DEAN’S HANDBOOK OF ORGANIC CHEMISTRY George W. Gokel, Ph.D. Director, Program in Chemical Biology Professor, Department...
893 downloads
3711 Views
9MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
DEAN’S HANDBOOK OF ORGANIC CHEMISTRY George W. Gokel, Ph.D. Director, Program in Chemical Biology Professor, Department of Molecular Biology and Pharmacology Washington University School of Medicine Professor, Department of Chemistry Washington University St. Louis Missouri
Second Edition
MCGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto
Cataloging-in-Publication Data is on file with the Library of Congress
Copyright © 2004, 1987 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. 1 2 3 4 5 6 7 8 9 0
DOC/DOC
0 9 8 7 6 5 4 3
ISBN 0-07-137593-7 The sponsoring editor for this book was Kenneth P. McCombs and the production supervisor was Sherri Souffrance. It was set in Times Roman by Newgen Imaging Systems (P) Ltd. The art director for the cover was Anthony Landi. Printed and bound by RR Donnelley. McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill Professional, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.
This book is printed on recycled, acid-free paper containing a minimum of 50% recycled, de-inked fiber.
Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.
PREFACE
The first edition of the Handbook of Organic Chemistry was edited by Professor John A. Dean. It appeared in 1987 and has served as a widely used and convenient reference work for more than 15 years. When Professor Dean asked if I would work with him to develop a second edition, I was pleased to do so. I felt that as valuable as the first edition was, it would be more broadly useful if it contained discussions of the data, the means by which the data were acquired, and perhaps even how the data are applied in modern science. We thus began the revision with enhanced usability as the foremost goal. Sadly, just as we were beginning the effort, Professor Dean passed away. He will be sorely missed. In following the original plan, many figures, structures, discussions of the methods, and illustrations of the data have been incorporated. Some tables have been reorganized. In some cases tables have been printed twice; although they contain the same data, they are arranged by different criteria. The intent is to make the data easier for the researcher to access and use. Some Internet addresses that can serve as a supplementary resource are included. Despite the numerous additions, the volume remains compact and accessible. As Professor Dean was not involved in producing this edition, I take responsibility for errors of fact or omission. I hope the volume is error-free, but I would appreciate being informed of any mistakes that are found. Finally, I wish to express my thanks to Mrs. Jolanta Pajewska, who helped in improving the manuscript and the proofreading. GEORGE W. GOKEL
iv
ABOUT THE AUTHOR
George W. Gokel, Ph.D., is a professor of molecular biology and pharmacology and the director of the Chemical Biology Program at Washington University School of Medicine. He lives in Chesterfield, Missouri.
Contents
Preface .............................................................................
iv
About the Author ...............................................................
v
1.
Organic Compounds ...............................................
1.1
Nomenclature of Organic Compounds .................................
1.2
Hydrocarbons and Heterocycles .................................. Table 1.1 Names of Straight-Chain Alkanes ............. Table 1.2 Fused Polycyclic Hydrocarbons ................. Table 1.3 Specialist Nomenclature for Heterocyclic Systems ......................................... Table 1.4 Suffixes for Specialist Nomenclature of Heterocyclic Systems ..................................... Table 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names ................................................................ Table 1.6 Trivial Names for Heterocyclic Systems That Are Not Recommended for Use in Fusion Names .........................................
1.2 1.2 1.8
Functionalized Compounds ......................................... Table 1.7 Characteristic Groups for Substitutive Nomenclature ..................................................... Table 1.8 Characteristic Groups Cited Only as Prefixes in Substitutive Nomenclature ................ Table 1.9 Functional Class Names Used in Radicofunctional Nomenclature .........................
This page has been reformatted by Knovel to provide easier navigation.
1.12 1.12
1.13
1.16 1.18 1.19 1.21 1.24
iii
iv
Contents Specific Functionalized Groups ................................... Table 1.10 Retained Trivial Names of Alcohols and Phenols with Structures ............................... Table 1.11 Names of Some Carboxylic Acids ........... Table 1.12 Parent Structures of PhosphorusContaining Compounds ...................................... Table 1.13 ..................................................................
1.25 1.26 1.33 1.40 1.44
Stereochemistry .......................................................... 1.47 Chemical Abstracts Indexing System .......................... 1.60 Physical Properties of Pure Substances ...............................
1.61
Table 1.14 Empirical Formula Index for Organic Compounds ........................................................... 1.61 Table 1.15 Physical Constants of Organic Compounds ........................................................... 1.80
2.
3.
Inorganic and Organometallic Compounds ..........
2.1
Table 2.1 Physical Constants of Inorganic Compounds .....................................................................
2.2
Properties of Atoms, Radicals, and Bonds ...........
3.1
Nuclides .................................................................................
3.2
Table 3.1 Table of Nuclides .........................................
3.2
Electronegativity ....................................................................
3.9
Table 3.2A Electronegativities of the Elements ........... 3.10 Table 3.2B Electronegativities of the Groups ............... 3.10 Electron Affinity ......................................................................
3.11
Table 3.3 Electron Affinities of Elements, Radicals, and Molecules ........................................ 3.11 Bond Lengths and Strengths ................................................
3.13
Table 3.4A Bond Lengths between Carbon and Other Elements ...................................................... 3.14
This page has been reformatted by Knovel to provide easier navigation.
Contents
v
Table 3.4B Bond Lengths between Elements Other Than Carbon ................................................ 3.17 Table 3.5 Bond Strengths ............................................ 3.19 Bond and Group Dipole Moments ........................................
3.30
Table 3.6 Bond Dipole Moments ................................. 3.30 Table 3.7 Group Dipole Moments ................................ 3.31
4.
Physical Properties .................................................
4.1
Solubilities .............................................................................
4.2
Table 4.1 Solubility of Gases in Water .........................
4.2
Vapor Pressures ....................................................................
4.8
Table 4.2 Vapor Pressure of Mercury ..........................
4.8
Table 4.3 Vapor Pressure of Water for Temperatures from –10 to 120°C .......................... 4.10 Table 4.4 Vapor Pressure of Deuterium Oxide ............ 4.12 Boiling Points .........................................................................
4.12
Table 4.5A Boiling Points for Common Organic Solvents ................................................................ 4.12 Table 4.5B Boiling Points for Common Organic Solvents ................................................................ 4.15 Table 4.5C Boiling Point for Common Organic Solvents ................................................................ 4.17 Table 4.6 Molecular Elevation of the Boiling Point ...................................................................... 4.23 Table 4.7 Binary Azeotropic (Constant-Boiling) Mixtures ................................................................. 4.25 Table 4.8 Ternary Azeotropic Mixtures ........................ 4.46 Freezing Points .....................................................................
4.52
Tables 4.9A and B Molecular Lowering of the Melting or Freezing Point ....................................... 4.52 Viscosity, Dielectric Constant, Dipole Moment, Surface Tension, and Refractive Index ........................................ This page has been reformatted by Knovel to provide easier navigation.
4.55
vi
Contents Table 4.10 Viscosity, Dielectric Constant, Dipole Moment and Surface Tension of Selected Organic Substances .............................................. 4.57 Table 4.11 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances ............................................ 4.94 Table 4.12 Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at Various Temperatures ........................................... 4.98 Combustible Mixtures ............................................................
4.99
Table 4.13 Properties of Combustible Mixtures in Air ...................................................................... 4.99
5.
Thermodynamic Properties ....................................
5.1
Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities ......................................
5.2
Table 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds ..........................................
5.3
Table 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds ................... 5.44 Critical Phenomena ...............................................................
5.75
Table 5.3 Critical Properties ........................................ 5.75 Table 5.4 Group Contributions for the Estimation of Critical Properties .............................................. 5.88
6.
Spectroscopy ...........................................................
6.1
Ultraviolet-Visible Spectroscopy ...........................................
6.3
Table 6.1 Electronic Absorption Bands for Representative Chromophores ..............................
6.5
Table 6.2 Ultraviolet Cutoffs of Spectrograde Solvents ................................................................
6.6
This page has been reformatted by Knovel to provide easier navigation.
Contents
vii
Table 6.3 Absorption Wavelength of Dienes ................
6.7
Table 6.4 Absorption Wavelength of Enones and Dienones ...............................................................
6.7
Table 6.5 Solvent Correction for UV–VIS Spectroscopy .........................................................
6.8
Table 6.6 Primary Band of Substituted Benzene and Heteroaromatics .............................................
6.9
Table 6.7 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives ..............
6.9
Photoluminescence ...............................................................
6.10
Table 6.8 Fluorescence Spectroscopy Data of Some Organic Compounds .................................... 6.11 Table 6.9 Fluorescence Quantum Yield Values ........... 6.17 Table 6.10 Phosphorescence Spectroscopy of Some Organic Compounds .................................... 6.17 Infrared Spectroscopy ...........................................................
6.21
Table 6.11 Absorption Frequencies of Single Bonds to Hydrogen ................................................ 6.21 Table 6.12 Absorption Frequencies of Triple Bonds .................................................................... 6.28 Table 6.13 Absorption Frequencies of Cumulated Double Bonds ........................................................ 6.29 Table 6.14 Absorption Frequencies of Carbonyl Bonds .................................................................... 6.31 Table 6.15 Absorption Frequencies of Other Double Bonds ........................................................ 6.35 Table 6.16 Absorption Frequencies of Aromatic Bonds .................................................................... 6.39 Table 6.17 Absorption Frequencies of Miscellaneous Bands ............................................. 6.40 Table 6.18 Absorption Frequencies in the Near Infrared .................................................................. 6.47
This page has been reformatted by Knovel to provide easier navigation.
viii
Contents Table 6.19 Infrared Transmitting Materials .................. 6.49 Table 6.20 Infrared Transmission Characteristics of Selected Solvents .............................................. 6.51 Raman Spectroscopy ............................................................
6.54
Table 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon ....................................... 6.54 Table 6.22 Raman Frequencies of Triple Bonds .......... 6.59 Table 6.23 Raman Frequencies of Cumulated Double Bonds ........................................................ 6.60 Table 6.24 Raman Frequencies of Carbonyl Bonds .................................................................... 6.61 Table 6.25 Raman Frequencies of Other Double Bonds .................................................................... 6.63 Table 6.26 Raman Frequencies of Aromatic Compounds ........................................................... 6.66 Table 6.27 Raman Frequencies of Sulfur Compounds ........................................................... 6.67 Table 6.28 Raman Frequencies of Ethers ................... 6.69 Table 6.29 Raman Frequencies of Halogen Compounds ........................................................... 6.70 Table 6.30 Raman Frequencies of Miscellaneous Compounds ........................................................... 6.71 Nuclear Magnetic Resonance Spectroscopy .......................
6.71
Table 6.31 Nuclear Properties of the Elements ........... 6.73 Table 6.32 Proton Chemical Shifts of Reference Compounds Relative to Tetramethylsilane ............. 6.74 Table 6.33 Common NMR Solvents ............................ 6.75 Table 6.34 Proton Chemical Shifts .............................. 6.76 Table 6.35 Estimation of Chemical Shift for Proton of —CH2— and >CH— Groups .................. 6.79 Table 6.36 Estimation of Chemical Shift of Proton Attached to a Double Bond .................................... 6.80
This page has been reformatted by Knovel to provide easier navigation.
Contents
ix
Table 6.37 Chemical Shifts in Monosubstituted Benzene ................................................................ 6.81 Table 6.38 Proton Spin Coupling Constants ................ 6.82 Table 6.39 Carbon-13 Chemical Shifts ........................ 6.83 Table 6.40 Estimation of Chemical Shifts of Alkane Carbons ..................................................... 6.86 Table 6.41 Effect of Substituent Groups on Alkyl Chemical Shifts ...................................................... 6.87 Table 6.42 Estimation of Chemical Shift of Carbon Attached to a Double Bond ....................... 6.88 Table 6.43 Carbon-13 Chemical Shifts in Substituted Benzenes ............................................ 6.89 Table 6.44 Carbon-13 Chemical Shifts in Substituted Pyridines ............................................. 6.90 Table 6.45 Carbon-13 Chemical Shifts of Carbonyl Group ..................................................... 6.91 Table 6.46 One-Bond Carbon–Hydrogen Spin Coupling Constants ............................................... 6.92 Table 6.47 Two-Bond Carbon–Hydrogen Spin Coupling Constants ............................................... 6.93 Table 6.48 Carbon–Carbon Spin Coupling Constants .............................................................. 6.93 Table 6.49 Carbon–Fluorine Spin Coupling Constants .............................................................. 6.94 Table 6.50 Carbon-13 Chemical Shifts of Deuterated Solvents .............................................. 6.95 Table 6.51 Carbon-13 Spin Coupling Constants with Various Nuclei ................................................ 6.96 Table 6.52 Boron-11 Chemical Shifts .......................... 6.96 Table 6.53 Nitrogen-15 (or Nitrogen-14) Chemical Shifts ..................................................................... 6.97
This page has been reformatted by Knovel to provide easier navigation.
x
Contents Table 6.54 Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine ...................................... 6.100 Table 6.55 Nitrogen-15 Chemical Shifts for Standards .............................................................. 6.101 Table 6.56 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants ............................................... 6.101 Table 6.57 Nitrogen-15 to Carbon-13 Spin Coupling Constants ............................................... 6.102 Table 6.58 Nitrogen-15 to Fluorine-19 Spin Coupling Constants ............................................... 6.102 Table 6.59 Fluorine-19 Chemical Shifts ....................... 6.102 Table 6.60 Fluorine-19 Chemical Shifts for Standards .............................................................. 6.104 Table 6.61 Fluorine-19 to Fluorine-19 Spin Coupling Constants ............................................... 6.104 Table 6.62 Silicon-29 Chemical Shifts ......................... 6.104 Table 6.63 Phosphorus-31 Chemical Shifts ..................................................................... 6.105 Table 6.64 Phosphorus-31 Spin Coupling Constants .............................................................. 6.109 Electron Spin Resonance ...................................................... 6.110 Table 6.65 Spin–Spin Coupling (Hyperfine Splitting Constants) ............................................... 6.111 Ionization Potentials .............................................................. 6.114 Table 6.66A Ionization Potentials of Molecular Species ................................................................. 6.114 Table 6.66B Alphabetical Listing of Ionization Potentials of Molecular Species ............................. 6.120 Table 6.67 Ionization Potentials of Radical Species ................................................................. 6.122 X-Ray Diffraction ................................................................... 6.122
This page has been reformatted by Knovel to provide easier navigation.
Contents 7.
xi
Physiochemical Relationships ...............................
7.1
Linear Free Energy Relationships .........................................
7.2
Table 7.1 Hammett and Taft Substituent Constants ..............................................................
7.3
Table 7.2 pKA and Rho (p) Values for the Hammett Equation .................................................
7.8
Table 7.3 pKA and Rho (p) Values for the Taft Equation ................................................................ 7.10 Table 7.4 Special Hammett Sigma Constants .............................................................. 7.10
8.
Electrolytes, Electromotive Force, and Chemical Equilibrium ..............................................
8.1
Equilibrium Constants ...........................................................
8.2
Table 8.1 pKA Values of Organic Materials in Water at 25°C ........................................................
8.3
Table 8.2 Proton-Transfer Reactions of Inorganic Materials in Water at 25°C ..................................... 8.61 Table 8.3 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures ........... 8.64 Table 8.4 Indicators for Aqueous Acid–Base Titrations ............................................................... 8.72 Buffer Solutions .....................................................................
8.74
Table 8.5 National Institute of Standards and Technology (Formerly National Bureau of (Standards U.S.)) Reference pH Buffer Solutions ................................................................ 8.74 Table 8.6 Compositions of National Institute of Standards and Technology. Standard pH Buffer Solutions ..................................................... 8.75 Table 8.7 pH Values of Buffer Solutions for Control Purposes ................................................... 8.76
This page has been reformatted by Knovel to provide easier navigation.
xii
Contents Reference Electrodes ............................................................
8.77
Table 8.8 Potentials of Reference Electrodes (in Volts) as a Function of Temperature ...................... 8.77 Table 8.9 Potentials of Reference Electrodes (in Volts) at 25°C for Water–Organic Solvent Mixtures ................................................................. 8.79 Electrode Potentials ..............................................................
8.80
Table 8.10 Potentials of Selected Half-Reactions at 25°C .................................................................. 8.80 Table 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25°C .................................................................. 8.82
9.
Data Useful in Laboratory Manipulations and Analysis ....................................................................
9.1
Cooling Mixtures ....................................................................
9.2
Table 9.1 Cooling Mixtures Made from Dry Ice and Salts ...............................................................
9.2
Table 9.2 Dry Ice or Liquid Nitrogen Slush Baths ........
9.2
Humidification and Drying .....................................................
9.2
Table 9.3 Humidity (%) Maintained by Saturated Solutions of Various Salts at Specified Temperatures ........................................................
9.3
Table 9.4 Humidity (%) Maintained by Saturated Solutions of Common Salts at Specified Temperatures ........................................................
9.3
Table 9.5 Drying Agents ..............................................
9.4
Separation Methods ..............................................................
9.5
Table 9.6 Solvents of Chromatographic Interest ..........
9.5
Table 9.7 Solvents Having the Same Refractive Index and the Same Density at 25°C .....................
9.7
This page has been reformatted by Knovel to provide easier navigation.
Contents
xiii
Table 9.8 McReynolds’ Constants for Stationary Phases in Gas Chromatography ............................ 9.10
10. Polymers, Rubbers, Fats, Oils, and Waxes ........... 10.1 Polymers ................................................................................
10.2
Table 10.1 Plastic Families ......................................... 10.7 Formulas and Key Properties of Plastic Materials ................
10.9
Table 10.2 Properties of Commercial Plastics ............. 10.24 Formulas and Advantages of Rubbers ................................. 10.60 Table 10.3 Properties of Natural and Synthetic Rubbers ................................................................. 10.64 Chemical Resistance ............................................................ 10.65 Table 10.4 Resistance of Selected Polymers and Rubbers to Various Chemicals at 20°C .................. 10.65 Table 10.5 Common Abbreviations Used in Polymer Chemistry ................................................ 10.67 Gas Permeability ................................................................... 10.70 Table 10.6 Gas Permeability Constants (1010P) at 25°C for Polymers and Rubbers ............................ 10.70 Table 10.7 Vapor Permeability Constants (1010P) at 35°C for Polymers ............................................. 10.73 Fats, Oils, and Waxes ........................................................... 10.73 Table 10.8 Constants of Fats and Oils ........................ 10.73 Table 10.9 Constants of Waxes .................................. 10.76
11. Abbreviations, Constants, and Conversion Factors ...................................................................... 11.1 Physical Constants ................................................................
11.2
Table 11.1 Fundamental Physical Constants ............... 11.2 Greek Alphabet .....................................................................
11.5
Table 11.2 Greek Alphabet .......................................... 11.5
This page has been reformatted by Knovel to provide easier navigation.
xiv
Contents Prefixes ..................................................................................
11.5
Table 11.3 Prefixes for Naming Multiples and Submultiples of Units ............................................. 11.5 Table 11.4 Numerical Prefixes .................................... 11.5 Transformations ....................................................................
11.6
Table 11.5 Conversion Formulas for Solutions Having Concentrations Expressed in Various Ways ..................................................................... 11.6 Table 11.6 Conversion Factors ................................... 11.7 Statistics ................................................................................ 11.14 Table 11.7 Values of t ................................................. 11.14
Index ................................................................................
This page has been reformatted by Knovel to provide easier navigation.
I.1
SECTION 1
ORGANIC COMPOUNDS
NOMENCLATURE OF ORGANIC COMPOUNDS . . . . . . . . Hydrocarbons and Heterocycles . . . . . . . . . . . . . . . . . Table 1.1 Names of Straight-Chain Alkanes . . . . . . . . Table 1.2 Fused Polycyclic Hydrocarbons . . . . . . . . . Table 1.3 Specialist Nomenclature for Heterocyclic Systems . . . . . . . . . . . . . . . . . . . . . . Table 1.4 Suffixes for Specialist Nomenclature of Heterocyclic Systems . . . . . . . . . . . . . . . Table 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names . . . . . . . . . . . . . Table 1.6 Trivial Names for Heterocyclic Systems that are Not Recommended for Use in Fusion Names . . Functionalized Compounds . . . . . . . . . . . . . . . . . . . Table 1.7 Characteristic Groups for Substitutive Nomenclature . . . . . . . . . . . . . . . . . . . Table 1.8 Characteristic Groups Cited Only as Prefixes in Substitutive Nomenclature . . . . . . . . . . . Table 1.9 Functional Class Names Used in Radicofunctional Nomenclature . . . . . . . . . . . . . . . . . . . Specific Functionalized Groups . . . . . . . . . . . . . . . . . Table 1.10 Retained Trivial Names of Alcohols and Phenols with Structures . . . . . . . . . . . . . . . . . . Table 1.11 Names of Some Carboxylic Acids . . . . . . . . Table 1.12 Parent Structures of Phosphorus-containing Compounds . . . . . . . . . . . . . . . . . . . . Table 1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . Stereochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical Abstracts Indexing System . . . . . . . . . . . . . . PHYSICAL PROPERTIES OF PURE SUBSTANCES . . . . . . . Table 1.14 Empirical Formula Index for Organic Compounds . . . . . . . . . . . . . . . . . . . . Table 1.15 Physical Constants of Organic Compounds . . .
1.1
. . . .
. . . .
. . . .
1.2 1.2 1.2 1.8
. . .
1.12
. . .
1.12
. . .
1.13
. . . . . .
1.16 1.18
. . .
1.19
. . .
1.21
. . . . . .
1.24 1.25
. . . . . .
1.26 1.34
. . . . .
. . . . .
1.40 1.44 1.47 1.60 1.61
. . . . . .
1.61 1.80
. . . . .
1.2
SECTION 1
NOMENCLATURE OF ORGANIC COMPOUNDS The following synopsis of rules for naming organic compounds and the examples given in explanation are not intended to cover all the possible cases. For a more comprehensive and detailed description, see J. Rigaudy and S. P. Klesney, Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H, Pergamon Press, Oxford, 1979. This publication contains the recommendations of the Commission on Nomenclature of Organic Chemistry and was prepared under the auspices of the International Union of Pure and Applied Chemistry (IUPAC). Hydrocarbons and Heterocycles Alkanes. The saturated open-chain (acyclic) hydrocarbons (CnH2n 2) have names ending in -ane. The first four members have the trivial names methane (CH4), ethane (CH3CH3 or C2H6), propane (C3H8), and butane (C4H10). For the remainder of the alkanes, the first portion of the name is derived from the Greek prefix (see Table 11.4) that cites the number of carbons in the alkane followed by -ane with elision of the terminal -a from the prefix, as shown in Table 1.1. TABLE 1.1 Names of Straight-Chain Alkanes n*
Name
n*
Name
n*
Name
1 2 3 4 5 6 7 8 9 10
Methane Ethane Propane Butane Pentane Hexane Heptane Octane Nonane† Decane
11 12 13 14 15 16 17 18 19 20
Undecane‡ Dodecane Tridecane Tetradecane Pentadecane Hexadecane Heptadecane Octadecane Nonadecane Icosane§
21 22 23
Henicosane Docosane Tricosane
30 31 32
Triacontane Hentriacontane Dotriacontane
40 50
Tetracontane Pentacontane
n* 60 70 80 90 100 110 120 121
Name Hexacontane Heptacontane Octacontane Nonacontane Hectane Decahectane Icosahectane Henicosahectane
*n total number of carbon atoms. † Formerly called enneane. ‡ Formerly called hendecane. § Formerly called eicosane.
For branching compounds, the parent structure is the longest continuous chain present in the compound. Consider the compound to have been derived from this structure by replacement of hydrogen by various alkyl groups. Arabic number prefixes indicate the carbon to which the alkyl group is attached. Start numbering at whichever end of the parent structure that results in the lowest-numbered locants. The arabic prefixes are listed in numerical sequence, separated from each other by commas and from the remainder of the name by a hyphen. If the same alkyl group occurs more than once as a side chain, this is indicated by the prefixes di-, tri-, tetra-, etc. Side chains are cited in alphabetical order (before insertion of any multiplying prefix). The name of a complex radical (side chain) is considered to begin with the first letter of its complete name. Where names of complex radicals are composed of identical words, priority for citation is given to that radical which contains the lowestnumbered locant at the first cited point of difference in the radical. If two or more side chains are in equivalent positions, the one to be assigned the lowest-numbered locant is that cited first in the name. The complete expression for the side chain may be enclosed in parentheses for clarity or the carbon atoms in side chains may be indicated by primed locants.
ORGANIC COMPOUNDS
1.3
H H H H H H H H H H H C C C C C C C C C C H H H H H H H H H H H H3C
CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH3
FIGURE 1.1
Projections for n-decane
If hydrocarbon chains of equal length are competing for selection as the parent, the choice goes in descending order to (1) the chain that has the greatest number of side chains, (2) the chain whose side chains have the lowest-numbered locants, (3) the chain having the greatest number of carbon atoms in the smaller side chains, or (4) the chain having the leastbranched side chains. These trivial names may be used for the unsubstituted hydrocarbons only: Isobutane (CH3)2CHCH3 Isopentane (CH3)2CHCH2CH3
Neopentane (CH3)4C Isohexane (CH3)2CHCH2CH2CH3
Univalent radicals derived from saturated unbranched alkanes by removal of hydrogen from a terminal carbon atom are named by adding -yl in place of -ane to the stem name. Thus the alkane ethane becomes the radical ethyl. These exceptions are permitted for unsubstituted radicals only: Isopropyl (CH3)2CH— Isobutyl (CH3)2CHCH2 ˆ sec-Butyl CH3CH2CH(CH3) ˆ tert-Butyl (CH3)3C ˆ
Isopentyl (CH3)2CHCH2CH2ˆ Neopentyl (CH3)3CCH2 ˆ tert-Pentyl CH3CH2C(CH3)2 ˆ Isohexyl (CH3)2CHCH2CH2CH2 ˆ
Note the usage of the prefixes iso-, neo-, sec-, and tert-, and note when italics are employed. Italicized prefixes are never involved in alphabetization, except among themselves; thus sec-butyl would precede isobutyl, isohexyl would precede isopropyl, and sec-butyl would precede tert-butyl. Examples of alkane nomenclature are
1.4
SECTION 1
Bivalent radicals derived from saturated unbranched alkanes by removal of two hydrogen atoms are named as follows: (1) If both free bonds are on the same carbon atom, the ending -ane of the hydrocarbon is replaced with -ylidene. However, for the first member of the alkanes it is methylene rather than methylidene. Isopropylidene, sec-butylidene, and neopentylidene may be used for the unsubstituted group only. (2) If the two free bonds are on different carbon atoms, the straight-chain group terminating in these two carbon atoms is named by citing the number of methylene groups comprising the chain. Other carbons groups are named as substituents. Ethylene is used rather than dimethylene for the first member of the series, and propylene is retained for CH3 ˆ CH ˆ CH2 ˆ (but trimethylene is ˆ CH2 ˆ | CH2 ˆ CH2 ˆ ). Trivalent groups derived by the removal of three hydrogen atoms from the same carbon are named by replacing the ending -ane of the parent hydrocarbon with -ylidyne. Alkenes and Alkynes. Each name of the corresponding saturated hydrocarbon is converted to the corresponding alkene by changing the ending -ane to -ene. For alkynes the ending is -yne. With more than one double (or triple) bond, the endings are -adiene, -atriene, etc. (or -adiyne, -atriyne, etc.). The position of the double (or triple) bond in the parent chain is indicated by a locant obtained by numbering from the end of the chain nearest the double (or triple) bond; thus CH3CH2CH ¨ CH2 is 1-butene and CH3C ˜ CCH3 is 2-butyne. For multiple unsaturated bonds, the chain is so numbered as to give the lowest possible locants to the unsaturated bonds. When there is a choice in numbering, the double
ORGANIC COMPOUNDS
1.5
bonds are given the lowest locants, and the alkene is cited before the alkyne where both occur in the name. Examples: 1,3-Octadiene CH3CH2CH2CH2CH ¨ CH ˆ CH ¨ CH2 CH2 ¨ CHC ˜ CCH ¨ CH2 1,5-Hexadiene-3-yne CH3CH ¨ CHCH2C ˜ CH 4-Hexen-1-yne CH ˜ CCH2CH ¨ CH2 1-Penten-4-yne Unsaturated branched acyclic hydrocarbons are named as derivatives of the chain that contains the maximum number of double and/or triple bonds. When a choice exists, priority goes in sequence to (1) the chain with the greatest number of carbon atoms and (2) the chain containing the maximum number of double bonds. These nonsystematic names are retained: Ethylene CH2 ¨ CH2 Allene CH2 ¨ C ¨ CH2 Acetylene HC ˜ CH An example of nomenclature for alkenes and alkynes is
Univalent radicals have the endings -enyl, -ynyl, -dienyl, -diynyl, etc. When necessary, the positions of the double and triple bonds are indicated by locants, with the carbon atom with the free valence numbered as 1. Examples: 2-Propenyl CH2 ¨ CH ˆ CH2 ˆ CH3 ˆ C ˜ C ˆ 1-Propynyl CH3 ˆ C ˜ C ˆ CH2CH ¨ CH2 ˆ 1-Hexen-4-ynyl These names are retained: Vinyl (for ethenyl) CH2 ¨ CH ˆ Allyl (for 2-propenyl) CH2 ¨ CH ˆ CH2 ˆ Isopropenyl (for 1-methylvinyl but for unsubstituted radical only)
CH2 ¨ C(CH3) ˆ
Should there be a choice for the fundamental straight chain of a radical, that chain is selected which contains (1) the maximum number of double and triple bonds, (2) the largest number of carbon atoms, and (3) the largest number of double bonds. These are in descending priority. Bivalent radicals derived from unbranched alkenes, alkadienes, and alkynes by removing a hydrogen atom from each of the terminal carbon atoms are named by replacing the endings -ene, -diene, and -yne by -enylene, -dienylene, and -ynylene, respectively. Positions of double and triple bonds are indicated by numbers when necessary. The name vinylene instead of ethenylene is retained for ˆ CH ¨ CH ˆ . Monocyclic Aliphatic Hydrocarbons. Monocyclic aliphatic hydrocarbons (with no side chains) are named by prefixing cyclo- to the name of the corresponding open-chain hydrocarbon having the same number of carbon atoms as the ring. Radicals are formed as with the alkanes, alkenes, and alkynes. Examples:
1.6
SECTION 1
Cyclohexyl- (for the radical) 1-Cyclohexenyl- (for the radical with the free valence at carbon 1) Cyclohexadienyl- (the unsaturated carbons are given numbers as low as possible, numbering from the carbon atom with the free valence given the number 1) For convenience, aliphatic rings are often represented by simple geometric figures: a triangle for cyclopropane, a square for cyclobutane, a pentagon for cyclopentane, a hexagon (as illustrated) for cyclohexane, etc. It is understood that two hydrogen atoms are located at each corner of the figure unless some other group is indicated for one or both. Monocyclic Aromatic Compounds. Except for six retained names, all monocyclic substituted aromatic hydrocarbons are named systematically as derivatives of benzene. Moreover, if the substituent introduced into a compound with a retained trivial name is identical with one already present in that compound, the compound is named as a derivative of benzene. These names are retained:
The position of substituents is indicated by numbers, with the lowest locant possible given to substituents. When a name is based on a recognized trivial name, priority for lowest-numbered locants is given to substituents implied by the trivial name. When only two substituents are present on a benzene ring, their position may be indicated by o- (ortho-), m- (meta-), and p- (para-) (and alphabetized in the order given) used in place of 1,2-, 1,3-, and 1,4-, respectively. Radicals derived from monocyclic substituted aromatic hydrocarbons and having the free valence at a ring atom (numbered 1) are named phenyl (for benzene as parent, since benzyl is used for the radical C6H5CH2 ˆ ), cumenyl, mesityl, tolyl, and xylyl. All other radicals are named as substituted phenyl radicals. For radicals having a single free valence in the side chain, these trivial names are retained:
ORGANIC COMPOUNDS
Benzyl C6H5CH2 ˆ Benzhydryl (alternative to diphenylmethyl) (C6H5)2CH ˆ Cinnamyl C6H5CH ¨ CH ˆ CH2 ˆ
1.7
Phenethyl C6H5CH2CH2 ˆ Styryl C6H5CH ¨ CH ˆ Trityl (C6H5)3C ˆ
Otherwise, radicals having the free valence(s) in the side chain are named in accordance with the rules for alkanes, alkenes, or alkynes. The name phenylene (o-, m-, or p-) is retained for the radical ˆ C6H4 ˆ . Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals, with the carbon atoms having the free valences being numbered 1,2-, 1,3-, or 1,4-, as appropriate. Radicals having three or more free valences are named by adding the suffixes -triyl, -tetrayl, etc. to the systematic name of the corresponding hydrocarbon. Fused Polycyclic Hydrocarbons. The names of polycyclic hydrocarbons containing the maximum number of conjugated double bonds end in -ene. Here the ending does not denote one double bond. Names of hydrocarbons containing five or more fixed benzene rings in a linear arrangement are formed from a numerical prefix (see Table 11.4) followed by -acene. A partial list of the names of polycyclic hydrocarbons is given in Table 1.2. Many names are trivial. Numbering of each ring system is fixed, as shown in Table 1.2, but it follows a systematic pattern. The individual rings of each system are oriented so that the greatest number of rings are (1) in a horizontal row and (2) the maximum number of rings are above and to the right (upper-right quadrant) of the horizontal row. When two orientations meet these requirements, the one is chosen that has the fewest rings in the lower-left quadrant. Numbering proceeds in a clockwise direction, commencing with the carbon atom not engaged in ring fusion that lies in the most counterclockwise position of the uppermost ring (upper-right quadrant); omit atoms common to two or more rings. Atoms common to two or more rings are designated by adding lowercase roman letters to the number of the position immediately preceding. Interior atoms follow the highest number, taking a clockwise sequence wherever there is a choice. Anthracene and phenanthrene are two exceptions to the rule on numbering. Two examples of numbering follow:
When a ring system with the maximum number of conjugated double bonds can exist in two or more forms differing only in the position of an “extra” hydrogen atom, the name can be made specific by indicating the position of the extra hydrogen(s). The compound name is modified with a locant followed by an italic capital H for each of these hydrogen atoms. Carbon atoms that carry an indicated hydrogen atom are numbered as low as possible. For example, 1H-indene is illustrated in Table 1.2; 2H-indene would be
Names of polycyclic hydrocarbons with less than the maximum number of noncumulative double bonds are formed from a prefix dihydro-, tetrahydro-, etc., followed by the
1.8
SECTION 1
name of the corresponding unreduced hydrocarbon. The prefix perhydro- signifies full hydrogenation. For example, 1,2-dihydronaphthalene is
TABLE 1.2 Fused Polycyclic Hydrocarbons Listed in order of increasing priority for selection as parent compound Asterisk after a compound denotes exception to systematic numbering.
ORGANIC COMPOUNDS
1.9
TABLE 1.2 Fused Polycyclic Hydrocarbons (continued ) Listed in order of increasing priority for selection as parent compound Asterisk after a compound denotes exception to systematic numbering.
Examples of retained names and their structures are as follows:
Polycyclic compounds in which two rings have two atoms in common or in which one ring contains two atoms in common with each of two or more rings of a contiguous series of rings and which contain at least two rings of five or more members with the maximum number of noncumulative double bonds and which have no accepted trivial name (Table 1.2) are named by prefixing to the name of the parent ring or ring system designations of the other components. The parent name should contain as many rings as possible (provided it has a trivial name) and should occur as far as possible from the beginning of the list in Table 1.2. Furthermore, the attached component(s) should be as simple as possible. For example, one writes dibenzo phenanthrene and not naphthophenanthrene because the attached component benzo- is simpler than naphtho-. Prefixes designating attached components are formed by changing the ending -ene into -eno-; for example, indeno- from
1.10
SECTION 1
indene. Multiple prefixes are arranged in alphabetical order. Several abbreviated prefixes are recognized; the parent is given in parentheses: Acenaphtho(acenaphthylene) Anthra(anthracene) Benzo(benzene)
Naphtho(naphthalene) Perylo(perylene) Phenanthro(phenanthrene)
For monocyclic prefixes other than benzo-, the following names are recognized, each to represent the form with the maximum number of noncumulative double bonds: cyclopenta-, cyclohepta-, cycloocta-, etc. Isomers are distinguished by lettering the peripheral sides of the parent beginning with a for the side 1,2-, and so on, lettering every side around the periphery. If necessary for clarity, the numbers of the attached position (1,2-, for example) of the substituent ring are also denoted. The prefixes are cited in alphabetical order. The numbers and letters are enclosed in square brackets and placed immediately after the designation of the attached component. Examples are
Bridged Hydrocarbons. Saturated alicyclic hydrocarbon systems consisting of two rings that have two or more atoms in common take the name of the open-chain hydrocarbon containing the same total number of carbon atoms and are preceded by the prefix bicyclo-. The system is numbered commencing with one of the bridgeheads, numbering proceeding by the longest possible path to the second bridgehead. Numbering is then continued from this atom by the longer remaining unnumbered path back to the first bridgehead and is completed by the shortest path from the atom next to the first bridgehead. When a choice in numbering exists, unsaturation is given the lowest numbers. The number of carbon atoms in each of the bridges connecting the bridgeheads is indicated in brackets in descending order. Examples are
Hydrocarbon Ring Assemblies. Assemblies are two or more cyclic systems, either single rings or fused systems, that are joined directly to each other by double or single bonds. For identical systems naming may proceed (1) by placing the prefix bi- before the name of the corresponding radical or (2) for systems joined through a single bond, by placing the prefix bi- before the name of the corresponding hydrocarbon. In each case, the numbering of the assembly is that of the corresponding radical or hydrocarbon, one system being assigned unprimed numbers and the other primed numbers. The points of attachment
ORGANIC COMPOUNDS
1.11
are indicated by placing the appropriate locants before the name; an unprimed number is considered lower than the same number primed. The name biphenyl is used for the assembly consisting of two benzene rings. Examples are
For nonidentical ring systems, one ring system is selected as the parent and the other systems are considered as substituents and are arranged in alphabetical order. The parent ring system is assigned unprimed numbers. The parent is chosen by considering the following characteristics in turn until a decision is reached: (1) the system containing the larger number of rings, (2) the system containing the larger ring, (3) the system in the lowest state of hydrogenation, and (4) the highest-order number of ring systems set forth in Table 1.2. Examples are given, with the deciding priority given in parentheses preceding the name: (1) 2-Phenylnaphthalene (2) and (4) 2-(2-Naphthyl)azulene (3) Cyclohexylbenzene Radicals from Ring Systems. Univalent substituent groups derived from polycyclic hydrocarbons are named by changing the final e of the hydrocarbon name to -yl. The carbon atoms having free valences are given locants as low as possible consistent with the fixed numbering of the hydrocarbon. Exceptions are naphthyl (instead of naphthalenyl), anthryl (for anthracenyl), and phenanthryl (for phenanthrenyl). However, these abbreviated forms are used only for the simple ring systems. Substituting groups derived from fused derivatives of these ring systems are named systematically. Substituting groups having two or more free bonds are named as described in Monocyclic Aliphatic Hydrocarbons on p. 1.5. Cyclic Hydrocarbons with Side Chains. Hydrocarbons composed of cyclic and aliphatic chains are named in a manner that is the simplest permissible or the most appropriate for the chemical intent. Hydrocarbons containing several chains attached to one cyclic nucleus are generally named as derivatives of the cyclic compound, and compounds containing several side chains and/or cyclic radicals attached to one chain are named as derivatives of the acyclic compound. Examples are 2-Ethyl-1-methylnaphthalene 1,5-Diphenylpentane
Diphenylmethane 2,3-Dimethyl-1-phenyl-1-hexene
Recognized trivial names for composite radicals are used if they lead to simplifications in naming. Examples are 1-Benzylnaphthalene
1,2,4-Tris(3-p-tolylpropyl)benzene
1.12
SECTION 1
Fulvene, for methylenecyclopentadiene, and stilbene, for 1,2-diphenylethylene, are trival names that are retained. Heterocyclic Systems. Heterocyclic compounds can be named by relating them to the corresponding carbocyclic ring systems by using replacement nomenclature. Heteroatoms are denoted by prefixes ending in -a, as shown in Table 1.3. If two or more replacement prefixes are required in a single name, they are cited in the order of their listing in the table. The lowest possible numbers consistent with the numbering of the corresponding carbocyclic system are assigned to the heteroatoms and then to carbon atoms bearing double
TABLE 1.3 Specialist Nomenclature for Heterocyclic Systems Heterocyclic atoms are listed in decreasing order of priority
Element Oxygen Sulfur Selenium Tellurium Nitrogen Phosphorus Arsenic
Valence
Prefix
Element
Valence
Prefix
2 2 2 2 3 3 3
OxaThiaSelenaTelluraAzaPhospha-* Arsa-*
Antimony Bismuth Silicon Germanium Tin Lead Boron Mercury
3 3 4 4 4 4 3 2
Stiba-* BismaSilaGermaStannaPlumbaBoraMercura-
* When immediately followed by -in or -ine, phospha- should be replaced by phosphor-, arsa- by arsen-, and stiba- by antimon-. The saturated six-membered rings corresponding to phosphorin and arsenin are named phosphorinane and arsenane. A further exception is the replacement of borin by borinane.
TABLE 1.4 Suffixes for Specialist Nomenclature of Heterocyclic Systems Number of ring members 3 4 5 6 7 8 9 10
Rings containing nitrogen Unsaturation* -irine -ete -ole -ine† -epine -ocine -onine -ecine
Rings containing no nitrogen
Saturation
Unsaturation*
-iridine -etidine -olidine ‡ ‡ ‡ ‡ ‡
-irene -ete -ole -in -epin -ocin -onin -ecin
Saturation -irane -etane -olane -ane§ -epane -ocane -onane -ecane
* Unsaturation corresponding to the maximum number of noncumulative double bonds. Heteroatoms have the normal valences given in Table 1.3. † For phosphorus, arsenic, antimony, and boron, see the special provisions in Table 1.3. ‡ Expressed by prefixing perhydro- to the name of the corresponding unsaturated compound. § Not applicable to silicon, germanium, tin, and lead; perhydro- is prefixed to the name of the corresponding unsaturated compound.
1.13
ORGANIC COMPOUNDS
TABLE 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names Listed in order of increasing priority as senior ring system Asterisk after a compound denotes exception to systematic numbering.
Structure
Parent name
Radical name
Structure
Parent name
Radical name
1.14
SECTION 1
TABLE 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names (continued ) Listed in order of increasing priority as senior ring system Asterisk after a compound denotes exception to systematic numbering.
Structure
Parent name Radical name
Structure
Parent name
Radical name
1.15
ORGANIC COMPOUNDS
TABLE 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names (continued ) Listed in order of increasing priority as senior ring system Asterisk after a compound denotes exception to systematic numbering.
Structure
Parent name
Radical name
Structure
Parent name
Radical name
or triple bonds. Locants are cited immediately preceding the prefixes or suffixes to which they refer. Multiplicity of the same heteroatom is indicated by the appropriate prefix in the series: di-, tri-, tetra-, penta-, hexa-, etc. If the corresponding carbocyclic system is partially or completely hydrogenated, the additional hydrogen is cited using the appropriate H- or hydro- prefixes. A trivial name from Tables 1.5 and 1.6, if available, along with the state of hydrogenation may be used. In the specialist nomenclature for heterocyclic systems, the prefix or prefixes from
1.16
SECTION 1
TABLE 1.6 Trivial Names for Heterocyclic Systems that are Not Recommended for Use in Fusion Names Listed in order of increasing priority
Structure
Parent name
Radical name
* Denotes position of double bond. † For 1-piperidyl, use piperidino. ‡ For 4-morpholinyl, use morpholino.
Structure
Parent name
Radical name
ORGANIC COMPOUNDS
1.17
Table 1.3 are combined with the appropriate stem from Table 1.4, eliding an -a where necessary. Examples of acceptable usage, including (1) replacement and (2) specialist nomenclature, are
Radicals derived from heterocyclic compounds by removal of hydrogen from a ring are named by adding -yl to the names of the parent compounds (with elision of the final e, if present). These exceptions are retained: Furyl (from furan) Pyridyl (from pyridine) Piperidyl (from piperidine) Quinolyl (from quinoline) Isoquinolyl Thenylidene (for thienylmethylene)
Furfuryl (for 2-furylmethyl) Furfurylidene (for 2-furylmethylene) Thienyl (from thiophene) Thenylidyne (for thienylmethylidyne) Furfurylidyne (for 2-furylmethylidyne) Thenyl (for thienylmethyl)
Also, piperidino- and morpholino- are preferred to 1-piperidyl- and 4-morpholinyl-, respectively. If there is a choice among heterocyclic systems, the parent compound is decided in the following order of preference: 1. A nitrogen-containing component 2. A component containing a heteroatom, in the absence of nitrogen, as high as possible in Table 1.3 3. A component containing the greatest number of rings 4. A component containing the largest possible individual ring 5. A component containing the greatest number of heteroatoms of any kind 6. A component containing the greatest variety of heteroatoms 7. A component containing the greatest number of heteroatoms first listed in Table 1.3 If there is a choice between components of the same size containing the same number and kind of heteroatoms, choose as the base component that one with the lower numbers for the heteroatoms before fusion. When a fusion position is occupied by a heteroatom, the names of the component rings to be fused are selected to contain the heteroatom. Common Names of Heterocycles Used Broadly in Biology. The naming of heterocycles by systematic methods is important but cumbersome for designating some of the most commonly occurring heterocycles. In particular, the bases that occur in ribonucleic acids (RNA) and deoxyribonucleic acids (DNA) have specific substitution patterns. Because they occur so commonly, they have been given trivial names that are invariably used when discussed or named in the biological literature.
1.18
SECTION 1 Base pairing is the most common (Watson-Crick) arrangement. H N H O N N N N N sugar O N sugar H N H cytosine:::guanine H3C
N sugar
O N H
H N
H N
N
N N
O
sugar
thymine::adenine The individual elements of RNA and DNA chains. O O N
NH N HO H
H
O 3'
H OH
O P O–
5'
HO
O H
N
O
5'
H
O–
O ribose
H
O 3'
H
P
N
NH2
O
H
O–
NH
H
O– deoxyribose
FIGURE 1.2 Base pairing in the most common (Watson–Crick) arrangement. The individual elements of RNA and DNA chains are shown in the lower panel of the figure. Hollow arrows indicate the points at which the 5-hydroxyl group is esterified to the 3-phosphate group to form the so-called “sugar–phosphate” backbone. Note the hydroxyl group (arrow) that is present on ribose but missing in deoxyribose.
The structural frameworks of DNA and RNA are organized by hydrogen bond formation between pairs of purine and pyrimidine bases. The pyrimidines are shown near the end of Table 1.5. Cytosine (C) and thymine (T) occur in DNA and form hydrogen-bonded pairs with the purines guanine (G) and adenine (A), respectively. The base pairs are abbreviated AT and GC, sometimes with dotted lines connecting them. The AT pair is held together by two hydrogen bonds and may be represented in shorthand as A::T. Three H-bonds hold together guanine and cytosine, giving G:::C. The so-called Watson–Crick base pairing is shown in Figure 1.2. In RNA, uracil replaces thymine but pairing still occurs with adenine to give A::U. An alternative form of hydrogen bonding between base pairs is designated “Hoogsteen.” This type of bonding cannot readily occur in nature because the purine and pyrimidine bases are constrained to long chains that must interact at numerous points. Functionalized Compounds There are several types of nomenclature systems that are recognized. Which type to use is sometimes obvious from the nature of the compound. Substitutive nomenclature, in general, is preferred because of its broad applicability, but radicofunctional, additive, and replacement nomenclature systems are convenient in certain situations.
1.19
ORGANIC COMPOUNDS
Substitutive Nomenclature. The first step is to determine the kind of characteristic (functional) group for use as the principal group of the parent compound. A characteristic group is a recognized combination of atoms that confers characteristic chemical properties on the molecule in which it occurs. Carbon-to-carbon unsaturation and heteroatoms in rings are considered nonfunctional for nomenclature purposes. Substitution means the replacement of one or more hydrogen atoms in a given compound by some other kind of atom or group of atoms, functional or nonfunctional. In substitutive nomenclature, each substituent is cited as either a prefix or a suffix to the name of the parent (or substituting radical) to which it is attached; the latter is denoted the parent compound (or parent group if a radical). In Table 1.7 are listed the general classes of compounds in descending order of preference for citation as suffixes, that is, as the parent or characteristic compound. When oxygen is TABLE 1.7 Characteristic Groups for Substitutive Nomenclature Listed in order of decreasing priority for citation as principal group or parent name
Class
Formula*
1. Cations H4N H3O H3S H3Se H2Cl H2Br H2I 2. Acids Carboxylic
Sulfonic Sulfinic Sulfenic Salts
3. Derivatives of acids Anhydrides Esters Acid halides Amides
ˆ COOH ˆ (C)OOH ˆ C( ¨ O)OOH ˆ (C ¨ O)OOH ˆ SO3H ˆ SO2H ˆ SOH ˆ COOM ˆ (C)OOM ˆ SO3M ˆ SO2M ˆ SOM
ˆ C( ¨ O)OC( ¨ O) ˆ ˆ (C ¨ O)O(C ¨ O) ˆ ˆ COOR ˆ C(OOR) ˆ CO ˆ halogen ˆ CO ˆ NH2 (C)O ˆ NH2
Prefix
Suffix
-onioAmmonioOxonioSulfonioSelenonioChloronioBromonioIodonio-
-onium -ammonium -oxonium -sulfonium -selenonium -chloronium -bromonium -iodonium
Carboxy-
-carboxylic acid -oic acid -peroxy · · · carboxylic acid -peroxy · · · oic acid -sulfonic acid -sulfinic acid -sulfenic acid Metal · · · carboxylate Metal · · · oate Metal · · · sulfonate Metal · · · sulfinate Metal · · · sulfenate
SulfoSulfinoSulfeno-
R-oxycarbonylHaloformyl Carbamoyl-
-carboxylic anhydride -oic anhydride R · · · carboxylate R · · · oate -carbonyl halide -carboxamide -amide
1.20
SECTION 1
TABLE 1.7 Characteristic Groups for Substitutive Nomenclature (continued) Listed in order of decreasing priority for citation as principal group or parent name
Class Hydrazides Imides Amidines
Formula*
Prefix
ˆ CO ˆ NHNH2 ˆ (CO) ˆ NHNH2 ˆ CO ˆ NH ˆ CO ˆ ˆ C( ¨ NH) ˆ NH2 ˆ (C ¨ NH) ˆ NH2
Carbonyl-hydrazinoR-imidoAmidinoCyano-
Suffix -carbohydrazide -ohydrazide -carboximide -carboxamidine -amidine
4. Nitrile (cyanide)
ˆ CN ˆ (C)N
-carbonitrile -nitrile
5. Aldehydes
ˆ CHO Formylˆ (C ¨ O)H Oxo(then their analogs and derivatives)
-carbaldehyde -al
6. Ketones
a(C ¨ O) Oxo(then their analogs and derivatives)
-one
7. Alcohols (and phenols) Thiols
ˆ OH
Hydroxy-
-ol
ˆ SH
Mercapto-
-thiol
8. Hydroperoxides
ˆ O ˆ OH
Hydroperoxy-
9. Amines Imines Hydrazines
ˆ NH2 ¨ NH ˆ NHNH2
AminoIminoHydrazino-
10. Ethers Sulfides
ˆ OR ˆ SR
R-oxyR-thio-
11. Peroxides
ˆ O ˆ OR
R-dioxy-
-amine -imine -hydrazine
* Carbon atoms enclosed in parentheses are included in the name of the parent compound and not in the suffix or prefix.
replaced by sulfur, selenium, or tellurium, the priority for these elements is in the descending order listed. The higher valence states of each element are listed before considering the successive lower valence states. Derivative groups have priority for citation as principal group after the respective parents of their general class. In Table 1.8 are listed characteristic groups that are cited only as prefixes (never as suffixes) in substitutive nomenclature. The order of listing has no significance for nomenclature purposes. Systematic names formed by applying the principles of substitutive nomenclature are single words except for compounds named as acids. First one selects the parent compound, and thus the suffix, from the characteristic group listed earliest in Table 1.7. All remaining functional groups are handled as prefixes that precede, in alphabetical order, the parent name. Two examples may be helpful:
1.21
ORGANIC COMPOUNDS
TABLE 1.8 Characteristic Groups Cited Only as Prefixes in Substitutive Nomenclature Characteristic group
Prefix
ˆ Br
Bromo-
ˆ Cl ˆ ClO ˆ ClO2 ˆ ClO3 ˆF ˆI ˆ IO
ChloroChlorosylChlorylPerchlorylFluoroIodoIodosyl-
ˆ IO2 ˆ I(OH)2
Iodyl* Dihydroxyiodo-
Characteristic group
Prefix
ˆ IX2
X may be halogen or a radical; dihalogenoiodoor diacetoxyiodo-, e.g., ˆ ICl2 is dichloroido-
¨ N ¨ N ˆ N3, ˆ N ¨ N ¨ N ˆN ¨ O O ˆ NO2, ˆ N O OH ¨ N ˆ OR O ˆ SR ˆ SeR ( ˆ TeR)
DiazoAzidoNitrosoNitroaci-NitroR-oxy-; alkoxy- or aryloxyR-thio-; alkylthio- or arylthioR-seleno- (R-telluro-)
* Formerly iodoxy-.
Structure 1 contains an ester group and an ether group. Since the ester group has higher priority, the name is ethyl 2-methoxy-6-methyl-3-cyclohexene-1-carboxylate. Structure 2 contains a carbonyl group, an hydroxy group, and a bromo group. The latter is never a suffix. Between the other two, the carbonyl group has higher priority, the parent has -one as suffix, and the name is 4-bromo-1-hydroxy-2-butanone. Selection of the principal alicyclic chain or ring system is governed by the following selection rules: 1. For purely alicyclic compounds, the selection process proceeds successively until a decision is reached: (a) the maximum number of substituents corresponding to the characteristic group cited earliest in Table 1.7, (b) the maximum number of double and triple bonds considered together, (c) the maximum length of the chain, and (d) the maximum number of double bonds. Additional criteria, if needed for complicated compounds, are given in the IUPAC nomenclature rules. 2. If the characteristic group occurs only in a chain that carries a cyclic substituent, the compound is named as an aliphatic compound into which the cyclic component is substituted; a radical prefix is used to denote the cyclic component. This chain need not be the longest chain. 3. If the characteristic group occurs in more than one carbon chain and the chains are not directly attached to one another, then the chain chosen as parent should carry the largest number of the characteristic group. If necessary, the selection is continued as in rule 1. 4. If the characteristic group occurs only in one cyclic system, that system is chosen as the parent. 5. If the characteristic group occurs in more than one cyclic system, that system is chosen as parent which (a) carries the largest number of the principal group or, failing to reach a decision, (b) is the senior ring system. 6. If the characteristic group occurs both in a chain and in a cyclic system, the parent is that portion in which the principal group occurs in largest number. If the numbers are the same, that portion is chosen which is considered to be the most important or is the senior ring system.
1.22
SECTION 1
7. When a substituent is itself substituted, all the subsidiary substituents are named as prefixes and the entire assembly is regarded as a parent radical. 8. The seniority of ring systems is ascertained by applying the following rules successively until a decision is reached: (a) all heterocycles are senior to all carbocycles, (b) for heterocycles, the preference follows the decision process described under “Heterocyclic Systems,” page 1–12, (c) the largest number of rings, (d ) the largest individual ring at the first point of difference, (e) the largest number of atoms in common among rings, ( f ) the lowest letters in the expression for ring functions, (g) the lowest numbers at the first point of difference in the expression for ring junctions, (h) the lowest state of hydrogenation, (i) the lowest-numbered locant for indicated hydrogen, ( j) the lowestnumbered locant for point of attachment (if a radical), (k) the lowest-numbered locant for an attached group expressed as a suffix, (l) the maximum number of substituents cited as prefixes, (m) the lowest-numbered locant for substituents named as prefixes, hydro prefixes, -ene, and -yne, all considered together in one series in ascending numerical order independent of their nature, and (n) the lowest-numbered locant for the substituent named as prefix which is cited first in the name. Numbering of Compounds. If the rules for aliphatic chains and ring systems leave a choice, the starting point and direction of numbering of a compound are chosen so as to give lowest-numbered locants to these structural factors, if present, considered successively in the order listed below until a decision is reached. Characteristic groups take precedence over multiple bonds. 1. Indicated hydrogen, whether cited in the name or omitted as being conventional. 2. Characteristic groups named as suffix following the ranking order of Table 1.7. 3. Multiple bonds in acyclic compounds; in bicycloalkanes, tricycloalkanes, and polycycloalkanes, double bonds having priority over triple bonds; and in heterocyclic systems whose names end in -etine, -oline, or -olene. 4. The lowest-numbered locant for substituents named as prefixes, hydro prefixes, -ene, and -yne, all considered together in one series in ascending numerical order. 5. The lowest locant for that substituent named as prefix which is cited first in the name. For cyclic radicals, indicated hydrogen and thereafter the point of attachment (free valency) have priority for the lowest available number. Prefixes and Affixes. Prefixes are arranged alphabetically and placed before the parent name; multiplying affixes, if necessary, are inserted and do not alter the alphabetical order already attained. The parent name includes any syllables denoting a change of ring member or relating to the structure of a carbon chain. Nondetachable parts of parent names include 1. 2. 3. 4. 5. 6. 7.
Forming rings: cyclo-, bicyclo-, spiro-; Fusing two or more rings: benzo-, naphtho-, imidazo-; Substituting one ring or chain member atom for another: oxa-, aza-, thia-; Changing positions of ring or chain members: iso-, sec-, tert-, neo-; Showing indicated hydrogen; Forming bridges: ethano-, epoxy- and; Hydro-.
ORGANIC COMPOUNDS
1.23
Prefixes that represent complete terminal characteristic groups are preferred to those representing only a portion of a given group. For example, for the group ˆ C( ¨ O)CH3, the prefix (formylmethyl-) is preferred to (oxoethyl-). The multiplying affixes di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, and so on are used to indicate a set of identical unsubstituted radicals or parent compounds. The forms bis-, tris-, tetrakis-, pentakis-, and so on are used to indicate a set of identical radicals or parent compounds each substituted in the same way. The affixes bi-, ter-, quater-, quinque-, sexi, septi-, octi-, novi-, deci-, and so on are used to indicate the number of identical rings joined together by a single or double bond. Although multiplying affixes may be omitted for very common compounds when no ambiguity is caused thereby, such affixes are generally included throughout this handbook in alphabetical listings. An example would be ethyl ether for diethyl ether. Conjunctive Nomenclature. Conjunctive nomenclature may be applied when a principal group is attached to an acyclic component that is directly attached by a carbon–carbon bond to a cyclic component. The name of the cyclic component is attached directly in front of the name of the acyclic component carrying the principal group. This nomenclature is not used when an unsaturated side chain is named systematically. When necessary, the position of the side chain is indicated by a locant placed before the name of the cyclic component. For substituents on the acyclic chain, carbon atoms of the side chain are indicated by Greek letters proceeding from the principal group to the cyclic component. The terminal carbon atom of acids, aldehydes, and nitriles is omitted when allocating Greek positional letters. Conjunctive nomenclature is not used when the side chain carries more than one of the principal group, except in the case of malonic and succinic acids. The side chain is considered to extend only from the principal group to the cyclic component. Any other chain members are named as substituents, with appropriate prefixes placed before the name of the cyclic component. When a cyclic component carries more than one identical side chain, the name of the cyclic component is followed by di-, tri-, etc., and then by the name of the acyclic component, and it is preceded by the locants for the side chains. Examples are
When side chains of two or more different kinds are attached to a cyclic component, only the senior side chain is named by the conjunctive method. The remaining side chains are named as prefixes. Likewise, when there is a choice of cyclic component, the senior is chosen. Benzene derivatives may be named by the conjunctive method only when two or more identical side chains are present. Trivial names for oxo carboxylic acids may be used for the acyclic component. If the cyclic and acyclic components are joined by a double bond, the locants of this bond are placed as superscripts to a Greek capital delta that is
1.24
SECTION 1
inserted between the two names. The locant for the cyclic component precedes that for the acyclic component, e.g., indene-1,-acetic acid. Radicofunctional Nomenclature. The procedures of radicofunctional nomenclature are identical with those of substitutive nomenclature except that suffixes are never used. Instead, the functional class name (Table 1.9) of the compound is expressed as one word and the remainder of the molecule as another that precedes the class name. When the functional class name refers to a characteristic group that is bivalent, the two radicals attached to it are each named, and when different, they are written as separate words arranged in alphabetical order. When a compound contains more than one kind of group listed in Table 1.9, that kind is cited as the functional group or class name that occurs higher in the table, all others being expressed as prefixes. Radicofunctional nomenclature finds some use in naming ethers, sulfides, sulfoxides, sulfones, selenium analogs of the preceding three sulfur compounds, and azides.
TABLE 1.9 Functional Class Names Used in Radicofunctional Nomenclature Groups are listed in order of decreasing priority
Group X in acid derivatives ˆ CN, ˆ NC aCO ˆ OH ˆ O ˆ OH aO aS, aSO, aSO2 aSe, aSeO, aSeO2 ˆ F, ˆ Cl, ˆ Br, ˆ I ˆ N3
Functional class names Name of X (in priority order: fluoride, chloride, bromide, iodide; cyanide, azide; then the sulfur and selenium analogs) Cyanide, isocyanide Ketone; then S and Se analogs Alcohol; then S and Se analogs Hydroperoxide Ether or oxide Sulfide, sulfoxide, sulfone Selenide, selenoxide, selenone Fluoride, chloride, bromide, iodide Azide
Replacement Nomenclature. Replacement nomenclature is intended for use only when other nomenclature systems are difficult to apply in the naming of chains containing heteroatoms. When no group is present that can be named as a principal group, the longest chain of carbon and heteroatoms terminating with carbon is chosen and named as though the entire chain were that of an acyclic hydrocarbon. The heteroatoms within this chain are identified by means of prefixes aza-, oxa-, thia-, etc., in the order of priority stated in Table 1.3. Locants indicate the positions of the heteroatoms in the chain. Lowest-numbered locants are assigned to the principal group when such is present. Otherwise, lowestnumbered locants are assigned to the heteroatoms considered together and, if there is a choice, to the heteroatoms cited earliest in Table 1.3. An example is
ORGANIC COMPOUNDS
1.25
Specific Functional Groups Characteristic groups will now be treated briefly in order to expand the terse outline of substitutive nomenclature presented in Table 1.7. Alternative nomenclature will be indicated whenever desirable. Acetals and Acylals. Acetals, which contain the group C(OR)2, where R may be different, are named (1) as dialkoxy compounds or (2) by the name of the corresponding aldehyde or ketone followed by the name of the hydrocarbon radical(s) followed by the word acetal. For example, CH3 ˆ CH(OCH3)2 is named either (1) 1,1-dimethoxyethane or (2) acetaldehyde dimethyl acetal. A cyclic acetal in which the two acetal oxygen atoms form part of a ring may be named (1) as a heterocyclic compound or (2) by use of the prefix methylenedioxy for the group ˆ O ˆ CH2 ˆ O ˆ as a substituent in the remainder of the molecule. For example,
-Hydroxy ketones, formerly called acyloins, had been named by changing the ending -ic acid or -oic acid of the corresponding acid to -oin. They are preferably named by substitutive nomenclature. For example, CH3 ˆ CH(OH3) ˆ CO ˆ CH3
3-Hydroxy-2-butanone (formerly acetoin)
Acid Anhydrides. Symmetrical anhydrides of monocarboxylic acids, when unsubstituted, are named by replacing the word acid by anhydride. Anhydrides of substituted monocarboxylic acids, if symmetrically substituted, are named by prefixing bis- to the name of the acid and replacing the word acid by anhydride. Mixed anhydrides are named by giving in alphabetical order the first part of the names of the two acids followed by the word anhydride, e.g., acetic propionic anhydride or acetic propanoic anhydride. Cyclic anhydrides of polycarboxylic acids, although possessing a heterocyclic structure, are preferably named as acid anhydrides. For example,
1.26
SECTION 1
Acyl Halides. Acyl halides, in which the hydroxyl portion of a carboxyl group is replaced by a halogen, are named by placing the name of the corresponding halide after that of the acyl radical. When another group is present that has priority for citation as principal group or when the acyl halide is attached to a side chain, the prefix haloformyl- is used as, for example, in fluoroformyl-. Alcohols and Phenols. The hydroxyl group is indicated by a suffix -ol when it is the principal group attached to the parent compound and by the prefix hydroxy- when another group with higher priority for citation is present or when the hydroxy group is present in a side chain. When confusion may arise in employing the suffix -ol, the hydroxy group is indicated as a prefix; this terminology is also used when the hydroxyl group is attached to a heterocycle, as, for example, in the name 3-hydroxythiophene to avoid confusion with thiophenol (C6H5SH). Designations such as isopropanol, sec-butanol, and tert-butanol are incorrect because no hydrocarbon exists to which the suffix can be added. Many trivial names are retained. These structures are shown in Table 1.10. The radicals (RO ˆ ) are named by adding -oxy as a suffix to the name of the R radical, e.g., pentyloxy for CH3CH2CH2CH2CH2O ˆ . These contractions are exceptions: methoxy (CH3O ˆ ), ethoxy (C2H5O ˆ ), propoxy (C3H7O ˆ ), butoxy (C4H9O ˆ ), and phenoxy (C6H5O ˆ ). For unsubstituted radicals only, one may use isopropoxy [(CH3)2CH ˆ O ˆ ], isobutoxy [(CH3)2CH2CH ˆ O ˆ ], sec-butoxy [CH3CH2CH(CH3) ˆ O ˆ ], and tert-butoxy [(CH3)3C ˆ O ˆ ].
TABLE 1.10 Retained Trivial Names of Alcohols and Phenols with Structures
ORGANIC COMPOUNDS
1.27
TABLE 1.10 Retained Trivial Names of Alcohols and Phenols with Structures (continued )
Bivalent radicals of the form O ˆ Y ˆ O are named by adding -dioxy to the name of the bivalent radicals except when forming part of a ring system. Examples are ˆ O ˆ CH2 ˆ O ˆ (methylenedioxy), ˆ O ˆ CO ˆ O ˆ (carbonyldioxy), and ˆ O ˆ SO2 ˆ O ˆ (sulfonyldioxy). Anions derived from alcohols or phenols are named by changing the final -ol to -olate.
1.28
SECTION 1
Salts composed of an anion, RO ˆ , and a cation, usually a metal, can be named by citing first the cation and then the RO anion (with its ending changed to -yl oxide), e.g., sodium benzyl oxide for C6H5CH2ONa. However, when the radical has an abbreviated name, such as methoxy, the ending -oxy is changed to -oxide. For example, CH3ONa is named sodium methoxide (not sodium methylate). Aldehydes. When the group ˆ C( ¨ O)H, usually written ˆ CHO, is attached to carbon at one (or both) end(s) of a linear acyclic chain the name is formed by adding the suffix -al (or -dial) to the name of the hydrocarbon containing the same number of carbon atoms. Examples are butanal for CH3CH2CH2CHO and propanedial for OHCCH2CHO. Naming an acyclic polyaldehyde can be handled in two ways. (1) When more than two aldehyde groups are attached to an unbranched chain, the proper affix is added to -carbaldehyde, which becomes the suffix to the name of the longest chain carrying the maximum number of aldehyde groups. The name and numbering of the main chain do not include the carbon atoms of the aldehyde groups. (2) The name is formed by adding the prefix formyl- to the name of the -dial that incorporates the principal chain. Any other chains carrying aldehyde groups are named by the use of formylalkyl- prefixes. Examples are
When the aldehyde group is directly attached to a carbon atom of a ring system, the suffix -carbaldehyde is added to the name of the ring system, e.g., 2-naphthalenecarbaldehyde. When the aldehyde group is separated from the ring by a chain of carbon atoms, the compound is named (1) as a derivative of the acyclic system or (2) by conjunctive nomenclature, for example, (1) (2-naphthyl)propionaldehyde or (2) 2-naphthalenepropionaldehyde. An aldehyde group is denoted by the prefix formyl- when it is attached to a nitrogen atom in a ring system or when a group having priority for citation as principal group is present and part of a cyclic system. When the corresponding monobasic acid has a trivial name, the name of the aldehyde may be formed by changing the ending -ic acid or -oic acid to -aldehyde. Examples are Formaldehyde Acetaldehyde Propionaldehyde Butyraldehyde
Acrylaldehyde (not acrolein) Benzaldehyde Cinnamaldehyde 2-Furaldehyde (not furfural)
ORGANIC COMPOUNDS
1.29
The same is true for polybasic acids, with the proviso that all the carboxyl groups must be changed to aldehyde; then it is not necessary to introduce affixes. Examples are Glyceraldehyde Glycolaldehyde Malonaldehyde
Succinaldehyde Phthalaldehyde (o-, m-, p-)
These trivial names may be retained: citral (3,7-dimethyl-2,6-octadienal), vanillin (4-hydroxy-3-methoxybenzaldehyde), and piperonal (3,4-methylenedioxybenzaldehyde). Amides. For primary amides the suffix -amide is added to the systematic name of the parent acid. For example, CH3 ˆ CO ˆ NH2 is acetamide. Oxamide is retained for H2N ˆ CO ˆ CO ˆ NH2. The name -carboxylic acid is replaced by -carboxamide. For amino acids having trivial names ending in -ine, the suffix -amide is added after the name of the acid (with elision of -e for monoamides). For example, H2N ˆ CH2 ˆ CO ˆ NH2 is glycinamide. In naming the radical R ˆ CO ˆ NH ˆ , either (1) the -yl ending of RCO ˆ is changed to -amido or (2) the radicals are named as acylamino radicals. For example,
The latter nomenclature is always used for amino acids with trivial names. N-substituted primary amides are named either (1) by citing the substituents as N prefixes or (2) by naming the acyl group as an N substituent of the parent compound. For example,
Amines. Amines are preferably named by adding the suffix -amine (and any multiplying affix) to the name of the parent radical. Examples are
Locants of substituents of symmetrically substituted derivatives of symmetrical amines are distinguished by primes or else the names of the complete substituted radicals are enclosed in parentheses. Unsymmetrically substituted derivatives are named similarly or as N-substituted products of a primary amine (after choosing the most senior of the radicals to be the parent amine). For example,
1.30
SECTION 1
Complex cyclic compounds may be named by adding the suffix -amine or the prefix amino- (or aminoalkyl-) to the name of the parent compound. Thus three names are permissible for
Complex linear polyamines are best designated by replacement nomenclature. These trivial names are retained: aniline, benzidene, phenetidine, toluidine, and xylidine. The bivalent radical ˆ NH ˆ linked to two identical radicals can be denoted by the prefix imino-, as well as when it forms a bridge between two carbon ring atoms. A trivalent nitrogen atom linked to three identical radicals is denoted by the prefix nitrilo-. Thus ethylenedi- aminetetraacetic acid (an allowed exception) should be named ethylenedinitrilotetraacetic acid. Ammonium Compounds. Salts and hydroxides containing quadricovalent nitrogen are named as a substituted ammonium salt or hydroxide. The names of the substituting radicals precede the word ammonium, and then the name of the anion is added as a separate word. For example, (CH3)4NI is tetramethylammonium iodide. When the compound can be considered as derived from a base whose name does not end in -amine, its quaternary nature is denoted by adding -ium to the name of that base (with elision of -e), substituent groups are cited as prefixes, and the name of the anion is added separately at the end. Examples are C6H5NH3HSO4 [(C6H5NH3)PtCl2 6
Anilinium hydrogen sulfate Dianilinium hexachloroplatinate
The names choline and betaine are retained for unsubstituted compounds. In complex cases, the prefixes amino- and imino- may be changed to ammonio- and iminio- and are followed by the name of the molecule representing the most complex group attached to this nitrogen atom and are preceded by the names of the other radicals attached to this nitrogen. Finally the name of the anion is added separately. For example, the name might be 1-trimethylammonioacridine chloride or 1-acridinyltrimethylammonium chloride. When the preceding rules lead to inconvenient names, then (1) the unaltered name of the base may be used followed by the name of the anion or (2) for salts of hydrohalogen acids only the unaltered name of the base is used followed by the name of the hydrohalide. An example of the latter would be 2-ethyl-p-phenylenediamine monohydrochloride. Azo Compounds. When the azo group ( ˆ N ¨ N ˆ ) connects radicals derived from identical unsubstituted molecules, the name is formed by adding the prefix azo- to the name of the parent unsubstituted molecules. Substituents are denoted by prefixes and suffixes. The azo group has priority for lowest-numbered locant. Examples are azobenzene for C6H5 ˆ N ¨ N ˆ C6H5, azobenzene-4- sulfonic acid for C6H5 ˆ N ¨ N ˆ C6H5SO3H, and 2,4-dichloroazobenzene-4-sulfonic acid for ClC6H4 ˆ N ¨ N ˆ C6H3ClSO3H. When the parent molecules connected by the azo group are different, azo is placed between the complete names of the parent molecules, substituted or unsubstituted. Locants
ORGANIC COMPOUNDS
1.31
are placed between the affix azo and the names of the molecules to which each refers. Preference is given to the more complex parent molecule for citation as the first component, e.g., 2-aminonaphthalene-1-azo-(4-chloro-2-methylbenzene). In an alternative method, the senior component is regarded as substituted by RN ¨ N ˆ , this group R being named as a radical. Thus 2-(7-phenylazo-2-naphthylazo)anthracene is the name by this alternative method for the compound named anthracene-2-azo2-naphthalene-7-azobenzene.
Azoxy Compounds. Where the position of the azoxy oxygen atom is unknown or immaterial, the compound is named in accordance with azo rules, with the affix azo replaced by azoxy. When the position of the azoxy oxygen atom in an unsymmetrical compound is designated, a prefix NNO- or ONN- is used. When both the groups attached to the azoxy radical are cited in the name of the compound, the prefix NNO- specifies that the second of these two groups is attached directly to ˆ N(O) ˆ ; the prefix ONN- specifies that the first of these two groups is attached directly to ˆ N(O) ˆ . When only one parent compound is cited in the name, the prefixed ONN- and NNO- specify that the group carrying the primed and unprimed substituents is connected, respectively, to the ˆ N(O) ˆ group. The prefix NON- signifies that the position of the oxygen atom is unknown; the azoxy group is then written as ˆ N2O ˆ . For example,
1⬘
N
N
1
2⬘
O Cl Cl
2
2,2⬘,4-Trichloro-NNO-azoxybenzene 4
Cl
Boron Compounds. Molecular hydrides of boron are called boranes. They are named by using a multiplying affix to designate the number of boron atoms and adding an Arabic numeral within parentheses as a suffix to denote the number of hydrogen atoms present. Examples are pentaborane(9) for B5H9 and pentaborane(11) for B5H11. Organic ring systems are named by replacement nomenclature. Three- to ten-membered monocyclic ring systems containing uncharged boron atoms may be named by the specialist nomenclature for heterocyclic systems. Organic derivatives are named as outlined for substitutive nomenclature. The complexity of boron nomenclature precludes additional details; the text by Rigaudy and Klesney should be consulted.
Carboxylic Acids. Carboxylic acids may be named in several ways. (1) ˆ COOH groups replacing CH3 ˆ at the end of the main chain of an acyclic hydrocarbon are denoted by adding -oic acid to the name of the hydrocarbon. (2) When the ˆ COOH group is the principal group, the suffix -carboxylic acid can be added to the name of the parent chain whose name and chain numbering does not include the carbon atom of the ˆ COOH group. The former nomenclature is preferred unless use of the ending -carboxylic acid leads to citation of a larger number of carboxyl groups as suffix. (3) Carboxyl groups are designated by the prefix carboxy- when attached to a group named as a substituent or when another group is present that has higher priority for citation as principal group. In all cases, the
1.32
SECTION 1
principal chain should be linked to as many carboxyl groups as possible even though it might not be the longest chain present. Examples are
Removal of the OH from the ˆ COOH group to form the acyl radical results in changing the ending -oic acid to -oyl or the ending -carboxylic acid to -carbonyl. Thus the radical CH3CH2CH2CH2CO ˆ is named either pentanoyl or butanecarbonyl. When the hydroxyl has not been removed from all carboxyl groups present in an acid, the remaining carboxyl groups are denoted by the prefix carboxy-. For example, HOOCCH2CH2CH2CH2CH2CO ˆ is named 6-carboxyhexanoyl. Many trivial names exist for acids: these are listed in Table 1.11. Generally, radicals are formed by replacing -ic acid by -oyl.* When a trivial name is given to an acyclic monoacid or diacid, the numeral 1 is always given as locant to the carbon atom of a carboxyl group in the acid or to the carbon atom with a free valence in the radical RCO ˆ . Ethers (R1 ˆ O ˆ R2). In substitutive nomenclature, one of the possible radicals, R ˆ O ˆ , is stated as the prefix to the parent compound that is senior from among R1 or R2. Examples are methoxyethane for CH3OCH2CH3 and butoxyethanol for C4H9OCH2CH2OH. When another principal group has precedence and oxygen is linking two identical parent compounds, the prefix oxy- may be used, as with 2,2-oxydiethanol for HOCH2CH2OCH2CH2OH. Compounds of the type RO ˆ Y ˆ OR, where the two parent compounds are identical and contain a group having priority over ethers for citation as suffix, are named as assemblies of identical units. For example, HOOC ˆ CH2 ˆ O ˆ CH2CH2 ˆ O ˆ CH2 ˆ COOH is named 2,2-(ethylenedioxy)diacetic acid. Linear polyethers derived from three or more molecules of aliphatic dihydroxy compounds, particularly when the chain length exceeds ten units, are most conveniently named by open-chain replacement nomenclature. For example, CH3CH2 ˆ O ˆ CH2CH2 ˆ O ˆ CH2CH3 could be 3,6-dioxaoctane or (2-ethoxy)ethoxyethane. An oxygen atom directly attached to two carbon atoms already forming part of a ring system or to two carbon atoms of a chain may be indicated by the prefix epoxy-. For example, is named 1-chloro-2,3,-epoxypropane. Symmetrical linear polyethers may be named (1) in terms of the central oxygen atom when there is an odd number of ether oxygen atoms or (2) in terms of the central hydrocarbon group when there is an even number of ether oxygen atoms. For example, C2H5 ˆ O ˆ C4H8 ˆ O ˆ C4H8 ˆ O ˆ C2H5 is bis-(4-ethoxybutyl)ether, and 3,6-dioxaoctane (earlier example) could be named 1,2-bis(ethoxy)ethane. Polyethers and Cyclic Polyethers. During the past several decades, linear and cyclic polyethers have gained considerable prominence. This is largely due to their remarkable ability to complex metallic and organic cations. The linear polyethers of the polyethylene *Exceptions: formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, oxalyl, malonyl, succinyl, glutaryl, furoyl, and thenoyl.
1.33
ORGANIC COMPOUNDS
TABLE 1.11 Names of Some Carboxylic Acids
Systematic name
Trivial name
Methanoic Ethanoic Propanoic Butanoic 2-Methylpropanoic Pentanoic 3-Methylbutanoic 2,2-Dimethylpropanoic Hexanoic Heptanoic Octanoic Decanoic Dodecanoic Tetradecanoic Hexadecanoic Octadecanoic
Formic Acetic Propionic Butyric Isobutyric* Valeric Isovaleric* Pivalic* (Caproic) (Enanthic) (Caprylic) (Capric) Lauric* Myristic* Palmitic* Stearic*
Ethanedioic Propanedioic Butanedioic Pentanedioic Hexanedioic Heptanedioic Octanedioic Nonanedioic Decanedioic Propenoic Propynoic 2-Methylpropenoic trans-2-Butenoic cis-2-Butenoic cis-9-Octadecenoic trans-9-Octadecenoic cis-Butenedioic trans-Butenedioic cis-Methylbutenedioic
Oxalic Malonic Succinic Glutaric Adipic Pimelic* Suberic* Azelaic* Sebacic* Acrylic Propiolic Methacrylic Crotonic Isocrotonic Oleic Elaidic Maleic Fumaric Citraconic*
Systematic name
Trivial name
trans-Methylbutenedioic
Mesaconic*
1,2,2-Trimethyl-1,3cyclopentanedicarboxylic acid Benzenecarboxylic 1,2-Benzenedicarboxylic 1,3-Benzenedicarboxylic 1,4-Benzenedicarboxylic Naphthalenecarboxylic Methylbenzenecarboxylic 2-Phenylpropanoic 2-Phenylpropenoic trans-3-Phenylpropenoic Furancarboxylic Thiophenecarboxylic 3-Pyridinecarboxylic 4-Pyridinecarboxylic
Camphoric
Benzoic Phthalic Isophthalic Terephthalic Naphthoic Toluic Hydratropic Atropic Cinnamic Furoic Thenoic Nicotinic Isonicotinic
Hydroxyethanoic 2-Hydroxypropanoic 2,3-Dihydroxypropanoic Hydroxypropanedioic Hydroxybutanedioic 2,3-Dihydroxybutanedioic 3-Hydroxy-2-phenylpropanoic 2-Hydroxy-2,2diphenylethanoic 2-Hydroxybenzoic Methoxybenzoic 4-Hydroxy-3-methoxybenzoic
Glycolic Lactic Glyceric Tartronic Malic Tartaric Tropic Benzilic
3,4-Dimethoxybenzoic 3,4-Methylenedioxybenzoic 3,4-Dihydroxybenzoic 3,4,5-Trihydroxybenzoic
Veratric Piperonylic Protocatechuic Gallic
Salicylic Anisic Vanillic
The names in parentheses are abandoned but are listed for reference to older literature. * Systematic names should be used in derivatives formed by substitution on a carbon atom.
glycol type are discussed in Section 10. The cyclic polyethers are called crown ethers if they are monocyclic and cryptands if they are di- or multi-cyclic compounds. Crown ethers are typically complicated structures and their names have evolved from the convenient, semi-systematic nomenclature developed by the pioneers in the field. The name “crown” was suggested because the cyclic polyethers “crown a cation” when they complex it. The most general naming system consists in identifying the largest cycle and then denoting the number and type of heteroatoms present. The most common repeating unit is ethyleneoxy or ˆ CH2CH2O ˆ , normally in the form 1,2-ethylenedioxy and this is
1.34
SECTION 1
presumed to be present unless otherwise noted. Ethylene oxide (oxirane) is the smallest cyclic compound containing this unit. Dioxane is formally its dimer. The trimer, called 9crown-3, is known but the smallest compound normally considered to be a crown ether is 12-crown-4. 18-Crown-6 has six repeating ethyleneoxy units and is systematically named 1,4,7,10,13,16-hexaoxacyclooctadecane. Examples of various crown ethers and cryptands are shown here. The top line of compounds may be named readily enough although the problem with this semi-systematic approach is obvious. If two methylenes were added to 18-crown-6, the compound could correctly be called 20-crown-6 but in the absence of unequivocal descriptors, the positions of the 3-carbon bridges would be unclear. The more cumbersome name 1,4,7,11,13,17-hexaoxacycloicosane tells clearly that the longer bridges are adjacent to each other. A similar problem is apparent in the last two entries of the second line. The designations dicyclohexano and dibenzo are clear as to the substituents but not their positions. The semi-systematic nomenclature is widely used, however, because it is so much less cumbersome for most purposes. O
O
O
O
O
O
O
O
O
O
O
O
O
O O
O O
O
dioxane
O
O
O
12-crown-4
O PhH2C-N
N-H O
O
N
OO
O
N
O O
O N
O
[1.1.1] cryptand
O
O O
O
[2.2.1] cryptand
O
24-crown-8
O
O
N,N'-dibenzyl-4,13diaza-18-crown-6
N
O O
18-crown-6
N-CH2Ph O
4,13-diaza-18-crown-6
O
15-crown-5
O
H-N
O
O
O
O
O
O
O O
O
O
dicyclohexano-18-crown-6
dibenzo-18-crown-6
O O
N
O O N
O
O
O
O
O O
N
N O
O
[2.2.2] cryptand benzo-[2.2.2] cryptand
S O
S O
O
O
N
N
dithia-[2.2.2] cryptand
An additional nuance in the nomenclature of these compounds concerns their complexes. The open-chained compounds are often referred to as podands and their complexes as podates. The cyclic ethers may also be called coronands and their complexes are therefore coronates. Complexed cryptands are cryptates. The even more complicated structures known as spherands, cavitands, or carcerands are called spherates, cavitates, or carcerates, respectively, when complexed. The combination of a macrocycle (crown ether or coronand) and a sidechain (podand) is typically called a lariat ether. An alternate nomenclature system based upon IUPAC principles polymer systems has also been developed but it has not been adopted broadly. Using this method, 15-crown-5 would be called cyclo[pentakis(oxyethylene)] instead of 1,4,7,10,13-pentaoxacyclopentadecane. In this case, substituents and other heteroatoms make the names more complex. Partial ethers of polyhydroxy compounds may be named (1) by substitutive nomenclature or (2) by stating the name of the polyhydroxy compound followed by the name of the etherifying radical(s) followed by the word ether. For example, CH2O HCOH CH2OH
C4H9
(1) 3-Butoxy-1,2-propanediol (2) Glycerol 1-buty ether; also, 1-O-butylglycerol
ORGANIC COMPOUNDS
1.35
Cyclic ethers are named either as heterocyclic compounds or by specialist rules of heterocyclic nomenclature. Radicofunctional names are formed by citing the names of the radicals R1 and R2 followed by the word ether. Thus methoxyethane becomes ethyl methyl ether and ethoxyethane becomes diethyl ether. Halogen Derivatives. Using substitutive nomenclature, names are formed by adding prefixes listed in Table 1.8 to the name of the parent compound. The prefix perhalo- implies the replacement of all hydrogen atoms by the particular halogen atoms. Cations of the type R1R2X are given names derived from the halonium ion, H2X, by substitution, e.g., diethyliodonium chloride for (C2H5)2ICl. These trivial names are retained: bromoform (CHBr3), chloroform (CHCl3), fluoroform (CHF3), iodoform (CHI3), phosgene (COCl2), thiophosgene (CSCl2), and dichlorocarbene radical (aCCl2). Inorganic nomenclature leads to such names as carbonyl and thiocarbonyl halides (COX2 and CSX2) and carbon tetrahalides (CX4). Hydroxylamines and Oximes. For RNH ˆ OH compounds, prefix the name of the radical R to hydroxylamine. If another substituent has priority as principal group, attach the prefix hydroxyamino- to the parent name. For example, C6H5NHOH would be named Nphenylhydroxylamine, but HOC6H4NHOH would be (hydroxyamino)phenol, with the point of attachment indicated by a locant preceding the parentheses. Compounds of the type R1NH ˆ OR2 are named (1) as alkoxyamino derivatives of compound R1H, (2) as N,O-substituted hydroxylamines, (3) as alkoxyamines (even if R1 is hydrogen), or (4) by the prefix aminooxy- when another substituent has priority for parent name. Examples of each type are as follows: 1. 2-(Methoxyamino)-8-naphthalenecarboxylic acid for CH3ONH ˆ C10H6COOH 2. O-phenylhydroxylamine for H2N ˆ O ˆ C6H5 or N-phenylhydroxylamine for C6H5NH ˆ OH 3. Phenoxyamine for H2N ˆ O ˆ C6H5 (not preferred to O-phenylhydroxylamine) 4. Ethyl (aminooxy)acetate for H2N ˆ O ˆ CH2CO ˆ OC2H5 Acyl derivatives, RCO ˆ NH ˆ OH and H2N ˆ O ˆ CO ˆ R, are named as N-hydroxy derivatives of amides and as O-acylhydroxylamines, respectively. The former may also be named as hydroxamic acids. Examples are N-hydroxyacetamide for CH3CO ˆ NH ˆ OH and O-acetylhydroxylamine for H2N ˆ O ˆ CO ˆ CH3. Further substituents are denoted by prefixes with O- and/or N-locants. For example, C6H5NH ˆ O ˆ C2H5 would be O-ethyl-N-phenylhydroxylamine or N-ethoxylaniline. For oximes, the word oxime is placed after the name of the aldehyde or ketone. If the carbonyl group is not the principal group, use the prefix hydroxyimino-. Compounds with the group aN ˆ OR are named by a prefix alkyloxyimino- as oxime O-ethers or as O-substituted oximes. Compounds with the group aC N(O)R are named by adding Noxide after the name of the alkylideneamine compound. For amine oxides, add the word oxide after the name of the base, with locants. For example, C5H5N ˆ O is named pyridine N-oxide or pyridine 1-oxide. Imines. The group aC ¨ NH is named either by the suffix -imine or by citing the name of the bivalent radical R1R2Cb as a prefix to amine. For example, CH3CH2CH2CH ¨ NH
1.36
SECTION 1
could be named 1-butanimine or butylideneamine. When the nitrogen is substituted, as in CH2 ¨ N ˆ CH2CH3, the name is N-(methylidene) ethylamine. Quinones are exceptions. When one or more atoms of quinonoid oxygen have been replaced by aNH or aNR, they are named by using the name of the quinone followed by the word imine (and preceded by proper affixes). Substituents on the nitrogen atom are named as prefixes. Examples are
Ketenes. Derivatives of the compound ketene, CH2 ¨ C ¨ O, are named by substitutive nomenclature. For example, C4H9CH ¨ C ¨ O is butyl ketene. An acyl derivative, such as CH3CH2 ˆ CO ˆ CH2CH ¨ C ¨ O, may be named as a polyketone, 1-hexene-1,4-dione. Bis-ketene is used for two to avoid ambiguity with diketene (dimeric ketene).
Ketones. Acyclic ketones are named (1) by adding the suffix -one to the name of the hydrocarbon forming the principal chain or (2) by citing the names of the radicals R1 and R2 followed by the word ketone. In addition to the preceding nomenclature, acyclic monoacyl derivatives of cyclic compounds may be named (3) by prefixing the name of the acyl group to the name of the cyclic compound. For example,
When the cyclic component is benzene or naphthalene, the -ic acid or -oic acid of the acid corresponding to the acyl group is changed to -ophenone or -onaphthone, respectively. For example, C6H5 ˆ CO ˆ CH2CH2CH3 can be named either butyrophenone (or butanophenone) or phenyl propyl ketone. Radicofunctional nomenclature can be used when a carbonyl group is attached directly to carbon atoms in two ring systems and no other substituent is present having priority for citation. When the methylene group in polycarbocyclic and heterocyclic ketones is replaced by a keto group, the change may be denoted by attaching the suffix -one to the name of the ring system. However, when cCH in an unsaturated or aromatic system is replaced by a keto group, two alternative names become possible. (1) The maximum number of noncumulative double bonds is added after introduction of the carbonyl group(s), and any hydrogen that remains to be added is denoted as indicated hydrogen with the carbonyl group having priority over the indicated hydrogen for lower-numbered locant. (2) The prefix oxois used, with the hydrogenation indicated by hydro prefixes; hydrogenation is considered
ORGANIC COMPOUNDS
1.37
to have occurred before the introduction of the carbonyl group. For example,
When another group having higher priority for citation as principal group is also present, the ketonic oxygen may be expressed by the prefix oxo-, or one can use the name of the carbonyl-containing radical, as, for example, acyl radicals and oxo-substituted radicals. Examples are
Diketones and tetraketones derived from aromatic compounds by conversion of two or four cCH groups into keto groups, with any necessary rearrangement of double bonds to a quinonoid structure, are named by adding the suffix -quinone and any necessary affixes. Polyketones in which two or more contiguous carbonyl groups have rings attached at each end may be named (1) by the radicofunctional method or (2) by substitutive nomenclature. For example,
Some trivial names are retained: acetone (2-propanone), biacetyl (2,3-butanedione), propiophenone (C6H5 ˆ CO ˆ CH2CH3), chalcone (C6H5 ˆ CH ¨ CH ˆ CO ˆ C6H5), and deoxybenzoin (C6H5 ˆ CH2 ˆ CO ˆ C6H5). These contracted names of heterocyclic nitrogen compounds are retained as alternatives for systematic names, sometimes with indicated hydrogen. In addition, names of oxo derivatives of fully saturated nitrogen heterocycles that systematically end in -idinone are often contracted to end in -idone when no ambiguity might result. For example,
1.38
SECTION 1
Lactones, Lactides, Lactams, and Lactims. When the hydroxy acid from which water may be considered to have been eliminated has a trivial name, the lactone is designated by substituting -olactone for -ic acid. Locants for a carbonyl group are numbered as low as possible, even before that of a hydroxyl group. Lactones formed from aliphatic acids are named by adding -olide to the name of the nonhydroxylated hydrocarbon with the same number of carbon atoms. The suffix -olide signifies the change of aCH · · · CH3 into aC· · ·C¨ O QOR Structures in which one or more (but not all) rings of an aggregate are lactone rings are named by placing -carbolactone (denoting the ˆ O ˆ CO ˆ bridge) after the names of the structures that remain when each bridge is replaced by two hydrogen atoms. The locant for ˆ CO ˆ is cited before that for the ester oxygen atom. An additional carbon atom is incorporated into this structure as compared to the -olide. These trivial names are permitted: -butyrolactone, -valerolactone, and -valerolactone. Names based on heterocycles may be used for all lactones. Thus, -butyrolactone is also tetrahydro-2-furanone or dihydro-2(3H)-furanone. Lactides, intermolecular cyclic esters, are named as heterocycles. Lactams and lactims, containing a ˆ CO ˆ NH ˆ and ˆ C(OH) ¨ N ˆ group, respectively, are named as heterocycles, but they may also be named with -lactam or -lactim in place of -olide. For example,
Nitriles and Related Compounds. For acids whose systematic names end in -carboxylic acid, nitriles are named by adding the suffix -carbonitrile when the ˆ CN group replaces the ˆ COOH group. The carbon atom of the ˆ CN group is excluded from the numbering of a chain to which it is attached. However, when the triple-bonded nitrogen atom is considered to replace three hydrogen atoms at the end of the main chain of an acyclic hydrocarbon, the suffix -nitrile is added to the name of the hydrocarbon. Numbering begins with the carbon attached to the nitrogen. For example, CH3CH2CH2CH2CH2CN is named (1) pentanecarbonitrile or (2) hexanenitrile.
1.39
ORGANIC COMPOUNDS
Trivial acid names are formed by changing the endings -oic acid or -ic acid to -onitrile. For example, CH3CN is acetonitrile. When the ˆ CN group is not the highest priority group, the ˆ CN group is denoted by the prefix cyano-. In order of decreasing priority for citation of a functional class name, and the prefix for substitutive nomenclature, are the following related compounds: Functional group ˆ NC ˆ OCN ˆ NCO ˆ ONC ˆ SCN ˆ NCS ˆ SeCN ˆ NCSe
Prefix IsocyanoCyanatoIsocyanato— ThiocyanatoIsothiocyanatoSelenocyanatoIsoselenocyanato-
Radicofunctional ending Isocyanide Cyanate Isocyanate Fulminate Thiocyanate Isothiocyanate Selenocyanate Isoselenocyanate
Peroxides. Compounds of the type R ˆ O ˆ OH are named (1) by placing the name of the radical R before the word hydroperoxide or (2) by use of the prefix hydroperoxy- when another parent name has higher priority. For example, C2H5OOH is ethyl hydroperoxide. Compounds of the type R1O ˆ OR2 are named (1) by placing the names of the radicals in alphabetical order before the word peroxide when the group ˆ O ˆ O ˆ links two chains, two rings, or a ring and a chain, (2) by use of the affix dioxy to denote the bivalent group ˆ O ˆ O ˆ for naming assemblies of identical units or to form part of a prefix, or (3) by use of the prefix epidioxy- when the peroxide group forms a bridge between two carbon atoms, a ring, or a ring system. Examples are methyl propyl peroxide for CH3 ˆ O ˆ O ˆ C3H7 and 2,2- dioxydiacetic acid for HOOC ˆ CH2 ˆ O ˆ O ˆ CH2 ˆ COOH. Phosphorus Compounds. Acyclic phosphorus compounds containing only one phosphorus atom, as well as compounds in which only a single phosphorus atom is in each of several functional groups, are named as derivatives of the parent structures listed in Table 1.12. Often these are purely hypothetical parent structures. When hydrogen attached to phosphorus is replaced by a hydrocarbon group, the derivative is named by substitution nomenclature. When hydrogen of an ˆ OH group is replaced, the derivative is named by radicofunctional nomenclature. For example, C2H5PH2 is ethylphosphine; (C2H5)2PH, diethylphosphine; CH3P(OH)2, dihydroxy-methyl-phosphine or methylphosphonous acid; C2H5 ˆ PO(Cl)(OH), ethylchlorophosphonic acid or ethylphosphonochoridic acid or hydrogen chlorodioxoethylphosphate(V); CH3CH(PH2)COOH, 2-phosphinopropionic acid; HP(CH2COOH)2, phosphinediyldiacetic acid; (CH3)HP(O)OH, methylphosphinic acid or hydrogen hydridomethyldioxophosphate(V); (CH3O)3PO, trimethyl phosphate; and (CH3O)3P, trimethyl phosphite. Salts and Esters of Acids. Neutral salts of acids are named by citing the cation(s) and then the anion, whose ending is changed from -oic to -oate or from -ic to -ate. When different acidic residues are present in one structure, prefixes are formed by changing the anion ending -ate to -ato- or -ide to -ido-. The prefix carboxylato- denotes the ionic group ˆ COO. The phrase: (metal) salt of (the acid) is permissible when the carboxyl groups are not all named as affixes. Acid salts include the word hydrogen (with affixes, if appropriate) inserted between the name of the cation and the name of the anion (or word salt).
1.40
SECTION 1
TABLE 1.12 Parent Structures of Phosphorus-containing Compounds
Formula
Parent name
H3P H5P
Phosphine Phosphorane
H3PO H3PS H3PNH P(OH)3 HP(OH)2 H2POH P(O)(OH)3 HP(O)(OH)2
Phosphine oxide Phosphine sulfide Phosphine imide Phosphorous acid Phosphonous acid Phosphinous acid Phosphoric acid Phosphonic acid
H2P(O)OH
Phosphinic acid
Substitutive prefix H2P ˆ PhosphinoH4P ˆ PhosphoranylH3Pb PhosphoroanediylH2Pd Phosphoranetriyl— — — — — — P(O)d PhosphorylHP(O)b Phosphonoylˆ P(O)OH2 PhosphinoylH2P(O) ˆ PhosphinoylaP(O)OH PhosphinocoPhosphinato-
Radicofunctional ending Phosphide — — — — — — Phosphite Phosphonite Phosphinite Phosphate(V) Phosphonate — Phosphinate — —
Esters are named similarly, with the name of the alkyl or aryl radical replacing the name of the cation. Acid esters of acids and their salts are named as neutral esters, but the components are cited in the order: cation, alkyl or aryl radical, hydrogen, and anion. Locants are added if necessary. For example,
Ester groups in R1 ˆ CO ˆ OR2 compounds are named (1) by the prefix alkoxycarbonylor aryloxycabonyl- for ˆ CO ˆ OR2 when the radical R1 contains a substituent with priority for citation as principal group or (2) by the prefix acyloxy- for R1 ˆ CO ˆ O ˆ when the radical R2 contains a substituent with priority for citation as principal group. Examples are
The trivial name acetoxy is retained for the CH3 ˆ CO ˆ O ˆ group. Compounds of the type R2C(OR2)3 are named as R2 esters of the hypothetical ortho acids. For example, CH3C(OCH3)3 is trimethyl orthoacetate.
ORGANIC COMPOUNDS
1.41
Silicon Compounds. SiH4 is called silane; its acyclic homologs are called disilane, trisilane, and so on, according to the number of silicon atoms present. The chain is numbered from one end to the other so as to give the lowest-numbered locant in radicals to the free valence or to substituents on a chain. The abbreviated form silyl is used for the radical SiH3 ˆ . Numbering and citation of side chains proceed according to the principles set forth for hydrocarbon chains. Cyclic nonaromatic structures are designated by the prefix cyclo-. When a chain or ring system is composed entirely of alternating silicon and oxygen atoms, the parent name siloxane is used with a multiplying affix to denote the number of silicon atoms present. The parent name silazane implies alternating silicon and nitrogen atoms; multiplying affixes denote the number of silicon atoms present. The prefix sila- designates replacement of carbon by silicon in replacement nomenclature. Prefix names for radicals are formed analogously to those for the corresponding carboncontaining compounds. Thus silyl is used for SiH3 ˆ , silyene for ˆ SiH2 ˆ , silylidyne for ˆ SiH. Sulfur Compounds Bivalent Sulfur. The prefix thio-, placed before an affix that denotes the oxygencontaining group or an oxygen atom, implies the replacement of that oxygen by sulfur. Thus the suffix -thiol denotes ˆ SH, -thione denotes ˆ (C) ¨ S and implies the presence of an ¨ S at a nonterminal carbon atom, -thioic acid denotes [(C) ¨ S]OH 7 [(C) ¨ O]SH (that is, the O-substituted acid and the S-substituted acid, respectively), -dithioic acid denotes [ ˆ C(S)]SH, and -thial denotes ˆ (C)HS (or -carbothialdehyde denotes ˆ CHS). When -carboxylic acid has been used for acids, the sulfur analog is named -carbothioic acid or -carbodithioic acid. Prefixes for the groups HS ˆ and RS ˆ are mercapto- and alkylthio-, respectively; this latter name may require parentheses for distinction from the use of thio- for replacement of oxygen in a trivially named acid. Examples of this problem are 4-C2H5 ˆ C6H4 ˆ CSOH named p-ethyl(thio)benzoic acid and 4-C2H5 ˆ S ˆ C6H4 ˆ COOH named p-(ethylthio) benzoic acid. When ˆ SH is not the principal group, the prefix mercapto- is placed before the name of the parent compound to denote an unsubstituted ˆ SH group. The prefix thioxo- is used for naming ¨ S in a thioketone. Sulfur analogs of acetals are named as alkylthio- or arylthio-. For example, CH3CH(SCH3)OCH3 is 1-methoxy-1(methylthio)ethane. Prefix forms for -carbothioic acids are hydroxy(thiocarbonyl)- when referring to the O-substituted acid and mercapto(carbonyl)- for the S-substituted acid. Salts are formed as with oxygen-containing compounds. For example, C2H5 ˆ S ˆ Na is named either sodium ethanethiolate or sodium ethyl sulfide. If mercapto- has been used as a prefix, the salt is named by use of the prefix sulfido- for ˆ S. Compounds of the type R1 ˆ S ˆ R2 are named alkylthio- (or arylthio-) as a prefix to the name of R1 or R2, whichever is the senior. Sulfonium Compounds. Sulfonium compounds of the type R1R2R3SX are named by citing in alphabetical order the radical names followed by -sulfonium and the name of the anion. For heterocyclic compounds, -ium is added to the name of the ring system. Replacement of aCH by sulfonium sulfur is denoted by the prefix thionia-, and the name of the anion is added at the end. Organosulfur Halides. When sulfur is directly linked only to an organic radical and to a halogen atom, the radical name is attached to the word sulfur and the name(s) and number of the halide(s) are stated as a separate word. Alternatively, the name can be formed from R ˆ SOH, a sulfenic acid whose radical prefix is sulfenyl-. For example, CH3CH2 ˆ S ˆ Br would be named either ethylsulfur monobromide or ethanesulfenyl bromide. When another principal group is present, a composite prefix is formed from the number and substitutive name(s) of the halogen atoms in front of the syllable thio. For example, BrS ˆ COOH is (bromothio)formic acid.
1.42
SECTION 1
Sulfoxides. Sulfoxides, R1 ˆ SO ˆ R2, are named by placing the names of the radicals in alphabetical order before the word sulfoxide. Alternatively, the less senior radical is named followed by sulfinyl- and concluded by the name of the senior group. For example, CH3CH2 ˆ SO ˆ CH2CH2CH3 is named either ethyl propyl sulfoxide or 1-(ethylsulfinyl)propane. When an aSO group is incorporated in a ring, the compound is named an oxide. Sulfones. Sulfones, R1 ˆ SO2 ˆ R2, are named in an analogous manner to sulfoxides, using the word sulfone in place of sulfoxide. In prefixes, the less senior radical is followed by -sulfonyl-. When the aSO2 group is incorporated in a ring, the compound is named as a dioxide. Sulfur Acids. Organic oxy acids of sulfur, that is, ˆ SO3H, ˆ SO2H, and ˆ SOH, are named sulfonic acid, sulfinic acid, and sulfenic acid, respectively. In subordinate use, the respective prefixes are sulfo-, sulfino, and sulfeno-. The grouping ˆ SO2 ˆ O ˆ SO2 ˆ or ˆ SO ˆ O ˆ SO is named sulfonic or sulfinic anhydride, respectively. Inorganic nomenclature is employed in naming sulfur acids and their derivatives in which sulfur is linked only through oxygen to the organic radical. For example, (C2H5O)2SO2 is diethyl sulfate and C2H5O ˆ SO2 ˆ OH is ethyl hydrogen sulfate. Prefixes O- and S- are used where necessary to denote attachment to oxygen and to sulfur, respectively, in sulfur replacement compounds. For example, CH3 ˆ S ˆ SO2 ˆ ONa is sodium S-methyl thiosulfate. When sulfur is linked only through nitrogen, or through nitrogen and oxygen, to the organic radical, naming is as follows: (1) N-substituted amides are designated as N-substituted derivatives of the sulfur amides and (2) compounds of the type R ˆ NH ˆ SO3H may be named as N-substituted sulfamic acids or by the prefix sulfoamino- to denote the group HO3S ˆ NH ˆ . The groups ˆ N ¨ SO and ˆ N ¨ SO2 are named sulfinylamines and sulfonylamines, respectively. Sultones and Sultams. Compounds containing the group ˆ SO2ˆO ˆ as part of the ring are called -sultone. The ˆ SO2 ˆ group has priority over the ˆ O ˆ group for lowestnumbered locant. Similarly, the ˆ SO2 ˆ N ¨ group as part of a ring is named by adding -sultam to the name of the hydrocarbon with the same number of carbon atoms. The ˆ SO2 ˆ has priority over ˆ N ¨ for lowest-numbered locant. Steroids. Steroids are important natural products that have a special nomenclature. They typically consist of three fused 6-membered rings and a four fused 5-membered ring. The 12
11 19 1 2 A 3
9 10
8 7
B
18
17 13
C
5
4 H3C H3C
18 19
D 16 3
5
6 H3C H3C H
CH3
H3C
H3C
H
H3C
H H
H
CH3 H3C
H
H3C
Ergosterol OH H
H
Androsterone
H
HO
H3C OH H H
H3C
H
H H
CH3 H3C
H
HO H
H3C O
H
CH3 H
H3C
Cholesterol
Lanosterol
H OH H
H3C H3C
H
HO H
HO H H H3C CH3
H3C
17
9
14 15
H
H
O Estradiol
Testosterone
1.43
ORGANIC COMPOUNDS
rings are designated A, B, C, and D as shown here. The most common, all trans ring fusion is illustrated in the right hand structure. Most steroids that occur naturally possess the two methyl groups (“bridgehead” or angular methyl groups) shown as carbons 18 and 19 at positions 10 and 13, respectively. Cholesterol is the most common steroid of mammalian membranes. It is formed biologically from lanosterol, as shown. Ergosterol is the most common steroid of fungal membranes. It differs from cholesterol by the presence of two additional double bonds that affect its three dimensional structure. Also shown are three so-called steroid hormones, androsterone, estradiol, and testosterone. Note the presence of an aromatic A-ring in estradiol. Vitamins. The vitamins are natural organic compounds of considerable diversity that occur widely. The name derives from the Latin vita (life) and “amin,” a shortened form of amine. The name reflects the historical discovery of these substances, not all of which are amines. They are all of relatively low molecular weight, especially compared to peptides but in a range comparable to steroids. These substances are uniformly active and play various roles in biosynthesis and metabolism. The vitamins are too numerous to detail here but the most common examples are illustrated. They are classed using the common system, that is, water or fat soluble, depending on their approximate level of hydrophobicity or hydrophilicity. Their names are typically nonsystematic but the diversity of their structures requires that the trivial names be used. H3C CH3
Fat-soluble vitamins CH3
H3C CH3
CH3 CH3
CH3 H3C
CH2OH Vitamin A
CH3
Vitamin D CH2 HO
CH3 HO
H CH3
H3C
O CH3
H
O R
CH3
CH3
CH3 O Vitamin K
CH3
CH3
Vitamin E
Water-soluble vitamins O
R OH
HO
N Niacin
H3C
HO
CH2OH O O
CH2OH N Vitamin B6
HO
OH
Vitamin C
OH OH
HO
O
H3C
N
H3C
N
N
N N
CH3 Panthenoic acid
S
O
OH
O
Biotin
NH
Riboflavin
H3C
HO H3C
NH
HO
HO
OH H N
O
HN
O
NH2 S
O
OH
N H O
OH
+N
HN N
N H2N
Thiamine
O
N H
N
O
O NH
HO Folate HO
O
O
1.44
SECTION 1
Biological Nomenclature The names assigned to compounds by organic chemists and biologists sometimes differ. Moreover, biological structures are made up of repeating components and rapidly become large and complex molecules. Thus, special terminology has been developed to assist in describing these compounds. Amino Acids. An amino acid is any organic compound that possesses both amine ( ˆ NH2) and carboxyl ( ˆ COOH) groups within the same organic framework. When both functional groups are attached to the same carbon atom, they are designated -amino acids. These are of special significance in biology as they form the diverse monomer set from which peptides and proteins are built. Aminoacetic acid is the simplest example of an -amino acid. Among the 20 biologically most important amino acids, its structure is unique in two ways. First, it possesses no “sidechain” attached to the methylene carbon. Second, the lack of any substituent (other than hydrogen) means that aminoacetic acid, more commonly called glycine, is achiral. The other 19 “essential” or “common” amino acids possess sidechains attached in a stereochemically identical fashion. The other 19 common -amino acids have side chains attached at the position represented by R. Among these 19, proline is unique because its sidechain is attached at the other end to the amino nitrogen, which is therefore secondary rather than primary. The twenty common -amino acids may be named systematically. For example, when R is methyl, the compound may be called 2-methylaminoacetic acid. It may also correctly be called 2-aminopropanoic acid. By far, however, it is most commonly called alanine.
TABLE 1.13 Common
IUPAC
IUB
ˆpKCOOH
Alanine
Ala
A
2.34
ˆ pKNH3 9.69
pKSide chain —
IpH 6.01
O H 3C OH H NH 2
Arginine
Arg
R
2.17
9.04
12.84
10.76
NH
O N H
H2N
OH H NH
2
Asparagine
Asn
N
2.02
8.60
—
5.41
O H2N
OH O
H NH2
1.45
ORGANIC COMPOUNDS
TABLE 1.13 (continued ) Common
IUPAC
IUB
Aspartic acid
Asp
D
ˆ pKCOOH 1.88
ˆpK NH3 9.60
pKSide chain
IpH
3.65
2.77
O HO OH O
Cystine
Cys
C
1.71
8.18
10.28
H NH2
O
5.02 HS
OH H NH2
Glutamic acid
Glu
E
2.16
9.67
4.32
3.24
O
O
OH
HO H NH2
Glutamine
Gln
Q
2.17
9.13
—
O
O
5.65 H2N
OH H NH
2
Glycine
Gly
G
2.34
9.60
—
O
5.97 H2N
Histidine
His
H
1.82
9.17
6.00
7.59
OH O
H N OH H NH2
N
Isoleucine
Ile
I
2.36
9.68
—
CH3
6.02
O
H3C OH H NH2
Leucine
Leu
L
2.36
9.60
—
O
5.98 H3C
OH CH3 H NH2
Lysine
Lys
K
2.18
9.12
10.53
9.82
O H2N
OH H NH2
Methionine
Met
M
2.28
9.21
—
O
5.74 S H3C
OH H NH2
Phenylalanine
Phe
F
1.83
9.13
—
O
5.84
OH H NH2
Proline
Pro
P
1.99
10.6
—
O
6.30
OH NH H
Serine
Ser
S
2.21
9.15
—
O
5.68 HO
OH H NH 2
1.46
SECTION 1
TABLE 1.13 (continued ) Common
IUPAC
IUB ˆpKCOOH
Threonine
Thr
T
2.71
ˆ pKNH 9.62
3
pK Side chain
IpH
—
6.16
OH
O
H3C
OH H NH 2
Tryptophan
Trp
W
2.38
9.39
—
5.89
O HN
OH H NH 2
Tyrosine
Tyr
Y
2.20
9.11
10.07
5.66
O OH H NH 2
HO
Valine
Val
V
2.32
9.62
—
5.96
CH3 H3C
O
OH H NH 2
The names and structures of the twenty natural amino acids are given in Table 1.13. The International Union of Pure and Applied Chemistry (IUPAC) uses the three-letter abbreviations shown in the second column of Table 1.13 to describe amino acids. These are widely used in biological circles as well but are inappropriate when long peptide or protein sequences need to be described. For example, when proinsulin is cleaved, it forms the biologically important peptide insulin and another peptide usually called C-peptide. The human peptide consists of a linear chain of 31 amino acids that have the sequence, from amino to carboxyl, H2N-Glu-Ala-Glu-Asp-Leu-Gln-Val-Glu-Gln-Glu-Leu-Gly-Gly-GlyPro-Gly-Ala-Gly-Ser-Leu-Gln-Pro-Leu-Ala-Leu-Glu-Gly-Ser-Leu-Gln-OH. This is readily comprehensible to most chemists because the abbreviations are typically the first three letters of the amino acid. Thus, alanine is Ala and arginine is Arg. Aspartic acid and asparagine cannot both be named Asp so the latter is distinguished as Asn. Biologists often must compare peptides or proteins from different species. If the IUPAC nomenclature was used, the descriptor for this peptide would be about four-fold longer than if the International Union of Biology’s (IUB) single-letter codes are used. Where possible, the first letter of the amino acid’s name is used. As with the three-letter abbreviations, this is not always possible. Alanine is A and aspartic acid is arbitrarily assigned the letter D. Asparagine is called N. Glycine is G so glutamic acid is designated E. Although arbitrary, the name is logical for the homologue of aspartic acid. Glutamine is called Q. Arginine cannot use “A,” which is taken by alanine, but the letter “R” is suggestive and serves as a mnemonic. When the single-letter abbreviations are used, the human C-peptide sequence reduces to EAEDLQVGQVELGGGPGAGSLQPLALEGSLQ, often written in groups of five letters as EAEDL QVGQV ELGGG PGAGS LQPLA LEGSL Q so that the sequence can be more conveniently read and compared with other sequences. Most of three-letter abbreviations are taken from the first three letters of the name of the corresponding amino acid and are pronounced as written (alanine–Ala, cysteine–Cys). The one-letter symbol for the amino acids is usually the first letter of the amino acid’s name and is often used when comparing the amino acids sequences of several similar proteins.
ORGANIC COMPOUNDS
1.47
Note that the single-letter abbreviations permit a fast comparison of the sequences so that their differences and similarities can quickly be discerned. The sequences for C-peptides from humans and from rats are compared below (differences are highlighted):
Ten of the amino acids in each sequence differ. Thus, 21 of the 31 amino acids are identical within the sequence. The sequence homology is said to be (21/31 100 )68%. It would have been much more difficult to make this comparison using the longer three-letter abbreviations. For a protein having 200 or 300 amino acids, the problem becomes correspondingly greater. Despite the greater economy of using single letter amino acid abbreviations, it is the three-letter abbreviations that have become shortened names for the essential amino acids. For example, practicing scientists would identify the sequence GPAGW as “Gly-Pro-AlaGly-Try.” A sequence containing both aspartic acid and asparagine such as GAGE would be referred to in conversation as “Gly-Asp-Gly-Asparagine.” Formally, however, the amino acids contained either in peptides or proteins are named in a fashion related to that used for alkanes. The “-ine” suffix is replaced by “-yl” to give, for GAG, glycyl-alanyl-glycine. Peptide and protein sequences are always written and named from the N-terminus to the C-terminus. The C-terminal amino acid retains its full name.
Stereochemistry Concepts in stereochemistry, that is, chemistry in three-dimensional space, are in the process of rapid expansion. This section will deal with only the main principles. The compounds discussed will be those that have identical molecular formulas but differ in the arrangement of their atoms in space. Stereoisomers is the name applied to these compounds. Stereoisomers can be grouped into three categories: (1) Conformational isomers differ from each other only in the way their atoms are oriented in space, but can be converted into one another by rotation about sigma bonds. (2) Geometric isomers are compounds in which rotation about a double bond is restricted. (3) Configurational isomers differ from one another only in configuration about a chiral center, axis, or plane. In subsequent structural representations, a broken line denotes a bond projecting behind the plane of the paper and a wedge denotes a bond projecting in front of the plane of the paper. A line of normal thickness denotes a bond lying essentially in the plane of the paper. Conformational Isomers. A molecule in a conformation into which its atoms return spontaneously after small displacements is termed a conformer. Different arrangements of atoms that can be converted into one another by rotation about single bonds are called conformational isomers (see Figure 1.3). A pair of conformational isomers can be but do not have to be mirror images of each other. When they are not mirror images, they are called diastereomers.
1.48
SECTION 1
H H
C
H
H C
H
H
H H
C
H
eclipsed
H H
C
H staggered
FIGURE 1.3 Eclipsed (left) and staggered (right) conformations of ethane. The ball and stick model is in the staggered conformation.
Acyclic Compounds. Different conformations of acyclic compounds are best viewed by construction of ball-and-stick molecules or by use of Newman projections. Both types of representations are shown for ethane. Atoms or groups that are attached at opposite ends of a single bond should be viewed along the bond axis. If two atoms or groups attached at opposite ends of the bond appear directly one behind the other, these atoms or groups are described as eclipsed. That portion of the molecule is described as being in the eclipsed conformation. If not eclipsed, the atoms or groups and the conformation may be described as staggered. Newman projections show these conformations clearly. Certain physical properties show that rotation about the single bond is not quite free. For ethane there is an energy barrier of about 3 kcal · mol1 (12 kJ · mol1). The potential energy of the molecule is at a minimum for the staggered conformation, increases with rotation, and reaches a maximum at the eclipsed conformation. The energy required to rotate the atoms or groups about the carbon–carbon bond is called torsional energy. Torsional strain is the cause of the relative instability of the eclipsed conformation or any intermediate skew conformations.
FIGURE 1.4 Conformations of butane. (a) Anti-staggered; (b) eclipsed; (c) gauche-staggered; (d) eclipsed; (e) gauche-staggered; (f ) eclipsed. (Eclipsed conformations are slightly staggered for convenience in drawing; actually they are superimposed.)
ORGANIC COMPOUNDS
1.49
In butane, with a methyl group replacing one hydrogen on each carbon of ethane, there are several different staggered conformations (see Figure 1.4). There is the anti conformation in which the methyl groups are as far apart as they can be (dihedral angle of 180 ). There are two gauche conformations in which the methyl groups are only 60 apart; these are two nonsuperimposable mirror images of each other. The anti conformation is more stable than the gauche by about 0.9 kcal · mol1 (4 kJ · mol1). Both are free of torsional strain. However, in a gauche conformation the methyl groups are closer together than the sum of their van der Waals’ radii. Under these conditions van der Waals’ forces are repulsive and raise the energy of conformation. This strain can affect not only the relative stabilities of various staggered conformations but also the heights of the energy barriers between them. The energy maximum (estimated at 4.8–6.1 kcal · mol1 or 20–25 kJ · mol1) is reached when two methyl groups swing past each other (the eclipsed conformation) rather than past hydrogen atoms. Cyclic Compounds. Although cyclic aliphatic compounds are often drawn as if they were planar geometric figures (a triangle for cyclopropane, a square for cyclobutane, and so on), their structures are not that simple. Cyclopropane does possess the maximum angle strain if one considers the difference between a tetrahedral angle (109.5 ) and the 60 angle of the cyclopropane structure. Nevertheless the cyclopropane structure is thermally quite stable. The highest electron density of the carbon–carbon bonds does not lie along the lines connecting the carbon atoms. Bonding electrons lie principally outside the triangular internuclear lines and result in what are known as bent bonds (see Figure 1.5). Cyclobutane has less angle strain than cyclopropane (only 19.5 ). It is also believed to have some bent-bond character associated with the carbon–carbon bonds. The molecule exists in a nonplanar conformation in order to minimize hydrogen–hydrogen eclipsing strain.
FIGURE 1.5
The bent bonds (“tear drops”) of cyclopropane.
FIGURE 1.6
The conformations of cyclopentane.
1.50
SECTION 1
H
H3C
H3C
H
FIGURE 1.7 The two chair conformations of cyclohexane: a axial hydrogen atom and e equatorial hydrogen atom. The middle and bottom panels show methylcyclohexane in the chair form with the methyl group equatorial (middle) and axial (bottom).
Cyclopentane is nonplanar, with a structure that resembles an envelope (see Figure 1.6). Four of the carbon atoms are in one plane, and the fifth is out of that plane. The molecule is in continual motion so that the out-of-plane carbon moves rapidly around the ring. The 12 hydrogen atoms of cyclohexane do not occupy equivalent positions. In the chair conformation six hydrogen atoms are perpendicular to the average plane of the molecule and six are directed outward from the ring, slightly above or below the molecular plane (see Figure 1.7). Bonds which are perpendicular to the molecular plane are known as axial bonds, and those which extend outward from the ring are known as equatorial bonds. The three axial bonds directed upward originate from alternate carbon atoms and are parallel with each other; a similar situation exists for the three axial bonds directed downward. Each equatorial bond is drawn so as to be parallel with the ring carbon–carbon bond once removed from the point of attachment to that equatorial bond. At room temperature, cyclohexane is interconverting rapidly between two chair conformations. As one chair form converts to the other, all the equatorial hydrogen atoms become axial and all the axial hydrogens become equatorial. The interconversion is so rapid that all hydrogen atoms on cyclohexane can be considered equivalent. Interconversion is believed to take place by movement of one side of the chair structure to produce the twist boat, and then movement of the other side of the twist boat to give the other chair form. The chair conformation is the most favored structure for cyclohexane. No angle strain is encountered since all bond angles remain tetrahedral. Torsional strain is minimal because all groups are staggered. In the boat conformation of cyclohexane (Figure 1.8) eclipsing torsional strain is significant, although no angle strain is encountered. Nonbonded interaction between the two hydrogen atoms across the ring from each other (the “flagpole” hydrogens) is unfavorable. The boat conformation is about 6.5 kcal · mol1 (27 kJ · mol1) higher in energy than the chair form at 25 C.
ORGANIC COMPOUNDS
1.51
FIGURE 1.8 The boat conformation of cyclohexane. a axial hydrogen atom and e equatorial hydrogen atom.
FIGURE 1.9
FIGURE 1.10
Twist-boat conformation of cyclohexane.
Two isomers of 1,4-dimethylcyclohexane. (a) Trans isomer; (b) cis isomer.
A modified boat conformation of cyclohexane, known as the twist boat (Figure 1.9), or skew boat, has been suggested to minimize torsional and nonbonded interactions. This particular conformation is estimated to be about 1.5 kcal · mol1 (6 kJ mol1) lower in energy than the boat form at room temperature. The medium-size rings (7–12 ring atoms) are relatively free of angle strain and can easily take a variety of spatial arrangements. They are not large enough to avoid all nonbonded interactions between atoms. Disubstituted cyclohexanes can exist as cis–trans isomers as well as axial–equatorial conformers. Two isomers are predicted for 1,4-dimethylcyclohexane (see Figure 1.10). For the trans isomer the diequatorial conformer is the energetically favorable form. Only one cis isomer is observed, since the two conformers of the cis compound are identical. Interconversion takes place between the conformational (equatorial-axial) isomers but not configurational (cis–trans) isomers. The bicyclic compound decahydronaphthalene, or bicyclo[4.4.0]decane, has two fused six-membered rings. It exists in cis and trans forms (see Figure 1.11), as determined by the configurations at the bridgehead carbon atoms. Both cis- and trans-decahydronaphthalene can be constructed with two chair conformations.
1.52
FIGURE 1.11 (b) cis isomer.
SECTION 1
Two isomers of decahydronaphthalene, or bicyclo[4.4.0]decane. (a) Trans isomer;
FIGURE 1.12 Two isomers of 2-butene. (a) Cis isomer, bp 3.8 C, mp 138.9 C, dipole moment 0.33 D; (b) trans isomer, bp 0.88 C, mp 105.6 C, dipole moment 0 D.
Geometrical Isomerism. Rotation about a carbon–carbon double bond is restricted because of interaction between the p orbitals which make up the pi bond. Isomerism due to such restricted rotation about a bond is known as geometric isomerism. Parallel overlap of the p orbitals of each carbon atom of the double bond forms the molecular orbital of the pi bond. The relatively large barrier to rotation about the pi bond is estimated to be nearly 63 kcal · mol1 (263 kJ · mol1). When two different substituents are attached to each carbon atom of the double bond, cis–trans isomers can exist. In the case of cis-2-butene (Figure 1.12a), both methyl groups are on the same side of the double bond. The other isomer has the methyl groups on opposite sides and is designated as trans-2-butene (Figure 1.12b). Their physical properties are quite different. Geometric isomerism can also exist in ring systems; examples were cited in the previous discussion on conformational isomers. For compounds containing only double-bonded atoms, the reference plane contains the double-bonded atoms and is perpendicular to the plane containing these atoms and those directly attached to them. It is customary to draw the formulas so that the reference plane is perpendicular to that of the paper. For cyclic compounds the reference plane is that in which the ring skeleton lies or to which it approximates. Cyclic structures are commonly drawn with the ring atoms in the plane of the paper. Sequence Rules for Geometric Isomers and Chiral Compounds. Although cis and trans designations have been used for many years, this approach becomes useless in complex systems. To eliminate confusion when each carbon of a double bond or a chiral center is
ORGANIC COMPOUNDS
FIGURE 1.13
1.53
Configurations designated by priority groups. (a) Z (cis); (b) E (trans).
connected to different groups, the Cahn, Ingold, and Prelog system for designating configuration about a double bond or a chiral center has been adopted by IUPAC. Groups on each carbon atom of the double bond are assigned a first (1) or second (2) priority. Priority is then compared at one carbon relative to the other. When both first priority groups are on the same side of the double bond, the configuration is designated as Z (from the German zusammen, “together”), which was formerly cis. If the first priority groups are on opposite sides of the double bond, the designation is E (from the German entgegen, “in opposition to”), which was formerly trans. (See Figure 1.13.) When a molecule contains more than one double bond, each E or Z prefix has associated with it the lower-numbered locant of the double bond concerned. Thus (see also the rules that follow) O
O H2N
OH
H H aminoacetic acid or glycine
H2N R
OH H
an α-amino acid
When the sequence rules permit alternatives, preference for lower-numbered locants and for inclusion in the principal chain is allotted as follows in the order stated: Z over E groups and cis over trans cyclic groups. If a choice is still not attained, then the lowernumbered locant for such a preferred group at the first point of difference is the determining factor. For example,
RULE 1. Priority is assigned to atoms on the basis of atomic number. Higher priority is assigned to atoms of higher atomic number. If two atoms are isotopes of the same element, the atom of higher mass number has the higher priority. For example, in 2-butene, the carbon atom of each methyl group receives first priority over the hydrogen atom connected to the same carbon atom. Around the asymmetric carbon atom in chloroiodomethanesulfonic acid, the priority sequence is I, Cl, S, H. In 1-bromo-1deuteroethane, the priority sequence is Cl, C, D, H. RULE 2. When atoms attached directly to a double-bonded carbon have the same priority, the second atoms are considered and so on, if necessary, working outward once again from the double bond or chiral center. For example, in 1-chloro-2-methylbutene, in CH3 the second atoms are H, H, H and in CH2CH3 they are C, H, H. Since carbon has a higher atomic number than hydrogen, the ethyl group has the next highest priority after the chlorine atom.
1.54
SECTION 1
RULE 3. When groups under consideration have double or triple bonds, the multiplebonded atom is replaced conceptually by two or three single bonds to that same kind of
atoms themselves are duplicated, not the atoms or groups attached to them. The duplicated atoms (or phantom atoms) may be considered as carrying atomic number zero. For example, among the groups OH, CHO, CH2OH, and H, the OH group has the highest priority, and the C(O, O, H) of CHO takes priority over the C(O, H, H) of CH2OH. Chirality and Optical Activity. A compound is chiral (the term dissymmetric was formerly used) if it is not superimposable on its mirror image. A chiral compound does not have a plane of symmetry. Each chiral compound possesses one (or more) of three types of chiral element, namely, a chiral center, a chiral axis, or a chiral plane. Chiral Center. The chiral center, which is the chiral element most commonly met, is exemplified by an asymmetric carbon with a tetrahedral arrangement of ligands about the carbon. The ligands comprise four different atoms or groups. One “ligand” may be a lone pair of electrons; another, a phantom atom of atomic number zero. This situation is encountered in sulfoxides or with a nitrogen atom. Lactic acid is an example of a molecule with an asymmetric (chiral) carbon. (See Figure 1.14.) A simpler representation of molecules containing asymmetric carbon atoms is the Fischer projection, which is shown here for the same lactic acid configurations. A Fischer
FIGURE 1.14A
Stereo drawing of the lactic acid molecule.
ORGANIC COMPOUNDS
FIGURE 1.14B
1.55
Fischer projection of the lactic acid molecule.
projection involves drawing a cross and attaching to the four ends the four groups that are attached to the asymmetric carbon atom. The asymmetric carbon atom is understood to be located where the lines cross. The horizontal lines are understood to represent bonds coming toward the viewer out of the plane of the paper. The vertical lines represent bonds going away from the viewer behind the plane of the paper as if the vertical line were the side of a circle. The principal chain is depicted in the vertical direction; the lowestnumbered (locant) chain member is placed at the top position. These formulas may be moved sideways or rotated through 180 in the plane of the paper, but they may not be removed from the plane of the paper (i.e., rotated through 90 ). In the latter orientation it is essential to use thickened lines (for bonds coming toward the viewer) and dashed lines (for bonds receding from the viewer) to avoid confusion. Enantiomers. Two nonsuperimposable structures that are mirror images of each other are known as enantiomers. Enantiomers are related to each other in the same way that a right hand is related to a left hand. Except for the direction in which they rotate the plane of polarized light, enantiomers are identical in all physical properties. Enantiomers have identical chemical properties except in their reactivity toward optically active reagents. Enantiomers rotate the plane of polarized light in opposite directions but with equal magnitude. If the light is rotated in a clockwise direction, the sample is said to be dextrorotatory and is designed as (). When a sample rotates the plane of polarized light in a counterclockwise direction, it is said to be levorotatory and is designed as (). Use of the designations d and l is discouraged. Specific Rotation. Optical rotation is caused by individual molecules of the optically active compound. The amount of rotation depends upon how many molecules the light beam encounters in passing through the tube. When allowances are made for the length of the tube that contains the sample and the sample concentration, it is found that the amount of rotation, as well as its direction, is a characteristic of each individual optically active compound. Specific rotation is the number of degrees of rotation observed if a 1-dm tube is used and the compound being examined is present to the extent of 1 g per 100 mL. The density for a pure liquid replaces the solution concentration.
Specific rotation []
observed rotation (degrees) length (dm) (g/100 mL)
The temperature of the measurement is indicated by a superscript and the wavelength of the light employed by a subscript written after the bracket; for example, []20 590 implies that the measurement was made at 20 C using 590 nm radiation. Optically Inactive Chiral Compounds. Although chirality is a necessary prerequisite for optical activity, chiral compounds are not necessarily optically active. With an equal mixture of two enantiomers, no net optical rotation is observed. Such a mixture of enantiomers is said to be racemic and is designated as () and not as dl. Racemic mixtures usually have melting points higher than the melting point of either pure enantiomer.
1.56
SECTION 1
A second type of optically inactive chiral compounds, meso compounds, will be discussed next. Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image; it has an internal mirror plane. This is an example of a diastereomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Figure 1.15), and one of its isomers is a meso compound. Stereochemistry is sometimes harder to discern in ring systems than in open-chained compounds. The smallest ring, cyclopropane, has six equivalent hydrogens, each of which may be substituted. When a substituent such as a methyl group replaces a hydrogen, the molecule remains achiral because a mirror plane is present that bisects the substituted carbon (and its substituent) and the opposite bond. One side of the cyclopropane therefore reflects the other. The presence of a substituent makes the other cyclopropane positions nonequivalent. Thus a second methyl group may be added on the same carbon (opposite side of the ring) or on one of the adjacent carbons on either the same or opposite sides of the ring. Figure 1.16 shows some of these possibilities. E-1,2-Dicarboxycyclopropane (a) exists in two distinct forms. They are nonsuperimposable mirror images; Z-1,2Dicarboxycyclopropane (b) has an internal mirror plane and is therefore superimposable on its mirror image. Structure (d) in Figure 1.16 shows a molecular model of this compound. The carboxyl substituents do not appear to reflect each other but recall that they can rotate freely about the single bond. A cyclic compound that has two differently substituted asymmetric carbons will have 22 4 optical isomers. These will consist of pairs of cis and trans enantiomers. When the asymmetric centers have identical substituents, the cis isomer will have an internal reflection plane and is called a meso form. The meso forms of cis-1,2-dicarboxycyclopropane are shown in panels (b) and (d) of Figure 1.16 in a line angle drawing and as a molecular model. Torsional Asymmetry. Rotation about single bonds of most acyclic compounds is relatively free at ordinary temperatures. There are, however, some examples of compounds in which nonbonded interactions between large substituent groups inhibit free rotation about a sigma bond. In some cases these compounds can be separated into pairs of enantiomers.
FIGURE 1.15
Isomers of tartaric acid.
1.57
ORGANIC COMPOUNDS
(c)
(d)
FIGURE 1.16 Isomers of cyclopropane-1,2-dicarboxylic acid. (a) E-1,2-Dicarboxycyclopropane (trans isomers); (b) Z-1,2-Dicarboxycyclopropane isomer. (meso isomer); (c) Molecular models of E- (trans-) 1,2-dimethylcyclopropane shown in the tube representation. Rotation of the right hand structure about a vertical axis through the center of the cyclopropane will superimpose the two methyl groups. The methylene of the rotated structure will be in the back, rather than the front, and not superimposed. (d ) A mirror plane through the methylene and the back carbon– carbon bond is a plane of symmetry. The two carboxyl groups appear not to reflect each other in the model shown but they can rotate freely and will reflect each other on an instantaneous basis.
A chiral axis is present in chiral biaryl derivatives. When bulky groups are located at the ortho positions of each aromatic ring in biphenyl, free rotation about the single bond connecting the two rings is inhibited because of torsional strain associated with twisting rotation about the central single bond. Interconversion of enantiomers is prevented (see Figure 1.17). CH3
H3C
HOOC
COOH
H3C
CH3 HOOC
COOH Mirror plane
FIGURE 1.17
Isomers of biphenyl compounds with bulky groups attached at the ortho positions.
1.58
SECTION 1
For compounds possessing a chiral axis, the structure can be regarded as an elongated tetrahedron to be viewed along the axis. In deciding upon the absolute configuration it does not matter from which end it is viewed; the nearer pair of ligands receives the first two positions in the order of precedence (see Figure 1.18). For the meaning of (S), see the discussion under “Absolute Configuration”. A chiral plane is exemplified by the plane containing the benzene ring and the bromine and oxygen atoms in the chiral compound shown in Figure 1.19. Rotation of the benzene ring around the oxygen-to-ring single bonds is inhibited when x is small (although no critical size can be reasonably established).
FIGURE 1.18
Example of a chiral axis.
FIGURE 1.19
Example of a chiral plane.
Absolute Configuration. The terms absolute stereochemistry and absolute configuration are used to describe the three-dimensional arrangement of substituents around a chiral element. A general system for designating absolute configuration is based upon the priority system and sequence rules. Each group attached to a chiral center is assigned a number, with number one the highest-priority group. For example, the groups attached to the chiral center of 2-butanol (see Figure 1.20) are assigned these priorities: 1 for OH, 2 for CH2CH3, 3 for CH3, and 4 for H. The molecule is then viewed from the side opposite the group of lowest priority (the hydrogen atom), and the arrangement of the remaining groups are noted. If, in proceeding from the group of highest priority to the group of second priority and
FIGURE 1.20 Viewing angle as a means of designating the absolute configuration of compounds with a chiral axis. (a) (R)-2-butanol (sequence clockwise); (b) (S)-2-butanol (sequence counterclockwise).
1.59
ORGANIC COMPOUNDS
thence to the third, the eye travels in a clockwise direction, the configuration is specified R (from the Latin rectus, “right”); if the eye travels in a counterclockwise direction, the configuration is specified S (from the Latin sinister, “left”). The complete name includes both configuration and direction of optical rotation, as for example, (S)-()-2-butanol. The relative configurations around the chiral centers of many compounds have been established. One optically active compound is converted to another by a sequence of chemical reactions which are stereospecific; that is, each reaction is known to proceed spatially in a specific way. The configuration of one chiral compound can then be related to the configuration of the next in sequence. In order to establish absolute configuration, one must carry out sufficient stereospecific reactions to relate a new compound to another of known absolute configuration. Historically the configuration of D-()-2,3-dihydroxypropanal has served as the standard to which all configuration has been compared. The absolute configuration assigned to this compound has been confirmed by an X-ray crystallographic technique. Stereochemistry in Biological Systems. Amino acids occur naturally in both D and L (R and S) enantiomeric configurations. Amino acids that occur in proteins almost always have the L configuration although amino acids that occur in bacterial peptides may have the enantiomeric D configuration. The two configurations are shown in Figure 1.21 for alanine. The description of -amino acids as D or L is a holdover from an older nomenclature system. In this system (S)-alanine is called L-alanine. The enantiomer would be D- or (R)-serine. The L (laevo, turned to the left; D dextro, turned to the right) designation refers to the -carbon in the essential amino acids. In alanine, there is a single -carbon that is asymmetric. When two asymmetric centers are present as in L-threonine, the stereochemistry of both carbons must be considered. The common form of L-threonine is the 2S,3R stereoisomer. Threonine (center) is shown in Figure 1.22 along with the simplest chiral amino acid, alanine. The only cyclic amino acid, proline, is pictured as well in the common L-configuration. Extended Arrangements of Peptides and Proteins. Amino acids are linked from the carboxyl to the amine with formation of an amide bond, often referred to as the peptide link. The repeating ( ˆ N ˆ C ˆ CO ˆ ) unit is called the peptide or protein backbone. Peptides and proteins differ only in the number of amino acids present in the biopolymer chain. The cutoff is arbitrarily set. Often, but not always, a peptide is designated as having fewer than 100 amino acids and the protein possesses more. Backbone amide groups have been found to play a role in enzyme catalysis.
H
H
O
N
C
R OH
N H2
C H
R H
H CO O H
CO O H R
NH2 L-amino acid (S configuration)
FIGURE 1.21
H
H
O
N
C
OH
H R D-amino acid (R configuration)
Stereochemistry of -amino acids. The most common, L configuration is shown at the left.
H
H
O
H
O
N
C
N
C
OH
H 3C H
H H
HO L-alanine (S configuration)
FIGURE 1.22
OH
H
H
O
N
C
OH
H
CH3
L-threonine (2S,3R configuration)
L-proline (S configuration)
Structures of alanine, threonine, and proline.
1.60
SECTION 1
The extended chains, that is, the backbones, may further organize into assemblies that have characteristic properties. The two most important of these are the - helix and the -sheet. The latter is illustrated in Figure 1.23. Panel (a) shows the extensive hydrogen bond organization of peptide chains that are oriented in opposite directions. The arrows indicate the nitrogen to carbonyl (arrowhead) direction. The lower panel (b) shows an alternate Hbond organization when the two peptide chains are parallel rather than antiparallel. R N
CH
H R C
CH
O
C
H
N
O
O N
H C
N
R
C
R
H CH
O CH
H
CH
H
R C
R N
O
N
C
H
N
O
O
CH
C
N
R
C
R
H CH
O CH
H
R C
CH
O
R CH
N
O
N
CH
O
O N
H C
R
H
C
CH
H
N
R
C
O
CH
H
R CH
C
R N
C
H
N
O
O N
H C
O CH
C
R
H CH
N
R
(a)
H N
O CH
C
R R N H
CH
H C O
N
R N H
O CH R
C
H
CH
C O
R N
N
CH
H
O CH R
H C
C
N
O
R N H
O CH
CH
C
R
H C
CH
O R
N
O
N
CH
H
R H
C
C
R N
CH
H
CH
O
C
R
R N
N
O
O
N
H C
O CH R
H
CH
H
C O
C
N
R N H
CH
C O
O CH
C
R
(b)
FIGURE 1.23 Hydrogen bonded interactions of peptide chains to form -sheets. The chains are arranged antiparallel in panel (a) and parallel in panel (b).
An alternate organization for peptide chains is the -helix. It is essentially a coil in which a carbonyl group H-bonds an amide nitrogen between every fourth residue. The resulting structure exhibits one full turn for each 3.6 amino acids, which spans 5.4 Å per turn. The resulting -helix is a tight coil that lacks any significant interior space. A schematic representation of the H-bonded coil is shown in Figure 1.24. C
C O C
C H
H
N
C
C
O
H N
C
C O H N
O H
N C O
C
N
H
C
O N
H C
N
C
O
C
FIGURE 1.24
A number of other arrangements are possible for peptide or protein chains. A discussion of them is beyond the scope of this Handbook. Chemical Abstracts Indexing System When compounds of complex structure are considered, the number of name possibilities grows rapidly. To avoid having index entries for all possible names, Chemical Abstracts Service has developed what might be called the principle of inversion. The indexing system employs inverted entries to bring together related compounds in an alphabetically arranged index. The index heading parent from the Chemical Substance Index appears in the Formula Index in lightface before the “comma of inversion.” The substituents follow the “comma of
1.61
ORGANIC COMPOUNDS
inversion” in alphabetical order. Any name modification appears on a separate line. If necessary, the chemical description is completed by citation of an associated ion, a functional derivative, a “salt with” or “compound with” terms and/or a stereochemical descriptor. Quite naturally there is a certain amount of arbitrariness in this system, although the IUPAC nomenclature is followed. The preferred Chemical Abstracts index names for chemical substances have been, with very few exceptions, continued unchanged (since 1972) as set forth in the Ninth Collective Index Guide and in a journal article.* Any revisions appear in the updated Index Guide; new editions appear at 18-month intervals. Appendix VI is of particular interest to chemists. Reprints of the Appendix may be purchased from Chemical Abstracts Service, Marketing Division, P.O. Box 3012, Columbus, Ohio 43210.
PHYSICAL PROPERTIES OF PURE SUBSTANCES TABLE 1.14 Empirical Formula Index for Organic Compounds The alphanumeric designations are keyed to Table 1.15
Cl2H2Si: d226 Cl3HSi: t247 Cl6OSi2: h28 C1 CBrClF2: b255 CBrCl3: b358 CBrF3: b360 CBr2F2: d75 CClF3: c253 CClNO3S: c240 CCl2F2: d170 CCl3D: c127 CCl3F: t232 CCl3NO2: t239 CCl4O2S: t236 CCl4S: t235 CD4O: m36 CHBrCl2: b266 CHBr2Cl: d71 CHBr3: t206 CHClF2: c85 CHCl2F: d183 CHCl3: c126 CHF3: t295 CHF3O3S: t296 CHI3: i36 CHN3O6: t385 CH2BrCl: b256 CH2Br2: d88
CH2Cl2: d190 CH2Cl4Si: c165 CH2I2: d404 CH2N2: c285, d47 CH2N4: t136 CH2O: f27 (CH2O)x: p1 CH2O2: f32 CH2S3: t434 CH3Br: b300 CH3Br3Ge: m254 CH3Cl: c137 CH3ClHg: m295 CH3ClO2S: m32 CH3Cl3Ge: m437 CH3Cl3Si: t238 CH3DO: m35 CH3F: f18 CH3I: i40 CH3NO: f28 CH3NO2: m314, n56 CH3NO3: m313 CH3N5: a289 CH4: m29 CH4Cl2Si: d199, m222 CH4N2O: f34, u12 CH4N2O2S: f30 CH4N2S: t163 CH4N4O2: n54 CH4O: m34 CH4O2: m275 CH4O3S: m30
* J. Chem. Doc., 14(1): 3–15 (1974).
CH4S: m33 CH5AsO3: m125 CH5N: m115 CH5NO3S: a205 CH5N3: g29 CH5N3O: s3 CH5N3S: t162 CH6N2: m270 CH6N4: a180, a181 CH6N4O: c11 CN4O8: t126a C2 C2Br2ClF3: d72 C2Br2Cl4: d99 C2Br2F4: d100 C2Br2O2: o50 C2ClF3: c252 C2Cl2F3I: d188 C2Cl2F4: d227 C2Cl2O2: o51 C2Cl3F3: t251 C2Cl3N: t217 C2Cl4: t29 C2Cl4F2: d347, d348, t26 C2Cl4O: t218 C2Cl6: h29 C2D3N: a30 C2D4O2: a21 C2D6OS: d615
1.62
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to table 1.15
C2F4: t63 C2F6: h44 C2F6O5S2: t297 C2HBrClF3: b258 C2HBr2F3: d103 C2HBr2N: d63 C2HBr3: t205 C2HBr3O: t201 C2HBr3O2: t202 C2HClF2O2: c83 C2HCl2F3: d232 C2HCl3: t230 C2HCl3O: d141 C2HCl3O2: t216 C2HCl5: p9 C2HF3O2: t287 C2H2: a41 C2H2BrClO: b224 C2H2Br2: d80, d81 C2H2Br2F2: d74 C2H2Br2O: b223 C2H2Br2O2: d62 C2H2Br4: t9 C2H2ClF3: c251 C2H2ClN: c27 C2H2Cl2: d178, d179, d180 C2H2Cl2O: c31 C2H2Cl2O2: d138 C2H2Cl4: t27, t28 C2H2F3NO: t286 C2H2O: k1 C2H2O2: g27 C2H2O3: g28 C2H2O4: o48, o49 C2H3Br: b284 C2H3BrO: a35 C2H3BrO2: b220 C2H3Br2Cl3Si: d82 C2H3Br3O: t204 C2H3Cl: c109 C2H3ClF2: c84 C2H3ClO: a37 C2H3ClO2: c24, m187 C2H3Cl3: t226, t227 C2H3Cl3O: t228 C2H3Cl3Si: t252
C2H3Cl5Si: d182 C2H3DO2: a20 C2H3FO: a43 C2H3FO2: f6 C2H3F3: t291 C2H3F3O: t292 C2H3IO: a48 C2H3IO2: i25 C2H3N: a29 C2H3NO: m287 C2H3NS: m289, m426 C2H3N3: t199 C2H3N3S2: a290 C2H4BrCl: b254 C2H4BrNO: b218 C2H4Br2: d77, d78 C2H4ClNO: c22 C2H4Cl2: d176, d177 C2H4Cl2O: d197 C2H4Cl6Si2: b204 C2H4FNO: f5 C2H4F2: d346 C2H4INO: i24 C2H4I2: d403 C2H4N2: a106 C2H4N2O2: o54 C2H4N2O4: d632 C2H4N2O6: e126 C2H4N2S2: d710 C2H4N4: a295, d235 C2H4N4O2: a324 C2H4O: a4, e129 C2H4OS: t142 C2H4O2: a19, h86, m250 C2H4O2S: m14 C2H4O3: h87, p59 C2H4O5S: s23 C2H4S: e130 C2H5AlCl2: e57 C2H5Br: b277 C2H5BrNaO2S: b278 C2H5BrO: b279, b308 C2H5Cl: c102 C2H5ClHg: e165 C2H5ClO: c103, c155 C2H5ClO2S: e19
C2H5ClS: c156 C2H5Cl2OPS: e117 C2H5Cl2O2P: e116 C2H5Cl3Si: c153, t231 C2H5DO: e22 C2H5F: f17 C2H5FO3S: e134 C2H5I: i34 C2H5IO: i35 C2H5N: e131 C2H5NO: a5, a6, m248 C2H5NO2: e186, g25, m181, n53 C2H5NO3: e185 C2H5NS: t141 C2H5N3O2: b215, o53 C2H6: e14 C2H6BrN: b281 C2H6Cd: d501 C2H6ClN: c106 C2H6ClNO2S: d609 C2H6ClO2PS: d504 C2H6Cl2Si: d174 C2H6Hg: d546 C2H6N2: a7 C2H6N2O: a25, m444, n79 C2H6N2O2: m271 C2H6N2O4S: a107 C2H6N2S: m431 C2H6N4O2: o52 C2H6O: d518, e21 C2H6OS: d614, m18 C2H6O2: e16, e128 C2H6O2S: d613 C2H6O3S: d612, m297 C2H6O4S: d610, h114 C2H6O5S2: m31 C2H6S: d611, e20 C2H6S2: d516, e18 C2H6Te: d617 C2H6Zn: d624 C2H7AsO2: d484 C2H7ClSi: c92 C2H7N: d461, e58 C2H7NO: a163, a164 C2H7NO3S: a161
1.63
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C2H7NO4S: a169 C2H7NS: a162 C2H7N5: b133 C2H7O3P: d541 C2H8N2: d539, d540, e15 C2H8N2O: h120 C3 C3Br2F6: d85 C3Cl3NO2: t219 C3Cl3N3: t250 C3Cl3N3O3: t234 C3Cl6: h31 C3Cl6O: h23 C3D6O: a27 C3HCl5O: p7 C3H2ClN: c32 C3H2Cl2O2: m6 C3H2Cl4: t33 C3H2Cl4O: t21 C3H2Cl4O2: t229 C3H2F6O: h45 C3H2N2: m5 C3H2N2O3: i6 C3H2O2: p241 C3H3Br: b344 C3H3Cl: c232 C3H3ClO: a65 C3H3Cl3O: e13 C3H3N: a64 C3H3NOS2: r3 C3H3NO2: c287 C3H3NS: t140 C3H3N3O2S: a249 C3H3N3O3: c299 C3H4: a78, p240 C3H4BrClO: b340, b341 C3H4BrN: b339 C3H4Br2: d95 C3H4Br2O2: d96 C3H4ClN: c220 C3H4Cl2: d221, d222 C3H4Cl2O: c221, c222, d139
C3H4Cl2O2: m219 C3H4Cl3NO: m436 C3H4F4O: t64 C3H4N2: i4, p245 C3H4N2O: c286 C3H4N2OS: t152 C3H4N2O2: h84 C3H4N2S: a291 C3H4O: p204, p242 C3H4O2: a63, o59, p210 C3H4O3: e124, o60 C3H4O4: m3 C3H5Br: a85, b225, b335, b336 C3H5BrO: b276 C3H5BrO2: b337, b338, m143 C3H5Br3: t208 C3H5Cl: c216 C3H5ClO: c101, c215, p216 C3H5ClOS: e101 C3H5ClO2: c218, c219, e98, m182 C3H5Cl3: t244 C3H5Cl3O: t245 C3H5Cl3Si: a102 C3H5FO: f7 C3H5F3O3S: m438 C3H5I: a92, i50 C3H5N: p215 C3H5NO: a62, c290, h168, h169 C3H5NO2: o55 C3H5NS: e161, m421 C3H5N3O: c288 C3H5N3O9: g21 C3H5N3S: c292 C3H6: c364, p205 C3H6BrCl: b257 C3H6BrNO4: b316 C3H6Br2: d92, d93 C3H6Br2O: d94 C3H6ClNO: d502 C3H6Cl2: d218, d219 C3H6Cl2O: d220 C3H6Cl2Si: d200
C3H6Cl4Si: c229 C3H6I2: d405 C3H6N2: a274, d505 C3H6N2O: i7 C3H6N2O2: m4, m269 C3H6N2S: a292, i5 C3H6N2OS: a58 C3H6N6: t198 C3H6O: a26, a81, e10, m446, p211, p227, t345 C3H6OS: m420, t161 C3H6O2: d647, e11, e135, h89, m111, p213 C3H6O2S: m21, m293 C3H6O3: d397, d398, d503, L1, L2, m38, m259, t388 C3H6O3S: p198 C3H6S: p206, p228, t345a C3H6S3: t431 C3H7Br: b332, b333 C3H7BrO: b334 C3H7Cl: c210, c211 C3H7ClO: c111, c152, c213, c214 C3H7ClOS: c136 C3H7ClO2: c212 C3H7ClO2S: p197 C3H7Cl2OP: p236 C3H7Cl3Si: d194, p237 C3H7I: i48, i49 C3H7N: a82, p226 C3H7NO: a28, d522, m110, p212 C3H7NO2: a73, a74, a75, a76, e91, m258, n73, n74 C3H7NO2S: c370 C3H7NO3: i105, n75, p233, s4 C3H7NO5S: a288 C3H7NS: d620 C3H7NS2: d517 C3H7O5P: c17 C3H8: p191 C3H8ClN: c224 C3H8Cl2Si: c75, c150
1.64
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C3H8IN: d549 C3H8N2O: d623, e230 C3H8N2O2: e92, f29 C3H8N2S: d621 C3H8O: e171, p202, p203 C3H8OS2: d425, m305 C3H8O2: d441, m65, p194, p195 C3H8O2S: m20 C3H8O3: g16 C3H8S: e182, p199, p200 C3H8S2: p196 C3H9Al: t327 C3H8BO3: t319 C3H9B3O6: t320 C3H9BrGe: b363 C3H9BrSi: b364 C3H9ClGe: c254 C3H9ClSi: c255 C3H9IOS: t378 C3H9IS: t377 C3H9ISi: i55 C3H9N: i88, m246, p220, t328 C3H9NO: a269, a270, a271, a272, m69, m119, t329 C3H9NO2: a268 C3H9N3Si: a319 C3H9O3P: d551, t364 C3H9O4P: t363 C3H10N2: m247, p192, p193 C3H10N2O: d43 C3H11Br2N3S: a171 C4 C4Cl2F6: d185 C4Cl2F8: d206 C4Cl2O3: d189 C4Cl3F7: h3 C4Cl6: h25 C4D6O3: a23 C4F6O3: t288
C4HBrO3: b299 C4HCl3N2: t246 C4HF7O2: h2 C4H2: b376 C4H2Br2S: d101 C4H2Cl2N2: d223 C4H2Cl2O2: f38 C4H2Cl2O3: d208 C4H2Cl2S: d228 C4H2F6O2: t294 C4H2O3: m2 C4H2O4: a42 C4H3BrS: b353 C4H3ClS: c242 C4H3Cl2N3O: d193 C4H3IS: i52 C4H4: b407 C4H4BrNO2: b351 C4H4Br2O2: d69 C4H4Br2O4: d98 C4H4ClNO2: c239 C4H4Cl2: d168 C4H4Cl2O2: s19 C4H4Cl2O3: c25 C4H4N2: b380, p244, p247, p267, s18 C4H4N2O2: d400, p268 C4H4N2O2S: d388 C4H4N2O3: b1 C4H4N2O5: a79 C4H4N4: d40 C4H4O: f40 C4H4O2: d422 C4H4O3: s16 C4H4O4: f37, ml C4H4S: t154 C4H5BrO4: b350 C4H5Cl: c63, c70 C4H5ClO: c283, c366, m28 C4H5ClO2: a87 C4H5ClO3: e191 C4H5Cl3O2: e226 C4H5F3O2: e227 C4H5N: b400, c365, m27, p269 C4H5NO: m290
C4H5NO2: e106, m193, s17 C4H5NO2S: e32 C4H5NO3: h182 C4H5NS: a93 C4H5N3: a284, i11 C4H5N3O: a198 C4H5N3OS: a191 C4H5N3O2: a154, a155, c289, m322 C4H6: b373, b374, b490, b491 C4H6Br2O2: d70 C4H6ClN: c73 C4H6Cl2: d165, d166, d167 C4H6Cl2O: c74 C4H6Cl2O2: m220 C4H6Cl3NSi: c294 C4H6N2: a151, m280, m281, m282 C4H6N2O2: e114 C4H6N2S: a229 C4H6N4O: d39 C4H6N4O3: a77 C4H6O: b406, c282, d356, d545a, m24, m396 C4H6O2: b386, b401, b402, b403, b492, b497, b498, c367, m26, m114, v2 C4H6O2S: d368 C4H6O3: a22, a24, m334, o56, p225 C4H6O4: d566, s14 C4H6O4S: m23, t148 C4H6O5: h180, h181, o61 C4H6O6: t1, t2 C4H7Br: b240, b241, b242 C4H7BrO2: b244, b280, b307, e75, m146 C4H7Cl: c68, c69, c163, c164 C4H7ClO: b501, c67, c115, i78 C4H7ClO2: c71, c72, e94, m189 C4H7Cl2NSi: c291 C4H7Cl3O: t237
1.65
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C4H7Cl3O2Si: c13 C4H7FO2: e133 C4H7N: b499, i76 C4H7NO: h145, i98, m25, m334, p231, p275 C4H7NO2: m331 C4H7NO3: a46, e192, p12 C4H7NO4: a314, i10 C4H7NS: m419 C4H7N3O: c278 C4H8: b395, b396, b397, c300, m383 C4H8BrCl: b251 C4H8Br2: d67, d68 C4H8Br2O: b149 C4H8Cl2: d162, d163, d164 C4H8Cl2O: b158, d181 C4H8Cl2Si: a89 C4H8N2O: a105, a150 C4H8N2O2: d526, s13 C4H8N2O3: a313, g26 C4H8N2S: a101, t79 C4H8O: b393, b404, b405, b493, e3, e232, i73, m96, m377, m385, t66 C4H8OS: e220, t107, t164 C4H8O2: b398, b399, b495, d646, e51, h106, i75, m389, m390, p229 C4H8O2S: e164, m294, t106 C4H8O3: e23, e150, h116, h127, m64, m291, m298 C4H8O3S: m384 C4H8S: a95, t81 C4H8S2: d707 C4H9Br: b238, b239, b310, b311 C4H9BrO: b285 C4H9Cl: c64, c65, c161, c162 C4H9ClO: c66, c110 C4H9ClO2: c89, c104, m67 C4H9ClSi: c93 C4H9Cl3Si: b483, c225 C4H9Cl3Sn: b481
C4H9F: f20 C4H9I: i30, i31, i43, i44 C4H9Li: b457, b458 C4H9N: p270 C4H9NO: a321, b394, b494, d458, e52, i74, m388, m448 C4H9NO2: a138, a139, a222, b464, b465, h115, i71, n50 C4H9NO2S: a204 C4H9NO3: a187, a188, a189, a190, i70, n51 C4H9NSi: c298 C4H9N3O2: c277 C4H10: b378, m375 C4H10ClN: d467 C4H10ClO2PS: d292 C4H10ClO3P: d291 C4H10Cl2Si: b160, m392 C4H10N2: p179 C4H10N2O: a231 C4H10N2O4S: a8 C4H10O: b391, b392, d300, m381, m382, m393 C4H10OS: e153 C4H10OS2: b186 C4H10O2: b381, b382, b383, b384, b385, b453, d438, d439, e34, m95 C4H10O2S: m430, t149 C4H10O2S2: d424, h118 C4H10O3: b181, b390, t351 C4H10O3S: d338 C4H10O4S: d336 C4H10S: b388, b389, d337, i104, m378, m379, m380, m395 C4H10S2: b387, d294a C4H10S3: b187 C4H10Zn: d344 C4H11ClSi: c166 C4H11N: b377, b417, b418, d267, d268, d520, i63 C4H11NO: a136, a137, a221, d315, d465, e38, e62
C4H11NO2: a165, a220, d245, d440 C4H11NO3: t423 C4H11O2PS2: d296 C4H11O3P: d314 C4H12BrN: t93 C4H12ClN: t94 C4H12Ge: t109 C4H12IN: t95 C4H12N2: b379, b452, d521, m376, m377 C4H12N2O: a166 C4H12N2S2: c369 C4H12OSi: m108 C4H12O3Si: t326a C4H12O4Si: t92 C4H12Pb: t112 C4H12Si: t120 C4H12Sn: t123 C4H13N3: d298 C4H14OSi2: t105 C4H16O4Si4: t103 C5 C5Cl5N: p12 C5Cl6: h27 C5D5N: p249 C5H3Br2N: d97 C5H3ClO2: f48 C5H3Cl2N: d224 C5H4BrN: b345, b346 C5H4ClN: c233 C5H4FN: f23 C5H4F8O: o18 C5H4N2O3: n76 C5H4N4O: h186 C5H4N4O3: u13 C5H4OS: t156 C5H4O2: f39 C5H4O2S: t157 C5H4O3: c271, f42 C5H5ClN2: a149 C5H5ClN2O2: c167 C5H5F3O2: t293
1.66
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C5H5N: p248 C5H5NO: h173, h174, h175, p262 C5H5NO2: d401, h177 C5H5NO3S: p263 C5H5N3O2: a248 C5H5N3O4: a160 C5H5N5: a69 C5H6: m166 C5H6Br2N2O2: d76 C5H6Cl2N2O2: d173 C5H6Cl2O2: d195, g15 C5H6Cl4O2: t225 C5H6N2: a281, a282, a283, g14, m397, v7 C5H6N2O: a47, a197 C5H6N2OS: h128 C5H6N2O2: d391 C5H6N2O2: e107 C5H6O: m59, m252 C5H6OS: f44 C5H6O2: f46 C5H6O3: g12 C5H6O4: c270, m245 C5H6O4S3: b155 C5H6S: m427 C5H7BrO2: m145 C5H7BrO3: e79 C5H7ClO3: m183, m188 C5H7N: m404 C5H7NO: f47 C5H7NO2: e105 C5H7NS: t158 C5H7N3: a228, d44 C5H7N3O: a192 C5H8: c358, m147, m148, m171, p16, p17, p18, p19, p57 C5H8Br2O2: e115 C5H8Br4: p21 C5H8F4O: m414 C5H8N2: d542, d603, e159, p272 C5H8N2O: m449 C5H8N2O2: d538 C5H8N4O12: p22
C5H8O: c356, c368, d363, e8, m172, p51 C5H8O2: a80, e56, g13, i84, m58, m161, m162, m163, m192, m217, m296, p31, p32, p40, p40a, p50, p208 C5H8O3: e196, m112, o58 C5H8O4: d545, g11, m274, m412 C5H9Br: b263 C5H9BrO2: e81, e82, m144 C5H9Cl: c79 C5H9ClO: c192, d600, m179, p44 C5H9ClOS: b437, c229 C5H9ClO2: b436, e99, e100, i65, m186 C5H9F3O2Si: t376 C5H9N: d602, m178, p33, t78 C5H9NO: b455, b456, c357, e193, m406 C5H9NO2: m118, p273 C5H9NO4: g9 C5H9N3: i8 C5H10 c352, m158, m159, m160, p47, p48, p49 C5H10Br2: d91 C5H10ClNO: d288 C5H10Cl2: d209 C5H10Cl2O2Si: c12 C5H10Cl2Si: c351 C5H10N2: d293, d474 C5H10N2O: d543, p180 C5H10N2O3: g10 C5H10O: a91, c355, d596, i108, m157, m164, m165, m173, m174, m415, p27, p41, p42, t76 C5H10OS: m425 C5H10O2: d454, d598, e208, h139, h156, h157, i66, i87, m102, m175, m176, m177, m286, p36, p219, t68
C5H10O2S: e183, m306, m417 C5H10O3: d289, d451, e162, m68, m278 C5H10O4: b184 C5H10O5: a310, r5, x8 C5H11Br: b305, b322, b323 C5H11BrO2: b269 C5H11BrO2Si: t370 C5H11Cl: c91, c148, c149, c191 C5H11ClSi: a86 C5H11Cl2N: b159 C5H11I: i42, i47 C5H11N: a90, m405, p183 C5H11NO: d304, d597, h167, m307, t69 C5H11NO2: a253, a254, b128, e231, i81, v1 C5H11NO2S: m37 C5H11NO3: n58 C5H11NS2: d295 C5H11O5P: t365 C5H12: d592, m149, p28 C5H12ClN: d475 C5H12Cl2O2Si: b157 C5H12N2: a267, m368, m369 C5H12N2O: b487, t124 C5H12N2O2: b430, o46 C5H12N2S: t122 C5H12N2S2: p271 C5H12O: b460, d452, d595, e209, m153, m154, m155, m156, p37, p38, p39 C5H12OSi: t379 C5H12O2: d594, m57, p30 C5H12O2S: e221 C5H12O3: h141, m66, t352, t425 C5H12O3S: p34 C5H12O4: p20, t114 C5H12O5: x7 C5H12S: b463, e210, m150, m151, m152, p35
1.67
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C5H12Si: t380 C5H13N: a251, a252, d601, m167, m168, m169, p53 C5H13NO: a213, a214, a255, d472, d473, e47, i89, p221 C5H12NOSi: t368 C5H13NO2: a176, d442, d471, d523, m223 C5H13N3: t110 C5H14N2: d593, p29, t113 C5H14OSi: e50, t372 C5H14O2Si: d255 C5H15N3: a175 C6 C6BrD5: b230 C6BrF5: b321 C6Cl4O2: t24, t25 C6Cl5NO2: p10 C6Cl6: h24 C6D6: b10 C6D12: c313 C6F6: h43 C6HBr5O: p6 C6HCl4NO2: t30 C5HCl5: p8 C6HCl5O: p11 C6H2BrFN2O4: b272 C6H2Cl2O4: d172 C6H2Cl3NO2: t242a C6H2Cl4: t22, t23 C6H3Br2F: d84 C6H3Br2NO2: d90 C6H3Br3O, t207 C6H3ClFNO2: c121 C6H3ClN2O4: c94, c95 C6H3ClN2O4S: d627 C6H3Cl2NO2: d203, d204, d205 C6H3Cl3: t222, t223, t224 C6H3Cl3O: t240, t241 C6H3Cl3O2S: d155 C6H3FN2O4: d633
C6H3N3O6: t382, t383 C6H3N3O7: p173 C6H4BrCl: b247, b248, b249 C6H4BrClO2S: b231 C6H4BrF: b288, b289, b290 C6H4BrNO2: b314 C6H4BrN3O4: b271 C6H4Br2: d65 C6H4Br2N2O2: d89 C6H4Br3N: t203 C6H4ClF: c116, c117, c118 C6H4ClFO: c122 C6H4ClI: c135 C6H4ClNO2: c175, c176, c177, c234, c235 C6H4ClNO3: c186 C6H4ClNO4S: n35 C6H4ClO2P: p110 C6H4Cl2: d152, d153, d154 C6H4Cl2N2O2: d202 C6H4Cl2O: d210, d211, d212, d213 C6H4Cl2O2: d171 C6H4Cl2O2S: c43 C6H4Cl3N: t220, t221 C6H4Cl4Si: c208 C6H4FNO2: f21 C6H4F2: d345 C6H4INO2: i45 C6H4I2: d402 C6H4N2: c295, c296, c297 C6H4N2O2: b43 C6H4N2O4: d626 C6H4N2O5: d635 C6H4N4: a273 C6H4N4O6: t381 C6H4O2: b59 C6H5BO2: c21 C6H5Br: b229 C6H5BrO: b325, b326 C6H5BrS: b354 C6H5Cl: c41 C6H5ClHg: p126 C6H5ClN2O2: c172, c173a, c173, c174
C6H5ClO: c194, c195, c196 C6H5ClO2: c87, c88 C6H5ClO2S: b23 C6H5ClS: c243 C6H5ClSe: p151 C6H5Cl2N: d142, d143, d144, d145, d146, d147 C6H5Cl2OP: p137 C6H5Cl2O2P: p105 C6H5Cl2P: d216 C6H5Cl2PS: p138 C6H5Cl3Si: p155 C6H5D: b9 C6H5F: f11 C6H5FO: f22 C6H5FO2S: b24 C6H5F7O2: e137 C6H5I: i27 C6H5NO: n78, p251, p252, p253 C6H5NOS: t153 C6H5NO2: n30, n83, p255, p256, p257 C6H5NO3: h176, n60, n61 C6H5NO4: c272 C6H5N3: b62 C6H5N3O: h103 C6H5N3O4: d625 C6H6: b8a C6H6AsNO6: h153 C6H6BrN: b225, b226, b227 C6H6ClN: c33, c34, c35 C6H6ClNO: a148, c141 C6H6ClNO2S: c42 C6H6Cl2N2: d215 C6H6Cl6: h26 C6H6FN: f9 C6H6HgO: p127 C6H6IN: i26 C6H6N2O: e43, p250, p254 C6H6N2O2: n24, n25, n26 C6H6N2O3: a244, a245, m84
1.68
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C6H6N4O4: d637 C6H6O: p64 C6H6OS: a57, m428 C6H6O2: a44, d377, d378, d379, m251 C6H6O2S: b20, t155 C6H6O3: h146, m253, t304, t305 C6H6O3S: b22 C6H6O4: d460 C6H6O5S: d382 C6H6O6: p207 C6H6O8S2: d381 C6H6S: t159 C6H7AsO3: b11 C6H7BO2: b12 C6H7ClN2: c202, c203, c204, c205 C6H7N: a298, a299, m398, m399, m400 C6H7NO: a257, a258, a259, m101, m403, p264, p265 C6H7NO2S: b21 C6H7NO3S: a118, a119, a120, s23 C6H7NO6S2: a117 C6H7NS: a293 C6H7N3O: p258 C6H7N3O2: n67, n68, n69 C6H7O2P: p135 C6H7O3P: p136 C6H8AsNO3: a115, a116 C6H8Cl2O2: h62, m221 C6H8N2: a223, a224, a225, a226, a227, d238, m121, m257, p107, p108, p109, p118 C6H8N2O: a208, o63 C6H8N2O2S: b25, s22 C6H8N2O3S: d32 C6H8N4: p181 C6H8O: c331, d525, h40, m216 C6H8O2: b375, c322, d364, h42, m214, v4
C6H8O3: a36, d365, f43, h183 C6H8O4: d524, d544 C6H8O6: a312, g8, i59 C6H8O7: c273 C6H9Br: b262 C6H9ClO: c78 C6H9ClO3: e95, e96 C6H9F3O2: b484 C6H9NO: v11 C6H9NOS: m418 C6H9NO2: b438 C6H9NO6: n21 C6H9N3: a158 C6H9N3O2: a159, c284, h83 C6H10: c330, d488, h41, h82, m351 C6H10N2: e172, p184 C6H10N2O2: c323 C6H10N2O4: d279 C6H10N2O5: a14 C6H10N4: p26 C6H10O: c328, d26, d361, e5, e6, h78, m215, m350, m352 C6H10O2: a96, c353, d359, e40, e104, e112, e166, h61, h71, h76, m349 C6H10O3: d436, e53, e54, h121, p214 C6H10O4: d325, d608, e17, h57, m272 C6H10O4S: t151 C6H10O4S2: d709 C6H10O5: d326 C6H10O6: d616 C6H10O8: t84 C6H10S: d27 C6H11Br: b261 C6H11BrO2: b295, e76, e77, e78 C6H11Cl: c77 C6H11ClO: h73 C6H11ClO2: b433, c151, e97
C6H11Cl3Si: c344 C6H11I: i32 C6H11N: d25, h63, m339, m416 C6H11NO: c329, e217, f35, m376, o57, t352 C6H11NO2: e61 C6H12: c312, d498, d499, e84, h75, m213, m347, m348 C6H12Br2: d86 C6H12ClN: c160 C6H12ClNO: c112 C6H12Cl2: d187 C6H12Cl2O: b161 C6H12Cl2O2: b156, d169 C6H12Cl3O3P: t417 C6H12Cl3O4P: t416 C6H12F3NOSi: m440 C6H12NO3P: d293a C6H12N2: d45, t269 C6H12N2O3: s15 C6H12N2O4S2: c371 C6H12N2S4: b174 C6H12N2Si: t373 C6H12N4: h52 C6H12O: a100, b488, c327, d497, d618, e87, h54, h72, h77, i72, m346, o47 C6H12O2: b412, b413, b414, d500, e49, e88, e89, h66, h142, i62, m227, m302, m340, m341, m342, t77 C6H12O3: d435, d457, d515, e37, e152, e154, i99, p2, p232, t67 C6H12O4Si: d23 C6H12O6: f36, g1, g6, i23, m11, s6 C6H12O7: g4 C6H12S: c326 C6H13Br: b294 C6H13BrO2: b267 C6H13Cl: c129 C6H13ClO: c130
1.69
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C6H13ClO2: c81 C6H13ClO3: c105 C6H13Cl3O3Si: t415 C6H13I: i39 C6H13N: c334, h51, m371, m372, m373, m374 C6H13NO: d260, d553, e184, h144, p187 C6H13NO2: a183, a184, h122, i79, L4, L5 C6H13NO4: b182 C6H13NO4S: m451 C6H13NO5: g5, t428 C6H14: d489, d490, h55, m336, m337 C6H14ClN: d272 C6H14Cl4OSi2: b168 C6H14N2: a182, a219, c318, c319 C6H14N2O: a172, h123 C6H14N2O2: L12 C6H14N4O2: a311 C6H14O: b449, d417, d492, d492, d494, d495, d496, d701, e83, h68, h69, h70, m343, m344, m345 C6H14OSi: a97, e33, t374 C6H14O2: b410, d251, d252, d491, e179, h58, h59, h60, i86, m338 C6H14O2S: d704 C6H14O3: b191, d253, e35, e156, h65, h172, t322 C6H14O4: e127, t270 C6H14O4S: d703 C6H14O6: d738, m10, s5 C6H14O6S2: b188 C6H14S: b451, h64 C6H14Si: a104 C6H15Al: t263 C6H15As: t266 C6H15B: t268 C6H15Bi: t267 C6H15ClO2Si: c154 C6H15ClO3Si: c231 C6H15ClSi: b446
C6H15Ga: t274 C6H15In: t276 C6H15N: d411, d696, e85, e86, h80, m353a, t264 C6H15NO: a185, a216, a217, b419, b448, d270 C6H15NOSi: m439 C6H15NO2: d254, e118 C6H15NO3: t264 C6H15NO6S: t424 C6H15N3: a174 C6H15O3B: t260 C6H15O3P: d420, t282 C6H15O3PS: t285 C6H15O4P: t280 C6H15P: t281 C6H15Sb: t265 C6H16Cl2Si2: t104 C6H16N2: d302, h56, t108 C6H16OSi: p218 C6H16Br2OSi2: b150 C6H16O2Si: d249 C6H16O3SSi: m22 C6H16O3Si: t266b C6H16Si: t284 C6H17NO3Si: a280 C6H17NO5S: b180 C6H17N3: i9 C6H18LiNSi2: L11 C6H18N2Si: b172 C6H18N3ClSi: c257a C6H18N3OP: h53 C6H18N4: t272 C6H18OSi2: h50 C6H18O3Si3: h48 C6H19NOSi2: b210 C6H19NSi2: h49 C6N4: t37
C7 C7F5N: p23 C7H3BrClF3: b250 C7H3BrF3NO2: b315
C7H3ClF3NO2: c182, c183, c184 Cl7H3ClN2O5: d630 C7H3ClN2O6: c96 C7H3Cl3O: d160, d161 C7H4BrF3: b233, b234 C7H4ClFO: f14 C7H4ClF3: c51, c52, c53 C7H4ClN: c47, c48 C7H4ClNO: c206 C7H4ClNO3: n41, n42 C7H4ClNO4: c178, c179, c180, n66 C7H4Cl2O: c55, c56, d150 C7H4Cl2O2: d156, d157, d158 C7H4Cl3F: t233 C7H4Cl4S: t34 C7H4F3NO2: n88, n89 C7H4F12O: d718 C7H4I2O3: h111 C7H4N2O2: n40 C7H4N2O6: d628, d629 C7H4N2O7: d638 C7H4O3S: h104 C7H4O4S: s24 C7H5BrO: b66, b228 C7H5BrO2; b232 C7H5BrO3: b348 C7H5ClF3N: a144, a145, a146 C7H5ClN2: a141 C7H5ClO: b67, c38, c39 C7H5ClOS: p103 C7H5ClO2: c45, c46, c46a, c237, c238, p102 C7H5ClO3: c193 C7H5Cl2F: c119 C7H5Cl2N: d196 C7H5Cl2NO: d151 C7H5Cl3: t248, t249 C7H5FO: b69, f10 C7H5FO2: f12, f13 C7H5F3: t300 C7H5F3N2O2: a241, a242 C7H5F3O: t290
1.70
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C7H5F4N: a179 C7H5IO2: i29 C7H5IO3: i51 C7H5I2NO2: a156 C7H5N: b51 C7H5NO: b63, p121 C7H5NO3: n27, n28 C7H5NO3S: s1 C7H5NO4: n37, n38, n39, p259, p260, p261 C7H5NO5: h154 C7H5NS: b60, p122 C7H5NS2: m17 C7H5N3O2: a238, n36, n55 C7H5N3O2S: a240 C7H5N3O6: t386 C7H6BrClO: b252 C7H6BrNO2: n46 C7H6BrNO3: h155 C7H6Br2: b236, d102 C7H6ClF: c123, c124, c125, f16 C7H6ClNO: c40 C7H6ClNO2: a140, c187, c188, c189, n47 C7H6ClNO3: c140 C7H6Cl2: c59, c60, d229, d230, d231 C7H6Cl2O: d191, d192 C7H6F3N: a129, a130, a131 C7H6INO2: a203 C7H6N2: a124, a125, a126, b38 C7H6N2O3: n29 C7H6N2O4: a237, d639, d640, d641 C7H6N2O5: d631, d33a C7H6N2S: a128, m15 C7H6O: b3 C7H6OS: t143 C7H6O2: b44, h94, h95, h96, m240 C7H6O2S: m16 C7H6O3: d375, d376, f41, h99, h100, h101
C7H6O4: d383, d384, d385 C7H6O5: t306 C7H6O6S: s28 C7H7Br: b85, b355, b356, b357 C7H7BrO: b235, b301, b302, b303 C7H7Cl: b89, c244, c245, c246 C7H7ClN4O2: c241 C7H7ClO: c57, c139, c158, c159 C7H7ClO2S: t177 C7H7ClO3S: m49 C7H7ClS: c248 C7H7Cl3Si: b123, t192 C7H7F: f24, f25, f26 C7H7FO: f15, f19 C7H7FO2S: t178 C7H7I: i53, i54 C7H7IO: i41 C7H7N: v9, v10 C7H7NO: a53, a54, a55, b4, f31 C7H7NO2: a121, a122, a123, h97, h98, m401, m402, n85, n86, n87 C7H7NO3: a286, a287, m81, m82, m323, m324, n44, n45 C7H7NO4S: c16 C7H7N3: a201, a202, m136 C7H8: b129, c310, t167 C7H8BrN: b304 C7H8ClN: c58, c142, c143, c144, c145, c146 C7H8ClNO: c138a, c138 C7H8ClNO2S: c247 C7H8Cl2Si: d198, m358 C7H8N2O: a114, b72, p165 C7H8N2O2: d33, h165, m315, m316, m317 C7H8N2O3: m78, m79, m80 C7H8N2S: p154 C7H8N4O2: t138
C7H8O: b78, c279, c280, c281, m48 C7H8OS: m429 C7H8O2: d389, d390, h105, m87, m88, m89, m276 C7H8O2S: t173 C7H8O3: e136, f45, m304 C7H8O3S: m127, t176 C7H8S: m367, p128, t147 C7H9ClSi: m357 C7H9N: b79, d604, d605, d606, d607, e211, e212, e213, m122, t180, t181, t182 C7H9NO: a218, b98, h126, m42, m43, m44 C7H9NO2: d456 C7H9NO2S: t174 C7H9NO3S: a294 C7H9NS: m422, m423 C7H9N3O: a133 C7H10: b130 C7H10N2: a157, a177, a178, d476, m360, t168, t169, t170, t171 C7H10N2O: m94 C7H10N2OS: h129 C7H10N2O2: e173, m232 C7H10N2O2S: a210, t175 C7H10O: m61, m62, n108, t65 C7H10O2: a40, c359 C7H10O3: e12, h158, m333, t341 C7H10O4: d550 C7H10O5: d459 C7H10Si: m366 C7H11Br: b318 C7H11BrO4: d286 C7H11ClO: c316 C7H11ClO4: d290 C7H11NO: c340, h110 C3H11NO2: a52 C7H11NO3: m335 C7H11NO5: a45 C7H11NS: c341
1.71
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C7H12: c311, h22, m207, m208, n107 C7H12O: c309, c315, m204, m205, m206, m268 C7H12O2: b417, c317, d355, e121 C7H12O3: e168, e195 C7H12O4: d317, d318, d552, d574, d575, d576, h8, m273, t126 C7H12O5: g17, g18 C7H12O6Si: m435 C7H12O7: g3 C7H13Br: b260, b306 C7H13BrO2: e80 C7H13ClO: h18 C7H13N: a250, d333, q5 C7H13NO: a317, c339 C7H13NO2: a152 C7H14: c306, h19, m194 C7H14ClN: c113 C7H14N2: d416 C7H14N2O: a278 C7H14N2O2: e201 C7H14O: c308, c342, d569, d578, h5, h15, h16, h17, m197, m198, m199, m200, m201, m202, m203, m267 C7H14O2: b479, c307, d258, e123, e170, e198, h10, i80, m75, m265, p52 C7H14O3: i68 C7H14O6: m256 C7H15Br: b291, b292 C7H15Cl: c128 C7H15ClO2: c82 C7H15Cl3Si: h21 C7H15I: i37 C7H15N: c324, d591, e202, e203, m209, m211, m211 C7H15NO: d469, e157, h125, m375, p185, p186 C7H15NO2: p276 C7H15NO3: c18, m452 C7H15O5P: e119
C7H16: d570, d571, d572, d573, e197, h6, m264, t337 C7H16BrNO2: a38 C7H16ClNO2: a39 C7H16N2: a215, m301, t366 C7H16N2O: a277 C7H16N2O2: p182 C7H16O: d577, h12, h13, h14, m266, t338 C7H16O2: d257, d331, m394 C7H16O2Si: d256, e228 C7H16O3: d700, t278, t321 C7H16O4: t91 C7H16S: h9 C7H17N: h20, m269a C7H17NO: d275 C7H17NO2: b420, d274 C7H17NO5: m255 C7H17NO6S: t427 C7H17NO7S: t426 C7H18N2: d330, h7, i103, t118 C7H18N2O: b173 C7H18N2O2: a276 C7H18O2Si: b486 C7H18O3Si: b485, t266a C7H19NOSi2: b209 C7H19NSi: d343, t371 C7H19N3: d42, t419 C7H21N3Si: t420 C8 C8Br4O3: t10 C8Cl4O3: t31 C8D10: e67 C8HCl4NO2: t32 C8H3NO5: n72 C8H4BrNO2: b296 C8H4Cl2O2: b14, b15, p171 C8H4Cl2O4: d217 C8H4Cl6: b202 C8H4F3N: t298 C8H4F6: b206 C8H4N2: d236, d237 C8H4O3: p168
C8H5Br5: p5 C8H5ClO4: c209 C8H5Cl3O3: t242 C8H5F3O: t289 C8H5F3O2S: t137 C8H5F6N: b205 C8H5NO: b68 C8H5NO2: i21, p170 C8H5NO3: h166, i58 C8H5NO6: n31, n32, n33, n34 C8H6: p82 C8H6BrClO: b246 C8H6BrN: b329 C8H6Br2O: d64 C8H6Br4: t11, t12 C8H6ClF3: t299 C8H6ClN: c201 C8H6ClNO3: c171 C8H6Cl2O: d140 C8H6Cl2O3: d214 C8H6Cl4: t35 C8H6N2: q4 C8H6N2O2: a266, n65 C8H6N2O6: d636, m228 C8H6O: b42 C8H6O2: b13, p169 C8H6O3: b70, c14, f33, m239 C8H6O4: b16, b17, m241, p167 C8H6S: b61 C8H7Br: b349 C8H7BrO: b221, b222 C8H7BrO2: b327, b328 C8H7ClO: c28, c29, c30, p81, t187, t188, t189 C8H7ClOS: b91 C8H7ClO2: b90, c200, m53, p69 C8H7ClO3: c86, c197, m184, m185 C8H7ClO4: c133 C8H7FO: f8 C8H7N: i18, p80, t184, t185, t186
1.72
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C8H7NO: m9, m137, t190 C8H7NO2: h133, n84 C8H7NO3: n22, n23 C8H7NO3S: t179 C8H7NO4: a116a, m318, m319, m320, m321, n62, n63, n64 C8H7NO5: m83 C8H7NS: b121, m135 C8H7N3O2: a153 C8H8: s11 C8H8BrNO: b219 C8H8Br2: d79, d104, d105 C8H8ClNO: c23 C8H8ClNO3S: a10 C8H8Cl2: d233, d234 C8H8Cl2Si: p166 C8H8HgO2: p125 C8H8N2: a260, m128 C8H8N2OS: a207 C8H8O: a31, e9, m126, p76a C8H8OS: m424, p153 C8H8O2: b41, b97, h90, h91, h92, m45, m46, m129, m130, m131, m132, p78, p79 C8H8O2S: t160 C8H8O3: d370, d380, h130, h131, h137, h138, h160, m8, m50, m51, m52, m242, m277, m410, p68, t74 C8H8O4: d21, h132 C8H8O4S: a33 C8H9Br: b282, b283, b368, b369, b370, b371 C8H9BrO: b270, b286 C8H9BrO2: b268 C8H9Cl: c107, c108, c258, c259, c260, c261 C8H9ClO: c90 C8H9N: b100, c360, i22, m447
C8H9NO: a18, a108, a109, a110, b96, m249 C8H9NO2: a15, a16, a17, a211, a212, b88, d556, d557, d558, d559, e187, e214, e215, e216, m47, m116, m117, p115, t75 C8H9NO3: a206, h163, h164, m85, n59 C8H9NO4: d444 C8H10: e68, m244, x4, x5, x6 C8H10N2O: d560 C8H10N4O2: c1, d240 C8H10O: b131, d579, d580, d581, d582, d583, d584, e28, e199, m105, m106, m107, m138, m139, m140, p112, p113 C8H10O2: b18, d431, d432, d433, m54, p72, p111 C8H10O3: c320, d446, h135, h159 C8H10O3S: m434 C8H10O4: d263 C8H10S: b105 C8H11ClSi: d585 C8H11N: b103, d477, d478, d479, d480, d481, d482, d483, e63, e64, e65, e180, e181, m141, m142, p114, t367 C8H11NO: a173, a256, a261, a262, a300, d470, e24, h117, m55, m71, m72, m73, p266 C8H11NO2: d427, d428, d429 C8H11NO2S: m433 C8H11NO3: e132 C8H11NO3S: d463 C8H11N5: p93 C8H12: c345, v6 C8H12N2: d239, d586, t119, x9 C8H12N2O2: d410 C8H12N2O3: d280 C8H12N4: a323
C8H12O: e234 C8H12O2: d508, e219, h185, n111 C8H12O3: e194 C8H12O4: d305, d316 C8H12O6Si: t195 C8H12Si: d587 C8H13N: e235 C8H14: c349, d532, o17, o44, v5 C8H14N2: p188 C8H14O: c348, d510, e7a, m262, o45 C8H14O2: b459, c333, c363, d537, i69, m195 C8H14O3: b415, b496, d712, e90 C8H14O4: b447, d320, d335, d536a, e149, o24 C8H14O4S: d619 C8H14O4S2: d708 C8H14O6: d339, d340 C8H14O6Si: t194 C8H15ClO: e145, o37 C8H15N: o27 C8H15NO: d367 C8H15NO2: d468, e204, e205, e206 C8H16: c346, d506, d507, e108, o39, t357 C8H16ClN: c227 C8H16O: c347, d509, e109, e110, o34, o35, o36, o40 C8H16O2: b431, c321, e142, e143, h79, i67, m261, o29, p234 C8H16O4: e36, t125 C8H17Br: b320 C8H17Cl: c190 C8H17Cl3Si: o43 C8H17I: i46 C8H17N: c350, d511 C8H17NO2: p189 C8H17NO3S: c335 C8H17O5P: t283
1.73
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C8H18: d533, e140, e174, e175, m260, o22, t100, t353, t354, t355 C8H18ClNO2: a49 C8H18Cl2O2Si3: d186 C8H18Cl2Si: d184 C8H18Cl2Sn: d136a C8H18F3NOSi2: b212 C8H18N2: c314 C8H18N2O: m224, m367 C8H18N2O4S: h124 C8H18O: d115, d407, e144, o30, o31, o32, o33 C8H18OSi2: d713 C8H18OSn: d137 C8H18O2: d122, d535, e141, o25, o26, t356 C8H18O2S: d135 C8H18O3: b176, b411, d698, t277 C8H18O3S: d134 C8H18O3Si: t262 C8H18O4: b189 C8H18O4S: d131 C8H18O5: t51 C8H18S: d132, d133, o28 C8H18S2: b153, b154, d113, d114 C8H18Si2: b208 C8H19N: d107, d406, d418, d536, e147, o41, t102 C8H19NO: d412 C8H19NO2: b444, d247, d248 C8H19NO5: b183 C8H19O3P: d127 C8H20BrN: t48 C8H20ClN: t49 C8H20Ge: t56 C8H20N2: d534, o23, t101, t273 C8H20O3SSi: m19 C8H20O3Si: t261 C8H20O4Si: t47 C8H20O5P2: t59 C8H20O7P2: t58
C8H20Pb: t57 C8H20Si: t60 C8H20Sn: t62 C8H21NO: t50 C8H21NOSi2: b207 C8H21NO2Si: a275 C8H22N2O3Si: a167a, t324 C8H22N4: b145 C8H22O2Si2: b211 C8H23N5: t54 C8H24Cl2O3Si4: d207 C8H24O2Si3: o21 C8H24O4Si4: o20 C8H28N4Si4: o19 C9 C9F15N3: t432 C9H2Cl6O3: h30 C9H3Cl3O3: b32 C9H4O5: b31, c15 C9H5BrClNO: b255 C9H5Br2NO: d87 C9H5ClINO: c132 C9H5Cl2N: d225 C9H6BrN: b347 C9H6ClN: c236 C9H6ClNO: c134 C9H6N2O2: n77, t172 C9H6O2: b56, c276 C9H6O3: h108, h109 C9H6O4: i16 C9H6O6: b28, b29, b30 C9H7BrO: b259 C9H7ClO: c268 C9H7ClO2: c76 C9H7Cl3O3: t243 C9H7N: i110, q3 C9H7NO: h178, i20 C9H7NO3: h143, m285 C9H7NO4S: h179 C9H7N3O4S2: a247 C9H8: i17 C9H8Cl2O2: n109 C9H8N2: m409
C9H8N2O5: n43 C9H8O: c266, i15 C9H8O2: c267, d353 C9H8O3: h107 C9H8O4: a56, p124 C9H9BrO: b342 C9H9Cl: c217 C9H9ClO: c223 C9H9ClO3: c199, c249 C9H9N: d486, m283, m284 C9H9NO: m93 C9H9NO2: a9 C9H9NO2S: t191 C9H9NO3: a11, a12, b71 C9H9N3O: a265 C9H10: a84, i13, m411, v3 C9H10F3NO2: m123 C9H10N2: a301, p119a C9H10N2O: p147 C9H10N2O2: p83 C9H10N2O3: a132 C9H10O: a98, a99, c269, d360, i14, m113, p144, p145, p209, p217 C9H10O2: b77, d485, e9a, e25, e26, e69, h170, h171, m39, m40, m41, m356, p74, p146 C9H10O2S: b120 C9H10O3: d430, e29, e30, e39, e48, e151, e218, m91, m279, m292, p75 C9H10O4: d434, m288, m445 C9H10O8: c354 C9H11Br: b297, b331, b361, b362 C9H11BrO: b343 C9H11ClO3S: c114 C9H11Cl3Si: c226, m354 C9H11N: a83, a199, a200, c332, t71, t80 C9H11NO: d462, m355, m432 C9H11NO2: d464, e27, e59, e60, p84
1.74
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C9H11NO3: t437 C9H12: e158, i91, n91, p222, t333, t334, t335, v8 C9H12Cl2Si: m353 C9H12N2O4: a246 C9H12N2O6: u14 C9H12O: b95, d547, d548, i106, i107, p142, p143, p235, t358, t359, t362 C9H12O2: b110, e31, i85, n110, p73, p140, t348 C9H12O3: m196, t315 C9H12O3S: e222 C9H12S: p141 C9H13N: b480, d487, d622, e72, e169, e223, e224, i90, t330 C9H13NO: a264, b80, m86, n112 C9H13NO2: a263 C9H13N3O2: t438 C9H14BrN: p159 C9H14Br3N: p162 C9H14ClN: p160 C9H14IN: p161 C9H14N2: n94 C9H14O: d527, d529, i82, t340 C9H14OSi: t375 C9H14O2Si: d443 C9H14O3: b192 C9H14O3Si: p158 C9H14O5: d262, d321 C9H14O6: p201 C9H14Si: p163 C9H15NO: c361 C9H15NO2: d568 C9H15NO5: d261 C9H15NSi: t369 C9H16: h46 C9H16Cl2Si: c333a C9H16N2: d46 C9H16O: d528 C9H16O2: c325 C9H16O3: b467
C9H16O4: d303, d307, d322, d530, n95 C9H17ClO: n101 C9H17N: a88, n97 C9H17NO: m180 C9H17NO2: e177, e178 C9H18: i94, n102, p224, t339 C9H18NO: t117 C9H18N2O3Si: t325 C9H18O: d531, n100, n103 C9H18O2: e138, m329, n98 C9H18O3: d111 C9H19Br: b317 C9H19N: i95, t332 C9H19NO: d116 C9H19NO2: e120 C9H19NO3S: c337 C9H20: n92, t346 C9H20Cl2Si: m330 C9H20N2: a296 C9H20N2S: d136 C9H20O: n99, t347 C9H20O2: b450, n96 C9H20O3: d699, t279 C9H20O3Si: a103 C9H20O4: t408 C9H20O5: t53 C9H21BO3: t406 C9H21ClO3Si: c230 C9H21ClSi: c257 C9H21N: n104, t407 C9H21NO3: t309 C9H21N3: t275 C9H21O3B: t310 C9H21O3P: t313 C9H22N2: d327, n93 C9H22O3Si: p238 C9H23NO3Si: a279 C9H24N4: b147 C10 C10H2O6: b27 C10H4Cl2O2: d201
C10H6N2: b99 C10H6N2O4: d634 C10H6N2O4S: d48 C10H6O2: n11 C10H6O3: h152 C10H6O8: b26 C10H7Br: b312 C10H7BrO: b313 C10H7Cl: c168, c169 C10H7NO2: n57, n81, p123 C10H7NO8S2: n82 C10H8: a326, n2 C10H8BrNO2: b287 C10H8N2: d705 C10H8O: n9, n10 C10H8O2: d392, d393, d394, d395, m191 C10H8O3: h140 C10H8O3S: n18 C10H8O7S2: h150, h151 C10H8O8S2: d396 C10H9ClCrN2O3: b143 C10H9N: m407, m408, n17 C10H9NO: a51, a236 C10H9NO2: i19 C10H9NO3S: a234 C10H9NO4S: a193, a194, a195, a196 C10H9NO6: d561 C10H9NO6S2: a232, a233 C10H9N3: d706 C10H10ClFO: c120 C10H10ClNO2: c26 C10H10N2: a285, n4, n5 C10H10N2O: m365 C10H10O: d362, m190, p96, p98 C10H10O2: b64, s2 C10H10O3: b73, m60 C10H10O4: d588, d589, d590, h136, p152 C10H11BrO: b312a C10H11ClO3: c198 C10H11ClO4: t317 C10H11IO4: i28 C10H11N: p101
1.75
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C10H11NO2: a32, d448 C10H11NO4: c10 C10H11NO6: m226 C10H12: d244, t73 C10H12NO: b408 C10H12N2: a170, b81, b102 C10H12N2O2: p77 C10H12O: a94, b500, e55, i77, m97, m386, m387, m391, p94, p95 C10H12O2: e200, h112, h162, m70, m92, m98, m99, m100, p99, p100, p223 C10H12O3: d426, e41, e163, m300, p71, p230 C10H12O4: d447, m225, t314 C10H12O5: d306, p239, t316 C10H12O6: d514 C10H13Br: b298 C10H13BrO: b243 C10H13Cl: b434 C10H13NO: p129 C10H13NO2: e45 C10H13NO2S: b92 C10H13N5O4: a70 C10H14: b423, b424, b425, d282, d283, d284, i64, i100, i101, i102, t97, t98, t99 C10H14NO5PS: p3 C10H14N2: n20, p139 C10H14N2O: d323, d334 C10H14N4O4: d399 C10H14N5O7P: a72 C10H14O: b469, b470, b471, b472, b473, b477, c20, c362, i92, i102a, p58, t116, t254 C10H14O2: b432, b454, d450 C10H14O3: c6, c9 C10H14O4: m90, t318 C10H15BrO: b245
C10H15N: b421, d277, d278, d564, e233, i93, p97, t96 C10H15NO: d273, e1, e2 C10H15NO2: d451, p106 C10H15N5O10P2: a71 C10H16: a67, c2, d649, L6, L7, m453, p25, p175, p176, t5, t6, t253 C10H16ClN: b126 C10H16Cl2O2: d11 C10H16N2O8: e125 C10H16O: c3, c4, d352, d562, d563, L8, p177, p178, p243, t351 C10H16OSi: d519 C10H16O4: c5, d266 C10H16O4S: c7 C10H16O5: d265, d301 C10H16Si: b127 C10H17N: a66, p274 C10H17NO: c343, m450 C10H18: d1, d2, p174 C10H18N2O7: h119 C10H18O: b216, b441, b442, c265, d3, g2, i60, i83, i109, L9, m13, p190, t7, t350 C10H18O2: e112 C10H18O3: d599, t70 C10H18O4: b175, d9, d121, d332, d565 C10H18O4S: d341 C10H18O6: d421 C10H19ClO: d17 C10H19N: d12, t331 C10H19NO2: e207 C10H20: c301, d18 C10H20Br2: d73 C10H20N2S4: t61 C10H20O: b439, b440, c274, d6, d16, d357, d366, e148, m12, m303 C10H20O2: d14, e146, e190, m63, m170 C10H20O5: p45
C10H20O5Si: t326 C10H21Br: b265 C10H21Cl: c80 C10H21I: i33 C10H21N: d294 C10H21NO: a230 C10H22: d7 C10H22N2: d41 C10H22O: d15, d651, t72 C10H22O2: d10, d106 C10H22O3: d697, t413 C10H22O3S: d13 C10H22O4: t412 C10H22O5: b190 C10H22O7: d648 C10H23N: d19, d650 C10H23NO: d108 C10H23NO2: d259 C10H24N2: d8, t55, t111 C10H24N2O2: d645 C10H24N4: b146 C10H24OSi: m109 C10H24O3Si: m441 C10H24O6Si: t429 C10H27O3N3Si: t323 C10H30O3Si4: d5 C10H30O5Si5: d4 C11 C11H4F20O: i1 C11H7N: c293 C11H8O: n1 C11H8O2: h147, m310, n3 C11H8O3: h148, h149 C11H9Br: b309 C11H9Cl: c157 C11H9N: p148 C11H10: m308, m309 C11H10N2S: n19 C11H10O: m76, m77 C11H11N: n6 C11H12N2O: a309 C11H12N2O2: t436 C11H12O2: d358, e103, m104
1.76
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C11H12O3: e70 C11H13ClO: b428 C11H13ClO3: c250 C11H13NO: b119 C11H13NO2: t183 C11H13NO3: a302, a303 C11H13N3O: a113 C11H13N3O3S: d567 C11H14O: m103, p43 C11H14O2: b426, b427, d455, e46 C11H14O3: b409, b468, b476, e167 C11H14O4: e155 C11H14O4Si: d24 C11H15NO: d269 C11H15NO2: d276, d466, e122 C11H16: b482, p24, p54 C11H16N2: b114 C11H16O: b86, b461, b462, p56 C11H16O2: a68 C11H16O3: m299 C11H16O4: d714 C11H17N: b429, e160 C11H17NO: e225 C11H17NO2: b104 C11H17O3P: b93 C11H18O: d308, n105, p4 C11H18O5: d264 C11H19ClO: u11 C11H19N: a209 C11H20O: p55, u7 C11H20O2: u9 C11H20O4: d119, d287, d309 C11H21BrO2: b367 C11H22: u8 C11H22N2: d695 C11H22O: u1, u5, u6, u10 C11H22O2: m218, u3 C11H22O4Si: e7 C11H23NO2: a297 C11H24: u2 C11H24O: d310, u4 C11H24O3Si: t311
C11H24O4: t410 C11H24O6: p46 C11H24O6Si: t430 C11H26N2: d129 C11H26N2O6: b214 C12 C12Br10O: b197 C12H4Cl6S2: b203 C12H5ClO3: c170 C12H6Br4O4S: s25 C12H6O3: n7 C12H6O12: b19 C12H7NO2: n8 C12H8: a3 C12H8Br2: d66 C12H8Cl2OS: b166 C12H8Cl2O2S: b165 C12H8N2: p63 C12H8N2O2: a235 C12H8N2O4S2: b194, b195 C12H8O: d50 C12H8O6: b132 C12H8S: d52 C12H9Br: b237 C12H9BrO: b330 C12H9ClO2S: c207 C12H9N: c8, d665, n16 C12H9NO: b74, b75, b76 C12H9NO2: n48, n49 C12H9NO3: n70, n71 C12H9NS: p66 C12H10: a2, b134 C12H10ClN: c61, c62 C12H10ClO3P: d662 C12H10ClP: c99 C12H10Cl2Si: d175 C12H10Hg: d675 C12H10N2: a322 C12H10N2O: n80, p89 C12H10N2O2: n52 C12H10N2O2S: a243 C12H10N3O3P: d682
C12H10O: d667, m311, m312, p131, p132 C12H10OS: d690 C12H10O2: d387, h88, n14, n15 C12H10O2S: d689, t150 C12H10O3: n12 C12H10O3S: b139 C12H10O4: q1 C12H10O4S: s27, t145 C12H10S: d688 C12H10S2: d664 C12H10Se2: d663 C12H11ClNO2P: p134 C12H11N: a134, a135, b117, b118, d655 C12H11NO: n13, p70 C12H11N3: p87 C12H11O3P: d681 C12H12: d554, d555 C12H12N2: b136, d673, p131 C12H12N2O: o62 C12H12N2O2: b40 C12H12N2O2S: d36, d37 C12H12N4: d31 C12H12O: e44 C12H12O2Si: d687 C12H12O3: t196 C12H12O6: t193, t336 C12H13N3: d34 C12H14N2O3S: a167 C12H14N4O2S: s21 C12H14O3: e176 C12H14O4: d329 C12H15N: d369 C12H15NO: b116 C12H15N3O3: t197 C12H16: c338, m212, p104 C12H16O2: m364 C12H16O3: d246 C12H17N: b115, c337 C12H17NO: d319, d342 C12H18: b489, c304, d414, d415, h47, p117, t435 C12H18Cl2N4OS: t139
1.77
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C12H18O: d419, d513 C12H18O2: b474, b475 C12H18O4: b445 C12H19N: d413, h81 C12H20O2: b185, b217, e102, L10 C12H20O3Si: p157 C12H20O4: d118 C12H20O4Si: t8 C12H21N: t431 C12H21N3: t422 C12H22: c305, d241 C12H22O: c303, e4 C12H22O3: h67 C12H22O4: d130, d324, d512, d702, d721 C12H22O11: L3, m7, s20 C12H23ClO: d728 C12H23N: d242, d724 C12H23NO: a318 C12H24: d729 C12H24N2: d694 C12H24O: c302, d731, m443, t349 C12H24O2: d726, e113 C12H24O6: h74 C12H25Br: b275 C12H25Cl: c100 C12H25Cl3Si: d736 C12H26: d719 C12H26O: d350, d727, t354a C12H26O2: d722, d723 C12H26O3: b151 C12H26O4: t411 C12H26O4S: d735 C12H26S: d725 C12H27Al: t307 C12H27BO3: t209 C12H27ClSn: t215 C12H27N: d349, d732, t210 C12H27O3P: t214 C12H27O4P: t212 C12H27P: t213 C12H28BrN: t135 C12H28N2: d720
C12H28O4Si: t88, t134 C12H28O4Ti: t166 C12H28O8Si: t89 C12H36O4Si4Ti: t90 C13 C13H5N3O7: t384 C13H8ClNO3: c181 C13H8ClNOS: p67 C13H8Cl2O: d159 C13H8N2O7: b193 C13H8O: f3 C13H8OS: t165 C13H8O2: x3 C13H9BrO: b232 C13H9ClO: c49, c50 C13H9ClO2: c131 C13H9N: a61 C13H10: f2 C13H10ClNO: a142, a143, d659 C13H10Cl2O2: m233 C13H10N2: p90 C13H10N2O3: a239 C13H10O: b53, x1 C13H10O2: b135, h102, p91 C13H10O3: d386, d661, p150 C13H10O5: t83 C13H11Br: b274 C13H11Cl: c97 C13H11ClO: c44 C13H11NO: a127, b5 C13H11NO2: h161, p85 C13H11NO3: p86 C13H12: d676 C13H12N2: b54, d38, d670 C13H12N2O: d693 C13H12N2S: d692, t146 C13H12N4O: p88 C13H12N4S: d691 C13H12O: b138, d677, h113, m56, p76 C13H12S: b113
C13H13ClSi: c98 C13H13N: d678, m230, m93 C13H13NO: b106 C13H13N3: d671 C13H14N2: d35, m238, t344 C13H14N2O3: a59 C13H14N4O: d660 C13H14Si: m231 C13H16O2: m74 C13H16O3: e71 C13H16O4: d328 C13H17NO2: e74 C13H20: p116 C13H20N2O2: d271 C13H20O: i56, i57 C13H22ClN: b125 C13H22N2: d243 C13H22O2: n106 C13H22O3Si: b124 C13H26: t258 C13H26N2: m236, t343 C13H26O2: e229, t257 C13H27Br: b359 C13H28: t256 C13H28O4: t409 C13H29NO4: b169 C14 C14H6Cl2O2: d148, d149 C14H7ClO2: c36, c37 C14H8ClNO5: c185 C14H8O2: a305, p62 C14H8O3: h93 C14H8O4: d371, d372, d373, d374 C14H8O5S: a308 C14H8O8: a306, d312 C14H9Br: b324 C14H9ClO3: c54 C14H9Cl5: b167 C14H9NO2: a111, a112 C14H9NO3: a186
1.78
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C14H10: a304, d654, p61 C14H10Br2O: b273 C14H10ClNO3: a147 C14H10Cl2O4: b162 C14H10Cl4: b163 C14H10N2O2: d28, d29, d30 C14H10O2: b34 C14H10O3: b45, b65, x2 C14H10O4: b137, d54, t82 C14H11N: d653, p120 C14H11NOS: a50 C14H12: d351, s9 C14H12Cl2O: b164 C14H12N2O: b37 C14H12N2O2: b35 C14H12O: a34, d22, m133, m134 C14H12O2: b46, b83, b84, b107, b108, d652 C14H12O3: b36, h35 C14H13ClO: c147 C14H13N: e93, i12 C14H13NO: b82 C14H13NO2: b50 C14H14: d666 C14H14N2: a168 C14H14N2O3: a325 C14H14O: d58 C14H14OS: b200 C14H14O2: b109 C14H14S2: b199, d57 C14H15N: d56, d668 C14H15O3P: d61 C14H16N2: d669 C14H16O2Si: d437 C14H16O4: d281 C14H18O4: d285 C14H20N2O6S: m120 C14H20O5: b39 C14H22: p130a C14H22O: d123, d124, d125, d126 C14H22O2: d112 C14H23N: d109, o42 C14H23N3O10: d299 C14H26O3: h11 C14H26O4: d408
C14H27ClO: t41 C14H28: t42, t43 C14H28O2: t39 C14H29Br: b352 C14H29Cl3Si: t46 C14H30: t38 C14H30O: t40 C14H31N: t44 C14H32N2O4: t87 C15 C15H10O2: b101, m124 C15H11NO: d679 C15H12N2O2: d672 C15H12O: d354, d685 C15H12O2: d53 C15H13NO: a13 C15H14O: d684 C15H14O2: b49, b141, d686 C15H14O3: b111 C15H16O: m359 C15H16O2: i97 C15H17N3: d711 C15H18OSi: e42 C15H22O3: d117 C15H24: t312 C15H24O: d120 C15H26O: h184 C15H26O6: g19 C15H30N2: t342 C15H30N3OP: t405 C15H30O: p14 C15H30O2: m413 C15H32: p13 C15H32O3Si4: p164 C15H32O10: t389 C16 C16H10: b52, fl, p246 C16H11NO2: p149 C16H12N2O5S: a60 C16H12N4O9S2: t3
C16H13N: p130 C16H14: d656, d657, e66 C16H14O: d658 C16H14O6S: s26 C16H15NO4: d445 C16H16O2: b47, b112 C16H16O3: d449 C16H18ClN3S: m237 C16H19ClSi: b435 C16H20N2: d59 C16H20O2Si: d250 C16H22O4: d128, d409 C16H22O11: g7 C16H26O3: d730 C16H26O7: t52 C16H32: h37 C16H32O2: h35 C16H33Br: b293 C16H33I: i38 C16H33NO: d297 C16H34: h4, h32 C16H34O: h36 C16H34O2: h33 C16H34S: d644, h34 C16H35N: d643, h38 C16H35O4P: b178 C16H36BF4N: t19 C16H36BrN: t14 C16H36ClN: t15 C16H36FN: t16 C16H36IN: t18 C16H36O4Si: t13 C16H36Sn: t20 C16H37NO4S: t17 C17 C17H6O7: b55 C17H10O: b8 C17H12O3: p119 C17H13N3O5S2: p172 C17H16O4: d60 C17H18O3: b478 C17H20N2O: b171 C17H20N4O6: r4
1.79
ORGANIC COMPOUNDS
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C17H21NO4: c275 C17H22N2: m234 C17H23NO3: a315 C17H34O2: m263 C17H36: h1 C17H37N: m229
C18H38S: o4 C18H39ClSi: t302 C18H39N: o13, t301 C18H39O7P: t414 C18H40Si: t303 C19
C18 C18H9Cl6O4P: t418 C18H10O6: h85 C18H12: b6, b7, t396 C18H12N5O6: d683 C18H14: t4 C18H14O: d680 C18H14O8: d55 C18H15As: t394 C18H15N: t392 C18H15N3Si: a320 C18H15O3P: t403 C18H15O4P: t399 C18H15P: t400 C18H15PS: t402 C18H15PSe: t401 C18H15Sb: t393 C18H16O2: b422 C18H16Si: t404 C18H18O3: e73 C18H20O2: b48 C18H25NO3: i61 C18H30O: t211 C18H30O2: o7 C18H31N: d733 C18H32O2: o1 C18H32O16: r1 C18H34O2: o10, o11 C18H34O4: d110 C18H36: d734, o8 C18H36O: o12 C18H36O2: e139, o5 C18H37Br: b319 C18H37Cl3Si: o15 C18H37N: o9 C18H37NO: o2 C18H38: o3 C18H38O: o6
C19H15Br: b366 C19H15Cl: c256 C19H16: t397 C19H16O: t398 C19H18BrP: m442 C19H20Br4O4: i96 C19H20O4: b87 C19H22N2O: c264 C19H30O5: m243 C19H32: p156 C19H34ClN: b122 C19H34O2: m325 C19H36O2: m327 C19H37NO: o14 C19H38O2: m326 C19H40: n90, t115 C19H40Cl2Si: m328 C20 C20H10Br2O5: d83 C20H12: b57, b58, d49 C20H12O5: f4 C20H14O4: p65 C20H15Br: b365 C20H18O3Si: t391 C20H19N3: b2 C20H22O6: t271 C20H24N2O2: q2 C20H24O6: d51 C20H28O2P: d674 C20H30O2: a1 C20H31N: d20 C20H35N: t45 C20H36O2: e188 C20H38O2: e189 C20H40: i3
C20H40O: o16 C20H42: i2 C21 C21H15NO: b142 C21H15N3O3: t390 C21H21N: t200 C21H22N2O2: s10 C21H24O2: b144 C21H28N2O: b170 C21H36O: p15 C21H39N3: t255 C22 C22H23N3O9: a316 C22H30O2S: t144 C22H34O4: b443 C22H39N: h39 C22H42O4: d312 C22H44O2: b466, d716 C22H46: d715 C22H46O: d717 C23 C23H16O6: m235 C23H26N2O4: b372 C24 C24H16N2O2: b198 C24H18: t395 C24H20BNa: t128 C24H20O4Si: t127 C24H20Si: t132 C24H20Sn: t133 C24H22N2O: b140 C24H38O4: b179, d313 C24H40O5: c263 C24H46O4: d643a C24H50: t36 C24H51N: t387
1.80
Next Page
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C24H51O3P: d423, t421 C24H52O4Si: t85 C24H54OSn2: b201
C27H46O: c262 C27H50ClN: b94 C28
C26 C26H20: t131 C26H26N2O2S: b152 C26H26OSi2: t130 C26H50O4: b177, d311 C27 C27H19NO: b148 C27H42ClNO2: b33
C28H22: t129 C28H31ClN2O3: r2 C28H32O2Si3: t121 C30 to C40 C30H50: s8 C30H62: s7 C30H63O3P: t308 C32H66: d737
C32H68O4Si: t86 C36H75O3P: d642 C38H30NiO2P2: b213 C39H74O6: g20 C40H56: c19 C40H82O6P2: b196 C45 to C57 C45H86O6: g24 C48H40O4Si4: o38 C51H98O6: g23 C57H104O6: g22
TABLE 1.15 Physical Constants of Organic Compounds See also the special tables of fats, oils, and waxes. Names of the compounds in the table starting on p. 1.82 are arranged alphabetically. Usually substitutive nomenclature is employed; exceptions generally involve ethers, sulfides, sulfones, and sulfoxides. Each compound is given a number within its letter classification; thus compound c195 is 3-chlorophenol. The section “Nomenclature of Organic Compounds” should be consulted to familiarize oneself with present nomenclature systems. Synonyms or Alternate Names are found at the bottom of each spread in their alphabetical listing; the number following the name refers to the numerical place of this compound in the table. For example, epichlorohydrin, c101, indicates that this compound is found listed under the name 1-chloro-2,3-epoxypropane. Formulas are presented in a semistructural form when no ambiguity is possible. Complicated systems are drawn in complete structural form and located at the bottom of each page and keyed to the number of the entry. Beilstein Reference. In the column so headed is found the reference to the volume and page numbers of the fourth edition of Beilstein: (Handbuch der Organischen Chemie) (Springer-Verlag, New York). Thus the entry 9, 202 refers to an entry in volume 9 appearing on page 202. When the volume number has a superscript attached, reference is made to the appropriate supplementary volume. For example, 122, 404 indicates that the compound will be found listed in the second supplement to volume 12 on page 404. The earliest Beilstein entry is listed. Supplementary information may be found in the supplements to the basic series; such coordinating references (series number, volume number, and page number of the main edition) along with the system number are found at the top of each odd-numbered page. Similarly, a back reference such as H 93; E II 64; E III 190 in a volume of Supplementary Series IV means that previous items on
1.80
Previous Page
SECTION 1
TABLE 1.14 Empirical Formula Index for Organic Compounds (continued ) The alphanumeric designations are keyed to Table 1.15
C24H51O3P: d423, t421 C24H52O4Si: t85 C24H54OSn2: b201
C27H46O: c262 C27H50ClN: b94 C28
C26 C26H20: t131 C26H26N2O2S: b152 C26H26OSi2: t130 C26H50O4: b177, d311 C27 C27H19NO: b148 C27H42ClNO2: b33
C28H22: t129 C28H31ClN2O3: r2 C28H32O2Si3: t121 C30 to C40 C30H50: s8 C30H62: s7 C30H63O3P: t308 C32H66: d737
C32H68O4Si: t86 C36H75O3P: d642 C38H30NiO2P2: b213 C39H74O6: g20 C40H56: c19 C40H82O6P2: b196 C45 to C57 C45H86O6: g24 C48H40O4Si4: o38 C51H98O6: g23 C57H104O6: g22
TABLE 1.15 Physical Constants of Organic Compounds See also the special tables of fats, oils, and waxes. Names of the compounds in the table starting on p. 1.82 are arranged alphabetically. Usually substitutive nomenclature is employed; exceptions generally involve ethers, sulfides, sulfones, and sulfoxides. Each compound is given a number within its letter classification; thus compound c195 is 3-chlorophenol. The section “Nomenclature of Organic Compounds” should be consulted to familiarize oneself with present nomenclature systems. Synonyms or Alternate Names are found at the bottom of each spread in their alphabetical listing; the number following the name refers to the numerical place of this compound in the table. For example, epichlorohydrin, c101, indicates that this compound is found listed under the name 1-chloro-2,3-epoxypropane. Formulas are presented in a semistructural form when no ambiguity is possible. Complicated systems are drawn in complete structural form and located at the bottom of each page and keyed to the number of the entry. Beilstein Reference. In the column so headed is found the reference to the volume and page numbers of the fourth edition of Beilstein: (Handbuch der Organischen Chemie) (Springer-Verlag, New York). Thus the entry 9, 202 refers to an entry in volume 9 appearing on page 202. When the volume number has a superscript attached, reference is made to the appropriate supplementary volume. For example, 122, 404 indicates that the compound will be found listed in the second supplement to volume 12 on page 404. The earliest Beilstein entry is listed. Supplementary information may be found in the supplements to the basic series; such coordinating references (series number, volume number, and page number of the main edition) along with the system number are found at the top of each odd-numbered page. Similarly, a back reference such as H 93; E II 64; E III 190 in a volume of Supplementary Series IV means that previous items on
1.81
ORGANIC COMPOUNDS
this compound are found in the same volume of the Basic Series on page 93, of Supplementary Series II on page 64, and of Supplementary Series III on page 190. The absence of a back reference implies that the compound involved is described for the first time in the series concerned. Formula Weights are based on the International Atomic Weights of 1973 and are computed to the nearest hundredth. Density values are given at room temperature unless otherwise indicated by the superscript figure; thus 0.9711112 indicates a density of 0.9711 for the substance at 112 C. A densityof 0.89916 4 indicates a density of 0.899 for the substance at 16 C relative to water at 4 C. Refractive Index, unless otherwise specified, is given for the sodium line at 589.6 nm. The temperature at which the measurement was made is indicated by the superscript figure; otherwise it is assumed to be room temperature. Melting Point is recorded in certain cases as 250 d and in some other cases as d 250, the distinction being made in this manner to indicate that the former is a melting point with decomposition at 250 °C, while the latter decomposition occurs only at 250 C and higher temperatures. Where a value such as 2H2O, 120 is given, it indicates a loss of 2 mol of water per formula weight of the compound at a temperature of 120 C. Boiling Point is given at atmospheric pressure (760 mmHg) unless otherwise indicated; thus 8215 mm indicates that the boiling point is 82 C when the pressure is 15 mmHg. Also, subl 550 indicates that the compound sublimes at 550 C. Flash Point is given in degrees Celsius, usually closed up. Because values will vary with the specific procedure employed, and sometimes the method was not stated, the values listed for the flash point should be considered only as indicative. See also Table 4.13, Properties of Combustible Mixtures in Air. Solubility is given in parts by weight (of the formula weight) per 100 parts by weight of the solvent and at room temperature. Other temperatures are indicated by the superscript. In the case of gases, the solubility is often expressed as 510 mL, which indicates that at 10 C, 5 mL of the gas is soluble in 100 g of the solvent. Abbreviations Used in the Table abs, absolute
EtOH, ethanol, 95%
s, soluble
acet, acetone
expl, explodes
sec, secondary
alc, ethanol
glyc, glycerol
sl, slight or slightly
alk, alkali (i.e., aqueous NaOH
h, hot
soln, solution
HOAc, acetic acid
solv, solvent
or KOH) anhyd, anhydrous
hyd, hydrolysis
subl, sublimes
aq, aqueous; water
hygr, hygroscopic
s, symmetrical
as, asymmetrical
i, insoluble
sym, symmetrical
atm, atmosphere
ign, ignites
tert, tertiary
BuOH, butanol
i-PrOH, isopropanol
v, very
bz, benzene
l (), levorotatory
v s, very soluble
c, cold
L, designates configuration
v sl s, very slightly soluble
chl, chloroform, CHCl3
m, meta position
vac, vacuo or vacuum
conc, concentrated
Me, methyl
vols, volumes
d, decomposes or decomposed
MeEtKe, methyl ethyl ketone
, greater than
d (), dextrorotatory
MeOH, methanol
, less than
dn, deuterium substitution
misc, miscible; soluble in all
D, designates configuration deliq, deliquescent dil, dilute
proportions NaOH, aqueous sodium hydroxide
~, approximately , alpha position , beta position , gamma position , delta position
diox, dioxane
o, ortho position
DL (or dl), inactive (i.e., 50% D
org, organic
, epsilon position
p, para position
, omega position (farthest
and 50% L) DMF, dimethylformamide
PE, petroleum ether
EtAc, ethyl acetate
pyr, pyridine
eth, diethyl ether
from parent functional group)
1.82
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
a1
()-Abietic acid
302.44
92, 424
—
172–175
a2 a3 a4 a5 a6
Acenaphthene Acenaphthlyene Acetaldehyde Acetaldoxime Acetamide
CH3CHO CH3CH ¨ NOH CH3CONH2
154.21 152.20 44.05 59.07 59.07
5, 586 5, 625 1, 594 1, 608 22, 177
1.06995 95 0.89916 4 0.805304 1.331120 0.966 1.41520 0.9711112 1.4158110
93.45 80–83 123.5 46.5 80.1
a7
Acetamidine HCl
CH3(¨NH)NH2 · HCl
94.54
2, 185
a8
N-(2-Acetamido)2-aminoethanesulfonic acid 4-Acetamidobenzaldehyde 4-Acetamidobenzenesulfonyl chloride 2-Acetamidobenzoic acid 4-Acetamidobenzoic acid 2-Acetamidofluorene N-(2-Acetamido)iminodiacetic acid 2-Acetamidophenol 3-Acetamidophenol 4-Acetamidophenol
H2N(CO)CH2NHCH2CH2SO3H
182.20
CH3CONHC6H4CHO
163.18
14, 38
154–156
s aq, bz; sl s alc
CH3CONHC6H4SO2Cl
233.67
14, 439
149
d aq; v s alc, eth
CH3CONHC6H4COOH
179.18
14, 337
185–187
CH3CONHC6H4COOH
179.18
14, 432
260–262
sl s aq; v s alc, bz, eth, acet i aq; s alc; sl s eth
223.28 190.16
12, 1331
H2NCOCH2N(CH2COOH)2
194 219 d
CH3CONHC6H4OH CH3CONHC6H4OH CH3CONHC6H4OH
151.17 151.17 151.17
13, 370 13, 415 13, 460
207–209 146–149 170
a9 a10 a11 a12 a13 a14 a15 a16 a17
170–172
279 280 20.2 114.5 221.15
27 38
i aq; s alc, bz, chl, eth, acet, dil alk i aq; 3.2 alc; 20 bz i aq; v s alc, eth misc aq, alc v s aq, alc; eth 70 aq; 50 alc; s chl, hot bz v s aq, alc; i acet, eth
220 d
1.29321 4
i aq; s alc, glycols
s alc, acet
a18
Acetanilide
CH3CONHC6H5
a19
Acetic acid
CH3COOH
60.65
a20
Acetic acid-d
CH3COOD
61.05
a21 a22 a23 a24
Acetic-d3, acid-d Acetic anhydride Acetic anhydride-d6 Acetoacetic acid
CD3COOD (CH3CO)2O (CD3CO)2O CH3COCH2COOH
a25 a26 a27 a28
Acetohydrazide Acetone Acetone-d6 Acetone oxime
CH3CONHNH2 CH3COCH3 CD3COCD3 (CH3)2C ¨ NOH
ACES, a8 Acetal, d251 Acetaldehyde ammonia, a163 Acetaldehyde diethyl acetal, d251 Acetaldehyde dimethyl acetal, d438 Acetamidoacetic acid, a46 2-Acetamidopentanedioic acid, a45
135.17
64.08 102.09 108.14 102.09 74.08 58.08 64.13 73.10
Acethydrazide, a25 Acetic acid hydrazide, a25 Acetoacetanilide, a32 2-Acetoacetanisidide, a302 4-Acetoacetanisidide, a303 Acetoacetic esters, e53, e54 Acetoin, h106
12, 237
1.21915 4
2, 96
1.049220 4
1.371620
1.07
1.371520
1.11 1.08215 4
1.370920 1.390420 1.387520
2, 166 3, 630 2, 191 1, 635 1, 649
114.2
304
173
16.63
117.90
40
115.5
40
⫺73.1 36–37
0.790820 4 0.88 0.901
1.358820 1.355420
⫺95.35 60–63
115.5 40 140.0 130 6565mm 54 d violently 100 12918mm 56.24 ⫺20 55.5 ⫺17 135
Acetonaphthones, m311, m312 Acetonecarboxylic acid, a24 Acetone cyanohydrin, h145 Acetone dimethyl acetal, d452 Acetone dimethyl acetal, d452 Acetone ketal of glycerine, d515
0.56 aq25; 29 alc; 2bz; 27 chl; 25 acet; 5 eth misc aq, alc, eth, CCl4 misc aq, alc, eth, CCl4 misc aq, alc, eth 13 aq; s chl, eth d aq, alc misc aq, alc, eth
misc aq, alc, chl, v s aq, alc, eth
1.83
1.84
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference 2, 183
Density
Refractive index
Melting point
0.785720 0.84 1.023825
1.344120 1.342020 1.532225
43.8
a29 a30 a31 a32
Acetonitrile Acetonitrile-d3 Acetophenone 2-Acetylacetanilide
CH3CN CD3CN C6H5COCH3 C6H5NHCOCH2COCH3
41.05 44.08 120.15 177.20
7, 271 12, 518
a33
CH3COC6H4SO3Na
222.02
112, 186
a34 a35
4-Acetylbenzenesulfonic acid, Na salt 4-Acetylbiphenyl Acetyl bromide
C6H5C6H4COCH3 CH3COBr
196.25 122.95
72, 337 2, 174
1.66316 4
a36 a37
2-Acetylbutyrolactone Acetyl chloride
CH3COCl
128.13 78.50
2, 173
1.184620 4 1.10420 4
a38
Acetylcholine bromide Acetylcholine chloride 2-Acetylcyclopentanone Acetylene
(CH3)3NBrCH2CH2 ˆ OCOCH3 (CH3)3NClCH2CH2 ˆ OCOCH3
226.14
41, 428
114–116
181.66
4, 281
150–152
126.16
7, 558
1.043
HC ˜ CH
26.02
1, 228
0.90(g)
Acetylenedicarboxylic acid Acetyl fluoride
HOOCC ˜ CCOOH
114.06
2, 801
CH3COF
62.04
2, 172
a39 a40 a41
a42 a43
19.62 85
Boiling point 81.60 80.7 202.08
Flash point 5 5 82
Solubility in 100 parts solvent misc aq, alc, chl misc aq, alc, chl 0.55 aq; s alc, eth sl s aq; s alc, hot bz, chl, eth, acids, alk
300
116–118 325–327 96 75–77 1.458520 1.388620
112.9
1.490520
1075mm 50.8
4
i aq; v s alc, acet d aq, alc; misc bz, chl, eth 21 aq d aq, alc; misc bz, chl, eth v s aq (d hot aq); s alc; i eth v s aq; alc; d hot aq; i eth
72–7580mm 72 81891mm 83.95 subl
180 d 1.032
1
60
20
90 aq; 14 alc; v s bz, eth; acet dissolves 25 acet15° v s aq, alc, eth 5 aq(d); misc alc, bz, eth
a44 a45 a46 a47 a48 a49 a50 a51 a52
2-Acetylfuran N-Acetyl-Lglutamic acid N-Acetylglycine N-Acetylimidazole Acetyl iodide Acetyl-2-methylcholine chloride 2-Acetylphenothiazine 2-Acetylphenylacetonitrile N-Acetyl4-piperidone
Acetonylacetone, h61 Acetophenetidin, e45 Acetophenetidide, e45 p-Acetotoluide, m355 Acetoxime, a28 2-Acetoxybenzoic acid, a56 1-Acetoxy-1,3-butadiene, b375
HOOCCH2CH2CHˆ (NHCOCH3)COOH CH3CONHCH2COOH
CH3COI CH3COOCH(CH3)CH2 NC1(CH3)3 C6H5CH(CN)COCH3
110.11 189.17
17, 286 42, 908
117.10
4, 354
110.12 169.96 195.69
2, 174
241.31 159.19
1.098
1.506520
29–30 6710mm 200–201
71
2.7 aq15; s alc; i eth
207–209 93–96 2.067420 4
1.549120
108
d aq, alc; s bz, eth v s aq, alc, chl; i eth
171–173 180–185 89–92
10, 699
141.17
Aceturic acid, a46 Acetylacetaldehyde dimethyl acetal, d435 Acetylacetone, p31 N-Acetylanthranilic acid, a11 Acetylbenzene, a31 Acetylcyclopropane, c368 Acetylene dichlorides, d179, d180
1.146
1.502620
218
⬎ 112
Acetylene tetrabromide, t9 Acetylene tetrachloride, t28 N-Acetylethanolamine, h115 3-Acetyl-6-methyl-2H-pyran-2,4-(3H)-dione, d21 2-(Acetyloxy)benzoic acid, a56 3-Acetyl-1-propanol, h157
1.85
1.86
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
188–189 220
112 150
212
112
a53 a54
2-Acetylpyridine 3-Acetylpyridine
(C5H4N)COCH3 (C5H4N)COCH3
121.14 131.14
21, 279 21, 279
1.080 1.102
1.520320 1.533620
a55 a56
4-Acetylpyridine Acetylsalicyclic acid
(C5H4N)COCH3 HOOCC6H4OOCCH3
121.14 180.16
21, 279 10, 67
1.095 1.35
1.529020
a57
2-Acetylthiophene
(C4H3S)COCH3
126.18
17, 287
1.16822 4
1.556420
a58
N-Acetylthiourea
CH3CONHC(S)NH2
118.16
3, 191
165–169
a59
246.27
222, 469
204–206
366.33
162, 127
a61
N-Acetyl-DLtryptophan Acid alizarin violet N Acridine
179.22
20, 459
a62
Acrylamide
H2C ¨ CHCONH2
71.08
2, 400
1.12230 4
a63
Acrylic acid
H2C ¨ CHCOOH
72.06
2, 397
1.051120
1.422420
13
140–141
54
a64
Acrylonitrile
H2C ¨ CHCN
53.06
2, 400
0.806020 4
1.391120
83.7
77.4
0
a65 a66 a67
Acryloyl chloride 1-Adamantanamine Adamantane
H2C ¨ CHCOCI
90.51 151.25 136.24
2, 400
1.114
1.435020
1.09
1.568
72–76 206–208 268 subl 205 sealed tube
a60
v s alc, eth v s acids, alc, eth; s aq 0.33 aq25; 20 alc; 5.9 chl; 5 eth; sl s bz sl s aq; misc alc, eth s hot aq, alc; sl s eth s aq, alc; v s eth
135
10–11
Solubility in 100 parts solvent
214
107–110 346 subl 110 84.5 12525mm
s alc, eth, CS2, PE
16
215 aq30; 86 alc30; 63 acet; 2.7 chl; v s eth misc aq, alc, bz, eth, chl, acet 7.3 aq; misc org solv d aq; v s chl sl s aq
a68 a69
1-Adamantanecarboxylic acid Adenine
135.13
26, 420
⬎360 d
a70
Adenosine
267.25
31, 27
234–236
N-Acetylsulfanilyl chloride, a10 Aconitic acid, p207 Acrolein, p204
180.25
Acrolein diethyl acetal, d258 Acrolein dimethyl acetal, d454 Acrylaldehyde, p207
174–175 subl 220
1-Adamantanemethylamine, a209 Adenosine monophosphate, a72
0.05 aq; sl s alc; i chl, eth s aq; i alc
1.87
1.88
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a71
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
a73 a74
Adenosine-5-diphosphoric acid Adenosine-5phosphoric acid D--Alanine DL--Alanine
CH3CH(NH2)COOH CH3CH(NH2)COOH
89.09 89.09
4, 385 4, 387
a75
L--Alanine
CH3CH(NH2)COOH
89.09
4, 381
a76 a77 a78 a79
-Alanine Allantoin Allene Alloxan monohydrate
H2NCH2CH2COOH
89.09 158.12 40.06 160.09
4, 401 25, 474 1, 248 24, 500
a80 a81
Allyl acetate Allyl alcohol
H2C ¨ CHCH2OCOCH3 H2C ¨ CHCH2OH
100.12 58.08
2, 136 2, 436
1.404020 0.9280.928 4 1.412720 0.854020 4
a82
Allylamine
H2C ¨ CHCH2NH2
57.10
4, 205
0.76020 20
1.420520
a83 a84 a85 a86
N-Allylaniline Allylbenzene Allyl bromide Allylchlorodimethylsilane Allyl chloroformate
C6H5NHCH2CH ¨ CH2 C6H5CH2CH ¨ CH2 H2C ¨ CHCH2Br H2C ¨ CHCH2Si(CH3)2C1 H2C ¨ CHCH2OOCC1
133.19 118.18 120.98 134.7
12, 170 5, 484 1, 201
0.98225 0.89220 0 1.45125 25 0.89642
1.563020 1.512220 1.46525 1.419520
1.13
1.423
a72
a87
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
427.22 347.22
H2C ¨ C ¨ CH2
120.54
200 d
v s hot aq, HC1
291–293 d 289 d subl
1.402
16.7 aq25; 8.7 alc25; i eth 16.7 aq25; 8.7 alc25; i eth v s aq; sl s alc; i eth 0.45 aq; 0.2 alc
315–316 1.4375 1.787
1.4168
197–198 d 238 136.2 34.5 253 d
50 glass 88.2
50
104 97.1
6 22
53.3
28
218–220 156–157 70 110–112
89 33 7
27
31
s alc, acet, HOAc; sl s chl, PE, EtAc i aq; misc alc, eth misc aq, alc, chl, eth misc aq, alc, chl, eth i aq; s alc, eth i aq; s alc, eth i aq; misc org solv
a88 a89 a90 a91 a92
Allylcyclohexylamine Allyldichloromethylsilane N-Allyl-N,Ndimethylamine Allyl ethyl ether Allyl iodide
C6H11NHCH2CH ¨ CH2 H2C ¨ CHCH2Si(CH3)Cl2 H2C ¨ CHCH2N(CH3)2 H2C ¨ CHCH2OCH2CH3 H2C ¨ CHCH2I
Adenosine 5⬘-(trihydrogen diphosphate), a71 5⬘-Adenylic acid, a72 Adipic acid, h57 Adipic acid monoethyl ester, e149 Adiponitrile, d238 Adipolyl chloride, h62 ADP, a71
139.24 155.1
0.962 1.075820
85.0 86.13 167.98
Alaninols, a271, a272 Alizarin, d371 Allylacetic acid, p50 Allylacetone, h78 4-Allylanisole, a94 Allyl carbamide, a105 Allyl chloride, c216
1, 438 1, 202
0.765120 4 1.84620 4
1.466420 1.441920
6612mm 119–120
1.401020
63–64
1.388120 ⫺99.3
53
64–66 103.1
Allyl cyanide, b400 Allyldimethylchlorosilane, a86 Allyl glycidyl ether, a96 1-Allyl-2-hydroxybenzene, a98 Allyl iodide, i50
i aq; misc alc, eth i aq; misc alc, eth
1.89
1.90
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
99.16
4, 214
1.01320 4
1.530020
80
Boiling point
a93
Allyl isothiocyanate
H2C ¨ CHCH2NCS
a94
H2C ¨ CHCH2C6H4OCH3
148.21
6, 571
0.964521 4
1.519520
215–216
H2C ¨ CHCH2SCH3 H2C ˆCHCH2OCH2 O CH ¨ CH2 H2C ¨ CHCH2OSi(CH3)3
88.17 114.14
1, 440
0.803 0.962
1.471420 1.433220
91–93 154
130.3
0.7830
1.407525
100–101
a98 a99
1-Allyl-4methoxybenzene Allyl methyl sulfide 1-Allyloxy2,3-epoxypropane Allyloxytrimethylsilane 2-Allylphenol Allyl phenyl ether
H2C ¨ CHCH2C6H4OH H2C ¨ CHCH2OC6H5
134.18 134.18
6, 572 6, 144
1.025515 15 0.98315 4
1.545520 1.520020
a100 a101
Allyl propyl ether 1-Allyl-2-thiourea
H2C ¨ CHCH2OC3H7 H2C ¨ CHCH2NHC(S)NH2
100.16 116.18
13, 1882 4, 211
0.767020 4 1.21920 20
1.391920
a102 a103
Allyltrichlorosilane Allyltriethoxysilane
175.5 204.3
1.201120 4 0.903020
1.446020 1.407220
a104 a105 a106 a107
Allyltrimethylsilane Allylurea Aminoacetonitrile Aminoacetonitrile hydrogen sulphate 2-Aminoacetophenone 3-Aminoacetophenone 4-Aminoacetophenone
H2C ¨ CHCH2SiCl3 H2C ¨ CHCH2Si(OC2H5)3 H2C ¨ CHCH2Si(CH3)3 H2C ¨ CHCH2NHCONH2 H2NCH2CN H2NCH2CN · H2SO4
114.27 100.12 56.07 154.14
0.719320 4
1.407420
4, 209 4, 344 4, 344
H2NC6H4COCH3
135.17
14, 41
H2NC6H4COCH3
135.17
14, 45
98–99
289–290
H2NC6H4COCH3
135.17
14, 46
106
293–295
a95 a96 a97
a108 a109 a110
6
150
Flash point 46
Solubility in 100 parts solvent 0.2 aq; misc org solv a slc, chl
18 57
220 192
88 62
90–92
38
78
s alc, eth i aq; s alc; misc eth s alc; misc eth 3.3 aq; s alc; i bz; v sl s eth
117.5 176740mm 85–86 78 101
7
5815mm d d 165
v s aq, alc; v sl s eth s acids, alc v s aq; sl s alc; i eth
703mm
v sl s aq; s alc, eth
s hot aq, alc, eth, HOAc; sl s bz
a111
1-Aminoanthraquinone
223.23
14, 177
253–255 subl
a112
223.23
14, 191
295 d
a113
2-Aminoanthraquinone 4-Aminoantipyrine
203.25
24, 273
109
a114
2-Aminobenzamide
H2NC6H4CONH2
136.15
14, 320
110
H2NC6H4AsO(OH)2
217.06
161, 463
153
H2NC6H4AsO(OH)2
217.06
16, 878
⬎ 300
H2NC6H3(COOH)2
181.15
141, 636
⬎ 300
H2NC6H3(SO3H)2
253.24
H2NC6H4SO3H
173.19
14, 681
d 325
a115
2-Aminobenzenearsonic acid a116 4-Aminobenzenearsonic acid a116a 5-Aminobenzene-1,3dicarboxylic acid a117 2-Aminobenzene-1,4disulfonic acid a118 2-Aminobenzenesulfonic acid Allyl mercaptan, p206 4-Allyl-2-methoxyphenol, m99 2-Allyl-4-methylphenol, m387 2-Allyl-6-methylphenol, m386
Allyl sulfide, d27 Aluminon, a316 N-Amidinosarcosine, c277 Aminoacetaldehyde diethyl acetal, d254
subl
300 sl d
i aq; v s alc, bz, chl, eth, HOAc, HCl i aq, eth; s alc, bz s aq, alc, bz; sl s eth v s hot aq, alc; i bz; sl s eth
s hot aq, alk CO3, mineral acids
1.5 aq15; v sl s alc, eth
Aminoacetaldehyde dimethyl acetal, d440 1-Aminoadamantane, a66 Aminoanisoles, m42, m43, m44 p-Aminoazobenzene, p87
1.91
1.92
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a119
Name
a121 a122
3-Aminobenzenesulfonic acid 4-Aminobenzenesulfonic acid 2-Aminobenzoic acid 3-Aminobenzoic acid
a123 a124 a125 a126 a127
a120
a128 a129 a130 a131 a132 a133 a134 a135 a136
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
2 aq15; sl s alc
H2NC6H4SO3H
173.19
1.69
H2NC6H4SO3H
173.19
14, 695
H2NC6H4COOH H2NC6H4COOH
137.14 137.14
14, 310 14, 383
4-Aminobenzoic acid 2-Aminobenzonitrile 3-Aminobenzonitrile
H2NC6H4COOH H2NC6H4CN H2NC6H4CN
137.14 118.14 118.14
14, 418 14, 322 14, 391
4-Aminobenzonitrile 2-Aminobenzophenone 2-Aminobenzothiazole 2-Aminobenzotrifluoride 3-Aminobenzotrifluoride 4-Aminobenzotrifluoride N-(p-Aminobenzoyl)glycine 4-Aminobenzoyl hydrazide 2-Aminobiphenyl 4-Aminobiphenyl D-()-2-Amino-1butanol
H2NC6H4CN H2NC6H4COC6H5
118.14 197.24
14, 425 14, 76
H2NC6H4CF3
150.20 161.13
27, 182 122, 453
1.29025
H2NC6H4CF3
161.13
12, 870
H2NC6H4CF3
161.13
123, 2151
H2NC6H4CONHCH2COOH
194.19
142, 258
198–199
H2NC6H4CONHNH2
151.17
141, 570
227
H2NC6H4C6H5 H2NC6H4C6H5 CH3CH2CH(NH2)CH2OH
169.23 169.23 89.14
12, 1317 12, 1318 4, 291
53 54 2
1 aq20; sl s hot MeOH v s hot aq, alc, eth sl s aq; v s alc; s eth 0.59 aq; 5.6 alc s alc, eth s hot aq; v s alc, eth v s hot aq, alc, eth sl s aq; s alc, eth
d 288 144–146 subl 172–174
1.5114 1.374
187 49 53
268 288–290
85 108
d 223–226
1.478525
132 34
d 175
55
1.290
1.480020
6
187
85
1.28327
1.481525
38
10739mm
85
0.94720
Solubility in 100 parts solvent
1.452120
v s alc, chl, eth
i aq; s alc, bz, chl
299 19115mm 174
79
sl s aq; s alc s hot aq, alc, eth misc aq; s alc
a137 a138 a139 a140 a141 a142 a143 a144 a145 a146
L-(⫺)-2-Amino-1-
butanol DL-2-Aminobutyric acid 4-Aminobutyric acid 2-Amino-4-chlorobenzoic acid 2-Amino-5-chlorobenzonitrile 2-Amino-4⬘-chlorobenzophenone 2-Amino-5-chlorobenzophenone 2-Amino-5-chlorobenzotrifluoride 3-Amino-4-chlorobenzotrifluoride 5-Amino-2-chlorobenzotrifluoride
⫺2
174
4, 408
304
subl 300
4, 413 14, 365
195.d 233
0.94720
1.452520
CH3CH2CH(NH2)CH2OH
89.14
4, 291
CH3CH2CH(NH2)COOH
103.12
H2NCH2CH2CH2COOH H2N(Cl)C6H3COOH
103.12 171.58
H2N(Cl)C6H3CN
152.58
H2NC6H4COC6H4Cl
231.68
141, 389
104
H2N(Cl)C6H3COC6H5
231.68
14, 79
100
H2N(Cl)C6H3CF3
195.57
123, 1921
H2N(Cl)C6H3CF3
195.57
H2N(Cl)C6H3CF3
195.57
Aminobenzenethiol, a293 Aminobenzoic acid hydrazide, a133 Aminobenzyl cyanide, a260 1-Aminobutane, b417
99
misc aq; s alc 21 aq; 0.2 hot alc v s aq; i alc, eth
1320.5mm
1.386
1.506920
66–673mm
1.428
1.497525
82–839mm
2-Aminobutane, b377 Aminobutanoic acids, a138, a139 3-Amino-2-butenamide, a150 4-Aminobutyraldehyde diethyl acetal, d247
82
⬎112
none
36
␣-Aminocaproic acid, a183 -Aminocaproic acid, a184
1.93
1.94
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a147
a148 a149 a150 a151 a152
a153
a154 a155 a156 a157 a158 a159 a160
Name 2-(3-Amino-4-chlorobenzoyl)benzoic acid 2-Amino-4-chlorophenol 2-Amino-5-chloropyridine 3-Aminocrotamide 3-Aminocrotononitrile 1-Amino-1-cyclohexanecarboxylic acid 5-Amino-2,3-dihydro1,4-phthalazinedione 2-Amino-4,6-dihydroxypyrimidine 4-Amino-2,6-dihydroxypyrimidine 4-Amino-3,5-diiodobenzoic acid 2-Amino-4,6-dimethylpyridine 4-Amino-2,6-dimethylpyridimide 6-Amino-1,3-dimethyluracil 5-Amino-2,6-dioxo1,2,3,6-tetrahydro4-pyrimidinecarboxylic acid
Formula weight
Beilstein reference
H2N(Cl)C6H3COC6H4COOH
275.69
14, 661
171–173
H2N(Cl)C6H3OH
143.57
13, 383
138
H2N(Cl)C5H3N
128.56
222, 332
138
CH3C(NH2) ¨ CHCONH2 CH3C(NH2) ¨ CHCN C6H10(NH2)COOH
100.12 82.11 143.19
3, 660 14, 299
300
177.16
251, 698
319–320
127.10
24, 468
300
127.10
24, 469
300
I2(NH2)C6H2COOH
388.93
14, 439
300
(CH3)2(NH2)(C5H2N)
122.17
22, 435
64
123.16
242, 45
181
155.16
24, 471
295 d
171.11
25, 264
300
Formula
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
12811mm
102
i aq, alc 235 156 aq; 18.9 alc
a161
2-Aminoethanesulfonic acid a162 2-Aminoethanethiol a163 1-Aminoethanol a164 2-Aminoethanol a165 2-(2-Aminoethoxy)ethanol a166 2-(2-Aminoethylamino)ethanol a167 5-(2-Aminoethylamino)-1-naphthalenesulfonic acid a167a 3-(2-Aminoethylamino)propyltrimethoxysilane
H2NCH2CH2SO3H
125.15
4, 528
d ⬎ 300
HSCH2CH2NH2 CH3CH(OH)NH2 H2NCH2CH2OH H2NCH2CH2OCH2CH2OH
77.14 61.08 61.08 105.14
4, 286 4, 274 43, 642
1.015820 1.460
1.453920
99–100 97 10.52
H2NCH2CH2NHCH2CH2OH H2NCH2CH2NHC10H6SO3H
104.15
4, 286
1.030
1.486120
H2NCH2CH2NHCH2CH2CH2Si(OCH3)3
222.1
4-Amino-m-cresol, a218 Aminocyclohexane, c334 Aminodecane, d19 2-Amino-2-deoxyglucose, g5 2-Amino-5-diethylaminopentane, d327
6.45 aq12; i abs alc
110 d 171 218–224
93
v s aq; s alc s aq; sl s eth misc aq, org solv
241
129
v s aq, alc; sl s eth
14015mm
150
⬎300
266.32 1.0125 4
2-Amino-1,5-dihydro-1-methyl-4 H-imidazol-4one, c278 2-Aminodiphenylamine, p131 1-Amino-1,2-diphenylethane, d668 Aminodiphenylmethane, d678
1.441825
Aminoethane, e58 1-(2-Aminoethyl)amino-2-[(2-aminoethyl)aminoethyl]aminoethane, t54
1.95
1.96
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a168 a169
a170 a171
a172 a173 a174 a175 a176 a177 a178 a179
a180
Name 3-Amino-9-ethylcarbazole 2-Aminoethyl hydrogen sulfate 3-(2-Aminoethyl)indole S-2-Aminoethylisothiouronium bromide HBr N-(2-Aminoethyl)morpholine p-(2-Aminoethyl)phenol N-(2-Aminoethyl)piperazine N-(2-Aminoethyl)1,3-propanediamine 2-Amino-2-ethyl-1,3propanediol 2-(2-Aminoethyl)pyridine 4-(2-Aminoethyl)pyridine 3-Amino-4fluorobenzotrifluoride Aminoguanidine H2CO3
Formula
H2NCH2CH2OSO3H
Formula weight
Beilstein reference
210.28
221, 642
98–100
141.15
4, 276
280 d
160.22
221, 636
118
Density
Refractive index
281.02
137.18
Boiling point
0.992
1.475520
1370.15mm
Solubility in 100 parts solvent
i aq, bz, chl, eth; s alc, acet
25.6
205
0.985
1.498320
26
222
H2NCH2CH2CH2NHCH2CH2NH2 HOCH2C(NH2) (C2H5)CH2OH H2NCH2CH2(C5H4N)
117.20
0.928
1.481520
119.16
1.09920 20
1.49020
1.021
1.535720
9312mm
H2NCH2CH2(C5H4N)
122.17
1.012
1.540320
1049mm
H2N(F)C6H3CF3
179.0
1.460820
8120mm
H2NNHC( ¨ NH) NH2 · H2CO3
136.11
22, 434
3, 117
175
161–163 1758mm
13, 625
129.21
122.17
Flash point
194–195
130.19 HOC6H4CH2CH2NH2
Melting point
93 96
38
172 d
15210mm
74
misc aq; s alc
i aq; d hot aq
a181 a182 a183 a184 a185 a186 a187
Aminoguanidine nitrate N-Aminohexamethyleneimine 2-Aminohexanoic acid 6-Aminohexanoic acid 6-Amino-1-hexanol 1-Amino-4-hydroxyanthraquinone L-2-Amino-3-hydroxybutyric acid
H2NNHC( ¨ NH)NH2 · HNO3 C6H12NˆNH2 CH3(CH2)3CH(NH2)COOH H2N(CH2)4CH2COOH H2N(CH2)5CH2OH
CH3CH(OH)CH(NH2)COOH
Aminoethylbenzenes, e64, e65 2-(2-Aminoethyl)-2-thiopseudourea, a171 1-Aminoheptane, h20
137.11
3, 117
114.19
0.984
1.485020
165
56
d 327
1.15 aq25; 0.42 alc
4, 434 42, 748 14, 268
204–206 56–58 13530mm 207–209
v s aq; i alc
4, 514
d 255– 257
v s aq; i alc, eth, chl
131.18
4, 433
131.18 117.19 239.23 119.12
2-Aminoheptane, m269a 1-Aminohexane, h80 2-Aminohexane, m353a
137
1.172
s eth
p-Aminohippuric acid, a132 Aminohydroxybenzoic acids, a286, a287
1.97
1.98
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
a188
DL-2-Amino-4-
a189 a190
a191
a192 a193
a194
a195
a196
a197 a198
Formula
HOCH2CH2CHhydroxy(NH2)COOH butyric acid L-2-Amino-4-hydroxyHOCH2CH2CHbutyric acid (NH2)COOH DL-4-Amino-3H2NCH2CH(OH)hydroxyCH2COOH butyric acid 4-Amino-6-hydroxy-2mercaptopyrimidine hydrate 2-Amino-4-hydroxy-6methylpyrimidine 4-Amino-3-hydroxy-1naphthalenesulfonic acid 4-Amino-5-hydroxyl-1naphthalenesulfonic acid 5-Amino-6-hydroxy-2naphthalenesulfonic acid 6-Amino-7-hydroxy-2naphthalenesulfonic acid 2-Amino-3-hydroxyH2N(HO)(C5H3N) pyridine 4-Amino-2-hydroxypyrimidine
Formula weight
Beilstein reference
119.12
4, 514
188–189
119.12
43, 1636
203 d
119.12
42, 938
202 d
161.18
24, 476
300
125.13
24, 343
300
239.25
14, 846
295 d
239.25
14, 835
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent s alc
s aq; sl s alc, eth
i aq, alc, bz, eth
sl s aq; i alc, eth
239.25
sl s hot aq; i eth
239.25
14, 849
300
110.12
222, 408
172–174
111.10
24, 314
300
0.77 aq; sl s alc
a199 a200 a201 a202 a203 a204 a205
1-Aminoindan 5-Aminoindan 5-Aminoindazole 6-Aminoindazole 2-Amino-5-iodobenzoic acid DL-2-Amino-4-mercaptobutyric acid Aminomethanesulfonic acid
H2N(I)C6H3COOH HSCH2CH2CH(NH2)COOH H2NCH2SO3H
2-Amino-2-(hydroxymethyl)-1,3-propanediol, t423 -Amino-4-imidazolepropanoic acid, h83
1.03815 4
1.561320
133.19 133.19 133.15 133.15 263.03
12, 1191 121, 511 252, 308 25, 317 14, 373
135.19
43, 1647
232–233
111.12
1, 583
185 d
Aminoiminomethanesulfinic acid, f30 N-(Aminoiminomethyl)-N-methylglycine, c277 2-Aminoisobutyric acid, a222
1.5 36 178 206 d 221 d
978mm 249745mm
94
sl s aq sl s aq
sl s aq, PE; s alc
v s aq
5-Aminoisophthalic acid, a116a 6-Amino-2,4-lutidine, a157 2-Amino-3-mercaptopropanoic acid, c370
1.99
1.100
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a206 a207 a208 a209 a210 a211 a212 a213 a214 a215 a216 a217 a218 a219 a220
Name 3-Amino-4-methoxybenzoic acid 2-Amino-6-methoxybenzothiazole 5-Amino-2-methoxypyridine 1-(Aminomethyl)adamantane 4-(Aminomethyl)benzenesulfonamide 2-Amino-5-methylbenzoic acid 3-Amino-4-methylbenzoic acid DL-2-Amino-3-methyl1-butanol L-2-Amino-3-methyl1-butanol 2-(Aminomethyl)1-ethylpyrrolidine 2-Amino-3-methyl1-pentanol 2-Amino-4-methyl1-pentanol 4-Amino-3-methylphenol 4-(Aminomethyl)piperidine 2-Amino-2-methyl1,3-propanediol
Formula CH3O(NH2)C6H3COOH
CH3O(NH2)C5H3N
Formula weight
Beilstein reference
167.16
141, 657
241
180.23
272, 334
165–167
124.14
222, 408
165.28 H2NCH2C6H4SO2NH2
186.25
H2N(CH3)C6H3COOH
151.17
H2N(CH3)C6H3COOH
151.17
(CH3)2CHCH(NH2)CH2OH (CH3)2CHCH(NH2)CH2OH
103.17
CH3CH2CH(CH3)CH(NH2)CH2OH CH3CH(CH3)CH2CH(NH2)CH2OH H2N(CH3)C6H3OH
Refractive index
1.574520 0.933
Melting point
31
1.513720
Boiling point
Solubility in 100 parts solvent
901mm 83–850.3 mm 92 s dil alk, dil acid
14, 481
177 d
sl s aq; s alc, eth
14, 487
166
a aq
1.454320
778mm
83 78
103.17
0.926
1.454820
818mm
128.22
0.887
1.466520
6016mm
1.458920
117.19 117.19
4, 298
123.16
13, 593
105.14
Flash point
151–152
0.917
4, 303
30
1.451120
9714mm 200
90
25
200
78
110
15110mm
179 1.490020
114.19 HOCH2C(CH3)(NH2)CH2OH
Density
250 aq20; s alc
a221 a222
a223 a224 a225 a226 a227 a228 a229 a230
2-Amino-2-methyl1-propanol 2-Amino-2-methylpropionic acid 2-(Aminomethyl)pyridine 3-(Aminomethyl)pyridine 2-Amino-3-methylpyridine 2-Amino-4-methylpyridine 2-Amino-6-methylpyridine 2-Amino-4-methylpyrimidine 2-Amino-4-methylthiazole 2-Aminomethyl-3,5,5trimethylcyclohexanol
0.93420 20
1.448020
30–31
1.049
1.544520
335 280 subl sealed tube 8512mm
1.062
1.551020
21
741mm
1.578220
34
222
v s aq; s alc
222, 342
100
230
v s aq, alc, DMF
108.14
221, 633
45
209
v s aq
109.13
24, 84
160
subl
s hot aq; s alc
114.17
27, 159
45
232
v s aq, alc, eth
43–48
265
(CH3)2C(NH2)CH2OH
89.14
(CH3)2C(NH2)COOH
103.12
H2NCH2(C5H4N)
108.14
H2NCH2(C5H4N)
108.14
H2N(CH3)(C5H3N)
108.14
222, 342
H2N(CH3)(C5H3N)
108.14
H2N(CH3)(C5H3N)
1-Amino-2-methoxyethane, m69 -(Aminomethyl)benzyl alcohol, a262
171.29
4, 414
0.969
3-Amino--methylbenzyl alcohol, a261 2-Amino-3-methylpentanoic acid, i79
1.490420
165
67
misc aq; s alc, org solv v s aq
100
112
2-Aminomethylthiophene, t158
1.101
1.102
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a231 a232
a233
a234
a235 a236 a237 a238 a239 a240 a241 a242 a243 a244
Name N-Aminomorpholine 2-Amino-1, 5-naphthalenedisulfonic acid 7-Amino-1,3-naphthalenedisulfonic acid 4-Amino-1-naphthalenesulfonic acid 4-Amino-1,8-naphthalimide 3-Amino-2-naphthol 2-Amino-4-nitrobenzoic acid 2-Amino-5-nitrobenzonitrile 2-Amino-5-nitrobenzophenone 2-Amino-6-nitrobenzothiazole 2-Amino-5-nitrobenzotrifluoride 4-Amino-3-nitrobenzotrifluoride 4-Amino-4-nitrodiphenylsulfide 2-Amino-4-nitrophenol
Formula
H2NC10H6SO3H
Formula weight
Beilstein reference
102.14 303.31
27, 8 14, 786
303.31
14, 784
Density
Refractive index
1.059
1.477220
Boiling point 168
Flash point
Solubility in 100 parts solvent
58
300 300 1.67025 4
223.26
Melting point
d
212.21
222, 452
360
H2NC10H6OH H2N(NO2)C6H3COOH
159.19 182.14
13, 685 14, 374
207 270 d
H2N(NO2)C6H3CN
163.14
142, 234
200–207
C6H5COC6H3(NH2)NO2
242.23
14, 79
166–168
195.20
272, 232
247–249
H2N(NO2)C6H3CF3
206.12
90–92
H2N(NO2)C6H3CF3
206.12
105–106
O2NC6H4SC6H4NH2
246.29
13, 534
142
O2N(NH2)C6H3OH
154.13
132, 192
145
0.031 aq; s dil alk
i aq; v s alc, eth
a245 a246
a247
a248 a249 a250
4-Amino-2-nitrophenol D-()-threo-2-Amino1-(p-nitrophenyl)1,3-propanediol 2-Amino-5-( p-nitrophenylsulfonyl)thiazole 2-Amino-5-nitropyridine 2-Amino-5-nitrothiazole exo-2-Aminonorbornane
1-Aminonaphthalene, n17
O2N(NH2)C6H3OH
154.13
HOCH2CH(NH2)CH(OH)C6H4NO2
212.21
163–165 163–165
285.30
222–226
H2N(C5H3N)NO2
139.11
13, 520
127
221, 631
145.14 111.19
0.938
1-Amino-2-naphthol-4-sulfonic acid, a193
1.480720
188
sl s aq, bz, eth
202 d
v sl s aq; 0.7 alc; 0.4 eth 4910mm
35
1-Amino-2-naphthol-6-sulfonic acid, a195
1.103
1.104
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a251 a252 a253 a254 a255 a256 a257 a258 a259 a260 a261 a262 a263
a264 a265 a266 a267 a268
Name 2-Aminopentane 3-Aminopentane DL-2-Aminopentanoic acid 5-Aminopentanoic acid 5-Amino-1-pentanol 2-Aminophenethyl alcohol 2-Aminophenol 3-Aminophenol 4-Aminophenol 4-Aminophenylacetonitrile 1-(3-Aminophenyl)ethanol 2-Amino-1-phenylethanol 1S,2S-()-2-Amino1-phenyl-1,3-propanediol L-2-Amino-3-phenyl1-propanol 3-Amino-1-phenyl2-pyrazolin-5-one N-Aminophthalimide N-Aminopiperidine 3-Amino-1,2-propanediol
Formula weight
Beilstein reference
H(CH2)3CH(NH2)CH3 C2H5CH(NH2)C2H5 H(CH2)3CH(NH2)COOH
87.17 87.17 117.15
4, 177 4, 178 4, 416
H2N(CH2)4COOH
117.15
4, 418
H2N(CH2)5OH H2NC6H4CH2CH2OH
103.17 137.18
41, 441 133, 1679
H2NC6H4OH
109.13
13, 354
170–174
H2NC6H4OH H2NC6H4OH H2NC6H4CH2CN
109.13 109.13 132.17
13, 401 13, 427 14, 457
122–123 16411mm 190 284 d 44 312
H2NC6H4CH(CH3)OH
137.18
133, 1654
68–71
C6H5CH(CH2NH2)OH
137.18
132, 361
56–57
C6H5CH(OH)CH(NH2)CH2OH
167.21
C6H5CH2CH(NH2)CH2OH
151.21
Formula
Density
Refractive index
0.73920 0.74920 4
1.404720 1.405520 303
H2NCH2CH(OH)CH2OH
Boiling point
Flash point
91–92 91 320 subl
1
12216mm 1484mm
65 112
158–161
1.045
1.461520 1.584920
37
133, 1757
16017mm
92–94
200–202 0.928 1.175
1.475020 1.492020
146730mm 265739mm
s aq, alc, eth, PE misc aq, alc, eth 5.5 aq18; v sl s alc, chl, eth, PE v s aq; sl s alc; i eth
v s aq; s alc
210–215
20, 89 4, 301
Solubility in 100 parts solvent
2 aq; 4.3 alc; v s eth; sl s bz 2.5 aq; v s alc, eth 0.65 aq; s alc, eth sl s hot aq; s alc
109–113
175.19 162.15 100.17 91.11
Melting point
36 112
a269 a270 a271 a272 a273 a274 a275
a276 a277 a278
DL-1-Amino-2-
propanol DL-2-Amino-1propanol L-2-Amino-1-propanol 3-Amino-1-propanol 2-Amino-1-propene1,1,3-tricarbonitrile 3-Aminopropionitrile 3-Aminopropyl(diethoxy)methylsilane N-(3-Aminopropyl)iminodiethanol N-(3-Aminopropyl)morpholine N-(3-Aminopropyl)-2pyrrolidinone
5-Aminoorotic acid, a160 1-Aminopentane, p53 4-Aminophenyl phenyl ether, p70 Aminophenyl sulfones, d36, d37
2
CH3CH(OH)CH2NH2
75.11
4, 289
0.973
1.448320
CH3CH(NH2)CH2OH
75.11
41, 432
0.943
1.449520
CH3CH(NH2)CH2OH H2NCH2CH2CH2OH NCC(CN) ¨ C(NH2)CH2CN H2NCH2CH2CN H2N(CH2)3Si(CH3)(OCH2CH3)2
75.11 75.11 132.13
41, 432 4, 288
0.965 0.982
1.449520 1.459820
70.09 191.4
0.91620 4
1.42720
185 85–888mm
162.23
0.1071
1.498020
1702mm
137
144.22
0.987220 20
1.476120
224
98
142.20
1.014
1.500020
120– 1231mm
112
H2N(CH2)3N(CH2CH2OH)2
3-Aminophthalhydrazide, a153 Aminopicolines, a225, a226, a227 1-Aminopropane, p220 2-Aminopropane, i88
160
73
173–176 176 12 188 171–173
15
s aq, alc; i eth v s aq, alc, eth
62 79
v s aq, alc, eth s aq, alc s aq
misc aq, alc, bz
3-Amino-1-propene, a82 N-(3-Aminopropyl)diethanolamine, a276
1.105
1.106
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a279
Name
a281 a282 a283
3-Aminopropyltriethoxysilane 3-Aminopropyltrimethoxysilane 2-Aminopyridine 3-Aminopyridine 4-Aminopyridine
a284 a285
2-Aminopyrimidine 4-Aminoquinaldine
a286
4-Aminosalicyclic acid
a287 a288
5-Aminosalicyclic acid 2-Amino-3-sulfopropionic acid 5-Amino-1,2,3,4-tetrazole hydrate 5-Amino-1,3,4-thiadiazole-2-thiol 2-Aminothiazole 2-Amino-2-thiazole 2-Aminothiophenol 6-Amino-3-toluenesulfonic acid 3-Amino-1,2,4triazole
a280
a289 a290 a291 a292 a293 a294 a295
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
H2N(CH2)3Si(OC2H5)3
221.37
0.950620 4
1.422520
217
96
H2N(CH2)3Si(OCH3)3
179.2
1.0125 4
1.42025
808mm
104
(C5H4N)NH2 (C5H4N)NH2 (C5H4N)NH2
94.12 94.12 94.12
22, 428 22, 431 22, 433
58.1 210.6 64 248 155–158 273
95.11 158.20
24, 80 22, 453
123–126 subl 169 333
H2NC6H3(OH)COOH
153.14
14, 579
147 d
H2NC6H3(OH)COOH HOOCCH(NH2)CH2SO3H
153.14 187.17
14, 579 4, 533
280 d 260 d
103.08
26, 403
204 d
133.20
27, 674
235 d
100.14 100.14 125.19 187.22
27, 155 27, 136 13, 397 14, 723
93 91–93 26 300
84.08
26, 137
H2NC6H4SH H2NC6H3(CH3)SO3H
1.640520
159
92
Solubility in 100 parts solvent
s aq, alc, bz, eth s aq, alc, bz, eth s aq, alc; sl s bz, eth v s aq sl s aq; v s alc, eth, acet; s hot bz 0.2 aq; 4.8 alc; s dil acid, alk sl s aq, alc; s acid v s aq
sl s aq, alc, eth 234
79 1 aq12; v s hot aq s aq, alc, chl
a296
a298
5-Amino-2,2,4-trimethyl-1-cyclopentanemethylamine 11-Aminoundecanoic acid Aniline
a299 a300
Aniline hydrochloride 2-Anilinoethanol
a301
3-Anilinopropionitrile
a297
156.27
H2N(CH2)10COOH
0.901
1.473320
201.31 12, 59
1.021720
1.585520
C6H4NH2 · HCl C6H5NHCH2CH2OH
129.59 137.18
12, 182
1.222 1.085
1.579320
C6H5NHCH2CH2CN
146.19
6-Aminopurine, a69 2-Amino-3-pyridinol, a197 Aminopyrimidinediols, a154, a155 2-Aminosuccinamic acid, a313 Aminosuccinic acid, a314 6-Amino-2-thiouracil, a191 -Amino-p-toluenesulfonamide, a210 2-Amino-1,1,3-tricyanopropene, a273 1-Aminotricyclo[3.3.1.13,7]decane, a66
97
5.98
184.40
70
198
193 150– 112 15210mm
190–192
93.13
C6H5NH2
221
Aminouracil, a155 2-Aminovaleric acid, a253 5-Aminovaleric acid, a254 Amyl compounds, see Pentyl Amyl alcohol, p37 act-Amyl alcohol, m153 sec-Amyl alcohol, p38 tert-Amyl alcohol, m154 tert-Amylamine, d601
3.5 aq25; s alc, CCl4, eth, acids 100 aq; v s alc sl s aq; v s alc, chl, eth
52–53
Amyl bromides, b322, b323 Amyl chloride, c191 Amyl iodide, i47 Amyl mercaptan, p35 Amyl methyl ketone, h15 Anethole, m97 Angelic acid, m162 Anilinesulfonic acids, a118, a119, a120 Aniline-2,5-disulfonic acid, a117
1.107
1.108
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a302 a303 a304
Name 1-(o-Anisidino)-1,3butanedione 1-(p-Anisidino)-1,3butanedione Anthracene
Formula CH3OC6H4NHCOCH2COCH3 CH3OC6H4NHCOCH2COCH3
Formula weight
Beilstein reference
207.23
131, 117
84–85
207.23
131, 177
115–117
178.23
5, 657
1.2527 4
216.3
340
1.4320 4
286
377
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
a305
9,10-Anthracenedione
208.22
7, 781
a306
9,10-Anthraquinone1,5-disulfonic acid disodium salt 9,10-Anthraquinone2,6-disulfonic acid disodium salt 9,10-Anthraquinone2-sulfonic acid Na salt Antipyrine
412.31
11, 340
300
i aq; 1.5 alc; 1.6 bz; 1.2 chl; 3.1 CS2 i aq; 0.44 alc; 0.26 bz; 0.61 chl; 0.11 eth s aq
412.31
11, 342
325
s aq
a307
a308
a309 a310 a311
L-()-Arabinose
a312
L-()-Ascorbic acid
a313
L-()-Asparagine
L-()-Arginine
hydrate
185
310.26
H2NC( ¨ NH)NH(CH2)3CH(NH2)COOH
24, 27
150.13 174.20
31, 32 4, 420
160–163 223 d
4, 484
190– 192 d 233–235
176.12 H2NCOCH2CH(NH2)COOH · H2O
1.088113 4
188.23
150.14
114
319174mm
100 aq; 77 alc; 100 chl; 2.3 eth 100 aq 17.6 aq; sl s alc 100 aq; 3.3 alc 3.6 aq28; s alk acids; i alc, bz, eth
a314
L-()-Aspartic acid
a315
Atropine
Anisaldehydes, m45, m46 Anisamide, m47 Anisic acids, m50, m51, m52 Anisidines, m42, m43, m44 Anisole, m48 p-Anisoyl chloride, m53
HOOCCH2CH(NH2)COOH
133.10
4, 472
289.38
21, 27
p-Anisyl alcohol, m54 Anthraflavic acid, d374 Anthranilamide, a114 Anthranilic acid, a121 Anthranionitrile, a124 9,10-Anthraquinone, a305
270 sealed tube 114–116
APDC, p271 Araboascorbic acid, i59 Aspirin, a56 Arsanilic acids, a115, a116
0.45 aq; i alc, eth
0.22 aq; s bz, dil acid
1.109
1.110
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. a316
Name
Formula
Formula weight
Beilstein reference
473.44
102, 775
225 d
127.19 197.32
21, 242
35–38 14810mm 150–153
Density
Refractive index
Melting point
Boiling point
Aurintricarboxylic acid, triammonium salt 2-Azacyclooctanone 2-Azacyclotridecanone Azidotrimethylsilane Azidotriphenylsilane 1-Aziridineethanol cis-Azobenzene
(CH3)3SiN3 (C6H5)3SiN3 (CH2)2 ¨ NCH2CH2OH C6H5N ¨ NC6H5
115.21 301.4 87.12 182.23
16, 8
a323
2,2-Azobis(2-methyl)propionitrile
(CH3)2C(CN)N ¨ NC(CN)(CH3)2
164.21
4, 563
a324 a325
Azodicarbonamide 4,4-Azoxydianisole
H2NCON ¨ NCONH2 CH3OC6H4N ¨ N(lO)C6H4OCH3
116.08 258.28
3, 123 16, 637
225 d 120
a326
Azulene
128.17
52, 432
100.5
b1
Barbituric acid
128.09
24, 467
b2 b3
Basic fuchsin Benzaldehyde
C6H5CHO
337.86 106.12
13, 765 7, 174
1.22 1.044720
248– 252 d d 186 26
178.9
b4
Benzamide
C6H5CONH2
121.14
9, 195
1.3414
127.2
288
b5
Benzanilide
C6H5CONHC6H5
197.24
12, 262
1.315
163.1
11710mm
b6
1,2-Benzanthracene
228.29
5, 718
a317 a318 a319 a320 a321 a322
0.868
1.414220
1.088 1.20
1.456020
95 83–84 68.3
Flash point
v s aq
95–96 1000.01mm 168 293
23 67 i aq; s alc, eth, HOAc 2 EtOH; 5 MeOH; can explode in acetone
107 d
1.545520
Solubility in 100 parts solvent
250 s hot aq, dil acid
155–157 437.6
62
0.3 aq; s alc, acids 0.3 aq; misc alc, eth 1.3 aq; 17 alc; 30 pyr i aq; 1.7 alc; sl s eth sl s hot alc; s most other org solv
b7 b8 b8a
2,3-Benzanthracene 7 H-Benz[de]anthracen-7-one Benzene
b9 b10
Benzene-d Benzene-d6
Azacyclopropane, e131 Azelaic acid, n95 Azelonitrile, n94 Aziridine, e131 Azobis(isobutyronitrile), a323
228.29 230.27
52, 628 7, 518
1.35
C6H6
78.11
5, 179
0.873725
1.497925
C6H5D C6D6
79.12 84.16
0.95
1.498020 1.497820
4,4-Azoxyanisole, a325 Barbitol, d280 Behenic acid, d716 Behenyl alcohol, d717 Benzalacetone, p96
341 170
subl
sl s most org solv 1.6 bz; 0.5 HOAc
5.53
80.10
11
80 79.1
11 11
Benzal bromide, d102 Benzalphthalide, b101 Benzanthrone, b8 Benzeneacetaldehyde, p76a
0.17 aq; s most org solv
1.111
1.112
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
b11 b12
Benzenearsonic acid Benzeneboronic acid
C6H5AsO(OH)2 C6H5B(OH)2
202.04 121.93
16, 868 16, 920
b13
1,4-Benzenedicarbaldehyde
C6H4(CHO)2
134.13
b14
1,3-Benzendicarbonyl dichloride 1,4-Benzenedicarbonyl dichloride 1,3-Benzenedicarboxylic acid 1,4-Benzendicarboxylic acid
C6H4(COCl)2
b15 b16 b17
b18 b19 b20 b21 b22 b23 b24
1,4-Benzenedimethanol Benzenehexacarboxylic acid Benzenesulfinic acid Benzenesulfonamide Benzenesulfonic acid Benzenesulfonyl chloride Benzenesulfonyl fluoride
Density
Refractive index
1.76025
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
7, 675
163 d 217 to the anhydride 114
248
203.02
9, 834
43–44
276
180
i aq; 6 bz; 17 acet; 2 eth; 14 diox; 46 MeOH 73 bz; 62 CCl4
C6H4(COCl)2
203.02
9, 844
81
266
180
37 bz; 9 CCl4
C6H4(COOH)2
166.13
9, 832
345–348 subl
C6H4(COOH)2
166.13
9, 841
C6H4(CH2OH)2
138.17
6, 919
subl without melting 115 1431mm
C6(COOH)6
342.17
9, 1008
286 d
C6H5S( ¨ O)OH
142.16
11, 2
85
100 d
C6H5SO2NH2 C6H5SO2OH C6H5SO2Cl
157.19 158.18 176.62
11, 39 11, 26 11, 34
1.384215 15
1.5518
152 50–51 14.5
177100mm
C6H5SO2F
160.16
112, 23
1.328620 4
1.493218
1.10017
2.5 aq; 2 alc 2.6 aq; 1.8 alc; 43 eth; s bz
H2O on standing in air
0.012 aq; v s alc, HOAc; i bz, PE v sl s aq, chl, eth; sl s alc; s alk 188
v s aq, alc, eth v s aq, alc
203–204
112
sl s aq; s alc, bz, eth i aq; sl s alc; s eth v s aq, alc; sl s bz i aq; s alc, eth s alc, eth
b25 b26 b27
b28
b29 b30 b31
Benzenesulfonyl hydrazide 1,2,4,5-Benzenetetracarboxylic acid 1,2,4,5-Benzenetetracarboxylic anhydride 1,2,3-Benzenetricarboxylic acid dihydrate 1,2,4-Benzenetricarboxylic acid 1,3,5-Benzenetricarboxylic acid 1,2,4-Benzenetricarboxylic anhydride
Benzeneazobenzene, a322 Benzenecarbonitrile, b51
C6H5SO2NHNH2
172.21
11, 52
101–103
flammable solid
C6H2(COOH)4
254.15
9, 997
276
1.5 aq; v s alc
218.12
19, 196
283–286 397–400
C6H3(COOH)3·2H2O
246.18
9, 976
192 d
sl s aq; v s eth
C6H3(COOH)3
210.14
9, 977
321 d
C6H3(COOH)3
210.14
9, 978
330
192.13
18, 468
161–164 24514mm
2.1 aq; 25.3 alc; 7.9 acet; v s eth sl s aq; v s alc; s eth 50 acet; 22 EtAc
Benzene-1,2-dicarboxylic acid, p167 Benzenemethanol, b78
Benzenethiol, t159
1.113
1.114
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b32
Name
b33
1,3,5-Benzenetricarboxylic trichloride Benzethonium chloride
b34 b35
Benzil Benzil--dioxime
b36 b37 b38 b39 b40
b41 b42
Benzilic acid Benzil monohydrazone Benzimidazole Benzo-15-crown-5 7,8-Benzo-1,3-diazaspiro-[4,5]decane2,4-dione 1,4-Benzodioxan 2,3-Benzofuran
b43 b44
Benzofurazan-1-oxide Benzoic acid
b45 b46 b47
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
C6H3(COCl)3
265.48
35–36
(CH3)3CCH2C(CH3)2C6H4OCH2CH2OCH2CH2N(CH3)2CH2C6H5Cl C6H5COCOC6H5 C6H5C( ¨ NOH)C( ¨ NOH)C6H5 (C6H5)2C(OH)COOH C6H5C( ¨ NNH2)COC6H5
448.10
164–166
210.23
7, 747
228.25 224.26 118.14 268.3 216.24
10, 342 71, 394 23, 131
1.2315 4
94.9
Boiling point
Flash point
v s aq; s alc, acet
346
i aq; s alc, eth s alk sl s aq; v s alc, eth
153 150–152 170.5 360 76–78 268–270
1036mm 175
1.080
69–71 122.4
132.510mm 121
9, 164
1.199
39–40
360
8, 165 8, 174
1.310020 4 1.101617 4
17, 54
1.142 1.072
C6H5COOH
136.11 122.13
271, 740 9, 92
Benzoic anhydride
(C6H5CO)2O
226.23
DL-Benzoin Benzoin ethyl ether
C6H5COCHOHC6H5 C6H5CH(OC2H5)COC6H5
212.25 240.30
1.548520 1.566020
sl s aq, eth; v s alc
18
136.15 118.14
1.572717
Solubility in 100 parts solvent
134–136 344 61 19520mm
87 i aq; misc bz, eth, PE 0.29 aq; 43 alc; 10 bz; 22 chl; 33 eth; 33 acet i aq; s alc, acet, chl, bz, HOAc s acet; 20 pyr s alc, bz, eth
b48 b49 b50
Benzoin isobutyl ether Benzoin methyl ether -Benzoinoxime
b51
Benzonitrile
b52
Benzo[def]phenanthrene Benzophenone
b53 b54
Benzophenone hydrazone
Benzhydrazide, b72 Benzhydrol, d677 Benzhydrylamine, d678 Benzhydryl bromide, b274 Benzidine, b136
C6H5CH[OCH2CH(CH3)2]COC6H5 C6H5CH(OCH3)COC6H5 C6H5CH(OH)C( ¨ NOH)C6H5 C6H5CN
268.36
0.985
226.28 227.26
8, 174 8, 175
1.127814 4
103.12
9, 275
1.000625
202.26
5, 693
1.27123
C6H5COC6H5
182.22
7, 411
1.110815 4
C6H5C( ¨ NNH2)C6H5
196.25
7, 417
2-Benzimidazolethiol, m15 1,3-Benzodiazole, b38 1,3,2-Benzodioxaborole, c21 1,3-Benzodioxole, m240 Benzofuroxan, b43
1.548520
1330.5mm
85
48 18915mm 151–152 1.525725
12.75
191.1
71
156
404
48.1
305
98
23055mm
Benzoglyoxaline, b38 Benzoic acid hydrazide, b72 o-Benzoic sulfimide, s1
v s alc, bz, eth sl s aq; s alc, NH4OH 0.2 aq; misc alc, bz, chl, eth i aq; s alc, eth i aq; 13.3 alc; 17 eth
1.115
1.116
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b55
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Boiling point
b57 b58 b59
3,3,4,4-Benzophenonetetracarboxylic dianhydride 1-Benzopyran-4(4H ) -one 1,2-Benzo[a]pyrene 4,5-Benzo[e]pyrene 1,4-Benzoquinone
b60 b61 b62
Benzothiazole Benzo[b]thiophene 1,2,3-Benzotriazole
b63 b64 b65 b66 b67
Benzoxazole 1-Benzoylacetone 2-Benzoylbenzoic acid Benzoyl bromide Benzoyl chloride
C6H5COCH2COCH3 C6H5COC6H4COOH C6H5COBr C6H5COCl
119.12 162.19 226.23 185.03 140.57
27, 42 7, 680 10, 747 9, 195 9, 182
1.546720 1.21120 4
1.552520
1.0
182 260 sl d 265 218–219 197.2
b68 b69
Benzoyl cyanide Benzoyl fluoride
C6H5COCN C6H5COF
131.13 124.11
10, 659 9, 181
1.140
1.496020
32 28
206 161
b70 b71
Benzoylformic acid N-Benzoylglycine
C6H5COCOOH C6H5CONHCH2COOH
150.13 179.18
10, 654 9, 225
69 178–179
b72
Benzoylhydrazine
C6H5CONHNH2
136.15
9, 319
117
b56
322.23
Melting point
146.15
O ¨ C6H4 ¨ O
Flash point
Solubility in 100 parts solvent
215–217
17, 327
55–57
252.32 252.32 108.10
495
7, 609
1.31820 4
179.3 182 115.7
135.19 134.20 119.13
1.24620 4 1.193740 1.238
1.637920 1.630240 1.642020
2 31.32 98.5
231 221 20415mm
112
17, 59 26, 38
1.5594
30 60 129
58
90 68
48
1.09060 60
i aq; s bz; sl s alc i aq sl s aq; s alc, eth, hot bz, alk (with d) sl s aq; v s alc, CS2 s alc, bz, chl, eth sl s aq; s alc, bz, chl sl s aq sl s aq; v s alc, eth sl s aq; v s alc, eth d aq, alc; misc eth d aq, alc; misc bz, CS2, eth i aq d hot aq; v s alc, eth 0.4 aq; 0.1 chl; 0.25 eth; sl s alc; i bz, PE
b73
C6H5COCH2CH2COOH
178.19
10, 696
116
b74 b75 b76 b77
3-Benzoylpropionic acid 2-Benzoylpyridine 3-Benzoylpyridine 4-Benzoylpyridine Benzyl acetate
C6H5CO(C5H4N) C6H5CO(C5H4N) C6H5CO(C5H4N) CH3COOCH2C6H5
183.21 183.21 183.21 150.18
21, 330 21, 331 21, 331 6, 435
1.051525
1.523220
44 40 71 51.5
317 307 315 215.5
150 150 150 102
b78
Benzyl alcohol
C6H5CH2OH
108.13
6, 428
1.041325
1.537125
15.3
205.45
100
b79 b80 b81
Benzylamine 2-Benzylaminoethanol (3-Benzylamino)propionitrile
C6H5CH2NH2 C6H5CH2NHCH2CH2OH C6H5CH2NHCH2CH2CN
107.16 151.21 160.22
12, 1013 12, 1040
0.98119 4 1.065
1.542420 1.543520 1.530820
10
185 15612mm
60 112
Benzoresorcinol, d386 2-Benzothiazolethiol, m17 Benzotrichloride, t248
Benzotrifluoride, t300 Benzoylamide, b4 Benzoylbenzene, b53
sl s aq; s alc
Benzoyl peroxide, d54 1,2-Benzphenanthrene, b6 Benzylaniline, p92
s alc, bz, eth s alc, bz, eth sl s aq; misc alc, eth 0.08 aq; misc alc, eth misc aq, alc, eth
1.117
1.118
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
1.11825 4
1.568121
106 19.4
b82 b83
N-Benzylbenzamide Benzyl benzoate
C6H5CONHCH2C6H5 C6H5COOCH2C6H5
211.26 212.25
9, 121
b84
2-Benzylbenzoic acid
C6H5CH2C6H4COOH
212.24
92, 471
b85 b86
Benzyl bromide Benzyl-tert-butanol
171.04 164.25
5, 306 6, 548
b87
Benzyl butyl1,2-phthalate Benzyl carbamate Benzyl chloride
C6H5CH2Br C6H5CH2CH2C(CH3)2OH C6H5CH2OOCC6H4COOC4H9 C6H5CH2OCONH2 C6H5CH2Cl
312.37 151.17 126.59
6, 437 5, 292
C6H5CH2OC(O)Cl C6H5CH2S(COCl)
170.60 186.5
6, 437
C6H5CH2SCH2CH(NH2)COOH C6H5CH2P(O)(OC2H5)2
211.28
6, 465
C6H5CH2N[(CH2)17CH3](CH3)2Cl·H2O
442.18
C6H5CH2OC2H5 C6H5CH2NHCHO C6H5CH2OOCH
136.20 135.17 136.15
12, 1043
C6H5CH2ONH2
123.16
6, 440
b88 b89 b90 b91 b92 b93 b94
b95 b96 b97 b98
Benzyl chloroformate Benzyl chlorothiol formate S-Benzyl-L-cysteine Benzyl diethyl phosphite Benzyldimethylstearylammonium chloride Benzyl ethyl ether N-Benzylformamide Benzyl formate O-Benzylhydroxylamine
Boiling point 323.5
147
198–199 14485mm
86 112
110–113 1.43822 0
1.575220 1.509020
3.9 33
1.11925 25
228.23
Flash point
Solubility in 100 parts solvent i aq; misc alc, chl, eth sl s aq; s alc, bz, chl, eth sl d aq
218
1.099320
1.539120
1.195 1.23730 4
1.519020 1.571130
87–89 43 to 48
220 d 179
73
10320mm 800.13mm
91 118
1102mm
112
i aq; v s alc; sl s eth i aq; misc alc, chl, eth d aq; s eth
214 d 1.076
1.493020
123, 2212
67–69
0.947820
1.495820
185.0
i aq; misc alc, eth
203
i aq; s alc; misc eth
60–61 1.08120 4
11930mm
b99 b100 b101 b102 b103 b104
b105 b106 b107 b108
Benzylidenemalononitrile N-Benzylidenemethylamine 3-Benzylidenephthalide 2-Benzyl-2-imidazoline HCl Benzylmethylamine 3-(N-Benzyl-Nmethylamino)-1,2propanediol Benzyl methyl sulfide 3-Benzyloxyaniline 3-Benzyloxybenzaldehyde 4-Benzyloxybenzaldehyde
Benzyl cyanide, p80 Benzyl disulfide, d57 N-Benzylethanolamine, b80
C6H5CH ¨ C(CN)2
154.17
9, 895
C6H5CH ¨ NCH3
119.17
7, 213
222.24
17, 376
83–85 0.967
1.552620
8018mm
112
102
196.68
174
C6H5CH2NHCH3 C6H5CH2N(CH3)CH2CH(OH)CH2OH
138.23 195.26
12, 1019
0.939 1.084
1.522420 1.534120
C6H5CH2SCH3 C6H5CH2OC6H4NH2 C6H5CH2OC6H4CHO
138.23 199.25 212.25
6, 453 13, 404 8, 73
1.015
1.562020
C6H5CH2OC6H4CHO
212.25
8, 73
Benzyl ether, d58 Benzylideneacetone, p96 Benzylideneacetophenone, d686
v s aq, alc; s chl; v sl s eth, EtAc 184.189 20630mm
77 112
195–198
73
63–67 56–58 73–74
Benzyl mercaptan, p128 Benzyl methyl ketone, p144 Benzyloxyamine, b98
1.119
1.120
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b109
Name
Formula
Formula weight
b123
4-Benzyloxybenzyl alcohol 2-Benzyloxyethanol 4-Benzyloxy-3-methoxybenzaldehyde 4-Benzyloxypropiophenone Benzyl phenyl sulfide 1-Benzylpiperazine 4-Benzylpiperidine 1-Benzyl-4-piperidone 2-Benzylpyridine 4-Benzylpyridine 1-Benzyl-2-pyrrolidinone (Benzylthio)acetic acid Benzyl thiocyanate Benzyltributylammonium chloride Benzyltrichlorosilane
b124
Benzyltriethoxysilane
C6H5CH2Si(OC2H5)3
254.40
b125
Benzyltriethylammonium chloride Benzyltrimethylammonium chloride
C6H5CH2N(C2H5) 3 Cl
227.78
C6H5CH2N(CH3) 3 Cl
185.70
b110 b111 b112 b113 b114 b115 b116 b117 b118 b119 b120 b121 b122
b126
C6H5CH2OC6H4CH2OH
214.26
C6H5CH2OCH2CH2OH C6H5CH2OC6H3(OCH3)CHO C6H5CH2OC6H4COC2H5
152.19 242.27
C6H5CH2SC6H5
200.30 176.26 175.28 189.26 169.23 169.23 175.23
C6H5CH2(C5H4N) C6H5CH2(C5H4N)
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
86–87 1.0720 20
255.9
129
0.4 aq
63–65
240.30
100–102 6, 454 20, 296 20, 425 20, 426
43 1.014 0.997 1.021 1.054 1.06120 0 1.095
C6H5CH2SCH2COOH
182.24
C6H5CH2SCN C6H5CH2N(C4H9) 3 Cl
149.22 312.94
C6H5CH2SiCl3
225.57
1.28820 4 0.98620 4
19727mm
20
1.5467 1.537920 1.539920 1.578520 1.581820 1.552520
7 10
279 1347mm 276 287
112 112 112 125 115 112
i aq; sl s alc; s eth s aq, alc, eth
i aq; v s alc, eth s alc; v s eth
59–63 6, 460
43 155 d 1.52620
140– 142100mm 170– 17570mm 185 d
12, 1020
235
i aq; s alc; v s eth
b127 b128 b129 b130 b131
Benzyltrimethylsilane Betaine Bicyclo[2.2.1]hepta2,5-diene Bicyclo[2.2.1]-2heptene Bicyclo[2.2.1]-5heptene-2-carbaldehyde
Benzylphenol, h113 BES, b180 Betahistine, m121
C6H5CH2Si(CH3)3
(CH3)3N CH2COO
0.893320
164.32 117.15
1.494120 d 310
4, 347
92.14
0.90920
1.470720
94.16 122.16
o,o-Bibenzoic acid, b137 Bibenzyl, d666 Bicine, b182
190–191
1.018
1.488320
20
89
21
160 aq; 55 MeOH; 6 alc i aq; s PE
46
96
15
s eth
67– 7012mm
51
Bicyclo[4.4.0]decane, d1, d2
1.121
1.122
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b132
b133 b134 b135 b136 b137 b138 b139 b140
b141 b142 b143 b144
Name Bicyclo[2.2.2]oct-7ene-2,3,5,6-tetracarboxylic-2,3,5,6-dianhydride Biguanide Biphenyl 4-Biphenylcarboxylic acid (1,1-Biphenyl)-4,4diamine (1,1-Biphenyl)-2,2dicarboxylic acid 4-Biphenylmethanol 4-Biphenylsulfonic acid 2-(4-Biphenylyl)5-(4-tertbutylphenyl)1,3,4-oxadiazole o-Biphenylyl glycidyl ether 2-(4-Biphenylyl)-5phenyloxazole 2,2-Bipyridinium chlorochromate 2,2-Bis[ p-(allyloxy)phenyl]propane
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
300
248.19
H2NC( ¨ NH)NHC( ¨ NH)NH2 C6H5 ˆ C6H5 C6H5C6H4COOH
101.11
3, 93
130
d 142
s aq, alc; i bz, eth
154.20 198.22
5, 578 9, 671
68.8 226
255.0 subl
13, 214
128
400740mm
242.23
9, 922
228–229
i aq; s alc, eth i aq; v s alc, eth; s bz 0.04 aq; s alc; 2 eth 0.06 aq; s org solv
H2NC6H4C6H4NH2
184.23
HOOCC6H4C6H4COOH C6H5C6H4CH2OH C6H5C6H4SO3H
184.24 234.26
62, 636
101 138
0.993970
1.58877
354.46
138
226.28
30–32
197.36
118
C5H4N ˆ C5H4NHCrClO3
292.64
H2C ¨ CHCH2OC6H4C(CH3)2C6H4OCH2CH ¨ CH2
308.42
1.022
1.563620
1200.1mm
112
b145
b146 b147
b148
N,N-Bis(3-aminopropyl)-ethylenediamine N,N-Bis(3-aminopropyl)piperazine N,N-Bis(3-aminopropyl)-1,3propanediamine 2,5-Bis(4-biphenylyl)oxazole
Bicyclo[4.3.0]nonane, h46 Biphenol, d387 Biphenylamines, a134, a135
H2N(CH2)3NHCH2CH2NH(CH2)3NH2
200.33 H2N(CH2)3NHCH2CH2CH2NH(CH2)3NH2
1180.2mm
174.29
232, 12
0.973
1.501520
15
98–1031mm
188.32
373.46
3-(o-Biphenylyloxy)-1,2-epoxypropane, b142 2,2-Bipyridine, d705 Bis(4-aminophenyl)ether, o61
1522mm
240
1,3-Bis(aminomethyl)cyclohexane, c314 1,2-Bis(benzylamino)ethane, d59
1.123
1.124
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b149 b150
b151
b152
b153 b154 b155 b156 b157 b158 b159 b160
Name Bis(2-bromoethyl) ether 1,3-Bis(bromoethyl)tetramethyldisiloxane Bis(2-butoxyethyl) ether 2,5-Bis(5-tert-butyl2-benzoxazolyl)thiophene Bis(sec-butyl) disulfide Bis(tert-butyl) disulfide Bis(carboxymethyl) trithiocarbonate 1,2-Bis(2-chloroethoxy)ethane Bis(2-chloroethoxy)methylsilane Bis(2-chloroethyl) ether Bis(2-chloroethyl)N-methylamine Bis(chloromethyl)dimethylsilane
Formula
Formula weight
Beilstein reference
Density
Refractive index
BrCH2CH2OCH2CH2Br
231.92
[BrCH2Si(CH3)2]2O
320.17
1.391820 4
1.471920
(C4H9OCH2CH2)2O
218.33
0.885320 20
1.423320
430.57
Melting point
Boiling point
Flash point
103– 10720 103– 10415mm 60.2
254.6
47
178.36
13, 1549
0.957
1.492020
164739mm
112
(CH3)3CSSC(CH3)3
178.36
1, 379
0.909
1.493020
204
79
HOOCCH2SC( ¨ S)SCH2COOH (ClCH2CH2OCH2 ˆ )2
226.29
3, 252
172–175
187.07
1.19720 4
1.4617
1088mm
203.1
1.164320 4
1.443120
95–9718mm
1.219220
1.457520
143.01
CH3N(CH2CH2Cl)2
156.07
(CH3)2Si(CH2Cl)2
157.12
0.3 aq; misc alc, eth, ketones, esters, CCl4
201
[CH3CH2CH(CH3)]2S2
H(CH3)Si(OCH2CH2Cl)2 ClCH2CH2OCH2CH2Cl
Solubility in 100 parts solvent
12, 335
1.11825 4 43, 1845
1.07520 4
1.460020
51.7
178.8
60
7510mm 160
55
i aq; s most org solv v sl s aq; misc most org solv
b161 b162
b163
b164 b165 b166 b167
b168
b169
Bis(2-chloro-1methyl)ethyl ether Bis(4-chlorophenoxy)acetic acid 2,2-Bis( p-chlorophenyl)-1,1-dichloroethane 1,1-Bis(4-chlorophenyl)ethanol Bis(4-chlorophenyl) sulfone Bis(4-chlorophenyl) sulfoxide 1,1-Bis( p-chlorophenyl)-2,2,2-trichloroethane 1,3-Bis(dichloromethyl)tetramethyldisiloxane N,N-Bis(2,2-diethoxyethyl)methylamine
1.112220 20
ClCH2CH(CH3)OCH(CH3)CH2Cl (ClC6H4O)2CHCOOH
171.07 313.14
142
(ClC6H4)2CHCHCl2
320.05
111
(ClC6H4)2C(OH)CH3
267.16
63, 3396
ClC6H4SO2C6H4Cl
287.16
6, 327
ClC6H4S(O)C6H4Cl
271.17
61, 149
(ClC6H4)2CHCCl3
354.49
[Cl2CH(CH3)2Si]2O
300.16
[(C2H5O)2CHCH2]2NCH3
263.38
Bis(3-tert-butyl-4-hydroxy-5-methylphenyl) sulfide, t144
187.3
85
69
v sl s aq; s org solv 25010mm
144 109
4, 311
Bis(2-cyanoethyl) ether, o63
i aq; 58 acet; 78 bz; 45 CCl4; v s pyr, diox
1.221320 4
1.466020
14940mm
0.945
1.425920
222244mm
60
1.125
1.126
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b170
b171
b172 b173 b174 b175
b176 b177
b178 b179 b180
b181
Formula weight
Beilstein reference
[(C2H5)2NC6H4]2C ¨ O
324.47
14, 98
95
[(CH3)2)NC6H4]2C( ¨ O)
268.36
14, 89
172–176 d 360
[(CH3)2N]2Si(CH3)2
146.3
[(CH3)2NCH2]2CHOH
146.23
[(CH3)2NC( ¨ S)S ˆ ]2
240.43
H 2C
202.25
Name 4,4-Bis(diethylamino)benzophenone 4,4-Bis(dimethylamino)benzophenone Bis(dimethylamino)dimethylsilane 1,3-Bis(dimethylamino)-2-propanol Bis(dimethylthiocarbamyl) disulfide 1,4-Bis(2,3-epoxypropoxy)butane Bis(2-ethoxyethyl) ether Bis(2-ethylhexyl) decanedioate Bis(2-ethylhexyl) hydrogen phosphate Bis(2-ethylhexyl) o-phthalate N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid Bis(2-hydroxyethyl) ether
Formula
CHCH2O OCH2CH2 ˆ ]2 (C2H5OCH2CH2)2O CH3(CH2)3CH(C2H5)CH2OOC(CH2)8COOCH2CH(C2H5)(CH2)3CH3 [CH3(CH2)3CH(C2H5)CH2O]2P(O)OH [CH3(CH2)3CH(C2H5)CH2OOC]2C6H4 (HOC2H5)2NCH2CH2SO3H HOCH2CH2OCH2CH2OH
162.23
Refractive index
0.81022
1.43222
4, 290
0.897
1.442220
4, 76
1.29
12, 519
426.66
322.43
Density
14, 1786
390.57
98
Boiling point
Flash point
Solubility in 100 parts solvent
i aq; s alc, warm bz
128–129 112
155–156
s alc, eth; sl s bz, acet; i aq 16011mm
112
44.3
188.4
54
v s aq, alc, org solv
1.445020
60
20910mm
1.485920
50
384
207
0.01 aq
245
143
misc aq, alc, acet, eth
1.049
1.453520
0.90720 4
1.411020
1.911925 25
1.449625
0.965 0.984320
213.25
106.12
Melting point
152–154
1, 468
1.11820 20
1.446020
10.45
b182 b183
b184
b185
b186 b187 b188 b189 b190 b191
N,N-Bis(2-hydroxyethyl)glycine Bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane 2,2-Bis(hydroxymethyl)propionic acid 4,8-Bis(hydroxymethyl)tricyclo[5.2.02,6]decane Bis(2-mercaptoethyl) ether Bis(2-mercaptoethyl) sulfide 1,4-Bis(methanesulfonoxy)butane 1,2-Bis(methoxyethoxy)ethane Bis[2,(2-methoxyethoxy)ethyl] ether Bis(2-methoxyethyl) ether
Bis(2-ethylhexyl) sebacate, b177 Bis(2-hydroxyethyl) sulfide, t149
(HOCH2CH2)2NCH2COOH
163.17
192 sl d
(HOCH2CH2)2NC(CH2OH)3
209.24
104
(HOCH2)2C(CH3)COOH
134.13
3, 401
189–191 112
1.528020
196.29
(HSCH2CH2)2O
138.25
1.114
(HSCH2CH2)2S
154.32
1.183
(CH3SO2OCH2CH2 ˆ )2
246.30
(CH3OCH2CH2OCH2 ˆ )2
178.23
(CH3OCH2CH2OCH2CH2 ˆ )2O (CH3OCH2CH2 ˆ )2O
222.28 134.18
sl s aq
80 1.598220
217 13610mm
90
115–117
13, 2107
0.99020 4
1.422420
45
216
110
sl hyd aq; 0.1 alc; 1.4 acet misc aq
1.008720 4
1.433020
27
275.3
140
s aq
0.944025
1.404325
68
162
70
misc aq
2,2-Bis(hydroxymethyl)-2,2,2 -nitrilotriethanol, b183
Bis(4-hydroxyphenyl) sulfide, t150
1.127
1.128
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b192 b193 b194 b195 b196
b197 b198 b199 b200 b201 b202
b203 b204 b205
Name Bis(2-methylallyl) carbonate Bis(4-nitrophenyl) carbonate Bis(3-nitrophenyl) disulfide Bis(4-nitrophenyl) disulfide Bis(octadecyl)pentaerythritol diphosphite Bis(pentabromophenyl) ether 1,4-Bis(5-phenyloxazol-2-yl)benzene Bis(p-tolyl) disulfide Bis(p-tolyl) sulfoxide Bis(tributyltin) oxide 1,4-Bis(trichloromethyl)benzene Bis(2,4,5-trichlorophenyl) disulfide 1,2-Bis(trichlorosilyl)ethane 3,5-Bis(trifluoromethyl)aniline
Formula
Formula weight
Beilstein reference
Density
Refractive index
0.94320
1.4371
Melting point
Boiling point
Solubility in 100 parts solvent
[H2C ¨ C(CH3)CH2O]2C( ¨ O) (O2NC6H4O)2C( ¨ O)
170.21 304.21
61, 120
141
O2NC6H4SSC6H4NO2
308.22
6, 339
83
i aq; s alc, eth
O2NC6H4SSC6H4NO2
308.33
6, 340
181
sl s alc
[C18H37OP(OCH2)2]2
721.01
C6Br5OC6Br5
969.22
0.925
1.457
202
Flash point
40
72
261
300
61, 108
364.40
244
CH3C6H4SSC6H4CH3
246.39
6, 425
43–46
i aq; s alc; v s eth
CH3C6H4S(O)C6H4CH3
230.33
6, 419
94–96
v s alc, bz, chl, eth
(C4H9)3SnOSn(C4H9)3
596.08
Cl3CC6H4CCl3
312.84
Cl3C6H4SSC6H4Cl3
425.01
Cl3SiCH2CH2SiCl3
296.64
1.48320 4
1.47320
(F3C)2C6H3NH2
229.13
1.467
1.433520
1.170
1.486420
5, 385
1802mm
112
108–110
i aq; 26 acet; 38 bz; 22 CCl4; 33 eth; 3 MeOH
140–144 24.5
201–202 8515mm
83
b206 b207
b208 b209
b210
b211 b212
b213
1,3-Bis(trifluoromethyl)benzene N,O-Bis(trimethylsilyl)acetamide Bis(trimethylsilyl)acetylene Bis(trimethylsilyl)formamide N,O-Bis(trimethylsilyl)hydroxylamine 1,2-Bis(trimethylsilyloxy)ethane N,O-Bis(trimethylsilyl)trifluoroacetamide Bis(triphenylphosphine)dicarbonylnickel
Bis(phenylmethyl) disulfide, d57
F3CC6H4CF3
214.0
1.379025
1.391625
116
CH3C ¨ N ˆ Si(CH3)3 ı O ˆ Si(CH3)3 (CH3)3SiC ˜ CSi(CH3)3
203.43
0.83220 4
1.417020
7335mm
11
170.41
0.77020 4
1.41320
137
2
HC ¨ NSi(CH3)3 ı O ˆ Si(CH3)3 (CH3)3SiONHSi(CH3)3
189.41
0.885
1.438120
54– 5513mm
177.40
0.830
1.411220
78– 28 80100mm
(CH3)3SiOCH2CH2OSi(CH3)3 CF3C[¨NSi(CH3)3]OSi(CH3)3
206.43
0.842
1.403420
165–166
46
257.40
0.969
1.393920
5014mm
23
[(C6H5)3P]2Ni(CO)2
639.32
“Bis-tris,” b183
10
209
“Bis-tris” propane, b214
1.129
1.130
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b214
Name
b215 b216
1,3-Bis[tris(hydroxymethyl)methylamino]propane Biuret 1-Borneol
b217 b218 b219
1-Bornyl acetate N-Bromoacetamide p-Bromoacetanilide
b220 b221
Bromoacetic acid -Bromoacetophenone p-Bromoacetophenone Bromoacetyl bromide Bromoacetyl chloride 2-Bromoaniline 3-Bromoaniline 4-Bromoaniline 3-Bromobenzaldehyde Bromobenzene
b222 b223 b224 b225 b226 b227 b228 b229
b230 b231 b232
Bromobenzene-d5 4-Bromobenzenesulfonyl chloride 4-Bromobenzophenone
Formula weight
Beilstein reference
CH2[CH2NHC (CH2OH)3]2
282.34
43, 859
H2NCONHCONH2
103.08 154.25
3, 70 6, 72
1.4675 4 1.01120 4
196.29 137.97 214.07
6, 82 2, 181 12, 642
0.982
CH3CONBrH BrC6H4NHCOCH3 BrCH2COOH C6H5COCH2Br
138.95 199.05
2, 213 7, 283
1.93450 4 1.64720 4
BrC6H4COCH3
199.05
7, 283
1.647
BrCH2COBr BrCH2COCl BrC6H4NH2 BrC6H4NH2 BrC6H4NH2 BrC6H4CHO C6H5Br
201.86 157.40 172.03 172.03 172.03 185.03 157.02
2, 215 2, 215 12, 631 12, 633 12, 636 7, 238 5, 206
2.31722 22 1.908 1.57820 4 1.58020 4 1.4970100 4 1.587 1.495220 4
C6D5Br BrC6H4SO2Cl
162.06 255.52
11, 57
BrC6H4COC6H5
261.12
7, 422
Formula
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
170
110 204
d 190 212
1.4626
27 224 102–105 168
1.480450
50 50
208 13518mm
54
255
1.717
1.548020 1.496020 1.611320 1.625020 1.593520 1.558020
65 84
150 128 229 251
none none
30.72
230 156.2
96 51
5323mm 15315mm
65
74.5
82
350
31 16.8 66.3
112
v s alc; 2 aq i aq; 176 alc; s eth, bz, PE sl s aq; s alc, eth sl s aq; v s eth i aq; s bz, chl, EtAc v s aq, alc, eth i aq; v s alc, bz, chl, eth s alc, bz, eth, HOAc d aq, alc d aq, alc i aq; s alc, eth sl s aq; s alc, eth i aq; v s alc, eth i aq; v s alc, eth 0.044 aq; 10.4 alc; misc bz, chl, PE; 71.6 eth i aq; d alc; v s eth i alc; sl s bz, eth
b233
b237 b238 b239
2-Bromobenzotrifluoride 3-Bromobenzotrifluoride 2-Bromobenzyl alcohol 2-Bromobenzyl bromide 4-Bromobiphenyl 1-Bromobutane 2-Bromobutane
b240 b241 b242
1-Bromo-2-butene 2-Bromo-2-butene 4-Bromo-1-butene
b234 b235 b236
BrC6H4CF3
225.01
1.65220
1.481720
168
51
BrC6H4CF3
225.01
1.613
1.474920
152
43
BrC6H4CH2OH
187.04
6, 445
BrC6H4CH2Br
249.94
5, 308
BrC6H4C6H5 CH3CH2CH2CH2Br CH3CH2CHBrCH3
233.11 137.02 137.03
5, 580 1, 119 1, 119
CH3CH ¨ CHCH2Br CH3CH ¨ C(Br)CH3 BrCH2CH2CH ¨ CH2
135.01 135.01 135.01
1, 205 1, 205 11, 84
2-Bornanone, c3 Bromal, t201 Bromoacetaldehyde diethyl acetal, b267
82
s hot aq; v s alc, eth d hot aq; s alc, eth
1.619320
31
12919mm
9.932725 4 1.268625 4 1.253025 4
1.437425 1.436020
87 112.4 112.4
310 101.6 21
23
1.312 1.328 1.323020 4
1.476520 1.461320 1.460830
99 90740mm 100
11 1 1
Bromoanisoles, b301, b302, b303 p-Bromobenzenethiol, b354 4-Bromobenzyl cyanide, b329
i aq; s alc, bz, eth i aq; s alc, bz, eth 0.1 aq; v s alc, eth
i aq; s alc, eth
exo-2-Bromobicyclo[2.2.1]heptane, b318 Bromobutanedioic acid, b350
1.131
1.132
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b243 b244 b245 b246 b247 b248 b249 b250 b251 b252 b253 b254 b255 b256
Formula weight
Beilstein reference
C6H5OCH2CH2CH2CH2Br
229.12
62, 82
CH3CH2CH(Br)COOH
167.01 231.14
2, 281 72, 101
ClC6H4COCH2Br
233.50
7, 285
BrC6H4Cl
191.46
5, 209
1.638225 4
1.578925
BrC6H4Cl
191.46
5, 209
1.630220 4
1.577120
BrC6H4Cl
191.46
5, 209
1.57671 4
Br(Cl)C6H3CF3
259.47
ClCH2CH2CH2CH2Br
171.47
53, 294
Br(Cl)C6H2(OH)CH3
221.49
6, 360
Br(Cl)CF2
165.4
ClCH2CH2Br
143.43
1, 89
258.51
211, 222
129.39
1, 67
Name 4-Bromobutyl phenyl ether 2-Bromobutyric acid endo-3-Bromo-Dcamphor -Bromo-p-chloroacetophenone 2-Bromochlorobenzene 3-Bromochlorobenzene 4-Bromochlorobenzene 3-Bromo-4-chlorobenzotrifluoride 1-Bromo-4-chlorobutane 4-Bromo-6-chloro-ocresol Bromochlorodifluoromethane 1-Bromo-2-chloroethane 7-Bromo-5-chloro-8hydroxyquinoline Bromochloromethane
Formula
ClCH2Br
Density
Refractive index
Melting point 41–42
1.566920 20 1.449
1.472020
4 76–78
Boiling point
Flash point
153– 15618mm 10310mm 112 244
Solubility in 100 parts solvent
6.7 aq; s alc, eth i aq; 15 alc; 200 chl; 62 eth
96.5 204
79
i aq; v s bz
21
196
80
i aq; v s alc, eth
1.553170
64.5
196
1.74325
1.497325
22
191–192
1.488
1.487520
8230mm
0.1 aq; misc MeOH, eth
60
i aq; s alc, chl, eth
47 1.8321 1.739220 4
1.491720
160.5
4.01
18.4
106.6
none
0.7 aq; misc org solv
67.8
none
0.9 aq; misc MeOH, eth
177–179 1.92325 4
1.48025
88
b257 b258
b259 b260 b261 b262 b263 b264 b265 b266 b267
1-Bromo-3-chloropropane 2-Bromo-2-chloro1,1,1-trifluoroethane -Bromocinnamaldehyde Bromocycloheptane Bromocyclohexane 3-Bromocyclohexene Bromocyclopentane Bromocyclopropane 1-Bromodecane Bromodichloromethane 2-Bromo-1,1-diethoxyethane
2-Bromo-p-cumene, b298 -Bromocumene, b297
1, 109
1.472
1.48620
1.863625
1.373825
ClCH2CH2CH2Br
157.44
HC(Br)ClCF3
197.4
C6H5CH ¨ C(Br)CHO
211.06
7, 358
BrC7H13 BrC6H11
177.09 163.06
5, 29 5, 24
1.288722 4 1.326415 4
1.505220 1.495615
BrC5H9 BrC3H5 CH3(CH2)9Br HCBrCl2
161.04 149.04 120.98 221.19 163.83
52, 40 5, 19
1.389020 4 1.390020 4
12, 130 1, 67
1.065820 4 1.98020
1.529220 1.488120 1.460520 1.456020 1.496420
BrCH2CH(OC2H5)2
197.08
1, 625
1.310
1.438520
50
143.5
none
0.1 aq; misc org solv
7210mm 165.8
68 62
i aq; v s chl, eth 0.1 aq; 10 MeOH; 71 eth
64–6515mm 137–139 69 238 89.2
35 2 94 none
50
66–68
4-Bromodiphenyl ether, b330
30 55
6718mm 180 d
51
Bromoethene, b284
i aq; v s chl, eth sl s aq; misc org solv s hot alc
1.133
1.134
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b268 b269 b270 b271 b272 b273
b274 b275 b276 b277 b278
b279 b280 b281
Name 4-Bromo-1,2-dimethoxybenzene 1-Bromo-2,2-dimethoxypropane 4-Bromo-2,6-dimethylphenol 2-Bromo-4,6-dinitroaniline 3-Bromo-4,6-dinitrofluorobenzene 2-Bromo-2,2-diphenylacetyl bromide -Bromodiphenylmethane 1-Bromododecane 1-Bromo-2,3-epoxypropane Bromoethane 2-Bromoethanesulfonic acid, sodium salt 2-Bromoethanol 2-Bromoethyl acetate 2-Bromoethylamine HBr
Formula weight
Beilstein reference
Density
Refractive index
BrC6H3(OCH3)2
217.07
6, 784
1.702
1.574320
256
109
CH3C(OCH3)2CH2Br
183.05
1.355
1.447520
8780mm
40
BrC6H2(CH3)2OH
201.07
6, 485
78
BrC6H2(NO2)2NH2
262.02
12, 761
154
BrC6H2(NO2)2F
264.9
BrC(C6H5)2COBr
354.05
91, 283
63–65
C6H5CH(Br)C6H5
247.14
5, 592
40
18420mm
CH3(CH2)11Br H2C ˆ CHCH2Br O CH3CH2Br BrCH2CH2SO3Na
249.24 136.98
12, 133 17, 9
1.038 1.60120
1.458020 1.482020
9 40
1356mm 134–136
110 56
0.1 aq; s alc, eth i aq; sl s alc; s eth
108.97 211.02
1, 88 4, 7
1.470815
1.427615
118.6 283– 285 d
38.4
none
0.91 aq
BrCH2CH2OH CH3COOCH2CH2Br
124.97 167.01
1, 338 21, 57
1.762920 4 1.51420 4
1.492020 1.454720
150 159
40 71
BrCH2CH2NH2·HBr
204.90
4, 134
misc aq; s org solv v s aq; misc alc, eth v s aq, alc
Formula
Melting point
Boiling point
Flash point
subl
Solubility in 100 parts solvent
v s hot alc, hot acet
90–91
13.8 172–174
b282 b283 b284 b285 b286 b287 b288 b289 b290 b291 b292 b293 b294
o-Bromo(ethyl)benzene (2-Bromoethyl)benzene Bromoethylene 2-Bromoethyl ethyl ether 2-Bromoethyl phenyl ether N-(2-Bromoethyl)phthalimide 2-Bromofluorobenzene 3-Bromofluorobenzene 4-Bromofluorobenzene 1-Bromoheptane 2-Bromoheptane 1-Bromohexadecane 1-Bromohexane
(Bromomethyl)benzene, b85
CH3CH2C6H4Br
185.07
5, 355
1.356625 25
1.560320
199
C6H5CH2CH2Br
185.07
5, 356
1.355
1.556320
221
89
H2C ¨ CHBr BrCH2CH2OCH2CH3
106.96 153.02
1, 188 1, 338
1.49320 1.357220 4
1.435020 1.445020
15.8 150
21
BrCH2CH2OC6H5
201.07
6, 142
34
14440mm
65
254.09
21, 461
81–84
139.5
175.01
1.601
1.533720
156
43
BrC6H4F
175.01
1.567
1.525720
150
38
BrC6H4F
175.01
5, 209
1.59315
1.531015
17.4
151–152
60
H(CH2)7Br H(CH2)5CH(Br)CH3 H(CH2)16Br H(CH2)6Br
179.11 179.11 305.35 165.08
1, 155 1, 155 12, 138 1, 144
1.138420 4 1.142 0.9991 1.176320 4
1.450520 1.447020 1.4618 1.4475
58
180 6621mm 336 154–158
60 47 177 57
Bromoform, t206
i aq; misc alc, eth sl s aq; misc alc, eth i aq; v s alc, eth s hot aq; v s eth
BrC6H4F
17.8 85
0.1 aq; misc org solv i aq; s bz, eth
i aq; v s alc, eth i aq; misc org solv i aq; misc alc, eth
1.135
1.136
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b295 b296 b297 b298 b299 b300 b301 b302 b303 b304 b305 b306 b307 b308
Formula weight
Beilstein reference
Density
Refractive index
CH3(CH2)3CH(Br) COOH
195.06
2, 325
1.370
1.472020
C6H5CH(CH3)CH2Br
226.03 199.10
21, 453 51, 191
1.316
1.548020
CH3(Br)C6H3CH(CH3)2
213.0
1.25325 25
1.53525
17, 435
1.905
1.540020
94.94
1, 67
1.73200
1.423410
BrC6H4OCH3
187.04
6, 197
1.501825 4
BrC6H4OCH3
187.04
6, 198
BrC6H4OCH3
187.04
6, 199
CH3(Br)C6H3NH2
186.06
12, 838
(CH3)2CHCH2CH2Br
151.05
1, 136
1.21015 4
1.440920
C6H11CH2Br
177.09
52, 18
1.269
1.490720
76–7726mm 57
167.01
192, 8
1.613
1.481720
80–8227mm 62
124.97
1, 582
1.531
1.455020
87
Name DL-2-Bromohexanoic
acid 5-Bromoisatin (2-Bromoisopropyl)benzene 2-Bromo-4-isopropyl1-methylbenzene Bromomaleic anhydride Bromomethane 2-Bromo-1-methoxybenzene 3-Bromo-1-methoxybenzene 4-Bromo-1-methoxybenzene 4-Bromo-2-methylaniline 1-Bromo-3-methylbutane (Bromomethyl)cyclohexane 2-Bromomethyl-1,3dioxalane Bromomethyl methyl ether
Formula
176.96 CH3Br
BrCH2OCH3
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
136– 13818mm 251–253 10818mm 20
91
120
i aq; 50 MeOH; misc org solv
215
112
84
3.56
none
1.573720
2
223
96
1.477
1.563520
211
93
1.456420 4
1.563020
10
223
56
240
112
119.7
0.1 aq; s alc, chl, eth i aq; v s alc, eth i aq; s alc, eth
94
sl s aq; v s alc, eth sl s aq; v s alc
32
26
0.02 aq; misc alc, eth
b309
1-Bromo-2-methylnaphthalene b310 1-Bromo-2-methylpropane b311 2-Bromo-2-methylpropane b311a -Bromo--methylpropiophenone b312 1-Bromonaphthalene
b313 b314 b315 b316 b317 b318 b319
1-Bromo-1-naphthol 1-Bromo-2-nitrobenzene 5-Bromo-2-nitrobenzotrifluoride 2-Bromo-2-nitro-1,3propanediol 1-Bromononane exo-2-Bromonorbornane 1-Bromooctadecane
-Bromoisobutyrophenone, b311a 2-Bromomesitylene, b362
BrC10H6CH3
221.10
5, 568
1.418
1.648420
(CH3)2CHCH2Br
137.03
1, 126
1.264120
1.436220
(CH3)3CBr
137.03
1, 127
1.21525 25
1.42525
C6H5COC(CH3)2Br
227.11
7, 316
1.350
1.556120
C10H7Br
207.08
5, 547
1.483420 4
1.658020
BrC10H6OH BrC6H4NO2
223.07 202.01
6, 650 51, 247
09.932725 4
O2N(Br)C6H3CF3
270.02
(HOCH2)2C(Br)NO2
199.99
1, 476
H(CH2)9Br
207.16 175.07
11, 63
H(CH2)18Br
333.41
11, 69
1.799225
1.518025
296
112
119
91.5
18
16.2
73.1
18
14830mm
112
1
281.1
112
78 43
130 d 261
misc alc, bz, chl, eth i aq; s alc, bz, eth v s alc; s bz, eth
40–44
99–100
51 60
i aq; s chl, eth
0.06 aq; misc alc, eth i aq; misc org solv
133 1.084 1.363
-Bromo-4-nitro-o-cresol, h155
1.454020 1.514820
201 8229mm 23
21612mm
-Bromo-p-nitrotoluene, n46
i aq; s alc, eth
1.137
1.138
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b320 b321 b322 b323 b324 b325 b326 b327 b328 b329 b330 b331 b332 b333 b334 b335 b336 b337 b338
Name 1-Bromooctane Bromopentafluorobenzene 1-Bromopentane 2-Bromopentane 9-Bromophenanthrene 2-Bromophenol 4-Bromophenol 2-Bromo-2-phenylacetic acid p-Bromophenylacetic acid p-Bromophenylacetonitrile 4-Bromophenyl phenyl ether 1-Bromo-3-phenylpropane 1-Bromopropane 2-Bromopropane 3-Bromo-1-propanol 1-Bromo-1-propene 2-Bromo-1-propene 2-Bromopropionic acid 3-Bromopropionic acid
Formula weight
Beilstein reference
Density
Refractive index
Melting point
H(CH2)8Br BrC6F5
193.13 246.97
1, 160
1.10825 4 1.94720
1.450325 1.449020
55 31
201 137
78 87
i aq; misc alc, eth
H(CH2)5)Br
151.05
1, 131
1.233715 4
1.444420
88
129.6
31
i aq; s alc; misc eth
CH3CH2CH2CH(Br)CH3
1, 131 5, 671 6, 197 6, 198 9, 451
1.203920 4 1.409101 4 1.492 1.587580
1.440320
117 1902mm 194 238
20
BrC6H4OH BrC6H4OH C6H5CH(Br)COOH
151.05 257.14 173.01 173.01 215.05
BrC6H4CH2COOH
215.05
9, 451
119
sl s aq; v s alc, eth
BrC6H4CH2CN
196.05
9, 451
47–49
i aq; sl s alc; v s bz
BrC6H4OC6H5
249.11
61, 105
1.423
1.607020
C6H5CH2CH2CH2Br
199.10
5, 391
1.310
1.545020
CH3CH2CH2Br CH3CH(Br)CH3
123.00 123.00
1, 108 1, 108
1.359715 1.322215
1.437015 1.428515
BrCH2CH2CH2OH CH3CH ¨ CHBr CH3C(Br) ¨ CH2 CH3CH(Br)COOH
139.00 120.98 120.98 152.98
1, 356 1, 200 1, 200 2, 254
1.537420 4 1.413320 4 20 1.3624 1.700020
1.485820 1.453820 1.442520 1.475020
BrCH2CH2COOH
152.98
2, 256
1.480
Formula
1.589220
54 –58 6 68 83
Boiling point
Flash point
42
305
112
220
101
110.1 89.0
71.0 59.5
25 19
116 125 25.7
625mm 63 49 203
4 4 100
18
62.5
65
Solubility in 100 parts solvent
i aq; s alc, eth s aq; misc chl, eth 14 aq; v s alc, chl
0.23 aq30; misc alc 0.3 aq18; misc alc, bz, chl, eth s aq; misc alc, eth i aq v s aq, alc, eth s aq, alc, bz, chl, eth
b339 b340 b341 b342 b343 b344 b345 b346 b347 b348 b349 b350
3-Bromopropionitrile 2-Bromopropionyl chloride 3-Bromopropionyl chloride -Bromopropiophenone 3-Bromopropyl phenyl ether 3-Bromopropyne 2-Brompyridine 3-Bromopyridine 3-Bromoquinoline 5-Bromosalicylic acid -Bromostyrene Bromosuccinic acid
-Bromophenetole, b286 3-Bromopropene, a85
BrCH2CH2CN CH3CH(Br)COCl
133.98 171.43
22, 231 2, 256
1.615220 4 1.70011
1.480020 1.480020
7810mm 133
98 51
BrCH2CH2COCl
171.43
22, 231
1.701
1.496820
5717mm
79
C6H5COCHBrCH3
213.08
7, 302
1.43020 4
1.571520
250
112
C6H5OCH2CH2CH2Br
215.10
6, 142
1.365
1.546420
BrCH2C ˜ CH BrC5H4N BrC5H4N
1, 248 20, 233 20, 233 20, 363 10, 107
1.335 1.65718 1.64504 1.533
1.490520 1.572020 1.569520 1.664020
Br(HO)C6H3COOH
118.97 158.00 158.00 208.06 217.02
C6H5CH ¨ CHBr HOOCCH2CH(Br)COOH
183.05 196.99
5, 477 2, 621
1.42220 4 2.073
1.606620
3-(Bromopropyl)benzene, b330
10–11
130– 13414mm 88–90 194 142–143 173 15 276 166 7 172 d
11220mm
v s alc, eth d aq; s chl, eth
s alc, bz, eth, acet
96 18 54 51 112
79
5-Bromopseudocumene, b361
i aq; s org solv s aq; v s alc, eth s HOAc 0.3 aq80; 85 alc25; 70 eth25 i aq; misc alc, eth 18 aq; s alc
1.139
1.140
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
177.99
21, 380
2.098
Refractive index
b351
N-Bromosuccinimide
b352
1-Bromotetradecane
H(CH2)14Br
277.30
12, 136
1.012425 4
1.460020
b353 b354 b355
2-Bromothiophene 4-Bromothiophenol 2-Bromotoluene
Br(C4H3S) BrC6H4SH BrC6H4CH3
163.04 189.08 171.04
17, 33 6, 330 5, 304
1.68420 4
1.586020
1.42225 25
b356 b357 b358
3-Bromotoluene 4-Bromotoluene Bromotrichloromethane 1-Bromotridecane Bromotrifluoromethane 5-Bromo-1,2,4-trimethylbenzene 2-Bromo-1,3,5-trimethylbenzene Bromotrimethylgermane Bromotrimethylsilane Bromotriphenylethylene Bromotriphenylmethane 11-Bromoundecanoic acid
BrC6H4CH3 BrC6H4CH3 BrCCl3
171.04 171.04 198.28
5, 305 5, 305 1, 67
H(CH2)13Br BrCF3
263.27 148.92
12, 134 13, 83
BrC6H2(CH3)3
199.10
5, 403
BrC6H2(CH3)3
199.10
5, 408
(CH3)3GeBr
b359 b360 b361 b362 b363 b364 b365 b366 b367
Melting point
Boiling point
Flash point
173 sl d
6
17820mm
112
1.55225
151 239 181
60
76 26
1.409920 4 1.395935 35 1.99725 25
1.551720 1.5490 1.5063
39.8 28.5 21
183.7 184.5 103.8
60 85 none
1.026220 4 1.580020 4
1.459220
7
15010mm 57.8
112
73
235
1.301
1.551120
2
225
197.60
1.54418
1.470520
25
113.7
(CH3)3SiBr (C6H5)2C ¨ C(Br)C6H5
153.10 335.22
1.160
1.414520
(C6H5)3CBr
323.24
5, 704
152–154 23015mm
Br(CH2)10COOH
265.20
22, 315
51
79
78
Solubility in 100 parts solvent 1.5 aq; 14.4 acet; 3.1 HOAc; 0.02 CCl4 s alc; v s chl; misc bz, acet v s acet, eth 0.1 aq; misc alc, bz, chl, eth s alc, bz, eth s alc, bz, eth misc org solv v s chl v s chl i aq; s alc
96
i aq; s bz; v s eth
1
114–115
1742mm
i aq; v s alc
b376 b377 b378 b379 b380
-Bromo-o-xylene -Bromo-m-xylene 2-Bromo-p-xylene 4-Bromo-o-xylene Brucine 1,2-Butadiene 1,3-Butadiene 1,3-Butadienyl acetate 1,3-Butadiyne 2-Butanamine Butane 1,4-Butanediamine Butanedinitrile
CH3CH ¨ C ¨ CH2 CH2 ¨ CHCH ¨ CH2 CH3C( ¨ O)OCH ¨ CHCH ¨ CH2 HC ˜ CC ˜ CH CH3CH2CH(NH2)CH3 CH3CH2CH2CH3 H2NCH2CH2CH2CH2NH2 NCCH2CH2CN
b381 b382
1,2-Butanediol 1,3-Butanediol
CH3CH2CH(OH)CH2OH CH3CH(OH)CH2CH2OH
b368 b369 b370 b371 b372 b373 b374 b375
BrCH2C6H4CH3 BrCH2C6H4CH3 BrC6H3(CH3)2 BrC6H3(CH3)2
-Bromotoluene, b85 Bromo-,,-trifluorotoluenes, b233, b234 3-Bromo-1,7,7-trimethylbicyclo[2.2.1]heptane-2one, b245 4-Bromoveratrole, b268
185.07 185.07 185.07 185.07 394.45 54.09 54.09 112.13
5, 365 5, 374 5, 385 5, 365 272, 797 1, 249 1, 249 23, 295
1.38123 1.37023 1.340 1.37015 15
0.945
1.42051 1.429325 1.469020
50.06 73.14 58.12 88.15 80.09
13, 1056 4, 160 4, 264 2, 615
0.736404 0.730815 4 0.60110 25 0.8774 0.986760 4
1.41895 1.396315 1.356213 1.456920 1.417360
36 104.5 138.3 27–28 57.9
10.3 66 0.50 158–160 265–267
90.12 90.12
1, 477 1, 477
1.00618 0 1.005320 20
1.438020 1.44120
50
207.5 207.5
0.67610 4 0.6506 4
4-Bromo-2,6-xylenol, b270 BSA, b207 BSTFA, b212 BTMSA, b208 Busulfan, b188
1.574220 1.556020 1.550520 1.556020
21 9–10 178 136.2 108.9
223–224 185340mm 199–201 215
82 82 79 80
10.9 4.4 6040mm
33 19 51
93 121
s alc, eth s alc, eth v s alc, eth 77 alc; 1 bz; 20 chl misc alc, eth misc alc, eth
v s eth; s bz, acet misc aq, alc s aq 11.5 aq; s acet, chl, diox; sl s bz, eth s aq, alc, acet s aq, alc, acet; 9 eth
-Butadiene sulfone, d368 Butanedioic acid, s14 1,4-Butanediol diglycidyl ether, b175 1,4-Butanediol dimethanesulfonate, b188
1.141
1.142
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
b383
1,4-Butanediol
HOCH2CH2CH2CH2OH
b384 b385 b386
meso-2,3-Butanediol D-()-2,3-Butanediol
2,3-Butanedione
CH3CH(OH)CH(OH)CH3 CH3CH(OH)CH(OH)CH3 CH3C(O)C(O)CH3
b387 b388 b389 b390
1,4-Butanedithiol 1-Butanethiol 2-Butanethiol 1,2,4-Butanetriol
b391 b392
1-Butanol 2-Butanol
HSCH2CH2CH2CH2SH CH3CH2CH2CH2SH CH3CH2CH(SH)CH3 HOCH2CH2CH(OH)CH2OH CH3CH2CH2CH2OH CH3CH2CH(OH)CH3
b393
2-Butanone
CH3CH2COCH3
Formula weight
Beilstein reference
Density
Refractive index
Melting point
90.12
1, 478
1.01625 4
1.445220
120.9
90.12 90.12 86.09
1, 479 12, 546 1, 769
0.993925 4 0.986925 4 0.99015 15
1.432435 1.431525 1.395120
34.4 19.7
122.25 90.19 90.19 106.12
1, 479 1, 370 1, 373 1, 519
1.042 0.836725 4 0.824625 4 1.01820
1.529020 1.440325 1.433825 1.474820
74.12 74.12
1, 367 1, 371
0.809720 4 0.806920 4
72.11
12, 726
Boiling point
Flash point
Solubility in 100 parts solvent
230
112
182 180715mm 88
85 85 26
115.7 165
10630mm 98.5 85.0 19118mm
70 12 21 167
misc aq, alc, acet; 0.3 bz; 3.1 eth; 0.9 PE misc aq, alc misc aq, alc; s eth 25 aq; misc alc, eth i aq; v s alc 0.06 aq; v s alc, eth sl s aq; v s alc, eth v s aq, alc
1.399320 1.397220
88.6 114.7
117.7 99.5
35 26
0.804920 4
1.378820
86.7
79.6
3
1.4428 1.396220 1.393125 1.384825 1.479320 1.477920
29.5 185.3 138.9 105.6 12.5 27.3
7225mm 6.3 3.7 0.88 234 132
CH3CH2C ( ¨ NOH)CH3 CH3CH2CH ¨ CH2 CH3CH ¨ CHCH3 CH3CH ¨ CHCH3 HOCH2CH ¨ CHCH2OH HOCH2CH ¨ CHCH2OH
87.12 56.10 56.10 56.10 88.11 88.11
12, 730 13, 715 13, 728 13, 730 12, 567 13, 2252
b400
2-Butanone oxime 1-Butene cis-2-Butene trans-2-Butene cis-2-Butene-1,4-diol trans-2-Butene-1,4diol 3-Butenenitrile
0.923220 4 0.6255185 4 0.621320 4 0.604120 4 0.070020 4 20 0.0704
H2C ¨ CHCH2CN
67.09
2, 408
0.834120 4
1.406020
87
119
b401
cis-2-Butenoic acid
CH3CH ¨ CHCOOH
86.09
2, 412
1.026720 4
1.448214
14
168–169
b394 b395 b396 b397 b398 b399
128
21
7.4 aq; misc alc, eth 12.5 aq; misc alc, eth 24 aq; misc alc, bz, eth s aq; misc alc, eth i aq; v s alc, eth i aq; v s alc, eth i aq; v s alc, eth s aq; v s alc v s aq, alc sl s aq; misc alc, eth v s aq; s alc
b402
trans-2-Butenoic acid
CH3CH ¨ CHCOOH
86.09
2, 408
0.96480 4
1.422877
71.4
185.0
87
b403 b404 b405 b406
3-Butenoic acid cis-2-Buten-1-ol trans-2-Buten-1-ol 3-Buten-2-one
H2C ¨ CHCH2COOH CH3CH ¨ CHCH2OH CH3CH ¨ CHCH2OH H2C ¨ CHCOCH3
86.09 72.11 72.11 70.09
2, 407 1, 442 1, 442 1, 728
1.009120 4 0.866220 4 0.845420 4 0.863620 4
1.424920 1.434220 1.428920 1.408620
39 89.4
163 123.6 121.2 81.4
65 56 56 6
b407 b408
1-Buten-3-yne 4-Butoxyaniline
HC ˜ CCH ¨ CH2 CH3(CH2)3OC6H4NH2
52.07 165.24
13, 1032 132, 226
0.709514 0.992
1.41611 1.534320
b409 b410
4-Butoxybenzoic acid 2-Butoxyethanol
CH3(CH2)3OC6H4COOH CH3(CH2)3OCH2CH2OH
194.23 118.18
102, 93 12, 519
0.901220 4
1.419820
150 40
170.2
60
b411
2-(2-Butoxyethoxy)ethanol Butyl acetate
HOCH2CH2OCH2CH2OC4H9 C4H9OOCCH3
162.23
12, 521
0.953620 20
1.430620
68.1
230.4
110
116.16
2, 130
0.881320 4
1.394120
73.5
126.1
37
DL-sec-Butyl acetate
CH3COOCH(CH3)C2H5 (CH3)3COOCCH3 (CH3)3COC( ¨ O)CH2C( ¨ O)CH3 H2C ¨ CHCOOC4H9 CH3CH2CH2CH2NH2
116.16 116.16 158.20
22, 141 2, 131
0.86525 4 0.866520 4 0.954
1.384025 1.385320 1.418020
112.3 97.8
32 15 60
128.17 73.14
22, 388 4, 156
0.89425 16 0.732725 4
1.4160 1.399225
50.5
148 77.9
38 1
(CH3)3CNH2 (CH3)3CNHCH2CH2OH
73.14 117.19
4, 173
0.695120 4
1.378820
67.5 42–45
44.4 8 90–9225mm 68
b412
b413 b414 b415 b416 b417 b418 b419
tert-Butyl acetate tert-Butyl acetoacetate Butyl acrylate Butylamine tert-Butylamine 2-(tert-Butylamino)ethanol
1.143
(E)-2-Butenal, c282 Buten-4-carboxylic acid, p50 Butopyronoxyl, b445
Butoxybenzene, b477 1-Butoxybutane, d115 Butyl alcohols, b393, b392, m382
54.6 aq; v s EtOH, bz, acet s aq; misc alc, eth 16.6 aq; misc alc 16.6 aq; misc alc v s aq, alc, acet, eth
5.1 148– 14913mm
sec-Butylamine, b377
5 aq; s most org solv misc aq, alc, bz, acet, PE, CCl4 0.43 aq; misc alc, eth; s most org solv 0.62 aq; s alc, eth i aq; misc alc, eth
i aq; s alc, eth misc aq, alc, eth, PE misc aq, alc
1.144
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b420 b421 b422 b423 b424 b425 b426 b427 b428 b429 b430 b431 b432
b433 b434 b435 b436
Name 3-(tert-Butylamino)1,2-propanediol 4-Butylaniline 2-tert-Butylanthraquinone Butylbenzene sec-Butylbenzene tert-Butylbenzene Butyl benzoate 4-tert-Butylbenzoic acid 4-tert-Butylbenzoyl chloride N-(tert-Butyl)benzylamine Butyl butyrate tert-Butyl carbazate 4-tert-Butylcatechol
tert-Butyl chloroacetate 4-tert-Butyl-1-chlorobenzene tert-Butylchlorodiphenylsilane Butyl chloroformate
Formula (CH3)3CNHCH2CH(OH)CH2OH CH3CH2CH2CH2C6H4NH2
Formula weight
Beilstein reference
Density
Refractive index
147.22 149.24
Melting point 70
121, 503
0.945
1.535020
264.32
Boiling point
Flash point
Solubility in 100 parts solvent
921mm 12015mm
101
183.3 173.3 169.1 250
59 45 34
100 88 82.7 57.9 22 167
0.860420 4 0.860820 4 0.866920 4 20 1.000
1.489820 1.490220 1.492720 1.496
1.007
1.536420
13520mm
87
12, 1022
0.881
1.496820
805mm
80
144.21 132.16 166.22
2, 271
0.871720 20
1.4035
156.9 650.03mm 285
51
i aq; misc alc, eth
151
0.2 aq80; 240 eth25; s alc; v s acet
ClCH2COOC(CH3)3
150.61
23, 444
1.053
1.423020
(CH3)3CC6H4Cl
168.67
5, 416
1.006
1.510820
(CH3)3CSi(C6H5)2Cl
274.87
1.057
1.567520
900.02mm
112
ClCOOC4H9
136.58
1.07425 4
1.411420
142
25
CH3CH2CH2CH2C6H5 CH3CH2CH(CH3)C6H5 (CH3)3CC6H5 C6H5COOC4H9 (CH3)3CC6H4COOH
134.22 134.22 134.22 178.23 178.23
(CH3)3CC6H4COCl
196.68
C6H5CH2NHC(CH3)3
163.27
CH3CH2CH2COOC4H9 H2NNHCOOC(CH3)3 (CH3)3CC6H3(OH)2
5, 413 5, 414 5, 415 9, 112 9, 560
42 55
1.04960 25
32, 11
misc alc, bz, eth misc alc, bz, eth misc alc, bz, eth i aq; s alc, eth i aq; v s alc, bz
48–4911mm 41 23–25
217
d aq, alc; misc eth
b437 b438 b439 b440 b441 b442 b443 b444 b445
S-tert-Butyl chlorothioformate tert-Butyl cyanoacetate 2-tert-Butylcyclohexanol 4-tert-Butylcyclohexanol 2-tert-Butylcyclohexanone 4-tert-Butylcyclohexanone Butyl decylo-phthalate N-Butyldiethanolamine Butyl 3,4-dihydro-2,2dimethyl-4-oxo-2Hpyran-6-carboxylate
Butyl bromides, b238, b239, b311 N-Butyl-1-butanamine, d107 Butyl carbitol, b411
1.08130 4
ClC( ¨ O)SC(CH3)3
152.6
NCCOOC(CH3)3
141.17
(CH3)3CC6H10OH
156.27
(CH3)3CC6H10OH
156.27
61, 18
(CH3)3CC6H9( ¨ O)
154.25
73, 143
(CH3)3CC6H9( ¨ O)
154.25
71, 29
C4H9OOCC6H4COOC10H21 C4H9N(CH2CH2OH)2
362.51 161.25 226.27
1.469130
42.010mm
1.420020
108
0.902
46 70
0.896
1.456520
i aq 11515mm
50
i aq
11620mm
96
i aq
202
0.98620 20
1.462520
1.05425 25
1.476720
Butyl Cellosolve, b410 Butyl chlorides, c64, c65, c162 2-tert-Butyl-o-cresol, b462
105
62.54mm
0.99425 25 4, 285
46
70
276
126
256–270
112
misc alc, chl, eth
2-tert-Butyl-p-cresol, b461 tert-Butyldihydroxybenzene, b432
1.145
1.146
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. b446
Name
Formula
Formula weight
b455 b456 b457
tert-Butyldimethylchlorosilane 1,3-Butylene diacetate N-Butylethanolamine Butyl ethyl ether 2-Butyl-2-ethyl-1,3propanediol Butyl ethyl sulfide tert-Butylhydrazine HCl tert-Butylhydroperoxide tert-Butylhydroquinone Butyl isocyanate tert-Butyl isocyanate Butyllithium
CH3CH2CH2CH2NCO (CH3)3CNCO CH3CH2CH2CH2Li
99.13 99.13 64.06
b458
tert-Butyllithium
(CH3)3CLi
64.06
b459 b460
Butyl methacrylate tert-Butyl methyl ether 2-tert-Butyl-4methylphenol
H2C ¨ C(CH3)COOC4H9 (CH3)3COCH3
142.19 88.15
(CH3)3CC6H3(CH3)OH
164.25
b447 b448 b449 b450 b451 b452 b453 b454
b461
Beilstein reference
Density
Refractive index
Melting point
(CH3)3CSi(CH3)2Cl
150.7
CH3CH(OOCCH3)CH2CH2OOCCH3 HOCH2CH2NHC4H9 C4H9OC2H5 HOCH2C(C2H5)(C4H9)CH2OH C4H9SC2H5 (CH3)3CNHNH2 HCl
174.20
2, 143
1.028
1.419920
117.19 102.18 160.25
13, 1502
0.8920 0.749520 4 0.93150 20
1.44420 1.381820 1.458725
3.5 103 41.4
118.24 124.61
13, 1522 43, 1734
0.837620 4
1.449120
95.1 144.2 191–174
0.89620 4
1.400720
4–5
(CH3)3C ˆ O ˆ OH
90.12
(CH3)3CC6H3(OH)2
166.22
91.5
Boiling point
Flash point
Solubility in 100 parts solvent
124–126 998mm
85
192 92.5 195100mm
77
v s aq; s alc
i aq; misc alc, eth 0.8 aq s chl
33–417mm
62
115 86 800.0001mm
26 26 pyrophoric pyrophoric 49 i aq; misc alc, eth 10 s aq; v s alc, eth
s aq, alc, chl, eth
129
4, 175
0.880 0.868
1.406120 1.386520
subl 700.1mm
1, 381
0.88925 15 0.758
1.422025 1.368520
109
170 56
0.924775 4
1.496975
51.7
237
i aq; s org solv
b462 b463 b464 b465 b466 b467 b468 b469
2-tert-Butyl-6methylphenol Butyl methyl sulfide Butyl nitrite tert-Butyl nitrite Butyl octadecanoate Butyl 4-oxopentanoate tert-Butyl peroxybenzoate 2-sec-Butylphenol
b470 b471 b472
2-tert-Butylphenol 3-tert-Butylphenol 4-sec-Butylphenol
b473 b474
4-tert-Butylphenol 2-(4-sec-Butylphenoxy)ethanol 2-(4-tert-Butylphenoxy)ethanol tert-Butyl phenyl carbonate Butyl phenyl ether
b475 b476 b477
1.519520
32
230
107
0.842620 4 0.911404 0.867120 4
1.447720 1.3768 1.368720
97.8
123.4 78 63
4
0.855120 4 0.973520 4
1.442225 1.427020
26.3
343 1076mm
160 91
194.23
1.021
1.499020
760.2mm
93
150.22
0.982
1.522220
12
228
112
150.22 150.22 150.22
62, 489
0.978320 4
1.522820
0.96920 4
1.5150
221–224 240 13625mm
110
6, 522
7 40–41 62
150.22 194.2
6, 524
0.908114 4 1.00825
1.4787114
(CH3)3CC6H3(CH3)OH
164.25
C4H9SCH3 C4H9ONO (CH3)3CONO
104.21 103.12 103.12
13, 1521 1, 369 12, 415
CH3(CH2)16COOC4H9 CH3C( ¨ O)CH2CH2COOC4H9 C6H5( ¨ O)O ˆ OC(CH3)3
340.60 172.22
22, 352
CH3CH2CH(CH3)C6H4OH (CH3)3CC6H4OH (CH3)3CC6H4OH CH3CH2CH(CH3)C6H4OH (CH3)3CC6H4OH CH3CH2CH(CH3)C6H4OCH2CH2OH (CH3)3CC6H4OCH2CH2OH C6H5OC( ¨ O)OC(CH3)3
194.3
1.01625
194.23
1.047
1.480520
CH3CH2CH2CH2OC6H5
150.22
0.935120 4
1.497020
Butyl disulfides, d113, d114 1,4-Butylene bis(2,3-epoxypropyl) ether, b175 1,3-Butylene glycol methyl ether, m57 1,2-Butylene oxide, e3 Butyl ether, d115
6, 143
Butyl ethyl ketone, h16 tert-Butyl fluoride, f20 Butyl glycol, b410 2,2-(Butylimino)diethanol, b444 Butyl iodides, i30, i31, i44
v s alc misc alc, eth sl s aq; v s alc, chl, eth, CS2 s alc, v s acet s alc, eth, acet
i aq; s alc; v s eth
115
s hot aq, alc, eth
100–101 237 20 15810mm
149
i aq; s alc, eth 0.1 aq
16710mm
157
0.1 aq
54
790.8mm 19
210.3
82
Butyl levulinate, b467 Butyl mercaptans, b388, m378, m379, m380 Butyl methyl ketone, d497 tert-Butyl perbenzoate, b468
1.147
1.148
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
b478
4-tert-Butylphenyl salicylate
HOC6H4COOC6H4C(CH3)3
270.31
b479 b480 b481 b482 b483 b484
CH3CH2COOC4H9 (CH3)3C(C5H4N) C4H9SnCl3 (CH3)3CC6H4CH3 C4H9SiCl3 CF3COOC4H9
130.19 135.21 282.17 148.25 191.5 170.1
C4H9Si(OCH3)3 (CH3)3C ˆ O ˆ O ˆ Si(CH3)3
178.3 162.3
C4H9NHCONH2 C4H9OCH ¨ CH2 (CH3)3CC6H3(CH3)2
116.16 100.16 162.28
41, 371
b490 b491 b492
Butyl propionate 4-tert-Butylpyridine Butyltin chloride 4-tert-Butyltoluene Butyltrichlorosilane Butyl trifluoroacetate Butyltrimethoxysilane tert-Butyl trimethylsilyl peroxide Butyl urea Butyl vinyl ether 5-tert-Butyl-mxylene 1-Butyne 2-Butyne 2-Butyne-1,4-diol
CH3CH2C ˜ CH CH3C ˜ CCH3 HOCH2C ˜ CCH2OH
b493
Butyraldehyde
CH3CH2CH2CHO
b494 b495 b496
Butyramide Butyric acid Butyric anhydride
CH3CH2CH2CONH2 CH3CH2CH2COOH [CH3CH2CH2C(O) ]2O
b485 b486
b487 b488 b489
Density
Refractive index
Melting point
Boiling point
Flash point
62–64 89.6
0.1 aq; 79 alc; 153 EtAc; 158 toluene misc alc, eth
0.881815 0.915 1.693 0.853 1.16120 4 1.026822
1.398225 1.495220 1.522920 1.489720 1.43620 1.35322
0.931220 4 0.821920 4
1.397920 1.393525
5, 447
0.779220 0.867
1.400720 1.494620
54.09 54.09 86.09
1, 249 1, 249 11, 261
0.711031 1.396220 4 0.691020 1.392020 4 1.45025
125.7 32.3 54–58
8.1 17.0 238
152
72.11
1, 662
0.801620 4
1.379120
96.4
74.8
6.7
87.12 88.11 158.20
2, 275 2, 264 2, 274
0.958220 4 0.966820 4
1.398020 1.413020
116 5.3 65.7
216 163.3 199.5
77 87
2, 241 20, 252 5, 439 41, 582
d 135
93–95 112.7
145.5 197 9310mm 192 142–143 100.2
Solubility in 100 parts solvent
63 81 54 d aq, hot alc; s eth
164–165 4141mm
94.2 205–206
9 72
s aq, alc, eth 0.3 aq
i aq; s alc, eth i aq; s alc, eth 374 aq; 83 alc; 0.04 bz; 2.6 eth; 70 acet 7.1 aq; misc alc, eth, acet, EtAc 16 aq; s alc misc aq, alc, eth s aq, alc(d), eth
86.09 86.09
171, 130 17, 234
1.056 1.12425 4
1.4109 1.434825
20 43.5
7329mm 204
60 98
69.11
22, 252
0.795415 4
1.386015
111.9
117.9
16
148.21 106.55
7, 313 2, 274
1.021 1.026321 4
1.519520 1.412220
13 89
222 102
88 21
Caffeine
194.19
26, 461
1.2318 4
238
subl 178
c2 c3
DL-Camphene
136.24 152.23
5, 156 7, 101
0.842254 4 0.992025 4
51–52 178.8
159 207.4
c4 c5
DL-Camphor
152.24 200.23
7, 135 9, 745
1.18620 4
b497 b498
3-Butyrolactone 4-Butyrolactone
b499
Butyronitrile
CH3CH2CH2CN
b500 b501
Butyrophenone Butyryl chloride
C6H5C(O)C3H7 CH3CH2CH2COCl
c1
D-()-Camphor
D-Camphoric acid
Butyl o-phthalate, d128 Butyl propyl ketone, 036 Butyl stearate, b466 Butyl sulfate, d131
Butyl sulfides, d132, d133 Butyl sulfite, d134 Butyl sulfone, d135 Butyrolactam, p275
1.455154
177 204 186–188
36
misc aq, alc, acet, bz, eth, CCl4 3.3 aq; misc alc, eth s aq, alc(d); misc eth 2.1 aq; 1.5 alc; 18 chl; 0.19 eth; 1 bz i aq; s alc, chl, eth 100 alc; 100 eth; 200 chl; 250 acet
64 4 aq; 100 alc; s chl, eth Cadaverine, p29 2-Camphanone, c3
1.149
1.150
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c6 c7
c8 c9
c10 c11 c12
c13 c14 c15
c16 c17 c18
Name
Formula
DL-Camphoric
anhydride D-10-Camphorsulfonic acid hydrate Carbazole 4-Carbethoxy-3methyl-3-cyclohexen-1-one Carbobenzyloxyglycine Carbohydrazide 2-(Carbomethoxy)ethylmethyldichlorosilane 2-Carbomethoxyethyltrichlorosilane 2-Carboxybenzaldehyde 4-Carboxy-1,2-benzenedicarboxylic anhydride 4-Carboxybenzenesulfonamide 2-Carboxyethylphosphonic acid DL-Carnitine HCl
Formula weight
Beilstein reference
Density
182.22
17, 455
1.19420 4
250.32
11, 316
167.21 182.22
20, 433 10, 631
C6H5CH2OC( ¨ O)NHCH2COOH H2NNHC( ¨ O)NHNH2 CH3OC( ¨ O)CH2CH2Si(CH3)Cl2
209.20
CH3OC( ¨ O)CH2CH2SiCl3 HC( ¨ O)C6H4COOH
221.6
90.09 201.1
Refractive index
Melting point 225
Boiling point
Flash point
270
s bz; sl s aq, alc, eth deliq moist air; sl s HOAc, EtAc; i eth
194 d
1.078
1.488020
245–246 355 268–272
Solubility in 100 parts solvent
112
122 3, 121
d 153
v s aq; i alc, bz, eth
1.18725 4
1.443925
98–9925mm
1.32520 4
1.44820
88–892mm
150.13
10, 666
96–98
192.13
18, 468
161–164 240– 24514mm
15.5 DMF; 49.6 acet; 21.6 EtAc
HOOCC6H4SO2NH2
201.20
11, 390
d 280
i aq, bz, eth; v s alc
HOOCCH2CH2P(O)(OH)2 (CH3)3NCH2CHOHCH2COOHHCl
154.06
42, 976 197 d
v s aq; i acet, eth
197.66
c19 c20 c21
trans--Carotene D-()-Carvone Catecholborane
Capric acid, d14 Caproaldehyde, h54 Caproic acid, h66 Caproic anhydride, h67 -Caprolactam, o57 -Caprolactone, h71 Capronitrile, h63 Caproyl chloride, h73 Caprylic acid, o29 Capryl alcohol, o30 Caprylaldehyde, o40
536.89 150.22 119.92
30, 87 7, 153
1.00020 20 0.96520 4
Caprylonitrile, o27 Capryloyl chloride, o37 CAPS, c337 N-(Carbamoylmethyl)iminodiacetic acid, a14 Carbamylurea, b215 Carbanilide, d693 Carbazole, d665 Carbitol, e35 Carbitol acetate, e36 Carbobenzoxy chloride, b90 4,4-Carboxyldiphthalic anhydride, b55
183 1.498920 1.507020
12
230 5050mm
88
i aq; s bz, chl, CS2 i aq; misc alc
N-Carbonylsulfamyl chloride, c240 Carboxybenzaldehyde, f33 (3-Carboxy-2-hydroxypropyl) trimethylammonium hydroxide, c18 3-Carbomethoxypropionyl chloride, m188 (Carboxymethylimino)bis(ethylenenitrilo)tetraacetic acid, d299 (Carboxylmethyl)trimethylammonium hydroxide, b128 3-Carboxypropyl disulfide, d708
1.151
1.152
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
c22
2-Chloroacetamide
ClCH2CONH2
c23
p-Chloroacetanilide
ClC6H4NHCOCH3
c24
Chloroacetic acid
ClCH2COOH
c25
c33
Chloroacetic anhydride p-Chloroacetoacetanilide Chloroacetonitrile -Chloroacetophenone o-Chloroacetophenone p-Chloroacetophenone Chloroacetyl chloride 2-Chloroacrylonitrile 2-Chloroaniline
ClC6H4NH2
127.57
c34 c35
3-Choroaniline p-Chloroaniline
ClC6H4NH2 ClC6H4NH2
c36
1-Chloroanthraquinone 2-Chloroanthraquinone
c26 c27 c28 c29 c30 c31 c32
c37
Beilstein reference
Density
Refractive index
93.51
2, 199
169.61
12, 611
1.38520 4
94.50
2, 194
1.580(c)
[ClCH2C(O) ]2O
170.98
2, 199
1.549420 4
CH3COCH2CONHC6H4Cl
211.65
ClCH2CN C6H5COCH2Cl
75.50 154.60
2, 201 7, 282
1.193 1.32415
1.422520
ClC6H4COCH3
154.60
71, 151
1.188
1.543820
ClC6H4COCH3
154.60
7, 281
1.19220 4
1.5549
ClCH2COCl
112.94
2, 199
1.41825 25
H2C ¨ C(Cl)CN
Melting point 118
Boiling point
Flash point
225 d
10 aq; 10 alc; sl s eth i aq; v s alc, eth, CS2 v s aq; s alc, bz, eth d aq; v s chl, eth
179 1.429765
63()
189
46
203
Solubility in 100 parts solvent
134 126 245
47
228738mm
88
sl s aq; s eth
20–21
237
90
i aq; misc alc, eth
1.453020
22.5
106
none
d aq, MeOH
1.096
1.429020
65
89
6
12, 597
1.212520 4
1.588120
1.94
208.8
97
127.57 127.57
12, 602 12, 607
1.215022 4 1.16977 4
1.593120 1.554685
10.4 72.5
230.5 232
123
242.66
7, 787
160
subl
242.66
7, 787
211
subl
87.51
54
i aq; v s alc, bz, eth
0.88 aq; s alc, bz, eth i aq; s alc, bz, eth s hot aq; v s alc, acet, eth, CS2 sl s alc; misc eth; s hot bz sl s alc, bz; i eth
c38 c39 c40 c41 c42 c43 c44 c45
2-Chlorobenzaldehyde 4-Chlorobenzaldehyde 2-Chlorobenzamide Chlorobenzene
ClC6H4CHO
140.57
7, 233
1.248320 4
1.5658
11
215
87
ClC6H4CHO
140.57
7, 235
1.19661 4
1.55261
47
214
87
ClC6H4CONH2 C6H5Cl
155.58 112.56
9, 336 5, 199
1.106320
1.524820
142–144 45.3 131.7
4-Chlorobenzenesulfonamide 4-Chlorobenzenesulfonyl chloride 4-Chlorobenzhydrol 2-Chlorobenzoic acid
ClC6H4SO2NH2
191.64
11, 55
146
ClC6H4SO2Cl
211.07
11, 55
55
ClC6H4CH(OH)C6H5 ClC6H4COOH
218.68 156.57
6, 680 9, 334
Cellosolve, e34 Cellosolve acetate, e37 Cetyl alcohol, h36 Cetyl bromide, b294 Chalcone, d686 CHES, c335
1.54425 4
Chloramine T, c247 Chloranils, t24, t25 Chloranilic acid, d172 Chlorendic anhydride, h30 Chloroacetaldehyde diethyl acetal, c81 Chloroacetaldehyde dimethyl acetal, c89
23
14115mm
58–60 142
Chloroacetone, c215 4-(Chloroacetyl)catechol, c86 Chloroanthranilic acid, a140 5-Chloroanthranilonitrile, a141 p-Chlorobenzenethiol, c243
sl s aq; s alc, bz, eth s aq; v s alc, bz, eth 0.049 aq30; v s alc, bz, chl, eth s hot aq, hot alc, hot eth d aq, alc; v s bz, eth 0.11 aq; v s alc, eth
1.153
1.154
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c46 c46a c47 c48 c49 c50 c51 c52 c53 c54 c55 c56 c57 c58 c59 c60
Name 3-Chlorobenzoic acid 4-Chlorobenzoic acid 2-Chlorobenzonitrile 4-Chlorobenzonitrile 2-Chlorobenzophenone 4-Chlorobenzophenone 2-Chlorobenzotrifluoride 3-Chlorobenzotrifluoride 4-Chlorobenzotrifluoride 2-(4-Chlorobenzoyl)benzoic acid 2-Chlorobenzoyl chloride 4-Chlorobenzoyl chloride 4-Chlorobenzyl alcohol 4-Chlorobenzylamine 2-Chlorobenzyl chloride 4-Chlorobenzyl chloride
Formula weight
Beilstein reference
Density
ClC6H4COOH
156.57
9, 337
1.49625 4
ClC6H4COOH ClC6H4CN ClC6H4CN ClC6H4COC6H5
156.57 137.57 137.57 216.67
ClC6H4COC6H5
216.67
ClC6H4CF3
180.56
1.354025
ClC6H4CF3
180.56
ClC6H4CF3
180.56
ClC6H4COC6H4COCH
260.68
10, 750
ClC6H4COCl
175.01
9, 336
1.382
1.571820
3
238
110
d aq, alc
ClC6H4COCl
175.01
9, 341
1.377
1.578020
14
222
105
d aq, alc
ClC6H4CH2OH
142.59
6, 444
72
234
ClC6H4CH2NH2 ClC6H4CH2Cl
141.60 161.03
12, 1074 5, 297
17
215 214
90 82
ClC6H4CH2Cl
161.03
5, 308
30
214
97
Formula
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
157–158
0.04 aq; v s alc, eth
9, 340 9, 336 9, 341 7, 419
241–243 46 232 93 22 44–47 300
0.02 aq; v s alc, eth s alc, eth s alc, bz, chl, eth
7, 419
77
19617mm
1.451325
6.4
152.3
1.331125
1.443825
56.7
137.7
36
1.35320
1.4463
33.2
138.7
47
s alc, acet, bz, eth
150
1.164 1.274
1.558620 1.559120
s alc, bz, eth
v s alc, eth
s alc; v s eth
c61
ClC6H4CH2 ˆC5H4N
203.67
1.390
1.586820
ClC6H4CH2 ˆ C5H4N
203.67
1.167
1.590020
c64
2( p-Chlorobenzyl)pyridine 4-(p-Chlorobenzyl)pyridine 1-Chloro-1,3-butadiene 1-Chlorobutane
c65
2-Chlorobutane
CH3CH2CH(Cl)CH3
c66 c67 c68
4-Chloro-1-butanol 3-Chloro-2-butanone cis-1-Chloro-2butene 3-Chloro-1-butene 3-Chloro-1-butyne 3-Chlorobutyric acid 4-Chlorobutyric acid 4-Chlorobutyronitrile 4-Chlorobutyryl chloride Chloro(chloromethyl)dimethylsilane trans-p-Chlorocinnamic acid Chlorocyclohexane 2-Chlorocyclohexanone
ClCH2CH2CH2CH2OH CH3CH(Cl)COCH3 CH3CH ¨ CHCH2Cl
108.56 106.55 90.55
12, 398 1, 669 12, 176
1.088320 4 1.055 0.942620 4
CH3CH(Cl)CH ¨ CH2 CH3CH(Cl)C ˜ CH CH3CH(Cl)CH2COOH
90.55 88.54 122.55
12, 174 14, 970 2, 277
20 0.9000120 4 1.4155 0.961 1.428020 1.442120 1.18620 4
ClCH2CH2CH2COOH ClCH2CH2CH2CN
122.55 103.55
2, 278 2, 278
1.233620 4 1.158
1.451020 1.441320
ClCH2CH2CH2COCl
141.00
2, 278
1.258
ClCH2Si(CH3)2Cl
143.09
1.086
ClC6H4CH ¨ CHCOOH
182.61
9, 594
ClC6H11 ClC6H9( ¨ O)
118.61 132.59
5, 21 7, 10
c62 c63
c69 c70 c71 c72 c73 c74 c75 c76 c77 c78
1.155
4-Chlorobenzyl mercaptan, c248
18320mm
112 112
H2C ¨ CHCH ¨ CHCl
88.54
13, 949
0.960120 4
1.471220
CH3CH2CH2CH2Cl
92.57
1, 118
0.886420 4
1.402120
123.1
78.44
6
92.57
1, 119
0.873220 4
1.397120
113.3
68.25
15
1.451820 1.417220 1.439020
68
v s chl
86–8920mm 32 117 21 84.1 15
0.11 aq; misc alc, eth 0.1 aq; misc alc, eth s alc, eth v s alc, eth s alc, acet
62–65 68–70 10917mm
20 1
19622mm 197
112 85
sl s aq; v s eth s alc, eth
1.460920
174
72
d aq, alc; s eth
1.437320
114752mm
21
142 8310mm
28 82
16.3 12–16
v s acet s alc, eth
248–250 1.00020 4 1.161
Chlorocresols, c158, c159
1.462020 1.483520
44 23
i aq; s alc, eth s bz, eth, diox
1.156
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c79 c80 c81 c82 c83 c84 c85 c86
c87 c88 c89 c90 c91 c92 c93
Formula weight
Beilstein reference
Density
Refractive index
ClC5H9
104.58
5, 19
1.005120 4
1.451220
CH3(CH2)9Cl ClCH2CH(OC2H5)2
176.73 152.62
1, 168 1, 611
0.868 1.018
1.436220 1.415720
ClCH2CH2CH(OC2H5)2
166.65
1, 632
0.995
1.424020
F2C(Cl)COOH
130.48
2, 201
CH3C(Cl)F2
100.50 86.47
Name Chlorocyclopentane 1-Chlorodecane 2-Chloro-1,1-diethoxyethane 3-Chloro-1,1-diethoxypropane Chlorodifluoroacetic acid 1-Chloro-1,1-difluoroethane Chlorodifluoromethane -Chloro-3,4-dihydroxyacetophenone 1-Chloro-2,4-dihydroxybenzene 2-Chloro-1,4-dihydroxybenzene 2-Chloro-1,1-dimethoxyethane 4-Chloro-3,5-dimethylphenol 1-Chloro-2,2-dimethylpropane Chlorodimethylsilane Chlorodimethylvinylsilane
Formula
HCClF2
1.355920
Melting point
34
Boiling point
Flash point
Solubility in 100 parts solvent
114
15
i aq
223 157
83 29
i aq
8425mm
36
22.9
121.5
1.11821
131
9
0.19 aq
1.20921
160
40.8
0.30 aq
14718mm
v s aq, alc, chl, eth
(HO)2C6H3C( ¨ O)CH2Cl
186.59
8, 273
176
ClC6H3(OH)2
144.56
62, 818
107
ClC6H3(OH)2
144.56
6, 849
101–102 263
ClCH2CH(OCH3)2
124.57
Cl(CH3)2C6H2OH
156.61
(CH3)3CCH2Cl
106.59
0.86620 4
(CH3)2Si(Cl)H (CH3)2Si(Cl)CH ¨ CH2
94.62 120.7
0.85220 4 0.88425 4
1.09420 20
1.414820
62, 463
130 115.5
246
1.404220
20
84.4
1.382720 1.41425
111
36 82.5
v s aq; i alc; s eth 28 0.1 aq; 1 alc; s bz, eth, alk 28
c94 c95 c96 c97 c98 c99 c100 c101 c102 c103 c104 c105 c106 c107 c108
1-Chloro-2,4-dinitrobenzene 1-Chloro-3,4-dinitrobenzene 2-Chloro-3,5-dinitrobenzoic acid -Chlorodiphenylmethane Chlorodiphenylmethylsilane Chlorodiphenylphosphine 1-Chlorododecane 1-Chloro-2,3-epoxypropane Chloroethane 2-Chloroethanol 2-(2-Chloroethoxy)ethanol 2-[2-(2-Chloroethoxy)ethoxy]ethanol 2-Chloroethylamine HCl 1-Chloro-2-ethylbenzene (2-Chloroethyl)benzene
ClC6H3(NO2)2
202.55
5, 263
1.498275 4
1.585760
ClC6H3(NO2)2
202.55
5, 262
1.686716
1.587020
ClC6H2(NO2)2COOH
246.56
9, 415
C6H5CH(Cl)C6H5
202.68
52, 600
(C6H5)2Si(Cl)CH3
232.8
(C6H5)2PCl
220.64
CH3(CH2)11Cl H2C ˆ CHCH2Cl O CH3CH2Cl
52–54
315
186 112
198
241 explodes 1403mm
0.3 aq 112
1.14020 4
1.595120
1.127720 4
1.574220
295
16, 763
1.229
1.633820
320
112
204.79 92.53
17, 6
0.867320 4 1.181220 4
1.4426 1.438120
9 57.2
116 116.1
93 33
64.52
1, 82
0.921404
1.374210
12.3
43
ClCH2CH2OH ClCH2CH2OCH2CH2OH
80.52 124.57
1, 337 1, 467
1.19720 4 1.180
1.442220 1.452920
136 to 138 67.5
128.6 815mm
60 90
ClCH2CH2OCH2CH2OCH2CH2OH ClCH2CH2NH2 HCl
168.62
1, 468
1.160
1.458020
1205mm
107
115.99
4, 133
ClC6H4C2H5
140.61
C6H5CH2CH2Cl
140.61
Chlorodibromomethane, d71 2-Chloro-N,N-diethylethylamine, d272
v s alc; s bz 5.9 aq; misc alc, chl, 0.45 aq0; 48 alc; misc eth misc aq, alc
146 81
1.05525 25 5, 354
17
sl s alc; s hot alc, bz, eth v s eth; s alc
1.069
1.530020
Chlorodimethyl ether, c155 2-Chloro-N,N-dimethylethylamine, d467
179.2 8416mm
i aq; misc alc, eth 66
s alc, bz, eth
4-Chlorodiphenylmethanol, c44 2-Chloroethyl alcohol, c103
1.157
1.158
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c109 c110 c111 c112 c113 c114 c115 c116 c117 c118 c119 c120 c121 c122 c123
Name Chloroethylene 2-Chloroethyl ethyl ether 2-Chloroethyl methyl ether N-(2-Chloroethyl)morpholine HCl N-(2-Chloroethyl)piperidine HCl 2-Chloroethyl p-toluenesulfonate 2-Chloroethyl vinyl ether 1-Chloro-2-fluorobenzene 1-Chloro-3-fluorobenzene 1-Chloro-4-fluorobenzene 2-Chloro-6-fluorobenzyl chloride 4-Chloro-4-fluorobutyrophenone 3-Chloro-4-fluoronitrobenzene 2-Chloro-4-fluorophenol 2-Chloro-4-fluorotoluene
Formula H2C ¨ CHCl ClCH2CH2OCH2CH3 ClCH2CH2OCH3
Formula weight
Beilstein reference
Density
Refractive index
Melting point
62.50 108.57
1, 186 1, 337
0.9714 0.989
1.412520
13.9 107
15
94.54
1, 337
1.035
1.411120
89–90
15
1530.3mm
112
159.7
186.08
Boiling point
Flash point
Solubility in 100 parts solvent sl s aq; s alc
186
184.11
20, 17
CH3C6H4SO3CH2CH2Cl
234.70
112, 45
1.294
1.529020
H2C ¨ CHOCH2CH2Cl
106.55
12, 473
1.048
1.437020
69.7
110
16
0.6 aq
ClC6H4F
130.55
51, 110
1.244
1.501020
42.5
138.5
31
s alc, eth
ClC6H4F
130.55
1.219
1.494420
126
20
s alc, eth
ClC6H4F
130.55
1.22620 4
1.496720
Cl(F)C6H3CH2Cl
179.02
1.401
1.537220
FC6H4C( ¨ O)CH2CH2CH2Cl Cl(F)C6H3NO2
200.64
1.220
1.525520
175.5
1.602817
1.567417
Cl(F)C6H3OH
146.5
Cl(F)C6H3CH3
144.58
5, 201
236
21.5
1.498525
s alc, eth
110 41.5 23
1.197220
130–131
12717mm 884mm 152–153
c124 c125 c126 c127 c128 c129 c130 c131 c132 c133 c134 c135
2-Chloro-6-fluorotoluene 4-Chloro-2-fluorotoluene Chloroform Chloroform-d 1-Chloroheptane 1-Chlorohexane 6-Chloro-1-hexanol 4-Chloro-4-hydroxybenzophenone 5-Chloro-8-hydroxy7-iodoquinoline 3-Chloro-4-hydroxymandelic acid 5-Chloro-8-hydroxyquinoline 1-Chloro-4-iodobenzene
Cl(F)C6H3CH3
144.58
Cl(F)C6H3CH3
144.58
CHCl3 CDCl3 CH3(CH2)6Cl CH3(CH2)5Cl Cl(CH2)6OH ClC6H4C( ¨ O)C6H4OH
119.39 120.39 134.65 120.62 136.62 232.67
ClC6H3(OH)CH(OH)COOH
ClC6H4I
2-Chloroethyl ether, b158 2-Chloro-6-fluorobenzal chloride, t233
1.191
1, 61 1, 154
1.498515 1.50 0.88116 0 0.878020 4 1.204
1.502620
156
1.499820
158
1.448615 1.444520 1.425020 1.423620 1.455720
82, 187
63.59
61.7 60.9 69 159–161 134 10814mm 175–178 25714mm
305.50
d 172
202.60
145–147
179.61
21, 95
238.46
5, 221
-Chloro-4-fluorotoluene, f16 2375-Chloro-2-hydroxyaniline, a148
53–54
none none 41 38 98
0.82 aq misc alc, eth i aq sl s aq; v s alc, eth
i alc, eth; 0.8 chl; 0.6 HOAc
130 1.18657 4
46
sl s aq HCl 226–227
s alc
Chlorohydroxybenzoic acids, c237, c238 1-Chloro-3-hydroxypropane, c214
1.159
1.160
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c136 c137
Name 1-Chloro-3-mercapto2-propanol Chloromethane
c137a 3-Chloro-4-methoxyaniline c138 5-Chloro-2-methoxyaniline c139 1-Chloro-2-methoxybenzene c140 1-Chloro-4-methoxy2-nitrobenzene c141 2-Chloro-6-methoxypyridine c142 2-Chloro-6-methylaniline c143 3-Chloro-2-methylaniline c144 3-Chloro-4-methylaniline c145 4-Chloro-2-methylaniline c146 5-Chloro-2-methylaniline c147 DL-4-Chloro-2-(methylbenzyl)phenol c148 1-Chloro-3-methylbutane
Formula HSCH2CH(OH)CH2Cl CH3Cl
Formula weight
Beilstein reference
Density
Refractive index
126.61
13, 2156
1.277
1.527620
1, 59
0.9220
1.371224
50.49
Melting point
571.3mm 97.7
ClC6H3(OCH3)NH2
157.60
13, 511
50–55
ClC6H3(OCH3)NH2
157.60
13, 383
83–85
ClC6H4OCH3
142.59
6, 184
CH3O(Cl)C6H3NO2
187.58
CH3O(Cl)(C5H3N)
143.57
CH3(Cl)C6H3NH2
141.60
121, 388
CH3(Cl)C6H3NH2
141.60
CH3(Cl)C6H3NH2
1.123
Boiling point
1.544520
Flash point 97
24.22
196
Solubility in 100 parts solvent
0.48 aq25; s alc; misc chl, eth, HOAc
76
45
i aq; s alc, eth s hot alc
1.207
1.526320
1.152
1.576120
2
215
12, 836
1.587420
2
141.60
12, 988
1.583020
25
115– 112 11710mm 238 100
CH3(Cl)C6H3NH2
141.60
12, 835
1.584820
27
241
99
CH3(Cl)C6H3NH2
141.60
12, 835
1.584020
22
237
160
C6H5CH(CH3)C6H3(Cl)OH
232.71
64, 4710
(CH3)2CHCH2CH2Cl
106.59
1, 135
186 98
s alc
s hot alc
1552mm 0.870420 4
1.408420
104
99
16
sl s aq; misc alc, eth
c149 c150 c151 c152 c153 c154 c155 c156 c157 c158 c159 c160
2-Chloro-2-methylbutane Chloromethyldimethylchlorosilane Chloromethyl 2,2-dimethylpropionate Chloromethyl ethyl ether Chloromethylmethyldichlorosilane Cloromethylmethyldiethoxysilane Chloromethyl methyl ether Chloromethyl methyl sulfide 1-(Chloromethyl)naphthalene 4-Chloro-2-methylphenol 4-Chloro-3-methylphenol 4-Chloro-N-methylpiperidine HCl
1.405220
143.1
1.086520 4
1.436020
150.61
1.045
1.417020
1.0420 4
1.404020
79–83
106.59
(CH3)2Si(Cl)CH2Cl (CH3)3CCOOCH2Cl ClCH2OCH2CH3
73.7
0.865020 4
CH3CH2CCl(CH3)2
94.54
1, 134
12, 645
85
40
163.5
1.285820 4
1.450020
121–122
ClCH2Si(OC2H5)2CH3
182.7
1.00020 4
1.40725
160–161
1.070320 4
1.396120
1.153
1.496320
80.51
ClCH2SCH3
95.48
C10H7CH2Cl
176.65
5, 566
CH3(Cl)C6H3OH
142.59
CH3(Cl)C6H3OH
142.59
Chloromethylbenzenes, c244, c245, c246
1, 580
1.638020
i aq; s alc, eth
115–116
ClCH2Si(CH3)Cl2
ClCH2OCH3
16
103.5
57–59
s alc; v s eth
15
d aq; s acet, CS2
105 112
32
16925mm
6, 359
48
225
sl s aq
6, 381
68
235
i aq; s alc, bz, chl, eth, acet
170.08
164
(Chloromethyl)oxirane, c101
Chloromethyl pivalate, c151
1.161
1.162
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c161
Name
1-Chloro-2-methylpropane c162 2-Chloro-2-methylpropane c163 1-Chloro-2-methylpropene c164 3-Chloro-2-methylpropene c165 Chloromethyltrichlorosilane c166 Chloromethyltrimethylsilane c167 6-(Chloromethyl)uracil c168 1-Chloronaphthalene c169 2-Chloronaphthalene c170 4-Chloro-1,8-naphthalic anhydride c171 4-Chloro-3-nitroacetophenone c172 2-Chloro-4-nitroaniline c172a 2-Chloro-5-nitroaniline c173 4-Chloro-2-nitroaniline c174 4-Chloro-3-nitroaniline
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
(CH3)2CHCH2Cl
92.57
1, 124
0.882915
1.401015
130.3
68.9
21
(CH3)3CCl
92.57
1, 125
0.847415 4
1.385620
25.4
50.8
18
(CH3)2C ¨ CHCl
90.55
1, 209
0.918620 4
1.422520
68.1
1
0.09 aq; misc alc, eth sl s aq; misc alc, eth misc alc, eth
ClCH2C(CH3) ¨ CH2
90.55
1, 209
0.921015 4
1.427220
72
10
misc alc, eth
1.46520 4
1.455520
117–118
0.886120 4
1.418020
99
1
259.3 256
121
80
ClCH2SiCl3
183.9
ClCH2Si(CH3)3
122.7
43, 1844
160.56
231, 328
162.62 162.62 232.63
5, 541 17, 522
2.3 59.5 210
C10H7Cl C10H7Cl
257 d 1.193820 4 1.137771
1.633220 1.607971
s alc, bz, PE s alc, bz, chl, eth
ClC6H3(NO2)C( ¨ O)CH3 ClC6H3(NO2)NH2
199.60
73, 995
101
172.57
12, 733
109
ClC6H3(NO2)NH2
172.57
12, 732
114
ClC6H3(NO2)NH2
172.57
12, 729
119
v s alc, eth
ClC6H3(NO2)NH2
172.57
12, 731
101
v s alc; s eth
sl s aq; v s alc, eth
c175 c176 c177 c178 c179 c180 c181 c182 c183 c184
1-Chloro-2-nitrobenzene 1-Chloro-3-nitrobenzene 1-Chloro-4-nitrobenzene 2-Chloro-4-nitrobenzoic acid 2-Chloro-5-nitrobenzoic acid 4-Chloro-3-nitrobenzoic acid 4-Chloro-3-nitrobenzophenone 2-Chloro-5-nitrobenzotrifluoride 4-Chloro-3-nitrobenzotrifluoride 5-Chloro-2-nitrobenzotrifluoride
Chloronicotinic acids, c234, c235
ClC6H4NO2
157.56
5, 241
1.348
32–33
246
123
s alc, bz, eth
ClC6H4NO2
157.56
5, 243
1.53420 4
46
236
103
sl s alc; v s eth, chl
ClC6H4NO2
157.56
5, 243
1.520
82–84
242
110
ClC6H3(NO2)COOH
201.57
9, 404
sl s alc; v s eth, CS2 s hot aq, hot bz
ClC6H3(NO2)COOH
201.57
9, 403
1.60818
168
ClC6H3(NO2)COOH
201.57
9, 402
1.64518
183
ClC6H3(NO2)C( ¨ O)C6H5 ClC6H3(NO2)CF3
261.66
71, 230
225.55
1.527
1.508320
ClC6H3(NO2)CF3
225.55
1.511
1.489320
ClC6H3(NO2)CF3
225.55
1.526
1.498020
141
sl s aq; s alc, bz, eth sl s alc; s hot aq
104–105 23513mm
-Chloronitrotoluene, n47
231
98
2.5
222
101
21–22
222–224
102
Chloronitro-,,-trifluorotoluenes, c182, c183, c184
1.163
1.164
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c185
c186 c187 c188 c189 c190 c191 c192 c193 c194 c195 c196 c197 c198
c199
Formula weight
Beilstein reference
ClC6H3(NO2)COC6H4COOH
305.68
10, 752
201
ClC6H3(NO2)OH
173.56
6, 240
106
ClC6H3(NO2)CH3
171.58
5, 329
1.547070
61
260
ClC6H3(NO2)CH3
171.58
5, 327
1.537770
36
238
125
i aq
ClC6H3(NO2)CH3
171.58
5, 329
1.297
1.558020
7
260745mm
112
i aq
CH3(CH2)7Cl CH3(CH2)4Cl
148.68 106.60
1, 159 1, 130
0.87520 4 0.882420 4
1.429820 1.411820
61 99.0
183 98.3
54 12
5-Chloro-2-pentanone 3-Chloroperoxybenzoic acid 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol
ClCH2CH2CH2COCH3 ClC6H4C(O)OOH
120.58 172.57
12, 738
1.057118 4
1.437520
7220mm
62
i aq; v s alc, eth 0.02 aq; misc alc, eth s acet, eth
ClC6H4OH ClC6H4OH ClC6H4OH
128.56 128.56 128.56
6, 183 6, 185 6, 186
175–176 214 220
63 112 115
4-Chlorophenoxyacetic acid 2-(4-Chlorophenoxy)2-methylpropionic acid DL-2-(4-Chlorophenoxy)propionic acid
ClC6H4OCH2COOH
186.59
6, 187
ClC6H4OC(CH3)2COOH
214.65
ClC6H4OCH(CH3)COOH
200.62
Name o-(4-Chloro-3-nitrobenzoyl)benzoic acid 2-Chloro-4-nitrophenol 2-Chloro-4-nitrotoluene 2-Chloro-6-nitrotoluene 4-Chloro-3-nitrotoluene 1-Chlorooctane 1-Chloropentane
Formula
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
i aq; s alc, eth
94 d 1.257325 4 1.24525 4 1.223878 4
1.557920 1.556540 1.541945
9.3 33.5 43.5 159 122
63, 695
117
sl s aq; v s alc, eth sl s aq; s alc, eth sl s aq; v s alc, chl, eth
c200 c201 c202 c202 c204 c205 c206 c207
c208
4-Chlorophenylacetic acid p-Chlorophenylacetonitrile 2-Chloro-p-phenylenediamine sulfate 4-Chloro-1,2-phenylenediamine 4-Chloro-1,3-phenylenediamine 3-Chlorophenylhydrazine HCl 4-Chlorophenyl isocyanate 4-Chlorophenyl phenyl sulfone
ClC6H4CH2COOH
170.60
9, 448
105
ClC6H4CH2CN
151.60
9, 448
30.5
H2NC6H3(Cl)NH2· H2SO4 ClC6H3(NH2)2
240.67
13, 117
253
142.59
13, 25
70
H2N(Cl)C6H3NH2
142.59
13, 53
90
ClC6H4NHNH2·HCl
179.05
15, 424
242 d
ClC6H4NCO
153.57
12, 616
ClC6H4SO2C6H5
252.72
61, 149
ClC6H4SiCl3
246.0
ClC6H3(COOH)2
200.58
9, 816
1.561820
31
v s aq, alc, eth; s bz 267
204
110
94 1.431620 4
1.541820
74 acet; 44 bz; 5 CCl4; 65 diox; 21 i-PrOH
c210
4-Chlorophenyltrichlorosilane 4-Chloro-o-phthalic acid 1-Chloropropane
CH3CH2CH2Cl
78.54
1, 104
0.898515
1.388020
122.8
46.6
18
c211
2-Chloropropane
CH3CHClCH3
78.54
1, 105
0.856320
1.377720
117.2
35
35
c212
3-Chloro-1,2propanediol 1-Chloro-2-propanol 3-Chloro-1-propanol
ClCH2CH(OH)CH2OH
1.321820 4
1.480520
213
58
1.11520 1.130920 4
1.437520 1.446020
126–127 160–162
51 73
c209
c213 c214
CH3CH(OH)CH2Cl ClCH2CH2CH2OH
1.165
p-Chlorophenacyl bromide, b246 Chlorophenylamines, c33, c34, c35
110.54 94.54 94.54
1, 363 1, 356
115– 11720mm 148
4-Chlorophenyl sulfone, b165 4-Chlorophenyl sulfoxide, b166
Chloropicrin, t239 Chloroprene, c216
0.27 aq; misc alc, eth 0.34 aq; misc alc, eth s aq, alc, eth misc aq; s alc
1.166
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
c215
Chloro-2-propanone
ClCH2COCH3
92.53
1, 653
1.13515 4
1.435020
44.5
119.7
7
c216
3-Chloro-1-propene
ClCH2CH ¨ CH2
76.53
1, 198
0.93920 4
1.415120
134.5
45.2
28
c217
(3-Chloropropenyl)benzene 2-Chloropropionic acid 3-Chloropropionic acid 3-Chloropropionitrile 2-Chloropropionyl chloride 3-Chloropropionyl chloride p-Chloropropiophenone 3-Chloropropylamine HCl 3-Chloropropylmethyldichlorosilane 2-Chloropropyl(phenyl)dichlorosilane N-(3-Chloropropyl)piperidine HCl
C6H5CH ¨ CHCH2Cl
152.62
52, 372
1.584520
19
10812mm
79
CH3CH(Cl)COOH
108.52
2, 248
186
101
misc aq, alc, eth
ClCH2CH2COOH
108.52
2, 249
41
205
112
v s aq, alc, chl
89.53
2, 250
1.144318
1.437920
50
176
75
CH3CH(Cl)COCl
126.97
2, 248
1.308
1.440020
111
31
d aq, alc
ClCH2CH2COCl
126.97
2, 250
1.330713
1.457020
145
61
i aq; d hot aq, hot alc; s alc; v s eth
ClC6H4C( ¨ O)CH2CH3
168.62
7, 301
37
ClCH2CH2CH2NH2·HCl
130.02
4, 148
150
Cl(CH2)3Si(CH3)Cl2
191.6
1.204520 4
1.458020
7015mm
Cl(CH2)3SiCl2(C6H5)
253.6
1.24120 4
1.533220
14110mm
c218 c219 c220 c221 c222 c223 c224 c225
c226
c227
ClCH2CH2CN
198.14
20, 18
1.182
1.434520
220
971mm
10 aq; misc alc, chl 0.36 aq; misc alc, chl
c228 c229 c229 c231 c232 c233 c234 c235 c236 c237 c238 c239 c240
3-Chloropropyl thiolacetate 3-Chloropropyltrichlorosilane 3-Chloropropyltriethoxysilane 3-Chloropropyltrimethoxysilane 3-Chloropropyne
CH3C( ¨ O)SCH2CH2CH2Cl
152.64
ClCH2CH2CH2SiCl3
212.0
Cl(CH2)3Si(OC2H5)3
240.8
Cl(CH2)3Si(OCH3)3
198.72
ClCH2C ˜ CH
23, 493
1.00920 4
1.494620
8410mm
77
1.359020 4
1.466820
181.5
66
1.42020
10210mm
1.07725 4
1.418325
74.51
1, 248
1.030625 4
1.434920
1.20515
1.532020
2-Chloropyridine 2-Chloro-3-pyridinecarboxylic acid 6-Chloro-3-pyridinecarboxylic acid 2-Chloroquinoline 4-Chlorosalicyclic acid 5-Chlorosalicylic acid N-Chlorosuccinimide
ClC5H4N C5H3N(Cl)COOH
113.55 157.56
20, 230 222, 35
C5H3N(Cl)COOH
157.56
22, 43
HO(Cl)C6H3COOH
163.61 172.57
20, 359 10, 101
HO(Cl)C6H3COOH
172.57
10, 102
133.53
21, 380
Chlorosulfonyl isocyanate
ClSO2NCO
-Chloropropionaldehyde diethyl acetal, c82
1.159
141.53
78
183
66
58
18
166714mm
65
misc bz, alc, eth, EtAc sl s aq; s alc, eth
d 175 200 d 1.246425 4
1.625925
37 212
267
i aq; s alc, bz, eth
172 1.65 1.626
150–151 1.446720
3-Chloropropylene-1,2-oxide, c102
44
1.4 aq; 0.67 alc; 2 bz; sl s chl, eth 107
1-Chloro-2,5-pyrrolidinedione, c239
1.167
1.168
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
1.286
1.548320
1.082620 4
c241 c242 c243 c244
8-Chlorotheophylline 2-Chlorothiophene 4-Chlorothiophenol 2-Chlorotoluene
Cl ˆ C4H3S ClC6H4SH ClC6H4CH3
214.61 118.59 144.62 126.59
26, 473 17, 32 6, 326 5, 290
c245
3-Chlorotoluene
ClC6H4CH3
126.59
5, 291
c246
4-Chlorotoluene
ClC6H4CH3
126.59
5, 292
c247
N-Chloro-p-toluenesulfonamide, Na salt 4-Chloro-1toluenethiol 4-Chloro-o-tolyloxyacetic acid, Na salt 4-(4-Chloro-o-tolyloxy)butyric acid Chloro-2,2,2-trifluoroethane Chlorotrifluoroethylene Chlorotrifluoromethane Chlorotrimethylgermane Chlorotrimethylsilane
CH3C6H4SO2NClNa
227.67
ClC6H4CH2SH
158.65
6, 466
ClC6H3(CH3)OCH2COONa
222.61
63, 1265
ClC6H3(CH3)O(CH2)3COOH CF3CH2Cl
228.68 118.5
1.3890
CF2 ¨ CFCl
116.48
1.315
ClCF3
104.46
(CH3)3GeCl
153.16
1.238222
(CH3)3SiCl
108.64
0.858020 4
c248 c249
c250 c251 c252 c253 c254 c255
Melting point
Boiling point
Flash point
1.52502
d 290 72 51 34
129 207 159.0
47
1.076019 4
1.521820
48.9
161.8
50
1.069720 4
1.520820
7.2
162.0
49
22
167 d
1.202
1.589320
20
76
220–225
99–100 105
6.9
158.2
27.9
181
81.5
1.428320
13
102
1.388520
40
57
1.30900
13, 42
40
Solubility in 100 parts solvent s alk i aq; misc alc, eth sl s aq; v s alc, bz, chl, eth s alc, bz, chl; misc eth sl s aq; s alc, bz, eth s aq; i bz, chl, eth
c256
Chlorotriphenylmethane c257 Chlorotripropylsilane c257a Chlorotris(dimethylamino)silane c258 -Chloro-o-xylene c259 -Chloro-m-xylene c260 -Chloro-p-xylene
110–112 23020mm
(C6H5)3CCl
278.78
(C3H7)3SiCl
192.8
0.88220 4
1.44020
199–201
[(CH3)2N]3SiCl
195.8
0.97520 4
1.44220
62–6312mm
CH3C6H4CH2Cl CH3C6H4CH2Cl CH3C6H4CH2Cl
140.61 140.61 140.61
5, 364 5, 373 5, 384
1.063 1.06420
1.539120 1.535020 1.533020
199 195–196 200
73 75 75
ClC6H3(CH3)2
140.61
5, 363
1.047
223
66
c261
4-Chloro-o-xylene
c262
Cholesterol
386.66
c263
Cholic acid
408.58
-Chlorotoluene, b89 Chlorotoluidines, c142, c143, c144, c145, c146 2-Chlorotriethylamine, d272
5, 700
4.5
1.528320
1.06720 4
Chloro-,,-trifluorotoluenes, c51, c52, c53 4-Chloro-,,-trifluoro-o-toluidine, a144 -Chloro-,,-trifluoro-m-xylene, t299
148.5 198
360 sl d
v s bz, chl, eth
i aq; misc alc, eth i aq; misc alc, eth misc alc, bz, eth, acet misc alc, bz, eth, acet 1.29 alc; 35 eth; 22 chl; s bz, PE 0.028 aq; 0.06 alc; 2.8 acet; 0.036 bz; 0.5 chl
Chlorotrihexylsilane, t302 Chloroxylenol, c90
1.169
1.170
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
c264
Cinchonine
c265 c266
1,8-Cineole trans-Cinnamaldehyde trans-Cinnamic acid
c267 c268
Formula weight
Beilstein reference
294.40
232, 369
C6H5CH ¨ CHCHO
154.25 132.16
17, 23 7, 348
0.92125 25 1.05025 25
C6H5CH ¨ CHCOOH
148.16
9, 573
1.247544
C6H5CH ¨ CHCOCl
166.61
92, 390
1.161725 4
C6H5CH ¨ CHCH2OH CH3C(COOH) ¨ CHCOOH
134.18 130.10
6, 570 2, 768
112.08 155.11
Formula
Refractive index
Melting point
Boiling point
1.457220 1.621920
174.4 246
134
300
1.61443
35–36
258
1.039735 35 1.62
1.575833
33 92 d
250.0
17, 440 22, 254
1.247
1.471220
192.12
3, 556
1.665
8 214 carbonizes without melting 300 154
156.27
1, 451
0.857020 4
c269 c270 c271 c272
Citraconic anhydride Citrazinic acid
c273
Citric acid
c274
Citronellol
c275
Cocaine
303.35
222, 150
c276
Coumarin
146.15
17, 328
Flash point
~260 1.5 7.5
trans-Cinnamoyl chloride Cinnamyl alcohol Citraconic acid
HOOCCH2C(OH)(COOH)CH2COOH (CH3)2C ¨ CHCH2CH2CH(CH3)CH2CH2OH
Density
1.455620 1.502298
0.93520 4
222 98
1870.1mm
69
298
71
Solubility in 100 parts solvent 1.4 alc; 0.9 chl; 0.2 eth misc alc, chl, eth 0.014 aq; misc alc, chl, eth 0.05 aq; 16 alc; 8 chl s hot alc, CCl4 s aq; v s alc, eth v s aq, alc, eth; sl s chl; i bz, PE
101 i aq; s alk
59 aq 79 0.17 aq; 15 alc; 140 chl; 28 eth 0.25 aq; v s alc, chl, eth
c277
Creatine
c278 c279
Creatinine o-Cresol
c280
131.14
4, 363
CH3C6H4OH
113.12 108.14
24, 245 6, 349
1.027341
1.536141
255 d 30.9
190.8
81
m-Cresol
CH3C6H4OH
108.14
6, 373
1.03420 4
1.543820
12.2
202.7
86
c281
p-Cresol
CH3C6H4OH
108.14
6, 389
1.017941
1.531241
34.8
201.9
86
c282 c283 c284
trans-Crotonaldehyde Crotonyl chloride Cupferron
CH3CH ¨ CHCHO CH3CH ¨ CHCOCl C6H5N(NO)ONH 4
70.09 104.54 155.16
1, 728 2, 411 161, 395
0.851620 1.091
1.437320 1.459520
76.5
104.1 123
8 35
Chromone, b56 Chromotropic acid, d396 Chrysoldin, d31 Cinchophen, p149 Cinnamyl chloride, c217 Citral, d562, d563 Cleland’s reagent, d424 2,4,6-Collidine, t367
HOOCCH2N(CH3)C( ¨ NH)NH2
300
p-Coumaric acid, h107 Cresotic acids, h137, h138 Cresylic acids, c279, c280, c281 Crotonic acid, b402 Crotononitrile, b400 Crotyl alcohols, b404, b405 Crotyl bromide, b240 Crotyl chloride, c68
1.3 aq; 0.11 alc; ith
163–164
8 aq; sl s alc; i eth 3.1 aq40; misc alc, chl, eth; s alk 2.5 aq40; misc alc, chl, eth; s alk 2.3 aq40; misc alc, chl, eth; s alk 18.1 aq v s aq, alc
12-Crown-4, t125 15-Crown-5, p45 18-Crown-6, h74 Cumene, i91 Cumic alcohol, i92 Cupron, b50
1.171
1.172
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density 1.28220 4
c285
Cyanamide
H2NCN
42.04
32, 63
c286 c287
2-Cyanoacetamide Cyanoacetic acid
NCCH2CONH2 NCCH2COOH
84.08 85.06
c288 c289
Cyanoacetohydrazide Cyanoacetylurea
99.09 127.10
c290
2-Cyanoethanol
NCCH2C( ¨ O)NHNH2 NCCH2C( ¨ O)NHC( ¨ O)NH2 NCCH2CH2OH
c291
NCCH2CH2Si(CH3)Cl2
168.1
CH3NHC( ¨ NCN)SNa
137.14
4, 71
C10H7CN NCCH2CH2CH2SiCl3
153.18 202.6
9, 649
c295
2-Cyanoethyldichloromethylsilane 1-Cyano-3-methylisothiourea, Na salt 1-Cyanonaphthalene 3-Cyanopropyltrichlorosilane 2-Cyanopyridine
NC(C5H4N)
104.11
22, 36
c296 c297 c298 c299
3-Cyanopyridine 4-Cyanopyridine Cyanotrimethylsilane Cyanuric acid
NC(C5H4N) NC(C5H4N) (CH3)3SiCN
104.11 104.11 99.21 129.08
22, 41 22, 46 26, 239
c300 c301 c302
Cyclobutane Cyclodecane Cyclododecanol
C4H8 C10H20 C12H23OH
56.10 140.27 184.32
5, 17
c292 c293 c293
71.08
Refractive index
Melting point
Boiling point
46
83380mm
2, 589 2, 583
119.5 65–67
10815mm
3, 66
110 214 d
32, 213
1.05880 1.20220 4
1.45520
Flash point
215 107
d
Solubility in 100 parts solvent 78 aq; 29 BuOH; 42 EtAc; s alc, eth 25 aq; 3.1 alc s aq, alc, eth; sl s bz v s aq; s alc; i eth
106– 10811mm 634mm
misc aq, alc; sl s eth
299 93– 948mm 215
i aq; v s alc, eth
290 d 1.111325 25 1.28025
1.629818 1.46525
38
1.528820
28
0.78320 4 1.7680
1.392420
52 240–245 80 11 114–117 d to HOCN
0.70380
1.37520 1.470720
90.7 77
12.5 201
89
s aq; v s alc, bz, eth v s aq, alc, bz, eth s aq, alc, bz, eth
1 0.5 aq; s hot alc, pyr; i acet, bz, chl, eth i aq; v s alc, acet 1
c303 c304
C12H22( ¨ O)
c311 c312
Cyclododecanone trans,trans,cis1,5,9-cyclododecatriene trans-Cyclododecene Cycloheptane DL-trans-1,2Cycloheptanediol Cycloheptanol Cycloheptanone 1,3,5-Cycloheptatriene Cycloheptene Cyclohexane
c313
Cyclohexane-d12
c305 c306 c307 c308 c309 c310
Cyanoacetonitrile, m5 Cyanoanilines, a124, a125, a126 Cyanobenzene, b51 2-Cyanoethanol, h169 Cyanoethylene, a64 Cyanomethane, a29
182.31 162.28
72, 48
0.906 0.892520 4
1.507020
0.863 0.81120 4
1.482220 1.445520
166.31 98.18 130.19
5, 29 63, 4086
114.19 112.17 92.13
6, 10 7, 13 5, 280
0.94820 4 0.949020 4 0.888
1.476020 1.461120 1.521120
C7H12 C6H12
96.17 84.16
5, 65 5, 20
0.82420 4 0.778620 4
1.458520 1.426220
C6D12
92.26
0.89
1.421020
C7H14 C7H12(OH)2 C7H13OH C7H12( ¨ O)
2-Cyanopropene, m27 Cyanuric chloride, t250 Cyclododecane epoxide, e4 Cyclododecanone isooxime, a318 Cycloheptanone isooxime, a317 Cycloheptyl bromide, b260
61 18
851mm 231
87
75.3
232–245 118.8 138– 13915mm 185 179–181 115.5
71 55 26
6.5
114.7 80.7
6 18
78
18
8.0 61–63 2
93 6
v s alc, eth
sl s aq; v s alc, eth i aq; v s alc; s eth s alc, eth; v s bz, chl s alc, eth 0.01 aq; misc alc, bz, acet, eth, CCl4
Cyclohexaneacetic acid, c333 Cyclohexanecarboxylic acid chloride, c316 2,5-Cyclohexadien-1,4-dione, b59 2,5-Cyclohexadiene-1,4-dione with 1,4benzenediol (1:1), q1 Cyclohexanemethanol, c342
1.173
1.174
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c314 c315 c316 c317 c318 c319 c320
c320
c322 c323 c324 c325 c326 c327
Name 1,3-Cyclohexanebis(methylamine) Cyclohexanecarbaldehyde Cyclohexanecarbonyl chloride Cyclohexanecarboxylic acid cis-1,2-Cyclohexanediamine trans-1,2-Cyclohexanediamine cis-1,2-Cyclohexanedicarboxylic anhydride cis-1,4-Cyclohexanedimethanol 1,3-Cyclohexanedione 1,2-Cyclohexanedione dioxime Cyclohexanemethylamine Cyclohexanepropionic acid Cyclohexanethiol Cyclohexanol
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
C6H10(NHCH3)2
142.25
C6H11CHO
112.17
7, 19
0.926
1.450020
163
40
C6H11COCl
146.62
9, 9
1.096
1.470020
184
66
C6H11COOH
128.17
7, 19
1.048015 4
1.453020
C6H10(NH2)2
114.19
13, 1
0.931
1.486420
9218mm
C6H10(NH2)2
114.19
13, 1
0.931
1.486420
9218mm
Solubility in 100 parts solvent
106
154.17 0.978100 4
29
232.5
34
15817mm
43
288
C6H10(CH2OH)2
144.21
C6H8( ¨ O)2 C6H8( ¨ NOH)2
112.13 142.16
7, 554 172, 526
1.086191
1.489320 supercooled 1.4576102
C6H11CH2NH2
113.20
12, 12
0.870
1.463020
C6H11CH2CH2COOH
156.23
9, 82
0.912
1.463620
14–17
275.8
C6H11SH C6H11OH
116.23 100.16
6, 8 6, 5
0.950 0.941630
1.492120 1.462930
25.2
158–160 161.1
0.21 aq; s alc, bz, eth
74
103–105 185–188
misc aq, alc; 2.5 eth s aq, alc, acet, chl s aq
145–147
43
43 67
3.8 aq25; misc alc, bz
45 to 47 89–91 103.5
155.7
46
206–210 83.0
12
53
168 218
61 86
98.15
7, 8
0.947820 4
1.451020
C6H10( ¨ NOH) C6H10
113.16 82.15
7, 10 5, 63
0.809420 4
1.446420
2-Cyclohexen-1-one 2,3-Cyclohexeneopyridine c332a [2-(3-Cyclohexenyl)ethyl]methyldichlorosilane c333 Cyclohexylacetic acid c334 Cyclohexylamine
C6H8( ¨ O)
96.13 133.19
72, 55 202, 176
0.993 1.025
1.488520 1.5440
C6H9CH2CH2Si (CH3)Cl2
223.2
1.07720 4
1.48125
C6H11CH2COOH
142.20
92, 9
1.007
1.463020
31–33
242–244
112
sl s aq; s org solv
99.18
12, 5
0.867120
1.459320
17.7
134.8
32
misc aq, alc, eth, chl
c335
C6H11NHCH2CH2SO3H
207.29
300
C6H11NHCH2CH2CH2SO3H
221.32
300
c328
Cyclohexanone
C6H10( ¨ O)
c329 c330
Cyclohexanone oxime Cyclohexene
c331 c332
c336
2-(Cyclohexylamino)ethanesulfonic acid 3-Cyclohexylamino-1propanesulfonic acid
C6H11NH2
Cyclohexanone cyanohydrin, h110 cis-4-Cyclohexene-1,2-dicarboximide, t75 cis-4-Cyclohexene-1,2-dicarboxylic anhydride, t74
Cyclohexene oxide, e5 N-(1-Cyclohexen-1-yl)morpholine, m450 N-(1-Cyclohexen-1-yl)pyrrolidine, p274
15 aq10; s alc, eth s aq, eth; sl s alc 0.02 aq; misc alc, bz, acet, eth v s alc
79–812mm
Cyclohexyl alcohol, c327
1.175
1.176
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c337 c338 c339 c340 c341 c342 c343 c344 c345 c346 c347 c348 c349 c350 c351 c352 c353 c354
Formula weight
Beilstein reference
Density
Refractive index
Melting point
C6H11C6H4NH2 C6H11C6H5 C6H11NHCHO
175.28 160.26 127.18
12, 1209 5, 503
0.950220 4
1.525820
53–56 5–6 38–40
C6H11NCO
125.17
122, 12
0.980
C6H11NCS
141.24
122, 12
C6H11CH2OH
114.19 167.25
6, 14
Name 4-Cyclohexylaniline Cyclohexylbenzene N-Cyclohexylformamide Cyclohexyl isocyanate Cyclohexyl isothiocyanate Cyclohexylmethanol N-Cyclohexyl-2pyrrolidinone Cyclohexyltrichlorosilane 1,5-Cyclooctadiene Cyclooctane Cyclooctanol Cyclooctanone Cyclooctene Cyclooctylamine Cyclopentamethylenedichlorosilane Cyclopentane Cyclopentanecarboxylic acid cis,cis,cis,cis-1,2,3,4Cyclopentanetetracarboxylic acid
Formula
Boiling point
Flash point
16613mm 239–240 13710mm
98
1.455120
168–170
48
0.996
1.535020
219
0.951225 4 1.026
1.464025 1.495
1.22220 4
1.47720
12
C6H11SiCl3
217.6
C8H16 C8H15OH
108.18 112.22 128.22
5, 116 5, 35 62, 25
0.881825 4 0.834 0.974020 4
1.490525 1.457420 1.485020
69 14.8 14–15
C6H14( ¨ O) C8H14 C8H15NH2
126.20 110.20 127.23 169.1
7, 21 51, 35
0.958420 4 0.846 0.928 1.55820 4
1.649420 1.469820 1.480420 1.467920
41–43 16 48
C5H10 C5H9COOH
70.13 114.14
5, 19 9, 6
0.746020 4 1.05320 4
1.406520 1.454020
93.9 4
C5H6(COOH)4
246.17
92, 724
192– 195 d
181 284 90– 9110mm 149–150 151.1 106– 10822mm 195–197 145–146 190 169–170 49.3 216
71
45 30 86
Solubility in 100 parts solvent
i aq; v s alc, eth
s alc, eth
s CCl4
25 62 37 93
i aq; misc alc, eth sl s aq; s MeOH
c355 c356
Cyclopentanol Cyclopentanone
C5H9OH C5H8( ¨ O)
86.13 84.12
6, 5 7, 5
c357
Cyclopentanone oxime Cyclopentene 2-Cyclopentene-1acetic acid 2,3-Cyclopenteneopyridine N-(1-Cyclopentene-1yl)morpholine 2-Cyclopentylidenecyclopentanone 3-Cyclopentylpropionic acid Cyclopropane
C5H8( ¨ NOH)
99.13
7, 7
C5H8 C5H7CH2COOH
68.11 126.16
5, 61 9, 42
c358 c359 c360 c361 c362 c363 c364
Cyclohexylbenzene, p104 Cyclohexyl bromide, b261 Cyclohexyl chloride, c77 Cyclohexyl ketone, c328 Cyclohexyl mercaptan, c326
C5H9CH2CH2COOH C3H6
0.948820 4 0.950918 4
1.452120 1.436620
19 58
140.9 130.6
53–55
196
135.1 19
0.774 1.047
1.422820 1.467520
119.17
1.018
1.544520
153.23
0.957
1.510520
150.22
1.001
1.523120
44.2 93– 942.5mm 87– 8811mm 105– 10612mm 14020mm
142.20
0.996
1.457020
13012mm
42.08
5, 15
0.72079 4
Cyclohexylmethane, m194 Cyclohexylmethyl bromide, b306 Cyclooctene oxide, e7a Cyclopentanepropanoic acid, c363 Cyclopentene oxide, e37
127.4
32.8
51 30
sl s aq; s alc sl s aq; misc alc, eth s aq, alc, bz, chl, eth
28 112 67 60 103 46 37 mL per 100 mL aq15; v s alc, eth
Cyclopentyl bromide, b263 Cyclopentyl chloride, c79 Cyclopropyl bromide, b264 Cyclopropyl cyanide, c365
1.177
1.178
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. c365 c366 c367 c368 c369 c370 c371
Cyclopropanecarbonitrile Cyclopropanecarbonyl chloride Cyclopropanecarboxylic acid Cyclopropyl methyl ketone Cystamine dihydrochloride L-()-Cysteine L-Cystine
d1
cis-Decahydronaphthalene
d2
d6 d7 d8 d9
trans-Decahydronaphthalene Dehydro-2-naphthol Decamethylcyclopentasiloxane Decamethyltetrasiloxane Decanal Decane 1,10-Decanediamine Decanedioic acid
d10
1,10-Decanediol
d3 d4 d5
Beilstein reference
Density
Refractive index
67.09
9, 4
0.91116
1.420720
135
32
C3H5COCl
104.54
9, 4
1.152
1.452220
119
23
C3H5COOH
86.09
9, 4
1.008
1.438020
182–184
71
C3H5COCH3
84.12
7, 7
0.899320 4
1.424120
114
21
Name
Formula C3H5CN
Formula weight
Melting point
17–19
Boiling point
Flash point
Solubility in 100 parts solvent s eth
sl s hot aq; s alc, eth s aq, alc, eth
H2NCH2CH2SSCH2CH2NH22HCl HSCH2CH(NH2)COOH HOOCCH(NH2)CH2SSCH2CH(NH2)COOH C10H18
225.20
4, 287
217 d
121.16 240.30
4, 506 4, 507
220 d d 240
138.26
5, 92
0.896320 4
1.481020
43.0
195.8
58
C10H18
138.26
52, 56
0.870020 4
1.469720
30.4
187.3
52
C10H17OH [ ˆ Si(CH3)2O ˆ ]5
154.25 370.8
6, 67
0.996 0.95920 4
1.4992 1.398220
38
10914mm 10120mm
112
(CH3)3SiO[Si(CH3)2O]2Si(CH3)3 H(CH2)9CHO CH3(CH2)8CH3 H2N(CH2)10NH2 HOOC(CH2)8COOH
310.7
0.853620 4
1.388020
70
194–195
86
sl s alc; s bz, PE
156.27 142.29 172.32 202.25
1, 711 1, 168 4, 273 2, 718
0.83015 4 0.730120 4
1.428020 1.411920
i aq; s alc, eth 0.07 aq
1.422134
207–209 174.1 14012mm 295100mm
85 46
1.20720 4
29.7 62–63 134.5
HO(CH2)10OH
174.28
12, 560
72–75
1708mm
v s aq, alc; i bz, eth 0.01 aq; s acid, alk; i alc v s alc, chl, eth; misc most ketones, esters see under cis isomer i aq
0.1 aq; v s alc, esters, ketones sl s aq, eth; v s alc
d11
d14
Decanedioyl dichloride Decanenitrile 1-Decanesulfonic acid, Na salt Decanoic acid
d15 d16
1-Decanol 4-Decanone
d17 d18 d19
Decanoyl chloride 1-Decene Decylamine
d20 d21
Dehydroabietylamine Dehydroacetic acid
d22
Deoxybenzoin
d12 d13
Cymenes, i100, i101, i102 4-Cymylphenol, m359 Cysteamine, a162 Cysteic acid hydrate, a288 Cytosine, a198
112
ClC(O)(CH2)8COCl
239.14
2, 719
1.121220 4
1.467820
CH3(CH2)8CN CH3(CH2)9SO3Na
153.27 244.33
2, 356 43, 27
0.829515 4
1.429520
15 300
235–237
misc alc, chl, eth
CH3(CH2)8COOH
172.27
22, 309
0.878250 4
1.428840
31.4
270
CH3(CH2)9OH CH3(CH2)5C( ¨ O)(CH2)2CH3 CH3(CH2)8C( ¨ O)Cl CH3(CH2)7CH ¨ CH2 CH3(CH2)9NH2
158.29 156.27
1, 425 1, 711
0.829720 4 0.82420 0
1.437120 1.423720
6.9
230.2 207
82 71
0.015 aq; s alc, chl, bz, eth, CS2 i aq; s alc, eth i aq; misc alc, eth
190.71 140.27 157.30
2, 356 13, 858 4, 199
0.919 0.740820 4 0.787
1.441020 1.421520 1.436020
34.5 66.3 12–14
965mm 170.6 216–218
98 47 85
285.48 168.15
17, 559
196.25
7, 431
C6H5CH2C( ¨ O)C6H5
22075mm
111–113 269.9
2,4-D, d214 p,p-DDT, b167 1,2-Decahydroacenaphthylene, a2 Decamethylene glycol, d10 1,10-Decadedicarboxylic acid, d721
d aq, alc; s eth i aq; misc alc, eth sl s aq; misc alc, bz, eth, acet
112
1.546020 1.20104
d aq, alc
55–56
320 Decyl aldehyde, d6 Decyl chloride, c80 Decyl iodide, i33 Dextrose, g6
22 acet; 18 bz; 5 MeOH i aq; v s alc, eth
1.179
1.180
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d23 d24 d25 d26 d27 d28 d29 d30 d31 d32 d33 d34 d35 d36 d37 d38
Name Diacetoxydimethylsilane Diacetoxymethylphenylsilane Diallylamine Diallyl ether Diallyl sulfide 1,2-Diaminoanthraquinone 1,4-Diaminoanthraquinone 2,6-Diaminoanthraquinone 2,5-Diaminoazobenzene HCl 2,5-Diaminobenzenesulfonic acid 3,5-Diaminobenzoic acid 4,4-Diaminodiphenylamine sulfate 4,4-Diaminodiphenylmethane 3,3-Diaminodiphenyl sulfone 4,4-Diaminodiphenyl sulfone 2,7-Diaminofluorene
Formula
Formula weight
(CH3)2Si(OOCCH3)2
176.3
CH3(C6H5)Si(OCOCH3)2 (H2C ¨ CHCH2)2NH (H2C ¨ CHCH2)2O (H2C ¨ CHCH2)2S
238.3
Beilstein reference
Density
Refractive index
1.05420 4
1.403020
164–166
1.48720
1276mm
0.787 0.80518 0 0.887727 4
1.440520 1.424020 1.488920
Melting point
88
Boiling point
Solubility in 100 parts solvent
97.16 98.15 114.21
4, 208 12, 477 1, 440
238.25
141, 459
289–291
i aq; misc alc, eth sl s aq; misc alc, eth sl s alc, eth
238.25
14, 197
265–268
sl s aq, alc; v s bz
238.25
14, 215
325
sl s hot aq, pyr
C6H5N ¨ NC6H3(NH2)2HCl (H2N)2C6H3SO3H
248.72
16, 383
235 d
188.21
14, 713
298 d
(H2N)2C6H3COOH
152.15
14, 453
228
H2NC6H4NHC6H4NH2H2SO4 H2NC6H4CH2C6H4NH2
297.33
13, 110
300
198.27
13, 238
91–92
H2NC6H4SO2C6H4NH2
248.30
13, 426
167–170
H2NC6H4SO2C6H4NH2
248.30
13, 536
175–177
196.25
13, 266
165–166
83
111–112 94 138
Flash point
15 46
sl s aq, alc H2O, 110
398
sl s aq; s alc, eth
221
sl s aq; v s alc, bz, eth i aq; s alc, bz i aq; s alc, acet, HCl sl s aq; v s alc
d39 d40 d41 d42
2,4-Diamino-6hydroxypyrimidine Diaminomaleonitrile 1,8-Diamino-pmenthane 3,3-Diamino-Nmethyldipropyamine
Diacetins, g17, g18 Diacetone acrylamide, d568 Diacetone alcohol, h142 Diacetonitrile, a151 (Diacetoxyiodo)benzene, i28 Diacetyl, b386
NCC(NH2) ¨ C(NH2)CN
CH3N[(CH2)3NH2]2
126.12
24, 469
108.10 170.30
42, 949 13, 4
145.25
44, 1279
285 d
0.914
1.480520
Diallyl, h41 2,5-Diaminoanisole, m94 1,4-Diaminobutane, b379 1,2-Diaminocyclohexanes, c318, c319 1,10-Diaminodecane, d8 p-Diaminodiphenyl, b136
178–179 45 107– 93 12510mm 110– 102 1126mm
3,3-Diaminodipropylamine, i9 1,12-Diaminododecane, d720 1,2-Diaminoethane, e15 1,7-Diaminoheptane, h7 1,6-Diaminohexane, h56
s aq
1.181
1.182
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d43 d44 d45
d46 d47
d48
Name 1,3-Diamino-2propanol 2,6-Diaminopyridine 1,4-Diazabicyclo[2.2.2]octane 1,8-Diazabicyclo[5.4.0]undec-7-ene Diazomethane
d52 d53
1-Diazo-2-naphthol4-sulfonic acid, Na salt Dibenz[de,kl ]anthracene Dibenzofuran 2,3,11,12-Dibenzo1,4,7,10,13-hexaoxacyclooctadeca2,11-diene Dibenzothiophene Dibenzoylmethane
d54
Dibenzoly peroxide
d49 d50 d51
Formula H2NCH2CH(OH)CH2NH2 (H2N)2C5H3N
Formula weight 90.13 109.13 112.18
Beilstein reference
C6H5C( ¨ O)CH2C( ¨ O)C6H5 C6H5C(O)O ˆ OC(O)C6H5
Refractive index
Melting point 40–45
221, 647
118–120 158 174
1.018
1.521920
42.04
23, 25
145
272.22
16, 595
166
252.32
51, 363
1.35
168.20 360.41
17, 70
1.088699 4
184.26 224.26
17, 72 7, 769
242.23
Boiling point
4, 290
152.24 CH2 ¨ N ¨ N
Density
1.607999
Flash point
Solubility in 100 parts solvent
235 s aq, alc 45 aq; 77 EtOH; 51 bz; 13 acet; 26 MeEtKe
800.6mm
112
23
very s eth, diox explosive
273–274 503
s bz; sl s alc, eth
81–83 285 162–164
i aq; s alc, bz, eth
97.100 78–79
s aq; v s alc, bz s alc; v s eth
332–333 22018mm
103–106 may explode when heated
sl s aq, alc; s bz, chl, eth
d55
d56 d57 d58
( ˆ )-Dibenzoyl-Ltartaric acid hydrate Dibenzylamine Dibenzyl disulfide Dibenzyl ether
[(C6H5COOCH(COOH) ˆ ]2 H2O
376.34
9, 170
C6H5CH2NHCH2C6H5 C6H5CH2SSCH2C6H5 C6H5CH2OCH2C6H5
197.28 246.39 198.27
12, 1035 6, 465 6, 434
1,3-Diamino-2-hydroxypropane, d43 Diaminonaphthalenes, n4, n5 1,2-Diamino-4-nitrobenzene, n68 1,4-Diamino-2-nitrobenzene, n67 1,9-Diaminononane, n93 1,8-Diaminooctane, o23 1,5-Diaminopentane, p29 2,5-Diaminopentanoic acid, o46 1,2-Diaminopropane, p192
1.026
1.573120
1.001420 4
1.561020
1,3-Diaminopropane, p193 4,6-Diamino-4-pyrimidinol, d39 Diaminotoluenes, t168, t169, t170, t171 1,3-Diaminourea, c11 4,5-Diamino-o-xylene, d586 Diamylamine, d650 Diamyl ether, d651 Diamyl ketone, u6 1,2-Dianilinoethane, d669
26 69 3.5
300 d 270 298 d
143 135
i aq; s alc, eth s hot alc, bz, eth misc alc, acet, chl, eth
Diazoacetic ester, e114 1,3-Diazole, i4 Dibenzo-18-crown-6, d51 Dibenzo[b,e]pyridine, a61 Dibenzopyrrole, d665 Dibenzoyl, b34 Dibenzyl, d666
1.183
1.184
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point 112
(C6H5CH2NHCH2 ˆ )2
240.35
12, 1067
1.02420 4
1.562420
26
d60 d61 d62
N,N-Dibenzylethylenediamine Dibenzyl malonate Dibenzyl phosphonate Dibromoacetic acid
CH2[COOCH2C6H5]2 (C6H5CH2O)2P(O)H Br2CHCOOH
284.31 262.25 217.86
6, 436
1.137 1.187
1.544720 1.554020
d63
Dibromoacetonitrile
Br2CHCN
198.86
2, 219
2.296
1.539320
d64
2,4-Dibromoacetophenone 1,4-Dibromobenzene
BrC6H4C( ¨ O)CH2Br
277.96
7, 285
1880.2mm 112 5 to 5 1100.01mm 112 128– 13016mm 67– none 6924mm 108–110
C6H4Br2
235.92
5, 211
0.9641100 1.5743100
87.3
BrC6H4C6H4Br CH3CH(Br)CH2CH2Br BrCH2CH2CH2CH2Br BrCH2C( ¨ O)C( ¨ O)CH2Br HOCH2C(Br) ¨ C(Br)CH2OH HCClBr2
312.00 215.93 215.93 243.89
5, 580 1, 120 1, 120 1, 774
1.80020 1.808020 4
162–163 355–360 175 20 198 116–117
245.91
11, 260
208.29
1, 67
FCCl(Br)C(Br)F2
276.5
Br(CH2)10Br CH2BrC(Br)F2
300.09 223.87
Br2CF2
209.81
d59
d65 d66 d67 d68 d69 d70 d71 d72
d73 d74 d75
4,4-Dibromobiphenyl 1,3-Dibromobutane 1,4-Dibromobutane 1,4-Dibromo-2,3butanedione trans-2,3-Dibromo-2butene-1,4-diol Dibromochloromethane 1,2-Dibromo-2chloro-1,1,2-trifluoroethane 1,10-Dibromodecane 1,2-Dibromo-1,1difluoroethane Dibromodifluoromethane
2, 218
1.508520 1.518620
1954mm
219
none
Solubility in 100 parts solvent v s alc, bz, chl, eth
s warm alc, eth
none 112
1.4 alc; s bz; 101 eth s bz; sl s hot alc s chl, eth s chl
none
misc alc, bz, eth
112–114 22
2.451
1.546520
120748mm
2.247820
1.427520
11, 64 1, 92
1.33530 2.223820
1.491220 1.445620
27 61.3
16015mm 93.4
112
sl s alc; s eth i aq
11, 16
2.28815 4
1.399912
141.6
23–24
none
0.1 aq; misc alc, bz, chl, eth
93–94
d76 d77 d78 d79 d80 d81 d82 d83 d84 d85
1,3-Dibromo-5,5-dimethylhydantoin 1,1-Dibromoethane 1,2-Dibromoethane (1,2-Dibromoethyl)benzene cis-1,2-Dibromoethylene trans-1,2-Dibromoethylene 1,2-Dibromoethyltrichlorosilane 4,5,-Dibromofluorescein 2,4-Dibromo-1-fluorobenzene 1,2-Dibromohexafluoropropane
Dibenzyl ketone, d684
285.93
197 d 2.05520 4 2.180220 4
CH3CHBr2 BrCH2CH2Br
187.87 187.87
1, 90 1, 90
C6H5CH(Br)CH2Br
263.97
5, 356
BrCH ¨ CHBr
185.86
1, 190
2.2117 4
BrCH ¨ CHBr
185.86
1, 190
BrCH2CH(Br)SiCl3
321.3 490.12
Br2C6H3F
253.91
CF3CF(Br)C(Br)F2
309.83
1.537920 1.541615
10.0
113 131.7
70–74
14015mm
1.543118
53
112.5
2.246
1.550518
6.5
108
2.04620 4
1.53720
19, 228
none
s alc, bz, chl, eth
9011mm 270–273
2.04720
5,7-Dibromo-8-quinolinol, d87
i aq; v s alc, eth 0.43 aq; misc alc, eth
1.584020
s hot alc, HOAc 10522mm
72.8
92
1.185
1.186
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
1,6-Dibromohexane 5,7-Dibromo-8hydroxyquinoline Dibromomethane
Br(CH2)6Br
243.98 302.96
1, 145 21, 97
1.58618 4
1.506620
243 200–201 subl
32
misc eth s alc, bz; v s eth
CH2Br2
173.85
1, 67
2.495620 4
1.541920
52.7
none
Br2C6H2(NO2)NH2
295.93
12, 743
206–208
Br2C6H3NO2
280.91
5, 250
1.9581111
82–84
s bz, hot alc
d91 d92
2,6-Dibromo-4-nitroaniline 2,5-Dibromonitrobenzene 1,5-Dibromopentane 1,2-Dibromopropane
1.15 aq; misc alc, bz, acet, chl, eth sl s aq; s HOAc
Br(CH2)5Br CH3CH(Br)CH2Br
229.95 201.90
1, 131 1, 109
1.687915 4 1.93320
1.509215 1.520320
34 55.5
11015mm 139.6
d93 d94
1,3-Dibromopropane 2,3-Dibromopropanol
BrCH2CH2CH2Br BrCH2CH(Br)CH2OH
201.90 217.90
1, 110 1, 357
1.971225 4 2.12020 4
1.523320 1.559920
34
166.8 54 95–9710mm
d95 d96
2,3-Dibromopropene 2,3-Dibromopropionic acid 2,6-Dibromopyridine DL-2,3-Dibromosuccinic acid 1,2-Dibromotetrachloroethane 1,2-Dibromotetrafluoroethane 2,5-Dibromothiophene ,-Dibromotoluene 1,2-Dibromo-1,1,2trifluoroethane
BrCH2C(Br) ¨ CH2 BrCH2CH(Br)COOH
199.88 231.88
1, 201 2, 258
1.933620 4
1.547020
Br2(C5H3N) HOOCCH(Br)CH(Br)COOH BrCCl2CCl2Br
236.91 275.89
202, 153 2, 625
325.65
1, 93
BrCF2CF2Br
259.83
Br2C4H2S C6H5CHBr2 HC(Br)FC(Br)F2
241.94 249.94 241.8
d86 d87 d88 d89 d90
d97 d98 d99 d100 d101 d102 d103
17, 33 5, 308 1, 92
64–66
96.97
140–143 16020mm
79 none
none s aq, alc, bz
118–119 255 167 2.713
220–222
0.2 aq; misc alc, bz, chl, eth 0.17 aq; s alc, eth sl s aq; misc alc, bz, eth, acet
v s aq, alc none
2.16325
1.36725
110.5
47.3
2.14723 23 1.51015 2, 27427
1.628920 1.614720 1.419124
6
221 15623mm 76.5
110
i aq; v s alc, eth i aq; misc alc, eth
d106
,Dibromo-oxylene ,-Dibromo-pxylene 1,2-Dibutoxyethane
d107 d108
d104
C6H4(CH2Br)2
263.97
5, 366
1.960
92–94
sl s alc, chl, eth
C6H4(CH2Br)2
263.97
5, 385
2.0120
142–143 245
v s alc, chl; s eth
C4H9OCH2CH2OC4H9
174.28
Dibutylamine
(C4H9)2NH
129.25
0.2 aq; misc alc, acet 0.47 aq; s alc, acet, eth, EtAc, PE
(C4H9)2NCH2CH2OH
173.29
d109
N,N-Dibutylaminoethanol N,N-Dibutylaniline
C6H5N(C4H9)2
205.34
d110
Dibutyl decanedioate
314.45
d111
Di-tert-butyldicarbonate 2,5-Di-tert-butyl1,4-dihydroxybenzene Dibutyl disulfide
C4H9OOC(CH2)8COOC4H9 (CH3)3COC(O)OC(CH3)3 [(CH3)3C]2C6H2(OH)2
222.33
C4H9SSC4H9
178.36
d105
d112
d113
Dibutyl 1,2-benzenedicarboxylate, d128
0.837420 20
1.413120
69.1
203.6
0.760120 4
1.417720
62
159.6
33
0.86020 20
1.44420
70
227–230
93
122, 95
0.90420
1.519720
267–275
110
2, 719
0.936620
1.441520
1.0
344–345
177
0.950
1.410320
23
560.5mm
37
231.2
93
4, 157
218.25
i aq, MeOH; s acet, bz, EtOH, EtAc, eth 0.004 aq
217–219
12, 400
0.938320 4
Dibutyl butanedioate, d130
1.492020
71
i aq; misc alc, eth
Dibutyl Cellosolve, d106
1.187
1.188
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d114 d115 d116 d117 d118
Name
Beilstein reference
(CH3)3CSSC(CH3)3
178.36
C4H9OC4H9
130.22
N,N-Dibutylformamide 3,5-Di-tert-butyl-4-hydroxybenzoic acid Dibutyl maleate
HC( ¨ O)N(C4H9)2
157.26
[(CH3)3C]2C6H2(OH)COOH C4H9OOCCH ¨ CHCOOC4H9 CH2COOC(CH3)3 ı COOC(CH3)3 [(CH3)3C]2C6H2 (CH3)OH
250.34
220.36
63, 2073
C4H9OOC ˆ COOC4H9
202.25
2, 540
(CH3)3CO ˆ OC(CH3)3
146.23
Di-tert-butyl malonate
d120
2,6-Di-tert-butyl-4methylphenol Dibutyl oxalate
d122
Formula weight
Di-tert-butyl disulfide Dibutyl ether
d119
d121
Formula
1, 369
Density
Refractive index
0.935
1.4920
0.768920 4
1.399220
0.864
1.442920
25
12015mm
100
135
1.418420
6.0
9310mm
0.89475 4
1.485975
70
265
0.98620 20
1.423220
30.0
239–240
0.79420
1.389020
40
110
56.5
[CH3CH2CH(CH3)]2C6H3OH [(CH3)3C]2C6H3OH
206.33
[(CH3)3C]2C6H3OH
206.33
d127
(C4H9O)2P(O)H
194.21
1, 187
0.99520 4
1.423120
d128
Dibutyl o-phthalate
C6H4[COOC4H9]2
278.35
92, 586
1.046520 4
1.492620
d126
142.4
d 280
216.27
206.33
93
80
206.33
d125
Flash point
229–33
1.445420
0.995020
228.28
[(CH3)3C]2C6H3OH
d124
97.9
Boiling point
Solubility in 100 parts solvent
0.03 aq; misc alc, eth
206–209
Di-tert-butyl peroxide 2,4-Di-tert-butylphenol 2,6-Di-sec-butylphenol 2,6-Di-tert-butylphenol 3,5-Di-tert-butylphenol Dibutyl phosphonate
d123
Melting point
0.918
1.510020
63, 2061
0.05 aq
i aq; s alc, bz, acet 108
misc alc, ketones, PE misc acet, octane
263.5
115
s hot alc; i alk
42
255–260
127
35–83
253
118
s hot alc; i alk
11811mm
121
340
171
sl s (hyd) aq; misc alc, acet, eth 0.01 aq; v s alc, bz, acet, eth
87–89
35
d129 d130 d131
N,N-Dibutyl-1,3propanediamine Dibutyl succinate Dibutyl sulfate
d132 d133
Dibutyl sulfide Di-tert-butyl sulfide d134 Dibutyl sulfite d135 Dibutyl sulfone d136 N,N-Dibutylthiourea d136a Dibutyltin dichloride d137 Dibutyltin oxide d138 Dichloroacetic acid d139 1,1-Dichloroacetone d140 d141 d142 d143 d144
2,4-Dichloroacetophenone Dichloroacetyl chloride 2,3-Dichloroaniline 2,4-Dichloroaniline 2,5-Dichloroaniline
0.827
1.446320
22, 551
0.976820 4 1.05925 4
1.429920 1.421320
29.0
146.30 146.30
1, 370
0.83916 0 0.815
1.453020 1.450620
75.0
(C4H9O)2S(O) (C4H9)2SO2 C4H9NHC( ¨ S)NHC4H9
194.29 178.29 188.34
12, 397 1, 371
0.994422 4
1.431020
(C4H9)2SnCl2
303.83
(C4H9)2SnO Cl2CHCOOH
248.92 128.94
41, 588 2, 202
1.56320 4
CH3C(O)CHCl2
126.97
1, 654
1.30518 15
Cl2C6H3COCH3
189.04
72, 219
C4H9NHCH2CH2CH2NHC4H9 [C4H9OOCCH2 ˆ ]2 C4H9OSO2OC4H9
186.34 230.30 210.29
C4H9SC4H9 (CH3)3CSC(CH3)3
1.464220
147.39
2, 204
Cl2C6H3NH2 Cl2C6H3NH2 Cl2C6H3NH2
162.02 162.02 162.02
12, 621 12, 621 12, 625
1.56720
274.5 130– 13211mm 188.9 76 151 48
Dibutyl phosphite, d127 Dibutyl sebacate, d110 Dichloroacetaldehyde diethyl acetal, d169
i aq; v s alc, eth
39–41
13510mm
112
300 9–11
193–194
112
misc aq, alc, eth
14515mm
112
sl s aq; s alc; misc eth i aq
107–108
66
d aq, alc; misc eth
252 245 251
112
s alc; v s eth sl s aq; s alc, eth s alc, bz, eth
33–34
1.460320 1.596920
i aq; s alc, eth
143
150 1.563520
Cl2CHCOCl
103
10815mm 295
46 63.65
1.531516 4
Di-tert-butylcresol, d120 2,5-Di-tert-butylhydroquinone, d112 Dibutyl ketone, n100
205
23–24 59.62 49–51
i aq; s alc, eth i aq; s alc; sl s eth
Dichloroanisoles, d191, d192
1.189
1.190
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d145 d146 d147 d148 d149 d150 d151 d152 d153 d154 d155 d156 d157 d158 d159 d160 d161 d162
Name 2,6-Dichloroaniline 3,4-Dichloroaniline 3,5-Dichloroaniline 1,5-Dichloroanthraquinone 1,8-Dichloroanthraquinone 2,4-Dichlorobenzaldehyde 2,4-Dichlorobenzamide 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,5-Dichlorobenzenesulfonyl chloride 2,4-Dichlorobenzoic acid 2,5-Dichlorobenzoic acid 3,4-Dichlorobenzoic acid 4,4-Dichlorobenzophenone 2,4-Dichlorobenzoyl chloride 3,4-Dichlorobenzoyl chloride 1,2-Dichlorobutane
Formula weight
Beilstein reference
162.02 162.02 162.02 277.11
12, 626 12, 626 12, 626 7, 787
38.41 70–72 272 51–53 259741mm 245–247
s alc, eth; sl s bz i aq; s alc, eth sl s alc, bz, acet
277.11
7, 788
202–203
sl s alc
Cl2C6H3CHO
175.01
7, 236
69–73
Cl2C6H3CONH2
190.03
93, 1376
191–194
C6H4Cl2 C6H4Cl2 C6H4Cl2 Cl2C6H3SO2Cl
147.01 147.01 147.01 245.51
5, 201 5, 202 5, 203 111, 15
Cl2C6H3COOH
191.01
9, 342
157–160
Cl2C6H3COOH
191.01
9, 342
151–154 301
Cl2C6H3COOH
191.01
9, 343
207–209
(ClC6H4)2CO
251.11
7, 420
144–146 353
Cl2C6H3COCl
209.46
9, 342
Cl2D6H3COCl
209.46
9, 344
CH3CH2CH(Cl)CH2Cl
127.01
11, 38
Formula Cl2C6H3NH2 Cl2C6H3NH2 Cl2C6H3NH2
Density
1.305920 4 1.288420 4 1.241760
1.494
1.11820 4
Refractive index
1.5515 1.5459 1.5285
1.529720
1.447415
Melting point
17.0 24.8 53 36–37
Boiling point
Flash point
233
180.4 173.1 174.1
Solubility in 100 parts solvent
i aq; s alc
65 63 65
misc alc, bz, eth 0.01 aq; s alc, eth s alc, bz, chl, eth d hot aq, hot alc
16–18
15034mm
137
s hot aq, alc, bz, chl sl s aq; s alc, eth s hot aq, eth; v s alc s hot alc; v s chl, eth d aq, alc
30–33
242
142
d aq, alc
124
i aq; s chl, eth
d163 d164 d165 d166 d167 d168 d169 d170
d171 d172
1,4-Dichlorobutane meso-2,3-Dichlorobutane cis-1,4-Dichloro2-butene trans-1,4-Dichloro2-butene 3,4-Dichloro-1butene 1,4-Dichloro-2butyne 1,1-Dichloro-2,2-diethoxyethane Dichlorodifluoromethane
ClCH2CH2CH2CH2Cl CH3CH(Cl)CH(Cl)CH3
127.01 127.01
1, 119 1, 119
1.159820 4 1.102525 4
1.456620 1.438625
38 80
155 115.9
40 18
i aq; s chl i aq; s chl
ClCH2CH ¨ CHCH2Cl
125.00
13, 743
1.18825 4
1.488725
48
152
49
i aq; s org solv
ClCH2CH ¨ CHCH2Cl
125.00
13, 743
1.18325 4
1.486125
1–3
74–7640mm 56
i aq; s org solv
ClCH2CH(Cl)CH ¨ CH2
125.00
1.150
1.465820
61
123
28
ClCH2C ˜ CCH2Cl
122.98
13, 927
1.25820 4
1.504820
165–168
160
Cl2CHCH(OC2H5)2
187.07
1, 614
1.138
1.436020
183–184
60
Cl2CF2
120.92
1, 61
1.48630
4,6-Dichloro-1,3-dihydroxybenzene 2,5-Dichloro-3,6-dihydroxy-p-benzoquinone
Cl2C6H2(OH)2
179.00
61, 403
104–106 254
208.98
8, 379
283–284
2,6-Dichlorobenzyl chloride, t249 2,2-Dichlorodiethyl ether, b158
5,5-Dichloro-2,2-dihydroxydiphenylmethane, m233
158
29.8
0.02 aq; 9 bz; 5.5 chl; 6 diox; s alc, eth sl s aq, bz; s eth
1,1-Dichlorodimethyl ether, d197 Dichlorohydrin, d220
1.191
1.192
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d173
Name
Formula
Formula weight
Beilstein reference
197.02
242, 158
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
d176 d177
1,3-Dichloro-3,5-dimethylhydantoin Dichlorodimethylsilane Dichlorodiphenylsilane 1,1-Dichloroethane 1,2-Dichloroethane
d178
1,1-Dichloroethylene
H2C ¨ CCl2
96.94
1, 186
1.212920 4
1.424720
122.6
31.6
15
d179
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 2,2-Dichloroethyl ether 1,2-Dichloroethyltrichlorosilane Dichlorofluoromethane
ClCH ¨ CHCl
96.94
1, 188
1.281820 4
1.449020
80.1
60.7
6
0.51 aq; misc alc 0.8 aq; misc alc, chl, eth 0.02 aq; s alc, bz, chl, eth 0.7 aq; s alc, eth
ClCH ¨ CHCl
96.94
1, 188
1.254620 4
1.446220
49.8
47.7
6
0.6 aq; s alc, eth
ClCH2CH2OCH2CH2Cl
143.01
12, 335
1.222020 20
1.45720
178.5
55
1.1 aq; s alc, bz, eth
ClCH2CH(Cl)SiCl3
232.4
1.51625 4
1.44925
FCHCl2
102.92
82– 8426mm 8.9
C7H15Si(CH3)Cl2
225.2
F6C4Cl2
233.0
[ClC(CH3)2O]2Si3(CH3)2 Cl(CH2)6Cl
277.4
d174 d175
d180 d181 d182 d183
d184 d185 d186 d187
Dichloroheptylmethylsilane 1,2-Dichlorohexafluorocyclobutane 1,5-Dichlorohexamethyltrisiloxane 1,6-Dichlorohexane
134–136 1.06420 4
1.403820
16, 910
1.22220 4
1.58220
98.96 98.96
1, 83 1, 84
1.175720 4 1.253120 4
1.416420 1.444820
(CH3)2SiCl2
129.06
(C6H5)2SiCl2
253.20
CH3CHCl2 ClCH2CH2Cl
155.07
1, 61
1, 144
70
16
308–309
157
d aq, alc
97.0 35.7
57.3 83.5
5 15
135
1.34530 0.978020 4
16
1.439625
207–208
1.334225
59–60
1.01820 4
1.4071
184
1.068
1.456820
8715mm
69 HOAc; 108 diox; s alc, eth; i aq
73
s chl
d188
d189 d190 d191 d192 d193 d194 d195
d196 d197
1.449020
1.325520 4
1.424620
F(I)C(Cl)C(Cl)F2
2,3-Dichloro-1methoxybenzene 3,5-Dichloro-1methoxybenzene 2,4-Dichloro-6-methoxy-1,3,5-triazine (Dichloromethyl)dimethylchlorosilane 2,2-Dichloro-1methylcyclopropanecarboxylic acid N-(Dichloromethylene)aniline Dichloromethyl ether
Cl2C6H3OCH3
177.03
61, 102
31–33
Cl2C6H3OCH3
177.03
6, 190
40–42
Dichloroisopropyl alcohol, d220
278.9
2.20020
1,2-Dichloro-2-iodo1,1,2-trifluoroethane Dichloromaleic anhydride Dichloromethane
166.95 CH2Cl2
84.93
17, 434 1, 60
179.99 Cl2CHSi(Cl)(CH3)2
177.5
Cl2(C3H2)(CH3)COOH
169.01
C6H5N ¨ CCl2
174.03
Cl2CHOCH3
114.96
100–101
1.23720 4
12, 447
1.46120
96.7
40.5
86–88
13249mm
49
149
60–65
858mm
none
1.265
1.571020
10630mm
79
1.271
1.430020
85
42
4,4-Dichloro--methylbenzhydrol, b164
1.3 aq; misc alc, eth
1.193
1.194
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d198 d199 d200 d201 d202 d203 d204 d205 d206 d207 d208 d209 d210 d211 d212 d213 d214
Name Dichloro(methyl)phenylsilane Dichloro(methyl)silane Dichloro(methyl)vinylsilane 2,3-Dichloro-1,4naphthoquinone 2,6-Dichloro-4nitroaniline 2,3-Dichloronitrobenzene 2,4-Dichloronitrobenzene 3,4-Dichloronitrobenzene 2,3-Dichlorooctafluorobutane 1,7-Dichlorooctamethyltetrasiloxane 2,3-Dichloro-4-oxo2-butenoic acid 1,5-Dichloropentane 2,3-Dichlorophenol 2,4-Dichlorophenol 2,5-Dichlorophenol 2,6-Dichlorophenol 2,4-Dichlorophenoxyacetic acid
Formula
Formula weight
C6H5Si(CH3)Cl2
191.13
HSi(CH3)Cl2
115.04
H2C ¨ CHSi(CH3)Cl2
141.07
Beilstein reference
41, 581
Density
Refractive index
1.176
1.519020 93
1.105 1.08720 4
Melting point
1.430020
Boiling point
Flash point
205
82
41
32
92–93
4
Solubility in 100 parts solvent
227.05
7, 729
190–192
sl s alc, bz, eth
Cl2C6H2(NO2)NH2
207.02
12, 735
190–192
Cl2C6H3NO2
192.00
5, 245
1.72114
61–62
257–258
s PE
Cl2C6H3NO2
192.00
5, 245
1.43980
29–32
258
s hot alc; misc eth
Cl2C6H3NO2
192.00
5, 246
1.45675 4
41–42
255–256
CF3CF(Cl)CF(Cl)CF3
271.0
1.680120
1.310020
68
63
[Cl(CH3)2SiOSi(CH3)2 ˆ ]2O ClC(CHO) ¨ C(Cl)COOH
351.6
1.01120 4
1.40320
168.96
3, 727
Cl(CH2)5Cl Cl2C6H3OH Cl2C6H3OH Cl2C6H3OH Cl2C6H3OH Cl2C6H3OCH2COOH
141.04 163.00 163.00 163.00 163.00 221.04
1, 131 61, 102 6, 189 6, 189 6, 190
222 125–128
1.105815 4
1.455320
123
72 58.60 42–43 56–58 65–68 138
100 6310mm 206 210 211 218–220 1600.4mm
26 113
sl s aq; s alc, hot bz i aq; s alc, eth s alc, eth v s alc, bz, chl, eth v s alc, bz, eth v s alc, eth s alc, bz, chl, eth
d215 d216 d217 d218 d219 d220 d221 d222 d223 d224 d225 d226 d227
2,5-Dichloro-pphenylenediamine Dichlorophenylphosphine 4,5-Dichloro-ophthalic acid 1,2-Dichloropropane 1,3-Dichlopropane 1,3-Dichloro-2propanol 1,3-Dichloropropene 2,3-Dichloro-1propene 3,6-Dichloropyridazine 2,6-Dichloropyridine 4,7-Dichloroquinoline Dichlorosilane 1,2-Dichloro1,1,2,2-tetrafluoroethane
1,1-Dichloro-2-propanone, d139
Cl2C6H2(NH2)2
177.03
13, 118
165 d
C6H5PCl2
178.99
16, 763
Cl2C6H2(COOH)2
235.02
91, 366
CH3CH(Cl)CH2Cl
112.99
1, 105
1.155820
1.439020
100.4
96.4
4
ClCH2CH2CH2Cl ClCH2CH(OH)CH2Cl
112.99 128.99
1, 105 1, 364
1.87820 4 1.350617 4
1.448720 1.483520
99.5 4
120.5 174.3
32 74
ClCH2CH ¨ CHCl ClCH2C(Cl) ¨ CH2
110.97 110.97
1, 199 1, 199
1.21720 4 1.20425 25
1.47020 1.461120
112 94
10
1.319
1.598020
H2SiCl2 ClCF2CF2Cl
147.99 198.05 101.0 170.93
222
112
193–195
148.98 Cl2(C5H3N)
51
s aq; v s eth 0.26 aq; misc alc, bz, chl, eth v s alc, eth 9.1 aq; misc alc, eth i aq; s chl, eth misc alc; s eth
66–69 20, 231
1.47020 4
4,6-Dichlororesorcinol, d171
1.29020
86–88 84–86
14810mm
122 94
8.3 3.6
s alc, eth
,o-Dichlorotoluene, c59
1.195
1.196
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d228 d229 d230 d231 d232 d233
Name 2,5-Dichlorothiophene 2,4-Dichlorotoluene 2,6-Dichlorotoluene 3,4-Dichlorotoluene 2,2-Dichloro-1,1,1trifluoroethane ,-Dichloro-pxylene
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Cl2(C4H2S)
153.03
17, 33
1.442
1.562120
40.5
162
Cl2C6H3CH3 Cl2C6H3CH3 Cl2C6H3CH3 CF3CHCl2
161.03 161.03 161.03 152.9
5, 295 5, 296 5, 296
1.246020 20 1.254 1.25125 25
1.545420 1.550720 1.547220
13
200.5 196–203 201740mm 28
C6H4(CH2Cl)2
175.06
5, 384
100
254
71
222
Formula
14
Boiling point
Flash point
i aq; misc alc, eth 79 82 85
2,5-Dichloro-pxylene
Cl2C6H2(CH3)2
175.06
5, 384
d235 d236
Dicyanodiamide 1,2-Dicyanobenzene
H2NC( ¨ NH)NHCN C6H4(CN)2
84.08 128.13
32, 75 9, 815
d237 d238 d239 d240
C6H4(CN)2 NC(CH2)4CN NC(CH2)6CN CH3CH[CH(CN)CONH2]2 C6H11C6H11
128.13 108.14 136.20 194.19
9, 836 2, 653 2, 694 22, 704
0.951 0.954
1.438020 1.443620
158–160 1–3 295 3.5 18515mm 159–160
112 112
d241
1,3-Dicyanobenzene 1,4-Dicyanobutane 1,6-Dicyanohexane 2,4-Dicyano-3methylglutaramide Dicyclohexyl
166.31
5, 108
0.864
1.478220
3–4
227
101
d242
Dicyclohexylamine
(C6H11)2NH
181.32
12, 6
0.910
1.484220
0.1
255.8
96
d243
N, N-Dicyclohexylcarbodiimide Dicyclopentadiene
C6H11N ¨ C ¨ NC6H11
206.33
34–35
122– 1246mm 170
26
d244
132.21
5, 495
0.93025 4
208–211 139–141
1.505025
1
i aq i aq; s chl i aq
22.5 acet; 20 bz; 4.5 CCl4; 11 eth; 18 EtAc 27 acet; 44 bz; 39 eth 32 EtAc; 5 MeOH 2.3 aq; 1.3 alc; i bz v s bz, alc; s hot eth s alc, bz, chl, eth
d234
1.40025 4
Solubility in 100 parts solvent
7 MeOH; misc bz, acet, eth misc alc, bz, chl, eth
s alc, eth
d245
Diethanolamine
HOCH2CH2NHCH2CH2OH
105.14
4, 283
1.08830 4
1.474730
d246
2,2-Diethoxyacetophenone 4,4-Diethoxybutylamine 2,2-Diethoxy-N,Ndimethylethylamine Diethoxydimethylsilane Diethoxydiphenylsilane 1,1-Diethoxyethane 1,2-Diethoxyethane 2,2-Diethoxyethanol 2,2-Diethoxyethylamine Diethoxymethylsilane Diethoxymethylvinylsilane 1,1-Diethoxypropane 3,3-Diethoxy-1propene
C6H5C( ¨ O)CH(OC2H5)2 H2N(CH2)3CH(OC2H5)2 (C2H5O)2CHCH2N(CH3)2 (C2H5O)2Si(CH3)2
208.26
71, 361
1.034
1.499520
161.25
4, 319
0.933
1.427520
131– 110 13410mm 196 62
161.25
4, 308
0.883
1.412920
170
45
148.28
0.84020 4
1.381120
114
11
(C2H5O)2Si(C6H5)2
272.42
1.032920 4
1.526920
CH3CH(OC2H5)2 C2H5OCH2CH2OC2H5 (C2H5O)2CHCH2OH (C2H5O)2CHCH2NH2
118.18 118.18 134.18 133.19
0.825420 4 0.842 24 0.8884 0.916
1.382520 1.392220 1.416020 1.4170
(C2H5O)2SiH(CH3) (C2H5O)2Si(CH3)CH ¨ CH2 CH3CH2CH(OC2H5)2 (C2H5O)2CHCH ¨ CH2
134.3 160.3
0.82925 4 0.85820 4
1.37225 1.40020
94–95 133–134
0.823220 4 0.854
1.388420 1.400020
122.8 89–90
d247 d248 d249 d250 d251 d252 d253 d254 d255 d256 d257 d258
,p-Dichlorotoluene, c60
132.20 130.19
1, 603 1, 468 1, 818 4, 308
1, 630 1, 727
1,2-Dicyanoethane, b380
28.0
87
268.0
137
96 aq; 4 bz; 0.8 eth; misc MeOH, acet
1302mm 2.8 74
102.7 121.4 167 162–163
21 27 67 45
5 aq; misc alc, eth 21 aq s alc, eth
12 4
v s alc, eth
1.197
1.198
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d259 d260 d261 d262 d263 d264 d265 d266 d267 d268 d269 d270 d271
d272 d273
Name 2,2-Diethoxytriethylamine N,N-Diethylacetamide Diethyl acetamidomalonate Diethyl 1,3-acetonedicarboxylate Diethyl acetylenedicarboxylate Diethyl 2-acetylglutarate Diethyl acetylsuccinate Diethyl allylmalonate Diethylamine Diethylamine HCl 4-(Diethylamino)benzaldehyde 2-Diethylaminoethanol 2-(Diethylamino)ethyl-4-aminobenzoate 2-Diethylaminoethyl chloride HCl 3-(Diethylamino)phenol
Formula weight
Beilstein reference
Density
Refractive index
189.30
4, 309
0.850
1.418920
194–195
65
115.18
4, 110
0.925
1.440120
182–186
70
C2H5OOCCH(NHCOCH3)COOC2H5 C2H5OOCCH2COCH2COOC2H5 C2H5OOCC ¨ CCOOC2H5
217.22
42, 891
202.21
3, 791
1.113
1.438520
250
86
170.16
2, 803
1.063
1.442620
10711mm
94
C2H5OOCCH2CH2CH(COCH3)COOC2H5 C2H5OOCCH2CH(COCH3)COOC2H5 C2H5OOCCH(CH2CH ¨ CH2)COOC2H5 (C2H5)2NH (C2H5)2NH HCl (C2H5)2NC6H4CHO
230.26
1.071
1.438620
15411mm
112
180– 112 18350mm 222–223 92
Formula (C2H5O)2CHCH2N(C2H5)2 CH3C( ¨ O)N(C2H5)2
Melting point
97–98
216.23
3, 801
1.081
1.434620
200.23
2, 776
1.015
1.430420
73.14 109.60 177.25
4, 95 4, 95 142, 25
0.707420 4 1.04821 4
1.386420
(C2H5)2NCH2CH2OH
117.19
4, 282
0.880025
H2NC6H4COOCH2CH2N(C2H5)2
236.30
14, 424
61
ClCH2CH2N(C2H5)2 HCl
172.10
42, 618
208–210
(C2H5)2NC6H4OH
165.24
13, 408
65–69
1.438925
50.0
Boiling point
Flash point
Solubility in 100 parts solvent
18520mm
28
misc aq, alc s aq, alc, chl; i eth
39–41
55.5 320–330 1747mm
70
163
48
s aq, alc, bz, eth 0.5 aq; s alc, bz, eth
17015mm
s aq, alc, eth
d274 d275 d276 d277 d278 d279 d280
d281 d282 d283 d284 d285 d286
3-Diethylamino-1,2propanediol 1-Diethylamino-2propanol 4-(Diethylamino)salicylaldehyde N, N-Diethylaniline 2,6-Diethylaniline Diethyl azodicarboxylate 5,5-Diethylbarbituric acid Diethyl benzalmalonate 1,2-Diethylbenzene 1,3-Diethylbenzene 1,4-Diethylbenzene Diethyl benzylmalonate Diethyl bromomalonate
Diethyl acetal, d251 Diethylacetic acid, e89
147.22
4, 302
0.97320 20
1.460220
233–235
131.22
42, 737
0.889
1.425520
13.5
193.25
14, 234
149.24 149.24 174.16
12, 164 3, 123
0.930225 4 0.906 1.106
184.19
242, 279
1.220
C6H5CH ¨ C(COOC2H5)2
248.28
9, 892
1.107
1.536520
C6H4(C2H5)2 C6H4(C2H5)2 C6H4(C2H5)2 C6H5CH2CH(COOC2H5)2 BrCH(COOC2H5)2
134.22 134.22 134.22 250.29
5, 426 5, 426 5, 426 9, 869
0.880020 0.864020 4 0.862020 4 1.064
1.502220 1.495020 1.494020 1.486820
239.07
2, 594
1.402225 4
1.455020
(C2H5)2NCH2CH(OH)CH2OH (C2H5)2NCH2CH(OH)CH3 (C2H5)2NC6H3(OH)CHO C6H5N(C2H5)2 (C2H5)2C6H3NH2 C2H5OOCN ¨ NCOOC2H5
107
s aq, alc, chl, eth
55–5913mm 33
s alc
216.3 243 10613mm
1 aq; sl s alc, eth
62–64
Diethyl 2-acetylpentanedioate, d264 Diethylaminoacetaldehyde diethyl acetal, d259
1.539425 1.545220 1.428020
34.4 3
97 123 26
188–192
0.7 aq; 7 alc; 1.3 chl; 3.2 eth; s acet, HOAc 21530mm
112
31.3 83.9 42.85
183.4 181.1 183.8 16210mm
49 50 56 112
54
233–235 d
s alc, eth s alc, eth s alc, eth
i aq; misc alc, eth
3-Diethylaminopropylamine, d330 Diethyl (Z)-2-butenedioate, d316
1.199
1.200
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d287 d288 d289
Name Diethyl butylmalonate Diethylcarbamoyl chloride Diethyl carbonate
d290
Diethyl chloromalonate d291 Diethyl chlorophosphate d292 Diethyl chlorothiophosphate d293 Diethylcyanamide d293a Diethyl cyanomethylphosphonate d294 N, N-Diethylcyclohexylamine d294a Diethyl disulfide d295
d296 d297 d298
Diethyldithiocarbamic acid, Na salt Diethyl dithiophosphate N,N-Diethyldodecanamide Diethylenetriamine
Formula weight
Beilstein reference
Density
Refractive index
C4H9CH(COOC2H5)2
216.28
21, 282
0.983
1.4220
235–240
93
v s alc, eth
(C2H5)2NCOCl
135.59
4, 120
1.451520
187–190
75
d hot aq, hot alc
(C2H5O)2C ¨ O
118.13
3, 5
0.976420 4
1.384320
126.8
25
ClCH(COOC2H5)2
194.61
22, 537
1.204020 4
1.431020
222–223
69 aq; misc alc, bz, eth, esters misc alc, chl, eth
(C2H5O)2P(O)Cl
172.55
1, 332
1.194
1.416520
602mm
(C2H5O)2P(S)Cl
188.61
1.200
1.471520
453mm
(C2H5)2NCN (C2H5O)2P(O)CH2CN
98.15 177.14
4, 121
0.846 1.095
1.422920 1.431220
186–188 1010.4mm
69 112
C6H11N(C2H5)2
155.29
12, 6
0.850
1.456220
194–195
57
C2H5SSC2H5
122.25
1, 347
0.99820 4
1.506320
(C2H5)2NC( ¨ S)SNa 3H2O
225.31
42, 613
(C2H5O)2P(S)SH
186.23
1, 333
CH3(CH2)10C(O)N(C2H5)2 (H2NCH2CH2)2NH
255.45
Formula
103.17
4, 255
Melting point
43.0
101.5
Boiling point
Flash point
154.0
Solubility in 100 parts solvent
sl s aq; misc alc, eth
95–99
1.111
1.512020
601mm
0.847
1.454520
1662mm
112
0.954220 20
1.482620
207.1
101
35
misc aq, alc, bz, eth
d299 d300 d301 d302 d303 d304 d305 d306 d307 d308 d309 d310
Diethylenetriaminepentaacetic acid Diethyl ether
[(HOOCCH2)2NCH2CH2]2NCH2COOH C2H5OC2H5
393.35 74.12
1, 314
0.713420 4
1.352720
Diethyl ethoxymethylenemalonate N,N-Diethylethylenediamine Diethyl ethylmalonate N,N-Diethylformamide Diethyl fumarate
(C2H5OOC)2C ¨ CHOC2H5 (C2H5)2NCH2CH2NH2
216.23
3, 469
1.070
116.21
4,251
C2H5CH(COOC2H5)2
188.2
(C2H5)2NCHO C2H5OOCCH ¨ CHCOOC2H5 (C2H5OOC)2C4H2O
Diethyl 3,4-furandicarboxylate Diethyl glutarate 2,4-Diethyl-2,6heptadienal Diethyl heptanedioate 2,4-Diethyl-1heptanol
C2H5OOCCH2CH2CH2COOC2H5 H2C ¨ CHCH2CH(C2H5)CH ¨ C(C2H5)CHO C2H5OOC(CH2)5COOC2H5 CH3CH2CH2CH(C2H5)CH2CH(C2H5)CH2OH
Diethyl carbitol, b176 Diethylene dioxide, d646 Diethylene glycol, b181 Diethylene glycol dibutyl ether, b151 Diethylene glycol diethyl ether, b176 Diethylene glycol dimethyl ether, b191
220 d 34.6
40
1.462020
279–281
155
0.827
1.436020
145–147
30
2,644
1.00420 20
1.415820
75–775mm
88
sl s aq; v s alc, eth
101.15
4, 109
0.908
1.434020
176–177
60
misc aq; v s alc, eth
172.18
2,742
1.05220 4
1.440620
218–219
91
1.140
1.471720
15513mm
82
1.022
1.424020
237
96
0.9 aq; v s alc; s eth
112
i aq; s alc, eth
212.20 188.22
2, 633
116.3
1–2
23.8
9112mm
166.27 216.28
6 aq; misc alc, bz, chl
2, 671
0.994520
172.31
Diethylene glycol monobutyl ether, b411 Diethylene glycol monoethyl ether, e35 Diethylene glycol monoethyl ether acetate, e36 Diethylene glycol monomethyl ether, m66 Diethyleneimide oxide, m448
1.428020
24
192100mm 10912mm
Diethyl ethoxycarbonylmethylphosphonate, t283 N,N-Diethylethanamine, t264 N,N-Diethylethanolamine, d270 Di-2-ethylhexyl adipate, d312 Di-2-ethylhexyl sebacate, d311
1.201
1.202
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
d311
Di-(2-ethylhexyl) decanedioate
d312
Di-(2-ethylhexyl) hexanedioate
d313
d316
Di-(2-ethylhexyl) ophthalate Diethyl hydrogen phosphonate N,N-Diethylhydroxylamine Diethyl maleate
d317
Diethyl malonate
d318 d319
Diethylmalonic acid N,N-Diethyl-3methylbenzamide Diethyl methylmalonate Diethyl 2-methyl-2oxosuccinate Diethyl methylsuccinate N,N-Diethyl-4nitrosoaniline Diethyl octanedioate
d314 d315
d320 d321 d322 d323 d324
Formula C4H9CH(C2H5)CH2OOC(CH2)8COOCH2CH(C2H5)C4H9 C4H9CH(C2H5)CH2OOC(CH2)4COOCH2CH(C2H5)C4H9 C6H4[COOCH2CH(C2H5)C4H9] (C2H5O)2P(O)H (C2H5)2NOH C2H5OOCCH ¨ CHCOOC2H5 C2H5OOCCH2COOC2H5 HOOCC(C2H5)2COOH CH3C6H4C( ¨ O)N(C2H5)2 C2H5OOCCH(CH3)COOC2H5 C2H5OOCCH(CH3)C( ¨ O)C( ¨ O)OC2H5 C2H5OOCCH2CH(CH3)COOC2H5 C6H4(NO)N(C2H5)2 C2H5OOC(CH2)6COOC2H5
Formula weight
Beilstein reference
Density
Refractive index
Melting point
426.68
0.91225 4
1.45125
2565mm
227
i aq; s alc, bz, acet
370.57
0.92525 25
1.447420
2145mm
193
s alc, eth, acet; iaq
390.56
0.98125 25
1.485320
384
207
50–512mm
90
50
Boiling point
Flash point
Solubility in 100 parts solvent
138.10
1, 330
1.07920 4
1.407620
89.14
4, 536
1.867
1.419520
25
125–130
45
172.18
2, 751
1.068720
1.440020
8.8
225.3
93
1.4 aq; s alc, eth
160.17
2, 573
1.0550
1.413620
48.9
199.3
100
160.17 191.27
2, 686 92, 325
127 0.99620 4
1.521220
d 170–180 1111mm
174.20
2, 629
1.01820 4
1.413020
198
76
2.7 aq; misc alc, eth v s aq, alc, eth s aq; v s alc, bz, eth sl s aq; v s alc, eth
202.21
3, 794
1.073
1.431320
13823mm
112
188.22
2, 639
1.012
1.419920
217–218
178.24
12, 684
230.30
2, 693
s aq (hyd), alc, eth
82–84 0.982220 4
1.432320
5.9
282
112
i aq; s alc, eth
1.078520 4
1.4102
162.14
1.1220 4
CH3CH(NH2)(CH2)3N(C2H5)2 C6H5CH(COOC2H5)2
158.29 236.27
C6H4(COOC2H5)2 (C2H5)2NCH2CH2CH2NH2 (C2H5)2C(CH2OH)2
222.24 130.24
C2H5OOCCH(C3H7)COOC2H5 HC ˜ CC(C2H5)2NH2
202.25
d325
Diethyl oxalate
C2H5OOCCOOC2H5
146.14
d326
Diethyl oxydiformate
[C2H5OC( ¨ O)]2O
d327
d335
N1,N1-Diethyl-1,4pentanediamine Diethyl phenylmalonate Diethyl o-phthalate N,N-Diethyl-1,3propanediamine 2,2-Diethyl-1,3propanediol Diethyl propylmalonate 1,1-Diethyl-2propynylamine N,N-Diethyl-3pyridinecarboxamide Diethyl succinate
d336 d337 d338
Diethyl sulfate Diethyl sulfide Diethyl sulfite
d328 d329 d330 d331 d332 d333 d334
Diethyl ketone, p42 N,N-Diethylnicotinamide, d334 O,O-Diethyl O-p-nitrophenyl phosphorothioate, p3 Diethyl 3-oxoglutarate, d262
2, 535
40.6
185.4
75
1.398020
9318mm
69
0.817
1.442920
200753mm
68
3.6aq (gradual d); misc alc, eth s alc, esters, ketones s aq, alc, eth
9, 854
1.095020 4
1.491320
16
17014mm
112
i aq; s alc
9, 798
1.23214 4 0.826
1.504914 1.441620
3
295 159
140 58
i aq; misc alc, eth
1.05220
1.457425
61.3
12510mm
0.987
1.418520
221–222
91
0.828
1.440920
7190mm
21
132.20 2, 657
111.19
25 aq; v s alc, eth
C5H4N ˆ C( ¨ O)N(C2H5)2
178.24
222, 34
1.06025 4
1.524020
24–26
296–300
112
C2H5OOCCH2CH2COOC2H5 (C2H5O)2SO2 (C2H5)2S (C2H5O)2S(O)
174.20
2, 609
1.04020 4
1.420020
21
217.7
110
i aq; misc alc, eth
154.18 90.19 138.19
1, 327 1, 344 1, 325
1.17225 4 0.836720 4 1.07725 4
1.400420 1.443020
25 103.9
209 d 92.1 157.7
78 9
misc alc, eth i aq; misc alc, eth s aq(d), alc
Diethyl 2-pentenedioate, d307 Diethyl phosphite, d314 Diethyl phosphorochloridate, d291 Diethyl phosphorochloridothionate, d292 Diethyl pimelate, d309
Diethyl propanedioate, d317 1,1-Diethylpropargylamine, d333 Diethyl pyrocarbonate, d326 Diethyl suberate, d324
1.203
1.204
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d339 d340 d341 d342 d343
d344 d345 d346 d347 d348 d349 d350 d351 d352 d353 d354
d355
Name ()-DiethylL-tartrate ()-DiethylD-tartrate Diethyl 3,3-thiopropionate N,N-Diethyl-mtoluamide N,N-Diethyl-1,1,1trimethylsilylamine Diethylzinc 1,4-Difluorobenzene 1,1-Difluoroethane 1,1-Difluorotetrachloroethane 1,2-Difluorotetrachloroethane Dihexylamine Dihexyl ether 9,10-Dihydroanthracene ()-Dihydrocarvone Dihydrocoumarin 10,11-Dihydro-5Hdibenzo-[a,d]cyclohepten-5-one 3,4-Dihydro-2ethoxy-2H-pyran
Formula weight
Beilstein reference
Density
Refractive index
Melting point
[ ˆ CH(OH)COOC2H5]2
206.19
3, 512
1.20420 4
1.445920
17
[ ˆ CH(OH)COOC2H5]2
206.19
31, 181
1.205
S(CH2CH2COOC2H5)2
234.32
CH3C6H4C( ¨ O)N(C2H5)2 (C2H5)2NSi(CH3)3
191.27 145.32
(C2H5)2Zn C6H4F2 CH3CHF2 Cl3CCClF2
123.49 114.09 66.05 203.83
FCl2CCCl2F (C6H13)2NH (C6H13)2O
Formula
92, 325
Flash point
280
93
1.446720
16219mm
93
1.095
1.465520
1212mm
0.996
1.521220
1111mm
0.767
1.408120
125–126
1.413
118 88.9 24.7 91
1.644725 4
1.41325
23.8
203.8
41, 384 13, 1656 5, 641
0.795 0.793620 4 0.880
1.432020 1.420420
192–195 226.2 108–110 312
95 77
73, 337 17, 315
0.92919 1.16918 1.156
1.471820 1.556320 1.633220
221–222 272 1480.3mm
81
0.957
1.439420
4216mm
24
1, 86
203.83
13, 365
185.36 186.34 180.25 152.24 148.16 208.26
5, 199
1.441520
25 32–34
Solubility in 100 parts solvent sl s aq; misc alc, eth
10
28 23.7 117 41
1.206520 1.170120 0.90921 1.649
128.17
Boiling point
2 none
0.32 aq sl s alc; v s eth i aq; s alc, eth s alc, eth i aq; s eth i aq; s alc, bz, eth
sl s alc, eth; s chl 112
d356 d537
2,3-Dihydrofuran Dihydrolinalool
d358
3,4-Dihydro-1(2H)6-methoxynaphthalenone 3,4-Dihydro-2methoxy-2H-pyran 2,3-Dihydro-2methylbenzofuran 5,6-Dihydro-4methyl-2H-pyran
d359 d360 d361
Diglycine, i10 Diglycol, b181 Diglycolic acid, o61 Diglyme, b191
(CH3)2C ¨ CHCH2CH2C(OH)(CH3)CH2CH3
70.09 156.27
173, 141
176.22
92, 889
0.927 0.92525
1.423920 1.43320
54–55
80
17111mm
1.442520
114.14
1 178
16
134.18
171, 23
1.061
1.530820
197–198
62
98.15
173, 160
0.912
1.449520
117–118
21
Dihydroanisoles, m61, m62 6,7-Dihydro-5H-cyclopenta[b]pyridine, c360 10,11-Dihydro-5H-dibenz[b,f]acepine, i12 2,5-Dihydro-2,5-dimethoxyfuran, d436
3,7-Dihydro-3,7-dimethyl-1H-pyridine-2,6dione, t138 2,3-Dihydroindene, i13 Dihydromyrcenol, m303
1.205
1.206
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d362 d363 d364
d365
d366 d367
d368 d369 d370
d371 d372 d373 d374 d375
Name 3,4-Dihydro-1(2H)naphthalenone Dihydropyran 5,6-Dihydro-2Hpyran-3-carbaldehyde 3,4-Dihydro-2Hpyran-2-carboxylic acid, Na salt Dihydroterpineol 5,6-Dihydro-2,4,4,6tetramethyl-4H1,3-oxazine 2,5-Dihydrothiophene-1,1-dioxide 1,2-Dihydro-2,2,4trimethylquinoline 2,4,-Dihydroxyacetophenone 1,2-Dihydroxyanthraquinone 1,4-Dihydroxyanthraquinone 1,8-Dihydroxyanthraquinone 2,6-Dihydroxyanthraquinone 2,4-Dihydroxybenzaldehyde
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
146.19
7, 370
1.099
1.568520
5–6
1166mm
112
0.92219 15 1.100
1.441020 1.498020
70
86 7812mm
15 77
84.12 112.13
150.11
0.90725 0.886
1.467020 1.441020
118.15
Solubility in 100 parts solvent
s aq, alc
88 4817mm 112
64–66
173.26
(HO)2C6H3CHO
Flash point
242–244
256.27 141.21
(HO)2C6H3C( ¨ O)CH3
Boiling point
0.934 1.180
1.589520
900.02mm 145–147
s aq, alc, bz, chl, eth
101
152.15
8, 266
s warm alc, pyr, HOAc; i bz, chl, eth s alc, bz, chl, HOAc s alc, alk, eth
240.21
8, 439
287–289 430
240.21
8, 450
196
240.21
8, 458
193–197 subl
240.21
8, 463
360 d
0.005 alc; 0.2 eth; s chl sl s aq, alc
138.12
8, 241
135–136 22622mm
v s aq, alc, chl, eth
d376
(HO)2C6H3CHO
138.12
8, 246
d377
3,4-Dihydroxybenzaldehyde 1,2-Dihydroxybenzene
C6H4(OH)2
110.11
6, 759
1.3444
104–106 245.5
137
d378
1,3-Dihydroxybenzene
C6H4(OH)2
110.11
62, 802
1.27215
109–110 276
171
d379
1,4-Dihydroxybenzene
C6H4(OH)2
110.11
6, 836
1.33215
170–171 285–287
4,5-Dihydro-2-(phenylmethyl)-1H-imidazole, b102 Dihydroresorcinol, c322
153
3,7-Dihydro-1,3,7-trimethyl-1H-purine2-6-dione, c1 1,3-Dihydroxyacetone, d397
5 aq; 79 hot alc; v s eth 43 aq; s alc, bz, chl, eth; v s pyr, alk 110 aq; 110 alc; v s eth, glyc; sl s chl 7 aq; v s alc, eth
2,2-Dihydroxy-2,2-biindan-1,2,3,3tetrone, h85
1.207
1.208
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d380 d381
d382
d383 d384 d385 d386 d387 d388 d389 d390 d391 d392
Name 1,3-Dihydroxybenzene monoacetate 2,5-Dihydroxy-pbenzenedisulfonic acid, K salt 2,5-Dihydroxybenzenesulfonic acid, K salt 2,4-Dihydroxybenzoic acid 2,5-Dihydroxybenzoic acid 3,5-Dihydroxybenzoic acid 2,4-Dihydroxybenzophenone 2,2-Dihydroxybiphenyl 4,6-Dihydroxy-2mercaptopyrimidine 1,2-Dihydroxy-4methylbenzene 1,3-Dihydroxy-2methylbenzene 2,4-Dihydroxy-6methylpyrimidine 1,5-Dihydroxynaphthalene
Formula weight
Beilstein reference
HOC6H4OOCCH3
152.15
6, 816
(HO)2C6H2(SO 3 K )2
346.43
11, 300
300
v s aq
(HO)2C6H3SO 3K
228.27
11, 300
251 d
v s aq
(HO)2C6H3COOH
154.12
10, 377
213
s hot aq, alc, eth
(HO)2C6H3COOH
154.12
10, 384
199–200
0.5 aq; s alc, eth
(HO)2C6H3COOH
154.12
10, 404
236 d
sl s aq; s alc, eth
(HO)2C6H3C( ¨ O)C6H5
214.22
8, 312
144–145
v s alc, eth, HOAc
HOC6H4C6H4OH
186.21
6, 989
110
144.15
24, 476
236
(HO)2C6H3CH3
124.14
6, 878
(HO)2C6H3CH3
124.14
6, 878
115–118 264
126.12
24, 342
318 d
160.17
6, 980
259 d
Formula
C10H6(OH)2
Density
Refractive index
Melting point
1.535020
1.12974 4
1.542574
Boiling point 283
67–69
Flash point
Solubility in 100 parts solvent
112
315
s alc, bz, eth; sl s aq
251
v s aq, alc, eth s aq, alc, bz, eth
sl s aq; s alc; v s eth
d393 d394 d395 d396
d397 d398 d399 d400 d401
1,7-Dihydroxynaphthalene 2,3-Dihydroxynaphthalene 2,7-Dihydroxynaphthalene 4,5-Dihydroxynaphthalene-2,7disulfonic acid 1,3-Dihydroxy-2propanone 2,3-Dihydroxypropionaldehyde 7-(2,3-Dihydroxypropyl)theophylline 3,6-Dihydroxypyridazine 2,3-Dihydroxypyridine
C10H6(OH)2
160.17
6, 981
177–180
v s alc, eth
C10H6(OH)2
160.17
6, 982
162–164
v s alc, eth
C10H6(OH)2
160.17
6, 985
187 d
sl s aq; v s alc, eth
(HO)2C10H4(SO3H)2
296.26
11, 307
HOCH2C( ¨ O)CH2OH
90.08
1, 846
HOCH2CHOCHO
90.08
1, 845
v s aq; i alc, eth
65–71 1.45518 18
254.25
(HO)2C5H3N
2,2-Dihydroxydiethylamine, d245 N,N-Di(hydroxyethyl)aminoacetic acid, b182 2,2-Dihydroxy-1,3-indandione, i16
145
112
158
33 aq; 2 alc; 1 chl sl s hot alc; s hot aq
112.09
24, 312
d 260
111.10
212, 107
245 d
2,2-Dihydroxymethyl-1-butanol, e156 1,8-Dihydroxynaphthalene-3,6-disulfonic acid, d396
1400.8mm
v s aq, alc, acet, eth 3 aq; i bz, PE
Dihydroxypropanes, p194, p195
1.209
1.210
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
d402 d403 d404
1,4-Diiodobenzene 1,2-Diiodoethane Diiodomethane
C6H4I2 ICH2CH2I CH2I2
329.91 281.86 267.84
5, 227 1, 99 1, 71
2.13210 3.32520 4
1.741120
131–133 285 81 200 5.6 181
d405 d406
1,3-Diiodopropane Diisobutylamine
ICH2CH2CH2I [(CH3)2CHCH2]2NH
295.88 129.25
1, 115 4, 166
2.575520 4 0.740
1.642320 1.408120
13 77
d407 d408
Diisobutyl ether Diisobutyl hexanedioate Diisobutylo-phthalate 1,6-Diisocyanatohexane Diisopropylamine 2-(Diisopropylamino)ethanol 2,6-Diisopropylaniline 1,3-Diisopropylbenzene 1,4-Diisopropylbenzene Diisopropylcyanamide Diisopropyl ether
[(CH3)2CHCH2]2O [(CH3)2CHCH2OOCCH2CH2 ˆ ]2 C6H4[COOCH2CH(CH3)2]2 OCN(CH2)6NCO
130.22 258.36
0.76115 0.95025 25
278.35
1.03825 25
168.20
42, 711
1.040
1.452520
[(CH3)2CH]2NH [(CH3)2CH]2NCH2CH2OH [(CH3)2CH]2C6H3NH2
101.19 145.25
4, 154 41, 430
0.716920 0.826
1.392420 1.441720
177.29
12, 168
0.940
C6H4[CH(CH3)2]2
162.28
5, 447
C6H4[CH(CH3)2]2
162.28
[(CH3)2CH]2NCN
d409 d410 d411 d412 d413 d414 d415 d416 d417 d418
N,N-Diisopropylethylamine
222 137–139
Flash point
29
122–124
Solubility in 100 parts solvent sl s alc; v s eth sl s aq; s alc, eth 0.12 aq; misc alc, bz, eth, PE i aq; s chl, eth s alc, acet, eth, EtAc i aq; misc alc, eth
160 174 255
140
96.3
83.5 187–192
6 57
1.533220
45
257
123
0.85620 4
1.498020
63
203
76
52, 339
0.85720 4
1.488920
203
76
126.20
43, 279
0.839
1.427020
9325mm
78
[(CH3)2CH]2O
102.17
1, 362
0.725820 4
1.368920
68.4
12
[(CH3)2CH]2NC2H5
129.25
0.742
1.413320
127
10
86.9
11 aq
misc alc, bz, eth, acet misc alc, bz, eth, acet
1.2 aq; misc alc, bz, chl, eth
112
[(CH3)2CH]2C6H3OH
178.28
61, 272
0.962
1.514020
[(CH3)2CHO]2P(O)H
166.16
1, 363
0.997
1.407020
72–7510mm 112
[ ˆ CH(OH)COOCH(CH3)2]2
234.25
3, 517
1.114
1.438720
15212mm
109
1.433020 1.452020
127
33 112
d431 d432
2,6-Diisopropylphenol Diisopropyl phosphite ()-Diisopropyl L-tartrate Diketene Dilauryl phosphite threo-1,4-Dimercapto2,3-butanediol 2,3-Dimercapto-1propanol 3,4-Dimethoxyacetophenone 2,4-Dimethoxyaniline 2,5-Dimethoxyaniline 3,4-Dimethoxyaniline 3,4-Dimethoxybenzaldehyde 1,2-Dimethoxybenzene 1,3-Dimethoxybenzene
d433
1,4-Dimethoxybenzene
d419 d420 d421 d422 d423 d424 d425 d426 d427 d428 d429 d430
Dihydroxytoluene, d390 3, 5-Diiodosalicylic acid, h111 2Diisobutyl adipate, d408
18
256
[CH3(CH2)11O]2P(O)H HSCH2CH(OH)CH(OH)CH2SH HSCH2CH(SH)CH2OH
84.07 418.64 154.25
1.073 0.946
124.22
1.238525 4
(CH3O)2C6H3COCH3
180.20
82, 298
49–51
286–288
sl s aq, alc, eth
(CH3O)2C6H3NH2 (CH3O)2C6H3NH2 (CH3O)2C6H3NH2 (CH3O)2C6H3CHO
153.18 153.18 153.18 166.18
13, 784 13, 788 13, 780 8, 255
34–37 80–82 88 42–43
270 sl d 17622mm 281
s alc, bz, eth s aq, alc s hot eth v s alc, eth
C6H4(OCH3)2 C6H4(OCH3)2
138.17 138.17
6, 771 6, 813
1.081925 1.055
22.5 55
206.3 85–877mm
C6H4(OCH3)2
138.17
6, 843
1.03668 4
55–60
213
42–43
Diisobutylene, t357 Diisobutyl ketone, d531 Diisopropyl ketone, d578
1.572025
1.523225 1.5240
v s aq, alc, chl, eth 12015mm
112
87 87
Diisopropylmethane, d572 Dimedone, d508 1, 1-Dimethoxytrimethylamine, d523
8 aq(d); s alc, eth
sl s aq; s alc, eth s alc, bz, eth; sl s aq s alc; v s bz, eth
1.211
1.212
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
d434 d435 d436 d437 d438 d439 d440 d441 d442 d443 d444 d445 d446 d447 d448 d449
Name
3,4-Dimethoxybenzoic acid 1,1-Dimethoxy-3butanone 2,5-Dimethoxy-2,5dihydrofuran Dimethoxydiphenylsilane 1,1-Dimethoxyethane 1,2-Dimethoxyethane (2,2-Dimethoxy)ethylamine Dimethoxymethane 1,1-Dimethoxy-2methylaminoethane Dimethoxymethylphenylsilane 1,2-Dimethoxy-4nitrobenzene 2,5-Dimethoxy-4nitrostilbene 2,6-Dimethoxyphenol (3,4-Dimethoxy)phenylacetic acid (3,4-Dimethoxy)phenylacetonitrile 2,2-Dimethoxy-2phenylacetophenone
Formula weight
Beilstein reference
(CH30)2C6H3COOH
182.18
101, 188
(CH3O)2CHCH2COCH3
132.16
0.993
1.415020
130.14
1.073
1.433920
160–162
(C6H5)2Si(OCH3)2
244.4
1.077120 4
1.544720
16115mm
CH3CH(OCH3)2 CH3OCH2CH2OCH3 H2NCH2CH(OCH3)2
90.12 90.12 105.14
1, 603 1, 467 42, 758
0.850220 0.862920 4 0.965
1.379620 1.417020
CH2(OCH3)2 CH3NHCH2CH(OCH3)2
76.10 119.16
1, 574 42, 759
0.860120 20 0.928
1.353420 1.411520
(CH3O)2Si(CH3)C6H5
182.3
0.99320 4
1.46920
(CH3O)2C6H3NO2
183.16
6, 789
(CH3O)2C6H3CH ¨ CHC6H4NO2 (CH3O)2C6H3OH (CH3O)2C6H3CH2COOH
285.30
62, 987
117–119
154.17 196.20
6, 1081 10, 409
(CH3O)2C6H3CH2CN
177.20
101, 198
C6H5C(O)C(OCH3)2C6H5
256.30
Formula
Density
Refractive index
Melting point
Boiling point
Flash point
180–181
1.1888133 4
Solubility in 100 parts solvent
0.047 aq; v s alc, eth 49 47
113 68
64.5 85.2 13595mm
1 53
104.8
42.3 140
17 29
s aq, alc, chl, eth misc aq, alc; s PE
32 aq
199–200 23017mm
v s alc, eth; s chl
53–56 96–98
261
s alc, alk; v s eth s aq; v s alc, eth
62–63
171– 17810mm
95–98
67–70
d450 d451 d452 d453 d454 d455 d456 d457 d458 d459
d460 d461
1,1-Dimethoxy-2phenylethane -(3,4-Dimethoxy)phenylethylamine 2,2-Dimethoxypropane 1,1-Dimethoxy-2propanone 3,3-Dimethoxy-1propene 1,2-Dimethoxy-4propenylbenzene 2,6-Dimethoxypyridine 2,5-Dimethoxytetrahydrofuran N,N-Dimethylacetamide Dimethyl 1,3acetonedicarboxylate Dimethyl acetylenedicarboxylate Dimethylamine
Dimethyl acetal, d438 Dimethylacetic acid, m390
C6H5CH2CH(OCH3)2
166.22
7, 293
1.004
1.495020
221
(CH3O)2C6H3CH2CH2NH2 (CH3)2C(OCH3)2
181.24
13, 800
1.074
1.546420
18815mm
104.15
1, 648
0.847
1.3780
83
4
CH3C(O)CH(OCH3)2
118.13
11, 395
0.976
1.397820
143–147
37
(CH3O)2CHCH ¨ CH2
102.13
11, 378
0.862
1.395420
89–90
CH3CH ¨ CHC6H3(OCH3)2 (CH3O)2C5H3N
178.23
6, 956
1.055
1.568020
262–264
112
139.15
1.053
1.502920
178–180
61
(CH3O)2C4H6O
132.16
1.020
1.418020
145–147
35
165.5
70 112
20
83
87.12
4, 59
0.936625
1.435625
[CH3OOCCH2]2C ¨ O
174.15
3, 790
1.185
1.443420
15025mm
CH3OOCC ˜ CCOOCH3
142.11
2, 803
1.156
1.447020
95–9819mm 86
45.09
4, 39
0.68004
CH3C(O)N(CH3)2
(CH3)2NH
2,3-Dimethylacrylic acids, m161, m162 3,3-Dimethylacrylic acid, m163
92.2
6.9
misc aq, alc, bz, eth
v s aq; s alc, eth
3,3-Dimethylallene, m148 Dimethylaminoacetaldehyde diethyl acetal, d249
1.213
1.214
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d462 d463
d464 d465 d466 d467 d468 d469 d470 d471 d472 d473 d474 d475
Name 4-Dimethylaminobenzaldehyde p-(Dimethylamino)benzenesulfonic acid, Na salt 4-Dimethylaminobenzoic acid 2-(Dimethylamino)ethanol 2-(Dimethylamino)ethyl benzoate 2-Dimethylaminoethyl chloride HCl 2-(Dimethylamino)ethyl methacrylate 4-Dimethylamino-3methyl-2-butanone 3-Dimethylaminophenol 3-(Dimethylamino)1,2-propanediol 1-Dimethylamino-2propanol 3-Dimethylamino-1propanol 3-(Dimethylamino)propionitrile 3-Dimethylaminopropyl chloride HCl
Formula weight
Beilstein reference
(CH3)2NC6H4CHO
149.19
14, 31
74
(CH3)2NC6H4SO3Na
223.23
143, 2023
300
(CH3)2NC6H4COOH
165.19
14, 426
241 d
(CH3)2NCH2CH2OH
89.14
4, 276
Formula
Density
Refractive index
Melting point
Boiling point
Flash point
17617mm
s alc, chl, eth, HOAc
s alc; sl s eth
0.887620 4
1.429420
135
1.014
1.507720
15520mm
40
C6H5COOCH2CH2N(CH3)2 (CH3)2NCH2CH2Cl · HCl
193.26 144.05
4, 133
H2C ¨ C(CH3)COOCH2CH2N(CH3)2 (CH3)2NCH2CH(CH3)COCH3 (CH3)2NC6H4OH
157.22
43, 649
0.933
1.439120
182–192
70
129.20
41, 452
0.841
1.425020
7335mm
38
137.18
13, 405
1.589526
119.16
4, 302
1.004
1.460920
216–217
105
0.837
1.419320
121–127
35
163–164
36
171750mm
62
82–84
103.17
(CH3)2NCH2CH2CH2OH
103.17
41, 433
0.872
1.436020
98.15
43, 1265
0.870
1.425820
(CH3)2NCH2CH2CH2Cl · HCl
158.07
4, 148
misc aq, alc, eth
205–208
(CH3)2NCH2CH(OH)CH2OH CH3CH(OH)CH2N(CH3)2
(CH3)2NCH2CH2CN
Solubility in 100 parts solvent
43 141–144
265–268
35
v s alc, bz, eth, acet s aq, alc, chl, eth
d476 d477 d478 d479 d480 d481 d482 d483 d484 d485 d486 d487 d488 d489 d490 d491
4-(Dimethylamino)pyridine N,N-Dimethylaniline 2,3-Dimethylaniline 2,4-Dimethylaniline 2,5-Dimethylaniline 2,6-Dimethylaniline 3,4-Dimethylaniline 3,5-Dimethylaniline Dimethylarsinic acid 3,4-Dimethylbenzoic acid 2,5-Dimethylbenzonitrile N,N-Dimethylbenzylamine 2,3-Dimethyl-1,3butadiene 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethyl-2-3butanediol
(CH3)2N(C5H4N)
122.17
222, 341
C6H5N(CH3)2
121.18
12, 141
0.955920 4
1.558420
2.5
194.2
62
v s alc, chl, eth
(CH3)2C6H3NH2
121.18
12, 1101
0.993120
1.568520
2.5
221–222
96
sl s aq; s alc, eth
(CH3)2C6H3NH2
121.18
12, 1111
0.98020 4
1.558620
218
90
s alc, bz, eth
(CH3)2C6H3NH2
121.18
12, 1135
0.979021 4
1.559220
11.5
218
93
sl s aq; s alc, eth
(CH3)2C6H3NH2
121.18
12, 1107
0.98420
1.560120
10–12
216
91
sl s aq; s alc, eth
(CH3)2C6H3NH2 (CH3)2C6H3NH2 (CH3)2As(O)OH
121.18 121.18 137.99
12, 1103 12, 1131
1.07618 0.97220 4
49–51 1.557820
226 10414mm
93
(CH3)2C6H3COOH
150.18
92, 353
(CH3)2C6H3CN
131.18
9, 535
0.957
1.528420
13–14
223730mm
92
C6H5CH2N(CH3)2
135.21
12, 1019
0.900
1.501120
75
183
54
82.15
13, 991
0.722225 4
1.436225
76.0
69.2
1
86.18 86.18 118.18
1, 150 1, 151 1, 487
0.649220 0.661620
1.368820 1.375020
99.9 128.5 41.1
49.7 58.0 174.4
28 28
H2C ¨ C(CH3)C(CH3) ¨ CH2 CH3CH2C(CH3)3 (CH3)2CHCH(CH3)2 (CH3)2C(OH)C(OH)(CH3)2
1.215
3-Dimethylaminopropylamine, d593 Dimethylanisoles, d547, d548 2,4-Dimethyl-3-azapentane, d411
108–110
v s aq, alc, bz, chl
195–196 165–167 subl
Dimethylbenzenes, x4, x5, x6 6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-ethanol, n105
sl s aq; s alc sl s aq; s alc v s alc; 200 aq; i eth s alc, bz
v s hot aq, alc, eth
Dimethyl (Z)-butenedioate, d544
1.216
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d492 d493 d494 d495 d496 d497 d498 d499 d500 d501
d502 d503 d504 d505
Formula weight
Beilstein reference
Density
Refractive index
Melting point
CH3CH2C(CH3)2CH2OH
102.18
13, 1675
0.828620 4
1.420820
15
(CH3)2CHCH(CH3)CH2OH (CH3)2CHC(CH3)2OH
102.18
13, 1677
0.830020 4
1.420520
102.18
1, 413
0.823620 4
1.417620
10.6
118.7
29
s aq; misc alc, eth
(CH3)3CCH2CH2OH
102.18
13, 1677
0.814720
1.412020
60
143
47
s alc, eth
(CH3)3CCH(OH)CH3
102.18
1, 412
0.818520 4
1.415120
5.3
120.4
28
s alc; misc eth
(CH3)3CCOCH3
100.16
1, 694
0.725025 25
1.393925
52.5
106.2
23
2.5 aq; s alc, eth
(CH3)2C ¨ C(CH3)2
84.16
1, 218
0.708120 4
1.412420
74.3
73.2
16
s alc, eth
(CH3)3CCH ¨ CH2
84.16
1, 217
0.653120 4
1.376220
115.2
41.3
28
(CH3)3CCH2COOH
116.16
2, 337
0.912420 4
1.410020
6–7
190
88
(CH3)2Cd
142.48
1.984617 4
1.5488
4.5
105.5
(CH3)2NCOCl
107.54
4, 73
1.168
1.454020
33
168
150 d aq; s PE explodes 68
(CH3O)2C ¨ O (CH3O)2P(S)Cl
90.08 160.56
3, 4 11, 143
1.06517 4 1.322
1.368220 1.481920
0.5
90–91 6716mm
18
4, 74
0.867
1.410020
161–163
58
Name 2,2-Dimethyl-1butanol 2,3-Dimethyl-1butanol 2,3-Dimethyl-2butanol 3,3-Dimethyl-1butanol 3,3-Dimethyl-2butanol 3,3-Dimethyl-2butanone 2,3-Dimethyl-2butene 3,3-Dimethyl-1butene 3,3-Dimethylbutyric acid Dimethylcadmium
Dimethylcarbamyl chloride Dimethyl carbonate Dimethyl chlorothiophosphate Dimethylcyanamide
Formula
(CH3)2NCN
70.09
Boiling point
Flash point
Solubility in 100 parts solvent
136.8
sl s aq; s alc, eth
149
s alc, eth
s alc, eth
i aq; misc alc, eth
d506 d507 d508 d509 d510 d511 d512 d513
d514
cis-1,2-Dimethylcyclohexane trans-1,2-Dimethylcyclohexane 5,5-Dimethyl-1,3cyclohexanedione 2,3-Dimethylcyclohexanol 2,6-Dimethylcyclohexanone 2,3-Dimethylcyclohexylamine Dimethyl decanedioate 5,7-Dimethyl-3,5,9decatrien-2-one Dimethyl 2,5-dioxo1,4-cyclohexanedicarboxylate
Dimethyl 2-butynedioate, d460 Dimethyl Cellosolve, d439 Dimethylchlorosilane, c92
(CH3)2C6H10
112.22
5, 36
0.769220 4
1.433520
49.9
129.7
15
i aq; s alc, bz
(CH3)2C6H10
112.22
5, 36
0.777220 0
1.427320
88.2
123.4
15
i aq; s alc, eth
140.18
7, 559
(CH3)2C6H9OH
128.22 126.20
(CH3)2C6H9NH2
127.23
CH3OOC(CH2)8COOCH3
230.30
H2C ¨ CHCH2CH(CH3)CH ¨ C(CH3)CH ¨ CHCOCH3
178.28
228.20
7, 23
2, 719
d 149
0.4 aq; s alc, bz
0.934
1.465320
0.925
1.446020
175
51
0.835
1.459520
160
51
0.98330 20
1.433528
65
23
1445mm
i aq; s alc, eth
i aq; s alc, eth
790.05mm
10, 894
(Z)-2-Dimethylcrotonic acid, m162 Dimethyl 1,4-cyclohexanedione-2,5dicarboxylic acid, d514
155–157
Dimethyl diphenyl sulfone 4,4-dicarboxylate, s26
1.217
1.218
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d515
d516 d517
d518
d519 d520 d521 d522 d523
d524 d525 d526 d527 d528
Name 2,3-Dimethyl-1,3dioxolane-4methanol Dimethyl disulfide Dimethyldithiocarbamic acid dihydrate, Na salt Dimethyl ether
Dimethylethoxyphenylsilane N,N-Dimethylethylamine N,N-Dimethylethylenediamine N,N-Dimethylformamide N,N-Dimethylformamide dimethyl acetal Dimethyl fumarate 2,5-Dimethylfuran Dimethylglyoxime 2,4-Dimethyl-2,6heptadienal 2,4-Dimethyl-2,6heptadien-1-ol
Formula
Formula weight
Beilstein reference
132.16
CH3SSCH3 (CH3)2NCSSNa · 2H2O (CH3)2O
C2H5O(C6H5)Si(CH3)2
Density
Refractive index
1.06420 4
1.438320
1.525320
94.20 179.24
1, 291 4, 75
1.046
46.07
1, 281
0.66120
180.3
0.926320 4
1.479920
C2H5N(CH3)2
73.14
4, 94
0.675
1.372020
(CH3)2NCH2CH2NH2
88.15
42, 690
0.803
1.426020
(CH3)2NCHO
73.10
4, 58
0.944525 4
1.428225
0.897
1.397220
1.045106 0.900020 4
1.441420
(CH3)2NCH(OCH3)2
119.16
CH3OOCCH ¨ CHCOOCH3 (CH3)2(C4H2O) CH3C( ¨ NOH)C( ¨ NOH)CH3 H2C ¨ CHCH2CH(CH3)CH ¨ C(CH3)CHO H2C ¨ CHCH2CH(CH3)CH ¨ C(CH3)CH2OH
144.13 96.13 116.12
2, 741 17, 41 1, 772
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
188–189
80
misc aq, alc, eth
84.7
109.8
24
i aq; misc alc, eth
141.5
24.9
41
35% aq (5 atm); 15% bz; 11.8% acet
9335mm 140
36–38
36 23
60.4
153.0
57
103720mm
7
105 193 62 93 238–240
138.21
472mm
140.23
8810mm
1
misc aq, alc, bz, eth
sl s alc, eth i aq; misc alc, eth s alc, acet, eth, pyr
d529 d530 d531 d532 d533
2,6-Dimethyl-2,5heptadien-4-one Dimethyl heptanedioate 2,6-Dimethyl-4heptanone 2,5-Dimethyl-2,4hexadiene 2,5-Dimethylhexane
d534
2,5-Dimethyl-2,5hexanediamine d534a Dimethyl hexanedioate d535 2,5-Dimethyl-2,5hexanediol d536 1,5-Dimethylhexylamine d537 2,5-Dimethyl-3hexyne-2,5-diol Dimethyleneimine, e131 Dimethylene oxide, e129
(CH3)2C ¨ CHC( ¨ O)CH ¨ C(CH3)2 CH3OOC(CH2)5COOCH3
138.21
1, 751
0.88520 4
1.496821
28
198–199
79
sl s aq; s alc, eth
188.22
21, 281
1.062520 4
1.431420
21
12211mm
112
s alc
[(CH3)2CHCH2]2C ¨ O
142.24
1, 710
0.80620 20
1.411420
41.5
168.1
48
(CH3)2C ¨ CHCH ¨ C(CH3)2 (CH3)2CHCH2CH2CH(CH3)2 [(CH3)2C(NH2)CH2 ˆ ]2
110.20
1, 259
0.763620 4
1.474120
12–14
132–134
29
0.06 aq; misc alc, bz, chl, eth i aq; s alc, eth
114.24
13, 283
0.693620 4
1.392520
91.2
109.1
26
i aq; sl s alc; s eth
144.26
0.832
1.445920
648mm
62
CH3OOC(CH2)4COOCH3
174.20
1, 652
1.060020 4
1.428520
8
11210mm
107
[(CH3)2C(OH)CH2 ˆ ]2
146.23
1, 492
86–90
214–215
126
(CH3)2CH(CH2)3CH(NH2)CH3 (CH3)2CC ˜ CC(CH3)2 OH OH
129.25
154–156
48
142.20
0.767 1, 501
N,N-Dimethylethanolamine, d465 Dimethyl glutarate, d574
1.420920 94–95
i aq; s alc, eth
205–206
Dimethylglutaric acids, d575, d576
1.219
1.220
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
5,5-Dimethylhydantoin d539 1,1-Dimethylhydrazine d540 1,2-Dimethylhydrazine d541 Dimethyl hydrogen phosphonate d542 1,2-Dimethylimidazole d543 1,3-Dimethyl-2imidazolidinone d543a Dimethylketene d544 Dimethyl maleate d545 Dimethyl malonate
Formula weight
Beilstein reference
128.13
24, 289
(CH3)2NNH2
60.10
4, 547
0.79122 4
1.407520
CH3NHNHCH3
60.10
4, 547
0.827420 4
1.420920
81
110.05
1, 285
1.20020 4
1.400920
170–171
96.13
23, 66
1.084
Formula
d538
d546 d547 d548 d549
d550 d551 d552
Dimethylmercury 3,4-Dimethyl-1methoxybenzene 3,5-Dimethyl-1methoxybenzene N,N-Dimethylmethyleneammonium iodide Dimethyl methylenesuccinate Dimethyl methylphosphonate Dimethyl methylsuccinate
(CH3O)2P( ¨ O)H
114.15
Density
Refractive index
Melting point
Boiling point
176–178 58
29–30
1.044
1.472020 97.5 17.5 62
Flash point
204
v s aq, alc, bz, chl, eth, acet 1 misc aq, alc, eth, PE flamm- misc aq, alc, eth, able PE 96 s aq(hyd); misc alc, acet, eth 92
10817mm
80
63.9
(CH3)2C ¨ C ¨ O CH3OOCCH ¨ CHCOOCH3 CH3OOCCH2COOCH3
70.09 144.13 132.12
1, 731 2, 751 2, 572
1.151320 1.15420 4
1.442220 1.413520
(CH3)2Hg (CH3)2C6H3OCH3
230.66 136.19
4, 678 6, 481
3.187420 0.974414 4
1.545220 1.519814
92740mm 200
(CH3)2C6H3OCH3
136.19
6, 493
0.962715 4
1.510715
193
H2CN(CH3) 2I
185.01
44, 153
CH3OOCCH2C( ¨ CH2)COOCH3 (CH3O)2P(O)CH3
158.15
2, 762
1.124118 4
1.444220
124.08
41, 572
1.145
1.413020
181
43
160.17
23, 1696
1.076
1.420020
196
83
CH3OOCCH2CH(CH3)COOCH3
Solubility in 100 parts solvent
34 200.4 180–181
90
65
d aq, alc; s eth 8.7 aq sl s aq; misc alc, eth i aq; s alc, eth i aq; s alc, bz, eth i aq; s alc, bz, eth
219 d
38
208
s alc, eth
d553 d554 d555 d556 d557 d558 d559 d560 d561
2,6-Dimethylmorpholine 2,3-Dimethylnaphthalene 2,6-Dimethylnaphthalene 1,2-Dimethyl-3nitrobenzene 1,2-Dimethyl-4nitrobenzene 1,3-Dimethyl-2nitrobenzene 1,3-Dimethyl-4nitrobenzene N,N-Dimethyl-4nitrosoaniline Dimethyl 2-nitro1,4-phthalate
0.934620
115.18
1.447020
85
147
48
misc aq, alc, bz
(CH3)2C10H6
156.23
5, 571
1.00820 4
102–104 269
sl s alc; s bz, eth
(CH3)2C10H6
156.23
5, 570
1.14204
110.2
262
i aq; sl s alc
(CH3)2C6H3NO2
151.17
5, 367
1.129
7–9
245
(CH3)2C6H3NO2
151.17
5, 368
1.139
29–31
14320mm
(CH3)2C6H3NO2
151.17
5, 378
1.112
1.522020
14–16
225744mm
87
i aq; s alc
(CH3)2C6H3NO2
151.17
5, 378
1.117
1.549720
2
237–239
107
s alc, bz, chl, eth
(CH3)2NC6H4NO
150.18
12, 677
86
flammable solid
O2NC6H3(COOCH3)2
239.18
9, 826
72–75
Dimethyl isophthalate, d589 1,4a-Dimethyl-7-isopropyl-1,2,3,4,4a,9,10,10aoctahydro-1-phenanthrenemethylamine, d20
1.543420
Dimethyl itaconate, d550 2,2-Dimethyl-3-methylenenorbornane, c2 6,6-Dimethyl-2-methylenenorpinene, p176
107
i aq; s alc i aq; s alc
i aq; s alc, eth
1.221
1.222
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d562
Name
d569
cis-3,7-Dimethyl2,6-octadienal trans-3,7-Dimethyl2,6-octadienal 3,7-Dimethyl-2,6octadienenitrile Dimethyl octanedioate Dimethyl oxalate N1-(4,5-Dimethyloxazol-2-yl)sulfanilamide N-(1,1-Dimethyl-3oxobutyl)acrylamide 2,3-Dimethylpentanal
d570 d571
2,2-Dimethylpentane 2,3-Dimethylpentane
d572 d573 d574
2,4-Dimethylpentane 3,3-Dimethylpentane Dimethyl pentanedioate 2,2-Dimethylpentanedioic acid 3,3-Dimethylpentanedioic acid
d563 d564 d565 d566 d567
d568
d575 d576
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
152.24
0.888820 4
1.489820
229
101
misc alc, eth, glyc
152.24
0.886920 4
1.486920
229
101
misc alc, eth, glyc
149.24
0.853
1.475320
202.25
2, 693
1.021020 4
1.432520
4.8
CH3OOCCOOCH3
118.08 267.31
2, 534
1.14854
1.37980
50–54 163.5 193–194
CH2 ¨ CHC( ¨ O)NHC(CH3)2CH2COCH3
169.23
CH3CH2CH(CH3)CH(CH3)CHO CH3CH2CH2C(CH3)3 CH3CH2CH(CH3)CH(CH3)2 (CH3)2CHCH2CH(CH3)2 CH3CH2C(CH3)2CH2CH3 CH3OOC(CH2)3COOCH3 HOOCC(CH3)2CH2CH2COOH (CH3)2C(CH2COOH)2
114.19
57–58
1.413220
Solubility in 100 parts solvent
112
CH3OOC(CH2)6COOCH3
0.832
Flash point
268
i aq; s alc 75
6 aq; s alc, eth s aq, acids, alk
1208mm
58
100.21 100.21
1, 157 12, 120
0.67420 4 0.695120 4
1.382420 1.392020
123.8 glass
79.2 89.8
15 6
i aq; s alc, eth i aq; s alc, eth
100.21 100.21 160.17
1, 158 2, 633
0.672720 4 0.693320 4 1.093415 4
1.381520 1.390520 1.423420
119.2 134.4
80.5 86.1 6 94–9513mm 102
s alc, eth i aq; s alc, eth v s alc, eth
160.17
2, 676
83–85
v s aq, alc, chl
160.17
2, 684
100–103
v s aq, alc, eth
d577 d578 d579 d580 d581 d582 d583 d584 d585 d586 d587
2,4-Dimethyl-3pentanol 2,4-Dimethyl-3pentanone 2,3-Dimethylphenol 2,4-Dimethylphenol 2,5-Dimethylphenol 2,6-Dimethylphenol 3,4-Dimethylphenol 3,5-Dimethylphenol Dimethylphenylchlorosilane 4,5-Dimethyl-ophenylenediamine Dimethylphenylsilane
3,7-Dimethyl-6-octen-1-o1, c274 Dimethylolpropionic acid,
116.20
1, 417
0.82920 4
1.425420
70
140
37
sl s aq; s alc, eth
114.19
1, 703
0.806220 4
1.398620
80
124
15
misc alc, eth; s bz
122.17 122.17 122.17 122.17 122.17 122.17 170.7
6, 480 6, 486 6, 494 6, 485 6, 480 6, 492
1.542020 1.539020
75 27 74.5 49.0 62.5 64–68
218 210–212 211.5 203 225 219.5 192–193
(CH3)2C6H2(NH2)2
136.20
13, 179
(CH3)2Si(H)C6H5
136.3
(CH3)2CHCH(OH)CH(CH3)2 (CH3)2CHC( ¨ O)CH(CH3)2 (CH3)2C6H3OH (CH3)2C6H3OH (CH3)2C6H3OH (CH3)2C6H3OH (CH3)2C6H3OH (CH3)2C6H3OH (CH3)2Si(Cl)C6H5
1.027614 4 0.96580 1.06428 4 1.00828 4 1.03220 4
1.50820
112 73
v s alc, bz, chl, eth v s alc, bz, chl, eth v s alc, bz, chl, eth v s alc, bz, chl, eth v s alc, bz, chl, eth v s alc, bz, chl, eth
127–129 0.889120 4
1.499520
156–157
Dimethyl 3-oxoglutarate, d459 2,3-Dimethyl-1-phenyl-3-pyrazolin-5-one, a309 1,5-Dimethyl-2-phenyl-4-aminopyrazolone, a113
1.223
1.224
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d588 d589 d590 d591 d592 d593 d594 d595 d596 d597 d598 d599 d600 d601 d602
Name Dimethyl-ophthalate Dimethyl-mphthalate Dimethyl -pphthalate 2,6-Dimethylpiperidine 2,2-Dimethylpropane N,N-Dimethyl-1,3propanediamine 2,2-Dimethyl-1,3propanediol 2,2-Dimethyl-1propanol 2,2-Dimethylpropionaldehyde 2,2-Dimethyl propionamide 2,2-Dimethylpropionic acid 2,2-Dimethylpropionic anhydride 2,2-Dimethylpropionyl chloride 1,1-Dimethylpropylamine 1,1-Dimethyl-2propynylamine
Formula weight
Beilstein reference
Density
Refractive index
Melting point
C6H4(COOCH3)2
194.19
9, 797
1.194020 20
1.51521
5.5
283.7
C6H4(COOCH3)2
194.19
9, 834
1.19420 4
1.516820
67–68
282
C6H4(COOCH3)2
194.19
4.3303
1.2
113.20
20, 108
0.840
1.439420
0.6130 0.812
1.34766 1.435020
Formula
Boiling point
Flash point 146
140–142 288
16.6
127
11
9.5 123
35
72.15 102.18
(CH3)2C(CH2OH)2
104.15
1, 483
1.1125
127–128 208–210
88.15
1, 406
0.81220 4
52–54
113.1
36
6
74730mm
1
0.793
1.379420
(CH3)3CCHO
186.25
(CH3)3CC(O)NH2
101.15
2, 320
(CH3)3CCOOH
102.13
2, 319
0.90550
1.393137
[(CH3)3CC(O)]2O
186.25
2, 320
0.918
(CH3)3CCOCl
120.58
2, 320
CH3CH2C(CH3)2NH2
87.17
4, 179
HC ˜ CC(CH3)2NH2
83.13
0.4 aq; misc alc, chl, eth; i PE i aq i aq, hot alc,eth
(CH3)4C (CH3)2N(CH2)3NH2
(CH3)3CCH2OH
Solubility in 100 parts solvent
180 aq; 12 bz; 60 acet; v s alc, eth 3.6 aq; misc alc, eth
154–157 212 35.5
163.8
63
1.409220
193
57
0.979
1.412020
105–106
1
d aq, alc; v s eth
0.73125 4
1.399620
77
65
misc aq, alc, eth
0.790
1.423520
79–80
1
105
2.5 aq; v s alc, eth
d603 d604 d605 d606 d607 d608 d609 d610
d611 d612 d613 d614 d615
3,5-Dimethylpyrazole 2,4-Dimethylpyridine
96.13
23, 74
(CH3)2(C5H3N)
107.16
20, 244
0.92725 4
2,6-Dimethylpyridine 3,4-Dimethylpyridine 3,5-Dimethylpyridine Dimethyl succinate Dimethylsulfamoyl chloride Dimethyl sulfate
(CH3)2(C5H3N) (CH3)2(C5H3N) (CH3)2(C5H3N) CH3OOCCH2CH2COOCH3 (CH3)2NSO2Cl
107.16 107.16 107.16 146.14 143.59
20, 244 20, 246 20, 246 2, 609 4, 84
(CH3O)2SO2
126.13
Dimethyl sulfide Dimethyl sulfite Dimethyl sulfone Dimethyl sulfoxide Dimethyl-d6 sulfoxide
(CH3)2S (CH3O)2SO (CH3)2SO2 (CH3)2SO (CD3)2SO
62.13 110.13 94.13 78.13 84.18
Dimethyl phosphite, d541 Dimethyl pimelate, d530 Dimethyl propanedioate, d545
108
218
1.499120
60
158.3
37
0.920025 4 0.93925 4 0.93925 4 1.20218 4 1.337
1.495625 1.510025 1.503325 1.419020 1.451820
6.0 12 9 19.5
143–144 164 170 195–200 11475mm
33 53 53 85
1, 283
1.332220 4
1.387420
31.8
188 d
83
1, 288 1, 282 1, 289 1, 289
0.84621 4 1.294
1.435420 1.408320
98.3
1.10020 4 1.18
1.478320 1.475820
37.3 126–127 238 189.0 555mm
36 30 143 95 95
1,1-Dimethylpropargylamine, d602 N-(4,6-Dimethyl-2-pyrimidinyl)sulfanilamide, s21
109 18.5
s aq; v s bz, eth
Dimethyl sebacate, d512 Dimethyl suberate, d565
17 aq; v s alc, bz, eth 43 aq45; s alc, eth sl s aq; s alc, eth s aq, alc, eth 0.83 aq; 2.9 alc
2.8 aq(hyd); s acet, bz, diox, eth 2 aq; s alc, eth v s aq, alc, acet s alc, acet, bz, chl
1.225
1.226
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d616
Name
Formula
Formula weight
Beilstein reference
Density
CH3OOCCH(OH)CH(OH)COOCH3 (CH3)2Te (CH3)2(C4H6O)
178.14
3, 510
1.32820 4
157.68 100.16
1, 291 17, 14
0.833
(CH3OOCCH2CH2)2S
206.26
Refractive index
Melting point
16323mm
10 1.4041
91–92 90–92
26
1.198
1.474020
14818mm
112
1.047
1.575720
581mm
99
d623 d624 d625 d626
2,4-Dinitroaniline 1,3-Dinitrobenzene
(O2N)2C6H3NH2 C6H4(NO2)2
183.12 168.11
12, 747 5, 258
d627
2,4-Dinitrobenzenesulfenyl chloride 3,4-Dinitrobenzoic acid 3,5-Dinitrobenzoic acid 3,5-Dinitrobenzoyl chloride 2,6-Dinitro-p-cresol
(O2N)2C6H3SCl
234.62
62, 316
96
(O2N)2C6H3COOH
212.12
9, 413
166
(O2N)2C6H3COOH
212.12
9, 413
207
(O2N)2C6H3COCl
230.56
9, 414
69.5
(O2N)2C6H2(OH)CH3
198.13
6, 414
77–79 (anhyd)
d619 d620 d621 d622
d628 d629 d630 d631
(CH3)2NC(S)H
89.16
4, 70
(CH3NH)2C ¨ S
104.18
4, 70
CH3C6H4N(CH3)2
135.21
12, 902
(CH3NH)2C ¨ O (CH3)2Zn
88.11 95.45
Flash point
48–50
()-DimethylL-tartrate Dimethyltelluride 2,5-Dimethyltetrahydrofuran Dimethyl-3,3thiodipropionate N,N-Dimethylthioformamide N,N-Dimethylthiourea N,N-Dimethyl-ptoluidine 1,3-Dimethylurea Dimethylzinc
d617 d618
Boiling point
s aq; 200 alc15; v s bz d aq; v s alc; i eth
60–62 0.937
4, 65
1.545820
Solubility in 100 parts solvent
v s aq, alc, acet 211
1.38611 4
101–104 268–270 40 46
1.61514 1.57518 4
188 89–90
300–303
83 v s aq, alc, i eth ignites misc bz, PE; s eth in air i aq; 0.75 alc 0.05 aq; 2.7 alc; v s bz, chl, EtAc s bz, HOAc; d alc
subl
0.7 aq; v s alc, eth
19611mm
1.9 hot aq; v s alc; sl s bz, eth d aq, alc; s eth
d631a 4,6-Dinitro-o-cresol
(O2N)2C6H2(OH)CH3
198.13
6, 368
d632 d633
CH3CH(NO2)2 FC6H3(NO2)2
120.07 186.10
1, 102 5, 262
C10H6(NO2)2
218.17
5, 558
(O2N)2C6H3OH
184.11
6, 251
(O2N)2C6H3CH2COOH
226.15
9, 459
169–175
(O2N)2C6H3NHNH2
198.14
15, 489
200
(O2N)2C6H2(OH)COOH
228.12
10, 122
169–172
CH3C6H3(NO2)2 CH3C6H3(NO2)2 CH3C6H3(NO2)2 C9H19OOC(CH2)4COOC9H19 (C18H37O)P(O)H
182.14 182.14 182.14 398.63
5, 339 5, 341 5, 341
d634 d635
1,1-Dinitroethane 2,4-Dinitro-1fluorobenzene 1,5-Dinitronaphthalene 2,4-Dinitrophenol
d636
2,4-Dinitrophenylacetic acid d637 2,4-Dinitrophenylhydrazine d638 3,5-Dinitrosalicyclic acid d639 2,4-Dinitrotoluene d640 2,6-Dinitrotoluene d641 3,4-Dinitrotoluene d641a Dinonyl hexanedioate d642 d643 d644 d645
Dioctadecyl phosphite Dioctylamine Dioctyl sulfide 4,9-Dioxa-1,12dodecanediamine
Dimethyl terephthalate, d590 2,3-Dimethylvaleraldehyde, d569 2,4-Dinitrochlorobenzene, c94
(C8H17)2NH (C8H17)2S H2N(CH2)3O(CH2)4O(CH2)3NH2
87.5 1.350324 24 1.569020
185–186 17825mm
112
216–217 subl 1.683
s bz; v s eth; sl s alc s alc, bz; 16 EtAc; 36 acet; 5 chl; 20 pyr s alc, eth
112–114
1.32171 1.442 1.2833111 1.479 1.2594111 0.91725 25
586.97 241.46 258.51 204.32
26
64.66 64–66 54–57
v s alc, acet, eth, alk s alc, eth s bz, eth, glyc
flammable solid
sl s aq, alc; s acid s aq; v s alc, eth
300 sl d
1.2 alc; 9 eth s alc i aq; s alc 218
57–59 4, 196 1, 419
14–16 0.842 0.962
3,4-Dinitrochlorobenzene, c95 3,5-Dinitro-1-toluic acid, m228 Dioctyl phthalates, b179, d313
1.461020 1.460920
298 18010mm 134– 1364mm
112 112 112
i aq; v s alc, eth
6,8-Dioxabicylco[3.2.1]octan-7-one, h183
1.227
1.228
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
88.10
19, 3
1.032920 4
1.422420
11.7
74.08 254.28
192, 3
1.06020 4
1.400020
95 74–75 215–218
1.473920 1.4272 1.412020
d646
1,4-Dioxane
d647 d648
1,3-Dioxolane Dipentaerythritol
d649 d650 d651
Dipentene Dipentylamine Dipentyl ether
(C5H11)2NH (C5H11)2O
136.24 157.29 158.29
5, 137 41, 378 11, 193
0.840221 4 0.777 0.783320 4
d652
Diphenylacetic acid
(C6H5)2CHCOOH
212.25
9, 673
1.25815 15
d653 d654 d655 d656
Diphenylacetonitrile Diphenylacetylene Diphenylamine cis,cis-1,4Diphenyl-1,3-butadiene cis,trans-1,4Diphenyl-1,3diene 1,3-Diphenyl-2buten-1-one Diphenylcarbamoyl chloride 1,5-Diphenylcarbohydrazide Diphenyl carbonate Diphenyl chlorophosphate
(C6H5)2CHCN C6H5C ˜ CC6H5 (C6H5)2NH C6H5CH ¨ CHCH ¨ CHC6H5
193.25 178.23 169.23 206.29
9, 674 5, 656 12, 174 5, 676
C6H5CH ¨ CHCH ¨ CHC6H5
206.29
5, 676
0.990 1.160 0.9697101 1.6347101 4 (He line) 0.997422 1.605322 4
C6H5C(O)CH ¨ C(C6H5)CH3 (C6H5)2NCOCl
222.27
72, 433
1.108015 4
(C6H5NHNH)2C ¨ O
242.28
15, 292
(C6H5O)2C ¨ O (C6H5O)2P(O)Cl
214.22 268.64
6, 158 6, 179
d657
d658 d659 d660 d661 d662
(HOCH2)3CCH2OCH2C(CH2OH)3
1.634320
231.68
Boiling point 101.2
Flash point 12 1
42 39 63
69.4 148
1955mm
76 60–61 53–54 70.5
18112mm 300 302
88
1330.1mm
s alc, bz, eth, chl
30 glass 82–84
24650mm
i aq; s alc, eth
80–81 1.550020
misc aq, alc, bz, chl, eth, PE misc aq; s alc, eth
176 195–202 186.8
152
168–171
1.296
Solubility in 100 parts solvent
302–306 314272mm
i aq; misc alc v s alc, eth misc alc, eth; s acet s hot aq, alc, chl, eth s alc, eth v s hot alc, eth 45 alc; v s bz, eth s bz, chl, eth, PE
s hot alc, acet, HOAc s hot alc, bz, eth 112
d663 d664 d665
Diphenyl diselenide Diphenyl disulfide Diphenylenimine
C6H5SeSeC6H5 C6H5SSC6H5
312.13 218.34 167.21
6, 346 6, 323 20, 433
1.55780 4 1.35320 4 18 1.104
d666 d667
1,2-Diphenylethane Diphenyl ether
C6H5CH2CH2C6H5 C6H5OC6H5
182.27 170.21
5, 598 6, 146
0.99520 4 1.066120 4
1.5338 1.576330
d668
1,2-Diphenylethylamine N,N-Diphenylethylenediamine N,N-Diphenylformamidine 1,3-Diphenylguanidine
C6H5CH2CH(C6H5)NH2
197.28
12, 1326
1.020
1.580220
C6H5NHCH2CH2NHC6H5
212.30
12, 543
67.5
C6H5N ¨ CHNHC6H5
196.25
12, 236
138–141
C6H5NHC( ¨ NH)NHC6H5
211.27
12, 369
d669 d670 d671
3,6-Dioxa-1,8-octanediol, t270 4,8-Dioxa-1,11-undecanediol, t408 (2,5-Dioxo-4-imidazolidinyl)urea, a77 1,3-Dioxolane-2-one, e124 3,4-Dioxypentane, d439 Dipentyl ketone, u6
1.13
Diphenic acid, b137 Diphenylacetone, d684 Diphenylcarbamyl chloride, d659 sym-Diphenylcarbazide, d660 Diphenyldiazone, a322 Diphenylethanedione, b34
61–64 58–60 246
310 355
52.5 26.9
284 258.3
115
311
112
150
228–330
s hot alc s alc, bz, eth; i aq 0.8 bz; 3 eth; 16 pyr; 11 acet; i aq s alc; v s chl, eth s alc, bz, eth, HOAc
v s alc, eth s eth; v s chl
d 170
s alc, hot bz, chl
Diphenylethanedione dioxime, b35 1,2-Diphenylethene, s9 Diphenylethyne, d654 Diphenylglycolic acid, b36 Diphenylglyoxime, b35
1.229
1.230
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d672 d673 d674 d675 d676 d677
Name 5,5-Diphenylhydantoin 1,2-Diphenylhydrazine Diphenyl isooctylphosphite Diphenylmercury Diphenylmethane Diphenylmethanol
d678
1,1-Diphenylmethylamine
d679 d680 d681 d682
2,5-Diphenyloxazole 2,6-Diphenylphenol Diphenyl phosphite Diphenylphosphoryl azide 2,2-Diphenyl-1picrylhydrazyl 1,3-Diphenyl-2propanone 1,3-Diphenyl-2propen-1-one 2,2-Diphenylpropionic acid Diphenylsilanediol Diphenyl sulfide Diphenyl sulfone
d683 d684 d685 d686 d687 d688 d689
Formula weight
Beilstein reference
252.27
24, 410
C6H5NHNHC6H5
184.24
15, 123
(CH3)2CH(CH2)5PH(OC6H5)2 (C6H5)2Hg C6H5CH2C6H5 (C6H5)2CHOH
346.40 354.81 168.24 184.24
C6H5CH(NH2)C6H5
(C6H5)2C6H3OH (C6H5O)2P( ¨ O)H (C6H5O)2P( ¨ O)N3
Formula
Density
Refractive index
1.15816 4
16, 946 52, 498 6, 678
2.3184 1.342110 4
1.5768
183.25
12, 1323
1.595699 1.063522 4 supercooled
221.26 246.31 234.19 275.20
27, 78 63, 3631 61, 94
394.32
162, 363
210.28
7, 445
1.2 1.071262 4
7, 478
226.28
92, 474
(C6H5)2Si(OH)2 (C6H5)2S (C6H5)2SO2
216.31 186.28 218.27
16, 909 6, 299 6, 300
Flash point
1.223 1.277
1.557520 1.551820
Solubility in 100 parts solvent i aq; 1.7 alc; 3.3 acet v s alc; sl s bz
123–126 1.522
208.26
Boiling point
295–298
1.044
C6H5CH2C( ¨ O)CH2C6H5 C6H5CH ¨ CHC( ¨ O)C6H5 CH3C(C6H5)2COOH
Melting point
124–125 d 306 25.9 264.5 66.7 298
112
34
112
295
72–73 360 100–102 12 21926mm 1570.17mm
s chl; sl s hot alc v s alc, bz, chl, eth 0.05 aq; v s alc, chl, eth sl s aq
176 112
127 d
1.645862
32–34
330
i aq; v s alc, eth
57–58
20825mm
v s bz, chl, eth
175–177 300 1.11815 15
1.632720
140 d 40 296 128–129 379
s alc; v s bz, eth 53 112
misc bz, eth, CS2 i aq; s hot alc, bz
d690 d691 d692 d693 d694 d695 d696 d697
Diphenyl sulfoxide Diphenylthiocarbazone 1,3-Diphenylthiourea 1,3-Diphenylurea
202.28 256.33
6, 300 16, 26
228.32
12, 394
1.32
154
C6H5NHC(O)NHC6H5
212.25
12, 352
1.239
238
260 d
196.34
201, 19
0.916
1.487620
0.5
265
110
182.31 101.19
4, 138
0.915 0.737520 4
1.482020 1.404320
39.6
12315mm 109.2
17
0.91725 25
1.42525
229
113
1,2-Dipiperidinoethane Dipiperidinomethane Dipropylamine
(C3H7)2NH
Dipropylene glycol butyl ether
CH3CH(OH)CH2OCH2CH(OC4H9)CH3
5,5-Diphenyl-2,4-imidazolidinedione, d672 Diphenyl ketone, b53 Diphenyl oxide, d667 Diphenylphosphorochloridate, d662
190.3
69–71 168 d
20713mm
(C6H5)2S ¨ O C6H5N ¨ NC(S)NHNHC6H5 C6H5NHC(S)NHC6H5
1,3-Diphenyl-1,3-propanedione, d53 sym-Diphenylthiourea, t146 Dipicolinic acid, p261 Di-2-propenylamine, d25
i aq; v s chl, CCl4 i aq; v s alc, eth 0.015 aq; s eth, HOAc
4 aq; v s alc, eth, PE
Dipropyl adipate, d702 Dipropylene glycol, h172
1.231
1.232
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d698 d699 d700 d701 d702 d703 d704 d705 d706 d707 d708 d709 d710 d711 d712 d713 d714
Name Dipropylene glycol ethyl ether Dipropylene glycol isopropyl ether Dipropylene glycol methyl ether Dipropyl ether Dipropyl hexanedioate Dipropyl sulfate Dipropyl sulfone 2,2-Dipyridyl 2,2-Dipyridylamine 1,3-Dithiane 4,4-Dithiobutyric acid 3,3-Dithiopropionic acid Dithiooxamide 1,3-Di-o-tolylguanidine 1,5-Di(vinyloxy)-3oxapentane 1,3-Divinyltetramethyldisiloxane 3,9-Divinyl-2,4,8,10tetraoxaspiro[5.5]undecane
Formula CH3CH(OH)CH2OCH2CH(OC2H5)CH3 CH3CH(OH)CH2OCH2CH[OCH(CH3)2]CH3 CH3CH(OH)CH2OCH2CH(OCH3)CH3 (C3H7)2O C3H7OOC(CH2)4COOC3H7 (C3H7O)2SO2 (C3H7)2SO2
HOOC(CH2)3SS(CH2)3COOH HOOCCH2CH2SSCH2CH2COOH H2NC( ¨ S)C( ¨ S)NH2 (CH3C6H4NH)2C ¨ NH
Formula weight
Beilstein reference
Density
Refractive index
162.2
0.93025 25
1.41925
388
90
176.2
0.87825 25
1.42125
80.1
90
148.2
0.95120 20
1.41920
117
188.3
85
1.380320 1.431420
123.2 20
89.6 14410mm
4
d 140 28–30 69.7
12020mm 270 273
89–90 53–55 110
22250mm
102.18 230.30
1, 354 22, 574
0.746620 0.979020 4
182.24 150.24 156.19
1, 354 1, 359 23, 199
1.10620 4 1.02850 4
171.20 120.24 238.32
221, 630 3, 312
210.27 120.20 239.32
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
0.4 aq i aq; s alc, eth v s PE
126 0.5 aq; v s alc, bz, chl, eth, PE 90
157–159 2, 565 12, 803
170 d subl 176–178
1.1020 4
(CH2 ¨ CHOCH2CH2)2O
158.20
0.97529
1.445
[CH2 ¨ CHSi(CH3)2]2O
186.39
0.81120 4
1.41220
212.25
1.251
sl s aq; s alc; i eth s hot alc, eth
8110mm 99.7
139
40–54
1202mm
110
d715 d716 d717 d718 d719 d720 d721 d722
Docosane Docosanoic acid 1-Docosanol 1H, H, 7H- Dodecafluoro-1-heptanol Dodecane 1,12-Dodecanediamine Dodecanedioic acid 1,2-Dodecanediol
d723 d724
1,12-Dodecanediol Dodecanenitrile
CH3(CH2)20CH3 CH3(CH2)20COOH CH3(CH2)21OH HCF2(CF2)5CH2OH
310.61 340.60 326.61 332.0
1, 174 2, 391 1, 431
CH3(CH2)10CH3 H2N(CH2)12NH2 HOOC(CH2)10COOH CH3(CH2)9CH(OH)CH2OH HOCH2(CH2)10CH2OH CH3(CH2)10CN
170.41 200.37 230.30 202.34
1, 171 4, 273 2, 729 13, 2237
202.34 181.32
12, 562 2, 363
0.778245 1.435845 0.8221100 1.4270100 4 1.761620
1.318020
0.749020 4
1.421620
44.4 80–82 65–72
369 20660mm 1800.22mm 169–170
9.6 216.28 62–65 128–130 24510mm 58–60
0.827
1.4360
18912mm 198100mm
0.84520 20
1.458720
266–283
81–84 20
d725
1-Dodecanethiol
CH3(CH2)11SH
202.40
d726
Dodecanoic acid
CH3(CH2)10COOH
200.32
2, 359
0.86954
1.418382
44
225100mm
d727 d728 d729
1-Dodecanol Dodecanoyl chloride 1-Dodecene
CH3(CH2)11OH CH3(CH2)10COCl CH3(CH2)9CH ¨ CH2
186.34 218.77 168.32
1, 428 2, 363 1, 225
0.830825 4 0.946 0.758420 4
1.441325 1.445920 1.429420
23.8
259 13411mm 213.4
Dipropyl ketone, h17 Distearylpentaerythritoldiphosphite, b196 Disulfiram, t61 2,3-Dithiabutane, d516
5,6-Dithiadecane, d113 3,4-Dithiahexane, d294 2,2-Dithiodiethanol, h118 1,4-Dithiothreitol, d424
35.2
Dithizone, d691 Divinylene oxide, f40 DMSO, d614 Dodecyl alcohol, d727
i aq; sl s alc; v s eth 0.2 alc; 0.19 eth sl s eth; s alc, chl
71 155
112 87
112 112 77
misc alc, bz, chl, eth i aq; s alc, eth i aq; 100 alc; v s bz, eth i aq; s alc, eth s alc, eth, PE
1.233
1.234
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. d730
Name
Formula
Formula weight
Beilstein reference
d731 d732
2-Dodecen-1-ylsuccinic anhydride Dodecanal Dodecylamine
CH3(CH2)10CHO CH3(CH2)11NH2
184.32 185.36
1, 714 4, 200
d733
4-Dodecylaniline
CH3(CH2)11C6H4NH2
261.46
123, 2776
d734 d735
CH3(CH2)11C6H11 CH3(CH2)11OSO3Na
252.50 288.38
CH3(CH2)11SiCl3
303.8
d737 d738
Dodecylcyclohexane Dodecyl sulfate, Na salt Dodecyltrichlorosilane Dotriacontane Dulcitol
CH3(CH2)30CH3
450.88 182.17
1, 177 1, 544
e1
D-Ephedrine
165.24
e2
L-Ephedrine
CH3NHCH(CH3)CH(OH)C6H5 CH3NHCH(CH3)CH(OH)C6H5
e3
1,2-Epoxybutane
e4
1,2-Epoxycyclododecane 1,2-Epoxycyclohexane 1,4-Epoxycyclohexane 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane
d736
e5 e6 e7
Density
Refractive index
Melting point
266.38 0.835
1.434420 28–30 40–41
0.8250
1.458020
12 204–207
1.45820 0.812420 4 1.4720
1.436470
Boiling point
Flash point
1805mm
177
185100mm 247–249
101 112
Solubility in 100 parts solvent
misc alc, bz, chl, eth
220– 22115mm 1310.8mm 10 aq 15510mm
68–70 467 188–189 2751mm
sl s alc, bz, eth 3.3 aq; sl s alc
13, 637
119
225
v s alc, eth
165.24
13, 636
34
255
5 aq; v s alc; s chl
72.11
172, 17
150
63.2
17
6 aq; misc alc, bz, chl, eth
v s alc, bz, eth
182.31 98.15 98.15 246.37
17, 21
0.829720
1.384020
0.939
1.477320
0.970
1.45202
129–130
27
0.969 1.07025 4
1.448020 1.44925
119713mm 310
12 146
e7a e8
126.20 84.12
17, 21
0.964
1.433620
120.15
17, 49
1.052316 4
1.533820
e10
1,2-Epoxycyclooctane 1,2-Epoxycyclopentane 1,2-Epoxyethylbenzene 1,2-Epoxy-3-phenoxypropane 1,2-Epoxypropane
58.08
17, 6
0.85904
1.366020
e11
2,3-Epoxy-1-propanol
74.08
17, 104
1.114325 4
1.431520
e9 e9a
Dodecyl aldehyde DPPH, d683 Durene, t99 Durenol, t116 EDTA, e125
150.18
53–56
555mm 102
56 10
37
194
79
i aq; s alc, eth
34.2
37
662.5mm
81
41 aq; misc alc, eth misc aq
2
Eicosane, i2 1-Eicosene, i3 Elaidic acid, o11 Embonic acid, m235 Enanthic acid, h10
112.1
Epibromohydrin, b276 Epichlorohydrin, c101 1,4-Epoxybutane, t66 Epoxyethane, e129 1,3-Epoxypropane, t345
1.235
1.236
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
1.042
1.449420
189
83
172, 14
1.495
1.477820
151745mm
66
183.3
88.6
8.5 12.6
117.3 197.3
33 110
31
190.2
82
146 171
50
v s alc, alk d aq, alc; v s eth
35.0 78.3
17 8
78.8 9711mm 250 13624mm 255
12 97 115 107 112
17415mm
112
0.7 aq; s alc, eth misc aq, alc, eth, chl misc aq, alc, eth s aq, alc, eth i aq; s alc misc alc, eth v s alc, bz, eth sl s aq; s alc, eth 0.12 aq; misc alc, eth sl s aq
e12
2,3-Epoxypropyl methacrylate
H2C ¨ C(CH3)COOCH2CHˆCH2
142.15
e13
CH2CHˆCH2
161.42
e14
1,2-Epoxy-3,3,3-trichloropropane Ethane
CH3CH3
30.07
1, 80
e15 e16
1,2-Ethanediamine 1,2-Ethanediol
H2NCH2CH2NH2 HOCH2CH2OH
60.10 62.07
4, 230 1, 465
0.5462,88 1.049304, g·L 1.456820 0.897720 4 1.431820 1.113520 4
e17
CH3COOCH2CH2OOCCH3
146.14
2, 142
1.104320
1.415020
HSCH2CH2SH CH3CH2SO2Cl
94.20 128.57
1, 471 42, 526
1.12324 1.35722
1.558020 1.433920
e20 e21
1,2-Ethanediol diacetate 1,2-Ethanedithiol Ethanesulfonyl chloride Ethanethiol Ethanol
62.13 46.07
1, 340 1, 292
0.831525 0.789420 4
1.42025 1.361420
e22 e23 e24 e25 e26 e27 e28
Ethanol-d Ethoxyacetic acid 4-Ethoxyaniline 2-Ethoxybenzaldehyde 4-Ethoxybenzaldehyde 2-Ethoxybenzamide Ethoxybenzene
CH3CH2OD CH3CH2OCH2COOH CH3CH2OC6H4NH2 CH3CH2OC6H4CHO CH3CH2OC6H4CHO CH3CH2OC6H4CONH2 CH3CH2OC6H5
47.08 104.11 137.18 150.18 150.18 165.19 122.17
13, 1287 3, 233 13, 436 8, 43 8, 73 10, 93 6, 140
0.801 1.102120 4 1.065216 4 1.074 1.08025 25
1.359520 1.419020 1.560920 1.542220 1.558420
0.96720 4
1.507420
4 20 13–14 132–133 29.5 170.0
e29
2-Ethoxybenzoic acid
CH3CH2OC6H4COOH
166.18
10, 64
1.105
1.540020
19.4
e18 e19
CH3CH2SH CH3CH2OH
147.9 114.5
Flash point
Solubility in 100 parts solvent
4.7 mL aq; 46 mL alc4 misc aq, alc; i bz misc aq, alc, glyc, pyr misc alc, eth
e30 e31 e32 e33 e34 e35 e36 e37 e38 e39 e40 e41 e42 e43
4-Ethoxybenzoic acid 2-Ethoxybenzyl alcohol Ethoxycarbonyl isothiocyanate Ethoxydimethylvinylsilane 2-Ethoxyethanol
CH3CH2OC6H4COOH CH3CH2OC6H4CH2OH
166.18 152.19
10, 156 6, 893
CH3CH2OC( ¨ O)NCS
131.15
33, 279
(CH3)2Si(OC2H5)CH ¨ CH2 CH3CH2OCH2CH2OH
130.3 90.12
2-(2-Ethoxyethoxy)ethanol 2-(2-Ethoxyethoxy)ethyl acetate 2-Ethoxyethyl acetate 2-Ethoxyethylamine 3-Ethoxy-4-hydroxybenzaldehyde 3-Ethoxymethacrolein
C2H5OCH2CH2OCH2CH2OH C2H5OCH2CH2OCH2CH2OOCCH3 CH3COOCH2CH2OCH2CH3 CH3CH2OCH2CH2NH2 C2H5OC6H3(OH)CHO
134.18
4-Ethoxy-3-methoxybenzaldehyde Ethoxymethyldiphenylsilane Ethoxymethylenemalononitrile
1.237
Eschenmoser’s salt, d549 Estragole, a94 Ethanal, a4 Ethanediamide, o54 Ethanenitrile, a29
197–199
sl s hot aq
1.532120
265
1.112
1.500020
5618mm
0.79020 4
1.39820
99710mm
1, 467
0.929520
1.407520
59
134.8
48
12, 520
0.984125 4
1.425425
55
201.9
96
1.009620
1.421320
25
218.5
110
61.7
156.3
57
107
21
78– 8114mm
35
176.21 132.16
22, 155
0.974920 4
1.402320
89.14 166.18
42, 718 8, 256
0.851220 4
1.410120
C2H5OCH ¨ C(CH3)CHO
114.15
14, 4082
0.960
C2H5OC6H3(OCH3)CHO
180.20
8, 256
(C6H5)2Si(CH3)OC2H5
242.4
CH3CH2OCH ¨ C(CN)2
122.13
50
76–78 1.479220 59–60 1.01820 4
31, 162
Ethanoic acid, a19 Ethanolamine, a164 Ethenyl acetate, v2 Ethenylbenzene, s19 4-Ethoxy-m-anisaldehyde, e41
1.54420
s alc, bz, chl, eth 1220.3mm
64–66
misc aq, alc, eth, acet misc aq, alc, bz, chl, acet, pyr misc aq, alc, eth, oils 29 aq; misc alc, eth misc aq, alc, eth s eth, glycols; 50 alc
16012mm
1-Ethoxybutane, b449 Ethoxyethane, d300 2-Ethoxyethyl ether, b176 Ethoxyformic anhydride, d326
1.238
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
1.06020 4
1.604020
5.5 280 134–135
1.417820
e44 e45
1-Ethoxynaphthalene N-(4-Ethoxyphenyl)acetamide
C10H7OCH2CH3 CH3CH2OC6H4NHCOCH3
172.23 179.21
6, 606 132, 244
e46
trans-2-Ethoxy-5(1-propenyl)phenol 3-Ethoxypropylamine 3-Ethoxysalicylaldehyde 2-Ethoxytetrahydrofuran Ethoxytrimethylsilane Ethyl acetate
C2H5OC6H3(CH ¨ CHCH3)OH C2H5OCH2CH2CH2NH2 C2H5OC6H3(OH)CHO
178.23
62, 918
103.17 166.18
43, 739 82, 267
0.861
C2H5O(C4H7O)
116.16
174, 1020
0.908
1.414020
(CH3)3SiOC2H5
118.3
0.757320 4
1.374220
0.900620 4
1.372420
Ethyl acetimidate HCl Ethyl acetoacetate (enol) Ethyl acetoacetate (keto) p-Ethylacetophenone Ethyl acrylate Ethylaluminum dichloride Ethylamine Ethyl 2-aminobenzoate
e47 e48 e49 e50 e51 e52 e53 e54 e55 e56 e57 e58 e59
CH3COOC2H5
86–88
84
Boiling point
Flash point 112
Solubility in 100 parts solvent i aq; v s alc, eth 0.076 aq; 6.7 alc; 7.1 chl; 1.1 eth; s glyc
136–138 263–264
32
170–172
16
77.1
3
9.7 aq; misc alc, acet, chl, eth
1.9 aq; misc alc, chl 12 aq; misc alc, chl
88.11
2, 125
CH3C( ¨ NH)OC2H5 · HCl
123.58
2, 182
CH3COCH ¨ C(OH)OC2H5
130.15
3, 632
1.011910
1.448010
44
180.8
84
CH3COCH2COOC2H5
130.15
3, 632
1.036810
1.422410
39
180.8
84
C2H5C6H4COCH3 CH2 ¨ CHCOOCH2CH3 CH3CH2AlCl2
148.21 100.12 126.95
74, 1101 2, 399
0.993 0.940520 4 1.20750
1.529320 1.406820
20.6 71.2 32
11411mm 99.5 11350mm
90 15
CH3CH2NH2 H2NC6H4COOCH2CH3
45.09 165.19
4, 87 14, 319
0.68915 15 1.08815
81.0 14
16.6 266–268
17
112–114
1.5 aq; s alc, eth
misc aq, alc, eth i aq; s alc, eth
e60
Ethyl 4-aminobenzoate
H2NC6H4COOCH2CH3
165.19
14, 422
e61
CH3C(NH2) ¨ CHCOOCH2CH3 CH3CH2NHCH2CH2OH
129.16
3, 654
1.02120 4
89.14
4, 282
0.91420 4
e63 e64 e65 e66 e67 e68
Ethyl 3-aminocrotonate 2-(Ethylamino)ethanol N-Ethylaniline 2-Ethylaniline 4-Ethylaniline 2-Ethylanthraquinone Ethylbenzene-d10 Ethylbenzene
C6H5NHCH2CH3 CH3CH2C6H4NH2 CH3CH2C6H4NH2
12, 159 122, 584 12, 1090 71, 425
C6D5CD2CD3 C6H5CH2CH3
121.18 121.18 121.18 236.27 116.25 106.17
e69
Ethyl benzoate
C6H5COOCH2CH3
e70
Ethyl benzoylacetate
e71
Ethyl 2-benzylacetoacetate N-Ethylbenzylamine Ethyl (2-benzyl)benzoylacetate
C6H5C( ¨ O)CH2COOCH2CH3 CH3COCH(CH2C6H5)COOC2H5 C6H5CH2NHC2H5 C6H5COCH(CH2C6H5)COOC2H5
e62
e72 e73
-Ethoxy--phenylacetophenone, b47 3-Ethoxy-1-propene, a90 Ethyl alcohols, e21, e22
88–90
310
33–35
210–215
1.440220
90
170
0.95825 25 0.98322 4 0.97522 4
1.555920 1.559020 1.554220
52, 274
0.867020 4
1.492020 1.495920
63 204.5 44 210 5 216 108–111 134.6 95.0 136.2
31 20
150.18
9, 110
1.05025 4
1.505220
34.7
212.4
84
192.21
10, 674
1.110
1.533820
265 d
140
220.27
10, 674
1.036
1.499620
276
112
135.21 282.34
12, 1020 10, 764
0.909 1.110
1.511720 1.556720
194 27080mm
66 112
Ethylaldehyde, a4 Ethyl anthranilate, e59 Ethyl benzenecarboxylate, e69
0.04 aq; 20 alc; 50 chl; 25 eth; s dil acid i aq; s alc, bz, eth 71
v s aq, alc, eth
85 97 85
i aq; misc alc, eth sl s aq; v s alc, eth sl s aq; v s alc, eth
0.01 aq; misc alc, bz, chl, eth 0.05 aq; misc alc, chl, bz, eth, PE i aq; misc alc, eth
Ethyl 3-benzenepropenoate, e103 -Ethylbenzyl alcohol, p142
1.239
1.240
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. e74
Name
e83 e84 e85 e86 e87 e88
Ethyl N-benzyl-Ncyclopropylcarbamate Ethyl bromoacetate Ethyl 2-bromobutyrate Ethyl 4-bromobutyrate Ethyl 2-bromoisobutyrate Ethyl 3-bromo-2-oxopropionate Ethyl 2-bromopentanoate Ethyl 2-bromopropionate Ethyl 3-bromopropionate 2-Ethyl-1-butanol 2-Ethyl-1-butene N-Ethylbutylamine 2-Ethylbutylamine 2-Ethylbutyraldehyde Ethyl butyrate
e89 e90
2-Ethylbutyric acid Ethyl butyrylacetate
e75 e76 e77 e78 e79 e80 e81 e82
Formula
Formula weight
Beilstein reference
Density
Refractive index
0.997
1.510420
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
112
C6H5CH2N(C3H5)COOCH2CH3
219.28
BrCH2COOCH2CH3 CH3CH2CH(Br)COOCH2CH3 BrCH2CH2CH2COOCH2CH3 (CH3)2C(Br)COOCH2CH3 BrCH2C( ¨ O)COOCH2CH3 CH3(CH2)2CH(Br)COOCH2CH3 CH3CH(Br)COOCH2CH3
167.01 195.06
2, 214 22, 255
1.50620 20 1.32920 20
1.451020 1.447020
159 177 d
47 58
195.06
2, 283
1.363
1.455920
8210mm
90
195.06
2, 296
1.32920 4
1.444620
6711mm
60
195.02
32, 409
1.554
1.469520
10010mm
98
209.09
2, 302
1.226
1.448620
190–192
77
181.03
2, 255
1.44720 20
1.447020
BrCH2CH2COOCH2CH3
181.03
2, 256
1.412318 4
1.456918
(C2H5)2CHCH2OH (C2H5)2C ¨ CH2 CH3(CH2)3NHCH2CH3 (C2H5)2CHCH2NH2 (C2H5)2CHCHO CH3CH2CH2COOCH2CH3
102.18 84.16 101.19 101.19 100.16 116.16
1, 412 13, 814 4, 157 4, 192 1, 693 2, 270
0.833020 0.669620 4 0.74020 4 0.77620 20 0.816220 20 0.87920 4
1.422420 1.396720 1.405020
114.4 131.5
1.401820 1.392820
89 98.0
(C2H5)2CHCOOH CH3(CH2)2C(O)CH2COOC2H5
116.16 158.20
2, 333 3, 684
0.922520 20 1.001
1.413320 1.429520
15
159–160 51
i aq; misc alc, eth i aq; misc alc, eth
i aq; misc alc, eth
i aq; misc alc, eth i aq; misc alc, eth
13650mm
79
i aq; misc alc, eth
146.5 64.7 108 121–125 116.7 121.6
58
0.63 aq
18 21 21 29
194.2 10422mm
99 78
s aq, alc, acet, eth 0.31 aq 0.49 aq; misc alc, eth 0.22 aq
e91
Ethyl carbamate
H2NCOOCH2CH3
e92 e93 e94 e95
Ethyl carbazate N-Ethylcarbazole Ethyl chloroacetate Ethyl 2-chloroacetoacetate Ethyl 4-chloroacetoacetate Ethyl 4-chlorobutyrate Ethyl chloroformate
H2NNHCOOCH2CH3
Ethyl 2-chloropropionate Ethyl 3-chloropropionate Ethyl chlorothioformate Ethyl chrysanthemumate
e96 e97 e98 e99 e100 e101 e102
89.09
3, 22
1.056
104.11 195.27 122.55 164.59
3, 98 20, 436 2, 197 3, 662
1.149820 4 1.190
1.422720 1.443020
164.59
3, 663
1.21817 4
150.61
2, 278
ClCOOC2H5
108.52
CH3CH(Cl)COOC2H5
ClCH2COOCH2CH3 CH3C( ¨ O)CH(Cl)COOC2H5 ClCH2C( ¨ O)CH2COOC2H5 ClCH2CH2CH2COOC2H5
49–50
182–184
44–47 66–68 26
11022mm
200 aq; 125 alc; 111 chl; 67 eth
144–146 10714mm
65 50
i aq; misc alc, eth i aq; s alc, eth
1.452020
11514mm
96
i aq; misc alc, eth
1.075420 4
1.430620
186
51
s alc, acet, eth
3, 10
1.140320 4
1.394120
95
2
136.58
2, 248
1.08620 4
1.418520
147–148
38
misc alc, bz, chl, eth i aq; misc alc, eth
ClCH2CH2COOC2H5
136.58
2, 250
1.108620 4
1.424920
163
54
misc alc, eth
ClC( ¨ O)SCH2CH3
124.59
3, 134
1.195
1.482020
132
30
196.29
92, 45
0.906
1.460020
11210mm
Ethyl benzyl ether, b95 Ethyl bromide, b277 Ethyl 2-bromo-2-methylpropanoate, e78 Ethyl bromopyruvate, e79
Ethyl bromovalerate, e80 Ethyl butyl ether, b449 Ethyl butyl ketone, h16 Ethyl caprate, e113
81
Ethyl caproate, e142 Ethyl caprylate, e190 Ethyl chloride, c102 Ethyl chloroglyoxylate, e191
1.241
1.242
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. e103 e104 e105 e106 e107 e108 e109 e110 e112 e112 e113 e114 e115 e116 e117 e118 e119
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
Ethyl transcinnamate Ethyl crotonate Ethyl cyanoacetate Ethyl cyanoformate Ethyl cyano(hydroxyimino)acetate Ethylcyclohexane cis-2-Ethylcyclohexanol 4-Ethylcyclohexanol Ethyl cyclohexylacetate Ethyl cyclopropanecarboxylate Ethyl decanoate Ethyl diazoacetate
C6H5CH ¨ CHCOOCH2CH3
176.22
92, 385
1.049520 4
1.559820
12
271.0
CH3CH ¨ CHCOOCH2CH3 NCCH2COOCH2CH3 NCCOOCH2CH3 NCC( ¨ NOH)COOCH2CH3
114.14 113.12 99.09 142.12
2, 411 2, 585 2, 547 3, 775
0.917520 4 1.056425 4 1.00320 4
1.424820 1.415620 1.382020
22.5
138 206.0 116
C6H11CH2CH3 CH3CH2C6H10OH
112.22 128.22
5, 35 62, 26
0.787920 0.92721 4
1.433020 1.464620
CH3CH2C6H10OH C6H11CH2COOCH2CH3
128.22 170.25
62, 26 9, 14
0.889 0.948
1.462520 1.443920
8410mm 212
77 80
C3H5COOCH2CH3
114.14
9, 4
0.960
1.419720
129–133
18
CH3(CH2)8COOCH2CH3 N2CH2COOCH2CH3
200.32 114.10
2, 356 31, 211
0.86220 1.085218 4
1.424820 1.458818
Ethyl 2,3-dibromopropionate Ethyl dichlorophosphate Ethyl dichlorothiophosphate N-Ethyldiethanolamine Ethyl diethoxyphosphinylformate
BrCH2CH(Br)COOCH2CH3 CH3CH2OP(O)Cl2
259.94
2, 259
1.78816 4
1.498620
245 102 misc alc, chl, eth 141720mm 26 misc alc, bz, eth explodes when heated 214 91 s alc, eth
162.94
1, 332
1.373
1.433820
6510mm
CH3CH2OP(S)Cl2
179.01
1, 333
1.353
1.504020
55–6810mm
CH3CH2N(CH2CH2OH)2
133.19
4, 284
1.014
1.466520
(C2H5O)2P(O)COOC2H5
210.17
32, 103
1.110
1.423020
misc alc, eth; i aq 2 110 24
i aq; s alc, eth i aq; misc alc, eth
130–132 111.3
22
50
131.8 18 74–7912mm 68
246–252 13513mm
123
i aq
e120
e128
Ethyl 3-(diethylamino)propionate Ethyl 3,3-dimethylacrylate Ethyl 2-dimethylaminobenzoate Ethyl 2,2-dimethylpropionate Ethylene carbonate EthylenediamineN,N,N,N-tetraacetic acid Ethylene dinitrate 2,2-(Ethylenedioxy)bisethanol Ethylene glycol
e129
Ethylene oxide
e121 e122 e123 e124 e125
e126 e127
(C2H5)2NCH2CH2COOC2H5 (CH3)2C ¨ CHCOOC2H5
173.26
4, 404
0.881
1.425320
8412mm
7
128.17
2, 433
0.924720 4
1.435020
155
33
(CH3)2NC6H4COOC2H5
193.25
1.061
1.542520
(CH3)3CCOOCH2CH3
130.19
22, 280
0.858418 4
1.392218
88.06 292.24
19, 100
1.320825
1.419940
36.4 245 d
238
160
misc aq 0.05 aq
1.49615 15 1.127415 4
1.49915 1.457815
22 72
10619mm 285
166
misc aq, alc, bz
1.113520 4
1.431920
13
197.6
110
0.89104
1.35977
112.44 10.6
misc aq, alc, acet, glc, HOAc, pyr; sl s eth; i bz, chl misc aq; s alc, eth
(HOOCCH2)2NCH2CH2N(CH2COOH)2 O2NOCH2CH2ONO2 HOCH2CH2OCH2CH2OCH2CH2OH HOCH2CH2OH
Ethyl 2-cyano-3-ethoxyacrylate, e132 N-Ethyldiisopropylamine, d418 Ethylene bromohydrin, b279 Ethylene chlorohydrin, c103 Ethylene cyanohydrin, h169 Ethylene diacetate, e17
152.07 150.17 62.07
44.05
1, 465
Ethylenediamine, e15 Ethylene dibromide, d78 Ethylene dichloride, d177 (Ethylenedinitrilo)tetraacetic acid, e125 2,2-Ethylenedioxybis (ethanol), t270 Ethylene glycol, e16
98 118.2
s alc, eth
18
Ethylene glycol p-butylphenyl ethers, b475, b476 Ethylene glycol diacetate, e17 Ethylene glycol diethyl ether, d252 Ethylene glycol dimethyl ether, d439 Ethylene glycol dinitrate, e126
1.243
1.244
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
e130
Ethylene sulfide
60.12
e131
Ethylenimine
43.07
e132
Ethyl (ethoxymethylene)cyanoacetate Ethyl fluoroacetate Ethyl fluorosulfonate Ethyl formate
e133 e134 e135 e136 e137 e138 e139 e140 e141 e142 e143 e144 e145 e146
Ethyl 2-furoate Ethyl heptafluorobutyrate Ethyl heptanoate Ethyl hexadecanoate 3-Ethylhexane 2-Ethyl-1,3hexanediol Ethyl hexanoate 2-Ethylhexanoic acid 2-Ethyl-1-hexanol 2-Ethylhexanoyl chloride 2-Ethylhexyl acetate
C2H5OCH ¨ C(CN)COOC2H5 FCH2COOC2H5 FSO2OC2H5 HCOOC2H5
CF3CF2CF2COOC2H5 CH3(CH2)5COOC2H5 CH3(CH2)14COOC2H5 CH3CH2CH2CH(C2H5)2 C3H7CH(OH)CH(C2H5)CH2OH CH3(CH2)4COOC2H5 CH3(CH2)3CH(C2H5)COOH CH3(CH2)3CH(C2H5)CH2OH CH3(CH2)3CH(C2H5)COCl CH3(CH2)3CH(C2H5)CH2OOCCH3
Beilstein reference
Density
Refractive index
172, 12
1.010
1.493520
0.832125 4
1.412325
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
55–56
10
sl s alc, eth
78.0
56
24
misc aq; sl s alc
51–53
19030mm 30 32
s aq
79.4
119753mm 23– 2512mm 54.2
28
33–36
196 94–96
70
12 aq; misc alc, eth i aq; s alc, eth
129
s alc, eth s alc, eth sl s alc; s eth 0.6 aq; s alc
169.18
3, 470
106.10 128.12
2, 193
1.092621
1.375520
74.08
2, 19
0.91720 4
1.359920
140.14 242.09
18, 275
1.11720 4 1.39420
1.303020
158.24 284.48 114.24 146.23
22, 295 22, 336 13, 478
0.868520 4 0.857725 4 0.713620 4 0.932522 4
1.414415 1.434734 1.401620 1.453022
66 22 40
187 19110mm 118.5 244.2
144.21 144.21
2, 323 2, 349
0.87120 4 0.907720 20
1.407520 1.424120
67 118.4
166–168 227.6
49 127
i aq; misc alc, eth 0.25 aq
0.934420 20
1.423120
76
184.3
77
0.07 aq; s alc, bz, chl
0.939
1.433520
6811mm
69
0.871820 20
1.420420
198.6
82
130.23 162.66 172.27
22, 304
93
0.03 aq; misc alc
e147
2-Ethylhexylamine
e148
2-Ethylhexyl vinyl ether Ethyl hydrogen hexanedioate Ethyl hydroxyacetate Ethyl 4-hydroxybenzoate Ethyl 3-hydroxybutyrate Ethyl 2-hydroxyethyl sulfide Ethyl 2-hydroxyisobutyrate Ethyl 4-hydroxy-3methoxyphenylacetate
e149 e150 e151 e152 e153 e154 e155
129.31
0.79220 20
156.26
0.810220 20
CH3(CH2)3CH(C2H5)CH2NH2 CH3(CH2)3CH(C2H5)CH2OCH ¨ CH2 HOOC(CH2)4COOC2H5
174.20
21, 277
HOCH2COOC2H5 HOC6H4COOC2H5
104.11 166.18
3, 236 10, 159
1.08715 4
CH3CH(OH)CH2COOC2H5
132.16
3, 309
1.01720 4
1.420520
170
HOCH2CH2SCH2CH3
106.19
12, 525
1.02020 20
1.486920
184.5
(CH3)2C(OH)COOC2H5
132.16
3, 315
0.965
1.407820
150
HOC6H3(OCH3)CH2COOC2H5
210.23
101, 198
Ethylene glycol monoacetate, h116 Ethylene glycol monobutyl ether, b410 Ethylene glycol monoethyl ether, e34 Ethylene glycol monomethyl ether, m65 Ethylene glycol monomethyl ether acetate, m68 Ethylene iodide, d403 Ethylene iodohydrin, i35
165–169 1.427320 1.438720
100 glass 28–29
177.7 18018mm
44–47
i aq; s alc, acet, eth 0.01 aq
112
160 297 d
116
1,8-Ethylenenaphthalene, a2 Ethylenethiourea, i5 Ethylene trichloride, t227 Ethyleneurea, i7 N-Ethylethanamine, d267 Ethyl N-ethylcarbamate, e231 Ethylethylene oxide, e3
57
v s alc, eth 0.07 aq; v s alc, eth 64
s aq, alc s eth
44
d hot aq
180– 18514mm
Ethyl fluroide, f17 2-Ethylhexyl alcohol, e144 Ethyl homovanillate, e155 N-Ethyl-N-(2-hydroxyethyl)-3-toluidine, e225 Ethyl 2-hydroxy-2-methylpropanoate, e154
1.245
1.246
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. e156
e157 e158 e159 e160 e161 e162 e163 e164 e165 e166 e167 e168 e169 e170 e171
Name 2-Ethyl-2-(hydroxymethyl)-1,3propanediol N-Ethyl-3-hydroxypiperidine 5-Ethylidene-2norbornene 2-Ethylimidazole 2-Ethyl-6-isopropylaniline Ethyl isothiocyanate Ethyl L-()-lactate Ethyl DL-mandelate Ethyl 2-mercaptoacetate Ethylmercury chloride Ethyl methacrylate Ethyl 4-methoxyphenylacetate Ethyl 2-methylacetoacetate N-Ethyl-N-methylaniline Ethyl 3-methylbutyrate Ethyl methyl ether
Formula CH3CH2C(CH2OH)3
(CH3)2CHC6H3(C2H5)NH2 CH3CH2NCS CH3CH(OH)COOC2H5
Formula weight
Beilstein reference
134.18
13, 2349
Density
Refractive index
Melting point 60–62
129.20
0.970
1.475420
120.20
0.893
1.4895
96.13 163.26
0.949
Boiling point
Flash point
Solubility in 100 parts solvent
159– 1612mm 93– 9515mm
47 38
79–81 249 6 26
130–132 154.5
32 70
i aq; misc alc, eth misc aq, alc, eth, esters, PE
37
253–255 5412mm
47
s alc, eth
87.14 118.13
4, 123 3, 264
1.00318 4 1.032820
1.514218 1.412420
C6H5CH(OH)COOC2H5 HSCH2COOC2H5
180.21 120.17
10, 202 3, 255
1.096415
1.457120
CH3CH2HgCl
165.13
H2C ¨ C(CH3)COOC2H5 CH3OC6H4CH2COOC2H5
114.14 194.23
2, 423 101, 83
0.90925 15 1.097
1.411625 1.507520
118 1387mm
49 46
i aq; s alc, eth
CH3C( ¨ O)CH(CH3)COOC2H5 C6H5N(CH3)C2H5
144.17
3, 679
1.01920 4
1.418220
187
62
i aq; s alc, eth
135.21
12, 162
0.919355 4
1.547420
203–205
(CH3)2CHCH2COOC2H5
130.19
22, 275
0.86820 20
1.396220
60.09
1, 314
0.72500
CH3CH2OCH3
3.5
192
99.3
subl
134.7 10.8
0.78 eth; 2.6 chl
i aq; misc alc, eth 26
0.2 aq; misc alc, bz s aq; misc alc, eth
e172 e173
e174 e175 e176 e177
2-Ethyl-4-methylimidazole Ethyl 4-methyl-5imidazolecarboxylate 3-Ethyl-2-methylpentane 3-Ethyl-3-methylpentane Ethyl 3-methyl-3phenylglycidate Ethyl 1-methyl-2piperidinecarboxylate
Ethyl 2-hydroxypropionate, e162 Ethylidene bromide, d77 Ethylidene chloride, d176 Ethylidene dimethyl ether, d438 Ethylidene fluoride, d346 2,2-Ethyliminodiethanol, e118 Ethyl iodide, i34
110.16
232, 72
154.17
251, 534
(C2H5)2CHCH(CH3)2
114.24
13, 489
(C2H5)3CCH3
0.975
1.499520
292–295
137
204–206 0.719320 4
1.404020
115.0
115.7
i aq; sl s alc; s eth
114.24
0.727420 4
1.407820
90.9
118.3
i aq; s eth
206.24
1.0915 4
1.50820
0.975
1.451920
171.24
221, 485
Ethyl isonicotinate, e216 Ethyl isonipecotate, e206 Ethyl isopropylacetate, e170 Ethyl isothiocyanatoformate, e32 Ethyl isovalerate, e170 Ethyl levulinate, e195 Ethyl linoleate, e188
92– 9611mm
73
Ethyl mercaptan, e20 Ethyl 3-methylcrotonate, e121 Ethyl methyl ketone, b393 Ethyl 1-methylnipecotate, e177 Ethyl 2-methyl-4-oxo-2-cyclohexene-1carboxylate, c9 Ethyl 1-methylpipecolinate, e178
1.247
1.248
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. e178
e179 e180 e181 e182 e183 e184 e185 e186 e187 e188
e189 e190 e191 e192 e193
Name Ethyl 1-methyl-3piperidinecarboxylate 2-Ethyl-2-methyl1,3-propanediol 3-Ethyl-4-methylpyridine 5-Ethyl-2-methylpyridine Ethyl methyl sulfide Ethyl (methylthio)acetate N-Ethylmorpholine Ethyl nitrate Ethyl nitrite 4-Ethylnitrobenzene Ethyl (Z,Z)-9,12octadecadienoic acid Ethyl cis-9-octadecenoate Ethyl octanoate Ethyl oxalyl chloride Ethyl oxamate 2-Ethyl-2-oxazoline
Formula
Formula weight
Beilstein reference
171.24
Density
Refractive index
0.954
1.451020
Melting point
Boiling point
118.18
1, 487
121.18
202, 163
0.928617 4
C2H5(CH3)C5H3N
121.18
20, 248
0.918423 4
1.497420
76.15
1, 343
0.842220
1.440320
1.043
1.458720
271, 203 1, 329
0.91620 20 1.10025 4
1.441020 1.384922
63 94.6
139 87.7
CH3CH2ONO 75.07 C2H5C6H4NO2 151.17 H(CH2)5CH ¨ CHCH2308.51 CH ¨ CH(CH2)7COOC2H5
1, 329 5, 358 22, 461
0.9015 15 1.118 0.884616 4
1.544520 1.467520
32
17 245–246 1936mm
CH3(CH2)7CH ¨ CH(CH2)7COOC2H5 CH3(CH2)6COOC2H5 CH3CH2OC( ¨ O)COCl
310.52
2, 467
0.86920 4
1.44525
15
21615mm
172.27 136.53
2, 348 2, 541
0.87817 1.222320 4
1.416620 1.416420
47
206–208 135
117.10 99.13
2, 544 0.982
1.437020
CH3SCH2COOC2H5
134.20
CH3CH2ONO2
115.18 91.13
CH3CH2OC( ¨ O)CONH2
Solubility in 100 parts solvent
8911mm
HOCH2C(C2H5)(CH3)CH2OH C2H5(CH3)C5H3N
CH3CH2SCH3
Flash point
41–44
226 198
105.9
s alc, eth; sl s aq
178
66
s alc, bz, eth, acid
66.7
49
i aq; misc alc, eth
59
114–116 62 128.4
27 flammable 112 112
misc aq, alc, eth 1 aq; misc alc, eth misc alc, eth v s alc, eth misc DMF, oils
i aq; misc alc, eth 75 41
i aq; misc alc, eth d aq, alc; s bz, eth s aq, eth; i bz
29
e194
e195 e196 e197 e198 e199 e200 e201 e202 e203 e204 e205
1.448520
10211mm
3, 675
1.01220 20
1.422220
205–206
116.12
3, 616
1.06016 4
1.40816
144
(C2H5)3CH CH3(CH2)3COOC2H5
100.20 130.19
13, 441 2, 301
0.698220 4 0.87720 4
1.393420 1.373220
118.6 91.3
93.5 145.5
CH3CH2C6H4OH C6H5CH2COOC2H5
122.17 164.20 158.20
6, 472 9, 434 232, 9
1.01125 4 1.033320 4 1.080
1.5239 1.498020 1.476520
47.0
218–219 226 273
77 112
113.20 113.20 157.21
20, 17 20, 104 22, 7
0.823720 4 0.850 1.006
1.444020 1.451020 1.456220
131 143 216–217
18 31 46
1.012
1.460120
1047mm
90
(O ¨ )C5H7COOC2H5
156.18
CH3C( ¨ O)CH2CH2COOC2H5 CH3C( ¨ O)COOC2H5
144.17
4-Ethylphenol Ethyl phenylacetate Ethyl N-piperazinocarboxylate 1-Ethylpiperidine 2-Ethylpiperidine Ethyl 2-piperidinecarboxylate Ethyl 3-piperidinecarboxylate
Ethyl nicotinate, e215 Ethyl nipecotate, e205 Ethyl oleate, e189
112
1.054
Ethyl 2-oxocyclopentanecarboxylate Ethyl 4-oxopentanoate Ethyl 2-oxopropionate 3-Ethylpentane Ethyl pentanoate
157.21
Ethyl pentyl ketone, o35 Ethyl phenyl ether, e28 Ethyl picolinate, e214
v s aq; misc alc 45
Ethyl pipecolinate, e204 Ethylpiperidinol, e157
sl s aq; misc alc, eth i aq; s alc, eth 0.2 aq; misc alc, eth i aq; misc alc, eth i aq; misc alc, eth
s aq
1.249
1.250
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. e206
Name Ethyl 4-piperidinecarboxylate Ethyl N-piperidinepropionate Ethyl propionate Ethyl propyl ether
Formula
Formula weight
Beilstein reference
157.21
Density
Refractive index
Melting point
Boiling point
Flash point
1.010
1.459120
204
80
217–219
87
185.27
20, 62
0.927
1.454520
CH3CH2COOC2H5 CH3CH2OCH2CH2CH3
102.13 88.15
2, 240 1, 354
0.89120 4 0.73920 4
1.383920 1.369520
73.9 79
99.1 62–63
12 32
CH3CH2SCH2CH2CH3 CH3CH2C5H4N CH3CH2C5H4N CH3CH2C5H4N
104.21 107.16 107.16 107.16 151.17
13, 1432 20, 241 20, 242 20, 243 22, 35
0.827020 4 0.937 0.954 0.940422 4 1.119420
1.446220 1.496420 1.501520 1.500920 1.508820
117.0
2
118.5 149 162–165 168 240–241
29 48 47 107
151.17
22, 39
1.107020
1.504020
8–9
23–224
93
151.17
222, 37
1.00915 4
1.500920
23
220
87
0.992
1.465220
9720mm
76
e218
Ethyl propyl sulfide 2-Ethylpyridine 3-Ethylpyridine 4-Ethylpyridine Ethyl 2-pyridinecarboxylate Ethyl 3-pyridinecarboxylate Ethyl 4-pyridinecarboxylate 1-Ethyl-2-pyrrolidinone Ethyl salicylate
C6H4(OH)COOC2H5
166.18
10, 73
1.13120 4
1.521920
231–234
107
e219
Ethyl sorbate
140.18
2, 484
0.959
1.494220
195.5
69
e220 e221
S-Ethyl thioacetate 3-Ethylthio-1,2propanediol Ethyl 4-toluenesulfonate N-Ethyl-m-toluidine
CH3CH ¨ CHCH ¨ CHCOOC2H5 CH3C( ¨ O)SCH2CH3 C2H5SCH2CH(OH)CH2OH
104.16 136.21
2, 232
0.97628 4 1.095
1.450328 1.506520
116–117
CH3C6H4SO2OC2H5
200.26
11, 99
1.16645 4
1.511020
CH3C6H4NHC2H5
135.21
12, 857
0.957
1.545120
e207 e208 e209 e210 e211 e212 e213 e214 e215 e216 e217
e222 e223
113.16
2–3
Solubility in 100 parts solvent s aq, alc, bz, eth
2 aq; misc alc, eth sl s aq; misc alc, eth s alc sl s aq; s alc, eth v s alc, eth; sl s aq sl s aq; s alc, eth misc aq, alc, eth v s aq, alc, eth; s bz i aq; s alc, bz, chl
misc alc, eth; sl s aq
i aq; v s alc, eth 112
33
17315mm
157
221
89
i aq; s alc, eth
e224 e225 e226 e227 e228 e229 e230 e231 e232 e233 e234
6-Ethyl-o-toluidine 2-(N-Ethyl-mtoluidino)ethanol Ethyl trichloroacetate Ethyl trifluoroacetate Ethyl (trimethylsilyl)acetate Ethyl undecanoate Ethylurea N-Ethylurethane Ethyl vinyl ether N-Ethyl-2,3xylidine 1-Ethynyl-1-cyclohexanol
Ethyl pivalate, e123 1-Ethyl-1-propanol, p39 Ethyl propenoate, e56 1-Ethylpropylamine, a252
O HN O
CH3CH2C6H3(CH3)NH2 CH3C6H4N(C2H5)CH2CH2OH Cl3CCOOC2H5
135.21 179.26 191.44
F3CCOOC2H5
142.08
(CH3)3SiCH2COOC2H5
160.29
CH3(CH2)9COOC2H5 CH3CH2NHC( ¨ O)NH2 CH3CH2NHCOOC2H5 CH3CH2OCH ¨ CH2 (CH3)2C6H3NHC2H5
214.35 88.11 117.15 72.11 149.24
C6H10(C ˜ CH)OH
124.18
0.968 1.019
1.552520 1.554020
2, 209
1.38320 4
22, 186
33
231 1151mm
89
1.444720
168
65
1.194
1.306820
60–62
1
0.876
1.415320
156–159
35
2, 358 4, 115 4, 114 1, 433 12, 1101
0.859 1.21318 0.98120 4 0.753120 0.917
1.428020
1054mm
112
115.8
8520mm 35.7 227–228
75 17 71
62, 100
0.96720 20
30–31
180
62
Ethyl pyruvate, e196 2-(Ethylthio)ethanol, e153 Ethyl thioglycolate, e164 Ethyltriethoxysilane, t261
93–96 1.421120 1.375420 1.546820
Ethyl trimethylacetate, e123 Ethyl vanillin, e39 Ethyne, a41 Ethynylbenzene, p82
i aq; s alc, eth
i aq; s org solv v s aq; 80 alc; i eth 63 aq 0.9 aq
2.4 aq; misc alc, bz, acet, ketones, PE
1.251
1.252
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. e235
Name
f1 f2
1-Ethynylcyclohexylamine Fluoranthene Fluorene
f3 f4
9-Fluorenone Fluorescein
f5 f6 f7 f8
Fluoroacetamide Fluoroacetic acid Fluoroacetone p-Fluoroacetophenone p-Fluoroaniline o-Fluorobenzaldehyde Fluorobenzene o-Fluorobenzoic acid p-Fluorobenzoic acid p-Fluorobenzoyl chloride o-Fluorobenzyl alcohol p-Fluorobenzyl chloride Fluoroethane
f9 f10 f11 f12 f13 f14 f15 f16 f17
Formula C6H10(C ˜ CH)NH2
Formula weight
Beilstein reference
123.30
Density
Refractive index
0.913
1.481720
202.26 166.22
5, 685 5, 625
1.25204 1.20304
180.21 332.31
7, 465 19, 222
1.130099 4
FCH2C(O)NH2 FCH2COOH CH3C(O)CH2F FC6H4COCH3
77.06 78.04 76.07 138.14
2, 193 2, 193
FC6H4NH2 FC6H4CHO
111.12 124.11
C6H5F FC6H4COOH
Melting point
Boiling point 6620mm
1.636999
82–85 314 d
107 subl 33
165 75 196
7 71
187 9146mm
73 55
sl s aq; s alc, eth
12
0.15 aq; misc alc sl s aq; s alc, eth
12, 597 71, 132
1.172520 4 1.178
1.539520 1.522020
1.9 44.5
96.11 140.11
5, 198 9, 333
1.024020 4 1.46025 4
1.465720
42.2 84.7 123–125
FC6H4COOH FC6H4COCl
140.11 158.56
9, 333 91, 137
1.47925 4 1.342
1.529620
FC6H4CH2OH
126.13
61, 222
1.173
1.513620
FC6H4CH2Cl
144.58
1.207
1.513020
48.06
1, 82
0.002200
sl s alc; s bz, eth v s HOAc; s bz, eth s alc, bz; v s eth s hot alc, hot HOAc, alk; i bz, chl, eth v s aq; s acet sl s aq, alc
342
1.3700 1.511020
182.6 9
Solubility in 100 parts solvent
42
107–110 384 114.8 295
1.054 1.138
CH3CH2F
Flash point
0.1 aq; s alc, eth 8220mm
82 90
8226mm 143.2
37.7
60 198 mL aq; v s alc, eth
f18
Fluoromethane
CH3F
f19
4-Fluoro-1-methoxybenzene 2-Fluoro-2-methylpropane 1-Fluoro-4-nitrobenzene 4-Fluorophenol 2-Fluoropyridine o-Fluorotoluene m-Fluorotoluene p-Fluorotoluene Formaldehyde Formamide Formamidine acetate Formamidinesulfinic acid
FC6H4OCH3
f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30
Eugenol, m99 Fenchone, t351 Fenchyl alcohol, t350
34.04
1, 59
1.1951 g·L 1.114
126.13
61, 98
(CH3)3CF
76.11
14, 286
FC6H4NO2
141.10
5, 241
1.330020 4
1.531220
FC6H4OH FC5H4N FC6H4CH3 FC6H4CH3 FC6H4CH3 H2C ¨ O HC( ¨ O)NH2 HC( ¨ NH)NH2 · HOOCCH3 H2NC( ¨ NH)S(O)OH
112.10 97.09 110.13 110.13 110.13 30.03 45.04 104.11 108.12
6, 183 201, 80 5, 290 5, 290 5, 290 1, 558 2, 26
1.128 1.001417 0.997420 0.997520 0.81520 4 1.133420 4
1.468020 1.471617 1.469120 1.468820 0.815320 1.447520
31, 36
Ferulic acid, h136 2,7-Fluorenediamine, d38 N-9H-2-(2-Fluorenyl)acetamide, a13
1.487720
141.8
78.4
45
157
43
77
12.1
12
21
205
83
46–48
185 126 114.4 116.5 116.6 19.5 11120mm
68 28 12 9 40
62.0 87.7 56.7 92 2.6 158 d 126 d
154
Fluorotrichloromethane, t232 Fluothane, b258 Formic acid hydrazide, f34
166 mL aq; v s alc, eth s eth
i aq; s alc, eth
v s alc, eth s alc, eth s alc, eth 122 aq; s alc, eth misc aq, alc, acet
1.253
1.254
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula C6H5NHCHO HCOOH C6H4(HCO)COOH HC( ¨ O)NHNH2
Formula weight
Beilstein reference
121.14 46.03 150.13 60.06
12, 230 2, 8 10, 666 2, 93
1.144 1.22020 4 1.404
1.371420
113.16 180.16
20, 45 31, 321
1.019
1.478020
Density
Refractive index
f31 f32 f33 f34
Formanilide Formic acid 2-Formylbenzoic acid Formylhydrazine
f35 f36
N-Formylpiperidine D-()-Fructose
f37
Fumaric acid
HOOCCH ¨ CHCOOH
116.07
2, 737
1.63520 4
f38
Fumaroyl dichloride
ClC( ¨ O)CH ¨ CHC( ¨ O)Cl
152.96
2, 743
1.40820
1.498820
f39 f40 f41
2-Furaldehyde Furan 2-Furanacrylic acid
96.09 68.07 138.12
172, 305 17, 27 18, 300
1.159820 4 0.937120 4
1.526220 1.421420
f42
112.08
18, 272
f43 f44 f45 f46 f47 f48 g1
2-Furancarboxylic acid 2,5-Furandimethanol 2-Furanmethanethiol Furfuryl acetate Furfuryl alcohol Furfurylamine 2-Furoyl chloride D-()-Galactose
128.13 114.17 140.14 98.10 97.12 130.53 180.16
171, 90 172, 116 172, 115 17, 112 18, 584 18, 276 31, 295
1.132 1.117520 4 1.128520 4 1.099520 4 1.324
1.530420 1.461820 1.486820 1.490020 1.531020
g2
Geraniol
154.25
1, 457
0.889420 4
1.476020
g3
-D-Glucoheptonic acid -lactone
(CH3)2C ¨ CHCH2CH2C(CH3) ¨ CHCH2OH
208.17
Melting point 47 8.5 98 54–56
287
36.5 85.6 141
Boiling point
Flash point
271 100.8
68
222
91
subl 200 161–164
73
161.8 31.4 286
68 35
133–134 230–232
Solubility in 100 parts solvent 2.5 aq misc aq, alc, eth s aq; v s alc, eth v s alc, chl, eth; s bz v s aq; 6.7 alc; s pyr 0.6 aq; 9 alc; 0.7 eth d aq, alc 8 aq; misc alc, eth 1 aq; misc alc, eth 0.2 aq; 1.1 bz; s alc, eth, HOAc 4 aq; s alc; v s eth
74–76 14.6 70 2 167
145–148
155 175–177 170.0 145–146 170
45 65 65 45 85
230
76
i aq; s alc, eth misc aq(d); v s alc misc aq; s alc, eth d aq, alc; s eth 200 aq; s pyr; sl s alc i aq; misc alc, eth s aq
Formylamide, f28 Formylphenols, h94, h95, h96 1-Formylpiperazine, p180 Formylpyridines, p251, p256, p253 Freon-11, t232 Freon-12, d170 Freon-12B2, d75 Freon-21, d183 Freon-22, c85
Freon-114, d227 2,5-Furandione, m2 2-Furanmethanol, f46 Furfural, f39 2-Furfuraldehyde, f39 Furfuryl mercaptan, f44 Furoic acid, f42 Furylacrylic acid, f41 2-Furyl methyl ketone, a44
Galactaric acid, t84 Galactitol, d738 Gallic acid, t306 Gallusic acid, t306 Gentisic acid, d384 Geranial, d562 D-Glucitol, s5
1.255
1.256
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
g4 g5 g6
D-Gluconic acid
g7
g9 g10
-D-Glucose pentaacetate D-Glucurono-3,6lactone L-Glutamic acid L-Glutamine
g11
Glutaric acid
g12 g13 g14 g15
Glutaric anhydride Glutaric dialdehyde Glutaronitrile Glutaryl dichloride
g16
Glycerol
g17
Glyceryl 1,2diacetate Glyceryl 1,3diacetate Glyceryl tris(butyrate) Glyceryl tris(dodecanoate)
g8
g18 g19 g20
Formula
D-Glucosamine
-D-()-Glucose
Formula weight
Beilstein reference
196.16 179.17 180.16
3, 542 1, 902 31, 83
390.34
31, 119
Density
Refractive index
OCHCH2CH2CH2CHO NCCH2CH2CH2CN ClC( ¨ O)CH2CH2CH2C( ¨ O)Cl HOCH2CH(OH)CH2OH HOCH2CH(OOCCH3)CH2OOCCH3 CH3COOCH2CH(OH)CH2OOCCH3
Boiling point
Flash point
131 88() 146
1.562018 4
176–178
147.13 146.15
4, 488 4, 491
1.53820 4
132.12
2, 631
1.42920 4
1.4188106
114.10 100.12 94.12 169.01
17, 411 1, 776 2, 635 2, 634
0.988823 1.324
1.373020 1.434520 1.472020
92.09
1, 502
1.261320
176.17
2, 147
176.17
Solubility in 100 parts solvent v s aq; sl s alc; i eth v s aq; i chl, eth 91 aq; 0.83 MeOH; s pyr 0.15 aq; 1.3 alc; 3 eth 27 aq; 2.8 MeOH
109–111
176.12
HOOCCH2CH2CH2COOH
Melting point
d 247 d 185
subl 200
0.8 aq; i alc, eth 4 aq; 0.0035 MeOH; i bz, chl, eth, acet 64 aq; v s alc, eth; s bz, chl; sl s PE
97.5
20020mm
52–55 6 29
15010mm 187–189 d 286 112 216–218 106
1.474620
18.18
18220mm
1.18416 4
1.117315
40
17240mm
misc aq, alc; 0.2 eth s aq, alc, bz, eth
2, 290
1.17915
1.439520
42
17240mm
s aq, alc, bz, chl
302.37
2, 273
1.03220 4
1.435920
75
305–310
639.02
2, 363
0.89460 4
1.440460
46
173
misc aq, alc s aq, alc, chl; i eth d aq, alc; s eth
i aq; v s alc, eth v s bz, eth; sl s alc
g21 g22 g23 g24
Glyceryl tris(nitrate) Glyceryl tris(oleate) Glyceryl tris(palmitate) Glyceryl tris(tetradecanoate)
Glutaraldehyde, g13 Glyceraldehyde, d398 Glycerol dichlorohydrin, d220
O2NOCH2CH(ONO2)CH2ONO2
227.09
1, 516
1.59420 4
1.478612
13.3
1605mm
885.46
4, 468
0.91515 4
1.462140
23515mm
807.35
2, 373
0.866380 4
1.438180
4 to 5 65–66
0.18 aq; 54 alc; misc eth s chl, eth, CCl4
310–320
v s bz, chl, eth
723.18
2, 367
0.88560 4
1.442860
57
Glycerol -monochlorohydrin, c212 Glyceryl triacetate, p201 Glyceryl tris(laurate), g20
expl 270
Glyceryl tris(myristate), g24
v s alc, bz, chl
1.257
1.258
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
75.07
4, 333
1.1607
g25
Glycine
H2NCH2COOH
g26
N-Glycylglycine
132.12
4, 371
g27
Glyoxal
H2NCH2C( ¨ O)NHCH2COOH HC( ¨ O)CHO
58.04
1, 759
g28 g29 h1 h2
HC( ¨ O)COOH H2NC( ¨ NH)NH2 CH3(CH2)15CH3 CF3CF2CF2COOH
74.04 59.07 140.41 214.04
3, 594 3, 82 1, 173
CF3CCl2CF(Cl)CF3
h5
Glyoxylic acid Guanidine Heptadecane Heptafluorobutyric acid Heptafluoro-2,3,3trichlorobutane 2,2,4,4,6,8,8-Heptamethylnonane Heptanal
h6 h7 h8 h9 h10 h11 h12 h13
Heptane 1,7-Heptanediamine Heptanedioic acid 1-Heptanethiol Heptanoic acid Heptanoic anhydride 1-Heptanol 2-Heptanol
h3 h4
Refractive index
Melting point
Boiling point
Flash point
d 233
25 aq; 0.6 pyr; i eth s hot aq; sl s alc
d 262 1.2920 4
1.382620
15
0.776722 1.645
1.436025
98 60 22.0
287.5
1.748420
1.353020
4
(CH3)3CCH2C(CH3)2CH2CH(CH3)CH2C(CH3)3 CH3(CH2)5CHO
226.45
0.793
1.439120
114.19
12, 750
0.821615 4
1.428520
43
153
35
CH3(CH2)5CH3 H2N(CH2)7NH2 HOOC(CH2)5COOH CH3(CH2)6SH CH3(CH2)5COOH [CH3(CH2)5CO]2O CH3(CH2)6OH CH3(CH2)4CH(OH)CH3
100.21 130.24 160.17 132.27 130.19 242.36 116.20 116.20
1, 154 4, 271 2, 670 1, 415 2, 338 2, 340 1, 414 1, 415
0.683820 4
1.387720
90.6 27–29 105.8 43.2 7.5 12.4 34.6
98.4 147–149 21210mm 176.9 223.0 268 175.8 160
1 87
1.32915 0.918120 4 0.93220 4 0.821920 4 0.819320 4
1.422120 1.433220 1.424220 1.421020
Solubility in 100 parts solvent
51
d 160 302.2 120
148
violent reaction aq; s anhyd solv; mixtures with air may explode v s aq; sl s alc, eth v s aq, alc s eth; sl s alc
98 240
46 112 112 73 41
misc alc, eth; sl s aq s alc, chl, eth 5 aq; v s alc, eth i aq 0.25 aq; s alc, eth i aq; s alc, eth misc alc, eth 0.35 aq; s alc, bz, eth
h14
3-Heptanol
h15 h16
2-Heptanone 3-Heptanone
h17
4-Heptanone
h18 h19 h20 h21 h22 h23 h24 h25
Heptanoyl chloride 1-Heptene 1-Heptylamine Heptyltrichlorosilane 1-Heptyne Hexachloroacetone Hexachlorobenzene Hexachloro-1,3butadiene 1,2,3,4,5,6-Hexachlorocyclohexane Hexachlorocyclo-1,3pentadiene
h26 h27
CH3(CH2)3CH(OH)CH2CH3 CH3(CH2)4COCH3 CH3(CH2)3C( ¨ O)CH2CH3 CH3CH2CH2(O)CH2CH2CH3 CH3(CH2)5COCl CH3(CH2)4CH ¨ CH2 CH3(CH2)6NH2 CH3(CH2)6SiCl3 CH3(CH2)4C ˜ CH Cl3CC( ¨ O)CCl3 C6Cl6 Cl2C ¨ CClCCl ¨ CCl2 C6H6Cl6
Glycidol, e11 Glycidyl methacrylate, e12 Glycinonitrile, a106 Glycolaldehyde, h86 Glycolaldehyde diethyl acetal, d253 Glycolic acid, h87 Glycol methacrylate, h121
116.20
11, 205
0.818
1.421420
114.19 114.19
1, 699 1, 699
0.819715 4 0.819720 20
1.411615 1.408520
114.19
1, 699
0.82115 4
1.406820
148.63 98.90 115.22 233.7 96.17 264.75 284.78 260.76
2, 340 1, 219 4, 193 1, 256 1, 657 5, 205 1, 250
0.96020 0.697020 0.777 1.08720 4 0.733 1.743 2.04424 1.655
1.430020 1.399920 1.424320 1.443925 1.407520 1.511220
290.83
52, 11
1.8720
272.77
Glyoxaline, 14 Guaiacol, m87 Heliotropin, m239 Heliotropyl alcohol, m242 Hemimellitene, t333 Hemimellitic acid, b28 Heptaldehyde, h5
1.70125 4
1.555020
6620mm
54
sl s aq
35 36.7
151 147.8
47 41
s alc, eth 0.43 aq; s alc, eth
32.1
143.7
48
173 93.6 154–156 211–212 99–100 666mm 323–326 210–220
57 1 35
0.53 aq; misc alc, eth d aq, alc; s eth 0.1 aq; s alc, eth s alc, acet, eth, PE
118.9 23 81 30 231 19
22 none none
113 1.564420
10
sl s aq; s acet s bz, chl, eth s alc, eth s bz, chl
239
none
sec-Heptyl alcohol, h13 Heptyl bromide, b291 Heptyl chloride, c128 Heptyl iodide, i37 Heptyl mercaptan, h9 Hexachloro-2-propanone, h23
1.259
1.260
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. h28 h29 h30
Formula weight
Beilstein reference
Density
Cl3SiOSiCl3 Cl3CCCl3
284.9 236.74 370.83
1, 87
2.09120 4
248.75 226.45 258.45
1, 200 1, 172 13, 2244
1.765 0.773320 4
1.548020 1.434520
258.51 256.43 242.45 224.43 241.46
1, 430 2, 370 1, 429 1, 226 4, 202
0.840 0.85262 4 0.811660 0.78320 4
1.472020 1.427380 1.435560 1.4401
317.56
12, 1186
Name
Formula
h31 h32 h33
Hexachlorodisiloxane Hexachloroethane 1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-dicarboxylic anhydride Hexachloropropene Hexadecane 1,2-Hexadecanediol
h34 h35 h36 h37 h38
1-Hexadecanethiol Hexadecanoic acid 1-Hexadecanol 1-Hexadecene 1-Hexadecylamine
Cl3CC(Cl) ¨ CCl2 CH3(CH2)14CH3 CH3(CH2)13CH(OH)CH2OH CH3(CH2)15SH CH3(CH2)14COOH CH3(CH2)15OH CH3(CH2)13CH ¨ CH2 CH3(CH2)15NH2
h39
4-Hexadecylaniline
CH3(CH2)15C6H4NH2
h40 h41 h42
2,4-Hexadienal 1,5-Hexadiene 2,4-Hexadienoic acid
CH3CH ¨ CHCH ¨ CHCHO 96.13 H2C ¨ CHCH2CH2CH ¨ CH2 82.15 CH3CH ¨ CHCH ¨ 112.13 CHCOOH
h43 h44 h45
Hexafluorobenzene Hexafluoroethane 1,1,1,3,3,3-Hexafluoro-2-propanol cis-Hexahydroindane Hexamethylbenzene
C6F6 F3CCF3 (CF3)2CHOH
186.05 138.01 168.04
13, 132
C6(CH3)6
124.23 162.28
5, 82 5, 450
h46 h47
12, 809 1, 253 2, 483
Refractive index
Melting point
Boiling point
Flash point
35 137 187–188 235–239
0.89820 0.692320 4
1.538620 1.404220
1.618220 1.59078 1.59625
1.378120
0.876
1.4702
1.275020
s alc, bz, chl, eth
210 286.8
none 135
18–20 63–64 49.3 4.1 40–42
1847mm 21515mm 344 274 330
101
51–52 140.7 134.5
254– 25515mm 7630mm 67 59.5 1 11910mm 127
5.1 100.1 3
80.3 78.3 58.2
53 165.6
167 264
18.2 72–74
Solubility in 100 parts solvent
135 132 140
misc eth
sl s alc; s eth s hot alc, chl, eth s alc, chl, eth s alc, eth, PE v s alc, eth; s bz, chl
s alc, eth 0.2 aq; 13 alc; 9 acet; 2.3 bz; 11 diox; 1 CCl4
10 4 23
sl s alc, eth s aq, bz, CCl4 s eth v s bz; s acet, eth
h48 h49 h50 h51 h52 h53 h54 h55 h56 h57
Hexamethylcyclotrisiloxane 1,1,1,3,3,3-Hexamethyldisilazane Hexamethyldisiloxane Hexamethyleneimine Hexamethylenetetramine Hexamethylphosphoramide Hexanal Hexane 1,6-Hexanediamine 1,6-Hexanedioic acid
43, 1884
[ ˆ Si(CH3)2O ˆ ]3
222.48
(CH3)3SiNHSi(CH3)3
161.40
0.77420 4
1.407120
(CH3)3SiOSi(CH3)3
162.38
0.76420 4
1.377520
0.880 1.3315
1.463120 subl 263
1.02720
1.458820
0.833520 4 0.659420 4
1.403520 1.374920
99.18 140.19 [(CH3)2N]3P(O)
179.20
CH3(CH2)4CHO CH3(CH2)4CH3 H2N(CH2)6NH2 HOOC(CH2)4COOH
100.16 86.18 116.21 146.14
,,,,,-Hexachloro-p-xylene, b202 Hexadecyl mercaptan, h34 ,,,,,-Hexafluoro-3,5-xylidine, b205 Hexahydroaniline, c334 Hexahydro-2H-azepin-2-one, o57 Hexahydrobenzaldehyde, c315
20, 94 1, 583
12, 745 1, 142 4, 269 2, 649
64
1.36025 4
Hexahydrobenzoic acid, c317 Hexahydrobenzylamine, c324 Hexahydrophthalic acid, c320 Hexahydropyridine, p183 Hexamethylenediamine, h56 Hexamethylene diisocyanate, d410
67
133–135
35
126
22
101
1
138749mm
18 250
67 aq; 8 alc; 10 chl
7.2
233
105
misc aq
95.4 42 152
131 68.7 205 337.5
32 23 81 196
v s alc, eth; sl s aq misc alc, chl, eth v s aq; sl s alc, bz 1.4 aq; v s alc; s acet
Hexamethylene, glycol, h59 Hexamethylene oxide, o47 Hexamethylethane, t100 2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22tetracosahexene, s8 2,6,10,15,19,23-Hexamethyltetracosane, s7
1.261
1.262
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
h58 h59 h60
DL-Hexanediol 1,6-Hexanediol 2,5-Hexanediol
h61 h62 h63 h64 h65
2,5-Hexanedione Hexanedioyl dichloride Hexanenitrile 1-Hexanethiol 1,2,6-Hexanetriol
h66 h67 h68
Hexanoic acid Hexanoic anhydride 1-Hexanol
h69 h70
2-Hexanol 3-Hexanol
h71 h72 h73 h74
6-Hexanolactone 2-Hexanone Hexanoyl chloride 1,4,7,10,13,16-Hexaoxacyclooctadecane 1-Hexene trans-3-Hexenoic acid trans-2-Hexen-1-ol
h75 h76 h77
Formula weight
Beilstein reference
Density
Refractive index
CH3(CH2)3CH(OH)CH2OH HO(CH2)6OH CH3CH(OH)CH2CH2CH(OH)CH3 CH3COCH2CH2COCH3 ClC( ¨ O)(CH2)4COCl
118.18 118.18 118.18
11, 251 1, 484 1, 485
0.951 0.958 0.961745 16
1.442520 1.457925 1.446520
114.14 183.03
1, 788 2, 653
0.973 1.259
1.426020 1.470620
CH3(CH2)4CN CH3(CH2)5SH HOCH2CH(OH)(CH2)3CH2OH CH3(CH2)4COOH [CH3(CH2)4C( ¨ O)]2O CH3(CH2)5OH
97.16 118.24 134.17
2, 324 13, 1659
0.805220 0.842420 4 1.106320 20
1.406920 1.449620 1.4771
116.16 214.31 102.18
2, 321 2, 324 1, 407
0.926520 4 0.926 0.818620 4
CH3(CH2)3CH(OH)CH3 CH3CH2CH2CH(OH)CH2CH3
102.18 102.18
1, 408 1, 408
114.14 100.16 134.61 264.32
Formula
CH3(CH2)3COCH3 CH3(CH2)4COCl
CH3(CH2)3CH ¨ CH2 CH3CH2CH ¨ CHCH2COOH CH3CH2CH2CH ¨ CHCH2OH
Melting point
Boiling point
Flash point
223–234 243–250 220.8
112 101 101
191.4 1052mm
70 112
misc aq, alc, eth
80.3 80.5 32.8
163.6 152.7 1785mm
43 20 79
i aq; s alc, eth i aq; v s alc, eth misc alc, acet; i bz
1.416820 1.428020 1.418220
4.0 41 51.6
205.7 246–248 157.5
104 112 60
0.810825 4 0.819320 4
1.412825 1.416020
47
139.9 135
41 41
1.1 aq; v s alc, eth s alc 8 aq; misc bz, eth; s alc sl s aq; s alc, eth
172, 290 1, 689 2, 324
1.030 0.820920 4 0.975420 4
1.463020 1.402420 1.426320
9715mm 127.2 153
109 35 79
84.16 114.14
1, 215 2, 435
0.673220 0.963
1.387920 1.439820
63.5 11922mm
26 112
100.16
12, 486
0.849
1.434320
158–160
54
42.8 50 glass 6
56.9 87 40 139.8 11–12
Solubility in 100 parts solvent
v s aq, alc s aq, alc, eth
v s alc, eth d aq, alc; s eth
0.005 aq
h78 h79 h80
5-Hexen-2-one Hexyl acetate Hexylamine
H2C ¨ CHCH2CH2COCH3 CH3(CH2)5OOCCH3 CH3(CH2)5NH2
98.15 144.21 101.19
1, 734 2, 132 4, 188
h81
4-Hexylaniline
CH3(CH2)5C6H4NH2
177.29
123, 2759
h82 h83 h84 h85 h86 h87
1-Hexyne L-Histidine Hydantoin Hydrindantin Hydroxyacetaldehyde Hydroxyacetic acid
H(CH2)4C ˜ CH
82.14 155.16 100.08 322.27 60.05 76.05
13, 977 25, 513 24, 242 81, 631 1, 817 3, 228
HOCH2CHO HOCH2COOH
D-erythro-Hex-2-enoic acid -lactone, 159 Hexyl alcohol, h68 sec-Hexyl alcohol, e83 sec-Hexylamine, m353a Hexylbenzene, p117 Hexyl bromide, b294 Hexyl chloride, c129 Hexylene glycol, m338 Hexyl iodide, i39
Hexyl methyl ketone, o34 Hexyl propyl ketone, d16 Hippuric acid, b71 Histamine, i8 Homocysteine, a204 Homopiperidine, h51 Homoserines, a188, a189 Homoveratric acid, d447 Homoveratrylamine, d451
0.847 0.86020 20 0.76325 4
0.715220 4
1.366100
1.419720 1.409020 1.418020
1.398920
80 23
131.9 d 285 220 100 93–94 80
128–129 168–170 131–132 146– 14817mm 71.3
d 252 11012mm
23 37 8
0.13 aq; v s alc, eth sl s aq; misc alc, eth
i aq; s alc, eth 41 aq; v sl s alc s alc, alk; sl s eth v sl s aq v s aq, alc; sl s eth
Hydracrylonitrile, h169 2-Hydrazinoethanol, h120 Hydrazobenzene, d673 Hydrindene, i13 Hydrocinnamic acid, p146 Hydroquinone, d379 Hydroquinone dimethyl ether, d433 Hydroquinonesulfonic acid, d382 Hydroxyacetanilides, a15, a16, a17
1.263
1.264
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. h88 h89 h90 h91 h92 h93 h94 h95 h96 h97 h98
Name 1-Hydroxy-2-acetonaphthone Hydroxyacetone o-Hydroxyacetophenone m-Hydroxyacetophenone p-Hydroxyacetophenone 1-Hydroxyanthraquinone 2-Hydroxybenzaldehyde 3-Hydroxybenzaldehyde 4-Hydroxybenzaldehyde 2-Hydroxybenzaldehyde oxime 2-Hydroxybenzamide
Formula weight
Beilstein reference
C10H6(OH)COCH3
186.21
8, 149
HOCH2COCH3 HOC6H4COCH3
74.08 136.15
11, 84 8, 85
1.082 1.13121 4
HOC6H4COCH3
136.15
8, 86
1.100100
HOC6H4COCH3
136.15
8, 87
1.109100
224.22
8, 338
C6H4(OH)CHO
122.12
8, 31
C6H4(OH)CHO
122.12
8, 58
HOC6H4CHO
122.12
8, 64
C6H4(OH)CH ¨ NOH
137.14
8, 49
57
d
C6H4(OH)CONH2
137.14
10, 87
140
d 270
Formula
Density
Refractive index
Melting point
Boiling point
98–100
325 sl d
1.431520 1.558420
17 4–6
145–146 213717mm
1.535100
87–88
296
56 112
106–107 1473mm
Solubility in 100 parts solvent i aq; v s bz; s HOAc misc aq, alc, eth misc alc, eth; sl s aq s aq; v s alc, bz, eth v s alc, eth; sl s aq
196–198 1.16720 4
1.571820
7
196.7
100–102 19150mm 1.129130 4
117–119 subl
h99
2-Hydroxybenzoic acid
C6H4(OH)COOH
138.12
10, 43
1.44320 4
157–159 21120mm
h100
3-Hydroxybenzoic acid 4-Hydroxybenzoic acid
C6H4(OH)COOH
138.12
10, 134
1.473
201–203
HOC6H4COOH
138.12
10, 149
1.4684
214–215
h101
Flash point
76
1.7 aq86; s alc, eth s alc, bz, eth; sl s aq 1 aq; 70 acet; 4 bz; v s alc, eth v s alc, bz, eth, acid 0.2 aq; s alc, chl, eth 0.2 aq; 37 alc; 33 eth; 33 acet; 2 chl; 0.7 bz 0.8 aq; 10 eth 0.2 aq; v s alc; 23 eth
h102 h103 h104 h105 h106 h107 h108 h109 h110 h111 h112
p-Hydroxybenzophenone 1-Hydroxybenzotriazole 6-Hydroxy-1,3-benzoxathiol-2-one 2-Hydroxybenzyl alcohol 3-Hydroxy-2-butanone p-Hydroxycinnamic acid 4-Hydroxycoumarin 7-Hydroxycoumarin 1-Hydroxy-1-cyclohexanecarbonitrile 2-Hydroxy-3,5diiodobenzoic acid 2-Hydroxy-4,6-dimethylacetophenone
2-Hydroxybenzenemethanol, h105 m-Hydroxybenzotrifluoride, t290
198.22
82, 184
132–135
135.13
26, 41
155–158
168.17
194, 2508
158–160
124.13
6, 891
1.16125
88.10
1, 827
0.997
164.16
10, 297
210–213
162.14 162.14
17, 488 18, 27
213 d 226–228 subl
C6H10(OH)CN
125.17
10, 5
I2C6H2(OH)COOH
389.91
10, 113
(CH3)2C6H2(OH)COCH3
164.20
HOC6H4COC6H5
HOC6H4CH2OH CH3COCH(OH)CH3 HOC6H4CH ¨ CHCOOH
2-Hydroxybiphenyl, p131 4-Hydroxybiphenyl, p132
1.031
1.417120
1.457620
v s alc, eth; sl s aq
86–87
subl 100
15
148
29 235 d
50
6.6 aq; v s alc, chl, eth; s bz misc aq, alc; sl s eth s alc, eth; sl s aq s aq, alc, eth v s alc, chl, alk, HOAc
60 v s alc, eth; i bz, chl
53–57
Hydroxybutanedioic acids, h180, h181
1.265
1.266
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. h113 h114
h115 h116 h117 h118 h119
h120 h121 h122 h123 h124
Name 2-Hydroxydiphenylmethane 2-Hydroxyethanesulfonic acid, Na salt N-(2-Hydroxyethyl)acetamide 2-Hydroxyethyl acetate 3-(-Hydroxyethyl)aniline 2-Hydroxyethyl disulfide N-(2-Hydroxyethyl)ethylenediamineN,N,N-triacetic acid 2-Hydroxyethylhydrazine 2-Hydroxyethyl methacrylate N-(-Hydroxyethyl)morpholine N-(-Hydroxyethyl)piperazine N-(2-Hydroxyethyl)piperazine-Nethanesulfonic acid
Formula weight
Beilstein reference
184.24
6, 675
20.6
HOCH2CH2SO Na+
148.11
43, 42
191–194
HOCH2CH2NHCOCH3
103.12
41, 430
1.123320 20
CH3COOCH2CH2OH
104.11
2, 141
1.10815
CH3CH(OH)C6H4NH2
137.18
133, 1654
HOCH2CH2SSCH2CH2OH
154.25
1, 471
HOOCCH2N(CH2CH2OH)CH2CH2N(CH2COOH)2
278.26
Formula C6H5CH2C6H4OH 3
HOCH2CH2NHNH2 HOCH2CH2OOCC(CH3) ¨ CH2
76.10
Density
Refractive index
1.457520
Melting point
63–65
Boiling point
Flash point
312
s alc, chl, eth, alk v s aq
d
176
misc aq: sl s bz
181–186
102
misc aq, alc, chl, eth
220
73
misc aq; s alc
68–71 1.261
1.565520
25–27
1583.5mm
212 d
41, 562
130.14
70
1.119 1.034
1.451520
673.5mm
97
131.18
27, 7
1.083
1.476020
227
99
130.19
232, 6
1.061
1.506520
246
112
238.31
Solubility in 100 parts solvent
234 d
misc aq
h125 h126 h127 h128
h129
h130 h131 h132
4-(2-Hydroxyethyl)piperidine 2-(2-Hydroxyethyl)pyridine 2-Hydroxyisobutyric acid 4-Hydroxy-2-mercapto-6-methylpyrimidine 4-Hydroxy-2-mercapto-6-propylpyrimidine 2-Hydroxy-3-methoxybenzaldehyde 4-Hydroxy-3-methoxybenzaldehyde 4-Hydroxy-3-methoxybenzoic acid
129.20
212, 10
1.005915 4
HOCH2CH2C5H4N
123.16
21, 50
1.093
(CH3)2C(OH)COOH
104.11
3, 313
77–80
142.18
243, 1289
330 d
199–202 1.536820
170.23
841.5mm
219–221
CH3OC6H3(OH)CHO
152.15
8, 240
CH3OC6H3(OH)CHO
152.15
8, 247
CH3OC6H3(OH)COOH
168.15
10, 392
Hydroxyethanal, h86 3-(-Hydroxyethyl)aniline, a261 N-(2-Hydroxyethyl)-3-aza-1,5-pentanediol, t264
1169mm
1.056
N-(2-Hydroxyethyl)ethyleneimine, a321 N-(2-Hydroxyethyl)piperidine, p185 2-(2-Hydroxyethyl)piperidine, p186
92
v s aq, alc, chl v s aq, alc, eth
0.1 aq; 1.7 alc; 1.7 acet; v s alk; i bz
40–42
265–266
v s alc, eth; sl s aq
80–81
285
1 aq; s alc, chl, pyr
210
0.12 aq; v s alc
O-Hydroxyethylresorcinol, h159 2-Hydroxyisobutyronitrile, h145 2-Hydroxy-3-methyl-2-cyclopenten-1-one, m214
1.267
1.268
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. h133 h134 h135 h136
h137 h138 h139 h140 h141
h142 h143 h144 h145
Name 4-Hydroxy-3-methoxybenzonitrile 2-Hydroxy-4-methoxybenzophenone 4-Hydroxy-3-methoxybenzyl alcohol 4-Hydroxy-3-methoxycinnamic acid 2-Hydroxy-3-methylbenzoic acid 2-Hydroxy-4-methylbenzoic acid 4-Hydroxy-3-methyl2-butanone 7-Hydroxy-4-methylcoumarin 2-Hydroxymethyl-2methyl-1,3propanediol 4-Hydroxy-4-methyl2-pentanone N-(Hydroxymethyl)phthalimide 4-Hydroxy-N-methylpiperidine 2-Hydroxy-2-methylpropanenitrile
Formula weight
Beilstein reference
CH3OC6H3(OH)CN
149.15
10, 398
85–87
CH3OC6H3(OH)COC6H5
228.25
8, 312
66
CH3OC6H3(OH)CH2OH
154.17
6, 1113
113–115
CH3OC6H3(OH)CH ¨ CHCOOH
194.19
10, 436
174
CH3C6H3(OH)COOH
152.15
10, 220
165–166
s hot aq, alc, eth, EtAc; sl s bz, PE s alc, chl, eth, alk
CH3C6H3(OH)COOH
152.15
10, 233
177
s alc, chl, eth, alk
HOCH2CH(CH3)COCH3
102.13
11, 422
176.17
18, 31
194–195
HOCH2C(CH3)(CH2OH)2
120.09
1, 520
199–203
(CH3)2C(OH)CH2COCH3
116.16
Formula
(CH3)2C(OH)CN
0.993
0.938520
177.16
21, 475
115.18
211, 188
85.10
Density
3, 316
Refractive index
Melting point
1.434020
1.423520
Boiling point
1555mm
9215mm
42.8
Flash point
v s alc, chl, eth
78 s alc, HOAc; sl s eth
169
12
142–145
0.926725 4
Solubility in 100 parts solvent
misc aq sl s aq, alc, bz
1.477520
29–31
200
112
1.399220
19
95
63
s aq, alc, chl, eth
h146
3-Hydroxy-2-methyl4-pyrone
h147
2-Hydroxy-1-naphthaldehyde 1-Hydroxy-2-naphthalenecarboxylic acid 3-Hydroxy-2-naphthalenecarboxylic acid 2-Hydroxy-3,6naphthalenedisulfonic acid, disodium salt 4-Hydroxy-2,7naphthalenedisulfonic acid, disodium salt 2-Hydroxy-1,4naphthoquinone
h148
h149
h150
h151
h152
3-Hydroxymethylpiperidine, p187
126.11
161–162
1.2 aq; v s hot aq; s alc, alk; sl s bz, eth 19227mm
C10H6(OH)CHO
172.18
8, 143
82–85
C10H6(OH)COOH
188.18
10, 331
191–192
v s alc, bz, eth, alk
C10H6(OH)COOH
188.18
10, 333
222–223
v s alc, eth; s bz, chl
C10H5(OH)(SO 3 Na )2
348.25
11, 288
C10H5(OH)(SO 3 Na )2
348.25
11, 227
300
174.16
8, 300
d 185
1-Hydroxy-2-napthoic acid, h148
v s aq, alc; i eth
s HOAc
3-Hydroxy-2-naphthoic acid, h149
1.269
1.270
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. h153
h154 h155 h156 h157 h158 h159 h160 h161 h162 h163 h164
h165
Name 4-Hydroxy-3-nitrobenzenearsonic acid 3-Hydroxy-4-nitrobenzoic acid 2-Hydroxy-5-nitrobenzyl bromide 5-Hydroxy-1-pentanal 5-Hydroxy-2pentanone 4-Hydroxy-3-penten2-one acetate 2-(m-Hydroxyphenoxy)ethanol 4-Hydroxyphenylacetic acid 2-Hydroxy-N-phenylbenzamide 4-(p-Hydroxphenyl)2-butanone D-()-p-Hydroxyphenylglycine N-(p-Hydroxyphenyl)glycine 1-(3-Hydroxyphenyl)urea
Formula weight
Beilstein reference
HOC6H3(NO2)AsO(OH)2
263.04
161, 456
300
HOC6H3(NO2)COOH
183.12
10, 146
229–231
HOC6H3(NO2)CH2Br
232.04
6, 367
147–149
HO(CH2)4CHO CH3COCH2CH2CH2OH
102.13 102.13
1, 831
CH3COOC(CH3) ¨ CHCOCH3 HOC6H4OCH2CH2OH
142.15
HOC6H4CH2COOH
152.15
10, 190
149–151 subl
v s alc, eth; sl s aq
HOC6H4CONHC6H5
213.14
12, 500
136
v s alc, bz, chl, eth
HOC6H4CH2CH2COCH3
164.20
HOC6H4CH(NH2)COOH
167.16
141, 659
240 d
HOC6H4NHCH2COOH
167.16
13, 488
220– 248 d
HOC6H4NHCONH2
152.15
13, 417
182–184
Formula
154.17
Density
1.055 1.00720 4
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent v s alc, acet, HOAc, alk; sl s aq; i eth
1.453020 1.437220
11515mm 144100mm
112 93
1.452520
195
75
s aq misc aq; s alc, eth
83–86
82–83 sl s aq, alc, bz, acet s alk, acid; v sl s aq, alc, acet, bz, chl, eth
h166 h167 h168 h169 h170 h171 h172 h173 h174 h175 h176
N-Hydroxyphthalimide N-Hydroxypiperidine 2-Hydroxypropionitrile 3-Hydroxypropionitrile o-Hydroxypropiophenone p-Hydroxypropiophenone 1-(2-Hydroxy-1-propoxy)-2-propanol 2-Hydroxypyridine 3-Hydroxypyridine 4-Hydroxypyridine 2-Hydroxypyridine5-carboxylic acid
163.13
21, 500
233 d
101.15
20, 80
37–40
11155mm
CH3CH(OH)CN
71.08
32, 209
0.983425
1.402725
34
10350mm
77
misc aq, alc; s eth
HOCH2CH2CN
71.08
3, 298
1.040425 4
1.425620
46
228
112
HOC6H4COCH2CH3
150.18
8, 102
1.094
1.548020
11515mm
112
misc aq, alc, acet; 2.3 eth; i bz, PE v s alc, eth; sl s aq
HOC6H4COCH2CH3
150.18
8, 102
CH3CH(OH)CH2OCH2CH(OH)CH3 HOC5H4N
134.18 95.10
21, 43
105–107 280–281
HOC5H4N HOC5H4N HO(C5H3N)COOH
95.10 95.10 139.11
21, 46 21, 48 22, 215
126–129 1513mm 23012mm 300
6-Hydroxynicotinic acid, h176 -Hydroxy--phenylacetophenone, b46 3-(p-Hydroxyphenyl)alanine, t437
148 1.025220 20
1.444020
2-Hydroxy-2-phenylbenzeneacetic acid, b36 3-Hydroxy-1-propanesulfonic acid -sultone, p198
v s alc, eth; sl s aq 231.8
138
misc aq, alc s aq, alc, bz; sl s eth v s aq, alc; sl s eth v s aq; i alc, bz, eth sl s aq, alc, eth
2-Hydroxypropanoic acids, L1, L2 1-Hydroxy-2-propanone, h89 3-Hydroxypropionitrile, c290
1.271
1.272
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. h177 h178 h179 h180
h181
Name 3-HydroxypyridineN-oxide 8-Hydroxyquinoline 8-Hydroxyquinoline5-sulfonic acid DL-Hydroxysuccinic acid L-Hydroxysuccinic
Formula (HO)C5H4N ¨ O
Formula weight
Beilstein reference
Density
Refractive index
111.10
Melting point
Boiling point
Flash point
190–192
145.16
21, 91
76
225.22
22, 407
213 d
HOOCCH(OH)CH2COOH
134.09
3, 435
131–133
HOOCCH(OH)CH2COOH
134.09
3, 419
100
115.09
21, 380
93–95
267
v s alc, acet, bz, chl v s aq; sl s alc, eth 56 aq; 45 EtOH: 18 acet; 0.8 eth; 23 diox; i bz 36 aq; 87 EtOH; 2.7 eth; 61 acet; 75 diox v s aq
acid h182 h183
h184
h185
h186 i1 i2 i3
N-Hydroxysuccinimide 6-Hydroxytetrahydropyran-2-carboxylic acid lactone 3-Hydroxy-3,7,11trimethyl-1,6,10dodecatriene 3-Hydroxy-2,2,4trimethyl-3pentenoic acid -lactone Hypoxanthine 1H,1H,11H-Icosafluoro-1-undecanol Icosane 1-Icosene
H2C ¨ CHC(OH)(CH3)CH2CH2CH ¨ C(CH3)CH2CH2CH ¨ C(CH3)2
Solubility in 100 parts solvent
128.13
1.226
1.459320
222.37
0.876025 4
1.476925
140.18
0.947
1.438020
136.11 531.1
26, 416
HCF2(CF2)9CH2OH CH3(CH2)18CH3 CH3(CH2)17CH ¨ CH2
282.56 280.54
1, 174 13, 881
0.777737
1.434640
1141mm
96
18
170
62
d 150 95–97
181200mm
36.4 28.7
343.8 342.4
s abs alc
0.25 aq; s alk, acid 112
i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15
Imidazole 2-Imidazolidinethione Imidazolidinetrione 2-Imidazolidone 2-(4-Imidazolyl) ethylamine 3,3-Iminobispropylamine Iminodiacetic acid Iminodiacetonitrile Iminodibenzyl Indan 5-Indanol 1-Indanone
5-Hydroxyvaleraldehyde, h156 Imidodicarbonic diamide, b215
H2NCH2CH2CH2NHCH2CH2CH2NH2 HOOCCH2NHCH2COOH NCCH2NHCH2CN
68.08 102.16
23, 45 24, 4
90–91 257 203–204
114.06 86.09 111.15
230 131 83–84
subl 100
24, 16 25, 315
14
15150mm
131.22 133.10 95.11 195.27 118.18 134.18 132.16 Indalone, b445
0.938
1.481020
4, 365 4, 367
6, 575 7, 360
0.963920 4
1.536020
1.109045 4
1.56145
145
20918mm
243 d 77 105–108 51.4 176.5 51–53 255 40–42 243–245
v s aq, alc, chl, eth 2 aq; s alc, pyr; i bz, acet, chl, eth 5 aq; s alc v s aq, hot alc v s aq, alc, hot chl
118 2 aq; v sl s bz, eth s aq, alc: sl s eth 50
Indanamines, a199, a200
s alc, chl, eth; i aq v s alc, eth; sl s aq s alc, eth; sl s aq
1.273
1.274
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. i16
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
178.14
i17
1,2,3-Indantrione hydrate Indene
116.16
5, 515
0.996820 4
1.576220
1.8
i18 i19 i20 i21
Indole Indole-3-acetic acid Indole-3-carbaldehyde Indole-2,3-dione
117.15 175.19 145.16 147.13
20, 304 22, 66 21, 313 21, 432
1.0643
1.60960
52 253 168–170 195–198 203.5 d
i22 i23 i24 i25 i26 i27 i28 i29 i30 i31 i32 i33 i34
Indoline Inositol Iodoacetamide Iodoacetic acid 3-Iodoaniline Iodobenzene Iodobenzene diacetate 2-Iodobenzoic acid 1-Iodobutane 2-Iodobutane Iodocyclohexane 1-Iododecane Iodoethane
20, 257 62, 1157 2, 223 2, 222 12, 670 5, 215
1.063 1.752
1.590620
ICH2CONH2 ICH2COOH IC6H4NH2 C6H5I C6H5I(OOCCH3)2 IC6H4COOH CH3CH2CH2CH2I CH3CH2CH(I)CH3 C6H11I CH3(CH2)9I CH3CH2I
119.17 180.16 184.96 185.95 219.03 204.01 322.10 248.02 184.02 184.02 210.06 268.18 155.97
1.821 1.838325 4
1.682020 1.62118
52, 13 1, 168 1, 96
2.24925 4 1.61620 4 1.59220 4 1.62615 15 1.25720 4 1.935820
1.499920 1.499120 1.547220 1.482720 1.5137
i35 i36
2-Iodoethanol Iodoform
ICH2CH2OH CHI3
171.97 393.73
1, 339 1, 73
2.219720 4 4.008
1.569420
i37 i38
1-Iodoheptane 1-Iodohexadecane
CH3(CH2)6I CH3(CH2)15I
226.10 352.35
1, 155 1, 172
1.37320 4 1.121
1.490020 1.480620
Flash point
Solubility in 100 parts solvent
d 241
9, 363 1, 123
225–227 91–93 82–83 25 30 163–165 162 103.5 104.0 110.9
181.6
221
92
14615mm 188.3
112 74
129–130 118–120 180 13215mm 72.4
33 28
755mm 120–123 48.2
78
none 65 none
204 78 206– 20710mm
misc alc, bz, chl, eth s hot aq, bz, eth v s alc; s acet, eth s hot aq, hot alc, alk sl s aq 14 aq; sl s aq; i eth s hot aq s aq, alc; v sl s eth i aq; s alc, eth misc alc, chl, eth s alc, eth; sl s aq i aq; s alc, eth i aq; s alc, eth i aq; s eth i aq; s alc, eth 0.4 aq; misc alc, bz, chl, eth s aq; v s alc, eth 1.4 alc; 10 chl; 13 eth; v s bz, acet i aq; s alc, eth
1.43720 4 2.278920 4
1.492620 1.530820
i39 i40
1-Iodohexane Iodomethane
CH3(CH2)5I CH3I
212.08 141.94
1, 146 1, 69
i41
4-Iodomethoxybenzene 1-Iodo-3-methylbutane 1-Iodo-2-methylpropane 2-Iodo-2-methylpropane 1-Iodo-3-nitrobenzene 1-Iodooctane 1-Iodopentane 1-Iodopropane
IC6H4OCH3
234.04
6, 208
(CH3)2CHCH2CH2I
198.06
13, 367
1.50920 4
(CH3)2CHCH2I
184.02
1, 128
1.60320 4
(CH3)3CI
184.02
13, 326
1.57100
1.491820
38.2
IC6H4NO2 CH3(CH2)7I CH3(CH2)4I CH3CH2CH2I
249.01 240.13 198.06 169.99
5, 253 1, 160 1, 133 1, 113
1.947750 4 1.33020 4 1.51220 4 1.748920
1.488920 1.495420 1.505820
36–38 45.9 85.6 101
i42 i43 i44 i45 i46 i47 i48
Indonaphthene, i17
4-Iodoanisole, i41
66.5
179.5 42.4
48–50
237726mm
1.493920
61 none
147.5 93.5
i aq 1.4 aq; misc alc, eth s hot alc, eth misc alc, eth; sl s aq i aq; misc alc, eth
119
d aq; misc alc, eth 280 221 154.5 102.5
79 none
5-Iodoanthranilic acid, a203
i aq; s alc, eth s alc, eth sl s aq; s alc, eth 0.1 aq; misc alc, eth
1.275
1.276
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
i49
2-Iodopropane
(CH3)2CHI
169.99
1, 114
1.7025420
1.499220
90.0
i50 i51 i52 i53 i54 i55 i56 i57 i58
3-Iodo-1-propene 5-Iodosalicylic acid 2-Iodothiophene 2-Iodotoluene 3-Iodotoluene Iodotrimethylsilane -Ionone -Ionone Isatoic anhydride
ICH2CH ¨ CH2 IC6H3(OH)COOH
167.97 264.02 210.04 218.04 218.04 200.10 192.30 192.30 163.13
13, 114 10, 112 17, 34 5, 310 5, 311
1.84522 4
1.554021
1.902 1.713 1.698 1.40620 4 0.93220 0.94617
1.652020 1.607920 1.604020 1.471020 1.498020 1.52117
99 1–3 189–191 40 7315mm 211 8010mm 106 12411mm 14018mm 233 d
i59
D-()-Isoascrobic
i60 i61
i62 i63 i64 i65
acid DL-Isoborneol 2-Isobutoxy-1-isobutoxycarbonyl-1,2-dihydroquinoline Isobutyl acetate Isobutylamine
i66 i67
Isobutylbenzene Isobutyl chloroformate Isobutyl formate Isobutyl isobutyrate
i68
Isobutyl lactate
IC6H4CH3 IC6H4CH3 (CH3)3SiI
7, 168 7, 167 27, 264
176.12
89.5
Flash point none
71 90 82 1 104 112
169 d
154.25 303.40
62, 80
(CH3)2CHCH2OOCCH3 (CH3)2CHCH2NH2
116.16 73.14
C6H5CH2CH(CH3)2 ClCOOCH2CH(CH3)2 HCOOCH2CH(CH3)2 (CH3)2CHCH2OOCCH(CH3)2 CH3CH(OH)COOCH2CH(CH3)2
212
subl 1400.2mm
112
98.9 84.6
118.0 67.7
25 26
1.485520 1.407020
51.5
172.8 128.8
55 26
0.885420 4 0.854220
1.385520 1.399920
94.5 80.7
98.4 147.5
10
0.97120 20
1.418125
1.022
1.523020
2, 131 4, 163
0.874520 0.724204
1.390220 1.397220
134.22 136.58
5, 414 3, 12
0.867320 4 1.053
102.13 144.22
2, 21 2, 291
146.19
32, 188
9640mm
Solubility in 100 parts solvent 0.14 aq; misc alc, bz, chl, eth misc alc, chl, eth v s alc; i bz, chl v s eth i aq; s alc, eth i aq; misc alc, eth s alc, bz, chl, eth s alc, bz, chl, eth sl s aq, hot alc, acet s aq, alc, acet, pyr v s alc, chl, eth
0.7 aq; v s alc misc aq, alc, acet, eth misc alc, eth misc bz, chl, eth 1 aq; misc alc, eth 0.5 aq; misc alc
i69
Isobutyl methacrylate
i70 i71 i72 i73
Isobutyl nitrate Isobutyl nitrite Isobutyl vinyl ether Isobutyraldehyde
H2C ¨ C(CH3)COOCH2CH(CH3)2 (CH3)2CHCH2ONO2 (CH3)2CHCH2ONO (CH3)2CHCH2OCH ¨ CH2 (CH3)2CHCHO
i74 i75
Isobutyramide Isobutyric acid
(CH3)2CHCONH2 (CH3)2CHCOOH
Isatin, i21 Isethionic acid, h114 Isoamyl acetate, i80 Isoamyl alcohol, m155 sec-Isoamyl alcohol, m156 Isoamyl bromide, b305 Isoamyl iodide, i42 Isoamyl nitrite, i81
142.19
0.88225 15
1.417025
155
119.12 103.12 100.16 72.11
1, 671
1.01520 4 0.87022 4 0.770220 20 0.798820 4
1.402820 1.371522 1.396120 1.372320
132.3 65.9
123–125 67 83.4 63–64
2, 293 2, 288
1.013 0.95020 4
127–129 1.392520
216–220 46 154
87.12 88.11
1, 377
Isobutane, m375 Isobutene, m383 -Isobutoxy--phenylacetophenone, b48 Isobutylacetylene, m352 Isobutyl alcohol, m381 Isobutyl bromide, b310 Isobutyl chloride, c161 Isobutyl chlorocarbonate, i65
45
4 40
55
misc alc, eth i aq; misc alc, eth misc alc; sl s aq(d) 0.2 aq 11 aq; misc alc, bz, acet, chl, eth 17 aq; misc alc, chl, eth
Isobutyl 1,2-dihydro-2-isobutoxy-1quinolinecarboxylate, i61 Isobutyl ether, d407 Isobutyl heptyl ketone, t349 Isobutyl mercaptan, m379 Isobutyraldehyde, m374 Isobutyramide, m388 Isobutyric acid, m390
1.277
1.278
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
i76 i77 i78 i79
Isobutyronitrile Isobutyrophenone Isobutyryl chloride L-Isoleucine
i80
Isopentyl acetate
i81
Isopentyl nitrite
i82 i83 i84 i85
Isophorone DL-Isopinocampheol Isopropenyl acetate 2-Isopropoxyphenol
i86
1-Isopropoxy-2propanol Isopropyl acetate Isopropylamine 2-Isopropylaminoethanol 2-Isopropylaniline Isopropylbenzene 4-Isopropylbenzyl alcohol N-Isopropylbenzylamine Isopropylcyclohexane N-Isopropylcyclohexylamine
i87 i88 i89 i90 i91 i92 i93 i94 i95
Formula (CH3)2CHCN C6H5COCH(CH3)2 (CH3)2CHCOCl CH3CH2CH(CH3)CH(NH2)COOH CH3COOCH2CH2CH(CH3)2 (CH3)2CHCH2CH2ONO
CH3COOC(CH3) ¨ CH2 (CH3)2CHOC6H4OH
Formula weight
Beilstein reference
Density
Refractive index
Melting point
69.11 148.21 106.55 131.18
2, 294 7, 316 2, 293 4, 454
0.770420 0.98820 1.017
1.373420 1.5172 1.407320
71.5
130.19
2, 132
0.87615 4
1.400720
117.15
1, 402
0.872
1.386020
138.21 154.25 100.12 152.19
7, 65 6, 67 22, 278 63, 4209
0.923
1.475920
0.909 1.030
1.400520 1.515720
0.87925 25
1.40725
118.1
Flash point
Solubility in 100 parts solvent
3 84 1
v s alc, eth; sl s aq
90 d 284
103.8 217 91–93 subl 168
78.5
142.0
25
99
10
0.25 aq; misc alc, eth misc alc, eth; sl s aq 1.2 aq
8.1 35–36
215.2 84 217 94 18 100– 10211mm 47.9 49 88.2 32.4 7511mm
CH3CH(OH)CH2OCH(CH3)2 (CH3)2CHOOCCH3 (CH3)2CHNH2 (CH3)2CHNHCH2CH2OH
102.13 59.11 103.17
2, 130 4, 152 4, 282
0.87020 4 0.68625 4 0.897020 4
1.377320 1.371125 1.439520
73.4 101
(CH3)2CHC6H4NH2 C6H5CH(CH3)2 (CH3)2CHC6H4CH2OH
135.2 120.20 150.22
5, 393 63, 1911
0.966 0.86420 4 0.98215
1.491520 1.520620
96.0 28
C6H5CH2NHCH(CH3)2
149.24
0.892
1.502520
C6H11CH(CH3)2 C6H11NHCH(CH3)2
126.24 141.26
0.802320 4 0.859
1.439920 1.448020
5, 41
Boiling point
90
d aq, d alc; s eth 4 aq; sl s hot alc
16 17
3 aq; misc alc, eth misc aq, alc, eth misc aq, alc, eth
222 152.4 248.4
46 112
s alc, bz, eth misc alc, eth; i aq
200
87
155 6012mm
35 33
v s alc, eth
i96
i97 i98 i99
4,4-Isopropylidenebis[2-(2,6-dibromophenoxy)ethanol] 4,4-Isopropylidenediphenol Isopropyl isocyanate Isopropyl S-()lactate
Isocapronitrile, m339 Isocinchomeronic acid, p260 Isocrotonic acid, b401 Isodurene, t98 Isoeugenol, m98 Isohexane, m336 Isoleucinol, a216 Isoniazid, p258 Isonicotinaldehyde, p253 Isonicotine acid, p257 Isonicotinic acid hydrazide, p258 Isonicotinonitrile, c297 Isooctane, t354
(CH3)2C[C6H2(Br)2OCH2CH2OH]2
632.01
107
(CH3)2C[C6H4OH]2
228.29
6, 1011
(CH3)2CHCNO (CH3)2CHOOCCH(OH)CH3
85.11 132.16
4, 155 3, 282
153–156 2204mm 0.866 0.99820 20
1.382520 1.408225
Isopentane, m149 Isopentyl alcohol, m155 Isopentyl isovalerate, m170 Isophorone, t340 Isophthalic acid, b16 Isophthalonitrile, d237 Isophthaloyl dichloride, b14 Isoprene, m147 Isopropanolamine, a269 Isopropenyl acetate, p208 Isopropenylacetylene, m166 4-Isopropenyl-1-cyclohexene-1-carbaldehyde, p58
74–75 166–168
2
Isopropenyl methyl ether, m96 Isopropylacetylene, m171 Isopropylacrylic acid, m349 Isopropyl alcohol, p203 Isopropyl chloride, c211 Isopropyl cyanide, i76 Isopropyl ether, d417 Isopropylethylene, m160 Isopropylidone acetone, m350 Isopropyl iodide, i49
s aq, alc, eth
1.279
1.280
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. i100
Name
i109 i110 k1 L1 L2 L3 L4
2-Isopropyl-1-methylbenzene 3-Isopropyl-1-methylbenzene 4-Isopropyl-1-methylbenzene 2-Isopropyl-5-methylphenol N1-Isopropyl-2methyl-1,2propanediamine Isopropyl methyl sulfide Isopropyl nitrate 2-Isopropylphenol 4-Isopropylphenol Isopropyl vinyl ether Isopulegol Isoquinoline Ketene DL-Lactic acid L-()-Lactic acid -Lactose DL-Leucine
L5
L-Leucine
i101 i102 i102a i103
i104 i105 i106 i107 i108
Formula weight
Beilstein reference
Density
Refractive index
Melting point
CH3C6H4CH(CH3)2
134.21
5, 419
0.876620 4
1.500620
71.5
178.2
misc alc, eth
CH3C6H4CH(CH3)2
134.21
5, 419
0.861020 4
1.493020
63.75
175.1
misc alc, eth
CH3C6H4CH(CH3)2
134.21
5, 420
0.857320 4
1.490920
67.9
177.1
CH3C6H3(OH)CH(CH3)2 (CH3)2C(NH2)CH2NHCH(CH3)2
150.22
6, 532
0.92580 4
49–51
232
Formula
(CH3)2CHSCH3
130.24
90.18
0.822
1, 367
(CH3)2CHONO2 (CH3)2CHC6H4OH (CH3)2CHC6H4OH (CH3)2CHOCH ¨ CH2
105.09 136.19 136.19 86.13
13, 1465 6, 504 6, 505
H2C ¨ C ¨ O CH3CH(OH)COOH CH3CH(OH)COOH
154.25 129.16 42.04 90.08 90.08 342.30 131.18
6, 65 20, 380 1, 724 3, 268 3, 261 31, 408 4, 447
131.18
4, 437
(CH3)2CHCH2CH(NH2)COOH (CH3)2CHCH2CH(NH2)COOH
1.426920
1.03619 19 1.01220 0.99020 0.75320 4
1.391216 1.525920
0.911 1.091030 4
1.472520 1.620830
1.24915 4 1.206025 4 1.52520
1.439220
1.29318
1.384920
Boiling point
147–149
101.5
84.7
15–16 59–61 140
102.1 212–213 212 5–6
26.5 151 16.8 53 219 d d 332 d 293
9112mm 243.2 41 12214mm 11912mm subl 293 subl 145
Flash point
47
Solubility in 100 parts solvent
misc alc, eth i aq; v s alc, chl, eth
90
107
misc alc, eth 316 alc; 350 eth
78 107
v sl s aq sl s aq; s acid s acet, eth; d aq s aq, alc; i chl v s aq, alc, eth 17 aq; i alc, eth 1 aq; 0.13 alc; i eth
112
2.4 aq; 0.07 alc; 1 HOAc; i eth
L6 L7 L8 L9 L10 L11
()-Limonene ()-Limonene ()-Limonene oxide Linalool Linalyl acetate N-Lithiohexamethyldisilazane
(CH3)3SiN(Li)Si(CH3)3
Isopropyl mercaptan, p200 1-Isopropyl-4-methyl-1,3-cyclohexadiene, t5 1-Isopropyl-4-methyl-1,4-cyclohexadiene, t6 Isopropyl methyl ketone, m157 Isopropyltolueness, i100, i101, i102 Isopseudocumenol, t358 Isovaleraldehyde, m174 Isovaleric acid, m177 Isovaleronitrile, m178 Isovaleryl chloride, m179 Itaconic acid, m245
136.24 136.24 152.24 154.25 196.29 167.3
5, 133 5, 136 17, 44 1, 462 2, 141
0.841120 4 0.844 0.929 0.86515 0.89520
Keto compounds, see Oxo 2-Ketobutyric acid, o56 5-Keto-1,7,7-trimethylnorcamphane, c3 4-Ketovaleric acid, o58 Koshland’s reagent I, h155 Lactonitrile, h168 Lauraldehyde, d731 Lauric acid, d726 Lauronitrile, d724 Lauroyl chloride, d728 Lauryl alcohol, d727
1.4715 1.470620 1.466120 1.461520 1.451
96.5 96.5
70–72
175–176 175–176 11450mm 199 220 d 115
53 48 65 76 84
Laurylamine, d732 Lauryl bromide, b275 Lauryl mercaptan, d725 Lauryl sulfate, d735 Lepidine, m408 Leucinol, a217 Levulinic acid, o58 Linoleic acid, o1 Linolenic acid, o7
misc alc, eth misc alc, eth misc alc, eth misc alc, eth
1.281
1.282
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula H2N(CH2)4CH(NH2)COOH HOOCCH ¨ CHCOOH
Formula weight
Beilstein reference
146.19
4, 435
116.07 98.06
2, 748 17, 432
1.590 1.48
138–139 52.8 202.0
Density
Refractive index
Melting point
Boiling point
Flash point
L12
L-()-Lysine
m1 m2
Maleic acid Maleic anhydride
m3
Malonic acid
HOOCCH2COOH
104.06
2, 566
1.63
135 d
m4 m5
Malonodiamide Malononitrile
H2NCOCH2CONH2 NCCH2CN
102.09 66.06
2, 582 2, 589
1.049
168–170 32–34 220
m6 m7
ClCOCH2COCl
140.95 342.30
21, 252 31,386
1.448619 4 1.54017
m8
Malonyl dichloride D-()-Maltose hydrate D-Mandelic acid
C6H5CH(OH)COOH
152.15
10, 197
1.30020 4
m9
Mandelonitrile
C6H5CH(OH)CN
133.15
10, 193
1.117
m10 m11
Mannitol D-()-Mannose
182.17 180.16
1, 534 31, 284
1.5220 1.5420
m12 m13
L-Menthol
156.27 154.25
6, 28 7, 38
0.89015 15 0.89520 4
1.45825 1.451020
43–45 6
212 207
93 69
m14
Mercaptoacetic acid
92.12
3, 245
1.325
1.503020
16.5
965mm
112
m15
2-Mercaptobenzimidazole
150.20
24, 119
L-Menthone
HSCH2COOH
d 224
1.462020
1.531520
v s aq; sl s alc; i eth
5319mm 102–103 d 130 119
d
10
d 170
103
112 47
166–168 2903.5mm 128–130
303–304
Solubility in 100 parts solvent
79 aq; 70 alc; 8 eth s aq (to acid), alc (to ester); 227 acet; 53 chl; 50 bz; 112 EtAc 154 aq; 42 alc; 8 eth 9 aq; i alc, eth 13 aq; 40 alc; 20 eth d hot aq; s eth v s aq; sl s alc; i eth 16 aq; 100 alc; s eth v s alc, chl, eth; i aq 18 aq; 1.2 alc; i eth 250 aq; 28 pyr; 0.8 alc v s alc, chl, eth, PE misc alc, eth; sl s aq misc aq, alc, bz, eth sl s aq; s alc
m16
o-Mercaptobenzoic acid 2-Mercaptobenzothiazole
HSC6H4COOH
m18
2-Mercaptoethanol
HSCH2CH2OH
m19
2-Mercaptoethyltriethoxysilane
HSCH2CH2Si(OC2H5)3
m17
Luminol, a153 2,6-Lupetidine, d591 -Lutidine, e212 Lutidines, d604, d605, d606, d607 Maleic hydrazide, d400 Malic acids, h180, h181
154.19
10, 125
167.25
27, 185
1.4220 4
78.13
1, 470
1.114320 4
1.500620
156.9
73
0.98820 4
1.43220
210
104
224.38
Malonaldehyde bis(dimethyl acetal), t91 Malonamide nitrile, c286 Malonic acid diamide, m4 Malonylurea, b1 Melamine, t198 Mellitic acid, b19
164–165
v s alc, HOAc
180–181 d
2 alc; 1 eth; 10 acet; 1 bz; s alk; i aq misc aq, alc, bz, eth
MEM chloride, m67 Menadione, m310 1,8-Mentanediamine, d41 p-Mentha-1,8-diene, d649 p-Mentha-6,8-dien-2-one, c20 Mercaptobenzene, t159
1.283
1.284
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m20 m21 m22 m23 m24 m25 m26 m27 m28 m29
m30 m31 m32 m33 m34
Formula weight
Beilstein reference
Density
Refractive index
HSCH2CH(OH)CH2OH
108.16
1, 519
1.29514 14
1.524320
CH3CH(SH)COOH
106.14
3, 289
1.22015 4
1.480920
HS(CH2)3Si(OCH3)3
196.34
1.03920 4
1.441620
HOOCCH2CH(SH)COOH
150.15
3, 439
70.09 85.11 86.09 67.91
1, 731 22, 399 2, 421 2, 423
0.830420 4
1.416020
1.015320 4 0.800120 4
1.431420 1.400720
104.54
22, 394
1.070
1.444720
16.04
1, 56
CH3SO3H (CH3SO2)2O
96.10 174.19
4, 4
0.4240bp 0.7168 g/L 1.481218 4
CH3SO2Cl
114.55
4, 5 1, 288 1, 273
Name 3-Mercapto-1,2propanediol 2-Mercaptopropionic acid (3-Mercaptopropyl)trimethoxysilane Mercaptosuccinic acid Methacrylaldehyde Methacrylamide Methacrylic acid Methacrylonitrile Methacryloyl chloride Methane
Methanesulfonic acid Methanesulfonic anhydride Methanesulfonyl chloride Methanethiol Methanol
Formula
H2C ¨ C(CH3)CHO H2C ¨ C(CH3)CONH2 H2C ¨ C(CH3)COOH H2C ¨ C(CH3)CN H2C ¨ C(CH3)COCl CH4
CH3SH CH3OH
48.11 32.04
Melting point
10
Boiling point
Flash point
Solubility in 100 parts solvent
1185mm
112
misc alc; v s acet
11716mm
87
misc aq, alc, eth, acet
9340mm
48
152–154
50 aq; 50 alc; s eth
81 69 109–111 16 163 35.8 90.3 95–96
15 76 12
6 aq; misc alc, eth s alc; sl s eth 9 aq; misc alc, eth 2.6 aq; misc acet, bz
2
182.5
161.5
1.430320
20 71
16710mm 13810mm
112
1.5 bz; misc aq v s aq(d)
1.480518 4
1.451820
32
161
110
s alc, eth
0.866520 4 0.791320 4
1.328420
123.0 97.7
6.0 64.7
11
2.3 aq; v s alc, eth misc aq, alc, bz, chl, eth
3.3 mL aq; 47 mL alc
m35 m36 m37
Methanol-d Methanol-d4 DL-Methionine
m38 m39
Methoxyacetic acid o-Methoxyacetophenone m-Methoxyacetophenone p-Methoxyacetophenone 2-Methoxyaniline 3-Methoxyaniline 4-Methoxyaniline 2-Methoxybenzaldehyde 4-Methoxybenzaldehyde 4-Methoxybenzamide
m40 m41 m42 m43 m44 m45 m46 m47 m48 m49 m50
Methoxybenzene 4-Methoxybenzenesulfonyl chloride 2-Methoxybenzoic acid
1.285
MES, m451 Mesidine, t330 Mesitol, t362 Mesitylene, t335 Mesityl oxide, m350 Mesoxylurea, a79
CH3OD CD3OD CH3SCH2CH2CH(NH2)COOH CH3OCH2COOH CH3OC6H4COCH3
33.05 36.07 149.21
13, 1186 13, 1187 42, 938
0.812720 4 0.888 1.340
1.327020 1.325620
90.08 150.18
3, 232 8, 85
1.174 1.09020 4
CH3OC6H4COCH3
150.18
8, 86
CH3OC6H4COCH3
150.18
CH3OC6H4NH2 CH3OC6H4NH2 CH3OC6H4NH2 CH3OC6H4CHO
110
65.5 65.4
11 11
1.415820 1.539320
202–204 13118mm
112 108
1.094
1.541020
239–241
110
8, 87
1.08241 4
1.533520
36–38
15426mm
123.16 123.16 123.16 136.15
13, 358 13, 404 13, 435 8, 43
1.09815 15 1.096 1.087 1.127
1.573020 1.579420 1.56020
5 1 60 35–36
225 251 243 236
117
i aq; misc alc, eth s alc, acid; sl s aq v s alc; sl s aq sl s alc, bz; i eth
CH3OC6H4CHO
136.15
8, 67
1.119
1.571320
1
248
108
misc alc
CH3OC6H4CONH2
151.17
102, 100
C6H5OCH3 CH3OC6H4SO2Cl
108.14 206.65
6, 138 11, 243
0.994220
CH3OC6H4COOH
152.15
10, 64
1.180
Mesyl chloride, m32 Metanilic acid, a119 Methacholine chloride, a49 Methacrolein, m24 Methallyl alcohol, m385 Methallyl chloride, c164
281 d
37.5 40–43
153.8
100
200
s aq v s alc, eth
98 112
164–167 295 1.517020
misc aq, alc, eth misc aq, alc, eth 3 aq; i eth; v sl s alc misc aq, alc, eth
51
s aq; v s alc; sl s eth 1 aq; misc alc, eth d aq; s alc, eth 0.5 aq; v s alc, eth
Methanal, f27 Methanoic acid, f32 Methenamine, h52 Methone, d508 4-Methoxy-2-butanone dimethyl acetal, t321
1.286
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m51 m52 m53 m54 m55 m56 m57 m58 m59 m60 m61 m62 m63 m64 m65
Name 3-Methoxybenzoic acid 4-Methoxybenzoic acid 4-Methoxybenzoyl chloride 4-Methoxybenzyl alcohol 4-Methoxybenzylamine 2-Methoxybiphenyl 3-Methoxy-1-butanol 4-Methoxy-3-buten2-one 1-Methoxy-1-buten3-yne 4-Methoxycinnamic acid 1-Methoxy-1,3-cyclohexadiene 1-Methoxy-1,4-cyclohexadiene 7-Methoxy-3,7-dimethyloctanal 2-Methoxy-1,3dioxolane 2-Methoxyethanol
Formula weight
Beilstein reference
CH3OC6H4COOH
152.15
10, 137
CH3OC6H4COOH
152.15
10, 154
CH3OC6H4COCl
170.60
10, 163
CH3OC6H4CH2OH
138.17
6, 897
CH3OC6H4CH2NH2
137.18
CH3OC6H4C6H5 CH3OCH(CH3)CH2CH2OH CH3OCH ¨ CHCOCH3
184.24 104.15
CH3OCH ¨ CHC ˜ CH
82.10
Formula
CH3OC6H4CH ¨ CHCOOH
(CH3)2C(OCH3)CH2CH2CH(CH3)CH2CHO
Refractive index
Melting point
Boiling point
Flash point
17210mm
s hot aq, alc, eth
185
275–280
0.04 aq; v s alc, chl
1.581020
22
14514mm
87
1.10925 4
1.544220
23–25
259
112
i aq(d); s alc(d); s bz, acet i aq; s alc, eth
13, 606
1.05015
1.546220
236–237
112
v s aq, alc, eth
6, 672
1.023 0.922920 20
1.610520 1.414520
274 161.1
112 46
misc aq
0.982
1.466020
200
63
0.90620 4
1.481820
122–125
8
1.3854
85
178.19
10, 298
110.16
63, 367
0.929
1.488520
4015mm
26
110.16
63, 367
0.940
1.481920
148–150
36
0.877
1.437420
600.45mm
98
194, 617
1.092
1.409120
129–130
31
1, 467
0.964620
1.402120
124.6
46
186.30
76.10
Solubility in 100 parts solvent
104
100.12
104.11 CH3OCH2CH2OH
Density
172–187
85.1
v s org solv s CCl4
misc aq
m66 m67 m68 m69 m70 m71 m72 m73 m74
m75 m76
2-(2-Methoxyethoxy)ethanol 2-Methoxyethoxymethyl chloride 2-Methoxyethyl acetate 2-Methoxyethylamine 1-Methoxy-2-indanol 2-Methoxy-5-methylaniline 3-Methoxy-4-methylaniline 4-Methoxy-2-methylaniline (4S,5S)-()-4Methoxymethyl-2methyl-5-phenyl-2oxazoline 4-Methoxy-4-methyl2-pentanone 1-Methoxynaphthalene
Methoxyethane, e171
CH3OCH2CH2OCH2CH2OH CH3OCH2CH2OCH2Cl
120.15
1.03520 4
1.426420
124.57
1.091
1.427020
CH3COOCH2CH2OCH3
118.13
2, 141
1.004920
1.402220
CH3OCH2CH2NH2
42, 718 6, 970 132, 388
0.864
1.405420 1.548220
CH3OC6H3(CH3)NH2
75.11 164.20 137.18
CH3OC6H3(CH3)NH2
137.18
13, 574
CH3OC6H3(CH3)NH2
137.18
132, 330
1.065
1.515520
205.26
(CH3)2C(OCH3)CH2COCH3 C10H7OCH3
130.18 158.20
1.564720
6, 606
0.906
1.418125
1.090
1.622020
2-Methoxyethoxychloromethane, m67
50
194.1
83
misc aq, alc, bz, eth, ketones
5013mm
112
65.1
144.5
43
misc aq
9 112
v s aq, alc
52–54
95 14611mm 235
51–54
250–252
13–14
248–249
s aq; v s alc, bz, eth 112
s alc
61
misc aq
790.05mm
13512mm
112
1.287
1.288
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m77
Name
Formula weight
Beilstein reference
C10H7OCH3
158.20
6, 640
72
CH3OC6H3(NO2)NH2
168.15
13, 390
138–140
CH3OC6H3(NO2)NH2
168.15
13, 389
CH3OC6H3(NO2)NH2
168.15
13, 521
CH3OC6H4NO2
153.14
6, 217
1.252720 4
CH3OC6H4NO2
153.14
6, 230
1.233
CH3OC6H3(NO2)COOH
197.15
10, 181
186–189
CH3OC5H3N(NO2)
154.13
212, 33
108–109
CH3OC6H3(NO2)CH3
167.16
6, 411
CH3OC6H4CH2CH2NH2
151.21
13, 626
CH3OC6H4OH
124.14
6, 768
Formula
m87
2-Methoxynaphthalene 2-methoxy-4-nitroaniline 2-Methoxy-5-nitroaniline 4-Methoxy-2-nitroaniline 2-Methoxynitrobenzene 4-Methoxynitrobenzene 4-Methoxy-3-nitrobenzoic acid 2-Methoxy-5-nitropyridine 4-Methoxy-2-nitrotoluene p-Methoxyphenethylamine 2-Methoxyphenol
m88
3-Methoxyphenol
CH3OC6H4OH
124.14
6, 813
m89 m90
4-Methoxyphenol 3-(4-Methoxyphenoxy)-1,2-propanediol
CH3OC6H4OH CH3OC6H4OCH2CH(OH)CH2OH
124.14 198.22
6, 843 63, 4411
m78 m79 m80 m81 m82 m83 m84 m85 m86
Density
Refractive index
1.207156
Melting point
Boiling point
Flash point
272
s bz, eth, CS2
117–119
s alc, hot bz, HOAc sl s aq; s alc, eth
123–126
1.207
1.561920
1.552520
9.4
277
54
260
17
1.537920 1.112 1.5429 (liquid) 1.131 1.551020
Solubility in 100 parts solvent
267
112
0.17 aq; s alc, eth i aq; v s alc, eth
112
13820mm 28
205
82
17.5
1155mm
112
55–57 76–80
243
1.5 aq; misc alc, eth misc alc, eth; sl s aq v s bz; s alk
m91 m92 m93 m94
m95 m96 m97
m98 m99
m100 m101 m102
4-Methoxyphenylacetic acid o-Methoxyphenylacetone (o-Methoxyphenyl)acetonitrile 2-Methoxy-pphenylenediamine sulfate 1-Methoxy-2propanol 2-Methoxypropene trans-1-Methoxy-4(1-propenyl)benzene 2-Methoxy-4propenylphenol 2-Methoxy-4-(2propenyl)phenol
CH3OC6H4CH2COOH
166.18
10, 190
CH3OC6H4CH2COCH3
164.20
83, 397
CH3OC6H4CH2CN
147.18
10, 188
65–68
CH3OC6H3(NH2)2 · H2SO4
236.26
133, 1349
283 d
p-Methoxypropiophenone 2-Methoxypyridine 2-Methoxytetrahydrofuran
CH3OCH2CH(OH)CH3
90.1
CH3C(OCH3) ¨ CH2
72.11
86–88 1.054
1.525020
0.91920 20
1.402120
1, 435
0.753
1.382020 1.561520
1403mm 13010mm
97
i aq; v s alc; s eth 112
14315mm
s hot bz
120.1
38
34–36
18
21.4
237
90
CH3OC6H4CH ¨ CHCH3
148.21
6, 566
0.988320 4
CH3OC6H3(OH)CH ¨ CHCH3 CH3OC6H3(OH)CH2CH ¨ CH2
164.20
6, 955
1.08720 4
1.574820
10
266
112
164.20
6, 961
1.066420 4
1.540820
9.2
255
112
CH3OC6H4COCH2CH3
164.20
8, 103
1.071
1.546520
27–29
273–275
112
CH3OC5H4N
109.13 102.13
21, 44 174, 1019
1.038 0.972
1.502929 1.411920
142 105–107
32 7
-Methoxy--phenylacetophenone, b49
6-Methoxytetralin, m103
s alc, eth
Methoxy-1-tetralone, d358
misc aq, acet, bz, eth
misc chl, eth; 50 alc; s bz, EtAc misc alc, eth; sl s aq misc alc, chl, eth; s HOAc, alk; i aq
misc aq
1.289
1.290
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m103
m104 m105 m106 m107 m108 m109 m110 m111 m112 m113 m114 m115
m116 m117 m118
Name 6-Methoxy-1,2,3,4tetrahydronaphthalene 6-Methoxy-1tetralone 2-Methoxytoluene 3-Methoxytoluene 4-Methoxytoluene Methoxytrimethylsilane Methoxytripropylsilane N-Methylacetamide Methyl acetate
Formula weight
Beilstein reference
162.23
62, 537
176.22
92, 889
CH3OC6H4CH3 CH3OC6H4CH3 CH3OC6H4CH3 CH3OSi(CH3)3
122.17 122.17 122.17 104.2
6, 352 6, 376 6, 392
CH3OSi(C3H7)3
188.4
Formula
CH3CONHCH3 CH3COOCH3
Density
Refractive index
Melting point
1.540220
Boiling point 901mm
77–79
Flash point 112
17111mm
0.985115 15 0.969725 25 0.96925 25 0.756020 4
1.516120 1.513120 1.511220 1.367820
170–172 175–176 174 57–58
0.82220 4
1.42820
8312mm
51 54 53
73.10 74.08
4, 58 2, 224
0.946035 0.934220 4
1.425335 1.361920
30.6 98.1
206 56.3
16
Methyl acetoacetate p-Methylacetophenone Methyl acrylate Methylamine
CH3COCH2COOCH3 CH3C6H4COCH3
116.12 134.18
3, 632 7, 307
1.074720 1.0051
1.418620 1.532820
80 22–24
171.7 226
70 92
H2C ¨ CHCOOCH3 CH3NH2
86.09 31.06
2, 399 4, 32
0.956120 4 0.69911 4
1.411718
76.5 93.5
80.2 6.3
6 0
Methyl 2-aminobenzoate 2-(N-Methylamino)benzoic acid Methyl 3-aminocrotonate
H2NC6H4COOCH3
151.17
14, 317
1.6819 4
1.582020
24
256
104
CH3NHC6H4COOH
151.17
14, 323
CH3C(NH2) ¨ CHCOOCH3
115.13
3, 632
170–172 d 81–83
Solubility in 100 parts solvent
i aq; v s alc, eth s alc, bz, eth; i aq s alc, eth; i aq
s aq 24 aq; misc alc, eth 50 aq; misc alc i aq; v s alc, eth 6 aq; s alc, eth 959 mL aq; 10.5 bz; s alc; misc eth sl s aq; v s alc, eth 0.2 aq; s alc, eth
m119 m120 m121 m122 m123 m124 m125 m126 m127 m128 m129
2-(Methylamino)ethanol 4-Methylaminophenol sulfate 2-(Methylamino)pyridine N-Methylaniline N-Methylanilinium trifluoroacetate 2-Methylanthraquinone Methylarsonic acid 4-Methylbenzaldehyde Methyl benzenesulfonate 2-Methylbenzimidazole Methyl benzoate
0.93720
1.438720
CH3NHCH2CH2OH
75.11
4, 276
(CH3NHC6H4OH)2 · H2SO4 CH3NHC5H4N
344.39
13, 442
108.14
221, 629
1.05229 29
1.578520
15
201
87
s aq; v s alc, eth
C6H5NHCH3 C6H5NHCH3 · HOOCCF3
107.16 221.18
12, 135
0.98920 4
1.570420
57 65–66
196
73
sl s aq; s alc, eth
222.24
7, 809
177
subl
CH3AsO(OH)2 CH3C6H4CHO
139.96 120.15
4, 613 7, 297
1.019417 4
1.544720
C6H5SO2OCH3
172.20
112, 20
1.288904
1.515120
132.17
23, 145
136.15
9, 109
C6H5COOCH3
Methylal, d441 Methyl alcohol, m34 Methylaminoacetaldehyde dimethyl acetal, d442 -(1-Methylaminoethyl)benzyl alcohols, e1, e2
155–156
72
260 d
4 aq; sl s alc; i eth
v s bz; s alc, eth
161 205 4
80
15420mm
176–177 1.093315 4
2-Methyl-p-anisidine, m71 4-Methyl-m-anisidine, m72 5-Methyl-o-anisidine, m73 Methylanisoles, m105, m106, m107 Methyl anthranilate, m116
1.520515
12.1
misc aq, alc, eth
199.5
82
v s aq; s alc misc alc, eth; sl s aq v s alc, chl, eth s alk, hot aq; sl s alc 0.2 aq; misc alc, eth
Methylanthranilic acids, a211, a212 N-Methylanthranilic acid, m117 Methylbenzene, t167 4-Methylbenzenesulfonic acid, t176
1.291
1.292
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m130 m131 m132 m133 m134 m135 m136 m137 m138 m139 m140 m141 m142 m143 m144
Name 2-Methylbenzoic acid 3-Methylbenzoic acid 4-Methylbenzoic acid 2-Methylbenzophenone 4-Methylbenzophenone 2-Methylbenzothiazole 5-Methyl-1 H-benzotriazole 2-Methylbenzoxazole -Methylbenzyl alcohol 3-Methylbenzyl alcohol 4-Methylbenzyl alcohol DL--Methylbenzylamine 4-Methylbenzylamine Methyl bromoacetate DL-Methyl2-bromobutyrate
Formula weight
Beilstein reference
Density
CH3C6H4COOH
136.15
9, 462
1.062
107–108 258–259
sl s aq; v s alc
CH3C6H4COOH
136.15
9, 475
1.054
111–113 263
0.09 aq; v s alc
CH3C6H4COOH
136.15
9, 483
180–182 274–275
v s alc, eth
CH3C6H4COC6H5
196.25
7, 439
CH3C6H4COC6H5
196.25
7, 440
149.22
27, 46
133.15
26, 58
133.15
27, 46
1.121
1.549720
C6H5CH(CH3)OH
122.17
6, 475
1.019113 4
CH3C6H4CH2OH
122.17
6, 494
0.91617
CH3C6H4CH2OH
122.17
6, 498
C6H5CH(CH3)NH2
121.18
12, 1094
0.940
1.525420
CH3C6H4CH2NH2 BrCH2COOCH3 CH3CH2CH(Br)COOCH3
121.18 152.98 181.04
12, 1141 2, 213 2, 282
0.952 1.616 1.573
1.534020 1.458620
Formula
1.083
1.173
Refractive index
Melting point
Boiling point
Flash point
18
309–311
59–60
326
12–14
238
80–82 8.5–10
210– 21212mm 178 75
1.521120
21
204
1.533420
20
217
5 aq; s alc, eth
59–61
217
s alc, eth; sl s aq
1.595820
1.617020
185 12–13
112
Solubility in 100 parts solvent
v s alc, org solv v s bz, eth
102
85
s alc, HOAc; i aq
v s alc; s bz, chl
79
195 75 5215mm 62 137– 13850mm
s alc
m145 m146 m147 m148 m149 m150 m151 m152 m153 m154 m155
Methyl 4-bromocrotonate Methyl 2-bromopropionate 2-Methyl-1,3butadiene 3-Methyl-1,2butadiene 2-Methylbutane 2-Methyl-1butanethiol 2-Methyl-2butanethiol 3-Methyl-1butanethiol 2-Methyl-1butanol 2-Methyl-2butanol 3-Methyl-1butanol
1.522
1.498020
8513mm
91
2, 253
1.497
1.542020
5119mm
51
s alc
68.12
1, 252
0.68120 4
1.421620
145.9
34. 1
53
misc alc, eth
CH3C(CH3) ¨ C ¨ CH2
68.12
1, 252
0.69420 4
1.417920
113.6
40.9
12
CH3CH2CH(CH3)2 CH3CH2CH(CH3)CH2SH
72.15 104.22
1, 134 12, 421
0.619720 0.848
1.353720 1.446520
159.9
27.9 119.0
56 19
0.005 aq; misc alc s alc, eth; i aq
CH3CH2C(CH3)2SH
104.22
11, 196
0.842
1.438520
103.9
99.1
1
s alc, eth; i aq
104.22
1, 405
0.83520 4
1.443220
133.5
118.4
18
misc alc, chl, eth
CH3CH2CH(CH3)CH2OH
88.15
1, 388
0.81620 4
1.410020
70
128
50
3 aq; misc alc, eth
CH3CH2C(CH3)2OH
88.15
1, 388
0.809020
1.405020
9.0
102.0
21
(CH3)2CHCH2CH2OH
88.15
1, 392
0.812915 4
1.408515
117.2
132.0
45
11 aq; misc alc, bz, chl, eth 2 aq; misc alc, bz, chl, eth, PE, HOAc
BrCH2CH ¨ CHCOOCH3
179.02
CH3CH(Br)COOCH3
167.01
H2C ¨ C(CH3)CH ¨ CH2
(CH3)2CHCH2CH2SH
-Methylbenzyl alcohol, p112 N-Methylbenzylamine, b103 Methylbenzyl bromides, b368, b369
Methylbenzyl chlorides, c258, c259, c260 Methylbis(2-chloroethoxy)silane, b157 N-Methylbis(2-chloroethyl)amine, b159
Methyl bromide, b300 3-Methyl-1-buten-1-carboxylic acid, m349
1.293
1.294
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m156
Name
m167 m168
3-Methyl-2butanol 3-Methyl-2butanone 2-Methyl-1-butene 2-Methyl-2-butene 3-Methyl-1-butene (E)-2-Methyl-2butenoic acid (Z)-2-Methyl-2butenoic acid 3-Methyl-2-butenoic acid 2-Methyl-3-buten2-ol 3-Methyl-3-buten1-ol 2-Methyl-1-buten3-yne N-Methylbutylamine 1-Methylbutylamine
m169
2-Methylbutylamine
m170
3-Methylbutyl3-methylbutyrate 3-Methyl-1-butyne 2-Methyl-3-butyn-2-ol
m157 m158 m159 m160 m161 m162 m163 m164 m165 m166
m171 m172
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
(CH3)2CHCH(OH)CH3
88.15
1, 391
0.817920
1.409620
(CH3)2CHCOCH3
86.13
1, 682
0.80220 4
1.3890
92
94–95
CH3CH2C(CH3) ¨ CH2 CH3CH ¨ C(CH3)2 (CH3)2CHCH ¨ CH2 CH3CH ¨ C(CH3)COOH
70.14 70.14 70.14 100.12
1, 211 1, 211 13, 797 2, 430
0.650420 4 0.662020 4 0.627220 4 0.969
1.377720 1.387820 1.363820 1.434281
137.6 133.8 168.5 64
31.2 38.6 20.1 198.5
CH3CH ¨ C(CH3)COOH
100.12
2, 428
0.98347 4
1.443747
45
185
(CH3)2C ¨ CHCOOH
100.12
2, 432
1.00624
69
194–195
(CH3)2C(OH)CH ¨ CH2
86.13
1, 444
0.867220 20
1.416020
2.6
98–99
H2C ¨ C(CH3)CH2CH2OH
86.13
0.853
1.433720
H2C ¨ C(CH3)C ˜ CH
66.10
11, 126
CH3CH2CH2CH2NHCH3 CH3CH2CH2CH(CH3)NH2 CH3CH2CH(CH3)CH2NH2 (CH3)2CHCH2CH2OOCCH2CH(CH3)2 (CH3)2CHC ˜ CH (CH3)2C(OH)C ˜ CH
87.17 87.17
4, 157 4, 177
87.17
111.5
Flash point 26
45
Solubility in 100 parts solvent 2.8 aq; misc alc, eth misc alc, eth misc alc, eth misc alc, eth; i aq misc alc, eth s alc, eth; v s hot aq s alc, eth; v s hot aq s aq, alc, eth
13 36
1.414020
113
32
6
0.736 0.738420 4
1.399520 1.402920
75
91 91
1 35
43, 342
0.738
1.411620
94–97
3
172.27
2, 312
0.854125
1.410025
194.0
68.12 84.12
1, 251 11, 235
0.66620 4 0.867220 20
1.374020 1.420920
89.8 2.6
26.4 104–105
misc aq, alc, eth
misc alc, eth
25
misc alc, eth misc aq, acet, bz
m173 m174 m175 m176 m177 m178 m179 m180 m181 m182
2-Methylbutyraldehyde 3-Methylbutyraldehyde Methyl butyrate 2-Methylbutyric acid 3-Methylbutyric acid 3-Methylbutyronitrile 3-Methylbutyryl chloride l-(3-Methylbutyryl)pyrrolidine Methyl carbamate Methyl chloroacetate
CH3CH2CH(CH3)CHO
86.13
11, 352
0.804
1.391920
(CH3)2CHCH2CHO
86.13
1, 684
0.78520 20
1.388220
CH3CH2CH2COOCH3
102.13
24, 786
0.89820 4
1.387920
CH3CH2CH(CH3)COOH
102.13
24, 888
0.936
1.405520
(CH3)2CHCH2COOH
102.13
2, 309
0.930820 4
1.403320
83.13
22, 278
0.792519 4
1.392720
120.58
2, 315
0.98520 4
1.416120
0.938
1.471020
(CH3)2CHCH2CN (CH3)2CHCH2COCl
155.24 H2NCOOCH3 ClCH2COOCH3
(Z)-2-Methyl-2-butenedioic acid, c270 Methyl 2-buten-1-oate, m192 3-Methylbutyl acetate, i80 2-Methylbutylamine, a251 Methyl tert-butyl ether, b460 Methyl tert-butyl ketone, h72
75.07
3, 21
1.13656 4
108.52
2, 197
1.23820 20
2-Methylbutyl isovalerate, m170 Methyl caprate, m218 Methyl caproate, m265 Methyl carprylate, m329 Methyl carbazate, m271 Methyl carbitol, m66
1.422020
90–92
4
51
92–93
19
85
102
14
176.5
112
30.0
176.5
70
101
129 115–117
misc alc, eth; sl s aq 1.4 aq; misc alc, eth
4 aq; s alc, chl, eth misc alc, eth
18
d aq, alc; s eth
104 52–54
177
33
130–132
57
4-Methylcatechol, d389 Methyl Cellosolve, m65 Methyl Cellosolve acetate, m68 -Methylchalcone, d658 Methyl chlorocarbonate, m187
220 aq; 73 alc; s eth i aq; misc alc, eth
1.295
1.296
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m183 m184 m185 m186 m187 m188 m189 m190 m191 m192 m193 m194 m195 m196
m197 m198
Name Methyl 2-chloroacetoacetate Methyl m-chlorobenzoate Methyl p-chlorobenzoate Methyl 4-chlorobutyrate Methyl chloroformate Methyl 3-(chloroformyl)propionate Methyl 2-chloropropionate 2-Methylcinnamaldehyde 6-Methylcoumarin Methyl crotonate Methyl cyanoacetate Methylcyclohexane Methyl cyclohexanecarboxylate 4-Methyl-1,2-cyclohexanedicarboxylic anhydride 1-Methylcyclohexanol (Z )-2-Methylcyclohexanol
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
1.236
1.446520
32.7
137
1.492320
21
10112mm
Flash point
Solubility in 100 parts solvent
CH3COCH(Cl)COOCH3
150.56
ClC6H4COOCH3
170.60
9, 338
ClC6H4COOCH3
170.60
9, 340
1.38220
ClCH2CH2CH2COOCH3
136.58
2, 278
1.126814
1.432120
176
59
v s eth; s alc, acet
3, 9
1.22320 4
1.386520
71
1
misc alc, bz, chl, eth
ClCOOCH3
94.50
71
44
s alc
CH3OOCCH2CH2COCl
150.56
22, 553
1.223
1.440220
653mm
73
CH3CH(Cl)COOCH3
122.55
2, 248
1.075
1.419320
132–133
36
C6H5CH ¨ C(CH3)CHO
146.19
7, 369
1.04717 4
1.604520
14927mm
79
CH3CH ¨ CHCOOCH3 NCCH2COOCH3 C6H11CH3 C6H11COOCH3
160.17 100.12 99.09 98.19 142.20
17, 337 2, 410 2, 584 5, 29 9 1, 5
0.944420 4 1.122525 0.769420 0.995416 4
1.424220 1.416625 1.423120 1.444520
303725mm 121 205.1 100.9 183
4 110 3 60
v s alc, eth; i aq misc alc, eth
1.162
1.477420
168.19
75–76 13.1 126.6
s alc
i aq; s alc, eth
C6H10(CH3)OH
114.19
6, 11
0.925125
1.458725
26
168
67
i aq; s bz, chl
C6H10(CH3)OH
114.19
62, 17
0.934020 4
1.465420
7
165
58
misc alc, eth
m199 m200 m201 m202 m203 m204 m205 m206 m207 m208 m209
(E)-2-Methylcyclohexanol (Z)-3-Methylcyclohexanol (E)-3-Methylcyclohexanol (Z)-4-Methylcyclohexanol (E)-4-Methylcyclohexanol 2-Methylcyclohexanone 3-Methylcyclohexanone 4-Methylcyclohexanone 1-Methyl-1-cyclohexene 4-Methyl-1-cyclohexene N-Methylcyclohexylamine
Methyl chloroform, t226
C6H10(CH3)OH
114.19
6, 11
0.924720 4
1.461620
4
165.5
58
misc alc; s eth
C6H10(CH3)OH
114.19
6, 12
0.915520
1.457220
6
94
62
misc alc, eth
C6H10(CH3)OH
114.19
6, 12
0.921420
1.458020
1
84
62
CH3C6H10OH
114.19
6, 14
0.912220 4
1.461420
171
70
misc alc, eth
CH3C6H10OH
114.19
6, 14
0.911821 4
1.455920
173–175
70
misc alc; s eth
CH3C6H9( ¨ O)
112.17
7, 14
0.92520 4
1.447820
162–163
46
i aq; s alc, eth
CH3C6H9( ¨ O)
112.17
7, 15
0.915520 4
1.446020
168–169
51
i aq; s alc, eth
CH3C6H9( ¨ O)
112.17
7, 18
0.91620 4
1.445520
169–171
40
i aq; s alc, eth
96.17
5, 66
0.80920 4
1.450220
121
111
3
i aq; s alc, eth
96.17
5, 67
0.799
1.441220
115.5
102
1
i aq; s alc, eth
113.20
12, 6
0.868
1.456020
149
29
C6H11NHCH3
(E)-2-Methylcrotonic acid, m161
1.297
1.298
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m210 m211 m212 m213 m214 m215 m216 m217
m218 m219 m220
m221 m222 m223
Formula weight
Beilstein reference
Density
Refractive index
C6H10(CH3)NH2
113.20
12, 10
0.855
1.452520
150730mm
22
C6H10(CH3)NH2
113.20
12, 12
0.855
1.453120
151–154
26
0.941
1.497620
51
200
26
Name 3-Methylcyclohexylamine 4-Methylcyclohexylamine Methylcyclopentadiene dimer Methylcyclopentane 3-Methyl-1,2-cyclopentanedione 2-Methylcyclopentanone 3-Methyl-2-cyclopenten-1-one 2-Methylcyclopropanecarboxylic acid Methyl decanoate Methyl dichloroacetate Methyl 2,2-dichloro1-methylcyclopropanecarboxylate Methyl 2,3-dichloropropionate Methyldichlorosilane N-Methyldiethanolamine
Formula
160.26 C5H9CH3
CH3(CH2)8COOCH3 Cl2CHCOOCH3
Melting point
Boiling point
Flash point
84.16 112.13
5, 27 71, 310
0.748720
1.409720
142.4 71.8 105–107
98.15
72, 13
0.920020 4
1.434720
76
96.13
71, 46
0.971
1.478020
7415mm
65
100.12
9, 6
1.027
1.439520
191745mm
87
186.30 142.97
2, 356 2, 203
1.380819
1.442120
223–224 143
80
1.245
1.463920
748mm
74
1.328220 4
1.444720
9250mm
42
1.104720 4
1.422220
41
25
1.037720
1.468520
246–248
126
183.03
ClCH2CH(Cl)COOCH3
157.00
CH3SiHCl2
115.0
CH3N(CH2CH2OH)2
119.16
21, 111
4, 284
18 52
93
27
139–140
Solubility in 100 parts solvent
0.013 aq
s aq; v s alc, eth
i aq; misc alc, eth i aq; s alc
s alc
misc aq, alc
m224 m225 m226
m227 m228 m229 m230 m231 m232 m233
O-Methyl-N,Ndiisopropylurea Methyl 3,4-dimethoxybenzoate Methyl 4,5-dimethoxy-2-nitrobenzoate Methyl 2,2-dimethylpropionate 2-Methyl-3,5-dinitrobenzoic acid N-Methyldioctylamine N-Methyldiphenylamine Methyldiphenylsilane N,N-Methylenebisacrylamide 2,2-Methylenebis(4-chlorophenol)
(CH3)2CHNHC(OCH3) ¨ NCH(CH3)2 (CH3O)2C6H3COOCH3
158.25
0.871
1.435820
196.20
10, 396
57–60
(CH3O)2C6H2(NO2)COOCH3
241.20
10, 403
141–144
(CH3)3CCOOCH3
116.16
21, 139
CH3C6H2(NO2)2COOH
226.15
9, 474
(C8H17)2NCH3
255.49
43, 381
(C6H5)2NCH3
183.26
12, 180
(C6H5)2Si(H)CH3
198.3
H2C ¨ CHCONHCH2NHCOCH ¨ CH2 CH2[C6H3(Cl)OH]2
154.17
300
269.13
177–178
Methyl 4,6-dimethyl-2-oxo-2H-pyran-5carboxylate, m288
0.873
1.388020
50– 520.1mm 283
35
101–103
1
misc alc, eth; sl s aq
205–207 1.442420
30.1
16515mm
1.04820 4
1.619320
7.6
1356mm
0.99720 4
1.56920
Methyldinitrophenols, d631, d633a Methyl enanthate, m261
Methylene bromide, d88
i aq; s alc, eth
100 EtOH; 100 eth; s PE
1.299
1.300
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m234
m235
m236 m237 m238 m239 m240 m241 m242 m243
m244 m245 m246
Name 4,4-Methylenebis(N,N-dimethylaniline 4,4-Methylenebis(3-hydroxy-2naphthoic acid 1,1-Methylenebis(3methylpiperidine) Methylene blue 4,4-Methylenedianiline 3,4-Methylenedioxybenzaldehyde 1,2-Methylenedioxybenzene 3,4-Methylenedioxybenzoic acid 3,4-Methylenedioxybenzyl alcohol 3,4-Methylenedioxy6-propylbenzyldiethyleneglycol butyl ether 5-Methylene-2-norbornene Methylenesuccinic acid N-Methylethylamine
Formula weight
Beilstein reference
CH2[C6H4N(CH3)2]2
254.38
13, 239
90
CH2[C10H5(OH)COOH]2
388.38
10, 575
d 280
CH2(CH3C5H9N)2
210.37
CH2(C6H4NH2)2
373.90 198.26
27, 393 13, 238
190 d 92
150.13
19, 115
37
122.12
19, 20
166.13
19, 269
229
152.14
19, 67
53–55
Formula
H2C ¨ C(COOH)CH2COOH CH3CH2NHCH3
Density
0.887
1.064
Refractive index
1.473420
1.05
1.5020
106.17
0.981
1.481920
2, 760
1.573
59.11
42, 589
0.690
Boiling point
Flash point
110 4 aq; 1.3 alc; s chl 221
264 173
0.2 aq; v s alc, eth 55
subl 210
1801mm
sl s aq, chl, alc, eth
171
misc alc, bz, freons
4 162 d
1.3760
Solubility in 100 parts solvent
i aq, alc, eth, bz; sl s chl; s pyr 16050mm
1.5398
338.45
130.10
Melting point
35
12
8.2 aq; 20 alc; v s bz, chl, eth, PE v s aq, alc
m247 m248 m249 m250 m251 m252 m253 m254
N-Methylethylenediamine N-Methylformamide N-Methylformanilide Methyl formate 5-Methylfuraldehyde 2-Methylfuran Methyl furoate Methylgermanium tribromide
Methylene bromochloride, b256 Methylene chloride, d190 4,4-Methylenedianiline, d35 Methylene dimethyl ether, d441 Methylene iodide, d404
CH3NHCH2CH2NH2 HCONHCH3 C6H5N(CH3)CHO HCOOCH3
CH3GeBr3
74.13
41, 415
0.841
1.439520
59.07 135.17 60.05 110.11
4, 58 12, 234 2, 18 17, 289
0.998825 1.095 0.981515 1.107218 4
1.430025 1.559320 1.346515 1.526320
82.10 126.11 327.35
17, 36 18, 274
0.91520 4 1.17920 2.633720 4
1.433220 1.486220 1.577020
1,1-Methylenedipiperidine, d695 -Methylene--propiolactone, d422 (E)-3,6-endo-Methylene-1,2,3,6tetrahydronaphthaloyl dichloride, n109 Methyl ethyl ketone, b393
114–116
41
3.8 8–13 99.0
180–185 244 31.5 187
98 126 32 72
88
63–66 181 168
26 73
misc aq 23 aq; misc alc s aq; v s alc; misc eth 0.3 aq s alc, eth; sl s aq
Methyl fluoroform, t291 Methyl 2-furancarboxylate, m253 5-Methylfurfural, m251 -Methyl-D-glucopyranoside, m256
1.301
1.302
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m255
Name
m264 m265 m266
N-Methyl-Dglucamine -Methylglucoside DL-2-Methylglutaronitrile N-Methylglycine Methyl glycolate 2-Methylheptane Methyl heptanoate 6-Methyl-5-hepten2-one Methyl hexadecanoate 2-Methylhexane Methyl hexanoate 5-Methyl-2-hexanol
m267
5-Methyl-2-hexanone
m256 m257 m258 m259 m260 m261 m262 m263
m268
5-Methyl-3-hexen2-one m268a 1-Methylhexylamine m269 1-Methylhydantoin m270 Methylhydrazine m271 Methyl hydrazinocarboxylate m272 Methyl hydrogen glutarate
Formula
Formula weight
Beilstein reference
Density
Refractive index
195.22 31, 179 2, 656
1.4630 4 0.950
CH3NHCH2COOH HOCH2COOCH3 CH3(CH2)4CH(CH3)2 CH3(CH2)5COOCH3 (CH3)2C ¨ CHCH2CH2COCH3 CH3(CH2)4COOCH3
89.09 90.08 114.23 144.22 126.20
4, 345 3, 236 1, 161 2, 339 12, 797
1.16818 4 0.697820 4 0.881520 4 16 0.8554
270.46
2, 372
CH3(CH2)3CH(CH3)2 CH3(CH2)4COOCH3 (CH3)2CHCH2CH2CH(OH)CH3 (CH3)2CHCH2CH2COCH3 (CH3)2CHCH ¨ CHCOCH3
100.21 130.19 116.20
1, 156 2, 323 1, 416
0.678620 0.903804 0.81420 4
1.384920 1.403823 1.417620
114.19
12, 756
0.88820 4
1.406220
H(CH2)5CH(NH2)CH3
115.22 114.10 46.07 90.08
4, 194 24, 244 42, 957 31, 46
0.766518 0.866
1.423520
146.14
22, 565
1.169
1.438120
CH3NHNH2 H2NNHCOOCH3 HOOCCH2CH2CH2 COOCH3
Boiling point
Flash point
128–129
194.19 108.14
NCCH2CH2CH(CH3)CN
Melting point
168
1.397420 1.411520 1.439220
Solubility in 100 parts solvent 100 aq; 1.2 alc
2000.2mm 12510mm
63 aq; i alc, eth 126
d 212 74 109.0 55.8 67
151 117.7 173.8 7318mm
28
19615mm
118.3 71
90.1 151 150
3 54 46
s alc; misc eth v s alc, eth s alc, eth; i aq
141
41
0.5 aq; misc alc, eth
144 subl 87.5 10812mm
54
sl s aq; s alc, eth s aq, alc; 3 eth misc aq, alc; s PE
4 52 50
42 aq; sl s alc s aq; misc alc, eth s eth; sl s alc s alc, eth; sl s aq misc alc, eth s alc, chl, eth
1.440020
112.17
1.417520 157 52.4 70–73
15110mm
21 112
m273 m274 m275 m276 m277 m278 m279 m280 m281 m282
Methyl hydrogen hexanedioate Methyl hydrogen succinate Methyl hydroperoxide Methylhydroquinone Methyl 4-hydroxybenzoate Methyl 2-hydroxyisobutyrate Methyl 4-hydroxyphenylacetate 1-Methylimidazole 2-Methylimidazole 4-Methylimidazole
HOOC(CH2)4COOCH3
160.17
2, 652
HOOCCH2CH2COOCH3
132.12
2, 608
48.04
12, 270
HOC6H4COOCH3
124.14 152.15
6, 874 10, 158
(CH3)2C(OH)COOCH3
118.13
32, 223
HOC6H4CH2COOCH3
166.18
10, 191
82.11 82.11 82.11
23, 46 23, 65 23, 69
CH3OOH
N-Methylguanidine acetic acid, c277 4-Methylhexahydrophthalic anhydride, m196 Methyl hydroxyacetate, m259
1.081
1.99715 4
1.440120
112
8–9
16210mm
56–59
15120mm
v s aq, alc, eth
3865mm
misc aq, alc, eth; s bz
1.364215
125–128 126–128 270 d 1.023
1.411220 57–60
1.030
1.497020
Methyl 4-hydroxy-3-methoxybenzoate, m445 Methyl 2-hydroxypropionate, m291 2,2-Methyliminodiethanol, m223
60 143 46–48
s alc
v s alc, eth, acet
137
42
v s aq, alc
162– 1635mm 198 268 263
92
misc aq
112
2,2-Methyliminobis(acetaldehyde diethyl acetal), b169
1.303
1.304
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density 1.0720 4
m283
2-Methyl-1H-indole
131.18
20, 311
m284 m285
3-Methyl-1H-indole N-Methylisatoic anhydride Methyl isobutyrate
131.18 177.16
20, 315 27, 265
(CH3)2CHCOOCH3
102.13
2, 290
0.89120
Methyl isocyanate Methyl isodehydacetate Methyl isothiocyanate 5-Methylisoxazole Methyl lactate
CH3NCO
57.05 182.18
4, 77 18, 410
CH3NCS
73.12
CH3CH(OH)COOCH3
Methyl mandelate Methyl mercaptoacetate Methyl 3-mercaptopropionate Methylmercury chloride Methyl methacrylate Methyl methanesulfonate Methyl methoxyacetate
m286 m287 m288 m289 m290 m291 m292 m293 m294 m295 m296 m297 m298
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
58–60
273
95 165 d
266
1.384020
84
93
1
0.967
1.369520
17 60–63
37–39 16714mm
18
misc alc, eth; sl s aq s aq
4, 77
1.069
1.525837
35–36
119
32
v s alc, eth; sl s aq
83.09 104.10
27, 16 3, 280
1.018 1.08820 4
1.438620 1.413120
~66
122 144.8
30 52
C6H5CH(OH)COOCH3 HSCH2COOCH3
166.18 106.14
10, 202
1.175620 1.187
1.465720
13512mm 4310mm
30
HSCH2CH2COOCH3
120.17
32, 214
1.085
1.464020
5514mm
60
CH3HgCl
251.10
H2C ¨ C(CH3)COOCH3
100.12
22, 398
0.943320
1.414620
100.3
10
CH3SO2OCH3
110.13
4, 4
1.294320 4
1.413820
202–203
104
1.6 aq; s ketones, esters, CCl4 20 aq; 100 DMF
CH3OCH2COOCH3
104.11
3, 236
1.051120 4
1.396420
130
35
v s alc, eth; sl s aq
51–54
4.0625
v s alc, eth; s hot aq s hot aq, alc, bz
misc aq(d), alc, eth s aq, alc, bz, chl s alc, eth
170 48.2
m299
m300 m301 m302 m303
Methyl 1-methoxybicyclo[2.2.2]oct5-ene-2-carboxylate Methyl 4-methoxyphenylacetate 1-Methyl-4-(methylamino)piperidine Methyl 3-methylbutyrate 2-Methyl-6-methylene-2-octanol
Methyl iodide, i40 Methyl isoamyl ketone, m267 Methyl isobutenyl ketone, m350 Methyl isobutyl ketone, m346 Methyl isonicotinate, m402 Methyl isopentyl ketone, m267
196.25
CH3OC6H4CH2COOCH3
180.20
10, 191
128.22 (CH3)2CHCH2COOCH3
116.16
C2H5C( ¨ CH2)(CH2)3C(CH3)2OH
156.27
22, 274
1.086
1.488620
10517mm
103
1.135
1.516520
15819mm
36
0.882
1.467220
0.88120 4
1.380025
116–117
0.784
1.443120
8410mm
Methyl isovalerate, m302 2-Methyllactic acid, h127 Methyl linoleate, m325 Methyl mercaptan, m33 Methylmercaptoanilines, m422, m423 4-Methylmercaptobenzaldehyde, m424
55 sl s aq; misc alc, eth 76
Methylmercaptophenols, m431a, m429 7-Methyl-3-methylene-1,6-octadiene, m453 1-Methyl-4-(1-methylethenyl)cyclohexane, d649 5-Methyl-2-(1-methylethyl)cyclohexanol, m12 5-Methyl-2-(1-methylethyl)cyclohexanone, m13
1.305
1.306
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m304
Density
Refractive index
140.14
1.116
1.473020
7520mm
63
CH3S( ¨ O)CH2SCH3
124.22
1.191
1.548720
952.5mm
112
CH3SCH2CH2COOCH3
134.20
1.077
1.465020
7513mm
72
C10H7CH3 C10H7CH3
101.15 142.20 142.20 172.18
27, 6 5, 566 5, 567 72, 656
0.920 1.02514 4 1.02920 4
1.434920 1.615920 1.602640
66 116 30.5 244.7 34.6 241.4 105–107
23 82
C10H7COCH3
170.21
7, 401
1.133604
1.628420
12
296–298
s alc, eth; i aq
C10H7COCH3
170.21
7, 402
53–55
300–301
sl s alc; s CS2
CH3ONO2
77.04
1, 284
1.207520 4
83.0
sl s aq; s alc, eth
61.04
1, 284
0.991 (liquid) 1.586140 4
64 explodes 17.35
Name
Formula
Formula weight
Beilstein reference
m313
Methyl 2-methyl3-furancarboxylate Methyl S-methylthiomethyl sulfoxide Methyl 3-(methylthio)propionate N-Methylmorpholine 1-Methylnaphthalene 2-Methylnaphthalene 2-Methyl-1,4naphthoquinone Methyl 1-naphthyl ketone Methyl 2-naphthyl ketone Methyl nitrate
m314
Methyl nitrate
CH3ONO
m315
2-Methyl-4-nitroaniline 2-Methyl-5-nitroaniline 4-Methyl-2-nitroaniline Methyl 2-nitrobenzoate
CH3C6H3(NO2)NH2
152.15
12, 846
CH3C6H3(NO2)NH2
152.15
CH3C6H3(NO2)NH2 O2NC6H4COOCH3
m305
m306 m307 m308 m309 m310 m311 m312
m316 m317 m318
1.374820
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
s aq, alc, eth v s alc, eth v s alc, eth 1.4 alc; 10 bz; s chl
s alc, eth
131–133
v s alc; s bz
12, 844
104–107
s alc, acet, eth
152.15
12, 100
115–116
v s alc; s eth
181.15
9, 372
1.280
1.535020
13
1060.1mm
112
s alc, eth
m319 m320 m321 m322 m323 m324 m325 m326 m327 m328
2-Methyl-3-nitrobenzoic acid 4-Methyl-3-nitrobenzoic acid 5-Methyl-2-nitrobenzoic acid 2-Methyl-5-nitroimidazole 3-Methyl-2-nitrophenol 4-Methyl-2-nitrophenol Methyl 9,12-octadecadienoate Methyl octadecanoate Methyl cis-9-octadecenoate Methyloctadecyldichlorosilane
CH3C6H3(NO2)COOH
181.15
9, 471
182–184
CH3C6H3(NO2)COOH
181.15
9, 502
187–190
CH3C6H3(NO2)-COOH
181.15
9, 482
134–136
127.10
231, 23
252–254
CH3C6H3(NO2)OH
153.14
6, 385
35–39
CH3C6H3(NO2)OH
153.14
6, 412
CH3(CH2)4CH ¨ CHCH2CH ¨ CH(CH2)7COOCH3 CH3(CH2)16COOCH3
294.46
CH3(CH2)7CH ¨ CH(CH2)7COOCH3 C18H37Si(CH3)Cl2
Methyl 2-methyllactate, m278 Methyl methyl-2-propenoate, m296 Methyl methylsulfinylmethyl sulfide, m305
298.51
2, 379
296.50
2, 467
367.5
1.24020 4
1.57440
32–35
12522mm
v s alc, eth
0.888618 4
1.459325
35
21216mm
misc DMF
38–39
21515mm
19.9
1682mm
0.87918 4 0.93020 4
Methyl myristate, m413 Methyl nicotinate, m404 4-Methyl-3-nitroanisole, m85
1.452120
112
1852.5mm
Methyl 6-nitrovertrate, m226 Methyl nonyl ketone, u5 Methyl oleate, m327
s alc, eth misc abs alc, eth
1.307
1.308
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m329 m330 m331 m332 m333 m334 m335 m336 m337 m338 m339 m340 m341 m342 m343
Name
Formula
Formula weight
Beilstein reference
158.24 227.3
2, 348
Methyl octanoate Methyloctyldichlorosilane 3-Methyl-2-oxazolidinone 2-Methyl-2-oxazoline Methyl 2-oxocyclopentanecarboxylate Methyl 2-oxopropionate Methyl 2-oxo-1pyrrolidineacetate 2-Methylpentane 3-Methylpentane
CH3(CH2)6COOCH3 C8H17Si(CH3)Cl2
CH3CH2CH2CH(CH3)2 (CH3CH2)2CHCH3
86.18 86.18
2-Methyl-2,4pentanediol 4-Methylpentanenitrile Methyl pentanoate
(CH3)2C(OH)CH2CH(OH)CH3 (CH3)2CHCH2CH2CN
2-Methylpentanoic acid 3-Methylpentanoic acid 2-Methyl-1-pentanol
101.11
Density
Refractive index
Melting point
Boiling point
Flash point
0.877520 4 0.97620 4
1.416025 1.44420
40
192.9 946mm
1.170
1.454120
15
20
v s alc, eth; i aq 112
85.11
27, 11
1.005
1.434020
87– 901mm 110
142.15
10, 597
1.145
1.456020
10519mm
112
102.09
3, 616
1.130
1.406520
134–137
39
1.131
1.471920
1, 148 1, 149
0.653220 0.664320
1.372520 1.376520
118.18
1, 486
0.921620 4
1.427020
97.16
22, 290
0.803520 4
1.406120
CH3(CH2)3COOCH3
116.16
2, 301
0.875
1.396220
CH3CH2CH2CH(CH3)COOH CH3CH2CH(CH3)CH2COOH CH3CH2CH2CH(CH3)CH2OH
116.16
22, 288
0.924220 20
1.413520
116.16
2, 331
0.926220
1.415920
102.18
1, 409
0.824220
1.419020
CH3C( ¨ O)COOCH3
157.17
Solubility in 100 parts solvent
misc alc, eth; sl s aq
110 153.7 50 glass 50 glass 51.1
85 glass 42
60.3 63.3
23 6
198.3
101
153.5
misc aq s alc; misc eth
128
22
196.4
107
sl s aq; misc alc, eth 1.3 aq
196–198
85
s alc, eth
148.0
50
s alc, eth
m344
3-Methyl-3-pentanol
(CH3CH2)2C(CH3)OH
102.18
1, 411
0.828120
1.418620
38
122.4
46
m345
4-Methyl-2-pentanol
102.18
1.410
0.808020
1.411220
90
131.7
41
m346
4-Methyl-2-pentanone 2-Methyl-1-pentene
(CH3)2CHCH2CH(OH)CH3 (CH3)2CHCH2COCH3
100.16
1, 691
0.800620 4
1.395820
83.5
115.7
13
84.16
11, 90
0.679920 4
1.392020
135.7
62.1
26
1.7 aq; misc alc, bz, eth s alc
84.16 114.14
1, 217 22, 406
0.686520 4 0.9529
1.400320 1.4489
135.1 35
67.3 11520mm
23 46
s alc i aq; v s alc
98.15
1, 736
0.854 20 4
1.445820
42
129.5
30
3.1 aq
CH3(CH2)3CH(NH2)CH3 (CH3)2CHCH2C ˜ CH CH3CH2C(CH3)(OH)C ˜ CH
101.19
4, 190
0.76720 4
19
116–118
13
s aq, alc, PE
104.8 30.6
61.2 121–122
38
13 aq; misc bz, acet, PE, EtAc; s eth
C6H5CH2CH2Si(CH3)Cl2
219.2
m347 m348 m349
2-Methyl-2-pentene 4-Methyl-2-pentenoic acid m350 4-Methyl-3-penten2-one m350a 1-Methylpentylamine m351 m352
4-Methyl-1-pentyne 3-Methyl-1-pentyn3-ol
m353
Methyl-(2-phenethyl)dichlorosilane
o-Methylolphenol, h105 2-Methyloxacyclopropane, p227
CH3CH2CH2C(CH3) ¨ CH2 CH3CH2CH ¨ C(CH3)2 (CH3)2CHCH ¨ CHCHCOOH (CH3)2C ¨ CHCOCH3
82.15 98.15
2
1 , 506
Methyl oxirane, p227 Methyl palmitate, m263
0.704120 4 0.868820 4
1.393020 1.431820
1.11120 4
1.51020
996mm
Methyl pentyl ketone, h15
misc alc, eth; sl s aq 1.6 aq
1.309
1.310
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m354 m355 m356 m357 m358 m359 m360 m361 m362 m363 m364 m365 m366 m367
Name (1-Methylphenethyl)trichlorosilane N-(4-Methylphenyl)acetamide Methyl phenylacetate Methylphenylchlorosilane Methylphenyldichlorosilane p-(1-Methyl-2phenylethyl)phenol 1-Methyl-1-phenylhydrazine 1-Methyl-3-phenylpropyl acetate 3-Methyl-1-phenyl2-pyrazolin-5-one Methylphenylsilane Methyl phenyl sulfide N-Methylpiperazine 2-Methylpiperazine
Formula
Formula weight
Beilstein reference
Density
Refractive index
1.22620 4
1.51520
C6H5CH(CH3)CH2SiCl3
253.6
CH3C6H4NHCOCH3
149.19
122, 501
1.21215
C6H5CH2COOCH3 C6H5(CH3)Si(H)Cl
150.18 156.7
9, 434
1.044 1.105420 4
C6H5Si(CH3)Cl2
191.1
C6H5CH2CH(CH3)C6H4OH C6H5N(CH3)NH2
212.29
C6H5CH2CH2CH(CH3)OOCCH3
C6H5Si(CH3)H2 C6H5SCH3
Melting point
153 1.507520 1.57120
1.03822 4
192.26
61, 258
0.991
174.20
24, 20
122.1 124.21
6, 297
100.17 100.17
23, 17
158.25
233, 123
307 215 113100mm
Solubility in 100 parts solvent
s alc, EtAc, HOAc 90
i aq; misc alc, eth
11821mm
96
misc alc, bz, chl, eth
740.05mm
112
205–206 73
15, 117
Flash point
11610mm
1.18720 4
122.17
Boiling point
1.583420
0.88920 4 1.058
1.50620 1.585220
0.903
1.465520
1.483520
m368
4-Methyl-1-piperazinepropanol N-Methylpiperidine
C5H10N ˆ CH3
99.19
20, 19
0.816
1.437820
m369
2-Methylpiperidine
CH3C5H9NH
99.19
20, 95
0.844
1.445920
335
130
287265mm
15
139–240 188
65–67
138 155.6
42 22
v s aq, alc, eth 78 aq; 37 acet; 32 bz
120– 1219mm 106–107
1
119
8
v s aq; misc alc, eth v s aq; misc alc, eth
28–30
5
i aq; s alc
m370 m371 m372
99.19 99.19 129.20
20, 100 20, 101 212, 8
0.845 0.838 1.013
1.447020 1.445820 1.477220
113.16
212, 215
0.920
1.461420
72.11
1, 671
0.789120
1.372720
(CH3)3CH
58.12
1, 124
0.55720
H2NCH2CH2CH2NHCH3
88.15
41, 419
0.844
1.446820
(CH3)2C(NH2)CH2NH2
88.15
4, 266
0.841
1.441020
CH3CH2CH(SH)CH3
90.19
1, 373
0.824625 4
1.433825
CH3C5H9NH CH3C5H9NH
m374
3-Methylpiperidine 4-Methylpiperidine 1-Methyl-3-piperidinemethanol 1-Methyl-4-piperidone 2-Methylpropanal
(CH3)2CHCHO
m375
2-Methylpropane
m376
N-Methyl-1,3propanediamine 2-Methyl-1,2propanediamine 1-Methyl-1-propanethiol
m373
m377 m378
Methylphenols, c279, c280, c281 Methyl-m-phenylene diisocyanate, t172 Methyl phenyl ether, m48 Methyl phenyl ketone, a31
2-Methyl-2-phenylpropane, b425 Methyl -picolinate, m402 Methylpiperidinol, h144 Methyl pivalate, m227
126 124 140–145
1 7 94
v s aq v s aq
60 65
64.1
159.6
11.7
139–141
9 aq; misc alc, bz, chl, eth 13 mL aq; 1320 mL alc; 2890 mL eth 35 23
165
84–85
21
1-Methyl-1-propanethiol, b389 Methyl propargyl ether, m396
sl s aq; v s alc, eth
1.311
1.312
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m379 m380 m381 m382 m383 m384
m385 m386 m387 m388 m389 m390 m391 m392 m393
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
2-Methyl-1-propanethiol 2-Methyl-2-propanethiol 2-Methyl-1-propanol
(CH3)2CHCH2SH
90.19
1, 378
0.835720 4
1.439620
79
88.5
9
v s alc, eth
(CH3)3CSH
90.19
1, 383
0.794325 4
1.419825
1.1
64.2
26
i aq
(CH3)2CHCH2OH
74.12
1, 373
0.801620
1.395820
108
107.9
27
2-Methyl-2-propanol 2-Methylpropene 2-Methyl-2-propene1-sulfonic acid, Na salt 2-Methyl-2-propen1-ol 4-Methyl-2-(2-propenyl)phenol 6-Methyl-2-(2-propenyl)phenol N-Methylpropionamide Methyl propionate 2-Methylpropionic acid 4-Methylpropiophenone Methylpropyldichlorosilane Methyl propyl ether
(CH3)3COH (CH3)2C ¨ CH2 H2C ¨ C(CH3)CH2SO3Na
74.12 56.10 158.15
1, 379 1, 207
0.785820 1.387720 4 140 0.62664
25.8 140.4 300
82.4 6.9
15
10 aq; misc alc, eth misc aq, alc, eth v s alc, eth
H2C ¨ C(CH3)CH2OH
72.11
1, 443
0.857
1.425020
113–115
33
CH3C6H3(CH2CH ¨ CH2)OH CH3C6H3(CH2CH ¨ CH2)OH CH3CH2CONHCH3
148.21
61, 287
0.980
1.538520
238
101
148.21
61, 287
0.992
1.538120
231–233
94
0.930525
1.434525
30.9
148
87.12 88.11 88.11
2, 239 2, 288
0.91520 4 0.95020 4
1.377020 1.393020
88 46.1
79.7 154.7
2 55
CH3C6H4COCH2CH3
148.21
7, 317
0.993
1.528020
7.2
239
96
CH3CH2CH2Si(CH3)Cl2
157.1
1.0425 4
1.42525
CH3CH2COOCH3 (CH3)2CHCOOH
CH3CH2CH2OCH3
74.12
1, 354
0.73820
6 aq; misc alc, eth 23 aq; misc alc, chl, eth
125 39.1
sl s aq; misc alc, eth
m394 m395 m396 m397 m398 m399 m400 m401 m402 m403 m404
2-Methyl-2-propyl1,3-propanediol Methyl propyl sulfide Methyl 2-propynyl ether 2-Methylpyrazine 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine Methyl 3-pyridinecarboxylate Methyl 4-pyridinecarboxylate 1-Methyl-2-pyridone N-Methylpyrrole
2-Methylpropenenitrile, m27 2-Methylpropenoic acid, m26 2-Methylpropionaldehyde, i73 2-Methylpropionamide, i74 2-Methylpropionic acid, i75 2-Methylpropionitrile, i76
132.20
11, 254
CH3SCH2CH2CH3
90.18
13, 1432
0.842420
1.444220
CH3OCH2C ˜ CH
70.09
1, 454
0.830
1.396120
CH3C5H4N CH3C5H4N CH3C5H4N (C5H4N)COOCH3
94.12 93.13 93.13 93.13 137.14
23, 94 20, 234 20, 239 20, 240 22, 39
1.030 0.95015 4 0.96115 4 0.95715 4
1.504220 1.501020 1.506820 1.5058
(C5H4N)COOCH3
137.14
22, 46
1.001
109.13 81.2
21, 268 20, 163
1.112 0.914
C3H7C(CH3)(CH2OH)2
1-Methylpropyl acetate, b413 2-Methylpropyl acetate, i62 2-Methyl-2-propylamine, b418 2-Methylpropylamine, i63 (1-Methylpropyl)benzene, b424 (2-Methylpropyl)benzene, i64
53–55
230
113.0
95.5
s aq
61–62
1
29 67 18.3 3.8 39
135 128–129 143.5 143–145 209
50 26 36 56
1.512220
8.5
207–209
82
1.569020 1.487520
7 57
250740mm 113
15
v s aq, alc, eth v s aq; s alc, eth s aq, alc, eth s aq, alc, eth s aq, alc, bz
i aq; misc alc, eth
2-Methylpropyl formate, i66 2-Methylpropyl lactate, i68 Methyl propyl ketone, p41 2-Methylpropyl 2-methylpropanoate, i67 Methyl pyruvate, m334 Methyl pyridyl ketones, a53, a54, a55
1.313
1.314
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m405 m406 m407 m408 m409 m410 m411 m412 m413 m414
m415 m416 m417
m418 m419 m420 m421
Name N-Methylpyrrolidine N-Methyl-2-pyrrolidinone 2-Methylquinoline 4-Methylquinoline 2-Methylquinoxaline Methyl salicylate -Methylstyrene Methylsuccinic acid Methyl tetradecanoate 2-Methyl-3,3,4,4tetrafluoro-2butanol 2-Methyltetrahydrofuran 1-Methyl-1,2,3,6tetrahydropyridine 3-Methyltetrahydrothiophene-1,1dioxide 4-Methyl-5-thiazoleethanol 2-Methyl-2thiazoline Methyl thioacetate (Methylthio)acetonitrile
Beilstein reference
Density
Refractive index
Melting point
85.15 99.13
20, 4 212, 213
0.81920 4 1.027925
1.424720 1.468025
24.4
80–81 202
21 95
HOC6H4COOCH3
143.19 143.19 144.18 152.15
20, 387 20, 395 231, 44 10, 70
1.058 1.082620 4 1.118 1.183120
1.610820 1.620020 1.615620 1.524020
2 9–10 180–181 8.6
248 261–263 245–247 223.0
79 112 107 110
C6H5C(CH3) ¨ CH2 HOOCCH2CH(CH3)COOH CH3(CH2)12COOCH3
118.18 132.12 242.40
5, 484 2, 636 22, 326
0.909 1.411 0.855
1.537520 1.4303 1.436220
23.2 165.5 110–112 d 18.4 323
HCF2CF2C(CH3)2OH
160.11
1.282
1.352420
117
73
0.860
1.405620
78–80
11
97.16
0.837
1.457020
113–114
8
134.20
1.191
1.477220
276
112
143.21
1.196
1.550820
1357mm
1.067
1.520020
1.039
1.4628 1.482620
Formula
Formula weight
86.13
101.17 CH3COSCH3 CH3SCH2CN
90.14 87.14
17, 12
27, 13
101
Boiling point
Flash point
Solubility in 100 parts solvent misc aq, eth misc aq, alc, bz, eth i aq; s chl, eth misc alc, bz, eth misc aq 0.7 aq; s chl, eth; misc alc, HOAc
45 112
145
37
98 6315mm
10 67
66 aq; v s alc, eth misc alc, bz, eth
s alc, eth
m422 m423 m424 m425 m426 m427 m428 m429
2-(Methylthio)aniline 3-(Methylthio)aniline 4-(Methylthio)benzaldehyde 3-(Methylthio)-2butanone Methyl thiocyanate 3-Methylthiophene 5-Methyl-2-thiophenecarbaldehyde 4-(S-Methylthio)phenol
CH3SC6H4NH2
139.22
13, 399
1.111
1.623920
234
112
CH3SC6H4NH2
139.22
131, 141
1.130
1.642320
16516mm
112
CH3SC6H4CHO
152.22
81, 533
1.144
1.645220
901mm
CH3CH(SCH3)COCH3
118.20
14, 3993
0.975
1.471020
CH3SCN
73.12 98.17 126.18
3, 175 17, 38 171, 151
1.06820 1.016 1.170
1.469720 1.518020 1.582520
50– 5420mm 130–133 115.4 11425mm
CH3SC6H4OH
140.20
61, 419
1-Methyl-2-(3-pyridyl)pyrrolidine, n20 Methylresorcinol, d390 Methylsalicyclic acids, h137, h138 Methyl stearate, m326
Methylsuccinyl chloride, m188 methylsulfonic acid, m30 Methyl theobromine, c1 3-Methyl-2-thiabutane, i104
51 69.0
83–85
44 38 11 87
153– 15620mm
Methyl thienyl ketone, a57 Methyl thioglycolate, m293
i aq; misc alc, eth i aq; misc alc, eth
1.315
1.316
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m430 m431 m432 m433 m434 m435 m436 m437 m438 m439
m440
m441 m442
Name 3-Methylthio-1,2propanediol N-Methylthiourea N-Methyl-o-toluamide N-Methyl-p-toluenesulfonamide Methyl p-toluenesulfonate Methyltriacetoxysilane Methyl 2,2,2-trichloroacetimidate Methyltrichlorogermane Methyl trifluoromethanesulfonate N-Methyl-N-trimethylsilylacetamide N-Methyl-N-(trimethylsilyl)trifluoroacetamide Methyltripropoxysilane (Methyl)triphenylphosphonium bromide
Formula
Formula weight
Beilstein reference
CH3SCH2CH(OH)CH2OH
122.19
CH3NHC( ¨ S)NH2 CH3C6H4CONHCH3
90.15 149.19
4, 70 9, 465
CH3C6H4SO2NHCH3
185.25
11, 105
CH3C6H4SO2OCH3
186.23
11, 99
Density
Refractive index
1.164
1.516020
Melting point
Boiling point
119–121 69–71
1.16815
Solubility in 100 parts solvent
112 v s aq, alc
76–79 27.5
CH3Si(OOCCH3)3
220.3
43, 1896
1.17520 4
Cl3CC( ¨ NH)OCH3
176.43
2, 212
1.425
CH3GeCl3
193.98
1.730
CF3SO2OCH3
164.10
1.450
1.324420
94–99
CH3CON(CH3)Si(CH3)3
145.3
1.43920 4
0.90120
154
CF3CON(CH3)Si(CH3)3
199.25
1.075
1.380220
132
CH3Si(OC3H7)3
220.4
0.8820 4
1.408520
8313mm
[CH3P(C6H5)3]Br
357.24
44, 4011
Flash point
1.40820
883mm
1.478020
149
none
111
230–233
38
25
m443
2-Methylundecanal
m444 m445 m446 m447
Methyl urea Methyl vanillate Methyl vinyl ether 2-Methyl-5-vinylpyridine Morpholine
m448 m449 m450 m451
CH3(CH2)8CH(CH3)CHO CH3NHCONH2 CH3OC6H3(OH)COOCH3 CH3OCH ¨ CH2
4-Morpholinecarbonitrile N-Morpholino-1cyclohexene 2-(N-Morpholino)ethanesulfonic acid
4-Methyl-2-thiouracil, h120 Methyltrichlorosilane, t238 Methyltriethoxysilane, t266a Methyl trimethylacetate, m227 Methyltris(2-methoxyethoxy)silane, t429 -Methylumbelliferone, h140 Methyluracil, d391
0.83015 4
184.32 74.08 182.18 58.08 119.17
1.204 0.751120 4 0.898
27, 5
271
93
1.3947 1.543720
101–102 d 64–65 285–287 112 5.5 10050mm
56 65
1.00720 4
1.454220
4.9
128.9
35
112.12
1.109
1.473020
730.6mm
104
167.25
0.995
1.512820
117–122
68
87.12
4, 64 10, 396 13, 1857
1.432120
195.24
Methyl urethane, m181 Methyl valerate, m340 3-Methylvaleric acid, m342 4-Methylvaleronitrile, m339 Methyl veratrate, m225 Michler’s ketone, b171 Monoethyl adipate, e149
s alc, eth v s aq, alc; i eth s hot alc, hot PE 0.8 aq; v s alc
misc aq, alc, bz, eth
300
Monoglyme, d439 Monomethyl adipate, m273 Monomethyl glutarate, m272 Monomethyl succinate, m274 Mordent violet 5, a60 4-Morpholinoethanol, h122 1-Morpholinocyclopentene, c361
1.317
1.318
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. m452
Name
m453
3-(N-Morpholino)1,2-propanediol -Myrcene
n1 n2
1-Naphthaldehyde Naphthalene
n3
n8
1-Naphthalenecarboxylic acid 1,5-Naphthalenediamine 1,8-Naphthalenediamine 1-Naphthalenemethylamine 1,8-Naphthalic anhydride 1,8-Naphthalimide
n9 n10
1-Naphthol 2-Naphthol
n11 n12
1,4-Naphthoquinone (2-Naphthoxy)acetic acid 2-(1-Naphthyl)acetamide
n4 n5 n6 n7
n13
Formula
Formula weight
Beilstein reference
161.20
Density
Refractive index
1.157
Melting point 37–38
Boiling point
Flash point
19130mm
112
166–168
39
Solubility in 100 parts solvent
(CH3)2C ¨ CHCH2CH2C( ¨ CH2)CH ¨ CH2 C10H7CHO C10H8
136.24
1, 264
0.79420 4
1.470920
156.18 128.17
7, 400 5, 531
1.15020 4 1.16220 4
1.652020 1.5821100
C10H7COOH
172.18
9, 647
1–2 16115mm 80.2 217.7 subl above mp 160–162 300
C10H6(NH2)2
158.20
13, 203
185–187
C10H6(NH2)2
158.20
13, 204
1.126599 4
1.682899
C10H7CH2NH2
157.22
12, 1316
1.073
1.642920
198.18
17, 521
267–269
sl s HOAc
197.19
21, 527
300
C10H7OH C10H7OH
144.17 144.17
6, 596 6, 627
1.095499 4 1.2174
7, 724 6, 645
1.422
C10H7OCH2COOH
158.16 202.21
sl s alc; i bz, eth, aq v s alc, bz, chl, eth 0.1 aq; 125 alc; 6 chl; 77 eth; s alk s bz, chl, eth, alk
C10H7CH2CONH2
185.23
9, 666
1.620699
66.5
v s hot alc, eth s hot aq, hot alc
20512mm 290–293
96 288 121–123 285–286 128 subl 100 155–157 181–183
112 78
s alc, chl, eth, HOAc s alc, eth 0.3 aq; 7 alc; 33 bz; 50 chl
sl s aq; s alc, eth 112
161
i aq; s bz, CS2
n14 n15 n16 n17 n18 n19 n20
1-Naphthyl acetate 1-Naphthylacetic acid 1-Naphthylacetonitrile 1-Naphthylamine 2-Naphthylsulfonic acid 1-(1-Naphthyl)-2thiourea Nicotine
C10H7OOCCH3 C10H7CH2COOH
186.21 186.21
6, 608 9, 666
C10H7CH2CN
167.21
9, 667
C10H7NH2 C10H7SO3H
143.18 208.23
12, 1212 11, 171
C10H7NHC( ¨ S)NH2
202.28
12, 1241
162.24
23, 117
MSTFA, m440 Mucic acid, t84 Mucochloric acid, d208 Myristolyl chloride, t41 Myristic acid, t39 Myristic acid, t40 Myristyl bromide b352 Naphthacene, b7 1-Naphthaleneacetamide, n13 1-Naphthaleneacetonitrile, n16 Naphthalenediols, d392, d393, d394, d395
1.12325 25 1.44125
43–46 135
d
s alc, eth 3.3 alc; v s chl, eth
1.619220
33–35
19418mm
112
s alc
1.6703
50 91
301 d
157
0.2 aq; v s alc, eth 77 aq; s alc, eth
198 1.009720 4
1-Naphthol-2-carboxylic acid, h148 3-Naphthol-2-carboxylic acid, h149 1-Naphthol-3,6-disulfonic acid, h151 2-Naphthol-3,6-disulfonic acid, h150 1-Naphthonitrile, c293 (2-Naphthoxy)acetic acid, n12 N-1-Naphthylaniline, p130 Natural orange 6, h152 NBA, b218 NBS, b351 Neohexane, d489
1.528220
79
12317mm
Neohexene, d499 Neopentane, d592 Neopentyl alcohol, d595 Neopentyl glycol, d594 Neral, d563 Nerolidol, h184 Nicotinaldehyde, p256 Nicotinic acid, p256 Nicotinonitrile, c296
0.6 aq; 2.4 acet; s alc misc aq; v s alc, eth, PE
1.319
1.320
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. n21 n22 n23 n24 n25 n26 n27 n28 n29 n30 n31
Name Nitrilotriacetic acid m-Nitroacetophenone p-Nitroacetophenone o-Nitroaniline m-Nitroaniline p-Nitroaniline 3-Nitrobenzaldehyde 4-Nitrobenzaldehyde 2-Nitrobenzamide
Formula weight
Beilstein reference
N(CH2COOH)3
191.14
4, 369
246 d
O2NC6H4COCH3 O2NC6H4COCH3 O2NC6H4NH2 O2NC6H4NH2 O2NC6H4NH2 O2NC6H4CHO O2NC6H4CHO O2NC6H4CONH2
165.15 165.15 138.13 138.13 138.13 151.12 151.12 166.12
7, 288 7, 288 12, 687 12, 698 12, 711 7, 250 7, 256 9, 373
76–78 78–80 69–70 114 146 58 106–107 174–178
C6H5NO2 O2NC6H3(COOH)2
123.11 211.13
5, 233 9, 851
O2NC6H3(COOH)2
211.13
9, 823
216 d
2 aq; v s hot alc
O2NC6H3(COOH)2
211.13
9, 828
163–166
v s aq, alc; s eth
O2NC6H3(COOH)2
211.13
9, 840
260–261
0.15 aq; v s alc, eth
65–67
s eth; d hot aq, alc s alc, acid 0.7 aq; 33 alc; 22 eth 0.3 aq; 33 alc; 40 acet 9 alc; 2 eth; 5 acet
Formula
Density
Refractive index
1.44215 1.43 1.43714 1.279220 4 1.496 32 1.4624 1.20515 4
1.554615
Melting point
O2NC6H4SO2Cl
221.62
11, 67
n36 n37
Nitrobenzene 2-Nitrobenzene-1,4dicarboxylic acid 3-Nitrobenzene-1,2dicarboxylic acid 4-Nitrobenzene-1,2dicarboxylic acid 5-Nitrobenzene-1,3dicarboxylic acid 2-Nitrobenzenesulfonyl chloride 6-Nitrobenzimidazole 2-Nitrobenzoic acid
O2NC6H4COOH
163.14 167.12
23, 135 9, 370
1.58
207–209 146–148
n38
3-Nitrobenzoic acid
O2NC6H4COOH
167.12
9, 376
1.494
142
n39
4-Nitrobenzoic acid
O2NC6H4COOH
167.12
9, 389
1.58
242.8
n32 n33 n34 n35
Boiling point
Flash point
Solubility in 100 parts solvent 0.1 aq; s hot alc
202 202 284 306 260100mm 16423mm
165
317
5.8 210.8 270–272
87
s alc, eth s alc s hot aq, alc, chl 0.1 aq; 5 alc; 6 eth 4 alc; 3.3 eth; s bz s alc, chl, eth s alc, bz, HOAc s hot aq, hot alc, eth v s alc, bz, eth
n40
4-Nitrobenzonitrile
O2NC6H4CN
148.12
9, 397
146–149
n41
O2NC6H4COCl
185.57
9, 381
32–35
275–278
O2NC6H4COCl
185.57
9, 394
75
205105mm
d aq, alc; s eth
O2NC6H4CONHCH2COOH
224.17
9, 395
131–133
O2NC6H4CH2OH
153.14
6, 449
30–32
1803mm
s aq, alc, eth
O2NC6H4CH2OH
153.14
6, 450
92–94
18512mm
v s alc, eth; sl s aq
O2NC6H4CH2Br
216.04
5, 334
98–100
2 alc; v s eth
O2NC6H4CH2Cl
171.58
5, 329
70–73
8 alc; s eth
n48 n49 n50
3-Nitrobenzoyl chloride 4-Nitrobenzoyl chloride N-(p-Nitrobenzoyl)glycine 3-Nitrobenzyl alcohol 4-Nitrobenzyl alcohol 4-Nitrobenzyl bromide 4-Nitrobenzyl chloride 2-Nitrobiphenyl 4-Nitrobiphenyl 1-Nitrobutane
s HOAc; sl s aq, alc d aq, alc; v s eth
O2NC6H4C6H5 O2NC6H4C6H5 CH3CH2CH2CH2NO2
199.21 199.21 103.18
5, 582 5, 583 1, 123
1.4425 4
1.61325
0.97520 20
1.4112
n51 n52
3-Nitro-2-butanol 2-Nitrodiphenylamine
CH3CH(NO2)CH(OH)CH3 O2NC6H4NHC6H5
119.12 214.22
1, 373 12, 690
1.129625 4
1.441420
n42 n43 n44 n45 n46 n47
Ninhydrin, i16 Nioxime, c323 2,2,2 -Nitrilotriethanol, t264
1,1,1 -Nitrilotris(2-propanol), t309 2-Nitro-p-anisidine, m79 5-Nitro-o-anisidine, m78
36.7 325 112–114 340 81.3 152.8 9210mm
179
s alc, acet, CCl4 sl s alc; v s eth sl s aq; misc alc, eth
91
76–78 Nitroanisoles, m81, m82 4-Nitrobenzyl cyanide, n65 Nitrocresols, m323, m324
i aq; s alc
1.321
1.322
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
n53
Nitroethane
CH3CH2NO2
n54 n55 n56 n57 n58
1-Nitroguanidine 5-Nitro-1H-indazole Nitromethane 1-Nitronaphthalene 3-Nitro-2-pentanol
O2NNHC( ¨ NH)NH2
n59 n60 n61
2-Nitrophenethyl alcohol 2-Nitrophenol 4-Nitrophenol
n62 n63 n64 n65 n66 n67 n68 n69
Formula weight 75.07
Beilstein reference
Density
Refractive index
Melting point
Boiling point
1, 99
1.052820 20
1.392020
90
1.379525
35
112
114.1
Flash point 30
Solubility in 100 parts solvent 4.5 aq; misc alc, eth; s alk, chl 0.4 aq; sl s MeOH s alc, bz, eth, acet 11 aq; s alc, eth s alc; v s chl, eth
CH3NO2 C10H7NO2 CH3CH2CH(NO2)CH(OH)CH3 O2NC6H4CH2CH2OH
104.07 163.14 61.04 173.17 133.15
3, 126 23, 129 1, 74 5, 553 1, 385
1.132225 4 1.223 1.081825 4
1.443020
d 225 207–209 28.4 101.2 59–60 304 10010mm
167.16
6, 218
1.190
1.563720
2
O2NC6H4OH O2NC6H4OH
139.11 139.11
6, 213 6, 226
1.495 1.495
4-Nitrophenyl acetate
O2NC6H4OOCCH3
181.15
6, 233
77–79
2-Nitrophenylacetic acid 4-Nitrophenylacetic acid 4-Nitrophenylacetonitrile 4-Nitrophenyl chloroformate 2-Nitro-p-phenylenediamine 4-Nitro-o-phenylenediamine 4-Nitrophenylhydrazine
O2NC6H4CH2COOH
181.15
9, 454
139–142
s alc, bz, eth, alk s aq; v s alc, chl, eth s aq; v s alc, bz, eth s hot aq, alc
O2NC6H4CH2COOH
181.15
9, 455
153
s alc, bz, eth
O2NC6H4CH2CN
162.15
9, 456
117
s alc, eth
O2NC6H4OOCCl
201.57
61, 120
77–79
O2NC6H3(NH2)2
153.14
13, 120
137–140
O2NC6H3(NH2)2
153.14
13, 29
199–201
s acid
O2NC6H4NHNH2
153.14
15, 468
156 d
s alc, chl, eth, hot bz
267
44–45 214–216 112–114 279
90
16219mm
n70
20
1848mm
s alc, eth
6, 232
53–56
320
s bz, eth
193.11
17, 486
163–165
CH3CH2CH2NO2
89.09
1, 115
1.000920
1.401620
104.0
131.2
33
2-Nitropropane
(CH3)2CHNO2
89.09
1, 116
0.987620
1.394920
91.3
120.3
37
2-Nitro-1-propanol 4-NitropyridineN-oxide 8-Nitroquinoline Nitrosobenzene N-Nitrosodimethylamine p-Nitrosodiphenylamine 1-Nitroso-2-naphthol
CH3CH(NO2)CH2OH O2NC5H4N(O)
105.09 140.10
1, 358
1.184125 4
1.437920
9910mm
100
1.4 aq; misc alc, eth 1.7 aq; misc alc, eth s aq, alc, eth
C6H5NO (CH3)2NNO
174.16 107.11 74.08
20, 373 5, 230 8, 84
61
s alc, bz, eth; i aq i aq; s alc v s aq, alc, eth
C6H5NHC6H4NO
198.22
C10H6(NO)OH
173.16
n73
2-Nitrophenyl phenyl ether 4-Nitrophenyl phenyl ether 3-Nitrophthalic anhydride 1-Nitropropane
n74 n75 n76
n71 n72
n77 n78 n79 n80 n81
Nitroglycerin, g21 5-Nitroisophthalic acid, n34 3-Nitrophenyl disulfide, b194
O2NC6H4OC6H5
215.21
62, 222
O2NC6H4OC6H5
215.21
1.253922
1.57520
sl s aq, bz
159–162 89–91 67–69 1.004820 4
7, 712
4-Nitrophenyl disulfide, b195 4-(p-Nitrophenylthio)aniline, a243 3-Nitro-o-phthalic acid, n32
1.436820
5918mm 151–153
144–145
v s alc, bz, chl, eth
109–110
3 alc; s bz, eth, alk
4-Nitro-o-phthalic acid, n33 N-Nitrosophenylhydroxylamine, c284
1.323
1.324
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. n82
n83
Name 1-Nitroso-2naphthol-3,6-disulfonic acid, di-Na salt hydrate 4-Nitrosophenol
Formula weight
Beilstein reference
377.26
112, 190
300
2.5 aq; sl s alc
ONC6H4OH
123.11
7, 622
d 126
C6H5CH ¨ CHNO2 CH3C6H4NO2 CH3C6H4NO2 CH3C6H4NO2 CF3C6H4NO2
149.15 137.14 137.14 137.14 191.11
5, 478 5, 318 5, 321 5, 323 52, 251
1.162219 15 1.158120 4 1.392
1.547220 1.545920
s aq; v s alc, eth; explodes on contact with conc acid, alk, or fire s alc; v s eth s alc, bz misc alc, eth; s bz s alc, bz, chl, eth v s alc, bz
CF3C6H4NO2
191.11
5, 327
1.43616 4
Formula
n90 n91 n92 n93 n94 n95
-Nitrostyrene 2-Nitrotoluene 3-Nitrotoluene 4-Nitrotoluene 2-Nitro-,,trifluorotoluene 3-Nitro-,,trifluorotoluene Nonadecane 1,8-Nonadiyne Nonane 1,9-Nonanediamine Nonanedinitrile 1,9-Nonanedioic acid
CH3(CH2)17CH3 HC ˜ C(CH2)5C ˜ CH CH3(CH2)7CH3 H2N(CH2)9NH2 NC(CH2)7CN HOOC(CH2)7COOH
268.51 120.20 128.26 158.29 150.23 188.22
n96 n97 n98 n99
1,9-Nonanediol Nonanenitrile Nonanoic acid 1-Nonanol
HO(CH2)9OH CH3(CH2)7CN CH3(CH2)7COOH CH3(CH2)8OH
n100
5-Nonanone
(C4H9)2CO
n84 n85 n86 n87 n88 n89
Density
Refractive index
Melting point
Boiling point
Flash point
Solubility in 100 parts solvent
58 10 15.5 53–54 31–32
250 222 231.9 238 10520mm
106 101 106
1.471520
2.4
200–205
87
s alc, eth
1, 174 12, 248 1, 165 4, 272 2, 709 2, 707
0.777632 4 0.815921 4 0.717620 4
1.433538 1.449220 1.405420
31.9 21 53.5 37–38
168 41 31
s eth; sl s alc
0.929 1.02920 4
1.446020
112
106.5
330.6 5513mm 150.8 258 17611mm 286100mm
v s alc, bz, eth 0.24 aq; v s alc; 3 eth
160.26 139.24 158.24 144.26
1, 493 2, 354 2, 352 1, 423
0.82115 4 0.90620 4 0.827420 4
1.426020 1.433020 1.433820
45–47 34.2 12.5 5.5
17715mm 224.0 254 213.1
81 100 75
142.24
1, 710
0.80620 4
1.419020
50
187
60
s alc, eth s alc, chl, eth 0.6 aq; misc alc, eth misc alc, eth
s abs alc, eth
n101 n102 n103 n104 n105 n106 n107 n108 n109
Nonanoyl chloride 1-Nonene Nonyl aldehyde Nonylamine Nopol Nopyl acetate Norbornane 2-Norbornanone trans-5-Norbornene2,3-dicarbonyl dichloride
Nitroso-R-salt, n82 Nitroterephthalic acid, n31 2-Nitro-p-toluidine, m317 4-Nitro-o-toluidine, m315
CH3(CH2)7COCl H(CH2)7CH ¨ CH2 CH3(CH2)7CHO CH3(CH2)8NH2
176.69 126.24 142.24 143.27 166.26 210.3 96.17 110.16 219.07
2, 353 12, 202 1, 708 4, 198
0.94615 4 0.729220 0.82719 19 0.782 0.973 0.980525
1.437720 1.415720 1.424020 1.433020 1.493020 1.472120
52, 45 7, 57
60.5 81.4
82–84 88–91 1.349
5-Nitro-o-toluidine, m316 4-Nitroveratrole, d444 Nitroxylenes, d556, d557, d558, d559 Nonyl alcohol, n99
1.516520
215.4 146.9 185 201 230–240
81 46 63 62 98
168–172 11811mm
33 110
d aq, alc: s eth
sl s aq; s alc, eth
s alc
2,5-Norbornadiene, b129 exo-2-Norbornanamine, a250 5-Norbornen-2-carbaldehyde, b131 Norbornene, b130
1.325
1.326
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. n110 n111 n112 o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14
Name 5-Norbornen-2-yl acetate exo-2-Norbornyl formate ()-Norephedrine HCl (Z,Z)-9,12-Octadecadienoic acid Octadecanamide Octadecane 1-Octadecanethiol Octadecanoic acid 1-Octadecanol 9,12,15-Octadecatrienoic acid 1-Octadecene 9-Octadecen-1-amine (Z)-9-Octadecenoic acid (E)-9-Octadecenoic acid (Z)-9-Octadecen1-o1 Octadecylamine Octadecyl isocyanate
Formula
CH3(CH2)4CH ¨ CHCH2CH ¨ CH(CH2)7COOH CH3(CH2)16CONH2 CH3(CH2)16CH3 CH3(CH2)17SH CH3(CH2)16COOH CH3(CH2)17OH CH3(CH2CH ¨ CH)3CH2(CH2)6COOH CH3(CH2)15CH ¨ CH2 CH3(CH2)7CH ¨ CH(CH2)8NH2 CH3(CH2)7CH ¨ CH(CH2)7COOH CH3(CH2)7CH ¨ CH(CH2)7COOH CH3(CH2)7CH ¨ CH(CH2)8OH CH3(CH2)17NH2 CH3(CH2)17NCO
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
152.19
1.044
1.470020
7614mm
62
140.18
1.048
1.462220
6716mm
53
Solubility in 100 parts solvent
187.67
132, 371
280.44
2, 496
0.902520 4
1.469920
5
23016mm
283.50 254.50 286.57 284.48
2, 384 1, 173
0.776728 4
2, 377
0.84770
1.436728 1.4648 1.429980
108–109 28.2 29–31 70
25112mm 316.7 360 383
270.50 278.44
1, 431 2, 499
0.812358 4 0.79118 4
1.438820 1.480020
57.9
20310mm 23017mm
252.49 267.50
1, 226
0.79118 4 0.813
1.443920 1.457820
17.7
314.9
282.47
2, 463
0.890620 4
1.457120
4
286100mm
282.47
22, 441
0.85179
1.430899
44–45
288100mm
268.49
1, 453
0.84920 4
1.461020
13–19
1958mm
112
s alc, eth
269.52 295.51
4, 196
0.77727 0.847
50–52
23232mm 1702mm
148 185
s alc, bz, eth
1.450120
174–176
165 185
112 148 154
v s eth; misc PE; s abs alc s hot alc, hot eth s acet, eth; sl s alc s eth; sl s alc 4.9 alc; 20 bz; 50 chl; 3.9 acet s alc, eth s alc, bz, eth s hot acet
misc alc, eth; s bz, chl s bz, chl, eth
o15 o16 o17 o18 o19 o20 o21 o22 o23 o24 o25
Octadecyltrichlorosilane Octadecyl vinyl ether 1,7-Octadiene 1H,1H,5H-Octafluoro-1-pentanol Octamethylcyclotetrasilazane Octamethylcyclotetrasiloxane Octamethyltrisiloxane Octane 1,8-Octanediamine 1,8-Octanedioic acid 1,2-Octanediol
Norbornylene, b130 Norcamphor, n107 Norleucine, a183 Norvaline, a253 NTA, n21
CH3(CH2)17SiCl3
387.94
0.984
1.460220
22310mm
89
CH3(CH2)17OCH ¨ CH2
296.54
0.82130 4
1.444030
1875mm
177
H2C ¨ CH(CH2)4CH ¨ CH2 HCF2CF2CF2CF2CH2OH
110.20 232.08
0.746 1.664720
1.422120 1.319020
114–121 140–141
9 74
[ ˆ (CH3)2SiNH ˆ ]4
292.7
0.9522
1.45825
224–225
[ ˆ (CH3)2SiO ˆ ]4
296.62
0.955820
1.396820
17.5
175
90
[(CH3)3SiO]2Si(CH3)2 CH3(CH2)6CH3 H2N(CH2)8NH2 HOOC(CH2)6COOH
236.0
0.820020
1.384820
~80
152–153
38
s bz, PE; sl s alc
114.23 144.26 174.20
1, 159 4, 271 2, 691
0.702520 4
1.397420
56.8 125.7 50–52 225 140–144 23015mm
15 165
s eth; sl s alc
CH3(CH2)5CH(OH)CH2OH
146.23
13, 2217
Octadecyl bromide, b319 Oxtadecyl mercaptan, o4 2,3,4,6,7,8,9,10-Octahydropyrimido [1,2-a]azepine, d46 Octaldehyde, o40
28
36–38
13210mm
0.16 aq; 0.6 eth; s alc 112
Octamethylene glycol, o26 Octanal, o40 1,8-Octanedicarboxylic acid, d9
1.327
1.328
TABLE 1.15 Physical Constants of Organic Compounds (continued ) Formula weight
Beilstein reference
Density
Refractive index
Melting point
HO(CH2)8OH CH3(CH2)6CN CH3(CH2)7SH CH3(CH2)6COOH
146.23 125.22 146.30 144.21
1, 490 2, 349 13, 1710 2, 347
0.813520 0.843 0.908820 4
1.420220 1.452520 1.427920
59–61 45.6 49.2 16.6
17220mm 205.2 199.0 239.3
73 68 110
1-Octanol
CH3(CH2)7OH
130.23
1, 418
0.825820 4
1.429620
15.0
195.2
81
o31
DL-2-Octanol
CH3(CH2)5CH(OH)CH3
130.23
1, 419
0.820720 4
1.420220
38.6
179–180
71
o32
DL-3-Octanol
130.23
11, 208
0.821620
1.426220
174–176
65
o33
4-Octanol
0.819220
1.42520
176.6
71
o34 o35 o36
2-Octanone 3-Octanone 4-Octanone
o37 o38 o39 o40 o41
Octanoyl chloride Octaphenylcyclotetrasiloxane 1-Octene Octyl aldehyde Octylamine
CH3(CH2)4CH(OH)CH2CH3 CH3(CH2)3CH(OH)CH2CH2CH3 CH3(CH2)5COCH3 CH3(CH2)4COCH2CH3 CH3(CH2)3COCH2CH2CH3 CH3(CH2)6COCl [ ˆ (C6H5)2SiO ˆ ]4
o42 o43 o44 o45
4-Octylaniline Octyltrichlorosilane 1-Octyne 1-Octyn-3-ol
No.
Name
Formula
o26 o27 o28 o29
1,8-Octanediol Octanenitrile 1-Octanethiol Octanoic acid
o30
130.23
Boiling point
Flash point
Solubility in 100 parts solvent v s alc; sl s aq, eth s eth; sl s alc s alc 0.07 aq; v s alc, chl, eth, PE 0.06 aq; misc alc, chl, eth 0.08 aq; misc alc, eth
128.22 128.22 128.22
1, 704 1, 706 1, 706
0.81920 4 0.822020 4 0.809
1.415020 1.415020 1.413920
16
173 167–168 164
62 46 45
i aq; misc alc, eth i aq; misc alc, eth
162.66 793.2
2, 348
0.95515 15 1.185
1.435020
70
195 3401mm
75
d aq, alc; s eth s alc, bz, HOAc
CH3(CH2)5CH ¨ CH2 CH3(CH2)6CHO CH3(CH2)7NH2
112.22 128.22 129.25
1, 221 1, 704 4, 196
0.714920 4 0.82120 4 0.782
1.408720 1.418320 1.429020
101.7 12–15 5 to 1
121.3 163.4 175–177
21 51 62
i aq; misc alc, eth sl s aq; misc alc i aq; s alc, eth
CH3(CH2)7C6H4NH2 CH3(CH2)7SiCl3 CH3(CH2)5C ˜ CH CH3(CH2)4CH(OH)C ˜ CH
205.35 247.7 110.19 126.20
12, 1185 1.0720 0.745720 0.864
1.44720 1.415920 1.441020
1, 258
79.3
17513mm 226730mm 126.2
i aq; s alc, eth 63
o46
L-()-Ornithine
o47 o48
Oxacycloheptane Oxalic acid
o49 o50 o51
Oxalic acid dihydrate Oxalyl bromide Oxalyl chloride
o52 o53 o54 o55 o56
132.16
4, 420
HOOCCOOH
100.16 90.04
2, 502
0.890 1.9017 4
HOOCCOOH·2H2O
126.07
2, 502
1.65319 4
BrCO ˆ COBr ClCO ˆ COCl
215.84 126.93
2, 542
1.48813 4
Oxalyl dihydrazide
H2NNHCO ˆ CONHNH2
118.10
2, 559
Oxamic hydrazide Oxamide 2-Oxazolidone 2-Oxobutyric acid
H2NCO ˆ CONHNH2 H2NCO ˆ CONH2
103.08 88.07 87.08 102.09
2, 559 2, 545 27, 135 3, 629
tert-Octylamine, t102 Octyl bromide, b320 Octyl cyanide, n97 Octyl chloride, c190 Octyl iodide, i46 Oleic acid, o11 Oleyl alcohol, o12 Oleylamine, o9
H2N(CH2)3CH(NH2)COOH
CH3CH2C( ¨ O)COOH
142 1.44020
v s aq, alc; sl s eth 122
9.5 aq; 24 alc; 1.3 eth 14 aq; 40 alc; 1 eth
2H2O, 102 1.5220 1.434013
12
103720mm 64
240 d 1.66720 4 1.20017 4
Orthanolic acid, a118 7-Oxabicyclo[2.2.1]heptane, e6 7-Oxabicyclo[4.1.0]heptane, e5 6-Oxabicyclo[3.1.0]hexane, e9 2-Oxabicyclo[6.1.0]nonane, e7a Oxacyclobutane, t345 Oxacyclopentane, t66 Oxalylurea, i6
10
189 d
1.397220
218 d d 350 86–89 32–34
22048mm 8216mm
none none
s eth; violent d aq, alc s hot aq; sl s alc, eth s alk; sl s aq; i eth sl s hot aq, alc v s aq, alc; v sl s eth
1,4-Oxathiane, t164 Oxepane, o47 Oxetane, t345 Oxirane, e129 2-Oxo-10-bornanesulfonic acid, c7 3-Oxobutanoic acid, a24 3-Oxobutyraldehyde dimethyl acetal, d435
1.329
1.330
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. o57
p1
2-Oxohexamethyleneimine 4-Oxopentanoic acid 2-Oxopropionaldehyde 2-Oxopropionic acid 2,2-Oxydiacetic acid 4,4-Oxydianiline 3,3-Oxydipropionitrile Paraformaldehyde
p2 p3
Paraldehyde Parathion
p4 p5
DL-Patchenol Pentabromoethylbenzene Pentabromophenol Pentachloroacetone Pentachlorobenzene Pentachloroethane
o58 o59 o60 o61 o62 o63
p6 p7 p8 p9
Formula weight
Beilstein reference
Density
Refractive index
Melting point
113.16
212, 216
1.0275 4
1.4935
69.2
18050mm
CH3COCH2CH2COOH CH3COCHO
116.12 72.06
3, 671 1, 762
1.144725 4 1.045524
1.439620 1.420920
33–35
245.8 72
CH3COCOOH HOOCCH2OCH2COOH
88.06 134.09
3, 608 3, 234
1.26715 4
1.431520
11.8 165 d 142–145 d
H2NC6H4OC6H4NH2 NCCH2CH2OCH2CH2CN
200.24 124.14
13, 441 1.043
1.440520
Name
Formula
(CH2O)x
1, 566
1120.5mm 156 d
Solubility in 100 parts solvent 84 aq
137 none
v s aq, alc, bz, eth s aq, alc
82
misc aq, alc, eth v s aq, alc; sl s eth
19, 385
0.998415 1.2625 4
1.404920 1.537025
166.26 500.67
62, 64 5, 357
0.987
1.504520
CH3CH2C6Br5 C6Br5OH Cl2CHCOCCl3 C6HCl5 Cl2CHCCl3
488.62 230.31 250.34 202.30
6, 206 1, 656 5, 205 1, 87
1.690 1.834216 1.671225 4
12.5 6
112 71
124 375 234–238
slowly s aq; s alk; i alc, eth 11 aq; misc alc, chl v s alc, bz, eth
107
137–139
1.496720 1.503020
223–226 21 anhyd 82–85 29.0
subl 192 275–277 160.5
C6Cl5NO2
295.34
5, 247
1.71825 4
140–143
p11
Pentachloronitrobenzene Pentachlorophenol
C6Cl5OH
266.34
6, 194
1.97822 4
190–191 310 d
p12
Pentachloropyridine
C5Cl5N
251.33
20, 232
p10
Flash point
190 d
132.16 291.27
[ ˆ CH(CH3)O ˆ ]3 (C2H5O)2P( ¨ S)(O)C6H4NO2
Boiling point
124–126
none none
sl s alc, eth i aq; v s acet v s bz, chl, eth 0.05 aq; misc alc, eth s bz, chl v s alc; s bz; 148 eth
p13 p14 p15 p16 p17 p18 p19 p20
Pentadecane 8-Pentadecanone 3-Pentadecylphenol 1,2-Pentadiene (E)-1,3-Pentadiene (Z)-1,3-Pentadiene 1,4-Pentadiene Pentaerythritol
CH3(CH2)13CH3 [CH3(CH2)6]2CO C15H31C6H4OH CH3CH2CH ¨ C ¨ CH2 CH3CH ¨ CHCH ¨ CH2 CH3CH ¨ CHCH ¨ CH2 H2C ¨ CHCH2CH ¨ CH2 C(CH2OH)4
212.42 226.40 304.52 68.12 68.12 68.12 68.12 136.15
1, 172 1, 717
0.768420 4
1.431920
1, 251 1, 251 1, 251 1, 251 1, 528
0.692620 4 0.676020 0.691020 0.660822 4 1.3825 4
1.420920 1.430120 1.436320 1.388820 1.548
p21
Pentaerythrityl tetrabromide Pentaerythrityl tetranitrate
C(CH2Br)4
387.76
1, 142
C(CH2ONO2)4
316.15
12, 602
p22
3-Oxo-N-phenylbutanamide, a32 2,2-Oxybis(chloroethane), b158 1,1-Oxybis(2-methylpropane), d407 1,1-Oxybis(pentane), d651 3,3-Oxybis(1-propene), d26 2,2-Oxydiethanethiol, b186
2,2-Oxydiethanol, b181 Palmitic acid, h35 Pamoic acid, m235 Parabanic acid, i6 Pelargonaldehyde, n103 Pelargonic acid, n98
9.9 41–43 45–48 137.3 87.5 140.8 148.3 260
270.6 178 1951mm 44.9 42.0 44.1 26.0 subl
132
v s alc, eth s alc
28 28 4 6 aq; v sl s alc; i eth
158–160 305–306 1.77320 4
140
sensi- acet; sl s eth, tive alc to shock; explodes on percussion
Pelargonoyl chloride, n101 Pelargononitrile, n97 Pentabromophenyl ether, b197 Pentaerythritol diformal, t126
1.331
1.332
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p23
Name
Formula
Formula weight
Beilstein reference
C6H(CH3)5
148.25 136.24
5, 443
138.17
262, 213
1.532
1.442520
0.91720 4 0.870
1.52720 1.473320
p27
CH3CH2CH2CH2CHO
86.13
1, 676
0.809520 4
p28 p29 p30 p31 p32
Pentane 1,5-Pentanediamine 1,5-Pentanediol 2,3-Pentanedione 2,4-Pentanedione
CH3CH2CH2CH2CH3 H2N(CH2)5NH2 HO(CH2)5OH CH3CH2COCOCH3 CH3COCH2COCH3
72.15 102.18 104.15 100.11 100.11
1, 130 4, 266 1, 481 1, 776 1, 777
p33 p34
CH3CH2CH2CH2CN CH3(CH2)4SO 3 Na
83.13 174.19
p35 p36 p37
Pentanenitrile 1-Pentanesulfonic acid, Na salt 1-Pentanethiol Pentanoic acid 1-Pentanol
CH3(CH2)4SH CH3(CH2)3COOH CH3(CH2)4OH
p38
2-Pentanol
p39 p40 p40a
3-Pentanol -Pentanolactone -Pentanolactone
p26
193.07
Refractive index
Pentafluorobenzonitrile Pentamethylbenzene 1,2,3,4,5-Pentamethylcyclopentadiene 1,5-Pentamethylenetetrazole Pentanal
p24 p25
C6F5CN
Density
Melting point
54.4
Boiling point
Flash point
185–190
29
231 5813mm
44
Solubility in 100 parts solvent
v s alc, bz
59–61
19412mm
1.394220
92
102–103
12
0.626220 4 0.87325 4 0.994120 0.957 0.972125
1.357520 1.459120 1.449420 1.406820 1.451020
129.7 129.7 15.6 52 23.1
36.1 178–180 242.5 110–112 140.6
49 62 125 19 40
2, 301 43, 23
0.803515 4
1.399115
96.8 300
141.3
40
104.22 102.13 88.15
1, 384 2, 299 1, 383
0.840 0.939020 4 0.814820 4
1.446020 1.408020 1.410020
75.7 33.7 78.9
126.6 185.5 137.8
18 88 32
CH3CH2CH2CH(OH)CH3
88.15
1, 384
0.839320 4
1.406420
glass
119.0
40
CH3CH2CH(OH)CH2CH3
88.15 100.12 100.12
1,385 17, 235 17, 235
0.815025 4 1.057 1.079
1.407925 1.4330 1.457520
69 31
115.6 207–208 600.5mm
40 81 100
1.4 aq; misc alc, eth misc alc, eth s aq, alc; sl s eth s aq, alc; sl s eth 17 aq; misc alc, eth i aq; s alc, eth 4 aq i aq; misc alc, eth 2.4 aq; v s alc, eth 2.7 aq; misc alc, eth 16.6 aq; misc alc, eth 5.2 aq; s alc, eth
86.13
1, 676
0.809520
1.3903
77.8
101.7
7
CH3CH2COCH2CH3 C6H5CO(CH2)3CH3 CH3CH2CH2CH2COCl [ ˆ CH2CH2O ˆ ]5
86.13 162.23 120.58 220.27
1, 679 7, 327 2, 301
0.814320 0.988 1.016
1.392320 1.514320 1.421620 1.461520
39.0
102.0 1075mm 125–127 1350.2mm
12 102 23
CH3O(CH2CH2O)4CH2CH2OH CH3CH2CH2CH ¨ CH2 CH3CH2CH ¨ CHCH3 CH3CH2CH ¨ CHCH3 H2C ¨ CHCH2CH2COOH CH3CH ¨ CHCOCH3 CH3(CH2)4OOCCH3 CH3(CH2)4NH2
252.31
0.933
1.450020
70.14 70.14 70.14 100.11 84.12 130.19 87.17
1, 210 1,210 1, 210 2, 425 1, 732 2, 131 4, 175
0.641020 4 0.648220 4 0.650320 4 0.984318 4 0.862420 4 0.875320 0.752
1.371420 1.379320 1.383020 1.434118 1.440520 1.402820 1.411020
165.2 140.2 151.4 18
CH3(CH2)4C6H5
148.25
5, 434
0.859420 4
1.488520
p41
2-Pentanone
CH3CH2CH2COCH3
p42 p43 p44 p45
p47 p48 p49 p50 p51 p52 p53
3-Pentanone Pentanophenone Pentanoyl chloride 1,4,7,10,13-Pentaoxacyclopentadecane 3,6,9,12,15-Pentaoxahexadecanol 1-Pentene (E)-2-Pentene (Z)-2-Pentene 4-Pentenoic acid 3-Penten-2-one Pentyl acetate Pentylamine
p54
Pentylbenzene
p46
Pentalin, p9 pentamethylene glycol, p30 Pentamethylene oxide, t76 Pentamethylethyl alcohol, t338
1,5-Pentanedicarboxylic acid, h8 Pentanedinitrile, g14 Pentanedioic acid, g11 2,5,8,11,14-Pentaoxapentadecane, b190
misc acet, bz, eth, PE 3.4 aq s alc, eth
1330.005mm 112
100 55
30.0 36.3 36.9 187–189 121–124 149.2 104
21 23 4
78.3
202.2
65
Penetetic acid, d299 sec-Pentylamine, a251 tert-Pentylamine, d601
45
misc alc, bz, eth misc alc, eth misc alc, eth sl s aq; s alc, eth s aq 0.17 aq v s aq; misc alc, eth s alc; misc bz, eth
1.333
1.334
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p55
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
168.28
73, 173
0.920
1.467720
164.25
6, 548
0.96220 4
68.11 150.22 76.05
1, 250 7, 158
0.690120 4 0.964520 4 15 1.2264
Melting point
12516mm
p56
4-tert-Pentylcyclohexanone 4-tert-Pentylphenol
p57 p58 p59
1-Pentyne L-Perillaldehyde Peroxyacetic acid
p60
Petroleum ether
p61
Phenanthrene
178.23
5, 667
1.17925
100
p62
208.22
7, 796
1.4054
209–211
p63 p64
9,10-Phenanthrenedione 1,10-Phenanthroline Phenol
180.21 94.11
23, 227 6, 110
1.057641 4
p65 p66
Phenolphthalein Phenothiazine
318.33 199.28
18, 143 27, 63
p67
Phenothiazine-10carbonyl chloride Phenoxyacetic acid
261.73
27, 66
168–171
C6H5OCH2COOH
152.15
6, 161
98
C6H5OCH2COCl
170.60
6, 162
C6H5OC6H4NH2
185.23
13, 438
p68 p69 p70
Phenoxyacetyl chloride p-Phenoxyaniline
CH3CH2C(CH3)2C6H4OH CH3CH2CH2C ˜ CH CH3C( ¨ O)OOH
principally pentanes and hexanes
C6H5OH
1.385220 1.507220
1.235
Solubility in 100 parts solvent
104
262.2
s alc, eth
105.7
40.2 10510mm 95 105 explodes 110 35–80 40
v s alc; misc eth
0.640
1.29925 4
Flash point
93
0.1
1.541841
Boiling point
117 40.9
340
181.8
258–262 185.1 371
1.534020
285 sl d 225–256
82–84
18914mm
79
v s aq, alc, eth
misc bz, chl, eth, CCl4 1.6 alc; 50 bz; 30 eth s bz, eth, hot alc 1.4 bz; s alc, acet 6.7 aq; 8.2 bz; v s alc, chl, eth, alk 8.2 alc; 1 eth v s bz; s eth; sl s alc
1.3 aq; v s alc, bz, HOAc, CS2, eth d aq, alc; s eth s hot aq; v s alc, eth
p71 p72 p73 p74 p75
2-Phenoxybutyric acid 2-Phenoxyethanol 1-Phenoxy-2-propanol Phenoxy-2-propanone DL-2-Phenoxypropionic
Peracetic acid, p59 Perdeuterocyclohexane, c313 Perylene, d49 Phenacetin, e45 Phenacyl bromide, b221 Phenacyl chloride, c28
CH3CH2CH(OC6H5)COOH C6H5OCH2CH2OH C6H5OCH2CH(OH)CH3 C6H5OCH2COCH3 CH3CH(OC6H5)COOH
180.20
6, 163
138.17 152.19 150.18 166.18
6, 146 61, 85 6, 151 6, 163
79–83 1.10222 4 1.063254 1.097
9,10-Phenanthraquinone, p62 Phenazone, a309 1,2,4-Phenenyl triacetate, t193 Phenethyl alcohol, p113 sec-Phenethyl alcohol, m138 Phenethylamine, p114
1.537020 1.52320 1.521020
14 13–18
258
245.2 240 230 116–119 265
sl s aq 110 135 85
Phenethyl bromide, b283 Phenethyl chloride, c108 p-Phenetidine, e24 Phenetole, e28 Phenoxyacetone, p74 4-Phenoxybutyl bromide, b243
s aq; v s alc, eth
s alc; sl s aq
1.335
1.336
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p76 p76a p77
p78 p79 p80 p81 p82 p83 p84 p85 p86 p87 p88 p89 p90 p91 p92 p93
Name 3-Phenoxytoluene Phenylacetaldehyde 2-(2-Phenylacetamido)acetaldoxime Phenyl acetate Phenylacetic acid Phenylacetonitrile Phenylacetyl chloride Phenylacetylene Phenylacetylurea L-3-Phenyl-alanine 2-(Phenylamino)benzoic acid Phenyl 4-aminosalicylate p-Phenylazoaniline Phenylazoformic acid 2-phenylhydrazide p-Phenylazophenol 2-Phenylbenzimidazole Phenyl benzoate N-Phenylbenzylamine 1-Phenylbiguanide
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
C6H5OC6H4CH3 C6H5CH2CHO C6H5CH2CONHCH2CH ¨ NOH
184.24 120.15 192.22
6, 377 7, 292
1.051 1.02725 25
1.572720 1.527320
271–273 33–34 195 147–151
112 86
C6H5OOCCH3 C6H5CH2COOH C6H5CH2CN C6H5CH2COCl
136.15 136.15 117.15 154.60
6, 152 9, 431 9, 441 9, 436
1.07320 4 1.09177 4 1.021415 15 1.169
1.503020
C6H5C ˜ CH C6H5CH2CONHCONH2 C6H5CH2CH(NH2)COOH
102.14 178.19 165.19
5, 511
0.930020 4
1.547020
14, 495
44.9 142.4 212–216 d 283
C6H5NHC6H4COOH
213.24
14, 327
185 d
misc alc, eth sl s alc, bz, chl, eth 3 aq; s hot alc; i eth s hot alc
H2NC6H3(OH)COOC6H5
229.24
153
0.7 mg aq
C6H5N ¨ NC6H4NH2 C6H5N ¨ NCONHNHC6H5
197.24 240.27
161, 310 16, 24
v s alc, bz, chl, eth
C6H5N ¨ NC6H4OH
198.23 194.24
16, 96 23, 230
128 360 156– 159 d 155–157 23020mm 291
C6H5COOC6H5 C6H5CH2NHC6H5 C6H5NHC( ¨ NH)NHC( ¨ NH)NH2
198.22 183.25 177.21
9, 116 12, 1023
Formula
1.235 1.061
1.523320 1.532520
76.5 23.8
196 265.5 233.5 9512mm
70 314 27–38 306–307 144–146
76 101
31
Solubility in 100 parts solvent
sl s aq; s alc, eth
misc alc, eth, chl s hot aq, alc, eth i aq; misc alc, eth d aq, alc
v s alc, eth s abs alc; sl s bz, chl v s hot alc; sl s eth s alc, chl, eth v s aq, alc
p94
1-Phenyl-2-butanone
CH3CH2COCH2C6H5
148.21
7, 314
0.998
1.512220
p95 p96
4-Phenyl-2-butanone (E)-4-Phenyl-3buten-2-one 4-Phenylbutylamine
C6H5CH2CH2COCH3 C6H5CH ¨ CHCOCH3
148.21 146.19
7, 314 7, 364
0.989 1.009745 4
1.512220 1.583645
C6H5CH2CH2CH2CH2NH2 CH3C(OH)(C6H5)C ˜ CH
149.24
12, 1165
0.944
1.519620
146.19
62, 559
51–52
217–218
CH3CH2CH(C6H5)COOH C6H5CH2CH2CH2COOH CH3CH2CH(C6H5)CN
164.20 164.20 145.21
92, 356 9, 539 9, 541
42–44 50–52
C6H5OOCCl C6H5SCOCl
156.57 172.6
270–272 16510mm 114– 112 11515mm 719mm 10110mm 116
p97 p98 p99 p100 p101 p102 p103
2-Phenyl-3-butyn2-ol 2-Phenylbutyric acid 4-Phenylbutyric acid DL-2-Phenylbutyronitrile Phenyl chloroformate S-Phenyl chlorothioformate
Phenylacetaldehyde dimethyl acetal, d450 N-Phenylacetamide, a18 Phenylacetone, p144 2-Phenylacetoacetonitrile, a51 -Phenylacetophenone, d22 -Phenylacrylic acid, c267 -Phenylallyl alcohol, c270 o-Phenylanisole, m56
0.974
1.508620
1.26930 4
1.578630
N-Phenylanthranilic acid, p85 Phenylarsonic acid, b11 Phenylazoformic acid 2-phenylhydrazide, d660 N-Phenylbenzamide, b5 Phenylbenzene, b134 Phenylbenzoic acid, b135 p-Phenylbenzyl alcohol, b138 Phenylboric acid, b12
41.5
14
11215mm
90
235 261
98 65
12417mm
101
s alc; misc eth; i aq s alc, eth v s alc, bz, chl, eth
0.8 aq; s alc, bz, acet s bz, eth s alc, eth
1-Phenylbutane, b423 2-Phenylbutane, b424 1-Phenyl-1,3-butanedione, b64 4-Phenyl-sec-butyl acetate, m361 Phenyl Cellosolve, p72 Phenyl chloride, c41
1.337
1.338
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p104 p105 p106 p107 p108 p109 p110 p111 p112 p113 p114 p115 p116 p117 p118 p119
Name Phenylcyclohexane Phenyl dichlorophosphate N-Phenyldiethanolamine o-Phenylenediamine m-Phenylethanol p-Phenylenediamine o-Phenylene phosphorochloridite 1-Phenyl-1,2ethanediol 1-Phenylethanol 2-Phenylethanol 2-Phenylethylamine D-()--Phenylglycine 1-Phenylheptane 1-Phenylhexane Phenylhydrazine
Phenyl 3-hydroxy-2naphthoate p119a 2-Phenyl-2imidazoline p120 2-Phenylindole p121 Phenyl isocyanate p122 Phenyl isothiocyanate
Formula weight
Beilstein reference
Density
Refractive index
Melting point
C6H5C6H11 C6H5OP(O)Cl2
160.26 210.98
5, 503 6, 179
0.942720 1.412
1.526320 1.523020
C6H5N(CH2CH2OH)2
181.24
12, 183
1.12060 20
C6H4(NH2)2 C6H4(NH2)2 H2NC6H4NH2
108.14 108.14 108.14 174.52
13, 6 131, 10 13, 61 27, 809
C6H5CH(OH)CH2OH
138.17
6, 907
CH3CH(C6H5)OH C6H5CH2CH2OH C6H5CH2CH2NH2 C6H5CH(NH2)COOH
122.17 122.17 212.28 151.17
6, 475 6, 478 12, 1096 14, 460
1.015020 20 1.01825 25 0.964025 4
C6H5(CH2)6CH3 C6H5(CH2)5CH3 C6H5NHNH2
176.30 162.28 108.14
5, 451 52, 337 152, 44
0.860 0.861 1.097820 4
C10H6(OH)COOC6H5
264.28
10, 335
129–132 261160mm
146.19
23, 154
94–99
193.25 119.12 135.19
20, 467 12, 437 12, 453
Formula
C6H5NCO C6H5NCS
1.13915 15 1.466
1.571220
1.521120 1.531720 1.533220
Boiling point
Flash point
7.0
240.1 241–243
98 112
56–58
350 sl d
103–104 256–258 62–63 234–237 145–147 267 8020mm
68 112
66–68
272–274
21.4 27
203.9 221 195
102 90
233 226 243.5 d
95 83 88
Solubility in 100 parts solvent v s alc, eth
5 aq; v s alc; 29 eth; 25 bz v s alc, chl, eth s aq, alc, acet, chl 1 aq; s alc, chl, eth
v s aq, alc, bz, eth, chl, HOAc 2.3 aq 2 aq; misc alc, eth s aq; v s alc, eth
305–310
1.095620 4 1.128825 4
1.484220 1.486520 1.607020
1.535020 1.649720
61 19.5
17 30 21
25010mm 162–163 221
55 87
misc eth misc alc, bz, chl, eth
d aq, alc; s eth i aq; s alc, eth
p123 p124 p125
N-Phenylmaleimide Phenylmalonic acid Phenylmercury(II) acetate p126 Phenylmercury(II) chloride p127 Phenylmercury(II) hydroxide p128 Phenylmethanethiol p129 N-Phenylmorpholine p130 N-Phenyl-1naphthylamine p130a 1-Phenyloctane p131 2-Phenylphenol p132 4-Phenylphenol 2-Phenylcinchoninic acid, p149 -Phenyl-o-cresol, h113 Phenylethane, e68 Phenylethanenitrile, p80 1-Phenylethanol, m138 Phenylethanolamine, a262
C6H5CH(COOH)2 C6H5HgOOCCH3
173.17 180.16 336.74
21, 400
89–90 155 d 149
C6H5HgCl
313.15
C6H5HgOH
294.70
16, 952
C6H5CH2SH
6, 453 27, 6 12, 1224
1.05820
C10H7NHC6H5
124.21 163.22 219.29
C6H5(CH2)7CH3 C6H5C6H4OH C6H5C6H4OH
190.33 170.21 170.21
5, 453 62, 623 6, 674
0.857220 4 1.213
16312mm
s alc, chl, eth 0.17 aq; s alc, bz, acet s bz, eth, pyr
250–252 190 d
57 60–62
N-Phenylethanolamine, a300 Phenylethene, s11 N-Phenylformamide, f31 Phenylglyoxylic acid, b70 Phenylglyoxylonitrile, b68
1.484020
194–195 268 22615mm
36 261–263 57 282 164–165 305
70 1.0 aq; v s hot alc s alc, bz, chl, eth 107 123 165
misc eth s alc, chl, eth, alk s alc, chl, eth, alk
1-Phenyl-1-hydroxy-2-methylaminopropanes, e1, e2 2,2-(Phenylimino)diethanol, p106 p-(2-Phenylisopropyl)phenol, m359 Phenyl--methylstyryl ketone, d658 1-Phenylpentane, p54
1.339
1.340
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p133 p134
p135 p136 p137 p138 p139 p140 p141 p142 p143 p144 p145 p146
p147
Name N-phenyl-p-phenyl enediamine Phenyl N-phenylphosphoramidochloridate Phenylphosphinic acid Phenylphosphonic acid Phenylphosphonic dichloride Phenylphosphonothioic dichloride N-Phenylpiperazine 2-Phenyl-1,2propanediol 3-Phenyl-1-propanol propanethiol 1-Phenyl-1-propanol 3-Phenyl-1-propanol 1-Phenyl-2-propanone 2-Phenylpropionaldehyde 3-Phenylpropionic acid 1-Phenyl-3-pyrazolidinone
Formula weight
Beilstein reference
C6H5NHC6H4NH2
184.24
13, 76
73–75
C6H5NHP( ¨ O)(Cl) OC6H5
267.66
12, 588
132–134
C6H5PH(O)OH
142.09
16, 791
83–85
C6H5P(O)(OH)2
158.09
16, 803
163–166
C6H5P(O)Cl2
194.99
16, 804
1.375
1.560020
C6H5P(S)Cl2
211.05
16, 807
1.360
1.624420
162.24 152.19
1.062120 4
1.587520
CH3C(C6H5)(OH)CH2OH
6, 930
C6H5CH2CH2CH2SH
152.26
61, 253
1.010
1.549420
C6H5CH(OH)CH2CH3 C6H5CH2CH2CH2OH C6H5CH2COCH3
136.19 136.19 134.18
6, 502 6, 503 72, 233
0.991525 4 1.008 1.015720 4
1.516923 1.525720 1.516020
CH3CH(C6H5)CHO
134.18
72, 237
1.00920 4
1.517520
C6H5CH2CH2COOH
150.18
9, 508
1.047100 4
162.19
24, 2
Formula
Density
Refractive index
Melting point
3
Boiling point
258
Flash point
Solubility in 100 parts solvent
112
205130mm 286 112 160– 112 16226mm 10910mm 90
i aq; misc alc
44–45
18 27
219 235 10013mm
109 84
202–205
69
misc alc, bz s aq; misc alc, eth v s alc, eth; misc bz i aq; s alc
47–48
121
280
0.6 aq; s bz, alc, chl, eth, HOAc, PE 10 hot aq; hot alc; s alk, acid
p148 p149
p150
p151 p152 p153 p154 p155
2-Phenylpyridine 2-Phenyl-4quinolinecarboxylic acid Phenyl salicylate
C6H5C5H4N
Phenylselenenyl chloride Phenylsuccinic acid S-Phenyl thioacetate 1-Phenyl-2thiourea Phenyltrichlorosilane
1.624220
155.20 249.27
20, 424 22, 103
C6H4(OH)COOC6H5
214.22
10, 76
C6H5SeCl
191.52
HOOCCH2CH(C6H5)COOH C6H5SCOCH3
194.19
C6H5NHC(S)NH2
152.22
12, 388
1.3
C6H5SiCl3
211.56
16, 911
1.32920
2-Phenylpropane, i91 3-Phenyl-2-propenoic acid, c267 3-Phenyl-2-propen-1-o1, c270 3-Phenyl-2-propenoyl chloride, c268 3-Phenylpropyl alcohol, p143 Phenyl propyl ketone, b500
268–270
112
214–215
41–43
17312mm
63, 1110
63–65
12020mm
9, 865
167–169 H2O, 168 1006mm
1.25
1.572020
152.22
3-Phenylpropyl mercaptan, p141 Phenyl sulfide, d688 Phenyl sulfone, d689 Phenylsulfonic acid, b22 Phenyl sulfoxide, d690 (Phenylthio)acetic acid, t160
17 alc; 66 bz; s acet, chl, eth; 0.015 aq
s hot aq, alc, eth 79
154 1.523020
s alc, eth 0.8 alc; 1 eth; 0.3 chl
0.25 aq; s alc, alk 201
91
Phenyl thiocarbamide, p154 -Phenyl-o-toluic acid, b84 Phenyl m-tolyl ether, p76 Phenyl trifluoromethyl ketone, t289
1.341
1.342
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p156 p157 p158 p159
p160 p161 p162
p163 p164 p165 p166
Name 1-Phenyltridecane Phenyltriethoxysilane Phenyltrimethoxysilane Phenyltrimethylammonium bromide Phenyltrimethylammonium chloride Phenyltrimethylammonium iodide Phenyltrimethylammonium tribromide Phenyltrimethylsilane Phenyltris(trimethylsiloxy)silane Phenylurea
p167
Phenylvinyldichlorosilane o-Phthalic acid
p168 p169 p170
Phthalic anhydride Phthalide Phthalimide
p171
o-Phthaloyl dichloride
Formula weight
Beilstein reference
Density
Refractive index
Melting point
C6H5(CH2)12CH3 C6H5Si(OC2H5)3
260.47 240.38
0.855520 4 0.996
1.481420 1.460420
10
16, 911
C6H5Si(OCH3)3
198.3
1.06420 4
1.473420
[C6H5N(CH3)3]Br
216.13
122, 88
210 d
v s aq; s hot alc
[C6H5N(CH3)3]Cl
171.67
12, 158
237 subl
[C6H5N(CH3)3]I
263.12
122, 88
175
s aq; v s alc; sl s chl s aq, alc; sl s acet
C6H5N(CH3)3]Br 3
375.95
C6H5Si(CH3)3 [(CH3)3SiO]3SiC6H5
150.30 372.8
161, 525
0.873 0.97025 4
C6H5NHCONH2
136.15
12, 346
1.302
H2C ¨ CH(C6H5)SiCl2
203.2
C6H4(COOH)2
166.13
9, 791
1.59320 4
206–208
148.12 134.13 147.13
17, 469 17, 310 21, 458
1.53 1.16499 4
130.8 72–74 238
285 subl 290 subl
203.02
9, 805
1.40920
15–16
280–282
Formula
C6H4(COCl)2
Boiling point 346 1131.0mm
Flash point
Solubility in 100 parts solvent
112 42
211
114–116
1.19625 4
1.490720 1.45925
168–170 264–266
44 121
145–147 238 1.53425
1.568420
s hot aq, hot alc, eth
871.5mm
112
0.6 aq; 10 alc; 0.5 eth; v sl s chl 0.6 aq(d); s alc s alc v s alk; v sl s bz, PE d aq, alc; s eth
p172 p173
Phthalylsulfathioazole Picric acid
p174 p175 p176 p177 p178
Pinane ()--Pinene ()--Pinene -Pinene oxide -Pinene oxide
Phloroglucinol, t305 Phorone, d529 Phthalaldehydic acid, f33 m-Phthalic acid, b16 p-Phthalic acid, b17 Phthalonitrile, d236
403.44 (O2N)3C6H2OH
229.11
6, 265
1.76320 4
138.3 136.24 136.24 152.24 152.24
5, 93 5, 146 5, 154 5, 152 172, 44
0.83920 4 0.859120 4 0.859020 0.964 0.976
Picolinaldehyde, p251 Picolines, m398, m399, m400 Picolinic acids, p255, p257 Picolinonitrile, c295 Picolylamines, a223, a224 Picramide, t381
1.461620 1.466020 1.466620 1.469020 1.476520
272 d
s alk; sl s alc; i chl
122–123 explodes 300
1.3 aq; 8.2 alc; 10 bz; 2.9 chl; 1.6 eth
50 55 61.5
167–168 155–156 166 10350mm 10027mm
32 32 65 66
Pimelic acid, h8 Pinacol, d491 Pinacolone, d497 Pinacolyl alcohol, d496 3-Pinanol, i83
misc alc, eth
1.343
1.344
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p179 p180 p181 p182 p183 p184
Name
Formula
Piperazine 1-Piperazinecarbaldehyde 1,4-Piperazinedicarbonitrile 3-(1-Piperazinyl)1,2-propanediol Piperidine
Formula weight
Beilstein reference
86.14 114.15
23, 4
136.16
231, 5
Density
Refractive index
Melting point
1.107
1.446113 1.509420
108–110 145–146 970.5mm
160.22 85.15
20, 6
0.865915
1.452520
110.16
20, 56
0.951
1.470520
129.20 129.20 115.18 138.21
20, 25 21, 2 212, 8
0.973225 25 1.01017 1.026 0.933
1.480420
159.23
20, 34
154.3 44.10
1, 104
0.917825 1.472920 0.584242 1.339742
p190 p191
CH3CH2CH3
p192
1,2-Propanediamine
CH3CH(NH2)CH2NH2
74.13
4, 257
0.87815
1.446020
p193 p194
1,3-Propanediamine 1,2-Propanediol
H2NCH2CH2CH2NH2 CH3CH(OH)CH2OH
74.13 76.10
4, 261 1, 472
0.88425 4 1.036420 4
1.457520 1.433120
p195
1,3-Propanediol
HOCH2CH2CH2OH
76.10
1, 475
1.059720 4
1.439620
p189
Flash point
Solubility in 100 parts solvent
109 101
v s aq; 50 alc; i eth
misc aq; s alc, bz, chl
167–170
1-Piperidinecarbonitrile N-Piperidineethanol 2-Piperidineethanol 3-Piperidinemethanol 1-Piperidinepropionitrile 3-Piperidino-1,2propanediol trans-Piperitol Propane
p185 p186 p187 p188
Boiling point
73–77
1330.1mm
10.5
106.4
4
10210mm
97
200–202 234 1073.5mm 11116mm
68 102 112
38–40 1.469520
misc aq; s alc v s aq, alc, eth
77–80 187.7
42.1
119.7
33
12 60
140 188
48 107
26.7
214.4
79
6.5 mL aq; 790 mL alc; 926 mL eth; 1300 mL chl; 1450 mL bz misc aq, bz; s alc, eth misc alc, eth; s aq misc aq, acet, chl; s alc, eth misc aq, alc
p196
1,3-Propanedithiol
HSCH2CH2CH2SH
108.23
1, 476
1.077220 4
p197
1-Propanesulfonyl chloride 1,3-Propane sultone
CH2CH2CH2SO2Cl
142.60
4, 8
1.286415 4
p198
Pipecolines, m369, m370, m371 1-Piperazineethanol, h123 1-Piperidinecarboxyaldehyde, f35 Piperonal, m239 Piperonyl alcohol, m242 Piperonyl butoxide, m243 Piperonylic acid, m241 Pivalaldehyde, d596
122.14
1.392
Pivalamide, d597 Pivalic acid, d598 Pivalic anhydride, d599 Pivaloyl chloride, d600 Pivaloyloxymethyl chloride, c151 POPOP, b198 PPO, d679 Prehnitene, t97
1.540520
79
169 668mm
30–33
40
misc alc, bz, eth, chl d hot aq, hot alc
18030mm
Procaine, d271 Proline, p273 Propadiene, a78 1-Propanal, p211 1,3-Propanedicarboxylic acid, g11 Propanedioic acid, m3 1,2-Propanediol cyclic carbonate, p225
1.345
1.346
TABLE 1.15 Physical Constants of Organic Compounds (continued ) Beilstein reference
Density
Refractive index
Melting point
76.16 76.16
1, 359 1, 367
0.83625 4 0.80925 4
1.438020 1.425520
113.1 130.5
67.7 52.6
20 34
218.21
2, 147
1.59620 4
1.430220
78
258–260
148
60.10 60.10
1, 350 1, 360
0.803720 4 0.785520 4
1.385620 1.377220
126.2 89.5
97.2 82.4
15 22
56.07 42.08
1, 725 1, 196
0.838920 1.401720 1.356740 0.610448 4
87.0 185.2
52.7 47.7
18
74.15 174.11
1, 440 2, 849
0.92523 4
67–68
21
97
18
Name
p199 p200
1-Propanethiol 2-Propanethiol
CH3CH2CH2SH CH3CH(SH)CH3
p201 p202 p203
1,2,3-Propanetriol triacetate 1-Propanol 2-Propanol
H3CCOOCH(CH2OOCCH3)2 CH3CH2CH2OH (CH3)2CHOH
p204 p205
2-Propenal Propene
H2C ¨ CHCHO H2C ¨ CHCH3
p206 p207
H2C ¨ CHCH2SH
H2C ¨ C(OOCCH3)CH3
100.12
p209 p210
2-Propene-1-thiol (Z)-1,2,3-Propenetricarboxylic acid 1-Propen-2-yl acetate o-Propenylphenol -Propiolactone
CH3CH ¨ CHC6H4OH
134.18 72.06
61, 279
p211
Propionaldehyde
CH3CH2CHO
58.08
p212 p213
Propionamide Propionic acid
CH3CH2CONH2 CH3CH2COOH
p214 p215
Propionic anhydride Propionitrile
[CH3CH2C( ¨ O)]2O CH3CH2CN
p208
Formula
Formula weight
No.
Boiling point
Flash point
d 200 0.909
1.400020
1.044 1.146020 4
1.575420 1.413120
33.4
230–231 162.3
90 70
1, 629
0.807120 4
1.364619
81
48–49
9
73.10 74.09
2, 243 2, 234
0.959720 4 0.993420 4
1.4160110 1.386520
79 21
222.2 140.8
51
130.14 55.08
2, 242 2, 245
1.012520 4 0.781820 4
1.404720 1.365820
45 92.8
167 97.2
73 6
Solubility in 100 parts solvent s alc, eth misc alc, eth; sl s aq 7.2 aq; misc alc, bz, chl, eth misc aq, alc, eth misc aq, alc, chl, eth 21 aq; s alc, eth 45 mL aq; 1200 mL alc; 500 mL acet misc alc, eth 50 aq; s alc; sl s eth
37 aq(hyd); misc alc (reacts), bz, eth, acet 30 aq; misc alc, eth v s aq, alc, chl, eth misc aq; s alc, chl, eth d aq; s alc, chl, eth 10 aq; misc alc, eth
1.405120 1.525820
0.76820 4
1.38420
2, 129
0.83620 4
1.384420
92
59.11 103.17
4, 136 4, 282
0.717320 0.900
1.388220 1.441520
120.20 164.20 126.24 102.09 57.09
5, 390 9, 112 52, 23
0.862120 4 1.023220 0.792920 4 1.204120 4 0.801725
1.491220 1.500320 1.437020 1.421020 1.408425
Propionyl chloride Propiophenone
CH3CH2COCl C6H5COCH2CH3
92.53 134.18
p218
Propoxytrimethylsilane Propyl acetate
CH3CH2CH2OSi(CH3)3
132.3
CH3CH2CH2OOCCH3
102.13
CH3CH2CH2NH2 C3H7NHCH2CH2OH CH3CH2CH2C6H5 C6H5COOCH2CH2CH3 CH3CH2CH2C6H11
p219 p220 p221 p222 p223 p224 p225 p226
Propylamine 2-(Propylamino)ethanol Propylbenzene Propyl benzoate Propylcyclohexane Propylene carbonate Propyleneimine
1,2,3-Propanetriol, g16 Propanetriol diacetates, g17, g18 2-Propanone, a26 Propargyl alcohol, p242 Propargyl chloride, c232 Propenamide, a62 2-Propenenitrile, a64 2-Propenoic acid, a63
94 18.6
1.06520 4 1.010520 4
p216 p217
2, 243 72, 231
2-Propen-1-o1, a81 2-Propenyl acetate, a80 Propenylanisole, m97 N-2-Propenyl-2-propen-1-amine, d25 (2-Propenyl)thiourea, a101 Propiolic acid, p241 Propyl chloride, c210 Propylene, p205
80 218.0
11 87
d aq, alc misc bz, eth, abs alc
101.6
12
83.0
47.9 182746mm
37 78
2.3 aq; misc alc, eth misc aq, alc, eth
99.6 51.6 94.9 55
159.2 231.2 156.7 240 66.0
47
100735mm
132
s alc, eth i aq; s alc, eth s bz, eth v s aq, alc, bz, eth misc aq, alc, PE
Propylene dibromide, d92 sec-Propylene chlorohydrin, c213 Propylenediamine, p192 Propylene glycol, p194 Propylene glycol isopropyl ether, i86 Propylene glycol monomethyl ether, m95 Propylene glycol monophenyl ether, p73
1.347
1.348
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
p227
Propylene oxide
p228
Propylene sulfide
p229 p230
Propyl formate Propyl 4-hydroxybenzoate Propyl isocyanate Propyl lactate Propyl nitrate
p231 p232 p233 p234 p235 p236
p240
2-Propylpentanoic acid o-Propylphenol Propylphosphonic dichloride Propyltrichlorosilane Propyltriethoxysilane Propyl 3,4,5-trihydroxybenzoate Propyne
p241 p242
2-Propynoic acid 2-Propyn-1-ol
p243
()-Pulegone
p237 p238 p239
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
58.08
17, 6
0.828720
1.366020
112.1
37–38
37
CH3CHˆCH2 O CH3CHˆCH2 S CH3CH2CH2OOCH HOC6H4COOCH2CH2CH3
102.18
1, 354
0.736
1.380020
123
88–90
4
88.10 180.20
2, 21 10, 160
0.900620 4
1.376920
92.9 86–87
80.9
3
CH3CH2CH2NCO CH3CH(OH)COOC3H7 CH3CH2CH2ONO2
85.11 132.16 105.09
41, 366 3, 265 1, 355
0.908 0.99620 20 1.053820 4
1.397020 1.416725 1.397620
(CH3CH2CH2)2CHCOOH CH3CH2CH2C6H4OH CH3CH2CH2P(O)Cl2
144.21 136.19 160.97
2, 350 6, 499 4, 596
0.921 1.01520 1.290
1.425020 1.527920 1.464320
83–84 26 8640mm 100 110.1 23 may explode on heating 220 224–226 93 88–9050mm 112
CH3CH2CH2SiCl3
177.53
4, 630
1.185120 4
1.42920
123–124
0.89220 4
1.39620
179–180
C3H7Si(OC2H5)3
206.4
(HO)3C6H2COOC3H7
212.20
Solubility in 100 parts solvent 41 aq; misc alc, eth
2 aq; misc alc, eth 0.05 aq; v s alc, eth
s aq, alc, eth s alc, eth
s alc, eth
2
150
CH3C ˜ CH
40.06
1, 246
0.69120 4
1.372520
102.8
23.2
HC ˜ CCOOH HC ˜ CCH2OH
70.05 56.06
2, 477 1, 454
1.13820 4 0.971520 4
1.432020 1.432020
9 51.8
102200mm 113.6
58 33
152.24
7, 81
0.934615 4
1.485020
224
82
0.35 aq; 1 alc; 83 eth v s alc; 3000 mL eth s aq, alc, eth misc aq, alc, bz, chl misc alc, chl, eth
p244 p245 p246 p247
Pyrazine Pyrazole Pyrene Pyridazine
p248 p249 p250 p251
Pyridine Pyridine-d5 2-Pyridinealdoxime 2-Pyridinecarbaldehyde 3-Pyridinecarbaldehyde 4-Pyridinecarbaldehyde 3-Pyridinecarbamide Pyridine-2-carboxylic acid Pyridine-3-carboxylic acid
p252 p253 p254 p255 p256
Propylene oxide, e10 Propyl gallate, p239 Propyl iodide, i48 Propyl mercaptan, p199
80.09 68.08 202.26 80.09
23, 91 23, 39 5, 693 23, 89
1.03161 4
1.495361 1.4203
1.103525 4
1.523023
C5H5N C5D5N (C5H4N)CH ¨ NOH (C5H4N)CHO
79.10 84.14 122.13 107.11
20, 181
0.978225 4 1.05
1.506725 1.507920
211, 288 211, 287
1.126
(C5H4N)CHO
107.11
211, 288
(C5H4N)CHO
107.11
(C5H4N)CONH2 (C5H4N)COOH (C5H4N)COOH
53 115–116 70 186–188 150–151 8 208 41.6
v s aq, alc, eth s aq, alc, bz, eth 85
115.2 114.4
20 20
1.537020
181
54
1.135
1.549320
9715mm
60
21, 287
1.172
1.544020
7812mm
54
122.13 123.11
22, 40 22, 33
1.400
1.466
123.11
22, 38
1.473
6-Propyl-2-thiouracil, h129 Protocatechualdehyde, d376 Pseudocumene, t334 Pyrene, b52
misc aq, bz; v s alc, eth misc aq, alc, eth
110–112
s aq, eth
130–133 134–136 subl
100 aq; 66 alc s aq, alc, bz
236.6
1.4 aq; s alk
subl
3,6-Pyridazinediol, d400 2.3-Pyridinediol, d401
1.349
1.350
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. p257 p258 p259 p260 p261 p262 p263 p264 p265 p266 p267 p268 p269 p270 p271
p272
Name Pyridine-4-carboxylic acid 4-Pyridinecarboxylic hydrazide 2,3-Pyridinedicarboxylic acid 2,5-Pyridinedicarboxylic acid 2,6-Pyridinedicarboxylic acid Pyridine-N-oxide 3-Pyridinesulfonic acid 2-Pyridylmethanol 3-Pyridylmethanol 3-(3-Pyridyl)-1propanol Pyrimidine 2,4(1H,3H)-Pyrimidinedione Pyrrole Pyrrolidine 1-Pyrrolidinecarbodithioic acid, ammonium salt 1-Pyrrolidinecarbonitrile
Formula weight
Beilstein reference
(C5H4N)COOH
123.11
22, 45
319
(C5H4N)CONHNH2
137.14
221, 504
171.4
(C5H3N)(COOH)2
167.12
22, 150
190 d
0.52 aq; i alc, bz, eth 14 aq; 2 alc; 0.1 chl 0.56 aq; s alk
(C5H3N)(COOH)2
167.12
22, 153
236–237 subl d
s hot acid
(C5H3N)(COOH)2
167.12
22, 154
250 d
sl s aq; v sl s alc
C5H5N(O) (C5H4N)SO3H
95.10 159.16
202, 131 22, 387
66 300
(C5H4N)CH2OH (C5H4N)CH2OH (C5H4N)CH2CH2CH2OH
109.13 109.13 137.18
211, 203 21, 50
1.131 1.124 1.045
1.542020 1.544520 1.529520
80.09 112.09
23, 89 24, 312
1.016
1.503520
20–22 335
123–124
31
misc aq; s alc, eth 0.3 aq; s alk
67.09 71.12
20, 159 20, 4
0.969120 4 0.852022 4
1.510220 1.443120
23.4 57.8
129.8 88–89
38 2
4.5 aq; v s alc, eth misc aq; s alc, chl, eth
771.8mm
107
Formula
Density
Refractive index
164.29
96.13
Melting point
Boiling point
Flash point
26015mm
270 v s aq 11316mm 15428mm
v s aq, alc, eth v s aq, eth
153–155
0.954
1.469020
Solubility in 100 parts solvent
p273
L-()-2-Pyrrol-
115.13
p274
idinecarboxylic acid 1-Pyrrolidino-1cyclohexene 2-Pyrrolidinone
151.25
p275 p276 q1
3-(N-Pyrrolidino)1,2-propanediol Quinhydrone
Pyridinols, h173, h174, h175 3-Pyridinol N-oxide, h177 2(1H)-Pyridone, h173 2-(2-Pyridyl)pyridine, d705 Pyrocatechol, d377
85.11
22, 2
21, 236
145.20
201, 4
218.20
7, 617
d 220
0.940
1.522520
1.11625 4
1.48625
1.40120 4
Pyrogallol, t304 Pyromellitic acid, b26 Pyromellitic dianhydride, b27 Pyromucic acid, f42 Pyromucic aldehyde, f39
162 aq; 66 abs alc
11515mm
39
25
245
145
46–48
158 30mm
171
misc aq, alc, bz, chl, eth, EtAc
s hot aq, alc, eth
Pyrrolidinedithiocarbamate, p271 Pyruvic acid, o60 Pyruvic aldehyde, o59 Pyruvic aldehyde dimethyl acetal, d451 Quinaldine,
1.351
1.352
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
1.625
177 d
Boiling point
q2
Quinine
324.44
q3
Quinoline
129.16
20, 339
1.09520 4
1.627320
14.9
q4 q5
Quinoxaline Quinuclidine
130.15 111.19
23, 176 20, 144
1.133448 4
1.623148
r1
D-Raffinose
594.52
31, 462
29–30 229.5 156 sealed tube 80 d 118
r2 r3
pentahydrate Rhodamine B Rhodanine
479.02 133.19
19, 346 27, 242
r4 r5 s1
Riboflavin D-()-Ribose Saccharin
376.37 150.13 183.19
11, 434 27, 168
s2
Safrole
162.19
19, 39
s3
Semicarbazide
75.07
3, 98
Quinizarin, d372 Quinolinic acid, p259 8-Quinolinol, h178 p-Quinone, b59 Resacetophenone, d370 Resorcinol, d378 Resorcinol dimethyl ether, d432 Resorcinol monoacetate, d380 Resorcinol sulfide, t145
H2NNHCONH2
-Resorcylaldehyde, d375 -Resorcylic acid, d385 -Resorcylic acid, d383 Ribofuranose, r5 Rosaniline, b2 Rubeanic acid, d710 Slicyl alcohol, h105 Salicylaldehyde, h94 Salicylaldoxime, h97
101
1.537020
11.2
232–234
96 Salicylamide, h98 Salicylanilide, h161 Salicylic acid, h99 Salol, p150 Sarcosine, m258 Sebacic acid, d9 Sebacoyl chloride, d11 Semioxamazide, 053
Solubility in 100 parts solvent 125 alc; 1.2 bz; 83 chl 0.6 aq; misc alc, eth v s aq, alc, bz, eth v s aq, alc, eth
14 aq; 10 MeOH
165 170 may explode on rapid heating d 278 87 229–230
0.868
1.09520
237
Flash point
97
v s aq, alc v s hot aq, alc, eth v s alk(d); i eth s aq; sl s alc 0.34 aq; 3 alc; 8 acet v s alc; misc chl eth v s aq, alc; i eth
1.353
1.354
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Beilstein reference
Density
105.09 182.17
4, 505 1, 533
1.4725
1, 927 11, 72
1.6515 0.810
1.453015
165 38
350
218
s aq; v sl s alc, eth 83 aq; s hot alc, acet 55 aq; v sl s alc s bz, chl, eth, PE
11, 130
0.858420 4
1.496520
75
28525mm
200
v s eth, acet, PE
5, 630 272, 723
0.970 1.3620 4
5, 474 2, 614 2, 614 2, 601
0.906020
s4 s5
L-Serine
s6 s7
L-()-Sorbose Squalane
s8
Squalene
s9 s10
trans-Stilbene L-Strychnine
180.16 [(CH3)2CH(CH2)3422.80 CH(CH3)(CH2)3CH(CH3)CH2CH2 ˆ ]2 {CH3[C(CH3) ¨ CHCH2410.73 CH2]2C(CH3)¨CHCH2 ˆ}2 C6H5CH ¨ CHC6H5 180.25 334.42
s11 s12 s13 s14
Styrene Succinamic acid Succinamide Succinic acid
C6H5CH ¨ CH2 H2NCOCH2CH2COOH H2NCOCH2CH2CONH2 HOOCCH2CH2COOH
104.15 117.10 116.12 118.09
s15
Succinic acid 2,2dimethylhydrazide Succinic anhydride Succinimide Succinonitrile Succinyl chloride Sucrose Sulfamethazine Sulfanilamide
HOOCCH2CH2CONHN(CH3)2
160.17
s16 s17 s18 s19 s20 s21 s22
HOCH2CH(NH2)COOH
Formula weight
D-Sorbitol
NCCH2CH2CN ClCOCH2CH2COCl
H2NC6H4SO2NH2
100.07 99.09 80.09 154.98 342.30 278.34 172.21
Refractive index
Melting point
Boiling point
Flash point
222 d 110–112
124 206–207 284–286 2705mm
1.546820
1.552
30.6 145.1 153–156 260 d 125 subl 187–190 235 d
31
154–155 17, 407 21, 369 2, 615 2, 613 31, 424 14, 698
1.41 0.985 1.39515 4 1.58725 4
1.47315
119.6 125–127 46–48 17 192 d 198–201 164–166
261 287 265–267 192–193
112 76
Solubility in 100 parts solvent
v s bz, eth 6.2 alc; 20 chl; 0.55 bz; 15 mg aq s alc, acet, eth s aq; sl s alc; i eth 0.45 aq; i alc, eth 7.7 aq; 5.4 alc; 2.8 acet; 0.88 eth; i bz 11 aq; 2.5 acet; 5 MeOH s alc, chl; v sl s eth 33 aq; 4 alc; i eth d aq, alc; s bz 200 aq; 0.59 alc 0.15 aq; s alk 0.76 aq; 2.7 alc; 20 acet; s acid, alk
s23 s24 s25
Sulfoacetic acid o-Sulfobenzoic acid cyclic anhydride 4,4-Sulfonylbis(2,6-dibromophenol)
Senecioic acid, m163 Skatole, m284 Sodium tetraphenylborate, t128 Solketal, d515 Sorbic acid, h42 Sorbic aldehyde, h40 Stearamide, o2 Stearic acid, o5
HO3SCH2COOH
140.11 184.17
4, 21 19, 110
84–86
[HO(Br)2C6H2]2SO2
565.88
6, 865
289–292
Stearyl bromide, b319 Styrene dibromide, d79 Styrene glycol, p111 Styrene oxide, e9 Suberic acid, o24 Suberonitrile, d239 Succinic acid monoamide, s12 Succinonitrile, b380
245 d 18618mm
Succinyl dihydrazide, s15 Sulfanilic acid, a120 N-Sulfinylaniline, t152 3-Sulfoalanine, a288 Sulfolane, t106 3-Solfolene, d368 Sulfonyldianilines, d36, d37
s aq, alc; i eth, chl s bz, chl, eth; i aq
1.355
1.356
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. s26 s27 s28 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
Name 4,4-Sulfonylbis(methyl benzoate) 4,4-Sulfonyldiphenol 5-Sulfosalicyclic acid D-()-Tartaric acid meso-Tartaric acid hydrate Tartrazine p-Terphenyl -Terpinene -Terpinene Terpinen-4-ol Tetraallyloxysilane 1,1,2,2,-Tetrabromoethane Tetrabromophthalic anhydride ,,,-Tetrabromo-o-xylene ,,,-Tetrabromo-m-xylene Tetrabutoxysilane Tetrabutylammonium bromide Tetrabutylammonium chloride
Formula weight
Beilstein reference
(CH3OOCC6H4)2SO2
334.35
102, 109
(HOC6H4)2SO2
250.27
6, 861
HO3SC6H3(OH)COOH
254.21
11, 411
150.09
3, 520
1.759820 4
168–170
150.09
3, 528
1.66620 4
140
534.37 230.31 136.24 136.24 154.25 256.4 345.67
25, 252 5, 695 5, 126 5, 128 6, 55
0.837520 4 0.85315 4 0.933820 4 0.982420 4 2.952925
212–213 383 174 183 36.4 219 11412mm 0.0 243.5
463.72
17, 485
274–276
misc alc, eth; 0.07 aq sl s bz; i aq, alc
C6H4(CHBr2)2
421.77
5, 367
114–116
v s chl
C6H4(CHBr2)2
421.77
5, 375
105–108
v s bz, chl
(C4H9O)4Si (C4H9)4NBr
320.5 322.38
(C4H9)4NCI
277.92
Formula
HOOCCH(OH)CH(OH)COOH xH2O C6H5C6H4C6H5
(H2C ¨ CHCH2O)4Si Br2CHCHBr2
1, 94
Density
Refractive index
Melting point
Flash point
Solubility in 100 parts solvent
195–196 1.366315
245–247
s alc, eth, acet; i aq v s aq, alc; s eth
120
139 aq; 33 alc; 0.4 eth 125 aq v s aq
0.89920 4
1.477520 1.475416 1.482020 1.433620 1.632325
1.41320
1153mm 103–104
43, 292
Boiling point
83–86
46 51 79 none
misc alc, eth v s alc, eth
t16 t17 t18 t19 t20 t21 t22 t23
Tetrabutylammonium fluoride trihydrate Tetrabutylammonium hydrogen sulfate Tetrabutylammonium iodide Tetrabutylammonium tetrafluoroborate Tetrabutyltin 1,1,3,3-Tetrachloroacetone 1,2,3,4-Tetrachlorobenzene 1,2,4,5-Tetrachlorobenzene
Sylvan, m252 Sylvic acid, a1 2,4,5-T, t242 TAPS, t427
(C4H9)4NF· 3H2O
315.52
(C4H9)4NHSO 4
339.54
(C4H9)4NI
369.38
4, 157
145–148
(C4H9)4NBF 4
329.28
43, 293
160–162
(C4H9)4Sn Cl2CHCOCHCl2
347.15 195.86
1, 656
C6H2Cl4
215.89
5, 204
C6H2Cl4
215.89
5, 205
43, 292
62–63 169–171
1.057 1.62415 4
1.474220 1.49718
97
46–47 1.85822
Taurine, a161 Terephthaldehyde, b13 Terephthaldicarboxaldehyde, b13 Terephthalic acid, b17
sl s aq; s alc, eth
14510mm 182745mm
107 none
v s acet, chl
254
112
v s eth; sl s alc
112
s bz, chl, eth
138–140 240–246
Terephthaloyl chloride, b15 TES, t424 Tetracene, b7
1.357
1.358
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36 t37 t38 t39
Name Tetrachloro-obenzoquinone Tetrachloro-pbenzoquinone Tetrachloro-1,2difluoroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene 2,3,5-Tetrachloronitrobenzene Tetrachlorophthalic anhydride 3,4,5,6-Tetrachlorophthalimide 1,1,2,3-Tetrachloro2-propene 2,3,5,6-Tetrachlorothioanisole 2,4,5,6-Tetrachlorom-xylene Tetracosane Tetracyanoethylene Tetradecane Tetradecanoic acid
Formula weight
Beilstein reference
C6Cl4( ¨ O)2
245.88
7, 602
127–129
C6Cl4( ¨ O)2
245.88
7, 602
290
subl
s eth; sl s chl; i aq
Cl2CFCFCl2
203.83
26.0
92.8
0.012 aq
ClCH2CCl3
167.85
Cl2CHCHCl2 Cl2C ¨ CCl2 HC6Cl4NO2
Formula
Density
Refractive index
Melting point
Boiling point
1.644725
1.413025
1, 86
1.598
1.481920
167.85
1, 86
1.586625 4
1.491025
165.83 260.89
1, 187 5, 247
1.623020 4 1.74425 4
1.505720
285.90
17, 484
254–258 371
284.91
21, 505
300
ClCH ¨ C(Cl)CHCl2
179.86
11, 83
HC6Cl4SCH3
262.0
C6Cl4(CH3)2
243.95
5, 373
CH3(CH2)22CH3 (NC)2C ¨ C(CN)2 CH3(CH2)12CH3 CH3(CH2)12COOH
338.66 128.09 198.40 228.38
1, 175
0.778651
1.428370
1, 171 2, 365
0.762720 4 0.852870 4
1.429020 1.427370
1.530
1.516320
Flash point
Solubility in 100 parts solvent
130
none
0.02 aq; misc alc
43.8
146.3
none
22.4 98–101
121.1 304
none
0.3 aq; misc alc, chl, eth, PE misc alc, chl, eth s alc, bz, chl
165
d hot aq; sl s eth
none
59–61 220–222 51.1 200 5.9 58.5
391 subl 120 253.5 250100mm
9.4 chl; s eth v s alc, eth v s bz, chl, eth; s alc
t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53
1-Tetradecanol Tetradecanoyl chloride 1-Tetradecene 7-Tetradecene 1-Tetradecylamine 4-Tetradecylaniline Tetradecyltrichlorosilane Tetraethoxysilane Tetraethylammonium bromide Tetraethylammonium chloride Tetraethylammonium hydroxide Tetraethylene glycol Tetraethylene glycol dimethacrylate Tetraethylene glycol monomethyl ether
Tetraethyl orthosilicate, t47
CH3(CH2)13OH CH3(CH2)12COCl
214.39 246.82
1, 428 2, 368
0.815150
1.435850
37.8 1
264 16815mm
CH3(CH2)11CH ¨ CH2 CH3(CH2)5CH ¨ CH(CH2)5CH3 CH3(CH2)13NH2 CH3(CH2)13C6H4NH2 CH3(CH2)13SiCl3
196.38 196.38
1, 226
0.77515 4 0.764
1.435120 1.435120
12.9
251.2 250
213.41 213.41 331.8
4, 201 123, 2780
40–42 46–49
16215mm
(CH3CH2O)4Si (CH3CH2)4NBr
208.33 210.16
4, 104
0.93420 4 1.39720 4
(CH3CH2)4NCl
165.71
4, 104
1.080121 4
(CH3CH2)4NOH
147.26
4, 103
(HOCH2CH2OCH2CH2)2O [H2C ¨ C(CH3)COOCH2 CH2OCH2CH2]2O CH3O(CH2CH2O)3CH2 CH2OH
194.23
1, 468
1.12520 20
330.37
1.08
208.26
0.987
115 99
v s alc; s eth
165.8
46
d aq; s alc v s aq, alc, acet, chl 141 aq; s alc; 8.2 chl misc aq
307.8
176
misc aq, alc, bz, eth
2201mm
62
16611mm
112
1563mm
1.382 1.38320
s eth; sl s alc d aq, alc; s eth
77 287 d 37.5
1.459020
1.445320
6
1.359
1.360
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t54 t55
t56 t57 t58 t59 t60 t61
t62 t63 t64 t65 t66 t67 t68 t69
Name
Formula
Tetraethylenepentamine N,N,N,N-Tetra ethylethylenediamine Tetraethylgermanium Tetraethyllead Tetraethyl pyrophosphate Tetraethyl pyrophosphite Tetraethylsilane Tetraethylthiuram disulfide
(H2NCH2CH2NHCH2CH2)2NH (C2H5)2NCH2CH2N(C2H5)2
Tetraethyltin Tetrafluoroethylene 2,2,3,3-Tetrafluoro1-propanol 1,2,3,6-Tetrahydrobenzaldehyde Tetrahydrofuran 2,5-Tetrahydrofurandimethanol Tetrahydro-2-furanmethanol Tetrahydro-2-furanmethylamine
Formula weight
Beilstein reference
189.31
Density
Refractive index
Melting point
0.99920 20
1.505520
40
172.32
4, 251
0.808
1.434320
(C2H5)4Ge (C2H5)4Pb [(C2H5O)2P(O)]2O
188.84 323.45 290.20
4, 631 4, 639
1.1989 1.65320 4 1.18520 4
1.519820 1.419620
[(C2H5O)2P]2O
258.19
1.057
1.434120
(C2H5)4Si [(C2H5)2NC( ¨ S)S ˆ ]2
144.34 296.54
42, 1007 4, 122
0.76220 4 1.30
1.424620
(C2H5)4Sn F2C ¨ CF2 HCF2CF2CH2OH
234.94 100.02 132.06
4, 632 13, 638
1.19920 4 1.150740 1.485320 1.319720 4
C6H9CHO
110.16
71, 48
0.940
1.474520
72.11
17, 10
0.889220 4
1.407220
1.154225 4
132.16
90 136 d 170
Boiling point
Flash point
340
185
189–192
58
165.5 152291mm
811mm
112
153–155
i aq 3.8 alc; 7.1 eth; s bz, acet, chl; 0.02 aq i aq; s eth i aq
181 75.6 109–110
49
163–164
57
108.5
66
17
1.476625
50
265
80
178
83
154744mm
45
102.13
172, 106
1.052420
1.452020
101.15
182, 415
0.980
1.456020
misc aq, alc, eth
s alc, eth; i aq s bz; misc eth d aq; misc alc, bz, chl
70 112 131.2 15
Solubility in 100 parts solvent
misc aq, alc eth, PE misc aq, alc, bz, chl; s eth misc aq, alc, bz, chl, eth, acet
t70
t71 t72 t73 t74
t75 t76 t77
2-(Tetrahydrofuryloxy)tetrahydropyran 1,2,3,4-Tetrahydroisoquinoline Tetrahydrolinalool 1,2,3,4-Tetrahydronaphthalene cis-1,2,3,6-Tetrahydrophthalic anhydride cis-1,2,3,6-Tetrahydrophthalimide Tetrahydropyran Tetrahydropyran2-methanol
Tetraglyme, b190 1,2,3,4-Tetrahydrobenzene, c330
186.25
133.19 (CH3)2CHCH2CH2CH2C(CH3)(OH)CH2CH3 C10H12
20, 275
158.28 132.21
5, 491
152.15
17, 462
1.030
1.460620
1.064
1.566820
0.92525
1.43320
0.970220 4
1.541420
30
232–233
98
35.8
207.6
77
misc alc, bz, chl, eth, acet, PE
20 93
misc aq, alc, eth misc aq, alc, bz, eth
101–102
151.17 86.14 116.16
97
134–138 0.881420 4 1.025420
Tetrahydrodicyclopentadiene, t253 Tetrahydro-2,5-dimethoxyfuran, d457
1.421120 1.458020
45 88 70 glass 187
Tetrahydrofurfurylamine, t69 Tetrahydrofurfuryl alcohol, t68
1.361
1.362
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t78 t79 t80 t81 t82 t83
t84 t85 t86 t87
t88 t89 t90
Name 1,2,3,6-Tetrahydropyridine 3,4,5,6-Tetrahydropyrimidinethiol 1,2,3,4-Tetrahydroquinoline Tetrahydrothiophene 1,4,9,10-Tetrahydroxyanthracene 2,2,4,4-Tetrahydroxybenzophenone Tetrahydroxyhexanedioic acid Tetrakis(2-ethylbutoxy)silane Tetrakis(2-ethylhexoxy)silane N,N,N,N-Tetrakis(p-hydroxypropyl)ethylene diamine Tetrakis(isopropoxy)silane Tetrakis(2-methoxyethoxy)silane Tetrakis(trimethylsiloxy)titanium
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
83.13
203, 1912
0.911
1.480020
48
Boiling point
16
249
100
s aq; misc alc, eth
12
misc alc, eth; i aq
24, 5
133.19
20, 262
1.061
1.5924
15–16
88.17 242.23
171, 5 8, 431
0.998720
1.504820
96.2 120.9 147–149
[(HO)2C6H3]2C ¨ O
246.22
8, 496
200–203
HOOC[CH(OH)]4COOH
210.14
3, 581
230 d
[CH3CH2CH(C2H5)CH2O]4Si [CH3(CH2)3CH(C2H5)CH2O]4Si {[CH3CH(OH)CH2]2NCH2 ˆ }2
432.8
0.89220 4
1.43020
1712mm
549.95
0.88020 4
1.438820
1941mm
1.013
1.481220
175– 1810.8mm
44, 1685
Solubility in 100 parts solvent
108
116.19
292.42
Flash point
210–212
0.003 aq; s alk
[(CH3)2CHO]4Si
264.4
0.87720 4
1.38520
645mm
(CH3OCH2CH2O)4Si
328.4
1.07920 4
1.42220
18210mm
[(CH3)3SiO]4Ti
404.7
0.90020 4
1.42720
11010mm
190
t91 t92 t93
t94
t95
t96 t97 t98 t99
1,1,3,3-Tetramethoxypropane Tetramethoxysilane Tetramethylammonium bromide Tetramethylammonium chloride Tetramethylammonium iodide N,N,3,5-Tetramethylaniline 1,2,3,4-Tetramethylbenzene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene
0.997
1.408120
1, 287 4, 51
1.05220 4 1.56
1.36820
4, 51
[(CH3O)2CH]2CH2
164.20
(CH3O)4Si (CH3)4NBr
152.2 154.06
(CH3)4NCl
109.60
(CH3)4NI
201.06
(CH3)2C6H3N(CH3)2
149.24
12, 1131
0.913
1.544320
C6H2(CH3)4
134.22
5, 430
0.90520 4
1.518720
C6H2(CH3)4
134.22
5, 430
0.890620 4
1.513420
C6H2(CH3)4
134.22
5, 431
0.83881 4
6,7,8,9-Tetrahydro-5H-tetrazoloazepine, p26 Tetrahydrothiophene 1,1-dioxide, t106 Tetrahydrothiophene oxide, t107
Tetrahydroxyadipic acid, t84 Tetralin, t73 -Tetralonehydantoin, b40
183
54
d 230
121–122 20 subl 360
55 aq
1.16920 4
d 230
subl 300
s aq, hot alc
1.829
d 230
sl s aq; v s abs alc
226–228
90
6.2
205.0
68
misc alc, eth
23.7
198.0
63
s alc; v s eth
79.2
196.8
73
v s alc, bz, eth
N,N,N,N-Tetramethyldiaminomethane, t113 N,N,N,N-Tetramethyl-1,3-diamino-2propanol, b173
1.363
1.364
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t100 t101
t102 t103 t104
t105 t106 t107 t108
t109 t110 t111
t112
Formula weight
Beilstein reference
Density
(CH3)3CC(CH3)3
114.23
1, 165
0.656120
(CH3)2N(CH2)4N(CH3)2
144.26
4, 265
0.78620
(CH3)3CCH2C(CH3)2NH2 [ ˆ SiH(CH3)O ˆ ]4
129.25
4, 198
[(CH3)2Si(Cl)CH2 ˆ ]2
215.3
[(CH3)2SiH]2O
134.3
Name 2,2,3,3-Tetramethylbutane N,N,N,N-Tetramethyl-1,4-butanediamine 1,1,3,3-Tetramethylbutylamine 1,3,5,7-Tetramethylcyclotetrasiloxane 1,1,4,4-Tetramethyl1,4-dichlorodisilylethylene Tetramethyldisiloxane Tetramethylene sulfone Tetramethylene sulfoxide N,N,N,N-Tetramethylethylene diamine Tetramethylgermanium 1,1,3,3-Tetramethylguanidine N,N,N,N-Tetramethyl-1,6-hexanediamine Tetramethyllead
Formula
240.5
120.71
171, 5
104.17 4, 250
Refractive index
Melting point 120.7
Boiling point
Flash point
Solubility in 100 parts solvent
106.5
1
1.428020
169
46
s aq, alc, eth
0.805
1.424020
137–143
32
s alc, eth, PE; i aq
0.991220 4
1.387020
69
134–135
37
198734mm
0.75720 4
1.37020
1.261430 4
1.482030
1.158
1.520020
0.770
1.417920
55
120–122
1.0060
1.387120
88
43.4
(CH3)2NCH2CH2N(CH3)2
116.21
(CH3)4Ge
132.73
[(CH3)2N]2C ¨ NH
115.18
[(CH3)2N(CH2)3 ˆ ]2
172.32
41, 423
0.806
(CH3)4Pb
267.33
4, 639
1.99520 4
68
71731mm 27.6
285
165
misc aq, acet, bz
112 10
163 1.435920
209–210 27.5
110
73
misc alc, eth
t113
t114 t115 t116 t117
t118
t119 t120 t121
N,N,N,N-Tetramethylmethanediamine Tetramethyl orthocarbonate 2,6,10,14-Tetramethylpentadecane 2,3,5,6-Tetramethylphenol 2.2,6,6-Tetramethylpiperidino-N-oxy(free radical) N,N,N,N-Tetramethyl-1,3-propanediamine Tetramethylpyrazine Tetramethylsilane 1,2,2,3-Tetramethyl1,1,3,3-tetraphenyltrisiloxane
(CH3)2NCH2N(CH3)2
102.18
4, 54
0.74920
1.4005
C(OCH3)4
136.15
32, 4
1.023
1.384520
[(CH3)2CH(CH2)3CH(CH3)CH2]2CH2 (CH3)4C6HOH
268.53
0.782720 4
1.437920
150.22
6, 547
(CH3)4Si [(C6H5)2Si(CH3)O]2Si(CH3)2
2,2,5,5-Tetramethyl-3,4-dithiahexane, d114 Tetramethylene chlorobromide, b251 Tetramethylethylene glycol, d491
1
5
114
6
100
16711mm
36–38
130.24
4, 262
136.20 88.23 484.8
23, 99 4, 625
Tetramethylene oxide, t66 Tetramethylene sulfide, t81 Tetramethylolmethane, p20
s bz, chl, eth, PE
108–110 250
156.25
(CH3)2N(CH2)3N(CH3)2
85
1.423420
0.641120 4 1.0720 4
1.358520 1.55125
84–86 99.5
67
145–146
31
190 26.5 2350.5mm
27 221
v s alc, eth
2,2,4,4-Tetramethyl-3-thiapentane, d133 Tetramethylthiuram disulfide, b174
1.365
1.366
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t122 t123 t124 t124a t125 t126 t127 t128 t129 t130
t131 t132 t133 t134 t135
t136 t137
Formula weight
Beilstein reference
(CH3)2NC( ¨ S)N(CH3)2
132.23
41, 336
(CH3)4Sn (CH3)2NC( ¨ O)N(CH3)2
178.83 116.16
4, 631 4, 74
1.314925 0.968720 4
C(NO2)4
196.03 176.21
1, 80
1.622925 4 1.089
160.17
19, 436
Name 1,1,3,3-Tetramethyl2-thiourea Tetramethyltin 1,1,3,3-Tetramethylurea Tetranitromethane 1,4,7,10-Tetraoxacyclododecane 2,4,8,10-Tetraoxaspiro[5.5]undecane Tetraphenoxysilane Tetraphenylboron sodium 1,1,4,4-Tetraphenyl1,3-butadiene 1,1,3,3-Tetraphenyl1,3-dimethyldisiloxane Tetraphenylethylene Tetraphenylsilane Tetraphenyltin Tetrapropoxysilane Tetrapropylammonium bromide 1H-Tetrazole 2-Thenoyltrifluoroacetone
Formula
Density
1.14160 4
(C6H5O)4Si (C6H5)4BNa
400.5 342.23
(C6H5)2C ¨ CHCH ¨ C(C6H5)2 [(C6H5)2Si(CH3)]2O
358.49 410.7
(C6H5)2C ¨ C(C6H5)2 (C6H5)4Si (C6H5)4Sn (C3H7O)4Si (CH3CH2CH2)4NBr
332.45 336.5 427.11 264.4 266.27
5, 743
70.06 222.18
26, 346
Refractive index
Boiling point
75–77
245
1.5201 1.449325
54.8 1.2
78 176
1.435825 1.462120
13.5 16
126
52–55
831.5mm
48–49 300
2371mm
1.55460
5, 750
Flash point
65 112 112
Solubility in 100 parts solvent
misc aq, alc, chl, eth v s alc, eth, alk
v s aq, acet; s chl
207–209 1.07625 4
1.07820 4 1.4900 0.91620 4 41, 364
Melting point
1.586626
1.40120
50
2150.5mm
222–224 420 236–237 2283mm 226 420 945mm 270 d
156–158 subl 40–44 988mm
193
110 s aq
s aq, alc, acet
t138
Theobromine
180.17
26, 457
t139 t140 t141 t142 t143
Thiamine HCl Thiazole Thioacetamide Thioacetic acid Thiobenzoic acid
337.27 85.13 75.13 76.12 138.19
27, 15 2, 232 2, 230 9, 419
Tetrantoin, b40 2,5,8,13-Tetraoxadodecane, b189 3,6,9,12-Tetraoxatridecanol, t53 Tetraphene, b6 2-Thenoic acid, t157 2-Thiabutane, e182
CH3C( ¨ S)NH2 CH3O ˆ SH C6H5CO ˆ SH
357
subl 290
d 248 1.20017
1.537520
1.065 1.174
1.463020 1.602020
Thiacyclobutane, t345a 1-Thia-3-cyclopentene, 1,1-dioxide, d368 3-Thiaheptane, b451 2-Thiahexane, b463 3-Thiahexane, e210 Thianaphthene, b61
117–118 112–114 17 88–91 15–18 d
22 1 112
5-Thianonane, d132 2-Thiapentane, m395 3-Thiapentane, d337 Thioanisole, m364 2-Thiobarbituric acid, d388
0.05 aq; 0.045 alc; s alk; i bz, chl, eth 100 aq; 1 alc s alc, eth; sl s aq 16 aq; sl s alc, eth s aq; misc alc, eth misc eth; v s alc; i aq
1.367
1.368
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t144
t145 t146 t147 t148 t149 t150 t151 t152 t153 t154 t155 t156 t157 t158 t159 t160
Name 4,4-Thiobis(2-tertbutyl-6-methylphenol) 4,4-Thiobis(1,3dihydroxybenzene) Thiocarbanilide p-Thiocresol 2,2-Thiodiacetic acid 2,2-Thiodiethanol 4,4-Thiodiphenol 3,3-Thiodipropionic acid 2-Thiohydantoin N-Thionylaniline Thiophene 2-Thiopheneacetic acid 2-Thiophenecarbaldehyde 2-Thiophenecarboxylic acid 2-Thiophenemethylamine Thiophenol Thiophenoxyacetic acid
Formula
Formula weight
Beilstein reference
Density
Refractive index
358.54
Melting point
250.27
63, 6291
C6H5NHCSNHC6H5 HSC6H4CH3 (HOOCCH2)2S
228.32 124.21 150.15
12, 394 6, 416 3, 253
1.3224
(HOCH2CH2)2S
122.19
1, 470
1.182420 4
(HOC6H4)2S (HOOCCH2CH2)2S
218.27 178.21
6, 860
C6H5N ¨ SO C4H4S (C4H3S)CH2COOH
116.14 139.18 84.14 142.18
24, 260 12, 578 17, 29 18, 293
1.236 1.057325 4
1.627020 1.525725
(C4H3S)CHO
112.15
17, 285
1.200
1.590020
(C4H3S)COOH
128.15
18, 289
(C4H3S)CH2NH2
113.19
184, 7096
1.103
1.556920
C6H5SH
110.18
6, 294
1.076620
1.589720
C6H5SCH2COOH
168.21
6, 313
Flash point
31640mm
240
154 43–44 129
195
68
16
282
110
127
[(HO)2C6H3]2S
Boiling point
Solubility in 100 parts solvent
175–177
1.520320
150–155 134
128.5
14.9 64–66
misc aq, alc; sl s eth 3.4 aq; v s alc
231 d 38.2 63–67
v s alc, eth s alc, eth; i aq s aq, alc
sl s aq; i alc, eth 200 84.2 16022mm
1
misc alc, eth; i aq
198
77
s eth
260
s aq, chl; v s alc, eth
9928mm
73
169.1
50
v s alc; misc bz, eth
t161 t162 t163 t164 t165
Thiopropionic acid 3-Thiosemicarbazide Thiourea 1,4-Thioxane Thioxanthen-9-one
CH3CH2CO ˆ SH H2NC( ¨ S)NHNH2 H2NC( ¨ S)NH2
t166
Titanium(IV) isopropoxide Toluene
Ti[OCH(CH3)2]4
2,4-Toluenediamine 2,5-Toluenediamine 2,6-Toluenediamine 3,4-Toluenediamine Toluene-2,4-diisocyanate
CH3C6H3(NH2)2 CH3C6H3(NH2)2 CH3C6H3(NH2)2 CH3C6H3(NH2)2 CH3C6H3(NCO)2
t167 t168 t169 t170 t171 t172
Thiocarbanilide, d692 2,2-Thiodiethanethiol, b187 Thiodiethylene glycol, t149 Thiodiglycol, t149 Thiodiglycolic acid, t148 Thioethanolamine, a162 1-Thioglycerol, m20 Thioglycolic acid, m14
C6H5CH3
90.14 91.14 76.12 104.17 212.27
2, 264 3, 195 3, 180 19, 3 17, 357
1.014
284.26
12, 382
0.955
92.14
5, 280
0.866020 4
122.17 122.17 122.17 122.17 174.16
13, 124 13, 144 13, 148 13, 148 13, 138
Thiolactic acid, m21 Thiomalic acid, m23 4,4-Thioresorcinol, t145 Thiosalicyclic acid, m16 Thiosinamine, a101 2-Thixo-4-thiazolidinone, r3 Threonine, a187 Tiglic acid, m161
1.045 1.114
1.224420 4
1.464020
108–110
11
182–184 176–178 1.509520
s aq, alc 9 aq; s alc; sl s eth 147 273715mm
42
211 1.465420
18–20
21810mm
22
1.496920
95.0
110.6
7
283.5 273–274
1.568920
97–99 64 104–106 88–90 20–21
15618mm 251
v s bz, chl, hot HOAc
121
Tioxolone, h104 TMS, t120 TMSDEA, t371 TMSI, t373 Tolazoline, b102 p-Tolualdehyde, m126 Toluenethiols, p128, t147
misc alc, chl, eth, acet, HOAc s hot aq, alc, eth v s aq, alc, eth s aq, alc v s aq d aq, alc; misc bz, acet, eth
1.369
1.370
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t173 t174 t175 t176 t177 t178 t179 t180 t181 t182 t183 t184 t185 t186 t187 t188 t189 t190 t191 t192
Name p-Toluenesulfinic acid p-Toluenesulfonamide p-Toluenesulfonylhydrazide p-Toluenesulfonic acid p-Toluenesulfonyl chloride p-Toluenesulfonyl fluoride p-Toluenesulfonyl isocyanate o-Toluidine m-Toluidine p-Toluidine 1-(o-Toluidino)-1,3butanedione o-Tolunitrile m-Tolunitrile p-Tolunitrile o-Toluoyl chloride m-Toluoyl chloride p-Toluoyl chloride m-Tolyl isocyanate ( p-Tolylsulfonyl)methyl isocyanide p-Tolyltrichlorosilane
Formula weight
Beilstein reference
CH3C6H4SO2H
172.20
11, 9
85
v s alc, eth
CH3C6H4SO2NH2 CH3C6H4SO2NHNH2
171.22 186.23
11, 104 112, 66
137–140 110 d
0.2 aq; 3.6 alc
CH3C6H4SO3H
172.20
11, 97
CH3C6H4SO2Cl
190.65
11, 103
CH3C6H4SO2F
174.19
112, 54
CH3C6H4SO2NCO
197.21
CH3C6H4NH2 CH3C6H4NH2 CH3C6H4NH2 CH3C6H4NHCOCH2COCH3 CH3C6H4CN CH3C6H4CN CH3C6H4CN CH3C6H4COCl CH3C6H4COCl CH3C6H4COCl CH3C6H4NCO CH3C6H4SO2CH2NC
107.16 107.16 107.16 191.23
12, 772 12, 853 12, 880 12, 823
0.998420 0.98920 4 1.04620 4
1.572520 1.568120 1.553259
16.1 30.4 43.8 104–106
200.4 203.4 200.6 143
85 85 88
1.7 aq; s alc, eth misc alc, eth 7.4 aq; v s alc, eth
117.15 117.15 117.15 154.60 154.60 154.60 133.15 195.24
9, 466 9, 477 9, 489 9, 464 9, 477 9, 484 12, 864
0.995520 4 0.97615 0.978530 4 1.185 1.173 1.169 1.033
1.527920 1.525620
13 23 29.5
205.2 210 217.6 9012mm 865mm 225–257 7612mm
84 86
i aq; misc alc, eth 0.09 aq; v s alc, eth i aq; v s alc, eth
CH3C6H4SiCl3
225.6
Formula
Density
Refractive index
Melting point
Solubility in 100 parts solvent
67 aq; s alc, eth
69–71
13410mm
v s alc, bz, eth; i aq
41–42
11216mm 14410mm
2 114–115
1.320 4
Flash point
14020mm
1.435520
1.554920 1.548520 1.553520 1.530520
Boiling point
218–220
76 76 82 65
s alc, eth; i aq
t193 t194 t195 t196 t197
t198 t199 t200 t201 t202 t203 t204 t205
1,2,4-Triacetoxybenzene Triacetoxyethylsilane Triacetoxyvinylsilane 1,3,5-Triacetylbenzene Triallyl-s-triazine2,4,6(1H,3H,5H)trione 2,4,6-Triamino1,3,5-triazine 1H-1,2,4-Triazole Tribenzylamine Tribromoacetaldehyde Tribromoacetic acid 2,4,6-Tribromoaniline 2,2,2-Tribromoethanol 1,1,2-Tribromoethylene
Toluic acids, m130, m131, m132 -Tolunitrile, p80
C6H3(OOCCH3)3
252.22
6, 1089
98–100
C2H5Si(OOCCH3)3
234.3
1.142820 4
1.412320
(CH3COO)3SiCH ¨ CH2
232.3
1.16720 4
1.42320
C6H3(COCH3)3
204.23
7, 866
160–162 1.512920
249.27
(C6H5CH2)3N Br3CCHO Br3CCOOH Br3C6H2NH2 Br3CCH2OH BrCH ¨ CBr2
107– 1088mm 1131mm
126.12
26, 245
69.07 287.41 280.76 296.76 329.83 282.77 264.74
26, 13 12, 1038 1, 626 2, 220 12, 663 12, 338 1, 191
p-Tolylacetamide, m355 Triacetin, p201
0.99195 4 2.665
1.585020
2.35 1.70821
1.624725
17 1524mm
250
1.573250
104
112
subl
119–121 260 d 91–94 174 130–133 245 d 120–122 300 80–81 9310mm 162.5
sl s aq; i alc, eth
65 65
1,3,5-Triazine-2,4,6-triol, c299 Tributyl borate, t209
s aq, alc s hot alc, eth s aq, alc, chl, eth s aq, alc, eth s hot alc, chl, eth 2 aq; s alc, bz, eth
1.371
1.372
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
1.600515
8.1
149.6
94–96 16–17
244 219–221
Flash point
Solubility in 100 parts solvent
t206
Tribromomethane
CHBr3
252.77
1, 68
2.903115
t207 t208
Br3C6H2OH BrCH2CH(Br)CH2Br
330.82 280.78
6, 203 1, 112
2.55 2.411415
(C4H9O)3B (C4H9)3N [(CH3)3C]3C6H2OH
230.16 185.36 262.44
12, 398 4, 157
0.858020 0.778420 4 0.86427 4
1.409220 1.428320
70 70 131
t212
2,4,6-Tribromophenol 1,2,3-Tribromopropane Tributoxyborane Tributylamine 2,4,6-Tri-tertbutylphenol Tributyl phosphate
(C4H9O)3P(O)
266.32
12, 397
0.97225
1.422625
80
t213 t214
Tributylphosphine Tributyl phosphite
(C4H9)3P (C4H9O)3P
202.32 250.32
42, 971 11, 187
0.812 0.92520 4
1.461920 1.432620
t215 t216 t217
Tributyltin chloride Trichloroacetic acid Trichloroacetonitrile Trichloroacetyl chloride Trichloroacetyl isocyanate 2,4,5-Trichloroaniline 2,4,6-Trichloroaniline 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene
(C4H9)3SnCl Cl3CCOOH Cl3CCN
325.49 163.39 144.39
1.200 1.62961 4 1.440325 4
1.490520
2, 206 2, 212
Cl3CCOCl
181.83
2, 210
1.629
Cl3CC( ¨ O)NCO
188.40
Cl3C6H2NH2
196.46
12, 627
93–95
270
s alc
Cl3C6H2NH2
196.46
12, 627
73–75
262
s alc, eth
C6H3Cl3
181.45
5, 203
1.6925 25
52.6
221
113
v s bz, CS2
C6H3Cl3
181.45
5, 204
1.44625
17
214
110
misc bz, eth, PE
t209 t210 t211
t218 t219 t220 t221 t222 t223
none
0.3 aq; misc eth, MeOH s alc, chl, eth; i aq s alc, eth
233.5 216–217 278
93 63
hyd aq v s alc, eth; s acet
289 d
146
0.04 aq; misc org solv
15050 mm 1257mm
40 121 112
1.440920
17325mm 196–197 85.7
none
1.468920
114–116
none
1.480920
8520mm
65
57–58
1.570720
misc alc, bz, eth, PE 120 aq; v s alc, eth
t224 t225
t226 t227 t228 t229 t230 t231 t232 t233 t234
1,3,5-Trichlorobenzene 2,2,2-Trichloro-1,1dimethylethyl chloroformate 1,1,1-Trichloroethane 1,1,2-Trichloroethane 2,2,2-Trichloroethanol 2,2,2-Trichloroethyl chloroformate 1,1,2-Trichloroethylene Trichloroethylsilane Trichlorofluoromethane ,,2-Trichloro6-fluorotoluene Trichloroisocyanuric acid
1.566219
C6H3Cl3
181.45
63.4
208.5
107
ClCOOC(CH3)2CCl3
239.92
30–32
83– 8414mm
none
CH3CCl3
133.41
1, 85
1.337620 4
1.437920
30.4
74.0
none
0.13 aq; s bz, eth
ClCH2CHCl2
133.41
1, 85
1.441620 4
1.471120
36.6
113.5
none
1.55720 20
1.488520
17.8
151
0.4 aq; misc alc, eth 8 aq; misc alc, eth
Cl3CCH2OH
149.40
1, 338
ClCOOCH2CCl3
211.86
1.539
1.470320
ClCH ¨ CCl2
131.39
1.464920 4
1.477520
C2H5SiCl3 Cl3CF
163.5 137.4
1.237320 4 1.48521
1.425620 1.38420
ClC6H3(F)CHCl2
213.47
53, 701
1.446
1.550620
232.41
25, 256
Tributyrin, g19 ,,-Trichloroethoxycarbonyl chloride, t229
5, 204
1, 187
Trichloromethane, c126 Trichlorophenylsilane, p155
171–172
none
84.8
86.7
none
106 111
100.5 23.8
27
228–230
112
v s bz, eth, PE
0.1 aq; misc alc, chl, eth 0.14 aq; s alc, eth
249–251
3,3,3-Trichloropropylene oxide, e13
1.373
1.374
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t235 t236 t237 t238 t238a t239 t240
Formula weight
Beilstein reference
Density
Refractive index
Cl3CSCl
185.89
3, 135
1.70020 4
1.543620
Cl3CSO2Cl
217.88
32, 16
139
(CH3)2C(OH)CCl3
177.46
1, 382
99
167
CH3SiCl3
149.48
90
66
Cl3C6H2NO2
226.45
5, 246
1.79020
49–55
288
v s bz, eth
Cl3CNO2
164.38
1, 76
1.655820 4
64
112
misc alc, bz; s eth
Cl3C6H2OH
197.45
62, 180
67
253
69
246
615 acet; 163 bz; 525 eth; s alc; i aq 525 acet; 113 bz; 354 eth; v s alc; i aq s alc; v sl s aq
Name Trichloromethanesulfenyl chloride Trichloromethane sulfonyl chloride 1,1,1-Trichloro-2methyl-2-propanol Trichloromethylsilane 1,2,4-Trichloro-5nitrobenzene Trichloronitromethane 2,4,5-Trichlorophenol
Formula
1.27520 4
t241
2,4,6-Trichlorophenol
Cl3C6H2OH
197.45
6, 190
t242
(2,4,5-Trichlorophenoxy)acetic acid 2-(2,4,5-Trichlorophenoxypropionic acid 1,2,3-Trichloropropane 1,1,1-Trichloro-2propanol
Cl3C6H2OCH2COOH
255.49
63, 702
Cl3C6H2OCH(CH3)COOH
269.51
ClCH2CH(Cl)CH2Cl
147.43
1, 106
CH3CH(OH)CCl3
163.43
1, 365
t243
t244 t245
1.410820
1.461120
1.490175 4
Melting point
Boiling point 146–148
Flash point none
s alc, eth s alc, bz, chl, eth 5
none
153
181.6
1.388020
1.483420
Solubility in 100 parts solvent
0.14 aq; 16 acet; 0.16 bz; 7.1 eth
14.7
156.9
82
misc alc, eth; i aq
50
162
82
2.9 aq; v s alc, eth
t246 t247 t248 t249 t250 t251 t252 t253 t254 t255
2,4,6-Trichloropyrimidine Trichlorosilane ,,Trichlorotoluene ,2,6-Trichlorotoluene 2,4,6-Trichloro1,3,5-triazine 1,1,2-Trichlorotrifluoroethane Trichlorovinylsilane Tricyclo[5.2.1.02,6]decane Tricyclo[5.2.1.02,6]decan-8-one 1,3,5-Tricyclohexylhexahydro-striazine
Tricine, t428
183.43
23, 90
HSiCl3 C6H5CCl3
135.45 195.48
5, 300
Cl2C6H3CH2Cl
195.48 184.41
26, 35
Cl2CFCClF2
187.38
13, 157
H2C ¨ CHSiCl3
161.49 136.24
5, 164
150.22
72, 133
1.341720 4 1.375620 4
1.570020
23–25
210–215
112
1.40020 1.557020
1.28 5.0
31–32 220.8
20 97
36–39
11914mm
v s alc, eth
148
190720mm
i aq; s alc
1.563525
1.355725
36.4
47.6
none
1.24320 4
1.430020
95
90–93
9
77–79
193
40
1.063
333.57
Tricyclo[3.3.1.13,7]decane, a67
1.502520
d aq; s bz, chl s alc, bz, eth
0.017 aq
13230mm 74–75
976mm
Tricyclo[5.2.1.02,6]decane-4,8-dimethanol, b185
1.375
1.376
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
0.756320 4
1.425620
0.765320 1.124220 4
1.433420 1.483525
5.4 41–42 23.1 21.6
Boiling point
Tridecane Tridecanoic acid 1-Tridecene Triethanolamine
CH3(CH2)11CH3 CH3(CH2)11COOH CH3(CH2)10CH ¨ CH2 (HOCH2CH2)3N
184.37 214.35 182.35 149.19
1, 171 2, 364 1, 225 4, 285
t260 t261
(CH3CH2O)3B (C2H5O)3SiC2H5
145.99 192.3
1, 335
0.86420 20 0.896320 4
1.374020 1.395520
117–118 158–159
11
CH3Si(OC2H5)3
178.30
4, 629
0.89520 4
1.384520
141–143
23
s alc
(C2H5O)3SiH (C2H5O)3SiCH ¨ CH2
164.28 190.32
1, 334
0.87520 4 0.90320 4
1.3762 1.397820
131.5 160–161
26 34
t263 t264
Triethoxyborane Triethoxyethylsilane Triethoxymethylsilane Triethoxysilane Triethoxyvinylsilane Triethylaluminum Triethylamine
v s alc, eth v s alc, eth; i aq s alc; v s eth misc aq, alc, acet; 4.5 bz; 1.6 eth; s chl d aq
(C2H5)3Al (C2H5)3N
114.17 101.19
4, 643 4, 99
0.83225 0.732625 4
1.398025
58 114.7
194 89.6
6
t265 t266 t267
Triethylantimony Triethylarsine Triethylbismuthine
(C2H5)3Sb (C2H5)3As (C2H5)3Bi
208.94 162.11 296.17
4, 618 4, 602 4, 622
1.32416 1.15020 4 1.82
1.42
29
t268 t269
Triethylborane Triethylenediamine
(C2H5)3B
98.00 112.18
4, 641
0.696123
t270 t271
Triethylene glycol Triethylene glycol dibenzoate Triethylenetetramine
(HOCH2CH2OCH2 ˆ )2 (C6H5COOCH2CH2OCH2 ˆ )2 (H2NCH2CH2NHCH2 ˆ )2
150.17 358.39
1, 468
1.127415 4 1.271530
1.457815 1.525250
4.3 47
285
165
146.24
4, 255
0.982
1.497120
12
266–267
143
t261b t262
t272
79
Solubility in 100 parts solvent
t256 t257 t258 t259
t261a
235.4 236100mm 232.8 335.4
Flash point
79 185
159.5 140736mm 10779mm explodes when heated in air 92.9 95 158 174
d aq, air 5.5 aq; misc alc, eth; s acet, EtAc i aq; misc alc, eth i aq; v s alc, eth i aq; d air 45 aq; 13 acet; 77 alc; 51 bz misc aq, alc, bz
t273
144.26
42, 691
0.804
1.431120
156.91 171.29
26, 2
1.057630 0.894
1.459520
(C2H5)3In CH3C(OC2H5)3
202.01 162.23
2, 129
1.26020 0.884725 4
HC(OC2H5)3
148.20
2, 20
CH3CH2C(OC2H5)3
176.26
(C2H5O)3P(O) (C2H5)3P
Triethyl phosphite
Triethyl phosphonoacetate
t280 t281
N,N,N-Triethylethylenediamine Triethylgallium 1,3,5-Triethylhexahydro-s-triazine Triethylindium Triethyl orthoacetate Triethyl orthoformate Triethyl orthopropionate Triethyl phosphate Triethylphosphine
t282
t283
t274 t275 t276 t277 t278 t279
(C2H5)2NCH2CH2NHC2H5 (C2H5)3Ga
5513mm
32
82.3
142.6 207–208
1.53820 1.395025
32
144 142
55
misc alc, chl, eth
0.89120 4
1.391920
76
146
30
d aq; s alc, eth
2, 240
0.876
1.399520
155–160
60
v s alc, eth
182.16 118.16
1, 332 4, 582
1.072519 0.80015 4
1.404520
215–216 129
(C2H5O)3P
166.2
1, 330
0.96920 4
1.413120
6524mm
(CH3CH2O)2P(O)CH2COOC2H5
224.19
41, 573
1.130
1.431020
1459mm
s aq(d), alc, eth pyro- i aq; misc alc, eth phoric 55 i aq(hyd); misc alc, acet, bz, eth, PE 112
Tridecylbenzene, p156 3-Triethoxysilylpropylamine, a279 Triethyl borate, t260
Triethylenediamine, d45 Triethylene glycol, e127 Triethylene glycol dimethyl ether, b189
88
O,O,O-Triethyl phosphorothioate, t285
1.377
1.378
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t284 t285 t286 t287 t288 t289 t290 t291 t292 t293 t294
t295 t296 t297 t298
Formula weight
Beilstein reference
Density
Refractive index
(C2H5)3SiH (C2H5O)3P(S)
116.28 198.22
4, 625 1, 333
0.73120 4 1.082
1.41220 1.448020
CF3CONH2
113.04
22, 186
CF3COOH [CF3C(O)]2O
114.02 210.03
22, 186 22, 186
C6H5COCF3
174.12
CF3C6H4OH
162.11
CH3CF3 CF3CH2OH
Name Triethylsilane Triethyl thiophosphate 2,2,2-Trifluoroacetamide Trifluoroacetic acid Trifluoroacetic anhydride ,,-Trifluoroacetophenone ,,-Trifluorom-cresol 1,1,1-Trifluoroethane 2,2,2-Trifluoroethanol 2,2,2-Trifluoroethyl acrylate 2,2,2-Trifluoroethyl trifluoroacetate Trifluoromethane Trifluoromethanesulfonic acid Trifluoromethanesulfonic anhydride 3-(Trifluoromethyl)benzonitrile
Formula
1.489020 1.487
1.285020 1.30
1.240
1.459520
1.333
1.458820
84.04 100.04
1.384220 4
1.290722
CF3CH2OOCCH ¨ CH2
154.0
2.14225 4
1.398125
CF3CH2OOCCF3
196.0
1.472518 4
1.281218
61, 187
70.01
1, 59
1.52100
CF3SO3H
150.07
33, 34
1.69525
1.325025
(CF3SO2)2O
282.13
34, 35
1.677
1.321220
CF3C6H4CN
171.12
9, 478
1.281320
1.450520
HCF3
Melting point
Boiling point 107–108 10016mm
75
162.5
15.3 65
71.8 39
Flash point
Solubility in 100 parts solvent i aq; misc alc, eth
107
misc aq
165–166
41
1.8
178–179
73
111.3 43.5
47.3 74.1
29
46125mm 65.5
55
155.2
82.2
34
162
none
84 14.5
189
75 mL aq; 500 mL alc v s aq; misc eth d aq, alc
72
t299 t300 t301 t302 t303 t304 t305 t306
3-(Trifluoromethyl)benzyl chloride ,,-Trifluorotoluene Trihexylamine Trihexylchlorosilane Trihexylsilane 1,2,3-Trihydroxybenzene 1,3,5-Trihydroxybenzene 3,4,5-Trihydroxybenzoic acid
1.254
1.4605
1.188620
1.414520
0.87120 4
1.45620
194.59
C6H5CF3
146.11
5, 290
[CH3(CH2)5]3N [CH3(CH2)5]3SiCl
269.52 319.1
4, 188
[CH3(CH2)5]3SiH C6H3(OH)3
284.60 126.11
6, 1071
C6H3(OH)3
126.11
6, 1092
218–220 subl d
(HO)3C6H2COOH
170.12
10, 470
d 235
[(CH3)2CHCH2]3Al
198.33
0.78125
t308
Triisodecyl phosphite Triisopropanolamine Triisopropoxyborane Triisopropoxyvinylsilane 1,3,5-Triisopropylbenzene Triisopropyl phosphite
[(CH3)2CH(CH2)7O]3P
502.80
0.88625 15
1.45425
[CH3CH(OH)CH2]3N [(CH3)2CHO]3B [(CH3)2CHO]3SiCH ¨ CH3 C6H3[CH(CH3)2]3
191.27 188.08 232.4
1, 363
0.999650 20 0.815 25 0.8634
204.36
5, 458
[(CH3)2CHO]3P
208.24
1, 363
t313
1.379
2,2,2-Trifluoroethyl mesylate, m438 2-(Trifluoromethyl)aniline, a129 3-(Trifluoromethyl)aniline, a130 m-Trifluoromethylphenol, t290
102
12
263–265 1555mm
112
59 aq; 77 alc; 62 eth 1 aq; 10 alc; s eth 1.1 aq; 17 alc; 1 eth; 20 acet; i bz, chl, PE
6
8610mm
0
1800.1mm
46 1.376420 1.39625
305.4 139–141 179–181
152 17
0.845
1.488420
232–236
86
0.91420 4
1.410120
6411mm
73
4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione, t137 ,,-Trifluorotoludines, a129, a130, a131 ,,-Trifluorotolunitrile, t298
v s alc, eth; i aq
1605mm 131–133
Triisobutylaluminum
t312
29
1.44820 1.45
t307
t309 t310 t311
7012mm
CF3C6H4CH2Cl
pyrophoric 235 v s aq
i aq (sl hyd)
Triglyme, b189 Tri-(2-hydroxyethyl)amine, t259 1,2,6-Trihydroxyhexane, h65 Triiodomethane, i36
1.380
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t314 t315 t316 t317 t318 t319 t320 t321 t321a t322 t323
t324
t325 t326
Name 3,4,5-Trimethoxybenzaldehyde 1,2,3-Trimethoxybenzene 3,4,5-Trimethoxybenzoic acid 3,4,5-Trimethoxybenzoyl chloride 3,4,5-Trimethoxybenzyl alcohol Trimethoxyborane Trimethoxyboroxine 1,3,3-Trimethoxybutane Trimethoxy(methyl)silane 1,3,3-Trimethoxypropane (Trimethoxysilyl)propyldiethylenetriamine N-[3-Trimethoxysilyl)propyl]ethylenediamine N-(Trimethoxysilylpropyl)imidazole 3-(Trimethoxysilyl)propyl methacrylate
Formula weight
Beilstein reference
(CH3O)3C6H2CHO
196.20
8, 391
C6H3(OCH3)3
168.19
6, 1081
(CH3O)3C6H2COOH
212.20
10, 481
168–171 22710mm
(CH3O)3C6H2COCl
230.65
10, 487
79–81
(CH3O)3C6H2CH2OH
198.22
6, 1159
1.233
1.545920
(CH3O)3B
103.91
1, 287
0.92023 4
1.356820
[ ˆ OB(OCH3) ˆ ]3 (CH3O)2C(CH3)CH2CH2OCH3 CH3Si(OCH3)3
173.53 148.20
13, 3214
1.195 0.940
1.399620 1.409620
0.954820 4
CH3OCH2CH2CH(OCH3)2 (CH3O)3Si(CH2)3NHCH2CH2NHCH2CH2NH2
134.18
(CH3O)3Si(CH2)3NHCH2CH2NH2
Formula
(CH3O)3SiCH2CH2CH2OOCC(CH3) ¨ CH2
Density
Refractive index
1.112
Melting point
Boiling point
73–75
16510mm
43–45
241
Flash point
v s alc, eth; s chl
18518mm 22825mm
112
34
67–68
1
10
130 6320mm
10 45
1.369620
102–103
21
0.942
1.400420
45– 4617mm
265.4
1.0320 4
1.46320
222.4
1.010
1.445020
230.3
1.0020 4
1.4525
249.3
1.04520 4
1.42925
136.23 1, 820
Solubility in 100 parts solvent
14615mm
112
190
92
hyd aq; misc alc, eth
t327
Trimethylaluminum
(CH3)3Al
72.09
4, 643
0.75220
t328
Trimethylamine
(CH3)3N
59.11
4, 43
0.636
t329
Trimethylamine-Noxide 2,4,6-Trimethylaniline 1,3,3-Trimethyl-6azabicyclo[3.2.1]octane 3,3,5-Trimethyl-1azacycloheptane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene
(CH3)3N(O)
75.11
t330 t331
t332 t333 t334 t335
Trimellitic acid, b29 Trimesic acid, b30 Trimesoyl chloride, b32 Trimethylacetaldehyde, d596
1.43212
15.4
208mm
117.1
2.9
pyro- s alk; v sl s alc phoric 6 41 aq; misc alc; s bz, chl, eth s aq, MeOH
257 0.963
1.551020
233
96
153.27
0.902
1.471620
194
75
141.26
0.852
1.456320
180
67
C6H3(CH3)3
120.20
5, 399
0.89420 4
1.513920
25.4
176.1
48
i aq; s alc, eth
C6H3(CH3)3
120.20
5, 400
0.875620 4
1.504820
43.9
169.4
48
s alc, bz, eth
C6H3(CH3)3
120.20
5, 406
0.863720 4
1.499420
44.7
164.7
44
misc alc, bz, eth
(CH3)3C6H2NH2
135.21
12, 1160
Trimethylacetamide, d597 Trimethylacetic acid, d598 Trimethylacetic anhydride, d599 Trimethylacetyl chloride, d600
endo-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-o1, b216
1.381
1.382
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t336
t337 t338 t339 t340
t341 t342
t343 t344 t345 t345a t346 t347 t348
Name Trimethyl 1,2,4benzenetricarboxylate 2,2,3-Trimethylbutane 2,3,3-Trimethyl2-butanol 1,1,3-Trimethylcyclohexane 3,5,5-Trimethylcyclohex-2-ene1-one 2,2,6-Trimethyl1,3-dioxen-4-one 4,4-Trimethylenebis-(1-methylpiperidine) 4,4-Trimethylenedipiperidine 4,4-Trimethylenedipyridine Trimethylene oxide Trimethylene sulfide 2,2,5-Trimethylhexane 3,5,5-Trimethyl1-hexanol Trimethylhydroquinone
Formula weight
Beilstein reference
Density
Refractive index
Melting point
C6H3(COOCH3)3
252.22
91, 429
1.261
1.521420
38–40
19412mm
(CH3)2CHC(CH3)3
100.20
12, 121
0.690120 4
1.389420
24.9
80.9
s alc, eth
(CH3)3CC(CH3)2OH
116.20
12, 447
0.838025 4
1.423322
15–17
130.5
misc alc, eth
C6H9(CH3)3
126.24
Formula
1.429620
(CH3)2CHCH2CH2C(CH3)3 (CH3)3CCH2CH(CH3)CH2CH2OH (CH3)3C6H(OH)2
8.1
215.2
96
65– 672mm 21550mm
110
7, 65
142.15
193, 1604
1.088
1.462220
12–13
0.896
1.482020
13
210.37
65–68
198.27
57–60 17, 6 171, 3 13, 516
144.25 152.19
6, 931
Solubility in 100 parts solvent
112
1.47820
138.2
58.08 74.15 128.26
Flash point
136.6
0.92520 20
238.42
Boiling point
0.893025 4 1.02520 0.707220
1.389525 1.510220 1.399720
73.3 105.8
50 95.0 124.1
0.823620 4
1.430025
70
194
172–174
1 1
1.2 aq
misc aq v s org solv s alc, eth s aq; v s alc, bz, eth
t348a
2,6,8-Trimethyl4-nonanol
t349
2,6,8-Trimethyl-4nonanone -()-1,3,3-Trimethyl-2norbornanol
t350
(CH3)2CHCH2CH(CH3)CH2CH(OH)CH2CH(CH3)2 (CH3)2CHCH2CH(CH3)CH2C(O)CH2CH(CH3)2
Trimethyl borate, t319 Trimethylchlorosilane, c255 ,,4-Trimethyl-3-cyclohexene-1-methanol, t7 3,5,5-Trimethylcyclohex-2-en-1-one, i82 1,2,2-Trimethyl-1,3-cyclopentanedicarboxylic acid, c5
186.33
0.8193
184.31
0.81820 20
75
218.4
0.964120 4
48
201
154.25
6, 70
Trimethylene chlorobromide, b257 Trimethylene chlorohydrin, c214 Trimethylenediamine, p193 Trimethylene dibromide, d93
225
93
73
s alc, eth
Trimethylene glycol, p195 Trimethylethylene, m159 Trimethylgermanium bromide, b363 3,3,5-Trimethylhexahydroazepine, t332
1.383
1.384
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t351
t352 t353 t354 t355 t356 t357 t358 t359 t360 t361 t362 t363 t364
Name ()-1,3,3-Trimethyl-2-norbornanone Trimethyl orthoacetate Trimethyl orthoformate 2,4,4-Trimethyl1-oxazoline 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane 2,3,4-Trimethylpentane 2,2,4-Trimethyl1,3-pentanediol 2,4,4-Trimethyl1-pentene 2,3,5-Trimethylphenol 2,3,6-Trimethylphenol 2,4,6-Trimethylphenol Trimethyl phosphate Trimethyl phosphite
Formula weight
Beilstein reference
Density
Refractive index
Melting point
152.24
7, 96
0.94818
1.463518
5–6
CH3C(OCH3)3
120.15
12, 128
0.942825 4
1.385925
105
HC(OCH3)3
106.12
2, 19
0.967620 4
1.379020
100.6
15
113.16
0.887
1.421320
112–113
12
1.403020
112.3
109.8
Formula
Boiling point 192–193
Flash point 52
Solubility in 100 parts solvent v s alc, eth
v s alc, eth
(CH3)3CCH(CH3)CH2CH3 (CH3)2CHCH2C(CH3)3
114.23
11, 62
0.716020 4
114.23
12, 127
0.691920 4
1.391520
107.4
99.2
(CH3)2CH[CH(CH3)]2CH3
114.24
13, 500
0.719020 4
1.404220
109.2
113.5
(CH3)2CHCH(OH)C(CH3)2CH2OH (CH3)3CCH2C(CH3) ¨ CH2 (CH3)3C6H2OH
146.22
13, 2225
0.92855 15
1.451315
46
229
113
112.22
13, 849
0.715020 4
1.411220
93
101.4
1
136.19
6, 518
92–95
230–231
(CH3)3C6H2OH
136.19
(CH3)3C6H2OH
136.19
6, 158
(CH3O)3P(O) (CH3O)3P
140.08 124.08
1, 286 1, 285
s eth; sl s alc 7
s bz, chl, eth s alc, org solv 1.8 aq; 75 alc; 22 bz; 25 acet
62–64
1.197 1.04620 4
1.395820 1.408020
68–71
220
46 78
197 111–112
none 40
100 aq; s alc d aq; misc alc, acet, bz, PE
t365 t366 t367 t368 t369 t370 t371 t372 t373 t374
Trimethyl phosphonoacetate 1,2,4-Trimethylpiperazine 2,4,6-Trimethylpyridine N-(Trimethylsilyl)acetamide N-(Trimethylsilyl)aniline Trimethylsilyl bromoacetate N-(Trimethylsilyl)diethylamine 2-(Trimethylsilyl)ethanol N-(Trimethylsilyl)imidazole 3-(Trimethylsilyloxy)allene
Trimethylolpropane, e156 Trimethylsilyl cyanide, c298
(CH3O)2P(O)CH2COCH3
1.125
1.437020
128.22
0.85125 25
1.448025
50
151746mm
0.916622 4
1.497920
43
170.5
57
52–54
185–186
57
s aq, alc, acet, bz
(C5H2N)(CH3)3
121.18
CH3CONHSi(CH3)3
131.25
(CH3)3SiNHC6H5
165.3
0.94020 4
1.52220
207–208
BrCH2COOSi(CH3)3
211.14
1.284
1.442120
28
(CH3)3SiN(C2H5)2
145.33
57– 589mm 127738mm
(CH3)3SiCH2CH2OH
118.25
0.825
1.424620
50
140.26
0.956
1.475120
71– 7335mm 9914mm
130.3
0.783030 4
1.407525
100–102
(CH3)3SiOCH2CH ¨ CH2
20, 250
1180.85mm
112
182.11
Trimethylsilyldiethylamine, d343 Trimethylsilyl iodide, i55
80
Trimethylsilylnitrile, c298
3.5 aq; misc eth; s alc, bz, chl
1.385
1.386
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t375 t376 t377 t378 t379 t380 t381 t382 t383 t384 t385 t386 t387 t388 t389 t390
Name Trimethylsilylphenoxide Trimethylsilyl trifluoroacetate Trimethylsulfonium iodide Trimethylsulfoxonium iodide Trimethylvinyloxysilane Trimethylvinylsilane 2,4,6-Trinitroaniline 1,2,4-Trinitrobenzene 1,3,5-Trinitrobenzene 2,4,7-Trinitro-9fluorenone Trinitromethane 2,4,6-Trinitrotoluene Trioctylamine s-Trioxane Tripentaerythritol 2,4,6-Triphenoxys-triazine
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point 55
Boiling point
Flash point
Solubility in 100 parts solvent
(CH3)3SiOC6H5
166.3
0.925620 4
1.478220
(CH3)3SiOOCCF3
186.2
1.07720 4
1.388020
[(CH3)3S]I
204.07
215–220 subl
[(CH3)3S(O)]I
220.07
175 d
(CH3)3SiOCH ¨ CH2
116.2
0.77220 4
1.38920
74–75
(CH3)3SiCH ¨ CH2
100.2
0.69020 4
1.392020
55
(O2N)3C6H2NH2
228.12
12, 763
1.76214
188–190 explodes
s hot acet; sl s alc
C6H3(NO2)3
213.11
5, 271
1.7316
61–62
explodes
C6H3(NO2)3
213.11
5, 271
1.68820 4
122.5
explodes
315.20
72, 410
5.5 alc; 7.1 eth; i aq 0.035 aq; 1.9 alc; 1.5 eth; 6.2 bz v s bz, acet; sl s aq
HC(NO2)3 (O2N)3C6H2CH3
151.04 227.13
1, 79 5, 347
1.59724 4 1.65420 4
[CH3(CH2)7]3N
353.68 90.08
4, 196 19, 381
0.809 1.17065
372.41 357.37
8123mm 89–90
1
175–176 15 80.1
4722mm explodes
64
365–367 115
1.448520
245 d 232–234
s aq, alk 1.5 alc; 4 eth; s bz, acet; 0.01 aq 112 45
17.2 aq; v s alc, bz, eth, EtAc
t391
t396 t397
Triphenoxyvinylsilane Triphenylamine Triphenylantimony Triphenylarsine 1,3,5-Triphenylbenzene Triphenylene Triphenylmethane
t398 t399
Triphenylmethanol Triphenyl phosphate
t392 t393 t394 t395
2,4,6-Trinitrophenol, p173 Triolein, g22
1.13025 4
(C6H5O)3SiCH ¨ CH2
334.5
(C6H5)3N (C6H5)3Sb (C6H5)3As (C6H5)3C6H3
245.33 353.07 306.24 306.41
12, 181 16, 891 16, 828 5, 737
0.77400 1.434325 1.222548 1.205
(C6H5)3CH
228.29 244.34
5, 720 5, 698
(C6H5)3COH (C6H5O)3P(O)
260.34 326.29
6, 713 6, 179
Trioxymethylene, t388 Tripalmitin, g23
1.56225
2107mm 125–127 52–54 60–62 172–174
347–348 377 23314mm 460
1.302 1.013499 4
199 93.4
425 360
1.19904
164.2 49–51
360 24410mm
1.613948
223
Triphenylmethyl bromide, b366
s acet, eth; sl s alc v s bz, eth; sl s alc v s bz, eth; s alc v s bz; s abs alc, eth s alc; v s bz, eth v s hot alc, eth; 49 chl; 7 bz; s PE; i aq v s alc, bz, eth; i aq misc alc; s bz, acet, chl, eth; i aq
1.387
1.388
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
16, 759
1.07581 4
Refractive index
t400
Triphenylphosphine
(C6H5)3P
262.29
t401
Triphenylphosphine selenide Triphenylphosphine sulfide Triphenyl phosphite Triphenylsilane Tripiperidinophosphine oxide Tripropoxyborane Tripropylamine Tripropylene glycol Tripropylene glycol butyl ether Tripropylene glycol ethyl ether Tripropylene glycol isopropyl ether Tripropylene glycolmethyl ether Tripropyl orthoformate Tris(butoxyethyl) phosphate Tris(2-chloroethoxy)silane
(C6H5)3P(Se)
341.25
(C6H5)3P(S)
294.36
16, 784
(C6H5O)3P (C6H5)3SiH
310.29 260.41 299.40
6, 177 162, 605 20, 88
1.18425 15
1.590320
(CH3CH2CH2O)3B (CH3CH2CH2)3N H(OCH2CH2CH2)3OH HO(CH2CH2CH2O)3(CH2)3CH3 HO(CH2CH2CH2O)3CH2CH3 HO(CH2CH2CH2O)3CH(CH3)2 HO(CH2CH2CH2O)3CH3
188.08 143.27 192.3 248.4
12, 369 4, 139
0.857620 4 0.753 1.018 0.93425 25
1.394820 1.416020 1.44225 1.43025
220.3
0.094825 25
234.8
t402 t403 t404 t405 t406 t407 t408 t409 t410 t411 t412 t413 t414 t415
Melting point 80.5
Boiling point
Flash point
Solubility in 100 parts solvent
377
181
v s eth; s bz, chl, HOAc; sl s alc; i aq
360 1522mm 27350mm
218
s alc, bz, chl, eth
187–189 162–164 22–24 42–44 40–42
175 155–158 267.2 276
36 141 135
1.42725
486
132
0.094225 25
1.42825
112.7
124
206.3
0.96725 25
1.42825
242.4
127
HC(OCH2CH2CH3)3
190.28
0.880520 4
1.407220
1085mm
(C4H9OCH2CH2O)3P(O)
398.48
1.006
1.435920
2284mm
(ClCH2CH2O)3SiH
267.6
1.288620 4
1.457720
1182mm
93
42
112
v s alc; misc eth s aq, alc, eth s aq
misc aq, alc, eth
t416 t417 t418 t419 t420 t421 t422 t423
Tris(2-chloroethyl) phosphate Tris(2-chloroethyl) phosphite Tris(2,6-dichlorophenyl) phosphate Tris(dimethylamino)methane Tris(dimethylamino)methylsilane Tris(2-ethylhexyl) phosphite Tris(heptafluoropropyl)-s-triazine Tris(hydroxymethyl)aminomethane
Triphenylsilyl azide, a320 Tripropyl borate, t406
12, 337
1.390
1.472120
330
232
1.35320 4
1.486320
1152mm
190
misc alc, bz, eth
185
i aq
(ClCH2CH2O)3P(O)
285.49
(ClCH2CH2O)3P
269.49
(Cl2C6H3O)3P(O)
533.09
CH[N(CH3)2]3
145.25
1.436020
[(CH3)2N]3SiCH3
175.4
0.85022 4
1.43222
[CH3(CH2)3CH(CH2CH3)CH2O]3P
418.6
0.90220 4
1.449420
1640.3mm
585.1
1.715825
1.715825
165
(HOCH2)3CNH2
121.14
208–210
4, 303
Tripropylsilyl chloride, c258 TRIS, t423
42– 4312mm 11 5617mm
172
22010mm
Tris(dimethylamino)silyl chloride, c257a 1,1,1-Tris(hydroxymethyl)ethane, h141
1.389
1.390
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. t424
t425 t426
t427
t428
t429
t430 t431 t432
Name 2-[Tris(hydroxymethyl)methylamino]-1-ethanesulfonic acid 1,1,1-Tris(hydroxymethyl)ethane 3-[N-Tris(hydroxymethyl)methylamino]2-hydroxypropanesulfonic acid 3-[Tris(hydroxymethyl)-methylamino]1-propanesulfonic acid N-[Tris(hydroxymethyl)methyl]glycine Tris(2-methoxyethoxy)methylsilane Tris(2-methoxyethoxy)vinylsilane Tris(2-methylallyl)amine Tris(pentafluoroethyl)-s-triazine
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
(HOCH2)3CNHCH2CH2SO3H
229.25
CH3C(CH2OH)3
120.15
(HOCH2)3CNHCH2CH(OH)CH2SO3H
259.3
226
(HOCH2)3CNHCH2CH2CH2SO3H
243.28
240 d
(HOCH2)3CNHCH2COOH
179.17
184 d
CH3Si(OCH2CH2OCH3)3
268.4
1.04520 4
1.42020
14516mm
H2C ¨ CHSi(OCH2CH2OCH3)3 [H2C ¨ C(CH3)CH2]3N
280.38
1.03425 4
1.42725
284–286
65
0.794
1.457520
53
1.650625
1.313125
83– 8515mm 121–122
173.91 435.1
223–225
1, 520
43, 462
Solubility in 100 parts solvent
t433 t434 t435 t436
1,3,5-Trithiane Trithiocarbonic acid 1,2,4-Trivinylcyclohexane L-()-Tryptophan
t437
L-Tyrosine
t438
L-Tyrosine hydrazide
u1 u2 u3 u4 u5
Undecanal Undecane Undecanoic acid 1-Undecanol 2-Undecanone
u6
6-Undecanone
u7 u8
10-Undecenal 1-Undecene
(HS)2C(S) (H2C ¨ CH)3C6H9
(HO)C6H4CH2CH(NH2)COOH HOC6H4CH2CH(NH2)CONHNH2 CH3(CH2)9CHO CH3(CH2)9CH3 CH3(CH2)9COOH CH3(CH2)10OH CH3(CH2)8COCH3 CH3(CH2)4CO(CH2)4CH3 H2C ¨ CH(CH2)8CHO CH3(CH2)8CH ¨ CH2
Tris(7-methylnonyl) phosphite, t308 Trityl alcohol, t398 Tryptamine, a170
138.27 110.21 162.28
19, 382 3, 221
204.23
22, 546
181.19
14, 605
280–285 d 300 d
195.22
141, 665
196–198
170.30 156.31 186.30 172.31 170.30
1, 712 1, 170 2, 358 1, 427 1, 173
0.825 0.740220 4 0.8907 0.832420 0.829
1.432220 1.417320 1.429445 1.440220 1.428020
4 25.6 28.5 15.9 11–12
1155mm 195.9 228160mm 242.8 231–232
96 60
170.30
1, 174
0.831
1.428020
14.6
228
88
168.28 154.29
1, 225
0.810 0.76320 4
1.442720 1.426120
49.2
192.7
Tyramine, a173 Umbelliferone, h109 Undecyl alcohol, u4
1.48320 4 0.836
1.822520 1.478020
216–218 26.9 57.8 8820mm
s bz; sl s alc, eth d aq, alc; sl s eth 68 1 aq; s hot alc, alk; i eth, chl 0.03 aq; 0.01 alc; s alk; i eth
112 88
i aq; s alc, eth i aq; misc alc, eth s alc, chl, eth; i aq 0.02 aq; s alc s alc, bz, chl, eth, acet; i aq i aq; v s alc, eth
92
Undecyl-10-en-1-oic acid, u9 Undecylenic aldehyde, u7 Undecylic aldehyde, u1
i aq; misc alc, eth
1.391
1.392
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No. u9 u10 u11 u12 u13 u14 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 x1 x2 x3
Name 10-Undecenoic acid 10-Undecen-1-ol 10-Undecenoyl chloride Urea Uric acid Uridine L-Valine Vinyl acetate 5-Vinylbicyclo[2.2.1]-2-heptene Vinyl crotonate Vinylcyclohexane 4-Vinyl-1-cyclohexene 1-Vinylimidazole 5-Vinyl-2norbornene 2-Vinylpyridine 4-Vinylpyridine N-Vinyl-2pyrrolidinone Xanthene Xanthen-9carboxylic acid 9-Xanthenone
Formula weight
Beilstein reference
Density
Refractive index
Melting point
H2C ¨ CH(CH2)8COOH H2C ¨ CH(CH2)9OH H2C ¨ CH(CH2)8COCl
184.28 170.30 202.73
2, 458 1,452 2, 459
0.90724 4 0.85015 0.944
1.449320 1.450020 1.453220
24.5 2
1372mm 245 12210mm
(H2N)2CO
60.06 168.11 244.20 117.15
3, 42 26, 513 31, 23 4, 427
1.3218 4 1.89320
132.7 300 165 315
d mp d subl
86.09 120.19
21, 63
0.931820 4 0.84
1.395920 1.4802
92.8 80
72.5 141
6
23, 1263 51, 35 51, 63 234, 569
0.940 0.83020 4 1.039
1.448820 1.446320 1.464020 1.530820
27 21 20 81
0.8411
1.480220
5010mm 128 126–127 78– 7913mm 141
0.975 0.975 0.980
1.549020 1.550020 1.512020
158–159 6515mm 9313mm
43 51 93
Formula
(CH3)2CHCH(NH2)COOH H2C ¨ CHOOCCH3
CH3CH¨CHCOOCH¨CH2 112.13 C6H11CH ¨ CH2 110.20 108.18 94.12 120.20 (C5H4N)CH ¨ CH2 (C5H4N)CH ¨ CH2
1.230
101 80
105.14 105.14 111.14
20, 256 202, 170
182.22
17, 73
101
226.23
122, 279
217 d
196.21
17, 354
174
Boiling point
Flash point 148 93 93
Solubility in 100 parts solvent s alc, chl, eth; i aq
100 aq; 20 alc s alk; i aq, alc, eth s aq; hot alc, pyr 8.8 aq; v sl s alc, eth 2 aq; misc alc, eth
27 v s alc, chl, eth sl s hot aq, hot alc
310–312
s bz, eth; sl s alc, aq s hot alc, eth
350730mm
0.5 alc; v s chl
Uracil, p268 5-Ureidohydantoin, a77 Urethane, e91 Valeraldehyde, p27 Valeric acid, p36 -Valerolactone, p40 Valerone, d531 Valeronitrile, p33 Valeryl chloride, p44 Valinols, a213, a214
Vanillic acid, h132 Vanillin, h131 o-Vanillin, h130 Vanillyl alcohol, h135 Veratraldehyde, d430 Veratric acid, d434 Veratrole, d431 Veronal, d280 Vinylacetic acid, b403 Vinyl bromide, b284
Vinyl 2-butenoate, v4 Vinyl chloride, c109 Vinylidene chloride, d178 Vinyltrimethylsilane, t380 Vinyltris (2-methoxyethoxy)silane, t430 Vitamin B1, t139 Vitamin B2, r4 Vitamin C, a312 Xanthone, x3
1.393
1.394
TABLE 1.15 Physical Constants of Organic Compounds (continued )
No.
Name
Formula
Formula weight
Beilstein reference
Density
Refractive index
Melting point
Boiling point
Flash point
x4
o-Xylene
C6H4(CH3)2
106.17
5, 362
0.880220 4
1.505420
25.2
144.4
32
x5
m-Xylene
C6H4(CH3)2
106.17
5, 370
0.868415 4
1.497220
47.9
139.1
25
x6
p-Xylene
C6H4(CH3)2
106.17
5, 382
0.861120 4
1.495820
13.3
138.4
30
x7 x8
Xylitol D-()-Xylose
HOCH2(CHOH)3CH2OH
152.15 150.13
1, 531 31, 47
1.5350
x9
m-Xylylenediamine
C6H4(CH2NH2)2
136.20
13, 186
1.032
265745mm
112
Xylene-,-diol, b18 Xylenols, d579, d580, d581, d582, d583, d584
o-Xylyl bromide, b368 Xylyl chlorides, c258, c259, c260
95–97 144–145 1.570920
p-Xylylene glycol, b18
Solubility in 100 parts solvent misc alc, eth; 0.017 aq misc alc, eth; 0.02 aq v s eth; s alc; 0.02 aq s aq 117 aq; s hot alc, pyr
SECTION 2
INORGANIC AND ORGANOMETALLIC COMPOUNDS
Table 2.1 Physical Constants of Inorganic Compounds . . . . . . .
2.1
2.2
2.2
SECTION 2
This section summarizes the properties of various chemical compounds commonly encountered in organic chemistry that are often referred to either as inorganic or organometallic. In some cases, the distinction is artificial and the reader should refer to Section 1 if the expected compound is not presented here. Most compounds containing metals are collected here, rather than in Section 1. TABLE 2.1 Physical Constants of Inorganic Compounds Explanation of column headings Names, while following the IUPAC nomenclature, are generally alphabetized by the central atom to facilitate their location. An example of the table organization is given below for Al3C4, aluminum tetracarbide. It is entered in Table 2.1 as follows: Main heading Subgrouping Actual table listing
Aluminum carbide Aluminum (tetra-) carbide (tri-)
Solvates are listed under the entry for the anhydrous salt. Hydrazine hydrate, H2N ˆ NH2·H2O is listed under hydrazine. Magnesium sulfate heptahydrate (epsom salt) is listed under Magnesium, using the subgroup sulfate 7water. Inorganic acids are entered under hydrogen, For example, HF is listed under Hydrogen, using the subgroup fluoride. Where an elemental designation would be confusing or inappropriate, the compound is listed alphabetically as in the case of hydroxylamine, HONH2. Abbreviations used in the Table
, greater than , alpha position a, acid abs, absolute acetone, acet alc, alcohol alk, alkali, (aq NaOH) anhyd, anhydrous aq, aqueous aq reg, aqua regia atm, atmosphere bz, benzene c, solid state
ca, approximately chl, chloroform conc, concentrated cub, cubic d, decompose(s) dil, dilute DMF, dimethylformamide eth, diethyl ether EtOH, ethanol expl, explodes, explosive fcc, face-centered cubic
g, gas glyc, glycerol h, hot hex, hexagonal hyd, hydrolysis i, insoluble ign, ignites lq, liquid MeOH, methanol min, mineral misc, miscible org, organic PE, petroleum ether
pyr, pyridine s, soluble satd, saturated sl, slightly soln, solution solv, solvent(s) subl, sublimes tetr, tetragonal THF, tetrahydrofuran tr, transition v, very vac, vacuo or vacuum viol, violently
Formula Weights are based on the International Atomic Weights of 1973 and are computed to the nearest hundredth of an a.m.u. Density values are given at room temperature unless otherwise indicated by a superscript figure indicating a temperature in C. Thus, 2.48715 indicates a density of 2.487 for the named substance at 15 C. For gases density values are given in grams per liter (g · L1). Melting Point values are recorded in C. In certain cases decomposition is indicated with the letter “d” that either precedes or follows the number. The value 250 d indicates that the substance melts at 250 C with decomposition. The value d 250 indicates that decomposition only occurs at 250 C and higher temperatures. Where a value such as “6H2O, 150” is given, it indicates a loss of 6 moles of water per formula weight of the compound at a temperature of 150 C. Boiling Point values are given at atmospheric pressure (760 mm of mercury) unless otherwise indicated; a value of 82 means that the boiling point is 82 C at 760 mm Hg. A value of 8215 means that the boiling point is 82 C when the pressure is 15 mmHg. The specification “subl 550” indicates that the compound sublimes at 550 C. Solubility is given in parts by weight (of the formula weight) per 100 parts by weight of the solvent. If the solvent is unspecified, it is water. If no temperature is specified, the solubility is for the substance at room temperature. Other temperatures (in C) are indicated by superscript. The symbols of the common mineral acids represent aqueous solutions of those acids.
TABLE 2.1 Physical Constants of Inorganic Compounds
Name Aluminum acetylacetonate ammonium bis(sulfate) 12-water bis(acetylsalicylate) bromide butoxide, secbutoxide, tert(tetra-) carbide, trichlorate chloride
2.3
chloride 6-water ethoxide fluoride hydroxide iodide isopropoxide nitrate 9-water oxide phenoxide potassium bis (sulfate 12-water propoxide sodium bis(sulfate) 12-water
Formula
Formula weight
Density 2.70 1.27 1.64
Melting point, C 660.1 subl 193 (vac) 12 H2O, 250
Boiling point, C
Al Al(C5H7O2)3 AlNH4(SO4)2·12H2O
26.98 324.31 453.33
2450 314 d 280
Al(OOCC6H4OCOCH3)2OH AlBr3 Al(C4H9O)3 Al(C4H9O)3 Al4C3 Al(ClO3)3 AlCl3
402.30 266.71 246.33 246.33 143.96 277.35 133.34
2.6410 0.967 1.02520 0 2.36
97.5 subl 180 2100
d 2200
2.44
1942.5 atm
subl 181
AlCl3·6H2O Al(C2H5O)3 AlF3 Al(OH)3 AlI3 Al(C3H7O)3 Al(NO3)3·9H2O Al2O3 Al(C6H5O)3 AlK(SO4)2·12H2O
241.43 162.14 83.98 78.00 407.71 204.25 375.13 101.96 306.27 474.39
2.40 1.4220 0 2.88225 4 2.42 25 3.98 1.034620 0 3.965 1.23 1.75720
d 100 134 1040 H2O, 300 191 118.5 73 2054 d 265 9H2O, 92
Al(C3H7O)3 AlNa(SO4)2·12H2O
204.25 458.28
1.057820 0 1.67520
106 61
Solubility in 100 parts solvent s HCl, H2SO4, alk i aq; v s alc; s bz, eth 15 aq; i alc v sl s aq, alc, eth
253.3 200–20630 mm
20514 mm subl 1276 360 13510 mm d 135 2980 12H2O, 200 24814 mm
d viol aq; s alc, acet, bz CS2 v s org solv (flash point 27 C) v s org solv d to CH4 in aq (fire hazard) v s aq; s alc 70 aq (viol); 10012 abs alc; s CCl4, eth; sl s bz 8320 aq; 25 abs alc; s eth s hot aq (d); v sl a alc, eth 0.5625 aq; i a, alk, alc, acet i aq; s a,alk s aq(d); s alc, CS2, eth d aq; s alc, bz, chl, PE 6425 aq; 100 alc; s acet i aq; v sl s a, alk d aq; s alc, chl, eth 11.420 aq d aq; s alc 11015 aq
2.4
TABLE 2.1 Physical Constants of Inorganic Compounds (continued)
Name Aluminum stearate sulfate sulfate 18-water tetrahydroborate Amidosulfuric acid Ammonia d3 or [2H] Ammonium acetate benzoate boranate, tetrafluorobromide
Formula
Formula weight
Al(C18H35O2)3 Al2(SO4)3 Al2(SO4)3·18H2O Al(BH4)3 H2NSO3H NH3
877.42 342.15 666.45 71.53 97.09 17.03
ND3 or N2H3
20.05
NH4C2H3O2 NH4C7H5O2 NH4BF4 NH4Br
77.08 139.16 104.84 97.95
carbamate NH4COONH2 carbonate 1-water (NH4)2CO3·H2O cerate(IV), hexanitrato- (NH4)2[Ce(NO3)6] chloride NH4Cl chromate (NH4)2CrO4 chromium(III) bis(sulfate)NH4Cr(SO4)2·12H2O 12-water citrate (NH4)3C6H5O7 copper(II) tetrachloride Cu(NH4)2Cl4·2H2O 2-hydrate dichromate(VI) (NH4)2Cr2O7
Density
1.010 2.710 1.6917 2.126 0.718820 g · L1 0.843720 g · L1 1.1720 1.260 1.8715 2.429
Melting point, C
Boiling point, C
103 d 770 d 86.5 64.5 205 77.75
44.5 d 33.42
74.33
31.05
114 d 198 subl 452 (under pressure) subl 60 d 20
d subl 160
78.07 114.10 548.23 53.49 152.08 478.34
1.527 1.9112 1.72
subl 340 d 180 94
243.22 277.46
1.48 1.993
d 2H2O, 110
252.06
2.15525 4
d 170
d 397 (vac)
Solubility in 100 parts solvent
i aq; s alc, bz, alk 36.420 aq; sl s alc 870 aq; i alc d aq 14.7 aq 89.9 aq; 13.220 alc; s eth, org solv
1484 aq; 7.915 MeOH; s alc 2015 aq; 2.8 alc; s glyc; i eth 2516 aq 7620 aq; s acet, alc, eth v s aq; sl s alc; i eth 10015 aq; i alc 13520 aq; s alc, HNO3 2615 aq; 0.619 abs alc; i acet, eth 3420 aq; sl s MeOH, acet; i alc 7.20 aq
d120
100 aq; sl s alc 4020 aq; s alc 3620 aq; s alc (flammable)
1.45120 4
d 99
1.00925 1.280
subl 116 21–22 d100 d 35
2.5
dithiocarbamate diuranate(VI) fluoride formate hexadecanoate hexafluoroaluminate hydrogen carbonate hydrogen citrate hydrogen difluoride hydrogen oxalate 1-water hydrogen phosphate hydrogen phosphate, dihydrogen sulfate hydrogen sulfide hydrogen sulfite
NH4S ˆ CS ˆ NH2 (NH4)2U2O7 NH4F NH4OOCH NH4OOC(CH2)14CH3 (NH4)3AlF6 NH4HCO3 (NH4)2HC6H5O7 NH4HF2 NH4HC2O4·H2O (NH4)2HPO4 NH4H2PO4 NH4HSO4 NH4HS NH4HSO3
110.19 624.22 37.04 63.06 273.45 195.10 79.06 226.19 57.04 125.08 132.05 115.03 115.11 51.11 99.10
1.78 1.58 1.48 1.50 1.556 1.619 1.80319 1.78 1.17 2.03
hydroxide iodide iron(II) bis(sulfate) 6-water molybdate(VI)(6-) 4-water, heptanitrate octadecanoate octanoate oxalate 1-water palladate(II) tetrachloroperchlorate peroxodisulfate phosphate, hexafluorophosphinate picrate platinate(IV), hexachlorosilicate, hexafluoro-
NH4OH NH4I Fe(NH4)2(SO4)2·6H2O
35.05 144.95 392.14
2.51425 1.86420 4
125.6 H2O, 170 d 155 d 190 146.9 d 25 subl 150 (in N2) 77 subl 551 d 100
(NH4)6Mo7O24·4H2O
1235.86
2.498
NH4NO3 NH4OOC(CH2)16CH3 NH4OOCC7H15 (NH4)2C2O4·H2O (NH4)2PdCl4 NH4ClO4 (NH4)2S2O8 NH4PF6 NH4PH2O2 NH4C6H2N3O7 (NH4)2PtCl6 (NH4)2SiF6
80.04 301.50 161.24 142.11 284.29 117.50 228.18 163.00 83.03 246.14 443.89 178.14
1.72525
1.50 2.170 1.95 1.982 2.18012 4 1.634 1.719 3.065 2.011
d 180
subl
d 350
v s aq; s alc; sl s eth v sl s aq, alk; s acids 1000 aq; s alc 14320 aq; s alc, eth s aq; sl s bz; i alc, acet v s aq 2220 aq; i alc, acet 100 aq; sl s alc v s aq; sl s alc s aq; i bz, eth 6920 aq; i alc, acet 3720 aq; sl s alc; i acet 100 aq; i alc, acet 1280 aq; s alc; sl s acet; i bz 720 aq
220 (vac)
misc aq 17220 aq; v s alc, acet 3620 aq; i alc
H2O, 90
d 190
43 aq; s a; i alc
169.6 21–22 d on standing d 70 d d 240 d 120 d 200 d d d
21011 mm
19220 aq; 3.820 alc; 1720 MeOH sl s aq; s alc; i acet v s aq, alc, acet; sl s eth 5.120 aq v s aq; i abs alc 2220 aq; s MeOH; sl s alc, acet 580 aq 7520 aq; s alc, acet 100 aq; 5 alc; i acet 1.120 aq; sl s alc 0.520 aq 18.620 aq; i alc, acet
expl 180 d 240 expl 423
2.6
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Ammonium sulfamate sulfate sulfide DL-tartrate tetraborate 4-water thiocyanate thiosulfate vanadate(V)(1-) Antimony (III) chloride (V) chloride (III) fluoride (V) fluoride
Formula
Formula weight
NH4SO3NH2 (NH4)2SO4 (NH4)2S (NH4)2C4H4O6 (NH4)2B4O7·4H2O NH4SCN (NH4)2S2O3 NH4VO3
114.13 132.14 68.14 184.15 263.44 76.12 148.20 116.98
SbCl3 SbCl5 SbF3 SbF5
Density
Melting point, C
Boiling point, C
d 160
1.601
131 d 280 d d
1.305 1.679 2.326
149.6 d 150 d 200
d 170
228.11 299.02 178.75 216.74
3.1420 4 2.33620 4 4.37920 20 23 2.99
73.4 3.5 292 8.3
223.5 140 376 141 18.4 1425
1.76920
Solubility in 100 parts solvent
v s aq; sl s alc 43.525 aq; i alc, acet v s aq; s alc 5815 aq; sl s alc s aq; i alc 1280 aq; v s alc; s acet v s aq 0.4820 aq 1020 aq; s alc, bz, chl d aq; s HCl, chl, CCl4 44420 aq d viol aq; s HOAc; forms solids with alc, bz, CS2, eth 200 mL aq; s CS2 v sl s aq; s HCl, KOH v sl s aq; sl s warm KOH, eth 8.320 aq; 6.7 glyc; i alc
hydride (III) oxide (V) oxide potassium oxide tartrate 0.5-water (III) sulfide (V) sulfide Argon
SbH3 Sb2O3 Sb2O5 K(SbO)C4H4O6·O.5H2O
124.77 291.50 323.50 333.93
4.3615 5.2 2.78 2.607
91.5 655 O2, 300 d 100
Sb2S3 Sb2S5 Ar
339.69 403.82 39.95
4.64
546 189.38
185.87
Arsenic (III) chloride (III) oxide dimer
As AsCl3 As4O6
74.92 181.28 395.68
1.7824 g · L1 5.72 2.149725 4 4.15
0.00220 aq d; s H2SO4 i aq; s HCl, d NaOH 3.3620 mL aq
81728 atm 16 313
subl 612 130.2 465
i aq; s HNO3 d aq; misc chl, CCl4, eth; s alc 1.820 aq; s alc
(V) oxide (III) sulfide Barium acetate 1-water benzenesulfonate carbonate chlorate 1-water chloride fluoride hydrogen phosphate hydroxide 8-water manganate(VI)(2-) nitrate nitrite 1-water oxide perchlorate 3-water permanganate peroxide sulfate sulfide sulfite thiocyanate 2-water thiosulfate 1-water Beryllium bromide chloride fluoride hydride hydroxide iodide oxide sulfate 4-water
As2O5 As2S3
229.84 246.04
4.32 3.46
d 800 300–325
Ba(C2H3O2)2·H2O Ba(O3SC6H5)2 BaCO3 Ba(ClO3)2·H2O BaCl2 BaF2 BaHPO4 Ba(OH)2·8H2O BaMnO4 Ba(NO3)2 Ba(NO2)2·H2O BaO Ba(ClO4)2·3H2O Ba(MnO4)2 BaO2 BaSO4 BaS BaSO3 Ba(SCN)2·2H2O BaS2O3·H2O Be BeBr2 BeCl2 BeF2 BeH2 Be(OH)2 BeI2 BeO BeSO4·4H2O
273.46 451.70 197.35 322.26 208.25 175.34 233.32 315.48 256.28 261.35 247.37 153.34 390.29 375.21 169.34 233.40 169.40 217.40 289.53 267.48 9.01 168.83 79.92 47.01 11.03 43.03 262.82 25.01 177.14
2.19
d 150
4.43 3.18 3.856 4.89 4.16515 2.1816 4.85 3.24 3.17320 5.72 2.74 3.77 4.96 4.5015 4.2515
d 1360 H2O, 120 962 1368 d 410 78
2.28618 3.518 1.86 3.46525 1.89925 1.98625 4 1.92 4.2 3.01 1.71311
575 d 115 2013 d 400 d 200 450 1580 2227 d d 160 d 220 1277 506–509 399 552 H2, 220 134 d 480 2408() 4H2O, 270
707
O2, 250 2029 2272
d 3088 O2, 800
2484 521 482 1175
482 3787 d 580
6620 aq; s alc i aq; s alk; slowly s hot HCl 7620 aq; 0.14 alc s aq; sl s alc 0.002 aq; s a 3420 aq 3620 aq 0.1620 aq 0.01 aq; s a 3.920 aq v sl s aq 920 aq 7320 aq; i alc 3.520 aq 19825 aq; s MeOH; sl s alc, acet 6211 aq 1.50 aq 0.0002 aq 7.922 aq d 0.0220 aq 17025 aq 0.2120 aq i q; s a, alk v s aq; s alc; 19 pyr 42 aq; s alc, eth, CS2, pyr; i bz v s aq but slow d slowly aq; d rapidly a s hot conc a, alk hyd aq; s alc, eth, CS2 s conc H2SO4 3920 aq; i alc
2.7
2.8
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Bismuth chloride, trifluoride, pentahydroxide (III) nitrate 5-water (III) oxide Boron bromide, trichoride, trifluoride, trifluoride-1-diethyl ether fluoride-1-methanol oxide Bromine fluoride, triCadmium acetate chloride iodide oxide sulfate-water (3/8) sulfide Calcium acetate arsenate(V)
Formula
Formula weight
Density
Melting point, C
Boiling point, C
BiCl3 BiF5 Bi(OH)3 Bi(NO3)3·5H2O Bi2O3
315.34 303.98 260.00 485.07 495.96
4.75 5.425 4.36 2.83 8.76
ca 232 151 H2O, 100 d 30 817
447 230
BBr3 BCl3 BF3 BF3·O(C2H5)2 BF3·CH3OH B2O3 Br2 BrF3
250.57 117.19 67.81 141.94 131.89 69.62 159.81 136.90
2.6950 1.3512 4 2.99 g · L1 1.12525 4 1.203 2.46 3.1028 2.80325
46.0 107 127.1 60.4
91.3 18 100.4 125.7 594 mm 2065 58.75 125.74
Cd(C2H3O2)2 CdCl2 CdI2 CdO 3CdSO4·8H2O
230.50 183.32 366.21 128.40 769.56
2.341 4.047 5.67030 8.15 3.09
256 568 387 subl 1497 H2O, 40
CdS
144.46
4.82 hex
Ca(C2H3O2)2 Ca3(AsO4)2
158.17 398.08
d 160 3.620
450 7.3 8.77
1890
d 961 796 forms monohydrate 80 sub 1380 (in N2)
Solubility in 100 parts solvent
d aq; s HCl, alc, eth, acet d viol aq giving O3 d aq; s a d aq; s, acet i aq; s a d aq d aq, alc 1050 mL aq; s bz, chl, CCl4 d aq sl s aq 3.620 aq; v s alc, chl, eth, CS2 d viol aq; d alk v s aq 12025 aq 8520 aq; s alc, acet, eth i aq; s a 94.425; i alc 3.1318 aq; s a
370 aq; i alc, acet, bz 0.01325 aq
bromide carbide, dicarbonate chlorate chloride chloride 6-water citrate 4-water cyanamide cyanide diphosphate fluoride formate glycerophosphate hydrogen phosphate, di1-water hydroxide hypochlorite iodate 6-water lactate 5-water nitrate nitrite 4-water oleate oxide palmitate pantothenate (vitamin B3) peroxide phenoxide phosphate salicylate 2-water selenate 2-water stearate
CaBr2 CaC2 CaCO3 Ca(ClO3)2 CaCl2 CaCl2·6H2O Ca(C6H6O7)·4H2O CaCN2 Ca(CN)2 Ca2P2O7 CaF2 Ca(OOCH)2 Ca[C3H5(OH)2]PO4 Ca(H2PO4)2·H2O
199.90 64.10 100.09 206.99 110.99 219.08 570.51 80.11 92.12 254.10 78.08 130.12 210.16 252.07
3.353 2.22 2.930
Ca(OH)2 Ca(OCl)2 Ca(IO3)2·6H2O Ca(C3H5O3)2·5H2O Ca(NO3)2 Ca(NO2)2·4H2O Ca(C18H33O2)2 CaO Ca(C16H31O2)2 Ca[O2CH2CH2HOCH(OH)C(CH3)2CH2OH]2 CaO2 Ca(OC6H5)2 Ca3(PO4)2 Ca(C7H5O3)2·2H2O CaSeO4·2H2O Ca(C18H35O2)2
74.09 142.99 497.98 308.30 164.09 204.5 603.01 56.08 550.93 476.55
2.24 2.35
72.08 226.28 310.18 350.34 219.07 607.04
2.9225 4
d 275
3.14
1730 2H2O, 120 2H2O, 200 179–180
2.15 1.71 2.2920 4 3.09 3.180 2.015 2.22018 4
2.50418 1.67400 3.25
2.6820 4
765 d 900 340 772 6H2O, 200 4H2O, 120 1340 d 350 1230 1418 d d 170 H2O, 109 H2O, 522 100 d d 35 3H2O, 100 561 2H2O, 44 83–84 2927 d 155 d 195–196
806–812 2300
1940
subl 1150
2510
d 203
5H2O, 120
d 140 3500
d 240 d 698
14320 aq; v s alc, acet d aq giving C2H2 0.001320; s a 178 aq; s alc, acet 7520; s alc, acet 53620 aq; s alc 0.8518 aq; 0.006518 alc i aq; no known solv d aq i aq; s a 0.00220 aq; sl s a 16.620 aq; i alc 1.720 aq, i alc 1.830 aq 0.1710 aq; s a d aq evolving Cl2; i alc 0.2420 aq; i alc 5.415 aq; v sl s alc 15230 aq 84.518 aq; sl s alc 0.04 aq; s bz, chl; v sl s alc 0.1325 aq; s a 0.003 aq; sl s bz, chl; i alc, eth 35 aq; sl s alc, acet
sl s aq; s a sl s aq, alc 0.0325; s a; i alc 2.815 aq; 0.01516 EtOH 9.225 aq 0.00415 aq; s hot pyr; i chl, eth
2.9
2.10
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Calcium succinate 3-water sulfate sulfate hemihydrate sulfate 2-water sulfite 2-water DL-tartrate 4-water tetrahydridoaluminate thiocyanate 3-water Carbon (graphite) bromide, tetrachloride, tetrahydride, tetraiodide, tetraoxide, mono-
Formula
Formula weight
CaC4H6O4·3H2O CaSO4 CaSO4·0.5H2O CaSO4·2H2O CaSO3·2H2O CaC4H4O6·4H2O Ca(AlH4)2 Ca(SCN)2·3H2O
212.22 136.14 145.15 172.17 156.17 260.21 102.10 210.29
C CBr4 CCl4 CH4 CI4 CO
12.01 331.65 153.82 16.04 519.63 28.01
oxide di-
CO2
44.01
(tri-) oxide, diselenide, di-
C3O2 CSe2
sulfide, di-
CS2
Density
2.960 2.32
Melting point, C
Boiling point, C
Solubility in 100 parts solvent
1.2820 aq; s a; i alc 0.20 aq; s a 0.320 aq; s a, glyc 0.2620 aq; s a, glyc 0.004 aq; s a; sl s alc 0.004525 aq; sl s alc ign moist air; d viol aq, alc 150 aq; v s alc
1400 H2O, 163 2H2O, 163 2H2O, 100 4H2O, 200 d 160 400063.5 atm 90.1 22.9 182.48 d 171 205.05
3930 190 76.7 161.49 191.49
i aq, alc i aq; s alc, chl, eth i aq; s alc, chl, eth i aq; s bz sl hyd aq; s alc, bz, eth 2.1 mL aq; s alc, bz
56.2 solid subl 112.19 43
78.44
3115 mL aq
68.03 169.93
2.2520 3.42 1.586720 20 0.415164 4.34 0793 (lq) 1.250 g · L1 (gas) 1.5679 (c) 1.975 g · L1 1.11404 2.66325 4
6.4 125.1
76.14
1.26122
111.6
46.26
d aq to malonic acid i aq; d alc, pyr; misc CCl4; s acet, eth 0.2920 aq; s alc, eth
Carbonic acid Carbonyl chloride fluoride sulfide Cerium (III) chloride (IV) fluoride (IV) oxide (IV) sulfate Cesium bromide carbonate chloride fluoride hydroxide iodide nitrate oxalate selenate sulfate Chlorine fluoride, tri(di-) oxide oxide, di(di-) oxide, hepta-
2.11
Chlorosulfonic acid Chromium (II) acetate carbonyl, hexa-
H2CO3(CO2 H2O)
62.03
COCl2 COF2 COS
98.92 66.01 60.07
1.392 1.139114 1.0730 g · L1
127.8 114.0 138.81
7.6 83.3 50.23
hyd aq; s bz hyd aq 5420 mL aq; s alc, CS2
CeCl3 CeF4 CeO2 Ce(SO4)2
246.48 216.12 172.13 332.24
3.92 4.80
8.7 650
1730 d 550
3.91
d 195
10020 aq; 30 alc; s acet i aq; s a i aq; s a hyd aq; s H2SO4
CsBr Cs2CO3 CsCl CsF CsOH CsI CsNO3 Cs2C2O4 Cs2SeO4 Cs2SO4
212.81 325.82 168.36 151.90 149.91 259.81 194.91 353.82 408.77 361.87
4.44
1300
3.988 4.115 3.675 4.510 3.68520 4 3.23015 4.452820 4 4.243
635 d 610 645 703 272 621 414
10718 aq 26015 aq; 1120 alc; s eth 18720 aq; 3425 MeOH; v s alc 32218 aq 38615 aq; s alc 7720 aq; s EtOH; i acet 2320 aq; s acet; v sl s alc 313 aq 24412 aq 17920 aq; i alc, acet, pyr
ClF3
92.45
1.82511
76.28
11.74
Cl2O ClO2 Cl2O7
86.91 67.46 182.90
3.022 1.6420 1.80525
120.6 59.6 91.5
2.1 10.9 83.6
HSO3Cl
116.52
1.75320 4
80
158
hyd viol aq; glass wool and org matter ign 3.520 aq (hyd to HClO); s CCl4 11.210 aq d aq; expl on concussion or contact with flame or I2 d viol aq to HCl H2SO4
Cr(C2H3O2)2 Cr(CO)6
170.10 220.06
1.7718
d 130
expl 210
sl s aq, alc; i eth i aq, alc, eth
known in soln only
1324 1231 990 ca 1280 d 849
1019
2.12
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Chromium (II) chloride (III) chloride (III) fluoride (III) nitrate 9-water (III) oxide (IV) oxide (VI) oxide (III) phosphate 6-water (II) sulfate 7-water (III) sulfate 18-water Chromyl chloride Cobalt (II) acetate 4-water (III) acetate (II) bromide (II) carbonate (II) chloride (II) fluoride (III) fluoride (II) hydroxide (II) iodide (II) nitrate 6-water (II) oxalate (II) oxide
Formula
Formula weight
Density
2.878 2.7615 3.8
Melting point, C
CrCl2 CrCl3 CrF3 Cr(NO3)3·9H2O Cr2O3 CrO2 CrO3 CrPO4·6H2O CrSO4·7H2O Cr2(SO4)3·18H2O
122.90 158.35 108.99 400.15 152.02 83.99 99.99 255.06 274.17 716.45
5.21 4.89 2.70 2.12114
815 877 1100 60 2330 O2, 300 198 100
1.7
d 100
CrO2Cl2
154.90
1.92
96.5
Co(C2H3O2)2·4H2O Co(C2H3O2)3 CoBr2 CoCO3 CoCl2 CoF2 CoF3 Co(OH)2 CoI2 Co(NO3)2·6H2O CoC2O4 CoO
249.08 236.07 218.75 118.94 129.84 96.93 115.93 92.95 312.74 291.04 146.95 74.93
1.70519
4H2O, 140 d 100 678 (in N2) d 740 1127
4.90925 4 4.13 3.356 4.46 3.88 3.59715 4 5.68 1.87 3.02125 4 6.45
d 505 d 55 d 250 1805
Boiling point, C
1300 subl 947 subl d 100 3000 d 250
117
1087 1739
570 (vac) d 74
Solubility in 100 parts solvent
v s aq i aq, alc, acet, eth i aq, alc; s HF 20815 aq; s alc i aq, alc i aq; s HNO3 16720 aq; may ign org materials i aq; v s a, alk; sl s HOAc 230 aq 22020 aq d aq; s eth s aq; 2.115 MeOH s aq, alc, HOAc 11220 aq 0.1815 aq; s a 5320 aq 1.3620 aq; s a d aq; i alc, bz, eth 0.0018 aq; s a 203 aq 15530 aq; v s alc 0.00218 aq; s a i aq; s a
(II,III) oxide (II) sulfate 7-water Copper (II) acetate hydrate (II) acetate–metaarsenite
2.13
Co3O4 CoSO4·7H2O
240.80 281.10
6.07 2.0325 4
d 900 96.8
7H2O, 420
199.65 1013.77
1.882
115
d 240
8 aq; 0.48 MeOH; sl s eth, glyc i aq; s a, NH4OH
(I) bromide (II) bromide (II) chlorate 6-water (I) chloride (II) chloride (II) chloride 2-water (I) cyanide (II) fluoride formate hydroxide (I) iodide (II) nitrate 3-water (II) oleate (I) oxide (II) oxide (II) perchlorate (II) stearate (II) sulfate (II) sulfate 5-water Cyanogen azide
Cu(C2H3O2)2·H2O Cu(C2H3O2)2·3Cu(AsO2)2 CuBr CuBr2 Cu(ClO3)2·6H2O CuCl CuCl2 CuCl2·2H2O CuCN CuF2 Cu(OOCH)2 Cu(OH)2 CuI Cu(NO3)2·3H2O Cu(OOCC17H33)2 Cu2O CuO Cu(ClO4)2 Cu(OOCC17H35)2 CuSO4 CuSO4·5H2O NC ˆ CN NC ˆ N3
143.45 223.31 338.53 98.99 134.44 170.47 89.56 101.54 153.55 97.55 190.44 241.60 626.43 143.08 79.54 262.43 630.46 159.61 249.68 52.04 68.04
4.98 4.71020 4
488 498 65 430 d 300 2H2O, 100 473 (in N2) 770
1318
bromide chloride iodide Deuterium oxide
CNBr CNCl CNI D2 or 2H2 D2O or 2H2O
105.93 61.48 152.92 4.03 20.03
v sl s aq; s a 126 aq; s alc, acet, pyr; i bz, eth 24218 aq; v s alc; s acet 0.024 aq; s HCl 7320 aq; s alc, acet 7625 aq; v s alc; s acet 0.00026 aq; s HCl, KCN 0.075 aq; s a 12.5 aq i aq; s a i aq; s HCl, KI 1380 aq; v s alc i aq; sl s alc; s eth i aq; s HCl i aq, alc; s a 14630 aq; s eth; i bz, CCl4 i aq, alc, eth; s pyr, hot bz 14.30 aq 3220 aq; s MeOH, glyc; sl s EtOH 42020 mL aq; 230 mL alc s acetonitrile; can be handled safely only in solv v s aq, alc, eth s aq, alc, eth s aq, alc, eth sl s aq misc aq
4.14 3.38625 4 2.54 2.92 4.23 1.831 3.368 5.62 2.05 6.0 6.31514 4 2.22523 3.603 2.28416 4 2.335 g · L1 2.01520 4 1.186 0.169mp (lq) 1.105620
160 588 114.5 1236 d 1122 82.3 ca 250 805 d 5H2O, 150 27.84 detonates 51.4 6.90 146–147 252.89 3.82
d 100 1212 d d 1449
1207 d 170 O2, 1800 d 130
21.15
61.35 13.0 subl 140 248.24 101.43
i aq; v sl s a 6520 aq; sl s alc
2.14
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name
Formula
Formula weight
Disulfuryl dichloride Diphosphoric(V) acid Fluorine Fluoroboric acid Fluorosulfonic acid -d or [2H] Germane Gold (III) chloride Helium
S2O5Cl2 H4P2O7 F2 HBF4 HSO3F DSO3F or 2HSO3F GeH4
215.03 117.98 38.00 87.81 100.07 101.08 76.62
AuCl3 He
303.33 4.00
Hydrazine hydrate Hydrazinium (1) chloride (2) chloride (2) sulfate Hydrogen azide borate (1) borate(3), orthobromide
H2NNH2 H2NNH2 · H2O
32.05 50.16
H2NNH3Cl ClH3NH3Cl (H3NNH3)SO4 H2 HN3 HBO2 H3BO3 HBr
68.51 104.97 130.13 2.02 43.03 43.83 61.83 80.92
48% HBr H2O DBr or 2HBr
81.92
bromide bromide-d
Density 1.81811 1.55425 g · L1 1.74315 1.523142 3.9 0.17840 g · L1 0.1249 (lq) 1.008320 1.03821
1.422620 1.378 0.0899 g · L1 1.126 2.486 1.43515 3.38820 g · L1 2.16066 (lq) 1.49 g · L1 3.3920 g · L1
Melting point, C
Boiling point, C
Solubility in 100 parts solvent
37.5 61 219.70 d 130 87.3 89 165.9
152.5
165.5 163 88.5
d aq, a s aq d aq viol v s aq s aq s aq sl s hot HCl
254 d 272.225 atm
subl 265 268.935
6820 aq 0.86120 mL aq
1.54 51.7
113.8 119.4
misc aq, alc misc aq, alc
92.6 198 254 259.76 80 236 171.0 86.81
d 240 d 200 d 252.76 37 d 300 66.71
v s aq v s aq; sl s alc 3.420 aq; i alc 1.9 mL aq v s aq (v expl) v sl s aq 6.430 aq 19325 aq; s alc
11 87.46
126 66.5
v s aq (constant boiling) v s aq
188.20
2.15
chloride
HCl
36.46
chloride cyanide
20.24% HCl H2O HCN
27.06
fluoride
HF
20.01
fluoride iodide
35.35% HF H2O HI
127.92
iodide nitrate nitrate oxide oxide-d2 perchlorate 2-water periodate(1) periodate(5) peroxide phosphate(V) (1) phosphate(V) (3) phosphide
57% HI H2O HNO3 69% HNO3 H2O H2O D2O or 2H2O HClO4 · 2H2O HIO4 H5IO6 H2O2 HPO3 H3PO4 PH3
18.02 20.03 136.49 191.91 227.94 34.02 79.98 98.00 34.00
selenide sulfide
H2Se H2S
80.98 34.08
telluride
H2Te
129.63
H2WO4 HONH2
249.86 33.03
HONH3Cl (HONH3)2SO4
69.49 164.14
tungstate(VI) (2) Hydroxylamine Hydroxylammonium chloride sulfate
63.02
1.52620 g · L1 1.18785 (lq) 1.097 0.901 g · L1 1.267510 (lq) 0.9220 g · L1 0.95719 (lq)
114.18
85.00
7220 aq
13.24
110 25.70
v s aq (constant boiling) v s aq
83.57
19.52
v s aq
5.3720 g · L1 2.79935 (lq) 1.7015 1.5027 1.4120 1.0004 1.1045 1.6720
50.79
120 35.35
v s aq (constant boiling) 700 aq
127 83 120.5 100.00 101.43 203 d 138 d 140 151.2
v s aq (constant boiling) v s aq misc aq (constant boiling)
1.46490 2.2–2.5 1.88 1.529 g · L1 2.12424 1.1906 g · L1 6.234 g · L1 5.5 1.332 1.68020
41.59 0.00 3.82 17.8 subl 110 130 0.40 subl 42.3 133.81
d 213 87.78
misc aq v s aq (commercial 72% a) 44025 aq 113 aq misc aq; s alc, eth s aq v s aq (commercial 85% a) 2617 mL aq; s alc, eth
65.73 85.52
42 60.33
9.520 mL aq 0.33425 mL aq
49
2
d aq
H2O, 100 33.1
5822 mm
i aq; s alk, HF s aq, alc
150.5 d 170
d
8317 aq; 4.420 alc 6920 aq
2.16
TABLE 2.1 Physical Constants of Inorganic Compounds (continued)
Name
Formula
Formula weight
Density
Iodic acid
HIO3
175.91
4.6290
Iodine
I2
53.82
4.66020
bromide chloride chloride, trifluoride, pentafluoride, hepta(di-) oxide, pentaIron (II) bromide (III) bromide carbonyl, penta(II) chloride (III) chloride (III) ferrate(II), hexacyano(II) fluoride (III) fluoride (II) iodide (III) nitrate 9-water (II) oxalate 2-water (II) oxide (III) oxide (II, III) oxide (II) sulfate 7-water
IBr ICl ICl3 IF5 IF7 I2O5 Fe FeBr2 FeBr3 Fe(CO)5 FeCl2 FeCl3 Fe4[Fe(CN)6]3
206.81 162.36 233.26 221.90 259.89 333.81 55.85 215.67 295.57 195.00 126.75 162.21 859.25
4.41570 3.20 3.202 3.252 2.86 g · L1 4.79925 7.86 4.636
FeF2 FeF3 FeI2 Fe(NO3)3 · 9H2O FeC2O4 · 2H2O FeO Fe2O3 Fe3O4 FeSO4 · 7H2O
93.84 112.84 309.66 404.02 179.90 71.85 159.69 231.54 278.04
4.09 3.87 5.315 1.68421 2.28 5.7 5.24 5.1 1.89
1.49 3.1625 2.898 1.80
Melting point, C d 110 to H5IO6 113.60
Boiling point, C
Solubility in 100 parts solvent
d 195 to I2O5
31016 aq
184.24
0.02920 aq; s alc, bz, chl, CS2, CCl4, eth s aq, alc, eth d aq; s alc, eth d aq; s alc, bz, eth d aq
42 27.38 101 d 8.5 4.5 d 275 1537 691 subl 21 677 304 d
116.d 97.8
1100 subl 927 587 47 d 150–160 1377 1462 d 1597
1837
102 5.5 2872 934 103 1024 332
1093 d 100 d 3414
18713 aq i aq; s a 11720 aq s aq i aq; s alc, bz, eth 6320 aq; v s alc, acet;i eth 740 aq i aq; s HCl sl s aq; s a 0.09125 aq; s a; i alc, bz s aq 13820 0.04418 aq; s a i aq; s a i aq; s HCl i aq; s a 4820 aq
2.17
(III) sulfate (III) sulfate 9-water Krypton
Fe2(SO4)2 Fe2(SO4)3 · 9H2O Kr
399.88 562.01 83.80
Lead (II) acetate 3-water (IV) acetate (II) azide (II) carbonate (II) chromate(VI) (2) (IV) fluoride (II) nitrate (II) oleate (II) oxide (IV) oxide (II) phosphate (II) stearate (II) sulfate Lithium aluminate, tetrahydridoamide benzoate boronate bromate bromide carbonate chloride fluoride hydride hydroxide iodide iodide 3-water nitrate
Pb Pb(C2H3O2)2 · 3H2O Pb(C2H3O2)4 Pb(N3)2 PbCO3 PbCrO4 PbF4 Pb(NO3)2 Pb(C18H33O2)2 PbO PbO2 Pb3(PO4)2 Pb(C18H35O2)2 PbSO4 Li LiAlH4 LiNH2 LiC7H5O2 LiBH4 LiBrO3 LiBr Li2CO3 LiCl LiF LiH LiOH LiI LiI · 3H2O LiNO3
207.21 379.33 443.37 291.23 267.20 323.18 283.21 331.23 770.12 223.21 239.21 811.59 774.15 303.28 6.94 37.95 22.96 128.05 21.79 134.85 86.84 73.89 42.40 25.94 7.95 23.95 133.84 187.89 68.94
3.09718 2.1 3.736 g · L1 11.34 (fcc) 2.55 2.22817 6.6 6.1215 6.7 4.5320 9.53 9.375 6.9 6.2 0.53520 0.917 1.17818 0.666 3.62 3.464 2.110 2.068 2.64020 0.780 2.54 4.061 3.5 2.38
d 1178 d 175 157.2
153.4
327.50 d 200 175 expl 350 d 340 844 600 d 200
1753
886 d 752 1014 ca 125 1090 180.6 d 125 374 300 268
1516
550 720 610 846 688.7 471.2 467 73 261
d
1340 d 430 d 380 1289 d 1383 1717 d 950 1626 1178 3H2O, 300
sl s aq (hyd); sl s alc 440 aq 5.9420 mL aq i aq; s HNO3 4615 aq d aq; s chl 0.02318 aq; s HOAc i aq; s a, alk i aq; s a hyd aq 5620 aq; 1.3 MeOH i aq; s alc, bz, eth 0.001720; s HNO3 i aq; s HCl i aq; s HNO3, alk 0.0535 aq; s hot alc 0.004 aq d aq to LiOH d aq, alc; 30 eth (flammable) d aq; i bz, eth 33 aq; 7.7 alc d aq; s eth, THF 17920 aq 164 aq; s alc, eth 1.320 aq; i alc; s a 7720 aq; s alc, acet 0.1325 aq; s a d aq; no known solv (flammable) 12.420 aq 16520 aq; v s alc 200 aq; 200 alc 7020 aq; s alc
2.18
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Lithium perchlorate sulfate Magnesium amide bromide bromide 6-water carbonate chloride hydride hydroxide oleate oxide perchlorate sulfate 7-water sulfite 6-water Manganese acetate 4-water bromide 4-water carbonate (di-) carbonyl, decachloride 4-water (III) fluoride nitrate 6-water (IV) oxide sulfate hydrate
Formula
Formula weight
Density
Melting point, C
LiClO4 Li2SO4 Mg Mg(NH2)2 MgBr2 MgBr2 · 6H2O MgCO3 MgCl2 MgH2 Mg(OH)2 Mg(C18H33O2)2 MgO Mg(ClO4)2 MgSO4 · 7H2O MgSO3 · 6H2O
106.40 109.88 24.31 56.37 184.13 292.22 84.32 95.23 26.34 58.33 293.61 40.52 223.23 246.49 212.47
2.4325 2.22 1.7420 1.3925 4 3.72 2.00 2.958 2.41 1.45 2.36
236 860 650 ign in air 711 165 d d 402 714 d 287 (vac) 268 d
3.58 2.2120 1.67 1.725
2825 d 251 6H2O, 120 6H2O, 200
Mn(C2H3O2)2 · 4H2O MnBr2 · 4H2O MnCO3 Mn2(CO)10 MnCl2 · 4H2O MnF3 Mn(NO3)2 · 6H2O MnO2 MnSO4 · H2O
245.08 286.82 114.94 389.99 197.91 111.93 287.05 86.94 169.01
1.589 3.125 1.7525 2.01 3.54 1.8 5.026 2.95
54d d 155 (CO atm) 4H2O, 198 d 600 25.8 d 530 H2O, 400
Boiling point, C
d 400 1105 1158
1437 ign air
3260 7H2O, 250 d
d 110
Solubility in 100 parts solvent
5620 aq 34.520 aq i aq; s a d viol aq giving NH3 10120 aq 16020 aq; s alc 0.01 aq; s a 54.620 aq d viol aq, alc i aq; s a i aq; s alc, eth, PE i aq; s a 49.6 aq 27.2 aq; s alc 6625 aq 3850 aq; s alc 200 aq; s alc 0.006525 aq; s a i aq; s org solv 143 aq; s alc; i eth hyd aq; s a v s aq, alc i aq; s HCl 7020 aq
Mercury (II) acetate (II) bromide (I) chloride (II) chloride (II) cyanide (II) fluoride (II) iodide (II) nitrate (II) oxide (I) sulfate (II) sulfate (II) sulfide, red Molybdenum carbonyl, hexa(V) chloride (VI) oxide sulfide, diMolybdic acid hydrate Molybdic phosphoric acid Neon Nickel acetylacetonate bromide chloride 6-water dimethylglyoxime formate 2-water nitrate 6-water sulfate 6-water
Hg Hg(C2H3O2)2 HgBr2 Hg2Cl2 HgCl2 Hg(CN)2 HgF2 Hgl2 Hg(NO3)2 HgO Hg2SO4 HgSO4 HgS
200.59 318.70 360.44 472.09 271.52 252.65 238.61 454.45 324.63 216.61 497.29 296.68 232.68
13.59420 3.28 6.05 7.150 5.44 3.996 8.9515 6.28 4.3 11.14 7.56 6.47 8.10
38.86 178 241 subl 382 277 d 320 645 259 79 d 476 d d subl 583
Mo(CO)6 MoCl5 MoO3 MoS2 H2MoO4 · H2O H7[P(Mo2O7)6] · 28H2O
264.02 273.21 143.95 160.08 179.97 2365.71
1.96 2.928 4.69626 5.0615 3.12415 2.53
subl 102 194 801 2375 H2O, 70 78
156.4 264 1155 subl 450
s bz hyd aq; s conc a 0.2228 aq; s alk, NH3 i aq; s aqua regia 0.13318; s alk hyd aq
Ne Ni Ni(C5H7O2)2 NiBr2 NiCl2 · 6H2O Ni(HC2H6N2O2)2 Ni(OOCH)2 · 2H2O Ni(NO3)2 · 6H2O NiSO4 · 6H2O
20.18 58.71 256.93 218.53 237.70 288.91 184.78 290.81 262.86
0.88990 g · L1 8.90 1.45517 5.098
248.6 1455 229 963
246.1 2920 235 subl
2.15420 2.05 2.07
subl 250 2H2O, 130 56.7 53.3
d 180 136.7
1.0520 mL aq i aq; s HNO3 s aq, alc, bz, chl 13120 aq 11120 aq i aq; s abs alc, a s aq; i alc 15020 aq 4020 aq
356.60 subl 241 d 304 647 350 d
i aq; s HNO3 2510 aq; 7.515 MeOH 0.5620 aq; 2025 alc 0.00027 aq; s aqua regia 6.620 aq; 33 alc; 4 eth 9.320 aq; 8 alc; 25 MeOH hyd aq; s HF 0.00625 aq; 1 alc; 1.7 acet v s aq; s acet 0.00525 aq; s a 0.0625 aq; s HNO3 d aq; s a i aq; s aqua regia
2.19
2.20
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Niobium (V) chloride (V) fluoride (V) oxide Nitrogen
Formula
Formula weight
NbCl5 NbF5 Nb2O5 N2
270.20 187.91 265.82 28.01
[15N]
15
N2
30.01
chloride, tri(di-) oxide
NCl3 N2O
120.37 44.02
oxide
NO
30.01
N2O4 N2O5
92.02 108.01
NOCl NOF
(di-) oxide, tetra(di-) oxide, pentaNitrosyl chloride fluoride Nitryl chloride fluoride Osmium oxide, tetraOxygen
Density
Melting point, C
Boiling point, C
Solubility in 100 parts solvent
2.75 2.7080 4 4.6 1.16520 g · L1 1.2520 g · L1 1.65320 1.843320 g · L1 1.248820 g · L1 1.44720 4 2.0515
204 80 1512 210.00
250 235
209.95
195.73
27 90.85
71 88.47
i aq; s bz, CS2, CCl4 1300 mL aq; s alc
163.64
151.76
70 mL aq
9.3 30
21.10 d 47.0
d aq; s HNO3, H2SO4, chl s aq, chl
65.47 49.01
1.5925 2.78820 g · L1
61.5 132.5
5.5 59.9
hyd aq hyd aq
NO2Cl
81.46
145
13.5
d aq
NO2F
65.00
166.0
72.4
d aq
OsO4 O2
254.20 32.00
2.81100 g · L1 2.720 g · L1 4.91 1.33120 g · L1
40.6 218.75
130.0 182.96
7.2425 aq; 37525 CCl4 3625 mL aq
195.81
s HCl, CCl4 hyd aq, alc i aq; s HF, hot H2SO4 1.5220 mL aq
Ozone
O3
48.00
Palladium acetate chloride nitrate oxide Perchloryl fluoride Phosphine
Pd Pd(C2H3O2)2 PdCl2 Pd(NO3)2 PdO ClO3F PH3
106.4 224.49 177.30 230.42 122.40 102.46 34.00
Phosphinic acid Phosphonic acid Phosphoric acid metaorthocommercial 85% acid
HPH2O2 H2PHO3
66.00 82.00
HPO3 H3PO4
79.98 98.00
1.99820 g · L1 12.023 4.018 8.7020 0.637 1.529 g · L1 1.49319 1.65121
192.5
110.50
49.40 mL aq
1550 205d 680 d 870 d 147.74 133.81
2940
s hot HNO3, H2SO4 i aq, alc; s acet, chl s aq hyd aq; s HNO3 i aq, a
46.67 87.78
2617 mL aq; s alc, eth
26.5 ca 73
d 50 d 180
s aq v s aq, alc
2.2–2.5 1.88 1.685
42.35 anhyd 150
d 680
slowly hyd aq; s alc to H4P2O7 ca 200; to HPO3 300
v s aq
H2PO3F
99.99
1.818
80
P (P4 molecules)
30.97
1.828
44.2
280.3
(red) bromide, tribromide, pentachloride, trichloride, pentafluoride, penta-
P PBr3 PBr5 PCl3 PCl5 PF5
30.97 270.73 430.56 137.35 208.27 125.98
597 40.5 d 100 91 subl 100 93.8
subl 416 173.2 75 166 d 84.6
(tetra-) oxide, hexa(tetra-) oxide, deca(tetra-) selenide, tri(tetra-) sulfide, deca-
P4O4 P4O10 P4Se3 P4S10
219.90 283.88 360.80 444.54
2.34 2.8515 3.4620 1.57520 2.11920 5.805 g · L1 2.13620 4 2.30 1.31 2.09
i aq; 0.025 alc; 1 eth; 2.5 chl, bz; 1.25 CS2 i aq (ign in air 260C) d aq, alc; s acet, CS2 d aq; s CCl4, CS2 d aq, alc; s bz, chl hyd aq; s CCl4, CS2 hyd aq
24 340 245 288
175 (in N2) subl 360 360–400 514
hyd aq; s bz, CS2 d aq; s H2SO4 hyd aq; s bz, chl, acet hyd aq; s alk, CS2
fluoroPhosphorus (white)
2.21
2.22
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Phosphoryl chloride, triPlatinic(IV) acid 6-water, hexachloroPlatinum Platinum (II) chloride (IV) oxide Potassium acetate bismuthate(4—), heptaiodoborate, tetrahydridobromate bromide carbonate chlorate chloride chromate(VI) citrate hydrate cobaltate(III) 1.5-water, hexanitritocyanate cyanide dichromate(VI) disulfate(IV)
Formula
Formula weight
Melting point, C
Density
Boiling point, C
Solubility in 100 parts solvent
POCl3 H2PtCl6 · 6H2O
153.35 517.92
1.64525 2.431
2 60
105
d aq, alc v s aq, alc
Pt
195.09
21.4520
1770
3824
i aq; s aqua regia, fused alk
PtCl2 PtO2 K KC2H3O2 K4BiI7
266.00 227.09 39.10 98.14 1253.82
6.05 10.2 0.85620 1.5725
d 581 450 63.7 292
765.5
i aq; s HCl, NH4OH i aq, aqua regia d to KOH aq; s a 25620 aq; 34 alc d aq; s alk iodide soln
KBH4 KBrO3 KBr K2CO3 KClO3 KCl K2CrO4 K3C6H5O7 · H2O K3[Co(NO2)6] · 1.5H2O
53.95 167.01 119.01 138.20 122.55 74.56 194.20 324.42 479.30
1.11 3.2717 2.75 2.29 2.23820 1.988 2.73218 1.98
d 497 350 734 901 368 771 975 d 230 d 200
KOCN KCN K2Cr2O7 K2S2O5
81.11 65.12 294.19 222.32
2.048 1.5216 2.67625
d 700–900 622 398
d 370 1398 d d 368 1437
1625 d 500
2125 aq; 3.520 MeOH 6.920 aq 6520 aq; 0.4 alc 11120 aq; i alc 7.320 aq; 2 glyc 3420 aq; 7 glyc 6420 aq; i alc 16715 aq 0.08917 aq; v sl s alc s aq; sl s alc 50 aq 12.320 aq s aq (flammable if ground)
ethyldithiocarbonate ferrate(III), hexacyanofluoride formate gluconate hydride hydrogen arsenate, dihydrogen carbonate hydrogen difluoride hydrogen bisiodate hydrogen oxalate hydrogen bisoxalate dihydrate, trihydrogen phosphate hydrogen phosphate, dihydrogen phthalate hydrogen sulfate hydrogen tartrate hydroxide iodate iodide manganate(VI) nitrate nitrite oxalate hydrate periodate permanganate peroxide peroxodisulfate phenolsulfonate hydrate phosphate selenocyanate
KC2H5OCSS K3[Fe(CN)6] KF KOOCH KC6H11O7 KH KH2AsO4 KHCO3 KHF2 KH(IO3)2 KHC2O4 KH3(C2O4)2 · 2H2O
160.30 329.26 58.10 84.10 234.24 40.11 180.02 100.11 78.11 389.92 128.11 254.20
K2HPO4 KH2PO4 KHC8H4O4 KHSO4 KHC4H4O6 KOH KIO3 KI K2MnO4 KNO3 KNO2 K2C2O4 · H2O KIO4 KMnO4 K2O2 K2S2O8 KC6H4(OH)SO3 · H2O K3PO4 KSeCN
174.18 136.09 204.22 136.17 188.18 56.11 214.02 166.02 197.12 101.10 85.10 184.24 230.01 158.03 110.20 270.32 240.28 212.28 144.08
1.55822 1.89 2.481 1.91 1.43 2.867 2.17 2.37
d 200 d 858 167.5 d 180 417 d 288 d 100–200 238.7
2.044 1.836
d d
2.338 1.63625 2.24 1.956 2.044 3.8925 3.12 2.10916 1.915 2.1274 3.61815 4 2.703 2.477 1.87 2.56417
d 400 d 197 406 560 d 681 d 190 334.3 441 H2O, 160 582 d d 240 490 d 100 1340 d 100
1517 d 168
d 478
d d 1320 1345 d 400 d 250 d
v s aq 8420 aq (slow) 9520 aq 33720 aq v s aq; i alc, bz, chl d aq 196 aq; 63 gly; i alc 3420 aq 3020 aq; s alc 1.315 aq 2.5 aq 1.813 aq 150 aq 22.620 aq 10.2 aq; sl s alc 4820 aq 0.520 aq 11220 aq; 33 alc 8.120 aq; i alc 14420 aq; 4,5 alc; 1.2 acet s aq (stable in KOH) 3220 aq; 0.16 alc; s glyc 30620 aq 3620 aq 0.4220 aq 6.3420 aq d 5.320 aq s aq, alc 9220 aq s aq
2.23
2.24
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Potassium silicate(2) silicate, hexafluorosodium tartrate 4-water sorbate stannate(IV) 3-water sulfate sulfite dihydrate thiocarbonate thiocyanate thiosulfate titanate(IV), oxobis(oxalato)diaquaRhenium(VII) sulfide Rhodium(III) chloride Rubidium chloride iodide nitrate sulfate Ruthenium (III) chloride (IV) oxide Selenic acid Selenium (IV) oxide
Formula
Formula weight
Density
Melting point, C
K2SiO3 K2SiF6 KNaC4H4O6 · 4H2O KC6H7O2 K2SnO3 · 3H2O K2SO4 K2SO3 · 2H2O K2CS2 KSCN
154.29 220.25 282.23 150.22 298.94 174.27 194.30 186.41 97.18
K2S2O3 K2[TiO(C2O4)2(H2O)2]
190.33 354.18
Re2S7 RhCl3
596.85 209.28
4.866
RbCl RbI RbNO3 Rb2SO4
120.94 212.37 147.47 267.03
2.76 3.55 3.11 3.61320
715 640 310 1060
RuCl3 RuO2 H2SeO4 Se SeO2
207.47 133.07 144.98 78.96 110.96
3.11 6.97 2.950815 4 4.8120 15 3.95415
d 500 d 58 221 340
2.27 1.790 1.363 3.197 2.662
1.88614
976 d 70–80 d 270 3H2O, 140 1067 d d 173
Boiling point, C
d 220
1670
d 500
d 400
d 460 d 450
subl 850 1381 1304
260 685 subl 315
Solubility in 100 parts solvent
s aq sl s aq 5415 aq 11020 aq 10020 aq 1120 aq; 1.3 glyc; i alc 10620 aq v s aq 21720 aq; 200 acet; 8 alc acet; 8 alc 15520 aq v s aq i aq; s HNO3 i aq; s KOH, KCN 9120 aq; 1.1 MeOH 14418 aq 5320 aq 4820 aq i aq; s HCl, alc i aq; s fused alk 56720 aq (viol) s CS2, KOH, KCN 3814 aq; 1012 MeOH
(di-) sulfide, hexa(tetra-) sulfide, tetraSilane Silicon carbide chloride isothiocyanate, tetraoxide, di- (quartz) oxide-tungsten trioxide-water (1/12/26) (silicotungstic acid) telluride, triSilver acetate azide carbonate chlorate chloride chromate(VI) cyanide fluoride (II) fluoride iodate iodide nitrate nitrite oxide (II) oxide permanganate phosphate, orthosulfate
Se2S6 Se4S4 SiH4 Si SiC SiCl4 Si(NCS)4 SiO2 SiO2 · 12WO3 · 26H2O
350.28 444.08 32.09 28.09 40.07 169.89 260.40 60.08 3310.66
Si2Te3 Ag AgC2H3O2 AgN3 Ag2CO3 AgClO3 AgCl Ag2CrO4 AgCN AgF AgF2 AgIO3 AgI AgNO3 AgNO2 Ag2O AgO AgMnO4 Ag3PO4 Ag2SO4
438.97 107.87 166.92 149.89 275.77 191.34 143.34 331.77 133.90 126.88 145.87 282.80 234.80 169.89 153.89 231.76 123.88 226.81 418.62 311.83
2.44 3.20 0.68185 2.3325 3.217 1.4820 2.64–2.66
10.4915 3.25915 6.077 4.43020 5.56 5.62525 3.95 5.85216 4.57 5.52520 5.68330 4.35219 4.453 7.2225 7.48325 4.49 6.370 5.4530
121.5 113 184.7 1415 subl 2700 70 143.8 1423
892 960.15 d 252 d 220 231 455 d 320 435 690 200 558 210 d 140 d 200 d 100 d 849 660
111.9 2680 d 2972 57.6 314.2 2230
2164 297 d 270 1564
1150 d 700 d 1505 d 440
d 1085
i aq; 1.2 bz; s CS2 i aq; 0.04 bz; s CS2 d aq slowly s HF HNO3, fused alk oxides s fused alk hyd aq; s bz, CCl4, eth d aq i aq; s HF v s aq, alc
i aq; s HNO3 1.0420 aq i aq; s KCN, HNO3 (expl) 0.00330 aq 15.320 aq 0.00019 aq; s NH4OH 0.00220 aq; s HNO3, NH4OH i aq; s KCN 17220 aq hyd viol aq 0.00420 aq i aq; s KCN 21620 aq 0.4125 aq 0.00225 aq i aq; s alk 0.9 aq; d alc 0.006 aq 0.8020 aq
2.25
2.26
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Sodium acetate aluminate, tetrachloroamide aurate(III) dihydrate, tetrachloroazide benzoate bismuthate(V)(1) boranate borate, tetraborate, tetrafluorobromate bromide carbonate carbonate 10-water chlorate chloride chlorite chromate(VI) citrate 2-water cobaltate(III), hexanitritocyanate cyanide cyanoborohydride dichromate(VI) 2-water diethyldithiocarbamate
Formula
Formula weight
Na NaC2H3O2 NaAlCl4 NaNH2 NaAuCl4 · 2H2O
22.99 82.04 191.80 39.02 397.80
NaN3 NaC6H5O2 NaBiO3 NaBH4 Na2B4O7 NaBF4 NaBrO3 NaBr Na2CO3 Na2CO3 · 10H2O NaClO3 NaCl NaClO2 Na2CrO4 Na3C6H5O7 · 2H2O Na3[Co(NO2)6] NaOCN NaCN NaBH3CN Na2Cr2O7 · 2H2O NaS2CN(C2H5)2
65.01 144.11 280.00 37.84 201.27 109.82 150.91 102.91 106.00 286.14 106.45 58.45 90.45 161.97 294.10 403.98 65.01 49.02 62.84 298.00 225.31
Melting point, C
Density 0.96820 1.528
1.6
97.82 324 151 210 d 100
1.84620
d
1.074 2.367 2.4720 3.33917 3.20518 2.533 1.46 2.489 2.16420 2.723
1.89320 2.34825 4
d 497 d 742.5 384 380 d 747 850.0 34 248 801 d 180–200 792 2H2O, 150 550 562 d 242 356 anhyd 94 anhyd
Boiling point, C 881.4
subl 400
d 1447 d d 350 1465
1530 d 400
Solubility in 100 parts solvent d aq to NaOH 46.520 aq s aq d viol aq 16620 aq 4120 aq; 0.3 alc 6325 aq; 1.3 alc i aq; d a 5525 aq; 4 alc; 1.4 pyr; 5 DMF 2.6 20 aq 10827 aq 3620 aq 9020 aq; 6 alc; 16 MeOH 21.520; s glyc 50 aq; s glyc 9620 aq; 0.77 alc; 25 glyc 3620 aq; 10 glyc 3417 aq 8420 7725 aq v s aq s aq d; 0.220 alc 58.720 aq (flammable solid) 20820 aq s aq, alc
dimethylarsonate 3-water diphosphate(V) dithionate 2-water dithionate(III) (hydrosulfite) dodecylsulfate (laurate) ethoxide ethylenebis (aminodiacetate) (EDTA) ethylsulfate ferrate(II) 10-water, hexacyanoferrate(III) 2-water, pentacyanonitrosyl(nitroprusside) fluoride formate gluconate glycerophosphate hydride hydrogen carbonate hydrogen phosphate hydrate, dihydrogen phosphate 7-water hydrogen sulfate hydrogen sulfite hydrogen sulfide 2-water hydroxide
NaO2As(CH3)2 · 3H2O Na4P2O7 Na2S2O6 · 2H2O Na2S2O4
214.03 265.90 242.13 174.13
NaO3SOC12H25 NaOC2H5 Na4C2H4N2(C2H3O2)4
288.38 68.06 380.20
NaO3SOC2H5 Na4[Fe(CN)6] · 10H2O
148.11 484.07
1.458
Na2[Fe(CN)5NO] · 2H2O
297.65
1.72
NaF NaOOCH NaC6H11O7 Na2C3H5(OH)2PO4 NaH NaHCO3 NaH2PO4 · H2O
41.99 68.02 218.13 216.03 24.00 84.01 137.99
2.78 1.919
996 253 d
1.396 2.20 2.040
d 130 d 425 CO2, 270 H2O, 100
Na2HPO4 · H2O
268.07
1.679
d
NaHSO4 NaHSO3 NaHS · 2H2O NaOH
120.07 104.06 92.09 40.01
2.435 1.48
315 d 55 322
2.27
hydroxymethanesulfinate NaO2SCH2OH · 2H2O dihydrate hypochlorite NaClO
154.12 74.44
2.45 2.189
60 988 2H2O, 110 d
3H2O, 120 d 267
10 aq d aq; s abs alc 103 aq
300
2.13025
10H2O, 82
200 aq; 40 alc 2.260 aq 6.0520 aq 2220 aq
d 435
18.820 aq 4016 aq
63–64
1787
d 200
420 aq; i alc 8120 aq; s glyc; sl s alc 5925 aq; sl s alc; i eth 60 aq; i alc d viol aq, alc 9.620 aq; i alc 710 aq 18540 aq
d d 1557
28.525 aq; d alc 29 aq; 1.4 alc s aq, alc, eth 10820 aq; 14 abs alc; 24 MeOH; s glyc v s aq; i abs alc, bz, eth 5320 aq (anhyd v expl)
2.28
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Sodium iodate iodite lactate methoxide molybdate dihydrate nitrate nitrite oxalate oxide perchlorate periodate peroxide peroxoborate 4-water peroxodisulfate(VI) phosphate 12-water platinate(IV) 6-water, hexachloropropionate salicylate selenate(VI) silicate, hexafluorostannate(IV) 3-water stearate sulfate sulfate 10-water
Formula
Formula weight
NaIO3 NaI NaOOCCHOHCH3 NaOCH3 Na2MoO4 · 2H2O NaNO3 NaNO2 Na2C2O4 Na2O NaClO4 NaIO4 Na2O2 NaBO3 · 4H2O Na2S2O8 Na3PO4 · 12H2O Na2PtCl6 · 6H2O
197.90 149.92 112.07 54.03 241.95 85.01 69.00 134.01 61.98 122.44 213.91 77.99 153.88 238.13 380.12 561.88
NaOOCCH2CH3 NaC7H5O3 Na2SeO4 Na2SiF6 Na2SnO3 · 3H2O NaOOCC17H35 Na2SO4 Na2SO4 · 10H2O
96.07 160.11 188.94 188.05 266.71 306.47 142.06 322.19
Density
4.27720 3.6670
3.28 2.257 2.1680 2.27 2.27 2.499 3.86516 4 2.805
1.62 2.50
3.098 2.679
2.664 1.464
Melting point, C
d 660 d 300 687 308 271 1132 468 d 300 675 d 60 d 73.4 6H2O, 110
red heat d 140 d 884 32.4
Boiling point, C
1304 2H2O, 100 d 380 d 320 d 1950
d 11H2O, 100
10H2O, 100
Solubility in 100 parts solvent
8.120 aq 17820 misc aq, alc d aq; s alc 6520 aq 8820 aq 8120 aq 3.420 aq d aq to NaOH 20120 10.320 aq v s aq (d) 2.5 aq 55 aq 28.315 aq v s aq; s alc 10025 aq; 4.125 alc 9520 aq; 11 alc; 25 glyc 2720 aq 0.440 aq; i alc 500 aq sl s aq 19.520 3615 aq
sulfide sulfite tartrate dihydrate tetraphenylborate thiocyanate thiosulfate thiosulfate 5-water tungstate(VI) dihydrate Strontium carbonate chloride chromate(VI) hydroxide Sulfamic acid Sulfinyl bromide chloride fluoride Sulfonyl chloride fluoride
1.85614 4 2.63315 1.818
15.720 aq 2620 aq 296 aq s aq, acet 13420 aq s aq; i alc 7020 aq (d slowly) 880
Na2S Na2SO3 Na2C4H4O6 · 2H2O NaB(C6H5)4 NaSCN Na2S2O3 Na2S2O3 · 5H2O Na2WO4 · 2H2O
78.05 126.06 230.08 342.24 81.07 158.11 248.18 329.86
2.345 1.685 3.245
SrCO3 SrCl2 SrCrO4 Sr(OH)2 H2NSO3H
147.64 158.52 203.64 121.64 97.09
3.70 3.052 3.89515 3.625 2.126
CO2, 1172 874 375 (in H2) d 200
H2O, 710
SOBr2 SOCl2 SOF2
207.88 118.98 86.06
2.67 1.65615 3.044
49.5 104.5 110
139.7 75.8 43.8
d aq hyd aq d aq; s bz, chl, eth
SO2Cl2 SO2F2
134.98 102.07
1.667420 3.72 g · L1
46 135.8
69.3 55.38
(di-) chloride, difluoride, tetrafluoride, hexa-
S S8 S2Cl2 SF4 SF6
32.07 256.51 135.03 108.07 146.07
106.8 115.21 80 121 50.8
444.60 444.60 138.1 38 subl 63.8
oxide, di
SO2
64.07
75.47
10.01
393720 mL aq; 25 mL alc
oxide, tri(III)
SO3
80.07
1.92 1.9620 1.68815 15 1.91973 50 1.88 g · L1 2.71620 g · L1 1.4610 (lq) 1.922520
d aq; s bz 4 mL aq; 24 mL alc; 136 mL CCl4; 210 mL toluene i aq; 230 CS2; s alc, bz i aq; 230 CS2; s alc, bz hyd aq d viol aq; s bz sl s aq; s alc, KOH
16.86
43.4
slowly v s aq
Sulfur
950 d 2H2O, 120 287 5H2O, 100 2H2O, 100
2058
0.00125 aq; s a 52.920 aq 0.0920 aq; s HCl 1.7720 aq 14.7 aq
2.29
2.30
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Sulfuric acid chlorofluoroTantalum (V) fluoride Tellurium Thallium (III) acetate sesquihydrate (I) bromide (I)chloride (I) ethoxide (I) fluoride (I) nitrate (III) nitrate 3-water (I) oxide (III) oxide (I) sulfate Thiocarbonyl chloride Thiocyanogen Thionyl, see Sulfinyl Tin (silver-white, tetr) (gray, cub) (IV) bromide (II) chloride
Formula
Formula weight
Density
Melting point, C
Boiling point, C
Solubility in 100 parts solvent
H2SO4 HOSO2Cl FSO2OH Ta TaF5 Te Tl Tl(C2H3O2)3 · 1.5H2O
98.08 116.52 100.07 180.95 275.95 127.60 204.37 408.53
1.831820 1.75320 1.72625 16.69 4.7420 6.2420 11.85
10.38 80 88.98 2985 95–97 450 303.5 182 d
335.5 152 162.6 5513 229 1009 1487
v s aq d viol aq d viol aq i aq; s HF, fused alk s aq i aq; s HNO3, KOH i aq; s HNO3
TlBr TlCl TlOC2H5 TlF TlNO3 Tl(NO3)3 · 3H2O Tl2O Tl2O3
284.31 239.85 249.43 223.39 266.40 444.43 424.78 456.78
7.54 7.00430 3.49320 8.234 5.556
460 429 3 322 206 102–103 300 717
825 816 d 130 700 430
0.0520 aq; s alc 0.3320 aq sl s alc; s eth 7815 aq 9.620 aq s aq v s aq (d); s a i aq; s a
Tl2SO4 CSCl2 (SCN)2
504.85 114.98 116.16
632
d 73.5
4.920 aq d aq; s eth d aq; s alc, CS2, eth
Sn
118.69
7.28 5.75
2623
i aq; s HCl, H2SO4
SnBr4 SnCl2
438.36 189.61
3.3533 3.95
207 652
hyd aq; s acet 840 aq; s alc, eth
9.5216 10.1922 (hex) 6.77 1.50915
1080 O2, 875
ca 2 231.89 stable 161 to 13.2 30 247
(IV) chloride (II) diphosphate(V) (II) fluoride (IV) fluoride (IV) oxide (II) sulfide (IV) sulfide (II) zirconate (IV), hexafluoroTitanium (III) chloride
SnCl4 Sn2P2O7 SnF2 SnF4 SnO2 SnS SnS2 SnZrF6
260.53 411.32 156.70 194.70 150.70 150.77 182.83 323.92
2.226 4.00916 4.5725 4.78019 6.95 5.08 4.5 4.21
Ti TiCl3
47.90 154.27
4.507 2.71
(IV) chloride hydride, di (IV) isopropoxide (IV) oxide (rutile) (III) sulfate Trisulfuryl dichloride Tungsten (VI) chloride (VI) oxide sulfide, diUranyl (VI) acetate 2-water nitrate 6-water Vanadium (III) oxide (V) oxide (IV) oxide sulfate Xenon
TiCl4 TiH2 Ti[OCH(CH3)2]4 TiO2 Ti2(SO4)3 ClSO2OSO2OSO2Cl
189.73 49.92 284.26 79.90 384.00 295.09
WCl6 WO3 WS2
fluoride, di-
34 213 subl 705 1630 881 765
115
subl 1900 1210
s aq, eth i aq; s conc a 30 aq hyd aq i aq i aq; s conc HCl i aq; d by aqua regia s aq
3318 d 5000
s hot a, HF s aq, alc
1.726 3.752 0.971120 4.23
1660 subl 831 (vac) 24.10 d 400 ca 20 1857
136.4
s cold aq, alc
1.9020
18.7
613 mm
396.57 231.86 247.98
2.721282 7.16 7.510
281.5 1472 d 1250
340.5 1837
hyd aq; s CS2, CCl4 i aq; s hot alk s HNO3 HF
UO2(C2H3O2)2 · 2H2O UO2(NO3)2 · 6H2O
422.13 502.13
2.89315 2.80713
2H2O, 110 60.2
d 275 d 100
7.715 aq 15520 aq
V2O3 V2O5 VOSO4 Xe
149.00 181.90 163.00 131.30
4.87 3.35
2067 670
1690
111.8
108.10
XeF2
169.30
5.89710 g · L1 3.1325
i aq; s HNO3 HF 0.80 aq; s a, alk v s aq 10.820 mL aq
129.0
subl 114
2.50 aq
22010 mm s HF s HCl
2.31
2.32
TABLE 2.1 Physical Constants of Inorganic Compounds (continued )
Name Xenon fluoride, tetrafluoride, hexaZinc acetate dihydrate bromide carbonate chloride chromate(VI) cyanide fluoride iodide nitrate 6-water oxide peroxide p-phenolsulfonate 8-water phosphate(V) phosphide propionate silicate 6-water, hexafluorostearate sulfate sulfate 7-water sulfide thiocyanate
Formula
Formula weight
XeF4 XeF6 Zn Zn(C2H3O2)2 · 2H2O ZnBr2 ZnCO3 ZnCl2 ZnCrO4 Zn(CN)2 ZnF2 ZnI2 Zn(NO3)2 · 6H2O ZnO ZnO2 Zn[C6H4(OH)SO3]2 · 8H2O Zn2(PO4)2 Zn3P2
207.30 245.30 65.37 219.49 225.21 125.38 136.29 181.36 117.42 103.38 319.22 297.47 81.37 97.38 555.83 386.05 258.09
Zn(OOCCH2CH3)2 ZnSiF6 · 6H2O
211.52 315.54
Zn(OOCC17H35)2 ZnSO4 ZnSO4 · 7H2O ZnS Zn(SCN)2
632.33 161.44 287.54 97.43 181.53
Density
3.0325 3.41125 7.1425 1.735 4.22 4.398 2.90725 3.40 1.852 5.0025 4.73625 2.06514 5.67 3.00
Melting point, C
117.1 49.5 419.6 237 402 CO2, 300 318
3.99815 4.55
d 800 872 446 36.4 1970 d 150 8H2O, 120 900 420
2.104
d 100
3.54 1.957 4.087
ca 120 1200 7H2O, 280 1722
Boiling point, C
subl 116 75.6 911 650 732
1500 730 6H2O, 131
subl 1100 (in H2)
Solubility in 100 parts solvent
hyd aq; s F3CCOOH hyd aq i aq; s a, alk 41.620 aq; 3.3 alc 44620 aq; 200 alc; s eth 0.0225 aq; s a, alk 39520 aq; 77 alc; 50 glyc i aq; s a 0.05818 aq; s KCN, alk 1.620 aq 43220 aq; 50 glyc 1460 aq i aq; s a, alk i aq; d slowly 63 aq; 56 alc i aq; s a, NH4OH d aq; s bz, CS2; d viol HCl 32 aq; 2.8 alc v s aq
d 500
i aq, alc, eth; s bz 53.820 aq 9620 aq; 40 glyc; i alc i aq; s a 0.1418 aq; s alc
Zirconium (IV) chloride chloride oxide 8-water hydroxide (IV) oxide silicate(4) sulfate 4-water
Zr ZrCl4 ZrCl2O · 8H2O Zr(OH)4 ZrO2 ZrSiO4 Zr(SO4)2 · 4H2O
91.22 233.05 322.25 159.25 123.22 183.31 355.41
6.5230 2.80315 1.91 3.25 5.85 4.56 3.2216
1852 437 8H2O, 210 2H2O, 500 2677 d 1538 anhyd 380
4504 subl 334
4275
s aqua regia hyd aq; s alc, eth s aq sa s hot H2SO4, HF slowly very inert 52.518 aq
2.33
SECTION 3
PROPERTIES OF ATOMS, RADICALS, AND BONDS
NUCLIDES . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.1 Table of Nuclides . . . . . . . . . . . . . ELECTRONEGATIVITY . . . . . . . . . . . . . . . . . . Table 3.2A Electronegativities of the Elements . . . Table 3.2B Electronegativities of the Groups . . . . ELECTRON AFFINITY . . . . . . . . . . . . . . . . . . . Table 3.3 Electron Affinities of Elements, Radicals, and Molecules . . . . . . . . . . . . . . BOND LENGTHS AND STRENGTHS . . . . . . . . . . Table 3.4A Bond Lengths between Carbon and Other Elements . . . . . . . . . . . . . . Table 3.4B Bond Lengths between Elements Other than Carbon . . . . . . . . . . . . . . . . Table 3.5 Bond Strengths . . . . . . . . . . . . . . BOND AND GROUP DIPOLE MOMENTS . . . . . . . . Table 3.6 Bond Dipole Moments . . . . . . . . . . Table 3.7 Group Dipole Moments . . . . . . . . .
3.1
. . . . . .
. . . . . .
. . . . . .
3.2 3.2 3.9 3.10 3.10 3.11
. . . . . . . . . . . . . .
3.11 3.13
. . . . . . .
3.14
. . . . .
3.17 3.19 3.30 3.30 3.31
. . . . .
. . . . . .
. . . . .
. . . . . .
. . . . .
. . . . . .
. . . . .
. . . . . .
. . . . .
. . . . .
3.2
SECTION 3
NUCLIDES TABLE 3.1 Table of Nuclides Explanation of column headings Nuclide. Each nuclide is identified by its atomic number Z, equal to the number of protons in the nucleus; the corresponding symbol for that element; and the mass number A, equal to the sum of the numbers of protons Z and neutrons N in the nucleus. Thus, A Z N, or N A Z. The m following the mass number (e.g., 69 mZn) indicates an isomer of that nuclide. Half-Life. For the radioactive nuclides this time period corresponds to that during which loss by disintegration of 50% of the nuclide occurs. The units of time are designated by year (yr), day (d), hour (h), minute (min), and second (s). Natural Abundance. The isotopic abundances listed are on an “atom percent” basis for the stable nuclides present in naturally occurring elements in the earth’s crust. Thermal Neutron Absorption Cross Section. The ease with which a given nuclide can absorb a thermal neutron 1 (energy 40 eV) and become of a different nuclide is indicated by the cross section, given here in units of barns (1 barn 1024 cm2). If the mode of reaction is other than (n, ), it is so indicated, for example, (n, p) or (n, ), where n neutron, p proton, gamma ray, and alpha particle (42He). Major Radiations. In this column are listed the principal mode(s) of decay and the energies of the emanating radiations in million electronvolts (MeV). The gamma-ray () intensities, where given, are given to the nearest whole percentage in parentheses following the numerical energy value for that particular . In most cases the radiations listed should be sufficient for identification of the particular nuclide. The following designations are used: negatron (), positron (), conversion electron (e), gamma ray (), and alpha particle ().
Nuclide Symbol 1
Mass
H H 3 H 6 Li 7 Li 7 Be 9 Be 10 Be 10 B 11 B 11 C 13 C 14 C 13 N 14 N 19 O
1.007 825 2.014 102 3.016 050 6.015 125 7.016 004 7.016 929 9.012 186 10.013 534 10.012 939 11.009 305 11.011 432 13.003 354 14.003 242 13.005 738 14.003 074 19.003 578
18
18.000 937 21.994 437
2
F Na
22
Half-life
Natural abundance, %
Thermal neutron absorption cross section, barns
99.985 0.015
0.332 0.000 5
7.42 92.58 100
953(n, ) 0.037 54,000(n, p) 0.009
19.7 80.3
3837(n, ) 0.005
1.108
0.000 9
12.26 yr
53.6 d 2.5 106 yr
, 0.477(10) , 0.555; no
, 0.156; no , 1.20; , 0.511
5730 yr 9.96 min 99.635
109.7 min 2.62 yr
, 0.018 6; no
, 0.97; , 0.511
20.34 min
29.1 s
Major radiations
1.81(n, p) , 4.60; , 0.197(97), 1.37(59) , 1.74; , 0.511 , 1.820, 0.545; , 0.511, 1.275(100)
3.3
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.1 Table of Nuclides (continued)
Nuclide Symbol 23
Mass
Half-life
Na Na
22.934 473 23.990 962
14.96 h
Mg Mg
24.985 839 27.983 875
21.2 h
26
Al
25.986 891
7.4 105 yr
27
Al Al
26.981 539 27.981 905
2.31 min
Si Si 31 P 32 P 33 P 34 S 35 S 38 S
29.973 763 30.975 349 30.973 765 31.973 909 32.971 728 33.967 865 34.969 031 37.971 230
35
Cl Cl 37 Cl 38 Cl 39 Cl
34.968 851 35.968 309 36.965 898 37.968 005 38.968 008
37.29 min 55.5 min
37
Ar K
32.966 772 39.964 000
35.1 d 1.26 109 yr
K K
40.961 832 41.962 406
12.36 h
Ca Ca 47 Ca
43.955 490 44.956 189 46.954 538
165 d 4.535 d
46
45.955 919
83.9 d
24
25 28
28
30 31
36
40
41 42
44 45
Sc
Natural abundance, %
Thermal neutron absorption cross section, barns
100
0.53
Major radiations
, 4.17, 1.389; , 0.511, 1.275(100) 10.11
0.3 , 0.46; e, 0.03; , 0.031(96), 0.40(30), 0.95(30), 1.35(70) , 8.5; , 0.511, 1.12(4), 1.81(100)
100
0.235 , 2.85; , 1.780 (100)
3.12
0.11
100
0.19
, 1.48; , 1.26
2.62 h
, 1.710 , 0.248; no
14.28 d 24.4 d 4.22
0.27 , 0.167; no , 3.0, 1.1; , 1.88(95)
87.9 d 2.87 h 75.53 3.08 105 yr 24.47
44 100 0.4
0.118
70
6.77
1.2
, 0.714; , 0.511 , 4.91; , 1.60(38) , 3.45, 2.18, 1.91; , 0.246(44) Cl X rays , 1.314; , 0.483; , 1.460(11) , 3.52; , 0.31, 1.524(18)
2.06
0.7 , 0.252 , 1.98, 0.67; , 0.49(5), 0.815(5), 1.308(74) , 1.48, 0.357, , 0.889(100), 1.120(100)
3.4
SECTION 3
TABLE 3.1 Table of Nuclides (continued)
Nuclide Symbol
Mass
Half-life
44
43.959 572
48 yr
48
47.952 259
16.0 d
49
V Cr 51 Cr 54 Mn
48.949 522 49.946 054 50.944 768 53.940 362
330 d 27.8 d 303 d
55
54.938 050 55.938 910
2.576 h
Ti
V
50
Mn Mn
56
54
57
56.936 296
270 d
58
57.935 761
71.3 d
59
58.933 189 59.933 813
5.263 yr
Co
Co
Co Co
60
62
Ni Ni 64 Ni 65 Ni
61.928 342 62.929 664 63.927 958 64.930 072
63
62.929 592 63.929 759
63
Cu Cu
64
17 , 0.320(9); e, 0.315 , 0.835(100); e, 0.829
100
53.939 617 54.938 299 57.933 282 58.934 878
13.3 , 2.85; , 0.847(99), 1.811(29), 2.110(15)
5.84
2.9
0.31
1.1
2.60 yr
Mn X rays , 1.57, 0.475; , 0.143(1), 0.192(3), 1.095(56), 1.292(44) , 0.014(9), 0.122(87), 0.136(11), 0.692; e, 0.115, 0.129 , 0.474; , 0.511, 0.810(99), 0.865(1), 1.67(1)
45.6 d
100
19 6
3.66
15
1.16
1.5
, 1.48, 0.314; , 1.173(100), 1.332(100) , 0.067; no
92 yr
, 2.13; , 0.368(5), 1.115(16), 1.481(25)
2.564 h 69.1 12.80 h
Major radiations , 0.068(90), 0.078(98); e, 0.065, 0.073 , 0.696; , 0.511, 0.945(10), 0.983(100), 1.312(97), 2.241(3) Ti X rays
4.31
Fe Fe 58 Fe 59 Fe 55
Natural abundance, %
Thermal neutron absorption cross section, barns
4.5 , 0.573; , 0.656; e, 1.33; , 0.511, 1.34(1)
3.5
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.1 Table of Nuclides (continued)
Nuclide Symbol 64 65
68
Mass
Half-life
Zn Zn
63.929 145 64.929 234
8 1015 yr 245 d
Zn Zn
67.924 857
69 m
71
11.4 d
77
As
76.920 645
38.7 h
75
Se
74.922 525
120.4 d
79
Br Br
78.918 329 79.918 536
17.6 min
Br Br
80.916 292 81.916 802
35.34 h
Kr Rb 85 Sr
84.912 523 85.911 193 84.912 989
10.76 yr 18.66 d 64.0 d
90
89.907 163 94.906 832
64.0 h 35.0 d
81 82
85 86
95
Y Nb
0.46
Major radiations
, 0.327; e, 1.106; , 0.511, 1.115(49) 18.56
70.924 956 74.921 595 75.922 397
80
48.89
1.0 , 0.439(95); e, 0.429 Ga X rays
13.8 h
Ge As 76 As 75
Natural abundance, %
Thermal neutron absorption cross section, barns
100
4.5 , 2.97; , 0.559(43), 0.657(6), 1.22(5) 1.44(1), 1.789, 2.10(1) , 0.68; , 0.086, 0.239(3), 0.522(1) , 0.066(1), 0.097(1), 0.121(17), 0.136(57), 0.265(60), 0.280(25), 0.401(12); e 0.085, 0.095, 0.109, 0.124, 0.253
26.4 h
50.52
8.5 , 2.00; , 0.87; , 0.511, 0.618(7), 0.666(1)
49.48
3
15
~7
, 0.444; , 0.554(66), 0.619(41), 0.698(27), 0.777(83), 0.828(25), 1.044(29), 1.317(26), 1.475(17) , 0.67; , 0.514 , 1.78; , 1.078(9) , 0.514(100); e, 0.499 , 2.27; no , 0.160; , 0.765(100)
3.6
SECTION 3
TABLE 3.1 Table of Nuclides (continued)
Nuclide Symbol 99
Mo
Mass
Half-life
98.907 720
66.7 h
Tc Ru
102.906 306
6.049 h 39.5 d
Pd Pd
107.903 891 108.905 954
13.47 h
Ag Ag 111 Ag
108.904 756 110.905 316
39.2 s 7.5 d
109
108.904 928 114.905 431
453 d 53.5 h
99 m 103
108 109
109
110 m
115
Cd Cd
113 m
In
114
Sn Sb 122 Sb
112.905 187 120.903 816 121.905 183
115 d
123
Sb Sb
122.904 213 123.905 973
1.3 1016 yr 60.4 d
Sb
124.905 232
2.71 yr
124
125
89 , 0.088(5) , 1.05; , 0.247(1), 0.342(6) , 0.088; e, 0.062 , 1.11; , 0.230(1), 0.262(2), 0.49(10), 0.53(26) , 0.393(64); e, 0.365, 0.389 , 1.988; , 0.42; , 1.299 , 0.255(2)
99.8 min
72 s
121
12 , 1.028; , 0.088(5), 0.129, 0.31, 0.41, 0.60, 0.64
48.65
113.904 905
Major radiations , 1.23; , 0.041(12), 0.181(7), 0.372(1), 0.740(12), 0.780(4) , 0.140(90); e, 0.110 , 0.70, 0.21; , 0.497(88), 0.610(6)
26.7
In
113
Natural abundance, %
Thermal neutron absorption cross section, barns
57.25
6 , 1.97; , 0.56; , 0.584(66), 0.686(3), 1.14(1) 1.26(1)
2.80 d
42.75
3.3 2000
20
, 2.31; , 0.603(97), 0.644(7), 0.72(14), 0.967(2), 1.048(2), 1.31(3), 1.37(5), 1.45(2), 1.692(50), 2.088(7) , 0.61; e, 0.114, 0.395; , 0.176(6), 0.427(31), 0.463(10), 0.599(24), 0.634(11), 0.66(3)
3.7
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.1 Table of Nuclides (continued)
Nuclide Symbol
Mass
Half-life
Natural abundance, %
Thermal neutron absorption cross section, barns
132
Te
131.908 523
77.7 h
125
I
124.904 578
60.2 d
127
I I
126.904 470 127.905 838
24.99 min
131
I
130.906 127
8.05 d
132
I
131.907 981
2.26 h
133
Xe
132.905 815
5.270 d
190
131
Cs Cs
130.905 466 133.906 823
9.70 d 2.046 yr
136
137
Cs
136.906 770
30.0 yr
0.11
131
Ba
130.906 716
12.0 d
133
Ba
132.905 879
7.2 yr
128
134
9 100
Major radiations , 0.22; e, 0.197; , 0.053(17), 0.230(90) , 0.035(7); e, 0.030
6.4
~0.7
, 2.12; , 0.441(14), 0.528(1), 0.743, 0.969 , 0.806, 0.606; e, 0.330; , 0.080(3), 0.284(5), 0.364(82), 0.637(7), 0.723(2) , 2.12; , 0.24(1), 0.52(20), 0.67(44), 0.773(89), 0.955(22) 1.14(6), 1.28(7), 1.40(14), 1.45(1), 1.91(1), 1.99(1) , 0.346; e, 0.045, 0.075; , 0.081(37) Xe X rays , 0.662; , 0.57(23), 0.605(98), 0.796(99), 1.038(1), 1.168(2), 1.365(3) , 1.176, 0.514; e, 0.624, 0.656; , 0.662(85) , 0.124(28), 0.216(19), 0.25(5), 0.373(13), 0.496(48), 0.60(3); e, 0.118, 0.180, 0.460 , 0.080(36), 0.276(7), 0.302(14), 0.356(69), 0.382(8); e, 0.266, 0.319
3.8
SECTION 3
TABLE 3.1 Table of Nuclides (continued)
Nuclide Symbol
Mass
137m
Ba
Half-life
Natural abundance, %
Thermal neutron absorption cross section, barns
2.554 min
140
Ba
139.910 565
12.80 d
20
141
Ce
140.908 219
32.5 d
30
144
Ce
143.913 591
284 d
1.0
197
Au Au
196.966 541 197.968 231
2.697 d
98.8 26,000
199
Au
198.968 773
3.15 d
~30
197
Hg
196.967 360
65 h
203
Hg
202.972 880
46.9 d
Tl Tl 210 Pb
202.972 353 203.973 865 209.984 187
3.81 yr 20.4 yr
207
Bi
206.978 438
30.2 yr
210
Po Ra
209.982 876 226.025 360
138.40 d 1602 yr
0.03 20
Am
241.056 714
433 yr
700
198
203 205
226
241
100
29.50
Major radiations , 0.662(89); e, 0.624, 0.656 , 1.02; , 0.030(11), 0.163(6), 0.305(6), 0.438(5), 0.537(34) , 0.581; e, 0.104, 0.139; , 0.145(48) , 0.31; , 0.080(2), 0.134(11) , 0.962; e, 0.329, 0.398; , 0.412(95), 0.676(1), 1.088 , 0.46, 0.30; , 0.158(37), 0.208(8); e, 0.125, 0.145 , 0.77(18), 0.191(2), 0.268 , 0.214; e, 0.194, 0.264, 0.275; , 0.279(77)
11 , 0.766 , 0.061; , 0.047(4); , 3.72 , 0.570(98), 1.063(77), 1.771(9); e 0.482, 0.975, 1.048 , 5.305; , 0.803 , 4.78, 4.60; , 0.186(4), 0.26, 0.42, 0.61; e, 0.170 , 5.49, 5.44; , 0.060(36), 0.101, 0.208, 0.335, 0.37, 0.663, 0.722
PROPERTIES OF ATOMS, RADICALS, AND BONDS
3.9
ELECTRONEGATIVITY According to Pauling, electronegativity is the relative attraction of an atom for the valence electrons in a covalent bond. It is proportional to the effective nuclear charge and inversely proportional to the covalent radius.
0.31(n 1 c) 0.50 r
where n is the number of valence electrons, c is any formal valence charge on the atom and the sign before it corresponds to the sign of this charge, and r is the covalent radius. Because electronegativity is concerned with atoms in molecules rather than atoms in isolation, it is not possible to define precise electronegativity values. Pauling determined his set of values from bond energy data based on experimentally measured heats of dissociation and formation. Originally the element fluorine, whose atoms have the greatest attraction for electrons, was given an arbitrary electronegativity of 4.0. A revision of Pauling’s values based on newer heat data assigns 3.9 to fluorine. A unit positive charge changes the value for an atom by about two-thirds of the electronegativity difference between it and the atom next on its right in the Periodic Table, and a unit negative charge similarly decreases the value. The greater the difference in electronegativity, the greater is the ionic character of the bond. The amount of ionic character I is given by the expression I 1 e0.25(
A
B)2
The bond is fully covalent when ( A B) 0.5 (and I 6%). A different expression was proposed by Hannay-Smyth.* I 0.46|A B| 0.035(A B)2 Other sets of electronegativities of the elements have been proposed. The rather direct, but somewhat limited, method of Mulliken makes use of the ionization potential IP and electron-affinity data (Table 3.3). Numerical values are obtained that coincide with values from other methods if electronegativities are calculated from IP A 5.6 Electronegativities on the Allred-Rochow scale† are given by
0.359
Zeff r2
0.744
where Zeff is the effective nuclear charge and r is the atomic radius. Using Pauling’s values, electronegativities of the elements are arranged in periodic order in Table 3.2A.
* Hannay-Smyth, J. Am. Chem. Soc., 68: 171 (1946). † J. Inorg. Nucl, Chem., 5: 264, 269 (1958).
3.10
SECTION 3
TABLE 3.2A Electronegativities of the Elements H 2.2 Li 1.0
Be 1.5
B 2.0
C 2.5
N 3.0
O 3.5
F 4.0
Na 0.9
Mg 1.2
Al 1.5
Si 1.8
P 2.1
S 2.4
Cl 2.8
K 0.9
Ca 1.0
Sc 1.3
Ti–V 1.6
Cr–Mn 1.6
Fe–Ni 1.8
Cu 1.9
Zn 1.7
Ga 1.6
Ge 1.8
As 2.0
Se 2.4
Br 2.7
Rb 0.8
Sr 1.0
Y 1.2
Zr–Nb 1.6
Mo–Tc 1.8
Ru–Pd 2.2
Ag 1.9
Cd 1.5
In 1.7
Sn 1.8
Sb 1.9
Te 2.1
I 2.2
Cs
Ba
La–Lu
Hf–Ta
W–Re
Os–Pt
Au
Hg
T1
Pb
Bi
0.7
0.9
1.1
1.3
1.8
2.2
2.4
1.4
1.8
1.8
1.9
TABLE 3.2B Electronegativities of the Groups Group
Group
F Cl Br I CF3 CCl3 CHCl2
4.0 2.8 2.7 2.2 3.4 3.0 2.8
OH OCH3 NO2 NH2 N(CH3)2
3.7 3.7 3.4 3.4 3.0
Group C˜N C ˜ CH CH ¨ CH2 C6H5 COOH SiH3 PH2 SH
3.3 3.3 3.0 3.0 2.8 2.2 2.3 2.8
Electronegativities have important uses in chemistry in addition to predicting the amount of ionic character in a bond. The bond stretching force constant k (in units of 105 dynes · cm1) can be estimated for stable molecules exhibiting their normal covalences by the expression: k 1.67 N
d A
B
2
3 4
0.30
where N is the bond order (i.e., the effective number of covalent or ionic bonds acting between the two atoms A and B) and d is the internuclear distance in angstroms. An estimate of the percent ionic character may be made for organometallic compounds of the type alkyl-metal for metals in common use in organic synthesis. Among the alkali metals (row 1 of the Periodic Table, these are Li (43%), Na (47%), and K (51%)). The percent ionic character for an organomagnesium compound (typically a Grignard reagent), the bond is estimated to be 34% ionic. The more covalent organozinc and organocadmium compounds have correspondingly less ionic character: Zn (18%) and Cd (15%). Electronegativities have also been estimated for various common substituent groups. They are arranged in Table 3.2B in clusters of related residues. The values for the individual halogens are from Table 3.2A.
3.11
PROPERTIES OF ATOMS, RADICALS, AND BONDS
Electronegativity is proportional to the work function , which is the energy necessary to just remove an electron from the metal surface in thermoelectric or photoelectric emission. 0.44 0.15
ELECTRON AFFINITY The electron affinity of an atom A is defined as the energy released when an atom and an electron react to form a negative ion in the gas phase at 0 K. A(g) e A(g) An example is the capture of an electron by chlorine to give chloride anion. Cl(g) e Cl(g). Conceptually related to this is the ionization potential, which is the energy for the process A l A e. An example is the loss of an electron by an alkali metal to give the alkali metal cation. Na l Na e The second ionization potential carried this process further, that is, A l A2 e and so on for the third or more ionization potentials. Both electron affinities and ionization potentials are typically expressed in electron volts (eV). Data for electron affinities are given in Table 3.3. Uncertainty in the final data figures is given in parentheses. Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 4: 539 (1975). Data for ionization potentials are available in C. E. Moore, National Bureau of Standards U. S. Publication NSRDS-NBS, 34 (1970). TABLE 3.3 Electron Affinities of Elements, Molecules and Radicals A. Elements
Element
Electron affinity, eV*
Element
Aluminum Antimony Argon Arsenic Astatine Barium
0.46(3) 1.05(5) 0 0.80(5) 2.8(2) 0
Beryllium Bismuth Boron Bromine Cadmium Calcium
Electron affinity, eV* 0 1.1(2) 0.28(1) 3.364(4) 0 0
3.12
SECTION 3
TABLE 3.3 Electron Affinities of Elements, Molecules and Radicals (continued) A. Elements
Electron affinity, eV*
Element Carbon Cesium Chlorine Chromium Cobalt Copper Fluorine Francium Gallium Germanium Gold Hafnium Helium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lead Lithium Magnesium Manganese Mercury Molybdenum Neon Nickel Niobium Nitrogen Osmium
1.268(5) 0.4715(5) 3.615(4) 0.66(5) 0.7(2) 1.226(10) 3.399(3) (0.456) 0.30(15) 1.2(1) 2.3086(7) 0 0 0.754 209(3) 0.30(15) 3.061(4) 1.6(2) 0.25(20) 0 0.5(3) 1.1(2) 0.620(7) 0 0 0 1.0(2) 0 1.15(10) 1.0(3) 0.07(8) 1.1(3)
Electron affinity, eV*
Element Oxygen Palladium Phosphorus Platinum Polonium Potassium Radon Rare earths Rhenium Rhodium Rubidium Ruthenium Scandium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Thallium Tin Titanium Tungsten Vanadium Xenon Yttrium Zinc Zirconium
1.462(3) 0.6(3) 0.743(10) 2.128 1.9(3) 0.5012(5) 0
0.5 (estimate) 0.15(10) 1.2(3) 0.4860(5) 1.1(3) 0 2.0206(3) 1.385(5) 1.303(7) 0.546(5) 0 2.0772(5) 0.6(4) 0.7(3) 1.9708(3) 0.3(2) 1.25(10) 0.2(2) 0.6(4) 0.5(2) 0 0.0(3) 0 0.5(3)
Electron affinity, eV*
Molecule
Electron affinity, eV*
2.65 1.34 3.91 0.45
SF6 2,3,5,6-Tetrachlorobenzoquinone Tetracyanoethylene
B. Molecules
Molecule BF3 p-Benzoquinone NO2 O2 * To convert into kJ · mol
1
multiply by 96.48. To convert into kcal · mol
1
multiply by 23.06.
1.43 2.40 2.88
3.13
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.3 Electron Affinities of Elements, Radicals and Molecules (continued) C. Radicals
Radical CH3 C2H5 C6H5 CCl3 CF3 CN NH2 C6H5NH (C6H5)2N
Electron affinity, eV*
Radical
Electron affinity, eV*
1.08 0.89 2.20 1.22 1.85 3.17 1.12 1.55 1.19
OH CF3O CH3O PH2 SH CH3S SCN SeCN SiF3
1.83 1.35 0.38 1.60 2.19 1.32 2.17 2.64 3.35
* To convert into kJ · mol1 multiply by 96.48. To convert into kcal · mol1 multiply by 23.06.
BOND LENGTHS AND STRENGTHS The bonds most commonly encountered in organic chemistry are those between carbons and between carbon and heteroatoms of the first row of the Periodic Table. Generally and very approximately, single bonds between two carbon atoms are about 1.5 Å in length and have strengths near to, but usually less than, 100 kcal/mole (418 kJ/mol). Likewise, carbon– carbon double bonds are stronger (~150 kcal/mol) and shorter (~1.35 Å). Triple bonds are shorter still (C ˜ C1.2 Å, ~200 kcal/mol). Bonds between carbon and either nitrogen or oxygen are somewhat shorter owing to the heteroatom’s electronegativity. A few general examples are shown below and detailed data may be found in the Table 3.4. General Trends in the Length of Common Organic Chemical Bonds Bond
Length (Å)
Bond
Length (Å)
Bond
Length (Å)
CˆC C¨C C˜C
1.54 1.33 1.21
CˆO C¨O CˆN C¨N C˜N
1.43 1.20 1.47 1.28 1.15
H ˆ C(sp3) NˆH OˆH C ˆ Cl
1.12 1.03 0.97 1.76
3.14
SECTION 3
TABLE 3.4A Bond Lengths between Carbon and other Elements The numbers in parentheses following a numerical value represent the standard deviation of that value in terms of the final listed digit. To convert the bond length from angstroms into nanometers, multiply by 0.1; to convert angstroms into picometers, multiply by 100.
Bond type
Bond length, Å*
Carbon–carbon Single bond Paraffinic: ˆ C ˆ C ˆ In presence of ˆ C ¨ C ˆ or of aromatic ring In presence of ˆ C ¨ O bond In presence of two carbon–oxygen double bonds In presence of two carbon–carbon double bonds Aryl ˆ C ¨ O In presence of one carbon–carbon triple bond: ˆ C ˆ C ˜ C ˆ In presence of one carbon-nitrogen triple bond: ˆ C ˆ C ˜ N In compounds with tendency to dipole formation, e.g., C ¨ C ˆ C ¨ O In aromatic compounds In presence of carbon–carbon double and triple bonds: ˆC¨CˆC˜Cˆ In presence of two carbon-carbon triple bonds: ˆ C ˜ C ˆ C ˜ C ˆ
1.541(3) 1.53(1) 1.516(5) 1.49(1) 1.426(5) 1.47(2) 1.460(3) 1.464(5) 1.44(1) 1.395(3) 1.426(5) 1.373(4)
Double bond Single: ˆ C ¨ C ˆ Conjugated with a carbon–carbon double bond: ˆ C ¨ C ˆ C ¨ C ˆ Conjugated with a carbon-oxygen double bond: ˆ C ¨ C ˆ C ¨ O Cumulative: ˆ C ¨ C ¨ C ˆ or ˆ C ¨ C ¨ O
1.337(6) 1.336(5) 1.36(1) 1.309(5)
Triple bond Simple: ˆ C ˜ C ˆ Conjugated: ˆ C ˜ C ˆ C ¨ C ˆ , ˆ C ˜ C ˆ C ¨ O, or ˆ C ˜ C ˆ aryl Bond type
1.204(2) 1.206(4)
Bond length, Å Carbon–halogen
Paraffinic: R ˆ X Olefinic: ˆ C ¨ C ˆ X Aromatic: Ar ˆ X Acetylenic: ˆ C ˜ C ˆ X
Fluorine
Chlorine
Bromine
Iodine
1.379(5) 1.333(5) 1.328(5) (1.27)
1.767(2) 1.719(5) 1.70(1) 1.635(5)
1.938(5) 1.89(1) 1.85(1) 1.795(10)
2.139(1) 2.092(5) 2.05(1) 1.99(2)
Bond type
Bond length, Å
Carbon–hydrogen Paraffinic In methane In CD4 In monosubstituted carbon: H ˆ C ˆ Y
1.092 1.094 1.096(5)
X
In disubstituted carbon:
H
C Y
1.073(5)
3.15
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.4A Bond Lengths between Carbon and Other Elements (continued) Bond type
Bond length, Å
Carbon–hydrogen (continued) Paraffinic (continued) X
In trisubstituted carbon:
H
C
1.070(7)
Y
Y
Olefinic Simple: H ˆ C ¨ C ˆ Cumultative carbon–carbon double bonds: H ˆ C ¨ C ¨ C ˆ Cumulative carbon–carbon–oxygen double bonds: HˆCˆC¨C¨O
1.083(5) 1.07(1) 1.08(1)
Aromatic
1.084(5)
Acetylenic (in C2H2, 1.059)
1.055(5)
In small rings
1.081(5)
In presence of a carbon triple bond: H ˆ C ˜ C ˆ
1.115(4)
Carbon–nitrogen Single bond Paraffinic: 3 covalent nitrogen: RNH2, R2NH, R3N 4 covalent nitrogen: RNH3, R3N ˆ BX3 In ˆ C ˆ N ¨ In aromatic compounds In conjugated heterocyclic systems (partial double bond) In ˆ N ˆ C ¨ O (partial double bond)
1.472(5) 1.479(5) 1.475(10) 1.43(1) 1.353(5) 1.322(5)
Double bond: ˆ C ¨ N ˆ
1.32
Triple bond (in CN radical, 1.1774): ˆ C ˜ N
1.157(5)
Carbon–oxygen Single bond Paraffinic and saturated heterocyclic: ˆ C ˆ O ˆ
Strained, as in epoxides:
C
C
1.426(5)
1.435(5)
O
In aromatic compounds, as Ar ˆ OH Longer bond in carboxylic acids and esters (HCOOH, 1.312) In conjugated heterocyclics, as furan
1.36(1) 1.358(5) 1.371(16)
3.16
SECTION 3
TABLE 3.4A Bond Lengths between Carbon and Other Elements (continued) Bond type
Bond length, Å
Carbon–oxygen (continued) Double bond In CO In CO In CO2 In HCO In carbonyls In aldehydes and ketones In acyl halides: R ˆ CO ˆ X Shorter bond in carboxylic acids and esters In zwitterion forms In O ¨ C ¨ In isocyanates: RN ¨ C ¨ O In conjugated systems, as in partial triple bond: O ¨ C ˆ C ¨ C In p-quinones In metal acetylacetonates In calcite: CaCO3
1.115 1.128 1.177 1.198(8) 1.145(10) 1.215(5) 1.171(4) 1.233(5) 1.26(1) 1.160(1) 1.17(1) 1.215(5) 1.15(2) 1.28(2) 1.29(1)
Carbon–selenium Single bond Paraffinic: ˆ C ˆ Se ˆ In presence of fluorine, as in perfluoro compounds: ˆ CF ˆ Se ˆ
1.98(2) 1.95(2)
Double bond In Se ¨ C ¨ , as SeCS and SeCO In CSe radical
1.709(3) 1.67 Carbon–silicon
Alkyl substituent: H3C ˆ Si or H2C ˆ Si Aryl substituent: aryl ˆ Si Electronegative substituent: R ˆ Si ˆ X
1.870(5) 1.843(5) 1.854(5) Carbon–sulfur
Single bond Paraffinic: ˆ C ˆ S ˆ In presence of fluorine, as in perfluoro-compounds: ˆ CF ˆ S ˆ In heterocyclic systems: partial double bonds
1.817(5) 1.835(1) 1.718(5)
Double bond In S ¨ C: thiophene, S ¨ CR2 In sulfoxides and sulfones In presence of second carbon–carbon double bond: S ¨ C ˆ C ¨ C ˆ In SC radical [in CS2, 1.554(5)]
1.71(1) 1.80(1) 1.555(1) 1.5349(2)
3.17
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.4A Bond Lengths between Carbon and Other Elements (continued) Bond type
Bond length, Å
Bond type
Bond length, Å
Other elements and carbon C ˆ Al C ˆ As (paraffinic) CˆB C ˆ Be C ˆ Bi C ˆ Co C ˆ Cr C ˆ Fe C ˆ Ge Alkyl Aryl C ˆ Hg in Hg(CN)2
2.24(4) 1.98(1) 1.56(1) 1.93 2.30 1.83(2) 1.92(4) 1.84(2) 1.98(3) 1.945(5) 2.07(1) 1.99(2)
C ˆ In C ˆ Mo C ˆ Ni C ˆ Pb (alkyl) C ˆ Pd C ˆ Sb (paraffinic) C ˆ Sn alkyl electronegative substituent C ˆ Te C ˆ Tl CˆW
2.16(4) 2.08(4) 2.107(5) 2.30(1) 2.27(4) 2.202(16) 2.143(5) 2.18(2) 1.904 2.705(5) 2.06
TABLE 3.4B Bond Lengths between Elements Other than Carbon Elements
Bond type
Bond length, Å
Elements
Boron BˆB B ˆ Br B ˆ Cl BˆF BˆH BˆN BˆO
B2H6 BBr3 BCl3 BF3, R2BF Boranes Bridge Borazoles B(OH)3, (RO)3B
Bond type
Bond length, Å
Hydrogen (continued) 1.77(1) 1.87(2) 1.72(1) 1.29(1) 1.21(2) 1.39(2) 1.42(1) 1.362(5)
H ˆ Mg H ˆ Na H ˆ Sb H ˆ Se H ˆ Sn D ˆ Br D ˆ Cl DˆI T ˆ Br T ˆ Cl
MgH NaH H3Sb H2Se SnH4 DBr DCl
1.731 1.887 1.707 1.460 1.701 1.4144 1.2746 1.6165 1.4144 1.2740
Hydrogen Nitrogen H ˆ Al H ˆ As H ˆ Be H ˆ Br H ˆ Ca H ˆ Cl HˆF H ˆ Ge HˆI HˆK H ˆ Li
AlH AsH3 BeH HBr CaH HCl HF GeH4 HI KH LiH
1.646 1.519 1.343 1.408 2.002 1.274 0.917 1.53 1.609 2.244 2.595
N ˆ Cl NˆF NˆH
NˆD NˆN
NO2Cl NF3 NH4 NH3, RNH2 H2NNH2 R ˆ CO ˆ NH2 HN ¨ C ¨ S ND HN3 R2NNH2
1.79(2) 1.36(2) 1.034(3) 1.012 1.038 0.99(3) 1.013(5) 1.041 1.02(1) 1.451(5)
3.18
SECTION 3
TABLE 3.4B Bond Lengths between Elements Other than Carbon (continued ) Elements
Bond type
Bond length, Å
Elements
Nitrogen (continued)
NˆO
N¨O
N ˆ Si
N2O N2 NO2Cl RO ˆ NO2 NO2 N2O RNO2 NO SiN
1.126(2) 1.116 1.24(1) 1.36(2) 1.188(5) 1.186(2) 1.22(1) 1.0619 1.572
PˆH PˆI PˆN PˆO
PˆS
PˆC
OˆO
O ˆ Al O ˆ As O ˆ Ba O ˆ Cl O ˆ Mg O ˆ Os O ˆ Pb
H2O ROH OH HOOH D2O OD HO ˆ OH O2 O2 O22 O3 AlO As4O6 (bridges) BaO ClO2 OCl2 MgO OsO4 PbO
0.958 0.97(1) 1.0289 0.960(5) 0.9575 0.9699 1.48(1) 1.227 1.26(2) 1.49(2) 1.278(5) 1.618 1.79 1.940 1.484 1.68 1.749 1.66 1.934
Si ˆ Br Si ˆ Cl Si ˆ F Si ˆ H Si ˆ I Si ˆ O Si ˆ Si
2.23(1) 2.00(2) 1.55(3)
1.424(5) 2.52(1) 1.491 1.447 1.67 1.54(4) 2.12(5) 2.08(2) 2.20(2) 1.562 1.87(2)
SiBr4, R3SiBr SiCl4, R3SiCl SiF4, R3SiF SiF6 SiH4 R3SiH SiI4 R3SiI R3SiOR H3SiSiH3
2.16(1) 2.019(5) 1.561(3) 1.58 1.480(5) 1.476(5) 2.34 2.46(2) 1.633(5) 2.30(2)
Sulfur S ˆ Br S ˆ Cl SˆF SˆH
SˆO PBr3 PCl3 PFCl2
PH3, PH4 PI3 Single bond Single bond p3 bonding sp3 bonding p3 bonding sp3 bonding In rings Single bond p3 bonding Silicon
Phosphorus P ˆ Br P ˆ Cl PˆF
Bond length, Å
Phosphorus (continued)
Oxygen OˆH
Bond type
SˆS
SOBr2 S2Cl2 SOF2 H2S RSH D2S SO2 SOCl2 RSSR
2.27(2) 1.585(5) 1.585(5) 1.333 1.329(5) 1.345 1.4321 1.45(2) 2.05(1)
TABLE 3.5 Bond Strengths The quantity D0(A ˆ B) corresponds to the bond dissociation energy at 0 K, all species considered to be ideal gases, for a bond A ˆ B which is broken through the reaction: Eq. AB l A B where
D0 Hf 0(A) Hf 0(B) Hf 0(AB)
D0 at 298 K, or Hf298, is greater than D0 at 0 K by an amount which lies between RT and 3/2 RT, or between 0.6 and 0.9 kcal · mol1. In polyatomic molecules this difference may be somewhat greater. It is important to note that the bond dissociation energy refers to the enthalpy change Hf in the dissociation process. The strengths of carbon–carbon bonds are greatest for triple bonds and typically decrease with bond order. Other factors play a role as well. A carbon–carbon single bond between two multiple bonds will share some additional electron density and be correspondingly strengthened. Bonds are weaker than “normal” when cleavage of a bond gives a particularly stable species. For example, cleavage of a single bond in ethylbenzene to give benzyl radical and methyl radical, C6H5CH2 ˆ CH3 l C6H5CH2● ●CH3, is favorable because benzyl radical is stable. Thus, the C ˆ C bond strength in this case is only 72 kcal/mol compared to the single bond of propane, which is 85 kcal/mol. Hexamethylethane may dissociate into two t-butyl radicals [(CH3)3C●]. The combination of steric crowding and the formation of stabilized radicals makes the CˆC bond strength in (CH3)3Cˆ C(CH3)3 only about 68kcal/mol. A few selected examples follow: The numbers in parentheses following a numerical value represent the standard deviation of that value in terms of the final listed digit(s). To convert the tabulated values (in kcal · mol1) to kJ · mol1, multiply by 4.184. Source: T. L. Cottrell, The Strengths of Chemical Bonds, 2nd ed., Butterworth, London, 1958; B. deB. Darwent, National Standard Reference Data Series, National Bureau of Standards, no. 31, Washington, 1970; S. W. Benson, J. Chem. Educ., 42: 502 (1965); and J. A. Kerr, Chem. Rev., 66: 465 (1966). 230 kcal H
H 163 kcal
H
H
H
H 150 kcal
H
H2 C H3C
H3C H3C H3C
85 kcal CH3 68 kcal CH3 CH3 CH3
H
100 kcal
100 kcal
H
H
3.19
H H 117 kcal H
CH3
CH 2 CH 3
72 kcal
3.20 TABLE 3.5 Bond Strengths (continued) D0, kcal · mol1
Bond
Hf298, kcal · mol1
Bond
Boron H3B ˆ BH3 F2B ˆ F
Hf298, kcal · mol1
Carbon (continued) 35 133(20)
Bromine Br ˆ Br Br ˆ CH3 Br ˆ CH2Br Br ˆ CHBr2 Br ˆ CBr3 Br ˆ CCl3 Br ˆ CF3 Br ˆ CF2CF3 Br ˆ CF2CF2CF3 Brˆ CHF2 Br ˆ Cl Br ˆ F Brˆ CN Br ˆ CO ˆ C6H5 Br ˆ N Br ˆ NF2
D0, kcal · mol1
45.45(1) 67(2)
49(3) 51(3)
51.6(1) 67.2
46.10(1) 68(2) 61(3) 62(4) 50(3) 52(3) 68(3) 68.7(15) 66.5(15) 69 52.3(1) 68.1 91 64
68(5) 53
CH3 ˆ CH2CN CH3 ˆ CH(CH3)CN CH3 ˆ C(C6H5)CN(CH3) C2H5 ˆ CH2CN CH3 ˆ CF3 CH2F ˆ CH2F CF3 ˆ CF3 CF2 ¨ CF2 CF3 ˆ CN CH2 ˆ CO CH3 ˆ CHO CH3CO ˆ CF3 CH3CO ˆ COCH3 C6H5CO ˆ COC6H5 C6H5CH2CO ˆ CH2C6H5 C6H5CH2 ˆ COOH (C6H5CH2)2CH ˆ COOH NC ˆ CN CF3 ˆ NF2 CH3 ˆ NH2 C6H5CH2 ˆ NH2
80.6
143(5)
73(2) 79(2) 60 76.9(17) 101.2(11) 88(2) 97(2) 76(3) 120 81.9 75 73.8 67(2) 66.4 65.4 68.1 59.4 144(5) 65(3) 79(3) 72(1)
Br ˆ NO Br ˆ O
27.8(15) 55.3(1)
28.7(15) 56.2(1)
119(5)
230(2) 163 88 69(2) 80 93 72 71 71 67(2) 29 72 117 67.5 15 100 100 150 121(5)
Carbon HC ˜ CH H2C ¨ CH2 CH3 ˆ CH3 CH3 ˆ C(CH3)2CH3 CH3 ˆ C(CH3)3 CH3 ˆ C6H5 CH3 ˆ CH2C6H5 CH3 ˆ CH(CH3)C6H5 C2H5 ˆ CH2C6H5 C3H7 ˆ CH2C6H5 CH3 ˆ (CH ¨ CH2) CH3 ˆ (CH2CH ¨ CH2) CH3 ˆ (C ˜ CH) (CH3)3C ˆ C(CH3)3 (CH3)3C ˆ C(C6H5)3 (CH2 ¨ CH) ˆ (CH ¨ CH2) C6H5 ˆ C6H5 (HC ˜ C) ˆ (C ˜ CH) CH3 ˆ CN
CH3 ˆ NHC6H5 CH3 ˆ N(CH3)C6H5 C6H5CH2 ˆ NHCH3 C6H5CH2 ˆ N(CH3)2 CH3 ˆ (N ¨ NCH3) C2H5 ˆ (N ¨ NC2H5) (CH3)3C ˆ [N ¨ NC(CH3)3] C6H5CH2 ˆ (N ¨ NCH2C6H5) CF3 ˆ (N ¨ NCF3) H2C ¨ NH HC ˜ N CH3 ˆ NO C2H5 ˆ NO C3H7 ˆ NO (CH3)2CH ˆ NO C4H9 ˆ NO C6H5 ˆ NO Cl3C ˆ NO F3C ˆ NO C6F5 ˆ NO NC ˆ NO CH3 ˆ NO2 C2H5 ˆ NO2 CH3 ˆ OCH3
68 65 69(1) 61(1) 52.5 50.0 43.5 37.6 55.2 154(5) 224 41.8(9) 42.0(13) 40.1(18) 41.0(13) 51.5(10) 51.5(10) 32 31 50.5(10) 29(3) 59(3) 62 80
3.21
3.22
TABLE 3.5 Bond Strengths (continued) D0, kcal · mol1
Bond
Hf298, kcal · mol1
Carbon (continued) CH3 ˆ OC6H5 CH3 ˆ OCH2C6H5 C2H5 ˆ OC6H5 C6H5CH2 ˆ OCOCH3 C6H5CH2 ˆ OCOC6H5 CH3CO ˆ OCH3 CH3 ˆ O ˆ SOCH3 CH2 ¨ CHCH2 ˆ OSOCH3 C6H5CH2 ˆ OSOCH3 C¨O H2C ¨ O OC ¨ O SC ¨ O C˜O CH3 ˆ SH CH3 ˆ SC6H5 CH3 ˆ SCH2C6H5 OC ˆ S eH2 ˆ CH3 eH2CH2 ˆ CH3 (eH2)2C ˆ CH3 eHCH ˆ CH3 CH3
D0, kcal · mol1
Bond
Hf298, kcal · mol1
Chlorine (continued) 91 67 51 67
256.2(1) 125.7(1) 148 71(3)
72.9
69 97 67 50 53 257.3(1) 175 127.2(1) 150 257 73(3) 68(2) 59(2) 74.2 96 25.5 51 32 27.5
Cl ˆ COC6H5 Cl ˆ Cl Cl ˆ Cl Cl ˆ ClO O3Cl ˆ ClO4 Cl ˆ F O3Cl ˆ F Cl ˆ N Cl ˆ NCl Cl ˆ NCl2 Cl ˆ NF2 Cl ˆ NH2 Cl ˆ NO Cl ˆ NO2 Cl ˆ O OCl ˆ O O2Cl ˆ O Cl ˆ SiCl3 Cl ˆ CH3 Cl ˆ Cl
74(3) 94 57.3(1) 33.3(10) 58 59.5(5)
37.0(15) 33(1) 64(1) 58(3)
61 62 67 91 ca 32 60(6) 38.0(15) 34(1)
48(1) 111 51 94 Fluorine
F ˆ CH3 F ˆ C(CH3)3
108(5) 105
CH3
35
CH3
11.5
(CH3)2C(eH2) ˆ CH3 fCH2 ˆ CH3 (CH3)2C(f) ˆ CH3 eH2CO ˆ CH3 fC ˆ CH3 f2C ˆ CH3 CH3 ˆ CH3 CH2 ˆ CH3 CH2 ¨ CH2 HC ˜ CH
20 12 7 30 11 20 46 119 162 223 Chlorine
3.23
Cl ˆ C Cl ˆ CH3 Cl ˆ C(CH3)3 Cl ˆ CH2Cl Cl ˆ CCl3 Cl ˆ CF3 Cl ˆ CCl2F Cl ˆ CF2Cl Cl ˆ CF2CF3 Cl ˆ (CH ¨ CH2) Cl ˆ CN Cl ˆ COCl Cl ˆ COCH3
F ˆ C6H5 F ˆ CCl3 F ˆ CCl2F F ˆ CClF2 F ˆ CF3 F ˆ COCH3 FˆF OF ˆ F O2F ˆ F FˆN F ˆ NF F ˆ NF2 F ˆ NO F ˆ NO2 F ˆ F
116 106(5) 110(6) 117(6) 125(4) 119 37(1) 64(3) 18.4 71(10) 75(5) 57(2) 55.2(10) 46(5) 60 Gallium
CH3 ˆ Ga(CH3)3 80(10)
80.8 81(5) 78.5 74(3) 70(5) 86.1(8) 73(2) 76(2) 82.7(17) 84 105 78.5 83.5
72(10) 76(5) 58(2) 56.3(10)
59.5 Hydrogen
H ˆ Br HˆC H ˆ CH H ˆ CH2 H ˆ CH3 D ˆ CD3 H ˆ (C ˜ CH) H ˆ (C ¨ CH2) H ˆ CH2CH3 H ˆ CH2C ˜ CH H ˆ CH2CH ¨ CH2
86.6(1) 80 112.3(1) 102(2) 104.92(5)
87.5(1) 81.0(5) 108(6) 113(1) 103(2) 125(1) 102 98(1) 93.9(12) 85
3.24
TABLE 3.5 Bond Strengths (continued) D0, kcal · mol1
Bond
Hf298, kcal · mol1
Bond
Hydrogen (continued) H ˆ cyclopropyl H ˆ CH2CH2CH3 H ˆ CH(CH3)2 H ˆ cyclobutyl H ˆ CH2CH(CH3)2 H ˆ CH(CH3)CH2CH3 H ˆ C(CH3)3
D0, kcal · mol1 Hydrogen (continued)
101(3) 98(2) 94.5 95(3) 86 95(1) 91
H ˆ Cl H ˆ CO H ˆ CHO H ˆ COOH H ˆ COCH3 H ˆ COCH2CH3
102.3(1) 30(2) 87(1) 90 87(1) 87(1) 92(1)
H
81(1)
H
H
CH
CH2
CH
CH2
CH
80(1)
H H
82(1) CH
CH2 C
CH2
99(1) CH2
H ˆ C(CH3)2CH ¨ CH2 H ˆ cyclopentyl H ˆ CH2C(CH3)3 H ˆ C6H5 H ˆ CH2C6H5
Hf298, kcal · mol1
79 94.5(10) 100(1) 103 85(1)
O
H ˆ COC6H5 H ˆ COCF3 HˆF HˆH HˆD DˆD HˆI HˆN H ˆ NH H ˆ NH2 H ˆ NHCH3 H ˆ N(CH3)2 H ˆ NHC6H5 H ˆ N(CH3)C6H5 H ˆ NF2 H ˆ N3
135(1) 103.25 104.07(1) 105.05(1) 70.4(1) 85(2) 89(2) 103(2)
87(1) 91(2) 135.8 104.19 105.00 105.96 71.3(1) 85(2) 90(2) 104(2) 103(2) 95(2) 80(3) 74(3) 76(3) 85
H ˆ C(C6H5)3
75 74
H
3.25
H ˆ cyclohexyl H ˆ cycloheptyl H ˆ norbornyl H ˆ CH2Br H ˆ CHBr2 H ˆ CBr3 H ˆ CH2Cl H ˆ CHCl2 H ˆ CCl3 H ˆ CCl2CHCl2 H ˆ CCl2CCl3 H ˆ CH2F H ˆ CHF2 H ˆ CF3 H ˆ CF2Cl H ˆ CH2CF3 H ˆ CF2CH3 H ˆ CF2CF3 H ˆ CF2CF2CF3 H ˆ CH2I H ˆ CHI2 H ˆ CN H ˆ CH2CN H ˆ CH(CH3)CN H ˆ C(CH3)2CN H ˆ CH2NH2 H ˆ CH2Si(CH3)3 H ˆ CH2COCH3
95.5(10) 92.5(10) 97(3) 97(5) 88(2)
89(3)
105(3)
127(5)
104 90(2) 101 99.0 90(3) 94(2) 95(2) 101(2) 101(2) 106(3) 104(1) 106.7(11) 99.5(1) 103.1(15) 104(2) 103(2) 103(2) 129(5) ca 93 90(2) 87(2) 95(2) 99(1) 98.3(18)
H ˆ NO HˆO H ˆ OH H ˆ OCH3 H ˆ OCH2CH3 H ˆ OC(CH3)3 H ˆ OCH2C(CH3)3 H ˆ OC6H5 H ˆ ONO H ˆ ONO2 H ˆ OOH H ˆ OOCCH3 H ˆ OOCCH2CH3 H ˆ OOCC3H7 H ˆ SH H ˆ SCH3 H ˆ SiH3 H ˆ Si(CH3)3 H ˆ SiCl3 eH2 ˆ H eH ˆ H eˆH eH2CH2 ˆ H fCH2 ˆ H eO ˆ H eHCH ˆ H Hˆf H ˆ Of H ˆ OeH2 H ˆ OOe eH ˆ H eOCH2 ˆ H
101.3(5) 118.0(2)
88.5(20)
90(1)
49 102.3(5) 119.2(2) 104.4(10) 104.2 105(1) 102.3(15) 88(5) 78.3(5) 101.2(5) 89.5(20) 112(4) 110(4) 103(4) 91(1) ca 88 94(3) 90(3) 91.3(14) 106 106 81 39 22 19 43 102 47 31 31 ca 125 43.5
3.26
TABLE 3.5 Bond Strengths (continued) D0, kcal · mol1
Bond
Hf298, kcal · mol1
Bond
Hydrogen (continued)
Hf298, kcal · mol1
225.07(1) 20(1)
225.96(1) 21(1) 71(2) 65 63 51 9(1) 114.9(10) 9.5(2) 13.7(5) 40 73 109(10) 115 226 200 155 56 56
Nitrogen
eH2CO ˆ H
36
H
40
H
47.5
H
24
C ˆ H CH3 ˆ H CH3CH2 ˆ H CH2CH3 ˆ H H ˆ H
85 30 29 79 62 Iodine
I ˆ Br I ˆ CH3 I ˆ CH2CH3 I ˆ CH(CH3)2 I ˆ C(CH3)2 I ˆ CH2CF3 I ˆ CF2CH3
D0, kcal · mol1
41.9(1) 54(3)
42.5(1) 55.5(30) 53.5 53 49.5 56(1) 52(1)
NˆN F2N ˆ NF2 H2N ˆ NH2 H2N ˆ NHCH3 H2N ˆ N(CH3)2 H2N ˆ NHC6H5 HN ˆ N2 ON ˆ N ON ˆ NO2 O2N ˆ NO2 NN ˆ O ON ˆ O HN ¨ NH HN ¨ O N˜N N ˆ N N ˆ NO NN ˆ O ON ˆ O
113.5(10) 8.4(2) 12.7(5)
Osmium O3Os ˆ O
72(5) Oxygen
HO ˆ CH3 HO ˆ (CH ¨ CH2)
88.5(30)
90(3) 87
I ˆ CF2CF3 I ˆ C3F7 I ˆ (CH ¨ CHCH3) I ˆ CH3 I ˆ C6H5 I ˆ C6F5 I ˆ Cl I ˆ COCH3 I ˆ CN IˆF I ˆ H IˆI I ˆ I I ˆ NO I ˆ NO2
49.7(1)
66.4(10) 35.60(1)
51(1) 50(1) 41 62 64(1) 66 50.5(1) 52.5 73(1) 67(1) 70 36.15 61 17(1) 18(1)
Lead CH3 ˆ Pb(CH3)3
49.4(10) Lithium
Li ˆ H
58
HO ˆ CH2CH ¨ CH2 HO ˆ C6H5 HO ˆ CH2C6H5 HO ˆ CHO HO ˆ COCH3 HO ˆ COCH2CH3 HO ˆ Cl HO ˆ I HO ˆ NCH3 HO ˆ OC(CH3)3 OˆO HO ˆ OH CF3O ˆ OCF3 CH3O ˆ OCH3 C2H5O ˆ OC2H5 C3H7O ˆ OC3H7 O ˆ OF O ˆ O2ClF FO ˆ OF O ¨ PBr3 O ¨ PCl3 O ¨ PF3 O ˆ O HO ˆ CH3
110.7 58 62(20) 119(5) 122(5) 130(5) 168 67 Phosphorus
Mercury
3.27
Hg ˆ Br CH3 ˆ HgCH3 C2H5 ˆ HgC2H5 C3H7 ˆ HgC3H7 (CH3)2CH ˆ HgCH(CH3)2 C6H5 ˆ HgC6H5
117.97(10) 49.5(5)
109 103 77 96(3) 108(5) 43 60(3) 56(3) 50 46(2) 119.11 51.1(5) 46 37.6(2) 38 37
16.4(10)
17.4(10) 57.5 43.7(10) 47.1 40.7 68
P ˆ Br P ˆ Cl PˆF PˆH PˆO PˆP P¨S
141.5(10) 115(2) 82
63.7 78.5 117 79(1) 142.3(10) 116(2)
3.28
TABLE 3.5 Bond Strengths (continued) D0, kcal · mol1
Bond
Hf298, kcal · mol1
Ruthenium O ˆ RuO3 Selenium 58 68 81(23) 65 Silicon Si ˆ Br Si ˆ Cl Si ˆ F Si ˆ H Si ˆ I Si ˆ N Si ˆ O Si ˆ S Si ˆ Se Si ˆ Si H3Si ˆ SiH3 (CH3)3Si ˆ Si(CH3)3 (C6H5)3Si ˆ Si(C6H5)3 Si ˆ Te
Hf298, kcal · mol1
Sulfur 104
Se ˆ Cl Se ˆ F Se ˆ O Se ˆ Se
D0, kcal · mol1
Bond
69(14) 76(12)
61 16 115 123.6(20) 130.8(20) 81.9(10) 101.5(15)
83.2(10) 102.5(15) 65(5)
60 104 161 155 Tin
135 74(6) 56 ca 104 185(7) 147(3) 134(6) 42 81(4) 81 88(7) 122(9)
S ˆ Cl O2S ˆ F SˆN SˆO OS ˆ O O2S ˆ O SˆS HS ˆ SH S ˆ Te HS ˆ H HS ˆ H OS ˆ O
BrSn ˆ Br Br3Sn ˆ Br C2H5Sn ˆ (C2H5)3 Sn ˆ Cl Sn ˆ H Sn ˆ I Sn ˆ O Sn ˆ S
130(5) 111(5)
78 65 ca 57 76 61.0(7) 65 131(5) 112(5)
Xenon Xe ˆ F
31(1)
Zinc
Sodium Na ˆ H Na ˆ K Na ˆ Na Na ˆ OH
47 14.3 17.3
Zn ˆ H C2H5Zn ˆ C2H5 91(3)
19.6(5) ca 48
3.29
3.30
SECTION 3
BOND AND GROUP DIPOLE MOMENTS All bonds between equal atoms are given zero values. Because of their symmetry, methane and ethane molecules are nonpolar. The principle of bond moments thus requires that the CH3 group moment equal one H ˆ C moment. Hence the substitution of any aliphatic H by CH3 does not alter the dipole moment, and all saturated hydrocarbons have zero moments as long as the tetrahedral angles are maintained. The group moment always includes the C ˆ X bond. When the group is attached to an aromatic system, the moment contains the contributions through resonance of those polar structures postulated as arising through charge shifts around the ring. All values for bond and group dipole moments in Tables 3.6 and 3.7 were obtained in benzene solution. TABLE 3.6 Bond Dipole Moments Bond HˆC Aliphatic Aromatic CˆC C˜C CˆO Ether, aliphatic Alcohol, aliphatic C¨O Aliphatic Aromatic OˆH CˆS C¨S SˆH SˆO S¨O Aliphatic Aromatic C ˆ N, aliphatic C¨N C ˜ N (nitrile) NC (isonitrile) NˆH NˆO N¨O N: lone pair on sp3N C ˆ P, aliphatic PˆO P¨O PˆS P¨S B ˆ C, aliphatic BˆO
Moment, D*
0.3 0.0 0.0 0.0 0.74 0.7 2.4 2.65 1.51 0.9 2.0 0.65 (0.2) 2.8 3.3 0.45 1.4 3.6 3.0 1.31 0.3 2.0 1.0 0.8 (0.3) 2.7 0.5 2.9 0.7 0.25
Bond Se ˆ C Si ˆ C Si ˆ H Si ˆ N H ˆ Sb G ˆ As HˆP HˆI H ˆ Br H ˆ Cl HˆF C ˆ Te NˆF PˆI P ˆ Br P ˆ Cl As ˆ I As ˆ Br As ˆ Cl As ˆ F Sb ˆ I Sb ˆ Br Sb ˆ Cl S ˆ Cl Cl ˆ O I ˆ Br I ˆ Cl Br ˆ Cl Br ˆ F Cl ˆ F Li ˆ C K ˆ Cl KˆF
Moment, D* 0.7 1.2 1.0 1.55 0.08 0.10 0.36 0.38 0.78 1.08 1.94 0.6 0.17 0.3 0.36 0.81 0.78 1.27 1.64 2.03 0.8 1.9 2.6 0.7 0.7 1.2 1 0.57 1.3 0.88 1.4 10.6 7.3
3.31
PROPERTIES OF ATOMS, RADICALS, AND BONDS
TABLE 3.6 Bond Dipole Moments (continued) Bond Cs ˆ Cl Cs ˆ F
Moment, D* 10.5 7.9
Dative (coordination) bonds NlB OlB SlB PlB NlO
2.6 3.6 3.8 4.4 4.3
Bond
Moment, D*
Dative (coordination) bonds (continued) PlO SlO As l O Se l O Te l O PlS P l Se Sb l S
2.9 3.0 4.2 3.1 2.3 3.1 3.2 4.5
*To convert debye units D into coulomb-meters, multiply by 3.33564 1030.
TABLE 3.7 Group Dipole Moments Moment, D* Group C ˆ CH3 C ˆ C2H5 C ˆ C(CH3)3 C ˆ CH ¨ CH2 C ˆ C ˜ CH CˆF C ˆ Cl C ˆ Br CˆI C ˆ CH2F C ˆ CF3 C ˆ CH2Cl C ˆ CHCl2 C ˆ CCl3 C ˆ CH2Br CˆC˜N C ˆ NC C ˆ CH2CN CˆC¨O C ˆ CHO C ˆ COOH C ˆ CO ˆ CH3 C ˆ CO ˆ OCH3 C ˆ CO ˆ OC2H5 C ˆ OH C ˆ OCH3 C ˆ OCF3
Aromatic C ˆ X
Aliphatic C ˆ X
0.37 0.37 0.5 0.4 0.7 1.47 1.59 1.57 1.40 1.77(g) 2.54 1.85 2.04 2.11 1.86 4.05 3.5 1.86 2.65 2.96 1.64 2.96 1.83 1.9 1.6 1.28 2.36
0.0 0.0 0.0 0.6 0.9 1.79 1.87 1.82 1.65 2.32 1.95 1.94 1.57 1.96 3.4 3.5 2.0 2.4 2.49 1.63 2.75 1.75 1.8 1.7 1.28
3.32
SECTION 3
TABLE 3.7 Group Dipole Moments (continued) Moment, D* Group C ˆ OCOCH3 C ˆ OC6H5 C ˆ CH2OH C ˆ NH2 C ˆ NHCH3 C ˆ N(CH3)2 C ˆ NHCOCH3 C ˆ N(C6H5)2 C ˆ NCO C ˆ N3 C ˆ NO C ˆ NO2 C ˆ CH2NO2 C ˆ SH C ˆ SCH3 C ˆ SCF3 C ˆ SCN C ˆ NCS C ˆ SC6H5 C ˆ SF5 C ˆ SOCF3 (C ˆ )2SO2 (C ˆ )2SO2CH3 (C ˆ )2SO2CF3 C ˆ SeH C ˆ SeCH3 C ˆ Si(CH3)3
Aromatic C ˆ X 1.69 1.16 1.68 1.53 1.71 1.58 3.69 (0.3) 2.32 1.44 3.09 4.01 3.3 1.22 1.34 2.50 3.59 2.9 1.51 3.4 3.88 5.05 4.73 4.32 1.08 1.31 0.44
*To convert debye units D into coulomb-meters, multiply by 3.33564 1030.
Aliphatic C ˆ X
1.16 1.68 1.46 0.86 0.3 2.8
2.70 3.4 1.55 1.40 3.6 3.3 1.5
4.53
1.32 0.4
SECTION 4
PHYSICAL PROPERTIES
SOLUBILITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.1 Solubility of Gases in Water . . . . . . . . . . . . . . . VAPOR PRESSURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.2 Vapor Pressure of Mercury . . . . . . . . . . . . . . . . Table 4.3 Vapor Pressure of Water for temperatures from 10 to 12 C . . . . . . . . . . . . . . . . . . . . . . . Table 4.4 Vapor Pressure of Deuterium Oxide . . . . . . . . . . . BOILING POINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4.5A Boiling Points for Common Organic . . . . . . . . . . . Solvents Arranged in order of increasing boiling point . Table 4.5B Boiling Points for Common Organic Solvents Arranged Alphabetically by Solvent Name . . . . . . . . Table 4.5C Boiling Point for Common Organic Solvents Arranged by Compound Type in Order of Increasing Boiling Point Table 4.6 Molecular Elevation of the Boiling Point . . . . . . . . . Table 4.7 Binary Azeotropic (Constant-boiling) Mixtures . . . . . Table 4.8 Ternary Azeotropic Mixtures . . . . . . . . . . . . . . . FREEZING POINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tables 4.9A and B Molecular Lowering of the Melting or Freezing Point . . VISCOSITY, DIELECTRIC CONSTANT, DIPOLE MOMENT, SURFACE TENSION, AND REFRACTIVE INDEX . . . . . . . . . . . Table 4.10 Viscosity, Dielectric Constant, Dipole Moment and Surface Tension of Selected Organic Substances . . . . . Table 4.11 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances . . Table 4.12 Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at Various Temperatures . COMBUSTIBLE MIXTURES . . . . . . . . . . . . . . . . . . . . . . . Table 4.13 Properties of Combustible Mixtures in Air . . . . . . . .
4.1
. . . .
. . . .
. . . .
. . . .
4.2 4.2 4.8 4.8
. . . . .
. . . . .
. . . . .
. . . . .
4.10 4.12 4.12 4.12 4.12
. . . .
4.15
. . . . .
. . . . .
4.17 4.23 4.25 4.46 4.52
. . . .
4.52
. . . .
4.55
. . . .
4.57
. . . .
4.94
. . . . . . . . . . . .
4.98 4.99 4.99
. . . . .
. . . . .
4.2
SECTION 4
SOLUBILITIES TABLE 4.1 Solubility of Gases in Water Explanation of the column headings , Volume of gas in milliliters (mL). The column or line entry headed “” gives the volume of gas (in milliliters) at standard conditions (0 C and 760 mm or 101.325 kN·m2) dissolved in 1 mL of water at the temperature stated (in degrees Celsius) and when the pressure of the gas without the water vapor is 760 mm. A, Volume of gas in milliliters (mL). The line entry “A” indicates the same quantity as “” except that the gas itself is at the uniform pressure of 760 mm when in equilibrium with water. l, Volume of gas in milliliters (mL). The column headed “l” gives the volume of the gas (in milliliters) dissolved in 1 mL of water when the pressure of the gas plus that of the water vapor is 760 mm. q, Weight of the gas in grams (g). The column headed “q” gives the weight of gas (in grams) dissolved in 100 g of water when the pressure of the gas plus that of the water vapor is 760 mm
Acetylene Temp. C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 35 40 45 50 60 70 80 90 100
Air*
Ammonia
Bromine
q
( 103)
% oxygen in air
q
q
1.73 1.68 1.63 1.58 1.53 1.49 1.45 1.41 1.37 1.34 1.31 1.27 1.24 1.21 1.18 1.15 1.13 1.10 1.08 1.05 1.03 1.01 0.99 0.97 0.95 0.93 0.91 0.89 0.87 0.85 0.84 — — — — — — — — —
0.200 0.194 0.188 0.182 0.176 0.171 0.167 0.162 0.157 0.154 0.150 0.146 0.142 0.138 0.135 0.131 0.129 0.125 0.123 0.119 0.117 0.115 0.112 0.110 0.107 0.105 0.102 0.100 0.098 0.095 0.094 — — — — — — — — —
29.18 28.42 27.69 26.99 26.32 25.68 25.06 24.47 23.90 23.36 22.84 22.34 21.87 21.41 20.97 20.55 20.14 19.75 19.38 19.02 18.68 18.34 18.01 17.69 17.38 17.08 16.79 16.50 16.21 15.92 15.64 — 14.18 — 12.97 12.16 — 11.26 — 11.05
34.91 34.87 34.82 34.78 34.74 34.69 34.65 34.60 34.56 34.52 34.47 34.43 34.38 34.34 34.30 34.25 34.21 34.17 34.12 34.08 34.03 33.99 33.95 33.90 33.86 33.82 33.77 33.73 33.68 33.64 33.60 — — — — — — — — —
1130 — — — 1047 — — — 947 — 870 — 857 837 — 770 775 — — — 680 — — — 639 — — — 586 — 530 — 400 — 290 200 — — — —
89.5 — — — 79.6 — — — 72.0 — 68.4 — 65.1 63.6 — — 58.7 — — — 52.9 — — — 48.2 — — — 44.0 — 41.0 — 31.6 — 23.5 16.8 11.1 6.5 3.0 0.0
60.5 — 54.1 — 48.3 — 43.3 — 38.9 — 35.1 — 31.5 — 28.4 — 25.7 — 23.4 — 21.3 — 19.4 — 17.7 — 16.3 — 15.0 — 13.8 — 9.4 — 6.5 4.9 3.8 3.0 — —
42.9 — 38.3 — 34.2 — 30.6 — 27.5 — 24.8 — 22.2 — 20.0 — 18.0 — 16.4 — 14.9 — 13.5 — 12.3 — 11.3 — 10.3 — 9.5 — 6.3 — 4.1 2.9 1.9 1.2 — —
*Free from NH3 and CO2; total pressure of air water vapor is 760 mm.
TABLE 4.1 Solubility of Gases in Water (continued ) Carbon dioxide Temp. C
Carbon monoxide
q
q
Chlorine l
Ethane q
Ethylene
q
Hydrogen q
q
0 1 2 3 4
1.713 1.646 1.584 1.527 1.473
0.334 6 0.321 3 0.309 1 0.297 8 0.287 1
0.035 37 0.034 55 0.033 75 0.032 97 0.032 22
0.004 397 0.004 293 0.004 191 0.004 092 0.003 996
— — — — —
— — — — —
0.098 74 0.094 76 0.090 93 0.087 25 0.083 72
0.013 17 0.012 63 0.012 12 0.011 62 0.011 14
0.226 0.219 0.211 0.204 0.197
0.028 1 0.027 2 0.026 2 0.025 3 0.024 4
0.021 48 0.021 26 0.021 05 0.020 84 0.020 64
0.000 192 2 0.000 190 1 0.000 188 1 0.000 186 2 0.000 184 3
5 6 7 8 9
1.424 1.377 1.331 1.282 1.237
0.277 4 0.268 1 0.258 9 0.249 2 0.240 3
0.031 49 0.030 78 0.030 09 0.029 42 0.028 78
0.003 903 0.003 813 0.003 725 0.003 640 0.003 559
— — — — —
— — — — —
0.080 33 0.077 09 0.074 00 0.071 06 0.068 26
0.010 69 0.010 25 0.009 83 0.009 43 0.009 06
0.191 0.184 0.178 0.173 0.167
0.023 7 0.022 8 0.022 0 0.021 4 0.020 7
0.020 44 0.020 25 0.020 07 0.019 89 0.019 72
0.000 182 4 0.000 180 6 0.000 178 9 0.000 177 2 0.000 175 6
10 11 12 13 14
1.194 1.154 1.117 1.083 1.050
0.231 8 0.223 9 0.216 5 0.209 8 0.203 2
0.028 16 0.027 57 0.027 01 0.026 46 0.025 93
0.003 479 0.003 405 0.003 332 0.003 261 0.003 194
3.148 3.047 2.950 2.856 2.767
0.997 2 0.965 4 0.934 6 0.905 0 0.876 8
0.065 61 0.063 28 0.061 06 0.058 94 0.056 94
0.008 70 0.008 38 0.008 08 0.007 80 0.007 53
0.162 0.157 0.152 0.148 0.143
0.020 0 0.019 4 0.018 8 0.018 3 0.017 6
0.019 55 0.019 40 0.019 25 0.019 11 0.018 97
0.000 174 0 0.000 172 5 0.000 171 0 0.000 169 6 0.000 168 2
15 16 17 18 19
1.019 0.985 0.956 0.928 0.902
0.197 0 0.190 3 0.184 5 0.178 9 0.173 7
0.025 43 0.024 94 0.024 48 0.024 02 0.023 60
0.003 130 0.003 066 0.003 007 0.002 947 0.002 891
2.680 2.597 2.517 2.440 2.368
0.849 5 0.823 2 0.797 9 0.773 8 0.751 0
0.055 04 0.053 26 0.051 59 0.050 03 0.048 58
0.007 27 0.007 03 0.006 80 0.006 59 0.006 39
0.139 0.136 0.132 0.129 0.125
0.017 1 0.016 7 0.016 2 0.015 8 0.015 3
0.018 83 0.018 69 0.018 56 0.018 44 0.018 31
0.000 166 8 0.000 165 4 0.000 164 1 0.000 162 8 0.000 161 6
20 21 22 23 24
0.878 0.854 0.829 0.804 0.781
0.168 8 0.164 0 0.159 0 0.154 0 0.149 3
0.023 19 0.022 81 0.022 44 0.022 08 0.021 74
0.002 838 0.002 789 0.002 739 0.002 691 0.002 646
2.299 2.238 2.180 2.123 2.070
0.729 3 0.710 0 0.691 8 0.673 9 0.657 2
0.047 24 0.045 89 0.044 59 0.043 35 0.042 17
0.006 20 0.006 02 0.005 84 0.005 67 0.005 51
0.122 0.119 0.116 0.114 0.111
0.014 9 0.014 6 0.014 2 0.013 9 0.013 5
0.018 19 0.018 05 0.017 92 0.017 79 0.017 66
0.000 160 3 0.000 158 8 0.000 157 5 0.000 156 1 0.000 154 8
4.3
4.4 TABLE 4.1 Solubility of Gases in Water (continued ) Carbon dioxide Temp. C
Carbon monoxide
Chlorine
Ethane
Ethylene
q
q
l
q
q
Hydrogen q
q
25 26 27 28 29
0.759 0.738 0.718 0.699 0.682
0.144 9 0.140 6 0.136 6 0.132 7 0.129 2
0.021 42 0.021 10 0.020 80 0.020 51 0.020 24
0.002 603 0.002 560 0.002 519 0.002 479 0.002 442
2.019 1.970 1.923 1.880 1.839
0.641 3 0.625 9 0.611 2 0.597 5 0.584 7
0.041 04 0.039 97 0.038 95 0.037 99 0.037 09
0.005 35 0.005 20 0.005 06 0.004 93 0.004 80
0.108 0.106 0.104 0.102 0.100
0.013 1 0.012 9 0.012 6 0.012 3 0.012 1
0.017 54 0.017 42 0.017 31 0.017 20 0.017 09
0.000 153 5 0.000 152 2 0.000 150 9 0.000 149 6 0.000 148 4
30 35 40 45 50
0.665 0.592 0.530 0.479 0.436
0.125 7 0.110 5 0.097 3 0.086 0 0.076 1
0.019 98 0.018 77 0.017 75 0.016 90 0.016 15
0.002 405 0.002 231 0.002 075 0.001 933 0.001 797
1.799 1.602 1.438 1.322 1.225
0.572 3 0.510 4 0.459 0 0.422 8 0.392 5
0.036 24 0.032 30 0.029 15 0.026 60 0.024 59
0.004 68 0.004 12 0.003 66 0.003 27 0.002 94
0.098 — — — —
0.011 8 — — — —
0.016 99 0.016 66 0.016 44 0.016 24 0.016 08
0.000 147 4 0.000 142 5 0.000 138 4 0.000 134 1 0.000 128 7
60 70 80 90 100
0.359 — — — —
0.057 6 — — — —
0.014 88 0.014 40 0.014 30 0.014 2 0.014 1
0.001 522 0.001 276 0.000 980 0.000 57 0.000 00
1.023 0.862 0.683 0.39 0.00
0.329 5 0.279 3 0.222 7 0.127 0.000
0.021 77 0.019 48 0.018 26 0.017 6 0.017 2
0.002 39 0.001 85 0.001 34 0.000 8 0.000 0
— — — — —
— — — — —
0.016 00 0.016 0 0.016 0 0.016 0 0.016 0
0.000 117 8 0.000 102 0.000 079 0.000 046 0.000 000
TABLE 4.1 Solubility of Gases in Water (continued ) Hydrogen sulfide Temp. C
Methane
Nitric oxide
Nitrogen*
Oxygen
Sulfur dioxide
q
q
q
q
q
0 1 2 3 4
4.670 4.522 4.379 4.241 4.107
0.706 6 0.683 9 0.661 9 0.640 7 0.620 1
0.055 63 0.054 01 0.052 44 0.050 93 0.049 46
0.003 959 0.003 842 0.003 728 0.003 619 0.003 513
0.073 81 0.071 84 0.069 93 0.068 09 0.066 32
0.009 833 0.009 564 0.009 305 0.009 057 0.008 816
0.023 54 0.022 97 0.022 41 0.021 87 0.021 35
0.002 942 0.002 869 0.002 798 0.002 730 0.002 663
0.048 89 0.047 58 0.046 33 0.045 12 0.043 97
0.006 945 0.006 756 0.006 574 0.006 400 0.006 232
79.789 77.210 74.691 72.230 69.828
22.83 22.09 21.37 20.66 19.98
5 6 7 8 9
3.977 3.852 3.732 3.616 3.505
0.600 1 0.580 9 0.562 4 0.544 6 0.527 6
0.048 05 0.046 69 0.045 39 0.044 13 0.042 92
0.003 410 0.003 312 0.003 217 0.003 127 0.003 039
0.064 61 0.062 98 0.061 40 0.059 90 0.058 46
0.008 584 0.008 361 0.008 147 0.007 943 0.007 747
0.020 86 0.020 37 0.019 90 0.019 45 0.019 02
0.002 600 0.002 537 0.002 477 0.002 419 0.002 365
0.042 87 0.041 80 0.040 80 0.039 83 0.038 91
0.006 072 0.005 918 0.005 773 0.005 632 0.005 498
67.485 65.200 62.973 60.805 58.697
19.31 18.65 18.02 17.40 16.80
10 11 12 13 14
3.399 3.300 3.206 3.115 3.028
0.511 2 0.496 0 0.481 4 0.467 4 0.454 0
0.041 77 0.040 72 0.039 70 0.038 72 0.037 79
0.002 955 0.002 879 0.002 805 0.002 733 0.002 665
0.057 09 0.055 87 0.05470 0.053 57 0.052 50
0.007 560 0.007 393 0.007 233 0.007 078 0.006 930
0.018 61 0.018 23 0.017 86 0.017 50 0.017 17
0.002 312 0.002 263 0.002 216 0.002 170 0.002 126
0.038 02 0.037 18 0.036 37 0.035 59 0.034 86
0.005 368 0.005 246 0.005 128 0.005 014 0.004 906
56.647 54.655 52.723 50.849 49.033
16.21 15.64 15.09 14.56 14.04
15 16 17 18 19
2.945 2.865 2.789 2.717 2.647
0.441 1 0.428 7 0.416 9 0.405 6 0.394 8
0.036 90 0.036 06 0.035 25 0.034 48 0.033 76
0.002 599 0.002 538 0.002 478 0.002 422 0.002 369
0.051 47 0.050 49 0.049 56 0.048 68 0.047 85
0.006 788 0.006 652 0.006 524 0.006 400 0.006 283
0.016 85 0.016 54 0.016 25 0.014 97 0.015 70
0.002 085 0.002 045 0.002 006 0.001 970 0.001 935
0.034 15 0.033 48 0.032 83 0.032 20 0.031 61
0.004 802 0.004 703 0.004 606 0.004 514 0.004 426
47.276 45.578 43.939 42.360 40.838
13.54 13.05 12.59 12.14 11.70
l
q
4.5
4.6
TABLE 4.1 Solubility of Gases in Water (continued ) Hydrogen sulfide Temp. C
Methane
Nitric oxide
Nitrogen*
Oxygen
Sulfur dioxide
q
q
q
q
l
q
20 21 22 23 24
2.582 2.517 2.456 2.396 2.338
0.384 6 0.374 5 0.364 8 0.355 4 0.346 3
0.033 08 0.032 43 0.031 80 0.031 19 0.030 61
0.002 319 0.002 270 0.002 222 0.002 177 0.002 133
0.047 06 0.046 25 0.045 45 0.044 69 0.043 95
0.006 173 0.006 059 0.005 947 0.005 838 0.005 733
0.015 45 0.015 22 0.014 98 0.014 75 0.014 54
0.001 901 0.001 869 0.001 838 0.001 809 0.001 780
0 031 02 0.030 44 0.029 88 0.029 34 0.028 81
0.004 339 0.004 252 0.004 169 0.004 087 0.004 007
39.374 37.970 36.617 35.302 34.026
11.28 10.88 10.50 10.12 9.76
25 26 27 28 29
2.282 2.229 2.177 2.128 2.081
0.337 5 0.329 0 0.320 8 0.313 0 0.305 5
0.030 06 0.029 52 0.029 01 0.028 52 0.028 06
0.002 091 0.002 050 0.002 011 0.001 974 0.001 938
0.043 23 0.042 54 0.041 88 0.041 24 0.040 63
0.005 630 0.005 530 0.005 435 0.005 342 0.005 252
0.014 34 0.014 13 0.013 94 0.013 76 0.013 58
0.001 751 0.001 724 0.001 698 0.001 672 0.001 647
0.028 31 0.027 83 0.027 36 0.026 91 0.026 49
0.003 931 0.003 857 0.003 787 0.003 718 0.003 651
32.786 31.584 30.422 29.314 28.210
9.41 9.06 8.73 8.42 8.10
30 35 40 45 50
2.037 1.831 1.660 1.516 1.392
0.298 3 0.264 8 0.236 1 0.211 0 0.188 3
0.027 62 0.025 46 0.023 69 0.022 38 0.021 34
0.001 904 0.001 733 0.001 586 0.001 466 0.001 359
0.040 04 0 037 34 0.035 07 0.033 11 0.031 52
0.005 165 0.004 757 0.004 394 0.0040 59 0.003 758
0.013 42 0.012 56 0.011 84 0.011 30 0.010 88
0.001 624 0.001 501 0.001 391 0.001 300 0.001 216
0.026 08 0.024 40 0.023 06 0.021 87 0.020 90
0.003 588 0.003 315 0.003 082 0.002 858 0.002 657
27.161 22.489 18.766 — —
7.80 6.47 5.41 — —
60 70 80 90 100
1.190 1.022 0.917 0.84 0.81
0.148 0 0.1101 0.076 5 0.041 0.000
0.019 54 0.018 25 0.017 70 0.017 35 0.017 0
0.001 144 0.000 926 0.000 695 0.000 40 0.000 00
0.029 54 0.028 10 0.027 00 0.026 5 0.026 3
0.003 237 0.002 668 0.001 984 0.001 13 0.000 00
0.010 23 0.009 77 0.009 58 0.009 5 0.009 5
0.001 052 0.000 851 0.000 660 0.000 38 0.000 00
0.019 46 0.018 33 0.017 61 0.017 2 0.017 0
0.002 274 0.001 856 0.001 381 0.000 79 0.000 00
— — — — —
— — —
*Atmospheric nitrogen containing 98.815% N2 by volume 1.185% inert gases.
q
—
TABLE 4.1 Solubility of Gases in Water (continued) Substance Argon Helium Hydrogen bromide Hydrogen chloride Krypton Neon Nitrous oxide Ozone Radon Xenon
0 A l A A g · L1
0.052 8 0.009 8 612 512 0.110 5
0.039 4 0.510 0.242
10 0.041 3 0.009 11 582 475 0.081 0 0.011 79 0.88 0.029 912 0.326 0.174
20
30
40
0.033 7 0.008 6
0.028 8 0.008 39 53325 412 0.051 1 0.010 0
0.025 1 0.008 41 385 0.043 3 0.009 4842
0.013927 0.162 0.098
0.004 2 0.126 0.082
442 0.062 6 0.010 6 0.63 0.021 019 0.222 0.123
60 0.020 9 0.009 02 46950 339 0.035 7
80 0.018 4 0.0009 4270 40675
0.009 8473 0 0.085
4.7
4.8
SECTION 4
VAPOR PRESSURES TABLE 4.2 Vapor Pressure of Mercury Temp. C
mm of Hg
Temp. C
mm of Hg
0
0.000 185
78 80
0.078 89 0.088 80
2 4 6 8 10
0.000 228 0.000 276 0.000 335 0.000 406 0.000 490
82 84 86 88 90
0.100 0 0.112 4 0.126 1 0.141 3 0.1582
12 14 16 18 20
0.000 588 0.000 706 0.000 846 0.001 009 0.001 201
92 94 96 98 100
0.1769 0.1976 0.2202 0.2453 0.2729
22 24 26 28 30
0.001 426 0.001 691 0.002 000 0.002 359 0.002 777
32 34 36 38 40
0.003 261 0.003 823 0.004 471 0.005 219 0.006 079
102 104 106 108 110 112 114 116 118 120
0.3032 0.3366 0.3731 0.4132 0.4572 0.5052 0.5576 0.6150 0.6776 0.7457
42 44 46 48 50
0.007 067 0.008 200 0.009 497 0.010 98 0.012 67
122 124 126 128 130
0.8198 0.9004 0.9882 1.084 1.186
52 54 56 58 60
0.014 59 0.016 77 0.019 25 0.022 06 0.025 24
132 134 136 138 140
1.298 1.419 1.551 1.692 1.845
62 64 66 68 70
0.028 83 0.032 87 0.037 40 0.042 51 0.048 25
142 144 146 148 150
2.010 2.188 2.379 2.585 2.807
72 74 76
0.054 69 0.061 89 0.069 93
152 154 156
3.046 3.303 3.578
Temp. C
mm of Hg
158 160
3.873 4.189
162 164 166 168 170
4.528 4.890 5.277 5.689 6.128
172 174 176 178 180
6.596 7.095 7.626 8.193 8.796
182 184 186 188 190
9.436 10.116 10.839 11.607 12.423
192 194 196 198 200
13.287 14.203 15.173 16.200 17.287
202 204 206 208 210
18.437 19.652 20.936 22.292 23.723
212 214 216 218 220
25.233 26.826 28.504 30.271 32.133
222 224 226 228 230
34.092 36.153 38.318 40.595 42.989
4.9
PHYSICAL PROPERTIES
TABLE 4.2 Vapor Pressure of Mercury (continued) Temp. C
mm of Hg
Temp. C
mm of Hg
Temp. C
mm of Hg
232 234 236 238 240
45.503 48.141 50.909 53.812 56.855
302 304 306 308 310
257.78 269.17 280.98 293.21 305.89
372 374 376 378 380
994.34 1028.9 1064.4 1100.9 1138.4
242 244 246 248 250
60.044 63.384 66.882 70.543 74.375
312 314 316 318 320
319.02 332.62 346.70 361.26 376.33
382 384 386 388 390
1177.0 1216.6 1257.3 1299.1 1341.9
252 254 256 258 260
78.381 82.568 86.944 91.518 96.296
322 324 326 328 330
391.92 408.04 424.71 441.94 459.74
392 394 396 398 400
1386.1 1431.3 1477.7 1525.2 1574.1
262 264 266 268 270
101.28 106.48 111.91 117.57 123.47
332 334 336 338 340
478.13 497.12 516.74 537.00 557.90
430 460 490
2464 3715 5420
272 274 276 278 280
129.62 136.02 142.69 149.64 156.87
342 344 346 348 350
579.45 601.69 624.64 648.30 672.69
520 550 600 650 700
7691 10650 22.87 atm 35.49 atm 52.51 atm
282 284 286 288 290
164.39 172.21 180.34 188.79 197.57
352 354 356 358 360
697.83 723.73 750.43 777.92 806.23
750 800 850 900* 950
74.86 atm 103.31 atm 138.42 atm 180.92 atm 226.58 atm
292 294 296 298 300
206.70 216.17 226.00 236.21 246.80
362 364 366 368 370
835.38 865.36 896.23 928.02 960.66
1000 1050 1100 1150 1200 1250 1300
290.5 atm 358.1 atm 437.3 atm 521.3 atm 616.8 atm 721.4 atm 835.9 atm
*Critical point.
4.10
SECTION 4
TABLE 4.3 Vapor Pressure of Water for Temperatures from 10 to 120 C The values in the table are for water in contact with its own vapor. Where the water is in contact with air at a temperature t in degrees Celsius, the following correction must be added: Correction (when t 40 C) p(0.775 0.000 313 t)/100; correction (when t 50 C) p(0.0652 0.000 087 5 t)/100.
t, C 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
p, mmHg
t, C
p, mmHg
t, C
p, mmHg
t, C
p, mmHg
2.149 2.236 2.326 2.418 2.514 2.613 2.715 2.822 2.931 3.046 3.163 3.284 3.410 3.540 3.673 3.813 3.956 4.105 4.258 4.416 4.579 4.750 4.926 5.107 5.294 5.486 5.685 5.889 6.101 6.318 6.543 6.775 7.013 7.259 7.513 7.775 8.045 8.323 8.609 8.905 9.209 9.521 9.844
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0
10.176 10.518 10.870 11.231 11.604 11.987 12.382 12.788 12.953 13.121 13.290 13.461 13.634 13.809 13.987 14.166 13.347 14.530 14.715 14.903 15.092 15.284 15.477 15.673 15.871 16.071 16.272 16.477 16.685 16.894 17.105 17.319 17.535 17.753 17.974 18.197 18.422 18.650 18.880 19.113 19.349 19.587 19.827
22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6
20.070 20.316 20.565 20.815 21.068 21.324 21.583 21.845 22.110 22.387 22.648 22.922 23.198 23.476 23.756 24.039 24.326 24.617 24.912 25.209 25.509 25.812 26.117 26.426 26.739 27.055 27.374 27.696 28.021 28.349 28.680 29.015 29.354 29.697 30.043 30.392 30.745 31.102 31.461 31.824 32.191 32.561 32.934
30.8 31.0 31.2 31.4 31.6 31.8 32.0 32.2 32.4 32.6 32.8 33.0 33.2 33.4 33.6 33.8 34.0 34.2 34.4 34.6 34.8 35.0 35.2 35.4 35.6 35.8 36.0 36.2 36.4 36.6 36.8 37.0 37.2 37.4 37.6 37.8 38.0 38.2 38.4 38.6 38.8 39.0 39.2
33.312 33.695 34.082 34.471 34.864 35.261 35.663 36.068 36.477 36.891 37.308 37.729 38.155 38.584 39.018 39.457 39.898 40.344 40.796 41.251 41.710 42.175 42.644 43.117 43.595 44.078 44.563 45.054 45.549 46.050 46.556 47.067 47.582 48.102 48.627 49.157 49.692 50.231 50.774 51.323 51.879 52.442 53.009
4.11
PHYSICAL PROPERTIES
TABLE 4.3 Vapor Pressure of Water for Temperatures from 10 to 120 C (continued ) t, C
p, mmHg
t, C
p, mmHg
t, C
p, mmHg
t, C
p, mmHg
39.4 39.6 39.8 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0
54.580 54.156 54.737 55.324 56.81 58 34 59.90 61.50 63.13 64.80 66.51 68.26 70.05 71.88 73.74 75.65 77.61 79.60 81.64 83.71 85.85 88.02 90.24 92.51 94.86 97.20 99.65 102.09 104.65 107.20 109.86 112.51 115.28 118.04 120.92 123.80 126.81 129.82 132.95 136.08
58.5 59.0 59.5 60.0 60 5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0 76.5 77.0 77.5 78.0
139.34 142.60 145.99 149.38 152.91 156.43 160.10 163.27 167.58 171.38 175.35 179.31 183.43 187.54 191.82 196.09 200.53 204.96 209.57 214.17 218.95 223.73 228.72 233.7 238.8 243.9 249.3 254.6 260.2 265.7 271.5 277.2 283.2 289.1 295.3 301.4 307.7 314.1 320.7 327.3
78.5 79.0 79.5 80.0 80.5 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 86.5 87.0 87.5 88.0 88.5 89.0 89.5 90.0 90.5 91.0 91.5 92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.2 95.4 95.6 95.8 96.0 96.2
334.2 341.0 348.1 355.1 362.4 369.7 377.3 384.9 392.8 400.6 408.7 416.8 425.2 433.6 442.3 450.9 459.8 468.7 477.9 487.1 496.6 506.1 515.9 525.76 535.83 546.05 556.44 566.99 577.71 588.60 599.66 610.90 622.31 633.90 638.59 643.30 648.05 652.82 657.62 662.45
96.4 96.6 96.8 97 0 97.2 97.4 97.6 97.8 98.0 98.2 98.4 98.6 98.8 99.0 99.2 99.4 99.6 99.8 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 1130 114.0 115.0 116.0 117.0 118.0 119.0 120.0
667.31 672.20 677.12 682.07 687.04 692.05 697.10 702.17 707.27 712.40 717.56 722.75 727.98 733.24 738.53 743.85 749.20 754.58 760.00 787.57 815.86 845.12 875.06 906.07 937.92 970.60 1004.42 1038.92 1074.56 1111.20 1148.74 1187.42 1227.25 1267.98 1309.94 1352.95 1397.18 1442.63 1489.14
4.12
SECTION 4
TABLE 4.4 Vapor Pressure of Deuterium Oxide t, C
p, mmHg
t, C
p, mmHg
0 1 2 3 3.8 10
3.65 3.93 4.29 4.65 5.05 7.79
20 30 40 50 60 70
15.2 28.0 49.3 83.6 136.6 216.1
t, C
p, mmHg
80 90 100 101.43
331.6 495.5 722.2 760.0
BOILING POINTS TABLE 4.5A Boiling Points for Common Organic Solvents Arranged in order of increasing boiling point
Compound name Ethylene oxide Chloroethane Furan Methyl formate Diethyl ether Propylene oxide Pentane Bromoethane Dichloromethane Dimethoxyethane Carbon disulfide 1-Isopropoxy2-propanol Ethyl formate Acetone Methyl acetate 1,1-Dichloroethane Dichloroethylene Chloroform Methanol Tetrahydrofuran Diisopropyl ether Hexane 1-Chloro2-methylpropane 1,1,1-Trichloroethane 1,3-Dioxolane Carbon tetrachloride Ethyl acetate 1-Chlorobutane Ethanol 2-Butanone 2-Methyltetrahydrofuran
bp (C) 10.6 12.3 31.4 31.5 34.6 34.5 36.1 38.4 39.8 42.3 46.3 47.9 54.2 56.2 56.3 57.3 60.6 61.2 64.7 66.0 68.0 68.7 68.9
Other name Oxirane Ethyl chloride
Ethyl ether
Ethyl bromide Methylene chloride DME, glyme
Dimethyl ketone
THF Isopropyl ether Isobutyl chloride
74.0 74–75 76.7 77.1 77.9 Butyl chloride 78.3 79.6 Methyl ethyl ketone 80.0
Compound name Benzene Cyclohexane Propyl formate Acetonitrile 2-Propanol 1,1-Dimethylethanol Cyclohexene Diisopropyl amine 1,2-Dichloroethane Thiophene Trichloroethylene Isopropyl acetate 1-Bromo2-methylpropane 2,5-Dimethylfuran Ethyl chloroformate Allyl alcohol 1,2-Dichloropropane 1-Propanol Heptane 1-Chloro3-methylbutane Ethyl propanoate 2-Butanol Formic acid Methylcyclohexane 1,4-Dioxane Nitromethane Propyl acetate 2-Pentanone 3-Pentanone 2-Methyl-2-butanol 1,1-Diethoxyethane
bp (C) 80.1 80.7 80.9 81.6 82.4 82.4 83.0 83.5 83.7 84.2 87.2 88.2 91.5
Other name
Isopropyl alcohol t -Butanol
Isobutyl bromide
93–94 94.0 96.6 96.8 97.2 n-Propyl alcohol 98.4 99.0 99.1 Ethyl propionate 99.6 sec-Butanol 100.8 100.9 101.2 101.2 101.5 101.7 Methyl propyl ketone 102.0 Diethyl ketone 102.0 t-Pentanol 102.7
4.13
PHYSICAL PROPERTIES
TABLE 4.5A Boiling Points for Common Organic Solvents (continued ) Arranged in order of increasing boiling point
Compound name
bp (C)
Butyl formate 2-Methyl-1-propanol Toluene sec-Butyl acetate 1,1,2-Trichloroethane Nitroethane Pyridine 3-Pentanol 4-Methyl-2-pentanone
106.6 107.9 Isobutanol 110.6 Methylbenzene 112.3 113.5 114.1 115.2 115.6 115.7 Methyl isobutyl ketone 116.1 Epichlorohydrin
1-Chloro-2, 3-epoxypropane 1-Butanol 117.7 Acetic acid 117.9 Isobutyl acetate 118.0 2-Pentanol 119.3 1-Bromo3-methylbutane 119.7 1-Methoxy-2-propanol 120.1 2-Nitropropane 120.3 Tetrachloroethylene 121.1 Ethyl butanoate 121.6 3-Hexanone 123 2,4-Dimethyl124 3-pentanone 2-Methoxyethanol 124.6 Octane 125.7 Butyl acetate 126.1 Diethyl carbonate 126.8 2-Hexanone 127.2 1-Chloro-2-propanol 127.4 2-Chloroethanol 128.6 1-Nitropropane 131.2 Chlorobenzene 131.7 1,2-Dibromoethane 131.7 4-Methyl-2-pentanol 131.7 3-Methyl-1-butanol 132.0 Cyclohexylamine 134.8 2-Ethoxyethanol 134.8 Ethylbenzene 136.2 1-Pentanol 138 p-Xylene 138.4 m-Xylene Acetic anhydride 2,4-Pentanedione Isopentyl acetate Dibutyl ether
Other name
sec-Pentanol Isopentyl bromide Nitroisopropane Ethyl butyrate Ethyl propyl ketone Diisopropyl ketone
Methyl butyl ketone
Aminocyclohexane
1,4Dimethylbenzene 139.1 1,3Dimethylbenzene 140.0 140.6 Acetylacetone 142 142.4
Compound name 4-Heptanone o-Xylene 2-Methoxyethyl acetate 1,1,2, 2Tetrachloroethane 3-Heptanone Tribromomethane Nonane 2-Heptanone Isopropylbenzene N,N-Dimethylformamide Methoxybenzene Ethyl lactate Cyclohexanone Bromobenzene 1,2,3Trichloropropane 1-Hexanol Propylbenzene Cyclohexanol Bis(2-methoxyethyl) ether Isopentyl propanoate 2-Heptanol Pentachloroethane 2-Furaldehyde 2,6-Dimethyl4-heptanone
bp (C)
Other name
143.7 Dipropyl ketone 144.4 1,2Dimethylbenzene 144.5
146.3 147.8 Ethyl butyl ketone 149.6 Bromoform 150.8 151 Methyl pentyl ketone 152.4 Cumene 153.0 DMF 153.8 Anisole 154.5 155.7 156.2 156.9 157.5 159.2 161.1 160 Diglyme 160.2 Isopentyl propionate 160.4 160.5 161.8 Furfural
168.1 Diisobutyl ketone 4-Hydroxy-4-methyl- 169.2 2-pentanone 2-Furanmethanol 170.0 2-Hydroxy methylfuran Ethoxybenzene 170 Phenetole 2-Butoxyethanol 170.2 Butyl cellosolve Diisopentyl ether 173.4 Decane 174.2 1,3-Dichloro174.3 2-propanol Cyclohexyl acetate 174–175 1-Heptanol 175.8 Furfuryl acetate 175–177 4-Isopropyl177.1 p-Cymene 1-methylbenzene
4.14
SECTION 4
TABLE 4.5A Boiling Points for Common Organic Solvents (continued ) Arranged in order of increasing boiling point
Compound name
bp (C) Other name
Compound name
Isopentyl butanoate Bis(2-chloroethyl) ether 2-Octanol 1,2-Dichlorobenzene Ethyl acetoacetate Phenol 2-Ethyl-1-hexanol Aniline Benzyl ethyl ether Diethyl oxalate 1,2-Propanediol Bis(2-ethoxyethyl) ether Dimethylsulfoxide 1,2-Ethanediol diacetate Benzonitrile 2,5-Hexanedione 2-(2-Methoxyethoxy) ethanol N,N-Dimethylaniline
178.6 Isopentyl butyrate 178.8 Dichloro diethyl ether 179 180.4 o-Dichlorobenzene 180.8 181.8 Hydroxybenzene 184.3 184.4 Aminobenzene 185.0 185.4 188 Propylene glycol 188.4
o-Chloroaniline
1-Octanol 1,2-Ethanediol Diethyl malonate Methyl benzoate o-Toluidine p-Toluidine 2-(2-Ethoxyethoxy) ethanol Acetophenone 1,2-Dibutoxyethane 1,2-Phenylethanol m-Toluidine Benzyl alcohol Camphor
1,3-Butanediol 1,2,3,4-Tetrahydronaphthalene -Valerolactone
189.0 DMSO 190.2 Diacetoxyethane 191.0 Cyanobenzene 191.4 194.1 194.2 Dimethylaminobenzene 195.2 197.3 Ethylene glycol 199.3 199.5 200.4 1-Amino2-methylbenzene 200.6 1-Amino4-methylbenzene 202 202.1 Methyl phenylketone 203.6 203.9 Phenethyl alcohol 203.4 1-Amino3-methylbenzene 205.5 Hydroxymethylbenzene 207 1,7,7-Trimethylbicyclo[2.2.1] heptan-2-one 207.5 207.6 Tetralin 207– 208
bp (C) Other name
Nitrobenzene Ethyl benzoate Isophorone
Naphthalene 2-(2-Ethoxyethoxy) ethyl acetate Acetamide Methyl salicylate Diethyl maleate 1,4-Butanediol Propyl benzoate 1-Decanol Phenylacetonitrile Quinoline Tributyl borate Propylene carbonate 2-Phenoxyethanol Bis(2-hydroxyethyl) ether Dibutyl oxalate Butyl benzoate 1,2,3-Propanetriol triacetate 1-Chloronaphthalene Isopentyl benzoate trans-Ethyl cinnamate Bis (2-(2-methoxyethoxy)ethyl) ether 1-Methoxy2-nitrobenzene Isopentyl salicylate
208.8 1-Amino2-chlorobenzene 210.8 212.4 215.2 3,5, 5Trimethylcyclohex-2-en-1-one 217.7 218.5 221.2 223.0 225.3 230 231.2 230.2 233.5 Cyanomethylbenzene 237 238.5 240 240 245 Diethylene glycol 245.5 250 258– Glycerol 259 triacetate 259.3 262 271.0 275.3 Triglyme
277
277– 278 1-Bromonaphthalene 281.1 Dimethyl o -phthalate 283.7 1,2-Bis(carbomethoxy) benzene 2,2 -(Ethylenedioxy) bisethanol 285 Glycerol 290 Diethyl o-phthalate 295 Benzyl benzoate 323.5 Dibutyl o-phthalate 340.0 Dibutyl decanedioate 344–345
4.15
PHYSICAL PROPERTIES
TABLE 4.5B Boiling Points for Common Organic Solvents Arranged alphabetically by solvent name
Compound name Acetamide Acetic acid Acetic anhydride Acetone Acetonitrile Acetophenone Allyl alcohol Aniline Benzene Benzonitrile Benzyl alcohol
bp (C)
Other name
221.2 117.9 140.0 56.2 Dimethyl ketone 81.6 202.1 Methyl phenyl ketone 96.6 184.4 Aminobenzene 80.1 191.0 Cyanobenzene 205.5 Hydroxymethylbenzene 323.5 185.0 275.3 Triglyme
Benzyl benzoate Benzyl ethyl ether Bis(2-(2-methoxyethoxy)ethyl) ether Bis(2-chloroethyl) ether Bis(2-ethoxyethyl) ether Bis(2-hydroxyethyl) ether Bis(2-methoxyethyl) ether Bromobenzene Bromoethane 1-Bromo2-methylpropane 1-Bromo3-methylbutane 1-Bromonaphthalene 1,3-Butanediol 1,4-Butanediol 1-Butanol 2-Butanol 2-Butanone 2-Butoxyethanol Butyl acetate sec-Butyl acetate Butyl benzoate Butyl formate Camphor
281.1 207.5 230 117.7 99.6 79.6 170.2 126.1 112.3 250 106.6 207
Carbon disulfide Carbon tetrachloride o-Chloroaniline
46.3 76.7 208.8
178.8 Dichloro diethyl ether 188.4 245
Diethylene glycol
160
Diglyme
156.2 38.4 Ethyl bromide 91.5 Isobutyl bromide 119.7 Isopentyl bromide
sec-Butanol Methyl ethyl ketone Butyl cellosolve
1,7,7-Trimethylbicyclo [2.2.1] heptan-2-one
1-Amino2-chlorobenzene
Compound name Chlorobenzene 1-Chlorobutane 1-Chloro-2, 3-epoxypropane 1-Chloro-2-propanol Chloroethane 2-Chloroethanol Chloroform 1-Chloro3-methylbutane 1-Chloro2-methylpropane 1-Chloronaphthalene Cyclohexane Cyclohexanol Cyclohexanone Cyclohexene Cyclohexyl acetate
bp (C) 131.7 77.9 116.1 127.4 12.3 128.6 61.2 99.0 68.9
Other name
Butyl chloride Epichlorohydrin
Ethyl chloride
Isobutyl chloride
259.3 80.7 161.1 155.7 83.0 174– 175 Cyclohexylamine 134.8 Aminocyclohexane Decane 174.2 1-Decanol 230.2 1,2-Dibromoethane 131.7 1,2-Dibutoxyethane 203.6 Dibutyl decanedioate 344– 345 Dibutyl ether 142.4 Dibutyl o-phthalate 340.0 Dibutyl oxalate 245.5 1,2-Dichlorobenzene 180.4 o-Dichlorobenzene Dichloroethylene 60.6 Dichloromethane 39.8 Methylene chloride 1,1-Dichloroethane 57.3 1,2-Dichloroethane 83.7 1,2-Dichloropropane 96.8 1,3-Dichloro174.3 2-propanol 1,1-Diethoxyethane 102.7 Diethyl carbonate 126.8 Diethyl ether 34.6 Ethyl ether Diethyl maleate 225.3 Diethyl malonate 199.3 Diethyl o-phthalate 295 Diethyl oxalate 185.4 Diisopentyl ether 173.4 Diisopropyl amine 83.5 Diisopropyl ether 68.0 Isopropyl ether Dimethoxyethane 42.3 DME, glyme
4.16
SECTION 4
TABLE 4.5B Boiling Points for Common Organic Solvents (continued ) Arranged alphabetically by solvent name Compound name N,N-Dimethylaniline 1,1-Dimethylethanol N,N-Dimethylformamide 2,5-Dimethylfuran 2,6-Dimethyl4-heptanone 2,4-Dimethyl3-pentanone Dimethyl o-phthalate Dimethylsulfoxide 1,4-Dioxane 1,3-Dioxolane 1,2-Ethanediol 1,2-Ethanediol diacetate Ethoxybenzene 2-Ethoxyethanol 2-(2-Ethoxyethoxy) ethanol 2-(2-Ethoxyethoxy) ethyl acetate Ethyl acetate Ethyl acetoacetate Ethyl benzoate Ethyl butanoate Ethyl chloroformate trans-Ethyl cinnamate Ethyl formate Ethyl lactate Ethyl propanoate Ethylbenzene Ethylene oxide 2,2 -(Ethylenedioxy) bisethanol 2-Ethyl-1-hexanol Formic acid 2-Furaldehyde Furan 2-Furanmethanol Furfuryl acetate Glycerol Heptane 1-Heptanol 2-Heptanol
bp (C)
Other name
194.2 Dimethylaminobenzene 82.4 t-Butanol 153.0 DMF 93–94 168.1 Diisobutyl ketone 124 Diisopropyl ketone 283.7 1,2-Bis(carbomethoxy)benzene 189.0 DMSO 101.2 74–75 197.3 Ethylene glycol 190.2 Diacetoxyethane
Compound name 2-Heptanone
3-Heptanone 4-Heptanone Hexane 2,5-Hexanedione 1-Hexanol 2-Hexanone 3-Hexanone 4-Hydroxy-4-methyl2-pentanone Isobutyl acetate Isopentyl acetate Isopentyl benzoate Isopentyl butanoate Isopentyl propanoate Isopentyl salicylate
170 Phenetole 134.8 202 218.5 77.1 180.8 212.4 121.6 Ethyl butyrate 94.0 271.0 54.2 154.5 99.1 Ethyl propionate 136.2 10.6 Oxirane 285 184.3 100.8 161.8 Furfural 31.4 170.0 2-Hydroxymethylfuran 175– 177 290 98.4 175.8 160.4
bp (C)
Isophorone
Other name
151
Methyl pentyl ketone 147.8 Ethyl butyl ketone 143.7 Dipropyl ketone 68.7 191.4 157.5 127.2 Methyl butyl ketone 123 Ethyl propyl ketone 169.2 118.0 142 262 178.6 Isopentyl butyrate 160.2 Isopentyl propionate 277– 278 215.2 3,5,5-Trimethylcyclohex-2-en-1-one 88.2 152.4 Cumene 47.9
Isopropyl acetate Isopropylbenzene 1-Isopropoxy2-propanol 4-Isopropyl177.1 1-methylbenzene Methanol 64.7 Methoxybenzene 153.8 Methyl acetate 56.3 Methyl benzoate 199.5 Methyl formate 31.5 Methyl salicylate 223.0 Methylcyclohexane 100.9 1-Methoxy277 2-nitrobenzene 1-Methoxy-2-propanol 120.1 2-(2-Methoxyethoxy) 194.1 ethanol 2-Methoxyethanol 124.6 2-Methoxyethyl acetate144.5 2-Methyl-1-propanol 107.9 2-Methyl-2-butanol 102.0 2-Methyltetrahy80.0 drofuran 3-Methyl-1-butanol 132.0 4-Methyl-2-pentanol 131.7 4-Methyl-2-pentanone 115.7
p -Cymene
Anisole
Isobutanol t-Pentanol
Methyl isobutyl ketone
4.17
PHYSICAL PROPERTIES
TABLE 4.5B Boiling Points for Common Organic Solvents (continued ) Arranged alphabetically by solvent name Compound name
bp (C)
Naphthalene Nitrobenzene Nitroethane Nitromethane 1-Nitropropane 2-Nitropropane Nonane Octane 1-Octanol 2-Octanol Pentachloroethane Pentane 2,4-Pentanedione 1-Pentanol 2-Pentanol 3-Pentanol 2-Pentanone
217.7 210.8 114.1 101.2 131.2 120.3 150.8 125.7 195.2 179 160.5 36.1 140.6 138 119.3 115.6 101.7
3-Pentanone Phenol 2-Phenoxyethanol Phenylacetonitrile
102.0 181.8 240 233.5
1-Phenylethanol 1,2-Propanediol 1,2,3-Propanetriol triacetate 1-Propanol 2-Propanol Propylene carbonate Propylene oxide Propyl acetate Propyl benzoate
203.9 188 258– 259 97.2 82.4 240 34.5 101.5 231.2
Other name
Compound name
Nitroisopropane
Propyl formate Propylbenzene Pyridine Quinoline 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrahydrofuran Thiophene Toluene o-Toluidine
Acetylacetone sec-Pentanol Methyl propyl ketone Diethyl ketone Hydroxybenzene Cyanomethylbenzene Phenethyl alcohol Propylene glycol Glycerol triacetate n-Propyl alcohol Isopropyl alcohol
bp (C)
Other name
80.9 159.2 115.2 237 146.3
121.1 66.0 THF 84.2 110.6 Methylbenzene 200.4 1-Amino2-methylbenzene m-Toluidine 203.4 1-Amino3-methylbenzene p-Toluidine 200.6 1-Amino4-methylbenzene Tribromomethane 149.6 Bromoform Tributyl borate 238.5 1,1,1-Trichloroethane 74.0 1,1,2-Trichloroethane 113.5 Trichloroethylene 87.2 1,2,3,4-Tetrahy207.6 Tetralin dronaphthalene 1,2,3-Trichloro 156.9 propane -Valerolactone 207– 208 o-Xylene 144.4 1,2-Dimethylbenzene m-Xylene 139.1 1,3-Dimethylbenzene p-Xylene 138.4 1,4-Dimethylbenzene
TABLE 4.5C Boiling Points for Common Organic Solvents Arranged by compound type in order of increasing boiling point Compound name acid acid alcohol alcohol alcohol alcohol alcohol alcohol
Formic acid Acetic acid 1-Isopropoxy-2-propanol Methanol Ethanol 2-Propanol 1,1-Dimethylethanol Allyl alcohol
(C) 100.8 117.9 47.9 64.7 78.3 82.4 82.4 96.6
Other name
Isopropyl alcohol t-Butanol
4.18
SECTION 4
TABLE 4.5C Boiling Points for Common Organic Solvents (continued ) Arranged by compound type in order of increasing boiling point Compound name alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol alcohol aldehyde amide amide amine amine
1-Propanol 2-Butanol 2-Methyl-2-butanol 2-Methyl-1-propanol 3-Pentanol 1-Butanol 2-Pentanol 1-Methoxy-2-propanol 2-Methoxyethanol 1-Chloro-2-propanol 2-Chloroethanol 4-Methyl-2-pentanol 3-Methyl-1-butanol 2-Ethoxyethanol 1-Pentanol 1-Hexanol Cyclohexanol 2-Heptanol 4-Hydroxy-4-methyl-2-pentanone 2-Furanmethanol 2-Butoxyethanol 1,3-Dichloro-2-propanol 1-Heptanol 2-Octanol Phenol 2-Ethyl-1-hexanol 1,2-Propanediol 2-(2-Methoxyethoxy) ethanol 1-Octanol 1,2-Ethanediol 2-(2-Ethoxyethoxy) ethanol 1-Phenylethanol Benzyl alcohol 1,3-Butanediol Methyl salicylate 1,4-Butanediol 1-Decanol 2-Phenoxyethanol Bis(2-hydroxyethyl) ether Isopentyl salicylate 2,2 -(Ethylenedioxy)bisethanol Glycerol 2-Furaldehyde N,N -Dimethylformamide Acetamide Diisopropylamine Pyridine
(C) 97.2 99.6 102.0 107.9 115.6 117.7 119.3 120.1 124.6 127.4 128.6 131.7 132.0 134.8 138 157.5 161.1 160.4 169.2 170.0 170.2 174.3 175.8 179 181.8 184.3 188 194.1 195.2 197.3 202 203.9 205.5 207.5 223.0 230 230.2 240 245 277–278 285 290 161.8 153.0 221.2 83.5 115.2
Other name n-Propyl alcohol sec-Butanol t-Pentanol Isobutanol
sec-Pentanol
2-Hydroxymethylfuran Butyl cellosolve
Hydroxybenzene Propylene glycol
Ethylene glycol Phenethyl alcohol Hydroxymethylbenzene
Diethylene glycol
Furfural DMF
4.19
PHYSICAL PROPERTIES
TABLE 4.5C Boiling Points for Common Organic Solvents (continued ) Arranged by compound type in order of increasing boiling point Compound name
(C)
amine amine amine amine
Cyclohexylamine Aniline N,N-Dimethylaniline o-Toluidine
134.8 184.4 194.2 200.4
amine
p-Toluidine
200.6
amine
m-Toluidine
203.4
amine amine anhydride bromide bromide bromide bromide bromide bromide bromide chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride ester ester
o-Chloroaniline Quinoline Acetic anhydride Bromoethane 1-Bromo-2-methylpropane 1-Bromo-3-methylbutane 1,2-Dibromoethane Tribromomethane Bromobenzene 1-Bromonaphthalene Chloroethane Dichloromethane 1,1-Dichloroethane Dichloroethylene Chloroform 1-Chloro-2-methylpropane 1,1,1-Trichloroethane Carbon tetrachloride 1-Chlorobutane 1,2-Dichloroethane Trichloroethylene 1,2-Dichloropropane 1-Chloro-3-methylbutane 1,1,2-Trichloroethane 1-Chloro-2,3-epoxypropane Tetrachloroethylene 1-Chloro-2-propanol 2-Chloroethanol Chlorobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Pentachloroethane 1,3-Dichloro-2-propanol Bis(2-chloroethyl) ether 1,2-Dichlorobenzene o-Chloroaniline 1-Chloronaphthalene Methyl formate Ethyl formate
208.8 237 140.0 38.4 91.5 119.7 131.7 149.6 156.2 281.1 12.3 39.8 57.3 60.6 61.2 68.9 74.0 76.7 77.9 83.7 87.2 96.8 99.0 113.5 116.1 121.1 127.4 128.6 131.7 146.3 156.9 160.5 174.3 178.8 180.4 208.8 259.3 31.5 54.2
Other name Aminocyclohexane Aminobenzene Dimethylaminobenzene 1-Amino2-methylbenzene 1-Amino4-methylbenzene 1-Amino3-methylbenzene 1-Amino-2-chlorobenzene
Ethyl bromide Isobutyl bromide Isopentyl bromide Bromoform
Ethyl chloride Methylene chloride
Isobutyl chloride
Butyl chloride
Epichlorohydrin
Dichloro diethyl ether o-Dichlorobenzene 1-Amino-2-chlorobenzene
4.20
SECTION 4
TABLE 4.5C Boiling Points for Common Organic Solvents (continued ) Arranged by compound type in order of increasing boiling point Compound name
(C)
ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester ester
Methyl acetate Ethyl acetate Propyl formate Isopropyl acetate Methyl chloroformate Ethyl propanoate Propyl acetate Butyl formate sec-Butyl acetate Isobutyl acetate Ethyl butanoate Butyl acetate Diethyl carbonate Isopentyl acetate 2-Methoxyethyl acetate Ethyl lactate Isopentyl propanoate Cyclohexyl acetate Furfuryl acetate Isopentyl butanoate Ethyl acetoacetate Diethyl oxalate 1,2-Ethanediol diacetate Diethyl malonate Methyl benzoate -Valerolactone Ethyl benzoate 2-(2-Ethoxyethoxy)ethyl acetate Methyl salicylate Diethyl maleate Propyl benzoate Propylene carbonate Dibutyl oxalate Butyl benzoate 1,2,3-Propanetriol triacetate Isopentyl benzoate trans-Ethyl cinnamate Isopentyl salicylate Dimethyl o -phthalate
56.3 77.1 80.9 88.2 94.0 99.1 101.5 106.6 112.3 118.0 121.6 126.1 126.8 142 144.5 154.5 160.2 174–175 175–177 178.6 180.8 185.4 190.2 199.3 199.5 207–208 212.4 218.5 223.0 225.3 231.2 240 245.5 250 258–259 262 271.0 277–278 283.7
ester ester ester ester ether ether
Diethyl o -phthalate Benzyl benzoate Dibutyl o-phthalate Dibutyl decanedioate Ethylene oxide Furan
295 323.5 340.0 344–345 10.6 31.4
Other name
Ethyl propionate
Ethyl butyrate
Isopentyl propionate
Isopentyl butyrate
Diacetoxyethane
Glycerol triacetate
1,2-Bis(carbomethoxy) benzene
Oxirane
4.21
PHYSICAL PROPERTIES
TABLE 4.5C Boiling Points for Common Organic Solvents (continued ) Arranged by compound type in order of increasing boiling point Compound name ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether ether hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon
Diethyl ether Propylene oxide Dimethoxyethane 1-Isopropoxy-2-propanol Tetrahydrofuran Diisopropyl ether 1,3-Dioxolane 2-Methyltetrahydrofuran 2,5-Dimethylfuran 1,4-Dioxane 1,1-Diethoxyethane 1-Chloro-2,3-epoxypropane 1-Methoxy-2-propanol 2-Methoxyethanol 2-Ethoxyethanol Dibutyl ether 2-Methoxyethyl acetate Methoxybenzene Bis(2-methoxyethyl) ether 2-Furanmethanol Ethoxybenzene 2-Buroxyethanol Diisopentyl ether Bis(2-chloroethyl) ether Benzyl ethyl ether Bis(2-ethoxyethyl)ether 2-(2Methoxyethoxy)ethanol 2-(2-Ethoxyethoxy) ethanol 1,2 Dibutoxyethane 2-(2-Ethoxyethoxy)ethyl acetate 2-Phenoxyethanol Bis(2-hydroxyethyl) ether Bis(2-(2-methoxyethoxy)ethyl) ether 1-Methoxy-2-nitrobenzene 2,2 -(Ethylenedioxy) bisethanol Pentane Hexane Benzene Cyclohexane Cyclohexene Heptane Methylcyclohexane Toluene Octane Ethylbenzene p -Xylene m -Xylene
(C) 34.6 34.5 42.3 47.9 66.0 68.0 74–75 80.0 93–94 101.2 102.7 116.1 120.1 124.6 134.8 142.4 144.5 153.8 160 170.0 170 170.2 173.4 178.8 185.0 188.4 194.1 202 203.6 218.5 240 245 275.3 277 285 36.1 68.7 80.1 80.7 83.0 98.4 100.9 110.6 125.7 136.2 138.4 139.1
Other name Ethyl ether DME, glyme THF Isopropyl ether
Epichlorohydrin
Anisole Diglyme 2-Hydroxymethylfuran Phenetole Butyl cellosolve Dichloro diethyl ether
Diethylene glycol Triglyme
Methylbenzene
1,4-Dimethylbenzene 1,3-Dimethylbenzene
4.22
SECTION 4
TABLE 4.5C Boiling Points for Common Organic Solvents (continued ) Arranged by compound type in order of increasing boiling point Compound name
(C)
hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon hydrocarbon ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone ketone
o-Xylene Nonane Isopropylbenzene Propylbenzene Decane 4-Isopropyl-l-methylbenzene 1,2,3,4-Tetrahydronaphthalene Naphthalene Acetone 2-Butanone 2-Pentanone 3-Pentanone 4-Methyl-2-pentanone 3-Hexanone 2,4-Dimethyl-3-pentanone 2-Hexanone 2,4-Pentanedione 4-Heptanone 3-Heptanone 2-Heptanone Cyclohexanone 2,6-Dimethyl-4-heptanone 4-Hydroxy-4-methyl-2-pentanone 2,5-Hexanedione Acetophenone Camphor
144.4 150.8 152.4 159.2 174.2 177.1 207.6 217.7 56.2 79.6 101.7 102.0 115.7 123 124 127.2 140.6 143.7 147.8 151 155.7 168.1 169.2 191.4 202.1 207
ketone
Isophorone
215.2
miscellaneous miscellaneous nitrile nitrile nitrile nitro compound nitro compound nitro compound nitro compound nitro compound nitro compound sulfide sulfoxide
Carbon disulfide Tributyl borate Acetonitrile Benzonitrile Phenylacetonitrile Nitromethane Nitroethane 2-Nitropropane 1-Nitropropane Nitrobenzene 1-Methoxy-2-nitrobenzene Thiophene Dimethylsulfoxide
46.3 238.5 81.6 191.0 233.5 101.2 114.1 120.3 131.2 210.8 277 84.2 189.0
Other name 1,2-Dimethylbenzene Cumene
p-Cymene Tetralin Dimethyl ketone Methyl ethyl ketone Methyl propyl ketone Diethyl ketone Methyl isobutyl ketone Ethyl propyl ketone Diisopropyl ketone Methyl butyl ketone Acetylacetone Dipropyl ketone Ethyl butyl ketone Methyl pentyl ketone Diisobutyl ketone
Methyl phenyl ketone 1,7,7-Trimethylbicyclo[2.2.1] heptan-2-one 3,5,5-Trimethylcyclohex-2-en-1-one
Cyanobenzene Cyanomethylbenzene
Nitroisopropane
DMSO
4.23
PHYSICAL PROPERTIES
TABLE 4.6 Molecular Elevation of the Boiling Point Ebullioscopic constants Molecular weights can be determined with the relation M Kb
1000 w2 w1 Tb
where Tb is the elevation of the boiling point brought about by the addition of w2 grams of solute to w1 grams of solvent and Kb is the ebullioscopic constant. In the column headed “Barometric correction” is given the number of degrees for each millimeter of difference between the barometric reading and 760 mmHg to be subtracted from Kb if the pressure is lower, or added if higher, than 760 mm. In general, the effect is within experimental error if the pressure is within 10 mm of 760 mm.
Compound Acetic acid Acetic anhydride Acetone Acetonitrile Acetophenone Aniline Benzene Benzonitrile Bromobenzene Bromoethane 2-Butanone cis-2-Butene-1,4-diol D-()-Camphor Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Cyclohexane 1,2-Dibromoethane 1,1-Dichloroethane 1,2-Dichloroethane Dichloromethane Diethyl ether Diethyl sulfide Dimethoxymethane N,N-Dimethylacetamide Dimethyl sulfide 1,4-Dioxane Ethanol Ethoxybenzene Ethyl acetate Formic acid Glycerol Heptane Hexane 2-Hydroxybenzaldehyde
Barometric correction 0.000 8 0.000 4
0.000 9 0.000 7 0.001 6
0.001 5 0.000 6 0.001 3 0.001 1 0.000 9 0.000 7 0.001 6
0.000 5
0.000 3 0.000 7
0.000 8
Kb 3.07 3.53 1.71 1.30 5.65 3.52 2.53 3.87 6.26 2.53 2.28 2.86 5.611 2.34 5.03 4.15 1.95 3.63 2.79 6.608 3.13 3.44 2.60 2.02 3.23 2.125 3.22 1.85 3.270 1.22 5.0 2.77 2.4 6.52 3.43 2.75 4.96
4.24
SECTION 4
TABLE 4.6 Molecular Elevation of the Boiling Point (continued )
Compound Iodoethane Iodomethane 4-Isopropyl-1-methylbenzene Methanol Methoxybenzene Methyl acetate 2-Methyl-2-butanol 3-Methyl-1-butanol 3-Methylbutyl acetate Methyl formate 2-Methyl-1-propanol 2-Methyl-2-propanol Naphthalene Nitrobenzene Nitroethane Nitromethane Octane Pentyl acetate Phenol Piperidine 1-Propanol Propionic acid Propionitrile Pyridine Quinoline 1,1,2,2-Tetrachloroethylene 1,2,3,4-Tetrahydronaphthalene Toluene p-Toluidine Trichloroethylene 1,1,2-Trichloro-1,2,2-trifluoroethane Triethylamine Water
Barometric correction
0.000 2 0.000 5
0.001 4
0.000 9
0.000 8
0.000 1
Kb 5.16 4.19 5.52 0.83 4.502 2.15 2.255 2.65 4.83 1.649 2.166 1.745 5.80 5.24 2.60 1.86 4.02 4.83 3.60 2.84 1.59 3.51 1.87 2.710 5.84 5.50 5.582 3.33 4.14 4.43 5.75 3.45 0.512
Distillation is an important historical method for the separation of liquids. A mixture or solution of two liquids is heated until the vapor pressure of the lower boiling compound reaches the pressure of the surroundings. This may be ambient pressure or a lowered pressure caused by application of a vacuum. In either event, vaporization occurs, the vapors are condensed on a cold surface, and the condensed liquid is collected. If the boiling points of the two liquids are sufficiently different given the pressure and efficiency of the apparatus, separation may be achieved. A zeotrope is a mixture that can be separated by distillation. In contrast, certain mixtures of two (binary) or three (ternary) components form constant boiling mixtures that cannot be separated by distillation. In such cases, each component contributes a fixed amount and the boiling point of the mixture is characteristic of the components. Such a system is called an azeotrope. The boiling point of an azeotrope may be higher or lower than that of the individual components. Common binary azeotropes are listed in Table 4.7 and ternary azeotropes are listed in Table 4.8.
4.25
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures A zeotrope is a mixture that can be separated by distillation. A. Binary azeotropes containing water Composition, wt % System
BP of azeotrope, C
Water
Other component
Inorganic acids Hydrogen bromide Hydrogen chloride Hydrogen fluoride Hydrogen iodide Hydrogen peroxide Nitric acid Perchloric acid
126 108.58 111.35 127 zeotrope 120.7 203
52.5 79.78 64.4 43
47.5 20.22 35.6 57
32.6 28.4
67.4 71.6
22.6
77.4
82.3 79 81.6 89 81.6 71 97.8
17.7 21 18.4 11 18.4 29 2.2
4 27.7 71.7 12.6 42.5 26.8 11.7 54.4 36.5 36.0 27.5 67.2 90 58 83 90.8 87.5
96 72.3 28.3 87.4 57.5 73.2 88.3 45.6 63.5 64.0 72.5 32.8 10 42 17 9.2 12.5
Organic acids Formic acid Acetic acid Propionic acid Isobutyric acid Butyric acid Pentanoic acid Isopentanoic acid Perfluorobutyric acid Crotonic acid
107.2 zeotrope 99.9 99.3 99.4 99.8 99.5 97 99.9 Alcohols
Ethanol Allyl alcohol 1-Propanol 2-Propanol 1-Butanol 2-Butanol 2-Methyl-2-propanol 1-Pentanol 2-Pentanol 3-Pentanol 2,2-Dimethyl-2-propanol 1-Hexanol 1-Octanol Cyclopentanol 1-Heptanol Phenol 2-Methoxyphenol
78.17 88.9 71.7 80.3 92.7 87.0 79.9 95.8 91.7 91.7 87.35 97.8 99.4 96.25 98.7 99.52 99.5
4.26
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Water
Other component
Alcohols (continued ) 1-Phenylphenol Benzyl alcohol 2,3-Dimethyl-2, 3-butanediol Furfuryl alcohol
99.95 99.9
98.75 91
1.25 9
zeotrope 98.5
80
20
2 6 19 28.5 65
98 94 81 71.5 35
82.7 99 92.8 93.6 93.5 97 97.35 96.02 97 99.8 95 99.65 98.6 99.2
15 74 35 41.3 48 60 62.8 51.8 50.5 92.8 38 79.7 80.8 83.9
85 26 65 58.7 52 40 37.2 48.2 49.5 7.2 62 20.3 19.2 16.1
99.85
97.5
2.5
2.8 2.8 17 17.2 8.3 2.2 12 28.4
97.2 97.2 83 82.8 91.7 97.8 88 71.6
Aldehydes Propionaldehyde Butyraldehyde Pentanal Paraldehyde Furaldehyde
47.5 68 83 90 97.5 Amines
N-Methylbutylamine Furfurylamine Piperidine Pyridine 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine 2,6-Dimethylpyridine Dibutylamine Dihexylamine Triallylamine Tributylamine Aniline N-Ethylaniline 1-Methyl-2-(2-pyridyl) pyrrolidine
Halogenated hydrocarbons Chloroform Carbon tetrachloride Trichloroethylene Tetrachloroethylene 1,2-Dichloroethane 1-Chloropropane 1,2-Dichloropropane Chlorobenzene
56.1 42.6 73.4 88.5 72 44 78 90.2
4.27
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Water
Other component
5 3 2.3 7.8 14.5 21 28.4 80 8.47 14.7 10.6 16.5 14 28.7 36.3 41 61 75.1 87.5 3.9 10 19.9 23 52.2 48.5 11.5 21.5 36.4 46 53 63.5 6.8 15.2 30.8 39.4 56.0 19.2 30.2 45.2 55.8 74.1
95 97 97.7 92.2 85.5 79 71.6 20 91.53 85.3 89.4 83.5 86 71.3 63.7 59 39 24.9 12.5 96.1 90 80.1 77 47.8 51.5 88.5 78.5 63.6 54 47 36.5 93.2 84.8 69.2 60.6 44.0 80.8 69.8 54.8 44.2 25.9
Esters Ethyl formate Isopropyl formate Propyl formate Isobutyl formate Butyl formate Isopentyl formate Pentyl formate Benzyl formate Ethyl acetate Allyl acetate Isopropyl acetate Propyl acetate Isobutyl acetate Butyl acetate Isopentyl acetate Pentyl acetate Hexyl acetate Phenyl acetate Benzyl acetate Methyl propionate Ethyl propionate Isopropyl propionate Propyl propionate Isobutyl propionate Isopentyl propionate Methyl butyrate Ethyl butyrate Propyl butyrate Isobutyl butyrate Butyl butyrate Isopentyl butyrate Methyl isobutyrate Ethyl isobutyrate Propyl isobutyrate Isobutyl isobutyrate Isopentyl isobutyrate Methyl isopentanoate Ethyl isopentanoate Propyl isopentanoate Isobutyl isopentanoate Isopentyl isopentanoate
52.6 65.0 71.6 80.4 83.8 90.2 91.6 99.2 70.38 83 76.6 87.4 82.4 90.2 93.8 95.2 97.4 98.9 99.6 71.4 81.2 85.2 88.9 92.75 96.55 82.7 87.9 94.1 96.3 97.2 98.05 77.7 85.2 92.2 95.5 97.4 87.2 92.2 96.2 97.4 98.8
4.28
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant-Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Water
Other component
40 54 79.2 84.0 90.9 94 95.6 91.3 95.5 97.5 98.0 45.1 75.5 7.2 74 38 80 84.6 22 20 25 73
60 46 20.8 16.0 9.1 6 4.4 8.7 4.5 2.5 2.0 54.9 24.5 92.8 26 62 20 15.4 78 80 75 27
1.5 1.3 4 4.5 11.9 23 33 54 14.5 96.75 40.5
98.5 98.7 96 95.5 88.1 77 67 46 85.5 3.25 59.5
1.4 5.6 12.9 11.1
98.6 94.4 87.1 88.9
Esters (continued) Ethyl pentanoate Ethyl hexanoate Methyl benzoate Ethyl benzoate Propyl benzoate Butyl benzoate Isopentyl benzoate Ethyl phenylacetate Methyl cinnamate Methyl phthalate Diethyl o-phthalate Ethyl chloroacetate Butyl chloroacetate Methyl acrylate Isobutyl carbonate Ethyl crotonate Methyl lactate 1,2-Ethanediol diacetate Ethyl nitrate Propyl nitrate Isobutyl nitrate Methyl sulfate
94.5 97.2 99.08 99.4 99.7 99.9 99.9 99.7 99.9 99.95 99.98 95.2 98.12 71 98.6 93.5 99 99.7 74.35 84.8 89.0 98.6 Ethers
Ethyl vinyl ether Diethyl ether Ethyl propyl ether Diisopropyl ether Butyl ethyl ether Diisobutyl ether Dibutyl ether Diisopentyl ether 1,1-Diethoxyethane Diphenyl ether Methoxybenzene
34.6 34.2 59.5 62.2 76.6 88.6 92.9 97.4 82.6 99.33 95.5 Hydrocarbons
Pentane Hexane Heptane 2,2,4-Trimethylpentane
34.6 61.6 79.2 78.8
4.29
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Water
Other component
Hydrocarbons (continued ) Nonane Undecane Dodecane Acrolein Cyclohexene Cyclohexane 1-Octene Benzene Toluene Ethylbenzene m-Xylene Isopropylbenzene Naphthalene
94.8 98.85 99.45 52.4 70.8 69.5 88.0 69.25 84.1 92.0 92 95 98.8
82 96.0 98 2.6 8.93 8.4 28.7 8.83 13.5 33.0 35.8 43.8 84
18 4.0 2 97.4 91.07 91.6 71.3 91.17 86.5 67.0 64.2 56.2 16
zeotrope 73.5 83.3 94.6 87.9 95 94.6 94.3
11 19.5 42.4 24.3 48 42.2 40.5
89 80.5 57.6 75.7 52 57.8 59.5
98.8 91.8
87.3 34.8
12.7 65.2
16.3 23 32.5 14.3
83.7 77 67.5 85.7
32.3
67.7
23.6 28.5 11.7 30 2.8
76.4 71.5 88.3 70 97.2
Ketones Acetone 2-Butanone 2-Pentanone Cyclopentanone 4-Methyl-2-pentanone 2-Heptanone 3-Heptanone 4-Heptanone 4-Hydroxy-4-methyl-2pentanone 4-Methyl-3-penten-2-one
Nitriles Acetonitrile Isobutyronitrile Butyronitrile Acrylonitrile
76.5 82.5 88.7 70.6 Miscellaneous
Hydrazine Acetamide Nitromethane Nitroethane 2,5-Dimethylfuran Trioxane Carbon disulfide
120 zeotrope 83.59 87.22 77.0 91.4 42.6
4.30
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant-Boiling) Mixtures (continued ) B. Binary azeotropes containing organic acids Composition, wt % System
BP of azeotrope, C
Acid
Other component
4 20 28 29 70 46.5 56.5 63 31 50 74 71.8 73 6 15 18.5 25 50 3 51.5 14 27 14 8 1.5 19 68 59 27 83 61.4 25 32 33 45.5 35 62 83 17
96 80 72 71 30 53.5 43.5 37 69 50 26 28.2 27 94 85 81.5 75 50 97 48.5 86 73 86 92 98.5 81 32 41 73 17 38.6 75 68 67 54.5 65 38 17 83
Formic acid 2-Methylbutane Pentane Hexane Methylcyclopentane Cyclohexane Methylcyclohexane Heptane Octane Benzene Toluene o-Xylene m-Xylene Styrene Iodomethane Chloroform Carbon tetrachloride Trichloroethylene Tetrachloroethylene Bromoethane 1,2-Dibromoethane 1,2-Dichloroethane 1-Bromopropane 2-Bromopropane 1-Chloropropane 2-Chloropropane 1-Chloro-2-methylpropane Bromobenzene Chlorobenzene Fluorobenzene o-Chlorotoluene Pyridine 2-Methylpyridine 2-Pentanone 3-Pentanone Nitromethane Diethyl sulfide Diisopropyl sulfide Dipropyl sulfide Carbon disulfide
27.2 34.2 60.6 63.3 70.7 80.2 78.2 90.5 71.05 85.8 95.5 92.8 97.8 42.1 59.15 66.65 74.1 88.2 38.2 94.7 77.4 64.7 77.4 45.6 34.7 63.0 98.1 93.7 73.0 100.2 127.43 158.0 105.3 105.4 97.07 82.2 93.5 98.0 42.55
4.31
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Acid
Other component
Acetic acid Hexane Heptane Octane Nonane Decane Undecane Cyclohexane Methylcyclohexane Benzene Toluene o-Xylene m-Xylene p-Xylene Ethylbenzene Styrene Isopropylbenzene Triethylamine Nitromethane Nitroethane Pyridine 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine 2,6-Dimethylpyridine Carbon tetrachloride Trichloroethylene Tetrachloroethylene 1,2-Dibromoethane 2-Iodopropane 1-Bromobutane 1-Bromo-2-methylpropane Chlorobenzene Trichloronitromethane 1,4-Dioxane Diisopropyl sulfide
68.3 91.7 105.7 112.9 116.75 117.9 78.8 96.3 80.05 100.6 116.6 115.35 115.25 114.65 116.8 116.0 163 101.2 112.4 138.1 144.1 152.5 154.3 148.1 76 86.5 107.4 114.4 88.3 97.6 90.2 114.7 107.65 119.5 111.5
6.0 23 53.7 69 79.5 95 9.6 31 2.0 28.1 78 72.5 72 66 85.7 84 67 96 30 51.1 40.4 30.4 30.3 22.9 98.46 96.2 61.5 55 9 18 12 58.5 80.5 77 48
94.0 67 46.3 31 20.5 5 90.4 69 98.0 71.9 22 27.5 28 34 14.3 16 33 4 70 48.9 59.6 69.6 69.7 77.1 1.54 3.8 38.5 45 91 82 88 41.5 19.5 23 52
2 21.5
98 78.5
Propanoic (Propionic) acid Heptane Octane
97.8 120.9
4.32
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Acid
Other component
54.0 80.5 43 34 77 65 75 65 58.5 96 67.2 55.0 17.5 9 18 45
46.0 19.5 57 66 23 35 25 35 41.5 4 32.8 45.0 82.5 91 82 55
84.4 10 6 5.5 4 15 45 38 20 28 75
15.5 90 94 94.5 96 85 55 62 80 72 25
84 2.8 12 92.0 42.5 3.5 2.5 2.8 57 72 79.5 75 65 84 40
16 97.2 88 8.0 57.5 96.5 97.5 97.2 43 28 20.5 25 35 16 60
Acetic acid (continued) Nonane Decane o-Xylene p-Xylene 1,3,5-Trimethylbenzene Isopropylbenzene Propylbenzene Camphene -Pinene Methoxybenzene Pyridine 2-Methylpyridine 1,2-Dibromoethane 1-Iodo-2-methylpropane Chlorobenzene Dipropyl sulfide
134.3 139.8 135.4 132.5 139.3 139.0 139.5 138.0 136.4 140.8 148.6 154.5 127.8 119.5 128.9 136.5 Butyric (butanoic) acid
Undecane o-Xylene m-Xylene p-Xylene Ethylbenzene Styrene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Isopropylbenzene Propylbenzene Butylbenzene Naphthalene Indene Camphene Methoxybenzene Pyridine 2-Furaldehyde 1,2-Dibromoethane 1-Iodobutane Chlorobenzene 1,4-Dichlorobenzene o-Bromotoluene m-Bromotoluene p-Bromotoluene -Chlorotoluene Ethyl bromoacetate Propyl chloroacetate
162.4 143.0 138.5 137.8 135.8 143.5 159.5 158.0 149.5 154.5 162.5 zeotrope 163.7 152.3 152.9 163.2 159.4 131.1 129.8 131.75 162.0 163.0 163.6 161.5 160.8 157.4 160.5
4.33
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt% System
BP of azeotrope, C
Acid
Other component
Isobutyric (2-methylpropanoic) acid 2,7-Dimethyloctane o-Xylene m-Xylene p-Xylene Styrene 1,2,4-Trimethylbenzene Isopropylbenzene Propylbenzene Camphene D-Limonene Methoxybenzene Ethyl bromoacetate Ethyl 2-oxopropionate 1,2-Dibromoethane 1-Iodobutane 1-Bromohexane Bromobenzene Chlorobenzene o-Bromotoluene -Chlorotoluene Diisopentyl ether Ethyl bromoacetate
148.6 141.0 139.9 136.4 142.0 152.3 146.8 149.3 148.1 152.5 149.0 153.0 153.0 130.5 128.8 148.0 148.6 131.5 153.9 153.5 154.2 153.0
48 22 15 13 27 63 35 49 45 78 42 40 60 6.5 7 35 35 8 85 80 93 40
52 78 85 87 73 37 65 51 55 22 58 60 40 93.5 93 65 65 92 15 20 7 60
C. Binary azeotropes containing alcohol Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
Methanol Pentane Cyclopentane Cyclohexane Methylcyclohexane Heptane Octane Nonane Benzene Fluorobenzene Toluene Bromomethane Iodomethane
30.9 38.8 53.9 59.2 59.1 62.8 64.1 57.5 59.7 63.5 3.55 37.8
7 14 36.4 54 51.5 67.5 83.4 39.1 32 72.5 99.55 95.5
93 86 63.6 46 48.5 32.5 16.6 60.9 68 27.5 0.45 4.5
4.34
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
Methanol (continued ) Bromodichloromethane Chloroform Carbon tetrachloride Bromoethane 1,2-Dichloroethane Trichloroethylene 1-Bromopropane 2-Bromopropane 1-Chloropropane 2-Chloropropane 2-Iodopropane 1-Chlorobutane Isobutyl formate Methyl acetate Methyl acrylate Methyl nitrate Acetone 1,4-Dioxane Dipropyl ether Methyl tert-butyl ether Diethyl sulfide Carbon disulfide Thiophene Nitromethane
63.8 53.4 55.7 34.9 61.0 59.3 54.5 48.6 40.5 33.4 61.0 57.0 64.6 53.5 62.5 52.5 55.5 zeotrope 63.8 51.3 61.2 39.8 59.7 64.4
60 87.4 79.44 5.3 32 38 21 15.0 9.5 6 38 27 95 19 54 73 12.1
40 12.6 20.56 94.7 68 62 79 85.0 90.5 94 62 73 5 81 46 27 87.9
72 14.3 62 71 16.4 9.1
28 85.7 38 29 83.6 90.9
5 7.5 21 29.2 49 78 31.7 75 68 72 96.8 93 34 84.2 37 5
95 92.5 79 70.8 51 22 68.3 25 32 28 3.2 7 66 15.8 63 95
Ethanol Pentane Cyclopentane Hexane Cyclohexane Heptane Octane Benzene Fluorobenzene Toluene Bromodichloromethane Iodomethane Chloroform Trichloronitromethane Carbon tetrachloride 1,2-Dichloroethane 3-Chloro-1-propene
34.3 44.7 58.7 64.8 70.9 77.0 67.9 70.0 76.7 75.5 41.2 59.3 77.5 65.0 70.5 44
4.35
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
20.5 10.5 6 2.8 44 27 43 20.3 40 76 44 44 41 29 91 56
79.5 89.5 94 97.2 56 73 57 79.7 60 24 56 56 59 71 9 44
4 18.5 34.7 34.7 70 16.9 51.2
96 81.5 65.3 65.3 30 83.1 48.8
94 92.2 8 3 64 51 48 49 30 37 55
6 7.8 92 97 36 49 52 51 70 63 45
92.1 58.5 93 19
7.9 41.5 7 81
Ethanol (continued ) 1-Bromopropane 2-Bromopropane 1-Chloropropane 2-Chloropropane 1-Iodopropane 2-Iodopropane 1-Bromobutane 1-Chlorobutane 2-Butanone 1,1-Diethoxyethane Dipropyl ether Acetonitrile Acrylonitrile Nitromethane Carbon disulfide Diethyl sulfide
62.8 55.6 45.0 35.6 75.4 71.5 75.0 65.7 74.8 78.0 74.5 72.5 70.8 76.1 42.6 72.6 1-Propanol
Hexane Cyclohexane Methylcyclohexane Heptane Octane Benzene Toluene o-Xylene m-Xylene p-Xylene Styrene Propyl formate Butyl formate Propyl acetate Ethyl propionate Methyl butyrate Dipropyl ether 1,1-Diethoxyethane 1,4-Dioxane Chloroform Carbon tetrachloride Trichloronitromethane Iodoethane 1,2-Dichloroethane
65.7 74.7 87.0 84.6 93.9 77.1 92.5 zeotrope 97.1 96.9 97.0 80.7 95.5 94.7 93.4 94.4 85.7 92.4 95.3 zeotrope 73.4 94.1 70 80.7
4.36
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
52 9 18 80 18 48.4 8.8 94.5
48 91 82 20 82 51.6 91.2 5.5
6 23 32 50.5 84 33.7 30 69 4.2 35 18 43.5 15 20 2.8 20.5 12 42 32 23 25 60 37 56 60 32 63 10 14.1
94 77 68 49.5 16 66.3 70 31 95.8 65 82 56.5 85 80 97.2 79.5 88 58 68 77 75 40 63 44 40 68 37 90 85.9
1-Propanol (continued ) Tetrachloroethylene 1-Bromopropane 1-Chlorobutane Chlorobenzene Fluorobenzene Nitromethane 1-Nitropropane Carbon disulfide
94.0 69.7 74.8 96.5 80.2 89.1 97.0 45.7 2-Propanol
Pentane Hexane Cyclohexane Heptane Octane Benzene Fluorobenzene Toluene Chloroform Trichloronitromethane Carbon tetrachloride 1,2-Dichloroethane Iodoethane 3-Bromo-1-propene 1-Chloropropane 1-Bromopropane 2-Bromopropane 1-Iodopropane 2-Iodopropane 1-Chlorobutane Ethyl acetate Isopropyl acetate Methyl propionate Acrylonitrile Butylamine 2-Butanone 1,1-Diethoxyethane Ethyl propyl ether Diisopropyl ether
35.5 62.7 69.4 76.4 81.6 71.7 74.5 80.6 60.8 81.9 69.0 74.7 67.1 66.5 46.4 66.8 57.8 79.8 76.0 70.8 75.3 81.3 76.4 71.7 74.7 77.5 81.3 62.0 66.2
4.37
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
9.5 5 3.2 20 18 45.2 71.5 27.8 75 71.5 68 65.1 23.6 69 47 50 64 17 40 52 63 45 82.5 48 13 97.6 68 7 30 56 52 77.1 35.7 69 32.2 50 45
90.5 95 96.8 80 82 54.8 28.5 72.2 25 28.5 32 34.9 76.4 31 53 50 36 83 60 48 37 55 17.5 52 87 2.4 32 93 70 44 48 22.9 64.3 31 67.8 50 55
14.2 14
85.8 86
1-Butanol Cyclohexane Cyclohexene Hexane Methylcyclohexane Heptane Octane Nonane Toluene o-Xylene m-Xylene p-Xylene Ethylbenzene Butyl formate Isopentyl formate Butyl acetate Isobutyl acetate Ethyl butyrate Ethyl isobutyrate Methyl isopentanoate Ethyl borate Ethyl carbonate Isobutyl nitrate Dibutyl ether Diisobutyl ether 1,1-Diethoxyethane Carbon tetrachloride Tetrachloroethylene 2-Bromo-2-methylpropane 2-Iodo-2-methylpropane Chlorobenzene Paraldehyde Hexaldehyde Ethylenediamine Pyridine 1-Nitropropane Butyronitrile Diisopropyl sulfide
79.8 82.0 68.2 95.3 93.9 108.5 115.9 105.5 116.8 116.5 115.7 115.9 105.8 115.9 117.2 114.5 115.7 109.2 113.5 113.0 116.5 112.8 117.8 113.5 101.0 76.6 110.0 90.2 110.5 115.3 115.8 116.8 124.7 118.6 115.3 113.0 112.0 2-Methyl-2-propanol
Cyclohexene Cyclohexane
80.5 78.3
4.38
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Water
Other component
2-Methyl-2-propanol (continued ) Methylcyclopentane Hexane Methylcyclohexane Heptane 2,5-Dimethylhexane 1,3-Dimethylcyclohexane 2,2,4-Trimethylpentane Benzene Chlorobenzene Fluorobenzene Toluene Ethylbenzene p-Xylene Butyl formate Isobutyl formate Propyl acetate Isobutyl acetate Methyl butyrate Ethyl isobutyrate Methyl chloroacetate Dipropyl ether Isobutyl vinyl ether 1,1-Diethoxyethane 2-Pentanone 3-Pentanone 1,2-Dichloroethane 1-Bromobutane 1-Chlorobutane 2-Bromo-2-methylpropane 2-Iodo-2-methylpropane 1-Nitropropane Isobutyl nitrate Diisopropyl sulfide
71.0 68.3 92.6 90.8 98.7 102.2 92.0 79.3 107.1 84.0 101.2 107.2 107.1 103.0 97.4 101.0 107.6 101.3 105.5 107.6 89.5 82.7 98.2 101.8 107.7 83.5 95.0 77.7 88.8 104.0 105.3 105.6 105.8
5 2.5 32 27 42 56 27 7.4 63 9 45 80 88.6 40 12 17 92 25 52 12 10 6.2 20 19 20 6.5 21 4 12 36 15.2 36 73
95 97.5 68 73 58 44 73 92.6 37 91 55 20 11.4 60 88 83 8 75 48 88 90 93.8 80 81 80 93.5 79 96 88 64 84.8 64 27
7 30 10 49 94 24
93 70 90 51 6 76
3-Methyl-1-butanol Heptane Octane Toluene Ethylbenzene Isopropylbenzene Camphene
97.7 117.0 109.7 125.7 131.6 130.9
4.39
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
3-Methyl-1-butanol (continued ) Bromobenzene o-Fluorotoluene Butyl acetate Paraldehyde Dibutyl ether
131.7 112.1 125.9 123.5 129.8
85 14.0 16.5 22.0 65
15 86.0 83.5 78.0 35
14 5 40 75 41 92
86 95 60 25 59 8
42 4.5 58 50 68 17.36 50 53 55 18 28 85 45
58 95.5 42 50 32 82.64 50 47 45 82 72 15 55
6 35 83.1 46 25 21 47 22 51.0
94 65 16.9 54 75 79 53 78 49.0
Cyclohexanol o-Xylene m-Xylene Propylbenzene Indene Camphene Cineole
143.0 138.9 153.8 160.0 151.9 160.6 Allyl alcohol
Methylcyclohexane Hexane Cyclohexane 2,5-Dimethylhexane Octane Benzene Toluene Propyl acetate Methyl butyrate 1,2-Dichloroethane 3-Iodo-1-propene Chlorobenzene Diethyl sulfide
85.0 65.5 74.0 89.3 93.4 76.75 92.4 94.2 93.8 79.9 89.4 96.2 85.1 Phenol
2,7-Dimethyloctane Decane Tridecane Butylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Indene Camphene Benzaldehyde
159.5 168.0 180.6 175.0 166.0 163.5 177.8 156.1 175.6
4.40
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
13 50 78 15 75.4 71.2 67.5 57.0 72.5 52.3 41.9 39.2 53
87 50 22 85 24.6 29.8 32.5 43.0 27.5 47.7 58.1 60.8 47
60 11 57
40 89 43
61 62 30 6.5 50 72 12 58 7 85.8
39 38 70 93.5 50 28 88 42 93 14.2
15 14 38 10.8 48 50 55 80 67 65 72
85 86 62 89.2 52 50 45 20 33 35 28
Phenol (continued ) 1-Octanol 2-Octanol Dipentyl ether Diisopentyl ether 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine 2,4-Dimethylpyridine 2,6-Dimethylpyridine 2,4,6-Trimethylpyridine Aniline Ethylene diacetate Iodobenzene
195.4 184.5 180.2 172.2 185.5 188.9 190.0 193.4 185.5 195.2 185.8 195.5 177.7 Benzyl alcohol
Naphthalene D-Limonene 1,3,5-Triethylbenzene o-Cresol m-Cresol p-Cresol N-Methylaniline N,N-Dimethylaniline N-Ethylaniline N, N-Diethylaniline Iodobenzene Nitrobenzene o-Bromotoluene Borneol
204.1 176.4 203.2 zeotrope 207.1 206.8 195.8 193.9 202.8 204.2 187.8 204.0 181.3 205.1 2-Ethoxyethanol
Methylcyclohexane Heptane Octane Toluene Ethylbenzene p-Xylene Styrene Propylbenzene Isopropylbenzene Camphene Propyl butyrate
98.6 96.5 116.0 110.2 127.8 128.6 130.0 134.6 133.2 131.0 133.5
4.41
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
53 32 73.4 30 15 52 58.5 91 42
47 68 26.6 70 85 48 41.5 9 58
3 23 55 2.3 16.5 87 6.55 6.4 13 19 18 51 60.0 57.2 98.3 26 74.2 82 20 40 66.5 68.5 56 69 27 60 89 51.5 46.5 25 6.4
97 77 45 97.7 83.5 13 93.45 93.6 87 81 82 49 40.0 42.8 1.7 74 25.8 18 80 60 33.5 31.5 44 31 73 40 11 48.5 53.5 75 93.6
2-Butoxyethanol Dipentene 1,3,5-Trimethylbenzene Butylbenzene Camphene o-Cresol Phenetole Cineole Benzaldehyde Diisobutyl sulfide
164.0 162.0 169.6 154.5 191.6 167.1 168.9 171.0 163.8 1,2-Ethanediol
Heptane Decane Tridecane Toluene Styrene Stilbene m-Xylene p-Xylene 1,3,5-Trimethylbenzene Propylbenzene Isopropylbenzene Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Anthracene Indene Acenaphthene Fluorene Camphene Camphor Biphenyl Diphenylmethane Benzyl alcohol 2-Phenylethanol o-Cresol m-Cresol 3,4-Dimethylphenol Menthol Ethyl benzoate o-Bromotoluene Dibutyl ether
97.9 161.0 188.0 110.1 139.5 196.8 135.1 134.5 156 152 147.0 183.9 190.3 189.1 197 168.4 194.65 196.0 152.5 186.2 192.3 193.3 193.1 194.4 189.6 195.2 197.2 188.6 186.1 166.8 139.5
4.42
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Alcohol
Other component
10.5 60 87 52 47 33.5 42 9.7 79.5 94 4 94.4 30 59 48.5
89.5 40 13 48 53 66.5 58 90.3 20.5 6 96 5.6 70 41 51.5
20 71 65 51 31 33 42 28 32
80 29 35 49 69 67 58 72 68
1,2-Ethanediol (continued ) Methoxybenzene Diphenyl ether Benzyl phenyl ether Acetophenone 2,4-Dimethylaniline N,N-Dimethylaniline m-Toluidine 2,4,6-Trimethylpyridine Quinoline Tetrachloroethylene 1,2-Dibromoethane Chlorobenzene -Chlorotoluene Nitrobenzene o-Nitrotoluene
150.5 193.1 195.5 185.7 188.6 175.9 188.6 170.5 196.4 119.1 129.8 130.1 167.0 185.9 188.5 1,2-Ethanediol monoacetate
Indene 1-Octanol Phenol o-Cresol m-Cresol p-Cresol Dipentyl ether Diisopentyl ether m-Bromotoluene
180.0 189.5 197.5 199.5 206.5 206.0 180.8 170.2 182.0
D. Binary azeotropes containing ketones Composition, wt % System
BP of azeotrope, C
Ketone
Other component
36 20 67.5 59
64 80 32.5 41
Acetone Cyclopentane Pentane Cyclohexane Hexane
41.0 32.5 53.0 49.8
4.43
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Ketone
Other component
89.5 38.2 48.3 61 78.1 11.5 67 57
10.5 61.8 51.7 39 21.9 88.5 33 43
40 28.6 70 95 44 69 35 11.8 60 30 38 75
60 71.4 30 5 56 31 65 88.2 40 70 62 25
Acetone (continued ) Heptane Diethylamine Methyl acetate Diisopropyl ether Chloroform Carbon tetrachloride Carbon disulfide Ethylene sulfide
55.9 51.4 55.8 54.2 64.4 56.1 39.3 51.5 2-Butanone
Cyclohexane Hexane Heptane 2,5-Dimethylhexane Benzene 2-Methyl-2-propanol Butylamine Ethyl acetate Methyl propionate Butyl nitrite 1-Chlorobutane Fluorobenzene
71.8 64.2 77.0 79.0 78.33 78.7 74.0 77.1 79.0 76.7 77.0 79.3
E. Miscellaneous binary azeotropes Composition, wt % System
BP of azeotrope, C
Solvent
Other component
169.2 213.0 215.2 218.2 142.6 138.4 137.8 144
18 50.5 56.5 68 11 10 8 12
82 49.5 43.5 32 89 90 92 88
170.5
19
81
Solvent: acetamide Dipentene Biphenyl Diphenylmethane 1,2-Diphenylethane o-Xylene m-Xylene p-Xylene Styrene 4-Isopropyl-1methylbenzene
4.44
SECTION 4
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Solvent
Other component
Solvent: acetamide (continued ) Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Indene Acenaphthene Camphene Camphor Benzaldehyde 3,4-Dimethylphenol 2-Methoxy-4-(2-propenyl)phenol N-Methylaniline N-Ethylaniline N,N-Diethylaniline Diphenyl ether Safrole Tetrachloroethylene
199.6 209.8 208.3 177.2 217.1 155.5 199.8 178.6 221.1
27 43.8 40 17.5 64.2 12 23 6.5 96
73 56.2 60 82.5 35.8 88 77 93.5 4
220.8 193.8 199.0 198.1 214.6 208.8 120.5
88 14 18 24 52 32 97.4
12 86 82 76 48 68 2.6
13.5 36 57.5 71.5 86.2 95.2 46 13.5 12.0 41.5 83 8 55 28 66
86.5 64 42.5 28.5 13.8 4.8 54 86.5 88.0 58.5 17 92 45 72 34
25.3 56.1 89.9 22.2 13.1 8
74.7 43.9 10.1 77.8 86.9 92
Solvent: aniline Nonane Decane Undecane Dodecane Tridecane Tetradecane Butylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Indene 1-Octanol o-Cresol Dipentyl ether Diisopentyl ether Hexachloroethane
149.2 167.3 175.3 180.4 182.9 183.9 177.8 168.6 164.3 179.8 183.9 191.3 177.5 169.3 176.8 Solvent: pyridine
Heptane Octane Nonane Toluene Phenol Piperidine
95.6 109.5 115.1 110.1 183.1 106.1
4.45
PHYSICAL PROPERTIES
TABLE 4.7 Binary Azeotropic (Constant Boiling) Mixtures (continued ) Composition, wt % System
BP of azeotrope, C
Solvent
Other component
14 41.2 11.2 83.2 64 42.7
86 58.8 88.8 16.8 36 57.3
16 64.7 51.9 4.7 99.3 46.3 78.8 48.3 97.7
84 35.3 48.1 95.3 0.7 53.7 21.2 51.7 2.3
Solvent: thiophene Methylcyclopentane Cyclohexane Hexane Heptane 2,3-Dimethylpentane 2,4-Dimethylpentane
71.5 77.9 68.5 83.1 80.9 76.6 Solvent: benzene
Methylcyclopentane Cyclohexene Cyclohexane Hexane Heptane 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 2,2,4-Trimethylpentane
71.7 78.9 77.6 68.5 80.1 75.9 79.4 75.2 80.1
Solvent: bis(2-hydroxyethyl) ether Biphenyl Diphenylmethane 1,3,5-Trimethylbenzene Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Fluorene Benzyl acetate Bornyl acetate Ethyl fumarate Dimethyl o-phthalate Methyl salicylate 2-Hydroxy-1-isopropyl4-methylbenzene 1,2-Dihydroxybenzene Safrole Isosafrole Benzyl phenyl ether Nitrobenzene m-Nitrotoluene o-Nitrophenol Quinoline p-Dibromobenzene
232.7 236.0 210.0 212.6 277.0 225.5 239.6 243.0 214.9 223.0 217.1 245.4 220.6
48 52 22 22 45 39 62 80 7 18 10 96.3 15
52 48 78 78 55 61 38 20 93 82 90 3.7 85
232.3 259.5 225.5 233.5 241.5 210.0 224.2 216.0 233.6 212.9
13 46 33 46 80 10 25 10.5 29 13
87 54 67 54 20 90 75 89.5 71 87
4.46
SECTION 4
TABLE 4.8 Ternary Azeotropic Mixtures A. Ternary azeotropes containing water and alcohols Composition, wt %
System
BP of azeotrope, C
Water
Alcohol
Other component
Methanol Chloroform 2-Methyl-1,3-butadiene Methyl chloroacetate
52.3 30.2 67.9
1.3 0.6 6.3
8.2 5.4 81.2
90.5 94.0 13.5
1 8.7 7.4 7.5 6.3 1.6 4.5 2.3 4.8 4.8 5 11.4 12.1 9.0 6.1 3 12 5.5 9
55 20.3 18.5 42.5 8.6 5.0 10.0 3.5 87.9 19.7 17 27.6 18.4 8.4 33.0 12 37 16.1 13
44 71.0 74.1 50.0 85.1 93.4 85.5 94.2 7.3 75.5 78 61.0 69.5 82.6 60.9 85 51 78.4 78
7.6 5 8.5 27.4 8.0 11.7 20 17.0 13 12.5
10.1 11 10.0 51.6 44.8 20.2 20 10.0 5 20.7
82.3 84 81.5 21.0 47.2 68.1 60 73.0 82 66.8
7.5 12.5
18.7 40.5
73.8 47.0
Ethanol Acetonitrile Acrylonitrile Benzene Butylamine Butyl methyl ether Carbon disulfide Carbon tetrachloride Chloroform Crotonaldehyde Cyclohexane 1,2-Dichloroethane 1,1-Diethoxyethane Diethoxymethane Ethyl acetate Heptane Hexane Toluene Trichloroethylene Triethylamine
72.9 69.5 64.9 81.8 62 41.3 62 55.3 78.0 62.6 66.7 77.8 73.2 70.2 68.8 56.0 74.4 67.0 74.7 1-Propanol
Benzene Carbon tetrachloride Cyclohexane 1,1-Dipropoxyethane Dipropoxymethane Dipropyl ether 3-Pentanone Propyl acetate Propyl formate Tetrachloroethylene
67 65.4 66.6 87.6 86.4 74.8 81.2 82.5 70.8 81.2 2-Propanol
Benzene Butylamine
66.5 83
4.47
PHYSICAL PROPERTIES
TABLE 4.8 Ternary Azeotropic Mixtures (continued ) Composition, wt %
System
BP of azeotrope, C
Other component
Water
Alcohol
7.5 13.1 7
18.5 38.2 20
74.0 48.7 73
37.3 21.3 29.9 41.4 19.2 69.9 60.0
27.4 10.0 34.6 7.6 2.9 18.3 14.6
35.3 68.7 35.5 51.0 77.9 11.8 25.4
4.05 8.9 9
4.95 10.8 19
91.00 80.3 72
30.4 17.3 17.9
23.1 6.7 16.4
46.5 76.0 65.7
8.1 3.1 8
21.4 11.9 21
70.5 85.0 71
44.8 32.4
31.2 19.6
24.0 48.0
8.6 5 8 8.5
9.2 11 11 5.1
82.2 84 81 86.4
2-Propanol (continued ) Cyclohexane Toluene Trichloroethylene
64.3 76.3 69.4 1-Butanol
Butyl acetate Butyl formate Dibutyl ether Heptane Hexane Nonane Octane
89.4 83.6 90.6 78.1 61.5 90.0 86.1 2-Butanol
Carbon tetrachloride Cyclohexane Isooctane
65 69.7 76.3 2-Methyl-1-propanol
Isobutyl acetate Isobutyl formate Toluene
86.8 80.2 81.3 2-Methyl-2-propanol
Benzene Carbon tetrachloride Cyclohexane
67.3 64.7 65.0 3-Methyl-1-butanol
Isopentyl acetate Isopentyl formate
93.6 89.8 Allyl alcohol
Benzene Carbon tetrachloride Cyclohexane Hexane
68.2 65.2 66.2 59.7
4.48
TABLE 4.8 Ternary Azeotropic Mixtures (continued) B. Other ternary azeotropes
System
BP of azeotrope, C
Composition, wt %
System
BP of azeotrope, C
Composition, wt %
Water Acetone 2-Methyl-1,3-butadiene
32.5
0.4 7.6 92.0
Water Nitromethane Heptane
71.4
7.9 29.7 62.4
Water Acetonitrile Benzene
66
8.2 23.3 68.5
Water Nitromethane Nonane
80.7
17.4 58.3 24.3
Water Acetronitrile Trichloroethylene
67
6.4 20.5 73.1
Water Nitromethane Octane
77.4
12.4 44.3 43.3
Water Acetonitrile Triethylamine
68.6
3.5 9.6 86.9
Water Nitromethane Pentane
33.1
2.1 6.5 91.4
Water 2-Butanone Cyclohexane
63.6
5 35 60
Water Nitromethane Undecane
82.8
20.6 73.3 6.1
Water Butyraldehyde Hexane
55.0
4 21 75
Water Pyridine Dodecane
93.5
40.5 54.5 5.0
Water Formic acid Isopentanoic acid
107.6
21.3 76.3 2.4
Water Pyridine Undecane
93.1
38.5 51.0 10.5
Water Formic acid Isobutyric acid
107.0
15.5 66.8 17.7
Water Pyridine Decane
92.3
35.5 45.5 19.0
4.49
Water Formic acid Butyric acid
107.6
19.5 75.9 4.6
Water Pyridine Nonane
90.5
30.5 37.0 32.5
Water Formic acid Propionic acid
107.2
18.6 71.9 9.5
Water Pyridine Octane
86.7
22.4 25.5 52.0
Water Hydrogen bromide Chlorobenzene
105
11.0 10.4 78.6
Water Pyridine Heptane
78.6
14.0 15.5 70.5
Water Hydrogen chloride Chlorobenzene
96.9
20.2 5.3 74.5
Acetic acid Pyridine Acetic anhydride
134.4
23 55 22
Water Hydrogen chloride Phenol
107.3
64.8 15.8 19.4
Acetic acid Pyridine Decane
134.1
31.4 38.2 30.4
Water Hydrogen fluoride Fluorosilic acid
116.1
54 10 36
Acetic acid Pyridine Ethylbenzene
129.1
13.5 25.2 61.3
Water Nitroethane Heptane
75.1
11.5 75.1 64.0
Acetic acid Pyridine Heptane
98.5
3.4 10.6 86.0
Water Nitroethane Hexane
59.5
8.4 9.3 82.3
Acetic acid Pyridine Nonane
128.0
20.7 29.4 49.9
Water Nitromethane Decane
82.4
19.1 68.1 12.8
Acetic acid Pyridine Octane
115.7
10.4 20.1 69.5
Water Nitromethane Dodecane
83.1
21.5 75.3 3.2
Acetic acid Pyridine o-Xylene
132.2
17.7 30.5 51.8
4.50
TABLE 4.8 Ternary Azeotropic Mixtures (continued) BP of azeotrope, C
Composition, wt%
Acetic acid Pyridine p-Xylene
129.2
10.2 22.5 67.3
Methanol Methyl acetate Hexane
47.4
14.6 36.8 48.6
Acetic acid 2,6-Dimethylpyridine Undecane
163.0
75.0 13.8 11.2
Ethanol Acetone Chloroform
63.2
10.4 24.3 65.3
Acetic acid 2,6-Dimethylpyridine Decane
147.0
12.6 74.3 13.1
Ethanol Acetonitrile Triethylamine
70.1
8 34 58
Acetic acid 2-Methylpyridine Decane
141.3
19.9 46.8 33.3
Ethanol Benzene Cyclohexane
64.7
29.6 12.8 57.6
Acetic acid 2-Methylpyridine Nonane
135.0
12.8 38.4 48.8
Ethanol Chloroform Hexane
57.3
9.5 56.1 34.4
Acetic acid 2-Methylpyridine Octane
121.3
3.6 24.8 71.6
1-Propanol Benzene Cyclohexane
73.8
15.5 30.4 54.2
Acetic acid Benzene Cyclohexane
77.2
7.6 34.4 58.0
2-Propanol Benzene Cyclohexane
69.1
31.1 15.0 53.9
Acetic acid 2-Methyl-1-butanol Isopentyl acetate
132
15 54 31
1-Butanol Benzene Cyclohexane
77.4
4 48 48
Propionic acid 2-Methylpyridine Decane
149.3
29.5 32.0 38.5
1-Butanol Pyridine Toluene
108.7
11.9 20.7 76.4
System
System
BP of azeotrope, C
Composition, wt%
Propionic acid 2-Methylpyridine Nonane
140.1
16.5 21.5 42.0
1,2-Ethanediol Phenol 2,6-Dimethylpyridine
185.0
8.7 74.6 16.7
Propionic acid 2-Methylpyridine Octane
123.7
4.5 10.5 85.0
1,2-Ethanediol Phenol 2-Methylpyridine
185.1
5.9 79.1 15.0
Propionic acid 2-Methylpyridine Undecane
153.4
43.0 40.0 17.0
1,2-Ethanediol Phenol 3-Methylpyridine
186.4
15.9 67.7 16.4
Propionic acid Pyridine Undecane
147.1
55.5 26.4 18.1
1,2-Ethanediol Phenol 2,4,6-Trimethylpyridine
188.6
29.5 54.8 15.7
Methanol Acetone Chloroform
57.5
23 30 47
Acetone Chloroform Hexane
60.8
3.6 68.8 27.6
Methanol Acetone Hexane
47
14.6 30.8 59.6
Acetone Methyl acetate Hexane
49.7
51.1 5.6 43.3
Methanol Acetone Methyl acetate
53.7
17.4 5.8 76.8
Chloroform Ethyl formate 2-Bromopropane
62.0
79.7 5.3 15.7
Methanol Methyl acetate Cyclohexane
50.8
17.8 48.6 33.6
1,4-Dioxane 2-Methyl-1-propanol Toluene
101.8
44.3 26.7 29.0
4.51
4.52
SECTION 4
FREEZING POINTS Crystalline organic compounds typically have a characteristic melting point. In some cases, a compound may have more than one arrangement in the crystal and such polymorphs will exhibit differences in melting behavior. For the most part, however, the melting point of a compound is characteristic and invariant for a pure sample. When contaminated by a second substance, however, the melting (or freezing) point is typically lowered. A classical test used to determine if two samples that have the same melting point are identical is to intimately mix them and record the melting point of the mixture. If the melting point of the blend is identical to that of each individual compound prior to mixing, the two substances are judged to be identical. When the two compounds are not the same, the melting point of the mixture is typically lowered and broadened. The melting or freezing point depression can be used to determine an approximate molecular weight for a given substance. The cryoscopic constant Kf gives the depression of the melting point T (in degrees Celsius) produced when 1 mol of solute is dissolved in 1000 g of a solvent. It is applicable only to dilute solutions for which the number of moles of solute is negligible in comparison with the number of moles of solvent. Because camphor is conveniently available and has a large Kf value, it is often used in this application. A known amount of the substance whose molecular weight is to be determined (the solute) is mixed with a larger amount of camphor (the solvent). Melting the mixture permits intimate mixing. The lowering or depression of the freezing point is then used to calculate the molecular weight from the following equation M2
1000w2Kf w1 T
where M2 is the molecular weight to be determined of the solute, w1 is the exact weight of the solvent, w2 is the exact weight of the added compound of unknown molecular mass,
T is the change in temperature, and Kf is the cryoscopic constant given in the Table 4.9A. In Table 4.9A, a range of compounds and their cryoscopic constants are recorded. All of the same data are included in Table 4.9B but they are rearranged in order of increasing melting point at the left and decreasing Kf at the right.
TABLE 4.9A Molecular Lowering of the Melting of Freezing Point Compound
Kf
MP
Acetamide Acetic acid Acetone Ammonia Aniline Antimony(III) chloride
4.04 3.90 2.40 0.957 5.87 17.95
80.1 16.63 95.35 77.75 5.98 73.4
Benzene Benzonitrile Benzophenone Bicyclohexane Biphenyl Borneol Bornylamine Butanedinitrile
5.12 5.34 9.8 14.52 8.0 35.8 40.6 18.26
5.53 12.75 48.1 3–4 68.8 204 163 57.9
Compound
Kf
MP
Camphene Camphorquinone D-()-Camphor Carbon tetrachloride o-Cresol p-Cresol Cyclohexane Cyclohexanol Cyclohexylcyclohexane Cyclopentadecanone
31.08 45.7 39.7 29.8 5.60 6.96 20.0 39.3 14.52 21.3
51–52 199 178.8 22.9 30.9 34.8 6.5 25.2 3–4 64–66
Z-Decahydronaphthalene E-Decahydronaphthalene Dibenz[de,kl)anthracene Dibenzyl ether
19.47 20.81 25.7 6.27
43.0 30.4 273–274 3.5
4.53
PHYSICAL PROPERTIES
TABLE 4.9A Molecular Lowering of the Melting of Freezing Point (continued ) Compound
Kf
MP
1,2-Dibromoethane Diethyl ether 1,2-Dimethoxybenzene N, N-Dimethylacetamide 2,2-Dimethyl-1-propanol Dimethyl sulfoxide 1,4-Dioxane Diphenylamine Diphenyl ether
12.5 1.79 6.38 4.46 11.0 4.07 4.63 8.60 7.88
10.0 116.3 22.5 20.0 52–54 18.5 11.7 53–54 26.9
1,2-Ethanediamine Ethoxybenzene
2.43 7.15
8.5 29.5
Formamide Formic acid
3.85 2.77
2.6 8.5
Glycerol
3.3–3.7
18.18
Hexamethylphosphoramide N-Methylacetamide 2-Methyl-2-butanol Methylcyclohexane Methyl Z-9-octadecenoate 2-Methyl -2-propanol
6.93 6.65 10.4 14.13 3.4 8.37
7.2 30.6 9.0 126.6 19.9 25.8
Naphthalene
6.94
80.2
Compound
Kf
MP
Nitrobenzene
6.852
5.8
Octadecanoic acid 2-Oxohexamethyleneimine
4.50
70
7.30
69.2
Phenol Pyridine
7.40 4.75
40.9 41.6
Quinoline
1.95
14.9
Succinonitrile Sulfuric acid
18.26 1.86
46–48 10.38
21.7 37.7
0.0 26.0
64.1 5.372 14.4 6.7
27.6 43.8 8.1 1–2
12.45
93.4
1,1,2,2,-Tetrabromoethane 1,1,2,2,-Tetrachloro1,2difluoroethane Tetramethylene sulfone p-Toluidine Tribromomethane 1,3,3-Trimethyl-2oxabicyclo[2.2.2]octane Triphenylmethane Water
1.86
0.000
p-Xylene
4.3
13.3
The same data are presented in Table 4.9B but the information is rearranged at the left in order of increasing melting point and at the right in order of decreasing Kf. TABLE 4.9B Molecular Lowering of the Melting of Freezing Point Compound
Kf
MP
Compound
Kf
MP
Methylcyclohexane Diethyl ether Acetone Ammonia Z-Decahydronaphthalene Pyridine E-Decahydronaphthalene Ethoxybenzene Carbon tetrachloride N, N- Dimethylacetamide Quinoline Benzonitrile 2-Methyl-2-butanol Aniline 1,1,2,2-Tetrabromoethane Water 1,3,3-Trimethyl-2oxabicyclo[2.2.2]octane
14.13 1.79 2.4 0.957 19.47 4.75 20.81 7.15 29.8 4.46 1.95 5.34 10.4 5.87 21.7 1.86 6.7
126.6 116.3 95.35 77.75 43 41.6 30.4 29.5 22.9 20 14.9 12.75 9 5.98 0 0 1–2
Tetramethylene sulfone Camphorquinone Bornylamine D-()-Camphor Cyclohexanol 1,1,2,2-Tetrachloro-1,2difluoroethane Borneol Camphene Carbon tetrachloride Dibenz[de,kl)anthracene 1,1,2,2-Tetrabromoethane Cyclopentadecanone E- Decahydronaphthalene Cyclohexane Z-Decahydronaphthalene Succinonitrile Butanedinitrile
64.1 45.7 40.6 39.7 39.3 37.7
27.6 199 163 178.8 25.2 26
35.8 31.08 29.8 25.7 21.7 21.3 20.81 20 19.47 18.26 18.26
204 51–52 22.9 273–274 0 64–66 30.4 6.5 43 46–48 57.9
4.54
SECTION 4
TABLE 4.9B Molecular Lowering of the Melting of Freezing Point (continued ) Compound
Kf
MP
Compound
Kf
MP
Formamide Bicyclohexane Dibenzyl ether Benzene Nitrobenzene Cyclohexane Cyclohexylcyclohexane Hexamethylphosphoramide Tribromomethane 1,2-Ethanediamine Formic acid 1,2-Dibromoethane Sulfuric acid 1,4-Dioxane p-Xylene Acetic acid Glycerol Dimethyl sulfoxide Methyl Z-9-octadecenoate 1,2-Dimethoxybenzene Cyclohexanol 2-Methyl-2-propanol 1,1,2,2-Tetrachloro-1,2difluoroethane Diphenyl ether Tetramethylene sulfone N-Methylacetamide o-Cresol p-Cresol Phenol p-Toluidine Succinonitrile Benzophenone Camphene 2,2-Dimethyl-1-propanol Diphenylamine Butanedinitrile Cyclopentadecanone Biphenyl 2-Oxohexamethylene imine Octadecanoic acid Antimony(III) chloride Acetamide Naphthalene Triphenylmethane Bornylamine D-()-Camphor Camphorquinone Borneol Dibenz[de,kl) anthracene
3.85 14.52 6.27 5.12 6.852 20 14.52
2.6 3–4 3.5 5.53 5.8 6.5 6.5
Antimony(III) chloride Bicyclohexane Cyclohexylcyclohexane Tribromomethane Methylcyclohexane 1,2-Dibromoethane Triphenylmethane
17.95 14.52 14.52 14.4 14.13 12.5 12.45
73.4 3–4 6.5 8.1 126.6 10 93.4
6.93 14.4 2.43 2.77 12.5 1.86 4.63 4.3 3.9 3.3–3.7 4.07 3.4 6.38 39.3 8.37 37.7
7.2 8.1 8.5 8.5 10 10.38 11.7 13.3 16.63 18.18 18.5 19.9 22.5 25.2 25.8 26
11 10.4 9.8 8.6 8.37 8 7.88 7.4 7.3 7.15 6.96 6.94 6.93 6.852
52–54 9 48.1 53–54 25.8 68.8 26.9 40.9 69.2 29.5 34.8 80.2 7.2 5.8
7.88 64.1 6.65 5.6 6.96 7.4 5.372 18.26 9.8 31.08 11 8.6 18.26 21.3 8 7.3 4.5 17.95 4.04 6.94 12.45 40.6 39.7 45.7 35.8 25.7
26.9 27.6 30.6 30.9 34.8 40.9 43.8 46–48 48.1 51–52 52–54 53–54 57.9 64–66 68.8 69.2 70 73.4 80.1 80.2 93.4 163 178.8 199 204 273–274
2,2-Dimethyl-1-propanol 2-Methyl-2-butanol Benzophenone Diphenylamine 2-Methyl-2-propanol Biphenyl Diphenyl ether Phenol 2-Oxohexamethylene imine Ethoxybenzene p-Cresol Naphthalene Hexamethylphosphoramide Nitrobenzene 1,3,3-Trimethyl-2oxabicyclo[2.2.2]octane N-Methylacetamide 1,2-Dimethoxybenzene Dibenzyl ether Aniline o-Cresol p-Toluidine Benzonitrile Benzene Pyridine 1,4-Dioxane Octadecanoic acid N, N- Dimethylacetamide p-Xylene Dimethyl sulfoxide Acetamide Acetic acid Formamide Glycerol Methyl Z-9-octadecenoate Formic acid 1,2-Ethanediamine Acetone Quinoline Water Sulfuric acid Diethyl ether Ammonia
6.7 6.65 6.38 6.27 5.87 5.6 5.372 5.34 5.12 4.75 4.63 4.5 4.46 4.3 4.07 4.04 3.9 3.85 3.3–3.7 3.4 2.77 2.43 2.4 1.95 1.86 1.86 1.79 0.957
1–2 30.6 22.5 3.5 5.98 30.9 43.8 12.75 5.53 41.6 11.7 70 20 13.3 18.5 80.1 16.63 2.6 18.18 19.9 8.5 8.5 95.35 14.9 0 10.38 116.3 77.75
4.55
PHYSICAL PROPERTIES
VISCOSITY, DIELECTRIC CONSTANT, DIPOLE MOMENT, SURFACE TENSION, AND REFRACTIVE INDEX Several additional physical properties are summarized in Table 4.10. These are viscosity, dielectric constant, dipole moment, and surface tension for selected common organic compounds.
Viscosity Viscosity may be thought of as a fluid’s resistance to flow or internal friction. It is characterized by the property called viscosity, which is designated (eta). A fluid passing through a tube will flow more freely if its viscosity is low and more slowly if it is more viscous. Viscosity is given in Table 4.10 in units of milliNewton·second·meter2 or mN·s · m2. In fluid mechanics, the unit “poise” is equal to a force of 1 dyne · cm2 for two fluids passing each other at a rate of 1 cm · s1. Viscosity is typically greater at lower temperatures; temperatures (in C) are given in parentheses in the table. Dielectric Constant The dielectric constant (or relative permittivity) is usually expressed using the symbol . The dielectric is defined as the ratio of electric fields E0/E for a vacuum and a substance placed between the plates of a capacitor. The dielectric constant of a vacuum is 1 and substances that can orient to greater or lesser extents in the applied field will have higher dielectric constants. The dielectric constant of heptane at 20 C is 1.9. Acetonitrile, CH3C ˜ N:, has a dielectric constant at 20 C of 37.5. The dielectric constant for water is near 80. The choice of a solvent for a particular reaction will usually depend on more than one variable. These include the liquid temperature range, the dielectric constant, and whether or not the solvent is reactive in the chemical reaction. The most important consideration in the latter context is often the presence of an easily transferred proton. Certain solvents, such as acetone, are considered aprotic but may transfer a proton under basic conditions. Thus the designations given below are general and approximate. They are intended to guide the reader to the more detailed information contained in the full tables. Common Solvents Listed in Order of Increasing Dielectric Constant (Ascending Polarity) Aprotic Solvents Dielectric constants 15 carbon disulfide carbon tetrachloride tetrachloroethylene 1,2-dichloroethylene chlorobenzene dichloromethane chloroform 1,4-dioxane diphenyl ether diethyl ether
Dielectric constants 15 acetone benzonitrile hexamethylphosphoramide N-methylpyrrolidone nitrobenzene nitromethane N,N-dimethylformamide (DMF) acetonitrile dimethyl sulfoxide (DMSO)
Protic Solvents Dielectric range 6–80 acetic acid trifluoroacetic acid phenols butanols propanols ethanol 2,2,2-trifluoroethanol methanol various glycols water
4.56
SECTION 4
Aprotic Solvents Dielectric constants 15
Protic Solvents
Dielectric constants 15
Dielectric range 6–80
tetrahydrofuran (THF) 1,2-dimethoxyethane (DME) ethyl acetate butyl acetate N,N-dimethylaniline pyridine
Dipole Moment The dipole moment of a molecule is the vectorial sum of the individual dipoles within it. Bond dipoles are usually represented using the symbol and are expressed in units of Debye. The dipoles result from charge separation. The carbon–carbon bond in ethane, H3CˆCH3 is symmetrical and not expected to have a dipole moment. The carbon–oxygen bond of methanol (CH3OH), on the other hand, links two elements of differing electronegativity and is expected to have a significant molecular dipole. Methanol’s molecular dipole is 1.7 whereas, for ethane, it is 0. Experimentally, the molecular dipole can be measured. Individual bond dipoles cannot be measured but they have been inferred from experimental data for a variety of compounds. Estimates of the molecular dipole can be made by vector addition of individual moments. Such estimates (calculations) are indicative but may differ significantly from the measured values. The latter are recorded in Table 4.10. Four examples of dipole moments are instructive. First, the dipoles for chloromethane and dichloromethane are 1.87 D and 1.60 D, respectively. Although two chlorine–carbon bonds are present in the latter, the dipole is not along either but rather bisects the angle between them. This is illustrated schematically using the stylized arrow with its positive end in the form of a cross. The orientation question is shown clearly in the rigid dichlorobenzene framework. The dipole is 2.13 D for the ortho-isomer and 0 D when the dipoles exactly oppose each other. The orientation of dipoles can be assessed by comparing otherwise identical molecules. For example, amino is electron releasing and nitro is electron withdrawing. The molecular dipoles (1.53 D for aniline and 4.22 D for nitrobenzene) add to give an overall molecular dipole of 6.3 D for 4-nitroaniline. The importance of two polar CˆO bonds should be large Cl
Cl Cl H H3C
Cl
1.87 D
NH2
Cl
C
H
Cl
Cl
1.60 D
NO2
Cl
2.13 D
NH2
Cl 0D
1.50 D
OH
H
H
H
OH
OH NO2 1.53 D
4.22 D
6.3 D
H C
C
C
C H
OH
H
H 2.20 D
H
4.57
PHYSICAL PROPERTIES
if they are added and small if they oppose. The dynamics of the system must be taken into account for structures such as 1,2-dihydroxyethane (ethylene glycol), which is illustrated in the eclipsed and staggered conformers.
Surface Tension The surface tension is the force that acts on the surface of a liquid that tends to minimize the surface area of the liquid. Surface tension is also sometimes referred to as interfacial force or interfacial tension. The property of surface tension is temperature dependent. For the majority of compounds the dependence of the surface tension on the temperature can be given as a bt where a and b are constants and t is the temperature in C. TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances States:
[g], gas [lq], liquid
Solvents:
[B], benzene, [C], carbon tetrachloride, [D], 1,4-dioxane, [H], hexane, [cH], cyclohexane,
C6H6 CCl4 C4H8O2 C6H14 C6H12
The temperature in degrees Celsius at which the viscosity, dielectric constant, dipole moment, and surface tension of a substance were measured is shown in this table in parentheses after the value. The solvent used or the physical state of the substance are also shown in parentheses after the temperature in square brackets, for example, [g] or [b] Alternate names for entries are listed in Table 1-14 at the bottom of each double page.
Surface tension, dyn · cm1 Substance
Acetaldehyde
Acetaldoxime Acetamide Acetanilide Acetic acid
Viscosity , mN · s · m2
Dielectric constant
Dipole moment, D
0.280 (0) 0.256 (10) 0.22 (20) 1.415 (20)
21.8(10) 21.1 (21) 3 (23)
1.32 (105) 1.06 (120) 2.22 (120) 1.90 (130) 1.232 (20) 0.796 (50)
a
b
2.71 [g]
23.90
0.1360
30.1 (35)
59.2 (83) 60.6 (94) 3.65 (25) [B]
0.830 (20) [lq] 0.90 (25) [B] 3 90 (25) [B] 2.44 (30) [B] 46.21
6.15 (20) 6.29 (40)
1 76[g] 1.92 (20) [B]
29.58
47.66
0.102 1
0.091 2 0.009 4
4.58
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Acetic anhydride Acetone [lq] [g] Acetonitrile Acetophenone
Viscosity , mN · s · m2
Acrylic acid Acrylonitrile
Dipole moment, D
a
b
0.907 (20) 0.699 (40)
23.3 (0) 21.2 (20)
2.8 [g] 3.15 (20) [B]
35.52
0.143 6
0.391 (0) 0.318 (20) 0.009 33 (100) 0.012 8 (225) 0.397 (10) 0.329 (30) 2.015 (15) 1.511 (30)
20.7 (25) 17.6 (56) 1.015 9 (100)
2.77 (22) [B]
26.26
0.112
37.5 (20) 26.6 (82) 17.39 (25) 8.64 (202) 16.2 (20)
3.97 [g] 3.47 (20) [B] 2.96 (30) [B]
29.58
0.117 8
41.92
0.115 4
16.9 (2) 15.8 (22) 1.0217 (20) 1.001 34 (0)
2.47 (20) [B]
26.7 (15)
2.71 0
3.42
Acetyl bromide Acetyl chloride [lq] [g] Acetylene [g]
Dielectric constant,
0.010 2 (30) 0.012 6 (101) 1.3 (20) 1.16 (25) 0.35 (20) 0.34 (25) 0.207 (30) 0.375 (25)
Allyl acetate Allylamine Allyl isothiocyanate 2-Aminoethanol 30.85 (15) 19.35 (25) Aniline 5.30 (15) 4.40 (20) 3.18 (30) Benzaldehyde 1.321 (25) Benzaldehyde oxime (mp 30) (mp 128) Benzene 0.649 (20) 0.566 (30) 0.395 (60) Benzamide Benzenesulfonyl chloride Benzenethiol 1.239 (20) 1.144 (25)
2.87
2.45 (20) [B]
0.193 5 [lq]
28.1 (30) 33.0 (20)
29.58
0.117 8
17.2 (18)
1.3 (25) [B] 3.2 (20) [B]
28.73 27.49 36.76
0.118 6 0.128 7 0.107 4
37.72 (25)
2.59 (25) [D]
51.11
0.111 7
6.89 (20) 5.93 (70)
1.53 (20) [B]
44.83
0.108 5
19.7 (0) 17.8 (20) 3.8 (20)
2.77 (20) [lq]
40.72
0.109 0
1.5 (25) [B] 0
28.88 (20)
27.56 (30)
3.42 (25) [B] 4.50 (20) [B]
47.26 45.48
0.070 5 0.111 7
1.13 (25) [lq] 1.19 (20) [B]
41.41
0.120 2
2.292 (15) 2.274 (25) 1.002 8 [g]
4.38 (25)
3.91 [g] 3.54 (25) [B]
1.2 (25) [B]
4.59
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Benzonitrile Benzophenone Benzoyl bromide
Viscosity , mN · s · m2 1.447 (15) 1.111 (30) 4.79 (55) 1.38 (120) 1.956 (20) 1.798 (25)
Benzoyl chloride Benzyl acetate Benzyl alcohol
Benzylamine Benzyl benzoate Benzyl butyl o-phthalate Benzyl chloride Benzylethylamine Benzyl ethyl ether Biphenyl Bis(2-ethoxyethyl)ether Bis(2-hydroxyethyl)ether 1,2-Bis(methoxyethoxy)-ethane Bis(2-methoxyethyl) ether DL-Bornyl acetate 3-Bromoaniline
1.399 (45) 5.58 (20) 4.65 (30) 3.01 (45) 1.59 (25) 8.51 (25) 65 (20) 1.400 (20) 1.290 (25)
38.0 (20) 30.0 (25)
Dipole moment, D
a
b
26.5 (20) 24.0 (40) 14.60 (18) 11.4 (50) 21.33 (20) 20.74 (25) 29 (0) 23 (20) 5.1 (21) 13.0 (20) 9.5 (70)
4.40 [g] 3.9 (20) [B] 3.09 (50) [lq] 2.98 (25) [B] 3.40 (20) [B]
41.69
0.115 9
46.31
0.112 8
45.85
0.139 7
3.16 (25) [B]
41.34
0.108 4
1.80 (25) [B] 1.67 (25) [B]
38.25
0.138 1
5.5 (1) 4.6 (21) 4.9 (20)
1.15 (20) [lq] 1.38 (25) [B] 2.06 (30) [B]
42.33
0.121 3
48.07
0.106 5
7.0 (13)
1.83 (20) [B]
39.92
0.122 7
0 1.92 (25) [B]
32.83 (20) 41.52 29.74
29.97 (40) 0.093 1 0.117 6
2.31 (20) [B]
46.97
0.088 0
1.97 (25) [B]
32.47
0.116 4
38.14
0.116 0
28.71
0.112 6
27.48
0.110 7
40.03
0.100 2
4.3 (20) 3.9 (20) 2.53 (75)
31.69 (20)
3.76 (20) 1.99 (20)
0.981 (25) 6.81(20) 3.70 (40) 4-Bromoaniline 1.81 (80) Bromobenzene 1.196 (15) 0.985 (30) 1-Bromobutane 0.633 (20) 0.597 (25) DL-2-Bromobutane 1.434 (20) 1-Bromo-2chlorobenzene 1-Bromo-3chlorobenzene 1-Bromo-4chlorobenzene
Dielectric constant,
4.6 (21) 13.0 (19)
1.89 (22) 2.67 (20) [B]
7.06 (30) 5.40 (25)
6.80 (20)
2.88 (25) [B] 1.70 [g] 1.50 (20) [lq] 2.17 [g] 2.04 (20) [lq] 2.22 [g] 2.14 (25) [lq] 2.15 (20) [B]
4.58 (20)
1.52 (22) [B]
7.88 (10) 7.07 (20) 8.64 (25)
0.1 (25) [B]
4.60
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Bromochloromethane Bromocyclohexane 1-Bromodecane
Viscosity , mN · s · m2
1-Bromo-2ethoxyethane 1-Bromo-2ethoxypentane 2-Bromo-2ethoxypentane 3-Bromo-3ethoxypentane Bromoethylene Bromoform
b
1.66 (25) [B]
33.32 (20)
2.0 (25)
11 (65) 7.9 (25) 4.75 (1) 4.44 (25)
1.08 (25) [lq] 2.3 (25) [B] 2.08 (20) [lq] 1.90 (25) [lq] 1.31 (25) [B]
36.13
0.111 7
31.26
0.085 6
35.11
0.129 4
32.58
0.088 2
26.52
0.115 9
31.98
0.112 9
48.14
0.130 8
30.74
0.098 2
33.37
0.086 1
29.81
0.096 7
26.52
0.115 9
28.10
0.099 6
4.07 (25) 0.397 (20) 0.348 (30)
2.152 (15) 1.741 (30)
13.6 (60) 9.39 (20)
2.01 (25) [lq] 1.89 (25) [B] 2.03 [g] 2.04 (20) [lq]
6.45 (25)
2.32 (25) [B]
6.40 (25)
2.07 (25) [B]
8.24 (25)
2.15 (25) [B]
4.78 (25) 4.39 (20)
1.42 [g] 1.00 [g] 0.92 (25) [lq] 2.17 [g] 2.02 (20) [lq] 2.08 (20) [B] 2.06 (20) [B] 2.06 (20) [B] 1.98 (20) [lq] 1.96 (25) [C] 2.06 (20) [lq]
5.33 (25) 4.48 (90) 6.46 (22) 6.93 (22) 6.81 (22) 3.71 (25)
2-Bromoheptane 3-Bromoheptane 4-Bromoheptane 1-Bromohexadecane 1-Bromohexane
6.30 (1) 5.82 (25) 9.82 (0) 1.79 [g] 1.006 8 (100) [g] 8.04 (56) 1.95 (20) [B] 6.05 (20) 6.5 (20)
Bromomethane
1-Bromonaphthalene 1-Bromononane
a
7.79
1-Bromoheptane
1-Bromo-3methylbutane 2-Bromo-3methylbutyric acid 1-Bromo-2methylpropane
Dipole moment, D
0.670 (20)
Bromodichloromethane 1-Bromododecane Bromoethane
Dielectric constant,
0.643 (20) 0.518 (40) 3.26 (90) 5.99 (15) 3.20 (40)
7.70 (0) 7.2 (25)
1.92 (25) [lq] 1.99 (20) [B]
26.96
0.105 9
5.83 (25) 5.12 (20) 5.42 (20) 4.74 (25)
1.29 (25) [lq]
46.44
0.101 8
1.95 (25) [lq]
31.36
0.089 4
4.61
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
1-Bromooctane
6.35 (50)
1.99 (20) [lq] 1.88 (25) [lq]
31.00
0.092 8
1-Bromopentadecane 1-Bromopentane
3.9 (20) 9.9 (90) 6.32 (25)
2.21 [g] 2.09 (20) [lq]
29.51
0.104 9
8.09 (25)
2.17 [g] 3.16 (20) [lq] 2.21 [g] 2.10 (25) [lq] 1.92 (20) [lq] 1.83 (25) [lq] 1.45 (20) [B] 1.77 (20) [B] 1.95 (20) [B] 0.65 [g]
48.88 28.30
0.107 0 0.121 8
26.21
0.118 3
32.93
0.087 8
36.62
0.099 8
36.40 4 (25)
0.099 7
31.94 14.87
0.086 1 0.120 6
Substance
p-Bromophenol 1-Bromopropane 0.539 (15) 0.459 (30) 2-Bromopropane 0.536 (15) 0.437 (30) 1-Bromotetradecane o-Bromotoluene 1.3 (25) m-Bromotoluene p-Bromotoluene Bromotrifluoro- 0.15 (25) methane 1-Bromoundecane Butane 0.007 39 (20) [g] 0.008 39 (60) [g] 1,3-Butanediol 130.3 (20) 89 (25) 1,4-Butanediol 65–70 (25) 2,3-Butanediol Butanesulfonyl chloride 1-Butanethiol
9.46 (25) 3.84 (25) 4.28 (58) 5.36 (58) 5.49 (58)
4.73 (9) 0 28.8 (25) 33 (15) 30 (30)
3-Butenenitrile 2-Butoxyethanol 3.15 (25) 1.51 (60) Butoxyethyne
b
37.8 (25) 3.93 (20) [lq] 2.4 (15) [D]
121 (25)
0.501 (20) 0.450 (30) 1,2,4-Butanetriol 1227 (25) 1-Butanol 2.948 (20) 1.782 (40) DL-2-Butanol 3.907 (20) 0.527 (100) 2-Butanone 0.428 (20) 0.349 (40) 2-Butanone oxime 1-Butene [g] 0.007 6 (20) 0.010 0 (120) 2-Butene
a
3.94 (25) [D]
36 (25) 37.33
0.097 7
5.07 (25) 4.59 (50)
1.54 (25) [lq] or [B]
28.07
0.114 2
17.8 (20) 8.2 (118) 16.6 (25)
1.66 [g] 20 [B] 1.66 (30) [B]
27.18
0.089 8
23.47 (20)
22.62 (30)
18.5 (20) 15.3 (60) 3.4 (20) 1.003 2 (20)
3.2 (30) [lq] 2.76 (25) [B]
26.77
0.112 2
31.89 15.19
0.102 2 0.132 3[lq]
16.11
0.128 9
31.40 28.18
0.108 5 0.081 6
0.30
28.1 (20) 9.30 (25)
0.33 [g, cis] 0 [g, trans] 4.53 [g] 2.08 (25) [B]
6.62 (25)
2.05 (25) [Iq]
4.62
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 2-(2-Butoxyethoxy)ethanol 1-Butoxy-2propanol Butyl acetate
Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
4.76 (25)
30.0 (25)
2.55 (25)
26.5 (25)
0.734 (20) 0.688 (25)
6.85 (73) 5.01 (20)
1.86 (22) [B]
DL-sec-Butyl
acetate tert-Butyl acetate Butylamine sec-Butylamine tert-Butylamine Butylbenzene sec-Butylbenzene tert-Butylbenzene Butyl butyrate Butyl decyl o-phthalate N-Butyldiethanolamine 4-tert-Butyl-2,5dimethylphenol 4-tert-Butyl-2,6dimethylphenol 6-tert-Butyl-2,4dimethylphenol 6-tert-butyl-3,4dimethylphenol N-Butylethanolamine Butyl ethyl ether Butyl formate
a
0.681 (20)
27.55
0.106 8
23.33 (22)
21.24 (42)
24.69 26.24
0.110 2 0.112 2
23.75 19.44 31.28
0.105 7 0.102 8 0.102 5
2.36 (20)
1.91 (25) [B] 1.00 [g] 1.22 (20) [lq] 1.28 (25) [B] 1.29 (25) [B] 0.36 (20) [lq]
2.36 (20) 2.37 (20)
0.37 (20) [lq] 0.36 (20) [lq]
30.48 30.10 27.65
0.097 9 0.098 5 0.096 5
1.24
22.75
0.104 9
2.08 (26) [lq] 2.03 (25) [B] 1.25 (25) [B] 1.31 (20) [B]
27.08
0.102 6
22.17
0.105 7
2.99 (20) [B]
30.35
0.112 6
1.79 (22) [B]
27.37
0.099 3
4.88 (20) 4.4 (21)
1.035 (20) 0.960 (25)
b
0.84 (25) 55 (20) 55 (25) 8.30 (80) 2.72 (80) 2.10 (80) 3.50 (80) 17.4 (25) 0.421 (20) 0.397 (25) 0.691 (20) 0.940 (0)
Butyl methyl ether 2-tert-Butyl-42.55 (80) methylphenol Butyl nitrate 2-(2-sec-Butylph- 65.1 (25) enoxy)ethanol 2-(4-tert-Butylph- 122.5 (25) enoxy)ethanol Butyl propionate
2.43 (80)
13 (20)
4.63
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 4-tert-Butylpyridine Butyl stearate Butyl vinyl ether Butyraldehyde Butyric acid Butyric anhydride 4-Butyrolactone Butyronitrile
Viscosity , mN · s · m2
8.26 (25) 4.9 (50) 0.5 (20) 0.455 (20) 0.367 (39) 1.540 (20) 0.980 (40) 1.615 (20) 1.486 (25) 1.75 (25) 0.624 (15) 0.515 (30)
Carbon disulfide
0.363 (20)
Carbon tetrachloride Carbon tetrafluoride Carvone Chloroacetic acid
0.965 (20) 0.793 (25) 0.020 (25)
3.15 (50) 1.92 (75) 0.925 (25)
1-Chlorobutane
0.799 (20) 0.631 (40) 0.469 (15)
2-Chlorobutane
0.439 (15)
Chlorocyclohexane Chlorodifluoromethane 1-Chlorododecane
Dipole moment, D
a
2.87 (25) [C]
35.48
0.095 1
3.11 (30)
1.88 (24) [B]
33.0 (25)
32.7 (30)
13.4 (26)
1.25 (25) [H] 2.45 (40) [lq]
21.99 (20) 26.67
0.092 5
2.97 (20)
1.65 (30) [B]
28.35
0.092 0
28.93 (20)
28.44 (25)
1.495 (20)
Camphor
o-Chloroaniline m-Chloroaniline p-Chloroaniline Chlorobenzene
Dielectric constant,
0.23 (25) 0.013 (25) [g]
13 (20) 39.1 (20) 20.3 (21)
4.12 (25) [B] 4.07 [g] 3.6 (20) [B]
29.51
0.103 7
11.35 (20)
2.91 (20) [B] 3.10 (25) [B] 0 [g] 0.12 (20) [lq] 0
35.29
0.148 4
29.49
0.122 4
0
14 (73)
2.8 (15) [B] 2.31 (30) [B]
36.54 43.27
0.092 0 0.111 7
1.78 (20) [B] 2.68 (20) [B] 2.99 (25) [B] 1.72 [g] 1.56 (20) [lq] 2.13 [g] 2.0 (20) [B] 2.14 [g] 2.1 (20) [B] 2.2 (25) [B]
43.41
0.090 4
48.69 35.97
0.109 9 0.119 1
25.97
0.111 7
24.40
0.111 8
33.90
0.110 1
3.0 (112) 2.64 (20) 2.24 (20) 2.23 (25) 1.000 6 (25) [g] 11 (22) 20 (20) 12.3 (60) 13.4 (25) 13.4 (19) 5.71 (20) 4.2 (120) 9.07 (30) 7.39 (20) 7.09 (30) 10.9 (47) 7.6 (25) 6.11 (24) 4.2 (20)
1-Chloro-2-2,3epoxypropane Chloroethane
1.03 (25)
2-Chloroethanol
3.913 (15)
0.279 (10)
b
25.6 (1) 22.6 (22) 1.013 (19) [g] 25.8 (25) 13 (132)
1.4 [g]
8 (25)
2.11 (25) [lq] 1.94 (20) [B] 1.8 (25) [C]
31.56
0.090 4
39.76
0.136 0
21.18 (5)
20.58 (10)
2.0 [g] 1.96 (20) [lq] 1.77 [g] 1.90 (25) [B]
38.9 (20)
4.64
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Chloroform 1-Chloroheptane 2-Chloroheptane 3-Chloroheptane 4-Chloroheptane 1-Chlorohexane Chloromethane [g] [lq] 1-Chloro-3methylbutane Chloromethyl methyl ether l-Chloro-2methylpropane 2-Chloro-2methylpropane 1-Chloronaphthalene o-Chloronitrobenzene m-Chloronitrobenzene p-Chloronitrobenzene 1-Chlorooctane Chloropentafluoroethane 1-Chloropentane o-Chlorophenol m-Chlorophenol p-Chlorophenol 1-Chloropropane 2-Chloropropane 1-Chloro-2propanone 3-Chloro-1propene
Viscosity , mN · s · m2 0.596 (15) 0.514 (30)
0.0106 (20) 0.012 9 (80)
Dielectric constant, 4.81 (20) 4.31 (50) 4.48 (20) 6.52 (22) 6.70 (22) 6.54 (22)
Dipole moment, D 1.1 [g] 1.1 (25) [lq] 1.86 (22) [B] 2.05 (22) [B] 2.06 (22) [B] 2.06 (22) [B] 1.94 (20) [B]
a
b
29.91
0.129 5
28.94
0.096 1
28.32
0.103 8
19.5 25.51
0.165 0 0.107 6
2.06 [g] 2.0 (25) [B] 2.11 [g] 2.13 (25) [B] 1.33 (25) [lq] 1.52 (25) [B] 4.62 [g] 6.22 (50) [lq] 3.72 [g] 3.30 (50) [lq] 2.81 [g] 2.83 (90) [lq] 2.14 (25) [lq] 0.5 [g]
24.40
0.109 9
20.06 (15)
18.35 (30)
44.12
0.103 5
48.10
0.117 1
49.71
0.141 7
45.84
0.104 6
29 64 5 (25)
0.096 1
2.14 [g] 1.94 (20) [B] 2.19 [g] 1.46 (20) [lq] 2.19 (25) [B]
27.09
0.107 6
42.5
0.112 2
43.7
0.100 9
2.09 (20) [B] 2.05 [g] 1.96 (20) [B] 2.17 [g] 2.1 (20) [B] 2.22 [g] 2.37 (20), [H] 2.0 [g] 1.8 (20) [B]
19.51 24.41
0.087 5 0.124 6
21.37
0.088 3
25.50
0.094 6
1.006 9 (100)
1.87
12.6 (20) 7.63 (70) 6.05 (20)
1.86 (20) 1.94 (20) [B] 1.88 [C]
0.462 (20) 0.373 (40) 0.543 (15) 2.940 (25)
7.87 (38) 6.49 (14) 10.95 (0) 9.96 (20) 5.04 (25) 38 (50) 32 (80) 21 (50) 18 (80) 8 (120) 5.05 (25)
0.26 (25) 0.013 (25) [g] 0.580 (20) 2.250 (45) 4.11 (25) 4.722 (45) 11.55 (25) 4.99 (50) 0.372 (15) 0.318 (30) 0.335 (15) 0.299 (30)
6.6 (11) 6.31 (25)
7.7 (20) 9.82 (20) 30 (19)
0.347 (15)
8.2 (20)
4.65
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
o-Chlorotoluene m-Chlorotoluene p-Chlorotoluene Chlorotrifluoromethane Chlorotrimethylsilane Cinnamaldehyde
0.016 (25)
o-Cresol
3.506 (46)
m-Cresol
18.42 (20) 5.057 (45) 5.607 (45)
p-Cresol Crotonic acid Cyanoacetic acid Cycloheptanol 1,3-Cyclohexadiene Cyclohexane Cyclohexanecarboxylic acid 1,4-Cyclohexanedione Cyclohexanol Cyclohexanone Cyclohexanone oxime Cyclohexene Cyclohexylamine Cyclohexylbenzene Cyclohexylmethanol o-Cyclohexylphenol
Dielectric constant,
Dipole moment, D
4.45 (20) 4.2 (55) 5.5 (20) 5.0 (60) 6.08 (20) 5.6 (55) 1.001 3 (29) [g]
1.57 [g] 1.41 (20) [lq] 1.77 (20) [lq] 1.8 (22) [B] 2.21 [g] 1.90 (20) [lq] 0.50 [g]
14 (73)
2.09 (20) [B]
19.51
0.087 5
39.43
0.101 1
38.00
0.092 4
38.58
0.096 2
35.02
0.092 3
17 (20) 16.9 (24) 11.5 (25) 11.8 (25) 9.91 (58)
3.74 [g] 3.30 (30) [lq] 2.32 (25) [lq] 1.45 (25) [B] 2.39 (20) [lq] 1.61 (25) [B] 2.35 (20) [lq] 1.54 (20) [B] 2.13 (30) [B]
a
34.93
b
0.108 2
33.4 (19)
0.980 (20) 0.534 (60)
2.6 (89)
0.38 (20) [B]
2.05 (15) 2.02 (25) 2.6 (31)
0
27.62
0.118 8
15.0 (25)
1.41 [g] 1.3 (30) [B] 1.86 (25) [C]
35.33
0.096 6
3.11 (20) [B] 3.01 (25) [B] 0.83 (25) [B]
37.67
0.124 2
29.23
0.122 3
34.19
0.118 8
41.07 (30) 17.19 (45) 2.453 (15) 1.803 (30)
15.0 (25) 7.24 (100) 20 (40) 18.2 (20) 3.0 (89)
0.650 (20)
2.6 (105) 2.22 (25) 4.73 (20)
0.61 [g] 0.28 (20) [lq] 1.22 (20) [lq] 1.26 (20) [B] 0.62 (20) [B]
9.7 (60) 8.1 (80) 3.97 (55)
1.68 (20) [B]
1.662 (20) 1.16 (49) 3.681 (0)
4.66
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance p-Cyclohexylphenol Cyclooctane Cyclopentane Cyclopentanol
Viscosity , mN · s · m2
cis-Decahydronaphthalene trans-Decahydronaphthalene Decamethylcyclopentasiloxane Decamethyltetrasiloxane Decane
0.439 (20)
a
b
1.965 (20) 25 (20) 18 (20) 16 (51)
0 0 1 72 (25) [C]
32.02 25.53 35.04
0.109 0 0.146 2 0.101 1
35.55
0.110 0
25.94 28.83
0.149 5 0.087 7
3.402 (20)
2.243 (20)
3.30 [g] 2.93 (25) [B] 0.98 (25) [H] 0 [lq]
3.381 (20)
2.18 (20)
0
32.18 (20)
31.01 (30)
2.128 (20)
2.17 (20)
0
29.89 (20)
28.87 (30)
19.56
0.056 5
2.5 (20) 1.28 (20)
2.4 (20)
0.79 (25) [lq]
86.20 (25)
0.928 (20) 0.775 (22)
1.991 (20) 1.844 (130) 8.1 (20)
0
25.67
0.092 0
1.71 (20) [B] 1.62 (25) [B] 0.42 (20) [B] 1.33 (25) [B] 0.88 (25) [B] 0.97 (20) [lq] 1.02 (20) [B]
30.34
0.073 2
25.84
0.091 9
43.27
0.108 6
1-Decanol 1-Decene Diallyl sulfide Dibenzofuran Dibenzylamine
Dipole moment, D
4.42 (131)
Cyclopentanone Cyclopentene p-Cymene
Dielectric constant,
0.805 (20) 4.9 (20) 3.0 (100) 3.6 (20)
Dibenzyl decanedioate Dibenzyl ether 3.711 (25) o-Dibromobenzene m-Dibromobenzene p-Dibromobenzene 1,4-Dibromobutane
4.6 (25)
2,3-Dibromobutane
5.75 (25)
1,2-Dibromoethane 1.721 (20) 1.286 (40) cis-1,2-Dibromoethylene trans-1,2-Dibromoethylene 1,2-Dibromoheptane
4.78 (25) 4.09 (131) 7.7 (0) 7.08 (25) 2.9 (0) 2.88 (25)
7.35 (20) 3.80 (20) 2.57 (95)
3.8 (25)
1.39 (21) [B] 2.13 (20) [B] 1.5 (20) [B] 0 2.16 (20) [lq] 2.06 (20) [B] 2.20 [g] 1.7 (25) [lq] 1.11 [g] 1.14 (20) [lq] 1.35 (B) 0
1.78 (25) [D]
38.2 (35)
41.84 48.24
0.100 7 0.119 0
35.43
0.142 8
4.67
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
2,3-Dibromoheptane 3,4-Dibromoheptane Dibromomethane
Dielectric constant,
Dipole moment, D
5.1 (25)
2.15 (25) [B]
4.7 (25)
2.15 (25) [B]
1.5 (25)
7.77 (10) 6.7 (40) 4.3 (20)
1.43 [g] 1.85 (20) [lq] 1.43 (25) [B]
0.72 (25)
2.34 (25)
0.95 (20)
2.978 (20)
Dibutyl decanedioate Dibutyl ether
9.03 (25)
4.54 (30)
0.602 (30)
3.06 (25)
Dibutyl maleate
5.62 (20) 4.76 (25) 3.47 (80)
1,2-Dibromopropane Dibromotetrafluoroethane Dibutylamine
2,6-Di-tert-butyl4-methylphenol Dibutyl o-phthalate Dichloroacetic acid o-Dichlorobenzene
19.91 (20) 7.85 (45) 3.23(50) 1.92 (75) 1.324 (25)
m-Dichlorobenzene 1.045 (23) 0.955 (33) p-Dichlorobenzene 0.839 (55) 0.668 (79) 1,4-Dichlorobutane Dichlorodifluoro0.26 (25) methane 0.013 (25) [g] 1,1-Dichloroethane 0.505 (25) 0.430 (30) 1,2-Dichloroethane 0.887 (15) 0.730 (30) 1,1-Dichloroe0.442 (0) thylene 0.358 (20) cis-1,2-Dichlo0.467 (20) roethylene 0.444 (25) trans-1,2-Dichlo0.423 (15) roethylene 0.404 (20)
a
b
42.77
0.148 8
36.81
0.115 5
18.9 (20)
18.1 (25)
1.06 (20) [lq] 1.05 (20) [B] 2.64 (25) [B]
26.50
0.095 2
1.18 [g] 1.19 (20) [lq] 2.70 (25) [B]
24.78
0.093 4
32.46
0.086 5
1.68 (20) [B] 6.436 (30) 5.99 (45) 8.2 (22) 7.8 (61) 9.93 (25) 7.10 (90) 5.04 (25) 4.22 (90) 2.41 (50)
2.97 (20) [lq] 2.85 (30) [B]
8.9 (25) 2.13 (29)
2.22 [g] 2.13 (25) [lq] 0.51 [g]
10.1 (18) 10.86 (16) 12.7 (10) 10.65 (20) 4.67 (16)
2.06 [g] 2.00 (25) [B] 1.48 [g] 1.7 (20) [B] 1.30 (25) [B]
27.03
0.118 6
35.43
0.142 8
9.20 (25)
2.95 [g] 1.90 (25) [B] 0.70 (25) [B]
28 (20)
2.14 (25)
2.51 [g] 2.26 (24) [B] 1.68 [g] 1.38 (24) [B] 0
33.40 (20) 37.8
0.092 7
26.84 (20)
35.55 (30)
38.30
0.114 7
34.66
0.087 9
37.79
0.117 4
9 (25)
25 (20)
4.68
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 2,2 -Dichloroethyl ether Dichlorofluoromethane Dichloromethane 2,4-Dichlorophenol 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dicloropropane 1,1-Dichloro-2propanone 1,2-Dichlorotetrafluoroethane ,-Dichlorotoluene Diethanolamine
Viscosity , mN · s · m2 2.41 (20) 2.065 (25) 0.34 (25) 0.011 (25) [g] 0.449 (15) 0.393 (30)
0.865 (20) 0.700 (25)
0.769 (15) 0.619 (30)
Dielectric constant,
Dipole moment, D 2.61 (20) [B]
40.57
5.34 (28)
1.3 [g]
18 (25)
9.14 (20) 1.006 5 (100) [g]
1.60 [g] 1.90 (20) [B] 1.60 (25) [B]
30.41
0.128 4
46.59
0.122 1
8.925 (26) 7.90 (35)
1.87 (25) [B]
31.42
0.124 0
2.08 [g] 2.2 (25) [B] 2.62 [g] 2.20 (25) [B]
36.40
0.123 3
23.60 (20)
22.53 (30)
11.37 (20)
0.38 (25) 0.011 (25) [g]
2.26 (25)
0.53 [g]
12 (25)
6.9 (20)
2.07 (20) [B] 2.05 (25) [B] 2.84 (25) [B]
41.26
0.103 5
23.46
0.103 0
23.87 22.71
0.129 1 0.114 3
36.59
0.104 0
28.62
0.110 0
34.68
0.095 9
18.92
0.090 8
30.63
0.097 5
34.34
0.101 0
1,1-Diethoxyethane 1,2-Diethoxyethane 0.65 (20)
3.80 (25)
1.08 [g] 1.99 (20) [B] 1.65 (25) [B]
3.6 (22)
0.92 [g] 1.11 (25) [lq] 1.40 (20) [lq] 1.80 (20) [B] 1.07 [g] 0.91 (25) [B] 2.38 (20) [lq] 2.52 (20) [B] 1.15 [g] 1.22 (16) [lq] 2.95 (32) [lq] 2.91 (20) [C] 2.40 (20) [B] 2.46 (30) [lq]
Diethyl decanedioate Diethyl ether Diethyl ethyl phosphonate Diethyl fumarate Diethyl glutarate Di(2-ethylhexyl)2-ethylhexylphosphonate Di(2-ethylhexyl) o-phthalate
0.130 6
14 (20)
2.81 (25)
N, N-Diethylaniline Diethyl carbonate
b
21.2 (20)
368 (30) 196 (40)
Diethoxymethane Diethylamine
a
0.388 (10) 0.273 (38) 1.15 (30) 0.750 (75) 0.868 (15) 0.748 (25)
5.5 (19) 2.82 (20) 5.0 (30)
0.247 (15) 0.245 (20) 1.627 (15) 0.969 (45)
6.00 (45) 3.61 (65)
4.335 (20) 3.97 (40) 11.00 (15) 9.86 (45) 6.5 (23) 6.7 (30) 4.09 (45) 3.94 (65)
33.67 (35) 21.40 (45)
4.91 (35) 4.77 (45)
4.69
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Diethyl maleate Diethyl malonate Diethyl nonanedioate Diethyl oxalate Diethyl o-phthalate Diethyl succinate Diethyl sulfate Diethyl sulfide
Viscosity , mN · s · m2 3.57 (20) 3.14 (25) 2.15 (20) 1.94 (25)
Dipole moment, D
a
8.58 (23)
2.56 (25) [B]
34.67
0.103 9
8.03 (25)
2.49 (20) [lq] 2.54 (25) [B]
33.91
0.104 2
8.1 (21)
2.49 (20) [D]
34.32
0.111 9
7.34 (35) 7.13 (45) 6.64 (30)
2.8 (25) [B]
38.47
0.096 3
2.3 [g] 2.37 (30) [lq] 4.46 (25) [D] 1.52 [g] 1.58 (20) [B]
33.97
0.104 1
35.47 27.33
0.097 6 0.110 6
2.60 (25) [B]
47.6
0.084 9
2.09 (44) [B]
54.8
0.071 7
b
5.13 (30) 2.311 (15) 1.618 (30) 9.18 (35) 6.41 (45)
0.446 (20) 0.422 (25)
Diethyl sulfite Diethylzinc 1,1-Difluoroethane 0.243 (21) 1,2-Dihydroxybenzene 1,3-Dihydroxybenzene 1,4-Dihydroxybenzene 1,2-Diiodobenzene 1,3-Diiodobenzene 1,4-Diiodobenzene cis-1,2-Diiodoethylene trans-1,2-Diiodoethylene Diiodomethane 3.043 (15) 2.392 (30) Diisobutylamine Diisobutyl 30 (20) o-phthalate Diisopentylamine Diisopentyl ether 1.40 (11) 1.012 (20) Diisopropylamine 0.40 (25) Diisopropyl ether 0.379 (25) 1,2-Dimethoxybenzene
Dielectric constant,
3.281 (25) 2.184 (40)
29 (20) 5.72 (25) 5.24 (50) 16 (20) 14 (50) 2.5 (20) 2.30 [g] 2.6 (89) 3.2 (18)
0.62 (25) [B]
1.4 (44) [B] 5.7 (20) 4.3 (25) 2.9 (120) 4.46 (83)
1.70 (20) [B] 1.22 (20) [B] 0.19 (20) [B] 0.71 [B]
2.19 (83)
0
5.316 (25)
1.08 (25) [B]
70.21
0.161 3
2.7 (22)
1.10 (25) [B]
24.00
0.091 2
2.5 (18) 2.82 (20)
1.48 (30) [B] 0.98 (20) [lq] 1.23 (25) [B] 1.26 (25) [B] 1.13 [g] 1.26 (25) [B] 1.32 (25) [B]
26.04 24.76
0.085 8 0.087 1
21.83 19.89
0.107 7 0.104 8
34.4
0.064 2
3.88 (25) 4.09 (25)
4.70
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 1,1-Dimethoxyethane 1,2-Dimethoxyethane Dimethoxymethane N,N-Dimethy lacetamide Dimethylamine N,N-Dimethylaniline 2,4-Dimethylaniline 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethyl-1butanol N,N-Dimethylbutyramide Dimethyl carbonate 1,1-Dimethylcyclopentane 2,2-Dimethyl-1, 3-dioxolane4-methanol Dimethyl ether N,N-Dimethylformamide 2,4-Dimethylheptane 2,5-Dimethylheptane 2,6-Dimethylheptane 2,6-Dimethyl-4heptanone Dimethyl hexanedioate Dimethyl hydrogen phosphonate
Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
a 23.90
0.530 (10) 0.455 (25) 0.340 (15) 0.325 (20) 2.141 (20) 0.838 (30) 0.207 (15) 0.186 (25) 1.285 (25) 0.91 (50)
0.351 (25) 0.330 (30) 0.361 (25) 0.342 (30)
1.271
0.845 (20) 0.598 (50)
1.71 (25) [B]
48.0 (25)
0.74 [g]
23.59
0.119 9
37.78 (25)
3.80 [g] 4.60 (20) [lq] 1.03 [g] 1.14 (25) [lq] 1.61 [g] 1.55 (25) [B] 1.40 (25) [B]
32.43 (30)
29.50 (50)
29.50
0.126 5
38.14
0.104 9
39.34
0.099 6
6.32 (0) 5.26 (25) 4.9 (20) 4.4 (70)
1.873 (25)
0
18.29
0.099 0
1.890 (25)
0
19.38
0.100 0
26.22
0.099 2
31.94
0.134 3
23.78
0.101 6
2.00
5.02 (25) 2.97 (110) 38.3 (20) 36.71 (25) 1.9 (20)
1.30 [g] 1.25 (25) [B] 3.86 (25) [B]
14.97
0.147 8
36.76 (20)
34.40 (40)
0
23.21
0.092 9
1.9 (20)
0
23.21
0.092 9
2 (20)
0
22.77
0.088 7
38.26
0.113 8
1.03 (20)
2.66 (25) [C]
14 (20)
2.28 (20) [B]
1.08 (25)
0.115 9
7.60 (10) 7.20 (25) 2.65 (20)
0.90 [g] 0.96 (25) [B] 0
11 (20) 0.010 4 (60)
b
4.71
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Dimethyl maleate Dimethyl malonate 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,4-Dimethylphenol 2,5-Dimethylphenol 3,4-Dimethylphenol 3,5-Dimethylphenol Dimethyl o-phthalate 2,2-Dimethylpropane N,N-Dimethylpropionamide 2,5-Dimethylpyrazine 2,3-Dimethylquinoxaline Dimethyl succinate Dimethyl sulfate Dimethyl sulfide Dimethyl sulfite Dimethyl sulfoxide 2,4-Dimethyltetrahydrothiophene-1, 1dioxide
Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
a
2.48 (25) [C]
40.73
0.122 0
10 (20) 1.91 (20)
2.41 (20) [B] 0
39.72 19.94
0.120 8 0.095 7
0.406 (20)
1.939 (20)
0
21.96
0.099 5
0.361 (20)
1.914 (20)
0
20.09
0.097 2
1.94 (20)
0
21.59
0.099 6
34.57
0.086 9
36.72
0.085 0
4.8 (17)
1.48 (20) [B] 1.98 (60) [B] 1.43 (20) [B] 1.52 (60) [B] 1.77 (20) [B]
35.75
0.091 0
1.76 (20) [B]
34.09
0.080 7
12.05 (20)
10.98 (30)
3.54 (20) 3.21 (25)
1.55 (80) 3.00 (80) 2.42 (80) 17.2 (25) 6.41 (45) 0.328 (0) 0.303 (5) 0.935
b
8.25 (25) 8.11 (45) 1.80 (20) 1.678 (98) 33.1
2.8 (25) [B] 0
2.43 (20)
0
2.3 (25)
0
5.1 (20)
2.09 (20) [B]
39.00
0.119 1
48.3 (20) 46.4 (20) 6.2 (20)
4.31 (25) [D]
41.26
0.116 3
1.45 (25) [B]
26.07
0.080 5
0.289 (20) 0.265 (36) 0.715 (30) 0.436 (80) 2.47 (20) 1.192 (55)
22.5 (23)
2.93 (20) [B]
36.48
0.125 3
48.9 (20) 41.9 (55)
3.9 (25) [B]
43.54 (20)
42.41 (30)
9.04
29.5
4.72
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance N,N-Dimethylo-toluidine N,N-Dimethylp-toluidine Dinonyl hexanedioate Dinonyl o-phthalate Dioctyl decanedioate Dioctyl o-phthalate 1,4-Dioxane Dipentyl ether Dipentyl o-phthalate Dipentyl sulfide Diphenylamine 1,2-Diphenylethane Diphenyl ether
Viscosity , mN · s · m2
Dipropyl carbonate Dipropylene glycol butyl ether Dipropylene glycol ethyl ether Dipropylene glycol isopropyl ether
Dipole moment, D
3.4 (20)
0.88 (25) [B]
3.9 (20)
1.29 (25) [B]
37 (20)
a
b
2.53 (25) [B] 4.65 (35) 4.52 (45) 4.0 (27)
1.439 (15) 1.087 (30) 1.188 (15) 0.922 (30) 17.03 (35) 11.51 (45) 4.66 (55) 1.04 (130)
5.1 (25)
3.06 (25) [C]
2.24 (20) 2.21 (25) 2.77 (25)
0
36.23
0.139 1
0.98 (20) [lq] 1.24 (25) [B] 2.71 (20) [lq]
26.66
0.092 5
32.56
0.073 9
29.55 45.36
0.087 6 0.101 7
3.65 (30)
1.59 (25) [B] 1.31 (20) [C] 1.01 (25) [B] 0 (110) [lq] 0.45 (25) [B] 1.16
28.70
0.078 0
2.7 (18) 2.57 (26)
0.26 (30) [lq] 0.3 (25) [B] 25.03
0.097 2
25.17
0.095 3
24.86
0.102 2
28.94
0.101 5
5.79 (35) 5.62 (45) 3.83 (25) 3.3 (52) 2.4 (110)
2.61 (40) 2.09 (50)
Diphenylmethane 1,1-Dipropoxyethane Dipropoxymethane Dipropylamine
Dielectric constant,
0.534 (20) 0.427 (37)
3.07 (20)
1.01 (20) [lq] 1.03 (20) [B]
4.23 (25)
28.2 (25)
3.11 (25)
27.7 (25)
386 (25)
25.9 (25)
4.73
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Dipropylene glycol methyl ether Dipropyl ether Divinyl ether Dodecamethylcyclohexasiloxane Dodecamethylpentasiloxane Dodecane
Viscosity , mN · s · m2
0.448 (15) 0.376 (30)
1,2-Ethanediamine 1,2-Ethanediol 1,2-Ethanediol diacetate Ethanesulfonic acid Ethanesulfonyl chloride Ethanethiol Ethanol Ethoxybenzene 2-Ethoxyethanol 2-(2-Ethoxyethoxy)ethanol 2-Ethoxyethyl acetate
3.39 (26)
1.21 [g] 1.17 (30) [H] 1.07 (20) [lq]
2.5 (20) 1.508 (20) 1.378 (25)
2.05 (10) 2.01 (20) 5.15 (20) 6.5 (25) 2.17 (25)
22.60
0.104 7
17.08 (25) 27.12
0.088 4
1.52 (20) [B]
31.25
0.0748
2.01 (20) [B]
23.9 (20)
28 (128) 1.001 5 (0)
0
1.24
0.166 0 [lq]
16.8 (18) 14.2 (20) 38.66 (20) 37.7 (25) 13 (30)
1.96 [g] 1.92 (25) [B] 2.28 [g] 2.3 (25) [D] 2.34 (30) [B]
44.77
0.139 8
50.21
0.089 0
45.74
0.082 4
3.89 (25) [B]
43.43
0.117 7
1.57 [g] 1.40 (20) [B] 1.69 [g] 1.71 (25) [B] 1.41 [g] 1.36 (25) [CS2] 2.24 (30) [B]
25.06
0.079 3
24.05
0.083 2
35.17
0.110 4
30.59
0.089 7
31.8 (25)
27.2 (75)
0.003 16 [g]
6.9 (15)
1.209 (19) 0.991 (30) 1.364 (15) 1.040 (30) 2.04 (20) 1.85 (25) 3.71 (25)
25.00 (20) 20.21 (55) 4.22 (20)
1.025 (25)
b
0
0.41 (20) 0.40 (25) 0.009 0 (20) 0.011 4 (100) 1.54 (20) 1.226 (30) 26.09 (15) 13.55 (30) 3.13 (20)
a
28.8 (25)
3.9 (20) 2.6 (20)
6-Dodecyne
Erythritol Ethane [g]
Dipole moment, D
3.1 (25)
1-Dodecanol
1,2-Epoxybutane
Dielectric constant,
29.6 (24)
7.567 (30)
2.25 (30) [B]
31.8 (25)
4.74
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 1-Ethoxy-2methylbutane 1-Ethoxynaphthalene 1-Ethoxypentane 1-Ethoxy-2propanol -Ethoxytoluene Ethyl acetate Ethyl acetoacetate
Ethylamine 2-(Ethylamino) ethanol N-Ethylaniline Ethylbenzene Ethyl benzoate Ethyl bromobutyrate 2-Ethyl-1-butanol Ethyl butyrate 2-Ethylbutyric acid Ethyl carbamate Ethyl chloroacetate Ethyl chloroformate Ethyl cinnamate Ethyl crotonate Ethyl cyanoacetate Ethylcyclohexane Ethyl dichloroacetate
Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
a
b
3.96 (20) 3.3 (19) 3.6 (23) 1.68 (25)
0.473 (15) 0.426 (25) 1.419 (20) 1.508 (25)
25.9 (25) 3.9 (20) 6.11 (20) 5.30 (77) 15.7 (22)
6.94 (10)
1.78 [g] 1.84 (25) [lq] 3.22 (18) [B keto form] 2.04 (80) [CS2, enol form] 1.40 (25) [B]
26.29
0.116 1
34.42
0.101 5
22.63
0.137 2
39.00
0.107 0
12.40 (25) 2.04 (25) 1.08 (55) 0.669 (20) 0.531 (40) 2.407 (15) 1.751 (30)
5.76 (20) 2.41 (20)
0.37 (25) [lq]
31.48
0.109 4
6.02 (20)
1.95 [g] 1.93 (25) [B] 2.40 (25) [B]
37.16
0.105 9
25.06 (15)
24.32 (25)
26.55
0.104 5
8 (20) 8.021 (15) 5.892 (25) 0.771 (15) 0.613 (25) 3.3 (20)
6.19 (90)
0.916 (105) 0.715 (120)
14.2 (50)
2.59 (30) [D]
11.4 (21)
2.65 (25) [B]
34.18
0.117 7
11 (20)
2.56 (35) [B]
28.90
0.108 4
6.1 (18) 5.4 (20) 26.9 (20)
1.86 (20) [B] 1.95 (24) [B] 4.04 (30) [B]
39.99 29.31 38.80
0.104 5 0.106 6 0.109 2
2.054 (20)
0 [g]
27.78
0.105 4
12 (2) 10 (22)
2.63 (25) [B]
34.89
0.115 8
8.7 (20) 3.256 (15) 2.148 (30) 0.843 (20) 0.787 (25)
5.10 (18)
1.74 (22) [B]
26.3 (20)
4.75
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
a
1.3 (20) [lq]
30.05
0.086 3
0 [g] 4.87 (25) [B]
2.7
0.185 4
1.98 [g] 1.92 (25) [B] 3.58 (25) [B] 5.58 [lq]
44.77
0.139 8
38 (20)
3.4 (20) 2.7 (143) 1.001 44 (0) 89.6 (40) 69.4 (91) 16.0 (18) 14.2 (20) 28.3 (20) 23.69 (20)
49.1 (0) 47.33
46.7 (45) 0.088 0
41.2 (20) 37.7 (25) 14 (1)
0.089 0
27.66
0.166 4
Ethyleneimine
0.418 (25)
18.3 (25)
Ethyl formate
0.419 (15) 0.358 (30)
7.16 (25)
2.27 [g] 2.20 (15) [lq] 1.88 [g] 1.92 (20) [lq] 1.89 [g] 1.77 (25) [B] 1.94 [g] 1.96 (25) [lq]
50.21
Ethylene oxide
26.09 (15) 13.35 (30) 0.3 (0)
Substance N-Ethyldiethanolamine Ethyl dodecanoate Ethylene Ethylene carbonate Ethylenediamine Ethylene dinitrate 2,2 -(Ethylenedioxy)diethanol Ethylene glycol
Ethyl fumarate Ethyl hexadecanoate 2-Ethyl-1, 3hexanediol Ethyl hexanoate 2-Ethylhexanoic acid 2-Ethyl-1-hexanol 2-Ethylhexyl acetate Ethyl isobutyrate Ethyl isopentyl ether Ethyl isothiocyanate Ethyl lactate Ethyl maleate Ethyl 3methylbutyrate Ethyl methyl ether Ethyl methyl sulfide Ethyl nitrate
b
53 (25)
1.85 (40) 1.540 (18)
6.5 (23) 3.2 (20) 2.71 (104)
7.9 (20) 26.47
0.131 5
1.2 [lq]
33.90 32.86
0.105 6 0.085 9
1.80 (20) [B]
27.73
0.096 0
1.74 (25) [B]
30.0 (22)
323 (20)
7.7 (20) 9.8 (20) 1.5 (20)
4.41 (90)
25.33
0.104 6
3.96 (20)
2.44 (25)
19.5 (21)
3.67 (20) [B]
38.69
0.132 6
13.1 (25) 8.6 (23) 4.71 (18)
2.4 (20) [B]
30.72
0.098 3
25.79
0.100 6
18.56
0.131 7
27.63
0.128 6
30.81
0.134 5
1.22 [g] 0.373 (20) 0.354 (25) 19.4 (20)
2.93 (20) [B]
4.76
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
Ethyl 9octadecenoate Ethyl 4oxopentanoate 3-Ethylpentane Ethyl pentanoate 0.847 (20) Ethyl pentyl ether Ethyl phenylacetate 5.3 (21) Ethyl phenyl sulfide Ethyl propionate 0.564 (15) 0.473 (30) Ethyl propyl ether 0.323 (20) 0.225 (60) Ethyl salicylate 1.772 (45) Ethyl stearate Ethyl thiocyanate o-Ethyltoluene p-Ethyltoluene Ethyl trichloroacetate Ethyl vinyl ether Ethynyl acetate Fluorobenzene 1-Fluorohexane 2-Fluoro-2methylbutane 1-Fluoropentane o-Fluorotoluene m-Fluorotoluene p-Fluorotoluene Formamide Formanilide Formic acid 2-Furaldehyde Furan
Dielectric constant, 3.2 (25)
0.680 (20) 0.601 (30) 0.608 (20) 0.534 (30) 0.622 (20) 0.522 (30) 4.320 (15) 2.296 (30) 1.65 (120) 1.966 (15) 1.219 (40) 2.475 (0) 1.494 (25) 0.380 (20) 0.361 (25)
a
b
1.83 (20) [lq]
12 (21) 1.94 (20) 4.7 (18) 3.6 (23) 1.82 (30)
0 1.76 (28) [B] 1.2 (20) [B]
22.52 27.15 24.19
0.103 2 0.099 9 0.099 2
4.08 (25) [B]
39.30
0.113 1
1.75 (22) [B]
26.72
0.116 8
1.16 (25) [B]
21.92
0.105 4
7.99 (30) 2.98 (40) 2.69 (100) 29.3 (21)
2.85 (25) [B] 1.65 (40) [lq]
31.00
0.109 1
3.33 (20) [B]
2.24 (25) 7.8 (20)
0 2.56 (25) [B]
37.28 32.33 30.98 32.97
0.122 6 0.106 0 0.107 5 0.107 3
5.65 (19)
0.2 0.620 (15) 0517 (30)
Dipole moment, D
1.26 (20) [B]
19.00 (20) 32.81 (20)
30.20 (40)
5.42 (25) 4.7 (60)
1.61 [g]
29.67
0.120 4
23.41
0.100 1
5.89 (20)
1.92 (25) [B]
4.24 (20) 4.22 (30) 3.9 (60) 5.42 (30) 4.9 (60) 5.86 (30) 5.3 (60) 111.0 (20) 103.5 (40)
1.85 (25) [B] 1.35 [g] 1.26 (30) [lq] 1.86 [g] 1.66 (30) [lq] 2.00 [g] 1.76 (30) [lq] 3.73 [g]
22.81
0.131 5
32.31
0.125 7
30.44
0.110 9
59.13
0.084 2
44.30 39.87
0.087 5 0.109 8
46.41
0.132 7
24.10 (20)
23.38 (25)
58.5 (15) 57.0 (21) 41.9 (20) 34.9 (50) 2.95 (25)
3.37 (25) [C] 1.35 [g] 1.20 (25) [B] 2.13 (25) [lq] 3.63 (25) [B] 0.66 [g] 0.67 (20) [B]
4.77
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
Furfuryl alcohol
4.62 (25)
Glycerol
945 (25) 134 (50)
Glycerol triacetate Glycerol trinitrate
36.0 (20) 13.6 (40)
Glycerol trioleate Glycerol tripalmitate Glycerol tristearate
Dielectric constant,
Dipole moment, D
a
1.92 (25) [lq]
ca 38 (20)
42.5 (25)
2.68 (25) [D]
63.14 (17)
62.5 (25)
7.2 (20) 19 (20)
2.73 (25) [B] 3.38 (25) [B]
37.88 55.74
0.081 0.250 4
3.2 (26) 2.9 (65)
3.11 (23) [B] 2.80 (23) [B]
36.03 32.26
0.069 9 0.067 2
2.8 (70)
2.86 (23) [B]
32.73
0.068 5
2.26 (40) [lq] 2.58 (22) [B] 0
28.64
0.092 0
22.10
0.098 0
29.88
0.084 8
1.73 (20) [B] 1.73 (20) [B] 1.72 (20) [B] 2.61 (22) [B]
28.76
0.105 6
2.81 (22) [B] 2.74 (20) [B]
28.24 28.11
0.101 5 0.106 0
0.34 (20) [lq]
22.28
0.099 1
0 1.67 (25) [B]
29.18
0.085 4
Heptanaldehyde
0.977 (15)
9.1 (20)
Heptane
0.416 (20) 0.341 (40) 3.40 (30) 7.014 (20) 8.53 (15) 5.06 (25)
1.924 (20) 1.85 (70) 2.6 (71) 12.1 (22)
Heptanoic acid 1-Heptanol DL-2-Heptanol DL-3-Heptanol
4-Heptanol 2-Heptanone 3-Heptanone 4-Heptanone 1-Heptene Hexadecamethylcyclooctasiloxane Hexadecane 1-Hexadecanol 1,5-Hexadiene 2,4-Hexadiene Hexafluorobenzene Hexamethyldisiloxane Hexamethylphosphoramide Hexane Hexanedinitrile
0.854 (15) 0.686 (30) 0.736 (20) 0.35 (20) 0.34 (25)
9.21 (22) 6.9 (22) 6.2 (22) 11.95 (20) 8.27 (100) 12.9 (22) 12.60 (20) 9.46 (80) 2.07 (20)
b
1.73 (20) [B]
2.7 (20)
3.591 (22) 3.8 (50) 0.275 (20) 0.244 (36) 2.2 (25)
0.31 (25) [B] 0
22.6 (20)
2.2 (20)
0.37 (25) [lq]
17.01
3.47 (20)
30 (20)
4.31 (25) [lq]
33.8 (20)
0.313 (20) 0.271 (40) 5.99
1.904 (15) 1.890 (20) 32.45
0
20.44
0.102 2
3.8 (25) [B]
47.88
0.097 3
0.076 3
4.78
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
2,4-Hexanedione Hexanenitrile Hexanoic acid 1-Hexanol 2-Hexanone 1-Hexene Hexyl acetate 4-Hydroxy-4methyl-2pentanone Iodobenzene
Viscosity , mN · s · m2
1.041 (15) 0.830 (30) 3.525 (15) 2.511 (3) 6.203 (15) 3.872 (30) 0.584 (25) 0.26 (20) 0.25 (25)
17.26 (25)
1-Iodoheptane 3-Iodoheptane 1-Iodohexadecane 1-Iodohexane Iodomethane 1-Iodo-3methylbutane 2-Iodo-2methylbutane 1-Iodo-2methylpropane 1-Iodooctane 2-Iodooctane 1-Iodopentane 1-Iodopropane 2-Iodopropane p-Iodotoluene -Ionone -Ionone
Dipole moment, D
a
b
32.22 29.64
0.100 2 0.090 7
2.63 (71)
1.13 (25) [lq]
28.05 (20)
27.55 (25)
13.3 (25) 8.5 (75) 14.6 (15) 2.051 (20)
1.55 (20) [B]
27.81
0.080 1
2.68 (22) [B] 0.34 (20) [lq]
28.18 20.47
0.109 2 0.102 7
18.2 (25)
3.24 (20) [B]
28.44 31.0 (20)
0.097 0
2.9 (25)
1.774 (17) 0.488 (149)
4.62 (20)
1.71 [g] 1.3 (20) [B] 2.10 [g] 1.90 (20) [B] 2.06 (20) [B] 1.87 (20) [C] 1.91 [g] 1.69 (20) [lq] 1.86 (22) [B] 1.95 (22) [B]
41.52
0.112 3
30.82
0.013 1
30.32
0.105 6
31.67
0.128 6
32.18
0.088 7
34.49 31.63 33.42
0.088 0 0.084 5 0.123 4
30.37
0.091 5
1-Iodobutane 2-Iodobutane 1-Iodododecane Iodoethane
Dielectric constant,
6.22 (20) 4.52 (130)
0.617 (15) 0.540 (30)
0.500 (20) 0.424 (40)
0.875 (20) 0.697 (40)
0.837 (15) 0.670 (30) 0.732 (15) 0.620 (30)
3.9 (20) 10.2 (50) 7.82 (20) 4.9 (22) 6.4 (22) 3.5 (20) 5.37 (20) 7.00 (20) 5.6 (19)
1.94 (20) [C] 1.64 [g] 1.42 (20) [B] 1.85 (20) [B]
8.19 (20)
2.20 (20) [B]
6.5 (20)
1.89 (20) [B]
30.26
0.017 2
4.6 (25)
1.80 (25) [lq] 1.90 (20) [C] 2.07 (20) [C] 1.90 (20) [B] 2.03 [g] 1.86 (20) [B] 2.01 (20) [B]
32.51
0.091 5
31.41 31.64
0.101 4 0.113 6
29.35
0.1107
39.23 34.10 35.36
0.096 5 0.094 9 0.095 0
5.8 (20) 5.81 (20) 7.00 (20) 7.87 (20) 4.4 (35) 11 (18) 12 (20)
1.72 (22) [B]
4.79
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Iron pentacarbonyl Isobutyl acetate Isobutylamine Isobutylbenzene Isobutyl butyrate Isobutyl formate Isobutyl isobutyrate Isobutyl nitrate Isobutyl pentanoate Isobutyl propionate Isobutyric acid Isobutyric anhydride Isobutyronitrile Isopentyl acetate Isopentyl butyrate Isopentyl pentanoate Isopentyl propionate Isopropyl acetate Isopropylamine Isopropylbenzene Isopropyl formate 1-Isopropyl-4methylbenzene Isoquinoline Lactamide Lactic acid Lactonitrile D-Limonene DL-Limonene DL-Mandelonitrile Menthol 2-Mercaptoethanol Methacrylic acid Methacrylonitrile Methane [g]
Viscosity , mN · s · m2
0.553 (25)
0.680 (20)
Dielectric constant, 2.6 (20) 5.29 (20) 4.43 (21) 2.319 (20) 2.298 (30) 4.1 (20) 6.41 (19)
Dipole moment, D
a
1.87 (22) [B] 1.27 (25) [B] 0.31 (20) [lq]
25.59 24.48 29.39
0.101 3 0.109 2 0.096 1
1.89 (20) [B]
24.47 26.14 30.92
0.084 3 0.112 2 0.127 0
28.97
0.116 6
b
2.7 (20) 3.8 (19)
1.44 (15) 14 (20)
2.7 (20)
1.09 (25) [lq]
26.88
0.092 0
0.551 (15) 0.456 (30) 0.872 (20) 0.790 (25)
20.4 (24)
3.61 (25) [B]
24.93 (20)
23.84 (30)
4.81 (20) 4.63 (30) 4.0 (20) 3.6 (19)
1.84 (22) [B] 1.76 (30) [lq]
26.75
0.098 9
27.32
0.091 8
24.44 19.91 30.32
0.107 2 0.097 2 0.105 4
24.56 29.44 (20)
0.114 7
38.31 29.50 29.11
0.096 0 0.092 9 0.091 3
45.90
0.098 8
1.8 (28) [B]
4.2 (20) 0.559 (20) 0.36 (25) 0.791 (20) 0.739 (25) 0.512 (20) 3.402 (20) 1.600 (30) 3.253 (30)
40.33 (25) 2.01 (30)
5.45 (20) 2.39 (20)
1.86 (22) [B] 1.45 (25) [B] 0.65 [g] 0.39 (20) [lq]
2.24 (20)
0
10.7 (20)
2.75 [g] 2.55 (25) [B]
22 (17) 38 (20) 2.4 (20) 2.3 (20)
1.57 (25) [B] 0.63 (25) [B]
17.8 (23) 6.89 (35) 3.4 (20) 1.32 (20) 0.392 (20) 0.010 9 (20) 0.013 3 (100)
Methanesulfonic acid * 38.6180.1873T0.000356T2
1.55 (20) [B]
1.000 94 (0)
1.65 3.69 [g] 0
26.5 (25) 24.4 (20) * 52.28
0.089 3
4.80
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Methanethiol Methanol o-Methoxybenzaldehyde p-Methoxybenzaldehyde Methoxybenzene 2-Methoxyethanol 2-(2-Methoxyethoxy)ethanol 2-Methoxyethyl acetate 1-Methoxy-2nitrobenzene o-Methoxyphenol 2-Methoxy-4(2-propenyl) phenol o-Methoxytoluene m-Methoxytoluene p-Methoxytoluene N-Methylacetamide Methyl acetate Methyl acetoacetate Methyl acrylate Methylamine N-Methylaniline Methyl benzoate 2-Methyl-1, 2-butadiene 2-Methylbutane 2-Methyl-1butanol 2-Methyl-2butanol
Viscosity , mN · s · m2
0.676 (10) 0.544 (25)
1.152 (15) 0.789 (30) 1.72 (20) 1.60 (25) 3.48 (25) 1.61 (60)
Dielectric constant,
Dipole moment, D
28.09 24.00
0.169 6 0.077 3
45.34
0.110 5
3.26 (35) [B]
44.69
0.104 7
1.36 [g] 1.24 (20) [B] 2.04 (25) [B]
38.11
0.120 4
33.30
0.098 4
34.8 (25)
29.9 (75)
48.62
0.118 5
41.2
0.094 3
36.20 33.67 (30)
0.107 1 30.62 (50)
27.95
0.128 9
34.98
0.094 4
1.77 (25) [B] 1.29 [g]
22.87
0.148 8
1.67 (25) [B]
39.32
0.097 0
6.59 (20)
1.86 (25) [B]
40.10
0.117 1
2.1 (25)
0.15 [g]
1.871 (0) 1.845 (20) 14.7 (25)
0.13 [g]
17.20
0.110 3
5.82 (25)
1.72 (20) [B]
22.3 (22) 10.4 (248) 4.33 (25) 3.9 (70) 16.93 (25) 16.0 (30)
2.13 (30) [B] 4.83 [g]
12 (25) 6.931 (25)
1.398 (20) 0.285 (15) 0.236 (0) 2.02 (25) 1.084 (55) 2.298 (15) 1.673 (30) 0.266 (0.3) 0.223 (20) 0.237 (15) 0.215 (25) 5.50 (20) 1.44 (60) 5.48 (15) 2.81 (30)
b
1.26 [g] 1.69 [g] 1.68 (22) [B] 4.34 (20) [B]
41.8 (20) 33.62 (20)
8.25 (20)
3.88 (30) 2.54 (45) 0.388 (20) 0.320 (40) 1.704 (20)
a
2.46 (25) [B]
3.5 (20) 3.5 (20) 4.0 (20) 178.9 (30) 138.6 (60) 7.03 (20) 6.68 (25)
11.4 (10) 10.0 (18)
4.39 (20) [D] 1.70 [g] 1.75 (25) [B]
21.5 (25) 24.18
0.074 8
4.81
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
3-Methyl-14.81 (15) butanol 2.96 (30) 3-Methyl-2-butanol 3.51 (25) 2-Methyl-1-butene 2-Methyl-2-butene 3-Methyl-1-butene 2-Methylbutyl 0.872 (20) acetate Methyl butyrate 0.580 (20) 0.459 (40) 3-Methylbutyric 2.731 (15) acid 2.411 (20) 3-Methylbutyronitrile Methyl chloroacetate Methyl 3.82 (50) cyanoacetate 2.69 (65) Methyl0.734 (20) cyclohexane 0.685 (25) cis-2-Methyl18.08 (25) cyclohexanol 13.60 (30) trans-2-Methyl37.13 (25) cyclohexanol 25.14 (30) cis-3-Methyl19.7 (25) cyclohexanol 17.23 (30) trans-3-Methyl25.52 (16) cyclohexanol 15.60 (30) cis-4-Methyl0.247 (25) cyclohexanol trans-4-Methyl0.385 (25) cyclohexanol 2-Methylcyclohexanone 3-Methylcyclohexanone 4-Methylcyclohexanone Methylcyclo0.507 (20) pentane 0.478 (25) Methyl decanoate Methyl dichloroacetate * Mixed isomers.
Dielectric constant, 14.7 (25) 5.82 (130)
Dipole moment, D
a
1.82 (25) [B]
25.76
0.082 0
23.0 (25) 18.81 19.70
0.1148 0.127 1
16.42 26.75
0.103 1 0.098 9
2.20 (20)
0.52 (20) [lq] 0.11 (25) [lq] 0.34 (25) [B] 1.002 8 (100) [g] 0.25 [g] 4.63 (30) 1.82 (22)
b
5.6 (20)
1.72 (22) [B]
27.48
0.114 5
2.64 (20)
0.63 (25)
27.28
0.088 6
18 (220)
3.62 (25) [C]
27.58
0.082 7
12.9 (21)
37.90
0.130 4
19.23 (50) 17.57 (65) 2.02 (20) 2.07 (25) 13.3*
41.32
0.107 4
0
26.11
0.113 0
2.58 (30) [lq]* 1.95 (25) [B]*
32.45
0.077 0*
16.47 (20)
1.91
29.08
0.062 9*
8.05
1.75
28.80 (30)
13.3*
2.70 (30) [lq]* 1.9 (25) [B]*
29.07
0.069 0*
16 (15) 14 (20) 18 (80) 12 (20) 15 (41) 12 (20) 1.985 (20)
2.98 (25) [B]
34.06
0.102 7
3.06 (25) [B]
33.06
0.092 5
3.07 (25) [B]
32.83
0.093 5
0
24.63
0.116 3
1.65 (20) [H]
30.33 37.00
0.091 2 0.121 9
4.82
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Methyl dodecanoate N-Methylformamide Methyl formate Methyl heptanoate 2-Methyl-2heptanol 2-Methyl-3heptanol 2-Methyl-4heptanol 3-Methyl-3heptanol 3-Methyl-4heptanol 4-Methyl-3heptanol 4-Methyl-4heptanol Methyl hexadecanoate 2-Methylhexane 3-Methylhexane Methyl hexanoate Methyl isobutyrate Methyl methacrylate Methyl o-methoxybenzoate Methyl p-methoxybenzoate 1-Methylnaphthalene Methyl o-nitrobenzoate Methyl octadecanoate 2-Methyloctane 4-Methyloctane Methyl octanoate Methyl oleate 2-Methylpentane
Viscosity , mN · s · m2
1.99 (15) 1.65 (25) 0.360 (15) 0.319 (29)
Dielectric constant,
200.1 (15) 182.4 (25) 8.5 (20)
3.38 (7) 2.46 (25) 3.37 (20) 3.75 (60) 3.30 (20) 3.65 (60) 3.74 (20) 2.89 (60) 9.1 (20) 7.4 (20) 5.25 (20) 4.62 (55) 2.87 (20) 3.27 (60)
Dipole moment, D
a
1.70 (20) [H]
31.37
0.089 3
3.86 (25) [B]
37.96 (30)
35.02 (50)
1.77 [g]
28.29
0.157 2
28.29
0.157 2
31.50
0.077 5 0.096 64 0.097 0 0.104 5 0.113 1
b
1.63 (20) [B]
0.378 (20) 0.372 (20)
1.92 (20) 1.93 (20)
0.523 (20) 0.419 (40) 0.632 (20)
0 0 1.70 (20) [H] 1.98 (20) [B]
21.22 21.73 28.47 25.99
2.9 (20)
1.68 (25) [B]
28–29 (30)
2.7 (20)
0.23 (20) [B]
39.96
0.0934
28 (25)
3.67 (30) [B] 32.20
0.77 5
23.76 24.22 29.93 31.3 (25) 19.37
0.094 0 0.094 0 0.100 2 25.4 (100) 0.099 7
7.7 (21) 4.3 (33)
4.88 (20) 0.310 (20) 0.295 (25)
1.97 (20) 1.97 (20)
0 0
3.211 (20) 1.88 (20)
0
4.83
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 3-Methylpentane 2-Methyl-2, 4-pentanediol 4-Methylpentanenitrile Methyl pentanoate 2-Methyl-1pentanol 3-Methyl-1pentanol 4-Methyl-1pentanol 2-Methyl-2pentanol 3-Methyl-2pentanol 4-Methyl-2pentanol 2-Methyl-3pentanol 3-Methyl-3pentanol 4-Methyl-2pentanone 4-Methyl-3penten-2-one 1-Methyl-1phenylhydrazine Methyl phenyl sulfide 2-Methylpropane 2-Methylpropanenitrile 2-Methyl-1propanol 2-Methyl-2propanol 2-Methylpropene N-Methylpropionamide Methyl propionate 2-Methylpropionic acid
Viscosity , mN · s · m2
Dielectric constant,
0.307 (25) 0.292 (30) 34.4 (20)
1.895 (20)
0.980 (20) 9.843 (30) 0.713 (20)
Dipole moment, D
0.007 44 (20) [g] 0.551 (15) 0.456 (30) 4.70 (15) 2.876 (30) 3.316 (20) 2.039 (40) 6.06 (20) 3.56 (40) 0.477 (15) 1.213 (25) 1.126 (30)
b
0
20.26
2.9 (0)
33.1 (20)
15.5 (22)
3.53 (25) [B]
28.89
0.091 7
4.3 (19)
1.62 (22) [B]
27.85 26.98
0.104 4 0.081 9
26.92
0.078 9
25.93
0.074 3
25.07
0.086 1
27.14
0.091 9
24.67
0.082 1
26.43
0.091 4
25.48
0.088 8
23.64 (20)
19.62 (60)
1.38 (20) [B]
42.81
0.123 8
0 4.07 [g] 3.60 (20) [B] 2.96 (30) [lq] 1.78 (20) [B] 1.67 (22) [B]
12.83
0.123 6
24.53
0.079 5
20.02 (15)
19.10 (30)
0.50 [g] 3.59 [g]
14.84 31.20 (20)
0.131 9 29.12 (50)
1.70 (22) [B] 1.08 (25) [lq]
27.58 25.55 (20)
0.125 8 25.13 (25)
4.074 (25)
0.585 (20) 0.522 (30) 0.879 (25)
a
13.11 (20) 11.78 (40) 15.6 (0) 15.1 (20) 7.3 (19)
20.2 26 (34) 17.93 (25) 10.9 (30) 8.49 (50) 185 (20) 151 (40) 6.21 2.73 (40)
0.106 0
3.20 (25) [B] 1.84 (15) [B]
4.84
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 1-Methylpropyl acetate 2-Methylpropyl acetate 2-Methylpropylamine 2-Methylpropyl formate Methyl propyl ketoxime 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine N-Methyl-2pyrrolidinone Methyl salicylate Methyl tetradecanoate 2-Methyltetrahydrofuran Methyl thiocyanate Morpholine Naphthalene 1-Naphthonitrile 2-Naphthonitrile o-Nitroaniline p-Nitroaniline o-Nitroanisole Nitrobenzene m-Nitrobenzyl alcohol 2-Nitrobiphenyl Nitroethane Nitromethane 1-Nitro-2methoxybenzene o-Nitrophenol 1-Nitropropane
Viscosity , mN · s · m2
Dielectric constant,
Dipole moment, D
a
b
25.72
0.105 4
0.702 (20) 0.366 (78) 21.7 (25)
5.29 (20)
1.87 (22) [B]
25.59
0.101 3
4.43 (21)
1.27 (27)
24.48
0.109 2
0.680 (20)
6.41 (19)
1.88 (22)
26.14
0.112 2
9.8 (20)
1.96 (25) [B]
36.11
0.124 3
37.35 37.71
0.115 3 0.114 1
32.0 (25)
2.41 (25) [B] 2.60 (25) [B] 4.09 (30) [B] 2.47 (25) [B] 1.62 (25) [B]
42.15 31.00
0.117 4 0.080 0
3.34 (20) [B]
40.66
0.130 5
3.3 (20) 0.805 (20) 0.710 (30)
1.666 (25)
9.41 (30)
0.601 (0) 0.536 (10) 64.3 (0)
6.92 (0) 6.63 (10) 4.3 (19)
2.53 (15) 1.79 (30)
7.33 (25)
1.75 (25) [lq] 1.52 (25) [B]
37.63 (20)
36.24 (30)
0.780 (100) 0.967 (80)
2.54 (85)
0
42.84
0.110 7
4.28 (20) [B] 6.3 (25) [B] 4.83 [g] 4.22 [g] 3.96 (25) [B]
60.62 48.62 46.34
0.092 3 0.118 5 0.115 7
3.82 (20) [B] 3.61 [g]
35.27
0.125 5
3.46 [g]
40.72
0.167 8
4.83 [g]
48.62
0.118 5
3.14 (25) [B] 3.60 [g]
47.35 32.62
0.117 4 0.100 9
16 (70) 17 (70) 34.5 (90) 56.3 (160) 2.165 (15) 1.55 (35)
12 (45) 0.677 (20) 0.63 (35) 0.692 (15) 0.596 (30)
2.343 (45) 0.798 (25) 0.70 (35)
34.82 (25) 24.9 (90) 22 (20)
28.06 (30) 27.4 (35) 35.87 (30) 35.1 (35)
17 (50) 23.24 (30) 22.7 (35)
4.85
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance 2-Nitropropane N-Nitrosodimethylamine o-Nitrotoluene m-Nitrotoluene p-Nitrotoluene Nonane 1-Nonanol 1-Nonene (Z,Z)-9,12Octadecadienoic acid Octamethylcyclotetrasiloxane Octamethyltrisiloxane Octane Octanenitrile Octanoic acid 1-Octanol
Viscosity , mN · s · m2
Oxalyl chloride 2-Oxohexamethyleneimine 4-Oxopentanoic acid Palmitic acid Paraldehyde Parathion
a
b
25.52 (30) 53 (20)
3.76 [g] 4.01 (20) [B]
32.18
0.115 8
2.37 (20) 1.63 (40) 2.33 (20) 1.60 (40) 1.20 (60) 0.713 (20) 0.666 (25) 14.3 (20) 0.620 (20) 0.586 (25)
27.4 (20) 22.0 (58) 24 (20) 22 (58) 22 (52) 1.972 (20) 1.85 (110)
3.72 (20) [B]
44.10
0.117 4
4.20 (20) [B]
43.54
0.111 8
4.47 (25) [B] 0
42.26 24.72
0.097 4 0.093 5
1.72 (20) [B] 0.59 (20) [B]
29.79 24.90
0.078 9 0.093 8
0.081 1
2.70 (70) 2.60 (120)
1.40 (18) [Hx]
2.20 (20)
2.4 (20)
20.19
0.82 (20)
2.3 (20)
0.42 (25) [lq] 0.67 (25) [B] 0.64 (25) [lq]
0.546 (20) 0.433 (40) 1.811 (15) 1.356 (30) 5.828 (20) 4.690 (25) 10.64 (15) 6.125 (30)
1.95 (20) 1.83 (110) 13.90 (25)
0
23.52
0.095 1
29.61
0.080 2
2.45 (20)
1.15 (25) [lq]
29.2 (20)
28.7 (25)
11.3 (10) 10.34 (20) 8.20 (20) 6.52 (40) 10.39 (20) 7.42 (100) 2.084 (20)
1.72 (20) [B]
29.09
0.079 5
1.65 (20) [B]
27.96
0.082 0
0.34 (20) [lq]
23.68
0.095 8
1.44 (25) [lq]
32.80 (20)
27.94 (90)
41.69
0.076 3
28.28 39.2 (25)
0.106 2
2-Octanone
Oleic acid
Dipole moment, D
0.750 (25)
2-Octanol
1-Octene
Dielectric constant,
0.470 (20) 0.447 (25) 38.80 (20) 27.64 (25)
2.46 (20) 2.45 (60) 3.5 (21)
9 (78)
2.3 (70) 13.9 (25) 15.30 (25)
67.56 (25)
2.72 (15) [B]
0.93 (20) [B] 3.88 (25) [B]
1.91 (25) [lq] 4.98 (25) [B]
4.86
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Pentachloroethane Pentadecane cis-1,3-Pentadiene Pentanaldehyde Pentane 1,5-Pentanediol 2,4-Pentanedione Pentanenitrile
Viscosity , mN · s · m2 2.741 (15) 2.070 (30) 2.814 (22)
0.237 (15) 0.215 (25) 128 (20) 0.6 (20) 0.779 (15) 0.637 (30)
1-Pentanethiol Pentanoic acid 1-Pentanol 2-Pentanol 3-Pentanol 2-Pentanone 3-Pentanone 1-Pentene cis-2-Pentene trans-2-Pentene Pentyl acetate Pentylamine Pentyl formate Pentyl nitrate Phenanthrene Phenol Phenoxyacetaldehyde Phenoxyacetylene 2-Phenylacetamide Phenyl acetate Phenylacetonitrile
2.359 (15) 1.774 (30) 4.650 (15) 2.987 (20) 5.130 (15) 2.780 (30) 7.337 (15) 3.306 (30) 0.473 (25) 0.493 (15) 0.423 (30) 0.24 (0)
0.924 (20) 0.862 (25) 1.018 (20)
6.024 (35) 3.421 (50)
Dielectric constant, 3.73 (20)
2.32 (25) 10.1 (17) 2.011 (90) 1.84 (20) 25.7 (20) 17.39 (25) 17.4 (21) 4.55 (25) 4.23 (50) 2.66 (20)
Dipole moment, D
a
b
0.92 [g] 0.98 (25) [lq] 0 0.50 (25) [B] 2.59 (20) [B] 0
37.09
0.117 8
28.78
0.085 7
27.96 18.25
0.101 0 0.112 1
2.45 (20) [D] 3.03 [g] 2.5 (20) [B] 3.57 (25) [B]
43.2 (20) 33.28
0.1144
27.44 (20)
26.33 (30)
1.61 (20) [D]
28.90
0.088 7
1.54 (25) [lq]
16.9 (20) 13.9 (25) 13.82 (22)
1.71 (20) [B]
27.54
0.087 4
1.66 (22) [B]
25.96
0.100 4
13.02 (22)
1.64 (22) [B]
24.60 (20)
23.76 (30)
15.45 (20) 11.73 (80) 19.4 (20) 17.00 (20) 2.10 (20)
2.72 (22) [B]
24.89
0.065 5
2.72 (20) [B]
27.36
0.104 7
0.34 (20) [lq]
4.75 (20)
1.72 [g] 1.91 (25) [B] 1.55 (30) [B]
18.20 19.73 18.90 27.66
0.109 9 0.117 2 0.099 7 0.099 4
24.4 (13) 28.09
0.102 3
43.54
0.106 8
46.26
0.078 8
44.57
0.115 5
4.5 (22) 6.5 (20) 9 (18) 2.8 (20) 9.78 (60)
0 1.53 (20) [B]
4.8 (20) 4.8 (20)
1.799 (45) 1.93 (25)
5.23 (20) 19.0 (25) 8.5 (234)
1.42 (25) [lq]
1.54 (22) [B] 3.47 (27) [B]
4.87
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
Phenylacetylene 1-Phenylethanol
Piperidine Propane [g] 1,2-Propanediamine 1,3-Propanediamine 1,2-Propanediol 1,3-Propanediol 1-Propanethiol 2-Propanethiol 1-Propanol 2-Propanol
Dipole moment, D
a
0.72 (20) [B] 1.51 (20) [B]
42.88
0.103 8
1.67 (25) [B]
48.14
0.129 2
42.73
0.108 6
34.27
0.105 6
45.20
0.097 6
0.60 (25) [B]
28.35 28.26
0.094 4 0.093 4
5.8 (20)
1.19 (25) [B]
31.79
0.115 3
1.6 (0)
0
9.22
0.087 4 [lq]
3.0 (20) 13 (20) 7.6 (90) 7.2 (21) 8.8 (20) 10 (20)
Phenylhydrazine Phenyl isocyanate Phenyl isothiocyanate 1-Phenylpropene 2-Phenylpropene 3-Phenylpropene Phenyl propyl ether Phenyl salicylate Phosgene Phthalide DL--Pinene L--Pinene
Dielectric constant,
2.7 (20) 2.3 (20) 2.6 (20)
1.61 (25) 1.70 (20) 1.41 (25) 1.679 (15) 1.224 (30) 0.008 1 (20) 0.010 7 (125) 1.46
6.3 (50) 4.7 (0) 4.3 (22) 36 (75) 2.64 (25) 2.76 (20)
10.2
17.85
9.55
1.96 (25) [B]
56.0 (20) 18.0 (40) 56.0 (20) 18.0 (40)
32.0 (20)
2.27 (25) [D]
72.0 (25)
35.0 (20)
2.52 (25) [D]
47.43
0.090 3
1.55 (25) [lq] 1.64 (25) [lq] 1.67 [g] 1.75 (25) [B] 1.69 [g] 1.66 (30) [B] 3.04 [g] 2.90 (25) [B] 0.35 [g]
27.38 24.26 25.26
0.127 2 0.117 4 0.077 7
22.90
0.078 9
9.99
0.142 7 [lq]
1.63 [g]
27.53
0.090 2
2.522 (15) 1.722 (30) 2.859 (15) 1.765 (30)
22.2 (20) 20.33 (25) 18.3 (25) 16.24 (40)
0.008 43 (20) 0.009 33 (50) 1.363 (20) 0.914 (40) 0.357 (15) 0.317 (27)
1.88 (20) 1.44 (90) 21.6 (15)
2-Propenaldehyde Propene [g] 2-Propen-1-ol Propionaldehyde
b
18.5 (17)
2.75 [g] 2.57 (20) [B]
4.88
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Propionamide Propionic acid Propionic anhydride Propionitrile Propyl acetate Propylamine
Viscosity , mN · s · m2
1.175 (15) 0.956 (30) 1.144 (20) 1.061 (25) 0.454 (15) 0.389 (30) 0.585 (20) 0.460 (40) 0.343 (25)
Propylbenzene Propyl benzoate Propyl butyrate Propyl chloroacetate Propylene carbonate Propylene oxide Propyleneimine Propyl formate Propyl isobutyrate Propyl nitrate Propyl pentoate Propyl propionate Propyne 2-Propyn-1-ol Pulegone Pyradazine Pyrazine Pyridine Pyrimidine Pyrrole Pyrrolidine 2-Pyrrolidone
Dielectric constant,
3.30 (10) 3.44 (40) 18.3 (16)
64.4
0.327 (20) 0.28 (25) 0.491 (25)
1.68 (20)
30.30 (20)
29.70 (25)
29.63
0.115 3
26.60
0.112 0
24.86
0.124 3
31.13
0.107 5
36.55 27.06 32.91
0.106 9 0.100 0 0.108 3
26.77
0.111 9
25.83 29.67 27.72 26.85 14.51 38.59
0.101 5 0.123 7 0.098 4 0.105 9 0.148 2 0.127 0
50.55
0.103 6
39.82
0.130 6
32.85 39.81
0.101 0 0.110 0
1.58 (20) [B] 3.55 (25) [B]
31.48
0.090 0
2.18 (25) [B]
45.25
0.106 3
3.1 (30) [lq] 2.86 (20) [B]
45.38
0.124 2
1.17 [g] 1.36 (20) [B] 0.35 (25) [lq]
2.53
b 0.090 9 0.099 3
5.31 (20)
4.3 (20)
a 39.05 28.68
4.06 [g] 3.60 (20) [B] 1.86 (25) [B]
0.831 (20)
1.053 (20) 0.673 (20)
3.4 (30) [B] 1.76 [g] 1.77 (25) [D]
22.2 (20) 24.2 (50) 5.69 (19)
2.37 (20) 2.351 (30)
0.574 (20) 0.417 (40) 0.831 (20)
Dipole moment, D
2.00 [g]
7.72 (19)
14 (18) 4 (19) 4.7 (20) 24.5 (20) 9.5 (20)
1.130 (10) 0.829 (30)
2.8 (54) 12.3 (25) 9.4 (116)
1.352 (20) 1.233 (25)
7.48 (18) 8.13 (25)
13.3 (25)
Quinoline
4.354 (15) 3.37 (25)
9.00 (25)
Safrole Salicylaldehyde
2.294 (25) 2.90 (20) 1.67 (45)
3.1 (21) 13.9 (20)
1.77 [g, cis] 1.60 [g, trans] 1.91 (22) [B]
3.01 (20) [B] 1.79 (22) [B] 0.75 [g] 1.78 (25) [B] 2.00 (25) [B] 3.97 (35) [D] 0 2.20 (20) [B] 2.25 [g] 2.44 (35) [D] 1.80 (25) [B]
4.89
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance
Viscosity , mN · s · m2
Squalane Squalene D-Sorbitol Stearic acid
6.08 (20) 12 (25)
Styrene
0.751 (20) 0.696 (25) 2.591 (60) 2.008 (75) 13.950 (11) 9.797 (20)
Succinonitrile 1, 1,2,2Tetrabromoethane 1, 1,2,2Tetrachlorodifluoroethane 1, 1,2,2-Tetrachloroethane Tetrachloroethylene Tetradecamethylcycloheptasiloxane Tetradecamethylhexasiloxane Tetradecane Tetradecanoic acid 1-Tetradecanol Tetraethylene glycol Tetraethyllead Tetraethylsilane Tetraethyl silicate Tetrahydrofuran 2,5-Tetrahydrofurandimethanol Tetrahydro-2furanmethanol 1,2,3,4-Tetrahydronaphthalene 1,2,3,4Tetrahydro2-naphthol
11.6 (70)
Dielectric constant,
Dipole moment, D
a
b
0.13 (25) [lq]
32.0 (20)
30.98 (30)
3.68 (30) [toluene] 1.29 (20) [H]
53.26
0.107 9
52.37
0.146 3
26.13
0.113 3
1.29 [g] 1.45 (25) [H] 0
38.75
0.126 8
32.86 (15)
31.27 (30)
2.5 (20)
1.58 (20) [lq]
17.42 (25)
0 33.90
28.30 0.093 2
0.086 9
0.76 (25) [B]
1.69 (25) [C]
32.72
0.070 3
5.84 (20) [lq]
45 (25)
0.3 (20) [B] 0 1.72 (32) [B] 1.75 (25) [B]
30.50 25.22 23.63 26.5 (25)
0.096 9 0.107 9 0.097 9
0 0.68 (25) [B] 33 (80) 2.29 (70) 2.26 (100) 2.43 (25) 2.32 (75) 56.5 (57) 54 (68) 8.6 (3) 7.0 (22)
1.21 (25) 1.208 (30)
2.52 (25)
1.844 (15) 1.456 (30) 1.932 (15) 0.798 (30)
8.20 (20) 2.30 (25)
1.76 (25) [D]
2.7 (20)
2.131 (22)
4.72 (38) 4.40 (48) 44.9 (25)
0.55 (20) 0.460 (25) 225 (25)
4.1 (20) 11.6 (70) 7.58 (25)
6.24 (20)
13.61 (23)
2.12 (35) [lq]
39.96
0.100 8
2.202 (20) 2.003 (25)
2.76 (20)
0.60 (25) [lq]
35.55
0.095 4
11.7 (20) 6.7 (90)
4.90
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Tetrahydropyran Tetrahydropyran2-methanol Tetrahydrothiophene-1, 1-dioxide Tetrahydrothiophene oxide 1,1,2,2-Tetramethylurea Tetranitromethane Tetrathiomethylmethane Thiacyclohexane Thiacyclopentane
Viscosity , mN · s · m2
Dielectric constant,
0.826 (20) 0.764 (25) 11.0 (20)
5.61 (25)
9.87 (30)
43.3 (30)
52 (30) 19 (80)
42.5 (30)
1.76 (20)
a
b
1.55 (25) [B] 34.1 (25) 4.81 (25) [B]
23.06
3.47 (25) [B]
2.32 (20) 2.82 (70)
0
1.042 (20) 0.971 (25)
Thioacetic acid 2,2 -Thiodiethanol 65.2 (20) Thiophene 0.662 (20) 0.353 (82) Thymol Toluene 0.623 (15) 0.523 (30) p-Toluenesulfonyl chloride o-Toluidine 5.195 (15) 4.39 (20) m-Toluidine 4.418 (15) 2.741 (30) p-Toluidine 1.945 (45) 1.557 (60) m-Tolunitrile p-Tolunitrile Tribenzylamine Tributyl 1.9 (25) phosphite 2,2,2-Tribromoacetaldehyde Tribromoethane 2.152 (15) 1.741 (30) 1,2,3-Tribromopropane Tributylamine 1.35 (25) Tributyl borate 1.776 (20) 1.601 (25)
Dipole moment, D
35.5 (30)
36.06 (20) 38.44
33.74 (40) 0.134 2
53.8 (20) 34.00
0.132 8
33.95 30.90
0.082 1 0.118 9
42.41
0.090 3
1.60 (25) [B]
42.87
0.109 4
1.45 (25) [B]
40.33
0.097 9
1.52 (25) [B]
39.58
0.095 7
4.21 (22) [B] 4.47 (20) [B] 0.65 (20) [B] 1.92 (20) [C]
38.85 39.79 42.41 27.57
0.101 3 0.110 0 0.095 3 0.086 5
1.90 (25) [B] 12.8 (20) 2.76 (16) 2.57 (25) 2.385 (20) 2.364 (30)
6.34 (18) 5.71 (58) 5.95 (18) 5.45 (58) 4.98 (54)
0.55 [g] 0.52 (25) [B] 1.55 (25) [B] 0.45 (20) [lq]
7.6 (20)
1.70 (20) [B]
4.39 (20)
0.99 [g]
48.14
0.130 8
6.45 (20)
1.59 (25) [B]
47.99
0.126 7
0.78 (25) [B] 0.78 (25) [C]
26.47 26.2 (20)
0.083 1 25.8 (25)
4.91
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Tributyl phosphate Trichloroacetaldehyde Trichloroacetic acid Trichloroacetonitrile 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Trichloromethylsilane 2,4,6-Trichlorophenol 1,2,3-Trichloropropane Trichlorosilane ,,-Trichlorotoluene 1,1,2-Trichloro1,2,2,-trifluoroethane Tridecane 1-Tridecene Triethanolamine Triethylaluminum Triethylamine Triethylene glycol Triethyl phosphate Triethyl phosphite
Viscosity , mN · s · m2 l 11.1 (15)
0.903 (15) 0.725 (30) 0.119 (20) 0.110 (25) 0.566 (20) 0.532 (25) 0.42 (25) 0.011 (25) [g] 0.47 (20)
0.332 (20) 0.316 (25) 3.07 (10) 2.55 (17) 0.711 (20) 0.627 (30)
Dielectric constant, 3.39 (25)
7.96 (30) [B]
7.6 (40) 4.9 (20) 4.6 (60)
1.96 (25) [B]
0.394 (15) 0.363 (30) 49.0 (20) 8.5 (60) 1.684 (40) 1.376 (55) 0.72 (25)
a
b
3.07 (25) 28.71 27.66
0.066 6
35.4
0.089 5
7.85 (19)
1.1 (25) [B, dimer] 1.93 (19) [lq]
7.1 (7) 7.52 (20) 8.78 (23)
1.79 [g] 1.6 (25) [B] 1.45 [g]
28.28
0.124 2
37.40
0.135 1
3.42 (16)
0.77 (30) [lq] 0.95 (30) [B] 0.45 [g] 0.49 [lq] 1.87 (25) [B]
29.5 (20)
28.8 (25)
18 (25)
1.88 (25) [D]
43.13
0.095 5
7.5 (20)
1.61 [g]
37.8 (20)
37.05 (25)
20.43
0.107 6
6.9 (21)
0.86 [g] 0.98 (25) [B] 2.17 (20) [B]
17.75 (20)
16.56 (30)
27.73
0.087 2
28.01
0.088 4
2.28 (29)
2.41 (25)
1.883 (20) 1.55 (23) 613.6 (25) 208.1 (40)
Dipole moment, D
0
29.36 (25) 2.9 (20) 2.42 (25) 23.7 (20) 13.43 (15) 10.93 (65) 5.0
9.119 7
20.3 (20)
3.57 (25) [B]
0.66 [g] 0.9 (25) [B] 5.58 (20) [lq]
22.70
0.099 2
47.33
0.088 0
3.08 (25) [B]
31.81
0.092 8
1.82 (25) [D]
25.73
0.087 8
4.92
SECTION 4
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Trifluoroacetic acid 2,2,2-Trifluoroethanol ,,-Trifluorotoluene Trimethylamine 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Trimethyl borate 2,2,3-Trimethylbutane cis, cis-1,3,5Trimethylcyclohexane trans-1,3,5Trimethylcyclohexane Trimethylene sulfide 3,5,5-Trimethyl1-hexanol 2,6,8-Trimethyl4-nonanone 1,3,5-Trimethyl2-oxabicyclo[2.2.2]octane 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane Trimethyl phosphite 2,4,6-Trimethylpyridine Triphenylamine Triphenyl phosphite Tripropylamine
Viscosity , mN · s · m2 0.926 (20) 0.653 (40) 1.996 (20)
Dielectric constant, 8.55 (20) 5.76 (50)
Dipole moment, D
a
b
2.28 [g]
15.64
2.03 (25) [cH]
20.6 (33)
0.56 (20) [lq]
16.24 30.91
0.113 3 0.104 0
0.30 (20) [lq]
31.76
0.102 5
0
29.79
0.089 7
0.82 (25) [C] 0
20.70
0.097 3
1.78 (25) [B]
36.3 (20)
35.0 (30)
4.57 (24)
1.54 (25) [C]
32.1 (20)
31.1 (25)
0.598 (20)
1.962 (20)
0
22.46
0.089 5
0.502 (20)
1.940 (20)
0
20.55
0.088 8
1.83 (20) [C]
27.18 (20)
24.88 (40)
46.2
0.095 5
24.58
0.087 8
0.894 (15) 0.730 (30) 1.154 (20)
9.2 (30) 8.1 (60) 2.4 (25) 2.636 (20) 2.609 (30) 2.38 (20) 2.36 (30) 2.28
0.579 (20)
8 (20) 1.93 (20)
0.321 (33)
0.184 4
0.632 (20) 0.558 (30) 0.714 (20) 0.624 (30) 0.638 (20) 0.607 (25) 11.06 (25) 1.9 (20)
0.61 (20) 1.498 (20) 1.496 (25)
6.6
1.95 (25) [B]
25.18 (15) 6.95 (45)
3.67 (45) 3.57 (65)
2.04 (25) [B] 0.58 (20) [lq] 0.76 (20) [B]
4.93
PHYSICAL PROPERTIES
TABLE 4.10 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Organic Substances (continued ) Surface tension, dyn · cm1 Substance Tripropylene glycol Tripropylene glycol butyl ether Tripropylene glycol ethyl ether Tripropylene glycol isopropyl ether Tripropylene glycol methyl ether Tris(dimethylamino) phosphine oxide Tris(4-ethylphenyl) phosphite Tris(m-tolyl) phosphite Tris(p-tolyl) phosphite Tritolyl phosphate Undecane 2-Undecanone Urea
Viscosity , mN · s · m2
6.58 (25)
28.8 (25)
5.17 (25)
28.2 (25)
7.7 (25)
27.4 (25)
5.96 (25)
30.0 (25)
3.34 (30)
30 (20)
30.22 (15) 9.047 (45)
3.74 (15) 3.61 (45)
2.08 (25) [B]
37.55 (15) 9.132 (45) 35.52 (15) 8.794 (45) 38.8 (35) 16.8 (55)
3.67 (15) 3.53 (45) 3.88 (15) 3.74 (45) 6.92 (40)
1.62 (25) [B]
1.186 (20) 0.761 (50) 1.61 (30)
2.00 (20) 1.84 (150)
0.421 (20) 0.809 (20) 0.627 (40) 0.617 (20) 0.497 (40) 0.644 (20) 0.513 (40)
Xylitol
a 34 (25)
o-Xylene
p-Xylene
Dipole moment, D
56.1 (25)
Vinyl acetate
m-Xylene
Dielectric constant,
b
1.77 (25) [B] 2.84 (40) [C]
40.9 (20)
0
26.26
0.090 1
2.71 (15) [B] 4.59 (25) [D] 2.57 (20) 2.54 (30) 2.37 (20) 2.35 (30) 2.26 (20) 2.22 (50) 40 (20)
1.79 (25) [B]
23.95 (20)
22.54 (30)
0.62 [g] 0.52 (25) [lq] 0.33 (20) [lq] 0.37 (20) [B] 0
32.51
0.110 1
31.23
0.110 4
30.69
0.107 4
4.94
SECTION 4
TABLE 4.11 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substance Temperature in degree celsius are indicated in parentheses. The physical state of the substance is indicated in square brackets
Substance Air (20 C) AlBr3 Ar [g] (20 C) [lq] AsBr3 AsCl3 AsH3 (arsine) BBr3 BCl3 BF3 B2H6 (diborane) B5H9 B3H6N3 (triborotriazine) Br2 [g] (20 C) [lq] BrF3 BrF5 Cl2 [g] (20 C) [lq] ClF3 ClO3F (perchloryl fluoride) Co [g] [lq] CO2 [g] (20 C) [lq] COCl2 COF2 COS COSe CS CS2 [g] [lq] CrO2Cl2 [chromyl(VI) chloride] D2 (deuterium) DH D2O
Viscosity, mN · s · m2
Dielectric constant,
Dipole moment, D
0.018 2
1.000 536 4 3.38100
5.2
0.022 3
1.000 517 2 1.538191 8.8335 12.620 2.0520 2.580 1.87292.5
1.0316 2.2220 0.6224
1.012 8 3.0920 7.9124.5
0.013 2 0.4812
0.017 520
1.000 700
1.000 922 1.600 C, 50 atm 4.3422
3.4710
0.37520
a
b
0 1.61 1.59 0.20 0 0 0 0 2.13 0
34.28 54.51 41.67
0.249 3 0.1043 0.097 81
31.90
0.128 0
2.92 3.13
0.230 0 0.178 5
0 1.1 1.51
45.5 38.30 25.24
0.182 0 0.099 9 0.109 8
26.9 12.24
0.166 0 0.157 6
30.20
0.207 3
22.59
0.145 6
12.12
0.177 9
6.537 (71.7220)*
0.188 3 (68.3840)*
0 1.9114 4.2925
0.014 7 0.07120
Surface tension, dyn · cm1
1.002 90 2.620 2.620
0.554 0.023
0.112
0 1.17 0.95 0.712 0.73 1.98 0 0.47
1.277253 1.09825
*Actual values of surface tension.
78.2525
1.87
4.95
PHYSICAL PROPERTIES
TABLE 4.11 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (continued )
Substance F2 GaCl3 GeCl4 H2 [g] (20 C) [lq] HBr [g] [lq] HCl [g] [lq] HCN HCNO (isocyanate) HCNS (isothiocyanate) HF HI [g] [lq] NH3 (azide) H2O (see Table 4.12) H2O2 HNO3 H2S [g] [lq] H2Se H2SO4 HSO3Cl (chlorosulfonic acid) HSO2F (fluorosulfonic acid H2Te He [g] (20 C) Hg I2 IF5 Kr [g] (20 C) [lq] Ne[g] (20 C) N2 [g] (20 C) [lq]
Viscosity, mN · s · m2
Dielectric constant,
Dipole moment, D
1.54202 2.43025 0.008 8
0.85 0
1.000 253 8 1.22820.4 K
0
1.003 130 3.8225
0.82
0.8367
1.004 60 4.6028 11620
1.08
0.5195 0.20618
0.2560
83.60 1.002 340 2.9022
Surface tension, dyn · cm1 a
16.10 0.164 6 35.0 0.100 0 (22.4430)*
13.10
2.98 1.6 1.7 1.82
b
0.207 9
(19.4510)* (18.3320)*
10.41
0.078 67
78.97
0.154 9
0.24
48.95 22.32
0.175 8 0.148 2
0.2
29.03
0.261 9
490.6
0.204 9
33.16
0.131 8
40.576
0.289 0
26.42
0.226 5
0.44 0.8
1.2520
84.20
2.2 2.17
1.00 4 00 5.9310
0.97
0.4120 24.5425 2.4320
10025 6020
1.5625
12025
0.019 6 1.55220 1.98116
1.000 065 0 11.1118
0 0 0 2.18 0.05
0.025 0 0.031 3
1.000 063 9
0
0.017 6
1.000 548 0 1.454203
0
*Actual values of surface tension.
4.96
SECTION 4
TABLE 4.11 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (continued )
Substance NH3 [g] [lq] N2H4 (hydrazine) NO N2O [g] [lq] NO2 N2O4 NOBr (nitrosyl bromide) NOCl NOF NO2F (nitryl fluoride) O2 [g] (20 C) [lq] O3 OF2 (oxygen difluoride) OsO4 PBr3 PCl3 PCl5 PF5 PH3 PI3 POCl3 POF3 PSCl3 PbCl4 S2Cl2 dimer S2F2 FSSF isomer S¨SF2 isomer SF4 SF6 S2F10 SO2 [g] [lq] SO3 SOBr2 (thionyl bromide) SOCl2
Viscosity, mN · s · m2
Dielectric constant,
0.25433.5 0.9720
1.007 20 22.433.4 52.920
0.014 620
1.001 130 1.5215 2.5615
0.020 4
0.012 629
*Actual values of surface tension.
1.009 30 15.00 3.1118 9.0620 9.2520
67.48
0.585 3
5.09
0.203 2
29.49 14.00 8.26
0.149 3 0.116 5 0.185 4
33.72 (38.1183)*
0.256 1
45.34 31.14
0.128 3 0.126 6
61.66 35.22
0.067 71 0.127 5
37.00
0.127 2
46.23
0.146 4
12.87 5.66
0.173 4 0.119 0
26.58
0.194 8
36.10
0.141 6
0.316 0.5
0
2.02020
b
0.167
1.000 494 7 1.507193
5.822 2.7820 4.7915
a
(37.9150)* (35.3840)* 1.75 0.153
1.8 1.9 1.81 0.47
2.915 4.1265 13.725
Surface tension, dyn · cm1
1.47
13.415 18.212
3.920 3.4325 2.7165
1.06525
Dipole moment, D
0.53 0.297 0 0.5 0.78 0.9 0 0.58 0 2.41 1.76 1.42 1.0 1.45 1.03 0.632 0 0 1.63 0 9.11 1.45
4.97
PHYSICAL PROPERTIES
TABLE 4.11 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (continued )
Substance SO2Cl2 (sulfuryl chloride) SbCl3 SbCl5 SbF5 SbH3 SeF4 SeF6 SeOCl2 SiCl4 SiF4 SiH4 SiHCl3 SnBr4 SnCl4 TeF6 TiCl4 UF6 [g] [lq] VCl4 VOBr3 VOCl3 Xe [g] (20 C)
Viscosity, mN · s · m2
Dielectric constant,
Dipole moment, D
Surface tension, dyn · cm1 a
b
9.1520
1.81
32.10
0.132 8
33.275 3.2220
3.93 0
47.87
0.123 8
49.07
0.193 7
38.61
0.127 4
20.78
0.099 62
20.43
0.107 6
29.92
0.113 4
0.12
5525 2.4016
2.8920 2.8020
0.022 8
*Actual values of surface tension.
1.002 9267 2.1865 3.0525 3.625 3.425 1.001 23
0 2.64 0 0 0 0.86 0 0 0 0
(33.5420)* (31.0640)*
0 25.5
0.124 0
0 0.3 0
(36.3620)* (33.6040)*
4.98
SECTION 4
TABLE 4.12 Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at Various Temperatures
Temperature, C
Refractive index, nD
Viscosity, mn · s · m2
0 5 10 15 20 21 22 23 24 25 26 27 28 29 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1.333 95 1.333 88 1.333 69 1.333 39 1.333 00 1.332 90 1.332 80 1.332 71 1.332 61 1.332 50 1.332 40 1.332 29 1.332 17 1.332 06 1.331 94 1.331 31 1.330 61 1.329 85 1.329 04 1.328 17 1.327 25 1.326 16 1.325 11 1.323 99
1.770 2 1.510 8 1.303 9 1.137 4 1.001 9 0.976 4 0.953 2 0.931 0 0.910 0 0.890 3 0.870 3 0.851 2 0.832 8 0.814 5 0.797 3 0.719 0 0.652 6 0.597 2 0.546 8 0.504 2 0.466 9 0.434 1 0.405 0 0.379 2 0.356 0 0.335 2 0.316 5 0.299 5 0.284 0
Dielectric constant,
Surface tension, dyn · cm1
87.74 85.76 83.83 81.95 80.10 79.73 79.38 79.02 78.65 78.30 77.94 77.60 77.24 76.90 76.55 74.83 73.15 71.51 69.91 68.35 66.82 65.32 63.86 62.43 61.03 59.66 58.32 57.01 55.72
75.83 75.09 74.36 73.62 72.88 72.73 72.58 72.43 72.29 72.14 71.99 71.84 71.69 71.55 71.40 70.66 69.92 69.18 68.45 67.71 66.97 66.23 65.49 64.75 64.01 63.28 62.54 61.80 61.80
4.99
PHYSICAL PROPERTIES
COMBUSTIBLE MIXTURES TABLE 4.13 Properties of Combustible Mixtures in Air Additional compounds can be found in National Fire Protection Association, Fire Protection Handbood, 14th ed., 1976. Flammable limits, percent by volume of fuel (25 C, 760 mm) Autoignition temperature, C
Lower
Acetaldehyde Acetic acid, glacial Acetic anhydride Acetone Acetonitrile Acetylene Acrolein Acrylonitrile Allyl alcohol Allylamine Ammonia, anhydrous Aniline
175 465 390 465 524 305 235* 481 378 374 651 615
4.0 5.4 2.9 2.6 4.4 2.5 2.8 3.0 2.5 2.2 16 1.3
6.0 16.0 10.3 12.8 16.0 100 31.0 17 18.0 22 25
Benzene Biscyclohexyl 1-Bromobutane 3-Bromopropene Butane Butanol 2-Butanone 1-Butene 3-Buten-1-ol Butyl acetate Butylamine Butylbenzene Butylene oxide Butyl formate Butyraldehyde Butyric acid
560 245 265 295 405 365 516 385
1.3 0.7 (100 C) 2.6 (100 C) 4.4 1.9 1.4 1.8 1.6 4.7 1.7 1.7 0.8 1.5 1.7 2.5 2.0
7.1 5.1 (150 C) 6.6 (100 C) 7.3 8.5 11.2 10 10.0 34 7.6 9.8 5.8 18.3 8.2 12.5 10.0
Carbon disulfide Carbon monoxide Carbonyl sulfide Chlorobenzene 2-Chloro-1,3-butadiene 1-Chlorobutane 2-Chloro-2-butene 1-Chloro-1,1-difluoroethane 2-Chloroethanol Chloromethane
90 609
1.3 12.5 12 1.3 4.0 1.8 2.3 6.2 4.9 10.7
50.0 74 29 7.1 20.0 10.1 9.3 17.9 15.9 17.4
Substance
*Unstable.
425 312 410 322 230 450
640
425 632
Upper
4.100
SECTION 4
TABLE 4.13 Properties of Combustible Mixtures in Air (continued ) Flammable limits, percent by volume of fuel (25 C, 760 mm) Substance
Autoignition temperature, C
1-Chloropentane 2-Chloropropane 1-Chloro-1-propene 3-Chloro-1-propene Chlorotrifluoroethylene Crotonaldehyde Cumene Cyanogen Cyclohexane Cyclopropane
260 593
Decahydronaphthalene Decane Diborane Dibutyl ether o-Dichlorobenzene 1,2-Dichloroethylene Dichloropropane Diisopropyl ether Diethylamine Diethyl ether 2,2-Dimethylbutane Dimethyl ether N,N-Dimethylformamide 1,1-Dimethylhydrazine 2,3-Dimethylpentane 2,2-Dimethylpropane Dimethyl sulfide Dimethyl sulfoxide 1,4-Dioxane Divinyl ether
250 210 38–52† 194 648
Ethane Ethanol 2-Ethoxyethanol 1-Ethoxypropane Ethyl acetate Ethylamine Ethylbenzene Ethylcyclobutane Ethylene Ethyleneimine Ethylene oxide Ethyl formate 1,3-Ethylidene dichloride Ethyl nitrite †
Ignites in moist air.
485 232 425 245 500
557 443 312 160 425 445 249 335 450 206 215 180 360 515 365 235 427 385 432 210 490 320 429 455 440 90
Lower
Upper
1.6 2.8 4.5 2.9 8.4 2.1 0.9 6.6 1.3 2.4
8.6 10.7 16 11.1 38.7 15.5 6.5 42.6 8 10.4
0.7 0.8 0.8 1.5 2.2 9.7 3.4 1.4 1.8 1.9 1.2 3.4 1.2 2 1.1 1.4 2.2 2.6 2.0 1.7
4.9 5.4 88 7.6 9.2 12.8 14.5 7.9 10.1 36.0 7.0 27.0 7.0 95 6.7 7.5 19.7 28.5 22.0 27
3.0 3.3 1.8 1.7 2.2 3.5 1.0 1.2 2.7 3.6 3.6 2.8 6.2 3.0
12.5 19 14.0 9.0 11.0 14.0 6.7 7.7 36.0 46 100 16.0 16 50
4.101
PHYSICAL PROPERTIES
TABLE 4.13 Properties of Combustible Mixtures in Air (continued ) Flammable limits, percent by volume of fuel (25 C, 760 mm) Autoignition temperature, C
Lower
Upper
Ethyl propionate Ethyl vinyl ether
440 202
1.9 1.7
11 28
Formaldehyde 2-Furaldehyde Furan Furfuryl alcohol
429 316 491
7.0 2.1 2.3 1.8
73 19.3 14.3 16.3
Gasoline, 92 octane
~280
1.4
7.6
Heptane Hexane 2-Hexanone Hydrocyanic acid, 96% Hydrogen 4-Hydroxy-4-methyl-2pentanone
215 225 533 538 400 603
1.0 1.1 1.2 5.6 4.0 1.8
6.7 7.5 8 40.0 75 6.9
Isobutyl acetate Isobutylbenzene Isopentane Isopentyl acetate Isoprene Isopropyl acetate Isopropyl alcohol
421 430 420 360 220 460 399
2.4 0.8 1.4 1.0 2 1.8 2.0
10.5 6.0 7.6 7.5 9 8 12
Methane Methanethiol Methanol 2-Methoxyethyl acetate Methyl acetate Methyl acrylate Methylamine 2-Methyl-2-butanol 3-Methyl-1-butene Methylcyclohexane Methyl formate 2-Methylpropene 4-Methyl-2-pentanone 2-Methylpropene -Methylstyrene Methyl propionate
540
430 437 365 250 465 465 460 465 574 469
5.4 3.9 6.7 1.7 3.1 2.8 4.9 1.2 1.5 1.2 5.0 1.8 1.4 1.8 1.9 2.5
15.0 21.8 36.0 8.2 16 25 20.6 9.0 9.1 6.7 23 9.6 7.5 9.6 6.1 13
Nicotine Nitrobenzene Nonane
244 482 205
0.7 1.8 (93 C) 0.8
4.0
Octane
220
1.0
6.5
Substance
385 502
2.9
4.102
SECTION 4
TABLE 4.13 Properties of Combustible Mixtures in Air (continued ) Flammable limits, percent by volume of fuel (25 C, 760 mm) Substance
Autoignition temperature, C
Lower
Upper
175 482
2.2 1.5 1.5 1.1 1.1 2.2 2.6 2.1 2.0 2.0 2.9 2.0 2.8 2 1.8
22 7.8 8.2 7.5 5.9 9.5 12.5 13.5 11.1 10.4 17.0 8 37.0 100 12.4
Styrene
490
1.1
6.1
Tetrahydrofuran Tetrahydrofurfuryl alcohol Tetrahydronaphthalene Toluene Trichlorothylene Triethylamine Triethylene glycol Trimethylamine Trioxane
321 282 385 480 420
2 1.5 0.8 1.2 12.5 1.2 0.9 2.0 3.6
11.8 9.7 5.0 7.1 90 8.0 9.2 11.6 29
2.6 1.4 3.6 2.6
13.4 8.8 33.0 21.7
1.1 1.0
7.0 6.0
Pentanamine Pentane 2-Pentanone Pentyl acetate Petroleum ether Propane 1,3-Propanediol Propanol Propene Propanamine Propionaldehyde Propyl acetate Propylene oxide Propyl nitrate Pyridine
Vinyl acetate Vinyl butyrate Vinyl chloride Vinyl fluoride Xylene, m- and pXylene, o-
260 505 360 550 450 371 440 460 318 207 450
371 190 414 427 461 530 465
SECTION 5
THERMODYNAMIC PROPERTIES
ENTHALPIES AND GIBBS (FREE) ENERGIES OF FORMATION, ENTROPIES, AND HEAT CAPACITIES . . . . . . . . . . . . . . . Table 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds . . . . . . . . . . . . . . . . . . . . . . Table 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds . . . . . . . . . . . . . . . . . CRITICAL PHENOMENA . . . . . . . . . . . . . . . . . . . . . . Table 5.3 Critical Properties . . . . . . . . . . . . . . . . . . Table 5.4 Group Contributions for the Estimation of Critical Properties . . . . . . . . . . . . . . . . . .
5.1
. .
5.2
. .
5.3
. . . . . .
5.44 5.75 5.75
. .
5.88
5.2
SECTION 5
ENTHALPIES AND GIBBS (FREE) ENERGIES OF FORMATION, ENTROPIES, AND HEAT CAPACITIES The tables in this section contain values of the enthalpy (Hf) and Gibbs (Gf, free) energy of formation, entropy (S), and heat capacity (Cp) at 298.15 K (25 C). The tables cover common organic compounds. No values are given in these tables for metal alloys or other solid solutions, for fused salts, or for substances of undefined chemical composition. For a more complete listing of compounds see the tables in Selected Values of Chemical Thermodynamical Properties, by D. D. Wagman et al., National Bureau of Standards Technical Notes 270-3, 270-4, 270-5, 270-6, 270-7, and 270-8, Washington; JANAF Thermochemical Tables, by D. R. Stull and H. Prophet, National Bureau of Standards Publication 37, Washington; supplements to JANAF appearing in J. Phys. Chem. Ref. Data; D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, Wiley-Interscience, New York, 1969; and I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973. The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows: Pure solid (c) or liquid (liq). The substance is in the condensed phase under a pressure of 1 atm. Gas (g). The standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure. The values of Hf and Gf given in the tables represent the change in the appropriate thermodynamic quantity when one gram formula weight of the substance in its standard state is formed, isothermally at the indicated temperature, from the elements, each in its appropriate standard reference state. The standard reference state at 25 C for each element has been chosen to be the standard state that is thermodynamically stable at 25 C and 1 atm pressure. The standard reference states are indicated in the tables by the fact that the values of Hf and Gf are exactly zero. The values of S represent the virtual or “thermal” entropy of the substance in the standard state at 298.15 K, omitting contributions from nuclear spins. Isotope mixing effects are also excluded except in the case of the 1H–2H system. The physical state of each substance is indicated in the column headed “State” as crystalline solid (c), liquid (liq), gaseous (g), or amorphous (amorp). Solutions in water are listed as aqueous (aq). Solutions in water are designated as aqueous, and the concentration of the solution is expressed in terms of the number of moles of solvent associated with 1 mol of the solute. If no concentration is indicated, the solution is assumed to be dilute. The standard state for a solute in aqueous solution is taken as the hypothetical ideal solution of unit molality (indicated as std state, m1). In this state the partial molal enthalpy and the heat capacity of the solute are the same as in the infinitely dilute real solution (aq. m).
5.3
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds
Substance Acenaphthene Acenaphthylene Acetaldeyde Acetaldoxime Acetamide Acetamidoguanidine nitrate 1-Acetamido-2nitroguanidine 5-Acetamidotetrazole Acetanilide Acetic acid Ionized; std state, m 1 Nonionized; std state, m1 Acetic anhydride Acetone Acetone glyceraldehyde Acetonitrile Acetophenone Acetyl radical N-Acetylbenzidine Acetyl bromide Acetyl chloride Acetylene Std state, m 1 Acetylenedicarbonitrile Acetylene dicarboxylic acid Acetyl fluoride N-Acetylhydrazobenzene o-Acetylhydroxybenzoic acid N-Acetylimidazole Acetyl iodide 4-Acetylresorcinol
State
Hf , kcal · mol1
c c liq g c liq c c
16.8 44.7 45.96 39.76 18.6 19.5 76.0 118.1
c
46.3
c c liq g aq aq
1.2 50.3 115.71 103.93 116.16 116.70
liq g liq g liq liq g liq g g c liq liq g g aq liq g c
149.14 137.60 59.18 51.78 180 12.8 21.00 34.07 20.76 4.0 38.0 53.5 65.44 58.30 54.19 50.54 119.6 127.50 138.1
liq c c
112.4 2.0 194.93
c liq c
28.6 39.3 137.1
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
30.64 31.86
38.3 63.15
65.6 13.06
93.2 90.03 88.29 94.78
38.2 67.52 20.7 42.7
29.7 15.90 1.5
116.82 113.93 37.22 36.58
64.2 93.20 47.9 70.49
23.7 25.24 4.06 0.44
35.76 58.19 59.62 89.12
21.86 12.48
49.73 46.29 50.00 51.88
48.0 70.47 48.00 29.5
28 16.21 10.50
122.10
69.31
20.53
23.78 30.22 17.90
5.4
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance N-Acetyltetrazole Acridine Acrolein Acrylic acid Acrylonitrile Adenine Adipic acid Aetioporphyrin I Aetioporphyrin II -Alanine D L DL
Alanine anhydride -Alanylglycine DL L DL-Alanylphenylalanine Alanylphenylalanyl anhydride Allantoin (5-ureidohydantoin) Allomucic acid Alloxan monohydrate Alloxantin dihydrate Allyl radical 1-Allyl-5-allylaminotetrazole 1-Allyl-5-aminotetrazole 2-Allyl-5-aminotetrazole Allyl chloride Allylcyclopentane Allyl ethyl sulfoxide Allyl trichloroacetate Amalic acid Amarine p-Aminoacetophenone 3-Aminoacridine 5-Aminoacridine 2-Aminobenzoic acid 3-Aminobenzoic acid
State
Hf , kcal · mol1
Gf , kcal · mol1
S , cal · deg1 · mol1
c c liq g liq g liq g c c liq c c
19.49 44.8 29.97 20.50 91.8 80.36 36.1 44.20 23.21 237.60 235.51 6.0 0.4
c c c c
134.03 133.96 134.55 128.0
88.23 88.49 88.92
31.6 30.88 31.6
c c c c
185.64 197.52 170.2 89.3
117.00 127.30
51.0 46.62
c
171.50
106.65
46.6
c c c g c
142 239.08 510.3 38 83.7
182.08
44.6
c c g liq liq liq c c c c c c c
63.4 67.6 0.15 15.74 41.83 94.5 367.0 63 70.2 39.8 38.1 95.8 98.2
10.42
73.29
C p, cal · deg1 · mol1
16.17 15.45 68.37
75.29
18.59
46.68 71.58
65.47 36.1
15.24
177.17
18.01
5.5
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 4-Aminobenzoic acid 2-Aminobiphenyl 4-Aminobiphenyl 1-Aminobutane (butylamine) 2-Aminobutane (sec- butylamine) 4-Aminobutanoic acid 2-Aminoethanesulfonic acid Ionized; std state, m 1 Nonionized; std state, m1 2-Aminohexanoic acid (norleucine) 4-Aminohexanoic acid 5-Aminohexanoic acid 6-Aminohexanoic acid 3-Amino-2-methylpropane (2-butylamine) 5-Aminopentanoic acid 5-Aminotetrazole 5-Aminotetrazole nitrate 3-Amino-1,2,4-triazole Amygdalin 1,2-Anyhydroglucose3,5,6-triacetate Aniline Anisine Anisoyl glycine Anthracene 9,10-Anthracenedione -D-Arabinose -L-Arabinose D-Arabonic acid--lactone L-Arginine D-Arginine L-Ascorbic acid (vitamin C) L-Asparagine L-Aspartic acid Azobenzene cis trans
State
Hf , kcal · mol1
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
c c c liq
98.8 26.8 19.4 30.52
g g
22.00 24.90
11.76 9.71
86.76 83.90
28.33 27.99
c c
138.1 187.7
134.3
36.8
33.6
aq aq
171.92 181.92
121.76 134.12
47.8 55.7
c
152.7
c c c liq
154.5 153.7 152.7 31.68
c c c c c c
144.5 49.7 6.6 18.4 455 411.7
liq g c c c c c c c c c c
7.55 20.76 51 180.9 29.0 49.6 252.84 252.84 238.2 148.66 149.05 278.34
35.63 39.84
45.72 76.28
45.90 25.91
68.30
49.58
49.7
57.43
59.9
c c
188.50 232.47
126.73 174.53
41.7 40.66
c c
86.7 76.6
5.6
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
Hf , kcal · mol1
Gf , kcal · mol1
84.10
Azodicarbamide Azulene
c g
69.90 66.90
Barbituric acid Benzaldehyde
c liq g c c c c c
152.2 21.23 9.57 48.42 22.3 41 38.3 55.4
liq g liq g c c c c g c c c c liq liq liq c c c g liq liq
11.71 19.82 15.32 26.66 16.9 36.8 92.03 103.0 52.30 8.0 44.33 59.74 147.9 25.58 39.17 12.31 129.6 135.7 44.2 45 38.49 5.6
liq c liq liq liq liq liq g g g g
7.8 44.2 1.17 13.8 10.4 36.30 6.27 0.33 9.09 6.39 3.85
Benzamide Benzanilide 1,2-Benzanthracene 2,3-Benzanthracene 1,2-Benzanthra-9,10quinone Benzene Benzenethiol (thiophenol) Benzidine Benzil Benzoic acid Benzoic anhydride Benzonitrile Benzophenone p-Benzoquinone Benzotriazole DL-Benzoylalanine Benzoyl bromide Benzoyl chloride Benzoyl iodide Benzoylphenylalanine Benzoyl sarcosine 3,4-Benzphenanthrene Benzyl radical Benzyl alcohol Benzyl bromide (2-bromotoluene) Benzyl chloride N-Benzyldiphenylamine Benzyl ethyl sulfide Benzyl iodide Benzyl mercaptan Benzyl methyl ketone Benzyl methyl sulfide Bicyclo[4.1.0]heptane Bicyclo[3.1.0]hexane Bicyclo[4.2.0]octane Bicyclo[5.1.0]octane
S , cal · deg1 · mol1
80.75
C p, cal · deg1 · mol1
30.69
2.24 5.85
85.79
51.48
29.72 30.99 32.02 35.28
41.41 64.34 53.25 80.51
41.40 25.07
58.62
40.05
34.97
62.33 33.5
76.73 58.6
26.07
6.57
51.8
19.52
5.7
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Bicyclopropyl Biphenyl Biphenylene N,N-Bisuccinimide Brassidic acid Bromal Bromal hydrate Bromobenzene 4-Bromobenzoic acid 1-Bromobutane 2-Bromobutane Bromochlorodifluoromethane Bromochlorofluoromethane Bromochloromethane Bromodichlorofluoromethane Bromodichloromethane Bromodifluoromethane Bromoethane Bromoethene (vinyl bromide) Bromofluoromethane 1-Bromoheptane 1-Bromohexane Bromoiodomethane Bromomethane 2-Bromo-2-methylpropane 1-Bromooctane 1-Bromopentane 1-Bromopropane 2-Bromopropane N-Bromosuccinimide Bromotrichloromethane Bromotrifluoromethane Brucine 1,2-Butadiene 1,3-Butadiene Butadiyne (biacetylene)
State
Hf , kcal · mol1
g c liq liq c c liq c liq c g liq g g
30.9 24.02 28.5 84.4 169.5 214 31.13 112 14.5 90.4 25.65 37.2 28.70 112.7
g
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
60.75 62.07
49.2 59.8
38.80
30.12
52.0
37.17
3.08 4.60 6.16 107.18
88.39
26.13
88.50 76.14
26.48
70.5
66.58
72.88
g g
12.0 64.4
9.39 58.98
68.67 78.87
g g liq g g
14.0 110.8 21.99 15.30 18.73
10.16 106.90 6.64 6.29 19.30
75.56 70.51 47.5 68.71 65.83
g liq liq g g liq g liq liq g g g c g g c g g g
60.4 52.21 46.42 12.0 9.02 39.3 32.00 58.57 40.68 30.87 21.00 23.20 80.35 8.9 155.1 188.6 38.77 26.33 113.00
57.71
65.97
9.36 6.75
73.49 58.76
10.15
6.73
79.34
27.85
1.37 5.37 6.51
97.70 79.08 75.53
31.60 20.66 21.37
2.96 148.8
79.55 71.16
16.57
47.43 36.01 106.11
70.03 66.62 59.76
19.15 19.01 17.60
24.1 15.45 13.26
5.8
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Butane 1,2-Butanediamine 2,3-Butanedione (diacetyl) 1,4-Butanedithiol 1-Butanethiol (butyl mercaptan) 2-Butanethiol 1-Butanol 2-Butanol 2-Butanone (methyl ethyl ketone) 1-Butene 2-Butene cis trans 1-Buten-3-yne tert-Butoxy radical tert-Butyl radical N-Butylacetamide Butyl acetate tert-Butylamine Butylbenzene sec-Butylbenzene tert-Butylbenzene sec-Butyl butyrate Butyl chloroacetate Butyl 2-chlorobutyrate Butyl 3-chlorobutyrate Butyl 4-chlorobutyrate Butyl 2-chloropropionate Butyl 3-chloropropionate Butyl crotonate Butylcyclohexane Butylcyclopentane Butyl dichloroacetate Butyl ether tert- Butyl hydroperoxide
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
liq g liq liq liq liq
35.29 30.15 28.74 87.44 25.11 29.79
3.60 4.10
55.2 74.12
0.97
65.96
g liq g liq g liq g liq
21.05 31.13 23.00 78.18 65.65 81.88 69.94 65.29
2.64 0.04 1.29 38.84 36.04 42.31 40.06 36.18
89.68 64.87 87.65 54.1 86.7 53.8 85.6 57.08
28.24
g g
56.26 0.03
34.91 17.04
80.81 73.04
24.59 20.47
g g g g g liq liq liq g liq g liq liq liq liq liq liq liq liq liq liq g g liq liq g liq
1.67 2.67 72.80 24.7 6.7 91.02 126.52 35.97 28.65 18.67 18 C 3.30 15.87 16.90 141.6 128.7 156.6 146.0 147.7 136.7 133.4 111.8 50.95 40.22 131.5 156.1 87.2 70.2
15.74 15.05 73.13
71.90 70.86 66.77
18.86 20.99 17.49
6.90 27.50 34.58
80.76
28.67
105.04
41.85
13.49 14.67
109.58 109.04
49.50 42.42
114.96
48.82
State
23.29
28.51 42.31 26.29 47.5 27.08 37.98
5.9
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Butyllithium Butyl trichloroacetate 1-Butyne (ethyl acetylene) 2-Butyne (dimethylacetylene) Butyraldehyde Butyramide Butyric acid Butyronitrile Caffeine (methyl theobromine) Capric acid (decanoic acid) Caproic acid (hexanoic acid) -Caprolactam Caprylic acid (octanoic acid) Carbazole Carboxyl radical CCH radical Cellobiose Chloroacetamide Chloroacetic acid Ionized Nonionized; std state, m1 Chloroacetyl chloride 2-Chlorobenzaldehyde 3-Chlorobenzaldehyde 4-Chlorobenzaldehyde Chlorobenzene 2-Chlorobenzoic acid 3-Chlorobenzoic acid 4-Chlorobenzoic acid Chlorobenzoquinone 1-Chlorobutane 2-Chlorobutane 2-Chlorobutyric acid 3-Chlorobutyric acid 4-Chlorobutyric acid Chlorocyclohexane 2-Chloro-1,1difluoroethylene Chlorodifluoromethane
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
liq liq g g
31.6 130.6 39.48 34.97
48.30 44.32
69.51 67.71
19.46 18.63
g c liq g
49.00 87.5 127.59 8.14
27.43
82.44
24.52
90.27 25.97
54.1 77.98
42.1 23.19
c
76.2
c
170.59
liq
139.71
c liq
78.54 151.93
22.72
40.3
c g g c c c, l aq aq
30.3 54 114 532.5 80.9 122.3 119.81 118.92
105
49.6
8.87
liq liq liq c liq c c c c g g liq liq liq liq g
68.0 28.4 30.2 35.1 2.58 95.3 101.2 102.19 52.7 35.20 38.60 137.6 133.0 135.4 49.54 79.2
21.32
50.0
35.9
9.27 12.78
85.58 85.94
25.71 25.93
72.90
72.28
g
115.6
108.1
67.12
State
13.35
5.10
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Chloroethane (ethyl chloride) Chloroethylene (vinyl chloride) Chloroethyne Chlorofluoromethane Chloroform Chloroiodomethane Chloromethane (methyl chloride) Chloromethyloxirane 1-Chloro-2-methylpropane 2-Chloro-2-methylpropane 1-Chloronaphthalene 2-Chloronaphthalene 1-Chloropentane 3-Chorophenol 4-Chlorophenol 1-Chloropropan-2,3-diol 2-Chloropropan-1,3-diol 1-Chloropropane 2-Chloropropane 3-Chloro-1-propene (allyl chloride) 2-Chloropropionic acid 3-Chloropropionic acid N-Chlorosuccinimide Chlorotrifluoromethane Chlorotrinitromethane Chrysene Cinchonamine Cinchonidine Cinchonine Cinnamic acid cis trans Cinnamic anhydride Citraconic acid Citric acid Citric acid monohydrate Codeine monohydrate Coniine Creatine Creatine hydrate Creatinine
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g
26.83
14.46
65.91
14.97
g
8.5
12.4
63.07
12.84
g g liq g g g
51 63.2 31.6 24.60 3.0 19.59
47 57.11 17.17 16.76 3.69 13.97
57.81 63.16 48.5 70.63 70.78 55.97
12.98 11.24
liq g g liq c g c c liq liq g g g
35.48 38.10 43.80 13.0 13.2 41.80 49.4 47.3 125.58 123.71 31.10 35.00 0.15
11.87 15.32
84.56 77.00
25.93 27.30
8.94
94.89
31.18
12.11 14.94 10.42
76.27 72.70 73.29
20.23 20.87 18.01
liq c c g liq c c c c
125.0 131.4 85.58 169.20 6.54 34.7 10.4 7.1 7.4
159.38
68.16
15.98
c c c c c c c liq c c c
72.0 80.53 83.1 197.04 369.0 439.4 151.2 57.6 128.16 199.1 56.77
295.5 352.0
39.73 67.74
1.276
63.32
45.3
6.97
40.10
State
15.63 9.74
5.11
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance o-Cresol (2-methylphenol) m-Cresol (3-methylphenol) p-Cresol (4-methylphenol) m-Cresol acetate Crotonic acid cis trans trans-Crotononitrile Cyanamide 1-Cyanoguanidine 3-Cyanopyridine 5-Cyanotetrazole 4-Cyanothiazole Cyclobutane Cyclobutene Cyclododecane Cycloheptane Cycloheptanone 1,3,5-Cycloheptatriene 1,3-Cyclohexadien-5-yl radical Cyclohexane Cyclohexane- 1,2dicarboxylic acid cis trans Cyclohexanethiol Cyclohexanol Cyclohexanone Cyclohexene Cyclohexen-3-yl radical 1-Cyclohexenylmethanol Cyclohexyl radical Cyclooctane Cyclooctanone 1,3,5,7-Cyclooctatetraene Cyclopentadiene Cyclopentane Cyclopentane-1,2-diol cis trans
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g
30.74
8.86
85.47
31.15
g
31.63
9.69
85.27
29.27
g
29.97
7.38
83.09
29.75
liq
89.41
liq c g c c c c c g g c liq liq liq g
83 102.9 35.77 14.05 5.4 46.23 96.1 52.63 6.37 31.00 73.29 37.47 71.5 34.22 49.4
46.22
71.31
19.62
42.9
30.90
28.40
26.30 41.76
63.43 62.98
17.26 16.03
12.92
57.97
29.42
58.09
51.30
38.90
liq g
37.34 29.43
6.37 7.59
48.84 71.28
37.4 25.40
c c g liq g liq g g liq g liq liq liq g liq g
229.7 232.0 22.80 83.22 55.00 9.28 1.28 29 91.4 13 40.58 77.9 60.93 32.00 25.28 18.46
31.87 21.69 24.28 25.54
47.7 77.00 51.67 74.27
26.21 34.9 25.10
18.60
62.62
85.70 42.86 8.70 9.23
52.65 64.00 48.82 70.00
c c
115.9 117.1
State
30.80 19.84
5.12
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Cyclopentanethiol Cyclopentanol Cyclopentanone Cyclopentene 1-Cyclopentenylmethanol Cyclopentyl-1-thiaethane Cyclopropane Cyclopropene Cyclopropyl radical L-Cysteine L-Cystine Decahydronaphthalene (decalin) cis trans Decanal Decane 1,10-Decanediol 1-Decanethiol 1-Decanoic acid 1-Decanol 1-Decene 1-Decyne Deoxybenzoin Desoxyamalic acid Diacetamide Diacetyl peroxide o-Diallyl phthalate Dialuric acid 2,6-Diaminopyridine Diamylose Diazomethane Dibenzoylethane Dibenzoylethylene Dibenzoylmethane Dibenzoyl peroxide Dibenzyl Dibenzyl ketone Dibenzyl sulfide Dibenzyl sulfone
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g liq liq g liq g liq g g g g c c
11.45 71.74 56.24 46.03 1.02 7.87 8.2 15.41 12.74 66.0 55 124.5 245.7
13.63 30.55
86.38 49.2
25.79
25.93 26.48
48.10 69.23
29.24 17.95
24.95 68.42
56.75 58.38
13.37
liq liq g liq c liq g c liq g liq g c c c liq liq c c c g c c c c c c c c
52.45 55.14 79.09 71.95 165.74 66.07 50.54 170.59 114.6 96.0 41.73 9.85 16.96 285.7 117 127.9 131.6 314.4 1.56 850 46.0 61.1 27.4 53.6 100 10.53 20.1 23.74 42.1
16.47 13.79 15.90 4.19
63.34 63.32 138.28 101.70
55.45 54.61 57.29 75.16
14.68
145.82
61.08
31.6 24.9 25.10 60.28
10.2.9 142.8 101.58 125.36
52.06
58.02
12.55
62.15
64.4
61.0
State
59.1 52.51
5.13
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1,2-Dibromobutane Dibromochlorofluoromethane Dibromochloromethane 1,2-Dibromocycloheptane 1,2-Dibromocyclohexane 1,2-Dibromocyclooctane Dibromodichloromethane Dibromodifluoromethane 1,2-Dibromoethane Dibromofluoromethane Dibromomethane 1,2-Dibromopropane Dibutylborinic acid Dibutyl ether Dibutylmercury Di-tert-butyl peroxide Dibutyl o-phthalate Dibutyl sulfate Dibutyl sulfite Dibutyl sulfone Dichloroacetic acid Ionized Nonionized Dichloroacetylene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichlorofluoromethane Dichloromethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane Dicyanoacetylene
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g g
23.70 55.4
3.14 53.40
97.70 81.99
g liq liq liq g g liq g g g liq g liq liq c liq liq c liq aq aq g g g g g liq g liq g liq g liq g g g liq g g g g liq
5.0 37.67 38.8 41.41 7.0 102.7 19.4 53.4 3.53 17.40 146.3 79.80 23.4 91.0 201 216.1 165.6 145.76 119.0 122.4 120.4 50 7.16 6.32 5.50 117.90 38.3 31.10 39.49 31.00 5.8 0.30 6.6 0.45 1.00 68.10 29.7 22.80 39.60 38.60 42.00 119.6
4.50
78.31
4.67 100.16 5.0 52.84 3.87 4.22
83.23 77.66 53.37 75.70 70.10 89.90
13.04 24.57
21.16
119.60
48.76
47 19.76 18.78 18.44 108.51 18.1 17.52 19.03 17.65 5.85 5.78 5.27 5.82 6.35 60.77 16.83 16.46 19.86 19.74 20.21
65 81.61 82.09 80.47 71.91 50.61 72.91 49.84 73.66 48.17 68.85 47.42 69.20 69.29 70.04 42.7 64.61 84.80 87.76 77.92
15.67 27.12 27.20 27.22 17.31 30.18 18.25 30.9 18.80 26.60 16.02 27 15.55 15.93 14.58
State
30.38
32.51
12.16 23.47 23.81 25.30
5.14
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1,4-Dicyano-2-butyne Dicyclohexadiene Dicyclopentadiene Dicyclopentyl 2,2-Diethoxypropane Diethylamine Diethylbarbituric acid (veronal) 1,2-Diethylbenzene 1,3-Diethylbenzene 1,4-Diethylbenzene Diethylenediamine Diethylene glycol Diethyl ether (ethyl ether) Diethylmercury Diethylmethyl phosphonate Diethylnitramine Diethyl oxalate Diethyl peroxide Diethyl o-phthalate Diethyl selenide Diethyl sulfate Diethyl sulfite Diethyl sulfone Diethyl sulfoxide Diethylzinc 1,2-Difluorobenzene 1,3-Difluorobenzene 1,4-Difluorobenzene 2,2-Difluorobiphenyl 4,4-Difluorobiphenyl 2,2-Difluorochloroethylene 1,1-Difluoroethane 1,1-Difluoroethylene Difluoromethane 9,10-Dihydroanthracene 1,2-Dihydronaphthalene 1,4-Dihydronaphthalene 4H-Dihydropyran 5,12-Dihydrotetracene 2,3-Dihydrothiophene
State
Hf , kcal · mol1
c liq c liq liq g c
87.6 6.3 27.9 41.8 128.83 17.30 178.7
g g g c liq g liq
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
17.23
84.18
27.66
4.53 5.22 5.32 3.2 150.2 136.5 65.30
33.72 32.67 32.95 57.4
103.81 104.99 103.73 20.5
43.63 42.27 42.10
27.88
105.4 60.5
32.3 40.8
g liq liq
60.26 7.1 245.3
29.24
81.90
26.89
liq liq liq liq liq liq liq c liq liq liq g g c c g g g g c liq liq liq c liq
25.4 192.51 53.4 186 23.0 194.28 143.50 123.13 63.97 4.0 79.04 74.09 73.43 70.73 70.91 75.4 119.70 82.50 108.24 15.87 18.0 21.0 37.5 25.44 12.73
59.41 61.43 60.43
53.20 76.57 75.43
38.01 25.40 25.55
69.1 105.87 76.84 101.66
72.39 67.50 63.38 58.94
17.23 16.24 14.14 10.25
5.15
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 2,5-Dihydrothiophene 1,2-Dihydroxybenzene 1,3-Dihydroxybenzene 1,2-Diiodobenzene 1,3-Diiodobenzene 1,4-Diiodobenzene 1,2-Diiodoethane Diiodomethane Diisopropyl ether Diisopropyl ketone Diisopropylmercury 1,2-Dimethoxybenzene Dimethoxyborane 1,2-Dimethoxyethane 2,2-Dimethoxypropane cis-,-Dimethylacrylic acid Dimethyl adipate Dimethylamine Std state, m 1 (CH3)2NH2; std state, m 1 Dimethylaminotrimethylsilane N,N-Dimethylaniline 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethyl-1-butene 2,3-Dimethyl-2-butene 3,3-Dimethyl-1-butene 2,3-Dimethyl-2-butenoic acid Dimethylcadmium Dimethylchlorosilane 1,1-Dimethylcyclohexane 1,2-Dimethylcyclohexane cis trans 1,3-Dimethylcyclohexane cis trans 1,4-Dimethylcyclohexane cis trans
State
Hf , kcal · mol1
liq c c c c c g g liq g g liq liq liq liq liq c
11.31 86.3 87.95 41.2 44.7 38.4 15.90 28.30 83.94 76.20 74.40 3.1 69.4 144.5 90.02 108.92 117.3
liq g aq aq
211.9 4.50 16.88 28.74
liq
66.8
liq g g g g g c
8.2 44.35 42.49 13.32 14.15 10.31 108.9
g liq liq g
9.528 79.8 52.31 43.26
g g
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
50.20 50.00
35.9 35.3
31.6 31.3
18.76 24.24 21.1 29.13
83.30 73.95 70.4 93.27
19.67 13.80
16.25 13.85 0.80
65.24 31.8 41.2
16.50
2.20 0.98 18.89 18.18 23.46
85.62 87.42 87.39 87.15 82.16
33.91 33.59 34.29 29.54 30.23
72.40
31.5
6.34 8.42
63.87 87.24
36.90
41.15 43.02
9.85 8.24
89.51 88.65
37.40 38.00
g g
44.16 42.20
7.13 8.68
88.54 89.92
37.60 37.60
g g
42.22 44.12
9.07 7.58
88.54 87.19
37.60 37.70
37.83
5.16
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1,1-Dimethylcyclopentane 1,2-Dimethylcyclopentane cis trans 1,3-Dimethylcyclopentane cis trans Dimethyldichlorosilane cis-2,4-Dimethyl-1,3dioxane 4,5-Dimethyl-1,3-dioxane 5,5-Dimethyl-1,3-dioxane 4,4-Dimethyldiphenylamine Dimethyl ether N,N-Dimethylformamide Dimethylfulvene Dimethyl fumarate Dimethyl glutarate Dimethylglyoxime 2,2-Dimethylhexane 2,3-Dimethylhexane 2,3-Dimethylhexane 2,4-Dimethylhexane 2,5-Dimethylhexane 3,3-Dimethylhexane 3,4-Dimethylhexane 2,2-Dimethyl-3-hexene cis trans 5,5-Dimethylhydantoin 1,1-Dimethylhydrazine 1,2-Dimethylhydrazine Dimethyl maleate Dimethylmaleic anhydride Dimethyl malonate Dimethylmercury Dimethylnitramine Dimethyl oxalate 2,2-Dimethylpentane
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g
33.05
9.33
85.87
31.86
g g
30.96 32.67
10.93 9.17
87.51 87.67
32.06 32.14
g g g liq
32.47 31.93 110.2 111.79
9.37 9.91
87.67 87.67 80.16
32.14 32.14 24.17
liq liq c
108.32 110.53 2.8
g liq liq liq liq c liq g liq g liq g liq g liq g liq g
43.99 57.2 21.5 174.3 205.9 42.51 62.63 53.71 60.40 51.13 61.47 52.44 62.26 53.21 61.58 52.61 60.23 50.91
26.99
63.83 28.5
15.73 37.45
0.71 2.56 2.17 4.23 0.89 2.80 0.60 2.50 1.23 3.17 2.03 4.14
79.33 103.06 81.91 106.11 82.62 106.51 80.96 104.93 81.12 104.70 82.97 107.15
liq liq c liq liq liq c liq liq c liq g
30.22 34.64 126.4 11.8 13.3 168.2 139.0 190.2 14.0 16.9 181.0 49.27
49.4 50.8
47.32 47.60
39.21 40.88
0.02
93.90
39.67
State
5.17
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,7-Dimethylphenanthrene 4,5-Dimethylphenanthrene 9,10-Dimethylphenanthrene Dimethyl m-phthalate Dimethyl o-phthalate Dimethyl p-phthalate 2,2-Dimethylpropane 2,3-Dimethylpyridine 2,4-Dimethylpyridine 2,5-Dimethylpyridine 2,6-Dimethylpyridine 3,4-Dimethylpyridine 3,5-Dimethylpyridine Dimethyl succinate 1,1-Dimethylsuccinic acid 1,2-Dimethylsuccinic acid cis trans Dimethyl sulfate Dimethyl sulfite Dimethyl sulfone Dimethyl sulfoxide 3,3-Dimethyl-2-thiabutane 2,2-Dimethylthiacyclopropane 2,2-Dimethyl-3-thiapentane 2,4-Dimethyl-3-thiapentane 2,3-Dinitroaniline 2,4-Dinitroaniline 2,5-Dinitroaniline 2,6-Dinitroaniline 3,4-Dinitroaniline 3,5-Dinitroaniline 2,4-Dinitroanisole 2,6-Dinitroanisole 1,2-Dinitrobenzene 1,3-Dinitrobenzene 2,4-Dinitrophenol 2,6-Dinitrophenol 2,4-Dinitroresorcinol
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g g g c c c
47.62 48.28 48.17 8.70 21.26 11.4
0.16 0.74 0.63
98.96 94.80 95.53
39.67 39.67 39.67
c liq c g liq liq liq liq liq liq liq c
171 162 170 39.67 4.62 3.85 4.45 3.02 4.36 5.36 199.6 236.08
0.364
73.23
29.07
c c liq liq c liq liq liq
233.6 235.1 175.23 125.07 107.8 48.6 37.49 5.78
72.3 23.7
34.77 45.0
35.2
liq g c c c c c c c c c c c c c
44.7 33.76 2.8 16.3 10.6 12.1 7.8 9.3 44.6 45.2 2.06 4.04 55.6 50.2 99.3
6.48
99.30
40.45
50.56 44.13
51.7 52.8
State
5.18
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 4,6-Dinitroresorcinol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,4-Dioxane 1,3-Dioxane 1,4-Dioxatetralin Dioxindole 1,3-Dioxolane Dipentene N,N-Diphenylacetamide Diphenylamine 1,4-Diphenylbutadiene cis,cis trans,trans Diphenylbutadiyne 1,4-Diphenylbutane 1,4-Diphenyl1,4-butanedione 1,4-Diphenyl-2-butene1,4-dione Diphenylcarbinol Diphenyl carbonate Diphenyldichlorosilane Diphenyl disulfide Diphenyl disulfone 1,1-Diphenylethane 1,2-Diphenylethane 1,1-Diphenylethene Diphenyl ether Diphenylethyne Diphenylfulvene Diphenylmercury Diphenylmethane Diphenyl sulfide Diphenyl sulfone Diphenyl sulfoxide Dipropyl ether Dipropylmercury Dipropyl sulfate Dipropyl sulfite Dipropyl sulfone Dipropyl sulfoxide 2,3-Dithiabutane 5,6-Dithiadecane
State
Hf , kcal · mol1
c c c liq g liq liq c g liq c c
105.1 17.1 12.2 84.47 75.30 89.99 60.9 76.9 71.1 12.1 10.3 31.07
c c c c c
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
44.96 43.21
46.67 71.65
47.51 42.73 123.91 2.36 61.24
1.87
77.6
c
27.55
26.64
76.3
c c liq c c liq liq liq liq c c c liq liq c c g liq liq liq liq liq liq g
25.04 95.93 66.5 35.8 153.59 11.7 12.31 41.21 3.48 74.66 7.1 66.8 21.25 39.1 53.71 2.40 70.00 5.0 205.22 154.52 130.94 78.65 14.82 37.86
42.05
66.54
58.58 63.87
80.28 64.6
34.47
69.62
66.19
57.2
55.7
25.23
100.98
37.83
1.67 12.87
56.26 136.91
34.92 55.23
22.48
5.19
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1 2.28
72.90
4.56
89.28
6.71
117.26
89.86
32.96 64.22
147.78 143.98
64.43 63.44
3,4-Dithiahexane 1,3-Dithian-2-thione 4,5-Dithiaoctane N,N-Dithiodiethylamine 1,3-Dithiolan-2-thione Di-p-tolyl sulfone Divinyl ether Divinyl sulfone Dodecane Dodecanoic acid 1-Dodecene 1-Dodecyne Dulcitol
liq c liq liq c c g liq liq c g g c
28.69 3.1 40.95 29.1 3.1 74.32 9.53 49.5 84.16 185.14 39.52 0.01 321.9
Eicosane Eicosanoic acid (arachidic acid) 1-Eicosene Ergosterol meso-Erythritol Ethane 1,2-Ethanedithiol Ethanethiol Ethanol
g c
108.93 241.9
28.04
223.26
110.73
g c c g liq g liq g g g liq g liq g liq liq g g c
78.93 188.8 127.56 20.24 12.83 11.02 66.20 56.03 6 26.0 114.49 105.86 96.95 11.00 0.9 2.98 7.12 12.32 124.4
49.03
222.26
108.15
152.12 7.84
39.9 54.76
12.54
1.12 41.63 40.13
70.77 38.49 67.54
17.37 26.76 15.64
31 79.52 78.25
59.2 62.0 86.70
27.16
8.91 45.10 28.61 31.21 19.11
68.08 57.2 60.99 86.15 90.01
30.69 31.92
g liq liq liq liq g liq g c
26.83 100.4 50.72 25.50 39.08 30.37 141.6 12.50 138.9
14.46
65.91
14.97
6.95
67.14
8.92 10.65
67.00 90.42
31.49
16.31
52.39
10.24
Ethoxy radical Ethyl radical Ethyl acetate Ethyl allyl sulfone Ethylamine N-Ethylaniline Ethylbenzene 2-Ethyl-1-butene Ethyl carbamate (urethane) Ethyl chloride Ethyl crotonate Ethylcyclohexane 1-Ethylcyclohexene Ethylcyclopentane Ethyldiethylcarbamate Ethylene Ethylene carbonate
17.36
5.20
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
Ethylene chlorohydrin 1,2-Ethylenediamine
liq liq aq, 200 Ethylenediaminetetraacetic c acid (EDTA) Ethylenediammonium c chloride aq, 5000 Ethylene glycol liq (2,1-ethanediol) g aq, 1 Ethyleneimine (azirane) g Ethylene oxide g 2-Ethyl-1-hexanal liq 2-Ethyl-2-hexanal liq 3-Ethylhexane liq Ethylidenecyclohexane liq Ethyl isovalerate liq Ethyllithium c Ethylmercury bromide c Ethylmercury chloride c Ethylmercury iodide c Ethyl methyl ether g Ethyl nitrate g Ethyl nitrite g 3-Ethylpentane g Ethyl pentanoate liq Ethyl peroxyl radical g 2-Ethylphenol c 3-Ethylphenol c 4-Ethylphenol c Ethylphosphonic acid c Ethyl propanoate liq 2-Ethylpyridine liq Ethylsuccinic acid c Ethyl thioacetate liq Ethyl -vinylacrylate liq Ethyl vinyl ether g Ethynylbenzene (phenylg acetylene) Fluoranthene Fluoroacetamide Fluoroacetic acid Fluorobenzene 2-Fluorobenzoic acid
c c c g c
Hf , kcal · mol1
Gf , kcal · mol1
70.6 15.06 13.32 420.5
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
50
122.7 115.92 108.70
77.25
39.9
35.8
93.05 109.01 29.50 12.58 83.30 62.44 59.88 21.19 136.5 14.0 25.7 33.7 15.7 51.73 36.80 24.9 45.33 132.2 (2) 49.91 51.21 53.63 251.3 122.16 1.2 236.4 64.01 80.8 33.63 78.22
72.77
77.33
23.20
42.54 3.13
59.90 57.94
12.55 11.54
1.79
84.95
28.12 8.81
74.24 83.25 24.74 98.35
21.45 23.27 23.71 39.67
86.46
76.88
27.46
45.75 118.7 164.5 27.86 135.67
82.60
55.09
16.50
72.33
2.63
79.16
22.57
5.21
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
Hf , kcal · mol1
c c g liq g g g liq liq g aq liq g c liq g aq aq
139.13 140.00 62.90 111.3 56.80 67.20 69.00 44.80 52.8 27.70 35.9 60.7 44.5 36.2 101.51 90.49 101.71 101.68
g
195.08
g g g c c c c c c g liq liq c
10.4 204 90 222.1 118 302.2 262.7 193.84 64.11 8.23 47.8 66.05 119.12
c liq
109.7 2.5
c c c
384.8 304.1 343.2
D-Glucaric acid-
c
343.6
3,6-lactone D-Gluconic acid D-Gluconic acid-lactone
c c
379.3 300.3
3-Fluorobenzoic acid 4-Fluorobenzoic acid Fluoroethane 2-Fluoroethanol Fluoromethane 1-Fluoropropane 2-Fluoropropane 4-Fluorotoluene Fluorotrinitromethane Formaldehyde unhydrolyzed Formamide Formanilide Formic acid Ionized; std state, m 1 Nonionized; std state, m1 Dimer Formyl HCO HCO Formyl fluoride N-Formyl-DL-leucine Formyl urea -D-Fructose D-Fucose Fumaric acid Fumaronitrile Furan Furfural Furfuryl alcohol 2-Furoic acid (pyromucic acid) Furylacrylic acid Furylethylene D-Galactonic acid D-Galactose D-Glucaric acid-
1,4-lactone
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
50.44
63.34
14.21
51.09 47.87 48.81 19.06
53.25 72.71 69.82 56.67
8.96 19.75 19.60
26.27 31.02
52.29
8.46
33.71
59.41
10.84
86.38 83.89 83.9 89.0
30.82 59.45 22 39
23.67 10.81 21.0
6.76 201 88
53.66 48.3 59.0
8.27 8.62 9.66
156.70
39.7
0.21
63.86
36.85
51.50
219.60
49.1
15.64
5.22
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
c c c c c c liq liq liq c c c c liq c c c c c liq c c liq c aq aq
304.26 302.76 240.19 241.32 197.3 229.44 143 159.76 217.5 185.80 184.71 265.05 261.90 268.2 277.46 275.48 292.31 306.28 319.64 318.3 489 520 88.6 126.22 112.28 122.85
217.6
50.7
173.87 174.78
45.7 44.98
114.01
48.87
35.9
88.09 75.28 88.62
24.74 26.54 37.84
23.71
aq
123.78
91.82
45.46
liq c
91.1 158.6
c c c g c c c c c c c
178.51 163.9 200.0 50.66 21.63 199.7 13.39 232.10 92.5 288.0 43.72
117.25
45.4
133.23
70.6
11.33
38.3
State
D-Glucose
D-Glutamic acid L-Glutamic acid L-Glutamine Glutaric acid Glyceraldehyde Glycerol Glyceryl-1-acetate Glyceryl-l-benzoate Glyceryl-2-benzoate Glyceryl-1-caprate Glyceryl-2-caprate Glyceryl-1,3-diacetate Glyceryl-1-laurate Glyceryl-2-laurate Glyceryl-2-myristate Glyceryl-1-palmitate Glyceryl-1-stearate Glyceryl triacetate Glyceryl trilaurate Glyceryl trimyristate Glyceryl trinitrate Glycine Ionized; std state, m 1 Nonionized; std state, m1 NH3CH2COOH; std state, m 1 Glycol acetal Glycolic acid (hydroxyacetic acid) Glycylglycine Glycylphenylalanine Glycylvaline Glyoxal Glyoxime Glyoxylic acid Guanidine Guanidine carbonate Guanidine nitrate Guanidine sulfate Guanine
61.87
5.23
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
Hf , kcal · mol1
Guanylurea nitrate
c
102.1
Heptadecane Heptadecanoic acid 1-Heptadecene 1-Heptanal Heptane Heptanedioic acid 1-Heptanethiol
g c g g liq g g liq c
94.15 220.9 64.15 63.10 53.63 44.88 35.76 145.75 241.75
liq g liq g g c g g liq
Heptanoic acid (enanthic acid) 1-Heptanol 1-Heptene 1-Heptyne Hexachlorobenzene Hexachloroethane Hexadecafluoroethylcyclohexane Hexadecafluoroheptane Hexadecane Hexadecanoic acid (palmitic acid) 1-Hexadecanol (cetyl alcohol) 1-Hexadecene Hexafluorobenzene Hexafluoroethane Hexahydroindane cis trans Hexamethylbenzene Hexamethyldisiloxane Hexamethylenetetramine (urotropine) Hexanal Hexanamide Hexane 1-Hexanethiol Hexanoic acid
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
22.01
195.33
94.33
43.00 20.71 0.42 1.91 8.65
194.33 110.34 77.92 102.27 117.89
91.76 40.89 53.76 39.67 44.68
95.8 79.3 23.41 14.89 24.62 31.30 8.10 33.20 799.1
34.0 28.9 21.22 22.90 54.18 0.25 10.56 13.13
76.5 114.8 78.31 101.24 97.44 62.20 105.45 95.30
66.5 42.7 50.62 37.10 36.11 48.11 41.40 32.68
liq g g c
817.6 808.9 89.23 213.3
739.24 737.87 20.00 75.54
134.28 158.88 186.02 108.12
c, II
163.4
23.6
108.0
104.8
liq g liq g g
151.86 59.23 237.27 228.64 320.90
23.08 40.99 211.43 210.18 300.15
145.0 185.02 66.90 91.59 79.30
86.29 52.96 37.43 25.43
g g c liq c liq g c liq g g liq
30.4 31.4 39.19 194.7 30.0 18.7 59.37 101.48 47.52 39.96 30.83 139.71
28.06 129.5 103.92 28.65 23.93
71.66 103.69 39.05 73.28 101.07
35.43
0.91 0.06 6.65
70.76 92.83 108.58
45.2 34.20 39.21
88.86
61.5 74.42
5.24
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Hf , kcal · mol1
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Substance
State
1-Hexanol
liq g liq g
90.7 75.9 17.30 9.96
36.4 32.4 19.93 20.90
69.2 105.5 70.55 91.93
56.6 37.2 43.81 31.63
g g
12.51 12.27
18.22 18.27
92.37 90.97
30.04 31.64
g g g c
11.38 13.01 29.55 145.63
19.84 18.55 52.24 88.33
90.73 89.59 88.13 57.2
29.55 31.75 30.65
c c c c liq c c c c liq c c c c
179 107.2 52.9 87.08 110.2 158.6 140.64 139.8 139.7 162.3 177.9 158.1 19.9 26.47
49.48
33.5
33.9
100.7 99.74 99.55
42.6 42.3 42.0
38.03 37.59 37.08
18.39
34.8
c liq liq c g c c c liq liq g liq g g liq c c
14.5 2.56 26.39 29.8 38.85 72.2 75.7 75.5 23.5 9.6 2.00 3.29 3.29 17.60 38.6 34.5 22.9
36.04 52.00
56.01 51.19
45.47 44.68
44.88
79.84
24.08
3.5 5.10 3.61 3.72 5.65
50.6 70.82 38.9 60.64 81.79
27.5 15.76
1-Hexene 2-Hexene cis trans 3-Hexene cis trans 1-Hexyne Hippuric acid (benzoylglycine) Hydantoic acid Hydantoin Hydrazobenzene Hydroquinone Hydrosorbic acid Hydroxyacetic acid o-Hydroxybenzoic acid m-Hydroxybenzoic acid p-Hydroxybenzoic acid -Hydroxybutyric acid Hydroxyisobutyric acid L-Hydroxyproline 8-Hydroxyquinoline Hypoxanthene (6-oxypurine) Imidazole Indane Indene Indole Iodobenzene 2-Iodobenzoic acid 3-Iodobenzoic acid 4-Iodobenzoic acid Iodocyclohexane Iodoethane Iodomethane 2-Iodo-2-methylpropane 1-Iodonaphthalene 2-Iodonaphthalene 2-Iodophenol
10.54 28.27
5.25
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
Hf , kcal · mol1
3-Iodophenol 4-Iodophenol 1-Iodopropane 2-Iodopropane 3-Iodopropene (allyl iodide) 3-Iodopropionic acid 2-Iodotoluene 3-Iodotoluene 4-Iodotoluene Isatin Isobutylbenzene Isobutyl dichloracetate Isobutyl phenyl ketone Isobutyl trichloroacetate Isobutyronitrile L-Isoleucine Isopropenyl acetate Isopropyl radical Isopropyl acetate lsopropylbenzene (cumene) Isopropyl nitrate Isopropyl thiolacetate Isopropyl trichloroacetate Isoquinoline L-Isoserine Isothiocyanic acid Itaconic acid
c c g g liq
22.6 22.8 7.30 10.00 13.7
c liq liq liq c liq liq liq liq g c liq g liq liq g g liq liq c c g c
109.9 18.7 18.9 16.1 62.7 16.68 132.4 52.63 132.4 6.07 151.8 92.31 17.6 124.01 9.85 0.94 45.65 71.26 128.2 37.9 177.8 30.50 201.06
Ketene -Ketoglutaric acid
g c
14.60 245.35
D-Lactic acid
c c liq c
165.88 165.89 161.2 534.1
c
185.14
c c c c c c liq liq c
152.36 154.6 153.14 205.7 259.6 166.6 76.2 13.0 162.2
L-Lactic acid
-Lactose Lauric acid (dodecanoic acid) D-Leucine L-Leucine DL-Leucine DL-Leucylglycine Leucylglycylglycine Levulinic acid Levulinic lactone ()-Limonene DL-Lysine
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
6.68 4.80
80.32 77.55
21.48 21.53
24.76 82.97
74.88 49.71
23.04 45.00
29.70 32.74 9.72
66.87 92.87 89.20
36.26 28.84
26.98
59.28
11.09
14.41
57.79
12.37
124.98 123.84 374.52
34.3 34.00 45.9 92.3
82.97 82.76 83.54 112.14
49.71 50.62 49.5 67.2
48.03
5.26
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Maleic acid Maleic anhydride L-Malic acid DL-Malic acid Malonamide Malonic acid Malonic diamide Malononitrile Maltose L-Mandelic acid D-Mannitol D-Mannose Melamine (triaminotraizine) Melezitose 2-Mercaptopropionic acid Mesaconic acid Mesoxalic acid 2,2-Metacyclophane Methane Methanethiol (methyl mercaptan) Methanol Std state, m 1 L-Methionine Methoxyl radical 2-Methoxybenzaldehyde 3-Methoxybenzaldehyde 4-Methoxybenzaldehyde Methoxybenzene (anisole) Methoxymethyl radical 2-Methoxytetrahydropyran 5-Methoxytetrazole Methyl (CH3) radical Methyl acetate Methyl acrylate Methyl allantoin (pyvurile) Methyl allyl sulfone Methylamido radical (CH3NH) Methylamine Std state, m 1 Methylaminolithium N-Methylaniline
Hf , kcal · mol1
Gf , kcal · mol1
c c c c c c c c c c c c c
188.94 112.08 263.78 264.27 130.5 212.96 130.52 44.6 530.8 138.8 139.61 301.9 17.3
149.40
c liq c c g g g
815 111.9 197 290.7 40.8 17.89 5.49
liq g aq c g c liq liq g g liq c g liq g c liq g
57.13 48.06 58.78 180.4 (2) 63.7 66.0 63.9 17.3 (4) 105.7 16.6 34.82 106.4 70.10 177.0 91.95 35
g aq c liq
5.50 16.77 22.92 7.7
State
S , cal · deg1 · mol1 38.1
C p, cal · deg1 · mol1 32.36
211.45
412.60 225.20
57.0
44.10
35.63
82.19
54.70
12.15 2.37
44.52 60.96
8.54 12.01
39.87 38.82
30.41 57.29
19.40 10.49
120.88
55.32
35.35
46.38
9.25
57.98 29.5
11.97
56.78
7.71 4.94
5.27
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Methyl benzoate Methyl benzyl sulfone 2-Methylbiphenyl 3-Methylbiphenyl 4-Methylbiphenyl 2-Methyl-1,3-butadiene (isoprene) 3-Methyl-1,2-butadiene 2-Methylbutane 3-Methyl-1-butanethiol 2-Methyl-2-butanethiol 2-Methyl-1-butanol 3-Methyl-1-butanol 2-Methyl-2-butanol 3-Methyl-2-butanol 2-Methyl-1-butene 3-Methyl-1-butene 2-Methyl-2-butene Methyl butyl sulfone Methyl tert-butyl sulfone 3-Methyl-1-butyne Methyl caprate Methyl caproate (methyl hexanoate) N-Methylcaprolactam 5-Methylcaprolactam 7-Methylcaprolactam Methyl caprylate (methyl octanoate) Methyl chloride Methyl crotonate Methylcyclohexane 2-Methylcyclohexanol cis trans 3-Methylcyclohexanol cis trans 4-Methylcyclohexanol cis trans 2-Methylcyclohexanone Methylcyclopentane
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
liq c liq liq c g
79.8 88.65 25.8 20.4 13.2 18.10
34.86
75.44
25.00
g g g liq g liq liq liq g liq g g g liq c g liq liq
31.00 36.92 27.44 38.90 30.36 85.2 85.2 90.7 78.8 87.5 8.68 6.92 10.17 128.00 132.8 32.60 153.07 129.10
47.47 3.54
76.40 82.12
25.20 28.39
0.56 2.20
69.34 92.48
41.9 39.5
54.8 86.7
15.68 17.87 14.26
81.15 79.70 80.92
55.5 26.28 28.35 25.10
49.12
76.23
25.02
liq c c liq
73.3 86.9 86.5 141.07
g liq liq g
19.59 91.5 45.45 36.99
13.97
55.97
9.74
4.86 6.52
59.26 82.06
32.27
liq liq
93.3 99.4
liq liq
99.5 94.3
liq liq liq g
98.8 103.6 68.8 25.50
8.55
81.24
26.24
State
34.30 52.6 50.3 59.2
5.28
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1-Methylcyclopentanol 2-Methylcyclopentanone 1-Methylcyclopentene 3-Methylcyclopentene 4-Methylcyclopentene Methyldichlorosilane 2-Methyl-1,3-dioxane 4-Methyl-1,3-dioxane N-Methyldiphenylamine 4-Methyldiphenylamine Methylene 2-Methylenecyclohexanol 2-Methylenecyclopentanol -Methylene--propiolactone (diketene) Methylene sulfate 1-Methyl-2-ethylbenzene 1-Methyl-3-ethylbenzene 1-Methyl-4-ethylbenzene 2-Methyl-3-ethylpentane 3-Methyl-3-ethylpentane 2-Methyl-3-ethyl-1pentene Methyl ethyl sulfite Methyl ethyl sulfone Methyl formate Methylglyoxal Methylglyoxime 2-Methylheptane 3-Methylheptane 4-Methylheptane Methyl heptanoate 2-Methylhexane 3-Methylhexane Methyl hexanoate 5-Methylhydantoin Methylhydrazine
State
Hf , kcal · mol1
liq liq g g g liq liq liq liq c g liq liq liq
82.3 63.4 1.30 2.07 3.53 105.9 104.60 99.80 28.8 11.7 92.35 66.3 11.2 55.72
c g g g liq g liq g g
164.6 0.29 0.46 0.78 59.69 50.48 60.46 51.28 23.97
liq c liq g g c liq g liq g liq g liq liq g liq g liq c liq g
135.55 116.17 90.60 83.70 64.8 30.3 60.98 51.50 60.34 50.82 60.17 50.69 135.54 54.93 46.59 54.35 45.96 129.11 116.3 12.9 22.55
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
24.41 27.48 29.06
78.00 79.00 78.60
24.10 23.90 23.90
88.25
46.32
8.27
31.33 30.22 30.28 3.03 5.08 2.69 4.76
95.42 96.60 95.34 81.41 105.43 79.97 103.48
37.74 36.38 36.22
71.53 71.03
29 72.00
0.92 3.05 1.12 3.28 1.87 4.00
84.16 108.81 85.66 110.32 83.72 108.35
0.69 0.77 0.39 1.10
77.28 100.38 78.23 101.37
53.28 39.67
43.0 44.66
39.66 66.61
32.25 17.0
15.90
39.67
5.29
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Methylidyne CH CH -Methylindole Methyl isocyanide 1-Methyl-2-isopropylbenzene (o-cymene) 1-Methyl-3-isopropylbenzene Methyl isopropyl ether Methyl isopropyl ketone Methyl isopropyl sulfone Methyl isothiocyanate (CH3NCS) 3-Methylisoxazole 5-Methylisoxazole Methyl laurate Methylmercury bromide Methylmercury chloride Methylmercury iodide Methyl myristate 1-Methylnaphthalene 2-Methylnaphthalene Methyl nitrate Methyl nitrite Methyl oleate Methyl pelargonate 2-Methylpentane 3-Methylpentane Methyl pentanoate 2-Methyl-1-pentene 3-Methyl-1-pentene 4-Methyl-1-pentene 2-Methyl-2-pentene 3-Methyl-2-pentene cis trans 4-Methyl-2-pentene cis trans Methyl pentanoate Methyl phenyl sulfone (2-Methyl phenol)
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g g c g liq
142.00 388.8 14.5 35.6 18.19
134.02 380.1
43.72 41.00
6.97 6.97
39.6
58.99
12.65
liq
18.69
g g liq g
60.24 62.76 120.44 31.3
28.89
80.86
26.55
34.5
69.29
15.65
liq liq liq c c c liq liq c liq g g liq liq g g liq g g g g
5.0 6.4 165.66 20.6 27.8 10.4 177.80 13.43 10.72 38.0 29.8 15.30 174.2 147.29 41.66 41.02 122.90 12.49 10.76 10.54 14.28
46.26 46.03 10.4 9.4 0.24
60.90 52.58 51.9 76.1 67.95
53.63 46.84 37.6
1.20 0.51
90.95 90.77
34.46 34.20
18.55 20.66 21.52 17.02
91.34 90.06 87.89 90.45
32.41 34.04 30.23 30.26
g g
13.80 14.02
17.50 17.04
90.45 91.26
30.26 30.26
g g liq c g
12.03 12.99 122.89 82.49 30.74
19.63 19.03
89.23 88.02
31.92 33.80
8.86
85.47
31.15
State
15.11
5.30
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance (3-Methyl phenol) (4-Methyl phenol) Methylphosphonic acid 2-Methylpropanal 2-Methylpropane 2-Methyl1,2-propanediamine 2-Methyl-1-propanethiol 2-Methyl-2-propanethiol 2-Methyl-1-propanol 2-Methyl-2-propanol 2-Methylpropene Methyl propyl ether 7-Methylpurine 2-Methylpyridine (2-picoline) 3-Methylpyridine 4-Methylpyridine N-Methylpyrrolidone Methyl salicylate -Methylstyrene -Methylstyrene cis trans Methylsuccinic acid 3-Methyl-2-thiabutane 2-Methylthiacyclopentane 2-Methyl-3-thiapentane 4-Methylthiazole 2-Methylthiophene 3-Methylthiophene 4-Methyluracil Methyl valerate (methyl pentanoate) Morphine monohydrate Mucic acid Murexide Myrcene Myristic acid (tetradecanoic acid) Naphthalene 1-Naphthol
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g g c g g liq
31.63 29.97 252 52.25 32.15 32.00
9.69 7.38
85.27 83.09
29.27 29.75
4.99
70.42
23.14
g g g liq g g g c liq
23.24 26.17 67.69 85.86 74.67 4.04 56.82 51.3 13.83
1.33 0.17 39.99 44.14 42.46 13.88 26.27
86.73 80.79 85.81 46.10 77.98 70.17 83.52
28.28 28.91 26.6 52.61 27.10 21.30 26.89
39.80
52.07
37.86
g liq liq liq liq liq g
24.05 15.57 13.58 62.64 127.1 16.8 27.00
42.32 41.16
77.68 51.70
23.90 37.93
49.84
91.70
34.70
g g c g g liq liq liq liq c liq
29.00 28.00 229.02 21.61 15.12 37.3 16.31 10.75 10.38 109.2 122.89
51.84 51.08
91.70 90.90
34.70 34.90
3.21
85.87
28.00
27.35 27.00
52.22 52.19
29.43 29.38
c c c liq c
170.1 423 289.7 3.5 199.21
c g g
18.0 35.6 5.1
48.05 53.44
39.89 80.22
31.68
State
5.31
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 2-Naphthol 1,4-Naphthoquinone 1-Naphthyl acetate 2-Naphthyl acetate 1-Naphthylamine 2-Naphthylamine Narceine dihydrate Narcotine Nicotine Nitrilotriacetic acid 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrobenzoic acid 3-Nitrobenzoic acid 4-Nitrobenzoic acid 3-Nitrobiphenyl 4-Nitrobiphenyl 1-Nitrobutane 2-Nitrobutane 3-Nitro-2-butanol 2-Nitrodiphenylamine Nitroethane aci form nitro form 2-Nitroethanol Nitroguanidine Nitromethane
State
Hf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
10.1 43.83 68.89 72.72 16.2 14.4 421.2 210.9 9.4
1-Nonanethiol Nonanoic acid 1-Nonanol 1-Nonene
g c c c c c c c liq c c c c liq c c c c c g g liq c g aq aq liq c liq g c g g c g g g liq g g liq liq g
3.45 4.46 9.91 3.80 94.25 100.25 101.25 15.6 9.7 34.40 39.10 93.2 15.4 24.4 30.7 32 83.8 22.1 27.03 17.86 10.2 30.00 33.21 50.9 104.00 74.00 74.16 65.84 54.74 45.61 157.68 109.2 24.74
Octadecane Octadecanoic acid
g c
99.08 226.5
1-Nitronaphthalene 1-Nitropropane 2-Nitropropane 4-Nitrosodiphenylamine Nonadecane 1-Nonadecene 1-Nonanal Nonane
Gf , kcal · mol1
312.5 42.60 41.60 36.10 34.95 46.95 52.71 53.07
42.1 42.1 42.1 53.6 49.8 49.0 50.2
39.3 40.2 40.4 44.4
2.42 1.49
94.28 91.62
29.85 29.51
1.17
75.39
18.69
3.47 1.66
41.05 65.73
25.33 13.70
0.08 3.06
85.00 83.10
24.41 24.26
26.03 47.02 17.91 2.81 5.93 12.67
213.95 212.95 128.97 94.09 120.86 136.51
105.26 102.69 51.82 50.60 55.61
32.4 26.93
91.3 119.86
67.50 48.03
24.02
204.64
99.80
43.3
5.32
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1-Octadecene Octafluorocyclobutane 1-Octanal Octanamide Octane 1-Octanethiol Octanoic acid (caprylic acid) 1-Octanol 2-Octanone 1-Octene 1-Octyne Oleic acid DL-Ornithine Oxacyclobutane (trimethylene oxide) Oxalic acid Std state, m 1 Oxalic acid dihydrate Oxalyl chloride Oxamic acid Oxamide Oxindole 8-Oxypurine Palmitic acid (hexadecanoic acid) Papaverine Parabanic acid [1,8]-Paracyclophane [2,2]-Paracyclophane [6,6]-Paracyclophane Paraldehyde Pentachloroethane Pentachlorofluoroethane Pentachlorophenol Pentadecane 1-Pentadecene 1-Pentadecyne 1,2-Pentadiene 1,3-Pentadiene cis trans 1,4-Pentadiene
Hf , kcal · mol1
Gf , kcal · mol1
S , cal · deg1 · mol1
g g g c liq g g liq
69.08 365.20 69.23 113.1 59.74 49.82 40.68 151.93
45.01 334.33 19.91
203.64 95.69 119.66
97.22 37.32 46.36
1.77 3.92 10.67
85.50 111.55 127.20
45.14 45.14 50.14
liq liq liq g g c c g
101.6 91.9 29.52 19.82 19.70 187.2 156.0 19.25
34.2 33.54 22.49 24.91 56.26
90.2 89.35 86.15 110.55 106.75
77.7 65.31 57.65 42.56 41.58
2.33
65.46
c aq c liq c c c c
197.7 197.2 341.0 85.6 160.4 123.0 41.2 15.4
166.8 161.1
28.7 10.9
81.9
28.2
c
213.10
c c c g c liq g g c g g g g
120.2 138.0 19.6 59.9 46.1 164.2 34.8 75.8 70.6 84.31 54.31 14.78 34.80
16.79 55.93 34.44 17.98 38.97 70.25 50.29
91.17 93.54 60.21 176.71 175.71 171.91 79.70
28.22
g g g
18.70 18.60 25.20
34.84 35.07 40.69
77.50 76.40 79.70
22.60 24.70 25.10
State
C p, cal · deg1 · mol1
48.27 83.40 80.82 79.84 25.20
5.33
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 2,3-Pentadiene Pentaerythritol Pentaerythritol tetranitrate Pentafluorobenzoic acid Pentafluoroethane Pentafluorophenol Pentamethylbenzene Pentamethylbenzoic acid 1-Pentanal Pentanamide Pentan-2,4-dione (acetylacetone) Pentan-1,5-dithiol Pentane 1-Pentanethiol Pentanoic acid (valeric acid) 1-Pentanol 2-Pentanol 3-Pentanol 2-Pentanone 3-Pentanone 1-Pentene 2-Pentene cis trans 2-Pentenoic acid 3-Pentenoic acid 4-Pentenoic acid 1-Pentyne 2-Pentyne Perfluoropiperidine Perylene -Phellandrene Phenacetin 9,10-Phenanthraquinone Phenanthrene Phenazine Phenol
Phenoxy radical Phenoxyacetic acid Phenyl radical Phenyl acetate
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g c c c g c liq c g c liq g liq g liq liq
33.10 220.0 128.8 296.34 264.00 244.86 32.33 128.13 54.45 90.70 101.33 90.47 30.99 35.00 35.72 133.71
49.21 146.73
77.60 47.34
24.20 45.51
246.00
79.76
22.88
25.64
70.22
51.74
25.88
91.53
29.96
95.1
28.7
2.00 2.28 89.10
83.40 74.18 62.10
28.73 50.48
liq liq liq g liq g
85.0 87.7 88.5 61.82 70.87 5.00
38.3
62.0
49.8
40.4 32.76
57.4 89.91
60.0 28.91
18.91
82.65
26.19
g g liq liq liq g g liq c liq c c c c c liq g g c g liq
6.71 7.59 106.7 103.9 102.9 34.50 30.80 482.9 43.69 14.3 101.1 55.18 27.3 56.4 39.44 37.80 23.03 10 122.8 71 80.02
17.17 16.71
82.76 81.36
24.32 25.92
50.25 46.41 422.67
78.82 79.30 94.02
25.50 23.59 70.93
64.12
50.6
12.05 11.02 7.86
34.42
State
75.43
32.2 30.46 24.75
5.34
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Phenylacetic acid Phenylacetylene -Phenyl-1-alanine, DL- and LPhenyl benzoate 2-Phenylbenzoic acid Phenylboronic acid 1-Phenylcyclohexene Phenylcyclopropane N-Phenyldiacetimide p-Phenylenediamine Phenyl ethyl sulfide DL-Phenylglyceric acid N-Phenylglycine a-Phenylglycine Phenylglyoxime Phenylglyoxylic acid Phenylhydrazine Phenyl methyl sulfide N-Phenyl-2-naphthylamine N-Phenylpyrrole 2-Phenylpyrrole Phenyl salicylate Phenyl thiolacetate Phosgene Phthalamide m-Phthalic acid o-Phthalic acid p-Phthalic acid Phthalic anhydride Phthalonitrile Pimelic acid (heptanedioic acid) Pinene Piperazine Piperidine -Piperidone DL-Proline Propadiene Propane 1,2-Propanediamine
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
c g c
95.3 78.22 111.9
86.46 50.6
76.88 51.06
27.46 48.52
c c c liq liq c c liq c c c
57.7 83.4 172.0 4.0 24.7 86.63 0.73 5.29 178.5 96.2 103.2
c c c liq liq c c c c liq g c c c c c c c
4.9 10.1 115.3 34.03 11.5 38.2 38.1 34.5 104.3 29.16 52.80 104.4 191.91 186.91 195.05 110.1 65.82 241.25
49.42
67.82
13.79
141.39
49.7
45.0
79.12
42.9
38.5
liq liq c liq c c g g liq
3.9 1.8 10.90 21.05 73.3 125.7 45.92 24.82 23.38
26.79
39.4
48.37 5.63
58.30 64.58
State
14.10 17.59
5.35
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1,2-Propanediol 1,3-Propanediol 1,3-Propanedithiol 2,3-Propanedithiol 1-Propanethiol 2-Propanethiol 1-Propanol 2-Propanol 1,2,3-Propenetricarboxylic acid cis trans 2-Propen-1-ol (allyl alcohol) Propionaldehyde Propionamide Propionic acid Propionic anhydride Propionitrile 1-Propylamine 2-Propylamine Propylbenzene Propylcarbamate Propyl chloroacetate Propylcyclohexane Propylcyclopentane Propylene (propene) Propylene oxide Propyl nitrate Propyl phenyl ketone Propyl thiolacetate Propyl trichloroacetate Propyne (methyl acetylene) Pyrazine Pyrazole Pyrene Pyridazine Pyridine Pyrimidine Pyrrole
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
liq liq liq liq g g liq g liq g
119.6 124.4 18.83 18.82 16.22 18.22 72.66 61.28 75.97 65.11
0.52 0.61 40.78 38.67 43.09 41.44
80.40 77.51 46.5 77.61 43.16 74.07
22.65 22.94 33.7 20.82 36.06 21.21
c c g
292.7 294.7 31.55
17.03
73.51
18.17
g c liq liq liq g g liq g c liq g g g g g liq liq liq g
45.90 81.7 122.07 161.53 3.5 12.10 17.30 26.83 1.87 132.07 123.3 46.20 35.39 4.88 22.17 41.60 45.14 70.29 122.7 44.32
31.18
72.83
18.80
91.65 113.66 21.31 22.98 9.51
45.25 68.50 77.48
17.46 22.89
32.80
95.76
36.41
11.31 12.57 15.02 6.16 6.53
100.27 99.73 63.72 68.53 92.10
44.03 36.96 15.37 17.29 28.99
46.47
59.30
14.50
c c c liq liq g liq liq
33.41 28.3 27.44 53.74 23.96 33.61 35.04 15.08
64.40
53.75
56.4
43.34 45.46
42.52 67.59
31.72 18.67
State
5.36
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued ) S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
24.8 2.9 9.84 0.86 68.3 139.7
25.94 27.41
48.76 73.97
2-Pyrrolidone Pyruvic acid
c c liq g c liq
110.75
42.9
Quinaldine Quinhydrone Quinidine Quinine Quinoline p-Quinone
c c c c liq c
39.3 19.79 38.3 37.1 37.33 44.10
77.19
77.9
65.90 20.0
51.9 38.9
Raffinose
c c c c
761 256.5 455.4 251.16
c liq c c c c
249.6 66.9 43.91 140.9 121.2 258.8
99.93
42.6
aq
39.9
9.7
71.2
c c c c c g c
173.6 281.8 93.4 303.68 167.8 44.27 226.5
217.10
52.8
63.41
67.45
liq c c liq g c
43.81 32.27 41.0 24.83 35.22 248.1
75.90
60.0
48.37 51.10
56.78 82.48
43.64 29.18
c c c
138.9 224.79 2531.9
178.64 2369.18
42.0 86.1
35.8
Substance Pyrrole-2-aldehyde Pyrrole-2-aldoxime Pyrrolidine
L-Rhamnose
Rhamnose triacetate D-Ribose
Saccharinic acid lactone Salicylaldehyde Salicylaldoxime Salicyclic acid Sarcosine Sebacic acid (decanedioic acid) Semicarbazide, std state, m1 L-Serine Serylserine Sorbic acid L-Sorbose 5,5-Spirobis(1,3-dioxane) Spiropentane Stearic acid (octadecanoic acid) Stilbene cis trans Strychnine Styrene Suberic acid (octanedioic acid) Succinamide Succinic acid Sucrose
State
19.39
66.2
21.06
5.37
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance L-Tartaric acid DL-Tartaric acid
meso-Tartaric acid Tetrabromomethane Tetracene Tetrachlorobenzoquinone 1,1,1,2-Tetrachlorodifluoroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrachloromethane 1,1,2,2-Tetracyanocyclopropane Tetracyanoethylene Tetradecane Tetradecanoic acid 1-Tetradecene Tetraethylene glycol Tetraethyllead 1,1,1,2-Tetrafluoroethane Tetrafluoroethylene Tetrafluoromethane Tetrahydrofuran Tetrahydrofurfuryl alcohol 1,2,3,4-Tetrahydronaphthalene (Tetralin) Tetrahydropyran 1,2,5,6-Tetrahydropyridine Tetraiodomethane 1,2,3,4-Tetramethylbenzene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene 2,2,3,3-Tetramethylbutane Tetramethyllead Tetramethylsilane Tetramethylsuccinic acid Tetramethylthiacyclopropane Tetranitromethane 1,1,1,2-Tetraphenylethane
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
c c c g c c g
306.5 308.5 305.9 19.00 37.95 69.0 117.1
15.61
85.53
21.78
97.3
91.5
29.5
g liq g g liq g c
35.7 47.0 36.50 3.40 31.75 22.90 141
19.2 22.7 20.45 4.90 14.97 12.80
85.05 59.0 86.69 81.46 51.67 74.07
24.67 39.6 24.09 22.69
c g c g liq liq g g g g liq liq liq
149.1 79.38 199.2 49.36 234.6 12.7 26.3 214.10 157.40 223.0 51.67 104.1 6.1
15.97
167.40
77.93
36.99
166.40
75.36
80.4
112.92
197.46 149.07 212.3
75.58 71.69 62.45
20.62 19.24 14.59
liq liq g liq liq liq g liq g g c c
61.1 8.0 62.84 23.0 23.54 29.48 53.99 23.5 32.6 68.50 242.0 19.84
51.89 25.49 23.58 24.20 5.26 62.8 64.7 23.92
93.60 69.45 99.55 71.83 93.06 76.5 100.5 86.30
22.91
liq c
8.9 53.31
State
19.94
57.5 51.6
34.42 31.12
5.38
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
Hf , kcal · mol1
1,1,2,2-Tetraphenylethane Tetraphenylethene Tetraphenylhydrazine Tetraphenylmethane Tetrazole Thebaine Theobromine Thiaadamantane 2-Thiabutane
c c c c c c c c liq g g g liq g liq g liq g liq
51.63 74.46 109.4 59.1 56.7 63.0 86.4 34.22 21.89 14.25 14.61 14.66 25.32 15.12 17.39 8.08 12.41 19.65 21.68
g g liq g liq g liq g liq g liq g liq g g liq g c c liq liq liq g c c aq, 100
29.34 29.92 40.62 29.96 34.15 24.42 34.58 25.00 52.74 39.99 28.21 19.54 28.43 19.95 8.97 63.61 43.49 132.6 59.5 52.39 111.6 19.24 27.66 6.0 21.13 15.6
Thiacyclobutane Thiacycloheptane Thiacyclohexane Thiacyclopentane Thiacyclopropane 4-Thia-5,5-dimethylhex1-ene 2-Thiaheptane 3-Thiaheptane 4-Thiaheptane 2-Thiahexane 3-Thiahexane 5-Thianonane 2-Thiapentane 3-Thiapentane 2-Thiapropane 6-Thiaundecane Thioacetic acid Thiohydantoic acid Thiohydantoin Thiolacetic acid -Thiolactic acid Thiophene Thiosemicarbazide Thiourea
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
137.20
1.79 2.73 25.69 20.09 9.96 12.68 8.97 11.00 22.52 23.16
57.14 79.62 68.17 86.50 52.16 77.26 49.67 73.94 38.84 61.01
8.39 7.65 5.12 7.94 4.08 6.37 3.50 5.63 7.66 11.76 2.79 4.40 2.81 4.25 1.66
107.73 108.27 80.85 107.16 73.49 98.43 73.98 98.97 96.82 125.76 65.14 88.84 64.36 87.96 68.32
39.10 38.71
36.81
74.86
19.33
28.97 30.30
43.30 66.65
17.42
5.2
27.7
22.73 16.57 29.78 25.86 21.72 12.83
38.53 33.64 33.25 49.46 28.05 40.97 27.97 17.71
5.39
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Threonine, L- and DLThymine Thymol Tiglic acid Toluene 2-Toluenethiol m-Toluic acid o-Toluic acid p-Toluic acid o-Toluic anhydride p-Toluic anhyride Trehalose 2,4,6-Triamino1,3,5-triazine (triaminotriazine) 2-Triazoethanol Tribenzylamine Tribromochloromethane Tribromofluoromethane Tribromomethane Tributylamine Tributyl borate Tributylboron Tributyl phosphate Tributylphosphine oxide Trichloroacetaldehyde Trichloroacetamide Trichloroacetic acid Ionized Trichloroacetyl chloride Trichlorobenzoquinone 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Trichloromethyl 1,2,3-Trichloropropane 1,1,1-Tricyanoethane Tricyanoethylene Tridecane Tridecanoic acid 1-Tridecene Triethylaluminum
State
Hf , kcal · mol1
c c c c liq g liq c c c c c c c g
181.4 111.9 74.0 117.3 2.87 11.95 10.57 101.85 99.55 102.59 127.5 124.5 531.3 17.3 17.13
liq c g g g liq liq liq liq c liq c c aq liq c g g g g g g c c g c g liq
22.6 33.6 3.0 45.4 4.00 67.32 286.7 83.4 348 110 56.1 85.6 120.7 123.4 66.4 64.5 34.01 33.10 1.40 68.10 19 44.40 83.9 105.0 74.45 192.8 44.45 56.6
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
27.19 29.16
52.81 76.64
37.58 24.77
44.10 42.33
35.63 74.10
20.93
2.17 46.14 1.78
85.36 82.65 79.01
16.96
18.21 18.52 4.75 58.68 22 23.37
76.49 80.57 77.63 74.06 70.9 91.52
22.07 21.47 19.17 18.66 15.21 26.82
13.97
158.09
72.47
34.96
157.09
69.89
5.40
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance Triethylamine Triethylaminoborane Triethyl arsenite Triethylarsine Triethyl borate Triethylenediamine Triethylene glycol Triethyl phosphate Triethylphosphine Triethyl phosphite Triethylstibine Triethylsuccinic acid Triethyl thionophosphate Trifluoroacetic acid Trifluoroacetonitrile 1,1,1-Trifluoroethane 2,2,2-Trifluoroethanol Trifluoroethylene Trifluoroiodomethane Trifluoromethane Trifluoromethyl CF3 · CF3 Trifluoromethylbenzene Trifluoromethylhypofluorite (CF3OF) DL-Trihydroxyglutaric acid Triiodomethane Trimethylacetic acid Trimethylacetic anhydride 2,4,5-Trimethylacetophenone 2,4,6-Trimethylacetophenone Trimethylaluminum Trimethylamine Std state, molarity 1 Trimethylamine aluminum chloride adduct Trimethylammonium ion Std state, molarity 1 Trimethyl arsenite Trimethylarsine
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
g liq liq liq liq c liq liq liq liq liq c liq liq g g liq g g g
23.80 47.47 168.9 3.1 250.4 3.4 192.2 297 21.3 205.9 1.2 254.9 232.5 255.4 118.4 178.20 207.4 118.50 141.0 165.71
26.36
96.90
57.28
37.67
110.4 162.11
71.3 68.67
18.70 18.76
112.22 136.70 157.48
69.94 73.50 62.04
16.54
g g liq g g
112.4 100.6 152.40 143.42 183
109.2 103.1 123.98 122.20 169
63.3 60.8 64.89 89.05 77.06
11.90 11.87
c
356
g liq liq liq
50.40 134.9 186.4 60.3
42.54
84.97
17.94
liq
63.9
liq g aq c
36.1 5.70 18.17 210.1
23.64 22.22
50.05 69.02 31.9
37.19 21.93
aq
26.99
8.90
47.0
liq liq
141.2 3.9
State
38.46
12.22
31.17 18.97
5.41
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 1,2.3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Trimethyl borate Trimethylboron 2,2,3-Trimethylbutane Trimethylchlorosilane cis,cis-1,3,5-Trimethylcyclohexane 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane 2,3,3-Trimethylpentane 2,3,4-Trimethylpentane 2,4,4-Trimethyl-1-pentene 2,4,4-Trimethyl-2-pentene Trimethylphosphine TrimethylphosphineN-ethylimine Trimethylphosphine oxide Trimethyl phosphite Trimethylsilanol Trimethylstibine Trimethylsuccinic acid Trimethylsuccinic anhydride Trimethylthiacyclopropane Trimethylurea 2,4,6-Trinitroanisole 1,3,5-Trinitrobenzene Trinitromethane 1,4,5-Trinitronaphthalene 1,3,8-Trinitronaphthalene 2,4,6-Trinitrophenetole 2,4,6-Trinitrophenol 2,4,6-Trinitrophenylhydrazine 2,4,6-Trinitrotoluene 2,4,6-Trinitro-m-xylene Triphenylamine Triphenylarsine Triphenylcarbinol
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1
liq liq liq liq liq g liq g
14.01 14.79 15.18 222.9 34.1 48.95 91.8 51.48
25.68 24.46 24.83
66.40 67.93 65.38
1.02
91.61
39.33
8.10
93.30
42.93
liq g liq g liq g liq g liq liq liq liq
61.44 52.61 61.97 53.57 60.63 51.73 60.98 51.97 35.21 34.44 29.2 35.8
2.21 4.09 1.65 3.27 2.54 4.52 2.55 4.52 20.66 21.04
78.30 101.62 78.40 101.15 79.93 103.14 78.71 102.31 73.2 74.5
c liq liq liq c c
114.2 177.1 130.3 0.2 239.2 164.5
liq c c c c c c c c c
14.47 79.0 37.6 10.40 11.50 8.7 5.8 48.9 51.23 8.8
c c c c c
16.0 24.5 58.7018 C 74.1 0.80
State
120.50 65.2
78.7
5.42
SECTION 5
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance
State
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
Hf , kcal · mol1
Gf , kcal · mol1 78.68
60.87
123.00 98.60
74.6
70.5
28.54 92.18
60.00 51.15
56.92 51.73 61.53 58.96 22.26
Triphenylene 1,1,1-Triphenylethane 1,1,2-Triphenylethane Triphenylethylene Triphenylmethane Triphenyl phosphate Triphenylphosphine Triphenylphosphine oxide Tripropylamine Tris(acetylacetonato)chromium 1,1,1-Tris(hydroxymethyl)ethane Tropolone L-Tryptophan L-Tyrosine
c c c c c c c c liq c
33.72 37.56 31.11 55.8 38.71 181 55.5 14.4 49.51 366.4
c
177.96
c c c
57.18 99.8 163.4
Undecane 1-Undecene Urea Std state, m 1 Urea nitrate Urea oxalate Uric acid
liq g g c aq c c c
78.05 64.60 34.60 79.71 75.95 134.8 365.3 147.73
5.44 9.94 30.94 47.19
109.49 139.48 138.48 25.00
85.75
41.4
Valeric acid Valine, L and DLValylphenylalanine Veronal Vinyl radical Vinyl bromide Vinyl chloride Vinylcyclohexane Vinylcyclopropane 2-Vinylpyridine
liq c c c g g g liq liq liq
133.71 148.2 183.5 178.7 63 18.7 8.5 21.19 29.3 37.2
89.10 85.80
62.10 42.75
50.48 40.35
19.3 12.4
65.90 63.07
13.27 12.84
Xanthine o-Xylene
c liq g liq g liq g g g g
90.49 5.84 4.54 6.08 4.12 5.84 4.29 37.57 38.93 38.63
39.64 26.37 29.18 25.73 28.41 26.31 28.95
38.5 58.91 84.31 60.27 85.49 59.12 84.23
m-Xylene p-Xylene 2,3-Xylenol 2,4-Xylenol 2,5-Xylenol
44.9 31.85 43.8 30.49 30.32
5.43
THERMODYNAMIC PROPERTIES
TABLE 5.1 Enthalpies and Gibbs (Free) Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (continued )
Substance 2,6-Xylenol 3,4-Xylenol 3,5-Xylenol Xylitol D-Xylose
State g g g c c
Hf , kcal · mol1 38.66 37.42 38.61 267.32 252.8
Gf , kcal · mol1
S , cal · deg1 · mol1
C p, cal · deg1 · mol1
5.44
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds Abbreviations Used in the Table Hm, enthalpy of melting (at the melting point) in kcal · mol1 Hv, enthalpy of vaporization (at the boiling point) in kcal · mol1 Hs, enthalpy of sublimation (at 298 K) in kcal · mol1 Cp, specific heat (at temperature specified, measured on the Kelvin scale) for physical state in existence at that temperature, expressed in cal · K1 · mol1 Ht, enthalpy of transition (at temperature specified, measured in degrees Celsius) in kcal · mol1 Cp Substance Acenaphthene Acenaphthylene Acetaldehyde Acetanilide Acetic acid Acetic anhydride Acetone Acetonitrile (Ht, 0.215 at 56 C) Acetophenone Acetyl bromide Acetyl chloride Acetylene Acetylenedicarbonitrile Acetyl fluoride Acetyl iodide Acrylic acid Acrylonitrile Adenine
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
15.73
20.52
24.20
29.96
19.52 30.86 22.00 14.62
25.15 41.62 29.34 18.35
29.08 48.91 34.93 21.26
31.99 54.11 39.15 23.50
18.86 11.97 22.66
23.18 13.73 25.37
26.30 14.93 27.26
28.60 15.92 28.62
22.94 18.36
29.50 23.11
33.93 26.43
37.12 28.88
20.6 17.0 0.770
6.24 19.3
2.80 2.51 1.366 1.952
5.663 9.85 6.952 7.3 9.275
0.900
4.05
11.21 7.8
11.54 7.94 13.4 7.9 7.2 5.1 6.88 6.0 7.9 12.98 25.8
Adipic acid -Alanine Allyl ethyl sulfoxide Allyl trichloroacetate 1-Aminobutane 2-Aminobutane Aniline Anthracene 9,10-Anthracenedione Azoisopropane Azulene
5.45
Benzaldehyde 1,2-Benzanthra-9,10-quinone Benzene Benzenethiol Benzil Benzoic acid Benzoic anhydride Benzonitrile Benzophenone 1,4-Benzoquinone Benzoyl bromide Benzoyl chloride Benzoyl iodide 3,4-Benzophenanthrene Benzyl bromide Benzyl chloride Benzyl ethyl sulfide Benzyl iodide Benzyl methyl ketone Benzyl methyl sulfide Bicyclo[4.1.0]heptane Bicyclo[3.1.0]hexane
2.519
10.643 13.5
2.89
13.26
2.358 2.736
7.352 9.53
4.32
12.10
2.60
11.0
30.8 33.0 17.1 12.5 8.50 7.5 13.325 24.7 26.8 8.5 22.8 12 19.8 8.090 11.64 23.5 22.70 23 13.26 22.5 15.00 14.0 13.1 14.8 25.4 11.3 12.3 13.6 11.3 12.78 12.8 9.14 7.85
35.44 35.40 34.17
47.30 47.55 46.09
56.01 56.42 53.79
62.54 62.54 69.18
42.15
59.32
70.59
78.24
26.74 32.76
37.73 44.13
45.06 51.59
50.16 56.79
33.65
44.80
52.08
57.08
5.46
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Bicyclo[4.2.0]octane Bicyclo[5.1.0]octane Bicyclopropyl Biphenyl Biphenylene Bromobenzene 4-Bromobenzoic acid 1-Bromobutane 2-Bromobutane Bromoethane Bromoethene 1-Bromoheptane 1-Bromohexane Bromomethane Ht, 0.113 at 99.4 C 2-Bromo-2-methylpropane Ht, 1.35 at 64.5 C; 0.25 at 41.6 C 1-Bromooctane 1-Bromopentane 1-Bromopropane 2-Bromopropane 1,2-Butadiene 1,3-Butadiene n-Butadiene sulfone Butadiyne Butane Ht, 0.494 at 165.60 C 2,3-Butanedione 1,4-Butanedithiol 1-Butanethiol
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
9.85 10.42 8.0 4.44
10.9
2.54
9.05
1.6
7.78
1.4
6.41
52.83
73.54
86.92
96.00
30.8 10.62 21.0
30.44
40.99
47.78
52.40
8.45 6.57
32.64 33.09 18.93 15.91
43.00 43.76 24.56 19.83
50.48 51.31 28.58 22.50
56.03 56.93 31.59 24.46
11.94 34.93
14.98 45.58
17.26 52.65
19.01 57.74
39.58 25.70 26.34 23.54 24.29
52.34 33.66 34.42 30.72 31.84
61.55 39.41 40.09 36.01 36.84
68.36 43.70 44.26 40.02 40.52
20.17 29.60
23.14 40.30
25.11 48.23
26.61 54.22
34.95
46.54
55.68
62.95
12.05 10.91 1.429 0.47
5.715
2.74 1.56 1.665 1.908
8.24 7.14 6.79 5.82 5.42
1.114
5.352
2.500
7.702
7.4 13.14
5.71 5.03 14.7 5.035 9.25 13.22 8.73
5.47
2-Butanethiol 1-Butanol 2-Butanol 2-Butanone 1-Butene 2-Butene cis trans 1-Buten-3-yne N-Butylacetamide Butyl acetate tert-Butylamine Butylbenzene stable(I) metastable(II) sec-Butylbenzene tert-Butylbenzene sec-Butyl butyrate Butyl chloroacetate Butyl 2-chlorobutyrate Butyl 3-chlorobutyrate Butyl 4-chlorobutyrate Butyl 2-chloropropionate Butyl 3-chloropropionate Butyl crotonate sec-Butyl crotonate Butylcyclohexane Butylcyclopentane N- Butyldiacetimide Butyl dichloroacetate tert- Butyl hydroperoxide Butylisobutylamine Butyl lithium Butyl trichloroacetate
1.548 2.24 2.017 0.920 1.747 2.332
7.312 10.31 9.75 7.475 5.238
5.580 5.439
8.58 2.682(I) 2.691(11)
3.384 2.704
8.14 12.52 11.87 8.34 4.81
35.38 32.80 33.70 29.81 26.04
46.42 43.90 44.72 39.09 35.14
54.29 52.11 52.68 46.08 41.80
60.02 58.26 58.62 51.33 46.82
5.29 5.10
24.33 26.02 21.26
33.80 34.80 26.67
40.87 44.20 30.40
46.15 46.58 33.16
18.2 10.42 7.10
36.46
48.87
57.49
63.79
11.98
54.75
75.20
89.37
99.49
66.00 57.77
93.10 80.38
112.30 97.35
125.70 114.80
9.38
9.20 8.69
11.72 11.50 11.3 12.2 12.6 12.7 13.0 13.0 13.3 12.4 11.8 11.96 11.00 15.4 12.5 11.41 10.73 25.6 12.8
5.48
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance
Hm
1-Butyne 2-Butyne Butyraldehyde Butyric acid Butyronitrile
1.441 2.207 2.654 2.50 1.2
D-Camphor
1.635
-Caprolactam Carbazole Carbon disulfide Chloroacetic acid Chloroacetyl chloride 2-Chlorobenzaldehyde Chlorobenzene 2-Chlorobenzoic acid 3-Chlorobenzoic acid 4-Chlorobenzoic acid Chlorobenzoquinone 1-Chlorobutane 2-Chlorobutane Chlorocyclohexane Chlorodifluoromethane Chloroethane 1-Chloro-2-ethylbenzene 1-Chloro-4-ethylbenzene Chloroethylene Chloroethyne Chlorofluoromethane
1.049
2.28
Hv
5.861 6.340 10.04 8.13 14.22
400 K
600 K
800 K
1000 K
5.67 6.38 8.05 15.2 9.53
23.87 22.62 30.20
30.83 29.68 39.60
35.95 35.14 46.60
39.84 39.29 51.70
28.39
37.07
43.48
48.22
30.62
41.16
47.89
52.48
32.30 32.52
42.77 43.18
50.31 50.84
55.92 56.60
15.63 18.54
18.87 24.28
20.84 28.39
22.10 31.48
15.56 14.39 13.29
19.61 15.97 16.57
22.35 16.98 18.81
24.35 17.75 20.39
19.9 20.2
6.401
8.73
7.38 6.98 0.985 1.064
Hs
18 9.3 13.3 9.81 19.0 19.6 21.0 16.5 8.0 7.60 10.4
4.833 5.892 11.3 11.5
5.49
Chloroform Chloromethane Chloromethyloxirane 1-Chloro-2-methylpropane 2-Chloro-2-methylpropane Ht, 0.41 at 90.1 C; 1.39 at 53.6 C 1-Chloronaphthalene 2-Chloronaphthalene 1-Chloropentane 3-Chlorophenol 4-Chlorophenol 1-Chloropropane 2-Chloropropane 3-Chloro-1-propene Chlorotrifluoromethane Chlorotrinitromethane Chrysene o-Cresol m-Cresol p-Cresol m-Cresyl acetate Cubane 4-Cyanothiazole Cyclobutane Ht, 1.38 at 126.79 C Cyclobutene Cyclododecane Cycloheptane Ht, 1.187 at 138.4 C; 0.069 at 75.0 C; 0.108 at 60.8 C Cycloheptanone 1,3,5-Cycloheptatriene Ht, 0.561 at 118.19 C Cyclohexane Ht, 1.611 at 87 C Cyclohexanol Ht, 1.96 at 9.7 C Cyclohexanone Cyclohexene Ht, 1.016 at 134.4 C
2.28 1.537
7.08 5.147
7.48 9.7 7.57
0.48
6.6
7.93
6.62 6.34
15.6 19.6 9.1 12.7 12.4 6.9 6.47
0.260
5.781
10.86 28.1 18.17 14.75 17.67 14.51 19.2 17.67 5.65
0.450
7.93
18.26 9.21
0.277
9.250
0.640 0.406
7.160 10.875 9.00 7.285
10.20 10.32 10.32
17.75 11.52
20.38 14.66
21.87 17.04
22.83 18.86
32.52 34.00
43.18 44.20
50.84 51.50
56.60 57.00
39.24
52.11
61.38
68.25
25.36 25.99 22.12 18.53
33.43 34.20 28.43 21.60
39.24 39.94 32.93 23.17
43.59 44.16 36.30 24.03
39.74 38.74 38.65
52.77 52.26 52.10
61.55 61.27 61.11
68.82 68.50 68.48
23.89 21.59
34.76 30.30
42.42 36.26
47.96 40.53
41.82
62.42
77.03
87.40
37.13
50.07
58.58
64.58
35.82 41.14 36.00 34.64
53.83 59.29 52.90 49.45
66.76 72.18 65.00 59.49
75.80 81.13 73.00 66.62
12.4
0.787
7.896 12.820 10.77 8.00
5.50
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
Cyclooctane Ht, 1.507 at 106.7 C; 0.114 at 89.35 C Cyclooctanone 1,3,5,7-cyclooctatetraene Cyclopentadiene Cyclopentane Ht, 1.167 at 150.76 C; 0.823 at 135.08 C Cyclopentanethiol Cyclopentanol Cyclopentanone Cyclopentene Ht, 0.115 at 186.08 C Cyclopropane Decahydronaphthalene cis Ht, 0.511 at 57.1 C trans Decanal Decane 1-Decanethiol Decanoic acid 1-Decanol 1-Decene Ht, 1.90 at 74.8 C 1-Decyne Deoxybenzoin Dibenzilidene azine Dibenzyl ketone Dibenzyl sulfide Dibenzyl sulfone
0.576
8.58
10.36
47.82
71.00
87.30
99.01
2.695
8.700
38.45
52.77
62.23
68.88
0.1455
6.524
28.38
42.57
52.60
59.84
1.872
8.443
34.53
48.65
58.61
65.84
0.804 1.301
4.793
25.08 18.31
37.19 26.15
45.78 33.57
51.94 35.39
2.268 3.455
9.940 9.260
6.863 7.4 7.0 9.0 3.300
9.388 11.1
56.64 56.78 71.80 71.24 76.63
84.14 84.20 95.70 96.36 102.63
103.36 103.40 113.00 114.92 122.10
116.91 116.93 125.70 128.20 136.98
74.44 67.79 65.64
99.94 91.27 86.96
118.53 108.28 102.42
132.24 120.90 113.90
11.9 9.24
13.0 10.30 6.78 6.818 9.93 13.74 10.21 6.71
12.0 11.6 12.277 15.5 28.4 18.6 12.06 22.3 22.3 21.3 22.3 27.8
5.51
1,2-Dibromobutane 1,2-Dibromocycloheptane 1,2-Dibromocyclohexane 1,2-Dibromocyclooctane 1,2-Dibromoethane 1,2-Dibromoheptane 1,2-Dibromopropane Dibutylborinic acid Dibutyl ether Dibutyl mercury Di-tert-butyl peroxide Dibutyl o-phthalate Dibutyl sulfate Dibutyl sulfite Dibutyl sulfone Dichloroacetyl chloride 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,6-Dichlorobenzoquinone 2,2-Dichlorobiphenyl 4,4-Dichlorobiphenyl Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene cis trans Dichlorofluoromethane Dichloromethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane
2.62
8.69
8.83
10.8 12.43 12.07 13.04 9.86 13.01 15 10.5 15.6 7.6 21.9 18.1 16.2 24.0 9.4 11.56 11.44 15.5 16.7 23.0 24.8
3.19
9.7
4.34
9.5
1.881 2.112 1.557
6.97 7.65 6.26
7.36 8.47 6.328
1.72 1.72
7.08 6.65
7.43 6.92
1.1
6.74 7.59 8.10 7.0
6.94 8.68 9.66 7.8
36.77
46.70
53.60
58.50
23.83
29.24
32.94
35.80
29.74
37.63
42.91
46.74
60.78
81.29
96.52
107.86
34.12 34.18 34.24
44.07 44.09 44.16
50.28 50.29 50.35
54.42 54.42 54.46
19.69 21.85 22.00 18.80
22.37 27.18 26.90 22.44
23.69 30.79 30.40 24.71
24.39 33.40 33.00 26.29
18.41 18.58 16.78 14.24 28.60 28.69 30.56
22.23 22.28 19.70 17.30 36.47 36.22 38.06
24.60 24.62 21.41 19.32 41.97 41.56 43.00
26.23 26.24 22.51 20.76 46.08 45.50 46.56
5.52
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Dicyanoacetylene 2,2-Diethoxypropane Diethylamine 1,2-Diethylbenzene 1,3-Diethylbenzene 1,4-Diethylbenzene Diethylene glycol Diethyl ether Diethylmercury Diethylmethyl phosphonate Diethylnitramine Diethyl oxalate Diethyl peroxide Diethyl o-phthalate Diethyl selenide Diethyl sulfate Diethyl sulfite Diethyl sulfone Diethyl sulfoxide 1,2-Difluorobenzene 1,3-Difluorobenzene 1,4-Difluorobenzene 2,2-Difluorobiphenyl 4,4-Difluorobiphenyl 1,1-Difluoroethane 1,1-Difluoroethylene Difluoromethane
Hm
4.01 2.62 2.53 1.745
Hv
9.42 9.41 9.41 12.50 6.38
10.04
2.640
7.699
5.1
Hs 6.88 7.61 7.6 12.61 12.55 12.54 13.7 6.516 10.7 13.5 12.7 15.2 7.3 21.1 9.3 13.6 11.6 20.6 14.9 8.65 8.29 8.51 22.7 21.8
400 K
600 K
800 K
1000 K
34.88 56.01 55.01 54.68
47.14 75.66 75.19 74.84
56.16 89.54 89.31 89.04
62.91 99.49 99.37 99.16
33.01
43.92
52.26
58.51
32.76 32.72 32.84
43.33 43.13 43.20
50.12 49.67 49.68
54.72 53.93 53.99
19.93 17.16 12.22
25.70 21.32 15.72
29.70 23.95 18.22
32.57 25.74 19.98
9,10-Dihydroanthracene 4H-Dihydropyran 5,12-Dihydrotetracene 2,3-Dihydrothiophene 2,5-Dihydrothiophene 1,2-Diiodobenzene 1,2-Diiodoethane Diiodomethane Diisopropyl ether Diisopropyl ketone Diisopropylmercury 1,2-Dimethoxybenzene Dimethoxyborane 2,2-Dimethoxypropane Dimethylamine Dimethylaminotrimethylsilane 2,2-Dimethylbutane Ht, 1.289 at 147.34 C; 0.068 at 132.28 C 2,3-Dimethylbutane Ht, 1.552 at 137.08 C 2,3-Dimethyl-1-butene 2,3-Dimethyl-2-butene a. Ht, b. 0.844 at76.34 C 3,3-Dimethyl-1-butene Ht, 1.037 at 148.3 C Dimethylcadmium 1,1-Dimethylcyclohexane Ht, 1.430 at 120.01 C 1,2-Dimethylcyclohexane cis Ht, 1.974 at 100.6 C trans 5.53
1,3-Dimethylcyclohexane cis trans
22.3 7.7 27.7 9.02 9.55 15.5 15.7 12.2
3.02(I) 2.88(II) 2.635
6.95
1.420
6.330
0.138
22.94 15.74
27.92 18.37
31.37 20.06
33.84 21.29
46.90
62.61
74.39
83.17
20.89
28.41
33.94
38.19
6.287
7.75 9.93 12.8 16.0 6.14 7.03 6.07 7.6 6.618
43.70
60.00
71.40
79.70
0.194
6.519
6.96
43.30
59.20
75.20
79.10
1.542
6.55 7.083
6.97 7.776
42.60 37.48
55.40 51.78
65.00 62.78
72.20 71.14
0.261
6.13
6.36
38.90
53.40
63.60
71.00
0.495
7.79
9.07 9.043
50.70
74.10
90.70
102.20
0.393 2.491(I) 2.508(II)
8.04 7.86
9.492 9.168
51.10 51.90
74.00 74.60
90.10 90.50
101.40 101.70
2.586 2.358
7.84 8.09
9.137 9.369
51.20 51.10
74.20 73.80
90.50 89.80
102.00 101.10
5.54
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance 1,4-Dimethylcyclohexane cis trans 1,1-Dimethylcyclopentane Ht, 1.551 at 126.36 C 1,2-Dimethylcyclopentane cis Ht, 1.594 at 131.66 C trans 1,3-Dimethylcyclopentane cis trans Dimethyldichlorosilane cis-2,4-Dimethyl-1,3-dioxane 4,5-Dimethyl-1,3-dioxane 5,5-Dimethyl-1,3-dioxane Dimethyl ether N,N-Dimethylformamide Dimethylfulvene Dimethylglyoxime 2,2-Dimethylhexane 2,3-Dimethylhexane 2,4-Dimethylhexane 2,5-Dimethylhexane 3,3-Dimethylhexane 3,4-Dimethylhexane 2,2-Dimethyl-3-hexene cis trans
Hm
Hv
2.225 2.947 0.258
8.07 7.79 7.239
0.396 1.713
Hs
400 K
600 K
800 K
1000 K
9.329 9.053 8.079
51.10 51.60 43.55
73.80 74.60 62.78
89.80 90.60 76.18
101.10 101.90 85.83
7.576 7.375
8.549 8.259
43.67 43.71
62.72 62.66
75.98 75.84
85.57 85.43
1.761 1.738
7.265 7.361
8.200 8.248 8.2 9.53 10.16 9.86
43.71 43.71
62.66 62.66
75.84 75.84
85.43 85.43
1.180
5.141
19.02
25.16
30.04
33.79
1.62
3.096 1.7
7.71 7.94 7.79 7.80 7.76 7.95
11.4 10.6 23.2 8.91 9.27 9.03 9.05 8.97 9.32 8.88 8.91
1,1-Dimethylhydrazine 1,2-Dimethylhydrazine Dimethylmercury Dimethylnitramine 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,7-Dimethylphenanthrene 4,5-Dimethylphenanthrene 9,10-Dimethylphenanthrene 2,2-Dimethylpropane Ht, 0.616 at 133.14 C 2,3-Dimethylpyridine 2,4-Dimethylpyridine 2,5-Dimethylpyridine 2,6-Dimethylpyridine 3,4-Dimethylpyridine 3,5-Dimethylpyridine Dimethyl sulfate Dimethyl sulfite Dimethyl sulfone Dimethyl sulfoxide 3,3-Dimethyl-2-thiabutane
5.55
2,2-Dimethylthiacyclopropane 2,2-Dimethyl-3-thiapentane 2,4-Dimethyl-3-thiapentane 1,3-Dinitrobenzene 2,4-Dinitrophenol 2,6-Dinitrophenol 1,1-Dinitropropane 1,4-Dioxane Ht, 0.562 at 0.3 C 1,3-Dioxolan
1.636 1.689
6.97 7.26 7.05 7.09
0.752
5.438
8.37 9.40 8.26 16.7 7.75 8.19 7.86 7.89 25.5 25.0 28.6 5.205
12.66 7.523
11.70 11.42 11.43 11.01 12.38 12.04 11.6 9.6 18.4 12.64 8.57
1.392
1.56 2.011(I) 1.83(II) 1.69 2.49
3.07
8.00 8.04
8.55 9.4 9.44 14.3 25 26.8 14.93 9.20 8.5
50.42 50.42 50.42 50.42
68.33 68.33 68.33 68.33
81.43 81.43 81.43 81.43
91.20 91.20 91.20 91.20
37.55
51.21
60.78
67.80
50.64
66.22
77.12
85.24
30.23
43.44
52.15
58.05
5.56
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Dipentene Diphenylamine Diphenylchlorosilane Diphenyl disulfide Diphenyl disulfone 1,2-Diphenylethane 1,1-Diphenylethene Diphenyl ether Diphenylfulvene Diphenylmercury Diphenylmethane Diphenyl sulfide Diphenyl sulfone Diphenyl sulfoxide Dipropyl ether Dipropylmercury Dipropyl sulfate Dipropyl sulfite Dipropyl sulfone Dipropyl sulfoxide 2,3-Dithiabutane 5,6-Dithiadecane 3,4-Dithiahexane 1,3-Dithian-2-thione 4,5-Dithiaoctane N,N-Dithiodiethylamine 1,3-Diothiolan-2-thione Di-p-tolyl sulfone
Hm
Hv
12.3 4.115
2.197
15.525
2.248
8.05 11.2 9.01
3.30
10.02
Hs 11.5 23.1 16.6 22.7 38.7 20.1 17.5 19.6 25 26.95 19.7 16.2 25.4 23.2 8.6 13.2 16.0 14.0 19.1 17.8 9.17 15.2 10.89 21.85 12.55 12.6 19.56 26.2
400 K
600 K
800 K
1000 K
46.90
62.61
74.39
83.17
26.36 68.38 40.90
32.83 89.98 52.24
37.66 105.83 60.19
41.31 117.86 65.97
44.50
71.30
83.70
93.20
Divinyl ether Divinyl sulfone Dodecane Dodecanedioic acid 1-Dodecene Ht, 1.088 at 60.2 C Eicosane Eicosanoic acid 1-Eicosene meso-Erythritol Ethane 1,2-Ethanedithiol Ethanethiol Ethanol Ethyl acetate Ethyl allyl sulfone Ethylamine N-Ethylaniline Ethylbenzene 3-Ethyl-1-butene Ethyl crotonate Ethylcyclohexane 1-Ethylcyclohexene Ethylcyclopentane
5.57
Ethylene Ethylene carbonate Ethylene glycol Ethyleneimine Ethylene oxide Ethyl formate 2-Ethyl-1-hexanal 3-Ethylhexane Ethylisovalerate Ethyllithium
8.57
10.43
4.76
10.27
16.70 17.2 8.2
13.74 13.35
0.683
3.517
1.189 1.198 2.505
6.401 9.255 7.720 6.7
2.195
8.50 6.88
1.992
8.20
1.642(I) 1.889(II) 0.801 2.41 2.78
7.715
1.236 2.20
6.26 13.5 14.65 36.6 14.42 24.1 48 23.86 32.3 1.200 10.68 6.526 10.11 8.63 20.0 6.7 12.5 10.10 7.41 10.6 9.67 10.34 8.72
3.237 11.86 7.24 6.101 7.201 8.03
17.5 15.68 7.55 5.96 11.70 9.48 10.5 27.9
85.13
115.04
136.76
152.90
8.68
109.95
130.41
145.50
140.65
189.78
225.28
251.60
137.20
184.69
218.93
244.20
15.65
21.35
25.81
29.30
21.08 19.36 32.84
27.21 25.69 43.65
31.83 30.33 51.01
35.38 33.83 56.05
21.65
28.68
33.89
37.88
40.76 40.70
56.44 54.50
67.15 64.40
74.77 71.90
51.60
74.10
90.10
101.30
43.89
61.70
75.22
85.16
12.67
17.87
20.03
22.43
27.06 16.83 14.95
32.72 23.56 20.62
36.90 28.14 24.60
39.88 31.45 27.47
5.58
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Ethylmercury bromide Ethylmercury chloride Ethylmercury iodide Ethyl methyl ether Ethyl nitrate 3-Ethylpentane Ethyl pentanoate 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol Ethylphosphonic acid Ethyl propanoate Ethyl -vinylacrylale Ethyl vinyl ether Ethynylbenzene Fluoranthrene Fluorobenzene 4-Fluorobenzoic acid Fluoroethane Fluoromethane 1-Fluoropropane 2-Fluoropropane 4-Fluorotoluene Fluorotrinitromethane Formaldehyde Formic acid Formyl HCO · HCO
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
26.08 28.73 50.42
34.58 37.07 68.33
41.19 42.72 81.43
46.18 46.69 91.20
35.95
48.01
55.79
61.17
29.99
40.86
47.83
52.58
17.71 10.56 24.55 24.72 36.43
23.56 13.83 32.82 33.14 49.70
27.82 16.45 38.88 39.14 58.60
31.00 18.44 43.37 43.55 64.84
9.38 12.85
11.52 16.02
13.37 18.35
14.81 19.95
8.73 9.39
9.79 10.39
10.75 11.14
11.49 11.78
18.3 18.2 19.0 2.04 2.282
7.92 7.40
8.178
2.702
7.457
2.235
8.144
3.035
5.85 5.24
8.67 8.42 11.0 15.20 16.30 19.20 12.1 9.0 11.6 6.35 24.65 8.27 21.8
9.42 8.3 11.03
Fumaric acid Fumaronitrile Furan Ht, 0.489 at 123.2 C Furfuryl alcohol 2-Furoic acid Furylethylene Glycerol Glyceryl triacetate Glyceryl trinitrate Heptadecane Ht, 2.62 at 11.1 C Heptadecanoic acid 1-Heptadecene 1-Heptanal Heptane 1-Heptanethiol Heptanoic acid 1-Heptanol 1-Heptene Ht, 0.07 at 1.36 C
5.59
Hexachlorobenzene Hexachloroethane Ht, 1.9 at 71.3 C Hexadecafluoroethylcyclohexane Hexadecafluoroheptane Hexadecane Hexadecanoic acid 1-Hexadecanol Ht, 4.8 at 44.0 C; 5.7 at 49.1 C 1-Hexadecene Hexafluorobenzene Hexafluoroethane Ht, 0.893 at 169.17 C Hexahydroindane cis trans
0.909 3.12
6.474
4.416
9.67 12.3 7.5 5.637 3.359 6.067 3.16 2.964(I) 3.021(II) 6.1 2.33
12.39 12.8 7.8 7.216 2.770 0.642
32.5 17.2 6.61 15.4 25.92 9.1
21.20
29.31
34.41
37.89
20.5 19.6 23.9 12.64
20.6
119.83
161.75
192.08
214.60
12.39
20.32 11.40 8.74 12.06 18.0 16.5 8.52
116.38 51.00 50.42 55.81
156.66 67.70 68.33 74.60
185.74 79.80 81.43 88.91
207.20 88.70 91.20 99.98
53.62 46.97
71.92 63.24
85.32 75.09
95.25 83.90
23.2 16.5 9.20 8.7 19.38 36.9 40.5
48.08 36.21
55.78 39.82
59.96 41.48
62.34 42.38
112.89
152.41
181.02
202.20
116.09
156.00
184.90
206.30
109.44 43.88 30.01
147.32 52.55 35.60
174.67 57.62 38.40
194.80 60.63 39.87
7.575 9.5 11.5 7.43
12.2
12.24
12.05 7.571 3.860
19.14 8.61
11.0 10.7
5.60
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance
Hm
Hexamethylbenzene Ht, 0.269 at 156.67 C; 0.422 at 110.7 C Hexmethyldisiloxane Hexanal Hexanamide Hexane 1-Hexanethiol Hexanoic acid 1-Hexanol 1-Hexene 2-Hexene cis trans 3-Hexene cis trans 1-Hexyne Hydroquinone 8-Hydroxyquinoline
4.93
Indane Indene Indole Iodobenzene 4-Iodobenzoic acid Iodocyclohexane Iodoethane Iodomethane
Hv
Hs
400 K
600 K
800 K
1000 K
17.9
74.18
97.13
113.51
125.55
44.00
58.30
68.70
76.40
8.9
3.126 4.305 6.98 3.68 2.234
6.896 8.9 15.45 11.6 6.76
22.72 7.54 11.14 17.3 14.8 7.32
43.47 48.87
58.99 65.26
70.36 77.84
78.89 87.65
46.68 40.03
62.58 53.90
74.25 64.02
82.92 71.54
6.96 6.91
7.52 7.54
38.60 39.70
53.00 53.40
63.40 63.60
71.20 71.20
6.86 6.92
7.47 7.54
38.50 40.20 37.87
53.20 53.90 49.59
63.50 63.90 58.16
71.20 71.40 64.56
31.10
41.43
48.07
52.60
19.18 12.33
24.64 15.28
28.65 17.47
31.65 19.17
23.7 26.0
2.33
9.44
7.115 6.52
11.8 12.64 16.7 11.85 21.0 11.3 7.7 6.63
2-Iodo-2-methylpropane 1-Iodonaphthalene 2-Iodonaphthalene 1-Iodopropane 2-Iodopropane 3-Iodopropene Iodotoluene, 3- and 4Isobutylbenzene Isobutyl dichloroacetate Isobutyl phenyl ketone Isobutyl trichloroacetate Isobutyronitrile Isopropyl acetate Isopropylbenzene Isopropyl nitrate Isopropyl trichloroacetate Isothiocyanic acid
3.47
7.754
8.99
1.86
8.97 8.35
Ketene Lauric acid Leucine ()-Limonene
5.61
Maleic acid Maleic anhydride Malononitrile D-Mannitol Melamine 2,2-Metacyclophane Methane Ht, 0.0187 at 248 to 252.7 C Methanethiol Ht, 0.0525 at 135.6 C Methanol Ht, 0.152 at 115.8 C 4-Methoxybenzaldehyde Methoxybenzene 2-Methoxytetrahydropyran Methyl (CH3)
8.46 17.3 21.7 8.6 8.14 9.1 13.0 11.54 12.5 14.22 12.7 28.56 8.89 10.79 9.27 12.4 4.18
8.8
35.27
45.82
52.85
57.91
26.27 26.59
34.11 34.58
39.80 40.21
44.03 44.34
37.39
43.74
48.40
48.00 35.96
66.20 46.81
78.60 54.13
87.30 59.26
12.71
14.57
15.74
16.57
14.22
16.89
18.80
20.25
9.71
12.55
15.18
17.40
14.04 12.29
17.57 16.02
20.32 19.04
22.48 21.38
10.05
11.54
12.89
14.09
31.7 36.0 11.5 26.3 17.1 18.9
5.39 29.7 22.0 0.225
1.953
1.411 0.768
5.872 8.24
5.7 8.94 15.42 11.18 10.2
5.62
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Methyl allyl sulfone Methylamine Methyl benzyl sulfone 2.Methyl-1,3-butadiene 3-Methyl-1,2-butadiene 2-Methylbutane 2-Methyl-1-butanethiol 3-Methyl-1-butanethiol 2-Methyl-2-butanethiol Ht, 1.907 at 114.0 C 3-Methylbutanoic acid 2-Methyl-1-butanol 3-Methyl-1-butanol 2-Methyl-2-butanol Ht, 0.47 at 127.2 C 3-Methyl-2-butanol 2-Methyl-1-butene 3-Methyl-1-butene 2-Methyl-2-butene Methyl butyl sulfone Methyl tert-butyl sulfone 3-Methyl-1-butyne Methyl crotonate Methylcyclohexane 2-Methylcyclohexanol, cis- and trans3-Methylcyclohexanol cis trans
Hm
Hv
1.466
6.169
1.155
6.191 6.51 5.901 8.0
1.231 1.78 0.1454 1.750
1.06
1.891 1.281 1.816
7.50 10.32 10.5 10.54 9.6 9.9 6.094 5.750 6.287
6.25 1.614
7.44
Hs
400 K
600 K
800 K
1000 K
19.0 5.80 23.7 6.32 6.68 5.94
14.38
18.86
22.44
25.26
31.80 31.00 36.49
41.40 40.30 49.89
48.00 47.20 59.71
52.90 52.40 67.12
8.51
42.79
56.58
66.28
73.30
33.20 35.26 31.93
44.72 45.90 43.42
53.15 53.85 52.05
59.43 59.83 58.55
31.10
40.60
47.40
52.40
44.35
64.46
78.74
88.79
12.9 13.0 11.9 12.4 6.181 5.70 6.468 18.2 19.7 6.16 9.8 8.45 15.1 15.6 15.7
4-Methylcyclohexanol cis trans Methylcyclopentane 1-Methylcyclopentene 3-Methylcyclopentene 4-Methylcyclopentene Methyldichlorosilane 2-Methyl-1,3-dioxane 4-Methyl-1,3-dioxane Methylene (CH2) 1-Methyl-2-ethylbenzene 1-Methyl-3-ethylbenzene
5.63
1-Methyl-4-ethylbenzene 2-Methyl-3-ethylpentane 3-Methyl-3-ethylpentane 2-Methyl-3-ethyl-1-pentene Methyl ethyl sulfite Methyl ethyl sulfone Methyl formate Methylglyoxal 2-Methylheptane 3-Methylheptane 4-Methylheptane Methyl heptanoate 2-Methylhexane 3-Methylhexane Methyl hexanoate Methylhydrazine Methylidyne CH CH 1-Methyl-2-isopropylbenzene
1.656
6.95
2.38 2.28 1.82 1.79 3.19 2.71 2.59
9.29
1.800
6.75
36.11 32.50 32.60 32.60
52.43 46.80 47.10 47.00
64.00 57.00 57.20 57.10
72.44 64.30 64.50 64.40
11.40
8.64 48.50
9.37 65.80
10.14 78.10
10.89 86.90
9.21
11.21
47.50
65.40
77.80
86.80
9.18 7.88 7.84
11.14 9.20 9.08 8.98 10.4 18.6
47.20
65.00
77.60
86.60
19.50
25.20
29.10
32.00
50.42 50.42
68.33 68.33
81.43 81.43
91.20 91.20
6.98 6.98
7.11 7.10
7.40 7.36
7.78 7.65
2.839 2.779 2.59
8.08 8.10 8.10
2.195
7.33 7.36
2.39
15.7 15.8 7.55 7.55 7.7 7.7 6.7 9.23 9.36
9.17
9.1 9.48 9.52 9.48 12.0 8.32 8.39 11.1 9.65
12.10
5.64
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance
Hm
Hv
Hs
1-Methyl-3-isopropylbenzene 1-Methyl-4-isopropylbenzene Methyl isopropyl ether Methyl isopropyl ketone Methyl isopropyl sulfone 3-Methylisoxazole 5-Methylisoxazole Methylmercury bromide Methylmercury chloride Methylmercury iodide 1-Methylnaphthalene Ht, 1.190 at 32.37 C 2-Methylnaphthalene Ht, 1.34 at 15.4 C Methyl nitrate Methyl nitrite 2-Methylpentane 3-Methylpentane Methyl pentanoate 2-Methyl-1-pentene 3-Methyl-1-pentene 4-Methyl-1-pentene 2-Methyl-2-pentene 3-Methyl-2-pentene cis trans 4-Methyl-2-pentene cis trans
3.27 2.31
9.11 9.12
11.94 12.02 6.27 8.82 16.8 9.8 10.0 16.2 15.5 15.6
400 K
600 K
800 K
1000 K
32.97
44.17
52.67
59.08
1.160
11.0
50.74
69.79
82.48
91.21
2.808
11.0
50.50
69.31
82.03
90.86
21.87 18.24 44.00 43.47
27.54 23.35 59.60 59.00
31.47 26.97 70.80 70.40
34.19 29.52 79.20 78.90
6.71 6.43 6.47 6.93
8.1 5.4 7.138 7.236 10.2 7.29 6.83 6.86 7.55
40.80 42.50 38.90 39.00
54.40 55.60 52.90 53.20
64.40 65.20 63.10 58.60
71.80 72.30 70.70 71.10
6.89 7.00
7.49 7.67
39.00 39.00
53.20 53.20
63.40 63.40
71.10 71.10
6.59 6.68
7.04 7.16
40.05 41.90
54.10 54.80
64.00 64.50
71.50 71.80
1.97 1.498
7.54 5.0 6.643 6.711
Methyl phenyl sulfone Methylphosphonic acid 2-Methylpropanal 2-Methylpropane 2-Methyl-1-propanethiol 2-Methyl-2-propanethiol Ht, 0.972 at 121.6 C; 0.155 at 116.2 C; 0.232 at 73.8 C 2-Methyl-1-propanol 2-Methyl-2-propanol Ht, 0.20 at 12.99 C 2-Methylpropene Methyl propyl ether 2-Methylpyridine 3-Methylpyridine -Methylstyrene -Methylstyrene cis trans 3-Methyl-2-thiabutane 2-Methylthiacyclopentane 2-Methyl-3-thiapentane 4-Methylthiazole 2-Methylthiophene 3-Methylthiophene
5.65
Naphthalene 1-Naphthol 2-Naphthol 1,4-Naphthoquinone 1-Naphthylamine 2-Naphthylamine p-Nitroaniline Nitrobenzene 1-Nitrobutane 2-Nitrobutane
1.085 1.191
5.089 7.412
22.0 11.5 7.5 4.57 8.28
0.593
6.80
7.36
36.13
47.60
55.53
61.24
1.602
9.80 9.33
12.04 12.73
34.16
45.37
53.28
59.16
1.418
5.286
2.324 3.389
8.654 8.932
4.92 6.6 10.15 10.62
26.57 33.01 31.92 31.82 44.80
35.30 43.92 44.55 44.47 60.70
41.86 52.26 53.21 53.12 71.80
46.85 58.51 59.34 59.23 79.80
44.80 45.20 34.69
60.70 61.20 46.01
71.80 72.20 54.95
79.80 80.00 62.29
29.43 29.38
39.57 39.34
46.43 45.95
51.30 50.59
17.6 21.9 19.8 17.3 21.5 21.1 26
42.83
59.67
70.77
78.38
11.6 10.48
37.65 37.61
50.21 50.46
59.03 59.44
65.39 65.96
2.236
7.338 8.7
2.08 2.263 2.518 4.536
5.04 2.78
8.103 8.186 10.34
9.744 9.3 8.8
8.15 10.1 9.2 10.48 9.26 9.44
29.77 35.31
40.62 46.26
48.49 53.77
54.40 59.17
5.66
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Nitroethane Nitromethane 1-Nitronaphthalene 1-Nitropropane 2-Nitropropane Nonadecane Ht, 3.30 at 22.8 C 1-Nonadecene 1-Nonanal Nonane Ht, 1.50 at 55.97 C 1-Nonanethiol Nonanoic acid 1-Nonanol 1-Nonene Octadecane Octadecanoic acid 1-Octadecene Octafluorocyclobutane 1-Octanal Octanamide Octane 1-Octanethiol Octanoic acid 1-Octanol 1-Octene 1-Octyne Oxalic acid Ht, 0.3( → ) Oxalyl chloride Oxamide
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
2.319
8.4 8.12
9.9 9.17 25.6 10.37 9.88 22.9 22.68 17.28 11.10
23.66 16.80
31.45 21.92
36.81 25.56
40.67 28.17
30.72 30.89 133.71 130.26 64.80 64.30 69.69
40.87 41.19 180.43 175.35 86.40 87.01 93.28
47.96 48.22 214.21 207.86 101.90 103.56 111.04
53.06 53.24 239.20 231.80 113.40 115.90 124.65
67.50 60.85
90.60 81.93
107.46 97.22
119.91 108.50
126.77
171.09
203.15
226.90
123.32 44.50 57.90
166.00 53.85 77.00
196.80 58.65 90.90
219.50 61.50 101.00
57.35 62.75
77.67 83.94
92.50 99.97
103.60 112.31
60.56 53.91 51.75
81.26 72.58 68.28
96.39 86.15 80.30
107.58 96.20 89.20
10.95 8.0
8.8 8.4 13.39 13.06
3.72 8.0
8.82 10.6
4.3
13.0 8.68
14.81 15.1 7.8 0.662
4.957 58 3.30 10.1 3.660
13.02 12.74 5.58
8.225 10.1 16.73 11.2 8.07
19.7 18.6 10.88 21.7 39.8 21.50 16.28 26.4 9.916 19.2 15.6 9.70 23.4 7.6 26.8
5.67
Palmitic acid [1.8]-Paracyclophane [2.2]-Paracyclophane [6.6]-Paracyclophane Paraldehyde Pentachloroethane Pentachlorofluoroethane Pentachlorophenol Pentadecane Ht, 2.19 at 2.25 C 1-Pentadecene 1,2-Pentadiene 1,3-Pentadiene cis trans 1,4-Pentadiene 2,3-Pentadiene Pentaerythritol Pentaerythritol tetranitrate Pentafluorobenzoic acid Pentafluoroethane Pentafluorophenol Pentamethylbenzene Ht, 0.473 at 23.7 C 1-Pentanal Pentanamide Pentan-2,4-dione Pentane Pentan-1,5-dithiol Pentanenitrile 1-Pentanethiol Pentanoic acid 1-Pentanol 2-Pentanol 3-Pentanol 2-Pentanone
10.30
2.7 0.449
8.9
37 26.5 23.0 27.5 9.9 10.9
8.31 6.9
11.82 11.63 6.59
16.1 18.20 17.96 6.85
1.468
6.60 6.46 6.01 6.75
6.77 6.64 6.01 7.05 34.4 36.3 21.9
31.96
36.35
38.71
40.17
105.95 102.50 31.40
143.07 137.98 40.80
169.95 163.60 47.70
189.90 182.50 52.80
29.50 31.20 31.30 29.90
39.90 40.90 40.80 39.40
47.00 47.70 47.60 46.60
52.20 52.60 52.70 52.00
27.20
32.94
36.12
37.98
65.00
86.08
101.29
112.33
37.10
49.00
57.70
64.00
36.53
49.64
59.30
66.55
41.93
55.92
66.78
75.32
39.74
53.24
63.18
70.59
36.42
48.32
57.13
63.61
16.1 2.95
2.008
6.16
1.130 4.19 3.850 2.34
7.98 8.34 10.53 10.6 10.3 10.1 7.98
21.34 10.82 6.32 14.17 9.83 16.6 13.61 12.7 12.8 9.89
5.68
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
1-Pentene 2-Pentene cis trans 1-Pentyne 2-Pentyne Perylene -Phellandrene 9,10-Phenanthraquinone Phenanthrene Phenol Phenyl acetate -Phenyl-1-alanine, DL- and LPhenyl benzoate N-Phenyldiacetimide Phenyl ethyl sulfide Phenylhydrazine 1-Phenyl-2-methylpropane Phenyl methyl sulfide Phenyl salicylate Phosgene
1.388
6.02
6.09
33.10
44.56
52.95
59.21
1.700 1.996
6.24 6.23 6.63 6.99
6.41 6.38 6.79 7.35 30.0 12.1 21.9 21.1 16.41 13.0 36.8 23.0 21.5 13.2 14.69 11.82 12.1 22.0
31.57 32.67 31.10 29.20
43.62 44.02 40.40 38.70
52.29 52.45 47.10 45.90
58.78 58.81 52.20 51.40
32.45
43.54
50.62
55.49
15.28
16.98
17.92
18.49
m-Phthalic acid p-Phthalic acid Phthalic anhydride -Pinene
2.752
13.3 9.73
2.99
9.04
1.372 1.335 1.131
5.832
25.5 23.5 21.19 10.7
-Pinene Propadiene 1-Propanal Propane Propane-2,3-dithiol 1-Propanethiol Ht, 0.949 at 131.06 C 2-Propanethiol Ht, 0.013 at 160.6 C 1-Propanol 2-Propanol 2-Propen-1-ol Propionic acid Propionic anhydride Propionitrile Ht, 0.408 at 96.19 C 1-Propylamine Propylbenzene
5.69
Propyl carbamate Propyl chloroacetate Propylcyclohexane Propylcyclopentane Propylene Propylene oxide Propyl nitrate Propyl phenyl ketone Propyl trichloroacetate Propyne Pyrazine Pyrene Pyridazine Pyridine Pyrimidine Pyrrole Pyrrolidine Ht, 0.129 at 66.01 C Salicyclic acid Sebacic acid
11.1 4.45 0.842
4.487
1.309 1.371 1.242 1.293
7.059 6.670 9.982 9.510
1.800
7.716
1.202
7.353
2.215 2.03
9.14
2.479 2.398 0.718 1.561
8.62 8.15 4.40 6.87 8.58
7.09 3.605 11.87 7.62 7.039 11.36 10.85 11.3 13.7 12.6 8.632 7.46 11.05 19.4 11.6 10.78 9.82 6.67 9.70 14.51 12.7
5.29
1.979
8.39
2.050
7.89
13.45 22.5 12.78 9.61 11.95 10.80 8.98 22.74 38.4
17.21 23.09 22.47
22.00 30.22 30.76
25.42 35.45 36.99
28.00 39.27 41.73
27.86 28.35 25.86 26.78 22.81
36.72 37.02 34.56 35.76 30.11
43.60 43.26 41.04 42.13 35.28
49.01 47.92 45.93 46.82 39.06
21.18 28.51 47.82
27.42 37.99 65.86
32.14 44.94 78.30
35.70 50.21 87.16
59.10 50.83 19.23 22.16 35.79
83.80 71.04 25.81 30.07 46.49
101.20 86.28 30.77 35.68 53.87
113.40 97.50 34.52 39.79 59.08
17.33
21.80
25.14
27.71
25.42
35.72
42.49
47.17
27.33
40.31
49.35
55.84
5.70
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance 5,5-Spirobis(1,3-dioxane) Spiropentane cis-Stilbene Styrene Suberic acid Succinic acid Tetrabromomethane Tetracene Tetrachlorobenzoquinone 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrachloromethane Ht, 1.095 at 47.9 C Tetracyanoethylene Tetradecane Tetradecanoic acid 1-Tetradecene Tetraethylene glycol Tetraethyllead 1,1,1,2-Tetrafluoroethane Tetrafluoroethylene Tetrafluoromethane Ht, 0.353 at 196.92 C Tetrahydrofuran Tetrahydrofurfuryl alcohol 1,2,3,4-Tetrahydronaphthalene Tetrahydropyran
Hm
Hv
1.538
6.39
2.617
8.85
Hs 17.4 6.58 16.5 10.50 34.2 28.1
400 K
600 K
800 K
1000 K
28.55
40.10
47.91
53.51
38.32
52.14
61.40
67.92
23.20
24.51
25.51
25.32
28.36 27.90 25.10
33.28 32.91 27.86
36.24 35.85 29.29
38.17 37.76 30.07
21.92
23.82
24.64
25.05
99.01
133.72
158.89
177.60
95.56
128.64
152.54
170.20
24.90 21.97
30.76 25.53
34.20 27.61
36.36 28.86
17.30
20.74
22.58
23.61
30 23.6
2.5
9.24 8.3
10.7 9.4
0.601
7.16
7.79 19.4 17.01 33.4 16.78 24 13.6
10.90
11.38
6.6
11.21
1.844
4.02
0.167 7.65 15.9 13.4 8.35
5.71
Tetraiodomethane 1,2,3,4-Tetramethylbenzene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene 2,2,3,3-Tetramethylbutane Ht, 0.478 at 120.66 C Tetramethyllead Tetranitromethane Tetrazole 2-Thiabutane Thiacyclobutane Ht, 0.160 at 96.45 C Thiacycloheptane Thiacyclohexane Ht, 0.262 at 71.75 C; 1.858 at 33.14 C Thiacyclopentane Thiacyclopropane 4-Thia-5,5-dimethyl-1-hexene 2-Thiaheptane 3-Thiaheptane 4-Thiaheptane 2-Thiahexane 3-Thiahexane 5-Thianonane 2-Thiapentane 3-Thiapentane 2-Thiapropane 6-Thiaundecane Thioacetic acid Thiophene Ht, 0.152 at 101.6 C Thymol Toluene 2-Toluenethiol 2,4,6-Triamino-1,3,5-triazine
24.00 56.81 55.76 55.50
24.94 75.68 74.81 74.38
25.31 89.42 88.79 88.41
25.49 99.47 99.01 98.71
9.1 10.3 23 7.61
27.81
36.41
42.93
47.94
7.7
8.56 11.30
21.89 42.0
30.45 65.0
36.40 79.0
40.67 88.0
0.585
8.60
10.22
35.71
52.37
64.00
72.34
1.757
8.28 6.98
28.95 16.53
40.04 21.99
47.66 25.61
53.14 28.21
2.96 2.90 2.976 2.529 4.64 2.369 2.845 1.908
8.78 8.76 8.2 8.3
9.28 7.24 10.6 10.88 10.74 10.64 9.8 9.58 12.75 8.65 8.55 6.61 14.7
48.67 48.37 48.21 41.73 41.43 62.09 34.64 34.65 21.12
65.02 64.96 65.13 55.68 55.62 83.81 45.86 46.11 27.01
77.59 77.74 78.45 66.53 66.68 100.58 54.45 54.91 31.58
87.41 87.75 89.05 75.08 75.42 113.71 61.14 61.79 35.17
1.216
7.52
22.25 23.02
26.72 30.95
30.41 36.01
32.62 39.54
1.586
7.93
33.48
47.20
56.61
63.32
2.684 2.561 5.02 1.802
10.76 10.47 10.88 7.51
13.66 13.34 18 10.24
2.333
7.06
1.971
7.62 7.59 6.45
8.27 21.8 9.08 12.3 29.5
5.72
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance Tribromomethane Tributyl phosphate Trichloroacetyl chloride Trichlorobenzoquinone 1,1,1-Trichloroethane Ht, 1.79 at 48.95 C 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Trichloromethyl (CCl3) 1,2,3-Trichloropropane Tricyanoethylene Tridecane Ht, 1.831 at 18.2 C Tridecanoic acid 1-Tridecene Trimethylaluminum Triethylamine Triethylaminoborane Triethyl arsenite Triethylarsine Triethyl borate Triethylenediamine Ht, 2.30 at 79.8 C Triethylene glycol Triethyl phosphate Triethylphosphine Triethyl phosphite Triethylstibine
Hm
Hv
Hs
400 K
600 K
800 K
1000 K
18.80
21.03
22.29
23.12
25.72 25.03 21.80 20.84 16.66 31.71
30.68 30.13 25.06 23.13 18.16 38.87
33.73 33.28 26.94 24.19 18.83 43.79
35.81 35.42 28.15 24.74 19.18 47.34
92.07
124.38
147.82
165.20
88.62
119.29
141.48
157.80
48.70
66.10
78.56
87.80
17.2 9.8 21.2 0.45 2.7
6.81 8.2 6.2
7.96 8.3 7.52
7.76 9.4 8.2
8.87
11.22 19.4 15.83 35.0 15.60 17.5 8.29 14.5 12.1 10.3 10.5
10.91 10.75
1.45 17.07
14.8 18.9 13.7 9.5 10.0 10.4
1,1,1-Trifluoroethane Trifluoroethylene Trifluoromethane Trifluoromethyl CF2 CF3 Trifluoromethylbenzene Triodomethane 2,4,5-Trimethylacetophenone 2,4,6-Trimethylacetophenone Trimethylaluminum Trimethylamine Trimethyl arsenite Trimethylarsine 1,2,3-Trimethylbenzene Ht, 0.157 at 54.46 C; 0.319 at 42.89 C 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene
5.73
Trimethyl borate Trimethylboron 2,2,3-Trimethylbutane Ht, 0.586 at 157.8 C Trimethylchlorosilane cis,cis-1,3,5-Trimethylcyclohexane 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane 2,3,3-Trimethylpentane Ht, 1.850 at 109.01 C 2,3,4-Trimethylpentane 2,4,4-Trimethyl-1-pentene 2,4,4-Trimethyl-2-pentene Trimethylphosphine Trimethylphosphine oxide
1.480
4.58
0.970
3.99
3.29 3.9
7.80
1.564
5.48
1.955
9.57
8.98 16.7 15.1 14.9 15.1 5.26 10.1 6.9 11.73
3.153 2.274 1.932 1.892
9.38 9.33
11.46 11.35
22.75 19.39 14.61
28.38 23.30 18.16
31.98 25.69 20.35
34.44 27.23 21.76
13.74 13.62 40.59 19.60
16.17 16.00 54.20 21.52
17.50 17.35 62.75 22.64
18.25 18.13 68.45 23.38
28.08
38.34
45.62
50.98
46.90
64.00
76.70
85.90
46.96 46.41
64.29 64.08
76.93 76.84
86.10 86.07
50.83
69.61
82.73
92.32
58.05
83.94
102.20
115.21
8.3 4.83 0.540
6.92
7.65 7.2
2.06 2.20 0.205
7.65 7.41 7.73
8.82 8.40 8.90
2.215
7.82 7.5 7.8
9.01 8.5 8.9 6.7 12.0
5.74
TABLE 5.2 Heats of Melting and Vaporization (or Sublimation) and Specific Heat at Various Temperatures of Organic Compounds (continued ) Cp Substance
Hm
Hv
Trimethyl phosphite Trimethylsilanol Trimethylstibine Trimethylsuccinic anhydride Trimethylthiacyclopropane 2,4,6-Trinitroanisole 1,3,5-Trinitrobenzene Trinitromethane 2,4,6-Trinitrophenetole 2,4,6-Trinitrotoluene Triphenylarsine Triphenylene Triphenylmethane Triphenylphosphine Tropolone
Hs
400 K
600 K
800 K
1000 K
13.47 29.0 13.24 21.0
78.18
105.80
125.69
140.60
74.74
100.61
119.34
133.20
10.38 10.20 10.13 20.1 15.74 20.31 18.07 20.49 19.80
41.03 40.03 39.70
55.98 55.51 55.16
66.64 66.41 66.14
74.35 74.23 74.02
8.8 10.9 7.5 17.7 9.40 31.8 23.8 11.15 28.8 28.3 23.5 28.2 23.9 23 20.0
Undecane Ht, 1.64 at 36.55 C Undecanoic acid 1-Undecene Ht, 2.202 at 55.8 C Urea
5.28 6.2 4.06
9.92
o- Xylene m-Xylene p-Xylene 2,3-Xylenol 2,4-Xylenol 2,5-Xylenol 2,6-Xylenol 3,4-Xylenol 3,5-Xylenol
3.25 2.765 4.09
8.80 8.69 8.60
9.77
5.75
THERMODYNAMIC PROPERTIES
CRITICAL PHENOMENA The critical temperature Tc of a gas is the temperature above which the gas cannot be liquefied no matter how high the pressure. The critical pressure Pc is the lowest pressure which will liquefy the gas at its critical temperature. The critical molar volume Vc is the volume of 1 mol at the critical temperature and the critical pressure. It can be computed from the critical density c as follows: Molecular weight in g·mol1 c in g·cm3
Vc in cm3 · mol1
The critical pressure, critical molar volume, and critical temperature are the values of the pressure, molar volume, and thermodynamic temperature at which the densities of coexisting liquid and gaseous phases just become identical. At this critical point the critical compressibility factor Zc is Zc
PcVc RTc
Since pressure, volume, and temperature are related to the corresponding critical properties, the function connecting the reduced properties becomes the same for each substance. The reduced property is expressed as a fraction of the critical property. Pr
V P T ¬ Vr ¬ Tr Pc Vc Tc
TABLE 5.3 Critical Properties Substance
Tc, K
Pc, atm
Vc, cm3 · mol1
Acetaldehyde Acetic acid Acetic anydride Acetone Acetonitrile Acetophenone Acetyl chloride Acetylene Acrylic acid Acrylonitrile Air Allene Allyl alcohol Allyl sulfide Aluminum trichloride Aminoethanol Ammonia Aniline Anisole Anthracene Antimony tribromide Antimony trichloride
461 594.4 569 508.1 548 701 508 308.3 615 536 132.5 393 545 653 629 614 405.6 699 368 883 904.5 794
55 57.1 46.2 46.4 47.7 38 58 60.6 56 45 37.2
154 171.3 290 209 173 376 204 113 210 210 92.7
56.4
203
26 44 111.3 52.4 41.2
261 196 72.5 270
56 270
5.76
SECTION 5
TABLE 5.3 Critical Properties (continued ) Substance
Tc, K
Pc, atm
Vc, cm3 · mol1
Argon Arsine
150.8 373.0
48.1
74.9
Benzaldehyde Benzene Benzoic acid Benzonitrile Benzyl alcohol Biphenyl Bismuth tribromide Bismuth trichloride Boron pentafluoride Boron tribromide Boron trichloride Boron trifluoride Bromine Bromobenzene Bromoethane Bromomethane Bromopentafluorobenzene Bromotrifluoromethane 1,2-Butadiene 1,3-Butadiene Butane 1-Butanol 2-Butanol 2-Butanone 1-Butene cis-2-Butene trans-2-Butene 3-Butenenitrile 1-Buten-3-yne Butyl acetate 1-Butylamine N-Butylaniline Butylbenzene sec-Butylbenzene tert-Butylbenzene Butyl benzoate Butylcyclohexane sec-Butylcyclohexane tert-Butylcyclohexane Butyl ethyl ether 1-Butyne 2-Butyne Butyraldehyde Butyric acid Butyronitrile
695 562.1 752 699.4 677 789 1219 1179 470 573 451.9 260.8 584 670 503.8 464 670 340.2 443.7 425 425.2 562.9 536.0 535.5 419.6 435.6 428.6 585 455 579 524 72 660.5 664 660 723 667 669 659 531 463.7 488.6 524 628 582.2
46 48.3 45 41.6 46 38
Carbon dioxide Carbon disulfide
304.2 552
72.8 78.0
118
259 341 334 502 301 261 280
38.2 49.2 102 44.6 61.5 85 44.6 39.2 44.4 42.7 37.5 43.6 41.4 41.0 39.7 41.5 40.5 39 49 31 41 28 28.5 29.1 29.3 26 31.1 26.4 26.3 30 46.5 502 40 52.0 37.4
127 324 215
200 219 221 255 274 268 267 240 234 238 265 202 400 288 518 497
561
390 220 221 278 292 285 94.0 170
5.77
THERMODYNAMIC PROPERTIES
TABLE 5.3 Critical Properties (continued ) Substance
Tc, K
Pc, atm
Vc, cm3 · mol1
Carbon monoxide Carbon tetrachloride Carbon tetrafluoride Carbonyl chloride (phosgene) Carbonyl sulfide Chlorine Chlorine pentafluoride Chlorine trifluoride Chlorobenzene 1-Chlorobutane 2-Chlorobutane 1-Chloro-1, 1-difluoroethane 2-Chloro-1,l-difluoroethylene Chlorodifluoromethane Chloroethane Chloroform Chloromethane 2-Chloro-2-methylpropane Chloropentafluoroacetone Chloropentafluoroethane 1-Chloropropane 2-Chloropropane 3-Chloropropene Chlorotrifluoromethane Chlorotrifluorosilane o-Cresol m-Cresol p-Cresol Cyanogen Cyclobutane Cycloheptane Cyclohexane Cyclohexanol Cyclohexanone Cyclohexene Cyclopentane Cyclopentanone Cyclopentene Cyclopropane Cymene
132.9 556.4 227.6 455 375 417 415.7 426.6 632.4 542 520.6 410.2 400.5 369.2 460.4 536.4 416.3 507 410.7 353.2 503 485 514 302.0 308.5 697.6 705.8 704.6 400 459.9 589 553.4 625 629 560.4 511.6 626 506.0 397.8 658
34.5 45.0 36.9 56 58 76.1 51.9
93.1 276 140 190 140 124 230.9
44.6 36.4 39 40.7 44.0 49.1 52.0 54.0 65.9 39 28.4 31.2 45.2 46.6 47 38.7 34.2 49.4 45.0 50.8 59 49.2 36.7 40.2 37 38 42.9 44.5 53
308 312 305 231 197 165 199 239 139 295
210 390 308 327 312 292 260 268
54.2
170
cis-Decalin trans-Decalin Decane Decanenitrile 1-Decanol 1-Decene Decylcyclohexane Decylcyclopentane
702.2 690.0 617.6 621.9 700 615 750 723.8
31 31 20.8 32.1 22 21.8 13.4 15.0
252 254 230 234 180 282 310 277
603 600 650
5.78
SECTION 5
TABLE 5.3 Critical Properties (continued ) Substance
Tc, K
Deuterium (equilibrium) (normal) Deuterium bromide Deuterium chloride Deuterium hydride Deuterium iodide Deuterium oxide Diborane 1,2-Dibromoethane Dibromomethane Dibromotetrafluoroethane Dibutylamine Dibutyl ether 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene Dichlorofluoromethane Dichloromethane 1,2-Dichloropropane Dichlorosilane 1,1-Dichloro-1,2,2,2-tetrafluoroethane 1,2-Dichloro-1,1,2,2-tetrafluoroethane Diethylamine 1,4-Diethylbenzene Diethyl disulfide Diethylene glycol Diethyl ether 3,3-Diethylpentane Diethyl sulfide Difluoroamine (HNF2) cis-Difluorodiazine (N2F2) trans-Difluorodiazine 1,1-Difluoroethane 1,1-Difluoroethylene Dihexyl ether Dihydrogen disulfide Dihydrogen heptasulfide Dihydrogen hexasulfide Dihydrogen octasulfide Dihydrogen pentasulfide Dihydrogen tetrasulfide Dihydrogen trisulfide Diisopropyl ether
38.3 38.4 361.9 328.4 35.8 421.7 644.0 289.0 582.9 583 487.6 596 580 697.3 684 685 385.0 523 561 544 516.5 451.6 510 577 449 418.6 418.9 496.6 657.9 642 681 466.7 610 557 403 272 260 386.6 302.8 657 572 1015 980 1040 930 855 738 500
Pc, atm
Vc, cm3 · mol1
16.28 16.43
60.4 60.3
14.64
62.8
213.8 39.5 70.6 71 34 25 25 40.5 38 39 40.7 50 53
55.6
54.4 51.0 60.0 44 46.1 32.6 32.6 36.6 27.7 46 35.9 26.4 39.1 93 70 55 44.4 44.0 18 58.3 33 36 32 38.4 43.1 50.6 28.4
329 517 500 360 359 372 217 240 220
197 193 226 294 293 301 480 316 280 318
181 154 720
385
5.79
THERMODYNAMIC PROPERTIES
TABLE 5.3 Critical Properties (continued ) Vc, cm3 · mol1
Substance
Tc, K
Pc, atm
1,2-Dimethoxyethane Dimethoxymethane Dimethylamine N,N-Dimethylaniline 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethyl-1-butene 2,3-Dimethyl-2-butene 3,3-Dimethyl-1-butene 1,1-Dimethylcyclohexane cis-1,2-Dimethylcyclohexane trans-1,2-Dimethylcyclohexane cis-1,3-Dimethylcyclohexane trans-1,3-Dimethylcyclohexane 1,1-Dimethylcyclopentane cis-1,2-Dimethylcyclopentane trans-1,2-Dimethylcyclopentane Dimethyl ether 2,2-Dimethylhexane 2,3-Dimethylhexane 2,4-Dimethylhexane 2,5-Dimethylhexane 3,3-Dimethylhexane 3,4-Dimethylhexane Dimethyl oxalate 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,2-Dimethylpropane 2,2-Dimethyl-1-propanol 2,3-Dimethylpyridine 2,4-Dimethylpyridine 2,5-Dimethylpyridine 2,6-Dimethylpyridine 3,4-Dimethylpyridine 3,5-Dimethylpyridine N,N-Dimethyl-o-toluidine 1,4-Dioxane Diphenyl ether Diphenylmethane Dipropylamine Dodecane 1-Dodecanol 1-Dodecene Dodecylcyclopentane
536 497 437.6 687 488.7 499.9 501 524 490 591 606 596 591 598 547 564.8 553.2 400.0 549.8 563.4 553.5 550.0 562.0 568.8 628 520.4 537.3 519.7 536.3 433.8 549 655.4 644.2 644 623.7 683.8 667.2 668 587 766 767 550 658.3 679 657 750
38.2
271
52.4 35.8 30.4 30.9 32.0 33.2 32.1 29.3 29.3 29.3 29.3 29.3 34.0 34.0 34.0 53.0 25.0 25.9 25.2 24.5 26.2 26.6 39.2 27.4 28.7 27.0 29.1 31.6 39
187
30.8 51.4 31 29.4 31 18.0 19 18.3 12.8
Ethane Ethanethiol
305.4 498.6
48.2 54.2
359 358 343 351 340 416
360 368 362 178 478 468 472 482 443 466 416 393 418 414 303 319
238
407 713 718
148 207
5.80
SECTION 5
TABLE 5.3 Critical Properties (continued ) Vc, cm3 · mol1
Substance
Tc, K
Pc, atm
Ethanol Ethoxybenzene Ethyl acetate Ethyl acetoacetate Ethyl acrylate Ethylamine Ethylbenzene Ethyl benzoate 2-Ethyl-1-butanol Ethyl butyrate Ethyl crotonate Ethylcyclohexane Ethylcyclopentane Ethylene Ethylenediamine Ethylene glycol Ethylene oxide Ethyl formate 3-Ethylhexane 2-Ethylhexanol 2-Ethyl-1-methylbenzene 3-Ethyl-1-methylbenzene 4-Ethyl-1-methylbenzene Ethyl 3-methylbutyrate 1-Ethyl-1-methylcyclopentane Ethyl methyl ether Ethyl methyl ketone 3-Ethyl-2-methylpentane 3-Ethyl-2-methylpentane 3-Ethyl-3-methylpentane Ethyl-2-methylpropanoate Ethyl methyl sulfide 3-Ethylpentane o-Ethylphenol m-Ethylphenol p-Ethylphenol Ethylpropanoate Ethyl propyl ether o-Ethyltoluene m-Ethyltoluene p-Ethyltoluene Ethyl vinyl ether
516.2 647.1 523.2 673 552 456 617.1 697 418.8 565.9 599 609 369.5 282.4 592.9 645 469 508.4 565.4 613 651 637 640 588.0 592 437.8 535.6 567.0 576.5 576.4 553 533 540.6 703.0 716.4 716.4 546.0 500.6 653 636 636 475
63.0 33.8 37.8
167
37.0 55.5 35.6 32
320 178 374 451
30.2
395
29.9 33.5 49.7 62.1 76 71.0 46.8 25.7 27.2 30.0 28.0 29.0
450 375 129 206 186 140 229 455 494 460 490 470
33.2 32.1 31 31 31 40.2
345 244 461 461 461 260
Fluorine Fluorobenzene Fluoroethane Fluoromethane Fluorotrichloromethane Formaldehyde
144.3 560.1 375.3 317.8 471.1 408
51.5 44.9 49.6 58.0 43.2 65
66.2 271 169 124 248
29.5 43.4 41.0 26.7 27.7 27.7 30 42 28.5
286
221 267 443 455 455 410 416
5.81
THERMODYNAMIC PROPERTIES
TABLE 5.3 Critical Properties (continued ) Vc, cm3 · mol1
Substance
Tc, K
Pc, atm
Formic acid Furan
580 490.2
54.3
218
Germanium tetrachloride Glycerol
550.0 726
38 66
330 255
Hafnium tetrabromide Hafnium tetrachloride Hafnium tetraiodide Helium-3 Helium-4 Heptadecane 1-Heptadecanol Heptane 1-Heptanol 1-Heptene Heptylcyclopentane Hexadecane 1-Hexadecene Hexadecylcyclopentane 1,5-Hexadiene Hexafluoroethane Hexamethylbenzene Hexane 1-Hexanol 1-Hexene cis-2-Hexene trans-2-Hexene cis-3-Hexene trans-3-Hexene Hexylcyclopentane Hydrazine Hydrogen (equilibrium) (normal) Hydrogen bromide Hydrogen chloride Hydrogen cyanide Hydrogen deuteride, see Deuterium hydride Hydrogen fluoride Hydrogen iodide Hydrogen selenide Hydrogen sulfide
746 723 916 3.30 5.19 733 736 540.2 633 537.2 679 717 717 791 507 292.8 767 507.4 610 504.3 518 516 517 519.9 660.1 653
Icosane 1-Icosanol Iodine Iodobenzene Iodomethane
57.0 1.167 2.24 13 14 27.0 30 28 19.2 14 13.2 9.6 34 29.4
415 304 528 73.2 57.3 1000 432 435 440
328 223.7
29.3 40 31.3 32.4 32.3 32.4 32.1 21.1 145
370 381 350 351 351 350 350 96.1
32.9 33.2 363.2 324.6 456.8
12.77 12.8 84.4 82.0 53.2
65.4 65.0 100.0 81.0 139
461 424.0 411 373.2
64 82.0 88 88.2
69 131 98.5
767 770 819 721 528
11.0 12.0 115 44.6 65
155 351 190
5.82
SECTION 5
TABLE 5.3 Critical Properties (continued ) Vc, cm3 · mol1
Substance
Tc, K
Pc, atm
Isobutyl acetate Isobutylamine Isobutylbenzene Isobutyl butyrate lsobutylcyclohexane Isobutyl formate Isobutyl 3-methylbutyrate Isobutyl propanoate Isobutyric acid Isopropylamine lsopropylbenzene lsopropylcyclohexane Isopropylcyclopentane 2-Isopropyl-1-methylbenzene 3-Isopropyl-l-methylbenzene 4-Isopropyl-1-methylbenzene Isoquinoline Isoxazole
561 516 650 611 659 551 621 592 609 476 631.0 640 601 670 666 653 803 552.0
30 42 31
414 284 480
30.8 38.3
350
40 50 31.7 28 29.6 28.6 290 27.9
292 229 428
Ketene Krypton
380 209.4
64 54.3
145 91.2
Mercury Methane Methanethiol Methanol Methoxybenzene (anisole) Methyl acetate Methyl acrylate Methylamine N-Methylaniline Methyl benzoate 2-Methyl-1,3-butadiene 3-Methyl-1,2-butadiene 2-Methylbutane 2-Methyl-1-butanol 3-Methyl-1-butanol 2-Methyl-2-butanol 3-Methyl-2-butanone 2-Methyl-1-butene 2-Methyl-2-butene 3-Methyl-1-butene Methyl butyrate 3-Methylbutyric acid Methylcyclohexane Methylcyclopentane N-Methylethylamine Methyl formate 2-Methylheptane
1173 190.6 470.0 512.6 641 506.8 536 430 701 692 484 496 460.4 571 579.5 545 553.4 465 470 450 554.4 634 572.1 532.7 496.6 487.2 559.6
180 45.4 71.4 79.9 41.2 46.3 42 73.6 51.3 36 38.0 40.6 33.3 38 38 39 38.0 34.0 34.0 34.7 34.3 34.3 37.4 36.6 59.2 24.5
99.0 145 118 228 265 140 396 276 267 306 322 329 319 310 294 318 300 340 368 319 243 172 488
5.83
THERMODYNAMIC PROPERTIES
TABLE 5.3 Critical Properties (continued ) Vc, cm3 · mol1
Substance
Tc, K
Pc, atm
3-Methylheptane 4-Methylheptane 2-Methylhexane 3-Methylhexane Methylhydrazine Methyl isobutyrate Methyl isocyanate 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylpentane 3-Methylpentane 2-Methyl-2,4-pentanediol 4-Methyl-2-pentanone 2-Methyl-2-pentene cis-3-Methyl-2-pentene trans-3-Methyl-2-pentene cis-4-Methyl-2-pentene trans-4-Methyl-2-pentene Methyl phenyl ether 2-Methylpropanal 2-Methylpropane Methyl propanoate 2-Methyl-1-propanol (isobutyl alcohol) 2-Methyl-2-propanol 2-Methylpropene 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine -Methylstyrene Methyl vinyl ether Morpholine
563.6 561.7 530.3 535.2 567 540.8 491 772 761 497.5 504.4 678 571 518 518 521 490 493 641 513 408.1 530.6 547.7 506.2 417.9 621 645 646 654 436 618
25.1 25.1 27.0 27.8 79.3 33.9 55 35.2 34.6 29.7 30.8 33.9 32.3 32.4 32.4 32.3 30 30 41.2 41 36.0 39.5 42.4 39.2 39.5
274 263 282 273 275 239
44 33.6 47 54
311 397 205 253
Naphthalene Neon Niobium pentabromide Niobium pentachloride Niobium pentafluoride Nitric oxide Nitrobenzene Nitrogen-14 Nitrogen-15 Nitrogen dioxide (equilibrium) Nitrogen trifluoride Nitromethane Nitrosyl chloride Nitrous oxide Nitryl fluoride Nonadecane Nonane 1-Nonanol
748.4 44.4 1010 807 737 180 732 126.2 126.3 431.4 234.0 588 440 309.6 349.4 756 594.6 677
40.0 27.2
410 41.7 469 400 155 58
62 64 33.5 33.5 100 44.7 62.3 90 71.5 11.0 22.8
464 476 421 404 271 339 445 462 367 367 371 351 351 350 360 360
89.5 90.4 170 173 139 97.4
548 546
5.84
SECTION 5
TABLE 5.3 Critical Properties (continued ) Substance
Tc, K
Pc, atm
1-Nonene Nonylcyclopentane
592 710.5
23.1 16.3
Octadecane 1-Octadecanol 1-Octadecene Octane 1-Octanol 2-Octanol 1-Octene trans-2-Octene Octylcyclopentane Oxygen Oxygen difluoride Ozone
745 747 739 568.8 658 637 566.6 580 694 154.6 215.2 161.3
11.9 14 11.2 24.5 34 27 25.9 27.3 17.7 49.8 48.9 55.0
Paraldehyde Pentachloroethane Pentadecane 1-Pentadecene Pentadecylcyclopentane 1,2-Pentadiene trans-1,3-Pentadiene 1,4-Pentadiene Pentafluorobenzene 1,1,2H-Pentafluoropropane Pentanal Pentane Pentanoic acid 1-Pentanol 2-Pentanone 3-Pentanone 1-Pentene cis-2-Pentene trans-2-Pentene Pentyl formate 1-Pentyne Perchloryl fluoride Perfluoroacetone Perfluorobenzene Perfluorobutane Perfluoro-(2-butyltetrahydrofuran) Perfluorocyclobutane Perfluorocyclohexane Perfluorocyclohexene Perfluorodecene Perfluoroethane Perfluoroheptane Perfluoroheptene Perfluorohexane
563 646.1 707 704 780 503 496 478 532.0 380.11 554 469.6 651 586 564.0 561.0 464.7 476 475 576 493.4 368.4 357.3 516.7 386.4 500.3 388.4 457.2 461.8 542.3 292.8 474.8 478.1 451.7
15 14.4 10.1 40.2 39.4 37.4 34.7 31.0 35 33.3 38 38 38.4 36.9 40.0 36.0 36.1 40 53.0 28.0 32.6 22.9 15.9 27.41 24
Vc, cm3 · mol1 580
492 490 494 464
73.4 97.7 88.9
880
276 275 276 273 333 304 340 326 301 336 300 300 300 278 161
378 588 260
14.3 29.4 16.0
223.7 664
18.8
442
5.85
THERMODYNAMIC PROPERTIES
TABLE 5.3 Critical Properties (continued ) Substance
Tc, K
Perfluorohexene Perfluoromethylcyclohexane Perfluoronaphthalene Perfluorononane Perfluorooctane Perfluoropentane Perfluoropropane Phenanthrene Phenetole Phenol Phosgene Phosphine Phosphonium chloride Phosphorus bromide difluoride Phosphorus chloride difluoride Phosphorus dibromide fluoride Phosphorus dichloride fluoride Phosphorus pentachloride Phosphorus trichloride Phosphorus trifluoride Phosphoryl chloride difluoride Phosphoryl trichloride Phosphoryl trifluoride Phthalic anhydride Piperidine Propadiene Propane 1,2-Propanediol 1,3-Propanediol Propanoic acid 1-Propanol 2-Propanol 2-Propenal Propionaldehyde Propionitrile Propyl acetate Propylamine Propylbenzene Propylcyclopentane Propylcyclohexane Propylene Propylene oxide Propyl formate Propyl propanoate 1-Propyne Pyridine Pyrrole Pyrrolidine
454.3 486.8 673.1 524.0 502 422 345.1 878 647 694.2 455 324.4 322.2 386 362.32 527 463.0 645 563 271.2 423.8 602 346.5 810 594.0 393 369.8 625 658 612 536.7 508.3 506 496 564.4 549.4 497.0 638.3 603 639 365.0 482.2 538.0 578 402.4 620.0 639.6 568.6
Pc, atm
Vc, cm3 · mol1
23 15.4 16.4 20.1 26.5 33.8 60.5 56 64.5 72.7
299
229 190
44.6 49.3 260 42.7 43.4 41.8 47 47 54.0 41.9 60 59 53.0 51.0 47.0 51 47 41.3 23.9 46.8 31.6 29.6 27.7 45.6 48.6 40.1 55.5 55.6 56 55.4
368 289 162 203 237 241 230 218.5 220 223 230 345 233 440 425 181 186 285 164 254 249
5.86
SECTION 5
TABLE 5.3 Critical Properties (continued ) Substance
Tc, K
Quinoline
794.4
Radon Rhenium(VII) oxide
376.9 942
Selenium Silane Silicon chloride trifluoride Silicon tetrachloride Silicon tetrafluoride Silicon trichlorofluoride Styrene Sulfur Sulfur dioxide Sulfur hexafluoride Sulfur tetrafluoride Sulfur trioxide
1766 269.6 307.6 507 259.1 438.5 647 1314 430.8 318.7 364.0 491.0
Tantalum pentabromide Tantalum pentachloride o-Terphenyl m-Terphenyl p-Terphenyl 1,1,2,2-Tetrachloro-1,2-difluoroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetradecane 1-Tetradecene Tetradecylcyclopentane Tetrafluoroethylene Tetrafluorohydrazine Tetrahydrofuran 1,2,3,4-Tetrahydronaphthalene Tetrahydrothiophene 1,2,4,5-Tetramethylbenzene 2,2,3,3-Tetramethylbutane 2,2,3,3-Tetramethylhexane 2,2,5,5-Tetramethylhexane 2,2,3,3-Tetramethylpentane 2,2,3,4-Tetramethylpentane 2,2,4,4-Tetramethylpentane 2,3,3,4-Tetramethylpentane 2-Thiapropane Thiophene Thymol Tin(IV) chloride Titanium tetrachloride Toluene o-Toluidine m-Toludine p-Toluidine Toluonitrile
974 767 891.0 924.8 926.0 551 661.1 620 694 689 772 306.4 309.4 540.2 719 631.9 675 567.8 623.1 581.5 607.6 592.7 574.7 607.6 503.1 579.4 698 591.8 638 591.7 694 709 667 723
Pc, atm
62
47.8 34.2 37 36.7 35.3 39.4
Vc, cm3 · mol1
139 334
326
77.8 37.1
122 198
81
130
38.5 34.6 32.8 34
461 400 769 784 779 370
44 16 15.4 11.1 38.9 37 51.2 34.7
290 830
29 28.3 24.8 21.6 27.0 25.7 24.5 26.8 54.6 56.2
480 461
201 219
37.0 46 40.6 37 41
351 340 316 343 343
175 224
5.87
THERMODYNAMIC PROPERTIES
TABLE 5.3 Critical Properties (continued ) Pc, atm
Vc, cm3 · mol1
Substance
Tc, K
Tributylamine 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,2-Trichloro-1,1,2-trifluoroethane Tridecane 1-Tridecene Tridecylcyclopentane Triethanolamine Triethylamine Trifluoroacetic acid 1,1,1-Trifluoroethane Trifluoromethane Trimethylamine 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 2,2,3-Trimethylbutane 2,2,3-Trimethyl-1-butene Trimethylchlorosilane 1,1,2-Trimethylcyclopentane 1,1,3-Trimethylcyclopentane cis,cis,trans1,2, 4-Trimethylcyclopentane cis,trans,cis1,2, 4-Trimethylcyclopentane 3,3,5-Trimethylheptane 2,2,3-Trimethylhexane 2,2,4-Trimethylhexane 2,2,5-Trimethylhexane 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane 2,3,3-Trimethylpentane 2,3,4-Trimethylpentane 2,2,4-Trimethyl-1,3-pentanediol
643 602 571 471.2 651 487.2 675.8 674 761 787.4 535 491.3 346.2 298.89 433.2 664.5 649.1 637.3 531.1 533 497.7 579.5 569.5
18 41 48.5 43.5 39 33.7 17.0 16.8 11.9 24.2 30 32.2 37.1 47.7 40.2 34.1 31.9 30.9 29.2 28.6 31.6 29.0 27.9
579
28.4
571 609.6 588 573.7 567.9 563.4 543.9 573.5 566.3 671
27.7 22.9 24.6 23.4 23.0 26.9 25.3 27.8 26.9 25.6
1H-Undecafluoropentane Undecane 1-Undecene Uranium hexafluoride
443.9 638.8 637 505.8
19.4 19.7 45.5
250
Vinyl acetate Vinyl chloride Vinyl fluoride Vinyl formate
525 429.7 327.8 475
43 55.3 51.7 57
265 169 114 210
Water
647.3
217.6
56.0
Xenon o-Xylene
289.7 630.2
57.6 36.8
118 369
294 256 248 348 304 780
390 204 221 133.3 254 430 430 433 398 400
519 436 468 455 461 364.6
660
5.88
SECTION 5
TABLE 5.3 Critical Properties (continued ) Vc, cm3 · mol1
Substance
Tc, K
Pc, atm
m-Xylene p-Xylene 2,3-Xylenol 2,4-Xylenol 2,5-Xylenol 2,6-Xylenol 3,4-Xylenol 3,5-Xylenol
617.0 616.2 722.6 707.6 723.0 700.9 729.8 715.6
35.0 347 48 43 48 42 49 36
376 379 470 509 470 509 552 611
Zirconium tetrabromide Zirconium tetrachloride Zirconium tetraiodide
805 778 960
56.9
415 319 528
Zirconium tetraiodide
960
528
Estimation of Critical Properties When the critical properties are unavailable, they may be estimated employing structural contributions to estimate Tc, Pc, and Vc. Lydersen’s critical-property increments* provide good estimates for Tc and Pc; Vetere’s group contributions† yield reasonable estimates for Vc. The units employed are kelvins, atmospheres, and cubic centimeters per mole. Typical errors in estimated values are less than 2% for Tc but may rise up to 5% for higher-molecular-weight (greater than 100) nonpolar materials; errors are uncertain for molecules with multifunctional polar groups. Errors for estimated values of Pc and Vc are about double those for Tc. The relations are 1 Tc Tb 0.567 T T2
Pc M0.34
2
M
1.029
Vc33
i
v
i
where Tb is the normal boiling point and M is the molular weight. Group contributions are listed in Table 5.4. TABLE 5.4 Group Contributions for the Estimation of Critical Properties There are no increments for hydrogen. All bonds shown as free are connected with atoms other than hydrogen. Values in parentheses are based upon very few experimental values.
Group
T, K
P, atm
V, cm3 · mol1
Nonring increments ˆ CH3, ˆ CH2 ˆ
0.020
0.227
3.360 (linear chain) 2.888 (side chain)
* A. L. Lydersen, Univ. Wisconsin Coll. Eng., Eng. Exp. Stn, Rep 3, Madison, April 1955. † A Vetere, cited in R. C. Reid, J. M. Prausnitz, and T. K Sherwood, The Properties of Gases and Liquids, 3d ed., McGraw-Hill, New York, 1977, p. 17.
5.89
THERMODYNAMIC PROPERTIES
TABLE 5.4 Group Contributions for the Estimation of Critical Properties (continued ) Group
T, K
P, atm
| — CH |
0.012
0.210
ˆCˆ
0.0
0.210
¨ CH2 , ¨ CH
0.018
0.198
2.940
¨ Cˆ
0.0
0.198
2.940
, cm3 · mol1
V
3.360 (linear chain) 2.888 (side chain) 3.360 (linear chain) 2.888 (side chain)
¨C¨
0.0
0.198
2.908
˜ CH, ˜ C ˆ ˆOˆ aC ¨ O aNH aN ˆ ˆSˆ
0.005 0.021 0.040 0.031 0.014 0.015
0.153 0.16 0.29 0.135 0.17 0.27
2.648 1.075 1.765 2.333 1.793 0.591
Ring increments 0.013
0.184
2.813
ˆC ˆ
0.012 (0.007)
0.192 (0.154)
2.813 2.813
¨ CH, ¨ C, ¨ C¨ ˆOˆ aC ¨ O aNH aN ˆ ˆSˆ
0.011 (0.014) (0.033) (0.024) (0.007) (0.008)
0.154 (0.12) (0.2) (0.09) (0.13) (0.24)
2.538 0.790 1.500 1.736 1.883 0.911
ˆ CH2 ˆ ˆ CH ˆ
General substituents ˆF ˆ Cl ˆ Br ˆI ˆ OH Alcohols Phenols
0.018 0.017 0.010 0.012
0.224 0.320 (0.50) (0.83)
0.770 1.237 0.899 0.702
0.082 0.031
0.06 (0.02)
0.704 1.553
HC ¨ O (aldehyde) ˆ COOH ˆ COO ˆ (ester) ˆ NH2 ˆ CN ˆ NO2 ˆ SH
0.048 0.085 0.047 0.031 (0.060) (0.055) 0.015
0.33 (0.4) 0.47 0.095 (0.36) (0.42) 0.27
2.333 1.652 1.607 2.184 2.784 1.559 1.537
ˆ Si ˆ
0.03
(0.54)
SECTION 6
SPECTROSCOPY
ULTRAVIOLET-VISIBLE SPECTROSCOPY . . . . . . . . . . . . . Table 6.1 Electronic Absorption Bands for Representative Chromophores . . . . . . . . . . . . . . . . . . . . . Table 6.2 Ultraviolet Cutoffs of Spectrograde Solvents . . . . . Table 6.3 Absorption Wavelength of Dienes . . . . . . . . . . Table 6.4 Absorption Wavelength of Enones and Dienones . . Table 6.5 Solvent Correction for UV–VIS Spectroscopy . . . . Table 6.6 Primary Band of Substituted Benzene and Heteroaromatics . . . . . . . . . . . . . . . . . . . . Table 6.7 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives . . . . . . . . . . . PHOTOLUMINESCENCE . . . . . . . . . . . . . . . . . . . . . . . Table 6.8 Fluorescence Spectroscopy Data of Some Organic Compounds . . . . . . . . . . . . . . . . . . . . . . Table 6.9 Fluorescence Quantum Yield Values . . . . . . . . . Table 6.10 Phosphorescence Spectroscopy of Some Organic Compounds . . . . . . . . . . . . . . . . . . . . . . INFRARED SPECTROSCOPY . . . . . . . . . . . . . . . . . . . . . Table 6.11 Absorption Frequencies of Single Bonds to Hydrogen Table 6.12 Absorption Frequencies of Triple Bonds . . . . . . . Table 6.13 Absorption Frequencies of Cumulated Double Bonds Table 6.14 Absorption Frequencies of Carbonyl Bonds . . . . . Table 6.15 Absorption Frequencies of Other Double Bonds . . . Table 6.16 Absorption Frequencies of Aromatic Bonds . . . . . Table 6.17 Absorption Frequencies of Miscellaneous Bands . . Table 6.18 Absorption Frequencies in the Near Infrared . . . . . Table 6.19 Infrared Transmitting Materials . . . . . . . . . . . . Table 6.20 Infrared Transmission Characteristics of Selected Solvents . . . . . . . . . . . . . . . . . . . RAMAN SPECTROSCOPY SPECTROSCOPY . . . . . . . . . . . . Table 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon . . . . . . . . . . . . . . . . . Table 6.22 Raman Frequencies of Triple Bonds . . . . . . . . . Table 6.23 Raman Frequencies of Cumulated Double Bonds . . Table 6.24 Raman Frequencies of Carbonyl Bonds . . . . . . . Table 6.25 Raman Frequencies of Other Double Bonds . . . . . Table 6.26 Raman Frequencies of Aromatic Compounds . . . . Table 6.27 Raman Frequencies of Sulfur Compounds . . . . . . Table 6.28 Raman Frequencies of Ethers . . . . . . . . . . . . . Table 6.29 Raman Frequencies of Halogen Compounds . . . . . Table 6.30 Raman Frequencies of Miscellaneous Compounds . . NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY . . . . . Table 6.31 Nuclear Properties of the Elements . . . . . . . . . .
6.1
.
6.3
. . . . .
6.5 6.6 6.7 6.7 6.8
.
6.9
. .
6.9 6.10
. .
6.11 6.17
. . . . . . . . . . .
6.17 6.21 6.21 6.28 6.29 6.31 6.35 6.39 6.40 6.47 6.49
. .
6.51 6.54
. . . . . . . . . . . .
6.54 6.59 6.60 6.61 6.63 6.66 6.67 6.69 6.70 6.71 6.71 6.73
6.2
SECTION 6
Table 6.32 Proton Chemical Shifts of Reference compounds Relative to Tetramethylsilane . . . . . . . . . . . . Table 6.33 Common NMR Solvents . . . . . . . . . . . . . . Table 6.34 Proton chemical shifts . . . . . . . . . . . . . . . . Table 6.35 Estimation of Chemical Shift for Proton of ˆ CH2 ˆ and aCH ˆ Groups . . . . . . . . . Table 6.36 Estimation of Chemical Shift of Proton Attached to a Double Bond . . . . . . . . . . . . . Table 6.37 Chemical Shifts in Monosubstituted Benzene . . . Table 6.38 Proton Spin Coupling Constants . . . . . . . . . . Table 6.39 Carbon-13 Chemical Shifts . . . . . . . . . . . . . Table 6.40 Estimation of Chemical Shifts of Alkane Carbons . . . . . . . . . . . . . . . . . . . Table 6.41 Effect of Substituent Groups on Alkyl Chemical Shifts . . . . . . . . . . . . . . . . . . . Table 6.42 Estimation of Chemical Shift of Carbon Attached to a Double Bond . . . . . . . . . Table 6.43 Carbon-13 Chemical Shifts in Substituted Benzenes Table 6.44 Carbon-13 Chemical Shifts in Substituted Pyridines . . . . . . . . . . . . . . . . . . . . . . . Table 6.45 Carbon-13 Chemical Shifts of Carbonyl Group . . Table 6.46 One-Bond Carbon–Hydrogen Spin Coupling Constants . . . . . . . . . . . . . . . . . . . . . . Table 6.47 Two-Bond Carbon–Hydrogen Spin Coupling Constants . . . . . . . . . . . . . . . . . . . . . . Table 6.48 Carbon–Carbon Spin Coupling Constants . . . . . Table 6.49 Carbon–Fluorine Spin Coupling Constants . . . . . Table 6.50 Carbon-13 Chemical Shifts of Deuterated Solvents . . . . . . . . . . . . . . . . . . . . . . . Table 6.51 Carbon-13 Spin Coupling Constants with Various Nuclei . . . . . . . . . . . . . . . . . . . . Table 6.52 Boron-11 Chemical Shifts . . . . . . . . . . . . . Table 6.53 Nitrogen-15 (or Nitrogen-14) Chemical Shifts . . . Table 6.54 Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine . . . . . . . . . . . . . . . . . . . . . . . Table 6.55 Nitrogen-15 Chemical Shifts for Standards . . . . . Table 6.56 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants . . . . . . . . . . . . . . . . . . . . . . Table 6.57 Nitrogen-15 to Carbon-13 Spin Coupling Constants . . . . . . . . . . . . . . . . . . . . . . Table 6.58 Nitrogen-15 to Fluorine-19 Spin Coupling Constants . . . . . . . . . . . . . . . . . Table 6.59 Fluorine-19 Chemical Shifts . . . . . . . . . . . . Table 6.60 Fluorine-19 Chemical Shifts for Standards . . . . . Table 6.61 Fluorine-19 to Fluorine-19 Spin Coupling Constants Table 6.62 Silicon-29 Chemical Shifts . . . . . . . . . . . . . Table 6.63 Phosphorus-31 Chemical Shifts . . . . . . . . . . . Table 6.64 Phosphorus-31 Spin Coupling Constants . . . . . . ELECTRON SPIN RESONANCE . . . . . . . . . . . . . . . . . . Table 6.65 Spin–Spin Coupling (Hyperfine Splitting Constants) . . . . . . . . . . . . . . . . IONIZATION POTENTIALS . . . . . . . . . . . . . . . . . . . . . Table 6.66A Ionization Potentials of Molecular Species . . . Table 6.66B Alphabetical Listing of Ionization Potentials of Molecular Species . . . . . . . . . Table 6.67 Ionization Potentials of Radical Species . . . . . X-RAY DIFFRACTION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .
6.74 6.75 6.76
. .
6.79
. . . .
. . . .
6.80 6.81 6.82 6.83
. .
6.86
. .
6.87
. . . .
6.88 6.89
. . . .
6.90 6.91
. .
6.92
. . . . . .
6.93 6.93 6.94
. .
6.95
. . . . . .
6.96 6.96 6.97
. . . .
6.100 6.101
. .
6.101
. .
6.102
. . . . . . . . . . . . . . .
6.102 6.103 6.104 6.104 6.104 6.105 6.109 6.110
. . . . . .
6.111 6.113 6.113
. . . . . .
6.119 6.121 6.121
6.3
SPECTROSCOPY
For more than half a century, spectroscopy has been the key structural tool for organic chemistry and biochemistry. This remains the case today although the availability of enhanced methods of X-ray analysis has somewhat altered the balance in both disciplines. A vast array of specialized texts are available that survey spectroscopic techniques in general or individual methods in particular. It would be folly to try to duplicate those efforts here. A brief overview of the methods may prove helpful and serve as a reminder for the practitioner who consults this handbook.
ULTRAVIOLET–VISIBLE SPECTROSCOPY Generally, spectroscopic methods involve the absorption of radiation at certain wavelengths (and therefore certain energies) by molecules. For the techniques of ultraviolet–visible (UV–VIS) and infrared spectroscopy, there is an inverse proportionality between the amount of energy absorbed and the structural information that is revealed. The UV–VIS wavelength range is generally considered to be 200–800 nm. At the lower end, oxygen absorbs energy and the lowest end of the range is called the “vacuum UV.” Relatively limited structural information may be obtained from the typically broad bands that are observed. Even so, the electronic transitions that are observed are sensitive to structure. Individual absorbing groups or chromophores absorb light at a characteristic wavelength. The absorption usually shifts when two or more chromophores are linked or in conjugation. The UV–VIS technique may be used quantitatively by application of Beer’s law: abc. In this relationship, is the extinction coefficient that is characteristic of a given compound. The values a and c represent absorption and concentration, respectively. The
1.0
Absorbance
0.8
0.6
0.4
0.2
0.0 200 UV Sprectrum of Napthalene.
300 nm
400
6.4
SECTION 6
variable b is the pathlength of light through the sample, usually 1 cm. If the extinction coefficient is known, the measured absorption will give the compound’s concentration. The spectrum of naphthalene is shown above. Its broad bands reflect the absorption of energy by the extended pi-electron system. The tables in this section present the essential data required for interpretation of UV–VIS spectra. Table 6.1 lists representative chromophores. These are identified by max, the maximum height of any given peak, and by max, the extinction coefficient at the maximum wavelength. Both the wavelength and absorption intensity are characteristic of individual chromophores. Table 6.2 lists the ultraviolet cutoff for a variety of solvents commonly used in UV–VIS spectroscopy. The solvent chosen must dissolve the sample, yet be relatively transparent in the spectral region of interest. Typically, very low concentrations of sample will be present in the solvent. It is therefore important to avoid solvents that have even weak absorptions near the solute’s bands of interest. Methanol and ethanol are two of the most commonly used solvents. Care must be exercised when using the latter that no benzene (an azeotropic drying agent) is present as this will alter the solvent’s transparency. Normally, this will not be a problem in spectral grade solvents. Tables 6.3–6.5 record data developed to undertake structural analysis in systems possessing chromophores that are conjugated or otherwise interact with each other. Chromophores within a molecule interact when linked directly to each other or when they are forced into proximity owing to structural constraints. Certain combinations of functional groups comprise chromophoric systems that exhibit characteristic absorption bands. In the era when UV–VIS was one of the principal spectral methods available to the organic chemist, sets of empirical rules were developed to extract as much information as possible from the spectra. The correlations referred to as Woodward’s rules or the Woodward–Fieser rules, enable the absorption maxima of dienes (Table 6.3) and enones and dienones (Table 6.4) to be predicted. When this method is applied, wavelength increments correlated to structural features are added to the respective base values (absorption wavelength of parent compound). The data refer to spectra determined in methanol or ethanol. When other solvents are used, a numerical correction must be applied. These corrections are recorded in Table 6.5. The benzene ring is a common structural element in organic chemistry. It is rigid and substituents are arranged in a fixed orientation. Shifts in the wavelength are expected for substituents that can interact electronically with the aromatic ring. Typically, shifts to longer wavelength (and intensification of the absorption band) are observed for any ring substitution. In the absence of conjugation, the shifts are small. Also, interposition of a single methylene group, or meta orientation within the aromatic ring, is sufficient to insulate chromophores almost completely from each other. With electron-withdrawing substituents, practically no change in the maximum position is observed. Directly conjugated groups may produce quite large spectral shifts. Examples include double and triple bonds and carbonyl groups. The spectra of heteroaromatics are related to their isocyclic analogs, but only in a general way. As with benzene, the magnitude of substituent shifts can be estimated, but tautomeric possibilities may invalidate the empirical method. Table 6.6 records data for substituents bonded directly to a benzene ring. When electronically complementary groups are situated para to each other in disubstituted benzenes, there is a more pronounced shift to a longer wavelength than would be expected from the additive effect due to the extension of the chromophore from the electron-donating group through the ring to the electron-withdrawing group. When the para groups are not complementary, or when the groups are situated ortho or meta to each other, disubstituted benzenes show a more or less additive effect of the two substituents on the wavelength maximum. Calculation of the principal band of selected substituted benzenes is illustrated in Table 6.7.
6.5
SPECTROSCOPY
TABLE 6.1 Electronic Absorption Bands for Representative Chromophores Chromophore
System
Acetylene (ethynyl) Aldehyde
ˆC˜Cˆ ˆ CHO
Amine Azido Azo Bromide Carbonyl
ˆ NH2 aC ¨ N ˆ ˆN¨Nˆ ˆ Br aC ¨ O
Carboxyl Disulfide
ˆ COOH ˆSˆSˆ
Ester Ether Ethylene Iodide Nitrate ester Nitrile Nitrite ester
ˆ COOR ˆOˆ ˆC¨Cˆ ˆI ˆ ONO2 ˆC˜N ˆ ONO
Nitro Nitroso Oxime Sulfone Sulfoxide Thiocarbonyl Thioether
ˆ NO2 ˆ NO ˆ NOH ˆ SO2 ˆ aS ¨ O (aS→O) aC ¨ S ˆSˆ
Thiol
ˆ SH ˆ (C ¨ C)2 ˆ (acyclic) ˆ (C ¨ C)3 ˆ ˆ (C ¨ C)4 ˆ ˆ (C ¨ C)5 ˆ ˆ (C ¨ C)2 ˆ (alicyclic) C¨CˆC˜C C¨CˆC¨N C¨CˆC¨O C ¨ C ˆ NO2
Benzene
Diphenyl Naphthalene
Anthracene Phenanthrene
max
max
175–180 210 280–300 195 190 285–400 208 195 270–285 200–210 194 255 205 185 190 260 270 (shoulder) 160 220–230 300–400 210 302 190 180 210 205 194 215 195 210–230 260 300 330 230–260 219 220 210–250 300–350 229 184 204 255 246 222 275 312 252 375 251 292
6 000 strong 11–18 2 800 5 000 3–25 300 1 000 18–30 50–70 5 500 400 50 1 000 8 000 400 12 — 1 000–2 000 10 strong 100 5 000 — 1 500 strong 4 600 1 600 1 400 21 000 35 000 52 000 118 000 3 000–8 000 6 500 23 000 10 000–20 000 weak 9 500 46 700 6 900 170 20 000 112 000 5 600 175 199 000 7 900 66 000 14 000
6.6
SECTION 6
TABLE 6.1 Electronic Absorption Bands for Representative Chromophores (continued) Chromophore
max
System
Naphthacene
272 473 310 585 174 195 257 227 270 314 218 266 317
Pentacene Pyridine
Quinoline
Isoquinoline
max 180 000 12 500 300 000 12 000 80 000 6 000 1 700 37 000 3 600 2 750 80 000 4 000 3 500
TABLE 6.2 Ultraviolet Cutoffs of Spectrograde Solvents Absorbance of 1.00 in a 10.0 mm cell vs. distilled water
Solvent Acetic acid Acetone Acetonitrile Benzene 1-Butanol 2-Butanol Butyl acetate Carbon disulfide Carbon tetrachloride 1-Chlorobutane Chloroform (stabilized with ethanol) Cyclohexane 1,2-Dichloroethane Diethyl ether 1,2-Dimethoxyethane N,N-Dimethylacetamide N,N-Dimethylformamide Dimethylsulfoxide 1,4-Dioxane Ethanol 2-Ethoxyethanol Ethyl acetate Ethylene chloride Glycerol Heptane
Wavelength, nm 260 330 190 280 210 260 254 380 265 220 245 210 226 218 240 268 270 265 215 210 210 255 228 207 197
Solvent Hexadecane Hexane Isobutyl alcohol Methanol 2-Methoxyethanol Methylcyclohexane Methylene chloride Methyl ethyl ketone Methyl isobutyl ketone 2-Methyl-1-propanol N-Methylpyrrolidone Nitromethane Pentane Pentyl acetate 1-Propanol 2-Propanol Pyridine Tetrachloroethylene (stabilized with thymol) Tetrahydrofuran Toluene 1,1,2-Trichloro-1,2,2trifluoroethane 2,2,4-Trimethylpentane o-Xylene Water
Wavelength, nm 200 210 230 210 210 210 235 330 335 230 285 380 210 212 210 210 330 290 220 286 231 215 290 191
6.7
SPECTROSCOPY
TABLE 6.3 Absorption Wavelength of Dienes Heteroannular and acyclic dienes usually display molar absorptivities in the 8 000–20 000 range, whereas homoannular dienes are in the 5 000–8 000 range. Poor correlations are obtained for cross-conjugated polyene systems such as
The correlations presented here are sometimes referred to as Woodward’s rules or the Woodward-Fieser rules. Base value for heteroannular or open chain diene, nm Base value for homoannular diene, nm Increment (in nm) for double bond extending conjugation Alkyl substituent or ring residue Exocyclic double bond Polar groupings: -O-acyl -O-alkyl -S-alkyl -Cl, -Br -N (alkyl)2 Solvent correction (see Table 6.5)
214 253 30 5 5 0 6 30 5 60 Calculated wavelength
total
TABLE 6.4 Absorption Wavelength of Enones and Dienones O
C
C
C
O
Base values, nm Acyclic ,-unsaturated ketones Acyclic ,-unsaturated aldehyde Six-membered cyclic ,-unsaturated ketones Five-membered cyclic ,-unsaturated ketones ,-Unsaturated carboxylic acids and esters Increments (in nm) for Double bond extending conjugation: Heteroannular Homoannular Alkyl group or ring residue: ,
C
C
C
C
C
215 210 215 214 195
30 69 10 12 18
6.8
SECTION 6
TABLE 6.4 Absorption Wavelength of Enones and Dienones (continued) Polar groups: ˆ OH ˆ O ˆ CO ˆ CH3 and ˆ O ˆ CO ˆ C6H5: , , , ˆ OCH3 ˆ S ˆ alkyl, ˆ Cl ˆ Br ˆ N(alkyl)2, Exocyclic double bond Solvent correction (see Table 6.5)
35 30 50 6 35 30 17 31 85 15 12 25 30 95 5 Calculated wavelength total
TABLE 6.5 Solvent Correction for UV–VIS spectroscopy Solvent Chloroform Diethyl ether 1,4-Dioxane Ethanol Hexane Methanol Water
Correction, nm 1 11 5 0 11 0 8
6.9
SPECTROSCOPY
TABLE 6.6 Primary Band of Substituted Benzene and Heteroaromatics In methanol Base value: 203.5 nm
Substituent
Wavelength shift, nm
ˆ CH3 ˆ CH ¨ CH2 ˆ C ˜ CH ˆ C6H5 ˆF ˆ Cl ˆ Br ˆI ˆ OH ˆ O ˆ OCH3 ˆ OC6H5 ˆ CHO ˆ CO ˆ CH3 ˆ CO ˆ C6H5
3.0 44.5 44 48 0 6.0 6.5 3.5 7.0 31.5 13.5 51.5 46.0 42.0 48
Heteroaromatic
Base value, nm
Furan Pyrazine Pyrazole Pyridazine
200 257 214 ca 240
Substituent
Wavelength shift, nm
ˆ COOH ˆ COO ˆ CN ˆ NH2 ˆNH 3 ˆ N(CH3)2 ˆ NH ˆ CO ˆ CH3 ˆ NO2 ˆ SH ˆ SO ˆ C6H5 ˆ SO2CH3 ˆ SO2NH2 ˆ CH ¨ CH ˆ C6H5 cis (Z ) trans (E) ˆ CH ¨ CH ˆ COOH, trans
Heteroaromatic Pyridine Pyrimidine Pyrrole Thiophene
25.5 20.5 20.5 26.5 0.5 47.0 38.5 57 32 28 13 14.0 79 92.0 69.5
Base value, nm 257 ca 235 209 231
TABLE 6.7 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives In ethanol Base value of parent chromophore, nm C6H5COOH or C6H5COO ˆ alkyl C6H5 ˆ CO ˆ alkyl (or aryl) C6H5CHO Increment (in nm) for each substituent on phenyl ring ˆ Alkyl or ring residue o-, mpˆ OH and ˆ O ˆ alkyl o-, mpˆ O omp-
230 246 250
3 10 7 25 11 20 78*
* Value may be decreased markedly by steric hindrance to coplanarity.
6.10
SECTION 6
TABLE 6.7 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives (continued) ˆ Cl o-, mpˆ Br o-, mpˆ NH2 o-, mpˆ NHCO ˆ CH3 o-, mpˆ NHCH3 pˆ N(CH3)2 o-, mp-
0 10 2 15 13 58 20 45 73 20 85
PHOTOLUMINESCENCE Luminescence processes may be categorized by the excitation method used with any particular luminescent molecule. Photoluminescence is the excitation process that involves the interaction of electromagnetic radiation with photons. The process is termed chemiluminescence when the exciting energy results from a chemical reaction. Any luminescence arising from an organism is referred to as bioluminescence. The most common application of photoluminescence is found in fluorescence spectroscopy. Fluorescence is the immediate release of electromagnetic energy from an excited molecule or release of the energy from the singlet state. If the emitted energy arises from the triplet state or is delayed, the process is referred to as phosphorescence. A fluorescence spectrum is characteristic of a given compound. It is observed as a result of radiative emission of the energy absorbed by the molecule. The observed spectrum does not depend on the wavelength of the exciting light, except that the spectrum will be more intense if irradiation occurs at the absorption maximum. The spectral intensity is called the quantum efficiency and is usually abbreviated as . The quantum yield or quantum efficiency, , which is solvent dependent, is the ratio: number of quanta emitted/number of quanta absorbed. Approximate values of quantum efficiencies are as follows: naphthalene, ~0.1; anthracene, ~0.3; indole, ~0.5; and fluorescein, ~0.9. An equation similar to Beer’s law applies to fluorescence spectroscopy at dilute concentrations. In its most general form, it is given as F I0(1 ebc). In this equation, F is the observed fluorescence, is the quantum efficiency (see above), I0 is the intensity of the incident radiation, is the molar absorptivity, b is the cell’s path length, and c is the compound’s molar concentration. The appearance of a fluorescence spectrum is reminiscent of a UV–VIS spectrum. The fluorescence spectrum for a 3-substituted indole derivative is shown in Figure 6.1. The
6.11
SPECTROSCOPY
800.0 700 600 500 400
Int
300 200 100 0.4 200.0 FIGURE 6.1
300
400
500 nm
600
700
800.0
Fluorescence Spectrum for a 3-substituted indole derivative.
compound concentration was approximately 105 M in acetonitrile (CH3CN). The sample was irradiated at a wavelength of 283 nm. The abscissa shows the wavelength in nanometers (nm) and the intensity (“int”) is recorded on the ordinate. The maximum emission intensity is observed at 356 nm. The longest wavelength peak (max) is observed at approximately 680 nm. TABLE 6.8 Fluorescence Spectroscopy Data for Selected Organic Compounds
pH
Excitation wavelength, nm
Emission wavelength, nm
Compound
Solvent
Acenaphthene
Pentane
291
341
Acridine
CF3COOH
358
475
N
Adenine
Water
1
280
375
Adenosine
Water
1
285
395
Water
1
285
395
8
295 295
335 345
NH2 N N
N
OH O OH HO
Adenosine triphosphate Adrenalin p-Aminobenzoic acid
Water
6.12
SECTION 6
TABLE 6.8 Fluorescence Spectroscopy Data for Selected Organic Compounds (continued )
Compound Aminopterin HOOC
HOOC H
Solvent
pH
Water
7
Excitation Emission wavelength, nm wavelength, nm 280, 370
460
O H N
NH2 N N
H N N
NH2
1-Aminopyrene
CF3COOH
p-Aminosalicylic acid
Water
11
330, 342
415
300
405
Amobarbital
Water
14
265
410
Anilines (aminobenzenes) Anthracene
Water Pentane
7
280, 291 420
344, 361 430
Anthranilic acid (2-aminobenzoic acid)
Water
7
300
405
Azaindoles
Water
10
290, 299
310, 347
Benz[c]acridine
CF3COOH
295, 380
480
Benz[a]anthracene
Pentane
284
382
280, 340
390, 410
1,2-Benzanthracene Benzanthrone
CF3COOH
370, 420
550
Benzo[b]chrysene
Pentane
283
398
11-H-Benzo[a]fluorene
Pentane
317
340
Benzoic acid
70% H2SO4
285
385
3,4-Benzopyrene (benzo[a]pyrene)
Benzene
365
390, 480
4,5-Benzopyrene (benzo[e]pyrene)
Pentane
329
389
Benzoquinoline
CF3COOH
280
425
Benzoxanthane
Pentane
363
418
Bromolysergic acid diethylamide
Water
1
315
460
Brucine
Water
7
305
500
6.13
SPECTROSCOPY
TABLE 6.8 Fluorescence Spectroscopy Data for Selected Organic Compounds (continued )
pH
Excitation wavelength, nm
Emission wavelength, nm
Compound
Solvent
Carbazole
N,NDimethylformamide
291
359
Solvent
000
000
355
445
250, 300, 310
260, 380
N H
Carboxyfluorescein HOOC
COOH
O
HO
O
Chlortetracycline Chrysene
Pentane
Cinchonine
Water
320
420
Coumarin
Ethanol
280
352
Dibenzo[a,c]anthracene
Pentane
280
381
Dibenzo[b,k]chrysene
Pentane
308
428
Dibenzo[a,e]pyrene
Pentane
370
401
370, 335, 390, 410
480, 510
O
1
O
3,4,8,9-Dibenzopyrene 5,12-Dihydronaphthacene
Pentane
282
340
1,4-Diphenylbutadiene
Pentane
328
370
Epinephrine
Water
7
295
335
Ethacridine
Water
2
370, 425
515
Fluoranthrene
Pentane
354
464
Fluorene
Pentane
300
321
6.14
SECTION 6
TABLE 6.8 Fluorescence Spectroscopy Data for Selected Organic Compounds (continued )
Compound
Solvent
pH
Fluorescein
Water
7–11
Excitation Emission wavelength, nm wavelength, nm 490
515
NH2
COOH
O
HO
O
Folic acid
Water
7
365
450
Gentisic acid
Water
7
315
440
Griseofulvin Guanine
Water Water
7 1
295, 335 285
450 365
Water
1
300, 365
400
O N
HN
H2N
N H
N
Harmine N H3CO
N H
CH3
Hippuric acid
70% H2SO4
270
370
Homovanillic acid
Water
7
270
315
m-Hydroxybenzoic acid
Water
12
314
430
p-Hydroxycinnamic acid
Water
7
350
440
7-Hydroxycoumarin
Ethanol
325
441
5-Hydroxyindole
Water
1
290
355
5-Hydroxyindoleacetic acid
Water
7
300
355
3-Hydroxykynurenine
Water
11
365
460
p-Hydroxymandelic acid
Water
7
300
380
p-Hydroxyphenylacetic acid
Water
7
280
310
p-Hydroxyphenylpyruvic acid
Water
7
290
345
p-Hydroxyphenylserine
Water
1
290
320
5-Hydroxytryptophan
Water
7
295
340
Imipramine
Water
14
295
415
N CH2CH2CH2N(CH3)2
Indoleacetic acid
Water
8
285
360
Indoles
Water
7
269, 315
355
N H
6.15
SPECTROSCOPY
TABLE 6.8 Fluorescence Spectroscopy Data for Selected Organic Compounds (continued )
Compound
Solvent
pH
Excitation Emission wavelength, nm wavelength, nm
Indomethacin
Water
13
300
410
Kynurenic acid
Water
7
325
405
11
325
440
Lysergic acid diethylamide
Water
1
325
445
Menadione
Ethanol
335
480
9-Methylanthracene
Pentane
382
410
3-Methylcholanthrene
Pentane
297
392
7-Methyldibenzopyrene
Pentane
460
467
2-Methylphenanthrene
Pentane
257
357
3-Methylphenanthrene
Pentane
292
368
1-Methylpyrene
Pentane
336
394
4-Methylpyrene
Pentane
Naphthacene (2,3-benzanthracene) 1-Naphthol
0.1 M NaOH
338
386
290, 310
480, 515
365
480
356
426
20% ethanol 2-Naphthol
0.1 M NaOH 20% ethanol
Oxytetracycline
390
520
Phenanthrene
Pentane
252
362
Phenylalanine
Water
215, 260
282
o-Phenylenepyrene
Pentane
360
506
270
305
Phenylephrine Picene
Pentane
Procaine
Water
Pyrene
Pentane
Pyridoxal
11
281
398
275
345
330
382
Water
12
310
365
Quinacrine
Water
11
285
420
Quinidine
Water
1
350
450
Quinine
Water
1
250, 350
450
CH
O
HO OH H3C
N
6.16
SECTION 6
TABLE 6.8 Fluorescence Spectroscopy Data for Selected Organic Compounds (continued )
Compound
Solvent
pH 1
Reserpine
Water
Resorcinol
Water
Riboflavin
Water
Rutin
Water
Salicylic acid Scoparone
Excitation wavelength, nm
Emission wavelength, nm
300
375
265
315
7
270, 370, 445
520
1
430
520
Water
11
310
435
Water
10
350, 365
430
10
Scopoletin
Water
Serotonin
3 M HCl
Skatole
Water
Streptomycin
Water
p-Terphenyl
Pentane
13
Thiopental Thymol
Water
Tocopherol
Hexane–
7
365, 390
460
295
550
290
370
366
445
284
338
315
530
265
300
295
340
ethanol Tribenzo[a,e,i]pyrene
Pentane
384
448
Triphenylene
Pentane
288
357
360
Tryptamine
Water
7
290
Tryptophan
Water
11
285
365
Tyramine
Water
1
275
310 310
Tyrosine
Water
7
275
Uric acid
Water
1
325
370
Vitamin A
1-Butanol
340
490
Vitamin B12
Water
Warfarin
Methanol
Xanthine
Water
7 1
275
305
290, 342
385
315
435
O N
HN O
N H
N H
2,6-Xylenol
275
305
3,4-Xylenol
280
310
Yohimbine
Water
1
270
360
Zoxazolamine
Water
11
280
320
6.17
SPECTROSCOPY
TABLE 6.9 Fluorescence Quantum Yield Values
Compound
QF value vs. QF standard
Solvent QF standard
9-Aminoacridine Anthracene POPOP* Quinine sulfate dihydrate
Water Ethanol Toluene 1 N H2SO4
0.99 0.30 0.85 0.55
Secondary standards Acridine orange hydrochloride
Ethanol
1,8-ANS† (free acid)
Ethanol
1,8-ANS (magnesium salt)
Ethanol
Fluorescein
0.1 N NaOH
Fluorescein, ethyl ester
0.1 N NaOH
Rhodamine B
Ethanol
2,6-TNS‡ (potassium salt)
Ethanol
0.54 0.58 0.38 0.39 0.29 0.31 0.91 0.94 0.99 0.99 0.69 0.70 0.48 0.51
Quinine sulfate Anthracene Anthracene POPOP Anthracene POPOP Quinine sulfate POPOP Quinine sulfate POPOP Quinine sulfate Anthracene Anthracene POPOP
* POPOP p-bis[2-(5-phenyloxazoyl)]benzene. † ANS, anilino-8-naphthalenesulfonic acid. ‡ TNS, 2-p-toluidinylnaphthalene-6-sulfonate.
TABLE 6.10 Phosphorescence Spectroscopy of Some Organic Compounds Abbreviation Used in the Table EPA: diethyl ether, isopentane, and ethanol (5:5:2) volume ratio
Compound
Solvent
Acenaphthene 3-Acetylpyridine Adenine
Ethanol Ethanol Water–methanol (9:1) Ethanol Ethanol Ethanol Water–methanol (9:1) Ethanol
Adenosine p-Aminobenzoic acid 2-Aminofluorene 6-Amino-6-methylmercaptopurine 2-Amino-4-methylpyrimidine
Lifetime, s
Excitation wavelength, nm
Emission wavelength, nm
300 395 278
515 525 406
4.6 0.66
280 305 380 321
422 425 590 456
2.1
302
438
0.5 2.9 0.8
6.18
SECTION 6
TABLE 6.10 Phosphorescence Spectroscopy of Some Organic Compounds (continued )
Compound 2-Amino-5-nitrobenzothiazole 2-Amino-5-nitrobiphenyl 3-L-Aminotyrosine · 2HCl Anthracene Aspirin Atropine 8-Azaguanine Benzaldehyde 1,2-Benzanthracene Benzimidazole Benzocaine 1,2-Benzofluorene Benzoic acid 3,4-Benzopyrene Benzyl alcohol 6-Benzylaminopurine Biphenyl 6-Bromopurine Brucine Caffeine Carbazole 2-Chloro-4-aminobenzoic acid p-Chlorophenol o-Chlorophenoxyacetic acid p-Chlorophenoxyacetic acid 6-Chloropurine Chlorpromazine · HCl Chlorotetracycline Cocaine · HCl Codeine Cytidine Desoxypyridoxine · HCl Diacetylsulfanilamide 2,6-Diaminopurine 2,6-Diaminopurine sulfate 1,2,5,6-Dibenzanthracene 2,6-Dichloro-4-nitroaniline 2,4-Dichlorophenoxyacetic acid 2,6-Diethyl-4-nitroaniline 3,4-Dihydroxymandelic acid 3,4-Dihydroxyphenylacetic acid
Solvent EPA EPA Ethanol Ethanol EPA Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol EPA Ethanol Ethanol Water–methanol (9:1) Ethanol Water–methanol (9:1) Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Water–methanol (9:1) Ethanol Ethanol Ethanol Ethanol Water–methanol (9:1) Ethanol Ethanol Water–methanol (9:1) Ethanol Ethanol EPA Ethanol EPA Ethanol Ethanol
Lifetime, s 0.41 0.56 0.8
Excitation wavelength, nm
2.8
282 254 310 280 310 315 240 325 219 286
515 520 398 462 380 410 442 433 510 406 430 502 400 508 393 413
1.0 0.5
270 273
385 420
0.9 2.0 7.8 1.0 0.2 0.7 0.5 0.64
305 285 341 312 290 280 283 273
435 440 436 337 505 518 396 419
0.3 2.7 2.7 0.3
320 280 240 270 290
490 410 400 505 420
1.4 1.3 2.7
290 280 288
442 405 410
1.7 1.3 0.5 0.5 0.66 1.1 0.9
294 340 368 289 388 294 295
424 550 525 490 525 412 430
2.1 1.4 1.8 3.4 2.2 2.3 3.4 2.4
375 380 286 300 240
Emission wavelength, nm
6.19
SPECTROSCOPY
TABLE 6.10 Phosphorescence Spectroscopy of Some Organic Compounds (continued )
Compound 2,5-Dimethoxy-4-methylamphetamine 5,7-Dimethyl-1,2-benzacridine N,N-Dimethyl-4-nitroaniline N,N-Dimethyltryptamine Dopamine Ephedrine Epinephrine N-Ethylcarbazole Ethyl 3-indoleacetate Folic acid Hippuric acid Homovanillic acid DL-5-Hydroxytryptophan Indole-3-acetic acid 3-Indoleacetonitrile Indole-3-butonoic acid Indolecarboxylic acid Indole-2-propanoic acid D-Lysergic acid 2-Methylcarbazole N-Methylcarbazole 6-Methylmercaptopurine N-Methyl-4-nitroaniline 6-Methylpurine Morphine Naphthacene Naphthalene 1-Naphthaleneacetic acid 1-Naphthol 2-Naphthoxyacetic acid 2-Naphthylamine Niacinamide Nicotine 5-Nitroacenaphthene 4-Nitroaniline 9-Nitroanthracene 1-Nitroanthraquinone 4-Nitrobiphenyl 3-Nitro-N-ethylcarbazole 2-Nitrofluorene 6-Nitroindole 1-Nitronaphthalene
Solvent Water–methanol (9:1) Ethanol EPA Water-methanol (9:1) Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol EPA Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Water–methanol (9:1) Ethanol Ethanol Water–methanol (9:1) EPA Water–methanol (9:1) Ethanol Ethanol EPA Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol EPA EPA EPA EPA EPA EPA EPA EPA EPA
Lifetime, s
Excitation wavelength, nm
Emission wavelength, nm
3.9
289
411
0.6 0.54 6.9
310 398 286
555 525 434
0.9 3.6 1.0 7.8 3.3 4.9 0.8 6.3 0.5 7.1 0.6 5.5 0.6 0.1
285 225 283 340 290 367 311 289 315 290 285 284 290 290 310
430 390 425 437 440 425 450 435 435 438 438 510 429 440 518
8.1 8.4 0.6
333 336 291
442 437 420
0.5 3.2
390 272
522 405
0.3
285 300 310 295 320 328 270 270 270 380 380 248 250 330 315 340 372 340
500 518 475 510 475 497 303 410 390 540 510 488 490 480 475 517 520 520
1.8 2.8 1.1 2.6 2.3 5.2 0.6 0.3 0.4 0.4 0.4
6.20
SECTION 6
TABLE 6.10 Phosphorescence Spectroscopy of Some Organic Compounds (continued )
Compound 2-Nitronaphthalene 4-Nitro-1-naphthylamine 4-Nitrophenol 4-Nitrophenylhydrazine 4-Nitro-2-toluidine Papaverine · HCl Phenacetin Phenanthrene Phenobarbital Phenylalanine DL-2-Phenyllactic acid Phthalylsulfathiazole Procaine · HCl Purine Pyrene Pyridine Pyridine-3-sulfonic acid Pyridoxine · HCl Quercetin Quinidine sulfate Quinine · HCl Salicyclic acid Strychnine phosphate Sulfabenzamide Sulfadiazine Sulfanilamide Sulfapyridine Sulfathiazole 1,2,4,5-Tetramethylbenzene 2-Thiouracil 2,4,5-Trichlorophenol 2,4,5-Trichlorophenoxyacetic acid Triphenylene Tryptophan Tyrosine Vitamin K1 Vitamin K3 Vitamin K5 Warfarin Yohimbine · HCl
Solvent EPA EPA Ethanol EPA EPA Ethanal EPA EPA Ethanol Ethanol Ethanol Ethanol Ethanol Water–methanol (9:1) Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol EPA Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol Hexane Hexane Water–methanol (9:1) Ethanol Ethanol
Lifetime, s 0.4
Excitation wavelength, nm
340 240 270 262 305 310 272
500 578 520 520 520 480 410 465 380 385 383 405 430 405
2.1 1.3 1.3 6.2 1.2 0.7 0.7 2.9 1.4 0.9 4.5 0.5 0.2 1.1
330 310 272 290 345 340 340 315 290 305 275 300 310 310 275 310 305 295
515 440 408 425 480 500 500 430 440 405 410 410 440 420 390 430 485 475
15 1.5 2.8 0.4 0.5 1.3
290 295 290 345 335 310
460 440 390 570 510 535
0.8 7.4
305 290
460 410
0.2 0.5 0.5 1.5 2.6 1.8 5.4 0.9 3.5 2.2
1.4 1.2
260 400 355 390 375 260
Emission wavelength, nm
6.21
SPECTROSCOPY
INFRARED SPECTROSCOPY Infrared (IR) and Raman spectroscopy rely on the interaction of a bond between two elements and IR radiation in the 400–4 000 cm1 range. The two techniques are distinct but closely related. Historically, infrared analysis has been the more widely used in organic chemistry but much of the brief discussion that follows applies equally to both methods. A chemical bond may be considered as a spring to which two weights are attached. The weights are atoms of different atomic masses. The length and strength of the spring may be correlated to the length and strength of the chemical bond. Each bond will vibrate at a frequency that is characteristic of the attached atoms and the type of bond (i.e., single, double, or triple) between them. Radiation of an appropriate frequency will be absorbed by the bond and the wavelength at which this occurs will be detected and recorded by the instrument in the spectrum. Indeed, most molecules have many bonds so multiple peaks are observed in an IR spectrum. An electrical dipole is required for IR energy to be efficiently absorbed by a molecule. Thus, bonds between different elements will give more prominent absorption peaks than will symmetrical bonds. This is because the bond’s dipole moment changes as the bond stretches and contracts. Symmetrical bonds do not change dipole moment even if the bond distance changes. Usually, the most prominent peaks are observed when the electronegativity difference between the bound elements is greatest. Thus, a C ˆ O bond will usually be more prominent than a C ˆ H bond. The position (frequency) of the absorption depends on the strength of the bond linking them. Thus, single, double, and triple bonds are observed in characteristic ranges. In addition, the frequency is related to the masses of the attached atoms. The largest mass differences occur when an element is attached to hydrogen. Such bonds as C ˆ H, O ˆ H, and N ˆ H typically are observed in the 2 900–3 600 cm1 range. The remarkable versatility of NMR as an analytical method has diminished the importance of IR analysis in modern laboratories but it remains a very useful technique. The very small amount of sample required and the prominence of functional group absorption means that the progress of a reaction can be monitored very conveniently. For example, the reduction of an aldehyde to an alcohol will be accompanied by the disappearance of the prominent C ¨ O peak and the appearance of a C ˆ OH absorption. Because both peaks are so readily identifiable in a small sample, the reaction is easy to follow and its completeness can be assayed.
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen Abbreviations Used in the Table m, moderately strong var, of variable strength m–s, moderate to strong w, weak s, strong w–m, weak to moderately strong Group
Band, cm1
Remarks
Saturated C ˆ H 2 975–2 950 (s) 2 885–2 865 (w)
Two or three bands usually; asymmetrical and symmetrical CH stretching, respectively. In
6.22
SECTION 6
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen (continued ) Group
Band, cm1
Remarks
Saturated C ˆ H (continued)
1 450–1 260 (m)
ca 2 930 (s) 2 870–2 840 (w)
1 480–1 440 (m) ca 720 (w)
presence of double bond adjacent to CH3 group symmetrical band splits into two. Sensitive to adjacent negative substituents Frequency increased in strained systems. Symmetrical band splits into two bands when double bond adjacent. Scissoring mode Rocking mode
Alkane residues attached to carbon Cyclopropane
ca 3 050 (w) 540–500 470–460 (s)
CH stretching
Cyclobutanes Cyclopentanes
580–490 (s) 595–490 (s)
Alkyl derivatives: 550–530 cm1 Alkyl derivatives: 585–530 cm1
aC(CH3)2
ca 1 380 (m) 1 175–1 165 (m) 1 150–1 130 (m)
A roughly symmetrical doublet If no H on central carbon, then one band at ca 1 190 cm1
ˆ C(CH3)3
1 395–1 385 (m) 1 365 (s)
Split into two bands
Aryl-CH3 Aryl-C2H5 Aryl-C3H7 (or C4H9) ˆ (CH2)n ˆ n1 n2 n3 n4
390–260 (m) 565–540 (m–s) 585–565 (m) 785–770 (w–m) 745–735 (w–m) 735–725 (w–m) 725–720 (w–m)
Aliphatic cyclopropanes
Two bands Rocking vibrations
Alkane residues attached to miscellaneous atoms ca 3 050 (m–s) ca 3 050 (m–s) ˆ CH2 ˆ halogen
ca 3 050 (m–s) 1 435–1 385 (m) 1 300–1 240 (s)
Halogens except fluorine
6.23
SPECTROSCOPY
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen (continued ) Band, cm1
Group
Remarks
Alkane residues attached to miscellaneous atoms (continued ) ˆ CHO
2 900–2 800 (w) 2 775–2 700 (w) 1 420–1 370 (m)
ˆ CO ˆ CH3
3 100–2 900 (w) 1 450–1 400 (s) 1 360–1 355 (s)
ˆ O ˆ CH3 ethers
2 835–2 810 (s) 1 470–1 430 (m–s) ca 1 030 (w–m)
ˆ O ˆ C(CH3)3
1 200–1 155 (s)
ˆ O ˆ CH2 ˆ O ˆ
2 790–2 770 (m)
ˆ O ˆ CH2 ˆ esters
1 475–1 460 (m–s) 1 470–1 435 (m–s)
ˆ O ˆ CO ˆ CH3
1 450–1 400 (s) 1 385–1 365 (s) 1 360–1 355 (s)
ˆ CH2 ˆ C ¨ Cb
1 445–1 430 (m)
ˆ CH2 ˆ SO2 ˆ
ca 1 250 (m)
P ˆ CH3 Se ˆ CH3 B ˆ CH3
1 320–1 280 (s) ca 1 280 (m) 1 460–1 405 (m) 1 320–1 280 (m) 1 265–1 250 (m–s) 1 200–1 180 (m) 1 170–1 155 (m) 1 265–1 240 (m) 1 240–1 230 (m) 1 215–1 195 (m) 1 165–1 145 (m) 1 430–1 415 (m)
Si ˆ CH3 Sn ˆ CH3 Pb ˆ CH3 As ˆ CH3 Ge ˆ CH3 Sb ˆ CH3 Bi ˆ CH3 ˆ CH2 ˆ (Cd, Hg, Zn, Sn) N ˆ CH3 and N ˆ CH2 ˆ N ˆ CH2 ˆ CH2 ˆ N
2 820–2 780 (s) 1 440–1 390 (m) 1 480–1 450 (s)
Two bands
Acyclic esters. Frequency increased ca 30 cm1 for cyclic and small ring systems. Acetate esters The high intensity of these bands often dominates this region of the spectrum.
Ethylenediamine complexes Ethylenediamine complexes
6.24
SECTION 6
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen (continued ) Group
Band, cm1
Remarks
Alkane residues attached to miscellaneous atoms (continued ) N ˆ CH3 Amine · HCl Amino acid · HCl Amides N ˆ CH2 ˆ amides
1 475–1 395 (m) 1 490–1 480 (m) 1 420–1 405 (s) ca 1 440 (m)
S ˆ CH3
2 990–2 955 (m–s) 2 900–2 865 (m–s) 1 440–1 415 (m) 1 325–1 290 (m) 1 030–960 (m) 710–685 (w–m)
S ˆ CH2 ˆ
2 950–2 930 (m) 2 880–2 845 (m) 1 440–1 415 (m) 1 270–1 220 (s)
ˆ C ˜ CH
ca 3 300 (s) 700–600
Sharp Bending
3 040–3 010 (m) 3 095–3 075 (m) 2 985–2 970 (m)
995–980 (s) 940–900 (s) ca 635 (s) 485–445 (m–s) 895–885 (s) 560–530 (s) 470–435 (m) 980–955 (s) 455–370 (m–s)
730–655 (m) 670–455 (s) 850–790 (m) 570–515 (s) 525–470 (s)
CH stretching sometimes obscured by much stronger bands of saturated CH groups
6.25
SPECTROSCOPY
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen (continued ) Band, cm1
Group
Remarks
Alkane residues attached to miscellaneous atoms (continued ) ˆ O ˆ CH ¨ CH2
965–960 (s) 945–940 (m) 820–810 (s)
ˆ S ˆ CH ¨ CH2
ca 965 (s) ca 860 (s)
ˆ CO ˆ CH ¨ CH2
995–980 (s) 965–955 (m) 950–935 (s) 870–850 (s) ca 930 (s) 880–865 940–920 (s) ca 990 (s)
ˆ CO ˆ OCH ¨ CH2 ˆ CO ˆ C ¨ CH2 ˆ CO ˆ OC ¨ CH2 ˆ O ˆ CH ¨ CH ˆ trans ˆ CO ˆ CH ¨ CH ˆ trans
Hydroxyl group O ˆ H compounds Primary aliphatic alcohols
3 640–3 630 (s) 1 350–1 260 (s) 1 085–1 030 (s)
Secondary aliphatic alcohols
3 625–3 620 (s) 1 350–1 260 (s) 1 125–1 085 (s)
Tertiary aliphatic alcohols
3 620–3 610 (s)
Only in very dilute solutions in nonpolar solvents OH bending Also broad band at 700–600 cm1 See comments under primary aliphatic alcohols Also for -unsaturated and cyclic tertiary aliphatic alcohols See comments under primary aliphatic alcohols
1 410–1 310 (s) 1 205–1 125 (s) Aryl ˆ OH
ca 3 610 (s) 1 410–1 310 (s) 1 260–1 180 (s) 1 085–1 030 (s)
Carboxylic acids Enol form of -diketones
3 300–2 500 (w–m) 995–915 (s) 2 700–2 500 (var)
See comments under primary aliphatic alcohols
Also for unsaturated secondary aliphatic alcohols Broad Broad diffuse band Broad
6.26
SECTION 6
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen (continued ) Group
Band, cm1
Remarks
Hydroxyl group O ˆ H compounds (continued ) Free oximes
3 600–3 570(w–m)
Free hydroperoxides
3 560–3 530 (m)
Peroxy acids
ca 3 280 (m)
Phosphorus acids
2 700–2 560 (m)
Broad
Water in solution
3 710
When solution is damp
Intermolecular H bond Dimeric
3 600–3 500
Rather sharp. Absorptions arising from H bond with polar solvents also appear in this region. Broad
Polymeric Intramolecular H bond Polyvalent alcohols Chelation
Water of crystallation (solid state spectra)
3 400–3 200 (s)
Shoulder
3 600–3 500 (s) 3 200–2 500
Sharper than dimeric band above Broad and occasionally weak; the lower the frequency, the stronger the intramolecular bond
3 600–3 100 (w)
Usually a weak band at 1 640– 1 615 cm1 also. Water in trace amounts in KBr disks shows a broad band at 3 450 cm1.
Amine, imine, ammonium, and amide N ˆ H Primary amines Aliphatic
Aromatic Amino acids
Amino salts
3 550–3 300 (m) 1 650–1 560 (m) 1 090–1 020 (w–m) 850–810 (w–m) 495–445 (m–s) ca 290 (s) 1 350–1 260 (s) 445–345 3 100–3 030 (m)
2 800–2 400 (m) 1 625–1 560 (m) 1 550–1 550 (m) 3 550–3 100 (m) ca 3 380 ca 3 280
Two bands in this range With -carbon branching at 795 cm1 and strong Broad Broad Also for secondary aryl amines Values for solid states; broad bands also (but not always) near 2 500 and 200 cm1 Number of sharp bands; dilute solution
Values for solid state Dilute solutions
6.27
SPECTROSCOPY
TABLE 6.11 Absorption Frequencies of Single Bonds to Hydrogen (continued ) Group
Band, cm1
Remarks
Amine, imine, ammonium, and amide N ˆ H (continued ) Secondary amines
Salts
Tertiary amines R1R2R3NH
3 550–3 400 (w) 1 580–1 490 (w) 1 190–1 170 (m) 1 145–1 130 (m) 455–405 (w–m) ca 2 500 ca 2 400 1 620–1 560 (m–s)
Only one band, whereas primary amines show two bands Often too weak to be noticed
Sharp; broad values for solid state Sharp; broad values for solid state
2 700–2 250
Group of relatively sharp bands; broad bands in solid state
Ammonium ion
3 300–3 030 (s) 1 430–1 390 (s)
Group of bands
Imines ¨ N ¨ H
3 350–3 310 (w) 3 490 (s) 3 490 (s)
Aliphatic Aryl Pyrroles, indoles; band sharp
Imine salts
2 700–2 330 (m–s) 2 200–1 800 (m)
Dilute solutions One or more bands; useful to distinguish from protonated tertiary amines
Primary amide ˆ CONH2
ca 3 500 (m) ca 3 400 (m)
Lowered ca 150 cm1 in the solid state and on H bonding; often several bands 3 200–3 050 cm1
Secondary amide ˆ CONH ˆ
3 460–3 400 (m)
Two bands; lowered on H bonding and in solid state. Only one band with lactams Extra band with bonded and solidstate samples
3 100–3 070 (w)
Miscellaneous R ˆ H ˆSˆH
2 600–2 550 (w)
PˆH
2 440–2 350 (m) 2 700–2 560 (m) 100/137 times the
O P
Weaker than OH and less affected by H bonding Sharp Associated OH
OH
R ˆD
corresponding RH frequency
Useful when assigning RH bands; deuteration leads to a known shift to lower frequency
6.28
SECTION 6
TABLE 6.12 Absorption Frequencies of Triple Bonds Abbreviations Used in the Table m, moderately strong var, of variable strength m–s, moderate to strong w–m, weak to moderately strong s, strong Band, cm1
Group Alkynes Terminal
3 300 (s) 2 140–2 100 (w–m)* 1 375–1 225 (w–m) 695–575 (m–s) ca 630 (s) 2 260–2 150 (var)*
Nonterminal
R1 ˆ C ˜ C ˆ R2
540–465 (m)
Aryl ˆ C ˜ C ˆ
ca 550 (m) ca 350 (var)
ˆ C ˜ C ˆ halogen (Cl, Br, I)
185–160 (var)
Nitriles ˆ C ˜ N
2 260–2 200 (var)
Aliphatic
Remarks
CH stretching C ˜ C stretching Two bands if molecule has axial symmetry Alkyl monosubstituted Symmetrical or nearly symmetrical substitution makes the C ˜ C stretching frequency inactive. When more than one C ˜ C linkage is present, and sometimes when there is only one, there are frequently more absorption bands in this region than there are triple bonds to account for them. The longer the chain, the lower the frequency
Stronger and toward the lower end of the range when conjugated; occasionally very weak or absent
580–555 (m–s) 560–525 (m–s) 390–350 (s) 580–540 (s) 430–380 (m)
Aromatic
Isonitriles R ˆ N ˜ C or R ˆ N ¨ C:
Cyanamides aN ˆ C ˜ N7aN ˆ C ¨ N
2 175–2 150 (s) 2 150–2 115 (s) 1 595
Very sensitive to changes in substituents Not found for nitriles
2 225–2 210 (s)
* Conjugation with olefinic or acetylenic groups lowers the frequency and raises the intensity. Conjugation with carbonyl groups usually has little effect on the position of absorption.
6.29
SPECTROSCOPY
TABLE 6.12 Absorption Frequencies of Triple Bonds (continued ) Group Thiocyanates RˆSˆC˜N
Band, cm1
2 175–2 140 (s)
404–400 (s) ca 600 (m–s) Nitrile N-oxides ˆ C ˜ N→O
Diazonium salts R ˆ N ˜ N Selenocyanates R ˆ Se ˆ C ˜ N
2 305–2 285 (s) 1 395–1 365 (s)
Remarks
Aryl thiocyanates at the upper end of the range, alkyl at the lower end Aliphatic derivatives
Aryl derivatives
2 300–2 230 (m–s)
ca 2 160 (m–s) 545–520 ca 390 ca 350
TABLE 6.13 Absorption Frequencies of Cumulated Double Bonds Abbreviations Used in the Table m–s, moderate to strong vs, very strong s, strong w, weak Group
Band, cm1
Carbon dioxide O¨C¨O
2 349 (s)
Isocyanates ˆN¨C¨O Isoselenocyanates ˆ N ¨ C ¨ Se
Azides ˆ N3 or ˆ N ¨ N¨ N
ˆN¨C¨Nˆ
Remarks
Appears in many spectra as a result of inequalities in path length
2 275–2 250 (vs)
Position unaffected by conjugation
2 200–2 000 (s) 675–605
Broad; usually two bands
2 140–2 030 (s) 1 340–1 180 (w) 2 155–2 130 (s)
Not observed for ionic azides Split into unsymmetrical doublet by conjugation with aryl groups: 2 145–2 125 (vs) and 2 115– 2 105 (vs)
6.30
SECTION 6
TABLE 6.13 Absorption Frequencies of Cumulated Double Bonds (continued ) Group Isothiocyanates ˆN¨C¨S
Band, cm1
2 140–1 990 (vs) 649–600 (m–s) 565–510 (m–s) 470–440 (m–s)
Ketenes aC ¨ C ¨ O
ca 2 150 (s)
Ketenimines C¨C¨Nˆ
2 050–2 000 (s)
Allenes aC ¨ C ¨ Cb
2 000–1 915 (m–s)
Thionylamines ˆN¨S¨O
Diazoalkanes R2C ¨ N ¨ N ˆ CH ¨ N ¨ N Diazoketones ˆ CO ˆ CH ¨ N ¨ N
Remarks
Broad; usually a doublet
Two bands when terminal allene or when bonded to electronattracting groups
1 300–1 230 (s) 1 180–1 110 (s)
2 030–2 000 (s) 2 050–2 035 (s)
2 100–2 080 2 075–2 050
Monosubstituted Disubstituted
Position of Carbonyl Absorption Because the carbonyl absorption is one of the most prominent and identifiable bands in the IR spectrum, it is often used diagnostically. The general trends of structural variation on the position of C ¨ O stretching frequencies are summarized in six principles, as follows. Details of carbonyl absorptions are recorded in Table 6.14 and for other double bonds in Table 6.15, for aromatic bonds in Table 6.16 and other miscellaneous bonds in Table 6.17. 1. The more electronegative the group X in the system R ˆ CO ˆ X ˆ , the higher is the frequency. 2. ,-Unsaturation lowers the frequency by 15–40 cm1, except in amides, where little shift is observed; if present it is usually to higher frequency. 3. Further conjugation has relatively little effect.
6.31
SPECTROSCOPY
4. Ring strain in cyclic compounds causes a relatively large shift to higher frequency. This phenomenon provides a remarkably reliable test of ring size, distinguishing clearly between four-, five-, and larger-membered-ring ketones, lactones, and lactams. Six-membered-ring and larger ketones, lactones, and lactams show the normal frequency found for the open-chain compounds. 5. Hydrogen bonding to a carbonyl group causes a shift to lower frequency of 40–60 cm1. Acids, amides, enolized -keto carbonyl systems, and o-hydroxyphenol and o-aminophenyl carbonyl compounds show this effect. All carbonyl compounds tend to give slightly lower values for the carbonyl stretching frequency in the solid state compared with the value for dilute solutions. 6. Where more than one of the structural influences on a particular carbonyl group is operating, the net effect is usually close to additive. An especially convenient aspect of IR spectroscopy is its practice. A small amount of sample can be pressed between two NaCl or KBr (Table 6.19) disks and the spectrum can be determined without further preparation. A spectrum so obtained is recorded as “neat” or “between salts.” If the sample is a solid, it may be mixed in a mortar and pestle with KBr and then pressed into a disk. The salt disk may be placed directly in the IR beam. In neither case is there a concern about solvent peaks. Of course, solvents may be used. Carbon tetrachloride and chloroform are the most commonly used solvents when the compound requires dissolution. Alternately, the sample may be intimately mixed (mulled) with mineral oil (a hydrocarbon oil). The thick slurry may then be smeared on a salt disk and placed in the spectrometer. The brand of mineral oil used historically is Nujol and such slurries are still called “Nujol mulls.” The transmission characteristics of potential solvents for IR spectroscopy may be found in Table 6.20. Traditional analog spectrometers were calibrated by taking a second spectrum of polystyrene. The sharp 1 641 cm1 band was recorded on the same sheet as the original spectrum. Modern Fourier transform instruments do not usually require this step but still require calibration. TABLE 6.14 Absorption Frequencies of Carbonyl Bands All bands quoted are strong.
Groups Acid anhydrides ˆ CO ˆ O ˆ CO ˆ Saturated
Aryl and ,-unsaturated Saturated five-ring All classes
Band, cm1
1 850–1 800 1 790–1 740
1 830–1 780 1 700–1 710 1 870–1 820 1 800–1 750 1 300–1 050
Remarks
Two bands usually separated by about 60 cm1. The higherfrequency band is more intense in acyclic anhydrides, and the lower-frequency band is more intense in cyclic anhydrides.
One or two strong bands due to CO stretching
6.32
SECTION 6
TABLE 6.14 Absorption Frequencies of Carbonyl Bands (continued ) Groups Acid chlorides ˆ COCl Saturated Aryl and ,-unsaturated Acid peroxide CO ˆ O ˆ O ˆ CO ˆ Saturated Aryl and ,-unsaturated Esters and lactones ˆ CO ˆ O ˆ Saturated Aryl and ,-unsaturated Aryl and vinyl esters C ¨ C ˆ O ˆ CO ˆ alkyl Esters with electronegative substituents; e.g., aCCl ˆ CO ˆ O ˆ -Keto esters Six-ring and larger lactones
Five-ring lactone ,-Unsaturated five-ring lactone
Band, cm1
1 815–1 790
Acid fluorides higher, bromides and iodides lower
1 790–1 750
1 820–1 810 1 800–1 780 1 805–1 780 1 785–1 755
1 750–1 735 1 730–1 715 1 800–1 750
The C ¨ C stretching band also shifts to higher frequency.
1 770–1 745 1 755–1 740 Similar values to the corresponding open-chain esters 1 780–1 760 1 770–1 740
,-Unsaturated five-ring lactone, vinyl ester type Four-ring lactone -Keto ester in H bonding enol form
ca 1 800 ca 1 820
All classes
1 300–1 050
Aldehydes ˆ CHO (See also Table 6.39 for C ˆ H.) All values given below are lowered in liquidfilm or solid-state spectra by about 10–20 cm1. Vaporphase spectra have values raised about 20 cm1.
Remarks
ca 1 650
When -CH is present, there are two bands, the relative intensity depending on the solvent.
Keto from normal; chelate-type H bond causes shift to lower frequency than the normal ester. The C ¨ C band is strong and is usually near 1 630 cm1. Usually two strong bands due to CO stretching
6.33
SPECTROSCOPY
TABLE 6.14 Absorption Frequencies of Carbonyl Bands (continued ) Groups
Band, cm1
Aldehydes ˆ CHO (continued) Saturated Aryl
1 740–1 720 1 715–1 695
,-Unsaturated ,,,-Unsaturated -Ketoaldehyde in enol form
1 705–1 680 1 680–1 660 1 670–1 645
Ketones aC ¨ O All values given below are lowered in liquid-film or solid-state spectra by about 10–20 cm1. Vapor-phase spectra have values raised about 20 cm1. Saturated Aryl ,-Unsaturated ,, , -Unsaturated and diaryl Cyclopropyl Six-ring ketones and larger
Five-ring ketones
1 725–1 705 1 700–1 680 1 685–1 665 1 670–1 660 1 705–1 685 Similar values to the corresponding open-chain ketones 1 750–1 740
Four-ring ketones -Halo ketones
ca 1 780 1 745–1 725
, -Dihaloketones
1 765–1 745
1,2-Diketones, syn-transopen chains
1 730–1 710
syn-cis-1,2-Diketones, six-ring syn-cis-1,2-Diketones, five ring o-Amino-aryl or o-hydroxyaryl ketones
Remarks
o-Hydroxy or amino groups shift this value to 1 655–1 625 cm1 because of intramolecular H bonding.
Lowering caused by chelate-type H bonding
, Unsaturation, ,, , unsaturation, etc., have a similar effect on these values as on those of open-chain ketones. Affected by conformation; highest values are obtained when both halogens are in the same plane as the C ¨ O. Anti-symmetrical stretching frequency of both C ¨ O’s. The symmetrical stretching is inactive in the infrared but active in the Raman.
1 760 and 1 730 1 775 and 1 760 1 655–1 635
Low because of intramolecular H bonding. Other substituents and steric hindrance affect the position of the band.
6.34
SECTION 6
TABLE 6.14 Absorption Frequencies of Carbonyl Bands (continued ) Groups Ketones aC ¨ O (continued) Quinones Extended quinones Tropone Carboxylic acids ˆ CO2H All types
Saturated
,-Unsaturated Aryl -HaloCarboxylate ions ˆCO 2 Most types Amides ˆ CO ˆ Nb (See also Table 6.39 for NH stretching and bending.) Primary ˆ CONH2 In solution Solid state In solution Solid state
Band, cm1
1 690–1 660 1 655–1 635 1 650
3 000–2 500
1 725–1 700
Remarks
C ¨ C band is strong and is usually near 1 600 cm1. Near 1 600 cm1 when lowered by H bonding as in tropolones OH stretching; a characteristic group of small bands due to combination bands The monomer is near 1 760 cm1, but is rarely observed. Occasionally both bands, the free monomer, and the H-bonded dimer can be seen in solution spectra. Ether solvents give one band near 1 730 cm1.
1 715–1 690 1 700–1 680 1 740–1 720 1 610–1 550 1 420–1 300
Anti-symmetrical and symmetrical stretching, respectively
ca 1 690 ca 1 650 ca 1 600 ca 1 640
Amide I; C ¨ O stretching Amide II: mostly NH bending Amide I is generally more intense than amide II. (In the solid state, amides I and II may overlap.)
Secondary ˆ CONH ˆ In solution Solid state In solution Solid state
1 700–1 670 1 680–1 630 1 550–1 510 1 570–1 515
Tertiary
1 670–1 630
Lactams Six-ring and larger rings Five-ring Four-ring
ca 1 670 ca 1 700 ca 1 745
Amide I Amide II; found in open-chain amides only Amide I is generally more intense than amide II. Since H bonding is absent, solid and solution spectra are much the same.
Shifted to higher frequency when the N atom is in a bridged system
6.35
SPECTROSCOPY
TABLE 6.14 Absorption Frequencies of Carbonyl Bands (continued ) Band, cm1
Groups
Remarks Shifted 15 cm1 by the additional double bond Shifted by up to 15 cm1 by the additional double bond. This is an unusual effect by , unsaturation. It is said to be due to the inductive effect of the C ¨ C on the well-conjugated CO ˆ N system, the usual conjugation effect being less important in such a system.
R ˆ CO ˆ N ˆ C ¨ C C ¨ C ˆ CO ˆ N
Imides ˆ CO ˆ N ˆ CO ˆ Cyclic six-ring Cyclic five-ring
ca 1 710 and ca 1 700 ca 1 770 and ca 1 700
Shift of 15 cm1 with , unsaturation
Ureas N ˆ CO ˆ N RNHCONHR Six-ring Five-ring
ca 1 660 ca 1 640 ca 1 720
Urethanes R ˆ O ˆ CO ˆ N
1 740–1 690
Also shows amide II band when nonsubstituted on N
Thioesters and Acids RCO ˆ S ˆ R RCOSH
ca 1 720
,-Unsaturated or aryl acid or ester shifted about 25 cm1
RCOS ˆ alkyl RCOS ˆ aryl
ca 1 690 ca 1 710
TABLE 6.15 Absorption Frequencies of Other Double Bonds Abbreviations Used in the Table m, moderately strong vs, very strong m-s, moderate to strong w, weak var, of variable strength Group
Band, cm1
Remarks
Alkenes aC ¨ Cb Nonconjugated
1 680–1 620 (w-m)
Conjugated with aromatic ring
1 640–1 610 (m)
May be very weak if symmetrically substituted More intense than with unconjugated double bonds
6.36
SECTION 6
TABLE 6.15 Absorption Frequencies of Other Double Bonds Alkenes aC ¨ Cb (continued) Internal (ring)
3 060–2 995 (m)
Carbons: n 3 n4 n5
ca 1 665 (w-m) ca 1 565 (w-m) ca 1 610 (w-m) 1 370–1 340 (s) 1 650–1 645 (w-m)
n6
Highest frequencies for smallest ring
Characteristic
Exocyclic C ¨ C(CH2)n n 2 n3 n4
1 780–1 730 (m) ca 1 680 (m) 1 655–1 650 (m)
Fulvene
1 645–1 630 (m) 1 370–1 340 (s) 790–765 (s)
Dienes, trienes, etc.
1 650 (s) and 1 600 (s)
Lower-frequency band usually more intense and may hide or overlap the higher-frequency band
,-Unsaturated carbonyl compounds
1 640–1 590 (m)
Usually much weaker than the C ¨ O band
Enol esters, enol ethers, and enamies
1 700–1 650 (s) Imines, oximes, and amidines aC ¨ N ˆ
Imines and oximes Aliphatic ,-Unsaturated and aromatic Conjugated cyclic systems
1 690–1 640 (w) 1 650–1 620 (m) 1 660–1 480 (var) 960–930 (s)
NO stretching of oximes
Imino ethers ˆ O ˆ C ¨ N ˆ
1 690–1 640 (var)
Usually a strong doublet
Imino thioethers ˆ S ˆ C ¨ N ¨
1 640–1 605 (var)
Imine oxides aC ¨ Nˆ O
1 620–1 550 (s)
Amidines aN ˆ C ˆ N ˆ
1 685–1 580 (var)
Benzamidines Aryl ˆ C ¨ N ¨ N
1 630–1 590
6.37
SPECTROSCOPY
TABLE 6.15 Absorption Frequencies of Other Double Bonds (continued) Band, cm1
Group
Remarks
Imines, oximes, and amidines aC ¨ N ˆ (continued ) Guanidine
1 725–1 625 (s)
Azines aC¨NˆN¨Cb
1 670–1 600
Hydrazoketones ˆ CO ˆ C ¨ N ˆ N
1 600–1 530 (vs)
Azo compounds ˆ N ¨ N ˆ Azo ˆ N ¨ N ˆ Aliphatic Aromatic cis (Z ) trans (E ) Azoxy Aliphatic
ca 1 575 (var) ca 1 510 (w) 1 440–1 410 (w)
+
N
O
N
–
Aromatic
Very weak or inactive
Azothio ˆ N ¨ Nˆ S ˆ
1 590–1 495 (m-s) 1 345–1 285 (m-s) 1 480–1 450 (m-s) 1 340–1 315 (m-s) 1 465–1 445 (w) 1 070–1 055 (w) Nitro compounds N ¨ O
Nitro C ˆ NO2 Aliphatic
Aromatic
ca 1 560 (s) 1 385–1 350 (s)
1 570–1 485 (s) 1 380–1 320 (s)
865–835 (s)
The two bands are due to asymmetrical and symmetrical stretching of the N ¨ O bond. Electron-withdrawing substituents adjacent to nitro group increase the frequency of the asymmetrical band and decrease that of the symmetrical frequency. See above remark; also bulky orthosubstituents shift band to higher frequencies. Strong H bonding shifts frequency to lower end of range. Strong and sometimes at ca 750 cm1
6.38
SECTION 6
TABLE 6.15 Absorption Frequencies of Other Double Bonds Band, cm1
Group
Remarks
Nitro compounds N ¨ O (continued )
,-Unsaturated Nitroalkenes
580–520 (var) 1 530–1 510 (s) 1 360–1 335 (s)
Nitrates ˆ O ˆ NO2
1 650–1 625 (vs) 1 285–1 275 (vs) 870–855 (vs) 760–755 (w-m) 710–695 (w-m)
Nitramines aN ˆ NO2
1 630–1 550 (s) 1 300–1 250 (s) 1 680–1 610 (vs) 815–750 (s) 850–810 (s) 690–615 (s)
Nitrates ˆ O ˆ N ¨ O
Thionitrites ˆ S ˆ N ¨ O
730–685 (m-s)
Nitroso cC ˆ N ¨ O
1 600–1 500 (s)
Two bands Trans (E ) form Cis (Z ) form
N ˆ N¨ O Aliphatic Aromatic
Nitrogen oxides N→O Pyridine Pyrazine
1 530–1 495 (m-s) 1 480–1 450 (m-s) 1 335–1 315 (m-s)
1 320–1 230 (m-s) 1 190–1 150 (m-s) 1 380–1 280 (m-s) 1 040–990 (m-s) ca 850 (m)
Affected by ring substituents
6.39
SPECTROSCOPY
TABLE 6.16 Absorption Frequencies of Aromatic Bands Abbreviations Used in the Table
m, moderately strong m-s, moderate to strong s, strong Group Aromatic rings
Band, cm1 ca 1 600 (m) ca 1 580 (m) ca 1 470 (m) ca 1 510 (m)
Five adjacent H
900–860 (w-m) 770–730 (s) 720–680 (s) 625–605 (w-m) ca 550 (w-m)
1,2-Substitution
770–735 (s) 555–495 (w-m) 470–415 (m-s)
1,3-Substitution
810–750 (s) 560–505 (m) 460–415 (m-s)
1,4-Substitution
860–800 (s) 650–615 (w-m) 520–440 (m-s)
1,2,3-Trisubstitution
800–760 (s) 720–685 (s) 570–535 (s) ca 485
1,2,4-Trisubstitution
900–885 (m) 780–760 (s) 475–425 (m-a)
1,3,5-Trisubstitution
950–925 (var) 865–810 (s) 730–680 (m-s) 535–495 (s) 470–450 (w-m)
Pentasubstitution
900–860 (m-s) 580–535 (s)
Hexasubstitution
415–385 (m-s)
var, of variable strength w-m, weak to moderately strong
Remarks Stronger when ring is further conjugated When substituent on ring is electron acceptor When substituent on ring is electron donor
Substituents: C ¨ C, C ˜ C, C ˜ N
490–460 cm1 when substituents are electron-accepting groups
520–490 cm1 when substituents are electron-donating groups
6.40
SECTION 6
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands Abbreviations Used in the Table m, moderately strong vs, very strong m-s, moderate to strong w, weak s, strong w-m, weak to moderately strong var, of variable strength Group
Band, cm1
Remarks
Ethers Saturated aliphatic cC ˆ O ˆ Cd
1 150–1 060 (vs)
1 140–900 (s)
Two peaks may be observed for branched chain, usually 1 140– 1 110 cm1. Usually 930–900 cm1; may be absent for symmetric ethers
Alkyl-aryl
Vinyl
1 270–1 230 (vs) 1 120–1 020 (s)
¨ CO stretching CO stretching
1 225–1 200 (s)
Usually about 1 205 cm1
Diaryl 1 200–1 120 (s) 1 100–1 050 (s) Cyclic
1 270–1 030 (s)
Epoxides
Ketals and acetals
1 260–1 240 (m-s) 880–805 (m) 950–860 (var) 865–785 (m) 770–750 (m)
Monosubstituted Trans (E ) form Cis (Z ) form Trisubstituted
1 190–1 140 (s) 1 195–1 125 (s) 1 100–1 000 (s) 1 060–1 035 (s)
Strongest band Sometimes obscured
Phthalanes
915–895 (s)
Aromatic methylenedioxy
1 265–1 235 (s) Peroxides
ˆOˆOˆ
900–830 (w) 1 150–1 030 (m-s) ca 1 000 (m)
Alkyl Aryl
6.41
SPECTROSCOPY
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Sulfur compounds Thiols ˆSˆH ˆ CO ˆ SH ˆ CS ˆ SH
2 600–2 450 (w) 840–830 (m) ca 860 (s)
Broad
Thiocarbonyl 1 200–1 050 (s)
Behaves generally in a manner similar to carbonyl band
1 570–1 395 1 420–1 260 1 140–940 ca 580 (s)
Sulfoxides aS ¨ O
1 075–1 040 (vs)
Halogen or oxygen atom bonded to sulfur increases the frequency.
730–690 (var) 395–360 (var) Sulfones aSO2
1 360–1 290 (vs)
Halogen or oxygen atom bonded to sulfur increases the frequency.
1 170–1 120 (vs) 610–545 (m-s) 525–495 (m-s) Sulfonamides ˆ SO2 ˆ Nb
Sulfonates ˆ SO2 ˆ O ˆ
Thiosulfonates ˆ SO2 ˆ S ˆ Sulfates ˆ O ˆ SO2 ˆ O ˆ Primary alkyl salts
1 380–1 330 (vs) 1 170–1 140 (vs) 950–860 (m) 715–700 (w-m)
1 420–1 330 (s) 1 200–1 145 (s)
May appear as doublet
ca 1 340 (vs) 1 415–1 380 (s) 1 200–1 185 (s) 1 315–1 220 (s) 1 140–1 075 (m)
Electronegative substituents increase frequencies. Strongly influenced by metal ion
6.42
SECTION 6
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Sulfur compounds (continued ) Sulfates ˆ O ˆ SO2 ˆ O (continued ) Secondary alkyl salts
Stretching frequencies of C ˆ S and S ˆ S bonds ˆ S ˆ CH3 ˆ S ˆ CH2 ˆ ˆ S ˆ CHb ˆ S ˆ Cd ˆ S ˆ aryl RˆSˆSˆR Aryl ˆ S ˆ S ˆ aryl Polysulfides CH2 ˆ S ˆ CH2 ˆ (R ˆ S)2C ¨ O
1 270–1 210 (vs) 1 075–1 050 (s)
710–685 (w-m) 660–630 (w-m) 630–600 (w-m) 600–570 (w-m) 1 110–1 070 (m) 710–685 (w-m) 705–570 (w) 520–500 (w) 500–430 (w-m) 500–470 (w-m) 695–655 (w-m) 880–825 (s) 570–560 (var) 1 035–935 (s) ca 580 (s) 1 050–900 (m-s) 980–850 (m-s) 900–800 (m-s)
Doublet; both bands strongly influenced by metal ion
CSC stretching
Monoionic Ionic 1,1-dithiolates
Phosphorus compounds PˆH
2 455–2 265 (m)
Sharp. Phosphines lie in the region 2 285–2 265 cm1.
1 150–965 (w-m) ˆ PH2
1 100–1 085 (m) 1 065–1 040 (w-m) 940–910 (m)
P ˆ alkyl
795–650 (m-s)
P ˆ aryl
1 130–1 090 (s) 750–680 (s)
P ˆ O ˆ alkyl
1 050–970 (s)
P ˆ O ˆ aryl
1 240–1 190 (s)
PˆOˆP
970–910
Broad
Broad
6.43
SPECTROSCOPY
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Phosphorus compounds (continued ) P¨O
1 350–1 150 (s)
May appear as doublet
2 725–2 520 (w-m) 2 350–2 080 (w-m)
H-bonded; broad Broad; may be doublet for aryl acids
1 740–1 600 (w-m) 1 335 (s) 1 090–910 (s) 540–450 (w-m) P¨S
P ¨ O stretching
865–655 (m-s) 595–530 (var) 3 100–3 000 (w) 2 360–2 200 (w) 935–910 (s) 810–750 (m-s) 6 55–585 (var)
PO stretching P ¨ S stretching P ¨ S stretching
Silicon compounds Si ˆ H
2 250–2 100 (s) 985–800
SiH3 has two bands.
Si ˆ Cd
860–760
Accompanied by CH2 rocking
Si ˆ CH3
1 280–1 250 (s)
Sharp
Si ˆ C2H5
1 250–1 220 (m) 1 020–1 000 (m) 970–945 (m)
Si ˆ Aryl
1 125–1 090 (vs)
Splits into two bands when two aryl groups are attached to one silicon atom, but has only one band when three aryl groups attached
cSi ˆ OH
870–820
OH deformation band
cSi ˆ O ˆ Sid
1 100–1 000
cSi ˆ N ˆ Sid
940–870 (s)
cSi ˆ Cl
550–470 (s) 250–150
6.44
SECTION 6
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Silicon compounds (continued ) aSiCl2
595–535 (s) 540–460 (m)
ˆ SiCl3
625–570 (s) 535–450 (m) Boron compounds
Boranes aBH or ˆ BH2
2 640–2 450 (m-s) 2 640–2 570 (m-s) 2 535–2 485 (m-s) 2 380–2 315 (s)
Free H in BH Free H in BH2 plus second band In complexes; second band for BH2
2 285–2 265 (s) 2 140–2 080 (w-m) 2 580–2 450 (m)
Bridged H Borazoles and borazines
BH4
2 310–2 195 (s)
Two bands
BˆN
1 550–1 330 750–635
Borazines and borazoles
BˆO
1 390–1 310 (s) 1 280–1 200
BO stretching Metal orthoborates
B ˆ Cl B ˆ Br
1 090–890 (s)
Plus other bands at lower frequencies for BX2 and BX3
BˆF
1 500–840 (var)
Isotope splitting present
XBF2
1 500–1 410 (s) 1 300–1 200 (s)
X2BF
1 360–1 300 (s)
BF3 complexes
1 260–1 125 (s) 1 030–800 (s)
BF4
ca 1 030 (vs)
Band splitting may be added to isotopic splittings.
6.45
SPECTROSCOPY
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Halogen compounds CˆF Aliphatic, mono-F Aliphatic, di-F Aliphatic, poly-F Aromatic
ˆ CF3 Aliphatic
Aromatic
C ˆ Cl Primary alkanes
Secondary alkanes
Tertiary alkanes Poly-Cl Aryl: 1,21,31,4-
1 110–1 000 (vs) 780–680 (s) 1 250–1 050 (vs) 1 360–1 090 (vs) 1 270–1 100 (m) 680–520 (m-s) 420–375 (var) 340–240 (s)
1 350–1 120 (vs) 780–680 (s) 680–590 (s) 600–540 (s) 555–505 (s) 1 330–1 310 (m-s) 600–580 (s)
730–720 (s) 685–680 (s) 660–650 (s) ca 760 (m) 675–655 (m-s) 615–605 (s) 635–610 (m-s) 580–560 (m-s) 800–700 (vs) 1 060–1 035 (m) 1 080–1 075 (m) 1 100–1 090 (m)
Chloroformates
ca 690 (s) 485–470 (s)
Axial Cl Equatorial Cl
730–580 (s) 780–740 (s)
C ˆ Br Primary alkanes
Secondary alkanes
645–635 (s) 565–555 (s) 440–430 (var) 620–605 (s) 590–575 (m-w) 540–530 (s)
Two bands Number of bands
6.46
SECTION 6
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Halogen compounds (continued ) C ˆ Br (continued) Tertiary alkanes Axial Equatorial Aryl: 1,21,3-; 1,4Other bands
CˆI Primary alkanes Secondary alkanes
Tertiary alkanes
Aromatic
Axial Equatorial
600–595 (m-s) 525–505 (s) 690–550 (s) 750–685 (s) 1 045–1 025 (m) 1 075–1 065 (m) 400–260 (s) 325–175 (m-s) 290–225 (m-s)
600–585 (s) 515–500 (s) ca 575 (s) 550–520 (s) 490–480 (s) 580–560 (s) 510–485 (m) 485–465 (s) 1 060–1 055 (m-s) 310–160 (s) 265–185 ca 640 (s) ca 655 (s) Inorganic ions
Ammonium
3 300–3 030
Cyanate
2 220–2 130 (s)
Cyanide
2 200–2 000
Carbonate
1 450–1 410
Hydrogen sulfate
1 190–1 160 (s) 1 180–1 000 (s) 880–840 (m)
Nitrate
1 410–1 350 (vs) 860–800 (m)
Nitrite
1 275–1 230 (s) 835–800 (m)
Several bands, all strong
Shoulder
6.47
SPECTROSCOPY
TABLE 6.17 Absorption Frequencies of Miscellaneous Bands (continued ) Group
Band, cm1
Remarks
Inorganic ions (continued ) Phosphate
1 100–1 000
Sulfate
1 130–1 080 (s)
Thiocyanate
ca 2 050 (s)
TABLE 6.18 Absorption Frequencies in the Near Infrared Values in parentheses are molar absorptivity
Class Acetylenes
Band, cm1
Remarks
9 800–9 430 6 580–6 400 (1.0)
Overtone of ˜ CH stretching
Alcohols (nonhydrogen-bonded)
7 140–7 010 (2.0)
Overtone of OH stretching
Aldehydes Aliphatic
4 640–4 520 (0.5)
Combination of C ¨ O and CH stretchings
Aromatic
Formate Alkanes ˆ CH3
ˆ CH2 ˆ
c CH
Cyclopropane
ca 8 000 ca 4 525 ca 4 445 4 775–4 630 (1.0)
9 000–8 350 (0.02) 5 850–5 660 (0.1) 4 510–4 280 (0.3) 9 170–8 475 (0.02) 5 830–6 640 (0.1) 4 420–4 070 (0.25) 8 550–8 130 7 000–6 800 5 650–5 560 6 160–6 060 4 500–4 400
Alkenes 6 850–6 370 (1.0)
7 580–7 300 (0.02) 6 140–5 980 (0.2) 4 760–4 700 (1.2)
All bands very weak
6.48
SECTION 6
TABLE 6.18 Absorption Frequencies in the Near Infrared (continued ) Class
Band, cm1
Remarks
Alkenes (continued)
4 760–4 660 (0.15)
Trans (E ) isomers have no unique bands.
6 250–6 040 (0.3) 7 580–7 410 (0.02) 6 190–5 990 (0.3) 4 820–4 750 (0.2–0.5) Amides Primary
7 400–6 540 (0.7) 5 160–5 060 (3.0) 5 040–4 990 (0.5) 4 960–4 880 (0.5)
Secondary
Amines, aliphatic Primary
7 330–7 140 (0.5) 5 050–4 960 (0.4)
9 710–9 350 6 670–6 450 (0.5) 5 075–4 900 (0.7)
Secondary
Amines, aromatic Primary
Secondary
Aryl-H
9 800–9 350 6 580–6 410 (0.5)
Two bands; overtone of NH stretch Second overtone of C ¨ O stretch; second overtone of NH deformation; combination of C ¨ O and NH Overtone of NH stretch Combination of NH stretch and NH bending
Second overtone of NH stretch Two bands; overtone of NH stretch Two bands; combination of NH stretch and NH bending Second overtone of NH stretch Overtone of NH stretch
9 950–9 520 (0.4) 7 040–6 850 (0.2) 6 760–6 580 (1.4) 5 140–5 040 (1.5) 10 000–9 710 6 800–6 580 (0.5) 7 660–7 330 (0.1) 6 170–5 880 (0.1)
Carbonyl
5 200–5 100
Carboxylic acids
7 000–6 800
Epoxide (terminal)
6 135–5 960 (0.2) 4 665–4 520 (1.2)
Overtone of CH stretch
Cyclopropane bands in same region
6.49
SPECTROSCOPY
TABLE 6.18 Absorption Frequencies in the Near Infrared (continued ) Class Glycols Hydroperoxides Aliphatic Aromatic
Band, cm1 7 140–7 040
6 940–6 750 (2.0) 4 960–4 880 (0.8) 7 040–6 760 (1.0) 4 950–4 850 (1.3)
Imides
9 900–9 620 6 540–6 370
Nitriles
5 350–5 200 (0.1)
Oximes
7 140–7 050
Phosphines
5 350–5 260 (0.2)
Phenols Nonbonded Intramolecularly bonded Thiols
Remarks
Two bands
7 140–6 800 (3.0) 5 000–4 950 7 000–6 700 5 100–4 950 (0.05)
TABLE 6.19 Infrared Transmitting Materials
Material NaCl, rock salt KBr, potassium bromide KCl, potassium chloride AgCl, silver chloride* AgBr, silver bromide* CaF2, calcium fluoride (Irtran-3) BaF2, barium fluoride MgO, magnesium oxide (Irtran-5) CsBr, cesium bromide CsI, cesium iodide TlBr–TlI, thallium bromide–iodide (KRS-5)* ZnS, zinc sulfide (Irtran-2) * Useful for internal reflection work.
Wavelength range,
m
Wavenumber range, cm1
Refractive index at 2 m
0.25–17 0.25–25 0.30–20 0.40–23 0.50–35 0.15–9 0.20–11.5 0.39–9.4 1–37 1–50 0.50–35
40 000–590 40 000–400 33 000–500 25 000–435 20 000–286 66 700–1 110 50 000–870 25 600–1 060 10 000–270 10 000–200 20 000–286
1.52 1.53 1.5 2.0 2.2 1.40 1.46 1.71 1.67 1.74 2.37
0.57–14.7
17 500–680
2.26
6.50
SECTION 6
TABLE 6.19 Infrared Transmitting Materials (continued )
Material ZnSe, zinc selenide* (vacuum deposited) (Irtran-4) CdTe, cadmium telluride (Irtran-6) Al2O3, sapphire* SiO2, fused quartz Ge, germanium* Si, silicon* Polyethylene * Useful for internal reflection work.
Wavelength range,
m
Wavenumber range, cm1
Refractive index at 2 m
1–18
10 000–556
2.45
2–28 0.20–6.5 0.16–3.7 0.50–16.7 0.20–6.2 16–300
5 000–360 50 000–1 538 62 500–2 700 20 000–600 50 000–1 613 625–33
2.67 1.76 4.0 3.5 1.54
TABLE 6.20 Infrared Transmission Characteristics of Selected Solvents
6.51
6.52
TABLE 6.20 Infrared Transmission Characteristics of Selected Solvents (continued)
6.53
6.54
SECTION 6
RAMAN SPECTROSCOPY Infrared and Raman spectroscopy are related by the fact that both permit the detection of bond vibrations. Like IR spectroscopy, the spectral bands are reported in cm1. An important difference is that the wavelength and intensity of inelastically scattered light is measured in the Raman spectroscopic method. The “Raman effect” causes the scattered radiation to shift according to the energies of molecular vibrations. Although Raman spectroscopy involves a physical principle different from that in IR spectroscopy, the two techniques are complementary. Infrared spectroscopy relies on a changing dipole during a bond vibration for absorption of energy to occur. In Raman, it is a change in polarizability in the bond that permits absorption. The simple molecule carbon dioxide, O ¨ C ¨ O, is an instructive example. Both C ¨ O bonds have dipoles but they oppose each other and the net dipole is 0 Debye (0 D). The symmetrical stretch in which both C ¨ O bonds simultaneously extend and contract does not change the dipole but is detectable by Raman because the polarizability of the system alters. Raman scattering is not a very efficient process and an energy source of considerable power is required. This is typically an argon (Ar) laser. A variety of chemical bonds and systems can be detected by modern Raman spectrometers and typical data are summarized in Tables 6.21–6.30.
TABLE 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon Abbreviations Used in the Table m, moderately strong vw, very weak m-s, moderate to strong w, weak m-vs, moderate to very strong w-m, weak to moderately strong s, strong w-m, weak to moderately strong vs, very strong w-vs, weak to very strong Group
Band, cm1
Remarks
Saturated C ˆ H and C ˆ C ˆ CH3
ˆ CH2 ˆ
2 969–2 967 (s) 2 884–2 883 (s) ca 1 205 (s) 1 150–1 135 1 060–1 056 975–835 (s) 280–220 2 949–2 912 (s) 2 861–2 849 (s) 1 473–1 443 (m-vs) 1 305–1 295 (s) 1 140–1 070 (m) 888–837 (w) 425–150 500–490
In aryl compounds In unbranched alkyls In unbranched alkyls Terminal rocking of methyl group CH2 ˆ CH3 torsion
Intensity proportional to number of CH2 groups Often two bands; see above
Substituent on aromatic ring
6.55
SPECTROSCOPY
TABLE 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon (continued ) Group
Band, cm1
Remarks
Saturated C ˆ H and C ˆ C (continued ) ˆ CH(CH3)2
ˆ C(CH3)3
Internal tertiary carbon atom
Internal quaternary carbon atom
Two adjacent tertiary carbon atoms
Dialkyl substitution at -carbon atom
Cyclopropane
1 350–1 330 (m) 835–750 (s)
1 265–1 240 (m) 1 220–1 200 (m) 760–685 (vs)
If attached to C ¨ C bond, 870–800 cm1. If attached to aryl ring, 740 cm1 Not seen in tert-butyl bromide Not seen in tert-butyl bromide If attached to C ¨ C or aromatic ring, 760–720 cm1
855–805 (w) 455–410
710–680 (vs) 490–470
730–920 770–725
Often a band at 530–524 cm1 indicates presence of adjacent tertiary and quaternary carbon atoms.
800–700 (m-s) 680–650 (vs) 605–550 3 101–3 090 3 038–3 019 1 210–1 180 (s)
Cyclobutane
1 001–960 (vs)
Cyclopentane
900–800 (s)
Cyclohexane
825–815 (vs) 810–795 (vs)
Shifts to 1 200 cm1 for monoalkyl or 1,2-dialkyl substitution and to 1 320 cm1 for gem-1,1dialkyl substitution Shifts to 933 cm1 for monoalkyl, to 887 cm1 for cis-1,3-dialkyl, and to 891 cm1 plus 855 cm1 (doublet) for trans-1,3-dialkyl subsition
Boat configuration Chair configuration
6.56
SECTION 6
TABLE 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon (continued ) Band, cm1
Group
Remarks
Saturated C ˆ H and C ˆ C (continued ) Cycloheptane
ca 733
Cyclooctane
ca 703
CH3
1 392–1 377
C
450–400 (vw) 270–250 (m)
CH3 CH3
H C
C CH3
H CH3
CH3 C
C H
H CH3
1 372–1 368 970–952 (m) 592–545 (vw) 420–400 (m) 310–290 (m)
CH3 C
1 385–1 375 522–488 (w)
C
CH3
H
CH3
CH3 C
C
CH3 C
1 380–1 379 492–455 (vw) 220–200 (m)
CH3 C
C
O
1 392–1 386 690–678 (m-s) 510–485 (m) 424–388 (w) 1 170–1 100 (w-m) 600–580 (m-s) 1 120–1 090 (m-vs)
C
C O
Tertiary or quaternary carbon adjacent to carbonyl group lowers the frequency 300 cm1
600–510 (w-m)
ˆ CH2 ˆ CO ˆ
1 420–1 410 (s)
ˆ CHO
2 850–2 810 (m) 2 720–2 695 (vs)
Often appears as a shoulder
6.57
SPECTROSCOPY
TABLE 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon (continued ) Group
Band, cm1
Remarks
Unsaturated C ˆ H ˆC˜CˆH
3 340–3 270 (w-m)
Alkyl substituents at higher frequencies; unsaturated or aryl substituents at lower frequencies
3 040–2 995 (m)
3 095–3 050 (m) 2 990–2 983 (s)
Asymmetric ¨ CH2 stretch Symmetric ¨ CH2 stretch
1 419–1 415 (m) 1 309–1 2 888 (m)
Plus ¨ CH and ¨ CH stretching bands
1 413–1 399 (m) 909–885 (m) 711–684 (w)
Plus ¨ CH2 stretching bands
1 270–1 251 (m)
Plus ¨ CH stretching band
1 314–1 290 (m)
Plus ¨ CH stretching band
1 360–1 322 (w) 830–800 (vw)
Plus ¨ CH stretching band
Hydroxy O ˆ H Free ˆ OH Intermolecularly bonded Aromatic ˆ OH
3 650–3 250 (w) 3 400–3 300 (w) ca 3 160 (s)
ˆ OH
1 460–1 320 (w) 1 276–1 205 (w-m) 1 260 (w-m)
Common to all OH substituents Primary Secondary
6.58
SECTION 6
TABLE 6.21 Raman Frequencies of Single Bonds to Hydrogen and Carbon (continued ) Group
Band, cm1
Remarks
Hydroxy O ˆ H (continued ) C ˆ C ˆ OH primary
C ˆ C ˆ OH Secondary
Tertiary
ˆ CO ˆ O ˆ H
1 070–1 050 (m-s) 1 030–960 (m-s) 480–430 (w-m)
CCO stretching CCO deformation
1 135–1 120 (m-s) 825–815 (vs) 500–490 (w-m) 1 210–1 200 (m-s) 755–730 (vs) 360–350 (w-m) 1 305–1 270
CO stretching
N ˆ H and C ˆ N bonds Amine aN ˆ H Associated Nonbonded Salts ˆ NH2 Amides Primary
Secondary
3 400–3 250 (s) 3 550–3 250 (s) 2 986–2 974 1 650–1 590 (w-vs)
3 540–3 500 (w) 3 400–3 380 (w) 1 310–1 250 (s)
1 150–1 095 (m) 3 491–3 404 (m-s)
Primary amines show two bands. Often obscured by intense CH stretching bands Bending Both bands lowered ca 150 cm1 in solid state and H bonding Interaction of NH bending and CN stretching; lowered 50 cm1 in nonbonded state Rocking of NH2 Two bands; lowered in frequency on H bonding and in solid state
1 190–1 130 (m) 931–865 (m-s) 430–395 (w-m) ˆ CO ˆ N
607–555 (m)
O ¨ CN bending
1 070–1 045 (m)
Stretching
cC ˆ Nb Primary carbon Secondary carbon
1 090–1 060 (m) 1 140–1 035 (m)
Tertiary carbon
1 240–1 020 (m)
CN stretching Two bands but often obscured. Strong band at 800 cm1 Two bands. Strong band also at 745 cm1
6.59
SPECTROSCOPY
TABLE 6.22 Raman Frequencies of Triple Bonds Abbreviations Used in the Table m, moderately strong s-vs, strong to very strong m-s, moderate to strong vs, very strong s, strong Group
Band, cm1
R ˆ C ˜ CH
2 160–2 100 (vs) 650–600 (m) 356–335 (s)
R1 ˆ C ˜ C ˆ R2
2 300–2 190 (vs)
ˆC˜CˆC˜Cˆ
2 264–2 251 (vs)
ˆC˜N
2 260–2 240 (vs)
2 234–2 200 (vs) 840–800 (s-vs) 385–350 (m-s) 200–160 (vs) HˆC˜N Azides ˆ Nˆ N ˜ N
Diazonium salts R ˆ N˜ N Isonitriles ˆ N ˜ C
Thiocyanates ˆSˆC˜N
Remarks Monoalkyl substituted; C ˜ C stretch C ˜ CH deformation C ˜ C ˆ C bending of monoalkyls C ˜ C stretching of disubstituted alkyls; sometimes two bands
Unsaturated nonaryl substituents lower the frequency and enhance the intensity. Lowered ca 30 cm1 with aryl and conjugated aliphatics CCCN symmetrical stretching Aliphatic nitriles
2 094 (vs)
2 170–2 080 (s) 1 258–1 206 (s)
Asymmetric NNN stretching Symmetric NNN stretching; HN3 at 1 300 cm1
2 300–2 240 (s)
2 146–2 134 2 124–2 109
Stretching of aliphatics Stretching of aromatics
2 260–2 240 (vs) 650–600 (s)
Stretching of C ˜ N Stretching of SC bond
6.60
SECTION 6
TABLE 6.23 Raman Frequencies of Cumulated Double Bonds Abbreviations Used in the Table s, strong vw, very weak vs, very strong w, weak Group Allenes C¨C¨C
Carbodiimides (cyanamides) ˆN¨C¨Nˆ
Band, cm1
2 000–1 960 (s) 1 080–1 060 (vs) 356
Pseudo-asymmetric stretching Symmetric stretching C ¨ C ¨ C bending
2 140–2 125 (s)
Asymmetric stretching of aliphatics Asymmetric stretching of aromatics; two bands Symmetrical stretching of aliphatics Symmetric stretching of aryls
2 150–2 100 (vs) 1 460 1 150–1 140 (vs) Cumulenes (trienes) C¨C¨C¨C
Isocyanates ˆN¨C¨O
Isothiocyanates ˆN¨C¨S
Ketenes C¨C¨O
Sulfinylamines RˆN¨S¨O
Remarks
2 080–2 030 (vs) 878
2 300–2 250 (vw) 1 450–1 400 (s)
Asymmetric stretching Symmetric stretching
2 220–2 100 690–650
Two bands Alkyl derivatives
2 060–2 040 (vs) 1 130 (s) 1 374 (s) 1 120 (s)
Pseudo-asymmetric stretching Pseudo-symmetric stretching Alkyl derivatives Aryl derivatives
1 306–1 214 (w) 1 155–989 (s)
Asymmetric stretching Symmetric stretching
6.61
SPECTROSCOPY
TABLE 6.24 Raman Frequencies of Carbonyl Bonds Abbreviations Used in the Table m, moderately strong s-vs, strong to very strong m-s, moderate to strong vs, very strong s, strong w, weak Group Acid anhydrides ˆ CO ˆ O ˆ CO ˆ Saturated Conjugated, noncyclic
Acid fluorides ˆ CO ˆ F Alkyl Aryl Acid chlorides ˆ CO ˆ Cl Alkyl Aryl
Band, cm1
1 850–1 780 (m) 1 771–1 770 (m) 1 775 1 720
1 840–1 835 1 812–1 800
1 810–1 770 (s) 1 774 1 731
Acid bromides ˆ CO ˆ Br Alkyl Aryl
1 812–1 788 1 775–1 754
Acid iodides ˆ CO ˆ I Alkyl Aryl
ca 1 806 ca 1 752
Lactones
1 850–1 730 (s)
Esters Saturated
1 741–1 725
Aryl and ,-unsaturated Diesters Oxalates Phthalates C ˜ C ˆ CO ˆ O ˆ Carbamates
Remarks
1 727–1 714 1 763–1 761 1 738–1 728 1 716–1 708 1 694–1 688
Aldehydes
1 740–1 720 (s-vs)
Ketones Saturated Aryl
1 725–1 700 (vs) 1 700–1 650 (m)
Alkyl branching on carbon adjacent to C ¨ O lowers frequency by 5–15 cm1.
6.62
SECTION 6
TABLE 6.24 Raman Frequencies of Carbonyl Bonds (continued ) Group
Band, cm1
Ketones (continued) Alicyclic n 4 n 5 n6
1 782 (m) 1 744 (m) 1 725–1 699 (m)
Carboxylic acids Mono-
1 686–1 625 (s)
PolyAmino acids Carboxylate ions Amino acid anion
Amides (see also Table 6.21) Primary Associated Nonbonded Secondary Associated
Nonbonded Tertiary Lactams
1 782–1 645 1 750–1 710 1 743–1 729 1 690–1 550 (w) 1 440–1 340 (vs) 1 743–1 729 1 600–1 570 (w)
Remarks
These -substituents increase the frequency: F, Cl, Br, OH. Solid state; often two bands In solution; very broad band
Often masked by water deformation band near 1 630 cm1
1 686–1 576 (m-s) 1 650–1 620 (m) 1 715–1 675 (m) 1 620–1 585 (m) 1 680–1 630 (w) 1 570–1 510 (w) 1 490–1 440 1 700–1 650 1 550–1 500 1 670–1 630 (m) 1 750–1 700 (m)
Both cis (Z) and trans (E ) forms Trans (E ) form Cis (Z ) form Both cis (Z ) and trans (E ) forms Trans (E ) form (no cis band)
6.63
SPECTROSCOPY
TABLE 6.25 Raman Frequencies of Other Double Bonds Abbreviations Used in the Table m, moderately strong vs, very strong m-s, moderate to strong w, weak s, strong s-vs, strong to very strong w-m, weak to moderately strong Band, cm1
Group
Remarks
Alkenes aC ¨ Cb aC ¨ Cb
Haloalkene
X fluorine
1 680–1 576 (m-s)
General range
1 648–1 638 (vs)
C ¨ C stretching
ca 1 650 (vs) 270–252 (w)
C ¨ C stretching C ¨ C ˆ C skeletal deformation
ca 1 660 (vs) 970–952 (w)
C ¨ C stretching Asymmetric CC stretching
1 676–1 665 (s)
C ˆ C stretching
1 678–1 664 (vs) 522–488 (w)
C ¨ C stretching C ¨ C ˆ C skeletal deformation
1 680–1 665 (s) 690–678 (m-s) 510–485 (m) 424–388 (w)
C ¨ C stretching Symmetrical CC stretching Skeletal deformation Skeletal deformation
X chlorine
X bromine
X-iodine
aC ¨ Cb stretch of haloalkanes H2C ¨ CHX HXC ¨ CHX cis (Z) trans (E ) H2C ¨ CX2 X2C ¨ CHX X2C ¨ CX2
1 654
1 603–1 601
1 596–1 593
1 581
1 712 1 694 1 728 1 792 1 872
1 590–1 587 1 578–1 576 1 616–1 611 1 589–1 582 1 577–1 571
1 587–1 583 1 582–1 581 1 593 1 552 1 547
1 543 1 537
1 465 (solid)
6.64
SECTION 6
TABLE 6.25 Raman Frequencies of Other Double Bonds (continued ) Group
Band, cm1
Remarks
aC ˆ N ˆ bonds Aldimines (azomethines) 1 673–1 639
Dialkyl substituents at higher frequency; diaryl substituents at lower end of range
1 405–1 400 (s) Aldoximines and Ketoximes aC ˆ N ˆ OH
Azines aC ¨ N ˆ N ¨ Cb
1 680–1 617 (vs) 1 335–1 330 (w)
1 625–1 608 (s)
Hydrazones
1 660–1 610 (s-vs)
Imido ethers 1 658–1 648
NH stretching at 3 360–3 327 cm1
1 665–1 642 (vs)
Aliphatic. Thiosemicarbazones fall in lower end of range. Aromatic derivatives
Semicarbazones and thiosemicarbazones
1 620–1 610 (vs)
Azo compounds ˆ N ¨ N ˆ ˆN¨Nˆ
1 580–1 570 (vs) 1 442–1 380 (vs) 1 060–1 030 (vs)
Nonconjugated Conjugated to aromatic ring CN stretching in aryl compounds
Nitro compounds N ¨ O Alkyl nitrites
1 660–1 620 (s)
N ¨ O stretching
Alkyl nitrates
1 635–1 622 (w-m) 1 285–1 260 (vs) 610–562 (m)
Asymmetric NO2 stretching Symmetric NO2 stretching NO2 deformation
6.65
SPECTROSCOPY
TABLE 6.25 Raman Frequencies of Other Double Bonds (continued ) Group
Band, cm1
Remarks
Nitro compounds N ¨ O (continued ) Nitroalkanes Primary
1 560–1 548 (m-s) 1 395–1 370 (s) 915–898 (m-s) 894–873 (m-s) 618–609 (w) 640–615 (w) 494–472 (w-m)
Secondary
Tertiary
Nitrogen oxides cN →O
1 553–1 547 (m) 1 375–1 360 (s) 908–868 (m) 863–847 (s) 625–613 (m) 560–516 (s) 1 543–1 533 (m) 1 355–1 345 (s)
1 612–1 602 (s) 1 252 (m) 1 049–1 017 (s) 835 (s) 541 (w) 469 (w)
Sensitive to substituents attached to CNO2 group
Shoulder Broad; useful to distinguish from secondary nitroalkanes
Sharp band
6.66
SECTION 6
TABLE 6.26 Raman Frequencies of Aromatic Compounds Abbreviations Used in the Table m, moderately strong var, of variable strength m-s, moderate to strong vs, very strong m-vs, moderate to very strong w, weak s, strong w-m, weak to moderately strong s-vs, strong to very strong Group
Band, cm1
Remarks
Common features Aromatic compounds
3 070–3 020 (s) 1 630–1 570 (m-s)
CH stretching C ˆ C stretching
Substitution patterns of the benzene ring Monosubstituted
1 180–1 170 (w-m) 1 035–1 015 (s) 1 010–990 (vs)
Characteristic feature; found also with 1,3- and 1,3,5-substitutions
630–605 (w) 1,2-Disubstituted
1 230–1 215 (m) 1 060–1 020 (s) 740–715 (m)
1,3-Disubstituted
1 010–990 (vs) 750–640 (s)
1,4-Disubstituted
1 230–1 200 (s-vs) 1 180–1 150 (m) 830–750 (vs)
Characteristic feature Lowered 60 cm1 for halogen substituents Characteristic feature
Lower frequency with Cl substituents
650–630 (m-w) Isolated hydrogen
1,2,3-Trisubstituted
1 379 (s-vs) 1 290–1 200 (s) 745–670 (m-vs) 580–480 (s) 1 100–1 050 (m) 670–500 (vs)
Characteristic feature
The lighter the mass of the substituent, the higher the frequency
490–430 (w) 1,2,4-Trisubstituted
750–650 (vs) 580–540 (var) 500–450 (var)
Lighter mass at higher frequencies
6.67
SPECTROSCOPY
TABLE 6.26 Raman Frequencies of Aromatic Compounds (continued) Band, cm1
Group
Remarks
Substitution patterns of the benzene ring (continued) 1,3,5-Trisubstituted
1 010–990 (vs)
Completely substituted
1 296 (s) 550 (vs) 450 (m) 361 (m) Other aromatic compounds
Naphthalenes
1 390–1 370 1 026–1 012 767–762 535–512 519–512
Ring breathing or substituents substituents substituents substituents
Disubstituted naphthalenes
773–737 (s) 726–705 (s)
608 575–569 544–537
1,2-; 1,3-; 2,3-; 2,6-; 2,71,3-; 1,4-(two bands); 1,6-; 1,7(two bands) 1,2-; 1,4-(two bands); 1,5-; 1,8(two bands) 1,31,2-; 1,3-; 1,61,2-; 1,7-; 1,8-
1 415–1 385
Ring breathing
690–634 (s)
Anthracenes
TABLE 6.27 Raman Frequencies of Sulfur Compounds Abbreviations Used in the Table m, moderately strong s-vs, strong to very strong m-s, moderate to strong vs, very strong s, strong w-m, weak to moderately strong Group
Band, cm1
Remarks
ˆSˆH
2 590–2 560 (s)
SH stretching for both aliphatic and aromatic
aC ¨ S
1 065–1 050 (m) 735–690 (vs)
aS ¨O In (RO2)2SO In (R2N)2SO
1 209–1 198 1 108
Solid state
One or two bands
6.68
SECTION 6
TABLE 6.27 Raman Frequencies of Sulfur Compounds (continued ) Band, cm1
Group a S ¨ O (continued ) In R2SO SOF2 SOCl2 SOBr2
Remarks
1 070–1 010 (w-m) 1 308 1 233 1 121
Broad
ˆ SO2 ˆ
1 330–1 260 (m-s) 1 155–1 110 (s) 610–540 (m) 512–485 (m)
Asymmetric SO2 stretching Symmetric SO2 stretching Scissoring mode of aryls Scissoring mode of alkyls
ˆ SO2 ˆ Nb
ca 1 322 (m) 1 163–1 138 (s) 524–510 (s)
Asymmetric SO2 stretching Symmetric SO2 stretching Scissoring mode
ˆ SO2 ˆ O
1 363–1 338 (w-m)
SO2 stretching. Aryl substituents occur at higher range.
1 192–1 165 (vs) 589–517 (w-m)
ˆ SO2 ˆ S ˆ
1 334–1 305 (m-s) 1 128–1 126 (s) 559–553 (m-s)
X ˆ SO2 ˆ X
1 412–1 361 (w-m) (F) (Cl) 1 263–1 168 (s) (F) (Cl) 596–531 (s)
ˆ O ˆ SO2 ˆ O ˆ
1 388–1 372 (s) 1 196–1 188 (vs)
O
C
S
Scissoring (two bands). Aryl substituents occur at higher range of frequencies.
670–620 (vs) 480–450 (vs)
C ¨ S stretching CS stretching
cC ˆ SH
920 (m) 850–820 (m)
C ˆ SH deformation of aryls
cC ˆ S ˆ
752 (vs), 731 (vs) 742–722 (m-s) 698 (w), 678 (s) 693–639 (s) 651–610 (s-vs) 589–585 (vs)
With vinyl group attached With CH3 attached With allyl group attached Ethyl or longer alkyl chain Isopropyl group attached tert-Butyl group attached
S
6.69
SPECTROSCOPY
TABLE 6.27 Raman Frequencies of Sulfur Compounds (continued ) Band, cm1
Group
Remarks
cC ˆ S ˆ (continued )
n2 n4 n5
1 112 688 659
cC ˆ (S ˆ S)n ˆ Cd Didi-n-alkyl disulfides Di-tert-butyl disulfide Trisulfides
715–620 (vs) 525–510 (vs) 576 (s) 543 (m) 510–480 (s)
Two bands; CS stretching Two bands; SS stretching CS stretching SS stretching SS stretching
TABLE 6.28 Raman Frequencies of Ethers Abbreviations Used in the Table m, moderately strong var, of variable strength s, strong vs, very strong Band, cm1
Group cC ˆ O ˆ Cd Aliphatic
1 200–1 070 (m)
930–830 (s) 800–700 (s)
Remarks
Asymmetrical COC stretching. Symmetrical substitution gives higher frequencies Symmetrical COC stretching Branching at carbon gives higher frequencies.
550–400 1 310–1 210 (m) 1 050–1 010 (m)
Aromatic
1 145–1 129 (m) 900–800 (vs) 537–370 (s) 396–295 1 280–1 240 (s) ˆOˆOˆ
800–770 (var) n3 n4 n5
1 040–1 010 (s) 920–900 (s) 820–800 (s)
Ring breathing
6.70
SECTION 6
TABLE 6.29 Raman Frequencies of Halogen Compounds Abbreviations Used in the Table m-s, moderate to strong var, of variable strength s, strong vs, very strong Group
Band, cm1
Remarks
CˆF
1400–870
Correlations of limited applicability because of vibrational coupling with stretching
C ˆ Cl Primary Secondary Tertiary
350–290 (s) 660–650 (vs) 760–605 (s) 620–540 (var)
CCCl bending; general
¨ C ˆ Cl
844–564 438–396 381–170
¨ CCl2
601–441 300–235
C ˆ Br
690–490 (s)
May be one to four bands May be one to three bands
Often several bands; primary at higher range of frequencies. Tertiary has very strong band at ca 520 cm1.
305–258 (m-s) ¨ C ˆ Br
745–565 356–318 240–115
¨ CBr2
467–265 185–145
CˆI
663–595 309 154–85
¨CˆI
ca 180
Solid state
¨ CI2
ca 265 ca 105
Solid state Solid state
6.71
SPECTROSCOPY
TABLE 6.30 Raman Frequencies of Miscellaneous Compounds Abbreviations Used in the Table m, moderately strong vs, very strong s, strong vvs, very very strong Group
Band, cm1
C ˆ As
570–550 (vs) 240–220 (vs) 480–420 (s) 570–510 (vvs) 1300–1200 (s) 600–450 (s) 2350–2240 (m)
C ˆ Pb C ˆ Hg C ˆ Si C ˆ Sn PˆH
Remarks CAs stretching CAsC deformation CPb stretching CHg stretching CSi stretching CSn stretching PH stretching
Heterocyclic rings Trimethylene oxide Trimethylene imine Tetrahydrofuran Pyrrolidine 1,3-Dioxolane 1,4-Dioxane Piperidine Tetrahydropyran Morpholine Piperazine Furan Pyrazole Pyrrole Thiophene
Pyridine
1029 1026 914 899 939 834 815 818 832 836 1515–1460 1140 1040–990 1420–1360 (vs) 1144 1410 (s) 1365 (s) 1085 (vs) 1035 (s) 832 (vs) 610 (s) 1030 (vs) 990 (vs)
2-Substituted
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Nuclear Magnetic Resonance (NMR) Spectroscopy is by far the most widely used analytical technique in the modern organic chemistry lab. Numerous monographs have been written on this subject. It would be impossible to cover all of the significant points here. The reader who is interested in knowing what the proton (1H) or carbon (13C) spectrum of a particular compound is directed to the Aldrich Library of NMR Spectra or the Sadtler Library.
6.72
SECTION 6
A number of resources are also available online. These include software for the prediction and analysis of spectral data and databases. Resources include: Proton NMR basics: http://jchemed.chem.wisc.edu/JCESoft/Programs/PNMRB/ NMR database: www.acornnmr.com/database.htm NMR prediction: www.acdlabs.com/products/spec_lab/predict_nmr/ NMR library: www.acdlabs.com/products/spec_lab/exp_spectra/spec_libraries/aldrich.html NMR Periodic Table for half-integer quadrupole spins: www.pascal-man.com/periodic-table/periodictable.html
Nuclear Magnetic Resonance Table 6.31 presents the nuclear properties of the elements. Hydrogen (1H) is an almost ideal nucleus for NMR spectroscopy. First, its natural abundance is high so most of the nuclei present in the sample will be detected in the NMR experiment. Second, its sensitivity is high meaning that its signal is readily detected. The nuclei that have been most generally used in organic chemistry are 1H and 13C although the natural abundance of the latter is low. Advances in instruments have made the acquisition of 13C-NMR spectra routine. Several other nuclei have high natural abundance and occur frequently in organic compounds. These include 7Li, 11B, 14N, 19F, 23Na, and 35Cl, which are shown in bold type in Table 6.31. Modern NMR spectrometers permit the acquisition of NMR spectra from many nuclei depending on the probe. The most favorable nuclei are those that have spin 1/2, high natural abundance, high sensitivity, and no quadrupole moment. Of course, the importance of the problem under study will ultimately dictate whether the investigator will invest the time and effort to obtain the spectrum when the experiment is difficult. Table 6.31 Nuclear properties of the elements In the following table the magnetic moment is in multiples of the nuclear magneton N (eh/4Mc) with diamagnetic correction, the spin I is in multiples of h/2, and the electric quadrupole moment Q is in multiples of 1028 square meters. Nuclei with spin 12 have no quadrupole moment. The sign of and Q is uncertain for those nuclides for which no sign is given. Sensitivity is for equal number of nuclei at constant field. NMR frequency at any magnetic field is the entry for column 5 multiplied by the value of the magnetic field in kilogauss. For example, in a magnetic field of 14.0924 kG, protons (1H) will precess at a frequency of 4.25760 14.0924 kG 60.000 MHz. In a magnetic field of 23.4924 kG, protons will precess at 4.25760 23.4924 kG 100.00 MHz.
6.73
SPECTROSCOPY
TABLE 6.31 Nuclear Properties of the Elements
Nuclide 1
n H 2 H 3 H 3 He 6 Li 7 Li 9 Be 10 B 11 B 13 C 14 N 15 N 17 O 19 F 21 Ne 22 Na 23 Na 24 Na 25 Mg 27 Al 29 Si 31 P 33 S 35 S 35 Cl 36 Cl 37 Cl 39 K 40 K 41 K 43 Ca 45 Sc 47 Ti 49 Ti 50 V 51 V 53 Cr 55 Mn 57 Fe 59 Co 61 Ni 63 Cu 65 Cu 67 Zn 69 Ga 1
Natural abundance, %
Spin I
— 99.985 0.015 — 0.000 13 7.42 92.58 100 19.7 80.3 1.108 99.635 0.365 0.037 100 0.257 — 100 — 10.11 100 4.71 100 0.76 — 75.53 — 24.47 93.22 0.011 8 6.77 0.145 100 7.32 5.46 0.25 99.75 9.55 100 2.17 100 1.25 69.1 30.9 4.11 60.2
1/2 1/2 1 1/2 1/2 1 3/2 3/2 3 3/2 1/2 1 1/2 5/2 1/2 3/2 3 3/2 4 5/2 5/2 1/2 1/2 3/2 3/2 3/2 2 3/2 3/2 4 3/2 7/2 7/2 5/2 7/2 6 7/2 3/2 5/2 1/2 7/2 3/2 3/2 3/2 5/2 3/2
Sensitivity at constant field relative to 1H 0.322 1.000 0.009 64 1.21 0.443 0.008 51 0.294 0.013 9 0.019 9 0.165 0.015 9 0.001 01 0.001 04 0.029 1 0.834 0.027 2 0.018 1 100 0.001 15 0.026 8 0.207 0.078 5 0.066 4 0.002 26 0.008 50 0.004 71 0.012 1 0.002 72 0.000 508 0.005 21 0.000 083 9 0.063 9 0.301 0.002 10 0.003 76 0.055 3 0.383 0.000 10 0.178 0.000 033 3 0.281 0.003 50 0.093 8 0.116 0.002 86 0.069 3
NMR frequency for a 1000 G field, MHz 2.916 70 4.257 60 0.653 57 4.541 31 3.243 38 0.626 55 1.654 65 0.598 27 0.457 4 1.365 95 1.070 54 0.307 6 0.431 5 0.577 39 4.005 43 0.336 11 0.443 4 1.126 21 0.322 0.260 6 1.109 40 0.845 8 1.723 8 0.326 6 0.508 0.417 1 0.489 3 0.347 2 0.198 64 0.247 0 0.109 03 0.286 54 1.034 34 0.239 97 0.240 04 0.424 3 1.119 22 0.240 63 1.055 42 0.138 1.007 2 0.380 48 1.128 5 1.209 0 0.266 3 1.021 88
Magnetic moment /N, J·T1
Electric quadrupole moment Q, 1028m2
1.913 12 2.792 78 0.857 42 2.978 9 2.127 6 0.822 03 3.256 36 1.177 45 1.800 6 2.688 5 0.702 4 0.403 75 0.283 1 1.893 7 2.628 8 0.661 76 1.746 2.217 40 1.690 0.855 4 3.641 3 0.555 26 1.131 7 0.643 5 — 0.821 81 1.285 3 0.684 07 0.391 43 1.298 1 0.214 9 1.317 2 4.755 9 0.788 46 1.104 14 3.347 0 5.148 5 0.473 5 3.449 0.090 42 4.616 0.749 8 2.222 8 2.381 2 0.875 24 2.014 5
— — 0.002 8 — — 0.000 8 0.04 0.05 0.111 0.041 — 0.01 — 0.004 — 0.09 — 0.10 — 0.22 0.15 — — 0.055 0.038 0.080 0.10 0.006 2 0.049 0.061 0.060 — 0.22 0.29 0.24 0.06 0.05 0.03 0.4 — 0.38 0.16 0.211 0.195 0.16 0.19
6.74
SECTION 6
TABLE 6.31 Nuclear Properties of the Elements 9 (continued)
Nuclide 71
Ga As 77 Se 79 Br 81 Br 87 Rb 93 Nb 113 In 119 Sn 121 Sb 123 Sb 125 Te 127 I 129 Xe 195 Pt 199 Hg 203 Tl 207Pb 75
Natural abundance, %
Spin I
Sensitivity at constant field relative to 1H
39.8 100 7.58 50.52 49.48 27.85 100 4.23 8.58 57.25 42.75 6.99 100 26.44 33.8 16.84 29.50 21.7
3/2 3/2 1/2 3/2 3/2 3/2 9/2 1/2 1/2 5/2 7/2 1/2 5/2 1/2 1/2 1/2 1/2 1/2
0.142 0.025 1 0.006 97 0.078 6 0.098 4 0.177 0.482 0.345 0.051 8 0.160 0.045 7 0.031 6 0.093 5 0.021 2 0.009 94 0.005 72 0.187 0.009 13
NMR frequency for a 1000 G field, MHz 1.298 40 0.729 2 0.811 8 1.066 9 1.149 8 1.292 3 1.040 48 0.931 2 1.586 8 1.019 2 0.551 9 1.345 3 0.851 7 1.177 79 0.915 23 0.761 2 2.433 2 0.889 8
Magnetic moment /N, J·T1
Electric quadrupole moment Q, 1028m2
2.559 7 1.439 0.534 2.105 5 2.269 6 2.750 0 6.167 0.622 5 1.046 1 3.359 2 2.546 6 0.887 2 2.809 1 0.776 8 0.602 2 0.504 15 1.611 5 10.578 3
0.12 0.29 — 0.37 0.31 0.13 0.22 — — 0.28 0.36 — 0.79 — — — — —
Chemical Shifts In essence, the chemical shift of a nucleus such as proton (1H) is its resonance frequency. It is usually expressed in parts per million (ppm) relative to a standard. The most common standard is tetramethylsilane [(CH3)4Si, TMS] which defines 0 on the delta () scale and 10 on the older, less used scale. A small amount of TMS is typically added to the NMR solution to be examined. The presence of an internal standard minimizes experimental variations. This is particularly important because the chemical shift is typically a change of only a few hertz per megahertz, hence the part per million (ppm) scale. The separation of peaks will be greater in hertz at higher field but spectra obtained at different field strengths are comparable on the ppm scale. Common reference standards are listed in Table 6.32.
TABLE 6.32 Proton Chemical Shifts of Reference Compounds Relative to Tetramethylsilane
Compound Tetramethylsilane, (CH3)4Si 3-(Trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS), (CH3)3SiCH2CH2COONa Sodium acetate 1,2-Dibromoethane
Chemical shift , ppm*
Solvent(s)
0.0 0.0
CDCl3, CCl4 D2O
1.90 3.63
D 2O CDCl3
6.75
SPECTROSCOPY
TABLE 6.32 Proton Chemical Shifts of Reference Compounds Relative to Tetramethylsilane (continued)
Compound
Chemical shift , ppm*
1,1,2,2-Tetrachloroethane, Cl2HCCHCl2 1,4-Benzoquinone 1,4-Dichlorobenzene Chloroform, CHCl3 Benzene 1,3,5-Trinitrobenzene
5.95 6.78 7.23 7.27 7.37 9.21
Solvent(s) CDCl3, CCl4 CDCl3, CCl4 CCl4 CDCl3, CCl4 CDCl3, CCl4 DMSO-d6† CDCl3
*Shift relative to TMS, first entry in table; † Dimethylsulfoxide-d6
A typical solution prepared for NMR analysis rarely contains more than a few percent of solute. Thus, protons on the solvent could significantly distort the spectrum. When 1 H-NMR are desired, solvents having no protons (CS2 or CCl4) or deuterated solvents are used. Table 6.33 gives the common NMR solvents used. Although modern manufacturing methods typically produce NMR solvents having high isotopic purity, incomplete deuteration of a protonic solvent will result in a residual signal.
TABLE 6.33 Common NMR Solvents Solvent
Detail
Group*
(ppm)
Acetic acid-d4
D3C ˆ COOD
Acetone-d6 Acetonitrile-d3 Benzene-d6 tert-Butanol-d1 Chloroform-d1 Cyclohexane-d12 Deuterium oxide Dimethylformamide-d7
CD3COCD3 CD3C ˜ N C6D6 (CH3)3COD Cl3CD C6D12 D2O (CD3)2N ˆ CD ¨ O
Dimethylsulfoxide-d6 (DMSO-d6)
CD3SOCD3
CD2H OH CD2H CD2H CˆH CD2H Cl3CH CHD HOD CD2H ˆ CH ¨ O CD2H
2.05 11.5† 2.057 1.95 6.78 1.28 7.25 1.40 4.7† 2.75; 2.95 8.05 2.51
Absorbed H2O Methylene
3.3† 3.55
Methyl
2.60
CD2H OH
3.35 4.8†
D2 C
1,4-Dioxane-d8
D2 C
O O
Hexamethylphosphoramide-d18, HMPA-d18, (D3 C) 2 N HMPT-d18 Methanol-d4
CD3 OD
CD 2 CD 2
O P
N(CD 3 )2
N(CD 3 )2
*Impurity peak resulting from incomplete deuteration or exchange. †These values may vary greatly depending on the solute and its concentration.
6.76
SECTION 6
TABLE 6.33 Common NMR Solvents (continued ) Solvent
Detail
Group*
(ppm)
Dichloromethane-d2 Pyridine-d5
Cl2CD2
Cl2CDH C-2 ˆ H
5.35 8.5
C-3 ˆ H C-4 ˆ H
7.0 7.35
CD-2 ˆ H CD-3 ˆ H
3.58 1.73
CD2H Ring CD
2.3 7.1
Hydroxyl
11.3†
D(4) D
D(3)
D
N
CD2
D2C
Tetrahydrofuran-d6
D2C Toluene-d8
D(2)
O
D
CD2 D
D
CD 3 D
Trifluoroacetic acid-d1
D
F3C ˆ COOD
*Impurity peak resulting from incomplete deuteration or exchange. †These values may vary greatly depending on the solute and its concentration.
TABLE 6.34 Proton Chemical Shifts Values are given on the scale; 10.00 . Abbreviations Used in the Table R, alkyl group Ar, aryl group Substituent group
Methyl protons
Methylene protons
Methine proton
HC ˆ C ˆ CH2 HC ˆ C ˆ NR2 HC ˆ C ˆ C ¨ C HC ˆ C ˆ C ¨ O HC ˆ C ˆ NRAr HC ˆ C ˆ H(C ¨ O)R HC ˆ C ˆ (C ¨ O)NR2 HC ˆ C ˆ (C ¨ O)Ar HC ˆ C ˆ (C ¨ O)OR HC ˆ C ˆ Ar HC ˆ C ˆ OH HC ˆ C ˆ OR HC ˆ C ˆ C ˜ CR HC ˆ C ˆ C ˜ N HC ˆ C ˆ SR HC ˆ C ˆ OAr HC ˆ C ˆ O(C ¨ O)R HC ˆ C ˆ SH HC ˆ C ˆ (S ¨ O)R and HC ˆ C ˆ SO2R HC ˆ C ˆ NR3
0.95 1.05 1.00 1.05 1.10 1.10 1.10 1.15 1.15 1.15 1.20 1.20 1.20 1.25 1.25 1.30 1.30 1.30
1.20 1.45 1.35 1.55 1.50 1.50 1.50 1.55 1.70 1.55 1.50 1.50 1.50 1.65 1.60 1.55 1.60 1.60
1.55 1.70 1.70 1.95 1.80 1.90 1.80 1.90 1.90 1.80 1.75 1.75 1.80 2.00 1.90 2.00 1.80 1.65
1.35 1.40
1.70 1.75
2.05
6.77
SPECTROSCOPY
TABLE 6.34 Proton Chemical Shifts (continued) Substituent group
Methyl protons
HC ˆ C ˆ O ˆ N ¨ O HC ˆ C ˆ O(C ¨ O)CF3 HC ˆ C ˆ Cl HC ˆ C ˆ F HC ˆ C ˆ NO2 HC ˆ C ˆ O(C ¨ O)Ar HC ˆ C ˆ I HC ˆ C ˆ Br HC ˆ CH2 HC ˆ C ¨ C HC ˆ C ˜ C HC ˆ (C ¨ O)OR HC ˆ (C ¨ O)NR2 HC ˆ SR HC ˆ O ˆ O HC ˆ (C ¨ O)R HC ˆ C ˜ N HC ˆ I HC ˆ CHO HC ˆ Ar HC ˆ NR2 HC ˆ SSR HC ˆ (C ¨ O)Ar HC ˆ SAr HC ˆ NRAr HC ˆ SO2R and HC ˆ (SO)R HC ˆ Br HC ˆ NR3 HC ˆ NH(C ¨ O)R HC ˆ SO3R HC ˆ Cl HC ˆ OH and HC ˆ OR HC ˆ PAr3 HC ˆ NH2 HC ˆ O(C ¨ O)R HC ˆ OAr HC ˆ O(C ¨ O)Ar HC ˆ O(C ¨ O)CF HC ˆ F HC ˆ NO2 Cyclopropane Cyclobutane Cyclopentane Cyclohexane Cycloheptane
1.40 1.40 1.55 1.55 1.60 1.65 1.75 1.80 0.90 1.60 1.70 2.00 2.00 2.05 2.10 2.10 2.15 2.15 2.20 2.25 2.25 2.35 2.40 2.40 2.60 2.60 2.70 2.95 2.95 2.95 3.05 3.20 3.20 3.50 3.65 3.80 3.80 3.95 4.25 4.30
Methylene protons
1.65 1.80 1.85 2.05 1.75 1.80 1.85 1.30 2.05 2.20 2.25 2.25 2.55 2.30 2.35 2.45 3.15 2.40 2.45 2.40 2.70 2.70
Methine proton
1.95 2.15 2.50 1.85 2.10 1.90 1.50 2.80 2.50 2.40 3.00 2.55 2.65 2.90 4.25 2.85 2.80 3.40
3.10 3.05 3.40 3.10 3.35
3.60
3.45 3.40 3.40 3.75 4.10 4.00 4.20 4.30 4.50 4.35 0.20 2.45 1.65 1.50 1.25
4.05 3.60
4.10 3.60 3.85
4.05 4.95 4.60 5.05 4.80 4.60 0.40
1.80
6.78
SECTION 6
TABLE 6.34 Proton Chemical Shifts (continued)
Substituent group
Proton shift
Substituent group
Proton shift
HC ˜ CH HC ˜ CAr HC ˜ C ˆ C ¨ C HAr HCO ˆ O HCO ˆ R HCO ˆ Ar HO ˆ N ¨ C (oxime)
2.35 2.90 2.75 7.20 8.1 9.4–10.0 9.7–10.5 9–12
HO ˆ C ¨ O HO ˆ SO2 HO ˆ Ar HO ˆ R HS ˆ Ar HS ˆ R HN ˆ Ar HN ˆ R
10–12 11–12 4.5–6.5 0.5–4.5 2.8–3.6 1–2 3–6 0.5–5
Saturated heterocyclic ring systems
1.8
1.6 2.7
3.7
O
2.2
1.9
2.8
2.8
N H
S
S
2.0 1.6
O
1.5 1.6
1.5
3.6
2.7
O
2.6
S
N H
1.9
H N
2.2–2.5 2.2
O
O
1.6
2.9
3.4
N H
O
2.6
1.8
4.3
O
1.5–1.9
N H 0.0
3.6
O
O
7.7 3.3 4.1
O
O
R 3.2
N H 8.1
O
H 4.7– 4.9
O
2.3 3.9 – 4.1
O
S
6.79
SPECTROSCOPY
TABLE 6.34 Proton Chemical Shifts (continued) Substituent group
Methyl protons
Methylene protons
Methine proton
Unsaturated cyclic systems
TABLE 6.35 Estimation of Chemical Shift for Protons of ˆ CH2 ˆ and aCH ˆ Groups CH2 0.23 C1 C2
X* ˆ CH3 ˆ CF3 aC ˆ Cb ˆC˜CˆR ˆ COOR ˆ NR2 ˆ CONR2
CH 0.23 C1 C2 C3
C 0.5 1.1 1.3 1.4 1.5 1.6 1.6
X* ˆ SR ˆ C ˜ C ˆ Ar ˆ CN ˆ CO ˆ R ˆI ˆ Ph ˆ Br
*R, alkyl group; Ar, aryl group; Ph, phenyl group.
C 1.6 1.7 1.7 1.7 1.8 1.8 2.3
X*
C
ˆ OR ˆ Cl ˆ OH ˆN¨C¨S ˆ OCOR ˆ OPh
2.4 2.5 2.6 2.9 3.1 3.2
6.80
SECTION 6
TABLE 6.36 Estimation of Chemical Shift of Proton Attached to a Double Bond Positive Z values indicate a downfield shift, and an arrow indicates the point of attachment of the substituent group to the double bond.
R
Zgem, ppm
Zcis, ppm
Ztrans, ppm
→H →alkyl →alkyl ˆ ring (5- or 6-member) →CH2O ˆ →CH2S ˆ →CH2X (X: F, Cl, Br) →CH2Nb ] C ¨ C (isolated) c
0 0.45 0.69 0.64 0.71 0.70 0.58 1.00
0 0.22 0.25 0.01 0.13 0.11 0.10 0.09
0 0.28 0.28 0.02 0.22 0.04 0.08 0.23
] c
C ¨ C (conjugated) →C ˜ N →C ˜ C ˆ ] C ¨ O (isolated) c
1.24 0.27 0.47 1.10
0.02 0.75 0.38 1.12
0.05 0.55 0.12 0.87
] c
1.06 0.97 0.80 0.80 0.78
0.91 1.41 0.98 1.18 1.01
0.74 0.71 0.32 0.55 0.46
1.02
0.95
1.17
1.37
0.98
0.46
1.11
1.46
1.01
1.22 1.21 2.11
1.07 0.60 0.35
1.21 1.00 0.64
0.69
0.08
0.06
1.05 1.54 1.08 1.07 1.14 0.80
0.29 0.40 0.18 0.45 0.81 1.26
0.32 1.02 0.13 0.55 0.88 1.21
C ¨ O (conjugated) →COOH (isolated) →COOH (conjugated) →COOR (isolated) →COOR (conjugated)
→OR (R: aliphatic) →OR (R: conjugated) →OCOR
→CH2 ˆ aromatic ring →F →Cl →Br →I →N ˆ R (R: aliphatic)
6.81
SPECTROSCOPY
TABLE 6.36 Estimation of Chemical Shift of Proton Attached to a Double Bond (continued ) R
→aromatic →CF3 →aromatic (o-substituted) →SR →SO2
Zgem, ppm
Zcis, ppm
Ztrans, ppm
1.17
0.53
0.99
2.08 1.38 0.66 1.65 1.11 1.55
0.57 0.36 0.61 0.19 0.29 1.16
0.72 0.07 0.32 0.09 0.13 0.93
TABLE 6.37 Chemical Shifts in Monosubstituted Benzene 7.27 i
Substituent
ortho
meta
NO2 CHO COOH COOCH3 COCl CCl3 COCH3 CN CONH 2 + N H3 CH2X* CH3 CH2CH3 CH(CH3)2 C(CH3)2 F Cl Br I NH2 OCH3 OH OCOR NHCH3 N(CH3)2
0.94 0.58 0.80 0.71 0.82 0.8 0.62 0.26 0.65 0.4 0.0–0.1 0.16 0.15 0.14 0.09 0.30 0.01 0.19 0.39 0.76 0.46 0.49 0.2 0.8 0.60
0.18 0.20 0.16 0.08 0.21 0.2 0.10 0.18 0.20 0.2 0.0–0.1 0.09 0.06 0.09 0.05 0.02 0.06 0.12 0.25 0.25 0.10 0.13 0.1 0.3 0.10
*X Cl, alkyl, OH, or NH2.
para 0.39 0.26 0.25 0.20 0.35 0.2 0.25 0.30 0.22 0.2 0.0–0.1 0.17 0.18 0.18 0.23 0.23 0.08 0.05 0.02 0.63 0.41 0.2 0.2 0.6 0.62
6.82
SECTION 6
TABLE 6.38 Proton Spin Coupling Constants Structure
J, Hz
12–15
Structure
J, Hz cis (Z) trans (E) gem
6–8 5 4–8 6–8
1–3
8–16 0–3 gem cis (Z)
6–14 11–18
8–10 2–3 2–3
trans (E) cis (Z) trans (E) gem
0.5–3 0.5–3 4–10 10–13 6
cis (Z) trans (E) gem cis (Z) trans (E) gem
0–3 0–3 0–2 2–4 5–7 6–9 10–13 4–5 3 5–6 0 7 6
2 6 4 1.8 3.5 0–1 1–2 5–6 3.5–5.0 1.5 3.4 6–12 4–8 1.5–2.5 2.5 1.5 0
Cyclopentane cis (Z) trans (E) Cyclobutane cis (Z) trans (E) Cyclopropane cis (Z) trans (E) gem
4–6 4–6 8 8 9–11 6–8 4–6 6–10 1–3 0–1
8–9 6 5–6 7–9 1–2 1–2 0–1 0–1
6.83
SPECTROSCOPY
TABLE 6.38 Proton Spin Coupling Constants (continued) Structure
J, Hz
Structure
J, Hz gem cis (Z) trans (E)
2–3 2–3 2–3 3–4 1–2 1–3
72–90 3 to 20 12–40 2–4
45–52
0–6 21 34 12
gauche trans (Z)
5–8
0–12 10–45
TABLE 6.39 Carbon-13 Chemical Shifts Values given in ppm on the scale, relative to tetramethylsilane Primary carbon
Secondary carbon
Tertiary carbon
Quaternary carbon
Alkanes CˆC CˆO CˆN CˆS C ˆ halide (I to Cl)
5–30 45–60 13–45 10–30 3–25
25–45 42–71 44–58 22–42 3–40
23–58 62–78 50–70 55–67 34–58
28–50 73–86 60–75 53–62 35–75
Substituent group
, ppm
Substituent group
, ppm
Cyclopropane Cycloalkane C4–C10 Mercaptanes Amines R2N ˆ C Aryl ˆ N Sulfoxides, sulfones Thiocyanates R ˆ SCN Alkenes H2C ¨ R2C ¨
5–5 5–25 5–70
Alcohols R ˆ OH Ethers R ˆ O ˆ R Nitro R ˆ NO2 Alkynes HC ˜ CR RC ˜ CR Acetals, ketals Esters Saturated ,-Unsaturated Isocyanides R ˆ NC
45–87 57–87 60–78
Substituent group
20–70 128–138 35–55 96–118 100–122 110–150
63–73 72–95 88–112 158–165 165–176 162–175
6.84
SECTION 6
TABLE 6.39 Carbon-13 Chemical Shifts (continued ) Substituent group Heteroaromatics C¨N C Cyanates R ˆ OCN Isocyanates R ˆ NCO Isothiocyanates R ˆ NCS Nitriles, cyanides Aromatics Aryl-C Aryl-P Aryl-N Aryl-O Azomethines Carbonates Ureas Anhydrides Amides Oximes
, ppm
100–152 142–160 105–120 115–135 115–142 117–124 125–145 119–128 128–138 133–152 145–162 159–162 150–170 150–175 154–178 155–165
Substituent group Carboxylic acids Nonconjugated Conjugated Salts (anion) Ketones -Halo Nonconjugated ,-Unsaturated Imides Acyl chlorides R ˆ CO ˆ Cl Thioureas Aldehydes -Halo Nonconjugated Conjugated Thioketones R ˆ CS ˆ R Carbonyl M(CO)n Allenes ¨ C ¨
Saturated heterocyclic ring systems
, ppm
162–165 165–184 175–195 160–200 192–202 202–220 165–180 165–183 165–185 170–190 182–192 192–208 190–202 190–218 197–205
6.85
SPECTROSCOPY
TABLE 6.39 Carbon-13 Chemical Shifts (continued ) Unsaturated cyclic systems CH2 107.1
149.7
30.2
130.8
137.2
36.2
127.3
32.6
28.9
24.5
22.1
22.1
26.9
128.1 165.1
150.7
133.8
125.9
129.3
O
O
133.7
126.3 126.3
128.3 132.6
130.1
122.2 125.5
131.9 126.6
132.2
121.7
112.9
106.2
110.9
109.6
130.1 108.0 153.3
152.2 142.7
141.2
105.9
108.1
129.0
124.7
136.4
139.0 124.4
CHO
N H
12.4
128.1
126.4
143.2 134.0
CH3
N H
N H
178.2
123.0
112.0
118.4
CHO
O
13.4
127.2 116.7
148.5
CH3
O
O
142.4
122.6
S
S
122.3
N
CHO
S
182.8
118.5
152.2
N
122.1
127.6
N H
159.3
157.4
N
121.3
N
152.8
136.2
122.3
S
14.8
157.4
N
143.4 134.6
CH3
128.8 102.6
122.3 125.2
N
N
120.3
145.6
N
111.8
N H 136.1
122.8
127.6 111.4
128.3
128.7 136.0
126.8
121.2
126.8 121.5
130.5
150.9
127.5
144.7 124.2
O 106.5 155.1
129.7 130.1
N 149.0
136.0 120.8 143.8
N 127.9
153.1 129.0
6.86
SECTION 6
TABLE 6.39 Carbon-13 Chemical Shifts (continued ) Saturated alicyclic ring systems
TABLE 6.40 Estimation of Chemical Shifts of Alkane Carbons Relative to tetramethylsilane Positive terms indicate a downfield shift. C 2.6 9.1n 9.4n 2.5n 0.3n 0.1n (plus any correction factors) where n is the number of carbons bonded directly to the ith carbon atom and n, n, n, and nε are the number of carbon atoms two, three, four, and five bonds removed. The constant is the chemical shift for methane. Chain branching* 1(3) 1(4) 2(3) 3(2)
Correction factor 1.1 3.4 2.5 3.7
Chain branching*
Correction factor
4(1) 2(4) 3(3) 4(2)
1.5 7.2 9.5 8.4
*1 signifies a CH3 ˆ group; 2, a ˆ CH2 ˆ group; 3, a aCH ˆ group; and 4, a aCb group. 1(3) signifies a methyl group bound to a aCH ˆ group, and so on. Examples: For 3-methylpentane, CH3 ˆ CH2 ˆ CH(CH3) ˆ CH2 ˆ CH3, C 2 2.6 9.1(2) 9.4(2) 2.5 1(1)[2(3)] 29.4 C 3 2.6 9.1(3) 9.4(2) (2)[3(2)] 36.2
6.87
SPECTROSCOPY
TABLE 6.41 Effect of Substituent Groups on Alkyl Chemical Shifts
These increments are added to the shift value of the appropriate carbon atom as calculated from Table 6.40.
carbon Substituent group Y*
carbon
Straight
Branched
Straight
Branched
20.9 24.4 20.5 33 22 31 30 48.3 58 51 51 53 68 31.2 20.0 8 29.3 26 36.9 42 31 63 4 11 20 20 23 4.5
16 20 17 28 2.5
2.5 4.1 2.5
2 3 2 2
ˆ CO ˆ OH ˆ COO (anion) ˆ CO ˆ OR ˆ CO ˆ Cl ˆ CO ˆ NH2 ˆ CHO ˆ CO ˆ R ˆ OH ˆ OR ˆ O ˆ CO ˆ NH2 ˆ O ˆ CO ˆ R ˆ C ˆ CO ˆ Ar ˆF ˆ Cl ˆ Br ˆI ˆ NH2 ˆ NH3 ˆ NHR ˆ NR2 ˆ NR3 ˆ NO2 ˆ CN ˆ SH ˆ SR ˆ CH ¨ CH2 ˆ C6H5 ˆ C ˜ CH *R, alkyl group; Ar, aryl group.
24 40.8 51 45 63 32 25 4 24 24 31
57 1 11
17
0 1 10.2 8 8 6 9 10.5 10.6 11.3 11.3 8 8.3 6 5 4 3 12 7 6 9 5.5
carbon 2.2 1.6 2
1 7.7 5
0.5 2 2 5.8 4
5
3
6 10 10 12 10 6 6
4 4.6 3.1 1.0 4.6 5 3.5 3 7
4 3 11
7
3 6 3 0.5 2 3.5
6.88
SECTION 6
TABLE 6.42 Estimation of Chemical Shift of Carbon Attached to a Double Bond The olefinic carbon chemical shift is calculated from the equation C 123.3 10.6n 7.2n 7.9n 1.8n (plus any steric correction terms) where n is the number of carbon atoms at the particular position, namely, CˆC¨CˆC Substituents on both sides of the double bond are considered separately. Additional vinyl carbons are treated as if they were alkyl carbons. The method is applicable to alicyclic alkenes; in small rings carbons are counted twice, that is, from both sides of the double bond where applicable. The constant in the equation is the chemical shift for ethylene. The effect of other substituent groups is tabulated below. Substituent group ˆ OR ˆ OH ˆ O ˆ CO ˆ CH3 ˆ CO ˆ CH3 ˆ CHO ˆ CO ˆ OH ˆ CO ˆ OR ˆ CN ˆF ˆ Cl ˆ Br ˆI ˆ C6H5
2 6 3
1 0
29
39
18 15 13.6 5.2 6 15.4 24.9 3.3 7.2 37.4 12
27 6 13.2 9.1 7 14.3 34.3 5.4 0.7 7.7 11 Steric correction term
Substituent pair , , , , ,
trans (E ) cis (Z ) gem
0 1.1 4.8 2.5 2.3
1 1 4
2 2
6.89
SPECTROSCOPY
TABLE 6.43 Carbon-13 Chemical Shifts in Substituted Benzenes C 128.5
Substituent group ˆ CH3 ˆ CH2CH3 ˆ CH(CH3)2 ˆ C(CH3)3 ˆ CH2O ˆ CO ˆ CH3 ˆ C6H5 ˆ CH ¨ CH2 ˆ C ˜ CH ˆ CH2OH ˆ CO ˆ OH ˆ COO (anion) ˆ CO ˆ OCH3 ˆ CO ˆ CH3 ˆ CHO ˆ CO ˆ Cl ˆ CO ˆ CF3 ˆ CO ˆ C6H5 ˆ CN ˆ OH ˆ OCH3 ˆ OC6H5 ˆ O ˆ CO ˆ CH3 ˆ NH2 ˆ N(CH3)2 ˆ N(C6H5)2 ˆ NHC6H5 ˆ NH ˆ CO ˆ CH3 ˆ NO2 ˆF ˆ Cl ˆ Br ˆI ˆ CF3 ˆ NCO ˆ SH ˆ SCH3 ˆ SO2 ˆ NH2 ˆ Si(CH3)3
C 1
ortho
meta
para
9.3 15.6 20.2 22.4 7.7 13.1 9.5 6.1 12.3 2.1 8 2.1 9.1 8.6 4.6 5.6 9.4 15.4 26.9 31.4 29.2 23.0 18.0 22.4 19 14.6 11.1 20.0 34.8 6.2 5.5 32.2 9.0 5.7 2.3 10.2 15.3 13.4
0.8 0.4 2.5 3.1 0 1.1 2.0 3.8 1.4 1.5 1 1.1 0.1 1.3 2.4 1.8 1.7 3.6 12.7 14.0 9.4 6.4 13.3 15.7 4 10.7 9.9 4.8 12.9 0.4 3.4 9.9 2.2 3.6 1.1 1.8 2.9 4.4
0.1 0 0.1 0.1 0 0.4 0.2 0.4 1.4 0 0 0.1 0 0.6 1 0.7 0.2 0.6 1.4 1.0 1.6 1.3 0.9 0.8 1 0.7 0.2 0.9 1.4 1.3 1.7 2.6 0.3 1.2 1.1 0.4 0.4 1.1
2.9 2.6 2.4 2.9 0 1.2 0.5 0.2 1.4 5.1 3 4.5 4.2 5.5 6.2 6.7 3.6 3.9 7.3 7.7 5.1 2.3 9.8 11.5 6 7.7 5.6 5.8 4.5 1.9 1.6 1.4 3.2 2.8 3.1 3.6 3.3 1.1
6.90
SECTION 6
TABLE 6.44 Carbon-13 Chemical Shifts in Substituted Pyridines* c(k) Ck i
Substituent group
C2 C6 149.6
C 2 or C 6
ˆ CH3 ˆ CH2CH3 ˆ CO ˆ CH3 ˆ CHO ˆ OH ˆ OCH3 ˆ NH2 ˆ NO2 ˆ CN ˆF ˆ Cl ˆ Br
9.1 14.0 4.3 3.5 14.9 15.3 11.3 8.0 15.8 14.4 2.3 6.7
Substituent group
32
ˆ CH3 ˆ CH2CH3 ˆ CO ˆ CH3 ˆ CHO ˆ OH ˆ NH2 ˆ CN ˆ Cl ˆ Br ˆI
Substituent group ˆ CH3 ˆ CH2CH3 ˆ CH ¨ CH2 ˆ CO ˆ CH3 ˆ CHO ˆ NH2 ˆ CN ˆ Br
23
24
25
1.0 2.1 2.8 2.6 17.2 13.1 14.7 5.1 5.0 14.7 0.7 4.8
0.1 0.1 0.7 1.3 0.4 2.1 2.3 5.5 1.7 5.1 3.3 3.3
3.4 3.1 3.0 4.1 3.1 7.5 10.6 6.6 3.6 2.7 1.2 0.5
C3 C5 124.2
C 3 or C 5
1.3 0.3 0.5 2.4 10.7 11.9 3.6 0.3 2.1 7.1
9.0 15.0 0.3 7.9 31.4 21.5 13.7 8.2 2.6 28.4
42 46 0.5 0 0.3 1.6 1.7 0.9 2.1 3.0
34
35
0.2 1.5 3.7 0 12.2 14.2 4.4 0.2 2.9 9.1
0.8 0.3 2.7 0.6 1.3 0.9 0.6 0.7 1.2 2.4
43 45 0.8 0.3 2.9 2.6 0.6 13.8 2.2 3.4
26 0.1 0.2 0.2 0.7 6.8 2.2 0.9 0.4 1.9 1.7 0.6 1.4
2.3 1.8 4.2 5.4 8.6 10.8 4.2 1.4 0.9 0.3 C4 136.2
C 4 10.8 15.9 8.6 6.8 5.5 19.6 15.7 3.0
*May be used for disubstituted, polyheterocyclic, and polynuclear systems if deviations due to steric and mesomeric effects are allowed for.
6.91
SPECTROSCOPY
TABLE 6.45 Carbon-13 Chemical Shifts of Carbonyl Group
X
Y
C
X CH3 ˆ CH3 ˆ CH3 ˆ
ˆ CH ¨ CH2 ˆ C6H5 ˆ CH2 ˆ CO ˆ CH3
CH3 ˆ CH3 ˆ
ˆ CH2CHO ˆ C6H5 ˆ CH3
CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ CH3 ˆ
ˆ 2,6-(CH3)2C6H5 ˆ OH ˆ O (anion) ˆ OCH3 ˆ O ˆ CH ¨ CH2 ˆ O ˆ CH(CH3)2 ˆ O ˆ CO ˆ CH3 ˆ NH2 ˆ NHCH3 ˆ N(CH3)2 ˆ Cl ˆ Br ˆI
Hˆ Hˆ Hˆ
ˆ CH3 ˆ CCl3 ˆ NH2
199.7 175.3 165.5
Hˆ
ˆ N(CH3)2
162.4
Hˆ Hˆ Hˆ (CH3)2CH ˆ C6H5 ˆ CF3 ˆ CCl3 ˆ CH3CH(NH2) ˆ CF3 ˆ H2N ˆ 2-Furyl (CH3)2N ˆ CH2 ¨ CHCH2O CO ˆ CH3CH2 ˆ CH3 ˆ CH2 ˆ CH3 ˆ CH3 ˆ
2-Furyl 2-Pyrrolyl 2-Thienyl ˆ OH ˆ OH ˆ OH ˆ OH ˆ OH ˆ OCH2CH3 ˆ OCH2CH3 ˆ OCH3 ˆ C6H5
153.3 134.0 143.3 184.8 172.6 163.0 168.0 176.5 158.1 157.8 159.1 170.8
ˆ OCH2CH ¨ CH2 ˆ CH2CH3 ˆ O ˆ CO ˆ CH2CH3 ˆ CH3 ˆ CH2CH3
157.6 211.4 170.3 205.8 207
n
C
3 4 5 6 7
207.9 218.2 211.3 211.4 216.0
Y
C 196.9 197.6 201.9 (keto) 191.4 (enol) 167.7 196 (m, p) 199 (o) 206 178 181.5 170.7 167.7 170.3 167.3 172.7 172 169.5 169.6 165.6 158.9
6.92
SECTION 6
TABLE 6.46 One-Bond Carbon–Hydrogen Spin Coupling Constants Structure
JCH, Hz
H ˆ CH3 H ˆ CH2CH3 CH3 ˆ CH2 ˆ CH3 H ˆ C(CH3)2 H ˆ CH2CH2OH H ˆ CH2CH ¨ CH2 H ˆ CH2C6H5 H ˆ CH2C ˜ CH H ˆ CH2CN H ˆ CH(CN)2 H ˆ CH2 ˆ halogen H ˆ CHF2 H ˆ CHCl2 H ˆ CH2NH2 H ˆ CH2NH3 H ˆ CH2OH (or H ˆ CH2OR) H ˆ CH(OR)2 H ˆ C(OR)3 H ˆ C(OH)R2 H ˆ CH2NO2 H ˆ CH(NO2)2 H ˆ CH2COOH H ˆ CH(COOH)2 H ˆ CH ¨ CH2 H ˆ C(CH3) ¨ C(CH3)2 H ˆ CH ¨ C(tert-C4H9)2 H ˆ C(tert-C4H9) ¨ C(tert-C4H9)2 Methylenecycloalkane C4–C7 H ˆ CH ¨ C ¨ CH2 H ˆ C(C6H5) ¨ CH(C6H5) cis (Z ) trans (E) Cyclopropene
125.0 124.9 119.2 114.2 126.9 122.4 129.4 132.0 136.1 145.2 149–152 184.5 178.0 133.0 145.0 140–141 161–162 186 143 146.0 169.4 130.0 132.0 156.2 148.4 152
gem
143 153–155 168 155 151 220 200
Structure
JCH, Hz gem cis (Z)
177 163
trans (E)
165
cis (Z)
163
trans (E)
177
H ˆ CH ¨ O; CH3 ˆ CH ¨ O H2N ˆ CH ¨ O (CH3)2N ˆ CH ¨ O H ˆ COOH H ˆ COO (anion) H ˆ CO ˆ OCH3 H ˆ CO ˆ F CH3CH2 ˆ O ˆ CHO Cl3 ˆ CHO H ˆ C ˜ CH H ˆ C ˜ CCH3 H ˆ C ˜ CC6H5 H ˆ C ˜ CCH2OH H ˆ CN Cyclopropane Cyclobutane Cyclopentane Cyclohexane Tetrahydrofuran 2,5 3,4 1,4-Dioxane Benzene Fluorobenzene 2,6 3,5 4 Bromobenzene 2,6 3,5
172 188.3 191 222 195 226 267 225.6 207 249 248 251 241 269 161 136 131 123 149 133 145 159 155 163 161 171 164
cis (Z)
159
4
161
trans (E)
162
gem
195
Benzonitrile 2,6 3,6 4 Nitrobenzene 2,6 3,5 4 Mesitylene 2,6 3,5 4
173 166 163 171 167 163 154 170 163 152
cis (Z) trans (E)
163 161
gem
162
cis (Z) trans (E)
157 162
6.93
SPECTROSCOPY
TABLE 6.46 One-Bond Carbon–Hydrogen Spin Coupling Constants (continued ) Structure
JCH, Hz
2,4,6-Trimethylpyridine
Structure
JCH, Hz
158
2,5 3,4
183 170
2,5 3,4
201 175
2,5 3,4
185 167
3,5 4
190 178
2 4
208 199
205
216
TABLE 6.47 Two-Bond Carbon–Hydrogen Spin Coupling Constants Structure
2
CH3 ˆ CH2 ˆ H CCl3 ˆ CH2 ˆ H ClCH2 ˆ CH2Cl Cl2CH ˆ CHCl2 CH3 ˆ CHO CH2 ¨ CH2 (CH3)2C ¨ O CH2 ¨ CH ˆ CH ¨ O (C2H5)2CH ˆ CHO H2NCH ¨ CH ˆ CHO H2NCH ˆ CH ˆ CHO C6H6
4.5 5.9 3.4 1.2 26.7 2.4 5.5 26.9 26.9 6.0 20.0 1.0
JCH, Hz
2
Structure
JCH, Hz
n4 n5 n6
4.2 5.2 5.5
cis (Z ) trans (E )
16.0 0.8 49.3 61.0 33.2 32.5 35.3 46.3 10.8
HC ˜ CH C6H5O ˆ C ˜ CH HC ˜ C ˆ CHO ClCH2 ˆ CHO Cl2CH ˆ CHO Cl3C ˆ CHO C6H5 ˆ C ˜ C ˜ CH3
TABLE 6.48 Carbon–Carbon Spin Coupling Constants Structure*
JCC, Hz
H3C ˆ CH3 H3C ˆ CHR2 H3C ˆ CH2Ar H3C ˆ CH2CN H3C ˆ CH2 ˆ CH2OH C-1, C-2 C-2, C-3
35 37 34 33 38 34
Structure*
JCC, Hz
H3C ˆ CH2NH2 CˆC¨O CˆCˆC¨O C ˆ C ˆ Ar C ˆ CO ˆ O (anion) C ˆ CO ˆ N C ˆ CO ˆ OH
37 38–40 36 43 52 52 57
6.94
SECTION 6
TABLE 6.48 Carbon–Carbon Spin Coupling Constants (continued) Structure*
JCC, Hz
C ˆ CO ˆ OR C ˆ CN C ˆ C ˜ C 2JCC 11.8 H2C ¨ CH2 aC ¨ C ˆ CO ˆ OH aC ¨ C ˆ CN aC ¨ C ˆ Ar C6H6 C6H5NO2 1–2 2–3, 3–4 3 J2–5 C6H5I 1–2 2–3 3–4 3 J2–5 C6H5 ˆ OCH3 2–3 3–4
59 52–57 67 68 70–71 71 67–70 57 55 56 7.6 60 53 58 8.6 58 56
Structure* C6H5NH2 1–2 2–3 3–4 3 J2–5 C6H5CH3 Pyridine 2–3 3–4 3 J2–5 Furan Pyrrole Thiophene H2C ¨ C ¨ C(CH3)2 ˆC˜Cˆ Structure CH3 ˆ CO ˆ CH3 CH3 ˆ C ˜ CH CH3CH2 ˆ CN
JCC, Hz
61 58 57 7.9 44 54 56 14 69 69 64 100 170–176 2
JCC, Hz 16 11.8 33
* R, alkyl group; Ar, aryl group.
TABLE 6.49 Carbon–Fluorine Spin Coupling Constants Structure*
JCF, Hz
Structure*
158
JCF, Hz
271
165 235
274
259
F ˆ CH2CH2 ˆ or F ˆ CR3 p-F ˆ C6H4 ˆ OR p-F ˆ C6H4 ˆ R p-F ˆ C6H4 ˆ CF3 p-F ˆ C6H4 ˆ CO ˆ CH3 p-F ˆ C6H4 ˆ NO2 F ˆ C6H5 2 JCF 21.0 3 JCF 7.7 4 JCF 3.4
167 237 241 252 253 257 244
6.95
SPECTROSCOPY
TABLE 6.49 Carbon–Fluorine Spin Coupling Constants (continued ) Structure*
Structure*
JCF, Hz
JCF, Hz
287
241
308
278
353
265
369
289
* Ar, aryl group; R, alkyl group.
TABLE 6.50 Carbon-13 Chemical Shifts of Deuterated Solvents Relative to tetramethylsilane
Solvent
Group
, ppm
Acetic-d3 acid-d1
Methyl Carbonyl Methyl Carbonyl Methyl Carbonyl
20.0 205.8 28.1 178.4 1.3 117.7 128.5 193 97 77 25.2 39.5 67 165.5 47–49 53.8 57.3 123.5 135.5 149.9
Acetone-d6 Acetonitrile-d3 Benzene-d6 Carbon disulfide Carbon tetrachloride Chloroform-d1 Cyclohexane-d12 Dimethyl sulfoxide-d6 1,4-Dioxane-d6 Formic acid-d1 Methanol-d4 Methylene chloride-d2 Nitromethane-d3 Pyridine-d5
Carbonyl
C3, C5 C4 C2, C6
6.96
SECTION 6
TABLE 6.51 Carbon-13 Spin Coupling Constants with Various Nuclei Nuclei
Structure
1
2
CDCl3 CD3 ˆ CO ˆ CD3 (CD3)2SO C6D6 CH3Li (C6H5)4B (CH3)4N CH3NC (CH3)4Si (CH3)3P (C4H9)3P (C6H5)3P (CH3)4P (C4H9)4P (C6H5)4P R(RO)2P O (C4H9O)3P ¨ O (CH3)2Se (CH3)3Se (CH3)2Cd (CH3)4Sn (CH3)3SnC6H5 (CH3)2Te (CH3)2Hg (C6H5)2Hg (CH3)2Pb (C6H5)4Pb
32 20 22 26 15 49 10 8 52 14 11 12 56 48 88 142
H
7
Li B 14 N 11
29
Si P
31
77
Se
113 119
Cd Sn
125
Te 199 Hg 207
Pb
2
J, Hz
J, Hz
3
J, Hz
4
J, Hz
3
62 50 513, 537 340 474 162 687 1186 250 481
12 20
5 7
0
4 11 5–7 6
15 13
3
7
37
47
11
88
102
18
68
81
20
TABLE 6.52 Boron-11 Chemical Shifts Values given in ppm on the scale, relative to B(OCH3)3
Structure
, ppm
R3B Ar3B BF3 BCl3 BBr3 BI3 B(OH)3 B(OR)3 B(NR2)3
67 to 68 43 24 12 6 41 36 0–1 13
Structure
, ppm
C6H5BCl2 C6H5B(OH)2 C6H5B(OR)2 M(BH4) B(BF4)
36 14 10 55–61 19–20
NH
BH
NH
BH
HB
NH
12
6.97
SPECTROSCOPY
TABLE 6.52 Boron-11 Chemical Shifts (continued) , ppm
Structure H
H B H
H B H
N R2 NR2
H B H
37
H
, ppm
Structure
7 to 8 23–24 74–82
R2O(or ROH) · BCl3 R2O(or ROH) · BBr3 R2O(or ROH) · BI3
15
24
B NR2
H
(CH3)2N ˆ B(CH3)2 Addition complexes R2O · BH3 R3N · BH3 R2NH · BH3
62 18–19 25 33
31 R2O(or ROH) · BF3
17–19
Boranes B2H6
1
B4H10 (BH2) (BH)
25 60 Base
B5H9 B5H11 B10H14
31 16 7
Apex 70 50 54
TABLE 6.53 Nitrogen-15 (or Nitrogen-14) Chemical Shifts Values given in ppm on the scale, relative to NH3 liquid Substituent group Aliphatic amines Primary Secondary Tertiary Cyclo, primary Aryl amines Aryl hydrazines Piperidines, decahydroquinolines Amine cations Primary Secondary Tertiary Quaternary Enamines, tertiary type Alkyl Cycloalkyl Aminophosphines Amine N-oxides
, ppm
1–59 7–81 14–44 29–44 40–100 40–100 30–82 19–59 40–74 30–67 43–70 29–82 55–104 59–100 95–122
Substituent group Ureas Aliphatic Aryl Sulfonamides Amides HCO ˆ NHR R primary R secondary R tertiary HCO ˆ NH ˆ Aryl RCO ˆ NHR or RCO ˆ NR2 RCO ˆ NH ˆ Aryl Aryl ˆ CO ˆ H ˆ Aryl Guanidines Amino Imino Thioureas Thioamides
, ppm
63–84 105–108 79–164
100–115 104–148 96–133 138–141 103–130 131–136 ca 126 30–60 166–207 85–111 135–154
6.98
SECTION 6
TABLE 6.53 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (continued ) Substituent group Cyanamides R2N ˆ ˆ CN Carbodiimides Isocyanates Alkyl, primary Alkyl, secondary and tertiary Aryl Isothiocyanates Azides
Lactams Hydrazones Amino Imino Cyanates Nitrile N-oxides, fulminates Isonitriles Alkyl, primary Alkyl, secondary Aryl Nitriles Alkyl Aryl Thiocyanates Diazonium Internal Terminal
, ppm
12 to 38 175–200 95–120 14–32 54–57 ca 46 90–107 52–80 108–122 240–260 113–122 141–167 319–327 155–182 195–225 162–178 191–199 ca 180 235–241 258–268 265–280 222–230 315–322
Substituent group Diazo Internal Terminal Nitrilium ions Azinium ions Azine N-oxides Nitrones Imides Imimes Oximes Nitramines Amine ˆ NO2 Nitrates gem-Polynitroalkanes Nitro Aryl Alkyl Hetero, unsaturated Azoxy Azo Nitrosamines Nitrites Thionitrites Nitroso Aliphatic amines, NO Aryl
, ppm
226–303 315–440 123–150 185–220 230–300 270–285 170–178 310–359 340–380 252–280 328–355 310–353 310–353 350–382 372–410 354–367 330–356 504–570 222–250 525–550 555–582 720–790 535–560 804–913
6.99
SPECTROSCOPY
TABLE 6.53 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (continued ) Substituent group
, ppm
Substituent group
, ppm
Saturated cyclic systems 35.5 n2 n3 n4 n5
8.5 25.3 36.7 37.7
7.5 (in C6H6) 18.0 (in H2O)
32.1
cis (Z ) trans (E ) Unsaturated cyclic systems
42.4 52.9
6.100
SECTION 6
TABLE 6.53 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (continued ) Unsaturated cyclic systems (continued) N
N N
N
236
O
N H
S
N N
316
291
X
257
N
S
X
,ppm
O S Se
517 331 373 N
293
N 316 N
N
316
281
N
N 330
361
N
N
N
N
412
N
N
N H
283
N
N
N 114
N
280
308 301
N N H
N
N
399
N 351
261
TABLE 6.54 Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine 317.3 i
Substituent ˆ CH3 ˆ CH2CH3 ˆ CH(CH3)2 ˆ C(CH3)3 ˆ CN ˆ CHO ˆ CO ˆ CH3 ˆ CO ˆ OCH2CH3 ˆ OCH3 ˆ OH ˆ NO2 ˆ NH2 ˆF ˆ Cl ˆ Br
C-2
0.4 1.8 5.1 2.5 0.9 10 9 11.8 49 126 23 45 42 4 2
C-3
0.3
0.8 11 15 0 2 1 10 18 4 8
C-4
8.0 6.6 5.9 5.8 10.6 29 11 5 23 118 22 46 6 7
6.101
SPECTROSCOPY
TABLE 6.55 Nitrogen-15 Chemical Shifts for Standards Values given in ppm, relative to NH3 liquid at 23 °C
Substance
, ppm
Conditions
Nitromethane (neat)
380.2
Potassium (or sodium) nitrate (saturated aqueous solution) C(NO2)4 (CH3)2 ˆ CHO (neat)
376.5
For organic solvents and acidic aqueous solutions For neutral and basic aqueous solutions For nitro compounds For organic solvents and aqueous solutions Saturated aqueous solution Saturated aqueous solution Saturated aqueous solution Saturated aqueous solution Liquid, 25 C Vapor, 5 atm
(C2H5)4NCl (CH3)4NCl NH4Cl NH4NO3 NH3
331 103.8 64.4 43.5 27.3 20.7 0.0 15.9
TABLE 6.56 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants Structure
J, Hz
R ˆ NH2 and R2NH Aryl ˆ NH2 p-CH3O ˆ aryl ˆ NH2 p-O2N ˆ aryl ˆ NH2 Amine salts (alkyl and aryl) Aryl ˆ NHOH Aryl ˆ NHCH3 Aryl ˆ NHCH2F Aryl ˆ NHNH2 p-O2N ˆ aryl ˆ NHNH2 Aryl ˆ SO2 ˆ NH2 Aryl ˆ SO2 ˆ NHR
61–67 78 79 90–93 73–76 79 87 90 90 99 81 86 88
92–93
Structure
J, Hz
88–92 Pyrrole HC ˜ NH aP ˆ NH2 (R3Si)2NH CF3 ˆ S ˆ NH2 (CF3 ˆ S)2NH Pyridinium ion Quinolinium ion
97 133–136 82–90 67 81 99 90 96
6.102
SECTION 6
TABLE 6.57 Nitrogen-15 to Carbon-13 Spin Coupling Constants Structure
J, Hz
Structure
J, Hz
Alkyl amines Cyclic alkyl amines Alkyl amines protonated Aryl amines Aryl amines protonated CH3CO ˆ NH2 H2N ˆ CO ˆ NH2 Aryl ˆ NO2
4–4.5 2–2.5 4–5 10–14 9 14–15 20 15
Alkyl ˆ NO2 R ˆ CN CH3 ˆ N ˜ C H3C ˆ N ˆN˜C Diaryl azoxy anti syn
11 18 10 9 18 13
TABLE 6.58 Nitrogen-15 to Fluorine-19 Spin Coupling Constants Structure
J, Hz
NF3 F4N2 FNO2 F3NO F3C ˆ O ˆ NF2 FCO ˆ NF2 (NF4)SbF6 (NF4)AsF6 (N2F)AsF6 F3C ˆ NO2 (2J 10)
Structure
155 164 158 190 164–176 221 323 328 459 215
Pyridine 2-F 3-F 2,6-di-F Pyridinium ion 2-F 3-F Quinoline, 8-F Aniline 2-F 3-F 4-F Anilinium ion 2-F 3-F 4-F 203
190
(2J 52)
J, Hz
52 4 37 23 3 3 0 0 1.5 1.4 0.2 0
TABLE 6.59 Fluorine-19 Chemical Shifts Values given in ppm on the scale, relative to CCl3F Substituent group ˆ SO2 ˆ F ˆ CO ˆ F aN ˆ CO ˆ F Aryl ˆ CF2Cl ˆ CF2I ˆ CF2Br
, ppm 67 to 42 (aryl) (alkyl) 29 to 20 5 49 56 63
Substituent group R ˆ CF2Cl aC ˆ CF3 and aryl ˆ CF3 ˆ CS ˆ CF3 aCF ˆ CF3 ˆ S ˆ CF3 ˆ S ˆ CF2 ˆ S ˆ aP ˆ CF3
, ppm 61–71 56–73 70 71–73 41 39 46–66
6.103
SPECTROSCOPY
TABLE 6.59 Fluorine-19 Chemical Shifts (continued) Substituent group
, ppm
Substituent group
, ppm
aN ˆ CF3 aN ˆ CF2 ˆ C ˆ O ˆ CF2 ˆ R ˆ O ˆ CF2 ˆ CF3 ˆ CH2 ˆ CF3 HO ˆ CO ˆ CF3 ˆ CHF ˆ CF3 ˆ CF2 ˆ CF3 ˆ CS ˆ F CF3 ˆ C ˆ Nb ˆ CO ˆ CF2 ˆ CF3 ˆ CF2 ˆ ˆ CF2Br ˆ C ˆ CF2 ˆ S ˆ ˆ CF ¨ ˆ CF2 ˆ CF3 ˆ CO ˆ CF2 ˆ ˆ C(halide) ˆ CF2 ˆ ˆ CF2 ˆ CF3 ˆ CF2 ˆ CF2 ˆ ˆ CF2 ˆ CH2 ˆ ˆ CF2 ˆ CHF2 ˆ CF2H
40–58 85–127 70–91 70–91 76–77 77 81 78–88 81 84–96 83 86–126 91 91–98 180–192 111 116–131 119–128 121–125 121–129 122–133 128–132 136–143
Perfluorocycloalkane aCF ˆ CF3 aCF(CF3)2 ˆ CFH ˆ ˆ CFH2 F2C ¨ CF2
131–138 163–198 180–191 198–231 235–244 133
151–156
F2
F2 F2
F Cyclohexane-F
147
96–133
159 210 (axial) to 240 (equatorial)
cis (Z) trans (E) gem
F-1 F-2 F-3 ClFC ¨ CH ˆ CF3 Cycloalkenes ¨ CF ˆ CF2 ˆ C(CF3 or H) ˆ ˆ CF2 ˆ CF2 ˆ C(CF3 or CH3) ¨ ˆ CF2 ˆ CF2 ˆ CH ¨ ˆ CF2 ˆ CF2 ˆ CF ¨ Aryl ˆ F C10H7 ˆ F F-1 F-2 C6H5 ˆ C6H4 ˆ F F-2 F-3 F-4 C6F6
108 92 192
126 155 162 61
101–113 110–114 113–116 119–122 113 127 114 117 113 109 163
6.104
SECTION 6
TABLE 6.60 Fluorine-19 Chemical Shifts for Standards Substance
Formula
Trichlorofluoromethane ,,-Trifluorotoluene Trifluoroacetic acid Carbon tetrafluoride Fluorobenzene Perfluorocyclobutane
CFCl3 C6H5CF3 CF3COOH CF4 C6H5F C4F8
, ppm 0.0 63.8 76.5 76.7 113.1 138.0
TABLE 6.61 Fluorine-19 to Fluorine-19 Spin Coupling Constants Structure
JFF, Hz
F2C cycloalkane gem Unsaturated compounds aC ¨ Cb gem trans cis Aromatic compounds, monocyclic ortho meta para Alkanes CFCl2 ˆ CF2 ˆ CFCl2 CFCl2 ˆ CF2 ˆ CCl3 CF2Cl ˆ CF2 ˆ CF2Cl CF3 ˆ CF2 ˆ CF2Cl (or ˆ CF3) CF3 ˆ CF2 ˆ CF2Cl CF3 ˆ CF2 ˆ CF2Cl CF3 ˆ CF2 ˆ CF3
212–260 30–90 115–130 9–58 18–22 0–7 12–15 6 5 1 1 2 9 7
TABLE 6.62 Silicon-29 Chemical Shifts Values given in ppm on the scale relative to tetramethylsilane n Substituent group X in (CH3)4 nSiXn ˆF ˆ Cl ˆ Br ˆI ˆH ˆ C2H5
1 35 30 26 9 19 2
2 9 32 20 34 42 5
3 52 13 18 18 65 7
4 109 19 94 346 93 8
6.105
SPECTROSCOPY
TABLE 6.62 Silicon-29 Chemical Shifts (continued) n Substituent group X in (CH3)4 nSiXn ˆ C6H5 ˆ CH ¨ CH2 ˆ Oalkyl ˆ Oaryl ˆ O ˆ CO ˆ alkyl ˆ N(CH3)2
1
2
3
4
5 7 14–17 17 22 6
9 14 3 to 6 6 4 2
12 21 41 to 45 54 43 18
23 79 to 83 101 75 28
, ppm
Structure Hydrides H3Si ˆ ˆ H2Si ˆ HSid Silicates Orthosilicate anions Silicon in end position Silicon in middle Branching silicons Cross-linked silicons Methyl siloxanes (CH3)2Si ˆ O ˆ (end position)
(middle)
(middle)
Structure
39 to 60 5 to 37 2 to 39
(branching)
69 to 72 77 to 81 85 to 89 93 to 97 107 to 120
, ppm
65 to 66
(cross-linked) 105 to 110 Polysilanes F3Si ˆ SiF3 74 Cl3Si ˆ SiCl3 (CH3O)3Si ˆ Si(OCH3)3 (CH3)3Si ˆ Si(CH3)3 (CH3)2Si[Si(CH3)3]2 HSi[Si(CH3)3]3 Si[Si(CH3)3]4
6–8 18 to 23
8 53 20 48 117 135
35 to 36
TABLE 6.63 Phosphorus-31 Chemical Shifts Values given in ppm on the scale, relative to 85% H3PO4
Structure P4 PR3 PHR2 PH2R PH3 PF3 PRF2
Identical atoms attached directly to phosphorus
Non-identically substituted phosphorus R CH3
R C2H5
R C6H5
62 99 164
20 56 128
6 41 122
168
207
461
241 97
6.106
SECTION 6
TABLE 6.63 Phosphorus-31 Chemical Shifts (continued)
Structure PCl3 PRCl2 PR2Cl PBr3 PRBr2 PR2Br PI3 P(CN)3 P(SiR3)3 P(OR)3 P(OR)2Cl P(OR)Cl2 P(SR)3 P(SR)2Cl P(SR)Cl2 P(SR)2Br P(SR)Br2 P(NR2)3 P(NR2)Cl2 PR(NR2)2 PR2(NR2) F2P ˆ PF2 Cl2P ˆ PCl2 I2P ˆ PI2 PH2K P(CF3)3 P4O6
Structure P(NCO)3 P(NCO)2X P(NCO)X2 P(NCS)3 P(NCS)2X P(NCS)X2 Structure
O ¨ PR3 O ¨ PHR2 O ¨ PF3
Identical atoms attached directly to phosphorus 220 227 178 136
226 155 170 255 3 113 Identical atoms attached directly to phosphorus 97 86
Identical atoms attached directly to phosphorus
Non-identically substituted phosphorus R CH3
R C6H5
192 94
196 119
162 81
184 91
194 116
152 71
251 141 169 114 125 188 206
139 165 177 115 186 211
204 123 166 86 39
127 157 173 132 183 204 184
118 162 100 62
151 100
Non-identically substituted phosphorus XF
128 131
X Cl
X Br
128 166
127
114 155
112 153
Non-identically substituted phosphorus R CH3 36 63
36
R C2H5
R C2H5
R C6H5
48
25 23
6.107
SPECTROSCOPY
TABLE 6.63 Phosphorus-31 Chemical Shifts (continued ) Identical atoms attached directly to phosphorus
Structure O ¨ PRF2 O ¨ PCl3 O ¨ PRCl2 O ¨ PR2Cl O ¨ P(OR)3 O ¨ P(OR)2Cl O ¨ P(OR)Cl2 O ¨ PH(OR)2 O ¨ PR2(OC2H5) O ¨ PR(OC2H5)2 O ¨ P(NR2)3 O ¨ PR2(NR2) O ¨ P(OR)2NH2 O ¨ P(OR)2(NCS) O ¨ P(SR)3 O ¨ PBr3 O ¨ P(NCO)3 O ¨ P(NCS)3 O ¨ P(NH2)3
PF5 PF6H PBr5 P(OC2H5)5 PO43 O ¨ P[OSi(CH3)3]3 H4P2O7 Phosphonates Phosphonium cations Alkyl Aryl (O3P ˆ PO3)4 Polyphosphates P
(end group)
R C2H5
R C6H5
27
29
11
45 65 1 6 6 19 50 30 23 44 15
53 77 1 3 6 15 52 33 24
34 43 18 6 2 31 17 2 26 3 29 55
12 19 61
66
35 144 101 71 6 33 11 24 to 2 43 to 32 35 to 18 9
O
(OR)2
R CH3
103 41 62 22 Identical atoms attached directly to phosphorus
Structure
O
2
Non-identically substituted phosphorus
ca 6
Structure
Identical atoms attached directly to phosphorus
(middle group)
ca 18
(branch group)
ca 30
6.108
SECTION 6
TABLE 6.63 Phosphorus-31 Chemical Shifts (continued ) Identical atoms attached directly to phosphorus
Structure S ¨ PR3 S ¨ PCl3 S ¨ PRCl2 S ¨ PR2Cl S ¨ PBr3 S ¨ PRBr2 S ¨ PR2Br S ¨ P(OR)3 S ¨ P(OR)Cl2 S ¨ P(OR)2Cl S ¨ PH(OR)2 S ¨ P(SR)3 S ¨ P(NH2)3 S ¨ P(NR2)3 Se ¨ P(OR)3 Se ¨ P(SR)3 P(OR)5 PRF4 PR2F3
29
Non-identically substituted phosphorus R CH3
R C2H5
R C6H5
59
55
43
80 87
94 109
75 80
21 64 73 59 73 74 98
42 98 68 56 68 69 92
20
82 78 82
78 71 76 71 30 6
112
60
30 9
53 54 59 59 92 58 86 42
TABLE 6.64 Phosphorus-31 Spin Coupling Constants Substituent group
JPH, Hz
Substituent group
JPH, Hz
aPH ˆ PH2 RPH2 aP ˆ CH3 aP ˆ CH2 ˆ
180–225 134 160–210 1–6 14
aP ˆ N ˆ CH aP ˆ C ˆ CH
8–25 0–4
H
H C
P
P ortho meta
7–10 2–4
O ¨ PHR2 O ˆ PH(S)R O2PHR O2PH(N) O2PH(S or Se) O3PH H
210–500 490–540 500–575 560–630 630–655 630–760 490–650
S(or Se) ¨ PHR2
420–454
C H
(Halogen)2P ¨ CH aP ˆ NH aP ˆ O ˆ CH3 aP ˆ O ˆ CH2 ˆ R aP ˆ O ˆ CHR2 aP ˆ SCH
12–22 30–40 14–20 16–20 10–28 11–15 6–10 3–7 5–20
S(or Se)
P
6.109
SPECTROSCOPY
TABLE 6.64 Phosphorus-31 Spin Coupling Constants Substituent group
JPH, Hz
Substituent group
7–15
JPH, Hz
axial
600–860
equatorial
800–1 000
15–30
110–113
15–30
980–1 190
9–18
2
11–15
JPB, Hz
Substituent group
12–17
80
490–600 Substituent group
JPP, Hz
aP ˆ F
1 320–1 420 (1F) (3F) 1 140–1 290 1 020–1 110 920–985 (alkyl) (aryl)
RPF2 R2PF RP(N)F
Substituent group P
P
220–400
O
P
P
O
S
P
P
S
1 225–1 305
1 310
1 100–1 200
JPP, Hz
330–500 15–500
P
C
P
ca 70
P
O
P
20–40
P
S
P
86–90
O
P
O
P
O
15–25
O
P
N H
P
O
8–30
P
N
P
N
60–90
ortho meta para
0–60 1–7 0–3
P
5–66
P
N
N
P
N
5–65
6.110
SECTION 6
ELECTRON SPIN RESONANCE Electron paramagnetic resonance (EPR) is also referred to as electron spin resonance (ESR). In many respects, it is similar to NMR and the corresponding principles, discussed in the previous section, apply. The critical difference is that an unpaired electron spin is detected in this method instead of a nuclear spin. The method applies only to paramagnetic systems. The electron spin is more readily detected than is a nuclear spin and magnets on EPR instruments are correspondingly smaller and less expensive. Certain transition metals such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V) have unpaired spins and are readily detectable by EPR. Likewise, organic radicals can be detected and studied. Numerous organic radicals have been studied by this method. When an unpaired electron spin is present, it will be observed at a characteristic resonance position. The resonance line is split by nuclei such as protons resulting in spin–spin coupling as observed in NMR. The coupling constant is referred to as “g” in EPR rather than “J ” as in NMR. It is referred to as the hyperfine splitting or hyperfine coupling constant. Certain radicals are especially stable and are of biological consequence or have been used as antioxidants. TEMPO radicals (TEMPO 2,2,6,6-tetramethylpiperidin-1-oxyl) have been particularly well studied because they are readily prepared and extremely stable.
NO2 N· N
O2 N
O = N· N
NO2
nitrous oxide radical
O.
TEMPO diphenylpicrylhydrazyl DPPH radical
A noticeable difference between NMR and EPR is that NMR is typically presented in absorption mode whereas EPR normally is presented in derivative mode. The EPR spectrum may be analyzed mathematically to determine the coupling pattern and thus the structural relationships. A database of software useful in EPR research is available at http://epr.niehs.nih.gov/software.html.
SPECTROSCOPY
TABLE 6.65 Spin–Spin Coupling (Hyperfine Splitting Constants) Values of coupling constant ai given in gauss Involves protons unless otherwise indicated.
6.111
6.112
SECTION 6
TABLE 6.65 Spin–Spin Coupling (Hyperfine Splitting Constants) (continued) 3.8
H
C
H
CH3
16.4
8.0
CH2
CH3
CH2
CH3
5.2 1.8 6.2
CH3 H
O H
15.2
C
OH
5.2
3.4
4.6
1.6
O
8.7
CH3
0.7
1.6
O
5.6
H C
4.7
3.7
4.3
2.7
3.1
1.3
0.9
1.1
0.7
0.2
6.6
6.5
5.9
6.7
C
C
0.5
CN O
CH3
3.9
O
C
CH3
O
CH3
C
2.2
2.6
0.7
0.4
1.2
NC
CH3
O
C 5.7
4.7
1.9
0.9
2.8
8.0
CN
4.7
0.5
0.5
2.9
2.7
CN
O C 1.3
NO2(14N) CH3
2.8
O C
1.7
C O
CH3
CH3
2.9 1.4
H
O
0.4
0.2
0.5
0.5
1.0
2.3
3.0
2.7
2.9
NO2
NO2
5.1
O
O
5.9
0.8
1.7
O
H3C
O
C
O
C
C CH3
0.8
C
5.9
O
1–2 1–2
CH3
CH2
12.0
CH2
CH3
H2C
O H3C
CH3
H3C
CH2
C
3.4
O
CH3
CH2
HC
5.7
C O
H3C
CH3
CH
H3C 1.5
C O
CH
CH3 H3C
CH3
O
H2C
6.5
CH2
8.7
10.2
C O
O
6.0
CH3
CH3 CH
3.7
CH3
14N
.
O
(14N) 14.3
.C14N (14N) 174
6.113
SPECTROSCOPY
TABLE 6.65 Spin–Spin Coupling (Hyperfine Splitting Constants) (continued)
10.0
NO2
32
NO2
3.4
NO2
0.4
–
4.2
4.0
1.1
– 0.1
1.6
–
1.0
1.6
NO2
4.2
4.7
14.9
NO2
tert-butyl
tert-butyl
2.5
NO2
17.8
NO2
1.1
H3C
tert-butyl
CH3
0.9
–
0.9
1.1
17.8
NO2
–
–
1.7
NO2
3.1
– 1.1
4.7
NO2
0.9
0.9
0.9 1.4
2.5
tert-butyl
N
1.7
NO2
12.2
NO2
3.3 3.4
N
–
–
(1H) 2.6 (14H) 7.1
–
1.1 1.1
N
N
1.1
H
H
1.1
H3C
1.1
CH3
N
0.7
(1H) 3.3 (14H) 7.6
+ N –
H C
4.4
C
N
0.8
C
C
137
0.8
C HOOC
CH3
C HOOC
17.1
CH2OH 10.1
H
OH C
HOOC
2.8
HO
HO OH
1–2.5
HO
0.8
2.0
3.9
O H
4.8 2.8
0.3
3.0
C
N
1.9
H
O
–
H 3.9
COOH
CH3
NO2
CH3
11.4
25.8
8.3
CH2
NO2
9.8
25.5
CH3
4.6
C
CH3 1.8
NO2 25.2
O R
H C
26.2 (anti) 29.2
6.2 (syn) 31.6
O
–
–
13.5 1.2
3.7
N O
O
33.0
7.5 10.6
N O
(all positions)
CH3
axial equatorial
6.114
SECTION 6
TABLE 6.65 Spin–Spin Coupling (Hyperfine Splitting Constants) (continued)
IONIZATION POTENTIALS The ionization potential is the energy required to remove an electron from an element or compound. Table 6.66A presents the ionization potentials for molecular species. The values are given in electron volts (eV). The values in parentheses are uncertainties in the final figure(s). Smaller numbers indicate lower energies or greater ease of electron removal. Table 6.66B is arranged alphabetically by element. Within an element, the compounds are arranged by increasing molecular weight.
TABLE 6.66A Ionization Potentials of Molecular Species 1 eV 23.061 kcal·mol1 Values in parentheses are uncertainties in the final figure(s).
Species
Ionization potential, eV
Diborane(6) Pentaborane(9) Hexaborane(10) Trimethylborane Triethylborane Methane CD4 Acetylene C2D2 Ethylene Ethane Propyne Allene Cyclopropene Cyclopropane Propane 1,2-Butadiene 1,3-Butadiene 1-Butyne 2-Butyne 1-Butene
12.0 10.5 9.3(1) 8.8(2) 9.0(2) 12.6 12.888 11.4 11.416(6) 10.5 11.5 10.36 10.16(2) 9.95 10.09(2) 11.1 9.57(2) 9.07 10.18(1) 9.9(1) 9.6
Species 2-Methyl-1-propene Cyclobutane Butane Isobutane Cyclopentadiene 1,2-Pentadiene 1,3-Pentadiene 1,4-Pentadiene 2,3-Pentadiene 2-Methyl-1,4-butadiene Cyclopentene 1-Pentene cis-2-Pentene trans-2-Pentene 2-Methyl-1-butene 3-Methyl-1-butane 3-Methyl-2-butene Cyclopentane Pentane Isopentane Neopentane
Ionization potential, eV 9.23(2) 10.58 10.63(3) 10.57 8.97 9.42 8.68 9.58 8.68 8.845(5) 9.01(1) 9.50(2) 9.11 9.06 9.12(2) 9.51(3) 8.69(2) 10.53(5) 10.35 10.32 10.35
6.115
SPECTROSCOPY
TABLE 6.66A Ionization Potentials of Molecular Species (continued )
Species cis-2-Butene trans-2-Butene 1,3-Hexadiyne 1,4-Hexadiyne 1,5-Hexadiyne 2,4-Hexadiyne 1-Methylcyclopentadiene 2-Methylcyclopentadiene Cyclohexene 1-Hexene 2,3-Dimethyl-2-butene Cyclohexane Hexane 2-Methylpentane 3-Ethylbutane 2,2-Dimethylbutane 2,3-Dimethylbutane Toluene Cycloheptatriene Bicyclo[2.2.1]heptane Bicyclo[3.2.0]heptane 1,2-Dimethylcyclopentadiene 5,5-Dimethylcyclopentadiene 1,3-Cycloheptadiene Norbornene 4-Methylcyclohexene Methylcyclohexane Heptane Phenylacetylene Styrene Cyclooctatetraene Cubane Ethylbenzene o-Xylene m-Xylene p-Xylene 7-Methylcycloheptatriene 1-Methylspiroheptadiene 6-Methylspiroheptadiene 1,2,3-Trimethylcyclopentadiene 1,5,5-Trimethylcyclopentadiene 4-Vinylcyclohexene cis-1,2-Dimethylcyclohexane trans-1,2-Dimethylcyclohexane
Ionization potential, eV 9.13 9.13 9.25 9.75 10.35 9.75 8.43(5) 8.46(5) 8.72 9.45(2) 8.30 9.8 10.18 10.12 10.08 10.06 10.02 8.82(1) 8.5 8.67 9.37 8.1(1) 8.22(5) 8.55 8.95(15) 8.91(1) 9.85(3) 9.90(5) 8.815(5) 8.47(2) 8.0 8.74(15) 8.76(1) 8.56 8.58 8.44 8.39(10) 8.02(10) 8.4(1) 7.96(5) 8.0(1) 8.93(2) 10.08(2) 10.08(3)
Species Benzene Hexa-1,3-diene-5-yne 2,2,4-Trimethylpentane 2,2,3,3-Tetramethylbutane Indene -Methylstyrene Propylbenzene Isopropylbenzene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Azulene Butylbenzene sec-Butylbenzene tert-Butylbenzene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene cis-Decalin trans-Decalin 1-Methylnaphthalene 2-Methylnaphthalene Pentamethylbenzene Hexamethylcyclopentadiene Biphenyl Hexamethylbenzene Fluorene Diphenylacetylene Anthracene Phenanthrene 1,2-Benzanthracene 1-Phenyldodecane 3-Phenyldodecane 7-Phenyltridecane 1-Phenylicosane 2-Phenylicosane 3-Phenylicosane 4-Phenylicosane 5-Phenylicosane 7-Phenylicosane 9-Phenylicosane N2 NH3 N2H2 N2H4 HCN C2N2
Ionization potential, eV 9.24 9.50 9.86 9.79 8.81 8.35(1) 8.72(1) 8.69(1) 8.48 8.27 8.4 8.12 7.42 8.69(1) 8.68(1) 8.68(1) 8.47(5) 8.03 9.61(2) 9.61(2) 7.96(1) 7.955(10) 7.92(2) 7.74(5) 8.27(1) 7.85(2) 8.63 8.85(5) 7.55 8.1 8.01 9.05(10) 8.95(10) 8.91(10) 9.34(10) 9.22(10) 8.95(10) 9.01(10) 9.04(10) 8.97(10) 9.06(10) 15.576 10.2 9.85(10) 8.74(6) 13.8 13.6
6.116
SECTION 6
TABLE 6.66A Ionization Potentials of Molecular Species (continued )
Species Methylamine Acetonitrile Ethyleneimine Ethylamine Dimethylamine Acrylonitrile Propionitrile Propylamine Isopropylamine Trimethylamine 3-Butenonitrile Pyrrole Butyronitrile Pyrrolidine Butylamine sec-Butylamine Isobutylamine tert-Butylamine Diethylamine Pyridine Aniline 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine Cyclohexylamine Dipropylamine Diisopropylamine Triethylamine Benzonitrile N-Methylaniline m-Toluidine 2,3-Dimethylpyridine 2,4-Dimethylpyridine 2,6-Dimethylpyridine Phenylacetonitrile 3-Methylbenzonitrile 4-Methylbenzonitrile N-Ethylcyclohexylamine N,N-Dimethylcyclohexylamine Dibutylamine N-Propylaniline N-Ethyl-N-methylaniline N,N-Dimethyl-o-toluidine N,N-Dimethyl-m-toluidine Propionaldehyde
Ionization potential, eV 8.97 12.2 9.94(15) 8.86(2) 8.24(2) 10.91(1) 11.84(2) 8.78(2) 8.72(3) 7.82(2) 10.39(1) 8.20(1) 11.67(5) 8.41 8.71(3) 8.70 8.70 8.64 8.01(1) 9.3 7.7 9.02(3) 9.04(3) 9.04(3) 8.86 7.84(2) 7.73(3) 7.50(2) 9.705(10) 7.32 7.50(2) 8.85(2) 8.85(3) 8.85(2) 9.4(5) 9.66(5) 9.76 7.56 7.12 7.69(3) 7.54 7.37 7.37 7.35 9.98
Species N,N-Dimethyl-p-toluidine Tripropylamine N-Butylaniline N,N-Diethylaniline N,N-Dimethyl-4-ethylaniline N,N-2,4-Tetramethylaniline N,N-2,6-Tetramethylaniline N,N-3,5-Tetramethylaniline N,N-Diethyl-4-toluidine N,N-Dimethyl-4isopropylaniline Diphenylamine N,N-Dipropylaniline N,N-Dimethyl-4-tertbutylaniline N,N-Dibutylaniline Triphenylamine Diazirine Diazomethane Methylhydrazine 1,1-Dimethylhydrazine 1,2-Dimethylhydrazine o-Diazine m-Diazine p-Diazine 1,1-Diethylhydrazine 1-Butyl-1-methylhydrazine p-Bis(dimethylamino)benzene Methyl azide O2 O3 Water (and D2O) H2O2 CO CO2 NO N2O NO2 Formaldehyde Methanol Acetaldehyde Ethylene oxide Ethanol Dimethyl ether Propenal Diphenyl ether
Ionization potential, eV 7.33 7.23 7.53 6.99 7.38 7.17 7.22 7.25 6.93 7.41 7.25(3) 6.96 7.43 6.95 6.86(3) 10.18(5) 8.999(1) 8.00(6) 7.67(5) 7.75(10) 9.9 9.9 9.8 7.59(5) 7.62(5) 6.9 9.5(1) 12.063(1) 12.3(1) 12.6 11.0 14.013(4) 13.769(30) 9.25 12.894 9.79 10.88 10.84 10.2 10.6 10.49 9.98 10.10(1) 8.82(5)
6.117
SPECTROSCOPY
TABLE 6.66A Ionization Potentials of Molecular Species (continued)
Species Acetone Allyl alcohol Methyl vinyl ether Propylene oxide Trimethylene oxide 1-Propanol 2-Propanol Furan 2-Butenal Butyraldehyde 2-Methylpropionaldehyde 2-Butanone Tetrahydrofuran 1-Butanol Diethyl ether Cyclopentanone Dihydropyran Pentanal 3-Methylbutyraldehyde 2-Pentanone 3-Methyl-2-butanone 3-Pentanone Cyclopentanone Phenol 4-Methyl-3-penten-2-one Cyclohexanone 2-Hexanone 4-Methyl-2-pentanone 3,3-Dimethyl-2-butanone Dipropyl ether Diisopropyl ether Benzaldehyde Tropone Benzyl alcohol Methoxybenzene m-Cresol 2-Heptanone Acetophenone 4-Methylbenzaldehyde Benzyl methyl ether Ethyl phenyl ether 3-Methylanisole Propiophenone 3-Methylacetophenone Phenyl benzoate Benzil Methyl methoxyacetate Methyl p-methoxybenzoate
Ionization potential, eV 9.69 9.67(5) 8.93(2) 10.22(2) 9.667(5) 10.1 10.15 8.89 9.73(1) 9.86(2) 9.74(3) 9.5 9.42 10.04 9.6 9.26(1) 8.34(1) 9.82(5) 9.71(5) 9.37(2) 9.30(2) 9.32(1) 9.25(1) 8.51 9.08(3) 9.14(1) 9.35 9.30 9.17(3) 9.27(5) 9.20(5) 9.52 9.68(2) 9.14(5) 8.21(2) 8.52(5) 9.33(3) 9.27(3) 9.33(5) 8.85(3) 8.13(2) 8.31(5) 9.27(5) 9.15(5) 8.98(5) 8.78(5) 9.56(5) 8.43(4)
Species Benzophenone 4-Methylbenzophenone Formic acid Acetic acid Methyl formate Propionic acid Ethyl formate Methyl acetate Dimethoxymethane Vinyl acetate 2,3-Butanedione Butanoic acid Isobutyric acid Propyl formate Ethyl acetate Methyl propionate 1,4-Dioxane 1,1-Dimethoxyethane 2-Furaldehyde 2,4-Pentanedione Butyl formate Isobutyl formate Propyl acetate Isopropyl acetate Ethyl propionate Methyl butyrate Methyl isobutyrate Diethoxymethane 1,4-Quinone Butyl acetate Isobutyl acetate sec-Butyl acetate Benzoic acid p-Hydroxybenzaldehyde -Hydroxyacetophenone Methyl benzoate p-Methoxybenzaldehyde m-Hydroxyacetophenone p-Hydroxyacetophenone -Methoxyacetophenone m-Methoxyacetophenone p-Methoxyacetophenone Methyl p-methylbenzoate p-Hydroxybenzophenone N2F4 OF2 XeF2 Fluoromethane
Ionization potential, eV 9.4 9.13(5) 11.05(1) 10.69(3) 10.815(5) 10.24(1) 10.61(1) 10.27(2) 10.00(5) 9.19(5) 9.24(3) 10.16(5) 10.02(5) 10.54(1) 10.11(2) 10.15(3) 9.13(3) 9.65(3) 9.21(1) 8.87(3) 10.50(2) 10.46(2) 10.04(3) 9.99(1) 10.00(2) 10.07(3) 9.98(2) 9.70(5) 9.67(2) 9.56(3) 9.97 9.91(3) 9.73(9) 9.32(2) 9.33(5) 9.35(6) 8.60(3) 8.67(5) 8.70(3) 8.60(5) 8.53(5) 8.62(5) 8.94(4) 8.59(5) 12.04(10) 13.6 11.5(2) 12.85(1)
6.118
SECTION 6
TABLE 6.66A Ionization Potentials of Molecular Species (continued)
Species Diphenyl carbonate Acetamide N,N-Dimethylformamide N-Methylacetamide NN-Dimethylacetamide N,N-Diethylformamide 2-Pyridinecarboxaldehyde 4-Pyridinecarboxaldehyde N,N-Diethylacetamide Phenyl isocyanate Benzamide p-Aminobenzaldehyde p-Methoxyaniline Acetanilide m-Aminoacetophenone p-Aminoacetophenone -Cyanoacetophenone Nitromethane Nitroethane 1-Nitropropane 2-Nitropropane Nitrobenzene m-Nitrotoluene p-Nitrotoluene o-Nitroaniline m-Nitroaniline p-Nitroaniline Ethyl nitrate Propyl nitrate p-Nitrophenol p-Nitrobenzaldehyde m-Nitroacetophenone p-Nitroacetophenone Methyl p-nitrobenzoate F2 HF BF3 C2F4 Hexafluorobenzene trans-N2F2 NF3 Methyl isothiocyanate Methyl thiocyanate Ethyl isothiocyanate Ethyl thiocyanate Phenyl isothiocyanate Tolyl thiocyanate Thiourea
Ionization potential, eV 9.01(5) 9.77(2) 9.12(2) 8.90(2) 8.81(3) 8.89(2) 9.75(5) 10.12(5) 8.60(2) 8.77(2) 9.4(2) 8.25(2) 7.82 8.39(10) 8.09(5) 8.17(2) 9.56(5) 11.1 10.88(5) 10.81(3) 10.71(5) 9.92 9.65(5) 9.87 8.66 8.7 8.85 11.22 11.07(2) 9.52 10.27(1) 9.89(5) 10.07(2) 10.20(3) 15.7 15.77(2) 15.5 10.12 9.97 13.1(1) 13.2(2) 9.25(3) 10.065(10) 9.14(3) 9.89(1) 8.520(5) 9.06(5) 8.50(5)
Species Fluoroethylene Fluorobenzene 1,2-Difluorobenzene 1,4-Difluorobenzene Trifluoroethylene 3,3,3-Trifluoro-1-propene o-Fluorophenol PH3 PF3 Methylphosphine Ethylphosphine Trimethylphosphine Triphenylphosphine S6 S7 Hydrogen sulfide Carbon disulfide Sulfur dioxide Methanethiol Ethylene sulfide Ethanethiol Dimethyl sulfide Propylene sulfide 1-Propanethiol Ethyl methyl sulfide Thiophene Methyl 1-propenyl sulfide 1-Butanethiol Diethyl sulfide Methyl propyl sulfide Isopropyl methyl sulfide Thiophenol 2-Ethylthiophene Dipropyl sulfide Methyl phenyl sulfide 2-Propylthiophene 2-Butylthiophene Dimethyl disulfide Diethyl disulfide COS SO2F2 p-Dichlorobenzene Chloroform Trichloroethylene 1,1,2,2-Tetrachloroethane CNCl CF3Cl Chlorotrifluoroethylene
Ionization potential, eV 10.37 9.2 9.31 9.15 10.14 10.9 8.66(1) 9.98 9.71 9.72(15) 9.47(50) 8.6(2) 7.36(5) 9.7 9.2(3) 10.4 10.080 12.34(2) 9.440(5) 8.87(15) 9.285(5) 8.685(5) 8.6(2) 9.195 8.55(1) 8.860(5) 8.7(2) 9.14(2) 8.430(5) 8.80(15) 8.7(2) 8.32(1) 8.8(2) 8.5 8.9 8.6(2) 8.5(2) 8.46(3) 8.27(3) 11.17(1) 13.3(1) 8.95 11.42(3) 9.45 11.10(5) 12.49(4) 12.91(3) 10.4(2)
6.119
SPECTROSCOPY
TABLE 6.66A Ionization Potentials of Molecular Species (continued)
Species 1-Methylthiourea 1-Vinylthiourea 1,1-Dimethylthiourea 1,3-Dimethylthiourea 1,1,3-Trimethylthiourea Tetramethylthiourea CH3COSH Cl2 HCl CCl4 Tetrachloroethylene PCl3 Chloromethane Chloroethane Chloroethylene 1-Chloro-1-propyne 1-Chloropropane 2-Chloropropane 1-Chlorobutane 2-Chlorobutane 1-Chloro-2-methylpropane 2-Chloro-2-methylpropane Chlorobenzene -Chlorotoluene o-Chlorotoluene m-Chlorotoluene p-Chlorotoluene endo-5-Chloro-2-norbornene exo-5-Chloro-2-norbornene Dichloromethane cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloroethane 2,3-Dichloro-1-propene 1,2-Dichloropropane 1,3-Dichloropropane o-Dichlorobenzene m-Dichlorobenzene HI ICI IBr Iodomethane Iodoethane 1-Iodopropane 2-Iodopropane 1-Iodobutane 2-Iodobutane 1-Iodo-2-methylpropane
Ionization potential, eV 8.29(5) 8.29(5) 8.34(5) 8.17(5) 7.93(5) 7.95(5) 10.00(2) 11.48(1) 12.74 11.47(1) 9.32(1) 9.91 11.3 10.97 9.996 9.9(1) 10.82(3) 10.78(2) 10.67(3) 10.65(3) 10.66(3) 10.61(3) 9.07 9.19(5) 8.83(2) 8.83(2) 8.69(2) 9.10(15) 9.15(15) 11.35(2) 9.65 9.64 11.12(5) 9.82(3) 10.87(5) 10.85(5) 9.06 9.12(1) 10.39 10.31(2) 9.98(3) 9.54 9.33 9.26(1) 9.17(2) 9.21(1) 9.09(2) 9.18(2)
Species Chloropentafluorobenzene Dichlorodifluoromethane CF3CCl ¨ CClCF3 Trichlorofluoromethane CF3CCl3 CFCl2CF2Cl ClO3F 1-Bromo-1-propene 1-Bromopropane 2-Bromopropane 1-Bromobutane 2-Bromobutane 1-Bromo-2-methylpropane 2-Bromo-2-methylpropane 1-Bromopentane Bromobenzene o-Bromotoluene m-Bromotoluene p-Bromotoluene Dibromomethane cis-1,2-Dibromoethylene trans-1,2-Dibromoethylene 1,1-Dibromoethane 1,3-Dibromopropane Bromoform Tribromoethylene Cyanogen bromide Bromotrifluoromethane 2-Bromopyridine 4-Bromopyridine Acetyl bromide Methyl bromoacetate CF2BrCH2Br Bromochloromethane 1-Bromo-2-chloroethane Bromodichloromethane Bromotrimethylsilane I2 CF3CF2CF2CH2Cl Dichlorofluoromethane Chlorotrimethylsilane Trichloromethylsilane Trichlorovinylsilane Trichloroethylsilane Trichloroisopropylsilane C2H5V(CO)4 Cr(CO)6 C2H5Mn(CO)3
Ionization potential, eV 10.4(1) 12.31(5) 10.36(1) 11.77(2) 11.78(3) 11.99(2) 13.6(2) 9.30(5) 10.18(1) 10.075(10) 10.125(10) 9.98(1) 10.09(2) 9.89(3) 10.10(2) 8.98(2) 8.78(1) 8.81(2) 8.67(2) 10.49(2) 9.45 9.46 10.19(3) 10.07(2) 10.51(2) 9.27 11.95(8) 11.89 9.65(5) 9.94(5) 10.55(5) 10.37(5) 10.83(1) 10.77(1) 10.63(3) 10.88(5) 10.24(2) 9.28(2) 11.84(2) 12.39(20) 10.58(4) 11.36(3) 10.79(2) 10.74(4) 10.28(10) 8.2(3) 8.03(3) 8.3(4)
6.120
SECTION 6
TABLE 6.66A Ionization Potentials of Molecular Species
Species
Ionization potential, eV
2-Iodo-2-methylpropane 1-Iodopentane Iodobenzene o-Iodotoluene m-Iodotoluene p-Iodotoluene RuO4 2-Chloropyridine 4-Chloropyridine Acetyl chloride 1-Chloro-2-propanone 2-Chlorophenol 4-Chlorophenol Benzoyl chloride 4-Chlorobenzaldehyde -Chloroacetophenone p-Chloroacetophenone Methyl chloroacetate 4-Methoxybenzoyl chloride 4-Chlorobenzoyl chloride cis-Chlorofluoroethylene trans-Chlorofluoroethylene o-Chlorofluorobenzene m-Chlorofluorobenzene p-Chlorofluorobenzene Chlorodifluoromethane 1-Chloro-1,1-difluoroethane
9.02(2) 9.19(1) 8.73 8.62(1) 8.61(3) 8.50(1) 12.33(23) 9.91(5) 10.15(5) 11.02(5) 9.99 9.28 9.07 9.70(1) 9.61(1) 9.5 9.47(5) 10.53(5) 8.87(5) 9.58(3) 9.86 9.87 9.155(10) 9.21(1) 9.43(2) 12.45(5) 11.98(1)
Species Fe(CO)5 Ni(CO)4 Mo(CO)6 W(CO)6 As4 Arsine AsCl3 Trimethylarsine Triphenylarsine Br2 HBr BrCl Bromomethane Bromoethylene Bromoethane 1-Bromo-1-propyne OsO4 Dimethylmercury Diethylmercury Diisopropylmercury CH3HgCl Triphenylbismuth Stibine Triphenylstibine Tetramethylstannane Tetramethylplumbane Tetramethylgermane
Ionization potential, eV 7.95(3) 8.28(3) 8.12(3) 8.18(3) 9.07(7) 10.03 11.7(1) 8.3(1) 7.34(7) 10.54(3) 11.62(3) 11.1(2) 10.53 9.80 10.29 10.1(1) 12.97(12) 9.0 8.5(1) 7.6(1) 11.5(2) 7.3(1) 9.58 7.3(1) 8.25(15) 8.0(4) 9.2(2)
TABLE 6.66B Alphabetical Listing of Ionization Potentials of Molecular Species Species
IP (eV)
Acetylene Acetylene-d2; C2D2 Allene Ammonia (NH3) Anthracene Azine (N2H2) Azulene 1,2-Benzanthracene Benzene Bicyclo[2.2.1]heptane Bicyclo[3.2.0]heptane Biphenyl 1,2-Butadiene 1,3-Butadiene
11.4 11.416 10.16 10.2 7.55 9.85(10) 7.42 8.01 9.24 8.67 9.37 8.27(1) 9.57(2) 9.07
Species Butane 1-Butene cis-2-Butene trans-2-Butene 1-Butyne 2-Butyne Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon dioxide, CO2 Cubane Cyclobutane 1,3-Cycloheptadiene Cycloheptatriene
IP (eV) 10.63(3) 9.6 9.13 9.13 10.18(1) 9.9(1) 8.69(1) 8.68(1) 8.68(1) 12.888 8.74(15) 10.58 8.55 8.5
6.121
SPECTROSCOPY
TABLE 6.66B Alphabetical Listing of Ionization Potentials of Molecular Species (continued) Species
IP (eV)
Species
IP (eV)
Cyclohexane Cyclohexene Cyclooctatetraene Cyclopentadiene Cyclopentane Cyclopentene Cyclopropane Cyclopropene cis-Decalin trans-Decalin Diazomethane (C2N2) Diborane 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethyl-2-butene cis-1,2-Dimethylcyclohexane trans-1,2-Dimethylcyclohexane 1,2-Dimethylcyclopentadiene 5,5-Dimethylcyclopentadiene Diphenylacetylene Ethane Ethylbenzene 3-Ethylbutane Ethylene Fluorene Heptane Hexaborane Hexa-1,3-diene-5-yne 1,3-Hexadiyne 1,4-Hexadiyne 1,5-Hexadiyne 2,4-Hexadiyne Hexamethylbenzene Hexamethylcyclopentadiene Hexane 1-Hexene Hydrazine (N2H4) Hydrocyanic acid (HCN) Indene Isobutane Isopentane Isopropylbenzene Methane 2-Methyl-1,4-butadiene 3-Methyl-1-butane 2-Methyl-1-butene 3-Methyl-2-butene 7-Methylcycloheptatriene Methylcyclohexane
9.8 8.72 8 8.97 10.53(5) 9.01(1) 10.09 9.95 9.61(2) 9.61(2) 13.6 12 10.06 10.02 8.3 10.08(2) 10.08(3) 8.1(1) 8.22(5) 8.85(5) 11.5 8.76(1) 10.08 10.5 8.63 9.90(5) 9.3 9.5 9.25 9.75 10.35 9.75 7.85(2) 7.74(5) 10.18 9.45(2) 8.74(6) 13.8 8.81 10.57 10.32 8.69(1) 12.6 8.845(5) 9.51(3) 9.12(2) 8.69(2) 8.39(10) 9.85(3)
4-Methylcyclohexene 1-Methylcyclopentadiene 2-Methylcyclopentadiene 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylpentane 2-Methyl-l-propene 1-Methylspiroheptadiene 6-Methylspiroheptadiene -Methylstyrene Naphthalene Neopentane Nitrogen (N2) Norbornene Pentaborane(9) 1,2-Pentadiene 1,3-Pentadiene 1,4-Pentadiene 2,3-Pentadiene Pentamethylbenzene Pentane 1-Pentene cis-2-Pentene trans-2-Pentene Phenanthrene Phenylacetylene 1-Phenyldodecane 3-Phenyldodecane 1-Phenylicosane 2-Phenylicosane 3-Phenylicosane 4-Phenylicosane 5-Phenylicosane 7-Phenylicosane 9-Phenylicosane 7-Phenyltridecane Propane Propylbenzene Propyne Styrene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene 2,2,3,3-Tetramethylbutane Toluene Triethylborane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Trimethylborane
8.91(1) 8.43(5) 8.46(5) 7.96(1) 7.955(10) 10.12 9.23(2) 8.02(10) 8.4(1) 8.35(1) 8.12 10.35 15.576 8.95(15) 10.5 9.42 8.68 9.58 8.68 7.92(2) 10.35 9.50(2) 9.11 9.06 8.1 8.815(5) 9.05(10) 8.95(10) 9.34(10) 9.22(10) 8.95(10) 9.01(10) 9.04(10) 8.97(10) 9.06(10) 8.9100) 11.1 8.72(1) 10.36 8.47(2) 8.47(5) 8.03 9.79 8.82(1) 9 8.48 8.27 8.4 8.8
6.122
SECTION 6
TABLE 6.66B Alphabetical Listing of Ionization Potentials of Molecular Species (continued) Species
IP (eV)
1,2,3-Trimethylcyclopentadiene 1,5,5-Trimethylcyclopentadiene 2,2,4-Trimethylpentane 4-Vinylcyclohexene
7.96(5) 8.0(1) 9.86 8.93(2)
Species
IP (eV)
m-Xylene o-Xylene p-Xylene
8.58 8.56 8.44
TABLE 6.67 Ionization potentials of radical species 1 eV 23.061 kcal·mol1 Values in parentheses are uncertainties in the final figure(s).
Species
Ionization potential, eV
BH BH2 BF C2 C3 CH CH2 CH3 CD3 C2H3 C2H5 HC˜CCH2 Allyl Cyclopropyl C3H6 Propyl Isopropyl C4H2 C4H4 Cyclobutyl CH3CH ¨ CHCH2 CH2 ¨ C(CH3)CH2 Butyl sec-Butyl Isobutyl tert-Butyl Cyclopentyl
9.77(5) 11.4(2) 11.3 12.0(6) 12.6 11.1(2) 10.396(3) 9.83 9.832(2) 9.4 8.4 8.25 8.15 8.05 9.73 8.1 7.5 10.2(1) 9.87 7.88(5) 7.71(5) 8.03(5) 8.64(5) 7.93(5) 8.35(5) 7.42(7) 7.79(2)
Species tert-Pentyl Neopentyl Benzyne Cyclohexyl Benzyl Cycloheptatrienyl 1-Methylnaphthyl 2-Methylnaphthyl (CH3)2CCN m-Nitrobenzyl OH HO2 CHO CH3CO C6H5O CF2 NF2 CH2F CHF2 HS CH3S C6H5S CCl3 CH2Cl CHCl2 NH2
Ionization potential, eV 7.1(1) 8.3(1) 9.6 7.7 7.76(8) 6.24(1) 7.35 7.56(5) 9.15(10) 8.56(10) 13.17(10) 11.53(2) 9.8 10.3 8.84 11.8 11.9 9.35 9.45 10.5(1) 8.06(10) 8.63(10) 8.78(5) 9.32 9.30 11.3
X-RAY DIFFRACTION The X-ray diffraction method utilizes a monochromatic beam of X-rays to which a solid material is exposed. The beam of radiation interacts with the solid, and is both reflected and diffracted. The reflection pattern is recorded by a detector system sensitive to the X-radiation. Until recently, this involved an intricate mechanical device whose complex
SPECTROSCOPY
6.123
motion permitted X-rays to be recorded over a range of positions, as the detector position changed. Automated instruments using this technology are often referred to as “4-circle diffractometers,” a term that refers to this complex detector motion. Newer X-ray instruments use charge coupled devices (CCDs) to simultaneously detect X-ray diffraction position and intensity over a much broader area. This enhanced detection technology reduces, often dramatically, the time required for data acquisition. The Bragg equation describes the relationship between the impinging X-radiation, the diffraction angle, and the separation between lattice planes in the crystal under study. The Bragg equation is generally written as sin1 (/2d) where is the angle of the diffracted beam (usually called a reflection), is the wavelength of the incident X-ray beam, and d is the inter-planar spacing. From the diffraction pattern, both position and intensity, one can obtain structural information about the crystal under study. Two types of X-ray studies are commonplace: X-ray powder analysis and crystal structure determination. Even in powders, the regular arrangement of atoms within the solid leads to characteristic diffraction patterns. X-ray powder patterns may therefore be used to characterize solids in much the same way that a UV or IR spectrum will give useful information but not necessarily a definitive structure. The X-ray powder pattern obtained for the sodium salt of 2-propylpentanoic acid – (CH3CH2CH2)2CHCOO Na is shown in Figure 6.2. The X-ray powder pattern was detected over a range 2 , in this case 2–40 from the incident beam. This is a typical range although other ranges are used as well. The peak intensities are expressed in counts per second (cps) and may vary from experiment to experiment. However, the ratios of the peak heights are characteristic. Thus, X-ray powder patterns obtained from different samples of the same compound should give very similar, if not identical, patterns. Because the X-ray powder patterns are complex, the identity of two spectra suggests that the compounds producing them are also identical.
27500 25000 22500 20000
CPS
17500 15000 12500 10000 7500 5000 2500 0 2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 –2
FIGURE 6.2
X-ray powder pattern of 2-propylpentanoic acid, (CH3CH2CH2)2CHCOONa.
6.124
SECTION 6
The determination of a molecular structure from X-ray diffraction data is of critical importance to modern chemical and biological sciences. For small molecules, the structure is normally determined by direct methods. The X-ray diffraction pattern resulting from the interaction of X-rays with the electron clouds of different elements gives a pattern from which the elements present and their connectivity may be deduced. The expected diffraction pattern calculated for an apparent structure is then compared with the observed data to refine the result. Refinement factors (usually expressed as Rw) of 1–3% are common in modern small molecule structure determinations. The Cambridge Structural Database is a repository for more than 250 000 (as of 2002) small molecule crystal structures. It is accessible at http:// www.ccdc.cam.ac.uk/ by subscription. The process is more complex for such large molecules as proteins. Typically, a model of the amino acid backbone will be constructed first to obtain a general sense of the overall structure. Amino acid sidechains will then be added and the experimental data are again compared with the calculated diffraction pattern. This process is repeated until the complete structure is obtained. Because the uncertainties are larger in these systems, the resolution of the structure is typically reported in Ångstroms. Structures that have a resolution of 3 Å can and do give important information, especially when the gross structure of a protein was previously unknown. Recent improvements in chemical and biological techniques, computers, and X-ray instrumentation (especially in detectors) have made resolutions in the 1–2 Å range more common. A database, called the Protein Data Bank or “PDB,” is a repository for protein structures. The database may be consulted at no charge and gives access to structures obtained by X-ray methods as well as by NMR and theoretical techniques. The Internet address is http://www.rcsb.org/pdb.
SECTION 7
PHYSICOCHEMICAL RELATIONSHIPS
LINEAR FREE ENERGY RELATIONSHIPS . . . . . . . . . Table 7-1 Hammett and Taft Substituent Constants . . . . Table 7-2 pKA and Rho Values for the Hammett Equation Table 7-3 pKA and Rho Values for the Taft Equation . . . Table 7-4 Special Hammett Sigma Constants . . . . . . .
7.1
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
7.2 7.3 7.8 7.10 7.10
7.2
SECTION 7
LINEAR FREE ENERGY RELATIONSHIPS Organic chemists have studied the influence of substituents on various reactions for the better part of a century. Linear free energy relationships have played an important role in this pursuit by correlating equilibrium and rate processes. One of the earliest examples is now known as the Hammett equation. It emerged from the observation that the acidities of benzoic acids correlated with the rates at which ethyl esters of benzoic acids hydrolyzed. The relationship was expressed as follows in which K represents an equilibrium constant and k is a rate constant. The proportionality constant, m, is the slope of the log–log data plot for the two processes. m log
k K log K0 k0
When H and S vary linearly for two processes or when H or S is constant, the free energy relationship will be linear. The common form of the relationship is either log
k K or log K0 k0
for equilibrium or rate processes, respectively. The Greek letters rho () and sigma () symbolize the reaction and substituent constants, respectively. These equations may be used to describe and understand the influence of substituents on a reaction. Separate sigma values are defined by this reaction for meta and para substituents and provide a measure of the total electronic influence (polar, inductive, and resonance effects) in the absence of conjugation effects. The correlation is not as useful for ortho-substituted aromatic compounds because steric or other proximity effects intercede. Typically in aromatic systems, the inductive effect is transmitted about equally to the meta and para positions. Consequently, m is an approximate measure of a substituent’s inductive effect whereas p gives an approximate measure of a substituent’s resonance effect. Consider the dissociation of benzoic acids in water. This process is assigned a reaction constant of 1. The reaction is illustrated using “Sub” to represent a substituent. Sub
O C OH
H2O
O H+ +
Sub
C O–
We may compare three para-substituted benzoic acids. The reference point is parahydrogen, which has a p constant of 0, by definition. The methoxy group is electron donating and has a p constant of 0.27. Adding electrons to the benzoate anion (structure at right, above) should make the anion less stable. Thus, the ability to dissociate a cation (the acidity) should be diminished. The pKA is log KA so the higher the pKA, the lower the acidity (the weaker the acid). In contrast, the nitro group is electron withdrawing. Its p constant is 0.78 and its presence in the benzoate anion should be stabilizing. A more stable conjugate base implies a stronger acid and, indeed, the pKA for 4-nitrobenzoic acid is 3.44. Because these values are logarithmic, there is an order of magnitude difference in the acidities as a result of these substituents.
7.3
PHYSICOCHEMICAL RELATIONSHIPS
Comparison of acidities and sigma constants for three benzoic acids COOH
COOH
COOH
Compound OCH3
Substituent p pKA
H
NO2
H 0.00 4.20
OCH3 0.27 4.49
NO2 0.78 3.44
Values of Hammett sigma constants are listed in Table 7.1. Taft sigma* (*) values may be used similarly with respect to aliphatic and alicyclic systems. Values of * constants are also listed in Table 7.1. The reaction constant is related to the reaction process rather than to the substituents present. A somewhat oversimplified way of considering is to say that it indicates the demand the process makes on the substituents. The acidity of a benzoic acid, C6H5COOH, derivative is affected directly by substituents in the aromatic ring. Substituents exert somewhat less influence in phenylacetic acids, C6H5CH2COOH, because the methylene group between carboxylate and the aromatic ring tends to insulate the latter from the former. This “insulation” is even greater for phenyipropanoic acids, C6H5CH2CH2COOH. The reaction constant for dissociation of benzoic acid in water is set at 1.0. The reaction constants for dissociation of phenylacetic and phenylpropanoic acids are 0.49 and 0.21, respectively, under the same conditions. Values of the reaction parameter for some aromatic and aliphatic systems are given in Tables 7.2 and 7.3. Since substituent effects in aliphatic systems and in meta positions in aromatic systems are essentially inductive in character, * and m values are related by the expression m 0.217* 0.106. Substituent effects fall off with increasing distance from the reaction center. The decline is generally a factor of 0.36 for the interposition of a ˆ CH2 ˆ group. This enables * values to be estimated for R ˆ CH2 ˆ groups not otherwise available. Modified sigma constants have been formulated for situations in which the substituent enters into resonance with the reaction center in an electron-demanding transition state () or for an electron-rich transition state (). Generally, constants give better correlations in reactions involving phenols, anilines, pyridines, and in nucleophilic substitutions. Values for some modified sigma constants are given in Table 7.4.
TABLE 7.1 Hammett and Taft Substituent Constants Hammett constants Substituent ˆ AsO3H ˆ B(OH)2 ˆ Br ˆ CH2Br m- BrC6H4 ˆ
m
p
0.09 0.01 0.39
0.02 0.45 0.23 0.09
Taft constant * 0.06 2.84 1.00
7.4
SECTION 7
TABLE 7.1 Hammett and Taft Substituent Constants (continued ) Hammett constants Substituent p-BrC6H4 ˆ ˆ CH3 ˆ CH2CH3 ˆ CH2CH2CH3 ˆ CH(CH3)2 (isopropyl) ˆ CH2CH2CH2CH3 ˆ CH2CH(CH3)2 (isobutyl) ˆ CH(CH3)CH2CH3 (sec-butyl) ˆ C(CH3)3 (t-butyl) ˆ CH2CH2CH2CH2CH3 (n-pentyl) ˆ CH2CH2CH(CH3)2 (isopentyl) ˆ CH2C(CH3)3 (t-amyl) ˆ CH2CH2CH2CH2CH2CH2CH3 ˆ CH(CH2)2 (cyclopropyl) ˆ CH(CH2)5 (cyclohexyl)
m 0.07 0.07 0.05 0.07 0.07 0.07 0.10
p 0.08 0.17 0.15 0.15 0.15 0.16 0.12 0.12 0.20 0.23
0.07
0.21 0.26
Taft constant *
0.0 0.10 0.12 0.19 0.13 0.13 0.19 0.30 0.25 0.17 0.12 0.37 0.15
0.48
ˆ CH ¨ CH2 (vinyl, ethenyl) ˆ CH ¨ C(CH3)2 ˆ CH ¨ CHCH3, trans ˆ CH2CH ¨ CH2 ˆ CH ¨ CHC6H5 ˆ C ˜ CH ˆ C ˜ CC6H5 ˆ CH2C ˜ CH ˆ C6H5 (phenyl) p ˆ CH3C6H4 ( p-tolyl)
0.06 0.02
0.04
0.14 0.21 0.14
0.05 0.23 0.16
0.06
0.01 0.5
(1-naphthyl) (2-naphthyl) ˆ CH2C6H5 (benzyl) ˆ CH2CH2C6H5 (2-phenylethyl) ˆ CH(CH3)C6H5 (-phenylethyl) ˆ CH(C6H5)2 (benzhydryl) H2 C
O
(2-furoyl)
(3-indolyl)
0.56 0.19 0.36 0.0 0.41 2.18 1.35 0.81 0.60
0.75
0.46
0.75 0.22 0.06 0.37 0.41 0.44
0.25 0.06
7.5
PHYSICOCHEMICAL RELATIONSHIPS
TABLE 7.1 Hammett and Taft Substituent Constants (continued ) Hammett constants m
Substituent ( S S
p
y)
Taft constant * 1.31
(2-thienyl) CH2
0.31
(2-thienylmethylene)
ˆ CHO (formyl) ˆ COCH3 (acetyl) ˆ COCH2CH3 (propionyl) ˆ COCH(CH3)2 ˆ COC(CH3)3 ˆ COCF3 (trifluoroacetyl) ˆ COC6H5 (benzoyl) ˆ CONH2 ˆ CONHC6H5 ˆ CH2COCH3 (acetonyl) ˆ CH2CONH2 (acetamido) ˆ CH2CH2CONH2 ˆ CH2CH2CH2CONH2 ˆ CH2CONHC6H5 ˆ COO (carboxylate) ˆ COOH (carboxyl) ˆ CO ˆ OCH3 (carbomethoxy) ˆ CO ˆ OCH2CH3 (carbethoxy) ˆ CH2CO ˆ OCH3 ˆ CH2CO ˆ OCH2CH3 ˆ CH2COOH ˆ CH2CH2COOH ˆ Cl ˆ CCl3 (trichloromethyl) ˆ CHCl2 (dichloromethyl) ˆ CH2Cl (chloromethyl) ˆ CH2CH2Cl ˆ CH2CCl3 ˆ CH2CH2CCl3 ˆ CH ¨ CCl2 ˆ CH2CH ¨ CCl2 p-ClC6H4 ˆ (p-chlorophenyl) ˆF ˆ CF3 (trifluoromethyl) ˆ CHF2 (difluoromethyl) ˆ CH2F (fluoromethyl) ˆ CH2CF3 ˆ CH2CF2CF2CF3 ˆ C6F5 (pentafluorophenyl) ˆ Ge(CH3)3 (trimethylgermyl) ˆ Ge(CH2CH3)3 (triethylgermyl) ˆH ˆI ˆ CH2I (iodomethyl) ˆ N2 (diazonio)
0.36 0.38
0.22 0.50 0.48 0.47 0.32
0.65 0.34 0.28
0.46 0.36
0.1 0.36 0.32 0.37
0.0 0.43 0.39 0.45
0.03 0.37 0.47
0.07 0.23
0.12
0.18
0.34 0.43
0.08 0.06 0.54
0.12
0.00 0.35
0.03 0.0 0.0 0.00 0.28
1.76
1.91
1.65
3.7 2.2 1.68 1.56 0.60 0.31 0.19 0.12 0.0 1.06 2.08 2.00 2.12 1.06 0.82 0.06 2.96 2.65 1.94 1.05 0.38 0.75 0.25 1.00 0.19 3.21 2.61 2.05 1.10 0.90 0.87
0.49 2.46 0.85
7.6
SECTION 7
TABLE 7.1 Hammett and Taft Substituent Constants (continued ) Hammett constants Substituent
m
ˆ N3 (azido) ˆ NH2 (amino) ˆ NH3 ˆ CH2 ˆ NH2 (aminomethyl) ˆ CH2 ˆ NH3 ˆ NH ˆ CH3 (methylamino) ˆ NH ˆ C2H5 (ethylamino) ˆ NH ˆ C4H9 (butylamino) ˆ NH(CH3)2 ˆ NH2 ˆ CH3 ˆ NH2 ˆ C2H5 ˆ N(CH3)3 (trimethylammonium) ˆ N(CH3)2 (dimethylamino) ˆ CH2 ˆ N(CH3)3 ˆ N(CF3)2 [bis(trifluoromethyl)amino] p- H2N ˆ C6H5 ˆ ( p-aminophenyl) ˆ NH ˆ CO ˆ CH3 ˆ NH ˆ CO ˆ C2H5 ˆ NH ˆ CO ˆ C6H5 ˆ NH ˆ CHO ˆ NH ˆ CO ˆ NH2 ˆ NH ˆ OH (hydroxylamino) ˆ NH ˆ CO ˆ OC2H5 ˆ CH2 ˆ NH ˆ CO ˆ CH3 ˆ NH ˆ SO2 ˆ C6H5 ˆ NH ˆ NH2 (hydrazido) ˆ C ˜ N (cyano) ˆ CH2 ˆ CN (cyanomethyl) ˆ N ¨ O (nitroso) ˆ NO2 (nitro) ˆ CH2 ˆ NO2 (nitromethyl) ˆ CH2 ˆ CH2 ˆ NO2 (2-nitroethyl) ˆ CH ¨ CHNO2 (2-nitroethylenyl) m- O2N ˆ C6H4 ˆ (m-nitrophenyl) p- O2N ˆ C6H4 ˆ (p-nitrophenyl)
0.33 0.16 1.13
0.08 0.66 1.70
0.30 0.24 0.34
0.84 0.61 0.51
0.96 0.96 0.88 0.2 0.45 0.21 0.22 0.25 0.18 0.04 0.33 0.02 0.56 0.17 0.71
p
0.82 0.83 0.53 0.30 0.00 0.08
Taft constant * 2.62 0.62 3.76 0.50 2.24
4.36 3.74 3.74 4.55 0.32 1.90
1.40 1.56 1.68 1.62 1.31
0.34 1.99 0.43 1.99 0.55 0.66 0.01 0.12 0.78
0.33
0.26 0.18 0.24
0.43
0.41
3.30 1.30 4.0 1.40 0.50
NO2 O2N NO2 (picryl)
1.37 1.65
CO-CH3 N CO-C6H5
N
CO-CH3
ˆ O ˆ OH (hydroxy) ˆ O ˆ CH3 (methoxy) ˆ O ˆ C2H5 (ethoxy)
0.71 0.12 0.12 0.10
0.52 0.37 0.27 0.24
1.34 1.81 1.68
7.7
PHYSICOCHEMICAL RELATIONSHIPS
TABLE 7.1 Hammett and Taft Substituent Constants (continued ) Hammett constants Substituent
ˆ O ˆ C3H7 (propoxy) ˆ O ˆ CH(CH3)2 (isopropoxy) ˆ O ˆ C4H9 (butoxy) ˆ O ˆ C5H9 (cyclopentyloxy) ˆ O ˆ C6H11 (cyclohexyloxy) ˆ O ˆ CH2 ˆ C6H11 (cyclohexylmethoxy) ˆ O ˆ C6H5 (phenoxy) ˆ O ˆ CH2 ˆ C6H5 (phenylmethoxy) ˆ OCF3 (trifluoromethoxy)
0.00 0.05 0.05 0.29 0.18 0.25 0.40
p 0.25 0.45 0.32
0.32 0.42 0.35
Taft constant * 1.68 1.62 1.68 1.62 1.81 1.31 2.43
O O
0.27
(3,4- methylenedioxyphenyl, piperonyl)
O
(3,4-ethylenedioxyphenyl) O ˆ O ˆ CO ˆ CH3 (acetoxy) ˆ ONO2 (nitrate ester) ˆ O ˆ N ¨ C(CH3)2 ˆ ONH3 ˆ CH2 ˆ O ˆ CH2 ˆ OH ˆ CH2 ˆ O ˆ CH3 ˆ CH(OH) ˆ CH3 ˆ CH(OH) ˆ C6H5 p-HO ˆ C6H4 ˆ (p-hydroxyphenyl) p-CH3O ˆ C6H4 ˆ (p-methoxyphenyl) ˆ CH2 ˆ CH(OH) ˆ CH3 ˆ CH2 ˆ C(OH)(CH3)2 ˆ P(CH3)2 (dimethylphosphino) ˆ P(CH3)3 (trimethylphosphino) ˆ P(CF3)2 ˆ PO3H ˆ PO(OC2H5)2 ˆ SH (thio, mercapto) ˆ SCH3 (methylthio) ˆ S(CH3)2 (dimethylsulfonium) ˆ SCH2CH3 (ethylthio) ˆ SCH2CH2CH3 (propylthio) ˆ SCH2CH2CH2CH3 (butylthio) ˆ SC6H11 (cyclohexylthio) ˆ SC6H5 (phenylthio) ˆ SC(C6H5)3 (triphenylmethylthio) ˆ SCH2C6H5 (benzylthio) ˆ SCH2CH2C6H5 (phenethylthio) ˆ CH2SH (thiomethyl) ˆ CH2SCH2C6H5 ˆ SCF3 (trifluoromethylthio) ˆ SCN (thiocyanato)
0.39
0.08
0.12 0.31
0.08
0.24 0.10
0.1 0.8 0.6 0.2 0.55 0.25 0.15 1.0 0.23
0.05 0.9 0.7 0.26 0.60 0.15 0.00 0.9 0.03
0.30
0.03 0.40 0.63
0.50 0.52
3.86 1.81 2.92 0.27 0.31 0.52 0.12 0.50 0.06 0.25
1.68 1.56 1.56 1.49 1.44 1.93 1.87 0.69 1.56 1.44 0.62 0.37 3.43
7.8
SECTION 7
TABLE 7.1 Hammett and Taft Substituent Constants (continued ) Hammett constants
Substituent ˆ S ˆ CO ˆ CH3 ˆ S ˆ CO ˆ NH2 ˆ SO ˆ CH3 (methylsulfoxy) ˆ SO ˆ C6H5 (phenylsulfoxy) ˆ CH2 ˆ SO ˆ CH3 ˆ SO2 ˆ CH3 (methylsulfonyl) ˆ SO2 ˆ CH2CH3 (ethylsulfonyl) ˆ SO2 ˆ CH2CH2CH3 (propylsulfonyl) ˆ SO2 ˆ C6H5 (phenylsulfonyl) ˆ SO2 ˆ CF3 (trifluoromethylsulfonyl) ˆ SO2 ˆ NH2 ˆ CH2 ˆ SO2 ˆ CH3 ˆ SO3 ˆ SO3H ˆ SeCH3 ˆ Se ˆ C6H11 (cyclohexylselenyl) ˆ SeCN ˆ Si (CH3)3 ˆ Si(CH2CH3)3 ˆ Si(CH3)2C6H5 ˆ Si(CH3)2 ˆ O ˆ Si(CH3)3 ˆ CH2Si(CH3)3 ˆ CH2CH2Si(CH3)3 ˆ Sn(CH3)3 ˆ Sn(CH2CH3)3
p
0.39 0.34 0.52
Taft constant *
0.44 2.07 0.49
0.60
0.68
0.67 0.79 0.46
0.93 0.57
0.05
0.09 0.50 0.0
0.1 0.67 0.04
0.66 0.07 0.0
0.16
0.22
3.24 1.33 3.68 3.74 3.68 3.55
1.38 0.81
2.37 3.61 0.81 0.87 0.81 0.25 0.25
0.0 0.0
TABLE 7.2 pKA and Rho () Values for the Hammett Equation Acid
pKA
3.54 8.49
1.05 0.87
9.70
2.15
1.84 6.97
0.76 0.95
10.70 4.78 10.00
0.86 1.03 1.06
8.31
1.16
AsO3H2 Y
(arenearsonic acids) pK1 pK2 B(OH)2
(areneboronic acids, in aqueous 25% ethanol)
Y
PO3H2 Y
(arenephosphonic acids) pK1 pK2 H C
Y
N
OH
(-arylaldoximes) Ar ˆ Se(O)OH (benzeneseleninic acids) Ar ˆ SO2 ˆ NH2 (benzenesulfonamides, 20 C) Ar1 ˆ SO2 ˆ NHAr2 (benzenesulfonanilides, 20 C) Y ˆ C6H4 ˆSO2 ˆNH ˆ C6H5
7.9
PHYSICOCHEMICAL RELATIONSHIPS
TABLE 7.2 pKA and Rho () Values for the Hammett Equation (continued) Acid
pKA
C6H5 ˆ SO2 ˆ NH ˆ C6H4 ˆ Y Ar ˆ CO ˆ OH (benzoic acids)
8.31 4.21
1.74 1.00
Y
H C
C H
COOH
(cinnamic acids)
4.45
0.47
9.92
2.23
4.30
0.49
3.24
0.81
4.45
0.21
11.90
1.01
(pyridine-1-oxides, pyridine-N-oxides)
0.94
2.09
(2-pyridones, 2-hydroxypyridines)
11.65
4.28
(4-pyridones, 4-hydroxypyridines)
11.12
4.28
(pyrroles)
17.00
4.28
2.82
1.40
2.61 6.50
1.0 2.2
(trifluoroacetophenone hydrates)
10.00
1.11
(5-substituted tropolones)
6.42
3.10
6.0 4.60
2.6 2.90
(C-aryl-N,N-dibutylamidines, in aqueous 50% ethanol) N,N-Dimethylanilines
11.14
1.41
5.07
3.46
N (isoquinolines) 1-Naphthylamines 2-Naphthylamines Pyridines
5.32 3.85 4.29 5.18
5.90 2.81 2.81 5.90
4.88
5.90
Ar ˆ OH (phenols) Y CH2COOH
(phenylacetic acids)
Y C
C
COOH
(phenylpropiolic acids, in aqueous 35% dioxane)
(CH2)2COOH Y
(phenylpropionic acids)
Ar ˆ CHOH ˆ CF3 (phenyltrifluoromethylcarbinols) N+ O–
Y N
OH
HO Y
N
Y
NH
Y
COOH
(5-substituted pyrrole-2-carboxylic acids) Ar ˆ CO ˆ SH (thiobenzoic acids) Ar ˆ SH (thiophenols) N H
HO
C
Y
Y
OH CF3
O OH
Cations resulting from protonation of Ar ˆ CO ˆ CH3 (acetophenones) Ar ˆ NH2 (anilines) HN Bu C N Bu
Y
N
(quinolines)
7.10
SECTION 7
TABLE 7.3 pKA and Rho ( ) Values for the Taft Equation Acid
pKA
RCOOH RCH2COOH RC ˜ C ˆ COOH H2C ¨ C(R) ˆ COOH (CH3)2C ¨ C(R) ˆ COOH Z-C6H5 ˆ CH ¨ C(R) ˆ COOH E-C6H5 ˆ CH ¨ C(R) ˆ COOH R ˆ CO ˆ CH2 ˆ COOH HO ˆ N ¨ CR ˆ COOH RCH2OH RCH(OH)2 R1CO ˆ NHR2 CH3CO ˆ CR ¨ C(OH)CH3 CH3CO ˆ CHR ˆ CO ˆ OC2H5 R ˆ CO ˆ NHOH R1R2C ¨ N ˆ OH (R1, R2 are not acyl groups) HO R
Rho ()
4.66 4.76 2.39 4.39 4.65 3.77 4.61 4.12 4.84 15.9 14.4 22.0 9.25 12.59 9.48 12.35 9.00
1.62 0.67 1.89 0.64 0.47 0.63 0.47 0.43 0.34 1.42 1.42 3.1* 1.78 3.44 0.98 1.18 0.94
5.24 10.22 10.54 3.52
3.60 3.50 1.47 1.62
10.15 10.59 9.61 3.59 7.85
3.14 3.23 3.30 2.61 2.67
N C
C
CH3
O
RCH(NO2)2 RSH RCH2SH R ˆ CO ˆ SH Cations resulting from protonation of RNH2 R1R2NH R1R2R3N R1R2PH R1R2R3P ** for R1CO and R2
TABLE 7.4 Special Hammett Sigma Constants Substituent
m
ˆ CH3 ˆ C(CH3)3 ˆ C6H5 ˆ CF3 ˆF ˆ Cl ˆ Br ˆI ˆC˜N ˆ CH ¨ O
0.07 0.06 0.11 0.52 0.35 0.40 0.41 0.36 0.56
p
p
0.31 0.26 0.18 0.61 0.07 0.11 0.15 0.14 0.66
0.17
0.74 0.02 0.23 0.26 0.88 1.13
7.11
PHYSICOCHEMICAL RELATIONSHIPS
TABLE 7.4 Special Hammett Sigma Constants (continued ) Substituent ˆ CO ˆ NH2 ˆ CO ˆ CH3 ˆ COOH ˆ CO ˆ OCH3 ˆ CO ˆ OCH2CH3 ˆ N2 ˆ NH2 ˆ N(CH3)2 ˆ N(CH3)3 ˆ NH ˆ CO ˆ CH3 ˆ NO2 ˆ OH ˆ O ˆ OCH3 ˆ SF5 ˆ SCF3 ˆ SO2CH3 ˆ SO2CF3
m
p
p
0.32 0.37 0.37
0.42 0.49 0.48
0.16
1.3 1.7 0.41 0.60 0.79 0.92
0.63 0.85 0.73 0.66 0.68 3.2 0.66
0.36 0.67
0.05
0.78
1.25 0.81 0.27 0.70 0.57 1.05 1.36
SECTION 8
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
EQUILIBRIUM CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . Table 8.1 pKA Values of Organic Materials in Water at 25 C . . . . Table 8.2 Proton-Transfer Reactions of Inorganic Materials in Water at 25 C . . . . . . . . . . . . . . . . . . . . . . Table 8.3 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures . . . . . . . . Table 8.4 Indicators for Aqueous Acid–Base Titrations . . . . . . . BUFFER SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 8.5 National Institute of Standards and Technology (formerly National Bureau of (Standards U.S.) Reference pH Buffer Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . Table 8.6 Compositions of National Institute of Standards and Technology. Standard PH Buffer Solutions . . . . . . . . Table 8.7 pH Values of Buffer Solutions for Control Purposes . . . REFERENCE ELECTRODES . . . . . . . . . . . . . . . . . . . . . . . . Table 8.8 Potentials of Reference Electrodes (in Volts) as a Function of Temperature . . . . . . . . . . . . . . . . . . Table 8.9 Potentials of Reference Electrodes (in Volts) at 25 C for Water–Organic Solvent Mixtures . . . . . . . ELECTRODE POTENTIALS . . . . . . . . . . . . . . . . . . . . . . . . . Table 8.10 Potentials of Selected Half-Reactions at 25 C . . . . . . Table 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C . . . . . . . .
8.1
. . . . . .
8.2 8.3
. . .
8.61
. . . . . . . . .
8.64 8.72 8.74
. . .
8.74
. . . . . . . . .
8.75 8.76 8.77
. . .
8.77
. . . . . . . . .
8.79 8.80 8.80
. . .
8.82
8.2
SECTION 8
EQUILIBRIUM CONSTANTS The acidities of organic compounds are typically expressed by citing their pKA values. These are defined as log10 KA for the reaction HA 7 H A The equilibrium constant KA is defined as KA
[H] [A] [HA]
Thus, for example, the pKA of water is log10 ([H ][HO]/[H2O]) or (107) · (107)/55.5. The concentration of protons or hydroxide ions in water is 107 M and the concentration of water in water is 55.5 M. The equilibrium constant KA is therefore 1015.74. The operator “p” means “log” so the pKA of water is 15.7. The equilibrium constant KW for water is 1014 and is simply the product of [H ] · [HO].
O N N H 3-acetamidopyridine
Acidity constants are given for a range of compounds in Table 8.1. When more than one ionizable proton is present, pK1, pK2, etc. values are given. Cations formed from the indicated compound by protonation are indicated by “(1)” or “(2)” for a dication. For example, the dissociation of 3-acetamidopyridine is reported in Table 8.1 as “4.37(1).” This means dissociation of the compound that is protonated (at the pyridine nitrogen atom). Temperature values different from 25 C are given in parentheses as are other relevant variations. For example, the dissociation constant for acetic acid-d1 is reported in D2O.
8.3
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C Ionic strength is zero unless otherwise indicated. The protonation state of cations is designated by a value (1), (2), etc. that follows the pKA value. Neutral species are indicated by (0), if it is not obvious otherwise. The charge state of anionic species is designated by (1), (2), etc. Substance Abietic acid Acetamide Acetamidine N-(2-Acetamido)-2aminoethanesulfonic acid (20 C) 2-Acetamidobenzoic acid 3-Acetamidobenzoic acid 4-Acetamidobenzoic acid 2-(Acetamido)butanoic acid N-(2-Acetamido)iminodiacetic acid (20 C) 3-Acetamidopyridine Acetanilide Acetic acid Acetic acid-d (in D2O) Acetoacetic acid (18 C) Acetohydrazine Acetone oxime 2-Acetoxybenzoic acid (acetylsalicylic acid) 3-Acetoxybenzoic acid 4-Acetoxybenzoic acid Acetylacetic acid (18 C) N-Acetyl--alanine N-Acetyl--alanine 2-Acetylaminobutanoic acid 3-Acetylaminopropionic acid 2-Acetylbenzoic acid 3-Acetylbenzoic acid 4-Acetylbenzoic acid 2-Acetylcyclohexanone N-Acetylcysteine (30 C) Acetylenedicarboxylic acid N-Acetylglycine
pK1
pK2
7.62 0.37(1) 1.60(1)
6.88 3.63 4.07 4.28 3.716 6.62 4.37(1) 0.4(1) 4.756 5.32 3.58 3.24(1) 12.2 3.48 4.00 4.38 3.58 3.715 4.455 3.72 4.445 4.13 3.83 3.70 14.1 9.52 1.75 3.670
H
O HO Abietic acid
13.39(0)40 C
4.40
pK3
pK4
8.4
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
N-Acetylguanidine N--Acetyl-L-histidine Acetylhydroxamic acid (20 C) N-Acetyl-2-mercaptoethylamine 4-Acetyl--mercaptoisoleucine (30 C) 2-Acetyl-1-naphthol (30 C) N-Acetylpenicillamine (30 C) 2-Acetylphenol 4-Acetylphenol 2-Acetylpyridine 3-Acetypyridine 4-Acetylpyridine Aconitine Acridine Acrylic acid Adenine Adeninedeoxyriboside-5phosphoric acid Adenine-N-oxide Adenosine Adenosine-5-diphosphoric acid Adenosine-2-phosphoric acid Adenosine-3-phosphoric acid Adenosine-5-phosphoric acid Adenosine-5-triphosphoric acid Adipamic acid (adipic acid monoamide) Adipic acid -Alanine -Alanine -Alanine, methyl ester ( 0.10) -Alanine, methyl ester ( 0.10) N-D-Alanyl--D-alanine ( 0.1) N-L-Alanyl--L-alanine ( 0.1) N-L-Alanyl--D-alanine N--Alanylglycine
pK2
pK3
8.23(1) 7.08 9.40 9.92(SH) 10.30 13.40 9.90 9.19 8.05 2.643(1) 3.256(1) 3.505(1) 8.11(1) 5.60(1) 4.26 4.17(1)
9.75(0) 4.4 8.49(0) 12.34(0) 4.2(1) 6.17(0) 5.88(1) 6.05(1) 4.00(1)
2.69(1) 3.5(1) 3.81(1) 3.65(0) 3.74(0)
4.629 4.418 2.34(1) 3.55(1) 7.743(1) 9.170(1) 3.32(1) 3.32(1) 3.12(1) 3.11(1)
6.4
7.20(2)
13.06(2) 6.48(2)
5.412 9.87(0) 10.238(0)
8.13(0) 8.13(0) 8.30(0) 8.11(0) O
OMe
O
O
H H
Ph OH
Et
HO
N
NH
HO
O HS N-Acetylpenicillamine
MeO
OMe OAc OH H OMe
N Acridine
Aconitine
pK4
8.5
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Alanylglycylglycine -Alanylhistidine Albumin (bovine serum, 0.15) 2-Aldoxime pyridine Alizarin Black SN Alizarin-3-sulfonic acid Allantoin Allothreonine Alloxanic acid Allylacetic acid Allylamine 5-Allylbarbituric acid 5-Allyl-5-(-methylbutyl)barbituric acid 2-Allylphenol 1-Allylpiperidine 2-Allylpropionic acid 3-Amidotetrazoline 2-Aminoacetamide Aminoacetonitrile 9-Aminoacridine (20 C) 4-Aminoantipyrine 2-Aminobenzenesulfonic acid 3-Aminobenzenesulfonic acid 4-Aminobenzenesulfonic acid 2-Aminobenzoic acid 3-Aminobenzoic acid 4-Aminobenzoic acid 2-Aminobenzoic acid, methyl ester 3-Aminobenzoic acid, methyl ester 4-Aminobenzoic acid, methyl ester
HN
3.190(1) 2.64 10–10.3 3.42(1) 5.79 5.54 8.96 2.108(1) 6.64 4.68 9.69(1) 4.78(1) 8.08 10.28 9.65(1) 4.72 3.95(1) 7.95(1) 5.34(1) 9.95(1) 4.94(1) 2.459(0) 3.738(0) 3.227(0) 2.09(1) 3.07(1) 2.41(1) 2.36(1) 3.58(1) 2.45(1)
NH2
NH2
HO O
Allothreonine
Allantoin
10.22(0) 12.8 11.01 9.096(0)
4.79(0) 4.79(0) 4.85(0)
O
N
NH N
O
O
O
N N
9-Aminoacridine
N NH
3-Aminotetrazoline
Alloxanic acid
O
H2N
N H
O
NH2
N
pK4
9.40
HO
O N H
pK3
8.15(0) 6.86
OH
O
O N H
pK2
NH2
4-Aminoantipyrine
8.6
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3-Aminobenzonitrile 4-Aminobenzonitrile 4-Aminobenzophenone 2-Aminobenzothiazole (20 C) 2-Aminobenzoylhydrazide 2-Aminobiphenyl 3-Aminobiphenyl 4-Aminobiphenyl 4-Amino-3-bromomethylpyridine 4-Amino-3-bromopyridine (20 C) 2-Aminobutanoic acid 3-Aminobutanoic acid 4-Aminobutanoic acid 2-Aminobutanoic acid, methyl ester ( 0.1) 4-Aminobutanoic acid, methyl ester ( 0.1) D-()-2-Amino-1-butanol 3-Amino-N-butyl-3-methyl-2butanone oxime 4-Aminobutylphosphonic acid 2-Amino-N-carbamoylbutanoic acid 4-Amino-N-carbamoylbutanoic acid 2-Amino-N-carbamoyl-2methylpropanoic acid 1-Amino-1-cycloheptanecarboxylic acid 1-Amino-1-cyclohexanecarboxylic acid 2-Amino-1-cyclohexanecarboxylic acid 1-Aminocyclopentane 1-Aminocyclopropane 10-Aminodecylphosphonic acid 10-Aminodecylsulfonic acid 1-Amino-2-di(aminomethyl)butane 2-Amino-N,N-dihydroxyethyl2-hydroxyl-1,3-propanediol 2-Amino-N,N-dimethylbenzoic acid 4-Amino-2,5-dimethylphenol 4-Amino-3,5-dimethylpyridine (20 C) 12-Aminododecanoic acid 2-Aminoethane-1-phosphoric acid 1-Aminoethanesulfonic acid 2-Aminoethanesulfonic acid 2-Aminoethanethiol (cysteamine) ( 0.01) 2-Aminoethanol (ethanolamine) 2-[2-(2-Aminoethyl) aminoethyl] pyridine
pK1 2.75(1) 1.74(1) 2.15(1) 4.48(1) 1.85 3.78(1) 4.18(1) 4.27(1) 7.47(1) 7.04(1) 2.286(1) 4.031(1)
pK2
3.47
pK3
12.80
9.830(0) 10.14(0) 10.556(0)
7.640(1) 9.838(1) 9.52(1) 9.09(1) 2.55 3.886(1) 4.683(1)
7.55
4.463 2.59(1)
10.46(0)
2.65(1)
10.03(0)
3.56(1)
10.21(0)
10.9
10.65(1) 9.10(1) 2.65(1) 3.58(3)
8.0
11.25
8.59(2)
9.66(1)
6.484(1) 1.63(1) 5.28(1) 9.54(1) 4.648(1) 5.838 0.33 1.5
10.64 9.06 9.061
8.23(1) 9.50(1) 3.50
6.59
8.42(0) 10.40(0)
9.51
pK4
8.7
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
2-Amino-2-ethyl-1-butanol 3-(2-Aminoethyl)indole 3-Amino-N-ethyl-3-methyl-2butanone oxime N-(2-Aminoethyl)morpholine p-(2-Aminoethyl)phenol 2-Aminoethylphosphonic acid N-(2-Aminoethyl)piperidine (30 C) 2-(2-Aminoethyl)pyridine ( 0.5) 4-Amino-3-ethylpyridine (20 C) N-(2-Aminoethyl)pyrrolidine (30 C) 2-Aminofluorine 2-Amino-D--glucose ( 0.05) 2-Amino-N-glycylbutanoic acid 7-Aminoheptanoic acid 2-Aminohexanoic acid 6-Aminohexanoic acid C-Amino-Chydrazine carbonylmethane 2-Amino-3-hydroxybenzoic acid L-2-Amino-3-hydroxybutanoic acid (threonine) DL-2-Amino-4-hydroxybutanoic acid ( 0.1) DL-4-Amino-3-hydroxybutanoic acid ( 0.1) 2-Amino-2-hydroxydiethyl sulfide 4-Amino-2-hydroxypyrimidine (cytosine) 3-Amino-N-isopropyl-3-methyl2-butanone oxime 4-Amino-3-isopropylpyridine (20 C) 1-Aminoisoquinoline (20 C, 0.01) 3-Aminoisoquinoline (20 C, 0.005) 4-Aminoisoxazolidine-3-one Aminomalonic acid DL-2-Amino-4-mercaptobutanoic acid
pK2
pK3
9.82(1) 10.2 9.23(1) 4.06(2) 9.3 2.45(1) 6.38 4.24(2) 9.51(1) 6.56(2) 10.34(1) 2.20(1) 3.155(1) 4.502 2.335(1) 4.373(1)
9.15(1) 10.9 7.0(0) 9.89 9.78(1) 9.74(1) 9.08(0) 8.331(0) 9.834(0) 10.804(0)
2.38(2)
7.69(1)
2.5(1)
5.192(0)
2.088(1)
9.100(0)
2.265(1)
9.257(0)
3.834(1) 9.27(1)
9.487(0)
4.58(1)
12.15(0)
10.118(OH)
9.09(1) 9.54(1) 7.62(1) 5.05(1) 7.4(1) 3.32(1)
9.83(0)
2.22(1)
8.87(0)
10.86(SH)
NH2
N H2N
2-Aminofluorene
10.8(1)
N
OH
4-Amino-2-hydroxypyrimidine (cytosine)
pK4
8.8
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2-Amino-3-mercapto3-Methylbutanoic acid 2-Amino-6-methoxybenzothiazole 3-Amino-4-methylbenzenesulfonic acid 4-Amino-3-methylbenzenesulfonic acid 2-Amino-4-methylbenzothiazole 1-Amino-3-methylbutane 3-Amino-3-methyl-2-butanone oxime 3-Amino-N-methyl-3-methyl-2butanone oxime 2-Amino-3-methylpentanoic acid 3-Aminomethyl-6-methylpyridine (30 C) Aminomethylphosphonic acid 2-Amino-2-methyl-1,3-propanediol 2-Amino-2-methyl-1-propanol 2-Amino-2-methylpropanoic acid (2-Aminomethyl)pyridine ( 0.5) 2-Amino-3-methylpyridine 4-Amino-3-methylpyridine 2-Amino-4-methylpyridine 2-Amino-5-methylpyridine 2-Amino-6-methylpyridine 2-Amino-4-methylpyrimidine (20 C) Aminomethylsulfonic acid N-Aminomorpholine 4-Amino-1-naphthalenesulfonic acid 1-Amino-2-naphthalenesulfonic acid 1-Amino-3-naphthalenesulfonic acid 1-Amino-5-naphthalenesulfonic acid 1-Amino-6-naphthalenesulfonic acid 1-Amino-7-naphthalenesulfonic acid 1-Amino-8-naphthalenesulfonic acid 2-Amino-1-naphthalenesulfonic acid 2-Amino-4-naphthalenesulfonic acid 2-Amino-6-naphthalenesulfonic acid 2-Amino-8-naphthalenesulfonic acid 3-Amino-1-naphthoic acid 4-Amino-2-naphthoic acid 8-Amino-2-naphthol DL-2-Aminopentanoic acid (DL-norvaline) 3-Aminopentanoic acid 4-Aminopentanoic acid 5-Aminopentanoic acid 5-Aminopentanoic acid, ethyl ester 2-Aminophenol
pK1
pK2
pK3
1.8(1) 4.50(1)
7.9(0)
10.5(SH)
3.633 3.125 4.7(1) 10.64(1) 9.09(1) 9.23(1) 2.320(1) 8.70(1) 2.35 8.801 9.694(1) 2.357(1) 2.31(2) 7.24(1) 9.43(1) 7.48(1) 7.22(1) 7.41(1) 4.11(1) 5.75(1) 4.19(1) 2.81 1.71 3.20 3.69 3.80 3.66 5.03 2.35 3.79 3.79 3.89 2.61 2.89 4.20(1) 2.318(1) 4.02(1) 3.97(1) 4.20(1) 10.151 9.28
9.758(0)
5.9
10.205(0) 8.79(1)
8.94 4.39 4.46
9.808 10.399(0) 10.46(0) 9.758(0) 9.72
10.8
pK4
8.9
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
pK2
3-Aminophenol 4-Aminophenol 4-Aminophenylacetic acid (20 C) 2-Aminophenylarsonic acid 3-Aminophenylarsonic acid 4-Aminophenylarsonic acid 3-Aminophenylboric acid 4-Aminophenylboric acid 4-Aminophenyl (4-chlorophenyl) sulfone 2-Aminophenylphosphonic acid 3-Aminophenylphosphonic acid 4-Aminophenylphosphonic acid 1-Amino-1,2,3-propanetricarboxylic acid ( 2.2) 3-Aminopropanoic acid 1-Amino-1-propanol DL-2-Amino-1-propanol 3-Amino-1-propanol 3-Aminopropene 3-Amino-N-propyl-3-methyl2-butanone oxime 2-Aminopropylsulfonic acid 2-Aminopyridine 3-Aminopyridine 4-Aminopyridine 2-Aminopyridine-1-oxide 3-Aminopyridine-1-oxide 4-Aminopyridine-1-oxide 8-Aminoquinaldine 2-Aminoquinoline (20 C, 0.01) 3-Aminoquinoline (20 C, 0.01) 4-Aminoquinoline (20 C, 0.01) 5-Aminoquinoline (20 C, 0.01) 6-Aminoquinoline (20 C, 0.01) 8-Aminoquinoline (20 C, 0.01) 4-Aminosalicylic acid 5-Aminosalicylic acid 2-Amino-3-sulfopropanoic acid 4-Amino-2,3,5,6tetramethylpyridine (20 C)
9.83 8.50 3.60 ca 2 ca 2 ca 2 4.46 3.71
9.87 10.30 5.26 3.77 4.02 4.02 8.81 9.17
pK3
8.66 8.92 8.62
1.38
2.10(1) 3.551(1) 9.96(1) 9.469(1) 9.96(1) 9.691(1)
4.10
7.29 7.16 7.53
3.60(0) 10.235(0)
4.60(1)
9.09(1) 9.15 6.71(1) 6.03(1) 9.114(1) 2.58(1) 1.47(1) 3.54(1) 4.86(1) 7.34(1) 4.95(1) 9.17(1) 5.46(1) 5.63(1) 3.99(1) 1.991(1) 2.74(1) 1.89(1)
3.917(0) 5.84(0) 8.70(0)
13.74
10.58(1) NH2 N
N+ H2N
pK4
O–
2-Aminopyridine-1-oxide
8-Aminoquinaldine
9.82(2)
8.10
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
5-Amino-1,2,3,4-tetrazole (20 C) 2-Aminothiazole (20 C) 1-Amino-3-thiobutane (30 C) 5-Amino-3-thio-1-pentanol (30 C) 2-Aminothiophenol 2-Amino-4,4,4-trifluorobutanoic acid 3-Amino-4,4,4-trifluorobutanoic acid 3-Amino-2,4,6-trinitrotoluene Angiotensin II Anhydroplatynecine Aniline 2-Anilinoethylsulfonic acid 3-Anilinoethylsulfonic acid Anthracene-1-carboxylic acid Anthracene-2-carboxylic acid Anthracene-9-carboxylic acid Anthraquinone-1-carboxylic acid (20 C) Anthraquinone-2-carboxylic acid (20 C) 9,10-Anthraquinone monoxime 9,10-Anthraquinone-1-sulfonic acid 9,10-Anthraquinone-2-sulfonic acid Antipyrine Apomorphine (15 C) D-()-Arabinose L-()-Arginine Arsenazo III [pK5 10.5(4); pK6 12.0(5)] Arsenoacetic acid Arsenoacrylic acid Arsenobutanoic acid 2-Arsenocrotonic acid 3-Arsenocrotonic acid Arsenopentanoic acid L-()-Ascorbic acid (vitamin C) L-()-Asparagine L-Asparaginylglycine D-Aspartic acid Aspartic diamide ( 0.2)
1.76 5.36(1) 9.18(1) 9.12(1) 2(1)
pK2
pK3
pK4
6.07
7.90(0) 8.171(0) 5.831(0) 9.5(1)
10.37 9.40 4.60(1) 3.80(1) 4.85(1) 3.68 4.18 3.65 3.37 3.42 9.78 0.27 0.38 1.45(1) 8.92 12.34
4.17
8.994(1)
12.47(1)
1.2 4.67 4.23 4.92 4.61 4.03 4.89 11.57 8.80(0) 4.53 3.87(0)
2.7 7.68 8.60 7.64 8.75 8.81 7.75
9.07 10.00()
7.00
N N O Anhydroplatynecine
N O Antipyrine
7.9(3)
8.11
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Aspartylaspartic acid -Aspartylhistidine (38 C, 0.1) -Aspartylhistidine (38 C, 0.1) N-Aspartyl-p-tyrosine ( 0.01) Aspidospermine Atropine (17 C) 1-Azacycloheptane 1-Azacyclooctane Azetidine Aziridine
pK2 3.40 3.02 2.95 3.57
pK3 4.70 6.82 6.93 8.92
pK4 8.26 7.98 8.72 10.23(OH)
7.65 4.35(1) 11.11(1) 11.1(1) 11.29(1) 8.04(1)
Barbituric acid m-Benzbetaine p-Benzbetaine Benzenearsonic acid (22 C) Benzene-1-arsonic acid-4-carboxylic acid
8.372(0) 3.217(1) 3.245(1) 8.48(1)
Benzeneboronic acid Benzene-1-carboxylic acid2-phosphoric acid Benzene-1-carboxylic acid3-phosphoric acid Benzene-1-carboxylic acid4-phosphoric acid Benzenediazine 1,3-Benzenedicarboxylic acid (isophthalic acid) 1,4-Benzenedicarboxylic acid (terephthalic acid) 1,3-Benzenedicarboxylic acid mononitrile 1,4-Benzenedicarboxylic acid mononitrile Benzenehexacarboxylic acid (pK5 6.32; pK6 7.49) Benzenepentacarboxylic acid (pK5 6.46) Benzenesulfinic acid Benzenesulfonic acid 1,2,3,4-Benzenetetracarboxylic acid
4.22 (COOH)
5.59
3.78
9.17
4.03
7.03
1.50 11.08(1)
3.95
6.89
3.62(0)
4.60(1)
3.54(0)
4.46(1)
13.7
3.60(0) 3.55(0)
NH Azetidine
0.68
2.21
3.52
5.09
1.80 1.50 2.554 2.05
2.73
3.96
5.25
3.25
4.73
6.21
HN Aziridine (ethyleneimine)
8.12
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
1,2,3,5-Benzenetetracarboxylic acid 1,2,4,5-Benzenetetracarboxylic acid 1,2,3-Benzenetricarboxylic acid 1,2,4-Benzenetricarboxylic acid 1,3,5-Benzenetricarboxylic acid Benzil--dioxime Benzilic acid Benzimidazole Benzohydroxamic acid (20 C) Benzoic acid 5,6-Benzoquinoline (20 C) 7,8-Benzoquinoline (20 C) 1,4-Benzoquinone monoxime Benzosulfonic acid 1,2,3-Benzotriazole 1-Benzoylacetone Benzoylamine 2-Benzoylbenzoic acid Benzoylglutamic acid N-Benzoyglycine (hippuric acid) Benzoylhydrazine Benzoylpyruvic acid 3-Benzoyl-1,1,1-trifluoroacetone Benzylamine Benzylamine-4-carboxylic acid 2-Benzyl-2-phenylsuccinic acid (20 C) 2-Benzylpyridine 4-Benzylpyridine-1-oxide 1-Benzylpyrrolidine 2-Benzylpyrrolidine Benzylsuccinic acid (20 C) 3-(Benzylthio)propanoic acid Berberine (18 C) Betaine Biguanide 2,2-Biimidazolyl ( 0.3) 2-Biphenylcarboxylic acid
pK2
2.38 1.92 2.88 2.52 2.12 12.0 3.09 5.53(1) 8.89(0) 4.204 5.00(1) 4.15(1) 6.20 0.70 8.38(1) 8.23 9.34(1) 3.54 3.49 3.65 3.03(2) 6.40 6.35 9.35(1) 3.59
3.51 2.87 4.75 3.84 4.10
3.69 5.13(1) 1.018() 9.51(1) 10.31(1) 4.11 4.463 11.73(1) 1.832(1) 2.96(2) 5.01(1) 3.46
6.47
pK3 4.44 4.49 7.13 5.20 5.18
5.81 5.63
12.3(0)
4.99 12.45(1) 12.10
9.64
5.65
11.51(1)
NH
NH
N
HO HO
pK4
H2N
O
Benzilic acid
5,6-Benzoquinoline
N H Biguanide
NH2
8.13
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
(1,1-Biphenyl)-4,4-diamine Bis(2-aminoethyl) ether (30 C) N,N-Bis(2-aminoethyl)ethylenediamine (20 C) N,N-Bis(2-hydroxyethyl)-2aminoethane sulfonic acid (BES) (20 C) N,N-Bis(2-hydroxyethyl)glycine (bicine) (20 C) Bis(2-hydroxyethyl)iminotris (hydroxymethyl)methane (bis-tris) 1,3-Bis[tris(hydroxymethyl) methylamino]propane (20 C) Bromoaetic acid 2-Bromoaniline 3-Bromoaniline 4-Bromoaniline 2-Bromobenzoic acid 3-Bromobenzoic acid 4-Bromobenzoic acid 2-Bromobutanoic acid (35 C) erythro-2-Bromo-3-chlorosuccinic acid (19 C, 0.1) threo-2-Bromo-chlorosuccinic acid (19 C, 0.1) trans-2-Bromocinnamic acid 3-Bromo-4-(dimethylamino)pyridine (20 C) 2-Bromo-4,6-dinitroaniline 3-Bromo-2-hydroxymethylbenzoic acid (20 C) 6-Bromo-2-hydroxymethylbenzoic acid (20 C) 7-Bromo-8-hydroxyquinoline5-sulfonic acid 3-Bromomandelic acid 3-Bromo-4-methylaminopyridine (20 C) (2-Bromomethyl)butanoic acid Bromomethylphosphonic acid
pK2
3.63(2) 8.62(2)
4.70(1) 9.59(1)
3.32(4)
6.67(3)
7.15 8.35
6.46(1) 6.80(1) 2.902 2.53(1) 3.53(1) 3.88(1) 2.85 3.810 3.99 2.939 1.4
2.6
1.5 4.41
2.8
6.52(1) 6.94(1) 3.28 2.25 2.51 3.13
6.70
7.49(1) 3.92 1.14
6.52 O
Br
OH OH 3-Bromomandelic acid
pK3
pK4
9.20(2)
9.92(1)
8.14
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2-Bromo-6-nitrobenzoic acid 2-Bromophenol 3-Bromophenol 4-Bromophenol 2-(2-Bromophenoxy)acetic acid 2-(3-Bromophenoxy)acetic acid 2-(4-Bromophenoxy) acetic acid 2-Bromo-2-phenylacetic acid 2-(Bromophenyl)acetic acid 4-(Bromophenyl)acetic acid 4-Bromophenylarsonic acid 4-Bromophenylphosphinic acid (17 C) 2-Bromophenylphosphonic acid 3-Bromophenylphosphonic acid 4-Bromophenylphosphonic acid 3-Bromophenylselenic acid 4-Bromophenylselenic acid 2-Bromopropanoic acid 3-Bromopropanoic acid Bromopropynoic acid 2-Bromopyridine 3-Bromopyridine 4-Bromopyridine 3-Bromoquinoline Bromosuccinic acid 2-Bromo-p-tolylphosphonic acid Brucine (15 C) 2-Butanamine (sec-butylamine) 1,2-Butanediamine 1,4-Butanediamine 2,3-Butanediamine 1,2,3,4-Butanetetracarboxylic acid cis-2-Butenoic acid (isocrotonic acid) trans-2-Butenoic acid (transcrotonic acid) (35 C) 3-Butenoic acid (vinylacetic acid) 3-Butoxybenzoic acid (20 C) Butylamine tert-Butylamine 4-tert-Butylaniline N-tert-Butylaniline Butylarsonic acid (18 C) 2-tert-Butylbenzoic acid 3-tert-Butylbenzoic acid 4-tert-Butylbenzoic acid N-Butylethylenediamine N-Butylglycine
pK1 1.37 8.452 9.031 9.34 3.12 3.09 3.13 2.21 4.054 4.188 3.25 2.1 1.64 1.45 1.60 4.43 4.50 2.971 3.992 1.855 0.71(1) 2.85(1) 3.71(1) 2.69(1) 2.55 1.81 2.50(2) 10.56(1) 6.399(2) 9.35(2) 6.91(2) 3.43
pK2
pK4
8.19
7.00 6.69 6.83
4.41 7.15 8.16(1) 9.388(1) 10.82(1) 10.00(1) 4.58
4.44 4.676 4.68 4.25 10.64(1) 10.685(1) 3.78(1) 7.10(1) 4.23 3.57 4.199 4.389 7.53(2) 2.35(1)
pK3
8.91
10.30(1) 10.25(0)
5.85
7.16
8.15
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
tert-Butylhydroperoxide 1-(tert-Butyl)-2-hydroxybenzene 1-(tert-Butyl)-3-hydroxybenzene 1-(tert-Butyl)-4-hydroxybenzene Butylmethylamine 2-Butyl-1-methyl-2-pyrroline 4-tert-Butylphenylactic acid Butylphosphinic acid tert-Butylphosphinic acid tert-Butylphosphonic acid 1-Butylpiperidine ( 0.02) 2-tert-Butylpyridine 3-tert-Butylpyridine 4-tert-Butylpyridine 2-tert-Butylthiazole ( 0.1) 4-tert-Butylthiazole ( 0.1) 2-Butyn-1,4-dioic acid 2-Butynoic acid (tetrolic acid) Butyric acid 4-Butyrobetaine (20 C)
12.80 10.62 10.119 10.23 10.90(1) 11.84(1) 4.417 3.41 4.24 2.79 10.43(1) 5.76(1) 5.82(1) 5.99(1) 3.00(1) 3.04(1) 1.75 2.620 4.817 3.94(1)
Caffeine (40 C) Calcein (pK5 12) Calmagite D-Camphoric acid Canaline Canavanine N-Carbamoylacetic acid N-Carbamoyl--D-alanine N-Carbamoyl--alanine DL-N-Carbamoylalanine N-Carbamoylglycine 2-Carbamoylpyridine (20 C) 3-Carbamoylpyridine 4-Carbamoylpyridine (20 C) -Carboxymethylaminopropanoic acid Chloroacetic acid N-(2-Chloroacetyl)glycine cis-3-Chloroacrylic acid (18 C, 0.1) trans-3-chloroacrylic acid (18 C, 0.1) 2-Chloroaniline 3-Chloroaniline 4-Chloroaniline 2-Chlorobenzoic acid 3-Chlorobenzoic acid 4-Chlorobenzoic acid 2-Chlorobutanoic acid
10.4 4 8.14 4.57 2.40 2.50(2) 3.64 3.89(1) 4.99(1) 3.892(1) 3.876 2.10(1) 3.328(1) 3.61(1) 3.61(1) 2.867 3.38(0) 3.32 3.65 2.64(1) 3.52(1) 3.99(1) 2.877 3.83 3.986 2.86
pK2
pK3
pK4
8.88
4.40
5.4 12.35 5.10 3.70 6.60(1)
9.46(0)
9.0
9.20 9.25(0)
10.5
8.16
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3-Chlorobutanoic acid 4-Chlorobutanoic acid 2-Chloro-3-butenoic acid 3-Chlorobutylarsonic acid (18 C) trans-2-Chlorocinnamic acid trans-3-Chlorocinnamic acid trans-4-Chlorocinnamic acid 2-Chlorocrotonic acid 3-Chlorocrotonic acid Chlorodifluoroacetic acid 1-Chloro-1,2-dihydroxybenzene 1-Chloro-2,6-dimethyl4-hydroxybenzene 4-Chloro-2,6-dinitrophenol 2-Chloroethylarsonic acid 3-Chlorohexyl-1-arsonic acid (18 C) 2-Chloro-3-hydroxybutanoic acid 3-Chloro-2-(hydroxymethyl)benzoic acid (20 C) 6-Chloro-2-(hydroxymethyl)benzoic acid (20 C) 7-Chloro-8-hydroxyquinoline5-sulfonic acid 2-Chloroisocrotonic acid 3-Chloroisocrotonic acid 3-Chlorolactic acid 3-Chloromandelic acid 3-Chloro-4-methoxyphenylphosphonic acid 3-Chloro-4-methylaniline 4-Chloro-N-methylaniline 4-Chloro-3-methylphenol Chloromethylphosphonic acid 2-Chloro-2-methylpropanoic acid 2-Chloro-6-nitroaniline 4-Chloro-2-nitroaniline 2-Chloro-3-nitrobenzoic acid 2-Chloro-4-nitrobenzoic acid 2-Chloro-5-nitrobenzoic acid 2-Chloro-6-nitrobenzoic acid 4-Chloro-2-nitrophenol
pK1
pK2
4.05 4.50 2.54 3.95 4.234 4.294 4.413 3.14 3.84 0.46 8.522
8.85
9.549 2.97 3.68 3.51 2.59
8.37 8.31
3.27 2.26 2.92 2.80 4.02 3.12 3.237
6.80
2.25 4.05(1) 3.9(1) 9.549 1.40 2.975 2.41(1) 1.10(1) 2.02 1.96 2.17 1.342 6.48
6.7
6.30
HO O Cl
2-Chloroisocrotonic acid
pK3
pK4
8.17
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol (4-Chloro-3-nitrophenoxy)acetic acid 2-Chloro-4-nitrophenylphosphonic acid 3-Chloropentyl-l-arsonic acid (18 C) 2-Chlorophenoxyacetic acid 3-Chlorophenoxyacetic acid 4-Chlorophenoxyacetic acid 4-Chlorophenoxy-2-methylacetic acid 2-Chlorophenylacetic acid 3-Chlorophenylacetic acid 4-Chlorophenylacetic acid 2-Chlorophenylalanine 3-Chlorophenylalanine DL-4-Chlorophenylalanine 4-Chlorophenylarsonic acid 2-Chlorophenylphosphonic acid 3-Chlorophenylphosphonic acid 4-Chlorophenylphosphonic acid 3-(2-Chlorophenyl)propanoic acid 3-(3-Chlorophenyl)propanoic acid 3-(4-Chlorophenyl)propanoic acid 3-Chlorophenylselenic acid 4-Chlorophenylselenic acid 4-Chloro-1,2-phthalic acid 2-Chloropropanoic acid 3-Chloropropanoic acid 2-Chloropropylarsonic acid (18 C) 3-Chloropropylarsonic acid (18 C) Chloropropynoic acid 2-Chloropyridine 3-Chloropyridine 4-Chloropyridine 7-Chlorotetracycline 4-Chloro-2-(2-thiazolylazo)phenol 4-Chlorothiophenol N-Chloro-p-toluenesulfonamide 3-Chloro-o-toluidine 4-Chloro-o-toluidine 5-Chloro-o-toluidine 6-Chloro-o-toludine Chrome Azurol S Chrome Dark Blue Cinchonine
pK1
pK2
pK3
8.55 9.10 9.43 2.959 1.12
6.14
3.71 3.05 3.07 3.10
8.77
3.26 4.066 4.140 4.190 2.23(1) 2.17(1) 2.08(1) 3.33 1.63 1.55 1.66 4.577 4.585 4.607 4.47 4.48 1.60 2.84 3.992 3.76 3.63 1.845 0.49(1) 2.84(1) 3.83(1) 3.30(1) 7.09 5.9 4.54(1) 2.49(1) 3.385(1) 3.85(1) 3.62(1) 2.45 7.56 5.85(2)
8.94(0) 8.91(0) 8.96(0) 8.25 6.98 6.65 6.75
8.39 8.53
7.44
9.27
4.86 9.3 9.92(1)
11.47 12.4
pK4
8.18
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
cis-Cinnamic acid trans-Cinnamic acid Citraconic acid Citric acid L-()-Citrulline Cocaine Codeine Colchicine Coniine ( 0.5) Creatine (40 C) Creatinine o-Cresol m-Cresol p-Cresol Cumene hydroperoxide Cupreine Cyanamide Cyanoacetic acid Cyanoacetohydrazide 2-Cyanobenzoic acid 3-Cyanobenzoic acid 4-Cyanobenzoic acid 4-Cyanobutanoic acid trans-1-Cyanocyclohexane2-carboxylic acid 4-Cyano-2,6-dimethylphenol 4-Cyano-3,5-dimethylphenol 2-Cyanoethylamine N-(2-Cyano)ethylnorcodeine Cyanomethylamine 2-Cyano-2-methyl-2-phenylacetic acid 1-Cyanomethylpiperidine 2-Cyano-2-methylpropanoic acid 3-Cyanophenol o-Cyanophenoxyacetic acid m-Cyanophenoxyacetic acid p-Cyanophenoxyacetic acid 2-Cyanopropanoic acid 3-Cyanopropanoic acid 2-Cyanopyridine
3.879 4.438 2.29(0) 3.128 2.43(1) 8.41(1) 7.95(1) 1.65(1) 11.24(1) 3.28(1) 3.57(1) 10.26 10.00 10.26 12.60 7.63(1) 10.27 2.460 2.34(2) 3.14 3.60 3.55 4.44
pK2
6.15(1) 4.761 9.41(0)
O
cis -Cinnamic acid
6.396
3.865 8.27 8.21 7.7(1) 5.68(1) 5.34(1) 2.290 4.55(1) 2.422 8.61 2.98 3.03 2.93 2.37 3.99 0.26(1) OH
OH
HO HO
O
HO
pK4
11.17(1)
O
O
pK3
OH
OOH
O
OH
Citraconic acid
O
Citric acid
Cumene hydroperoxide
8.19
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3-Cyanopyridine 4-Cyanopyridine Cyanuric acid Cyclobutanecarboxylic acid 1,1-Cyclobutanedicarboxylic acid cis-1,2-Cyclobutanedicarboxylic acid trans-1,2-Cyclobutanedicarboxylic acid cis-1,3-Cyclobutanedicarboxylic acid trans-1,3-Cyclobutanedicarboxylic acid Cyclohexanecarboxylic acid 1,1-Cyclohexanediacetic acid cis-1,2-Cyclohexanediacetic acid (20 C) trans-1,2-Cyclohexanediacetic acid (20 C) cis-1,2-Cyclohexanediamine trans-1,2-Cyclohexanediamine 1,1-Cyclohexanedicarboxylic acid cis-1,2-Cyclohexanedicarboxylic acid (20 C) trans-1,2-Cyclohexanedicarboxylic acid (20 C) cis-1,3-Cyclohexanedicarboxylic acid (16 C) trans-1,3-Cyclohexanedicarboxylic acid (19 C) trans-1,4-Cyclohexanedicarboxylic acid (16 C) 1,3-Cyclohexanedione cis,cis-1,3,5-Cyclohexanetriamine Cyclohexanonimine cis-4-Cyclohexene-1,2-dicarboxylic acid (20 C) trans-4-Cyclohexene-1,2-dicarboxylic acid (20 C) Cyclohexylacetic acid Cyclohexylamine 2-(Cyclohexylamino)ethanesulfonic acid (CHES) (20 C)
pK1
pK2
1.45(1) 1.90(1) 6.78 4.785 3.13 3.90
5.88 5.89
3.79 4.04
5.61 5.31
3.81 4.90 3.49
5.28 6.96
4.42
5.45
4.38 6.43(2) 6.34(2) 3.45
5.42 9.93(1) 9.74(1) 4.11
4.34
6.76
4.18
5.93
4.10
5.46
4.31
5.73
4.18 5.26 6.9(3) 9.15
5.42
3.89
6.79
3.95 4.51 10.64(1)
5.81
8.7(2)
9.55 OH N HO
N N OH
Cyanuric acid
pK3
10.4(1)
pK4
8.20
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
3-Cyclohexylamino1-propanesulfonic acid (CAPS) (20 C) 4-Cyclohexylbutanoic acid Cyclohexylcyanoacetic acid 1,2-Cyclohexylenedinitriloacetic acid ( 0.1) 3-Cyclohexylpropanoic acid 2-Cyclohexylpyrrolidine 2-Cyclohexyl-2-pyrroline Cyclohexylthioacetic acid Cyclopentanecarboxylic acid cis-Cyclopentane-1-carboxylic acid2-acetic acid trans-Cyclopentane-1-carboxylic acid-2-acetic acid Cyclopentane-1,2-diamine-N,N,Ntetraacetic acid ( 0.1) Cyclopentane-1,1-dicarboxylic acid cis-Cyclopentane-1,2-dicarboxylic acid trans-Cyclopentane-1,2-dicarboxylic acid cis-Cyclopentane-1,3-dicarboxylic acid trans-Cyclopentane-1,3-dicarboxylic acid Cyclopentylamine 1,1-Cyclopentyldiacetic acid cis-Cyclopentyl-1,2-diacetic acid trans-Cyclopentyl-1,2-diacetic acid Cyclopropanecarboxylic acid Cyclopropane-1,1-dicarboxylic acid cis-Cyclopropane-1,2-dicarboxylic acid trans-Cyclopropane-1,2-dicarboxylic acid Cyclopropylamine 5-Cyclopropyl-1,2,3,4-tetrazole L-Cysteic acid (3-sulfo-L-alanine) L-()-Cysteine
pK2
pK3
pK4
10.40 4.95 2.367 2.4 4.91 10.76(1) 7.91(1) 3.488 4.905
3.5
4.40
5.79
4.39
5.67
3.23
4.08
4.43
6.67
3.96
5.85
4.26
5.51
4.32 10.65(1) 3.80 4.42 4.43 4.827 1.82
5.42
5.43
3.33
6.47
3.65 9.10(1) 4.90(1) 1.89(1) 1.71(1)
5.13
6.16
12.35
10.20
6.77 5.42 5.43
8.7(0) 8.39(0)
H N N
N N
5-Cyclopropyl-1,2,3,4-tetrazole
10.70(SH)
8.21
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
L-()-Cysteine, ethyl ester
6.69 (NH3) 6.56 (NH3) 2.97 1.6(2) 3.12 4.08(1) 0.8(1) 0.80(1)
L-()-Cysteine, methyl ester L-Cysteinyl-L-asparagine L-Cystine (35 C)
Cystinylglycylglycine (35 C) Cytidine Cytidine-2-phosphoric acid Cytidine-3-phosphoric acid Cytidine-5-phosphoric acid Cytosine
4.58(1)
Decanedioic acid (sebacic acid) Dehydroascorbic acid (20 C) 2-Deoxyadenosine ( 0.1) Deoxycholic acid 2-Deoxyglucose 2-Deoxyguanosine ( 0.1) 5-Desoxypyridoxal ( 0) 1,1-Diacetic acid semicarbazide (30 C, 0.1) Diacetylacetone Diallylamine ( 0.02) 5,5-Diallylbarbituric acid 1,3-Diamino-2-aminomethylpropane 3,5-Diaminobenzoic acid 1,3-Diamino-N,N-bis(2-aminoethyl)propane ( 0.5) 2,4-Diaminobutanoic acid (20 C) 2,2-Diaminodiethyl sulfide (30 C) 1,8-Diamino-3,6-dithiooctane (30 C) 2,7-Diaminooctanedioic acid (20 C, 0.1) 1,8-Diamino-3,6-octanedione (30 C) 1,8-Diamino-3-oxa-6-thiooctane 2,3-Diaminopropanoic acid ( 0.1) 2,3-Diaminopropanoic acid, methyl ester ( 0.1)
pK2
pK3
pK4
9.17(SH) 8.99(SH) 7.09 2.1(1) 3.21 12.24(0) 4.36(0) 4.31(0) 4.39(0) 12.15(0)
4.59 3.21 3.8(1) 6.58 12.52 2.5(1) 4.17(1)
5.59 7.92
2.96 7.42 9.29(1) 7.78(0) 6.44(3) 5.30
4.04
8.47 8.02(0) 6.01
8.71(1) 6.87
6.17(1) 6.04(1) 6.62(1)
13.2(sugar)
10.3
8.14(OH)
8.56(2)
10.38(1)
6.01(4) 1.85(2) 8.84(2) 8.43(2)
7.26(3) 8.24(1) 9.64(1) 9.31(1)
9.49(2) 10.40(0)
10.23(1)
1.84(2) 8.60(2) 8.54(2) 1.33(2)
2.64(1) 9.57(1) 9.46(1) 6.674(1)
9.23(0)
9.89(1)
4.412(1)
8.250(0)
9.623(0)
OH O OH
OH
HO
O
HO O
N
Cytidine
H
N
H
NH2
HO
H
H
Deoxycholic acid
8.22
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 1,3-Diamino-2-propanol (20 C) 2,5-Diaminopyridine (20 C) 1,4-Diazabicyclo[2.2.2]octane Dibenzylamine Dibenzylsuccinic acid (20 C) Dibromoacetic acid 3,5-Dibromoaniline 3,5-Dibromophenol 2,2-Dibromopropanoic acid 2,3-Dibromopropanoic acid rac-2,3-Dibromosuccinic acid (20 C) meso-2,3-Dibromosuccinic acid (20 C) 3,5-Dibromo-p-L-tyrosine Dibutylamine Di-sec-butylamine 2,6-Di-tert-butylpyridine rac-2,3-Di-tert-butylsuccinic acid ( 0.1) 1,12-Dicarboxydodecaborane Dichloroacetic acid Dichloroacetylacetic acid 3,5-Dichloroaniline 1,3-Dichloro-2,5-dihydroxybenzene ( 0.65) 2,5-Dichloro-3,6-dihydroxyp-benzoquinone Dichloromethylphosphonic acid 2,4-Dichloro-6-nitroaniline 2,5-Dichloro-4-nitroaniline 2,6-Dichloro-4-nitroaniline 2,3-Dichlorophenol 2,4-Dichlorophenol 2,6-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,4-Dichlorophenoxyacetic acid (2,4-D) 4,6-Dichlorophenoxy-2-methylacetic acid 3,6-Dichlorophthalic acid 2,2-Dichloropropanoic acid 2,3-Dichloropropanoic acid rac-2,3-Dichlorosuccinic acid (20 C) meso-2,3-Dichlorosuccinic acid 3,5-Dichloro-p-tyrosine 2-Dicyanoethylamine 2,2-Dicyanopropanoic acid
pK1
pK2
7.93(2) 2.13(2) 2.90(2) 8.52(1) 3.96 1.39 2.35(1) 8.056 1.48 2.33
9.69(1) 6.48(1) 8.60(1)
1.43
2.24
1.51 2.17(1) 11.25(1) 10.91(1) 3.58(1)
2.71 6.45(0)
3.58 9.07 1.26 2.11 2.37(1)
10.2 10.23
7.30
9.99
1.09 1.14 3.00(1) 1.74(1) 3.31(1) 7.44 7.85 6.78 8.630 8.179
2.42 5.61
pK3
6.66
7.60(1)
2.64 3.13 1.46 2.06 2.85 1.43 1.49 2.12 5.14(1) 2.8
2.81 2.97 6.47
7.62
pK4
8.23
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Dicyclohexylamine Dicyclopentylamine Didodecylamine Diethanolamine Di(ethoxyethyl)amine 3,5-Diethoxyphenol 3-(Diethoxyphosphinyl)benzoic acid 4-(Diethoxyphosphinyl)benzoic acid 3-(Diethoxyphosphinyl)phenol 4-(Diethoxyphosphinyl)phenol Diethylamine 2-(Diethylamino)ethyl4-aminobenzoate -(Diethylamino)toluene N,N-Diethylaniline 5,5-Diethylbarbituric acid (veronal) N,N-Diethylbenzylamine Diethylbiguanide (30 C) Diethylenetriamine Diethylenetriaminepentaacetic acid (pK5 10.58) N,N-Diethylethylenediamine 2,2-Diethylglutaric acid N,N-Diethylglycine Diethylglycolic acid (18 C) Diethylmalonic acid Diethylmethylamine rac-2,3-Diethylsuccinic acid meso-2,3-Diethylsuccinic acid N,N-Diethyl-o-toluidine Difluoroacetic acid 3,3-Difluoroacrylic acid Diglycolic acid Diguanidine Dihexylamine Dihydroarecaidine Dihydroarecaidine, methyl ester Dihydrocodeine Dihydroergonovine -Dihydrolysergic acid
pK2
pK3
pK4
11.25(1) 10.93(1) 10.99() 8.88(1) 8.47(1) 9.370 3.65 3.60 8.66 8.28 10.8(1) 8.85(1) 9.44(1) 6.56(1) 8.020(0) 9.48(1) 2.53(1) 4.42(3)
11.68(0) 9.21(2)
1.80(0) 7.70(2) 3.62 2.04(1) 3.804 2.151 10.43(1) 3.63 3.54 7.18(1) 1.33 3.17 2.96 12.8 11.0(1) 9.70 8.39 8.75(1) 7.38(1) 3.57
2.55(1) 10.46(1) 7.12 10.47(0) 7.417 6.46 6.59
8.45
O MeO
N
Dihydroarecaidine
10.02(1) 4.33(2)
8.60(3)
8.24
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance -Dihydrolysergic acid -Dihydrolysergol -Dihydrolysergol Dihydromorphine 3,4-Dihydroxyalanine 1,2-Dihydroxyanthraquinone3-sulfonic acid (alizarin-3-sulfonic acid) 3,4-Dihydroxybenzaldehyde 1,2-Dihydroxybenzene (pyrocatechol) ( 0.1) 1,3-Dihydroxybenzene (resorcinol) 1,4-Dihydroxybenzene (hydroquinone) 4,5-Dihydroxybenzene-1,3-disulfonic acid 2,3-Dihydroxybenzoic acid (30 C) 2,4-Dihydroxybenzoic acid (-resorcyclic acid) 2,5-Dihydroxybenzoic acid 2,6-Dihydroxybenzoic acid 3,4-Dihydroxybenzoic acid 3,5-Dihydroxybenzoic acid 2,5-Dihydroxy-p-benzoquinone 3,4-Dihydroxy-3-cyclobutene1,2-dione 2,3-Dihydroxy-2-cyclopenten-1-one (20 C) 1,4-Dihydroxy-2,6-dinitrobenzene Di(2,2-hydroxyethyl)amine N,N-Di(2-hydroxyethyl)glycine Dihydroxymaleic acid Dihydroxymalic acid 1,3-Dihydroxy-2-methylbenzene ( 0.65) 2,2-Di(hydroxymethyl)3-hydroxypropanoic acid 2,4-Dihydroxy-5-methylpyrimidine 2,4-Dihydroxy-6-methylpyrimidine 1,4-Dihydroxynaphthalene (26 C, 0.65) 1,2-Dihydroxy-3-nitrobenzene 1,2-Dihydroxy-4-nitrobenzene ( 0.1) 2,4-Dihydroxy-1-phenylazobenzene ( 0.1) 2,4-Dihydroxyoxazolidine 2,4-Dihydroxypteridine 2,6-Dihydroxypurine
pK1 3.60 8.30 8.23 9.35 2.32(1)
pK2
pK3
pK4
8.71
8.68(0)
9.87(1)
5.54(1)
11.01(2)
7.55 9.356(0) 9.44(0)
12.98(1) 12.32(1)
9.91(0)
12.04(1)
2.98
10.14
3.29 2.97 1.30 4.48 4.04 2.71
8.98 10.50
0.541
3.480
7.66(2)
4.72 4.42 8.8(1) 8.333 1.10 1.92 10.05
8.67 5.18
9.14
11.64
4.460 9.90 9.52 9.37 6.68
10.93
6.701 11.98 6.11(1) 1.3 7.53(0)
7.92 11.84(1)
11.74
12.6(3)
8.25
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2,4-Dihydroxypyridine (20 C) Dihydroxytartaric acid 1,4-Dihydroxy-2,3,5,6tetramethylbenzene ( 0.65) 3,5-Diiodoaniline 2,5-Diiodohistamine 2,5-Diiodohistidine ( 0.1) 3,5-Diiodophenol 3,5-Diiodotyrosine Diisopropylmalonic acid Dilactic acid threo-1,4-Dimercapto-2,3-butanediol meso-2,3-Dimercaptosuccinic acid 3,5-Dimethoxyaniline 2,6-Dimethoxybenzoic acid 1,10-Dimethoxy-3,8-dimethyl4,7-phenanthroline Di(2-methoxyethyl)amine 3,5-Dimethoxyphenol (3,4-Dimethoxy)phenylacetic acid Dimethylamine 4-Dimethylaminobenzaldehyde N,N-Dimethylaminocyclohexane 4-Dimethylamino-2,3-dimethyl1-phenyl-3-pyrazolin-5-one 4-Dimethylamino3,5-dimethylpyridine (20 C) 2-(Dimethylamino)ethanol 2-[2-(Dimethylamino)ethyl]pyridine 3-(Dimethylaminoethyl)pyridine 4-(Dimethylaminoethyl)pyridine 4-(Dimethylamino)-3-ethylpyridine (20 C) 4-(Dimethylamino)3-isopropylpyridine (20 C) 2-(Dimethylaminomethyl)pyridine 3-(Dimethylaminomethyl)pyridine 4-(Dimethylaminomethyl)pyridine 4-(Dimethylamino)-3-methylpyridine (20 C) 4-(Dimethylaminophenyl)phosphonic acid 3-(Dimethylamino)propanoic acid 4-(Dimethylamino)pyridine (20 C) N,N-Dimethylaniline 2,3-Dimethylaniline 2,4-Dimethylaniline 2,5-Dimethylaniline 2,6-Dimethylaniline
pK1
pK2
pK3
1.37(1) 1.95
6.45(0) 4.00
13(1)
11.25 2.37(1) 2.31(2) 2.72 8.103 2.117(1) 2.124 2.955 8.9 2.71 3.86(1) 3.44
12.70 8.20(1) 8.18
10.11(0) 9.76
6.479(0) 8.848
7.821(1)
3.48
8.89(SH)
7.21 9.51(1) 9.345 4.333 10.77(1) 1.647(1) 10.72(1) 4.18(1) 8.15(1) 9.26(1) 3.46(2) 4.30(2) 4.66(2)
8.75(1) 8.86(1) 8.70(1)
8.66(1) 8.27(1) 2.58(2) 3.17(2) 3.39(2)
8.12(1) 8.00(1) 7.66(1)
8.68(1) 2.0(1) 9.85(1) 6.09(1) 5.15(1) 4.70(1) 4.89(1) 4.53(1) 3.95(1)
4.2
7.35
pK4
10.79(SH)
8.26
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3,4-Dimethylaniline 3,5-Dimethylaniline N,N-Dimethylaniline-4-phosphonic acid (17 C) Dimethylarsinic acid (cacodylic acid) 1,3-Dimethylbarbituric acid 2,3-Dimethylbenzoic acid 2,4-Dimethylbenzoic acid 2,5-Dimethylbenzoic acid 2,6-Dimethylbenzoic acid 3,4-Dimethylbenzoic 3,5-Dimethylbenzoic acid N,N-Dimethylbenzylamine Dimethylbiguanide 2,2-Dimethylbutanoic acid (18 C) Dimethylchlorotetracycline ( 0.01) 2,6-Dimethyl-4-cyanophenol 3,5-Dimethyl-4-cyanophenol 5,5-Dimethyl-1,3-cyclohexanedione cis-3,3-Dimethyl-1,2cyclopropanedicarboxylic acid trans-3,3-Dimethyl1,2-cyclopropanedicarboxylic acid 3,5-Dimethyl-4-(dimethylamino)pyridine (20 C) 2,2-Dimethyl-1,3-dioxane-4,6-dione 1,1-Dimethylethanethiol ( 0.1) N,N-DimethylethylenediamineN,N-diacetic acid N,N-DimethylethylenediamineN,N-diacetic acid N,N-DimethylethylenediamineN,N-diacetic acid N,N-Dimethylglycine Dimethylglycolic acid (18 C) N,N-Dimethylglycylglycine Dimethylglyoxime 5,5-Dimethyl-2,4-hexanedione 5,5-Dimethylhydantoin 2,4-Dimethyl-8-hydroxyquinoline 3,4-Dimethyl-8-hydroxyquinoline
pK1
pK2
pK3
5.17(1) 4.765(1) 2.0(1) 6.273 4.68(1) 3.771 4.217 3.990 3.362 4.41 4.302 9.02(1) 2.77(1) 5.03 3.30(1) 8.27 8.21 5.15
4.2
2.34
8.31
3.92
5.32
7.39
11.52
8.12(1) 5.1 11.22 6.63
9.53
7.40
10.16
5.99 2.146(1) 4.04 3.11(1) 10.60 10.01 9.19 6.20(1) 5.80(1)
9.97 9.940(0) 8.09(0)
10.60(0) 10.05(0) N
HO
N
Dimethylglyoxime
OH
pK4
8.27
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2,4-Dimethyl-8-hydroxyquinoline7-sulfonic acid Dimethylhydroxytetracycline 2,4-Dimethylimidazole Dimethylmalic acid 2,2-Dimethylmalonic acid 3,5-Dimethyl-4-(methylamino) pyridine (20 C) 2,3-Dimethylnaphthalene1-carboxylic acid 2,6-Dimethyl-4-nitrophenol 3,5-Dimethyl-4-nitrophenol ,-Dimethyloxaloacetic acid 3,3-Dimethylpentanedioic acid 2,2-Dimethylpentanoic acid 4,4-Dimethylpentanoic acid (18 C) 2,3-Dimethylphenol 2,4-Dimethylphenol 2,5-Dimethylphenol 2,6-Dimethylphenol 3,4-Dimethylphenol 3,5-Dimethylphenol 2,6-Dimethylphenoxyacetic acid Dimethylphenylsilylacetic acid N,N-Dimethylpiperazine 1,2-Dimethylpiperidine cis-2,6-Dimethylpiperidine 2,2-Dimethylpropanoic acid (pivalic acid) 2,2-Dimethylpropylphosphonic acid 2,4-Dimethylpyridine (2,4-lutidine) 2,5-Dimethylpyridine (2,5-lutidine) 2,6-Dimethylpyridine (2,6-lutidine) 3,4-Dimethylpyridine (3,4-lutidine) 3,5-Dimethylpyridine (3,5-lutidine) 2,4-Dimethylpyridine-1-oxide 2,5-Dimethylpyridine-1-oxide 2,6-Dimethylpyridine-1-oxide 3,4-Dimethylpyridine-1-oxide 3,5-Dimethylpyridine-1-oxide 2,3-Dimethylquinoline 2,6-Dimethylquinoline meso-2,2-Dimethylsuccinic acid rac-2,2-Dimethylsuccinic acid D-2,3-Dimethylsuccinic acid meso-2,3-Dimethylsuccinic acid rac-2,3-Dimethylsuccinic acid 2,4-Dimethylthiazole ( 0.1)
pK1
3.20 (NH) 7.5 8.38(1) 3.17 3.17
pK2
10.14(OH) 9.4 6.06 6.06
9.96(1) 3.33 7.190 8.245 1.77 3.70 4.969 4.79 10.50 10.58 10.22 10.59 10.32 10.15 3.356 5.27 4.630(2) 10.22 11.07(1) 5.031 2.84 6.74(1) 6.43(1) 6.71(1) 6.47(1) 6.09(1) 1.627(1) 1.208(1) 1.366(1) 1.493(1) 1.181(1) 4.94(1) 5.46(1) 3.77 3.93 3.82 3.67 3.94 3.98
4.62 6.34
8.539(1)
8.65
5.936 6.20 5.93 5.30 6.20
pK3
pK4
8.28
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
2,5-Dimethylthiazole ( 0.1) 4,5-Dimethylthiazole ( 0.1) N,N-Dimethyl-o-toluidine N,N-Dimethyl-p-toluidine 2,4-Dinitroaniline 2,6-Dinitroaniline 3,5-Dinitroaniline 2,3-Dinitrobenzoic acid 2,4-Dinitrobenzoic acid 2,5-Dinitrobenzoic acid 2,6-Dinitrobenzoic acid 3,4-Dinitrobenzoic acid 3,5-Dinitrobenzoic acid 1,1-Dinitrobutane (20 C) 1,1-Dinitrodecane 1,1-Dinitroethane (20 C) Dinitromethane (20 C) 1,1-Dinitropentane 2,4-Dinitrophenol 2,5-Dinitrophenol 2,6-Dinitrophenol 3,4-Dinitrophenol 3,5-Dinitrophenol 2,4-Dinitrophenylacetic acid 1,1-Dinitropropane (20 C) 2,6-Dioxo-1,2,3,6-tetrahydro4-pyrimidinecarboxylic acid (orotic acid) Diphenylacetic acid Diphenylamine 2,2-Diphenylglutaric acid (20 C) 1,3-Diphenylguanidine 2,2-Diphenylheptanedioic acid (20 C) 2,2-Diphenylhexanedioic acid (20 C) 3,3-Diphenylhexanedioic acid Diphenylhydroxyacetic acid (35 C) Diphenylketimine 2,2-Diphenylnonanedioic acid (20 C) O
pK2
3.91 3.73 5.86(1) 7.24(1) 4.25(1) 5.23(1) 0.229(1) 1.85 1.43 1.62 1.14 2.82 2.85 5.90 3.60 5.21 3.60 5.337 4.08 5.216 3.713 5.424 6.732 3.50 5.5
1.8(1) 3.939 0.9(1) 3.91 10.12 4.28 4.17 4.22 3.05 6.82 4.33
9.55(0)
5.38
5.39 5.40 5.19
5.38
OH O OH
2,2-Diphenylglutaric acid
NH
Diphenylketimine
pK3
pK4
8.29
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
meso-2,2-Diphenylsuccinic acid rac-2,2-Diphenylsuccinic acid 2,2-Diphenylsuccinic acid, 1-methyl ester (20 C) 2,2-Diphenylsuccinic acid, 4-methyl ester (20 C) Diphenylthiocarbazone Dipropylamine Dipropylenetriamine 2,2-Dipropylglutaric acid Dipropylmalonic acid 2,2-Dipyridyl 2,3-Dipyridyl (20 C) 2,4-Dipyridyl (20 C) 3,3-Dipyridyl (20 C, 0.2) 3,4-Dipyridyl (20 C, 0.2) 4,4-Dipyridyl Dithiodiacetic acid (18 C) 1,4-Dithioerythritol Dithiooxamide (rubeanic acid) Dulcitol
3.48 3.58
Ecgonine Emetine Epinephrine enantiomorph Epinephrine, pseudo Ergometrinine Ergonovine Eriochrome Black T 1,2-Ethanediamine Ethane-1,2-diamino-N,N-dimethylN,N-diacetic acid (20 C) 1,2-Ethanedithiol Ethanethiol ( 0.015) Ethoxyacetic acid (18 C) 2-Ethoxyaniline (o-phenetidine) 3-Ethoxyaniline 4-Ethoxyaniline 2-Ethoxybenzoic acid (20 C) 3-Ethoxybenzoic acid (20 C) 4-Ethoxybenzoic acid (20 C) Ethoxycarbonylethylamine 2-Ethoxyethanethiol 2-Ethoxyethylamine 2-Ethoxyphenol 3-Ethoxyphenol (4-Ethoxyphenyl)phosphonic acid 4-Ethoxypyridine Ethyl acetoacetate 3-Ethylacrylic acid
10.91 7.36(1) 9.39(1) 9.53(1) 7.32(1) 6.73(1) 6.3 6.85(2)
pK2
pK3
9.56(2) 7.31 7.51 4.352(1) 4.42(1) 4.77(1) 4.60(1) 4.85(1) 4.82(1) 4.201
10.65(1)
4.47 3.900 4.50 10.91(1) 7.72(3) 3.688 2.04 0.52(2) 1.52(2) 1.19(2) 3.0(2) 3.0(2) 3.17(2) 3.075 9.5 10.89 13.46
6.047(0) 8.96 10.61 3.65 4.47(1) 4.17(1) 5.25(1) 4.21 4.17 4.80 9.13(1) 9.38 6.26(1) 10.109 9.655 2.06 6.67(1) 10.68 4.695
15
8.23(0)
11.55 9.92(1) 10.068(1) 10.54
7.28
pK4
8.30
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
N-Ethylalanine Ethylamine (3-Ethylamino)phenylphosphonic acid N-Ethylaniline 2-Ethylaniline 3-Ethylaniline 4-Ethylaniline Ethylarsonic acid (18 C) Ethylbarbituric acid 2-Ethylbenzimidazole ( 0.16) 2-Ethylbenzoic acid 4-Ethylbenzoic acid Ethylbiguanide 2-Ethylbutanoic acid (20 C) S-Ethyl-L-cysteine ( 0.1) Ethylenebiguanide (30 C) Ethylenebis(thioacetic acid) (18 C) Ethylenediamine-N,N-diacetic acid Ethylenediamine-N,N-dimethylN,N-diacetic acid Ethylenediamine-N,N-dipropanoic acid (30 C) Ethylenediamine-N,N,N,Ntetraacetic acid ( 0.1) Ethylenediamine-N,N,N,Ntetrapropanoic acid (30 C) Ethylene glycol Ethyleneimine cis-Ethylene oxide dicarboxylic acid trans-Ethylene oxide dicarboxylic acid N-Ethylethylenediamine N-Ethylglycine ( 0.1) 3-Ethylglutaric acid Ethyl hydroperoxide Ethyl hydrogen malonate 3-Ethyl-2-hydroxypyridine Ethylmalonic acid
pK2
2.22(1) 10.63(1)
10.22(0)
1.1(1) 5.11(1) 4.42(1) 4.70(1) 5.00(1) 3.89 3.69(1) 6.27(1) 3.79 4.35 2.09(1) 4.710 2.03(1) 1.74 3.382(0) 6.42
4.90(0)
8.60(0) 2.88 4.352(1) 9.46
6.047
10.068
6.87
9.60
1.99
pK3
7.24(1)
8.35
11.47(0)
11.34
11.76
2.67
6.16
10.26
3.00 14.22 8.04(1) 1.93
3.43
6.77
9.60
1.93 7.63(2) 2.34(1) 4.28 11.80 3.55 5.00(1) 2.90(0)
3.25 10.56(1) 10.23(0) 5.33
3.92
5.55(1) OH O
NH
NH
O
H2N
N H
pK4
N
Ethylenebiguanide
OH
3-Ethylglutaric acid
8.31
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
N-Ethyl mercaptoacetamide Ethyl 2-mercaptoacetate Ethyl 3-mercaptopropanoate 3-Ethyl-4-(methylamino)pyridine (20 C) 5-Ethyl-5-(1-methylbutyl)barbituric acid Ethyl methyl ketoxime Ethylmethylmalonic acid 1-Ethyl-2-methylpiperidine 3-Ethyl-6-methylpyridine (20 C) 3-Ethyl-4-methylpyridine-1-oxide 5-Ethyl-2-methylpyridine-1-oxide 1-Ethyl-2-methyl-2-pyrroline Ethylmorphine (15 C) Ethyl nitroacetate 3-Ethylpentane-2,4-dione 2-Ethylpentanoic acid (18 C) 5-Ethyl-5-pentylbarbituric acid 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol 4-Ethylphenylacetic acid 5-Ethyl-5-phenylbarbituric acid Ethylphosphinic acid Ethylphosphonic acid 1-Ethylpiperidine ( 0.01) 2,2-Ethylpropylglutaric acid Ethylpropylmalonic acid 2-Ethylpyridine 3-Ethylpyridine (20 C) 4-Ethylpyridine Ethyl 3-pyridinecarboxylate Ethyl 4-pyridinecarboxylate 2-Ethylpyridine-1-oxide 3-Ethylpyridine-1-oxide Ethylpyrrolidine 2-Ethyl-2-pyrroline Ethylsuccinic acid S-Ethylthioacetic acid N-Ethyl-o-toluidine N-Ethylveratramine -Eucaine
8.11(0) 12.45 2.86(0) 10.66(1) 6.51(1) 1.534(1) 1.288(1) 11.84(1) 8.08 5.85 11.34 4.71 7.960 10.2 10.07 10.0 4.373 7.445 3.29 2.43 10.45(1) 3.511 3.14 5.89(1) 5.80(1) 5.87(1) 3.35(1) 3.45(1) 1.19(1) 0.965(1) 10.43(1) 7.87(1) 4.08(0) 5.06 4.92(1) 7.40(1) 9.35(1)
Fluoroacetic acid 2-Fluoroacrylic acid 2-Fluoroaniline 3-Fluoroaniline 4-Fluoroaniline 2-Fluorobenzoic acid
2.586 2.55 3.20(1) 3.58(1) 4.65(1) 3.27
pK2
8.14(SH) 7.95(SH) 9.48(SH) 9.90(1)
6.41(1)
8.05
7.43
pK3
pK4
8.32
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
3-Fluorobenzoic acid 4-Fluorobenzoic acid Fluoromandelic acid 2-Fluorophenol 3-Fluorophenol 4-Fluorophenol 2-Fluorophenoxyacetic acid 3-Fluorophenoxyacetic acid 4-Fluorophenoxyacetic acid 4-Fluorophenylacetic acid 2-Fluorophenylalanine 3-Fluorophenylalanine 4-Fluorophenylalanine 2-Fluorophenylphosphonic acid 3-Fluorophenylselenic acid 4-Fluorophenylselenic acid 2-Fluoropyridine 3-Fluoropyridine 5-Fluorouracil Folic acid (pteroylglutamic acid) Formic acid N-Formylglycine 2-Formyl-3-hydroxypyridine (20 C) 4-Formyl-3-hydroxypyridine 2-Formyl-3-methoxypyridine (20 C) Formyl-3-methoxypyridine (20 C) D-()-Fructose Fumaric acid 2-Furancarboxylic acid (2-furoic acid)
pK2
3.865 4.14 4.244 8.73 9.29 9.89 3.08 3.08 3.13 4.25 2.14(1) 2.10(1) 2.13(1) 1.64 4.34 4.50 0.44(1) 2.97(1) 8.00(0) 8.26 3.751 3.43 3.40(1) 4.05(1) 3.89(1) 4.45(1) 12.03 3.10
12.35
Galactose-1-phosphoric acid Glucoascorbic acid D-Gluconic acid -D-()-Glucose -D-Glucose-1-phosphate trans-Glutaconic acid D-()-Glutamic acid L-Glutamic acid Glutamic acid, 1-ethyl ester
1.00 4.26 3.86 12.28 1.11(0) 3.77 2.162(1) 2.13(1) 3.85(1)
O
N H
O
5-Fluorouracil
9.01(0) 8.98(0) 9.05(0) 6.80
ca 13(1)
6.95(OH) 6.77(OH) 12.95 11.7 4.60
6.17 11.58
6.504(1) 5.08 4.272(0) 4.31(0) 7.84(0)
9.358(1) 9.76(1)
OH HO
HO
OHO
HO
NH
OH O
HO
O HO
pK4
3.164
D-()-Galactose
F
pK3
OH
D-(+)-Galactose
OH
HO
OHO D-Gluconic
OH acid
OH
OH
-D-(+)-Glucose
8.33
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Glutamic acid, 5-ethyl ester L-Glutamine ( 0.2) Glutaric acid Glutaric acid monoamide Glutarimide Glutathione DL-Glyceric acid Glycerol Glyceryl-1-phosphoric acid Glyceryl-2-phosphoric acid Glycine Glycine amide Glycine, ethyl ester Glycine hydroxamic acid Glycine, methyl ester Glycine-O-phenylphosphorylserine Glycolic acid N-Glycyl--alanine Glycylalanylalanine N-Glycylasparagine Glycylaspartic acid Glycyl-DL-glutamine (18 C) N-Glycylglycine Glycylglycylcysteine (35 C) Glycylglycylglycine Glycyl-L-histidine ( 0.16) Glycylisoleucine N-Glycyl-L-leucine Glycyl-O-phosphorylserine L-Glycylproline ( 0.1) N-Glycylsarcosine ( 0.1) N-Glycylserine Glycylserylglycine Glycyltyrosine Glycylvaline Glyoxaline Glyoxylic acid Guanidineacetic acid
pK2
2.15(1) 2.15(1) 3.77 4.600(0) 11.43 2.12(1) 3.64 14.15
pK3
pK4
9.19(0) 9.00(0) 6.08
3.53(0)
8.66
9.12
6.656(1) 6.650(1) 9.70(0)
1.335(0) 2.351(1) 8.03(1) 7.66(1) 7.10 7.59(1) 2.96 3.831 3.15(1) 3.38(1) 2.942 2.81(1) 2.88(1) 3.126(1) 2.71 3.225(1) 6.79 8.00 3.180(1) 2.90 2.81(1) 2.98(1) 2.98(1) 3.32 2.93 3.15 7.03(1) 3.30(0) 2.82(1)
9.10 8.07 8.33(0) 8.10(0) 4.45(0) 8.33(0) 8.252(0) 2.71 8.090(0) 8.20
8.60(1)
7.94
8.327(0) 6.02 8.65(0) 8.55(0) 8.38(0) 7.99 8.45 8.18
7.94
8.43
10.49
O O
HO
NH2 O NH
HO
O
HN
O
O O
O
S
NH
OH HN
OH
HO
S
O H2N
HO
Glutaric acid Glutathione
O
8.34
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance Guanine Guanine deoxyriboside3-phosphoric acid Guanosine Guanosine-5-diphosphoric acid ( 0.1; pK5 59.6) Guanosine-3-phosphoric acid Guanosine-5-phosphoric acid ( 0.1) Guanosine-5-triphosphoric acid [ 0.1; pK5 7.10(3); pK6 9.3(4)] Guanylurea Harmine (20 C) Heptafluorobutanoic acid 4,4,5,5,6,6,6-Heptafluorohexanoic acid 4,4,5,5,6,6,6-Heptafluoro-2-hexenoic acid Heptanedioic acid (pimelic acid) 2,4-Heptanedione Heptanoic acid Heroin 2,4-Hexadienoic acid (sorbic acid) 1,1,1,3,3,3-Hexafluoro2,2-propanediol 1,1,1,3,3,3-Hexafluoro-2-propanol Hexahydroazepine Hexamethyldisilazine 1,2,3,8,9,10-Hexamethyl4,7-phenanthroline (20 C) 1,6-Hexanediamine 1,6-Hexanedioic acid 2,4-Hexanedione 2,2,4,4,6,6-Hexanitrodiphenylamine Hexanoic acid (20 C) trans-2-Hexenoic acid trans-3-Hexenoic acid 3-Hexen-4-oic acid 4-Hexen-5-oic acid Hexylamine Hexylarsonic acid Hexylphosphonic acid DL-Histidine
pK1
pK2
pK3
pK4
3.3(1)
9.2
12.3
2.9 9.25(0)
6.4 12.33 (OH)
9.7
1.9(1)
0.7
2.3
2.9 5.92
6.3 9.38
2.4
6.1
9.4
3.0(2) 1.80
8.20
7.61(1) 0.17 4.18 3.23 4.484 8.43(keto): 9.15(enol) 4.893 7.6(1)
5.424
4.77 8.801 9.42 11.07 7.55 7.26 9.830(2) 4.418 8.49 (enol); 9.32 (keto) 5.42 (1) 4.849 4.74 4.72 4.58 4.74 10.64(1) 4.16 2.6 1.82(2)
10.930(1) 5.412
9.19 7.9 6.00(1)
9.16(0)
8.35
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Histidine amide ( 0.2) Histidine, methyl ester ( 0.1) Histidylglycine Histidylhistidine ( 0.16) DL-Homatropine DL-Homocysteine Homocysteine ( 0.1) Hydantoin Hydrastine Hydrazine-N,N-diacetic acid Hydrazine-N,N-diacetic acid 4-Hydrazinocarbonylpyridine (20 C) N-Hydroxyacetamide 2-Hydroxyacetophenone 3-Hydroxyacetophenone 4-Hydroxyacetophenone 1-Hydroxyacridine (15 C) 2-Hydroxyacridine (15 C) 3-Hydroxyacridine (15 C) -Hydroxyasparagine -Hydroxyasparagine Hydroxyaspartic acid 2-Hydroxybenzaldehyde (salicylaldehyde) 3-Hydroxybenzaldehyde 4-Hydroxybenzaldehyde 2-Hydroxybenzaldehyde oxime 2-Hydroxybenzamide 2-Hydroxybenzenemethanol (2-hydroxybenzyl alcohol) 3-Hydroxybenzenemethanol 4-Hydroxybenzenemethanol 4-Hydroxybenzenesulfonic acid 2-Hydroxybenzohydroxamic acid 2-Hydroxybenzoic acid (salicylic acid) 3-Hydroxybenzoic acid 4-Hydroxybenzoic acid 4-Hydroxybenzonitrile 2-Hydroxy-5-bromobenzoic acid 2-Hydroxybutanoic acid (30 C)
pK2
5.78(2) 5.01(2) 2.40(2) 5.40(2) 9.7(1) 2.222(1) 1.593(2) 9.12 6.23(1) 0.1 2.40 1.82 9.40 9.90 9.19 8.05 5.72 5.62 5.30 2.28(1) 2.09(1) 1.91(1) 8.34 9.00 7.620 1.37(1) 8.36
7.64(1) 7.23(1) 5.80(1) 6.80(1)
7.82(0) 7.95(0)
8.87 2.523(1)
10.86 8.676(0)
2.8 3.12 3.52
3.8 7.32 10.79
7.20(0) 8.29(0) 3.51(0)
9.11(1)
9.18
12.11
9.92 9.83 9.82 9.055(1) 5.19 2.98 4.076 4.582 7.95 2.61 3.65
12.38 9.85 9.23
NH O N H Hydantoin
pK3
O
pK4
9.413(1)
8.36
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance L-3-Hydroxybutanoic acid (30 C)
4-Hydroxybutanoic acid (30 C) 2-Hydroxy-5-chlorobenzoic acid trans-2-Hydroxycinnamic acid trans-3-Hydroxycinnamic acid 10-Hydroxycodeine cis-2-Hydroxycyclohexane1-carboxylic acid trans-2-Hydroxycyclohexane1-carboxylic acid cis-3-Hydroxycyclohexane1-carboxylic acid trans-3-Hydroxycyclohexane1-carboxylic acid cis-4-Hydroxycyclohexane1-carboxylic acid trans-4-Hydroxycyclohexane1-carboxylic acid 1-Hydroxy-2,4dihydroxymethylbenzene N-(Hydroxyethyl)biguanide N-(2-Hydroxyethyl)ethylenediamine N-(2-Hydroxyethyl)ethylenediamine-N,N,N-triacetic acid N-(2-Hydroxyethyl)iminodiacetic acid ( 0.1) N-(2-Hydroxyethyl)piperazine-Nethanesulfonic acid (20 C) 4-(2-Hydroxyethyl)-1-piperazinepropanesulfonic acid (20 C) 2-Hydroxyethyltrimethylamine L--Hydroxyglutamic acid 1-Hydroxy-4-hydroxymethylbenzene 5-Hydroxy-2-(hydroxymethyl)4H-pyran-4-one 3-Hydroxy-2-hydroxymethylpyridine (20 C, 0.2) 3-Hydroxy-4-hydroxymethylpyridine (20 C, 0.2) 8-Hydroxy-7-iodoquinoline5-sulfonic acid Hydroxylysine (38 C, 0.1) 2-Hydroxy-3-methoxybenzaldehyde 3-Hydroxy-4-methoxybenzaldehyde (isovanillin) 4-Hydroxy-3-methoxybenzaldehyde (vanillin) 4-Hydroxy-3-methoxybenzoic acid 1-Hydroxy-2-methoxybenzylamine
pK1
pK2
pK3
4.41 4.71 2.63 4.614 4.40 7.12 4.796 4.682 4.602 4.815 4.836 4.687 9.79 2.8(2) 7.21(2)
11.53(1) 10.12(1)
2.39
5.37
2.2
8.65
9.93
7.55 8.00 8.94(1) 2.09 9.84
4.18
7.90
8.03
5.00(1)
9.07(OH)
5.00(1)
8.95(OH)
2.51(0) 2.13(2) 7.912
7.417(1) 8.62(1)
8.889 7.396 4.355 8.70(1)
10.52(0)
9.20
9.67(0)
pK4
8.37
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2-Hydroxy-1-methoxybenzylamine 3-Hydroxy-2-methoxybenzylamine 2-Hydroxymethyl-2-benzeneacetic acid (2-Hydroxy-5-methylbenzene)methanol 2-Hydroxy-3-methylbenzoic acid 2-Hydroxy-4-methylbenzoic acid 2-Hydroxy-5-methylbenzoic acid 2-Hydroxy-6-methylbenzoic acid 2-Hydroxy-2-methylbutanoic acid (18 C) 3-Hydroxy-2-methylbutanoic acid (18 C) 4-Hydroxy-4-methylpentanoic acid (18 C) 1-Hydroxymethylphenol Hydroxymethylphosphoric acid 2-Hydroxy-2-methylpropanoic acid ( 0.1) 2-Hydroxy-4-methylpyridine 8-Hydroxy-2-methylquinoline 8-Hydroxy-4-methylquinoline 8-Hydroxy-2-methylquinoline5-sulfonic acid 8-Hydroxy-4-methylquinoline7-sulfonic acid 8-Hydroxy-6-methylquinoline5-sulfonic acid 2-Hydroxy-1-naphthoic acid (20 C) 2-Hydroxy-2-nitrobenzoic acid 2-Hydroxy-3-nitrobenzoic acid 2-Hydroxy-5-nitrobenzoic acid 2-Hydroxy-6-nitrobenzoic acid 2-Hydroxy-4-nitrophenylphosphonic acid 8-Hydroxy-7-nitroquinoline5-sulfonic acid 3-Hydroxy-4-nitrotoluene ( 0.1) 4-Hydroxypentanoic acid (18 C) 4-Hydroxy-3-pentenoic acid 3-Hydroxyphenazine (15 C) 4-Hydroxyphenylarsonic acid 3-Hydroxyphenylboric acid 2-Hydroxy-2-phenylpropanoic acid 2-(2-Hydroxyphenyl)pyridine (20 C)
pK1 8.89(1) 8.94(1)
pK2
pK3
10.52(0) 10.42(0)
4.12 10.15 2.99 3.17 4.08 3.32 3.991 4.648 4.873 9.95 1.91
7.15
3.717 4.529(1) 5.55(1) 5.56(1)
10.31(0) 10.00(0)
4.80(0)
9.30(1)
4.78(0)
10.01(1)
4.20(0) 3.29 2.23 1.87 2.12 2.24
8.7(1) 9.68
1.22
5.39
1.94(0) 7.41 4.686 4.30 2.67 3.89
5.750(1)
8.55 3.532 4.19(1)
10.84
8.37
10.64
10.05 (phenol)
pK4
8.38
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
trans-4-Hydroxyproline Hydroxypropanedioic acid (tartronic acid) 2-Hydroxypropanoic acid 1-Hydroxy-2-propylbenzene 4-Hydroxypteridine 2-Hydroxypyridine 3-Hydroxypyridine 4-Hydroxypyridine 2-Hydroxypyridine-N-oxide 2-Hydroxypyrimidine 4-Hydroxypyrimidine 8-Hydroxyquinazoline 2-Hydroxyquinoline (20 C) 3-Hydroxyquinoline (20 C) 4-Hydroxyquinoline (20 C) 5-Hydroxyquinoline (20 C) 6-Hydroxyquinoline (20 C) 7-Hydroxyquinoline (20 C) 8-Hydroxyquinoline (20 C) 8-Hydroxyquinoline-5-sulfonic acid DL-Hydroxysuccinic acid (malic acid) L-Hydroxysuccinic acid Hydroxytetracycline 5-Hydroxy-1,2,3,4-tetrazole 4-Hydroxy-3-(2-thiazolyazo)toluene 2-Hydroxytoluene 3-Hydroxytoluene 4-Hydroxytoluene 4-Hydroxy-,,-trifluorotoluene 1-Hydroxy-2,4,6trihydroxymethylbenzene Hydroxyuracil Hydroxyvaline Hyoscyamine Hypoxanthene Hypoxanthine Imidazole Imidazolidinetrione (parabanic acid)
pK2
1.818(1)
9.662(0)
2.37 3.858 10.50 1.3(1) 1.25(1) 4.80(1) 3.23(1) 0.62(1) 2.24(1) 1.85(1) 3.41(1) 0.31(1) 4.30(1) 2.27(1) 5.20(1) 5.17(1) 5.48(1) 4.91(1) 4.092(1) 3.458 3.40 3.27(1) 3.32 8.36 10.33 10.10 10.276 8.675
4.74
7.89(0) 11.62(0) 8.72(0) 11.09(0) 5.97(0) 9.17(0) 8.59(0) 8.65(0) 11.74 8.06(0) 11.25(0) 8.54(0) 8.88(0) 8.85(0) 9.81(0) 8.776(0) 5.097 5.05 7.32(0)
9.56 8.64 2.55(1) 9.68(1) 1.79(1) 5.3
8.91(0)
6.993(1) 6.10
10.58(0)
NH
O
N H
N
Imidazole trans-4-Hydroxyproline
9.11(1)
9.77(0)
OH
HO
pK3
12.07(1)
pK4
8.39
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
4-(4-Imidazolyl)butanoic acid ( 0.1) 2-(4-Imidazolyl)ethylamine 3-(4-Imidazolyl)propanoic acid ( 0.16) 3,3-Iminobispropanoic acid 3,3-Iminobispropylamine (30 C) 2,2-Iminodiacetic acid (diglycine) (30 C, 0.1) 4-Indanol Indole-3-acetic acid Inosine Inosine-5-phosphoric acid Inosine-5-triphosphoric acid [pK5 7.68(4)] Iodoacetic acid 2-Iodoaniline 3-Iodoaniline 4-Iodoaniline 2-Iodobenzoic acid 3-Iodobenzoic acid 4-Iodobenzoic acid 5-Iodohistamine
pK2
4.26(1) 5.784(2)
7.62(0) 9.756(1)
3.96(1) 4.11(0) 8.02(2)
7.57(0) 9.61(1) 9.70(1)
2.54(0) 10.32 4.75 ca 1.5(1) 1.54(0)
9.12(1)
8.96(0) 6.66(1)
pK3
10.70(0)
12.36
2.2(2) 3.175 2.54(1) 3.58(1) 3.82(1) 2.86 3.86 4.00 4.06(2) (imidazole)
7-Iodo-8-hydroxyquinoline-5-sulfonic acid Iodomandelic acid Iodomethylphosphoric acid 2-Iodophenol 3-Iodophenol 4-Iodophenol 2-Iodophenoxyacetic acid 3-Iodophenoxyacetic acid 4-Iodophenoxyacetic acid 2-Iodophenylacetic acid 3-Iodophenylacetic acid 4-Iodophenylacetic acid 2-Iodophenylphosphoric acid 2-Iodopropanoic acid 3-Iodopropanoic acid 2-Iodopyridine
2.514 3.264 1.30 8.464 8.879 9.200 3.17 3.13 3.16 4.038 4.159 4.178 1.74 3.11 4.08 1.82(1) N
7.417 6.72
7.06
N O
HO
9.20(1) (NH3)
N
OH OH
N HO
Inosine
pK4
11.88(0) (imino)
6.92(3)
8.40
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
3-Iodopyridine 4-Iodopyridine (20 C) Isoasparagine Isobutylacetic acid (18 C) Isobutylamine Isochlorotetracycline Isocreatine Isoglutamine Isohistamine ( 0.1) L-Isoleucine Isolysergic acid Isopilocarpine (15 C) 2-(Isopropoxy)benzoic acid (20 C) 3-(Isopropoxy)benzoic acid (20 C) 4-(Isopropoxy)benzoic acid (20 C) Isopropylamine N-Isopropylaniline 5-Isopropylbarbituric acid 2-Isopropylbenzene acid 4-Isopropylbenzoic acid N-Isopropylglycine ( 0.1) Isopropylmalonic acid Isopropylmalonic acid mononitrile 3-Isopropyl-4-(methylamino)pyridine (20 C) 3-Isopropylpentanedioic acid 4-Isopropylphenylacetic acid Isopropylphosphinic acid Isopropylphosphonic acid 2-Isopropylpyridine 3-Isopropylpyridine (20 C) 4-Isopropylpyridine DL-Isoproterenol Isoquinoline Isoretronecanol L-Isoserine ( 0.16) Isothiocyanatoacetic acid L-()-Lactic acid
3.25(1) 4.02(1) 2.97(1) 4.79 10.41(1) 3.1(1) 2.84(1) 3.81(1) 6.036(2) 2.318(1) 3.33(0) 7.18(1) 4.24 4.15 4.68 10.64(1) 5.50(1) 4.907(1) 3.64 4.36 2.36(1) 2.94 2.401
Leucine amide
pK3
pK4
8.02(0)
6.7(0)
8.3(1)
7.88(0) 9.274(1) 9.758(0) 8.46(NH)
10.06(0) 5.88
9.96(1) 4.30 4.391 3.56 2.66 5.83(1) 5.72(1) 6.02(1) 8.64(1) 5.40(1) 10.83 2.72(1) 6.62
5.51
8.44
9.25(0)
3.858 2.328(1) 7.80(1)
L-Leucine
H N
pK2
9.744(0)
OH N
OH
N OH
OH DL-Isoproterenol
H
Isoquinoline
Isoretronecanol
8.41
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Leucine, ethyl ester ( 0.1) L-Leucyl-L-asparagine L-Leucyl-L-glutamine DL-Leucylglycine Leucylisoserine (20 C) D-Leucyl-L-tyrosine L-Leucyl-L-tyrosine Lysergic acid L-()-Lysine Lysine, methyl ester ( 0.1) L-Lysyl-L-alanine L-Lysyl-D-alanine Lysylglutamic acid L-Lysyl-L-lysine ( 0.1) L-Lysyl-D-lysine ( 0.1) L-Lysyl-L-lysyl-L-lysine ( 0.1) L-Lysyl-D-lysyl-L-lysine ( 0.1) L-Lysyl-D-lysyl-lysine ( 0.1) -D-Lyxose
7.57(1) 3.00(1) 2.99(1) 3.25(1) 3.188(1) 3.12(1) 3.46(1) 3.44(1) 2.18(2) 6.965(1) 3.22(1) 3.00(1) 2.93(2) 3.01(2) 2.85(2) 3.08(2) 2.91(2) 2.94(2) 12.11
Maleic acid Malonamic acid Malonic acid Malonitrile (cyanoacetic acid) Mandelic acid D-()-Mannose Mercaptoacetic acid (thioglycolic acid) 2-Mercaptobenzoic acid (20 C) 2-Mercaptobutanoic acid Mercaptodiacetic acid 2-Mercaptoethanesulfonic acid (20 C) 2-Mercaptoethanol 2-Mercaptoethylamine 2-Mercaptohistidine Mercapto-S-phenylacetic acid ( 0.1) 2-Mercaptopropane ( 0.1) 3-Mercapto-1,2-propanediol ( 0.5) 2-Mercaptopropanoic acid 3-Mercaptopropanoic acid
1.910 3.641(0) 2.826 2.460 3.411 12.08
pK2
pK3
8.12(0) 8.11(0) 8.28(0) 8.207(0) 8.38(0) 7.84(0) 7.68(0) 8.95(1) 10.251(0) 7.62(0) 7.74(0) 4.47(1) 7.53(1) 7.53(1) 7.34(1) 7.29(1) 7.15(1)
10.35(1) 10.09(1) 10.53(0) 10.70(1) 10.63(1) 7.75(0) 10.05(0) 9.92(0) 9.80(0) 9.79(0) 9.60(0)
6.33 5.696
3.60(0) 4.05(0) 3.53(0) 3.32
10.56(SH)
4.29 9.5(1)
9.88 8.27(1) 1.84(1)
10.53(0) 8.47(0)
3.9 10.86 9.43 4.32(0)
11.4(SH)
10.20(SH) 10.84(SH) OH HO
HO
O OH O OH Mandelic acid
pK4
HO D-(+)-Mannose
OH
10.50(1) 10.01(1) 10.89(1) 10.54(1) 10.54(1) 10.38(1)
8.42
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2-Mercaptopyridine (20 C) 3-Mercaptopyridine (20 C) 4-Mercaptopyridine (20 C) 2-Mercaptoquinoline (20 C) 3-Mercaptoquinoline (20 C) 4-Mercaptoquinoline (20 C) Mercaptosuccinic acid Mesitylenic acid Mesoxaldialdehyde Methacrylic acid Methanethiol DL-Methionine 2-(N-Methoxyacetamido)pyridine 3-(N-Methoxyacetamido)pyridine 4-(N-Methoxyacetamido)pyridine Methoxyacetic acid 3-Methoxy-D--alanine 2-Methoxyaniline 3-Methoxyaniline 4-Methoxyaniline 2-Methoxybenzoic acid 3-Methoxybenzoic acid 4-Methoxybenzoic acid N,N-Methoxybenzylamine 2-Methoxycarbonylaniline 3-Methoxycarbonylaniline 4-Methoxycarbonylaniline Methoxycarbonylmethylamine 2-Methoxycarbonylpyridine 3-Methoxycarbonylpyridine 4-Methoxycarbonylpyridine trans-2-Methoxycinnamic acid trans-3-Methoxycinnamic acid trans-4-Methoxycinnamic acid 2-Methoxyethylamine 2-Methoxy-4-nitrophenylphosphonic acid 2-Methoxyphenol 3-Methoxyphenol 4-Methoxyphenol (2-Methoxy)phenoxyacetic acid
pK1
pK2
1.07(1) 2.26(1) 1.43(1) 1.44(1) 2.33(1) 0.77(1) 3.30(0) 4.32 3.60 4.66 10.70 2.13(1) 2.01(1) 3.52(1) 4.62(1) 3.570 2.037(1) 4.53(1) 4.20(1) 5.36(1) 4.09 4.08 4.49 9.68(1) 2.23(1) 3.64(1) 2.38(1) 7.66(1) 2.21(1) 3.13(1) 3.26(1) 4.462 4.376 4.539 9.45(1)
10.00(0) 7.03(0) 8.86(0) 10.21(0) 6.13(0) 8.83(0) 4.94(1)
1.53 9.99 9.652 10.20 3.231
6.96
9.28(0)
9.176(0)
HO O
Mesitylenic acid
pK3
10.94(SH)
pK4
8.43
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance (3-Methoxy)phenoxyacetic acid (4-Methoxy)phenoxyacetic acid 4-Methoxyphenylacetic acid (4-Methoxyphenyl)phosphinic acid (17 C) (2-Methoxyphenyl)phosphonic acid (4-Methoxyphenyl)phosphonic acid (17 C) 3-(2-Methoxyphenyl)propanoic acid 3-(3-Methoxyphenyl)propanoic acid 3-(4-Methoxyphenyl)propanoic acid 3-Methoxyphenylselenic acid 4-Methoxyphenylselenic acid 2-Methoxy-4-(2-propenyl)phenol 2-Methoxypyridine 3-Methoxypyridine 4-Methoxypyridine 4-Methoxy-2-(2-thiazoylazo)phenol 2-Methylacrylic acid (18 C) N-Methylalanine O-Methylallothreonine ( 0.1) Methylamine 2-(N-Methylamino)benzoic acid 3-(N-Methylamino)benzoic acid 4-(N-Methylamino)benzoic acid Methylaminodiacetic acid (20 C) 2-(Methylamino)ethanol 2-(2-Methylaminoethyl)pyridine (30 C) 2-(Methylaminomethyl)-6-methylpyridine ( 0.5) 2-(Methylaminomethyl)pyridine (30 C) 4-Methylamino-3-methylpyridine (20 C) (3-Methylamino)phenylphosphonic acid (4-Methylamino)phenylphosphonic acid 3-(Methylamino)pyridine (30 C) 4-(Methylamino)pyridine (20 C) 4-(Methylamino)-2,3,5,6-tetramethylpyridine (20 C) N-Methylaniline Methylarsonic acid (18 C) 1-Methylbarbituric acid 5-Methylbarbituric acid 2-(N-Methylbenzamido)pyridine
pK1
pK2
pK3
3.141 3.213 4.358 2.35 2.16 2.4 4.804 4.654 4.689 4.65 5.05 10.0 3.06(1) 4.91(1) 6.47(1) 7.83 4.66 2.22(1) 1.92(1) 10.62(1) 1.93(1)
2.146 9.88(1)
7.77 7.15
10.19(0) 8.90(0) 5.34(0) 5.10(0) 5.05 10.088
3.58(2)
9.65(1)
3.03(2)
9.15(1)
2.92(2)
8.82(1)
9.83(1) 1.1(1)
4.72(1)
7.30(1) 7.85(1)
8.70(1) 9.65(1) 10.06(1) 4.85(1) 3.41 4.35(1) 3.386(1) 1.44(1)
8.18
pK4
8.44
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3-(N-Methylbenzamido)pyridine 4-(N-Methylbenzamido)pyridine 2-Methylbenzimidazole ( 0.16) 2-Methylbenzoic acid (o-toluic acid) 3-Methylbenzoic acid 4-Methylbenzoic acid N-Methyl-1-benzoylecgonine Methylbiguanidine 2-Methyl-2-butanethiol 2-Methylbutanoic acid 3-Methylbutanoic acid (20 C) (E)-2-Methyl-2-butendioic acid (mesaconic acid) 3-Methyl-2-butenoic acid (E)-2-Methyl-2-butenoic acid (tiglic acid) (Z)-2-Methyl-2-butenoic acid (angelic acid) 4-Methylcarboxylphenol (E)-2-Methylcinnamic acid (E)-3-Methylcinnamic acid (E)-4-Methylcinnamic acid 1-Methylcyclohexane-1-carboxylic acid cis-2-Methylcyclohexane1-carboxylic acid trans-2-methylcyclohexane1-carboxylic acid cis-3-methylcyclohexane1-carboxylic acid trans-3-Methylcyclohexane1-carboxylic acid cis-4-Methylcyclohexane1-carboxylic acid trans-4-Methylcyclohexane1-carboxylic acid 2-Methylcyclohexyl-1,1-diacetic acid 3-Methylcyclohexyl-1,1-diacetic acid 4-Methylcyclohexyl-1,1,1-diacetic acid 3-Methylcyclopentyl-1,1-diacetic acid S-Methyl-L-cysteine N-Methylcytidine 5-Methylcytidine N-Methyl-2-deoxycytidine 5-Methyl-2-deoxycytidine 2-Methyl-3,5-dinitrobenzoic acid 5-Methyldipropylenetriamine (30 C) 2,2-Methylenebis(4-chlorophenol)
pK1 3.66(1) 4.68(1) 6.29(1) 3.90 4.269 4.362 8.65 3.00(2) 11.35 4.761 4.767 3.09 5.12
pK2
pK3
11.44(1)
4.75
4.96 4.30 8.47 4.500 4.442 4.564 5.13 5.03 5.73 4.88 5.02 5.04 4.89 3.53 3.49 3.49 3.79 8.97 3.88 4.21 3.97 4.33 2.97 6.32(3) 7.6
6.89 6.08 6.10 6.74
9.19(2) 11.5
10.33(1)
pK4
8.45
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2,2-Methylenebis(4,6-dichlorophenol) Methylenebis(thioacetic acid) (18 C) 3,3-(Methylenedithio)dialanine Methylenesuccinic acid N-Methylethylamine N-Methylethylenediamine -Methylglucoside 3-Methylglutaric acid N-Methylglycine (sarcosine) 5-Methyl-2,4-heptanedione 5-Methyl-2,4-hexanedione 5-Methyl-4-hexenoic acid 3-Methylhistamine 1-Methylhistidine 2-Methylhistidine (18 C) 2-Methyl-8-hydroxyquinoline ( 0.005) 4-Methyl-8-hydroxyquinoline 1-Methylimidazole 4-Methylimidazole N-Methyliminodiacetic acid S-Methylisothiourea O-Methylisourea Methylmalonic acid 2-(N-Methylmethanesulfonamido)pyridine 3-(N-Methylmethanesulfonamido)pyridine 4-(N-Methylmethanesulfonamido)pyridine 2-Methyl-6-methylaminopyridine (20 C) 3-Methyl-4-methylaminopyridine (20 C) 4-Methyl-2,2(4-methylpyridyl)pyridine N-Methylmorpholine 2-Methyl-1-naphthoic acid N-Methyl-1-naphthylamine 2-Methyl-4-nitrobenzoic acid 2-Methyl-6-nitrobenzoic acid 1-Methyl-2-nitroterephthalic acid 4-Methyl-2-nitroterephthalic acid 3-Methylpentanedioic acid 3-Methylpentane-2,4-dione 2-Methylpentanoic acid
pK1
pK2
5.6 3.310 2.200(1) 3.85 4.23(1) 6.86(1) 13.71 4.24 2.12(1) 8.52(enol); 9.10(keto) 8.66(enol); 9.31(keto) 4.80 5.80(1) 1.69 1.7
10.56 4.345 8.16(0) 5.45
4.58(1) 4.67(1) 7.06(1) 7.55(1) 2.15 9.83(1) 9.72(1) 3.07
11.71(0) 11.62(0)
10.15(1) 5.41 10.20(0)
9.90(0) 6.48 7.2
10.09
5.87
1.73(1) 3.94(1) 5.14(1) 3.17(1)
8.84(0) 9.84(0)
5.32(1) 7.13(1) 3.11 3.70(1) 1.86 1.87 3.11 1.82 4.25 10.87 4.782
pK3
5.41
8.85 9.5
pK4
8.46
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3-Methylpentanoic acid 4-Methylpentanoic acid cis-3-Methyl-2-pentenoic acid trans-3-Methyl-2-pentenoic acid 4-Methyl-2-pentenoic acid 4-Methyl-3-pentenoic acid 6-Methyl-1,10-phenanthroline (2-Methylphenoxy)acetic acid (3-Methylphenoxy)acetic acid (4-Methylphenoxy)acetic acid (2-Methylphenyl)acetic acid (18 C) (4-Methylphenyl)acetic acid 5-Methyl-5-phenylbarbituric acid 3-(2-Methylphenyl)propanoic acid 3-(3-Methylphenyl)propanoic acid 3-(4-Methylphenyl)propanoic acid 1-Methyl-2-phenylpyrrolidine 5-Methyl-1-phenyl-1,2,3-triazole4-carboxylic acid Methylphosphinic acid Methylphosphonic acid 3-Methyl-o-phthalic acid 4-Methyl-o-phthalic acid N-Methylpiperazine ( 0.1) 2-Methylpiperazine N-Methylpiperidine 2-Methylpiperidine 3-Methylpiperidine 4-Methylpiperidine ( 0.5) 2-Methyl-1,2-propanediamine 2-Methyl-2-propanethiol 2-Methylpropanoic acid 2-Methyl-2-propylamine 2-Methyl-2-propylglutaric acid 2-Methylpyridine 3-Methylpyridine 4-Methylpyridine Methyl 4-pyridinecarboxylate 6-Methylpyridine-2-carboxylic acid 2-Methylpyridine-1-oxide 3-Methylpyridine-1-oxide 4-Methylpyridine-1-oxide O-Methylpyridoxal ( 0.16) Methyl-2-pyridyl ketoxime 1-Methyl-2-(3-pyridyl)pyrrolidine 1-Methylpyrrolidine 1-Methyl-3-pyrroline 5-Methylquinoline Methylsuccinic acid Methylsulfonylacetic acid
pK1
pK2
4.766 4.845 5.15 5.13 4.70 4.60 5.11(1) 3.227 3.203 3.215 4.35 4.370 8.011(0) 4.66 4.677 4.684 8.80 3.73 3.08 2.38 3.18 3.89 4.94(2) 5.62(2) 10.19(1) 10.95(1) 11.07(1) 11.23(1) 6.178(2) 11.2 4.853 10.682(1) 3.626 5.96(1) 5.68(1) 6.00(1) 3.26(1) 5.83 1.029(1) 10.921(1) 1.258(1) 4.74 9.97 3.41 10.46(1) 9.88(1) 4.62(1) 4.13 2.36
7.74
9.09(1) 9.60(1)
9.420(1)
7.94
5.64
pK3
pK4
8.47
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
3-Methylsulfonylaniline 4-Methylsulfonylaniline 3-Methylsulfonylbenzoic acid 4-Methylsulfonylbenzoic acid 4-Methylsulfonyl-3,5-dimethylphenol 3-Methylsulfonylphenol 4-Methylsulfonylphenol 1-Methyl-1,2,3,4-tetrahydro3-pyridinecarboxylic acid (arecaidine; isoguvacine) 5-Methyl-1,2,3,4-tetrazole 2-Methylthiazole ( 0.1) 4-Methylthiazole ( 0.1) 5-Methylthiazole ( 0.1) Methylthioacetic acid 4-Methylthioaniline 2-Methylthioethylamine (30 C) Methylthioglycolic acid 3-(S-Methylthio)phenol 4-(S-Methylthio)phenol 2-Methylthiopyridine (20 C) 3-Methylthiopyridine (20 C) 4-Methylthiopyridine (20 C) 5-Methylthio-1,2,3,4-tetrazole O-Methylthreonine O-Methyltyrosine 1-Methylxanthine 3-Methylxanthine 7-Methylxanthine 9-Methylxanthine Morphine (20 C) Morpholine 2-(N-Morpholino)ethanesulfonic acid (MES) (20 C) 3-(N-Morpholino)-2-hydroxypropanesulfonic acid (37 C) 3-(N-Morpholino)propanesulfonic acid (20 C) Murexide Myosmine 1-Naphthalenecarboxylic acid (1-naphthoic acid) O
N H Morpholine
pK2
pK3
2.68(1) 1.48(1) 3.52 3.64 8.13 9.33 7.83
9.07 3.32 3.40(1) 3.16(1) 3.03(1) 3.72 4.40(1) 9.18(1) 7.68 9.53 9.53 3.59(1) 4.42(1) 5.94(1) 4.00(1) 2.02(1) 2.21(1) 7.70 8.10 8.33 6.25 7.87(1) 8.492(1)
9.00(0) 9.35(0) 12.0 11.3 ca 13 9.85(0)
6.15 6.75 7.20 0.0 5.26
9.20
10.50
3.695 O
N
OH
N
Myosmine
1-Naphthalenecarboxylic acid
pK4
8.48
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 2-Naphthalenecarboxylic acid 1-Naphthol (20 C) 2-Naphthol (20 C) Naphthoquinone monoxime 1-Naphthylacetic acid 2-Naphthylacetic acid 1-Naphthylamine 2-Naphthylamine 1-Naphthylarsonic acid 1-Naphthylsulfonic acid Narceine (15 C) Narcotine Nicotine Nicotyrine Nitrilotriacetic acid (NTA) (20 C) Nitroacetic acid 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 2-Nitrobenzene-1,4-dicarboxylic acid 3-Nitrobenzene-1,2-dicarboxylic acid 4-Nitrobenzene-1,2-dicarboxylic acid 2-Nitrobenzoic acid 3-Nitrobenzoic acid 4-Nitrobenzoic acid trans-2-Nitrocinnamic acid trans-3-Nitrocinnamic acid trans-4-Nitrocinnamic acid Nitroethane 2-Nitrohydroquinone N-Nitroiminodiacetic acid 3-Nitromesitol Nitromethane 1-Nitro-6,7-phenanthroline ( 0.2) 5-Nitro-1,10-phenanthroline 6-Nitro-1,10-phenanthroline 2-Nitrophenol 3-Nitrophenol 4-Nitrophenol (2-Nitrophenoxy)acetic acid
pK1 4.161 9.30 9.57 8.01 4.236 4.256 3.92(1) 4.11(1) 3.66 0.57 3.5(1) 6.18(1) 3.15(1) 4.76(1) 1.65 1.68 0.28(1) 2.46(1) 1.01(1) 1.73 1.88 2.11 2.18 3.46 3.441 4.15 4.12 4.05 8.57 7.63 2.21 8.984 10.21 3.23(1) 3.232(1) 3.23(1) 7.222 8.360 7.150 2.896
pK2
8.66 9.3 7.87(0) 2.94
10.06 3.33
N N
Nicotine
pK3
10.33
pK4
8.49
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance (3-Nitrophenoxy)acetic acid (4-Nitrophenoxy)acetic acid 2-Nitrophenylacetic acid 3-Nitrophenylacetic acid 4-Nitrophenylacetic acid 2-Nitrophenylarsonic acid 3-Nitrophenylarsonic acid 4-Nitrophenylarsonic acid 7-(4-Nitrophenylazo)-8-hydroxy5-quinolinesulfonic acid 3-Nitrophenylphosphonic acid 4-Nitrophenylphosphonic acid 3-(2-Nitrophenyl)propanoic acid 3-(4-Nitrophenyl)propanoic acid 3-Nitrophenylselenic acid 4-Nitrophenylselenic acid 1-Nitropropane 2-Nitropropane 2-Nitropropanoic acid 2-Nitropyridine ( 0.02) 3-Nitropyridine ( 0.02) 4-Nitropyridine ( 0.02) N-Nitrosoiminodiacetic acid 4-Nitrosophenol Nitrourea 1,9-Nonanedioic acid (azelaic acid) Nonanoic acid (pelargonic acid) DL-Norleucine Novocaine 2,2,3,3,4,4,5,5-Octafluoropentanoic acid 1,8-Octanedioic acid (suberic acid) Octanoic acid (caprylic acid) Octopine-DD Octopine-LD Octylamine L-()-Ornithine Oxalic acid 3,6-Oxaoctanedioic acid ( 1.0) Oxoacetic acid 2-Oxabutanedioic acid (oxaloacetic acid) 2-Oxobutanoic acid 5-Oxohexanoic acid (5-ketohexanoic acid) (18 C) 3-Oxo-1,5-pentanedioic acid 4-Oxopentanoic acid (levulinic acid) 2-Oxopropanoic acid (pyruvic acid)
pK1 2.951 2.893 4.00 3.97 3.85 3.37 3.41 2.90 3.14(0) 1.30 1.24 4.504 4.473 4.07 4.00 8.98 7.675 3.79 2.06(1) 0.79(1) 1.23(1) 2.28 6.48 4.15(1) 4.53 4.95 2.335(1) 8.85(1) 2.65 4.512 4.895 1.35 1.40 10.65(1) 1.94(2) 1.271 3.055 3.46 2.56 2.50 4.662 3.10 4.59 2.49
pK2
pK3
pK4
8.54 7.80 7.80 7.495(1) 6.27 6.23
3.38
5.40 9.834(0)
5.404 2.30 2.30
8.68 8.72
8.65(1) 4.272 3.676
10.76(0)
4.37
11.25 11.34
8.50
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Oxytetracycline
3.10(1)
Papaverine Pentamethylenebis(thioacetic acid) (18 C) 3,3-Pentamethylenepentanedioic acid 1,5-Pentanediamine 2,4-Pentanedione
5.90(1)
1-Pentanoic acid (valeric acid) 2-Pentenoic acid 3-Pentenoic acid 4-Pentenoic acid Pentylarsonic acid N-Pentylveratramine Perhydrodiphenic acid (20 C) Perlolidine (18 C) Peroxyacetic acid 1,7-Phenanthroline 1,10-Phenanthroline 6,7-Phenanthroline Phenazine Phenethylthioacetic acid Phenol Phenol-3-phosphoric acid Phenol-4-phosphoric acid Phenolphthalein 3-Phenolsulfonic acid Phenolsulfonephthalein Phenoxyacetic acid 2-Phenoxybenzoic acid 3-Phenoxybenzoic acid 4-Phenoxybenzoic acid 5-Phenoxy-1,2,3,4-tetrazole Phenylacetic acid L-3-Phenyl--alanine 3-Phenyl--alanine, methyl ester Phenylalanylarginine ( 0.01) Phenylalanylglycine ( 0.01) 7-Phenylazo-8-hydroxy5-quinolinesulfonic acid
pK2 7.26
3.485
4.413
3.49 10.05(2) 8.24(enol); 8.95(keto) 4.842 4.70 4.52 4.677 4.14 7.28(1) 4.96 4.01 8.20 4.30(1) 4.857(1) 4.857(1) 1.2(1) 3.795 9.99 1.78 1.99 9.4
6.96 10.916(1)
pK3 9.11
9.07 6.68 11.39
7.03 7.25
10.2 9.9
9.05(1) 7.9 3.171 3.53 3.95 4.52 3.49(1) 4.312 2.16(1) 7.05(1) 2.66(1) 3.10(1)
7.57(0) 7.71(0)
3.41(0)
7.850(1)
N
9.31(0)
N
1,10-Phenanthroline
12.40(1)
pK4
8.51
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 5-Phenylbarbituric acid 2-Phenyl-2-benzylsuccinic acid 1-Phenylbiguanide 4-Phenylbutanoic acid Phenylbutazone 2-Phenylenediamine 3-Phenylenediamine 4-Phenylenediamine 2-Phenylethylamine -Phenylethylboronic acid DL--Phenylglycine Phenylguanidine Phenylhydrazine 2-Phenyl-3-hydroxypropanoic acid 3-Phenyl-3-hydroxypropanoic acid Phenyliminodiacetic acid (20 C) Phenylmalonic acid Phenylmethanethiol 2-Phenyl-2-phenethylsuccinic acid (20 C) 2-Phenylphenol 3-Phenylphenol 4-Phenylphenol Phenylphosphinic acid (17 C) Phenylphosphonic acid O-Phenylphosphorylserine O-Phenylphosphorylserylglycine O-Phenylphosphoryl-L-serylL-leucine N-Phenylpiperazine ( 0.1) 2-Phenylpropanoic acid 3-Phenylpropanoic acid (35 C) 3-Phenyl-1-propylamine Phenylpropynoic acid (35 C) Phenylselenic acid Phenylselenoacetic acid ( 0.1) -Phenylserine ( 0.16) Phenylsuccinic acid (20 C) Phenylsulfenylacetic acid Phenylsulfonylacetic acid 5-Phenyl-1,2,3,4-tetrazole 1-Phenyl-1,2,3-triazole-4-carboxylic acid 1-Phenyl-1,2,3-triazole4,5-dicarboxylic acid Phosphoramidic acid O-Phosphorylethanolamine O-Phosphorylserylglycine
pK1 2.544(1) 3.69 2.13(2) 4.757 4.5(1) 2(2) 2.65(2) 3.29(2) 9.83(1) 10.0 1.83(1) 10.77(1) 5.20(1) 3.53 4.40 2.40 2.58 10.70 3.74 9.55 9.63 9.55 2.1 1.83 2.13(1) 3.18(1) 3.16(1) 8.71(1) 4.38 4.664 10.39(1) 2.269 4.79 3.75 8.79(0) 3.78 2.66 2.44 4.38(1)
pK2
pK3
6.47 10.76(1)
4.47(1) 4.88(1) 6.08(1)
4.39(0)
4.98 5.03
6.52
7.07 8.79 6.95(0) 7.12(0)
5.55
2.88 2.13 3.08 5.838(1) 3.13
4.93 8.63 10.638(0) 5.41
8.01
pK4
8.52
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
O-Phosphoryl-L-seryl-L-leucine Phosphoserine Phthalamide Phthalazine o-Phthalic acid Phthalimide Physostigmine Picric acid (2,4,6-trinitrophenol) (18 C) Pilocarpine Piperazine 1,4-Piperazinebis(ethanesulfonic acid) (20 C) Piperazine-2-carboxylic acid Piperidine 2-Piperidinecarboxylic acid 3-Piperidinecarboxylic acid 4-Piperidinecarboxylic acid 1-(2-Piperidinyl)-2-propanone (15 C) Piperine (15 C) Proline 1,2-Propanediamine 1,3-Propanediamine 1-Propanethiol 1,2,3-Propanetriamine 1,2,3-Propanetricarboxylic acid Propanoic acid Propenoic acid N-Propionylglycine 2-Propoxybenzoic acid (20 C) 3-Propoxybenzoic acid (20 C) 4-Propoxybenzoic acid (20 C) N-Propylalanine Propylamine Propylarsonic acid (18 C) Propylenimine N-Propylglycine ( 0.1) L-Propylglycine Propylmalonic acid Propylphosphinic acid
3.11 2.08 3.79(0) 3.47(1) 2.950 9.90(0) 1.76(1) 0.419 1.3(1) 5.333(2) 6.80 1.5 11.123(1) 2.12(1) 3.35(1) 3.73(1) 9.45 1.98(1) 1.952(1) 6.607(2) 8.49(2) 10.86 3.72(3) 3.67 4.874 4.247 3.718(0) 4.24 4.20 4.78 2.21(1) 10.568(1) 4.21 8.18(1) 2.38(1) 3.19(1) 2.97 3.46
pK2 5.47 5.65
O
Phthalimide
Piperazine
8.26 9.74
7.88(0)
6.85(0) 9.781(1)
5.41
9.53
10.75(0) 10.64(0) 10.72(0)
10.640(0) 9.720(1) 10.47(1) 7.95(2) 4.87
9.59(1) 6.38
10.19(0) 9.09 10.03(0) 8.97(0) 5.84
O
O N H
pK4
5.408
H N
NH
pK3
N H Piperidine
O
N
O
Piperine
8.53
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
pK2
Propylphosphonic acid 2-Propylpyridine N-Propylveratramine 2-Propynoic acid Pseudoecgonine Pseudoisocyanine ( 0.2) Pseudotropine Pteroylglutamic acid Purine Pyrazine Pyrazinecarboxamide Pyrazole Pyridazine Pyridine Pyridine-d5 2-Pyridinealdoxime 3-Pyridinealdoxime 4-Pyridinealdoxime 2-Pyridinecarbaldehyde 3-Pyridinecarbaldehyde 4-Pyridinecarbaldehyde 3-Pyridinecarbamide (nicotinamide) 3-Pyridinecarbonitrile Pyridine-2-carboxylic acid (picolinic acid) Pyridine-3-carboxylic acid (nicotinic acid) Pyridine-4-carboxylic acid (isonicotinic acid) Pyridine-2,3-dicarboxylic acid Pyridine-2,4-dicarboxylic acid Pyridine-2,6-dicarboxylic acid Pyridine-1-oxide Pyridoxal
2.49 6.30(1) 7.20(1) 1.887 9.70 4.59(2) 9.86(1) 8.26 2.52(1) 0.6(1) 0.5(1) 2.61(1) 2.33(1) 5.17(1) 5.83(1) 3.56(1) 4.07(1) 4.73(1) 3.84(1) 3.80(1) 4.74(1) 3.33(1) 1.35(1)
8.18
1.01(1)
5.29(0)
2.07(1)
4.75(0)
1.84(1) 2.36(1) 2.23(1) 2.16(1) 0.688(1) 4.20(1)
4.86(0) 7.08(0) 7.02(0) 6.92(0)
Pyridoxal-5-phosphate ( 0.15) Pyridoxamine ( 0.1)
2.5 3.37(2)
Pyridoxamine-5-phosphate ( 0.15; pK5 10.92) Pyridoxine (vitamin B6) (18 C)
2.5 5.00(1)
N
pK3
pK4
8.92(0)
10.17(0) 10.39(0) 10.03(0)
8.66(ring OH) 4.14 8.01(1)
3.69 8.96(ring OH)
6.20 10.13(ring OH)
8.69
5.76
8.61
N
N
N N N
N H
N Purine
Pyrazine
N
NH N
Pyrazole
Pyridazine
Pyridine
8.54
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1 1.37(2) 1.77(2)
pK2
pK3
3-(2-Pyridyl)alanine 3-(3-Pyridyl)alanine 2-(2-Pyridyl)benzimidazole ( 0.16) 2-(2-Pyridyl)imidazole ( 0.005) 4-(2-Pyridyl)imidazole ( 0.1) Pyrimidine 2,4(1H,3H)-Pyrimidinedione (uracil) 2,4,5,6(1H,3H)-Pyrimidinetetrone5-oxime Pyrocatecholsulfonephthalein Pyroxilidine Pyrrole-1-carboxylic acid Pyrrole-2-carboxylic acid Pyrrole-3-carboxylic acid Pyrrolidine Pyrrolidine-2-carboxylic acid (proline) 2-[2-(N-Pyrrolidinyl)ethyl]pyridine 3-[2-(N-Pyrrolidinyl)ethyl]pyridine 4-[2(N-Pyrrolidinyl)ethyl]pyridine 2-(1-Pyrrolidinylmethyl)pyridine 3-(1-Pyrrolidinylmethyl)pyridine 4-(1-Pyrrolidinylmethyl)pyridine 3-Pyrroline
4.02(1) 4.64(1)
1.952(1) 3.60(2) 4.28(2) 4.65(2) 2.54(1) 3.14(2) 3.38(2) 0.27(1)
10.640(0) 9.39(1) 9.28(1) 9.27(1) 8.56(1) 8.36(1) 8.16(1)
Quinidine Quinine Quinoline Quinoxaline
4.0(1) 4.11(1) 4.80(1) 0.72(1)
8.54(0) 8.52(0)
D-Raffinose
12.74 ca 0.2 12.11
pK4
9.22(0) 9.10(0)
5.58(1) 8.98(1) 5.49(1) 1.30(1) 0.6(1) 4.57(0) 7.82 11.11(1) 4.45 4.45 4.453 11.305(1)
Riboflavin (vitamin B2) ( 0.01) -D-Ribofuranose D-Ribose-5-phosphonic acid
9.46(0)
9.76
11.73
9.69 6.70(1)
13.05(2)
OH HO HO
OH O
O
OH O
O HO
N H Pyrrolidine
N Quinoline
OH O
OH OH D-Raffinose
OH OH
8.55
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
D-Saccharic acid Saccharin (o-benzoic sulfimide) Sarcosine Sarcosine amide Sarcosine dimethylamide Sarcosine methylamide Sarcosylglycine ( 0.16) Sarcosylleucine Sarcosylsarcosine Sarcosylserine 3-Selenosemicarbazide ( 0.1) Semicarbazide ( 0.1) L-Serine Serine, methyl ester ( 0.1) Serylglycine ( 0.15) L-Seryl-L-leucine Solanine D-Sorbitol (17.5 C) L-()-Sorbose (18 C) Sparteine Spinaceamine ( 0.1) Spinacine L-Strychnine (15 C) Succinamic acid (succinic acid monoamide) Succinic acid DL-Succinimide -(4-Sulfaminophenyl)alanine 3-Sulfamylbenzoic acid 4-Sulfamylbenzoic acid 4-Sulfamylphenylphosphoric acid Sulfanilamide Sulfoacetic acid 3-Sulfobenzoic acid 4-Sulfobenzoic acid 3-Sulfophenol 4-Sulfophenol 2-Sulfopropanoic acid 5-Sulfosalicylic acid Sylvic acid D-Tartaric acid meso-Tartaric acid
N H
5.00(0) 2.32 2.12(1) 8.35(1) 8.86(1) 8.28(1) 3.15(1) 3.15(1) 2.92(1) 3.17(1) 0.8(1) 3.53(1) 2.186(1) 7.03(1) 2.10(1) 3.08(1) 7.34(1) 13.60 11.55 4.49(1) 4.895(2) 1.649(2) 2.50
pK3
8.56(0) 8.67(0) 9.15(0) 8.63(0)
9.208(0) 7.33(0) 7.45(0)
11.76(0) 8.90(1) 4.936(1) 8.20
4.39(0) 4.207 9.623 1.99(1) 3.54 3.47 1.42 10.43(1)
8.663(0)
5.635 8.64(0)
10.26(1)
6.38
10.0
4.0 3.78 3.72 9.07 8.70
0.39 0.58 1.99 2.49 7.62
12.00 4.366 4.81 OH
O NH2
Semicarbazide
H2N
pK4
10.20(0)
3.036 3.22
O H2N
pK2
S O Sulfanilamide
NH 2
O
HO OH O
OH
D-Tartaric
acid
8.56
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Tetracycline ( 0.005) Tetradehydroyohimbine Tetraethylenepentamine [ 0.1; pK5 9.67(1)] 1,4,5,6-Tetrahydro1,2-dimethylpyridine 1,4,5,6-Tetrahydro-2-methylpyridine cis-Tetrahydronaphthalene2,3-dicarboxylic acid (20 C) trans-Tetrahydronaphthalene2,3-dicarboxylic acid (20 C) 5,6,7,8-Tetrahydro-1-naphthol 5,6,7,8-Tetrahydro-2-naphthol Tetrahydroserpentine 2,3,5,6-Tetramethylbenzoic acid Tetramethylenebis(thioacetic acid) (18 C) Tetramethylenediamine N,N,N,NTetramethylethylenediamine 2,3,5,6-Tetramethyl4-methylaminopyridine 2,2,6,6-Tetramethylpiperidine ( 0.5) 2,3,5,6-Tetramethylpyridine (20 C) Tetramethylsuccinic acid 1,2,3,4-Tetrazole Thebaine 2-Thenoyltrifluoroacetone Theobromine Theophylline Thiazoline Thioacetic acid o-Thiocresol m-Thiocresol p-Thiocresol Thiocyanatoacetic acid 2,2-Thiodiacetic acid 4,4-Thiodibutanoic acid (18 C)
pK2
N
N
pK4
3.30(1) 10.59(1)
7.68
9.69
2.98(5)
4.72(4)
8.08(3)
11.38(1) 9.53(1) 3.98
6.47
4.00 10.28 10.48 10.55(1) 3.415
5.70
3.463 9.22(2)
4.423 10.75(1)
2.20(2)
6.35(1)
0.07(1) 1.24(1) 7.90(1) 3.50 4.90 7.95(1) 5.70(0) 0.68(1) 1(1) 2.53(1) 3.33 6.64 6.58 6.52 2.58 3.32 4.351
7.28
7.89 8.80
4.29 5.275
CH3 H3C
pK3
CH3
CH3 N,N,N',N'-Tetramethylethylenediamine
NH
S
N
N N
1,2,3,4-Tetrazole
N Thiazoline
9.10(2)
8.57
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
3,3-Thiodipropanoic acid (18 C) 3-Thio-S-methylcarbazide ( 0.1) 1-Thionylcarboxylic acid 2-Thionylcarboxylic acid 2-Thiophenecarboxylic acid (30 C) 3-Thiophenecarboxylic acid (3-thenoic acid) Thiophenol 3-Thiosemicarbazide ( 0.1) 3-Thiosemicarbazide-1,1-diacetic acid (30 C) Thiourea Thorin Thymidine p-Toluenesulfinic acid Toluhydroquinone o-Toluidine m-Toluidine p-Toluidine o-Tolylacetic acid (18 C) p-Tolylacetic acid (18 C) o-Tolylarsonic acid m-Tolylarsonic acid p-Tolylarsonic acid o-Tolylphosphonic acid m-Tolylphosphonic acid p-Tolylphosphonic acid 3-Tolylselenic acid 4-Tolylselenic acid Triacetylmethane Triallylamine 1,3,5-Triazine-2,4,6-triol 1H-1,2,3-Triazole 1H1,2,4-Triazole 1,2,3-Triazole-4-carboxylic acid 1,2,3-Triazole-4,5-dicarboxylic acid 1,2,4-Triazolidine-3,5-dione (urazole) Tribromoacetic acid 2,4,6-Tribromobenzoic acid Trichloroacetic acid Trichloroacrylic acid
4.085 7.563(1) 3.53 4.10 3.529
pK2
pK3
5.075
4.10 6.50 1.5(1) 2.94 2.03(1) 3.7 9.79 1.7 10.03 4.45(1) 4.71(1) 5.08(1) 4.36 4.36 3.82 3.82 3.70 2.10 1.88 1.84 4.80 4.88 5.81 8.31(1) 7.20 2.386(1) 3.22 1.86 5.80 0.147 1.41 0.52 1.15
4.07 8.3 12.85
11.8
11.62
8.85 8.60 8.68 7.68 7.44 7.33
11.10 9.26 9.972 8.73 5.90
9.30
O HO HO
NH N O
Thymidine
O
H2N o-Toluidine
pK4
8.58
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance 3,3,3-Trichlorolactic acid Trichloromethylphosphonic acid 2,4,5-Trichlorophenol 3,4,5-Trichlorophenol Tricine (20 C) Triethanolamine Triethylamine Triethylenediamine Triethylenetetramine (20 C) Triethylsuccinic acid Trifluoroacetic acid Trifluoroacrylic acid 4,4,4-Trifluoro-2-aminobutanoic acid 4,4,4-Trifluoro-3-aminobutanoic acid 4,4,4-Trifluorobutanoic acid ,,-Trifluoro-m-cresol 4,4,4-Trifluorocrotonic acid 5,5,5-Trifluoroleucine 3-(Trifluoromethyl)aniline 4-(Trifluoromethyl)aniline 3-Trifluoromethylphenol 5-Trifluoromethyl-1,2,3,4-tetrazole 6,6,6-Trifluoronorleucine 5,5,5-Trifluoronorvaline 5,5,5-Trifluoropentanoic acid 3,3,3-Trifluoropropanoic acid 4,4,4-Trifluorothreonine 4,4,4-Trifluorovaline 1,2,3-Trihydroxybenzene (pyrogallol) 1,3,5-Trihydroxybenzene (phloroglucinol) 2,4,6-Trihydroxybenzoic acid 3,4,5-Trihydroxybenzoic acid 3,4,5-Trihydroxycyclohex-1-ene1-carboxylic acid [D-()-shikimic acid] 2,4,6-Tri(hydroxymethyl)phenol Triisobutylamine Trimethylamine 3-(Trimethylamino)phenol 4-(Trimethylamino)phenol 2,4,6-Trimethylaniline 2,4,6-Trimethylbenzoic acid Trimethylenebis(thioacetic acid) (18 C) 2,3,4-Trimethylphenol 2,4,5-Trimethylphenol 2,4,6-Trimethylphenol 3,4,5-Trimethylphenol 2,3,6-Trimethylpyridine ( 0.5)
pK1 2.34 1.63 7.37 7.839 8.15 7.76(1) 10.72(1) 4.18(2) 3.32(4) 2.74 0.50 1.79 1.600(1) 2.756(1) 4.16 8.950 3.15 2.045(1) 3.5(1) 2.6(1) 8.950 1.70 2.164(1) 2.042(1) 4.50 3.06 1.554(1) 1.537(1)
pK2
pK4
9.20(2)
9.92(1)
4.81
8.19(1) 6.67(3)
8.169(0) 5.822(0)
8.942(0)
9.463(0) 8.916(0)
7.822(0) 8.098(0)
9.03(0) 8.45(0)
11.63(1) 8.88(1)
1.68(0) 4.19(0)
8.85(1)
4.15 9.56 10.42(1) 9.80(1) 8.06 8.35 4.38(1) 3.448 3.435
5.383
10.59 10.57 10.88 10.25 7.60(1)
pK3
8.59
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
2,4,6-Trimethylpyridine 2,4,6-Trimethylpyridine-1-oxide 3-(Trimethylsilyl)benzoic acid 4-(Trimethylsilyl)benzoic acid 2,4,5-Trimethylthiazole ( 0.1) 2,4,6-Trinitroaniline (picramide) 2,4,6-Trinitrobenzene acid 2,2,2-Trinitroethanol Trinitromethane (20 C) Triphenylacetic acid Tripropylamine Tris(2-hydroxyethyl)amine Tris(hydroxymethyl)aminomethane (TRIS) 2-[Tris(hydroxymethyl)methyl amino]-1-ethanesulfonic acid (TES) 3-[Tris(hydroxymethyl)methyl amino]-1-propanesulfonic acid (TAPS) (20 C) N-[Tris(hydroxymethyl)methyl]glycine (tricine) Tris(trimethylsilyl)amine Trithiocarbonic acid (20 C) Tropacocaine (15 C) 3-Tropanol (tropine) Trypsin ( 0.1) L-Tryptophan DL-Tyrosine Tyrosine amide
pK2
pK3
pK4
7.43(1) 1.990(1) 4.089 4.192 4.55 10.23(1) 0.654 2.36 0.17 3.96 10.66(1) 7.762(1) 8.08(1)
7.50
8.4 2.023(1) 4.70(1) 2.64 9.88(1) 10.33(1) 6.25 2.38(1) 2.18(1) 7.48
8.135
9.39(0) 9.21(0) 9.89
10.47(OH)
OH OH
OH HO
NH2
N
HO OH O S O
Tris(hydroxymethyl)aminomethane
OH
2-[Tris(hydroxymethyl)methylamino]-1-ethanesulfonic acid HO O
S
OH
O N
OH OH
3-[Tris(hydroxymethyl)methylamino]-1-propanesulfonic acid
8.60
SECTION 8
TABLE 8.1 pKA Values of Organic Materials in Water at 25 C (continued) Substance
pK1
Tyrosine, ethyl ester Tyrosylarginine ( 0.01) Tyrosyltyrosine
7.33 2.65(1) 3.52(1)
-Ureidobutanoic acid -Ureidobutanoic acid -Ureidopropanoic acid Uric acid Uridine Uridine-5-diphosphoric acid Uridine-5-phosphoric acid (5-uridylic acid) Uridine-5-triphosphoric acid
3.886(0) 4.683(0) 4.487(0) 5.40 9.30 7.16
DL-Valine
2.286(1) 2.296(1) 8.00 7.49(1) 3.23(1) 7.49(1) 8.85(1) 9.69(1) 4.98(1) 5.62(1) 7.64(1)
pK2 9.80 7.39(0) 7.68(0)
pK3
pK4
9.36(1) 9.80(1)
11.62(2) 10.26(2)
5.53
6.63 7.58
L-Valine
Valine amide ( 0.2) L-Valine, methyl ester L-Valylglycine
Vetramine Veratrine Vinylmethylamine 2-Vinylpyridine 4-Vinylpyridine Vitamin B12 Xanthine (40 C) Xanthosine Xylenol Orange [pK5 10.46(4); pK6 12.28(5)] D-()-Xylose
9.719(0) 9.79(0)
8.00(0)
0.68(1) 2.5(1)
5.67(0)
12.00(1)
2.58(1)
3.23(2)
6.37(3)
4
7.85
15
12.15(0)
Zincon
O H N O N H
OH
HO NH HO N H
Uric acid
O
O
N
O NH O
Uridine
Table 8.2 records the acidities of inorganic compounds expressed as their pKA values (see page 8.2 for a discussion of pKA). When more than one ionizable proton is present, pK1, pK2, etc. values are given. Cations formed from the indicated compound by protonation are indicated by “(1)” or “(2)” for a dication. Temperature values different from 25 C are given in parentheses as are other relevant variations. For example, the dissociation constant for acetic acid-d1 is reported in D2O.
8.61
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.2 Proton-Transfer Reactions of Inorganic Materials in Water at 25 C The protonation states of cations are designated by values (1), (2), etc. that follow pKA values. Substance Aluminic acid (alumina) Amidophosphoric acid Aminodisulfonic acid Ammonium ion Arsenic acid Arsenous acid Boric acid, orthoBoric acid, etraCarbonic acid
Chloric acid Chlorous acid Chlorosulfonic acid Chromic acid Cyanic acid Deuterium oxide Diamidophosphoric acid Dithionic acid Dithionous acid Ferricyanic acid Ferrocyanic acid Fluorophosphoric acid Hexapolyphosphoric acid Hydrazinium(2) ion (20 C) Hydrazinosulfuric acid Hydrazoic acid Hydrocyanic acid Hydrogen bromide Hydrogen chloride Hydrogen fluoride Hydrogen iodide Hydrogen peroxide Hydrogen polysulfide (20 C) Hydrogen selenide Hydrogen sulfide Hydrogen telluride (20 C) Hydroperoxy radical Hydroxide radical Hydroxylamine-N,N-di sulfonic acid Hydroxylamine-N-sulfonic acid Hydroxylammonium ion
Formula H3AlO3 H2NPO(OH)2 HN(SO3H)2 NH4 H3AsO4 HAsO2 or HAs(OH)4 H3BO3 H2B4O7 CO2 H2O (without including dehydration constant) CO2 D2O (solvent) HClO3 HClO2 HOSO2Cl H2CrO4 HOCN D2O (solvent) (H2N)2PO2H H2S2O6 H2S2O4 H3Fe(CN)6 H2(Fe(CN)6)2 FPO(OH)2 H8P6O19 H3NNH3
pK1
pK2
11.2 3.3
8.28
pK4
8.50 9.24 2.25 9.23 9.236 4 6.35 3.76 6.77 1.58 2.021 10.43 0.98 3.47 14.87 4.83 3.4 0.35 1
H2NNHSO3H HN3 HCN HBr HCl HF HI H2O2
ca 2.1 0.88 (2) 3.85 4.64 9.21 20.68 6.1 3.17 9.5 11.58
H2S4 H2Se H2S H2Te HO.2HO 2 OH.
3.8 3.89 6.96 2.64 4.45 11.9
6.77
11.53
12.74 9 10.53 10.329 11.076
6.50
0.2 2.45
4.79 2.19 7.956 (1)
2.57
4.35
5.98
8.13
6.3 11.0 12.90 11–12
HON(SO3H)2 HONH ˆ OSO2H HONH3
pK3
11.85 ca 12.5 5.98
8.62
SECTION 8
TABLE 8.2 Proton-Transfer Reactions of Inorganic Materials in Water at 25 C (continued) Substance Hypobromous acid Hypochlorous acid Hypoiodous acid Hyponitrous acid Hypophosphoric acid (20 C) Hypophosphorus acid Hyposulfurous acid Imidodiphosphoric acid Iodic acid (30 C) Nitramide Nitric acid Nitrous acid Osmic acid Perchloric acid
Periodic acid, paraPermanganic acid Peroxide radical Peroxoboric acid Peroxochromic acid Peroxomonosulfuric acid Perxenic acid Phosphoric acid, orthoDeuterated Phosphoric acid, diPhosphorous acid (20 C) Selenic acid Selenous acid Silicic acid Sulfamic acid Sulfuric acid Sulfurous acid Telluric acid Tellurous acid Tetraperoxochromic acid (30 C) Tetrapolyphosphoric acid (pK5 6.63; pK6 8.34) Thiocyanic acid Thiosulfuric acid Trimetaphosphoric acid Tripolyphosphoric acid ( 1)* (pK5 9.26) Trithiocarbonic acid (20 C)
Formula
pK1
pK2
HBrO HClO HIO HON ¨ NOH
8.597 7.54 10.64 7.05
11.54
H4P2O6 HPH2O2 H2S2O4 (HO)2PO ˆ NH ˆ PO(OH)2 HIO3 O2NNH2 HNO3 HNO2 H2OsO5 (mainly OsO4) HCIO4 (completely dissociated up to 10 M) H5IO6 HMnO4 HO.2 H3BO3 H2O2 (H2BO3 · H2O2) H H2CrO5 H2SO5 H4XeO6 H3PO4 D3PO3 H4P2O7 H2PHO3 H2SeO4 H2SeO3 H2SiO3 HOSO2NH2 H2SO4 SO2 H2O (includes dehydration constant) H6TeO6 H2TeO3
2 1.23 0.35
2.19
ca 2 0.815 6.48 1.38 3.14 12.0
2.85
H3CrO8 H6P4O13 HSCN H2S2O3 H3P3O4 H5P3O10
H2CS3
1.55 2.25 4.90
pK3
pK4
7.08
9.72
2.45
14.5
8.27
7.91 4.30 1.0 ca 2 2.148 2.420 0.91 1.20 3 2.27 9.77 0.988 ca 3
9.3 ca 6 7.198 7.201 2.10 6.70 1.74 7.78 11.80
1.89 7.70 2.46
7.20 10.99 7.7
ca 10 12.38 6.70
9.38
1.3
2.23
2.0 2.30
6.61
1.987
7.16
0.95 0.60
1.5–1.7
0.51
1.20
2.68
8.18
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
8.63
TABLE 8.2 Proton-Transfer Reactions of Inorganic Materials in Water at 25 C (continued) Substance Tungstic acid (20 C) Vanadic acid Water Xenon trioxide
* Ionic strength.
Formula H2WO4 H3VO4 H 2O XeO3 (aqueous) HXeO4 H
pK1 ca 3.5 3.78 14.003 10.8
pK2
pK3
ca 4.6 7.8
13.0
pK4
8.64
TABLE 8.3 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures Abbreviations Used in the Table (1), monoprotonated cation (1), monoanion pKauto, negative logarithm (base 10) of autoprotolysis constant (0), neutral molecule (2), dianion pKsp, negative logarithm (base 10) of solubility product Temperature, C Substance Acetic acid (0) DL-N-Acetylalanine (1) -Acetylaminopropionic (1) N-Acetylglycine (1) -Alanine (1) (0) 2-Aminobenzenesulfonic acid (0), pK2 3-Aminobenzenesulfonic acid (0), pK2 4-Aminobenzenesulfonic acid (0), pK2 3-Aminobenzoic acid (0) 4-Aminobenzoic acid (0) 2-Aminobutyric acid (1) (0) 4-Aminobutyric acid (1) (0) 2-Aminoethylsulfonic acid (0) 2-Amino-3-methylpentanoic acid (1) (0)
0 4.780
5 4.770 3.699 4.479 3.682
2.42 10.59
10
15
4.762 3.699 4.465 3.676
4.758 3.703 4.465 3.673
2.39 10.29
20
25
30
35
40
50
4.757 3.708 4.449 3.667
4.756 3.715 4.445 3.670
4.757 3.725 4.444 3.673
4.762 3.733 4.443 3.678
4.769 3.745 4.445 3.685
4.787 3.774 4.457 3.706
2.35 10.01
2.34 9.87
2.33 9.74
2.33 9.62
2.33 9.49
2.33 9.26
2.633
2.591
2.556
2.521
2.448
2.459
2.431
2.404
2.380
2.338
4.075
4.002
3.932
3.865
3.799
3.738
3.679
3.622
3.567
3.464
3.521
3.457
3.398
3.338
3.283 4.90 4.95
3.227 4.79 4.85
3.176 4.75 4.90
3.126
3.079 4.68 4.95
2.989 4.60 5.10
2.334 10.530 4.057 11.026 9.452 2.3651 C 10.4601 C
2.33812.5 C 10.10012.5 C
2.28937.5 C 9.51837.5 C
2.286 9.380 4.046 10.867 9.316
4.038 10.706 9.186
4.031 10.556 9.061 2.320 9.758
4.027 10.409 8.940
4.025 10.269 8.824 2.31737.5 C 9.43937.5 C
2.297 9.234 4.027 10.114 8.712
4.032 9.874 9.499 2.332 9.157
2-Amino-2-methyl1,3-propanediol 2-Amino-2-methylpropionic acid (1) (0) 2-Aminopentanoic acid (1) (0) 3-Aminopropionic acid (1) (0) 4-Aminopyridine (1) Ammonium ion (1) Arginine (1) (0) Barbituric acid (1) (0) Benzoic acid (0) Boric acid (0) Bromoacetic acid (0) 3-Bromobenzoic acid (0) 4-Bromobenzoic acid (0) Bromopropynoic acid (0) 3-tert-Butylbenzoic acid (0) 4-tert-Butylbenzoic acid (0) 2-Butynoic acid (0) Butyric acid (0) DL-N-Carbamoylalanine (1) N-Carbamoylglycine (1)
9.612
9.433
9.266
2.4191 C 10.9601 C
2.38012.5 C 10.58012.5 C
2.3761 C 10.5081 C
2.347
9.104
8.951
8.801
8.659
8.519
8.385
8.132
2.357 10.205
2.35137.5 C 9.87237.5 C
10.15412.5 C
2.318 9.808
9.49037.5 C
9.252 9.400
3.551 10.235 9.114 9.425
8.978 9.093
3.524 9.963 8.846 8.947
3.517 9.842 8.717 8.805
8.477 8.539
2.356 9.561 2.309
2.313 9.198
3.656 11.000 9.873 10.081
3.627 10.830 9.704 9.904
9.549 9.731
3.583 10.526 9.398 9.564
1.914 9.718
1.885 9.563
1.870 9.407
1.849 9.270
1.837 9.123
1.823 8.994
1.814 8.859
1.801 8.739
1.800 8.614
1.787 8.385
3.969 8.493 4.215 9.327 2.875 3.818 4.011 1.814 4.266 4.463 2.626 4.805 3.891 3.889
3.980 8.435 4.206 9.280 2.887 3.813 4.005 1.839 4.231 4.425 2.611 4.810 3.890 3.879
4.02 8.372 4.204 9.236 2.902 3.810 3.99 1.855 4.199 4.389 2.620 4.817 3.892 3.876
4.00 8.302 4.203 9.197 2.918 3.808 4.001 1.879 4.170 4.354 2.618 4.827 3.896 3.874
4.008 8.227 4.207 9.161 2.936 3.810 4.001 1.900 4.143 4.320 2.621 4.840 3.902 3.873
4.017 8.147 4.219 9.132
4.032 7.974 4.223 9.080
3.813 4.003 1.919 4.119 4.287 2.631 4.854 3.908 3.875
4.885 3.931 3.888
9.508
4.231 9.439
4.220 9.380
1.786
4.806
4.804 3.898 3.911
2.618 4.803 3.894 3.900
8.65
8.66
TABLE 8.3 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (continued) Temperature, C Substance Carbon dioxide water (0) (1) Chloroacetic acid (0) 3-Chlorobenzoic acid (0) 4-Chlorobenzoic acid (0) Chloropropynoic acid (0) Citric acid (0) (1) (2) Cyanoacetic acid (0) 2-Cyano-2-methylpropionic acid (0) 5,5-Diethylbarbituric acid (0) Diethylmalonic acid (0) (1) 2,3-Dimethylbenzoic acid (0) 2,4-Dimethylbenzoic acid (0) 2,5-Dimethylbenzoic acid (0) 2,6-Dimethylbenzoic acid (0) 3,5-Dimethylbenzoic acid (0) N,N-DimethylethyleneamineN,N-diacetic acid (0) (1)
0
5
6.583 10.627
6.517 10.558
3.220 4.837 6.393
8.40
6.294 10.446
10
6.465 10.499
15
20
25
30
35
40
50
6.297 10.172
6.382 10.377 2.856 3.831 3.991 1.820
6.365 10.33 2.867 3.83 3.986 1.845
6.327 10.290 2.883 3.825 3.981 1.864
6.31 10.25 2.900 3.826 3.980 1.879
6.296 10.220
1.766
6.429 10.431 2.845 3.838 4.000 1.796
3.200 4.813 6.386 2.445
3.176 4.797 6.383 2.447
3.160 4.782 6.384 2.452
3.142 4.769 6.388 2.460
3.128 4.761 6.396 2.460
3.116 4.755 6.406 2.482
3.109 4.751 6.423 2.496
3.099 4.750 6.439 2.511
2.342 8.30
2.360 8.22
2.379 8.169
2.400 8.094
2.422 8.020
2.446 7.948
2.471 7.877
2.498 7.808
2.129 7.400
2.136 7.401 3.663 4.154 3.911 3.234 4.292
2.144 7.408 3.687 4.187 3.954 3.304 4.299
2.151 7.417 3.771 4.217 3.990 3.362 4.302
2.160 7.428 3.726 4.244 4.020 3.409 4.304
2.172 7.441 3.762 4.268 4.045 3.445 4.306
2.187 7.457 3.788 4.290 4.065 3.472 4.306
6.169 10.268
6.047 10.068
5.926 9.882
3.829 3.981 1.893
5.803 9.684
3.095 4.757 6.484
7.673
N,N-Dimethylglycine (0) 3,5-Dinitrobenzoic acid (0) 2-Ethylbutyric acid (0) 5-Ethyl-5-phenylbarbituric acid (0) Fluoroacetic acid (0) Formic acid (0) 2-Furancarboxylic acid (0) Glucose-1-phosphate (0) Glycerol-1-phosphoric acid (1) Glycerol-2-phosphoric acid (0) (1) Glycine (1) (0) Glycolic acid (0) Glycylasparagine (1) N-Glycylglycine (1)
8.67
Hexanoic acid (0) Hydrogen cyanide (0) Hydrogen peroxide (0) Hydrogen sulfide (0) (1) 4-Hydroxybenzoic acid (0) Hydroxylamine (0) 2-Hydroxy-1-naphthoic acid (0) (1) 4-Hydroxyproline (1) (0)
10.34 4.623
3.786
10.14 2.60 4.664
9.94 2.73 4.710 7.517 2.571 3.753
7.311 2.624 3.758 3.216 6.519 6.679
2.96 4.812 7.248
3.07 4.869 7.130
3.766 3.239 6.531 6.695
3.782 6.561 6.733
3.772
3.762
7.592 2.555 3.757
6.506 6.642
6.500 6.641
6.499 6.643
6.500 6.648
4.751 7.445 2.586 3.751 3.164 6.504 6.656
1.223 6.657
1.245 6.650
1.271 6.646
1.301 6.646
1.335 6.650
1.372 6.657
1.413 6.666
1.457 6.679
1.554 6.712
2.397 10.193 3.84412.5 C 2.958
2.380 10.044
2.36 9.91
2.34 9.65
2.952
2.943
2.351 9.780 3.831 2.942 3.126 8.252
2.33 2.327 9.53 9.412 3.83337.5 C 2.944 2.947
9.49 11.86
4.849 9.36 11.75
2.32 9.19 3.849 2.959 3.159 7.668 4.920
10.34 3.875 2.968 3.201
8.59412.5 C 4.839 9.63
4.840 12.23 7.33 13.5
7.24
7.13 13.2 4.596 6.186
7.05 4.586 6.063
9.21 11.65 6.97 12.90 4.582 5.948
3.29 9.68 1.9001 C 10.2741 C
9.76 2.85 4.758 7.377 2.604 3.752 3.200 6.510 6.666
1.85012.5 C 9.95812.5 C
2.942
7.94837.5 C 4.865 9.11 11.55 6.90 12.75 4.577
8.99 11.45 6.82 12.6 4.576 5.730
3.24 9.65 1.818 9.662
4.890 8.88
11.21 6.79 4.578
3.19 9.61 1.79837.5 C 9.39437.5 C
6.69
3.26 9.58 1.796 9.138
8.68
TABLE 8.3 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (continued) Temperature, C Substance 2-Hydroxypropionic acid (0) DL-2-Hydroxysuccinic acid (0) (1) Hypobromous acid (0) Hypochlorous acid (0) Imidazole (1) Iodoacetic acid (0) DL-Isoleucine (1) (0) Isopropylmalonic acid, mononitrile (0) Lactic acid (0) Lead sulfate, pKsp DL-Leucine (1) (0) Malonic acid (1) Mannose (0) Mercury(I) chloride, pKsp Methanol (solvent), pKauto Methylamine (1) Methylaminodiacetic acid (0) (1)
0
5
10
15
20
25
30
35
40
50 3.895
3.880
3.873
3.868
3.861
3.857
3.858
3.861
3.867
3.873
3.537 5.119
3.520 5.108
3.494 5.098
3.472 5.096
7.75 7.467
7.69 7.334
3.458 5.097 8.60 7.54 6.993 3.175
3.452 5.099
7.82 7.581
3.482 5.096 8.83 7.63 7.216 3.143
3.446 5.104 8.47 7.46 6.784 3.213
3.444 3.445 5.117 5.149 8.3745 C 7.05 6.685 6.497
2.33812.5 C 10.10012.5 C
2.365 10.460
3.880 8.01 2.3831 C 10.4581 C 5.670
7.58 7.103 3.158
2.299 3.873
2.320 3.868
5.665
2.34812.5 C 10.0951.5 C 5.667 12.45 18.65
17.12
7.50 6.887 3.193
2.31737.5 C 9.43937.5 C
2.318 9.758 2.343 3.862 7.87
2.365 3.857
5.673
5.683
18.48 16.84
18.27
11.496
11.130
10.787
2.138 10.474
2.142 10.287
2.146 10.088
2.401 3.858 7.80 2.328 9.744 5.696 12.08 17.88 16.71 10.62
2.427 3.861
5.710
16.65 10.466 2.150 9.920
2.452 3.867 7.73
2.332 9.157 2.481 3.873
2.32737.5 C 9.43437.5 C 5.730 5.753 11.81 16.79 16.53 10.161 2.154 9.763
3.895 7.63 2.333 9.142 5.803
9.876
3-Methylbenzoic acid (0) 4-Methylbenzoic acid (0) 3-Methylbutyric acid (0) 4-Methylpentanoic acid (0) 5-Methyl-5-phenylbarbituric acid (0) 2-Methylpropionic acid (0) 2-Methyl-2-propylamine (1) Nitric acid (0) Nitrilotriacetic acid (0) (1) (2) 4-Nitrobenzoic acid (0) Nitrous acid (0) DL-Norleucine (1) (0) Oxalic acid (1) 2,4-Pentanedione (0) Pentanoic acid (0) Phenylalanine (0) Phosphoric acid (0) (1) o-Phthalic acid (0) (1) Piperidine (1) Proline (1) (0)
4.303 4.390 4.726 4.827
4.742 4.827
4.825
4.827 11.240
8.104 11.439
11.048
4.285 4.376 4.767 4.837
4.269 4.362
8.057 4.840 10.862
8.011 4.853 10.682 1.38
1.65 1.69 2.95 10.59
1.65 2.95 10.45 3.448 3.244
1.65 2.94 10.33 3.444 3.177
3.441 3.138
2.394 10.564 4.210 9.07 4.823
4.216
2.35612.5 C 10.19012.5 C 4.227
2.056 7.313
2.073 7.282
4.763 9.75 2.088 7.254
2.107 7.231
2.127 7.213
2.335 9.834 4.272 8.95 4.842 9.31 2.148 7.198
2.925 5.432 11.963
2.927 5.418 11.786
2.931 5.410 11.613
2.937 5.405 11.443
2.943 5.405 11.280
2.950 5.408 11.123
2.011 11.296
1.96412.5 C 10.97212.5 C
4.240
4.254 4.835
1.952 10.640
4.256 4.349 4.794 4.853
4.244 4.336
7.966 4.886 10.511
7.922
4.235 4.322 4.831 4.879
4.871 4.908
7.879 4.918
7.797 4.955
10.341 1.20
1.66 2.96 10.23 3.441
4.295
1.67 2.98 3.442 3.100 2.32437.5 C 9.51337.5 C 4.318
3.445
2.171 7.189
2.196 7.185
4.349 8.90 4.861 8.96 2.224 7.181
2.958 5.416 10.974
2.967 5.427 10.818
2.978 5.442 10.670
4.851
1.95037.5 C 10.34237.5 C 10.064
2.328 9.224 4.409 4.906 2.277 7.183 3.001 5.485 10.384 1.958
8.69
8.70
TABLE 8.3 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (continued) Temperature, C Substance Propenoic acid (0) N-Propionylglycine (1) Propynoic acid (0) Pyrrolidine (1) Serine (1) (0) Silver bromide, pKsp Silver chloride, pKsp Succinic acid (0) (1) Sulfuric acid (1) Sulfurous acid (0) D-Tartaric acid (0) (1) 2,3,5,6-Tetramethylbenzoic acid (0) Threonine (1) (0) o-Toluidine (0) 1,2,4-Triazole (1) (0) 3,4,5-Trihydroxybenzoic acid (0)
0
5
3.728 12.17
11.98
2.2961 C 9.8801 C
10
15
3.723 1.791 11.81
4.267 3.718 1.829 11.63
25
30
35
4.250 3.716 1.867 11.43
4.247 3.718 1.887 11.30
4.249 3.721 1.940 11.15
4.267 3.725 1.932 10.99
2.23212.5 C 9.54212.5 C 13.33 10.595
4.285 5.674 1.778 1.63
4.263 5.660 1.8124.3 C
3.118 4.426
3.095 4.407
2.2001 C 9.7481 C
20
4.245 5.649
4.301 3.731 1.963 10.84
11.56
2.15437.5 C 8.90437.5 C 11.83 11.61 9.381 9.21
2.132 8.628 11.19 8.88
3.750
12.57
4.232 5.642 1.894
4.218 5.639
4.207 5.635 1.987 1.89
4.198 6.541 2.05
4.191 5.647 2.095 1.98
4.188 5.654 2.17
4.186 5.680 2.246 2.12
3.057 4.381 3.310
3.044 4.372 3.367
3.036 4.366 3.415
3.025 4.365 3.453
3.019 4.367 3.483
3.018 4.372 3.505
3.021 4.391
4.58
4.495
2.088 9.100 4.45
4.345
2.07037.5 C 8.81237.5 C 4.28 4.20
2.451 10.205
2.418 10.083 4.19
2.327 9.768 4.30
4.38
2.13212.5 C 9.42012.5 C
2.386 9.972
12.07
50
12.83 10.152
1.74 3.075 4.391
2.186 9.208 12.30 9.749
40
2.055 8.548
4.53
Tris(2-hydroxyethyl)amine (1) 2,4,6-Trimethylbenzoic acid (0) 3-Trimethylsilylbenzene acid (0) 4-Trimethylsilylbenzoic acid (0) -Ureidopropionic acid (0) DL-Valine (1) (0)
8.290
2.320 10.413
8.173
8.067
4.514
4.505 2.29712.5 C 10.06412.5 C
7.963 3.325 4.142 4.270 4.497
7.861 3.391 4.116 4.230 4.490
7.762 3.448 4.089 4.192 4.487 2.296 9.719
7.666 3.498 4.060 4.155 4.486
7.570 3.541 4.029 4.119 4.486 2.29237.5 C 9.40537.5 C
7.477 3.577 3.996 4.084 4.488
7.299
4.500 2.310 9.124
8.71
8.72
SECTION 8
TABLE 8.4 Indicators for Aqueous Acid–Base Titrations
Table 8.4 lists selected common indicators. The table is arranged according to function over increasing pH range or transition interval given (third column). Note that this range may vary appreciably from one observer to another, and that it is also affected by ionic strength, temperature, and illumination. The values given should therefore be considered to be approximate. These values refer to solutions having low ionic strengths and a temperature of about 25 C. In the fourth column the pKA (log KA) of the indicator as determined spectrophotometrically is listed. In the fifth and sixth columns, the wavelength of maximum absorption is given for the acidic and basic forms of the indicator, respectively. The lower to higher pH color change is given in the last column. The abbreviations used to describe the colors of the two forms of the indicator are as follows: B, Blue
P, Purple
C, Colorless
R, Red
G, Green
V, Violet
O, Orange OBr, Orange-brown
Y, Yellow
max, nm Indicator Cresol red (acid range) Cresol purple (acid range) Thymol blue (acid range) Tropeolin OO 2,6-Dinitrophenol 2,4-Dinitrophenol Methyl yellow Methyl orange Bromophenol blue Bromocresol green Methyl red Chlorophenol red Bromocresol purple Bromophenol red p-Nitrophenol Bromothymol blue Neutral red Phenol red
Chemical name
pH range
pKA
Acid Base
Color change
o-Cresolsulfonephthalein
0.2–18
R–Y
m-Cresolsulfonephthalein
1.2–2.8
1.51 533
Thymolsulfonephthalein
1.2–2.8
1.65 544
Diphenylamino-p-benzene sodium sulfonate 2,6-Dinitrophenol 2,4-Dinitrophenol Dimethylaminoazobenzene Dimethylaminoazobenzene sodium sulfonate Tetrabromophenolsulfonephthalein
1.3–3.2
2.0
527
R–Y
2.4–4.0 2.5–4.3 2.9–4.0 3.1–4.4
3.69 3.90 3.3 508 3.40 522
464
C–Y C–Y R–Y R–O
3.0–4.6
3.85 436
592
Y–BV
4.0–5.6
4.68 444
617
Y–B
R–Y 430
R–Y
Tetrabromo-m-cresolsulfonephthalein o-Carboxybenzeneazodimethylaniline Dichlorophenolsulfonephthalein Dibromo-o-cresolsulfonephthalein
4.4–6.2
4.95 530
427
R–Y
5.4–6.8 5.2–6.8
6.0 6.3
433
573 591
Y–R Y–P
Dibromophenolsulfonephthalein p-Nitrophenol Dibromothymolsulfonephthalein
5.2–6.8 5.3–7.6 6.2–7.6
7.15 320 7.1 433
574 405 617
Y–R C–Y Y–B
Aminodimethylaminotoluphenazonium chloride Phenolsulfonephthalein
6.8–8.0
7.4
6.4–8.0
7.9
R–Y 433
558
Y–R
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
8.73
TABLE 8.4 Indicators for Aqueous Acid–base Titrations (continued ) max, nm Indicator
Chemical name
pH range
pKA
Color Acid Base change
m-Nitrophenol Cresol red m-Cresol purple Thymol blue Phenolphthalein -Naphtholbenzein
m-Nitrophenol o-Cresolsulfonephthalein m-Cresolsulfonephthalein Thymolsulfonephthalein Phenolphthalein -Naphtholbenzein
6.4–8.8 7.2–8.8 7.6–9.2 8.0–9.6 8.0–10.0 9.0–11.0
8.3 8.2 434 8.32 8.9 430 9.4
570 572 580 596 553
C–Y Y–R Y–P Y–B C–R Y–B
Thymolphthalein Alizarin yellow
Thymolphthalein 5-(p-Nitrophenylazo)salicylic acid, Na salt p-Sulfobenzeneazoresorcinol 2,4,6-Trinitrophenylmethylnitroamine
9.4–10.6 10.0–12.0
10.0 11.16
598
C–B Y–V
Tropeolin O Nitramine
11.0–13.0 10.8–13.0
Y–OBr C–OBr
8.74
BUFFER SOLUTIONS TABLE 8.5 National Institute of Standards and Technology (formerly National Bureau of Standards U.S). Reference PH Buffer Solutions.
Temperature C
Secondary standard 0.05 M Potassium tetraoxalate
Potassium hydrogen tartrate (saturated at 25 C)
0 5 10 15 20 25 30 35 38 40 45 50 55 60 70 80 90 95
1.666 1.668 1.670 1.672 1.675 1.679 1.683 1.688 1.691 1.694 1.700 1.707 1.715 1.723 1.743 1.766 1.792 1.806
3.557 3.552 3.549 3.548 3.547 3.547 3.549 3.554 3.560 3.580 3.609 3.650 3.674
Dilution value pH1/2
0.186
0.049
0.05 M Potassium dihydrogen citrate 3.860 3.840 3.820 3.802 3.788 3.776 3.766 3.759 3.753 3.749
0.024
0.05 M Potassium hydrogen phthalate
0.025 M KH2PO4, 0.025 M Na2HPO4
0.0087 M KH2PO4, 0.0302 M Na2HPO4
0.01 M Na2B4O7
0.025 M NaHCO3, 0.025 M Na2CO3
4.003 3.999 3.998 3.999 4.002 4.008 4.015 4.024 4.030 4.035 4.047 4.060 4.075 4.091 4.126 4.164 4.205 4.227
6.984 6.951 6.923 6.900 6.881 6.865 6.853 6.844 6.840 6.838 6.834 6.833 6.834 6.836 6.845 6.859 6.877 6.886
7.534 7.500 7.472 7.448 7.429 7.413 7.400 7.389 7.384 7.380 7.373 7.367
9.464 9.395 9.332 9.276 9.225 9.180 9.139 9.102 9.081 9.068 9.038 9.011 8.985 8.962 8.921 8.885 8.850 8.833
10.317 10.245 10.179 10.118 10.062 10.012 9.966 9.925
0.052
0.080
0.070
0.01
0.079
Source: R. G. Bates, J. Res. Natl. Bur. Stand. (U.S.), 66A:179 (1962) and B. R. Staples and R. G. Bates, ibid, 73A: 37 (1969).
9.889 9.828
Secondary standard Ca(OH)2 (saturated at 25 C) 13.423 13.207 13.003 12.810 12.627 12.454 12.289 12.133 12.043 11.984 11.841 11.705 11.574 11.449
0.28
8.75
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.6 Compositions of National Institute of Standards and Technology. Standard pH Buffer Solutions Air weight of material per liter of buffer solution Standard
Weight, g
KH3(C2O4)2 · 2H2O, 0.05 M Potassium hydrogen tartrate, about 0.034 M Potassium hydrogen phthalate, 0.05 M Phosphate (solution 1) KH2PO4, 0.025 M Na2HPO4, 0.025 M Phosphate (solution 2) KH2PO4, 0.008665 M Na2HPO4, 0.03032 M Na2B4O7 · 10H2O, 0.01 M Carbonate NaHCO3, 0.025 M Na2CO3, 0.025 M Ca(OH)2, about 0.0203 M
12.61 Saturated at 25 C 10.12 3.39 3.53 1.179 4.30 3.80 2.10 2.65 Saturated at 25 C
Standard Reference pH Buffer Solutions The buffer value for the National Institute of Standards and technology (U.S.) reference pH buffer solutions is given below:
Buffer solution
KH tartrate
0.05 M KH2 citrate
Buffer value
0.027
0.034
0.05 M KH phthalate
0.025 M KH2PO4, 0.025 M Na2HPO4
0.0087 M KH2PO4, 0.0302 M Na2HPO4
0.01 M Na2B4O7
0.016
0.029
0.016
0.020
0.025 M NaHCO3, 0.025 M Na2CO3
0.029
For the secondary pH reference standards, the buffer value is 0.070 for potassium tetraoxalate and 0.09 for calcium hydroxide. To prepare the standard pH buffer solutions recommended by the National Bureau of Standards (U.S.), the indicated weights of the pure materials in Table 8.6 should be dissolved in water of specific conductivity not greater than 5 micromhos. The tartrate, phthalate, and phosphates can be dried for 2 h at 110 C before use. Potassium tetraoxalate and calcium hydroxide need not be dried. Fresh-looking crystals of borax should be used. Before use, excess solid potassium hydrogen tartrate and calcium hydroxide must be removed. Buffer solutions pH 6 or above should be stored in plastic containers and should be protected from carbon dioxide with soda-lime traps. The solutions should be replaced
8.76
SECTION 8
within 2 to 3 weeks, or sooner if formation of mold is noticed. A crystal of thymol may be added as a preservative.
Buffer Solutions other than Standards The range of the buffering effect of a single weak acid group is approximately one pH unit on either side of the pKA. The ranges of some useful buffer systems are collected in Table 8.7. After all the components have been brought together, the pH of the resulting solution should be determined at the temperature to be employed with reference to standard reference solutions. Buffer components should be compatible with other components in the system under study; this is particularly significant for buffers employed in biological studies. Check tables of formation constants to ascertain whether metal-binding character exists. When there are two or more acid groups per molecule, or a mixture is composed of several overlapping acids, the useful range is larger. Universal buffer solutions consist of a mixture of acid groups which overlap such that successive pKA values differ by 2 pH units or less. The Prideaux–Ward mixture comprises phosphate, phenyl acetate, and borate plus HCl and covers the range from 2 to 12 pH units. The McIlvaine buffer is a mixture of citric acid and Na2HPO4 that covers the range from pH 2.2 to 8.0. The Britton–Robinson system consists of acetic acid, phosphoric acid, and boric acid plus NaOH and covers the range from pH 4.0 to 11.5. A mixture composed of Na2CO3, NaH2PO4, citric acid, and 2-amino-2-methyl-1,3-propanediol covers the range from pH 2.2 to 11.0.
TABLE 8.7 pH Values of Buffer Solutions for Control Purposes Materials* Glycine and HCl Citrate and HCl p-Toluenesulfonate and p-toluenesulfonic acid Formate and HCl Succinic acid and borax Phenyl acetate and HCl Acetate and acetic acid Succinate and succinic acid 2-(N-Morpholino)ethanesulfonic acid and NaOH 2,2-Bis(hydroxymethyl)-2,2,2 -nitrilotriethanol and HCl KH2PO4 and borax N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid and NaOH KH2PO4 and Na2HPO4 N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid and NaOH Triethanolamine and HCl Diethylbarbiturate (veronal) and HCl Tris(hydroxymethyl)aminomethane and HCl N-Tris(hydroxymethyl)methylglycine and HCl N,N-Bis(2-hydroxyethyl)glycine and HCl Borax and HCl Glycine and NaOH Ammonia (aqueous) and NH4Cl Ethanolamine and HCl
pH range 1.0–3.7 1.3–4.7 1.1–3.3 2.8–4.6 3.0–5.8 3.5–5.0 3.7–5.6 4.8–6.3 5.2–7.1 5.8–7.2 5.8–9.2 6.8–8.2 6.1–7.5 6.9–8.3 6.9–8.5 7.0–8.5 7.2–9.0
7.6–8.9 8.2–10.1 8.3–9.2 8.6–10.4
8.77
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
Borax and NaOH Carbonate and hydrogen carbonate Na2HPO4 and NaOH
9.4–11.1 9.2–11.0 11.0–12.0
General directions for the preparation of buffer solutions of varying pH but fixed ionic strength are given by Bates.* Preparation of McIlvaine buffered solutions at ionic strengths of 0.5 and 1.0 and Britton–Robinson solutions of constant ionic strength have been described by Elving et al.† and Frugoni,‡ respectively. * Bates, Determination of pH, Theory and Practice, Wiley, New York, 1964, pp. 121–122. † Elving, Markowitz, and Rosenthal, Anal. Chem., 28:1179 (1956). ‡ Frugoni, Gazz. Chim. Ital., 87:403 (1957).
REFERENCE ELECTRODES TABLE 8.8 Potentials of Reference Electrodes (in volts) as a Function of Temperature Liquid-junction potential included
Temp., C 0 5 10 15 20 25 30 35 38 40 45 50 55 60 70 80 90
Saturated 0.1 M KCl, 1.0 M KCl, 3.5 M KCl, KCl, 1.0 M KCl, 1.0 M KBr, calomel* calomel* calomel* calomel* Ag/AgCl† Ag/AgBr‡ 0.3367
0.2883
0.25918
0.3362 0.3361 0.3358 0.3356 0.3354 0.3351 0.3350 0.3345
0.2868
0.2556
0.2844 0.2830 0.2815
0.2520 0.2501 0.2481
0.2782
0.2448 0.2439
0.3315
0.2745
0.22737
0.3248
0.2702
0.2235
0.25387 0.2511 0.24775 0.24453 0.24118 0.2376 0.2355 0.23449
0.2083
1.0 M KI, Ag/AgI§
0.23655 0.23413 0.23142 0.22857 0.22557 0.22234 0.21904 0.21565
0.08128 0.07961 0.07773 0.07572 0.07349 0.07106 0.06856 0.06585
0.14637 0.14719 0.14822 0.14942 0.15081 0.15244 0.15405 0.15590
0.21208 0.20835 0.20449 0.20056 0.19649 0.18782 0.1787 0.1695
0.06310 0.06012 0.05704
0.15788 0.15998 0.16219
0.0251
* Bates et al., J. Res. Natl. Bur. Stand., 45:418 (1950). † Bates and Bower, J. Res. Natl. Bur. Stand., 53:283 (1954). ‡ Hetzer, Robinson, and Bates, J. Phys. Chem., 66:1423 (1962). § Hetzer, Robinson, and Bates, J. Phys. Chem., 68:1929 (1964).
Temp., C
125
150
1.0 M KCl, Ag/AgCl*
0.1330
1.0 M KBr, Ag/AgBr†
0.0048
175
200
0.1032
0.0708
0.0348 0.0051 0.054
0.0312
0.0612
* Greeley et al., J. Phys. Chem., 64:652 (1960). † Towns et al., J. Phys. Chem., 64:1861 (1960).
0.0951
225
250
275
0.090
8.78
SECTION 8
The values of several additional reference electrodes at 25 C are listed: Reference electrode Ag/AgCl, saturated KCl Ag/AgCl, 0.1 M KCl Hg/HgO, 1.0 M NaOH Hg/HgO, 0.1 M NaOH Hg/Hg2SO4, saturated K2SO4 (22 C) Hg/HgSO4, saturated KCl
Potential, V 0.198 0.288 0.140 0.165 0.658 0.655
TABLE 8.9 Potentials of Reference Electrodes (in volts) at 25 C for water–organic solvent mixtures Electrolyte solution of 1 M HCl
Solvent, wt % 5 10 20 30 40 45 50 60 70 80 82 90 94.2 98 99 100
Methanol, Ag/AgCl
Ethanol, Ag/AgCl
0.2153 0.2090
0.2146 0.2075 0.2003 0.1945
0.1968
2-Propanol, Ag/AgCl 0.2180 0.2138 0.2063
Acetone, Ag/AgCl 0.2190 0.2156 0.2079
Dioxane, Ag/AgCl
0.2031
0.1859
Ethylene glycol, Ag/AgCl 0.2190 0.2160 0.2101 0.2036 0.1972
Methanol, calomel
0.255
0.1818 0.1492 0.1135 0.0841
0.158
0.196
0.034
0.2104 0.1807
0.0659
0.216
0.0614
0.103 0.0081
0.53
0.1126 0.0014
0.0215 0.0099
0.2501
0.243
0.1635 0.1859 0.173 0.158 0.136
Dioxane, calomel
8.79
8.80
SECTION 8
ELECTRODE POTENTIALS TABLE 8.10 Potentials of Selected Half-Reactions at 25 C This table is a summary of oxidation–reduction half-reactions arranged in order of decreasing oxidation strength and is useful for selecting reagent systems. Abbreviations Used in the Table g, gas liq, liquid s, solid
Half-reaction F2(g) 2H 2e O3 2H 2e S2O82 2e Ag2 e H2O2 2H 2e MnO4 4H 3e Ce(IV) e H5IO6 H 2e Bi2O4(bismuthate) 4H 2e BrO3 6H 5e MnO4 8H 5e PbO2 4H 2e Cl2 2e Cr2O72 14H 6e MnO2(s) 4H 2e O2(g) 4H 4e IO3 6H 5e Br2(liq) 2e ICl2 e VO2 2H e HNO2 H e NO3 3H 2e 2Hg2 2e Cu2 I e Ag e Hg22 2e Fe(III) e O2(g) 2H 2e 2HgCl2 2e Hg2SO4(s) 2e H3AsO4 2H 2e Sb2O5 6H 4e I3 2e Cu e VO2 2H e Fe(CN)63 e Cu2 2e UO22 4H 2e BiO 2H 3e Hg2Cl2(s) 2e AgCl(s) e
E, V 2HF O2 H2O 2SO42 Ag 2H2O MnO2(s) 2H2O Ce(III) (in 1 M HClO4) IO3 3H2O 2BiO 2H2O 1 2 Br2 3H2O Mn2 4H2O Pb2 2H2O 2Cl 2Cr3 7H2O Mn2 2H2O 2H2O 1 2 I2 3H2O 2Br 1 2 I2 2Cl VO2 H2O NO(g) H2O HNO2 H2O Hg22 CuI Ag 2Hg Fe2 H2O2 Hg2Cl2(s) 2Cl 2Hg SO42 HAsO2 2H2O 2SbO 3H2O 3I Cu V3 H2O Fe(CN)64 Cu U4 2H2O Bi H2O 2Hg 2Cl Ag Cl
3.06 2.07 2.01 2.00 1.77 1.70 1.61 1.6 1.59 1.52 1.51 1.455 1.36 1.33 1.23 1.229 1.20 1.065 1.06 1.00 1.00 0.94 0.92 0.86 0.799 0.79 0.771 0.682 0.63 0.615 0.581 0.559 0.545 0.52 0.337 0.36 0.337 0.334 0.32 0.2676 0.2223
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.10 Potentials of Selected Half-Reactions at 25 C (continued) Half-reaction SbO 2H 3e CuCl32 e SO42 4H 2e Sn4 2e S 2H 2e TiO2 2H e S4O62 2e AgBr(s) e 2H 2e Pb2 2e Sn2 2e AgI(s) e Mo3 3e N2 5H 4e Ni2 2e V3 e Co2 2e Ag(CN)2 e Cd2 2e Cr3 e Fe2 2e 2CO2 2H 2e H3PO3 2H 2e U4 e Zn2 2e Cr2 2e Mn2 2e Zr4 4e Ti3 3e Al3 3e Th4 4e Mg2 2e La3 3e Na e Ca2 2e Sr2 2e K e Li e
E, V Sb H2O Cu 3Cl SO2(aq) 2H2O Sn2 H2S(g) Ti3 H2O 2S2O32 Ag Br H2 Pb Sn Ag I Mo H2NNH3 Ni V2 Co Ag 2CN Cd Cr2 Fe H2C2O4 H3PO2 H2O U3 Zn Cr Mn Zr Ti Al Th Mg La Na Ca Sr K Li
0.212 0.178 0.17 0.154 0.141 0.10 0.08 0.071 0.0000 0.126 0.136 0.152 ca0.2 0.23 0.246 0.255 0.277 0.31 0.403 0.41 0.440 0.49 0.50 0.61 0.763 0.91 1.18 1.53 1.63 1.66 1.90 2.37 2.52 2.714 2.870 2.89 2.925 3.045
8.81
8.82
SECTION 8
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C The solvent systems in this table are listed below: A, acetonitrile and a perchlorate salt such as LiClO4 or a tetraalkyl ammonium salt B, acetic acid and an alkali acetate, often plus a tetraalkyl ammonium iodide C, 0.05 to 0.175 M tetraalkyl ammonium halide and 75% 1,4-dioxane D, buffer plus 50% ethanol (EtOH) Abbreviations Used in the Table M, molar MeOH, methanol Me, methyl PrOH, propanol
Bu, butyl Et, ethyl
EtOH, ethanol Compound
Solvent system
E1/2
Unsaturated aliphatic hydrocarbons Acrylonitrile Allene 1,3-Butadiene 1,3-Butadiyne 1-Buten-2-yne 1,4-Cyclohexadiene Cyclohexene 1,3,5,7-Cyclooctatetraene Diethyl fumarate Diethyl maleate 2,3-Dimethyl-1,3-butadiene Dimethylfulvene Diphenylacetylene 1,1-Diphenylethylene Ethyl methacrylate 2-Methyl-1,3-butadiene 2-Methyl-1-butene 1-Piperidino-4-cyano-4-phenyl1,3-butadiene trans-Stilbene Tetrakis(dimethylamino)ethylene
C but 30% EtOH C A C C C A A B C B, pH 4.0 B, pH 4.0 A C C B C 0.1 N LiCl 25% EtOH A A
1.94 2.29 2.03 2.59 1.89 2.40 1.6 1.89 1.42 1.51 0.84 0.95 1.83 1.89 2.20 1.52 2.19 1.9 1.84 1.97
LiClO4 in dimethylformamide B A
0.16 1.51 0.75
Aromatic hydrocarbons Acenaphthene
Anthracene
A B C A B C
0.95 1.36 2.58 0.84 1.20 1.94
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
8.83
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Aromatic hydrocarbons (continued ) Azulene
A C
1,2-Benzanthracene 2,3-Benzanthracene Benzene 1,2-Benzo[a]pyrene Biphenyl
C A A A A B C A A C A A A A B C A B A A C A B C A B C A B A B A B C C A B C C A A C
Chrysene 1,2,5,6-Dibenzanthracene 1,2-Dihydronaphthalene 9,10-Dimethylanthracene 2,3-Dimethylnaphthalene 9,10-Diphenylanthracene Fluorene
Hexamethylbenzene Indan Indene 1-Methylnaphthalene
2-Methylnaphthalene
Naphthalene Pentamethylbenzene Phenanthrene
Phenylacetylene Pyrene trans-Stilbene Styrene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene Tetraphenylethylene
0.71 1.66, 2.26, 2.56 2.03, 2.54 0.54, 1.20 2.08 0.76 1.48 1.91 2.70 1.22 1.00, 1.26 2.57 0.65 1.08, 1.34 0.92 1.25 1.65 2.65 1.16 1.52 1.59, 2.02 1.23 2.81 1.24 1.53 2.46 1.22 1.55 2.46 1.34 1.72 1.28 1.62 1.23 1.68 2.46, 2.71 2.37 1.06, 1.24 1.51 2.26 2.35 1.50, 1.99 1.29 2.05
8.84
SECTION 8
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Aromatic hydrocarbons (continued) 1,4,5,8-Tetraphenylnaphthalene Toluene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Triphenylene Triphenylmethane
A A A A A B A C
o-Xylene m-Xylene p-Xylene
A A A
1.39 1.98 1.58 1.41 1.50 1.90 1.46, 1.55 1.01, 1.68, 1.96 1.58, 2.04 1.58 1.56
Aldehydes Acetaldehyde Benzaldehyde Bromoacetaldehyde Chloroacetaldehyde Cinnamaldehyde Crotonaldehyde Dichloroacetaldehyde 3,7-Dimethyl-2,6-octadienal Formaldehyde 2-Furaldehyde
Glucose Glyceraldehyde Glycolaldehyde Glyoxal 4-Hydroxybenzaldehyde 4-Hydroxy-2-methoxybenzaldehyde
o-Methoxybenzaldehyde p-Methoxybenzaldehyde Methyl glyoxal
B, pH 6.8–13 McIlvaine buffer, pH 2.2 pH 8.5 pH 9.8 Ammonia buffer, pH 8.4 Buffer EtOH, pH 6.0 B, pH 1.3–2.0 Ammonia buffer, pH 8.0 Ammonia buffer, pH 8.4 0.1 M Et4NI 0.05 M KOH 0.1 M KCl, pH 12.7 pH 1–8 pH 10 Phosphate buffer, pH 7 Britton–Robinson buffer, pH 5.0 Britton–Robinson buffer, pH 8.0 0.1 M KOH, pH 13 B, pH 3.4 Britton–Robinson buffer, pH 1.8 Britton–Robinson buffer, pH 6.8 McIlvaine buffer, pH 2.2 McIlvaine buffer, pH 5.0 McIlvaine buffer, pH 8.0 Britton–Robinson buffer, pH 1.8 Britton–Robinson buffer, pH 6.8 Britton–Robinson buffer, pH 1.8 Britton–Robinson buffer, pH 6.8 A, pH 4.5
1.89 0.96, 1.32 0.40 1.58, 1.82 1.06, 1.66 0.9, 1.5, 1.7 0.92 1.30 1.03, 1.67 1.56, 2.22 1.59 0.86, 0.07 pH 1.43 1.55 1.47 1.55 1.70 1.41 1.16 1.45 1.05 1.16, 1.36 1.47 1.02 1.49 1.17 1.48 0.83
8.85
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Aldehydes (continued) m-Nitrobenzaldehyde Phthalaldehyde 2-Propenal (acrolein) Propionaldehyde Pyrrole-2-carbaldehyde Salicylaldehyde
Trichloroacetaldehyde
Buffer 10% EtOH, pH 2.0 Buffer, pH 3.1 Buffer, pH 7.3 pH 4.5 pH 9.0 0.1 M LiOH, pH 13 0.1 M HCl 50% EtOH McIlvaine buffer, pH 2.2 McIlvaine buffer, pH 5.0 McIlvaine buffer, pH 8.0 Ammonia buffer, pH 8.4 0.1 M KCl 50% EtOH
0.28, 1.20 0.64, 1.07 0.89, 1.29 1.36 1.1 1.93 1.25 0.99, 1.23 1.20, 1.30 1.32 1.35, 1.66 1.55
Ketones Acetone Acetophenone
7H-Benz[de]anthracen-7-one Benzil Benzoin Benzophenone Benzoylacetone
Bromoacetone 2,3-Butanedione 3-Buten-2-one Butyrophenone D-Carvone Chloroacetone Coumarin Cyclohexanone cis-Dibenzoylethylene trans-Dibenzoylethylene Dibenzoylmethane
B, pH 9.3 C D McIlvaine buffer, pH 4.9 D McIlvaine buffer, pH 7.2 D McIlvaine buffer, pH 1.3 0.1 N H2SO4 75% MeOH D McIlvaine buffer, pH 1.3 D McIlvaine buffer, pH 4.9 D McIlvaine buffer, pH 1.3 D McIlvaine buffer, pH 8.6 D McIlvaine buffer, pH 1.3 D McIlvaine buffer, pH 8.6 Buffer, pH 2.6 Buffer, pH 5.3 and pH 7.6 Buffer, pH 9.7 0.1 M LiCl 0.1 M HCl 0.1 M KCl 0.1 M NH4Cl 50% EtOH 0.1 M Et4NI 80% EtOH 0.1 M LiCl McIlvaine buffer, pH 2.0 McIlvaine buffer, pH 5.0 C D, pH 1 D, pH 11 D, pH 1 D, pH 11 D, pH 1.3 D, pH 11.3
1.52 2.46 1.33 1.58 1.08 0.96 0.27 0.50 0.90 1.49 0.94 1.36 1.60 1.68 1.72 0.29 0.84 1.42 1.55 1.71 1.18 0.95 1.11, 1.44 2.45 0.30 0.62, 1.65 0.12 0.57, 1.52 0.59 1.30, 1.62
8.86
SECTION 8
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Ketones (continued) 9,10-Dihydro-9-oxoanthracene 1,5-Diphenyl-1,5-pentanedione 1,5-Diphenylthiocarbazone Flavanone
Fluorescein
Fructose Girard derivatives of aliphatic ketones o-Hydroxyacetophenone p-Hydroxyacetophenone 1,2,3-Indantrione (ninhydrin)
-Ionone Isatin
4-Methyl-3,5-heptadien-2-one 4-Methyl-2,6-heptanedione 4-Methyl-3-penten-2-one 4-Phenyl-3-buten-2-one Phthalide Phthalimide Pulegone Quinalizarin Testosterone
D, pH 2.0 A D, pH 7.0 Acetate buffer Me4NOH 50% 2-PrOH, pH 6.1 Acetate buffer Me4NOH 50% 2-PrOH, pH 9.6 Acetate buffer, pH 2.0 Phthalate buffer, pH 5.0 Borate buffer, pH 10.1 0.02 M LiCl
0.93 2.10 0.6 1.30
pH 8.2 D, pH 5 D, pH 5 Britton–Robinson buffer, pH 2.5 Britton–Robinson buffer, pH 4.5 Britton–Robinson buffer, pH 6.8
1.52 1.36 1.46 0.67, 0.83 0.73, 1.01 0.10, 0.90, 1.20 1.35 1.59, 2.08
Britton–Robinson buffer, pH 9.2 C Phosphate buffer citrate buffer, pH 2.9 Phosphate buffer citrate buffer, pH 4.3 Phosphate buffer citrate buffer, pH 5.4 A A D McIlvaine buffer, pH 1.3 D McIlvaine buffer, pH 11.3 D, pH 1.3 D, pH 8.6 0.1 M Bu4NI 50% dioxane pH 4.2 pH 9.7 C Phosphate buffer 1% EtOH, pH 8.0 D Britton–Robinson buffer, pH 2.6 D Britton–Robinson buffer, pH 5.8 D Britton–Robinson buffer, pH 8.8
1.51 0.50 0.65 1.18, 1.44 1.76
0.3, 0.5 0.3, 0.5, 0.8 0.8 0.64 1.28 1.01 1.60 0.72 1.27 0.20 1.1, 1.5 1.2, 1.4 1.74 0.56 1.20 1.40 1.53, 1.79
8.87
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Quinones Anthraquinone
o-Benzoquinone 2,3-Dimethylnaphthoquinone 1,2-Naphthoquinone 1,4-Naphthoquinone
Acetate buffer 40% dioxane, pH 5.6 Phosphate buffer 40% dioxane, pH 7.9 Britton–Robinson buffer, pH 7.0 Britton–Robinson buffer, pH 9.0 D, pH 5.4 Phosphate buffer, pH 5.0 Phosphate buffer, pH 7.0 Britton–Robinson buffer, pH 7.0 Britton–Robinson buffer, pH 9.0
0.51 0.71 0.20 0.08 0.22 0.03 0.13 0.07 0.19
Acids Acetic acid Acrylic acid Adenosine-5-phosphoric acid 4-Aminobenzenesulfonic acid 3-Aminobenzoic acid Anthranilic acid Ascorbic acid Barbituric acid Benzoic acid Benzoylformic acid
Bromoacetic acid 2-Bromopropionic acid Crotonic acid Dibromoacetic acid Dichloroacetic acid 5,5-Diethylbarbituric acid Flavanol Folic acid Formic acid Fumaric acid
2,4-Hexadienedioic acid Iodoacetic acid Maleic acid
A pH 5.6 HClO4 KClO4, pH 2.2 0.05 M Me4NI pH 5.6 pH 5.6 Birtton–Robinson buffer, pH 3.4 Britton–Robinson buffer, pH 7.0 Borate buffer, pH 9.3 A Britton–Robinson buffer, pH 2.2 Britton–Robinson buffer, pH 5.5 Britton–Robinson buffer, pH 7.2 Britton–Robinson buffer, pH 9.2 pH 1.1 pH 2.0 C pH 1.1 pH 8.2 Borate buffer, pH 9.3 D, pH 5.6 D, pH 7.7 Britton–Robinson buffer, pH 4.6 0.1 M KCl HCl KCl, pH 2.6 Acetate buffer, pH 4.0 Acetate buffer, pH 5.9 Acetate buffer, pH 4.5 pH 1 Britton–Robinson buffer, pH 2.0 Britton–Robinson buffer, pH 4.0 Britton–Robinson buffer, pH 6.0 Britton–Robinson buffer, pH 10.0
2.3 0.85 1.13 1.58 0.67 0.67 0.17 0.06 0.04 2.1 0.48 0.85, 1.26 0.98, 1.25 1.25 0.54 0.39 1.94 0.03, 0.59 1.57 0.00 1.25 1.40 0.73 1.66 0.83 0.93 1.20 0.97 0.16 0.70 0.97 1.11, 1.30 1.51
8.88
SECTION 8
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Acids (continued) Mercaptoacetic acid Methacrylic acid Nitrobenzoic acids Oxalic acid 2-Oxo-1,5-pentanedioic acid 2-Oxopropionic acid
Phenolphthalein
Picric acid
1,2,3-Propenetricarboxylic acid Trichloroacetic acid 3,4,5-Trihydroxybenzoic acid p-Aminophenol
o-Chlorophenol m-Chlorophenol p-Chlorophenol o-Cresol m-Cresol p-Cresol 1,2-Dihydroxybenzene 1,3-Dihydroxybenzene 1,4-Dihydroxybenzene o-Methoxyphenol m-Methoxyphenol p-Methoxyphenol 1-Naphthol 2-Naphthol 1,2,3-Trihydroxybenzene
B, pH 6.8 D 0.1 M LiCl Buffer 10% EtOH, pH 2.0 B, pH 5.4–6.1 HCl KCl, pH 1.8 Ammonia buffer, pH 8.2 Britton–Robinson buffer, pH 5.6 Britton–Robinson buffer, pH 6.8 Britton–Robinson buffer, pH 9.7 Phthalate buffer, pH 2.5 Phthalate buffer, pH 4.7 D, pH 9.6 pH 4.2 pH 11.7 pH 7.0 Ammonia buffer, pH 8.2 Phosphate buffer, pH 10.4 Phosphate buffer, pH 2.9 Phosphate buffer, pH 8.8 Britton–Robinson buffer, pH 6.3 Britton–Robinson buffer, pH 8.6 Britton–Robinson buffer, pH 12.0 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 pH 5.6 A A Britton–Robinson buffer, pH 3.1 Britton–Robinson buffer, pH 6.5 Britton–Robinson buffer, pH 9.5
0.38 1.69 0.2, 0.7 1.80 0.59 1.30 1.17 1.22, 1.53 1.51 0.67 0.80 0.98, 1.35 0.34 0.36, 0.56, 0.96 2.1 0.84, 1.57 0.9, 1.6 0.50 0.1 0.14 0.04 0.16 0.63 0.73 0.65 0.56 0.61 0.54 0.35 0.61 0.23 0.46 0.62 0.41 0.74 0.82 0.35 0.10 0.10
Halogen compounds Bromobenzene 1-Bromobutane
A C C
1.98 2.32 2.27
8.89
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Halogen compounds (continued) C C
2.08 1.63
Tetrabromomethane
A C A C A C C C C A 0.5 M K2SO4 A C D 1% Na2SO3 C Acetate buffer, pH 4.0 C C C C C A C A C C
Tetraiodomethane
C
Tribromomethane ,,-Trichlorotoluene
C C
1.55, 1.60 1.29 1.72 0.78, 1.71 2.07 1.63 2.23 1.91 1.81 1.76 0.13 1.15, 1.47 2.10 1.45 1.48 0.23, 0.89 2.5 1.60 1.12, 1.53 0.8, 1.5 1.4, 1.7 1.72 1.67 2.12 1.63 0.3, 0.75, 1.49 0.45, 1.05, 1.46 0.64, 1.47 0.68, 1.65, 2.00
Bromoethane Bromomethane 1-Bromonaphthalene (also 2-bromonaphthalene) 3-Bromo-1-propene p-Bromotoluene Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 3-Chloro-1-propene -Chlorotoluene p-Chlorotoluene N-Chloro-p-toluenesulfonamide 9,10-Dibromoanthracene p-Dibromobenzene 1,2-Dibromobutane Dibromoethane meso-2,3-Dibromosuccinic acid Dichlorobenzenes Dichloromethane Diiodomethane Hexabromobenzene Hexachlorobenzene Iodobenzene Iodoethane Iodomethane
Nitro and nitroso compounds 1,2-Dinitrobenzene
1,3-Dinitrobenzene 1,4-Dinitrobenzene
Phthalate buffer, pH 2.5 Borate buffer, pH 9.2 Phthalate buffer, pH 2.5 Borate buffer, pH 9.2 Phthalate buffer, pH 2.5 Borate buffer, pH 9.2
0.12, 0.32, 1.26 0.38, 0.74 0.17, 0.29 0.46, 0.68 0.12, 0.33 0.35, 0.80
8.90
SECTION 8
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Nitro and nitroso compounds (continued) Methyl nitrobenzoates
Buffer 10% EtOH, pH 2.0
p-Nitroacetophenone
Britton–Robinson buffer, pH 2.2 Britton–Robinson buffer, pH 10.0
o-Nitroaniline m-Nitroaniline
p-Nitroaniline o-Nitroanisole p-Nitroanisole 1-Nitroanthraquinone Nitrobenzene
Nitrocresols
Nitroethane
2-Nitrohydroquinone
Nitromethane
o-Nitrophenol
0.03 M LiCl 0.02 M benzoic acid in EtOH Britton–Robinson buffer, pH 4.3 Briton-Robinson buffer, pH 7.2 Britton–Robinson buffer, pH 9.2 pH 2.0 Acetate buffer, pH 4.6 Buffer 10% EtOH, pH 2.0 Buffer 10% EtOH, pH 2.0 Britton–Robinson buffer, pH 7.0 HCl KCl 8% EtOH, pH 0.5 Phthalate buffer, pH 2.5 Borate buffer, pH 9.2 Britton–Robinson buffer, pH 2.2 Britton–Robinson buffer, pH 4.5 Britton–Robinson buffer, pH 8.0 Britton–Robinson buffer 30% MeOH, pH 1.8 Britton–Robinson buffer 30% MeOH, pH 4.6 Phosphate buffer citrate buffer, pH 2.1 Phosphate buffer citrate buffer, pH 5.2 Phosphate buffer citrate buffer, pH 8.0 Britton–Robinson buffer 30% MeOH, pH 1.8 Britton–Robinson buffer 30% MeOH, pH 4.6 Britton–Robinson buffer 10% EtOH, pH 2.0 Britton–Robinson buffer 10% EtOH, pH 4.0 Britton–Robinson buffer 10% EtOH, pH 8.0 Britton–Robinson buffer 10% EtOH, pH 10.0
0.20 to 0.25 0.68 to 0.74 0.16, 0.61, 1.09 0.51, 1.40, 1.73 0.88 0.3, 0.8 0.5 0.7 0.36 0.5 0.29, 0.58 0.35, 0.64 0.16 0.16, 0.76 0.30 0.70 0.2 to 0.3 0.4 to 0.5 0.6 0.7 0.8 0.2 0.4 0.5 0.8 0.85 0.23 0.4 0.65 0.80
8.91
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Nitro and nitroso compounds (continued) m-Nitrophenol
p-Nitrophenol
1-Nitropropane
2-Nitropropane Nitrosobenzene 1-Nitroso-2-naphthol
N-Nitrosophenylhydroxylamine o-Nitrotoluene m-Nitrotoluene (also p-nitrotoluene) Tetranitromethane 1,3,5-Trinitrobenzene
Britton–Robinson buffer 10% EtOH, pH 2.0 Britton–Robinson buffer 10% EtOH, pH 4.0 Britton–Robinson buffer 10% EtOH, pH 8.0 Britton–Robinson buffer 10% EtOH, pH 10.0 Britton–Robinson buffer 10% EtOH, pH 2.0 Britton–Robinson buffer 10% EtOH, pH 4.0 Britton–Robinson buffer 10% EtOH, pH 8.0 Britton–Robinson buffer 30% MeOH, pH 1.8 Britton–Robinson buffer 30% MeOH, pH 8.6 Britton–Robinson buffer 30% MeOH, pH 8.0 McIlvaine buffer, pH 2.1 McIlvaine buffer, pH 5.1 McIlvaine buffer, pH 6.0 McIlvaine buffer, pH 8.0 D buffer, pH 4.0 D buffer, pH 7.0 D buffer, pH 9.0 pH 2.0 Phthalate buffer, pH 2.5 Phthalate buffer, pH 7.4 Phthalate buffer, pH 2.5 Phthalate buffer, pH 7.4 pH 12.0 Phthalate buffer, pH 4.1 Borate buffer, pH 9.2
0.37 0.40 0.64 0.76 0.35 0.50 0.82 0.73 0.88 0.95 0.53 0.81 0.03 0.14 0.02 0.20 0.31 0.84 0.35, 0.66 0.60, 1.06 0.30, 0.53 0.58, 1.06 0.41 0.20, 0.29, 0.34 0.34, 0.48, 0.65
Heterocyclic compounds containing nitrogen Acridine Cinchonine 2-Furanmethanol 2-Hydroxyphenazine
D, pH 8.3 B, pH 3 Britton–Robinson buffer, pH 2.0 Britton–Robinson buffer, pH 5.8 Britton–Robinson buffer, pH 4.0
0.80, 1.45 0.90 0.96 1.38, 1.70 0.24
8.92
SECTION 8
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Heterocyclic compounds containing nitrogen (continued) 8-Hydroxyquinoline 3-Methylpyridine 4-Methylpyridine Phenazine Pyridine Pyridine-2-carboxylic acid Pyridine-3-carboxylic acid Pyridine-4-carboxylic acid Pyrimidine Quinoline-8-carboxylic acid Quinoxaline
B, pH 5.0 Phosphate buffer, pH 8.0 D 0.1 M LiCl D 0.1 M LiCl Phosphate buffer citrate buffer, pH 7.0 Phosphate buffer citrate buffer, pH 7.0 B, pH 4.1 B, pH 9.3 0.1 M HCl Britton–Robinson buffer, pH 6.1 pH 9.0 Citrate buffer, pH 3.6 Ammonia buffer, pH 9.2 pH 9 Phosphate buffer citrate buffer, pH 7.0
1.12 1.18, 1.71 1.76 1.87 0.36 1.75 1.10 1.48, 1.94 1.08 1.14 1.39, 1.68 0.92, 1.24 1.54 1.11 0.66, 1.52
Azo, hydrazine, hydroxylamine, and oxime compounds Azobenzene Azoxybenzene Benzoin-1-oxime
Benzoylhydrazine Dimethylglyoxime Hydrazine Hydroxylamine Oxamide Phenylhydrazine Phenylhydroxylamine
Salicylaldoxime Thiosemicarbazide Thiourea
D, pH 4.0 D, pH 7.0 Buffer 20% EtOH, pH 6.3 Buffer, pH 2.0 Buffer, pH 5.6 Buffer, pH 8.2 0.13 M NaOH, pH 13.0 Ammonia buffer, pH 9.6 Britton–Robinson buffer, pH 9.3 Britton–Robinson buffer, pH 4.6 Britton–Robinson buffer, pH 9.2 Acetate buffer McIlvaine buffer, pH 2 0.13 M NaOH, pH 13.0 McIlvaine buffer 10% EtOH, pH 2 McIlvaine buffer 10% EtOH, pH 4–10 Phosphate buffer, pH 5.4 Borate buffer, pH 9.3 0.1 M sulfuric acid
0.20 0.50 0.30 0.88 1.08 1.67 0.30 1.63 0.09 1.42 1.65 1.55 0.19 0.36 0.68 0.33 0.061 pH 1.02 0.26 0.02
8.93
ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM
TABLE 8.11 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25 C (continued ) Compound
Solvent system
E1/2
Indicators and dyestuffs Brilliant Green Indigo carmine Indigo disulfonate Malachite Green G Metanil yellow Methylene blue Methylene green Methyl orange Morin Neutral red
HCl KCl, pH 2.0 pH 2.5 pH 7.0 HCl KCl, pH 2.0 Phosphate buffer 1% EtOH, pH 7.0 Britton–Robinson buffer, pH 4.9 Britton–Robinson buffer, pH 9.2 Phosphate buffer 1% EtOH, pH 7.0 Phosphate buffer 1% EtOH, pH 7.0 D, pH 7.6 Britton–Robinson buffer, pH 2.0 Britton–Robinson buffer, pH 7.0
0.2, 0.5 0.24 0.37 0.2, 0.5 0.51 0.15 0.30 0.12 0.51 1.7 0.21 0.57
Peroxide Ethyl peroxide
0.02 M HCl
0.2
SECTION 9
DATA USEFUL IN LABORATORY MANIPULATION AND ANALYSIS
COOLING MIXTURES . . . . . . . . . . . . . . . . . . . . . . Table 9.1 Cooling Mixtures Made from Dry Ice and Salts . Table 9.2 Dry Ice or Liquid Nitrogen Slush Baths . . . . . HUMIDIFICATION AND DRYING . . . . . . . . . . . . . . . Table 9.3 Humidity (%) Maintained by Saturated Solutions of Various Salts at Specified Temperatures . . . Table 9.4 Humidity (%) Maintained by Saturated Solutions of Common Salts at Specified Temperatures . . Table 9.5 Drying Agents . . . . . . . . . . . . . . . . . . SEPARATION METHODS . . . . . . . . . . . . . . . . . . . . Table 9.6 Solvents of Chromatographic Interest . . . . . . Table 9.7 Solvents Having the Same Refractive Index and the Same Density at 25 C . . . . . . . . . . Table 9.8 McReynolds’ Constants for Stationary Phases in Gas Chromatography . . . . . . . . . . . . .
9.1
. . . .
. . . .
. . . .
9.2 9.2 9.2 9.2
. . . .
9.3
. . . .
. . . .
9.3 9.4 9.5 9.5
. . . .
9.7
. . . .
9.10
. . . .
. . . .
. . . .
9.2
SECTION 9
COOLING MIXTURES Convenient cooling mixtures can be prepared in several ways. First, an inorganic salt may be mixed with finely shaved dry ice. Such a mixture can be used to maintain temperatures as shown in Table 9.1. TABLE 9.1 Cooling Mixtures Made from Dry Ice and Salts
Salt CaCl2 · 6H2O
NH4Cl NaBr MgCl2
Dry ice, g/100 g
Minimum temperature, C
41 81 123 143 25 66 85
9.0 21.5 40.3 55 15.4 28 34
A more common method for preparing a low temperature bath is to mix an organic substance with either dry ice or liquid nitrogen. Dry ice (CO2, 78 C) can be added in small lumps to the solvent until a slight excess of dry ice remains. Alternately, liquid nitrogen (N2, 196 C) can be poured into the solvent until a slush is formed that consists of the solid–liquid mixture at its melting point. TABLE 9.2 Dry Ice or Liquid Nitrogen Slush Baths
Substance Ethylene glycol 1,2-Dichlorobenzene Carbon tetrachloride Bromobenzene Methoxybenzene Chlorobenzene Bis(2-ethoxyethyl) ether N-Methylaniline p-Cymene
Temperature, C 13 17 22.9 31 37 45 44 57 68
Substance Acetone–CO2 Ethyl acetate 2-Butanone Hexane Methanol Carbon disulfide Bromoethane Pentane 2-Methylbutane
Temperature, C 77 84 87 95 98 112 119 130 160
HUMIDIFICATION AND DRYING A saturated aqueous solution in contact with an excess of a definite solid phase at a given temperature will maintain constant humidity in an enclosed space. Table 9.3 identifies a number of salts suitable for this purpose. The aqueous tension (in millimeters of Hg) of a solution at a given temperature is found by multiplying the decimal fraction of the humidity by the aqueous tension at 100% humidity for the specific temperature. For example, the aqueous tension of a saturated solution of NaCl at 20 C is 0.757 17.54 13.28 mmHg and at 80 C is 0.764 355.1 271.3 mmHg.
9.3
DATA USEFUL IN LABORATORY MANIPULATION AND ANALYSIS
TABLE 9.3 Humidity (%) Maintained by Saturated Solutions of Various Salts at Specified Temperatures Temperature, C Solid phase
10
20
25
97 93 85.0 84 75.7 75
98.0 97 92.5 84.3 80.7 75.3 73.8
66
65 57.7 54 52.9 42.8
K2Cr2O7 K2SO4 KNO3 KCl KBr NaCl NaNO3 KI NaNO2 Na2CrO4 · 4H2O NaBr · 2H2O Na2Cr2O7 · 2H2O Mg(NO3)2 · 6H2O K2CO3 · 2H2O NaI · 2H2O MgCI2 · 6H2O CaCl2 · 6H2O KF · 2H2O KC2H3O2 · 1.5H2O LiCl · H2O KOH
34 38
57.9 55 55 44 47 33 32.6
24 13 13
23 12 9
Aqueous tension at 100% humidity, mmHg
9.21
17.54
98 95 88 86 76 77
58 58 57 47
30
60
25.3 30
23.2
22.8 20 11 6
21.0
22.8
22.5 11.1 8
52 42 36.4 33 26 27.4 22 12 7
96 82 80.7 79.0 74.9 67.5 63.1 59.3 55.6 49.9 55.2 43
11 5
23.76
31.82
55.32
149.4
74.9 72.8 63.0 64.6
TABLE 9.4 Humidity (%) Maintained by Saturated Solutions of Common Salts at Specified Temperatures Solid phase KF KI (NH4)2SO4 BaCl2 · 2H2O NaF
80
96 88 81.7 79.6 74.7 71.5 66.8 61.5 61.8 52.4 53.6 49 40 32.3 32
33.0 29
96 91 84
40
Temperature, C 100 100 20–30 108 25 100
Humidity, % 22.9 56.2 81.1 75 90.2 96.6
79.5 79.3 76.4 65.5 60.8 58.9 56.2 50.0 56.0
355.1
TABLE 9.5 Drying Agents 9.4 Drying agent Al2O3 Ba(ClO4)2a BaO CaC2b CaCl2c CaH2d CaO CaSO4 Dow Desiccant 812e K2CO3 KOH LiAlH4f Mg(ClO4)2a MgO MgSO4 Molecular sieves 4X 5X 9.5% Na–Pb alloyd Na2SO4 P2O5 Silica gel Sulfuric acid a
Most useful for
c
Grams water removed per gram of desiccant
Regeneration, C
Hydrocarbons Inert gas streams Basic gases: hydrocarbons, aldehydes, alcohols Ethers Inert organics
0.002–0.005 0.6–0.8 0.0007–0.003
Hydrocarbons, ethers, amines, esters, higher alcohols Ethers, esters, alcohols, amines Most organic substances Most materials Most materials except acids and phenols Amines Hydrocarbons Gas streams All but acidic compounds Most organic compounds
1 105
0.0005–0.002 0.008 1–12
1.9 0.24 0.45 0.15–0.75
Difficult, 1000 225 No 158 Impossible Impossible 250 (high vacuum) 800 Not feasible
Molecules with effective diameter 4Å Molecules with effective diameter 5Å Hydrocarbons, ethers Ketones, acids, alkyl and aryl halides Gas streams; not suitable for alcohols, amines, ketones, or amines Most organic amines Air and inert gas streams
0.001 0.001 (For solvents only) 12 2 105
0.18 0.18 0.08 1.25 0.5
250 250 Impossible 150 Not feasible
0.002–0.07 0.003–0.008
0.2 Indefinite
200–350 Not feasible
May form explosive mixtures on contact with organic material. Explosive C2H2 formed. Drying action slow. d H2 formed. e Used for column drying of organic liquids. f Strong reductant. b
Residual water, mg H2O per liter of dry air (25 C)
0.1–0.2
0.01–0.003 0.005–0.07 (5–200 ppm)
0.2 0.17 0.12
175 (24 h) 140 1000
0.56 0.15 (1 H2O) 0.30 (2 H2O) 0.85
Impossible 250
0.31 0.07 0.16
0.01–0.9
Impossible
SEPARATION METHODS TABLE 9.6 Solvents of Chromatographic Interest (arranged in order of increasing solvent strength)
Solvent
9.5
Fluoroalkanes Pentane Hexane 2,2,4-Trimethylpentane Decane Cyclohexane Cyclopentane Diisobutylene 1-Pentene Carbon disulfide Carbon tetrachloride 1-Chlorobutane 1-Chloropentane o-Xylene Diisopropyl ether 2-Chloropropane Toluene 1-Chloropropane Chlorobenezene Benzene Bromoethane Diethyl ether Diethyl sulfide Chloroform
Boiling point, C
36 69 99 174 81 49 101 30 46 77 78 98 144 68 35 111 47 132 80 38 35 92 62
Solvent strength parameter e (SiO2)
0.0 0.0 0.05
0.14 0.14
0.25 0.38 0.26
e (Al2O3) 0.25 0.0 0.0 0.01 0.04 0.04 0.05 0.06 0.08 0.15 0.18 0.26 0.26 0.26 0.28 0.29 0.29 0.30 0.40 0.32 0.37 0.38 0.38 0 40
Viscosity, mN · s · m2 (20 C)
0.2415 C 0.31 0.50 0.93 0.98 0.44 0.240 C 0.36 0.97 0.43 0.58 0.81 0.3825 C 0.33 0.59 0.35 0.80 0.65 0.40 0.25 0.45 0.57
Refractive index (20 C) 1.25 1.358 1.375 1.392 1.412 1.426 1.407 1.411 1.371 1.626 1.466 1.402 1.412 1.505 1.369 1.378 1.497 1.389 1.525 1.501 1.424 1.353 1.443 1.443
UV cutoff, nm
210 210 215 210 210 210
380 265 220 225 290 220 225 286 225 280 218 290 245
9.6
TABLE 9.6 Solvents of Chromatographic Interest (continued )
Solvent Dichloromethane 4-Methyl-2-pentanone Tetrahydrofuran 1,2-Dichloroethane 2-Butanone 1-Nitropropane Acetone 1,4-Dioxane Ethyl acetate Methyl acetate 1-Pentanol Dimethyl sulfoxide Aniline Diethylamine Nitromethane Acetonitrile Pyridine 2-Butoxyethanol 1-Propanol 2-Propanol Ethanol Methanol Ethylene glycol Acetic acid Water
Boiling point, C 41 116 66 84 80 131 56 101 77 56 138 189 184 56 101 82 115 170 97 82 78 65 198 118 100
Solvent strength parameter e (SiO2)
0.47 0.49 0.38
0.50
e (Al2O3) 0.42 0.43 0.45 0.49 0.51 0.53 0.56 0.56 0.58 0.60 0.61 0.62 0.62 0.63 0.64 0.65 0.71 0.74 0.82 0.82 0.88 0.95 1.11 large large
Viscosity, mN · s · m2 (20 C) 0.44 0.4215 C 0.55 0.80 0.4215 C 0.80 25C 0.32 1.4415 C 0.45 0.4815 C 4.1 2.47 4.40 0.33 0.67 0.37 0.97 3.15 25C 2.25 2.50 1.20 0.59 21.8 1.23 1.00
Refractive index (20 C) 1.425 1.396 1.407 1.445 1.379 1.402 1.359 1.420 1.372 1.362 1.410 1.478 1.586 1.386 1.394 1.344 1.510 1.420 1.386 1.377 1.361 1.328 1.432 1.372 1.333
UV cutoff, nm 235 335 220 228 330 380 330 215 255 260 210 265 275 380 190 330 220 210 210 210 210 210 260 191
9.7
DATA USEFUL IN LABORATORY MANIPULATION AND ANALYSIS
TABLE 9.7 Solvents having the Same Refractive Index and the Same Density at 25 C Refractive index Solvent 1 Acetone Ethyl formate Ethanol 2,2-Dimethylbutane 2-Methylpentane Isopropyl acetate 3-Butanone Butyraldehyde Dipropyl ether Propyl acetate Propyl acetate Butyronitrile Ethyl propionate 1-Propanol Isobutyl formate 1-Chloropropane Butyl formate Methyl butyrate Butyl acetate 4-Methyl-2-pentanone 4-Methyl-2-pentanone 2-Methyl-1-propanol 2-Methyl-1-propanol 2-Butanol 2-Hexanone Pentanonitrile 2-Chlorobutane Butyric acid 1-Butanol 1-Chloro2-methylpropane 1-Chloro2-methylpropane Methyl methacrylate Triethylamine Butylamine Isobutyl butyrate 1-Nitropropane Pentyl acetate Pentyl acetate Dodecane 1-Chlorobutane Isopentanoic acid Dipropylamine 2-Pentanol 3-Methyl-1-butanol 3-Methyl-1-butanol Hexanonitrile
Solvent 2
Density, g/mL
1
2
1
2
Ethanol Methyl acetate Propionitrile 2-Methylpentane Hexane 2-Chloropropane Butyraldehyde Butyronitrile Butyl ethyl ether Ethyl propionate 1-Chloropropane 2-Methyl-2-propanol 1-Chloropropane 2-Pentanone 1-Chloropropane Butyl formate Methyl butyrate 2-Chlorobutane 2-Chlorobutane Pentanonitrile 1-Butanol Pentanonitrile 2-Hexanone 2,4-Dimethyl-3-pentanone 1-Butanol 2,4-Dimethyl-3-pentanone Isobutyl butyrate 2-Methoxyethanol 3-Methyl-2-pentanone
1.357 1.358 1.359 1.366 1.369 1.375 1.377 1.378 1.379 1.382 1.382 1.382 1.382 1.383 1.383 1.386 1.387 1.392 1.392 1.394 1.394 1.394 1.394 1.395 1.395 1.395 1.395 1.396 1.397
1.359 1.360 1.363 1.369 1.372 1.376 1.378 1.382 1.380 1.382 1.386 1.385 1.386 1.387 1.386 1.387 1.391 1.395 1.395 1.395 1.397 1.395 1.395 1.399 1.397 1.399 1.399 1.400 1.398
0.788 0.916 0.786 0.644 0.649 0.868 0.801 0.799 0.753 0.883 0.883 0.786 0.888 0.806 0.881 0.890 0.888 0.875 0.877 0.797 0.797 0.798 0.798 0.803 0.810 0.795 0.868 0.955 0.812
0.786 0.935 0.777 0.649 0.655 0.865 0.799 0.786 0.746 0.888 0.890 0.781 0.890 0.804 0.890 0.888 0.875 0.868 0.868 0.795 0.812 0.795 0.810 0.805 0.812 0.805 0.860 0.960 0.808
Isobutyl butyrate
1.397
1.399
0.872
0.860
Pentyl acetate 3-Methyl-2-pentanone 2,2,3-Trimethylpentane Dodecane 1-Chlorobutane Propionic anhydride 1-Chlorobutane Tetrahydrofuran Dipropylamine Tetrahydrofuran 2-Ethoxyethanol Cyclopentane 4-Heptanone Hexanonitrile 4-Heptanone 4-Heptanone
1.397 1.398 1.399 1.399 1.399 1.399 1.400 1.400 1.400 1.401 1.402 1.403 1.404 1.404 1.404 1.405
1.400 1.398 1.401 1.400 1.401 1.400 1.400 1.404 1.400 1.404 1.405 1.404 1.405 1.405 1.405 1.405
0.872 0.795 0.723 0.736 0.860 0.995 0.871 0.871 0.746 0.871 0.923 0.736 0.804 0.805 0.805 0.801
0.871 0.808 0.712 0.746 0.875 1.007 0.881 0.885 0.736 0.885 0.926 0.740 0.813 0.801 0.813 0.813
9.8
SECTION 9
TABLE 9.7 Solvents having the Same Refractive Index and the Same Density at 25 C (continued ) Refractive index Solvent 1
Solvent 2
1
Hexanonitrile Hexanonitrile 4-Heptanone 2-Ethoxyethanol 2-Heptanone 2-Heptanone 2-Heptanone 2-Pentanol 1-Pentanol 2-Methyl-1-butanol Isopentyl isopentanoate Dipentyl ether 2,4-Dimethyldioxane 2,4-Dimethyldioxane Diethyl malonate 3-Chloropentene 2-Octanone 2-Octanone 3-Octanone 3-Methyl-2-heptanone 3-Methyl-2-heptanone 1-Hexanol Dibutylamine Allylamine Butyrolactone Butyrolactone 2-Chloromethyl-2propanol N-Methylmorpholine 1,3-Propanediol Methyl salicylate Methyl salicylate 1-Chlorodecane Diethylene glycol Diethylene glycol
1-Pentanol 2-Methyl-1-butanol 1-Pentanol Pentanoic acid 1-Pentanol 2-Methyl-1-butanol Dipentyl ether 3-Isopropyl-2-pentanone Dipentyl ether Dipentyl ether Allyl alcohol 2-Octanone 3-Chloropentene Hexanoic acid Ethyl cyanoacetate Octanoic acid 1-Hexanol Octanonitrile 3-Methyl-2-heptanone 1-Hexanol Octanonitrile Octanonitrile Allylamine Methylcyclohexane 1,3-Propanediol Diethyl maleate Diethyl maleate
1.405 1.405 1.405 1.405 1.406 1.406 1.406 1.407 1.408 1.409 1.410 1.410 1.412 1.412 1.412 1.413 1.414 1.414 1.414 1.415 1.415 1.416 1.416 1.419 1.434 1.434 1.436
Dibutyl decanedioate Diethyl maleate Diethyl sulfide 1-Butanethiol Mesityl oxide Formamide Ethylene glycol diglycidyl ether Ethylene glycol diglycidyl ether Cyclohexanone 1-Amino-2-propanol Tetrahydrofurfuryl alcohol
Formamide
2-Methylmorpholine 2-Methylmorpholine Dipropylene glycol monoethyl ether 1-Amino-2-methyl2-Butylcyclohexanone 2-pentanol 2-Propylcyclohexanone 4-Methylcyclohexanol
Density, g/mL 2
1
2
1.408 1.409 1.408 1.406 1.408 1.409 1.410 1.409 1.410 1.410 1.411 1.414 1.413 1.415 1.415 1.415 1.416 1.418 1.416 1.416 1.418 1.418 1.419 1.421 1.438 1.438 1.438
0.801 0.801 0.813 0.926 0.811 0.811 0.811 0.804 0.810 0.815 0.853 0.799 0.935 0.935 1.051 0.932 0.814 0.814 0.830 0.818 0.818 0.814 0.756 0.758 1.051 1.051 1.059
0.810 0.815 0.810 0.936 0.810 0.815 0.799 0.808 0.799 0.799 0.847 0.814 0.932 0.923 1.056 0.923 0.814 0.810 0.818 0.814 0.810 0.810 0.758 0.765 1.049 1.064 1.064
1.436 1.438 1.438 1.438 1.441 1.445 1.445
1.440 1.438 1.442 1.442 1.442 1.446 1.447
0.924 1.049 0.836 0.836 0.862 1.128 1.128
0.932 1.064 0.831 0.837 0.850 1.129 1.134
1.446
1.447
1.129
1.134
1.446 1.446 1.446
1.448 1.448 1.450
0.951 0.951 1.043
0.943 0.961 1.050
1.449
1.453
0.904
0.901
1.452
1.454
0.923
0.908
9.9
DATA USEFUL IN LABORATORY MANIPULATION AND ANALYSIS
TABLE 9.7 Solvents having the Same Refractive Index and the Same Density at 25 C (continued ) Refractive index Solvent 1
Solvent 2
Carbon tetrachloride
4,5-Dichloro-1,3dioxolan-2-one N-Butyldiethanolamine Cyclohexanol D--Pinene trans-Decahydronaphthalene Propylbenzene p-Xylene Propylbenzene Toluene Phenyl 1-hydroxyphenyl 1,3-Dimorpholyl-2ether propanol Phenetole Pyridine 2-Furanmethanol Thiophene m-Cresol Benzaldehyde
1
2
Density, g/mL 1
2
1.459
1.461
1.584
1.591
1.461 1.464
1.465 1.468
0.965 0.855
0.968 0.867
1.490 1.490
1.493 1.494
0.858 0.858
0.857 0.860
1.491
1.493
1.081
1.094
1.505 1.524 1.542
1.507 1.526 1.544
0.961 1.057 1.037
0.978 1.059 1.041
McReynolds’ Constants The Kovats retention indices (R.I.) indicate where compounds will appear on a chromatogram with respect to unbranched alkanes injected with the sample. By definition, the R.I. for pentane is 500, for hexane is 600, for heptane is 700, and so on, regardless of the column used or the operating conditions, although the exact conditions and column must be specified, such as liquid loading, particular support used, and any pretreatment. For example, suppose that on a 20% squalane column at 100 C, the retention times for hexane, benzene, and octane are found to be 15, 16, and 25 min, respectively. On a graph of ln tR (naperian logarithm of the adjusted retention time) of the alkanes versus their retention indices, a R.I. of 653 for benzene is read off the graph. The number 653 for benzene (see the last line of Table 9.8 in the column headed “1” under “Reference compounds”) means that it elutes halfway between hexane and heptane on a logarithmic time scale. If the experiment is repeated with a dinonyl phthalate column, the R.I. for benzene is found to be 736 (lying between heptane and octane), which implies that dinonyl phthalate will retard benzene slightly more than squalane will; that is, dinonyl phthalate is slightly more polar than squalane by I 83 units (the entry in Table 9.8 for dinonyl phthalate in the column headed “1” under “Reference compounds”). The difference gives a measure of solute– solvent interaction due to all intermolecular forces other than London dispersion forces. The latter are the principal solute–solvent effects with squalane. Now the overall effects due to hydrogen bonding, dipole moment, acid–base properties, and molecular configuration can be expressed as I ax by cz du es where x I for benzene (the column headed “1” in Table 9.8, intermolecular forces typical of aromatics and olefins), y I for 1-butanol (the column headed “2” in Table 9.8, electron attraction typical of alcohols, nitriles, acids, and nitro and alkyl monochlorides, dichlorides and trichlorides), z I for 2-pentanone (the column headed “3” in Table 9.8, electron repulsion typical of ketones, ethers, aldehydes, esters, epoxides, and dimethylamino derivatives), u I for 1-nitropropane (the column headed “4” in Table 9.8, typical of nitro and nitrile derivatives), and s I for pyridine (or dioxane) (the column headed “5” in Table 9.8).
9.10
TABLE 9.8 McReynolds’ Constants for Stationary Phases in Gas Chromatography The McReynolds’ constants listed are differences in retention index units between the reference compound run on squalane and on the other phases listed. The last entry in the table shows the absolute retention indices for the reference compounds on squalane. Reference compounds are (1) benzene, (2) 1-butanol, (3) 2-pentanone, (4) 1 nitropropane, and (5) pyridine. (Note that Rohrschneider’s constants are based on these reference compounds and may differ slightly from the McReynolds’ constants. The reference compounds for Rohrschneider’s constants are (1) benzene, (2) ethanol, (3) 2-butanone, (4) nitromethane, and (5) pyridine.) The minimum temperature is that at which normal gas–liquid chromatography (GLC) behavior is expected. Below that temperature, the phase will be a solid or an extremely viscous gum. The maximum temperature is that above which the bleed rate will be excessive.
Liquid phase Squalane Paraffin oil Apolane-87
Apiezon L SE 30 OV-10l OV-73 SE 54 OV-3 Dexsil 300 Kel F Wax Apiezon H
Chemical type
Similar liquid phases
Temperature, C Minimum
Maximum
Reference compounds 1
2
3
4
5
Sum
(2,6,10,15,19,23Hexamethyl)tetracosane
20
150
0
0
0
0
0
0
(24,24-Diethyl-19,29dioctadecyl)heptatetracontane
30
280
9 21
5 10
2 3
6 12
11 25
33 71
50 50 50
250 350 350
32 15 17
22 53 57
15 44 45
32 64 67
42 41 43
143 217 229
0
325
32
72
65
98
67
334
50 0
300 350
33 44
72 86
66 81
99 124
67 88
337 423
50
500 150 300
47 55 59
80 67 86
103 148 114 143 81 151
96 116 129
474 495 506
Poly(dimethylsiloxane) Poly(diphenyldimethylsiloxane), 5%:95% Poly(diphenylvinyldimethylsiloxane), 5%:1%:94% Poly(diphenyldimethylsiloxane), 10%:90% Poly(carboranemethylsiloxane)
SP-2100, SF 96 OV-1, DC 200, DC 410 SE 52
Dexsil 400 OV-7 Di(2-ethylhexyl) sebacate Diisodecyl adipate Decyl octyl adipate Bis(2-ethylhexyl)tetrachlorophthalate Diisodecyl phthalate Dinonyl phthalate OV-11 Dioctyl phthalate Hallcomid M-18 OV-17 Dexsil 410 UCON LB-550-X Span 80 OV-22 Polypropylene glycol Didecyl phthalate OV-25
9.11
Polyphenyl ether OS-138 (6 rings) Neopentyl glycol sebacate Squalene UCON 50-HB-280X Tricresyl phosphate
Carborane and methylphenylsilicone Poly(diphenyldimethylsiloxane), 20%:80%
Poly(diphenyldimethylsiloxane), 35%:65%
DC 550
DC 710
Poly(diphenyldimethylsiloxane), 50%:50% Carborane and methylcyanoethylsilicone
Poly(diphenyldimethylsiloxane), 65%:35%
Poly(diphenyldimethylsiloxane), 75%:25%
HI-EFF-3CP
50 20
500 350
72 69
108 118 166 113 111 171
123 128
587 592
0
125 175
0
150
72 71 79 112
168 171 179 150
180 185 193 168
125 128 134 181
653 668 704 734
0 20 0
175 150 350
84 83 107
173 137 218 183 147 231 149 153 228
155 159 190
767 803 827
20 40 0
125 150 325
92 79 119
186 150 236 268 130 222 158 162 243
167 146 202
831 845 884
50
500
72
286 174 249
171
952
0 15 0
200 150 350
118 97 160
271 158 243 266 170 216 188 191 283
206 268 253
996 1017 1075
0 10 0
150 175 350
128 136 178
294 173 264 255 213 320 204 208 305
226 235 280
1085 1159 1175
0
225
182
233 228 313
293
1249
50 0 0 20
225 100 200 125
172 152 177 176
327 341 362 321
326 344 302 299
1394 1404 1419 1420
108 113 119 123
225 328 227 250
344 329 351 374
9.12
TABLE 9.8 McReynolds’ Constants for Stationary Phases in Gas Chromatography (continued )
Liquid phase Sucrose acetate isobutyrate QF-1 OV-210 OV-215 UCON 50-HB-2000 Triton X-100 UCON 50-HB-5100 Siponate DS-10 Tween 80 XE-60 OV-225 Neopentyl glycol adipate UCON 75-H-90000 Triton X-305 Neopentyl glycol succinate Igepal CO 990 Carbowax 20M Epon 1001 Carbowax 4000 Ethylene glycol isophthalate Ethylene glycol adipate Butane-1,4-diol succinate Phenyldiethanolamine succinate
Chemical type
Poly(trifluoropropylsiloxane) Poly(trifluoropropylmethylsiloxane) Emulphor ON-870
Similar liquid phases
SP-2401, FS 1265 XE 6O
Poly(cyanoethylphenylmethylsiloxane) Poly(cyanopropylphenylmethylsiloxane) HI-EFF-3AP Igepal CO-880 HI-EFF-3BP Poly(ethylene glycol)
FFAP, SP-2300
HI-EFF-2EP HI-EFF-2AP HI-EFF-4BP HI-EFF-10BP
Temperature, C Minimum
Maximum
0 0 0
Reference compounds 1
2
200 250 275
172 144 146
0 0 0 0 0 0
275 200 200 200 200 150
0 0 50 100 0 50 100 25 50 60 100 100 50 0
3
5
Sum
330 251 378 233 355 463 238 358 468
295 305 310
1426 1500 1520
149 202 203 214 99 227
240 394 399 418 569 430
478 392 402 421 344 438
315 341 362 375 388 396
1545 1582 1634 1706 1720 1747
250
204
381 340 493
367
1785
265 225 200 200 230 200 275 225 200 225 225 225 200
228 232 255 262 272 298 322 284 325 326 372 369 386
369 421 452 467 469 508 536 489 551 508 576 591 555
386 424 406 430 474 475 510 601 520 561 617 629 654
1813 1849 1882 1961 2120 2166 2308 2319 2353 2427 2673 2207 2741
363 253 268 278 320 283
338 311 299 314 366 345 368 406 375 425 453 457 472
4
492 461 470 488 539 540 572 539 582 607 655 661 674
Diethylene glycol adipate
HI-EFF-1AP, LAC- 1-R-296, SP- 2330
Carbowax 1540 Hyprose SP-80 SILAR-7CP ECNSS-M EGSS-X Ethylene glycol phthalate SILAR-9CP SILAR-10C Diethylene glycol succinate Tetrahydroxyethylenediamine Tetracyanoethylated pentaerythritol Ethylene glycol succinate 1,2,3,4-Tetrakis(2-cyanoethoxy)butane 1,2,3,4,5,6-Hexakis (2 cyanoethoxy)cyclohexane 1,2,3-Tris(2-cyanoethoxy)propane N,N-Bis(2-cyanoethyl)formamide OV-275
HI-EFF-2GP SP-2340 HI-EFF-1BP, LAC-3-R-728 THEED
HI-EFF-2BP
Dicyanoallylsilicone
Absolute retention index values on squalane for reference compounds
25
275
378
603 460 665
658
2764
50 0 0 30 90 100 0 25 20
175 175 250 200 200 200 250 275 200
371 336 440 421 484 453 489 523 499
639 742 638 690 710 697 725 757 751
666 639 844 803 831 816 910 942 840
641 727 673 732 778 872 778 801 860
2770 2936 3200 3227 3388 3410 3536 3682 3543
0 30
150 175
463 526
942 626 801 782 677 920
893 837
3725 3742
100
200
537
787 643 903
889
3759
110 125
200 150
617 567
860 773 1048 941 825 713 978 901
4239 3984
0 0
175 125
593 690
857 752 1028 915 4145 991 853 1110 1000 4644
25
250
781
1006 885 1177 1089 4938
453 492 605 581 585 602 631 659 593
653 590 627 652
699
9.13
SECTION 10
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
POLYMERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 10.1 Plastic Families . . . . . . . . . . . . . . . . . FORMULAS AND KEY PROPERTIES OF PLASTIC MATERIALS Table 10.2 Properties of Commercial Plastics . . . . . . . FORMULAS AND ADVANTAGES OF RUBBERS . . . . . . . . . Table 10.3 Properties of Natural and Synthetic Rubbers . . CHEMICAL RESISTANCE . . . . . . . . . . . . . . . . . . . . . . Table 10.4 Resistance of Selected Polymers and Rubbers to Various Chemicals at 20 C . . . . . . . . . . Table 10.5 Common Abbreviations used in Polymer Chemistry . . . . . . . . . . . . . . . . . . . . GAS PERMEABILITY . . . . . . . . . . . . . . . . . . . . . . . . Table 10.6 Gas Permeability Constants (1010 P) at 25 C for Polymers and Rubbers . . . . . . . . . . . Table 10.7 Vapor Permeability Constants (1010 P) at 35 C for Polymers . . . . . . . . . . . . . . FATS, OILS, AND WAXES . . . . . . . . . . . . . . . . . . . . . . Table 10.8 Constants of Fats and Oils . . . . . . . . . . . Table 10.9 Constants of Waxes . . . . . . . . . . . . . . .
10.1
. . . . . . .
. . . . . . .
10.2 10.7 10.9 10.24 10.60 10.64 10.65
. .
10.65
. . . .
10.67 10.70
. .
10.70
. . . .
10.73 10.73 10.73 10.76
. . . .
10.2
SECTION 10
POLYMERS General Polymers are macromolecules that result from combinations of individual building blocks called monomer molecules. Most polymers are regular structures in which a single unit repeats many times. This produces a range of macromolecules that have similar structures and molecular weights. The ensemble of molecules typically exhibit average molecular weights but have characteristic properties. Polymerization of ethylene, CH2 ¨ CH2, results in polyethylene, ( ˆ CH2 ˆ CH2 ˆ )n such that “n” is a range of values. If the average chain possesses 1000 monomer units, chains having values of n such as 998, 999, 1001, 1002, etc. will be present as well. There will be more such chains near the average value and fewer or none when n is far from the average value. In some polymers, long segments of linear polymer chains are oriented in a regular manner with respect to one another. Such polymers have many of the physical characteristics of crystals and are said to be crystalline. Polymers that have polar functional groups show a greater tendency to be crystalline. Orientation is aided by alignment of dipoles on different chains. Van der Waals’ interactions between long hydrocarbon chains may provide sufficient total attractive energy to account for a high degree of regularity within the polymers. Irregularities such as branch points, co-monomer units, and cross-links lead to amorphous polymers. These have less regular structures and typically do not have true melting points. Instead, they have glass transition temperatures at which the rigid and glass-like material becomes a viscous liquid as the temperature is raised. Elastomers. Elastomer is a generic name for polymers that exhibit rubber-like elasticity. Elastomers are soft yet sufficiently elastic that they can usually be stretched several hundred percent under tension. When the stretching force is removed, they quickly retract and recover their original dimensions. Polymers that soften or melt and then solidify and regain their original properties on cooling are called thermoplastic. A thermoplastic polymer is usually a single strand of linear polymer with few if any cross-links. Thermosetting Polymers. Polymers that soften or melt on warming and then become infusible solids are called thermosetting. The term implies that thermal decomposition has not taken place. Thermosetting plastics contain a cross-linked polymer network that extends through the final material, making it stable to heat and insoluble in organic solvents. Many molded plastics are shaped while molten and are then heated further to become rigid solids of desired shapes. Synthetic Rubbers. Synthetic rubbers are polymers with rubber-like characteristics that are prepared from dienes or olefins. Rubbers with special properties can also be prepared from other polymers, such as polyacrylates, fluorinated hydrocarbons, and polyurethanes. Structural Differences. Polymers exhibit structural differences resulting from the type of monomer used, the polymerization method employed, and other factors. A linear polymer consists of long segments of single strands that are oriented in a regular manner with respect to one another. Branched polymers have substituents attached to the repeating units that extend the polymer laterally. When these units participate in chain propagation and link together chains, a cross-linked polymer is formed. A ladder polymer results when repeating units have a tetravalent structure such that a polymer consists of two backbone chains regularly cross-linked at short intervals.
10.3
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
Generally polymers involve bonding of the most substituted carbon of one monomeric unit to the least substituted carbon atom of the adjacent unit in a head-to-tail arrangement. An example is the formation of polypropylene from propylene. This is shown for three monomer units. The wavy lines indicate that more monomers would lead to extended chains. + H 3C
+ H3C
H3C
CH 3
CH 3
CH 3
Substituents appear on alternate carbon atoms. Tacticity refers to the configuration of substituents relative to the backbone axis. In an isotactic arrangement, substituents are on the same plane of the backbone axis; that is, the configuration at each chiral center is identical.
H3C
H H 3C
H H 3C
H
In a syndiotactic arrangement, the substituents are in an ordered alternating sequence, appearing alternately on one side and then on the other side of the chain, as shown for a segment of a vinyl chloride polymer. If the sidechains are not in any particular order with respect to each other (random), the polymer is said to be atactic.
H Cl
Cl Cl
H
H
Copolymerization. Copolymerization occurs when a mixture of two or more monomer types polymerizes so that each kind of monomer enters the polymer chain. The fundamental structure resulting from copolymerization depends on the nature of the monomers and the relative rates of monomer reactions with the growing polymer chain. A tendency toward alternation of monomer units is common. Random copolymerization is known but it is rather unusual. + A
+ B
+ A
B
A
B
A
B
In graft copolymers the chain backbone is composed of one kind of monomer and the branches are made up of another kind of monomer. The structure of a block copolymer consists of a homopolymer attached to chains of another homopolymer. In either case, cis or trans (Z or E ) double bond configurations around any double bond not involved in the polymerization will normally be unaltered. X X X X X X X X Y
Y Y
Y
Y Y
Y
Y Y
Schematic of a graft copolymer
A
A
A
A
B
B
B
Schematic of a block copolymer
B
10.4
SECTION 10
Dendrimers A relatively recent development in polymer chemistry is the family of compounds known as dendrimers. The term derives from the Greek dendra meaning tree. Tree-like structures of this general type have also been referred to as arborols. Dendrimers differ from typical polymers in that they radiate from a central unit or core rather than being either linear or planar. Dendrimers are built up using a “generational” structure in discrete synthetic steps. As a result, the product is nearer to being a single compound than is a typical polymer. A typical dendrimer consists of a multifunctional core unit. Each functional group of the core unit is elaborated by a further molecular unit, often referred to as a “dendritic wedge.” The core unit is usually designated “generation 0” and additional units radiating from it or prior units are designated as higher generations, that is, generation 1, generation 2, etc. When the synthesis begins at the core and radiates outward, it is called a divergent synthesis. Alternately, synthesis may begin at the outside and terminate with a core unit. The more common divergent method is illustrated in the following scheme. 1,3,5Tricarboxybenzene (trimesic acid) serves as the core or generation 0. It could be functionalized by converting it into the tris(acid chloride). Reaction with the secondary amine of diethanolamine would give the tris(amide) hexahydroxy compound shown here. This structure represents generations 0 and 1. Treatment with an appropriately substituted benzyl chloride could lead to the hexaether that comprises generations 0, 1, and 2. There are now a dozen “Y” groups that could be further functionalized in going to generation 3. A difficulty is that the functional or protecting groups present at each stage must be compatible with the chemistry used to make the connections.
HO
HOOC
OH
COOH
HO
OH N CO
O C
N
+ 3 HN COOH
OC
OH
OH
OH
N
OH
Y
Y
Y
Y
Y
Y
Y
O
O
N
O N
O C
Y
CO
+ 6 Y OC
O
Cl
Y
O
N
Y
O
Y
Y
Y
A second issue is that when subsequent generations involve sterically demanding structural units, incomplete substitution may occur. Thus, in the final structure shown, five
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.5
benzyl ethers might form, rather than six, owing to steric crowding. This would introduce a defect in the dendrimer structure. Indeed, some molecules might possess all six benzyl ethers whereas others might lack one or even two. It must be possible to manipulate the substituents designated “Y” in the presence of ether and amide groups to further extend the dendrimer. Novel dendrimers have novel and unique properties that make them promising candidates for use in the development of nanoscale devices and in drug delivery systems.
Additives to Polymers Antioxidants. Antioxidants markedly retard the rate of autoxidation throughout the useful life of the polymer. Chain-terminating antioxidants have a reactive ˆ NH or ˆ OH functional group and include compounds such as secondary aryl amines or hindered phenols. They function by transfer of hydrogen to free radicals, principally to peroxy radicals. Butylated hydroxytoluene is a widely used example. Peroxide-decomposing antioxidants destroy hydroperoxides, the sources of free radicals in polymers. Phosphites and thioesters such as tris(nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, and dialkyl thiodipropionates are examples of peroxidedecomposing antioxidants. Antistatic Agents. External antistatic agents are usually quaternary ammonium salts of fatty acids and ethoxylated glycerol esters of fatty acids that are applied to the plastic surface. Internal antistatic agents are compounded into plastics during processing. Carbon blacks provide a conductive path through the bulk of the plastic. Other types of internal agents must bloom to the surface after compounding in order to be active. These latter materials are ethoxylated fatty amines and ethoxylated glycerol esters of fatty acids, which often must be individually selected to match chemically each plastic type. Antistatic agents require ambient moisture to function. Consequently their effectiveness is dependent on the relative humidity. They provide a broad range of protection at 50% relative humidity. Much below 20% relative humidity, only materials that provide a conductive path through the bulk of the plastic to ground (such as carbon black) will reduce electrostatic charging. Chain-Transfer Agents. Chain-transfer agents are used to regulate the molecular weight of polymers. These agents react with the developing polymer and interrupt the growth of a particular chain. The products, however, are free radicals that are capable of adding to monomers and initiating the formation of new chains. The overall effect is to reduce the average molecular weight of the polymer without reducing the rate of polymerization. Branching may occur as a result of chain transfer between a growing but rather short chain with another and longer polymer chain. Branching may also occur if the radical end of a growing chain abstracts a hydrogen atom from a carbon atom four or five carbons removed from the end. Thiols are commonly used as chain-transfer agents. Coupling Agents. Coupling agents are molecular bridges between the interface of an inorganic surface (or filler) and an organic polymer matrix. Titanium-derived coupling agents interact with the free protons at the inorganic interface to form organic monomolecular layers on the inorganic surface. The titanate-coupling-agent molecule has six functions: (RO)m ˆ Tiˆ (O ˆ Y ˆ R1 ˆ Z)n
10.6
SECTION 10
where Type
m
n
Monoalkoxy Coordinate Chelate
1 4 1
3 2 2
Function 1 is the attachment of the hydrolyzable portion of the molecule to the surface of the inorganic (or proton-bearing) species. Function 2 is the ability of the titanate molecule to transesterify. Function 3 affects performance as determined by the chemistry of alkylate, carboxyl, sulfonyl, phenolic, phosphate, pyrophosphate, and phosphite groups. Function 4 provides van der Waals’ entanglement via long carbon chains. Function 5 provides thermoset reactivity via functional groups such as methacrylates and amines. Function 6 permits the presence of two or three pendent organic groups. This allows all functionality to be controlled to the first-, second-, or third-degree levels. Silane coupling agents are represented by the formula Z ˆ R ˆ SiY3 where Y represents a hydrolyzable group (typically alkoxy); Z is a functional organic group, such as amino, methacryloxy, epoxy; and R typically is a short aliphatic linkage that serves to attach the functional organic group to silicon in a stable fashion. Bonding to surface hydroxy groups of inorganic compounds is accomplished by the ˆ SiY3 portion, either by direct bonding of this group or more commonly via its hydrolysis product ˆ Si(OH)3. Subsequent reaction of the functional organic group with the organic matrix completes the coupling reaction and establishes a covalent chemical bond from the organic phase through the silane coupling agent to the inorganic phase. Flame Retardants. Flame retardants are thought to function via several mechanisms, dependent upon the class of flame retardant used. Halogenated flame retardants are thought to function principally in the vapor phase either as a diluent and heat sink or as a freeradical trap that stops or slows flame propagation. Phosphorus compounds are thought to function in the solid phase by forming a glaze or coating over the substrate that prevents the heat and mass transfer necessary for sustained combustion. With some additives, as the temperature is increased, the flame retardant acts as a solvent for the polymer, causing it to melt at lower temperatures and flow away from the ignition source. Mineral hydrates, such as alumina trihydrate and magnesium sulfate heptahydrate, are used in highly filled thermosetting resins. Foaming Agents (Chemical Blowing Agents). Foaming agents are added to polymers during processing to form minute gas cells throughout the product. Physical foaming agents include liquids and gases. Compressed nitrogen is often used in injection molding. Common liquid foaming agents are short-chain aliphatic hydrocarbons in the C5 to C7 range and their chlorinated or fluorinated analogs. The chemical foaming agent used varies with the temperature employed during processing. At relatively low temperatures (15–200 C), the foaming agent is often 4,4-oxybis(benzenesulfonylhydrazide) or p-toluenesulfonylhydrazide. In the midrange (160–232 C), either sodium hydrogen carbonate or 1,1azobisformamide is used. For the
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.7
high range (200–285 C), there are p-toluenesulfonylsemicarbazide, 5-phenyltetrazole and analogs, and trihydrazinotriazine. Inhibitors. Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain. The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to produce inert products and end the chain process. Lubricants. Materials such as fatty acids are added to reduce the surface tension and improve the handling qualities of plastic films. Plasticizers. Plasticizers are relatively nonvolatile liquids which are blended with polymers to alter their properties by intrusion between polymer chains. Diisooctyl phthalate is a common plasticizer. A plasticizer must be compatible with the polymer to avoid bleeding out over long periods of time. Products containing plasticizers tend to be more flexible and workable. Ultraviolet Stabilizers. 2-Hydroxybenzophenones represent the largest and most versatile class of ultraviolet stabilizers that are used to protect materials from the degradative effects of ultraviolet radiation. They function by absorbing ultraviolet radiation and by quenching electronically excited states. Hindered amines, such as 4-(2,2,6,6-tetramethylpiperidinyl) decanedioate, serve as radical scavengers and will protect thin films under conditions in which ultraviolet absorbers are ineffective. Metal salts of nickel, such as dibutyldithiocarbamate, are used in polyolefins to quench singlet oxygen or electronically excited states of other species in the polymer. Zinc salts function as peroxide decomposers. Vulcanization and Curing. Originally, vulcanization implied heating natural rubber with sulfur, but the term is now also employed for curing polymers. When sulfur is employed, sulfide and disulfide cross-links form between polymer chains. This provides sufficient rigidity to prevent plastic flow. Plastic flow is a process in which coiled polymers slip past each other under an external deforming force; when the force is released, the polymer chains do not completely return to their original positions. Organic peroxides are used extensively for the curing of unsaturated polyester resins and the polymerization of monomers having vinyl unsaturation. The ˆ O ˆ O ˆ bond is split into free radicals which can initiate polymerization or cross-linking of various monomers or polymers. TABLE 10.1 Plastic Families Acetals Acrylics Poly(methyl methacrylate) (PMMA) Poly(acrylonitrile) Alkyds Alloys Acrylic-poly(vinyl chloride) alloy Acrylonitrile–butadiene–styrene– poly(vinyl chloride) alloy (ABS–PVC) Acrylonitrile–butadiene–styrene– polycarbonate alloy (ABS–PC)
Allyls Allyl-diglycol-carbonate polymer Diallyl phthalate (DAP) polymer Cellulosics Cellulose acetate resin Cellulose-acetate–propionate resin Cellulose-acetate–butyrate resin Cellulose nitrate resin Ethyl cellulose resin Rayon Chlorinated polyether Epoxy
10.8
SECTION 10
TABLE 10.1 Plastic Families (continued ) Fluorocarbons Poly (tetrafluoroethylene) (PTFE) Poly (chlorotrifluoroethylene) (PCTFE) Perfluoroalkoxy (PFA) resin Fluorinated ethylene–propylene (FEP) resin Poly(vinylidene fluoride) (PVDF) Ethylene–chlorotrifluoroethylene copolymer Ethylene–tetrafluoroethylene copolymer Poly(vinyl fluoride) (PVF) Melamine formaldehyde Melamine phenolic Nitrile resins Phenolics Polyamides Nylon 6 Nylon 6/6 Nylon 6/9 Nylon 6/12 Nylon 11 Nylon 12 Aromatic nylons Poly(amide–imide) Poly(aryl ether) Polycarbonate (PC) Polyesters Poly(butylene terephthalate) (PBT) [also called polytetramethylene terephthalate (PTMT)] Poly(ethylene terephthalate) (PET) Unsaturated polyesters (SMC, BMC) Butadiene–maleic acid copolymer (BMC) Styrene–maleic acid copolymer (SMC) Polyimide Poly(methylpentene)
Polyolefins (PO) Low-density polyethylene (LDPE) High-density polyethylene (HDPE) Ultrahigh-molecular-weight polyethylene (UHMWPE) Polypropylene (PP) Polybutylene (PB) Polyallomers Poly(phenylene oxide) Poly(phenylene sulfide) (PPS) Polyurethanes Silicones Styrenics Polystyrene (PS) Acrylonitrile–butadiene–styrene (ABS) copolymer Sytrene–acrylonitrile (SAN) copolymer Styrene–butadiene copolymer Sulfones Polysulfone (PSF) Poly(ether sulfone) Poly(phenyl sulfone) Thermoplastic elastomers Polyolefin Polyester Block copolymers Styrene–butadiene block copolymer Styrene–isoprene block copolymer Styrene–ethylene block copolymer Styrene–butylene block copolymer Urea formaldehyde Vinyls Poly(vinyl chloride) (PVC) Poly(vinyl acetate) (PVAC) Poly(vinylidene chloride) Poly(vinyl butyrate) (PVB) Poly(vinyl formal) Poly(vinyl alcohol) (PVAL)
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.9
FORMULAS AND KEY PROPERTIES OF PLASTIC MATERIALS Acetals Homopolymer. Acetal homopolymers are prepared from formaldehyde and consist of high-molecular-weight linear polymers of formaldehyde. The trimer of formaldehyde is shown to the left and the structure of the polymer is shown at the right, below. O O
O
trioxane
The good mechanical properties of this homopolymer result from the ability of the oxymethylene chains to pack together into a highly ordered crystalline configuration as the polymers change from the molten to the solid state. Key properties include high melt point, strength and rigidity, good frictional properties, and resistance to fatigue. Higher molecular weight increases toughness but reduces melt flow. Copolymer. Acetal copolymers are prepared by copolymerization of 1,3,5-trioxane with small amounts of a co-monomer. Carbon–carbon bonds are distributed randomly in the polymer chain. These carbon–carbon bonds help to stabilize the polymer against thermal, oxidative, and acidic attack.
Acrylics Poly(methyl methacrylate). Acrylic acid is H2C ¨ CH ˆ COOH and methacrylic acid is H2C ¨ C(CH3)COOH. These compounds and their methyl esters are both quite reactive and difficult to store and handle. The monomer used to form poly(methyl methacrylate), 2-hydroxy-2-methylpropanenitrile, is prepared by the following reaction:
2-Hydroxy-2-methylpropanenitrile is then reacted with methanol (or other alcohol) to yield methacrylate ester. Free-radical polymerization is initiated by peroxide or azo catalysts and produce poly(methyl methacrylate) resins having the following formula:
Key properties are good resistance to heat, light, and weathering. This polymer is unaffected by most detergents, cleaning agents, and solutions of inorganic acids, alkalies, and aliphatic hydrocarbons. Poly(methyl methacrylate) has light transmittance of 92% with a haze of 1–3% and its clarity is equal to glass.
10.10
SECTION 10
Poly(methyl acrylate). The structure of methyl acrylate is H2C ¨ CH ˆ COOCH3. The monomer used to prepare poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide catalysts and has the following formula:
Poly(methyl acrylate) resins vary from soft, elastic, film-forming materials to hard plastics. Poly(acrylic acid) and Poly(methacrylic acid). Glacial acrylic acid and glacial methacrylic acid can be polymerized to produce water-soluble polymers having the following structures:
These monomers provide a means for introducing carboxyl groups into copolymers. In copolymers these acids can improve adhesion properties, improve freeze–thaw and mechanical stability of polymer dispersions, provide stability in alkalies (including ammonia), increase resistance to attack by oils, and provide reactive centers for cross-linking by divalent metal ions, diamines, or epoxides. Functional Group Methacrylate Monomers. Hydroxyethyl methacrylate and dimethylaminoethyl methacrylate produce polymers having the following formulas:
The use of hydroxyethyl (also hydroxypropyl) methacrylate as a monomer permits the introduction of reactive hydroxyl groups into the copolymers. This offers the possibility for subsequent cross-linking with an HO-reactive difunctional agent (diisocyanate, diepoxide, or melamineformaldehyde resin). Hydroxyl groups promote adhesion to polar substrates. Use of dimethylaminoethyl (also tert-butylaminoethyl) methacrylate as a monomer permits the introduction of pendent amino groups which can serve as sites for secondary crosslinking, provide a way to make the copolymer acid-soluble, and provide anchoring sites for dyes and pigments. Poly(acrylonitrile). Acrylonitrile has the formula H2C ¨ CH ˆ C ˜ N. Poly(acrylonitrile) polymers have the following formula:
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.11
Alkyds Alkyds are formulated from polyester resins, cross-linking monomers, and fillers of mineral or glass. The unsaturated polyester resins used for thermosetting alkyds are the reaction products of polyfunctional organic alcohols (glycols) and dibasic organic acids. Key properties of alkyds are dimensional stability, colorability, and arc track resistance. Chemical resistance, however, is generally poor. Alloys Polymer alloys are physical mixtures of structurally different homopolymers or copolymers. The mixture is held together by secondary intermolecular forces such as dipole interaction, hydrogen bonding, or van der Waals’ forces. Homogeneous alloys have a single glass transition temperature which is determined by the ratio of the components. The physical properties of these alloys are averages based on the composition of the alloy. Heterogeneous alloys can be formed when graft or block copolymers are combined with a compatible polymer. Alloys of incompatible polymers can be formed if an interfacial agent can be found. Allyls Diallyl Phthalate (and Diallyl 1,3-Phthalate). Phthalic acid is 1,2-dicarboxybenzene. The 1,3-isomer is generally referred to as isophthalic acid. These allyl polymers are prepared from O
O
O O O
O
O O
These resulting polymers are solid, linear, internally cyclized, thermoplastic structures containing unreacted allylic groups spaced at regular intervals along the polymer chain. Compounds derived from these polymers that are molded with mineral, glass, or synthetic fiber filling exhibit good electrical properties under high humidity and high temperature conditions. They also show stable low-loss factors, high surface and volume resistivity, and high arc and track resistance. Cellulosics Cellulose Triacetate. Cellulose triacetate is prepared according to the following reaction:
Because cellulose triacetate has a high softening temperature, it must be processed in solution. A mixture of dichloromethane and methanol is a common solvent.
10.12
SECTION 10
Cellulose triacetate sheeting and film have good gauge uniformity and good optical clarity. Cellulose triacetate products have good dimensional stability and resistance to water and have good folding endurance and burst strength. It is highly resistant to solvents such as acetone. Cellulose triacetate products have good heat resistance and a high dielectric constant. Cellulose Acetate, Propionate, and Butyrate. Cellulose acetate is prepared by hydrolyzing the triester to remove some of the acetyl groups; the plastic-grade resin contains 38–40% acetyl. The propionate and butyrate esters are made by substituting propionic acid and its anhydride (or butyric acid and its anhydride) for some of the acetic acid and acetic anhydride. Plastic grades of cellulose-acetate–propionate resin contain 39–47% propionyl and 2–9% acetyl; cellulose-acetate–butyrate resins contain 26–39% butyryl and 12–15% acetyl. These cellulose esters form tough, strong, stiff, hard plastics with almost unlimited color possibilities. Articles made from these plastics have a high gloss and are suitable for use in contact with food. Cellulose Nitrate. Cellulose nitrate is prepared according to the following reaction: C6H10O5 HNO3 l [ ˆ C6H7O2(OH)(ONO2)2 ˆ ]n The nitrogen content for plastics is usually about 11%, for lacquers and cement base it is 12%, and for explosives it is 13%. The standard plasticizer added is camphor. Key properties of cellulose nitrate are good dimensional stability, low water absorption, and toughness. Its disadvantages are its flammability and lack of stability to heat and sunlight. Ethyl Cellulose. Ethyl cellulose is prepared by reacting cellulose with caustic to form caustic cellulose, which is then reacted with chloroethane to form ethyl cellulose. Plasticgrade material contains 44–48% ethoxyl. Although not as resistant as cellulose esters to acids, it is much more resistant to bases. An outstanding feature is its toughness at low temperatures. Rayon. Viscose rayon is obtained by reacting the hydroxy groups of cellulose with carbon disulfide in the presence of alkali to give xanthates. When this solution is poured (spun) into an acid medium, the reaction is reversed and the cellulose is regenerated (coagulated). Epoxy Epoxy resin is prepared by the following condensation reaction:
The condensation leaves epoxy end groups that are then reacted in a separate step with nucleophilic compounds (alcohols, acids, or amines). For use as an adhesive, the epoxy
10.13
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
resin and the curing resin (usually an aliphatic polyamine) are packaged separately and mixed together immediately before use. Epoxy novolac resins are produced by glycidation of the low-molecular-weight reaction products of phenol (or cresol) with formaldehyde. Highly cross-linked systems are formed that have superior performance at elevated temperatures.
Fluorocarbon Poly(tetrafluoroethylene). Poly(tetrafluoroethylene) is prepared from tetrafluoroethylene and consists of repeating units in a predominantly linear chain: F2C ¨ CF2 l [ ˆ CF2 ˆ CF2 ˆ ]n Tetrafluoroethylene polymer has the lowest coefficient of friction of any solid. It has remarkable chemical resistance and a very low brittleness temperature (100 C). Its dielectric constant and loss factor are low and stable across a broad temperature and frequency range. Its impact strength is high. Fluorinated Ethylene–Propylene Resin. Polymer molecules of fluorinated ethylenepropylene consist of predominantly linear chains with this structure: CF2
CF2
CF2
CF CF3
n
Key properties are its flexibility, translucency, and resistance to all known chemicals except molten alkali metals, elemental fluorine and fluorine precursors at elevated temperatures, and concentrated perchloric acid. It withstands temperatures from 270 to 250 C and may be sterilized repeatedly by all known chemical and thermal methods. Perfluoroalkoxy Resin. CF2
Perfluoroalkoxy resin has the following formula: CF2
CF
CF2
where R is
CF2
Cn F2n + 1
O R
n
It resembles polytetrafluoroethylene and fluorinated ethylene propylene in its chemical resistance, electrical properties, and coefficient of friction. Its strength, hardness, and wear resistance are about equal to the former plastic and superior to that of the latter at temperatures above 150 C. Poly(vinylidene fluoride). Poly(vinylidene fluoride) consists of linear chains in which the predominant repeating unit is [ ˆ CH2 ˆ CF2 ˆ ]n It has good weathering resistance and does not support combustion. It is resistant to most chemicals and solvents and has greater strength, wear resistance, and creep resistance than the preceding three fluorocarbon resins.
10.14
SECTION 10
Poly(1-chloro-1,2,2-trifluoroethylene). Poly(1-chloro-1,2,2-trifluoroethylene consists of linear chains in which the predominant repeating unit is CF2
CF Cl
n
It possesses outstanding barrier properties to gases, especially water vapor. It is surpassed only by the fully fluorinated polymers in chemical resistance. A few solvents dissolve it at temperatures above 100 C, and it is swollen by a number of solvents, especially chlorinated solvents. It is harder and stronger than perfluorinated polymers, and its impact strength is lower. Ethylene–Chlorotrifluoroethylene Copolymer. Ethylene–chlorotrifluoroethylene copolymer consists of linear chains in which the predominant 1:1 alternating copolymer is CH2
CH2
CF2
CF Cl
n
This copolymer has useful properties from cryogenic temperatures to 180C. Its dielectric constant is low and stable over a broad temperature and frequency range. Ethylene–Tetrafluoroethylene Copolymer. Ethylene–tetrafluoroethylene copolymer consists of linear chains in which the repeating unit is [ ˆ CH2 ˆ CH2 ˆ CF2 ˆ CF2 ˆ ]n Its properties resemble those of ethylene–chlorotrifluoroethylene copolymer. Poly(vinyl fluoride). Poly(vinyl fluoride) consists of linear chains in which the repeating unit is [ ˆ CH2 ˆ CHF ˆ ]n It is used only as a film, and it has good resistance to abrasion and resists staining. It also has outstanding weathering resistance and maintains useful properties from 100 to 150 C. Nitrile Resins The principal monomer of nitrile resins is acrylonitrile (see “Polyacrylonitrile”), which constitutes about 70% by weight of the polymer and provides the polymer with good gas barrier and chemical resistance properties. The remainder of the polymer is 20–30% methyl acrylate (or styrene), with 0–10% butadiene to serve as an impact-modifying termonomer. Melamine Formaldehyde The monomer used for preparing melamine formaldehyde is formed as follows:
10.15
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
Hexamethylolmelamine can further condense in the presence of an acid catalyst; ether linkages can also form (see “Urea Formaldehyde”). A wide variety of resins can be obtained by careful selection of pH, reaction temperature, reactant ratio, amino monomer, and extent of condensation. Liquid coating resins are prepared by reacting methanol or butanol with the initial methylolated products. These can be used to produce hard, solvent-resistant coatings by heating with a variety of hydroxy, carboxyl, and amide functional polymers to produce a cross-linked film. Phenolics Phenol–formaldehyde resin. Phenol–formaldehyde resin is prepared from phenol by reaction with formaldehyde. Phenol is an enol, the 2-, 4-, and 6-positions of which are activated for reaction with an electrophile. Phenol is sequentially hydroxymethylated approximately as illustrated below. Dehydration of the phenolic hydroxymethyl groups affords a benzyl cation, a new electrophile that can react with another substituted or unsubstituted molecule of phenol. Both linear polymerization and cross-linking are possible, depending on the ratio of the reactants and the polymerization conditions.
OH
OH H 2C=O
OH CH 2 OH H 2C=O HOH 2C
OH CH 2 OH H 2C=O HOH2C
CH2OH
CH2OH
One-Stage Resins. The ratio of formaldehyde to phenol is high enough to allow the thermosetting process to take place without the addition of other sources of cross-links. Two-Stage Resins The ratio of formaldehyde to phenol is low enough to prevent the thermosetting reaction from occurring during manufacture of the resin. At this point the resin is termed novolac resin. Subsequently, hexamethylenetetramine is incorporated into the material to act as a source of chemical cross-links during the molding operation (and conversion to the thermoset or cured state).
Polyamides Nylon 6, 11, and 12. This class of polymers is polymerized by addition reactions of ring compounds that contain both acid and amine groups on the monomer.
Nylon 6 is polymerized from 2-oxohexamethyleneimine (6 carbons); nylon 11 and 12 are made this way from 11- and 12-carbon rings, respectively. Nylon 6/6, 6/9, and 6/12. As illustrated below, nylon 6/6 is polymerized from 1,6-hexanedioic acid (six carbons) and 1,6-hexanediamine (six carbons).
10.16
SECTION 10
HOOC ˆ (CH2)4 ˆ COOH H2N ˆ CH2 ˆ (CH2)4 ˆ CH2 ˆ NH2l 1,6-Hexanedioic acid
1,6-Hexanediamine
Other nylons are made this way from different combinations of monomers to produce types 6/9, 6/10, and 6/12. Nylon 6 and 6/6 possess the maximum stiffness, strength, and heat resistance of all the types of nylon. Type 6/6 has a higher melt temperature, whereas type 6 has a higher impact resistance and better processibility. At a sacrifice in stiffness and heat resistance, the higher analogs of nylon are useful primarily for improved chemical resistance in certain environments (acids, bases, and zinc chloride solutions) and for lower moisture absorption. Aromatic nylons, [ ˆ NH ˆ C6H4 ˆ CO ˆ ]n, (also called aramids) have specialty uses because of their improved clarity.
Poly (amide-imide) Poly(amide-imide) is the condensation polymer of 1,2,4-benzenetricarboxylic anhydride and various aromatic diamines and has the general structure:
It is characterized by high strength and good impact resistance, and retains its physical properties at temperatures up to to 260 C. Its radiation (gamma) resistance is good. Polycarbonate Polycarbonate is a polyester in which dihydric (or polyhydric) phenols are joined through carbonate linkages. The general-purpose type of polycarbonate is based on 2,2-bis(4hydroxybenzene) propane (bisphenol A) and has the general structure:
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.17
Polycarbonates are the toughest of all thermoplastics. They are window-clear, amazingly strong and rigid, autoclavable, and nontoxic. They have a brittleness temperature of 135C. Polyester Poly(butylene terephthalate). Poly(butylene terephthalate) is prepared in a condensation reaction between dimethyl terephthalate and 1,4-butanediol and its repeating unit has the general structure O
O
O n
O
This thermoplastic shows good tensile strength, toughness, low water absorption, and good frictional properties, plus good chemical resistance and electrical properties. Poly(ethylene terephthalate). Poly(ethylene terephthalate) is prepared by the reaction of either terephthalic acid or dimethyl terephthalate with ethylene glycol, and its repeating unit has the general structure O
O
O O
n
The resin has the ability to be oriented by a drawing process and crystallized to yield a high-strength product. Unsaturated Polyesters. Unsaturated polyesters are produced by reaction between two types of dibasic acids, one of which is unsaturated, and an alcohol to produce an ester. Double bonds in the body of the unsaturated dibasic acid are obtained by using maleic anhydride or fumaric acid. PCTA Copolyester. Poly(1,4-cyclohexanedimethylene terephthalic acid) (PCTA) copolyester is a polymer of cyclohexanedimethanol and terephthalic acid, with another acid substituted for a portion of the terephthalic acid otherwise required. It has the following formula:
Polyimides. Polyimides have the following formula:
10.18
SECTION 10
They are used as high-temperature structural adhesives since they become rubbery rather than melt at about 300 C. Poly(methylpentene) Poly(methylpentene) is obtained by a Ziegler-type catalytic polymerization of 4-methyl-1pentene. Its key properties are its excellent transparency, rigidity, and chemical resistance, plus its resistance to impact and to high temperatures. It withstands repeated autoclaving, even at 150 C. Polyolefins Polyethylene. Polymerization of ethylene results in an essentially straight-chain highmolecular-weight hydrocarbon. CH2 ¨ CH2l[ ˆ CH2 ˆ CH2 ˆ ]n Branching occurs to some extent and can be controlled. Minimum branching results in a “high-density” polyethylene because of its closely packed molecular chains. More branching gives a less compact solid known as “low-density” polyethylene. A key property is its chemical inertness. Strong oxidizing agents eventually cause some oxidation, and some solvents cause softening or swelling, but there is no known solvent for polyethylene at room temperature. The brittleness temperature is 100 C for both types. Polyethylene has good low-temperature toughness, low water absorption, and good flexibility at subzero temperatures. Polypropylene. structure:
The polymerization of propylene results in a polymer with the following
The desired form in homopolymers is the isotactic arrangement (at least 93% is required to give the desired properties). Copolymers have a random arrangement. In block copolymers a secondary reactor is used where active polymer chains can further polymerize to produce segments that use ethylene monomer. Polypropylene is translucent and autoclavable and has no known solvent at room temperature. It is slightly more susceptible to strong oxidizing agents than polyethylene. Polybutylene. Polybutylene is composed of linear chains having an isotactic arrangement of ethyl side groups along the chain backbone.
It has a helical conformation in the stable crystalline form.
10.19
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
Polybutylene exhibits high tear, impact, and puncture resistance. It also has low creep, excellent chemical resistance, and abrasion resistance with coilability. Ionomer. Ionomer is the generic name for polymers based on sodium or zinc salts of ethylene–methacrylic acid copolymers in which interchain ionic bonding, occurring randomly between the long-chain polymer molecules, produces solid-state properties. The abrasion resistance of ionomers is outstanding, and ionomer films exhibit optical clarity. In composite structures ionomers serve as a heat-seal layer.
Poly(phenylene sulfide) Poly(phenylene sulfide) has the following formula:
The recurring para-substituted benzene rings and sulfur atoms form a symmetrical rigid backbone. The high degree of crystallization and the thermal stability of the bond between the benzene ring and sulfur are the two properties responsible for the polymer’s high melting point, thermal stability, inherent flame retardance, and good chemical resistance. There are no known solvents of poly(phenylene sulfide) that can function below 205 C. Polyurethane Foams. Polyurethane foams are prepared by the polymerization of polyols with isocyanates. One of the most commonly used reactive isocyanates toluenediisocyanate, TDI. It is made from toluene by nitration and then reduction followed by treatment with phosgene. The isocyanate residue reacts readily with alcohols to give carbamates (urethanes) or amines to give ureas. CH 3 N C O +
O
C
HO [ CH 2 CH 2O ]n
H
N CH 3
CH 3
H N
O O [
NH
CH 2 CH 2O ] n O
NH O
H N
O
10.20
SECTION 10
Commonly used isocyanates are toluenediisocyanate, methylenediphenylisocyanate, and polymeric isocyanates. Polyols used are macroglycols based on either polyester or polyether. The former [poly(ethylene phthalate) or poly(ethylene 1,6-hexanedioate)] have hydroxyl groups that are free to react with the isocyanate. Most flexible foam is made from 80/20 toluene diisocyanate (which refers to the ratio of 2,4-toluenediisocyanate to 2,6toluene diisocyanate). High-resilience foam contains about 80% 80/20 toluenediisocyanate and 20% poly(methylene diphenyl isocyanate), while semiflexible foam is almost always 100% poly(methylene diphenyl isocyanate). Much of the latter reacts by trimerization to form isocyanurate rings. Flexible foams are used in mattresses, cushions, and safety applications. Rigid and semiflexible foams are used in structural applications and to encapsulate sensitive components to protect them against shock, vibration, and moisture. Foam coatings are tough, hard, flexible, and chemically resistant. Elastomeric Fiber. Elastomeric fibers are prepared by the polymerization of polymeric polyols with diisocyanates. CH 3 N C O +
O
C
N
H2C
(OCH 2CH 2 O)xH
HC
(OCH 2CH 2 O)yH
H2C
(OCH 2CH 2 O)zH
essentially linear polymers
polymeric diols
toluenediisocyanate
The structure of elastomeric fibers is similar to that illustrated for polyurethane foams.
SILICONES Silicones are formed in the following multistage reaction:
The silanols formed above are unstable and undergo dehydration. On polycondensation, they give polysiloxanes (or silicones) which are characterized by their three-dimensional branched-chain structure. Various organic groups introduced within the polysiloxane chain impart certain characteristics and properties to these resins. Methyl groups impart water repellency, surface hardness, and noncombustibility. Phenyl groups impart resistance to temperature variations, flexibility under heat, resistance to abrasion, and compatibility with organic products. Vinyl groups strengthen the rigidity of the molecular stucture by creating easier crosslinkage of molecules. Methoxy and alkoxy groups facilitate cross-linking at low temperatures. Oils and gums are nonhighly branched or straight-chain polymers whose viscosity increases with the degree of polycondensation.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.21
Styrenics Polystyrene. Polystyrene has the following formula:
Polystyrene is rigid with excellent dimensional stability, has good chemical resistance to aqueous solutions, and is an extremely clear material. Impact polystyrene contains polybutadiene added to reduce brittleness. The polybutadiene is usually dispersed as a discrete phase in a continuous polystyrene matrix. Polystyrene can be grafted onto rubber particles, which assures good adhesion between the phases. Acrylonitrile–Butadiene–Styrene (ABS) Copolymers. This basic three-monomer system can be tailored to yield resins with a variety of properties. Acrylonitrile contributes heat resistance, high strength, and chemical resistance. Butadiene contributes impact strength, toughness, and retention of low-temperature properties. Styrene contributes gloss, processibility, and rigidity. ABS polymers are composed of discrete polybutadiene particles grafted with the styrene–acrylonitrile copolymer; these are dispersed in the continuous matrix of the copolymer. Styrene–Acrylonitrile (SAN) Copolymers. SAN resins are random, amorphous copolymers whose properties vary with molecular weight and copolymer composition. An increase in molecular weight or in acrylonitrile content generally enhances the physical properties of the copolymer but at some loss in ease of processing and with a slight increase in polymer color. SAN resins are rigid, hard, transparent thermoplastics which process easily and have good dimensional stability—a combination of properties unique in transparent polymers. Sulfones Below are the formulas for three polysulfones.
10.22
SECTION 10
The isopropylidene linkage imparts chemical resistance, the ether linkage imparts temperature resistance, and the sulfone linkage imparts impact strength. The brittleness temperature of polysulfones is 100 C. Polysulfones are clear, strong, nontoxic, and virtually unbreakable. They do not hydrolyze during autoclaving and are resistant to acids, bases, aqueous solutions, aliphatic hydrocarbons, and alcohols. Thermoplastic Elastomers Polyolefins. In these thermoplastic elastomers the hard component is a crystalline polyolefin, such as polyethylene or polypropylene, and the soft portion is composed of ethylene–propylene rubber. Attractive forces between the rubber and resin phases serve as labile cross-links. Some contain a chemically cross-linked rubber phase that imparts a higher degree of elasticity. Styrene–Butadiene–Styrene Block Copolymers. Styrene blocks associate into domains that form hard regions. The midblock, which is normally butadiene, ethylene–butene, or isoprene blocks, forms the soft domains. Polystyrene domains serve as cross-links. Polyurethanes. The hard portion of polyurethane consists of a chain extender and polyisocyanate. The soft component is composed of polyol segments. Polyesters. The hard portion consists of copolyester, and the soft portion is composed of polyol segments. Vinyl Poly(vinyl chloride) (PVC). Polymerization of vinyl chloride results in the formation of a polymer with the following formula:
When blended with phthalate ester plasticizers, PVC becomes soft and pliable. Its key properties are good resistance to oils and a very low permeability to most gases. Poly(vinyl acetate). Poly(vinyl acetate) has the following formula:
Poly(vinyl acetate) is used in latex water paints because of its weathering, quick-drying, recoatability, and self-priming properties. It is also used in hot-melt and solution adhesives. Poly(vinyl alcohol). Poly(vinyl alcohol) has the following formula:
10.23
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
It is used in adhesives, paper coating and sizing, and textile warp size and finishing applications. Poly(vinyl butyral). Poly(vinyl butyral) is prepared according to the following reaction:
CH2
+ CH3CH2CH2CHO →
CH OH
n
CH2
CH O
CH2
CH
CH
O
CH2
CH2
CH3
n
Its key characteristics are its excellent optical and adhesive properties. It is used as the interlayer film for safety glass. Poly(vinylidene chloride). Poly(vinylidene chloride) is prepared according to the following reaction: CH2 ¨ CCl2 CH2 ¨ CHCl l [ ˆ CH2 ˆ CCl2 ˆ CH2 ˆ CHCl ˆ ]n Random copolymer
Urea Formaldehyde The reaction of urea with formaldehyde yields the following products, which are used as monomers in the preparation of urea formaldehyde resin. H2N ˆ CO ˆ NH2 H2CO l H2N ˆ CO ˆ NH ˆ CH2OH HOCH2 ˆ NH ˆ CO ˆ NH ˆ CH2OH The reaction conditions can be varied so that only one of these monomers is formed. 1-Hydroxymethylurea and 1,3-bis(hydroxymethyl)urea condense in the presence of an acid catalyst to produce urea formaldehyde resins. A wide variety of resins can be obtained by careful selection of the pH, reaction temperature, reactant ratio, amino monomer, and degree of polymerization. If the reaction is carried far enough, an infusible polymer network is produced. Liquid coating resins are prepared by reacting methanol or butanol with the initial hydroxymethylureas. Ether exchange reactions between the amino resin and the reactive sites on the polymer produce a cross-linked film.
10.24
TABLE 10.2 Properties of Commercial Plastics Acetal
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, KV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Homopolymer
Copolymer
20% glassreinforced homopolymer
25% glassreinforced copolymer
21% poly(tetrafluoroethylene)filled homopolymer
175
175
181
175
181
1.42 0.25–0.40 19.7
1.41 0.22 19.7
1.56 0.25 19.3
1.61 0.29 22.8
1.54 0.20 15.7
1015 3.7 3.7
1015 3.7 3.7
5 1014 3.9 3.9
3 1016 3.1 3.1
0.005
0.005
0.005
0.005
670
450
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
5.29 25–75
16 (10% yield) 40–75
18 (10% yield) 7
17 (10% yield) 3
13 (10% yield) 15–22
380–430
375
730
1 100
340–350
14 M94
13 M78
15 M90
28 M79
M78
69–123 520
53–80 410
43 1 000
96 1 250
37–64
10
10
8.5
18.5
7.6
9.5–12
8.5
6.9–7.6
27.9 100
85
36–81
124
110
157
84 0.35 0.23
0.23
75
163
100
10.25
10.26
TABLE 10.2 Properties of Commercial Plastics (continued ) Alloy Acrylic
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, KV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 104 lb · in2
Poly(methyl methacrylate)
Cast sheet
Impactmodified
Heatresistant
90–105
90–105
80–100
100–125
1.17–1.20 0.1–0.4 15.7–19.9
1.18–1.20 0.2–0.4 17.7–21.7
1.11–1.18 0.2–0.8 15.0–19.9
1.16–1.19 0.2–0.3 15.7–19.9
1014 3.3–4.5
1014 3.5–4.5 3.0–3.5
3.8–5.0 3.6–4.7
0.04–0.06 0.02–0.03
0.012–0.026 0.01–0.016
370–460
390–475
240–370
350–460
Alkyd, molded
Acrylic poly(vinyl chloride) alloy
Acrylonitrile– butadiene– styrenepoly(vinyl chloride) alloy
105 2.22–2.24 0.06 15.7
330–400
19.7
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
12–18 2–10
11–19 2–7
4–14 20–70
17 3–5
420–460
390–475
200–380
460–500
13–19 M85–M105
12–17 M80–M100
7–13 R105–R120
12–16 M95–M105
16–27 380–450
16–21 350–450
43–133 200–400
16–21 350–460
7–11
8–11
5–9
10
8.4 100 330–400
340
10.7 R99–R105
9.6 R100
27–240
800 330–335
560 330
4.5–6.5
6.5
5.8
E76
10–13
Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
16–20
0.5–2.2
Selfextinguishing
50–90
50–90
50–80
50–60
40–55
74–99
71–102
74–95
88–104
177–204
0.36
60–71 0.35
0.17–0.25
0.17–0.25
220
0.17–0.21
0.19
46 71
10.27
10.28
TABLE 10.2 Properties of Commercial Plastics (continued ) Alloy
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1
Polycarbonate acrylonitrile– butadiene– styrene alloy
150 1.12–1.20 0.21–0.24 17.7
Allyl
Glass-filled
Mineral-filled
Thermoset
Thermoset
Thermoset
230
230
140
1.3–1.4 0.2 15.0
1.7–2.0 0.12–0.35 15.7–17.7
1.65–1.85 0.2–0.5 15.7–17.7
1.27–1.34 2–7 11–24
1.29–1.34 1.7–6.5 9–24
1.15–1.22 0.9–2.2 9–18
1010–1013 3.4–7.4 3.2–7.0
1010–1013 3.5–7.5 3.2–7.0
1010–1012 3.7–4.3 3.3–3.8
0.01–0.06 0.01–0.06
0.01–0.06 0.01–0.10
0.01–0.04 0.01–0.04
300
Diallyl phthalate molding
Cellulose acetate
Celluloseacetate– butyrate resin
Allyl–diglycol– carbonate polymer
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Cellulosic
Sheet
Molding
Sheet
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
11 10–15
21–23
25–35 3–5
20–32 3–5
300–400
250–330
1 200–1 500
1 000–1 400
13.0–13.7
6–13
9–20
8.5–11
6–10
2–16
4–9
R117
M95–M100
E80–E87
E61
R85–R120
R100–R123
R50–R95
560 370–380
11–21 300
21–800 1 400–2 200
16–43 1 200–2 200
107–454
53–214
133–288 200–250
7.0–7.3
5–6
6–11
5–8
4.5–8.0
1.9–9.0
2.6–6.9
2.2–7.4
4.1–7.6
8.5
22–33 17–40
25–36 6–40
50–100 740–1 300
1.3–3.8
1.3–3.8
63–67
5.4–9.6
0.68–2.4
2.8
100–150
80–180
110–170
104–116
60–88
165–288
160–288
44–91
51–98
49–58
0.3–0.4
0.3–0.42
0.3–0.4
0.17–0.34
0.17–0.34
0.17–0.34
0.25–0.38
0.20–0.21
0.21–0.63
0.30–1.04
10.29
10.30
TABLE 10.2 Properties of Commercial Plastics (continued ) Cellulosic
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Celluloseacetate– butyrate resin, molding
Celluloseacetate– propionate resin, molding
Bisphenol Ethyl cellulose
140
190
135
1.15–1.22 0.9–2.2 9–13
1.17–1.24 1.2–2.8 12–17.7
1.09–1.17 0.8–1.8 13.8–19.7
1010–1012 3.5–6.4 3.2–6.2
Epoxy
3.01
Cellulose nitrate
1.35–1.40
Chlorinated polyether
Glass-fiberreinforced
Mineralfilled
125
Thermoset
Thermoset
1.4
1.6–2.0 0.04–0.20 9.8–15.7
1.6–2.1 0.03–0.20 9.8–15.7
1010 7.0–7.5 6.6
0.01–0.04 0.01–0.04
3 000
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
2.1–7.5 40–88
2.4–7.0 29–100
90–300
120–350
1.8–9.3 R31–R116
2.9–11.4 R10–R122
4–12 R50–R115
9–11 R95–R115
5 R100
8–30 M100–M112
6–18 M100–M112
53–582 50–200
27 to no break 60–215
21
267–374 190–220
21
16–533 3
16–22
2.6–6.9
2.0–7.8
2–8
7–8
1.5–1.8
5–20
4–10
5–40
2.1–8.0 40–45
600–800
18 000–40 000 18 000–40 000 4 2–4.5
1.3–3.8
Selfextinguishing
110–170
110–170
100–200
80–120
6.6
11–50
20–60
44–94
44–109
45–88
60–71
185
107–260
107–260
0.17–0.42
0.17–1.48
255 0.3–0.4 0.17–0.30
0.31–0.41 0.17–0.30
0.16–0.30
0.23
10.31
10.32
TABLE 10.2 Properties of Commercial Plastics (continued ) Epoxy
Fluorocarbon Poly(tetrafluoroethylene)
Casting resin Properties Perfluoroalkoxy Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Novolac resin Glass-fiberreinforced
Poly(chlorotrifluoroethylene)
Unfilled
Flexible
Mineral-filled
Granular
Thermoset
Thermoset
Thermoset
327
327
220
310
1.11–1.40 0.08–0.15 11.8–19.7
1.05–1.35 0.27–0.50 9.3–15.8
1.7–2.1 0.05–0.2 11.8–13.8
2.14–2.20 0.01 18.9
2.2–2.3
2.1–2.2 0.03 19.7–23
2.12–2.17
1012–1017 3.5–5.0 3.5–5.0
12.6
1018 2.1 2.1
1018 2.3–2.7 2.3–2.5
0.000 2 0.000 2
0.001 0.005
60
19.7
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
15–25 3–6
1–14 20–70
30 2–4
1.7 200–400
200–300
4.6–7.4 80–250
2 000
80
235
120
(D50–D55)
2 (D60–D70)
7.4–9.3 R75–R95
16–20
13–21 M80–M110
1–13
10.7–53 350
187–267 1–350
21
160 58–80
144
133–160 150–300
No break
4–13
2–10
6–12
2–5
2–2.7
4.5–6
4–4.3
Selfextinguishing
Selfextinguishing
Selfextinguishing
77–100
70
(D64)
30
Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
300
45–65
20–100
22–30
100
46–288
23–121
149–260
121 (66 lb · in2)
126 (66 lb · in2)
260 0.25
200 0.22
0.17–0.21
0.25
0.34–0.40
0.19–0.22
74 (66 lb · in2
0.25
10.33
10.34
TABLE 10.2 Properties of Commercial Plastics (continued ) Fluorocarbon
Melamine formaldehyde
Ethylene–tetrafluoroethylene copolymer
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Fluorinated ethylenepropylene resin
Poly(vinylidene fluoride)
Unfilled
Glass-fiberreinforced
Ethylene– chlorotrifluoroethylene copolymer
Cellulosefilled
Glass-fiberreinforced
275
156
270
270
245
Thermoset
Thermoset
2.14–2.17 0.01 20–24
1.75–1.78 0.04–0.06 10
1.7 0.03 16
1.8 0.02 17
1.68 0.01 19
1.47–1.52 0.1–0.8 11–16
1.5–2.0 0.09–1.3 5–15
2.1 2.1
8–9 8–9
2.6 2.6
2.6 2.6
High High
120
120
1 200
240
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
2.2 250–330
8.7–10 25–500
7.1 100–400
10 8
200–300
33–45 0.6–1.0
20–35 0.6
80–95
200
200
950
240
1 100
(D60–D65)
8.6–11 (D80)
5.5 R50 (D75)
10.7 R74
7 R95
9–16 M115–M125
14–23 M115
No break 50
192–214 120
No break 120
480 1 200
No break 240
11–21 1.1–1.4
32–961 1.6–2.4
2.7–3.1
5.5–7.4
6.5
12
7
5–13
5–10.5
Not combustible
Not combustible
Not combustible
Not combustible
Not combustible
Selfextinguishing
Selfextinguishing
83–105
85
59
10–32
80
40–45
15–28
70 (66 lb · in2)
80–90
71
210
77
177–199
190–204
205 0.28
150
0.25
0.19–0.24
210
0.24
0.16
0.27–0.41
0.41–0.49
10.35
10.36
TABLE 10.2 Properties of Commercial Plastics (continued )
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Melamine phenolic, woodflour- and cellulosefilled
Phenolic
Nitrile
Thermoset 1.5–1.7 0.3–0.65 8.7–12.8
95 1.15 0.28 8.7–9.5
1.9 1015
Woodflourfilled
Glass-fiberreinforced
Cellulosefilled
Mineralfilled
Thermoset
Thermoset
Thermoset
Thermoset
Thermoset
1.24–1.32 0.1–0.36 9.8–15.8
1.37–1.46 0.3–1.2 10.2–15.8
1.69–2.0 0.03–1.2 5.5–15.8
1.38–1.42 0.5–0.9 11.8–15
1.42–1.84 0.1–0.3 7.9–13.8
Unfilled
1 1012 to 7 1012 6.5–7.5 4.0–5.5 0.10–0.15 0.04–0.05
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
26–30 0.4–0.8
12 3–4
18–32 1.5–2.0
25–31 0.4–0.8
26–70 0.2
22–31 1–2
22.5–34.6 0.1–0.5
1 000–1 200
500–590
700–1 500
1 000–1 200
2 000–33 000
900–1 300
1 000–2 000
8–10 E95–E100
14 M72–M76
11–17 M93–M120
7–14 M100–M115
15–60 E54–E101
5.5–11 M95–M115
11–14 E88
11–21 800–1 700
80–256 510–580
13–21 700–1 500
11–32 800–1 700
27–960 1 900–3 300
21–59
14–19 2 400
6–8
9
6–9
5–9
7–18
3.5–6.5
6–9.7
12–15
Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
Selfextinguishing 10–40
66
68
30–45
8–21
20–31
19–26
140–154
73
74–80
149–188
177–316
149–177
320–246
0.17–0.30
0.26
0.15
0.17–0.34
0.34–0.59
0.25–0.38
0.42–0.57
10.37
10.38
TABLE 10.2 Properties of Commercial Plastics (continued ) Polyamide Nylon 6
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Molding and extrusion
30–35% glassfiberreinforced
Nylon 6/6 High-impact copolymer
Molding
33% glassfiberreinforced
Molybdenum disulfidefilled
Nylon 6/6nylon 6 copolymer
216
216
216
265
265
265
240
1.12–1.14 2.9 15.8
1.35–1.42 1.2 15.8
1.08–1.17 1.3–1.5 22
1.13–1.15 1.0–1.3 24
1.38 1.0
1.15–1.17 0.8–1.1 14
1.08–1.14 1.5–2.0 15.8
1012 9.8 3.7
1012–1015 4.0 3.6
1010 16 4
0.14 0.12
0.01–0.02 0.02–0.03
0.4 0.1
250
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
13–16 30–100
19 3–6
150–270
15 (yield) 60
24.9 3
12.5 15
40
390
1 500
110–320
420
1 300
450
150–410
14 R119
33 M101
5–12 R81–R110
17 R120
41 M100
17 R119
R119
32–53
160
96 to no break
43–53
117
240
37
380
1 450
550
150–410
11.8
25
28
13.7
7.4–12.4
Selfextinguishing
7.5–11
8
12 8
Selfextinguishing
Selfextinguishing
Selfextinguishing
Selfextinguishing
Selfextinguishing
Selfextinguishing
80–90
20–30
30–40
80
15–20
54
68–85
210
45–54
75
249
127
107 0.4 0.24
135 0.4 0.24
0.24
0.22
77
10.39
10.40
TABLE 10.2 Properties of Commercial Plastics (continued ) Polyamide Nylon 6/12
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Nylon 6/9, molding and extrusion
Molding
30–35% glass-fiberreinforced
Nylon 11, molding and extrusion
Nylon 12, molding and extrusion
Aromatic nylon (aramid), molded and unfilled
Poly(amideimide), unfilled
205
217
217
194
179
275
1.08–1.10 0.5 24
1.06–1.08 0.4 16
1.31–1.38 0.2 21
1.03–1.05 0.3 17
1.01–1.02 0.25 18
1.30 0.6 31
275 1.40 0.28 24
290
413
1015 4.0 3.5
1014 3.8 3.0
0.02 0.02
0.07 0.04
180
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
1 125
2.4 150
4
300
7.5 300
30 5
40 12–18
290
290
1 120
150
165
640
664
R111
R114
E40–E50
R108
1.5 R106–R109
25.8 E90
30 E78
59 275
53 290
139 1 200
96 185
107–300 180
75
133 730
8.5
8.8
24
8
8–9
17.5
26.9
55–100
67–100
40
36
54
54
260
274
8.8
Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
Selfextinguishing 90
57–60
82
93–218
0.4
100–120 0.58
0.22
0.34
260
0.22
0.22
0.25
10.41
10.42
TABLE 10.2 Properties of Commercial Plastics (continued ) Polycarbonate
Thermoplastic polyester Poly(butylene terephthalate)
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Poly(aryl ether), unfilled
Low viscosity
30% glass-fiberreinforced
160 1.14 0.25 17
140 1.2 0.15 15
150 1.4 0.14 19
2 1016 3.17 2.96
1016 3.35 3.31
0.000 9 0.010
0.011 0.007
350
1 300
Unfilled
30% glass-fiberreinforced
Poly(ethylene terephthalate)
Unfilled
30% glass-fiberreinforced
232–267
232–267
245
245
1.31–1.38 0.08–0.09 16–22
1.52 0.06–0.08 18–22
1.34–1.39 0.1–0.2
1.27 0.05 22
1016
1016 3.25
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
80
12.5 110
18 3–5
8.6–14.5 50–300
18–23.5 2–4
11–15 50–300
25 3
300
340
1 100
330–400
1 100–1 200
35–450
1 440
11 R117
13.5 M70
23 M92
12–16.7 M68–M78
26–29 M90
14–18 M94–M101
33.5 M100
427 320
14 345
107 1250
43–53 280
69–85 1 300
13–32 400–600
101 1 440
7.5
9.5
19
8.2
17–19
8.5–10.5
23
9.0
Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
Selfextinguishing
Selfextinguishing
65
68
22
60–95
25
65
29
149
138–145
146
50–85
220
38–41
224
143 0.3 0.30
0.20
0.27 0.22
0.18–0.30
0.30
0.15
10.43
10.44
TABLE 10.2 Properties of Commercial Plastics (continued ) Thermoplastic polyester Aromatic polyester
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1
Extrusiontransparent
Injection molding
Thermosetting and alkyd polyester Unsaturated polyester Styrene–maleic acid copolymer, low-shrink
Thermoset
Butadiene– maleic acid copolymer
Thermoset
Alkyd molding compounds
Putty, mineral-filled
Glass-fiberreinforced
Thermoset
Thermoset
81
310–365 1.36–1.43 0.24 22
1.39 0.01 14
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2 Compressive strength, rupture or 1% yield, 103 lb · in2
Polyimide, unfilled
1016 3–4
2 000–3 000 10
15–30
14–30
12–38
15–36
30–40
Elongation at break. % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
225
7–10
3–5
290
700
1 000–2 500
10.6 R105
12
9–35 40–70 (Barcol)
300 11
101
6
8–10 2 000
2 000
450–500
16–24 50–60 (Barcol)
6–17 E98
8.5–26 E95
19–28.8 E52–E99
133–800 1 000–2 500
214–694 1 500–2 500
16–27 500–3 000
27–854
80 300
4.5–20
5–10
3–9
4–9.5
10.5–17.1
7
63
12.5
29
6–30
282
190–260
160–177
20–50
15–33
45–56
177–260
204–260
277–360
0.27 0.29
0.76–0.93
0.51–0.89
0.6–0.89
0.10–0.11
10.45
10.46
TABLE 10.2 Properties of Commercial Plastics (continued ) Polyolefin Polyethylene
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1
Poly(methyl pentene), unfilled
Medium-density
High-density
Glass-fiberreinforced, high-density
230–240 0.84 0.01
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Low-density
Ultra highmolecularweight
114–171
Ethylene– vinyl acetate copolymer
65–90 95–130 0.910–0.925 0.01 18–39
120–140 0.926–0.94 0.01 18–39
120–140 0.941–0.965 0.01 18–39
1015 2.3 2.3
1015 2.3 2.3
1015 2.3 2.3
0.000 5 0.000 5
0.000 5 0.000 5
0.000 5 0.000 5
125–135 0.94 0.01 28
120–140 1.28 0.02 20
0.92–0.95 0.05–0.13 24–30
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
5–6.6 10–50
90–800
50–600
2.7–3.6 20–130
450–525
7 1.5
550–900
110–260
8–60
60–115
100–260
130–140
800
1–20
4–6.5 L67–L74
(D40–D51)
(D50–D60)
R30–R50
R50
11 R75
16–64 160–280
No break 14–38
27–854 25–55
27–1 068 60–180
No break
59
No break 20–120
3.5–4
0.6–2.3
1.2–3.5
3.1–5.5
5.6
9
1.4–2.8
0.8–1.2
1.0–2.2
3–4
3.1–4.0
1.0
1.0
1.0
117
100–220
140–160
110–130
130
48
160–200
41
32–41
41–49
43–54
43–49
121
34
175
70 0.55
93 0.55
200 0.46–0.55
0.17
0.34
0.34–0.42
0.46–0.51
0.46
10.47
10.48
TABLE 10.2 Properties of Commercial Plastics (continued ) Polyolefin
Poly(phenylene sulfide)
Polypropylene
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1
Polybutylene extrusion
Copolymer
126
168
160–168
0.91–0.925 0.01–0.02 18
0.90–0.91 0.01–0.03 24
0.89–0.905 0.03 24
0.90 0.03 24
1017 2.2–2.6 2.2–2.6
1017 2.3 2.3
1017 2.3
0.000 5 0.000 5–0.002
0.000 1–0.000 5 0.000 1–0.002
0.000 3
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Homopolymer
Impact copolymer
31
150–300
Polyallomer
Injection molding
40% glass-fiberreinforced
120–135
290
290
0.90 0.01 31
1.3 0.02 15
1.6 0.05 18
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
300–380
5.5–8.0 100–600
3.5–8.0 200–700
8–20
400–500
16 1–2
21 1
45–50
170–250
130–200
130–190
70–110
550
1 700
2–2.3
6–8 R80–R102
5–7 R50–R96
R40–R90
R50–R85
14 R123
29 R123
No break 30–40
21–53 165–225
53–1 068 100–170
80–900
91–203
27 480
75 1 100
3.8–4.4
4.5–6
4–5.5
3–3.8
9.5
19.5
1.7–2.5
4.5–5.4
3.5–4.3
2.5–3.1
3–3.4
128–150
81–100
68–95
60–90
83–100
49
22
54–60
48–57
45–57
90–105 (66 lb · in2)
51–56
135
249
160 0.44–0.46
240 0.45–0.50
140–160 0.45–0.50
0.12
0.15–0.17
0.12–0.17
0.09–0.17
0.29
0.29
0.22
10.49
10.50
TABLE 10.2 Properties of Commercial Plastics (continued ) Polyurethane
Silicone Mineraland /or glass-filled
Epoxy molding and encapsulating compound
Thermoset
Thermoset
Thermoset
Casting resin Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Liquid
Thermoset 1.1–1.5 0.02–1.5 12–20
1011–1015 4.0–7.5
Unsaturated
Thermoplastic elastomer
Thermoset 1.05 0.1–0.2
Styrenic
Cast resin, flexible
120–160 1.05–1.25 0.7–0.9 13–25
0.99–1.5
1.8–1.94
1.84
22
8–15
10
1011–1013 5.4–7.6
1014–1015 2.7–4.2
Polystyrene Crystal
85–105 1.04–1.05 0.03–0.10 24
1016 2.5
10–100
4–9
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
20 100–1 000
3–6
20 100–1 100
10–100
610
10–350
0.7–4.5
19
0.7–9 (A65–D80)
1 334 to flexible 10–100
21
0.175–10
10–11
10–16
28
100–700 1 000–2 500
(A15–A65)
No break
380–450
9–14 M80–M90
17
8–14 M60–M75
13–427
16
13–21
10–350 1.5–8.4
11.5–16 1–2
350–485 0.35–1.0
4–6.5
6–8
5.3–7.9
20–50
30
70–80
260
74–100
0–78 100–200 Varies over wide range
100–200 87–93
300–800
Varies over wide range
371 0.43
0.43
0.21
0.07–0.31
0.15–0.31
0.30
93 0.3 0.68
0.09–0.13
10.51
10.52
TABLE 10.2 Properties of Commercial Plastics (continued ) Styrenic Polystyrene
Acrylonitrile–butadiene–styrene copolymer Molding
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1
Heatresistant
Extrusion
110–125 1.05–1.09 0.03–0.12 20
88–120 1.02–1.06 0.20–0.45 14–20
Heatresistant
110–125 1.05–1.08 0.20–0.45 14–20
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
High-impact
Flameretarded
100–110 1.01–1.04 0.20–0.45 14–20
110–125 1.16–1.21 0.2–0.6 14–20
2.4–5.0 2.4–3.8 0.003–0.008 0.007–0.015
150–390
190–440
140–300
130–310
Platable
20% glassreinforced
100–110 1.06–1.07
1.22
16–22
18
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
11.5–16 2–60
5.2–10 20–100
7.2–10 3–20
4.5–8 5–70
6.5–7.5 5–25
340–470
130–420
300–400
250–350
300–400
340–390
710
8.9–14 L80–L108
4–14 R75–R115
10–13 R100–R115
8–11 R85–R105
9–14 R100–R120
10.5–11.5 R103–R109
15.5 M85
21–181 320–460
133–640 130–380
107–347 300–350
347–400 230–330
160–640 320–400
267–283 330–380
64 740
5–7.8
2.5–8.0
6–7.5
4.8–6.3
5–8
6–6.4
11
5.5–7
4–5.5
4–6
1.3
14
1.3
60–70
60–130
60–93
95–110
65–95
47–53
21
93–120
77–104 annealed
104–116 annealed
96–102 annealed
90–107 annealed
96–102 annealed
99
110 0.3–0.4 0.19–0.34
10.53
10.54
TABLE 10.2 Properties of Commercial Plastics (continued ) Styrenic
Sulfone
Styrene-acrylonitrile copolymer
Properties
Unfilled
20% glass-fiberreinforced
Polysulfone Styrene– butadiene copolymer, high-impact
Unfilled
20% glass-fiberreinforced
Poly(ether sulfone)
Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), %
115–125 1.07–1.08 0.2–0.3
115–125 1.22 0.15–0.20
90–110 1.03–1.06 0.05–0.10
200 1.24 0.22
200 1.46 0.23
230 1.37 0.43
Dielectric strength, kV · mm1
16–20
20
18
17
17
17
1015 3.14 3.26
3.7 3.7
0.004 0.008
0.002 0.009
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
530
370
Poly(phenyl sulfone)
220 1.29 1.1–1.3 (saturated) 16
Compressive strength, rupture of 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
14–17 1–4
19 1–2
4–9 13–50
13.9 50–100
22 2
30–80
60
550
100–1 100
280–450
390
1 000
375
330
14–17 M80–M90
20 R122
5.3–9.4 M10–M68
15.4 M69, R120
23 R123
18.7 M88
12.4
19–27 400–560
53 1 150–1 200
32–192 280–465
64 360
59 1 200
85 350
640 310
9–12
15.8–18
3.2–4.9
12.2
10.4
17
2.9–4.9
10.2
36–38
38–40
70–101
52–56
25
55
31
88–104
99
74–93
174
182
203
204
0.38
0.14–0.19
149
0.12
0.26–0.28
0.12–0.21
0.12
10.55
10.56
TABLE 10.2 Properties of Commercial Plastics (continued ) Thermoplastic elastomers
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1
Polyolefin
Polyester
Block copolymers of styrene and butadiene or styrene and isoprene
Block copolymers of styrene and ethylene or styrene and butylene
168–206 0.88–0.90 0.01 24–26
1.17–1.25
Urea formaldehyde, alpha-cellulose filled
Poly(vinyl chloride) and poly(vinyl acetate)
Rigid
Flexible and unfilled
Thermoset 0.9–1.2 0.19–0.39 16–21
Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Vinyl
3.6–120
0.9–1.2
1.47–1.52 0.4–0.8 12–16
75–105 1.30–1.58 0.04–0.4 14–20
75–105 1.16–1.35 0.15–0.75 12–16
0.5–5.0 7.7–9.5 6.7–8.0
1012–1015 3.2–4.0 3.0–4.0
1011–1014 5.0–9.0 3.0–4.0
0.036–0.043 0.025–0.035
0.01–0.02 0.006–0.02
0.03–0.05 0.06–0.1
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
150–300
350–450
500–1 350
600–800
25–45 1
8–13 40–80
1.5–2.0
7–75
4–150
4–100
1 300–1 600
300–500
(A65–A92)
(D40–D72)
(A40–A90)
(A50–A90)
10–18 M110–M120
10–16 (D65–D95)
No break
208 to no break 1.1–2.5
No break
No break
13–21
21–1068
1 000–1 500
350–600
3.7–5.7
0.6–3.0
5.5–13
6–75
1.5–3.5
Selfextinguishing
Selfextinguishing
Slow to selfextinguishing
130–137
22–36
50–100
70–250
0–49
127–143
60–77
77 0.6
70–74 0.2–0.28
0.30–0.42
0.15–0.21
0.65–2.0
0.8–50
Thermal Burning rate, mm · min1
Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
130–170
0.19–0.21
0.15
1–3
0.9–1.7 200–450
(A50–A100) Varies over wide range
80–105 0.36–0.5 0.13–0.17
10.57
10.58
TABLE 10.2 Properties of Commercial Plastics (continued ) Vinyl Poly(vinyl chloride) and poly(vinyl acetate)
Properties Physical Melting temperature, C Crystalline Amorphous Specific gravity Water absorption (24 h), % Dielectric strength, kV · mm1 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2
Flexible and filled
Poly(vinyl chloride), 15% glass-fiberreinforced
Poly(vinylidene chloride)
Poly(vinyl formal)
Chlorinated poly(vinyl chloride)
Poly(vinyl butyral), flexible
110 1.49–1.56 0.02–0.15
49 1.05 1.0–2.0 14
210 75–105 1.3–1.7 0.5–1.0 9.8–12
75–105 1.54 0.01 24–31
1.65–1.72 0.1 16–24
105 1.2–1.4 0.5–3.0 19
1014–1016 4.5–6.0
335–600
Compressive strength, rupture or 1% yield, 103 lb · in2 Elongation at break, % Flexural modulus at 23 C, 103 lb · in2 Flexural strength, rupture or yield, 103 lb · in2 Hardness, Rockwell (or Shore) Impact strength (Izod) at 23 C, J · m1 Tensile modulus, 103 lb · in2 Tensile strength at break, 103 lb · in2 Tensile yield strength, 103 lb · in2
1.0–1.8 200–400
9 2–3
5–20
750
(A50–A100) Varies over wide range
1–3.5
9–22 4–65
4.2–6.2 M50–M65
17–18 M85
14.5–17 R117–R122
53
16–53
43–75
53–299
870
50–80
350–600
360–475
9.5
3–5
10–12
7.5–9
Selfextinguishing
68
190
64
68–78
54–71
71–77
94–112
0.16
0.14
0.13
A10–A100 Varies over wide range
0.5–3.0
Slow
100 0.32 0.13–0.17
150–450
380–450
13.5 R118
Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106 C Deflection temperature under flexural load (264 lb · in2), C Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1
2–2.7 50–250
10.59
10.60
SECTION 10
FORMULAS AND ADVANTAGES OF RUBBERS Gutta Percha Gutta percha is a natural polymer of isoprene (3-methyl-1,3-butadiene) in which the configuration around each double bond is trans. It is hard and horny and has the following formula:
Natural Rubber Natural rubber is a polymer of isoprene in which the configuration around each double bond is cis (or Z):
Its principal advantages are high resilience and good abrasion resistance. Chlorosulfonated Polyethylene Chlorosulfonated polyethylene is prepared as follows:
Cross-linking, which can occur as a result of side reactions, causes an appreciable gel content in the final product. The polymer can be vulcanized to give a rubber with very good chemical (solvent) resistance, excellent resistance to aging and weathering, and good color retention in sunlight. Epichlorohydrin Epichlorohydrin is a product of covulcanization of epichlorohydrin (epoxy) polymers with rubbers, especially cis-polybutadiene. Its advantages include impermeability to air, excellent adhesion to metal, and good resistance to oils, weathering, and low temperature. Nitrile Rubber (NBR, GRN, Buna N) Nitrile rubber can be prepared as follows: CH2¨CHßCH¨CH2 CH2¨CHßCNl 2 parts 1 part
10.61
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
Nitrile rubber is also known as nitrile–butadiene rubber (NBR), government rubber nitrile (GRN), and Buna N. It possesses resistance to oils up to 120 C and excellent abrasion resistance and adhesion to metal. Polyacrylate Polyacrylate has the following formula:
It possesses oil and heat resistance to 175 C and excellent resistance to ozone. cis-Polybutadiene Rubber (BR) cis-Polybutadiene is prepared by polymerization of butadiene by mostly 1,4-addition. CH2 ¨ CH ˆ CH ¨ CH2 l [ ˆ CH2 ˆ CH ¨ CH ˆ CH2 ˆ ]n The polybutadiene produced is in the Z (or cis) configuration. cis-Polybutadiene has good abrasion resistance, is useful at low temperature, and has excellent adhesion to metal. Polychloroprene (Neoprene) Polychloroprene is prepared as follows: CH2
CH
C
CH2 →
CH2
CH
C(Cl)
CH2
n
Cl
It has very good weathering characteristics, is resistant to ozone and to oil, and is heatresistant to 100 C. Ethylene–Propylene–Diene Rubber (EPDM) Ethylene–propylene–diene rubber is polymerized from 60 parts ethylene, 40 parts propylene, and a small amount of nonconjugated diene. The nonconjugated diene permits sulfur vulcanization of the polymer instead of using peroxide. It is a very lightweight rubber and has very good weathering and electrical properties, excellent adhesion, and excellent ozone resistance. Polyisobutylene (Butyl Rubber) Polyisobutylene is prepared as follows:
10.62
SECTION 10
It possesses excellent ozone resistance, very good weathering and electrical properties, and good heat resistance. (Z)-Polyisoprene (Synthetic Natural Rubber) Polymerization of isoprene by 1,4-addition produces polyisoprene that has a cis (or Z) configuration.
Polysulfide Rubbers Polysulfide rubbers are prepared as follows: Cl ˆ R ˆ Cl Na ˆ S ˆ S ˆ S ˆ S ˆ Na l HS [ ˆ R ˆ S ˆ S ˆ S ˆ S ˆ ]nR ˆ SH where R can be ˆ CH2CH2 ˆ , ˆ CH2CH2 ˆ O ˆ CH2CH2 ˆ , or ˆ CH2CH2 ˆ O ˆ CH2 ˆ O ˆ CH2CH2 ˆ . Polysulfide rubbers possess excellent resistance to weathering and oils and have very good electrical properties. Poly(vinyl chloride) (PVC) Poly(vinyl chloride) as previously discussed under “Formulas and Key Properties of Plastic Materials” has the following structures:
PVC polymer plus special plasticizers are used to produce flexible tubing which has good chemical resistance. Silicone Rubbers Silicone rubbers are prepared as follows:
Other groups may replace the methyl groups. Silicone rubbers have excellent ozone and weathering resistance, good electrical properties, and good adhesion to metal.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
10.63
Styrene–Butadiene Rubber (GRS, SBR, Buna S) Styrene–butadiene rubber is prepared from the free-radical copolymerization of one part by weight of styrene and three parts by weight of 1,3-butadiene. The butadiene is incorporated by both 1,4-addition (80%) and 1,2-addition (20%). The configuration around the double bond of the 1,4-adduct is about 80% trans. The product is a random copolymer with these general features:
Styrene–butadiene rubber (SBR) is also known as government rubber styrene (GRS) and Buna S.
Urethane See Table 10.3.
10.64
TABLE 10.3 Properties of Natural and Synthetic Rubbers
Rubber Gutta percha (hard rubber) Natural rubber (NR) Chlorosulfonated polyethylene Epichlorohydrin Fluoroelastomers Isobutene–isoprene rubber (IIR) [also known as government rubber I(GR-I)] Nitrile rubber (butadiene–acrylonitrile rubber) (also known as Buna N and NBR) Polyacrylate Polybutadiene rubber (BR) Polychloroprene (neoprene) Poly(ethylene–propylene–diene) (EPDM) Polyisobutylene (butyl rubber) Polyisoprene Polysulfide (Thiokol ST) Poly(vinyl chloride) (Koroseal) Silicone, high-temperature Silicone Styrene–butadiene rubber (SBR) (also known as Buna S) Urethane
Service temperature, C
Specific gravity
Durometer hardness (or Shore)
Ultimate elongation % (23 C)
Tensile strength, lb · in2 (23 C)
Minimum
Maximum
1.2–1.95 0.93 1.10 1.27 1.4–1.95
(65–95) 20–100 50–95 60–90 60–90
3–8 750–850 100–500 100–400 100–350
4000–1 0,000 3000–4500 500–3000 1000–2500 2000–3000
56 54 46 40
104 82 121 121 232
0.91
(40–70)
750–950
2300–3000
1.00 1.10 0.93 1.23 0.85 0.92 0.94 1.34 1.32
30–100 40–100 30–100 20–90 30–100 30–100 20–100 20–80 (80–90)
100–600 100–400 100–700 800–1000 100–300 100–700 100–750 100–400
0.98 0.94 0.85
20–95 40–100 62–95
50–800 400–600 100–700
500–4000 1000–2200 2500–3000 2000–3500 1000–3000 1000–3000 2000–3000 700–1250 2400–3000 700–800 500–1500 1600–3700 1000–8000
121 54 18 62 54 40 54 54 54 84 60 54
121 149 79–100 121 149 100 79–82 82–100 71 316 232 107 100
CHEMICAL RESISTANCE TABLE 10.4 Resistance of Selected Polymers and Rubbers to Various Chemicals at 20 C The information in this table is intended to be used only as a general guide. The chemical resistance classifications are E excellent (30 days of exposure causes no damage), G good (some damage after 30 days), F fair (exposure may cause crazing, softening, swelling, or loss of strength), N not recommended (immediate damage may occur).
Hydrocarbons, aromatic Hydrocarbons, halogenated
Ketones
Oxidizing agents, strong
Hydrocarbons, aliphatic
N N G N
N N G N
N N N N
N N
G
N G E F
E G G G E E E
E G N G F F G
E F N F G F G E
E F N F N N N E
E G N N F G G E
E N N F F F F
Glycols
Ethers
Esters
Alkalies, concentrated
Aldehydes
Alcohols, aliphatic
Acids, strong and concentrated
Acids, dilute or weak
Chemical
Polymers Acetals Acrylics: poly(methyl methacrylate) Allyls: diallyl phthalate Cellulosics: cellulose-acetate–butyrate and cellulose–acetate– propionate polymers Fluorocarbons Polyamides Polycarbonates Polyesters Poly(methyl pentene) Low-density polyethylene High-density polyethylene Polybutadiene
F G G F
N N
F E
N
N
N
N
E N G G E E E G
E N N G E E E F
E G G N G E E E
E E F G G E
N N N N
N N
N E
G E
N
N
E E N N E E E
E G N N G G G
E N F N N N
10.65
Hydrocarbons, aliphatic
Hydrocarbons, aromatic Hydrocarbons, halogenated
Ketones
Oxidizing agents, strong
F N
N N
G N
F N
G F
G N N F F G
N N N
N N N
N N N
G G
E E E E E E
N E F N E N
N N N N F N
N N N N N N
N N N N N N
Glycols
Ethers
Esters
Alkalies, concentrated
Aldehydes
Alcohols, aliphatic
Acids, strong and concentrated
Chemical
Acids, dilute or weak
10.66
TABLE 10.4 Resistance of Selected Polymers and Rubbers to Various Chemicals at 20 C (continued )
Polymers (continued) APolypropylene and polyallomer Polystyrene Styrene–acrylonitrile copolymers Styrene–acrylonitrile–butadiene copolymers Sulfones: polysulfone Vinyls: poly(vinyl chloride)
E N
E N
G E
N N G
E E N G F E
E
F G
E N N G E G
G N
N
E E F
N N N
F F
N N N F E N
N G F F E N
Rubbers Natural rubber Nitrile rubber Polychloroprene Polyisobutylene Polysulfide rubbers: Thiokol Styrene–butadiene rubber
E E E E E E
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
TABLE 10.5 Common Abbreviations Used in Polymer Chemistry Acronym
Expansion
ABA ABS ABS–PC ABS–PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS
Acrylonitrile–butadiene–acrylate Acrylonitrile–butadiene–styrene copolymer Acrylonitrile–butadiene–styrene–polycarbonate alloy Acrylonitrile–butadiene–styrene–poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile–chlorinated pe-styrene Acrylonitrile–ethylene–propylene–styrene Acrylonitrile–methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic–styrene–acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate–butyrate Cellulose acetate–propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene–chlorotrifluoroethylene copolymer Ethylene–ethyl acrylate Ethylene–methyl acrylate Ethylene methacrylic acid Ethylene–methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene–propylene Ethylene–propylene rubber Ethylene–styrene copolymers Polyethylene–vinyl acetate Polyethylene–vinyl alcohol copolymers Fluorinated ethylene–propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate–butadiene–styrene
10.67
10.68
SECTION 10
TABLE 10.5 Common Abbreviations Used in Polymer Chemistry (continued ) Acronym
Expansion
MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU
Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine–phenol–formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin–modified styrene–acrylonitrile Polyamide Poly(aryl ether–ketone) Poly(amide–imide) Polyacrylonitrile Polybutylene Poly(butadiene–acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene–styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene–dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether–imide) Poly(ether–ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol–formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)
POLYMERS, RUBBERS, FATS, OILS, AND WAXES
TABLE 10.5 Common Abbreviations Used in Polymer Chemistry (continued ) Acronym
Expansion
PS PSF PSU PTFE PU PUR PVA PVAL PVB PVC PVCA PVDA PVDC PVDF PVF PVOH SAN SB SBC SBR SMA SMC TA TDI TEFE TPA UF ULDPE UP UR VLDPE ZNC
Polystyrene Polysulfone (also PSU) Polysulfone (also PSF) Polytetrafluoroethylene Polyurethane Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) poly(vinyl butyrate) Poly(vinyl chloride) Poly(vinyl chloride–acetate) Poly(vinylidene acetate) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl fluoride) Poly(vinyl alcohol) Styrene–acrylonitrile copolymer Styrene–butadiene copolymer Styrene block copolymer Styrene butadiene rubber Styrene–maleic anhydride (also SMC) Styrene–maleic anhydride (also SMA) Terephthalic acid (also TPA) Toluene diisocyanate Ethylene–tetrafluoroethylene copolymer Terephthalic acid (also TA) Urea formaldehyde Ultralow-density polyethylene Unsaturated polyester resin Urethane Very low-density polyethylene Ziegler-Natta catalyst
10.69
10.70
GAS PERMEABILITY TABLE 10.6 Gas Permeability Constants (1010P) at 25 C for Polymers and Rubbers The gas permeability constant P is defined as amount of permeant (area) (time) (driving forced across the film) The gas permeability constant is the amount of gas expressed in cubic centimeters passed in 1 s through a 1-cm2 area of film when the pressure across a film thickness of 1 cm is 1 cmHg and the temperature is 25 C. All tabulated values are multiplied by 1010 and are in units of seconds1 (centimeters of Hg)1. Other temperatures are indicated by exponents and are expressed in degrees Celsius. P
Gas Polymer or rubber
He
N2
H2
O2
CO2
H2O
Cellulose (cellophane) Cellulose acetate
0.00520 13.620
0.003 2 0.2830
0.006 5 3.520
0.002 1 0.7830
0.004 7 22.730
1 900 5 500
Cellulose nitrate Ethyl cellulose
6.9 40030
0.12 8.430
2.020 8720
1.95 26.530
2.12 41.030
6 290 12 00020
2.17 9.43
14.4 52.0
6.16 23.3
35.4 15.3
510 2 290
0.03830
0.1030
177
Gutta percha Natural rubber
Nylon 6
0.5320
Nylon 11
1.9530
Poly(acrylonitrile)
0.009 530 1.7830
1.0040 0.000 2
0.000 8
300
Other 0.00645 (H2S); 0.001 7 (SO2) 3.530 (H2S); 170 (ethylene oxide); 6.860 (bromomethane) 57.1 (NH3); 1.76 (SO2) 705 (NH3); 204 (SO2); 4200 (ethylene oxide) 15.7 (CO); 30.1 (CH4); 1.68 (C3H8); 98.9 (C2H2); 550 (CH3C ˜ CH); 3.59 (SF6) 0.3330 (H2S); 1.220 (NH3); 0.8460 (CH3Br) 0.34430 (Ne); 0.18940 (Ar); 13.650 (propyne)
Acrylonitrile–styrene copolymer (66 : 34) Poly(1,3-butadiene) Poly(cis-1,4-butadiene) Butadiene–acrylonitrile copolymer (80 : 20) Butadiene–styrene copolymer (80 : 20) Butadiene–styrene copolymer (92 : 8) Polychloroprene Polyethylene, low-density
0.048 19.0
0.21 138.0
2 000 5 070
6.42 19.2
41.9
15.9
3.85
30.8
4.9
1.06 1.71 5.11 1.2 0.969
13.6 12.030
4.0 2.88
25.8 12.6
90
Polyethylene, high-density
1.14
0.143
3.020
0.403
0.36
12.0
Poly(ethylene terephthalate) Crystalline Amorphous Poly(ethyl methacrylate)
1.32 3.28 6.82
0.006 5 0.013 0.220
3.7020
0.035 0.059 1.15
0.17 0.30 5.00
130
8.38
0.324
7.20
1.30
5.16
11038
7.77
0.181
7.41
0.852
4.32
Isobutene–isoprene copolymer (98 : 2) Isoprene–acrylonitrile copolymer (76 : 24)
32.6 12.2 13.4 22.9
19.2 (Ne); 41.0 (Ar)
3 200
24.8 (C2H2); 7.7 (propyne) 5.01 (Ne); 4.49 (Ar) 9.70 (Ne); 12.7 (Ar) 3.79 (Ar); 3.27 (CH4) 2.88 (CH4); 6.81 (C2H6); 9.43 (C3H8); 1.48 (CO); 490 (ethylene oxide); 14.4 (propene); 42.2 (propyne); 0.170 (SF6); 47260 (CH3Br) 0.388 (CH4); 0.590 (C2H6); 0.537 (C3H8); 0.008 3 (SF6); 1.69 (Ar); 4.01 (propene) 0.003 2 (CH4); 0.0860 (CH3Br) 0.009 (CH4) 2.98 (Ne); 0.565 (Ar); 0.370 (Kr); 3.83 (H2S); 0.000 001 65 (SF6) 13.650 (C3H8)
10.71
10.72
TABLE 10.6 Gas Permeability Constants (1010P) at 25 C for Polymers and Rubbers (continued ) Gas Polymer or rubber Isoprene–methacrylonitrile copolymer (76 : 24) Methacrylonitrile–styrene– butadiene copolymer (88 : 7 : 5) Poly(methylpentene) Polypropylene Silicone rubber, 10% filler
He
N2
H2
O2
CO2
H2O
0.596
13.6
2.34
14.1
7.83 0.4430 2270
136 4120 4640
0.004 8 32.0 2.330 4890
0.014 92.6 9.230 3 240
600
101 3820 2330
18.7
0.788 1.4 0.003
23.3 9.8 0.9420
2.63 4.2 0.02540
10.5 11.7 0.04840
1 200
8930
0.5030
51 43 00035
Polystyrene Poly(tetrafluoroethylene) Poly(trifluoroethylene)
6.820
Poly(vinyl acetate)
12.630
Poly(vinyl alcohol)
0.00130
0.00114
0.009
0.008 9
0.00123
Poly(vinyl chloride)
2.05
0.011 8
1.70
0.045 3
0.157
275
Poly(vinylidene chloride)
0.3134
0.000 9430
0.005 330
0.0330
0.5
0.29
Other
0.3320 (H2S); 9.220 (NH3) 1910 (Ne); 5500 (Ar); 1 0200 (Kr); 2 5500 (Xe); 19 0000 (butane) 15.7 (NO2); 37.5 (N2O4) 1.20 (ethylene oxide); 4.660 (CH3Br) 2.6430 (Ne); 0.1930 (Ar); 0.07830 (Kr); 0.05030 (CH4) 0.007 (H2S); 0.0020 (ethylene oxide) 3.92 (Ne); 0.011 5 (Ar); 0.028 6 (CH4) 0.0330 (H2S); 0.00860 (CH3Br)
TABLE 10.7 Vapor Permeability Constants (1010P) at 35 C for Polymers All tabulated values are multiplied by 1010 and are in units of seconds1 (centimeters of Hg)1.
Vapor Polymer Cellulose Cellulose acetate Poly(acrylonitrile) Polyethylene, low-density Polystyrene Poly(vinyl alcohol)
Benzene
Hexane
1.4 512 2.61 5 300 10 600 3.58
0.912 2.80 1.59 2 910
Carbon tetrachloride
Ethanol
Ethyl acetate
0.836 3.74 1.47 3 810 6 820 1.61
85.8 2 980 0 55.9 0 32.7
13.4 3 595 1.34 513 soluble 2.53
2.34
FATS, OILS, AND WAXES TABLE 10.8 Constants of Fats and Oils
Fat or oil
Solidification point, C
Specific gravity (15 C/15 C)
Refractive index
Acid value
Saponification value
Iodine value
0.5–35 1.2 5.6 0.8–5.3
210–230 193–205 171–189 195–200
26–38 66–72 137–166 26–36
Animal origin
10.73
Butterfat Chicken fat Cod-liver oil Deer fat
20–23 21–27 3
40 C 0.9115 C 0.924 0.92–0.93 0.96–0.97
1.455 0.92525 C
10.74
TABLE 10.8 Constants of Fats and Oils (continued )
Fat or oil
Solidification point, C
Specific gravity (15 C/15 C)
Refractive index
Acid value
Saponification value
Iodine value
2–12
13 0.25 2–14 1.9
203 (body); 290 (jaw) 233–236 191–193 170–194 195–200 193–200 193–198 195–203 189–193 193–199 203 199–203 188–196 188–196 157–164 120–137 196–200 195–196 160–202
127 (body); 33 (jaw) 25–37 58–67 102–149 75–86 57–73 63–79 47–67 148–185 58–75 127 70–100 130–152 130–152 115–139 80–84 35–42 48–61 90–146
0.5–3.5
199 183–208
100 93–103
Animal origin (continued) Dolphin Goat butter Goose fat Herring oil Horse fat Human fat Lard oil Lard oil, fatty tissue Menhaden oil Neat’s-foot oil Porpoise, body oil Rabbit fat Sardine oil Seal Shark Sperm oil Tallow, beef Tallow, mutton Whale oil
3 to 5
22–24 20–45 15 2 to 4 27–30 5 2 to 10 16 17–23 20–22 3 15.5 31–38 32–41 2 to 0
0.91–0.93 38 C 0.91 0.9438 C 0.92–0.93 0.92–0.94 0.92–0.93 0.903 0.913–0.915 0.93–0.94 0.92–0.93 0.91–0.92 0.926 0.93–0.94 0.92–0.93 0.915–0.926 0.916–0.919 0.878–0.884 0.895 0.937–0.953 0.917–0.924
0.90060 C 1.460 1.462 1.462 1.46560 C 1.46425 C 1.46660 C
1.45740 C 1.46060 C
0.6 1.8–44 0–2.4 0.1–2.5 0.5–0.8 3–12 0.1–0.6 1.2 1.4–7.2 4–25 1.9–40
Plant origin Acorn Almond
10 20 to 15
0.916 0.914–0.921
10.75
Babassu oil Beechnut oil Castor oil Chaulmoogra oil, USP Chinese vegetable tallow Cocoa butter Coconut oil Corn (maize) oil Cottonseed oil Hazelnut oil Hemp-seed oil Linseed oil Mustard oil, black Neem oil Niger-seed oil Oiticica oil Olive oil Palm oil Palm kernel oil Peanut oil Perilla oil Pistachio-nut oil Poppy-seed oil Pumpkin-seed oil Rapeseed oil Safflower oil Sesame oil Soybean oil Sunflower-seed oil Tung oil White-mustard-seed oil Wheat-germ oil
22–26 17 18 to 17 25 24–34 21.5–23 14–22 20 to 10 13 to 12 18 to 17 28 to 15 27 to 19 16 3 6 35–42 24 3 10 to 5 18 to 16 15 10 18 to 13 6 to 4 16 to 10 17 2.5 16 to 8
0.89360 C 0.922 0.960–0.967 0.95025 C 0.918–0.922 0.964–0.974 0.926 0.921–0.928 0.91825C 25C 0.917 0.928–0.934 0.930–0.938 0.918–0.921 0.917 0.925 0.97425 C 0.914–0.918 0.915 0.918–0.925 0.917–0.926 0.930–0.937 0.913–0.919 0.924–0.926 0.923–0.925 0.913–0.917 0.925–0.928 0.91925C 25C 0.924–0.927 0.924–0.926 0.94–0.95 0.912–0.916
1.44360 C 1.477
0.1–0.8
1.45740 C 1.44940 C 1.47340 C 1.47440 C
2.4 1.1–1.9 2.5–10 1.4–2.0 0.6–0.9
1.47825 C 1.47540 C 1.46240 C 1.47140 C
0.45 1–3.5 5.7–7.3
1.46840 C 1.45840 C 1.45740 C 1.46940 C 1.48125 C
0.3–1.0 10 0.3–0.6 0.8
1.46940 C
2.5
1.47140 C 1.46260 C 1.46540 C 1.47340 C 1.46940 C 1.51725 C
0.36–1.0 0.6 9.8 0.3–1.8 11.2 2 5.4
247 191–196 175–183 196–213 179–206 193–195 153–262 187–193 194–196 191–197 190–195 188–195 173–175 195 190 185–196 200–205 220–231 186–194 188–194 191 193–195 188–193 168–179 188–203 188–193 189–194 188–193 190–197 171–174
16 97–111 84 98–110 23–41 33–42 6–10 111–128 103–111 87 145–162 175–202 99–110 71 129 140–180 79–88 49–59 26–32 88–98 185–206 83–87 128–141 121–130 94–105 122–141 103–117 122–134 129–136 163–171 94–98 125
10.76 TABLE 10.9 Constants of Waxes
Wax Bamboo leaf Bayberry (myrtle) Beeswax, ordinary Beeswax, East Indian Beeswax, white, USP Candelilla Cape berry Caranda Carnauba, No. 1 yellow Carnauba, No. 3, crude Carnauba, No. 3, refined Castor oil, hydrogenated Chinese insect Cotton Cranberry Esparto
Melting point, C 79–80 47–49 62–66 61–67 61–69 73–77 40–45 80–85 86–88 86–90 86–89 83–88 80–85 68–71 207–218 75–79
Specific gravity (15 C/15 C) 0.96125 C 0.99 0.95–0.97 0.95–0.97 0.95–0.98 0.98–0.99 1.01 0.99–1.00 0.99–1.00 0.99–1.01 0.96–0.97 0.98–0.9920 C 0.95–0.97 0.96 0.97–0.98 0.985–0.995
Refractive index
1.43680 C 1.44–1.4840 C 1.4440 C 1.45–1.4765 C 1.45–1.4685 C 1.4545 C
1.4740 C 1.4640 C
Acid value 14–15 3–4 17–21 5–10.5 17–24 19–24 2.5–4.0 5.0–9.5 1.5–2.5 3.0–8.5 3.0–5.0 1.0–5.0 2–9 32 42–59 22–27
Saponification value 43–44 205–212 88–100 87–117 90–96 55–64 211–215 64–79 75–86 75–89 76–85 177–181 78–93 71 131–134 58–73
Iodine value 7.8 4–9.5 8–11 4–10.5 7–11 14–20 0.5–2.5 8–9
7–13.5 2.5–8.5 1.0–2.5 25 44–53 7–15
Flax Japan Jojoba Microcrystalline, amber Microcrystalline, white Montan, crude Montan, refined Ouricury Ozokerite Palm Paraffin, American Shellac Sisal hemp Spermaceti Sugarcane, refined Wool
61–70 49–56 11–12 64–91 71–89 76–86 77–84 86–89 56–82 74–86 49–63 79–82 74–81 41–49 76–82 38–40
0.91–0.99 0.97–1.00 0.86–0.9025 C 0.91–0.94 0.93–0.94 1.01–1.0225 C 1.02–1.04 0.99–1.01 0.90–1.00 0.99–1.05 0.896–0.925 0.97–0.98 1.007–1.010 0.905–0.960 0.96–0.98 0.97
1.46525 C 1.42–1.4580 C 1.44180 C
1.44–1.4880 C
1.5125 C 1.4840 C
17–48 4–15 0.2–0.6 0 0 22–31 23–45 12–19 0 5–11 0 12–24 16–19 0.5–3.0 8–23 6–22
37–102 210–235 92–95 0 0 59–92 72–115 88–96 0 64–104 0 64–83 56–58 121–135 55–70 82–130
22–29 4–15 82–88 0 0 14–18 10–14 6.9–7.8 4–8 9–17 0 6–9 28–29 2.5–8.5 13–29 15–47
10.77
SECTION 11
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
PHYSICAL CONSTANTS . . . . . . . . . . . . . . . . . Table 11.1 Fundamental Physical Constants . . . . . GREEK ALPHABET . . . . . . . . . . . . . . . . . . . . Table 11.2 Greek Alphabet . . . . . . . . . . . . . . PREFIXES . . . . . . . . . . . . . . . . . . . . . . . . . . Table 11.3 Prefixes for Naming Multiples and Submultiples of Units . . . . . . . . . . . Table 11.4 Numerical Prefixes . . . . . . . . . . . . . TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . Table 11.5 Conversion Formulas for Solutions Having Concentrations Expressed in Various Ways Table 11.6 Conversion Factors . . . . . . . . . . . . . STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . Table 11.7 Values of t . . . . . . . . . . . . . . . . .
11.1
. . . . .
. . . . .
11.2 11.2 11.5 11.5 11.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5 11.5 11.6
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . .
11.6 11.7 11.14 11.14
11.2
SECTION 11
PHYSICAL CONSTANTS TABLE 11.1 Fundamental Physical Constants A. Defined values Name of unit
Symbol
Definition SI base units
Meter (metre) (preferred spelling in U.S. is meter) Kilogram Second
m
1 650 763.73 wavelengths in vacuum of the orange-red line of the spectrum of krypton-86
kg s
Ampere
A
Kelvin (degree Kelvin) Candela
K cd
Mole
mol
Mass of a cylinder of platinum–iridium alloy kept at Paris Duration of 9 192 631 770 cycles of the radiation associated with a specified transition of the cesium atom Magnitude of the current that, when flowing through each of two long parallel wires separated by one meter in free space, results in a force between the two wires 2 107 newton for each meter of length Defined in the thermodynamic scale by assigning 273.16 K to the triple point of water (freezing point, 273.15 K 0 C) Luminous intensity of 1/600 000 of a square meter of a radiating cavity at the temperature of freezing platinum (2 042 K) Amount of substance which contains as many specified entities (molecules, atoms, ions, electrons, photons, etc.) as there are atoms of carbon-12 in exactly 0.012 kg of that nuclide Supplementary SI units
Radian
rad
Steradian
sr
The plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius The solid angle which, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere
B. Derived SI units
Quantity and symbol Capacitance (electric), C Charge (electric), quantity of electricity, Q Conductance (electric), G( 1/R) Energy, work, quantity of heat, H
Name of SI unit
Symbol and definition
farad
F C · V1
coulomb siemens joule
CA·s S 1 J kg · m2 · s2
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
11.3
TABLE 11.1 Fundamental Physical Constants (continued)
Quantity and symbol
Name of SI unit
Force Frequency Illuminance, illumination Inductance, L Luminous flux Magnetic flux Magnetic flux density Potential difference, E Power, radiant flux Pressure, stress Resistance (electric), R
newton hertz lux henry lumen weber tesla volt watt pascal ohm
Symbol and definition N kg · m · s2 Hz s1 lx lm · m2 H·s lm cd · sr Wb V · s T Wb · m2 V kg · m2 · s3 · A1 J · A1 · s1 W kg · m2 · s3 J · s1 Pa N · m2 kg · m1 · s2 V · A1 kg · m2 · s3 · A2
C. Recommended Consistent Values of Constants The digits in parentheses following a numerical value represent the standard deviation of that value in terms of the final listed digits. Constant Anomalous electron moment correction Atomic mass unit Avogadro constant Bohr magneton Bohr radius Boltzmann constant Charge-to-mass ratio for electron Compton wavelength of electron Compton wavelength of neutron Compton wavelength of proton Diamagnetic shielding factor, spherical H2O molecule Electron g-factor Electron magnetic moment Electron radius (classical) Electron rest mass Elementary charge Faraday constant Fine structure constant First radiation constant Gas constant (molar)
Gravitational constant
Symbol and value
(e /0) 1 1.159 615(15) 103 u (103 kg · mol1)/NA 1.660 566(9) 1027 kg NA 6.022 045(31) 1023 mol1 B e/2mec 9.274 078(36) 1024 J · T1 a0 /4R∞ 0.529 177 06(44) 1010 m k R/NA 1.380 662(44) 1023 J · K1 e/me 1.758 805(5) 1011 C · kg1 2 c /2R 2.426 309(4) 1012 m c c /2 a0 3.861 591(6) 1013 m c,n h/mnc 1.319 591(2) 1015 m c,p h/mpc 1.321 410(2) 1015 m 1 (H2O) 1.000 025 64(7) ge /2 e /B 1.001 159 657(4) e 9.284 832(36) 1024 J · T1 2 c 0e /4me re 2.817 938(7) 1015 m me 0.910 953(5) 1030 kg 5.485 803(2) 104 u e 1.602 189(5) 1019 C NAe F 9.648 456(27) 104 C · mol1 0ce2/2h 0.007 297 351(6) 1/ 1.370 360(1) 2hc2 c1 3.741 83(2) 1016 W · m2 R P0Vm /T0 8.314 41(26) J · mol1 · K1 82.0568(26) cm3 · atm · mol1 · K1 1.987 19(6) cal · mol1 · K1 G 6.672(4) 1011 N · m2 · kg2
11.4
SECTION 11
TABLE 11.1 Fundamental Physical Constants (continued) Constant Gyromagnetic ratio of proton (uncorrected for diamagnetism of H2O) Josephson frequency–voltage ratio Magnetic flux quantum Molar standard volume, ideal gas Muon g-factor Muon magnetic moment Muon rest mass Neutron rest mass Normal volume, perfect gas Nuclear magneton Permeability of vacuum Permittivity of vacuum Planck constant Proton magnetic moment: In Bohr magnetons In nuclear magnetons Proton rest mass Quantum–charge ratio Quantum of circulation Ratio, electron to proton magnetic moments Ratio, kxu (Siegbahn) to angstrom Ratio, muon moment to proton moment Rydberg constant Second radiation constant Speed of light in vacuum Stefan–Boltzmann constant Thomson cross section Voltage–wavelength product Wien displacement constant Zeeman splitting constant Energy equivalents: 1 atomic mass unit 1 proton mass 1 neutron mass 1 muon mass 1 electron mass 1 electronvolt
Symbol and value p 2.675 199(8) 108 s1 · T1 p 675 130(8) 108 s1 · T1 2e/h 4.835 939(13) 1014 Hz · V1 0 h/2e 2.067 851(5) 1015 Wb Vm RT0/P0 0.022 413 8(7) m3 · mol1 e/2mc g/2 1.001 166 16(31) 4.490 474(18) 1026 J · T1 m 1.883 566(11) 1028 kg mn 1.674 954(9) 1027 kg V0 2.241 36(30) 104 cm3 · mol1 N e/2mpc 5.050 824(20) 1027 J · T1 0 4 107 H · m1 0 (0c2)1 8.854 187 82(7) 1012 F · m1 h 6.626 176(36) 1034 J · s h/2 1.054 589(6) 1034 J · s p 1.410 617(5) 1026 J · T1 p /B 1.521 032 209(16) 103 p /N 2.792 845 6(11) mp 1.672 649(9) 1027 kg h/e 4.135 701(11) 1015 J · Hz1 · C1 h/me 7.273 89(1) 104 J · s · kg1 e /p 6.582 106 88(7) 102 1.000 020 5(56) /p 3.183 340(7) R∞ 1.097 373 18(8) 107 m1 c2 hc/k 1.438 786(45) 102 m · K c 2.997 924 58(12) 108 m · s1 ( 2/60)k4/3c2 5.670 3(7) 108 W · m2 · K4 e 8r 2e /3 6.652 448(33) 1028 m2 V 1.239 852(3) 106 eV · m b 0.289 78(4) cm · K B /hc 4.668 58(4) 105 cm1 · G1 u 931.501 6(26) MeV mv 938.279 6(27) MeV mn 939.573 1(27) MeV m 105.659 48(35) MeV me 0.511 003 4(14) MeV 1 eV/k 1.160 450(36) 104 K 1 eV/hc 8.065 479(21) 103 cm1 1 eV/h 2.417 970(6) 1014 Hz
Source: E.R. Cohen and B.N. Taylor, J. Phys. Chem. Ref. Data, 2(4): 663 (1973)
11.5
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
GREEK ALPHABET TABLE 11.2 Greek Alphabet Capital letter
Lowercase letter
Letter name
A B
E Z H
I K M
Capital letter
Lowercase letter
N O P T Y X
o
Alpha Beta Gamma Delta Epsilon Zeta Eta Theta Iota Kappa Lambda Mu
Letter name Nu Xi Omicron Pi Rho Sigma Tau Upsilon Phi Chi Psi Omega
PREFIXES TABLE 11.3 Prefixes for Naming Multiples and Submultiples of Units For example: 109 gram is one nanogram, or 1 ng. Factor
Prefix
Symbol
Factor
Prefix
1012 10 9 106 103 10 2 10 101
tera giga mega kilo hecto deka deci
T G M k h da d
102 103 106 109 1012 1015 1018
centi milli micro nano pico femto atto
Symbol c m n p f a
TABLE 11.4 Numerical Prefixes Number 1 2
1 1 12 2 3 4 5
Prefix hemi mono sesqui di or bi tri tetra penta
Number
Prefix
Number
Prefix
6 7 8 9 10 11 12
hexa hepta octa nona deca undeca dodeca
13 14 15 16 17 18 19
trideca tetradeca pentadeca hexadeca heptadeca octadeca nonadeca
11.6
SECTION 11
TABLE 11.4 Numerical Prefixes (continued ) Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Prefix
Number
icosa henicosa docosa tricosa tetracosa pentacosa hexacosa heptacosa octacosa nonacosa triaconta hentriaconta dotriaconta tritriaconta
34 35 36 37 38 39 40 41 42 43 44 45 46 47
Prefix
Number
Prefix
48 49 50 51 52 53 54 55 56 57 58 59 60
octatetraconta nonatetraconta pentaconta henpentaconta dopentaconta tripentaconta tetrapentaconta pentapentaconta hexapentaconta heptapentaconta octapentaconta monapentaconta hexaconta
tetratriaconta pentatriaconta hexatriaconta heptatriaconta octatriaconta nonatriaconta tetraconta hentetraconta dotetraconta tritetraconta tetratetraconta pentatetraconta hexatetraconta heptatetraconta
TRANSFORMATIONS TABLE 11.5 Conversion Formulas for Solutions Having concentrations expressed in Various Ways Abbreviations Used in the Table wt %, weight percent of solute MW1, molecular weight of solute MW2, molecular weight of solvent d, density of solution (g · mL1)
To obtain
From
molarity
weight per cent of solute
molarity
molality
molarity
grams of solute per liter of solution
molarity
mole fraction
mole fraction
weight per cent of solute
mole fraction
molality
mole fraction
molarity
m, molality M, molarity n, mole fraction G, grams of solute per liter of solution
Compute 10 d(wt %) MW1 1000 dm M 1000 (MW1)m G M MW1 M
1000 dn n(NW1) MW2(1 n) (wt %)/MW1 n (wt %)/MW1 (100 wt %)MW2 (MW2)m n (MW2)m 1000 M(MW2) n M(MW2 MW1) 1000 d M
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
11.7
TABLE 11.5 Conversion Formulas for Solutions Having concentrations expressed in Various Ways (continued ) To obtain
From
Compute G(MW2) G(MW2 MW1) 1000 d(MW1)
grams of solute per liter of solution
n
weight percent of solute
mole fraction
wt %
100 n(MW1) n(MW1) MW2(1 n)
weight percent of solute
grams of solute per liter of solution
wt %
G 10 d
weight percent of solute
molarity
wt %
M(MW1) 10 d
weight percent of solute
molality
wt %
100 m(MW1) 1000 m(MW1)
molality
molarity
m
1000 M 1000 d M(MW1)
molality
grams of solute per liter of solution
m
1000 G MW1(1000 d G)
molality
weight percent of solute
m
1000(wt %) MW1(100 wt %)
molality
mole fraction
m
1000 n MW2 n(MW2)
mole fraction
TABLE 11.6 Conversion Factors The data have been compared with the International Standard ISO 31 (1979–80) and the American Society for Testing and Materials Standard for Metric Practice E 380-79. Relations which are exact are indicated by an asterisk (*). Factors in parentheses are also exact. To convert
Into
Multiply by
ampere per square centimeter
ampere per square inch*
6.451 6
ampere-hour
coulomb*
3 600
ampere-turn
gilbert
1.256 637
angstrom
meter* nanometer*
1 1010 0.1
apostib
candela per square meter lambert*
0.318 309 9(1 ) 1 104
atmosphere
bar* inch of mercury millimeters of mercury* millimeter of water newton per square meter* pascal* torr*
1.013 25 29.921 26 760 1.033 227 104 1.013 25 105 1.013 25 105 760
11.8
SECTION 11
TABLE 11.6 Conversion Factors (continued ) To convert
Into
Multiply by
bar
atmosphere dyne per square centimeter* millimeter of mercury pascal
0.986 923 1 106 750.062 1 105
barn
square meter*
1 1028
barrel (petroleum)
gallon (British) gallon (U.S.)* liter
34.972 3 42 158.987
barrel (U.S., dry)
bushel (U.S.) liter
3.281 22 115.627 1
barrel (U.S., liquid)
gallon (U.S.) liter
31.5 119.240 5
becquerel
curie*
2.7 1011
British thermal unit (Btu)
calorie joule kilowatt-hour liter-atmosphere
251.996 1 055.056 2.930 71 104 10.412 6
bushel (U.S.)
barrel (U.S., dry) cubic foot cubic inch* gallon (U.S.) liter pint (U.S., dry) quart (U.S., dry)
0.304 765 1.244 456 2 150.42 9.309 18 3.523 907 64 32
calorie
Btu joule* liter-atmosphere
0.003 968 320 4.186 8 0.041 320 5
calorie (thermochemical)
joule*
4.184
calorie per minute
watt*
0.069 78
calorie per second
watt*
4.186 8
candela
Hefner unit lumen per steradian*
1.11 1
candela per square centimeter
candela per square foot* lambert
929.303 4 3.141 593()
carat (metric)
gram*
0.2
Celsius (Centigrade) temperature scale, C
Fahrenheit temperature scale, F
9 5
centimeter
foot inch mil
0.032 808 4 0.393 700 8 393.700 8
(C 32) F
centimeter of mercury
pascal
1 333.22
centimeter per second
foot per second
0.032 808 4
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
TABLE 11.6 Conversion Factors (continued ) To convert centimeter-dyne
Into erg* joule*
Multiply by 1 1 107
centipoise
pascal-second*
0.001
centistokes
square meter per second*
1 106
coulomb
ampere-second*
1
cubic centimeter
cubic foot liter* ounce (U.S., fluid) quart (U.S., dry) quart (U.S., liquid)
3.531 47 105 0.001 0.033 814 02 9.080 83 104 0.001 056 688
cubic centimeter per second
liter per hour*
3.6
curie
becquerel*
3.7 1010
cycle per second
hertz*
1
day (mean solar)
hour* minute* second
24 1 440 8.64 104
Debye unit
coulomb-meter
3.335 64 1030
decibel
neper
0.115 129 255
degree (angle)
circumference minute (angle)* quadrant radian
0.002 777 78(1/360) 60 0.011 111 1(1/90) 0.017 453 29(/180)
degree Celcius (Centigrade) (temperature difference), C
degree Fahrenheit, F* degree Rankine* kelvin*
1.8 1.8 1
dram (apothecaries or troy)
dram (avoirdupois)
2.194 285 7
dram (avoirdupois)
grain* gram ounce (avoirdupois)
27.343 75 1.771 845 2 0.062 5(1/16)
dram (U.S., fluid)
cubic centimeter ounce (U.S., fluid)* pint (U.S., liquid)*
3.696 691 2 0.125(1/8) 0.007 812 5(1/128)
dyne
kilogram-force newton*
1.019 716 106 1 105
dyne per square centimeter
bar* millimeter of mercury pascal
1 106 7.500 617 104 0.1
dyne-centimeter
erg* joule* newton-meter*
1 1 107 1 107
11.9
11.10
SECTION 11
TABLE 11.6 Conversion Factors (continued ) To convert
Into
Multiply by
dyne-second per square centimeter
poise* pascal-second
1 0.1
electronvolt
erg joule
1.602 19 1012 1.602 19 1019
em
millimeter
4.217 52
erg
dyne-centimeter* joule* watt-hour
1 1 107 2.777 78 1011
Fahrenheit temperature, F
Celsius temperature, C
5 9
fathom
foot*
6
fermi
meter*
1 1015
foot
centimeter* inch
30.48 12
foot-candle
lumen per square foot* lumen per square meter
1 10.763 9
foot-lambert
candela per square centimeter candela per square foot lambert
3.426 26 104 0.318 309 9 0.001 076 39
gallon (British, imperial)
gallon (U.S.) liter*
1.200 95 4.546 09
gallon (U.S.)
liter ounce (U.S., fluid)* pint (U.S., liquid)*
3.785 412 128 8
gauss
tesla* weber per square meter
1 104 1 104
(F 32) C
gilbert
ampere-turn
0.795 775
grain
milligram*
64.798 91
gram
carat (metric)* grain ounce (avoirdupois) ounce (troy) pound ton (metric)
5 15.432 358 0.035 273 962 0.032 150 747 0.002 204 622 6 1 106
gram-force
dyne* newton*
980.665 0.009 806 65
gram-force per square centimeter
pascal*
98.066 5
gram-force-centimeter
joule*
9.806 65 105
Hefner unit
candela
0.9
hertz
cycles per second*
1
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
TABLE 11.6 Conversion Factors (continued ) To convert
Into
Multiply by
hour (mean solar)
minute* second
60 3 600
inch
centimeter* foot mil* millimeter*
2.54 0.083 333 3(1/12) 1 000 25.4
joule
Btu calorie erg* liter-atmosphere newton-meter* watt-hour
9.478 170 104 0.238 845 9 1 107 0.009 869 233 1 2.777 78 104(1/3600)
kelvin temperature scale, K
Celsius scale, C
C 273.1 K
kilocalorie per second
kilowatt*
4.186 8
kilogram
ounce (avoirdupois) ounce (troy) pound ton (long) ton (metric) ton (short)
35.273 963 32.150 747 2.204 622 6 9.842 065 3 104 0.001 0.001 102 311 3
kilometer
foot light-year mile (statute)
3 280.840 1.057 02 1013 0.621 371 192
kilowatt
Btu per hour horsepower (metric) joule per hour* kilocalorie per hour
3 412.14 1.359 62 3.6 106 859.845
knot
foot per minute meter per minute mile (nautical) per hour* mile (statute) per hour
101.268 6 30.866 7 1 1.150 78
lambert
candela per square centimeter
0.318 310
liter
cubic centimeter* cubic decimeter* cubic inch gallon (U.S.) ounce (U.S., fluid) pint (U.S., liquid) quart (U.S., liquid)
1 000 1 61.023 74 0.264 172 1 33.814 02 2.113 376 1.056 688
liter per minute
gallon (U.S.) per hour
15.850 3
liter-atmosphere
Btu calorie joule*
0.096 037 6 24.201 1 101.325
11.11
11.12
SECTION 11
TABLE 11.6 Conversion Factors (continued ) To convert
Into
Multiply by
lumen per square centimeter
lux*
1 104
lux
lumen per square meter*
1
maxwell
weber*
1 108
megaohm
ohm*
1 106
meter
angstrom* foot
1 1010 3.280 839 895
mho (ohm1)
siemens*
1
micrometer (micron)
angstrom millimeter*
1 104 0.001
mil
inch* millimeter*
0.001 0.025 4
mile (statute)
foot* furlong* kilometer* mile (nautical)
5.280 8 1.609 344 0.868 976
milligram per assay ton
milligram per kilogram ounce (troy) per ton (short)*
34.285 714 1
milliliter
cubic centimeter*
1
millimeter
inch
0.039 370 8
millimeter of mercury
atmosphere dyne per square centimeter pascal torr*
0.001 315 789(1/760) 1 333.224 133.322 4 1
minute (angle)
circumference degree (angle) radian second (angle)*
4.629 63 105 0.016 666 7(1/60) 2.908 88 104 60
minute
day hour second*
6.944 444 104 0.016 666 7(1/60) 60
newton
dyne*
1 105
newton per square centimeter
pascal*
1 104
oersted
ampere per meter
79.577 5
ounce (avoirdupois)
dram* grain* gram* ounce (troy) pound*
16 437.5 28.349 523 125 0.911 458 33 0.062 5(1/16)
ounce (U.S., fluid)
cubic centimeter gallon (U.S.)* milliliter
29.573 530 0.007 812 5(1/128) 29.573 530
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
TABLE 11.6 Conversion Factors (continued ) To convert
Into
Multiply by
pint (U.S., liquid)* quart (U.S., liquid)*
0.062 5(1/16) 0.031 25(1/32)
parsec
kilometer
3.085 68 1013
part per million
gram per ton (metric)* milligram per kilogram*
1 1
pascal
bar* dyne per square centimeter* inch of mercury millimeter of mercury newton per square meter*
1 105 10
pascal-second
poise*
10
pica (printer’s)
point*
12
pint (U.S., liquid)
cubic centimeter
473.176 5
2.953 00 194 7.500 62 103 1
point (printer’s, U.S.)
millimeter*
0.351 459 8
poise
pascal-second*
0.1
pound
dram* grain* gram* ounce (avoirdupois)* ton (long) ton (metric)* ton (short)*
256 7 000 453.592 37 16 4.462 285 7 104 4.535 923 7 104 5 104(1/2000)
poundal
gram-force newton
14.098 1 0.138 255
proof (U.S.)
percent alcohol by volume*
0.5
quart (U.S., dry)
cubic centimeter cubic foot pint (U.S., dry)
1 101.221 0.038 889 25 2
quart (U.S., liquid)
gallon (U.S.)* liter ounce (U.S., fluid)* pint (U.S., liquid)*
0.25 0.946 353 32 2
radian
degree (angle) minute (angle) revolution
57.295 780 3.437.75 0.159 155
ream
quire* sheet
20 480 or 500
revolution
degree (angle)*
360
revolution per minute
radian per second
0.140 720
roentgen
coulomb per kilogram*
2.58 104
second (angle)
degree radian
2.777 78 104 4.848 137 106
11.13
11.14
SECTION 11
TABLE 11.6 Conversion Factors (continued ) To convert
Into
Multiply by
siemens
mho (ohm1)*
1
steradian
sphere spherical right angle
0.079 577 5 0.636 620
stokes
square meter per second*
1 104
tablespoon (metric)
cubic centimeter*
15
teaspoon (metric)
cubic centimeter*
5
tesla
weber per square meter*
1
ton (long)
kilogram* pound* ton (metric) ton (short)*
1 016.046 908 8 2 240 1.016 046 9 1.12
torr
millimeter of mercury pascal
1 133.322 4
volt-second
weber*
1
watt
Btu per hour calorie per second erg per second* joule per second*
3.412 14 0.238 846 1 107 1
weber
maxwell*
1 108
X unit
meter
1.002 02 1013
STATISTICS TABLE 11.7 Values of t df
t.60
t.70
t.80
t.90
t.95
t.975
t.99
t.995
1 2 3 4 5
0.325 0.289 0.277 0.271 0.267
0.727 0.617 0.584 0.569 0.559
1.376 1.061 0.978 0.941 0.920
3.078 1.886 1.638 1.533 1.476
6.314 2.920 2.353 2.132 2.015
12.706 4.303 3.182 2.776 2.571
31.821 6.965 4.541 3.747 3.365
63.657 9.925 5.841 4.604 4.032
6 7 8 9 10
0.265 0.263 0.262 0.261 0.260
0.553 0.549 0.546 0.543 0.542
0.906 0.896 0.889 0.883 0.879
1.440 1.415 1.397 1.383 1.372
1.943 1.895 1.860 1.833 1.812
2.447 2.365 2.306 2.262 2.228
3.143 2.998 2.896 2.821 2.764
3.707 3.499 3.355 3.250 3.169
ABBREVIATIONS, CONSTANTS, AND CONVERSION FACTORS
11.15
TABLE 11.7 Values of t (continued) df
t.60
t.70
11 12 13 14 15
0.260 0.259 0.259 0.258 0.258
0.540 0.539 0.538 0.537 0.536
16 17 18 19 20
0.258 0.257 0.257 0.257 0.257
21 22 23 24 25
t.80
t.90
t.95
t.975
t.99
t.995
0.876 0.873 0.870 0.868 0.866
1.363 1.356 1.350 1.345 1.341
1.796 1.782 1.771 1.761 1.753
2.201 2.179 2.160 2.145 2.131
2.718 2.681 2.650 2.624 2.602
3.106 3.055 3.012 2.977 2.947
0.535 0.534 0.534 0.533 0.533
0.865 0.863 0.862 0.861 0.860
1.337 1.333 1.330 1.328 1.325
1.746 1.740 1.734 1.729 1.725
2.120 2.110 2.101 2.093 2.086
2.583 2.567 2.552 2.539 2.528
2.921 2.898 2.878 2.861 2.845
0.257 0.256 0.256 0.256 0.256
0.532 0.532 0.532 0.531 0.531
0.859 0.858 0.858 0.857 0.856
1.323 1.321 1.319 1.318 1.316
1.721 1.717 1.714 1.711 1.708
2.080 2.074 2.069 2.064 2.060
2.518 2.508 2.500 2.492 2.485
2.831 2.819 2.807 2.797 2.787
26 27 28 29 30
0.256 0.256 0.256 0.256 0.256
0.531 0.531 0.530 0.530 0.530
0.856 0.855 0.855 0.854 0.854
1.315 1.314 1.313 1.311 1.310
1.706 1.703 1.701 1.699 1.697
2.056 2.052 2.048 2.045 2.042
2.479 2.473 2.467 2.462 2.457
2.799 2.771 2.763 2.756 2.750
40 60 120 ∞
0.255 0.254 0.254 0.253
0.529 0.527 0.526 0.524
0.851 0.848 0.845 0.842
1.303 1.296 1.289 1.282
1.684 1.671 1.658 1.645
2.021 2.000 1.980 1.960
2.423 2.390 2.358 2.326
2.704 2.660 2.617 2.576
df*
t.40
t.30
t.20
t.10
t.05
t.025
t.01
t.006
*When the table is read from the foot, the table values should be prefixed with a negative sign. Interpolation should be performed using the reciprocals of the degrees of freedom. Source: Perry, Chilton, and Kirkpatrick, Chemical Engineers’ Handbook, 4th ed., McGraw-Hill, New York (1963).
Index
Index terms
Links
A Abbreviations: of elements in polymer chemistry
1.81 10.67
SI units
11.2
single-letter, of amino acids
1.44
Absolute configurations
2.2
1.58
Absorption: cross section, thermal neutron, of nuclides
3.2
frequencies, infrared
6.21
of water by plastics
10.24
Acetal polymers: description of
10.9
properties of
10.24
Acetals, nomenclature of
1.25
Acetamide azeotropes
4.43
Acetic acid binary azeotropes
4.31
Acetone azeotropes
4.42
Acetone-water solutions, reference electrode potentials in
8.79
Acetylene, solubility in water at various temperatures Acid anhydrides, nomenclature of
4.2 1.25
Acid value: of fats
10.73
of oils
10.73
of waxes
10.77
This page has been reformatted by Knovel to provide easier navigation.
I.1
I.2
Index terms Acid–water binary azeotropes
Links 4.17
Acidic dissociation constants: Hammett and Taft equations for estimation of
7.3
of indicators
8.72
of inorganic materials
8.61
of organic materials
8.3
at various temperatures
8.64
Acids, half-wave potentials
8.87
Acrylic polymers: description of
10.9
properties of
10.26
Acrylic poly(vinyl chloride) alloy polymers properties of
10.26
Acrylonitrile–butadiene–styrene (ABS) copolymers: description of
10.21
properties
10.52
Acyclic compounds, stereochemistry of
1.48
Acyl halides, nomenclature of
1.26
Acylals nomenclature of
1.25
Additives to polymers
10.5
Affinity, atomic electron
3.11
Affixes in organic nomenclature
1.22
Air, solubility in water at various temperatures
4.2
Alcohols, nomenclature of
1.26
Alcohol-water binary azeotropes
4.33
Alcohol-water ternary azeotropes
4.46
Aldehydes: half-wave potentials
8.84
infrared absorption frequencies of
6.23
nomenclature of
1.28
Aldehyde-water azeotropes
4.26
This page has been reformatted by Knovel to provide easier navigation.
I.3
Index terms Aliphatic hydrocarbons, half-wave potentials
Links 8.82
Alkanes: carbon-13, chemical shifts, effect of substituents on
6.83
carbons, estimate of chemical shifts of
6.86
infrared absorption frequencies
6.22
nomenclature of
1.2
proton chemical shifts of
6.76
Raman frequencies
6.63
Alkenes: infrared absorption frequencies of nomenclature of
6.35 1.4
proton chemical shifts of
6.79
Raman frequencies
6.63
Alkyd polymers description of
10.11
properties of
10.26
10.44
Alkynes: infrared absorption frequencies of nomenclature of
6.28 1.4
Alloy polymers: description of
10.11
properties of
10.26
Allyl alcohol binary azeotropes
4.39
Allyl alcohol-water ternary azeotropes
4.47
Allyl polymers: description of
10.11
properties of
10.28
Allyl–diglycol–carbonate polymers, properties of Alphabet, Greek
10.28 11.5
Amides: infrared absorption frequencies of
6.26
This page has been reformatted by Knovel to provide easier navigation.
10.28
I.4
Index terms
Links
Amides: (Continued) nomenclature of
1.29
Amines: infrared absorption frequencies of
6.26
nomenclature of
1.29
Amine-water azeotropes
4.26
Amino acids: International Union of Biology (IUB) single-letter codes for natural
1.44
nomenclature of
1.40
Ammonia, solubility in water at various temperatures Ammonium compounds, nomenclature of
4.2 1.30
Anhydrides: infrared absorption frequencies of
6.31
nomenclature of
1.25
Aniline azeotropes
4.44
Anions, nomenclature of organic
1.28
Antioxidants, for polymers
10.5
Antistatic agents for polymers
10.5
Aqueous vapor pressure of salt solutions Aqueous acid-base titrations, indicators for
9.3 8.72
Aqueous solution at various temperatures, equilibrium constants in Argon, solubility in water at various temperatures
8.64 4.7
Aromatic compounds: half-wave potentials of
8.82
infrared absorption frequencies of
6.39
nomenclature of Raman frequencies of Aromatic hydrocarbons, half-wave potentials Aromatic nylon (aramid) properties
1.6 6.66 8.82 10.40
This page has been reformatted by Knovel to provide easier navigation.
1.39
I.5
Index terms Aromatic polyester properties
Links 10.44
Asymmetric carbon atoms
1.54
Atomic electron affinities
3.11
Atomic weights: of elements, inside front cover of isotopes
3.2
Autoignition temperatures of fuel air mixtures
4.99
Axial atoms
1.50
Azeotropes: binary
4.25
ternary
4.46
Azo compounds: half-wave potentials of
8.92
infrared absorption frequencies of
6.36
nomenclature of
1.30
Raman frequencies of
6.64
Azoxy compounds, nomenclature of
1.31
B Basic dissociation constants (see Acidic dissociation constants) Baths, cooling
9.2
Beilstein’s Handbuch references for organic compounds
1.82
Benzene azeotropes
4.45
Benzene: azeotropes
4.45
carbon-13 chemical shifts in substituted
6.89
derivatives, substituted, wavelength calculation of ultraviolet absorption band
6.9
infrared absorption frequencies of
6.36
proton chemical shifts in monosubstituted
6.81
Raman frequencies of
6.66
This page has been reformatted by Knovel to provide easier navigation.
I.6
Index terms
Links
Benzene: (Continued) ultraviolet absorption band of substituted
6.9
Benzyl alcohol binary azeotropes
4.40
Beta radiation energies of nuclides
3.2
Binary azeotropes: with acids, organic
4.20
with alcohol
4.33
with ketones
4.42
with water
4.25
Binary azeotropic (constant-boiling) mixtures
4.25
Biological nomenclature
1.44
Bis(2-hydroxyethyl) ether
4.45
Block copolymer
10.3
properties of
10.56
Blowing agents for copolymers
10.6
Boiling points
4.12
of chromatographic solvents
9.5
of inorganic compounds
2.3
of organic compounds
1.82
molecular elevation of
4.23
for common organic solvents arranged by boiling point
4.12
(see also Critical properties) Bond dipole moments
3.30
Bond dissociation energy
3.19
Bond lengths
3.13
carbon–selenium
3.16
carbon–carbon
3.14
carbon–halogen
3.14
carbon–hydrogen
3.14
carbon–nitrogen
3.15
carbon–oxygen
3.15
This page has been reformatted by Knovel to provide easier navigation.
I.7
Index terms
Links
Bond lengths (Continued) carbon–silicon
3.16
carbon–sulfur
3.16
Bonds: ionic character of
3.10
properties of
3.13
strengths of
3.19
stretching force constant of
3.10
Boron: bond lengths
3.17
strengths
3.20
Boron-11 chemical shifts
6.96
Boron compounds: infrared absorption frequencies
6.44
nomenclature of
1.31
Bragg equation
6.123
Bridged hydrocarbons, nomenclature of
1.10
Britton-Robinson pH buffer
8.76
Bromine: bond strengths solubility in water at various temperatures Buffer solutions
3.20 4.2 8.74
Britton–Robinson system
8.76
for control purposes, pH values of
8.76
McIlvaine buffer
8.76
Prideaux–Ward mixture
8.76
Buffer pH reference standards
8.75
Burning rate of plastics
10.24
Butadiene–maleic acid copolymers, properties of
10.44
Butadiene rubber
10.61
Butane, conformations of
1.49
This page has been reformatted by Knovel to provide easier navigation.
10.64
I.8
Index terms
Links
1-Butanol binary azeotropes
4.37
1-Butanol-water ternary azeotropes
4.47
2-Butanol-water ternary azeotropes
4.47
2-Butanone azeotropes
4.43
2-Butoxyethanol, binary azeotropes
4.41
Butylene polymer: description of
10.18
properties of
10.48
Butylene terephthalate plastic: description of
10.17
properties of
10.42
Butyric acid binary azeotropes
4.32
C Calomel electrode, saturated Cambridge Structural Database
8.82 6.124
Capacity, heat (see Heat capacities of organic compounds) Capture cross section of nuclides, thermal neutron
3.2
Carbon dioxide, solubility in water at various temperatures
4.3
Carbon bond strengths
3.20
Carbon–carbon bond lengths
3.14
Carbon–carbon spin coupling constants
6.93
Carbon dioxide: permeability of polymers and rubbers to solubility in water at various temperatures
10.70 4.3
Carbon–fluorine spin coupling constants
6.95
Carbon–halogen bond lengths
3.14
Carbon–hydrogen bond lengths
3.14
one-bond
6.92
two-bond
6.93
This page has been reformatted by Knovel to provide easier navigation.
I.9
Index terms Carbon–hydrogen spin coupling constants one-bond Carbon monoxide, solubility in water at various temperatures Carbon–nitrogen bond lengths
Links 6.93 6.92 4.3 3.15
Carbon–nitrogen double bonds: infrared absorption frequencies of
6.37
Raman frequencies of
6.60
Carbon–oxygen bond lengths
3.15
Carbon–oxygen bonds, infrared absorption frequencies of
6.31
Carbon–selenium bond lengths
3.16
Carbon–silicon bond lengths
3.16
Carbon–carbon single bonds, Raman frequencies of
6.54
Carbon–sulfur bond lengths
3.16
Carbon-13 chemical shifts
6.89
alkyl effect of substituent groups on
6.87
in benzenes substituted
6.89
of carbon attached to double bond
6.88
of carbonyl group
6.91
of deuterated solvents
6.95
in pyridines, substituted
6.90
Carbon-13 spin coupling constants with various nuclei
6.96
Carbonyl group: carbon-13 chemical shifts of
6.91
infrared absorption frequencies of
6.31
Raman frequencies of
6.61
Carboxylic acids, nomenclature of
1.31
Cellulose-acetate-butyrate resin: description of
10.12
properties of
10.30
Cellulose acetate polymers: description of
10.11
This page has been reformatted by Knovel to provide easier navigation.
6.95
I.10
Index terms
Links
Cellulose acetate polymers: (Continued) properties of
10.28
Cellulose-acetate-propionate resins: description of
10.12
properties of
10.30
Cellulose nitrate resins: description of
10.12
properties of
10.30
Cellulosic polymers: description of
10.11
properties of
10.28
Chain-transfer agents for polymers
10.5
Characteristic groups for substitutive nomenclature
1.19
Chemical Abstracts indexing system
1.60
Chemical blowing agents for polymers
10.6
Chemical bonds, dissociation energy of
3.19
Chemical nomenclature, organic
1.2
Chemical properties: of polymers
10.24
of rubbers
10.60
Chemical Resistance of polymers and rubbers
10.65
Chemical shifts, NMR (nuclear magnetic resonance): of boron-11
6.96
of carbon-13
6.83
of fluorine-19
6.102
of nitrogen-15 (or14)
6.97
of protons
6.76
reference compounds
6.75
residual, in deuterated solvents
6.75
of silicon-29
6.104
Chiral centers
1.54
This page has been reformatted by Knovel to provide easier navigation.
I.11
Index terms Chiral compounds Chlorinated polyether properties
Links 1.55 10.30
Chlorine: bond strengths solubility in water at various temperatures
3.22 4.3
Chloroprene rubber
10.60
Chlorosulfonated polyethylene rubber
10.60
properties of
10.64
Chlorotrifluoroethylene polymer: description of
10.14
properties of
10.32
Chromatographic solvents, properties of
9.6
Chromophores, electronic absorption bands of
6.5
Coefficient of linear thermal expansion of plastics Color changes of acid-base indicators Cis-Polybutadiene rubber (BR)
10.24 8.72 10.61
Combustible mixture in air, properties of
4.99
Compressibility factor, critical
5.75
Compressive modulus of plastics
10.24
Compressive strength of plastics
10.24
Concentration of solutions, conversion formulas for
11.6
Conformational isomers
1.47
Conjunctive nomenclature
1.23
Constant-boiling mixtures: binary
4.25
ternary
4.46
Constant humidity, solutions for maintaining Conversion factors Cooling mixtures Coordination bonds, dipole moments of
9.3 11.7 9.2 3.30
This page has been reformatted by Knovel to provide easier navigation.
10.64
I.12
Index terms
Links
Copolymerization
10.3
Coupling agents for polymers
10.5
Coupling constants, spin-spin: carbon–carbon
6.93
carbon–fluorine
6.94
carbon–hydrogen: one-bond
6.92
two-bond
6.93
carbon–nitrogen
6.102
electron
6.110
fluorine–nitrogen
6.102
proton–fluorine
6.81
proton–nitrogen
6.101
proton–proton
6.80
Critical properties
5.75
compressibility factor
5.75
density
5.75
estimation of
5.88
molar volume
5.75
pressure
5.75
temperature
5.75
Cross section of nuclides, thermal neutron Cryoscopic constants
3.2 4.52
Cumulated double bonds: infrared absorption frequencies of
6.29
Raman frequencies of
6.60
Curing of polymers Cyclic aliphatic hydrocarbons, nomenclature of Cyclic compounds, stereochemistry
10.7 1.5 1.49
Cyclic hydrocarbons with side chains nomenclature of
1.11
This page has been reformatted by Knovel to provide easier navigation.
I.13
Index terms
Links
Cyclic polyethers, nomenclature of
1.32
Cyclohexane, conformations of
1.50
Cyclohexanol azeotropes
4.39
D Decay of radionuclides Deflection of temperature, under flexural load, of plastics Dendrimers
3.2 10.24 10.4
Density: critical
5.75
of organic compounds
1.82
of inorganic compounds
2.3
of solvents
9.7
Depression of melting point, molecular Desiccants
4.52 9.4
Deuterated solvents: carbon-13 chemical shifts of
6.83
proton chemical shifts of
6.76
Deuterium oxide, vapor pressure
4.12
Diallyl phthalate polymers: description of
10.11
properties of
10.28
Dielectric constant: common solvents
4.55
of inorganic compounds
4.94
of plastics Dielectric strength of plastics
10.24 10.24
Dienes, ultraviolet absorption wavelengths of
6.7
Dienones, ultraviolet absorption wavelengths of
6.7
Diglycol carbonate–allyl copolymer, properties of 1,4-Dioxane-water mixtures, reference electrodes for
10.28 8.79
This page has been reformatted by Knovel to provide easier navigation.
I.14
Index terms Dipole moments
Links 4.56
bond
3.30
group
3.31
of inorganic compounds
4.94
Dissipation factor (electrical) of plastics
10.24
Dissociation constants (see Acidic dissociation constants) Double bonds, cumulated: infrared absorption frequencies of
6.35
Raman frequencies of
6.60
Dry ice, cooling mixtures made from
9.2
Drying agents
9.4
Durometer (or Shore) hardness: of plastics
10.24
of rubbers
10.64
Dyestuffs, half-wave potentials of
8.93
E E(trans) configuration
1.53
Ebullioscopic constants
4.23
Eclipsed conformation
1.49
Elastomers
10.2
Electric quadrupole moments of elements
6.72
Electical properties of plastics
10.24
Electrode potentials
8.80
of half-reactions
8.80
(see also Half-wave potentials of organic compounds) Electrodes reference: for aqueous solutions
8.77
water-organic solvent mixtures
8.79
Electron affinities: of elements
3.11
This page has been reformatted by Knovel to provide easier navigation.
I.15
Index terms
Links
Electron affinities: (Continued) of molecules
3.12
of radicals
3.13
Electron conversion energy of nuclides
3.2
Electron paramagnetic resonance (EPR)
6.110
Electron spin resonance (ESR)
6.110
Electronegativities of the elements: of the groups Pauling’s
3.10 3.9
Electronegativity
3.9
Electronic absorption bands
6.5
Elements: electron affinities of
3.11
electronegativities of
3.9
nuclear properties of
6.73
physical properties of
2.2
Elevation of boiling point
4.23
Elongation: of plastics
10.24
of rubbers
10.64
Emission wavelength: of fluorescing compounds
6.11
of phosphorescing compounds
6.17
Enantiomers
1.55
Energies of radiation emanating from nuclides
3.2
Enones, ultraviolet-visible absorption wavelength of
6.7
Enthalpies of organic compounds: formation
5.2
of melting
5.44
of sublimation
5.44
of transition
5.44
This page has been reformatted by Knovel to provide easier navigation.
I.16
Index terms
Links
Enthalpies of organic compounds: (Continued) of vaporization Entropies of organic compounds Epichlorohydrin rubbers properties of
5.44 5.2 10.60 10.64
Epoxy polymers: description of
10.12
properties of
10.30
Equatorial atoms
1.50
Equilibrium constants
8.2
Ester-water azeotropes
4.27
Esters: infrared absorption frequencies of
6.32
nomenclature of
1.39
Ethane, solubility in water at various temperatures
4.3
1,2-Ethanediol binary azeotropes
4.41
1,2-Ethanediol monoacetate binary azeotropes
4.42
Ethanol binary azeotropes
4.34
Ethanol-water mixtures: reference electrode for
8.79
ternary azeotropes
4.46
Ethers: infrared absorption frequencies of
6.40
nomenclature of
1.32
Raman frequencies of
6.69
Ether-water azeotropes
4.28
2-Ethoxyethanol binary azeotropes
4.40
Ethyl cellulose plastics: description of
10.12
properties of
10.30
Ethylene glycol-water mixtures, reference electrode for
8.79
This page has been reformatted by Knovel to provide easier navigation.
10.32
I.17
Index terms
Links
Ethylene polymers: description of
10.8
properties of
10.46
Ethylene, solubility in water at various temperatures
4.3
Ethylene-chlorotrifluoro-ethylene copolymer properties
10.34
Ethylene-propylene-diene rubber (EPDM)
10.61
Ethylene terephthalate plastic: description of
10.17
properties of
10.42
Ethylene-tetrafluoroethylene copolymer: description of
10.14
properties of
10.34
Ethylene-vinyl acetate copolymer: properties of
10.46
Excitation wavelength: of fluorescing compounds
6.11
of phosphorescing compounds
6.17
Expansion, thermal, coefficient of linear plastics
10.24
F Fats, constants of
10.73
Flame retardants for polymers
10.6
Flammable limits for mixtures in air
4.99
Flash point of organic compounds
1.82
Flexural modulus and strength of plastics
10.24
Fluorescence: excitation wavelengths
6.11
quantum yields
6.17
Fluorinated ethylene-propylene resin: description of
10.13
properties of
10.34
This page has been reformatted by Knovel to provide easier navigation.
I.18
Index terms
Links
Fluorine bond strengths
3.22
Fluorine–carbon spin coupling constants
6.94
Fluorine–fluorine spin coupling constants
6.102
Fluorine-19 chemical shifts
6.102
Fluorine-19 to fluorine-19 spin coupling constants
6.104
Fluorine–nitrogen spin coupling constants
6.102
Fluoroalkoxy resin: description of
10.13
properties of
10.32
Fluorocarbon polymers: description of
10.13
properties of
10.32
Fluoroelastomers, properties of
10.64
Foaming agents for polymers
10.6
Force constant, bond stretching
3.10
Formic acid binary azeotropes
4.30
Formula index empirical for organic compounds
1.61
Formula weights: of inorganic compounds of organic compounds
2.3 1.82
Free energies of formation of organic compounds
5.2
Free energy relationships, linear
7.2
Freezing mixtures
4.52
Freezing point, molecular lowering of
4.52
Fuel-air mixtures, autoignition temperatures and flammable limits
4.99
Functional compounds: conjunctive nomenclature
1.23
radicofunctional nomenclature
1.24
replacement nomenclature
1.24
substitutive nomenclature
1.19
This page has been reformatted by Knovel to provide easier navigation.
I.19
Index terms Fundamental physical constants Fused polycyclic hydrocarbons, nomenclature of
Links 11.2 1.7
Fusion, latent heats of (see Melting, enthalpy of)
G Gallium bond strength
3.23
Gamma radiation energies and intensities of nuclides
3.2
Gas chromatography, McReynolds constants
9.9
Gas permeability for polymers and rubbers
10.70
Gases: drying agents for
9.4
flammability limits of
4.99
ignition temperatures of
4.99
solubility in water at various temperatures Geometrical isomerism Gibbs energies of formation of organic compounds
4.3 1.52 5.2
Government rubber I (GR-I), properties of
10.64
Government rubber nitrile (GNR)
10.60
Government rubber styrene (GRS)
10.63
Graft copolymers
10.3
Greek Alphabet
11.5
Group dipole moments
3.31
Gutta percha properties of
10.60 10.64
H Half-life of nuclides
3.2
Half-wave potentials of organic compounds
8.82
Halogen bond lengths
3.14
Halogen compounds: half-wave potentials
8.88
This page has been reformatted by Knovel to provide easier navigation.
I.20
Index terms
Links
Halogen compounds: (Continued) infrared absorption frequencies of
6.45
nomenclature of
1.35
Raman frequencies of
6.70
Halogenated hydrocarbon-water binary azeotropes
4.26
Hammett equations: defined
7.2
pKA values for
7.8
reaction parameters for
7.8
Hammett sigma constants, special Hammett substituent constants
7.10 7.3
Hardness: of plastics
10.24
of rubber
10.64
Heat capacities of organic compounds
5.2
Heats, latent, of organic compounds: of formation
5.2
of melting
5.44
of sublimation
5.44
of vaporization
5.44
Helium: permeability of polymers and rubbers to solubility in water at various temperatures
10.70 4.7
Heteroaromatics, substituted, ultraviolet absorption band
6.9
Heterocyclic compounds containing nitrogen, half-wave potentials
8.91
Heterocyclic systems: nomenclature of
1.12
Raman frequencies of
6.71
Humidification
9.2
Humidity controlled by salt solution
9.3
This page has been reformatted by Knovel to provide easier navigation.
I.21
Index terms
Links
Hydrazines, half-wave potentials
8.92
Hydrocarbon ring assemblies, nomenclature of
1.11
Hydrocarbon-water binary azeotropes
4.28
Hydrocarbons: half-wave potentials: aliphatic aromatic nomenclature of Hydrodylamines, nomenclature of
8.82 8.82 1.2 1.35
Hydrogen: bond lengths
3.17
bond strength
3.23
permeability of polymers and rubbers to single bonds to: to infrared absorption frequencies of Raman frequencies of solubility in water at various temperatures Hydrogen bromide, solubility in water at various temperatures
10.70 6.21 6.54 4.3 4.7
Hydrogen–carbon bonds: infrared absorption frequencies of
6.21
Raman frequencies of
6.54
Hydrogen–carbon spin coupling constants: one-bond
6.93
two-bond
6.93
Hydrogen chloride, solubility in water at various temperatures Hydrogen–fluorine spin coupling constants
4.7 6.81
Hydrogen–nitrogen bonds: infrared absorption frequencies of
6.26
Raman frequencies of
6.58
Hydrogen sulfide, solubility in water at various temperatures
4.5
Hydroxyl group: infrared absorption frequencies of
6.25
Raman frequencies of
6.57
This page has been reformatted by Knovel to provide easier navigation.
I.22
Index terms
Links
Hydroxylamines: half-wave potentials of Hyperfine splitting constants
8.92 6.111
I Ignition temperatures of combustible mixtures in air
4.99
Imide polymers: description of
10.17
properties of
10.44
Imines infrared absorption frequencies of
6.26
nomenclature of
1.35
Impact strength of plastics Index, empirical formula, of organic compounds
10.24 1.61
Index of refraction (see Refractive index) Indicators: acid-base, characteristics of
8.72
half-wave potentials of
8.92
Infrared absorption frequencies: of alkanes
6.22
of alkenes
6.35
of aromatic compounds
6.37
of azo compounds
6.37
of carbon–nitrogen double bonds
6.35
of carbonyl bonds
6.31
of cumulated double bonds
6.29
of ethers
6.40
of halogen compounds
6.45
of hydroxyl groups
6.25
of inorganic ions
6.46
of nitro compounds
6.36
This page has been reformatted by Knovel to provide easier navigation.
I.23
Index terms
Links
Infrared absorption frequencies: (Continued) of nitrogen–hydrogen bonds
6.26
of peroxides
6.40
of phosphorus compounds
6.42
of silicon compounds
6.43
of single bonds to hydrogen
6.21
of sulfur compounds
6.41
of triple bonds
6.28
Infrared, near, absorption frequencies in
6.47
Infrared transmitting materials
6.49
Inhibitors for polymers
10.7
Inorganic compounds: boiling points of
2.1
density of
2.1
melting points of
2.1
physical constants of solubility of Inorganic ions, infrared absorption frequencies of
4.94 2.1 6.46
International system of units (SI): base units
11.2
conversion factors for
11.7
derived units
11.2
International Union of Pure and Applied Chemistry (IUPAC) nomenclature of organic compounds values of physical constants
1.2 11.3
International Union of Biology (IUB) single-letter codes for natural amino acids Iodine bond strengths
1.44 3.26
Iodine value: of fats
10.73
This page has been reformatted by Knovel to provide easier navigation.
I.24
Index terms
Links
Iodine value: (Continued) of oils
10.73
of waxes
10.77
Iodine–nitrogen bond
3.26
Ionic character of a bond
3.10
Ionization constants: of acids of indicators
8.3
8.61
8.72
Ionization potentials: of molecular species
6.114
of radical species
6.122
Ionomers
10.19
Isobutylene rubber
10.61
Isobutene-isoprene rubber (IIR), properties of
10.64
Isobutyric acid binary azeotropes
4.33
IUB (International Union of Biology): single-letter codes for natural amino acids
1.44
IUPAC, (International Union of Pure and Applied Chemistry) nomenclature of organic compounds values of physical constants
1.2 11.3
K Ketenes, nomenclature of
1.36
Ketone-water binary azeotropes
4.29
Ketones: half-wave potentials of
8.85
nomenclature of
1.36
Kovats retention indices
9.9
Krypton, solubility in water at various temperatures
4.7
This page has been reformatted by Knovel to provide easier navigation.
10.64
I.25
Index terms
Links
L Lactams, nomenclature of
1.38
Lactides, nomenclature of
1.38
Lactims, nomenclature of
1.38
Lactones, nomenclature of
1.38
Latent heats of organic compounds
5.44
Lead, bond strength
3.27
Life, half-, of nuclides Lifetimes, phosphorescence
3.2 6.17
Linear free energy relationships
7.2
Liquid chromatography, solvents for, properties of
9.5
Liquid nitrogen, slush baths
9.2
Lithium bond strengths
3.27
Lubricants for polymers
10.7
Lydersens’ critical property increments
5.88
M McIlvaine buffer
8.84
McReynolds’ constants (gas chromatography)
9.9
Mass, exact, of nuclides
3.2
Mechanical properties of plastics
10.24
Melamine formaldehyde polymers: description of
10.14
properties of
10.34
Melting, enthalpy of
5.44
Melting point: of inorganic compounds
2.3
molecular lowering of, cryoscopic constants
4.52
of organic compounds
1.82
of waxes
10.76
This page has been reformatted by Knovel to provide easier navigation.
I.26
Index terms
Links
Mercury: bond strengths vapor pressure at various temperatures
3.27 4.8
Mercury–mercury (I) chloride reference electrodes, potentials of: in aqueous solutions
8.78
in organic solvent–water mixtures
8.79
Meso compounds Methane, solubility in water at various temperatures
1.56 4.5
Methanol binary azeotropes
4.33
Methanol-water mixtures, reference electrodes for
8.79
Methanol-water ternary azeotropes
4.46
Methine protons, chemical shift of
6.76
Methyl methacrylate polymers: description of
10.9
properties of
10.26
Methyl protons, chemical shift of
6.76
3-Methyl-1-butanol, binary azeotropes
4.38
3-Methyl-1-butanol-water ternary azeotropes
4.47
2-Methyl-1-propanol-water ternary azeotropes
4.47
2-Methyl-2-propanol binary azeotropes
4.37
2-Methyl-2-propanol-water ternary azeotropes
4.47
Methylene protons, chemical shift of
6.76
Modes of decay of nuclides
3.2
Molar volume, critical
5.75
Molecular elevation of the boiling point
4.23
Molecular lowering of the melting (freezing) point
4.52
Molecules, electron affinity of
3.12
Monocyclic aliphatic hydrocarbons, nomenclature of
1.6
Monocyclic aromatic compounds, nomenclature of
1.6
Multiples of units, prefixes
11.5
This page has been reformatted by Knovel to provide easier navigation.
I.27
Index terms
Links
N National Institute of Standards and Technology reference pH buffer solutions
8.74
standard pH buffer solutions, compositions of
8.75
Natural abundance: of elements
3.6
of nuclides
3.2
Natural rubber Near infrared absorption frequencies -
10.60 10.66 6.47
Negatron (β ) radiation energies of nuclides
3.2
Neon, solubility in water at various temperatures
4.7
Neutron absorption cross section, thermal, of nuclides
3.2
Newman projections Nitric oxide, solubility in water at various temperatures Nitrile resins properties of
1.48 4.5 10.14 10.36
Nitrile rubber (butadiene-acrylonitrile rubber) (NBR, GRN, Buna N) properties of
10.60 10.64
Nitriles: nomenclature of
1.38
Raman frequencies of
6.59
Nitrile-water binary azeotropes
4.29
Nitro and nitroso compounds: half-wave potentials of
8.89
infrared absorption frequencies of
6.36
Nitrogen bond lengths permeability of polymers and rubbers to solubility in water at various temperatures
3.26 3.17 10.70 4.5
This page has been reformatted by Knovel to provide easier navigation.
10.64
I.28
Index terms Nitrogen-15 (or 14) chemical shifts for standards
Links 6.97 6.101
Nitrogen-15 to carbon-13 spin coupling constants
6.102
Nitrogen-15 to fluorine-19 spin coupling constants
6.102
Nitrogen-15 to hydrogen-1 spin coupling constants
6.101
Nitrogen–hydrogen bonds, infrared absorption frequencies of
3.36
Nitrogen–oxygen double bonds, Raman frequencies of
6.64
Nitrous oxide, solubility in water at various temperatures
4.7
Nomenclature of organic compounds
1.2
Novolac (epoxy) resins: description of
10.12
properties of
10.32
Nuclear Magnetic Resonance (NMR) (see Chemical Shifts, NMR) Nuclear magnetic resonance spectroscopy solvents
6.71 6.75
Nuclear magneton
6.72
Nuclear properties of the elements
6.72
Nuclear quadrupole moments
6.72
Nuclear radiations and energies Nuclear spins Nuclides, properties of
3.2 6.72 3.2
Numbering of organic compounds
1.22
Numerical prefixes
11.5
Nylon 6, 11, and 12: description of
10.15
properties of
10.38
Nylon 6/6, 6/9, and 6/12: description of
10.15
properties of
10.38
This page has been reformatted by Knovel to provide easier navigation.
I.29
Index terms
Links
O Oils
10.73
constants of
10.73
Optical activity
1.54
Organic acids-water binary azeotropes
4.23
Organic ring systems, names and numbering of
1.5
Organic solvent-water mixtures, reference electrode potentials at various temperatures Organic solvents: arranged by boiling points
4.12
physical constants of
4.55
Osmium–nitrogen bond
3.26
Oximes: half-wave potentials of
8.92
nomenclature of
1.35
Oxygen: bond lengths
3.18
bond strengths
3.26
permeability of polymers and rubbers to solubility in water at various temperatures Oxygen–nitrogen bond Ozone, solubility in water at various temperatures
10.70 4.5 3.26 4.7
P Pauling electronegativities Peptides, extended arrangements of
3.9 1.59
Periodic table, inside front cover Permeability constants, gas, for polymers and rubbers
10.70
Peroxides: half-wave potentials of
8.93
infrared absorption frequencies of
6.40
This page has been reformatted by Knovel to provide easier navigation.
I.30
Index terms
Links
Peroxides: (Continued) nomenclature of
1.39
pH-buffer solutions: general purpose
8.76
National Bureau of Standards (US) reference
8.74
standard reference
8.75
Phenol binary azeotropes
4.39
Phenolic polymers: description of
10.15
properties of
10.36
Phenols, nomenclature of
1.26
Phosphorescence spectroscopy
6.17
Phosphorus: bond lengths
3.18
bond strengths
3.27
Phosphorus compounds: infrared absorption frequencies of
6.42
nomenclature of
1.39
Phosphorus-31: chemical shifts of
6.105
spin coupling constants
6.108
Photoluminescence
6.10
Physical constants of organic compounds
1.80
Physical properties of pure substances
1.61
pKA values: for Hammett equation
7.8
of organic materials
8.3
for Taft equation
7.10
Plastic families
10.7
Plastic flow
10.7
This page has been reformatted by Knovel to provide easier navigation.
I.31
Index terms
Links
Plastic materials: chemical resistance of formulas
10.60 10.9
gas permeability of
10.70
properties of
10.24
Plasticizers for polymers
10.7
Plastics, commercial properties of
10.24
Polarographic half-wave potentials
8.82
Poly (amide-imide) polymers: description of
10.16
properties of
10.40
Poly(aryl ether), properties of
10.42
Poly(butylene terephthalate), properties of
10.42
Poly(ether sulfone) polymers, properties of
10.54
Poly(ethylene terephthalate), properties of
10.42
Poly(ethylene-propylene-diene) (EPDM), properties of
10.64
Poly(methylpentene) polymers: description of
10.18
properties of
10.46
Poly(phenyl sulfone) polymers, properties of
10.54
Poly(phenylene sulfide) polymers: description of
10.19
properties of
10.48
Poly(vinyl acetate) polymers: properties of Poly(vinyl chloride) properties of
10.56 10.22
10.62
10.56
10.64
Poly(vinylidene fluoride) properties
10.34
Polyacrylate
10.61
properties of
10.64
This page has been reformatted by Knovel to provide easier navigation.
I.32
Index terms
Links
Polyamide polymers: description of
10.15
properties of
10.38
Polybutadiene rubber (BR), properties of
10.64
Polycarbonate acrylonitrile–butadiene–styrene alloy, properties of
10.28
Polycarbonate polymers: description of
10.16
properties of
10.42
Polychloroprene (Neoprene)
10.61
properties of
10.64
Polyester polymers: description of
10.17
properties of
10.56
Polyethers, nomenclature of
1.32
Polyethylene polymers, properties of
10.46
Polyimide polymer, properties of
10.44
Polyisobutylene (butyl rubber)
10.61
(Z)-polyisoprene (synthetic natural rubber)
10.62
properties of
10.64
10.64
Polymers: additives to
10.5
chemical resistance
10.65
gas permeability constants
10.70
plastic families
10.7
rubbers
10.60
types of
10.2
vapor permeability constants
10.73
Polyolefin polymers: description of
10.18
properties of
10.46
This page has been reformatted by Knovel to provide easier navigation.
10.56
I.33
Index terms
Links
Polypropylene polymers, properties of
10.48
Polystyrene polymers, properties of
10.52
Polysulfide rubbers
10.62
Polysulfone polymers, properties of
10.54
Polyurethane polymers: description of
10.19
properties of
10.50
Prefixes, numerical
11.5
1-Propanol binary azeotropes
4.35
2-Propanol binary azeotropes
4.36
2-Propanol-water mixtures, reference electrode for
8.79
1-Propanol-water ternary azeotropes
4.46
2-Propanol-water ternary azeotropes
4.46
Propanoic acid binary azeotropes
4.31
Protein Data Bank (PDB)
6.124
Proteins, extended arrangements of
1.59
Proton attached to a double bond, estimation of chemical shift of
6.80
Proton–carbon spin coupling constants: one-bond
6.92
two-bond
6.93
Proton chemical shifts: of reference compounds
6.74
of residual protons in deuterated solvents
6.74
table
6.76
Proton–nitrogen spin coupling constants Proton–proton spin coupling constants
6.102 6.82
Proton-transfer equilibrium constants: of inorganic materials of organic materials at various temperatures Pyridine azeotropes
8.61 8.2 8.64 4.44
This page has been reformatted by Knovel to provide easier navigation.
10.64
I.34
Index terms
Links
Pyridines: carbon-13 chemical shifts in substituted nitrogen-15 chemical shifts in monosubstituted
6.90 6.100
Q Quadrupole moments, electric, of nuclides
6.72
Quantum yield values in fluorescence
6.17
Quinones, half-wave potentials of
8.87
R Radiations emitted by nuclides
3.2
Radicals: electron affinity of ionization potentials of from ring systems, nomenclature of Radon, solubility in water at various temperatures
3.13 6.121 1.11 4.7
Raman frequencies: of alkenes
6.63
of aromatic compounds
6.66
of azo compounds
6.64
of carbon single bonds
6.54
of carbonyl bands
6.61
of cumulated double bonds
6.60
of ethers
6.69
of halogen compounds
6.70
of heterocyclic rings
6.71
of hydrogen single bonds
6.54
of nitro compounds
6.64
of nitrogen–oxygen double bonds
6.64
of sulfur compounds
6.67
of triple bonds
6.59
Raman spectroscopy
6.54
This page has been reformatted by Knovel to provide easier navigation.
I.35
Index terms Rayon
Links 10.12
Reaction parameter: in linear free energy relationships
7.2
values for Hammett equation
7.8
values for Taft equation
7.10
Reference compounds: for fluorescence quantum yield values
6.17
for fluorine-19 NMR
6.103
for nitrogen-15 NMR
6.97
for pH buffers
8.64
for proton NMR
6.79
Reference electrodes: for aqueous solutions
8.77
for organic solvent-mixtures
8.79
potentials as a function of temperature
8.77
Refractive index: of chromatographic solvents
9.6
of fats
10.73
of oils
10.73
of organic compounds of solvent pairs of waxes Relative humidity of salt solutions at various temperatures Replacement nomenclature
1.82 9.7 10.77 9.3 1.24
Rubbers: chemical resistance
10.66
formulas and advantages of
10.60
gas permeability constants
10.70
properties of natural and synthetic
10.64
synthetic Ruthenium bond strengths
10.2 3.28
This page has been reformatted by Knovel to provide easier navigation.
I.36
Index terms
Links
S Salts: of acids, nomenclature of and dry ice, cooling mixtures made from Saponification value of fats, oils and waxes Selenium bond strengths Separation methods
1.39 9.2 10.73 3.28 9.6
SI system (Systeme International d’ Unites): abbreviations
11.2
base units
11.2
conversion factors for
11.7
derived
11.2
supplementary
11.2
Sigma constants for Hammett equation
7.10
Silicon: bond lengths
3.18
bond strengths
3.28
Silicon compounds: infrared absorption frequencies of
6.43
nomenclature of
1.41
Silicon-29 chemical shifts
6.104
Silicone polymers: description of
10.20
properties of
10.50
Silicone rubbers
10.62
properties of
10.64
Silver–silver halide reference electrodes, potentials at various temperatures: for aqueous solutions
8.77
for organic solvent-water mixtures
8.79
Slush baths, dry ice or liquid nitrogen
9.2
This page has been reformatted by Knovel to provide easier navigation.
I.37
Index terms Sodium bond strengths Solidification points of fats, and oils
Links 3.29 10.73
Solubility: of gases in water at various temperatures
4.2
of inorganic compounds
2.2
of organic compounds
1.82
Solutions: concentration conversion formulas
11.6
for maintaining constant humidity
9.3
Solvent correction for ultraviolet absorption wavelengths
6.8
Solvent strength parameter (adsorption chromatography)
9.5
Solvents: for chromatography, properties of deuterated, chemical shifts of: carbon-13 proton
9.5 6.95 6.76
infrared transmission characteristics of
6.51
organic, arranged by boiling points
4.12
with same refractive index and same density
9.7
spectrograde, ultraviolet cutoffs of
6.6
Specific functional groups
1.25
Specialist nomenclature for heterocyclic systems
1.12
Specific gravity: of fats
10.73
oils
10.73
plastics
10.24
rubbers
10.64
waxes
10.77
Specific heat: of organic compounds at various temperatures of plastics
5.2 5.44 10.24
This page has been reformatted by Knovel to provide easier navigation.
I.38
Index terms
Links
Specific rotation
1.52
Spin of nuclides
6.72
Spin coupling constants: carbon-13
6.96
carbon–carbon
6.93
carbon–fluorine
6.94
carbon–hydrogen: one-bond
6.92
two-bond
6.93
carbon–nitrogen
6.102
electron
6.110
fluorine–nitrogen
6.102
fluorine–proton
6.81
fluorine-19 to fluorine-19
6.104
nitrogen-15 to carbon-13
6.102
nitrogen-15 to fluorine-19
6.102
nitrogen-15 to hydrogen-1
6.101
nitrogen–proton
6.101
phosphorus-31
6.108
proton
6.82
proton–proton
6.80
Spin–spin coupling
6.111
Staggered conformation
1.48
Standards (see Reference compounds) Stationary phases in gas chromatography, McReynolds constants Statistics, t-values in Stereochemistry in biological systems Student t-values
9.10 11.14 1.47 1.59 11.14
Styrene–acrylonitrile (SAN) copolymers: description of
10.21
properties of
10.54
This page has been reformatted by Knovel to provide easier navigation.
I.39
Index terms
Links
Styrene–butadiene Rubber (GRS, SBR, Buna S) description of
10.63
properties of
10.64
Styrene–butadiene–styrene block copolymers,
10.22
Styrene–maleic acid copolymer, properties of
10.44
Styrene polymers: description of
10.21
properties of
10.50
Submultiples of units, prefixes
11.5
Substitutive nomenclature
1.19
Suffixes in substitutive nomenclature
1.19
Sulfone polymers: description of
10.21
properties of
10.54
Sulfur: bond lengths
3.18
bond strengths
3.28
Sulfur compounds: infrared absorption frequencies of
6.41
nomenclature of
1.41
Raman frequencies of
6.67
Sulfur dioxide, solubility in water at various temperatures
4.5
Surface tension: of inorganic compounds
4.94
of organic compounds
4.57
Syndiotactic arrangement
10.3
Synthetic rubbers
10.2
chemical resistance
10.66
formulas and advantages of
10.60
gas permeability constants
10.70
properties of
10.64
This page has been reformatted by Knovel to provide easier navigation.
10.52
I.40
Index terms Systeme International d’ Unites (SI system):
Links 11.2
abbreviations
11.2
base units
11.2
conversion factors for
11.7
derived units
11.2
supplementary units
11.2
T t-values in statistics Tacticity
11.14 10.3
Taft equation: discussion of
7.2
pKA values for
7.10
reaction parameters for
7.10
Taft sigma constants
7.2
Taft substituent constants
7.2
Temperature: autoignition, of fuel-air mixtures control by various salts and solvents critical estimation of
4.99 9.2 5.75 5.88
effect on acidic dissociation constants
8.64
effect on pH reference buffer values
8.68
effect on reference electrode potentials
8.77
melting, of plastics
10.24
service: of plastics
10.24
of rubbers Tensile modulus of plastics
10.64 10.24
Tensile strength: of plastics
10.24
of rubbers
10.64
This page has been reformatted by Knovel to provide easier navigation.
8.79
I.41
Index terms
Links
Tension, aqueous (see Vapor pressure) Ternary azeotropic mixtures Thermal conductivity of plastics Thermal neutron absorption cross section of nuclides Thermal properties of plastics Thermodynamic properties of organic materials
4.46 10.24 3.2 10.24 5.2
Thermoplastic elastomers: description of
10.22
properties of
10.50
Thermoplastic polyester properties of Thermosetting polymers properties of
10.42 10.2 10.44
Thiophene azeotropes
4.45
Tin bond strengths
3.28
Torsional asymmetry
1.56
Transformations (conversion factors)
11.7
Triple bonds: infrared absorption frequencies of
6.28
Raman frequencies of
6.59
U Ultraviolet cutoffs: of chromatographic solvents
9.6
of spectrograde solvents
6.6
Ultraviolet stabilizers for polymers
10.7
Ultraviolet-visible, absorption bands
6.3
Ultraviolet-visible spectroscopy
6.3
Urea formaldehyde resin
10.23
properties of
10.56
Urethane rubber
10.63
properties of
10.64
This page has been reformatted by Knovel to provide easier navigation.
10.56
I.42
Index terms
Links
V Vapor pressure of water at various temperatures Vapor pressures Vaporization, enthalpy of
4.10 4.8 5.44
of mercury
4.8
of salt solutions
9.3
of water
4.10
Vinyl butyral polymers: description of
10.23
properties of
10.58
Vinyl chloride polymers: description of
10.22
properties of
10.56
10.58
Vinyl chloride-vinyl acetate copolymers: description of
10.22
properties of
10.56
Vinyl fluoride polymer
10.14
Vinyl polymers: description of
10.22
properties of
10.56
Vinylidene chloride polymers: description of
10.23
properties of
10.58
Vinylidene fluoride polymers: description of
10.13
properties of
10.34
Viscosity of chromatographic solvents
4.55 9.6
of inorganic compounds
4.94
of organic compounds
4.57
Vitamins, nomenclature of
1.43
This page has been reformatted by Knovel to provide easier navigation.
10.58
I.43
Index terms
Links
Voltammetric half-wave potentials
8.82
Volume, molar, critical
5.75
estimation of Vulcanization of polymers
5.88 10.7
W Water: absorption by plastics dielectric constant at various temperatures
10.24 4.98
permeability of polymers and rubbers to
10.70
refractive index at various temperatures
4.98
surface tension at various temperatures
4.98
vapor pressure at various temperatures
4.10
viscosity at various temperatures
4.98
Wavelength maxima of acid-base indicators Waxes, constants of Woodward–Fieser rules Work function and electronegativity
8.72 10.77 6.7 3.11
X Xenon: bond strengths solubility in water at various temperatures X-ray diffraction
3.28 4.7 6.112
Z Z(cis)-configuration
1.53
Zinc bond strengths
3.29
This page has been reformatted by Knovel to provide easier navigation.