紀伊國屋数学叢書 9
編集委員 伊藤
清 三 (東京大学名誉教授)
戸 田
宏 (京都大学教授)
永 田
雅 宜 (京都大学教授)
飛 田
武 幸 (名古屋大学教授)
吉沢
尚 明 (京都大学名誉教...
98 downloads
1103 Views
7MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
紀伊國屋数学叢書 9
編集委員 伊藤
清 三 (東京大学名誉教授)
戸 田
宏 (京都大学教授)
永 田
雅 宜 (京都大学教授)
飛 田
武 幸 (名古屋大学教授)
吉沢
尚 明 (京都大学名誉教授)
飛 田武幸 櫃田倍之
ガ ウ ス過 程 表現 と応用
紀伊國屋書店
ま
筆 者 達 が 語 りあ って,Gauss過 企 画 し てか ら も はや2年 ころはGauss過
え
が
き
程 に つ い て の一 書 を世 に贈 ろ う と意 気 ごん で
もの歳 月 を 閲 した.執 筆 に あた って我 々が 意 図 した と
程 の美 しい 理論 がた だ 数学 の世 界 だ け に留 ま らず,物 理 学 や
工 学 を 修 め る人 々に もさ らには 実 務 に携 わ る人 々に も広 く理 解 され る よ うに と い うこ とで あ った.脱 稿 に あた って顧 み る と き,筆 の 及 ば なか った と ころ も あ り,少 なか らぬ憾 み は残 るが,我 々 の意 の あ る と ころ は汲 んで 頂 け る こと と信 ず る. Gauss型
の ラン ダム な現 象 を モ デ ル とす るGauss過
程 が 確 率 論 の興 味 あ る
研 究 課 題 で あ るば か りで な く,応 用面 か らい って もいか に重要 な も ので あ るか は ここに 説 明す るまで もな か ろ う.ま たそ の 詳 しい事 情 は 本 書 を通 じて理 解 さ れ る こ とを期 待 す る もの で あ る.本 書 で は特 にGauss過 理 論 に重 点 を お くこ とに した.こ の理 論 はP.Levyに
程 の"標 準 表 現"の
(1955年)以
よ っ て提 唱 さ れ て
来 日も浅 く,ま だ周 知 の話 題 とい うまで に は至 ってい な い.そ れ
に もか か わ らず,時 間 の推 移 を考 慮 した い わ ゆ る因 果 的(causal)な
議論を し
よ う とす る と きに は常 に基 本的 な手 法 と して登 場 す べ き も ので あ る と断 言 す る こ とが で き る.こ の よ うな 目的 のた め に本 書 が 些 か な りと も読 者 の お役 に立 つ こ とが で き るな らば 筆者 等 に と って は無 上 の 光 栄 で あ る. 本 書 は 入 門者 に も,ま た 数 学 専攻 以 外 の 方々 に も親 しん で頂 け る よ うに,初 等 的 な 準備 の段 階 か ら始 ま って い る.そ して 徒 らに議 論 の 細部 に立 ち入 る こ と は避 け て,い ち早 く最 近 の興 味 あ る話 題 につ な が る よ うに し,一 貫 した理 論 の 紹 介 に な る よ う配慮 した つ も りで あ る.特 定 の章 に特 に興 味 を 持 た れ る読 者 の た め に は解 題 を 設 け て更 に 深 い研 究 に進 まれ る た めの参 考 に供 す る こ と とした. また全 体 の 流れ か ら幾 分 逸 脱す る と思 われ る話 題 は 最後 に付 章 と して それ らを 収 め て お いた.
C.F. Gauss生
誕200年 祭 を 明年 に ひか え,彼 の名 を冠 した このGauss過
程
の研 究 が大 きな飛 躍 を 遂 げ,ま たそ の重要 さ の認識 が益 々深 め られ る こ とを期 待 し た い. 最 後 に,お 世 話 に な った紀 伊 國 屋 書 店編 集 部,特 に渦 岡 謙一,水 野寛 両 氏 に 深 く感 謝 の意 を 表 す る次 第 で あ る.
1976年2月
名古屋 にて 著
者
目
次
ま えが き
序
章
第1章 確 率論 に お け る基 本概 念 と極 限定 理 §1.1 確 率論 にお け る公 理 系 と確 率 変 数
9
§1.2 確 率変 数(確 率 ベ ク トル)の 分 布 と特性 関 数
11
§1.3 確 率 変 数 列 の収 束
15
§1.4 独立 確 立 変数 の和 に関 す る極 限 定 理
16
§1.5 条 件 付 平 均値 とマ ル チ ン ゲ ール
17
§1.6 関 数 空 間上 の確 率 測 度(確 率 過 程 の構 成) 第2章
Gauss型
21
確 率変 数 系
§2.1 Gauss型
確 率 変 数 系 の定 義
25
§2.2 Gauss型
確 率変 数 系 の特 性
28
§2.3 複 素Gauss型
確率変数系
§2.4 離 散 パ ラ メ ー タ ーGauss過
程,標
準表 現
§2.5 連 続 パ ラ メ ー タ ーGauss過
程―
特 にBrown運
第3章
Gauss型
37 動
43
定 常過 程 とそ の表 現
§3.1 離 散 パ ラ メ ー タ ー 定 常 過 程 §3.2 定 常Gauss過
31
程 の ス ペ ク トル 表 現
50
56
§3.3 定 常 過 程 の 標 準 表 現Ⅰ(離 散 パ ラ メ ー タ ー の 場 合)
60
§3.4 定 常 過 程 の 標 準 表 現Ⅱ(連 続 パ ラ メ ー タ ー の 場 合)
68
第4章 Gauss過
程 の標 準 表 現 の一 般 論 と重 複 度
§4.1 ラ ン ダ ム 性 の 動 き
72
§4.2 標 準 表 現 と 重 複 度 §4.3 Gauss過
74
程 と再 生 核Hilbert空
間
§4.4 標 準 表 現 お よび 非 標 準 表 現 の 例
89
§4.5 予 測 理 論 へ の応 用
第5章
93
Markov性
§5.1 離 散 パ ラ メ ー タ ー 多 重Markov過
程
§5.2 連 続 パ ラ メ ー タ ー 多 重Markov §5.3 狭 義 多 重Markov過 §5.4 多 重Markov定
§5.6 T-正
Gauss過
100 程
程 程
125
程
134
値性
Gauss過
144
程 の 同等性
§6.1 問 題 の 意 味 と定 式 化 §6.2 Gauss測
151
度 の 同等 性 に 関 す る一 般 的 な定 理
§6.3 離 散 パ ラ メ ー タ ーGauss過 §6.4 Brown運
152
程 の同 等 性
動 に 同 等 なGauss過
§6.5 一 般 のGauss過
159
程 の標 準表 現
程 と 同 等 なGauss過
162
程 の標 準 表 現
§6.6 新 生 過 程 の 構 成 法
付
104 111
常Gauss過
§5.5 LevyのM(t)-過
第6章
84
173 176
章 確 率 積分 とマ ルチンゲー ル §A.1 多 重Wiener積 §A.2 Wiener空 §A.3 Itoの
分
181
間 に お け る マ ル チ ン ゲ ー ル とIto積
公 式 とGirsanovの
定理
分
187
197
参考文献
202
索
206
引
序
章
本 書 で 扱 うのは 時 間 とと もに変 化 し てい る ラン ダム な現 象(偶 然現 象 と も呼 ばれ る),す な わ ち確 率 過 程 で あ って,そ の中 で も特 に重 要 なGauss型
の場合
の数 学 的 な理 論 で あ る. 主題 に入 る前 に なぜGauss型 な らな い.ま ず,Gauss型
の確 率 過 程 が重 要 で あ るか を説明 しな け れ ば
確 率変 数 あ るい はGauss分
う.ラ ン ダムな 現 象 を数 値 で 記述 す る と きGauss分 18世 紀 末 のP.S.
Laplaceに
布 に つ い て考 え て み よ 布 に した が うよ うな 例 は
よる研 究 以来 数 多 く知 られ て き た こ とで,そ
の
分 布 の重 要 さの 認識 は歳 月 と とも に深 め られ て きて い る.詳 しい記 述 は 本 論 に 譲 る と して,こ こで は手 早 く直 観 的 な 把 握 をす る こ とに し よ う.C.F. の誤差 論(1821年)に
Gauss
よれ ば,小 さな誤 差 が 積 り重 な った とき,も し各誤 差 が
独 立 に現 わ れ るな ら ば,そ れ ら総 体 の 分 布 はGauss型
に な る とい う.こ の認
識 は極 め て重要 な発 見 で あ って,ラ ンダ ム な現 象 を も数 学 の 対 象 に く り込 む大 きな原 動 力 とな った.も
う少 し数 学 的 な記 述 を しよ う.各 観 測 の結 果 をXn,
と しそれ らが 独立 な確 率変 数 とみ な され る もの とす る.同 種 の観 測 を く り返 す とす れ ば 各Xnが 同 じ分 布 に したが うと して よい(も ち ろんGauss型 は限 ら ない).そ れ らの平 均値 はm,分
と
散 は σ2と しさ ら に3次 の モ ー メ ン トも
有 限 で あ る場 合 を 考 え る.有 限和Sn=X1+X2+…+Xnを
規 格化 した も の,
す な わ ちSnか ら平 均値E(Sn)=n・mを
引 き去 り標 準 偏 差
で 割 った も の
の分 布 はnが 大 きけ れば 十 分Gauss分
布 に近 い.こ の事 実 は経 験 的 に知 られ
て きた ことで もあ り,ま た この種 の議 論 は 中心 極 限 定理 と呼 ば れ て確 率論 にお
け る極 限 定理 の中 で 中心 的 な位置 を 占め て い る(第1章
§1.4で 詳 し く述 べ る).
この原 理 は古 くか ら知 られ て い た ことで あ りな が ら,現 在 で も なお興 味深 い研 究対 象 とな っ てお り,応 用 面 か らの期 待 も大 き い. こ うして生 れ て きたGauss分
布 の統 計 的 性質 をみ てみ よ う.そ れ は直 線 全
体 の上 に分 布 して い て,密 度関 数
を も つ.も
ち ろ んmは
平 均 値,σ2は
分 散 で あ る.そ
れ で は この分 布 の別 な 成 因
も 探 り な が ら そ の 分 布 の 特 性 を ど う把 え た ら よ い か を 考 え て み よ う. ⅰ) モ ー メ ン トに つ い て は,す わ りのn次
べ て の 次 数 に つ い て 有 限 で あ り,平 均 値 の ま
モ ー メ ン ト μnは
nが 奇数 の とき nが 偶 数の とき で あ る.ま た この分 布 は平 均値 に関 して対 称 で あ り,分 布 の形 態 の特 性 を示 す 歪 度(そ れ は
で 定 義 され る), 尖度
と も に0で
あ る.
ⅱ) 指 数2の 安 全 な 分布 で,分 布 の重 畳(独 立 な二 つ の確 率 変 数 の和 の分 布 に 相 当す る)に 関 し て閉 じて い る.こ 数 系(第2章
の性 質 を と りあげ て,Gauss型
§2.1参 照)を 考 え る とき,そ
確 率変
の 中 で線 型 的 な演 算 が 自由 に行 え
る し,実 は この系 の線 型的 構 造 のみ が決 定 的 な も の とな って い る.こ の よ うな 事 実 は議 論 が簡 単 に な る とい うよ りは,む し ろGauss分
布 自体 が持 って い る
固 有 の基 本 的 性 質 と理 解 す べ きで あ ろ う. ⅲ) Gauss分
布 は誤 差な どの偶 然 現 象 のみ か ら生 ず る とす る のは 一 方 的 で
あ る.次 の よ うな 考 察 もで き る.n次
元球 面(半 径 は
と して お く)上 の 一
様 分 布 を原 点 を通 る一 つ の直 線 の上 に射 影す る と き,得 られ た分 布 はnが 大 き けれ ばGauss分
布 に近 い.こ れ は統 計 力学 な どで よ く知 られ た事 実 で あ るが,
また解 析 学 の立 場 か らの この事 実 の認 識 は 重要 な こ とで あ る.Gauss分
布に
関 した 確 率 論 の話 題 と関 数 解 析学 や量 子 力学,統 計 力学 等 との深 い つ な が りが
見 られ る一 因 も上記 の性質 に よるも の と考 え られ る.ま た この ことは,Gauss 分布 を 有 限 区間 の上 の分布 で近 似す る と き一 つ の意 味 の あ る近似 法を 提 示 して い る と見 る こ とが で きる. ⅳ) も う一 つ の大 切 な観 点 は応 用面 か ら与 え られ る.そ れ は歴 史的 事 実 だ け で は な く未来 に も向 け られ る.ラ ン ダ ムな現 象 をす べ てGauss分 し よ う とす るわ けで は な いが,多
くの偶然 現 象 をGauss型
布 の責 任 に
と仮 定 した り或 い
は それ で近 似 す る こ とに よ って新 た な展 望 が 開か れ る例 は応 用 面 に数 多 く見 ら れ る とこ ろで あ る.理 論 的 根拠 は 何れ 与 え られ るに もせ よ,Gauss分
布 が王
座 の位 置 を ゆ るぎな きも の とし てい る ことは 疑 う余 地 は な い. な お,Gauss分
布 の特 徴づ けは第2章
§2.2で 行 うが,そ
れ と併 せ て上記
の よ うな考 察 を して お くこ とは,我々 の 目標 に対 す る研 究 手段 を探 る手 が か り ともな る も ので あ る.
さて次 に 時 間変 数 をパ ラ メ ータ ーに もつGauss型 Gauss過
確 率変 数 系,す な わ ち
程 を 考 え よ う.そ れ は個々 の変 数 がGauss分
布 に した が うばか り
で な く,任 意 に有 限 個 の 時点 を と った と き同 時分 布 もや は り多次 元Gauss分 布 に した が うもの であ る.一 般 にGauss型
確 率 変数 系 の分 布 は 平 均 ベ ク トル
と共 分 散行 列 に よ って一 意 的 に決 定 され る(第2章
§2.1参 照).し た が って,例
えば 平均 ベ ク トル は0と した と き,共 分 散 行 列 の解 析 的(あ るい は代 数 的)性 質 のみ を研 究 すれ ば よい とす るの は早 計 で あ る.Gauss過 つ れ て変 化 して い くGauss型
程 は 時間 の動 きに
の ラン ダム現 象 が モ デ ル であ るが,そ の よ うな
現 象 の変 化 は到 底 共 分散 を見 た だ けで推 察 で き るも ので は な く,よ り深 い確 率 論 的 な洞 察 が必 要 で あ る.未 来 とか過 去 とか を考 慮 しな が ら時 間 が移 るに つれ て ラン ダム な従 属性 が時 々刻 々 と変 化 す る様 子 を 明確 に し な けれ ば な らな い. こ うい った解 析 をす るの に最 も強 力 な手段 とし て考 え られ るの は 1°) まず 典型 的 で あ りか つ 基本 的 で あ る よ うなGauss過
程 を見 出 し,そ の
性 質 を詳 細 に調 べ, 2°) 一般のGauss過
程 を1°)で 定 め た過 程 を基 に して表 現 す る,
と い う方 法 で あ ろ う. こ う 考 え た と き1°)に
該 当 す る も の は 第2章
な ら な い.こ
書 こ う.Brown運
れ をB(t)と
立 な 増 分 を も ち,そ
て こ れ は,時
動 に他
動 は 時 間 の推 移 に つれ て常 に 独
の 増 分 は 時 間 的 に も,ま
の よ う な 性 質 を も つGauss過
に 述 べ るBrown運
た 空 間 的 に も一 様 で あ る.ま
程 は 本 質 的 に はBrown運
たこ
動 に 限 ら れ る.そ
し
間 の パ ラ メ ー タ ー を 離 散 的 に し た と き 同 じ 分 布 に し た が う独 立 確
率 変 数 列 の 和 に 相 当 す る も の で あ る. と こ ろ で,こ
のBrown運
動 と は1828年R.
Brownが
水 中 の花 粉 を 観 測 し
て い て 発 見 し た 微 粒 子 の 不 規 則 な 運 動 の こ とで あ っ た が,A. 年 に こ れ を モ デ ル に し て 数 学 的定 式 化 に 成 功 し た.そ Brown運
動 の 研 究 はP.
LevyやN.
Wiener等
多 くの 最 近 の 数 学 者 に よ っ てMarkov過 性 質,そ
の 後,確
率過 程 と して の
に よ っ て系 統 的 に 始 め ら れ,
程 と し て の 性 質,見
本 関 数 の 解 析的
の 他 の 精 細 な 事 実 に 到 る ま で 詳 し く調 べ られ て い る.
こ の よ う に 基 本 的 で あ りま た よ く知 ら れ て き たBrown運 2°)の 立 場 に 移 る こ と を 提 唱 し た の はP. Gauss過
Einsteinは1905
程
と 積 分 核F(t,u)と
Levyで
動を 基礎にして
あ っ た(1955年).彼
が 与 え られ た と き,Brown運
は
動
を用 い て (Wiener積
分)
と表 現 す る こ とを 考 え た.も ち ろ ん この よ うな表現 は一 意 的 で は な いが,そ の 中 で標 準 的 な も のを 見 出 し,そ れ を用 い て{X(t)}の
性 質 を解 明 し てい こ う と
い うので あ る.こ の方 向 か らは標 準 表 現 の存 在 と一 意 性,Markov性
や定 常 性
な どの反 映 の しか た等 々重 要 な 問題 が 出 て くる.こ うい った 内容 こそ,本 書が 主題 とし て と りあげ た い事 柄 で あ る.
以 上 で 我 々 の立場 は 明確 とな った.さ らに,本 書 の及 ば な か った と こ ろで は あ るが 応 用面 の こ とに触 れ な けれ ば な らな い.こ こで応 用面 とい うのは この理 論 の応 用 され る分 野 とい うよ りはむ し ろ理 論 そ の もの がは い りこん で い る守備
範囲 とい うべ きで あ ろ う.そ の分野 に貢献 す る 目的 だ けで な く,数 学 的 研究 を 剌 激 し課題 を提 供す る場 とし て眺 め なけ れ ば な らな い.そ うい った 分野 の代表 的 な もの を若 干 説 明 して お きたい. 信 号 の伝 達 や デ ー ター観 測 な どの場 合 に生 ず るノ イズ は,真 の値 をか き乱 す ラン ダム な 自然現 象 とし て周 知 で あ る.そ の よ うな ノ イ ズは 多 くの 場合Gauss 型 で あ り,ゆ ら ぐ振 幅 を も った単 振 動 を周 波 数 に つ いて一 様 な重 み で集 め た も の,す なわ ち ホ ワイ トノイ ズ にな って い る.さ らに通 信 の場 合 で い えば 送信 信 号 自体 が確 率過 程 とみ なす 立場 が あ り一 定 時 間 に どれ だ け新 しい ラン ダ ムな量 が 加 わ って い くかは 重 要 な観 点 とな る.第2章
で定 義 す る新生 過 程(innovation)
とい う言 葉 も この考 え方 か らす れ ば 理解 し易 い で あ ろ う.通 信 にせ よ,デ ー タ 観 測 にせ よ,現 時 点 ま でに 得 られ た資 料 を 元 に し て予測 した りフ ィル タ リン グ (filtering)を 行 う ことに な り,我 々が 議論 し よ う とす る標 準 表 現 の理 論 とは共 通 の問 題 が多 く,い つ も同 じ考 え方 の上 に立 っ てい る. 生 物 のモ デル に 移 ろ う.生 体 内 に お こるゆ らぎが 生物 の行 動 の中 に ラ ンダ ム な要 素 を与え た り,生 物集 団 の盛 衰 に は内 的 お よび外 的 な ラ ンダ ムな要 因 に大 き く支 配 され る こ とが あ る.こ うい った ゆ らぎ は数学 的 に 理 想化 し て記 述 す る と き,Gauss型
の ラ ンダ ムな変 数 と して表 わ され うる こ とが 多 い.こ
うし て
生物 あ るい はそ の集 団 の特 性量 が 時 間 と と もに移 っ てい く有 様 はGauss過 や そ の汎関 数 とし てモ デ ル化 され,Markov性
程
に対 す る示唆 を 与 えた り,定 常
過 程 の 典型 を 示 し て くれ る ので あ る. さ らに大 切 な 方面 と して量 子 力学 へ の数学 的 アブ ローチ を忘 れ て は な らな い. 確 率 論 との深 い 関連 は 実 に多 様 で あ って,そ れ らを系 統 的 に位 置 づ け て言 う こ とは 不可 能 で あ る.量 子力 学 に対 して確 率 論 が果 す 役 割 は,古 典 力学 に対 し て 微 積分 が果 し た も のに 匹敵 す る と言 って も過 言 で はあ るま い.Gauss過 直 接 関係 した例 を と って い えば,場 の理 論 が あ げ られ る.Euclid自 定 常Gauss型Markov過
程 が対応 し,そ
程に
由場 に は
の見 本 関数 空 間 に よる この場 の美 し
い記 述 が な され る.さ らに一 般 化 され た場 では,高 次 の もの を含 め てMarkov 性 とか,T-正
値 性 な どの概 念 や 新 たな 視 点 を要 求 し,確
率 論固 有 の興 味 との
接 点 を見 出す ことが で きる.そ して こ こで も常 にGauss型が中
心 で あ る こと
に 注意 した い.本 書 の第5章 は この よ うな こ と も若 干 意識 して述 べ た つ も りで あ るが筆 が 足 りな か った こ とを遺 憾 に思 ってい る.意 の あ る と ころを汲 んで 頂 けれ ば幸 いで あ る.
我 々が 述べ よ う と志 し て触 れ え なか った話 題 が二 つ あ る.そ の一 つ はGauss 過程 の見 本関 数 の性 質 で あ る.た とえ ば連 続 性 とか 一 定 の レベ ルを 通過 す る回 数 とか い った見 本関 数 の解 析 的 な性 質 に つ いて で あ る.い くらか の事実 は標 準 表 現 の理論 の応 用 として知 る こ とはで き るが,し か し詳 しい見 本関 数 の行 動 を 調べ るに はそ れ特 有 の 手法 もい くつ か あ り,ま た研究 の 目標 自体 も標 準 表 現 の それ とは 自ら趣 を異 に してい る.最 近 の話 題 に まで 及 ぼ うとす れ ば尨 大 な準備 も必 要 とな るの で,重 要 な課題 であ りなが ら こ こで は割 愛 せ ざ るを え なか った. 僅 か に第6章 でGauss測
度 の 同等 性 を論 ず る中 で一 つ の見 方 を 示 し えた に過
ぎな か った ことを残 念 に思 う次第 で あ る. も う一 つ取 り残 した こ とは多 次 元 パ ラ メ ータ ーを もつGauss過 る.Gauss型
程 の話 で あ
確 率場 として量 子 力学 そ の他 で広 い応 用 を も持 つ 重要 な過 程 で
あ るに もか か わ らず こ こで と りあげ な か った のは,本 書 の一 つ の章 とす るには 余 りに も大 きな分 野 で あ る こと と,さ らに標 準表 現を 扱 う立 場 か らは 時 間 のパ ラ メー タ ーの1次 元的 な動 きを重 視す るた め本 書 の副題 に て らし て多 次 元パ ラ メ ータ ーの場 合 を と りあげ るのに若 干 の逡 巡 を感 じた か らで あ る.別 な機 会 が あれ ば是 非 論 じた い と願 うもので あ る.
序章 の解 題 誤差 理 論 の最 初 の展 開 は,C.F.
Gauss(1809以
確 率論 に お け る業 績 に つ い ては,B.V. Gauss分
降)に よ って行 われ た.彼 の
Gnedenko(1960)に
布 の モ ー メン ト,特 性関 数 等 につ い て は,K.
の ひ と りに よるT. Hida(1975)§1.6お
要 約 され て い る. Ito(1976)お
よび著 者
よび §1.7に 詳 しい が,本 書 の理 解 の
た め に 必 要 な 事 柄 は,第3章 n次 元 球 面 のGauss分
に ま と め て お い た.P.
Levy(1951)の
布 へ の近 似 が 展 開 され て い る .ま た,T.
第3部
で,
Hida(1975)
の ま え が き に はBrown運
動 の 発 見 に は じ ま る歴 史 の 概 略 が 述 べ ら れ て あ る .
A. Einstein(1905)が,現
代 的 なBrown運
こ の 論 文 を 含 め て,和 ま たGauss過 (1979)が
動 の定 式 化 の発 端 を 与 え てい る.
訳 の選 集 が 発 行 され て い る(1971)
程 と場 の 理 論 と の 美 し い 結 び つ き に つ い て はB. Simon(1974),
適 当 な 解 説 書 と い え よ う.
本 書 の 内 容の 論 理 的 構 成 を 示 す ダ イ ヤ グ ラ ム を,次 は,理
.
の ペ ー ジ に 掲 げ る.そ
解 す る順 序 を 考 え る と き の 指 針 に も な る で あ ろ う.
れ
本 書 の ダ イヤ グラ ム
第1章
確 率 論 に お け る 基 本 概 念 と極 限 定 理
本章 で は,以 下 の章 を通 じ て よ く用 い られ る確 率論 の基 本的 な概 念 を説 明 し, Ganss分 布 へ の 自然 な導 入 とし て 中心 極 限定 理 を述 べ て お こ う.詳 しい論 証 に つい ては,そ れ ぞれ 該 当 の 書を 参 照 し てい た だ きた い.またこ
こで 取 りあげ る
事 項 は,後 で 必要 にな る こ とだ けに 留 めた.
§1.1. 確 率論 にお け る公 理 系 と確 率 変数 確 率 論 の基礎 は,現 在で はH. る.それ は,A.N.
Lebesgueに
Kolmogorovの
よ る積 分 論 に基 い て定 式 化 され
考 え に よ るので あ るが,そ れ に よ って古 くか
ら行 われ てい た極 限 定理 や 条件 付 確 率 の概 念 が 明確 にな った.確 率 は,確 率空 間(全 測度 が1の 測 度 空 間)を 基 に して考 え られ る.こ れ を 定義 す るた め に, まず 集合Ω を1つ 与 え る.Ω の部分 集 合 か らな る族Bで 次 の条件 をみ たす もの を完 全 加法 族(ま た は σ-加法族)と い う: (B.1) Ω ∈B. ならば
(B.2)
及び (B.3) Bの
B∈Bな
各 集 合Bに
空 間(Ω,B)に (P.1) (P.2)
ら ば,Bc=Ω-B∈B. 対 して,値P(B)が
与 え られ た 確 率 測 度 と い う:
任 意 のB∈Bに Bn∈B
定 ま り次 の 条 件 を み た す と き,Pを
対 し て,
(n=1,2,…)が
互 に 素
な ら ば,
可測
及び (P.3)
P(Ω)=1.
以 上に よ っ て 定 ま る 組(Ω,B,P)を を,集
合Ω に 構 造B及
こ と も あ る.古 Bの
びPが
確 率 空間 と い う.確 率 空 間(Ω,B,P)
付 与 さ れ た こ と を 強 調 し て,Ω(B,P)と
くか ら の よ び 方 に 従 っ て,各B∈Bを
確 率 とい う こ と も あ る.事
ちBi(i=1,2,…)が,互
象BcはBの
事 象B,P(B)を
余 事 象 で あ る.ま
に 素 で あ る と き,そ
書 く 事象
た,事
象 た
れ らは互 に排 反 で あ る と も い
う. さ て,2つ き,事
の 事 象AとBに
象AとBは
対 し て,P(A∩B)=P(A)・P(B)が
互 に 独 立 で あ る と い う.よ
Bi(i=1,2,…)が
与 え られ た と き,任
な りた つ と
り一 般 に,多
意 のnに
く の 事 象(事
象 系)
対 し て,
(ikは 互 に異 な る よ うに 選 ぶ) が な りた つ と き,こ わ れ わ れ が,こ で あ るが,他
れ ら の 事 象Biは
こ で 導 入 した 確 率 空 間(Ω,B,P)は,全
に もLebesgue積
い て しば し ば 転 用 され る.確 素)数 値 可 測 関 数X(ω)を
で 定 義 さ れ た(実 た(有
値(ま た は ベ ク トル 値)確
動 き に つ れ て,ラ
よ び,簡
数 ま た は,そ
元ベ
の 部分 集 合 たは 確 率
率 過 程 と い う.つ
の よ うに 書 く こ と に し よ う.Tと
合 に よ っ て は,確
単 にE(X)と
ま た は 複
限 ま た は 無 限)次
3,…},{…,-1,0,1,2,…},(-∞,∞),[0,∞),[0,1]な
確 率変 数X(ω)が
率論 にお
ま り,
ン ダ ム性 が 変 化 す る過 程 が 記 述 さ れ る の で あ る.今 後,
確 率 過 程 を
が 多 い,場
測 度空間
パ ラ メ ー タ ー と す る確 率 変 数X(t,ω)(ま
ベ ク トルX(t,ω))を,数 t∈Tの
率 空 間(Ω,B,P)上
確 率 ベ ク トル と い う.実
す る と き,t∈Tを
測 度1の
分 論 に お い て使 用 され る 概 念 が,確
確 率 変 数 と い う.ま
ク トル 値 可 測 関 数,X(ω)を をTと
互 に 独 立 で あ る と い う.
し て{1,2,
どを考 え る こ と
率 過 程 自 身 を 確 率 ベ ク トル と み な す こ と も あ る.
の 平均 値 と
可 積分 で あ る とき, 書 く.ま たX(ω)が
乗 可 積 分 で あ る と き, を,X(ω)のp次
のモーメン ト
と い う.な p=2の
お,p乗
と き,2次
散 と い い,V(X)と 考 え る.例
可 積 分 な ら,可
積 分 で あ る こ と に 注 意 し て お こ う .特
の モ ー メ ン トE[│X-E(X)│2]=E(X2)-E(X)2をXの 書 く.確 率ベ ク トルX(ω)の
i,j=1,2,…)を
対 し て,ベ
ク ト ルE(X)=
平 均 ベ ク トル,V(X)=E({Xi-E(Xi)}・{Xj-E(Xj)}); 共 分 散 行 列 と い う.こ
ト行 列 で あ る こ と に 注 意 し て お く.確
こ で,共
対 し て,事 象Bi∈Biを
が 互 に 独 立 な らば,σ-加
分 散行 列 は 非負 定値 エ ル ミ ッ
率 過 程 の と き は 共 分 散 関 数 と よぶ.
独 立 性 の 概 念 を も う少 し一般 化 し よ う.σ-加 Bi(i=1,2,…)に
分
場 合 に は成 分 毎 に これ ら の 量 を
え ば,X(ω)=(X1(ω),X2(ω),…)に
(E(X1),E(X2),…)を
に
法 族Bの
部 分 σ-加 法 族 の 系
任 意 に選 ぶ と き ,Bi(i=1,2,…)た
法族Bi(i=1,2,…)が
ち
互 に 独 立 で あ る とい う.さ ら に,
こ れ に な ら っ て,確 率 変 数 の 独 立 性 を 定 義 し て お く と便 利 で あ る:{Xi(ω); i=1,2,…}を B(Xi)と
確 率 変 数 列 とす る.各Xi(ω)の
した と き,Bi(i=1,2,…)た
(i=1,2,…)た …)に
ち は,互
張 る 最 小 の 部 分 σ-加 法 族 をBi=
ち が 互 に 独 立 で あ る と き,確 率 変 数Xi(ω)
に 独 立 で あ る と い う.確 率 ベ ク トル 列{Xi(ω);i=1,2,
対 して も 同 様 に 独 立 性 が 定 義 で き る .Lebesgue積
分 の定 義 か ら,直 ち
に 次 の 命 題 が 導 か れ る. 命 題1.1.
確 率 変 数Xi(ω)(i=1,2,…)た
ち が,互
に 独 立 な ら ば,そ
を 成 分 とす る 確 率 ベ ク トルX(ω)=(X1(ω),X2(ω),…)の
れ ら
共 分 散行 列 は対 角
型 で あ る.
§1.2. 確 率 変 数(確
率 ベ ク トル)の
まず 実 数 値 確 率変 数X(ω)を 数 直 線Rへ
分 布 と特 性 関 数
与 え よ う.こ
の 可 測 写 像 で あ る か ら,RのBorel集
{ω;X(ω)∈ Γ}は 事 象 で あ る(σ-可 測 族Bに か れ るR上
のR上
(1.1)
合 Γ に 対 し て,Ω 属 す).従
の 確 率 測 度Φ(Γ)=P{ω;X(ω)∈Γ}が
っ て 改 め て 確 率 空 間(R,Σ,Φ)が る.こ
の と きX(ω)は(Ω,B,P)か
確 定 す る が,こ
定 義 さ れ る.こ
の 測 度 Φ をXの 分 布 と い う.ま F(x)=Φ((-∞,x])
っ て,X(ω)に
た,
こでΣ
はBorel集
ら実 の部 分 集 合 よっ て 導 の Φに よ 合族 であ
に よ っ て 定 義 さ れ る関 数FをXの (F.1)
右 連 続(実
際,Fの
(F.2)
単 調 非 減 少,
分布 関 数 と い う.分 定 義(1.1)で
布 関 数Fは,
右 に 閉 じ た 区間 を 使 っ た か ら),
及び (F.3) を み た す.逆
に,(F.1)∼(F.3)を
確 率 測 度 Φ が 唯1つ
定 ま り,確
測 度Φ がLebesgue測
率 空 間(R,Σ,Φ)が
存 在 す る が,こ
定 義 さ れ る.
定 理 を述 べ て お こ う:
定 理 可 測 空 間(Ω,B)上
考 え る.任 意 のA∈Bに
の2つ
対 し て,μ(A)=0がμ(A)=0を
べ て のA∈Bに
が な りた つ.関 数f(ω)は Nikodymの
の 測 度 μ及 びμ
を
引 き おこ す と き(言
い か え れ ば 測 度μ が μ に 対 し て 絶 対 運 続 で あ る と き),B-可 が 存 在 し て,す
み た す
れ を 分 布Φ の 密 度 関 数 と い う.
三 使 う の でRadon-Nikodymの
Radon-Nikodymの
与 え る と,(1.1)を
度 に 関 し て 絶 対 連 続 で あ れ ば,Radon-Nikodymの
意 味 の導 関 数f(x)=F′(x)が 念 の た め に,再
み た す 関 数Fを
測 な 非 負 関 数f(ω)
関 して
μ-測 度0を
除 い て 唯1つ
定 ま る.こ のf(ω)がRadon-
導 関 数 で あ る.
分 布 Φ に対 し て,Fourier-Stieltjes変
換
(1.2)
に よっ て 定 ま る 関 数 φ(z)を
分 布 Φ(ま
(characteristic
い う.Φ が 確 率 変 数Xに
function)と
φ(z)=E(eizX),
た は 分 布 関 数F)の
特 性 関 数
対 応 す る 分 布 と す る と,
z∈R
で あ り,こ れ をXの 特 性 関 数 と い う こ と も あ る.(X(ω)が
確 率変 数 で あ る か
らeizX(ω)は複 素 数 値 確 率 変 数 で あ る こ と に 注 意 し よ う.)φ(z)は
次 の性質 を
み た す: (C.1)
正 定 値 性:任
意 個 のz1,…,zn∈Rと
α1,…,αn∈Cに 対 し て,
(C.2)
zに つ い て一 様 連 続,
及 び (C.3)
φ(0)=1.
定 理1.1.(S.
Bochner)
と な る 確 率 測 度 Φ が,可
(C.1)∼(C.3)を
測 空 間(R,Σ)上
み た す 関 数 φ(z)に 対 し て,
に 定 ま る.
具 体 的 に は,次
の 定 理 に よ っ て 対 応 φ→ Φ が 明 確 に な る.
定 理1.2.(P.
Levyの
が な りた つ.た
だ し
反 転 公 式)φ
を 分 布 Φの 特 性 関 数 と す る と,
また は
とす る. 以 上 に よ り,
が 互 に1:1対
分 布 列 Φn(n=1,2,…)が
応 を 与 え る こ とが わ か っ た.
あ っ た と き,こ
と を 意 味 す る こ とに し よ う:各f∈C0={f;fは
に対 して,積 分
が
れ が 分 布 Φ に 収 束 す る とは 次 の こ 連 続 で に 収 束 す る.こ
の こ とを対応
す る特 性 関 数 φn(z),φ(z)を 使 っ て 言 い かえる こ とが で き て 次 の 定 理 が な りた つ. 定 理1.3.(P.
Levy,
V. Glivenko)
性 関 数φn(z)は
φ(z)に 広 義 一 様 収 束 す る.
2) 分 布 Φn(n=1,2,…)の す れ ば,φ(z)も
1) 分 布 列 Φnが Φ に収 束 す れ ば,特
特性 関 数 φn(z)がz=0の
近 傍 でφ(z)に 一 様 収 束
あ る分 布 Φ の 特 性 関 数 で あ り,分 布 列 Φnは Φ に 収 束 す る.
以 上,本
節 で 述 べ て 来 た こ と は,そ
で き る:r(0に
びX(ω)にp次
が な りた つ と き,Xn(ω)はX(ω)にp次
はlimit
in the
書 く.
の モー メ ン トが あ って
平 均 収束(ま た はLp-収
に 平 均 収 束 と い い, meanの
て 特 に 重 要 で,そ
収 束 す る)と い
確 率 収 束 す る と い う.
と し て,Xn(ω)及
と き,単
た は 確 率1で
対 して
が な りた つ と き,Xn(ω)はX(ω)に
p=2の
法 則 収 束 す る と い う.
概 収 束 す る(ま
の と き,
D)
要 に 応 じて使 い
意 味 で あ る.こ
の理 由 は 第2章
の 収 束 はGauss過
束)す
る と い う.
と 書 く.こ
の記 号
程 の研究 に お い
で 明 確 に な る で あ ろ う.
これ ら の 収 束 の 間 の 相 互 関 係 が 次 の 定 理 で 述 べ ら れ る. 定 理1.5.
1°) Xn(ω)がX(ω)に
2°) 確 率 収 束 す れ ば,法則 3°) Lp-収 束 4°)
の と き,Lp-収
概 収 束 す れ ば,確
収 束 す る.
す れ ば,確
率 収 束 す る.
束 す れ ばLq-収 束 す る.
率 収 束 す る.
5°) 確 率 収 束 す れ ば,確
率 変 数 列Xn(ω)(n=1,2,…)か
ら,適
当 な 部 分
列 を とっ て 概 収 束 さ せ る こ とが で き る.
§1.4. 独 立 確 率 変 数 の 和 に 関 す る 極 限 定 理 独 立 確 率 変 数 列Xk(ω)(k=1,2,…)を1つ
と し て,そ
のn→
与 え よ う.そ
のn部
分和 を
∞ と し た と き の 行 動 に つ い て 知 ら れ て い る こ とを ま と め て お
く. 命 題1.2.
1°)(Tchebychevの
2°) (Kolmogorovの
不 等 式)確
定 理1.6.(大
定 理1.7.(大
率 変 数Xk,(k=1,2,…)が
1°)の 不 等 式 を 使 っ て,次
2°)の
互 に 独 立 で,分
意 の ε>0に
独 立 確 率 変 数 列 でE(Xk)=mk,
対 して
不 等 式 を 使 え ば,次
の 定 理 が 導 か れ る.
数 の 強 法 則 Xk(k=1,2,…)が
mk,
有 限 の と き,
の 定 理 が 導 か れ る.
数 の弱 法 則)Xk(k=1,2,…)が
と す る と,任
命 題1.2
分 散V(X)が
とす る と,
散 は有 限 とす る.
命 題1.2
不 等 式)X(ω)の
とす る.こ
独 立 確 率 変 数 列 で,E(Xk)=
の と き,
(a.e.P). 一 言 付 け 加 え て お く と,弱 法 則 は 確 率 収 束 を,強 し て い る の で あ る.定
法 則 は よ り強 く概 収 束 を 主 張
理1.7は 次 の 形 に 詳 し くす る こ と が で き る.
定 理1.7′. 定 理1.7と 同 じ 仮 定 の も とで,任
意 の ε>0に
対 して
(a.e.P)
(1.3)
が な りた つ. 〔注意 〕 定 理1.7′よ り精 密 な重 複 対数 の法則 が 知 られ てい る. 次 の 定 理 は,確
率 論 で よ く現 わ れ る 典 型 的 な 法 則 収 束 の 例 で あ る.条 件 は よ
り弱 め られ る が,こ
こ で は 比 較 的 簡 明 な 場 合 に つ い て 述 べ る.
定 理1.8.(中
心 極 限 定 理) Xk(k=1,2,…)が
し 平 均 値mk,分
散Vk及 び3次
独 立 確 率 変 数 列 で,各kに
モ ー メ ン トCk=E{│Xk-mk│3}が
対
存 在 す る と き,
及び
の 分布 は 標準 正 規 分布 に収 束す る:
な ら ば,
Xkを
す べ て 同 じ 分 布 と し た と き,定
と き の 行 動 を 示 し て い る.古 の 定 理 は,定
理1.8の
た と お り,Gauss分
理1.8は(1.3)に
典 的 なBernoulli試
お い て ε=0と
した
行 に 対 す るGauss-Laplace
特 別 な 場 合 で あ るが 応 用 上 も 大 切 で あ る .序 章 に も述 べ 布 が 確 率 論 に お け る 中 心 的 な 役 割 を 果 す 由 縁 の1つ
は,こ
の 古 典 的 な 定 理 に 現 わ れ て い る と言 え る.
§1.5. 条 件 付 平 均 値 と マ ル チ ン ゲ ー ル 条 件 付 平 均 値 はRadon-Nikodymの
定 理 を 使 って 定 義 さ れ る.そ
の方 法 を
述 べ て お こ う. 定 理1.9.
(Ω,B,P)を
度 μ(A)(A∈B)を 族 と し,測
度 μをB上
確 率 空 間 と し よ う.可
積 分 関 数f(ω)に 対 し て,測
で 与 え る.BをBの に 制 限 し た も の をμ と 書 け ば,B∈Bに
部 分 σ-加法
対 し て,
(1.4)
を み た すB-可
測 関 数g(ω)が
実際 は,確
存 在 す る.
率 測 度PをBに
れ ば よい.B上
制 限 し てRadon-Nikodymの
の 測 度 と し てμ はPに
定 義1.1.
上 の(1.4)で
平 均 値 と よ び,E(f│B)と =1(ω∈A);=0(ω
書 く.f(ω)が
∈ Ω-A))の
生 成 さ れ る も の で あ る と き,E(f│B)を 干 付 け 加 え て お け ば,Bが
件 付 平 均 値 は,確 命 題1.3.
率1で
関 す る条件 付
特 に 事 象A∈Bの
定 義 関 数(f(ω)
と き ,対 応 す るg(ω)をAのBに
書 く.特
通 常 の 確 率,平
す
関 し て 絶 対 連 続 と な る か ら で あ る.
定 ま った 関 数g(ω)をf(ω)のBに
件 付 確 率 と よ び,P(A│B)と
と も あ る.若
導 関 数 をgと
にBが.確
関す る 条
率 変 数 系{Xi;i=1,2,…}で
直 接E(f│X1,X2,…)の 特 に{φ,Ω}の
よ うに 書 く こ
と き,条 件 付 確 率 や 条
均 値 に 一 致 す る.
条 件 付 平 均 値 は 次 の 性 質 を 持 つ:
1°) a,bを 定 数 と し て,
2°) 確 率 変 数 列fn(ω) が もE(f│B)に 3°) Bの2つ る.こ
単 調 増 大 でf(ω)に 概 収 束 す れば,E(fn│B)
概 収 束 す る. の 部 分 σ-加法 族B1とB2の
間 に 包 含 関 係B1⊃B2が
あ る とす
の と き,
(1.5)
E[E(f│B1)│B2]=E(f│B2).
4°) 部 分 σ-加法族B1とB2が
互 に 独 立 な ら ば,B1-可
測 な 関 数f1(ω)に
対
して E(f1│B2)=E(f1) が な りた つ. 5°) f2(ω)がB-可
測 な ら ば, E(f1f2│B)=f2・E(f1│B)
が な りた つ. [注 意] 命 題1.3に お け る等 式 は,確 率1で な りたつ.概
収 束 に な ら っ て"概 等 式"
とで もい うべ き もので あろ う.以 後,概 等式 で あ る こ とを強 調 す る とき は,記 号a.e.P を 付 す. 条 件 付 平 均 値 を 直 接 そ の 構 造 に 反 映 し た マ ル チ ン ゲ ー ル と よ ば れ る確 率 過 程 が,以
下 の 議 論 を 通 じ て よ く使 わ れ る.
定 義1.2.
確 率 変 数 列{Mn(ω);n=1,2,…}と
族 の 増 加 列{Bn;n=1,2,…}が
σ-加 法 族Bの
与 え ら れ て,次 の 条 件(M.1)∼(M.3)を
満足す
散 パ ラ メ ー タ ー)マ
ル チ ンゲ ー
る と き,組M={Mn,Bn;n=1,2,…}を(離 ル(martingale)と
い う:
(M.1)
MnはBn-可
(M.2)
E(│Mn│)m
(a.e.P)
お け る等号 が 不 等 号 (ま た は )に 代 っ た と き,劣(ま
た は 優)
マ ル チ ン ゲ ー ル と い う. [注 意1]
マ ル チ ン ゲ ー ルMは 確率 過 程 で あ るが,σ-加法 族 の 増加 列{Bn;n=1,2,…}
が 重 要 な 役割 を 果 す ので,M={Mn,Bn;n=1,2,…}と [注 意2]
書 くこ とにす る.
こ こで は,時 間 のパ ラ メー ターが 自然数N={1,2,…}を
動 く とき に定 義 し
た が,全 順 序 集 合Tな ら何 で も よ い:T=N∪{∞}={1,2,…,∞},T=[0,∞),T= (-∞,∞),T=[0,1]な
どの場 合 が 本 書 で は よ く現 わ れ る.時 間 パ ラ メー ターが 連 続
の 場 合 は付 章 で 詳 述 す るで あろ う. マ ル チ ン ゲ ー ル の 例 を い くつ か あ げ よ う: [例1]
f(ω)をE(│f│)0に
に 述 べ る定 理
マ ル チ ン ゲ ー ル へ の 拡 張 で あ る.
マ ル チ ン ゲ ー ル(ま た は 劣 マ ル チ ン ゲ ー
対 して 不等 式
及び
が な りた つ.但
し,M+N=max{MN,0}と
マ ル ン チ ン ゲ ー ル に つ い て は,n→
す る. ∞ と し た と き の 行 動 が 特 に 重 要 で あ る.
そ れ に 関 し 以 後 よ く使 う結 果 を あ げ よ う.
定 理1.11. M={Mn,Bn;n=1,2,…}を
マ ル チ ン ゲ ー ル と す る と,
な らば,確 率1で 極 限値
で あ る.
が 存在 す る. この定 理 に関 す る次 の系 は,第6章
にお け るGauss過
程 の 同等 性 の問 題 を
論 ず る と きに有 効 で あ る. 系 Mを 正 則 な マル チ ン ゲ ール とす る(例1参
照).こ
の と き,確 率1で 極
限値 (1.7)
が 存 在 し て,M∞ ル に な る,但
再 びマル チ ンゲ ー
し,B∞=σ{Bn;n=,1,2,…}=(す
の σ-加法 族)で Mが
を 加 えたM={Mn,Bn;n=1,…,∞}も
あ る.逆
に,マ
べ て の
ル チ ン ゲ ールMに
マ ル チ ン ゲ ー ル で あ れ ば,Mは
対 し て 極 限(1.7)が
存 在 し て,
正 則 で あ る.
〔注意 〕 Mが 正 則 で あれ ば,Mn=E[f│Bn](n=1,2,…)を が 存 在す るが,も ち ろ んM∞=E[f│B∞]で
を含 む 最 小
み たす 確 率変 数f=f(ω)
あ る.
§1.6. 関数 空 間上 の確率 測 度(確 率 過程 の構 成) §1.1に お いて 述 べ た よ うに,確 率過 程{X(t,ω);t∈T}は,全
順 序集 合T
を パ ラメ ータ ーに もつ確 率変 数 の系 で あ るが,各 ω∈ Ωを 固定 して みれ ば(各 見 本 ωを 取 り出 して みれ ば)そ れ は定 義域Tを
動 く関 数 で あ る.言 いか えれ ば,
RTの 要 素 で あ る.従 って対 象 とす る確 率 過 程 の(数 学的)実 在 性 を問 わ れ た と き,そ れ に答 え るに は,特 にΩとし てRTを 率 測度Pを
と り,そ の あ る σ-加法族B上 に確
作 り,そ の有 限 次元 分 布 を{X(t,ω)}の
そ れ と一 致 させ る こ とが
で きれ ば十 分 で あ る.も ちろ ん,そ の特別 な場 合 と して,独 立 確 率 変 数 の和 や マ ルチ ン ゲー ル のn→ ∞ と した 時 の行 動 を 記 述す るた め に はRN(Nは 体)上
の確 率 測 度 を考 えれ ば十 分 な ので あ る.
自然 数全
ま ずRTの RTの
σ-加法 族 を 設 定 す る こ とか ら始 め る.Tを
部 分 集 合Aが
上 のBorel集
合Bが
筒 集 合 で あ る と は,n(0,b>0及
よ っ て 与 え ら れ る確 率 びc>0が
存 在 し て,
(1.10)
を み た せ ば,Cの
第1章
μ に よ る外 測 度 は1で
あ る.但
し,μ はXの
分 布 と す る.
の解題
確 率 論 の 全 般 的 な 基 礎 付 け を 完 成 し た 形 で 与 え た の は,A.N. (1933)が
Kolmogorov
最 初 で あ る.
§1.1の
内 容 に つ い て は,K. Ito(1976)に
§1.2の
定 理1.1.∼1.4.の
§1.3に
お け る収 束 定 理 に つ い て は,上
形 に 直 接 対 応 し た 形 で は,T.
あ る.
証 明 は 上 記 の 書,第2章
を み られ た い.
記 の 書 に も あ る が,こ
Hida(1975)第1章
も 便 利 で あ ろ う.定
に よれ ば 法 則 収 束 が 最 も 弱 い 収 束 と い う こ と に な る が,あ ら概 収 束 が で る こ とがA.V.
Skorokhod(1961,英
こ に 述 べ た 理1.5
る意 味 で 法 則 収 束 か
訳1965)第1章
§6に 主 張
さ れ て い る:Rn上
の 分 布 の 列{Φn;n=1,2,…}がΦ
率 空 間(Ω,B,P)と
に 法 則 収 束 す る と き,確
そ の 上 の 確 率ベ ク トル{Xn;n=1,2,…}を
適 当 に 作 っ て,
1) Xnの 分 布 はΦnで あ り,
2) XnはΦ §1.4の
に 従 う あ る 確 率 ベ ク トルXに
諸 定 理 の 証 明 も 上 記K.
明 確 な 証 明 は,A.N.
概 収 束 させ る こ とが で き る.
Itoお よ びT.
Kolmogorov(1933)が最
Hidaの
本 に あ る.定 理1.7の
初 で あ る が,そ れ に よ っ て 彼 の
公 理 論 的 確 率 論 の 有 効 性 が 疑 い も な い も の に な っ た の で あ る.定 更 に 詳 し く,重
複 対 数 の 法 則(A.Ya.
Khintchine(1933)お
よ びW.
(1943))が
知 られ て い る.
§1.5に
述 べ た 形 の 条 件 付 平 均 値 お よ び 確 率 の 定 義 は,J.L.
に よ る."マ 不 等 式,定
ル チ ン ゲ ー ル"も 理1.10が
Feller
本的 な
証 明 され た. 判 定 条 件 は,例
Prokhorov(1956)で
法 則 収 束 の 問 題 と し て 定 式 化 さ れ て,そ る.こ
よ り
Doob(1953)
そ の 書 に お い て は じ め て 導 入 され て,基
§1.6 Kolmogorov-Prokhorovの さ れ て い る.Yu.V.
理1.7′
の 条 件 は そ れ 以 前 か ら,知
わ れ て い た よ うで あ る.
え ばT.
Hidaの
本 に証 明
よ り一 般 に 連 続 関 数 の 空 間Cの
上の
の 帰 結 と し て 判 定 条 件が 与 え られ て い
られ て い て,い
くつ か の 文 献 に お い て 既 に 使
第2章
本 章 で は,特 Gauss型 §2.2で
Gauss型
確率 変 数系
に 無 限 個 の 変 数 か ら な るGauss型
確 率 変 数 系 を 取 り 扱 う.
確 率 変 数 系 の 特 色 は そ の 線 型 性 に あ る と言 え る.こ れ に つ い て は, 述 べ る こ と に す る.§2.3に
お け るGauss型
変 数 系 の 複 素 化 は,次
章 に お け る 定 常 過 程 の ス ペ ク トル 理 論 を 展 開 す る の に 便 利 で あ る か ら こ こに 取 り上 げ た.§2.4お
よび §2.5で
形 を 述 べ て お い た.Gauss過 特 に §2.4で る と,一
特 にGauss過
程 の 標 準 表 現 の最 も 原 始 的 な
程 か ら 新 生 過 程(innovation)を
離 散 パ ラ メ ー タ ー の 場 合 に 詳 し く述 べ た.連
取 り出 す 操 作 は 続 パ ラ メ ータ ーに な
つ の新 生 過 程 だ け で 表 現 が つ く さ れ る わ け で は な い の で,章
再 び 取 り上 げ る こ とに し,こ
§2.1. Gauss型
を改 め て
こ で は 例 を あ げ る だ け に 留 め た.
確率 変 数 系 の定 義
実 数 値 を と る確 率 変 数X(ω)は,そ
の分布 が絶 対連 続 で 密度 関 数 が
(2.1)
で あ る と きGauss型 こ こにmは σ=1の
確 率 変 数(Gaussian
random
variable)と
平 均 値 で σ2は 分 散 で あ る.こ の 分 布 をN(m,σ2)と と き,Xを
標 準Gauss型
元Gauss分
か く.特にm=0,
確 率 変 数 と い う.
n次 元 確 率 ベ ク トルX(ω)=(X1(ω),X2(ω),…,Xn(ω))に じ くそ の分 布 がn次
よば れ る.
布,す
つ い て は,同
な わ ち絶 対 連続 で 密 度 関数 が
(2.2)
で あ る と きn次
元Gauss型
確 率 ベ ク トル(Gaussian
random
vector)と
よ
ぶ.た
だ しm=(m1,m2,…,mn)(∈Rn)は
平 均 ベ ク トル で あ り,V=(Vij)は
共 分 散 行 列:
(それ は対 称 正 定値 行 列 で あ る)で あ って│V│はVの
行 列 式 を あ らわす.
よ り一般 に,多 数 の 確率 変 数 の系 に 対 し ては 次 の よ うな定 義 をす る. 定 義2.1. 確 率変 数 の系X={Xλ(ω);λ∈Λ}が 一次 結 合
がGauss型
確 率 変 数 とな る と き,XをGauss型
system)と
い う.特 にXが
process)と
あ って,任
意 の有 限個 の
確 率 変 数 系(Gaussian
確 率 過 程 の と き に は そ れ をGauss過
程(Gaussian
呼 ぶ.
この 場 合 も,n次
元 確 率 ベ ク トル の と き の よ う に,平
均ベ ク ト ルm=(mλ;
λ∈ Λ): mλ=E(Xλ),
λ∈ Λ
お よび 共 分 散 行 列V=(Vλ,μ): Vλ,μ=E{(Xλ-mλ)(Xμ-mμ)},
が 定 ま る.そ し てVは ∈ Λ に 対 し てn次
λ,μ ∈ Λ
次 の 意 味 で 正 定 値 で あ る.す なわ ち,任 意 の λ1,λ2,…,λn
行 列
2次 の モ ー メ ン トの 存 在 を 仮 定 す れ ば,必
が 正 定 値 と な る.こ ず し もGauss型
確 率 変 数 の 系 に 対 し て な りた つ こ と で あ る(第1章
の 性 質 は,
と限 らず に任 意 の
§1.1参 照).だ
が,Gauss
型 を 仮 定 す れ ば 次 の よう な 著 し い 事 実 が 証 明 され る. 定 理2.1.
mλ,λ ∈ Λ,を 任 意 の ベ ク トル,(Vλ,μ)を 正 定 値 とす る と き,そ
れ ら を そ れ ぞ れ 平 均ベ クト ル ,共 分 散 行 列 とす るGauss型 す る.し
確 率 変 数系 が 存在
か も そ の よ うな 系 の 分 布 は 一 意 的 で あ る.
[注 意] 最 後 の主 張 は 次 の こ とを意 味 す る:X={Xλ;λ
∈Λ}お よ びX′={X′λ;λ∈ Λ}
が い ず れ も平 均 ベ ク トルmλ,共 分 散 行 列(Vλ,μ)をもつGauss型 意 の有 限 個 の λ1,…,λnに n次 元Gauss分
対 し て(Xλ1,…,Xλn)と(X′λ1,…,X′λn)の
分 布(そ れ は
布)が 同 じで あ る.
こ の 定 理 の 前 半 の 証 明 は,ま
ず Ω=RΛ
に と り完 全 加 法 族BはΩ
体 か ら 生 成 され る も の を と っ て 可 測 空 間(Ω,B)を 筒 集 合,た Borel集
確率 変 数 系 な ら ば,任
の筒 集 合 全
構 成 す る.つ
い で任 意 の
と え ばC={ω=(ωλ);(ωλ1,ωλ2,…ωλn)∈B},Bはn次
合,な
る 筒 集 合 に 対 し て は(2.2)のp(x)を
元
用いて
(2.3)
と 定 め る こ と に よ っ て(Ω,B)上
の 確 率 測 度Pλ1,λ2,…,λnが 定 義 さ れ る.Λ
の 有 限 部 分 集 合(λ1,λ2,…,λn)を,個
数nも
含 め て い ろ い ろ と動 か し て 両 立 条
件 を み た す 確 率 測 度 の 系{Pλ1,λ2,…,λn}が 得 ら れ る.そ 拡 張 定 理(定 理1.12)が
使 え て,こ
め る こ と が わ か る.最 (Ω,B,P)上
で,定
の 系 が 一 意 的 に(Ω,B)上
後 にXλ(ω)=ωλ
義 され たGauss型
こ でKolmogorovの
と お け ば{Xλ;λ
の 確 率 測 度Pを ∈ Λ}は
定
確 率 空 間
確 率 変 数 系 で 平 均 ベ ク トル と 共 分 散 行 列
は そ れ ぞ れ 与 え ら れ たmλ,(Vλ,μ)に 等 し いこ と が わ か る. 定 理 の 後 半 は,有
限 次 元Gauss分
布 が(2.2)で
見 ら れ る よ うに 平 均 ベ ク ト
ル と共 分 散 行 列 に よ っ て 一 意 に 定 ま る こ と と上 の 注 意 と か ら 直 ち に証 明 さ れ る. な お(2.3)に
よ るPλ1,λ2,…,λnの
の階
定 義 で 行 列
数 がn以 下 に な る ときは 若干 の修 正 を要 す る こ とに注 意 し よ う.そ の と き分 布 は 退化 す るが,や は りn以 下 の 次 元 のGauss分
布 で あ る.
次 の定 理 は証 明 な し に述 べ るが,確 率変 数 列 の収束 に関 す る一 般 的定 理 を用 い て示 され る性 質 で あ る. 定 理2.2. XをGauss型 収 束 また は概 収 束,あ たGauss型 XをGauss型
確 率変 数 系 とす る と,そ の部 分 集 合 も,Xに
確率
るいは 平均 収束 の意 味 で の極 限 変数 をつ け加 え た系 も ま
で あ る. 確 率 変 数 系 とす る と,定 義2.1と
定 理2.2に
1次 結 合及 び そ れ らの平 均 収束 に よる極 限 を つ け加 え たGauss型
よ りXに
その
確 率変 数 系
をXに
よ る 線 型 包 と い い,H(X)と
書 く こ と に す る.Xの
内 積(X,Y)=E(XY),X,Y∈H(X),に
線 型 包H(X)に
よ っ て 自然 にHilbert構
は,
造がはい
る.
§2.2. Gauss型 次 にGauss型
確 率 変 数 系 の特 性 確 率 変 数 ま た は 変 数 系,あ
い くつ か の 性 質 を 列 挙 し よ う.は
るい は そ の分 布 の特 徴 づ け とな る
じ め の 三 つ は1次
元 分 布 に つ い て で あ る.
1°) あ る 分 布 の 特 性 関 数 が ψ(t)で あ る と し よ う.も
と表 わ さ れ る な ら ば,γkをk次
しt=0の
半 不 変 係 数(semi-invariant)と
分 布 はn次
ま で の 半 不 変 係 数 が 存 在 す る と い う.
さ て,平
均 値m,分
散 σ2のGauss分
布(そ
れ は(2.1)で
近傍 で
呼 び,こ
の
与 え られ る)の
特
性 関 数 φ(t)は
(2.4)
と表 わ され る ので,す べ て の次 数 の半 不 変係 数 が 存 在 す る ことが わ か り (2.5)
で あ る.逆 た はGauss分
に こ の 条 件(2.5)を
み た す 分 布 は あ る1点
に 集 中 す る δ-分布 か ま
布 で あ る.
な お 上 のGauss分
布 につ い て は
γ1=m,γ2=σ2 で あ る.ま
た 平 均 値 の ま わ りのk次
モ ー メ ン トmkに つ い て は
m2r+1=0, m2r=(2r-1)!!σ2r
で あ る.
2°) 絶対 連 続 な確 率 分 布 の 密度 関 数 をp(x)と し,一 種 の情報 量H(p)を
で 定 義 す る.分
え られ,そ
散 を 一 定(=σ2)に
し た と きH(p)を で あ る.す
の値 は
最 大 に す るpは(2.1)で
な わ ちGauss分
与
布 が この情 報
量 を 最 大 にす る も ので あ る. 3°) Gauss分
布 は指 数2の 安定(stable)な
分布 とし て特 徴 づ け ら れ る.
そ の 意 味 を説 明 す るた め に,ま ず 安 定 な 分 布 の定 義 か ら始 め よ う. 同 じ一 つ の 分 布 に 従 う独 立 な 確 率 変 数X,X1,…,Xnを
した と き,定 数cn,rnを
適 当 に選 ぶ とSnとcnX+rnと
そ の 分 布 は 安 定 で あ ると い う.特 にrn=0と
と
と っ て
が 同 じ分 布 に従 う と き,
で き る と きに はそ の分 布 は狭 義 の
安定 分 布 で あ る と い う. 安 定 な 分 布 に 対 し ては 定 義 か ら
で な けれ ば な ら な い こ とが わ か る.こ の αをそ の 安定 な 分 布 の(特 性)指 (exponent)と
数
呼 ぶ.対 称 な指 数αの狭 義 の安 定 分 布 の 特 性 関数 は
(2.6)
φ(t)=exp[-c│t│α],
c>0
と か け る. さ て,Gauss分 際(2.1)で
与 え られ るGauss分
nσ2のGauss分 α=2で
布 に も ど っ て,そ
布 で あ り,従
あ る こ とが わ か る.ま
定 分 布 で あ る.逆
に 指 数2の
れ は 安 定 な 分 布 で そ の 指 数 は2で 布 に つ い て み る と,Snは
っ て
あ る.実
平 均 値nm,分
散
そ して特 に
た 平 均 値0のGauss分 狭 義 の 安 定 分 布 は(2.6)か
布 は 指 数2の
狭義の安
ら平 均 値0のgauss
分 布 に 限 る こ と が わ か る. つ い でGauss型
確 率 変 数 系 に つ い て 考 え よ う.
4°) (X,Y)がGauss型
で あ れ ば,そ
の 一 方 を きめ た と きの条 件 つ き確
率 分 布,た
と え ば も
確 率1でGauss型
均 値E(X│Y),E(Y│X)は 実 はn=2と
で あ る.ま
そ れ ぞ れY,Xの1次
した と き の(2.2)の
た条 件 付 平
関 数 で あ る.こ
れ ら の事
形
(2.7)
を 見 れ ば 定 義 か ら直 ち に 導 か れ る.こ Gauss型
れ ら の 性 質 は2個
以上 の変数 か ら な る
確 率 変 数 系 に 対 し て 容 易 に 一 般 化 され る.た
がGauss型
な らE(X│Y1,Y2)はY1,Y2の1次
関 数 で あ る.
逆 に,YがGauss型,E(X│y)がYの1次
布
と え ば,(X,Y1,Y2)
関 数 で,さ
が 確 率1でGauss型
らに条 件 付確 率 分
で あ る な ら ば,(X,Y)がGauss型
に
な る. 一 般 にXとYが 0に 等 し い.と
独 立 で 共 に 有 限 な 分 散 を も てば 両 者 の 共 分 散 は(存 こ ろ が(X,Y)がGauss型
な ら(2.7)か
"共 分 散=0"な
らば
互 に"独
在 し て)
ら わ か る よ うに
立"
と な る. 5°) 再 生 性 が あ る.す
な わ ち,XとYと
型 で あ れ ば,和X+Yは
ま たGauss型
で あ る.と
ころ が,Gauss型
が 独 立 で あ り,か で あ る こ とは,既
の 著 し い 特 徴 と し て,この
つ 両 者 がGauss
に3°)で
み た 通 り
部 分 的 な 逆 が な りた
つ の で あ る. 定 理2.3.(Levy-Cramer) YもGauss型 証 明 は,仮
XとYが
独 立 でX+YがGauss型
な ら,Xも
で あ る. 定 を 用 い てXやYの
特 性 関 数 が2次
の 整 関 数 に な る こ とを 導 き,
さ ら に そ れ らが 特 性 関 数 と し て の 性 質 を も つ と い う制 約 か らGauss分 の に な る こ とを 示 す こ と に よ っ て 与 え られ る.
布のも
Gauss型
確率 変数 系 に関 す る次 の よ うな 特 徴 づけ もP. Levyに
よる もの で
あ る.証明 の方 法 は上 の定 理 と同 じ くや は り特 性 関数 を用 い る も ので,こ こで は 事 実 だ けを 述べ てお く. 6°) 与 え られ た2次 元確 率 ベ ク トル(X,Y)に 数Uお
よびYと
対 し て,Xと
独 立 な確 率 変
独 立 なVが 存 在 し て Y=aX+U
(2.8) {
X=bY+V
と書 け る な ら ば,次
の 三 つ の 可 能 性 し か な い,
ⅰ) (X,Y)はGauss型 ⅱ) XとYは
で あ る,
独 立 で あ る,
ⅲ) 定 数 α,β,γ が 存 在 し て αX+βY=γ [注 意] 上 記4°),5°),6°)を
が 成 り立 つ(一 次 関 係 が あ る).
み てGauss型
確率 変 数 系 の特 徴 を一 言 で語 ろ うとす
れ ば,そ れ は線 型 的 構 造 を もつ とい って よか ろ う.こ の系 の 研究 にHilbert空
間論 が大
きな 役 割 を果 す の も この構 造 と 定 理2.2の 反 映 と考 え られ る. [補 足] Gaussに
よるGauss分
§2.3. 複 素Gauss型
布 の特 徴 づ け が あ る.文 献Gauss(1981)Ⅲ,6参
確率変数系
この節 では 複素 数 値 を とる確 率変 数 でGauss型
の ものを 扱 うが まず そ の 定
義 が 問題 であ る.実 数 部 と虚 数 部 が と もにGauss分 だ け で は複 素Gauss型
照.
布 に従 う確 率変 数 とい う
と呼 ぶ に は不 十 分 で あ って,好 ま しい性 質 が い ろ い ろ
と導 かれ る よ うにす るに は も う少 し強 い 制約 を お く必 要 が あ る. まず1変 数 の場 合 か ら始 め よ う.確率空 間(Ω,B,P)上
の複 素数 値 を とる確
率 変 数Z(w)が
(2.9)
Z(w)=X(w)+iY(w)+m,
と表 わ さ れ,か
つXとYは
複 数Gauss型(Complex
X,Y実
独 立 で 平 均 値0の Gaussian)と
数 値,m複
同 じGauss分
い う.当然E(Z)=mで
素数
布 に 従 う と き, あ る.
定 義2.2.
複 素 数 値 を と る 確 率 変 数 の 系Z={Zλ(ω);λ
任 意 の 有 限 個 の(複 そ の 系Zを はZは
素 数 を 係 数 とす る)一
複 素Gauss型
複 素Gauss型
∈ Λ}が あ っ て,そ の
次 結 合 が 複 素Gauss型
確 率 変 数 系(complex
Gaussian
とな る とき system),ま
た
で あ る と い う.特 に Λ が 整 数 全 体,正 整 数 全 体 ま た は 実
数 の 区 間 で あ る と き 複 素Gauss過
程(complex
[注意] 前 節 の実 数 値 を とるGauss型 節 の も の を実Gauss型
複素Gauss型
Gaussian
process)と
い う.
確率 変 数 系 と混 乱 す る恐 れ の あ る ときは,前
確 率変 数 系 と書 い て は っ き り区別 す る こ とが あ る.
確 率変 数 系 の 性質 を述 べ る前 に,何 故 そ の よ うな 複 素系 を 考
え るか につ いて 少 し触 れ て お きた い.理 由 として は ⅰ) 定 常Gauss過
程 の スペ ク トル分 解(後 出 第3章)に
必要 な ラ ン ダム測 度
を構 成 す ると き,そ れ は複 素 数値 を と りし か もGauss型
の 確率 変 数 系 と扱 わ
ねば な らな い.さ らにそ れ は確 率 振 幅 とし て電 気 工学 上 の意 味 を も っ てい るの で あ る, ⅱ) 与 え られ たGauss過 お け ばFourier変
程 を 複 素 化(そ れ は 複 素Gauss型
に な る)し て
換 を 自由 に駆 使 す る ことが で きる,
ⅲ) 後 の議 論 か ら 明 らか に され る よ うに,Gauss型
確 率 変 数系 の もつ 線型
的構 造 が 自然 な形 で 移 行 され る複 素数 値 確 率変 数 の系 とし て認 識 され る, ⅳ) こ こで は述 べ 得 な い事 柄 で あ るが,Gauss型
確 率変 数 を変 数 に も つ非
線 型 汎 関数 の解 析 にお いて は,そ の変 数 の複 素化 に相 当す る もの と し て 複 素 Gauss型
確 率 変 数 系 が登 場 す る,
等 が あげ られ る. さ て主題 で あ る複 素Gauss型
確 率 変数 系 の性質 を述 べ よ う.以 下 で は 簡 単
のた め系 に属 す る各 確 率変 数 の"平 均 値 は0"で
あ る として お く.一 般 の場 合
は各 変 数 か ら平 均 値 を 引 き去れ ば,確 率 論 的構 造 を 変 え る こ とな く,容 易 に こ の場 合 に帰着 され る. は じめ に定 義 か ら簡 単 に導 か れ る性 質 を列挙 し てお く. 1°) 系Z={Zλ(ω);λ (2.9)の
∈Λ}が 複 素Gauss型
で あれ ば,Zλ=Xλ+iYλ
分 解 を し て 得 ら れ る実数 値 確 率 変数 の系{Xλ,Yλ;λ ∈Λ}は(実)
と
Gauss型
確 率 変 数 系 で あ る.
2°) Z={Zλ(ω);λ Gauss型
∈ Λ}が 独 立 な 確 率 変 数 の 系 で,か
で あ れ ば 系Zは
複 素Gauss型
3°) 系Z={Zλ(ω);λ
∈Λ}が
Zλ(ω)か ら な る 系Z={Zλ(ω);λ 自 明 な 場 合 を 除 きZ∪Zは 4°) 複 素Gauss型 そ の 系 に 概 収 束,平 複 素Gauss型
つ 各Zλ(ω)が
複素
で あ る.
複 素Gauss型
な ら ば,各
々 の共 役 複 素 数
∈ Λ}も ま た 複 素Gauss型
で あ る .し か し
そ う で は な い.
確 率 変 数 系 の 部 分 系 は ま た 複 素Gauss型 均 収 束,確
確 率 変 数 系 が 得 ら れ る(定
次 の 命 題 は 複 素Gauss型
に な る.ま
た
率 収 束 の 意 味 で の 極 限 変 数 を つ け 加 え て も再 び 理2.2参
照).
につ い て の我 々の 定義 が 妥 当 な も の で あ る こ とを
示 し て い る. 命 題2.1.
確 率 変 数 の組{Z1,Z2}が
複 素Gauss型
で あ る と す る.Z1とZ2
が 独 立 で あ る た め の 必 要 か つ 十 分 な 条 件 は 両 者 の 共 分 散 が0と 証 明 こ こ で もZ1,Z2の も しZ1とZ2が 逆 に,共
す る が,一
般 性 を 失 う も の で は な い.
独 立 な ら共 分 散E(Z1Z2)=E(Z1)E(Z2)=0は
明 らか で あ る.
分 散 が0で
平 均 値 は0と
な る こ とで あ る.
あ った と し よ う.Z1,Z2を(2.9)の Zj=Xj+iYj,
よ う に 分 解 す る:
j=1,2
仮定から E{(X1+iY1)(X2-iY2)}=0 す なわ ち E(X1X2)+E(Y1Y2)=0,
を 得 る.と こ ろ で{Z1,Z2}が は と も に 複 素Gauss型
E(Y1X2)-E(X1Y2)=0
複 素Gauss型
だ か ら,Z1+Z2お
確 率 変 数 で あ る.両
者 の 実 数 部 と虚 数 部 が 独 立 と な る
こ とか ら
E(Y1X2)+E(X1Y2)=0,
よ びZ1+iZ2
E(X1X2)-E(Y1Y2)=0
を 得 て,結
局E(X1X2)=E(Y1Y2)=E(Y1X2)=E(X1Y2)=0が
す な わ ち{X1,X2,Y1,Y2}が (X1,Y1)と(X2,Y2)は
わ か る.
独 立 な(実)Gauss型 独 立 で あ り,そ
確 率 変 数 系 で あ る.特
の こ と はZ1とZ2が
に
独 立 で あ る ことを
示 す.
複 素Gauss型
確 率 変 数 系Z={Zλ(ω);λ
∈Λ}に 対 し て 平 均 ベ ク トルm=(mλ):
E(Zλ)=mλ,
λ∈ Λ
お よび 共 分 散 行 列V=(Vλ,μ):
が 対 応 し,そ
れ が 正 定 値 と な る こ と は 前 節 の 場 合 と同 様 で あ る.
いま (2.10)
実数
と お け ば,Vλ,μ の 定 義 とZλ,Zμ お よびZλ+iZμ
が 複 素Gauss型
でそれ ぞれ
実 数 部 と虚 数 部 が 独 立 に な る こ とを 用 い て
とな る こ とが わ か る.υλ,μ お よ びwλ,μ
に よ っ て で き る 行 列 を そ れ ぞ れ υ,w
とす る:
(2.11)
υ=(υ λ,μ),
補 題 V=(Vλ,μ),λ,μ (2.11)に
(2.12)
∈Λ,を
w=(wλ,μ).
任 意 の 正 定 値 行 列 と す る.式(2.10)お
よ っ て 定 ま る 行 列 υ,wを
と り,新 た に 行 列
よび
を 構 成 す れ ば,Dも
正 定 値 で あ る.
証 明 有 限 個 の パ ラ メ ー タ ー 集 合{λ}を と っ て,有
選 び,任
意 に 複 素 数{α λ},{βλ}を
限和
を 考 え る.仮
定 よ り(Vλ,μ)は
正 定 値 で あ り,し
た が っ て(Vλ,μ)も 正 定 値 で
あ るので
とな る.こ こで も和 は上 に選 ん だ有 限個 のパ ラ メ ー ター集 合 を動 くも の とす る, 両 者 を加 え て次 の 不等 式 が 得 られ る.
これ を整 理 し て
が 得 ら れ 定 理2.4. Λ
と な る こ とが わ か っ た.す
平 均 ベ ク トル,Vを
確 率 変 数 系Z={Zλ(ω);λ∈Λ}が
証 明 与 え られ たVか
トル が0の(実)Gauss型 よ び{Yλ;λ
正 定 値 行 列V=
共分散行列に もつ 複 素
存 在 す る.
ら 上 の 補 題 に よ っ て 正 定 値 行 列Dを
各 成 分 は 実 数 で あ る こ と に 注 意 し よ う.こ
λ∈Λ}お
正 定 値 で あ る.
を パ ラ メ ー タ ー に も つ ベ ク トルm=(mλ)と
(Vλ,μ)が 与 え ら れ た と き,mを Gauss型
な わ ちDは
のDに
確 率 変 数 系{Xλ,Yλ;λ ∈Λ}の
構 成 す る.Dの
対 し て 定 理2.1か ∈Λ}が
共 分 散 行 列 が 共 に(2.11)の
ら平 均 ベ ク
存 在 し て,{Xλ; 行 列Vで
あ り,か
つE(YλXμ)=-E(XλYμ)=wλ,μ 用 い てZλ
と な っ て い る.こ
こ で 与 え ら れ た(mλ)を
を
に よ って定 義 す れ ば{Zλ(ω);λ ∈Λ}が 求 め る複 素Gauss型
確率変数系であ
る こ とは 容 易 に確 か め られ る. 上 の定 理 に お い て与 え られ たVの 各成 分Vλ,μ が すべ て実 数 の場 合 で も,定 理 の結果 は有 効 に用 い られ る ことを 注意 した い.そ の と きは(2.10)式
か らす
べ て の λ,μ につ い て wλ,μ=0 とな り,定 理 の証 明 で存 在 が 知 られ た{Xλ}と{Yλ}と
は独 立 に な って しま
う.特 にΛ が整 数 全体,非 負整 数 全 体 あ るい は実 数 の あ る区 間 な どの場 合,す な わ ちGauss過
程 の場 合 に は次の よ うな結 論 が 得 られ る.
命題2.2
与 え られ た(実)Gauss過
複 素Gauss過
程 に対 して それ と同 じ共 分散 を も つ
程が 存 在 す る.
実 際(実)Gauss過
程{Xλ}が
与 え られ た と き(簡 単 の た めE(Xλ)=0,
λ∈Λ,と して お く),そ れ と独立 でか つ 同 じ分 布 に 従 うGauss過
程{Yλ}を
とって (2.13)
とす れ ば{Zλ}が 定 義2.3.
求 め る も の で あ る.
上 の よ う に し て 構 成 さ れ た 複 素Gauss過
程{Zλ}を{Xλ}の
複 素 形 とい う [例1] Λ=[0,∞),mλ
≡0か
理2.1で
程 をBrown運
Brown運
定 ま るGauss過 動 は 通 常 λをtに
と書 く,{B(t)}の
つVλ,μ=λ∧ μ(=min{λ,μ})の 動(Brownian
か え て
複 素 形 は 複 素Brown運
,あ 動(complex
motion)と
と き,定 い う.
る い は 単 に{B(t)} Brownian motion)
と 呼 ば れ る.そ [例2]
の 記 号 は 一 定 し て い な い が{Z(t)}と
Λ を1次
元 空 間RのBorel集
全 体 に と る.mλ=0,λ ら わ す)と あ る.対
∈Λ,か
し よ う.こ
(homogeneous
Gaussian
次Gauss型
合 でLebesgue測
度有 限 な も のの
つVλ,μ=│λ ∩ μ│(│ │はLebesgue測
の(Vλ,μ)が
応 す る(実)Gauss型
書 く こ とが 多 い.
度を あ
正 定 値 と な る こ と は よ く知 ら れ た 事 実 で
確 率 変 数 系 を 斉 次Gauss型 random
measure)と
い う.そ
ラ ン ダ ム 測度 の複 素 形 が 複 素斉
ラ ン ダ ム測 度 で あ る.
§2.4. 離 散 パ ラ メ ー タ ーGauss過 (実)Gauss型
程,標
確 率 変 数 系X={Xλ(ω);λ
準 表現
∈ Λ}に お い てΛ がⅰ)整
た は 非 負 整 数 全 体 の と き離 散 パ ラ メ ー タ ー を も つGauss過
程 と い い,ⅱ)実
全 体 ま た は そ の 部 分 区 間 で あ る と き 連 続 パ ラ メ ー タ ー を も つGauss過 う.こ
れ ら の 場 合 に 一 般 の 系 と 区 別 す る た めXλ
はX(t)等
の 代 りにⅰ)で
の 伝 統 的 な 記 述 法 を 用 い る こ と に す る.こ
数全体 ま 数
程 とい
はXn,ⅱ)で
こ で 用 い た 記 号nと
かt
は共 に時 間 を 示す パ ラ メ ータ ー と見 れ ば今 後 の議 論 に対 す る直観 的 な認 識 が得 や す い で あ ろ う. 本 書 で 扱 う 内 容 か ら 言 え ばⅰ),ⅱ)の し い 方,す
な わ ちⅰ)の
各 場 合 の 相 違 は 極 め て 大 き い.ま
方 か ら始 め て,我
ず 易
々 が 何 を 問 題 に し よ う とす る か を 明
ら か に し た い. Λ と し てI+={1,2,…}を
と りGauss過
程X={Xn(ω);n∈I+}*を
簡 単 の た め こ こ で もE(Xn)=0,n∈I+,と つ の で そ れ はL2(Ω,P)(=Ω るHilbert空
間)の
し てお く,各Xnは
上 の 関 数 でPに 関 し て2乗
元 とみ る こ と が で き る.そ
考 え る. 有 限 な 分散 を も
可 積 分 な もの全 体 の 作
こ で{Xn}にSchmidtの
直 交化 の方 法 を 適用 し て X1=a1,1ξ1, X2=a2,1ξ1+a2,2ξ2,
(*) Gauss型
確率 変 数 系Xも
これ を 過 程 とみ た ときはXと
書 くこ とにす る.
(2.14)
な る表 現 を 得 る.こ L2(Ω,P)の Xk,
こ に 各an,jは
実 数 で,ξ1,ξ2,…,ξn,…
単 位 ベ ク トル で あ る.と
は 互 に 直 交 す る
こ ろ が ξjの構 成 法 を み れ ば,そ
の 一 次 結 合 と し て表 わ さ れ る の で{Xn,n∈I+}がGauss型
る こ と か ら{ξn;n∈I+}は
互 に 独 立 な(§2.24°)参
照)標
れ が であ
準Gauss型
確率 変
数 の 系 で あ る こ と が わ か る. ま た,上
の よ うな ξjの 構 成 法 か ら 条 件 つ き 平 均 値 に つ い て
(2.15)
が な りた つ.な
と書 け ば,右
ぜ な ら,
辺 の 第 一 項 はX1,X2,…,Xkの
二 項 はX1,X2,…,Xkと て(2.15)が
独 立 な も の で あ る か ら,条
で あ り,
は1次
関 数)で
あ り,第
件 つ き平 均値 の定 義 に よ っ
得 ら れ る.
特 に 上 の(2.15)でk=n-1と
(2.16)
関 数(実
とれ ば
Xn-E(Xn│X1,X2,…,Xn-1)=an,nξn
の と き ξnは時刻nに お い てGauss過
た ラ ン ダ ム な 要 素 を 表 わ す も の とみ な され る.実 直 交 す な わ ち独 立 で あ り,し
か もXnは
程Xが
新 た に獲 得 し
際,ξnはX1,X2,…,Xn-1と
こ の ξnとX1,X2,…,Xn-1と
の関 数 と
し て 表 わ さ れ る か ら で あ る. こ う し て ラ ン ダ ム な 現 象 の 時 間 的 推 移 を 見 よ う とす る と き(2.14)は 表 現 で あ る こ とが わ か り,ま
た ξnは 大 切 な 意 味 を も つ こ と も わ か る.こ
適切な う し
て 次 の 定 義 が 与 え ら れ る. 定 義2.4. ⅰ)Gauss過
程X={Xn;n∈I+}に
型 確 率 変 数 列{ξn;n∈I+}と2重
数 列an,j,
対 し て,独 立 な 標 準Gauss
が存 在 し てXnと
とが 同 じ 分 布 で あ る と き組{an,j,ξn}をXの ⅱ) Xの
表 現{an,j,ξn}が
あ っ て(2.14)と(2.15)を
の 表 現 を 標 準 表 現(canonical ⅲ)
表 現(representation)と
representation)と
そ の 表 現 の 核(kernel)と
対 し て 独 立 な 標 準Gauss型
を 定 義 し てX={Xn;n∈I+}がXと Xの
え られ たGauss過
程X={Xj;
確 率 変 数 列{ξn;n∈I+}を
用い
同 じ 分 布 に 従 う と き{an,j;ξj}を
表 現(representation)と
{Xn}が(2.15)を
新 生 変 数 列(innovation)
呼 ぶ.
これ ま で 標 準 表 現 の み を 考 え て き た が,与 n∈I+}に
満 足 す る と き,そ い う.
標 準 表 現 に お け る 独 立 変 数 列{ξn}をXの
と 呼 び,an,jを
い う.
呼 ぶ こ と に す れ ば,標
み た さ な い表 現 が あ る.そ
準 的 で な い,す
単 に なわち
の よ うな 表 現 は 当 然 予 測 の理 論
そ の 他 応 用 面 か ら み て も役 立 た な い も の で あ る.標
準 表 現 で ない表 現 が 考 え ら
れ る こ と を 次 の 例 に よっ て 示 そ う. [例1]
系{X1,X2,X3}がGauss型
で,独
立 な 標 準Gauss型
確 率変 数
ξ1,ξ2,ξ3を用 い て
X1=a1,1ξ1, X2=ca1,1ξ1+0ξ2,
と表 わ され た と し よ う.一
X3=a3,1ξ1+0ξ2+a3,3ξ3
方 同 じ く独 立 な 標 準Gauss型
確 率 変 数 ξ1,ξ2,ξ3を
用 い て表 わ さ れ る
を 考 え れ ば,明 て い る.後
ら か に(X1,X2,X3)と(X1,X2,X3)と
者 が(2.15)を
に よ っ て 知 られ る.だ
は同 じ分 布 に従 っ
みた さな い こ とは
か ら 標 準 表 現 に は な っ て い な い し,ξ1,ξ2,ξ3は
新生
変 数 列 で は な い. 定 理2.5.
与 え ら れ たGauss過
程X={Xn;n∈I+}の
標準表現は 常 に
存 在 し,次
の 意 味 で 一 意 的 で あ る.す
の 標 準 表 現 とす れ ば,任 あ りす べ て の に
意 のnに
な わ ち{an,j,ξn}と{an′,j,ξ′n}を
つ い てan,n=a′n,nか
対 し て 前 者 な らam,n=a′m,nで
二 つ
ま た はan,n=-a′n,nで 後 者 な らam,n=-a′m,n
と な る. 証 明 標 準 表 現 の 存 在 は 既 に 述 べ た よ う にSchmidtの
直 交化 の方 法 に よ っ
て 保 証 され た. 一 意 性 に つ い て は,(2.16)の
左 辺 は表 現 に無 関 係 な確 率変 数 だ か らそ の分
散 を とれ ばa2n,n=a′2n,nは す ぐ に 出 る,つ
い で,XmとXn,m>n,と
の共 分
散が
(2.17)
とな る こ とを 用 い て,逐 る こ と が で き る.こ
次an,j,n>j,お
よ びa′n,j,n>j,を
う し て 二 重 数 列an,jの
きめ 方 はan,nの
の 自 由 性 し か あ り え な い こ と が わ か る.再
び(2.17)を
一意 的 に き め 符 号 の選 び 方 だ け
用 い て定 理 の 結 論 に 到
達 す る. 複 素Gauss過
程Z={Zn;m∈I+}を
表 現 が 存 在 す る.す E(ξn)=0,
と っ て も 事 情 は 全 く同 様 で,常
な わ ち 独 立 な 複 素Gauss型
E(│ξn│2)=1,が
に標 準
確 率 変 数 列{ξn;n∈I+},
存 在 し て,Znは
(2.18)
と表 わ さ れ,か
つ
(2.19)
が な りた つ. 実 数 値 を と る場 合 と 同 様 に,{an,j,ξn}をZの
標 準 表 現{ξn}を
新 生 変数
列 と 呼 ぶ. [例2]
X={Xn;n∈I+}の
標 準 表 現 を{an,j,ξn}と 定 数,
し よ う.い
ま
とな る よ う な 特 別 な 場 合 を 考 察 し て み よ う.n>kと E(Xn│X1,X2,…,Xk)を
み る と,そ
して条 件 付 平 均 値
れは
に 等 し い.標 準 表 現 の定 義 か ら
と 互 い に 独 立 な 確 率 変 数 の 和 の 形 に 分 解 され る.こ は に 定 義 す るMarkov過 定 義2.5. process)で
定 理2.6.
に 等 し い こ と が わ か る.す
なわ ち 次
程 の 一 種 で あ る.
確 率 過 程X={Xn(ω);n∈I+}がMarkov過 あ る とは,任
が 上 の 例1を
の形 を見れ ば条 件 付 確 率
意 のn,k(k