Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W...
20 downloads
500 Views
16MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen
Group IV: Physical Chemistry Volume 19
Thermodynamic Properties of Inorganic Materials compiled by SGTE Subvolume A Pure Substances Heat Capacities, Enthalpies, Entropies and Gibbs Energies, Phase Transition Data
Part 3 Compounds from CoCl3 to Ge3N4 Editor Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule Aachen Authors Scientific Group Thermodata Europe (SGTE)
13
ISSN 1615-2018 (Physical Chemistry) ISBN 3-540-66796-2 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Vol. IV/19A3: Editor: Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule Aachen At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag Includes bibliographies. 1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables. I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910. III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH © Springer-Verlag Berlin Heidelberg 2000 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors and Redaktion Landolt-Börnstein, Darmstadt Printing: Computer to plate, Mercedes-Druck, Berlin Binding: Lüderitz & Bauer, Berlin SPIN: 10551582
63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper
Editors I. Hurtado and D. Neuschütz Lehrstuhl für Theoretische Hüttenkunde Rheinisch-Westfälische Technische Hochschule Aachen D-52056 Aachen, Germany http://www.lth.rwth-aachen.de/
Authors Scientific Group Thermodata Europe (SGTE) Chairman: P.J. Spencer Grenoble Campus 1001 Avenue Centrale, BP 66 F-38402 Saint Martin d'Hères, France http://www.sgte.org/
Member Organisations of SGTE: The present series of books is the result of a collective work carried out during many years by many individuals. Since a complete list of all contributors is an impossible task, only a contact person is mentioned under each member organisation. AEA Technology plc Materials and Chemical Process Assessment P.K. Mason 220, Harwell Laboratory, Didcot, Oxfordshire, United Kingdom, OX11 0RA http://www.aeat.co.uk/mcpa/ GTT Technologies Gesellschaft für Technische Thermochemie und -physik mbH K. Hack Kaiserstraße 100 D-52134 Herzogenrath, Germany http://gttserv.lth.rwth-aachen.de/gtt/ Institut National Polytechnique de Grenoble Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques I. Ansara F-38402 Saint Martin d'Hères, France http://www.inpg.fr/LTPCM/ IRSID Department of Physical Chemistry J. Lehmann Voie Romaine - BP 30320 F-57283 Maizières-lès-Metz, France
Max-Planck-Institut für Metallforschung und Institut für Nichtmetallische Anorganische Materialien der Universität Stuttgart Pulvermetallurgisches Laboratorium H.J. Seifert Heisenbergstraße 5 D-70569 Stuttgart, Germany http://wwwmf.mpi-stuttgart.mpg.de/abteilungen/aldinger/aldinger.html National Physical Laboratory Centre for Materials Measurement and Technology A.T. Dinsdale Queens Road, Teddington, Middlesex, United Kingdom, TW11 0LW http://www.npl.co.uk/npl/cmmt/mtdata/mts.htm Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Theoretische Hüttenkunde E. Münstermann D-52056 Aachen, Germany http://www.lth.rwth-aachen.de/ Royal Institute of Technology Department of Materials Science and Engineering J. Ågren S-10044 Stockholm, Sweden http://www.met.kth.se/tc/ Thermo-Calc AB B. Sundman Björnnägen 21 S-11347 Stockholm, Sweden http://www.thermocalc.se/ THERMODATA B. Cheynet Grenoble Campus 1001 Avenue Centrale, BP 66 F-38402 Saint Martin d'Hères, France http://www.thermodata.asso.fr/ Université Paris-Sud XI Faculté de Pharmacie Laboratoire de Chimie Physique Minérale et Bioinorganique, EA 401 Y. Feutelais 5 rue J.B. Clément F-92296 Châtenay-Malabry, France http://www.u-psud.fr/
In preparing the data for publication in this Series, the editors have been assisted particularly by: A.T. Dinsdale (Data Manager for Elements), I. Ansara (Data Manager for Pure Substances), B. Sundman (Data Manager for Solutions), J.A.J. Robinson (SGTETab software).
Preface
Thermodynamic data for inorganic materials are fundamental for the optimisation of existing process parameters and for investigating suitable parameters for carrying out potential new processes. With the aid of such data, considerable time and costs can be saved by calculating the conditions necessary to produce a material of the required composition and specified purity, with a minimum usage of energy and input materials and with a minimum release of harmful substances to the environment. The reliability of such calculations depends, of course, on the accuracy of the thermodynamic data used and one difficulty facing the user of published thermodynamic tables has been the wide selection of such compilations available. A further difficulty in using such tabulations is the need to maintain compatibility if it is found necessary to use values from more than one compilation. Different standard states, different tabulated functions and even different values for the same substance can quickly lead to uncertainty and errors in application of the numbers. Nearly all currently available compilations of thermodynamic data relate to pure substances. Very few publications of solution properties for inorganic materials exist. There are very, very few processes however, for which the reactants and products can be regarded as simple stoichiometric compounds. Even very small amounts of dissolved gases or other impurities in a product material can seriously impair its properties. On the other hand, many materials in use today are comprised of several deliberately alloyed constituents to achieve desired mechanical and physical properties. Only by including the thermodynamic solution properties of the dissolved species can full account be taken of reactions such as those between an alloy melt and a slag phase, or those involved in forming precipitated phases in a multicomponent alloy, or in vapour deposition of complex coatings on an alloy substrate, etc.. For almost 20 years, members of SGTE have been working together to try to overcome some of these problems by together producing self-consistent and compatible thermodynamic datasets, not only for pure inorganic substances, but also for mixtures of substances in the form of alloys, slags, salt systems, aqueous solutions, etc. Major advantages of the SGTE data are their self-consistency, the fact that they are produced with careful attention to a well-defined quality procedure and that the expertise of SGTE members in various areas of inorganic chemistry and materials science (ferrous and non-ferrous metallurgy, ceramics, slags, nuclear, aqueous, etc.) allows review of the numbers by highly qualified scientists in the fields concerned. The SGTE evaluated data forming this series provide a self-consistent progression from elements and stoichiometric compounds (Volume A) to binary systems including solution phases (Volume B). The possibility to continue to ternary and multicomponent systems is also forseen. The data in the latter would be so presented as to correspond to potential application themes (steels, light alloys, nickel-base alloys, etc.). The fundamental equations used in evaluating the data are given in the introduction to the volumes and the models used in representing the data are described. Each book is accompanied by a CD-ROM allowing computer tabulation of any required function at any temperature, or for selected temperature ranges, for the substances or systems in that volume. Graphical representations are also possible, including phase diagrams for the systems. The first set of four books (subvolume A) will be accompanied by software which also allows calculation, tabulation and plotting of the thermodynamic properties of reaction of substances selected from any of the Parts 1 to 4.
Information on more comprehensive software, allowing complex equilibrium calculations involving not only pure substances, but also solution phases of different types, can be obtained from SGTE members. A list of the SGTE membership is presented in the cover pages of this Volume. In presenting the data in this Series, SGTE would like to give sincere acknowledgement to the contributions of a number of scientists whose efforts have been invaluable in establishing the present SGTE databases. The names are as follows: Prof. E. Bonnier, Dr. M.H. Rand, Prof. O. Kubaschewski, Dr. M. Olette, Prof. O. Knacke, Prof. M. Hillert, Prof. I. Barin, Dr. H.L. Lukas, Dr. C. Bernard, Dr. T.I. Barry, Dr. T.G. Chart and Dr. G.P. Jones. The skilled evaluations originating from members of THERMOCENTER, Russian Academy of Science, are also gratefully acknowledged.
Dr. P.J. Spencer Chairman of SGTE
Ithaca, June 2000
Introduction
XI
Introduction
The data presented in this series, dealing with pure inorganic substances (IV/19A), binary systems (IV/19B) and ternary and multicomponent systems (IV/19C) have been evaluated and compiled by SGTE. SGTE is a consortium of European laboratories working together to develop high quality thermodynamic databases for a wide variety of inorganic and metallurgical systems [87Ans, 91Din]. The SGTE element data [91Din] conform to the 1990 International Temperature Scale and over the last years have formed the basis for most assessments of binary, ternary and higher order systems appearing in the open literature. Members of SGTE have played a principle role in promoting the concept of “computational thermochemistry“ as a time and cost-saving basis for guiding materials development and processing in many different areas of technology. At the same time, through organisation of workshops and participation in CODATA Task Groups, SGTE members have contributed significantly to the broader international effort to unify thermodynamic data and assessment methods. The SGTE data can be obtained via members and their agents world-wide for use with commercially available software developed by some of the members, to enable users to undertake calculations of complex chemical equilibria efficiently and reliably. The SGTE Member organisations are (January 1999):
France:
- Institut National Polytechnique (LTPCM), Grenoble - Association THERMODATA, Grenoble - IRSID, Maizières-lès-Metz - Université de Paris Sud (LCP)
Germany: - Rheinisch-Westfälische Technische Hochschule (LTH), Aachen - MPI für Metallforschung (PML), Stuttgart - GTT-Technologies, Aachen
Sweden:
- Royal Institute of Technology (MSE), Stockholm - Thermo-Calc AB, Stockholm
United Kingdom:
Landolt-Börnstein New Series IV/19A
-National Physical Laboratory (CMMT), Teddington -AEA Technology plc, Harwell
SGTE
Introduction
XII
1 Basic equations and functions used
1.1 Heat capacity The heat capacity of the elements and the pure substances in a defined state is represented by a power series of the form C p = a + b ⋅ T + c ⋅ T 2 + d ⋅ T −2
(1)
It is often necessary to use several temperature ranges, without discontinuities, in order to represent the assessed Cp values as accurately as possible. Plots of Cp are presented for each substance, whilst calculated values for selected temperatures or temperature intervals can be obtained using the software accompanying the volumes. It can sometimes be necessary to extrapolate the thermodynamic properties of the solid phases of an element beyond the temperature ranges where the phases are stable. In the SGTE treatment of such data for the liquid phase, it has been assumed that the heat capacity of the liquid should approach that of the SER-phase (Standard Element Reference-phase, which is usually the phase stable at 298.15 K) and similarly, that the heat capacity of all solid phases above the melting temperature should approach that of the liquid. This excludes a proper treatment of glass transformations, but represents a pragmatic solution to the difficulties associated with necessary extrapolations and removes the possibility of phases becoming incorrectly stable at high or low temperatures. The resulting additional T 7 and T –9 temperature terms used are presented in equation (7) below. Alternative extrapolation methods have been used for some elements and new methods are being reviewed for incorporation into the SGTE databases shortly [95Sun].
1.2. Enthalpies of formation and transition and standard entropy The enthalpy of formation at 298.15 K, ∆f H0 (298 K), and the standard entropy at 298.15 K, S0 (298 K), are presented for each substance, together with the enthalpies and temperatures of polymorphic transformations, ∆ trs H and Ttrs. A reference pressure of 100 kPa is used. In addition, the value of H(298.15 K)-H(0 K) is given when available.
1.3. Gibbs energy As most thermodynamic calculations relating to reactions and phase equilibria involving inorganic materials are made assuming constant temperature and pressure, the Gibbs energy is often the most suitable function to describe the thermodynamic properties of the substances involved. The molar Gibbs energy of a pure element i, reference state at 298.15 K,
0
0
Gi (T ) , referred to the enthalpy of its standard
H i (298.15K ) , is denoted by GHSERi. This quantity is described as a
function of temperature by the following equation:
SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XIII
GHSER i = 0 Gi (T)− 0 H i (298K ) = a + b ⋅ T + c ⋅ T ⋅ lnT + d ⋅ T 2 + e ⋅ T 3 + f ⋅ T −1
(2)
The same basic equation is also used to describe the Gibbs energy of pure stoichiometric substances. N.B. It is important to recognise that GHSER (normally shortened to G) is not the Gibbs energy of formation at a particular temperature. ∆ f G includes contributions from the entropy of the elements at T and changes in the enthalpy of the elements between 298.15 K and T. From the Gibbs energy, all important thermodynamic properties can be calculated by combining appropriate partial derivatives. In particular the first and second derivatives of equation (2) with respect to temperature are related to the absolute entropy and heat capacity of the substance at the temperature concerned. Experimental values for heat capacity can thus be directly correlated with the coefficients c, d, e and f. S = −b − c − c ⋅ lnT − 2d ⋅ T − 3e ⋅ T 2 + f ⋅ T −2
Using
G = H −T ⋅S
(3) (4)
H = a − c ⋅ T − d ⋅ T 2 − 2e ⋅ T 3 + 2f ⋅ T −1
(5)
C p = −c − 2d ⋅ T − 6e ⋅ T 2 − 2f ⋅ T −2
(6)
Taking into account the need to extrapolate the data for a phase to metastable ranges, as discussed in Section 1.1., equation (2) is modified to give: GHSER i = 0 Gi (T )− 0 H i (298K ) = a + b ⋅ T + c ⋅ T ⋅ lnT + d ⋅ T 2 + e ⋅ T 3 + f ⋅ T −1 + g ⋅ T 7 + h ⋅ T −9
(7)
1.3.1. Influence of magnetic behaviour For substances which display a magnetic ordering (e.g. the elements Cr, Fe, Ni, Mn), the term GHSER is considered for a paramagnetic state and the magnetic contribution is treated explicitly. Thus an additional term is added to the molar Gibbs energy of the magnetic phase. This is equal to: G mag = RTln(β + 1) ⋅ f(τ)
(8)
where τ is T/Tc, Tc being the critical temperature for magnetic ordering and ß the average magnetic moment per atom expressed in Bohr magnetons. The function f(τ) is given as: τ < 1:
f(τ) = 1-[79 τ-1/140p+(474/497)(1/p-1)(τ 3/6+ τ9/135+ τ 15/600)]/A
τ > 1:
f(τ) = -[ τ -5/10+ τ-15/315+ τ-25/1500]/A
(10)
A = 518/1125+(11692/15975)(1/p-1)
(11)
(9)
with
These equations were derived by Hillert et al. [78Hil] from an expression of the magnetic heat capacity, C pmag , proposed by Inden [81Ind]. The value of p depends on the structure. For example, p has a value of 0.28 for fcc and hcp metals and 0.40 for bcc metals [81Ind]. Gibbs energy equations for the pure elements, of the form given in equation (7), have been published previously as the SGTE data for the pure elements by Dinsdale [91Din].
Landolt-Börnstein New Series IV/19A
SGTE
Introduction
XIV
1.4 Gibbs energy of formation 1.4.1 Binary compounds The Gibbs energy of formation of a binary compound AaBb is expressed as: GA a Bb − a⋅0 H A (298.15K) − b⋅0 H B (298.15K) = f(T )
(12)
The expression for f(T) is identical to that given by equation (7). Equation (12) can be transformed by applying equation (2) for each component f (T ) = GA
a Bb
= ∆ f GA The term ∆ f G A
a Bb
(T ) − a⋅0 GA (T ) − b⋅0 GB (T ) + a GHSERA + b GHSER B = a Bb
(T ) + a GHSERA + b GHSERB
(13)
(T ) is the Gibbs energy of formation of the compound referred to the stable elements
at temperature T. 1.4.2 Gaseous species An expression identical to equation (12) is used to describe the Gibbs energy of formation of gaseous species, with an additional term RT lnP, where P is the total pressure. The reference state for each vapour species is taken to be the pure component at 0.1 MPa pressure.
2 Definitions and reference information The definitions given here, which are relevant to the volumes of tabulated data and accompanying software, are intended to explain the meaning of words commonly used in metallurgical and inorganic thermochemistry; they are not necessarily generally used definitions in all cases. Atom An atom is the smallest possible state of division of an element. Component (see System) Compound A compound is composed of at least two different elements. The phase is not defined. A compound in crystalline form may be made up of individual molecules or it may have extended ionic, covalent or metallic bonding. For example the overall composition of rock salt is governed by the fact that there are equal numbers of Na+ and Cl– ions on two sublattices. The use of the word compound normally implies a stoichiometric composition (i.e. the amounts of the elements are in simple ratio). Element An element cannot be broken down to a simpler chemical form by non-nuclear processes. The phase is not defined and the element may be present as atoms or molecules, e.g. gaseous O, O2 and O3 are different molecular forms of the element oxygen. SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XV
Equilibrium At chemical equilibrium the phases present, their composition and internal speciation is such as to minimise the Gibbs energy at a fixed pressure or the Helmholtz energy at fixed volume. When the Gibbs energy is minimum the chemical potentials (partial molar Gibbs energies with respect to composition) of the components are equalised throughout the system, i.e. in every phase. Thus equilibrium can be computed either by minimisation of Gibbs energy or equalisation of chemical potentials. Ion An ion is an atom or molecule carrying electric charge. Isomer Isomers are molecules with the same formula but different structures. SGTE distinguishes between isomers by appending a tag to the formula, e.g. C2Cl2H2_trans and C2Cl2H2_cis. Isotope Isotopes of the same element have the same atomic number but differing atomic weights. For most elements, and for most purposes, the differences in chemical behaviour are insignificant. Hydrogen is an exception and the SGTE substance database incorporates data for deuterium, tritium and some of their compounds using the symbols D and T. Model The word "model", as used in conjunction with the SGTE data, applies to any mathematical description of the properties of a phase, a unary or an interaction as a function of one or more variables such as temperature, pressure, composition and internal distribution of components. The mathematical model is strongly linked to the phase and takes account of structural features of phases for example multiple sublattices and solution on individual sublattices. Within a single phase the same model must be used to describe the mixing between all binary and, if necessary, higher order combinations of unaries. This entails that care must be taken when developing data for a multicomponent system that models and reference states are consistent. "Model" may also have a more restrictive definition in which the parameters in the mathematical description are given definite numerical values. Molecule A molecule is a chemically bonded group of similar or different atoms, eg Cl2 or NH3. The word molecule is most often used for species in the gas phase, but it can be used for species (q.v.) in other phases, including crystalline phases, provided the molecule behaves as a single entity. Phase A phase is chemically and structurally homogeneous and is distinguishable from other phases by its name, structure and properties (mechanical, physical and chemical). Crystalline phases have a definite periodic structure, often with sublattices. In order to define phases uniquely, phase names like fcc and alpha are insufficient. For this reason SGTE has coupled the Pearson symbol to the crystal class for metallic phases, e.g. Fe. Reference state Enthalpy data for all substances are ultimately referred to the enthalpy of the elements in their standard reference states. This corresponds to the stable phase at 1 atm. (101325 Pa) and 298.15 K. (Phosphorous, for which the red allotrope is more easy to prepare and define in a chemically pure form than is the stable white form, is an exception). Thus, for example, the enthalpy of liquid water is referred to gaseous O2 and H2, both at 101325 Pa, via the equation: H2 + 0.5 O2 = H2O
Landolt-Börnstein New Series IV/19A
(14) SGTE
Introduction
XVI
However, the entropy and heat capacity of liquid water are properties of water itself. The enthalpy and entropy of liquid water are defined by: T
H(H2O) = ∆fH298.15(H2O) + ∫298.15 C p (H2O)dT T
S(H2O) = S298.15(H2O) + ∫298.15 C p (H2O)/T dT
(15) (16)
Solution A solution is a homogeneous mixture within a single phase. Local ordering may be present. A phase that includes a variable proportion of unoccupied sites is also a solution but the vacancies do not constitute a component. The data for solutions are defined by reference to the unaries from which they are constituted using the model and data describing the ideal and non-ideal mixing between these unaries. Species A species is an atom, ion or molecule and corresponds to an identifiable constituent of a phase, for example a gaseous molecule or an ion occupying a sublattice. State of matter The states of matter relevant to these tables are solid, liquid and gas. Substance "Substance" denotes any quantity of material having a definite identity. Thus the term comprises anything from an atom or ion upwards. In the SGTE data presented here, a more restricted sense is implied, namely a unary, a stoichiometric compound or a pure gas. System and component A chemical system is defined by a set of chemical entities known as components. In the simplest case these are the elements comprising the system. However, they may also be compounds of these elements, in which case they may be fewer or, less commonly, greater in number than the number of elements. For the example of the three elements C, H and O, the number of components might be 1, ethanol; 2, ethanolwater; 3, C-H-O; or 4, methanol-ethanol-water-benzene, etc. Systems may be closed or open. In closed systems the total amount of the components is fixed, whereas in open systems the composition can adjust to meet some external constraint. Unary The word "unary" is used to define the constituents of a phase. For example in a liquid phase the unaries might be H2O and C2H5OH. The data for these unaries are those of the pure liquids. Unaries are not necessarily experimentally accessible. For example Ni is unstable but data for it are required to model the solution of nickel in the bcc phase of steels. Moreover, to meet the requirements of models for ionic phases with sublattices a unary may carry charge. For example the formation of an inverse spinel AB2O4 might be modelled by the mixing of the four unaries, A3+(A3+)2O4<spinel>, A3+(B2+)2O4<spinel>, B2+(A3+)2O4<spinel> and B2+(B2+)2O4<spinel> which respectively have charges of +1 –1, 0 and -2 only one of which, even in principle, could have an independent existence. Vacancies Sites in crystalline structures are not always 100% populated, indeed interstitial sites may have a very low occupancy. SGTE modelling considers the unoccupied sites as vacancies, which are denoted by Va.
SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XVII
3 Content of the tables 3.1 Tabulated values The following standard format has been used to present the evaluated thermodynamic values for all inorganic substances: At the head of the page on the left hand side is the chemical formula and name for the substance concerned and on the right hand side a reference or references to the major source of the evaluated data contained in the table below. The table itself contains the following: T (Temperature in K) So (Standard entropy in J K-1 mol-1) - the entropy of the substance at 298.15 K and 100 kPa. H298-H0 (Enthalpy in J mol-1) - the difference in the enthalpy of the substance between 298.15 K and 0 K (when available) ∆f Ho (Standard enthalpy of formation in J mol-1) - the change in enthalpy resulting from the formation of the substance at 298.15K from the appropriate proportions of its pure elemental components in their standard reference states, also at 298.15K ∆f So (Standard entropy of formation in J K-1 mol-1) - the change in entropy resulting from the formation of the substance at 298.15 K from the appropriate proportions of its pure elemental components in their standard reference states, also at 298.15 K ∆f Go (Standard Gibbs energy of formation in J mol-1) - the change in Gibbs energy resulting from the formation of the substance at 298.15 K from the appropriate proportions of its pure elemental components in their standard reference states, also at 298.15 K ∆trs Ho (Enthalpy of transition in J mol-1) - the enthalpy difference between two different stable phases of the substance at the transition temperature corresponding to the value of T in the first column ∆trs So (Entropy of transition in J K-1 mol-1) - the entropy difference between two different stable phases of the substance at the transition temperature corresponding to the value of T in the first column type (nature of the transition) abbreviated information on the nature of the phase transition concerned S-S - solid/solid transition S-L - solid/liquid transition For the elements the information is more detailed including the name of the phases.
Landolt-Börnstein New Series IV/19A
SGTE
XVIII
Introduction
3.2 Figures There are generally two figures accompanying the tabulated values. These are - a plot of the heat capacity, Cp , (in J K-1 mol-1) as a function of temperature (K) for the complete range of temperature for which data are available. The plot comprises curves for the different phases of the substance if phase transitions occur in the temperature range concerned. - a plot of the enthalpy of formation, ∆fH , and Gibbs energy of formation, ∆fG , (in kJ mol-1 or MJ mol-1) as a function of temperature. Phase transitions in the substance and in the elemental components of the substance are reflected in the different curves. The maximum temperature may be limited by the maximum temperature of one of the component of the substance. For the elements in its reference state the second figure is replaced by a table with several properties, including a short version of the SGTE phase designation (i.e. A_MON_Pu instead of ALPHA_MONOCLINIC_Pu) the Strukturbericht, prototype, Pearson symbol and space group [86Mas, 91Din] the atomic number and atomic weight [96IUPAC, 97IUPAC]. The number in parentheses indicates the uncertainty in the last digit. the density [98Pre]
4 Accompanying software, SGTETab SGTETab is a program for tabulating and plotting the thermodynamic properties for pure substances or a chemical reaction using data stored in the SGTE pure substance database. It has been designed for use under the Windows9x or Windows NT operating systems as a full Windows program providing dialogue boxes, menus and context sensitive help in order to guide the user to ask for the table or plot required. As a Windows program it provides printer support. On executing SGTETab first click the ∆H button which opens the tabulation window containing various simple dialogue boxes allowing you to define: -
the substance (in a compact way, e.g. Be6Li2O10 instead of Li2O.3B2O3) or equation the units of temperature, pressure and energy the thermodynamic function to be plotted the range of temperatures to be covered by the calculations the fixed pressure for the calculations the name of the file where tabulated results are to be saved
The substance or equation is defined using the standard chemical nomenclature for the element names, eg mixture of upper and lower case characters Ag, B, Na, AgCl, CaBr2. If the substance is entered without a phase identifier a crystalline state is assumed with no defined phase name. However if data for a particular phase are to be used, the phase name should be entered immediately after the substance within angular brackets e.g. C. If data for gaseous species are required the phase identifier g is used e.g. H2, CH2. Equations are entered with the list of reactants and products separated by an equals sign e.g.:
SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XIX
Ca + Cl2 = CaCl2 The amount of each of the reactants or products could be a fraction or a non-integer if required e.g.: C +0.5O2 = CO Na + 1/2Cl2 = NaCl SGTETab also provides a facility to balance chemical equations automatically. e.g.: Fe2(SO4) 3 = Fe3O4 + SO2 + O2 will auto-balance to give the chemical equation: Fe2(SO4) 3 = 2/3Fe3O4 + 3SO2 +5/3O2 Both tabular and graphical output is provided on clicking the PLOT button. The graphical output may be minimised for comparison with other graphical output, saved on disk or printed out on a connected printer. Optionally the printed information may be sent to a file as specified in the results file dialogue box. By default SGTETAB assumes that the units of energy are joules, temperature in K and pressure in Pa but alternative units may be selected using by clicking on the arrow in the appropriate dialogue box. The default temperature range over which calculations are carried out is 300 to 3000 K in steps of 50 K but this may be truncated depending on the upper temperature range of one or more of the compounds in the chemical equation. The user may, however, select a range of temperatures and step size depending on his own interest. The default pressure is 105 Pa but again this may be changed by the user if he/she wishes to investigate the properties of a chemical reaction or a pure substance at other pressures. A number of different thermodynamic functions may be plotted as a function of temperature including the heat capacity at constant pressure, Cp (the default), enthalpy, H, entropy, S, the Gibbs energy, G, and a function beta. When looking at data for individual substances the heat capacity and entropy represent absolute values while the values of the enthalpy and Gibbs energy are relative to the SGTE defined reference, Hser, the enthalpies of the elements in their standard reference state at 298.15 K. If a chemical reaction is being considered these functions become the change in properties arising from the chemical reaction ie ∆Cp, ∆S, ∆H and ∆G. The function beta for a pure substance is defined as: G/RTln10 where G is the Gibbs energy relative to HSER as defined above. For a chemical reaction the function beta now represents ∆G/RTln10 or the logarithm (base 10) of the equilibrium constant at constant pressure i.e. log10Kp. While SGTETab gives useful information about the stability of individual substances under ranges of conditions it is worth remembering that more powerful facilities are also available from SGTE members to use the data to model chemical and phase equilibria of much greater complexity.
Landolt-Börnstein New Series IV/19A
SGTE
Introduction
XX
References 78Hil 81Ind 87Ans 91Din 95Sun 98Pre
87Mas 96IUPAC 97IUPAC
SGTE
M. Hillert and M. Jarl: CALPHAD 2 (1978) 227-238. G. Inden: Physica 103B (1981) 82-100. I. Ansara and B. Sundman: in "Computer Handling and Dissemination of Data", P. Glaeser (ed.), CODATA, Elsevier, 1987, p. 154-158. A.T. Dinsdale: CALPHAD 15 (1991) 317-425. B. Sundman, F. Aldinger: 1995 Ringberg Workshop on Unary Data, CALPHAD 19 (1995) 433. B. Predel: "Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Pu-Re ... Zn-Zr", O. Madelung (ed.), Landolt-Börnstein New Series IV/5J, Springer-Verlag, Berlin Heidelberg (1998) T. Massalski (ed.): "Binary Alloy Phase Diagrams", ASM International, Materials Park, Ohio, USA. IUPAC, Pure Appl. Chem. 68 (1996) 2339-2359. IUPAC, Pure Appl. Chem. 69 (1997) 2471-2473.
Landolt-Börnstein New Series IV/19A
References
LVII
References 67Kub 73Bar
74Mil 85JANAF
91Kna
93Kub 94SGTE 94TCRAS 94THDA 95Bar 95SGTE 96TCRAS 98JANAF
99SGTE
Landolt-Börnstein New Series IV/19A
"Metallurgical Thermochemistry" (Fourth edition), O. Kubaschewski, E.LL. Evans and C.B. Alcock, Pergamon Press Ltd. (1967). "Thermochemical Properties of Inorganic Substances", I. Barin, O. Knacke (1973), and 'Supplement 1977', I. Barin, O. Knacke and O. Kubaschewski, Springer-Verlag Berlin, Heidelberg and Verlag Stahleisen mbH, Düsseldorf. "Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides", K.C. Mills, Butterworths & Co. Ltd. London (1974). "JANAF Thermochemical Tables" (Third edition), M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, Journal of Physical and Chemical Reference Data, vol. 14, Supplement No. 1, The American Chemical Society and American Institute of Physics for the National Bureau of Standards (1985). "Thermochemical Properties of Inorganic Substances", Eds. O. Knacke, O. Kubaschewski and K. Hesselmann, Springer-Verlag Berlin, Heidelberg and Verlag Stahleisen mbH, Düsseldorf (1991). "Materials Thermochemistry", O. Kubaschewski, C.B. Alcock and P.J. Spencer, Pergamon Press Ltd. (1993). Scientific Group Thermodata Europe (SGTE), Grenoble Campus, 1001 Avenue Centrale, BP 66, F-38402 Saint Martin d'Hères, France. Glushko Thermocenter of the Russian Academy of Sciences, IVTAN Association, Izhorskaya 13/19, 127412 Moscow, Russia. THERMODATA, Grenoble Campus, 1001 Avenue Centrale, BP 66, F-38402 Saint Martin d'Hères, France. "Thermochemical Data of Pure Substances" (Third edition), I. Barin, Wiley-VCH Publish., Weinheim (1995). see [94SGTE] see [94TCRAS] "NIST-JANAF Thermochemical Tables" (Fourth edition), M.W. Chase, Jr., Journal of Physical and Chemical Reference Data, Monograph n° 9, The American Chemical Society and American Institute of Physics (1998). see [94SGTE]
SGTE
2 Compounds
CoCl g
Cobalt Trichloride gas
298.15
344.619
17903.0
CrCl
1
-
96TCRAS
–151634.0
–20.039
–145659.0
Chromium Trichloride
298.15 1100.0
122.90
17650.0
Landolt-B¨ornstein New Series IV/19A
-
94TCRAS
–570000.0
–235.262
–499857.0
!
60000.0
54.545
type
#"%$
SGTE
2
2 Compounds
CrCl&(' g )+* Chromium Trichloride gas , /
01
2 31 45
298.15
346.966
18287.0
-
26 1
- 94TCRAS.
78 21
78 01
789 1
–333363.0
–11.196
–330025.0
CrCl& O ' g )+* Chromium Trichloride Oxide gas ,
- 94TCRAS.
/
0 1
2 31 4 5 2 6 1 -
78 2 1
78 0 1
78:9 1
298.15
357.378
19936.0
–472226.0
–103.357
–441410.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
3
Cu; Cl;(< g =?> Tricopper Trichloride gas @ C
DE
F GE HI
298.15
429.518
28723.2
-
FJ E
A 85JANAFB
KL FE
KL DE
KL:M E
–258571.2
–4.550
–257214.0
DyCl;N> Dysprosium Chloride @
A 94SGTEB
C
DE
KL FE
KL DE
KL:M E
298.15 924.00
157.737
–995792.0
–251.837
–920707.0
Landolt-B¨ornstein New Series IV/19A
KOP!Q FE
KOP!Q DE
25522.4
27.622
type
DSRUT
SGTE
4
2 Compounds
DyClVW g X?Y Dysprosium Chloride gas Z
[ 94THDA\
]
^_
`a:b_
`a^_
`ac_
298.15
376.485
–677389.6
–33.090
–667524.0
DyClVd 6He O Y Dysprosium Chloride—Water (1/6) Z ]
^ _
`a:b _
`a^ _
`a:c _
298.15
401.664
–2869998.0
–1407.430
–2450370.0
SGTE
[ 94THDA\
Landolt-B¨ornstein New Series IV/19A
2 Compounds
5
ErClfhg Erbium Chloride i
j 94SGTEk
l
mn
opq n
opmn
opsrn
298.15 1049.00
146.858
–994537.0
–260.938
–916738.0
ErClf(y g z?g Erbium Chloride gas i
otu!vmn
32635.2
31.111
type
mSwUx
j 94THDAk
l
mn
op:qn
opmn
oprn
298.15
376.226
–674038.2
–31.570
–664625.0
Landolt-B¨ornstein New Series IV/19A
otu!v:q n
SGTE
6
2 Compounds
ErCl{(| 6H} O ~ Erbium Chloride—Water (1/6)
94THDA
:
:
298.15
398.702
–2874408.0
–1408.620
–2454430.0
EuCl{h~ Europium Trichloride
94SGTE
:
:
298.15 896.00
143.930
–939308.0
–271.481
–858366.0
SGTE
!s
!
33053.6
36.890
type
SU
Landolt-B¨ornstein New Series IV/19A
2 Compounds
7
EuCl g + Europium Trichloride gas
94THDA
:
298.15
363.674
–658139.0
–51.737
–642713.0
SiCl F g + Silicon Trichloride Fluoride gas
85JANAF
-
s
:
298.15
336.064
19212.9
–840984.0
–118.759
–805576.0
Landolt-B¨ornstein New Series IV/19A
SGTE
8
2 Compounds
PCl¡ F¢(£ g ¤+¥ Phosphorus Trichloride Difluoride gas ¦ ©
ª«
¬ « ®¯
298.15
338.125
20165.0
-
¬° «
±² ¬«
±² ª«
±²:³ «
–878719.0
–240.373
–807052.0
§ 94TCRAS¨
FeCl¡N¥ Iron Trichloride ¦
§ 96TCRAS¨
©
ª«
¬« ®¯
298.15 580.70
147.80
19440.0
SGTE
-
¬ ° «
±² ¬«
±² ª«
±²³ «
–396000.0
–214.098
–332167.0
±´µ¶ ¬«
±´ µ!¶ ª«
40000.0
68.882
type
ª#·%¸
Landolt-B¨ornstein New Series IV/19A
2 Compounds
9
FeCl¹º g »?¼ Iron Trichloride gas ½ À
ÁÂ
à Ä ÅÆ
298.15
344.823
17814.0
-
ÃÇ Â
¾ 96TCRAS¿
ÈÉ ÃÂ
ÈÉ ÁÂ
ÈÉÊ Â
–250463.0
–17.075
–245372.1
GaCl¹N¼ Gallium Chloride ½
¾ 95Bar¿
À
ÁÂ
ÈÉ ÃÂ
ÈÉ ÁÂ
ÈÉ:Ê Â
298.15 351.00
135.143
–524674.0
–240.202
–453057.0
Landolt-B¨ornstein New Series IV/19A
ÈËÌ!Í ÃÂ
ÈËÌ!Í ÁÂ
11506.0
32.781
type
ÁSÎUÏ
SGTE
10
2 Compounds
GaClÐÑ g Ò?Ó Gallium Chloride gas Ô ×
ØÙ
Ú ÛÙ ÜÝ
298.15
324.522
17375.0
-
ÚÞ Ù
Õ 94TCRASÖ
ßà ÚÙ
ßà ØÙ
ßàá Ù
–432625.0
–50.824
–417472.0
GdClÐhÓ Gadolinium Chloride Ô
Õ 94SGTEÖ
×
ØÙ
ßà ÚÙ
ßà ØÙ
ßàsá Ù
298.15 875.00
151.461
–1004578.4
–251.247
–929669.0
SGTE
ßâã!ä Ú Ù
ßâã!ä ØÙ
40584.8
46.383
type
ØSåUæ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
11
GdClç(è g é+ê Gadolinium Chloride gas ë
ì 94THDAí
î
ïð
ñò:óð
ñòïð
ñòôð
298.15
371.481
–696636.0
–31.226
–687326.0
GeClçè g é?ê Germanium Trichloride gas ë
ì 94TCRASí
î
ï ð
ó õð ö ÷ ó ø ð -
ñòsó ð
ñòï ð
ñòô ð
298.15
329.902
16950.0
–267559.0
–35.806
–256883.0
Landolt-B¨ornstein New Series IV/19A
SGTE
12
2 Compounds
SiHClùú g û?ü Trichlorosilane gas ý
298.15
þ 94THDAÿ
-
313.591
16146.1
–500406.4
–105.178
–469048.0
HoClù 6H O ü Holmium Chloride—Water (1/6) ý
298.15
SGTE
406.183
–2878173.5
–1402.980
–2459880.0
þ 94THDAÿ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
HfCl Hafnium Trichloride
13
73Bar
!"
!
!#
298.15
151.042
–774040.0
–227.137
–706319.0
HfCl$ g %& Hafnium Trichloride gas
" ' ( ) " * -
!+"
!
!,#
298.15
345.833
17748.5
–581576.0
–32.346
–571932.0
Landolt-B¨ornstein New Series IV/19A
94THDA
SGTE
14
2 Compounds
HoCl-. Holmium Chloride /
2
34
5674
56 34
56+84
298.15 993.00
159.829
–1006252.0
–249.808
–931772.0
HoCl-B g C&. Holmium Chloride gas /
2
34
5674
56 34
56,84
298.15
377.364
–682410.0
–32.273
–672788.0
SGTE
0 94SGTE1
59;:=
SGTE
28
2 Compounds
VClF O G g H"I Vanadium Trichloride Oxide gas J
M
NO
PQO R S
P O - T
UV P O
UV NO
UVW O
298.15
345.410
19789.0
–675000.0
–122.672
–638425.0
WClF O I Tungsten Trichloride Oxide J
M
N O
P QO R S P T O -
UV P O
UV N O
UVW O
298.15
184.000
27000.0
–686000.0
–285.810
–600786.0
SGTE
K 94TCRASL
K 94TCRASL
Landolt-B¨ornstein New Series IV/19A
2 Compounds
WClX O Y g Z"[ Tungsten Trichloride Oxide gas \
29
_
`a
bca d e
b a - f
gh b a
gh `a
ghi a
298.15
373.005
20668.0
–553000.0
–96.805
–524138.0
Uj ClX Okl[ Diuranium Trichloride Tetraoxide \
_
` a
gh b a
gh ` a
gh'i a
298.15
276.253
–2404544.8
–569.060
–2234880.0
Landolt-B¨ornstein New Series IV/19A
] 94TCRAS^
] 94SGTE^
SGTE
30
2 Compounds
PClmon Phosphorus Trichloride p
q 94SGTEr
s
tu
vwx u
vw tu
vwyu
298.15
218.488
–320912.8
–157.221
–274038.0
PClm{z g |"n Phosphorus Trichloride gas p
s
t u
x }u ~ x u -
vw'x u
vw t u
vwy u
298.15
311.702
15932.0
–289500.0
–64.006
–270417.0
SGTE
q 94TCRASr
Landolt-B¨ornstein New Series IV/19A
2 Compounds
31
SPCl{ g " Phosphorus Trichloride Sulphide gas
85JANAF
-
298.15
337.357
18999.5
–380618.5
–70.419
–359623.0
PbCl{ g " Lead Trichloride gas
-
298.15
351.597
18255.0
–177653.0
–47.821
–163395.0
Landolt-B¨ornstein New Series IV/19A
94TCRAS
SGTE
32
2 Compounds
PrClo Praseodymium Chloride
298.15 1059.00
153.302
–1056900.0
–255.247
–980797.0
PrCl{© g ª" Praseodymium Chloride gas
298.15
373.962
–731362.8
–34.588
–721051.0
SGTE
95Bar
¡ ¡¢'
£ ¤¢
type
50626.0
47.805
¦¥¨§
94THDA
Landolt-B¨ornstein New Series IV/19A
2 Compounds
PtCl«¬ Platinum Trichloride ®
±
²³
´µ¶ ³
´µ ²³
´µ·³
298.15
246.910
–168197.0
–129.339
–129634.0
PuCl«o¬ Plutonium Trichloride ®
±
²³
´µ¶³
´µ ²³
´µ·³
298.15 1033.00
158.992
–1008890.0
–230.087
–940285.0
Landolt-B¨ornstein New Series IV/19A
33
¯ 95Bar°
¯ 95Bar°
´¸¡¹¡º'¶ ³
´¸£¹¤º²³
type
63597.0
61.565
²¦»¨¼
SGTE
34
2 Compounds
ReCl½o¾ Rhenium Trichloride ¿
Â
ÃÄ
ÅÆÇ Ä
ÅÆ ÃÄ
ÅÆÈÄ
298.15
123.800
–264002.0
–247.300
–190269.0
RhCl½o¾ Rhodium Chloride ¿
Â
à Ä
ÅÆÇ Ä
ÅÆ Ã Ä
ÅÆÈ Ä
298.15
126.775
–299202.0
–239.400
–227825.0
SGTE
À 95BarÁ
À 73BarÁ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
RhClÉ{Ê g ËÍÌ Rhodium Chloride gas Î
Ï 94SGTEÐ
Ñ
ÒÓ
ÔÕÖ Ó
ÔÕ ÒÓ
ÔÕ×Ó
298.15
373.741
66944.0
7.567
64688.0
RuClÉoÌ Ruthenium Chloride Î
Ñ
Ò Ó
ÔÕÖ Ó
ÔÕ Ò Ó
ÔÕ× Ó
298.15
127.085
–230120.0
–236.147
–159713.0
Landolt-B¨ornstein New Series IV/19A
35
Ï 95BarÐ
SGTE
36
2 Compounds
RuClØ{Ù g ÚÍÛ Ruthenium Chloride gas Ü
ß
àá
âãä á
âã àá
âã'åá
298.15
328.445
79078.0
–34.787
89449.9
SbClØoÛ Antimony Trichloride Ü
ß
àá
âãä á
âã àá
âãåá
298.15 346.00
187.025
–381999.2
–193.116
–324422.0
SGTE
Ý 95BarÞ
Ý 94THDAÞ
âæ¡ç¤è'ä á
âæ¡ç¤è àá
type
12970.4
37.487
àêéìë
Landolt-B¨ornstein New Series IV/19A
2 Compounds
SbClíïî g ð"ñ Antimony Trichloride gas ò
õ
ö÷
øùú ÷
øù ö÷
øùû÷
298.15
337.340
–313590.8
–42.800
–300830.0
ScClíñ Scandium Chloride ò
õ
ö÷
øùú÷
øù ö÷
øù'û÷
298.15 1240.00
121.336
–899560.0
–247.926
–825641.0
Landolt-B¨ornstein New Series IV/19A
37
ó 73Barô
ó 73Barô
øü¡ý¤þú÷
øü¡ý¤þö÷
type
67362.3
54.324
öêÿ
SGTE
38
2 Compounds
g Silicon Trichloride gas
298.15
–36.789
–325304.0
SiCl
-
316.640
15717.0
–336272.0
Samarium Trichloride
SmCl
298.15 951.00
SGTE
150.206
–1028427.2
–253.909
"! "!
–952724.0 44350.4
46.636
94TCRAS
94SGTE
type
$#%
Landolt-B¨ornstein New Series IV/19A
2 Compounds
39
&(' g +) * Tin Trichloride gas, / 0 1 231 45 26 1 78 21
78 01
789 1
298.15
–45.951
–278672.0
SnCl
-
339.847
17554.0
–292372.0
&:* Tantalum Trichloride, / 01 78 2 1 78 0 1
78;9 1
298.15
–487149.0
TaCl
154.808
Landolt-B¨ornstein New Series IV/19A
–553124.8
–221.283
-
94TCRAS
-
94SGTE
.
.
SGTE
40
2 Compounds
? Tantalum Trichloride gas@ C D E FG;HE FGDE FGIJE
A
TaCl
298.15
346.001
–322168.0
0 Silicon Tetrachloride gas 2
3 94TCRAS4
5
6 7
: ?7 @ A : B 7 -
89C: 7
896 7
89; 7
298.15
331.446
19455.0
–662200.0
–133.522
–622390.0
Landolt-B¨ornstein New Series IV/19A
SGTE
66
2 Compounds
SnClD1E Tin TetrachlorideF
G 94SGTEH
I
J K
LMNK
LMJK
LMO+K
298.15
258.990
–528857.6
–238.348
–457794.0
SnClDQP g R>E Tin Tetrachloride gas F
G 94TCRASH
I
J K
N SK T U N V K -
LMCN K
LMJ K
LMO K
298.15
366.871
22474.0
–478466.0
–130.467
–439567.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
TaClW1X Tantalum TetrachlorideY
Z 94SGTE[
\
] ^
_`a^
_`]^
_`b+^
298.15
192.464
–707514.4
–295.166
–619511.0
TaClWc g d>X Tantalum Tetrachloride gas Y
Z 94SGTE[
\
] ^
_`a ^
_`] ^
_`b ^
298.15
382.945
–571952.8
–104.685
–540741.0
Landolt-B¨ornstein New Series IV/19A
67
SGTE
68
2 Compounds
TeCle1f Tellurium Tetrachlorideg
h 94THDAi
j
k l
mnol
mnkl
mnp+l
298.15 497.00
200.832
–323841.6
–294.547
–236022.0
TeClez g {!f Tellurium Tetrachloride gas g
mqsrutkl
18869.8
37.967
type
kwvyx
h 94THDAi
j
k l
mnol
mnkl
mnp+l
298.15
376.669
–205852.8
–118.710
–170459.0
SGTE
mqsrutCol
Landolt-B¨ornstein New Series IV/19A
2 Compounds
69
ThCl|1} Thorium Chloride ~
73Bar
-
+
+
298.15 1043.00
184.305
–1190348.0
–313.653
–1096830.0
ThCl|Q g >} Thorium Chloride gas ~
su
43932.0
42.121
type
wy
94THDA
-+
298.15
399.297
–961370.2
–98.661
–931954.0
Landolt-B¨ornstein New Series IV/19A
+u
SGTE
70
2 Compounds
TiCl1 Titanium Tetrachloride
67Kub
+
298.15
249.366
–801654.4
–227.512
–733822.0
TiCl g ! Titanium Tetrachloride gas
85JANAF
¡ -
C
298.15
354.883
21614.5
–763161.6
–121.995
–726789.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
71
UCl¢1£ Uranium Tetrachloride¤
¥ 67Kub¦
§
¨ ©
ª«¬©
ª«¨©
ª«C+©
298.15 863.15
197.100
–1018800.0
–299.258
–929576.0
ª®s¯u°¬©
ª®s¯u°¨©
44768.8
51.867
UCl¢³ g ´>£ Uranium Tetrachloride gas ¤ §
¨ ©
¬µ© ¶·
298.15
402.979
24758.0
Landolt-B¨ornstein New Series IV/19A
-
¬¸ ©
type
¨w±y²
¥ 94TCRAS¦
ª«C¬©
ª«¨©
ª«-+©
–819968.0
–93.379
–792127.0
SGTE
72
2 Compounds
VCl¹1º Vanadium Tetrachloride»
¼ 94SGTE½
¾
¿ À
ÁÂÃÀ
Á¿À
ÁÂÄ+À
298.15
257.442
–569860.8
–219.606
–504385.0
VCl¹Å g Æ>º Vanadium Tetrachloride gas »
¼ 94TCRAS½
¾
¿ À
à ÇÀ È É Ã Ê À -
ÁÂCÃ À
Á¿ À
ÁÂÄ À
298.15
364.589
21546.0
–528000.0
–112.459
–494470.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
73
WClËÍÌ Tungsten TetrachlorideÎ
Ï 85JANAFÐ
Ñ
Ò Ó
ÔÕÖÓ
ÔÕÒÓ
ÔÕ×+Ó
298.15
198.322
–443085.6
–280.454
–359468.0
WClËÙØ g Ú!Ì Tungsten Tetrachloride gas Î
Ï 85JANAFÐ
Ñ
Ò Ó
Ö ÛÓ Ü Ý Ö Þ Ó -
ÔÕCÖ Ó
ÔÕÒ Ó
ÔÕ-× Ó
298.15
379.280
22614.5
–335975.2
–99.496
–306310.0
Landolt-B¨ornstein New Series IV/19A
SGTE
74
2 Compounds
Znß Clàá g â>ã Dizinc Tetrachloride gas ä ç
è é
êëé ìí
298.15
414.640
27101.0
-
êî é
å 96TCRASæ
ïð êé
ïð èé
ïðñ é
–652575.0
–114.780
–618353.0
ZrClà1ã Zirconium Chloride ä ç
è é
êëé ìí
298.15 710.00
180.90
24590.0
SGTE
-
êî é
å 94TCRASæ ïð êé
ï+ð èé
ïð-ñ é
–979800.0
–304.439
–889032.0
ïòsósô êé
ï+òóuô èé
29000.0
40.845
type
èöõø÷
Landolt-B¨ornstein New Series IV/19A
2 Compounds
75
ZrClùú g û!ü Zirconium Chloride gas ý
298.15
þ 94TCRASÿ
-
367.692
22561.0
–869329.0
–117.647
–834253.0
CrCl ú g û>ü Chromium Pentachloride gas ý
298.15
þ 94TCRASÿ
-
396.085
24905.0
–447097.0
–185.156
–391893.0
Landolt-B¨ornstein New Series IV/19A
SGTE
76
2 Compounds
Cu Cl g Pentacopper Pentachloride gas
!" # $ -
%&
%&
%&'
298.15
605.629
48687.0
–494285.0
–117.818
–459157.0
MoCl( Molybdenum Pentachloride
%&
%&
%&'
298.15 467.00
238.488
–527184.0
–347.770
–423497.0
SGTE
94TCRAS
85JANAF
%)+*-,
%)+*-,
type
18828.0
40.317
/.10
Landolt-B¨ornstein New Series IV/19A
2 Compounds
MoCl243 g 576 Molybdenum Pentachloride gas 8
77
;
?= @ A > = - B
CD >=
CD @ - ; A : BC ; : BC 9 :
BCD :
298.15
–1716790.0
Cl Hf
617.710
Landolt-B¨ornstein New Series IV/19A
49082.5
–1824642.4
–361.726
6 85JANAF7
6 94THDA7
SGTE
90
2 Compounds
G HI g 4 J K Diuranium Octachloride gasL O PQ RS TQ RSPQ RSUQ
M 94SGTEN
U Cl
298.15
623.944
–1778618.4
–368.772
–1668670.0
G V?WXI g 4 J K Ditungsten Decachloride gasL O PQ T Y?Q Z[ - T \ Q RST Q RSP Q
RS U Q
298.15
–729344.0
W Cl
SGTE
713.569
60408.6
–868598.4
–467.062
M 85JANAFN
Landolt-B¨ornstein New Series IV/19A
2 Compounds
] ^ _ ` Cobalt Monoxide—Dichromium Trioxide (1/1)a d ef gh if ghef ghjf
CoO Cr O
298.15
126.357
–1427162.4
–361.063
k l` Cobalt Monofluoride gasa d ef i m?f no - i p f ghi f ghe f
ghj f
298.15
23701.5
Landolt-B¨ornstein New Series IV/19A
9249.0
53752.0
b 94THDAc
–1319510.0
CoF g
232.225
91
100.790
b 96TCRASc
SGTE
92
2 Compounds
qr Cobalt Difluorides v wx yzx {?| - y@? g At Dichromium Monoxide gas u
141
x
y z
{"| z }~ - & { z
{&z
* y+z
z
298.15
295.131
11884.0
274443.0
145.471
231071.0
Crq OqOr g st Dichromium Dioxide gas u
x
y z
{ | z } ~ - { z
{ z
* y z
z
298.15
305.611
13516.0
–93266.0
53.378
–109181.0
Landolt-B¨ornstein New Series IV/19A
v 94TCRASw
v 94TCRASw
SGTE
142
2 Compounds
Cr O
2 Dichromium Trioxide gas
& - &
"
* +
298.15 2705.0
81.10
15300.0
–1140600.0
–273.706
–1058990.0
Cr O
O g Dichromium Trioxide gas
" - &
&
+
298.15
354.449
18782.0
–327341.0
–0.357
–327234.0
SGTE
* &
94TCRAS + type
125000.0
46.211
"
94TCRAS
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Sr Cr O¡2¢ Tristrontium Dichromium Octaoxide£
¦
§ ¨
©ª«&¨
©ª§+¨
©ª¬*¨
298.15
306.200
–3363500.0
–728.556
–3146280.0
Cr ¢ SO®¯£/°¢ Dichromium Trisulphate £
¦
§ ¨
©ª« ¨
©ª§ ¨
©*ª¬ ¨
298.15
258.780
–2910808.5
–1115.400
–2578250.0
Landolt-B¨ornstein New Series IV/19A
143
¤ 95SGTE¥
¤ 94THDA¥
SGTE
144
2 Compounds
Cr± O ² ³2´ Pentachromium Dodecaoxideµ
¸
¹ º
»¼½&º
»¼¹+º
»*¼¾*º
298.15
334.720
–2962272.0
–1013.880
–2659980.0
Cr¿ O³/²À´ Octachromium Henicosaoxideµ
¸
¹ º
»¼½ º
»¼¹ º
»*¼¾ º
298.15
558.564
–4715368.0
–1783.820
–4183520.0
SGTE
¶ 94SGTE·
¶ 94SGTE·
Landolt-B¨ornstein New Series IV/19A
2 Compounds
CsF Á Cesium Fluoride Â
145
Å
Æ Ç
È&ÉÇ Ê Ë - " È ÌÇ
ÍÎ È&Ç
Í*Î Æ+Ç
ÍÎÏ Ç
298.15 976.00
92.960
11760.0
–557100.0
–93.664
–529174.0
CsF Õ g Ö>Á Cesium Fluoride gas Â
Å
Æ Ç
È"É Ç ÊË - & È ÌÇ
ÍÎ È&Ç
ÍÎ Æ+Ç
ÍÎÏ Ç
298.15
243.246
9645.0
–364216.0
56.621
–381098.0
Landolt-B¨ornstein New Series IV/19A
ÍÐÑÒ È"Ç
ÍÐÑÒ Æ+Ç
21700.0
22.234
à 94TCRASÄ type
ÆÓÔ
à 96TCRASÄ
SGTE
146
2 Compounds
CsH × Cesium Hydride Ø
Û
Ü Ý
Þ&ßÝ à á - " Þ âÝ
ãä Þ&Ý
ãä Ü+Ý
ãäå Ý
298.15 801.00
73.000
10500.0
–54040.0
–77.570
–30912.5
CsH ë g ìí× Cesium Hydride gas Ø
Û
Ü Ý
Þ"ß Ý àá - & Þ âÝ
ãä Þ&Ý
ã*ä Ü+Ý
ãäå Ý
298.15
215.180
8846.0
115949.0
64.610
96685.5
SGTE
Ù 94TCRASÚ
ãæçè Þ&Ý
ã*æçè Ü+Ý
type
15000.0
18.727
Üéê
Ù 94TCRASÚ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Cs î OH ï*î Cesium Hydroxide ï
147
ò
ó ô
õ&öô ÷ ø - " õ ùô
úû õ&ô
ú*û ó+ô
úûü ô
298.15 497.00 616.00
102.00
16000.0
–416600.0
–151.143
–371537.0
Cs î OH ï g
ò
î Cesium Hydroxide gas ï ó ô õ"ö ô ÷ø - õ&ù ô ú û õ&ô
ú û +ó ô
ú ûü ô
298.15
254.827
1.684
–264955.0
Landolt-B¨ornstein New Series IV/19A
11833.0
–264453.0
úýþÿ õ&ô
ú*ýþÿ ó+ô
7100.0 7300.0
14.286 11.851
ð 94TCRASñ type
ó ó ó
ð 94TCRASñ
SGTE
148
2 Compounds
CsI Cesium Iodide
-
298.15 905.00
122.200
13470.0
–21.100
–341809.0
–348100.0
Cesium Iodide gas -
298.15
275.283
131.983
–191671.0
CsI ' g (
SGTE
10550.0
–152320.0
!
"#$!
25650.0
28.343
94TCRAS
type
%&
94TCRAS
Landolt-B¨ornstein New Series IV/19A
2 Compounds
CsNO Cesium Nitrite
149
-
298.15 679.00
174.00
23420.0
–212.182
–316638.0
–379900.0
CsNO%$ g &
Cesium Nitrite gas
-
298.15
327.716
–58.466
–192909.0
Landolt-B¨ornstein New Series IV/19A
15980.0
–210341.0
10900.0
16.053
94TCRAS type
!#"
94TCRAS
SGTE
150
2 Compounds
CsNO'( Cesium Nitrate )
,
- .
/0. 12 - / 3 . 45 /.
45 -.
456 .
298.15 427.00 682.00
153.83
20050.0
–334.926
–405142.0
–505000.0
CsNO'%= g >?( Cesium Nitrate gas )
,
- .
/0. 12 - / 3 . 4 5 /.
4 5 - .
4 56 .
298.15
336.029
16563.0
–152.727
–272952.0
SGTE
–318488.0
4789 /.
4789 -.
3600.0 13800.0
8.431 20.235
* 94TCRAS+ type
-!:;-!:#
#
>
298.15 370.10
173.3
24770.0
–1903600.0
–375.144
–1791750.0
Landolt-B¨ornstein New Series IV/19A
94TCRAS
A¡C¢
D¡C¢
12000.0
32.424
type
F£H¤
SGTE
338
2 Compounds
TaF¥¦ g §c¨ Tantalum Fluoride gas ©
¬
®
¯#°® ± ² ¯ ® - ³
´µ ¯ ®
´µ ®
´µ ¶ ®
298.15
347.027
21139.0
–1777000.0
–201.417
–1716950.0
TeF¥¦ g §,¨ Tellurium Pentafluoride gas ©
¬
®
´µ ¯ ®
´µ ®
´µ ¶ ®
298.15
340.896
–1159804.8
–215.298
–1095610.0
SGTE
ª 94TCRAS«
ª 94THDA«
Landolt-B¨ornstein New Series IV/19A
2 Compounds
UF·/¸ Uranium Pentafluoride¹
339
¼
½¾
¿ À ¾ ÁÂ ¿ ¾ - Ã
ÄÅ ¿#¾
ÄÅ ½¾
ÄÅ>Æ ¾
298.15 398.00 621.00
179.5
26150.0
–2083000.0
–377.672
–1970400.0
UF·Í g θ Uranium Pentafluoride gas ¹
¼
½¾
¿#À¾ Á  ¿ ¾ - Ã
¿ ¾ Ä Å
Ä Å ½ ¾
Ä ÅÆ ¾
298.15
386.337
23602.0
–1949824.0
–170.836
–1898890.0
Landolt-B¨ornstein New Series IV/19A
º 94TCRAS»
ÄÇAÈCÉ ¿ ¾
ÄÇDÈCÉ ½¾
8000.0 35000.0
20.101 56.361
type
½FÊ˽ ½FÊHÌ
º 94TCRAS»
SGTE
340
2 Compounds
VFÏÐ g ÑÒ Vanadium Pentafluoride gas Ó
Ö
×Ø
Ù#ÚØ Û Ü Ù Ø - Ý
Þß Ù Ø
Þß ×Ø
Þß à Ø
298.15
330.982
20286.0
–1436100.0
–206.881
–1374420.0
WFÏ/Ò Tungsten PentafluorideÓ
Ö
× Ø
Ù ÚØ Û Ü Ù Ý Ø -
Þß Ù Ø
Þß × Ø
Þß à Ø
298.15
165.000
26000.0
–1448000.0
–374.590
–1336320.0
SGTE
Ô 94TCRASÕ
Ô 94TCRASÕ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
WFáâ g ãä Tungsten Pentafluoride gas å
341
è
éê
ë#ìê í î ë ê - ï
ðñ ë ê
ðñ éê
ðñ ò ê
298.15
364.999
21936.0
–1293000.0
–174.592
–1240950.0
Feó Fôâ g ãä Diiron Hexafluoride gas å
è
é ê
ë ìê í î ë ï ê -
ðñ ë ê
ðñ é ê
ðñ ò ê
298.15
449.245
30642.0
–1664845.0
–213.682
–1601135.8
Landolt-B¨ornstein New Series IV/19A
æ 94TCRASç
æ 96TCRASç
SGTE
342
2 Compounds
Gaõ Fö÷ g øù Digallium Hexafluoride gas ú
ý
þÿ
#ÿ ÿ
298.15
426.403
30131.0
–2017624.0
-
ÿ
–263.418
Hö Fö÷ g øù Hexahydrogen Hexafluoride gas ú
ý
þ ÿ
298.15
466.420
SGTE
ÿ
-
35392.5
ÿ
ÿ
–1807655.4
þÿ
þ ÿ
–533.987
û 94TCRASü ÿ
–1939090.0
ÿ
û 85JANAFü
–1648450.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
343
In F g Diindium Hexafluoride gas
298.15
468.343
33567.0
-
! "
94TCRAS ! "
–1960000.0
#
! "$
–255.324
IrF % g Iridium Hexafluoride gas
298.15
345.390
Landolt-B¨ornstein New Series IV/19A
! "
–543920.0
! "
–298.482
–1883880.0
94THDA ! "&$
–454928.0
SGTE
344
2 Compounds
MoF')( Molybdenum Hexafluoride* -
./
0/ 123
0/ 4
298.15
259.700
42700.0
-
+ 94TCRAS,
0/
5 6
5 6
–1585700.0
.#/
–377.227
/
5 67
–1473230.0
MoF'98 g :( Molybdenum Hexafluoride gas * -
. / 0
298.15
350.712
23991.1
SGTE
/ 123
-
0 4
/
5 6
0
/
–1557661.4
5 6
+ 85JANAF, . /
–286.215
5 67
/
–1472330.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
345
Na; SiF
? 93Kub@
A
B#C
D EGFC
D EB#C
DHE&IHC
298.15 1120.00
207.100
–2912900.0
–522.677
–2757060.0
NpF
D JOKNMB#C
99600.0
88.929
type BQPSR
? 95Bar@
A
BC
D E&FC
D EB#C
D EIHC
298.15
376.632
–1937192.0
–282.194
–1853060.0
Landolt-B¨ornstein New Series IV/19A
DHJLKNM&FC
SGTE
346
2 Compounds
PuFW)X Plutonium HexafluorideY
Z 95Bar[
\
]^
_ `&a^
_ `]#^
_ `bH^
298.15 324.74
221.752
–1799120.0
–441.076
–1667610.0
PuFW9j g klX Plutonium Hexafluoride gas Y
_HcLdNe&]#^
18644.0
57.412
type ]gfih
Z 95Bar[
\
]^
_ `&a^
_ `]#^
_ `bH^
298.15
369.532
–1748912.0
–293.296
–1661470.0
SGTE
_ cOdOea^
Landolt-B¨ornstein New Series IV/19A
2 Compounds
347
ReFm9n g olp Rhenium Hexafluoride gas q
r 95Bars
t
uv
w x&yv
w xu#v
w xzHv
298.15
354.913
–1134282.4
–289.936
–1047840.0
SFm9n g olp Sulphur Hexafluoride gas q t
u v y
298.15
291.671
16940.0
Landolt-B¨ornstein New Series IV/19A
v {|}
-
y ~
v
w xy
v
–1219400.0
r 94TCRASs w x&u v
w xz v
–348.766
–1115420.0
SGTE
348
SeF g
2 Compounds
Selenium Hexafluoride gas
95Bar
298.15
313.575
–1116919.0
–336.758
–1016510.0
TeF g
Tellurium Hexafluoride gas
94THDA
298.15
335.875
–1369004.8
–321.713
–1273090.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
349
UF Uranium Hexafluoride
!"#%$
298.15 337.21
227.8
31565.0
-
!&
94TCRAS '( !)
'(
'(+*
–2197700.0
–430.767
–2069270.0
UF6 g 78 Uranium Hexafluoride gas
!)"%#$
298.15
376.682
26623.0
Landolt-B¨ornstein New Series IV/19A
-
!&
',.-0/ !
',1-0/
19193.0
56.917
type
3254
94TCRAS
'( !
'(
'(*
–2148642.0
–281.885
–2064600.0
SGTE
350
2 Compounds
WF9: Tungsten Hexafluoride; >
?@
A)B%@ CD
298.15
268.000
43460.0
-
AE @
< 94TCRAS= FG A@
FG ?@
FGH @
–1747300.0
–372.985
–1636090.0
WF9I g J8: Tungsten Hexafluoride gas ;
< 85JANAF=
>
? @
A B%@ C D A E @ -
FG A @
FG ? @
FGH @
298.15
341.122
22740.0
–1721716.0
–299.863
–1632310.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
351
XeFKL Xenon HexafluorideM P
QR
STR U%V
298.15 322.63
210.38
30999.0
-
S)W R
N 94TCRASO XY SR
XY QR
XY+Z R
–338000.0
–567.671
–168749.0
XeFKb g cdL Xenon Hexafluoride gas M P
QR
S)T%R UV
298.15
387.355
27497.0
Landolt-B¨ornstein New Series IV/19A
-
SW R
X[1\1] SR
X[.\0] QR
5742.0
17.797
type
Q_^a`
N 94TCRASO
XY SR
XY QR
XYZ R
–277200.0
–390.696
–160714.0
SGTE
352
2 Compounds
H e Fegf g h8i Heptahydrogen Heptafluoride gas j m
no
p)q%o rs
298.15
523.432
41814.9
-
pt o
k 85JANAFl
uv po
uv no
uvw o
–2102543.8
–643.709
–1910620.0
IF egf g h8i Iodine Heptafluoride gas j
k 85JANAFl
m
n o
p q%o r s p t o -
uv p o
uv n o
uvw o
298.15
347.737
23472.2
–961064.8
–420.094
–835814.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
353
Mox F y%z{ g |8} Dimolybdenum Decafluoride gas ~
)
%
298.15
531.553
41869.3
-
85JANAF
–2697843.2
–539.512
–2536990.0
Sx F y%z{ g |d} Disulphur Decafluoride gas ~
94TCRAS
% -
298.15
386.288
28185.0
–2060000.0
–691.797
–1853740.0
Landolt-B¨ornstein New Series IV/19A
SGTE
354
2 Compounds
Mo F % g 8 Trimolybdenum Pentadecafluoride gas
)%
298.15
706.846
63764.2
-
85JANAF
–4065592.8
–899.751
–3797330.0
Fe ¢¡ £¥¤¦¤ S Iron Monosulphide (Iron deficient) §©¨«ª¬®¬©¯±°³²¥´²¶µ³
%
298.15 598.00
60.790
9226.0
SGTE
-
)
–95300.0
4.795
–96729.8
94TCRAS ·1¸0¹ )
·1¸1¹
360.0
0.602
type
3ºa
Landolt-B¨ornstein New Series IV/19A
2 Compounds
355
Fe»¢¼ ½¿¾¶À O Á Iron Monosulphide (Iron deficient) ©ÃÅÆÄ ÇgÈ¥ÉÈ¶Ê³Ë Î
ÏÐ
ÑÒÓÐ
ÑÒÏÐ
ÑÒÔÐ
298.15
60.078
–263006.2
–68.330
–242634.0
FeH Õ g Ö×Á Iron Monohydride gas Ë
Ì 96TCRASÍ
Î
Ï Ð
Ó Ø%Ð Ù Ú Ó Û Ð -
ÑÒÓ Ð
ÑÒÏ Ð
ÑÒÔ Ð
298.15
209.969
9882.0
448833.0
117.349
413845.0
Landolt-B¨ornstein New Series IV/19A
Ì 94SGTEÍ
SGTE
356
2 Compounds
Fe Ü OH ÝßÞ g à×Ü Iron Monohydroxide gas Ý ã
äå
æ)ç%å èé
298.15
251.191
12474.0
-
æê å
á 96TCRASâ
ëì æå
ëì äå
ëìí å
119394.0
55.998
102698.2
FeO Ü OH ÝÜ Iron Monohydroxide Monoxide Ý
á 96TCRASâ
ã
ä å
æ çå %è é æ ê å -
ëì æ å
ëì ä å
ëì+í å
298.15
60.400
10820.0
–560000.0
–237.367
–489229.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
357
FeO î OH ïñð g òóî Iron Monohydroxide Monoxide gas ï ö
÷ø
ù)ú%ø ûü
298.15
279.143
12625.0
-
ùý ø
þÿ ùø
þÿ ÷ø
þÿ ø
–79795.0
–18.624
–74242.2
Fe î OH ï î Iron Dihydroxide ï
ô 96TCRASõ
ö
÷ ø
ù úø %û ü ù ý ø -
þÿ ù ø
þÿ ÷ ø
þÿ ø
298.15
93.000
14000.0
–572000.0
–270.107
–491468.0
Landolt-B¨ornstein New Series IV/19A
ô 96TCRASõ
SGTE
358
2 Compounds
Fe OH g Iron Dihydroxide gas
298.15
286.613
17746.0
-
96TCRAS
–318908.0
–76.494
–296101.3
Fe OH ! Iron Trihydroxide
298.15
105.000
18000.0
SGTE
-
96TCRAS
–836000.0
–426.020
–708982.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
359
FePO"$# 2H% O & Iron Phosphate—Water (1/2) '
( 93Kub)
*
+,
-./,
-.+,
-.102,
298.15
171.300
–1887800.0
–755.631
–1645050.0
FeI 3 g 45& Iron Monoiodide gas ' *
+ , /
298.15
273.945
11878.0
Landolt-B¨ornstein New Series IV/19A
, 678
-
/ 9
,
-.1/
( 96TCRAS) ,
286591.0
-2.+ ,
-.0
,
188.595
230361.0
SGTE
360
2 Compounds
FeI: 96TCRAS?
@
AB
CB DEF
298.15 650.00 867.00
157.000
19300.0
-
CB G
CB
HI
HI
–115000.0
AB
B
HIJ
13.581
CB
600.0 39000.0
@
AB
CB DEF
298.15
335.391
17121.0
-
CB G
HKMLON
AB
type
–119049.0
FeI:VU g WX; Iron Diiodide gas =
SGTE
HKMLON
0.923 44.983
AQPRA AQPTS
> 96TCRAS? H I
CB
73821.0
H I
AB
191.972
H
I J
B
16584.5
Landolt-B¨ornstein New Series IV/19A
2 Compounds
361
FeIYVZ g [X\ Iron Triiodide gas ] `
ab
cb def
298.15
404.487
20233.0
-
cb g
^ 96TCRAS_ cb
hi
hi
45933.0
ab
202.998
hi1j
–14591.0
KFeOk!\ Potassium Iron Dioxide ] `
a b
298.15
97.850
Landolt-B¨ornstein New Series IV/19A
hi
c
b
–690000.0
h2i
b
^ 95SGTE_ a b
–199.257
hij
b
–630592.0
SGTE
362
2 Compounds
Kl FeOl<m Dipotassium Iron Dioxide n
o 95SGTEp
q
rs
tuvs
turs
tuw2s
298.15
155.600
–743800.0
–206.187
–682325.0
Kx FeOy<m Tetrapotassium Iron Trioxide n q
r s
tuv
298.15
245.000
–1123000.0
SGTE
s
o 95SGTEp
tur s
tu1w
s
–348.720
–1019030.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
LiFeOz!{ Lithium Iron Dioxide |
} 95SGTE~
2
2
298.15
75.310
–750200.0
–186.237
–694673.0
Li FeO{ Pentalithium Iron Tetraoxide |
298.15
137.630
–1970000.0
Landolt-B¨ornstein New Series IV/19A
363
} 95SGTE~
1
–445.544
–1837160.0
SGTE
364
2 Compounds
FeO MoO Iron Monoxide—Molybdenum Trioxide (1/1)
12
298.15
129.286
–1072024.5
–336.848
–971593.0
94THDA
NaFeO~ Gallium Monoxide gas
$ -
298.15
230.822
8925.0
146829.0
87.521
120734.0
Landolt-B¨ornstein New Series IV/19A
387
94TCRAS
SGTE
388
2 Compounds
GaP Gallium Monophosphide
95Bar
298.15
51.464
–114648.0
–30.353
–105598.0
GaP g > Gallium Monophosphide gas
$ -
298.15
246.148
9524.3
350400.0
164.332
301404.0
SGTE
94SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GaS Gallium Monosulphide ¡
¤
¥ ¦
§ ¨©¦
§¨¥ ¦
§ ¨ª¦
298.15
57.739
–209200.0
–15.058
–204710.0
GaSb Gallium Monoantimonide ¡
¤
¥ ¦
§ ¨© ¦
§ ¨¥ ¦
§ ¨ª ¦
298.15
77.320
–41840.0
–8.929
–39177.8
Landolt-B¨ornstein New Series IV/19A
389
¢ 74Mil£
¢ 95Bar£
SGTE
390
2 Compounds
GaSb « g ¬® Gallium Monoantimonide gas ¯
²
³ ´
µ!¶$´ ·¸ µ ´ - ¹
º » µ´
º» ³)´
º »¼ ´
298.15
267.104
10155.0
350000.0
180.855
296078.0
GaSb½¾« g ¬¿ Gallium Diantimonide gas ¯
²
³ ´
µ ¶$´ · ¸ µ ¹ ´ -
º » µ ´
º» ³ ´
º »¼ ´
298.15
315.708
15325.5
306200.0
183.937
251359.0
SGTE
° 94SGTE±
° 94SGTE±
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GaSe À Gallium Monoselenide Á
Ä
Å Æ
Ç ÈÉÆ
ÇÈÅ Æ
Ç ÈÊÆ
298.15
70.291
–158992.0
–12.402
–155294.0
GaTe À Gallium Monotelluride Á
Ä
Å Æ
Ç ÈÉ Æ
ÇÈÅ Æ
Ç ÈÊ Æ
298.15
85.354
–125520.0
–4.594
–124150.0
Landolt-B¨ornstein New Series IV/19A
391
 95BarÃ
 74MilÃ
SGTE
392
2 Compounds
GaË IËÍÌ g Î®Ï Digallium Diiodide gas Ð
Ó
Ô Õ
Ö!×$Õ ØÙ Ö Õ - Ú
Û Ü ÖÕ
Û Ü Ô)Õ
Û ÜÝ Õ
298.15
399.057
21498.0
13522.0
201.464
–46544.5
GaË IÞßÌ g Î®Ï Digallium Tetraiodide gas Ð
Ó
Ô Õ
Ö ×$Õ Ø Ù Ö Ú Õ -
Û Ü Ö Õ
Û Ü Ô Õ
Û Ü+Ý Õ
298.15
509.429
32583.0
–159267.0
195.697
–217614.0
SGTE
Ñ 94TCRASÒ
Ñ 94TCRASÒ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Gaà IáÍâ g ã®ä Digallium Hexaiodide gas å
393
è
é ê
ë!ì$ê íî ë ê - ï
ð ñ ëê
ð ñ é)ê
ð ñ+ò ê
298.15
616.288
43573.0
–317295.0
186.417
–372875.0
Gaà O â g ã®ä Digallium Monoxide gas å
è
é ê
ë ì$ê í î ë ï ê -
ð ñ ë ê
ðñ é ê
ð ñò ê
298.15
284.136
12162.0
–99458.0
100.108
–129305.0
Landolt-B¨ornstein New Series IV/19A
æ 94TCRASç
æ 94TCRASç
SGTE
394
2 Compounds
Gaó O ô:õ Digallium Trioxide ö
ù
ú û
üýû þ$ÿ üû
ü!û
ú)û
û
298.15 2080.0
84.94
14550.0
–1091000.0
–304.235
–1000290.0
-
Gaó S g bõ Digallium Monosulphide gas ö
ù
ú û
üû
ú)û
û
298.15
290.061
20920.0
176.537
–31714.5
SGTE
üû
÷ 94TCRASø ú)û
100000.0
48.077
type
ú
÷ 74Milø
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Ga S Digallium Trisulphide
"!#
$%
&
298.15
142.256
–516305.6
–35.408
–505749.0
Ga Se Digallium Triselenide
"!
$
&
298.15
179.912
–405848.0
–27.440
–397667.0
Landolt-B¨ornstein New Series IV/19A
395
74Mil
74Mil
SGTE
396
2 Compounds
Ga' Te() Digallium Tritelluride *
-
./
01"2#/
01$.%/
013/
298.15
213.384
–274889.0
–15.733
–270198.0
GdI(4) Gadolinium Iodide *
-
.%/
012/
01$.%/
01"3/
298.15 1013.00 1203.00
226.354
–594128.0
–25.566
–586505.0
SGTE
+ 95Bar,
+ 95Bar,
05 672#/
05 67$.%/
type
920.0 53995.0
0.908 44.884
.98:. .98 g @BA Gadolinium Iodide gas C
D 94THDAE
F
GH
IJ"K#H
IJ$G%H
IJLH
298.15
427.614
–316728.8
185.316
–371981.0
GdO > g @BA Gadolinium Monoxide gas C
F
G H
K MOH $N P - K Q H
IJK H
IJ"G H
IJL H
298.15
253.501
8867.0
–70804.0
82.839
–95502.3
Landolt-B¨ornstein New Series IV/19A
397
D 94TCRASE
SGTE
398
2 Compounds
Gd O Gadolinium Oxide
-
298.15 1498.0 2443.0 2481.0 2698.0
152.3
18580.0
–1839500.0
–291.598
–1752560
GeH$&% g '
Germanium Tetrahydride gas
298.15
217.259
SGTE
(
90793.0
–75.191
113211.0
13600.0 6300.0 6080.0 60000.0
9.079 2.579 2.451 22.239
94TCRAS type
! ! ! #"
95Bar
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GeI)+* Germanium Diiodide ,
/
0 1
231 45 2 1 - 6
78 21
78 01
78(9 1
298.15 460.00
158.000
18000.0
–78000.0
10.771
–81211.4
GeI)CB g DE* Germanium Diiodide gas ,
/
0 1
231 45 2 1 - 6
78 21
78 01
78(9 1
298.15
334.591
14640.0
50308.0
187.362
–5554.0
Landolt-B¨ornstein New Series IV/19A
399
- 94TCRAS.
7:;< 21
7:=;< 01
type
15300.0
33.261
0?>A@
- 94TCRAS.
SGTE
400
2 Compounds
GeIFCG g HEI Germanium Triiodide gas J
M
N O
PQO RS P O - T
UV PO
UV NO
UV(W O
298.15
386.668
19501.0
41592.0
181.369
–12483.3
GeIXYI Germanium Tetraiodide J
M
N O
PQO RS P O - T
UV PO
UV NO
UVZW O
298.15 419.00
270.200
30670.0
–150000.0
6.832
–152037.0
SGTE
K 94TCRASL
U[\] PO
U[\] NO
19100.0
45.585
K 94TCRASL type
N?^A_
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GeI`ba g cEd Germanium Tetraiodide gas e
401
h
i j
klj mn k j - o
pq kj
pq ij
pqZr j
298.15
431.677
25663.0
–64007.0
168.309
–114188.0
MgGeOstd Magnesium Germanium Trioxide e
h
i j
pq k j
pq i j
pqZr j
298.15
82.216
–1215113.1
–289.265
–1128870.0
Landolt-B¨ornstein New Series IV/19A
f 94TCRASg
f 94THDAg
SGTE
402
2 Compounds
GeOuwv 2MgO x Germanium Dioxide—Magnesium Oxide (1/2) y
|
} ~
Z~
}~
(~
298.15
109.161
–1852503.6
–397.565
–1733970.0
GeO g
x Germanium Monoxide gas y
|
} ~
~ ~ -
( ~
Z} ~
( ~
298.15
223.887
8782.0
–37694.0
90.224
–64594.1
SGTE
z 94THDA{
z 94TCRAS{
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GeOt Germanium Dioxide
403
Z
Z
298.15 1308.00 1389.00
39.706
–579902.0
–196.531
–521306.0
GeOt Germanium Dioxide (
(
type
20920.0 12552.0
15.994 9.037
?# ?A
¡ ¢£ - ¤
298.15
69.800
9067.0
–539000.0
–166.437
–489377.0
Landolt-B¨ornstein New Series IV/19A
94TCRAS
94TCRAS
SGTE
404
2 Compounds
GeO¥w¦ g §©¨ Germanium Dioxide gas ª
® ¯
°±¯ ²³ ° ¯ - ´
µ¶ °¯
µ¶ ®¯
µ¶Z· ¯
298.15
241.243
11258.0
–106172.0
5.006
–107665.0
GeP ¨ Germanium Monophosphide ª
® ¯
µ¶ ° ¯
µ¶ ® ¯
µ¶Z· ¯
298.15
63.011
–20999.0
–9.169
–18265.2
SGTE
« 94TCRAS¬
« 95Bar¬
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GeS ¸ Germanium Monosulphide ¹
¼
½ ¾
¿À¾ Á ¿ ¾ - Ã
ÄÅ ¿¾
ÄÅ ½¾
ÄÅZÆ ¾
298.15 931.00
66.480
9657.0
–61200.0
3.320
–62189.9
GeS Ì g ÍE¸ Germanium Monosulphide gas ¹
¼
½ ¾
¿À¾ Á ¿ ¾ - Ã
ÄÅ ¿¾
ÄÅ ½¾
ÄÅ(Æ ¾
298.15
235.576
9141.0
92536.0
172.416
41130.2
Landolt-B¨ornstein New Series IV/19A
405
º 95SGTE»
ÄÇÈÉ ¿¾
ÄÇÈÉ ½¾
type
21300.0
22.879
½?ÊAË
º 94TCRAS»
SGTE
406
2 Compounds
GeSÎ+Ï Germanium Disulphide Ð
Ó
ÔÕ
Ö×Õ ØÙ Ö Õ - Ú
ÛÜ ÖÕ
ÛÜ ÔÕ
ÛÜZÝ Õ
298.15 1113.00
93.600
12750.0
–121500.0
–1.630
–121014.0
GeSÎCã g ä©Ï Germanium Disulphide gas Ð
Ó
Ô Õ
Ö×Õ ØÙ Ö Õ - Ú
ÛÜ ÖÕ
ÛÜ ÔÕ
ÛÜZÝ Õ
298.15
266.890
13068.0
118818.0
171.660
67637.6
SGTE
Ñ 94TCRASÒ
ÛÞßà ÖÕ
ÛÞßà ÔÕ
16300.0
14.645
type
Ô?áAâ
Ñ 94TCRASÒ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GeSe å Germanium Monoselenide æ
é
ê ë
ìíZîë
ìíêë
ìíZïë
298.15 948.00
78.241
–69036.0
5.185
–70581.9
GeSe ö g ÷Eå Germanium Monoselenide gas æ
é
ê ë
ìíZîë
ìíê ë
ìíZïë
298.15
247.802
105437.0
174.746
53336.3
Landolt-B¨ornstein New Series IV/19A
407
ç 95Barè
ìðñò(îë
ìðñòZêë
type
24686.0
26.040
êôóAõ
ç 95Barè
SGTE
408
2 Compounds
GeSeø+ù Germanium Diselenide ú
û 74Milü
ý
þ ÿ
ÿ
þÿ
ÿ
298.15
112.550
–112968.0
–2.472
–112231.0
GeTe ù Germanium Monotelluride ú
ý
þ ÿ
ÿ
þÿ
ÿ
298.15 997.00
88.910
–48534.4
8.599
–51098.2
SGTE
û 74Milü
ÿ
Zþÿ
type
47279.2
47.421
þ
Landolt-B¨ornstein New Series IV/19A
2 Compounds
GeTe g Germanium Monotelluride gas
409
! - " #
$% "
$&% '
$%(
298.15
255.576
9709.0
181700.0
175.265
129445.0
Ge) N*+ Trigermanium Tetranitride
$%
$%
$%(
298.15
167.360
–397480.0
–309.132
–305312.0
Landolt-B¨ornstein New Series IV/19A
94SGTE
95Bar
SGTE