DEGREES OF UNSOLVABILITY
Dedicated to
S.C. KLEENE, who made recursive function theory into a theory.
NORTH-HOLLAND...
14 downloads
510 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
DEGREES OF UNSOLVABILITY
Dedicated to
S.C. KLEENE, who made recursive function theory into a theory.
NORTH-HOLLAND MATHEMATICS STUDIES
Degrees of Unsolvability
JOSEPH R. SHOENFIELD Professor of Mathematics Duke University Durham, N.C., USA
1971
NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM-LONDON AMERICAN ELSNIER PUBLISHING COMPANY, INC. - NEW YORK
2
O NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM - 1971 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the.Copyright owner.
ISBN North-Holland 07204 2061 x ISBN American Elsevier00444 10128 4
PUBLISHERS :
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY, LTD. - LONDON SOLE DISTRIBUTORS FOR THE U.S.A. A N D CANADA:
AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 VANDERBILT AVENUE NEW YORK, N.Y. 10017
P R I N T E D I N THE N E T H E R L A N D S
CONTENTS DEGREES OF UNSOLVABILITY - J.R. Shoenfield
Introduction 0 - Terminology and Notation 1 - Recursive Functions 2 - Isomorphisms 3 -Algorithms 4 - Relative Recursiveness 5 - Recursive Enumerability 6 - Degrees 7 - Evaluating Degrees 8 - Incomparable Degrees 9 - Upper and Lower Bounds 1 0 - The Jump Operation 11 - Minimal Degrees 12 - Simple Sets 1 3 -The Priority Method 1 4 -The Splitting Theorem 15 - Maximal Sets 16 - Infinite Injury 17 - Index Sets 18 - Branching Degrees
Page
VI I 1 3 8 12 15 20 26
31 39 43 46 49 57
60 66 72 83 93 99
This Page Intentionally Left Blank
INTRODUCTION These n o t e s o r i g i n a t e d from a seminar which I gave a t UCLA
i n 1967.
S e v e r a l g r a d u a t e s t u d e n t s i n t h e seminar wrote up
a s e t of n o t e s .
After l e c t u r i n g from these n o t e s a t t h e
C a t h o l i c U n i v e r s i t y of S a n t i a g o i n 1969, I rewrote t h e n o t e s i n t h e p r e s e n t form. A set of n o t e s should have some purpose o t h e r t h e n c o l -
l e c t i n g theorems from t h e l i t e r a t u r e .
My main purpose here
i s t o show t h a t p r o o f s i n degree t h e o r y need not be a s compli-
c a t e d and incomprehensible as t h e y appear t o b e i n t h e l i t e r a ture.
(Some of t h e l a t e r a r t i c l e s of Friedberg and Lachlan
provide pleasant exceptions. )
The main d i f f e r e n c e between
t h e p r o o f s here and t h o s e i n t h e l i t e r a t u r e i s that I have d i -
r e c t l y g i v e n the idea behind t h e p r o o f , i n s t e a d o f t r a n s l a t i n g i t i n t o a n obscure language from which t h e reader must t r a n s l a t e back.
I have a l s o avoided i n t r o d u c i n g t o o much n o t a t i o n and
c a r e f u l l y avoided i n t r o d u c i n g s p e c i f i c enumerations of p a i r s , f i n i t e sets, f i n i t e sequences, e t c .
I a m convinced t h a t i f
t h e e x p e r t s i n degree t h e o r y would f o l l o w these p r e c e p t s i n
w r i t i n g t h e i r a r t i c l e s , o t h e r l o g i c i a n s would read these a r t i -
c l e s i n s t e a d of merely l o o k i n g a t them w i t h awe ( o r d i s g u s t ) .
Mea c u l p a . I have a l s o t r i e d t o show how l i t t l e about r e c u r s i v e func-
t i o n s i s needed.
I have n o t even i n t r o d u c e d what i s u s u a l l y
called a ' r i g o r o u s ' d e f i n i t i o n of a r e c u r s i v e f u n c t i o n .
Of
course, such a d e f i n i t i o n i s needed f o r some a p p l i c a t i o n s of r e c u r s i v e f u n c t i o n t h e o r y , b u t n o t for t h e t h e o r y o f d e g r e e s . Besides s i m p l i f y i n g t h e e x p o s i t i o n , I hope t h i s may i n d i c a t e what s o r t of axioms a r e needed f o r a n a x i o m a t i c t h e o r y of recursive functions. No a t t e m p t has been made t o c o v e r even t h e t o p i c s treated
i n a complete manner.
The main o b j e c t h a s been t o g i v e exam-
p l e s o f t h e t e c h n i q u e s which have proved most u s e f u l .
T h i s book owes much t o d i s c u s s i o n s w i t h s e v e r a l people, p a r t i c u l a r l y Alastair Lachlan, H a r t l e y Rogers, Gerald Sacks, and Mike Yates.
The NSF h a s provided v a l u a b l e f i n a n c i a l
support. J . R. S h o e n f i e l d
Durham, N. C . August 10, 1971
0 . Terminology and Notation
W e use t h e f o l l o w i n g l o g i c a l n o t a t i o n :
or; & We c a l l
and; j f o r 1, v , & ,
for
i m p l i e s ; cs f o r and
f~
vx
a (=
v for
i f and only i f ) .
connectives.
If P ( x ) i s a s t a t e m e n t about x,
h o l d s f o r some x and
7 f o r r&;
3 x P ( x ) means t h a t P ( x )
P ( x ) means t h a t P ( x ) h o l d s f o r a l l x .
T h i s n o t a t i o n w i l l only be used when x i s r e s t r i c t e d t o vary
Sometimes t h i s s e t i s d i r e c t l y i n d i -
through some f i x e d s e t . c a t e d by t h e n o t a t i o n .
Thus
(3xE
y ) P ( x ) means t h a t P ( x )
h o l d s f o r some x i n y; and (‘dx < y ) P ( x ) means t h a t P ( x ) h o l d s
f o r every x such t h a t x
f o r ordered
n-tuples,
i d e n t i f i e d w i t h any c l a s s .
A n a t u r a l number is a non-negative i n t e g e r .
We use N
for t h e c l a s s of n a t u r a l numbers, and u s e i, j , k, m, n, r, s,
and t t o d e s i g n a t e n a t u r a l numbers. An i n f i n i t e sequence i s i d e n t i r i e d w i t h a mapping having N
as i t s domain.
A s usual, we w r i t e
for t h e v a l u e of t h e i n -
TERMINOLOGY AND NOTATION
2
f i n i t e sequence x a t t h e argument n, and d e s i g n a t e t h e i n f i n i t e sequence by
Is).
A f i n i t e sequence o f l e n g t h n i s i d e n t i f i e d w i t h a mapping
w i t h domain 10, 1,
. . . , n-1)
(but
not
with an ordered n - t u p l e ) .
Again xi i s t h e v a l u e of t h e sequence x a t t h e argument i . l e n g t h of a f i n i t e sequence x i s d e s i g n a t e d by l h ( x ) .
The
We use
f o r t h e sequence o f l e n g t h 0 ( a s w e l l a s f o r t h e empty c l a s s ) .
f
1. Recursive Functions
Recursion theory i s t h e a b s t r a c t theory of computations. A l l of t h e computations which we consider w i l l be, a t l e a s t i n
theory, performable i n a f i n i t e length of time.
This means
t h a t t h e o b j e c t s with which we compute m u s t be f i n i t e o b j e c t s ,
i . e . , o b j e c t s which can be s p e c i f i e d by a f i n i t e amount of i n formation. Some examples w i l l c l a r i f y t h e notion of a f i n i t e o b j e c t . A n a t u r a l number i s a f i n i t e o b j e c t , s i n c e i t can be s p e c i f i e d by giving t h e Arabic numeral d e s i g n a t i n g t h a t number.
On t h e
o t h e r hand, a r e a l number i s g e n e r a l l y not a f i n i t e o b j e c t , s i n c e t o s p e c i f y i t w e m u s t , say, give each of i t s i n f i n i t e l y many decimal p l a c e s .
An n-tuple o f f i n i t e o b j e c t s i s a f i n i t e
o b j e c t , s i n c e i t can be s p e c i f i e d b y s p e c i f y i n g each of t h e n objects i n turn.
A f i n i t e c l a s s of f i n i t e o b j e c t s i s a f i n i t e
o b j e c t ; an i n f i n i t e c l a s s of f i n i t e o b j e c t s i s g e n e r a l l y not a f i n i t e object.
A f i n i t e sequence o f f i n i t e o b j e c t s i s a f i n i t e
o b j e c t ; an i n f i n i t e sequence g e n e r a l l y i s n o t . A space i s an i n f i n i t e c l a s s X of f i n i t e o b j e c t s such t h a t ,
given a f i n i t e o b j e c t x, we can decide whether o r not x belongs t o X.
We g i v e some examples of spaces. (1) The c l a s s N of n a t u r a l numbers i s a space.
( 2 ) If X and Y a r e spaces, then X
xY
is a space.
( 3 ) I f X i s a space, then t h e c l a s s Sub(X) of f i n i t e subc l a s s e s of X i s a space.
3
4
RECURSIVE FUNCTIONS
(4) If X is either a space or a finite non-empty class of finite objects, then the class Sq(X) of finite sequences of elements of X is a space. We use X, Y, and 2 for spaces.
Generally x, y, and z
are elements of X, Y, and Z respectively.
A function from X
Y is a mapping from X to Y; a set in
X is a subclass of X.
A function is always a function from a
space to a space, and a
set is
always a set in a space.
We
use F, G, H, L and M for functions and A, B, C, D and E for sets.
A function F from a Cartesian product of n spaces is called a function F(<xlJ
of
. . .,
n arguments; we write simply F(xlJ
is called a relation
of
for
A set in a Cartesian product of n spaces
xn>).
as 2 function
..., x,)
of
n arguments.
If' we refer to ..x..y..
x,y, we mean the function F defined by
F(x,y) = ..x..y..
.
If we refer to ..x..y.. as 2 relation
of
x,y, we mean the relation A defined by <x,y> E A tt ..x..y.. By the relation
=,
we mean x
=
the relation C , the relation
.
y as a relation of x,y; similarly
E A c 3
@(XI,
Y> E B
G(Y,x),
where F, G , and B a r e r e c u r s i v e , t h e n A i s r e c u r s i v e . The u n i o n , i n t e r s e c t i o n ,
set d i f f e r e n c e of two r e c u r -
or
s i v e s e t s ( i n t h e same s p a c e ) i s r e c u r s i v e . of a set A i n X, d e s i g n a t e d by A',
The complement
i s t h e set X
-
A;
i t i s re-
cursive iff A i s recursive. Any combination of r e c u r s i v e se ts by means of c o n n e c t i v e s i s recursive.
Thus i f A i s d e f i n e d by
x E A t , (x c B g x E C)
&x
E D
where B, C, and D i s r e c u r s i v e , t h e n A i s r e c u r s i v e .
i s n o t t r u e when w e u s e q u a n t i f i e r s .
The same
Thus suppose t h a t w e d e -
fine x E Awhere B i s r e c u r s i v e .
3Y(<X,Y> E B) TO t e s t w h e t h e r x E A o r x
t e s t w h e t h e r <x,y> E B o r <x,y>
p
B f o r each y .
A , w e must
Since there
a r e i n f i n i t e l y many y, t h i s c a n n o t be done i n a f i n i t e l e n g t h of t i m e
.
This problem d o e s n o t a r i s e i f t h e q u a n t i f i e r v a r i e s t h r o u g h
RECURSIVE FUNCTIONS a f i n i t e set.
7
Thus i f A i s defined by
<x,k> E A H (3n
E
where B i s recursive, then A i s recursive.
E A ) f o r a l l
x, then
F i s recursive; f o r w e may compute F ( x ) by examining <x,O>,
<x,l>, t o A.
... i n
t u r n u n t i l we come t o t h e fi'rst one which belongs
2. I s o m o r p h i s q s
An isomorphism of X and Y i s a one-one f u n c t i o n F from X o n t o Y s u c h t h a t F and F - l a r e r e c u r s i v e .
I f such a n iscmor-
phism e x i s t s , w e s a y t h a t X and Y a r e i s o m o r p h i c . We s h a l l c o n s i d e r o n l y p r o p e r t i e s of s p a c e s which a r e i n -
v a r i a n t u n d e r isomorphisms.
F o r example, w e show t h a t r e c u r -
s i v e n e s s of f u n c t i o n i s i n v a r i a n t u n d e r isomorphisms. be a r e c u r s i v e f u n c t i o n from X t o Y .
L e t G be a n isomorphism
of X and XI, and l e t H be a n isomorphism of Y and Y'.
function
FI
Let F
The
from X I t o Y' which c o r r e s p o n d s t o F i s g i v e n b y
t h e commutative diagram
Thus F l
=
HoFoG- 1
.
S i n c e H, F, and G - l a r e r e c u r s i v e , F ' i s
recursive. Isomorphism Theorem. Any two s p a c e s a r e i s o m o r p h i c . A s a first step towards the proof, w e n o t e t h a t t h e i d e n t i t y
mapping f r o m X t o X i s a n isomorphism; t h a t t h e i n v e r s e of a n i s o morphism i s a n isomorphism; and t h a t t h e c o m p o s i t i o n of two i s o morphisms i s a n isomorphism.
It f o l l o w s t h a t t h e r e l a t i o n of
being isomorphic i s a n equivalence r e l a t i o n .
Hence w e need
o n l y show t h a t f o r e v e r y X, N i s i s o m o r p h i c t o X . A l i s t i n g of a set; A i n X i s a one-one r e c u r s i v e f u n c t i o n
from N t o X w i t h r a n g e A .
O t h e r w i s e s t a t e d , a l i s t i n g of A i s
a n i n f i n i t e sequence ix,S
of e l e m e n t s of A i n which e v e r y menber 8
9
ISOMORPHISMS
of A appears exactly once such that given n, we can compute xn.
Lemma
1.If
F is a listing o f X, then F is an isomoqhism
of N and X.
Proof. We need only show that F - l is recursive.
Given
x, we compute F(O), F(1),
... until we find an n such that
F(n) = x.
n.
Then F-l(x)
=
Q.E.D.
Lemma 2. I f A is an infinite set in X, and F is a recursive function from N to X with range A, then A has a listing. Proof. Define a function G from N to X inductively as follows: G(n)
=
F(m), where m is the smallest number such that
...,
F(m) is distinct from each of G(O), G(1), m exists because A is infinite. from N to X with range A. pute G(n) when G(O), G( l), recursive.
G(n-1).
This
Clearly G is a one-one function
Since F is recursive, we can com-
. . .,
G(n-1) are known.
Hence G is
Q.E .D.
Lemma 2. I f X has a listing, then any space Y included in
X has a listing. Proof. Let F be a listing of X. G(n)
=
F(n) if F(n)
E
Y, and G(n)
= yo
Pick yo
otherwise.
E
Y.
Set
Then G is
a recursive function from N to X with range Y;SO Y has a listing by Lemma 2.
Q.E.D.
If x is a finite object, we may write down a complete description of x .
We may suppose that the symbols used in this
description are chosen from a finite class
r independent of x.
ISOMORPHISMS
10
( I t would s u f f i c e t o p u t i n t o
r
a l l symbols used i n E n g l i s h ,
i n c l u d i n g p u n c t u a t i o n marks, and a l l t h e u s u a l mathematical symbols.)
Since
r
i s a f i n i t e c l a s s of f i n i t e o b j e c t s , S q ( r )
i s a space; and a l l of o u r d e s c r i p t i o n s belong t o t h i s s p a c e . Lemma
4.The
s p a c e Sq(
P r o o f . L e t xl, x2,
r ) has ...,
a listing.
xr be t h e symbols i n
r.
Let
F ( 0 ) and F ( 1 ) be t h e empty sequence. I f n > 1, l e t t h e prime pow“2 “k d e c o m p o s i t i o n of n be pln1p2 er . . .pk , where p1 < p 2
E
B)
I n view of t h e Isomorphism Theorem, we may always
N.
A s an example, t h e equivalence
(1)
x
E
wIe*
3n(x E
wIJn),
t o g e t h e r with t h e f a c t t h a t x
f
W I , ~ i s a recursive r e l a t i o n
of x, I , n, shows t h a t x E WI
i s an F Z r e l a t i o n of x , I .
Si-
milarly, (2)
[11(x)
shows t h a t [ I ] ( x )
=
=
Y
* 34 [IIn(x)
=
Y)
y i s an RF, r e l a t i o n of I,
A r e c u r s i v e s e t A i s RE; for x
i s a r e c u r s i v e r e l a t i o n of x,y.
E
x, y .
At)3y(x
E A),
and x
E
A
The converse i s f a l s e , as t h e
above examples show. A s e l e c t o r for a r e l a t i o n A i n X
x
Y i s a p a r t i a l function
F from X t o Y such t h a t for a l l x, F ( x ) i s defined i f f t h e r e i s a y such t h a t <x,y> E A , and, i n t h i s case, ( x , F ( x ) >
E
A.
Thus
F s e l e c t s a y = F ( x ) such t h a t <x,y> E A, p r o v i d e d t h a t such a y exists.
S e l e c t i o n Theorem. If A i s an RE r e l a t i o n i n X X Y , then t h e r e i s a recursive s e l e c t o r f o r A . Proof'. There i s a r e c u r s i v e B such t h a t <X,Y>
E A-
~ Z ( < X , Y J Z >E B ) .
20
RECURSIVE ENUMERABILITY L e t {) be a l i s t i n g of y
x
2.
21
We d e s c r i b e a n a l g o r i t h m
I from X t o Y by d e s c r i b i n g t h e p r o c e s s of computing a c c o r d i n g
t o I w i t h t h e i n p u t x.
The n t h s t e p i n t h i s p r o c e s s c o n s i s t s
of computing B ( x , yn, z n ) .
If t h e r e s u l t i s T r , w e g i v e t h e
o u t p u t ynj o t h e r w i s e , w e go on t o t h e n e x t s t e p . that
111 i s a Corollary
selector f o r A.
1.A
It i s c l e a r
Q.E.D.
set A i s RE i f f i t i s t h e domain of a r e c u r -
sive p a r t i a l function. P r o o f . Such a domain i s RE by ( 1 ) .
x
E A c* 3 y ( < x , y > E
If F i s a recursive
B) w i t h B r e c u r s i v e .
s e l e c t o r f o r B, t h e n A i s t h e domain of F . Corollary
2. I f
If A i s RE, t h e n
Q.E.D.
B i s RE and A i s d e f i n e d by
x
E A-~Y(<x,Y>
E
B),
t h e n A i s FiE. P r o o f . S i n c e A i s t h e domain of any s e l e c t o r f o r B, t h i s f o l l o w s from t h e theorem and C o r o l l a r y 1. As
F i s RE.
Q.E.D.
an example, t h e range A of a r e c u r s i v e p a r t i a l f u n c t i o n F o r if I i s a n a l g o r i t h m f o r F, t h e n
x
E BCJjy([I](y) =
x)
and [ I ] ( y ) = x i s a n RF, r e l a t i o n of x,y by ( 2 ) . By C o r o l l a r y 1 and t h e Isomorphism Theorem, a s e t A i n X
i s RE iff A = WI f o r some I e A l g ( X , N ) .
Any such I i s t h e n
c a l l e d an i n d e x of A . Parameter Theorem. If A i s a n RE r e l a t i o n i n X X Y, t h e n
22
FZCURSIVE ENUMERABILITY
t h e r e i s a r e c u r s i v e f u n c t i o n F from Y t o Alg(X,N) such t h a t X € WF(y)@
A
<x,Y>
f o r a l l x and y. P r o o f . L e t I be a n i n d e x of A , and l e t F(y) be t h e a l g o r i t h m J such t h a t t h e p r o c e s s of computing a c c o r d i n g t o J w i t h input
x i s t h e same as t h e p r o c e s s 3f computing a c c o r d -
i n g t o I w i t h i n p u t <x,y>.
X E WF(y)'d CJ
Then F is r e c u r s i v e and
CXJy> 1' E A-
<x,Y>
Q.E.D.
L i s t i n g Theorem. An i n f i n i t e set A i s RB i f f i t h a s a l i s t i n g P r o o f . I f A has a l i s t i n g , i t i s t h e r a n g e of a r e c u r s i v e f u n c t i o n and hence i s RE.
x
E A
t-)
3y(<x,y>
S e t F(<x,y>)
=
E
Suppose t h a t A i s RE.
B) w i t h B r e c u r s i v e , and choose xo
E A.
x i f <x,y> E B and F(<x,y>) = xo o t h e r w i s e .
Then F i s r e c u r s i v e and h a s r a n g e A . and Lemma 2 of
Let
f 2 , A has a l i s t i n g .
By t h e Isomorphism Theorem Q.E.D.
The raph of a p a r t f a l f u n c t i o n F f r o m X t o Y i s t h e r e l a t i o n A i n X % Y d e f i n e d by <x,y> E A * F ( x )
G r a m Theorem.
=
y.
A p a r t i a l function i s recursive iff i t s
g r a p h i s RE. P r o o f . The g r a p h of [ I ] i s RE b y ( 2 ) .
Since t h e only
s e l e c t o r for t h e g r a p h of F i s F i t s e l f , t h e c o n v e r s e follows f r o m t h e S e l e c t i o n Theorem.
Q.E.D
Complementation Theorem. A set A i s r e c u r s i v e i f f b o t h A
RECURSIVE ENUMERABILITY
and A'
23
a r e RE. P r o o f . I f A i s r e c u r s i v e , then A C i s r e c u r s i v e ; s o A
and A'
a r e RE.
Suppose t h a t A and A C a r e RE with i n d i c e s I
and J r e s p e c t i v e l y .
For each x, x
E
s o we m y
WI o r x E WJ;
d e f i n e a r e c u r s i v e f u n c t i o n F by F ( x ) = p n ( x E WI,n Then x
E
AC+x E W I , F ( x ) ;
SO
v x
E
1.
W
J,n A i s recursive. Q.E.D.
We now e s t a b l i s h some connections between r e c u r s i v e n e s s and limits.
I f lxn]
i s an i n f i n i t e sequence i n X, we say t h a t
x i s t h e l i m i t of fxn\ and w r i t e l i m xn s u f f i c i e n t l y l a r g e n.
If
=
x i f xn
[ ~ i s~ anf i n f i n i t e
=
x for all
sequence of func-
t i o n s from X t o Y, we say t h a t F i s t h e l i m i t of {Fn$ and w r i t e l i m Fn = F if lim F,(x)
= F(x)
for a l l x .
I f l i m Fn
=
F, a
modulus f o r .IFn) i s a f u n c t i o n H from X t o N such t h a t n 2 H(x) 3 F n ( x ) = F ( x ) f o r all n and x . A sequence { F ~ )i s r e c u r s i v e i f F J X )
i s a r e c u r s i v e func-
t i o n of n , x . Modulus Lemma. If A i s RE and F i s r e c u r s i v e i n A, then t h e r e i s a r e c u r s i v e sequence [Fn) such t h a t l i m F,
= F and
a modulus of IFn) which i s r e c u r s l v e i n A . Proof. W e suppose t h a t a l l spaces involved a r e N. I be an index of A and l e t A,
and l i m An
=
A.
= WI,~.
Then {An\
We o b t a i n a modulus G for {An\
Let
i s recursive
by s e t t i n g
24
RECURSIVE ENUMERABILITY
G(k)
= pn ( k
E An)
i f k E A and G ( k ) = 0 i f k
A; and G i s
recursive i n A . F o r any r, r
L e t J be a n a l g o r i t h m f o r F i n A .
L e t H ( r ) be t h e smallest number rn such t h a t r E rn
I8J,m
A WJ.
E
and
2 G(k) f o r every k used i n t h e computation o f [ J I A ( r ) . An
If n > H ( r ) , t h e n [J],
A
A
( r ) = [ J I n ( r ) = [ J ] ( r ) = F ( r ) by t h e
[J]2(r)
when r E WAn J,n and F n ( r ) = 0 o t h e r w i s e , t h e n l i m Fn = F and H i s a modulus for Thus i f w e set F n ( r )
Use Principle.
=
F i n a l l y , H i s r e c u r s i v e i n A ; f o r a n o r a c l e f o r A eniFn\. A a b l e s u s t o f i n d t h e z used i n t h e Computation of [ J ] (r) and t o compute G ( z ) f o r each such z .
Q.E.D.
A set A i n X i s RE ir; H if t h e r e i s a
space Y and a s e t
B i n X X Y r e c u r s i v e i n H such t h a t
x f o r all x. t o H.
E A~+~Y(<x,Y>
E
B)
We can t h e n r e l a t i v i z e a l l of t h e above r e s u l t s
H i s a n I E Alg(X,N) such t h a t A =
An index of A
E H*,
proving t h a t
A i s r e c u r s i v e i n H*.
S i n c e H i s r e c u r s i v e i n H and hence RE i n H a H i s r e c u r s i v e i n H*.
However, H* i s n o t r e c u r s i v e i n H.
If i t were, t h e n
every set RE i n H would be r e c u r s i v e i n H, c o n t r a d i c t l n g t h e r e l a t i v i z a t i o n t o H of t h e p r e v i o u s l y proved r e s u l t t h a t not every RE set i s r e c u r s i v e .
6 . Degrees We w r i t e F
sRG
if F
i s recursive i n G .
(1)
F
A
nn+li f
A set A i s
x where B i s
E:
E A-
n:
B)
it has a d e f i n i t i o n
't/y(<x,y> E B )
( I n the literature,
1; and
E
En
and
ana r e g e n e r -
t o d i s t i n g u i s h them from o t h e r k i n d s
of s et s which w e do n o t c o n s i d e r . )
Note t h a t t h e
sets
a r e j u s t t h e RF. s e t s .
We now g i v e some r u l e s f o r showing t h a t se ts a r e
nn.
xn or
I n each c a s e , t h e proof i s by i n d u c t i o n on n .
The
c a s e n = 0 i s omitted i n t h e p r o o f , s i n c e i t f o l l o w s from previous r e s u l t s . ( A l ) If A i s
xn
(Tn) and
B i s d e f i n e d b y x E B-
F ( x ) E A where F i s r e c u r s i v e , t h e n B i s
En
(n,).
Proof. Trivial. ( A 2 ) If A i s
and
Zrnor
rm f o r some m < n,
of x,y.
E A);
Hence A i s
nn.
If n
E
B ) where B i s
31
>
is
Now
relation
= 1, A i s a l s o
zn. If n vnv2.By t h e
nm case
znnl.
and b y ( A l ) , x E A i s a
s i m i l a r proof shows t h a t A i s 3y(<x,y>
Em; t h e
By t h e i n d u c t i o n h y p o t h e s i s , A i s
x E Ac;,vy(x
En
nn.
P r o o f . We suppose t h a t A i s
similar.
then A i s
nn-l;t h e n
1, x E A
a
d
induction hypothesis,
32
B is
ITVALUATING DEGREES
lTnm1; so
In.
A is
c In (qn), then A
(A3)-If A i s
En.
P r o o f . Say A 5.s where B i s
nn-l.
is
1,
and
(A4) I f A i s
(En).
Then x E A *
3y(<x,y> E B ) By t h e
rn-l;s o A C i s vn.
€3
i s d e f i n e d by x E B c - )
~ Y ( < x , Y >E A), t h e n B i s
B i s d e f i n e d by x
nn.
E
En.
B e \dy(<x,y>
<x,y> E A - 3 z ( < x , y , z >
fln-l.
If A i s
q nand
B), then B
E
zn, s o t h a t
P r o o f . Say A i s
where C i s
nn
Hence x E ACC-).\dy(<x,y> E B e ) .
i n d u c t i o n h y p o t h e s i s , BC
is
is
E C)
Then
x
E
Bt-, 3y3z(<x,y,z> +7
E C )
3w(<x,F(w),G(w)> E C )
where w v a r i e s through XXY, F ( x , y ) = x, and G ( x , y ) = y .
(Al), < x , F ( w ) , G ( w ) >E C i s a
(A5) If are
A and B a r e
Tn-, r e l a t i o n
of x,w;
zn (v,),t h e n A
U
By
B and A
n
In,so
that x E A
3 Y ( < x , y > E C ) and x E B C ) ~ Z ( < X , Z > E D ) where C and D a r e Then X E
A u €3 * ~ Y ~ z ( < x , Y E> C v <x,z> E D ) .
BY (Al) and t h e i n d u c t i o n h y p o t h e s i s , t h e p a r t f o l l o w i n g is a
lln-l
B
En ('ITn).
P r o o f . Suppose A and B a r e
mn-,.
2,.
so B i s
r e l a t i o n of x, y, z.
Then t h e p a r t f o l l o w i n g
e
EVALUATING DEGREES
3y
z n relation
is a
33
so A u B i s
of x,y;
by (A4).
We
t r e a t A n B similarly.
( A 6 ) If A i s
En
(v,),and
E
B-
<XJk>
E
c t t (3 n
'in
t h e n B and C a r e Proof. If A i s
<x,k>
5
k ) ( < x , n , k > c A), k)(<x,n,k>
A),
E
(nn).
TnJwe
B O vn(k
E
<
B and C are d e f i n e d by
have
n v <x,n,k> E A);
u s i n g (A2), ( A 5 ) , and (A4), we conclude t h a t B i s
n,.
If
A i s En, t h e n <X,nJk> where D i s
Vn-,. <x,k>
E
E
A H 3y(<x,n,k,y>
E
D)
Then B
0' i s
46, 0'
2 0'.
5
a ' for a l l a ; s o e v e r y d e g r e e i n t h i s
We now show t h a t , c o n v e r s e l y , e v e r y d e g r e e
t h e jump of some d e g r e e .
Theorem ( F r i e d b e r g ) . I f 0' such t h a t b 1 = b u 0'
5
a , then t h e r e i s a degree b
a.
=
While t h i s theorem g i v e s a n i c e p r o p e r t y of t h e jump o p e r a t i o n , i t can be used t o show t h a t t h i s o p e r a t i o n h a s p r o p e r F o r example, i t i s n o t one-one.
t i e s which a r e n o t s o n i c e .
For t h i s , u s e t h e theorem t o o b t a i n a d e g r e e b u 0' = 0".
Then b 1 = O",
but b
b such t h a t b ' =
+ 0'; for t h i s
would i m -
p l y t h a t b u 0' = 0' .f 0'1. I n f a c t , we can have a ' = b' w i t h any o f t h e f o u r a l t e r n a t i v e s a = b, a l b , a sible.
= k Since the s e t o f
3B(dc6 & 8
on T
&
B
[ I ] (m'l = k : .
on T i s t h e r a n g e cf a r e c u r s i v e p a r t i a l
f u n c t i o n and hence i s €03, t h i s e q u i v a l e n c e i m p l i e s t h a t t h e g r a p h of [ I ]
A
is RE; so [IIA i s r e c u r s i v e by t h e Graph Theorem.
A
L e t [ I ] (m' = k .
Choose
fi C
6 A so that [ I ] (m) = k.
For a l l b v t f i n i t e l y many & C A , we have a c d Hence t h e r e i s a B 8 Then [ I ] ( m ) = k .
Now l e t
o (
cb
above, t h e r e i s a Since
8
and y
on T such t h a t
with
I
8
c6
O(
C A and 6 C 6
on T and [ I ] b ( m
on T such t h a t
C%
C
y
=
6 .
and 6 C
k.
.
By t h e
and [ I ] I( m ' = \ I ] * ( m ) .
A
do n o t I - s p l i t d , [ I ] ( m ) = k .
A t r e e T i s I - s p l i t t i n g i f whenever T ( & ( ' ) :
Q.E.D.
and T ( d (I), ,
a r e defined, they I - s p l i t T ( a ) . Lemma
2 . I f T i s I - s p l i t t i n g and A i s on T , t h e n
A is
I -minimal.
Proof. We assume t h a t F A
=
[ I I A i s t o t a l and prove t h a t
ip, F. Let B be t h e s e t o f d such t h a t T(o l h ( T ( G ( n ) ) ) ; s o l h ( T ( G ( n ) ) ) 2 n.
It follows t h a t A(n) = T(G(n+l)),.
Q.E.D.
Next w e show how t o c o n s t r u c t I - s p l i t t i n g t r e e s . i s an a l g o r i t h m f o r T, t h e n d and 8 I - s p l i t
If J
y and a r e on T
iff
y c
A
o (
A. 7 C 8 &
36([Jl(6) =
~ n 3 i 3 j ( [ 1 1 " < ( n )= i
@
4
& [I]
T h i s i s a n RE r e l a t i o n of I , J , d ,6 ,
&
(n;
3/.
36([Jl(6) = & )
= j
k:
i
+ j).
Hence by t h e S e l e c -
MINMAL DEGREES
52
t i o n Theorem, t h e r e a r e r e c u r s i v e p a r t i a l f u n c t i o n s Lo and L1 such t h a t i f
7
I - s p l i t s on T, t h e n L o ( I , J , 7 j
a r e on T and I - s p l i t L1(I,J,
y)
7;
and L 1 ( I , J , - y / )
while otherwise, L o ( I , J ,
7 ) and
a r e undefined.
Now l e t 6 be on T, and d e f i n e T I (
y
) b y i n d u c t i o n on l h (
y)
a s follows: T I ( 0 ) = 6,
TI(^(^)) It i s e a s y t o v e r i f y t h a t
= TI
L ~ ( I , J , T I ( 1~) . has t h e following p r o p e r t i e s :
( a ) TI i s a t r e e ; ( b ) T I i s a s u b t r e e of T;
( c ) 6 i s on T I ;
( d ) e v e r y s t r i n g on TI i s a n e x t e n s i o n of 6; ( e ) TI i s I - s p l i t ting;
( f ) i f T 1 ( 7 ) i s d e f i n e d and I - s p l i t s on T,
and T 1 ( Y ( ’ ) j a r e d e f i n e d . of T -
then
T1(7(*))
We c a l l TI t h e I - s p l i t t i n g s u b t r e e
6.
To p r o v e Theorem 1, we c o n s t r u c t a s e t A i n N such t h a t dg A i s minimal.
L e t (Is] be a l i s t i n g of Alg(N,N).
w e must i n s u r e t h a t A f [ I , ] and t h a t A i s I,-minimal
Then
f o r each s .
A t s t e p s , w e d e f i n e a t o t a l t r e e T, and a s t r i n g 6, on T,.
Our i n t e n t i o n i s t o t a k e A on T, s o t h a t b S C A . t h a t A i[I,] and t h a t A i s I,-minimal words, we w i l l choose Ts+l
and
€jsi1
We i n s u r e
a t s t e p s+l.
I n other
s o t h a t i f A i s on Ts+l
and
%+1 C A , t h e n A f [I,] and A i s I s - m i n i m a l . We must a l s o be s u r e t h a t we w i l l be a b l e t o choose such an A .
For t h i s , we choose Tsfl
p r o p e r e x t e n s i o n of 6 , and Ts+l
and 6,+1
so that
i s a s u b t r e e of T,.
bSi1
is a
The f o r m e r
MINIMAL DEGFiEES
53
guarantees t h a t t h e r e i s a unique A such t h a t b S
cA
f o r a l l s.
Since 6 s i s on T, f o r a l l s, t h e l a t t e r guarantees t h a t 6,,
.. . a r e
6s+1,
a l l on T,;
s o A i s on Ts.
We now d e s c r i b e s t e p s .
A t s t e p 0, we s e t TO = I d and
Now suppose t h a t s t e p s i s completed; we s h a l l do
6o = 0 .
s t e p s+l.
Since 6, i s on Ts and Ts i s a t o t a l t r e e , 6 , has
two incompatible extensions on T,.
Hence t h e r e i s a proper
extension 6 of 6, on T, such t h a t 6 i s incompatible with [I,]. We t a k e 6,+1
t o be an extension of 6; t h i s guarantees t h a t bS+1
i s a proper extension of 6, and t h a t A
There a r e now two c a s e s .
[I,].
Suppose f i r s t t h a t some exten-
s i o n of 6 on T, does not I s - s p l i t on T s . be such a n extension, and t a k e Ts+l = T s .
We then l e t 6,+1 Then A i s Is-minimal
by Lemma 1.
Now suppose t h a t t h e r e i s no such e x t e n s i o n .
l e t 6,+1 = 6 and l e t T,+l f o r 6.
be t h e I , - s p l i t t i n g
Then w e
s u b t r e e of Ts
Using ( d ) and ( f ) i n t h e p r o p e r t i e s of s p l i t t i n g sub-
t r e e s and t h e f a c t t h a t every extension of 6 on T, I s - s p l i t s on Ts, we e a s i l y prove b y i n d u c t i o n on l h ( 7 ) t h a t T s + 1 ( 7 )
i s defined.
Thus Ts+l i s a t o t a l t r e e ; and A i s Is-minimal
by Lemma 2.
Q.E.D.
One can show t h a t t h e s e t we have j u s t constructed has degree 5
Theorem a
5
0'.
I n s t e a d , we prove a b e t t e r r e s u l t .
011.
2
( S a c k s ) . There i s a minimal degree a such t h a t
MINIMAL DEGREES
54
The c o n s t r u c t i o n f o r Theorem 2 i s a m o d i f i c a t i o n of t h a t Again we d e f i n e 6, a t s t e p s s o t h a t 6,+1
for Theorem 1.
a p r o p e r e x t e n s i o n o f 6,, t h a t 6s C A for a l l s .
and t a k e A to b e t h e unique s e t such However, t h e t r e e s a r e t r e a t e d d i f f e r -
A t s t e p s , we d e f i n e t r e e s T
ently.
For i
n o t be t o t a l ) .
so,
2
i
since
55
MINIMAL DEGREES We may t h e r e f o r e choose s 2 so
otherwise our r e s u l t i s clear.
s o t h a t kscl ks
2
i
>
Then t h e k a t s t e p s+l i s i-1.
= i.
k, Case 2 o c c u r s a t s t e p s+l; s o T:-"
Since
Ti-l, s+l
=
If our r e s u l t i s f a l s e , t h e n t h e r e .is a smallest t such t h a t k t + l = i .
TS+l = Tit and Ti-l s+l = Ti-l; t i t h e k a t s t e p t+l i s n o t
If ks to T ':
>
. . ., kt
S i n c e kS+*,
i for a l l s
for a l l s 2 s o .
s o T! j-1;
2
1
=
are all
Ti-l. t
>
>
s
i, w e have
This implies t h a t
s o kt+l =f i, a c o n t r a d i c t i o n .
s o , t h e n T:
i s d e f i n e d and e q u a l
We l e t Ti b e TYo.
S i n c e 6 , i s on
TS whenever T! i s d e f i n e d , 6 s i s on Ti; so A i s on Ti. i S We s h a l l show t h a t i f Ti+l i s d e f i n e d , t h e n e i t h e r i t i s an I i - s p l i t t i n g not I i - s p l i t
s u b t r e e of T,!
or TS i+l
=
TY and some 6n d o e s
Assuming t h i s , we s e e t h a t t h e same r e -
on TT.
s u l t h o l d s when a l l of t h e s u p e r s c r i p t s s a r e dropped; and i t t h e n follows by Lemmas 1 and 2 t h a t A i s Ii-minimal.
If s
W e p r o v e t h i s r e s u l t by i n d u c t i o n on s .
=
S
0, Ti-I-1
Assume t h a t t h e r e s u l t h o l d s for some s . s+l so t h i s c a s e i s i+l, t h e n Ti+l = TY+l and T i f 1 = T;!
cannot b e d e f i n e d ,
If ks+l trivial.
>
If ks+l
s , w e say t h a t
0; o t h e r w i s e ,
x is active
x i s inactive a t step t .
x i s permanent; o t h e r w i s e , x i s temporary.
Si-
milar d e f i n i t i o n s hold w i t h B i n place of A . We now d e s c r i b e s t e p s .
W e do n o t h i n g u n l e s s k
suppose t h a t F$., i s ( l k ) . k
AS
C,
BS.
L e t s be i n row n, and f i r s t
Suppose t h a t t h i s i s t h e c a s e .
no a c t i v e requirement, p u t k i n t o A .
E
Cs
and
If k i s i n
Otherwise, choose n
minimal such t h a t k i s i n a n a c t i v e n-requirement.
If n i s
a n A-number, p u t k i n t o B; i f n i s a B-number, p u t k i n t o A . (Thus t h e c o n d i t i o n
51 w i t h
the smallest value of n i s taking
p r i o r i t y over the others. ) Now suppose t h a t R, i s (21). a number k ment i s
n)-
5 G(n) for all n, then YF SR G; for v,(n) = p s ( \d t 5 G(n))(t 2 s 3 F(t) > n).
If vF(nj
The construction of an RE set A in N is F-restricted if whenever n is put into A at step s, then n
2F(s).
If F is
restricting and the construction of A is F-restricted, then
A
SR
so s
For if n is put into A at step Thus n E A C-, n E A * F b ) vF(n).
'vF.
n.
At step
Since s > G(n), k LS(F(s)) 5 LA(F(s)). LA(F(s))
>
s,
Then
which is in A is in AS.
s
s
2 G(n),
then
we put into A a number k 5 LS(F(s)).
AG(n); so k
>
LA(").
Since A S C A,
Combining these three inequalities,
LA(n); so F(s)
>
n.
Example. Let F be a listing of an RE set A in N. F is one-one, it is restricting. ting F ( s ) into A at step s.
Since
We can construct A by put-
Since F(s)
< Ls(F(s)),
struction is F-restricted and F-supported; so dg A
=
this condg
VF.
77
MAXIMAL SETS
Lemma
3.
If a i s RE and a ' = O f t , t h e n t h e r e i s a r e s t r i c t -
i n g f u n c t i o n F such t h a t V F i s dominant and dg YF = a . P r o o f . Let A be an RE s e t i n N o f d e g r e e a .
Since
A i s n o n - r e c u r s i v e , i t i s i n f i n i t e ; s o i t h a s a l i s t i n g G by
By Lemma 1, t h e r e i s a dominant f u n c -
t h e L i s t i n g Theorem.
By t h e Modulus Lemma, t h e r e i s a re-
t i o n H recursive i n A . c u r s i v e sequence
iHnI
w i t h t h e l i m i t H and a modulus M of {Hn]
which i s r e c u r s i v e i n A . L e t F ( s ) be t h e s m a l l e s t number n
5
G ( s ) such t h a t H s ( n ) .f
Hs+l(n), i f t h e r e i s such a n n; o t h e r w i s e , l e t F ( s )
>
Clearly F i s recursive. V G ( n ) , then F ( s )
>
If s - M(m)
n.
= G(s).
for a l l m 2 n and s 2
It f o l l o w s t h a t F i s r e s t r i c t i n g and
that vF(n)
5
max, s, S:(j)
and i, j y! AS. =
(Fa,
. ..,
5
This implies t h a t j
i
(6).
proving
s+l
If L s + l ( n ) = L s ( n ) , t h e n Sn
( L s + l ( n ) ) 2 S i ( L s ( n ) ) by
From t h i s and (61, w e s e e t h a t for s with s.
2
S:(Ls(n))
so,
(4)
increases
it
S i n c e t h e r e a r e o n l y f i n i t e l y many n - s t r i n g s ,
From t h i s and ( 6 \ , w e s e e t h a t
e v e n t u a l l y becomes c o n s t a n t .
L s ( n ) e v e n t u a l l y becomes c o n s t a n t ; s o l i m L s ( n ) e x i s t s . For a l l s u f f i c i e n t l y l a r g e s, L ( n ) = Ls(n)
so
A";
I f m f n, L s ( m ) f L s ( n ) for a l l s; s o L(m) =# L ( n ]
L(n) $A.
These f a c t s show t h a t A i s c o i n f i n i t e .
It remains t o show t h a t Sn i s a l m o s t c o n s t a n t on A'. 6 be t h e s m a l l e s t n - s t r i n g
many i
E
such t h a t S n ( i ) = U
for infinitely
It w i l l s u f f i c e t o assume t h a t S n ( i )
A'.
Let
>QC
for
i n f i n i t e l y many i E A C and d e r i v e a c o n t r a d i c t i o n .
i.
S:(i)
= a and L A ( " ) 5
L e t B be t h e s e t of i
E
Then B i s i n f i n i t e .
L e t Cs be t h e s e t of i such t h a t
=o(
A C such t h a t S n ( i )
We show t h a t
and i i s n - h e l d a t s t e p s .
(8)
s
2 t 3 B
n Cs
It w i l l s u f f i c e t o show t h a t B
6
C Ct.
Cs C C s f l .
and l e t j be t h e h o l d e r of i a t s t e p s .
i s a h o l d e r a t s t e p s, i , j f As+1.
Let i
E
B f~ Cs,
S i n c e i E A C and j
We have LS+1(n) 5 LA(") 2
MAXIMAL SETS
82
i.
Then S n ( i )
S;+l(j)
S n ( i )
j with j
j)
We c l a i m t h a t
(5); and t h e l a s t two a r e f i n i t e .
clear i f i
(4) and ( 5 ) .
The f i r s t two a r e RE, s i n c e
LA(”)].
by ( 4 ) and
by
r e c u r s i v e r e l a t i o n of i,s, i t
is a
s u f f i c e s t o v e r i f y t h a t BC i s RE. f o u r sets A ,
o(
i E Cs.
L/
i $T‘ B
=
can choose such a
(5’, S:(i)
E
y with m
T h i s f o l l o w s from t h e f a c t t h a t i f y n As+1
=
with m
E
C, then <m,r>
belongs t o o n l y f i n i t e l y
many r e q u i r e m e n t s .
For i f < m , r >
E Cs,
then <m,r>
i s not put i n t o a require-
ment a f t e r s t e p s e x c e p t , p o s s i b l y , a t t h e s t e p a t which i t i s put i n t o A .
87
INFINITE I N J U R Y ( C ) If < m , r >
E
C, t h e n <m,r>
permanent n-requirement w i t h n
i f f <m,r>
E A
belongs t o no
5 m.
A member of A can belong t o no permanent r e q u i r e m e n t .
Suppose < m , r > <m,r>
E
A.
By ( B ) , we can choose s so l a r g e t h a t
Cs and e v e r y temporary requirement c o n t a i n i n g
Since <m,r>
i s inactive a t step s .
E Cs
- AS and i s not
p u t i n t o A a t s t e p s , t h e r e i s a n n-requirement with n which i s a c t i v e a t s t e p s and c o n t a i n s < m , r > .
5
m
This require-
ment must b e permanent. We l e t En be t h e s e t o f arguments of permanent n - r e q u i r e rnent s. ( D ) En and C ( n )
-
A(n) are finite.
We prove t h i s by i n d u c t i o n on n .
show t h a t En i s RE.
Our f i r s t s t e p i s t o
Let E i be t h e set of arguments of perma-
nent n-requirements c r e a t e d a t s t e p s . I s ( k E E E ) , i t s u f f i c e s t o show t h a t k
r e l a t i o n of k, s .
Since k E
E
En
EE i s a r e c u r s i v e
Given k and s, we can d e c i d e i f a n n - r e -
quirement with argument k i s c r e a t e d a t s t e p s; and, i f s o , we W e must now d e c i d e whether y i s
can f i n d t h i s requirement y . permanent o r temporary. f o r each < m , r >
E y with
By ( A ) ,
m
n-requirement w i t h a n argument t h i s i m p l i e s t h a t En
k i s created a t step s .
But
is finite.
From t h e r e s u l t j u s t proved and t h e i n d u c t i o n h y p o t h e s i s , w e conclude t h a t Em i s f i n i t e for m
5
n.
S i n c e two m-require-
ments w i t h t h e same argument cannot be a c t i v e a t t h e same s t e p , t h e r e cannot be two permanent m-requirements w i t h t h e same a r gument.
Hence t h e r e a r e o n l y f i n i t e l y many permanent m-re-
quirements w i t h m
5
n.
It f o l l o w s from ( C j t h a t C ( n )
-
A(n)
is finite. ( E ) I f t h e r e i s a permanent n-requirement with argument A k, t h e n [ I n ] ( k ) = F a . We suppose t h a t t h e requirement y i s c r e a t e d a t s t e p s , and l e t x be a s i n t h e d e s c r i p t i o n of s t e p s . s u f f i c e t o show t h a t x A A = t h a t Qs(x) n A f S i n c e x n A~ =
9,
pernianent, < m , r > A a t step s.
p.
=
8;
y; s o < m , r >
&,(XI
< m.
A
A f
A A with
so <m,r>
E C s and
so
m minimal.
Since y i s
A'.
<m,r>
$,
i s not put i n t o
Since <m,r>
belongs t o a n z A A,
E
z
S i n c e z i s a c t i v e a t some s t e p , i t f o l l o w s
from ( A ) t h a t t h e r e i s a < m l , r t > Then < m 1 , r 1 >
E
It f o l l o w s t h a t a t s t e p s , < m , r >
a c t i v e n'-requirement z w i t h n' i s temporary.
Suppose t h a t x
Choose < m , r >
Q,(X) n 'A
9
$.
It w i l l c l e a r l y
E Ps(m,r);
E z
n A with m1
so by ( 2 ) , < m l , r l >
E
]
F o r each Onl,rl> E P ( m , r ) ,
choose a
c l o s e d s e t c o n t a i n i n g u l , r f >by t h e i n d u c t i o n h y p o t h e s i s .
The
union of t h e s e sets and {O,r>]i s c l o s e d .
( G ) If [I,]
A
(k) i s d e f i n e d , t h e n t h e r e are only f i n i t e l y
many n-requirements w i t h argument k . F o r l a r g e s . t h e n computation of [I,]A
t h e computation of [I,]
A
(k).
S
( k ) i s t h e same a s
Hence t h e r e i s a f i n i t e s e t x
such t h a t f o r e v e r y s f o r which
S
( k ) is d e f i n e d , each p a i r S
used n e g a t i v e l y i n t h e computation o f [ I n ] A ( k ) i s i n x . ( F ) , t h e r e i s a closed s e t y i n c l u d i n g x. w i t h argument k is i n c l u d e d i n y .
By
Every n-requirement
Each time t h a t such a re-
quirement becomes i n a c t i v e , some m e m b e r of y is p u t i n t o A . Thus t h e r e are only f i n i t e l y many temporary n-requirements w i t h
INFINITE INJURY
90
argument k; and there i s a t most one permanent n-requirement w i t h argument k . A
(HI [In]
If D.
We assume that [ I n I A = D and derive a contradiction. Since En i s f i n i t e by ( D ) and D i s simple, we can choose a A Then [ I n ] (k) = D(k) = F a . BY (D) and ( G ) , k E ( D LIE,)'. we can choose s i n row n so l a r g e t h a t : ( a ) every permanent n-requirement i s a c t i v e a t s t e p s; quirement w i t h an argument AS
( c ) [InIs ( k ) = Fa; ( d ) k
5 5
( b ) every temporary n-re-
k i s i n a c t i v e a t s t e p s;
s.
I f a t s t e p s t h e r e i s an ac-
5
t i v e n-requirement w i t h a n argument m nent; so D(m) = [I,] since k
9
En.
A
k, then i t i s perma-
(m) = Fa by ( E ) ; so m
D".
Also m
+ k,
These f a c t s show t h a t an n-requirement with
an argument 5 k i s created a t s t e p
But t h i s i s impossible
s.
by ( a ) and ( b ) .
It follows from (D) and (H) t h a t a l l of the conditions
are satisfied.
Q.E.D.
W e s h a l l need some f u r t h e r f a c t s about t h e construction
j u s t made i n the next s e c t i o n . cursive i n C .
F i r s t , we show t h a t A i s r e -
W e suppose t h a t an o r a c l e f o r C i s given, and
show how t o compute whether o r not <m,r>E A by induction on m.
I f <m,r>
C,
then <m,r>f A; s o we suppose t h a t <m,r>
We f i n d a n s such t h a t a , r > s t e p s can contain <m,r>
E Cs.
A
only i f < m , r >
E
C.
requirement created a f t e r E A;
so a l l t h e perma-
91
INFINITE I N J U R Y
nent requirements containing <m,r> a r e a c t i v e a t s t e p s. <m,r>
by ( C ) ,
E
A i f f no n-requirement x with n
5 m which
a c t i v e a t s t e p s and contains < m , r > i s permanent.
Thus is
I n view
of ( A ) and t h e induction hypothesis, we can t e s t whether o r
not t h i s i s t h e case. Now we consider what can be proved i f we do not assume t h a t C i s piecewise recursive.
t h a t A i s recursive i n C.
We can prove j u s t a s above
I n proving ( D ) , piecewise recur-
siveness was only used t o show t h a t C ( m ) i s recursive f o r m < . n . Hence i f we assume t h a t C ( m ) i s recursive f o r rn
-
conclude t h a t C ( n )
< n,
we can
A(n) i s finite.
Now suppose t h a t C ( m ) i s recursive f o r every m
>
0.
We
can then s t i l l prove t h a t A i s a t h i c k subset of C and t h a t D
&
and D
A, provided t h a t we assume t h a t D i s strongly simple
& C'O).
The only change required i n t h e proof i s i n
(D).
Since C ( O ) may not be recursive, we can only conclude
that k
E
EE i s recursive i n C ' O )
and hence t h a t En i s RE i n
Since D i s strongly simple and D
C'O).
&
C ( O ) , t h i s i s enough
t o i n s u r e t h a t En i s not a n i n f i n i t e subset of DC; and Chis Again, i f we assume t h a t C ( m ) i s r e n, we can conclude t h a t C ( n ) - , ( n ) is
i s a l l t h a t i s needed.
cursive f o r 0
i s p u t i n t o A and t h e n
If w e assume t h e index K of D i s f i x e d ,
giving t h e output 0.
t h e n t h e index I of A i s a r e c u r s i v e f u n c t i o n of t h e index J of
c. We summarize t h e s e r e s u l t s as f o l l o w s .
p l e set i n N.
Then there i s a r e c u r s i v e f u n c t i o n F from
A l g ( N X I?, I?) t o Alg(N X N, WF(J),
for rn
N) such t h a t i f C
t h e n : ( a ) A i s r e c u r s i v e i n C;
0, t h e n D g, A .
17. Index S e t s We s h a l l now use t h e r e s u l t s of t h e l a s t s e c t i o n t o e v a l u a t e t h e d e g r e e s of c e r t a i n s e t s . The i n d e x s e t o f a , d e s i g n a t e d by I x ( a ' , i s t h e s e t o f I
E
Alg(N, N ) such t h a t dg WI
i s not RE.
=
a.
O f cc)urse Ix(a'1 =
$
if a
We s h a l l show t h a t d g ( I x ( a ) ) = a 3 i f a i s RE.
If dg G = d g H, t h e n t h e same s e t s a r e r e c u r s i v e i n G
a s a r e r e c u r s i v e i n H; s o t h e
Zn[G]
(rn[G]
same a s t h e Zn[H]
sets.
This j u s t i f i e s t h e f o l -
(rn[H])
lowing d e f i n i t i o n : a set i s x n [ a l
(I7Jal)
( TTn[H] ) where H i s a f u n c t i o n of degree a.
sets a r e the
if i t i s
zn[H]
The d e s i r e d re-
s u l t on d e g r e e s of index sets i s t h e n i m p l i e d by t h e f o l l o w i n g theorem. Index S e t -complete Z,[a]
Theorem ( Y a t e s ) . If a i s RE, t h e n I x ( a ) i s a
set.
I n 4'3, w e showed t h a t i f F i s r e c u r s i v e i n G and G i s re c u r s i v e i n H, t h e n F i s r e c u r s i v e i n H.
The p r o o f showed how
t o o b t a i n a n a l g o r i t h m f o r F i n H from a n a l g o r i t h m f o r F I n G and a n a l g o r i t h m f o r G i n H.
Thus t h e r e i s a r e c u r s i v e func-
t i o n L such t h a t i f [JIH and [L(I,J)I
H
H
a r e t o t a l , then
).
Now we show t h a t i f a i s RE, t h e n I x ( a ) i s 2 3 [ a ] . A be a n RE set i n N of degree a .
I
E
Ix(a)
t,
c,
Let
With L a s above:
dg WI = dg A 3 J 3 K ( W I = [J]
t+3J3K(WI
93
= [J]
A
&
A = [KIWI)
A
&
A = [L(K,J)]
A
1.
=
INDEX SETS
94
A A Thus w e need only show t h a t WI = [ J ] and A = [ L ( K , J ) ] a r e
n2[A].
Now
WI
= [Jl
A
e \dn((WI(n)
A [Jl ( n ) = T r )
&
(lWI(n)
[ J I A ( n )= F a ) ) .
X!
A S i n c e W,(n) i s RE and [ J ] ( n ) = k i s RE i n A, both a r e Z1[A]. A It f o l l o w s t h a t each of WI(n), [J] ( n ) = Tr, l W I ( n ) , and
n2[A]. We
[ J I A ( n ) = Fa i s n 2 [ a ] ; s o WI = [ J I A i s A A = [L(K,J)] similarly.
2. I f
Lemma vy(<x,y>
E
then x
A i s RE and B i s n l [ a ] ,
E
E D ) where D
i s r e c u r s i v e and h a s a modulus H r e c u r s i v e i n A .
x
f B
++ V z ( 1 i m
( s i n c e l i m Dn(x,z) always e x i s t s ) .
<x,z,s>
++ 3 n ( n >
C1
E
Then
Dn(x,z) = T r )
~ ~ z ~ s 3 > ns (6( n<x,z>
E
D ~ )
E
Dn).
Let s
6r
<x,z>
I n t h e d e f i n i t i o n o f C f , we may r e p l a c e 3 n
Then C f i s RE.
H(x,z).
T h i s shows t h a t C ' i s r e c u r s i v e i n H and
Now l e t Y = Z A N, F ( z , n ) = z, G ( z , n ) = n, and
<x,Y>
G
c
.c-,
<x,F(Y),G(Y)>
Then C h a s a l l t h e d e s i r e d p r o p e r t i e s .
Lemma
i s re-
By t h e Modulus Lemma, D = l i m Dn where I D n )
cursive i n A .
hence I n A .
B ts
C ) where C i s r e c u r s i v e i n A and RE.
P r o o f . We have x E B # v z ( < x , z >
by 3 n
treat
2. L e t
E
c'.
Q.E.D.
A be RE and l e t B be Z 2 [ A ] .
Then t h e r e i s
a C, r e c u r s i v e i n A and RE, such t h a t C ( x ) i s r e c u r s i v e i f x
E
B
95
INDEX SETS
and A i s recursive i n C ( x ) if x $ B. Proof. We suppose that A i s a s e t i n N. x
t, 3
B
E
t Vs(<x,t,s>
where D i s recursive i n A and RE. <x,m,n>
E C
c)
E
By Lemma 1
D)
Let
( 3t 5 m ) ( t / s 5 n)(<x,t,s>
E
D) v m
Then C i s recursive i n A and RE. Fixing x, l e t E = C ( x ) .
m 2 t, then E ( m ) = N . If
If <m,n> E E, then <m,nl> E E
5 m)(V s 5
Thus E ( m ) = N c t m
l a r g e n.
D).
If
Hence i n t h i s case E i s recursive.
x $ B, then f o r each t t h e r e i s an
Hence, given m, ( 3t
E
n)(<x,t,s>
so m
E A;
T h i s shows t h a t A C i s RE i n E.
s such t h a t <x,t,s> f D.
E
AC
E D) C)
i s false f o r
gr(<m,r>
E).
But A i s RE, hence FE i n E;
s o A i s recursive i n E by t h e Complementation Theorem.
Q.E.D.
We can now complete t h e proof of t h e Index Set Theorem. Let a be RE; we must show t h a t every 1 3 [ a ] s e t i s reducible F i r s t we l e t a = 0.
to Ix(a).
( T h i s case i s due t o Rogers.)
L e t A be an RE s e t i n N of degree 0 ' .
If B i s
z3,
then B i s
r 2 [ A l ] f o r some A ' which i s El and hence recursive i n A; s o B Is x 2 [ A ] .
sive, x
E
Choose C as i n Lemma 2.
B i f f C ( x ) i s recursive.
t h e r e i s a recursive F such t h a t
F(x)
E
Since A i s not recur-
By t h e Parameter Theorem, = WFcX).
Then x
Ix(O), proving t h a t B i s reducible t o I x ( 0 ) .
E
B c3
E A
96
INDEX SETS
>
Now l e t a
s e t D of d e g r e e a .
x
512, t h e r e i s a simple
By Theorem 1 o f
0.
Let B b e z 3 [ D ] . E
BC
Then
vk(<x,k> E C )
t+
By Lemma 2, t h e r e i s a n E, r e c u r s i v e i n
where C i s x 2 [ D ] . D and RE, such t h a t
4E ( x , k )
i s recursive,
(1)
<x,k> E C
(2)
<x,k> f C -+ D i s r e c u r s i v e i n E ( & k )
Choose a r e c u r s i v e G by t h e Parameter Theorem so t h a t E(,)
=
S e t H(x) = F(G(x)). ‘G(X); and l e t F be as a t t h e end of $16. We complete t h e proof by showing t h a t x E B f, H(x) E I x ( a ) . S e t t i n g A, ( b ) if E(x’m)
=
WHcX), we have: ( a ) Ax i s r e c u r s i v e i n E (XI.,
i s r e c u r s i v e f o r rn
finite; ( c ) if Since E
SR D, ( a ) i m p l i e s t h a t
f C .
- Ax (‘1
E
Ix(a).
Now l e t x
i s p i e c e w i s e r e c u r s i v e ; s o by ( c ) , D
and H ( x ) $ I x ( a ) .
flB.
SRA x .
E
so
By (l), Thus dg A,
0
Since b
E A a l l J and x.
f o r a l l I and x; and s e t I = F ( J ) .
x
E WI
w <J,x>
Then E WJ
++
E A
e+ E A.
Q.E.D.
C o r o l l a r y ( F i x e d P o i n t Theorem). I f F i s a r e c u r s i v e f u n c t i o n from Alg(X,N) t o Alg(X,N), t h e n t h e r e i s an I such t h a t 1 '
=
'F(1)' P r o o f . Define t h e A o f t h e Recursion Theorem by Q.E.D. W F(I)' D e n s i t y Theorem ( S a c k s ) . If a and b a r e RE d e g r e e s such
s, x i s a c t i v e t a t step t i f x A = 4; o t h e r w i s e , x i s i n a c t i v e a t s t e p t . We say x i s e f f e c t i v e a t s t e p t i f x i s a c t i v e a t s t e p t and no n-requirement f o r B w i t h argument k and v a l u e i i s a c t i v e a t s t e p t ; o t h e r w i s e , w e say x i s i n e f f e c t i v e a t s t e p t . element r of x i s a key element i f r i s i n row m and m
>
An k
+
n.
BRANCHING DEGREES
101
A
A
We now d e f i n e f i n i t e s e t s Ps(n,k) and Q s ( n ) by induction A on s. The idea i s t h a t Ps(n,k) i s the s e t o f numbers which we do not allow an n-requirement f o r A with argument k t o keep o u t of A a t s t e p s; and QAs ( n ) i s the s e t of numbers kept out of A a t s t e p s by m-requirements f o r A with rn
r
E
5 n.
Precisely,
A
Ps(n,k) if r belongs t o an n-requirement f o r A a c t i v e a t
s t e p s and r
E
A
i n the same row a s r; and r
E