2-SIGNALIZERS V.
D.
OF
FINITE
GROUPS
Mazurov
UDC 549.44
T h e s u b g r o u p H of f i n i t e g r o u p G is c a...
6 downloads
469 Views
73KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
2-SIGNALIZERS V.
D.
OF
FINITE
GROUPS
Mazurov
UDC 549.44
T h e s u b g r o u p H of f i n i t e g r o u p G is c a l l e d a 2 - s i g n a l i z e r of g r o u p G if t h e o r d e r [ H I and i n d e x IG':xv'g(~)l a r e odd [1]. T h o m p s o n [I] put f o r t h t h e h y p o t h e s i s t h a t 2 - s i g n a l i z e r s of f i n i t e s i m p l e g r o u p s are commutative. T h e p u r p o s e of t h i s n o t e i s to p r o v i d e a c o n t r a d i c t o r y e x a m p l e : In t h e s i m p l e g r o u p P S L 3 (q), w h e r e q - nilpotent 2-signalizer.
Proof.
In g r o u p G = S L 3 ( q ) , ( q ) - -
1 (mod 4), q ¢ 2 a - 1 (a i s an i n t e g e r ) t h e r e e x i s t s a n o n -
1 (rood 4), t h e s e t
~q =
Co°) 1
}
is a s u b -
g r o u p of o r d e r q2; t h e s e t
°~o~ i s a s u b g r o u p i s o m o r p h i c to G L 2 (q). C l e a r l y , B n o r m a l i z e s A. A c o m p a r i s o n of t h e o r d e r s of SL 3 (q) and G L 2 (q) s h o w s that B c o n t a i n s a Sylow 2 - s u b g r o u p of g r o u p G. In s u b g r o u p B the s e t
o
( 2÷/~)-~
i s a c o m m u t a t i v e s u b g r o u p of o r d e r q 2 _ 1. L e t C l - 2 b e the c o m p l e m e n t of C. T h e e l e m e n t ~ =
-01 _
i s c o n t a i n e d in B - C a n d n o r m a l i z e s C a n d , c o n s e q u e n t l y , C I. T h e r e f o r e -~= < C, ~ > is a s u b g r o u p of o r d e r 2 ( q 2 1). S i n c e q = - 1 (mod 4), D c o n t a i n s a Sylow 2 - s u b g r o u p of g r o u p B, i . e . , a Sylow 2 - s u b g r o u p of G. T h u s , C~ i s a 2 - s i g n a l i z e r of g r o u p G. If, in a d d i t i o n , q ~ 2 a - 1, w h e r e a i s an i n t e g e r , t h e n ( I CI [, q + 1) # 1 and, s i n c e (q + 1, I Z (G) I ) = 1, C 1 d o e s not b e l o n g to the c e n t e r Z(G) of g r o u p G. T h e c e n t r a l i z e r of s u b g r o u p A in g r o u p B is & n z(~; : t h e r e f o r e Cf d o e s not c e n t r a l i z e A w h e r e A i s a H a l l s u b g r o u p of g r o u p A C t ; t h e r e f o r e AC 1 is n o n - n i l p o t e n t . C l e a r l y , A C 1 (mod Z(G)) i s a n o n - n i l p o t e n t 2 - s i g n a l i z e r of g r o u p G/ZCG) - PSL~Cq). W e s h a l l a l s o show t h a t t h e r e e x i s t s i m p l e g r o u p s w i t h n i l p o t e n t 2 - s i g n a l i z e r s f o r a n y p r e v i o u s l y specified nilpotent class. If q i s the i n t e g r a l p o s i t i v e e x p o n e n t of odd p r i m e p and r~ = ~k+~ _ ¢, w h e r e k i s a p o s i t i v e i n t e g e r , t h e n t h e r e e x i s t s a n i l p o t e n t 2 - s i g n a l i z e r of c l a s s k in PSL ~ (9)" Proof.
L e t G=SL,., (c/) w h e r e ,~
and q a r e d e f i n e d a b o v e .
L e t A b e the s e t of a l l e l e m e n t s of g r o u p
T r a n s l a t e d f r o m A l g e b r a i L o g i k a , Vol. 7, No. 3, pp. 6 0 - 6 2 , M a y - J u n e , 1968. O r i g i n a l a r t i c l e s u b m i t t e d M a y 14, 1968.
167
G of f o r m
X,o E, .
.
.
0
.
•
.
•
°
.
.XK~,,XK2 ,..'., E,~ w h e r e E i i s a unit m a t r i x of d i m e n s i o n a l i t y 2 i x 2 i, Xij i s a m a t r i x of d i m e n s i o n a l i t y 2 i × 2J w i t h e l e m e n t s of t h e f i e l d G F (q). C l e a r l y , A - p is a s u b g r o u p of g r o u p G and the c l a s s of n i l p o t e n c y A is e q u a l to k. L e t B b e a s u b g r o u p of g r o u p G c o n s i s t i n g of a l l e l e m e n t s of f o r m
o)
k
"4~
0 where
,'~iEdL2L ( ~ )
• B
normalizes subgroup A and t3n~q=.
Since
IGI = (q'~- ¢ ) ( q n - ~ ) ' " C ~ ' ~ - ~ - ' )
k
,! "-
Zi
I~1 = / - 7 c~ - , ) ( ~ - ~ . . .
Zi
cg - g
,
Zi - f )
,
d i r e c t v e r i f i c a t i o n s h o w s t h a t I G : B I i s an odd n u m b e r . T h u s , A is a 2 - s i g n a l i z e r of g r o u p G and, in o r d e r to p r o v e o u r s t a t e m e n t , it i s s u f f i c i e n t to note t h a t t h e i n t e r s e c t i o n of s u b g r o u p A w i t h the c e n t e r of g r o u p G is t r i v i a l . LITERATURE 1.
168
CITED
J . G . T h o m p s o n , " 2 - s i g n a l i z e r s of f i n i t e g r o u p s , " P a c i f . J . M a t h . , 14, No. 1, 3 6 3 - 3 6 4 (1964).