Alkaloids: Chemical and Biological Perspectives
Related Titles of Interest Books CLARIDGE: High-Resolution NMR Techni...
89 downloads
1552 Views
15MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Alkaloids: Chemical and Biological Perspectives
Related Titles of Interest Books CLARIDGE: High-Resolution NMR Techniques in Organic Chemistry GAWLEY & AUBE: Principles of Asymmetric Synthesis GRIBBLE & GILCHRIST: Progress in Heterocyclic Chemistry LEVY & TANG: The Chemistry of C-Glycosides PALYI: Advances in Biochirality RAHMAN: Studies in Natural Products Chemistry RAHMAN: Handbook of Natural Product Data ROMEO: Recent Advances in Phytochemistry SESSLER & WEGHORN: Expanded, Contracted and Isomeric Porphyrins WONG & WHITESIDES: Enzymes in Synthetic Organic Chemistry Major Reference Works BARTON, NAKANISHI, METH-COHN: Comprehensive Natural Products Chemisti BARTON & OLLIS: Comprehensive Organic Chemistry KATRITZKY & REES: Comprehensive Heterocyclic Chemistry I CD-Rom KATRITZKY. REES & SCRIVEN: Comprehensive Heterocyclic Chemistry II KATRITZKY, METH-COHN & REES: Comprehensive Organic Functional Group Transformations LEHN, ATWOOD, DAVIES. MACNICOL, VOGTLE: Comprehensive Supramolecular Chemistry SAINSBURY: Rodd's Chemistry of Carbon Compounds TROST & FLEMING: Comprehensive Organic Synthesis Journals BIOORGANIC & MEDICINAL CHEMISTRY BIOORGANIC & MEDICINAL CHEMISTRY LETTERS CARBOHYDRATE RESEARCH HETEROCYCLES (distributed by Elsevier) JOURNAL OF SUPRAMOLECULAR CHEMISTRY PHYTOCHEMISTRY TETRAHEDRON TETRAHEDRON: ASYMMETRY TETRAHEDRON LETTERS Full details of all Elsevier Science publications, and a free specimen copy of any Elsevier Science journal, are available on request from your nearest Elsevier Science office.
Alkaloids: Chemical and Biological Perspectives Volume Fifteen
Edited by
S. William Pelletier Institute for Natural Products Research and Department of Chemistry The University of Georgia, Athens
2001
PERGAMON An Imprint of Elsevier Science
Amsterdam - London • New York - Oxford - Paris - Shannon - Tokyo
ELSEVIER SCIENCE Ltd The Boulevard, Langford Lane Kidiington, Oxford OX5 1GB. UK
6 2 0 0 1 Elsevier Science Ltd. All rights reserved.
This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to iu use: Photocopying Single photocopies of single chapters may be made for personal use as altowed by national copyright laws. Permission of die Publisher and payment of a fee is requiroJ for all other photocopying, including multiple or systematic copying, copying for advertising or promotional puiposes. resale, amd all forms of document delivery. Specif rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use. Permissions may be sought directly from Elsevier Science Global RighU Depaitmem. PO Box 800. Oxford OXS IDX. UK; phone: (444) 1865 843830. fax: (444) 1865 853333. e-mail: permissions0elsevier.co.uk. You may also contact Global RighU directly through Elsevier's home page (http'7/www.elsevier.com), by selecting 'Obtaining Permissions'. In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danven. MA 01923. USA; phone: (4l) (978) 7508400. fax: (4l) (978) 7504744. and in the UK thnwgh the Copyright Ucensing Agency Rapid Clearance Service (CLARCS). 90 Tottenham Court Road. London WiP OLP. UK; phone: (444) 207 631 5555; fax: (444) 207 631 5500. Other countries may have a local reprographicrightsagency for payments. Derivative Works Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material. Permission of the Publisher isrequiredfor all otho^ derivative works, including compilations and translations. Electronic Storage or Usage Permission of the Publisher isrequiredto store or use electronically any nutterial contained in this work, including any chapter or part of a chapter. Except as outlined above, no pait of this woik may be reproduced, stored in aretrievalsystem or transmitted in any fomi or by any mesms, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. Address permissions requests to: Elsevier Science Global Rights Department, at the mail, fax and e-mail addresses noted above. Notice No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.
First edition 2001 Library of Congress Cataloging in Publication Data A catalog record from the Library of Congress has been applied for. British Library Cataloguing in Publication Data A catalogue record from the British Lilvary has been applied for.
ISBN:
0 0 8 044025 8
Transferred to digital printing 2005
Dedicated to Tuticorin Raghavachari Govindachari (1915.) T. R. Govindachari's contributions have been largely in the field of alkaloid chemistry. He was bom on July 30, 1915 in Madras (Chennai) India and obtained his B.Sc. (1934), M.Sc. (1936) and Ph.D. (1946) degreesfix)mthe University of Madras. He carried out post-doctoral work (1949) at the University of Illinois. He was mainly responsible for the structure elucidation of tylophorine and its congeners, tiliacorine, ancistrocladine, atalaphilline, and many other alkaloids. He isolated venenatine, isovenenatine and the papaya alkaloids carpaine, pseudocarpaine and assigned their structures. Diuing his stay at Illinois, he was associated with Professor Roger Adams and contributed to the structures of many pyrrolizidine alkaloids such as riddelliine, seneciophylline, arid senecionine from Senecia species. He was Professor of chemistry and Principal at Presidency College, Madras (1952-1962) and was director of the CIBA research Centre, Bombay (1963-1975). After retirement he directed work at the Amrutanjan Research Institute and the SPIC Science Foundation. Dr. Govindachari has an indefatigable interest in the study of Natural Products and has elucidated the structures of many novel oxygen heterocyclics and terpenoids like polyalthic acid and azadirachtins from the neem kernel extracts.
B. S. Joshi
This Page Intentionally Left Blank
vii
Preface Volume 15 of this series features four important reviews of research on alkaloids. Chapter I by B. S. Joshi, S. W. Pelletier and S. K. Srivastava is the first comprehensive review of the catbon-13 and proton NMR shift assignments and physical constants of diterpene alkaloids and their derivatives. In addition to the catalogue of spectral and physical data, the chapter includes a table of the occurrences of these alkaloids in various plant species, tables containing molecular formulas versus calculated high-resolution mass values, and calculated high-resolution mass values versus the molecular formulas of diterpenoid alkaloids, as well as seven tables summarizing the carbon-13 chemical shifts of various functional groups in diterpenoid alkaloids. Chapter 2 by J. Kim, Y.H. Choi and K.-P. Yoo is a fascinating review of the supercritical fluid extraction of alkaloids. This technique using basic modifiers, provides an alternative method for the extraction of alkaloids. Chapter 3 by S. Prabhakar and M.R. Tavares summarizes recent advances in the synthesis of Amaryllidaceae alkaloids, an important class of naturally-occurring bases and neutral compounds. The increased activity in the synthesis of these alkaloids over the last decade is undoubtedly due to the fact that certain members of this family possess interesting and useful biological properties. Many elegant syntheses, chiral and otherwise, of structures incorporating many asymmetric centres are reviewed. Chapter 4 by J.J. Li reviews radical cyclization reactions in the total synthesis of indole alkaloids. The use of free radical chemistry in the synthesis of alkaloids has grown markedly because of the mild reaction conditions, tolerance of a wide variety of functional groups, and the good stereoselectivities. Each chapter in this volume has been reviewed by at least one specialist in the field. The editor thanks these reviewers for their important contributions to this volume. Indexes for both subjects and organisms are provided. S. William Pelletier Athens, Georgia May 28,2001
This Page Intentionally Left Blank
ix
Contents ofPrevious Volumes Volume 1 1. The Nature and Definition of an Alkaloid S. William Pelletier 2. Arthropod Alkaloids: Distribution, Functions, and Chemistry Tappey H. Jones and Murray S. Blum
33
3. Biosynthesis and Metabolism of the Tobacco Alkaloids Edward Leete
85
4. The Toxicology and Pharmacology of Diterpenoid Alkaloids M H. Benn and John M. Jacyno 5. A Chemotaxonomic Investigation of the Plant Families of Apocynaceae, Loganiaceae, and Rubiaceae by Their Indole Alkaloid Content M Volkan Kisabiirek, Anthony J.M, Leeuwenberg, and Manfred Hesse
153
211
Volume 2 1. Some Uses of X-ray Diffraction in Alkaloid Chemistry Janet Finer-Moore, Edward Arnold, and Jon Clardy 2. The Imidazole Alkaloids RicharkK,Hill 3. Quinolizidine Alkaloids of the Leguminosae: Structural Types, Analyses, Chemotaxonomy, and Biological Properties A. Douglas Kinghom and Manuel F, Balandrin 4. Chemistry and Pharmacology of Maytansinoid Alkaloids Cecil R, Smith, Jr. and Richard G, Powell
49
105
149
X
Contents of Previous Volumes
5. ^^C and Proton NMR Shift Assignments and Physical Constants of Ci9-Diterpenoid Alkaloids S. William Pelletier, Naresh V. Mody, Balawant S. Joshi, and Lee C. Schramm
205
Volume 3 1. The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology Gahor B. Fodor and Brenda Colasanti 2. The Indolosesquiterpene Alkaloids of the Annonaceae Peter G. Waterman
I
91
3. Cyclopeptide Alkaloids Madeleine M, Joullie and Ruth F. Nutt
113
4. Cannabis Alkaloids Mahmoud A. ElSohly
169
5. Synthesis of Lycopodium Alkaloids Todd A. Blumenkopf and Clayton H. Heathcock
185
6. The Synthesis of Indolizidine and Quinolizidine Alkaloids of Tylophora, Cryptocarya, Ipomoea, Elaeocarptis, and Related Species R. B. Herbert 7. Recent Advances in the Total Synthesis of Pentacyclic Aspidosperma Alkaloids Larry E, Overman and Michael Sworin
Volume 4 1. Amphibian Alkaloids: Chemistry, Pharmacology and Biology John W. Daly and Thomas F. Spande
241
275
Contents of Previous Volumes 2. Marine Alkaloids and Related Compounds William Fenical 3. The Dimeric Alkaloids of the Rutaceae Derived by Diels-Alder Addition Peter G. Watermann 4. Teratology of Steroidal Alkaloids Richard F. Keeler
x\ 275
331
389
Volume 5 1. The Chemistry and Biochemistry of Simple Indolizidine and Related Polyhydroxy Alkaloids Alan D. Elhein andRussellJ. Molyneux 2. Structure and Synthesis of Phenanthroindiolizidine Alkaloids and Some Related Compounds Emery Gellert
55
3. The Aporphinoid Alkaloids of the Annonaceae Andre Cave, Michel Lehoeuf, Peter G. Waterman
133
4. The Thalictrum Alkaloids: Chemistry and Pharmacology Paul L Schiff. Jr.
271
5. Synthesis of Chephalotaxine Alkaloids Tomas Hudlicky, Lawrence D. Kwart, and Josephine W. Reed
639
Volume 6 1. Chemistry, Biology and Therapeutics of the Mitomycins William A. Remers and Robert T. Dorr 2. Alkaloids of Tabernaemontana Species Teris A. van Seek and Marian A.J. T. van Gessel
75
xii
Contents of Previous Volumes
3. Advances in Alkaloid Total Synthesis via Iminium Ions, a-Aminocarbanions and a-Aminoradicals David J. Hart
4. The Biosynthesis of Protoberberine Alkaloids Christopher W, W. Beecher and William J. Kelleher
5. Quinoline, Acridone and Quinazoline Alkaloids: Chemistry, Biosynthesis and Biological Properties Michael F. Grundon
227
297
339
Volume 7 1. Homoerythrina and Related Alkaloids /. Ralph C. Bick and Sirichai Panichanum 2. Carbon-13 NMR Spectroscopy of Steroidal Alkaloids Pawan K, Agrawal Santosh K. Srivastava, and William Gqffield 3. Carbon-13 and Proton NMR Shift Assignments and Physical Constants of Norditerpenoid Alkaloids S. William Pelletier and Balawant S. Joshi
43
297
Volume 8 1. Curare Norman G. Bisset
2. Alkaloid Chemistry and Feeding Specificity of Insect Herbivores James A. Saunders, Nichole R. O'Neill, and John T. Romeo
151
3. Recent Advances in the Synthesis of Yohimbine Alkaloids Ellen W. Baxter and Patrick S. Mariano
197
4. The Loline Group of Pyrrolizidine Alkaloids Richard G, Powell and Richard J, Petroski
320
Contents of Previous Volumes
xiii
Volume 9 1. Taxol M £ . Wall and M. a Want 2. The Synthesis ofMacroline Related Sarpagine Alkaloids Linda K. Hamaker and James M, Cook
23
3. Erythrina Alkaloids Amrik Singh Chawla and Vijay K. Kapoor
85
4. Chemistry, Biology and Chemoecology of the Pyrrolizidine Alkaloids Thomas Hartmann andLudger Witte
155
5. AlkaloidsfromCell Cultures of Aspidosperma Quebracho-Bianco P. Obitz, J. Stdckigt, L A. Mendonza, N, Aimi andS.-i. Sakai
235
6. Fumonisins Richard G. Powell and Ronald D. Planner
247
Volume 10 1. AlkaloidsfromAustralian Flora /. R. C. Bick 2. Pyridine and Piperidine Alkaloids: An Update Marilyn J, Schneider
155
3. 3-Alkylpiperidine Alkaloids IsolatedfromMarine Sponges in the Order Haplosclerida Raymond J. Andersen, Rob W. M Van Soest and Fangming Kong
301
4. P-Carboline and Isoquinoline AlkaloidsfromMarine Organisms Billl Baker
357
Contents of Previous Volumes Volume 11 1.
The Tlialictnm Alkaloids: Chemistry and Pharmacology (1985 - 1995) Paul L Schiff. Jr.
1
2.
Taxine Gioxwtni Appendino
237
3.
The Alkaloids of South American Menispermaceae Maiy D. Menachen^
269
4.
The Chemistry and Biological Activity of Calystegines and Related A'brtropane Alkaloids Russell J. MolyneiLX, Robert J. Nash, and Naoki Asano
303
5.
Polyhydroxylated Alkaloids that Inhibit Glycosidases Robert J. Nash, Naoki Asano, and Alison A. Watson
345
Volume 12 1.
Acronycine-type Alkaloids: Chemistry and Biology Frangois Tillequin, Sylvie Michel, and Alexios-Leandros Skaltsounis
1
2.
Solanum Steroid Alkaloids — an Update Helmut Ripperger
103
3.
Synthesis and Structure-Activity Studies of Lissoclinum Peptide Alkaloids Peter Wipf
187
4.
Pyroglutamate as a Chiral Template for the Synthesis of Alkaloids Michael B. Smith
229
5.
Analysis of Alkaloids by Capillary Electrophoresis and Capillary Electrophoresis — Electrospray Mass Spectrometry Joachim Stockigt, Matthias linger, Detlef Stockigt, and Detlev Belder
289
Contents of Previous Volumes 6.
Oxidation of Anthelmentic Marcofortine A, an Indole Alkaloid Byung H. Lee, Michael F. Clothier, and Gate I. Kornis
xv 343
Volume 13 1.
Alkaloids from Amphibian Skins John W. Daly, H. Martin Garraffo and Thomas F. Spande
1
2.
Naturally Occurring Cyclotryptophans and Cyclotryptamines Uffe Anthoni, Carsten Christophersen and Per Halfdan Nielson
163
3.
Recent Research on Pyrrole Alkaloids Philip W, LeQiiesne, Ying Dong and Todd A. Blythe
237
4.
Recent Developments in the Chemistry of Norditeipenoid and Diterpenoid Alkaloids Balawant S. Joshi and S. William Pelletier
289
5.
New Approaches to the Syntheses of Piperidine, Izidine, and Quinazoline Alkaloids by Means of Transition Metal Catalyzed Carbonylations Iwao Ojima and Donna M. Ma
371
Volume 14 1.
The Bisbenzylisoquinoline Alkaloids - A Tabular Review Paul L Schiff, Jn
2.
Alkaloids from Malaysian Flora
285
3.
Applications of Palladium Chemistry to the Total Synthesis of Naturally Occurring Indole Alkaloids Jie Jack Li
437
TohSeokKam
1
This Page Intentionally Left Blank
xvii
Contributors Young Hae Choi, College of Phannacy, Seoul National University, Seoul 151-742, KOREA. Balawant S. Joshi, Institute for Natural Products Research, University of Georgia, Athens, GA 30602, U.S.A. Jinwoong Kim, College of Pharmacy, Seoul National University, Seoul 151-742, KOREA. Jie Jack Lie, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A. S. William Pelletier, Institute for Natural Products Research and The Department of Chemistry, University of Georgia, Athens, GA 30602, U.S.A. Sundaresan Prabhakar, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2825-114 Monte de Caparica, PORTUGAL. Santosh K. Srivastava, Central Institute of Medicinal and Aromatic Plants, Council of Scientific & Industrial Research, PO CIMAP, Lucknow-226015, INDIA. M. Regina Tavares, Department of Technology of Chemical Industries, INETI, 1649-038 Lisbon, PORTUGAL. Ki-Pung Yoo, Department of Chemical Engineering, Sogang University, Seoul 121-742, KOREA.
This Page Intentionally Left Blank
xix
Contents 1.
2. 3.
4.
Carbon-13 and Proton NMR Shift Assignments and Physical Constants of Diterpenoid Alkaloids Balawant S. Joshi, S. William Pelletier, and Santosh K, Srivastava
1
Supercritical Fluid Extraction of Alkaloids Jinwoong Kim, Young Hae Choi, and Ki-Pung Yoo
415
Recent Advances in the Total Synthesis of Amaryllidaceae Alkaloids Sundaresan Prabhakar and M. Regina Tavares
433
Applications of Radical Cyclization Reactions in Total Syntheses of Naturally Occurring Indole Alkaloids Jie Jack Li
573
Subject Index
623
Organism Index
633
This Page Intentionally Left Blank
Chapter One
Carbon-13 and Proton NMR Shift Assignments and Pliysical Constants of Diterpenoid Alkaloids Balawant S. Joshi and S. Wtlliam Pelletier Institute for Natural Products Research and the Department of Chemistry The University of Georgia Athens, Georgia 30602-2556 U.S.A. Santosh K. Srivastava Central Institute ofMedicinal and Aromatic Plants Council ofScientific & Industrial Research PO'CIMAP, Lucknow'226015 India
CONTENTS 1. 2. 3. 4.
Introduction '^C-Chemical Shifts of Various Functional Groups of C2o-Diterpenoid Alkaloids Index of Naturally Occurring Diterpenoid Alkaloids and their Derivatives Calculated High Resolution Mass Values and Molecular Formulas of Diterpenoid Alkaloids 5. Occurrence ofDiterpenoid Alkaloids in Plant Species 6. Catalogue of Spectral Data and Physical Constants of Naturally Occurring Diterpenoid Alkaloids and their Derivatives
2 5 13 22 37 48
2
1.
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Introduction
Diterpenoid alkaloids have been isolated from the genera of the families Ranunculaceae (Aconitum, Comolida, Delphinium^ Thalictrum), Garryaceae (Garraya), Rosaceae (Spiraea), and Compositae (Inula). These alkaloids can be divided into two broad categories: norditerpenoid alkaloids (based on a Ci9-skeleton) and the diterpenoid alkaloids (based on a C2o-skeleton)J The chemistry of the diterpenoid alkaloids has been reviewed in earlier literature. ^*^*^*^ Structural elucidation of norditerpenoid alkaloids is mostly straightforward since almost all the alkaloids fall in one major skeleton-type and have well defmed substitution and configurational pattern. In addition ^^C NMR data for norditerpenoid alkaloids is readily available to compare chemical shift data of alkaloids having closely related structures.^'^ Structure determination of the diterpenoid alkaloids (C20) has been a challenging task because of the diverse skeleta of these alkaloids. During the period (-1962-1972), many of the structures were determined by X-ray crystal structure determination. The development of high resolution NMR and Mass spectral instruments has facilitated the structure elucidation and determination of the stereochemistry of the diterpenoid alkaloids. The structures of more than 240 naturally occurring diterpenoid alkaloids have been determined in the past twenty five years making use of '^C NMR studies. The diterpenoid alkaloids are derived from tetra- or pentacyclic diterpenes in which C(19) and C(20) are linked with the nitrogen of |3-aminoethanol, methyl or ethylamine to form a heterocyclic ring. These alkaloids can be divided in two broad types namely, atisanes and the kauranes. The atisane skeleton contains the [2,2,2]-bicyclic ring system with the C(15)-C(16) bridge attached at C(12). This ring system incorporates an ent-aiisane skeleton, but does not obey the isoprene rule. The atisane group has been subdivided into four subtypes Al, A2, A3, and A4 as shown in Figure 1. The kaurane skeleton possesses a [3,2,l]-bicyclic ring system with C(15)- C(16) bridge connected to C(13), forming thefive-memberring D. These alkaloids are modeled on an e/7/-kaurane nucleus and obey the isoprene rule. The kaurane-type alkaloids have been divided into three subtypes Bl, B2, and B3. In contrast to the norditerpenoid alkaloids, the diterpenoid alkaloids are less oxygenated compounds. The diterpenoid alkaloids are found to be oxygenated at the C(l), C(2), C(3), C(6), C(7), C(9), C(ll), C(13), C(14), C(15), C(17), or C(19) positions. A large majority of alkaloids are oxygenated on three or four of the carbon atoms. Some unusual diterpenoid alkaloids. Acofine is the only example of the B3type having a chlorine atom at C(l) and cardionine is the sole alkaloid with a hydroxy 1 group attached at C(12). Methoxyl groups are commonly substituted on many of the carbon atoms in norditerpenoid alkaloids. Among the diterpenoid alkaloids, only two alkaloids of the B3-type, lingshanine and lingshanone, have a methoxyl group at C(l). Septatisine and septedine are the only examples of atisane-type (Al) diterpenoid alkaloids in which C(20) of the oxazolidine ring is bridged with C(14). In barbeline, barbisine, delgrandine, vakognavine and 15- deacetylvakognavine, all belonging to the A2type, the N-C(19) bond is broken and carbon-19 bears an aldehydic group.
Carbon-13 and Proton NMR Shift Assignments 13
i>3 i^'u
21--
A1
13
M
1 2 ( ^ 21-
-f-N 3U / ^
19
v
20
|10H
Is
.H
17
17 11
lie
]16
1
Jl5
|8
21-
^ 7
(J
a ^
it >
19
Me
J15
Is ^yi
^H
6
Me
18
18
A4
A3
Figure 1 The naturally occurring diterpenoid alkaloid miyaconitinone (Al-type) contains a diketone at the C(6), C(7) positions and caidionidine (Al-type) possesses an anhydride group in the B-ring between C(6), C(7). In albovionitme (Al-type), the C(18) methyl
4
BS. JoshU S.W. Pelletier and S.K. Srivastava
group is oxidized to a hydoxymethyl and the N-C(20) bond is cleaved, with the formation of a ketone at C(20). In delnudine, (A2-type) the C(12)-C(16) bond is broken and a new bond is established between C(l 1) and C(16). Eight dimeric diteipenoid alkaloids, all constituting an Al-type dimerized to an A3-type have been isolated from the mother liquors of Delphinium staphisagria L. All of these alkaloids are dimerized at C(17), C(17') and form a pyran ring at the C(16), (C15') position. These alkaloids are staphidine, staphigine, staphimine, staphinine, staphirine, staphisagnine, staphisagrine and staphisine. Coryphidine and coryphine are alkaloids of the A3 and Al-type, in which the C(17) carbon is attached to hexahydro-7Vmethylindoline. In tangirine, an Al-type diterpenoid alkaloid, C(17) carbon is attached at the C(8) position to the naturally occurring norditerpenoid alkaloid 6-benzoyl heteratisine. Zeraconine and zeraconine-iV-oxide are A2 type alkaloids in which the C (17) carbon is linked to the phenolic oxygen of/7-(Ar,Af-dimethylaminoethyl) phenol to form an ether. In pukeensine, the C(17) carbon atom of one of the A4 -type diterpenoid alkaloid forms an ether linkage with the ethanolamino group of a second diterpenoid alkaloid of the A4-type. The present catalogue provides proton and/or carbon-13 NMR chemical shift assignments and physical constants for many of the naturally occurring diterpenoid alkaloids and their derivatives. The literature search is not intended to be exhaustive. It is hoped that the '^C NMR data bank will serve as a useful guide for determining the structures of newly isolated alkaloids.
References: 1. TK Devon and AI Scott, "Handbook of Naturally Occurring Compounds" Vol. 2, pp. 188,241-248, Academic Press, N.Y. 1972. 2. SW Pelletier and LH Kieth, in "The Alkaloids" (RHF Manske ed.), vol. 12, Chapter 2, pp. 136-202, Academic Press, N. Y. 1970. 3. SW Pelletier and NV Mody, in "The Alkaloids" (RGH Rodrigo, ed.). Vol. 18, Chapter, 2, pp. 99-211, Academic Press, N. Y. 1981. 4. MS Yunusov, Diterpenoid Alkaloids in '*Natural Product Reports", Vol. 3, p. 451 1986; Vol. 8, p. 499,1992, The British Chemical Society, London. 5. BS Joshi and SW Pelletier, Recent Developments in the Chemistry of Norditerpenoid and Diterpenoid Alkaloids in "Alkaloids: Chemical and Biological Perspectives", (SW Pelletier, ed.). Vol 13, Chapter 4, pp. 292-2362, Pcrgamon Press, Amsterdam, 1999. 6. SW Pelletier, NV Mody, BS Joshi and LC Schramm, in "Alkaloids: Chemical and Biological Perspectives", (SW Pelletier, ed.),.Vol. 2, Chapter 5, pp. 205-462, John Wiley and Sons, N.Y. 1984. 7. SW Pelletier and BS Joshi, in "Alkaloids: Chemical and Biological Perspectives", (SW Pelletier, ed.),.vol. 7, Chapter 3, pp. 297-564, Springer Verlag, N. Y. 1991.
Carbon-13 and Proton NMR Shift Assignments
5
2. '^C-Chemical Shifts of Varioiis Functional Groups of Cio-Diterpenoid Allcaloids Table 1 TypeAl Vi2
17.
zr 21---I"
19
Functional Group C(l)-H2 C(l)-H2 If
ft
C(2)-H2 C (2)-0R C(3)-H2 tf
C (3)-OR C(4) rt
C(5)-H C (6)-ketone C(7)-H2 tf
C(8) C (9)-H C(9)-OH C(10) ft
C(ll)-H2 If
C(12)-H ft
C (13)-H2 ft
C(13)-ketone C (14).H ft
C(15)-H2 ft ft
C(16)
M«
Chemical Shift Range ppm 30-32 34-36 37-40 41-48 18-21 67-69 30-33 44-45 76-78 35-37 37-42 55-62 200-212 50-52 48-52 42-44 48-51 78-80 43-45 47-49 22-24 36-38 53-54 38-40 28-29 35-36 210-212 43-45 58-59 28-29 34-35 41-43 141-143
Remarks General range C(2)-OR,C(3)-OR C(2)-OH/C(3)-OH A^.CH2-CH2-0-C(19) General range C{3)-0R General range C(2)-0R General range General range C(3)-0R C (6)-ketone No subst. on C (7), C (9) C (6)-ketone; no subst. on C(9) C (6)-ketone; C (9)-0H C (6)-ketone Nosubst.onC(ll),C(15) General range Nosubst.onC(l),C(9), C(ll) C{9)-0H C(13)-ketone C(9)-OH;noC(13)-ketone C(13)-ketone No C (13)-ketone C(16)-0H General range General range NoC(13)-ketone C(13)-ketone C {9)-0H General range C (9)-0H, C (16)-0H C(13)-ketone
B.S. Joshi, S.W. Pelletier and S.K. Srivastava Functional QrQup tf
C(17)-H2 II
C(18)-H3 C(19)-H2 II
C (20)-H
Chgmiwl ghjft l^ngg ppm
Remarks
151-152 102-103 110-112 24-29 53-60 93-98 71-72
NoC(13)-ketone NoC(13)-ketone C(13)-ketone General range General range C (19)-0-CH2CHr General range
Table 2 TypeA2 13
^^ ^U
Functional Group
Chemical Shift Range ppm
Rem^rkg
C(l)-H2 C(l)-H2
33-35 30-36 44-46 68-79 19-21 26-28 68-71 75-76 210-211 33-35 37-41 50-51 71-72 36-38 42-44 60-62 50-55 63-65 98-100 32-37 27-30 43-45 44-46 49-50 53-55 65-66
General range C (2)-OH, -OCOR C (2)-ketone General range General range C(1)-0H General range C (3)-0H General range General range C (2)-a-0H, -OCOR C (2)-ketone General range General range C (2)-ketone General range C(9).p-0H General range General range General range C(9)-P-0H,C(15)-P-0H General range C(15)-0H Nosubst.onC(ll),C(15) C(11)-0H C(ll)-ketone
It
C(1)-P-0R C(2)-H2 C(2)-H2 C (2)-a-0R II
C (2)-ketone C(3)-H2 C (3)-0H C(4) II
C (5)-H II
C (6)-H C (6)-0H C(7)-H2 II
C(8) C (9)-H
Carbon-13 and Proton NMR Shift Assignments Functional Group
Chemical Shift Range ppm
Remark?
C (9)-P-0H C (lO)-H C(ll)-H2
79-81 50-55 22-23 37-40 210-212 72-76 33-36 52-53 27-33 68-72 75-80 67-68 211-213 42-45 51-52 61-62 78-80 27-30 72-76 142-147 154-156 107-110 28-30 25-27 60-64 58-60 90-92 68-75
General range General range General range C (9)-p.0H General range General range General range C(ll)orC(13)-OHorketone General range General range C(11)-0H C(13)-ketone General range General range C(13)-OH C(13)-ketone General range General range General range General range C(15)-p-OH General range General range C (3)-a-0H General range C (3)-a-0R General range General range
n
C(ll)-ketone C(11)-0H C (12)-H C(13)-H2 C(13)-0H C(13)-0H C(13)-0H C(13)-ketone C (14)-H C(14)-p-0H C(15>H2 C(15)-p-0H C(16) It
C(17)-H2 C(18)-H3 11
C(19)-H2 It
C(19)-OH C (20)-H Table 3 Type A3
rvi2 ^
/
»
^
JN^^ '^*-L F^
^.
'
/ ^
19
Functional Group
^ Chemical Shift Ranee ppm
Remarks
C(l)-H2 C(l)-H2 C(2)-H2 C(2)-H2 C(3)-H2 C(4) C (5)-H
40-43 35-37 22-24 19-20 39-41 33-34 48-52
General range N=C (20) General range N = C(20) General range General range General range
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Fwgtipn»l Qrow
Chgmjggl Shif it Rangg ppm
Remarks
C(6)-H2
17-18 35-37 20-25 31-36 72-77 212-216 36-38 44-48 51-53 39-42 37-38 40-41 28-29 35-37 26-28 25-26 215-220 72-77 202-204 152-158 109-110 26-27 56-60 97-99 52-54 93-94 164-166
General range C (7)-ketone C(7)-0H General range General range General range C(14)orC(15)-P-OH C(15)-ketone C(7)-ketone,C(15)-p.OH General range General range C(20)-O.CH2CH2General range General range General range General range General range General range General range General range General range General range General range General range General range General range -N=CH(20)
H It
C(7)-H2 C (7)-a-0H C (7)-kctone C(8) If II
C (9)-H C{10) II
C(ll)-Hz C (12)-H C(13)-H2 C(14)-H2 C (14)-ketone C(15)-0H,0Ac C(15)-ketone C(16) C(17)-H2 C(18)-H3 C(19)-H2 C (19)-OCH2 C (20)-H2 C (20)-OCH2 C (20)-H2 Table 4 Type A4
1
Tio *% Te 1 ^1
/ ^ ^JH 6
ia
1^®
Functional Group
Chemical Shift Range ppm
Rem^k?
C(l)-H2 C (l)-a-OH C(2)-H2
40-41 70-72 21-23 30-32 69-70 27-30 68-69
General range General range General range C (l)-OH present General range General range General range
II
C (2)-a-0H C(3)-H2 C(3)-a-0H
Carbon-13 and Proton NMR Shift Assignments Functional Group ft
C(4) C (5)-H H
C(6)-H2 II
C(7)-H C(7>O-C(20) C(8) C(9) II
C(10) II
C(ll)-H2 II
C (12)-H II
C (13)-H2 C (13)-0R C(14)-H2 C(15)-H2 C(15)-0R C(16) C(16)-0H C(17) C(17) C(17) C(18)-H3 C(19)-H2 C(19)-H2 C (19)-OR C (20)-H C(20)-H C (20)-H C (21)-H3 C (21)-CH2CH2-0
Chemical Shift Rangeppm
Rfemarks
36-38 34-36 50-52 41-45 23-26 70-72 41-44 72-76 41-44 43-46 50-54 34-35 48-51 23-25 72-73 42-46 30-36 22-25 70-72 22-28 20-22 77-86 150-156 79-81 109-112 68-72 45-46 25-27 57-59 52-54 93-95 67-69 86-88 68-70 42-45 52-58
C (20)-O-C (7) present General range C(l)-a-OH present General range General range C(7)-p-0R present General range General range General range General range C(1)-0H present General range C(1)-0H present General range C (7)-0H p present General range C (7)-0-C (20) present General range General range General range General range General range General range CH20HatC(17) General range CH20HatC(17) Epoxide on C(16)-C (17) General range General range C (20)-O-(7) present General range General range C (20)-O-C (7) present C(1)-0H present General range General range
Table 5 Type Bl 12
Sj3
1
>S. i^rC^ C
20
17
' KS:s»CH2
2 / S < X ^ ^^Pj^ IS
18
10
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Functional Group
Chemical Shift Range ppm
41-42 46-47 82-84 C(l)-OH C(2Hl2 22-23 71-72 C (2).a-0H M 76-77 36-37 C(3)-H2 " 42-43 36-37 C(4) M 40-41 45-46 C (5)-H 78-79 C (5)-P-0H 24-25 C(6)-H2 66-68 C (6)-a-0M 34-35 C(7).U2 It 39-40 52-53 C{S) 56-59 C (9)-H 51-52 C(10) C(ll)-a-OH,-OCOR 71-73 70-76 C(12)-a-0C0R 54-55 C(13)-H 52-54 C(14)-H 36-37 C(I5)-H2 148-150 C(16) 107-108 C(17).H2 23-25 C(18)-H3 61-62 C(19)-H2 168-169 C(19)=N63-65 C (20)-H
Remarks General range C(2)-a-0H General range General range General range C(l)-a-OH General range C (2)-a.0H C(5)-P-0H C(19) = NGcneral range General range General range C (5)-p-0H General range C(6)-a-0H General range C(11)--0H,0C0R General range General range C(ll)-a-OH,-a-COR General range General range General range General range General range General range General range General range General range
C(I)-H2 •1
Table 6 Type B2
12 1
20
^ S ^ .7
Acetylcardiopetamine 3-O-Acetylcardiopine 3-O-Acetylcardiopinine 13-0-Acetyl-15-dchydrocardiopetainine 15-0-Acetyl-13-dehydrocardiopetaminc 11 -0-Acetyl-1,19-dehydrodenudatine 3-O-Acelyl-2,20-dehydro-16,17-dihydro(14,20-5cco)hetidine 2-0-Acetyl-l 3-dehydro-11 -e/i/-hetisine 12-0-Acetyl-1,19-dehydrolucidusculine 12-e/;i-0-Acety 1-1,19-dehydronapelline 7-0-Acetyldelgrandine 13-0-Acetyl-9-deoxyglanduline 14-O-Acety 1-9-deoxyglanduline 1 l-0-Acetyl-2J 3-didehydrohetisine 13-O-Accty 1-2,11-didehydrohetisine 13-O-Acetylfissumine 13-0-Acetylglanduline 13-O-Acetylgoinandonine 2-0-Acetylhetisine 13-O-Acetylhetisine 13-0-Acetylhetisine-2-one 2-Acctyl-3-hexahydrobenzoyl-16,17dihydrohetidine 15-0-Acetyl-9-hydroxynominine 11-O-Acetylisohypognavine 11 -0-Acctyl!epenine 1 -O-Acetylluciculine 12-0-Acety llucidusculine 12-0-Acety Inapelline 12-O-Acetylnapelline-N-oxide 15-0-Acetylryosenamine
Structure Type
X-Ra)f
D D D D N N D D D N N D
B3 A3 A2 A2 A2 A2 A2 A2 A2 A2 B3 A3
__ -
D N N N N N D D D N N D N/D N/D D D N N N N N N D
'H
"c
~ ~ —
X X X X X X X X X X
_, X X X X X X X X X X X
A2 A4 B3 A2 A2 A2 A2 A2 A2 A2 A4 A2 A2 A2 Al
— — — — X .. ~
X X X X X X X X X X X X X X X
— X X X X X X X X X X X X X X
A2 A2 A4 83 83 83 83 A2
~ ~ ~ ~ -
X X X X X X X X
~ X X ~ — ~ ~
14 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
B.S. Joshi, S.W. Pelletier and S.K. Srivastava 15-O-Acetylsczukinine 2-0-Acctylscplcnlriosine 15-O-Aceiylsongoraniine A^-Acelylspiradinc A 6-()-Acctylspiradine A Acofinc Acoridine Acorienlinc Acozcrinc Acsinatidine Acsinaline Ajaconinc Ajaconium chloride Albovionitinc Andersobine Andersobine-19-/7-Af,N-dimcthy laminobenzoate Anoptcrimine Anoplcriminc-//-oxidc Anoptcrinc (anopteryl-U,12-ditigtate) Anoplcry I-11 a-4'-hydroxybenzoalc-12atiglate Anoptcryl I2a-tiglate (I la-dcstigloyianopterine Apomiyaconine Atidine Atisine Atisinc-15-one Atisine-N,20-azomethine Atisinium chloride (Guan Fu Base G) Azitine Barbaline Barbisine 1 la-Benzoyl-7p-hydroxy-l la-destig loylanopterine(7p-Hydroxyanopteryil la-benzoate-l2a-tiglate) U-Benzoylkobusinc 15-Benzoylkobusine 6-Benzoylpseudokobusine 11 -Benzoylpseudokobusine 15-Bcnzoylpseudokobusine Brunonine Cardiodine Cardionidine Cardionine Cardiopetamine
D N D D D N N N N D N N D N N D
A2 A2 B3 Al A2 B3 A2 A2 Al A2 A2 A4 A3 Al A2 A2
-. -. X —
N N N N
— ~ — -. — — —
X X — X X X X X X — X X X X X
X X — ~ — X X X — X X X X X X
Bl Bl Bl Bl
~ ~ X —
X X X X
X X X ~
N
Bl
~
X
..
D N N D D N/D N N N N
Al A3 A3 A3 A3 A3 A3 A2 A2 Bl
X — — ~ X .X X
X X X X ~ ~ X X X X
X X X X X X X X X
D D D D N N N N N N
A2 A2 A2 A2 A2 A3 A2 Al A2 A2
« — X — X
X X X X X X X X X X
X X X X X
-
.
•
Carbon-13 and Proton NMR Shift Assignments 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
Cardiopidine N Cardiopimine N Cardiopine N Cardiopinine N Chcllespontinc N Chiianfunine N Contorine (2-OAcctyl-3-anisoylhetidine) N Conlorsine (2-0-AcetyI-3-isobiUyr>'l N hetidinc) Contortinc (2-Acelyl-3(25)-mcthylbulyryl N hetidine) Coryphidine N Coryphine N Cossonidine N Cossoninc N Crassicaulinc B N Cuauchichicine N 16-c/;/-Cuauchichicine N Cuauchichicine-M20-azometliinc N 11,12,16-Cyclopropyl-16,17-dihydro D hetisane 2-Deacelylheterophynoidine N/D 15-DeacetylspiramineF D 15-Deacetylvakognavine N Ar-Deethyl-iV-acetyl-l,12,15-0-triacclyl D napelline N JV-Dcethyl-1,19-dchydrolucidusculine D 13 -Dehydrocardiopelamine D l5-Dehydrocardiopetaniine 2-Dehydrocardiopimine D 15-Dchydrocossonidine D D 3 -Dehydro-1 -desacetoxy-1,2-dehydro cardiopine D 3-Dehydro-1 -desacetoxy-1,2-dehydro cardiopinine D 2-Dehydro-l 1,13-O-diacetylhetisine D 13-Dehydro-2,11 -O-diacetylhetisine 2,20-Dehydro 16,17-dihydro-(14,20-5cco) D hetidine D 15,16-Dehydro-16,17-dihydrotatsirine ~ 11 -Dehydrohetisine N/D 1,19-Dchydrolucidusculine N 1 l-epi-1,19-dehydrolucidusculine N 12-C/7M ,19-dchydronapelline 1,19-Dehydronapelline (1,19-Dehydroluc N/D iculine)
15
A2 A2 A2 A2 Al B3 Al Al
.— .~ — — X X
X X X X X X X X
X X X X X X X X
Al
X
X
X
A3 Al A2 A2 A2 B2 B2 B2 A2
.. X ~ — «X .— X
X X X X X X X X X
X X X X — X X X ~
Al A4 A2 B3
_ ~ — -
X X X X
X X X X
B3 A2 A2 A2 A2 A2
.. — — — — -
X — X X X X
X X X ~ X X
A2
-
X
X
A2 A2 A3
.. — -
X X X
X X X
A2 A2 B3 B3 B3 B3
.. — —
X X X X X X
X X X — X X
~
~ ~
•
16 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
B^. Joshi, S.W. Pelletier and S.K. Srivastava 13-Dehydropaniculatine 15-Dehydroryoscnamine Delatisine Dclbidine Delftssinol Delgrandine Delnudine Delnuttaline Delnuttidine Delnutline Dcnudatine 11'Desbenzoylcardiopetamine Ar-Desethylsongoraminc(norsongoraminc) 2-Desmethylbutyfylcardiopine N-Dcsmethyl'Nfi'SecO'S'hydroxycpiscop alidine-6-cathylate 1 la-Destigloylanopterinc (Anopteryl-l2a tiglate) 9,19-C7-Diacctylacsinatine 15-0,22-MDiaccty latidine 6,1 l-O-Diacetylcardionine (Basic) N,\ l-ehydroIucidusculine 1 l-epi' 1,19-Dehydrolucidusculine Spiradine F Spiramine A Spiraminc B Subdesculine
C24H33NO4
MW
401.2202 3-(9-Acetyl-2,2-dehydro-16,17-dihydro-(14,20 seco hetidine) Acoridine
C23H31NO5
MW
401.2566 11-0-AcetylIepenine 1 -OAcetylluciculinc 12-0-Acetylnapelline Lucidusculine (15-0-Acety Inapelline) 12-epi-Lucidusculine Spiramine F Spiramine I
C24H35NO4
MW
403.2359 13-0-Acety Igomandonine
C23H33NO5
MW
409.1889 7,1 l-O-Diacetylorientinine
C24H27NO5
MW
411.2046 13-0-Acetylfissumine 2-Dehydro-11.13-0-diacety Ihetisine 13-E>ehydro-1,11 -0-diacetylhetisine 1 l,13-(9-Diacetylhetisine-2-one 13,15-Di-O-acetyl venuluson
C24H29NO5
Carbon-13 and Proton NMR Shift Assignments
29
MW
411.2410 Anopterimine-iV-oxide
C25H33NO4
MW
411.2773 1,15-0-Diacetyl-16,17-dihydrosongorine
C26H37NO3
MW
413.1838 Miyaconitinone
C23H27NO6
MW
413.2202 2,11-0-Diacetylhetisine 11,13-(7-Diacetyhetisine 2,15-0-Diacetylryosenaminol
C24H3,N05
MW
413.2566 Spiramine L Spiramine M Yesodine
C25H35NO4
MW
415.1995 Miyaconitine
C23H29NO5
MW
415.2359 Cardionine Spiramine R
C24H33NO5
MW
417.2304 11-Benzoylkobusine 15-Benzoylkobusine
C27H31NO3
MW
417.2515 12-0-Acetylnapelline-Moxide Flavidine Guan Fu Base Z Thalicsiline
C24H35NO5
MW
427.2359 Geyerine
C25H33NO5
MW
427.2723 11,15-0-Diactyldenudatine
C26H37NO4
MW
429.2151 Guan Fu Base A
C24H3,N06
MW
429.2879 15-0,22-iV-Diacetyldihydroatisine 15,-0,22-A^Diacetyldihydix)veatchine
C26H39NO4
30
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
MW
431.2097 15-Dehydroryosenamine
C27H29NO4
MW
433.2253 6-BenzoyIpseudokobusine 11-Benzoylpseudokobusine 15~Benzoy Ipseudokobusine Crassicauline B Isohypognavine Ryosenamine
C27H3,N04
MW
433.2828 Isopropylidinechuanfunine
C25H39NO3
MW
435.2540 Acofme
C25H38CINO3
MW
439.1930 6-ImidazoylthiocarbonyIpseudokobusine
^24^29 3 3
MW
441.2151 15-0-Acetyl Sczukinine
C25H31NO6
MW
441.2515 12-0-Acetyl-1,19-dehydrolucidusculine
C26H35NO5
MW
443.2672 12-0-Acetyllucidusculine 12-0,22-A^-Diacetylatidinc 1,15-O-Diacetylluciculine Spiramine E
C26H37NO5
MW
444.3141 2^raconine
C30H40N2O
MW
445.1889 13-Dehydrocardiopetainine 15-Dehydrocardiopetaiiiine
C„H„NO,
MW
445.2464 Yesoxine
C25H35NO6
MW
447.2046 Cardiopetamine
C27H29NOJ
MW
449.2202 Hypognavine Ignavine Torokonine (Gomando Base I)
C27H31NO5
Carbon-13 and Proton NMR Shift Assignments
31
MW
455.2308 9,19-O-Diacetylacsinatine 2,11,13-Tri-O-acetyJhetisine Venudelphine
C26H33NO5
MW
457.2464 1 l-6>-Acetylcardionine Guan Fu Base F
C26H35NO6
MW
459.2410 Palmasine
C29H33NO4
MW
459.2621 Anopteryl-12a-tilgate (1 la-E)estigloylanopterine) 1 la-Destigloylanopterine (Anopteryl-12a-tilgate)
C26H37NO6
MW
460.3090 Zeraconine-iV-oxide
C30H40N2O2
MW
465.2151 Sadosine
C27H3,N06
MW
469.2464 Contorsine(2-C7-Acetyl-3-isobutyrylhetidine)
C27H35NO6
MW
471.2257 Guan Fu Base G 2,11,13-0-Triacetylvakhmatine 1,2,19-Triacety Iseptcntriosine
C26H33NO7
MW
474.3246 Coryphine
C3,H42N202
MW
475.2359 I l-Acetylisohypognavine 15-C>-Acetylryosenamine Hanamisine
C29H33NO5
MW
477.2645 1 -C7-Acetylacofine
Cj^H^oClNO^
MW
483.2621 Contortine(2-AcetyI-3(25)-methyIbutyrylhetidine) Sczukitine
C28H37NO6
MW
485.2414 3,2,13-0-Triacetylvakhmadine
C27H35NO7
32
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
MW
485.2777 1,12,15-0-Triacetylluciculine
CjgHapNO^
MW
487.1995 15-0-Acetyl-13-dehydrocardiopetamine 13-0-Acetyl-15-dehydrocardiopetamine
C29H29NO6
MW
489.2151 15-(9-Acetylcardiopetaniine
C29H3JNO6
MW
490.3195 Acozerine
C3,H42N203
MW
491.2308 Zeravshanisine
C29H33NO6
MW
492.3352 Coryphidine
C3,H44N203
MW
493.2464 15-Veratroylpseudokobusine
C29H35NO6
MW
497.2777 Lassiocarpine
C29H39NO6
MW
499.2570 AT-Deethyl-N-acetyl-1,12,15-0-triacety Inapelline 6,11-O-Diacetylcardionine (basic) N, 11-0-Diacetylcardioninc (neutral)
C28H37NO7
MW
501.2515 Palmadine
C3,H35N05
MW
503.2308 16,17-Dihydro-15,16-dehydroepiscopal idine Episcopalidine
C30H33NO6
MW
503.2519 Glanduline
C27H37NO8
MW
505.2464 16,17-Dihydroepiscopalidine
C30H35NO6
MW
507.2621 Yesoline
C30H37NO6
MW
511.2570 6,13-0-Diacetylgeyerinc
C29H37NO7
Carbon-13 and Proton NMR Shift Assignments
33
MW
511.2934 2-0-Acetyl-3-hexahy drobenzoy 1-16,17dihydrohetidine
C3oH4,N06
MW
513.2363 2,11,13,19-0-Tetracetylvakhmatine 2,11,13,14-c^-Tetraacetyltangutisine
CjgHjjNOg
MW
517.2464 1,7.-0-Diacetylcrassicauline B 11,15,-0-Diacetylisohypognavine
C31H35NO5
MW
519.2859 Andersobine- 19-p-^,MDimethylaminobenzoate
C3,H39N205
MW
521.2566 11,15-0-Dibenzoylkobusinc
C34H35NO4
MW
529.2676 13-Acetyl-9-deoxyglanduline 14-Acety1-9-deoxyglanduline
C29H39NO8
MW
531.2257 13-£)ehydropanlculatine 13,15-6-Diacetylcardiopetamine
C31H33NO7
MW
533.2413 Contorine(2-0-Acetyl-3-anisoylhetidine) Cossonine Paniculatine Tadzhaconine
C3,H35N07
MW
536.1840 N, 6-hydroxyepiscopalidine chloride
C3oH3,ClN06
MW
537.2515 6,11-O-Dibenzoylpseudokobusine 6,15-Dibenzoylpseudokobusine
C34H35NO5
MW
541.3040 Anopterine (Anopteryl-11,12-ditiglatc)
C31H43NO7
MW
545.2625 13-0-Acetylglanduline
C29H39NO9
MW
549.2361 2-Desmethylbutyrylcardiopine
C3JH35NO8
34
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
MW
557.2413 3-E)ehydro-1 -desacetoxy-1,2-dehydrocardiopinine
C33H35NO,
MW
557.2989 7P-Hydroxyanoptcrine(7P-Hydroxyanopterylll(x,12a-ditiglate)
C3,H43N08
7-P-Hydroxyanopteryl-l l a , 12a-ditilgate MW
561.2363 C32H35NO8 AMDesmethyl N, 6-j^co-6-hydroxyepiscopalidine-6cathylate
MW
571.2781 11,13-0-diacctyl-9-deoxyglandulinc
C3,H4,N09
MW
573.2938 4', 7p-Dihydroxyanopterine (7P-Hydroxyanopteryl-11 a-(E)-4'-hydroxy-2'methylbut-2'-enoate 12a-tiglate) 7P-Hydroxyanopteryl-11 a(E)-4'-hydroxy-2'methylbut-2'-enoate 12a-tilgate
C3,H43N09
MW
577.2312 Barbisine 15-Deacty 1 vakognavine
C32H35NO9
MW
579.2832 Anopetryl-11 a-4*-hydroxybenzoate-12a-tilgate lla-Benzoyl-7p-hydroxy 11adestigloylanopterine(7P-Hydroxyanoptcryl1 la-benzoate-12a-tiglate)
C33H41NO8
MW
577.3978 3-E>ehy dro-1 -desacetoxy-1,2-dehy drocardiopine
C33H55NO7
MW
590.4236 Staphimine
C4,H54N20
MW
595.2781 C33H4JNO9 7P-Hydroxy anoptery 1-11 a-(4' -hydroxy )-benzoate12a-tilgate
MW
606.4549 Staphidine
C42H58N2O
Carbon-13 and Proton NMR Shift Assignments
35
MW
619.2417 Vaicognavine 11-O-Acetylbarbisine
C34H37NO10
MW
620.4342 Staphinine Staphirine
C42H56N2O2
MW
621.2938 2-Dehydrocardiopimine
C35H43NO9
MW
623.3094 Cardiopimine Cardiopinine
C35H45NO9
MW
633.2938 Cardiopidine Cardiopine
C36H43NO9
MW
635.2367 Barbaline
C34H37NO11
MW
636.4655 Staphisagrine Staphisine
C43H60N2O2
MW
650.4447 Staphigine
C43H58N2O3
MW
650.4811 Staphisagnine
C44H62N2O2
MW
667.3356 3 -O-Acety Icardiopinine
C37H49NO10
MW
668.4917 Pukeensine
C44H64N2O3
MW
675.3043 3-0-Acetylcardiopine
C38H45NO10
MW
676.2394 7-O-Acetylbarbaline
C36H38NO|2
B^. Joshi, S.W. Pelletier and S.K. Srivastava
36 MW
691.2993 Caidiodine
C38H45NOn
MW
741.2785 Delgtandine
C41H43NO12
MW
768.3020 7-0-Acetyldelgrandine
C43H45NO13
MW
790.4556 Tangirine
C49H62N2O7
Carbon-13 and Proton NMR Shift Assignments
5.
Occurrence of Diterpenoid Alkaloids in Plant Species
Aconitella stenocarpa (Hossain and P. H. Davis) Sojak. Syn. Consolida Stenocarpa Hossain and PH Davis Stenocarpine Aconitum alboviolaceum Kom. Albovionitine Aconitum anglicum Stapf. 15-0-Acetylcardiopetamine 15-0-Acetyl-13-dehydrocardiopetamine Cardiopetamine Aconitum baicalense Turcz. ex Rapaics {Aconitum czekanovaskyi Steinb) 12-cp/-NapeIline 12-e/7/-Napelline-^-oxide Aconitum barbatum Pers. 11 -O-Acetyl-1,19-dehydrodenudatine Songoramine Songorine (Napellonine, Shimoburo Base I, BuUetine G) Songorine-^-oxide Aconitum bullatifolium var. homotorichum Guan Fu Base A Guan Fu Base G Guan Fu Base Y (Acorine) Aconitum carmichaeli Debeaux Chuaniimine Ignavine Songorine (Napellonine, Shimoburo Base I, Bulletme G) Aconitum contortum Finet et Gagnep Contorine(2-0-Acetyl-3-anisoyIhetidine) Contorsine(2-0-Acetyl-3-isobutyrylhetidine) Contortine(2-Acetyl-3-(2S)-methylbutyrylhetidine) Episcopalidine Aconitum crassicaule Crassicauline B Aconitum czekanovskyi Steinb. Luciculine (Napelline) 12-epi-Napelline 12-epi-Napelline-iV^oxide Aconitum delphinifolium DC 13-0-Acety Igomandonine Dictyzine (Dictysine) Gomandonine Yesoxine Aconitum episcopate Levi. 2-Deacetylheterophylloidine
37
^^
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Episcopalidine Aconitumfinetianum Hand-Mazz Finetianine Nominine (11-Deoxykobusine, Nomibase-1) Aconitum flavum Hand-Mazz 12-0-Acetyllucidusculine 1,19-Dehydronapelline (1,19-Dehydroluciculine) Flavadine Flavamine Luciculine (Napelline) Lucidusculine (15-0-Acetylnapelline) l-e/7/-Napelline 12-e/7i-Napelline Aconitum gigas Lev et Van. {Lycoctonum gigas Nakai) Atisine Aconitum heterophylloides Stapf. Atisine Heterophylloidine (Panicutine) Aconitum heterophyllum Wall. Atidine Atisine Dihydroatisine Hetidine Hetisine Hetisine-2-one Isoatisine Aconitum ibukiense Nakai 9-Hydroxynominine Ignavine Ryosenamine Ryosenaminol Aconitum japonicum Thunb. 11-O-Acetylisohypognavine 11,15-0-Diacetylisohypognavine Ignavine Isohypognavine Kobusine Sadosine Songorine (Napellonine, Shimoburo Base 1, Bulletine G) Subdesculine Aconitum Japonicum var. montanum Nakai 3-e/7/-Ignavinol Kobusine Aconitum Jinyangense W. T. Wang Denudatine Jyosine (l5-0-Acetyldenudatine)
Carbon-13 and Proton NMR Shift Assignments Aconitum karakolicum Rapaics 12-0-Acety Inapeliine 12-O-Acety lnapelline-A/-oxide Acofine Dihydrosongorine Luciculine (Napalline) 12-e/7i-Napelline Nappelline A^-oxide Songoramine Songorine (Napellonine, Shimoburo Base I, Bulletine G) Aconitum kihneme Nakai Kirinine B Kirinine C Aconitum kojimae Ohwi var. lassiocarpum Tamura Lassiocarpine Aconitum komarovii Steinb. Guan Fu Base Y Guan Fu Base Z Aconitum koreanum (Levi.) Rapaics {A. coreanum) (Syn. A. komarovii Steinb.) Acoridine Coryphidine Coryphine Guan Fu Base A Guan Fu Base F Guan Fu Base G Guan Fu Base Y (Acorine) Guan Fu Base Z Isoatisine Aconitum kusnezoffii Reichb. Denudatine Lepenine Aconitum leucostomum Vorosch. 11-O-Acetyllepenine Acsinatine 9,19-O-Diacetylacsinatine Lepenine Songorine (Napellonine, Shimoburo Base I, Bulletine G) Aconitum liangshanium W. Z. Wang 12-6/7/-1,19 Dehydrolucidusculine 1 l-epi' 1,19-Dehy dronapelline Liangshanine Liangshanone 12-ep/-Lucidusculine 12-€fp/-Napelline Aconitum lucidusculum Nakai Lucidusculine (15-O-Acetylnapelline)
39
40
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Aconitum majimaii Nakai Isohypognavine Aconitum miyabei Nakai Miyaconitine Miyaconitinone Aconitum monticola Steinb. A^Desethylsongoramine (Norsongoramine) Norsongoramine Norsongorine Songoiamine Songorine (Napellonine, Shimoburo Base I, Bulletine G) Songorine-Moxide Aconitum nagarum var. lasiandrum W. T. Wang Songoramine Songorine (Napellonine, Shimoburo Base I, Bulletine G) Aconitum napellus (fed on Aphids Brachycaudus aconitici) 12-epi' 1,19-DehydronapeIline 12-e/?/-Napelline Aconitum napellus L. S. Str. (Syn. A. anglicum Stapf.) 15-0-Acety Icardiopetamine 15-0-Acetyl-13-dehydrocardiopetamine Cardiopetamine Luciculine (Napelline) Songoramine Aconitum napellus L. ssp. castellanum J. Molero et C. Blanche 12-c'p/-0-Acetyl-1,19-dehydronapelline 12-6/7/-1,19Dehydronapelline Songoramine Aconitum nasatum Fisch. Ex Reichb. Pseudokobusine Aconitum orientale Mill Acorientine Orientinine Aconitum palmatum Don Atisine 15-Deacety Ivakognavine Hetidine Hetisine Isoatisine Palmadine Paimasine 2,3,13-(9-Triacetylvakhmadine Vakhmadine Vakhmatine Vakognavine Aconitum paniculatum Lam.
Carboii-13 and Proton NMR Shift Assignments Heterophylloidine (Panicutine) Panicudine Paniculamine Paniculatine Aconitumpseudohuiliense, Cheng et Wang Lepedine Lepenine Aconitum pukeense W. T. Wang Pukeensine Aconitum sanyoense Nakai Hanamisine Hypognavine Ignavine Nominine (11-Deoxykobusine, Nomibase-1) Sanyonamine Aconitum sanyoense var. tonense Nakai Hanamisine Sanyonamine Aconitum sczukinii Turez Sczukidine Sczukinine Sczukitine Aconitum septentrionale Koelle (Syn. Aconitum lycoctonum) 2-0-Acetylseptentriosinc Septatisine (Septedinine) Septedine Septenine Septentriosine Aconitum soongaricum stapf. Songorine (Napellonine, Shimoburo Base I, Bulletine G) Aconitum species Ignavine Sadosine Aconitum subcuneatum Nakai Gomandonine Torokonine (Gomando Base I) Aconitum talassicum M. Pop Kobusine Talassamine Talassimidine Talassimine Talatisine Aconitum tanguticum Tangirine Tangutisine Aconitum turczaninowii
41
42
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Tupelline Aconitum vilmorrianum Kom Vilmonianone Aconitum yesoense Nakai I -O-Acety llucicuUne Luciculine (Napelline) Aconitum yesoeme var. macroyesoense (Nakai) Tamura 12-0-Acetyl-1,19-dehy drolucidusculine 1 -O-Acetylluciculine 12-0-Acety llucidusculine 15-Benzoy Ipseudokobusine iV-Deethy 1-1,19-dehy drolucidusculine 1,19-Dehydrolucidusculine 1,19-Dehydronapelline (1,19-DehydrolucicuUne) Flavadine Kobusine Lucidusculine (15-0-Acetylnapelline) Pseudokobusine 15-Veratroylpseudokobusine Ycsodine Yesoline Yesonine Yesoxine Aconitum zeravschanicum Steinb. Acozerine Atisine Isoatisine Luciculine (Napelline) Nominine (11-Deoxykobusine, Nomibase-1) Tadzhaconine Zeraconine Zeraconine-iV-oxide Zeravshanisine Anopterus glandulosus Labill. Anopterine (Anopteryl-11,12-ditiglate) Anopteryl I2a-tiglate (lla-Destigloylanopterine) 1 la-Benzoyl-7a-hydroxy-l la-destigloylanopterine (7PHydroxy anopteryl-11 a-benzoate-12a-tiglate) ll-a-Destigloylanopterine (Anopteryl I2a-tiglate) 4',7P-Dihdryoxyanopterine (7p-Hydroxyanoptery 1-11 a-(£)-4'-hydroxy-2*niethylbut-2'-enoate 12a-tiglate) 7P-Hydroxyanopterine (7P-Hydroxyanopteryl-l la,12a-ditiglate) 7-P-Hydroxy anopteryl 1 la,12a-ditiglate Anopterus macleayanus F. Muell. Anopterimine
Carbon-13 and Proton NMR Shift Assignments Anopterimine A^oxide Anopterine (Anopteryl-11,12-ditiglate) Anopteryl lla-4'-hydroxybenzoate 12a-tiglate Anopteryl 12a-tiglate (lla-Destigloylanopterine) 1 la-Benzoyl-7a-hydroxy-l la-destigloylanopterine (7PHydroxyanoptery I-11 a-benzoate-12a-tiglate) 11-a-DestigloyIanopterine (Anopteryl 12a-tiglate) 4',7p-Dihdryoxyanopterine (7P-Hydroxyanopteryl-11 a-(E)-4'-hydroxy-2'methylbut-2*-enoate 12a-tiglate) 7p-Hydroxyanopterine (7p-Hydroxyanopteryl-l la,12a-ditiglate) 7-P-Hydroxy anopteryl-11 a, 12a-ditiglate 7P-Hydroxyanopteryl-lla (4'-hydroxy) benzoate-12a-tiglate 7-p-Hydroxyanoptery 1-11 a-(E)-4'-hydroxy-2'-methylbut-2'-enoate 12atiglate Cocculus laurifolius DC Garryfoline (Laurifoline) Comolida ambigua L. Syn. D, ajacis Ajaconine Dihydroajaconine Consolida axilliflora (DC) Schr6d. (Syn. Delphinium axilliflorum DC.) Ajaconine Hetisine Consolida glandulosa (Boiss. et Huet.) Bomm. (Syn. Delphinium glandularum Boiss et Huett) 13-0-Acetyl-9-deoxyglanduline 14-0-Acetyl-9-deoxy glanduline 13-O-AcetylglanduIine 11,13-O-Diacety 1-9-deoxy glanduline Glanduline Consolida hellespontica (Boiss). Chellespontine Consolida stenocarpa Hussain and P.H. Davis Stenocarpine Delphinium ajacis Ajaconine Dihydroajaconine Delphinium alhiflorum DC 2-Deacetylheterophylloidine Delphinium andersonii Gray Andersobine Delphinium axilliflorum DC Ajaconine Hetisine Delphinium barbeyi (Huth) Huth Barbaline
43
44
BS. Joshi, S.W. Pelletier and S.K. Srivastava
Barbisine Delbidine Geyeridine Delphinium hrunonianum Royle Ajaconine Brunonine Dictyzine (Dictysine) Delphinium cardiopetalum DC (Syn. D, verdunense Balbis) 11-0-Acetylcardionine 15-0-Acety Icardiopetamine 13-C>-Acetylhetisine-2-one Cardiodine Cardionidine Cardionine Cardiopetamine Cardiopidine Cardiopimine Cardiopine Cardiopinine Cossonidine Hetisine-2-one Delphinium carolinianum Walt Ajaconine Delphinium corumbosum Regel Dictyzine (Dictysine) Delphinium cossnianum Batt. Cossonidine Cossonine Delphinium delavayi Franch var. pogonanthum (Hand-Mazz.) Wang Ajaconine Hetisine Hetisine-2-one Delphinium denudatum Wall Delnudine Denudatine Hetisine-2-one Vilmorrianone Delphinium dictyocarpum DC Dictyzine (Dictysine) Dictyzineacetonide Delphinium elatum Ajaconine Delphinium elatum L. cv. pacific giant Delatisine Delphinium fissum Waldst. and Kit ssp. anatolicum Chaudhuri and Davis Delfissinol
Carbon-ia and Proton NMR Shift Assignments Fissiunine Delphinium geyeri Greene Geyeridine Geyerine Geyerinine Delphinium glandulosum Boiss et Huet. 13-0-Acetyl-9-deoxyglanduline 14-0-Acety I-9-deoxyglanduline 13-0-Acetylglanduline 11,13-0-Diacetyl-9-deoxyglanduline Glanduline Delphinium gracile DC 1 l-O-Acetylcardionine 13-0-Acetylhetisine-2-one Cardionine Cardiopetamine Hetisine-2-one Delphinium grandiflorum L 7-0-Acetylgrandine Delgrandine Delphinium macrocentrum Oliv. 13-0-Acetylhetisine Macrocentrine Delphinium nudicaule Torr and Grey Hetisine-2-one Delphinium nudicaule Torr and Grey Hetisine Delphinium nuttalianum Pritz. 13-O-Acetylhetisine Delnuttaline Delnuttidine Delnuttine Hetisine Delphinium occidentale (S. Wats) S. Wats Deibidine Hetisine Hetisine-2-one Delphinium peregrinum var. elongatum Boiss 13-0-Acetylhetisine-2-one Delphinium staphisagria Staphidine Staphigine Staphimine Staphinine Staphirine Staphisagnine
45
^^
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
Staphisagrine Staphisine Delphinium tamarae Kem. Nath. A^-Desethylsongoramine (Norsongoramine) Norsongoramine Delphinium tatsienense Franch Ajaconine Dictyzine (Dictysine) Hetisine Hetisine-2-one Tatsirine Delphinium uncinatum Hook f. and Thomas Uncinatine Delphinium venulosum Boiss. Hetisine Venudelphine Venulol Venuluson Delphinium verdunense Balbis. 13-0-Acetylhetisine-2-one Delphinium virescens Nutt. Ajaconine Ganya laurifolia Hartw. Cuachichicine Garryfoline (Laurifoline) Isocuauchichicine Isogarryfoline Garrya ovata var. Lindheimeri Torr Cuauchichicine Garryfoline (Laurifoline) Lindheimerine Ovatine Garrya veatchii Kellog Garryine Veatchine Lycotonum gigas Nakai Atisine Spiraea japonica L. fil Spiradine A Spiradine B Spiradine C Spiradine D Spiradine F Spiradine G Spiraea japonica L. fil var. acuminata Spiramine A
Carbon-13 and Proton NMR Shift Assignments Spiramine B Spiramine C Spiramine D Spiramine E Spiramine F Spiramine G Spiramine H Spiramine I Spiramine J Spiramine K Spiramine L Spiramine M Spiraea Japonica L. fil varfortunei (Planchon) Rehd Spiradine A Spiramine B Spiramine C Spiramine D Spirasine I Spirasine II Spirasine III Spirasine IV Spirasine V Spirasine VI Spirasine VII Spirasine VIII Spirasine IX Spirasine X Spirasine XI Spirasine XII Spirasine XIII Spirasine XIV Spirasine XV Spiredine Spiraea Japonica var. incisa Yu Spiramine P Spiramine Q Spiramine R Thalictrum sessile Hayata Spiradine A Spirasine I Spirasine II Spirasine III Spiredine Thalicsessine Thalicsiline
47
48
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
6. Catalogue of Spectral Data and Physical Constants of Naturally Occurring Diterpenoid Alkaloids and their Derivatives
l-O-ACETYLACOFINE CI
C27H40CINO4
Prepared from acofine 'H N M R : 5 0.64 (3H, 5, H-IS), 1.00 (3H, /, J=7 Hz, H-22), 1.35, 1.40, 1.44 (each 3H, s, Me), 2.00 (3H, s, OAc), 3.26 (IH, bw), 3.85 (IH, bw), 5.05 (IH, ^.Ji=10Hz,J2=7Hz,H.lp).
B Tashkhodzhaev, MN Sultankhodzhaev and IM Yusupova, Khim, Prir, Soedin., 267 (1993).
Carbon-13 and Proton NMR Shift Assignments
49
15.O-ACETYLATISINE-Ar,20-AZOMETHINE C22H3iN02;mp 144-148° [a]D-60° *" OAc
1,2
Prepared from atisine
^^C Chemical Shift Assignments^
1. 2. 3.
C-1
42.4
C-12
35.9
C-2
20.0
C-13
25.8
€-3
34.1
C-14
25.0
C-4
32.9
C-15
76.2
C-5
47.0
C-16
151.1
C-6
19.4
C-17
110.1
C-7
31.2
C-18
25.8
C-8
36.7
C-19
60.7
C-9
39.2
C-20
165.1
C-10
42.5
COCH3
170.8
C-11
28.0
COCH3
21.2
SW Pelletier and PC Parthasarathy, J, Am. Chem, Soc, 87,777 (1965). D Dvomik and OE Edwards, Can. J. Chem., 35,860 (1957). NV Mody and SW Pelletier, Tetrahedron, 34,2421 (1978).
B^. Joshi, S.W. Pelletier and S.K. Srivastava
50 7-0-ACETYLBARBALINE
C36H3»NOi2; MW: [M-Hf 676.2368; mp237° Preparedfrombarbaline 'H NMR (CDCI3): 8 1.12 (3H. s, H-18), 1.96 (3H, s, OAc-3), 2.05 (3H, s, OAc1), 2.12 (3H, s, OAc-11), 2.18 (3H, s, OAc-7), 2.29 (IH, brd, J=18 Hz, H-15), 2.35 (IH, s, H-5), 2.47 (3H, s, N-Me), 2.64 (IH, dl, J=18, 1.5 Hz, H-15), 2.83 (IH, d, J=2 Hz, H-12), 2.88 (IH. hid, J=4 Hz, H-14). 2.89 (IH, dd, J=4,9.5 Hz, H-9), 3.06 (IH, brJ, J=4 Hz, H-6), 3.81 (IH, s, H-20), 4.95 (IH, bw, H-17), 5.05 (IH, brt, J=1.5 Hz, H-17), 5.12 (IH, d, J=4 Hz, H-7e,), 5.23 (IH, d, J=3.9 Hz, H-3„), 5.46 (IH, hidd, J=9.5, 2 Hz, H-11„), 5.57 (IH, d J=4.2 Hz, H-U,), 6.09 (IH, t. J=4.2, 3.9 Hz, H-2), 7.55,7.62,7.88 (5H, each m, Ar-H), 9.81 (IH, bw, H-19). C-1
72.3
'^C Chemical Shift Assignments 70.7 C-1' C-U
C-2
66.6
C-12
59.8
C-2', 6'
129.8
C-3
71.8
C-13
205.3
C-3', 5'
128.8
C-4
49.8
C-14
54.1
C-4'
133.7
C-5
58.4
C-15
29.8
N-CH3
33.6
C-6
60.1
C-16
136.0
ArCO
164.9
C-7
69.1
C-17
114.3
COCH3-I
169.1\20.9''
C-8
48.4
C-18
23.5
COCH3-3
170.2,20.6
C-9
49.2
C-19
195.0
COCH3-7
169.6,20.3
C-10
56.6
C-20
66.0
COCH3-II
170.6\21.0''
129.1
****Assignments may be interchanged.
GD Manners, RY Wang, M Benson, MH Ralphs and JA Pfister, Phytochemistry, 42, 875 (1996).
Carbon-13 and Proton NMR Shift Assignments
51
11 -O-ACETYLB ARBISINE C34H37NO10; MW: [M+Hf 620; mp SlOBlS^Cdec.)
.t^t
[a]D~57.1°(CHCl3) Prepared from barbisine *H NMR (CDCh): 6 1.10 (5, H-18), 2.00, 2.01,2.11 (each 3H, s, OAc), 2.48 (3H, 5, A^Me), 3.43 (in, d, J=4.5 Hz; H-9p), 3.70 (IH, 5, H-20), 4.78 (IH, d, J=4.5 Hz, H-ll^), 4.86-5.04 (3H, m, H-7p, H-17,), 5.11 (IH, d, J=3.1 Hz, H-l„), 5.38 (IH, q, J=3.1 Hz, H2p). ^^C Chemical Shift Assignments
C-1
68.5
C-ll
65.6
C-20
67.6
56.5 .
N-Me
35.0
C-2
67.8
C-12
C.3
29.5
C-13
206.9
COCH3
169.0,168.6,165.1
C-4
43.6
C-14
50.8
COCH3
20.9,20.8,20.5
C-5
57.5
C-15
28.8
ArCO
165.1
C-6
61.2
C-16
135.0
c-r
129.5
C-7
73.9
C-17
115.4
C-2', 6'
129.5
C.3', 5'
128.6
C.4'
133.3
C-8
47.0
C-18
26.0
C-9
56.4
C-19
193.1
C-10
53.5
P Kulanthaivel, E Holt, J Olsen and SW Pelletier, Phytochemistry, 29,293 (1990).
52
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
11-0-ACETYLCARDIONINE CzfiHjjNOe; MW: 457.2463
21 22 OCOCH
\
23 /^^
24
[ a b - S J l " (CHCb) Delphinium cardiopetalum, DC; D. gracile, DC.
'H NMR (CDClj): 8 1.20 (6H, d, J=7 Hz, H-23, H-24), 1.33 (3H, s, H-18), 1.56 (IH, s, H-5), 1.65 (IH, d, J=2 Hz, H-9), 2.04 (3H, s, OAc), 2.32 (IH, brd, J=10.8 Hz, W|/2=7.5 Hz, H-14), 2.37 (IH, d, J=12.2 Hz, H-19J, 2.59 (IH, s, H-20), 2.63 (IH, sept, J=7 Hz, H-22), 3.08 (IH, d, J=12.2 Hz, H-19B), 4.99 (IH, s. H-UJ, 5.01, 5.34 (each IH, d, J=2.5 Hz, H-17). 5.68 (IH, t. J=2.2 Hz, H-15B). Me OH
"C Chemical Shift Assignments (CDClj) C-1
35.6
C-14
40.9
C-2
19.4
C-15
71.1
C-3
27.7
C-16
148.0
C-4
38.2
C-17
109.4
C-5
61.3
C-18
30.6
C-6
99.0
C-19
60.3
C-7
39.6
C-20
73.4
C-8
45.8
C-21
177.1
C-9
56.3
C-22
34.3
C-10
50.4
C-23
19.2
C-11
76.3
C-24
19.3
C-12
73.1
COCH3
172.2
C-13
36.2
COCH3
21.4
G de la Fuente, JA Gavin, M Reina and RD Acosta, J. Org. Chem., 55,342 (1990).
Carbon-13 and Proton NMR Shift Assignments
53
15-O-ACETYLCARDIOPETAMINE H0\
./i-lo.J
C29H3,N06^MW: 489'-';mp236-237°'' [a]D+16°', [a]D+ 12° (EtOH)^ Aconitum napellus L. S. Str. (syn. A. anglicum Stapf.) ; Delphinium cardiopetalum DCl 'H N M R (CDCI3)': 5 1.10 (3H, s, H-18), 1.82 (2H, m, H-7), 2.02 (IH, ;r, H-5), 2.10 (3H, s, OAc), 2.22 (IH, d, J=12 Hz, H-19B),
2.28 (IH, d, J=13.3 Hz, H-U), 2.29 (IH, rf. J=10 Hz, H-14), 2.58 (IH, d, J=2.5 Hz, H-12), 3.37 (IH, bra, Wi/2=6 Hz, H-6), 3.48 (IH, d, J=13.2 Hz, H-IJ, 4.18 (IH, brrf, J=9.7 Hz, W,/2=6 Hz, H-13), 5.15 (IH, s. H-15), 5.26, 5.34 (each IH, s, H-17), 5.57 (IH, d. 3=9 Hz, H-11), 7.42,8.08 (5H, each m, Ar-H). C-1
'^C Chemical Shift Assignment^ C-15 44.1
72.0
C-2
212.0
C-16
144.7
C-3
50.0
C-17
116.5
C-4
42.6
C-18
28.6
C-5
60.2
C-19
64.6
C-6
65.2
C-20
70.1
C-7
32.9
ArCO
166.6
C-8
48.1
c-r
129.8
C-9
49.4*
C.2',6'
129.8
C-10
55.0
C-3', 5'
129.7
C-11
75.1
C-4'
133.3
C-12
47.8
COCH3
171.0
C-13
69.6
COCH3
21.3
C-14
49.6*
"Assignments may be interchanged. 1. 2. 3.
G de la Fuente, M Reina and E Valencia, Heterocycles, 29,1577, (1989). AG Gonzdlez, G de la Fuente, M Reina, PG Jones and PR Raithby, Tetrahedron le//., 24,3765 (1983). AG Gonzdlez, G de la Fuente, M Reina, R Diaz and I Timdn, Phytochemistry, 25, 1971 (1986).
B.S. Joshi, S.W. Pelletier and S.K. Srivastava
54 3-(?-ACETYL CARDIOPINE
C38H45NO10; amorphous; MW 675 Prepared from cardiopine ^H NMR (CDCI3): 8 0.57 (H, u J=7.4 Hz, H-4'), 0.88 (H, d, J=7.0 Hz, H.5'), 1.04 (3H, s, H-18), 1.73 (IH, dd, J=13.6, 2.6 Me Hz, H-7p), 2.04 (3H, 5, OAc), 1.89, 1.96 5' AcO (6H, 5, OAc, 2.31 (IH, 5, H-5), 2.22 (IH, brd]^n Hz H.15„), 2.53 (IH, d, J=12.8 Hz, H-19p), 2.37 (IH, d, J=9.9 Hz, H-12), 2.37 (lH,/w, H-15p), 2.63 (IH, dd, J=10.1 Hz, H-14), 3.29 (IH, d, J=12.8 Hz, H-19J, 3.46 (IH, bw, 3.46 W,/2=6.2Hz, H-6), 3.85 (IH, 5, H-20), 5.11 (IH, d, J=4.8 Hz, H-3p), 4.86 (IH, br^, H-17e), 4.99 (IH, bw, H-17z), 5.43 (IH, d, J=9.4 Hz, H-llp), 5.52 (IH, dt, J=9.9, 2.6 Hz, H-13p), 5.69 (IH, dd, J=3.2, 4.3 Hz, H-2p), 6.09 (IH, d, J=3.0 Hz, H-1 J, 7.46 (2H, r, J=7.8 Hz, Ar-H), 7.57 (2H, r, J=7.1 Hz, Ar-H), 8.11 (IH, ^, J=7.2 Hz, Ar-H).
4* 3* 2* r MeCHaCHCCXD*
'^C Chemical Shift Assignments
c-r
174.4
C-2'
39.5
73.3
C-3'
25.0
C-14
49.1
C.4'
10.7
58.9
C-15
33.6
C-5'
15.7
C-6
63.5
C-16
141.5
COCH3 170.0(1), 169.9(3), 171.0(11)
C-7
35.2
C-17
110.6
COCH3
C-8
44.1
C-18
25.1
ArCO
165.9
C-9
51.5
C-19
58.8
C-l"
129.8
C-1
72.3
C-ll
75.0
C-2
65.7
C-12
46.4
C-3
70.8
C-13
C-4
41.3
C-5
C-10 54.1
C-20 . 65.7
21.2(1), 20.6 (3), 21.4 (11)
C.2",6" 129.6 C-3", 5" 128.8 C-4''
133.1
M Reina, A Madinaveitia, JA Gavfn, and G de la Fuente, Phytochemistry, 41,1235 (1996).
Carbon-13 and Proton NMR Shift Assignments
55
3-aACETYL CARDIOPININE 3" 2"
4 . . / " y : QOCK ^
\ y
C37H43NO,o; amorphous; MW 661
^ A r> J^*^ ^CHa
^^l
^..JLi
J
Prepared from cardiopininc
'H NMR (CDCh): 5 0.10 (IH, d, J=3Hz, H-
2' C H C O O ^ . . . ^ A < L X * X y ^ I Me I N—]--. 4' ^.-U ^ ^ J ^ : ^ AcO' .'T^ ^ ^ ' ' ^Me
12), 5.71 (Ih, dd, J-5,3 Hz, HzP), 5.10 (IH, d. J-Sllz, H-3P), 2.30 (IH, 5, H-5), 3.61 (IH, brs, wl/2 6.2 Hz, H-6), 1.74 (IH, dd, J=14, 2.3 Hz, H-7),2.42(IH.m,H.9),5.45(lH,J,J=9.6Hz, "-^ ^p)' -•'•2 (HI,