L'ouvrage complet est disponible auprès des Éditions de l'École Polytechnique Cliquez ici pour accéder au site des Éditi...
182 downloads
1263 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
L'ouvrage complet est disponible auprès des Éditions de l'École Polytechnique Cliquez ici pour accéder au site des Éditions
T Y POL
N H EC
E U IQ
L E O ÉC
! " # $ # % & ' ( ) * + , + , , . " + " / 0 0 " ' ) .
ÉC
E L O
T Y POL
N H EC
1 ( ) , 1 . ' 0 # 2 '. " . $ 3 , .
LE O ÉC
Y L O P
E U IQ
H C E T
N
" " $ &
" & $ " " "
E U IQ
N H EC
E U IQ
T Y L
4 2 , 3 . 2 4 2 . 5 67 ' 0 3
. 2 0 . 8 0 , 1 . 8 0 1) 9 H 1 (Ω) 9 H01 (Ω) 5 8 4 " 9 H m (Ω) 1 5 " 9 H(div) 9 W m,p (Ω) 1 " . 0
O P LE O ÉC
O P E L ÉCO
C E T LY
IQ N H
LE O ÉC
Y L O P
H C E T
$" $" $$ $& $$& & & &&
UE
" " " ' 1 " ' / " ': . 0 " * . " + , " # , " %
N
- - -$ -$ & " $ -
" &
E U IQ
C E T LY
HN
E U IQ
$ 3 . $ $ 3 $ 7 4% $ 7 ) ; < $ ) N = 1 $ ) P1 $ '. , $ ) P2 $ * . $ " ) ,= $ ) N ≥ 2 $ ) $ '. , $ ) $ ) % $" >
- 7 . - - 7 , 0 - 7 , #0 - 9 0 - 2 . - - 3 - 9 #0
E U IQ
O P LE O ÉC
N H EC
T Y L
& 7 . & & + 0 & 5 & 4 & 1 , & > , 0 & *0 . & > & 3 & 7 & 1 ) & '. ,
O P E L ÉCO
E U IQ
!
LE O ÉC
Y L O P
" " " "" "" "$ "$ $ $$ $& & & -$ "
H C E T
N
" $
" " $ & " "
.
-
- 2 . - - 3 * . 0 - ' # - * - * ? . ) - + ( -" , * . #0 -" +. 0 -" ' # , -" > ) 7 0 -$ 6 -$ 1 6 7 #0 -& 6 -& 1 6
O P LE O ÉC -"
-$ -&
HN
E U IQ
C E T LY
T Y L
N H EC
" !
O P E L ÉCO
7 . 9 1) @ ) 9 , ) 9 6 3# . + ,
! # 4 1 ( 0 ' , ,9 . 7 * 6A B 5 %A * 6 5 B 5 % 1 3
LE O ÉC
Y L O P
" " " "& "& " $ $ $ $" $" $$ $& $ $ & & &" &$
E U IQ
H C E T
N
- - -- &
& & -
E U IQ
HN
E U IQ
' @ # 0 " 3 " " 3 # ; < " 3 # ; . < " 7 /C
O P LE O ÉC
C E T LY
.
$%&'(% )* +,--./,0.1',* .2)+ 1%34.*) #.5/)016
* 1) 3 3 1 *# * . 7 *0 D * # * , E *0 F ) *0 G A ,H " 3 " 4 " 3 B % 0 ,0 . G $ $ . ;0 0 < $ + 0 0
ÉC
E L O
T Y POL
N H EC
LE O ÉC
" " " "& $ $ $$ $$ $ & &$ &$ && - -" -" -$ --
7 8
Y L O P
E U IQ
7 + # + ' 0 7 7 . " 7 I
' . . 7 7 4 .6=
" & & &
H C E T
N
E U IQ
"
.
N H EC
E U IQ
7 F $
LE O ÉC
ÉC
T Y POL
E L O
T Y POL
LE O ÉC
N H EC
Y L O P
E U IQ
H C E T
N
E U IQ
LE O ÉC
T Y POL
N H EC
E U IQ
.
!"#$ %% %
ÉC
E L O
T Y POL
LE O ÉC
N H EC
Y L O P
E U IQ
H C E T
N
E U IQ
.
N H EC
LE O ÉC
T Y POL
E U IQ
' I A , A 6 J ,# , 3. H A ,? . ,0I 8 , 9,&%-':.1',* 9.14%9.1';5) :'95-.1',* *59%0';5) 0 ;
, 0A , 8 x t = 0 @ σ . , r , H + ;< 0 . ) A . ? ;-)0+'+) CC $ * $ . / ' $ ( Ω = (0, 1) f = 0 ) u(t, x) *
LE O ÉC
. ' $ $ *
∂u ∂t
0
N H EC
* + x( $ *
2 ∂u (t, x) dx + ∂t
T Y POL
d dt
1
E U IQ
0
1
2 ∂u (t, x) dx = 0. ∂x
0 + $ %
LE O ÉC
* f A , ;&< :1.1',**.'0)A ,6?6 u(t, x) u∞ (x) t . , ) .A 1 A f (x) A
−∆u = f Ω ; < ∂Ω, u=0
N H EC
E U IQ
, @ ;. 6 " 0 2µ + N λ > 0 1 u 8 ) 0 0 ∂Ω # ; < . fi ui A 1 ≤ i ≤ N A f u 0 RN A ; < . ?
−µ∆ui − (µ + λ) ∂(divu) = fi Ω ∂xi ui = 0 ∂Ω
Y L O P
H C E T
N
E U IQ
1 ≤ i ≤ N + A (µ + λ) = 0A ui . . A N = 1A # , ,
LE O ÉC
T Y POL
N H EC
E U IQ
# % , , D . 0 ? . @ D Ω , ? 6 A ,6?6 . ; ? 1 ∆t ∆xA 0. ; # A 0 G)0+'+) CC % 2/(
V = 0( 6% ( $ + 2/ 1 ≤ j ≤ J un0 = unJ+1 = 0 n ∈ N ) m ≤ 0 ≤ M m ≤ u0j ≤ M 1 ≤ j ≤ J $ un+1 unj " n ≥ 0 j * m ≤ unj ≤ M 1 ≤ j ≤ J ∆t ∆x
E U IQ
. ? 0 A ,. . A ,6?6 ? 6 / ?
+ 0 A 0 GA . A : ' , . ) 6 . A ,6?6 , .
LE O ÉC
Y L O P
H C E T
N
LE O ÉC
T Y POL
N H EC
E U IQ
- W
N H EC
E U IQ
. ν∆t = 0.4(∆x)2 . . ∆x
T Y POL
. 0 ; . . ) 6 , 0 -'9'1): $ "$ & - ) " $ $ "$ & " """ $"+ $ " ), %@*'1',* CC
LE O ÉC
T Y POL
* A ; < 0 3 A , (
dy dt = f (t, y) 0 < t < T ;-< y(t = 0) = y0 , 0 , (0, T )A . 0 < T ≤ +∞A , L 0 M , t = 0 ; t = T 0 % ' ' - " " . // " 0 + ' " "
b − 4ac = 0 2
2
2
ax2 + bxy + cy 2 + dx + ey + f = 0
N
E U I Q
' " * ! b − 4ac < 0 ' b2 − 4ac = 0 (' b2 − 4ac > 0 1 " . // % " % % " ( 2 (x, y) %' (t, x) ! " " " % + ! " " , "
LE O ÉC
Y L O P
H C E T
2
E U " " % (' " " IQ " 1 3 " " 0 ' N ! C H " " ' % ' " (' " E T 4 % " Y ' ' " L % " " ' 5 ( O ' " % ' " P E (' " 6
+ L " O ÉC
" ' " (' " " # ! ( %' 1 (x, y) → (X, Y ) ( %' & " 7 ' J = Xx Yy − Xy Yx Zz % Z & z! , " # ! % A
∂2u ∂u ∂2u ∂2u ∂u +C +E + F u = G, +B +D 2 ∂X ∂X∂Y ∂Y 2 ∂X ∂Y
%
A C = aYx2
E U IQ
= aXx2 + bXx Xy + cXy2 B = 2aXx Yx + b(Xx Yy + Xy Yx ) + 2cXy Yy + bYx Yy + cYy2 % " B 2 − 4AC = J 2 (b2 − 4ac) 0
N H EC
( %' " " % # ! * 8 " 9 " " ∂ ∂ + ∂Y " ' " & " ( ∂X ∂ ∂ ∂ ∂ − " (' " & " ∂X − ∂Y • ∂X ∂Y 2
2
2
T Y POL 2
2
2
2
E L 'O : " ' C %
% % É % " % # ! " 2
2
2
$ ' " " " ∂2u ∂x2
= 1
a = 1
' " ' " b2 − 4ac = 0!
" %' y ; 0 ;. N 8< ∆t > 0A ) ,
E U IQ
(tn , xj ) = (n∆t, j∆x) n ≥ 0, j ∈ {0, 1, ..., N + 1}.
N H EC
@ unj . , (tn , xj )A u(t, x) ; 0.
* A ? . ? . (unj )1≤j≤N 8 . RN / 0 , ; ' ) " " n ≥ 0 " " " 1 ≤ j ≤ N $
min 0,
min
0≤j≤N +1
u0j
≤ unj ≤ max 0,
max
0≤j≤N +1
u0j
" $$ $" u0 ,
E U IQ
)9.0;5) CC 1 1) 6 u0 F . 0 1 ' u0 . ) 1 ; , )0+'+) CC " % + 2 L2
T Y POL
! 5 ' % " . ) . ( ' T > 0 K(T ) > 0 ∆t ∆x " un ≤ K(T )u0 0 ≤ n ≤ T /∆t, " " u0 5 % & = %
"
LE O ÉC
∂2u ∂u − ν 2 = cu ∂t ∂x
(t, x) ∈ R+ × R,
" ( v(t, x) = e−ctu(t, x) & " ( c > 0
u = ! %
' ' > 4
% |A(k)| ≤ 1 + C∆t k ∈ Z. * & . ) ' •
T Y POL
' $
E L O
N H EC
E U IQ
/ . . ( ) 6 5 : A A +,*:':1.*+) )1 :1./'-'1% '93-';5) +,*2)0()*+) 8 0 ( ) * ; ( ) A ) A < . I
J 0 6 ; ) . , ? , / +,*&'1',* *% +)::.'0) 0 L2 ; . 0')&0'+4:
Y L O P
2un+1 − unj+1 − unj−1 unj+1 − unj−1 j +V =0 2∆t 2∆x A 0 A
LE O ÉC
; "
1 0 * A ( . 5# (tn , xj ) u J
T Y POL
N H EC
u(tn , xj+1 ) − u(tn , xj−1 ) 2u(tn+1 , xj ) − u(tn , xj+1 ) − u(tn , xj−1 ) +V = 2∆t 2∆x (∆x)2 (∆x)4 (V ∆t)2 2 . ; $< (ut + V ux ) (tn , xj ) − (t , x ) + O (∆x) + u 1− xx n j 2∆t (∆x)2 ∆t ' , O (∆x)2 /∆t A ,
ÉC
E L O
∆t . F . (∆x)2 * A , ∆t/∆x * 0 . 5 , en I I , A en ≤ ∆tnKC
(∆x)2 ∆t
+ ∆t .
E U IQ
) ∆x/∆t , I 8 ∆t 0 . FA ,R .
H C E T
N
)9.0;5) CC 62 , ;
. 1) )0+'+) CC " % DE * L2 |V |∆t ≤ ∆x >)0+'+) CC " % 7% 07 |V |∆t ≤ ∆x ( %
DE V ∆t/∆x −1, 0, 1
H C E T
N
E U IQ
>)0+'+) CC " % DE 2& % + $ 2 :
Y L O P
un+1 = αunj−1 + βunj + γunj+1 , j
LE O ÉC
4 α, β, γ V ∆t/∆x
N H EC
""
E U IQ
' ,. I? ' A 8 0 L0M , , . ; < &%+)*10)9)*1 .9,*1 / 8 :+4%9. &%+)*10% .9,*1
ÉC
OLE
T Y POL
un+1 − unj unj − unj−1 j +V =0 ∆t ∆x − unj un+1 unj+1 − unj j +V =0 ∆t ∆x
V >0
V < 0.
; -
)0+'+) CC " % 2.
$ $ 22( + $ ( * L2 07 |V |∆t ≤ ∆x
N H EC
E U IQ
)9.0;5) CC * 0 6 ;R . V 6 H , u "$" + " )" )$) " " H $$" "$" #, C E T Y OL P LE O ÉC %@*'1',* CC
%;5.1',* %;5'2.-)*1)
ÉC
E L O
T Y POL
N H EC
E U IQ
E U IQ
W D '2 ( 62 ; < ;0)0+'+) CC % 0 =>% n+1 un+1 un+1 − unj unj+1 − unj−1 j j+1 − uj−1 +V +V = 0. ∆t 4∆x 4∆x
8 $ % " : 7 $
/ , 0 (0, 1) . ⎧ 2 ∂ u ∂2u ⎪ ⎪ ⎪ − 2 = 0 (x, t) ∈ (0, 1) × R+ ∗ ⎪ 2 ⎪ ∂t ∂x ⎪ ⎪ ⎪ ⎨ u(t, x + 1) = u(t, x) (x, t) ∈ (0, 1) × R+ ∗ ; < ⎪ ⎪ ⎪ u(t = 0, x) = u0 (x) x ∈ (0, 1) ⎪ ⎪ ⎪ ⎪ ∂u ⎪ ⎩ (t = 0, x) = u1 (x) x ∈ (0, 1). ∂t
LE O ÉC
Y L O P
H C E T
N
E U IQ
!! !
$
N H EC
E U IQ
3. H A , ? . un = (unj )0≤j≤N ∈ RN +1 6 un0 = unN +1 n ≥ 0A unj = unN +1+j ' ) . u 6 , . (0, 1) ;F ? , . 0)0+'+) CC 2 ( $ + ∆t/∆x = √
1/ 1 − 4θ 0 ≤ θ < 1/4 " θ% 22 unj = (−1)n+j (2n − 1) # $ $ * $ @ A un
H C E T
N
E U IQ
/ 2 $ 0 . θ6 ; θ = 0.25 0A
E L O
E(t) = E(0) . E(t) =
ÉC
0
1
2 2 1 ∂u ∂u (t, x) dx + (t, x) dx. ∂t ∂x 0
. 0 , . ) ; 6 .< . . , * θ6 -!%*)0(') &':+0?1) E n+1 =
N
j=0
− unj un+1 j ∆t
2
. a∆x (u, v) =
+ a∆x (un+1 , un ) + θa∆x (un+1 − un , un+1 − un ) N uj+1 − uj vj+1 − vj ∆x
j=0
∆x
.
H C E T
N
E U IQ
' A E n+1 A ? O(∆x + ∆t) A , E(tn+1 ) / . ,
Y L O P
>)0+'+) CC " θ% 22 $ * (
LE O ÉC
$ + E = E n ≥ 0 n
0
N H EC
$
E U IQ
8O ) , ; < # , ∂u v = ∂u ∂t w = ∂x A ; < . ? ⎧ ∂ ∂ v 0 1 v ⎪ ⎪ (x, t) ∈ (0, 1) × R+ = ⎪ ∗ ⎪ w 1 0 w ∂t ∂x ⎪ ⎪ ⎪ ⎨ v(t, x + 1) = v(t, x), w(t, x + 1) = w(t, x) (x, t) ∈ (0, 1) × R+ ∗ ; < ⎪ ∂u ⎪ 0 ⎪ w(t = 0, x) = ⎪ (x) x ∈ (0, 1) ⎪ ⎪ ∂x ⎪ ⎩ v(t = 0, x) = u1 (x) x ∈ (0, 1).
LE O ÉC
T Y POL
@ # . . 0 u ; . 0A 0')&0'+4: n n n n 1 1 − vj−1 2vjn+1 − vj+1 vj+1 − vj−1 0 1 − = 0, ; < n n n n wj+1 − wj−1 1 0 2wjn+1 − wj+1 − wj−1 2∆t 2∆x
T Y POL
N H EC
E U IQ
0 # .>K)*&0,A n+1 n n 1 1 vj − vjn vj+1 − vj−1 0 1 − n n wj+1 − wj−1 1 0 wjn+1 − wjn ∆t 2∆x
ÉC
E L O +
∆t 2(∆x)2
0 1 1 0
2
n n −vj−1 + 2vjn − vj+1 n n n −wj−1 + 2wj − wj+1
; "
)0+'+) CC " % 7% 2
L2 07 ∆t ≤ ∆x( $ + $ ∆t/∆x * ∆t ∆x #
>)0+'+) CC " % DE 2! L2 07 ∆t ≤ ∆x( $ + $ 2
' , , . A 8 0 L0M &%+)*10)9)*1 .9,*1 ' A , , # , . . . 9 8 A : 0 1 J= 1 0
Y L O P
H C E T
N
E U IQ
0 , . 6 ( , , ' .
LE O ÉC
!! !
$
N H EC
E U IQ
J ;1 −1 , < I X . A 0 . 6 ' # # # #0 A A # F ;. T-U .# )0+'+) C C ) f [0, 1]( 2 C 2 ([0, 1])
1
u(x) = x
f (s)(1 − s)ds −
0
x
f (s)(x − s)ds x ∈ [0, 1].
;
)0+'+) CC
$ V ( / 2;( $ ) Ω RN ) N = 1( ⎧ − 1 < x < −n−1 , ⎨ −x − 1 2 (n/2)x − 1 + 1/(2n) − n−1 ≤ x ≤ n−1 , un (x) = ⎩ x−1 n−1 < x < 1.
) N = 2( 0 < α < 1/2(
T Y POL
N H EC
E U IQ
un (x) = | log(|x|2 + n−1 )|α/2 − | log(1 + n−1 )|α/2 .
E L O
) N ≥ 3( 0 < β < (N − 2)/2(
ÉC
un (x) =
(|x|2
1 1 − . −1 β/2 +n ) (1 + n−1 )β/2
" un 0 %: V $ * V n $
LE O ÉC
Y L O P
H C E T
N
E U IQ
! $
-
LE O ÉC
ÉC
T Y POL
E L O
N H EC
T Y POL
LE O ÉC
E U IQ
N H EC
Y L O P
E U IQ
H C E T
N
E U IQ
T Y POL
N H EC
E U IQ
LE O ÉC
%
T Y POL
N H EC
E U IQ
1 ) 0. -): ):3.+): F*.150)-:G &) =,*+1',*: 3)09)11.*1 &) 0%:,5&0) -): =,095-.1',*: 2.0'.1',* *)--): &!%;5.1',*: .5> &%0'2%): 3.01')--): *# A 0. , =,*+1',*: &!%*)0(') @*') '
E L O
L M . . , L M / A 0 P 6 0 A # 9
A , P ; 8 0
f L∞ (Ω) = inf C ∈ R+ L∞ (Ω) @( Lq (Ω) 1 ≤ q ≤ p ≤ +∞
Ω
Ω
" |f (x)| ≤ C Ω
#!
,
A " Ω % ' Lp (Ω) ⊂
*$ 0&
N H EC
E U IQ
@ ) ,0 . 8 0 L (Ω) '
. ;8 A A . 8< . 0 ;. T$U " 08 1/2
N H EC
>)0+'+) CC ) Ω " $ Ω( C 1
L2 (Ω)
T Y POL
>)0+'+) CC ) Ω " $ C 1
$ L2 (Ω)
E L O
@ . 0 .
C " $ $"$ É " " - )" / ' )
L2 (Ω) -/ $ / " " 1 ≤ i ≤ N ' $" $ , ' ) )$" $$& Ω' &" $ $"$" C " v(x) = C )
0,3,:'1',* CC
v
# )" " $ "" )$" $$&,
∂v ∂xi
%9,*:10.1',*C * ψ ∈ Cc∞ (Ω)A
v(x) Ω
∂ψ (x) dx = 0. ∂xi
;
0)0+'+) CC ) Ω Ω1 Ω2 Γ = ∂Ω1 ∩ ∂Ω2 " $ C 1 % Ω1 Ω2 * L2 (Ω)
+ Γ
" % *' Lp (Ω) 1 ≤ p ≤ +∞ 5
p = 2 Lp (Ω) B' % *' #C! v(x) ∂φ (x) dx ≤ Cφ p L (Ω) ∂xi Ω
%
1 1 + =1 p p
E U IQ
1 < p ≤ +∞,
N H EC
D( ) AE Lp (Ω) Lp (Ω) % FGH! •
T Y POL
E L O H (Ω) C É 1 " $ -"
! 1
%@*'1',* CC
Ω
H 1 (Ω) =
.
∂v ∂xi
v ∈ L2 (Ω)
RN ,
) /- H 1 (Ω) " *$ )
" ∀ i ∈ {1, ..., N }
∂v ∈ L2 (Ω) , ∂xi
;"
)0+'+) CC ) B RN ) N = 2(
u(x) = | log(|x|)|α + H 1 (B) 0 < α < 1/2( $ * $* ) N ≥ 3( u(x) = |x|−β + H 1 (B) 0 < β < (N − 2)/2( $ * $*
, N = 1 8 L M ? 6 8 H 1 (Ω) ,: . RA A Ω = (0, 1)
)99) CC
E U IQ
" " $"$ v ∈ H 1 (0, 1) " ) " " x, y ∈ [0, 1]' $
y
v(y) = v(x) +
H C E T
v (s) ds.
Y L O P x
N
;-
0 A 8 v ∈ H01 (Ω)A |v(x)|2 dx ≤ C |∇v(x)|2 dx, Ω
Ω
N H EC
E U IQ
. , vn ∈ H01 (Ω) 1= |vn (x)|2 dx > n |∇vn (x)|2 dx.
E L O
T Y POL Ω
;"
)0+'+) CC 2 7* 2 ) v(x) = xα " v ∈ H 1 (Ω) 2α + r > 1( v ∈ L2 (∂Ω) 2α > −1 0 B )0+'+) CC $ :
LE O ÉC
L (Ω)( $ + $ $ C > 0 2
!
N H EC
( v ∈ L (Ω)(
2
T Y POL
E U IQ
&
v|∂Ω L2 (∂Ω) ≤ CvL2 (Ω) .
- ( % Ω 0 * Ω * + ∂Ω L2 (Ω) # 0
L3 E O ÉC
/ 6 ? , , + I X 0 ;. ' &< 0 ,. + ,0 A = 0 ) A , . A 0A 6 . ; ) A . ,9 " N/2' H m(Ω) " $ ) $/ C(Ω) $"$ $"$ Ω,
4%,0?9) CC
H C E T
N
)9.0;5) CC * 5 " ? 8 ?
Y L O P
.A 8 , k ≥ 0 m − N/2 > k A H m (Ω) 6 ,0 C k (Ω) 8 k 8 ( 0 Ω •
LE O ÉC
$
N H EC
E U IQ
LM 5 " m A 8 H m (Ω) A ,6?6 .0 ; : , . 5 " ? 8 v ∈ H m (Ω) ? . ∂ α v ∈ H m−|α| (Ω) 0 P v(x) = v(x , −xN ) xN < 0. $ % " 1 ≤ i ≤ N − 1 ∂v (x , xN ) xN > 0 ∂P v ∂x (x) = ∂v ∂xi (x , −xN ) xN < 0, ∂x " ∂v (x , xN ) xN > 0 ∂x ∂P v (x) = ∂v ∂xN − ∂x (x , −xN ) xN < 0. 5 % v * ; " v %' " *' 4
*! " ; *
L P v M % FC/H ! $ √ P % C = 2 Ω = RN + ! 1 Ω % ' C 1
8 9 Ω = RN+ 0 . C/ % 1
O P E L ÉCO 2
N
1
N
2
1
1
C E T LY
N
i i
N N
LE O ÉC
Y L O P
H C E T
N
E U IQ
∂Ω
ÉC
OLE
T Y L
P O ω0
N H EC
E U IQ yN Q+
φi
y
Q
ωi Ω
W ' , .
E U I$Q % % N
8 9 & % & * H " C E T Y L O P E L " K % ( CI FNH! O * $ % C É Ω
(ωi )0≤i≤I
(θi )0≤i≤I
Cc∞ (RN )
θi ∈ Cc∞ (ωi ),
0 ≤ θi (x) ≤ 1,
I
θi (x) = 1
Ω.
i=0
Pv
Pv =
I
Pi (θi v),
i=0
: (" Pi ωi 5
θ0 v & Ω P0 (θ0 v)
θ0 v E ( Ω (" i ∈ {1, ..., I} φi " * ωi * Q % . C/ J ##!
+) wi = (θi v) ◦ ( φ−1 i Q
% Q+ = Q ∩ RN+ .
E U IQ
5 * wi & H 1 (Q+) % ∂Q+ ∩ RN+ 1 RN+ \ Q+ ' * w˜i ∈ H 1 (RN+ ) $ L w˜i ' * P w˜i ∈ H 1 (RN ) P " % RN+ ! $ % ωi
Y L O P
Pi (θi v) = (P w ˜ i ) ◦ φi .
H C E T
N
C 1 φi % ' Pi P
LE O ÉC
$
E U #
8 9 " IQ ' 5
E N H (" % " * C E T 1 H(div)LY O P 4
* E & % L % 5 % O A " //! C É •
L2 (Ω)
H 1 (Ω)
H(div) &
H(div) = σ ∈ L2 (Ω)N
divσ ∈ L2 (Ω)
#C!
,
% divσ σ ' & #(
E U IQ
$ % * " B'
!
' )
T Y POL
σ, τ =
E L O
! σH(div) =
ÉC
N H EC
##!
(σ(x) · τ (x) + divσ(x)divτ (x)) dx
Ω
σ, σ
H(div) *
5
1 ' % * " &
D( #C/!
%& " Ω C Ω = R Cc∞ (Ω)N
1
H(div)
N +
, H(div) " (
* O % " 1 ' % H 1 (Ω) 0 + σ & H(div) 8 ':1)*+) )1 &!5*'+'1% &): :,-51',*: / 9'*'9':)*1 5*) %*)0(') , . ) 0 30,30'%1%: ;5.-'1.1'2): . ; A 0
f ∈ L2 (Ω) u ∈ H01 (Ω) 2 L (Ω) H 1 (Ω) 2 f ∈ L (Ω)
N
;"
)0+'+) CC ) Ω RN G $ $ %
T Y POL
$ $ E
E L O
V · ∇u − ∆u = f u=0
Ω ∂Ω
;"
)0+'+) CC %: % $' !22 " v ∈ H01 (Ω) vV · ∇v dx = 0. Ω
" E H01 (Ω) $ * 1 J(v) = 2
|∇v|2 + vV · ∇v dx −
Ω
f v dx. Ω
E U IQ
L M 5 " # , , .
H C E T
N
>)0+'+) CC + !
$ Ω : + $%: xN = 0 B f f (x , xN ) = f (x , −xN ) " ! B : " ! + Ω+ = Ω ∩ {xN > 0} > Ω ∩ {xN = 0}
LE O ÉC
Y L O P
"
-
N H EC
E U IQ
)9.0;5) CC N , . 0 f ;"< 6
? L2 (Ω)A .0 f ∈ H −1 (Ω) ; L8 M )0+'+) CC Ω * C 1 G $
$ % $ $
7
T Y POL
LE O ÉC
−∆u = f ∂u ∂n + u = g
Ω ∂Ω
;"
)0+'+) CC Ω G $ $ % $ $ B ⎧ ⎨ −∆u = f Ω ∂u ;" < =0 ∂ΩN ⎩ ∂n u=0 ∂ΩD
N H EC
E U IQ
4 f ∈ L2 (Ω)( (∂ΩN , ∂ΩD ) ∂Ω ∂ΩN ∂ΩD 7* H C .
T Y POL
/ . . 0 ; I , , F ;"$ 0 Q ? , * @ 5 67 A , , 8 . ;" -'9'1): &) 10.*:9'::',* 6 . ( ' R (Ω1 , Ω2 )
Ω k(x)
T Y POL
k(x) = ki > 0 x ∈ Ωi , i = 1, 2.
LE O ÉC
;"
0
uH m+2 (Ω) ≤ Cf H m (Ω) .
Ω u ∈ H01 (Ω)
H m (Ω)
"
N H EC
E U IQ
* 5 " $ 5 " ; 8 H m (Ω) N/2' "$ -"$$ u ∈ H01 (Ω) =,9 " $ "$ " ))"$" C 2 (Ω), $ )" ' Ω " $ -" /$ RN C ∞ ' " f ∈ C ∞ (Ω)' "$ u ∈ H01 (Ω) =,9 " $ C ∞ (Ω),
,0,--.'0) CC
)9.0;5) CC 0 9 ∆uA 0 . uA ? 8 A 1,51): . u ? H V E GA . N = 1 [ . . , 8 . •
T Y POL
N H EC
E U IQ
)9.0;5) CC 5 " $ ' " & .0 /
? : . 0 ; 6 " )93-) &) :'*(5-.0'1%
H C E T
N
E U IQ
># :'*(5-'?0):A ,6?6 6 , , 0 . 56 " $ ' " & 8 9 A 0 , 8 0 ;,6?6 ? , 0. H 1 (Ω)< ,# 8 ;,6?6 8 .0< 0 /
LE O ÉC
Y L O P
"
$
Γ0
T Y L ΘP O Ω
ÉC
OLE Γ2
"
N H EC
E U IQ Ω
Γ2
Γ1
Θ Γ0
Γ1
W Ω , Θ ; π 0 , J #
LE O ÉC
" #
N H EC
E U IQ
µ > 0 (2µ + N λ) > 0 H 1 A
, B ; X A . " 6 < C > 0 |e(v)|2 dx ≥ C |∇v|2 dx
LE O ÉC
T Y POL Ω
Ω
v ∈ H01 (Ω)N 5 A , * ; A . * < C > 0 A v ∈ H01 (Ω)N A |v|2 dx ≤ C Ω
|∇v|2 dx. Ω
3 A ? . 2 2µ|e(v)| dx + λ|divv|2 dx ≥ Cv2H 1 (Ω) . Ω
Ω
E U IQ
5 67 , , 8 . ;""& 0 " ' ) " " $"$ v ∈ H 1 (Ω)N ' $
)99) CC $*%(.-'1% &) L,0*6 N
E U IQ
T Y POL
1/2 vH 1 (Ω) ≤ C v2L2 (Ω) + e(v)2L2 (Ω) .
E L O
;"$
)0+'+) CC ) Ω RN :
$ > !!/ ∂Ω "
$
f · (M x + b) dx + Ω
g · (M x + b) ds = 0 ∂Ω
E U IQ
∀b ∈ RN , ∀M = −M t ∈ RN ×N
N H EC
M $ $ $ H 1 (Ω)N $ + $ $ @ *A ( ! 2
E L O
T Y POL
)9.0;5) CC : 6 # 1 A , . # ; '
0 2µ + λ > 0
H C E T
N
E U IQ
>)0+'+) CC $ ! . !! λ µ "
Y L O P
! . !! λ µ *( B $ ! .
LE O ÉC
−div(µ∇u) − ∇((µ + λ)divu) = f Ω.
"
$
N H EC
E U IQ
1 A 30,/-?9) &5 +':.'--)9)*1 .*1'3-.*A # , ) 0 , ? , 0 ' 8 , , 00 ,0 ' 6 , .
LE O ÉC
T Y POL
>)0+'+) CC : $ $ : %* Ω * L > 0 ω ( 4 ω * RN −1 M λ µ G ( Ω = ω × (0, L)( x ∈ Ω( x = (x , xN ) 0 < xN < L x ∈ ω ⎧ −div (2µe(u) + λ tr(e(u)) Id) = 0 ⎪ ⎪ ⎨ σn = g =0 u ⎪ ⎪ ⎩ (σn) · n = 0
Ω ∂ω × (0, L) ω × {0, L} ω × {0, L}
N H EC
E U IQ
;"$
0 . D ;"&< , 0 D A 0 8 6 1 , D
T Y POL
N H EC
)9.0;5) CC 0 % ;"&< :'93-'@% , 6 , D . 0 ; )0+'+) CC
E U IQ
) = * ( - ) Ω = ω × (0, L) 4 L > 0 * ω ( * RN −1 - x ∈ Ω( x = (x , xN ) 0 < xN < L x ∈ ω
ÉC
T Y POL
⎧ ∇p − µ∆u = 0 ⎪ ⎪ ⎪ ⎪ ⎨ divu = 0 u=0 ⎪ ∂u ⎪ pn − µ ∂n = p0 n ⎪ ⎪ ⎩ ∂u pn − µ ∂n = pL n
E L O
N H EC
Ω Ω ∂ω × (0, L) ω × {0} ω × {L}
;"&
0 , ) / A , h → 0 , ;$ < L. M . 8 . ;$ 0 * V A v ∈ V u − v ≤ * A h0 > 0 ; < A v ∈ V A v − rh (v) ≤ ∀ h ≤ h0 . 9 . $ A
Y L O P
H C E T
N
E U IQ
u − uh ≤ Cu − rh (v) ≤ C (u − v + v − rh (v)) ≤ 2C,
OLE
,R ,
ÉC
' $
N H EC
""
E U IQ
$A $ $ 6 ,50 ,/1)*'0 5*) .330,>'9.1',* *59%0';5) &) -. :,-51',* )>.+1) &5 30,/-?9) 2.0'.1',**)- $C 6H '- =.51 '*10,&5'0) 5* ):3.+) Vh &) &'9)*:',*
T Y POL
@*') 35': 0%:,5&0) 5* :'93-) :B:1?9) -'*%.'0) .::,+'% E -!.330,>'9.1',* 2.0'.1',**)--) '*1)0*) $C6 / A Vh , . 8
LE O ÉC
, J
. , rh V Vh 6 8 ;$"< ;R # V 8 '9.-) &): 9.'--): 5# 0 Vh 8 -,+.-':% ' J , A h → 0A , Vh L M , V A , A Kh # ;$< +0)5:)A ,6 ?6 : ; G )0+'+) CC G % P1
−u = f ]0, 1[ u(0) = α, u(1) = β,
T Y POL
6% %* :
LE O ÉC
>)0+'+) CC > a(x) = 0 Ω " : % P1 * " $ :
1
f (x) dx = α − β,
0
E U IQ
$ 0 )0+'+) CC G % E 0% 2 6% & $ % $ ( : + B Kh + M bh E "B >
ÉC
E L O
T Y POL
>)0+'+) CC (n + 2) *
xj = j/(n + 1) 0 ≤ j ≤ n + 1 B k > 0 + % * fj 6 $%: % * $ * : $
L %% $ : $
' $ #
* . ) P1 6 , . 6 $ / ) ,0 ,3%0.1)50 &!'*1)03,-.1',* rh ; $)0+'+) CC ) (bi )1≤i≤I $ N K (ωi )1≤i≤I ) ψ(x) dx ≈ Volume(K) K
I
ωi ψ(bi )
i=1
ψ ∈ Pk " ( * ψ (
1 Volume(K)
4 h K
ψ(x) dx = K
LE O ÉC
I
Y L O P i=1
H C E T
ωi ψ(bi ) + O(hk+1 ),
N
E U IQ
' ! N ≥ 2 1
T Y L 8
O P LE O ÉC
4
N H EC 5
9
2
E U IQ
-
6
7
3
$ W 9
>)0+'+) CC Ω =] − 1, +1[2 7*
0 * Kh P1 > : *
>)0+'+) CC G % P1 6%
Ω =]0, 1[2 * * 7* 2 " * Kh B $ % E + h2 ( bh E
ÉC
E L O $
T Y POL
N H EC
E U IQ
W 7 8 ,
>)0+'+) CC $' ; n * B B % @* *A * * " * Kh P1 $ n2 * $ 2n n * " B % B : * Ω =]0, 1[3 + $ n3 * $ 2n2 4 n * $ B Ω
H C E T
N
E U IQ
)9.0;5) CC ' , ,9 $
Y L O P
0 ; 8O . 8 0< D Kh A ,6?6 , ' ;. A
LE O ÉC
' !
-
N H EC
E U IQ
A )0+'+) CC $ B = (bij )1≤i,j≤n "
( i(
n
LE O ÉC bii > 0,
k=1
Y L O P
bik > 0,
bij ≤ 0 ∀ j = i.
' ! N ≥ 2
N H EC
-"
E U IQ
" " M
T Y POL
>)0+'+) CC N = 2 ) uh % 6% % P1 * * Ki ∈ Th * + π/2 " uh (x) ≥ 0 Ω f (x) ≥ 0 Ω L I ( > 0( Kh + Id " ( 4 Kh *
LE O ÉC
ÉC
E L O
T Y POL
$ W 5 f
N H EC
E U IQ
, ;$$)0+'+) CC " * Kh
% Pk E $' !22 :
T Y POL
>)0+'+) CC $ !&; % $ : O N = 2 - * * Th $
LE O ÉC
Vh = v ∈ C 1 (Ω) v |Ki ∈ P5 Ki ∈ Th .
" :9 p ∈ P5 * K 2 v(aj ), ∇v(aj ), ∇∇v(aj ),
∂p(bj ) ∂n
;$-
0 $ " 0 Ω, $ " 0" $ " 9.'--.(): 0%(5-')0:
, " h = maxK ∈T diam(Ki ) "$ - ' , &" $ $"$" C " ' ) " " h > 0 " " " K ∈ Th ' i
h
diam(K) ≤ C. ρ(K)
Y L O P
H C E T
N
E U IQ ;$
0 ; 8 h< K ∈ Th 8
LE O ÉC
' ! N ≥ 2
T Y POL
N H EC
-
E U IQ
diam(K)
LE O ÉC
ρ(Κ)
$& W 1 diam(K) ρ(K) , K ;$< ,# . . . •
E U IQ
/ . 6 : . ) Pk . .
N H C 0 , "
$ " T E 0 " ' "$ )/+ 8#" " ' $ ) Y %,3%' L )&"$ $"$ %,9 )O "# $" *$ , "# P " $" *$ $-0' E L O C É 8 ) ' " ' $ ""$ 4%,0?9) CC H01 (Ω)
(Th )h>0
Ω
uh ∈ V0h Pk
Pk
;$"
N/2
;$"
N/2 * $$ N/2 1
E U IQ
rK H k+1 (K) H k+1(K) C(K) v ∈ H k+1 (K) v − rK vH (K) ≤ C(K)|v|H N/G! (K) ,
% |v|H (K) ! 1 ! & k+1
k+1
|v|2H k+1 (K)
=
LE O ÉC |α|=k+1
K
Y L O P
H C E T
k+1
|∂ α v|2 dx = v2H k+1 (K) − v2H k (K) .
N
' ! N ≥ 2
E U D( #C/ " I" Q % * '
* N H < " C T E " % - $ " Y . OL N/)! P E
% ;& * M % L O #/! ! 6 " É C H k+1 (K) ⊂ C(K)
k +1 > N/2
H k+1 (K)
rK v v ∈ H k+1 (K)
rK
H m (K)
H
k+1
(K)
m∈N
vH k+1 (K) ≤ C(K) |v|H k+1 (K) + rK vH k+1 (K) ,
vn ∈ H k+1 (K)
N/I! ( N/I! " " vn ' H k+1(K) D( A( #C vn " % H k (K) N/I! " " % ∂ α vn |α| = k + 1 % % E L2 (K) " vn % H k+1 (K) % v " % & N/I!! |v|H (K) = 0, rK vH (K) = 0. NN ! NN ! " v ∈ Pk K #/! N/N! rK rK v = v v ∈ Pk NN ! " rK v = v = 0 " % ( N/I! ' N/G! " N/)! & (v − rK v) " " rK (v − rK v) = 0 " |v − rK v|H (K) = |v|H (K) " % k + 1 < Pk %
NCI @ 'B' " N/G! K $
% 1 = vn H k+1 (K) > n |vn |H k+1 (K) + rK vn H k+1 (K) .
k+1
ÉC
E L O
N H EC k+1
T Y POL
k+1
E U IQ
k+1
# $ k + 1 > N/2 diam(K) ≤ 1 : K v ∈ H (K) k+1
C
v − rK vH 1 (K) ≤ C
(diam(K))k+1 |v|H k+1 (K) . ρ(K)
NN!
$ A " NC " " N K * N * K0 N#N!
%' B % b K ! " x ∈ K x0 ∈ K0 % x = Bx0 + b. NN! ' NN! N/G! ' K0 " (
%' NN! 5 % % & K 4 "
' FC/H! 7 '
( %' det(B) % K ' & %
LE O ÉC
Y L O P
H C E T
N
E U IQ
' !
E U % I Q " * % N H C E T Y OL $ N/G! P LE O ÉC −1
K0
B v(x)
|v0 |H l (K0 ) |v|H l (K)
≤ ≤
C v0 (x0 ) = v(Bx0 + b)
K
CBl | det(B)|−1/2 |v|H l (K) CB −1 l | det(B)|1/2 |v0 |H l (K0 ) .
|v − rK v|H 1 (K) v − rK vL2 (K)
≤ ≤
CBk+1 B −1 |v|H k+1 (K) CBk+1 |v|H k+1 (K) .
% * " B ≤
diam(K) , ρ(K0 )
B −1 ≤
diam(K0 ) . ρ(K)
0 ' ' NN!
' # v ∈ H
E U IQ k+1
rh v N K rK v " v − rh v2H 1 (Ω) =
N H EC
v − rKi v2H 1 (Ki ) .
T Y POL Ki ∈Th
(Ω)
$ " ; NN! & (" Ki % C !
N#I! ; * diam(Ki )/ρ(Ki ) $
ÉC
E L O
v − rh v2H 1 (Ω) ≤ Ch2k
|v|2H k+1 (Ki ) ≤ Ch2k v2H k+1 (Ω)
Ki ∈Th
"
>)0+'+) CC " * *( P1 ( $ $ rh N = 2 3 v − rh vL2 (Ω) ≤ Ch2 vH 2 (Ω) .
(
E U IQ
Ω # ;,6?6 Ω . 6 # 8 N/2' $ ""$
Y L O " $ $"$" $ )$ $"P " , E L O ÉC
u − uh H 1 (Ω) ≤ Chk uH k+1 (Ω) ,
. C
h
u
E U IQ
' ! N ≥ 2
E U # " $ I Q
* N $
H 'C
! $ % " E * & " ' T ' $ Y L ( ' !$ O ' (" P E " * " ! K ( L % A " NC) & ;! O C
* % É " " " & * ! % & FC/H Qk
N
[0, 1]N 2N
F N
2
Ω F (Qk ) F (Qk ) = Qk
N
Qk
N
Q1
N =2
•
# ! $ Ω N
N ( Pk Qk • % & FC/H
E U IQ
##$ $ Pk Qk N = 3 8 " k9 1 " Ω = ω×]0, L[ % ω % R2 $ ω Ti ]0, L[ [zj , zj+1 ] $ R3
Ti × [zj , zj+1 ] % " Ω $ * ' Pk Qk % & FC/H •
T Y O L ( P E L ÉCO
N H EC
) ? # , . ; # , < 0 ' , # % ;"&< ? , 0 D ; . . $ "$ (Uh , Ph ) $ -" Uh " $ ' "$ Ph " $ "$ )+ $ $" KerBh∗ ,
)99) CC RnV × RnQ ,
E U IQ
%9,*:10.1',*C ' ( KerBh )⊥ = ImBh∗ A 8 . ;$&<
. ?
H C E T
N
. Uh ∈ KerBh Ah Uh · Wh = bh · Wh Wh ∈ KerBh .
Y L O P
: , 5 67 0 , , Uh KerBh * A ;$&< (Uh , Ph ) RnV × RnQ ' Uh ? KerBh A
LE O ÉC
' !
N H EC
E U IQ
R * A . ) Ph ? , , KerBh∗ nV
T Y POL
? R A , # KerBh∗ , I
. , 8 H L M 5 8 k k ) .
E $! L O É C )$" $" 0
)99) CC
$"$" $ -" 1I Rn $" " "
"$" "' )$ +" ph " $
KerBh∗ 1,
Q
*$ $ $"$" )+,
%9,*:10.1',*C rh ∈ Qh wh ∈ V0h * ) Wh · Bh∗ Rh = Bh Wh · Rh =
rh divwh dx. Ω
@ rh = 1 I ? Qh A divwh dx = wh · n ds = 0 Ω
∂Ω
T Y L
N H EC
E U IQ
wh ∈ V0h A Rh = 1I = (1, ..., 1) ? KerBh∗
PO 0
ÉC
E L O
-1
+1
0
-1
+1
0
-1
+1
0
-1
+1
0
-1
+1
0
$ W 7 0 8 ;6 ) P1 . $" D$ - $ >$"' " A∗ = A,
%@*'1',* CC A
E U IQ
Y L O P
" A $ ))"$ $ $"$ V $ V , $ " A " *$ )"- Ax, x > 0 ) " " x ∈ V $$ $ ,
%@*'1',* CC
LE O ÉC
( $
N H EC
E U IQ
@ , ) 6 I 0 0 / . , ) 6 I +,93.+1): ) ,
LE O ÉC
T Y POL
:$ $/ K ⊂ V " " )" ' " " " (un )n≥1 $" K ' $ ) " &" $ " un $-0$" $ K , :$ $/ K ⊂ V " " "-$" )" ' " " " (un )n≥1 $" K ' $ ) " &" $ " un $-0$" $ V ,
%@*'1',* CC
0 A V ) A 60 V 8 0 7 A , . ) 9 (A 60 I 8 0 , . .
E U IQ
)99) CC 8$ $ ) @/" V $$ $*$' / $" $" > )",
N H EC
%9,*:10.1',*C ' , ) A
T Y POL
46 ) (en )n≥1 ' 6 0 ? 0 8 * A n = p
E L O
en − ep 2 = en 2 + ep 2 − 2en , ep = 2,
C " " & ) @/" " $ ))"$ $ É $"$ $ , $ " " )" 0 ) / $" . , 6 en , ' #
%@*'1',* CC V
V
W
W
A
A
V " "-$" )" $ W ,
A
1 .A A A 0 xn V A 6 Axn . W W V ) A ' , . W V ) A , .
E U IQ
>)0+'+) CC " $ Id O V $ 5 &2
H C E T
N
>)0+'+) CC ) $ O 2 x = (xi )i≥1
i≥1 |xi | < +∞( x, y = i≥1 xi yi ) (ai )i≥1 ( |ai | ≤ C < +∞ i ≥ 1 $ A Ax = (ai xi )i≥1 A " A limi→+∞ ai = 0 2
LE O ÉC
Y L O P
(
N H EC
"
E U IQ
>)0+'+) CC ) U ( V W O ( A
V W ( B U V " $ AB A B ' $ $ 5 $
T Y POL
*
# E L O
ÉC
6 .
4%,0?9) CC " V $ ) @/" $$ $*$ " A $ ))"$ $ $"$ ' *$ )"-' " >$"' )" V $ V , - )) A $" $ " (λk )k≥1 ""$" )" "$ - ' " &" $ / #/"$$ (uk )k≥1 V -" )) A' - Auk = λk uk ) k ≥ 1.
E U IQ
)9.0;5) CC ' 5 & -A . H 6 A 0 &%+,93,:'1',* :3)+10.-) v ∈ V v=
+∞ k=1
E L O
T Y POL
v, uk uk .
N H EC
v = 2
+∞
|v, uk |2 .
k=1
•
>)0+'+) CC %: % 0 ν > 0 |a(w, v)| ≤ M wV vV w, v ∈ V
a(v, v) ≥ νv2V v ∈ V.
* . A . A ? . = 0 H / 8 ,# 8 .
V ⊂ H . I ;&< V H.
T Y POL
N H EC
E U IQ
, L I M . , , I ? v ∈ V Iv = v ∈ H ;. 1) & &"$ )" " V " $ $ H , " a(·, ·) $ /$ !" $"$ " - V , - )) F, $" $ " $" (λk )k≥1 )" "$ - $*$' " &" $ / #/"$$ H (uk )k≥1 -" )) ' " uk ∈ V, " a(uk , v) = λk uk , vH ∀ v ∈ V. √ 8 ) ' (uk / λk )k≥1 " $ / #/"$$ V ) ) " a(·, ·),
N H EC
E U IQ
%9,*:10.1',*C * f ∈ H A . 0 .
. u ∈ V a(u, v) = f, vH 8 v ∈ V.
T Y POL
;&
0 a(v, v) +
ηv2H
≥
νv2V
v ∈ V.
H C E T
N
E U IQ
6 (λk )k≥1 ( λk + η > 0
Y L O P
/ . 6 0 . ;& )0+'+) CC Ω =]0, L1 [×]0, L2[× · · · ×]0, LN [( 4
H C E T
(Li > 0)1≤i≤N 0 6% &&
Y L O P
5 &" , / .
LE O ÉC
( $
N H EC
E U $" $"+ IQ
∂Ω " Ω $ -" /$ 0 R ) $ & )" >$" 0 + ∂ΩN " ∂ΩD - )0+'+) CC %: % 0 ∇u ; H u− = min(u, 0) 0 Ω @ ? u+ u− ; ? * &< . H A , 6 ? λ1 @ # . 8 u1 u2 A ,6?6 u1 u2 dx = 0, Ω
N H C E
E U IQ
0 , A
T Y L PO
>)0+'+) CC ) Ω * " Ω > $
LE O ÉC
( $
$
N H EC
E U IQ
)9.0;5) CC ,0 6 : A ,6?6 0 . .
−div(A∇u) = λu Ω u=0 ∂Ω
LE O ÉC
T Y POL
R A(x) # . ;. 6 " 0 2µ + N λ > 0 9 ,0 8 f ; ,. < ;&-< ,. , 6 & ' ? (, u) 0 . .
−div (2µe(u) + λ tr(e(u)) Id) = u Ω ;&< u=0 ∂Ω,
ÉC
E L O
R = ω 2 8 . 0 ; . . . 8 . : λ 2 &
N H EC
' $ #
T Y POL
1 6 A , .6
) Pk . . 0 1 ;&&0 $ " 0 "$0 0 Ω, H01 (Ω)' *$ ) "# $" *$ Pk ' $$ ndl , " (λi , ui) ∈ R × H01 (Ω)' ) i ≥ 1' - " -" )) "#$ $ L2 (Ω) )/+ 8#" %,3%' $0 ) $"
4%,0?9) CC V0h
0 < λ1 ≤ λ2 ≤ ... ≤ λi ≤ λi+1 ...
" - )) 0 < λ1,h ≤ λ2,h ≤ ... ≤ λndl ,h ,
E U IQ
))&"$ -"$$ F, $ V0h , " " i ≥ 1 *&' $ lim |λi − λi,h | = 0.
C E T Y L PO
h→0
HN
;&
N/2' $ ""$
O P LE O ÉC
C E T LY
H k+1 (Ω)
|λi − λi,h | ≤ Ci h2k ,
"
;& $
0 $ )$ Ω "
N H EC
uL2(]0,T [;V ) + uC([0,T ];H) ≤ C u0 H + f L2 (]0,T [;H) .
T Y POL
;--
0'
$ $$ $" u0 ∈ L2(Ω)' " $ " f ∈ L2 (]0, T [; L2(Ω)), "$ # 4%,0?9) CC
ÉC
⎧ ∂u ⎪ ⎨ − ∆u = f ∂t u=0 ⎪ ⎩ u(x, 0) = u0 (x)
),), $ Ω×]0, T [ ),), ∂Ω×]0, T [ ),), $ Ω.
;-
)0+'+) CC %: % )0+'+) CC G .( 4 C T ( et $ 5 .& 0 B R ( ?Q ) a ∈ R+ g ∈ L2 (]0, T [) g ≥ 0 " ( z(t) [0, T ] R+
z(t) ≤ a + 2
t
g(s) z(s)ds
∀ t ∈ [0, T ],
0
z(t) ≤
2 t √ a+ g(s)ds
∀ t ∈ [0, T ].
0
2 6 . ( t ∈ [0, T ]( 2
t
u(x, t) dx + 2 Ω
0
|∇u(x, s)| dx ds
Ω
LE O ÉC
Y L O P
+
H C E T
≤
2
t
Ω
1/2 2 f (x, s) dx . 2
ds
0
Ω
N
1/2 u0 (x)2 dx
E U IQ ;--
)0+'+) CC %: % 0
u0 ∈ L2 (Ω)N
f ∈ L2 (]0, T [; L2 (Ω))N ⎧ ∂u + ∇p − µ∆u = f ⎪ ⎪ ⎨ ∂t divu = 0 u=0 ⎪ ⎪ ⎩ u(x, t = 0) = u0 (x)
N
Ω
Ω×]0, T [ Ω×]0, T [ ∂Ω×]0, T [ Ω
;-
0 $ )$ Ω " T " uC([0,T ];V ) + uC 1([0,T ];H) ≤ C u0 V + u1 H + f L2(]0,T [;H) .
;- &
0, 2 " u0 ∈ L (Ω) f ∈ L (]0, T [; L (Ω)) u ∈ C([0, T ]; L2(Ω)) ∩ L2 (]0, T [; H01(Ω)) $ "$ ,, f ≥ 0 ) )" " $ ]0, T [×Ω " u0 ≥ 0 ) )" " $ Ω' u ≥ 0 ) )" " $ ]0, T [×Ω,
0,3,:'1',* CC
LE O ÉC 2
2
%9,*:10.1',*C u− = min(u, 0) 0 ? L2 (]0, T [; H01 (Ω))
. " . )A 0 < t < T A ∇u(t) · ∇u− (t)dx = |∇u− (t)|2 dx. Ω
;-
0 Ω 0 ∂Ω ) f = 0( u0 ∈ L2 (Ω) u $ * .2 ) > 0 " $ K −Ku1(x) ≤ u(x, ) ≤ Ku1 (x)
∀ x ∈ Ω,
$ C max |u(x, t)| ≤ Ce−λ1 t x∈Ω
T Y POL
N H EC ∀ t > .
E U IQ
;-
'959 =,01 O 6 / . ) 8 Ω , RN ;. 6 -" 0, " u0 ∈ L2 (Ω) " u "$ $ $ C([0, T ]; L2(Ω)) ∩ L2 (]0, T [; H01(Ω)) )/+ ⎧ ∂u $ ]0, T [×Ω ⎨ ∂t − ∆u = 0 u(x, t) = 0 ]0, T [×∂Ω ⎩ u(x, 0) = u0 (x) $ Ω.
0,3,:'1',* CC
LE O ÉC
Y L O P
H C E T
N
) $
$
E U ) )" " $ I"Q $" ) $" $ )) ) $" $ , ' ) " " ") ' $H N C E T Y L O P LE O ÉC u0 (x) ≥ 0
Ω
u0
>0
u(x, ) > 0
;-"
0, $ " f ∈ L2 (]0, T [; L2(Ω)) " $ $$ $" 0 + u0 ∈ H01 (Ω)' $ $ + "$ $ u ∈ L2 (]0, T [; H01 (Ω)) ∩ C([0, T ]; L2 (Ω)) "$ # ,, ' "" "$ " ) 0 + $ . ∂u 2 2 2 2 1 ∂t ∈ L (]0, T [; L (Ω)) " u ∈ L (]0, T [; H (Ω)) ∩ C([0, T ]; H0 (Ω)), 0,3,:'1',* CC
ÉC
" $ ' - 8 9 ' " u " ( )! " % % " u0 f % FGH! 5 % " u * " u0 f % ' )#N & u0 % .( " D( )G! ' ' " " % % u t " ( % .( % (0) = f (0) + ∆u0 " ∂u * " ∂u ∂t ∂t % .( f (0) + ∆u0 = 0 ∂Ω " • ' u0 f
E U IQ
N H C E /0 " ( 3 , " #$ ! % T Y ! OL )#)! P E L O ÉC m≥0
W
2m
(Ω) = {v ∈ H 2m (Ω), v = ∆v = · · · ∆m−1 v = 0
∂Ω},
) $
$
E U I Q
&% N
' ( ) #* H
+ ! C E T : L
Y # O P " '%
" E ( A " ( % L O ( % ' * C '
' " É v2W 2m (Ω)
=
H 2m (Ω)
Ω
2
|(∆) v| dx m
C ([, T ], W 2m (Ω))
(wk )
RN
' " ! 5 " ( ( RN ,
∂u − ∆u = 0 ]0, +∞[×RN ∂t )#I! u(x, 0) = u0 (x) RN . " % " ' )#I!
√ % u0 % O =
t
N H EC
E U IQ
%& " " u0 ∈ L2 (RN ) 2 ;! 0
1 2
u(x, T )2 dx +
RN
T
0
|∇u(x, t)|2 dx dt =
RN
1 2
u0 (x)2 dx.
RN
u0 ∈ L∞ (RN )
L∞ (RN )
u(t) ∈
u(t)L∞ (RN ) ≤ u0 L∞ (RN ) ∀ t > 0.
u0 ≥ 0
RN
RN × R+
u≥0
/0 " ! ( 4 +, 2 u ∈ C (R × R ) /0 " $ ( , 2 ∞
lim
|x|→+∞
u(x, t) = 0
∀ t > 0,
N
lim u(x, t) = 0
t→+∞
+ ∗
∀ x ∈ RN .
E U IQ
/0 " (* + , 2 u
0
u(x, t) > 0 RN × R+∗ 1
:
N H EC
4 %
T Y POL
"$ &
E L O
≥ 0
u0 ≡ 0,
3+
/ . , A ( , 8A I? . ' A 0%2)0:'/'-'1% )* 1)93:
ÉC
" Ω $ -" /$ 0 RN ' " $ ") *$ T > 0, " (v0 , v1 ) ∈ × L2 (Ω)' " $ " f ∈ L2 (]0, T [; L2 (Ω)), "$ $ 0%10,(0.&) )* 1)93: $"0 $ $"$" ") )" T ⎧ ∂ v ⎪ − ∆v = f ),), $ Ω×]0, T [ ⎪ ⎨ ∂t ),), ∂Ω×]0, T [ v=0 ;-" < ⎪ v(x, T ) = v0 (x) ),), $ Ω ⎪ ⎩ ∂v ),), $ Ω ∂t (x, T ) = v1 (x) 1 " $ $ "$ v ∈ C([0, T ]; H0 (Ω)) ∩ C 1 ([0, T ]; L2(Ω)), 8 ) ' u(t, x) " "$ "$ $ ,3 " v0 (x) = u(x, T ) $ H01 (Ω) " 2 v1 (x) = ∂u ∂t (x, T ) $ L (Ω)' $ v(t, x) = u(t, x), 0,3,:'1',* CC
H01 (Ω)
2
2
H C E T
N
E U IQ
%9,*:10.1',*C @ 8 , w(x, t) = v(x, T − t) ;-"
)0+'+) CC ) u(t, x) ( M *( $
. ' $ ( 1 lim t→+∞ t
t 2 t ∂u 1 dx = lim 1 |∇u|2 dx = E0 , ∂t t→+∞ t 0 2 0 Ω Ω
E0 $ *
2
2
|u1 (x)| dx +
E0 = Ω
|∇u0 (x)| dx. Ω
- $ . u *
:
9 (
H C E T
N
E U IQ
, A 30, 3.(.1',* E 2'1)::) @*') / . I? . ' ; N = 1
Y L O P
, Ω = R< , X ; 6 < 0 , 8 , ;.
LE O ÉC
) #$
$-
N H EC
E U IQ
2 %*( (u0 , u1 ) * + Ω $ T > 0 $ [0, T ] $' .!
Y L O P
H C E T
, . 8 ( , N = 2 3
LE O ÉC
)'
N H EC
$
E U IQ
>)0+'+) CC $.33-'+.1',* 95:'+.-)6 ' * $ ( $ $ $ N = 2( $ % N = 3
OLE
1 .
ÉC
T Y POL
) +
1 A ) ;6 ' $< , ? , J ) A ( )
:
=
, )* ):3.+) :)5-)9)*1 8 . ;-$< , ;-0 ! Ω " V0h 1 H01 (Ω) & ! ! & Pk ! ndl " f (t) ∈ L2 (]0, T [; L2 (Ω)) u0 ∈ H01 (Ω) u ∈ L2 (]0, T [; H01 (Ω)) ∩ C([0, T ]; L2 (Ω)) 3-'+'1)A θ = 1A :+4%9. '93-' +'1)A θ = 1/2A :+4%9. &) 0.*D'+4,-:,* @ ;-"< 8 (M + θ∆tK)U n+1 = (M − (1 − θ)∆tK)U n + ∆t(θb(tn+1 ) + (1 − θ)b(tn )).
;-$
0
∆t
ndl
$ ) 0 h' ) " )$ $$ $" U 0 ' $ / b' " T , √
)9.0;5) CC
MU · U 1) -$ ,
8 MU · U = Ω |u|2 dx . u ∈ V0h 8 U 0 V0h ;M 0 ) .)0+'+) CC " % ? .
H C E T
N
>)0+'+) CC P1 % $
% .2 N = 1 M * C & $' &
K 2 $ $' " 07 . 2 : ∆t ≤ Ch2
LE O ÉC
Y L O P
) #$
&
E U J % % I Q ( " ' N H )NI ! " C %T E % % & FC/H Y +>!! ;, ' "! " OL Q = $
LE O ÉC
δ = 1/2( $ 2 δ = 1/2 θ = 1/12( $ δ = 1/2 θ = 1/12 + $
@ 0 1) -$ * . A , 0 > / ;. + 0 ! Ω " V0h 1 ! & Pk " (∆t) H01 (Ω) & ! ! ? " unh ∈ V0h
U n ! & V0h ! @A!B " limh→0 u0h = u0 L2 (Ω) limh→0 u1h = u1 L2 (Ω) h ∆t
)%
,
T Y POL
N H EC
E U IQ
, I P . ,6 , 0 6 J A A ) A A A 0 A 6 A , A A , I . 0 . A ,? 6 ; , +*< . n . . . ? @ tij I . i . j ;. 6 ( tji )0+'+) C C " $ J J ∀(un )n≥0 K ,
lim un = u =⇒ lim inf J(un ) ≥ J(u) .
n→+∞
n→+∞
>)0+'+) C C " $ ' /( / /&
E U IQ
>)0+'+) C C ) a b 0 < a < b( n ∈ N∗ ( Pn $
H C E T
N
:9 P * * + n P (0) = 1 - P ∈ Pn ( P = maxx∈[a,b] |P (x)| "
LE O ÉC
Y L O P inf P
P ∈Pn
;
⎞ b+a − X 1 ⎟ Tn ⎜ P (X) = ⎝ 2b − a ⎠ . b+a Tn 2 b−a ⎛
2 "
1) = )
N H EC
E U IQ
' 6 ? , , ) , ./:,-59)*1 3.: (.0.*1')
# , 5 ' : 8 , ) 8 0 V 'O 0 0 L8 ? , ) M H , ,
ÉC
E L O
>)93-) CC
0 R
T Y POL
, = 0 ; ) <
2 (R) =
x = (xi )i≥1
+∞
! x2i
< +∞ ,
i=1
x, y = 2 (R)
+∞ i=1
xi yi @ 8 J )
+∞ 2 2 xi . J(x) = x2 − 1 + i i=1
* K = 2 (R)A 0 inf
J(x) ,
C E T Y L PO x∈2 (R)
HN
E U IQ ;"
) ,0 inf J(x) = 0.
ÉC
OLE
x∈2 (R)
+ , #
N H EC
E U IQ
= δin i ≥ 1 @ . ) x 2 (R) ) 1 J(xn ) = → 0 n → +∞. n ' J .A xn . ' A . , , x ∈ 2 (R) J(x) = 0 * A , ;" 0( ϕ R $ J1 (V ) " J1 +J2 ( max(J1 , J2 )( λJ1 ϕ ◦ J1
ÉC
>)0+'+) CC ) (Li )i∈I M V " supi∈I Li V C ( J V " J * supLi ≤J Li 4 Li
M * 8 . ,# (
0 .
E U IQ
J " $ $"$ $-& $ $/ $-& K ' " " )$" $ J K " $ $ 0/ " $/ )$" $ " $ $/ $-& -$" $" - , ) J " ""$" $-&' &" ) $ )$" $ ,
0,3,:'1',* CC
Y L O P
H C E T
N
%9,*:10.1',*C u J K 1, 1) A
.
OLE
∃ δ > 0 , ∀ w ∈ K , w − u < δ =⇒ J(w) ≥ J(u) .
ÉC
;
βλ0 + L(v0 )
O P E L ÉCO
N H EC
E U IQ
;"
)6
K,
' &" $ $ $
V " J $ $"$ α$-& u J K " $
4 [J(v) − J(u)] ∀ v ∈ K . α $$" J $/ K
;$
)0+'+) CC ? $' /2. E 0% ! I > - !2 ( $' !( ) = $' !;
H C E T
N
0 5 $ 8 J . ; 8 .)6
K
$$ - $ ) @/" V ' " J $ $"$ $-& $"$ K ' " 1$*$ $*$2 $ K ' " -* $ "$ ,3' -' ∀(un )n≥0 " $ K , lim un = +∞ =⇒ lim J(un ) = +∞ . n→+∞ n→+∞
O P LE O ÉC
C E T LY
&" $ $ J K ,
)9.0;5) CC 5 & , , 6 5 $A , , , ;$ 0 x0 ∈]a, b]< J &'0)+1',*: .&9'::'/-): @ ) . ; 8 5# ? , < ', 8 V . ? ? .0 8 , J ,0 . 0 '*%;5.1',* &!5-)0 Y , , A 0 8 . 95-1'3-'+.1)50: &) .(0.*() 14%,0?9) &) L54* )1 5+D)0 : A # . A , : @ # 08 O &5.-'1% 6 , ? # ( . 2 A " .-(, 0'149): *59%0';5): &!,31'9':.1',* @ (0.&')*1
LE O ÉC
ÉC
T Y POL
E L O
T Y POL
N H EC
E U IQ
@ *)0+'+) C C ) a : V × V ) L
V J(u) = 12 a(u, u) − L(u) " J
V J (u)(v, w) = a(v, w) u, v, w ∈ V G ' ;( ;( ;!
T Y POL
J 8 .0 . . J . .A 8 .
LE O ÉC
>)0+'+) C C " J V - ; ;! + J (u)(w, w) ≥ 0 J (u)(w, w) ≥ αw2
6
@
;"
)6
ÉC
J (u), v − u ≥ 0
;$
)0+'+) CC ) K V ( a : V ( L V " J(v) = 12 a(v, v) − L(v) K ( u " u $
LE O ÉC u∈K
Y L O P
a(u, v − u) ≥ L(v − u) ∀ v ∈ K .
- #
N H EC
E U IQ
>)0+'+) CC ) J1 J2
K ⊂ V J1 " u ∈ K J1 + J2
LE O ÉC
T Y POL
J1 (u), v − u + J2 (v) − J2 (u) ≥ 0
∀v ∈ K .
.A 5 A . , L M . ? 6 .
)9.0;5) CC 9 R K 6 : 8 V @ K = u0 +P A R u0 ∈ V R P 6 . 8 V 3A v K A v − u P 0 ;$< . ? J (u), w = 0 ∀ w ∈ P ,
E U IQ
,6?6 J (u) ∈ P ⊥ 9 A P ) ,#A ,6?6 P = {v ∈ V
,
ai , v = 0
N H EC
1 ≤ i ≤ M } ,
T Y POL
R a1 , . . . , am V A ; . ) < P ⊥ , . 8 (ai )1≤i≤M , , 8 J
ÉC
E L O
u∈K
∃ λ1 , . . . , λM ∈ R ,
J (u) +
M
;-
)0+'+) CC G F (u) ≤ 0 , p ≥ 0 , p · F (u) = 0 , J (u) + p · F (u) = 0 . NC! 5 C % 1 " ' * & " ' ! u ' p ' . " (u, p) & " u '
O P LE O ÉC
C E T LY
E U Q " % ( ( * I N ' " ' H
5 C ; ( ( * %
& C E T Y C L $# 5 O P " " % ' E
L O N#! ÉC min L(v, p) . v∈V
u
J
RN
)
min
v∈RN , F (v)=Bv−c≤0
J(v) =
1 Av · v − b · v 2
*
,
: A N × N " % b ∈ RN B M × N c ∈ RM L(v, q) =
1 Av · v − b · v + q · (Bv − c) 2
N/!
∀ (v, q) ∈ RN × (R+ )M .
4 % ;& * N! J " ' N#! 0 ' q ∈ (R+ )M ' min L(v, q)
v∈RN
E U IQ
" " v → L(v, q) * * % 5 % ∂L (v, q) = Av − b + B ∗ q = 0 v = A−1 (b − B ∗ q) $ ' ∂v
H C E T
G(q) = L A−1 (b − B ∗ q), q ,
'
Y L O P
1 1 sup − q · BA−1 B ∗ q + (BA−1 b − c) · q − A−1 b · b 2 2 q≥0
LE O ÉC
.
N
NN!
-
- # %
E U 5 * & NN! I Q (" 6 ' % * " " N H 5 5 C " C $ % " * " *
E T %! ? % ' NN! Y L * % * " O ' ' " P M % & 1 /C " E %
(
L ' O ÉC B
BA−1 B ∗
M
(q ≥ 0)
•
D * " ' ( ;
/0 $# 1 ! !" ⎛ ⎜ ⎜ ⎝
A=⎜
1 −3 −4 −2 −1
0 2 2 4 2
4 −1 −2 −1 −6
2 2 0 6 3
3 −5 −1 −2 −1
5 2 2 2 1
⎞ ⎟ ⎟ ⎟. ⎠
N H EC
E U IQ
(
5 ! " i ! j ! ! 6 & ! " " 5 !7! aij ! A 5 !&
−aij 2 " ! ' % 3 5 % &! ! ! A 8
E L O
T Y POL
C É . " "
6
#
1 "
&
( ( (( @
5( / % % " ' %
−∆u = f Ω NG! ∂Ω, u=0
E U IQ
: Ω % ' RN f ∈ L2 (Ω) " % &
min
v∈H01 (Ω)
J(v) =
1 2
Ω
|∇v|2 dx −
H C E T
Y L O P
f v dx
Ω
N
N)!
% /G! 4 % % & 0 I) " N)! "
& 0 # " " 0 * % NG! (" N)! % NG!
LE O ÉC
-
E U
* ' " I Q * ! " N
" H * * $ " C ( & NG!
0& E ; Y T " ! (" " N)! O L 4 & N)! ' " P E * L N)! " %
O %' C & É u
f
e ∈ L2 (Ω)N
e = ∇v
1 J˜(v, e) = 2
min
v∈H 1 (Ω) , e∈L2 (Ω)N 0 e=∇v
|e|2 dx −
Ω
f v dx .
Ω
$ '
˜ e) + M(e, v, τ ) = J(v,
τ · (∇v − e) dx , Ω
% τ ((
∈ L2 (Ω)N
L(v, τ ) =
N H EC
M(e, v, τ ).
min
e∈L2 (Ω)N
E U IQ
$ e '
5
e → M(e, v, τ ) * % "
* "
T Y POL
1 L(v, τ ) = − 2
E L O
2
|τ | dx −
Ω
Ω
NI!
τ · ∇v dx.
f v dx + Ω
$ % " ' NI! ' N)!
ÉC
max
L(v, τ )
⎧ ⎨
τ ∈L2 (Ω)N
" '
min
v∈H01 (Ω)
L(v, τ )
1 = G(τ ) = 2 ⎩ −∞ −
= J(v) ,
− divτ = f Ω
|τ |2 dx
Ω
G !
$
%& $ : (u, σ) L(v, τ ) H (Ω) ×
E U IQ 1 0
L2 (Ω)N
L(u, σ) =
min L(v, τ ) =
max
τ ∈L2 (Ω)N v∈H01 (Ω)
min
max
v∈H01 (Ω) τ ∈L2 (Ω)N
L(v, τ ).
H C E T
N
2! u 2 N ! !! J(v) H01 (Ω) σ ! !! G(τ ) L (Ω) J(u) =
Y L O P
min J(v) =
v∈H01 (Ω)
LE O ÉC
σ = ∇u
max
τ ∈L2 (Ω)N
G(τ ) = G(σ),
- # %
E U $ ' G ! 5
Q(" I ! N H ' ( " C . & % " ' * E T * =
Y " ' O L , " D( # " ; P " ' ' E A " " L O ÉC max G(τ ) = − min(−G(τ )) 1 2
Ω
|τ |2 dx
−divτ = f
Ω
v
−divτ = f
G(τ ) ≤ J(v)
J(u) = G(σ) =
1 2
f u dx
Ω
" " % * • % "
5 C " "
! ( ! & ' $ ' G ! " −divτ = f " x ∈ Ω 4 % * % " 0 +
N H EC
G(τ ) ≤ L(v, τ ) ≤ J(v),
T Y POL
E U IQ
" ' "
u σ % $
u NG!
"
ÉC
E L O
J(u) =
1 2
|∇u|2 dx −
Ω
f u dx = − Ω
1 2
|∇u|2 dx = − Ω
1 2
f u dx . Ω
1 σ = ∇u NG! " −divσ = f ' G(τ ) ≤ J(u) = G(σ),
& " σ
G (u, σ) L(v, τ ) @ ' $ 0 II '
" " $ +
! y(t) & % RN dy = Ay + Bv + f dt y(0) = y0
0 ≤ t ≤ T
Y L O P
H C E T
N
E U IQ G!
: y0 ∈ RN f (t) ∈ RN v(t) ∈ RM
" A B % N × N N × M
LE O ÉC
-
E U $ % (
& I Q " " N H C E T Y L 8'9 :
; O 8'9 " % % A " " * P E %' & % G! L % " ( ( O C ( B' * É ' 8 9 * ( v
J(v) =
1 2
T
Rv(t) · v(t)dt +
0
z(t)
1 2
T
0
1 Q(y − z)(t) · (y − z)(t)dt + D (y(T ) − zT ) · (y(T ) − zT ) , 2
zT
R, Q, D
R
y(t)
v
L2 (]0, T [; RM )
v
]0, T [
RM
B'! %
% * % K RM " '
' ' inf J(v). G! v(t)∈L (]0,T [;K) 2
5
2 % " G! '
N H EC
E U I Q 2 C
$ # f (t) ∈ L (]0, T [; R ) v(t) ∈ L (]0, T [; K) 2
2
N
! y(t) ∈ H (]0, T [; R ) [0, T ] 5 ' f v 6 L2 $ * t 1
ÉC
E L O
N
T Y POL
exp (t − s)A (Bv + f )(s) ds
y(t) = exp(tA)y0 +
0
" % y H 1 (]0, T [; RN )
#CC " y [0, T ] $
' $ : u ∈ L (]0, T [; K) ! ! C# - !1 2
! ! u
T
Q(yu − z) · (yv − yu )dt 0
T
Ru · (v − u)dt
+ 0
+D(yu (T ) − zT ) · (yv (T ) − yu (T )) ≥ 0 ,
GC!
E U IQ
v ∈ L2 (]0, T [; K) % yv C !! v $
" " v → y * 0 + G! yv = y˜v + yˆ : y˜v Y L O P
d˜ yv = A˜ yv + Bv dt y˜v (0) = 0
LE O ÉC
H C E T
0≤t≤T
N
G#!
- # %
yˆ
N H EC
dˆ y = Aˆ y+f dt yˆ(0) = y0
T Y POL
0 ≤ t ≤ T
E U IQ
6 " yˆ v v → y˜v L2 (]0, T [; K) H 1 (]0, T [; RN ) " v → J(v) * " " % v
* " " * ! J % * % R % 5
L2 (]0, T [; K)
% * % D( IN & &
u G! . D( J (u), v − u ≥ 0 ( -
LE O ÉC
lim
→0
J(u + w) − J(u) = J (u), w.
5
J(v) " " " yu+w = yu + ˜yw $ ' GC! " " yu − yv = y˜u − y˜v
E U Q! " I
N
(
" % 1 /! $ '
H C E T Y G/! L O P E : * L " " O C É GC! * ' S 0 $ 0 G! * J (w)
w ∈ L2 ]0, T [
T
J (w)v dt
0
u
T
T
Rw · v dt +
=
0
+D(yw (T ) − zT ) ·
Q(yw − z) · y˜v dt
0 y˜v (T )
,
L2 ]0, T [
v
•
+ u (" * v yv , *2 % ' '
J (u) & G/! & 6 " * (
"$ $-0 " ' " CO ,, E *$ ) ,% $-0 - T "$ Y L O P LE O ÉC 4%,0?9) CC
J
V
J
α
C
0 < µ < 2α/C u0 ∈ K
2
(un )
u
%9,*:10.1',*C 5 " 0. . ;< , v → v − µJ (v) 0 < µ < 2α/C 2 A ,6?6 ∃ γ ∈]0, 1[ , v − µJ (v) − w − µJ (w) ≤ γv − w .
* I PK 8 0 , ; )0+'+) CC ' %: % - ;!;(
J F1 , . . . , FM , E I(u) $ u( u 6 ;2 '( Fi (u) i∈I(u) ( M $ * * λ1 , . . . , λM J (u) + i=1 λi Fi (u) = 0( λi = 0 i ∈ / I(u) " ( i ∈ {1, . . . , M }
LE O ÉC
T Y POL &
lim
ε→0
' 2 max (Fi (uε ), 0) = λi . ε
)9.0;5) CC
/ . ? 6 8 L0 M •
@
5 % B
E U IQ
@ ) V = RN 9 /C F 8 C 2 RN RN u F F ,6?6
N H EC
F (u) = 0 F (u) . 0
T Y POL
8 5# . v
F (u) = F (v) + F (v)(u − v) + O u − v2 ,
ÉC
,6?6
E L O
u = v − (F (v))
−1
F (v) + O v − u2 .
/C ? 8O . 6
* u0 ∈ RN A un+1 = un − (F (un ))
−1
F (un ) n ≥ 0.
; "
0
u
u
; &
0 " (x + y) ∈ Xad (x − y) ∈ Xad * " x = (x + y)/2 + (x − y)/2 x x '"
N H EC
E U IQ
8 . , : # Xad
T Y POL
&" $ "$ )" )0 $ "$ ,' &" $ "$ )" / , 0,3,:'1',*
CC
E L O
%9,*:10.1',*C ? "
ÉC
x ∈ Xad ;)0+'+)
E L O
CC " $ % A m× n b ∈ Rm R Xad [0, 1]n−m M n − m Ax = b ' Xad
2n−m
ÉC
. )
, G ? 4 1F ? # 0 I ,? , .
; ( .
0, :$ $ "$ $ " 6$" ) "" "$ / B " )" " c˜N = cN − N ∗ (B −1 )∗ cB ≥ 0.
-" c˜N " )) 2)+1)50 &): +,M1: 0%&5'1:,
;&
&5 +4.*()9)*1 &) /.:)
T Y POL
N H EC
E U IQ
, # . G c˜kN .A 8 8 , * 0A
.
LE O ÉC *'1'.-':.1',*
' . 0 0 , K ;+6 , 0 xB = B −1 b ≥ 0 , . < P ? 0 * A 0 ;< m . 0 ,A − Idm 0 L 0M , ;)0+'+)
x1 + 2x2
⎧ ⎨ −3x1 + 2x2 + x3 = 2 −x1 + 2x2 + x4 = 4 ⎩ x1 + x2 + x5 = 5
CC C $ * % * min
x1 ≥0, x2 ≥0
2x1 − x2
H C E T
N
E U IQ
x1 + x2 ≤ 1 x2 − x1 ≤ 1/2 $ $ $
>)0+'+)
Y L O P
CC C $ * % *
LE O ÉC
min
x1 ≥0, x2 ≥0, x3 ≥0, x4 ≥0
3x3 − x4
$
N H EC
x1 − 3x3 + 3x4 = 6 x2 − 8x3 + 4x4 = 4
T Y POL
E U IQ
.
LE O ÉC
1 . B B% 0 -A . , A A , . , ; A A 0 # Xad < . ? , Xad I 0 ,? . / , 6 .-(,0'149) &) 10.)0+'+) CC " ' Z + , ( $' >)0+'+) CC C $ E ( $' /2 5 n * R n ( ( aij % (i, j)( %% σ ∈ Sn ( max
aiσ(i) .
C E T Y L PO
σ∈Sn
1≤i≤n
HN
E U IQ ;&
* % φ [ i * %( % i + [ j φj = +∞ * % $ , * φ( $ V ! ( * + v - ( v ∈ RN $ V ! $
C = {i ∈ N | φi ≥
min
$ % % i ∈ C [ π(i)
O P E L ÉCO
HN
(ci,k +
C E T LY k∈N , (i,k)∈A
vk )}
,
E U IQ
vi = ci,π(i ) + vπ(i) .
π : C → N " i ∈ C ( k k πk (i)( $ + C 0 v ≥ v @ ;"< ) v = f (v)A . 6 ) . f : RN → RN 3 5
66 v ? , , ) * ? . )A . ? A ,# . 8 X ? , @ ( RN , A ) A A , 6 f : x → f (x) * f (φ) ≤ φA f r+1 (φ) ≤ f r (φ)A r ≥ 0 {f r (φ)}r≥0 P . . . v ∈ RN ; , . −∞ : v A . < @ f (v ) = v f 1, A v ) f A . 6 v ≤ φA f A v = f r (v ) ≤ f r (φ)A r ≥ 0A , ) r ≥ 0A v ≤ v A v ) f * , 5 A 8 . 6) f A . .
H C E T
Y " L O $"$ - *$ ) ,=, P E L O ÉC 4%,0?9)
CC $1%0.1',* :50 -): 2.-)50:6 v
N
{f r (φ)}r≥0
E U IQ
T" -
-
E U
I Q " % ( & & N
H " " " " C ! & " " % E T ! Y * '
L '.dA \ '%A 8 $" B"#,A 9 . '7 -A 6 $"6$"$A ? )0+'+) CC - * * + !2( $ + $' !
>)0+'+) CC @ A : * + * % G = (N , A)( $ t : A → R+ ( + %% % [ * *( % λ * *( D(λ) + $ E ' O N ( : * >)0+'+)
T Y POL
N H EC
E U IQ
CC > &;( 4 Ji
E L O
Rn R $ +∞ $ $ ( $ 0% ;( + > C &; " C ⊂ ∂J(x) 2 0 ∈ ∂J(x) ' *
ÉC
min
t
y ∈ Rn , t ∈ R, Ji (y) ≤ t, ∀i ∈ I ,
0 ∈ C 0 * ( C = ∂J(x)
@ " '; " " " 0 , ( ! ! ' * < ! $ " ' ( ' < * ' " 8'9 " 0 #C
" ' & % ( - Y & ( , '
( ( " 1 C ! , ' ' " ' ' 6 4 6 %
' 4 % "
LE O ÉC
Y L O P
H C E T
N
E U IQ
E U ' 5 B & I Q " % ("
( * N ' 4 % C H " " % %E % B T ' % (" E
! , ' ' 1 " & Y 4 L " O @ , ' 9' 3 " ' 4 " " P % ' ' LE 4 O ' 9' ' & C * 4 4 K ' ( - & 5 3 É % 1 5 B ' 4 $
" ' 4 " % 4 % B -
& %
-
' 4 M ' & 0 #/ ' ( % 0 #N 4 $ " ' 4 %' " ' < K " & " = 4 ' % ' " - ! ? A O . 1 7 ( J IGI " - ! ! 5 B Z • II/
T Y POL
N H EC
E U IQ
( & A$ ( " ' " ; ' ' " % " ( % & * + K ( (" " % FCH! ' % F/H , ( % ( " " & % ' 1 " " ' ( " " % %
. ( " (( '
" % % % &
' , (" + " % ' !
5 "
& " ' " •
ÉC
E L O
LE O ÉC
Y L O P
H C E T
N
E U IQ
N H EC
E U IQ
#442': : '2: 2:4#2: !2 ; ' 0
0 ≥ −2 x − xK , y − xK + θz2 .
0 * θ % ' ! A " xK " % y ∈ K x − y2 = x − xK 2 + xK − y2 + 2 x − xK , xK − y ≥ x − xK 2 ,
" % " xK ' ; ( x K
C E T Y L PO
HN
E U IQ
" V $ ) @/" ) ) " , , $ ) ) / #/"$$ $// V $ $// (en )n≥1 $" V " "#$ ) ) " " " ) -" $0$ ) "" " $ $ V , %@*'1',* C C
LE O ÉC
"
E U ) " , " " $ ) @/" ) IQ N
$ / #/"$$ , " " H $" ' &" $ $ " " )" $-0 - $ C) E "$ - $*$' " "" " " *$ , 8 ) ' $ T Y L O P E $O "L ÉC 0,3,:'1',* C C
,
V
(en )n≥1 (xn )n≥1 p
V
x2 = x, x =
V p x n=1 xn en xn = x, en
x
;
0 y ' (en )n≥1 " x − y < OP D( Sp " & z ∈ V * Sp z = zW : zW ; ( % W p % (en )1≤n≤p 0 % ! (z − Sp z) ( & W & Sp z $ " z2 = z − Sp z2 + Sp z2 , #! " "
E L O
n )n≥1
T Y POL
N H EC
E U IQ
Sp z ≤ z∀z ∈ V.
5
Sp z (en )1≤n≤p " (z − Sp z) ( & ( (en )1≤n≤p % * "
ÉC
Sp z =
p
z, en en .
n=1
p
Sp y = y y ' (en )n≥1 " Sp x − x ≤ Sp (x − y) + y − x ≤ 2x − y ≤ 2.
$ % Sp x % x . % " #! 2 2 lim Sp x = x ,
p→+∞
" " *
C! %
H C E T
N
E U IQ
, , 0 0 00 , = 0 . :6 , , 0 0 00
Y L O P
" V $ ) @/" )/ ,, &" $ $// $ $ V , &" $ / #/"$$ $// V , 0,3,:'1',* C C
LE O ÉC
$
E U * I % 1 Q N " &
& ; H " '! O 1( & * ' C E
* ( 5
" T % L Y T % " . P O ' (' LE O " " & ) @/" , :$ ))"$ ÉC (vn )n≥1
V
vn
[v1 , · · · , vn ] = [e1 , · · · , en ]
(en )n≥1
(en )n≥1
V
(vn )n≥1
(en )n≥1
%@*'1',* C C
V
W
$ A V $ W " " $"$ &" $ $"$" C " AxW ≤ CxV
∀x ∈ V.
) )"" $"$" C -* "" $0" " $ ))"$ $ A' "$" " A =
AxW . x∈V,x=0 xV sup
N H EC
E U IQ
. . , , = 0 ; , X ,6 )6 " K $ ) " $-& $$ - " $ ) @/" V ' " x0 ∈/ K , &"
$ #!))$ V ) ""$" x0 " K ' " &" $ $ L ∈ V " α ∈ R " L(x0 ) < α < L(x)
; "
0A R ∆k 6 , k AA uii 8 @ B = LD C = D−1 U . ) A = BC ' A = A∗ A C(B ∗ )−1 = B −1 (C ∗ ) 9 . & C(B ∗ )−1 A B −1 C ∗ 8 9 1 A B C HA B −1 C ∗ , A ,6?6 C(B ∗ )−1 = B −1 C ∗ = IdA C = B ∗ * , '%#A , 8 A = B1 B1∗ = B2 B2∗ A ,R B2−1 B1 = B2∗ (B1∗ )−1 1 &A B2−1 B1 = D = diag(d1 , ..., dn )A A = B2 B2∗ = B2 (DD∗ )B2∗ ' B2 . 0A . D2 = Id di = ±1 @ : , '%# 8 # 1 di = 1A B1 = B2
LE O ÉC
Y L O P
H C E T
N
E U IQ
*
N H EC
E U IQ
.-+5- 30.1';5) &) -. =.+1,0':.1',* &) 4,-):DBC 9 A 86
'%# B ) , A = BB ∗ A = (aij )1≤i,j≤n A B = (bij )1≤i,j≤n . bij = 0 i < j * 1 ≤ i, j ≤ nA .
LE O ÉC
T Y POL aij =
n
min(i,j)
bik bjk =
k=1
bik bjk .
k=1
9 ) A ; A .
H A # < B 3 A . (j − 1) B 8 (j − 1) AA j 6 A 1 2 j j−1 2 2 ajj = (bjk ) ⇒ bjj = 3ajj − (bjk )2 ai,j =
k=1 j
k=1
bjk bi,k
⇒ bi,j =
ai,j −
j−1
k=1
k=1 bjk bi,k
bjj
E U IQ
j + 1 ≤ i ≤ n.
N H EC
@ j 6 B 8 (j − 1) 3 A G A A # ) .A 8 3 A A , 2 ) .A . ajj − j−1 (b ) ≤ 0 j A k=1 jk H ,
E L O
T Y POL
-(,0'149) *59%0';5)C , '%# , 8O 6
ÉC
0 A ? 8 B + , : % 8 A A #
( j = 1, n ( k = 1, j − 1
ajj = ajj − (bjk )2 + k √ ajj = ajj ( i = j + 1, n ( k = 1, j − 1 aij = aij − bjk bik
+ k aij =
aij ajj
+ i + j
Y L O P
H C E T
N
E U IQ
,931) &!,3%0.1',*:C * ,: '%#
LE O ÉC
0 , ; < ? 6
*
N H EC
E U IQ
0 n 0 , W 2 '%# J 0 , Nop
ÉC
OLE
T Y POL Nop =
n
⎛
⎝(j − 1) +
j=1
n
⎞
j⎠ ,
i=j+1
A A Nop ≈ n3 /6
0 J 8 ( # ? B B ∗ 0 , Nop ≈ n2 '%# . &)5> =,': 3-5: 0.3'&) 4 # ) . W
.10'+): /.*&): )1 9.10'+): +0)5:):
N H EC
E U IQ
, 0 : A , +0)5:) ? A /.*&) * # ; ) &5 2)+1)50 '*'1'.- x0 ∈ Rn ' " "$ ))# xk
$-0 - "$ &" x,
H C E T
N
E U IQ
@ : . , . ? , # , ;. 1) " # 0 (M ∗ + N ) % w = 0 A M %' . −1 2 ∗ M
N = 1 − (M + N )w, w < 1,
N
E U IQ
" " ( % &
( % " % ( * % % * J (
%
LE O ÉC
Y L O P
H C E T
*
E U # " " ! ; & I Q " !! N H %
! 7 C ! $ 1 ?
6 9 A ωopt # , M −1 N A . .
ÉC
E L O
>)0+'+) C C ) A % " ω ∈ ]0, 2[( % *
>)0+'+) C C " ( % ( 5 ρ(M −1 N ) ≥ |1 − ω| , ∀ω = 0,
$ * 0 < ω < 2
E U IQ
" $ )+" α = 0, $ )) "# 0 $" "# ""- )"$
%@*'1',* C C $9%14,&) &5 (0.&')*16 M=
1 Id α
"
N=
1 Id − A . α
Y L O P
H C E T
N
0 . 6 A 8 f (x) = 12 Ax · x − b · x 0
LE O ÉC
*
)99) C C ... ≤ λn ,
E U )) " $ " 0$/ - I$Q$-0 N ' "# H 0 $" ) $ ' C "# 0 $" $-0 " E )"' $ ' " )+" ' " T Y P O L "
LE O ÉC
λ1 ≤ λ2 ≤
A
λ1 ≤ 0 ≤ λn - α, 0 < λ1 ≤ $" 0 < α < 2/λn αopt =
... ≤ λn
ρ(M −1 N )
α
2 λ1 + λn
min ρ(M −1 N ) = α
λn − λ1 . λn + λ1
)9.0;5) C C λ1 ≤ ... ≤ λn < 0A #
) 8 α −α * αopt A # , 8 λn /λ1 A I A , cond2 (A) A * A A 0 A . •
E U IQ
%9,*:10.1',*C 1, $A . ρ(M −1 N ) < 1 @ M −1 N = ( Id − αA)A
N H EC
ρ(M −1 N ) < 1 ⇔ |1 − αλi | < 1 ⇔ −1 < 1 − αλi < 1 , ∀i.
T Y POL
' αλi > 0 1 ≤ i ≤ n * . A . H H α . λ1 ≤ 0 ≤ λn A α A A 0 < λ1 ≤ ... ≤ λn A , 8 0 < α < 2/λn * αopt A 8 λ → |1 − αλ| ] − ∞, 1/α] [1/α, +∞[A
ÉC
E L O
ρ(M −1 N ) = max{|1 − αλ1 |, |1 − αλn |}.
* A 8 α → ρ(M −1 N ) , 6 2 αopt = λ1 +λ n
5 I I
. # # ) . , , ; 0 . A . 1) 0 " *$' ) E C ' ) T "Y L O P $ $ -" $$ ) 3,, 8 ) ' "" " " ' &" /$ E "# $-0L - "$ !"+ $ $' ) ' ""$, O ÉC
)99) C C
A x0 ∈ Rn r0 = b − Ax0
(Kk )k≥0
xk ∈ [x0 + Kk−1 ]
n r0
k≥1
;
)0+'+) C C ) A : ) (xk )0≤k≤n
T Y POL
% % * 5* rk = b − Axk dk = xk+1 − xk " $ N: Kk * +
ÉC
E L O
Kk = [r0 , ..., rk ] = [d0 , ..., dk ],
(rk )0≤k≤n−1 %* rk · rl = 0 0 ≤ l < k ≤ n − 1,
(dk )0≤k≤n−1 5* + A Adk · dl = 0 0 ≤ l < k ≤ n − 1.
) , . I
9 (A , , rk ? Kk−1 A xk . 8 .
HN
E U IQ
" A $ " !" *$ )"-' " x0 " (xk , rk , pk ) " " *$ ) "$ $
0,3,:'1',* C C
C E T Y L " ) O P E OL
p0 = r0 = b − Ax0 ,
ÉC
⎧ ⎨ xk+1 = xk + αk pk 0≤k rk+1 = rk − αk Apk ⎩ pk+1 = rk+1 + βk pk
∈ Rn ,
;
C ! . %
E L O
T Y POL
min |λi − λ| ≤ ˆ vk+1
1≤i≤m
|ek · y| , y
"
ÉC
LE O ÉC
Y L O P
H C E T
N
E U IQ
T Y POL
É
N H EC
E U IQ
$%&' LE O C
TU 3=N3 +BA 734/3/5 5A @+/ NEA "NJ + .A /C N# ;f53 >A $ )0$0A 2 'A /C Z% ;-9+ 2A 34/3 7A A/ #' B CA E ;&