Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
Carbohydrate Sulfates
Publication Date: June 1, 1978...
29 downloads
1060 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
Carbohydrate Sulfates
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
Carbohydrate Sulfates Richard G . Schweiger, EDITOR
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
Stauffer Chemical Co.
A symposium sponsored by the ACS Division of Carbohydrate Chemistry at the 174th Meeting of the American Chemical Society, Chicago, Illinois, August 30-31, 1977.
ACS
SYMPOSIUM
SERIES
AMERICAN CHEMICAL SOCIETY WASHINGTON,
D. C .
1978
77
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
CIP Data
Library of Congress
Carbohydrate sulfates. (ACS symposium series; 77 ISSN 0097-6156) Includes bibliographies and index. 1. Carbohydrates—Congresses. 2. Sulphates—Congresses. 3. Organosulphur compounds—Congresses. I. Schweiger, Richard G., 1928II. American Chemical Society. Division of Carbohydrate Chemistry. III. Series: American Chemical Society. ACS symposium series; 77. QD320.C37 ISBN 0-8412-0426-8
547'.78 ASCMC8
78-17918 77 1-294 1978
Copyright © 1978 American Chemical Society All Rights Reserved. The appearance of the code at the bottom of thefirstpage of each article in this volume indicates the copyright owner's consent that reprographic copies of the article may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, for creating new collective works, for resale, or for information storage and retrieval systems. The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. PRINTED IN THE UNITED STATESOFAMERICA
ACS Symposium Series
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
Robert F. G o u l d , Editor
Advisory Board Kenneth B. Bischoff
Nina I. McClelland
Donald G . Crosby
John B. Pfeiffer
Jeremiah P. Freeman
Joseph V . Rodricks
E. Desmond Goddard
F. Sherwood Rowland
Jack Halpern
Alan C. Sartorelli
Robert A . Hofstader
Raymond B. Seymour
James P. Lodge
Roy L. Whistler
John L. Margrave
Aaron Wold
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.fw001
FOREWORD The ACS SYMPOSIUM SERIES was founded in 1974 to provide
a medium for publishing symposia quickly in book form. The format of the SERIES parallels that of the continuing ADVANCES IN CHEMISTRY SERIES except that in order to save time the papers are not typeset but are reproduced as they are submitted by the authors in camera-ready form. As a further means of saving time, the papers are not edited or reviewed except by the symposium chairman, who becomes editor of the book. Papers published in the ACS SYMPOSIUM SERIES are original contributions not published elsewhere in whole or major part and include reports of research as well as reviews since symposia may embrace both types of presentation.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.pr001
PREFACE t first glance, the subject "Carbohydrate Sulfates" appears to be so specific and so limited that one may think of it as a small field which can be covered thoroughly in a few articles. The title, however, is misleading, and there is considerably more to it than the title implies. For example, there are polysaccharide sulfates, some of which occur naturally, such as carrageenan, furcellaran, agar, etc., and others, such as the cellulose and starch sulfates, are obtainable only synthetically. Other classes, like the sulfated glycoproteins and sulfated glycolipids, have important biological functions. And there are typical low molecular weight carbohydrate sulfates, many of which occur naturally in plants while others are accessible by synthesis only. Such a variety of compounds obviously requires more than straightforward carbohydrate chemistry. Polysaccharide sulfates are typical polyanions and have colloidal characteristics. Consequently, they involve polyelectrolyte and colloid chemistry. The researcher working with sulfated glycolipids and glycoproteins must be knowledgeable in the general areas of lipids and proteins. Studying biological functions either in the body or in the plant requires familiarity with biological and medical sciences. Many more examples of the complexity of the field of carbohydrate sulfates could be given. This symposium, therefore, cannot possibly present all of today's research in this field, not even a major portion of it. However, it does represent a nice cross-section of present research activities. Together with the references cited, the articles provide a good up-to-date overview of the various areas discussed. Hopefully, the symposium will stimulate the search for additional indepth knowledge, for only basic information of this kind will ultimately create new products for our industry, permit us to cure and prevent diseases, and, some day perhaps, let us understand nature and life more fully. I wish to thank all of the participants, scientists from abroad and from this country, for their efforts and their contributions to bring this symposium to a successful conclusion. Stauffer Chemical Co.
RICHARD G. SCHWEIGER
San Jose, California February, 1978 ix
1 Monosulfate Esters of L-Ascorbic Acid DONALD W. LILLARD, JR. and PAUL A. SEIB
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506
L-Ascorbate 2-Sulfate. In 1972 Halver and his colleagues (1) reported L-ascorbic acid 2-sulfate (AA2S, F i g . 1) was as effective as L-ascorbic acid (AA) in preventing scurvy in rainbow trout and coho salmon. Prior to that time, Ford and Ruoff (2) synthesized AA2S and showed the sulfate ester was more stable than AA to oxidative degradation. Those two reports stimulated the interest of C. W. Deyoe in AA2S because he was engaged in research on formulating catfish feed at Kansas State University. Fish feed is often produced in floating form by extrusion puffing, a process that destroys 70-80% of the L-ascorbic acid in the feed (3). In addition, L-ascorbate 2-sulfate appeared attractive as a potential form of vitamin C since AA2S occurs in Nature; i t is found in the dormant embryo of brine shrimp (4,5), in human urine (6), and in rat l i v e r , spleen, adrenal gland, and urine (7,8). Since there was no commercial supply of AA2S, Prof. Deyoe asked that our group produce a large amount of AA2S. A chronology of events concerning L-ascorbate 2-sulfate is given in Table I. The biological significance of AA2S has not been established. Its antiscorbutic activity appears species-dependent. AA2S is inactive in the guinea pig (14,15), but is active in fish and marginally active in the rhesus monkey (23). It is also p a r t i a l l y active i n insect diets (24). No data are available on man. It has been suggested that AA2S may serve as a storage form of AA, or as a direct sulfate donor in the biosynthesis of s u l fate esters (20,22). Wholebody radioautographs of fish intubated with radioactive L-ascorbate l - 14C or L-ascorbate 2-sulfate-S showed the radioactivity of both compounds was concentrated in the same organs, mainly the skin, fins, lower jaw-plate, kidney, l i v e r , and heart (25). However, in rats and guinea pigs (8), the uptake of AA by organs was different than observed for AA2S. To obtain large amounts of AA2S we f i r s t modified (16) the original procedure of Ford and Ruoff (2) and produced AA2S in 75% yield starting from 5,6-0-isopropylidene-L^-ascorbic acid. But we also found (16) a much better method to prepare AA2S (Figure 2) with the following attractive features; (a) the starting material 35
0-8412-0426-8/78/47-077-001$05.00/0
©
1978 American Chemical Society
Synthesis of 5,6-0-isopropylidene-L-ascorbate-2-sulfate.
Event
3 5
35
35
1
Demonstration of L - a s c o r b i c a c i d s u l f o t r a n s f e r a s e a c t i v i t y i n r a t l i v e r and "colon homogenates which catalyzed format i o n of AA2S- S from L - a s c o r b i c a c i d and 3 -phosphoadenyls u l f a t e - S or sodium " s u l f a t e - S .
1976
Mohamaram et a l . (22)
I n c o r p o r a t i o n of s u l f a t e from AA2S i n t o c h o i n d r o i t i n s u l f a t e . Discovery of widespread d i s t r i b u t i o n of AA2S s u l f hydrolase.
C a r l s o n et a l . (17), Hatanaka et a l . I s o l a t i o n of AA2S s u l f h y d r o l a s e from a marine organism and and mammalian l i v e r . (18) and Roy, et a l . (19)
1974
1975-6 Hatanaka et a l . (20) and F l u h a r t y et a l . (21)
Seib et a l . (16)
1974
Synthesis of AA2S improved.
AA2S gave no a n t i s c o r b u t i c a c t i v i t y i n guinea p i g s .
(14) and Campeau et
1973- 4 Kuenzig et a l . a l . (15)
structure.
Determination of X-ray c r y s t a l l o g r a p h i c
1972- 3 Bond et a l . (5) and McClelland (13)
Discovery of AA2S i n human u r i n e ; d a i l y e x c r e t i o n reported to be 30-60mg of the dipotassium s a l t . Prevention of scurvy i n coho salmon and rainbow t r o u t by equivalent amount of AA2S or L-ascorbate.
Baker et a l . (6,Π.)
1971
I d e n t i f i c a t i o n of AA2S i n Nature from undeveloped cysts of b r i n e shrimp.
1972-3 Halver et a l . (J., 12)
Mead and Finamore (4)
Chu and Slaunwhite (9) and Mumma (10) în VAJUIO o x i d a t i v e s u l f a t i o n of ft-octanol and androsterone during mild o x i d a t i o n of L-ascorbate 2 - s u l f a t e (AA2S) i n non-aqueous media. ~~
Ford and Ruoff (2)
Reference
1969
1968
1965
Date
Table I. Chronology of L-Ascorbate 2-Sulfate
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
1.
LiLLARD AND SEiB
Monosulfate
Esters of
L-Ascorbic
Acid
3
i s L-ascorbic a c i d , (b) the r e a c t i o n solvent i s water, (c) the conversion of AA to AA2S i s 98%, (d) the s u l f a t i o n r e a c t i o n i s r a p i d (< 30 minutes), (e) the s u l f a t i n g agent i s the s u l f u r t r i oxide complex of the l e a s t expensive t e r t i a r y amine ( t r i m e t h y l a mine), (f) the i s o l a t i o n of AA2S i s simple, and (g) a n a l y t i c a l l y pure c r y s t a l s of barium L-ascorbate 2 - s u l f a t e are i s o l a t e d i n 80% yield. Obviously, the chemical synthesis of AA2S presents l i t t l e difficulty (16). L-Ascorbate 6-Sulfate (AA6S). L-Ascorbate 6 - s u l f a t e (AA6S) i s an~intermediate (not i s o l a t e d ) i n t h e production (26) of La s c o r b y l 6-palmitate, a m a t e r i a l that i s used mainly to prevent o x i d a t i v e r a n c i d i t y (27) i n f a t s , o i l s , and dehydrated foods. In a d d i t i o n , L - a s c o r b y l 6-palmitate i s a u s e f u l a d d i t i v e i n breads (28) and cârotenoid c o l o r a n t s (29). L-Ascorbyl 6-palmitate i s synthesized by r e a c t i n g L-ascorbic a c i d TAA) with p a l m i t i c a c i d i n concentrated s u l f u r i c ac"id. The e s t e r i f i c a t i o n of AA i n concentrated s u l f u r i c a c i d i s at f i r s t s u r p r i s i n g , s i n c e L-ascorbic a c i d i s r a p i d l y dehydrated and decarboxylated i n hot a c i d to give almost q u a n t i t a t i v e y i e l d s of f u r f u r a l (30). But the r i n g - s t r u c t u r e of AA i s very s t a b l e i n concentrated s u l f u r i c a c i d at room temperature. We p r e v i o u s l y showed (26) that the absorbance (265nm) of a s o l u t i o n of AA Cx/3xlO" M) i n 95-98% s u l f u r i c a c i d was unchanged over a 46-day p e r i o d . We a l s o found the absorption maximum f o r unionized L-ascorbic a c i d (X 245nm at pH 2) s h i f t e d to longer wavelengtrï ( À 265nm) when AA was d i s s o l v e d i n concentrated s u l f u r i c a c i d , i n d i c a t i n g that a d e l o c a l i z e d c a t i o n had formed i n the s t r o n g l y a c i d i c medium (Figure 3). We f u r t h e r speculated that the primary hyd r o x y l group of AA i s f u l l y s u l f a t e d i n concentrated s u l f u r i c a c i d . Carbon-13 nmr measurements confirmed (26) the formation of the h y d r o x y a l l y l c a t i o n shown i n F i g u r e 3. The ^ C - s p e c t r a of AA i n 99% s u l f u r i c a c i d and of 4-deuterio-L-ascorbic a c i d i n water at pH 2 are shown i n Figure 4. The assignments of the resonance s i g n a l s were made from the r e l a x a t i o n r a t e s of the carbon atoms and from proton-coupled s p e c t r a . The assignments w i l l not be discussed here, s i n c e they are the subject of another paper (31). When AA i s d i s s o l v e d i n 99% s u l f u r i c a c i d , spectrum Β i n Figure 4 shows the r e a c t i o n products a l l have a set of s i x s i g n a l s which c l o s e l y resembles the set of s i g n a l s of AA i n water. Spectrum Β c l e a r l y shows the r e a c t i o n product contains three com ponents which are a l l c l o s e l y r e l a t e d to the s t r u c t u r e of AA. Thus, AA does not undergo dehydration and polymerization (32) i n concentrated s u l f u r i c a c i d at room temperature. In t h i s r e p o r t , we describe the i s o l a t i o n and c h a r a c t e r i z a t i o n of the two p r i n c i p a l components formed when AA i s d i s s o l v e d i n concentrated s u l f u r i c a c i d , namely, L-ascorbate 6 - s u l f a t e (AA6S) and L-ascorbate 5 - s u l f a t e (AA5S)T Other references to work on AA6"S" are given i n Table I I ; AA5S has not been reported
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
-
5
m a x
m a x
4
CARBOHYDRATE SULFATES
CH-OH HC0H
OSOl
-0
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
Figure 1. -L-Ascorbate 2-sulfate (AA2S)
CH 0H
CH OH ι w
d
See
Sample
ASC
=
o
b
not
m
i
i
t
y
2
or
The
H-5
is
179.37
116.06
176..14
80.51 69.81
77.64 77.43
under
the
HOD
peak
at
4.5-4.8.
2,2-dimethyl-2-silapentane-5-sulfonate.
266
apparently
(p.m.r.)
signal
acid.
internal
L-ascorbic
D 0.
to
(c.m.r.)
with
relative
external
exchanged
l
from
Experimental.
Downfield
C R
b
244
1 7 5 .,72
71.50
61.41
4.53
4.68
white
113.90
+
177.65
0.5
6-sulfate
267
white
+
0.3
245
4.57
65.12
81.31 72.28
182.,34
113.01
178.08
255
H-4
232
C-6
red
C-5
-
C-4
4.50
C-3
p.m.r .
65.33
C-2
b
80.96 72.26
C-l
pH 7
δ at
i n Water,
c.m.r.,
1 7 7 . ,87
7
2
H 0
Acid
L-Ascorbate
of
Esters
115.70
pH
in
Monosulfate
179.71
λ
the
265
2
,
of
244
pH
u.v.
Properties
white
5-sulfate
Spray
Spray
0.5
Chloride
Nitrate
2-sulfate
Ferric
+
Alcoholic
Silver
a
IV,
Neutral
1.0
ASC°
C h r o m a t o :n ; r a p h y
Unsubstituted
Derivative
R
Paper
Table
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
9
δ at
3.86
3.73
3.74
H-6'
H-6,
D 0,
4.30
14- 4.14- 4.30
4.
_d
4.05
4.02
H-5
in
6.7
6.5
7.0
7.1
pH
pH
7
b
Ci*
1
IT
Co
ο ο
w
I—I
Η
α
>
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
12
CARBOHYDRATE SULFATES
volume, the r e s u l t i n g mixture contained only L - a s c o r b i c a c i d as determined by paper chromatography; and (4) tîïe 5- and 6-hydroxyls of AA would be expected to undergo very l i t t l e d i s u l f a t i o n s i n c e i t i s known (37) that v i c i n a l d i o l s do not form d i n i t r a t e s upon r e a c t i o n with the e l e c t r o p h i l i c nitronium i o n . Presumably, r e a c t i o n of d i o l s with s u l f u r t r i o x i d e i n concentrated s u l f u r i c a c i d would g i v e the same r e s u l t . Attempts to i s o l a t e Component I I from the column e f f l u e n t were u n s u c c e s s f u l , because as we discovered l a t e r , s u l f a t e i s e l i m i n a t e d from AA5S i n the presence of barium i o n . In f a c t , Component I was thought to be the 4,5-unsaturated product formed by the e l i m i n a t i o n r e a c t i o n . The u.v. p r o p e r t i e s of Component I support the extended resonance system of three conjugated double bonds. Compared to L - a s c o r b i c a c i d , the a b s o r p t i o n maximum of Component I was s h i f t e d 15-20nm to longer wavelength ( X 260nm and 285nm at pH 2 and 7, r e s p e c t i v e l y , νΟΛΛίιΛ À 245nm and 265nm f o r AA at the same pH). In a d d i t i o n , Component I was very unstable above pH 7. We t h e r e f o r e decided to prepare AA5S by an unequivocal route, which i s shown i n F i g u r e 7. Reaction of L - a s c o r b i c a c i d i n p y r i dine with two e q u i v a l e n t s of t- b u t y l d i m e t h y l s i l y l c h l o r i d e f o l lowed by s u l f a t i o n with p y r i d i n e - s u l f u r t r i o x i d e gave 2 6-0-bZ&(t-butyldimethylsilyl. )-L-ascorbate 5 - s u l f a t e (AA5S). H y d r o l y t i c removal of the 2,6-blockThg group with 80% a c e t i c a c i d followed by ion-exchange chromatography gave the d e s i r e d AA5S. m a x
m a x
9
We found Component I I was indeed i d e n t i c a l to AA5S. The two m a t e r i a l s co-migrated on paper chromatograms and on column chromatograms packed with 0-(diethylaminoethyl)-cellulose. The s t r u c t u r e of AA5S was r e a d i l y confirmed by u.v., c.m.r., and p.m.r. The carbon-13 spectrum (Figure 6, Table IV) showed that C-5 s h i f t e d downfield by ^6 ppm while C-4 and C-6 s h i f t e d s l i g h t l y upfield. In the p.m.r. spectrum the s i g n a l s of H-4 and H-6 were s i m i l a r to those of L - a s c o r b i c a c i d , whereas the s i g n a l of H-5 was apparently s h i f t e d downfield by 0.5-0.8 p.p.m. under the HOD peak (Table IV). The i s o l a t i o n of barium L-ascorbate 5 - s u l f a t e i n pure s o l i d form i s d i f f i c u l t because of the tendency of the molecule to undergo e l i m i n a t i o n of the s u l f a t e group. In one attempt, a s o l i d was i s o l a t e d that contained mostly AA5S as shown by c.m.r. s p e c t r o scopy. When an aqueous s o l u t i o n of the barium s a l t of AA5S was allowed to stand at room temperature, barium s u l f a t e p r e c i p i t a t e d i n i n c r e a s i n g amounts with time. Experimental General. A l l evaporations were done under reduced pressure below 50°. M e l t i n g p o i n t s were determined with a Thomas-Hoover apparatus. O p t i c a l r o t a t i o n s were obtained using a Swiss-made Kern p o l a r i m e t e r . L-Ascorbic a c i d was obtained from ICN
LiLLARD AND SEiB
Monosulfate
CH OH
CH OH
2
(l)pyridine +
H-Ç-OSO"
RCI
2
80%
acetic
acid, 30° 2hr.
(2)pyridine: SO
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
Acid
CH OR
2
H-C-OH
Esters of L-Ascorbic
CH
3
R= C h U - C - S i 0
r CH,
Figure 7.
Synthesis of L-ascorbate 5-sulfate
H-C-OSO
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
14
CARBOHYDRATE SULFATES
Pharmaceutical, Inc., C l e v e l a n d , Ohio. Concentrated s u l f u r i c a c i d (99%, 37.0±0.15N) was obtained from F i s h e r S c i e n t i f i c , F a i r l a w n , NJ. T h i n - l a y e r chromatography was performed on microscope p l a t e s coated with s i l i c a g e l G (Brinkman Instruments, Inc., Westburg, New York). Compounds were heated by spraying with 50% aqueous s u l f u r i c a c i d followed by c h a r r i n g on a hot p l a t e . Descending paper chromatography was done u s i n g e t h y l acetate, a c e t i c a c i d , and water (6:3:2, V:V). Components were l o c a t e d using one of three d i p reagents. R&agznt A. Strongly reducing components were detected by d i p p i n g a chromatogram i n a s o l u t i o n of 0.7% (by weight) of s i l v e r n i t r a t e i n a mixture of acetone, concen t r a t e d ammonium hydroxide, and water (200:1:1). Reagent B. Mod erate to weakly reducing components were detected by d i p p i n g i n Reagent A followed by d i p p i n g i n a l c o h o l i c sodium Hydroxide (39). Rtag&nt C. Components with e n o l i c hydroxyls were detected by d i p p i n g i n a 1% f e r r i c c h l o r i d e i n 95% methanol (40). The r e l a t i v e m o b i l i t i e s and c o l o r r e a c t i o n s of L - a s c o r b i c a c i d and i t s monosulfate e s t e r s are given i n Table IV. U.v. s p e c t r a were obtained i n aqueous s o l u t i o n s using a Beckman Model DB-G spectrophotometer. Nuclear magnetic resonance s p e c t r a were recorded with a V a r i a n Model XL-100 spectrometer. For carbon-13 s p e c t r a , the n.m.r. instrument was coupled to a N i c o l e t 1084 pulse F o u r i e r transform system. Chemical s h i f t s are given i n ppm downfield from e x t e r n a l (^C) or i n t e r n a l (^H) sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). L-Ascorbate 6-Sulfate (AA6S). To o b t a i n good y i e l d s of AA6S, molecular oxygen should be e l i m i n a t e d from reagents and s o l v e n t s by b o i l i n g and/or purging with n i t r o g e n . ( P r e - p u r i f i e d grade, Matheson, Ε., Rutherford, New J e r s e y ) . L-Ascorbic a c i d (3g) was d i s s o l v e d with s t i r r i n g at 25° i n 99% s u l f u r i c a c i d (lOmL), and the s o l u t i o n held 4 h at 25°. The v i s c o u s r e a c t i o n mixture was added dropwise with r a p i d s t i r r i n g to e t h y l ether (300mL) a t -65°, which caused the s u l f a t e e s t e r s to p r e c i p i t a t e as a v i s c o u s gum. The ether was maintained a t -65° by o c c a s i o n a l , d i r e c t a d d i t i o n of s o l i d carbon d i o x i d e . While the ether mixture was s t i l l at -65°, aqueous saturated barium hydroxide was added (200mL) and the r e s u l t i n g mixture was allowed to warm to - 5 ° . The ether l a y e r was drawn o f f and washed twice with water (2 χ 150mL). The combined aqueous l a y e r s were kept a t 0-5° and n e u t r a l i z e d by a d d i t i o n of s o l i d barium hydroxide. Barium s u l f a t e was removed by f i l t r a t i o n , and the f i l t r a t e made to volume (lOOOmL). An a l iquot (lO.OmL) of the r e a c t i o n mixture reduced 3.65mL of 0.1N i o d i n e s o l u t i o n , whereas an a l i q u o t (5.0mL) of a known amount (1.015g) of L - a s c o r b i c a c i d i n 6% aqueous metaphosphoric a c i d (100.OmL) recTuced 11.6mL of 0.1N i o d i n e . The t i t e r s showed the aqueous e x t r a c t contained 74% of the e n e - d i o l groups put i n t o the concentrated s u l f u r i c a c i d . The remaining f i l t r a t e (990mL) was evaporated to a small
1.
LiLLARD AND SEiB
Monosulfate
Esters of L-Ascorbic
Acid
15
volume, and made to 25.0mL with water. An a l i q u o t (lO.OmL) was subjected to ion-exchange chromatography on a column (2.6 χ 40cm) of (die thy lamino e t h y l ) - c e l l u l o s e (Whatman DE-52, H. Reeve Angel, Inc., C l i f t o n , New J e r s e y ) , which had been p r e v i o u s l y converted to the hydrogen s u l f a t e form by washing with 0.1M s u l f u r i c a c i d . The column was developed at a flow r a t e of 45ml h~* using a l i n e a r g r a d i e n t (0 -> 0.18M of s u l f u r i c a c i d . The absorbance of the e f f l u e n t was monitored at 254nm, and the components (Figure 5) were c o l l e c t e d i n a v o l u m e t r i c f l a s k over 6% metaphosphoric a c i d . The amount of each component was determined by i t s ab sorbance (245nm) and by i o d i m e t r i c t i t r a t i o n (Table I I I ) . Component I I I , which accounted f o r 81% of the r e a c t i o n pro ducts, was found to give a s i n g l e spot (paper chromatography, AA 0.59), which co-migrated with a sample of L-ascorbate 6 - s u l f a t e prepared as described by Allaudeen and Ramakrishnan (33). The spot r a p i d l y reduced s i l v e r and f e r r i c i o n s . Both samples had u.v. p r o p e r t i e s i d e n t i c a l to those of L - a s c o r b i c a c i d ( À 245nm at pH 2 and X 265nm at pH 7). ~ In a separate experiment Component I I I was i s o l a t e d as i t s barium s a l t a f t e r s e p a r a t i o n of the products obtained from a r e a c t i o n s t a r t i n g with 2.85g of L - a s c o r b i c a c i d . The column (2.6 χ 40cm) was developed as p r e v i o u s l y d e s c r i b e d , except a t o t a l of 400mL of 0.18M s u l f u r i c a c i d was used i n the l i n e a r , gradient e l u t i o n step, followed by 1800mL of 0.18M s u l f u r i c a c i d . Compo nent I I I was c o l l e c t e d i n a slowly s t i r r e d mixture of water (50ml) and barium carbonate that had p r e v i o u s l y been purged with nitrogen. A f t e r removal of barium s u l f a t e , the f i l t r a t e was concentrated to dryness to give barium L.-ascorbate 6 - s u l f a t e (5.0g) as an amor phous s o l i d which was 75"% barium AA6S as determined by u.v. analy sis . Anal. C a l c u l a t e d f o r 0.73 moles CftHôOgSBa +0.27 moles BaSO^ C, 13.44; H, 1.13; 0, 34.35; Ba, 41.50. Found: C, 13.33; H, 1.13; 0, 35.56; Ba, 47.54. The p.m.r. spectrum of barium AA6S at pH 7 (Table IV) agreed with that reported by Hatanaka, et a l . (34).
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
R
m a x
m a x
L-Ascorbate 5 - S u l f a t e . To a p y r i d i n e (lOmL) s o l u t i o n of La s c o r b i c a c i d (1.5g) cooled i n an i c e bath was added 2.1 equival e n t s of ^ - b u t y l d i m e t h y l s i l y l c h l o r i d e (3.0g) ( A l d r i c h Chemical Company, Milwaukee, Wisconsin). A f t e r 3 hr s t i r r i n g at 25°, t . l . c . (benzene, e t h y l acetate 9/1, V/V) showed the r e a c t i o n mixture contained one p r i n c i p a l (R 0.7) and one minor component (Rf 0.8). P y r i d i n e - s u l f u r t r i o x i d e (1.35g) was added, and the s u l f a t i o n r e a c t i o n allowed to proceed overnight at 25°. A f t e r s u l f a t i o n t . l . c . (chloroform, a c e t i c a c i d 3/2, V/V) showed one major spot at Rf 0.7. f
The r e a c t i o n mixture was evaporated to remove p y r i d i n e , and water (20mL) was added twice and the mixture re-evaporated to a t h i c k syrup. The syrup was d i s s o l v e d i n g l a c i a l a c e t i c a c i d (16mL), water (4mL) added, and the r e s u l t i n g mixture was held at 25°. A f t e r 12 hours t . l . c . (chloroform, a c e t i c a c i d 3/2, V/V)
CARBOHYDRATE SULFATES
16
showed the r e a c t i o n mixture contained one p r i n c i p a l product at R.£ 0.2. Evaporation of the h y d r o l y s i s r e a c t i o n mixture to a small volume (lOmL) removed water, a c e t i c a c i d , and ^ - b u t y l d i m e t h y l s i lanol. Aqueous barium hydroxide was added to pH 7.0, and the mix ture was concentrated to ^25mL and a p p l i e d to a DEAE-cellulose (H , SO^") column. Developing the column with a gradient of s u l f u r i c a c i d (0 ->• 0.18M) eluted a m a t e r i a l whose m o b i l i t y was the same as that of Component I I (Figure 5). The column e f f l u e n t was c o l l e c t e d over barium carbonate as p r e v i o u s l y described to give 2.03 g of an amorphous s o l i d . The s o l i d barium s a l t of L - a s c o r b i c 5 - s u l f u r i c a c i d had i d e n t i c a l paper and chromatographic p r o p e r t i e s as those of Component I I . The s o l i d product d i d not give an ac ceptable elemental a n a l y s i s . The u.v., p.m.r., and c.m.r. s i g n a l s of AA5S are given i n Table IV.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
+
L-Ascorbic A c i d 4-d. The t i t l e compound was prepared by a mod i f i c a t i o n of the procedures of .Tolbert (41) and Brenner (42). LAscorbic a c i d (0.05 moles) was d i s s o l v e d and evaporated from de^ aerated deuterium oxide (lOmL) three times. To the dry m a t e r i a l was added 4M sodium methoxide i n methanol-cl (50mL), and the mix ture was r e f l u x e d 24 hours. The cooled a l c o h o l i c s o l u t i o n was added to water (lOOmL) c o n t a i n i n g 45g of s t r o n g l y a c i d i c , c a t i o n exchange r e s i n ( H ) . The r e s i n was removed, the f i l t r a t e f r e e z e d r i e d , and the residue d i s s o l v e d i n warm a c e t o n i t r i l e . Cooling gave white c r y s t a l s (2.8g, 32%) which had m.p. and a mixed m.p. of 192-3° with authentic L - a s c o r b i c a c i d . +
Ac knowledgment s The authors thank D. Mueller measurements.
and
J . P a u k s t e l i s f o r c.m.r.
Abstract Methods to prepare L-ascorbate 2-,5-, and 6 - s u l f a t e s are given. The compounds wer e c h a r a c t e r i z e d by 1 H - a n d Cnuclear magnetic resonance spectroscopy and by u l t r a v i o l e t spectroscopy. The b i o l o g i c a l p r o p e r t i e s of L-ascorbate 2 - s u l f a t e are reviewed. 1 3
Literature Cited 1. Halver, J . E . , Johnson, C. L., Smith, R. R., Tolbert, Β. M . , and Baker, F. M. Fed. Proc. Fed. Amer. Soc. Exp. B i o l . , (1972) Abstract No. 2764. 2. Ford, E. A. and Ruoff, P. M. Chem. Commun. (1965) 628. 3. Shenouda, M., M. S. Thesis, Kansas State University (1976); Quadri, S. F . , Liang, Y. T . , Seib, P. Α . , Deyoe, C. W., and Hoseney, R. C. J . Food Sci. (1975) 40 837. 4. Mead, C. G. and Finamore, F. J . Biochemistry (1969) 8 2652.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
1.
LiLLARD AND sEiB
Monosulfate
Esters of L-Ascorbic
Acid
17
5. Bond, A. D., McClelland, B. W., Einstein, J. R., and Finamore, F. J., Arch. Biochem. Biophys. (1972) 153, 207. 6. Baker, Ε. Μ., Hammer, D. C., March, S. C., Tolbert, Β. Μ., and Canham, J. Ε., Science (1971) 173, 826. 7. Mumma, R. O. and Verlangieri, A. J., Biochem. Biophys. Acta (1972) 273 249. 8. Hornig, D., Ann. Ν. Y. Acad. Sci. (1975) 258, 103; Hornig, D. World Rev. Nutr. Dietetics (1975) 23, 225. 9. Chu, T. M. and Slaunwhite, W. R., Jr., Steroids (1968) 12, 309. 10. Mumma, R. D., Biochem. Biophys. Acta (1968) 165, 571. 11. Baker, Ε. Μ., Kennedy, J. Ε., Tolbert, Β. Μ., and Canham, J. E. Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1972). Abstr. No. 2760. 12. Halver, J. Ε., Ashley, L. Μ., Smith, R. R., Tolbert, Β. M., and Baker, Ε. M. Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1973) Abstr. No. 4010. 13. McClelland, B. W., Acta Crystallogr. (1974) 30, 178. 14. Kuenzig, W., Avenia, R., and Kamm, J. J., J. Nutr. (1974) 104, 952. 15. Campeau, J. D., March, S. C. and Tolbert, Β. Μ., Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1973) Abstr. No. 4008. 16. Seib, P. Α., Liang, Y. T., Lee, C. H., Hoseney, R. C., and Deyoe, C. W. J. Chem. Soc., Perkin I (1974), 1220. 17. Carlson, Β. Μ., Downing, Μ., Tolbert, Β. M. Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1974) 33, 1377. 18. Hatanaka, H., Ogawa, Y., Egami, F., J. Biochem. Tokyo. (1974) 75, 861. 19. Roy, A. B., Biochem. Biophys. Acta (1975) 377, 356. 20. Hatanaka, H. and Egami, F. J. J. Biochem. (1976) 80, 1215. 21. Fluharty, A. L . , Stevens, R. L . , Miller, R. T., Shapiro, S. S., and Kihara, H. Biochem. Biophys. Acta (1976) 429, 508. 22. Mohamram, M., Rucker, R. Β., and Hodges, R. E. Biochem. Biophys. Acta (1976) 437, 305. 23. Brin, M., Machlin, Κ. J., Kuenzig, W., and Garcia, F. Fed. Proc. Fed. Amer. Soc. Exp. Biol. (1975) 34, 884. 24. Kramer, K. J., Hendricks, L. Η., Liang, Y. T., and Seib, P. A. submitted to J. Ag. Food Chem. 25. Halver, J. Ε., Smith, R. R., Tolbert, Β. Μ., and Baker, Ε. Μ., Ann. New York Acad. Sci. (1975) 258, 81. 26. Cousins, R. C., Seib, P. Α., Hoseney, R. C., Deyoe, C. W., Liang, Y. T., and Lillard, D. W., Jr., J. Am. Oil Chem. Soc. (1977) 54, 308. 27. Cort, W. M. J. Am. Oil Chem. Soc. (1974) 51, 321; Food Tech (1975) 29(11) 46. 28. Hoseney, R. C., Seib, P. Α., and Deyoe, C. W., Cereal Chem. (1977) 54, 1062. 29. Klaüi, H. Wiss. Ver. Deutschen Gesell. fur Ernährung. (1963) 9 390.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch001
18
CARBOHYDRATE SULFATES
30. Feather, M. S. and Harris, J. F. Adv. in Carbohyd. Res. (1973) 28, 161. 31. Tolbert, B. M., Matwiyoff, Ν. Α., Lillard, D. L., Mueller, D. D., Paukstelis J., and Seib, P. A. in preparation. 32. Liler, Μ., "Reaction Mechanisms in Sulfuric Acid, "Aca demic Press, New York, N.Y. (1971); Gillespie, R. S., and Robinson, Ε. Α., "Non-Aqueous Solvents," Waddington, T. C., ed. Academic Press, New York (1965), pp. 117-120. 33. Allaudeen, H. S., and Ramakrishnan, R., Arch. Biochem. and Biophys. (1970) 140, 245. 34. Hatanaka, Η., Ogawa, Υ., and Egami, F., J. Biochem. (1974) 75, 861. 35. Tolbert, Β. Μ., Spears, A. H., Isherwood, D. J., Atchley, R. Η., and Baker, Ε. Μ., Abstracts of the Fed. of Exp. Biol. Soc, (1972) 31 (No. 2), Abstr. No. 2761. Tolbert, Β. Μ., personal communication (1974). 36. Honda, S., Yuku, Η., and Takiura, Κ., Carbohyd. Res. (1963) 28, 150. 37. Mahoney, J. F., and Purves, C. Β., J. Am. Chem. Soc. (1942) 64, 9; Yin, T. P., and Brown, R. K. Can. J. Chem. (1959) 37, 444. 38. Lillard, D. L., "L-Ascorbic Acid in Concentrated Sul furic Acid; Improved Synthesis of L-Ascorbic Acid 6-Sulfate," M. S. Thesis, Kansas State University (1977). 39. Trevelyan, W. Ε., Parker, C. P., and Harrison, J. S., Nature, (1950) 166, 144. 40. Vestling, C. S., and Rebstock, M. C., J. Biol. Chem. (1948) 161, 285. 41. Tolbert, Β. M. personal communication (1975) 42. Brenner, G. S., Hinkley, D. F., Perkinds, L. Μ., and Wever, W., J. Org. Chem., (1969) 29, 2389. RECEIVED F e b r u a r y 6, 1 9 7 8 .
2 Glucosinolates and Other Naturally Occurring O-Sulfates ANDERS KJAER
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
Department of Organic Chemistry, The Technical University of Denmark, 2800 Lyngby, Denmark
The following discussion will be restricted to sulphates of natural provenance. Carbohydrate sulphates, the legitimate topic of this symposium, quantitatively dominate the class of naturally occurring, organic sulphates but by no means represent it fully. To be sure, the typical C - O - S ester linkage is also encountered in a vast and rapidly increasing number of other known sulphates of animal and plant origin. Moreover, chemical entities exhibiting other structural features, such as P - O - S , N - O - S , and N - S - l i n k a ges, are also known as natural products. The ensuing discussion w i l l c e n t r e on the g l u c o s i n o l a t e s 1, a u n i q u e l y c o n s t i t u t e d and
well-defined class of anions occurring as plant products that are, at the same time, organic sulphates and glucose derivatives, yet assembled in a fashion so unorthodox that the raison d ' ê t r e for their presentation at this symposium may appear tenuous. The chemical character and biological degradation of glucosinolates, however, exhibit features of potential interest to carbohydrate sulphate chemistry; these aspects will be emphasized. The discussion will also include a brief, up-to-date survey of some other organic sulphates, selected to indicate the scope of structural variation encountered within the living world. Glucosinolates The collection of glucosinolates, thus far comprising about seventy-five individual anions, exclusively encountered in higher 0-8412-0426-8/78/47-077-019$05.00/0 © 1978 American Chemical Society
20
CARBOHYDRATE SULFATES
plants, p o s s e s s e s a r e m a r k a b l e s t r u c t u r a l u n i f o r m i t y . T h u s , the β -D-thioglucopyranosidic
l i n k a g e , the h y d r o x y l a m i n e - O - s u l p h a t e
m o i e t y , and the ( Z ) - t h i o h y d r o x i m a t e a r r a n g e m e n t p r e s e n t i n 1 a r e c h e m i c a l f e a t u r e s to w h i c h no known e x c e p t i o n
e x i s t s . Hence, the
s i d e - c h a i n R of 1 c o n s t i t u t e s the s o l e s t r u c t u r a l p a r a m e t e r . T h i s r e m a r k a b l e c h e m i c a l u n i f o r m i t y r e f l e c t s , a l m o s t by n e c e s s i t y , a corresponding s i m i l a r i t y in biosynthetic derivation. Few p a t h w a y s i n h i g h e r p l a n t s have b e e n c l a r i f i e d i n g r e a t e r
anabolic detail
+
than those l e a d i n g f r o m α - a m i n o a c i d s , R* C H ( N H g ) C 0 " ~ , to g l u
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
2
c o s i n o l a t e s 1, t h r o u g h a s e q u e n c e of steps o u t l i n e d i n S c h e m e 1.
R 1 Scheme 1 Ox
R C H - (NH ) -C0 3
+
2
> R-CH-(NHOH) -C0 H
Ox
-C02 [R-CH-(NO)-C0 H]
2
R-CH(S-Glu):NOH
—H 0 2
10,
R =
CH =CH
II
R =
C H
2
6
5
I n t r i g u i n g l y , the a m i n o a c i d s p r o d u c e d c o n t a i n e x c e s s of the L-isomers,
r e f l e c t i n g s o m e s t e r i c c o n t r o l f r o m the g l u c o s e
ring,
the o n l y c h i r a l m o i e t y i n v o l v e d i n the r e a c t i o n . S e v e r a l g l u c o s i n o l a t e s have b e e n s y n t h e s i z e d . A c h a r a c t e r i s t i c f e a t u r e of a l l the a p p r o a c h e s i s the i n t r o d u c t i o n of the s u l p h a t e - g r o u p i n g at the f i n a l stage of the s y n t h e t i c sequence, n o r m a l l y with the S O g - p y r i d i n e c o m p l e x a s a r e a g e n t . In t h i s r e s p e c t the a p p r o a c h s i m u l a t e s the b i o s y n t h e t i c a s s e m b l a g e ; h e r e , i n the v e r y l a s t step ( S c h e m e l ) , t h e sulphate r e s i d u e i s t r a n s f e r r e d f r o m 3'-phosphoadenosine 5'-phosphosulphate to the o x y g e n a t o m of the h y d r o x y l a m i n e g r o u p i n g i n a r e a c t i o n p r o b a b l y
catalyzed
by the s a m e e n z y m e f o r the whole r a n g e of g l u c o s i n o l a t e s (5a). P u r e glucosinolate salts are non-volatile, high-melting
com
pounds, r e a d i l y s o l u b l e i n w a t e r b y v i r t u e of t h e i r c o m b i n e d g l u c o s i d e a n d salt c h a r a c t e r ; t h e i r r e a d i n e s s to c r y s t a l l i z e i s c a p r i c i o u s and not a l w a y s v e r y p r o n o u n c e d . In no c a s e have
s u g a r s o-
t h e r than g l u c o s e b e e n o b s e r v e d i n the t h i o g l y c o s i d i c l i n k a g e of
CARBOHYDRATE
24
SULFATES
n a t u r a l l y o c c u r r i n g g l u c o s i n o l a t e s . E q u a l l y constant i s the s u l phate r e s i d u e ; the a n a l o g o u s phosphate e s t e r s , a p r i o r i not unr e a s o n a b l e a l t e r n a t i v e s , have n e v e r been e n c o u n t e r e d . l t
i s temp-
t i n g to a s s u m e that the r a i s o n d'être f o r the sulphate g r o u p i n g i n the g l u c o s i n o l a t e i s i t s c h a r a c t e r
of an e x c e l l e n t l e a v i n g group.
P u r s u i n g t h i s l i n e of s p e c u l a t i o n , the t r u e b i o l o g i c a l f u n c t i o n of
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
the g l u c o s i n o l a t e s m a y h e n c e be that of s e r v i n g as d e p o s i t o r i e s of v o l a t i l e r e a c t i o n p r o d u c t s , p o s s e s s i n g
specific biological pro-
p e r t i e s and a r i s i n g f r o m the e n z y m i c a l l y
initiated degration r e -
a c t i o n s d i s c u s s e d above. In fact, m u c h knowledge h a s a c c u m u l a t e d o v e r the y e a r s to i n d i c a t e that i s o t h i o c y a n a t e s , and p e r h a p s other d e g r a d a t i o n
products as well, play a d e c i s i v e r o l e i n seve-
r a l w e l l - e s t a b l i s h e d and s p e c i f i c p a r a s i t e - h o s t r e l a t i o n s w i t h i n i m p o r t a n t p l a n t s of the c r u c i f e r f a m i l y . O b v i o u s l y , s u c h f u n c t i o n s w i l l p e r se a t t r i b u t e to the g l u c o s i n o l a t e s a p h y l o g e n e t i c
signifi-
c a n c e that w o u l d m a k e t h e i r d i s c o n t i n u o u s n a t u r a l d i s t r i b u t i o n w i t h i n the plant k i n g d o m l e s s s u r p r i s i n g . O t h e r O r g a n i c Sulphates of P l a n t O r i g i n A few r e p r e s e n t a t i v e s of other g r o u p s of o r g a n i c
sulphates,
o c c u r r i n g i n h i g h e r p l a n t s s e l e c t e d r a t h e r a r b i t r a r i l y by an o r ganic c h e m i s t p r i m a r i l y c o n c e r n e d with s t r u c t u r a l a s p e c t s , m a y s e r v e as an i l l u s t r a t i o n of the v e r s a t i l i t y and s c o p e of o r g a n i c s u l p h a t e s e n c o u n t e r e d e v e n w i t h i n the l i m i t e d g r o u p of l i v i n g spec i e s m a d e up by h i g h e r p l a n t s . C h o l i n e sulphate ,12 a c c u m u l a t e s , to the extent of m o r e than o n e - t h i r d of the t o t a l amount of sulphate fed, i n the r o o t s of s u l p h u r - d e f i c i e n t p l a n t s of c o r n , b a r l e y , and s u n f l o w e r , e v e n u n d e r s t e r i l e c o n d i t i o n s . In n o n - d e f i c i e n t r o o t s , and i n a l l l e a v e s , it a c counts f o r 5-15 % of the t o t a l , s o l u b l e s u l p h u r compounds. A n i m p o r t a n t r o l e of 1.2 a s an e f f e c t i v e t r a n s p o r t agent f o r p a s s a g e t h r o u g h the c e l l m e m b r a n e h a s b e e n s u g g e s t e d (11). A d r a m a t i c d e v e l o p m e n t i n o u r knowledge of f l a v o n o i d s u l phates i n h i g h e r plants s h o u l d not p a s s u n n o t i c e d h e r e . M o r e than
2.
KJAER
Glucosinolates and
25
Other O-Sulfates
40 y e a r s ago, p e r s i c a r i n ( i s o r h a m n e t i n
3-sulphate) 13 was
repor-
t e d as a constituent of w a t e r - p e p p e r ( P o l y g o n u m h y d r o p i p e r ) (12); the i s o l a t i o n of only few
a d d i t i o n a l and
scattered flavonoid
sulpha-
t e s m a d e t h e s e s t r u c t u r e s i n t r i g u i n g enough to p r o m p t the s t a t e ment, i n 1971, that 'flavonoid b i s u l p h a t e s a r e a m o n g s t the r a r e s t of n a t u r a l l y o c c u r r i n g f l a v o n o i d s ' (_13). In the s a m e y e a r , h o w e v e r , a v e r i t a b l e l a n d s l i d e of d i s c o v e r y
set in, t r i g g e r e d by D r . J . B.
H a r b o r n e and h i s a s s o c i a t e s and r e s u l t i n g i n a p r o f o u n d r e v i s i o n
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
of our v i e w of these c o m p o u n d s . F l a v o n o i d
s u l p h a t e s now
r e g a r d e d , not as p h y t o c h e m i c a l o d d i t i e s , but r a t h e r as an
must
be
impor-
tant c l a s s of n a t u r a l c o m p o u n d s . T h u s , i n a r e c e n t r e v i e w (14) i n dividual flavonoid sulphates
'detected v a r i o u s l y i n o v e r 200
spe-
c i e s f r o m 20 plant f a m i l i e s ' a r e l i s t e d , and undoubtedly m a n y r e a r e l i k e l y to a p p e a r . T h i s e x a m p l e i l l u s t r a t e s how l a r g e g r o u p of n a t u r a l p r o d u c t s m a y
mo-
readily a
be o v e r l o o k e d b e c a u s e of
n e g l e c t on the p a r t of the c h e m i s t , i n the p r e s e n t c a s e undoubtedl y c a u s e d by the s a l t c h a r a c t e r
and o v e r - a l l i n c o n s p i c u o u s n e s s
of the compounds. F l a v o n o l s and f l a v o n e s , as s u c h o r i n g l y c o s i d i c f o r m , with one the 3-OH
and 7-OH,
o r m o r e sulphate
r e s i d u e s attached, m o s t l y at
but o c c a s i o n a l l y a l s o l i n k e d to the
sugar
m o i e t y , a r e p r e v a l e n t a m o n g the f l a v o n o i d s u l p h a t e s known thus far. The
p o s s i b i l i t y of f l a v o n o i d s u l p h a t e s h a v i n g an i m p o r t a n t
f u n c t i o n i n salt uptake and m e t a b o l i s m , i n a d d i t i o n to that of c o n f e r r i n g w a t e r s o l u b i l i t y to o t h e r w i s e i n s o l u b l e f l a v o n o i d s , h a s b e e n s u g g e s t e d i n v i e w of t h e i r p r e f e r r e d o c c u r r e n c e w i t h i n p l a n t s with aquatic, often s a l i n e h a b i t a t s .
•
OMe
26
CARBOHYDRATE SULFATES
O t h e r p l a n t s p h e n o l i c s , r e c o g n i z e d as sulphate
conjugates,
i n c l u d e the i s o m e r i c c h l o r o g e n i c a c i d O - s u l p h a t e s 14 (14); O - s u l p h a t e s d e r i v i n g f r o m 1 - c a f f e y l g l u c o s e ,15 and p - c o u m a r y l glucose
16 (14), as w e l l a s the 3/-Q,?) (.15) and 6'-Ο-sulphate 18
(16) of betanin, a p i g m e n t c h a r a c t e r i s t i c of m e m b e r s of the taxo-
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
nomically restricted order
Centrospermae.
1~L R = OH 16
R =Η
A p p l i c a t i o n of p a p e r e l e c t r o p h o r e s i s technique
to e x t r a c t s of
s e v e r a l s p e c i e s of the f a m i l y P o l y g o n a c e a e r e c e n t l y l e d to the r e c o g n i t i o n of c o v a l e n t l y bound sulphate i n h a l f of 27 s p e c i e s stu died, b e l o n g i n g to the genus R u m e x . F r o m one of these a n O - s u l phate of e m o d i n 1 (or 8 ) - g l u c o s i d e ,19 and a d i g l u c o s i d e s u l p h a t e of the c o r r e s p o n d i n g
e m o d i n dianthrone
w e r e c h a r a c t e r i z e d , both
c o n t a i n i n g the sulphate r e s i d u e i n the g l u c o s e m o i e t i e s
Η
V7_ R = S 0 " j R = Η 1
3
Jj^
R = H , R
1
= SO3"
(17).
2.
KJAER
Glucosinolates and
27
Other O-Sulfates
Conclusion Our
knowledge about c o v a l e n t l y bound s u l p h a t e s i s o b v i o u s -
l y i n i t s i n f a n c y . We
know that s u l f o h y d r o l a s e s , e n z y m e s c a t a l y -
z i n g the h y d r o l y s i s of o r g a n i c sulphates, a r e w i d e - s p r e a d throughout the w o r l d s of m i c r o o r g a n i s m s , p l a n t s and a n i m a l s . our u n d e r s t a n d i n g of these and r e l a t e d e n z y m e s h a s r e m a r k a b l y r e c e n t l y we
Although
increased
a r e s t i l l left with the r a t h e r p a r a d o x i c a l
situation: many e n z y m e s lack w e l l - r e c o g n i z e d n a t u r a l substrates
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
and, at the s a m e t i m e , n a t u r a l s o u r c e s p r o v i d e o r g a n i c
sulphates
f o r w h i c h no e n z y m i c a p p a r a t u s s e e m s to e x i s t . O b v i o u s l y , c o n t i n u e d e f f o r t s to c l a r i f y the d i s t r i b u t i o n , c h e m i s t r y
and
enzymic
t r a n s f o r m a t i o n of n a t u r a l l y o c c u r r i n g s u l p h a t e s cannot f a i l to be r e w a r d i n g to those p o s s e s s i n g the i m a g i n a t i o n , s k i l l and
perseve-
r a n c e n e e d e d to h e l p us u n d e r s t a n d the i m p o r t a n c e and
biological
f u n c t i o n of these
compounds.
Abstract The
chemistry
of the g l u c o s i n o l a t e s , a c l a s s of n a t u r a l l y oc-
c u r r i n g t h i o g l u c o s i d es c o n t a i n i n g an
O - s u l p h a t e grouping, i s
b r i e f l y d i s c u s s e d . T h e i r e n z y m i c d e g r a d a t i o n to i s o t h i o c y a n a t e s , and n i t r i l e s ,
as w e l l as other r e a c t i o n s i n w h i c h the
sulphate
g r o u p i n g p a r t i c i p a t e s , a r e r e v i e w e d . O t h e r c l a s s e s of O - s u l p h a tes, o c c u r r i n g i n h i g h e r p l a n t s , a r e l i s t e d , i n c l u d i n g f l a v o n o i d sulphates. cussed
The
p o s s i b l e r ô l e of o r g a n i c s u l p h a t e s i s b r i e f l y
and future r e s e a r c h a s p e c t s
dis-
adumbrated.
Literature Cited 1. 2.
Kjær, A., Fortschr. Chem. Org. Naturst., (1960) 18, 122. Ettlinger, M. G. and Kjær, A. in "Recent Advances in Phytochemistry", Vol. I, p. 89, Mabry, T. J., Alston, R. E. and Runeckles, V. C., Ed., Appleton-Century-Crofts, New York, Ν. Y. (1968).
28
3.
4.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch002
5.
6. 7. 8. 9.
10. 11. 12. 13. 14.
15. 16. 17.
CARBOHYDRATE SULFATES
Kjær, A. in "Chemistry in Botanical Classification", Nobel Symposium 25, p. 229, Bendz, G. and Santesson, J., Ed., Academic Press, New York and London (1974). Kjær, A. in "The Biology and Chemistry of the Cruciferae", p. 207, Vaughan, J. G., MacLeod, A. J. and Jones, B. M. G., Ed., Academic Press, London, New York, San Francisco (1976). Kjær, A. and Olesen Larsen, P. in "Biosynthesis", Specialist Periodical Report, The Chemical Society, London, (a) (1973) 2, 95; (b) (1976) 4, 200 (c) (1977) 5, in press. Daniher, F. A. J. Org. Chem., (1969) 34, 2908. Maeda, Y. personal communication. Schneider, W. and Wrede, F. Ber. Deut. Chem. Ges., (1914) 47, 2225. Lundeen, A. J. "The Structure of the Mustard Oil Glucosides and Synthesis of the Glucotropaeolate Ion" Ph. D. Thesis, The Rice Institute, Houston, Texas (1957). Friis, P., Olesen Larsen, P. and Olsen, C. E. J. Chem. Soc., Perk. I, (1977) 661. Nissen, P. and Benson, A. A. Science, (1961) 1759. Kawaguchi, R. and Kim, K. W. J. Pharm. Soc. Japan, (1937) 57, 108. Saleh, N. A. M . , Bohm, B. A. and Ornduff, R. Phytochemistry (1971) 10, 611. Harborne, J. B. in "Progress in Phytochemistry", Vol. IV, p. 189, Reinhold, L., Harborne, J. B. and Swain, T., Ed., Pergamon Press, Oxford, New York, Toronto, Sydney, Paris and Frankfurt (1977). Imperato, F. Phytochemistry, (1975) 14, 2526. Wyler, Η., Rosler, H . , Mercier, M. and Dreiding, A. S. Helv. Chim. Acta (1967) 50, 545. Harborne, J. B. and Mokhtari, N. Phytochemistry (1977) 16, 1314.
RECEIVED February 6, 1978.
3 Sulfate Ester Groups as Potential Informational Regulators in Glycoproteins P. W. K E N T , C. J. C O L E S , J. R. C O O P E R , and N. R. M I A N
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
Glycoprotein Research Unit, Durham University, Durham D H 1 3 L H , England
The presence of ester sulphates i n carbohydrate macromolecules i s a feature widespread both i n plants and animals. Considerable speculation exists about the biological functions played by the acidic ester groups, whether these groups solely serve to augment the anionic character of the macromolecule concerned or whether they exert more specific and perhaps more subtle biological effects. The purpose of this paper i s to consider these questions, in particular i n terms of sulphated macromolecules present in animal tissues. The p a r a l l e l aspects i n plants are no less important, bearing i n mind the location of sulphated polysaccharidic material i n c e l l wall structures, their potential role i n relation to water-retaining mechanisms and their capacity to interact with other macromolecules. Sulphated Glycosaminoglycans In animals, relevant macromolecules examined i n greatest detail have been the sulphated glycosaminoglycans (mucopolysaccharides) associated with connective tissues eg. chondroitin sulphates, keratosulphate, heparan sulphate, derman sulphate. In p r i n c i p l e , the sulphate ester groups are located i n defined positions on oligosaccharide chains of regular repeating sugar sequences and these i n turn are attached by a l k a l i -label linkages to a protein (Table I ) . Thus i n chondroitin 4-sulphate, sulphate ester groups are envisaged i n the ideal situation as being attached to C-4 of every N-acetylgalactosaminyl residue and to C-6 of the same aminosugars i n chondroitin 6-sulphate. Nevertheless considerable variations i n practice have been noted i n the actual extent of sulphate between chondroitin sulphate types of different biological o r i g i n . Chondroitin sulphate from shark cartilage, for example, exhibits the abnormally high sulphate content of 33.7% while that from bovine c o r t i c a l bone has 10.3% sulphate.
0-8412-0426-8/78/47-077-029$05.00/0 © 1978 American Chemical Society
Composition of glycosaminoglycans
D-glucosamine
D-gluco samine
D-galactose
D-glucuronic a c i d or L-iduronic acid
Keratan sulphate
Heparin
sulphate
D-glucuronic a c i d o r L-iduronic acid
D-galacto samine
L-iduronic acid or D-glucuronic a c i d
Dermatan sulphate
Heparan
D-galacto samine
D-glucuronic a c i d
Chondroitin 6-sulphate
D-gluco samine
D-galacto samine
D-glucuronic a c i d
Chondroitin 4-sulphate
D-gluco samine
D-glucuronic a c i d
Hyaluronic acid
D i s a c c h a r i d e repeating u n i t Hexosamine Hexuronic a c i d
Table I .
O-sulphate and N-sulphate
O-sulphate and N-sulphate
0-sulphate
0-sulphate
0-sulphate
0-sulphate
Sulphate
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
D-xylose, D-galactose
D-xylose, D-galactose
D-mannose, D-fucose, s i a l i c acid, D-galacto samine
D-xylose, D-galactose
D-xylose, D-galactose
D-xylose, D-galactose
Other sugar r e s i d u e s , i n c l u d i n g those i n the l i n k a g e r e g i o n
H M
>
d
>
κ! ϋ
w ο
> w
η
GO Ο
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
3.
K E N T ET AL.
Sulfate Ester Groups
31
I n c o n t r o v e r t i b l e such e s t e r sulphate can c o n t r i b u t e to the e l e c t r o p h o r e t i c a n i o n i c c h a r a c t e r , and under experimental c o n d i t i o n s a t l e a s t , endow the macromolecule with dye-binding p r o p e r t i e s . Studies on the induced c o t t o n e f f e c t s o f a n i o n i c dye-mucopolysaccharide complexes i n the a d s o r p t i o n band o f the dye eg. methylene blue (Stone, 1964* 1965) have been i n t e r p r e t e d on the b a s i s o f polymer conformations, i n d i c a t i v e of both random and h e l i c a l forms (Hirano and Onodera, 1 9 6 7 ) · Whereas c h o n d r o i t i n ( s u l p h a t e - f r e e ) e x h i b i t e d random conformation, c h o n d r o i t i n 4-sulphate ( l i k e derman sulphate and hyaluronate) had h i g h degrees o f h e l i c a l s t r u c t u r e s o f the L e f t Screw sense. By c o n t r a s t , c h o n d r o i t i n 6-sulphate, h e p a r i n and h e p a r i t i n sulphate were h e l i c a l conformations o f the R i g h t Screw sense. I n t e r e s t i n g l y , c h o n d r o i t i n polysulphate ( c h o n d r o i t i n 4 * 6 sulphate) had the dye-binding c h a r a c t e r i s t i c s o f c h o n d r o i t i n 4-sulphate. A d d i t i o n a l s u l p h a t i o n o f c h o n d r o i t i n 6-sulphate (to OH-4 o f the aminosugar r e s i d u e s ) on the other hand l e a d s to conformational i n v e r s i o n . I n the h e p a r i n s e r i e s , de Ν-sulphation o f t h a t m a t e r i a l o r o f h e p a r i t i n sulphate d i d not b r i n g about change o f conformation, though complete desulphation caused the h e l i c a l s t r u c t u r e to disappear. The primary s t r u c t u r e p l a y s a d e c i s i v e p a r t i n conformational determination, the l i n k e d p o s i t i o n o f each e s t e r sulphate being important i n r e l a t i o n to hydrogen-bonding c a p a b i l i t y . Elegant X-ray a n a l y t i c a l s t u d i e s by Rees (1969) and by A t k i n s and Laurent (1973) have e s t a b l i s h e d f i n e d e t a i l s o f ordered conformation o f these mucopolysaccharides. Detailed reviews o f these aspects have been presented by Kirkwood (1974) and Rees (1975). The presence o f e s t e r sulphate groups i n these d e f i n e d and r e i t e r a t e d p o s i t i o n s i n sequence nevertheless does not n e c e s s a r i l y impair the a c t i o n o f dégradative enzymes. H y d r o l y t i c endohexosaminidases eg. hyaluronidase a c t r e a d i l y on c h o n d r o i t i n 4 - and 6-sulphates, as on hyaluronate, g i v i n g corresponding d i s a c c h a r i d e and t e t r a s a c c h a r i d e products. In g e n e r a l , i t would be concluded t h a t i n these i n s t a n c e s the i n - b u i l d i n g o f e s t e r sulphates i n a r e g u l a r p e r i o d i c i t y does not seemingly i n f l u e n c e the metabolic s t a b i l i t y nor t h e i r immunological p r o p e r t i e s , but r a t h e r the macromolecular shape and, by i n f e r e n c e , t h e i r i n t e r - m o l e c u l a r a s s o c i a t i o n s . Sulphated G l y c o p r o t e i n s E s t e r sulphates are however widely found i n other s i t u a t i o n s , e s p e c i a l l y i n a wide v a r i e t y o f sulphated g l y c o p r o t e i n s (Table I I ) . These were f i r s t shown to e x i s t i n g a s t r o - i n t e s t i n a l e p i t h e l i a l mucins and c o r n e a l g l y c o p r o t e i n s . The degree o f sulphate here, too, i s v a r i a b l e , though a value
G-i tract
Human G a s t r i c carcinoma
Human G a s t r i c tissue
Human G a s t r i c juice
A.
Source
Sialic acid
5.8 3-2 3.1 3.8
2.5
2.9 1.3 2.3
8.5
Sulphate
2.1 3.8 6.5 7.1
5.1
4-3 4-4 4.9
1.8 7-4
21.1 1.4
28.9 30.2 28.5
13.6 10.2 10.2 32.2
13.6 10.2 10.2
34.1
-
22.6
16.2
17.3
Galactose
26.3 25.4 25.0 22.0
GlcN GalN
2.0 1.9 1.9 2.3
Hexosamine
36.2 35.8 32.8 33.2
18.2 17.3 15.4
Fucose Ref.
Kimoto e t a l (1968 )
) ) M a r t i n e t a l (1968)
M a r t i n e t a l (1967)
) ) Hakkinen e t a l (1965 ) )
(g/lOOg d r y wt)
Table l i a Composition o f E p i t h e l i a l Sulphated G l y c o p r o t e i n s
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
w
H
>
c!
X
« o
> o
submaxillary gland
References
Pig Colonic muco sa
1.3 3.0 6.5 7.4 7.4 8.8 7.0 5.5
+0 0.06 1.84
3.2 3.8 3.8 3.4
11.8 24-5
Sialic
52.3 51.2 48.1 21.3 22.4 21.4 29.3
5.6 3.2 5.2 11.2 8.8 21.4 5.5
( 2 ) Slomiary and Meyer (1972)
( 4 ) Inoue and Yosizawa (1966)
( 3 ) Coles and Kent (1977)
32.1
18.0 24.5
6.2 5.0 12.5
Hexosamine
Fucose
(1966)
acid
3 2 2 3
0.9 0.97 0.75
-
_
GlcN GalN
21.7 25.6 23.2 20.4
13.9 14.6 13.0
45
9.4 19.6
Galactose
L
)
(2)
(
8.0 ) 8.7 )
8.0 )
)
u
'
) (3)
)
(
Ref
55.4 ) , ) 40.0 )
Peptide
(g/lOOg d r y wt)
of E p i t h e l i a l Sulphated G l y c o p r o t e i n s (Pooled p r e p a r a t i o n s )
3.5
Sulphate
Composition
: (1) Katzman and E y l o r
Pig Duodenal tissue
Pig g a s t r i c mucosa
G-i t r a c t
Pig
Source
Table l i b .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
CO 00
-*
o Si
es
8"
C/3
M H W H
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
34
CARBOHYDRATE SULFATES
of about 2$ i s common i . e . about 20 sulphate residues per 100,000 d a l t o n s . Unlike the mucopolysaccharides, g l y c o p r o t e i n s show l i t t l e evidence of ordered sugar-repeating sequences and the task o f a l l o c a t i n g exact p o s i t i o n s to such sulphate residues i s c o n s i d e r a b l e . I n a study o f g l y c o p r o t e i n s (sulphate content between 2.8 and 5 · 9$) o f p i g g a s t r i c mucosa, Slomiany and Meyer (1972) showed that a t l e a s t one N - a c e t y l glucosamine residue was sulphate, a t p o s i t i o n 6 , and l o c a t e d i n c l o s e proximity to the peptide attachment ( F i g . l a ) . T h i s m a t e r i a l i s f r e e from u r o n i c and s i a l i c a c i d s . A s i m i l a r arrangement has been i n d i c a t e d i n the sheep e p i t h e l i a l g l y c o p r o t e i n i n which s i a l i c a c i d residues are a l s o present (Kent, 1 9 7 0 ) . ( F i g . l b ) . The p i g g a s t r i c g l y c o p r o t e i n e x h i b i t s strong (A 4- H) blood group a c t i v i t y and i t i s apparent that a s i n g l e sulphate e s t e r group remote from the immuno-determinant groups has no demonstrable e f f e c t on the blood group a c t i v i t y . The l a r g e m a j o r i t y o f sulphated g l y c o p r o t e i n s have not y e t been investigated i n s u f f i c i e n t d e t a i l to a s s i g n the s t r u c t u r a l p o s i t i o n of the sulphate r e s i d u e s . I n t h i s r e s p e c t , the chemical study o f 3 5 s - l a b e l l e d g l y c o p r o t e i n s obtained by biochemical i n c o r p o r a t i o n techniques, and w e l l c h a r a c t e r i s e d by customary p h y s i c a l means, o f f e r s s u b s t a n t i a l advantages. I t remains a matter f o r s p e c u l a t i o n whether i n c e r t a i n o f these cases the presence of the small number o f e s t e r sulphate groups nevertheless a c t as ' i n f o r m a t i o n a l b l o c k s ' e i t h e r of immunologically important s i t e s o r o f substrate s p e c i f i c i t y i n enzymic degradation. Semi-synthetic
Studies
Means o f gathering i n f o r m a t i o n about these important p o s s i b i l i t i e s can be envisaged i n other ways. I n p a r t i c u l a r , the e f f e c t s are open to i n v e s t i g a t i o n s o f i n t r o d u c i n g sulphate groups, ^ S - l a b e l l e d otherwise, i n t o a w e l l - c h a r a c t e r i z e d g l y c o p r o t e i n by chemical means. While i t must be i n e v i t a b l y expected t h a t m u l t i p l e s i t e s w i l l be e s t e r i f i e d even with low degrees o f s u l p h a t i o n , nevertheless s u f f i c i e n t l y s e l e c t i v e chemical and enzymic techniques are now a v a i l a b l e t o make e x p l o r a t i o n worthwhile. A p a r t i c u l a r study has been made o f the g l y c o p r o t e i n s obtained from pooled p i g duodenal t i s s u e by papain d i g e s t i o n and f r a c t i o n a t i o n i n i t i a l l y by i o n exchange ( B e r t i l l i n i e t a l . 1 9 7 1 ) · The i n i t i a l mixed glycopeptides had a sulphate content between 1.04$ and 1.11$ f o r a range o f successive p r e p a r a t i o n s , while the s i a l i c a c i d content v a r i e d between 1.9$ and 2 . 6 $ . F r a c t i o n a t i o n by a n i o n i c exchange chromatography (Watman DE52) was e l u t e d with sodium acetate b u f f e r followed by a sodium chloride gradient ( F i g . 2 ) . T h i s enabled s i x components to be o
r
Gal
3 )
GalNAc
I ?
Fuc
Fuc
(4)
?
Gal
(6) .Gal.
(6) 4 Gal.
X-CHAIN
Gal(44)
Fuc (16)
GalNAc
GalNAc
Gal Gal-
I T
GlcNAc 16 Gal Y-CHAIN
-(GlcNAc)
Sulfate (47)
a
sulfated glycoproteins
SER
OR
THREO
PEPTIDE
H)
Gal—i- G l c N A c — ^ G l c N A c — G a l — ^ - G l c N A c
6-SULFATE (3)
Suggested structure of the carbohydrate chains of hog stomach blood group (A +
H
Fuc I 2(
Fuc
(3)
Abbreviations: Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GalNAc, ^-acetylgalactosamine.
Figure lb. Proposed oligosaccharide structure of desialated colonic goblet cell glycoprotein H (sheep). Numbers in parentheses are number of residues per average molecule. For each polypeptide, 30 main X-chain oligosaccharides are present, each bearing two or three side Y-chains (taken from Kent (1970)).
Figure la.
(6)
G a l N A c — G a l — G l c N A c — Gal [2 ft
(4)
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
36
CARBOHYDRATE
SULFATES
separated (Table I I I ) . The p r i n c i p a l f r a c t i o n (A) was a nearn e u t r a l PAS-t- m a t e r i a l accounting f o r 45$ of the o r i g i n a l m a t e r i a l , f o l l o w e d by two l e s s e r , but more a c i d i c g l y c o p r o t e i n s (C and D). I n a d d i t i o n , a c h o n d r o i t i n sulphate f r a c t i o n (F) and h y a l u r o n i c a c i d (E) were p r e s e n t . Of the g l y c o p r o t e i n components, a l l three showed some (A and H) blood group a c t i v i t y and the t h i r d component (D) had i n a d d i t i o n an e s t e r sulphate content of 1.84$ (Table I V ) . I n a s t r u c t u r a l examination of the p r i n c i p a l glycopeptide A, a l k a l i n e borohydride cleaved the o l i g o s a c c h a r i d e r e s i d u e s , with concomitant d e s t r u c t i o n of s e r y l and t h r e o n y l residues of the peptide c h a i n and q u a n t i t a t i v e formation of N-acetylgalactosaminoL The o l i g o s a c c h a r i d e side chains were of a t l e a s t three types, t e r m i n a t i n g i n s i a l i c a c i d , fucose and g a l a c t o s e , attached to the peptide c h a i n by O - g l y c o s y l r e s i d u e s . The second g l y c o p e p t i d e (C ) d i f f e r e d from A notably by i t s higher content of s i a l i c a c i d s , w h i l s t glycopeptide (D) had both s i a l i c a c i d and sulphate groups w i t h i n i t . Though the s i t e s of s u l p h a t i o n (227 groups per molecule, m.wt. 3.5 x 10^) have not y e t been i d e n t i f i e d p r e c i s e l y , i t i s known from the work of Smith t h a t the groups are not i n the t e r m i n a l regions of the o l i g o s a c c h a r i d e side branches but i n those regions proximal to the carbohydrate-peptide j u n c t i o n s , as i n the other e p i t h e l i a l g l y c o p r o t e i n s mentioned e a r l i e r . Complete s u l p h a t i o n ( i . e . > 96$) o f mixed duodenal g l y c o p e p t i d e p r e p a r a t i o n s (or of the c o n t r i b u t i n g p u r i f i e d GLP-A o r GLP-C) has been achieved ( P r i n o , L i e t t i and P a g l i a l u n g a , 1971). Though the product i s reported to possess some a n t i coagulant a c t i v i t y i n v i t r o , and i t s b i o l o g i c a l p o t e n t i a l as an a n t i - u l c e r agent i s c o n s i d e r a b l e , the l a t t e r property i s common to a number of c h e m i c a l l y sulphated macromolecules eg. dextran sulphate ( R i c k e t t s 1952, R i c k e t t s and Walton 1 9 5 2 ) , amylopectin sulphate ( f o r example, San and Ryan 1 9 7 0 ) , h y a l u r o n i c a c i d sulphate ( P a n t l i t s c h k o et a l . 1951 )> but with the added advantage t h a t the parent p i g g l y c o p e p t i d e d e r i v e s from an e p i t h e l i a l system r e l a t e d to the ABO blood group system. ~Microtechniques have been devised f o r the S-sulphation of the mixed duodenal g l y c o p e p t i d e s , as w e l l as f o r the component f r a c t i o n s , u s i n g 3 5 SO^Cl i n p y r i d i n e . Near q u a n t i t a t i v e s u l p h a t i o n (> 96$ or a v a i l a b l e h y d r o x y l s i t e s ) produced a h i g h l y a n i o n i c d e r i v a t i v e (GLPS) i n which the sugar composition was i n other r e s p e c t s undisturbed. This material (and a l s o sulphated GLP-A) was a modest i n h i b i t o r of p u r i f i e d human and p i g pepsins i n v i t r o (Table V ) . I t a l s o was a powerful i n h i b i t o r of c e l l growth of Swiss 3T3 f i b r o b l a s t s and of c e l l adhesion. I t i s d o u b t f u l however whether t h i s p r o p e r t y i s s p e c i f i c to the d e r i v a t i v e and other r e l a t e d H
A l c i a n Blue
PAS
identity
neutral glycopeptide
16$
45$
neutral glycopeptide
C
A
sulphated glycopeptide
31$
D
3$
E
l 2
chondroitin sulphate e t c .
f o r about
hyaluronic a c i d (E-^)
E
(Component Β i s of low molecular weight and accounts 1$ of the i n i t i a l m a t e r i a l )
$ of i n i t i a l m a t e r i a l
Component
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
CARBOHYDRATE SULFATES
38
T a b l e IV* C o m p o s i t i o n o f P i g D u o d e n a l
Glycopeptides
Çtimoles/g. d r y Component
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
NANA NGNA Fucose Gal GalNAc GluNAc
) )
106
D
C
A ) )
342 772 1260 1140
wt)
230 199 812 1170 1140
) )
263 316 721 1240 926
( X y l , Mann, G l u c u r o n i c a c i d not detected)
Asp Thre Ser Glu Pro Gly Ala Val I-Leu Leu His Lys Arg Tyr Phe
55 567 310 85 369 63 151 93 17 66 64
16 39
ND ND
55 533 304 87 331 66 138 88 14 56 59 15 33
ND ND
49 711 290 66 447 67 72 53 34 41 35 12 17
ND ND
( C y s and M e t n o t Sulphate
l e s s than 0.3
7.4
227
detected)
3.
Sulfate Ester Groups
K E N T ET AL.
39
Ε
S o'
5
50m M Sodium Acetate 1-2M NaCI pH 4 0 —— •
A
CO
\
(/) g
ΟΙΟ-
Q _l < 005Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
^
lOmM Sodium Acetate pH 4 0
Λ ν/Λ α
o^S^
C
F
D
y^
100
500
400 ELUTION VOLUME (ML)
Figure 2. Fractionation of duodenal glycopeptides by ion exchange. in 5mL starting buffer was applied to a column of Whatman DE 52 (120 X 1.25) equilibrated with lOmM sodium acetate, pH 4.0 (starting ionic gradient terminating with 50mM sodium acetate, 1.2M sodium was applied. Flow rate, 10mL/hr.
Table V.
200 mg of GLP anion exchanger buffer). A linear chloride, pH 4.0
E f f e c t of sulphated duodenal glycopeptides on p u r i f i e d
pepsins
( i n c o l l a b o r a t i o n with Dr. W. H. T a y l o r ) H i g h l y p u r i f i e d p i g o r human pepsins were incubated a t 3 7 ° with glycopeptide
(2.5mg/ml).
30 min, pH 4 · 0 ( a c e t a t e ) ; haemoglobin s u b s t r a t e . Values expressed
at % of glycopeptide-free c o n t r o l .
glycopeptide
human * 118.6
native glycopeptide sulphate ( f u l l ) glycopeptide sulphate (33%)
Pig 112
substrate
91
72
inhibition
-
90
inhibition
(average o f 3 experiments)
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
40
CARBOHYDRATE SULFATES
p o l y s u l p h a t e s eg. dextran sulphate behaved s i m i l a r l y , both q u a l i t a t i v e l y and q u a n t i t a t i v e l y ( F i g . 3 ) towards f i b r o b l a s t s i n culture. M i l d a c i d i c h y d r o l y s i s r e s u l t s i n cleavage o f two s i a l i c a c i d d e r i v a t i v e s , separated by t . l . c . on c e l l u l o s e and i d e n t i f i e d as the tetra-O-sulphates o f N-acetylneuraminic a c i d and as the penta-O-sulphate o f N - g l y c o l l y l n e u r a m i n i c a c i d . Sulphated forms of fucose have not y e t been i d e n t i f i e d though presumably a r e cleaved simultaneously. N e i t h e r o f these products a r e o x i d i s e d by sodium metaperiodate though they may be detected by the Svennerholm procedure. Not s u r p r i s i n g , the f u l l y sulphated glycopeptide (GLPS 9 6 $ ) i s not a substrate f o r cholerae neuraminidase and there i s some evidence t h a t i t may be a noncompetitive i n h i b i t o r o f t h i s enzyme towards other s i a l o p r o t e i n s . The i n h i b i t i o n i s not considered t o be s p e c i f i c but r a t h e r a consequence o f the p o l y a n i o n i c c h a r a c t e r o f the substance. I t i s o f i n t e r e s t t o examine the s i t u a t i o n a r i s i n g from much lower degrees o f s u l p h a t i o n o f the g l y c o p e p t i d e and e m p i r i c a l l y two d e r i v a t i v e s r e p r e s e n t i n g 3 4 $ and 1 1 $ s u l p h a t i o n of a v a i l a b l e hydroxyl s i t e s have been prepared. The low s u l p h a t i o n d e r i v a t i v e (GLP-S 1 1 $ ) i s h y d r o l y s a b l e by d i l u t e s u l p h u r i c a c i d , with r e l e a s e o f s i a l i c a c i d s (NANA and NGNA) i n which predominantly one hydroxyl group i s r e p l a c e d by sulphate. (The d e r i v a t i v e s a r e o x i d i s e d by I 0 7 , suggesting t h a t the sulphate e s t e r i n NANA i s a t Cy o r C ^ j . T h i n - l a y e r chromatography o f the h y d r o l y s a t e showed the presence o f a t l e a s t three sulphates and i t appears l i k e l y t h a t a sulphated fucose i s a l s o r e l e a s e d . I t i s estimated t h a t 16$ o f the t o t a l sulphate content i s present i n s i a l i c a c i d and fucose t e r m i n a l r e s i d u e s . U n l i k e the f u l l y sulphated d e r i v a t i v e (GLP-S 9 6 $ ) , d e r i v a t i v e s with lower s u l p h a t i o n had l i t t l e e f f e c t on f i b r o b l a s t c e l l growth o r on p e p s i n a c t i v i t y . The sulphated d e r i v a t i v e (GLP-S 1 1 $ ) a l s o i s not a s u b s t r a t e f o r V. cholerae neuraminidase and indeed shows some i n h i b i t i o n o f the enzymic h y d r o l y s i s w i t h a known s u s c e p t i b l e substrate (Table V I ) . I t i s b e l i e v e d t h a t t h i s i s a competitive i n h i b i t i o n and a t t r i b u t a b l e t o the presence o f O-sulphate r e s i d u e ( s ) i n t e r m i n a l s i a l i c a c i d s , s i n c e the sulphated g l y c o peptide residue a f t e r m i l d a c i d i c h y d r o l y s i s was not such an inhibitor. I t i s o f i n t e r e s t t o c o n s i d e r whether the i n h i b i t i o n can be r e l i e v e d by metabolic i n t e r v e n t i o n o f a p p r o p r i a t e enzymes, and t h i s would suggest a p a r t i c u l a r r o l e f o r the sulphatases, lysosomal systems known t o be capable o f a c t i o n both on g l y c o p r o t e i n and g l y c o l i p i d carbohydrate sulphate e s t e r s . I n a p p r o p r i a t e c o n d i t i o n t h i s step c o u l d represent a f u r t h e r c o n t r o l mechanism r e g u l a t i n g the metabolic turnover o f important t e r m i n a l sugar r e s i d u e s . A p a r a l l e l s i t u a t i o n e x i s t s with 0 - a c e t y l d e r i v a t i v e s o f NANA and NGNA r e s i d u e s i n bovine, p o r c i n e and equine submaxillary gland g l y c o p r o t e i n s (reviewed
3.
Sulfate Ester Groups
KENT ET AL.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
2
-2
-I
Ο
+1
+2
Log (^g/ml) Glycopeptide Concentration
Figure 3.
Table VI
Effect of sulfated glycopeptides on 3T3 fibroblast growth
Sulphated D e r i v a t i v e s of P i g Duodenal Glycopeptide
(sodium s a l t s )
(g/lOOg dry wt)
glycopeptide
%
sulphate
-
degree of sulphation
fully sulphated
49 > 96%
5.0
2.3
Gal
24.8
13.4
Fuc
11.0
5.1
Hexosamines
37.5
20.1
NANA ) NGNA )
partly sulphated SI 14.2
partly sulphated S2 4.7 ca.ll$
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
42
CARBOHYDRATE
SULFATES
by Schauer, Buscher and C a s a l s - S t e n z e l , 1 9 7 4 ) · In. the n a t i v e m a t e r i a l those t e r m i n a l s i a l i c a c i d s c a r r y i n g a 4-O-acetyl s u b s t i t u e n t a r e reported to be i n s e n s i t i v e to V. cholerae neuraminidase and here a l s o an i n t e r e s t i n g r e g u l a t o r y r o l e may be e x e r c i s e d by d e - a c e t y l a s e s . The i n t a c t nature o f t e r m i n a l s i a l i c a c i d s i s now e s t a b l i s h e d as an important i n f o r m a t i o n a l s i g n a l r e g u l a t i n g c e r t a i n forms o f b i o l o g i c a l r e c o g n i t i o n of g l y c o p r o t e i n s . I n p a r t i c u l a r , t h i s new concept o f the r o l e o f carbohydrates i s i n v o l v e d i n r e g u l a t i n g the serum s u r v i v a l time o f plasma g l y c o p r o t e i n s (reviewed by Ashwell and M o r e l l 1 9 7 4 ) · Hydrolysis of t e r m i n a l s i a l i c a c i d s by the a c t i o n o f neuraminidase, even i n p a r t , exposes subterminal sugar galactose^and the consequent a l t e r a t i o n i n molecular i d e n t i t y leads to the removal of the g l y c o p r o t e i n by s p e c i f i c h e p a t i c b i n d i n g s i t e s (Lunney and Ashwell, 1 9 7 6 ; Kawasaki and Ashwell 1 9 7 6 ) . Thus any f u r t h e r m o d i f i c a t i o n of t e r m i n a l sugars by a d d i t i o n a l subs t i t u t i o n c l e a r l y has important i m p l i c a t i o n s f o r t h i s recogn i t i o n process. I t i s a p p r e c i a t e d t h a t as y e t , amongst the g l y c o p r o t e i n s , a d d i t i o n a l s u b s t i t u t i o n by s u l p h a t i o n r a r e l y occurs on e x t e r i o r sugar s i t e s . Presence of these e s t e r groups i n the i n t e r i o r p a r t s o f the carbohydrate side-branches nevertheless can be envisaged as having i n f o r m a t i o n a l s i g n i f i c a n c e of two k i n d s . The f i r s t aspect of t h i s hypothesis a k i n to the above s i t u a t i o n can be considered as i n f l u e n c i n g the s u s c e p t i b i l i t y of the monosaccharide concerned towards exoglycosidases i n the course of metabolic turnover. The second aspect i n v o l v e s the changed acceptor status o f a sulphated monosaccharide residue towards sugar n u l e o t i d e t r a n s f e r a s e s . The p o s s i b i l i t y e x i s t s t h a t these s p e c i f i c enzymes may w e l l d i s c r i m i n a t e between the non-sulphated and sulphated residues o f a g i v e n sugar w i t h i n a s i n g l e g l y c o p r o t e i n molecule with s i g n i f i c a n t a l t e r a t i o n i n the p a t t e r n s of b i o s y n t h e s i s o r r e s y n t h e s i s of o l i g o s a c c h a r i d e c h a i n s . Accumulated evidence suggests t h a t i n v i v o sugar residues i n the more e x t e r i o r p a r t s o f the g l y c o p r o t e i n s t r u c t u r e are more r e a d i l y exchangeable than the deeper i n t e r n a l regions o f the molecule. I n t h i s , O-sulphation may be one c o n t r i b u t i n g f eature. The hypothesis t h a t O-sulphation may have i n f o r m a t i o n consequences f o r synthesis and b i o s y n t h e s i s of g l y c o p r o t e i n s i s not s o l e l y r e s t r i c t e d to those processes. The extensive change i n a n i o n i c charge and the conformational e f f e c t o f i n t r o d u c i n g a s i n g l e sulphate e s t e r i n t o a carbohydrate residue i n v o l v e d i n an immunological determinant s i t e may be expected a l s o t o l e a d to a l t e r a t i o n o f antigen-antibody i n t e r a c t i o n s . The o v e r a l l evidence suggests f u r t h e r r o l e s f o r the p a r t
3.
K E N T ET AL.
Sulfate Ester Groups
43
played by low l e v e l s of s u l p h a t i o n i n a v a r i e t y o f processes. I t p o i n t s to the importance o f i d e n t i f y i n g p r e c i s e l y the p o s i t i o n s occupied by O-sulphates i n g l y c o p r o t e i n s and o f f i n d i n g new and s p e c i f i c means o f i n t r o d u c i n g such e s t e r s a t d e f i n e d p o s i t i o n s of o l i g o s a c c h a r i d e s . The sulphatases would appear to be enzyme systems of considerable p o t e n t i a l importance i n respect to c o n t r o l o f i n f o r m a t i o n a l content o f g l y c o p r o t e i n s .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch003
References Ashwell, G. and Morell, A.G. (1974) Advanc. Enzymol. 41 99-128 Atkins, E.D.T. and Laurent, T.C. (1973) Biochem. J. 133,605-606 Bertillini, G., Butti, Α., Piantanida, B., Prino, G., Riva, Α., Rossi, A. and Rossi, S. (1971) Drug Res. 21, 244-248 Hirano, S. and Onodera, K. (1967) Life Sciences 6, 2177-2183 Kawasaki, T. and Ashwell, G. (1976) J. biol. Chem. 251, 1296-1302 Kent, P.W. (1970) Exposés Ann. Biochem. Méd. Sér. 30, 98-120 Kent, P.W. (1974) in Topics in Gastroenterology II (ed.) S.C. Truelove and J. Trowell, Blackwell, Oxford, U.K. pp. 77-99 Kirkwood, S., (1974) Annu. Rev. Biochem. 43, 401-417 Lunney, J. and Ashwell, G. (1976) Proc. Nat. Acad. Sci. USA 73, 341-343 Pantlitscko, M., Schmid, J., Seelich, F. and Kaiser, E. (1951) Monatsh. Chem. 82, 380-386 Prino, G., Lietti, A. and Paglialunga, S. (1971) Drug Res., 21, 918-921 Rees, D.A., (1969) Advanc. Carbohydrate Chem. 24, 267 Ricketts, C.R. (1952) Biochem. J. 51, 129-135 Ricketts, C.R., and Walton, K., (1952) Chem. Ind. 869 Schauer, R., Buscher, H-P., and Casals-Stenzel, J. (1974) in Metabolism and Function of Glycoproteins ed. R.M.S. Smellie and J.G. Beeley Biochem. Soc. Symposium No.20 pp. 87-116 Slomiany, B.L. and Meyer, K., (1972) J. biol. Chem. 247, 5062-5070 Stone, A.L., (1964) Biopolymers 2, 315 Stone, A.L., (1965) Biopolymers 3, 617 Sun, D.C.H., and Ryan, M.L. (1970) Gastroeneterology 58, 756-761 Winterbourne, D.J. and Kent, P.W. (1977) Trans. Biochem. Soc. 5, 439-440 Yosizawa, Z. (1972) in Glycoproteins ed. A. Gottschalk pp. 1000-1018 Elsevier, Amsterdam RECEIVED February 6,
1978.
4 Studies on the Synthesis of Sulfur-Containing Glycolipids ("Sulfogylcolipids") ROY GIGG
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch004
Laboratory of Lipid and General Chemistry, National Institute for Medical Research, Mill Hill, London, NW7 1AA
A sulphur-containing l i p i d was f i r s t detected in brain by Thudichum (1) about one hundred years ago and in 1910 Koch (2) postulated that this l i p i d was a complex between a phospholipid and a sulphated cerebroside. Later Levene (3-5) obtained a sulphur-containing brain l i p i d free from phosphate but it was not until 1933 that Blix (6) obtained a pure sample for which the analytical data indicated that it was a sulphate ester of a cerebroside (1). The presence of the sulphate group on the 3-position of the galactose residue was established in 1962 by Yamakawa (7-8) and Stoffyn (9) by methylation studies and by showing that the compound was stable to periodate oxidation. The β - c o n f i g u r a t i o n of the galactosidic-linkage was established by degradative studies (10) and thus the complete structure (11) of the sulphate ester of cerebroside ("sulphatide") was estab lished. (For reviews see references 11-14). Interest in the sulphatides has increased considerably since the demonstration (15-16) that these compounds accumulate in tissues in the inherited disease known as metachromatic leukodystrophy. This accumulation is due to the deficiency of a sulphatase which normally degrades the sulphatide (11) to a cerebroside (1). In 1963, Martensson (17) isolated a new sulphated l i p i d , from human kidney, which contained both glucose and galactose and this was later (18,19) characterised as the sulphate ester (IV) of the lactosyl ceramide (III). Compound (IV) has also been detected in testicular tissue (20). Another ceramide-contaiηing sulphoglycolipid was detected in hog gastric mucosa in 1974 (2J_) , and this was identified as a triglycosyl ceramide sulphate with the probable structure (VI). The trigly cosyl ceramide (V) is a normal tissue constituent and accumulates in tissues in Fabry's disease due to the deficiency of an α - g a l a c t o s i d a s e . In 1972 a new sulphoglycolipid was reported to be a major component of the glycolipids of mammalian testes and spermatozoa (22-24). This l i p i d ("seminolipid ) differed from the known M
0-8412-0426-8/78/47-077-044$05.75/0 ©
1978 A m e r i c a n C h e m i c a l Society
Sulfur-Containing
GiGG
Glycolipids
CU oH L
Ho
Y-o ο
— CHj. H-COH
HO
HO
CM (I
0)
H-C
*o
©H
H
I4C
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch004
(\v0
14. c - ÎS/HCO
— ΟΙ,
HO Me * C
CvtO
QU
ι
CW-OCvUCH.-ew, O K O C ^ C ^ ^ i ι I H-C-oa^cH-.cwMef K - c - o c ^ c ^ c H - ^ e -
Cuxv)
ι
I
R- C o C v V C W . C W - M e f μ · C o H
(
ο -*
Ο
"" 5
6
5
7
1. H"
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch006
1
THF
2. NaOMe
—ο NH
NH
C
D.S. 0.35 by N H Figure 15.
Preparation of 2-amino-2-deoxyamylose of d.s. 0.35
Properties Ninhydrin:
NH
( aid i toi
acetates
from
Soluble
H 0 ,Me SO
Glc
74%
acid
GlcN
23%
2
0.35)
Analysis positive
Jodine: blue complex in
dilute
Aminated amylose (D.S.
2
Aminated amylose
2
I.r,
:
2
2
Ή n.m.r
base
no NHAc,
δ 5.34 ( H - l of GlcN),
by DCC route
5.25 ( H - l
of GlcN)
hydrolyzate)
ManN
3%
AJIN-3 0 % GlcN-3
0%
Mol. wt. : 4 , 0 0 0 - 20,000 ISephadex ID Figure 16.
G - 2 5 , G-75)
7xlO" M (L-I2I0 cells) 6
5 0
Characterization and properties of aminated amylose
Sulfated
HORTON AND USUI
Gly cosaminogly cans
CH OSO~Na
CHUOH
+
2
CHgOSO^Na +
so? Me SO 2
dialysis (Na D.S.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch006
[ex]
salt)
0.35 + 168 ( H 0) 2
NHSO~Na D.S. 0.35 by
sulfoamino
D.S.
sulfate
1.8
by
Toluidine Blue test: positive Ninhydrin test: negative All primary OH sulfated [ C nmr] Mol. wt. 3,000 - 20,000 Anticoagulant activity* 45 IU/mg ,3
Figure 17.
OSiMe Figure 18.
Sulfation of aminated amylose
3
OSiMe
3
OH
Preparation of 6-O-acetylamylose
+
λ
and Ε η. m. r. a n a l y s i s
1
- Superlose 39 +55^.
- Superlose 1^997^.
trace
U$
k
o f reduced, d e t r i t y l a t e d product.
trace
1$
3$
- By gel-permeation chromatography o f reduced, d e t r i t y l a t e d product.
C
99$
20$
1:0.25
1 3
95$
35$
2:0. 5
- Supported by
93$
80$
h:l
2^
21$
h%
75$
R e s u l t s of g. 1. c. a n a l y s i s — Man All Glc
D.S. by oximation
70$
2
2
5:1
3
DCC/CF C0 H per mol.
3
Analysis of D C C — C F C 0 H - O x i d i z e d 6-O-Tritylamylose
1*
Expt. no.
Table I.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch006
+ +
~ 20,000 ~ 20,000 35,000
Iodine
8,000
Mol. vrt. —
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch006
6.
HORTON AND usui
Sulfated
Gly cosaminogly cans
111
Reduction of the l a t t e r product by diborane proved t o be a much more s a t i s f a c t o r y method f o r i n t r o d u c i n g the amino group than the sequence p r e v i o u s l y used t h a t i n v o l v e d d i r e c t r e d u c t i o n of the oxime with l i t h i u m aluminum hydride. The sequence (Figure 15) gave, a f t e r d e t r i t y l a t i o n , an aminated amylose whose degree of s u b s t i t u t i o n corresponded t o the o r i g i n a l oxime content of the precursor, and the p r o p e r t i e s of the keto products at d i f f e r e n t degrees of s u b s t i t u t i o n and as obtained by d i f f e r e n t means of p r e p a r a t i o n are shown i n Table I. A c i d h y d r o l y s i s of the aminated amylose showed that the net amination had been achieved with high r e g i o - and stereoselectivity. At a d. s. l e v e l of 0.35, e s s e n t i a l l y a l l of the amino groups had become i n c o r p o r a t e d at p o s i t i o n 2 i n the D-gluco c o n f i g u r a t i o n ; no s i g n i f i c a n t amino sugar components a r i s i n g from o x i d a t i o n at C-3 were detected i n the product at t h i s degree of s u b s t i t u t i o n . D e t r i t y l a t i o n of the product was r e a d i l y achieved by use of methanolic hydrogen c h l o r i d e followed by treatment with sodium methoxide i n methanol to remove the r e s i d u a l 0 - a c e t y l groups. The product (Figure 16) was r e a d i l y s o l u b l e i n water, i n d i l u t e a c i d , and a l s o i n d i l u t e a l k a l i , s t i l l shewed the i o d i n e - s t a i n i n g a b i l i t y c h a r a c t e r i s t i c of amylose, but a l s o showed the n i n h y d r i n r e a c t i o n c h a r a c t e r i s t i c of the presence of amino groups; the i n f r a r e d spectrum, showing absence of carbonyl absorption, e s t a b l i s h e d t h a t no migration of a c e t y l groups from oxygen t o n i t r o g e n had occurred during the s a p o n i f i c a t i o n step. F i g u r e 17 shows the r e s u l t s of s u l f a t i o n of t h i s aminated amylose by use of dimethyl s u l f o x i d e — s u l f u r t r i o x i d e . This product, obtained i n 7^$ y i e l d a f t e r d i a l y s i s , was s o l u b l e i n water, gave a negative n i n h y d r i n t e s t f o r f r e e amino groups, and a p o s i t i v e T o l u i d i n e Blue t e s t f o r sulfoamino groups. Its anticoagulant a c t i v i t y , as assayed with sheep plasma, was I n t e r n a t i o n a l U n i t s p e r m i l l i g r a m , namely about hO^o of t h a t of commercial heparin. The C n.m. r. spectrum of the product showed that the primary a l c o h o l groups were e s s e n t i a l l y completely s u l f a t e d , because the CH resonance normally occurring near 6 l . 5 p. p.m. was s h i f t e d downfield by about 6 p. p. m. by the s u b s t i t u e n t e f f e c t of the s u l f a t e groups. The product was q u i t e p o l y d i s p e r s e , and i t s molecular-weight range (3,000-20,000) i n d i c a t e d that some measure of degradation had occurred during the t o t a l sequence u t i l i z e d . Approximately one h a l f of the m a t e r i a l i n t h i s product had a molecular weight below the range considered optimum f o r heparin a c t i v i t y . Continuing work i n our l a b o r a t o r y i s concerned with the f r a c t i o n a t i o n of the m a t e r i a l j u s t described and assay of the anticoagulant a c t i v i t y of products containing t h e i r major component i n the 10 t o 12,000 molecular weight range, with v a r i o u s l e v e l s of amination at the C-2 p o s i t i o n . In a f u r t h e r development of p o t e n t i a l u t i l i t y ( F i g u r e 18) a procedure has been e s t a b l i s h e d (15) f o r s p e c i f i c 6 - s u b s t i t u t i o n of amylose by an a c e t y l group; l 3
2
CARBOHYDRATE
112
SULFATES
t h i s 6-0-acetylamylose and analogous primary monoesters of p o l y s a c c h a r i d e s may prove more u s e f u l than the t r i t y l ethers as s t a r t i n g p o i n t s f o r s y n t h e s i s of heparin analogs. Acknowledgments This work was supported by Grant No. HL-11U89 from the N a t i o n a l Heart, Lung, and Blood I n s t i t u t e , N a t i o n a l I n s t i t u t e s of Health, Department of Health, Education, and Welfare, Bethesda, Md. 2001U.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch006
Literature Cited 1 Jeanloz, R. W., in W. Pigman and D. Horton, Eds., "The Carbohydrates", 2nd ed., Vol. IIB, pp. 609—615, Academic Press, New York, 1970; Lindahl, U., MTP Int. Rev. Sci. Ser. Two, Vol. 7, Carbohydr. (1976) 283—312. 2 Jaques, L. Β., Methods Biochem. Anal. (1977) 24, 203—312; Muir, Η., and Hardingham, Τ. Ε., MTP Int. Rev. Sci. Ser. One, Vol. 5 Biochem. Carbohydr. (1975) 153—222. 3 Johnson, E. A. and Mulloy, Β., Carbohydr. Res. (1976) 51, 119— 127. 4 Hőők, Μ., Lindahl, U., Bäckstrőm, G., Malmstrőm, A., and Fransson, L. -Å., J. Biol. Chem. (1974) 249, 3908—3915. 5 Wolfrom, M. L., Vercellotti, J. R., and Horton, D., J. Org. Chem., (1964) 29, 540—550; Wolfrom, M. L., El Khadem, H. S., and Vercellotti, J. R., ibid. (1964) 29, 3284—3286; Wolfrom, M. L., Tomomatsu, Η., and Szarek, W. Α., ibid. (1966) 31, 1173—1178. 6 Wolfrom, M. L., Honda, S., and Wang, P. Υ., Carbohydr. Res. (1969) 10, 259-265. 7 Hovingh, P., and Linker, Α., Biochem. J. (1977) 165, 287—293; but see also Silva, Μ. Ε., Dietrich, C. P., and Nader, Η. Β., Biochim. Biophys. Acta (1976) 437, 129—141. 8 Perlin, A. S., Mackie, D. Μ., and Dietrich, C. P., Carbohydr. Res. (1971) 18, 185—194. 9 Nieduszynski, I. Α., and Atkins, E. D. T., Biochem J. (1973) 135, 729—731. 10 Horton, D., Liav, A., and Toman, R., unpublished data. 11 Wolfrom, M. L., and Shen Han, Τ. -Μ., J. Am. Chem. Soc. (1959) 81, 1764—1766. 12 Whistler, R. L., and Kosik, Μ., Arch. Biochem. Biophys. (1971) 142, 106—110. 13 Horton, D., and Just, Ε. Κ., Carbohydr. Res. (1973) 29, 173— 179. 14 Horton, D., and Just, Ε. Κ., Carbohydr. Res. (1973) 30, 349— 357. 15 Horton, D., and Lehmann, J., Carbohydr. Res. (1978) 61, 553-556. RECEIVED
M a y 8,
1978.
7 Heparin Derivatives of High Molecular Weight L . M E S T E R , A . A M I T A M A Y A , and M . M E S T E R
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-Sur-Yvette, France
Many attempts have been made in the last two deca des (1-6) to modify the s t r u c t u r a l features of the hepa r i n molecule (7,8) in order to produce changes in i t s b i o l o g i c a l a c t i v i t i e s (9,12), but only very few, to mo dify the size of the molecule (10,11,13). High molecu lar weight heparin preparations are now obtained through methacrylation of heparin and polymerization of the he parin methacrylate monomer. Methacrylation and polymerization Heparin (0.1 mMol) is dissolved in 0.5 Ν sodium hydroxide solution and methacryl chloride (4 m M o l s ) is added with s t i r r i n g at room temperature and then heated to 80°C for 2 hours. The solution is neutralized with acetic acid and evaporated under reduced pressure. The heparin methacrylate ester (Figure 1) is poly merized by heating with a z o d i i s o b u t y r o n i t r i l e as cata lyst in 1,4-dioxane solution at pH = 5. The polymeriza tion is stopped by adding hydroquinone and the solution is evaporated under reduced pressure. Operating in this way, the main product is a water soluble heparin methacrylate polymer having a molecular weight of about 40.000, as shown by u l t r a c e n t r i f u g a t i o n . The molecular weight of the initial heparin being 18.000, the polymer is a dimer of heparin. The polymerized hepa r i n is isolated from unchanged heparin by passage through a Sephadex G-200 column, equilibrated with an aqueous ammonia solution to pH = 8. The heparin-rich fractions are detected by their methacromatic effect with toluene blue. The fractions containing the water soluble heparin polymer are l y o p h i l i z e d and investigated by u l t r a c e n t r i fugation.
0-8412-0426-8/78/47-077-113$05.00/0 ©
1978 A m e r i c a n C h e m i c a l Society
Figure 1.
Methacrylated heparin segment
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
(73
Η Μ
>
d
Η Μ
ω
ο
>
ο
I—«
7.
Heparin
MESTER E T A L .
Derivatives
115
Water i n s o l u b l e m e t h a c r y l a t e d h e p a r i n p o l y m e r s are o b t a i n e d when more m e t h a c r y l c h l o r i d e i s u s e d f o r e s t e r i f i c a t i o n and when t h e p o l y m e r i z a t i o n i s c a r r i e d o u t a t pH = 3. The i n s o l u b l e h e p a r i n p r e p a r a t i o n s a r e w a s h e d t h r e e t i m e s w i t h i c e c o l d w a t e r , c e n t r i f u g a t e d and l y o p h i l i z e d . The m o l e c u l a r w e i g h t o f t h e i n s o l u b l e h e p a r i n p o l y m e r s i s h i g h e r t h a n 2 0 0 . 0 0 0 . The w a t e r i n s o l u b l e p o l y m e r s may be u s e d f o r c o a t i n g m e t a l s u r f a c e s w i t h l a y e r s showing a n t i t h r o m b i c activity.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
Ultracentrifugation U l t r a c e n t r i f u g a t i o n o f h e p a r i n ( I ) and o f m e t h a c r y l a t e d h e p a r i n p o l y m e r ( I I ) was c a r r i e d out i n a s u c r o s e g r a d i e n t o f 5 % t o 20 %, i n SPINC0 C e n t r i f u g (41.000RPM, 30 h o u r s , 2 ° C ) , u s i n g s e r u m a l b u m i n (SA) and c y t o c h r o m (CY) as i n t e r n a l r e f e r e n c e s . On ' F i g u r e 2, f r a c t i o n I i s h e p a r i n w i t h a c o n s t a n t o f s e d i m e n t a t i o n S = 2 c o r r e s p o n d i n g to a m o l e c u l a r w e i g h t o f 18.000, f r a c t i o n I I i s a p o l y m e r o f m e t h a c r y l a t e d h e p a r i n , i s o l a t e d on S e p h a d e x G-200 c o l u m n and s h o w i n g a s e d i m e n t a t i o n c o n s t a n t S = 4, w h i c h c o r r e s ponds to a m o l e c u l a r w e i g h t of about 40.000. C o p o l y m e r i ζat i o n C o p o l y m e r i z a t i o n of m e t h a c r y l a t e d h e p a r i n with v i n y l o r m e t h a c r y l monomers i s an u n i q u e m e t h o d to c h a n g e t h e g e o m e t r y and p h y s i c o - c h e m i c a l p r o p e r t i e s o f t h e h e p a r i n m o l e c u l e . F i g u r e 3 shows : A. a f r a g m e n t o f t h e m e t h a c r y 1 a t e d h e p a r i n p o l y m e r and _B. a f r a g m e n t o f a c o polymer of m e t h a c r y l a t e d h e p a r i n w i t h b u t y l m e t h a c r y l a t e . C o p o l y m e r i z a t i o n of m e t h a c r y l a t e d h e p a r i n w i t h v i n y l laur a t e gave l i p o s o l u b l e p o l y m e r s . Copolymerization with r e t i c u l a n t s , like divinylbenzene or Ν , Ν - m e t h y 1 e n e b i s - a c r y l a m i d e i s e s p e c i a l l y e f f e c t i v e to change the geometry of the p o l y m e r i z e d he parin molecule. T
Biological
activities
of
the
polymers
One o f t h e most i m p o r t a n t c u r r e n t a i m s f o r c h e m i c a l m o d i f i c a t i o n of the s t r u c t u r e of h e p a r i n i s the d i s s o c i a t i o n o f i t s a n t i t h r o m b i c and a n t i l i p e m i c a c t i v i t i e s . A d e c r e a s e i n t h e f i r s t a n d / o r an i n c r e a s e i n t h e s e c o n d has b e e n o b s e r v e d e a r l i e r by p a r t i a l h y d r o l y s i s (4^) , p e r i o d a t e o x i d a t i o n (6^), i r r a d i a t i o n (.5) o r m o d i f i c a t i o n o f t h e N - s u l f ο g r o u p s (2^^3) . A s i m i l a r d i s s o c i a t i o n o f t h e two a c t i v i t i e s i s r e p o r t e d t h r o u g h p o l y m e r i z a t i o n and c o p o l y m e r i z a t i o n methacry1ated heparin.
now of
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
116
Figure 2. IJltracentrifligation in sucrose gradient 5-20% (Spinco, 41.000 RPM, 30 hr, 2°C); heparin (I) and methacrylated heparin polymer (II).
CHI CH - C I CO - HEPARIN
CHI CH - C I CO - HEPARIN
CHI CH - C (!o - HEPARIN
CHI CH - C (!o-0-CH CH CH CH
3
0
η Q
Figure 3.
2
3
?
2
2
2
2
(A) Polymer of heparin methacrylate; and (B) co-polymer of heparin methac rylate with butyl methacrylate
3
7. mester et al.
Heparin Derivatives
117
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
Table I shows thrombin-time and anti1ipemic a c t i v i t y of the methacrylated heparin polymer (II) and of the copolymer of methacrylated heparin with butyl methacrylate ( I I I ) , compared with the corresponding values obtained with heparin (I) in rats by intravenous i n j e c tion of 1 mg/kg doses of the compounds. A l l samples were dissolved in physiological sodium chloride s o l u t i o n . Polymer (II) shows an increased antithrombic a c t i v i t y of short duration and a decreased antilipemic a c t i v i t y . The butyl methacrylate copolymer (III), distinguished i t s e l f through a considerably increased antilipemic a c t i v i t y with s l i g h t l y decreased antithrombic a c t i v i t y . Similar results were obtained through intravenous administration of 2 mg/kg doses of the compounds in rabb i t s , as shown in Table I I . In subcutaneous administration (5 mg/kg) most of the polymers and copolymers show a h e p a r i n - l i k e a c t i v i ty, however, their antilipemic a c t i v i t y was decreased or considerably delayed. C i r c u l a r dichroism measurements 14 C i r c u l a r dichroism data of heparin (I), of methacrylated heparin polymer (II) and of the copolymer of methacrylated heparin with butyl methacrylate (III) in water solution are shown on Figure 4, measured with a "Dichrograph-II" JOUAN, P a r i s . In both polymers (II) and ( I I I ) , the (+) and (-) Cotton-effects are increased, when compared with heparin. However, for the polymer (II) the increase of the (-) Cotton-effect is greater (110 %) than the increase of the (+) Cotton-effect (69%). The reversed phenomenon is observed for the copolymer (III) . These changes in the Cotton-effects are due probably to a change in the geometry of the polymerized heparin molecule with methacrylate and/or with butyl methacrylate. This observation should also be taken in consideration to explain the dissociation of the antithrombic and antilipemic a c t i v i t i e s of the heparin polymers. Acknowledgement The authors are grateful to the Hoffmann-La Roche Co., Basle, Switzerland, for testing the heparin polymers . Abstract Heparin methacrylate is polymerized in 1,4-dioxane solution by heating with a z o d i i s o b u t y r o n i t r i l e as cata-
Heparin polymer
II.
10.5
14.5
11.2
10 m i n .
THROMBIN
TABLE I I
7.5
7.5
9.2
7.3
8.8
180 m i n .
IN SECOND
60 m i n .
TIME
30
1 7
methacrylate
Roche
+ Quick s
T
method
using
4.3
4.6
4.3
0 min.
THROMBIN
4.7
4.9
5.5
16 E / m l t h r o m b i n
6.4
14.0
8.9
0 min.
20
1 2
20
120 m i n .
ACTIVITY 20 m i n .
ANTILIPEMIC
solution
120 m i n .
IN SECOND
20 m i n .
TIME
180 m i n .
OF 2 mg/kg
8
1 8 2
60 m i n .
1 2
1 mg/kg
ACTIVITY
OF
10 m i n .
ANTILIPEMIC
INJECTION
A C T I V I T Y AND THROMBIN TIME AFTER INTRAVENOUS I N J E C T I O N HEPARIN OR HEPARIN POLYMER IN RABBITS
Copolymer of h e p a r i n methacrylate with butyl methacrylate
Heparin
COMPOUNDS
I.
III.
methacrylate
Roche
ANTILIPEMIC
I
A C T I V I T Y AND THROMBIN TIME AFTER INTRAVENOUS HEPARIN OR HEPARIN POLYMER IN RATS
Copolymer of h e p a r i n methacrylate with butyl methacrylate
Heparin polymer
II.
III.
Heparin
I.
COMPOUNDS
ANTILIPEMIC
TABLE
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
H
>
C/3 r
>
d H M
Hi
w ο Κ
>
ο
MESTER E T A L .
Heparin
Derivatives
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
+ 110%
ηm
Figure 4. Circular dichroism data in water (0.75 mg/mL) of heparin (I), methacryhted heparin polymer (II), and co-poly mer of methacryhted heparin with butyl methacrylate (III)
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch007
120
carbohydrate sulfates
l y s t . Depending on the degree of polymerization, solu ble of gelatinous heparin preparations of high molecu lar weight are obtained, and separated on a column of Sephadex G-200 from unchanged heparin. A higher degree of polymerization of heparin methacrylate with alkyl methacrylates or v i n y l derivatives resulted in l i p o s o luble heparin preparations. Copolymerization with such r e t i c u l a n t s as divinylbenzene or Ν,N'-methylene-bisacrylamide changed completely the geometry of the molecule. C i r c u l a r dichroïsm measurements were used to follow the structural change of heparin methacrylate polymer and of i t s copolymer with butyl methacrylate. Some of the high molecular weight heparin preparations show a d i s s o c i a tion between the anticoagulant and antilipemic a c t i v i ties of heparin : the antithrombic a c t i v i t y decreased, while the antilipemic a c t i v i t y increased considerably or remained unchanged. Insoluble heparin preparations can be used for coating of surfaces. Literature cited 1. Foster A . B . and Huggard A.J., Adv.Carbohydr.Chem., 1955, 10, 335, Acad.Press, New-York. 2. Velluz L., Plotka C. and Nominé G . , Compt.Rend.Acad. Sci.Fr., 1958, 247, 2203. 3. Velluz L., Nominé G. and Mathieu J., Bull.Soc.Chim. Biol., 1959, 41, 415. 4. Nominé G . , Bucourt R. and Bertin D . , Bull.Soc.Chim. Fr., 1961, 561. 5. Adams S . S . , Heathcote B.V. and Macey P.E., J.Pharm. Pharmacol., 1961, 13, 240. 6. Inch T . D . , Ph.D.Thesis, Birmingham , 1963 . 7. Jacques L.B., Kavanagh L . W . , Mazurek M. and P e r l i n A . S . , Biochem.Biophys.Res.Comm., 1966, 24, 447. 8. P e r l i n A . S . , Ng Ying Kin N . M . K . , Bhattacharjee S.S. and Johnson L.F., Can.J.Chem., 1972, 50, 2437. 9. Jeanloz R.W., in "The Carbohydrates-Chemistry and Biochemistry" 2B, p.589, Ed. by Pigman W., Horton D. and Herp Α . , Acad.Press, New-York and London (1970). 10. Patat F. and E l i a s H., Naturwiss, 1959, 46, 322. 11. Laurent T.C., Arch.Biochem.Biophys., 1961, 92, 224. 12. Kiss J., in "Heparin-Chemistry and C l i n i c a l Usage" p . 3 , Ed.by Kakkar V . V . and Thomas D . P . , Acad.Press, New-York and London , 1976 . 13. Horner A . A . in "Heparin-Chemistry and C l i n i c a l Usa ge" p.37, Ed.by Kakkar V . V . and Thomas D . P . , Acad. Press, New-York and London, 1976 . 14. Stone A.L., in "Meth.Carbohydr.Chem.", 7, p.120, Ed.by Whistler R . L . and BeMiller J.N., Acad.Press, New-York and London , 1976 . Received February 6, 1978.
8 Enzymatic Formation and Hydrolysis of Polysaccharide Sulfates K A L Y A N K. DE, K A Z U H I K O Y A M A M O T O , and R O Y L . W H I S T L E R
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Department of Biochemistry, Purdue University, Lafayette, I N 47907
Naturally occuring polysaccharide sulfate esters are widely distributed. These high molecular weight anionic polymers possess rheological and complexing properties that have drawn the attention of industrial interests and lead to extensive commerciall i z a t i o n of several of the polysaccharides. This, in turn, has influenced fundamental and application research to bring about a better understanding of the behavior of hydrocolloids. The next step i s a rational design and development of polysaccharide sulfates to more perfectly serve practical needs. The great bulk of natural occurring polysaccharide sulfates are found in seaweeds where they serve structural functions and possibly act as ion exchange agents and natural absorbents to hold large quantities of water for proper functioning of the sea plant. While normally water soluble, the polysaccharides are retarded from escape into the enveloping sea by the matrix character of the plant c e l l w a l l . Man has extracted these polymers and made use of their highly viscous nature and their gel forming properties. In addition, use i s made of their unique characteristic of combining with protein to produce complexes such as the useful one between carrageenan and the protein in chocolate to maintain suspension uniformity in chocolate milk. Other sulfated polysaccharides are widely distributed in animal tissues where they again serve a water holding use, provide emolliency, l u b r i c i t y and complexing characteristics. Heparin serves a special function in the control of blood coagulation. It can be expected that sulfated, and perhaps phosphorylated polysaccharides, w i l l develop greater pharmaceutical and industrial applications. Applications would be f a c i l i t a t e d by finding techniques by which sulfate-groups could be inserted into and removed from polysaccharides by expectedly low cost and surely the more specific means provided by enzymes. The present review is a summary of the existing knowledge of enzymes that transfer sulfate to ester positions in polysaccharides and of those 0-8412-0426-8/78/47-077-121$06.75/0 ©
1978 A m e r i c a n C h e m i c a l Society
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
122
CARBOHYDRATE SULFATES
enzymes t h a t c a t a l y z e s u l f a t e e s t e r h y d r o l y s i s . Although l i t t l e exact i n f o r m a t i o n i s p r e s e n t l y a v a i l a b l e , the e x c e l l e n t work so f a r done points to the l i k e l i h o o d of r a p i d f u r t h e r development. With proper a p p l i c a t i o n of e v o l v i n g i n f o r m a t i o n , p r a c t i c a l use may w e l l be made of s u l f a t e e s t e r forming and h y d r o l y z i n g enzymes. In the enzymatic formation of s u l f a t e e s t e r s , the s u l f a t e group i s t r a n s f e r r e d from a donor s u b s t r a t e to a polysaccharide acceptor. Only three donor substrates have been i d e n t i f i e d . Ascorbate 2 - 0 - s u l f a t e and adenine 3'-0^-phosphate-5'-0-phosphos u l f a t e are two n a t u r a l donors and p-nitrophenyl s u l f a t e i s a s y n t h e t i c donor. A d d i t i o n a l s y n t h e t i c donors may soon be designated. S u l f a t e t r a n s f e r from j j - n i t r o p h e n y l s u l f a t e and from ascorbate 2 - 0 - s u l f a t e r e q u i r e the presence of ATP as a c o f a c t o r and, hence, adenine 3'-0-phosphate-5'-0-phosphosulfate (PAPS) may be the u n i v e r s a l designate intermediate and s o l e donor f o r a l l s u l f a t e t r a n s f e r a s e s . When other donors are present they presumably i n t e r a c t with ATP through the c a t a l y t i c i n f l u e n c e of two a d d i t i o n a l enzymes to provide PAPS. S u l f a t a s e s capable of h y d r o l y z i n g the h a l f - e s t e r s u l f a t e l i n k a g e to carbohydrates have been observed s i n c e 1931. The group o f esterases t h a t hydrolyze s u l f a t e linkages i n a v a r i e t y of simple sugar s u l f a t e s are termed g l y c o s u l f a t a s e s (sugar s u l f a t e s u l f o h y d r o l a s e s Ε C. 3.1.6.3). S u l f a t a s e s capable of h y d r o l y z i n g s u l f a t e linkages i n polysaccharide s u l f a t e s are named a f t e r t h e i r s u b s t r a t e , as f o r example, chondrosulfatases hydrolyze c h o n d r o i t i n s u l f a t e s , and c e l l u l o s e s u l f a t a s e hydrolyzes c e l l u l o s e s u l f a t e s . The s u l f a t a s e s may be completely s u b s t r a t e s p e c i f i c even as to l o c a t i o n of the s u l f a t e group, but some are not f u l l y s u b s t r a t e s p e c i f i c since apparently a s i n g l e enzyme can hydrolyze both charonin (charonan) s u l f a t e and c e l l u l o s e s u l f a t e . A l l s u l f a t a s e s are a b s o l u t e l y s p e c i f i c f o r the s u l f a t e group. The enzymes are obtained from a v a r i e t y of sources such as m i c r o b i a l , molluscan and higher animals. None have been observed i n higher p l a n t s . Enzymatic S u l f a t i o n Enzymatic s u l f a t i o n of polysaccharide i s u s u a l l y e f f e c t e d through the t r a n s f e r of s u l f a t e from a d e n i n e - 3 ' - p h o s p h o - 5 ' phosphosulfate (3'-PAPS) i n a r e a c t i o n c a t a l y z e d by s u l f o t r a n s f e r ase [E C. 2.8.2] as shown o r i g i n a l l y by F. D'Abramo and F. Lipmann (1_). The process of s u l f a t i o n w i t h i n o r g a n i c s u l f a t e proceeds i n several s t e p s . F i r s t i s the a c t i v a t i o n of s u l f a t e to form adenine-5'-phosphosulfate. This i s immediately f o l l o w e d by phosphorylation at the 3 ' - p o s i t i o n to produce adenine 3'-phospho5 ' - p h o s p h o s u l f a t e , f o l l o w e d by the t r a n s f e r of s u l f a t e from 3'-PAPS to the a c c e p t o r , c a t a l y z e d by s u l f o t r a n s f e r a s e .
8.
DE E T A L .
Polysaccharide
A c t i v a t i o n s t e p s , SO^
Sulfates
123
+ ATP
AMP-S0=
> AMP-S0 ~ + p p . " 3
+ ATP
»
3 ' - P 0 - A M P - S 0 ~ + ADP 3
3
T r a n s f e r r i n g s t e p , ROH + 3 -P0~-AMP-S0 "" (R-NH ) ,
o
6
3
2
>
R 0 - S 0 " + 3'-P0 -AMP 3
3
(RNH-S0 ')
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
3
S u ! f o t r a n s f e r a s e s are of common occurance i n animal t i s s u e s t h a t c o n t a i n aminoglycans and i n p l a n t t i s s u e s , e s p e c i a l l y a l g a l c e l l s , t h a t are major producers of s u l f a t e d p o l y s a c c h a r i d e s . However, evidence f o r the mechanism of the enzymatic r e a c t i o n and c h a r a c t e r i z a t i o n of the enzyme i s incomplete due to d i f f i c u l t i e s i n o b t a i n i n g homogeneous enzyme p r e p a r a t i o n s . Enzyme preparations from c h i c k embrionic c a r t i l a g e ( l _ - 3 h hen o v i d u c t ( 4 ) , hen uterus ( 5 J , r a b b i t uterus ( 6 J , beef lung ( 7 ) , beef eyes ( 8 ) , r a t b r a i n ( 9 J , mouse l i v e r (1_0) serum (11), mast c e l l tumor Τ]_2-1_4), squid c a r t i l a g e (15), molluscus (ΙβΤΤ and marine gastropod (1_7) have been reported to c a t a l y z e s u l f a t i o n of exogeneous and endogeneous a c c e p t o r s . Occurrence of s u l f o t r a n s f e r a s e and 3'-PAPS as s u l f a t e donors (18) are i n d i c a t e d i n red algae Chondrus c r i s p u s (19), Porphyridium (20, 21_) and i n the brown a l g a e , Fucus (22-25). Experiments w i t h i n c o r p o r a t i o n of r a d i o a c t i v e s u l f a t e i n t o carrageenan of Chondrus (19) and i n t o c a p s u l a r p o l y s a c c h a r i d e of Porphyridium (20) demonstrate that the i n c o r p o r a t i o n i s a remarkably r a p i d process through 3'-PAPS as a s u l f a t e p o o l . In Porphyridium 3'-PAPS was a c t u a l l y i s o l a t e d as a water s o l u b l e intermediate ( 2]_). The r a p i d i t y w i t h which s u l f a t e i n c o r p o r a t i o n takes place seems to f a v o r the idea t h a t the s u l f a t i o n of a preformed polymer occurs. During e a r l y embryogenesis of Fucus, exogeneous r a d i o a c t i v e s u l f a t e can be incorporated i n t o an a c i d - s o l u b l e fucose polymer w i t h i n 10 hr. a f t e r f e r t i l i z a t i o n . Experimental evidence i n d i c a t e s t h a t enzymatic s u l f a t i o n occurs i n the region where fucan i s formed and where i t can immediately act as an acceptor (25J). Although several attempts have been made to o b t a i n from these a l g a e , c e l l - f r e e enzyme system which can t r a n s f e r the s u l f a t e from 3'-PAPS to f r e e sugar, sugar n u c l e o t i d e , or p o l y s a c c h a r i d e , no p o s i t i v e r e s u l t s have y e t been seen. L i t t l e i s known of the s p e c i f i c i t y of s u l f o t r a n s f e r a s e and i t i s not e s t a b l i s h e d whether there i s a s i n g l e n o n - s p e c i f i c s u l f o t r a n s f e r a s e or a number of more s p e c i f i c enzymes. The l a t t e r case becomes more l i k e l y as the enzyme systems are i n v e s t i g a t e d in greater d e t a i l . Results of the e a r l i e r work on the s p e c i f i c i t y of the crude enzyme p r e p a r a t i o n are summarized i n Table I. 9
CARBOHYDRATE SULFATES
124
Table I
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Tissue
Acceptor s p e c i f i c i t y of some crude preparations of mucopolysaccharide s u l p h o t r a n s f e r a s e s P o t e n t i a l Acceptors Utilized Not U t i l i z e d Reference
rabbit skin hen o v i d u c t chick cartilage human leimyosarcoma human mammary carcinoma
dermatan sulphate h e p a r i t i n sulphate c h o n d r o i t i n 4- and 6-sulphates dermatan sulphate dermatan c h o n d r o i t i n 4sulphate and 6-sulphates chondroitin, c h o n d r o i t i n 4and 6 - s u l p h a t e s , dermatan s u l p h a t e , h e p a r i t i n sulphate
26 27 28 29
30
More d e t a i l e d i n v e s t i g a t i o n s on the s p e c i f i c i t y of s u l f o t r a n s f e r a s e have been conducted i n an enzyme system s o l u b i l i z e d from hen o v i d u c t ( 4 J . This c e l l - f r e e system i s capable of c a t a l y z i n g the t r a n s f e r of r a d i o a c t i v e s u l f a t e from 3'-PAPS to a number of aminoglycans. The r e l a t i v e rates of t r a n s f e r are shown i n Table II. Further experiments of the system show t h a t simple o l i g o s a c c h a r i d e s c o n t a i n i n g N-acetyl-D-galactosamine can a l s o a c t as acceptors f o r the s u l f o t r a n s f e r a s e although the o l i g o s a c c h a r i d e s are r a t h e r l e s s e f f i c i e n t than the p o l y s a c c h a r i d e s . Both mono- and d i s u l f a t e d d e r i v a t i v e s of N - a c e t y l - D - g a l a c t o samine residues i n the o l i g o s a c c h a r i d e s are formed i n the r e a c t i o n (31, 32). Measurements of r e a c t i o n v e l o c i t y at d i f f e r e n t c o n c e n t r a t i o n s show that the V and the Michael i s constant (K^) d i f f e r among carbohydrate s u b s t r a t e s . The higher V for c h o n d r o i t i n 6 - s u l f a t e as an acceptor compared to c h o n a r o i t i n 4 - s u l f a t e i s i n agreement w i t h the data shown i n Table II.
8.
DE E T A L .
Polysaccharide
Sulfates
Table
125
II
R e l a t i v e extents of sulphate t r a n s f e r to d i f f e r e n t acceptors by the amino glycan sulphotransferases of hen oviduct and of chick embryo c a r t i l a g e
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Acceptor c h o n d r o i t i n 4-sulphate c h o n d r o i t i n 6-sulphate dermatan sulphate h e p a r i t i n sulphate chondroitin (natural) c h o n d r o i t i n (chemical) hyaluronic acid heparin keratosulphate
Oviduct (4)
C a r t i l a g e (2)
1.00 1.8 0.72 0.45 1.8 0.62 0.00 0.00 0.00
1.00 0.46 0.75 1.3
-
0.13 0.08 0.26 0.25
The s u l f o t r a n s f e r a s e system i n the 105000 χ g supernatant f r a c t i o n prepared from the homogenate of c h i c k embryo c a r t i l a g e [2) can use a g r e a t e r number o f polysaccharide acceptors than the oviduct enzyme (Table I I ) . An endogeneous polysaccharide acceptor occurs i n the same enzyme preparation (33). A f t e r d e s u l f a t i o n of t h i s acceptor w i t h methanolic-hydrcgen c h l o r i d e , i t no longer accepts s u l f a t e . S i m i l a r l y , c h o n d r o i t i n prepared by d e s u l f a t i o n of c h o n d r o i t i n 4 - s u l f a t e does not a c t as an acceptor. The a b i l i t y of s u l f a t e acceptors i s l i t t l e i n f l u e n c e d by t h e i r molecular s i z e but i s s t r o n g l y dependent on the charge on the molecules. Treatment of p r o t e i n - p o l y s a c c h a r i d e complex endogeneous acceptors w i t h proteinase or w i t h a l k a l i increase t h e i r a b i l i t y to accept s u l f a t e . However, there i s a s t r i k i n g change i n the type of s u l f a t i o n t h a t r e s u l t s from removal of p r o t e i n . When the aminoglycan i s combined w i t h p r o t e i n s u l f a t e , e s t e r s are formed predominantly a t a x i a l hydroxyl groups. For example, s u l f a t e groups are introduced a t p o s i t i o n 4 of N - a c e t y l D-galactosamine u n i t s . On removal of p r o t e i n , s u l f a t i o n occurs p r i n c i p a l l y a t e q u a t o r i a l or primary hydroxyl groups. One p o s s i b l e e x p l a n a t i o n f o r t h i s i s t h a t although the p r o t e i n p o r t i o n of the endogeneous p r o t e i n - p o l y s a c c h a r i d e complex i s not necessary f o r s u l f a t e i n c o r p o r a t i o n , i t aids i n determining the s i t e s f o r s u l f a t i o n . A s u l f o t r a n s f e r a s e p u r i f i e d from mouse l i v e r homogenate (10) t r a n s f e r s s u l f a t e from 3'-PAPS only to p o s i t i o n C-6 of an N-acetyl-D-galactosamine residue i n c h o n d r o i t i n s u l f a t e and i t s Michael i s constant can be c l o s e l y c o r r e l a t e d to the degree of sulfation. In the s o l u b l e enzyme systems, only a small amount of s u l f a t e i s incorporated i n t o p o l y s a c c h a r i d e . Most of the c h o n d r o i t i n s u l f a t i n g a c t i v i t y i s found to occur as microsomal enzyme r a t h e r than as s o l u b l e enzyme (34,35J. A s u l f o t r a n s f e r a s e
CARBOHYDRATE
126
i n a microsomal preparation from chick embryo c a r t i l a g e t r a n s f e r s a greater amount of s u l f a t e from 3'-PAPS to endogeneous g l y c o saminoglycan than does the s o l u b l e enzyme {3 36). Incubation of the mcirosomal preparation at pH 6.5 with 3'-PAPS r e s u l t s i n the i n c o r p o r a t i o n of s u l f a t e i n t o endogeneous c h o n d r o i t i n 6 - s u l f a t e (60-70%) and i n t o c h o n d r o i t i n 4 - s u l f a t e (30-40%) w h i l e incubation at pH 7.8 r e s u l t s i n t h e . i n c o r p o r a t i o n of s u l f a t e i n t o c h o n d r o i t i n 6 - s u l f a t e e x c l u s i v e l y (37). Although the s u l f o t r a n s f e r a s e a c t i v i t y of chick embryo c a r t i l a g e i s predominantly associated with membrane, a s i g n i f i c a n t proportion of the enzyme a c t i v i t y i s found i n the 105000 χ g supernatant f r a c t i o n (Golgi p r e p a r a t i o n ) . This preparation contains a c t i v i t y f o r 4- and 6 - s u l f a t i o n of endogeneous p o l y s a c c h a r i d e . However, heat treatment of the preparation causes more r a p i d l o s s of a b i l i t y to s u l f a t e p o s i t i o n C-4 of the polysaccharide than l o s s of a b i l i t y to s u l f a t e p o s i t i o n C-6 (38) ( F i g . 1). This suggests t h a t a s p e c i f i c enzyme i s a c t i v e f o r s u l f a t i o n at each p o s i t i o n . Moreover, by chromatography on Sephadex G-200 the enzyme f o r 6 - s u l f a t i o n can be obtained e s s e n t i a l l y f r e e from the a c t i v i t y f o r 4 - s u l f a t i o n . The enzyme e f f e c t i n g 4 - s u l f a t i o n i s not recovered from chroma tography perhaps because of i n a c t i v a t i o n . Thus, w i t h i n the l i m i t e d work on the microsomal preparation and the Golgi p r e p a r a t i o n , the s u l f a t i o n system of chick embryo c a r t i l a g e seems to c o n s i s t of at l e a s t two enzyme species t h a t are h i g h l y s p e c i f i c with regard to the p o s i t i o n s u l f a t e d . An aminoglycan s u l f o t r a n s f e r a s e u t i l i z i n g 3'-PAPS as a s u l f a t e donor and endogeneous p r o t e i n - p o l y s a c c h a r i d e complex as an acceptor has been c h a r a c t e r i z e d (1J5). This enzyme, from squid c a r t i l a g e , shows high s p e c i f i c i t y f o r p o s i t i o n C-6 of N - a c e t y l Q-galactosamine moieties t h a t already bear a s u l f a t e group at p o s i t i o n C-4. The s u l f o t r a n s f e r a s e i s separated from endogeneous p r o t e i n polysaccharide complex and p u r i f i e d some n i n e - f o l d on DEAE-Sephadex A-50. The enzyme i s a c t i v e only w i t h exogeneous acceptors. Although various mono-, d i - , and polysaccharide are s u l f a t e a c c e p t o r s , i t i s e s s e n t i a l t h a t they have a s u l f a t e at p o s i t i o n C-4 of t h e i r j^-acetyl-D-galactosamine r e s i d u e s . The p u r i f i e d enzyme s p e c i f i c a l l y c a t a l y z e s the s u l f a t i o n of l ^ - a c e t y l D-galactosamine 4 - s u l f a t e r e s i d u e s , and produces f^-acetyl-Dgalactosamine 4 , 6 - d i s u l f a t e , whether ^-acetyl-D-galactosamine 4 - s u l f a t e i s i n a p r o t e i n - p o l y s a c c h a r i d e complex or whether i t i s p r o t e i n - f r e e . Most l i k e l y , t h e r e f o r e , the s p e c i f i c i t y of t h i s enzyme does not i n v o l v e the r e c o g n i t i o n of a p a r t i c u l a r s i z e or a p a r t i c u l a r monosaccharide sequence of an aminoglycan acceptor molecule. 9
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
8.
DE E T AL.
Polysaccharide
Sulfates
127
Molecular and Cellular Biochemistry
Figure 1. Heat labilities of two different sulfotransferase activities in the 105,000χ g supernatant of cartilage ho mogenate (38)
CARBOHYDRATE SULFATES
128
Another enzyme has been p u r i f i e d from a homogenate of the albumin s e c r e t i n g region of hen oviduct (39-41). The enzyme c a t a l y z e s the t r a n s f e r of s u l f a t e from 3'-PAPS to p o s i t i o n C-6 of the N-acetyl-D-galactosamine 4 - s u l f a t e moiety of u r i d i n e diphosphate-N-acetyl-D-galactosamine 4 - s u l f a t e . Although UDP-N-acetyl-D-galactosamine 4 - s u l f a t e i s the most a c t i v e carbohydrate substrate f o r the enzyme, N-acetyl-D-galactosamine 4 - s u l f a t e and i t s 1-phosphate act as a s u l f a t e acceptor at a comparable r a t e and A ' -glucurc!nido-lN-acetyl-D-galactosamine 4 - s u l f a t e [2-acetamido-2-deoxy-3-0-($-D-gluco-4-enepyranosyluronic a c i d ) - 4 - 0 - s u l f o - D - g a l a c t o s e ] and c h o n d r o i t i n accept s u l f a t e s l o w l y . A more completely p u r i f i e d enzyme has a pH optimum f o r s u l f a t e t r a n s f e r to UDP-N-acetyl-D-galactosamine 4 - s u l f a t e at pH 4.8. The k i n e t i c data f o r s u l f a t e t r a n s f e r to several substrate are summarized i n Table I I I .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
4
5
Table III S p e c i f i c i t y of a sulphotransferase from hen o v i d u c t which can u t i l i z e simple sugars or sugar d e r i v a t i v e s as substrates (39) —
Acceptor
m ( m M )
UDP-N-acetylgalactosamine 4 - s u l f a t e ^-acetylgalactosamine 4-sulfate ^ - a c e t y l g a l a c t o s a m i n e 1-phosphate 4-sulfate Δ -glucuronido-N-acetylgagactosamine 4-sulfate 4
5
y (relative)
0.05 1.4
1.00 0.72
0.13
0.39
2.0
0.05
9
The s u l f o t r a n s f e r a s e s considered so f a r have a l l formed s u l f a t e e s t e r s . However, i n the formation of heparin which contains 0 - s u l f a t e and j f - s u l f a t e , a separate s u l f o t r a n s f e r a s e i s i n v o l v e d . This i s demonstrated by the separate i d e n t i f i c a t i o n of JN- and 0 - s u l f o t r a n s f e r a s e a c t i v i t y i n an enzyme preparation from mouse mastocytoma (14·). Both s u l f o t r a n s f erases can be s o l u b i l i z e d from mastocytoma microsomal f r a c t i o n . The pH optimum f o r the enzymes i s about 7.5. The Michael i s constant f o r 3'-PAPS i s estimated to be 2 χ 10" M f o r the N - s u l f o t r a n s f e r ase and 1 χ 1 0 " f o r the 0 - s u l f o t r a n s f e r a s e . The 0 - s u l f o t r a n s ferase i s more s e n s i t i v e to h e a t - i n a c t i v a t i o n ; 60% of the a c t i v i t y being l o s t a f t e r 1 min. at 50°. Under the same c o n d i t i o n s only 15% of N - s u l f o t r a n s f e r a s e i s l o s t . The ^ - s u l f o t r a n s f e r a s e i s s e l e c t i v e l y i n h i b i t e d by sodium c h l o r i d e , whereas, the 0 - s u l f o t r a n s f e r a s e i s e s s e n t i a l l y u n a f f e c t e d . Work on the acceptor s p e c i f i c i t y of the 0 - s u l f o t r a n s f e r a s e from mouse mastocytoma shows t h a t N - s u l f a t e groups i n acceptor polysaccharides are e s s e n t i a l f o r 0 - s u l f a t i o n . The 0 - s u l f a t e group i s 5
4
8.
DE E T A L .
Polysaccharide
Sulfates
129
p r e f e r e n t i a l l y introduced i n t o the N^-sulfated (and thus p r e v i o u s l y l^-deacetylated) r a t h e r than i n t o N-acetylated regions at heparan s u l f a t e (42,43). Almost a l l work on s u l f o t r a n s f e r a s e has been done on t i s s u e s i n which s u l f a t i o n of aminoglycan occurs. L i t t l e work has been done on the mechanism of s u l f a t i o n of n i t r o g e n - f r e e glycans. However, a s u l f o t r a n s f e r a s e from the mucous gland e x t r a c t s of the marine gastropod, charonia lampus, c a t a l y z e s the t r a n s f e r of s u l f a t e from 3'-PAPS to the glucan p o l y s u l f a t e , charonan s u l f u r i c a c i d (17). Charonan s u l f u r i c a c i d c o n s i s t s of two f r a c t i o n s , one a s u l f u r - p o o r f r a c t i o n w i t h a g l y c o g e n - l i k e s t r u c t u r e and the other a s u l f u r - r i c h f r a c t i o n w i t h a c e l l u l o s e l i k e s t r u c t u r e (44,45). When S i s used i n the donor, more than 95% of the a c t i v i t y i s incorporated to the s u l f u r - r i c h fraction.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
3 2
In a d d i t i o n to 3'-PAPS, other s u l f a t e donors e x i s t . One i s j j - n i t r o p h e n y l s u l f a t e , an e f f e c t i v e s u l f a t e donor i n the s u l f o t r a n s f e r a s e preparation of beef cornea e p i t h e l i c a l e x t r a c t . Here, the s u l f a t e group i s t r a n s f e r r e d from j j - n i t r o p h e n y l s u l f a t e to polysaccharide i n the presence of adenosine 3 ' , 5 ' - d i p h o s p h a t e (56). The s u l f a t i o n of polysaccharide seems to occur by p o l y saccharide s u l f o t r a n s f e r a s e coupling w i t h phenol s u l f o t r a n s f e r a s e or phenol s u l f a t a s e which i s a l s o present i n the corneal e x t r a c t . Another donor i s ascorbate 2 - s u l f a t e (47). When r a d i o a c t i v e s u l f a t e i s used, the s u l f a t e i s found incorporated i n t o c h o n d r o i t i n s u l f a t e i n c h i c k embryo c a r t i l a g e epiphyses. Enzymatic D e s u l f a t i o n Glycosulfatasewas observed f i r s t i n the d i g e s t i v e organs of the t r o p i c a l marine mollusc Charonia lampas (48-52). Subsequently, the enzymewas observed (53-63) i n e x t r a c t s of the d i g e s t i v e organs of marine molluscs from B r i t i s h waters, i n the l a r g e p e r i w i n k l e L i t t o r i n a l i t t o r e a and the common limpet P a t e l l a v u l g a t a . I t i s a l s o present i n the mould Trichoderma v i r i d e ( 6 4 ) , and the b a c t e r i a Pseudomonas carrageenovora (65). A s i m i l a r g l y c o s u l f a t a s e i s observed i n the isthmus region of the hen o v i d u c t (95). From the l i v e r of the marine gastropod Charonia lampas ( T r i t o n a l i a s a u l i a e ) there can be obtained a c e l l u l o s e p o l y s u l f a t a s e (66-68) and a chondrosulfatase (79). A porphyran s u l f a t a s e can be prepared from the algae Porphyra u m b i l i c a l i s (69-72). Chondrosulfatase i s observed a l s o i n p u t r i f a c t i v e b a c t e r i a (73-75), Proteus v u l g a r i s (76,77) and Flavobacterium heparinum (78). In a d d i t i o n to occurance i n the l i v e r of (λ lampas, the enzyme i s found i n the l i v e r of squid Ommastrephes s l o a n i
130
CARBOHYDRATE SULFATES
p a c i f i c u s (81-83), i n r a t l i v e r lysosomes (84), i n bovine aorta (85) and the v i s c e r a of P a t e l l a vulgata (80). Two kerato s u l f a t a s e s are present i n £. lampus (86). A heparin s u l f a t a s e has been i s o l a t e d from Flavobacterium heparinum (87). Cerebroside s u l f a t a s e can be i s o l a t e d from the d i g e s t i v e gland of abalone, H a l i o t i s (88) and the lysosomes of pig kidney and from other organs as l i v e r and spleen (89-91).
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Glycosulfatases The g l y c o s u l f a t a s e s ( s u g a r - s u l f a t e s u l f o h y d r o l a s e s , E.C.3.1.6.3) capable of h y d r o l y z i n g e s t e r s u l f a t e linkages i n a v a r i e t y of mono-, d i - , and t r i - s u l f a t e s u b s t i t u t e d monosaccharides and d i s a c c h a r i d e s have been p a r t i a l l y p u r i f i e d and i s o l a t e d by a number of d i f f e r e n t groups from a v a r i e t y of d i f f e r e n t sources. Most of the procedures are r a t h e r long and i n v o l v e d . Several are given as examples. Example 1. Washed and macerated v i s c e r e a l organs of L i t t o r i n a ( 5 7 j are placed i n volumes of acetone at 0 ° , f i l t e r e d , macerated i n f r e s h acetone and thoroughly washed i n acetone. The residue i s suspended i n c o l d water, homogenized at pH 9 and adjusted to pH 7 f o r 15 minutes, c e n t r i f u g e d and the c l e a r supernatant d i a l y z e d and the d i a l y z a t e adjusted to pH 2.3 f o r 2 min and readjusted to 4.6, c e n t r i f u g e d , d i a l y z e d , adjusted to pH 6.7, r i b o n u c l e i c a c i d and salmon roe protamine s u l f a t e added to complete p r e c i p i t a t i o n . A f t e r c e n t r i f u g a t i o n the supernatant i s d i a l y z e d , c e n t r i f u g e d and the supernatant adjusted to pH 8, c e n t r i f u g e d , d i a l y z e d and at pH 5.7 t r e a t e d w i t h ammonium s u l f a t e to 55% of s a t u r a t i o n . A f t e r c e n t r i f u g a t i o n the supernatant at pH 4.9 i s 85% saturated w i t h ammonium s u l f a t e . The p r e c i p i t a t e i s removed by c e n t r i f u g a t i o n and d i a l y z e d . The f i n a l product has a high c o n c e n t r a t i o n of g l y c o s u l f a t a s e as w e l l as a high content of a r y l s u l f a t a s e . The p u r i f i c a t i o n procedure r e s u l t s i n the e l i m i n a t i o n of the c h o n d r o i t i n a s e and most of the 3-Ji-acetylglucosaminidase but other s u l f a t a s e enzymes are s t i l l present i n a p p r e c i a b l e amounts. N u c l e i c a c i d c o n c e n t r a t i o n has been c o n s i d e r a b l y decreased and the preparation r e t a i n s a c t i v i t y when stored i n the frozen s t a t e . It is noticed that glycosulfatase a c t i v i t y in L i t t o r i n a v a r i e s c o n s i d e r a b l y w i t h season. R e l a t i v e l y small amounts of the enzyme can be detected i n the w i n t e r months, whereas, organisms c o l l e c t e d i n J u l y provide the most a c t i v e p r e p a r a t i o n . Example 2. Trichoderma v i r i d e (64) i s grown on a medium c o n t a i n i n g the 6 - 0 - s u l f a t e of D-galactose or D-glucose. The
8. DE E T A L .
Polysaccharide
Sulfates
131
washed mycelium i s frozen and ground w i t h alumina a t -15° and e x t r a c t e d with c o l d T r i s s o l u t i o n a t pH 7.9, c e n t r i f u g e d and supernatant s t o r e d .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Example 3. Pseudomonas carrageenovora (65) c e l l s are harvested, and c e n t r i f u g e d . The supernatant i s t r e a t e d w i t h streptomycin s u l f a t e to remove n u c l e i c a c i d s , c e n t r i f u g e d and the supernatant i s t r e a t e d w i t h ammonium s u l f a t e . The p r e c i p i t a t e i s d i s s o l v e d i n water and d i a l y z e d . Example 4. The l i v e r of Charonia lampas (94) i s homogenized w i t h sodium c h l o r i d e , c e n t r i f u g e d , and the supernatant d i a l y z e d at pH 3.6 and c e n t r i f u g e d . The supernatant i s then s u c c e s s i v e l y passed through columns of phosphocellulose, Sephadex G-150 and Concanavalin A-Sepharose when p u r i f i e d g l y c o s u l f a t a s e I i s i s o l a t e d . G l y c o s u l f a t a s e I I , which i s s t i l l unseparated from a r y l s u l f a t a s e a t t h i s stage, i s p u r i f i e d by i s o e l e c t r i c focussing. Example 5. Hen o v i d u c t isthmus (95) i s t r e a t e d w i t h T r i s HC1 a t pH 7.2, homogenized, and c e n t r i f u g e d . The supernatant i s t r e a t e d w i t h ammonium s u l f a t e to 40% s a t u r a t i o n , c e n t r i f u g e d , and the supernatant i s t r e a t e d again w i t h ammonium s u l f a t e t o 65% s a t u r a t i o n , and c e n t r i f u g e d . The p r e c i p i t a t e i s d i s s o l v e d i n T r i s - H C l at pH 7.2 and d i a l y z e d . This i s then a p p l i e d to a column of DEAE-cellulose. The pooled f r a c t i o n i s c o n c e n t r a t e d , d i a l y z e d at pH 4.5 and then a p p l i e d to another column of C M - c e l l u l o s e a t pH 4.5. The pooled f r a c t i o n s are concentrated and d i a l y z e d a t same pH. The enzyme r e t a i n e d 95% and 90% of i t s a c t i v i t y f o r 2 and 9 months, r e s p e c t i v e l y , when stored a t - 2 0 ° . Assay of G l y c o s u l f a t a s e s S u l f a t a s e s c a t a l y z e the r e a c t i o n : R-0-S0 " + H 0 — > 3
2
R-O-H + S 0
2 4
' + H
+
Enzyme assay i s based upon measurement of unchanged d e s u l f a t e d r e s i d u e , i n o r g a n i c s u l f a t e or change o f pH.
substrate,
The e a r l i e r i n v e s t i g a t i o n of g l y c o s u l f a t a s e s has employed assay methods f o r i n d i r e c t determination of unhydrolyzed s u b s t r a t e , by g r a v i m e t r i c estimations of i n o r g a n i c s u l f a t e l i b e r a t e d on a c i d h y d r o l y s i s and the measurement o f l i b e r a t e d i n o r g a n i c s u l f a t e by p o t e n t i o m e t r i c t i t r a t i o n (50) or n e p h e l o m e t r i c a l l y (50). These methods are not capable of a high degree of accuracy unless a p p l i e d t o l a r g e q u a n t i t i e s . Methods f o r the assay o f s u l f a t a s e s based on the t u r b i d i m e t r i c determinat i o n of barium s u l f a t e have been described (96,97). C o l o r i m e t r i c methods of s u l f a t a s e assay a l s o have been used ( 9 8 ) , and a s m a l l - s c a l e v e r s i o n of each o f these methods has been devised (99).
CARBOHYDRATE SULFATES
132
The method of Dodgson and Spencer (54), i n which p r e c i p i t a t e d benzidine s u l f a t e i s estimated c o l o r i m e t r i c a l l y , although i t i s time-consuming and demands very c a r e f u l m a n i p u l a t i o n , has proved useful f o r a number of s u l f u r i c e s t e r s . A g l u c o s e - o x i d a s e p e r o x i d a s e - O - d i a n i s i d i n e method (100) i s a p p l i c a b l e a l s o .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
P r o p e r t i e s of g l y c o s u l f a t a s e s Charonia lampas g l y c o s u l f a t a s e : The e a r l i e s t study of t h i s g l y c o s u l f a t a s e has been made during the years 1931 through 1948 and t h i s work has been p a r t l y reviewed (101). U n f o r t u n a t e l y , the g l y c o s u l f a t a s e used i s not pure. I t shows g r e a t e s t a c t i v i t y a g a i n s t D-glucose 6 - 0 - s u l f a t e and shows a c t i v i t y a l s o a g a i n s t a v a r i e t y of s u l f a t e e s t e r s of monosaccharides and d i s a c c h a r i d e s as w e l l as against adenosine 5 ' - s u l f a t e . Recently p u r i f i e d g l y c o s u l f a t a s e I and II from (λ lampas have been reported as a c t i v e against D-glucose 6 - 0 - s u l f a t e , showing the same K of 25.0 mM, and the same optimum pH of 5.5. m
L i t t o r i n a l i t t o r e a g l y c o s u l f a t a s e : This g l y c o s u l f a t a s e has been e x t e n s i v e l y i n v e s t i g a t e d . The s p e c i f i c i t y of the enzyme i s r e l a t i v e l y low as i t hydrolyzes D-glycose 6 - 0 - s u l f a t e , D-glucose 3 - 0 - s u l f a t e , and D-galactose 6 - 0 - s u l f a t e (Table IV). In common w i t h most other s u l f a t a s e enzymes, g l y c o s u l f a t a s e i s s t r o n g l y i n h i b i t e d by phosphate and pyrophosphate, and to a l e s s extent by f l u o r i d e i o n s . Some increase i n enzyme a c t i v i t y i s observed i n the presence of magnesium and manganous c h l o r i d e s . Table IV Optimum Substrate^ cone χ 10 (M)
Κ χ 10 m
Relative activity
Substrate
Optimum PH
Potassium D-glucose 3-0-sulfate
5.7-5.9
7.0
3.0
1.0
Potassium D-glucose 6-0-sulfate
5.5-5.6
4.0
1.7
10.0
Potassium D-galactose β-0-sulfate
5.2
>8.0
7.2
2.0
2
None of a wide range of polysaccharides of p l a n t or animal o r i g i n i s attacked by the enzyme, nor are the o l i g o s a c c h a r i d e s produced by the a c t i o n of hyaluronidase on c h o n d r o i t i n 4 - s u l f a t e or c h o n d r o i t i n 6 - s u l f a t e (102).
8.
DE E T A L .
Polysaccharide
133
Sulfates
P a t e l l a vulgata g l y c o s u l f a t a s e : This enzyme has a wide s p e c i f i c i t y f o r 6 - 0 - s u l f a t e e s t e r s of D-glucose, D-galactose (Table V ) , and D-mannose, and a l s o f o r 2 - 0 - , 3-0- and 4 - 0 - s u l f a t e e s t e r s of L-fucose. Table V Optimum pH
Optimum substrate cone (M)
Activity (units)
6-0-sulfate
6.0
0.04
3295
D-galactose δ-0-sulfate
6.0
0.04
4035
Substrate
Κ (mM)
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
D-glucose 1.86 28.3
The enzyme a c t i v i t y i s s t r o n g l y i n h i b i t e d by phosphate and borate i o n s , w h i l e the e f f e c t s of cyanide, f e r r i c and c u p r i c vary w i t h the s u b s t r a t e . Trichonderma v i r i d e g l y c o s u l f a t a s e : The enzyme i s a simple g l y c o s u l f a t a s e a c t i v e towards the 6 - 0 - s u l f a t e e s t e r s of D-glucose and D-galactose but not towards D-glucose 3 - 0 - s u l f a t e . A c t i v i t y decreases sharply a t e i t h e r s i d e of the optimum temp, of 2 8 ° . The pH f o r maximum a c t i v i t y i s 7.8-7.9. The g l y c o s u l f a t a s e seems to be d i f f e r e n t from analogous molluscan enzymes t h a t a l s o can hydrolyze monosaccharide s u l f a t e e s t e r s . Pseudomonas carrageenovora g l y c o s u l f a t a s e : The enzyme shows a remarkable degree of s p e c i f i c i t y f o r h y d r o l y z i n g neocarrabiose s u l f a t e , 3-0-(3,6-anhydro-a-D-galactopyranose 4 - 0 - s u l f a t e , a degradation product of K-carrageenan, w i t h h y d r o l y s i s leading to the corresponding d i s a c c h a r i d e . The enzyme a l s o acts on D-galactose 6 - 0 - s u l f a t e , but not on D-galactose 4 - Q - s u l f a t e ; a s u r p r i s i n g r e s u l t s i n c e D-galactose 4 - 0 - s u l f a t e i s a u n i t i n the neocarrabiose s u l f a t e .
Neocarrabiose 4 - 0 - s u l f a t e
CARBOHYDRATE SULFATES
134
Enzyme a c t i v i t y i s completely i n h i b i t e d i n 0.1 M a c e t a t e b u f f e r , pH 4.0, and by 25 mM mercuric i o n . P a r t i a l i n h i b i t i o n occurs w i t h 0.1 M a c e t a t e b u f f e r , pH 5.6, and 25 mM phosphate b u f f e r , pH 7.5. There i s no i n h i b i t i o n w i t h 25 mM s u l f a t e and 3 mM ethylene diamine t e t r a a c e t i c a c i d (EDTA). Hen o v i d u c t s u l f a t a s e : This enzyme removes only the s u l f a t e at p o s i t i o n C4 and shows remarkable s p e c i f i c i t y towards UDP-Na c e t y l -Q-gal actosami ne-4-0-sul f a t e , UDP-N-acetyl-D-galactosamine4 , 6 - d i - 0 - s u l f a t e , and N - a c e t y l - D - g a l a c t o s a m i n e - 4 , 6 - d i - 0 - s u l f a t e , but not towards l N - a c e t y l - Q - g a l a c t o s a m i n e - 4 - 0 - s u l f a t e . (Table V I ) .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Table VI Maximum v e l o c i t y V max (units/mg p r o t e i n )
Substrate
1.
UDP-Gal NAc-4-sulfate
Κ m (M)
4,200
4 χ ΙΟ"
4
UDP-Gal NAc-4,6-disulfate
10,500
6 χ ΙΟ"
6
3.
j\[-Acetyl gal a c t o samine 4 - s u l f a t e
0
4.
^-Acetylgalacto samine 4 , 6 - d i s u l f a t e
560
2.
0 3 χ 10
The enzyme i s not a c t i v e toward £-nitrophenyl s u l f a t e , D-glucose 6 - 0 - s u l f a t e , D-galactose 3 - 0 - s u l f a t e , D-galactose 6 - 0 - s u l f a t e , or a number of s u l f a t e d polysaccharides of p l a n t and animal o r i g i n . The enzyme i s d i s t i n c t from any of the known a r y l s u l f a t a s e and g l y c o s u l f a t a s e . Polysaccharide
sulfatases
A number of n a t u r a l polysaccharide s u l f a t e s of both p l a n t and animal o r i g i n s are known, f o r example: c h o n d r o i t i n 4 - s u l f a t e , c h o n d r o i t i n 6 - s u l f a t e , dermatan s u l f a t e , shark c h o n d r o i t i n s u l f a t e , keratan s u l f a t e , heparan s u l f a t e , h e p a r i n , porphyran, τ , κ , ι and μ-carrageenan, charonan s u l f a t e and f u c o i d a n . A number of enzymes and enzyme-systems have been i s o l a t e d that d e s u l f a t e some of these s u l f a t e d p o l y s a c c h a r i d e s . C e l l u l o s e p o l y s u l f a t a s e : An enzyme h y d r o l y z i n g s u l f u r i c e s t e r bonds i n c e l l u l o s e p o l y s u l f a t e and charonan s u l f a t e occurs i n l i v e r e x t r a c t of the marine gastropod, Charonia lampas. Since
8.
DE E T A L .
Polysaccharide
Sulfates
135
c h o n d r o i t i n s u l f a t e and amylose p o l y s u l f a t e are s c a r c e l y hydrolyzed by the enzyme p r e p a r a t i o n , t h i s new s u l f a t a s e has been c a l l e d " c e l l u l o s e p o l y s u l f a t a s e " .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
The l i v e r of Charonia lampas (68) i s macerated a t pH 6.0, c e n t r i f u g e d , and to the supernatant i s added a c r i f l a v i n e to 1% c o n c e n t r a t i o n . P r e c i p i t a t e d m a t e r i a l i s separated by c e n t r i f u g a t i o n , ethanol i s added to the supernatant to 70% concentrat i o n , c e n t r i f u g e d , and the p r e c i p i t a t e d i a l y z e d i n water and c e n t r i f u g e d . The supernatant, at pH 5.2, i s p u r i f i e d i n a column of CMC, changing the eluent pH g r a d u a l l y from 5.2 t o 6.0. The appropriate f r a c t i o n s are pooled, and d i a l y z e d . The crude c e l l u l o s e p o l y s u l f a t a s e from C. lampas hydrolyzes a random s u l f a t e d c e l l u l o s e removing most of the s u l f a t e groups w h i l e presumably other enzymes present hydrolyze the c e l l u l o s e to D-glucose and D-glucose s u l f a t e s from which s u l f a t e groups are then hydrolyzed. The p u r i f i e d c e l l u l o s e p o l y s u l f a t a s e hydrolyzes s u l f a t e groups from the polysaccharide without degrading the c h a i n . This enzyme shows remarkable s p e c i f i c i t y towards c e l l u l o s e p o l y s u l f a t e and charonan s u l f a t e by converting these from high s u l f u r content to low s u l f u r content p o l y s a c c h a r i d e s . I t slowly a t t a c k s dextran s u l f a t e , but not amylose s u l f a t e (Table V I I ) . Regarding the e f f e c t of the p o s i t i o n of s u l f a t e bond, Takahashi suggests t h a t c e l l u l o s e p o l y s u l f a t a s e p r e f e r e n t i a l l y a t t a c k s e s t e r bonds a t the C2 and C3 p o s i t i o n s , w h i l e g l u c o s u l f a t a s e a t t a c k s p r e f e r e n t i a l l y C6 p o s i t i o n e s t e r bonds. Porphyran s u l f a t a s e : An enzyme present i n Porphyra e x t r a c t s i s capable of h y d r o l y z i n g porphyran, a complex s u l f a t e d polysaccharide c o n t a i n i n g residues of D - g a l a c t o s e , L - g a l a c t o s e , 6-0-methyl-D-galactose, and 3,6-anhydro-L-galactose. Porphyra seaweed (70) i s washed w i t h water, minced i n t o aqueous sodium carbonate a t pH 8.3, pH adjusted to 6.0-6.5 and c e n t r i f u g e d . To the supernatant i s added a calcium phosphate g e l , s t i r r e d and c e n t r i f u g e d . The gel i s washed a t pH 7.5, c e n t r i f u g e d , and the supernatant t r e a t e d w i t h s o l i d ammonium s u l f a t e to 0.8% s a t u r a t i o n . The p r e c i p i t a t e i s i s o l a t e d by c e n t r i f u g a t i o n , d i s s o l v e d i n water, and d i a l y z e d . The enzyme d e s u l f a t e s porphyran but does not a t t a c k other sulfated polysaccharides. Complete i n h i b i t i o n o f the enzyme occurs on a d d i t i o n of metal binding reagents, thus i n d i c a t i n g t h a t there i s a b i - or t e r v a l e n t c a t i o n e s s e n t i a l to the enzyme. No i n h i b i t i o n i s observed when a mixture of Zn2 or C o ^ ions (1.5 mM) and ethylenediaminetetra a c e t i c a c i d (EDTA) (0.5 mM) i s present. A 50% i n h i b i t i o n occurs i f M n i o n i s s u b s t i t u t e d f o r one of these c a t i o n s , and complete i n h i b i t i o n occurs i f +
2 +
+
136
CARBOHYDRATE SULFATES
Mg ion i s used. Borate i s a powerful a c t i v a t o r producing 60% a c t i v a t i o n at pH 7.6. Since porphyran i s i t s e l f a p o l y e l e c t r o l y t e , i t i s conceivable t h a t c e r t a i n of the a c t i v a t o r s i n f l u e n c e s the r e a c t i o n by i n t e r a c t i o n with the substrate r a t h e r than the enzyme. I t i s known t h a t s a l t s present i n s o l u t i o n w i t h polysaccharide polyanions can a l t e r the c o n f i g u r a t i o n of the polymer, and i t i s p o s s i b l e t h a t some of the c a t i o n a c t i v a t o r s operate by i n c r e a s i n g the time spent by the s u b s t r a t e i n a c o n f i g u r a t i o n f a v o r a b l e f o r the r e a c t i o n .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Chondrosulfatase Chondrosulfatase of Proteus v u l g a r i s : A s t r a i n of Proteus v u l g a r i s (N.C.T.C. 4636) appears to be a p a r t i c u l a r l y potent source of chondrosulfatase (E.C.3.1.6.4). The enzyme i s a s s o c i a t e d w i t h a c h o n d r o i t i n a s e system which can degrade the chain of c h o n d r o i t i n s u l f a t e producing s u l f a t e d o l i g o s a c c h a r i d e s which are subsequently d e s u l f a t e d by chondrosulfatase. Proteus v u l g a r i s (76,77) i s c u l t u r e d , and harvested by c e n t r i f u g i n g . The c e l l s are macerated i n acetone, f i l t e r e d , homogenized at pH 7.0, incubated at 3 7 ° , and c e n t r i f u g e d . The supernatant i s d i a l y z e d , c e n t r i f u g e d , and to the supernatant added sodium s a l t of yeast n u c l e i c a c i d at pH 7.4. The pH i s adjusted to 4.0, the p r e c i p i t a t e removed by c e n t r i f u g i n g and d i s s o l v e d i n aqueous sodium hydroxide at pH 7.4. The s o l u t i o n i s adjusted to pH 6.7 and an aqueous s o l u t i o n of protamine s u l f a t e added, d i a l y z e d and c e n t r i f u g e d . The supernatant i s adjusted to pH 8.0, c e n t r i f u g e d , and the supernatant t r e a t e d w i t h calcium phosphate gel at pH 6.55. The gel-enzyme complex i s separated by c e n t r i f u g a t i o n , washed and t r e a t e d repeatedly w i t h sodium acetate s o l u t i o n at pH 8.0 u n t i l no f u r t h e r p r o t e i n i s e l u t e d from the g e l . The e l u a t e c o n t a i n i n g s u l f a t a s e are combined and d i a l y z e d . Chondrosulfatase, i n the absence of c h o n d r o i t i n a s e , i s v i r t u a l l y i n a c t i v e towards the polymerized form of c h o n d r o i t i n s u l f a t e . However, c h o n d r o i t i n s u l f a t e degraded w i t h t e s t i c u l a r hyaluronidase i s r e a d i l y hydrolyzed. The crude Proteus c o n c e n t r a t e , which i s a c t i v e towards c h o n d r o i t i n s u l f a t e , i s i n a c t i v e towards the s u l f a t e d polysaccharides agar, f u c o i d a n , carrageenan, chondrus o c e l l a t u s mucilage and s u l f a t e d laminaran. Recently, two chondrosulfatases are i s o l a t e d from the e x t r a c t s of Proteus v u l g a r i s (N.C.T.C. 4636). One of these enzymes, chondro 4 - s u l f a t a s e , i s a c t i v e against 2-acetamido-2deoxy-3-0-(3-Q-gluco-4-enepyranosyl-uronic acid)-4-0-sulfo-D-
8. DE E T A L .
Polysaccharide
Sulfates
137
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
g a l a c t o s e , the product from the degradation of c h o n d r o i t i n s u l f a t e A or Β by c h o n d r o i t i n a s e , and i t s saturated analogue, acetylchondrosiη 4 - s u l f a t e , but does not a t t a c k the corresponding 6 - 0 - s u l f a t e isomer, the product from the degradation of c h o n d r o i t i n s u l f a t e C by c h o n d r o i t i n a s e , and i t s saturated analogue, a c e t y l c h o n d r o s i n 6 - s u l f a t e . In c o n t r a s t , chondro 6-sulfatase desulfates disaccharide 6-sulfates andacetyl-D-galactosamine 4 , 6 - d i s u l f a t e a t p o s i t i o n 6, but does not a t t a c k tfie d i s a c c h a r i d e 4 - s u l f a t e isomers.
2-Acetamido-2-deoxy-3-0-(3-Q-gluco-4enepyranosyluronic a c i d ) - 4 - 0 - s u l f o - D galactose
2-Acetami do-2-deoxy-3-0-(3-D-gluco-4enepyranosyluronic a c i d ) - 6 - 0 - s u l f o - Q galactose The enzymes do not a t t a c k polymer c h o n d r o i t i n s u l f a t e s , hexa-, p e n t a - , t e t r a - , or t r i s a c c h a r i d e s derived from c h o n d r o i t i n s u l f a t e s A and C by d i g e s t i o n w i t h crude t e s t i c u l a r hyaluronidase, or a c e t y l g a l a c t o s a m i n e 4- and 6 - s u l f a t e s . Chondrosulfatase of P a t e l l a v u l g a t a : The v i s c e r a of P a t e l l a vulgata (60) i s reported to c o n t a i n a g l y c o s u l f a t a s e and a l s o an enzyme t h a t i s a c t i v e a g a i n s t c h o n d r o i t i n 4 - s u l f a t e . The chondrosulfatase has been p u r i f i e d by s e p a r a t i n g from the g l y c o s u l f a t a s e by f r a c t i o n a t i o n w i t h ammonium s u l f a t e .
138
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Chondrosulfatase from t h i s source i s reported to be capable of d e s u l f a t i n g c h o n d r o i t i n s u l f a t e without p r i o r d e p o l y m e r i z a t i o n . S u l f a t e i s a l s o l i b e r a t e d by the enzyme from a range of c h o n d r o i t i n s u l f a t e s from d i f f e r e n t sources, i n c l u d i n g a commercial preparation b e l i e v e d to be predominately c h o n d r o i t i n 6-sulfate. Chondrosulfatase of Squid l i v e r : The l i v e r e x t r a c t s of the squid (Ommastrephes s l o a n i p a c i f i c u s ) (83) contains chondros u l f a t a s e along w i t h three other enzymes, hyaluronidase (E.C. 3.2.1.35), 3-N-acetyl-hexosaminidase (E.C. 3.2.1.30), and ^-glucuronidase (E.C. 3.2.1.31). Crude enzyme i s prepared from squid l i v e r by e x t r a c t i o n w i t h acetone and then p u r i f i e d by f r a c t i o n a t i o n w i t h ammonium s u l f a t e and by using a column of Sephadex G-100_. The p u r i f i c a t i o n achieved i s about 1 5 - f o l d from the crude enzyme. The p a r t i a l l y p u r i f i e d chondrosulfatase i s stored at - 2 0 ° , without a p p r e c i a b l e l o s s of a c t i v i t y f o r a month. The squid chondrosulfatase a t t a c k s c h o n d r o i t i n 4 - s u l f a t e at g r e a t e r r a t e than i t does c h o n d r o i t i n 4 , 6 - d i s u l f a t e . Chondroitin 6 - s u l f a t e i s a l s o d e s u l f a t e d to a s l i g h t e x t e n t , but keratan s u l f a t e , dermatan s u l f a t e and heparin are not d e s u l f a t e d w i t h t h i s enzyme. A s u l f a t e d t e t r a s a c c h a r i d e and a mixture of s u l f a t e d o l i g o s a c c h a r i d e s , both prepared from c h o n d r o i t i n 4 - s u l f a t e by t e s t i c u l a r hyaluronidase d i g e s t i o n , are r e s p e c t i v e l y d e s u l f a t e d to the extent of about 32% and 56% of the s u l f a t e released from c h o n d r o i t i n 4 - s u l f a t e polymer. D e s u l f a t i o n from the s u l f a t e d di s a c c h a r i d e , 2-acetami do-2-deoxy-3-0-($-Q-gluco-4-enopyranosyluronic a c i d ) - 4 - 0 - s u l f o - Q - g a l a c t o s e , i s n e g l i g i b l e . These s t u d i e s show t h a t the squid chondrosulfatase i s capable of d e s u l f a t i n g mainly 4 - s u l f a t e i n c h o n d r o i t i n s u l f a t e s without p r i o r depolymerization. Chondrosulfatase a c t i v i t y i s extremely i n h i b i t e d by c u p r i c s u l f a t e , sodium phosphate, sodium f l u o r i d e , borax and heparin. Chondrosulfatase i s a c t i v a t e d by sodium c h l o r i d e , c u p r i c c h l o r i d e , EDTA, and c y s t e i n e h y d r o c h l o r i d e . The apparent 1^ of t h i s chondrosulfatase i s estimated as 0.49 mM f o r r e a c t i o n s at pH 5.0 and 37° f o r 3 h w i t h c h o n d r o i t i n 4 - s u l f a t e as the s u b s t r a t e . Chondrosulfatase of bovine a o r t a : I t has been known (103, 104) t h a t r a t s d e s u l f a t e c h o n d r o i t i n s u l f a t e i n v i v o and i t has been claimed (105) t h a t chondrosulfatase can be detected h i s t o c h e m i c a l l y i n human sweat glands, but attempts have been unsuccessful (56) to prepare i t from mammalian t i s s u e , e x t r a c t s w i t h chondrosulfatase a c t i v i t y . On the other hand, crude preparations from p i g kidney are known to l i b e r a t e s u l f a t e from chondroitin sulfate.
8.
DE E T A L .
Polysaccharide
Sulfates
139
Bovine a r t e r i a l t i s s u e (aorta) contains a chondrosulfatase (85). The enzyme i s p u r i f i e d by ammonium s u l f a t e f r a c t i o n a t i o n , p r e c i p i t a t i o n a t pH 4.6, and by gel f i l t r a t i o n . An 85 f o l d p u r i f i c a t i o n i s achieved.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
The enzyme i s a c t i v e against c h o n d r o i t i n 4 - s u l f a t e , but i t does not a t t a c k c h o n d r o i t i n 6 - s u l f a t e , dermatan s u l f a t e , and keratan s u l f a t e . In acetate b u f f e r , the pH optimum i s 4.4, and Km i s 0.735 mM. K e r a t o s u l f a t a s e : Two forms o f k e r a t o s u l f a t a s e (86) (I and I I ) are i s o l a t e d from the marine gastropod, charonia lampas. Both forms r e l e a s e a l l the s u l f a t e from kerato s u l f a t e s and n e i t h e r appears i d e n t i c a l w i t h g l y c o s u l f a t a s e or c h o n d r o s u l f a t a s e , both of which are a l s o present i n charonia lampas. The crude l i v e r e x t r a c t i s p u r i f i e d by f r a c t i o n a t i o n w i t h ammonium s u l f a t e and then by successive column chromatography of CM-Sephadex C-50 and DEAE-Sephadex A-50. K e r a t o s u l f a t a s e preparations I and II are stored a t -20° i n the presence of 0.1 M sodium c h l o r i d e without a p p r e c i a b l e l o s s of a c t i v i t y f o r several weeks. Keratosulfatases desulfate keratopolysulfate, keratosulfate and h o r a t i n s u l f a t e , a s u l f a t e d polysaccharide composed of L-fucose, g-mannose, D-glucose, D - g a l a c t o s e , D-glucosamine and D-galactosamine, i s o l a t e d from the l i v e r of £. lampas. K e r a t o s u l f a t a s e I does not l i b e r a t e s u l f a t e from h o r a t i n s u l f a t e (Table V I I I ) . Table V I I I Enzyme preparation
Substrate
Incubation time
SO^ libérât
(h) 1. 2. 3.
I II I II I II
Keratopolysulfate Same , Kerator S]sulfate Same Horatin s u l f a t e Same 7
D
96 96 96 76 48 48
(%) 80 100 95 100 < 3 100
I t a l s o appears that k e r a t o s u l f a t a s e f i r s t l i b e r a t e s s u l f a t e from k e r a t o s u l f a t e s and the d e s u l f a t e d polymer i s then degraded to D-galactose and N-acetyl-D-glucosamine by the a c t i o n of 3-D-galactosidase and 3-u-acetyl-D-glucosaminidase, enzymes a l s o present i n the p a r t i a l l y p u r i f i e d k e r a t o s u l f a t a s e .
140
CARBOHYDRATE SULFATES
Potassium dihydrogen phosphate, sodium f l u o r i d e and £-chloromercuribenzoate i n h i b i t both fkeratosulfatases I and as they do most other known £. lampus s u l f a t a s e s .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
The optimum pH values of k e r a t o s u l f a t a s e s I and II 4.5 and 6.0, r e s p e c t i v e l y .
II,
are
Heparin degrading multienzyme system: No s i n g l e enzyme has been i s o l a t e d which can d e s u l f a t e heparin or h e p a r i t i n s u l f a t e s . However, f i v e enzymes from Flavobacterium heparinum (87), capable of degrading heparin to i t s b a s i c c o n s t i t u e n t s , have been p u r i f i e d and c h a r a c t e r i z e d . The p u r i f i e d heparinase degrades heparin to t r i s u l f a t e d d i s a c c h a r i d e . This i s d e s u l f a t e d f u r t h e r by a d i s a c c h a r i d e s u l f a t a s e y i e l d i n g the d i s u l f a t e d d i s a c c h a r i d e . This product i s a s u b s t r a t e f o r glycuronidase g i v i n g g l u c o s a m i n e - 2 , 6 - d i s u l f a t e and a , 3 - k e t o a c i d . D-glucos a m i n e - 2 , 6 - d i s u l f a t e i s d e s u l f a t e d by a s u l f a t a s e and a sulfamidase y i e l d i n g f r e e glucosamine and i n o r g a n i c s u l f a t e . The crude e x t r a c t from heparinum i s p u r i f i e d by s u c c e s s i v e l y using a column chromatography of Sephadex G-200 and then by agarose gel e l e c t r o p h o r e s i s . The hepa'rinase has no a c t i v i t y upon c h o n d r o i t i n s u l f a t e s A, Β and C or on h e p a r i t i n s u l f a t e s A and B, but degrades h e p a r i t i n s u l f a t e s C and D, y i e l d i n g s u l f a t e d d i s a c c h a r i d e s w i t h the same chromatographic m o b i l i t y as the ones obtained from heparin. The s p e c i f i c i t y of the enzyme, d i s a c c h a r i d e s u l f a t a s e , i s l i m i t e d . The enzyme acts only upon the t r i s u l f a t e d d i s a c c h a r i d e , forming d i s u l f a t e d d i s a c c h a r i d e and i n o r g a n i c s u l f a t e . Heparin, s u l f a t e d hexa- and t e t r a - s a c c h a r i d e s , d i s u l f a t e d d i s a c c h a r i d e , and g l u c o s a m i n e - 2 , 6 - d i s u l f a t e are not substrates f o r t h i s enzyme. Glycuronidase acts only upon the d i s u l f a t e d d i s a c c h a r i d e , y i e l d i n g glucosamine-2,6-disulfate. This enzyme does not a c t upon the t r i s u l f a t e d d i s a c c h a r i d e . Monosaccharide s u l f a t a s e and sulfamidase a c t only upon the s u f l a t e d hexosamine monosaccharides. No a c t i v i t y upon heparin or the d i s a c c h a r i d e s has been d e t e c t e d . The pathway of enzymatic degradation of heparin may proceed as shown.
8.
DE E T A L .
Polysaccharide
Sulfates
141
Heparin
I
heparinase
T r i s u l f a t e d Disaccharide disaccharide sulfatase D i s u l f a t e d Disaccharide + SO^
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
glycuronidase G l u c o s a m i n e - 2 , 6 - d i s u l f a t e + a,3-Keto A c i d monosaccharide sulfatase
sulfamidase Glucosamine-6-sulfate + S0
Glucosamine-N-sulfate
2-
+ so4
4
2-
sulfamidase
monosaccharide sulfatase Glucosamine + SO.
Cerebroside s u l f a t a s e : Presence of a cerebroside s u l f a t a s e has been f i r s t reported i n the d i g e s t i v e gland of the abalone, H a l i o t i s (88). This enzyme, i n a d d i t i o n to h y d r o l y z i n g c e r e b r o s i d e , can a l s o d e s u l f a t e c h o n d r o i t i n s u l f a t e but not p h e n y l s u l f a t e nor glucose 6 - s u l f a t e . Cerebroside s u l f a t a s e has been p u r i f i e d from the lysosomes of p i g kidney (90) and i t s presence has been shown i n other organs, p a r t i c u l a r l y l i v e r and spleen. The p u r i f i c a t i o n i s achieved by high voltage e l e c t r o p h o r e s i s of the crude e x t r a c t . This enzyme d e s u l f a t e s only cerebroside 3 - s u l f a t e s . Cerebroside 6 - s u l f a t e s are not d e s u l f a t e d . D-Galactose 3 - s u l f a t e i s hydrolyzed a t about 20% the r a t e of c e r e b r o s i d e 3 - s u l f a t e but D-galactose 6 - s u l f a t e i s not hydrolyzed. The enzyme a l s o d e s u l f a t e s cerebron and kerasin s u l f a t e s . The optimum pH i s 4.5, and i s 0.1 mM w i t h cerebroside 3 - s u l f a t e s . Enzyme a c t i v i t y i s i n h i b i t e d by s u l f i t e , s u l f a t e , phosphate, and f l u o r i d e w h i l e a c t i v a t e d by hydroxylami ne.
CARBOHYDRATE SULFATES
142
The enzyme has s t r i k i n g resemblance to a r y l s u l f a t a s e A and the enzymes could be i d e n t i c a l (107). Both cerebroside s u l f a t a s e and a r y l s u l f a t a s e A have been i s o l a t e d from human l i v e r (108) and perhaps t h e i r absence could cause metachromatic leucodystrophy i n humans.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Hunter's
Syndrome
Hunter's Syndrome i s a genetic d i s o r d e r a s s o c i a t e d w i t h f a i l u r e to degrade dermatan s u l f a t e and heparan s u l f a t e . Lysosomal storage of these polymers leads to numerous c l i n i c a l problems. F i b r o b l a s t s c u l t u r e d from the s k i n of Hunter's p a t i e n t s do not adequately degrade s u l f a t e d mucopolysaccharides because of a d e f i c i e n c y of a s p e c i f i c p r o t e i n t h a t i s present i n c e l l s e c r e t i o n s , c e l l s , and urine of i n d i v i d u a l s who do not have Hunter's Syndrome (113). Recent s t u d i e s show (109) t h a t a d e f i c i e n c y of a s u l f a t a s e , L - i d u r o n o - s u l f a t e s u l f a t a s e , which s p e c i f i c a l l y cleaves the e s t e r s u l f a t e of i d u r o n i c a c i d , to be r e s p o n s i b l e f o r the d e f e c t i n Hunter's Syndrome. This s u l f a t a s e , when added exogenously to Hunter c e l l s , a c c e l e r a t e s the degradat i o n of s u l f a t e d mucopolysaccharides. Sanfilippo
Syndrome
S a n f i l i p p o Syndrome i s a f a m i l i a l d i s o r d e r of mucopolysaccharide metabolism, t r a n s m i t t e d i n autosomal r e c e s s i v e f a s h i o n . Excessive u r i n a r y e x c r e t i o n of heparan s u l f a t e i s the major d i a g n o s t i c c r i t e r i o n . F i b r o b l a s t s from p a t i e n t s w i t h S a n f i l i p p o Syndrome f a l l i n t o two subgroups, each m a n i f e s t i n g a d e f i c i e n c y of a s p e c i f i c f a c t o r r e q u i r e d f o r normal metabolism of s u l f a t e d mucopolysaccharide. The f a c t o r d e f i c i e n t i n the A subgroup has been i s o l a t e d from normal human u r i n e . The f a c t o r a c c e l e r a t e s degradation of stored mucopolysaccharide i n S a n f i l i p p o A f i b r o b l a s t s . I t has been suggested t h a t S a n f i l i p p o A f a c t o r i s a heparan s u l f a t e s u l f a t a s e (110). When the f a c t o r i s administered exogenously to S a n f i l i p p o f i b r o b l a s t s , a c o r r e c t i o n of the abnormal metabolism occurs. Metachromatic Leucodystrophy
(MLD)
Metachromatic leucodystrophies are a group of human genetic d i s o r d e r s which are c h a r a c t e r i z e d by the d e p o s i t i o n of cerebroside s u l f a t e r i c h granules i n the c e n t r a l and p e r i p h e r a l nervous systems with r e s u l t a n t progressive n e u r o l o g i c a l degeneration. I t has been suggested t h a t the turnover of cerebroside s u l f a t e s to cerebrosides might be blocked as a r e s u l t of d e f i c i e n c y of cerebroside s u l f a t a s e (111, 112). Cerebroside s u l f a t a s e a c t i v i t y i s demonstrated i n normal mammalian t i s s u e s such as kidney and b r a i n , where i n MLD p a t i e n t s the cerebroside s u l f a t e accumulation i s e s p e c i a l l y high.
8.
DE E T A L .
Polysaccharide
Sulfates
143
Biogenesis
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
Recent work has shown t h a t prophyran contains residues of both 3,6-anhydro-L-galactose and L - g a l a c t o s e 6 - s u l f a t e (69, 71). When e x t r a c t s of porphyran c o n t a i n i n g seaweed are incubated w i t h the i s o l a t e d p o l y s a c c h a r i d e , f r e e s u l f a t e i s l i b e r a t e d and s y n t h e s i s of 3,6-anhydro-L-galactosyl residues occurs. Equimolar q u a n t i t i e s of the two products are present i n the m i x t u r e . These r e s u l t s s t r o n g l y i n d i c a t e t h a t L-galactose 6 - s u l f a t e i s an immediate b i o l o g i c a l precursor of 3,6-anhydro-L-galactose, the residue present i n commercial agar. This enzymic h y d r o l y s i s can provide a way of making commercial agar from 6 - s u l f a t e d p o l y saccharides. S t r u c t u r a l work of polysaccharides Enzymic h y d r o l y s i s of polysaccharides can provide i n t e r e s t i n g s t r u c t u r a l i n f o r m a t i o n . Thus, the s u b s t r a t e s p e c i f i c i t y of f i v e enzymes leads to the f o r m u l a t i o n of a pathway f o r the s e q u e n t i a l degradation of heparin (87). L i k e w i s e , the demonstration of the presence of chondroitinase-ABC, chondroitinase-AC, chondro4 - s u l f a t a s e , c h o n d r o - 6 - s u l f a t a s e , and unsaturated d i s a c c h a r i d e glucuronidase provides an enzymatic mechanism f o r the degradation of c h o n d r o i t i n s u l f a t e s (78). Another obvious f e a t u r e of these enzymes i s the use to which they may be put as reagents i n studying the s t r u c t u r e of c h o n d r o i t i n s u l f a t e s as w e l l as the composition of a given mixture of isomeric c h o n d r o i t i n s u l f a t e s . Conclusion Work on enzymatic s u l f a t i o n and d e s u l f a t i o n of polysaccharides i s i n i t s formative stages but has a l r e a d y reached a p o i n t where c e r t a i n b e n e f i c i a l a p p l i c a t i o n s are apparent. C l i n i c a l c o n t r o l of several syndromes may be f a c i l i t a t e d by a p p r o p r i a t e manipulation of enzymes e f f e c t i n g s u l f a t e groups. On a broader b a s i s there i s i n d i c a t i o n of the p o t e n t i a l use of enzymes f o r s u l f a t i o n of at l e a s t c e r t a i n polysaccharides and even a more immediate use of enzymes f o r d e s u l f a t i o n and perhaps d e s u l f a t i o n w i t h r e s u l t a n t i n t r o d u c t i o n of anhydro r i n g s . Consequently, f u r t h e r i n d u s t r i a l examination of these enzyme systems can be expected.
Literature Cited 1. 2. 3. 4.
D'Abramo, F-. and Lipmann, F., Biochim. Biop-ys. Acta, (1957) 25, 211. Meezan, E. and Davidson, Ε. Α., J . Biol. Chem. (1967) 242, 1685. Richmond, M. E., Deluca, S., and Gilvert, J . E., Biochem. (1973) 12, 3898. Suzuki, S., and Strominger, J. L . , J . Biol. Chem. (1960) 235, 257.
144 5. 6. 7. 8. 9. 10. 11. 12. Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35.
CARBOHYDRATE SULFATES
Johnson, A. H., and Baker, J . R., Biochim. Biophys. Acta (1973) 320, 341. Endo, Μ., and Yoshizawa, Z . , J . Biochem. (1976) 79, 293. Foley, T. J . and Baker, J . R., Biochem. J., (1971) 124, 25 p. Wortman, B . , J. Biol. Chem., (1961) 236, 974. Balasubramanian, A. S., and Bachhawat, Β. K., J. Neurochem., (1964) 11, 877. Momburg, M., Stuhlsatz, H. W., Kisters, R., and Greiling, G. Η., Hoppe-Seyler's Z. Physiol. Chem., (1972) 353, 1351. Adams, J. B . , Biochim. Biophys. Acta, (1964) 83, 127. Eisenman, R. Α., Balasubramanian, A. B . , and Marx, W., Arch. Biochem. Biophys. (1967) 119, 387. Balasubramanian, A. B . , Joun, N. S., and Marx, W., Arch. Biochem. Biophys., (1968) 128, 623. Jansson, L . , Hook, M., Wasteson, Α., and Lindahl, U . , Biochem. J., (1975) 149, 49. Habuchi, O., Yamagata, T., and Suzuki, S., J . Biol. Chem. (1971) 246, 7357. Goldberg, I. H., and Delbruch, Α., Fed. Proc. (1959) 19, 235. Yoshida, H., and Egami, F., J . Biochem. (1965) 57, 215. Su, J . C., and Hassid, W. Z . , Biochem. (1962) 1, 474. Loewus, F., Wagner, G., Schiff, J . Α., and Weistrop, J., Plant Physiol. (1971) 48, 373. Ramus, J., and Groves, S. T., J . Cell. B i o l . , (1972) 54, 399. Ramus, J., and Groves, S. T., Plant Physiol. (1974) 53, 434. Bidwell, R. G. S., and Ghosh, N. R., Can. J . Bot. (1963) 41, 209. Qauntrano, R. S., and Crayton, Μ. Α., Devel. Biol. (1973) 30, 29. Crayton, Μ. Α., Wilson, E . , and Quantrano, R. S., Devel. Biol. (1974) 39, 164. Hogsett, W. E . , and Quantrano, R. S., Plant Physiol. (1975) 55, 25. Davidson, E. A. and Riley, J . G., J. Biol. Chem. (1960) 235, 3367. Suzuki, S., Trenn, R. H., and Strominger, J . L . , Biochim. Biophys. Acta (1961) 50, 169. Adams, J. B . , Biochem. J., (1960) 76, 520. Hasegawa, E . , Delbruck, Α., and Lipmann, F., Fed. Proc. (1961) 20, 86. Adams, J. B . , and Meaney, M. F . , Biochim. Biophys. Acta (1961) 54, 592. Suzuki, S., and Strominger, J . L . , J. Biol. Chem. (1960) 235, 267. Suzuki, S., and Strominger, J . L . , J . Biol. Chem. (1960) 235, 274. Meezan, E . , and Davidson, Ε. Α., J . Biol. Chem., (1967) 242, 4956. Deluca, S., and Silvert, J . E . , J. Biol. Chem., (1968) 243, 2725. Silvert, J . E . , and Deluca, S., J . Biol. Chem., (1969) 244, 876.
8. DE ET AL. 36. 37. 38. 39. 40.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67.
Polysaccharide Sulfates
145
Richmond, M. E., Deluca, S., and Silvert, J . E., Biochem. (1973) 12, 3904. Deluca, S., Richmond, M. E., and Silvert, J . E., Biochem. (1973) 12, 3911. Kimata, Κ., Okayama, M., Oohira, Α., and Suzuki, S., Mol. Cell Biochem. (1973) 1, 211. Harada, T., Shimizu, S., Nakamishi, Y . , and Suzuki, S., J. Biol. Chem. (1967) 242, 2288. Tsuji, M., Shimizu, S., Nakanishi, Y . , and Suzuki, S., J. Biol. Chem. (1970) 245, 6039. Nakashimi, Y . , Sonohara, H., and Suzuki, S., J . Biol. Chem. (1970) 245, 6046. Hook, M., Lindahl, U . , Hallen, Α., and Backstrom, G., J . Biol. Chem. (1975) 250, 6065. Lindahl, U . , Hook, M., Backstrom, G., Jacobsson, I . , Riesenfeld, J., Malstrom, Α., Roden, L . , and Feingold, D. S. Fed. Proc., (1977) 36, 19. Egami, F., Asahi, T., Takahashi, N . , Suzuki, S., Shibata, S., and Nishizawa, Κ., Bull. Chem. Soc. Japan (1955) 28, 685. Iida, K., J . Biochem., (1963) 43, 181. Wortman, B., J . Biol. Chem. (1961) 236, 974. Hatanaka, H., Yamagata, T., and Egami, F., Proc. Japan Acad. (1974) 50, 747. Soda, T., and Hattori, C., Bull. Chem. Soc., Japan (1931) 6, 258. Soda, T., Bull. Chem. Soc. Japan (1934) 9, 83. Soda, T., J . Fac. Sci. Tokyo Univ. (1936) 3, 150. Soda, T., and Egami, F., Bull. Chem. Soc., Japan (1933) 8, 148. Soda, T., Katsura, T., and Yoda, O., J . Chem. Soc. Japan (1940) 61, 1227. Dodgson, K. S., Lewis, J . I. M., and Spencer, B . , Biochem. J. (1953) 55, 253. Dodgson, K. S., and Spencer, B . , Biochem. J . (1953) 55, 436. Dodgson, K. S., and Spencer, B . , Biochem. J . (1954) 57, 310. Dodgson, K. S., and Lloyd, A. G., Biochem. J . (1961) 78, 319. Dodgson, K. S., Biochem. J . (1961) 78, 324. Lloyd, P. F., Lloyd, K. O., and Owen, O., Biochem. J . (1962) 85, 193. Lloyd, P. F., and Lloyd, K. O., Nature (Lond) (1963) 199, 287. Lloyd, P. F., and Fielder, R. J., Biochem. J . (1967) 105, 33P. Lloyd, P. F., Stuart, C. H., Biochem. J. (1968) 107, 7P. Fielder, R. J., and Lloyd, P. F., Biochem. J . (1968) 109, 14P. Lloyd, P. F., and Forrester, P. F., Biochem. J., (1971) 124, 21P. Yamashina, I . , J . Chem. Soc. Japan (1951) 72, 124. Weigl, J., and Ypahe, W., Can. J . Microbiol. (1966) 12, 874. Takahashi, N . , J. Biochem. Tokyo (1960) 48, 508, 691. Takahashi, N . , and Egami, F., Biochim. Biophys. Acta (1960)
146 68. 69. 70. 71. 72. 73. 74. 75. 76. Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99.
CARBOHYDRATE SULFATES
Takahashi, Ν., and Egami, F., Biochem. J., (1961) 80, 384. Rees, D. Α., Biochem. J . (1961) 78, 25P. Rees, D. Α., Biochem. J . (1961) 80, 449. Peat, S., and Rees, D. Α., Biochem. J . (1961) 79, 7. Peat, S, Turvey, J . R., and Rees, D. Α., J . Chem. Soc. (1961) 1590. Neuberg, C. and Rubin, O., Biochem. Z . , (1914) 67, 82. Neuberg, C., and Hofman, E . , Biochem. Z. (1931) 234, 345. Neuberg, C. and Hofman, E . , Naturwissenschaften (1931) 19, 484. Dodgson, K. S., Lloyd, A. G., and Spencer, B . , Biochem. J . (1957) 65, 131. Dodgson, K. S., and Lloyd, A. G., Biochem. J . (1957) 66, 532. Yamagata, T., Saito, H . , Habuchi, O. and Suzuki, S., J. Biol. Chem. (1968) 243, 1523. Soda, T. and Egami, F . , J . Chem. Soc. Japan (1938) 59, 1202. Lloyd, P. F. and Fielder, R. J., Biochem. J . (1968) 109, 14P. Kawai, Y . , Seno, N . , and Anno, Κ., Anal. Biochem. (1969) 32, 314. Kawai, Y. and Anno, K., Biochim. Biophys. Acta (1971) 242, 428. Atsumi, Κ., Kawai, Y . , Seno, Ν., and Anno, Κ., Biochem. J . (1972) 128; 983. Tudball, N. and Davidson, Ε. Α., Biochim. Biophys. Acta (1969) 171, 113. Held, E . , and Budeecke, E . , Hoppe-Seyler's Ζ. Physiol. Chem. (1967) 348, 1047. Fukuda, M. N . , and Egami, F . , Biochem. J., (1970) 119, 39. Dietrich, C. P., Silva, M. E. and Michelacci, Υ. Μ., J. Biol. Chem. (1973) 248, 6408. Fujino, Y. and Negishi, T., Bull. Agri. Chem. Soc., Japan (1957) 21, 225. Mehl, E. and Jatzkewitz, H., Hoppe-Seyler's Ζ. Physiol. Chem. (1963) 331, 292. Mehl, E. and Jatzkewitz, H . , Hoppe-Seyler's Ζ. Physiol. Chem. (1964) 339, 260. Mehl, E. and Jatzkewitz, H., Biochim. Biophys. Acta (1968) 151, 619. Hatanaka, H., Ogawa, Y. and Egami, F . , J . Biochem. (1975) 77, 353. Hatanaka, H . , Ogawa, Y . , Egami, F., Ishizuka, I. and Nagai, Y . , J. Biochem. (1975) 78, 427. Hatanaka, H. Ogawa, Y . , and Egami, F., J . Biochem. (1976) 79, 27. Tsuji, M., Hamano, M., Nakanishi, Y . , Ishihara, K. and Suzuki, S, J . Biol. Chem. (1974) 249, 879. Dodgson, K. S., Biochem. J . (1961) 78, 312. Rees, D. Α., Biochem. J . (1961) 80, 452. Lloyd, A. G., Biochem. J . (1959) 72, 133. Spencer, B . , Biochem. J . (1960) 75, 453.
8. DE ET AL.
Polysaccharide Sulfates
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch008
100.
147
Huggett, A. St. G. and Nixon, D. Α., Biochem. J . (1957) 66, 12P. 101. Fromageot, C., "The Enzymes", Vol. 1, pt. 1, p. 517, Academic Press, Inc., New York (1950). 102. Lloyd, A. G., Meth. Enzym. (1966) 8, 670. 103. Dziewiatkowski, D. D., J . Biol. Chem. (1956) 223, 239. 104. Dohlman, C. H., Acta Physiol. Scand. (1956) 37, 220. 105. Ohmura, H. and Yasoda, T., Quoted in Biol. Abstr. (1962) 39, 837. 106. Lloyd, A. G., Large, P. J., Davies, M., Olavesen, A. H., and Dodgson, K. S., Biochem. J . (1968) 108, 393. 107. Graham, E. R. B. and Roy, A. B . , Biochim. Biophys. Acta (1973) 329, 88. 108. Mraz, W., Fischer, G., and Jatzkewitz, H . , Hoppe-Seyler's Z.Physiol. Chem. (1976) 357, 201. 109. Sjorberg, I . , Fransson, L. Α., Matalon, R., and Dorfman, A. Biochem. Biophys. Res. Commun. (1973) 54, 1125. 110. Kresse, H. and Neufeld, E. F., J . Biol. Chem. (1972) 247, 2164. 111. Mehl, E. and Jatzkewitz, H., Biochem. Biophys. Res. Commun. (1965) 19, 407. 112. Porter, M. T., Fluharty, A. L., Trammell, J . and Kihara, H. Biochem. Biophys. Res. Commun. (1971) 44, 660. 113. Bach, G., Eisenberg, F., J r . , Cantz, M., and Neufeld, E. F . , Proc. Nat. Acad. S c i . , USA (1973) 70, 2134.
RECEIVED
February 6, 1978.
9 Some Novel Methods and Results in the Sulfation of Polysaccharides K E N N E T H B. G U I S E L E Y
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
Marine Colloids, Inc., Rockland, ME 04841
The methods used in the sulfation of polysaccharides are f a i r l y limited, because the properties of sulfating agents and those of polysaccharides combine to put severe constraints on the synthetic chemist. Thus, in virtually a l l the literature, we find essentially the same techniques - the treatment of a polysaccharide with a Lewis base complex of sulfur trioxide, under anhydrous conditions, usually in the presence of a base such as pyridine. One of the commonest techniques involves the addition of chlorosulfonic acid to pyridine in the cold, followed by introduction of the polysaccharide, and subsequent heating (1-8). The product is usually recovered and purified by alcohol precipitation, dissolution in water, neutralization, dialysis, and alcohol precipitation. The vigor of the sulfating agent is a function of the strength of the Lewis base with which it is combined. Pyridine, being a moderate base, effectively controls the potency of the sulfur trioxide, and the crystalline pyridine-sulfur trioxide complex is readily prepared (9). Triethylamine and trimethylamine form less reactive sulfating reagents (10a), which are so stable, that sulfations in aqueous systems have been reported (4, 11). At the opposite end of the act i v i t y scale are the complexes with dimethylformamide (DMF) and dioxane (10a). These, being much weaker bases, hold the sulfur-trioxide less tightly, permitting reactions at lower temperatures. Virtually a l l polysaccharides have been the object of sulfation reactions, starting with cellulose in 1819 (12). A series of review articles in Industrial and Engineering Chemistry in the 1950's and 1960's, by Gilbert and Jones refer to most of these, and a concise, but thorough, coverage was given the subject in Gilbert's book, "Sulfonation and Related Reactions" (10b). 0-8412-0426-8/78/47-077-148$05.00/0 © 1978 American Chemical Society
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
9.
GuisELEY
Sulfation
of
Polysaccharides
149
Because o f t h e p h y s i o l o g i c a l importance o f h e p a r i n , many attempts have been made over the y e a r s t o produce a s y n t h e t i c h e p a r i n by s u l f a t i o n o f p o l y s a c c h a r i d e s (5-7, 13, 14), and a n t i u l c e r a t i v e m e d i c a t i o n s ( p e p s i n i n h i b i t o r s ) have been s i m i l a r l y p r e p a r e d (1_, 15-17) . D i r e c t s u l f a t i o n o f p o l y s a c c h a r i d e s , as, f o r example, by the p y r i d i n e - c h l o r o s u l f o n i c a c i d method, g e n e r a l l y r e s u l t s i n d e g r a d a t i o n o f t h e polymer, w i t h r e s u l t a n t l o s s o f c o l l o i d a l p r o p e r t i e s . However, employment o f g e n t l e r c o n d i t i o n s o f t e n f a i l s t o e f f e c t enough s u l f a t i o n t o change t h e p r o p e r t i e s o f the p o l y saccharide. Wolfrom and J u l i a n o (_3_) r e c o g n i z e d the need t o r e n d e r p o l y s a c c h a r i d e s more amenable t o s u l f a t i o n through an a c t i v a t i o n p r o c e s s , and Schweiger f u r t h e r e d t h e concept i n a s e r i e s o f p a t e n t s d e s c r i b i n g the s u l f a t i o n o f a l g i n (18), s t a r c h (19), xanthan (20), and c e l l u l o s e (21). In t h e s e c a s e s , t h e a c t i v a t i o n was a c c o m p l i s h e d by t r e a t m e n t o f t h e p o l y s a c c h a r i d e i n a s e r i e s o f s o l v e n t washes which d e h y d r a t e d i t , y e t p r e v e n t e d i t s becoming i n e r t t o s u l f a t i o n , as does oven-drying. The p r i n c i p a l s u b j e c t o f t h i s paper i s a g e n e r a l l y a p p l i c a b l e method o f a c t i v a t i n g p o l y s a c c h a r i d e s , which we d e v e l o p e d a t about the same time. Basically, i t c o n s i s t s o f a two-step p r o c e s s i n v o l v i n g h y d r a t i o n o f t h e gum, f o l l o w e d by d i s t i l l a t i v e s o l v e n t d r y i n g . For i t s h y d r a t i o n , the gum may be t o t a l l y d i s s o l v e d , o r merely s w o l l e n w i t h a l i m i t e d q u a n t i t y o f water. In the d e h y d r a t i o n s t e p , the water and any o t h e r s o l v e n t which may r e a c t i r r e v e r s i b l y w i t h a s u l f a t i n g agent, are removed by d i s t i l l a t i o n i n t h e p r e s e n c e o f a h i g h e r b o i l i n g , water-miscible s o l v e n t . Products of p r e d i c t a b l e degrees o f s u b s t i t u t i o n and h i g h m o l e c u l a r weight can then be p r e p a r e d by c o n v e n t i o n a l methods o f s u l f a tion. Our i n t e r e s t i n s u l f a t i n g p o l y s a c c h a r i d e s was p r i m a r i l y one o f p r o d u c i n g a s y n t h e t i c c a r r a g e e n a n (,22.). Carrageenans a r e g a l a c t a n s u l f a t e s p r e s e n t i n a number o f r e d seaweeds, and which a r e e x t r a c t e d and used f o r t h e i r g e l l i n g , suspending, and v i s c o s i t y - p r o d u c i n g p r o p e r t i e s i n f o o d s , p a r t i c u l a r l y d a i r y p r o d u c t s , and i n such o t h e r d i v e r s e p r o d u c t s as t h e p o p u l a r a i r f r e s h e n e r g e l . A s e m i - s y n t h e t i c gum w i t h p r o p e r t i e s s i m i l a r t o c a r r a g e e n a n c o u l d prove t o be o f g r e a t economic v a l u e i n t h e f a c e o f r i s i n g seaweed c o s t s which put the p r i c e o f carrageenan a t r o u g h l y f o u r times t h a t o f guar and l o c u s t bean gum, and twenty t o t h i r t y times t h a t o f s t a r c h .
CARBOHYDRATE SULFATES
150
Results
and D i s c u s s i o n
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
The e f f e c t s o f t i m e , temperature, s u l f a t i n g r e a gent, and p r e c i p i t a t i n g s o l v e n t were d e t e r m i n e d on p o l y s a c c h a r i d e s a c t i v a t e d by t h e d i s s o l u t i o n / r e p r e c i p i t a t i o n method, a f t e r e a r l i e r e x p e r i m e n t s showed t h a t o t h e r methods o f d r y i n g i n h i b i t e d r e a c t i o n (Table 1 ) . E f f e c t o f Temperature. F o r guar and l o c u s t bean gum s u l f a t e d w i t h DMF:S03, t h e e x t e n t o f s u l f a t i o n was q u i t e comparable a t a g i v e n temperature, whereas o t h e r gums v a r i e d somewhat i n t h e i r tendency toward b e i n g sulfated. R e a c t i o n was found t o be q u i t e r a p i d i n i t i a l l y , as i n d i c a t e d i n F i g . 1, w i t h about 80% o f t h e p o s s i b l e s u b s t i t u t i o n f o r a given temperature o c c u r r i n g i n t h e f i r s t hour. U s i n g t h i s knowledge, i t was p o s s i b l e t o o b t a i n a "product w i t h a d e s i r e d DS, merely by employing t h e c a l c u l a t e d amount o f s u l f a t i n g r e a g e n t and c a r r y i n g o u t t h e r e a c t i o n a t a temperature somewhat above t h e temperature which would produce t h a t DS when an e x c e s s o f s u l f a t i n g r e a g e n t was p r e s e n t . An added advantage i n t h i s t e c h n i q u e was t h e f a c t t h a t t h e r e was no r e s i d u a l s u l f a t i n g r e a g e n t l e f t f o l l o w i n g t h e r e action. E f f e c t o f P r e c i p i t a t i n g S o l v e n t . « A f a c t o r which, r a t h e r s u r p r i s i n g l y , a f f e c t e d t h e DS a c h i e v a b l e under a g i v e n s e t o f s u l f a t i o n c o n d i t i o n s , was t h e p a r t i c u l a r s o l v e n t used f o r t h e i n i t i a l p r e c i p i t a t i o n o f t h e gum. T h i s i s i l l u s t r a t e d i n T a b l e 2. With a l l t h r e e gums t e s t e d , methanol was g e n e r a l l y t h e most e f f i c i e n t a t a c t i v a t i n g , whereas DMF v a r i e d t h e most, b e i n g l e a s t e f f i c i e n t w i t h s t a r c h and most w i t h l o c u s t bean gum. I s o p r o p y l a l c o h o l worked w e l l f o r s t a r c h b u t was unimp r e s s i v e w i t h t h e two galactomannans. Acetone was gene r a l l y poor. A p o s s i b l e explanation i s that the order i s , i n general, r e l a t e d t o the dehydrating a b i l i t y of the s o l v e n t , m o d i f i e d by an a f f i n i t y o f each gum f o r a p a r t i c u l a r solvent. In a l l t h e s e c a s e s , t h e gum was a c t i v a t e d by t h e d i s s o l u t i o n / r e p r e c i p i t a t i o n method and s u l f a t e d a t 25° f o r 24 h o u r s , u s i n g s u f f i c i e n t 1 M DMF:S0 t o t o t a l l y s u l f a t e t h e gum, i . e . , t o produce a DS o f 3.0. P y r i d i n e was p r e s e n t i n an amount e q u a l t o t w i c e t h e number o f moles o f DMF:SC>3. 3
E f f e c t o f S u l f a t i n g Reagent. U s i n g DMF as a s o l v e n t , and l o c u s t bean gum as t h e s u b s t r a t e , f o u r s u l f a t i n g r e a g e n t s were t e s t e d f o r t h e i r a c t i v i t y a t 70° (for 4 hours). Here, a g a i n , t h e r e were d i f f e r e n c e s i n DS. G e n e r a l l y , t h e y f o l l o w e d t h e o r d e r p r e d i c t e d from
9.
Sulfation
GuiSELEY
of
Polysaccharides
151
T a b l e 1. E f f e c t o f d r y i n g method on degree o f s u b s t i t u t i o n (DS) and v i s c o s i t y (1%, 2 5 ° , B r o o k f i e l d LVF, 6 rpm) f o r l o c u s t bean gum + 1 mole DMF:SO3/mole anhydro sugar, 24 h r s . , room temperature.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
D.S.
25 , cps) 1.0
η
(
Oven D r y i n g , 60°C. ATM.
0. 006
2425
Benzene D i s t i l l a t i o n ,
ATM.
0. 03
3450
Benzene D i s t i l l a t i o n , VAC.
0. 07
1100
DMF D i s t i l l a t i o n , VAC.
0.47
1150
3.0
ρ Sulfation of Guar
2.0
—
D.S. 1.0
70°
0.0
2 3 T I M E , hrs.
Figure 1. Effect of time at different tempera tures in the sulfation of guar with DMF:S0 3
T a b l e 2. E f f e c t o f p r e c i p i t a t i n g s o l v e n t on degree o f s u l f a t i o n o f s t a r c h , guar, and l o c u s t bean gum (DMF:S0 , 25°/24 h r s . ) 3
Starch
Guar
LBG
MeOH
1. 51
DMF
1. 67
1. 37
DMF
0. 70
MeOH
1. 08
Acetone
0. 57
Acetone
0. 65
Py
0. 94
DMF
0. 31
i-PrOH
0. 60
Acetone
0. 53
i-PrOH
0. 47
Me OH
1. 65
i-PrOH
CARBOHYDRATE SULFATES
152
t h e s t r e n g t h o f t h e base used t o complex t h e SO3, w i t h t h e e x c e p t i o n o f t r i e t h y l a m i n e , which produced t h e h i g h e s t DS r a t h e r t h a n t h e second l o w e s t as a n t i c i pated: S u l f a t i n g Reagent Et N:S0 DMF:S0 Py:S0 Me N:S0 3
DS 1.35
3
0.99
3
0.88
3
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
3
0.
3
39
From a p r a c t i c a l p o i n t o f view, t h e r e i s no advantage i n u s i n g any o f t h e complexes o t h e r t h a n t h a t w i t h DMF, s i n c e i t can be p r e p a r e d and used d i r e c t l y , and i s v e r y efficient. T h i s a s p e c t was i n v e s t i g a t e d no f u r t h e r . A n a l y s i s f o r A c t i v e S u l f a t i n g Reagent. Because o f t h e d e s i r e t o c o n t r o l DS and t o m i n i m i z e polymer degra d a t i o n , i t was n e c e s s a r y t o a n a l y z e f o r t h e c o n c e n t r a t i o n o f b o t h a c t i v e s u l f a t i n g r e a g e n t and h y d r o l y z e d DMF:S0 which may be p r e s e n t . P u b l i s h e d methods f o r such an a n a l y s i s u s u a l l y d i r e c t the r e a d e r t o add an e x c e s s of water and t i t r a t e t h e s u l f u r i c a c i d p r o duced ( 2 3 ) . T h i s method f a i l s t o make t h e n e c e s s a r y d i s t i n c t i o n between t h e a c t i v e and t h e h y d r o l y z e d r e a gent. I f , however, one uses anhydrous methanol i n p l a c e o f water i n a second t i t r a t i o n , i t i s p o s s i b l e t o d e t e r m i n e , by d i f f e r e n c e , b o t h t h e amount o f a c t i v e s u l f a t i n g r e a g e n t and t h a t o f s u l f u r i c a c i d . 3
C a l l i n g the r e a c t i o n w i t h water T i t r a t i o n f u r i c a c i d from a l l s o u r c e s i s d e t e r m i n e d : S0
3
+ H 0
+ H S0
4
(2
meq.
H)
H S0
-> H S 0
4
(2
meq.
H)
2
2
Titration S0
3
4
2
2
3
3
H S0 2
4
3
-> H S 0 2
4
+
( 1 meq.
H+)
(2
H)
meq.
Therefore, A =
2 X meq.
S0
3
+ meq.
H S0
4
Β =
meq.
S0
3
+ meq.
H S0
4
meq.
S0
3
A-B and,
=
sul
+
Β d i s t i n g u i s h e s between t h e two
+ CH OH -> C H O S 0 H
A,
2
2
+
species:
9.
Sulfation
GuiSELEY
2B = 2 X meq. A = 2B-A
=
of
Polysaccharides
153
H S0
4
+ 2 X meq.
SO
meq.
H S0
4
+ 2 X meq.
SO
meq.
H S0
2
2
2
4
To i l l u s t r a t e t h i s , 10 ml. o f DMF:S0 r e a g e n t added to 50 ml. o f water r e q u i r e d 22.65 ml. o f 1 Ν NaOH. A n o t h e r 10-ml. p o r t i o n was added t o 10 ml. o f anhydrous DMF p l u s 2.5 ml. o f anhydrous methanol and 5 ml. anhydrous pyridine. The m i x t u r e was a l l o w e d t o s t a n d o v e r n i g h t , then 50 ml. o f water was added, and the s o l u t i o n t i t r a t e d t o a p h e n o l p h t h a l e i n e n d p o i n t w i t h 1 Ν NaOH: 11.90 ml. was required. Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
3
A-B 2B-A
= 22.65 - 11.90
= 10.75
= 23.80 - 22.65 =
1.15
meq. meq.
S0
3
H S0 2
4
E f f e c t of R e s i d u a l Water A f t e r A c t i v a t i o n . This a n a l y t i c a l scheme was put t o use t o d e t e r m i n e how much r e s i d u a l water was p r e s e n t i n an a c t i v a t e d gum, by c a r r y i n g out t h e a n a l y s i s on the r e a c t i o n m i x t u r e a f t e r t h e r e a c t i o n was complete. Guar gum was a c t i v a t e d by t h e d i s s o l u t i o n / r e p r e c i p i t a t i o n method, f o u r samples b e i n g p r e p a r e d i d e n t i c a l l y except t h a t each was taken t o a d i f f e r e n t s t a t e of d r y n e s s w i t h the DMF. S u l f a t i o n was c a r r i e d out w i t h two moles o f DMF:S0 per mole o f anhydrohexose, and two moles o f p y r i d i n e f o r each mole o f DMF:S0 , employing c o n d i t i o n s o f time and temperature t h a t would n o r m a l l y produce a DS o f about 1.25. When t h e r e a c t i o n was complete, the p r o d u c t was s e p a r a t e d and worked up, and the r e a c t i o n m i x t u r e ana l y z e d f o r a c t i v e DMF:S0 and s u l f u r i c a c i d . The v i s c o s i t y o f the p r o d u c t and i t s DS were d e t e r m i n e d and compared w i t h the l e v e l o f s u l f u r i c a c i d found. These r e s u l t s are shown i n T a b l e 3. I t i s quite c l e a r that d i f f e r e n c e s i n v i s c o s i t y a r e not due t o v a r i a t i o n s i n DS, s i n c e t h o s e are v i r t u a l l y i d e n t i c a l , but i t does appear s i g n i f i c a n t t h a t even i n the p r e s e n c e o f an ex cess of p y r i d i n e , degradation occurs i n p r o p o r t i o n to the amount of s u l f u r i c a c i d produced. In view o f the f a c t t h a t the s u l f a t e e s t e r o f the polysaccharide s h o u l d be as a c i d i c as the s u l f u r i c a c i d (pyridinium i o n b e i n g the c o u n t e r i o n i n b o t h c a s e s ) , a p o s s i b l e explanation i s that oxidative degradation i s occurring, r a t h e r than h y d r o l y t i c c h a i n c l e a v a g e . (The t i t r a t a b l e a c i d i t y would then be e x p l a i n e d i n terms o f H S 0 plus unreduced H S 0 ) . 3
3
3
2
2
3
4
Other A c t i v a t i o n Methods.
A l t e r n a t i v e methods o f
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
154
CARBOHYDRATE
SULFATES
h y d r a t i n g the gums were i n v e s t i g a t e d i n t h e i n t e r e s t of economy - t h e d i s s o l v i n g and r e i s o l a t i o n o f a gum i s v e r y c o s t l y i n view o f t h e energy r e q u i r e m e n t s f o r s o l v e n t r e c o v e r y . In one, t h e gum was b r i e f l y soaked i n aqueous i s o p r o p y l a l c o h o l , then the m i x t u r e was b o i l e d r a p i d l y t o evaporate the a l c o h o l . The r e s u l t i n g wet, s w o l l e n powder was mixed w i t h DMF, broken up, and a l l o w e d t o s t a n d o v e r n i g h t . The water and DMF were r e moved by vacuum d i s t i l l a t i o n as i n t h e p r e c i p i t a t i o n method, and the r e s u l t i n g a c t i v a t e d gum s u l f a t e d . For a g i v e n s u l f a t i o n c o n d i t i o n , the DS and m o l e c u l a r weight (as i n d i c a t e d by v i s c o s i t y ) were dependent on the c o n c e n t r a t i o n o f a l c o h o l i n t h e o r i g i n a l m i x t u r e (Table 4 ) . A t low t i t e r s o f a l c o h o l , low v i s c o s i t i e s suggested incomplete dehydration with r e s u l t i n g degradation. At intermediate t i t e r s , v i s c o s i t i e s increased markedly, a c t u a l l y e x c e e d i n g t h e v i s c o s i t y and DS o f the t y p i c a l DS 1.2 5 guar s u l f a t e s d e s c r i b e d above. F i n a l l y , a t the h i g h e r t i t e r s , t h e DS a g a i n f e l l , p r o b ably a r e s u l t of incomplete a c t i v a t i o n . A v a r i a t i o n o f t h i s p r o c e s s was t h e use o f aqueous DMF t o h y d r a t e t h e gum. T h i s d i d not work w e l l when the o r i g i n a l m i x t u r e p l a c e d on t h e gum was d i s t i l l e d o f f i n vacuo, but i f t h e m i x t u r e were h e a t e d , and the gum t h e n f i l t e r e d o f f and d e h y d r a t e d w i t h f r e s h DMF, s u l f a t i o n w i t h o u t e x c e s s i v e d e g r a d a t i o n was p o s s i b l e . For example, h e a t i n g guar w i t h 3 0% aqueous DMF, filtering, d e h y d r a t i n g , and s u l f a t i n g under c o n d i t i o n s t h a t gave a DS o f 1.25 and a v i s c o s i t y o f about 2000 cps w i t h p r e c i p i t a t e d guar, a DS o f 1.09 and a v i s c o s i t y of 4240 cps were o b t a i n e d , a g a i n somewhat b e t t e r than by t h e p r e c i p i t a t i o n method. A v e r y unexpected r e s u l t came o u t o f a m o d i f i c a t i o n of t h e s e methods: guar was mixed w i t h 60% aqueous i s o p r o p y l a l c o h o l and r e f l u x e d 15 m i n u t e s , then f i l t e r e d o f f and d e h y d r a t e d and s u l f a t e d as d e s c r i b e d above. The p r o d u c t had a DS o f o n l y 0.16, but a v i s c o s i t y o f 29,000 cps a t 1%. (The u n t r e a t e d guar had a v i s c o s i t y of 6600 cps measured by t h e same procedure.) A repeat of t h e experiment r e s u l t e d i n a p r o d u c t w i t h a DS o f 0.20 and a 1% v i s c o s i t y o f 26,000 cps. E f f e c t o f Bases. Because t h e p r i m a r y g o a l o f t h e work was t o make a s y n t h e t i c c a r r a g e e n a n , and s i n c e c a r r a g e e n a n i s used so e x t e n s i v e l y i n f o o d s , an attempt was made t o r e p l a c e p y r i d i n e i n t h e r e a c t i o n m i x t u r e w i t h a l e s s n o x i o u s base. The d i f f i c u l t y was t o f i n d one which would not be so a l k a l i n e as t o r e a c t p r e f e r e n t i a l l y w i t h the DMF:SC>3, n o r so weak as t o f a i l t o p i c k up p r o t o n s as t h e y were l i b e r a t e d (the p o s s i b i l i t y
9.
Sulfation
GuiSELEY
of
Polysaccharides
155
Table 3. E f f e c t of s u l f u r i c acid i n reaction mixture on v i s c o s i t y of sulfated guar. (8.1 g. guar •> 13.1 g. Na guar SO4) . Meq. H S0
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
2
4
From D M F i S O o (92 ml. 1.106 M)
From H 0 i n Guar 2
Total
9. 9
10. 0
19.9
2375
1.27
9. 9
14.3
24.2
2175
1.27
9.8
26.8
36. 6
1725
1.22
9. 9
38. 5
48.4
1525
1.24
ηJf (cps) 0
DS
T a b l e 4. E f f e c t o f a l c o h o l t i t e r on DS and v i s c o s i t y o f guar gum h y d r a t e d by a l c o h o l b o i l - o f f (8.1 g. guar + 100 ml. aqueous i s o p r o p y l a l c o h o l ) .
% i-PrOH
DS
η
10
0.70
840
20
0.33
605
30
1.25
850
40
1.26
1450
50
1.46
3400
60
0.88
5700
70
0.21
7300
1 < Q
(cps
CARBOHYDRATE
156
SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
o f o x i d a t i v e d e g r a d a t i o n had n o t been c o n s i d e r e d a t the time). A l t h o u g h none was found t h a t worked as w e l l as p y r i d i n e ( l i k e l y because o f t h e h e t e r o g e n e i t y o f t h e system) , ones t h a t showed promise were sodium and pot a s s i u m a c e t a t e s and d i s o d i u m phosphate. In T a b l e 5 are g i v e n some r e s u l t s . In t h e s e i n s t a n c e s , t h e aqueous DMF method was used except f o r t h e example w i t h p o t a s s i u m a c e t a t e ; t h i s was c a r r i e d o u t w i t h f r e s h l y p r e c i p i t a t e d guar. C o n t r o l o f DS. An i n t e r e s t i n g s i d e l i g h t t o o u r work was d e m o n s t r a t i n g t h e apparent i d e n t i t y o f funoran and s u l f a t e d a g a r o s e . Funoran i s a seaweed p o l y s a c c h a r i d e used i n g r e a t q u a n t i t i e s i n t h e F a r E a s t . Ext r a c t e d from G l o i o p e l t i s f u r c a t a and r e l a t e d s p e c i e s , i t f i n d s use- as a t h i c k e n e r o r g l u e . I t was i d e n t i f i e d as a g a l a c t a n s u l f a t e i n t h e e a r l y 1 9 0 0 ' s , and t h e p r e s e n c e o f 3 , 6 - a n h y d r o - L - g a l a c t o s e was e s t a b l i s h e d i n 1956 by H i r a s e , A r a k i , and I t o ( 2 4 ) . T h i s meant t h a t i n s t e a d o f b e i n g a c a r r a g e e n a n , i t was more l i k e a s u l f a t e d agarose. When agarose was s u l f a t e d t o t h e same e x t e n t as f u n o r a n , and t h e i r i n f r a r e d s p e c t r a compared ( F i g . 2), they were found t o be e s s e n t i a l l y i d e n t i c a l as proposed by S t a n c i o f f and S t a n l e y i n 1968 (2_5) · A d d i t i o n a l p r o o f o f f u n o r a n s s t r u c t u r e was g i v e n by Penman and Rees i n 1 9 7 3 (26J . 1
Conclusion - Properties o f the Products. S u l f a t e d p o l y s a c c h a r i d e s p r e p a r e d i n t h i s work were found t o have one f e a t u r e i n common - t h e y were n o n - g e l l i n g . As such, they were most l i k e lambda-carrageenan, and when t e s t e d i n a v a r i e t y o f a p p l i c a t i o n s , demonstrated an a b i l i t y t o r e p l a c e lambda-, b u t n o t kappa- o r i o t a carrageenan. Of a l l t h e p r o d u c t s made, t h e most comm e r c i a l l y p r o m i s i n g was a guar s u l f a t e h a v i n g a DS o f 2 . 1 9 - i t c o u l d be used t o s t a b i l i z e a c o l d - m i x e d m i l k shake a t o n e - f i f t h t h e l e v e l o f a c a r r a g e e n a n used f o r t h a t purpose. S e v e r a l o f t h e p r o d u c t s made s a t i s f a c t o r y c h o c o l a t e syrups which, when mixed w i t h c o l d m i l k , would t h i c k e n i t and p r e v e n t s e t t l i n g o f t h e cocoa, as i s c h a r a c t e r i s t i c o f lambda-carrageenan. A few o f t h e p r o d u c t s were a l s o s a t i s f a c t o r y as t o o t h p a s t e b i n d e r s a n o t h e r f u n c t i o n n o r m a l l y performed by l_ambda-carrageenan. A number o f f a c t o r s combined t o l e s s e n t h e commerc i a l i n t e r e s t i n t h e s e s e m i - s y n t h e t i c gums, t h e p r i n c i p l e ones b e i n g t h e i n c r e a s e d c o n c e r n over t h e s a f e t y o f f o o d a d d i t i v e s (and t h e r e q u i r i n g o f e x t e n s i v e and c o s t l y animal t e s t i n g ) , and t h e a v a i l a b i l i t y o f l a r g e r q u a n t i t i e s o f seaweeds through t h e s u c c e s s f u l d e v e l o p -
Sulfation
GuisELEY
of
Polysaccharides
T a b l e 5. Replacement o f p y r i d i n e by s a l t s o f weak acids. (Guar gum heated w i t h aqueous DMF, f i l t e r e d d e h y d r a t e d , and s u l f a t e d w i t h excess DMFrSO^).
,
Base
S0 n. 4
n
DS
25 l e 0
, , (c s) P
Na HP0
4
70°/l h r .
0.59
600
Na HP0
4
70°/2 h r s .
0.50
350
NaOAc
50°/l h r .
0. 63
1150
NaOAc
50°/2 h r s .
0. 66
1100
NaOAc
50°/2 h r s .
0. 60
3580
KOAc
70°/4 h r s .
0.77
1130
2
2
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
Conditions
5.0
6Ό
7.0
MICRONS ao
iq.o
π.ο
13.0
,
,16,
A
A = AGAR0SE
\\
G » G L 0 I 0 P E L T I S POLYSACCHARIDE S » S U L F A T E D AGAROSE
I
2000
1
1
1800
.
1
1600
.
1
1400
.
J
Y\J
1
1200
1 1000
1 800
CM -I Figure 2.
IR spectra of agarose, sulfated agarose (25.5% SO4), and funoran, the polysaccharide from Gloiopeltis furcata (24.7% SO4)
158
CARBOHYDRATE
SULFATES
ment o f seaweed farms i n t h e P h i l i p p i n e s ( 2 7 , 28) . In a d d i t i o n , s i n c e t h e major uses o f carrageenan a r e de pendent on i t s g e l l i n g p r o p e r t i e s , f u r t h e r developmen t a l work w i t h t h e s e n o n - g e l l i n g d e r i v a t i v e s was n o t warranted. N o n e t h e l e s s , a c o n t r o l l a b l e means o f p r o d u c i n g p o l y s a c c h a r i d e s u l f a t e s was d e v e l o p e d and be cause o f i t s g e n e r a l a p p l i c a b i l i t y , i t can r e a d i l y be p u t i n t o p r a c t i c e , u t i l i z i n g v i r t u a l l y any p o l y s a c c h a ride available.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
Experimental Materials. P o l y s a c c h a r i d e s used were o f s t a n d a r d commercial f o o d grade. S u l f u r t r i o x i d e was o b t a i n e d from A l l i e d Chemical Corp. as S u l f a n B. I s o p r o p y l a l c o h o l was t e c h n i c a l grade, 9 9 % . T r i m e t h y l a m i n e - s u l f u r t r i o x i d e was p u r c h a s e d from Hexagon L a b o r a t o r i e s , I n c . , Bronx, N.Y., and used as r e c e i v e d . A l l o t h e r s o l v e n t s and c h e m i c a l s were r e a g e n t grade. DMF:S03 was p r e p a r e d by t h e method o f G a r b r e c h t (23_) . Pyridine-sulfur t r i o x i d e was made by t h e method g i v e n i n I n o r g a n i c Syn t h e s e s (9_) , except t h a t S u l f a n Β was used i n p l a c e o f chlorosulfonic acid. In t h i s way, t h e p r o d u c t was f r e e from c h l o r i d e i o n . T r i e t h y l a m i n e - s u l f u r t r i o x i d e was p r e p a r e d as d e s c r i b e d by W h i s t l e r and Spencer ( 2 9 J · A c t i v a t i o n o f P o l y s a c c h a r i d e s . 1. Dissolution/ Reprecipitation. The p o l y s a c c h a r i d e was d i s p e r s e d i n t o r a p i d l y a g i t a t e d water a t room temperature, g e n e r a l l y a t a l e v e l o f 1%. I f n e c e s s a r y , t h e m i x t u r e was heated t o d i s s o l v e t h e p o l y s a c c h a r i d e . F o r guar, i t was n o t n e c e s s a r y ; l o c u s t bean gum, 85°C; s t a r c h and agarose were b o i l e d . The s o l was t h e n poured, i n a s t e a d y stream, i n t o t w i c e i t s volume o f t h e s o l v e n t s e l e c t e d , w i t h a g i t a t i o n p r o v i d e d by a g l a s s s t i r r i n g r o d . The gum was s e p a r a t e d by s t r a i n i n g i t through a p i e c e o f p o l y e s t e r c l o t h suspended on a s c r e e n o r c o l l a n d e r , and f u r t h e r d r i e d by drawing up t h e c o r n e r s o f t h e c l o t h and s q u e e z i n g o u t e x c e s s l i q u i d . The p o l y s a c c h a r i d e was t h e n shredded by hand i n t o a l a r g e necked s t a n d a r d t a p e r round-bottom f l a s k , and c o v e r e d w i t h * anhydrous DMF t o t h e e x t e n t o f about t e n times t h e i n i t i a l weight o f gum. The f l a s k was t h e n a t t a c h e d t o a r o t a t i n g e v a p o r a t o r and t h e s o l v e n t s removed a t 5 - 1 0 mm p r e s sure. The temperature o f t h e b a t h s u r r o u n d i n g t h e f l a s k was a l l o w e d t o i n c r e a s e t o 8 0 ° . D i s t i l l a t i o n was stopped when no v i s i b l e l i q u i d remained i n t h e f l a s k . 2. Aqueous a l c o h o l b o i l - o f f . The p o l y s a c c h a r i d e was mixed w i t h aqueous i s o p r o p y l a l c o h o l i n t h e r a t i o o f 8 . 1 g. gum t o 100 ml l i q u i d , and t h e m i x t u r e q u i c k l y
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch009
9.
GuiSELEY
Sulfation
of
Polysaccharides
159
brought t o a b o i l i n a s t e a m - j a c k e t e d s t a i n l e s s s t e e l beaker. The a l c o h o l and some o f t h e water were q u i c k l y removed. The r e s u l t i n g damp, s t i c k y gum was mixed with 150 ml. o f DMF, a l l o w e d t o s t a n d o v e r n i g h t , and the vacuum d i s t i l l a t i o n c a r r i e d out as i n 1. 3. Aqueous DMF. The p o l y s a c c h a r i d e was mixed with about 12 p a r t s by weight o f aqueous DMF and h e a t e d i n a b o i l i n g water b a t h f o r 5-10 minutes. The m i x t u r e was s e p a r a t e d by f i l t r a t i o n , and the gum d e h y d r a t e d by v a c uum d i s t i l l a t i o n as i n 1. 4. Aqueous a l c o h o l soak. The p o l y s a c c h a r i d e was mixed w i t h aqueous i s o p r o p y l a l c o h o l and r e f l u x e d f o r 15 minutes o r a l l o w e d t o s t a n d a t room temperature o v e r n i g h t , then s e p a r a t e d by f i l t r a t i o n and d e h y d r a t e d by DMF d i s t i l l a t i o n as i n 1. S u l f a t i o n o f P o l y s a c c h a r i d e s . The a c t i v a t e d p o l y s a c c h a r i d e was s u l f a t e d i n t h e f l a s k i n which i t had been d r i e d down by d i s t i l l a t i o n . An amount o f a p p r o x i mately 1 M DMF:SC>3 ^ded, a c c o r d i n g t o the d e s i r e d r e s u l t or experimental c o n d i t i o n being i n v e s t i g a t e d . For example, f o r 8.1 g. o f s t a r c h , guar, o r l o c u s t bean gum, each o f which has an average o f t h r e e h y d r o x y l groups p e r anhydro sugar, t h e r e i s a t o t a l o f 150 meq. of h y d r o x y l . To p r o v i d e enough s u l f a t i n g agent t o comp l e t e l y s u l f a t e t h e gum t o a DS o f 3.0, 150 ml. o f 1 M DMF:SC>3 would be used; f o r a DS o f 1.0, o n l y 50 ml. o f the r e a g e n t would be added. P y r i d i n e was added a t twice t h e m i l l i e q u i v a l e n t l e v e l o f the s u l f a t i n g reagent. The f l a s k was s t o p p e r e d and p l a c e d on a shaker f o r the des i r e d time. F o r work a t e l e v a t e d t e m p e r a t u r e s , a water b a t h was p o s i t i o n e d beneath the arm o f the shaker and the f l a s k immersed i n i t . When t h e r e a c t i o n time had e l a p s e d , t h e m i x t u r e was q u i c k l y poured through a s i n t e r e d g l a s s f u n n e l on a f i l t e r f l a s k and the gum washed w i t h d r y DMF and/or i s o p r o p y l a l c o h o l t o remove a d h e r i n g u n r e a c t e d s u l f a t ing reagent. I t was then d i s p e r s e d i n water (about 100 p a r t s , based on i n i t i a l w e i g h t ) , and s t i r r e d . D i l u t e (1 N) sodium h y d r o x i d e was added t o m a i n t a i n a pH somewhat over 7 as t h e gum d i s s o l v e d . Usually, i t was h e a t e d toward t h e end o f t h e d i s s o l u t i o n p r o c e s s , then added t o 2 volumes o f i s o p r o p y l a l c o h o l t o r e p r e c i p i t a t e i t . I t was washed 2-3 t i m e s w i t h 85% i s o propyl a l c o h o l s u f f i c i e n t to cover i t , i n order to r e move r e s i d u a l p y r i d i n e . F i n a l l y , i t was squeezed out and d r i e d i n a c i r c u l a t i n g a i r oven a t 60° and ground through a 40-mesh s c r e e n i n a l a b o r a t o r y W i l e y M i l l . w
a
s
a
1 , 4 ) may be obtained only at a temperature of 7 0 ° C and a SO3/AGU r a t i o of 4 : 1 . The water content of s t a r c h , when i n creased from b % to 2 0 % acts i n favor of higher degrees of e s t e r i f i c a t i o n ( f i g . 1 ) . At a SO3/AGU r a t i o of 2 : 1 , however, the degree of e s t e r i f i c a t i o n i s low and appears to decrease with i n c r e a s i n g water content. Very low degrees of e s t e r i f i c a t i o n ( < 1 0 % D S < 0 , 7 ) are also obtained at bO ° C . At both SO3/AGU r a t i o s , the degree of e s t e r i f i c a t i o n increases with i n c r e a s i n g water content, the increase being more pronounced at the 4 : 1 than the 2 : 1 r a t i o ( f i g . 1 ) . F i g . 2 shows that, at 7 0 ° C , the degree of este9
9
Non flu id,
dry,
Aqueous, alkaline, homogene ous, heterogeneous inhibitors)
(^swelling
soin.
dit. alkali
bases
organ. N'contatning
homogeneous
heterogeneous
Solvent
Non aqueous,
System
organ.
[amides)
[urea
\
SO 3
salts
sulfite
or
sulfate
acidic
LioM
α min es
3
S0
oleum,
tri alky Ι
bases
acid,
-
-
chlorosulfonic
3
SO Donor
-300
65
- 65
20
-100
hours
-several
1h
0,22
max.
0,01 -1J
1h -2*th
days
0,1 - 2,6
15min
Degree of Esterificatior, DS
-several
Time
0
Temp. °C
and reagents, used for preparing starch sulfates literature)
Complexing Agent *
from
methods
N'contatning
(taken
survey on preferred
of
Summarizing
Characteristics
Tab. 1
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
-4
SINGLE EFFECT w Γ
· · * · · ·
Γ r W w r 8
t
(w
F
-
-
TIME OF ACTION)
3
5
MOL. RATIO AGU/S0 , β
5
2
-
3 1 1
4
4
-
7
10
-
7 3
>
-
F
4
10
17 12 6
>
WATER CONTENT OF THE STARCH, r
8 · W · Γ t · 8 · Γ
TRIPLE INTERACTION
w s 8 t t t
DOUBLE INTERACTION
t
8
EFFECT
5 1
3 1 1 1
1
4
2 1
4
1
^ 3
£
12 1
21 9 6 2 2 1
25 19 12 1
ACTIONS
STARCH CONCENTRATION IN FORMAMIDE
F
F I S H E R - T E S T FOR PROVING SIGNIFICANCE BETWEEN EXPLANATORY VARIABLES AND VARIABLES IN THE REACTION OF THE CHLOROSULFONIC ACID - FORMAMIDE SYSTEM WITH STARCH
TYPE OF ACTION
TAB. 2
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
CARBOHYDRATE SULFATES
5
10 WATER
15
20wCVoJ
CONTENT
Figure 1. Lines of regression for the influence of the water content (w) of the starch on esterification (% S ) (v= S0 /AGU ratio) E
3
15
20 STARCH
25 s(%> CONTENT
Figure 2. Lines of regression for the influence of the concentration of the starch in formamide (s) on esterification (% S ) (w = water content, r = SO,/ AGU ratio) E
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
11.
scHiERBAUM A N D KORDEL
Starch and Chlorosulfonic
Acid-Formamide
179
r i f i c a t i o n decreases s l i g h t l y with i n c r e a s i n g conc e n t r a t i o n oi' starch i n a l l cases. The l i m i t i n g v i s c o s i t y number may be considered as a general measure f o r molecular degradation without using exact values f o r the molecular weight. Generally, s o l u t i o n s with excess e l e c t r o l y t e are used to eliminate p o l y e l e c t r o l y t e behavior. V i s c o s i t y measurements show a pronounced decrease of [»jj takes place with i n c r e a s i n g v/ater content ( f i g . 3 ) . A comparision of the values of [%] i n d i c a t e s that degradation u s u a l l y takes place under conditions which produce high degrees of ester i f i c a t i o n (high temperature and high SO3/AGU r a t i o ) and, i n v e r s e l y , t h a t s l i g h t l y degraded esters may be obtained under conditions f a v o r i n g low degrees of e s t e r i f i c a t i o n (lower temperature and lower SO3/AGU ratio). The high molecular weight p o r t i o n as determined i n the excluded volume through g e l permeation chromatography on SEPHADEX G 200 may be i n t e r p r e t e d s i m i l a r l y . There i s a strong tendency to decrease with i n c r e a s i n g water content at a SO3/AGU r a t i o of 4:1, both with 15 % and 25 % s, and a tendency to increase with an SO3/AGU r a t i o of 2:1 ( f i g . 4 ) . In t h i s case, however, the d i f f e r e n t p o l y e l e c t r o l y t e behavior of the v a r i o u s l y s u b s t i t u t e d polysaccharide esters could not be overcome by the solvent and t h e r e f o r e , a few r e s u l t s are i n c o n s i s t a n t with these tendencies. The apparent v i s c o s i t y ty) of 5 % aqueous s o l u t i o n s i s h i g h l y i n f l u e n c e d by the water content of the s t a r c h at 70 °C and decreases at a high SO3/AGU r a t i o ( f i g . 5 ) , The same tendencies have been observed at the higher v i s c o s i t y l e v e l at 50 °C. It i s s u r p r i s i n g , that high r a t i o s of SO3/AGU as w e l l as high concentrations of s t a r c h give r i s e t o higher v i s c o s i t i e s of the e s t e r . I t i s p o s s i b l e that the h y d r o l y s i s which i s accelerated by the higher water content of the s t a r c h may be reduced by higher amounts of formamide. I t i s , t h e r e f o r e , recommended to c a r r y out the r e a c t i o n at an SO3/AGU r a t i o of 4:1 and a s t a r c h concentration of 25 % at 70 °C i n order to obtain s t a r c h esters with higher v i s c o s i ties. With respect to the y i e l d of s t a r c h s u l f a t e , which i s s i g n i f i c a n t l y c o r r e l a t e d with process v a r i ables only at 50 °C, the same tendency i s observed as i n the dependency o f S-g on process v a r i a b l e s (see f i g . 1 ) . The tendency of the y i e l d value to i n crease with i n c r e a s i n g water content and i n c r e a s i n g SO3/AGU r a t i o , i s due t o a more complete e s t e r i f i c a t i o n . Thus, high degrees of e s t e r i f i c a t i o n c o i n c i d e
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
180
Figure 3. Lines of regression for the influence of the water content (w) of the starch on limiting viscosity number [η] (r = S0 / AGU ratio")
10 |_
3
nor) 5
10 WATER
CONTENT
Figure 4. Lines of regression for the influ ence of the water content (w) of the starch on the high molecular weight portion as excluded by gel permeation chromatography (SEPHA DEX G 200) (τ = SO /AGU ratio, s = starch concentration) 3
15
20wf%)
11.
scHiERBAUM AND KÔRDEL
Starch and
Chlorosulfonic
Acid-Formamide
181
with high y i e l d s . The amount of formamide necessary f o r producing 1 g s t a r c h s u l f a t e i s shown i n f i g . 6 and appears to decrease with i n c r e a s i n g s t a r c h concentration ( s ) . An i n c r e a s i n g water content, p r e f e r a b l y with a SCh/ AGU r a t i o of 2:1, leads to a s l i g h t decrease of tne formamide amount a l s o . The amount of c h l o r o s u l f o n i c a c i d necessary f o r 1 g ester decreases only s l i g h t l y with i n c r e a s i n g water content ( f i g . 7 ) ; The reason probably i s the increase of S as w e l l as of the y i e l d . Of course, the higher l e v e l r e f e r s to a SO3/AGU r a t i o of 4:1. The nitrogen content of the e s t e r s , the p r i n c i pal contamination, r e s u l t s from formamide bound by the s u l f a t e group. Therefore, the n i t r o g e n content e x h i b i t s the same tendencies i n dependence from process v a r i a o l e s as the degree of e s t e r i f i c a t i o n , i . e . , the higher the degree of e s t e r i f i c a t i o n , the higher the contamination with formamide. Independent of t h i s , the y i e l d of ammonium s u l f a t e as a byproduct r e s u l t i n g from decomposition of formamide i s highest at 70 °C and an SO3/AGU r a t i o of 4:1 and i s i n c r e a sing considerably with the water content.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
E
Discussion The mutual actions of the explanatory v a r i a b l e s w i t h i n the given l e v e l of numerical values chosen f o r t h i s process are summarized i n Table 3 with r e spect to high degrees of e s t e r i f i c a t i o n , high y i e l d values, low molecular d e s t r u c t i o n , and low s p e c i f i c amount of raw m a t e r i a l s . Among the explanatory var i a b l e s a f f e c t i n g the process, the temperature has the greatest i n f l u e n c e on the e f f e c t v a r i a b l e s . Therefore high degrees of e s t e r i f i c a t i o n w i l l r e s u l t only at the higher temperature l e v e l . At t h i s l e v e l the r e a c t i o n proceeds completely i n the homogeneous system, the s t a r c h being d i s s o l v e d i n the reagent. At the 50 °C l e v e l , on the other hand, the r e a c t i o n takes place i n a predominantly heterogeneous system, rendering some s t a r c h soluble and r e a c t i n g to a higher degree and l e a v i n g another part of the s t a r c h undissolved and unreacted. Consequently these r e a c t i o n products have a non-uniform d i s t r i b u t i o n ofi substituents and a wide rang of molecular degradation* The water content or the s t a r c h has twofold e f f e c t , (a) : i t r e s u l t s i n high degrees of e s t e r i f i c a t i o n and a high e f f i c i e n c y regarding raw m a t e r i a l s , and (b) i t leads t o - pronounced h y d r o l y t i c degradation of molecules. The increase i n r e a c t i v i t y i s due to a
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
182
s = 25% 5
10 WATER
15
20wC%)
CONTENT
Figure 5. Lines of regression for the influence of the water content of the starch on apparent viscosity (5% sol) (r = SO /AGU ratio, s = starch concentration) s
Figure 6. Lines of regression for the influence of the starch concentration on the amount of formamide needed for producing 1 g of starch sulfate (w = water content of the starch)
scHiERBAUM AND KÔRDEL
Starch and Chlorosulfonic
Acid-Formamide
5 (9)
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
51
5
10 WATER
15
20w(%)
CONTENT
Figure 7. Lines of regression for the influence of the water content of the starch on the amount of chlorosulfonic acid needed for producing 1 g of starch sulfate (r = AGU/SO ratio) 3
183
70
TEMPERATURE °C
: 1
25
4
STARCH CONCENTRATION %
3
S0 /AGU RATIO
20
WATER CONTENT %
E
S
HIGH
: 1
50
-
4
20
HIGH VIELD VALUE 5
50
-
2 : 1
V
HIGH
4
G
50
25
: 1
5
N
LOW
p
Q
50,70
2:1
20
50,70
25
2:1
20
LOW AMOUNTS OF FORMAMIDE CHLOROSULFONIC ACID
EFFECT OF PROCESS VARIABLES ON THE STARCH CHLOROSULFONIC ACID - FORMAMIDE SYSTEM WITH RESPECT TO HIGH DEGREES OF ESTERIFICATION ( S ) AND YIELD VALUES, SMALL MOLECULAR DESTRUCTION (HIGH f * J VALUES) AND BY - PRODUCTS ( N ) , AND LOW AMOUNTS OF RAW MATERIAL
EXPLANATORY VARIABLES
TAB. 3
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
C/3
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
11.
scHiERBAUM AND KÔRDEL
Starch and Chlorosulfonic
Acid-Formamide
185
pronounced swelling of the s t a r c h that contains r e l a t i v e l y large amounts of water, but the amount of water that causes swelling and increases reactivityw i l l also cause an increased h y d r o l y t i c a c t i v i t y and r e s u l t i n cleavage of g l y c o s i d i c bonds. When the s u l f u r t r i o x i d e content, i . e . , the SO3/AGU r a t i o , that i s h i g h l y s i g n i f i a n t i n a l l actions observed i s increased, higher degrees of e s t e r i f i c a t i o n , high y i e l d s and higher molecular d e s t r u c t i o n are observed. With respect t o the e f f i c i e n c y , i t must be kept i n mind, however, that the amount of raw materials may be increased a l s o . The concentration of s t a r c h i n the formamide may be increased up to 30 ;5, but concentrations of s t a r c h between 15 % and 25 % are l e s s s i g n i f i c a n t than other explanatory v a r i a b l e s . I n creasing amounts of s t a r c h lead to a s l i g h t decrease i n degree of e s t e r i f i c a t i o n but also reduce the amount of formamide and by-products. As to the r e a c t i o n time between 15 and 30 min, i t has been pointed out already that the i n s i g n i f i c a n t i n f l u e n c e on e f f e c t v a r i a b l e s may be due to the small d i f f e rence between the temperatures used. I t can theref o r e be stated that the r e a c t i o n times are long enough f o r the e s t e r i f i c a t i o n s at 70 °C, but not f o r those at 50 °C. Conclusions The mutual actions described above lead to some d i f f i c u l t i e s with respect t o the s e l e c t i o n of proper conditions f o r producing starch s u l f a t e s with predetermined p r o p e r t i e s . I t must be r e a l i z e d , however, that the l i n e a r regression adopted i n the study of t h i s process g e n e r a l l y allows the predetermination of tendencies q u a l i t i v e l y , but does not produce q u a n t i t a t i v e r e s u l t s . A p r e d i c t i o n may be allowable only i f the steps i n the system are w i t h i n concrete l i m i t s and rather narrow. Within these r e s t r i c t i o n s , the s e l e c t i o n of r e a c t i o n conditions f o r the preper a t i o n of s t a r c h s u l f a t e s c o n s i s t s of a compromise oetween process v a r i a b l e s being e i t h e r p o s i t i v e or negative i n t h e i r a c t i o n . As an example f o r u t i l i z i n g the tendencies e l u c i d a t e d i n t h i s study, Table 4 shows the recommended process v a r i a b l e s f o r producing s t a r c h s u l f a t e s with a high degree of e s t e r i f i c a t i o n . Experimental General procedure. The c h l o r o s u l f o n i c a c i d - f o r mamide complex was formed by adding dropwise c h l o r o -
15 % 70 C 15 MIN
CONCENTRATION CP STARCH TEMPERATURE TIME CP REACTION U
\ : 1
12 %
WATER CONTENT OF STARCH SO^/AGU RATIO
PROCESS CONDITIONS PROPOSED
r
7
t~ APPARENT VISCOSITY SPECIFIC CONSUMPTION: FORMAMIDE CHLOROSULFONIC ACID
ESTER CONTENT CONTAMINATION G,5
%Ν
5 . 3 g/1* STARCH SULFATE, 2.4 f / l g STARCH SULF ATP.
2 - 11 cP ( 5 % SOL.)
3 0 ml g" 1
5 -
14 - 16 % S
RESULTING PROPERTIES OF RAW STARCH SULFATE
PROPOSED PROCESS CONDITIONS FOR PREPARING STARCH SULFATES WITH A HIGH DEGREE OF ESTERIFICATION AS DERIVED FROM INTERPRETATION OF THE EQUATIONS OF REGRESSION
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
Η M
>
X
w ο
>
ο
00
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
11.
scmERBAUM AND KÔRDEL
Starch and Chlorosulfonic
Acid-Formamide
187
s u l f o n i c acid t o formamide i n a round bottom f l a s k that was cooled t o maintain the temperature at below 40 ° C . The complex formed was d i l u t e d by a d d i t i o n of the amount of formamide required f o r d i s s o l v i n g the dry s t a r c h . Potato s t a r c h with a known moisture content was added t o the complex s o l u t i o n at 20 ° C with vigorous s t i r r i n g , the r e a c t i o n v e s s e l being immersed i n a temperature c o n t r o l l e d bath. The temperature of the bath was r a i s e d t o the desired value within 30 min and the mixture maintained at t h i s temperature f o r the desired r e a c t i o n time and immediatel y poured with vigorous a g i t a t i o n i n t o excess methan o l (1.5 1) « T^e p r e c i p i t a t e formed was f i l t e r e d o f f by s u c t i o n , washed with 100 ml methanol, and f i n a l l y d r i e d by i n f r a r e d r a d i a t i o n i n a stream of cold a i r . Reaction v a r i a b l e s . The general procedure des c r i b e d above was performed with the f o l l o w i n g var i a t i o n of r e a c t i o n conditions: 1. 2. 3· 4· 5·
r e a c t i o n temperature, 50 ° C and 70 ° C ( < * , / * ) time of r e a c t i o n at given temperature, 15 and 30 min ( t ) concentration of dry starch, 15, 20 and 25 % ( r e l a t e d t o formamide) ( s ) moisture content of potato s t a r c h , 5 and 20 % (w? molar r a t i o of SO3 t o AGU. 2:1 and 4:1 ( r ) (AGU anhydro glucose u n i t )
The s p e c i a l conditions, applied i n 48 r e s u l t i n g preparations are summarized i n Table 5· A n a l y t i c a l . The a n a l y t i c a l procedure used f o r c h a r a c t e r i z i n g r e a c t i o n products r e l a t e t o molecular as w e l l as to f u n c t i o n a l properties of the crude r e a c t i o n products. Further p u r i f i c a t i o n as may be necessary f o r p r a c t i c a l a p p l i c a t i o n of the esters has not been a p p l i e d . I t should be noted, hov/ever, that most of the ammonium s u l f a t e , the main by-product, p r e c i p i t a t e s l a t e r than the s t a r c h s u l f a t e . Therefore a r e l a t i v e l y pure starch s u l f a t e may be obtained by f i l t e r i n g i t o f f immediately a f t e r p r e c i p i t a t i o n . T h e f o l l o w i n g a n a l y t i c a l methods have been applied during the course of the complete program of i n v e s t i g a t i o n . (a)
T o t a l s u l f u r content, S Q %,by t o t a l h y d r o l y s i s with HCi, p r e c i p i t a t i o n with BaCl2 and gravimet r i c determination as BaSO^.; s u l f u r , bound i n ester groups, % c a l c u l a t e d by S 3 = S Q - S ^ ; s u l f u r i n anorganic compounds, %, by complexo9
EXPERIMENTAL CONDITIONS FOR ESTERIFICATION
CHLOROSULFONIC ACID
43,1 86,2 86,2 86,2
2 : 1
2 : 1
4 : 1
4 : 1
4 : 1 2
SAMPLE AMOUNTS OF STARCH: 31,6 g (5 % Η 0 ) ,
43,1 43,1
2 : 1
3
S0 /AGU
186,7
20 25
153,4 123,4 2
15
203,4
37,5 g (20 % H 0 )
25
20
15
106,7
136,7
OP STARCH
CONCENTRATION
OF POTATO STARCH BY MEANS OF THE
FORMAMIDE
CHLOROSULFONIC ACID - FORMAMIDE REAGENT
MOL. RATIO
TAB. 5
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
11.
scHiERBAUM AND KÔRDEL
Starch and
Chlorosulfonic
Acid-Formamide
189
metric t i t r a t i o n of the aqueous s o l u t i o n with CHELAPLEX
(b (c (d (e (±-
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch011
(g (h (i (3 (k
#
L i m i t i n g v i s c o s i t y number [η\ , i n 0,33 M NaCl. T o t a l nitrogen content, N Q % by steam d i s t i l l a t i o n of the a l k a l i n e s o l u t i o n and t i t r a t i o n according to the KJELDAHL semi-micro method. Reduction value, c a l c u l a t e d as glucose, R Q %, according to W i l l s t a e t t e r - Schudel. O p t i c a l r o t a t i o n value,/Vj , of 1 % s o l u t i o n s . Dynamic v i s c o s i t y , 1 (cP), of 5 % s o l u t i o n s i n the HOPPL^R Viscosimeter. Coldwater s o l u b i l i t y , derived from the r e f r a c t i v e index η of a 10 % d i s p e r s i o n . pH-value of 10 % s o l u t i o n . T u r b i d i t y of 1 % solution,8 weeks at 4 C; cuvettes 1 cm, transmittance at 650 nm. Reaction with i o d i n e , maximum aborbancejl with 1 0 " % iodine. Gel permeation chromatography, GPC, on Sephadex G 200, measuring the high molecular weight por t i o n ( r e s u l t i n g from the excluded volume). 9
m
a
x
The r e s u l t s f o r k } and [*] r e f e r to pure starch s u l f a t e and to AGU, r e s p e c t i v e l y and those f o r R Q to crude and pure starch s u l f a t e and to AGU, r e s p e c t i v e l y . The y i e l d values were c a l c u l a t e d with reference to pure s t a r c h s u l f a t e and ammonium s u l f a t e . Evaluations. The above r e s u l t s derived from determinations and c a l c u l a t i o n s lead to 20 e f f e c t v a r i a b l e s at two l e v e l s each 4, w i t h the e x c e p t i o n f o r 0.0010Af NaCl and NaBr where the Y / Y r a t i o s are c o n s t a n t a t about 0.9 f o r X < 0.5 p r i o r to t h e i r gradual decrease. The γ / γ ° r a t i o s f o r 0.00100M and 0.00500M NaCl and NaBr are almost i d e n t i c a l a t c o r r e s p o n d i n g simple s a l t c o n c e n t r a t i o n s and X v a l u e s , in d i c a t i n g t h a t the C l ~ and B r " i o n s i n t e r a c t w i t h the 2
s
2
2
p
2
s
2
2
2
1 .000 1 .000 0 .976
1 .004 1 .004
1 .00 1 . 60
0 .996
0 .949
0 .966 0 .955 0 .948 0 .948 0 .948
0 .961 0 .957 0 .938 0 .938 0 .938
1 .004 0 .985 0 .965 0 .906 0 .884
2 .00 3 .00 4 .00 6 .00 8 .00
0 .961 0 .942
-0 .981 0 .927
0 .942 0 .925
-0 .882 0 .888
0 .854 0 .822 0 .725 0 .765 0 .773
1 . 92 3 . 20 4 . 00 6 . 00 8 . 00
0. 891
0 . 868
0. 860
0. 863
0. 879
0. 913
0. 880
0. 878
0. 893
0. 863
0 .809
0 .803
0 .800
0 .765
0 .741
1 .96
3 .00
4 .00
6 .00
8 .00
0 .978
0 .981
0 .947
0 .854
1 . 60
0 . 902
0. 926
0 .831
888
1 .48
0 .
0 . 96
0. 922
0. 928
0 .
0 .98
835
1 .000
0 .966
0 .896
0 . 80
0. 958
0. 962
0 .845
1 .004 1 .009 1 .004 0 . 80
0 .70
1 .044 1 .036
1 .012
0 .52
1 .025
0 .985
0 .900
0 . 48
0. 958
0. 962
0 .883
0 .48
1 .047 1 .036 0 .965
0 .28
000
1 .028
1 .
0 .907
0 . 22
1 . 000
1 . 003
0 .894
0 .28
-
1 .012 1 .015
1 .004
0 .12
1 .040
0 .957
0 . 10
1 . 000
χ
ο
ο ο
ο
ο ο
ο ο LO ο ο ο
ο ο .Η ο ο ο
Nal
ο
1 . 003
ο ο LO ο ο
0 .914
ο
ο ο
ο ο ιΗ ο ο ο
0 .080
Ο ο LO Ο ο ο
NaBr
2
R a t i o γ / Υ 2 Dependence on X f o r
ο
ο ο fH Ο Ο
NaCl
The C o i o n A c t i v i t y C o e f f i c i e n t Sodium I o t a Carrageenan,
χ
Table I.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
CD
to
2:
ο
3
ο
α
Ο
ι
ο
Η Η
>
>
8
CARBOHYDRATE
250
U Ο
ο ο ιΗ
M-l
U
00 ο ο
Γ Ι Ο^
ιΗ 00 σ>
σ\ σ>
rH
ο
ο
(Ν Ο Ο
00 σ>
ιΗ
LO
LD
(Ν σ>
CM (Ts as
ο
ο
ο
CM ο ο
ο 00 ο
CN ιΗ ο
Γ—
ο
ο
ο
ι-Η
ι—ι
ιΗ
•Η
ιΗ
CM •Η ο
ιΗ Γ0 ο
Γ—
00 σ\
LO
ο
ο
00 rο
00 ο
ο
rH
ιΗ
ι—ι
rH
ΓΗ
ιΗ
LO
ιΗ ιΗ Ο
Γ—
σ\ 00
ΓΜ Ο Ο
ο
rH
ΓΗ
ο
ο
00
ο
Ο
ω υ
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
ο
U
c ω
Q)
ω
Q ΟC M >~
^ ! ο ; ο i
Ο
•Η
LO
-Ρ (ΰ &
S!
ί
I
ο
H
•Η
U
00 00 ο
PQ
-Ρ •Η
U
ϋ
Μ-ί Μ-Ι
ω ο ο
•Ρ (d
ι Η
> id •Η
-Ρ -Ρ ϋ
< χ β Ο
ρ
ο ο •Η Ο Ο
ι Η
PQ
Γ-
ο
ο
00 ο rH
00
VD
LO
Ι— Ο
ο
Ο
ιΗ rH
00 00 rH
rH
ι—I
ιΗ
ο
ιΗ
•Η
ιΗ
ιΗ ιΗ Ο
•Η 00 (Τ\
00 00
00 CM Ο
CT> CM Ο
00
r-
Η
Ο
ο
ο
•Η
ιΗ
ιΗ
CM
σ>
Γ-
σ>
*
ο
ΓCT»
-Η Ο
υ
•Η
EH
en
ω τ;
id
EH
Ο
ΓΗ
I •Η
υ
SULFATES
16.
TOMASULA E T A L .
Co-Ion
and
Counter-Ion
Interactions
251
NaCarr p o l y i o n t o t h e same e x t e n t . A l s o , f o r the 0.00100M NaCl and NaBr s o l u t i o n s , t h e Y / Y r a t i o s are c o n s i s t e n t l y lower a t each X v a l u e when compared t o t h e 0.00500M and 0.0100M s o l u t i o n s , which i s p r o b a b l y due t o l e s s s c r e e n i n g o f t h e charges on t h e p o l y i o n a t t h e lowest simple s a l t c o n c e n t r a t i o n . The Y / Y ° r a t i o s f o r the t h r e e N a l c o n c e n t r a t i o n s c l o s e l y approximate one another f o r each X v a l u e and t h e r a t i o s f o r t h e 0.0100M N a l a r e c l o s e t o t h e r a t i o s f o r O.OlOOAf NaBr and NaCl f o r each X v a l u e . A t t h e two lower s i m p l e s a l t concen t r a t i o n s t h e C l ~ and B r ~ i o n s i n t e r a c t w i t h NaCarr t o the same e x t e n t , w h i l e a t t h e h i g h e s t s i m p l e s a l t con c e n t r a t i o n t h e C l ~ , B r " and I " i o n s i n t e r a c t t o t h e same extent with t h i s p o l y e l e c t r o l y t e . Except f o r 0.00100M NaCl and NaBr, t h e γ / γ r a t i o s approximate u n i t y a t low X v a l u e s , i n d i c a t i n g t h a t t h e c o i o n i n t e r a c t s in s o l u t i o n as i f t h e p o l y e l e c t r o l y t e were not present. I t s h o u l d be noted t h a t c o i o n a c t i v i t y c o e f f i c i e n t s were a l s o determined f o r NaCarr in 0.000500M simple s a l t s . They were found t o be c l o s e t o t h e v a l u e s found f o r 0.00100M s i m p l e s a l t s and w i l l be d i s c u s s e d below. The Y / y r e s u l t s f o r NaDS a r e l i s t e d in T a b l e I I f o r 0.00100M, 0.00500M and 0.0100M NaCl, NaBr and N a l . With t h e e x c e p t i o n o f 0.00100M N a l , all the Y / Y ° r a t i o s c l o s e l y approximate u n i t y f o r t h e whole X range from one to ten. S i m i l a r r e s u l t s were o b t a i n e d w i t h sodium p o l y phosphate f o r a l l t h r e e simple s a l t c o n c e n t r a t i o n s (_25) . From t h e s e c o i o n a c t i v i t y c o e f f i c i e n t measurements, i t appears t h a t t h e monovalent c o i o n s i n t e r a c t w i t h t h e p o l y i o n only a t v e r y low simple s a l t c o n c e n t r a t i o n s , where t h e Debye-Huckel atmosphere i s l a r g e s t . The Manning t h e o r y f o r p o l y e l e c t r o l y t e s o l u t i o n s g i v e s f o r monovalent c o i o n a c t i v i t y c o e f f i c i e n t s (2) 2
2
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
2
2
2
2
2
2
γ
2
= exp[-|
Γ ' χ / ί ζ - ' Χ
+ 2)]
(2)
where o n l y Debye-Hiickel i n t e r a c t i o n s w i t h t h e p o l y e l e c t r o l y t e are considered. For a given p o l y e l e c t r o l y t e ζ i s f i x e d , so eqn (2) p r e d i c t s t h a t γ d e c r e a s e s as X i n c r e a s e s u n t i l h i g h v a l u e s o f X cause γ t o l e v e l o f f . S i n c e o n l y 0.00100M NaCl and NaBr s o l u t i o n s o f NaCarr i n d i c a t e c o i o n - p o l y i o n i n t e r a c t i o n over an extended range, t h e s e r e s u l t s w i l l be used t o t e s t eqn ( 2 ) , a l o n g w i t h v a l u e s f o r 0.000500M NaCl and NaBr. F o r 0.000500M N a l c o n t a i n i n g NaCarr i t was found t h a t Y / Y approxi mated u n i t y over t h e whole X range. The r e s u l t s f o r 0.000500M and 0.00100M NaCl and NaBr s o l u t i o n s con t a i n i n g NaCarr a r e p r e s e n t e d in F i g u r e s 1 and 2, r e s p e c t i v e l y , where b = 4 . 4 Â and ξ = 1.62. I t s h o u l d be noted t h a t t h e s m a l l i o n - s m a l l i o n c o r r e c t i o n o f W e l l s (26) 2
2
2
2
252
CARBOHYDRATE
need n o t be a p p l i e d because t h e r a t i o Υ / Ύ used. A l s o , t h e somewhat d i f f i c u l t e x t r a p o l a t i o n o f t h e d a t a t o z e r o i o n i c s t r e n g t h a t a g i v e n X v a l u e suggests t h a t o n l y t h e lowest s i m p l e s a l t c o n c e n t r a t i o n s be c o r r e l a t e d t o t h e t h e o r y when an i o n i c s t r e n g t h dependence i s p r e sent. The agreement between Manning's p r e d i c t e d v a l u e s and e x p e r i m e n t a l v a l u e s i s q u i t e good over most o f t h e range o f X. Using c l u s t e r expansion theory f o r p o l y e l e c t r o l y t e s o l u t i o n s , Iwasa and Kwak (_27) r e c e n t l y p r e d i c t e d an a p p r e c i a t e d i f f e r e n c e between t h e a c t i v i t y c o e f f i c i e n t s o f c o u n t e r i o n s and c o i o n s . From t h e c o n t r i b u t i o n o f h i g h e r o r d e r c l u s t e r terms t o t h e a c t i v i t y c o e f f i c i e n t o f s m a l l i o n s in p o l y e l e c t r o l y t e s o l u t i o n s , i t was shown t h a t f o r ζ > 1 c o n s i d e r a b l e asymmetry between y and γ v a l u e s , w i t h t h e v a l u e s o f y a p p r o x i mating u n i t y . While t h i s t h e o r y might b e t t e r e x p l a i n our r e s u l t s f o r y , f u r t h e r e v a l u a t i o n awaits near future publications. C h l o r i d e i o n and sodium i o n s e l f - d i f f u s i o n measure ments were performed on aqueous s o l u t i o n s o f NaCarr ((5) and NaDS (28) in 0 . 0 0 0 5 0 M , 0 . 0 0 1 0 M , 0 . 0 0 5 0 M and 0 . 0 1 0 M NaCl. The same i o n i c p o l y s a c c h a r i d e samples were used as t h o s e employed in t h e p r e s e n t study. When compared t o t h e c o i o n d i f f u s i o n c o e f f i c i e n t s in t h e absence o f p o l y e l e c t r o l y t e D°, t h e c o i o n d i f f u s i o n c o e f f i c i e n t s D f o r C I " i o n showed t h e same t r e n d f o r NaCarr and NaDS. The D /D° r a t i o s d e c r e a s e d from u n i t y f o r X < 1 and l e v e l e d o f f at approximately # / £ ° = 0 . 9 f o r X < 1 . The p r e d i c t e d v a l u e s from Manning's t h e o r y were c l o s e l y obeyed over t h e whole X range. I t s h o u l d be noted t h a t f o r NaDS, t h e D /D° v a l u e s were below u n i t y f o r a l l NaCl c o n c e n t r a t i o n s , w h i l e t h e γ / γ ? v a l u e s were u n i t y f o r almost e v e r y c o n c e n t r a t i o n . T h i s p r o b a b l y r e f l e c t s t h e g r e a t e r s e n s i t i v i t y o f t h e d i f f u s i o n measurements in m o n i t o r i n g Debye-Huckel atmosphere i n t e r a c t i o n s as com pared t o a c t i v i t y c o e f f i c i e n t measurements. It i s dif f i c u l t t o d e t e c t t h e e f f e c t o f t h e i n t e r a c t i o n s between c o i o n s and p o l y e l e c t r o l y t e s w i t h a c t i v i t y c o e f f i c i e n t measurements because o f t h e h i g h background l e v e l due to small i o n - s m a l l i o n i n t e r a c t i o n s . Sodium i o n a c t i v i t y c o e f f i c i e n t s Y]sj + were d e t e r mined in aqueous NaCarr s o l u t i o n s c o n t a i n i n g 0 . 0 0 0 5 0 0 M , 0.00100M, 0 . 0 0 5 0 0 M and 0 . 0 1 0 0 M N a C l , NaBr and N a l a t 25°C. The r e s u l t s a r e p r e s e n t e d in F i g u r e s 3 , 4 and 5 , where i t can be seen t h a t f o r each s i m p l e s a l t concen t r a t i o n ΎΝ3+/ΎΝΛ+ d e c r e a s e s as X i n c r e a s e s and l e v e l s o f f approximately X > 5 . While t h e e x p e r i m e n t a l p o i n t s are c l o s e in v a l u e f o r X > 2 , t h e s i m p l e s a l t c o n c e n t r a t i o n dependence i s e v i d e n t f o r h i g h e r X v a l u e s , where a t a g i v e n X v a l u e Y ^ a d e c r e a s e s as t h e n o r m a l i t y o f w
2
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
SULFATES
l
a
s
2
2
2
2
2
2
2
2
2
2
2
a
+
TOMASULA E T A L .
Co-Ion and Counter-Ion
Interactions
m Ο.Ο005 Ν α 0.0010 0.0050 ο 0.0100
•
•
ο
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
• _ι
• 1
1
1
I
Figure 1. The dependence of the Cl' ion activity coefficient ratio on X in NaCl solutions containing NaCarr. The solid line is predicted from Man ning's theory.
Figure 2. The dependence of the Br~ ion activity coefficient ratio on X in NaBr solutions containing NaCarr. The solid line is predicted from Mannings theory.
• • • Ο
0.9 0\
0.71
0.0005 Ν 0.0010 0.0050 0.0100
Ο .•\· Ο v
0.5\2
3
χ
Figure S. The dependence of the Na* ion activity coefficient ratio on X in NaCl solutions containing NaCarr. The solid line is predicted from Man nings theory.
254
CARBOHYDRATE
SULFATES
simple s a l t decreases. A l s o note that Y + i s f a i r l y independent o f t h e nature o f t h e coion a t a l l concen trations. I t i s g r a t i f y i n g t h a t t h e r e s u l t s f o r Yvr + r e p o r t e d b y P a s s , P h i l l i p s a n d W e d l o c k (19) f o r 0.OU50M a n d 0.010M N a C l a r e in e x c e l l e n t a g r e e m e n t w i t h o u r s . Sodium i o n a c t i v i t y c o e f f i c i e n t s were d e t e r m i n e d f o r 0.00100M, 0.00500M a n d 0.0100M N a C l , N a B r a n d N a l s o l u t i o n s c o n t a i n i n g NaDS. The r e s u l t s a r e p r e s e n t e d in F i g u r e s 6, 7 a n d 8, w h e r e i t c a n b e n o t e d t h e e x p e r i m e n t a l v a l u e s o f YNa+/Y^ + a t t h e c o r r e s p o n d i n g X values are p r a c t i c a l l y superimposable forall three simple s a l t s used. T h u s , Yvr + a p p e a r s t o b e i n d e p e n d e n t of the nature o f the monovalent coion. Also, l i t t l e i o n i c s t r e n g t h dependence i s noted a t each X v a l u e . As c o m p a r e d t o YN +/Y]sf + v a l u e s o b t a i n e d f o r N a C a r r , t h e v a l u e s a p p e a r t o b e l o w e r f o r NaDS a t c o r r e s p o n d i n g X values. T h i s i s p r o b a b l y due t o t h e h i g h e r c h a r g e d e n s i t y o f t h e NaDS c h a i n w i t h b = 2.5& a n d ξ = 2 . 8 5 . To c o r r e l a t e t h e e x p e r i m e n t a l d a t a t o t h e p r e d i c t e d v a l u e s from t h e l i n e - c h a r g e model o f Manning, t h e r e s u l t s s h o u l d b e e x t r a p o l a t e d t o z e r o i o n i c s t r e n g t h . We a v o i d e d t h i s b e c a u s e t h e two l o w e s t s i m p l e s a l t c o n c e n t r a t i o n s u s e d f o r N a C a r r a n d f o r NaDS s o l u t i o n s w e r e v e r y c l o s e in YNa+/Yïia+ l u e s f o r e a c h v a l u e o f X. A l s o , e x t r a p o l a t i n g t h e d a t a a t t h e s e v e r y low c o n c e n t r a t i o n s u s e d , i . E . , 0.000500M a n d 0.00100M s a l t , w o u l d give only a small correction. The t h e o r e t i c a l e q u a t i o n f o r t h e c o u n t e r i o n a c t i v i t y coefficient y f o r ξ > 1 i s (2) N a
a
a
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
a
a
a
v
a
1
Y! =
1
(ξ' * 1
+ D
(Χ + D - ' e x p C - i χ
Γ'Χ/ίΓ'Χ
+ 2)]
(3)
where ( ζ " ^ + 1)(Ζ + 1 ) ~ r e p r e s e n t s t h e f r a c t i o n o f t o t a l uncondensed c o u n t e r i o n s . When c o m p a r e d t o t h e experimental p o i n t s f o r NaCarr, the s o l i d t h e o r e t i c a l l i n e s in F i g u r e s 3, 4 a n d 5 i n d i c a t e t h a t e x c e l l e n t agreement i s o b t a i n e d f o r a l l simple s a l t c o n c e n t r a t i o n s b e l o w X = 1 a n d o v e r t h e w h o l e r a n g e o f X f o r t h e two lowest simple s a l t c o n c e n t r a t i o n s employed. Similar f i n d i n g s a r e e v i d e n t f r o m F i g u r e s 6, 7 a n d 8 f o r NaDS a t low X v a l u e s , w i t h s m a l l n e g a t i v e d e v i a t i o n s f r o m t h e theoretical values at the higher X values. W e l l s (11) r e p o r t e d t h a t t h e thermodynamic measurements o b t a i n e d f o r a q u e o u s N a C l s o l u t i o n s c o n t a i n i n g NaDS w e r e in e x c e l l e n t agreement w i t h t h e t h e o r e t i c a l v a l u e s from t h e Manning t h e o r y . T h e NaDS s a m p l e h e u s e d was a l m o s t i d e n t i c a l t o ours w i t h r e s p e c t t o charge d e n s i t y and molecular weight. Upon c o m p a r i n g t h e r e p o r t e d (11) N a C l mean a c t i v i t y c o e f f i c i e n t s t o o u r e x p e r i m e n t a l v a l u e s f o r (γ Y - . _ ) ^ , we f i n d v e r y g o o d a g r e e m e n t o v e r t h e +
r
Co-Ion and Counter-Ion Interactions
TOMASULA E T A L .
Figure 4. The dependence of the Na ion activity coefficient ratio on X in NaBr solutions containing NaCarr. The solid line is predicted from Man ning's theory.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
+
Figure 5. The dependence of the Na ion activity coefficient ratio on X in Nal solutions containing NaCarr. The solid line is predicted from Manning's theory. +
I
.
i
l
2
!
L.._
1 . !
4
6
I
1
8
X
O0.010N NaCl • 0.005 3 0.001
-
δ
δ
Figure 6. The dependence of the Na ion activity coefficient ratio on X in NaCl solutions containing NaDS. The solid line is predicted from Manning's theory. +
I
2
1
4
6
Χ
8
10
255
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
CARBOHYDRATE SULFATES
Figure 7. The dependence of the Na ion activity coefficient ratio on X in NaBr solutions containing NaDS. The solid line is predicted from Manning's theory. +
ο0.01 ON N a l
• 0.005
-
Ο 0.001
A
C
~ °\\ 9
-
a» Figure 8. The dependence of the Na ion activity coefficient ratio on X in Nal solutions containing NaDS. The solid line is predicted from Manning's theory.
S
+
1
1
1
I
ι
2
4
6
8
10
Χ
TOMASULA E T A L .
16.
Co-Ion
and Counter-Ion
257
Interactions
same X range, g i v i n g s u b s t a n t i a t i o n t o o u r s i n g l e i o n activity results. The N a i o n s e l f - d i f f u s i o n c o e f f i c i e n t s f o r NaDS in NaCl s o l u t i o n s (2_8) f o l l o w t h e same t r e n d as does Na ^Na+ * ^ i ^ 6. The sharp i n i t i a l d e c l i n e f o l l o w e d by a l e v e l i n g o f f o f ^ + / ^ a ^ "*" ¥ 9 agreement w i t h t h e v a l u e s p r e d i c t e d from M a n n i n g s theory. This i s f u r t h e r evidence o f the v a l i d i t y o f the c o u n t e r i o n c o n d e n s a t i o n c o n c e p t and t h e i o n i c atmosp h e r e - p o l y i o n i n t e r a c t i o n c o n c e p t which a r e paramount in the t h e o r y . +
Y
+//
v
s
X
n
F
u
r
e
+
s
nv
e
r
o o d
a
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
1
Acknowledgement. The a s t u t e c o n t r i b u t i o n s o f Dr. M. Kowblansky a r e g r e a t l y a p p r e c i a t e d . T h i s p r o j e c t was s u p p o r t e d by Grant No. GM 21234, awarded by t h e P u b l i c H e a l t h S e r v i c e , DHEW. Abstract. C h l o r i d e , bromide, i o d i d e and sodium ion a c t i v i t y coefficients have been determined a t 25°C for aqueous s o l u t i o n s o f sodium i o t a c a r r a g e e n a n and sodium d e x t r a n s u l f a t e o v e r a l a r g e range o f i o n i c p o l y s a c c h a r i d e c o n c e n t r a t i o n s f o r 0.000500M, 0.00100M, 0.00500M NaCl, NaBr and N a I . The e q u i v a l e n t c o n c e n t r a t i o n r a t i o s o f i o n i c p o l y s a c c h a r i d e t o s i m p l e salt was v a r i e d from 0.10 t o 8.0 for sodium i o t a c a r r a g e e n a n and 1.0 t o 10.0 f o r sodium d e x t r a n s u l f a t e . The e x p e r i m e n t a l r e s u l t s a r e d i s c u s s e d in l i g h t o f t h e monovalent c o i o n and mono v a l e n t c o u n t e r i o n i n t e r a c t i o n s w i t h t h e polyelectrolyte a c c o r d i n g t o t h e modern t h e o r y o f p o l y e l e c t r o l y t e s o l u t i o n s by Manning. Literature Cited 1.
2. 3. 4. 5. 6. 7. 8. 9. 10.
Manning, G. S., Annu.
Rev.
Phys.
Chem.
(1972) 23,
117. Manning, G. S., J. Chem. Phys. (1969) 51, 924, 934. Manning, G. S., J. Phys. Chem. (1975) 79, 262. Devore, D. I . and Manning, G. S., J. Phys. Chem. (1974) 78, 1242. Ross, P. D., Scruggs, R. L. and Manning, G. S., Biopolymers, in press. Kowblansky, Α., Sasso, R., Spagnuola, V. and Ander, P., Macromolecules (1977) 10, 78. Kowblansky, M. and Ander, P., J. Phys. Chem. (1976) 80, 297. D i x l e r , D. S. and Ander, P., J. Phys. Chem. (1973) 77, 2684. Menezes-Affonso, S. and Ander, P., J. Phys. Chem. (1974) 78, 1756. Magdelenat, Η., T u r q , P. and Chemla, Μ., Biopolymers
CARBOHYDRATE SULFATES
258
11. 12. 13. 14. 15.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch016
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
(1974) 1 3 , 1 5 3 5 . W e l l s , J. D., Proc. R. Soc. London, Ser Β (1973) 183, 3 9 9 . P r e s t o n , Β . Ν., Snowden, J. McK. a n d H o u g h t o n , K.T., Biopolymers (1972) 1 1 , 1 6 4 5 . Kwak, J. C. Τ . a n d H a y e s , R. C., J. Phys. Chem. (1975) 7 9 , 2 6 5 . S z y m c z a k , J., H o l y k , P. a n d A n d e r , P., J. Phys. Chem. (1975) 19, 2 6 9 . Kwak, J. C. T. a n d J o h n s o n , A. J., Can. J. Chem. (1975) 5 3 , 7 9 2 . H o l y k , P. a n d S z y m c z a k , J., J. Phys. Chem. (1976) 80, 1 6 2 6 . Tuffile, F. M. a n d A n d e r , P., Maoromolecules (1975) 8, 7 8 9 . K o w b l a n s k y , M. a n d A n d e r , P. J. Phys. Chem., in press. P a s s , G., Phillips, G. O. a n d W e d l o c k , D. J., Macromolecules (1977) 1 0 , 1 9 7 . Kwak, J. C. T . , J. Phys. Chem. (1973) 7 7 , 2 7 9 0 . Kwak, J. C. T., O'Brien, M. C. a n d M a c l e a n , D. Α . , J. Phys. Chem. (1975) 7 9 , 2 3 8 1 . S a t a k e , I . et al., J. Polym. Sci., Phys. Ed. (1972) 10, 2 3 4 3 . N o g u c h i , H., G e k k o , K. a n d M a k i n o , S., Macromole cules (1973) 6, 4 3 8 . M a g d e l e n a t , Η . , Turq, P. a n d C h e m l a , Μ . , Biopoly mers (1976) 1 5 , 1 7 5 . K o w b l a n s k y , M. a n d A n d e r , P., t o b e published. W e l l s , J. D., Biopolymers (1973) 1 2 , 2 2 3 . I w a s a , K. a n d Kwak, J. C. T . , J. Phys. Chem. (1977) 81, 4 0 8 . G a n g i , G. a n d A n d e r , P., to b e published.
RECEIVED F e b r u a r y 6, 1 9 7 8 .
17 Interaction of Sulfated Polysaccharides with Counter-Ions G. PASS—Department of Chemistry and Applied Chemistry, University of Salford, England G. O. Phillips, and D. J. WEDLOCK—School of Natural Sciences, North Wales Institute, Clwyd, Wales, CH5 4BR, U.K.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
R. G. MORLEY—Dari-Tech Corporation, Atlanta, GA 30301
The i n t e r a c t i o n between i n o r g a n i c counterions and polyanions has been e x t e n s i v e l y s t u d i e d with particular reference to the relative order o f c a t i o n b i n d i n g s t r e n g t h s . The interaction may be t r e a t e d theoretically in terms o f condensation of the cations on to the polyanion under the i n f l u e n c e of the charge density of the polyanion and electrostatic i n t e r a c t i o n of uncondensed counter ions with the polyanion1,2. The t h e o r e t i c a l treatment has been a p p l i e d to the i n t e r a c t i o n of counterions with a v a r i e t y of p o l y anions3-11, i n c l u d i n g sulphated p o l y s a c c h a r i d e s , and i s here a p p l i e d to the carrageenans. The interaction o f metal ions with carrageenan is of critical importance in controlling its behaviour as stabiliser in milk products. For this reason we have here i n v e s t i g a t e d the i n t e r a c t i o n o f sodium, potassium and calcium counterions with и-, l- and λ- carrageenan. An e.m.f. method, using i o n selective e l e c t r o d e s , was utilised to yield activity c o e f f i c i e n t data, both in the presence and absence o f added simple electrolyte. We have extended the range of counterions f o r which a r e l a t i v e order o f b i n d i n g strength can be determined using a simple t e c h n i q u e l 2 , in which a c a t i o n i c dye, Methylene Blue, which undergoes a strong metachromatic s p e c t r a l s h i f t , i s d i s p l a c e d by a competing metal counterion in the form o f added simple e l e c t r o l y t e . The concentration o f added simple e l e c t r o l y t e r e q u i r e d f o r complete suppression of dye b i n d i n g , and consequent r e v e r s a l of metachromasia, gives a q u a l i t a t i v e order o f c a t i o n b i n d i n g affinity—. Highly charged sulphated polyanions such as the carrageenans, with t h e i r a s s o c i a t e d counterions, cause é l e c t r o s t r i c t i o n of large amounts of solvent water molecules — . The condensed counterions i n v e s t i g a t e d here, namely calcium, potassium and sodium, can e x i s t in three s t a t e s o f h y d r a t i o n ^ * 16. Changes in the s t a t e o f hydration cause volume changes. This f u l f i l l s the c o n d i t i o n s r e q u i r e d f o r a pressure change to cause p e r t u r b a t i o n of the e q u i l i b r i u m which can be monitored i n d i r e c t l y by u l t r a sound attenuation measurements!?. U l t r a s o n i c waves e f f e c t the p e r t u r b a t i o n on a time s c a l e compatible w i t h the k i n e t i c s of the forward and reverse r e a c t i o n s . in the method, excess absorption 0-8412-0426-8/78/47-077-259$05.75/0 © 1978 American Chemical Society
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
260
CARBOHYDRATE SULFATES
o f a p o l y i o n s a l t compared w i t h t h e a b s o r p t i o n o f t h e e q u i v a l e n t c o n c e n t r a t i o n o f the tetramethylammonium s a l t form i s measured. T h i s b u l k y r e f e r e n c e i o n has a low a f f i n i t y f o r t h e p o l y i o n and a l l o w s , t o a r e a s o n a b l e a p p r o x i m a t i o n , a measure o f t h e e x c e s s a b s o r p t i o n , r e s u l t i n g from r e l a x a t i o n a l processes a r i s i n g from t h e c o u n t e r i o n b i n d i n g phenomenon. A b s o r p t i o n s due t o o t h e r p r o c e s s e s s u c h as p o l y m e r m o t i o n s a r e e f f e c t i v e l y c a n c e l l e d o u t . E x c e s s a b s o r p t i o n s so o b t a i n e d can be r e l a t e d t o t h e s q u a r e o f t h e volume change i n v o l e d . in a d d i t i o n t o é l e c t r o s t r i c t i o n o f w a t e r by t h e i n t e n s e e l e c t r i c f i e l d of the s t r o n g l y e l e c t r o l y t i c s u l p h a t e e s t e r groups o f c a r r a g e e n a n , h y d r a t i o n o f c a r b o h y d r a t e s — can a r i s e a l s o f r o m i n t e r a c t i o n o f s o l v e n t w a t e r w i t h t h e p o l a r -OH g r o u p s o f t h e sugar u n i t s . T h i s b e h a v i o u r c a u s e s c o n s i d e r a b l e amounts o f w a t e r t o be bound t o t h e c a r r a g e e n a n — , and i s one o f t h e m a j o r f a c t o r s i n f l u e n c i n g the rheology of carrageenan s o l u t i o n s . This i s a n o t h e r i m p o r t a n t f a c t o r in e s t a b l i s h i n g t h e e f f e c t i v e n e s s o f c a r r a g e e n a n s as s t a b i l i s e r s in f r o z e n m i l k p r o d u c t s , s i n c e t h e r e s u l t i n g reduced d i f f u s i o n u L r a t e of water prevents i c e c r y s t a l g r o w t h and changes in p r o d u c t t e x t u r e . F o r t h i s r e a s o n we have d e v i s e d a d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r i c method f o r m e a s u r i n g t h e n o n - f r e e z i n g ( i . E . bound) w a t e r in a s e r i e s o f s o l u t i o n s o f sodium s a l t s o f κ - a n d λ carrageenan. A l t h o u g h p r o t e i n - p o l y s a c c h a r i d e i n t e r a c t i o n s have g e n e r a l l y been w i d e l y s t u d i e d , m i l k p r o t e i n - s t a b i l i s e r i n t e r a c t i o n s have been n e g l e c t e d — — S u c h i n t e r a c t i o n s a l s o e x e r t a m a j o r i n f l u e n c e on the q u a l i t y o f f r o z e n d a i r y p r o d u c t s . Protein i n s t a b i l i t y , d u r i n g p r o c e s s i n g and s t o r a g e o f s u c h p r o d u c t s , i s undesirable. Whereas c a r b o x y m e t h l c e l l u l o s e , g u a r gum and l o c u s t bean gum t e n d t o c a u s e p r o t e i n d é s t a b i l i s a t i o n , c a r r a g e e n a n can p r e v e n t i t . κ - and λ - C a r r a g e e n a n s r e a c t in m i l k s y s t e m s o n l y w i t h c a s e i n p r o t e i n s and no c o m p l e x e s a r e d e t e c t a b l e in t h e whey. T h i s r e a c t i o n i s dependent upon t h e p r e s e n c e o f c a l c i u m i o n s . The e f f e c t o f s e v e r a l h y d r o c o l ^ r j i d s on t h e s t a b i l i s a t i o n o f O g - c a s e i n and c a s e i n m i c e l l e s ' — » • have been t e s t e d , f o r e x a m p l e , l o c u s t bean gum and g u a r gym o f t h e n e u t r a l h y d r o c o l l o i d s ; gum a r a b i c , C . N . C . , p e c t i n , h y a l u r o n i c a c i d and a l g i n a t e s o f t h e c a r b o x y l a t e p o l y a n i o n s and a g a r o s e , h e p a r i n , c h o n d r o i t i n s u l p h a t e s , c e l l u l o s e s u l p h a t e , f u c o i d a n and c a r r a g e e n a n o f t h e s u l p h a t e d p o l y a n i o n s . Only carrageenan i n d u c e d s i g n i f i c a n t s t a b i l i s a t i o n a g a i n s t p r e c i p i t a t i o n by c a l c i u m i o n s a t pH 6 - 8 , i n d i c a t i n g i t s u n i q u e v a l u e within s t a b i l i s e r mixtures, κ - C a r r a g e e n a n was t w i c e as e f f e c t i v e as λ - c a r r a g e e n a n and c o m p l e t e s t a b i l i s a t i o n was e f f e c t e d a t a r a t i o o f 5:1 c a s e i n : κ - c a r r a g e e n a n and 2*5:1 c a s e i n : λ carrageenan. The complex f o r m e d between c x ^ c a s e i n and κ c a r r a g e e n a n was t h e more s t a b l e and r e s i s t e d t h e d e s r u p t i v e i n f l u e n c e o f c a l c i u m i o n s and h e a t t o a g r e a t e r e x t e n t t h a n t h e c o r r e s p o n d i n g a - c a s e i n / κ - c a s e i n complex. A v a r i e t y of t e c h n i q u e s have been used t o s t u d y s u c h m i l k p r o t e i n - p o l y a n i o n i n t e r a c t i o n s , f o r example l i g h t s c a t t e r i n g — ' p o l y a c r y l a m i d e g e l 2 0
2 4 ,
-
s
17.
PASS E T A L .
Sulfated
Polysaccharides
and
Counter-Ions
261
27 99 e l e c t r o p h o r e s i s — , and T h e o l o g i c a l t e c h n i q u e s ^ . Here we d e s c r i b e a new method u s i n g p u l s e r a d i o l y s i s t o s t u d y t h e i n t e r a c t i o n between α ^ c a s e i n and c a r r a g e e n a n in t h e p r e s e n c e o f calcium ions. The method was p r e v i o u s l y used in o u r l a b o r a t o r y to study o t h e r polyanion - c a t i o n i n t e r a c t i o n s ! ^ . Results
and D i s c u s s i o n .
Measurements w i t h I o n S e l e c t i v e E l e c t r o d e s . V a l u e s o f a , where a i s t h e c a t i o n i c a c t i v i t y o f a p o l y e l e c t r o l y t e o r p o l y e l e c t r o l y t e / s i m p l e s a l t s o l u t i o n were o b t a i n e d u s i n g c a l i b r a t i n g s o l u t i o n s o f t h e a p p r o p r i a t e c h l o r i d e s a l t and s i n g l e c a t i o n i c a c t i v i t y values f o r the c h l o r i d e s a l t s , c a l c u l a t e d from the e x t e n d e d D e b y e - H u c k e l e q u a t i o n f o r aqueous s o l u t i o n s a t 2 5 ° C , w i t h the i o n s i z e parameters o f K i e l l a n d — . Together w i t h values o f m , t h e m o l a l c o n c e n t r a t i o n in e q u i v a l e n t s o f c o u n t e r i o n / k g , t h e s i n g l e i o n a c t i v i t y c o e f f i c i e n t s a r e g i v e n by t h e u s u a l r e l a t i o n s h i p , eq ( 1 ) . +
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
+
+
- - S Î (1). + m F o r a l l c a r r a g e e n a n t y p e s , we f i n d ( F i g s . 1, 2) t h a t s i n g l e i o n a c t i v i t y c o e f f i c i e n t s o f t h e m o n o v a l e n t i o n s a l t s in p u r e p o l y e l e c t r o l y t e s o l u t i o n are g r e a t e r f o r N a than f o r K , which i s in a c c o r d w i t h p r e v i o u s measurements on s u l p h a t e d p o l y Y
+
+
+
+
s a c ch a r i de s ÇL-LLZS. .
The a c t i v i t y c o e f f i c i e n t s i n c r e a s e s l i g h t l y w i t h d i l u t i o n f o r κ - carrageenans, but are r e l a t i v e l y constant with d i l u t i o n f o r i - and λ - c a r r a g e e n a n s in m o n o v a l e n t i o n f o r m s . The a c t i v i t y c o e f f i c i e n t v a l u e s a t t h e most d i l u t e c o n c e n t r a t i o n can be r e l a t e d t o t h e l i n e a r c h a r g e p a r a m e t e r g, ( F i g . 3 ] , c a l c u l a t e d from e q ( 2 ) , f o r monovalent-monovalent i o n i n t e r a c t i o n s . 2 ekTb
with e water, k = Boltzmann's constant, Τ = absolute temperature, b = a v e r a g e d i s t a n c e between c h a r g e s . A v a l u e f o r b was o b t a i n e d f r o m measurements o f m o l e c u l a r models in t h e i r most e x t e n d e d f o r m , g i v i n g a mean v a l u e o f 0-445nm f o r t h e l e n g t h o f a s u g a r u n i t in a c a r r a g e e n a n m o l e c u l e , and t a k i n g i n t o a c c o u n t t h e degree o f s u b s t i t u t i o n o f t h e sample. The t h e o r e t i c a l l i m i t i n g v a l u e o f t h e a c t i v i t y c o e f f i c i e n t i s g i v e n by t h e s o l i d l i n e when a p p l y i n g M a n n i n g ' s c o n d e n s a t i o n t r e a t m e n t — as g i v e n b y . e q . (3) f o r u n i v a l e n t c a t i o n s , Q
γ
+
=
BxpC-i3 |z|F,
f q 1
where | z | i s t h e m a g n i t u d e o f t h e c h a r g e on t h e c o u n t e r i o n . O u r r e s u l t s p r o v i d e b e t t e r agreement f o r p o t a s s i u m s a l t s o f t h e carrageenans w i t h the t h e o r e t i c a l l i m i t i n g a c t i v i t y c o e f f i c i e n t , than w i t h t h e sodium s a l t forms. T h i s w o u l d be a n t i c i p a t e d s i n c e t h e n a t u r e o f t h e s e l e c t i v e i n t e r a c t i o n o f t h e p o t a s s i u m and
262
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
0-65V
Figure 1.
Activity coefficient of sodium counterions vs. con centration for κ, i, and λ-carrageenan
0-50
Figure 2.
Activity coefficient of potassium counterion vs. con centration for κ-, t.-, and λ-carrageenan
17.
PASS E T A L .
Sulfated
Polysaccharides
and
263
Counter-Ions
sodium c o u n t e r i o n s i s e l e c t r o s t a t i c i o n b i n d i n g in a m a i n l y h y d r a t e d i o n f o r m . The s m a l l e r h y d r a t e d c a t i o n ^ J L K , s h o u l d be more s t r o n g l y bound t h a n N a , and s h o u l d c o i n c i d e more n e a r l y w i t h M a n n i n g ' s l i m i t i n g v a l u e o f γ , as i t a p p r o a c h e s t h e p o i n t charge a p p r o x i m a t i o n o f t h i s t h e o r y . The r e l a t i v e c o n s t a n c y o f a c t i v i t y c o e f f i c i e n t s as a f u n c t i o n o f c o n c e n t r a t i o n i n d i c a t e s that these polyanions approximate t o a r i g i d l i n e charge, not c o i l e d , w i t h i n t h e c o n c e n t r a t i o n range i n v e s t i g a t e d . The a c t i v i t y c o e f f i c i e n t s o f t h e c a l c i u m s a l t s in K - a h d X c a r r a g e e n a n a r e shown as a f u n c t i o n o f c o n c e n t r a t i o n in F i g . 4 . A g a i n t h e λ f o r m shows a g r e a t e r c o n s t a n c y w i t h c o n c e n t r a t i o n than t h e κ - form s u p p o r t i n g t h e view t h a t t h i s f r a c t i o n w i t h i t s h i g h e r l i n e a r c h a r g e d e n s i t y , i s more r o d - l i k e . Comparing t h e a c t i v i t y c o e f f i c i e n t s o f t h e N a and C a s a l t s o f κ - and λ - carrageenan ( F i g . 5 ) o v e r a range o f c o n c e n t r a t i o n s , i n d i c a t e s t h a t t h e y a r e in t h e r a t i o o f c a . 2 : 1 , w h i c h i s in good agreement w i t h t h e r e q u i r e m e n t s o f eq ( 3 ) . C a l c i u m and s o d i u m were t h e i o n s used f o r t h e c o m p a r i s o n s i n c e t h e y have a l m o s t t h e same +
+
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
+
+
2 +
on
hydrated i o n size^2. I t i s observed t h a t both κ - a n d λ carrageenans e x e r t a c o n s i d e r a b l e c a l c i u m i o n s e q u e s t e r i n g e f f e c t in s o l u t i o n . The l o w e r a c t i v i t y c o e f f i c i e n t f o r t h e K s a l t o f each + c a r r a g e e n a n compared t o t h e Na s a l t i n d i c a t e s e l e c t r o s t a t i c b i n d i n g o f t h e h y d r a t e d i o n , when t h e s m a l l e s t h y d r a t e d i o n w o u l d be most s t r o n g l y b o u n d . T h i s i s in a c c o r d w i t h t h e view t h a t t h e i n t e r a c t i o n o f t h e s u l p h a t e e s t e r group w i t h t h e c a t i o n i s l e s s than t h e i n t e r a c t i o n o f w a t e r o f h y d r a t i o n w i t h t h e c a t i o n — . Consequently i t i s e n e r g e t i c a l l y unfavourable f o r t h e s u l p h a t e e s t e r group t o d i s p l a c e w a t e r f r o m a r o u n d a s o d i u m o r p o t a s s i u m c a t i o n . The r e s u l t s o f o u r u l t r a s o n i c r e l a x a t i o n studies also support t h i s conclusion. Thus t h e s m a l l e s t h y d r a t e d c a t i o n w i l l b i n d most s t r o n g l y , f o r c a t i o n s o f t h e same c h a r g e . The r e v e r s e s i t u a t i o n w o u l d a p p l y w i t h c a r b o x y l i c and p h o s p h a t e d p o l y a n i o n s , w h i c h w o u l d a c c o u n t f o r t h e now w e l l e s t a b l i s h e d r e v e r s a l o f a f f i n i t y sequence when c o m p a r i n g s u l p h a t e w i t h p h o s p h a t e and c a r b o x y l a t e polyanions™ S a t a k e e t a i e - and N o g u c h i e t air?-, o b s e r v e d t h e same t r e n d w i t h s o d i u m and p o t a s s i u m d e x t r a n s u l p h a t e s . We now c o n s i d e r p o l y s l e c t r o l y t e s w i t h added s i m p l e e l e c t r o l ytes. Manning— d e r i v e d an e q u a t i o n f o r s i n g l e c o u n t e r i o n a c t i v i t y c o e f f i c i e n t s o f u n i v a l e n t i o n s in a p o l y e l e c t r o l y t e p l u s added s a l t system f o r ξ > 1 , e q . ( 4 ) . Y = ( Ε X + D (X + D " * exp (4) Where X = n / n i s t h e r a t i o o f t h e number o f e q u i v a l e n t s o f p o l y e l e c t r o l y t e c o u n t e r i o n t o t h e number o f e q u i v a l e n t s o f s i m p l e e l e c t r o l y t e c o u n t e r i o n in u n i t volume o f s o l u t i o n . F i g . 6 shows f o r L - c a r r a g e e n a n t h a t s o l u t i o n s most d i l u t e in s i m p l e s a l t (5 X 10 m), where m i s t h e m o l a l c o n c e n t r a t i o n in eq / k g , g i v e t h e b e s t c o r r e s p o n d e n c e between t h e o r y and p r a c t i c e . Similar +
- 1
+
e
s
264
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
I Q
Figure 3.
05
Activity coefficients of counterions in most dilute solution vs. linear charge parameter
Κ)
K5 concentration
Figure 4.
20 eq/kgxIO
25
2
Activity coefficient of calcium counterion vs. concentration for calcium salts of κ- and λ-carrageenan
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
Figure 5. Activity coefficients of sodium counterions vs. ac tivity coefficients of calcium counterions at identical concen trations for κ- and k-carrageenans
266
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
ΙΌ,
0·2
Γ
>·θ" Ο
• 2
4
•
•
•
•
6
8
ΙΟ
12
• χ
14
Figure 6. Activity coefficient of common cation in icarrageenan/simple electrolyte mixture, uncorrected for small ion—small ion interactions. Comparison with theo retical curve according to Equation 3. NaCl: (#)5 X 10- m; (θ) 1 χ 10' m. KCl; (A) 5 X 10r*m; 1 X 10- m;(O)5 X 10~ m. 3
2
2
2
17.
Sulfated Polysaccharides and Counter-Ions
PASS E T A L .
267
r e s u l t s were o b t a i n e d f o r κ - and λ - c a r r a g e e n a n — . The c o r r e s pondence becomes l e s s s a t i s f a c t o r y as t h e c o n c e n t r a t i o n o f s i m p l e salt increases. T h i s c o u l d be due t o t h e n e g l e c t o f m u t u a l i n t e r a c t i o n s between i o n s o f t h e s i m p l e e l e c t r o l y t e w h i c h i s i n h e r e n t in M a n n i n g ' s a s s u m p t i o n s — . An e m p i r i c a l c o r r e c t i o n o f mean a c t i v i t y c o e f f i c i e n t s has been p r o p o s e d in w h i c h t h e mean a c t i v i t y c o e f f i c i e n t o f t h e i o n s in t h e p u r e s i m p l e s a l t s o l u t i o n i s t a k e n as a measure o f t h e i r n u t u a l i n t e r a c t i o n , t h e t h e p r e s e n c e o f p o l y e l e c t r o l y t e — . I f a s i m i l a r c o r r e c t i o n i s a p p l i e d to the s i n g l e i o n a c t i v i t y c o e f f i c i e n t t h i s may be w r i t t e n in t h e f o r m , eq ( 5 ) .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
1n γ
+
= 1n γ
ρ +
+ 1n y
(5)
C +
where γ i s t h e s i n g l e i o n a c t i v i t y c o e f f i c i e n t o f t h e c a t i o n determined e x p e r i m e n t a l l y , γ i s the s i n g l e i o n a c t i v i t y c o e f f i c i e n t c a l c u l a t e d a c c o r d i n g to Manning, y ° i s the s i n g l e i o n a c t i v i t y c o e f f i c i e n t o f t h e c a t i o n in t h e absence o f p o l y e l e c t r o l y t e and i t s c o u n t e r i o n s . A t low c o n c e n t r a t i o n s o f s i m p l e e l e c t r o l y t e , γ °__^1 and γ = γ in agreement w i t h [ F i g . 6 ) . The c o r r e c t e d a c t i v i t y c o e f f i c i e n t s a r e shown in ( F i g . 7 ] , and p r o v i d e much b e t t e r agreement w i t h t h e v a l u e s c a l c u l a t e d f r o m M a n n i n g ' s theory. A s e l e c t i v e i o n b i n d i n g p r o c e s s i s s t i l l o b s e r v e d , even when t h e r e i s c o n s i d e r a b l e e x c e s s o f s i m p l e e l e c t r o l y t e . This i s f u r t h e r borne o u t by t h e r e s u l t s o b t a i n e d u s i n g t h e M e t h y l e n e B l u e (MB ] dye d i s p l a c e m e n t t e c h n i q u e — . I t was f o u n d t h a t t h e l i m i t i n g s a l t c o n c e n t r a t i o n (LSC) r e q u i r e d t o remove c o m p l e t e l y t h e MB f r o m 2/1 s i t e / dye r a t i o p o l y a n i o n - d y e complexes d e c r e a s e s in t h e o r d e r L i : > N a > K > - C s and Mg>*Ca:>Sr f o r λ - and κ - c a r r a g e e n a n s , where a p p r o p r i a t e , ( T a b l e I ) . For κ - carragee nan, n e i t h e r E.m.P. n o r dye d i s p l a c e m e n t measurements were c a r r i e d o u t in t h e p r e s e n c e o f p o t a s s i u m o r c a e s i u m c h l o r i d e b e c a u s e o f t h e t e n d e n c y o f κ - c a r r a g e e n a n t o g e l in t h e p r e s e n c e o f t h e s e e l e c t r o l y t e ' s . Our r e s u l t s , t h e r e f o r e , a g a i n s u p p o r t t h e view t h a t t h e s t r e n g t h o f i o n b i n d i n g i s g r e a t e s t f o r t h e s m a l l e s t h y d r a t e d i o n . The s t r e n g t h o f b i n d i n g i s , f o r b o t h c a r r a g e e n a n f r a c t i o n s , in t h e o r d e r Sr>Ca*>-Mg and C s > R> N a > L i , and s e l e c t i v e i o n b i n d i n g i n t e r a c t i o n s a r e s t i l l m a n i f e s t in systems o f high i o n i c s t r e n g t h . T h i s o b s e r v a t i o n c o u l d have b i o l o g i c a l s i g n i f i c a n c e , p o i n t i n g to i o n i c i n t e r a c t i o n s of g l y c o s a m i n o g l y c a n s o c c u r r i n g in t h e c o n n e c t i v e t i s s u e m a t r i x . Measurements were c a r r i e d o u t u s i n g a c a l c i u m e l e c t r o d e on calcium s a l t s of λ - a n d κ c a r r a g e e n a n in t h e p r e s e n c e o f c a l c i u m c h l o r i d e . Here a u s e f u l p a r a m e t e r i s t h e e m p i r i c a l r u l e o f a d d i t i v i t y o f a c t i v i t i e s — . in summary t h i s s t a t e s t h a t a c o u n t e r i o n a c t i v i t y o f a pure p o l y e l e c t r o l y t e s o l u t i o n , a P , can be added t o a c o u n t e r i o n a c t i v i t y in a s i m p l e s a l t s o l u t i o n , a to give a c a l c u l a t e d a c t i v i t y f o r the mixture a ^ not s i g n i f i c a n t l y d i f f e r e n t in many i n s t a n c e s f r o m t h e o b s e r v e d v a l u e a f o r t h e m i x t u r e . D e v i a t i o n s f r o m t h i s r u l e can be e x p r e s s e d +
ρ
+
+
ρ
+
+
+
+
+
s
ca
+
+
o
+
b
s
C,
carrageenan
2
LSC χ 1 0 " Γ 1
2
LSC χ 1 0 ~ N
Kappa c a r r a g e e n a n
2
LCS χ 1 0 " Γ 1
2
LSC χ 1 0 ~ Ι Ί
Lambda
b
Sr 8.13
14.45 Ca 13.18
Ng 19.95
6.03
8.75
11.50
24.40
Sr
Ca
Ng
Na
8.32
12.20
18.20
Li
Κ
Na
Li
E f f e c t o f i n o r g a n i c i o n s on c a r r a g e e n a n - N e t h y l e n e B l u e i n t e r a c t i o n s . S i t e / D y e r a t i o 2/1. Dye 1 χ 1 0 " n ^
TABLE 1
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
17.
PASS E T A L .
Aa+
Sulfated
= a„
c
a
l
c
Polysaccharides
-a+ a obs
o b s
X
and
Counter-Ions
269
100
+
A l t h o u g h t h e r u l e i s o n l y e m p i r i c a l , many i n s t a n c e s o f v e r y good agreement have been shown i n c l u d i n g m o n o v a l e n t i o n c a r r a g e e n a n s a l t s p l u s monovalent i o n c h l o r i d e s — . F o r sodium dextran s u l p h a t e and added s o d i u m c h l o r i d e , a l l d e v i a t i o n were w i t h i n 1.5%^. However f o r o u r measurements o f c a l c i u m s a l t s o f λ - and κ - c a r r a g e e n a n p l u s c a l c i u m c h l o r i d e , Aa+ v a l u e s a r e s i g n i f i c a n t ly g r e a t e r [Table I I ) . F o r κ - c a r r a g e e n a n , in d i l u t e s i m p l e s a l t s o l u t i o n , v a l u e s o f A a a r e 26%, g r e a t e r t h a n o b s e r v e d v a l u e s of A a f o r λ - c a r r a g e e n a n . T h i s does n o t c o n f o r m t o t h e g e n e r a l r u l e t h a t a d d i t i v i t y i s more c l o s e l y obeyed by p o l y i o n s w i t h lower degrees o f s u b s t i t u t i o n i . E . κ - carrageenan s h o u l d g i v e b e t t e r agreement. I t i s therefore indicated that extra binding o f c a l c i u m i o n s o c c u r s w i t h κ - c a r r a g e e n a n and p r o b a b l y a s t o i c h i o m e t r y o f one c a l c i u m i o n p e r e s t e r s u l p h a t e u n i t i s b e i n g approached. 32 Lyons a n d K o t i n — o b s e r v e d s i m i l a r b e h a v i o u r w i t h t h e magnesium s a l t s o f DNA w i t h added magnesium c h l o r i d e s , where A a v a l u e s up t o c a . 30% were o b s e r v e d when t h e s i m p l e s a l t was p r e s e n t in low c o n c e n t r a t i o n . I t i s p o s s i b l e t h a t c a l c i u m i o n s m i g h t be b i n d i n g t h u s : +
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
+
+
0S0
3
•SA
Ca
+
C1~
C a C1~ + Ca C1 +
3
GSA
3
Here c a l c i u m i o n s a r e r e p r e s e n t e d as s i t e b o u n d , w i t h t h e r e s u l t t h a t t h e c h a r g e on t h e c a r r a g e e n a n i s r e v e r s e d . Viewed f r o m t h e s o l v e n t t h e segment a p p e a r s t o be a p o l y c a t i o n w i t h negative univalent counterions. Such c h a r g e r e v e r s a l phenonenon a r e c o m p a r a t i v e l y common and have been i n v o l v e d t o a c c o u n t f o r t h e r e v e r s a l in t h e s i g n o f e l e c t r o p h o r e t i c m o b i l i t y o f p o l y v i n y l p y r d i n i u m b r o m i d e s in e x c e s s K B r 2 4 . • u r r e s u l t s i n d i c a t e t h a t c a l c i u m κ - c a r r a g e e n a n has a g r e a t e r t e n d a n c y t o undergo s i t e b i n d i n g t h a n c a l c i u m λ - c a r r a g e e nan. These r e s u l t s a r e in agreement w i t h t h e work o f H a n s e n — ' 2 1 ' .25. who f o u n d t h a t t h e s t a b i l i s a t i o n o f 0 5 - c a s e i n by c a r r a g e e nan a g a i n s t p r e c i p i t a t i o n o f c a l c i u m i o n s was g r e a t e r w i t h κ carrageenan than w i t h λ - c a r r a g e e n a n . The i n t e r a c t i o n between c a r r a g e e n a n a n d t h e c a s e i n p r o t e i n s was shown t o be dependent in some measure on t h e p r e s e n c e o f c a l c i u m i o n s , in as much as t h e complex f o r m e d i s a c a l c i u m / c a r r a g e e n a n / otg- c a s e i n c o m p l e x . I f in t h e p r e s e n c e o f e x c e s s c a l c i u m i o n s t h e κ - f r a c t i o n shows an enhanced a b i l i t y t o complex c a l c i u m i o n s f r o m s o l u t i o n , t h e n i t would a i d f o r m a t i o n o f t h e p r o t e i n - c a r r a g e e n a n complex. M o r e o v e r , o u r u l t r a s o n i c r e l a x a t i o n s t u d i e s show an anomalous b e h a v i o u r f o r t h e r e l a t i v e volume changes in c a l c i u m κ - and λ -
χ
10
2
χ
0.025 0.055 0.104 0.143 0.176
Ρ a+ 10
2
χ
0.09 8 0.259 0.512 0.765 0.985
m+
p
,n2 10
χ
0.040 0.087 0.152 0.205 0.258
Ρ a+ n
, 2 10
Cb) C o u n t e r i o n a c t i v i t i e s
0-106 0-252 0.519 0.782 1.023
Ρ m+
in
s
in χ
χ
0.500 0.500 0.500 0.500 0.500
s m+
Ca κ -
0.500 0.500 0.500 0.500 0.500
m+
7
o χ
0.375 0.374 0.374 0.374 0.374
a+
10
?
10
2
χ
0.374 0.374 0.374 0.374 0.374
s a+ 10
2
carrageenan - C a C l
10
2
obsd 0.386 0.406 0.427 0.455 0.482
3
systems
ao b s d 0.384 0.399 0.440 0.469 0.504
systems
2
f o r polyanion + s a l t
II
Ca λ - c a r r a g e e n a n - Ca C l
of calcium ion a c t i v i t i e s
(a3 C o u n t e r i o n a c t i v i t i e s
Additivity
TABLE
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
17.
Sulfated
PASS E T A L .
carrageenan b i n d i n g in carrageenan radiolysis
Polysaccharides
and
Counter-Ions
271
i o n b i n d i n g p r o c e s s e s , b u t can be e x p l a i n e d by s i t e calcium κ - carrageenan. A unique c a l c i u m / κ / a c a s e i n i n t e r a c t i o n was a l s o d e t e c t e d by p u l s e s u p p o r t i n g t h e view advanced h e r e . g
U l t r a s o n i c R e l a x a t i o n M e a s u r e m e n t s . Zana and T o n d r e — ' — have g i v e n t h e t h e o r y and a s s u m p t i o n s u n d e r l y i n g t h i s t e c h n i q u e . We have measured t h e q u a n t i t y Δ α / f as a f u n c t i o n o f f w h e r e , f u l t r a s o n i c - f r e q u e n c y and Δα= u l t r a s o u n d a b s o r p t i o n c o e f f i c i e n t o f p o l y a n i o n s a l t minus t h e u l t r a s o u n d a b s o r p t i o n c o e f f i c i e n t o f an e q u i v a l e n t c o n c e n t r a t i o n o f t h e t e t r a m e t h y l a m m o n i u m CTMA) s a l t form. We a s c r i b e any e x c e s s a b s o r p t i o n o f a p o l y i o n s a l t o v e r i t s TMA s a l t f o r m t o a r e l a x a t i o n o r r e l a x a t i o n s a r i s i n g f r o m t h e c o u n t e r i o n b i n d i n g phenonenon ( F i g s . 8 , ^ 9 ) • From a c o m p a r i s o n o f p l o t s o f p r o p o r t i o n a l v a l u e s o f Δτχ/f v f f o r m o n o v a l e n t and d i v a l e n t i o n s a l t s o f p o l y p h o s p h a t e and c a r b o x y l i c p o l y a n i o n s and c a r r a g e e n a n s , i t i s e v i d e n t t h a t t h e c a r r a g e e n a n s show t h e weakest r e l a x a t i o n s . T h i s a f e a t u r e o f s u l p h a t e d p o l y a n i o n s , f o r e x a m p l e , s o d i u m p o l y ( e t h y l e n e s u l p h o n a t e ) 15. The low f r e q u e n c y a b s o r p t i o n s , b e l o w 4MHz a r e p r o p o r t i o n a l t o c o n c e n t r a t i o n ( F i g s . 10, 1 1 ) . T h i s i s i n d i c a t i o n o f t h e r e l a x a t i o n a r i s i n g by monom o l e c u l a r p r o c e s s e s 1 5 . The low f r e q u e n c y a b s o r p t i o n can be a s c r i b e d t o a r e l a x a t i o n o f the o u t e r s p h e r e / i n n e r sphere equilibrium. Any r e l a x a t i o n can be c h a r a c t e r i s e d by a r e l a x a t i o n a m p l i t u d e , A , and a r e l a x a t i o n f r e q u e n c y , P. As a r e s u l t o f p r a c t i c a l d i f f i c u l t i e s in m e a s u r i n g v a l u e s o f Δ α / f below 1MHz, a c t u a l v a l u e s o f t h e r e l a x a t i o n a m p l i t u d e c a n n o t be c a l c u l a t e d . However, g e n e r a l l y , v a l u e s o f t h e r e l a x a t i o n a l f r e q u e n c y f o r i n n e r s p h e r e complex f o r m a t i o n do n o t show marked dependence on t h e n a t u r e o f t h e c o u n t e r i o n f o r c o u n t e r i o n s o f t h e same v a l e n c y and a l s o show s m a l l e r d i f f e r e n c e s t h a n a n t i c i p a t e d between mono v a l e n t and d i v a l e n t c o u n t e r i o n s . The v a l u e s o f Δ α / f a t any p a r t i c u l a r f r e q u e n c y t h e r e f o r e , s h o u l d be in p r o p o r t i o n t o t h e r e l a x a t i o n a m p l i t u d e , g i v e n by e q . ( 6 ) .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
2
2
2
A = AVo
f ( k „ , k ., c. ) . (6) 1 -1 ι Where AVo f o r t h e c o u n t e r i o n b i n d i n g p r o c e s s i s e s s e n t i a l l y due t o t h e volume change f r o m r e l e a s e o f e l e c t r o s t r i c t e d w a t e r by t h e p o l y i o n and w a t e r o f h y d r a t i o n by t h e c o u n t e r i o n . The r e l a x a t i o n t i m e (τ) c h a r a c t e r i s e s t h e p r o c e s s and f ( k ^ , k_^, c-^), i s a f u n c t i o n o f t h e f o r w a r d and r e v e r s e r a t e c o n s t a n t s f o r t h e e q u i l i b r i u m , and t h e c o n c e n t r a t i o n c o f t h e p a r t i c i p a t i n g s p e c i e s . From F i g s . 8, 9 i t can be seen t h a t t h e t o t a l volume change on c o u n t e r i o n b i n d i n g t o b o t h λ - a n d κ - c a r r a g e e n a n , i s in t h e o r d e r C a > k > N a . V a l u e s o f Δ α / f f o r κ - c a r r a g e e n a n in t h e c a l c i u m and p o t a s s i u m s a l t forms a r e g r e a t e r than t h o s e f o r λ - carrageenan a t t h e same c o n c e n t r a t i o n s o f c o u n t e r i o n . I t was f o u n d f o r p o l y ( s t y r e n e s u l p h o n a t e ) (PSS) t h a t v a l u e s o f Δα/f were l e s s t h a n 2
τ
i
2
272
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
CARBOHYDRATE SULFATES
Figure 8.
Plots of ultrasonic absorption Δ α / f for 0.04N aqueous solutions of calcium (Q), potassium and sodium (Φ) salts of κ-carrageenan 2
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
PASS E T A L .
Sulfated
Polysaccharides
and
Counter-Ions
frequency M H z Figure 9. Plots of ultrasonic absorption Δ α / Ρ for 0.04N aqueous solutions of calcium (Q), potassium (Θ), and sodium (%) salts of λ-carrageenan
I Ο
2·0
3-0
4 0
equiv/litre χΙΟ'
Figure 10. Variation of ultrasonic absorption Δ α / Ρ at par ticular frequencies for sodium salts of κ-carrageenan, as a function of polyanion concentration
274
CARBOHYDRATE SULFATES
f o r p o l y ( e t h y l e n e s u l p h o n a t e ) (PES) — . While the l i n e a r charge p a r a m e t e r o f t h e s e two p o l y i o n s i s v i r t u a l l y t h e same, t h e m i n i mum d i s t a n c e between two c h a r g e s (d) on t h e r o d - l i k e model o f these molecules i s d i f f e r e n t : dpcrg^dp^g. F o r s a m p l e s o f sod^jjm c a r b o x y m e t h y l c e l l u l o s e o f d i f f e r e n t d e g r e e s o f s u b s t i t u t i o n — , Δ α / f i n c r e a s e d w i t h i n c r e a s e in d e g r e e o f s u b s t i t u t i o n , and so r e l a t e s t o t h e d e c r e a s e in minimum d i s t a n c e between c h a r g e d s i t e s . Since the expected t r e n d Δ α / f κ - c a r r a g e e n a n | p r o t e i n +k^ p o l y s a c c h a r i d e , and c u r v e ( c ) =k>| p o l y s a c c h a r i d e , applied throughout. A l i n e a r i n c r e a s e in r e a c t i v i t y o f c a s e i n t o w a r d s e ~ w i t h i n c r e a s i n g s o d i u m c h l o r i d e c o n c e n t r a t i o n was f o u n d , b u t s o d i u m c h l o r i d e d i d not i n f l u e n c e the r e a c t i v i t y of the p o l y a n i o n s . The i n t e r a c t i o n s o f c a r r a g e e n a n - c a s e i n and CMC - c a s e i n were u n a f f e c t e d by Ι Ο ' ^ Μ N a C 1 . Two t y p e s o f i n t e r a c t i o n can be i d e n t i f i e d f o l l o w i n g the argon b u b b l i n g d e a e r a t i o n . 'Type A ' o c c u r s a t p r o t e i n : p o l y a n i o n r a t i o s o f 80 : 1 t o 1 : 1, l e a d i n g t o a d e c r e a s e in t h e r e a c t i v i t y o f t h e m i x t u r e t o w a r d s e~ [i.E. k i rotein 1polyanion) I n i t i a l l y , b a s e d on p r e v i o u s e x p e r i e n c e — ' ~ , ' T y p e A ' i n t e r a c t i o n was c o n c l u d e d t o be e l e c t r o s t a t i c in n a t u r e , due t o i n t e r a c t i o n between n e g a t i v e s i t e s on t h e p o l y a n i o n and p o s i t i v e c e n t r e s on t h e p r o t e i n . ' T y p e B ' was a t t r i b u t e d t o a s t r u c t u r a l change in t h e p r o t e i n , m a k i n g a v a i l a b l e more p o s i t i v e sites for e~ a t t a c k as a r e s u l t o f i n t e r a c t i o n w i t h t h e p o l y anion. L a t e r o u r e x p e r i e n c e i n d i c a t e d t h a t a t pH 6 . 6 , where b o t h p o l y a n i o n and p r o t e i n b e a r an o v e r a l l n e g a t i v e c h a r g e ( a l t h o u g h p o s i t i v e s i t e s a r e s t i l l a v a i l a b l e on t h e p r o t e i n ) e l e c t r o s t a t i c i n t e r a c t i o n s o f w h o l e c a s e i n and ' c a s e i n w i t h c a r r a g e e n a n and CMC do n o t o c c u r . I t i s a l s o d o u b t f u l w h e t h e r s t r u c t u r a l changes in t h e p r o t e i n a r e r e s p o n s i b l e f o r t h e ' T y p e B ' i n t e r a c t i o n . It i s more p r o b a b l e t h a t t h e d e c r e a s e in t h e r e a c t i v i t y o f w h o l e c a s e i n and a ^ c a s e i n t o w a r d s e^q w i t h p r o g r e s s i v e a r g o n b u b b l i n g i s due t o a s u r f a c e phenonmenon. When c a s e i n - c a r r a g e e n a n and c a s e i n - C M C i n t e r a c t i o n s were s t u d i e d using the s t a n d a r d i s e d ' s y r i n g e t e c h n i q u e ' f o r deoxygena t i o n — , ' T y p e B' i n t e r a c t i o n s were n o t f o u n d . Type ' A ' i n t e r a c t i o n s o c c u r r e d a t a l l r a t i o s o f p r o t e i n : p o l y a n i o n between 40 : 1 and 1 : 10. The i n t e r a c t i o n was u n a f f e c t e d by 1 0 " M Na C1 i n d i c a t i n g t h a t ' T y p e A ' i n t e r a c t i o n s a r e n o t e l e c t r o s t a t i c in n a t u r e , w h i c h i s a d d i t i o n a l l y s u p p o r t e d by o u r o b s e r v a t i o n t h a t ' T y p e A ' i n t e r a c t i o n s a r e p r e s e n t in s u c c i n y l c a s e i n and CMC m i x t u r e s . We a r e n o t a b l e , t h e r e f o r e , t o d e m o n s t r a t e by t h i s t e c h n i q u e t h a t i n t e r a t i o n between p o s i t i v e s i t e s on t h e p r o t e i n and n e g a t i v e s i t e s on t h e c a r r a g e e n a n o c c u r s . 'Type A ' i n t e r a c t i o n s are observed at a l l c o n c e n t r a t i o n r a t i o s investigated even in c a s e i n g u a r gum m i x t u r e s ( F i g . 14) when components a r e not s i g n i f i c a n t l y c h a r g e d . We n e v e r t h e l e s s f i n d t h a t t h e c t ^ c a s e i n - c a r r a g e e n a n i n t e r a c t i o n i s u n i q u e ( F i g . 15) in t h a t k/j obs ~ k/j c a s e i n + k/j K
K
+
K
P
q
s
1
Sulfated
Polysaccharides
and
Counter-Ions
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
PASS E T A L .
Figure 14. Plot of first-order rate constant for reaction of the hydrated electron with casein: guar gum complexes
277
278
CARBOHYDRATE SULFATES
c a r r a g e e n a n a t t h e p r o t e i n : p o l y a n i o n r a t i o o f 1 : 5. in a d d i t i o n t h e a d m i x t u r e o f 10 -"-ΓΠ C a C l 2 i n d u c e s an i n c r e a s e in r e a c t i v i t y s i m i l a r t o t h e ' T y p e B' i n t e r a c t i o n s o b s e r v e d in o u r i n i t i a l e x p e r i m e n t s , a l t h o u g h k/| o b s j ^ k ^ a ^ c a s e i n + k/j carrageenan. L i n and Hansen2JL have s u g g e s t e d t h a t in t h e presence o f Ca i o n s , a ^ c a s e i n and c a r r a g e e n a n f o r m m i c e l l e s in a s i m i l a r manner t o cig' c a s e i n and κ- c a s e i n . in t h e w h o l e c a s e i n - CMC i n t e r a c t i o n a t pH 6 • 6 i t was shown t h a t c a l c i u m i o n b r i d g e s are not found s i n c e a 'Type A' i n t e r a c t i o n i s observed b o t h in t h e p r e s e n c e and a b s e n c e o f ICT^N C a C ^ T h e r e f o r e we c o n c l u d e t h a t p o l y s a c c h a r i d e s g e n e r a l l y a f f e c t t h e r e a c t i v i t y o f m i l k p r o t e i n s t o w a r d s e ^ q , b u t no e l e c t r o s t a t i c i n t e r a c t i o n can be d e m o n s t r a t e d u s i n g p u l s e r a d i o l y s i s . Since hydrophobic bonding i s u n l i k e l y a s a t i s f a c t o r y e x p l a n a t i o n f o r t h e s e e f f e c t s must be a w a i t e d . The t h e r m o d y n a m i c i n c o m p a t i b i l i t y o f h i g h m o l e c u l a r w e i g h t s p e c i e s s u c h as p o l y a n i o n s and p r o t e i n s i s a w e l l e s t a b l i s h e d phenomenon—. A p a r t i a l cause o f t h i s i s ' v o l y m e e x c l u s i o n ' — w h i c h r e n d e r s t h e s y s t e m l e s s s t a b l e so t h a t i t can be t o t a l l y d e s t a b i l i s e d , r e s u l t i n g in phase s e p a r a t i o n , by s m a l l changes in e n v i r o n m e n t . The p o l y s a c c h a r i d e in s o l u t i o n i s in a h i g h l y hydrated s t a t e . Fig.16 shows t h e r e s u l t s o b t a i n e d w i t h s o d i u m s a l t s o f λ and κc a r r a g e e n a n f o r ' n o n f r e e z i n g ' w a t e r , some t i m e s t e r m e d 'bround w a t e r ' , u s i n g d i f f e r e n t i a l s c a n n i n g c a l o r i metry t o d e t e r m i n e t h e e n t h a l p y o f f u s i o n o f t h e c a r r a g e e n a n s o l u t i o n s — . Thus t h e p o l y s a c c h a r i d e o c c u p i e s a c e r t a i n , q u i t e c o n s i d e r a b l e , volume in t h e s o l u t i o n f r o m w h i c h t h e p r o t e i n i s excluded. The e f f e c t i s i n d é p e n d a n t o f pH, i o n i c s t r e n g t h and i s o e l e c t r i c p o i n t of the p r o t e i n , but i n c r e a s e s w i t h the concent r a t i o n o f p o l y s a c c h a r i d e and t h e s i z e o f t h e p r o t e i n . As t h e volume e x c l u d e d i n c r e a s e s , t h e a c t i v i t y o f t h e p r o t e i n s o l u t i o n i n c r e a s e s and t h e p r o t e i n a p p r o a c h e s i t s s o l u b i l i t y l i m i t . Any e f f e c t w h i c h l o w e r s t h e s o l u b i l i t y f u r t h e r , E.g. h e a t i n g o r t h e p r e s e n c e o f c e r t a i n i o n s w i l l t h e n push t h e p r o t e i n o v e r i t s s o l u b i l i t y l i m i t r e s u l t i n g in phase s e p a r a t i o n . I t i s n o t p o s s i b l e t o e x p l a i n o u r r e s u l t s c o m p l e t e l y in t e r m s o f volume e x c l u s i o n , a l t h o u g h i t does u n d o u b t e d l y c o n t r i b u t e t o t h e s e complex i n t e r a c t i o n s w h i c h e x e r t s u c h a v i t a l c o n t r o l l i n g i n f l u e n c e on t h e q u a l i t y o f m i l k p r o d u c t s d u r i n g p r o d u c t i o n and storage. —
+
s
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
1
Experimental E.m.P. p r o c e d u r e s t o g i v e c a t i o n i c b i n d i n g d a t a have been reported p r e v i o u s l y — . An E.I.L. model 1048-4 s o d i u m i o n s e l e c t i v e e l e c t r o d e , a model 1057-2 p o t a s s i u m i o n s e l e c t i v e e l e c t r o d e and on O r i o n 9 2 - 2 0 c a l c i u m i o n s e l e c t i v e e l e c t r o d e were used w i t h an E.I.L. model 7050 mV/pH m e t e r . The dye d i s p l a c e m e n t t e c h n i q u e ! 2 . ' .12. and t h e d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r i c method f o r m e a s u r i n g w a t e r b i n d i n g ^ - h a v e a l s o been d e s c r i b e d .
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
17.
PASS E T A L .
Sulfated
Polysaccharides
and Counter-Ions
ι30=1
20I IO--I hi <x casein: k* c a r r a g e e n a n ratio ( ^ w
31
w t
hlO )
Figure 15. Plot of firsUorder rate constant for reaction of the hydrated electron with a l casein: κ-carrageenan complexes s
0·5
IO
1-5
Figure 16. Plot of grams of unfrozen water/gram of carrageenan as a function of weight percentage of carrageenan in solution
279
280
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
U l t r a s o n i c a b s o r p t i o n was measured u s i n g t h e r e s o n a n c e i n t e r f e r o m e t r i c technique of Eggers—. The e l e c t r o n i c s y s t e m was a m o d i f i e d v e r s i o n o f t h e s t a n d a r d sweep l e v e l m e a s u r i n g s e t o f Wandel and G o l t e r m a n n ^ - . P u l s e r a d i o l y s i s was c a r r i e d o u t a t t h e C h r i s t i e H o s p i t a l and H o l t Radium I n s t i t u t e , M a n c h e s t e r 2 0 , U . K . A p u l s e d l i n e a r a c c e l e r a t o r was used t o d e l i v e r y a 50n s e c p u l s e o f a p p r o x i m a t e l y 10NeV e l e c t r o n s t o t h e r a d i a t i o n c e l l . A s p e c i a l deaeration p r o c e d u r e was used t o p r e v e n t s u r f a c e d e n a t u r a t i o n o f p r o t e i n w h i c h can c a u s e e r r o r i n t h e r e s u l t s — . Samples o f λ , l and κ - c a r r a g e e n a n were s u p p l i e d by Copenhagen P e c t i n f a b r i k , Κ - c a r r a g e e n a n used i n t h e p u l s e r a d i o l y s i s e x p e r i m e n t s , was a c o m m e r c i a l sample [ G e l c a r i n HNR) s u p p l i e d by D a r i Tech C o r p , A t l a n t a , G a . We a c k n o w l e d g e t h e a s s i s t a n c e o f D r . E . Wyn-Jones p r o v i d i n g f a c i l i t i e s and i n t e r p r e t i n g t h e u l t r a s o n i c relaxation data.
for
ABSTRACT
Our results show that the interaction of simple ions with the carrageenans can be explained i n terms of electrostatic binding for λ - carrageenan, but some site binding i s evident for и- carrageenan, p a r t i c u l a r l y the calcium salt of и- carrageenan. Whereas there are indications from pulse radiolysis measurements that there i s an interaction between the casein proteins and carrageenans, with a unique interaction between αs casein and carrageenan, there i s no evidence to suggest that these inter actions are electrostatic in nature. Volume exclusion provides a p a r t i a l explanation. 1
"Literature Cited" 1. Lifson, S., Katchalsky, Α., J.Poly.Sci. (1954), 13, 43. 2. Manning, G.S., J.Chem.Phys. (1969), 51, 924. 3. Podlas, T . J . , Ander, P., Macromolecules, (1970), 3, 154. 4. Rinaudo Μ., Milas Μ., J.Poly.Sci., Poly.Chem.Ed. (1974), 12, 2073. 5. Podlas T . J . , Ander P., Macromolecules (1969), 2, 432. 6. Satake I . , Fukuda M., J.Poly.Sci., Poly.Phys.Ed. (1972) 10, 2343. 7. Noguchi H., Gekko Κ., Makino S., Macromolecules (1973), 6, 438. 8. Oman S., Die Makromol.Chem. (1974), 175, 2133. 9. Wells J.D., Proc.R.Soc.Lond.B. (1973), 183, 399. 10. Preston B.N., Snowden J.McK., Houghton K.T., Biolpolymers (1972), 11, 1645. 11. Kwak J.C.T., O'Brien M.C., Maclean P.Α., J.Phys.Chem. (1975), 79, 2381.
17.
12. 13. 14. 15. 16. 17. 18.
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch017
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
PASS E T A L .
Sulfated
Polysaccharides
and
Counter-Ions
281
Pass G . , Phillips G.O., Wedlock D.J., J.Chem.Soc. (Perkin II), (In p r e s s ) . Jooyandeh F., Moore J.S., Phillips G.O. J. Chem.Soc.(Perkin II) (1974), 1468. Biswas A.B., Kumsah C . A . , Pass G., Phillips G.O., J . S o l u t i o n Chem. (1974), 5, 581. Zana R . , Tondre C. Biophys.Chem. (1974), 1, 367. C. Tondre, R. Zana, J.Phys.Chem. (1971), 75, 3367. Stuehr J., Yeager E., ' P h y s i c a l A c o u s t i c s ' V o l . II, 351, Academic P r e s s , New York, (1965). Kumsah C . , Pass G . , Phillips G . O . , J.Solution Chem. (1976), 5, 799. Shipe W . F . , Roberts W . M . , Blanton L.F., J. Diary Sci. (1973), 46, 169. L i n C.F., Hansen P . M . T . Macromolecules (1970), 3, 269. Franz G.J., U . S . Patent No. 3,407,076 (1968). Asano Y . , I n t e r n a t i o n a l Dairy Congress P r o c . 17th Munich, (1966), 5, 695. Asano Y . , A g r . B i o l . C h e m . (1970), 34, 102. Hansen, P . M . T . , J.Dairy.Sci., (1968), 51, 192. L i n C.F., Hansen P.M.T. J . D a i r y Sci. (1968), 51, 945. Payens T.A.J., J.Dairy Sci. (1972), 55, 141. Grindrod J., Nicherson T.A., J . D a i r y Sci. (1967), 50, 948. K e i l l a n d J., J.Amer.Chem.Soc. (1937), 59, 1675. Pass, G., Phillips G.O., Wedlock D.J., Macromolecules (1977), 10, 197. Bungenburg de Jong, H . G . , 'Colloid Science', Vol.II Elsevier, Amsterdam, (1949). W e l l s , J.D., Biopolymers (1973), 12, 223. Lyons J . W . , K o t i n L., J.Amer.Chem.Soc. (1965), 87, 1670. Podlas T.J., Ander P., Macromolecules (1969), 2, 432. Strauss U . P . , G e r s h f e l f M . L . , S p i e r a Η . , J.Amer.Chem.Soc. (1954), 76, 5909. Zana R . , Tondre C . , Rinando M., Milas M., J.Chim.Phys. P h y s i c o l c h i m . B i o l (1971), 68, 1258. McKinnon Α.Α., Rees D . A . , Williamson F.B., Chem.Comm.(1969), 701. Arnott S . , Scott W . E . , J.Mol.Biol. (1974), 90, 253. Phillips G.O., Power D . M . , Robinson C . , Davies J.V., Biochim. Biophys.Acta (1971), 215, 491. Armand G., PhD T h e s i s , U n i v e r s i t y of S a l f o r d , U . K . (1972). Robinson C., PhD T h e s i s , U n i v e r s i t y of S a l f o r d , U . K . (1971). Morley R . G . , PhD T h e s i s , U n i v e r s i t y of S a l f o r d , U . K . (1972). Koningsveld R., A d v a n . C o l l o i d . I n t e r f a c e . S c i . (1968), 2, 151. Laurent T . C . , 'The Chemical Physiology of Mucopolysaccharides,' Proc.Symp.Milan p.153, Little and Brown, Boston (1968). Eggers F . , A c o u s t i c s (1968), 19, 323. P e t h r i c k R . A . , Wyn-Jones E., U l t r a s o n i c s (1972), 10, 228.
RECEIVED February 6, 1978.
INDEX
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
A Absorption spectral shifts of acridine orange .... 68 spectroscopy 67 ultrasonic 272-275 Acceptor specificity of some crude preparations of mucopolysaccharide sulfotransferases 124 Acetabuhria 203 6-O-Acetylamylose, preparation of 110 Acid alginic 225 amount of chlorosulfonic 181 influence of the water content of the starch on the 183 L-ascorbate, properties of monosulfate esters of 11 L-ascorbic C chemical shifts of 10 in concentrated sulfuric acid 4, 5 4-d 16 monosulfate esters of 1 in sulfuric acid 8 chlorosulfonic 173 guluronic 228 hyaluronic 88 hydrolysis, partial 218 mannuronic 228 residues, periodate, cleavage of D-glucuronic 101 O-sulfates, isomeric chlorogenic 26 and sulfomethyl-containing graft co-polymers of xanthan gum, sulfonic 193 Acridine orange absorption spectral shifts of 68 complexes, critical electrolyte concentrations of polyanion68, 76 complexes, effect of p H on the stoichiometry of polyanion70 effect of protein and lipid on the titration of 79 fluorescence shifts of 68 titration of carrageenan vs 69 Acrosiphonia 207 Acrylamide and 2-acrylamido-2methylpropane sulfonic acid 195 1 3
Acrylamide graft co-polymer, results of sulfomethylation of xanthan gum201 2-Acrylamido-2-methylpropane sulfonic acid, acrylamide and 195 Activation effect of residual water after 153 methods, other 153 of polysaccharides 158 Agarose 217 IR spectra of sulfated 156,157 Alcohol boil-off, aqueous 158 Alcohol soak, aqueous 159 Alditol components from heparin 102 Algae extracellular polysaccharide from microscopic red 221 structural features and biochemical implications, sulfated fucosecontaining polysaccharides from brown 225 unicellular green 203 Algin 149 sulfates 168 Alginic acid 225 Alkali, action of 215 Alkali, cleavage by 208 Allyl ethers 50 2-Amino-2-deoxyamylose, preparation of 108 Amino glycan sulfotransferases of hen oviduct and of chick embryo cartilage, sulfate transfer to different acceptors by the 125 Ammonium sulfate, yield of 181 Amylose, aminated 108 Amylose into a 6-carboxyl, 2-sulfoamino analog, conversion of 106 Analytical and property determinations 171 3,6-Anhydrogalactose 211 3,6-Anhydrosugar 213 Animal tissues 123 Anticoagulant activity 96 Arabinans 207 Ascophyllan 226,236 structural features of 234 Ascophyllum nodosum 226,229-231
285
CARBOHYDRATE SULFATES
286
Carbohydrate chains of hog stomach blood group sulfated gylcoproteins 35 Carbohydrate derivatives, benzylated 50 Carboxyl to sulfate groups present in the same polyanion, estimation of 78 6-Carboxyl, 2-sulfoamino analog, conversion of amylose into a 106 Carrageenan(s) 217,218 vs. acridine orange, titration of 69 activity coefficient of calcium counter-ion vs. calcium salts of 264 analysis of the 247 -casein interactions 276 doping of babyfood with 79 in milk products, estimation of 78 potassium counter-ions vs 262 samples, equivalent weights of 88 /simple electrolyte mixture 266, 272 Β sodium counter-ion vs .262 standards 82 Babyfood with carrageenan, doping of 79 sulfate ester groups of 260 Bases, effect of 154 synthetic 149 Binding /x-Carrageenan effects of simple electrolytes on calcium salts of 272-275 PA-AO 71,72 complexes, « 1 casein279 with p H , variation of polyanion-AO 73 complexes, hydrated electron with with p H , variation of polyanionthe casein275 collagen 86 potassium salts of 272, 273 profiles, time-dependence of polysodium salts of . 272, 273 anion-polyanion interaction on 83 strengths of polyanions 75 Casein -/x-carrageenan complexes, « 1 279 Biochemical implications, sulfated -ti-carrageenan complexes, hydrated fucose-containing polysaccharides electron with the 275 from brown algae: structural -carrageenan interactions 276 features and 225 - C M C complexes 277 Biochemical role 238 -guar gum complexes 277 Biogenesis 143 Caulerpa polysaccharide 203 Biological 238 activities of the polymers 115 Cell, rhizoid implications 210 Cell walls from P. vesiculosus, poly saccharide composition of isolated 242 systems, spectrofluorimetric Cellulose 149, 225 methods for estimating and acetate electrophoresis 231-236 studying the interactions of polysulfatase 129,134 polysaccharides in 67 141 Birefringence 241 Cerebroside sulfatase Cerebroside, sulfate ester of a 44 Borohydride-reduced heparin, tetra Chaetomorpha polysaccharides 203 saccharide fragment from perioCharge parameter, activity coefficients date-oxidized 102 of counter-ions vs. linear 264 Bovine aorta, chondrosulfatase of 138 131,132 Br" ion activity coefficient ratio 253 Charonia lampas Bromides, polyvinylpyridinium 269 Chick embryo cartilage, sulfate trans fer to different acceptors by the C. amino glycan sulfotransferases of hen oviduct and of 125 Calcium 259 Chitosan 103 counter-ion vs. calcium salts of biological properties ofC.-6oxidized carrageenan, activity coefficient M-sulfation 106 of 264 oxidation of 104 salts of /x-carrageenan 272-275 sulfation of 104 Capparaceae 21
Ascophyllum, structural features of the galactose-rich polymer from .. 239 L-Ascorbate acid, properties of monosulfate esters of 11 L-Ascorbate 2-sulfate 1 chronology of 2 synthesis of 4 L-Ascorbate, 5-sulfate 7,15 synthesis of 13 L-Ascorbate 6-sulfate 3,14 chronology of 6 L-Ascorbic acid C chemical shifts of 10 in concentrated sulfuric acid 4, 5 4-d 16 in deuterium oxide, 4-deuterio5 monosulfate esters of 1 in sulfuric acid 8
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
1 3
s
s
287
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
INDEX Chloride(s) ion activity coefficient ratio 253 ion self-diffusion measurements 252 magnesium 269 sodium 269 Chlorogenic acid O-sulfates, isomeric 26 Chlorophyceae (green) 225 Chlorosulfonic acid 173 amount of 181 influence of the water content of the starch on the 183 -formamide reagent, reaction of starch with the 173 -formamide system 175 method, pyridine149 Choline sulfate 24 Chondroitin sulfate 88 Chondrosulfatase 129,136 of bovine aorta 138 of "Patella vulgata 137 of Proteus vulgaris 136 of squid liver 138 Chondrus crispus 215 Chromatography, gel permeation 180 Chromatography, ion-exchange column 9 Cladophora polysaccharides 203 Cladophora rupestris 208-212 linkages present in 207 polysaccharide 207 structural features in 205 Cleavage by alkali 208 Cleavage of D-glucuronic acid resi dues, periodate 101 C M C - c a s e i n complexes 277 C M C - c a s e i n interactions 276 Codiolum ..... 210 Codium 210 fragile 208 Coefficient s) activity 265,266,272 of calcium counter-ion vs. calcium salts of carrageenan 264 of counter-ions vs. linear charge parameter 264 of determination 175 ratio Br" ion activity 253 Cl~ ion activity 253 N a ion activity 253-256 Co-ion and counter-ion interactions with sulfonated polysaccharides .. 245 Collagen binding with p H , variation of polyanion86 Collagen complexes, critical electro lyte concentrations of some poly anion88 Colonic goblet cell glycoprotein, oligo saccharide structure of desialated 35 +
Concentration on the amount of form amide, influence of the starch .... 182 Concentration of the starch in form amide on esterification 178 Connective tissues 29 Conversion of amylose into a 6-carboxyl, sulfoamino analog 106 Co-polymer, results of sulfomethylation of xanthan gum-acrylamide graft 201 Co-polymerization 115 Co-polymers of xanthan gum, sulfonic acid and sulfomethyl-containing graft 193 Counter-ion (s) vs. calcium salts of carrageenan, activity coefficient of calcium .. 264 vs. carrageenan, potassium 262 vs. carrageenan, sodium 262 interaction of sulfated polysac charides with 259 interactions with sulfonated poly saccharides, co-ion and 245 vs. linear charge parameter, activity coefficients of 264 Cruciferae 21 Cyclization, intramolecular 21
D Dairy products, procedure for the analysis of pigmented polyanionstabilized 81 Debye-Huckel theory 245 Desmarestia aculeata 227 Desulfation, enzymatic 129 4-Deuterio-L-ascorbic acid in deuterium oxide 5 Dextran sulfate 247 Diffusion measurements 252 Disaccharides from carboxyl-reduced heparin 99 Dissolution/reprecipitation 158 method 153 D M F , aqueous 159 D M F : S 0 reagent, analysis of 159 Dye release profiles 85 Stern-Volmer plots of 90, 91 Dyebinding, p H dependence of 74 8
Ε Electrodes, measurements with ion selective 261 Electrolyte (s) concentrations for polyanion-acridine orange complexes 68, 76 concentrations of some polyanioncollagen complexes 88
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
288 Electrolyte(s) (continued) mixture, carrageenan/simple 266 on P A - A O binding, effects of simple 72 on polyanion-AO binding, effect of simple 71 Electromotive force measurements .... 247 Electron with the casein-/x-carrageenan complexes, hydrated 275 Electrophoresis, polyacrylamide gel 260,261 Embryo, two-celled 238 Embryos, stages in the development of Fucus 240 Enteromorpha compressa 209 Enteromorpha-suliated polysaccharide 209 Enzymatic formation and hydrolysis of polysaccharide sulfates 121 Epithelial-sulfated glycoproteins, composition of 32, 33 Equations of regression, analysis and interpretation of 176 Equivalent weights of carrageenan samples 88 Ester(s) of L-ascorbate acid, properties of monosulfate 11 of L-ascorbic acid, monosulfate 1 of a cerebroside, sulfate 44 groups of carrageenan, sulfate 260 groups as potential information regulators in glycoproteins, sulfate 29 heparin methacrylate 113 hydrolysis of mixed cellulose nitrite sulfate 164 nitrite 163 nitrogen content of the 181 Esterification 176 influence of the concentration of the starch in formamide on 178 influence of the water content of the starch on 178 Ethanol-insoluble fraction 236 Ethanol-soluble fraction 236 Ethers, allyl 50
F Fibroblast growth, effect of sulfated glycopeptides on 3T3 Fisher test Flavones Flavonols Fluorescence emission spectroscopy .. Fluorescence shifts of acridine orange Formaldehyde
41 176 25 25 67 68 195
Formamide amount of 181 influence of the starch concentration on the 182 -chlorosulfonic acid reagent, reaction of starch with the 173 -chlorosulfonic acid system 175 on esterification, influence of the concentration of the starch in .. 178 Fourier transform 5 Fucan complex, structural features of a 237 Fucose-containing polysaccharides from brown algae: structural features and biochemical implications, sulfated 225 Fucus 225 embryos, stages in the development of 240 vesiculosus 226,230-232 polysaccharide composition of isolated cell walls from 242 zygotes 241 zygotes 238 Funoran 156 IR spectra of 157
G Galactans 213 Galactose 214 -rich polymer from Ascophyllum, structural features of 239 6-sulfate 211 Gel(s) 219 electrophoresis, polyacrylamide 260 permeation chromatography 180 Gigartina 215 stellata 218 Gloiopeltis furcata 156 Glucosinolates and other naturally occuring O-sulfates 19 D-Glucuronic acid residues, periodate cleavage of 101 Glucuronoxylorhamnans 207 linkages present in 207 Glycolipids ("sulfoglycolipids"), studies on the synthesis of sulfurcontaining 44 Glycopeptides composition of pig duodenal 37-39 in 3T3 fibroblast growth, effect of sulfated 41 by ion exchange, fractionation of duodenal 39 Glycoprotein s) carbohydrate chains of hog stomach blood group sulfated 35
289
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
INDEX Glycoprotein (s) (continued) composition of epithelial-sulfated .32,33 oligosaccharide structure of desialated colonie goblet cell 35 sulfate ester groups as potential informational regulators in 29 sulfated 31 Glycosaminoglycans composition of 30 obtained by chemical modification of polysaccharides, sulfated .... 95 sulfated 29 Glycosulfatase (s) 129,130 assay of 131 Littorina littorea 132 Patella vulgata 133 properties of 132 Pseudomonas carrageenovora 133 Trichonderma viride 133 Goblet cell gylcoprotein, oligosac charide structure of desialated colonic 35 Gracilaria 215 Guar, effect of time at different tem peratures in the sulfation of 151 Guar gum 195 complexes, casein277 Guluronic acid 228 G u m complexes, casein-guar 277
H Halobacterium cutirubrum 46 Heat labilities of two different sulfo transferase activities 127 Helical structure 220 H e n oviduct isthmus 131 specificity of a sulfotransferase from 128 sulfate transfer to different accept ors by the amino glycan sulfo transferases of chick embryo cartilage and of 125 Heparin 77,95 alditol components from 102 degrading multienzyme system 140 derivatives of high molecular weight 113 disaccharides from carboxylreduced 99 methacrylate ester 113 methacrylate, polymer of 116 residues present in 99 segment, methacry lated 114 a suggested tetrasaccharide repeat ing unit 101 by sulfation of polysaccharides, synthetic 149
Heparin (continued) tetrasaccharide fragment from periodate-oxidized, borohydridereduced Hog stomach blood group sulfated glycoproteins, carbohydrate chains of Huckel-Debye theory Hunter's syndrome Hyaluronic acid Hydrolysis of cellulose nitrite of mixed cellulose nitrite sulfate ester partial acid of polysaccharide sulfates, enzy matic formation and the site of sulfate from partial Hydroxylamine-O-sulfate moiety
102
35 245 142 88 164 164 218 121 210 20
I Ice cream stabilizers Intramolecular cyclization Iodide quenching of dye, SternVolmer plots for the Ion(s) effect of metallic -exchange column chromatography exchange, fractionation of duodenal glycopeptides by selective electrodes, measurements with IR spectra of agarose vs. degree of substitution, viscosity and of funoran of sulfated agarose IR spectroscopy Isothiocyanates
77 21 90 221 9 39 261 157 166 157 157 218 21
Κ Keratosulfatase
139
L Lactosyl ceramide Leukodystrophy, metachromatic Light scattering Lipid on the titration of acridine orange, effect of protein and Littorina littorea glycosulfatase Lossen rearrangement
44 44 260 79 130 132 22
290
CARBOHYDRATE SULFATES
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
M Magnesium chlorides 269 Magnesium salts 269 Manning model 246 Mannuronic acid 228 Marine Chlorophyceae, sulfated poly saccharides metabolized by the .. 203 Merosinigrin 22 Metachromatic leukodystrophy (MLD) 44,142 Methacrylate, polymer of heparin 116 Methacrylated heparin segment 114 Methacry lation and polymerization .... 113 Methanol 150 Method, dissolution/precipitation 153 Methylation 218 results, the site of sulfate from 209 Milk products, estimation of carra geenan in 78 Milk and toothpaste tests, cold mix chocolate 160 Milkshake test 160 Model, Manning 246 Molecular weight heparin derivatives of 113 portion, high 179 and viscosity 97 Monosulfate esters of L-ascorbate acid, properties of 11 Monosulfate esters of L-ascorbic acid 1 Moringaceae 21 Mucopolysaccharide sulfotransferases, acceptor specificity of some crude preparations of 124 Mycobacterium tuberculosis 46
Ν N a ion activity coefficient ratio 253-256 Neber-type reaction 23 Neocarrabiose 4-O-sulfate 133 Nernstian behavior 248 Nitriles 21 Nitrite, cellulose 163 formation of 164 hydrolysis of 164 sodium cellulose sulfate via 163 sulfate ester, hydrolysis of mixed .... 164 sulfation of 164 Nitrite esters 163 Nitrogen content of the esters 181 +
Ο Oligosaccharide structure of desialated colonic goblet cell glyco protein
35
Oligosaccharide synthesis to the syn thesis of sulfoglycolipids, applica tion of a general method of 48 Organic sulfates of plant origin, other 24 Ostwald viscometer flow times 89 Oxidation procedure for 6-O-tritylamylose alternative 107 Oxidation studies, the site of sulfate from periodate 208
Ρ Padina pavonia 227 Patella vulgata, chondrosulfatase of .. 137 Patella vulgata, glycosulfatase 133 Periodate oxidation studies, the site of sulfate from 208 Periodate-oxidized, borohydridereduced heparin, tetrasaccharide fragment from 102 Persicarin 25 pH dependence of dyebinding 74 titrations of varying 77 variation of polyanion-AO binding with 73 variation of polyanion-collagen binding with 86 for xanthan gum, viscosity vs 198 Phaeophyceae (brown) 225 Phenylglycine 23 Pig duodenal glycopeptides, compo sition of 37-39 Pigmented polyanion-stabilized dairy products, procedure for the anal ysis of 81 Plant origin, other organic sulfates of 24 sulfonolipid, studies towards the synthesis of the 60 tissues 123 Polyacrylamide gel electrophoresis ... 260 Poly (acrylamide-co-AMPS A ) , xanthan g u m 200 Polyanion(s) -acridine orange complexes, critical electrolyte concentrations for .68,76 -acridine orange complexes, effect of p H on the stoichiometry of .. 70 - A O binding, effect of simple elec trolytes on 71 - A O binding with p H , variation of .. 73 binding strengths of 75 -collagen binding with p H , varia tion of 86 -collagen complexes, critical elec trolyte concentrations of some .. 88 concentration 69
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
INDEX
Polyanion (s) (continued) -containing solutions, procedure for the analysis of estimation of carboxyl to sulfate groups present in the same interaction of protein and -polyanion interaction on binding .. profiles, time-dependence of .... and polycations, interaction of -stabilized dairy products, procedure for the analysis of pigmented Polycarboxylates, analysis of polysulfatesinthe presence of Polycations, interaction of polyanions and Polyelectrolyte complexes, investigation of the structure of model Polymer(s) from Ascophyllum, structural features of the galactose-rich biological activities of the of heparin methacrylate matrix Polymerization, methacrylation and .. Polymerization reaction scheme Polysaccharide (s) activation of in biological systems, spectrofluorimetric methods for estimating and studying the interactions of from brown algae: structural features and biochemical implications, sulfated fucosecontaining Caulerpa Chaetomorpha Cladophora rupestris
co-ion and counter-ion interactions with sulfonated composition of isolated cell walls from P. vesiculosus composition and structure with counter-ions, interaction of sulfated Enteromorpha sulfated interactions, proteinionic metabolized by the marine Chlorophyceae, sulfated from microscopic red algae, extracellular novel methods and resultsinthe sulfation of of the Rhodophyceae, sulfated seaweeds metabolizing
291
80 78 82 83 83 92 81 70 92 246 87 239 115 116 225 113 196 158 67
Polysaccharide (s) (continued) structural work of 143 sulfatases 134 sulfated glycosaminoglycans obtained by chemical modification of 95 sulfates 168 enzymatic formation and hydrolysis of 121 sulfation of 159 synthetic heparin by sulfation of .... 149 Polysulfatase, cellulose 129,134 Polysulfates in the presence of polycarboxylates, analysis of 70 Polyvinylpyridinium bromides 269 Porphyran sulfatase 135 Potassium 259 counter-ions vs. carrageenan 262 salts of /A-carrageenan 272, 273 Products, analysis of 160 Products, properties of the 156 Property (ies) and conformational effects, physical 219 determinations, analytical and 171 of xanthan gum, low shear rate rheological 199 Protein and polyanions, interactions of 82 -polysaccharide interactions 260 reaction with 168 on the titration of acridine orange, effect of lipid and 79 Proteus vulgaris, chondrosulfatase of .. 136 Pseudomonas carrageenovora
225
203 203 203 207
245 242 226 259 209 260 246 203 221 148 213 213
131
glycosulfatase 133 Pyridine-chlorosulfonic acid method .. 149 Q Quenching constants, Stern-Volmer .. Quenching of dye, Stern-Volmer plots for the iodide
88 90
R Radiolysis measurements, pulse 274 Reaction scheme, polymerization 196 Reaction variables 187 Reagent, effect of sulfating 150-152 Regression, analysis and interpretation of equations of 176 Relaxations 271 Reprecipitation/dissolution 158 method 153 Resedaceae
21
Residues present in heparin Rheological techniques
99 261
Rhodophyceae, sulfated polysaccharides of the
213
Rhodophyceae
(red)
225
292
CARBOHYDRATE SULFATES
Rhizoid cell Ricinus seeds Rumex
238 238 26
S S 0 reagent, analysis of D M F : 159 S 0 -trialkylamine 173 Salts of carrageenan activity coefficient of calcium counter-ion vs. calcium 264 of /x-carrageenan calcium 272-275 potassium 272, 273 sodium 272,273 magnesium 269 Sanfilippo syndrome 142 Seaweeds metabolizing polysaccharides 213 Seminolipid, synthesis of 54 Semi-synthetic studies 34 Shear rate rheological properties of xanthan gum, low 199 Sodium 259 cellulose sulfate via cellulose nitrite 163 cellulose sulfates, preparation of .... 169 chloride . 269 counter-ions vs."carrageenan 262 dextran sulfate 269 ion self-diffusion measurements 252 metabisulfite 195 salts of /x-carrageenan 272,273 Solvent, effect of precipitating 150 Spectra, IR of agarose 157 vs. degree of substitution, viscosity and 166 of funoran 157 of sulfated agarose 157 Spectral shifts of acridine orange, absorption 68 Spectrofluorimetric methods for estimating and studying the interactions of polysaccharides in biological systems 67 Spectroscopy absorption 67 fluorescence emission 67 IR 218 Squid liver, chondrosulfatase of 138 Starch 149 on the amount of chlorosulfonic acid, influence of the water content of 183 on apparent viscosity, influence of the water content of 182 with the chlorosulfonic acid-formamide reagent, reaction of 173 3
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
3
Starch (continued) concentration on the amount of formamide 182 on esterification, influence of the water content of 178 in formamide on esterification, influence of the concentration of 178 on limiting viscosity number, influence of the water content of .... 180 sulfate, yield of 179 Stern-Volmer plots of dye 90, 91 Stern-Volmer quenching constants .... 88 Stoichiometry of polyanion-acridine orange complexes, effect of p H on the 70 Stomach blood group sulfated glycoproteins, carbohydrate chains of hog 35 Structural features and biochemical implications, sulfated fucose-containing polysaccharides from brown algae 225 Structural studies, general 203 Substitution, viscosity and IR spectrum vs. degree of 166 Sucrose, ultracontrifugation in 116 Sulfatase(s) 130 cerebroside 141 polysaccharide 134 porphyran 135 Sulfate(s) algin 168 cellulose 163 via cellulose nitrite, sodium cellulose 163 choline 24 dextran 247 enzymatic formation and hydrolysis of polysaccharide 121 ester, hydrolysis of mixed cellulose nitrite 164 groups of carrageenan, ester 260 methods for the determination of the site of 215 as potential informational regulators in glycoproteins, ester 29 present in the same polyanion, estimation of carboxyl to the site of 208 from methylation results, the site of 209 moiety, hydroxylamine-O20 from partial hydrolysis, the site of .. 210 from periodate oxidation studies, the site of 208 of plant origin, other organic 24 polysaccharide 168
293
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
INDEX Sulfate (s) (continued) preparation of sodium cellulose 169 sodium dextran 269 transfer to different acceptors by the amino glycan sulfotransferases of hen oviduct and chick embryo cartilage 125 triglycosyl ceramide 44 yield of ammonium 181 yield of starch 179 2-Sulfate, L-ascorbate 1 chronology of 2 synthesis of 4 5- Sulfate, L-ascorbate 7,15 synthesis of 13 6- Sulfate, L-ascorbate 3,14 chronology of 6 O-Sulfates, glucosinolates and other naturally occuring 19 O-Sulfates, isomeric chlorogenic acid .. 26 Sulfation of cellulose nitrite 164 enzymatic 122 of guar, effect of time at different temperatures in the 151 of polysaccharides 159 some novel methods and results in the 148 synthetic heparin by 149 2-Sulfoamino analog, conversion of amylose into a 6-carboxyl 106 Sulfoglycolipids application of a general method of oligosaccharide synthesis to the synthesis of 48 previous synthetic studies on 46 studies on the synthesis of sulfurcontaining glycolipids 44 Sulfomethyl-containing graft co-poly mers of xanthan gum, sulfonic acid and 193 Sulfomethylation of xanthan g u m acrylamide graft co-polymer, results of 201 Sulfonic acid, acrylamide and 2-acrylamido-2-methylpropane 195 Sulfonolipid, studies towards the synthesis of the plant 60 Sulfotransferase (s) 122 acceptor specificity of some crude preparations of mucopolysac charide 124 activities, heat labilities of two different 127 of hen oviduct and of chick embryo cartilage, sulfate transfer to different acceptors by the amino glycan 125 from hen oviduct, specificity of a .... 128
Sulfur-containing glycolipids ("sulfo glycolipids"), studies on the syn thesis of Sulfuric acid, L-ascorbic acid in concentrated Syndrome, Hunter's Syndrome, Sanfilippo Synthesis of sulfoglycolipids, applica tion of a general method of oligo saccharide synthesis to the Synthetic studies on sulfoglycolipids, previous
44 8 4,5 142 142
48 46
Τ Temperature(s) effect of in the sulfation of guar, effect of time at different for xanthan gum, viscosity vs Test, Fisher Tetrasaccharide fragment from periodate-oxidized, borohydridereduced heparin Tetrasaccharide repeating unit, heparin: a suggested Theory, Debye-Huckel Thiocyanates /^D-Thioglucopyranosidic linkage Thioglucose (Ζ)-Thiohydroximate arrangement .... Time-dependence of polyanion-polyanion interaction on binding profiles Time at different temperatures in the sulfation of guar, effect of Tissues animal connective plant Titration of acridine orange, effect of protein and lipid on the Titrations of varying pHs Toothpaste tests, cold mix chocolate milk and Tovariaceae Trialkylamine-SOa Trichoderma viride glycosulfatase Triglycosyl ceramide sulfate 6-O-Tritylamylose, alternative oxida tion procedure for
150 151 198 176
102 101 245 21 20 23 20
83 151 123 29 123 79 77 160 21 173 130 133 44 107
U Ultracentrifugation in sucrose Ultrasonic absorption
115 116 272-275
294
CARBOHYDRATE SULFATES
Ultrasonic (continued) relaxation measurements waves Ulva lactuca Urospora penicilliformis Urospora wormskioldii
W 271 259 207,212 209 207-210
Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ix001
V Vinylglycine Viscometer flow times, Ostwald Viscosity apparent influence of the water content of the starch on apparent and IR spectrum vs. degree of substitution measurements and molecular weight number, influence of the water con tent of the starch on limiting .... number, limiting vs. p H for xanthan gum vs. temperature for xanthan gum .... Volmer-Stern plots of dye plots for the iodide quenching of dye quenching constants
23 89 179 182 166 160 97 180 179 198 198
Water after activation, effect of residual Water content of the starch on the amount of chlorosulfonic acid, influence of the apparent viscosity, influence of the esterification, influence of the limiting viscosity number, influence of the
183 182 178 180
X Xanthan gum -acrylamide graft co-polymer, results of sulfomethylation of low shear rate rheological prop erties of -poly (acrylamide-co-AMPS A ) .. structure of sulfonic acid and sulfomethylcontaining graft co-polymers of viscosity vs. p H for viscosity vs. temperature for
91 90 88
153
149
201 199 200 194 193 198 198
Ζ Zygotes, Fucus
238-241