW21
Western Michigan University, Kalamazoo, 1972. [92,1501 (with J. Williamson) On 2-factorability and edge c o l o r ability of graphs, E l e m . Math. 29 (1974), 66-67. [1951
Hueneke, J. P. Scc
[CHWl].
,Jackson, B.
..
, 2.
[J11
Triangular embeddings of
[JPPl]
'rheory 4 (1980), 21-30. [ 7 0 1 (with T. D. Parsons and T. Pisanski) A duality theorem for graph embeddings, 2. _Graph Theory 5 (1981), 55-77. 170,1631 (with G. Ringel) plane, Discrete
K ( (i-2)nln,. , n )
Graph
Maps of m-pircs on the projective
Math.,
to appear. [I221
(with G. Ringel) Solution of Heawood's empire problep [I211 in the plane, preprint. (with G. Ringel)
Heawood's empire problem, preprint.
See also
[I221
[PPJl].
References
Jacques, A. [J21 Constellations
289
Proprigtgs Algsbriques
des
Graphes
Topologiques, Ph.3. Thesis, University of Paris, Paris, 1969. [2,28,125,2431
Jenkyns, T. A. See [GJl]. Jones, G. A. [JSll (with D. Singerman) Theory of maps on orientable surI11 37 (1978), 273-307. faces, Proc. London Math.
e.
[2191
Jones, R. P. of IIypergraphs , P1i.D. Colourings [J31 - - - - -- College, Egham, 1976. [2091
__
I
~
Thesis , Royal Ilolloway
Jungerman, M. A new solution f o r the non-orientable case 1 of the Heawood map color theorem,
2.
Combinatorial Theory B 19
(1975), 69-71. [1851 The genus of the symmetric quadripartite graph,
2.
Combinatorial Theory B 19 (1975), 181-187. [65,169,200] The non-orientable genus of the n-cube, Pacific
2. Math.
76 (1978), 443-451. [1861 A characterization of upper embeddable graphs, Trans. Amer.
Math. G. 241
(1978), 401-406. [ 6 6 1
The nonorientable genus of the symmetric quadripartite graph,
2.
Combinatorial Theory B 26 (1979), 154-158. [1861 The genera of the k-fold complete multigraph, preprint. [I701 (with G. Ringel)
The genus of the n-octahedron:
regular
Graph Theory 2 (1978), 69-75. [681 ( w i t h . S. Stahl and A. T. White) Imbeddings of hypergraphs,
cases,
2.
Conqressus Numerantium 29 (1980), 545-557. [2051 (with A. T. White) On the genus of finite abelian groups, Europ. 2. Combinatorics 1 (19801, 243-251. [911
References
290
Kainen, P . C. [KWll (with A. T. White) On stable crossing numbers, Theory 2 (0978), 181-187. [791
2.
Graph
Karrass, A. See [MKSl]. Kay, D. C.
.
See [CKl]
Kleinert, M. [K11 Die Dicke des n-dimensionalen Wtirfel-Graphen, J. Combinatorial Theory 3 (19671, 10-15.
[751
Klerlein, J. R. [K2I
Hamiltonian cycles in Cayley color graphs, J . Graph
[KSlI
Theory 2 (1978), 65-68. [381 (with A. G. Starling) Hamiltonian groups are color-graphhamiltonian,
2.
Graph Theory 5 (1981), 197-199. [381
Kodama, Y. See
[BHKYl].
Kronk, H. V. [K3I An analogue to the Ileawood map-coloring problem, 2. London Math. g . 1 (Ser. 2) (1969), 550-552. [1181 -[ KRWl]
(with R. D. Ringeisen and A. T. White)
On 2-cell imbed-
dings of complete n-partite graphs, Colloq. Math. 36 [KW2]
(1976), 131-140. [66,168,2001 (with A. T. White) A 4-color theorem for toroidal graphs, Proc. Amer. Math. - E. 34 See also
(19721, 83-86. [115]
[CKZ] and [CICWl].
Kuratowski, K. [K4I
Sur le probleme des courbes gauches en topologie, Math. 15 (1930), 271-283. [591
Fund.
291
References
Landesman, E. M. [LYlI (with J. W. T. Youngs)
Smooth sol.utions in case 1 of
the IIeawood conjecture for non-orientable surfaces,
2.
Combinatorial Theory 13 13 (1972), 26-39. [ 1 E 4 1 Lesniak-Foster, L. See [BCLl]
.
Lcvinson, H. [L11 On the genera of graphs of group presentations,
Ann. New
-
[L21
York Acad. Sci. 175 (1970), 277-284. [ 8 4 1 -Symmetric embeddings of Cayley graphs, Topics in Graph Theory (F. Harary, editor), New York Academy of Sciences, New York, 1977, 137-143.
Lick, D. R. [LW1I (with A. tLW21
T. White)
k-degenerate graphs, Canad.
2. Math.
22 (1970), 1082-1096. [119I (with A. T. White) The point partition numbers of closed 2-manifoldsI
2.
London Math.
g .4
(1972), 577-583. [1191
Lim, C. K. [L31 On graphical regular representations of direct products of groups,
3.
Combinatorial Theory B 24 (1978), 242-246.
[2381 Lomonaco, S. J. See [GLl]. Machlachlan, C. [MII Abelian groups of automorphisms of compact Riemann surfaces, Proc. London, Math.
e.15
(1965), 699-712. [961
MacLane, S. See [BMl]. Magnus , W. [MKSl]
(with A. Karrass and D. Solitar)
Combinatorial Group
Theory, Interscience Publishers, New York, 1966.[24,25,281
References
292
Maschke, W. [M2 1
The representation of finite groups, (1896)
,
156-194.
=.
2. Math.
18
[831
Massey, W. S. [M31 Algebraic Topology: an Introduction, Harcourt, Brace and World, New York, 1 9 6 7 . [ 5 9 , 1 5 7 , 1 7 8 ] Mayer, J. [M41
Le problhe des regions voisines sur les surfaces closes orientables, 2. Combinatorial Theory 6 ( 1 9 6 9 ) , 177-195. [2,1361
Mel’nikov, L. S. See [BM2] Moser, W. 0. See [CMl]. Mycielski, J. [M51 Sur le coloriage des graphs, Colloq. Math. 3 ( 1 9 5 5 ) , 161162.
[1151
Nair, K. R.
.
See [BNl]
Nebeskg, L. “1 I Every connected, locally connected graph is upper embeddable, J. Graph Theory 5 ( 1 9 8 1 1 , 1 9 7 - 1 9 9 . [ 6 6 1 U “2 1 On upper embeddability of complementary graphs, Casopis Pro Pzstovbni Matematiky 108 (1983), 2 1 4 - 2 1 7 . [2381
_ _ _ _ I _
Nordhaus, E. A. [NRSWl] (with R. D. Ringeisen, B. M. Stewart, and A. T. White) A Kuratowski-type theorem for the maximum genus of a graph, J. Combinatorial Theory B 1 2 ( 1 9 7 2 1 , 2 6 0 - 2 6 7 . [ 6 6 1 [NSWl] (with B. M. Stewart and A . T. White) On the maximum genus of a graph, 2. Combinatorial Theory B 11 ( 1 9 7 1 ) , 258-267.
[651
References
293
Ore, 0. LO11 [OSlI
The Four-color Problem, ---
Academic Press, New York, 1967.
[1,1031 (with G. J. Stemple) Numerical methods in the four color problem, Recent Progress in Combinatorics (W. T. Tutte, editor), Academic Press, New York, 1969. [11
Paley, R. E. A. C. [PI1 On orthogonal matrices,
2.
Math. Phys. 1 2 (1933), 311-320.
[2451 Palmer, E. M. [P21 Prime line graphs, Nanta Math. 6 (19731, 75-76. [131 Parsons, T. D. [PPJl] (with T. Pisanski and B. Jackson) Dual imbeddings and wrapped quasi-coverings of graphs, Discrete Math. 31 (1980)1 43-52. [70r163] See also [All and [JPPl]. Pengelley, D. [P31 Self-dual orientable embeddings of Theory B 18 (19751, 46-52. [2391
Kn
, 2.
Combinatorial
Petroelje, W. IP41 Imbeddinq Graphs onpseudosurfaces, Specialist Thesis, Western Michigan University, Kalamazoo, 1971. [53,74,198] Pisanski, T. [P51 Genus of Cartesian products of regular bipartite graphs, J. Graph Theory 4 ( 1 9 8 0 ) , 31-42. [91] [P6l Nonorientable genus of Cartesian products of regular graphs, 3. Graph Theory 6 (1982), 391-402. [187] See also [JPPl] and [PPJl]. Price, B. D. [P71 Mathematical groups in campanology, 129-133.
[26Ol
Math.
=.53
(1969),
References
294
Proulx, V. K.
2.
[PSI
Classification of the toroidal groups,
IP9 I
On the genus of symmetric groups, Trans. Amer. Math.
2
(19781, 269-273.
266 (19811, 531-538.
Graph Theory
[951
K.
[94I 951
Quitte', C.
IQ11
Revstements
plongements de graphs dans les surfaces,
Ph.D. Thesis, University of Poitiers, 1977.
[242]
Rahn, J. [Rll
On the Genus of
a -Block Design, Ph.D.
Thesis, Western
Michigan University, Kalamazoo, 1984.
[2151
Rankin, R. A. [R21
A campanological problem in group theory, Philos. _ _ _ -SOC. 44 (1948), 17-25. 12601
z. Cambridge
Rae, S. B.
[R31
Characterization of self-complementary graphs with 2-factors, Discrete
Math.
17(1977), 225-233.
[238]
Rapaport, E. S. [R41
On the number of self-complementary graphs and digraphs, J. -London [260] _ _ _ Math. SOC. 38 (1963), 99-104. ~
Read, R. C. [R51
On the number of self-complementary graphs and digraphs, J. _ London SOC. _ _ Math. --
38 (1963), 99-104.
12381
Reyner, S. W. See [BR2]. Ringelsen, R. D. [R61
The Maximum Genus of a Graph.
[R71
State University, East Lansing, 1970. 166,671 Determining all compact orientable 2-manifolds upon which
K has 2-cell imbeddings, m,n (1972), 101-104. 1651 [RBlI
2.
Ph.D. Thesis, Michigan
Combinatorial Theory B 12
(with L. W. Beineke) The crossing number of c j A c n , J. [78] - Combinatorial Theory B 24 (1978), 134-136.
RE E e rence s
[RWlI
(with A. T. White)
295
K m,n and certain joins of graphs, Congressus Numerantium 29 (1980), 859-967. See a l s o [ B R l ] ,
Fzrbungsprobleme
On pseudosurface imbeddings of
I741 [GRWl], and [NRSWlI.
auf Flachen und
Verlaq, Berlin, 1959.
Graphen, Deutscher
[101,108,113,184,200]
Selbstkomplementare Graphen, Archiv. der Math. 14 (1963), 354-358. [237,238] Gber drei kombinatorische Probleme am n-dimensionalen
*.
Wiirfel und Wurfelgitter, 20 (1965), 10-19.
M S .
s. w .Hamburg
[681
Das Geschlecht des vollstandigen paaren Graphen, Math. EIamburg 28 (1965), 139-150. _ _ _Sem. _ _ Univ. _
s.
[68,149]
Der vollstandiqe paare Graph auf nichtorientierbaren Flachen, 2. _ Reine [185] _ _ -Angew. Math. - 220 (1965), 89-93. Der toroidale Dicke der vollstandigen Graphen, Math. 2. 87 (19651, 19-26.
[168]
Map Color Theorem, Springer-Verlag, Berlin, 1974. [172,173,1643 The combinatorial map color theorem, (1977), 141-155.
2.
Graph Theory 1
[186] or the n-prism, Discrete
On the genus of K n x K2 , 20 (1977), 287-294. Math. __
[681
A nine color theorem for the torus and Klein bottle, The Theory of Graphs (G. Chartrand, Y.Alavi, _ _ _and _ Applications ~ D. L. Goldsmith, L. Lesniak-Foster, and D. R. Lick, editors), John Wiley, New York, 1981, 507-515. (with J. W. T. Youngs)
=.s. s. U.S.A.
coloring problem,
=.
(1968), 438-445.
[2,68,113,200]
(with J. W. T. Youngs) coloring problem (1969), 342-353.
-
(1969), 353-363.
-
60
Solution of the Iieawood map-
case 2, [1361
(with J. W. T. Youngs) coloring problem
[1171
Solution of the Heawood map-
2.
Combinatorial Theory 7
Solution of the IIeawood map-
case 8,
3.
Combinatorial Theory 7
[1361
(with J. W. T. Youngs)
Solution of the Heawood map-
coloring problem - case 11, (1969), 71-93. [1361
2.
Combinatorial Theory 7
References
296
[RYSI
(with J. W. T. Youngs) Das Geschlecht des symmetrische vollstzndige drei-farbaren Graphen, Comment. Math. Ifelv. 45 (1970), 152-158. [68,171,200] See a l s o [ J R l ] , [JR2], [JR3], and [JR41.
Sabidussi, G. [Sll The composition of graphs, Duke Math. 2. 26 ( 1 9 5 9 ) ) 6 9 3 696. [191 [S21 Graph multiplication, 2. 72 ( 1 3 6 0 1 , 446-457. [ 1 9 1
@.
Sachs, H. [S31
eber selbstkomplementare Graphen , Publ. Math. Debrecen 9 (1962), 270-288. [2371
Sayers, D. I,. [S41 -The Nine Tailors, Harcourt, Brace, and World, New York, 1934. [259] Schuster, S. See [DSl] Seymour, P. D. [S4al Graph Minors and Graph Well-Quasi-Ordering, to appear. [I871
Singerman, D. See [JSl]
.
Sit, C. W. [S51
Quotients of complete multipartite graphs, Pacific Math. 63 (1976), 531-538. [1601 -
Slater, P.
J.
2.
See [BBSl].
Snowdon, J. [SSLI (with W. Snowdon) Diagrams, Jasper Snowdon Change Ringing Series, C. Groome, Kettering, 1 9 7 2 . [ 2 6 6 ]
References
297
Snowdon, W. See [ S S l I . Solitar, D.
.
See [MKSl]
Spanier, E. H. [s61 Algebraic Topology, McGraw Hill, New York, 1 9 6 6 .
[4,581
Stahl, S. [S71
Self-dual Embeddings of Graphs, Ph.D. Thesis, Western Michigan University, Kalamazoo, 1 9 7 5 . [ 2 3 9 1 Generalized embedding schemes, 3:' Graph Theory 2 ( 1 9 7 8 ) , 41-52.
[180,181,1861
The embeddings of a graph 2 ( 1 9 7 8 ) , 275-298.
-
a survey, J . Graph Theory
[68,1851
A counting theorem for topological graph theory, Theory and Application of Graphs (Y. Alavi and D. R. Lick, editors), Springer-Verlag, New York, 1 9 7 8 , 5 3 4 - 5 4 4 . [ 7 3 1 Self-dual embeddings of Cayley graphs, 2. Combinatorial Theory B 27 ( 1 9 7 9 1 , 92-107. [ 2 4 2 1 Permutation-partition pairs: a combinatorial generalizationofgraph smbeddings, Trans. Amer. Math. g. 259 (1980) , 129-145. [S131
I731
Permutation-partition pairs 11: bounds on the genus of the amalgamation of graphs, Trans. Amer. Math. 271
s.
(19 8 2 ) , 175-182.
[731
The average genus of classes of graph embeddings, preprint. [ 7 3 1 (with L. W. Beineke) Blocks and the nonorientable genus of graphs, 2. Graph Theory 1 ( 1 9 7 7 1 , 75-78. [1791 (with A. T. White) Genus embeddings for some complete 1 4 ( 1 9 7 6 ) , 279-296. tripartite graphs, Discrete See also [JSWll. [ 6 8 , 1 7 1 , 1 7 6 , 1 8 1 , 1 8 3 , 1 8 6 1
s.
Starling, A. G. See [ K S l ] .
ReLerenccs
298
Steinitz, E. [SIS] Polyeder und Raurneinteilungen, Enzykl. Math. Wiss. 3 (1922), 1-139. [53] Stemple,
C,.
J.
See lOSl1 Stewart, B. M. l.5161
Adventures Among the Toroids, D. M. Stewart, Okemos, 1970. See also [NRSWI] and [NSWll. [531
Storer, T.
[SI71
Cyclotomy
Difference
Sets, Markhdm,
Chicago, 1967.
[2481 Straight, H. J.
2.
[SIB1
Cochromatic number and the genus of a graph, Theory 3 (1979), 43-51. [I221
[SlSI
Note on the cochromatic number of several surfaces, Graph Theory 4 ( 1 9 8 0 ) , 115-117. [122]
Graph
3.
Szekeres, G. [SZOl Non-colourable trivalent graphs: Combinatorial Mathematics 111, Springer-Verlag, Berlin (1975), 227-233. [1681 Taylor, H. “F1 I The m-pirc chromatic number of the torus is
Gm + 1, J.
Graph Theory, to appear. [122] Terry, C. M. [TWYl] (with L. R. Welch and J. W. T. J. Combinatorial Theory K12s’ [TWY2] (with L. R. Welch and J. W. T. IIeawood Map-coloring problem
-
2 (1967),
The genus of 43-60. [1361
Youngs) case 4,
Solution of the Combinatorial
Younqs)
Theory 7 (1970), 170-174. [1361 Thomas, A. D. See [CTWl].
J.
References
Tietze, [T21
299
11.
Famous Problems
of
Mathematics, Graylock Press, New York
1969. [21
Tucker, T. W. [T31 The number of groups of a given genus, Trans. Amer. Math.
SOC.
258 (1980), 167-179. t951 Some results on the genus of a group,
“l‘41
5 (1981), 337-338.
There is one group of genus two,
IT51
to appear.
2.
Graph Theory
[95,981
2.
Combinatorial Theory,
[961
Vasek, J. M. [ V 11 The thickness of the complete graph, Notices Amer. Math.
SOC.
23 (1976), A-479. [751
Wall, C. E. See [CKWlI
.
Waller, D. A. [Wll Double covers of graphs,
G. Australian
Math. SOC. 14
(1976), 233-248. [ 1 6 0 1 See a l s o [CTWl] and [FWl]. Walsh, T. R. [W21 Hypermaps versus bipartite maps,
2.
Combinatorial Theory
B 18 (1975), 155-163. 12071 Wang, C. S. See [GHWL]. Watkins, M. E. See [FGWlI
.
Weinberg, L. IW3I On the maximum order of the automorphism group of a planar triply connected graph, J. SIAM A p p l . (1966), 729-738.
[531
e. 14
References
300
Welch, L. R. See [TWYl] and [TWYZ]. Wenninger, M. J. [W4I Polyhedron Models for the Classroom, National Council of Teachers of Mathematics, Washington, D. C., 1966. 1531 White, A. T. The genus of the complete tripartite graph Kmn,n,nl 2. Combinatorial Theory 7 (1969), 283-285. [68,150,1711 The Genus of repeated cartesion products of bipartite graphs, Trans. Amer. Math. G. 151 (1970), 393-404. [91,1871 On the genus of the composition of two graphs, Pacific 2. Math. 41 (1972), 275-279. [68,691 On the genus of a group, Trans. Amer. Math. E. 173 (1972), 203-214. [94,95,1511 Orientable irnbeddings of Cayley graphs, Duke Math. 2. 41 (1974), 353-371. [164,219,239,2401 Graphs of groups on surfaces, Combinatorial Surveys: Proceedinqs of the Sixth British Combinatorial Conference (P. J. Cameron, editor), Academic Press, London, 1977, 165-197. [97,98,260,2631 Block designs and graph irnbeddings, J . Combinatorial Theory B 25 (19781, 166-183. [1891 The proof of the Heawood conjecture, Selected Topics in Graph Theory ( L . W. Beineke and R. J. Wilson, editors), Academic Press, London, 1978, 51-81. [136,172] Strongly symmetric maps, Graph Theory and Combinatorics (I?. J. Wilson, editor), Pitman, London, 1979. [219,243,2531 Ringing the changes, E .Cambridge Philos. 94 (1983), 203-215. [2571 See also [Awl], [BWll , [GRWlI , [JSWl] , [JWl], [KRWlI , [KWl], [KW21 , [LWl], [LW2], [NRSWl], [NSWlI , [RWlI , and
e.
[SWl].
Whitehead, E. G. Jr. See [CWl]
.
References
Wilcox, G.
301
.
See [HWl]
Williamson, J. See [HW2]. Wilson, R. [W151 An existence theory for pairwise balanced designs, 111: Proof of the existence conjectures, 2. Combinatorial Theory A 18 (1975), 71-79. [1901 Wilson, R. J. See [WWl] Wilson, S. E. [W161 Non-orientable regular maps, 213-218. 12281
Ars
Combinatoria 5 (1978),
Wilson, W. G. [W171 Change Ringing, Faber, London, 1965. [ 2 6 0 ] Woodall, D. R. [Wwll (with R. J. Wilson) The Appel-Haken proof of the fourcolor theorem, Selected Topics in Graph Theory (L. W. Beineke and R. J. Wilson, editors), Academic Press, London, 1978, 83-101. [ l o 5 1 Xuong, N. H. [XI1 How to determine the maximum genus of a graph. 2. Combinatorial Theory B 2 6 (1979), 217-225. [671 [X21 Upper-embeddable graphs and related topics, 3 . Combinatorial Theory B 2 6 (1979), 226-232. [66] Youngs, J. W. T. [YlI Minimal imbeddings and the genus of a graph, 2. Math. Mech. 1 2 (1963), 303-315. [61,70,110,1781 IYZI The Heawood map coloring conjecture, Rand Corporation Memorandum RM 4752 - PR, March 1966. [107,125,1311
-
-
References
302
[Y31
The Heawood map coloring conjecture, Graph Theory and Theoretical Physics (F. Harary, editor), Academic Press, London, 1 9 6 7 , 3 1 3 - 3 5 4 .
[Y41
[2,125,1361
The Heawood map-coloring problem
-
cases 1, 7, and 1 0 ,
J. Combinatorial Theory 8 (1970), 2 2 0 - 2 3 1 . [Y51
[136,1421
Solution of the Hcawood map-coloring problem - cascs 3, 5, 6, and 9, 2. Combinatorial Theory 8 (1970), 1 7 5 - 2 1 9 . [1361
[Y61
The mystery of the Heawood conjecture, Graph Theory and Harris, editor), Academic Press, New
its Applications (B.
York, 1970, 17-50. [125] See also [ABYl], [BHKYl], [LYl], [ R Y l I , [RY4],
Zaks, J. [Zll
[RYS]
,
[RY2], IRY31,
[ T W Y l ] , a n d ['L'WYZ].
The maximum genus of Cartesian products of graphs, Canad. J. Math. 26 ( 1 9 7 4 ) , 1025-1035. [651 -
30 3
BIBLIOGRAPHY
a. 1
e.) f.)
g.) h.) i. 1
1.)
S. Anderson, Graph Theory and Finite Combinatorics, Markham,
Chicago, 1970. B. Arnold, Intuitive Concepts & Elementary Topology, PrenticeHall, Englewood Cliffs, N.J., 1962. M. Behzad, G. C. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs, Wadsworth, Belmont, 1981. L. W. Beineke and R. J. Wilson (editors), Selected Topics & Graph Theory, Academic Press, London, 1978. N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory 1736-1936, Clarendon Press, Oxford, 1976. N. L. Biggs and A. T. White, Permutation Groups and tombinatorial Structures, Cambridge University Press, Cambridge, 1979. H. S. M. Coxeter and W. 0. Moser, Generators and Relations for Discrete G r o u p s , Springer-Verlag, Berlin, 1957. M. Frdchet and K. Fan, Initiation Combinatorial Topoloqy, Prindle, Weber and Schmidt, Boston, 1967. I. Grossman and W. Magnus, Groups and Their Graphs, Random House, New York, 1964. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Interscience Publishers, New York, 1956. W. S. Massey, Algebraic Topology; 2 Introduction, Harcourt, Brace, and World, New York, 1967. G. Ringel, Fsrbungsprobleme auf Flschen !.@ Graphen, Deutscher Verlag, Berlin, 1959. G. Ringel, Map Color Theorem, Springer-Verlag, Berlin, 1974. H. Tietze, Famous Problems of Mathematics (Chapters IV and XI), Graylock Press, New York, 1965.
304
Bibliography
J. W. T. Youngs, "The Heawood Map Coloring Conjecture," in Graph Theory and Theoretical Physics (F. Harary, editor), Academic Press, London, 1967, 313-354. 9.) J. W. T. Youngs, "The Ileawood Map Coloring Conjecture," Rand Corporation Memorandum RM-4752-PRI March 1966. r.) J. W. T. Youngs, "The Mystery of the Heawood Conjecture," in Graph Theory and its Applications (B. Harris, editor), Academic Press, New York, 1970, 17-50.
P.)
305
INDEX OF SYMBOLS Graphs
16
5
G
Surfaces
Groups
20 20 G,, (I
1 cp (I' 1 c, (r 1
23
36
25 27
25
4
k' Nk
Mn
yo
83 30
I'/n
x (r)
124
42 42 108
S'
73
S I'
73
Y (Sk) M ( r / $2
42 130
x (Sk) x (Nk)
47,102
X (Mn)
108
47,108
73
x' ( S '
73
73
X(S")
73
'k (Mn
119
[XI
130
tS*I
130
119
124
9
15
9
10 10
10
rl rl rl
: r2 +
r2 r2
rl [ r21
15
17 17,32 17
173
X
130
Pi
70
143
P*
71
245 245
n'
10
18
m'
55
18
n'
10
Qn
11
K
10
mln 'n K
PI'.
10 9
*
rPn
11
n' (Z,)" Q
18 88 35
Index of Symbols
306
Groups
Surfaces
G(M)
221
cI* ( M ) G(D)
224
z( S )
122
M
221
Mn
245
'1I ( ' k ) K C L
213
K V L
103
225
130
5
130 25
i' r
47
5 9
143
R"
40
9
143
B
40
114
25
D
39
118
18
D
159
9,75
44
on
40
86
S2
76
86
S (k;nl (ml). .) 5 4
76
161
S(O;n(2))
76
161
M
78
161
.
120 40 42
79
166
144
65
222
144
64
222
144
52
222
n
146
9
234
V
147
10
237
117
10
245
117
7
260
117
7
260
121
7
261
7 5
5 5
D YX
X
157,220 157 157 167 161,219
71
161
71
207
Index of Symbols
Graphs
307
Groups
Surfaces 221
70
0
47
(G,P)
220
R (G)
-
220
229
25
M M(T,A,r) i '
233
71
M*
239
M(G*,O*)
239
70,205 5 5
130
224
71 160 13 66 67
82 168 168 177
180 186 189 189 189 189 189 193 193 194 205
207 205 205
211 211 214 215
252
Note: The number following the symbol gives the first page on which the symbol appears. In the top half of the list, corresponding symbols are displayed alongside one another. The six distinguished symbols correspond to the six relationships depicted in Figure 0-1.
This Page Intentionally Left Blank
309
INDEX OF DEFINITIONS additional adjacency part 1 adjacent edges, adjacent vertices, anti-automorphism of a graph I arc , associated bipartite graph associates first, second , automorphism of a Cayley color graph 1 of a graph, of a group, of a map, automorphism group of a Cayley color graph 1 of a graph, of a map, balanced incomplete block design ( R I B D ) bell tenor , treble, Betti number of a graph, bichromatic dual, bipartite graph, block of a design, block of a graph, n-book , bounded subspace, branch points, branched covering projection, branched covering space, bridge , brin, cactus , capping, Cayley color graph, Cayley graph, Cayley map, Cartesian product of two Cayley color graphs , of two graphs, of two permutation groups 2-cell imbedding, change ,
136 5 5 237 60 207 193 193 26 16 231
221 27 16 221 189 257 257 65 167 11 189 63 57 40 159 159 159 37 145 66 46 24 36 2 29 33 10 17 46 257
characteristic of a closed 2-manifold, 47 of an extent, 263 of a graph, 97 of a group, 97 of a pseudosurface, 54 chromatic number 102 of a graph, of a group, 124 of a hypergraph, 212 of a pseudosurface, 120 of a surface 102 1-chromatic number, 117 class function, 222 closed 2-manifold, 40 closed neighborhood, 19 closed walk, 7 n-trivial, 181 cochromatic number of a graph, 122 122 of a surface, complement, 9 complete bipartite graph, 10 complete design, 190 complete graph, 10 complete map, 233 complete n-partite graph, 11 component, 8 composite graph, 19 composition 10 of two graphs, of two permutation 17 groups I connected design, 197 connected graph, 8 n-connected graph, 53 conservative graph, 176 constellation, 144 quotient , 144 144 reduced , covering graph, 160 covering projection, 157 branched, 159 158 n-fold , 157 covering space, 159 branched , 123 n-critical graph, crossing number, 76,78 11 n-cube 9 cubic graph, 130,143 current , current graph, 130 cut vertex, 3 7 ,6 3 8 cycle, cycle rank, 65
Index of Definitions
310
k-degenerate graph, degree of a vertex, of a permutation group, design balanced incomplete block ( B I B D ) , complete, connected, genus of, group divisible, isomorphic, Latin square, partially balanced incomplete block (PBIBD)
,
resolvable, z-resolvable, transversal, dicyclic qroup, digraph, strongly connected, unilaterally connected, weakly connected, direct product of two groups, of two permutation groups 1 directed edge, directed graph, distance, dodecahedron, doubles , dual , bichromatic, edge of a graph, of a hypergraph, -automorphism, -automorphism group, directed , -isomorphic graphs, -isomorphism, induced, multiple, singular, n-edge colorable graph, n-edge critical graph, elementary subdivision, equivalent permutation groups 1 equivalent rotations, extended map automorphism group I extent , characteristic of, doubles, Grandsire, minimus ,
1 8
5 5 189 190 197 214 194 195 199 194 195 195 195 99 6 25
25 26 32
17 6 6 8 50 270 52 167
5 205 20
20 6 20
20
6 130 104 115 58 16 221 224 257 263 270 264 266
no-call doubles, plain bob, planar, eulcr characteristic, euler polyhedral identity, eulerian graph, evenly covered, face, n-factor, n-factorable, finite presentation, finitely generated presentation, finitely related presentation, first associates, n-fold covering projection, 2-fold triple system, forest , four color theorem, free group, Frobenius group, fundamental group, generalized pseudocharacteristic of a graph, generalized pseudosurface, generator , minimal set, redundant, genus of a block design, of a graph, of a group, of a hypergraph, of a surface, girth, Grandsire, graph, anti-automorphism of, automorphism group of, automorphism of, Betti number of, bipartite, Cayley, Cayley color, characteristic of, chromatic number of, cochromatic number of, complement of, complete , complete bipartite, complete n-bipartite, composite, connected, n-connected, conservative, covering , n-critical,
272 264 267 47 44 8 157 44 37 37 24 24 24 193 158 190 54
102 87 234 4 73 54 23 29 29
214
61 83
211 42 114 264
6 237 16
16
65
11
36 24 97 102 122 9 10 10
11
19
8 53 176 160 123
Index of Definitions
graph (continued) cubic , 9 current , 130 cycle rank of, 65 k-degenerate, 118 directed, 6 n-edge colorable, 104 n-edge critical, 115 edge isomorphic, 20 eulerian, 8 generalized pseudocharacteristic of, 73 genus of, 61 girth of, 114 hamiltonian, 8 identity , 16 imbedding of, 60 imbedded , 43 ,60 infinite , 6,84 isomorphic, 9 labeled, 5 line, 13 locally connected, 66 manifold number of, 180 maximum genus of, 64 orientably simple, 180 Paley, 245 n-partite, 11 perfect, 12 planar , 47 planar infinite, 84 plane , 47 3-polytopal, 53 urime, 19 pseudocharacteristic of , 73 quotient, 128,130 Gegular , 9 regular complete npartite , 11 relatively prime, 19 Schreier coset, 30 self-complementary, 237 strongly regular, 193 totally disconnected, 10 trivial , 19 underlying, 6,83 vertex arboricity of, 118 vertex partition number of, 119 voltage , 160 graphical regular representation, 238 group characteristic of, 97 chromatic number of, 124 dicyclic , 99 edge-automorphism, 20 extended map auto224 morphism ,
311
free, Frobenius, fundamental, genus of, graph automorphism, hamiltonian, hunting , identical permutation, infinite dihedral, isomorphic permutation, local , map automorphism, permutation, planar , vertex partition number of, group divisible PBIBD,
87 234 4 83 16 35 264 16 87 15 161 221 15 83
hamiltonian graph, hamiltonian group, hexahedron, homeomorphic from, homeomorphic with, hunting group, hypergraph, adjacency in, chromatic number of edge of, genus of, incidence in, maximum genus of, r-uniform, vertex degrees in, vertices of,
8 35 50 58 58 264 205 205 212 205 211 205 212 205 205 205
124 194
icosahedron, 50 identical permutation 16 groups I identity graph, 16 1-imbeddable, 117 imbedded graph, 43,60 imbedding of a graph, 60 of a pseudograph, 43 2-cell. 46 index of, 129,145,163 irregular, 144 178 maximal , minimal , 61 nonorientably minimal, 177 quadrilateral, 62 178 simplest , triangular, 62 imbedding scheme, 181 immersions, 267 5 incident , index of an imbedding 129,145 ~~
163
312
Index of Definitions
induced edge-automorphism group I induced subgraph, infinite dihedral group, infinite genus, infinite graph, irregular imbedding, isomorphic designs, isomorphic graphs, isomorphic permutation group I join , Kirchoff's Current Law (KCL) Kirchoff Voltage Law (KVL) klein bottle, labeled graph, Latin square designs, lead-ins , length of a region, length of a walk, lexicographic product, lifts, line graph, local group, locally connected graph, loop I
20
7 87 85 6,84 144 195 9 15 10
130 163 41 5 199 277 48 7
10 157 13 161 66 6
manifold number of a 180 graph, 2-manifold, 39 closed, 40 41 nonorientable, orientable, 41 vertex partition number of, 119 n-manifold, 40 manifold, quotient, 123,130 220 map 1 221 automorphism group of, automorphism of, 221 Cayley I 229 chiral , 250 complete, 233 224 mirror image of, nonorientable symmetrical, 228 ,255 Paley , 245 233 periods of, reflexible, 224 self-dual, 239 strongly symmetric, 244 symmetrical, 226 maximal imbedding, 178
maximum genus of a graph, of a hypergraph, maximum nonorientable genus , minimal generating set, minimal imbedding, minimums , mirror image of a map, mgbius strip, multigraph, multiple edge, multiplicity of branching,
64 211 186 29 61 266 224 41 6 6 159
neighborhood of a vertex, 19 no-call doubles, 272 nonorientable genus, 177 nonorientable 2-manifold, 41 nonorientable symmetrical 228,255 map I nonorientably minimal 177 imbedding , object set, objects, octahedron, open walk, open unit disk, orbits, order of a graph, order of a permutation group I orientable 2-manifold, orientably simple graph, Paley graph, Paley map, Paley tournament, palindromic method, partially balanced incomplete block design (PBIBD), path I peal I perfect graph, periods of a map, permutation group, degree of, equivalence, order of, regular , transitive, plain bob, planar BIBDs , planar extent, planar graph, planar group, planar infinite graph, plane graph,
15 189 50 7 39 15,222 5
15 41 180 245 245 252 258 194 8 259 12 233 15 15 15 15 15 16 264 215 267 47 83 84 47
Index of Definitions
Platonic solids, 52 point, singular, 54 polyhedron, 49 49 reqular , 53 3-polytopal graph, presentation, 24 finite, 24 finitely generated, 24 finitely related, 24 standard , 32 prime graph, 19 principle, 261 product cartesian (Cayley color graphs) , 33 Cartesian (graphs), 10 Cartesian (permutation 17 groups) , direct (groups), 32 direct (permutation 17 groups) , lexicographic, 10 173 strong tensor , 17 wreath , projective plane, 41 pseudocharacteristic of 73 a graph, 6 pseudographs, imbedded , 43 54 pseudosurface, characteristic of, 54 120 chromatic number of, generalized, 54 quadrilateral imbedding, 62 quotient constellation, 144 quotient graph, 128,130 quotient manifold, 128,130 rank of an abelian group, 33 reduced constellation, 144 redundant generator, 27 reflection, 224 reflexible map, 224 region , 44 2-cell , 46 length of, 48 regular complete n-partite graph I 11 9 regular graph, regular part, 136 regular permutation group, 15 regular polyhedron, 49 relation , 23 relatively prime graphs, 29 resolvable design, 195 z-resolvable design, 195 rotation, 220 equivalent, 221 rotation scheme, 73,219 rounds , 257
313
Schreier coset graph, 30 second associates, 193 self-complementary graph, 237 self-dual map, 239 side , 145 simplest imbedding, 176 singular edge, 130 singular point, 54 singular vertex, 54 size of a graph, 5 spanning subgraph, 7 splitting tree, 66 stabilizer, 222 standard presentation, 32 Steiner triple system, 191 stereographic projection, 45 strong tensor product, 173 strongly connected digraphs, 2 5 strongly regular graph, 193 strongly symmetric map, 244 subdivision, 58 elementary, 58 subgraph , 7 induced , 7 spanning , 7 sum, 17 surface , 39 chromatic number of, 102 cochromatic number of, 122 genus of, 42 hypergraph chromatic number of, 213 vertex arboricity of, 118 symmetrical map, 226 nonorientable, 2 2 8 ,2 5 5 tenor bell, tetrahedron, thickness, toroidal , torus , toroidal thickness, totally disconnected graph I tournament, Paley trail , transitive permutation group I transversal design, treble bell, tree , splitting, triangular imbedding, triple system 2-fold, Steiner , trivial graph, q-trivial closed walk,
257 50 75,76 168 41 168
10 252 8
15 195 257 43 66 62 190 191 19 181
314
Index of Definitions
underlying graph, r-uniform hypergraph, unilaterally connected digraph, union, upper-imbeddable, valence , vertex , neighborhood of, singular , vertex arboricity of a graph, of a surface, vertex partition number of a graph, of a group, of a closed 2-manifold, voltage g r a p h , vortices, theory of, walk closed, length of, open I weakly connected digraph, wheel , word , wreath product,
6,83 205 25 10
65 146 5 19 54
118 118 119 124 119 160 136 7 7 7 7
26 55 23
17