Carbohydrate Chemistry Volume 15 Part II
A Specialist Periodical Report
Carbohydrate Chemistry Volume 15 Part II Mac...
27 downloads
1540 Views
47MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Carbohydrate Chemistry Volume 15 Part II
A Specialist Periodical Report
Carbohydrate Chemistry Volume 15 Part II Macromolecules A Review of the Literature Published during 1981 Senior Reporter J. F. Kennedy, University of Birmingham Reporters
D. P. Atkins, University of Birmingham
1. M. Morrison, Hannah Research Institute, Ayr C. M. Sturgeon, University of Edinburgh R. J. Sturgeon, Heriot- Watt University, Edinburgh C. A. White, University of Birmingham
The Royal Society of Chemistry Burlington House, London W I V OBN
ISBN 0-85186-152-0 ISSN 0576-7172
Copyright @ 1986 The Royal Society of Chemistry All Rights Reserved No part of this book may be reproduced or transmitted in any form or by any means graphic, electronic, including photocopying, recording, taping, or information storage and retrieval systems - without written permission from The Royal Society of Chemistry
-
Printed in Great Britain by Whitstable Litho Ltd., Whitstable, Kent
Preface This Report, t h e f i f t e e n t h o f t h i s T i t l e , is, l i k e its predecessors, a c o m p r e h e n s i v e summary of p u b l i c a t i o n s , b o t h p r i m a r y and s e c o n d a r y , p r e s e n t e d i n a c o n c i s e and r e a d a b l e form. In s p i t e o f t h e s u p p o r t i v e comments we h a v e r e c e i v e d for t h i s T i t l e from r e a d e r s i n v a r i o u s p a r t s o f t h e w o r l d , r e f e r e n c e must be made t o t h e 1985 d e c i s i o n o f t h e Royal S o c i e t y o f C h e m i s t r y t o cease p u b l i c a t i o n o f ' C a r b o h y d r a t e C h e m i s t r y ' P a r t I1 i n i t s p r e s e n t form.
T h i s d e c i s i o n h a s been b a s e d on
i n s u f f i c i e n t income t o s u p p o r t t h e h i g h c o s t o f p r o d u c t i o n .
Such a c e s s a t i o n
was h i n t e d a t i n t h e p r e f a c e t o Volume 14 a s b e i n g a p o s s i b i l i t y .
It is
r e g r e t t a b l e n o t o n l y s i n c e t h e c a r b o h y d r a t e macromolecular c h e m i s t r y may no l o n g e r b e a v a i l a b l e i n s u c h a n a c c e s s i b l e form b u t a l s o s i n c e so much e f f o r t h a s b e e n p u t i n t o t h e change t o t h e p r o d u c t i o n o f camera-ready c o p y d e s p i t e t h e problems a s s o c i a t e d w i t h t h e c o m p l e x i t i e s o f c a r b o h y d r a t e names and s t r u c t u r e s and a b b r e v i a t e d forms t h e r e o f . I n t h e p r o d u c t i o n o f t h i s volume I h a v e been s u p p o r t e d o n c e a g a i n by c o l l e a g u e s who have u n s t i n t i n g l y c o n t r i b u t e d t o many volumes o f t h i s T i t l e and by Drs C . A. White and D. P. A t k i n s who j o i n e d i n t h e p r o d u c t o n o f t h i s volume t o e a s e t h e work-load.
I a g a i n v e r y g r a t e f u l l y acknowledge t h e c o n s i d e r a b l e
e f f o r t p u t i n by e v e r y r e p o r t e r , and t h e h e l p a n d a d v i c e t h e y have g i v e n . F i n a l l y , t h e e d i t o r i a l and o t h e r a s s i s t a n c e p r o v i d e d by Mrs R.H.
Pape,
A s s i s t a n t E d i t o r , Books, a t t h e Royal S o c i e t y o f C h e m i s t r y i n t h e p r o d u c t i o n o f t h i s Report i s much a p p r e c i a t e d . A p r i l 1986
JOHN F. KENNEDY
Contents Chapter 1
Introduction By J . F. Kennedy
1
Chapter 2
G e n e r a l Methods By R. J. S t u r g e o n
3
1
Gas-Li q u i d Chromatography
3
2 Column and Ion-exchange Chromatography
5
3 T h i n - l a y e r Chromatography
5
4 H i g h - p r e s s u r e L i q u i d Chromatography
6
5 Electrophoresis
9
6 A n a l y t i c a l Methods
10
S t r u c t u r a l Methods N. M. R. S p e c t r o s c o p y Mass S p e c t r o m e t r y M i s c e l l a n e o u s Methods
13 13 14 15
P l a n t a n d Algal P o l y s a c c h a r i d e s
21
1
Introduction
21
2
Starch
21
3 Fruct a n s
31
4 Ce 11u l o s e
32
5 H e m i c e l l u l oses
39
6 Pectins
48
7 Gums a n d M u c i l a g e s
53
8 Algal Polysaacharides
56
7
Chapter 3
By I. M. M o r r i s o n
Microbial P o l y s a c c h a r i d e s By C. A. Whibe
70
1
Teichoic Acids
70
2
Peptidoglycans
77
Chapter 4
viii
Carbohydrate Chemistry 3
Lipopolysaccharides
89
4
Capsular Polysaccharides
107
5
E x t r a c e l l u l a r and I n t r a c e l l u l a r P o l y s a c c h a r i d e s
119
6
Miscellaneous B a c t e r i a l Polysaccharides
136
7
Fungal Polysaccharides D - G l ucan s D-Ma nn a n s Chitin Miscellaneous Cell-wall Polysaccharides
141 145 150 157 158
C l y c o p r o t e i n s , G l y c o p e p t i d e s , P r o t e o g l y c a n s , and Animal P o l y s a c c h a r i d e s By R . J. S t u r g e o n
168
1
Microbial Glycoproteins Fungal G l y c o p r o t e i n s Viral Glycoproteins
168 168 169
2
Plant Glycoproteins
178
Chapter 5
3 Lectins
179
4
Fibronectin
193
5
Collagen
197
6
Glycogen
202
7
Glycosaminoglycans and Proteoglycans Analysis O c c u r r e n c e , I s o l a t i o n , and S t r u c t u r e Biosynthesis Pa t h o l o g y
203 20 3 205 21 6 219
8 Cell and T i s s u e G l y c o p r o t e i n s
222
9
Cell-surface Glycoproteins
234
10
G l y c o p r Q t e i n Hormones
249
11
Milk G l y c o p r o t e i n s
253
12
Serum G l y c o p r o t e i n s
25 8
13
Immunoglobulins
269
14
Erythrocyte Glycoproteins
284
15
S a l i v a r y a n d Mucous G l y c o p r o t e i n s
292
16
U r i n a r y G l y c o p r o t e i n s , G l y c o p e p t i d e s , and 01 i g o s a c c h a r i d e s
298
17
Avian C l y c o p r o t e i n s
30 1
18 M i s c e l l a n e o u s C l y c o p r o t e i n s a n d C h i t i n
307
Contents
Chapter
19 Analysis of Glycoproteins
310
20 Biosynthesis of Glycoprotelns
314 347
6 Enzymes By J. F. Kennedy 1
Introduction General Aspects and Nomenclature Methods of Assay Kinetics Mechanisms o f Action Applications Enzyme Immobilization
2
fi-D-2-Acetamido-2-deoxygalactosidases, B-D-2-Acetamido-2-deoxyglucosidases, 6-D-2-Acetamido-2-deoxyhexosidases
3 a-L-Arabinofuranosidases
347 347 347 348 348 348 349 and
and a-L-Arabinopyranosidases
350 376
4 B-D-Fructofuranosidases
378
5 D-Fructose-1.6-bisphosphatase
383
6 B-D- and a-L-Fucosidases
384
7
aa-
and 8-D-Galactosidases and D-Galactolipid-oriented and B-D-Galactosidases
390
8
a-
and B-D-Glucosidases
414
9 B-D-Glucuronidases
441
10 a-L-Iduronidases
445
11
446
a-
and B-D-Uannosidases
12 Ne ur ami n id a ses ( Sia 1 ida ses 1
450
13 6-D-Xylosidases
455
14
e8-D-2-Ace tamido-2-deoxygluc anases
456
15 Agarases
457
16 Alginases and Alginate Lyases
458
17 a4mylases
458
18 6-Amylases
477
19 Amylo-l,6-D-glucosidases
481
20 Cellulases
482
21
497
Chitinases
22 Dextranases 23
( 1-3 1-aCD-Glucanases
498 499
Carbohydrate Chemistry
X
500
24 endo-( 1-3)-~-D-Glucanases 25
exo- ( 1 -
-
502
4) B-D-Gl ucanases
-
503
endo-(1-6)-B-D-Glucanases
506
28 D-Glucanases (Miscellaneous)
507
26 endo-( 1-4)-~-D-Glucanases 27
29
G 1ucoamy 1a se s
509
30
Glycanases (Miscellaneous)
513
31
Heparin Hydrolases
514
32
Hyaluronidases
515
33
Inulinases
518
34
Isoamylases
35
Laminaranases
519
36
Ly so2 yme s
519
37
Oligo-1 ,6-D-glucosidases
528
3a
Pectate, Pectin, and Poly-D-galacturonate
39
Poly-D-galacturonases
40
exo-Poly-D-galacturonate
41
Pullulanases
534
42
Sucrose-a-D-glucohydrolase
535
Lyases
529 531
Lyases
534
43 aa- and B B-Trehalases
536
44
endo- ( 1*4) -8-D-Xyl -
537
45
Xylanases (Miscellaneous)
539
46
Carbohydrate Isomerases D-Xylose Isomerases (D-Glucose Isomerase) L-Ribose Isomerases
54 1 54 1 544
47
Carbohydrate Oxidases D-Glucose Oxidases L-Galactonolactone Oxidases L-Gulonolac tone Oxidases Cellobiose Oxidases L-Fructose Oxidases D-Galactose Oxidases
545 545 54 a 549 549 549 54 9
anases
48 Carbohydrate T r an sferases
550
49
L-Iduronic Acid 2-Sulphate Sulphatases
555
50
Arylsulphatases
556
xi
Contents 558
51
2-Acetamido-2-deoxy-D-glucose
52
M i s c e l l a n e o u s Enzymes Dextransucrase Syn t h a s e s Lya se s De h y d r o g e n a s e s Levansucrase Pectinesterases
558 558 560 562 562 563 564
G l y c o l i p i d s and G a n g l i o s i d e s By I. M. M o r r i s o n
578
1
Introduction
578
2
A n a l y t i c a l and G e n e r a l Methods
578
3
Gangliosides
579
4
Animal G l y c o l i p i d s
592
5
Plant Glycolipids
605
6
Microb i a 1 G l y c o l i p i d s
609
Chemical S y n t h e s i s and M o d i f i c a t i o n o f O l i g o s a c c h a r i d e s , P o l y s a c c h a r i d e s , G l y c o p r o t e i n s , Enzymes, and G l y c o l i p i d s By C. M. S t u r g e o n
61 8
Chapter 7
Chapter 8
6-Sulphate Sulphates
1 S y n t h e s i s of P o l y s a c c h a r i d e s , O l i g o s a c c h a r i d e s , G l y c o p r o t e i n s , G l y c o p e p t i d e s , and G l y c o l i p i d s Polysacchar i d e s Oligosaccharides Glycoproteins G 1y c o p e p t i d e s Glycolipids 2
3
M o d i f i c a t i o n o f P o l y s a c c h a r i d e s and O l i g o s a c c h a r i d e s a n d Uses of M o d i f i e d P o l y s a c c h a r i d e s and O l i g o s a c c h a r i d e s Introduction Agarose Amylose Cellulose Chitin Chitosan Cycloamyloses De x t r a n s D-Glucan s G 1ycosami n o g l y c a n s D-Mannans M i s c e l l a n e o u s P o l y s a c c h a r i d e s , O l i g o s a c c h a r i d e s , and G 1y c o l i p i d s Starch M o d i f i c a t i o n of G l y c o p r o t e i n s and Uses of Modified G 1y c o p r o t e i n s Albumins Antibodies Phytohaemagglutinins Transferrin
61 8 61 8 61 9 630 63 1 632 633 633 6 36 675 676 67 9 680 68 1 683 685 685 685 686 687 687 688 688 68 9 689
Carbohydrate Chemistry
xii Miscellaneous Glycoproteins Immobilized D e r i v a t i v e s of Glycoproteins Immobilized C e l l s
4 Modification of Enzymes and Uses of Modified Enzymes Acid Phosphatase B-D-Fucosidase B-D-Galactosidase Glucoamylase D-Glucose Isomerase Hya lur onid a s e Lysozyme Miscellaneous Glycoenzymes Immobilized Derivatives of Enzymes
Author Index
689 690 71 4 718 71 8 718 71 8 718 718 718 71 8 719 719 772
Abbreviations
The f o l l o w i n g a b b r e v i a t i o n s have been u s e d : C h e m i c a l s a n d Chemical Groups AD P adenosine 5 I-diphosphate AMP adenosine 5'-phosphate ATP adenosine 5'-triphosphate CDP c y t i d i n e 5'-diphosphate CM P c y t i d i n e 5'-phosphate DEAE N,N-diethylaminoethyl DMF E,N-dimethylformamide DM SO dimethyl sulphoxide DNA deoxyribonucleic acid GDP guanosine 5'-phosphate RNA ribonucleic acid THF tetrahydrofuran RIS trimethylsilyl UDP u r i d i n e 5'-diphosphate P h y s i c o c h e m i c a l Methods c.d. c i r c u l a r d i c h r o is m d.s.c. d i f f e r e n t i a l scanning calorimetry e.s.r. e l e c t r o n s p i n resonance gas-liquid chromatography-mass spectrometry g c -m. s g.1.c. gas-liquid chromatography g.p.c. g e l permeation chromatography h.p.1.c. high-performance l i q u i d chromatography i.r. infrared m.s. mass s p e c t r o m e t r y n u c l e a r magnetic resonance n .m.r. 0.r .d. optical rotatory dispersion t.1.c. thin-layer chromatography U.V. ultraviolet
..
.
1
Introduction BY J. F. KENNEDY
The o b j e c t i v e s o f t h e P a r t I 1 R e p o r t h a v e r e m a i n e d i n t h e a r e a o f p r o v i d i n g a summary o f t h e l i t e r a t u r e o f c a r b o h y d r a t e - c o n t a i n i n g and c a r b o h y d r a t e - d i r e c t e d macromolecules,
but s i n c e t h e i n c e p t i o n of
C a r b o h y d r a t e Chemistry’ f o u r t e e n volumes and t h e r e f o r e f o u r t e e n y e a r s ago,
t h e coverage has n e c e s s a r i l y changed.
T h i s change has o f t e n
b e e n n o t h i n g more t h a n k e e p i n g up t o d a t e w i t h i m p r o v e m e n t s i n t h e s c i e n t i f i c u n d e r s t a n d i n g o f t h e m a c r o m o l e c u l e s concerned.
However,
s i n c e w h a t h a v e come t o be c a l l e d b i o t e c h n o l o g i c a l p r o c e s s e s the l i f e aspects o f
molecules
-
-
i.e.
h a v e become a d r i v i n g f o r c e i n
t o d a y ’ s s c i e n t i f i c t h i n k i n g , s o i n t h i s T i t l e we h a v e c o n t i n u e d t o c i t e a p p l i c a t i o n s of
t h e m a c r o m o l e c u l e s as w e l l as t o r e p o r t on t h e
b a s i c science. The i n t r o d u c t i o n t o
Volume 14 P a r t
comprehensive and s e t t h e scene f o r Report.
111 w a s n e c e s s a r i l y
subsequent
volumes o f t h i s
I n i t , t h e f o l l o w i n g a s p e c t s were covered:
1.
Scope and C o v e r a g e o f t h e R e p o r t ,
2.
O r g a n i z a t i o n , N o m e n c l a t u r e , a n d Use o f t h e R e p o r t ,
3.
S i g n i f i c a n t Advances i n M a c r o m o l e c u l a r C a r b o h y d r a t e
4.
C o n c l u s i o n s and R e a d e r s h i p ,
Chemistry,
and r e a d e r s o f t h i s volume a r e advised t o c o n s u l t t h e p r e v i o u s one t o d e r i v e maximum b e n e f i t . March
1982 saw
Carbohydrate Research
-
the
e a r l y on i n i t s l i f e t i m e , important carbohydrate
publication
of
a n o t a b l e landmark.
the
100th volume
This publication,
of
very
became a p r i m a r y p u b l i c a t i o n c h a n n e l f o r work,
particularly
academic,
and i t i s
p l e a s i n g t o see t h a t t h e j o u r n a l l o o k s e a s i l y s e t f o r a n o t h e r one h u n d r e d volumes.
The s i s t e r j o u r n a l ,
p u b l i s h e s a r t i c l e s more i n t h e f i e l d s research,
Carbohydrate of
Polymers,
which
a p p l i c a t i o n and i n d u s t r i a l
h a s a l o n g way t o go t o c a t c h t h i s u p ,
because i t i s a
2
Carbohydrate Chemistry
much y o u n g e r j o u r n a l .
N e v e r t h e l e s s t h e r e i s scope f o r b o t h j o u r n a l s
t o c o n t i n u e s u c c e s s f u l l y w i t h t h e c o n t i n u a l s i g n i f i c a n t advances i n b o t h a c a d e m i c and i n d u s t r i a l c a r b o h y d r a t e c h e m i s t r y . A s p e c i a l i s s u e o f C a r b o h y d r a t e R e s e a r c h 2 was p u b l i s h e d t o
honour
Professor
Sumio
Umezawa
and
his
work
on
antibiotics,
p a r t i c u l a r l y i n the f i e l d o f sugar-containing antibiotics. Re f e r e n c e s 1.
Kennedy,
J.F.
(Macromolecules), Reports), 2.
i n ed.
‘Carbohydrate
Chemistry’,
Kennedy
(Specialist
J.F.
The R o y a l S o c i e t y o f C h e m i s t r y ,
p.
1.
T.
Tsuchiya,
Carbohydr.
e., 1982,
109,
London,
1.
Part
I1
Periodical
1983,
Vol.
14,
2
General Methods BY R. J. STURGEON 1 G a s - L i q u i d Chromatoqraphy
An i m p r o v e d g.1.c.
method f o r t h e simultaneous d e t e r m i n a t i o n o f
a l d i t o l a c e t a t e s o f n e u t r a l and amino-sugars
has been r e p o r t e d . ’
S h o r t r e t e n t i o n t i m e s and b a s e l i n e s e p a r a t i o n b e t w e e n Q - g l u c o s e a n d a-galactose
were
recorded.
The
method
has
been
used
for
the
a n a l y s i s o f s i a l o g l y c o p r o t e i n s f r o m bone. A c h i r a l p o l y s i l o x a n e s t a t i o n a r y phase has been used i n t h e
9.1. c.
analysis o f mixtures o f neutral
s e p a r a t i o n of 3-g-methylg.1.c.
and a m i n o - s u g a r s . 2
Complete
t h e a l d i t o l a c e t a t e s o f t h e n e u t r a l sugars,
including
and 4 - ~ - m e t h y l - ~ - g l u c i t o l s , was a c c o m p l i s h e d .
Capillary
s e p a r a t i o n o f monosaccharides as t h e i r a l d i t o l a c e t a t e s has
been r e p ~ r t e d . ~
2-Amino-2-deoxy-Q-galactose
and 2-amino-2-deoxy-~-glucose,
a f t e r r e d u c t i o n w i t h sodium b o r o h y d r i d e t o t h e c o r r e s p o n d i n g amino a l c o h o l s , and c o n v e r s i o n t o t h e t r i f l u o r o a c e t y l d e r i v a t i v e s , have b e e n s e p a r a t e d b y g.1.c. flame thermionic
and d e t e c t e d u s i n g a n i t r o g e n - s p e c i f i c
detector.4
The m e t h o d may
be a p p l i e d t o
the
d e t e r m i n a t i o n o f amino-sugars i n glycoconjugates. The q u a n t i t a t i v e g.1.c.
a n a l y s i s o f sucrose i n t h e presence o f
t h e o x i m e s o f Q - g l u c o s e and Q - f r u c t o s e has been r e p o r t e d u s i n g a b u f f e r e d o x i m a t i o n reagent.5
No h y d r o l y s i s o f t h e s u c r o s e t a k e s
p l a c e d u r i n g t h e o x i m a t i o n procedure,
n o r do t h e r e a g e n t s a f f e c t t h e
subsequent s i l y l a t i o n o f t h e d i s a c c h a r i d e . l - M e t h y l - i m i d a z o l e has been used as a s o l v e n t and a c a t a l y s t
f o r t h e p r e p a r a t i o n o f a l d o n o n i t r i l e a c e t a t e s o f aldoses.6 methods have been m o d i f i e d f o r t h e a n a l y s i s o f g l y c o s e s , sugars,
and S m i t h d e g r a d a t i o n p r o d u c t s by u s i n g g.1.c.
of t h e i r aldononitrile acetate
derivative^.^
Existing amino-
determination
M o n o s a c c h a r i d e s h a v e been c o n v e r t e d t o p r o d u c e one d e r i v a t i v e f o r each aldose,
as d e t e c t e d by g.l.c.,
the formation o f aldoximes,
i n a sequence w h i c h i n v o l v e s
t h e i r r e d u c t i o n w i t h borane t o t h e
4
Carbohydrate Chemistry
corresponding aminopolyols,
l-
and s u b s e q u e n t c o n v e r s i o n t o t h e
e t hox y c a r bo n y 1-0t r i m e t hy 1s i1y 1 d e r iv a t iv e s
.
diastereomers
formation
upon d e r i v a t i z a t i o n .
The
K e t o s es pr o d uc e t w o
o f side
and
decomposition products i s n e g l i g i b l e . The m o n o s a c c h a r i d e c o m p o s i t i o n o f d e t e r m i n e d b y g.1.c.-m.s.
of
g l y c o c o n j u g a t e s has been
the g - t r i m e t h y l s i l y l
ethers
after
l i b e r a t i o n o f t h e component s u g a r s , E - d s a c e t y l a t i o n , and d e a m i n a t i o n o f amino-sugars
and n e u r a m i n i c acid.9
6-Deoxyhexoses,
hexose, a n d
p e n t o s e s , d e r i v e d f r o m c a r d i a c g l y c o s i d e s , have been e s t i m a t e d by g.1.c.-m.s. may
also
of be
their g-trimethylsilyl
c a p i l l a r y columns.12 convenient
r e s o l u t i o n g.1.c.
Monosaccharides
These d e r i v a t i v e s have been f o u n d
alternative
quantitation o f
ethers.lO,ll
as 2 - t r i m e t h y l s i l y l a l d i t o l s on f u s e d - s i l i c a
separated
to
the
g-acetate
acid hydrolysates
of
to offer
derivatives
for
polysaccharides.
a
the High
s e p a r a t i o n s o f a l d i t o l a c e t a t e s on f u s e d - s i l i c a
w a l l - c o a t e d open t u b u l a r col u mns ha ve been achieved.13 A d i f f e r e n t i a l g.1.c. i n carbohydrate procedure,
me t h od f o r d e t e r m i n a t i o n o f u r o n i c a c i d s
mixtures
has
be en
deve10ped.l~
I n a two-step
n e u t r a l s u g a r s a r e f i r s t d e t e r m i n e d by g.1.c.
a l d o n o n i t r i l e acetates,
of their
b e f o r e t h e u r o n i c a c i d s i n t u r n a r e reduced
and c o n v e r t e d t o t h e same d e r i v a t i v e s .
The r e l a t i v e p r o p o r t i o n s o f
Q - m a n n u r o n i c a c i d and C - g u l u r o n i c a c i d s i n a l g i n i c a c i d have been d e t e r m i n e d i n a g.1.c.
me t h od . 1 5
After lowering the viscosity o f
t h e a l g i n i c a c i d by l i m i t e d a c i d h y d r o l y s i s ,
c a r b o x y l groups a r e
f i r s t e s t e r i f i e d b y r e a c t i o n w i t h l-ethyl-3-{3-(dimethylamino)propyll-carbodi-imide,
t h e n r e d u c e d w i t h so dium b o r o h y d r i d e , end t h e
r e s u l t i n g m i x t u r e o f hexosans i s c o n v e r t e d by a c i d h y d r o l y s i s t o monosaccharides.
The m o n o s a c c h a r i d e s i n t u r n a r e r e d u c e d w i t h s o d i u m
b o r o h y d r i d e t o h e x i t o l s w h i c h can be a n a l y s e d as t h e b u t a n e b o r o n i c esters. New c h i r a l s t a t i o n a r y p h a s e s f o r t h e g.1.c. enantiomers
of
monosaccharides
amines, have
amino-alcohols,
been
described.l6
separation o f the hydroxy-acids,
The
separation
and
af
m ono s a c c h a r id e e n a n t i o m e r s as t h e 0 - t r i f l u o r a a c e t a t e a is a c h i e v e d on a s t a t i o n a r y phase by a t t a c h m e n t o f ~ - v a l y i - S - a - p h e n y l s t a t i o n a r y phase.
ethylamide t o the p o l y s i l o x a n e U r i n a r y p o l y o l s have been e s t i m a t e d by g.1.c. of
t h e i r acetates.17
I n t e r f e r e n c e i n t h e chromatographic
the
functionalized cyanoethyl
side
chains
of
p a t t e r n s due
t o m o n o s a c c h a r i d e s was o v e r c o m e b y f o r m i n g m e t h y l o x i m e - a c e t a t e d e r i v a t i v e s o f r e d u c i n g sugars.
2: General Methods
5
2 Column a n d I o n - e x c h a n g e C h r o m a t o g r a p h y
Macroporous m i c r o s p h e r i c a l c e l l u l o s e h a s been used as a s t a t i o n a r y p h a s e i n t h e c h r o m a t o g r a p h y o f w a t e r - s o l u b l e h i g h and low m o l e c u l a r weight carbohydrates.18 D i s t r i b u t i o n c o e f f i c i e n t s of t h e polymer molecules depend on t h e hydrodynamic d i a m e t e r s o f t h e polymer molecules. The h y d r o d y n a m i c b e h a v i o u r o f r e d u c e d g l y c o p o l y p e p t i d e s h a s b e e n s t u d i e , d by g e l f i l t r a t i o n i n g u a n i d i n e h y d r o c h l o r i d e i n c o n j u n c t i o n w i t h h.p.1.c.” Even t h o u g h c a r b o h y d r a t e - r i c h g l y c o p e p t i d e s may o c c a s i o n a l l y y i e l d a n u n d e r e s t i m a t e d m o l e c u l a r w e i g h t value, t h e method a p p e a r s t o be u s e f u l f o r t h e r a p i d e s t i m a t i o n of molecular weights of simple polypeptides. The s e p a r a t i o n o f 2-amino-2-deoxy-Q-glucose from 2-amino-2deoxy-n-galactose i n t h e r o u t i n e amino-acid a n a l y s i s of p l a n t glycop r o t e i n s h a s b e e n i m p r o v e d by t h e u s e o f l o n g e r c o l u m n s o n t h e a m i n o - a c i d a n a l y s e r . 2 0 An i m p r o v e d c h r o m a t o g r a p h i c s e p a r a t i o n o f s u g a r s and s u g a r a l c o h o l s on c a t i o n - e x c h a n g e r e s i n s (Ca2+) i s reported.21 The a d d i t i o n o f s m a l l a m o u n t s o f t r i e t h y l a m i n e t o the eluant catalyses the mutarotation of reducing sugars, resulting i n r e d u c e d p e a k w i d t h s w i t h o u t a f f e c t i n g t h e e l u t i o n times. T h e s e p a r a t i o n of s t r o n g l y basic ion-exchange r e s i n s f o r t h e s e p a r a t i o n o f a l d i t o l s f r o m m o n o s a c c h a r i d e s has p r e v i o u s l y b e e n r e p o r t e d a s a method f o r t h e e s t i m a t i o n o f t h e d e g r e e o f p o l y m e r i z a t i o n o f n e u t r a l o l i g o - and p o l y - s a c c h a r i d e s . I n t h i s p r o c e d u r e , t h e a l d i t o l s were r e p o r t e d n o t t o b i n d t o t h e r e s i n , a n d were e s t i m a t e d a f t e r I t h a s now b e e n s h o w n t h a t i n a n u m b e r o f d e r i v a t i z a t i o n by g.1.c. cases a l d i t o l s do b i n d t o t h e r e s i n s , b u t t h e i r e l u t i o n from t h e r e s i n i s i n f l u e n c e d by m e t h a n o l , ammonium a c e t a t e , a n d ammonium forrnate.22 Cation-exchange r e s i n s i n t h e s i l v e r form r e t a i n o l i g o saccharides t o a g r e a t e r e x t e n t t h a n t h e calcium forms o f t h e r e s i n s , r e s u l t i n g i n a g r e a t e r number o f o l i g o s a c c h a r i d e s b e i n g s e p a r a t e d . 23
3 Thin-layer Chromatography
A c o n t i n u o u s - f l o w t.1.c. s y s t e m h a s b e e n d e v e l o p e d f o r t h e i d e n t i f i c a t i o n a n d m e a s u r e m e n t o f u r i n a r y c a r b o h y d r a t e s i m p r e g n a t e d on p a p e r . 24 M u r a m i c a c i d , 2-am i n o - 2 - d e o x y -Q-gl u c o s e , 2-am i n o - 2 - d e o x y Q-galactose,and t h e i r corresponding aminodeoxyalditols have been s e p a r a t e d b y t w o - d i m e n s i o n a l t.1.c. as t h e i r 2 , 4 - d i n i t r o p h e n y l
Carbohydrate Chemistry
6
derivative^.'^
Some o f
the
factors
influencing the derivatization
and s e p a r a t i o n o f t h e s e s u g a r s a r e r e p o r t e d .
4 H i q h - p r e s s u r e L i q u i d Chromatography A r e v i e w o f t h e d i f f e r e n t t y p e s o f s i l i c a and m o b i l e phases t h a t a r e
u s e d i n t h e h.p.1.c.
of
s u g a r s has been published.26
column p r e p a r a t i o n , pre-column d e r i v a t i z a t i o n ,
Methods o f
and d e t e c t i o n methods
are discussed. C h r o m a t o g r a p h y on b o r o n i c a c i d s i l i c a r e d u c e s t h e s e p a r a t i o n t i m e of
diol-containing
compared
to
less
p o l y m e t h a c r y l i c acid.27 the
separation
glycoproteins.
of
s u b s t a n c e s w i t h o u t loss o f
r i g i d
polymers
such
as
r e s o l u t i o n when cellulose
substances
Proteoglycans
such
as
catecholamines
from bovine nasal,
and
bovine a r t i c u l a r
and r a t c h o n d r o s a r c o m a c a r t i l a g e h a v e been a n a l y s e d by h.p.1.c. silica-based
and
T h i s s t a t i o n a r y p h a s e h a s been p r o p o s e d f o r
m a t e r i a l bonded w i t h an a m i d e phase.28
on a
The b i o c h e m i c a l
i n t e g r i t y o f t h e proteoglycans i s r e t a i n e d d u r i n g t h i s procedure. High-performance obtain
data
for
size-exclusion
hydrodynamic
c h r o m a t o g r a p h y h a s been u s e d t o
molecular
radii
of
dextrans.29
G l y c o p r o t e i n hormones and g l y c o p r o t e i n a l l e r g e n s f r o m p l a n t and a n i m a l o r i g i n h a v e been a n a l y s e d by s i z e - e x c l u s i o n c h r o m a t o g r a p h y o n t h e TSK s e r i e s o f m o d i f i e l d s i l i c a s u n d e r h.p.1.c.
condition^.^^
S i l i c a g e l c h e m i c a l l y m o d i f i e d w i t h aminopropyl groups, s i l i c a g e l w i t h 1,4-diaminobutane effective
i n the
h.p.l.~.~l
The
separation o f method
has
n e u t r a l o l i g o s a c c h a r i d e s by
been
used
p u r i f i c a t i o n o f neutral oligosaccharides b r a n c h i n g and d e r i v e d f r o m
or
p r e s e n t i n t h e m o b i l e phase, i s successfully
with d i f f e r e n t
dolichol-linked
in
the
degrees o f
oligosaccharide
intermediates. O l i g o s a c c h a r i d e s (up t o d.p. hydrolysis of
s t a r c h have
12) o b t a i n e d f r o m a c i d and e n z y m i c
been s e p a r a t e d by
reversed-phase
h. p. 1. c. 32 A method f o r t h e r a p i d s e p a r a t i o n o f a n i o n i c o l i g o s a c c a r i d e s has been d e v e l o p e d u s i n g an anion-exchange s u p e r i o r speed,
column which o f f e r s
r e s o l u t i o n , and y i e l d when c o m p a r e d w i t h o t h e r i o n -
exchange m e t h o d s o r h i g h - v o l t a g e
p a p e r e l e c t r o p h ~ r e s i s . ~B~a s e l i n e
r e s o l u t i o n o f anionic oligosaccharides which d i f f e r i n t h e i r net negative charge i s achieved,
r e g a r d l e s s o f whether t h e charge i s
i m p a r t e d by n e u r a m i n o s y l o r p h o s p h a t e m o i e t i e s .
7
2: General Methods A
h.p.1.c.
procedure
for
the
separation
and i s o l a t i o n o f
h a s been d e v e l o p e d u s i n g an i s o c r a t i c
neuraminosyl-oligosaccharides
s y s t e m t o g i v e b a s e l i n e s e p a r a t i o n o f n e u r a m i n i c a c i d , 3’neuraminosyl-lactose.34
A complex m i x t u r e o f
a n d 6‘-
oligosaccharides
o b t a i n e d b y a l k a l i n e b o r o h y d r i d e d e g r a d a t i o n o f human,
bronchial
mucous
on
g l y c o p r o t e i n s has
been s e p a r a t e d
by
h.p.1.c.
bonded
p r i m a r y a m i n e p a c k i n g u s i n g a l i n e a r g r a d i e n t s o l v e n t system.35
The
s e p a r a t i o n o f i s o m e r i c o l i g o s a c c h a r i d e s i s achieved, suggesting t h a t t h e t o t a l number o f h y d r o x y l g r o u p s , as w e l l as t h e i r c o n f i g u r a t i o n , d e t e r m i n e s t h e r e t e n t i o n t i m e o f each o l i g o s a c c h a r i d e . A m e t h o d h a s been d e v e l o p e d f o r s e p a r a t i o n o f r e d u c e d ,
o l i g o s a c c h a r i d e s b y h . p . l . ~ . ~ ~p - G l u c i t o l oligosaccharides
containing
b e t w e e n one
neutral
and r e d u c e d p - g l u c o and t w e n t y
Q-glucosyl
r e s i d u e s have been s e p a r a t e d . The m e t h o d h a s a l s o b e e n a p p l i e d t o t h e analysis
and p r e p a r a t i v e
isolation o f
glycoprotein-derived
o l i g o s a c c h a r i d e s o b t a i n e d by e n z y m i c r e l e a s e by e n d o g l y c o s i d a s e s o r by c h e m i c a l r e l e a s e by h y d r a z i n o l y s i s .
Subnanomolar q u a n t i t i e s o f
o l i g o s a c c h a r i d e s may be d e t e c t e d when s o d i u m b o r o t r i t i d e i s u s e d i n t h e r e d u c t i o n step. The u r i n a r y e x c r e t i o n o f i s o m e r i c c h o n d r o i t i n s u l p h a t e s h a s been m o n i t o r e d by h.p.1.c.
o f t h e unsaturated disaccharides produced
by d i g e s t i o n w i t h c h o n d r o i t i n s u l p h a t e lyases.37 v a r i a t i o n i n t h e c o m p o s i t i o n o f t h e h.p.1.c.
A systematic
m o b i l e p h a s e was u s e d
for the selection o f the optimal conditions for separation. Endo-B-p-2-acetamido-2-deoxy-P-glucanase
a c t i v i t y h a s been a s s a y e d
using the dansyl derivative o f the L-asparaginyl oligosaccharide
(11-
Mane)5-(Q-GlceNAc)2-L-Asn
the
as
the
substrate.38
Analysis
of
product, dansyl 2-acetamido-2-deoxy-~-glucosyl-~-asparagine, has method.
The l o w e r l i m i t
nmol o f dansyl glycopeptides.
Reducing sugars
b e e n a c h i e v e d b y a r e v e r s e - p h a s e h.p.1.c. of
d e t e c t i o n i s 0.1
h a v e been r e a c t e d w i t h d a n s y l h y d r a z i n e p r i o r t o t h e i r s e p a r a t i o n by F l u o r e s c e n t d e t e c t i o n p r o v i d e s a s e n s i t i v i t y o f 10 p m o l
h.p.l.c.39
p e r i n j e c t i o n f o r t h e monosaccharide components o f g l y c o p r o t e i n s . Numerous a l k y l mannosides,
and a r y l P - g l u c o s i d e s ,
Q-glucosiduronic acids,and
d e r i v a t i v e s have been s e p a r a t e d by h . p . l . ~ . ~ ’ h.p.1.c.
been d e s c r i b e d . 4 1
sides.42
Q-
A rapid isocratic
method f o r t h e e s t i m a t i o n o f n e u r a m i n i c a c i d i n serum has
u s i n g 0.003M h.p.1.c.
Q-galactosides,
t h e i r a c e t y l and b e n z o y l
Separation i s achieved on a cation-exchange r e s i n
s u l p h u r i c a c i d as t h e m o b i l e phase.
Reversed-phase
h a s b e e n u s e d i n t h e s e p a r a t i o n o f some m e t h y l g l y c o -
I n t h e aldohexose series,
the pyranosides e l u t e before
8
Carbohydrate Chemistry
furanosides,
but i n the aldopentose series the furanosides e l u t e
first. Mono- a n d d i - s a c c h a r i d e s separated
by
h.p.1.c.
on
and p o l y h y d r i c a l c o h o l s have been
silica
columns
e t h ~ l e n e p e n t a m i n e . ~ The ~ method,
modified with
tetra-
which o f f e r s a h i g h degree o f
r e s o l u t i o n , r e q u i r e s low o p e r a t i n g temperatures. T r y p t i c glycopeptides from t o g r a p h e d u s i n g reverse-phase a hydrophilic for the
p a i r i n g agent,
the analysis of enzymic
reduced,
digestion
chondroitin sulphate,
v i r a l s o u r c e s have been chroma-
ion-pair
p a r t i t i o n chromatography w i t h
phosphoric acid.44
An h.p.1.c.
method
unsaturated disaccharides derived from
and
sodium
borohydride
dermatan sulphate,
h e p a r i n h a s been d e s c r i b e d . 4 5
reduction of
heparan s u l p h a t e , and
The m e t h o d a v o i d s t h e p o s s i b i l i t y o f
o b t a i n i n g anomeric forms o f t h e unsaturated disaccharides. An i m p r o v e d s e p a r a t i o n o f m o n o s a c c h a r i d e s by h.p.1.c. achieved using porous m i c r o p a r t i c l e
Fourteen oligosaccharylpyrophosphoryl dolichols, L-asparagine-linked separated
by
precursors o f
the
o l i g o s a c c h a r i d e s o f g l y c o p r o t e i n s , have been
h.p.1.c.
on
p r o d u c t s were shown t o enzyme-catalysed
h a s been
c a r b o h y d r a t e columns.46
silica
Some
retain their
reactions.
t h e i r b o r a t e c o m p l e x e s by h.p.
activity
of as
the
resolved
substrates
in
M o n o s a c c h a r i d e s h a v e been s e p a r a t e d as a n i o n - e x c h a n g e c h r ~ m a t o g r a p h y . ~The ~
s u g a r s a r e d e t e c t e d f l u o r i m e t r i c a l l y a f t e r s e p a r a t i o n w i t h 2-cyanoacetamide.
Monosaccharide
residues of
glycoproteins,
after
c o n v e r s i o n t o 2 - a m i n o p y r i d y l d e r i v a t i v e s , h a v e been p u r i f i e d by i o n exchange c h r o m a t o g r a p h y and t h e n s e p a r a t e d by h.p.1.c. phase columns.49
on reversed
A l t h o u g h i t was d i f f i c u l t t o d e t e c t mono- a n d d i -
s a c c h a r i d e d e r i v a t i v e s because o f i n t e r f e r e n c e f r o m 2 - a m i n o p y r i d i n e and o t h e r f l u o r e s c e n t m a t e r i a l s ,
higher oligosaccharides
can be
separated. I m p r o v e m e n t s i n a d e t e c t o r f o r l i q u i d c h r o m a t o g r a p h y b a s e d on o p t i c a l a c t i v i t y o f t h e components a l l o w
100 n g o f mono-
or di-
s a c c h a r i d e t o be d e t e ~ t e d . ~ ' S i m u l t a n e o u s d e t e r m i n a t i o n o f s i x c a r b o h y d r a t e c o m p o n e n t s o f human u r i n e ,
which i s i n j e c t e d a f t e r
d e i o n i z a t i o n , h a s been a c c o m p l i s h e d .
I m p r o v e m e n t s h a v e been made t o
the sensitivity o f refractive-index
d e t e c t o r s by e l i m i n a t i n g n o i s e
c a u s e d by p o o r t e m p e r a t u r e c o n t r o l o f t h e d e t e c t o r a n d e l u a n t . 5 1 The u s e o f 2 - c y a n o a c e t a m i d e i n p o s t - c o l u m n d e t e c t i o n o f a l d o s e s has
been
evaluated.52
The
condensation reactions obtained
h e a t i n g carbohydrates w i t h 3-methyl-2-benzothiazolinone alkali
containing
2-methoxyethanol
have
been
by
hydrazone i n described.53
2: General Methods
9
Monosaccharide
aldoses
and
ketoses
and
disaccharides
chromogens w h i c h can be measured a t 390 nm.
t h e method f o r p o s t - c o l u m n d e t e c t i o n o f c a r b o h y d r a t e s h.p.1.c.
produce
The p o t e n t i a l i n u s i n g s e p a r a t e d by
i s discussed.
5 Electrophoresis The a c c u r a c y o f m o l e c u l a r w e i g h t e s t i m a t e s f o r g l y c o p r o t e i n s h a s been e v a l u a t e d
by
SDS-pore
gradient
electrophoresis
of
glyco-
p r o t e i n s o f known m o l e c u l a r w e i g h t and known a m i n o - a c i d
and
c a r b o h y d r a t e c o m p ~ s i t i o n . ~A ~ c o m p a r i s o n was made o f T r i s - g l y c i n e and Tris-borate-e.d.t.a. by 2 - m e r c a p t o e t h a n o l . formation of
b u f f e r s y s t e m s w i t h and w i t h o u t
reduction
A l t h o u g h b o t h t h e g r a d i e n t g e l system and t h e
b o r a t e complexes w i t h t h e i n d i v i d u a l c a r b o h y d r a t e
m o i e t i e s of the g l y c o p r o t e i n c o n t r i b u t e t o t h e p r e c i s i o n o f t h e molecular weight estimate,
i t i s t h e thermodynamic and h y d r o d y n a m i c
p r o p e r t i e s o f t h e i n d i v i d u a l g l y c o p r o t e i n which determine
its
m o b i l i t y on g e l e l e c t r o p h o r e s i s . L e c t i n s have been us ed f o r transferred separation
to
on
the
d e t e c t i o n of
n i t r o c e l l u l o s e sheets polyacrylamide
asialoglycopeptides
have
gels.55
been
after
glycoproteins
electrophoretic
Fluorescein-derivatized
resolved
by
polyacrylamide
gel
e l e c t r o p h ~ r e s i s . ~When ~ t h e method i s used i n c o n j u n c t i o n w i t h s p e c i f i c exoglycosidase d i g e s t i o n o f the glycopeptides, correlation
i s
observed
between
the
relative
a linear
electrophoretic
m o b i l i t y and t h e number o f m o n o s a c c h a r i d e r e s i d u e s removed by t h e enzymes. a-Glucuronic
a c i d and I - i d u r o n i c
a c i d may be s e p a r a t e d by
e l e c t r o p h o r e s i s on T i t a n I11 c e l l u l o s e a c e t a t e p l a t e s . 5 7
The method
has been a p p l i e d t o t h e a n a l y s i s o f u r o n i c a c i d s i n c h o n d r o i t i n 4and 6 - s u l p h a t e s
and dermatan s u l p h a t e .
A n a l y t i c a l i s o t a c h o p h o r e s i s has been used i n t h e e s t i m a t i o n o f n e u r a m i n i c acid.58
Under t h e c o n d i t i o n s o f assay n e u r a m i n i c a c i d
a p p e a r s as a t r o u g h b e t w e e n t w o buffer.
U.V.
i m p u r i t y components o f t h e
The t r o u g h l e n g t h i s p r o p o r t i o n a l
t o t h e amount
of
n e u r a m i n i c a c i d i n j e c t e d i n t o t h e system. E l e c t r o p h o r e t i c and c h r o m a t o g r a p h i c methods f o r s e p a r a t i n g c a r b o h y d r a t e s have been r e v i e w e d i n t h e l a t e s t e d i t i o n o f a t r e a t i s e on t h e c h e m i s t r y and b i o c h e m i s t r y o f
carbohydrate^.^'
Carbohydrate Chemistry
10 6 A n a l y t i c a l Methods Modifications o f
the
Park-Johnson
ferricyanide
submicromethod
for
t h e assay o f r e d u c i n g g r o u p s i n c a r b o h y d r a t e s have been r e p o r t e d . 6 0 O x a l i c a c i d i s used as a s o l v e n t f o r f e r r i c f e r r o c y a n i d e i n p l a c e o f sodium d o d e c y l s u l p h a t e , w h i c h g i v e s t u r b i d s o l u t i o n s . When a l d o s e s
are determined i o d o m e t r i c a l l y
magnesium o x i d e ,
f o r m a t i o n o f i o d a t e ions.61
i n t h e presence o f
t a k e s p l a c e w i t h t h e minimum
no o v e r - o x i d a t i o n
C o l o r i m e t r i c analyses o f carbohydrates
have been c a r r i e d o u t on a l i q u i d s c i n t i l l a t i o n c o u n t e r o v e r a w i d e r r a n g e o f c o n c e n t r a t i o n s t h a n can be measured w i t h a c o n v e n t i o n a l l i g h t spectrophotometer.62 hydroxybenzoic
The u s e o f a l k a l i n e s o l u t i o n s o f 4 -
acid hydrazide for the determination o f reducing
s u g a r s i n e x t r a c t s o f p l a n t t i s s u e s has been e v a l u a t e d . 6 3 w i t h a s e n s i t i v i t y range o f
An e n z y m i c m i c r o a s s a y f o r l a c t o s e , 12.5-500
n m o l p e r sample, h a s been developed.64
upon t h e h y d r o l y s i s o f l a c t o s e t o 4 - g l u c o s e
The method i s based
and 4 - g a l a c t o s e
by
0-4-
g a l a c t o s i d a s e f o l l o w e d b y t h e c o l o r i m e t r i c a s s a y o f t h e f r e e Qglucose u s i n g t h e Q-glucose oxidase procedure. A s i m p l e d e t e c t i o n method f o r 9 - g a l a c t o s e phosphate i n blood-impregnated screening
test
for
and Q - g a l a c t o s e
1-
f i l t e r p a p e r has been d e v e l o p e d as a
galactosaemia.65
When
Q-galactose
( o r Q-
g a l a c t o s e 1-phosphate a f t e r t r e a t m e n t w i t h phosphatase) i s o x i d i z e d by a - g a l a c t o s e d e h y d r o g e n a s e ,
t h e r e s u l t i n g NADH may be m e a s u r e d
I n a s i m i l a r approach t h e m i c r o d e t e r m i n a t i o n o f
fluorimetrically.
Q - g a l a c t o s e and 1 - g a l a c t o s e 1 - p h o s p h a t e i n d r i e d b l o o d s p o t s has been achieved.66 galactose determined phosphate
Q-Galactose i s determined f l u o r i m e t r i c a l l y
dehydrogenase using ester
the with
whilst
same
the
Q-galactose
procedure
alkaline
after
phosphatase.
with
1-phosphate
4i s
hydrolysis
of
I n Nelson’s
Somogyi
method f o r t h e d e t e r m i n a t i o n o f r e d u c i n g s u g a r s , r e a g e n t has been r e p l a c e d by t h e F o l i n - C i o c a l t e u
the
t h e arsenomolybdate p h e n o l reagent.67
The method compares f a v o u r a b l y w i t h t h e o r i g i n a l method i n s t a b i l i t y o f c o l o u r and r e p r o d u c i b i l i t y . a n a l y t i c a l element,
A new t y p e o f m u l t i l a y e r f i l m
consisting o f a spreading layer,
a blocking
l a y e r , an e n z y m e l a y e r ( c o m p o s e d o f a - g l u c o s e o x i d a s e ,
peroxidase
and
dye),
and
a
transparent
layer,
d e t e r m i n a t i o n o f 1-glucose i n blood.68 i n d r o p p e d on t h e f i l m ,
has
been d e v e l o p e d
for
the
A f t e r a spot o f whole b l o o d
the a-glucose concentration i s determined
without further manipulations. S u l p h y d r y l r e a g e n t s such as c y s t e i n e and g l u t a t h i o n e i n t e r -
11
2: General Methods fere
with
the
P-glucose
oxidase
assay
for
Q-glucose.69
This
i n t e r f e r e n c e c a n be e l i m i n a t e d by u s e o f N - e t h y l m a l e i m i d e .
Q-
G l u c o s e has been e s t i m a t e d e n z y m i c a l l y
using a commercial analyser
a f t e r e l u t i o n f r o m b l o o d s p o t t e d on t o
filter
paper.70
An oxygen-
s t a b i l i z e d enzyme e l e c t r o d e has been d e s i g n e d f o r t h e a n a l y s i s o f Qg l u c o s e i n f e r m e n t a t i o n broths.71 I n a new e n z y m a t i c method f o r t h e d e t e r m i n a t i o n o f [)-glucose human s e r a ,
t h e h y d r o g e n p e r o x i d e p r o d u c e d by Q - g l u c o s e o x i d a s e
measured f r o m
in
is
t h e change i n absorbance due t o o x i d a t i o n o f NAD(P)H
i n t h e presence o f catalase,
a l d e h y d e dehydrogenase, and a h i g h
c o n c e n t r a t i o n o f ethanol.72 S e v e r a l a d v a n t a g e s o f t h i s m e t h o d , a s c o m p a r e d w i t h o t h e r Qg l u c o s e o x i d a s e methods c o u p l e d w i t h l e u c o dyes, estimation
o f Q-glucose
hexokinase-Q-glucose
are recorded.
i n haemolysed b l o o d samples
The
using the
6-phosphate dehydrogenase method has been
described.73 Two
new
systems
have
been
developed
measurement o f pH i n s m a l l volumes.74
for
the d i f f e r e n t i a l
The a p p a r a t u s i s c a p a b l e o f
f o l l o w i n g t h e pH change caused by h e x o k i n a s e - c a t a l y s e d Q - g l u c o s e a n d ATP, 18 m M .
r e a c t i o n of
when t h e s u g a r c o n c e n t r a t i o n i s i n t h e r a n g e 1-
The s y s t e m can be used t o m o n i t o r [ ) - g l u c o s e c o n c e n t r a t i o n s i n
biological fluids.
Optimal
p r o p e r t i e s o f D-glucose been s t u d i e d
i n order
d e t e r m i n a t i ~ n . ~The ~
reaction conditions
and k i n e t i c
dehydrogenase f r o m B a c i l l u s m e q a t e r i u m have to
develop a method
Em
value
of
the
for
serum q - g l u c o s e
enzyme f o r
Q-glucose
i n f l u e n c e d by t h e pH o f t h e medium and by i o n i c s t r e n g t h . conditions end-point
f o r t h e use o f R-glucose assay
i s
Suitable
dehydrogenase i n r a t e assay and
methods were i d e n t i f i e d .
a-Glucose
concentrations
d e t e r m i n e d i n serum u s i n g t h e s e methods show good c o r r e l a t i o n w i t h t h o s e o b t a i n e d w i t h t h e h e x o k i n a s e method.
n-Glucose
has been c o v a l e n t l y a t t a c h e d t o n y l o n t u b i n g . 7 6
dehydrogenase
The a c t i v i t y and pH
o p t i m u m o f t h e bound enzyme depends on t h e t r a n s i t i o n m e t a l s u s e d as s p a c e r s b e t w e e n t h e enzyme and t h e s u p p o r t . A
fluorimetric
r e l e a s e d from
method f o r t h e measurement
glycoproteins
by a - L - f u c o s i d a s e
o f a-l-fucopyranose has been r e p o r t e d . 7 7
The I - f u c o s e i s o x i d i z e d w i t h I - f u c o s e d e h y d r o g e n a s e a n d NAD, a n d t h e NADH p r o d u c e d i s used i n c o n j u n c t i o n w i t h d i a p h o r a s e t o c o n v e r t the nonfluorescent
dye r e s a z u r i n t o t h e h i g h l y f l u o r e s c e n t
product
resorufin. I-Fucose
has been measured r a d i o m e t r i c a l l y
u s i n g a method
c a p a b l e o f m e a s u r i n g q u a n t i t i e s o f t h e s u g a r a s l o w a s 25 p m 0 1 . ~ ~
Carbohydrate Chemistry
12
The a s s a y c o u p l e s I - f u c o s e d e h y d r o g e n a s e t o I = - g l u t a m a t e d e h y d r o genase and L - g l u t a m a t e d e c a r b o x y l a s e t o y i e l d 14C02 w h i c h i s d e r i v e d f r o m {l-14C)-a-ketoglutarate.
L-Fucose
dehydrogenase has been used
p r e v i o u s l y i n f l u o r e s c e n c e assays o f t h e sugar, limited
when
the
sample
to
be
assayed c o n t a i n s
fluorescent
substances,
commonly
glycopeptides
and membrane
preparations
on c o lu m n s h a v i n g a r e l a t i v e l y
b u t t h e method i s
observed
endogenous
i n
hydrolysed
a t low operating pressures
l e n g t h y l i f e and h i g h l i n e a r sample
capacity. The p h l o r o g l u c i n o l m e t h o d f o r t h e e s t i m a t i o n o f Q - x y l o s e i n u r i n e has been a s s e s s e d w i t h r e s p e c t t o t h e i n t e r f e r e n c e f r o m l o w l e v e l s o f ~-glucose.'g A micromethod f o r t h e d e t e r m i n a t i o n o f f r e e o r g l y c o p r o t e i n bound n e u r a m i n i c a c i d on t h e b a s i s o f o x i d a t i o n w i t h p e r i o d i c a c i d and
reaction
with
thiobarbiturate
has
been
A
described.80
o f the t h i o b a r b i t u r i c acid technique for the d e t e r m i n a t i o n o f n e u r a m i n i c a c i d ha s been developed.81 Elimination modification
o f i n t e r f e r e n c e caused by 2 - d e o x y - P - r i b o s e
without
loss o f n e u r a m i n i c a c i d ,
extraction
of
the
chromogen.
i s
The
and s e v e r a l o t h e r sugars, achieved
by
neuraminic
pH-dependent
acid
in
level
s i a l o g l y c o c o n j u g a t e s ha s been measured i n a new e n z y m i c method a f t e r r e l e a s e f r o m g l y c o p r o t e i n s w i t h n eu rami n i da se.82
Neuraminic a c i d i s
cleaved t o release pyruvate using N-acetylneuraminic followed peroxide
by o x i d a t i o n o f which
pyruvate oxidase t o
i s measured c o l o r i m e t r i c a l l y
chlorophenol-4-am
i n o - a n t i p y r i n e m e t ho d.
a c i d aldolase,
produce
by t h e
hydrogen
peroxidase-4-
C o r r e l a t i o n o f r e s u 1t s
w i t h t h o s e o b t a i n e d u s i n g a c h e m i c a l m e t h o d o f a n a l y s i s was reported. Free neuraminic a c i d s p l i t from red-blood-cell receptors t o N e w c a s t l e d i s e a s e v i r u s has been d e t e r m i n e d d u r i n g s i m u l t a n e o u s e l u t i o n and h a e m o l y s i s o f t h e c e l l s . 8 3 The p r o c e d u r e depends on t h e presence o f neuramin id ase a c t i v i t y on t h e preadsorbed v i r i o n s . F l u o r e s c a m i n e 14 -p h e ny 1s p ir o ( f u r a n - 2 - ( 3H ),1' -( 3 ' H ) furan)-3,3'-dione}
- i so b e n z o -
may be a p p l i e d t o t h e q u a n t i t a t i v e a n d q u a l i -
t a t i v e a n a l y s i s o f amino-sugars.84
The m e t h o d h a s b e e n a p p l i e d t o
of acid hydrolysis of chitin. Methods have been d e v e l o p e d f o r t h e i d e n t i f i c a t i o n o f t h e g l y c o s i d i c
the
analysis
of
the
product
l i n k a g e s b e t w e e n amino-sugars
a nd I - a s p a r a g i n e ,
C - s e r i n e , and
C,-
t h r e o n i n e i n g l y c o p r ~ t e i n s . ~A~f t e r a l k a l i n e e l i m i n a t i o n i n t h e p r e s e n c e o f s o d iu m b o r o t r i t i d e , sugar
components
separation
o f
of the
a c i d hydrolysis,and
0-glycosyl dansyl
linkages
are
hexosaminitols
dansylation, identified by
the
after
thin-layer
13
2: General Methods electrophoresis
.
The 1i n k age co m po un d 4! -( 2 -ace t a m ido -2 -deo x y -S-E
glycosidic
linkage
region of
glycoproteins
by
-
L-
g l u c o p y r a n o s y l ) hydrogen I - a s p a r a g i n a t e i s i s o l a t e d from t h e
partial acid
h y d r o l y s i s and i d e n t i f i e d as i t s d a n s y l d e r i v a t i v e . The m a n n i t o l l e v e l s i n serum samples f r o m dogs a f t e r m a n n i t o l i n f u s i o n have been measured u s i n g t h e s p e c t r o p h o t o m e t r i c measurement o f t h e i n i t i a l r a t e o f NADH f o r m a t i o n when t h e sugar i s o x i d i z e d by a b a c t e r i a l m a n n i t o l dehydrogenase p r e p a r a t i o n . 8 6
7 S t r u c t u r a l Methods A comprehensive
review
o f p h y s i c a l methods used f o r s t r u c t u r a l
a n a l y s i s o f c a r b o h y d r a t e s has been p u b l i s h e d . 5 9 high-resonance
n.m.r.
spectroscopy,
spectroscopy, and X - r a y Spectroscopy.-A
N.m.r.
m.s.,
The methods i n c l u d e
polarimetry,
U.V.
and i.r.
diffraction. r e v i e w d e a l i n g w i t h 13C n.m.r.
spectroscopy
o f p o l y s a c c h a r i d e s has been p ~ b l i s h e d . ~ ' The p r i m a r y s t r u c t u r e s o f p o l y s a c c h a r i d e s and t h e i r d e r i v a t i v e s have
been
investigated
c r o s s p o l a r i z a t i o n n.m.r.
using
magic-angle
13C
spectroscopy.88
spinning-
Although the r e s o l u t i o n o f
t h e i n d i v i d u a l c a r b o n r e s o n a n c e s was n o t p e r f e c t when x a n t h a n gum and i t s o c t y l a m i d e d e r i v a t i v e w e r e u s e d , considerably
the technique provided
more d e t a i l t h a n t h e c o r r e s p o n d i n g 13C n.m.r.
i n an e q u i v a l e n t p e r i o d o f t i m e .
A 1 3 C n.m.r.
studies
a n a l y s i s method has
been d e s c r i b e d f o r t h e i d e n t i f i c a t i o n o f c a r b o h y d r a t e r e s i d u e s i n
n-
g a l a c t o s i d e s a n d Q - g l u c o ~ i d e s . ~A ~ s s i g n m e n t s c a n be made t o t h e a n o m e r i c c o n f i g u r a t i o n and t o t h e r i n g s i z e o f t h e s u g a r s . of
13C
s p e c t r o s c o p y i s a p r a c t i c a l method f o r f o l l o w i n g t h e k i n e t i c s
N.m.r.
enzymic
digestion
of
individual
carbohydrate
residues
of
g l y c o p e p t i d e s and f o r d e t e r m i n i n g t h e s t r u c t u r e o f t h e p r o d u c t s o f p a r t i a l d i g e ~ t i o n . ~ ' I n a s t u d y o f t h e h y d r o l y s i s o f hen o v a l b u m i n g l y c o p e p t i d e s by a-n-mannosidase,
t h e method showed t h a t some a-n-
mannopyranosyl-(1 + 3)-P-mannopyranosyl faster
r a t e than the corresponding ( 1
The r e s o l u t i o n - e n h a n c e d
*
500 MHz 'H
oligo-(a-mannopyranosyl)-l-asparagines are
chemical-shift
mainly
n.m.r.
spectra o f three
N4-
can be i n t e r p r e t e d i n t e r m s o f
t h e complete p r i m a r y s t r u c t u r e s o f these structures
linkages are cleaved a t a
6 ) linkages.
compound^.^^
b a s e d upon, i n t e r p r e t a t i o n o f
The p r o p o s e d the
sets o f
v a l u e s o f H - 1 s and H-2s o f c o n s t i t u t i n g P-mannopyran-
14
Carbohydrate Chemistry
o s y l residues.
The d a t a a r e s e n s i t i v e t o t h e t y p e and c o n f i g u r a t i o n
of t h e g l y c o s i d i c l i n k a g e o f t h e Q - m a n n o p y r a n o s y l r e s i d u e and t o t h e p o s i t i o n o f t h a t su ga r i n t h e c h a i n . M as s S p e c t r o m e t r y , -
Carbohydrates,
have
using
been
measured
a
mass
a f t e r s e p a r a t i o n by h.p.l.c., detector.92
The
solvent
i s
evaporated a f t e r n e b u l i z a t i o n i n a heated column producing f i n e l y d i v i d e d s o l u t e p a r t i c l e s w h i c h p a s s t h r o u g h a l i g h t beam.
Light
s c a t t e r e d f r o m t h e p a r t i c l e s i s d e t e c t e d by a p h o t o m u l t i p l i e r and a m p l i f i e d on a c h a r t r e c o r d e r . with refractive-index
The mass d e t e c t o r ,
detection,
when c o m p a r e d
showed a t e n - f o l d
increase i n
s e n s i t i v i t y , i m p r o v e d s t a b i l i t y , a n d an a b i l i t y t o d e t e c t p r o d u c t s s e p a r a t e d by g r a d i e n t e l u t i o n . By c a r e f u l s e l e c t i o n o f d e r i v a t i v e s a n d a n a l y s i s c o n d i t i o n s , m.s.
has
been
applied
dodecasaccharide
to
derived
a n a l y s i s b y m.s.
of
oligosaccharides
has
methylated aldoses
the
from
a
microscale
some s y n t h e t i c f u l l y been
have
reported.94
been
sequencing
g l y ~ o l i p i d . ’ ~ The
separated
of
a
structural
methylated I-rhamno-
A
number
of
partially
by
g.1.c.
on
capillary
columns as t h e i r t r i m e t h y l s i l y l a t e d d i e t h y l d i t h i o a c e t a l d e r i v a tives.”
S i n g l e peaks f o r each d e r i v a t i v e a r e o b t a i n e d and m.s.
u s e d i n t h e i d e n t i f i c a t i o n o f peaks.
is
Thirteen methyl ethers o f
m e t h y l N-acetyl-N-methyl-a-Q-neuraminate
m e t h y l g l y c o s i d e have been
N-
i d e n t i f i e d b y g.1.c.-m.s.
a f t e r p a r t i a l methylation o f methyl
acetyl-u-g-neuraminate
methyl g l y ~ o s i d e . ’ ~ Chemical-ionization
(methane) m.s. of
partially
has been used t o enhance t h e s e n s i t i v i t y o f d e t e c t i o n methylated
alditol
acetates
of
neutral
and
a m i n d - s ~ g a r s . ~The ~ mass s p e c t r a o f 5 2 p a r t i a l l y m e t h y l a t e d a n d acetylated methyl
glycosides
of
a-galactose,
a-mannose,
Q-glucose
and 2-ace t a m id o - 2 - d eo xy - Q - g l u cose have been d e t e r m i n e d . 98
A scheme
f o r t h e r a p i d d e t e r m i n a t i o n o f t h e p o s i t i o n o f t h e m e t h y l and a c e t y l r e s i d u e s is proposed. Field-desorption
m.s.
has
been
used
to
analyse
s a c c h a r i d e s c o n t a i n i n g f i v e t o f o u r t e e n he xose u n i t s , derivatization.”
The
molecular
weight
o f the oligosaccharide
be d e t e r m i n e d by means o f t h e a bu nd an t q u a s i - m o l e c u l a r t y p e MNa+,
MH’,
MNa22+,and
MNa33+.
structural elucidation of
x
i o n s of
can the
The me t h od has t h e p o t e n t i a l f o r
oligosaccharides
p r o d u c t s u p t o a r a n g e o f 3.5
oligo-
without p r i o r
lo3
and t h e i r
mass u n i t s .
reaction
Neuraminic a c i d
i s o l a t e d f r o m e r y t h r o c y t e g h o s t s h a s b e e n e s t i m a t e d by m e t h a n e chemical-ionization
m.s.
of
the 2 - t r i m e t h y l s i l y l
methyl glycoside
15
2: General Methods
-
u s in g p h e n y 1 2 - a c e t am ido - 2 d e o xy -( 3,4,6- tr i-0- t r i m e t h y 1s i 1y 1)-a-Q g l u c o p y r a n o s i d e as i n t e r n a l s t a n d a r d . l o O sugar
can
be
detected
i n
the
-
Nanogram l e v e l s o f t h e
presence o f
other
contaminating
substances. The a n o m e r i c c o n f i g u r a t i o n o f a 2 - a c e t a m i d o - 2 - d e o x y - Q glucopyranosyl residue linked t o
a
secondary
h y d r o x y l group
a n o t h e r s u g a r r e s i d u e h a s b e e n e s t a b l i s h e d f r o m g.1.c.-m.s.
of
data
o b t a i n e d when s u c h a d i s a c c h a r i d e is s u c c e s s f u l l y t r e a t e d w i t h periodate,
s o d i u m b o r o h y d r i d e , and a c e t i c anhydride.”’
Miscellaneous
Methods.-A
modification
o f
the
Hakomori
m e t h y l a t i o n r e a g e n t has been r e p o r t e d , u s i n g p o t a s s i u m h y d r i d e i n place o f
sodium
hydride.lo2
The
preparation o f
the
potassium
m e t h y l s u l p h e n y l m e t h i d e i s f a s t e r a n d may b e p e r f o r m e d a t a m b i e n t temperature.
Significantly
fewer
impurities
i n
the
reaction
p r o d u c t s a r e a l s o observed. I n t e r n a l 8-2-substituted
N-glycolylneuraminic
m e t h y l a t e d s a c c h a r i d e s undergo d e - N - a c y l a t i o n f u l l y methylated N-glycolylneuraminic
acid residues o f
whereas t h e t e r m i n a l
a c i d r e s i d u e s do n o t u n d e r t h e
conditions o f m e t h a n o l y s i ~ . ~ ~ T h~i s, ~d i~f f~e r e n c e i n t h e s t a b i l i t y o f N - a c y l g r o u p s h a s been o b s e r v e d i n p o l y s i a l o s y l c h a i n s c o m p r i s i n g either N-glycolylneuraminic
a c i d or N-acetylneuraminic acid.
On m e t h y l a t i o n and s u b s e q u e n t s a p o n i f i c a t i o n ,
a-a-glucopyranosyluronic galactopyranosyluronic
.
acid)-Q-xylose
acid)-a-xylose
2-2-(4-g-methyland
4-g-(a-Q-
g i v e f o u r and t w o
methyl
g l y c o s ides, r e s p e c t ive l y lo5 I n v e s t i g a t i o n o f t h e i r s t r u c t u r e s u s i n g t h e H a k o m o r i m e t h y l a t i o n p r o c e d u r e showed t h a t t h e 4 - 2 - s u b s t i t u t e d uronic acid residues afford 6-elimination products i n addition t o the permethylated derivatives. u n s u b s t i t u t e d 4’-OH
The a l d o b i o u r o n i c a c i d w i t h a n
g r o u p gave t h e p r o d u c t s o f d i r e c t m e t h y l a t i o n .
The h y d r a z i n o l y s i s - n i t r o u s
acid deamination o f glycopeptides
leads t o the s p e c i f i c cleavage o f 2-acetamido-2-deoxy-~-glucosyl l i n k a g e s . lo6 The 2,5-anhy d r o -P-mannose-con t a i n i n g
o l i g o s a c c h a r i des
thus o b t a i n e d a r e r e d u c e d w i t h sodium b o r o h y d r i d e , m e t h y l a t e d , and a n a l y s e d by
g.1.c.-m.s.
P a r t i a l l y m e t h y l a t e d a l d i t o l a c e t a t e s have been s e p a r a t e d by g.1.c.
on g l a s s c a p i l l a r y columns.107
column and t h e
application to
s a c c h a r i d e s are r e p o r t e d .
Some c h a r a c t e r i s t i c s o f t h e
structural analysis of
poly-
Methylation techniques i n the s t r u c t u r a l
a n a l y s i s o f g l y c o p r o t e i n s and g l y c o l i p i d s h a v e been r e v i e w e d . l o 8 Kinetic
data
for
eleven
common
methyl glucopyranosidea
i n u n b u f f e r e d s o d i u m p e r i o d a t e h a v e b e e n reported:”
The r e s u l t s
16
Carbohydrate Chemistry
i n d i c a t e t h e e x t e n t o f v a r i a t i o n s i n r e a c t i v i t y t h a t can a r i s e f r o m differences i n configuration, i l l u s t r a t e the r o l e
o v e r a l l reaction rates. branches
on
the
e s p e c i a l l y a t t h e anomeric centre,
intermediate
0.f
The s i t e o f s u b s t i t u t i o n o f p e r i p h e r a l
core
Q-mannosyl
residues
carbohydrate u n i t s o f glycoproteins
of
complex-type
have been s t u d i e d by S m i t h
By u s i n g g l y c o p e p t i d e s o f known s t r u c t u r e
degradation.’”
i s s h o w n t h a t t h e s i t e o f a t t a c h m e n t o f t h e (1
( 1 ) it 4)-linked, t h i r d
+
b r a n c h t o t h e Q-mannose c o r e i n t r i - and t e t r a - a n t e n n a r y may be i d e n t i f i e d . used
for
and
hemiacetals i n determining
the
cleavage
of
the
structures
i s the concentration o f a c i d
The c r i t i c a l f a c t o r
periodate-oxidized
product.
The
r e s u l t s support t h e concept t h a t i n g l y c o p r o t e i n s from most sources the
(1 + 4 ) - l i n k e d
branch i s attached t o
the
(1
+
3)-linked
mannosyl r e s i d u e o f t h e core p o r t i o n i n t h e complex-type The
possible
conformations
analysed using semi-empirical neuraminic
acid
may
hydroxymethyl group of i s
consistent
with
preponderantly i n the
m e t h y l acarboxyl
’H- a n d 13C-n.m.r. C.d.
and B - a - g l y c o s i d e s
of
a r o u n d 220 nm a r i s e group
and a r e
p o s i t i v e f o r B-linked
acid
i n
been
different
the
terminal
The p r e s e n t m o d e l
spectroscopic
data,
but
s p e c t r a have been r e c o r d e d f o r
neuraminic acid.’l2
from
negative
have
I n solution,
two
orientation of
t h e g l y c e r o l s i d e chain.
d i f f e r s from e a r l i e r models. effects
neuraminic
p o t e n t i a l f u n c t i o n s . 11’
exist
conformations which d i f f e r
of
Q-
structures.
t h e ,” for
+
H*
The C o t t o n
transition of
a-q-linked
glycosides
the and
glycosides.
The r e s u l t s o f X - r a y d i f f r a c t i o n a n a l y s i s o f t h e c r y s t a l l i n e c o n f o r m a t i o n o f homo- and r e g u l a r h e t e r o - Q - g l u c a n
c h a i n s have been
used t o e s t a b l i s h t h e h y p o t h e s i s t h a t t h e g l y c o s i d i c l i n k a g e t y p e i s t h e d e t e r m i n a n t o f p o l y s a c c h a r i d e c o n f o r m a t i o n . 11’
I n t h i s respect,
p o l y s a c c h a r i d e s a r e more l i k e s y n t h e t i c p o l y m e r s t h a n p r o t e i n s o r n u c l e o t i d e s . I n t h e l a t t e r i t is v a r i a t i o n s i n t h e s u b s t i t u e n t s w h i c h are responsible f o r the conformational diversity.
The c o n t i n u i n g
c o m p i l a t i o n o f c r y s t a l s t r u c t u r e s o f carbohydrates,
n u c l e o s i d e s , and
n u c l e o t i d e s has been p u b l i s h e d . An i m p r o v e d m e t h o d f o r
the determination o f
the molecular
w e i g h t s o f o l i g o s a c c a r i d e s by a c o m b i n a t i o n o f p a p e r e l e c t r o p h o r e s i s and
h.p.1.c.
reported.l15
of
their
2-aminopyridyl
derivatives
has
been
The e l e c t r o p h o r e t i c m o b i l i t i e s o f t h e d e r i v a t i v e s a r e
i n d e p e n d e n t o f l i n k a g e p o s i t i o n s , a n o m e r i c c o n f i g u r a t i o n s , and t h e p r e s e n c e o f a c e t a m i d o groups, 0-Q-Glucans,
but
not
up t o m o l e c u l a r w e i g h t s o f 1.7 x their
oligo-
or
lo3.
mono-saccharide
17
2: General Methods
R - B - D - G ~ ~ ~ N A-t~ 2)-a-D-Manp-(l - ( ~ -m
R-D-GlcpNAc-(1 -
-
+
6)-B-D-Manp=
3 4 1
-f
4)-a-D-Manp =
2
+
1 6-D-G1 c ~ N A c =
( 1 ) R = o t h e r glycosyl r e s i d u e s
+
R
18
Carbohydrate Chemistry
degradation products, interact with Congo Red.116 Radial diffusion of 6-Q-glucanases into a substrate-bearing gel slab has been used a s a sensitive method for assay o f the enzymes, by measuring the clearing zone formed by enzyme action on the substrate. The use of glycosyltransferases in assessing oligosaccharide structure has been reviewed."' Re fe rences 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
T.Anastassiades, R.Wzic, and O.Puzic, J.Chra~togr., 1981, 225, 309. C.Green, V.M.Doctor, G.Holzer, and J.Or0, J.Chranatogr., 1981, 207, 268. J.Klok, E.H.Nieberg van Velzen, J.W.Leeuw, and P.A.Schenck, J.Chromatogr., 1981, 207, 273. T.Shinohara, J.Chranatogr., 1981, 207, 262. K.J.S&affler and P.G.More1 du Boil, J.ChrmtOgr., 1981, 207, 221. C.C.Chen and G.D.M&innis, Carbohydr.Res., 1981, 90, 127. S.H.Turner and R.Cherniak, QrMydr.Res., 1981, 95, 137. H.Frank, H.J.C.das Neveqand E.Bayer, J.Chranatoqr., 1981, 207, 2l3. I.Mononen, Qrbohydr.Res., 1981, 88, 39. and W.Kubelka, J.Chranatoqr. , 1981, 210, 291. B.Kow, J.Jureni-, J.Jurenitsch, B.Kapp, LGabler-Kolacsek,and W.Kubel)ca, J.Chromatogr., 1981, 210, 337 AXW.inl.dbury, D.J.Halliday, and D.G.Medcalf, J.Chranatogr., 1981, 213, 146. R.Oshirm, A.Yoshikawa, and K.Kumanotani, J.Chranatogr., 1981, 213, 141. J.L&rfeld, Anal.BiOdlgn., 1981, 115, 410. H.S .Prihar, B.K. Bugashetti,ad D.S .Feingold, Anal .Biochm., 1981, 114,294. W.A.Ktjnig, I.Benecke,and S.Sievers, J.Chranatoqr., 1981, 217, 71. J.N.Mount and M.F.Laker, J.Chranatogr., 1981, 226, 191. Y.A.Eltekov, N.M.Strakhova, J.K&lal, J.Pegka, and J.Stamberg, J.pOlym.Sci., PolymSymp., 1980,68, 247. N.Ui, J.Chranatogr., 1981, 215, 289. I.E.P. Taylor, P h y t m h d s t r y , 1981, 20, 2769. L.A.T. Verhaar and B.F.M. Kuster, J.Chranatogr. , 1981, 210, 279. M.Tanaka, Carbohydr.Res., 1981, 88, 1. H.D.Smbel1 and KM.Bmbst, J.ChranatOgr., 1981, 212, 51. J.R.Alonso-Fendndez, M.D. Bbveda, C .Parrado, J.Peih, and J.M.Fraga - ., J.Chranatogr., 1981; 217, 357. M.J.Talieri, N.Kilic,and J.S.Thampson, J.Chrarratogr., 1981 206, 353. L.A.T.Verfiaar and B.F.M.Kuster, J.Chranatosr., 1981, 220, 3U. KGlad, SDhlson, Uansson, M.O.Mansson, and IGMosbach, J.Chromatogr., 1981, 200, 254. EXSchwartz, J.Stevens, and D.E.Scfimidt , Anal.Biod'lem., 1981, 112, 170. M.E.Hhr?l and P.G.Squire, J.Chranatogr., 1981, 210, 443. D.H.Calam and J.Davidson, J.ChramtOgr., 1981, 218, 581. S.J.Turm, Andl.Biochem., 1981, 118, 278. N.W.H.Cheetham, P.SirimaMe,and W.R.Day, J.Chra~togr., 1981, 207, 439. J.U.Baenziger and M.NaWicz, Anal.Biochem., 1981, 112, 357. M.Le Bergh, P.Koppn,and D.H.van den Eijnden, Carbohydr.Res., 1981, 94, 225. RBoersm, GLamblin, P.Degad, ad PJXowsel, CarbohydrJIes., 1981, 94, C7. c7. S.J.Mellis and J.U.Baenziger, Anal.Biod'Iem., 1981, 114,276. G.J.L.Lee and H.TieckelmaM, J.Chrarratogr., 1981, 222, 23. H.Iwase, T.Morinaga, Y.T.Li,and S.C.Li, Anal.Biochan., 1981, 113,93. W.F.Alpfels, Anal.Biochem., 1981, 114, 153. K.Yoshida, K.Kotsubo, and H.ShigaMtsu, J.Chranatogr., 1981, 208, 104. H.K.B.Silver, KAKrim, M.J.Gray, and F.A.Salinas, J.Chromatogr., 1981, 224, 381. ~
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
2: General Methods
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90 91 92
19
N.W.H.Cheetham and P.Sirixnanne, J.Chrana r., 1981, 208, 100. D.L.Hendrix, R.E.Lee, J.G.Ba~t,and H.J%J.Chr-Gr., 1981, 210, 45. M. C.Kenp, W.L.Hollaway , R.L.Prestidge, J.C.Bennett, and R.W.Canpans, ., 1981, 4, 587. J.Li id ChrG.J.L?Lee, D.W.LzJ.W. Pav,and H.Tieckelmann, JShramtoqr., 1981, 212, 65. M.T.Yang, L.P.Milligan,and G.W.Mathisan, J.Chrana r., 1981, 209, 316. 1981, 110, G.B.Wells, S.J.Turco, BAHanson,and R.L.Lester ,?nal.BiochemT 397. S.Honda, M.Takahashi, K.Kakehi,and S.Gann0, Anal.Biochan., 1981, 113,130. S.Hase, T.Ikenaka, and Y.Matsushh, J.Biochem. (Tokyo), 1981, 90, 407. J.C.Ku0 and E.S.Yeung, J.Chranatogr., 1981, 223, 321. S.I.M.Johncodc and P.J.Wagstaffe, Analyst, 1980, 581. S.Honda, M.Takahasi, Y.Nishimura, K.Kakehi, and S.Gann0, Anal.Biochem., 1981, 118, 162. S.Honda, Y.Nishimura, H.Chiba,and K.Kakehi, Anal.Chim.Acta, 1981, 131,293. J.F.Poduslo, AMl.BioChem., 1981, 114,131. W.F.GLass, R.C.Briggs, and L.S.Hnilica, Anal.Biochem., 1981, 115,219. R.D.Poretz and G.Pieczenik, Anal.Biochem., 1981, 115, 170. I.Miymto and S.Nagase, Anal.Biochem., 1981, 115,308. E.Weiland, W.Thorn, and F.Bl&r, J.Chranatogr., 1981, 214, 156. M.I.Horowitz, in 'Carbohydrates: Chemistry and Biochemistry', 2nd Edition, ed. W.Pigman and D.Horton, A m d d c Press, New York, 1980, Vol.lB, p.1445. M.Porro, S.Viti, G.Antoni, and P.Neri, Anal.Biochem., 1981, 118, 301. H.S.Isbel1 and H.L.Frush, Carbohydr.Res., 1981, 92, 131. I.M.Morri-n and R.E.Brice, Carbhydr.Res., 1981, 98, 237. M.J.Kozio1, Anal.Chim.Acta, 1981, 128,195. D .P.Kotler, A.R.Tierney, and N.S .Rosenweig, A M 1.Bi&em., 1981, 110, 393. H.Misuma ,H.Wada,M.Kawakami ,H.Ninomiya, and T.Shohmori ,Clin.Chim.Acta, 1981, 111, 27. Y.Fujimura, S.Ishii, M.Kawamura, and H.Naruse, Anal.Biochem., 1981, 117,187. C.Hatanaka and Y.Kobara, Agric.Biol.Chgn., 1980, 44, 2943. ROhkubo, S.Kamei, M.Yamanaka, F.Arai, M.Kitajima,and RKondo, Clin.Chem., 1981, 27, 1287. N.Haugaard, J.Cutler, and M.R.Ruggieri, Anal.Biochem., 1981, 116, 341. R.Taylor and C.Pennodr, Clin.Chan., 1981, 27, 1624. S.O.Enfors, Eslzyme Microb.Te&nol., 1981, 3, 29. F.Hehz and T.W.Beushausen, J.Clin.Chen.Clin.Biochem., 1981, 19, 977. H.Sdlebusch, M. Sarger, E.Munz, A.C.Kessler, and W.Zwz, J.Clin.Chem.Clin. Biochan., 1980, 18, 885. RMosca, G.Gossi, M.Luzzana, L.R.Bernardi, W.S.Friauf, R.L.Berger, H.P.Hopkins, a d V.Carey, Anal.Biochem., 1981, 112, 287. M.Sugiura, S.Hayakawa, Y.It0, and K.Hirano, Chem.Pharm.Bull., 1981, 2,146 E.Biss&, A.Scholer,and D.J.von der Schmitt, J.App.Biochan., 1981, 2, 176. M.A.Cchenford, J.C.Urbammki,and J.A. Dain, Anal.Biochem., 1981, 112, 76. D.S.Grove and G.S.Serif, Aml.Biochem., 1981, 111, 122. J.P.Straub, Clin.Chem., 1981, 27, 198. R.Kattermann and R.Krieger, J.Clin.Chan.Clin.Biochen., 1981, 19, 31. J.Roboz, M.Suttajit,and J.G.B&esi, Anal.Biochem., 1981, 110, 380. K.Sugahara, K.Sughto, O.Nanura, and T.Usui, ClhChhActa, 1981, 108,493. B.Rivetz,M.A.Lipkind,E.Shichmanter, and E.Bogin,Experientia, 1980, 36, 370. A.C.Chen and R.T.Mayer,J.Chrawitogr., 1981, 207, 445. D.C.Farwel1 and A.S.Dian, Aml.Biochem., 1981, 113, 423. C.H.Blomquist, B.D.Snyder, and W.G.Neihaus, J.Clin.Chem.ClinBiochem., 1981, 19, 139. P.A.J. Garin, Adv.Carbohydr.Chem.Biochem., 1981, 38, 13. L.D.Hal1 and M.Yalpani, Carbhydr.Res., 1981, 91, Q. R.C.Beier, B.P.Mundy, and G.A.Strobe1, Can.J.Chem., 1981, 58, 2800. E.Berman and A.Allerhand, J.Biol.Chem., 1981, 256, 6657. H. van Halbeek, L.Dorland, GA.Veldink, J.F.G.Vliegenthar t, J.C.M ichalski, J.Montreui1, G.Strecker, and W.E.Hull, FEBS Lett., 1980, 2,65. R.MacRae and J.Dick, J.Qlranakgr., 1951, 210, 138.
m,
20
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 ll5 116 117
Carbohydrate Chemistry
M.E.Brek, G.C . H a n s s a n , K.-A.Karlsm, H .&if ler, W .Pimlott,and B.E.Samuelsson, FEES Lett., 1981, 124,299. V.KovbEik, P.KodE, and A.LiplAk, Carb0hydr.Res. ,1981, 98, 242. S.Honda, M.Nagata,and K.Kakehi, J.ChraMtogr., 1981, 209, 299. C.Bnnrier, Y.Leroy, J.MontreUi1, B.Fournet, and J.P.Kamerliq, J.Qlrcmatogr. , 1981, 210, 487. R.A.Laine, Anal.Biochan., 1981, 116, 383. B.Fournet, G.Strecker, Y.Leroy, and J.Montreui1, AnaLBiochem., 1981,,&I 489. M.Linscheid, J . D a n g o ~ , A.L.Burlingam, A.Dell,and C.E.Ballou, Proc.Natl .Acad.Sci .USA, 1981, 78, 1471. J.Ashraf , DAButterfield, J.Jarnef elf and RALaine, J.Lipid Res., 1980,2& 1137. S.R.Sarfati, Chrbohydr. Res., 1981, 94, 236. L.R.Phillips and B.A.Fraser, Carbohydr.Res., 1981, 90, 149. S.Inoue and G.Matsumura, FEE!S Lett., 1980, 12, 33. S.I~~W? and M.Iwasaki, Biochen.Biophys.Res.Carm., 1980, 2, 162. K.Shimizu, Carbohydr.Res., 1981, 92, 65. G.Strecka, A.PieraeCretel, B.Fournet, G.Spik, and J.Montreui1, 17. Anal.Bi&an., 1981, I&, N.Shihya, J.chramatogr., 1981, 208, 96. H.Rauvala, J . F h , T.Krusius, J.Karkkainen,and J.Jarnefelt, Adv.Carbohyr.ch&.Bicchan., 1981, 38, 389: K.M.Aalmo and T.J. Painter, Carbohydr.Res., 1981, 89, 73. T.Krusius and J.Finne, Carbohydr.Res., 1981, 90, 203. K.Veluraja and V.S.R.Rao, Biochim.Biophys.Acta, 1980, 630, 442. H.Ogum and K.Furuhata,'Tetrahedron Lett., 1981, 22, 4265. R.H.Marchessault and Y.Deslandes, Chrbohydr.Polymers, 1981, I, 31. G.A.Jeffrey and M.Sundaralingan, Adv.Carbohydr.Chem.Bi&en., 1981I 38, 417. S.Hase, T.Ikenaka,and Y.Matsushima, J.Bio&an.(Tokyo), 1981, 90, 127'5. P.J.Wocd, Carbohydr.Res., 1981, 94, C19. T.A.Beyer, J.E.Sadler, J.I.Rearick, J.C.Paulson, and R.L.Hil1, Adv.Enzp1 .Related Areas Mol .Biol , 1981, 52, 23.
.
3
Plant and Algal Polysaccharides BY I. M. MORRISON 1 Introduction
volume of the comprehensive treatise on the biochemistry of plants has been devoted to the structure and function of carbohydrates.' The proceedings of a symposium on the mechanism of saccharide polymerization and depolymerization have been published with several articles relevant to this chapter.' The state of macromolecular chemistry at the present time, with particular reference to the pulp and paper industry, has been r e ~ i e w e d . ~ A
2 Starch
The structure of the hydrated amylose-iodine complex has been determined by combined methods of X-ray diffraction and stereochemical packing analysis and shown to be an orthorhombic 13.60, = 23.42,and 2 (the fibre unit cell with dimensions of 2 Two amylose chains pass through the unit cell repeat) = 8. and iodide ions were present as an almost linear chain in the centre of the six-fold, left-handed amylose helix. Eight molecules of hydration per unit cell were located in good hydrogen-bonding positions between the amylose helices. The crystal structure of lJh amylose has been refined by similar methods to show another orthorhombic unit cell of dimensions ,a = 13.65, b = 23.70,and 2 = 8.05i.5 The chain conformation is a left-handed, six-fold helix with 0-6 in the position Bauche to both 0-5 and C-4. The water molecules are located inside the helical channel of the amylose and in the interstitial spaces, forming an intensive hydrogen-bonded network. Starch has been degraded by plasma and thermolysis in the ionization chamber of a mass spectrometer, and the s u g h and oligosaccharides formed were characterized by direct chemical ionization mass spectrometry.6 The technique, especially with negative ions, extends mass spectrometry to polymers. The molecular-size distribution of modified corn starch has
22
Carbohydrate Chemistry
been determined by size-exclusion chromatography. The high performance liquid chromatography of malto-oligosaccharides has been reported. The degree of mechanical damage imparted to starch granules during flour milling has been correlated with various absorbancies in the near -infrared reflectance spectrum. The wavelengths of importance corresponded to overtones and combinations of vibration frequencies due to free and hydrogen-bonded hydroxy groups in the starch. A resonance Raman spectroscopic study has been made of the blue Similar spectra were colouring of iodine/iodide in amylose.l o obtained regardless of the KI and I 2 concentrations, degree of polymerization, and excitation wavelengths, but the relative intensities of the lines changed. It was concluded that the basic unit changed from 162- to I 2- through I s2- with decreasing KI concentration. A simple straight-line relationship has been obtained between average chain length of linear amyloglucans and extent of iodine staining." The wavelength of maximal optical absorbance, the maximal absorbance,and the iodine-binding capacity per chain are all linearly related to the chain length. The sorption of water and water-soluble alcohols by starch granules in aqueous suspension has been studied,and potato and corn starches absorb 33 and 28% water, respectively, at pH 7.'* The method was not suitable for cationic starches. Alcohols were also absorbed in large amounts. The kinetics of adsorption of 2,3-dialdehydostarch can be expressed by an exponential equation uniform heterogeneous which is applicable for energetically cellulose surfaces.13 The activation energy did not depend on the initial concentration of starch in solution but increased linearly with the increased amount of starch adsorbed. Some physicochemical properties of heat-moisture treatment of starches have been determined. The water-binding capacity and enzyme susceptibility increased, while the swelling power decreased. The starches with the highest moisture content before heating had the lowest swelling powers. The same treatments had adverse effects on the functional properties and baking potential o f the starches.15 An enzymatic and an acidic hydrolysis procedure have been compared f o r the analysis of starch in feeds and digesta.16 Comparable results were obtained for purified starches and feeds with high starch contents. Only in treated materials like digesta
23
3: Plant and Algal Polysaccharides
with more than 17% cellulose did problems arise due to hydrolysis of cellulose by the acidic treatment. The enzymes do not need to be highly purified to be used in starch determination even in the presence of cellulose and hemicelluloses. A series of n.m.r. spectra of whole seeds of various types have been obtained by using cross-polarization magic-angle spinning techniques. Selected signals provided a means of comparing the protein content relative to the starch content within a group of seed varieties. The multi-branched nature of amylose samples from several plant sources has been revealed by methods for estimating reducing and non-reducing residues. The isoamylase of a Pseudomonas partially split the branch linkage in potato amylose. The concurrent action of pullulanase from Aerobacter and @-amylase from sweet potato hydrolysed the amylose completely. An enzymatic method of determining the A and B chains in amylopectin has led to a ratio of 1 : 1 , not 2:l as previously suggested. 2o Partial debranching with pullulanase gave results A chains are consistent with earlier suggestions that predominantly and selectively removed by this enzyme. The changes in physicochemical properties of starches isolated from maize, barley,and triticale grains which had been allowed to sprout for various lengths of time have been determined.2’ The water-binding capacity initially decreased but then increased with increasing time whereas swelling power decreased and solubilities and enzyme susceptibilities both increased with time, A procedure adapted for the rapid analysis of total starch and amylose has been used on a series of 37 barley genotypes.22 The amylose content was not related to either starch content or grain yield. Investigations of the starch granules of wheat throughout their development have suggested that there are two distinct populations of granules which are initiated at separate stages of kernel d e v e l ~ p m e n t . ~This ~ theory was supported by results using a Coulter counter as well as light and electron microscopy and chemical analysis. In studies on the characterization of legume starches, the fine structures of amylose and amylopectin have been determined by the use of pullulanase, 6-amylase, and glucoamylase .24 The results indicated tbat there were some 1+6 substituted a-D-glucopyranosyl residues in amylose. Similar studies were carried out on
’
24
Carbohydrate Chemktry
acid-treated starches.25 A fast hydrolysis of amorphous and gel phases occurred with a slow hydrolysis of crystalline regions. The results were consistent with the structure being a cluster type In attempts to separate the starch and protein fractions of legumes, the starch fraction was found to contain between 7.7 and 20.1% protein while the protein fraction contained 0.0-4.6% starch.2 6 During germination of dry beans at 22OC, the total starch, amylose, and amylopectin contents all declined over the first 6-day period when the amy1ose:amylopectin ratio also declined.27 The solubility and swelling characteristics of the starch from the Great Northern bean have been found to be both temperature and pH dependent. 2 8 The solubility was highest at pH 6.0. Oxidation increased the solubility as a function of temperature whereas acetylation decreased the solubility. Acetylation and oxidation both reduced the swelling while addition of free fatty acids reduced the viscosity and raised the gelatinization temperature. The gelatinization temperature of the starch from the winged bean was 60-70°C and it exhibited single-stage swelling and low s ~ l u b i l i t y . ~It ~ was very soluble in DMSO and had an amylose content of 38.5%. The gelatinized starch was more susceptible to a-amylase and glucoamylase than the native starch. The morphological and physicochemical properties of starch from mature green and ripe bananas have been deter~nined.~' The granules were irregularly shaped with spheroid and elongated forms predominating. Other parameters were similar to those of the starch from mung beans. The starch from mature, unripe breadfruit has been isolated and characterized by the use of pullulanase and The @-amylase followed by gel-permeat ion chromatography. granules were 10-20 pm in size with an amylose content of 18.2% and 8-amylolysis limit of 58%. The debranched amylopectin had chains of 15 and 38-45 residues,respectively, in the ratio 4.4:l. The relationships between contents of dry matter, starch, total fermentables, and specific gravity in cassava storage roots have = a been determined.32 A curvilinear relationship of the form + 5 was found to exist between dry matter and starch content and a similar one for specific gravity and starch. The native starch from fermented cocoa beans has been isolated by solvent extraction and flocculation of non-starch material at pH 2.7.33 The egg-shaped granules had a mean size of 4 . 4 pm, an
-
'
x-'
3: Plant and Algal Polysaccharides
25
amylose content of 30.4%, a gelatinization temperature of 52.5in 1M KOH. 68°C and a limiting viscosity number of 166.2 ml l'g Kuzu starch contains 21% amylose and 124 mg kg-' p h o ~ p h o r u s . ~ ~ The B-amylolysis limits of the amylose and amylopectin were 76 and 57, respectively, with 20.5 being the average chain length of the amylopectin. The granules were of the Ca crystalline type. A non-aqueous procedure, using glycerol and 3-chloro-1,2-propanediol, has been developed for the isolation from maize of starch granules with associated metabolite^.^^ Electron microscopy failed to demonstrate the presence of the amyloplast's membrane but it may be dried onto the granule surface. Soluble metabolites were found which may derive from the stroma of amyloplasts. The distribution of starch components of maize (Zea mays) and their properties have been investigated by gel filtration after debranching and by exhaustive hydrolysis of the granules with glucoamylase .36 Based on the results, the relationship between genotypes and properties of starch components was discussed. For gene produced example, introduction of the amylose-extender ( E ) amylopectins of longer average chain lengths. The starch and phytoglycogen fractions from normal and sugary (E) maize have been compared, and negligible differences were observed between 2 inbred lines and 2 9~ conversions of the lines studied.37 The phytoglycogen was shown to be distributed in a soluble fraction and a particulate fraction which also contained some amylose. These observations are consistent with a pattern of conversion of starch into phytoglycogen in endosperm. The starch of wild rice (Zizania aquatica) has been isolated and is a very small granule (2-7 urn) of angular and polygonal shape.38 It has an A-type pattern on X-ray diffraction but an amylose content of only 2%. Other properties were compared with those of wheat starch. Normal- and waxy-type starches have been isolated from two types of Amaranthus hypochondriacus and found to be round granules ( 1 urn diameter) with similar X-ray diffraction diagrams to other A-types. 39 The amylose contents were 1 4 and O%, respectively,while the amylopectins were similar to those from rice and maize starches. The elephant yam (Amorphophallus campanulatus) has yielded a starch which exhibited single-stage swelling and moderate solubility in water but low resistance to solubilization in
26
Carbohydrate Chemistry
DMS0.40 The amylose content was 24.5%. The amylolytic susceptibility of the native starch was low but that of the gelatinized starch was high. Oxidation of malto-oligosaccharides has yielded the series of oligomers with aldonolactones at the reducing end position and these give diamides with alkylenediamines in 30-755 yield.41 The effect of these derivatives on the enzymatic activity of potato phosphorylase was determined. The digestion of hydroxypropyl wheat starches by porcine pancreatic a-amylase has been examined.42 The digestibility of the of gelatinized starches decreased with increasing degree substitution, and the action pattern favoured a non-repetitive attack whereas the digestibility of the native starches increased with extent of modification. The hydrolysates from the above digestion of starches with degrees of substitution from 0-0.17 were separated into total digest, oligo- and polysaccharide fractions and further analysed .43 Increasing the degree of substitution caused a reduction in the reducing value, an increase in the average degree of polymerization, and a greater proportion of oligosaccharides in the hydrolysate. The oligosaccharide fraction had double the hydroxypropyl content of the undigested starch. The oligosaccharide fraction was further analysed by h.p. 1.c. on a u-BondapakR carbohydrate column .44 The proportion of oligosaccharides with three and four ;-glucose residues increased and those with five !-glucose residues decreased as the degree of substitution increased. The changes in molecular weight of amylose and amylopectin during thermal dispersion in water have been followed by paper Grain disaggregation and mo lecular chromatography.4 5 disintegration of amylopectin proceeded more rapidly than in amylose. The effect of sodium hydroxide was more marked on amylose than amylopectin. Aqueous suspensions of starch at neutral pH values were heated by microwave energy in sealed tubes.46 The colour of the hydrolysates darkened with increasing time and pressure. The total acidity increased and oligosaccharides in the range monomer to octamer were determined. The amounts of glyceraldehyde, dihydroxyacetone, and 2-hydroxyl,+propanedial induced in maize starch by Y-radiation have been determined by a g.c. procedure,and the influence of several .parameters such as dose and temperature has been in~estigated.~’
27
3: Plant and Algal Polysaccharides
This is the first report of 2-hydroxy-1,3-propanedial from irradiated starch. The influence of the polysaccharide structure on the oxidation process with Ce4+, Mn3+, and V 5 + ions has been studied,and it was confirmed that the rates were highest for compounds containing a-glycol groups.48 The nature of the functional groups and the conformation of the macromolecular unit exert an influence on the oxidation rate. An enzymatic procedure has been developed to measure starch in cereal product^.^' The precision of the test is 2 1.5% and is applicable to a wide range of products. The amylases from pearl millet have an action pattern similar to those of other cereal a-amylases but are able to hydrolyse wheat starch more readily than millet starch.50 The immature wheat endosperm aleurone with seed coat and embryo detached has produced considerably less a-amylase activity than immature whole or de-embryonated wheat kernels. The isoenzyme composition of the incubated endosperm aleurone was unique suggesting that the seed coat may contain factors required for normal a-amylase isoenzyme synthesis. An enzymatic assay for the determination of a-amylase in serum has been developed which employs maltoheptaose as substrate and a coupled enzymatic indicator system.52 H.p.1.c. was used to establish the action pattern of hydrolysis of the maltoheptaose. The stoichiometric equations for the action of a-amylase alone and a-amylase and a-glucosidase together were derived. The multiple-attack model for the kinetics of hog pancreatic a-amylase action has been a n a l y ~ e d . ~The ~ model explains the dependence of ,V and 2 on the degree of polymerization of substrates. The distribution in the degree of polymerization of the hydrolysis products has been used to calculate the number of unitary movements of the enzyme during the single enzymesubstrate meeting. A mixture of 6-amylase and pullulanase from Bacillus cereus has been used to produce maltose from a variety of starches which had previously been liquefied by the a-amylase of Bacillus ~ u b t i l i s . ~ ~ The maximum yield was 87-88% obtained at pH 6.0-8.0, 55"C,and 30h hydrolysis of a 5% solution. Similar results were obtained if acidic conditions were used for the liquefaction. Two inbred lines of rye (Secale cereale), whose kernels had only 1-3% of the 6-amylase activity of normal lines, have been
'
28
Carbohydrate Chemistry
investigated using an anti-wheat B-amylase immune serum which cross-reacted with the rye enzyme.55 The results indicated that the reduced activity was due neither to the presence of an inhibitor nor to the production of inactive enzymes. An inducible cell-bound glucoamylase, which degrades cyclodextrins, has been isolated from a Flavobacterium species. 56 The final degradation product in all cases was ;-glucose with small amounts of maltose. Amylopectin and glycogen were very poor substrates. The enzymes of starch metabolism in the developing grains of a high-lysine barley mutant have been determir~ed.~’The activity of ADP-E-g1ucose:starch synthetase was lower while those of UDP-Eglucose-pyrophosphorylase and starch phosphorylase were higher than in normal barley. The structural changes in starch molecules during malting of barley have been investigated by comparing a normal malt where 14% of the starch had been lost with an over-modified malt where 68% of the starch had been lost.58 In the normal malt, 14% of the large granules were eroded but the small granules remained intact whereas 38% of the large granules were eroded in the over-modified malt with a marked reduction in the small granules. Malting resulted in an apparent increase in the amylose content. There was no apparent difference in the amylopectin structure between the two malts. A reduction in light intensity during starch synthesis in developing wheat grains has reduced the starch synthetase I activity but not the starch phosphorylase activity. 59 The low starch production was not due to an insufficient supply of assimilates. [ 35S]-Methionine has been incorporated into B-amylase from germinating rice seeds.60 The specific radioactivity of the enzyme derived from scutellum was significantly greater than that from the endosperm. These results indicate that, at the onset of germination, 6-amylase is synthesized in the scutellum and only at a later stage is an inactive, latent form of the enzyme activated in the endosperm. This latter form becomes dominant during the later stages of germination. The role of the recessive amylose-extender ( E ) allele in the biosynthesis of maize starch has been investigated.61 Multiple forms of starch synthetase were observed, some of them appearing at the same time as the rapid increase in amylose content. The
29
3: Plant and Algal Polysaccharides
presence of modified amylopectin synthesized by the enzymes which were affected by the ae allele was suggested. Debranching of these amylopectins followed by analysis of the products was attempted to confirm this theory, but the results were inconclusive. Starch granule-bound D-glucan synthetase has been isolated from cotton leaves.63 On further separation, amylopectin was the only glycosidically linked with protein and this had E-glucan Q-glucan synthetase activity. The amylose component was free from covalently bound protein. On germination, both in the dark and light, a DMSO-soluble P-glucan is synthesized in the cotyledons of lupins .64 Chemical analysis indicated that it was starch-like but its chromatographic behaviour differed from that of amylopectin. The concentrations of starch synthetase and debranching enzyme from developing seeds of Pisum sativum have been mea~ured.'~ Primed starch synthetase activity increased from day 8 to day 14 after anthesis but then decreased by 50% at 26 days,whereas citrate-stimulated starch synthetase activity was highest at 10 days after anthesis thereafter falling to a low value. Debranching activity increased from day 8 to day 18 after anthesis. The changes in starch synthetase and debranching activity resulted from changes in the concentration of a few enzyme forms and not from the appearance of different enzyme forms. The @-amylase activities of some soybean varieties are times lower than others yet they have similar starch metabolism. It was therefore concluded that starch metabolism was independent of the 8-amylase activity. The starch contents of plantains and bananas, ripened under similar conditions, have been determined with a content of 1% in ripe bananas and 9% in ripe plantain^.'^ These values fell to zero and 3%,respectively,in over-ripe material. Phosphorylase I1 from potato tubers has been purified and characterized.68 No separation of primed from unprimed activity was achieved. The molecular weight was 9.6 x l o 4 and the native enzyme was a dimer. The reaction product was a protein-bound P-glucan which possessed long ( 1+4)-a-E-glucan chains. 6 9 Since protein was also present in amylose from potato starch grains, it is suggested that these findings may be further evidence of a from a precursor common biosynthetic pathway for (1+4)-a-D-glucans protein. The rate of starch breakdown in isolated chloroplasts from
'*
''
Carbohydrate Chemistry
30
spinach is similar to that found in whole leaves. These rates have been measured both in the dark and in light and compared with the rates of starch synthesis in the light.’l’ Illumination has little inhibitory effect on breakdown at high phosphate levels but 67% inhibition was observed at low phosphate levels. Since C02 evolution is prevented by illumination, the oxidative pentose phosphate pathway must have been inhibited. The balance between accumulation and breakdown is very sensitive to the rate at which carbon is withdrawn from the chloroplast in exchange for inorganic phosphate. The unusually high solution torque developed by the starch from the Hinoat variety of oats when a hot paste is cooled to 75-80°C has been abolished in the presence of acetic acid at pH 3.0.’12 Salts at 0.1M concentration reduced the torque value as did increasing sucrose concentrations. The gelatinization of wheat starch as modified by xanthan, guar and cellulose gums has been investigated and each gum hastens the onset of initial paste viscosity.’13 The reaction seemed to be a strong association with the amylose component since the B-amylolysis limit of the amylose is reduced. The starch-xanthan gum exhibited a pseudoplastic behaviour whereas the starch-guar gum resisted shearing at low shear rates. The syneresis of curdlan gel has been repressed by the addition of starch before heating but not by other sugars.74 The role of starch in this process was discussed. A number of starch esters of herbicides have been prepared from activated pregelatinized starch and evaluated as slow release agents.’15 With sterile soil a picloram ester was phytotoxic for 48 days. Unmodified starch esters were hydrolysed at a slower rate than gelatinized starch esters. A Flavobacterium from tap water was able to grow on tap water but the addition of starch greatly enhanced its growth.76 X-Ray and neutron-diffraction studies on hexa-amylose hexahydrate crystal forms A and B have given an indication of the chain-like and circular arrangement of hydrogen bonds within the molecules. ’17 In the circles, homodromic and antidromic orientations of the hydrogen bonds are observed, with the homodromic circles being more stable by 8% per hydrogen bond. The changes in electronic charges on H and 0 atoms are greater in homodromic circles and the dipole moments are only ~2.30 in the chain-like and antidromic homodromic circles but 6-8D in
-
3: Plant and Algal Polysaccharides
31
arrangements. -X-Ray analysis of the hexa-amylose-3-nitroaniline ( 1 : l ) hexahydrate complex has shown that the hexa-amylose molecules are stacked along the z-axis in a head-to-tail fashion to form a channel-type structure .78 A stereo-drawing of the packing feature of the complex with its associated water molecules was shown. Similar studies have been conducted on the hexa-amylose-benzaldehyde ( 1 : l ) hexahydrate complex and a similar packing was observed with the hexa-amylose molecule being tilted at 11.5" against the channel axis." The benzene ring is inserted into the hexa-amylose ring from the secondary hydroxy side while the carbonyl group is in Van der Waals contact with the primary hydroxy side of the next hexa-amylose molecule. A correlation between the penetration depth of the C atoms of a variety of phenols in the cavity of hexa-amyloseand the changes in chemical shifts has been investigated.80 The their 1 3 C n.m.r. formation and molecular dynamics of cycloamylose inclusion complexes with phenylalanine have been investigated by 1 3 C n.m.r. spectroscopy.8 The influence of the cavity size was determined and the cyclohepta-amylose-phenylalanine system was most strongly coupled. The cyclohexa-amylose coupling was shallow and loose while that of the octa-amylose was deep and loose. The induced c.d. and U.V. spectra ofhepta-amylose-disubstituted benzene systems has been studied with respect to their molecular structures.82 The dipole moment was correlated with rotational intensity and the energy-level transition calculated by molecular orbital methods. The use of a hexa-amylose mobile phase in the separation of mono-substi tuted phenols by t .I. c. has been reported .83 The llf values depended on both the structural features of the phenolic compounds and the concentration of hexa-amylose in the mobile phase. A selective attack of dichlorocarbene at the 4-position of phenolate ion was achieved with hexa-amylose as catalyst.84 The mechanism was studied by lH and 13C n.m.r. spectroscopy.
3 Fructans The has and
crystalline conformation of inulin [(2+1)-B-E-fructofurananl been determined by conformational analysis coupled with g-ray electron- diffraction data.85 The only two models possible
32
Carbohydrate Chemistry
correspond to 5-fold helices, one left-handed and the other right-handed. Steric interactions of the substituents and the exanomeric effect were believed to be responsible for the observed conformational differences. An invertase and an inulase from germinating garlic (Allium sativum) bulbs have been separated and purified.86 The invertase had no effect on inulin whereas the inulase, as well as hydrolysing inulin, could hydrolyse sucrose and raffinose. The enzymes had similar molecular weights (7.6 x l o 4 ) . In the early stages of development the activities increased in paralle1,but at later stages the invertase activity was higher. A pathway for fructan trisaccharide synthesis from sucrose has been reported.87 Two non-reducing hexasaccharides ( 1 ) and (2) have been isolated from the roots of Asparagus officinalis and their structures confirmed by the usual methods.88 A novel tetrasaccharide ( 3 ) has been isolated from Chinese milk vetch honey.89 It is probably synthesised 2 erlose which is produced from sucrose in nectar.
4 Cellulose A history of the study of cellulose structure has been published which also considered how this knowledge has been extended to synthetic polymers. A hydrate of cellulose I1 has been prepared and its crystal structure determined.91 The unit cell contains disaccharide sections of two chains,and an antiparallel arrangement of adjacent chains was assumed. The chains are stacked in the same way as in cellulose I1 with the water molecules between the stacks,but it was not possible to position the water molecules in a regular arrangement. The treatment of cotton and rayon with ethylenediamine resulted in the transformation of cellulose IV to cellulose I11 as determined by X-ray analy~is.’~ Thus ethylenediamine-methanol can affect lattice modifications. The transformation of cellulose I into cellulose I11 in Valonia macrophysa, preformed in ethylenediamine, has maintained the external appearance of the microfibrils as shown by electron microscopy. 93 This conversion must have involved a fracturing and fibrillation of the initial crystals. ‘ H n.m.r. spectroscopy has shown that both ramie and cotton of native have a unique phase structure characteristic
33
3: Plant and Algal Polysaccharides
B-~-Fruf-(2+l)-~-~-Fruf-(2-tl)-~-~-Fruf-(
-
1 .f
2 B-D-Fruf -
(1)
B-E-Fruf- (2+1)-B-E-Fruf-(2+6)-a-D-Glcp- (1+2)-B-!-Fruf -
1
.f
B-D-Fruf-(Z+l (2)
2 )-$-E-Fruf
34
Carbohydrate Chemiitry
cellul0se.9~ The non-crystalline component did not exhibit micro-Brownian segmental motion even in the swollen state. The phase structure was distinctly different from that of regenerated cellulose. An n.m.r. spectroscopic study of the interactions between cadoxen and cellulose has been carried out using signals from 'H, 13C, and 113Cd.95 A well recorded 13C spectrum was obtained which could be assigned by comparison with the spectra of simpler sugars. The 13Cd and 13C results were not consistent with the formation of chelate-alcoholate complexes with the C-2 and C-3 hydroxy groups. Hydrogen bonding is probably the dominant interaction. It is further suggested that the metal ion serves the dual purpose of holding two amino groups in a favourable orientation to hydrogen bond with a pair of equatorial hydroxy groups on the cellulose. The solubilization of cellulose and other plant structural carbohydrates has been achieved in a mixture of 4-methylmorpholine g-oxide and DMSO.' The separation and purification of homogeneous polgsaccharide fractions could then be made. Hydroxymethylcellulose has been prepared and characterized by i.r. and n.m.r. s p e c t r o s ~ o p y . ~To ~ achieve dissolution of cellulose, a high degree of molecular substitution was required, but once solution was achieved the molecular substitution could be lowered, the actual value of precipitation depending on the solvent. A rapid separation of cello-oligosaccharides (degree of polymerization 2-9) has been obtained on a cation-exchange resin in 60 min with water as eluant.98 The cellulose content of raw and cooked vegetables has been determined by extraction procedures using detergent solutions.9 9 The U.V. spectra of extracts of hydrocellulose with the hydroxides of Li', Na', K ' , Ca2+, Sr2+,and Ba2+ were identical."' The curves of yellowing absorption coefficients against loss in weight of hydrocellulose in boiling solutions of these alkalis were linear, the slopes giving apparent molar absorption coefficients in the order Na+= K+>Li+>Ba2+>Sr2+>Ca2+.The divalent cations reduced the yield of chromogen from the 4-deoxy-~-glycero-2,3-hexodiulose released from reducing end groups of the hydrocellulose. In the same systems, greater weight losses and production of acidity were obtained with the alkalineearth cations than alkali-metal cations when the OH- ion
35
3: Plant and Algal Polysaccharides
concentration was 0.02M while the reverse was found at 1.OM. l o ' The results were explained in terms of a hypothesis that divalent cations exercise their catalytic effects through enhanced ionization of the ;-glucose moiety at the reducing terminus of cellulose chains. The selectivity (viscosity at a given Kappa number) of softwood Kraft pulp has been shown to increase dramatically when soaked with S02-H20 in the presence of diethylenetriaminepentamethylene phosphonic acid before oxygen bleaching in the presence of magnesium sulphate. O 2 Addition of manganese(VI1) sulphate to soaked pulps led to a severe loss in selectivity while to dry pulps a slight increase was obtained. Addition of the phosphonic acid to manganese(VI1)-treated pulps caused a large increase in selectivity. Aqueous sulphur dioxide treatment of cellulose pulp of and cotton linters dramatically reduced the degree polymerization of the cellulose but did not affect its enzymatic digestibility or decrease its crystallinity as previously reported. 1 0 3 The acetyl content of cellulose acetate and a variety of woods has been determined by aminolysis with pyrrolidine followed by g.c. of the resultant I-acetylpyrrolidine. O 4 The distribution of the sulphate ester groups in the natural cellulose sulphate of Buccinum undatum has been determined by 1 3 C n.m.r.; the results were compared with those from a randomly The relative substituted synthetic cellulose sulphate.' O5 simplicity of the natural cellulose sulphate spectrum indicated that this polymer consisted of blocks of disulphated (1+4)-B-;-glucan chains separated by blocks of unsulphated chains. (1+4)-~-Q-glucan A variety of sulphoalkylcelluloses have been synthesized in NaOH solutions at 65°C. l o 6 Increasing temperature and NaOH concentrations increased the sulphoalkylation as well as the yield of water- and alkali-soluble fractions. The relative oxyanion formation at hydroxy groups of q-glucosides and cellulose has been reviewed O7 Native cellulose and pulps from a variety of hardwoods have been fractionated by the nitric acid rnethod.'O8 A regression analysis showed a direct correlation between the age of the tree and the degree of polymerization of the cellulose. The values were a useful indicator of the papermaking potential of the wood. Cellulose powders obtained by mechanical disintegration have
'
'
.'
36
Carbohydrate Chemistry
larger average particle sizes and broader size distributions than those obtained by hydrolytic degradation.l o g Microcrystallization of bleached sulphate pulp from beechwood and reed increased the crystallinity index from 66 to 71% and 56 to 61%, respectively, as determined by X-ray analysis, but decreased the yield from 86 to 75% and 74 to 67%, respectively.'" The average length of the microcrystalline pulp fibres was 55 um compared with 220 urn for the control fibres. By the use of polarizing microscopy, the microfibrils in the spherulites formed in the pellicle of bacterial cellulose have been shown to be radially or tangentially orientated. Some of the results indicated that the initial stage of nucleation may be a function of intermediate lipid-carbohydrate compounds as in the lyotropic liquid crystal of the soap micelle. When virulent strains of Agrobacterium tumefaciens bind to carrot cell walls, fibrils develop which surround the bacteria and anchor them to the cell surface.'12 The fibrils are composed of cellulose and are synthesized by the bacteria since they are produced on dead as well as living carrot cells. Within this entrapped mass, the bacteria are still able to multiply and form large clusters. On pyrolysis of cellulose under various conditions, 82 compounds have been identified as volatile product^."^ The maximum yield in a nitrogen atmosphere was achieved at 600-650°C while in air a 50-200°C lower temperature was required. The volatile products were qualitatively similar to those found in cigarette smoke. Combined q.c. gas-phase thermal fragmentation has been developed for the separation and identification of pyrolysis The compounds were products from bark polysaccharides.' identified by their fragmentation pattern which was useful in demonstrating the thermal stability of the parent compounds. Various polymer initiating systems, especially redox systems involving cerium(II1) and iron(I1) salts,had little effect on the thermal properties of cotton cellulose.' l 5 The cellulose from Acetobacter xylinum has been used for visualizing the action of the cellulase enzyme system from Trichoderma reesei by high-resolution electron microscopy.' l 6 The enzymes initially bind to the cellulose ribbon, but within 10 min the ribbon is split along its longitudinal axis into bundles of microfibrils which are thinned until they are dissolved,which takes about 30 min. Separation of the various enzyme components
'''
'
3: Plant and Algal Polysaccharides
37
produced less dramatic changes confirming the synergistic mode of action of these enzymes. The cellulase from T. viride has been immobilized on SepharoseR 4B.l17 The immobilized enzyme had a similar Km to the free enzyme, the activity increased up to 50°C and did not decrease after 4 cycles of batch use and recovery. Treatment of finely divided Pinus densiflora with the cellulase from T. viride at 40°C and pH 4.0 resulted in hydrolysis of 80-90% of the carbohydrate present .I18 A series of mono- and oligo-saccharides were obtained from bagasse and pith by cellulase hydrolysis."' The presence of pentoses and their oligosaccharides in hydrolysates of alkali-treated bagasse showed that hemicelluloses had not been completely removed by this treatment. The action of the cellulase from Penicillium funiculosum on a variety of cellulosic substrates has been investigated by scanning electron microscopy and X-ray diffraction analysis. 120 The differences were interpreted in terms of the a-cellulose content, surface area, degree of crystallinity, and crystallite dimensions of the substrate. The kinetics of hydrolysis of ball-milled cotton linters by eight cellulase complexes from Trichoderma, Geotrichum, and Asperuillus species have been studied under steady-state and nonThe steady-state rate of D-glucose steady-state conditions. 12' formation was proportional to the endo-(1-+4)-B-D-glucanase content. A mechanism was proposed in which the enzyme which first attacks the insoluble substrate is this m - P - g l u c a n a s e . This contradicts the accepted view for a prehydrolytic C1 enzyme. The C 1 role is filled by the endo-g-glucanase. Partial acid hydrolysis has been investigated as a pretreatment to enhance the enzymatic hydrolysis of cellulosic materials. 2 2 Up to 100% of the potential E-glucose could be obtained,and this was due to removal of hemicellulose, reduction in the degree of polymerization, and changes in the crystal structure of the cellulose. The purification of a cellulase isoenzyme from kidney bean abscission zones has been carried out by affinity chromatography. 1 2 3 Antibodies raised against this cellulase (PI = 9.5) did not react with the cellulase (PI = 4.5) obtained from 2,bE-treated abscission zones. examined, only 3 1 were Of 60 species of soil fungi
Carbohydrate Chemktry
38
cellulolytic.1 2 4 The- cellulolytic activity of 25 species of pyrenomycetous fungi has been determined with 18 being able to utilize cellulose. 125 A Bacteroides species, of human faecal origin, was able to degrade isolated cell walls of peanuts.' 2 6 When autospores of Oocystis solitaria were treated with Congo Red or Calcofluor White a more diffuse fibrillar material was obtained [which could be chains of (1+4)-B-D-glucanl rather than the discrete microfibrils of untreated cells. 2 7 Using intact cotton fibres, it has been shown by pulse-chase experiments that (1+3)-8-~-glucans (callose) have a high rate of turnover and are likely to be intermediates in cellulose biosynthesis at the stage of secondary cell-wall formation. 28 Protoplasts from cultured soybean (Glycine max) cells have been used to study polysaccharide synthesis during the early stages of cell-wall regeneration. 29 Label from !-glucose was rapidly incorporated into cellulose but neither UDP- nor GDP-P-glucose was rapidly incorporated into (1+3)-B-~-glucans, Calcofluor White ST can increase the rate of ;-glucose polymerization into the cellulose of Acetobacter xylinum.' 30 At a concentration of >O.lmM, the rate was four times the control but the assembly of crystalline cellulose I microfibrils was disrupted. It is concluded that polymerization and crystallization are cell-directed, coupled processes and that the rate of crystallization determines the rate of polymerization. Coupling must be maintained for biogenesis of cellulose I. Addition of coumarin (1 g kg-') to Phaseolus vulgaris leaves inhibited the synthesis of cellulose I but stimulated the synthesis of a-cel1ulose.l3' A persisting cellulosic wall has been demonstrated by light microscopy in microspore mother cells during microsporogenesis in Allium tuberosum and Cyclamen persicum. 1 3 2 Cellulose metabolism by the flagellate Trichonympha, isolated from a termite, has been studied.'33 The protozoon, in culture, harboured no endosymbiotic bacteria and produced acetate, CO,, and H, from cellulose. The cellulolytic activity is therefore an inherent property. A new method of determining the extent of binding of an ionic dye to a polyelectrolyte in solution has used the fact that dyes can adsorb to a cellulose dialysis membrane.'34 The permeability of cellulosic walls to macromolecules may
'
'
'
39
3: Plant and Algal Polysaccharides
limit the ability of enzymes to alter the properties of these walls. 135 Since proteins of molecular weight 6 x lo4 can permeate a substantial portion of the wall, previous results may have underestimated this property. The fermentation of cellulose by Acetivibrio cellulolyticus, Methanosarcina barkeri, and a Desulphovibrio species has been culture allowed a rapid studied. 3 6 Only a three-component conversion to C02 and CH4 and utilized 85% of the cellulose present. This value was increased to 90% by increasing the concentrations of M. barkeri.
5 Hemicelluloses
A number of sugar residues were found in hydrolysates of the water-soluble hemicelluloses of rice brans. 3 7 Although L-arabinose was the major sugar residue, there was no direct evidence for the presence of an L-arabinan. The intracellular site of the synthesis of 4-arabinose-containing cell-wall precursors in suspension-cultured tobacco cells has been determined as the Golgi bodies with transport being vesicles in the low-density fraction.1 3 8 A D-galactan has been isolated from the leaves of Aloe barbadensis by hot-water extraction and separation from contaminating pectin, ;-gluco-q-mannan, and 4-arabinan. 1 3 ’ The (l+4)-linked ;-galactan had one branch point at 0-6 for every 26 residueq and the molecular weight of the acetylated polysaccharide was 3.7 x 104. The formation of monodispersed polysaccharides on Smith degradation of the acidic k-arabino-;-galactan from rapeseed (Brassica campestris) strongly suggests a molecular structure composed of regularly repeated subunits. 1 4 * The molecular weight of the subunit was 1.2 x lo4 and the resistance of the polysaccharide to subsequent Smith degradations suggested that the main chain was a (1*3)-?-galactan. An 4-arabino-2-galactan-protein has been released by sonication of a crude cell organelle fraction from hypocotyl tissue of bean seedlings (Phaseolus vulj?aris) and suspension cultured cells. 1 4 ’ The macromolecule (mol. wt. 1.4 x l o 5 ) contained 90% carbohydrate and 10% protein with the major sugar residues being ;-galactose, L-arabinose,and uronic acids and the major amino-acids present being k-hydroxyproline, &-serine,and L-alanine. The carbohydrate
’
-
Carbohydrate Chemistry
40
was linked the first two amino-acids and also to 4-threonine with the carbohydrate portion of the linkage regions containing residues of L_-arabinose,q-galactose , 8-glucose,and k-rhamnose .14' The L-hydroxyproline glycosides were different from those in nonextractable cell-wall protein but have similarities with those in the wall proteins of the algae. The changes in the 5-arabino-q-galactan-proteins of the carrot have been studied during germination and growth.143 An extracellular k-arabino-8-galactan-protein has been obtained from suspension-cultured tobacco cells. 44 The complex (mol. wt. 2.24 x l o 5 ) contained 5.5% protein and the sugar moiety was a A B-q-glucopyranosyluronic typical L-arabino-(1+3)-8-galactan. acid residue was present at the non-reducing terminus attached to 0-6 of a P-galactopyranosyl residue. Auxin-induced changes in the sugar composition, intrinsic weight distribution of matrix viscosity, and molecular polysaccharides in the epicotyl cell wall of Vigna angularis have been determined. 1 4 5 The greatest change was the reduction in 4-arabino-q-galactan content, but other changes in pectin and E-xylo-g-glucan content were also observed. The linkage regions in cell walls of rice coleoptiles have been characterized as involving 0 _ 3 - ~ - g a l a c t o p y r a n o s y l - ~ - s e r i n e and N4 - ( 2-ac etam i do 2- d eoxy- B -E- g1ucopyran0s y1 ) hydrogen LThe linkage region in the water-soluble asparaginate. 1 4 6 4-arabino-E-galactan-protein complex from wheat endosperm has been characterized as g4 B ga1acto p yrano s y1 4 -trans hyd ro xy proline. 14' Methylation analysis of the glycopeptide linkage region from cell walls of Chlamydomonas reinhardii has revealed that g-glycosidically linked g-galactofuranosyl residues are present. 1 48 Bacteroides thetaiotaomicron, a polgsaccharide degrading bacterium from the human colon,can use larch L-arabino-;-galactan as its carbon source with yields similar to those obtained on p-glucose. 149 The crystal structure of a regenerated form of (1+3)-a-D-glucan has been determined by X-ray diffraction analysis and stereochemical model refinement as an orthorhombic unit cell. 50 The chain conformation is almost completely extended and is very close to a 2/1 helix even though the dimer residue is the crystallographic repeat unit. The vacuum c.d. spectrum of (1+6)-~-~-glucan has a single
-
c
-
---
-
-
-
41
3: Plant and Algal Polysaccharides
positive band near 177 nm.151 As gels formed, a negative band at 190 nm appeared followed by a blue shift in both bands with ageing. The specificity of the interaction of direct dyes with polysaccharides has been studied by changes in solubility and in the fluorescence and absorption spectra of the dyes.’52 The strongest interactions were shown by polysaccharides with (l+4)-linked-B-Q-glucopyranosyl residues, but contiguous (1+3)-8-P-glucans exhibited some complex formation. Dyes differed in their affinity. The direct dye, Calcofluor, has been used in a fluorimetric assay for (1+3)(1+4)-B-D-glucans in beer, wort, malt, and barley. The B-E-glucan content of developing and germinating kernels of several varieties of barley has been determined 5 4 The E-glucan content varied considerably but did not seem to be related to the B-g-glucanase activity of the variety. A g-glucan is present in the cotyledons of Mirabilis jalapa seeds.155 Methylation, periodate oxidation, and graded and enzymatic hydrolysis studies have indicated 34 (l+4)- and 3 ( l + 3 ) linkages for every 38 ;-glucose residues. The branch point appears at 0-2. In some places, at least three (1+3)-linked P-glucopyranosyl residues are in sequence. Both a and 8-glycosidic linkages are present. The hemicellulose fraction accounted for 47% of the pollen tube wall of Camellia japonica and comprised essentially c-glucose The polysaccharide had a ( 1 +3)-B-;-glucan chain with residues. 15‘ a degree of polymerization of 21. The pollen tube wall of C. sasanqua, C. sinensis, Tulipa gesneriana,and Lilium longiflorum also consisted mostly of ;-glucose residues,and the hemicellulose fractions were essentially pure D - g l u c a n ~ . ’ ~The ~ deposition of (1+3)-8-;-glucan during megagametogenesis in two species of Oenothera is partly in continuum with the wall and partly in the degenerating cytoplasm. The addition of B-g-glucanase before the use of u-amylase has been used to aid filtration in the measurement of fibre contents by detergent procedures. 59 The fact that fungal g-glucans will stimulate soybeans to accumulate phytoalexins has prompted an investigation into the (1+3)-B-~-glucanases and B-P-glucosidases of soybean and their hydrolytic patterns.16’ The B-9-glucosylase I enzyme has been purified. Several lines of evidence suggest that the
.’
’
’
42
Carbohydrate Chemisrry
(1+3)-8-;-glucanase and 8-P-glucosidase activities exhibited by I preparations are catalysed by the same enzyme. B-g-glucosylase Treatment of the 2-glucan elicitor from the walls of Phytophthora megasperma by E-glucosylase I results in extensive hydrolysis and loss of 94% of its activity.lbl It is unlikely that some other enzyme(s) may be involved in the overall reaction. The endo- and exo-8-P-glucanases from Zea mays have been partially purified. l b 2 The endo-8-q-glucanase (mol. wt. 2.6 x lo4> showed a marked preference for substrates with mixed linkages,and it probably initiated the solubilization of wall g-glucan. The exo-8-E-glucanase (mol. wt. 6.0 x lo4) was required for extensive hydrolysis in vitro. During coleoptile development, the autolytic activity of the cell wall increased dramatically but did not parallel the growth potential of the tissue. Conditions which induce a transmembrane electrical potential, positive with respect to the inside of the membrane vesicles, have resulted in a 4-12-fold stimulation of the activity of membraneassociated 8-q-glucan synthetases in a preparation from developing cotton (Gossypium hirsutum) fibres.1 6 3 The products were mainly (1+3)-8-;-glucans but some increase in (1-+4)-B-D-glucan content was also found. No (1+4)-a-q-glucan was formed. The products of 8-q-glucan synthetases have been characterized using specific -9-glucan hydrolases. 6 4 The B-Q-glucan synthesis by particulate enzymes from suspension-cultured endosperm cell walls from ryegrass has been studied. 6 5 The 8-E-glucan synthetase activity of the fungus Saprolemia monoica has been assayed and a product is observed which contains The both 1 +3- and 1 -+blinked B-g-glucopyranosyl residues. 6 6 presence of Mg2+ ions affects the structure of the product. In the absence of Mg2+, only a (1-+3)-8-P-glucan is formed, but as the substrate concentration is reduced and Mg2+ ion concentration is increased the proportion of lj3-linked residues in the product is reduced and a pure ( 1-+4)-B-Q-glucan is formed. High molecular weight E-glucans have been isolated from mycelial walls of Fusarium oxysporum.' 6 7 The P-glucans contained both 1+3- and 1-+6-linked residues in contrast to the E-glucans from Colletotrichum lindemuthianum, which contained 1+3- and 1-+4-linkedresidues. However, the two types of 9-glucans had very similar effects in eliciting browning and phytoalexin production in green-bean cotyledons. An exo-(l+3)-B-;-glucanase derived from Sclerotinia libertiana
'
3: Plant and Algal Polysaccharides
has
induced
growth
43
of Avena sativa coleoptiles and degraded the No endo-( 1+4)or endo-( 1+3)-B-pglucanase activity could be detected. The exo-(1+3)-8-;-glucanase from a Basidiomycete did not induce growth. The metabolism of a e-glucan from the cactus Opuntia bigelovii has been studied in a desert en~ir0nment.l~’The D-glucan content increased slightly during a 9-week drought period but then decreased during the irrigation period. The ;-glucan is probably storage material. The g-xylo-;-glucan from the walls of etiolated mung beans has been studied by acidic and enzymatic hydrolyses, the latter by a preparation from Aspergillus oryzae. 170 Cellobiose, cellotriose, and cellotetraose were obtained from the acid hydrolysate while isoprimeverose ( 4 ) and the pentasaccharide ( 5 ) were characterized from the enzymic hydrolysate. Similar studies using the cellulase from Trichoderma viride produced three types of oligosaccharide, hepta-, nona-, and deca-saccharides, and their structures were partially characterized. 1 7 ’ The structure of a cell-wall polysaccharide isolated from cotyledons of tora bean has been established by methylation analysis, Smith degradation, and enzymatic fragmentation. 1 7 2 The main features were those of a E-galacto-E-xylo-D-glucan where a (1+4)-8-P-glucan main chain is substituted at 0-6 by and 8-8-galactopyranosyl-E-xylopyranosyl residues. D-xylopyranosyl A further feature was the presence of (1+5)-a-L-arabinan side chains (degree of polymerization = 8 ) at some 0-3 positions of the main chain. A Q-xylo-E-glucan has been isolated from the cell walls of potato (Solanum tuberosum), and the methylation analysis and fragmentation results confirmed the usual structure. 73 Some of the g-xylose residues carried further substitution at 0-2 with L-arabinofuranosyl and 9-galactopyranosyl residues. The biosynthesis of the P-xylo-P-glucan in cultured soybean cells has been studied. 7 4 Two types were obtained from cultured cell walls (mol. wts. 1.8 x l o 5 and 6 x l o 4 ) and one from the culture medium, the molecular weight of which shifted from 6 x l o 4 to 3 x l o 4 during the progress of cultivation. The compositions were very similar and two kinds of oligosaccharide repeating units were present, namely a heptasaccharide (Q-xy1ose:D-glucose 3:4) and a nonasaccharide (?-galactose:&-fucose:;-xylose:Q-glucose (1:1:3:4)). Incubation of a particulate fraction from soybean ( 1 + 3 ) (1+4)-8-p-glucans. -
44
Carbohydrate Chemistry
3: Plant and Algal Polysaccharides
45
cells with UDP-14C-Q-glucose or UDP-I C-E-xylose produced a A. oryzae enzymes gave a labelled polymer.175 Digestion with labelled disaccharide characterized as isoprimeverose (4) by the usual methods. Since isoprimeverose is the smallest structural unit of D-xylo-q-glucan, the polymer can be synthesized from these nucleotide sugars. The results have been used as the basis of an 76 They have also assay for Q-xylo-P-glucan:q-xylosyltransferase.l been used to suggest that this transferase can be distinguished from other polysaccharide synthetase activities. The metabolism of polysaccharides by pea stem segments treated with and without auxin has been studied by a centrifugation technique.’ 7 7 Auxin enhanced the levels of e-xylose and ;-glucose in ethanol-insoluble polysaccharide, and these sugars were in a Q-xylo-;-glucan. Similar studies using ethene showed that this treatment lowered the amount of Q-xylo-9-glucan in ethanol-insoluble polysaccharides. 78 The vacuum u.v.-c.d. spectra of guar, tara, and carob p-galacto-E-mannans, which had D-galactose contents of 3 9 , 25,and 198, respectively,have been re~0rded.l~’A positive band at 169 nm and a negative band at 149 nm were observed whose relative intensities increased systematically with decreasing ;-galactose content for solid films. Some of the differences were attributed to conformational restriction of ;-galactose residues by chain packing with a consequent increase in the c.d. intensities from these residues and a cancellation of q-mannan backbone contributions. High-performance size-exclusion chromatography of guar gum has indicated that the molecular weight was >2.0 x 1O6.l8’ The seeds of AstraRalus sinicus contain a polysaccharide which ratio of 1:2.3 and a molecular weight has a p-galactose:p-mannose of 1.6 x 104.181 The results of methylation and Smith degradation analyses indicated that the P-galactopyranosyl residues were attached to 0-6 of the main chain but that both (1+3)-and (1+4)-linkages were present in the main c-mannan chain. Treatment of guar gum with an a-E-galactosidase has produced a polymer in which 75% of the E-galactose residues have been removed, but there was no reduction in viscosity.182 Further treatment did reduce the viscosity and led to D-mannan-type precipitates. The interaction of guar gum with xanthan gum is increased by removal of the Q-galactose residues. The chemical structure of the 2-galacto-q-mannan component of
46
Carbohydrate Chemistry
Trypanosoma cruzi has been determined by 13C n.m.r. spectroscopy and confirmed that B-IJ-galactofuranosyl residues were linked at the non-reducing terminus to 0-3 of P-mannose residues.’83 E-Galacto-g-mannans are the major storage reserve carbohydrate in the embryo of fenugreek but they are not mobilized during the first 24 h of germination. 84 A pure D-gluco-g-mannan has been recovered from the hot-water extract from Aloe barbadensis .185 The methylated polysaccharide (mol. wt. 1.5 x l o 4 ) contained residues of 2,3,4,6-tetra-, 2,3,6-tri-, and 2,3-di-g-methyl-P-mannose and 2,3,6-tri-g-methylD-glucose in the ratios 1.3:18.3:1.2:1.0. ;-Mannose was observed in hydrolysates of the holocellulose of Panicum coloratum leaves.186 The material containing this sugar residue was particularly resistant to extraction from the a-cellulose fraction. The conditions for the preparation of a rigid and homogeneous gel from Konjac mannan have been p ~ b 1 i s h e d . l ~ ~ Fractionation of cell-wall preparations from grass leaves has shown that the less dense fractions had a higher ;-xylan content as well as a higher content of lignin and acetyl residues. 88 Fully methylated P-xylan-type oligosaccharides have been analysed by mass spectrometry and the fragmentation patterns compared.189 Within the series of di- and tri-saccharides studied, the criteria proposed permitted reliable determinations of any of the theoretically possible branching points. The structure of the water-soluble 4-arabino-Q-xylan from delignified bark of Cinnamomum zeylanicum has been established.”’ The main (1+4)-B-;-xylan chain is substituted both at 0-2 and 0-3 with b-arabinofuranosyl and 3-C+a-~-xylopyranosyl-~-arabinofuranosyl groups. The isolation, purification,and partial characterization of a g-glucurono-L-arabino-;-xylan, a previously unobserved component of the primary cell wall of dicotyledonous plants, have been described.lgl It represents 5% of the wall and has the usual structural features of this type of hemicellulose. A procedure has been developed for the fractionation of the non-starchy polysaccharides of wheat bran.’ 9 2 Determination of the activity of Ca2+ ions bound to carboxy groups in the E-xylan from white willow has shown that 4-~-methyl-~-glucopyranosyluronic acid groups are concentrated in blocks where at least every second a-Q-xylopyranosyl residue
’
3: Plant and Algal Polysaccharides
47
contains a single uronic acid residue linked by a ( 1 + 2 ) bond.lg3 These acidic blocks alternate with blocks of unsubstituted D-xylose units which are three times as long. The hemicellulose contents of leaves, nodes,and internodes of wheat straw were similar.lg4 Ozone and sulphur dioxide at 70°C for 72 h solubilized virtually all the wheat hemicelluloses. 9 5 Results were also presented on the digestion of the hemicelluloses by rumen micro-organisms. Similar studies with rumen organisms have been carried out on NaOH-treated straw. l g 6 The hemicellulose content of cotton straw is reduced by 50% on treatment with ozone. l g 7 Auxin was found to have no effect on the structure of the L-arabino-q-xylans isolated from Avena coleoptiles. 9 8 The pentosans of pearl millet (Pennisetum americanum) have been separated into four fractions and each was found to contain varying amounts of seven sugar residues.lg9 Each fraction also contained protein. A mechanism for the oxidative gelation of the water-soluble pentosan of wheat flour has been proposed that suggests an attack by addition of a protein radical to the activated double bond of a ferulic acid residue.200 The substrate-binding site of the endo-(1-+4)-8-~-xylanase from the yeast Cryptococcus albidus has been investigated using a series of (1+4)-8-;-xylan oligosaccharides which were labelled with tritium at the reducing end.201 The substrate binding site is composed of four subsites with the catalytic groups located in the centre. As a consequence of an assymetric distribution of negative values of affinity around the binding site, the enzyme displays a strong preference to attack near the reducing end of the substrate. The mechanism of action was found to involve pathways other than a simple hydrolytic cleavage.202 Some IJ-xylosyl transfer occurred to increase the molecular size of the substrate and the transfer came from the non-reducing end of the molecule. All features of the degradation of oligosaccharides by this E-xylanase were consistent with the lysozyme-type reaction mechanism Particulate enzyme preparations obtained from homogenates of differentiated xylem cells from sycamore trees have catalysed the synthesis of a D_-xylan from UDP-q-xylose. 203 The polysaccharide had the expected structure. Various properties of the enzyme and its requirements were determined. The specific activity of the
.
48
Carbohydrate Chemistry
enzyme system increased markedly as cells differentiated from the vascular cambium to the xylem.204 The increase was closely correlated with the enhanced deposition of D-xylan occurring during the formation of secondary thickening. The control of hemicellulose synthesis during differentiation of vascular tissue in bean callus and hypocotyl has been investigated and the E-xylan synthetase induction correlated with the induction of phenylalanine ammonia-lyase and with lignin synthesis.*05 A cell-wall degrading agent has been isolated from Chlorella 206 and characterized as a (1+4)-8-Q-xylanase. Residual carbohydrates have been removed almost completely from milled wood lignin preparations of birchwood by treating with NaOH-dioxane. 2 0 7 Treatment with HC1-dioxane did not decrease the carbohydrate content. Studies using i.r. and n.m.r. spectroscopy indicated that a benzyl ester type of linkage existed between lignin and 'the carbohydrates. The lignin-carbohydrate complex from the milled wood lignin fraction of Pinus densiflora contained three sub-fractions on gel filtration.2 0 8 Two of the fractions were homogeneous and their compositions were determined. Methylation analysis showed that the carbohydrate moiety exhibited multiple branching with the major backbone being composed of (1+4)-p-mannan chains. A water-soluble lignin-carbohydrate complex has been released from jute (Corcharus capsularis) fibre by reduction with borohydride. * 0 9 Analysis of the pxylans from the original and borohydride-treated fibres indicated that 34% of the acidic side chains of the g-xylan were linked to lignin by ester bonds. Lignin-carbohydrate complexes have been released from wheat straw by prolonged hot-water extraction.2 The bound sugars were identified as g-glucose, 4-arabinose, q-xylose,and ;-galactose residues with uronic acids being absent. The higher molecular weight fractions were richer in !-glucose residues with the lower molecular weight ones being richer in E-xylose and 4-arabinose residues.
6 Pectins
A
high-performance gel-permeation chromatographic method has been developed to determine the molecular weight distribution of pectins.211 High-methoxy, low-methoxy,and amidated pectins can be analysed within 15 min.
3: Plant and Algal Polysaccharides
49
An investigation of oligo- and poly-galacturonic acids has been carried out by potentiometry and c.d.212 It was shown that no Ca2+ ion is ever fixed in excess of stoichiometry. The c.d. spectra, in spectroscopic data, suggested that, in agreement with 1 3 C n.m.r. dilute solutions, the polymer adopts two conformations. The gelation of pectin under conditions of low water activity has been investigated by c.d., competitive inhibition, and mechanical properties. 2 1 3 The optimum degree of esterification for pectin gelation under conditions of low water activity is 70%. The reduction in gel strength at lower degrees of esterification is not merely due to increased charge density but also results from the loss of a significant contribution which the ester group makes to the stability of the interchain junctions. Gel permeation chromatography, c.d., and viscosity measurements showed that appreciable aggregations of aqueous solutions of pectin occur at low concentrations in pectins of both low and high ester content . 2 1 The aggregation is independent of divalent cations. The Arrhenius slopes were greater at lower temperatures and they increase with conditions such as pH, ionic strength, concentration, and degree of esterification that are known to favour interchain association of pectin. The c.d. spectra at various pH values and in the presence of additives indicated that two modes of interchain association contribute to the network formation in calcium pectate gels.215 The first is by interchain chelation of Ca2+ ions and the second is by non-ionic interchain associations analogous to those in pectin gels with low water activity. The contribution of the latter type increases on lowering the pH, as the Ca2+ ion binding capacity is diminished and interchain electrostatic repulsions are minimized. The mechanical properties and thermal stability of a gel are a function of the proportion of each type. A relationship has been sought between the ability of various ions to inhibit growth and their ability to cause gelation of isolated pectins, their binding affinity for isolated cell walls, and their binding affinity for purified pectin.216 A good correspondence was found with the second factor. Pectic gel formation was not involved in cation-induced growth inhibition. The previously determined activity coefficients of Ca2+ ion in oligo-g-galacturonates were plotted and extrapolated to infinity.217 In molecular disperse solutions the binding of Ca2+ ions was electrostatic, whereas in aggregated molecules a chelate
Carbohydrate Chemistry
50
intermolecular binding also took place. The non-reducing terminal uronic acid residues bind Ca2+ ions less firmly than to the inner units of the chain. Lemon pectin and pectic acids have been hydrolysed into acid-soluble and acid-insoluble products and separated by gel filtration.*18 The latter product had a molecular weight of 3.03.2 x l o 4 whereas the former could be separated into two components (mol. wts. 2.2 -2.5 x l o 4 and < 6 x l o 3 ) . The larger of these two components contained only (1+4)-a-Q-galacturonan chains while the smaller contained residues of E-galacturonic acid and L_-rhamnose as well as other neutral sugars. Cell-wall material has been isolated from cabbage (Brassica oleracea) and methylated.21 Hydrolysis of the product and analysis of the fragments revealed some of the structural features many of which were derived from the pectin present. Two pectic fractions, comprising 52% of the cell wall, have been isolated from potatoes. 2 2 0 Both fractions contained a range of molecular types differing in composition. The more easily extracted fraction had a high 4-arabinose:E-galactose ratio as well as a high D-galacturonic acid content. The more easily extractable fraction was probably held by Ca2+ ion bonds. An endo-poly-2-galacturonanase from Aspergillus japonica has been used for the isolation and characterization of cell-wall pectic Methylation analysis of the four substances from potato tubers. fractions obtained by gel filtration was used to elucidate their structure. The two highest molecular size fragments had very similar compositions while the intermediate fraction had a very complex structure including P-galacturonic acid residues which were branched at C-3. Sequential extractions of Rosa glauca cell walls showed that two different types of acidic polysaccharide were present . 2 2 2 One was extracted with chelating agents while the other remained in close association with the a-cellulose fraction. A structurally complex pectic polysaccharide, k-rhamno-Pgalacturonan I, has been isolated from the primary cell wall of suspension-cultured sycamore cells. 223 The polysaccharide (mol. wt. 2 x l o 5 ) has the usual pectin backbone to which is attached a wide variety of side chains containing &-arabinosyl and/or P-galactosyl residues. Tomato pectin esterase has been used to prepare a high molecular weight pectin from citrus.224 The product from the free
’”
51
3: Plant and Algal Polysaccharides
ca.
enzyme had a degree of esterification of 2% whereas an immobilized enzyme gave a value of z . 1 9 8 . The molecular weight was lowered by less than 5% by the enzymatic treatments. The steric course of the methyl esterification reaction of a has been studied using 5-adenosylmethionine and an p-galacturonan enzyme preparation from Phaseolus a ~ r e u s .The ~ ~methyl ~ group of the methionine derivative was chiral, possessing 'H, 2H, and 3H substituents,and it was shown that transfer of the methyl group to the oxygen of the carboxy group proceeds with inversion of the configuration of the methyl group. mg g-l) was found in a wide variety of pectin Silica ( 1 . 4 - 2 . 3 samples. 226 Pectic substances were the major components of cell-wall material from pea flour and concentrates. 227 Detergent methods were shown to underestimate the pectin contents in a range of dietary fibres.228 For example, 50% of orange pectin was recovered in the acid-detergent residue and 38% in the neutral-detergent residue. Many of the physical properties of the dietary fibre from apples were shown to be due to the high pectin content.229 The interactions of bile acids and their conjugates with pectins of different degrees of esterification in the pH range 3.5-7.3 have spectroscopy, but no molecular been investigated by 'H n.m.r. interactions were apparent .23 O The pH-dependent interaction between pea cell-wall polymers possibly involved in wall deposition and growth has been investigated and there occurs, at neutral pH values, a pH- and time-dependent binding of soluble pectin, in the walls, to a heat-labile protein component of the wall.231 The reaction is also observed in water extracts of walls. The reaction is inhibited at low pH values and by Ca2+ ions and is lectin-like in nature. An elicitor of phytoalexin accumulation has been solubilized from cell walls of soybeans.232 The active material contains residues of E-galacturonic acid, L-rhamnose,and E-xylose and is probably pectic in origin. Similar elicitors could be prepared from suspension-cultured tobacco, sycamore, and wheat cells. A pectic polysaccharide, solubilized by the action of a fungal endo-(1+4)-a-~-galacturonanase from sycamore cell walls, possesses activity similar to the proteinase-inhibitor inducing factor isolated from tomato leaves.2 3 3 The synthesis and accumulation of proteinase inhibitor I in excised tomato leaves can be induced with oligosaccharides obtained by endo-(1+4)-a-D-galacturonanase -
52
Carbohydrate Chemistry
action of a pectic polysaccharide from tomato leaves .234 These oligosaccharides released by enzymic action at a wound or site of infection may play a hormone-like role in regulating plant defence responses in unwounded tissue some distance from the site of release. Pectic multienzyme preparations have been separated by h.p.1.c. using both isocratic and linear-gradient conditions.235 Three D_-galacturonanases have been isolated from carrots, two from root tissue and one from cell-suspension cultures.236 All three enzymes were of similar size (mol. wt. 4.8 x l o 4 > and were exo-enzymes. The only major differences were in the binding properties of the enzymes to cell-wall material. Pectic enzymes have been extracted from haustoria of Cassytha filiformis growing on Nerium indicum and Hibiscus rosa-sinensis and both strains contained exo-(1+4)-a-~-galacturonanase and exo-pectin methylgalacturonanase activity. 2 3 7 The two strains differed markedly in the production of lyase enzymes: the Nerium strain produced endo-pectic acid lyase while the Hibiscus strain produced endo-pectin lyase. 4 A g-galacturonanase (mol. wt. 3.6 x 10 ) has been isolated from Sodium citrus fruit infected with Penicillium italicum. 238 P-galacturonan was a better substrate than citrus pectin. The P-galacturonanase activity in seed cavity tissue from harvested cucumber fruit increases 20-fold after the fruit produces a transient burst of ethene during maturation.239 A single pectic enzyme, g-galacturonanase, is produced by Rhizoctonia solani in culture and during infection of cotton seedlings.240 The enzyme (mol. wt. 4.2 x l o 4 > has a pH optimum of 5.2.
The P-galacturonanase from Rhizopus stolonifer has been shown to be an elicitor of casbene synthetase activity in castor bean seedlings.241 The enzyme is a glycoprotein (mol. wt. 3.2 x lo4) and contains 20% carbohydrate. The principal sugar residues present are E-mannose (92%) and 2-amino-2-deoxy-~-glucose (8%) and the enzyme is an e n d o - h y d r ~ l a s e . ~ ~Other ~ features of the enzyme were reported. The active site of the endo-q-galacturonanase from tomato has been studied using oligo-2-galacturonic acids and their aldehydo derivatives.243 The relationship of the substrate chain length to the initial and maximum reaction rates was determined. The topology of the active site was suggested from the results. The
3: Plant and Algal Polysaccharides
53
;-galacturonanase of ripe tomatoes has been extracted in two isoenzyme forms, I and II.244 The enzymes have different properties although their polypeptides are similar. Green fruit contains a factor which can convert form I1 into form 1,and the amount of this factor increases during ripening. The characteristics of the pectin methylesterase from potato have been determined and the role of the enzyme in commercial dehydrated mashed-potato production has been examined. 2 4 5 Ca2+ ions. but not Mg2+ ions, retard solubilization. Texture measurements suggested a firming effect which could be attributed to Ca2+ ion release during pre-cooking and stabilization of Ca2+ ion bridges during cooling. The changes in pectinesterase activity and other pectin changes in mango varieties during storage and ripening have been investigated.246 In a study of the microbiology of wetwood, the importance of Clostridia species in the degradation of pectin has been assessed.247 High levels of pectinolytic enzymes were produced in culture filtrates of Phoma exigua and Graphium penicillioides isolated from decaying seeds of Phaseolus aureus and Cyamopsis tetragonalobus,respectively.248 The susceptibility of strawberry varieties to breakdown in sulphate liquor by the m-g-galacturonanase from Zygomycete spoilage fungi has been in~estigated.~~' Fruit waste containing de-esterified pectin as a thickener has been assessed for its potential use in canned products.250
7 Gums and Mucilages The carbohydrate gum from bael (AeRle marmelos) seeds has been resolved into four glycoprotein fractions. 2 5 1 One of these contained residues of :-galactose, !-glucose, L-arabinose, and &-rhamnose in the molar ratios 6:2:8:3. The linkages amongst these residues were determined as well as the anomeric configuration of the glycosyl residues. The structure of the linkage region was established as Q3-4-arabinopyranosyl-4-threonine. A histological and a histochemical comparison of the mucilages on the root tips of several grasses has been made,and it was concluded that there were two types.252 One is a gelatinous material originating from the root cap and the other is a firm uniformly thick mucilage overlying the columnar epidermal cells.
54
Carbohydrate Chemistry
Reactions of the outer layer and cell wall indicated that carboxy groups were present and these were absent from the inner mucilage. A mucous polysaccharide has been isolated from the bulbs of Narcissus t a ~ e t t a . ~It~ was ~ homogeneous and contained g-mannose and g-glucose residues in the ratio 5:l with a molecular weight of 1.19 x lo’. The g-acetyl content was 22.79,and these groups were present on C - 6 and on C-2 and C-6 of most p-mannose residues. The main chain is a (1+4)-B-g-hexopyran. The glycoprotein from neem (Azadirachta indica) gum (mol. wt. 1.3 x lo4) contained 50% carbohydrate.254 The sugar residues present were Q-mannose, 2-acetamido-2-deoxy-D-glucose, p-galactose, 4-arabinose, 4-fucose, q-xylose,and g-glucose in the ratios 14:13:5:3:1:1:1. The linkage between the carbohydrate and the protein was an y 4 - (2-acetamido-2-deoxy-8-D-glucopyranosyl) hydrogen L-asparaginate bond. Another glycoprotein from the same This material contained source contained only 19% ~arbohydrate.~’~ the same sugar residues in the ratio 4:3:2:3:2:1:1. The linkage region was the same. The mucilage of Opuntia ficus-indica and the partially degraded mucilage have been investigated by methylation analysis and periodate oxidation.256 The results show that the mucilage is composed of l,4-substituted a-D-galactopyranosyluronic acid and 1,2-substituted B-L-rhamnopyranosyl residues to which short chains of 1,6-substituted B-P-galactopyranosyl residues were attached at 0-4 of all of the &-rhamnopyranosyl residues. Most of the 9-galactosyl residues carry branches at 0-3 while some are branched at 0-4. Partial acid hydrolysis of this mucilage has e its polymeryielded ~ - ~ --~ - g a l a c t o p y r a n o s y l - ( 1 ’ 6 ) - ~ - g a l a c t o sand homologous trimer as well as fourteen oligosaccharides that contain L-arabinose residues and most of which have D-xylosyl residues at the non-reducing terminus.257 The oligosaccharides ( 6 ) and (7) were the most abundant, Similar studies have been reported on the mucilage of 0. aurantiaca with similar results.258 The gum exudates from some Prosopis species have been analysed by the Smith degradation procedure. 259 The degraded gums have chain was molecular weights of 6 x lo3. A simple (1+3)-!-galactan obtained after only two degradations showing that the skeleton was similar to those of Acacia gums. Autohydrolysis of the gum exudate from the Spondias dulcis tree gave a gum containing !-galactose, ;-arabinose,and D-galacturonic acid in the ratio 3:3:1.260 Three neutral and three acidic
3: Plant and Algal Polysaccharides
55
@-P-Xylp-(1+5)-a-&-AraL-(l-+5)-L-Araf (7)
Carbohydrate Chemistry
56
oligosaccharides were obtained and their structures characterized to suggest a sequence for the repeating unit. Chromium(V1) trioxide oxidation was used to determine the anomeric configuration of the sugar residues. 8 Algal Polysaccharides
Based on chemical shifts and C-H coupling constants from model molecules, the structural conformation of aqueous agarose solutions and gels has been determined from the 1 3 C n.m.r. spectra. 2 6 1 Similar studies on the agaroses of Pterocladia species and Gracilaria secundata have been reported and all signals in the spectra were assigned to various ;-galactose derivatives and agaro-oligosaccharides.26 The chemical composition and rheological properties of the agar isolated from Gelidium purpurascens before and after alkaline treatment have been reported .263 The D_-xylose, ;-glucose, and p-glucuronic acid residues in the agar were removed on alkaline treatment together with 86% of the protein. Sequential extraction of the alga accounted for low yields of agar as losses incurred on precipitation with ethanol. A method has been presented for the determination of the backbone conformations of polymer chains conforming to a given helical type.264 The method is illustrated by its application to agarose. The high resolution 13C n.m.r. spectra of slightly depolymerized alginates have been interpreted.265 The sequence of the monomer units k-guluronate (G) and p-mannuronate (M) markedly influences the chemical shifts. Some of the individual carbon resonances were resolved into four lines,which was evidence for a dependence on the identities of the units immediately before and after them in the polymer chain. The relative intensities of the signals permitted a rapid computation of the monomeric composition (M/G ratio), the composition of end units (M/G ratio), and the monomeric sequence in terms of a complete set of four diad and eight triad frequencies. Any region with a strictly alternating M and G sequence was very short. The cation-specific vacuum ultraviolet c.d. spectra of alginate solutions, gels, and solid films have been recorded.266 A band at 185 nm has been assigned to carboxy groups while those at 169 and 149 nm were assigned to changes in the polymer backbone.
*
-
3: Plant and Algal Polysaccharides
57
1-Carrageenan has shown substantial helix formation in the presence of Li', Na', and Me4N+ ions as measured by optical rotation, but the polymer does not gel. 2 6 7 Under identical Cs+,and NHq' ions. conditions, the polymer does gel with K+, Rb', Initially the individual The gel formation is in three stages. coils form double helices,then the double helices form domains, which finally form aggregates around the heavier Group I ions. A detailed assignment of the 13C chemical shifts of K and I-carrageenan in their Na' and K + forms has been given.268 Evidence for the conformational transition induced by temperature variation in the absence of any gel formation of K-carrageenan is also presented. The evidence is based on both n.m.r. and optical rotation experiments. Measurements of rigidity moduli and 39K and 23Na n.m.r. spectra have been used to investigate the roles played by Ca2+, K',and Na+ ions in 1-carrageenan gels. 2 6 9 Differences in binding were reflected in the rheological properties of the gels. Potassium 1-carrageenate gels have been prepared and studied by photon nm.270 The molecular and correlation spectroscopy at 633 vibrational motions of the gels were interpreted in terms of their elastic properties. Below the sol-gel transition temperature, oscillatory correlation functions were found with the frequency remaining constant for two weeks. Measurements of the shear modulus for Ca2+, K+, and Na+ 1-carrageenate gels as a function of biopolymer concentration and temperature showed that the Ca 2 + salt appears to possess a random glass-like structure whereas the K + and Na+ forms show a pseudocrystalline structure.271 The differences were tentatively attributed to differences in the solubility of the salt forms which, through controlling the gelation temperature, moderated the kinetics of the gelation process. The optical rotation and the conductivity of K-carrageenans in aqueous solutions have been investigated as functions of temperature in the presence of various electrolytes . 2 7 2 The activity coefficients of Na+ and K + ions have been determined and correlated with the conformation. The K + activity coefficient under ordered conformation is in agreement with a mechanism involving dimerization. The use of the carrageenan from the red alga Eucheuma striatum has been investigated as a possible substitute for agar in bacteriological tests. 2 7 3
58
Carbohydrate Chemistry
Neocarratetraose 4-2-monosulphate B-hydrolase has been isolated from cell-free extracts of Pseudomonas carrageenovora.2 7 4 The hydrolysis products are neocarrabiose and neocarrabiose 4-2-sulphate. The pathway for the sequential degradation of the tetrasaccharide was proposed. A-Carrageenan has been shown to have a hypotensive effect in the rat that was dependent on platelet stimulation.275 Also in rats, intraperitoneal injection of ellagic acid and carrageenan The reduced paw oedema induced by carrageenan itself.276 relationship between the anticoagulant activity and the pro- and anti-inflammatory mechanism in A-carrageenan-induced inflammation has been investigated.277 The gelation behaviour of solutions of chitosan on reaction with acid anhydrides has been studied, and the effects of the time to onset of gelation and of varying the nature and concentration of the anhydride, the chitosan concentration, the temperature,and the nature of the cosolvent were all examined.278 Gelation occurred due to the decreased solubility of the polymer molecules brought on by g-acylation,and all other parameters influenced the rate of N-acylation. The syneresis of the gels was examined. The degree of N-acylation required to initiate gelation depended on the molecular weight of the acyl anhydride and the concentrations of c h i t ~ s a n . ~The ~ ~ energy of activation of N-acylation was determined for tj-acetylation and N-hexanoylation. A mechanism was proposed for the gelation process. An i.r. spectroscopic method has been used to determine the amide content of highly deacylated chitosans.280 A plot of the ratio of absorbance at the amide band ( 1 6 5 5 cm-1) to the C-H stretch frequency (2867 cm-l) against the degree of deacetylation was linear in the deacetylation range 90-100%. The degree of N-acetylation of chitosan was rapidly determined by periodate oxidation and i.r. spectroscopic methods. 281 The i.r. methods gave higher results but were thought to be more reliable. A new method of chitin determination, based on deacetylation and g.1.c. analysis of the liberated acetic acid,has been applied to a variety of chitosans.282 The results were in good agreement with other methods even though the rate of deacetylation of some chitosans is 10 times that of others. A highly crystalline form of a-chitin has been found in the grasping spines of the marine worm Sagitta and been examined by electron microscopy and electron diffraction.283
3: Plant and Algal Polysaccharides
59
The chitin from carapace of Penaeus japonicus has been purified by a proteolytic enzyme from Pseudomonas malt~philia.'~~No deacetylation occurred and the protein content was reduced to virtually zero. The molecular weight of the enzymically prepared chitin was higher than that obtained by alkaline treatment. Polyelectrolytic complexes have been prepared from chitosan and sodium carboxymethylcellulose. 2 8 5 None were soluble in aprotic solvents but the series prepared at high pH values were more soluble in hot formic acid than those prepared at low pH values. The former were also different from the latter in the density of carboxy sites.286 A 'H n.m.r. method has been used to investigate the binding of methyl di-tj-acetyl-8-chitobioside to wheat-germ agglutinin. 2 8 7 The linewidth broadening of the methoxy protons allowed a calculation of kinetic association constants to be obtained. The bovine serum chitinase has been characterized as a true (l+4)-8-D-2-acetamido-2-deoxy-glucanase without any s - 8 - q - 2 acetamido-2-deoxy-glucosidase activity. 288 The purification and properties of the enzyme were reported. The chitin synthesizing system of insect tissue has been reported.289 A study on the adsorption of heavy-metal ions by chitin phosphate and chitosan phosphate has been made F g o The chemical composition of the porphyran from Porphyra columbina was in good agreement with data for similar polysaccharides. 29 One fraction had an optical rotation similar to that of the porphyran from P. capensis while the optical rotation of another fraction was similar to that of the phycocolloid of P. umbilicalis. The molar composition of the latter was D-galactose:6-~-methyl-D-galactose:3,6-anhydro-~ga1actose:sulphate in the ratio 1.00:~0.57:0.35:0.65. Several spectra could be assigned to various signals in the 'H n.m.r. anomeric protons. A biophotoreactor, using immobilized cells of Porphyridium cruentum in a polyurethane 'mousse', has been used to produce a capsular polysaccharide sulphate which is secreted into solution.29 Sulphated polysaccharides have been isolated from Caulerpa species and their function in wound healing has been assessed.293 Fucoidanase activities have been observed in fractions from the hepatopancreas of abalone. 2 9 4 The primary product from one enzyme
'
Carbohydrate Chemistry
60
was Ti-fucose while another enzyme gave a series of neutral oligosaccharides. Laminarin, L-fucans, and alginic acid have all been isolated from Dictyopteris p l a g i o ~ r a m m a . The ~ ~ ~ laminarin contained chains terminating in a !-glucose residue and those terminating in a The &-fucans were present in Q-mannitol residue in the ratio 3 : l . a variety of extracts and each had a slightly different ratio of ~-fucose:~-xylose:~-galactose:~-mannose:~-glucuronic acid:sulphate. The structural features elucidated were similar to those fromother L-fucans. Polysaccharide material from Eucheuma spinosum appears to consist of two different components containing low and high sulphate contents. 2 9 6 The major component had the higher sulphate content while the molecular sizes of the two polysaccharides were d i fferent A series of acidic oligosaccharides (8) (20) has been obtained by graded acid hydrolysis of the methylated acidic polysaccharide associated with the coccoliths of the alga Emiliania huxleyi: the above structures were characterized. 2 9 7 The results along with methylation data from the native, carboxyreduced, and desulphated carboxy-reduced polysaccharides have been used to give a proposed structure for this complex polymer.298 Glycogen accumulation in vegetative cells of the blue-green alga Anabaena is a light-dependent process.299 The amount of glycogen produced was high during sporulation and this increased with the onset of maturation of the spores. The amino-acids L-methionine, k-tyrosine, b-glycine, and k-histidine gave the greatest enhancement of glycogen accumulation in supplemented cultures although all the amino-acids examined had a positive effect.3 0 0 The storage D-glucans in and isoenzyme distribution of Cyanidium caldarium have been in~estigated.~” The observations propose this organism to be a primitive Rhodophytan which is an algal-bridge linking the prokaryotic blue-green and the red algae. It seems to be a true transitional organism between the nucleated and anucleated algae and is unlikely to be an endosymbiotic association of more than two cells as speculated elsewhere. Two major arsenical constituents of the brown kelp Ecklonia radiata have been isolated and characterized as
.
-
2-hydroxy-~-sulphopropyl-5-deoxy-5-(dimethylarsenoso)-furanoside
and 2,3-dihydroxypropyl-5-deoxy-5(dimethylarsenoso)-furanoside
.302
3: Plant and Algal Polysaccharides
61
a-E-GalpA-(1-+6)-a-D-Manp-(l+3)-E-Man (8)
E-GalpA- ( 1 -4)- p G a l p - (14 -Man ) (9)
~-GalpA-(1+4)-~-GalpA-(1-+2/6)-Manp-(1+3)-Man
(10)
g-GalpA- ( 1 +4 ) -g-GalpA- ( 1 +3 ) -E-Xyl (1 1 )
q-GalpA-( 1+2)-L=-Manp6Me-( 1+4)-!-GalpA-(
1+2)-&-Rha -
(12)
g-GalpA-( 1+2)-Manp-( l+&)-E-GalpA-( (13)
1+2)-L-Rha
62
Carbohydrate Chemistry
g-GalpA( 1 +2 ) -Manp- ( 1 +4) -E-GalA (16)
g-GalpA- ( 1 +2) -4-Manp6Me- ( 1 +4) -E-GalpA- ( 1 +2 ) -L_-ManGMe (17)
~-GalpA-(1+2)-~-Manp6Me-(1+4)-g-GalpA-(l-+2)-Man
(18)
3: Plant and Algal Polysaccharides
63
References 1
2 3 4 5 6 7 8
9 10 11
12 13
14 15 16 17
18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
'Biochemistry of Plants. A Comprehensive Treatise', ed. J.Preiss, Academic Press, New York, 1980, Vol. 3 (Carbohydrates: Structure and Funct iod. 'Mechanisms of Saccharide Polymerization and Depolymerization', ed. J.J.Marshal1, Academic Press, New York, 1980. H.F.Mark, An ew. Chem. Int. Ed. En l., 1981, 20, 303. T.L.Bluhm Res., 1981, 89, 1. G.Rappenecker and P.Zugenmaier, Carbohydr. Res., 1981, 89, 11. J. Metzger, Fresenius' Z. Anal. Chem., 1981, 308, 29. R.G.Stone and J.A.Krasowski, Anal. Chem., 1981, 53, 736. K.Kainuma and T.Ogawa, J. Chromatogr., 1981, 212, 126. B.G.Osborne and S.Douglas, J. Sci. Food A ric., 1981, 3 l , 328. T.Handa, H.Yajima, and, sT.- K 1980, 2, 1723 F.W.Fales, Biopolymers, 1980, 2,1535. J.N.BeMiller and G.W.Pratt, Cereal Chem., 1981, 58, 517. M.Nedelcheva, E.Valcheva, S. Bencheva, and V.Valchev, Starg,1981, 195. K.Kulp and K.Lorenz, Cereal Chem., 1981, 58, 46. K.Lorenz and K.Kulp, Cereal Chem., 1981, 58, 49. R.J.Kartchner and B.Theurer, J. Agric. Food Chem., 1981, 29, 8. F.R.Dintzis and C.C.Harris, Cereal Chem., 1981, 58, 467. D.J.O'Donnel1, J.J.H.Ackerman, and G.E.Macie1, J. Agric. Food Chem., 1981, 29, 514. S.Hizukuri, Y.Takeda, M.Yasuda, and A.Suzuki, Carbohydr. Res., 1981, 94, 205. D.J.Manners and N.K.Matheson, Carbohydr. Res., 1981, 90, 99. K.Lorenz and K.Kulp, Starch, 1981, 33, 183. J.Torp, J. Sci. Food Agric., 1980, 30, 1354. P.Meredith, Starch, 1981, 33, 40. C.G.Biliaderis, D.R.Grant, and J.R.Vose, Cereal Chem., 1981, 58, 496. C.G.Biliaderis, D.R.Grant, and J.R.Vose, Cereal Chem., 1981, 58, 502. R.T.Tyler, C.G.Youngs, and F.W.Sosulski, Cereal Chem., 1981, 58, 144. M.E.O.Labaneiah and B.S.Luh, Cereal Chem., 1981, 58, 135. S.K.Sathe, Y.Iyer, and D.K.Salunkhe, J. Food Sci., 1981, 4 6 , 1914. S.Umadevi and D.B.Wankhede, Starch, 1981, 33, 23. K.Kayisu, L.F.Hood, and P.J.Van Soest, J. Food Sci., 1981, E, 1885. P.J.Loos, L.F.Hood, and H.D. Graham, Cereal Chem., 1981, 58, 282. B.A.Keating, A.R.Breen, and J.P.Evenson, J. Sci. Food Uric., 1981, 32, 997. I.Geilinger, R.Amado, and H.Neukom, Starch, 1981, 33, 76. A.Suzuki, A. Hizukuri, and Y.Takeda, Cereal Chem., 1981, 58, 286. T.T.Y.Llu and J.C.Shannon, Plant Physiol., 1981, 9, 518. Y.Ikawa, D.V.Glover, Y.Sugimoto, and H.Fuwa, Starch, 1981, 33, 9. C.D.Boyer, P.A.Damewood, and E.K.G.Simpson, Starch, 1981, 33, 125. K.Lorenz, Starch, 1981, 33, 73. Y.Sugimoto, K.Yamada, S.Sakamoto, and H.Fuwa, Starch, 1981, 33, 112. S.U.Sajjan and D.B.Wankhede, Starch, 1981, 33, 153. W.N.Bnmerling and B.PfannemSller, Starch, 1981, 33, 202. M.Wootton and M.A.Chaudhry, Starch, 1981, 33, 135. M.Wootton and M.A.Chaudhry, Starch, 1981, 33, 168. M.Wootton and M.A.Chaudhry, Starch, 1981, 33, 200. M.Eeh, t.Stropnik, V.DoleEekxS.Leskovar, Starch, 1981, 33, 45. A.R.Khan, J.A. Johnson, and R. J.Robinson, Cereal Chem., 1979, 56, 303. J. J.Raffi, J.-P.L. Agwel , C.M.Fre'javille, and L.R.Saint-L'ebe, J. Agric. Food Chem., 1981, 3,548. A.A.Ilin, L.S.Galbraikh, and B.P.Morin, Cellul. Chem. Technol., 1980, 14, 327. KC.Baur and R. J.Alexander, Cereal Chem., 1979, 56, 364.
.-
I.
-
64
50 51
Carbohydrate Chemktry
.,
A.Beleia and E.Varriano-Marston, Cereal Chem., 1981, 58, 437. B. A.Marchylo, L. J. Lacroix, and J. E.Kruger , Plant Physiol 1981, 67,
89. P.Lehmann, and M.Grass1, 2. 52 E.-O.Haegele, E.Schiach, E.Rauscher, Chromatogr., 1981, 223, 69. 53 J.Hutney and M.Ugorski, Arch. Biochem. Biophys., 1981, 206, 29. 54 T.Yamanobe and Y .Takasaki, J. Agric. Chem. Sac. (Jpn.), 1979, 53, 77. 55 J.Daussant, B.Zbaszyniak, J.Sadowski, and I.Wiatroszak, Planta, 1981, 151, 176. 56 H.Bender, Eur. J. Biochem., 1981, 115, 287. 57 V.I.P.Batra and S.L.Mehta, Phytochemistry, 1981, 20, 635. 58 Y.Kano, N.Kunitake, T.Karakawa, H.Taniguchi, and M.Nakamura, Biol. Chem., 181, 45, 1969. 59 K.Menge1 and G.K.Jude1, Physiol. Plant., 1981, 5l, 13. 60 K.Okamoto and T.Akazawa, Plant Ph siol., 1980, 65, 81. 61 T.Baba, Y.Arai, E.Amano, and T.Itzh, Starch, 19K, 33, 79. 62 T.Baba, T.Yamamoto, Y.Arai, M.Yokota, and T.Itoh, Phytochemistry --20, 1513. 63 C.W.Chang, Microchem. J., 1981, 26, 86. 64 H.S.Saini and N.K.Matheson, Phytochemistry, 1981, 2,641. 65 G.L.Matters and C.D.Boyer, Phytochemistry, 1981, 20, 1805. 66 C.A.Adams, T.H.Broman, and R.W.Rinne, Ann. Botany, 1981, 48, 433. 67 J.Marriott, M.Robinson, and S.K.Karikari, J. Sci. Food ARric., 1981, 32, 1021. 68 E N . Sivak, J.S.Tandecarz, and C.E.Cardini , Arch. Biochem. Biophys., 1981, 212, 525. 69 M.N.Sivak, J.S.Tandecarz, and C.E.Cardini, Arch. Biochem. Biophys., 1981, 212, 537. 70 M.Stitt and H.W.Heldt, Plant Physiol., 1981, 68, 755. 71 M.Stitt and H.W.Heldt, Biochim. Biophys. Acta, 1981, 9,1. 72 D.Paton, Cereal Chem., 1981, 58, 35. 73 D.D.Christianson, J.E.Hodge, D.Osborne, and R.W.Detroy, Cereal Chem., 1981, 2,513. 74 K.Ishida and T.Takeuchi, ARric. Biol. Chem., 1981, 45, 1409. 75 T.A.McGuire, R.E.Wing, and W.M.Doane, Starch, 1981, 33, 138. 76 D.van Der Kooij and W.A.M.Hljnen, Appl. Environ. Mlcrobiol., 1981, 111, 216. 77 B.Lesyng and W.Saenger, Biochim. Biophys. Acta, 1981, 678, 408. 78 K.Harata, Bull. Chem. SOC. Jpn., 1980, 53, 2782. 79 K.Harata, K.Uekama, M.Otagiri, F.Hirayama, and H.Ogino, Bull. Chem. SOC. Jpn., 1981, 54, 1954. 80 M.Komiyama and H. Hirai, Bull. Chem. Soc. Jpn., 1981, 2,828. 81 Y.Inoue and Y.Miyata, Bull. Chem. Sac. Jpn., 1981, 54, 809. 82 H.Shimizu, A.Kaito, and M.Hatano, Bull. Chem. Sac. Jpn., 1981, 54, 513. 83 W.G.Burkert, C.N.Owensby, and W.L.Hinze, J. Llq. Chromatogr., 1981, 2, 1065. 84 M.Komiyama and H.Hirai, Bull. Chem. Sac. Jpn., 1981, 54, 2053. 85 R.H.Marchessault, T.Bleha, Y.Deslandes, and J.F.Revo1, Can. J. Chem., 1980, 58, 2415. 86 P.G.Bhat and T.N.Pattabiraman, Indian J. Biochem. Biophys., 1980, l7, 338 87 R.J.Henry and B.Darbyshire, Proc. Austral. Biochem. Soc. , 1980, 13, 70. 88 N.Shiomi, Phytochemistr , 1981, 20, 2581. 89 T . T a k e n a k a M J. Agric. Chem. Soc. Jpn., 1980, 2,945. 90 H.Mark, Csllul. Chem. Technol., 1980, 2,569. 91 D.M.Lee a n d o l y m e r s , 1981, 20, 2165. 92 P.K.Chidambareswaran, S.Sreenivasan, N.B.Pati1, and H.T.Lokhande,J. Pol er Sci. Pol er Lett., 1980, l8, 603. J. Biol. Macromol., 1981, 3, 201. 93 -R.E 94 A.Hirai, R.Kitamaru, F.Horii, and I.Sakurada, Cellul. Chem. Technol.,
65
3: Plant and Algal Polysaccharides 95
A.D.Bain,
84,
1.
D.R.Eaton,
R.A.Hux,
and J.P.K.Tong,
Carbohydr.
Res., 1980,
97
J.P.Joseleau, G.Chambat, and B.Chumpitazi-Hermoza, Carbohydr. Res., 1981, 90, 339. T.J.Baker, L.R.Schroeder, and D.C.Johnson, Cellul. Chem. Technol.,
98 99
J.Schmidt, M.John, and C.Wandrey, J. Chrmatogr., 1981, 213, 151. J.Herranz, C.Vida1-Valverde, and E.Rojas-Hidalgo, J. Food Sci., 1981,
100 101 102 103 104 105 106 107 108
111
XLewin and I.Ziderman, Cellul. Chem. Technol., 1980, l4, 743. I.Ziderman, Cellul. Chem. Technol., 1980, fi, 703. B.Larsson and O.Samuelson, Cellul. Chem. Technol., 1981, 15, 237. A.H.Conner, Biotechnol. Lett., 1980, 2, 439. P.&nsson .nevS-na Papperstidn., 1981, 84, 15. S.Hunt and T.N.Huckerby, Int. J. Biol. Macromol., 1980, 2, 389. A.Ebringerova and J.Pastyr, Cellul. Chem. Technol., 1980, 14, 885. S.P.Rowland, Cellul. Chem. Technol., 1980, l4, 423. G.Romarin, A.Cernatescu-Asandei, and M.Diaconescu, Cellul. Chem. Technol., 1980, l4, 719. B.Philipp and H.Frommelt, Cellul. Chem. Technol., 1980, 2, 831. C.Vasiliu-Oprea, C.Negulianu, M.Popa, F.Weiner, and J.Nicoleanu, Cellul. Chem. Technol., 1980, 2, 655. M.Takai, Y.Nakahara, J.Hayashi, and J.R.Colvin, Cellul. Chem. Technol.,
112
A.G.Matthysse,
113
H.Sakuma, S.Munakata, and S.Sugawara,
114 115
118
P.Fang, G.D.McGinnis, and W.W.Wilson, Anal. Chem., 1981, 53, 2172. V.Luzakova, M.Kosik, O.Minoo, and A.Blazej, Cellul. Chem. Technol., 1980, l4, 677. A.R.White and R.M.Brown, Proc. Natl. Acad. Sci. USA, 1981, 2, 1047. A.Marzetti, B.Focher, L.D'Angiuro, and V.Sarto, Cellul. Chem. Technol., 1981, l5, 3. R.Tanaka, F.Yaku, E.Muraki, and T.Koshijima, Cellul. Chem. Technol.,
119
B.Slutzky, A.R.Lara,
96
109 110
116 117
120
1981,
3, 311.
46, 1927.
1981,
3, 153.
583.
K.V.Holmes,
and R.H.G.Gurlitz,
443.
1980, l4, 859.
14,
361.
J. Bacteriol., 1981,
Agric.
and R.Lope)z-Planes, Cellul.
Biol.
145,
Chem., 1981, 4 5 ,
Chem. Technol., 1980,
121
S.M.Betrabet, K.M.Paralikar, and N.B.Pati1, Cellul. Chem. Technol., 1980, l4, 811. A.A.Klesov and S.Yu.Grigorash, Biochemistry (Engl. Transl.) , 1980, 9,
122
D.Knappert, H.Grethlein, and A.Converse, Biotechnol. Bioeng.,
123
D.E.Koehler,
124 125 126 127 128
E.Baath and B.Soederstroem, Can. J. Bot., 1980, 58, 422. T.R.Bandre and V.Sasek, Curr. Sci., 1981, 50, 229. J.Dekker and J.K.Palmer, J. Uric. Food Chem., 1981, 29, 480. H.Quader, Naturwissenschaften, 1981, 68, 428. H.Meier, L.Buchs, A.J.Bucha.la, and T.Homewood, Nature (London), 1981,
129 130 131 132 133 134 135
166.
1449.
L.N.Lewis,
1981, 20, 409.
289,
L.M.Shannon,
and M.L.Durbin,
1980, 22,
Phytochemistry,
821.
A.S.Klein, D.Montezinos, and D.P.Delmer, Planta, 1981, 152, 105. M.Benziman, C.H.Haigler, R.M.Brown, A.R. White, and K.M.Cooper, Natl. Acad. Sci. USA, 1980, 77, 6678. R.V.S.Sundaresan and W.C.Kimmins, Ann. Bot., 1981, 47, 283. N.N.Bhandari, M.Bhargava, and T.A.Geier, Ann. Bot., 1981, 48, 425. M.A.Yamin, Science, 1981, 211, 58. J.Gormally, J.Panak, E.Wyn-Jones, A.Dawson, D.Wedlock, and G.O. Phillips, Anal. Chim. Acta, 1981, 130, 369. M.Tepfer and I.E.P.Taylor, Science, 1981, 213, 761.
m.
Carbohydrate Chemistry
66 136 137 138 139 140 141
V.M.Laube R.R.Mod,
56, 356.
and S.M.Martin, E.J.Conkerton,
Appl. Environ. Microbiol., 1981, 3,413. R.L.Ory, and F.L.Normand, Cereal Chem., 1979,
S.Kawasaka, Plant Cell Physiol., 1981, 22, 431. G.Manda1 and A.Das, Carbohydr. Res., 1980, 86, 247. S.C.Churms, A.M.Stephen, and I.R.Siddiqui, Carbohydr.
119.
Res.,
1981, 94,
142 143 144 145 146 147 148 149
G.-J.Van Holst, F.M.Klis, P.J.M.De Wildt, C.A.M.Hazenberg, J.Bu ijs, and D.Stegwee, Plant Physiol., 1981, 910. G.-J.Van Holst and F.M.Klis, Plant Physiol., 1981, g , 979. M.A.Jennyn, Proc. Austral. Biochem. SOC., 1981, l4, 29. Y.Akiyama and K.Kato, Phytochemistry, 1981, 20, 2507. K.Nishitani and Y.Masuda, Physiol. Plant., 1981, 52, 482. T.Hoson and S.Wada, Plant Cell Ph siol., 1981, 22, 989. A.Strahm, R.Amado, and-chemistry, 1981, 20, 1061 M.A.O’Neil1 and K.Roberts, Phytochemistry, 1981, 20, 25. A.A.Salyers, R.Arthur, and A.Kuritza, J. Agric. Food Chem., 1 981, 29,
150 151 152 153 154 155 156
K.Ogawa, K.Okamura, and A.Sarko, Int. J. Biol. Macromol., 1981, 2, 31. A.J.Stipanovic and E.S.Stevens, Int. J. Biol. Macromol., 1980, 2, 209. P.J.Wood, Carboh dr. Res., 1980, 85, 271. S.A.Jensen-, Carlsberg Res. Commun., 1981, 2, 87. N.Prentice and S.Faber, Cereal Chem., 1981, 58, 77. T.K.Ghosh and C.C.V.N.Rao, Carboh dr. Res., 1981, 90, 243. N.Nakamura, K.Yoshida, andtnCell Physiol., 1980, 21,
157 158 159 160 161 162 163 164
N.Nakamura and H.Suzuki, Ph tochemistr w ’ 19’” 209 981* I.N.De Halac, Ann. Bot., 1 N.J.L.Roth, G.H.Watts, and C.W.Newman, Cereal Chem., 1981, 58, 245. K.Cline and P.Albersheim, Plant Ph siol., 1981, 68, 207. K.Cline and P.Albersheim. Plant Ph;siol., 1981, 221. D.J.Huber and D.J.Nevin.9, Planta, 1981, 151,206. A.Bacic and D.P.Delmer, Planta, 1981, 152, 346. J.A.Cook, G.B.Fincher, F.Keller, and B.A.Stone, Proc. Austral. Biochem.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
R.J.Henry and B.A.Stone, Proc. Austral. Biochem. SOC., 1981, M.F’evre and M.Rougier, Planta, 1981, 151, 232.
180 181 182 183 184 185 186 187
s,
475.
1383.
s,
1979,
2, 13.
2, 49.
R.Yamamoto and D.J.Nevins,>Ph siol. Plant., 1981, 5 l , 118. B.G.Sutton, I.P.Ting, and - R Physiol., 1981, 68, 784. Y.Kato and K.Matsuda, Agric. Biol. Chem., 1980, 44, 1751. Y.Kato and K.Matsuda, Agric. Biol. Chem., 1980, 44, 1759. K.Ohtani and A.Misaki, Agric. Biol. Chem., 1980, 114, 2029. S.G.Ring and R.R.Selvendran, Ph tochemistr , 1981, 20, 2511. T.Hayashi, Y.Kato, and K.Mats-1 Physiol., 1980, 5, 1405. T.Hayashi and K.Matsuda, Plant Cell Physiol., 1981, 22, 517. T.Hayashi, Y.Kato, and K.Matsuda, J. Biochem. (Toyko), 1981, 3,325. M.E.Terry, R.L.Jones, and B.A.Bonner, Plant Physiol., 1981, 68, 531. M.E.Terry, B.Rubinstein, and R.L.Jones, Plant Physiol., 1981, 68, 538. L.A.BuPPington, E.S.Stevens, E.R.Morris, and D.A.Rees, Int. J. Biol. Macrmol., 1980, 2, 199. H.G.Barth and D.A.Smith, J. Chromatogr., 1981, 206, 410. H.Kusunose and M.Sawamura, J. kric. Chem. Sac. Jpn., 1980, 54, 849. B.V.McCleary, R.Amado, R.Waibe1, and H.Neukom, Carbohydr. Res., 1981,
92, 2699
P.A.J.Gorin, E.M.Barreto-Bergter, and F.S.Da Cruz, Carbohydr. Res., 1981, 88, 177. D.W.M.Leung, J.D.Bewley, and J.S.G.Reid, Planta, 1981, 153,95. G.Manda1 and A.Das, Carbohydr. Res., 1980, 87, 249. W.D.Pitman, E.J.Soltes, and E.C.Holt, Phytochemistry, 1981, 20, 1129. Y.Ota and K.Maekaji, J. Agric. Chem. SOC. Jpn., 1980, 54, 741.
67
3: Plant and Algal Polysaccharides 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
210
21 1
212 213
214 215 216 217 218 219 220
A.H.Gordon and J.S.D.Bacon, Biochem. J., 1981, 193,765. V.Kov&ik, V.Mihalov, and P.Kov&E, Carbohydr. Res., 1981, 88, 189. J. P.Gowda, D.C.Gowda, and Y .V. Anjaneyalu, Carbohydr Res 1980, 87, 241. J.E.Darvil1, M.McNei1, A.G.Darvil1, and P.Albersheim, Plant Physiol., 1980, 66, 1135. J.M.Brillouet and C.Mercier, J. Sci. Food Mric., 1981, 3l, 243. R.Tman, R.Kohn, A.Malovikova, and J.Rosik, Collect. Czech. Chem. Commun., 1981, 46, 1405. S.H.T.Harper and J.M.Lynch, J. Sci. Food Agric., 1981, 32, 1057. D.Ben-Ghedalia and J.Miron, J. Sci. Food Agric., 1981, 2,224. A.Chesson, J. Sci. Food Agric., 1981, 32, 745. D.Ben-Ghedalia, G.Sheffet, and J.Miron, J. Sci. Food Uric., 1980, 30, 1337R.Yamamoto, N.Sakurai, K.Shibata, and Y.Masuda, Plant Cell Physiol., 1980, 2l, 373. A.V.Bailey and G.Smrel1, Cereal Chem., 1979, 56, 295. R.C.Hoseney and J.M.Faubion, Cereal Chem., 1981, 421. P.Biely, Z.Krgtky, and M.VrSansk6, Eur. J. Biochem. 1981, 119, 559. P.Biely, M.VrGanova‘, and Z.Kr&ky’, Eur. J. Biochem., 1981, 119, 565. G.Dalessandro and D.H.Northcote, Planta, 1981, 151,53. G.Dalessandro and D.H.Northcote, Planta, 1981, 151, 61. G.P.Bolwel1 and D.H.Northcote, Planta, 1981, 152, 225. G.Touet and H.G.Aach, Naturwissenschaften, 1979, 66, 525. K.Lundquist, R . S i m o n s o w S v e n . Papperstidn., 1980, 83, 452. J.I.Azuma, N.Takahashi, and T.Koshijima, Carbohydr. Res., 1981, 93, 91. N.N.Das, S.C.Das, A.S.Dutt, and A.Roy, Carbohydr. Res., 1981, 94, 73. Y.Vered, O.Milstein, H.M.Flowers, and J.Gresse1, Eur. J. Appl. Microbiol. Blotechnol., 1981, l2, 183. H.G.Barth, J. Li Chromato r., 1980, 3, 1481. G.Ravanat and M-olymers, 1980, 2,2209. E.R.Morris, M.J.Gldley, E.J.Murray, D.A.Powel1, and D.A.Rees, Int. J. Biol. Macromol., 1980, 2, 327. M.A.F.Davls, M.J.GIdley, E.R.Morris, D.A.Powel1, and D.A.Ree.3, Int. J. Biol. Macromol., 1980, 2, 330. M.J.Gidley, E.R.Morris, E.J.Murray, D.A.Powel1, and D.A.Rees, Int. J. Biol. Macromol., 1980, g, 332. M.Tepfer and I.E.P.Taylor, Can. J. Bot., 1981, 59, 1522. R.Kohn and A.Maloiikova/, Collect. Czech. Chem. Commun., 1981, 46, 1701. H.Konno, Y.Yamasaki, and J.Ozawa, Agric. Biol. Chem., 1980, 2195. B.J.H.Stevens and R.R.Selvendran, J. Sci. Food Agric., 1980, 30, 1257. M.C.Jarvis, M.A.Hal1, D.R.Threlfal1, and J.Friend, Planta, 1981, 152, 93 S.Ishii, Phytochemistry, 1981, 20, 2329. G.Chambat, J.-P.Joseleau, and F.Barnoud, Phytochemistry, 1981, 20, 241. M.McNei1, A.G.Darvil1, and P.Albersheim, Plant Physiol., 1980, 1128. O.Markovic, R.Kohn, and O.Luknar, Collect. Czech. Chem. Commun., 1981, 46, 266. R.W.Woodward, J.Weaver, and H.G.Floss, Arch. Biochem. Biophys., 1981, 207, 51. N.F.Khali1 and H.J.Duncan, J. Sci. Food ric., 1981, 32, 415. R.D.Reichert, Cereal Chem.,* P.S.Belo, jun. and B.O.De Lumen, J. Agric. Food Chem., 1981, 29, 370. R.Gormley, J. Sci. Food kric., 1981, 2,392. P.E.Pfeffer, L.W.Doner, P.D.Hoagland, and G.C.McDonald, J. Agric. Food 1981, 29, 455. G.W.Bates and P.M.Ray( Plant Physiol., 1981, 68, 158. M.G.Hahn, A.G.Darvi1, and P.Albersheim, Plant Physiol., 1981, 68, 1161.
.
.,
s, ,
.
s,
0
221 222 223 224 225 226 227 228 229 230 23 1 232
z,
-
w.,
Carbohydrate Chemistry
68 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
248 249 250 25 1 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
C.A.Ryan, P.Bishop, G.Pearce, A.G.Darvil1, M.McNei1, and P.Albersheim, Plant Physiol., 1981, 68, 616. P.D.Bishop, D.J.Makus, G.Pearce, and C.A.Ryan, Proc. Natl. Acad. sci USA, 1981, 78, 3536. O.Mike8 , J.SedliEkova', L.Rexovk-Benkovi, and J.Omelkova'. J. Chromatogr.,, 1981, =,.99. H.Konno, K.Khtoh, and Y.Yamasaki, Plant Cell Physiol., 1981, 22, 99 A.S.Reddy, M.Komraiah, and S.M.Reddy, Curr. S c i . , 1981, 50, 283. C.R.Barmore and G.E.Brown, PhytopatholoRy, 1981, 7 l , 328. M.E.Saltveit and R.F.McFeeters, Plant Physiol., 1980, 66, 1019. L.W.Brookhouser, J.G.Hancook, and A.R.Weinhold, Phytopathology 70, 1039. S.C.Lee and C.A.West, Plant Physiol., 1981, 9,633. S.C.Lee and C.A.West, Plant Physiol., 1981, 67, 640. 0.Markovic and A.Slez&ik, Collect. Czech. Chem. Commun. 1981 4 6 , 525 G.A.Tucker, N.G.Robertson, and D.Grierson, Eur. J. Biochem., 1981, 9, 87. K.H.Moledina, M.Haydar, B.Ooraiku1, and D.Hadziyev, J. Sci. Food Agric., 1981, 32, 1091. M.Ashraf, N.Khan, M.Ahmed, and M.Elahi, J. Agric. Food Chem., 1981, 29, 526. B.Schink, J.C.Ward, and J.G.Zeikus, Appl. Environ. Microbiol., 42, 526. KA.S.Chary and S.M.Reddy, Curr. S c i . , 1980, 49, 557. J.E.Harria and C.Dennis, J. Sci. Food Agric., 1981, 3 l , 87. C.I.Speir.9, G.C.Blackwood, and J.R.Mitchel1, J. Sci. Food Agric., 30. 1287. . P.K.Manda1 and A.K.Mukherjee, Carbohydr. Res., 1981, 90, 233. N.K.Miki, K.J.Clarke, and M.E.McCully, Can. J. Bot., 1980, 58, 258 M.Tomoda, M.Yokoi, A.Torigoe, and K.Maru, Chem. Pharm. Bull., 1980, 28, 3251. B.R.Nayak and T.N.Pattabiraman, Indian J. Biochem. Biophys., 1980, 17, 222. B.R.Nayak and T.N.Pattabiraman, Indian J. Biochem. Biophys., 1981, l8, 202. D.McGarvie and H.Parolis, Carbohydr. Rea., 1981, 88, 305. D.McGarvie and H.Parolis, Carbohydr. Res., 1981, 94, 57. D.McGarvie and H.Parolis, Carbohydr. Res., 1981, 94, 67. S.C.Churms, E.H.Merrifield, and A.M.Stephen, Carbohydr. Res., 198 261. S.Basu and C.V.N.Rao, Carbohydr. Res., 1981, 94, 215. F.H.Nicolaisen, I.Meyland, and K.Schaumburg, Acta Chem. Scand., B34. 103. &. D.J.Brasoh, C.T.Chuah, and L.D.Melton, Aust. J. Chem., 1981, 34, J.N.C.Whyte and J.R.Englar, Phytochemistry, 1981, 20, 237. S.A.Foord and E.D.T.Atkins, Int. J. Biol. Macromol., 1980, 2, 193. H.Grasdalen, B.Larsen, and O.Smidsrdd, Carbohydr. Res., 1981, 3,179. J.N.Liang, E.S.Stevens, S.A.Frangou, E.R.Morris, and D.A.Rees, Int. J. Biol. Macromol., 1980, 2, 204. G.Robinson, E.R.Morris, and D.A.Rees, J. Chem. Soc., Chem. Commun., 1980, 152. C.Rochas, M.Rinaudo, and M.Vincendon, Biopolymers, 1980, l9, 2165. V.J.Morris and P.S.Belton, J. Chem. Soc., Chem. Commun., 1980, 983. V.J.Morris and K.S.Fancey, Int. J. Biol. Macromol., 1981, 3, 213. V.J.Morris and G.R.Chilvers, J. Sci. Food Agric., 1981, 32, 1235. C.Rochas and M.Rinaudo, Biopolymers, 1980, l9, 1675. E.C.Epifanio, R.L.Veroy, F.Uyenco, G.J.B.Cajipe, and E.C.Laserna, . &JA Envlron. Hicrobiol., 1981, 5, 155. M.W.McLean and F.B.Williamson, Eur. J. Biochem., 1981, 113,447. E.Deflandre and J.Damas, C. R. Seances SOC. Biol. Ses Fil., 1980, 174,
-.
-
-
_
_
_
,
&I
071-
_
~
,
~
69
3: Plant and Algal Polysaccharides 276 277 278 279 280
J.Damas and G.Volon, C. R. Seances SOC. Biol. Ses Fil., 1979, 173, 637. J.Damas, C. R. Seances Soc. Biol. Ses Fil., 1981, 175, 269. G.K.Moore and G.A.F.Roberts, Int. J. Biol. Macromol., 1980, 2, 73. G.K.Moore and G.A.F.Roberts, Int. J. Biol. Macromol., 1980, 2, 78. M.Miya, R.Iwamoto, S.Yoshikawa, and S.Mima, J. Biol. Macromol.,
28 1 282 283
G.K.Moore and G.A.F.Roberts, Int. J. Biol. Macromol., 1980, 2, 115. Z.Holan, J.Votruba, and V.Vlas&kovQ, J. Chromatogr., 1980, 190, 67. E.D.T.Atkins, J.Dlugosz, and S.Foord, Int. J. Biol. Macromol., 1979,
284 285 286 287 288
M.Ikeda and K.Shimahara, J. Agric. Chem. SOC. Jpn., 1978, 52, 355. H.Fukuda and Y.Kikuchi, Makromol. Chem., 1979, 180, 1631. H.Fukuda, Bull. Chem. Sac. Jpn., 1980, 22, 837. J.-P.Grivet, F.Delmotte, and M.Monsigny, G.Lundblad, M.Elander, J.Lind, and K.Slettengren, Eur. J. Biochem.,
289 290 291 292 293
A.Vardanis, Biochim. Biophys. Acta, 1979, 588, 142. T.Sakaguchi, T.Horikoshi, and A.Nakajima, J. Agric. Chem. Soc. Jpn., 1979, 53, 149. L.H.Villarroe1 and A.B.Zanlungo, Carbohydr. Res., 1981, 88, 139. C.Gudin and D.Thomas, D.B.Hawthorne, T.W.Dreher, and B.R.Grant, Proc. Austral. Biochem. SOC.,
294
T.Fujikawa, K.Koyabu, and M.Wada, J.
295 296 297
E.Perciva1, M.A.Rahman, and H.Weige1, Ph tochemistr 1981, 20, 1579. H.K.Tong, K.H.Lee, and H.A.Wong, Carbohyir. Res., 1;81, 88, %8. A.M.J.Fichtinger-Schepman, J.P.Kamerling, C.Versluis, and J.F.G.Vliegenthart, Carbohydr. Res., 1980, 86, 215. A.M.J.Fichtinger-Schepman, J.P.Kamerling, C.Versluis, and J.F.G.Vliegenthart, Carbohydr. Res., 1981, 93, 105. T.A.Sanna and S.Kanta, 2. ALlRem. Mikrobiol., 1979, l9, 571. T.A.Sarma and S.Kanta, Z. Ablgem. Mikrobiol., 1980, 20, 653. J.Seckbach and J.F.Frederick, Microbios, 1980, 29, 135. J.S.Edmonds and K.A.Francesconi, Nature (London), 1981, 28q, 602.
298 299 300 30 1 302
1980,
2,
323.
29
1979,
100, 455.
1980,
3, 132-
87.
Agric. Chem. Soc. Jpn.,
,
1979,
1,
2,
Micro bial Polysaccharides BY C.A. WHITE 1
T e i c h o i c Acids
A review h a s s u m m a r i z e d t h e b i o s y n t h e s i s , a s s e m b l y , a n d l o c a t i o n o f t e i c h o i c and t e i c h u r o n i c acids, which i n c l u d e s t h e b i o s y n t h e s i s o f l i p o t e i c h o i c a c i d s and t h e i r involvement i n t e i c h o i c a c i d biosytheses.’ M e m b r a n e s f r o m B a c i l l u s s u b t i l i s W23 s y n t h e s i z e d a l i p i d precursor of the linkage unit that attaches teichoic acid t o the cell wall I t c o n t a i n e d glycerophosphoryl-2-acetamido-2-deoxy-~g l u c o s e , l i n k e d t h r o u g h a n a c i d - l a b i l e bond t o a l f p i d . Glycerol-3-phosphate c y t i d y l y l t r a n s f e r a s e , Q-ribitol-5phosphate cytidylyltransferase, and p o l y ( r i b i t o 1 phosphate) s y n t h e t a s e a c t i v i t i e s have been measured i n c u l t u r e s o f B a c i l l u s s u b ti l i s W23 a s t h e y became p h o s p h a t e - s t a r v e d e i t h e r i n b a t c h c u l t u r e o r d u r i n g changeover from p o t a s s i u m l i m i t a t i o n t o p h o s p h a t e l i m i t a t i o n i n a ~ h e m o s t a t . ~The r e s u l t s i n d i c a t e d t h a t r e p r e s s i o n o f s y n t h e s i s o f a l l t h r e e enzymes o c c u r r e d a t t h e o n s e t o f p h o s p h a t e s t a r v a t i o n a n d t h a t t h i s was a c c o m p a n i e d by i n h i b i t i o n o r i n a c t i v a t i o n o f glycerol-3-phosphate c y t i d y l y l t r a n s f e r a s e and poly(ribito1 phosphate) synthetase. T h e s e r e s u l t s show t h a t t h e i n i t i a l response t o phosphate s t a r v a t i o n i n v o l v e s more than Syntheses of both i n h i b i t i o n o f o n e enzyme as p r e v i o u s l y proposed. linkage u n i t and p o l y ( r i b i t o 1 phosphate) are i n h i b i t e d independently. P r o t o p l a s t s o f B a c i l l u s s u b t i l i s W23 r e a d i l y s y n t h e s i z e d r i b i t o l t e i c h o i c acid from n u c l e o t i d e p r e c u r s o r s i n t h e s u r r o u n d i n g medium. W i t h C D P - r i b i t o l t h e y made p o l y ( r i b i t o 1 p h o s p h a t e ) , p r e s u m a b l y a t t a c h e d t o l i p o t e i c h o i c a c i d ~ a r r i e r :w~h e n C D P - g l y c e r o l were a l s o p r e s e n t , a 1 0 - f o l d a n d UDP-2-acetamido-2-deoxy-Q-glucose increase i n the r a t e of polymer s y n t h e s i s occurred, and t h e product c o n t a i n e d both t h e main c h a i n and t h e l i n k a g e u n i t . S y n t h e s i s was i n h i b i t e d by t r y p s i n o r 4 - c h l o r o m e r c u r i b e n z e n e s u l p h o n a t e i n t h e
.’
4: Microbial Polysaccharides
71
and i t was concluded t h a t i t occurred a t t h e o u t e r s u r f a c e During s y n t h e s i s , which was a l s o achieved r e a d i l y by whole c e l l s a f t e r a b r i e f p e r i o d o f w a l l l y s i s , t h e CMP p o r t i o n of t h e n u c l e o t i d e p r e c u r s o r s d i d n o t pass through t h e membrane. No evidence was o b t a i n e d f o r a t r a n s p h o s p h o r y l a t i o n mechanism f o r t h e I t was s u g g e s t e d t h a t r e a c t i o n w i t h translocation process. exogenous s u b s t r a t e s was due t o t e m p o r a r y e x p o s u r e of a p r o t e i n component of t h e enzyme complex a t t h e o u t e r s u r f a c e of t h e membrane d u r i n g t h e normal b i o s y n t h e t i c cycle. T o l u e n i t e d c e l l s of B a c i l l u s s u b t i l i s W23 s y n t h e s i z e d t h e t e i c h o i c a c i d , p o l y ( r i b i t o 1 phosphate), from exogenous precursor^.^ The s y n t h e s i s was dependent on concomitant s y n t h e s i s of t h e l i n k a g e u n i t t h a t j o i n s t e i c h o i c a c i d t o p e p t i d o g l y c a n . Under c o n d i t i o n s t h a t reduced c e l l a u t o l y t i c a c t i v i t y , a l a r g e p r o p o r t i o n of t h e t e i c h o i c a c i d became l i n k e d t o t h e c e l l w a l l , i n d e p e n d e n t l y o f p e p t i d o g l y c a n s y n t h e s i s . The s p e c i f i c a c t i v i t y of t h e s y s t e m was more t h a n 30 t i m e s t h a t o f i s o l a t e d membranes, s o t h a t a c t i v i t y c o u l d be measured r e a d i l y i n t h e c e l l s from 2 m l of an e x p o n e n t i a l c u l t u r e of b a c t e r i a . The i n f l u e n c e o f t h e l e c t i n s c o n c a n a v a l i n A a n d phytohaemagglutinin A and t h e p o l y e l e c t r o l y t e s d e x t r a n - s u l p h a t e ( a s i t s s o d i u m s a l t ) and d i e t h y l a m i n o e t h y l - d e x t r a n ( a s i t s hydrochlori d e ) o n b a c t e r i a l t r a n s f o r m a t i o n s i n B a c i l l u s s u b t i l i s h a s been s t u d i e d 6 i n o r d e r t o d i s c r i m i n a t e t h e t a r g e t o f l e c t i n s and p o l y e l e c t r o l y t e s i n competent c e l l s . B a c i l l u s s u b t i l i s var. n i g e r WM was grown i n continuous c u l t u r e under p h o s p h a t e - l i m i t e d and under m a g n e s i u m - l i m i t e d c o n d i t i o n s . Whole c e l l s , c e l l w a l l s , a n d t h e i s o l a t e d w a l l p o l y m e r s p e p t i d o g l y c a n , t e i c h o i c a c i d , and t e i c h u r o n i c a c i d were analysed by Curie-point p y r o l y s i s mass ~ p e c t r o m e t r y . ~ C h a r a c t e r i s t i c i o n peaks f o r t h e w a l l p o l y m e r s were e s t a b l i s h e d and f a c i l i t a t e d t h e i n t e r p r e t a t i o n o f the mass pyrograms of w a l l s and whole c e l l s . The mass pyrograms o f magnesium-limited c e l l s showed t h e c h a r a c t e r i s t i c peaks f o r p r o t e i n , peptidoglycan, and t e i c h o i c acid. A t u n i c a m y c i n - l i k e a n t i b i o t i c 2 4 0 1 0 a t a c o n c e n t r a t i o n of 1 pg/ml s e l e c t i v e l y inhibited the v i v o s y n t h e s i s of g l y c e r o l t e i c h o i c a c i d o f c e l l w a l l s i n B a c i l l u s c e r e u s AHU 1030.8 I n c u b a t i o n of membranes o f t h i s s t a i n w i t h 2-acetamido-Z-deoxy-Qglucopyranosyl p y r o p h o s p h o r y l u n d e c a p r e n o l and UDP-Z-acetamido-2deoxy-a-mannase l e d t o f o r m a t i o n o f a g l y c o l i p i d having a s a c c h a r i d e moiety i d e n t i c a l w i t h t h e c e l l - w a l l t e i c h o i c a c i d l i n k a g e u n i t (1). medium,
o f t h e membrane.
Carbohydrate Chemistry
72
The membranes a l s o c a t a l y s e d t r a n s f e r o f g l y c e r o l p h o s p h a t e u n i t s The from CDP-glycerol t o t h i s disaccharide-linked l i p i d . b i o s y n t h e s i s o f t h e cell-wall g l y c e r o l t e i c h o i c acid i n t h i s s t r a i n seemed t o involve t h e disaccharide-linked l i p i d as an i n t e r m e d i a t e .
8-Q-Man~NAc-(1+4)-Q-GlcNAc (1)
The p r e s e n c e o f a c t i v e , or o f o n l y r e v e r s i b l y i n a c t i v a t e d , enzyme s y s t e m s f o r t h e s y n t h e s i s and i n c o r p o r a t i o n o f t e i c h o i c acid h a s b e e n d e t e r m i n e d 9 by w i t h d r a w i n g s a m p l e s o f b a c t e r i a f r o m a p h o s p h a t e - p u l s e d c h e m o s t a t c u l t u r e i n t o p h o s p h a t e - r i c h medium t h a t contained chloramphenicol. The i n c r e a s e d c o n t e n t o f w a l l t e i c h o i c a c i d f o l l o w i n g i n c u b a t i o n o f t h e s e s a m p l e s was d e t e r m i n e d by chemical analysis o f the recovered bacteria. Q - A l a n y l - l i p o t e i c h o i c a c i d from L a c t o b a c i l l u s casei c o n t a i n s a p o l y ( g l y c e r o 1 p h o s p h a t e ) m o i e t y t h a t i s s e l e c t i v e l y a c y l a t e d w i t h 0a l a n i n e ester residues." To c h a r a c t e r i z e f u r t h e r t h e m e c h a n i s m o f Q - a l a n i n e s u b s t i t u t i o n , i n t e r m e d i a t e s were s o u g h t t h a t p a r t i c i p a t e i n t h e assembly o f t h i s l i p o t e i c h o i c acid. From t h e i n c o r p o r a t i o n system u t i l i z i n g either t o l u e n e - t r e a t e d c e l l s or a combination o f membrane f r a g m e n t s a n d s u p e r n a t a n t f r a c t i o n , a series o f membranec o m p o u n d s was f o u n d . The a s s a y a s s o c i a t e d Q-{14C)alanyl-lipophilic o f t h e s e compounds depended on t h e i r e x t r a c t a b i l i t y i n t o m o n o p h a s i c c h l o r o f o r m -met h a n o 1-water (0.8 :3.2 :1 . 0 , vo l / v o l / v o 1) a n d s u b s e q u e n t p a r t i t i o n i n g i n t o chloroform. Four l i n e s o f evidence suggested t h a t t h e Q - a l a n y l - l i p o p h i l i c compounds are i n t e r m e d i a t e s i n t h e s y n t h e s i s o f Q - a l a n y l - l i p o t e i c h o i c acid. First, p a r t i a l d e g r a d a t i o n o f t h e p o l y ( g l y c e r o 1 p h o s p h a t e ) m o i e t y o f Q - a l a n y l - l i p o t e i c h o i c a c i d by phosphodiesterase II/phosphatase from Aspergillus n i g e r generated a series o f P - a l a n y l - l i p o p h i l i c compounds similar t o t h o s e e x t r a c t e d from t o l u e n e - t r e a t e d c e l l s d u r i n g t h e i n c o r p o r a t i o n o f Q - a l a n i n e . Second, e n z y m a t i c d e g r a d a t i o n o f t h e Q - a l a n y l - l i p o p h i l i c compounds by t h e a b o v e p r o c e d u r e g a v e Q - a l a n y l - g l y c e r o l , t h e same d e g r a d a t i o n p r o d u c t o b t a i n e d from a - a l a n y l - l i p o t e i c h o i c acid. Third, the i n c o r p o r a t i o n o f 9 - a l a n i n e i n t o t h e s e c o m p o u n d s r e q u i r e d t h e same components as t h e i n c o r p o r a t i o n o f Q - a l a n i n e i n t o membraneFourth, t h e phosphate-induced l o s s a s s o c i a t e d Q - l i p o t e i c h o i c acid. o f g- { C 1 a 1a n i n e - 1a be1 1e d 1i p o p h i 1i c c o m p o u n d s c o u 1d be c o r r e 1a t e d with t h e stimulation of phosphatidylglycerol synthesis i n the p r e s e n c e o f e x c e s s p h o s p h a t e . T h e s e e x p e r i m e n t s were i n t e r p r e t e d t o
73
4: Microbial Polysaccharides indicate that
the Q-alanyl-lipophilic
compounds w e r e Q - a l a n y l -
l i p o t e i c h o i c a c i d w i t h s h o r t p o l y m e r c h a i n s and were m o s t l i k e l y i n t e r m e d i a t e s i n t h e assembly o f t h e completed polymer,
a-alanyl-
l i p o t e i c h o i c acid. Teichuronic a c i d i s o l a t e d from the c e l l w a l l s o f Micrococcus
-----luteus
has
been
spectroscopy."
examined
by
natural-abundance
n.m.r.
13C
P r o t o n - d e c o u p l e d a n d p r o t o n - c o u p l e d s p e c t r a were
o b t a i n e d f o r n a t i v e t e i c h u r o n i c a c i d and a l s o a f t e r t h e t e i c h u r o n i c a c i d h a d been o x i d i z e d w i t h p e r i o d a t e and r e d u c e d w i t h b o r o h y d r i d e . The s p e c t r a a r e c o n s i s t e n t w i t h t h e s t r u c t u r e ( 2 ) .
Teichuronic a c i d
s y n t h e s i z e d i n v i t r o f r o m s u i t a b l e s u b s t r a t e s by t h e p a r t i c u l a t e enzyme f r a c t i o n o b t a i n e d f r o m M i c r o c o c c u s l u t e u s y i e l d e d a 13C n.m.r.
spectrum which i s i n d i s t i n g u i s h a b l e from t h a t o f the n a t i v e
teichuronic
acid,
indicating a
teichuronic a c i d synthesized
in
structural identity
o f
the
v i t r o w i t h t h a t i s o l a t e d from c e l l
walls.
+4)-B-Q-Man~ANAc-(l+6)-ct-Q-Glc~-(l+ (2) The
membrane-bound
enzymes
of
Micrococcus varians
which
p a r t i c i p a t e i n t h e syntheses o f t h e t e i c h o i c a c i d main c h a i n and linkage
unit
have
been
solubilized
f r a c t i o n a t e d by s u c r o s e d e n s i t y - g r a d i e n t f r a c t i o n s were obtained:
with
Triton
X-100
centrifugation.12
a heavy f r a c t i o n ,
and
Two m a i n
c o n t a i n i n g enzymes
e f f e c t i n g s y n t h e s i s o f t h e main chain attached t o t h e l i n k a g e u n i t , w h i c h was a s s o c i a t e d w i t h o n l y a s m a l l amount o f l i p i d ,
and a l i g h t
f r a c t i o n , w h i c h was r i c h i n p r e n y l p h o s p h a t e a n d c a t a l y s e d o n l y linkage-unit
synthesis.
The s e p a r a t i o n b y d e n s i t y w a s n o t b a s e d
e n t i r e l y on p o l y p e p t i d e c h a i n l e n g t h , as some o f t h e s h o r t e s t c h a i n s a p p e a r e d i n t h e d e n s e r f r a c t i o n s a n d some r e l a t i v e l y h i g h - m o l e c u l a r weight peptides occurred i n the l i g h t e s t fraction.
High a c t i v i t y
f o r l i n k a g e - u n i t s y n t h e s i s was o b s e r v e d i n a f r a c t i o n c o n t a i n i n g o n l y a few p e p t i d e s .
A d d i t i o n o f f i c a p r e n y l p h o s p h a t e t o t h e enzyme
p r e p a r a t i o n s h a d no s t i m u l a t o r y e f f e c t .
I t was c o n c l u d e d t h a t t h e
enzymes f o r m a i n - c h a i n and l i n k a g e - u n i t
s y n t h e s e s f o r m one o r m o r e
f a i r l y t i g h t l y a s s o c i a t e d c o m p l e x e s and t h a t p o l y p r e n y l p h o s p h a t e i s an i n t e g r a l ,
f i r m l y bound component o f t h e complex i n w h i c h t h e
linkage u n i t i s synthesized. The m a i n c h a i n o f t e i c h o i c a c i d s c a n be a s s e m b l e d i n c e l l - f r e e membrane p r e p a r a t i o n s by t h e t r a n s f e r o f r e s i d u e s f r o m t h e
Carbohydrate Chemistry
74 appropriate nucleotide precursors t o a m p h i p h i l i c molecule, c e l l wall,
an i n c o m p l e t e l y c h a r a c t e r i z e d
lipoteichoic acid carrier.13
However,
linkage u n i t which i s synthesized independently. that,
i n the
the main chain i s attached t o peptidoglycan through a
i n these c e l l - f r e e
linkage units
are
systems,
also
able
to
It i s believed
l i p i d intermediates carrying
accept
residues
n u c l e o t i d e p r e c u r s o r s t o b u i l d up t h e m a i n c h a i n .
directly
from
I t was shown t h a t
t h e m a i n c h a i n a t t a c h e d t o l i p o t e i c h o i c a c i d c a r r i e r was t r a n s f e r r e d from l i p o t e i c h o i c acid c a r r i e r t o l i p i d s containing the linkage unit,
Thus,
i n t h e s e systems,
t h e r e a p p e a r t o be t w o r o u t e s t o t h e
biosynthesis o f teichoic acid/linkage-unit
complexes,
one by d i r e c t
a s s e m b l y o f t h e m a i n c h a i n o n l i n k a g e - u n i t l i p i d s a n d t h e o t h e r by t r a n s f e r o f the preassembled main chain from l i p o t e i c h o i c a c i d carrier t o the linkage unit.
I t was a l s o s h o w n t h a t l i n k a g e - u n i t
l i p i d s f r o m d i f f e r e n t o r g a n i s m s w e r e i n t e r c h a n g e a b l e and t h a t t h e s e w e r e u s e d f o r p o l y m e r s y n t h e s i s by B a c i l l u s s u b t i l i s 3610,
i n which
t h e t e i c h o i c a c i d i s a p o l y ( g l y c e r o 1 phosphate). The i n c r e a s i n g u s e o f S t a p h y l o c o c c u s a u r e u s r i b i t o l t e i c h o i c acid,
which possesses a 2-acetamido-2-deoxy-B-Q-glucopyranosyl
residue,
i n s e r o l o g i c a l d i a g n o s i s e s p e c i a l l y i n b a c t e r e m i a and
osteoarticular antigen.14
infections
I n the
course
prompted the of
the
a g g l u t i n i n immobilized on U l t r o g e l , acetamido-2-deoxy-Q-glucopyranosyl
separate
ribitol
This study
was
teichoic
purification of this
purification
a c i d from
the
wheat-germ
which has a f f i n i t y residues, other
was
for
2-
employed
to
contaminating antigens.
concerned w i t h the abnormal a f f i n i t y
acetamido-2-deoxy-B-~-glucosy~ r i b i t o l
S t a p h y l o c o c c u s a u r e u s f o r t h e wheat-germ
teichoic
of
t h e 2-
acid
o f
a g g l u t i n i n i m m o b i l i z e d on
U l t r o g e l w h i c h i s dependent on t h e i o n i c f o r c e s and t h e n a t u r e o f the contaminants. Native substitution w i t h the p-alanine ester o f lipoteichoic acids a f f e c t s t h e i r immunological properties, divalent cations,
the capacity to bind
and l i p o t e i c h o i c a c i d c a r r i e r a c t i v i t y . 1 5
i n f l u e n c e o f the Q-alanine e s t e r on a n t i - a u t o l y t i c
The
a c t i v i t y was
t e s t e d , u s i n g e x t r a c e l l u l a r a u t o l y s i n f r o m S t a p h y l o c o c c u s a u r e u s and n i n e l i p o t e i c h o i c acids w i t h a l a n i n e /phosphorus
molar ratios o f
b e t w e e n 0.23
h i g h e s t w i t h Q-
a n d 0.71.
The i n h i b i t o r y a c t i v i t y ,
a 1 a n i n e - f r e e 1i p o t e ic h o i c increasing alanine content, g r e a t e r t h a n 0.6. not
inhibitory,
a c id, e x p o n e n t ia 11y
Correspondingly, i n
de c r ea s e d
w it h
approaching zero a t s u b s t i t u t i o n s of
contrast
d i p o l a r i o n i c p h o s p h o l i p i d s were to
negatively
charged
ones.
75
4: Microbial Polysaccharides
G l y c o s y l a t i o n o f l i p o t e i c h o i c a c i d up t o a n e x t e n t o f 0.5 d i d n o t depress i n h i b i t o r y a c t i v i t y , was c o m p a r a t i v e l y s m a l l . various sources,
and e v e n a t a d e g r e e o f 0.8
the effect
On c o m p a r i s o n o f l i p o t e i c h o i c a c i d s f r o m
d i f f e r e n c e s i n l i p i d s t r u c t u r e s and c h a i n l e n g t h s
were w i t h o u t e f f e c t .
The i n h i b i t o r y a c t i v i t y d r a s t i c a l l y d e c r e a s e d
when t h e g l y c o l i p i d c a r r i e d a s i n g l e g l y c e r o p h o s p h a t e r e s i d u e or t h e
(3).
h y d r o p h i l i c c h a i n had t h e u n u s u a l s t r u c t u r e were o b t a i n e d w i t h t h e more complex
The same r e s u l t s
system o f
autolysis o f
I t was s u g g e s t e d t h a t t h e a n t i -
Staphylococcus a u r e u s c e l l s .
a u t o l y t i c a c t i v i t y o f l i p o t e i c h o i c a c i d r e s i d u e s i n a sequence o f glycerophosphate
units
and
that
the
negative
charges
a p p r o p r i a t e l y spaced p h o s p h o d i e s t e r groups p l a y a c r u c i a l r o l e . g-alanine
of The
e s t e r e f f e c t was d i s c u s s e d w i t h r e s p e c t t o t h e p u t a t i v e
vivo regulation
in
o f a u t o l y s i s by l i p o t e i c h o i c a c i d .
+6)-a-Q-Gale-(1+6)-a-g-Gale-O-CH2
I
a-g-Gale-0-CH
l
o
CH 2-0 -P+
OH (3) Streptococcus mutans
Ingbritt
was
grown i n a chemostat
d e s t i n e d d i l u t i o n r a t e s i n e i t h e r 0.5% ! - f r u c t o s e and a t d e s t i n e d pH v a l u e s i n 0.5% f r u c t o s e . a f f e c t e d by t h e c a r b o h y d r a t e s o u r c e , l o w e s t y i e l d b e i n g a t pH 5.5
at
o r 0.5% p - g l u c i t o l
The y i e l d o f c e l l s was
as w e l l as by t h e pH,
i n 0.5% p - f r u c t o s e . 1 6
with the
!-Fructose-grown
c e l l s showed g r e a t e r s u s c e p t i b i l i t y t o l y s i s by a m u r a m i d a s e t h a n t h e corresponding g-glucose-grown
cells,
b u t t h e r e w e r e no m a r k e d
differences i n the l y t i c s u s c e p t i b i l i t i e s o f the corresponding c e l l w a l l preparations or i n the serological r e a c t i v i t i e s o f w a l l lysates w i t h antiserum t o Streptococcus
mutans
Ingbritt.
The
greatest
amounts o f c e l l u l a r l i p o t e i c h o i c a c i d were o b t a i n e d a t h i g h d i l u t i o n r a t e s i n b o t h Q - f r u c t o s e and Q - g l u c i t o l , values
i n
!-fructose.
The
greatest
a s w e l l a s a t h i g h pH
amounts
of
l i p o t e i c h o i c a c i d were f o u n d a t l o w d i l u t i o n r a t e s ,
extracellular as e s t i m a t e d by
r o c k e t i m m u n o e l e c t r o p h o r e s i s and a l s o by h a e m a g g l u t i n a t i o n .
Three
m a j o r e x t r a c e l l u l a r p r o t e i n components w e r e s e p a r a t e d by s o d i u m dodecyl sulphate-polyacrylamide of
g e l e l e c t r o p h o r e s i s , and t h e e f f e c t s
g r o w t h c o n d i t i o n s on t h e s e components were d e t e r m i n e d .
Results
76
Carbohydrate Chemistry
f o r batch-grown c u l t u r e s showed t h a t t h e r e was g e n o t y p i c v a r i a t i o n The i n t h e s u s c e p t i b i l i t y o f c e l l s t o l y s i s by a m u r a m i d a s e . e n h a n c e m e n t o f l i p o t e i c h o i c a c i d p r o d u c t i o n o f p - f r u c t o s e a n d ag l u c i t o l i n b a t c h c u l t u r e s was n o t i d e n t i c a l i n r e p r e s e n t a t i v e n o r was t h e e f f e c t o f s t r a i n s o f S t r e p t o c o c c u s m u t a n s s e r o t y p e 2, p-fructose found uniformly i n r e p r e s e n t a t i v e s t r a i n s of t h e d i f f e r e n t Streptococcus mutans serotypes. T h e p r o b l e m s c a u s e d by t h e n o n - s p e c i f i c b i n d i n g o f l i p o t e i c h o i c a c i d and glucan-binding p r o t e i n s o f Streptococcus mutans t o immunosorbent columns prepared from cyanogen bromide-activated S e p h a r o s e 48 h a v e b e e n d e s c r i b e d . 1 7 H u m a n p o l y m o r p h o n u c l e a r l e u k o c y t e s were s h o w n t o p o s s e s s s p e c i f i c binding sites f o r l i p o t e i c h o i c acid.18 L i p o t e i c h o i c acid b i n d i n g was r e v e r s i b l e a n d t i m e a n d t e m p e r a t u r e d e p e n d e n t . Scatchard p l o t analysis revealed an apparently single population o f 6.6 x l o 6 l i p o t e i c h o i c acid b i n d i n g s i t e s p e r human p o l y m o r p h o n u c l e a r l e u k o c y t e s w i t h a d i s s o c i a t i o n c o n s t a n t o f 5.6 ~ J M . Attachment of an a v i r u l e n t unencapsulated, M-negative of group A s t r e p t o c o c c i t o human p o l y m o r p h o n u c l e a r l e u k o c y t e s was i n h i b i t e d by l i p o t e i c h o i c a c i d b u t n o t by o t h e r b a c t e r i a l s o m a t i c a n t i g e n s tested. O c c u p a t i o n o f 30% o f t h e l i p o t e i c h o i c a c i d b i n d i n g s i t e s r e s u l t e d i n g r e a t e r t h a n 70% i n h i b i t i o n o f s t r e p t o c o c c a l a t t a c h m e n t o f human p o l y m o r p h o n u c l e a r l e u k o c y t e s . In contrast, lipoteichoic acid failed t o block attachment o f Escherichia c o l i o r antibodycoated streptococci, indicating that binding sites f o r E s c h e r i c h i a c o l i and t h e Fc p o r t i o n o f immunoglobulin G are d i s t i n c t from t h o s e f o r l i p o t e i c h o i c a c i d . Immunofluorescent studies demonstrated t h a t l i p o t e i c h o i c acid uniformly bound t o p o l y m o r p h o n u c l e a r l e u k o c y t e m e m b r a n e s f o r a s l o n g a s 2 h a t 37'C. C r o s s - l i n k i n g o f human p o l y m o r p h o n u c l e a r l e u k o c y t e s - b o u n d l i p o t e i c h o i c acid r e s u l t e d i n r a p i d capping o f l i p o t e i c h o i c r e c e p t o r sites. The r e s u l t s s u g g e s t t h a t l i p o t e i c h o i c a c i d i s a m o n o v a l e n t l i g a n d i n t e r a c t i n g w i t h m o b i l e r e c e p t o r s i n t h e p l a s m a membrane o f human p o l y m o r p h o n u c l e a r l e u k o c y t e s . 'H a n d 1 3 C n.m.r. has been shown t o d i s t i n g u i s h e a s i l y b e t w e e n c o v a l e n t l y and i o n i c a l l y a s s o c i a t e d a-alanine i n l i p o t e i c h o i c a c i d s , w i t h 13C n.m.r. showing regular 1,3-linkages in the polyglycerophosphate chain and a s s i g n a b l e resonances f o r t h o s e s u b u n i t s c a r r y i n g P - a l a n i n e and s u g a r r e s i d u e s . 1 9
4: Microbial Polysaccharides Peptidoglycans
2 The
77
immunological a c t i v i t i e s o f
b a c t e r i a l p e p t i d o g l y c a n s have
been r e v i e w e d and t h e s t r u c t u r e s o f p a r t i c u l a r p e p t i d o g l y c a n s and groups o f p e p t i d o g l y c a n s r e l a t e d t o a c t i v i t y . 2 0 Pep t i d o g l y c a n monomer (a-GlceNAc-Mur NAc-L-A l a - Q -i s o g l u t am i n e
-meso-diaminopimelic
acid-E-Ala-Q-Ala),
was i n c u b a t e d w i t h s l i c e s o f
d i s a c c h a r i d e and p e n t a p e p t i d e p o r t i o n s , mouse l i v e r ,
kidney,or
blood cells,
p l a s m a , a n d serum.21
unchanged a f t e r
-
l a b e l l e d w i t h 14C i n both the
s p l e e n as w e l l as w i t h mouse a n d human b l o o d , P e p t i d o g l y c a n monomer was i s o l a t e d
i n c u b a t i o n s w i t h mouse o r g a n s
and b l o o d c e l l s .
H o w e v e r , u p o n i n c u b a t i o n w i t h mouse o r human b l o o d , 1 0 - 5 0 % o f t h e p e p t i d o g l y c a n monomer u n d e r w e n t h y d r o l y s i s t o t h e c o r r e s p o n d i n g disaccharide
and p e n t a p e p t i d e .
serum
than
more
metabolized:
90% o f
the
After
i n c u b a t i o n s w i t h plasma
{14C)peptidoglycan
monomer
and was
a b o u t 5 0 % o f t h e a d m i n i s t e r e d r a d i o a c t i v e d o s e was
r e c o v e r e d i n t h e d i s a c c h a r i d e u n i t and a b o u t 35% i n t h e p e n t a p e p t i d e
I t was s u g g e s t e d t h a t i n b l o o d , p l a s m a , a n d
part.
man an N - a c e t y l m u r a m o y l - l - a l a n i n e
s e r u m o f mouse a n d
amidase e x i s t s
which s p l i t s the
a m i d e bond b e t w e e n t h e l a c t y l c a r b o x y l g r o u p o f t h e m u r a m y l r e s i d u e and t h e amino
mo l e c u l e
.
An
group o f
the peptide moiety
isotope-dilution
micro-analysis
using
procedure
for
quantitative N-terminal
3H- l a b e 1l e d 1- f l u o r o - 2 , 4 - d i n i t r o ben zene and a
m i x t u r e o f f r e e and a c e t y l a t e d l 4 C - 1 a b e l l e d s t a n d a r d s h a s been
described.22
The
derivatives
chromatography.
p r i m a r i l y intended f o r the estimation o f c e l l - w a l l peptidoglycan,
a m i n o a c i d s as i n t e r n a l
2,4-dinitrophenyl
a r e s e p a r a t e d by p o l y a m i d e t h i n - l a y e r
peptides.
i n the peptidoglycan
crosslinkage
Although
i n bacterial
t h e method i s c a p a b l e o f e x t e n s i o n t o o t h e r
When t e s t e d o n l y s o z y m e ,
t h e p r o c e d u r e gave r e s u l t s w h i c h
w e r e i n good a g r e e m e n t w i t h a c c e p t e d v a l u e s . The
conformational
energies
of
complexes
copolymers of 2-acetamido-2-deoxy-~-glucose w i t h hen e g g - w h i t e
of
alternating
and 2 - a c e t y l m u r a m i c a c i d
l y s o z y m e h a v e b e e n computed.23
This involved a
complete search o f t h e c o n f o r m a t i o n a l space a t t h e a c t i v e s i t e o f t h e enzyme a v a i l a b l e t o t h e s e s u b s t r a t e s and m i n i m i z a t i o n o f t h e conformational energies of ho m opo 1y m e r
( a -G 1ceNA c 16 ,
t h e n o n c o v a l e n t complexes.
G ~ c ~ N A cb )i n~d s p r e f e r e n t i a l l y on t h e l e f t s i d e o f cleft,
i n v o l v i n g r e s i d u e s s u c h as &-Arg-45,
The a l t e r n a t i n g c o p o l y m e r
As w i t h t h e
t h e hex as a c c h a r ide (Q -G lceNA c -M u r NAc ) 2I-Asn-46,
(Q-GlceNAc-MurNAc)j,
(g -
the active-site and i - T h r - 4 7 .
however,
binds with
78
Carbohydrate Chemistry
i t s F-site r e s i d u e p r e f e r e n t i a l l y on t h e r i g h t s i d e o f t h e a c t i v e s i t e c l e f t , i n v o l v i n g r e s i d u e s s u c h a s L-Phe-34 a n d L-Arg-114. The l a c t i c a c i d s i d e c h a i n p r e v e n t s good b i n d i n g t o t h e F s i t e on t h e l e f t side. This r e s u l t can e x p l a i n t h e higher rate of c a t a l y s i s f o r t h e cell-wall s u b s t r a t e ( t h e a l t e r n a t i n g co-polymer). The r e l a t i v e a f f i n i t i e s o f t h e d i s a c c h a r i d e Q-GlcQNAc-MurNAc f o r a l l s e q u e n t i a l p a i r s o f s i t e s A-F ( i n c l u d i n g E a n d F s i t e s o n b o t h s i d e s o f t h e It is found t h a t t h e highest a f f i n i t y o f c l e f t ) are determined. t h i s d i s a c c h a r i d e i s f o r s i t e s C a n d D a n d r i g h t - s i d e s i t e s E a n d F. The e n e r g y o f t h e r e c e n t l y d e t e r m i n e d X-ray c r y s t a l l o g r a p h i c s t r u c t u r e o f MurNAc-Q-GlceNAc-MurNAc b o u n d t o t h e B, C, a n d D s i t e s o f hen egg-white lysozyme has been minimized and found t o l e a d a conformation q u i t e s i m i l a r t o one which has been predicted p r e v i o u s l y f o r t h e t r i s a c c h a r i d e ( Q - G ~ c ~ N A c ) ~ .T h e D r i n g i s u n d i s t o r t e d and binds c l o s e t o t h e s u r f a c e o f t h e a c t i v e - s i t e c l e f t . T h e s t r u c t u r e c a n b e e x t e n d e d i n t o s i t e s E a n d F by a d d i t i o n o f t w o g-GlceNAc r e s i d u e s , b u t o n l y o n t h e l e f t s i d e o f t h e a c t i v e - s i t e cleft. T h i s i n d i c a t e s t h a t p o l y m e r s b o u n d w i t h t h e i r D-site r e s i d u e s near t h e s u r f a c e o f t h e c l e f t must bind t o sites E and F on t h e l e f t s i d e of t h e c l e f t , as a l s o predicted previously. A series o f seven d i f f e r e n t UDP-N-acetylmuramyl peptide p r e c u r s o r s o f b a c t e r i a l c e l l - w a l l p e p t i d o g l y c a n h a s b e e n e x a m i n e d by r e v e r s e - p h a s e h i g h - p r e s s u r e l i q u i d c h r ~ m a t o g r a p h y . ~M~i x t u r e s o f t h e s e c o m p o u n d s were s u c c e s s f u l l y a n d r a p i d l y a n a l y s e d by u s i n g Waters U B o n d a p a k C 1 8 c o l u m n a s a s t a t i o n a r y p h a s e a n d i s o c r a t i c e l u t i o n s w i t h 0.05M a m m o n i u m p h o s p h a t e o r f o r m a t e b u f f e r s o f a p p r o p r i a t e pH. A c c u r a t e q u a n t i t a t i o n c o u l d a l s o be r e a d i l y a c h i e v e d by r e v e r s e - p h a s e h i g h - p r e s s u r e l i q u i d c h r o m a t o g r a p h y . A l l t h e s e t e c h n i q u e s are e x t r e m e l y u s e f u l f o r t h e p u r i f i c a t i o n o f these compounds and f o r a wide r a n g e o f b i o c h e m i c a l s t u d i e s c o n c e r n i n g t h e cytoplasmic s t e p s of t h e b i o s y n t h e s i s of peptidoglycan. T h e s o l i d - s t a t e c o n f o r m a t i o n a l a n a l y s i s o f Ac-Q-Ala-a-AlaOH.H20, c a r r i e d o u t by i n f r a r e d a b s o r p t i o n a n d X - r a y d i f f r a c t i o n , has i n d i c a t e d t h a t t h e molecules are not extended i n a r e g u l a r c o n f o r m a t i o n , b u t r a t h e r t h a t t h e y a r e p a r t i a l l y f o l d e d , 2 5 t h e +,$* torsional angles of the carboxyl-terminal reside i n p a r t i c u l a r being i n t h e r e g i o n o f t h e l e f t - h a n d e d a - h e l i x o f t h e R a m a c h a n d r a n map. The a c e t y l a m i n o a n d p e p t i d e g r o u p s are found i n t h e u s u a l t r a n s conformation, the latter e x h i b i t i n g a deviation from r i g i d p l a n a r i t y . Only i n t e r m o l e c u l a r hydrogen bonds o c c u r i n t h e c r y s t a l state. The s o l u t i o n c o n f o r m a t i o n a l a n a l y s i s , p e r f o r m e d by i n f r a r e d
4: Microbial Polysaccharides
79
a b s o r p t i o n a n d c.d., h a s r e v e a l e d t h a t t h e amount o f i n t r a m o l e c u l a r N-H. .O=C h y d r o g e n - b o n d e d f o l d e d f o r m s , i f a n y , s h o u l d be extremely small, even i n deuteriochloroform at high dilution. In water, solvated, unordered s p e c i e s l a r g e l y predominate. Incubation o f growing Bacillus s u b t i l i s with p e n i c i l l i n G led t o the s e c r e t i o n of a peptidoglycan-related polymer and a nonglycanb o u n d p e n t a p e p t i d e i n t o t h e c u l t u r e medium.26 T h e s e c r e t e d p o l y m e r was i s o l a t e d a n d c h a r a c t e r i z e d a s a l i n e a r c e l l - w a l l g l y c a n s t r a n d s u b s t i t u t e d p r e d o m i n a n t l y by u n c r o s s - l i n k e d p e n t a p e p t i d e s i d e c h a i n s . P o l y m e r f o r m a t i o n a n d s e c r e t i o n were m o s t l i k e l y t h e r e s u l t of continued s y n t h e s i s and elongation o t nascent glycan s t r a n d s i n t h e a b s e n c e o f s u b s e q u e n t p r o c e s s i n g by p e p t i d o g l y c a n t r a n s p e p t i d a s e o f Q - a 1a n i n e c a r b o x y p e p t i d a s e e n z y m e s . The nonglycan-bound L-Ala-n-iso-Glu-meso-diaminopimelic acid-P-Ala-D-Ala pentapeptide w a s p r o b a b l y f o r m e d by a n t j - a c e t y l m u r a m o y l - l - a l a n i n e amidase a c t i v e on t h e peptide side c h a i n s of t h e uncross-linked polymer. The u n c r o s s - l i n k e d p e p t i d o g l y c a n p o l y m e r was s h o w n t o be a g o o d s u b t r a t e for penicillin-sensitive P-alanine carboxypeptidase p u r i f i e d from mem b r a n e s o f B a c i l l u s s u b t i l i s , B a c i l l u s s t e a r o t h e r m o p h i l u s , a n d Escherichia c o l i . 9 - A l a n i n e r e l e a s e was n o t , h o w e v e r , c o u p l e d t o the c r o s s - l i n k i n g o f peptide side chains, suggesting t h a t t h e s e e n z y m e s do n o t f u n c t i o n a s p e p t i d o g l y c a n t r a n s p e p t i d a s e i n v i v o . No t r a n s p e p t i d a s e o r Q - a l a n i n e c a r b o x y p e p t i d a s e a c t i v i t y was d e t e c t e d i n m i x t u r e s o f h i gh-m o l e c u l a r-w e i g h t p e n i c i 11i n - b i n d i n g p r o t e i n s f r o m ga3L&s s u b t i l i s , Bacillus stearothermophilus, or Staphylococcus aureus. Possible reasons for the inability t o d e m o n s t r a t e these a c t i v i t i e s are discussed. I n a d d i t i o n , a n Nacetylmuramoyl-i-alanine amidase a c t i v i t y which c o p u r i f i e s w i t h penicillin-binding proteins with Bacillus s u b t i l i s , Staphylococcus a u r e u s , a n d E s c h e r i c h i a c o l i was p a r t i a l l y c h a r a c t e r i z e d . C e l l - w a l l p o l y m e r s were m e a s u r e d b o t h i n t h e c e l l s a n d i n t h e c e l l - f r e e medium o f s a m p l e s f r o m s t e a d y - s t a t e c h e m o s t a t c u l t u r e s o f B a c i l l u s s u b t i l i s , growing a t v a r i o u s rates under magnesium or phosphate limitation.” The p r e s e n c e o f b o t h p e p t i d o g l y c a n a n d a n i o n i c wall polymers i n t h e c u l t u r e s u p e r n a t a n t showed t h e occurrence of wall turnover i n t h e s e c u l t u r e s . Variable p r o p o r t i o n s o f t h e t o t a l p e p t i d o g l y c a n p r e s e n t i n t h e c u l t u r e s a m p l e s were f o u n d o u t s i d e t h e cells i n d u p l i c a t e c u l t u r e s , i n d i c a t i n g t h a t t h e rate of peptidoglycan turnover is variable i n Bacillus subtilis. Besides p e p t i d o g l y c a n , a n i o n i c w a l l p o l y m e r s were d e t e c t e d i n t h e c u l t u r e supernatant, teichoic acid i n magnesium-limited cultures, and
Carbohydrate Chemistry
80 teichuronic acid i n phosphate-limited cultures. the
ratio
between
concentrations
was
than i n the walls.
the
peptidoglycan
significantly
lower
and
I n s e v e r a l samples,
the
anionic-polymer
i n the extracellular
fluid
T h i s d i v e r g e n c y was a t t r i b u t e d t o t h e o c c u r r e n c e
o f d i r e c t secretion o f anionic polymers a f t e r t h e i r synthesis. An enzyme w h i c h c a t a l y s e s t h e h y d r o l y s i s o f a c e t a m i d o g r o u p s o f 2-ace t am ido -2-deox y - g - g l u c o p y r anosy 1 r e s i d u e s i n c e l l - w a 11 pep t id o g l y c a n was f o u n d i n t h e s u p e r n a t a n t and 20,0009
pellet fractions o f
Autolysis of the l a t t e r fraction resulted i n
B a c i l l u s cereus.28
s o l u b i l i z a t i o n and a c t i v a t i o n o f t h e d e a c e t y l a s e . bacteria, of
2-amino-2-deoxy-P-glucopyranosyl
i n t h e deacetylase. able
from
the
basis
behaviour.
Among v a r i o u s
s t r a i n s o f B a c i l l u s cereus which c o n t a i n h i g h p r o p o r t i o n s residues are
particularly
2-acetamido-2-deoxy-~-glucose-6-phosphate
of
rich
The p e p t i d o g l y c a n d e a c e t y l a s e i s d i s t i n g u i s h -
their
cellular
d i s t r i b u t i o n and
deacetylase
on
chromatographic
The r a t e o f r e a c t i o n o f t h e d e a c e t y l a s e w i t h (P-GlceNAc-
MurNAcI3 i s l e s s t h a n 1/100 o f t h a t w i t h p e p t i d o g l y c a n , w h i l e t h e enzyme i s i n a c t i v e t o w a r d s (Q-GlceNAc-Mur N A ~ ) ~ - t j - G l c e N A c - M u r N A c , and mo n o m e r ic 2 - a c e t a m id o - 2 - d e o x y -g
- g 1u c o s e
d e r iv a t iv e s
.
The enzyme
also deacetylates p a r t i a l l y g-hydroxyethylated chitin,
for half-
m a x i m u m a c t i v i t i e s w e r e f o u n d t o b e 0 . 2 9 a n d 6.9 mg p e r m l ( 0 . 1 7 a n d 20mM w i t h r e s p e c t t o 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o p y r a n o s y l respectively.
residues),
The o c c u r r e n c e o f t h i s enzyme a c c o u n t s f o r t h e f o r m -
a t i o n o f c e l l - w a l l peptidoglycan containing non-acetylated
2-amino-
2-deoxy-~-glucopyranosyl residues. The c e l l w a l l s i s o l a t e d f r o m a x e n i c a l l y g r o w n l e p r o s y - d e r i v e d c o r y n e b a c t e r i a were s u b m i t t e d t o v a r i o u s c h e m i c a l and e n z y m a t i c degradations.
The g l y c a n s t r a n d s o f t h e w a l l p e p t i d o g l y c a n w e r e
e s s e n t i a l l y composed o f 2-acetamido-2-deoxy-~-glucopyranosyl-~acetylmuramic
acid disaccharide
units.29
S m a l l amounts
of
2-
acetamido-2-deoxy-~-glucopyranosyl-~-glycolylmuramic a c i d (less than 10%) were a l s o d e t e c t e d .
The m u r a m i c a c i d r e s i d u e s o f a d j a c e n t
g l y c a n s t r a n d s a r e s u b s t i t u t e d by a m i d a t e d t e t r a p e p t i d e u n i t s w h i c h , i n turn,
are c r o s s - l i n k e d through d i r e c t l i n k a g e s extending between
the C-terminal diaminopimelic
2-alanine acid
r e s i d u e o f one t e t r a p e p t i d e a n d t h e meso-
residue
of
another
tetrapeptide.
Such
a
s t r u c t u r e i s very s i m i l a r t o t h a t o f the w a l l peptidoglycan found i n the
taxonomically
related
micro-organisms
of
Corynebacteriurn,
Mycobacterium, and N o r c a r d i a groups. Two
different
cell-wall
peptidoglycan synthetase
c a r r i e d by p e n i c i l l i n - b i n d i n g
systems a r e
p r o t e i n s 1 A a n d 1B p u r i f i e d f r o m
4: Microbial Polysaccharides
-E--s-c h e r i c h i a
-
81
c o l i . Both s y s t e m s c o n s i s t of two enzyme a c t i v i t i e s c a r r y i n g o u t s u c c e s s i v e r e a c t i o n s of peptidoglycan s y n t h e s i s from t h e 1 i p i d - 1i n k e d p r e c u r s o r 2 - ace t a m i do - 2 - d e o x y -B - g l u c o p y r a n o s y 1-!acetylmuramyl-(pentapeptide)-diphosphate-undecaprenol, namely t h o s e o f p e p t i d o g l y c a n t r a n s g l y c o s y l a s e a n d B-lactam a n t i b i o t i c - s e n s i t i v e transpeptidase. The a c t i v i t i e s o f t h e two enzyme s y s t e m s d i f f e r i n o p t i m a l c o n d i t i o n s a n d s e n s i t i v i t i e s o f B-lactam a n t i b i o t i c s . The p r o p e r t i e s of the p u r i f i e d p e n i c i l l i n - b i n d i n g p r o t e i n 1 A have been r e p o r t e d . 30 A p u r i f i e d p r e p a r a t i o n o f N-acetylmuramoyl-L-alanine a m i d a s e , a m u r e i n h y d r o l a s e f r o m E s c h e r i c h i a c o l i , was f o u n d t o l o s e i t s a c t i v i t y during incubation i n the presence of b a c t e r i a l phospholipid suspension^.^' W h e t h e r i t was c o - d i s p e r s e d w i t h t h e p h o s p h o l i p i d s o r a d d e d t o s o n i c a t e d p h o s p h o l i p i d s u s p e n s i o n , t h e e n z y m e was i n h i b i t e d (or i n a c t i v a t e d ) from t h e f i r s t m i n u t e s o f i n c u b a t i o n a t 37OC. As t h e p h o s p h a t i d y l g l y c e r o l / c a r d i o l i p i n r a t i o o f t h e p h o s p h o l i p i d s u s p e n s i o n was i n c r e a s e d ( a l l o t h e r t h i n g s b e i n g e q u a l ) , a f u r t h e r d e c r e a s e o f a m i d a s e a c t i v i t y was o b s e r v e d . T h e h i g h e s t l o s s e s o f a c t i v i t y were f o u n d a f t e r c o - d i s p e r s i o n o f t h e enzyme and t h e s u b s t r a t e t o g e t h e r w i t h t h e p h o s p h o l i p i d s , t h e r e s u l t i n g suspension being formed of l a r g e r multilayered vesicles, a s r e v e a l e d by e l e c t r o n m i c r o s c o p y . I n t h e s e c o n d i t i o n s , t h e e f f e c t o n e n z y m e a c t i v i t y w a s o n l y p a r t i a l l y a c c o u n t e d f o r by t h e p r o p o r t i o n o f t h e e n z y m e t h a t was e n t r a p p e d i n t h e v e s i c l e s . T h e entrapment c a p a c i t y of t h e enzyme ( u s i n g a 35S-labelled enzyme p r e p a r a t i o n ) a n d o f t h e s u b s t r a t e ( 3 H - l a b e l l e d ) by t h e m u l t i l a m e l l a r p h o s p h o l i p i d i c vesicles d i d n o t s i g n i f i c a n t l y change a s a f u n c t i o n o f t h e i r r e l a t i v e c o n t e n t o f p h o s p h a t i d y l g l y c e r o l and c a r d i o l i p i n . T h e m e c h a n i s m by w h i c h a m i n o a c i d s t a r v a t i o n o f E s c h e r i c h i a c o l i induces r e s i s t a n c e against t h e l y t i c and b a c t e r i c i d a l e f f e c t s o f p e n i c i l l i n has been studied.32 Starvation of Escherichia coli s t r a i n W7 o f t h e a m i n o a c i d s I - l y s i n e o r I - m e t h i o n i n e r e s u l t e d i n t h e r a p i d development of r e s i s t a n c e t o a u t o l y t i c cell-wall d e g r a d a t i o n , w h i c h may be e f f e c t i v e l y t r i g g e r e d i n g r o w i n g b a c t e r i a by a n u m b e r o f c h e m i c a l o r p h y s i c a l t r e a t m e n t s . T h e m e c h a n i s m o f t h i s e f f e c t i n t h e amino acid-starved cells involved t h e production of a murein r e l a t i v e l y r e s i s t a n t t o the hydrolytic a c t i o n of crude m u r e i n h y d r o l a s e e x t r a c t s prepared from n o r m a l l y g r o w i n g E s c h e r i c h i a c o l i . R e s i s t a n c e t o t h e a u t o l y s i n s was n o t d u e t o t h e c o v a l e n t l y linked lipoprotein. Resistance t o murein hydrolase developed most r a p i d y a n d most e x c l u s i v e l y i n t h e p o r t i o n of c e l l wall s y n t h e s i z e d
82
Carbohydrate Chemistry
a f t e r the onset of
amino a c i d s t a r v a t i o n .
I-lysine
Lysozyme d i g e s t s o f t h e
m u r e i n s y n t h e s i z e d d u r i n g t h e f i r s t 10 m i n o f
autolysin-resistant
starvation yielded
( i n addition t o the characteristic
degradation products) a high-molecular-weight
m a t e r i a l t h a t was
absent from the lysozyme d i g e s t s o f c o n t r o l c e l l - w a l l
preparations.
I t has been p r o p o s e d t h a t i n h i b i t i o n o f p r o t e i n s y n t h e s i s c a u s e s a r a p i d m o d i f i c a t i o n o f murein s t r u c t u r e a t the c e l l - w a l l
g r o w t h zone
i n s u c h a manner t h a t a t t a c h m e n t o f m u r e i n h y d r o l a s e m o l e c u l e s i s inhibited.
The m e c h a n i s m may i n v o l v e some a s p e c t s o f t h e r e l a x e d
c o n t r o l system since p r o t e c t i o n a g a i n s t p e n i c i l l i n - i n d u c e d l y s i s d e v e l o p e d much s l o w e r
i n amino
acid-starved
relaxed controlled
c e l l s t h a n i n i s o g e n i c s t r i n g e n t l y c o n t r o l l e d (*A+)
(=A)
Physiological concentrations
of
bacteria.
guanosine 5’-diphosphate
i n h i b i t e d t h e s y n t h e s i s o f l i p i d i n t e r m e d i a t e s and p e p t i d o g l y c a n c a t a l y s e d by coli.33
a p a r t i c u l a t e enzyme p r e p a r a t i o n f r o m
concentration i n the
Escherichia
The i n h i b i t i o n o f t h e s e r e a c t i o n s was d e p e n d e n t o n t h e of
assay.
guanosine The
5’-diphosphate
degree o f
3’-diphosphate
inhibition of
and
MgC12
lipid-intermediate
s y n t h e s i s d e c r e a s e d a s t h e m o l a r r a t i o o f MgC12 : g u a n o s i n e 5 ’ diphosphate 3’-diphosphate
was i n c r e a s e d ,
a n d no i n h i b i t i o n was
o b s e r v e d a b o v e a MgC12 : g u a n o s i n e 5 ’ - d i s p h o s p h a t e ratio
o f 2.5.
i n h i b i t i o n by significant
3’-diphosphate
The s y n t h e s i s o f p e p t i d o g l y c a n was m o r e s e n s i t i v e t o guanosine 5’-disphosphate
inhibition
occurred
under
3’-diphosphate,
conditions
where
and lipid
i n t e r m e d i a t e s y n t h e s i s was u n a f f e c t e d ( i . e .
a t MgC12 : g u a n o s i n e 5’-
diphosphate 3’-diphosphate
o r more).
other
nucleotides
did
r a t i o s o f 2.5
not
inhibit
the
A
synthesis
variety o f of
l i p i d
i n t e r m e d i a t e s and p e p t i d o g l y c a n . Azureomycin B (10 pg/ml), a z u r e a nov.
sp.,
a new a n t i b i o t i c f r o m P s e u d o n o c a r d i a
caused t h e a c c u m u l a t i o n o f
i n h i b i t i o n o f p e p t i d o g l y c a n s y n t h e s i s i n an particulate fraction {3H)pentapeptide
l i p i d i n t e r m e d i a t e and
2
v i t r o system u s i n g a
f r o m B a c i l l u s meqaterium KM
a n d c o l d UDP-Q-GlcgNAc
p e n t a p e p t i d e and U D P - { 3 H ) - Q - G l c ~ N A c as
substrate^.^^
c o n c e n t r a t i o n s o f a zu re o mycin B ( o v e r 100ug/ml), a c c u m u l a t i o n was a l s o i n h i b i t e d . E s c h e r i c h i a c o l i Y-10 p e n t a p e p t i d e were
UDP-M urNAcA t higher
lipid-intermediate
When p a r t i c u l a t e f r a c t i o n f r o m
and UDP-{14C}-p-Glc~NAc
used,
with
o r c o l d UDP-MurNAc-
accumulation o f
and c o l d UDP-MurNAc-
l i p i d i n t e r m e d i a t e and
i n h i b i t i o n o f p e p t i d o g l y c a n s y n t h e s i s were a l s o observed.
This
i n d i c a t e d t h a t t h e p r i m a r y t a r g e t o f azureomycin B i s t h e t r a n s f e r o f t h e d i s a c c h a r i d e p e p t i d e u n i t (a-GlcgNAc-M urNAc-pen t a p e p t i d e
1
4: Microbial Polysaccharides
83
from lipid-bound p r e c u r s o r t o acceptor. ---m e s o - L a n t h i o n i n e was i d e n t i f i e d i n t h e h y d r o l y s a t e o f -_----------F u s o b a c t e r i u m --------n u c l e a t u m p e p t i d o g l y c a n by g . c . m . s . and t h e d i s t r i b u t i o n o f t h i s unusual sulphur-containing dibasic amino acid among p e p t i d o g l y c a n s of v a r i o u s s p e c i e s a n d s t r a i n s of g e n u s F u s o b a c t e r i u m i n v e s t i g a t e d . 35 The p e p t i do g l y c a n s o f F u s o b a c t e r i u rn b a c t e r i a c o u l d be s u b d i v i d e d a c c o r d i n g t o c o n s t i t u e n t d i b a s i c a m i n o acid into: a lanthionine type, a diaminopimelic acid type,and a mixed type. The a m i n o a c i d s i n t h e p e p t i d o g l y c a n o f F u s o b a c t e r i u m n u c l e a t u m F e v 1 h a v e b e e n r e p o r t e d t o be Q - g l u t a m i c a c i d , m e s o - l a n t h i o n i n e , a n d p - ( 4 2 % ) a n d L _ - a l a n i n e (58%).36 A b o u t 7 0 % o f t h e l a n t h i o n i n e r e s i d u e s were n o t s u s c e p t i b l e t o d i n i t r o p h e n y l a t i o n , e v i d e n t l y because they a r e involved i n cross-linkages. Consequently, lysozyme d i g e s t i o n o f t h e p e p t i d o g l y c a n y i e l d e d 20 t o 2 5 % u n c r o s s - l i n k e d A chemical analysis o f d i s a c c h a r i d e t r i - and t e t r a - p e p t i d e s . i s o l a t e d g l y c o p e p t i d e s i n d i c a t e d t h a t the s t r u c t u r e of t h e b u i l d i n g b l o c k o f t h i s p e p t i d o g l y ca n i s 2 - a c e t am i d o - 2 - d e o x y -p - g l u c o s e -tja c e t y l m u r a m i c acid-L-alanine-p-glut am i c a c i d - m e s o - l a n t h i o n i n e ( -p a l a n i n e 1. E v i d e n c e h a s b e e n p r e s e n t e d t o s u p p o r t t h e c l a s s i f i c a t i o n o f t h e F u s o b a c t e r i u m n u c l e a t u m F e v 1 p e p t i d o g l y c a n a s a new A16, d i r e c t l y c r o s s - l i n ked, m e s o - l a n t h i o nine-co n t a i n i n g pep t i d 0 g l y can. The d e n s i t y p r o p e r t i e s o f b a c t e r i a l c e l l walls, when c e n t r i f u g e d under c o n d i t i o n s o f low o s m o l a l i t y , s u p p o r t t h e e v i d e n c e f o r an open s t r u c t u r e f o r c e l l walls from Micrococcus l y s o d e i k t i c u s , B a c i l l u s lichenifgymlp, C a c t o b a c i l l u s fermenturn, and P r o p r i o n i b a c t e r i u m t h e o n i i .37 The C - m y c o s i d i c g l y c o p e p t i d o l i p i d t y p i n g a n t i g e n s f r o m a l l serovars i n the t4ycgbacterium "'ig~/Mycobacterium intracellulare/Mycobacterium s c r o f u l a c e u m c o m p l e x h a v e b e e n e x a m i n e d t o varying extents.38 D e t a i l e d a n a l y s i s o f t h o s e from s e r o v a r s 8, 9 , 1 6 , a n d 25 s h o w t h a t t h e a n t i g e n s c o n s i s t o f s h o r t a c e t y l a t e d o l i g o s a c c h a r i d e s l i n k e d t o a common f a t t y acyl-peptidyl-g-(3,4-di-gmethyl-I=-rhamnose) c o r e (4). The o l i g o s a c c h a r i d e u n i t s , i n a f o r m s u i t a b l e f o r c h e m i c a l s t u d i e s , were l i b e r a t e d a s o l i g o s a c c h a r i d e a l d i t o l s on t r e a t m e n t o f the g l y c o p e p t i d o l i p i d s w i t h a l k a l i n e borohydride solution. The a l d i t o l i n t h e reduced o l i g o s a c c h a r i d e s f r o m a l l s o u r c e s was 6 - d e o x y - l - t a l i t o l . M o r e o v e r I - r h a m n o s e was a l s o a l w a y s p r e s e n t , i n d i c a t i n g t h a t a b a s a l d i s a c c h a r i d e , L-rhamnosyl-6deoxy-l-talosyl, is always l i n k e d t o t h e a l l o - t h r e o n i n e i n t h e acylpeptide. I n a d d i t i o n t h e o l i g o s a c c h a r i d e s from the
Carbohydrate Chemistry
84
g l y c o p e p t i d o l i p i d s of each s e r o v a r were d i s t i n g u i s h e d by t h e i r own i n d i v i d u a l i s t i c sugars: 3-g-methyl-~-glucose i n serovar 8 2,3-diO-methyl-l-fucose i n s e r o v a r 9 , 2-2-methyl-&-fucose i n s e r o v a r 25, 4-g-methyl-_L-rhamnose i n t h e o l i g o s a c c h a r i d e from o n e of t h e two g l y c o p e p t i d o l i p i d s i n s e r o v a r 16, and a p p a r e n t l y a n o t h e r I-rhamnose substituent i n the other oligosaccharide. The g l y c o p e p t i d o l i p i d a n t i g e n s i n t h e i r s t r u c t u r a l p r i n c i p a l s , c e l l u l a r l o c a t i o n , and physiological r o l e bear a s t r i k i n g miniscular resemblance to c e l l w a l l c o m p o n e n t s o f o t h e r b a c t e r i a s u c h a s O - a n t i g e n i c and R a n t i g e n i c 1i po p o l y sa ccha r i de s. {Fatty A c y l } - ~ - P h e - ~ - a T h r - ~ - A l a - ~ - A l a n i n o l - O - ~ - R h a ~ 3 , 4 M e 2
1
T
{ O l i g o s a c c h a r i de } -0-Ac (4)
The s p e c i f i c o l i g o s a c c h a r i d e u n i t s o f t h e C - m y c i s i d i c g l y c o p e p t i d o l i p i d a n t i g e n s from s e r o v a r i e t i e s i n t h e Mycobacterium -avium/Mycobacterium L n t r a c e l l u l G / M y c o b a c t e r i u m scrofulaceum complex were l i b e r a t e d a s o l i g o s a c c h a r i d e a l d i t o l s by t r e a t m e n t of t h e glycopeptidolipids w i t h a l k a l i n e borohydride. The c o m p l e t e s t r u c t u r e s o f t h e o l i g o s a c c h a r i d e a l d i t o l s have been d e r i v e d f r o m t h e 'H n . m . r . spectra or those of t h e i r permethylated (or p e r t r i d e u t e r i o m e t h y l a t e d ) d e r i v a t i v e s , t h e m a s s s p e c t r a of t h e m e t h y l a t e d d e r i v a t i v e s , and from m e t h y l a t i o n f r a g m e n t a t i o n analysis.39 P e r i o d a t e o x i d a t i o n was a l s o used t o c o n f i r m t h e p o s i t i o n o f t h e l i n k b e t w e e n t h e u l t i m a t e and p e n u l t i m a t e s u g a r s . S t r u c t u r e s (5)-(7) w e r e p r o p o s e d ( w i t h some e x t r a p o l a t i o n o f e n a n t i o m e r i c c o n f i g u r a t i o n s where e v i d e n c e f o r a s s i g n m e n t i s not y e t c o m p l e t e ) f o r t h e o l i g o s a c c h a r i d e a l d i t o l s from s e r o v a r s 8 , 9, and 25, r e s p e c t i ve 1y 6 -Deox y -I - t a 1i t o 1 ( 6-de ox y -_h - t a 1ose i n t h e o r i g i na 1 glycopeptidolipid) invariably occupies the reducing terminus. LRhamnose i s i n v a r i a b l y t h e p e n u l t i m a t e s u g a r , and t h e l i n k between I-rhamnose and 6-deoxy-L-talose i s i n v a r i a b l y (1+2). Moreover, t h e r e s u l t s p o i n t t o t h e o u t e r o n e o r two a p p e n d a g e s f o r t h e p r o v i s i o n of individually distinctive features required for antigen speci f i c it y The s u r f a c e p r o p e r t i e s o f c e l l s o f M y c o b a c t e r i u m B C G , Mycobac ----t e r i u m p h 1e i , My co b a c t e r i u m smgm a t i s, an d My c o b a c t e r i u m
.
.
4: Microbial Polysaccharides
85
-m-i c r o t i
have been shown t o be i d e n t i c a l ,
medium,
t h e age o f t h e c e l l s ,
various
v i g o r o u s t r e a t r n e n t ~ . ~ ' The n e g a t i v e s u r f a c e c h a r g e f o r
i r r e s p e c t i v e o f the growth
and t h e c o l o n i a l m o r p h o l o g y , and a f t e r
a l l these species a r i s e s from the phosphate groups o f
cells of
phosphodiester
linkages
between
the
a r a b i n o g a l a c t a n of the b a s i c c e l l - w a l l
peptidoglycan
and
the
s t r u c t u r e , w h i c h i s common t o
a l l species o f Mycobacteria. The p e p t i d o g l y c a n o f N e i s s e r i a g o n o r r h o e a g h a s b e e n f o u n d t o contain g-acetyl
groups,
by
use
of
the
hydroxamate
formation
and f o u n d t o be o n l y p a r t l y s e n s i t i v e t o l y ~ o z y m e . ~ ~
reaction,
B-~-Glc~3Me-(1+3)-a-~-Rhae-(1+2)-6-deoxy-~-Talitol 0
6
'\/C
/\
Me
CO,
a-L-Fuce2,3Me2-[
1 + 4 ) - u - L - F u c ~ 2 , 3 M e ~ - [ 1+3)-a-L-Rhae-[
1+2)-
6-deoxy-k-tali to (6)
Low c o n c e n t r a t i o n s o f B - l a c t a m
a n t i b i o t i c s caused an i n c r e a s e d
uptake o f r a d i o a c t i v e 2-amino-2-deoxy-Q-glucose dodecyl
sulphate-insoluble
gonorrhoeae.42
T h e r e was
peptidoglycan of no a p p r e c i a b l e
i n t o the sodium
growing
Neisseria
change i n t h e
[small)
amount o f sodium d o d e c y l s u l p h a t e - s o l u b l e p o l y m e r p r e s e n t i n t h e cultures.
The sodium d o d e c y l s u l p h a t e - i n s o l u b l e
product i n control
c e l l s was o n l y p a r t i a l l y d i s s o l v e d by e g g - w h i t e
lysozyme (about
40%), b u t c o u l d a l l be r e l e a s e d by t h e C h a l a r o p s i s B muramidase. c e l l s exposed t o B - l a c t a m s
s u s c e p t i b l e t o l y s o z y m e i n c r e a s e d t o 60%. C h a l a r o p s i s B d i g e s t s by t h i n - l a y e r contained
disaccharide-peptide
Examination o f
the
c h r o m a t o g r a p h y showed t h a t t h e y
monomers
a c e t y l a t i o n and b i s - d i s a c c h a r i d e - p e p t i d e a c e t y l g r o u p s , o r w i t h none.
I n
the proportion o f labelled peptidoglycan
with
and
without
d i m e r s w i t h one o r t w o
g0-
B-Lactam a n t i b i o t i c s caused a decrease
i n t h e d e g r e e o f 2 - a c e t y l a t i o n b u t d i d n o t g r e a t l y a f f e c t t h e amount
86
Carbohydrate Chemistry
of peptidoglycan cross-linking.
They a l s o e n l a r g e d t h e b a c t e r i a and
c o n s e r v e d a n d t h i c k e n e d t h e s e p t a t h a t c o u l d be o b s e r v e d i n t h i n s e c t i o n s by e l e c t r o n m i c r o s c o p y . r e s u l t s and
e f f e c t s o f B-lactams
The r e l a t i o n s h i p b e t w e e n t h e s e
2
on
v i t r o synthesis o f peptido-
g l y c a n by e t h e r - t r e a t e d N e i s s e r i a g o n o r r h o e a e has been d i s c u s s e d .
-m i r a b i l i s
The m u r e i n o f
i s r e p o r t e d t o be u n i q u e w i t h
respect t o the g-acetylation
o f p a r t o f i t s N-acetylmuramic a c i d
residues.43
synchronized
Working
with
r a d i o a c t i v e 2-acetam ido-2-deoxy-Q-glucose
c e l l s and p r o v i d i n g w i t h t h e medium,
the
m u r e i n was p u l s e - l a b e l l e d i n v i v o f o r 1 0 m i n p e r i o d s a t d i f f e r e n t times of the c e l l cycle.
A f t e r i s o l a t i o n o f m u r e i n and e n z y m a t i c
cleavage w i t h endo-N,g-diacetylmuramidase d i s t r i b u t i o n of radio-activity
from Chalaropsis,
the
between u n c r o s s l i n k e d m u r e i n s u b u n i t s
(monomers) and t h e p e p t i d e - c r o s s l i n k e d
I t was
d i m e r s was a n a l y s e d .
found t h a t t h e m u r e i n s y n t h e s i z e d a t d i f f e r e n t t i m e s d u r i n g t h e c e l l c y c l e d i d n o t show s i g n i f i c a n t v a r i a t i o n r e g a r d i n g t h e d e g r e e o f c r o s s l i n k a g e and t h e d e g r e e o f g - a c e t y l a t i o n .
of g-acetylation sevenfold
of
l o w e r than t h a t o f murein from
asynchronous c u l t u r e s . non-g-acetylated
A pulse-chase
chase,
generation later, became e v i d e n t .
degree
continuously
labelled
experiment revealed t h a t only
p a r t o f w h i c h became c - a c e t y l a t e d s u b s e q u e n t l y .
S i n c e a c e r t a i n amount o f the
the
m u r e i n s u b u n i t s were i n c o r p o r a t e d i n t o t h e g r o w i n g
murein sacculus, during
However,
p u l s e - l a b e l l e d m u r e i n was f o u n d t o be a b o u t
which
newly
incorporated subunits
reappeared
i n
the
sacculus
was
lost
about
one
l i m i t e d murein turnover during the c e l l cycle
The d e g r e e o f c r o s s l i n k a g e o f b o t h t h e g - a c e t y l a t e d
as w e l l as t h e n o n - ) - a c e t y l a t e d d u r i n g subsequent growth.
newly
synthesized murein increased
The l a b e l l e d p e p t i d e - c r o s s l i n k e d
dimers
w e r e c l e a v e d by an e n d o p e p t i d a s e i s o l a t e d P r o t e u s m i r a b i l i s .
The
d i s t r ib u t i o n o f r a d i o a c t i v i t y be t w een t h e r e s u 1t i n g no n - 2 - ace t y 1a t e d and 2 - a c e t y l a t e d a c e t y l a t e d dimer
monomers
n o n - g - a c e t y 1a t e d s u b u n it subsequent b i o s y n t h e s i s .
m ono-)-ace subunits,
indicated that
most
fraction carried radioactivity
t y l at e d dimer
w h i ch
w as
of
the
mono-2-
exclusively
n o n - 2 - a c e t y 1a t e d
Since o n l y a s m a l l p o r t i o n o f t h e l a b e l l e d f r a c t i o n c a r r i e d r a d i o a c t iv i t y
i n
represented
an i n t e r m e d i a t e
i n the g-acetylation
both
i t was
and o n l y a t s p e c i f i c t i m e s o f m u r e i n b i o s y n t h e s i s ,
concluded t h a t t h i s p o r t i o n o f t h e l a b e l l e d mono-)-acetylated fraction
i n the during
dimer
process.
A d e f i n e d sequence o f s t e p s o f m u r e i n b i o s y n t h e s i s has been p r o p o s e d as a r e s u l t o f t h e r e s u l t s d e scrib e d . A n o v e l mur e i n b u i l d i n g b l o c k ,
2-ace tam i d o - 2 - d e o x y - Q - g 1 ycosy 1-
a7
4: Microbial Polysaccharides
-N - a c e t y l m u r a m o y l - d i p e p t i . d e , P r ot e u s m i r a b i l i s ,
formed d u r i n g t h e c e l l - d i v i s i o n c y c l e o f
has been r e p o r t e d . 4 4
g l u c o s e r e s i d u e was f o u n d t o c o n t a i n ,
The 2 - a c e t a m i do-2-deoxy-gi n some i n s t a n c e s , 2 - a c e t y l
groups. The Pseudomonas a e r u g i n o s a o u t e r membrane was i s o l a t e d w i t h attached
peptidoglycan
and
ethylenediaminetetraacetate, major
outer
membrane
fractioned
and lysozyme.
proteins
with
X-100,
I are noncovalently
H2, a n d
F,
Triton
The d a t a s u g g e s t e d t h a t
associated with the p e p t i d ~ g l y c a n . ~ ’ The u n i q u e p r e s e n c e o f
a polyamine covalently
p e p t i d o g l y c a n h a s b e e n r e p ~ r t e d . ~ The ~ , ~p o~l y a m i n e was f o u n d t o e x i s t a s a c o m p o n e n t o f c e l l - w a l l Selenomonas
ruminantium,
a
strictly
linked to a cadaverine
peptidoglycan o f
anaerobic
bacterium.
{ l 4 C } C a d a v e r i n e added t o t h e g r o w t h medium was i n c o r p o r a t e d i n t o t h e cells,
a n d a b o u t 70% o f t h e t o t a l r a d i o a c t i v i t y i n c o r p o r a t e d was
found i n the peptidoglycan fraction.
When t h e { 1 4 C ) c a d a v e r i n e -
l a b e l l e d p e p t i d o g l y c a n p r e p a r a t i o n was a c i d h y d r o l y s e d , 14C
counts were recovered as cadaverine.
l a b e l l e d p e p t i d o g l y c a n p r e p a r a t i o n was t h r e e s m a l l f r a g m e n t s w h i c h were ninhydrin reaction. was composed o f
a l l o f the
{14C)cadaverine-
digested w i t h lysozyme i n t o
r a d i o a c t i v e and were p o s i t i v e i n
One m a j o r s p o t ,
QL-alanine,
The
a compound o f t h e f r a g m e n t s ,
Q-glutamic
acid,
diaminopimelic acid,
c a d a v e r i n e , m u r a m i c a c i d , and 2 - a m i n o - 2 - d e o x y - Q - g l u c o s e . two
amino
groups
peptidoglycan,
of
cadaverine
was
a n d t h e o t h e r was f r e e .
covalently
One o f t h e
linked
to
the
The c h e m i c a l c o m p o s i t i o n o f
t h e p e p t i d o g l y c a n p r e p a r a t i o n o f t h i s s t r a i n was d e t e r m i n e d t o be a s f o l 1ow s:
-
I-a 1a n i n e -Q-
a 1a n i ne-Q- g l u t am ic a c i d - mes o d i am in o p im e 1ic
acid-cadaverine-muramic (1.O:l
.O:l.O:l
.0:1.1:0.9:1
acid-2-amino-2-deoxy-~-glucose
.O).
T h e { I 4 C ) c a da ve r i n e - l a b e 1 l e d p e p t ido g l y c a n was d e g r a d e d w i t h t h e l y t i c enzymes p r e p a r e d f r o m S t r e p t o m y c e s a l b u s G i n t o t h r e e s m a l l f r a g m e n t s i n c l u d i n g a m a j o r f r a g m e n t (band A compound).48 B a n d A c o m p o u n d was c o m p o s e d o f I - a l a n i n e , d i a m i n o p i m e l i c acid,
Q - g l u t a m i c a c i d , meso-
Q-alanine, and c a d a v e r i n e i n t h e m o l a r r a t i o
0.98:1.0:1.0:0.98:0.97.
Diaminopimelic
acid,
&-alanine, and
c a d a v e r i n e w e r e N - t e r m i n a l r e s i d u e s i n b a n d A compound.
{14Clcadaverine-labelled acid hydrolysis,
band A
compound was
t w o p e p t i d e f r a g m e n t s were o b t a i n e d .
c o n s i s t e d o f d i a m i n o p i m e l i c a c i d and Q - a l a n i n e , was t h e N - t e r m i n a l of I-alanine,
subjected
amino a c i d ,
When t h e to
partial
One o f them
diaminopimelic acid
and t h e o t h e r f r a g m e n t was composed
Cj-glutamic acid, and cadaverine, o f which I - a l a n i n e
88
Carbohydrate Chemistry
and c a d a v e r i n e w e r e N - t e r m i n a l . p e p t i d e s t r u c t u r e of
I t was c o n c l u d e d t h a t t h e p r i m a r y
b a n d A compound i s L - a l a n y l - E - g l u t a m o y l - m e s o -
d i a m i n o p i m e l y l - g - a l a n i n e and t h a t c a d a v e r i n e l i n k s c o v a l e n t l y t o t h e g-glutamic a c i d residue. S t r e p t o c o c c u s m u t a n s BHT was g r o w n i n T o d d - H e w i t t d i a l y s a t e medium c o n t a i n i n g 2-acetamido-2-deoxy-E-{
1 4 C ) g l u c o s e f o r 6 t o 11
generations.
A f t e r t r e a t m e n t w i t h c o l d and h o t t r i c h l o r o a c e t i c a c i d
and t r y p s i n ,
5 2 t o 65% o f t h e r a d i o a c t i v i t y r e m a i n e d p r e s e n t i n
insoluble peptidoglycan-containing residues.
Hen e g g - w h i t e l y s o z y m e
or rnutanolysin t r e a t m e n t of t h e peptidoglycan residues r e s u l t e d i n t h e r e l e a s e o f 80 a n d 97%, r e s p e c t i v e l y , o f t h e 1 4 C l a b e l t o t h e supernatant f r a ~ t i o n . ~ ’ H y d r o c h l o r i c a c i d h y d r o l y s a t e s o f such supernatants present
in
showed t h a t insoluble
compounds t h a t
essentially
peptidoglycan
a l l of
the
fractions
c o m i g r a t e d on p a p e r c h r o m a t o g r a p h y
deoxy-!-glucose
( 6 0 % ) o r m u r a m i c a c i d (30%).
radioactivity
was
present
i n
w i t h 2-amino-2-
Treatment o f whole
c e l l s w i t h l o w and h i g h c o n c e n t r a t i o n s o f lysozyme a l o n e r e s u l t e d i n l o s s e s o f 45 and 70% o f t h e i n s o l u b l e p e p t i d o g l y c a n ,
respectively,
y e t r e l e a s e o f d e o x y r i b o n u c l e i c a c i d f r o m c e l l s was n o t d e t e c t e d . Sequential addition inorganic
salts
of
after
appropriate
concentrations
lysozyme treatment
l i b e r a t i o n o f deoxyribonucleic acid.
of
selected
did result i n the
Deoxyribonucleic acid release
was c o r r e l a t e d w i t h a f u r t h e r r e l e a s e o f p e p t i d o g l y c a n f r o m t h e insoluble fraction.
However, t h e t o t a l amount o f p e p t i d o g l y c a n l o s t
e f f e c t e d by t h e l o w c o n c e n t r a t i o n o f l y s o z y m e and NaSCN ( l y s i s ) was s i g n i f i c a n t l y l e s s t h a n t h e amount o f p e p t i d o g l y c a n h y d r o l y s e d by h i g h c o n c e n t r a t i o n s o f l y s o z y m e a l o n e (no l y s i s ) ,
which suggested
t h a t t h e o v e r a l l amount o f p e p t i d o g l y c a n l o s t d i d n o t c o r r e l a t e w e l l with cellular lysis.
The t o t a l a m o u n t o f i n s o l u b l e p e p t i d o g l y c a n
l o s t a t the highest s a l t concentrations greater
t e s t e d was f o u n d t o b e
t h a n c o u l d b e a c c o u n t e d f o r by l y s o z y m e - s e n s i t i v e
o f the peptidoglycan, obtained
suggested
possibly implicating autolysins. that
topologically localized,
hydrolysis
of
linkages
The r e s u l t s
peptidoglycan
bonds
in
b u t s t r a t e g i c a l l y i m p o r t a n t s i t e s was a
more s i g n i f i c a n t f a c t o r i n t h e sequence t h a t r e s u l t s i n loss o f cellular
integrity (lysis).
A p e p t i d o g l y c a n l a y e r o f Treponema p a l l i d u m k a z a n was i s o l a t e d
by
solubilization of
whole
cells
with
1% w a r m
sodium
dodecyl
s u l p h a t e and s u b s e q u e n t d i g e s t i o n o f an i n s o l u b l e r e s i d u e w i t h proteases.
E l e c t r o n m i c r o s c o p y r e v e a l e d t h a t t h e p e p t i d o g l y c a n was
i s o l a t e d as a s i n g l e - l a y e r e d s a c c u l u s o f l e s s t h a n 5 nm t h i c k n e s s ,
89
4: Microbial Polysaccharides f r e e d f r o m a x i a l f i l a m e n t s and an e n v e l o p e sheath.50
An i s o l a t e d
p e p t i d o g l y c a n f r a c t i o n was m a i n l y c o m p o s e d o f 2 - a m i n o - 2 - d e o x y - Q glucose,
muramic acid,
alanine,
g l y c i n e i n molar r a t i o s of
0-glutamic
acid,
L-orthithine,
and
Amino-
0.65:0.68:1.63:1.00:0.75:1.03.
and c a r b o x y l - t e r m i n a l a m i n o a c i d a n a l y s e s s u g g e s t e d t h e i n v o l v e m e n t
o f a t l e a s t a p a r t o f the g l y c i n e r e s i d u e i n c r o s s - l i n k i n g between t h e a m i n o g r o u p o f i - o r n i t h i n e r e s i d u e a t one s t r a n d o f t h e s t e m peptide
subunit
neighbouring
and
the
strand.
carboxyl
The
group
treponemal
of
alanine
peptidoglycan
o f
the
lacked the
i m m u n o a d j u v a n t a c t i v i t y b o t h t o s t i m u l a t e a n t i b o d y p r o d u c t i o n and t o induce delayed-type
hypersensitivity
the properties necessary t o splenocytes
and g u i n e a - p i g
against
stimulate
peritoneal
ovalbumin,
as w e l l as
guinea-pig
macrophages,
and
mouse
unlike the c e l l
w a l l s or p e p t i d o g l y c a n s ( g r o u p A t y p e o f S c h l e i f e r and K e n d l e r s ’ classification) the
i s o l a t e d from
mammal.
However,
many b a c t e r i a l s p e c i e s p a r a s i t i c t o
the
peptidoglycan
activated
the
human
complement s y s t e m t h r o u g h t h e a l t e r n a t i v e pathway, as w e l l as t h e c l a s s i c a l one, rabbit
blood
and caused a l i b e r a t i o n o f 5 - h y d r o x y t r y p t a m i n e platelets
i n
a
similar
manner
to
the
i n
cell-wall
p e p t i d o g l y c a n s o f b o t h g r o u p A and B t y p e s .
Lipopolysaccharides
3
The c h e m i s t r y and b i o l o g i c a l s i g n i f i c a n c e o f 3-deoxy-g-manno-2o c t u l o s o n i c a c i d have been r e v i e w e d Y 5 l elucidation
and
polysaccharides, and
enzymology
i t s
location
chemical
of
an
and
including i t s structure linkages
i n
b a c t e r i a l
s y n t h e s i s and m o n o s a c c h a r i d e c h e m i s t r y , inhibitor
to
metabolism.
Bacterial
l i p o p o l y s a c c h a r i d e and i t s l i p i d A component has been r e v i e w e d briefly.52
C o n f i r m a t i o n o f t h e s t r u c t u r e o f 3-deoxy-P-manno-2-
o c t u l o s o n i c a c i d by X - r a y t h e r e p o r t of
t h e X-ray
c r y s t a l l o g r a p h y h a s been b r o u g h t n e a r e r by s t r u c t u r e o f m e t h y l ( m e t h y l 4,5,7,6-tetra-g-
a c e t y 1-3-deoxy-a-Q-manno-2-octulopyranosid I o n a t e (8).53 The
l i p o p o l y s a c c h a r i d e
f r o m
A c t i n o b a c L l l u s
a c t i n o m y c e t e m c o m i t a n s s t r a i n s Y4 and N27 was i s o l a t e d by t h e p h e n o l water procedure.
Morphologically,
and branched f i l a m e n t s weight.54
Chemical
lipopolysaccharide carbohydrate,
of
which
analysis both
the molecule consisted o f ribbon
c o m p r i s e d 3% o f of
strains
the
the cellular
isolated
showed
them
l i p i d , 3-deoxy-Q-manno-2-octulosonic
and to
consist
acid,
dry
purified of
heptose,
90
Carbohydrate Chemistry
amino-deoxyhexose, and p h o s p h a t e .
The m a j o r f a t t y a c i d s o f t h e l i p i d
A m o i e t y were m y r i s t i c and B - h y d r o x y m y r i s t i c a c i d s . f uco se,
p- g a l a c t o se,
p - g l u c o se,
h e p t o se,
I-Rhamnose,
2-amino-2-deoxy-Q-gluco
Ise,
a n d 2 -am i n o -2-deox y -Q-ga 1a c t o se c o m p r i s e d t h e mono sa c c h a r ide pa r t i o n o f the lipopolysaccharide.
Biological-activity
both lipopolysaccharide molecules t o
be a c t i v e
r e a c t i o n a n d i n v i t r o 45Ca bone r e s o r p t i o n ,
studies revealed
i n t h e Schwartzman
a s w e l l as i n macrophage
a c t i v a t i o n a n d l e t h a l i t y and i n p l a t e l e t a g g r e g a t i o n .
The c o r e o l i g o s a c c h a r i d e o f Aeromonas h y d r o p h i l a (Chemotype
111) l i p o p o l y s a c c h a r i d e has
been
i n ~ e s t i g a t e d . ~ The ~
i n v o l v e d t h e use o f m e t h y l a t i o n a n a l y s i s , trioxide,
p a r t i a l hydrolysis with acid,
periodate oxidation,
degradation,
and t a g g i n g o f t h e r e d u c i n g end group.
unusual
having
i n
constituent.
3 - a c e t am id o - 3 , 6 - d i
Structure
studies
o x i d a t i o n and chromium
(9) was
deoxy-L- g l ucose
proposed
for
Smith
The c o r e i s the
as
a
core
o l i g osaccharide. a -Q - G 1 c g
1
I
6 dd-B-L-GlcgNAc-( -
1+3) -a-e-Galg-(
1+3)-a-LQ-Hepp(
1+2) -a-LQ-Hepe
4
I
1 a -Q - G 1 c e
LQ -H e p e
=
L-g 1y c e r o -Q - m a nno - h e p t o p y r a no s e (91
The sugar c o m p o s i t i o n o f t h e O - a n t i g e n i c lipopolysaccharides i s o l a t e d f r o m Group F (once c l a s s i f i e d a s Aeromonas) v i b r i o s was
91
4: Microbial Polysaccharides
analysed. 56 3-Deoxy-Q-manno-2-oct uloso n i c a c i d was t o t a l l y absent from t h e l i p o p o l y s a c c h a r i d e s . As common component s u g a r s , p g l u c o s e , a - g a l a c t o s e , i - q l y c e r o - Q - m a n n o - h e p t o s e , and 2-amino-2d e o x y - P - g l u c o s e w e r e p r e s e n t . The G r o u p F v i b r i o s e x a m i n e d w e r e f o u n d t o be d i v i d e d i n t o t w o g r o u p s , d e s i g n a t e d t e n t a t i v e l y a s g r o u p s 1 a n d 11, o n t h e b a s i s o f t h e p a t t e r n of t h e s u g a r composition of t h e i r l i p o p o l y s a c c h a r i d e s . As a d d i t i o n a l s u g a r c o m po ne n t s , 2 - am i no - 2 d e ox y -Q - m a n no s e , 2 - am i no - 2,6 - d i d e ox y -Q - g 1u co s e, and t w o u n i d e n t i f i e d amino s u g a r s were p r e s e n t i n group I , while Irhamnose, Z - a m i n o - 2 - d e o x y - Q - g a l a c t o s e , an u n i d e n t i f i e d amino sugar, and a r e l a t i v e l y h i g h c o n t e n t o f a - g l y c e r o - Q - m a n n o - h e p t o s e were found i n g r o u p 11. The main f a t t y a c i d s p r e s e n t i n l i p o p o l y s a c c h a r i d e s from B a c t e r o i d e s f r a g i l i s NCTC 9343 were i d e n t i f i e d a s 13-methylt e t r a d e c a n o i c , B-3-h~d r ox ypent ade c a n o i c , p-3- hy drox y hex ade canoi c, p3 - h y d r o x y - 1 5 - m e t h y l - h e x a d e c a n o i c , and 0 - 3 - h y d r o x y h e p t a d e c a n o i c acids.57 Of t h e s e 1 3 - m e t h y l - t e t r a d e c a n o i c a c i d i s e x c l u s i v e l y e s t e r b o u n d , and 3 - h y d r o x y - 1 5 - m e t h y l - h e x a d e c a n o i c acid i s exclusively i n v o l v e d i n amide l i n k a g e . The o t h e r 3-hydroxy f a t t y a c i d s a r e b o t h e s t e r and amide b o u n d . A l l 3-hydroxy f a t t y a c i d s p o s s e s s t h e c o n f i g u r a t i o n , and t h e 3 - h y d r o x y l group o f e s t e r - l i n k e d 3-hydroxy f a t t y a c i d s i s n o t s u b s t i t u t e d . L i p o p o l y s a c c h a r i d e s of r e l a t e d Bacteroides species (Bacteroides thetaiotaomicron, Bacteroides o v a t u s , B a c t e r o i d e s d i s t a s o n i s , a n d B a c t e r o i d e s v u l g a t u s 1 showed a f a t t y - a c i d spectrum w i t h s i m i l a r and d i s t i n c t f e a t u r e s compared t o t h a t o f Bacteroides f r a g i l i s lipopolysaccharides. Pur i f i e d 1i p o po 1y s a cch a r i de e x t r a c t e d w i t h pheno 1-water from smooth B r u c e l l a a b o r t u s was h y d r o l y s e d w i t h 1% a c e t i c a c i d a t 1 0 0 ° C . 5 8 The d e g r a d e d p o l y s a c c h a r i d e r e l e a s e d gave r e a c t i o n s o f i d e n t i t y w i t h t h e n a t i v e p o l y s a c c h a r i d e hapten i n phenol-water- o r t r i c h l o r o a c e t i c a c i d - e x t r a c t e d e n d o t o x i n preparations o f Brucella a b o r t u s w i t h t h e p o l y s a c c h a r i d e e x t r a c t e d by t r i c h l o r o a c e t i c a c i d from rough B r u c e l l a m e l i t e n s i s s t r a i n 8115. The l a t t e r p o l y s a c c h a r i d e was p r e s e n t i n t h e s o l u b l e c y t o p l a s m i c f r a c t i o n , b u t n o t i n t h e membrane f r a c t i o n , of d i s r u p t e d 8115 c e l l s . I t could n o t be e x t r a c t e d from t h r e e rough m u t a n t s o f B r u c e l l a a b o r t u s o r from -------B r u c e l l a ----canis or Brucella o v i s cells. B o t h the degraded p o l y s a c c h a r i de and na t i ve p o l y saccha r i de hap t e n shared de t e rm i nan t s p r e s e n t o n s m o o t h l i p o p o l y s a c c h a r i d e and m i s s i n g from t h e rough B r ucella g e l i t e n s i s polysaccharide. S u g a r s found i n p u r i f i e d l i p o p o l y s a c c h a r i d e , t h e n a t i v e h a p t e n , and degraded p o l y s a c c h a r i d e
-
a-
92
Carbohydrate Chemistry
a - -~ - G l c ~ N A c - ( 1 + 2 ) - a-- ~ - G l c ~ - ( l + 2 ) --a - ~ - G a l ~ - ( l + 3 ) - a - ~ - G l c ~ - ( l + 6
I
1
a-Q-Gale (10)
a-~-Gal~-(1+2)-a-~-Gal~-(l+2)-a-~-Glc~-(l+3)-a-~-Glc~-(l+ 3
I
1
B-P-GlcQ (11)
i 1
a-Q-Gale (12)
a - -~ - G l c ~ - ( 1 + 2 ) - a - ~ - G l c ~ - ( l + 2 ) - a - ~ - G a l ~ - ( l + 3 ) - a - ~ - G l c ~ ( l + 3
I
1 a-9-GlceNAc (13)
a-Q-Gal~-(1+2)-a-~-Gal~-(l+2)-a-q-Glc~-(l+3)-a-~-Glc~-(l+ -
i 1
B-P-Galg (14)
~-~-Glc~NAc-(1+6)-a-~-Glc~-(l+2)-a-g-Glc~-(l+3)-a-~-Glc~-(l+ 6
I
1
a-P -Ga le
93
4: Microbial Polysaccharides
-
-
i n c l u d e d Q-manno s e , Q g l u c o s e , 2 -am ino -2,6 - d i de ox y -Q g l u c o s e , 2 -
-
am ino-2-deox y -tj- g l u c o se,
a n d 3 - d e o x y -Q m a n n 0 - 2 - 0 c t u l o so n i c a c i d.
The B r u c e l l a m e l i t e n s i s p o l y s a c c h a r i d e c o n t a i n e d o n l y a t r a c e amount o f 2-amino-2,6-dideoxy-Ba c i d d e t e c t a b l e by
g l uco se a n d n o 3-deoxy-B- m a n n o - o c t u l o s o n i c
t h e t h i o b a r b i t u r a t e assay.
Sera
from
some
r a b b i t s i m m u n i z e d w i t h p u r e s m o o t h l i p o p o l y s a c c h a r i d e a n d some, not
all,
cows
infected
with
field strain of
but
Brucella abortus
recognized the determinants missing from the Brucella melitensis polysaccharide.
A subclass-specific enzyme-linked
immunoassay
showed t h a t most o f t h e a n t i b o d y i n s e r a f r o m i n f e c t e d cows w h i c h b i n d s t o smooth l i p o p o l y s a c c h a r i d e and t o t h e n a t i v e h a p t e n i s o f t h e immunoglobulin G 1 subclass. The c h e m i c a l s t r u c t u r e o f t h e 0 - s p e c i f i c
----------Citrobacter
036 l i p o p o l y s a c c h a r i d e has
methylation analysis s p e ~ t r o m e t r y . ~T~h i s
using gas-liquid polysaccharide
polysaccharide o f
been e s t a b l i s h e d
chromatography i s
a
linear
by
and mass
homopolymer
composed o f ( 1+2) - 1 i n k e d 4-deox y-6 - Q - a r a b i n o - hexopy r a n o s y 1 r e s i d u e s . cores
from
E n t e r o b a c t e r a ce ae 1ipo po 1y s a c c h a r i de s h a v e be e n i n ve s t iga t e d,
The
structures
for
the
us in g
s p e c i f i c d e g r a d a t i o n a n d 'H methods.60
hexose
n.m.r.
regions
of
studies as the p r i n c i p a l
Complete s t r u c t u r e s f o r these r e g i o n s i n t h e Salmonella,
t h e E s c h e r i c h i a c o l i R1,
R2,
R3,
R4,
and E s c h e r i c i a c o l i K12 and
E s c h e r i c h i a c o l i B c o r e s a r e p r o p o s e d ((10)-(16), r e s p e c t i v e l y ) .
The
apparent s i m i l a r i t i e s between these s t r u c t u r e s i n d i c a t e a c l o s e relationship.
They a r e a l l composed o f f i v e h e x o s e r e s i d u e s . t h e E s c h e r i c h i a c o l i R2 c o r e s d i f f e r
The S a l m o n e l l a a n d
o n l y i n t h e n a t u r e o f one
h e x o s e r e s i d u e a n d t h e E s c h e r i c h i a c o l i R I , R2, R4 a n d E h e r i c h i a
c o l i K12 c o r e s a l l c o n t a i n c o l i core. There a r e o n l y a n d t h e R4 c o r e s .
t h e disaccharide u n i t of
The S a l m o n e l l a a n d t h e R3 c o r e ,
t h e same P-Glc-Q-Gal-Q-Glc
the Escherichia
minor s t r u c t u r a l d i f f e r e n c e s between R 1 trisaccharide unit.
finally,
contain
Some c o m p l e m e n t a r y
i n f o r m a t i o n o n t h e s t r u c t u r e o f t h e h e p t o s e r e g i o n has a l s o been obtained.
T h i s r e g i o n i s more u n i f o r m , a n d i t w o u l d n o t be s u r p r i s i n g
ifa l l c o m p l e t e h e p t o s e r e g i o n s i n S a l m o n e l l a , A r i z o n a ,
Citrobacter,
E s c h e r i c h i a c o l i , S h i g e l l a , K l e b s i e l l a , Enterobacter,and p r o v e d t o h a v e e s s e n t i a l l y t h e same s t r u c t u r e ( 1 7 ) .
Serratia
One r e s u l t o f
94
Carbohydrate Chemistry
t
N
u I
0
n Y
n I
b N t U
I
0
0 Y I
N
n
z
m t
I
U
I
N
u
Y
N
I
u N r 0 z
I
e
0 0
a
I
2
N
I
u a .t a-
e-N
4
0 1 1 All
I
N
a
I
I
n
M
t
4 v
I
a-al
2 X
b-4
I
n u
2 I nil
A1I
A1I I
a I
n
M
t
4 u
I
a 4
U
w-4
I 0 1 1 I
a
a
I
n
0 .
M 4
L)
w
4 u I
al m
4
U
I nit I
a
n I
N
t
4
0
v
Q Z
I
?
4
U
I 0 1 1 I
0 .
.-I
a c
al
N-4
4
U I
nit
a I
o
95
4: Microbial Polysaccharides this
study6'
was
the
finding
that
a l l
&-glycero-!-manno-
h e p t o p y r a n o s y l r e s i d u e s seem t o be u - l i n k e d . The h e p t o s e r e g i o n o f t h e l i p o p o l y s a c c h a r i d e o f E s c h e r i c h i a The Q - g l u c o s y l r e s i d u e l i n k e d t o c o l i K12 CR34 h a s been s t u d i e d . 6 1 t h e h e p t o s e I 1 w a s f o u n d t o b e s u b s t i t u t e d by a P - g a l a c t o s y l g r o u p a n d t h e l i n e a r c h a i n o f t h e c o r e p o l y s a c c h a r i d e h a s t w o (1+3) heptoses.
linked
The h e p t o s e I 1 i s s u b s t i t u t e d by a l a t e r a l (1+7) l i n k e d
h e p t o s e I11 and t h e h e p t o s e I i s l i n k e d i n (1+5) t o 2-deoxy-Q-mannoo c t u l o s o n i c acid.
h e p t o s e I,
The t h r e e s u g a r s o f t h e l i n e a r c h a i n ,
h e p t o s e 11, and Q-glucose, a r e s u b s t i t u t e d by p h o s p h a t e ,
pyrophosphate,
o r p y r o p h o s p h o r y l e t h a n o l a m i n e g r o u p s l i n k e d t o C-4 h y d r o x y l g r o u p s . i n some p o l y s a c c h a r i d e c h a i n s , one o r t w o s u b s t i t u t i n g
However,
g r o u p s may b e a b s e n t , w h i c h
may e x p l a i n t h e h e t e r o g e n e i t y i n t h e
l e n g t h o f the core polysaccharide chains. Structural studies o f
lipopolysaccharides o f Escherichia c o l i
K 1 2 have d e m o n s t r a t e d t h a t s m o o t h s t r a i n s p r o d u c e l i p o p o l y s a c c h a r i d e
w i t h c o n s i d e r a b l e h e t e r o g e n e i t y w i t h r e s p e c t t o t h e l e n g t h o f 0a n t i g e n i c c h a i n s w h e n "P
n.m.r.
methods
average
only
p r o v i d e d an
heterogeneity.62
was u s e d , a l t h o u g h t r a d i t i o n a l composition
over
S t a n d a r d i s o l a t i o n p r o c e d u r e s were
a
range
of
shown t o f a i l
t o e x t r a c t some 30% o f t h e t o t a l l i p o p o l y s a c c h a r i d e p r e s e n t i n t h e cells,
t h e s i g n i f i c a n c e o f w h i c h was d i s c u s s e d i n r e l a t i o n t o o u t e r
membrane s t r u c t u r e . When l i p o p o l y s a c c h a r i d e s f r o m E s c h e r i c h i a c o l i 8 w e r e s o n i c a t e d together w i t h pure spin-labelled phospholipids without the a d d i t i o n o f unlabelled phospholipids,
e x t e n s i v e l i n e b r o a d e n i n g was o b s e r v e d
due t o t h e c l o s e p r o x i m i t y o f s p i n - l a b e l l e d m o l e c u l e s t o e a c h o t h e r , a result suggesting that spin-labelled phospholipids existed i n s e g r e g a t e d domains c o n t a i n i n g few Such
mixed
bilayers
were
l i p o p o l y s a c c h a r i d e molecules.63
incubated
under
various
conditions,
i n c l u d i n g t h e a d d i t i o n o f N a C l a n d MgC12 t o t h e m e d i u m a n d t h e i n c o r p o r a t i o n o f t h e m a j o r outer-mem b r a n e p r o t e i n , bilayer,
porin,
i n t o the
a n d t h e i n t e r m i x i n g o f t h e d o m a i n s w a s f o l l o w e d by t h e
decrease i n l i n e width.
The d i f f u s i o n o f t h e l a b e l l e d p h o s p h o l i p i d s
i n t o l i p o p o l y s a c c h a r i d e d o m a i n s was h a r d l y d e t e c t a b l e when t h e m i x e d b i 1ay e r co n t a ine d s p i n - l a be 1l e d p h osp h o l ip i ds a n d 1ipo po 1y s a c c h a r i de i n approximately equimolar was o b s e r v e d when a 1 7 - f o l d present,
ratios.
Although progressive d i f f u s i o n
m o l a r e x c e s s o f l i p o p o l y s a c c h a r i d e was
i t i s v e r y slow even under t h e o p t i m a l c o n d i t i o n s ,
r e q u i r i n g s e v e r a l days f o r a n e a r l y complete mixing. s e r i e s o f experiments,
usually
I n another
s p i n - l a b e l l e d p h o s p h o l i p i d s were d i l u t e d w i t h
96
Carbohydrate Chemistry
a 1 0 0 - f o l d e x c e s s of u n l a b e l l e d p h o s p h o l i p i d s and t h e n mixed w i t h lipopolysaccharides. I n t h e s e e x p e r i m e n t s , t h e f l u i d i t y of t h e d o m a i n s c o n t a i n i n g s p i n - l a b e l l e d p h o s p h o l i p i d s was shown t o be i d e n t i c a l , e v e n a f t e r 3 d a y s of i n c u b a t i o n , w i t h t h e f l u i d i t y of b i l a y e r s containing only phospholipids, i n c o n t r a s t t o t h e e x p e c t a t i o n of t h e d i m i n i s h e d f l u i d i t y i f p h o s p h o l i p i d m o l e c u l e s became f i n e l y i n t e r s p e r s e d w i t h l i p o p o l y s a c c h a r i d e m o l e c u l e s . These two d i f f e r e n t l i n e s o f a p p r o a c h t h e r e f o r e s u p p o r t e d t h e i d e a t h a t p h o s p h o l i p i d (and most probably l i p o p o l y s a c c h a r i d e ) domains i n m i x e d b i l a y e r s t e n d t o be r a t h e r s t a b l e and p e r s i s t f o r l o n g p e r i o d s o f time. The n a t u r a l a f f i n i t y of v a r i o u s b a c t e r i a l g l y c o p e p t i d e s and l i p o p o l y s a c c h a r i d e s f o r mammalian c e l l membranes has been e s t i m a t e d q u a n t i t a t i v e l y by c o m p a r i s o n w i t h t h e a d s o r p t i o n of l i p o p o l y s a c c h a r i d e from E s c h e r i c h i a c o l i N C T C 8623 t o e r y t h r o c y t e s , t h y m o c y t e s , bone-marrow c e l l s , s p l e e n c e l l s , p e r i t o n e a l lymphocytes, and macro phage^.^^ I m m u n o p o t e n t i a t i n g a c t i v i t y was e s t i m a t e d b y m e a s u r i n g t h e a b i l i t y of t h e b a c t e r i a l f r a c t i o n s t o s t i m u l a t e a h u m o r a l r e s p o n s e t o o v a l b u m i n i n H A M / l C R m i c e . When t h e a f f i n i t y f o r mammalian c e l l membranes was compared w i t h t h e s t i m u l a t i o n of t h e a n t i b o d y r e s p o n s e , i t was found t h a t a n e g a t i v e c o r r e l a t i o n f o r P 0 . 0 0 0 5 ) and a p o s i t i v e p e r i t o n e a l m a c r o p h a g e s ( g s = -0.94, c o r r e l a t i o n f o r p e r i t o n e a l l y m p h o c y t e s ( z s = + 0 . 9 7 , P 0 . 0 0 0 5 ) and s p l e e n c e l l s (rs = +0.76, 0.005) e x i s t e d . A heptose-deficient l i p o p o l y s a c c h a r i d e s t r a i n of E c h e r i c h i a c o l i 0 8 , s t r a i n F151, was f o u n d t o r e l e a s e p o r t i o n s of i t s o u t e r membrane when c e l l s w e r e e x p o s e d t o l O m M c i t r a t e b u f f e r ( p H 2.75) f o r 30 m i n and s u b s e q u e n t l y e x p o s e d t o l O O m M t r i s ( h y d r o x y m e t h y 1 ) The o u t e r - m e m b r a n e c o m p o n e n t aminomethane b u f f e r (pH 8 . 0 p 5 r e l e a s e d was f o u n d t o be composed of p r o t e i n , l i p o p o l y s a c c h a r i d e , phospholipid (card i o l i p i n , phospha t i d y l e t h a n o lam ine, and p h o s p h a t i d y l g l y c e r o l ) , and a l k a l i n e p h o s p h a t a s e . T h e outer-membrane component was r e l e a s e d from t h e c e l l envelope i n t h e a b s e n c e of c e l l l y s i s , a s no n - g l u c o s e - 6 - p h o s p h a t e dehydrogenase a c t i v i t y or s u c c i n a t e dehydrogenase a c t i v i t y was d e t e c t e d . M o r p h o l o g i c a l l y , t h e o u t e r - membrane component appeared t o c o n s i s t of l a m i n a r f r a g m e n t s and v e s i c l e s which had an a s s o c i a t e d a l k a l i n e p h o s p h a t a s e a c t i v i t y . I n t h e c h r o m a t i n or" s p l e e n c e l l s of m i c e and r a t s i m m u n i z e d w i t h l i p o p o l y s a c c h a r i d e s f r o m E s c h e r i c h i a c o l i , a new s p e c i e s , and a n t i g e n n o n s p e c i f i c f r a c t i o n , o f n o n - h i s t o n e c h r o m a t i n p r o t e i n s has been d e s c r i b e d . 6 6 The p o s s i b l e r o l e of t h i s f r a c t i o n i n t h e
97
4: Microbial Polysaccharides
r e g u l a t o r y p r o c e s s o f gene a c t i v a t i o n d u r i n g t h e immune r e s p o n s e as e x p r e s s e d by
the synthesis of
t h e IgM c l a s s o f
antibodies
was
discussed. E x p e r i m e n t a l e v i d e n c e h a s been p r e s e n t e d w h i c h i n d i c a t e s t h a t
1,2-dihydro-l-hydroxy-6-methyl-2-(propanesulphonyl)-thieno(3,2-~-~ (1,2,3)-diazaborine
(18),
a heterocyclic,
boron-containing
sub-
s t a n c e , p r e v e n t s b a c t e r i a l p r o l i f e r a t i o n by i n h i b i t i n g l i p o p o l y s a c c h a r i d e b i o ~ y n t h e s i s . ~T h~e r e w a s a r e d u c t i o n i n Q - g a l a c t o s e i n c o r p o r a t i o n i n t o the lipopolysaccharide o f whole c e l l s , n e w l y f o r m e d l i p o p o l y s a c c h a r i d e c h a i n s appear t h e p r e s e n c e o f t h e d i a z a b o r i n e compound, t r o n microscopy.
and no
i n whole b a c t e r i a i n
as d e m o n s t r a t e d by e l e c -
The 3 - d e o x y - ~ - m a n n o - 2 - o c t u l o s o n i c
acid metabolism
seemed t o be t h e t a r g e t o f t h e d i a z a b o r i n e compound as L - a r a b i n o s e 5 - p h o s p h a t e i n c o r p o r a t i o n i n t o m a c r o m o l e c u l a r m a t e r i a l was a f f e c t e d .
OH
The p u r i f i e d l i p o p o l y s a c c h a r i d e e n d o x i n - l i k e c o m p o n e n t f r o m L i s t e r i a monocytogenes has been shown t o a c t as b o t h an i n v i t r o mitogen
for
lymphocytes
and
i n
in
vivo
adjuvant
i n
antibody
production. A
novel peptidoglycan-associated
l i p o p r o t e i n was
found i n t h e
c e l l e n v e l o p e o f P r o t e u s ~ i r a b i l i s . T~h ~i s p r o t e i n was s h o w n t o h a v e an a p p a r e n t polyacrylamide gel,
molecular of
18,000.
weight,
i n sodium dodecyl
sulphate
The p r o t e i n was p r e s e n t i n t h e c e l l
envelope i n a form very c l o s e l y , but n o t c o v a l e n t l y , associated w i t h t h e p e p t i d o g l y c a n l a y e r a n d was r e c o v e r e d p r e d o m i n a n t l y f r o m t h e o u t e r membrane a f t e r s e p a r a t i o n o f t h e c e l l e n v e l o p e s . 1-14C)P a l m i t i c a c i d and I 2 - 3 H I g l y c e r o l were i n c o r p o r a t e d i n t o t h e p r o t e i n . A
fatty-acid-containing
polypeptide
(lipopolypeptide)
by d i g e s t i o n o f t h e p u r i f i e d p e p t i d o g l y c a n - a s s o c i a t e d
was
isolated
lipoprotein
It w i t h t r y p s i n i n t h e p r e s e n c e o f 0.05% s o d i u m d o d e c y l s u l p h a t e . was c o m p o s e d o f 3 1 a m i n o a c i d r e s i d u e s , an u n i d e n t i f i e d compound {XI,
and ca. 3 f a t t y - a c i d
residue^.^' A
l i p o - o l i g o p e p t i d e was a l s o
98
Carbohydrate Chemistry
isolated after
further
t h e absence o f composed o f
4
compound { X I ,
digestion of
sodium amino
a n d ca.
dodecyl
lipopolypeptide with t r y p s i n i n
sulphate.
acid residues
3 fatty-acid
Lipo-oligopeptide
(L-Asx,
2 I-Ser,
residues.
was
L-Lys),
The C - t e r m i n a l
a
amino
a c i d s o f l i p o p o l y p e p t i d e and l i p m l i g o p e p t i d e were d e t e r m i n e d as
I-
arginine
N-terminus
o f
lipopolypeptide,
or
and
L-lysine,
respectively.
peptidoglycan-associated
lipoprotein,
The
l i p o a l i g o p e p t i d e c o u l d n o t be i d e n t i f i e d by c o n v e n t i o n a l N - t e r m i n a l a n a l y s i s , i n d i c a t i n g t h a t t h e N - t e r m i n u s i s p r o b a b l y masked.
The
a m i n o a c i d s e q u e n c e o f t h e l i p w l i g o p e p t i d e d e r i v e d f r o m t h e Nterminal
--Proteus
region o f
the peptidoglycan-associated
lipoprotein o f
m i r a b i l i s was d e t e r m i n e d t o be { X I - k - S e r - I = - S e r - L - A s n - i -
L Y S . ~ The ~ u n i d e n t i f i e d compound { X I p r e s e n t a t t h e N - t e r m i n u s was i d e n t i f i e d a s g l y c e r y l - l - c y s t e i n e {S-(p r o p a n e -2’,3’- d i o 1) -3- t h i o - 2 amino-propanoic
acid).
lipopolypeptide,
The p a r t i a l a m i n o a c i d s e q u e n c e o f t h e
w h i c h c o n t a i n e d t h e l i p o a l i g o p e p t i d e a t i t s N-
t e r m i n a l p a r t , w a s a l s o d e t e r m i n e d , m a i n l y by Edman d e g r a d a t i o n . The s t r u c t u r e o f t h e N - t e r m i n a l p a r t o f p e p t i d o g l y c a n - a s s o c i a t e d lipoprotein
was d e t e r m i n e d t o
be
(3 f a t t y
acids
glyceryl-L-Cys-I-
-
Ser-L-Ser-L-Asn-I-Lys-L-Asn-L-Asn-l-Asp-I-Asp-~-Glu-I-Thr-l-Asp-L-Thr-L-
Ser.....}.
These p r o p e r t i e s , e x c e p t f o r m o l e c u l a r w e i g h t a n d n o n -
covalent association w i t h the peptidoglycan, t h o s e o f Braun’s l i p o p r o t e i n . Braun’s
showed r e s e m b l a n c e t o
However, t h e p r o t e i n was d i s t i n c t f r o m
l i p o p r o t e i n i n r e g a r d t o amino a c i d c o m p o s i t i o n .
A similar
p e p t i d o g l y c a n - a s s o c i a t e d l i p o p r o t e i n was p r e s e n t w i d e l y i n t h e c e l l envelopes o f various Gram-negative contains
about
twelve
times
as
l i p o p r o t e i n as E s c h e r i c h i a c o l i . associated lipoprotein o f
bacteria. much
Proteus m i r a b i l i s
peptidoglycan-associated
Antiserum against peptidoglycan-
-m i r a b i l i s
was c r o s s - r e a c t i v e
a g a i n s t p e p t i do g l y c a n - a s s o c i a t e d l i p o p r o t e i n o f
E s c h e r ic h ia c o 1i,
b u t n o t a g a i n s t Braun’s l i p o p r o t e i n o f E s c h e r i c h i a c o l i . The
stimulation
of
incorporation o f
{3HIg-galactose
into
membrane g l y c o c o n j u g a t e s , m e a s u r e d i n a p r e c i p i t a t i o n t e s t ,
was u s e d
as a c r i t e r i o n f o r a c t i v a t i o n o f
I n this
assay,
bone-marrow
p u r i f i e d bacterial lipopolysaccharide,
cells.72
lipoprotein,
and
m u r e i n monomer and d i m e r f r a g m e n t s a l l a c t i v a t e d r a t bone-marrow cells i n vitro. t i m e course,
The r e s p o n s e was dose d e p e n d e n t ,
a n d was n o t s e r u m d e p e n d e n t .
followed a defined
c-Acetylated murein dimer
f r a g m e n t s f r o m P r o t e u s m i r a b i l i s wtere much l e s s a c t i v e t h a n t h e i r
u n s u b s t it u t e d c o u n t e r p a r t s , i n d i c a t i n g a s t r u c t u r a l spe c i f ic i t y f o r
murein activation.
Removal o f a d h e r e n t a n d phagocy t i z i n g c e l l s f r o m
4: Microbial Polysaccharides
99
t h e marrow suspensions d i d n o t a l t e r t h e s e r e s u l t s . The l a b e l l e d , a c t i v a t e d c e l l s c o n s t i t u t e d a d i s t i n c t p o p u l a t i o n of buoyant d e n s i t y 1 . 0 6 4 t o 1 . 0 6 9 g/cm3 when c e n t r i f u g e d o n a c o n t i n u o u s g r a d i e n t of P e r c o l l . Enrichment of t h e t a r g e t - c e l l p o p u l a t i o n was achieved by a c o m b i n a t i o n o f a d h e r e n t - c e l l r e m o v a l and d i s c o n t i n u o u s d e n s i t y g r a d i e n t c e n t r i f u g a t i o n t o remove g r a n u l o c y t e s and e r y t h r o p o i e t i c cells. I t was c o n c l u d e d t h a t a p o p u l a t i o n o f m y e l o p o i e t i c p r e c u r s o r s could be a c t i v a t e d by d i r e c t c o n t a c t w i t h b a c t e r i a l c e l l w a l l c o n s t i t u e n t s . The s t i m u l a t i o n o f Q - g a l a c t o s e i n c o r p o r a t i o n was n o t coupled t o a c t i v e d e o x y r i b o n u c l e i c a c i d s y n t h e s i s i n t h e marrow cells. T h u s , t h e a c t i v a t i o n was i n t e r p r e t e d a s an i n d u c t i o n o f d i f f e r e n t i a t i o n r a t h e r than a m i t o t i c e v e n t . To o b t a i n i n f o r m a t i o n about t h e n a t u r e of t h e immunogens i n t h e r i b o s o m a l v a c c i n e ( f r a c t i o n 11) o f Pseudomonas a e r u g i n o s a , t h e s p e c i f i c i t y of r a b b i t a n t i b o d i e s t o F r a c t i o n I 1 has been ~ t u d i e d . ’ ~ Crossed i m m u n o e l e c t r o p h o r e s i s d e m o n s t r a t e d t h e p r e s e n c e of a n t i b o d i e s which p r e c i p i t a t e d w i t h ribosomal a n t i g e n s , b u t n o t w i t h lipopolysaccharide. B y means of an e n z y m e - l i n k e d irnmunosorbent a s s a y , a n t i b o d i e s t o l i p o p o l y s a c c h a r i d e were d e t e c t e d i n a n t i b o d i e s t o f r a c t i o n 11. A n t i b o d i e s t o f r a c t i o n I1 c o u l d p r o t e c t mice a g a i n s t a l e t h a l c h a l l e n g e w i t h Pseudomonas a e r u g i n o s a . Absorption experiments demonstrated t h a t t h e p r o t e c t i v e a b i l i t y of a n t i b o d i e s t o f r a c t i o n I1 was due t o cell-envelope a n t i g e n s , whereas a n t i b o d i e s t o ribosomal antigens d i d n o t contribute t o the protection. A n t i b o d i e s t o l i p o p o l y s a c c h a r i d e c o u l d be d e t e c t e d i n mice 1 week a f t e r a s i n g l e v a c c i n a t i o n w i t h f r a c t i o n 11. I t was concluded t h a t t h e p r o t e c t i v e a c t i v i t y of f r a c t i o n I1 was due, a t l e a s t i n p a r t , t o t h e p r e s e n c e of l i p o p o l y s a c c h a r i d e i n t h e r i b o s o m a l v a c c i n e . Treatment o f f r a c t i o n I1 w i t h r i b o n u c l e a s e decreased t h e p r o t e c t i v e a c t i v i t y of t h e r i b o s o m a l v a c c i n e . A d d i t i o n of s y n t h e t i c polyadenylic acid-polyuridylic acid restor ed t h e p ro t e c t i v e a c t i v i t y o f r i b o n u c l e a s e - t r e a t e d f r a c t i o n 11, i n d i c a t i n g t h a t R N A i n t h e r i b o s o m a l v a c c i n e m i g h t a c t a s an a d j u v a n t o r a c a r r i e r i n t h e p r e s e n t a t i o n of t h e c o n t a m i n a t i n g c e l l - e n v e l o p e a n t i g e n s . The p r o t e c t i v e a c t i v i t y and t h e t o x i c i t y of f r a c t i o n I1 were compared w i t h t h e p r o t e c t i v e a c t i v i t y and t h e t o x i c i t y of f r a c t i o n I , which co n t a i ne d c e 1l-en ve 1ope co m P O ne n t s , i n c 1u d i n g 1ipopol y s a c c h a r i de , and o f p u r i f i e d l i p o p o l y s a c c h a r i d e . The r e s u l t s i n d i c a t e d t h a t p r o t e c t i o n by t h e ribosomal vaccine was a s s o c i a t e d w i t h a s l i g h t l y h i g h e r t o x i c i t y than was p r o t e c t i o n by f r a c t i o n I , whereas p u r i f i e d l i p o p o l y s a c c h a r i d e was t h e most t o x i c vaccine.
100
Carbohydrate Chemistry
A k a l i n e t r e a t m e n t o f P s e u d o m o n a s gg~g~ifiisg t y p e 5 l i p o p o l y s a c c h a r i d e r e s u l t e d i n r e d u c e d t o x i c i t y a s m e a s u r e d by b o t h t h e L i m u l u s amoebocyte assay and t h e r a b b i t p y r o g e n i c i t y test.74 Chemical a n a l y s i s o f t h e d e a c y l a t e d l i p o p o l y s a c c h a r i d e r e v e a l e d t h a t e s t e r - l i n k e d f a t t y a c i d s were r e m o v e d w h i l e t h e a m i d e - l i n k e d f a t t y acids remained i n t a c t . The n e u t r a l and amino s u g a r c o m p o s i t i o n s f o r n a t i v e l i p o p 0 l y s a c c h a r i de a n d d e a c y 1a t e d l i p o p o l y s a c c h a r i d e were identical within experimental error. Antigenic determinants f o r c o m p l e m e n t - d e p e n d e n t h u m a n o p s o n i c a n t i b o d y were r e t a i n e d u n d e r these d e a c y l a t i o n c o n d i t i o n s . To e n h a n c e i t s i m m u n o g e n i c i t y , d e a c y l a t e d l i p o p o l y s a c c h a r i d e was c o v a l e n t l y c o u p l e d t o P s e u d o m o n a s p i l i and t h e 1,4-diaminobutyl d e r i v a t i v e s o f Pseudomonas exotoxin A and t e t a n u s t o x o i d . Q u a n t i t a t i v e amino s u g a r a n a l y s e s r e v e a l e d t h a t 2.6 a n d 3 . 2 m o l o f d e a c y l a t e d l i p o p o l y s a c c h a r i d e s were c o v a l e n t l y bound t o a m i n o b u t y l Pseudomonas e x o t o x i n A and a m i n o b u t y l t e t a n u s toxoid, r e s p e c t i v e l y . Gel-electrophoresis data i n d i c a t e d a t least 1 mol of d e a c y l a t e d l i p o p o l y s a c c h a r i d e c o v a l e n t l y bound p e r p i l u s subunit protein. I n i t i a l immunologic data i n d i c a t e d that antibody a g a i n s t d e a c y l a t e d 1 i p o p o l y s a c c h a r i . d e c o u l d be i n d u c e d w h e n t h e deacylated l i p o p o l y s a c c h a r i d e i s c o v a l e n t l y attached t o p r o t e i n carriers. The p o l y s a c c h a r i d e m o i e t y was i s o l a t e d by m i l d a c i d h y d r o l y s i s f r o m t h e slime g l y c o p r o t e i n o f P s e u d o m o n a s a e r u g i n o s a s t r a i n BI. After gel f i l t r a t i o n , the polysaccharide obtained from the c a r b o h y d r a t e p e a k f r a c t i o n s was f o u n d t o b e l i p i d - a n d p r o t e i n free.75 A n a l y s e s i n d i c a t e d t h a t t h e p o l y s a c c h a r i d e c o n t a i n e d t h e c a r b o h y d r a t e components o f the p a r e n t g l y c o l i p o p r o t e i n . Molecular s i z e o f t h e p o l y s a c c h a r i d e was e s t i m a t e d by g e l f i l t r a t i o n a s 70,000 t o 10,000. The p o l y s a c c h a r i d e showed no i n d i c a t i o n s o f t o x i c i t y i n mice a t d o s e s f a r i n e x c e s s o f t h e l e t h a l d o s e f o r t h e p a t e n t g l y c o l i p o p r o t e i n , n o r d i d t h e mice d e v e l o p t h e l e u k o p e n i a t h a t characteristically follows intraperitoneal injection of glycolipoprotein. The p o l y s a c c h a r i d e acted a s a n i n h i b i t o r o f i n d i re c t haem a g g l u t i n a t i o n o f g l y c o 1i po p r o t e i n- c o a t e d e r t h r o cy t e s i n t h e p r e s e n c e o f a n t i - g l y c o l i p o p r o t e i n s e r u m . H o w e v e r , i t was n o t a n t i g e n i c i t s e l f i n rabbits. Coupled w i t h methylated bovine serum albumin, t h e p o l y s a c c h a r i d e c o n t i n u e d t o lack t h e l e u k o p e n i c and t o x i c p r o p e r t i e s o f the p a r e n t g l y c o l i p o p r o t e i n , but the coupled p o l y s a c c h a r i d e was c a p a b l e o f s t i m u l a t i n g i n d i r e c t h a e m a g g l u t i n a t i n g antibody a g a i n s t both the polysaccharide and the g l y c o l i p o p r o t e i n coating erythrocytes. Moreover, t h e antibody t o the coupled
101
4: Microbial Polysaccharides
p o l y s a c c h a r i d e p r o t e c t e d m i c e a g a i n s t c h a l l e n g e w i t h l e t h a l doses o f v i a b l e Pseudomonas a e r u g i n o s a w i t h t h e same e f f e c t i v e n e s s a s a n t i g l y c o l i p o p r o t e i n serum. The i d e n t i f i c a t i o n o f t h e new a m i n o s u g a r
d i d e o x y - Q - g l u c o p r a n u r o n i c a c i d (19)
2,3-diacetamido-2,3-
a s a c o n s t i t u e n t o f t h e 0-
s p e c i f i c p o l y s a c c h a r i d e s o f Pseudomonas a e r u g i n o s a s t r a i n 1 7 0 0 1 4 h a s been b r o u g h t a b o u t by use o f 1 3 C n.m.r.
AcHN
a n d c h e m i c a l methods.76
AcHN
OH
The p r o c e d u r e u s e d f o r t h e i s o l a t i o n o f from
strains
o f
Pseudomonas
the lipopolysaccharide
aeruginosa appears
t o
c o n f l i c t i n g r e s u l t s i n t h e i n t e r p r e t a t i o n o f 31P n.m.r. The
use
of
the
Westphal
lipopolysaccharide with
extraction
procedure7'
to
gives
a h i g h e r phosphorus content
o b t a i n e d by u s e d o f t h e B ~ v i pnr o~c e ~d u r e .
lead
spectra. a
than that
The h i g h e r l e v e l s o f
n.m.r.
p h o s p h o r u s c o n t e n t h a v e b e e n a t t r i b u t e d 7 7 b y u s e o f "P
to
the presence o f t r i p h o s p h a t e residues, probably i n t h e l i p i d A and inner-core
regions.
The
presence
of
triphosphate residues i n
-P-s-e u d o m o n a s a e r u g i n o s a i s i n c o n t r a s t t o
results obtained
for
S a l m o n e l l a s p e c i e s and E s c h e r i c h i a c o l i . Among t h e a e r o b i c p s e u d o m o n a d s ,
the closely related species
Pseudomonas d i m i n u t a and Pseudomonas v e s i c u l a r i s f o r m subgroup,
the
inclusion of
which i n
becoming i n c r e a s i n g l y suspect.
the
an i s o l a t e d
genus Pseudomonas
i s
Chemotaxonomic grounds f o r t h e
s e p a r a t e s t a t u s o f t h e s e s p e c i e s i n c l u d e t h e p o s s e s s i o n by t h e i r type
strains
o f
a
unique
range
o f
polar
l i p i d s
and
l i p o p o l y s a c c h a r i d e s i n w h i c h l i p i d A i s based o n 2,3-diamino-2,3d i de ox y -Q- g l uco se r a t h e r t h a n 2- am ino -2 -de ox y -Q - g l
UCG se
.
The 1i po
-
p o l y s a c c h a r i d e f r o m Pseudomonas d i m i n u t a NCTC 8545 h a s a n u m b e r o f o t h e r unusual f e a t u r e s i n c l u d i n g t h e presence o f Q-threo-2-pentu l o s e ( i - x y l u l o s e ) .79 B a c t e r i o p h a g e 12P caused l y s i s o f not
other
plant
Specificity of
pathogenic
or
Pseudomonas p h a s e o l i c o l a b u t
saprophytic
pseudonomads.80
t h e b a c t e r i o p h a g e may depend o n r e c o g n i t i o n o f some
Carbohydrate Chemistry
102 unique
feature
of
polysaccharides.
the
Pseudomonas
phaseolicola
cell-surface
Exopolysaccharide and l i p o p o l y s a c c h a r i d e from
----------P s e u d o m o n a s e ----------haseolicola
were
more e f f i c i e n t a t
inhibiting
bacteriophage attachment than were i d e n t i c a l l y prepared e x t r a c t s from
five
other
phaseolicola
pseudomonad s p e c i e s .
w i t h
Mutants
bacteriophage
of
Pseudomonas
r e s i s t a n c e
produced
e x o p o l y s a c c h a r i d e and l i p o p o l y s a c c h a r i d e d i f f e r e n t i n amount and composition from those o f the parental strain. the
e x o p o l y s a c c h a r i d e and
P-s-e u d o m o n a s e h aseolicola -
Thus i n some manner
lipopolysaccharide
structures
o f
are d i s t i n c t from those o f other p l a n t
p a t h o g e n i c and s a p r o p h y t i c s p e c i e s .
The d i f f e r e n c e may p r e v e n t
r e c o g n i t i o n a n d i n i t i a t i o n o f r e s i s t a n c e e v e n t s when Pseudomonas phaseolicola challenges i t s susceptible host plant, The l i p o p o l y s a c c h a r i d e o f
bean.
R h o d o m i c r o b i u m v a n n i e l i i A T C C 17100
h a s been s t u d i e d a n d f o u n d t o c o n t a i n a - g l u c o s e a n d Q-mannose ( m o l a r r a t i o 2:l)
3-2-
w i t h t r a c e amounts o f p - g l u c o s e and p - x y l o s e and
m e t h y l - Q - x y l o s e . 81
2-Ace t a m i d o - 2 - d e o x y - Q - g 1 ucose,
3-deoxy-~-manno-2-octulosonic
u r o n i c acids, and
a c i d were a l s o found
t o be m a j o r
co m po ne n t s t o g e t h e r w it h 6-hy d r ox y p a 1m i t ic a c i d (ex c l u s ive 1y am ide bound),
6-hydroxymyristic
bound).
H e p t o s e s a n d p h o s p h a t e w e r e f o u n d t o be a b s e n t .
A f r a c t i o n (ca.
acid, and m y r i s t i c a c i d ( m a i n l y e s t e r The l i p i d
4 0 % o f t h e m a t e r i a l d r y w e i g h t ) l i b e r a t e d by m i l d
a c i d h y d r o l y s i s c o n t a i n s Q-mannose ( i n t h e n o n r e d u c i n g t e r m i n a l p o s i t i o n s ) i n a d d i t i o n t o 2-amino-2-deoxy-~-glucose
a n d an unknown
n i n h y d r i n - p o s i t i v e compound, b u t t h e p r e s e n c e o f a-mannose a s a t r u e c o n s t i t u e n t o f l i p i d A (as opposed t o i t b e l o n g i n g t o an a d d i t i o n a l , c o n t a m i n a t i n g l i p i d a s may be t h e c a s e i n l i p o p o l y s a c c h a r i d e s f r o m
---Chromatium
vinosum
I___-
determined. f r a c t io n a r e
and T h i o c a p s a r o s e o p e r s i c i n a ) has y e t
The m a i n c o n s t i t u e n t s o f
p - g l uc o s e ,
acid, and u r o n i c a c i d s .
a -m a nno s e ,
I t should
the
to
be
degraded p o l y s a c c h a r i d e
3 -de o x y -Q - m a n n o - 2 - o c t u l o s o n i c be
noted that
uronic acids
co n t r i b u t e ne ga t ive c h a r g e s i n a p h o s p h a t e - f r e e 1i p o po 1y sa c c h a r ide Interestingly,
9-xylose
and 3 - 2 - m e t h y l - a - x y l o s e
were
.
enriched
r e l a t i v e t o t h e o t h e r s u g a r s when R h o d o m i c r o b i u m v a n n i e l i i A T C C 1 7 1 0 0 was g r o w n f o r s e v e r a l p a s s a g e s i n t h e same R8AH medium. There
is
a
common
structure
(core
l i p o p o l y s a c c h a r i d e s o f R h o d o s p i r i l l u m tenue.”
region)
i n
the
I t i s composed o f a
b r a n c h e d t r i s a c c h a r i d e o f L - g l y c e r o - p - m a n n o - h e p t o s e ( a n d o f 3-deox y ~-manno-2-octulosonic acid),
a s r e v e a l e d by m e t h y l a t i o n a n a l y s e s o f
degraded polysaccharides o f f o u r d i f f e r e n t R h o d o s p i r i l l u m tenue strains.
The s t r u c t u r e i s s i m i l a r o r m i g h t e v e n be i d e n t i c a l t o t h e
103
4: Microbial Polysaccharides i n n e r core o f e n t e r o b a c t e r i a l 0 antigens.
I n addition,
each o f t h e
four R h o d o s p i r i l l u m tenue lipopolysaccharides contains a s t r a i n s p e c if ic r e g io n t h a t c o n s is t s o f h e p t o s e ( s ) ( & -9 1y c e r o - Q - m a n n o h e p t o s e o r a-glycero-p-manno-heptose o r b o t h ) o r hexoses. There i s a p a r t i a l s u b s t i t u t i o n o f t h e core r e g i o n and t h e s t r a i n - s p e c i f i c r e g i o n by p h o s p h o r u s , The
showing m i c r o h e t e r o geneit y .
lipopolysaccharide
from
polymixin-resistant pmrA
the
m u t a n t s o f S a l m o n e l l a t y p h i m u r i u m has been c h a r a c t e r i z e d a n d f o u n d t o be a n u n u s u a l t y p e o f p h o s p h o l i p i d ( 2 0 ) b u i l t up o f a c e n t r a l d i s a c c h a r i de o f t w o 2-am ino -2-deox y g l uco se r e s i d ue s. 83 Pho sp h a t e
-n-
e s t e r s a r e bound i n t h e 4-
and l - p o s i t i o n s
r e s p e c t i v e l y , t o g i v e t h e p h o s p h o l i p i d backbone.
o f r e s i d u e s I 1 a n d I, The l i p i d c h a r a c t e r
i s g i v e n by s u b s t i t u t i o n o f t h e b a c k b o n e w i t h 7 m o l o f l o n g - c h a i n f a t t y acids:
4 mol o f 3-hydroxymyristic
nonhydroxylated f a t t y acids,
2. 1
a c i d and 3 m o l o f
m o l each o f l a u r i c ,
myristic,and
p a l m i t i c acids, r e s p e c t i v e l y , w i t h s m a l l amounts o f 2 - h y d r o x y m y r i t i c acid.
The e x a c t p o s i t i o n s o f t h e s e g r o u p s h a v e o n l y p a r t l y b e e n
identified.52,83
The backbone c o n t a i n s t w o a m i n o g r o u p s s u b s t i t u t e d
by 3 - h y d r o x y m y r i s t i c h y d r o x y l groups,
a c i d and,
besides t h e two phosphate-substituted
another f o u r h y d r o x y l groups o f which p o s i t i o n 3 o f
r e s i d u e I 1 forms t h e l i n k t o t h e s p e c i f i c p o l y s a c c h a r i d e v i a 3-
deoxy-9-manno-2-octulosonic ester-bound backbone,
acid.
3-hydroxymyristic
There i s evidence t h a t
the
two
acids are linked d i r e c t l y t o the
s u b s t i t u t i n g t w o o f t h e t h r e e a v a i l a b l e h y d r o x y l groups.
The n o r m a l f a t t y a c i d s ,
i n c o n t r a s t , a p p e a r t o be l i n k e d a t t h e 3 -
hydroxy groups o f t h e 3 - h y d r o x y m y r i s t i c a c i d residues:
m y r i s t i c and
2- hy d r ox ym y r i s t ic a c i d s s u b s t it u t e t h e e s t e r - b o un d 3- hy d r ox ym y r i s t ic
acid, w h i l e p r e l i m i n a r y acids acid.
to
evidence i n d i c a t e s
be e s t e r - l i n k e d
to
t h e l a u r i c and m y r i s t i c
t h e t w o amide-bound
3-hydroxymyristic
I n t h i s way l i p i d A i s c h a r a c t e r i z e d by a h i g h c o n t e n t o f a
r a t h e r unusual s t r u c t u r e o f long-chain hydroxymyristate.
Thus o n l y
the
s u b s t i t u t e t h e backbone d i r e c t l y , linkage,
fatty-acid
e s t e r s o f 3-
3-hydroxylated
acids would
t w o i n amide and t w o i n e s t e r
w h i l e t h e n o n - h y d r o x y l a t e d a c i d s (and 2 - h y d r o x y m y r i s t i c
a c i d ) w o u l d be e s t e r - l i n k e d t o t h e 3 - h y d r o x y m y r i s t i c
a c i d groups.
M u t a t i o n s i n gene r f a H o f S a l m o n e l l a t y p h i m u r i u m a t 8 4 u n i t s o n t h e l i n k a g e map make l i p o p o l y s a c c h a r i d e o f c h e m o t y p e s Ra, a n d R c . ~ F~ - F a c t o r
e x p r e s s i o n i n RfaH'
f o l l o w i n g p r o p e r t i e s when c o m p a r e d w i t h RfaH'
Flac,
Rb2,
Rb3,
s t r a i n s was r e d u c e d i n t h e
number o f phage f 2 i n f e c t i v e c e n t r e s ,
strains:
transfer o f
l y s i s by a n d p r o p a g a t i o n
o f phages f 2 and M13, p r o p o r t i o n o f c e l l s w i t h v i s i b l e F - p i l i ,
and
Carbohydrate Chemistry
1 04
where F
= -C=O
I
( 2 m o l e s p e r 3 hydroxyl groups)
HC-O(R )
I
(7H2) 10 CH 3
and R = l a u r i c a c i d ( 1 m o l e ) m y r i s t i c a c i d ( 1 mole) p a l m i t i c a c i d ( 1 mole) 2-hydroxymyristic a c i d ( t r a c e )
(201
105
4: Microbial Polysaccharides
f o r m a t i o n o f m a t i n g a g g r e g a t e s w i t h F- c e l l s . Inhibition o f m u l t i p l i c a t i o n o f Br60, a f e m a l e - s p e c i f i c phage, was n o t r e d u c e d i n Rfah' F l a c s t r a i n s . P l a s m i d t r a n s f e r f r o m RfaH' s t r a i n s was r e d u c e d u n a f f e c t e d f o r I n c g r o u p s B, Ia, L, N,
f o r I n c g r o u p s F I , F I I , a n d T, P,and W ,
a n d i n c r e a s e d f o r I n c g r o u p M when c o m p a r e d w i t h p l a s m i d
t r a n s f e r f r o m RfaH'
strains.
R e d u c e d F - f a c t o r f u n c t i o n i n RfaH'
s t r a i n s was n o t due t o d e f e c t i v e l i p o p o l y s a c c h a r i d e s i n c e s t r a i n s with
mutations
rfa
i n other
genes
were
unaffected i n plasmid
Gene r f a H a p p e a r s t o be h o m o l o g o u s w i t h gene s f r B i n
transfer.
E s c h e r i c h i a c o l i K-12,
which maps a t t h e same l o c a t i o n ,
influences
F-factor function,
and a f f e c t s s y n t h e s i s o f l i p o p o l y s a c c h a r i d e .
gene
s f r B has
product
an t i t e r m i na t o r The
.
of
been p r o p o s e d t o
mobility
of
membrane
lipopolysaccharide,
i s
essential
components,
for
particularly
biogenesis
membrane and i s a p r i m a r y e v e n t i n phage i n f e c t i o n . f l u i d dynamic p r o p e r t i e s o f
the outer
The
be t r a n s c r i p t i o n
of
the outer To d e f i n e t h e
membrane a s
related to
f u n c t i o n more a c c u r a t e l y t h e c a p a b i l i t y t o measure l a t e r a l d i f f u s i o n coefficients
vivo
pf
r h o d a m i n a t e d G30 l i p o p o l y s a c c h a r i d e f u s e d
i n t o S a l m o n e l l a t y p h i m u r i u m GPOA f i l a m e n t o u s b a c t e r i a h a s been developed.85 ( f 1uo r e s c e nce
The
method
used
r e d i s t r ib u t io n a f t e r
extends
the
FRAP
p h o t obl e a c h i n g) t o
procedure
b a c t e r i a and
the r e s u l t s demonstrate r a p i d d i f f u s i o n o f lipopolysaccharide
(2.0
2 0.9) A
cm2s-l)
x
=
f a m i l y o f mutants o f Salmonella tyhimurium w i t h a l t e r e d
lipopolysaccharide to
(D
over micrometre distances.
freeze-thaw
c o r e c h a i n l e n g t h s were assessed f o r s e n s i t i v i t y
and o t h e r
stresses.86
Deep r o u g h s t r a i n s w i t h
decreased c h a i n l e n g t h i n t h e l i p o p o l y s a c c h a r i d e c o r e were more s u s c e p t i b l e t o novobiocin, l a u r y l sulphate
p o l y m y x i n B,
d u r i n g growth,
to
bacitracin,
and sodium
ethylenediaminetetracetic
acid
and sodium l a u r y l s u l p h a t e i n r e s t i n g suspension, and t o s l o w and r a p i d freeze-thaw
i n w a t e r and s a l i n e ,
more outer-membrane Variations
i n
the
dramatically affect neomycin,
lipopolysaccharide the s e n s i t i v i t y of
chain
length
did not
the s t r a i n s t o t e t r a c y c l i n e ,
o r NaCl i n g r o w t h c o n d i t i o n s o r t h e degree o f f r e e z e - t h a w -
induced cytoplasmic-membrane strains
and t h e s e s t r a i n s e x h i b i t e d
damage t h a n t h e w i l d t y p e o r l e s s r o u g h s t r a i n s .
incorporated
damage.
larger
The d e e p e r r o u g h i s o g e n i c
quantities
o f
less-stable
l i p o p o l y s a c c h a r i d e and l e s s p r o t e i n i n t o t h e o u t e r membrane t h a n d i d t h e w i l d t y p e o r l e s s rough mutants, a f f e c t e d outer-membrane
i n d i c a t i n g t h a t the mutations
synthesis o r organization or
both.
106
Carbohydrate Chemistry
Nikaido’s
model of
t h e r o l e o f l i p o p o l y s a c c h a r i d e and p r o t e i n i n
determining the resistance o f Gram-negative b a c t e r i a o f lowm o l e c u l a r - w e i g h t h y d r o p h o b i c a n t i b i o t i c s was d i s c u s s e d i n r e l a t i o n t o t h e s t r e s s of freeze-thaw. The s p e c i f i c a n t i - l i p o p o l y s a c c h a r i d e s e r u m a n t i b o d y r e s p o n s e i n BALB/c
mice, b e f o r e and a f t e r an o r a l b o o s t e r w i t h d i f f e r e n t non-
pathogenic s t r a i n s o f Salmonella typhimurium, ELISA t e c h n i q u e . 8 7
was m e a s u r e d b y a n
Serum r e s p o n s e t o l i p o p o l y s a c c h a r i d e was
found
t o depend on t h e l e n g t h o f t h e l i p o p o l y s a c c h a r i d e p o l y s a c c h a r i d e moiety i n rough mutants.
T h e M206 s m o o t h m u t a n t i n d u c e d a l e s s
marked a n t i - l i p o p o l y s a c c h a r i d e response.
The i m m u n o g e n i c i t y o f t h e
p o l y s a c c h a r i d i c c o r e a p p e a r s t o be m o d i f i e d by t h e 0 a n t i g e n .
The
s p e c i f i c r e s p o n s e i n t h e g u t o n l y becomes marked f o l l o w i n g a f t e r b o o s t e r o f Ra, Rc,and The 2 - h a p t e n i c reported
to
contain
However, 2 - h a p t e n products of
M206 m u t a n t s . p o l y s a c c h a r i d e o f S a l m o n e l l a m o n t e v i d e o h a s been glyceraldehyde
partial hydrolysis o f
separate experiments perchloric
acid
at
i t s
preparatlons from a
terminus.
lipopolysaccharide,
gave { 3 H ) g l y c e r o l
a n d {3H)NaBH4.
reducing
galE mutant contained
Further
which
upon t r e a t m e n t study
of
i n
with
the g-hapten
r e d u c i n g t e r m i n u s s u g g e s t e d t h a t i t was a c t u a l l y P-mannose.88 The c e l l - w a l l
polymers o f the thermophilic cyanobacterium
S y n e c h o c o c c u s PCC6716 h a v e b e e n i s o l a t e d a n d a n a l y s e d , t h e m a j o r compounds o f t h e t h e r m o p h i l i c s t r a i n b e i n g s i m i l a r b u t n o t i d e n t i c a l t o those o f the mesophilic strains.89
The l i p o p o l y s a c c h a r i d e was
f o u n d t o c o n t a i n B - h y d r o x y p a l m i t i c a c i d as t h e o n l y h y d r o x y l a t e d f a t t y acid together
with myristic,
p a l m i t i c , and p a l m i t o l e i c a c i d s .
The c a r b o h y d r a t e s p r e s e n t w e r e Q - g l u c o s e , I - r h a m n o s e , 2 - a m i n o - 2 deoxy-a-glucose,and w i t h traces of
an u n i d e n t i f i e d n i n h y d r i n - p o s i t i v e component
Q-mannose,
Q-galactose,
H e p t o s e s and 3 - d e o x y - a - m a n n o - 2 - o c t u l o s o n i c
L-fucose,
and P - x y l o s e .
a c i d w e r e f o u n d n o t t o be
present. The
ability
of
various
bacterial
l i p o p o l y s a c c h a r i d e s and
mycoplasmal l i p o p o l y s a c c h a r i d e s ( l i p o g l y c a n s ) t o i n d u c e macrophagemediated t u m o u r - c e l l was d e t e r m i n e d . 9 0
a-x a n t u m less
o r A c h o l e p l a s m a q r a n u l a r u m had no a c t i v i t y o r
activity
0128:812,
k i l l i n g and L i m u l u s a m e b o c y t e l y s a t e c l o t t i n g L i p o g l y c a n s f r o m t h e mycoplasma Acholeplasma
than
lipopolysaccharides
from
lo4
to
Escherichia
lo5 coli
E s c h e r i c h i a c o l i K235, o r S a l m o n e l l a m i n n e s o t a R595 i n
c a u s i n g L i m u l u s l y s a t e c l o t t i n g and t u m o u r - c e l l
k i l l i n g by
p e r i t o n e a l macrophages f r o m n o r m a l or b a c i l l u s C a l m e t t e - G u e r i n -
4: Microbial Polysaccharides
107
i n f e c t e d mice. Previous s t u d i e s have s h o w n t h a t t h e l i p i d A p o r t i o n o f b a c t e r i a l l i p o p o l y s a c c h a r i d e i s r e s p o n s i b l e f o r t h e e f f e c t s on macrophage-mediated tumour-cell k i l l i n g and L i m u l u s l y s a t e c l o t t i n g . The k n o w n d i f f e r e n c e s i n t h e l i p i d s t r u c t u r e s o f b a c t e r i a l l i p o p o l y s a c c h a r i d e s and mycoplasmal lipopolysaccharides ( l i p o g l y c a n s ) may account f o r t h e noted d i f f e r e n c e s i n t h e b i o l o g i c p o t e n c i e s observed.
4
Capsular Polysaccharfdes
The i n t e r a c t i o n o f l e c t i n s and l e c t i n - l i k e s u b s t a n c e s w i t h b a c t e r i a h a s been r e v i e w e d 9 ' and t h e i n t e r a c t i o n d i s c u s s e d a s a means o f d i s t i n g u i s h i n g between m i c r o b i a l s p e c i e s , i d e n t i f y i n g t h e p r e s e n c e of a p a r t i c u l a r s u g a r r e s i d u e and f r a c t i o n a t i n g t h e po 1y s a c c h a r i des from b a c t e r i a . 91 S o l u b l e a n t i g e n s were o b t a i n e d by e x t r a c t i n g f i v e s e r o t y p e s t r a i n s o f C l o s t r i d i u m p e r f r i n g e n s t y p e A w i t h w a t e r a t 100°C.92 The t y p e - s p e c i f i c p o l y s a c c h a r i d e s w e r e p r e c i p i t a t e d w i t h e t h a n o l , and t h e common a n t i g e n s were recovered from t h e e t h a n o l s u p e r n a t a n t s b y c o n c e n t r a t i o n , d i a l y s i s , and l y o p h i l i z a t i o n . Refluxing the w a t e r - e x t r a c t e d c e l l r e s i d u e s w i t h 1 %a c e t i c a c i d f o l l o w e d b y c o n c e n t r a t i o n , d i a l y s i s , and l y p o p h i l i z a t i o n gave a d d i t i o n a l common antigen fractions. A comprehensive, s i d e - b y - s i d e comparison of t h e antigen fractions, the ethanol precipitate, the ethanol supernatant, and t h e a c e t i c a c i d s u p e r n a t a n t , r e v e a l e d t h a t common a n t i g e n s were r e c o v e r e d i n a l l t h r e e f r a c t i o n s and t h a t t h r e e d i s t i n c t e n t i t i e s w e r e r e s p o n s i b l e f o r t h e f o r m a t i o n o f t h e o b s e r v e d common immunoprecipitin l i n e s . Whereas many f r a c t i o n s possessed a l l t h r e e i m m u n o p r e c i p i t i n l i n e s , o t h e r s c o n t a i n e d o n l y one o r t w o . The s e r o l o g i c a l h o m o l o g y observed between t h e v a r i o u s a n t i g e n f r a c t i o n s was a p p a r e n t l y a consequence of 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s e and 2acetamido-2-deoxy-P-mannose c o n t a i n i n g polymers. The common a n t i g e n s were presumably a s s o c i a t e d w i t h t h e c e l l envelope and may be t h e t y p e o f m a r k e r s s o u g h t p r e v i o u s l y b y o t h e r s f o r t h e serological identification of C l o s t r i d i u m perfringens. The bacterium formerly named Fusobacterium p o l y s a c c h a r o l y t i c u m and now r e c l a s s i f i e d a s a C l o s t r i d i u m s p e c i e s h a s been s h o w n t o produce s p o r e s and have a c e l l - w a l l s t r u c t u r e o f t h e Gram-positive type d e s i t e i t s appearance a s Gram-negative when s t a i n e d . 9 3 The c a p s u l a r p o l y s a c c h a r i d e s f r o m C r y t o c o c c u s n e o f o r m a n s
108
Carbohydrate Chemistry
s e r o t y p e A and from a p o s s i b l e , mutant s t r a i n t h e r e o f have been s t r u c t u r a l l y a n a l y ~ e d . ~T h~e l a t t e r m a t e r i a l i s s i m i l a r t o t h e c a p s u l a r a n t i g e n o f C r y t o c o c c u s n e o f o r m a n s s e r o t y p e D. Epidemiological and immunological evidence i n d i c a t e s t h a t t h e K 1 c a p s u l a r p o l y s a c c h a r i d e c o n f e r s the p r o p e r t y o f v i r u l e n c e on Escherichia coli. One a p p r o a c h t o s t u d y i n g w h e t h e r t h e K 1 a n t i g e n is s u f f i c i e n t t o confer virulence or i f other Escherichia c o l i s t r u c t u r e s are necessary i s t o i s o l a t e t h e K 1 genes f o r g e n e t i c and biochemical analysis. R e c o m b i n a n t DNA m e t h o d o l o g y p r o v i d e d a p o w e r f u l t o o l f o r s u c h an a p p r o a c h . The m o l e c u l a r c l o n i n g o f t h e E s c h e r i c h i a c o l i K 1 a n t i g e n genes h a s been reported.95 The c l o n e d K 1 g e n e s s y n t h e s i z e d a c a p s u l e i n Escherjchja c o l i K12 i n d i s t i n g u i s h a b l e c h e m i c a l l y and i m m u n o l o g i c a l l y from t h a t o f w i l d type K 1 strains. T h e c a p s u l a r p o l y s a c c h a r i d e was i s o l a t e d f r o m E s c h e r i c h i a c o l i 010:K5:H4: i t c o u l d n o t be o b t a i n e d f r o m a n u n c a p s u l a t e d ( K 5 - ) m u t a n t . I t c o n t a i n s 2 - a c e tam i do - 2 - d e o x y - Q - g l u c o se a n d E - g l u c u r o n i c a c i d i n a m o l a r r a t i o o f 1:1.96 A c i d h y d r o l y s i s o f t h e a c i d i c p o l y s a c c h a r i d e a s w e l l a s S m i t h d e g r a d a t i o n a n d d e g r a d a t i o n by deamination of the carboxyl-reduced p o l y s a c c h a r i d e s u g g e s t e d t h a t t h e p o l y s a c c h a r i d e is composed o f a d i s a c c h a r i d e r e p e a t i n g u n i t . T h e d a t a o b t a i n e d by m e t h y l a t i o n a n a l y s i s a n d n.m.r. s p e c t r o s c o p y indicated t h a t the repeating sequence of the capsular polysaccharide i s similar t o t h a t o f desulpho-heparin w i t h the s t r u c t u r e (21). + 4 ) -B-Q-GlcQA-( 1+4) - a - Q - G l C Q N A C - (
1+
(21) T h e l i n k a g e p a t t e r n o f t h e K6 a n t i g e n was i n v e s t i g a t e d u s i n g m a t e r i a l f r o m t h e u r i n a r y p a t h o g e n E s c h e r i c h i a c o l i LP 1092.97 The p o l y s a c c h a r i d e c o n s i s t s o f 9 - r i b o s e a n d 3-deoxy-Q-manno-2Colorimetric procedures, Smith o c t u l o s o n a t e i n a r a t i o o f 2:l. d e g r a d a t i o n , m e t h y l a t i o n a n a l y s i s , a n d n.m.r. s p e c t r o s c o p y were a p p l i e d t o t h e whole polysaccharide and t o a t r i s a c c h a r i d e r e p e a t i n g u n i t o b t a i n e d by m i l d - a c i d - c a t a l y s e d h y d r o l y s i s . T o g e t h e r , t h e d a t a were c o m p a t i b l e o n l y w i t h a b r a n c h e d - c h a i n s t r u c t u r e ( 2 2 ) . A method has been developed t o s e p a r a t e t h e c e l l e n v e l o p e o f e n c a p s u l a t e d ( t y p e b) Haemophilus i n f l u e n z a e i n t o i t s o u t e r - and inner-membrane components w i t h p r o c e d u r e s t h a t a v o i d e d two p r o b l e m s encountered i n f r a c t i o n a t i o n o f t h i s envelope: (i) t h e tendency o f t h e o u t e r and i n n e r membranes t o h y b r i d i z e and ( i i ) t h e tendency o f
4: Microbial Polysaccharides
109
the apparently
f r a g i l e i n n e r membrane t o f r a g m e n t i n t o d i f f i c u l t l y
sedimentable
units.98
Log
radioactively labelled, press.
phase
cells,
whose
lipids
were
were l y s e d by passage t h r o u g h a F r e n c h
The l y s a t e was a p p l i e d t o a d i s c o n t i n u o u s s u c r o s e g r a d i e n t ,
a n d e n v e l o p e - r i c h m a t e r i a l was c o l l e c t e d b y c e n t r i f u g a t i o n o n t o a c u s h i o n o f dense s u c r o s e under c a r e f u l l y c o n t r o l l e d c o n d i t i o n s . This
material
centrifugation
was i n
a
then
further
sucrose
fractionated
gradient
to
f r a c t i o n s w h i c h were p a r t i a l l y c h a r a c t e r i z e d . density,
by
yield
isopycnic
four
membrane
On t h e b a s i s o f t h e i r
radioactivity,
bouyant
composition,and
content o f phospholipid, protein, lipopolysaccharide,
and s u c c i n i c dehydrogenase, follows:
fraction 1
inner-membrane vesicles
these f r a c t i o n s
outer-membrane
were
entrapped
inner
f r a c t i o n o f i n n e r membrane,
p o o r f r a c t i o n o f i n n e r membrane.
polypeptide i d e n t i f i e d as
vesicles with very l i t t l e
c o n t a m i n a t i o n (10 m M . B o t h enzymes were i n h i b i t e d by C u 2 + (>29mM), Z n 2 + (>l.OmM), and e t h y l e n e g l y c o l - b i s ( B - a m i n o e t h y l e t h e r ) - l l , N - t e t r a - a c e t i c a c i d ( > l o mM). T r i c h o d e r m a r e e s e i b u t n o t C l o s t r i d i u m t h e r m o c e l l u m c e l l u l o s e - s o l u b i l i z i n g a c t i v i t y was 20% i n h i b i t e d by Q - g l u c o s e ( 7 3 m M ) and c e l l o b i o s e ( 2 9 m M ) . Both c e l l u l a s e s p r e f e r e n t i a l l y cleaved t h e i n t e r n a l g l y c o s i d i c bonds of cello-oligosaccharides. The o v e r a l l r a t e s o f c e l l o - o l i g o s a c c h a r i d e d e g r a d a t i o n were higher f o r Trichoderma r e e s e i than f o r C l o s t r i d i u m -t-h--e r m o c e l l u m c e l l u l a s e , e x c e p t t h a t t h e r a t e s of c o n v e r s i o n o f c e l l o h e x a o s e t o c e l l o t r i o s e were e q u i v a l e n t . The f o r m a t i o n and e x c r e t i o n o f a c e t y l m a l t o s e and a c e t y l a t e d m a l t o d e x t r i n s a f t e r accumulation o f maltose i n E s c h e r i c h i a c o l i have been s t u d i e d . 1 3 4 As a c e t y l m a l t o s e was n o t a s u b s t r a t e f o r t h e m a l t o s e t r a n s p o r t s y s t e m i t was p r o p o s e d t h a t t h e a c e t y l a t i o n
Carbohydrate Chemistry
122
p r o c e s s was an e f f e c t i v e d e t o x i f i c a t i o n mechanism. When E s c h e r i c h i a c o l i s t r a i n CP78 (&+) w a s s t a r v e d f o r ii s o l e u c i n e by t h e a d d i t i o n o f L - v a l i n e , t h e amount o f Q - g l u c o s e i n p o l y m e r i c f o r m i n t h e c e l l s i n c r e a s e d m a r k e d l y compared t o t h a t o f t h e c o n t r o l cells.135
I n contrast,
(*-I.
s t r a i n CP79
increase of
t h i s phenomenon was n o t s e e n i n
The i n c r e a s e i n CP78 was shown t o be due t o t h e
glycogen.
These r e s u l t s i n d i c a t e t h a t
=’
s y n t h e s i s was a u g m e n t e d u n d e r s t r i n g e n t c o n t r o l . using other isogenic pairs o f o t h e r amino acids. valyl-tRNA
strains starved for
When t h e c u l t i v a t i o n t e m p e r a t u r e o f s t r a i n s
and 1 0 8 6 0 2 (&-)
1 0 8 6 0 1 (*+)
&+ and
glycogen
T h i s was c o n f i r m e d
possessing temperature-sensitive
s y n t h e t a s e was s h i f t e d f r o m 3OoC t o 4OoC,
L-
no d i f f e r e n c e
was o b s e r v e d i n t h e r e s p o n s e o f g l y c o g e n s y n t h e s i s b e t w e e n t h e t w o strains.
These
necessary f o r
results
the
guanosine 5’-diphosphate through
indicate
augmentation o f
stimulation
o f
that
3,-diphosphate the activity
i n v o l v e d i n glycogen synthesis.
protein
synthesis
was
glycogen s y n t h e s i s and t h a t did not exert i t s effect
of
pre-existing
enzyme(s)
These c o n c l u s i o n s w e r e s u p p o r t e d by
t h e r e s u l t s o f experiments u s i n g chloramphenicol and r i f a m p i c i n . The r a t e s o f Q - g l u c o s e u t i l i z a t i o n o f CP78 and CP79 w e r e d e c r e a s e d t o n e a r l y t h e same e x t e n t by I - v a l i n e a d d i t i o n .
This suggests t h a t
t h e r e g u l a t i o n s i t e o f glycogen s y n t h e s i s under s t r i n g e n t c o n t r o l resides i n a
step
after
the
transport
of
P-glucose
by
the
p h o p h o t r a n s f e r a s e system. ADP-Q-glucose
pyrophosphorylase from E s c h e r i c h i a c o l i B mutant
CL1136-504 h a s been p u r i f i e d t o h o m o g e n e i t y . t e t r a m e r o f 200,000 subunits.136 enzymes
of
The n a t i v e enzyme i s a
d a l t o n s composed o f f o u r i d e n t i c a l 50,000
Mr
The s t r u c t u r a l g e n e s f o r t h e g l y c o g e n b i o s y n t h e t i c Escherichia coli,
glycogen synthase,
ADP-Q-glucose
p y r o p h o s p h o r y l a s e , a n d b r a n c h i n g enzyme w e r e c l o n e d f r o m c h r o m o s o m a l DNA b a c t e r i a l p l a s m i d , A
pBR322. 137
b a c t e r i a l a g g l u t i n i n was e x t r a c t e d f r o m g r o u n d c o r n ( W I
h y b r i d 64A x W117) seed w i t h p h o s p h a t e - b u f f e r e d s a l i n e (pH 6.0) p r e c i p i t a t e d w i t h (NH4)2S04 a t 7 0 % s a t u r a t i o n .
and
The a c t i v i t i e s o f
t h i s a g g l u t i n i n a g a i n s t 22 s t r a i n s o f E r w i n i a s t e w a r t i i (agent o f b a c t e r i a l w i l t o f c o r n ) t h a t v a r i e d i n v i r u l e n c e were determined.138 Specific agglutination (agglutination t i t e r per m i l l i g r a m o f p r o t e i n p e r m i l l i l i t e r ) values were c o r r e l a t e d n e g a t i v e l y w i t h v i r u l e n c e ratings.
S t r a i n s w i t h h i g h s p e c i f i c a g g J u t i n a t i o n values (15 o r
h i g h e r ) were a v i r u l e n t o r w e a k l y v i r u l e n t ,
s t r a i n s with low s p e c i f i c
a g g l u t i n a t i o n values (10 o r l o w e r ) were h i g h l y v i r u l e n t ,
with two
123
4: Microbial Polysaccharides exceptions.
A
virulent
s t r a i n produced butyrous
c o l o n i e s and
r e l e a s e d o n l y s m a l l amounts o f e x t r a c e l l u l a r p o l y s a c c h a r i d e i n t o t h e medium,
and t h e
fluidal
colonies
cells and
l a c k e d capsules. released
V i r u l e n t s t r a i n s produced
large
amounts
of
extracellular
p o l y s a c c h a r i d e p r o d u c e d by each s t r a i n ( a s d e t e r m i n e d by i n c r e a s e i n viscosity
of
contrast
lipopolysaccharide compositions
strains.
t h e medium) and t h e s p e c i f i c a g g l u t i n a t i o n When c e l l s o f
six
were
fluidal strains
value.
similar were
I n
i n
a l l
washed by
r e p e a t e d l y c e n t i f u g i n g and r e s u s p e n d i n g them i n b u f f e r , t h e y were a g g l u t i n a t e d more s t r o n g l y by c o r n a g g l u t i n i n t h a n were unwashed cells.
When
agglutination
avirulent
cells
were
washed,
their
values d i d not increase s i g n i f i c a n t l y .
c e l l u l a r polysaccharide-deficient
specific
Eight extra-
mutants o f E r w i n i a s t e w a r t i i ,
s e l e c t e d f o r r e s i s t a n c e t o t h e capsule-dependent
b a c t e r i o p h a g e K9,
h a d l o w e r v i r u l e n c e by h i g h e r s p e c i f i c a g g l u t i n a t i o n t h a n d i d t h e i r of
extracellular
p o l y s a c c h a r i d e appears t o be e s s e n t i a l f o r v i r u l e n c e .
corresponding
wild-type
parents.
Production
Extracellular
may p r e v e n t a g g l u t i n a t i o n o f b a c t e r i a i n t h e h o s t , t h u s a l l o w i n g their multiplication, The
dextran
mesenteroides described.13'
produced
obtained
from
Branch
points
by
a
new
strain
contaminated at
0-3
and
of
case 0-2
Leuconostoc
juice
has
been
2:l)
(ratio
were
d e t e r m i n e d by m e t h y l a t i o n w h i l s t t h e o x i d i z e d d e x t r a n was f o u n d t o liberate,
on p a r t i a l a c i d h y d r o l y s i s ,
- - g 1u c o s e ,
a c id ) Q
-
i c a c i d ) ( 1+6)
-0-Q -
6-g-(a-Q-glucopyranosyluronic
glucopyranosy1)-(1+3)-Q-glucose,and acid)-Q-glucose
2-g-(a-a-glucopyranosyluronic
0 - ( a -Q - g 1u c o p y r a n o s y 1u r o n
( w h i c h may h a v e b e e n d e r i v e d f r o m t h e t r i o u r o n i c
a c i d 1. R a b b i t a n t i - d e x t r a n 81355 s e r a p r e p a r e d by i n j e c t i n g r a b b i t s w i t h L e u c o n o s t o c m e s e n t e r o i d e s NRRL 8 1 3 5 5 w e r e s e p a r a t e d o n a S e p h a d e x G75 c o l u m n i n t o t w o f r a c t i o n s , o n e b i n d i n g a n d t h e o t h e r not
binding to
the
column.140
Oligosaccharide
inhibition
of
p r e c i p i t a t i o n o f t h e t w o f r a c t i o n s w i t h d e x t r a n 81355 i n d i c a t e d t h a t b o t h f r a c t i o n s had (1+3)-a-Q-specificity.
However, a n t i b o d i e s i n
t h e n o n - b i n d i n g f r a c t i o n were shown t o be d i r e c t e d a g a i n s t
g l u c o p y r a n o s y l - ( 1 + 3 ) - a - e - g-l u c o p y r a n o s y l - ( l + 6 ) - g l u c o s e ,
g-a-Q-
w h i l s t those
i n t h e b i n d i n g f r a c t i o n were d i r e c t e d a g a i n s t g - a - a - g l u c o p y r a n o s y l -
(1+6)-a-~-glucopyranosyl-(l+3)-~-glucose. (1+6)-a-P-Specific by
anti-dextran
a n t i b o d y was
i n j e c t i n g N4 d e x t r a n - c o n c a n a v a l i n
interactions o f f i v e synthetic linear
A
raised i n rabbits
conjugate,
and
the
dextrans w i t h r a b b i t anti-N4
124
Carbohydrate Chemistry
d e x t r a n were s t u d i e d . l 4 l antibody
The a b i l i t y o f Q - g l u c a n s t o p r e c i p a t e
depended on t h e i r a v e r a g e m o l e c u l a r
t h e same
conditions.
solubility
of
the
This
p h e n o m e n o n was
antigen-antibody
i n h i b i t i o n assay i n d i c a t e d t h a t specific
antibody
samples with
weight,
h i g h e r m o l e c u l a r w e i g h t p r e c i p i t a t i n g more a n t i b o d y ,
n i t r o g e n under
shown t o
complex.
be due
to
Oligosaccharide
t h e maximum s i z e o f t h e (l+6)-a-Q-
combining s i t e corresponded t o
isomaltose.
The
p r e c i p i t a t e d a n t i b o d y c l a s s was shown t o be I g G i m m u n o g l o b u l i n , a n d it
was
mostly
directed
to
linear
non-terminal
a-Q-glucosidic
D e t e r m i n a t i o n o f a n t i b o d y n i t r o g e n and Q-glucan i n t h e
linkages.
precipitates numbers o f
indicated that
e-glucose
the
ratio of
r e s i d u e s was
antibody
molecule t o
1:16 i n t h e e x t r e m e a n t i b o d y
excess r e g i o n . The
concentration
viscosity
(0)
(GI
and
shear-rate
has been s t u d i e d f o r
(y)
dependence
p o l y s a c c h a r i d e s o l u t i o n s ( i n c l u d i n g dextran), and t h e s t r i k i n g g e n e r a l i t i e s a r e observed:142 dilute-to
concentrated-solution
concentration 10
c,* =:
(nsp v a r i e s a t
c1*4
for
viscosity
and
frequency
v i s c o s i t y are c l o s e l y superimposable, p l o t s of
n/n0
a g a i n s t y/yOe1 ( w h e r e
o0
a critical
and a t
shear-rate
dependence
at
s p e c i f i c v i s c o s i t y (nsp)
dilute solutions,
(ii) the
following
(i) the t r a n s i t i o n from
behaviour occurs
4 / { n } , when z e r o - s h e a r
concentrated solutions),
of
a wide range o f random-coil
of
c3*3 f o r
dependence
dynamic
of
(oscillatory)
(iii) double l o g a r i t h m i c i s zero-shear
viscosity,
and
yoe1 i s t h e shear r a t e a t w h i c h y = yo/lO) a r e e s s e n t i a l l y i d e n t i c a l f o r a l l c o n c e n t r a t e d s o l u t i o n s s t u d i e d , and t h u s t h e t w o p a r a m e t e r s
no
and yoe1 c o m p l e t e l y d e f i n e t h e v i s c o s i t y a t a l l shear r a t e s o f
p r a c t i c a l importance. Five strains of
Microccus,
accumulated a,a-trehalose glucose.143
a,a-Trehalose
representing three species,
when g r o w n i n t h e p r e s e n c e o f
a-
was n o t f o u n d i n t w o S t a p h y l o c o c c u s
species or i n Planococcus c i t r e u s . S u d a n o p h i l i c and i o d i n e - s t a i n i n g c y t o p l a s m i c g r a n u l e s were i s o l a t e d a t various developmental stages during growth o f Nocardia asteroides (strain
55)
and g l y c o g e n g r a n u l e s ,
and
i d e n t i f i e d as p o l y - b e t a - h y d r o x y b u t y r a t e
r e ~ p e c t i v e 1 y . l ~O~u r i n g g r o w t h i n n u t r i e n t
b r o t h c o n t a i n i n g 1% D - g l u c o s e , hydroxybutyrate respectively,
and
maximal accumulation o f
glycogen
granules,
o f i t s dry weight,was
up
t o
10
poly-betaand
20%,
obtained i n the filamentous
c e l l s a t 16 h j u s t p r i o r t o the onset o f c e l l fragmentation during t h e s t a t i o n a r y phase.
The d e c r e a s e o f t h e c y t o p l a s m i c g r a n u l e s was
125
4: Microbial Polysaccharides concomitant
with
fragmentation
of
the
cells
to
rod-like
and
s p h e r i c a l c e l l s , s u g g e s t i n g t h a t t h e p o l y m e r s may s e r v e a s c a r b o n and energy
source
during
macrophogenesis.
detected i n t h e t h r e e c e l l forms.
Both g r a n u l e s were
A t higher concentrations o f
a-
g l u c o s e ( 4 % ) more g l y c o g e n g r a n u l e s ( 9 t i m e s ) a c c u m u l a t e d t h a n p o l y b e t a - h y d r o x y b u t y r a t e ( 4 t i m e s ) , a n d g l y c o g e n h y d r o l y s i s was a l s o faster
than
that
of
suggesting
poly-beta-hydroxybutyrate,
preferences o f glycogen over poly-beta-hydroxybutyrate c a r b o n s o u r c e under t h i s g r o w t h c o n d i t i o n . of
granules
were s i g n i f i c a n t l y
concentration
( l o % ) , and
as e n e r g y and
Growth and b i o s y n t h e s i s
r e d u c e d by
very
h i g h !-glucose
the usual pleomorphic developmental stages
were r e d u c e d t o a d i m o r p h i c l i f e c y c l e .
Thus,
b i o s y n t h e s i s of b o t h
g r a n u l e s and morphogenesis a r e under c a t a b o l i t e r e p r e s s i o n .
Both
p o l y m e r s were a l s o f o u n d i n N o c a r d i a b r a s i l i e n s i s and N o c a r d i a otitidis-caviarurn,
indicating that
cytoplasmic accumulation o f
m u l t i p l e g r a n u l e s i s common i n t h e genus. The m e t h o d u s e d t o i s o l a t e a h i g h - m o l e c u l a r - w e i g h t
immunogenic
p o l y s a c c h a r i d e f r o m Pseudomonas a e r u g i n o s a i m m u n o t y p e 1 ( I T - 1 )
was
m o d i f i e d t o p e r m i t t h e i s o l a t i o n o f a s i m i l a r polysaccharide from Pseudomonas a e r u g i n o s a IT-2.145
T h i s a n t i g e n was composed p r i m a r i l y
o f c a r b o h y d r a t e , had a complex monosaccharide c o m p o s i t i o n ,
including
sugars n o t found i n t h e lipopolysaccharide,
a n d was n o n p y r o g e n i c i n
r a b b i t s a n d n o n t o x i c i n m i c e a t h i g h doses.
This m a t e r i a l protected
mice from
challenges
w i t h l i v e homologous
cells.
Pseudomonas
a e r u g i n o s a I T - 2 p o l y s a c c h a r i d e gave a l i n e o f i d e n t i t y w i t h t h e 0 side
chain
of
the
lipopolysaccharide,
polysaccharide i n molecular ability
to
immunize
mice
weight,
but
differed
from
chemical composition,
actively.
Lipopolysaccharide
this and from
Pseudomonas a e r u g i n o s a I T - 2 c o n t a i n e d an i m m u n o l o g i c a l d e t e r m i n a n t n o t found
o n Pseudomonas a e r u g i n o s a I T - 2 p o l y s a c c h a r i d e ,
d e t e c t e d due t o i t s s t a b i l i t y d u r i n g t r e a t m e n t Thus,
a
high-molecular-weight
polysaccharide
Pseudomonas a e r u q i n o s a I T - 2 p o l y s a c c h a r i d e ,
w h i c h was
with dilute alkali. antigen
from
w h i c h was s e r o l o g i c a l l y
i d e n t i c a l t o t h e l i p o p o l y s a c c h a r i d e 0 s i d e c h a i n b u t was c h e m i c a l l y and p h y s i c a l l y d i s t i n c t ,
was r e c o v e r e d .
Also,
l i k e Pseudomonas
a e r u q i n o s a I T - 1 s t r a i n s , Pseudomonas a e r u g i n o s a I T - 2 c o n t a i n s an alkali-stable
i m m u n o d e t e r m i n a n t on t h e l i p o p o l y s a c c h a r i d e t h a t may
represent a c o r e - l i k e antigen. Spontaneous a l g i n a t e - p r o d u c i n g
( m ~ v] a r i a n t s
f r o m s t r a i n s o f Pseudomonas f l u o r e s e n c e s ,
-P-s-e u d o m o n a s
were i s o l a t e d
Pseudomonas p u t i d a , and
mendocina a t a frequency o f 1 i n
lo8
by s e l e c t i n g f o r
126
Carbohydrate Chemistry
c a r b e n i c i l l i n resistance.146
The i n f r a r e d s p e c t r u m o f t h e b a c t e r i a l
e x o p o l y s a c c h a r i d e was t y p i c a l o f
an a c e t y l a t e d a l g i n a t e s i m i l a r
to
t h a t p r e v i o u s l y d e s c r i b e d i n Azotobacter v i n e l a n d i i and i n mucoid v a r i a n t s o f Pseudomonas a e r u g i n o s a . i s o l a t e d f r o m Pseudomonas s t u t z e r i ,
-P-s-e u d o m o n a s
testostergnL,
Mucoid v a r i a n t s
Pseudgmmas
a c i d o v o r a n s , Pseudomonas c e p a c i a , o r
were
not
Pseudomonas p s e u d o a l c a l i g e n e s ,
GLgLn~tg, P s e u d o m o n a s
Pseudomonas m a l t o p h i l i a .
G r a m - n e g a t i v e h y d r o g e n b a c t e r i u m Pseudomonas h y d r o g e n o v o r a was found
t o
excrete
an
anthrone-H2S04
p 0 1 y s a c c h a r i d e . l ~ ~A b o u t
12 g / l i t r e
of
p o s i t i v e
viscous
the polysaccharide
was
p r o d u c e d a u t o t r o p h i c a l l y o n gaseous h y d r o g e n a t t h e s t a t i o n a r y p h a s e of
growth.
Biosynthesis of
the
nitrogen-deficient condition. 39.29%,
H
6.23%,
polysaccharide
49.67%,
0
occurred under
I t s e l e m e n t a r y c o m p o s i t i o n was C 0.21%,
N
p o l y s a c c h a r i d e c o n t a i n e d !-galactose,
and
Q-glucose,
rhamnose as i t s m a i n components.
ash
4.6%.
The
Q-mannose, and
L-
The p o l y s a c c h a r i d e h a d a n t i -
t o b a c c o m o s a i c v i r u s and a n t i - t u m o u r a c t i v i t i e s . The p o s s i b i l i t y o f s e p a r a t i n g p y r u v u l a t e d p o l y s a c c h a r i d e s i n t o pyruvate-rich
and p y r u v a t e - p o o r
u s i n g an a f f i n i t y matrix.148 strand types exists.
f r a c t i o n s has been d e m o n s t r a t e d
T h u s i n some p o l y m e r s , a m i x t u r e o f
The a f f i n i t y m a t r i x was p r e p a r e d by c o u p l i n g
a n t i b o d i e s t o a R h i z o b i u m p o l y s a c c h a r i d e t o Sepharose g e l .
Elution
was a c c o m p l i s h e d by t h e a d d i t i o n o f p y r u v a t e t o t h e e l u t i n g b u f f e r . N o n - p y r u v y l a t e d p o l y s a c c h a r i d e s were n o t a d s o r b e d . Rhizobia
are
Gram-negative
n o d u l a t i n g t h e r o o t s of
bacteria
leguminous p l a n t s ,
e x t r a c e l l u l a r polysaccharide-deficient
normally
capable
of
and t h e f a i l u r e o f f i v e
mutants t o nodulate suggested
that the polysaccharide i s required f o r t h i s nodulation.
I t has
b e e n r e p o r t e d t h a t among a l a r g e r s a m p l e o f m u t a n t s w i t h a l t e r e d polysaccharide production,
i s o l a t e d from two species
( i n c l u d i n g one o f t h e o r i g i n a l s e t p l u s 34 new o n e s ) ,
o f Rhizobium production of
t h e e x t r a c e l l u l a r p o l y s a c c h a r i d e does n o t c o r r e l a t e w i t h a b i l i t y t o n o d u l a t e a p p r o p r i a t e hosts.149
Therefore,
although involvement o f a
m i n o r component c a n n o t be r u l e d o u t , t h e r e i s no e v i d e n c e t h a t t h e whole p o l y s a c c h a r i d e i s r e q u i r e d f o r n o d u l a t i o n . I m m u n o e l e c t r o n m i c r o s c o p y was c o m b i n e d w i t h p a r t i a l characterization o f i s o l a t e d exopolysaccharide t o study binding o f s o y b e a n l e c t i n by R h i z o b i u m j a p o n i c u m s t r a i n USDA 138.150
Lectin-
b i n d i n g a c t i v i t y r e s i d e d i n two forms o f exopolysaccharide produced d u r i n g growth:
an a p p a r e n t l y
very
f o r m and a l o w e r - m o l e c u l a r - w e i g h t
high-molecular-weight d i f f u s i b l e form.
capsular
A t low-speed
4: Microbial Polysaccharides
127
c e n t r i f u g a t i o n , t h e c a p s u l a r form cosedimented w i t h c e l l s t o form a v i s c o u s , w h i t e , c e l l - g e l c o m p l e x which was n o t d i f f u s i b l e i n 1% a g a r , and t h e d i f f u s i b l e form remained i n t h e c e l l - f r e e s u p e r n a t a n t . E l e c t r o n - m i c r o s c o p i c o b s e r v a t i o n of t h e c e l l - g e l c o m p l e x a f t e r l a b e l l i n g w i t h soybean l e c t i n - f e r r i t i n c o n j u g a t e r e v e a l e d t h a t c a p s u l a r p o l y s a c c h a r i d e s , f r e q u e n t l y a t t a c h e d t o o n e end o f t h e c e l l s , w e r e r e c e p t o r s f o r l e c t i n . The o u t e r membrane of t h e c e l l bound no l e c t i n . Various p r e p a r a t i o n s of e x o p o l y s a c c h a r i d e i s o l a t e d from t h e c u l t u r e s u p e r n a t a n t w e r e t e s t e d f o r l e c t i n b i n d i n g , i n t e r a c t i o n w i t h homologous s o m a t i c a n t i g e n , and t h e p r e s e n c e of 3deoxy-a-manno-2-octulosonic a c i d and w e r e c h r o m a t o g r a p h e d i n S e p h a r o s e 48 and 6 8 g e l b e d s . L e c t i n b i n d i n g was r e s t r i c t e d t o a p o l y s a c c h a r i d e component designated a s l e c t i n - b i n d i n g polysaccharide. T h i s polysaccharide, as present i n the cell-free c u l t u r e s u p e r n a t a n t , was a d i f f u s i b l e a c i d i c p o l y s a c c h a r i d e devoid of 3 - d e o x y - ~ - m a n n o - 2 - o c t u l o s o n i c a c i d , w i t h m o l e c u l a r weight of 2 x l o 6 t o 5 x l o 6 . I t was c o n c l u d e d t h a t s o y b e a n l e c t i n - b i n d i n g component o f Rhizobium japonicum i s an e x t r a c e l l u l a r p o l y s a c c h a r i d e and not a l i p o p o l y s a c c h a r i d e and t h a t t h e d i f f u s i b l e l e c t i n - b i n d i n g p o l y s a c c h a r i d e probably d i f f e r s from t h e very h i g h - m o l e c u l a r - w e i g h t l e c t i n - b i n d i n g p o l y s a c c h a r i d e of t h e loose c a p s u l e ( s l i m e ) only i n t h e d e g r e e of p o l y m e r i z a t i o n . The e x t r a c e l l u l a r p o l y s a c c h a r i d e o f R h i z o b i u m m e l i l o t i 201 c o n s i s t s of two a c i d i c p o l y s a c c h a r i d e s , APS-I and APS-I1 .151 APS-I is composed o f D-glucose, D-mannose,and Q - g l u c u r o n i c a c i d i n a molar w h e r e a s APS-I1 i s composed of E - g l u c o s e , r a t i o of 3:3:2, g a l a c t o s e , a - m a n n o s e , a n d p y r u v i c a c i d i n a m o l a r r a t i o of 4:3:2:1. APS-I1 w a s s e p a r a t e d f r o m t h e e x t r a c e l l u l a r p o l y s a c c h a r i d e p r e p a r a t i o n b y h y d r o l y s i n g APS-I t o i t s o c t a s a c c h a r i d e r e p e a t i n g u n i t w i t h a s p e c i f i c enzyme. APS-I and APS-I1 were a l s o s e p a r a t e d by t r e a t m e n t w i t h c e t y l p y r i d i n i u m c h l o r i d e and by p a p e r e l e c t r o p h o r e s i s of t h e d e p y r u v y l a t e d p o l y s a c c h a r i d e . An i m p r o v e d , g l y c o s y l - s e q u e n c i n g method h a s been u s e d f o r e l u c i d a t i n g t h e s t r u c t u r e of t h e a c i d i c p o l y s a c c h a r i d e s e c r e t e d b y R h i z o b i u m -------m e l i l o t i s t r a i n 1021.152 T h e p o l y s a c c h a r i d e was --------methylated, t h e e t h e r p a r t i a l l y hydrolysed, t h e p r o d u c t s were r e d u c e d , and t h e a l d i t o l s e t h y l a t e d . The r e s u l t i n g m i x t u r e of p e r a l k y l a t e d o l i g o s a c c h a r i d e - a l d i t o l s was a n a l y s e d by h.p.1.c. m.s. C h e m i c a l - i o n i z a t i o n mass s p e c t r a were o b t a i n e d a t 2 s i n t e r v a l s , a s t h e v a r i o u s , p e r a l k y l a t e d oligosaccharide-alditols were e l u t e d from t h e h.p.1.c. column. P e r a l k y l a t e d mono-, d i - , t r i - , and t e t r a -
e-
128
carbohydrate Chemistry
s a c c h a r i d e - a l d i t o l s c o u l d be r e a d i l y d e t e c t e d , and a t l e a s t p a r t i a l l y i d e n t i f i e d , by t h e i r M + 1 i o n s , i n conjunction w i t h o t h e r c h a r a c t e r i s t i c i o n s p r e s e n t i n t h e i r c h e m i c a l - i o n i z a t i o n mass s p e c t r a . T h e p e r a l k y l a t e d d i - and t r i - s a c c h a r i d e - a l d i t o l s w e r e f u r t h e r a n a l y s e d b y g.c. m.s. i n t h e e l e c t r o n - i m p a c t mode. The s t r u c t u r e of t h e a c i d i c p o l y s a c c h a r i d e s e c r e t e d by Rhizobium -------m e l i l o t i s t r a i n 1021 i s t h e same a s t h a t of t h e p r e v i o u s l y c h a r a c t e r i z e d p o l y s a c c h a r i d e s e c r e t e d b y Rhizobium m e l i l o t i s t r a i n U-27.
The s t r u c t u r e of an e x t r a c e l l u l a r , a c i d i c p o l y s a c c h a r i d e from R h i z o b i u m m e l i l o t i I F 0 1 3 3 3 6 was s t u d i e d b y a method i n v o l v i n g of successive fragmentation w i t h s p e c i f i c B-e-glycanases F l a v o b a c t e r i u m M64.153 The p o l y s a c c h a r i d e i s composed of r e p e a t i n g u n i t s of t h e o c t a s a c c h a r i d e ( 3 3 ) . An a c i d i c c o m p o n e n t was i d e n t i f i e d a s q-riburonic acid. F i v e c u l t u r e s of Rhizobium m e l i l o t i (57017, 202, 204, 207, 209) and o n e o f R h i z o b i u m t r i f o l i i ( 5 6 0 ) p r o d u c e d w a t e r - s o l u b l e p o l y s a c c h a r i d e s c o n t a i n i n g P-glucose, Q - g a l a c t o s e , a n d p y r u v i c a c i d i n a m o l a r r a t i o of 7 : l : l and some s u c c i n i c and a c e t i c a c i d s . 1 5 4 These were i d e n t i f i e d a s s u c c i n o g l y c a n - l i k e p o l y s a c c h a r i d e s on t h e b a s i s of t h e i r components, m e t h y l a t i o n a n a l y s i s , a n d f r a g m e n t a t i o n w i t h two s p e c i f i c B - Q - g l y c a n a s e s . One c u l t u r e o f R h i z o b i u m m e l i l o t i ( I F 0 13336) produced w a t e r - s o l u b l e p o l y s a c c h a r i d e c o n t a i n i n g ! - g l u c o s e , Q - g a l a c t o s e , 0 - g l u c u r o n i c a c i d , a n d a c e t i c a c i d i n a molar r a t i o o f 5:1:1:2 and an u n i d e n t i f i e d component. Two c u l t u r e s of Rhitobium -------m e l i l o t i (201, 206) produced w a t e r - s o l u b l e p o l y s a c c h a r i d e s c o n t a i n i n g g - g l u c o s e , ; - g a l a c t o s e , g-mannose, and g - g l u c u r o n i c a c i d i n a m o l a r r a t i o o f 4:2:3:1 and 4:1:2:1, r e s p e c t i v e l y , and some p y r u v i c a c i d . Rhizobium t r i f o l i i I F 0 13337 and Rhizobium japonicum I F 0 13338 p r o d u c e d w a t e r - s o l u b l e p o l y s a c c h a r i d e s c o n t a i n i n g Q g l u c o s e , Q - g l a c t a c t o s e , Q - g l u c u r o n i c a c i d , p y r u v i c a c i d , and a c e t i c Two i s o l a t e s f r o m t h e s t o c k a c i d i n a m o l a r r a t i o o f 6:1:1:2:1. c u l t u r e of R h i z o b i u m t r i f o l i i 560 p r o d u c e d l a r g e a m o u n t s o f t h e water-insoluble polysaccharide curdlan. T h i s is t h e f i r s t report i n Rhizobium of t h e o c c u r r e n c e of c u r d l a n and of s p o n t a n e o u s m u t a t i o n s i n a b i l i t y t o produce s u c c i n o g l y c a n - l i k e p o l y s a c c h a r i d e and c u r d l a n . Carbohydrate m u t a n t s were i s o l a t e d from Rhizobium m e l i l o t i L530 u s i n g t h e t r a n s l o c a t a b l e d r u g - r e s i s t a n c e e l e m e n t Tn5.155 Enzyme a s s a y s w i t h c e l l - f r e e e x t r a c t s of f o u r m u t a n t s showed t h a t t h e y lacked p-mannitol dehydrogenase, ; - r i b o s e k i n a s e , ;-xylose isomerase, and !-fructose k i n a s e , r e s p e c t i v e l y . An I - a r a b i n o s e mutant was a l s o
129
4: Microbial Polysaccharides 4
4 U
b
rl
lu
(3
I
4'
m I
n
M 4
+
4
v
.--I (3
I
4' m I
i
4
u
I
4' m I
I
4' m
I
I
2
4
(3 I
4'
m I
n
+
U
4
u
(3
I
4' 0
n
+
U
4 v
I
4'
u
130
Carbohydrate Chemistry
isolated.
U p t a k e s t u d i e s showed t h a t t h e Q - r i b o s e ,
a - x y l o s e , and
p-
f r u c t o s e m u t a n t s s t i l l u t i l i z e d t h e s u g a r s on w h i c h t h e y were u n a b l e t o grow,
p o s s i b l y i n d i c a t i n g t h a t Rhizobium m e l i l o t i possesses
a l t e r n a t i v e m e t a b o l i c r o u t e s w h i c h do n o t r e s u l t i n g r o w t h . mutants were a b l e t o n o d u l a t e a l f a l f a k i n a s e m u t a n t was u n a b l e t o f i x
A l l the
plants, but the n-fructose
n i t r o g e n and t h e L - a r a b i n o s e m u t a n t
showed e i t h e r l a t e or no n i t r o g e n - f i x i n g a b i l i t y . The fulvum,
ADP-!-glucose
pyrophosphorylases
R h o d o s p i r i l l u m molischianum,
from
Rhodospirillum
and R h o d o s p i r i l l u m t e n u e w e r e
p a r t i a l l y p u r i f i e d , and t h e i r k i n e t i c p r o p e r t i e s were studied.156 The e n z y m e f r o m t h e t h r e e o r g a n i s m s was f o u n d t o b e a c t i v a t e d b y p y r u v a t e and t h u s was s i m i l a r
t o t h e R h o d o s p i r i l l u m r u b r u m enzyme
t h a t h a d been p r e v i o u S l y s t u d i e d . fulvum,
The enzymes f r o m R h o d o s p i r i l l u m
R h o d o s p i r i l l u m molischianum,
a l s o a c t i v a t e d by oxamate,
and R h o d o s p i r i l l u m t e n u e were
an a n a l o g o f p y r u v a t e .
Other a-keto
a c i d s , a - k e t o b u t y r a t e and h y d r o x y p y r u v a t e , a c t i v a t e d t o a s m a l l e r extent.
The p r e s e n c e o f p y r u v a t e i n c r e a s e d t h e a p p a r e n t a f f i n i t y
f o r adenosine 5’-triphosphate
a n d M g C 1 2 f o r a l l t h r e e enzymes.
R h o d o s p i r i l l u m m o l i s c h i a n u m enzyme h a s v e r y i n h i b i t i o n by adenosine 5’-monophosphate, phosphate.
However,
pyrophosphorylase monophosphate, ADP.
Rhodospirillum
i s very
sensitive
to
The
l i t t l e sensitivity tenue
to
or inorganic
ADP,
ADP-Q-glucose
i n h i b i t i o n by a d e n o s i n e 5’-
and t h e R h o d o s p i r i l l u m f u l v u m enzyme i s i n h i b i t e d by
Increasing pyruvate concentration reversed the i n h i b i t i o n
o r ADP.
c a u s e d by a d e n o s i n e 5’-monophosphate t h e g l y c o s y l donor f o r s y n t h e s i s of
vivo glycogen pyruvate
and,
synthesis i n
the
Rhodospirillum tenue,
i s
S i n c e ADP-Q-glucose
is
glycogen, i t i s p o s s i b l e t h a t
in
regulated
case
of
by
the
concentration
Rhodozejrillum
fulvum
of and
by t h e r a t i o o f p y r u v a t e c o n c e n t r a t i o n t o
i n h i b i t o r concentration. ADP-Q-glucose
synthetase from
Rhodospirillum tenue
the photosynthetic bacterium
has been p u r i f i e d g r e a t e r
than
95%.
m o l e c u l a r w e i g h t o f t h e e n z y m e i s a p p r o x i m a t e l y 215,000, s u b u n i t m o l e c u l a r w e i g h t o f a b o u t 51,000. composed o f
The enzyme a p p e a r s t o be
f o u r s i m i l a r ifn o t i d e n t i c a l s u b u n i t s . 1 5 7
amino a c i d composition o f
The
with a
t h e enzyme i s s i m i l a r
E s c h e r i c h i a c o l i and S a l m o n e l l a t y p h i m u r i u m ,
Although the t o that
o f
no a p p a r e n t h o m o l o g y
has been o b s e r v e d between t h e i r N - t e r m i n a l amino a c i d sequences. Antisera
prepared against
the
Rhodospirillzm tenue
p a r t i a l l y i n h i b i t the activities o f other photosynthetic bacteria.
ADP-a-glucose
enzyme
synthetases
can from
131
4: Microbial Polysaccharides Q-Mannitol, component
of
extracellular
not
previously
reported
as
an
intracellular
i t has been f o u n d as an end p r o d u c t o f a n a e r o b i c c a r b o h y d r a t e m e t a b o l i s m , bacteria,
although
accumulated w i t h i n s t r a i n s of
a l l 10 s t a p h y l o c o c c a l species t e s t e d
a f t e r a e r o b i c i n c u b a t i o n o f washed c e l l s u s p e n s i o n s i n p h o s p h a t e buffered
1%! - g l u c o s e
f o r 2 h.lS8
b e f o r e and a f t e r i n c u b a t i o n ,
Phenol e x t r a c t s of the c e l l s ,
were a n a l y s e d f o r e - m a n n i t o l c o n t e n t by
p e r i o d a t e u t i l i z a t i o n and p a p e r c h r o m a t o g r a p h y phosphate
content,
with
and f o r q - m a n n i t o l -
Q-mannitol l-phosphate
Staphylococcus aureus Towler,
the
content
of
dehydrogenase.
Q-mannitol
In
increased
f r o m a 0 h v a l u e o f a n d p r o t e i n c o d e d by E 3 o f a d e n o v i r u s t y p e 2 . H e p a t i t i s B s u r f a c e a n t i g e n c o n t a i n s a p r o t e i n (rnol. w t . 2.5 x l o 4 ) a n d a g l y c o p r o t e i n ( m o l . w t . 3.0 x l o 4 ) o f i d e n t i c a l a m i n o a c i d I t i s p r o p o s e d t h a t t h e t w o a n t i g e n c o m p o n e n t s may composition.26 d i f f e r only i n t h e presence of carbohydrate i n t h e glycoprotein and Some p h y s i c o c h e m i c a l t h a t t h e y a r e i n f a c t t h e same g e n e p r o d u c t . and immunological properties o f a glycopeptide obtained a f t e r p r o t e l y t i c cleavage of h e p a t i t i s B s u r f a c e a n t i g e n have been r e p o r t e d .27 A method f o r determining s p e c i f i c r e a c t i v i t y t o herpes simplex v i r u s t y p e s 1 a n d 2 has been d e v e l o p e d , u s i n g human s e r a t o i m m uno p r e c i p i t a t e s p e c i f i c g l y c o p r o t e i n a n t i g e n s f r o m v i rus - i n f e c t e d c e l l e x t r a c t s . 2 8 The v i r a l g l y c o p r o t e i n s p r e c i p i t a t e d from t h e s e e x t r a c t s w e r e t h e n a n a l y s e d by S D S - p o l y a c r y l a m i d e g e l electrophoresis. Mono c l o n a l a n t i bo d i e s d i r e c t e d a g a i n s t h e r p e s s i m p l e x v i r u s g l y c o p r o t e i n s have been u s e d t o p r o t e c t mice a g , a i n s t a c u t e v i r u s induced neurological disease.29 Evidence t h a t t h e virus-induced g l y c o p r o t e i n gC e x p r e s s e s t y p e - s p e c i f i c a n t i g e n i c d e t e r m i n a n t s , w h e r e a s g l y c o p r o t e i n gD e x p r e s s e s t y p e - c o m m o n d e t e r m i n a n t s , i s reported. By u s i n g a t e m p e r a t u r e - s e n s i t i v e m u t a n t o f h e r p e s s i m p l e x v i r u s t y p e 1, a n d i n h i b i t o r s o f g l y c o s y l a t i o n , s p e c i f i c g l y c o p r o t e i n s o f t h e v i r u s h a v e b e e n s h o w n t o be i n v o l v e d i n T c e l l - m e d i a t e d c y t o l y s i s o f v i r u s - i n f e c t e d cells.30 Two-dimensional gel e l e c t r o p h o r e s i s h a s been used t o i d e n t i f y p o l y p e p t i d e s and g l y c o p r o t e i n s o f h e r p e s s i m p l e x v i r u s t y p e 1.31 Pulse chase e x p e r i m e n t s and t r e a t m e n t o f i n f e c t e d cells w i t h neuraminidase s u g g e s t s t h a t t h r e e g l y c o p r o t e i n s c o n t a i n neuraminic acid and t h a t s y n t h e s i s o f t w o o f t h e t h r e e o c c u r s by a t l e a s t t e n d i s c r e t e s t e p s . The h e r p e s s i m p l e x v i r u s t y p e l - s p e c i f i c g l y c o p r o t e i n has been p u r i f i e d by a f f i n i t y c h r o m a t o g r a p h y o n i m m o b i l i z e d s o y a b e a n agglutinin and Helix pomatia lectin.32 The b i n d i n g o f t h e glycoprotein t o these l e c t i n s indicates the presence of a terminal 2-ace t am i d o - 2 - d e o x y-or -p -ga 1a c t 0 s y 1 r e s i d u e i n a n o l i go sa c c h a r i de , a finding not previously reported f o r glycoproteins of enveloped viruses. Two m o n o c l o n a l a n t i b o d y p r e p a r a t i o n s w h i c h a r e h e r p e s s i m p l e x v i r u s t y p e 2 - s p e c i f i c have been i s o l a t e d . 3 3 One o f t h e a n t i b o d i e s
172
Carbohydrate Chemistry
precipitated
a
glycoprotein with
g l y c o p r o t e i n E of Drecipitated a
the
v i r u s whereas
characteristics similar to
the other antibody preparation
glycoprotein not
previously
described.
This
g l y c o p r o t e i n i s t e n t a t i v e l y d e s i g n a t e d g l y c o p r o t e i n F. E n e r g y d e p l e t i o n o f v i r a l c e l l s c a u s e d by t h e a d d i t i o n t o t h e c u l t u r e medium o f
carbonyl
cyanide
formation o f N,N’-diacetylchitobiosyl the pool size o f affects the
p-glucosyl
pool
size
of
(CCCP),
3-chlorophenylhydrazone
an uncoupler o f o x i d a t i v e phosphorylation,
does n o t a f f e c t
pyrophosphoryl dolichol,
phosphoryl dolichol,
the
or
and o n l y s l i g h t l y
GDP-Q-manno~e.~~ Using t h i s
system,
i n f l u e n z a v i r u s h a e m a g g l u t i n i n c a n be g l y c o s y l a t e d i n c h i c k e m b r y o fibroblasts
o r a nona-a-mannosyl
e i t h e r a penta-a-mannosyl
derivative.
The
construction o f
a
recombinant
c o n s i s t i n g o f an SV40 v e c t o r and a c l o n e d f u l l - l e n g t h
viral
genome
DNA c o d i n g f o r
t h e h a e m a g g l u t i n i n s u r f a c e g l y c o p r o t e i n o f i n f l u e n z a v i r u s h a s been reported.35 produced
a
Infection of glycoprotein
primate cells similar
i n
with
the hybrid
molecular
size
virus
to
the
haemagglutinin o f influenza virus. Some virus,
b i o c h e m i c a l and b i o l o g i c a l p r o p e r t i e s o f i n f l u e n z a C
a s w e l l a s some m o r p h o l o g i c a l a s p e c t s o f t h e o r g a n i z a t i o n o f
t h e g l y c o p r o t e i n s o n t h e v i r a l e n v e l o p e a n d t h e p l a s m a membranes o f infected cells,
have been r e p o r t e d . 3 6
The c a r b o h y d r a t e p o r t i o n o n
t h e h a e m a g g l u t i n i n o f i n f l u e n z a v i r u s does n o t a p p e a r t o be o f m a j o r importance i n d e f i n i n g the a n t i g e n i c i t y o f the h a e m a g g l ~ t i n i n . ~ ~ Although t h e a b i l i t y o f u n t r e a t e d and g l y c o s i d a s e - t r e a t e d v i r u s i n h i b i t
the
binding
haemagglutinin i s almost
o f
antibodies
directed
indistinguishable,
against 50% o f
release o f
carbohydrate from i n t a c t v i r u s p a r t i c l e s s i g n i f i c a n t l y haemaggluti n at i n g
activity.
The
haem a g g l u t i n i n
to the the
affected membrane
g l y c o p r o t e i n o f i n f l u e n z a v i r u s i s composed o f a t r i p l e - s t r a n d e d c o i l e d c o i l o f a - h e l i c e s e x t e n d i n g 76A f r o m t h e membrane, g l o b u l i n r e g i o n o f a n t i p a r a l l e l B-sheet,
which
and a
contains the
r e c e p t o r - b i n d i n g s i t e and the v a r i a b l e a n t i g e n i c determinants, i s p o s i t i o n e d on t o p of l i k e topology,
t h i s stem.38
Each s u b u n i t h a s a n u n u s u a l l o o p -
s t a r t i n g a t t h e membrane, e x t e n d i n g l 3 5 A d i s t a l l y ,
a n d f o l d i n g b a c k t o e n t e r t h e membrane.
Four antigenic s i t e s on t h e
t h r e e - d i m e n s i o n a l s t r u c t u r e have been i d e n t i f i e d . 3 9
A t l e a s t one
a m i n o a c i d s u b s t i t u t i o n i n e a c h s i t e s e e m s t o be r e q u i r e d f o r t h e p r o d u c t i o n o f new e p i d e m i c s t r a i n s . Glycosylated t r y p t i c peptides o f
the haemagglutinin o f
i n f l u e n z a A v i r u s have been s e p a r a t e d u s i n g a c o m b i n a t i o n o f i o n -
173
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides exchange
chromatography
and g e l
f i l t r a t i ~ n . ~ ' Seven d i f f e r e n t
g l y c o s y l a t e d t r y p t i c p e p t i d e classes were o b t a i n e d from t h e HA1 p o l y p e p t i d e , w h i c h i s d e r i v e d f r o m t h e N - t e r m i n a l segment o f t h e h a e m a g g l u t i n i n , a n d o n l y one g l y c o s y l a t e d p e p t i d e f r o m t h e C - t e r m i n a l p o r t i o n (HA2).
Three t y p e s o f c a r b o h y d r a t e c h a i n s ,
complex,
high
a-
mannose, a n d h y b r i d t y p e , a r e p r e s e n t i n t h e H A 1 p o l y p e p t i d e whereas HA2 c o n t a i n s
the
oligosaccharide
complex-type
side
chains
oligosaccharide
of
the
major
chains.
glycoprotein
The
HA1
of
i n f l u e n z a v i r u s h a e m a g g l u t i n i n have been e x a m i n e d f o r a n t i g e n i c activity
using a
qualitative
solid-phase
and
radioimmunoassay.41
quantitative
differences
o l i g o s a c c h a r i d e s i d e c h a i n s were d e t e c t e d ,
the
exception o f
terminus.42 complex
a
highly
c h a i n has been e l u c i d a t e d ,
aggregated
r e g i o n near
A single glycosylated I-asparagine
oligosaccharide
these
the antigenically active
The amino a c i d sequence o f a Hong
side chains a r e cross-reactive.
Kong i n f l u e n z a h a e m a g g l u t i n i n l i g h t (HA2) with
Although
between
structure
was
the
C-
residue bearing a
noted.
The
amino
acid
sequence and o l i g o s a c c h a r i d e d i s t r i b u t i o n f o r t h e h a e m a g g l u t i n i n f r o m t h e e a r l y Hong Kong i n f l u e n z a v i r u s A/Aichi/2/68(X-31) reported.43 variant
Although the
was
found
to
oligosaccharide
be
identical
h a e r n a g g l u t i n i n f r o m A/Memphis/72, specific I-asparaginyl the individual sequence
residues,
carbohydrate
analysis
shows
the
to
that
i n
the
t h e monosaccharide compositions o f
u n i t s were
different.
existence o f
structural
b e t w e e n t h e Hav 7 a n d t h e Hong K o n g (H3) Two o f
heavy
haemagglutinin from
the
found
w i t h sugar u n i t s a t t a c h e d t o s i x
i n f l u e n z a virus.44 chain o f
have been
distribution i n this
Amino
acid
relationships
haemagglutinins of
the six oligosaccharide the
u n i t s on t h e
Hong K o n g
variant
A/Memphis/102/72
have been shown t o be a n t i g e n i c a l l y r e l a t e d t o t h e
h o s t antigen.45
They
attached t o
C-Asn-8
c o n t a i n t h e N-acetyl-lactosamine-type and &-Asn-22.
residues
The a n t i g e n i c s t r u c t u r e o f
i n f l u e n z a v i r u s h a e m a g g l u t i n i n has been d e f i n e d u s i n g h y b r i d o r n a a n t i b o d i e s . 46 The
uncleaved
(HNO)
and
the
cleaved
(HN)
forms
h a e r n a g g l u t i n i n n e u r a m i n i d a s e o f New c a s t l e d i s e a s e v i r u s , Ulster,
the
strain
have been s u b j e c t e d t o e l e c t r o p h o r e s i s u n d e r r e d u c i n g and
non-reducing
conditions.47
The c o n v e r s i o n o f o n e f o r m t o t h e o t h e r
i n v o l v e s t h e r e l e a s e by p r o t e o l y s i s o f a g l y c o p e p t i d e (mol. x lo3).
of
wt.
8.0
T h e i s o e l e c t r i c p o i n t s h a v e b e e n d e t e r m i n e d a n d t h e c.d.
spectra analysed f o r both p o s t - t r a n s l a t i o n a l and uncleaved Newcastle
disease
virus
p r o t e o l y t i c a l l y cleaved
g l y ~ o p r o t e i n s . ~ I~t i s
Carbohydrate Chemistry
174
d e m o n s t r a t e d t h a t c l e a v a g e i s p a r a l l e l e d by a c o n f o r m a t i o n a l c h a n g e of t h e g l y coprot e i n s The d i s s o c i a t i o n a n d r e c o n s t i t u t i o n o f t h e S e m l i k i F o r e s t v i r u s membrane u s i n g n o n - i o n i c d e t e r g e n t have been s t u d i e d . 4 9 Different mechanisms of r e c o n s t i t u t i o n give rise t o symmetric and a s y m m e t r i c vesicles. Glycoprotein E l of the virus i n g - 3 - i n f e c t e d cells is g l y c o s y l a t e d a n d i n s e r t e d i n t o the e n d o p l a s m i c r e t i c u l u m membrane w i t h o u t s i m u l t a n e o u s s y n t h e s i s o f t h e e n v e l o p e p r o t e i n ( m o l . w t. 6.2 x lo4), w h i c h i s a p r e c u r s o r o f t w o o t h e r e n v e l o p e g l y c ~ p r o t e i n s . ~ ' A r e v e r s i b l e defect i n t h e g l y c o s y l a t i o n of t h e membrane p r o t e i n s o f S e m l i k i F o r e s t v i r u s G-1 m u t a n t h a s b e e n d e s c r i b e d . 5 1 At a r e s t r i c t i v e t e m p e r a t u r e t h e v i r a l membrane g l y c o p r o t e i n s a r e a r r e s t e d i n t h e rough e n d o p l a s m i c r e t i c u l u m , but a r e t r a n s p o r t e d t o t h e Golgi complex once t h e c u l t u r e s are s h i f t e d t o a p e r m i s s i v e temperature. An e f f i c i e n t m e t h o d f o r t h e i s o l a t i o n o f l a r g e q u a n t i t i e s o f S e n d a i v i r u s F - g l y c o p r o t e i n by r e d u c t i o n o f t h e i n t a c t v i r u s p a r t i c l e s w i t h d i t h i o t h r e i t o l and s o l u b i l i z a t i o n o f t h e r e d u c e d v i r u s w i t h n o n - i o n i c d e t e r g e n t has b e e n r e p o r t e d . 5 2 Two m e m b r a n e g l y c o p r o t e i n s ( H A N A p r o t e i n a n d F - p r o t e i n ) o f HVJ ( S e n d a i ) v i r u s c o n t a i n r e s i d u e s o f I - f u c o s e , Q - g a l a c t o s e , Q-mannose, a n d 2-ace tam i d o - 2 - d e o x y - & - g l u c o s e , b u t no 2 - a c e t a m i d o - 2 - d e o x y - Q galactose or neuraminic acid.53 Both g l y c o p r o t e i n s c o n t a i n o l i g o s a c c h a r i d e c h a i n s o f t h e h i g h g-mannose t y p e a n d o f t h e complex type. T h e com p l e x - t y p e o l i go s a c c h a r i des c o n t a i n 2 - a c e t a m i d o - 2 deox y - 3 -&a -1- f uco s y 1 - 4 - 2 4 -Q-ga 1a c t o s y 1-Q-g1 uco s y 1 g r o u p s i n t h e i r outer- chain moieties. P a r a m y x o v i r u s f u s i o n (F) p r o t e i n s a r e a c t i v e l y i n v o l v e d i n t h e i n d u c t i o n o f membrane fusion.54 The F p r o t e i n o f S e n d a i v i r u s i s a c t i v a t e d by p r o t e o l y t i c c l e a v a g e t o y i e l d t w o d i s u l p h i d e - l i n k e d p o l y p e p t i d e s (F1 a n d F2). C o n f o r m a t i o n s of t h e i n a c t i v e uncleaved p r e c u r s o r g l y c o p r o t e i n and t h e a c t i v e c l e a v e d form have been D i r e c t e v i d e n c e was o b t a i n e d f o r t h e p r e s e n c e o f compared. hydrophobic binding sites o n t h e active form of t h e F p r o t e i n , but n o t o n t h e i n a c t i v e form. Grow t h - d e p e n d e n t c h a n g e s i n a - m a n n o s y l o l i g o s a c c h a r i d e s d e r i v e d from a s i n g l e s p e c i e s o f membrane g l y c o p r o t e i n have been s t u d i e d i n a v i r a l system.55 E l a n d E 2 g l y c o p r o t e i n s o f S i n d b i s v i r u s e x p r e s s d i f f e r e n t r e l a t i v e q u a n t i t i e s o f f o u r o l i g o s a c c h a r i d e s. Metabolically labelled Sindbis virion and cell-associated v i r a l g l y c o p e p t i d e s h a v e b e e n a n a l y s e d by a c o m b i n a t i o n o f g e l f i l t r a t i o n and specific glycosidase digestion.56 T h e g e n e r a l m o d e l o f I-
.
5: Glycoproteins, Glycopeptides, Proteoglycans, m d Animal Polysaccharides asparaginyl oligosaccharide
p r o c e s s i n g f o r t h e n e u t r a l and a c i d i c -
t y p e s t r u c t u r e s i n normal and l e c t i n - r e s i s t a n t cells
was
confirmed.
175
The
presence o f
Chinese hamster o v a r y
unusual
small
neutral
s t r u c t u r e s i n t h e m a t u r e v i r a l g l y c o p r o t e i n f r o m t h e c e l l l i n e s was a l s o noted. The r o l e o f c a r b o h y d r a t e i n t h e m o r p h o g e n e s i s o f v e s i c u l a r s t o m a t i t i s v i r u s has been s t u d i e d u s i n g t u n i c a m y c i n t o i n h i b i t g l y c o ~ y l a t i o n . ~I ~t i s c o n f i r m e d t h a t d i f f e r e n t g l y c o p r o t e i n s h a v e d i f f e r e n t carbohydrate requirements f o r Simple
mutational
requirement.
changes
Micelles
i n
a
formed
spontaneously p a r t i t i o n i n t o vesicles.58
plasma-mem b r a n e i n s e r t i o n .
protein by
can
also
glycoproteins
affect
of
this
this virus
sonicated phosphatidyl-choline
The h y d r o p h o b i c t a i l f r a g m e n t o f t h e g l y c o p r o t e i n i s
r e s i s t a n t t o p r o t e o l y s i s when t h e g l y c o p r o t e i n is i n s e r t e d i n t o t h e vesicle bilayer.
The i n t r a c e l l u l a r l o c a t i o n o f a n i n t e g r a l membrane
g l y c o p r o t e i n o f v e s i c u l a r s t o m a t i t i s v i r u s h a s been e ~ a m i n e d . ~ ’ I t s p a s s a g e t o t h e c e l l s u r f a c e has been s y n c h r o n i z e d a n d t h u s s t a g e s i n t h e i n t r a c e l l u l a r p a t h w a y t h a t i t f o l l o w s w e r e mapped.
Glycoprotein
o f v e s i c u l a r s t o m a t i t i s v i r u s has b e e n i s o l a t e d a n d i t s b i n d i n g t o c e l l s u r f a c e s studied.60
The s t r u c t u r e s o f t h e o l i g o s a c c h a r i d e s o f
the v i r u s grown i n d i f f e r e n t teratocarcinoma c e l l l i n e s a r e n o t identical
for
sensitivity glycosidases.61 stomatitis sy n t h e s i z i n g
a l l to
cell
lines,
digestion Baby-hamster
virus
and
by
as a
evidenced mixture
by
o f
differences i n endo-
and
KO-
kidney c e l l s i n f e c t e d with v e s i c u l a r
starved
of
Q-glucose
are
capable
o f
-m an no sy 1a t e d 1ip i d -1i n ke d o 1igo sa c c h a r i de s b u t ca nno t
e f f i c i e n t l y c o m p l e t e t h e a s s e m b l y o f Q-Glce3-Q-Maneg-Q-G1cpNAc2pyrophosphoryl dolichol,
r e s u l t i n g i n an a b n o r m a l l y g l y c o s y l a t e d G
p r o t e in .62 Polyoma
virus
requires
oligosaccharide receptors f o r
specific
cell-surface
infection of
sialo-
3T6 c e l l s . 6 3
A
t r i s a c c h a r i d e s e q u e n c e (2) c a n s e r v e a s a s p e c i f i c c e l l - s u r f a c e receptor
both for
polyma
virus-mediated
haemagglutination and f o r
polyoma v i r u s i n f e c t i o n o f h o s t c e l l s . a-Neue5Ac-( 2 + 3 ) - B - Q - G a l p (
1+4) -8-GalpNAc
(2) The a c t i o n o f
toyocamycin on t h e biosynthesis o f
v i r a l
glycoproteins i n c e l l s chronically infected w i t h a murine r e t r o v i r u s i s i n r e d u c i n g t h e content o f envelope g l y c o p r o t e i n (mol.
wt.
7.0 x
176
Carbohydrate Chemistry
104).64
However, t h e
precursor
m o l e c u l a r w e i g h t o f 8.5
x
of
this
glycoprotein,
having a
i s synthesized n o r m a l l y and i s
lo4,
processed i n t o i t s f i n a l products, which accumulate i n t h e c e l l s . from
The p u r i f i e d m a j o r e n v e l o p e g l y c o p r o t e i n ( m o l . w t . 8.5 x l o 4 ) avian m y e l o b l a s t o s i s v i r u s contains 45%carbohydrate i n c l u d i n g
25 % 2 - a c e t am ido - 2 distributed backbone.
- d e ox y -Q - g l u co s e .65
between
seven
to
nine
One s t r u c t u r a l m o d e l ,
p r o p e r t i e s of
the
0 1igo sa c c h a r ide c h a in s a r e
points
on
the
polypeptide
which r e c o n c i l e s t h e hydrodynamic
glycoprotein with
nearly
spherical
architecture
o b s e r v e d by e l e c t r o n m i c r o s c o p y , r e q u i r e s t h e o r g a n i z a t i o n o f t h e p o l y p e p t i d e c h a i n and a p p r o x i m a t e l y h a l f o f t h e c a r b o h y d r a t e i n t o a g l o b u l a r form.
The r e m a i n i n g c o v a l e n t l y l i n k e d o l i g o s a c c h a r i d e s
would extend outwardly
fcom
the globular s t r u c t u r e as randomly
o r i e n t e d chains. I n
order
bunyavirus, c o n t r o l of
to
characterize
Belmont
virus
as
a
possible
e v i d e n c e has been p r e s e n t e d o f s i m i l a r t r a n s l a t i o n a l t h e p r o t e i n s a n d g l y c o p r o t e i n s s p e c i f i e d by
the two
v i r u s e s i n mammalian cells.'' Cauliflower
mosaic
virus
capsid
f 1uo r e s c e i n -de r i va t i z e d co n c a n a v a l i n A ,
glycoproteinaceous nature of The
synthesis,
polypeptide t h us
binds
to
demo n s t r a t i n g t h e
the r n ~ l e c u l e . ' ~
glycosylation, and i d e n t i f i c a t i o n
p r o t e i n s i n d u c e d by E p s t e i n - B a r r
of
v i r u s have b e e n r e p o r t e d . 6 8
s p o n t a n e o u s a n d i n d u c e d s y n t h e s e s of
the
early The
virus antigens i n Raji
c e l l s immobilized on surfaces coated w i t h anti-lymphocy t e g l o b u l i n have been s t u d i e d . "
A m a j o r g l y c o p r o t e i n ( g p 350/220)
B a r r v i r u s h a s been d e t e c t e d by i m m u n o f l u o r e s c e n c e
o f Epstein-
with monoclonal
a n t i b o d i e s o n b o t h t h e p l a s m a membrane a n d i n t h e c y t o p l a s m . 7 0 F o u r s t r u c t u r a l p o l y p e p t i d e s o f H a z a r a v i r u s h a v e been r e s o l v e d
.
by so d i um do de c y 1 s u l p h a t e p o 1y a c r y 1am ide g e l e l e c t r o p h o r e s i s T h r e e g l y c o p r o t e i n s ( m o l . w t s . 8.4 x l o 3 , 4.5 x lo3, a n d 3.0 x l o 3 ) are associated with
the
v i r i o n envelope, and a
nonglycosylated
polypeptide i s associated w i t h t h e nucleocapsid. The GIX
a n t i g e n o f m u r i n e r e t r o v i r u s has b e e n a n a l y s e d u s i n g
m o n o c l o n a l a n t i b ~ d i e s , ' ~r e a c t i v i t y w i t h w h i c h a p p e a r s t o r e q u i r e a stable
configurational
change i n t h e
coinciding w i t h glycosylation,
precursor
protein
rather than d i r e c t p a r t i c i p a t i o n of
carbohydrate i n the antigenic site.
Thus l a t e r e n z y m i c r e m o v a l o f
c a r b o h y d r a t e c h a i n s does n o t a l t e r r e a c t i v i t y w i t h t h e a n t i b o d i e s . Two m e a s l e s v i r u s g l y c o p r o t e i n s ,
a haemagglutinin and a f u s i o n
p r o t e i n , have been i n c o r p o r a t e d i n t o a r t i f i c i a l l i p i d b i l a y e r s . 7 3
177
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides The
resultant
'virosomes'
haemagglutinating
had
activity,
visible
and
should
'spikes'
and
provide a
s t u d y i n g immune responses t o m e a s l e s v i r u s ,
possessed
reagent
for
independent o f the
immunosuppressive e f f e c t s o f t h e whole v i r u s . M o n o s p e c i f i c a n t i b o d i e s have been p r e p a r e d t o each o f e n v e l o p e p a r a m y x o v i r u s g l y c o p r o t e i n s (HN a n d F ) . 7 4
two
Antibodies t o
t h e HN g l y c o p r o t e i n i n h i b i t e d haem a g g l u t i n a t i n g a n d neuram i n i d a s e activities.
A n t i - F a n t i b o d i e s i n h i b i t e d haemolysis.
The c o m p l e t e n u c l e o t i d e s e q u e n c e o f t h e g l y c o p r o t e i n g e n e i n r a b i e s v i r u s has been d e t e r m i n e d . 7 5 to
be!
made o f
several
T h i s has a l l o w e d a p r e d i c t i o n
features o f
the glycoprotein,
from
the
deduced a m i n o a c i d sequence. The e f f e c t s o f c e l l t r a n s f o r m a t i o n o n t h e g l y c o s y l a t i o n a n d p r o c e s s i n g o f P r a g u e C Rous s a r c o m a v i r u s e n v e l o p e p o l y p e p t i d e s have been r e p o r t e d . 7 6 the
The m a j o r d e t e c t a b l e d i f f e r e n c e i s a n i n c r e a s e i n
r e l a t i v e amount
o f
larger acidic-type
containing residues o f neuraminic acid, 2-deoxy-~-glucose,
oligosaccharides
a-galactose, and 2-acetamido-
compared w i t h t h e n e u t r a l - t y p e o l i g o s a c c h a r i d e s .
G l y c o p e p t i d e s d e r i v e d from
a g l y c o p r o t e i n (mol.
been e x a m i n e d a f t e r s e q u e n t i a l
glycosidase
wt.
8.5
digestions
x lo4) h a v e followed
by
g e l f i l t r a t i ~ n . ~The ~ major h y b r i d species has an oligo-Q-mannosyl c o r e o f f i v e Q-mannosyl- and t w o 2-acetamido-2-deoxy-Q-glucosyl residues together
with
substitution
residues w i t h an a c i d i c s i d e a c e t y l n e u r a mi n i c a c i d ,
of
one
of
c h a i n composed o f
the
p-mannosyl
residues o f
N-
Q - g a l a c t o p y r a n o s e , a n d 2-acetam i d o -2-deox y-Q-
glucopyranose. Immunological s t u d i e s on t h e r e l a t i o n s h i p o f t h e major envelope g l y c o p r o t e i n o f HEL-12
v i r u s and t h e analogous g l y c o p r o t e i n s o f
S i m i a n sarcoma-Simian a s s o c i a t e d v i r u s have
been reported.78
A
a n d baboon endogenous v i r u s
glycopeptide
(mol.
w t .
2.0
x
lo5)
a s s o c i a t e d w i t h t h e t r a n s f o r m a t i o n o f S i m i a n sarcoma v i r u s h a s been
.
iden t i f i e d 79 A g l y c o p r o t e i n s p e c i f i e d by s p l e e n f o c u s - f o r m i n g v i r u s i n t h r e e
c e l l l i n e s v a r i e s i n m o l e c u l a r s i z e and p e p t i d e c o m p o s i t i o n b u t retains
both x e n o t r o p i c and e c t o t r o p i c murine leukaemia v i r u s
antigenicity.80
Both q u a l i t a t i v e and q u a n t i t a t i v e d i f f e r e n c e s i n
the post-translational
processing o f t h e envelope g l y c o p r o t e i n s o f
p o l y c y t h a e m i a - and a n a e m i a - i n d u c i n g s t r a i n s o f s p l e e n f o c u s - f o r m i n g v i r u s have been r e p o r t e d . 8 1 The i n v i t r o t r a n s l a t i o n o f U n k u n i e m i v i r u s - s p e c i f i c RNA h a s led to
the identification o f a non-structural
p r o t e i n and a
Carbohydrate Chemistry
178 p r e c u r s o r t o membrane g l y co p r o t e i n s . 82 Vaccinia
wt.
(mol.
virus-induced haemagglutinin i s a single glycoprotein
lo4>
x
8.5
v i r us - i n d u c e d
w h i c h a p p e a r s a t t h e p l a s m a membrane a s a
function. 83
l-lin k e d
A 1 t h ough
predominate i n the molecule,
o 1i g o s a c c h a r i de s
a b o u t 25% o f t h e o l i g o s a c c h a r i d e c h a i n s
which a r e g - g l y c o s i d i c a l l y l i n k e d t o t h e p r o t e i n a r e r e s p o n s i b l e f o r the
biological
activity
of
the
molecule.
Glycoproteins
and
p h o s p h o p r o t e i n s have been i d e n t i f i e d a s s t r u c t u r a l e l e m e n t s o f t h i s
.
v i r u s B4 wt.
Immunogenic g l y c o p r o t e i n s (mol. 1.18
x l o 5 ) i s o l a t e d from
varicella-zoster
lo4,
x 104,and
9.8
vaccine
strains
of
v i r u s have been i d e n t i f i e d . 8 5
I n r e c o n s t i t u t i o n experiments E l and E 2 o f
x
6.5
l a b o r a t o r y and
u s i n g t h e envelope
western equine e n c e p h a l i t i s virus,
glycoproteins
the haemolytic
a c t i v i t y i s associated w i t h the E l glycoprotein which a c t s as a haemaggl u t i n i n . 86
Plant Glycoproteins
2 A
l a r g e number o f l e g u m e - s e e d
glyc~proteins.~’ A glycoproteins functional
high
and t h e i r
significance
p o l y p e p t i d e s have been i d e n t i f i e d a s
of
degree
corresponding
binding lectins
between
might
i n m a i n t a i n i n g l a r g e aggregates
have of
seed some
protein
i n compact i n s o l u b l e f o r m . Twelve N - g l y c o s y l a t e d p o l y p e p t i d e s have been i d e n t i f i e d i n glyoxysomal
membranes
p o l y a c r y lam i d e w t s . 9.0
x
of
castor
electrophoresis
lo4,
7.1
x
lo4,
A glycoprotein,
5.6 x
beans.88
correspond
lo4,
4.7
to
Major
bands o n SDS-
g l yco p r o t e i n s o f m 01.
x 1 0 4 , a n d 4.3
x
lo4.
involved w i t h the control of i n t e r c e l l u l a r
r e c o g n i t i o n and o f p o l l e n i n c o m p a t i b i l i t y has been i s o l a t e d f r o m stigmas o f glycoprotein,
S-allele
g e n o t y p e S2S2
of
Brassica oleracea.89
w h i c h i s n o t p r e c i p i t a t e d by c o n c a n a v a l i n A,
r e s i d u e s o f L-arabinose,
!-galactose,
Evidence t h a t l i p i d - l i n k e d a s e q u e n t i a l manner f r o m
!-glucose,
The
contains
a n d P-mannose.
o l i g o s a c c h a r i d e s can be a s s e m b l e d i n
UDP - 2 - a c e t a m i d o -2-deox y - B - g l uco se a n d GDP -
P-mannose by membrane p r e p a r a t i o n s f r o m d e v e l o p i n g s o y b e a n c o y l e d o n s has
been p r e s e n t e d . ”
Tissue
slices
synthesize products which
resemble t h e completed 7 s storage g l y c o p r o t e i n s . Concanavalin
A
has
been shown
to
bind to
the
endoplasmic
r e t i c u l u m and t h e s t a r c h g r a i n s u r f a c e o f r o o t s t a t o c y t e s ( L e p i d i u m s a t i v u m L9).91
of
cress
The r e c e p t o r f o r t h e l e c t i n a p p e a r s t o be a
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
179
high-molecular- weight glycoprotein which is r e s i s t a n t t o s o l u b i l i t a t i o n a f t e r g l u t a r a l d e h y d e f i x a t i o n of t h e cells. Two s o l u b l e g l y c o p r o t e i n c o m p o n e n t s f r o m r y e g r a s s ( L o l i u m p e r e n n e ) have been i s o l a t e d a n d p a r t i a l l y c h a r a ~ t e r i z e d . ~ ’ They a r e c h e m i c a l l y and i m m u n o l o g i c a l l y d i s t i n c t . One o f t h e g l y c o p r o t e i n s i s t h e m a j o r a l l e r g e n o f r y e - g r a s s p o l l e n and b i n d s s p e c i f i c a l l y t o i m m u n o g l o b u l i n E o f s e n s i t i z e d human s u b j e c t s . 9 3 Immunological c r o s s - r e a c t i v i t y t h a t i s d u e , a t l e a s t i n p a r t , t o common a n t i g e n i c carbohydrate components i s reported. Two t y p e s o f p r o t e i n g l y c o s y l a t i o n i n c e l l - f r e e p r e p a r a t i o n s o f d e v e l o p i n g c o t y l e d o n s o f P h a s e o l u s v u l g a r i s have been p o ~ t u l a t e d . ~ ~ I n a n i n v i t r o s y s t e m , t h e a t t a c h m e n t o f 2-acetamido-2-deoxy-Qglucosyl r e s i d u e s t o phytohaemagglutinin and phaseolin does n o t involve lipid-linked intermediates w h i l s t the glycosylation of a class of p r o t e i n s of heterogeneous molecular weights involves the l i p i d pathway. A q u e o u s e x t r a c t s o f l e a v e s , r o o t s , a n d stems o f g r e e n b e a n , a n d l e a v e s o f mung b e a n , s o y b e a n , a n d l i m a b e a n , c a u s e a g g l u t i n a t i o n o f c e l l s o f a s a p r o p h y t i c b a c t e r i u m P s e u d o m o n a s p ~ t i d a . P~u ~r i f i e d p r e p a r a t i o n s of t h e a g g l u t i n i n are composed of g l y c o p r o t e i n s , containing k-arabinose, e-galactose, and e-galacturonic a c i d as t h e p r e d o m i n a n t c a r b o h y d r a t e c o m p o n e n t s . The p r o p e r t i e s o f l a c c a s e , i s o l a t e d from S c h i n u s m o l l e trees, i n c l u d i n g m o l e c u l a r w e i g h t , amino a c i d and c a r b o h y d r a t e c o m p o s i t i o n , have been d e ~ c r i b e d . ’ ~ The presence o r absence o f an inducing hormonal glycoprotein i n t h e g r o w t h medium o f Volvox l a r t e r i d e t e r m i n e s w h e t h e r t h e algaegrow sexually or asexually.97 The s i t e and time o f f o r m a t i o n o f t h i s g l y c o prot e i n h a v e been est a b l i shed.
3
Lectins
Review a r t i c l e s d e a l i n g w i t h l e c t i n s i n c l u d e a s t u d y of l e c t i n s i n The endogenous b i o l o g i c a l f u n c t i o n s o f l e c t i n s higher plants.98 have b e e n r e ~ i e w e d . ’ ~ E x a m p l e s f r o m p l a n t s , c e l l u l a r slime moulds, The a n d a n i m a l t i s s u e s are u s e d i n t h e a n a l y s i s of t h i s problem. c a r b o h y d r a t e b i n d i n g s p e c i f i c i t y and c e l l - membrane i n t e r a c t i o n o f Vicia s a t i v a l e c t i n have b e e n r e p 0 r t e d . l ” Affinity chromatography f o r t h e p u r i f i c a t i o n o f l e c t i n s h a s been described.lo1 Stable, high c a p a c i t y a f f i n i t y adsorbents used i n t h e i s o l a t i o n o f l e c t i n s have b e e n p r e p a r e d by d e r i v a t i z a t i o n o f e p o x y - a g a r o s e w i t h v a r i o u s
--
Carbohydrate Chemistry
180 carbohydrates .Io2 Isoelectric
focusing
i n polyacrylarnide
gels
containing
immobilized sugars r e s u l t s i n a s h i f t i n the p o s i t i o n o f p r o t e i n bands c a p a b l e o f
i n t e r a c t i o n w i t h these ligands.lo3
These a f f i n i t y
g e l s have been u s e d t o d e m o n s t r a t e i n t e r a c t i o n s w i t h l e c t i n s . s e n s i t i v e assay
A
has been d e v e l o p e d f o r m e a s u r i n g t h e b i n d i n g o f
l e c t i n s t o g l y c o c o n j u g a t e s i n w e l l s of p o l y v i n y l c h l o r i d e ~ 1 a t e s . l ' ~ A chromophore-labelled
Q - g a l a c t o - Q - m a n n a n h a s b e e n p r e p a r e d by
c o u p l i n g a m o n o c h l o r o t r i a z i n y l dye t o guaran.lo5
The p r o d u c t h a s
been u s e d f o r t h e q u a n t i t a t i v e e s t i m a t i o n o f l e c t i n s h a v i n g a f f i n i t y f o r Q - g a l a c t o s y l o r 2-acetam ido-2-deox y - Q - g a l a c t o s y l r e s i d u e s . The f o l l o w i n g l e c t i n s h a v e b e e n p u r i f i e d a n d some o f t h e i r p h y s i c a l a n d c h e m i c a l c h a r a c t e r i s t i c s r e c o r d e d ( T a b l e 1) . l o 6 - l 1 4 I o d i n a t e d l e c t i n s have
been u s e d f o r
the determination o f the
d e g r e e of d e g l y c o s y l a t i o n o f h i g h n - m a n n o s y l g l y c o p r o t e i n s f o l l o w i n g digesti o n w i t h e
- B -2-ace tam i d o -2-deox y - E - g l ucanase H. '15 I n t e r m o l e c u l a r f o r c e s i n l e c t i n- c a r boh y d r a t e in t e r a c t i o n h a v e
been analysed on features.'l6
the
basis o f
their
s t r u c t u r e and chemical
The r o l e o f w a t e r , a s w e l l a s t h a t o f o t h e r p h y s i c o -
c h e m i c a l p a r a m e t e r s i n f l u e n c i n g t h e f o r m a t i o n o f such c o m p l e x e s i n aqueous m e d i a ,
i s a l s o discussed.
A model d e p i c t i n g t h e importance
o f hydrogen bonding and charge-transfer
i n t e r a c t i o n s as t h e main
s o u r c e s o f complex s t a b i l i t y i n t h e a s s o c i a t i o n between l e c t i n s and carbohydrates i s proposed. By p e r f o r m i n g e l e c t r o p h o r e s i s p e r p e n d i c u l a r t o a s t a t i o n a r y pH gradient i n polyacrylamide gels containing a s p e c i f i c l i g a n d e i t h e r covalently f i x e d o r entrapped i n the gel matrix, i t i s possible t o measure d i s s o c i a t i o n c o n s t a n t s o f l e c t i n s a n d t h e i r pH dependence i n a pH r a n g e . l l 7
The m e t h o d h a s b e e n u s e d t o s t u d y t h e l e c t i n s f r o m
R i c i n u s communis a n d L e n s c u l i n a r i s . Aqueous e x t r a c t s f r o m l e a v e s , l e a v e s o f mung bean, saprophytic
r o o t s , a n d s t e m s o f g r e e n bean a n d
soybean,and l i m a bean a g g l u t i n a t e c e l l s o f a putida."
Purified
p r e p a r a t i o n s c o n t a i n b o t h c a r b o h y d r a t e and p r o t e i n ,
r e q u i r e Mg2+ f o r
activity,
bacteria,
Pseudomonas
and a r e h e a t s t a b l e .
pathogenic bacteria
No a g g l u t i n a t i o n o f
A s u r v e y o f t w e n t y - t w o commonly i n g e s t e d f r u i t s , seeds has i n d i c a t e d the presence, interact cells.l19
with
other
plant
or nonpseudomonad s a p r o p h y t e s was o b s e r v e d . i n many,
vegetables, and
o f l e c t i n s w h i c h can
c o m p o n e n t s o f human s a l i v a a n d S t r e p t o c o c c u s
I n t e r a c t i o n s o f soybean and p e a n u t l e c t i n s w i t h
t h a t n o d u l a t e soybean,
peanut, o r
mutans
rhizobia
b o t h p l a n t s have b e e n studied."'
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
0
0
0
0
0
Q
U
Q
Q
Q
0
m m m m m
~
0
0
m z m m m Q Q Q c r
0
181
m
ln
N
v)
C
N 4
c,
N
n .o -I
N
..-I
I
0
aI ,
U a,
.-I
ce
-4
w
3
hl
N h l
Q
a, E 0
m ce
*0
v)
X
X
*-I
ln
M
M
.+
0
a,
c, $4
a,
Q
0 $4
Q
U
C
m C
0
*-I
c, -4
m
0 Q E
0
u
4
aI ,
n
m
b-
4
ln
0 .-I
182
Carbohydrate Chemisrry
No r e l a t i o n s h i p b e t w e e n t h e a b i l i t y o f p e a n u t o r soybean r h i z o b i a t o n o d u l a t e t h e r e c i p r o c a l h o s t p l a n t and t h e i r a b i l i t y
to bind to
the
l e c t i n o f t h a t p l a n t c o u l d be d e m o n s t r a t e d . The seeds o f P i s u m s a t i v u m ,
-V.
Canavalia ensiformis,
-s a t i v a , a n d R i c i n u s c o m m u n i s c o n t a i n p r o t e i n s ,
Vicia
faba,
termed l e c t i n
binders, which a r e associated w i t h t h e i r r e s p e c t i v e lectins.lZ1
The
p e a l e c t i n b i n d e r i s a t e t r a m e r i c g l y c o p r o t e i n composed o f i d e n t i c a l
w t. 5.1
s u b u n i t s (mol.
x
lo4),
and i t s i n t e r a c t i o n w i t h t h e l e c t i n i s
a b o l i s h e d by l o w pH o r by g - g l u c o s e . w t .
p r o t e i n (mol.
3.5
x
lo4)
The c o n c a n a v a l i n A b i n d e r i s a
c o n t a i n i n g no
covalently
bound
carbohydrate.
A s t u d y o f t h e t i s s u e s o f s o y b e a n a n d j a c k bean s e e d s
demonstrates
t h a t t h e l e c t i n o f a p a r t i c u l a r s p e c i e s may e x h i b i t a
very
narrow
range
glycoconjugates.’**
o f
s p e c i f i c i t y
towards
endogenous
This suggests t h a t n o t o n l y i s t h e r e one m a j o r
l e c t i n i n the cotyledons o f a given plant
b u t a l s o one s o l u b l e
g l y c o p r o t e i n i n t h e c o t y l e d o n s t h a t t h e l e c t i n can r e c o g n i z e .
The
s t r i k i n g s p e c i f i c i t y shown b e t w e e n h o m o l o g o u s l e c t i n a n d r e c e p t o r i s n o t m a i n t a i n e d when t h e l e c t i n i s u s e d t o . i s o l a t e g l y c o p r o t e i n s f r o m t h e same t i s s u e i n o t h e r p l a n t s p e c i e s .
G 1 y co p e p t ide s a n d o l igo s a c c h a r id e s de r ive d f r o m proteins
have
been
different lectins.lZ3
used
g l ycoaspa r a g i ne s ,
define
the
1-g l y co s y 1
specificity
of
twelve
Lectins considered i d e n t i c a l i n terms of
monosaccharide s p e c i f i c i t y d i f f e r e n c e s i n more
to
possess an a b i l i t y
complex
structures.
to recognize fine
The
observation
that
g l yco pe p t i d e s, a n d g l yco p r o t e i ns p o s s e s s a h i g h e r
a f f i n i t y f o r l e c t i n s t h a n t h e r e l a t e d o l i g o s a c c h a r i d e s has been e x p l a i n e d by t h e f a c t t h a t t h e g l y c a n - a m i n o a c i d l i n k a g e l e a d s t o s t r u c t u r e s more r i g i d t h a n t h o s e o f t h e o l i g o s a c c h a r i d e s themselves. Many o f
t h e l e c t i n s u s e d i n t h i s s t u d y seem t o p o s s e s s i n
o r near
t h e i r carbohydrate-binding s i t e a hydrophobic area such as t h a t d e s c r i b e d f o r c o n c a n a v a l i n A,
a n d t h i s c o u l d be t h e c a u s e o f n o n -
s p e c i f i c hydrophobic i n t e r a c t i o n s o f glycopeptides
Fluorescence b i nd i ng o f
between t h e l e c t i n s and r e s i d u e s
o r g l y c o p r o t e i n s , a s d e s c r i b e d f o r c o n c a n a v a l i n A. p o l a r i z a t i o n has been u s e d t o i n v e s t i g a t e t h e
4-m e t h y 1um be 11if e r y 1 - 6 -Q -ga 1a c t o p y r a n 0 s i de
p r e c at o r i u s a g g l ut i n i n
. 24
to
A b r us
L e c t i n a c t i v i t y has been d e t e c t e d i n seeds o f t w e n t y A c a c i a species o f A u s t r a l i a n origin.125
Fourteen of
the
species
had been
r e p o r t e d by o t h e r w o r k e r s t o c o n t a i n no l e c t i n . P e a n u t l e c t i n has been p u r i f i e d by a d s o r p t i o n o n g l u t a r a l d e h y d e cross-linked
h e m a t i c d e s i a l y l a t e d a n d r e t i c u l a t e d human s t r o m a . l Z 6
183
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides The
lectin
(mol.
1.25
wt.
lo5),
x
although
homogeneous on
e l e c t r o p h o r e s i s , y i e l d s e i g h t m a j o r bands o n i s o e l e c t r i c f o c u s i n g . The s c r e e n i n g o f p e a n u t ( A r a c h i s ) a n d i t s w i l d r e l a t i v e s f o r m u l t i p l e m o l e c u l a r f o r m s o f p e a n u t l e c t i n and f o r g e n o t y p e s d e v o i d of
the
b e e n r e ~ 0 r t e d . l ~A ~ p e a n u t
l e c t i n has
lectin-negative
p h e n o t y p e was d e t e c t e d i n f o u r g e n o t y p e s ( i s o l a t e d from
h a s been a n a 1 ~ s e d . l ~The ~ amount o f e a c h
i s o l e c t i n v a r i e s f r o m seed t o seed, each seed d i s p l a y i n g a u n i q u e distribution of the five isolectins. intact
s imp 1i c i f o 1i a -B. --
cleavage
by
an endo-
It i s postulated that the
I B4 i s o l e c t i n u n d e r goes p r o t e o l y t i c
or =-protease
t o
form
f i r s t t h e AB3
i s o l e c t i n , w h i c h i n t u r n i s t h e n p r o c e s s e d f u r t h e r t o y i e l d t h e A2B2
184
Carbohydrate Chemistry
isolectin,
and so o n u n t i l A4
i s produced.
4-Methylumbelliferyl
g l y c o s i d e s have been used i n b i n d i n g s t u d i e s w i t h t h e l e c t i n s A4,
BSI-B4,
and BS I 1
from
d i a l y s i s,
Equilibrium
Bandeiraea ( G r i f f o n i a )
fluorescent
BSI-
simplicif01ia.l~~
enhancement,
quantitative
p r e c i p i t a t i o n , and h a p t e n i n h i b i t i o n t e c h n i q u e s have been used t o investigate
the
simplicifolia
binding
characteristics
of
four
of
the
2.
I i s 0 1 e c t i n s . l ~ ~One o f t h e m o s t u n u s u a l f e a t u r e s i s
that,although
different,
b o t h t h e A a n d B s u b u n i t s h a v e t h e same
f o r a-Q-galactosyl residues. Although both s u b u n i t s a l s o b i n d 2 - a c e t a m i d o - 2 - d e o x y - ~ - g a l a c t o s y l r e s i d u e s , t h e A s u b u n i t has a n
affinity
association constant
f o r t h e amino sugar more t h a n 1 0 0 0 - f o l d g r e a t e r
t h a n the B s u b u n i t . Affinity
chromatography
i m m o b i l i z e d 4-aminophenyl means of
equations
of
divalent
B-P-glucopyranoside
concanavalin
A
on
h a s been a n a l y s e d by
based o n t h e s i m p l e s t m o d e l ,
i n which t h e l e c t i n
has e q u i v a l e n t a n d i n d e p e n d e n t b i n d i n g s i t e s a n d one l e c t i n m o l e c u l e b i n d s o n l y o n e i m m o b i l i z e d l i g a n d a t a time.135 P o l y a c r y 1am i d e
e l e c t rophore s i s o f
gra d i ent
r e v e a l s the presence o f
various minor
co n c a n a V a l i n A
bands w h i c h a r e n o t
detected
by p o l y a c r y l a m i d e d i s c e l e c t r o p h ~ r e s i s . ~The ~ ~ m i n o r components a r e suggested t o the
combined
s iev i ng
.
be d i f f e r e n t m o l e c u l a r s p e c i e s s e p a r a t i n g by v i r t u e o f effect
of
electrophoretic
mobility
Over w i d e r a n g e s o f t e m p e r a t u r e a n d pH, of only subunits
and m o l e c u l a r
concanavalin A consists
d i m e r s a n d t e t r a m e r ~ . ' ~ ~The l a r g e f r a c t i o n i n commercial preparations
o f hydrolysed
causes s i g n i f i c a n t
populations
o f d i m e r i c species t h a t a s s o c i a t e o n l y weakly or n o t a t a l l .
The
e f f e c t o f t h e b i n d i n g o f saccharide l i g a n d s on t h e r e v e r s i b l e dimert e t r a m e r e q u i l i b r i u m o f t h e l e c t i n has b e e n s t u d i e d by h i g h - s p e e d s e d i m e n t a t i o n e q ~ i 1 i b r i u m . l ~C~o n t r a r y
to
e a r l i e r p u b l i s h e d work,
s a c c h a r i d e b i n d i n g does n o t a p p e a r t o a f f e c t e q u i l i b r i u m o f t h e n a t i v e c o n c a n a v a l i n A, irreversible
behavio ur
i n
preparations
proportions o f hydrolysed subunits.
the
dimer-tetramer
a l t h o u g h i t does i n t r o d u c e containing
sign1f icant
The d i m e r - t e t r a m e r e q u i l i b r i u m
i s l i n k e d t o t h e weak b i n d i n g o f c a l c i u m a t a s i t e p r o b a b l y i n t h e dimer-dimer
interface.
interaction
of
Studies
concanavalin
A
have
with
g l u c o py r a no s y 1- a - e - m a n n o p y r a n o s i de ga l a c t o p y r a n 0 s y l - a - D = - m a n n o p y m a 1 t o ~ i d e . l ~T h ~e disaccharides
i s
existence
proposed.
,
been
Some o f
two the
the
2-2-a-P-
4 - n i t r o p h e n y 1- 2 - 2 - a - Q -
r a n 0 s i de, of
reported of
4-nitrophenyl and
4-ni trophenyl
b i n d i n g modes specificity
for
the
requirements
185
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
f o r t h e i n t e r a c t i o n o f concanavalin A w i t h t h e non-reducing g l y c o s y l group are characterized, Temperature-jump
and a r e s u m m a r i z e d i n Scheme 1.
relaxation studies using 4-methylumbelliferyl
a-Q-mannopyranoside as a f l u o r e s c e n c e i n d i c a t o r l i g a n d have been used i n an e x a m i n a t i o n o f
the
binding kinetics o f
m e t h y l a-Q-
m a n n o p y r a n o s i d e t o c o n c a n a v a l i n A. 140
Scheme 1 An
i.r.-attenuated
total-reflectance
s p e c t r o s c o p i c method has
been u s e d t o s t u d y t h e i n t e r a c t i o n o f m o n o l a y e r s o f c o n c a n a v a l i n A The e f f e c t s o f f i l m
w i t h mono- and p o l y - s a c c h a r i d e s . 1 4 1 pH,
urea,
Mn2+, a n d Ca2+ o n t h e b i n d i n g o f d e x t r a n ,
pressure,
m e t h y l a-Q-
mannopyranoside, and Q - g a l a c t o s e t o t h e l e c t i n w e r e s t u d i e d . thermodynamic parameters o f t h e Mn2+-binding i n the
concanavalin A
dimer
c a l o r i m e t r i c technique.142
state
have
been
The
reaction with
determined
The r e s u l t s i n d i c a t e t h a t
by
a
the free
e n e r g y c h a n g e f o r t h e p r o c e s s i s d o m i n a t e d by a p o s i t i v e e n t r o p y change
and
that
independent. the
binding of
process
i s
effects.
the
two
i d e n t i c a l S1 s i t e s
of
the
dimer
ar,e
C a l o r i m e t r i c s t u d i e s have a l s o been used t o examine saccharides
induced
by
Kinetic
activation of
both
and
to
concanavalin
favourable
equilibrium
Ca2+ i n d i c a t e t h a t
The
A.143
enthalpic
studies
of
and
binding entropic
concanavalin
ion binding at
A
S2 produces a
general ordering o f the ligands a t t h i s s i t e which i n t u r n orders those side-chain residues involved i n saccharide r e ~ o g n i t i 0 n . l ~ ~ The c a r b o h y d r a t e - b i n d i n g
activity
v a r i o u s l e v e l s o f Ca2+ a n d Mn2+
of
concanavalin
has
A containing
b e e n r e ~ 0 r t e d . l ~T h~e
p r e c i p i t a t i o n a c t i v i t y o f t h e l e c t i n w i t h g l y c o g e n as w e l l as t h e binding of affected
lectin to
4-nitrophenyl
a-p-mannopyranoside
by t h e n u m b e r o f b o u n d C a 2 + - i o n s .
are strongly
The k i n e t i c s o f t h e
i n t e r a c t i o n s o f Ca2+ w i t h c o n c a n a v a l i n A i n t h e p r e s e n c e o f C o 2 + , Mn2+, and/or of
Zn2+ h a v e been f o l l o w e d by m e a s u r e m e n t o f t h e q u e n c h i n g
fluorescence of
4-methylumbelliferyl
bound t o ~ r 0 t e i n . l ~Some ~
observations
a-a-mannopyranoside on
metal-ion
when
requirements
a n d s u g a r b i n d i n g by B a n d e i r a e a s i z p l i c i f o l i a I l e c t i n a r e a l s o reported. The c o - o p e r a t i v e
binding properties o f concanavalin A with
186
Carbohydrate Chemistry
g l y c o c o n j u g a t e s a r e dependent o n t h e p r e s e n c e o f h y d r o p h o b i c b i n d i n g sites.14'
The d e g r e e o f c o - o p e r a t i v i t y
can be s u b s t a n t i a l l y a l t e r e d
by c o n f o r m a t i o n a l changes o f t h e l i g a n d . Irradiation of
concanavalin A
tetrameric
with
a high-pressure
me r c u ry lamp i n t h e presence o f c h l o r a c e t a m i d e r e s u l t s i n t h e l e c t i n showing a monomeric m o l e c u l a r w e i g h t w i t h r e t e n t i o n o f b i n d i n g capacity.148 Fluorescein-concanavalin
conjugates
A
are
capable
of
d i s t i n g u i s h i n g b e t w e e n n o r m a l and m a l i g n a n t human ~ e 1 l s . l ~ ' The f o u r
-V i c i a faba
l e c t i n s c o n c a n a v a l i n A,
agglutinin,
Lens c u l i n a r i s a g g l u t i n i n ,
and P i s u m s a t i v u m
be i d e n t i c a l i n t e r m s o f s p e c i f i c i t y
agglutinin,
considered t o
or a-;-glucose,
f o r a-;-mannose
p o s s e s s t h e a b i l i t y t o r e c o g n i z e f i n e d i f f e r e n c e s i n more c o m p l e x carbohydrate structures.150 A
lectin
from
the
a g g l u t i n a t i n g sheep haemolysis
of
seeds
and o t h e r
rabbit
of
Croton
tiglium
erythrocytes
erythrocyte^.'^^
i s
as w e l l
These e f f e c t s
capable as
of
inducing
are i n h i b i t e d
by sheep e r y t h r o c y t e g l y c o p e p t i d e s . D a t u r a s t r a m o n i u m l e c t i n has been p u r i f i e d on c o l u m n s o f diacetylchitobiose
i m m o b i l i z e d on a g a r o s e . l o 6
37% c a r b o h y d r a t e ,
sugar,
of
which I-arabinose
and a h i g h c o n t e n t o f
hydroxy-C-proline i d e n t i c a l with,
residues. the
lectin
i s t h e most
C-cysteine,
glycine,
potato.152
predominant I - s e r i n e , and but not
Although they
chito-oligosaccharides,
N,"-
contains
This l e c t i n i s s i m i l a r to,
l e c t i n from
similar specificities for
The
have
the Datura l e c t i n
shows i t s g r e a t e s t a f f i n i t y f o r g l y c o p e p t i d e s and t h e p o t a t o l e c t i n
for chito-oligosaccharides.
I n both lectins,
the hydroxy-l-proline
residues are substituted w i t h 6-i-arabinofuranosides,
and t h e r e a r e
L-serine residues i n the glycosylated region that are substituted with
a-4-galactopyranosyl
residues.
The
structure
of
the
glycosylated r e g i o n o f the l e c t i n s i s very s i m i l a r t o t h a t o f the hydroxy-&-proline-rich
glycopeptides of plant c e l l walls,
and t h e s e
l e c t i n s c o u l d be p r e c u r s o r s o f s u c h m a t e r i a l . Metal-chelate
affinity
chromatography
p u r i f i c a t i o n o f the Dolichos b i f l o r u s
has been used i n t h e
s e e d 1 e ~ t i n . l ~E q ~u i l i b r i u m
d i a l y s i s s t u d i e s show t h a t t h e l e c t i n h a s t w o c o m b i n i n g s i t e s p e r ma l e c u l e f o r me t h y 1 2-ace t am i d o -2-deoxy - a - g a l a c t 0 s i d e
. 54
Subunit I
i s p r i m a r i l y r e s p o n s i b l e f o r t h e c a r b o h y d r a t e - b i n d i n g p r o p e r t i e s of the lectin.
Monoclonal antibodies s p e c i f i c f o r subunit I of
the
D o l i c h o s b i f l o r u s l e c t i n combine w i t h t h e C - t e r m i n a l p o r t i o n o f t h e subunit
a n d may
be i n t e r a c t i n g w i t h
the
active
site.155
This
187
5: Glycoproteins, Glycopeptides, Proteoglytans, and Animal Polysaccharides
a n t i b o d y does n o t r e a c t w i t h a n o t h e r l e c t i n - l i k e p r o t e i n f r o m t h e s t e m s and l e a v e s o f t h e p l a n t . 1 5 6
The m o n o c l o n a l a n t i b o d y i s o f
i m p o r t a n c e i n t h a t i t can d i s t i n g u i s h s u b u n i t I f r o m s u b u n i t I 1 o f t h e seed l e c t i n . one a n o t h e r
A l t h o u g h t h e s e t w o s u b u n i t s appear t o d i f f e r f r o m
only at
their
C-terminal
I 1 i s not.157
whereas s u b u n i t
Atomic
ends,
subunit
I i s active
absorption spectrophotometry
h a s e s t a b l i s h e d t h e p r e s e n c e o f Ca2+, Mg2+, Mn2+, Zn2+, a n d Cu2+ i n native golichos biflorus subsequent constant
addition of
1 e ~ t i n . l ~ The ~ e f f e c t s o f r e m o v a l and
different
o f the l e c t i n for
m e t a l i o n s on t h e a s s o c i a t i o n are
2-acetamido-2-deoxy-q-galactose
reported. The l e c t i n o f E r y t h r i n a c o r a l l o d e n d r o n s e e d s i s s i m i l a r t o soybean l e c t i n ,
being a glycoprotein
(mol.
1.1 x
wt.
lo5) and
2-acetamido-2-deoxy-qbinding t o 2-amino-2-deoxy-Q-galactose, g a l a c t o s e , a- and B - p - g a l a c t o s i d e s , a n d g - g a l a c t o s e . 1 5 9
-
l e c t i n i s o l a t e d from
A
the roots o f
soybean ( G l y c i n e
!ax)
s e e d l i n g s i s s i m i l a r b u t n o t i d e n t i c a l t o t h e c o r r e s p o n d i n g seed The l e c t i n i s a s s o c i a t e d w i t h t h e o u t e r s u r f a c e s o f t h e
lectin.16'
r o o t and i s c o n c e n t r a t e d i n t h e segments o f t h e r o o t a t w h i c h r o o t h a i r and e a r l y secondary r o o t s a r e observed. and
s o l u b l e soybean l e c t i n , i s of
From e x a m i n a t i o n o f
&
g e n o t y p e s o f G l y c i n e max f o r m e m b r a n e - b o u n d a n d b u f f e r i t seems u n l i k e l y t h a t t h e membrane l e c t i n
c y t o p l a s m i c origin.161
5gJa)
(slycine
I n contrast
l e c t i n
has
erythroagglutinating activity
been
after
t o o t h e r r e p o r t s soybean shown
complete
t o
r e t a i n
removal o f
i t s
Mn2+ f r o m
t h e w h o l e molecule.162 The l e n t i l
subunit
(Lens
s t r u c t u r e and c o m p l e t e a m i n o a c i d s e q u e n c e
cglinaris)
l e c t i n have
been
determined.163
of A
c o m p a r i s o n b e t w e e n t h e s e c o n d a r y s t r u c t u r e o f c o n c a n a v a l i n A and t h e p r o b a b l e s e c o n d a r y s t r u c t u r e o f l e n t i l l e c t i n a s p r e d i c t e d by t w o different
methods
indicates
that
the
folding
of
these
two
p o l y p e p t i d e s has been w e l l c o n s e r v e d d u r i n g e v o l u t i o n . I n a re-examination specifities
of
of
the h i g h - a f f i n i t y
pea and l e n t i l l e c t i n s ,
the
carbohydrate-binding ability
ofvarious
g l y c o p e p t i d e s t o b i n d t o c o l u m n s o f t h e i m m o b i l i z e d l e c t i n s was studied.164
I-Fucose
r e s i d u e s a r e i n d e e d an i m p o r t a n t
determinant
i n t i g h t b i n d i n g t o pea and l e n t i l l e c t i n b u t n o t t o c o n c a n a v a l i n A. The l e c t i n f r o m M a c l u r a p o m i f e r a , a f t e r p u r i f i c a t i o n by i o n exchange and a f f i n i t y
c h r o m a t o g r a p h y , has been r e s o l v e d i n t o f i v e
s t r u c t u r a l l y r e l a t e d p r o t e i n components o f s i m i l a r h a e m a g g l u t i n a t i n g and c a r b o h y d r a t e - b i n d i n g
activity.165
P u r i f i c a t i o n o f the l e c t i n
Carbohydrate Chemistry
188
h a s a l s o been a c h i e v e d by a d s o r p t i o n o n t o p o l y l e u c y l h o g A+H b l o o d f o l l o w e d by e l u t i o n w i t h m e l i b i o s e o r 2 - a c e t a m i d o -
group substances,
2-deoxy-;-galactose.166 104,and 1.2
Three s u b u n i t s (mol.
wt.
1.45
interaction i s important combining
site
of
lo4,
x
x lo4) are present i n the i n t a c t lectin.
1.35
f o r b i n d i n g o f t h e l e c t i n t o sugars.
the
lectin
appears
to
be
x
Hydrophobic
as
large
The as
a
disaccharide. The i n t e r a c t i o n o f been s t u d i e d . 1 6 7 g r o u p s a t t h e C-2,
I w i t h c a r b o h y d r a t e has
mistletoe lectin
I n h i b i t i o n data suggest
that
unmodified hydroxyl
C-3, a n d C-4 p o s i t i o n s o f t h e Q - g a l a c t o p y r a n o s y l
r i n g are essential f o r binding t o the active s i t e o f the l e c t i n . The ligands
association with
the
c h a r a n t i a have of
protein
constants
for
the
P-galactose-specific
been d e t e r m i n e d t h r o u g h
fluorescence.168
binding
of
lectin
from
the
Analysis
of
a
series
light-induced the
iodide
quenching quenching
s u g g e s t s t h a t t h e r e is a s l i g h t i n c r e a s e i n t h e a c c e s s i b i l i t y o f t r y p t o p h a n r e s i d u e s o f t h e l e c t i n on b i n d i n g l a c t o s e . the binding characteristics of sugar
by
fluorescence
i.
of
Momordica
L-
Studies o f
charantia l e c t i n t o i t s specific
spectroscopy
using 4-methylumbelliferyl
f3-g-
g a l a c t o p y r a n o s i d e show t h e q u e n c h i n g o f t h e s u g a r u p o n b i n d i n g t o the
lectin.169
The
binding i s carbohydrate-specific
and i s
i n h i b i t e d by l a c t o s e . Considerable
homology
i n structures
and b i o l o g i c a l a c t i v i t i e s
has been r e p o r t e d f o r 62 c u l t i v a r s o f P h a s e o l u s v u l g a r i s , basis
of
isolectin
A
patterns.’”
number
of
on t h e
cultivars
are
s u f f i c i e n t l y d i f f e r e n t t o w a r r a n t s u b c l a s s i f i c a t i o n and f u r t h e r characterization. Inclusion o f diets
of
rats
nitrogen.171
p u r e l e c t i n s f r o m t h e seeds o f
increases
both
faecal
and
p.
urinary
vulqaris i n losses
of
The a n i m a l s d e v e l o p a n t i b o d i e s o f l o w a v i d i t y f o r t h e
dietary lectins.
L e c t i n t o x i c i t y i s t e n t a t i v e l y suggested t o r e s u l t
f r o m t h e combined e f f e c t s o f i n t e r f e r e n c e w i t h n o r m a l i n t e s t i n a l d i g e s t i o n and/or
absorption o f
p r o t e i n through
damaged e n t e r o c y t e s
and o f s y s t e m i c r e s p o n s e s o f t h e r a t t o t h e i n t e r n a l i s e d l e c t i n . The
subunit
compositions
of
individual
tetrameric
p h y t o h a e m a g g l u t i n i n i s o l e c t i n s f r o m P h a s e o l u s v u l g a r i s have been e x a m i n e d by i s o e l e c t r i c
focusing
and sodium
dodecylsulphate
e l e c t r o p h ~ r e s i s . ~The ~ ~ p r o p o r t i o n o f s u b u n i t s r e s u l t i n g f r o m each i s o l e c t i n was d e t e r m i n e d f o r a d i r e c t
physical conformation o f the
i s o l e c t i n subunit structures. Early
events
i n
the
synthesis
of
polypeptides
of
Ricinis
5: Glycoproteins, Glycopeptides, Proteoglycans, .and Animal Polysaccharides
--communis
189
a g g l u t i n i n t y p e 1 have been r e ~ 0 r t e d . l ~C~o - t r a n s l a t i o n a l
t r a n s l o c a t i o n a c r o s s t h e e n d o p l a s m i c r e t i c u l u m membrane i s a c c o m p a n i e d by p r o t e o l y s i s and, w h e r e a p p r o p r i a t e , core glycosylation. The
agglutinins
from
Solanum
tuberosum
and wheat-germ
a g g l u t i n i n i n t e r a c t w i t h k e r a t a n s u l p h a t e and c h i t i n ~ u 1 p h a t e . l ~ ~ D i f f e r e n c e s i n t h e r e a c t i v i t y between t h e polysaccharides and t h e two
l e c t i n s are
reported.
Chemical m o d i f i c a t i o n
of
amino
or
ca r bo x y 1 gro up s , I - a r g i n i ne , I - m e t h io n i ne, and L - h i s t id i ne r e s i due s does n o t a l t e r s i g n i f i c a n t l y t h e h a e m a g g l u t i n a t i n g a c t i v i t y o f p o t a t o 1 e ~ t i n . l ~I - ~ Tyrosine involved i n the activity,
and I - t r y p t o p h a n findings
residues are closely
which are
similar
to
those
r e p o r t e d f o r o t h e r p r o t e i n s t h a t b i n d o l i g o m e r s o f 2-acetamido-2de ox y -p- g l uco s e. The dependence o f t h e Sophora j a p o n i c a l e c t i n o n b i v a l e n t m e t a l i o n s a s w e l l a s o n t h e pH r a n g e f o r o p t i m a l h a e m a g g l u t i n a t i o n a n d precipitation
i n the
presence
o f
bivalent
e ~ t a b 1 i s h e d . l ~F~u r t h e r c h a r a c t e r i z a t i o n o f
c a t i o n s h a s been
the
combining s i t e o f
t h i s l e c t i n i s reported.
-Ulex
europaeus h a e m a g g l u t i n i n I1 ( C y t i s u s - t y p e
inhibited affinity
by
di-N-acetylchitobiose,
chromatography.l'l
g l uco s e
.
anti-H(O))
i s
been p u r i f i e d
by
sugar w i t h s m a l l e r
@-xylose, !-galactose,
Ribitol
has
The l e c t i n i s a g l y c o p r o t e i n i n w h i c h
Q-mannose i s t h e p r e d o m i n a n t glucose,
and
amounts o f
Q-
L-fucose, and 2-amino-2-deoxy-Q-
t e i c h o i c a c i d o f Staphylococcus
aureus, w h i c h
contains
t e r m i n a 1 2 - ace t am i d o - 2 - d e o x y-B - E - g l uco sy 1 r e s i d u e s , po s s e s s e s a n a b n o r m a l a f f i n i t y f o r i m m o b i l i z e d wheat-germ a g g l u t i n i n i n b i n d i n g a t h i g h i o n i c strength.177 Interactions
of
monomeric
amino
sugars
with
wheat-germ
~pectroscopy.'~~ a g g l u t i n i n h a v e b e e n s t u d i e d b y 'H a n d 19F n.m.r. -N - A c e t y l n e u r a m i n i c a c i d a n d 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s e have a common b i n d i n g s i t e o n t h e l e c t i n .
D e u t e r i u m n.m.r.
resonance has
been used t o d e l i n e a t e t h e m o l e c u l a r d y n a m i c s o f s u g a r s bound t o 1 e ~ t i n s . l ~2H~ r e l a x a t i o n t i m e s and r o t a t i o n a l for
2- { 2H 1 -ace tam i d o -2-deox y-a-
3 - { 2H 1 - g l uco se
absence o f wheat-germ a g g l u t i n i n were s t u d i e d . a p p e a r s t o have n e g l i g i b l e m o t i o n a l freedom on binding.
correlation
times
i n t h e p r e se nce and The p y r a n o s e r i n g
r e l a t i v e t o the protein
The a c e t a m i d o s i d e c h a i n i s a l s o i m m o b i l i z e d i n t h e
b i n d i n g s i t e , t h e o n l y m o t i o n a v a i l a b l e b e i n g r o t a t i o n o f t h e C2H3 group about i t s t h r e e f o l d axis.
Carbohydrate Chemistry
190
T h e e l u t i o n p r o f i l e s o f v a r i o u s g l y c o p e p t i d e s m o d i f i e d by glycosidase treatment, Smith degradation, acetolysis, and h y d r a z i n o l y s i s show t h a t t h e s t r u c t u r e (3) i s e s s e n t i a l f o r t h e b i n d i n g o f g l y c o p e p t i de s t o immo b i l i z e d w h e a t - g e rm a g g l “ t i n i n 8o Both t h e N,”-diacetylchitobiose m o i e t y and t h e B-Z-acetamido-2d e o x y - a - g l u c o s y l r e s i d u e l i n k e d t o C-4 o f t h e B - l i n k e d Q - m a n n o s y l r e s i d u e c o n t r i b u t e t o t h e i n t e r a c t i o n of t h e g l y c o p e p t i d e w i t h t h e lectin. The s u b s t i t u t i o n a t C-6 o f t h e i n n e r m o s t B-2-acetamido-Zd e o x y - Q - g l u c o s y l r e s i d u e by a n a - I = - f u c o s y l r e s i d u e o r a t C-6 o f t h e B - l i n k e d g - m a n n o s y l r e s i d u e by a n o t h e r g - m a n n o s e r e s i d u e r e d u c e s t h e a f f i n i t y of g l y c o p e p t i d e s f o r the column. In contrast to results f r o m o t h e r w o r k e r s , no i n t e r a c t i o n o f g l y c o p e p t i d e s c o n t a i n i n g 3a c e t y l n e u r a m i n i c acid r e s i d u e s was o b s e r v e d w i t h t h e l e c t i n . Some p r o p e r t i e s o f V i c i a g r a m i n e a l e c t i n p u r i f i e d by a f f i n i t y chromatography have been d e s c r i b e d , a n d t h e b i n d i n g of t h e l e c t i n t o v a r i o u s e r y t h r o c y t e s has been c h a r a c t e r i z e d . l a 1 The c o m p l e t e amino acid s e q u e n c e o f t h e a - s u b u n i t o f V i c i a s-a-t i v a l e c t i n h a s b e e n e s t a b l i s h e d a n d c o m p a r e d w i t h t h e k n o w n s e q u e n c e s o f l e c t i n s f r o m P i s u m s a t i v u m , L e n s c u l i n a r i s , 1. f a b a , a n d C a n a v a 1i a e n s i f o r m is ( co n ca n a v a l i n A );’ 82 A p a r t i a l l y p u r i f i e d h a e m a g g l u t i n i n a s s o c i a t e d w i t h c e l l walls from t h e h y p o c o t y l s o f Vigna r a d i a t a e x h i b i t s b o t h h a e m a g g l u t i n a t i n g activity and a - Q - g a l a c t o s i d a s e activity.183 It is suggested that, s i m i l a r t o t h e s e e d l e c t i n o f t h e same p l a n t , b o t h a c t i v i t i e s m i g h t The n a t i v e m o l e c u l e c o u l d be p r e s e n t i n t h e same m o l e c u l e . d i s s o c i a t e i n t o smaller u n i t s e x h i b i t i n g either of t h e two a c t i v i t i es
.
B-Q-GlcpNAc-( 1+4)-B-Q-Mang-(
1+4) -B-g-GlceNAc-( 1+4) -
B -Q -G1 ceNA c- 1 -A -Asn
A tetrameric Q-galactose-binding
p r o t e i n o f mung b e a n ( V i g n a t h a t d i s p l a y s b o t h h a e m a g g l u t i n i n a c t i v i t y a n d aa - g a l a c t o s i d a s e a c t i v i t y c a n be r e v e r s i b l y d i s s o c i a t e d i n t o a l o w m o 1e c u l a r- w e i gh t m o no m e r i c f o r m w h i c h po s s e s se s o n l y e n z ym i c activity.184 T h e p o s s i b i l i t y o f ffi v i v o c h a n g e s i n s u b u n i t e q u i l i b r i a , when c o m b i n e d w i t h t h e a c c o m p a n y i n g a l t e r a t i o n s i n activity, is suggested a s a possible physiological role of phy t o h a e m a g g l u t i n i n s .
_-----radiata)
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
191
Abrin A , p u r i f i e d from t h e s e e d s of Abrus p r e c a t o r i u s , h a s p h y s i c a l and b i o l o g i c a l p r o p e r t i e s s i m i l a r t o the b e t t e r known a b r i n C.185 P o s s i b l e s t r u c t u r a l r e l a t i o n s h i p s between t h e t w o g l y c o p r o t e i n s a n d a r e l a t e d a g g l u t i n i n from t h e same s o u r c e w e r e examined. A l t h o u g h c o v a l e n t l y a t t a c h e d c a r b o h y d r a t e i s a r e l a t i v e l y minor p a r t of t h e o v e r a l l s t r u c t u r e of r i c i n , o x i d a t i o n w i t h s o d i u m p e r i o d a t e r e s u l t s i n t h e d e s t r u c t i o n of _p-mannosyl r e s i d u e s and l o s s of t o x i c i t y o n t h e HeLa c e l l , w h i l e A-chain and 5 - c h a i n ( c e l l binding) a c t i v i t i e s a r e n o t s i g n i f i c a n t l y altered.186 A hybrid molecule c o n s i s t i n g of t h e 6 chain o f r i c i n l i n k e d t o i n s u l i n v i a a d i s u l p h i d e b o n d b i n d s t o t a r g e t c e l l s and m a i n t a i n s se ve r a l i n s u l i n - l i ke b i o l o g i c a l a c t i v i t i e s .l S e v e r a l human and m u r i n e tumour c e l l l i n e s undergo e x t e n s i v e a g g r e g a t i o n i n t h e p r e s e n c e of f e t u i n and a s i a l o f e t u i n . 1 8 8 This a c t i v i t y can be i n h i b i t e d by l a c t o s e and t o a l e s s e r e x t e n t b y g a l a c t o s e , 2- am i no-2-deox y -a- g a 1 a c t o s e , an d 2 - a c e t am i d o - 2 - de ox y -Q galactose. The i m p l i c a t i o n s o f t h e e x i s t e n c e o f a c a r b o h y d r a t e b i n d i n g p r o t e i n ( s ) o n t h e s u r f a c e o f m a l i g n a n t c e l l s o n t h e i r fi v i v o behaviour a r e d i s c u s s e d . Clq Serum a m y l o i d P c o m p o n e n t ( 9 . 5 s a l - g l y c o p r o t e i n ) , ( s u b c o m p o n e n t of t h e C 1 component o f complement), and C - r e a c t i v e p r o t e i n have l e c t i n - l i k e com b i n i n g s i t e s f o r c e r t a i n Q - g a 1 a ~ t a n s . l ~ ~ Two new a d d i t i o n a l c o m b i n i n g s i t e s o f t h e C - r e a c t i v e p r o t e i n have been d e s c r i b e d . F o e t a l - c a l f s k e l e t a l muscle c o n t a i n s t w o l e c t i n s having b i n d i n g a c t i v i t i e s i n h i b i t e d b y l a c t o s e and a s e p a r a t e h a e m a g g l u t i n a t i n g a c t i v i t y which i s n o t i n h i b i t e d by 1 a c t 0 s e . l ~ ~ The b i n d i n g of a s i a l o o r o s o m u c o i d t o t h e i s o l a t e d r a b b i t h e p a t i c l e c t i n a p p e a r s t o be a s a t u r a b l e and r e v e r s i b l e p r o c e s s a s s h o w n by s t e a d y - s t a t e and k i n e t i c a n a 1 y ~ i s . l ~The ~ minimal m o l e c u l a r w e i g h t (1.04 x lo5) of the intact rat hepatic receptor for a s i a l o g l y c o p r o t e i ns has been measured d i r e c t l y i n plasma rnembranes.lg2 The v a l u e o b t a i n e d i s s h o w n t o be s i g n i f i c a n t l y a f f e c t e d by the presence of d e t e r g e n t employed i n s o l u b i l i z a t i o n and is0 1a t i o n pro ce d u r e s. P r o t e i n h a e m a g g l u t i n i n s have been d e t e c t e d i n h o m o g e n a t e s o f e a c h o f t h e s i x c o x a l d e p r e s s o r m u s c l e s i n t h e l e g of t h e co c kr o a ch 93 The q ua n t i t a t i ve a b i 1i t y of so m e gl y co sa m i no g 1y ca n s t o i n h i b i t these haemagglutinins c o r r e l a t e s w i t h t h e muscles' i n n e r v a t i o n by i d e n t i f i e d motor neurons. The complete amino a c i d sequence of chicken h e p a t i c l e c t i n has
a-
.
192
Carbohydrate Chemistry
been d 0 ~ u m e n t e d . l ~The ~ B-Q-galactoside-specific
l e c t i n present i n
e m b r y o n i c - c h i c k s k e l e t a l m u s c l e does n o t appear t o be i n v o l v e d i n myotube f o r m a t i o n
2
from chick-embryo
k i d n e y b i n d s s t r o n g l y t o asialoglycoconjugates.196
~ i t r 0 . l ~ '
A
developmentally
I t s a f f i n i t y towards 2-amino-2-deoxy-~-glucosyl, and 2-amino-2-deoxy-Q-mannosyl
galactosyl,
regulated l e c t i n
2-amino-2-deoxy-g-
residues i s low.
The
i n h i b i t o r y e f f e c t o f t h e amino s u g a r s i n h a e m a g g l u t i n a t i o n assays i s n o t due t o s i m p l e e l e c t r o s t a t i c i n t e r a ~ t i 0 n . l ~A ~ n e u r a m i n i c a c i d b i n d i n g l e c t i n i s o l a t e d from
r otunda cauda has
t h e horseshoe crab Carcinoscorpius
been p u r i f i e d by
affinity
chromatography
on
i m m o b i l i z e d f e t ~ i n . ' ~The ~ l e c t i n , which i s a g l y c o p r o t e i n (mol.
wt.
lo5)
4.2 x
lo4),
and c o n t a i n s s u b u n i t s (mol.
wts.
2.7
i s antigenically unrelated t o the other
binding lectin, Limulin
limulin,
binds
x
lo4
a n d 2.8 x
neuraminic acid-
from t h e horseshoe c r a b L i m u l u s polyphemus.
specifically
to
glycolylneuraminic acid residue
gangliosides
. 199
bearing
1-
an
The b i n d i n g r e q u i r e s a f r e e
c a r b o x y l g r o u p and a f r e e h y d r o x y l g r o u p a t C-4 o f t h e n e u r a m i n i c acid but the side chain o f the N-glycolylneuraminic required.
Wheat-germ
gangliosides acetamido
agglutinin
binds
b e a r i n g an N - a c e t y l n e u r a m i n i c
group
but
not
the
acid i s not
preferentially acid
c a r b o x y l group
i s
to The
residue.
involved i n the
binding. L e c t i n s o f d i f f e r i n g s p e c i f i c i t i e s have been d e t e c t e d i n t h e crop, midgut, and haemolymph o f t h e i n s e c t Rhodinus p r o l i x u s . 2 0 0 These a r e s p e c i f i c f o r 2 - a c e t a m i d o - 2 - d e o x y - t J - m a n n o s e , 2-acetamido-2deoxy-Q-galactose,
a n d a-
Receptors for
and B-!-galactose.
the
l e c t i n s were d e t e c t e d i n e p i m a s t i g o t e f o r m s o f Trypanosoma c r u z i ,
a
p r o t o z o a n p a r a s i t e o f t h e i n s e c t a n d o f humans. A
possible
----Sarcophaga described.201 smaller
mechanism o f
peregrina
on
induction o f the
injury
of
the
body
insect wall
lectin of has
been
The l a r g e r s u b u n i t o f t h e l e c t i n i s c o n v e r t e d t o t h e
subunit
by
proteolysis,
i n a process essential
for
c o n s t r u c t i n g a c t i v e l e c t i n h a v i n g a f f i n i t y f o r !-galactose. The sponge H a l i c h o n d r i a p a n i c e a c o n t a i n s a l e c t i n t h a t h a s been i s o l a t e d and p u r i f i e d . 2 0 2
F r o m t h e same s p o n g e s p e c i e s , b a c t e r i a
have been i s o l a t e d and i d e n t i f i e d as Pseudomonas i n s o l i t a .
The
l e c t i n , d e t e c t e d on t h e s u r f a c e o f m u c o i d c e l l s f r o m H.panicea,
may
be i n v o l v e d i n a s y m b i o t i c r e l a t i o n s h i p b e t w e e n t h e sponge a n d t h e bacterium. A
mycobacterial haemagglutinin,
o f ~ y x o c o c c u sx a n t h u s ,
a development-specific
lectin
h a s b e e n p ~ r i f i e d . ~ ' ~W, h ~i l e~ ~s i m p l e
193
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
sugars f a i l t o i n h i b i t t h e h a e m a g g l u t i n a t i n g a c t i v i t y o f the l e c t i n , a g l y c o p e p t i d e c o n t a i n i n g t h e t r i s a c c h a r i d e ( 4 ) , common t o many glycoproteins, i s a potent i n h i b i t o r . Two l e c t i n s have
been p u r i f i e d f r o m
A g a r i c u s edulis.’05
Both
a r e c a p a b l e o f a g g l u t i n a t i n g e r y t h r o c y t e s a n d i m m u n o g l o b u l i n s A, and M ,
but
no
monosaccharide
was
capable o f
G,
inhibiting the
interaction. NeupSAc-( 2 + 3 ) - B - Q - G a l p ( 1+3I-!-GalNAc
A chitin-binding
h a e m a g g l u t i n i n h a s been i s o l a t e d f r o m c u l t u r e
C o n id io b o l u s
of
f i1t r a t e s
chromatography
Haemagglutination
i s s t r o n g l y i n h i b i t e d by c h i t o - o l i g o s a c c h a r i d e s . protease, lectin,
p r o d u c e d by
g.
lampranges,
n it y a f fi
f o 11ow in g
lamerrnags
on f o r m a l i n i z e d e r y t h r o c y tes.*06 acts,
A pronase-like
i n company
with the
on erythrocytes t o accelerate the a c t i v i t y of the l e ~ t i n . ~ ’ ’
The l e c t i n h a s c h i t i n - b i n d i n g
p r o p e r t i e s s i m i l a r t o t h o s e o f wheat
germ a g g l u t i n i n . Purpurin,
t h e l e c t i n from
o f seven t e t r a m e r i c forms, The i s o l e c t i n s ,
D i c t y o s t e l i u m purpureum,
i s made up
assembled from f o u r d i s t i n c t subunits.208
although related,
can be f u n c t i o n a l l y d i s c r i m i n a t e d
o n t h e b a s i s o f t h e i r r e l a t i v e a f f i n i t i e s f o r columns d e r i v a t i z e d w i t h complementary s a c c h a r i d e s . Oleic
acid
concentrations d ioleolyl
and
dioleolyl
agglutinate
phosphatidic
rabbit
phospha t i d y 1 c h o l i n e
and r a t i s not
acid
a t
erythrocytes,
low while
haem a g g l ~ t i n a t i n g . ~ ~ ’
E r y t h r o c y t e a g g l u t i n a t i o n by l i p i d s i s i n d i s t i n g u i s h a b l e i n some respects
from
that
haemagglutination
caused
reactions
by
lectins,
exhibit
cell
i n
particular
specificity
and
both are
i n h i b i t e d by c e r t a i n g l y c o p r o t e i n s .
4 A review
Fibronectin
d e a l i n g w i t h c u r r e n t c o n c e p t s c o n c e r n i n g t h e s t r u c t u r e and
f u n c t i o n o f f i b r o n e c t i n has been p u b l i s h e d . 2 1 0 R a t p l a s m a f i b r o n e c t i n h a s been i s o l a t e d and c h a r a c t e r i z e d and
m o n o s p e c i f i c a n t i b o d i e s p r e p a r e d t o it.211
The a n t i b o d i e s o n l y
w e a k l y c r o s s - r e a c t w i t h p l a s m a f i b r o n e c t i n s o f c h i c k e n , horse, and
Carbohydrate Chemistry
194 human.
A
wt.
second g l y c o p r o t e i n (mol.
collagen-binding
activity,
was
Immunologically pure f i b r o n e c t i n cannot p l a s m a by o n e - s t a g e
affinity
x lo4),
7.0
isolated
from
also having rat
plasma.
be p r e p a r e d f r o m
human
chromatography on i m m o b i l i z e d g e l a t i n
o r i m m o b i l i z e d f i b r o n e c t i n due t o n o n - s p e c i f i c a b s o r p t i o n o f o t h e r p r o t e i n s o n t h e support.212
P u r i f i e d f i b r o n e c t i n can be o b t a i n e d
u s i n g a s e c o n d s e p a r a t i o n by g e l p e r m e a t i o n c h r o m a t o g r a p h y . Although
human
amniotic
f l u i d
fibronectin
and
plasma
f i b r o n e c t i n a r e i m m u n o l o g i c a l l y i n d i s t i n g u i s h a b l e and a r e e q u a l l y a c t i v e promoters of c e l l attachment,
they d i f f e r i n carbohydrate
composi t i o n . 2 1 3 solid-phase
A
radioimmunoassay
has been d e v e l o p e d f o r t h e
d e t e r m i n a t i o n o f f i b r o n e c t i n l e v e l s i n plasma.214
An i m m u n o l o g i c a l
a s s a y has been u s e d t o m e a s u r e t h e u p t a k e o f endogenous a n d exogenous fibronectin
by c e l l s i n c u l t u r e . 2 1 5
f i b r o n e c t i n from
The
t h e medium i s i n f l u e n c e d by
cellular
uptake
of
c e l l shape a n d by t h e
presence o f collagen. C u l t u r e d human-mammary n o r m a l t i s s u e s and p r i m a r y fibronectin.*16
epithelial carcinomas
c e l l s derived from
produce
The p r e s e n c e o f c e l l - a s s o c i a t e d
both
large quantities
of
f i b r o n e c t i n as w e l l
a s t h e s y n t h e s i s a n d s e c r e t i o n o f f i b r o n e c t i n i n t o t h e medium by these
c e l l s a n d by
studied
fibroblasts
.
structural
A
comparison
derived from of
these t i s s u e s were
fibronectins
from
t r a n s f o r m e d h a m s t e r c e l l l i n e s has been r e p o r t e d . 2 1 7 major s i t e s of types o f cells,
normal
and
Although
the
p h o s p h o r y l a t i o n i n f i b r o n e c t i n a r e t h e same i n b o t h f i b r o n e c t i n f r o m t r a n s f o r m e d c e l l s a p p e a r s t o be
p h o s p h o r y l a t e d t o a much h i g h e r e x t e n t t h a n t h a t f r o m n o r m a l c e l l s . Human g e r m - c e l l t u m o u r s p r o d u c e f i b r o n e c t i n r e s e m b l i n g i t s a m n i o t i c fluid
variant,
but
differ
from
f ib r o ne c t i n s have been s ugge s t e d t o
plasma
fibronectin.218
Such
be p o t e n t ia 1 o n co de v e l o pm e n t a 1
ma r k e rs. The s p e c i f i c c a l c i u m - d e p e n d e n t serum a m y l o i d P component
for
b i n d i n g r e a c t i v i t y f o r human
f i b r o n e c t i n and a C4- binding
protein
i s reported.219 Human p e r i p h e r a l b l o o d m o n o c y t e s p o s s e s s a t r y p s i n - s e n s i t i v e p l a s m a membrane r e c e p t o r f o r s u r f a c e - b o u n d
fibronectin.220
Binding
o f monocytes t o f i b r o n e c t i n l e a d s t o enhanced f u n c t i o n a l e x p r e s s i o n of
their
plasma-membrane
receptors
for
the
Fc
portion
i m m u n o g l o b u l i n G a n d f o r t h e t h i r d component o f c o m p l e m e n t .
of
It i s
proposed t h a t plasma f i b r o n e c t i n a c t s as a c i r c u l a t i n g probe f o r
195
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
f i b r i n o r f o r e x p o s e d o r a l t e r e d c o l l a g e n a t s i t e s o f t i s s u e damage. Treatment o f f i b r o n e c t i n w i t h e i t h e r m e t h y l m e r c u r i c bromide o r iodoacetamide
as
sulphydryl
blocking
agents
protects
the
g l y c o p r o t e i n a g a i n s t p r e c i p i t a t i o n a l l o s s e s d u r i n g p r e p a r a t i o n . 221 A
combination
o f
electron
microscopy,
c.d.
i.r.
and
spectroscopy, a n d s c a n n i n g m i c r o c a l o r i m e t r y has been u s e d i n a s t u d y o f t h e s t r u c t u r a l o r g a n i z a t i o n o f human p l a s m a f i b r o n e c t i n . 2 2 2 Four
functionally
fibronectin
have
distinct
domains
i n
hamster
plasma
been i s o l a t e d and c h a r a c t e r i z e d f o l l o w i n g
p r o t e o l y t i c d i g e s t i o n o f t h e g l y ~ o p r o t e i n . ~I n~t a ~c t fibronectin i s considered t o contain four carbohydrate chains per subunit, b e i n g a t t a c h e d t o a d o m a i n o f m o l . w t . 4.0 o f mol.
wt.
1.4
lo4
x
three
and one t o a domain
lo5.
x
H e a t d e n a t u r a t i o n o f human p l a s m a f i b r o n e c t i n p r o c e e d s t h r o u g h a t l e a s t three stages, o b s e r v e d a t 6 8 , 82,and
w i t h endothermal denaturing t r a n s i t i o n s 119°C.224
A three-domain s t r u c t u r e f o r t h e
g l y c o p r o t e i n i s p r o p o s e d i n w h i c h t h e domain w h i c h u n f o l d s a t 68' associated
gelatin
with 82'
unfolding at immunological
b i n d i n g and
appears t o
activity.
The
cell
binding,
while
be a s s o c i a t e d w i t h m u c h o f 119'
domain
has h e p a r i n
a c t i v i t y a s w e l l a s some i m m u n o l o g i c a l a c t i v i t y . b i n d i n g domain o f f i b r o n e c t i n i s immunogenic,
i s
that the
binding
The g e l a t i n -
and a n t i s e r a a g a i n s t
t h i s domain r e c o g n i z e c e l l u l a r f i b r o n e c t i n g e l a t i n - b i n d i n g
sites.225
I n h i b i t i o n o f g e l a t i n b i n d i n g b u t n o t c e l l s p r e a d i n g by a n t i - g e l a t i n binding
d o m a i n Fab'
fragments
confirms
the hypothesis
that
f i b r o n e c t i n has separate s i t e s m e d i a t i n g these a c t i v i t i e s . on d i g e s t i o n w i t h c a t h e p s i n D, r e l e a s e s t w o
Plasma f i b r i n o g e n ,
p o o l s o f l o n g - c h a i n p o l y p e p t i d e s o f d i f f e r e n t m o l e c u l a r w e i g h t s and w i t h graded a f f i n i t y
having
weaker
fibronectin;
f o r i m m o b i l i z e d heparin.226
affinity
contains
the
The f r a c t i o n
N-terminal
region
t h a t having the stronger a f f i n i t y consists o f
d i s u l p h i d e - l i n k e d peptide chains o f related structure.
different
o f two
l e n g t h and s h a r i n g a
The h i g h e r - m o l e c u l a r - w e i g h t p o l y p e p t i d e c o n t a i n s
an a d d i t i o n a l t r a n s a m i d a s e - s e n s i t i v e s i t e .
Human p l a s m a f i b r o n e c t i n
h a s b e e n t r e a t e d w i t h ~ h y m o t r y p s i n . ~C~h a ~racterization o f the i s o l a t e d f r a g m e n t s h a s shown t h a t t h e o r d e r o f t h e f u n c t i o n a l domains from t h e N-terminus i s s t a p h y l o c o c c a l binding, l i n k i n g and b i n d i n g s i t e s , area, and h e p a r i n - b i n d i n g Horse serum
gelatin-binding site,
f i b r i n cross-
c e l l attachment
site.
fibronectin
h a s been r e d u c e d a n d a l k y l a t e d t o
p r o d u c e a m o d i f i e d g l y c o p r o t e i n w h i c h no l o n g e r b i n d s t o g e l a t i n ,
196
Carbohydrate Chemistry
b u t s t i l l p r o v i d e s a s u b s t r a t e f o r myoblast attachment.228 was
to
obtained
fibronectin
demonstrate
wt.
(mol.
x
6 .0
chymotryptic
a
fragment
lo4)
was u n a b l e t o p r o m o t e c e l l
a t t a c h m e n t u n l e s s f i b r o n e c t i n was p r e s e n t i n t h e medium, that
the gelatin-binding
fragment
f i b r o ne c t i n- f i b r o ne c t i n b i n d i n g. f i b r o n e c t i n from affinity
also
chromatography
The a c t i n - b i n d i n g
of
suggesting
spe c i f i c a c t i n - b i n d i n g s i t e i n
A
fragments
r e l e a s e d from
wt.
a fragment (mol.
s i t e i s close to,
collagen-binding
site.
2.7
but not i d e n t i c a l with, The
binding o f
human
the
plasma
microtitre
The b i n d i n g i s
b u t n o t by h e p a r i n o r b o v i n e
i n h i b i t e d by b o t h a c t i n a n d g e l a t i n , n o t take
by
x l o 4 ) was i s o l a t e d .
f i b r o n e c t i n t o a c t i n has been s t u d i e d u s i n g a c t i n - c o a t e d
not
After
fibronectin
w e l l s i n e n z y m e - l i n k e d immunosorbent assays.230 serum a l b u m i n .
of
contains a s i t e involved i n
c h i c k e n f i b r o b l a s t s h a s been i d e n t i f i e d . 2 2 9
l i m i t e d proteolysis, reported
Evidence
that
The b i n d i n g o f c o l l a g e n a n d a c t i n t o f i b r o n e c t i n may
place simultaneously.
interfere
with
cell
Since the
attachment,
binding of
the
cell
collagen
does
binding s i t e of
f i b r o n e c t i n i s probably d i f f e r e n t from t h e a c t i n - b i n d i n g
site.
S t r u c t u r a l d i f f e r e n c e s be t w een p l asm a s a n d f i b r o b l a s t c e l l u l a r fibronectins
have
regions.231
One s t r u c t u r a l d i f f e r e n c e o c c u r s n e a r t h e g e l a t i n -
been i d e n t i f i e d i n a t
least
three
different
b i n d i n g s i t e and t h e o t h e r s a r e n e a r h e p a r i n - b i n d i n g s i t e s . A
number
of
cell
types
(HeLa,
Ehrlich
ascites,
and
t r a n s f o r m e d r a t k i d n e y ) show a l o w r a t e o f C a 2 + u p t a k e ,
viral
which i s
stimulated a f t e r incubation with f i b r ~ n e c t i n . ~ ~ ~ The i n t e r a c t i o n o f i s o l a t e d p l a s m a f i b r o n e c t i n w i t h s t i m u l a t e d a n d n o n s t i m u l a t e d human p l a t e l e t s h a s
been ~ h a r a c t e r i z e d . ~ The ~~
s p e c i f i c b i n d i n g o f a l a r g e number o f
fibronectin molecules to
throm b i n - s t i m u l a t e d p l a t e l e t s suggests t h a t
f i b r o n e c t i n may p l a y a
r o l e i n modulating p l a t e l e t
a g g r e g a t i o n i n d u c e d by
adhesion and/or
t h i s stimulus. The i n c o r p o r a t i o n o f C - p r o l i n e and g l y c i n e i n t o f i b r o n e c t i n and c o l l a g e n by c u l t u r e s o f s k i n f i b r o b l a s t s o b t a i n e d f r o m p a t i e n t s w i t h insulin-dependent
diabetes
mellitus
has
been r e p o r t e d . 2 3 4
Changes
i n t h e r a t i o o f f i b r o n e c t i n t o c o l l a g e n between s k i n f i b r o b l a s t s o f n o r m a l and d i a b e t i c s u b j e c t s d u r i n g The XIII,
covalent binding of
h a s been e x a m i n e d i n a s y s t e m
o n macroporous agarose, presence o f beads i s
in
v i t r o a g i n g were not ed.
various s t r u c t u r a l
p r o t e i n s by
i n which p r o t e i n s ,
factor
immobilized
a r e i n c u b a t e d w i t h l a b e l l e d p r o t e i n s i n the
factor X I I I a ,
determined.235
and t h e r a d i o a c t i v i t y Coupling occurred
of
t h e urea-washed
between
fibrin
and
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
197
f i b r o n e c t i n and b e t w e e n m y o s i n and f i b r o n e c t i n . The a m i n o a c i d sequence i n b o v i n e f i b r o n e c t i n w h i c h c o n t a i n s L - g l u t a m i n e r e s i d u e s labelled with
1, 4 - { 1 4 C ) - p u t r e s c i n e
determined.236
--glutamine This L
by
factor
X I 1 1
has
been
residue i s located a t position 3
from t h e N-terminus o f f i b r o n e c t i n . F i b r o n e c t i n and p r o c o l l a g e n a r e r e l e a s e d f r o m t h e m a t r i x o f h u m a n f i b r o b l a s t s by t h r o m b i n . 2 3 7
Collagenase alone i s unable t o
b r i n g about t h e release o f f i b r o n e c t i n .
The r e l e a s e o f t h e s e t w o
g l y c o p r o t e i n s by t h r o m b i n may be i n v o l v e d i n wound h e a l i n g i n v i v o . Hum a n
f i b r one c t in
p l asm a
at
physio logic a l
concentrations
s t i m u l a t e s t h e l e v e l o f t o t a l p l a t e l e t a d h e s ion and t h e i r on s u r f a c e s c o a t e d w i t h f i b r i l l a r collagen.238
spreading
The s t i m u l a t i n g
e f f e c t o f f i b r o n e c t i n i s due t o i t s i n t e r a c t i o n w i t h c o l l a g e n s i n c e f r e e f i b r o n e c t i n does n o t i n f l u e n c e t h e a d h e s i o n
o r spreading o f
platelets. Plasma f i b r o n e c t i n mediates c o l l a g e n t y p e I11
the
b i n d i n g o.f s o l u b l e n a t i v e
macro phage^.^^^
to trypsinized
The a s s o c i a t i o n
i s a u g m e n t e d by h e p a r i n o r h e p a r a n s u l p h a t e , b u t h y a l u r o n i c a c i d reverses the effect. F i b r o n e c t i n h a s been shown t o b i n d t o a g g r e g a t i n g c o l l a g e n fibres.240
Since fibronectin i n h i b i t s the
i t
fibrillogenesis
may
regulate
the
size
rate of
of
collagen
collagen
fibres.
C a r t i l a g e p r o t eo g l y c a n s i n h i b i t fi bro nectin-me d i a t e d adhesion t o collagen.241
The p r e s e n c e o f f i b r o n e c t i n i n c o l l a g e n f i b r i l s o f
human f i b r o b l a s t s has been shown, u s i n g i m m u n o l o g i c a l t e c h n i q u e s . 2 4 2
A g e l a t i n - b i n d i n g p r o t e i n (mol.
wt.
7.0
x
lo4),
which i s q u i t e
d i s t i n c t f r o m f i b r o n e c t i n , i s s y n t h e s i z e d by n o r m a l a n d m a l i g n a n t adherent
cells.243
The g l y c o p r o t e i n seems n o t t o
be a f r a g m e n t
of
f i b r o n e c t i n a n d shows no i m m u n o l o g i c a l c r o s s r e a c t i v i t y w i t h i t .
5
The
Collagen
biochemical
properties
i n c l u d i n g collagen, connective-tissue-
of
basement
have been reviewed.244
r e s e a r c h symposium
membrane
components,
The p r o c e e d i n g s o f a
include chapters dealing w i t h
r e c e n t advances i n methods f o r i n v e s t i g a t i n g t h e m o l e c u l a r s t r u c t u r e of
collagens,
purification collagen.245 c o l l a g e n .246
c h r o m a t o g r a p h i c and e l e c t r o p h o r e t i c of
collagen, A symposium
and
tissue-specific
has been d e v o t e d t o
methods
for
the
differences
i n
the biology
of
Carbohydrate Chemistry I n a novel s t r u c t u r a l model f o r c o l l a g e n , i t i s proposed t h a t t h e r e a r e no i n t e r - c h a i n h y d r o g e n b o n d s a n d v a n d e r Waals' contacts.247 I n s t e a d , a t r i p l e - h e l i c a l s t r u c t u r e i s s t a b i l i z e d by water m o l e c u l e s , w h i c h f o r m i n t e r c h a i n b r i d g e s t h r o u g h h y d r o g e n b o n d s w i t h carbonyl groups. Collagen has been s e l e c t i v e l y s o l u b i l i z e d from m i x t u r e s o f c o l l a g e n and e l a s t i n u s i n g phenol, acetic acid, and water mixtures,248 and a l s o u s i n g c y c l e s i n v o l v i n g pepsin, p a n c r e a t i c e l a s t a s e , and d i t h i ot h r e i P r e p a r a t i o n s f r o m norm a 1 h a m s t e r a n d b a b o o n l u n g s c o n t a i n p r i n c i p a l l y t y p e s I a n d I11 c o l l a g e n . A c h r o m a t o g r a p h i c p r o c e d u r e c o n s i s t i n g of g e l p e r m e a t i o n a n d a n i o n - e x c h a n g e c h r o m a t o g r a p h y f o r p u r i f y i n g n a t i v e t y p e s I , 11, a n d I11 c o l l a g e n s f r o m a v a r i e t y o f s o u r c e s h a s b e e n r e p o r t e d . 2 5 0 The n a t i v e c o l l a g e n p r e p a r e d by t h i s m e t h o d i s m o r e s t a b l e t h a n t h a t p r e p a r e d by s a l t f r a c t i o n a t i o n , a s r e f l e c t e d by t h e h i g h e r a n d s h a r p e r thermal t r a n s i t i o n t e m p e r a t u r e . Radioimmunoassay p r o c e d u r e s f o r 7s c o l l a g e n a n d l a m i n i n h a v e been u s e d t o a n a l y s e t h e s e p r o t e i n s i n s e r u m , c e l l c u l t u r e s , a n d t i s s u e s .251 T h e r e l a t i v e a m o u n t s o f t y p e s I a n d I11 c o l l a g e n s h a v e b e e n e s t i m a t e d a f t e r e x t r a c t i o n of non-collagenous p r o t e i n from r a b b i t The m e t h o d h a s b e e n lung t i s s u e i n sodium dodecyl sulphate.252 a p p l i e d t o s m a l l t i s s u e s a m p l e s s u c h a s w o u l d b e o b t a i n e d by l u n g biopsy. The s k i n c o l l a g e n s f r o m t h e l a m p r e y , E n t o s p h e n u s j a p o n i c u s , a n d t h e g r e a t b l u e s h a r k , P r i o n a c e g l a u c a , c o n t a i n t w o d i s t i n c t acomponents and are classified a s t y p e I-like collagen.253 The h e t e r o g e n e i t y of cyanogen bromide-cleavage p e p t i d e s o f h u m a n c o l l a g e n s , t y p e s I , 11, I I 1 , a n d V , h a v e b e e n d e m o n s t r a t e d by t w o-dim e n s i o n a l p o l y a c r y lam i d e ge 1 e l e c t r o p h o r e s i s. 25 The amino a c i d s e q u e n c e o f t h e o l i g o s a c c h a r i d e a t t a c h m e n t s i t e w i t h i n t h e proa-2 chain of chick type I collagen has been I n a d d i t i o n 0 - m a n n o s e- r i c h g l y c o p e p t i d e s o b t a i n e d i d e n t i f i e d.255 from b o t h p r o a - 1 ( I ) a n d proa-2 c a r b o x y l p r o p e p t i d e s have been i s o l a t e d and characterized. Evidence f o r a s t r u c t u r a l mutation o f procollagen type I i n a p a t i e n t w i t h E h l e r s - D a n l o s s y n d r o m e , t y p e VII, has b e e n The f i b r o b l a s t s o f t h e p a t i e n t s y n t h e s i z e b o t h a n reported.256 abnormal proa-2 chain and a normal proa chain. Human t y p e I1 c o l l a g e n d i f f e r s f r o m t y p e I c o l l a g e n i n m o l e c u l a r p a c k i n g , a s d e m o n s t r a t e d by X - r a y d i f f r a c t i o n s t u d i e s . 2 5 7
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
199
U n d e r p h y s i o l o g i c a l c o n d i t i o n s t h e t y p e I1 c o l l a g e n i s s h o w n t o c o n t a i n 5 0 - 1 0 0 % m o r e water t h a n t h e t y p e I c o l l a g e n . The c o n t e n t o f g l y c o s y l a t e d h y d r o x y - L - l y s i n e r e s i d u e s i s t h o u g h t t o be t h e v a r i a b l e m o s t l i k e l y t o be m o d u l a t i n g f i b r i l l a r h y d r a t i o n . C o l l a g e n s s y n t h e s i z e d by c u l t u r e d b o v i n e c o r n e a l e n d o t h e l i a l cells have been characterized.258 T y p e I11 c o l l a g e n i s t h e m a j o r component both d e p o s i t e d i n t h e e x t r a c e l l u l a r m a t r i x and secreted i n t o t h e media. B a s e m e n t m e m b r a n e c o l l a g e n s , t y p e I V a n d V, a r e a l s o found i n each compartment. The a 2 ( v ) c h a i n o f human c o l l a g e n when c l e a v e d w i t h c y a n o g e n b r o m i d e c o n t a i n s t e n p e p t i d e s , a c c o u n t i n g f o r 956 a m i n o a c i d residues.259 Possible homologies between t h e a2(v) peptides and p e p t i d e s d e r i v e d f r o m o t h e r c o l l a g e n c h a i n s were n o t e d . A n t i b o d i e s have been p r e p a r e d t o c o l l a g e n a s e - r e s i s t a n t t e r m i n a l Competition radioimmunoassay r e g i o n s of pro-type I V collagen.260 e x p e r i m e n t s show r e c o g n i t i o n o f t h e a n t i b o d i e s f o r r e d u c e d a n d a l k y l a t e d 7s c o l l a g e n , s u p p o r t i n g t h e p o s s i b i l i t y t h a t t h i s c o l l a g e n i s a c r o s s l i n k e d domain o f t y p e I V c o l l a g e n . A high-molecular-weight c o l l a g e n o u s p r o t e i n has been i s o l a t e d , a f t e r l i m i t e d p e p s i n d i g e s t i o n , from t h e e n d o m e t r i a l v i l l i o f b o v i n e placenta.261 I t r e s e m b l e s t h e p r o t e i n i s o l a t e d from human a o r t a s i n c o n t a i n i n g t h r e e polypeptide c h a i n s w i t h similar amino acid com po s i t io n 262 The p o l y p e p t i de cha i n s s h ow c h a ra c t e r i s t i cs t y p i c a l o f basement membrane c o l l a g e n s , h a v i n g a high c o n t e n t o f hydroxy-kl y s i n e , w h i c h i s a l m o s t a l l g l y c o s y l a t e d . The o c c u r r e n c e of s i m i l a r a m o u n t s o f L - c y s t e i n e , L-ty r o s i n e , a n d 2 - a m i n o - 2 - d e o x y - Q - g l u c o s e i s not observed i n o t h e r collagen types. An u n u s u a l c o l l a g e n f r a c t i o n h a s b e e n i s o l a t e d a n d c h a r a c t e r i z e d from bovine h y a l i n e c a r t i l a g e and i n t e r v e r t e b r a l disc.263 Evidence s u p p o r t s a model c o n t a i n i n g t h r e e i d e n t i c a l c h a i n s ( m o l . w t . 3 . 3 x l o 4 > l i n k e d by i n t e r c h a i n d i s u l p h i d e b o n d s t o f o r m a s h o r t t r i p l e-he1 i ca 1 p s e u d o a-si z e d com po n e n t The c o l l a g e n o u s d o m a i n o f b o v i n e g l o m e r u l a r b a s e m e n t m e m b r a n e h a s been i s o l a t e d i n s o l u b l e form and shown t o c o n t a i n t h e previously designated polypeptide XIV.264 The amino a c i d a n d carbohydrate compositions and cyanogen bromide p a t t e r n s i n d i c a t e t h a t polypeptide X I V has a s t r u c t u r e similar to t h a t of C chain i s o l a t e d f r o m o t h e r v a s c u l a r t i s s u e s a n d t h a t i t may r e p r e s e n t a m a j o r s t r u c t u r a l segment o f t h e e n t i r e c o l l a g e n o u s domain. The c o l l a g e n o u s domain o f r a b b i t r e n a l t u b u l a r basement membrane i s c o m p o s e d o f a m u l t i p l i c i t y o f c o m p o n e n t s r a n g i n g f r o m m o l . wts. 3 . 4
.
.
200
Carbohydrate Chemistry
lo4
t o 1 0 6 . 265 As a s e l f - a s s e m b l y
system,
renature as t r i p l e - s t r a n d e d
guinea-pig
d e t e r m i n e d by t h e r a t i o s o f t h e a - c h a i n s The c o l l a g e n s f r o m
-e l e g a n s
collagen chains tend t o
m o l e c u l e s whose
chain compositions are
i n the mixture.266
the c u t i c l e o f
t h e nematode C a e n o r h a b d i t i s
h a v e b e e n s e p a r a t e d by m o l e c u l a r - s i e v e c h r o m a t o g r a p h y a n d
shown t o c o n t a i n no h y d r o x y - l - l y s i n e The
collagen
-c--e l l u l o s a e
isolated
from
residues.267 the
platyhelminth
I,-pr o 1i n e .26
ve r t e b r a t e co 11age n ex ce p t t ha t it co n t a i n s no h y d r ox y An e x t r a - e m b r o n i c and
rat
Cysticerus
c o n t a i n s an amino a c i d c o m p o s i t i o n c h a r a c t e r i s t i c o f
contains
base membrane,
collagen
together
R e i c h e r t ' s membrane, with
four
wt.
g l y c o p r ~ t e i n s . ~One ~ ~ o f t h e g l y c o p r o t e i n s (mol. unrelated t o laminin,
o f mouse
non-collagenous
w h i l s t t h e o t h e r t h r e e (mol.
5.0
wts.
x lo4) i s 4.15
x
lo5,
2.45 x lo5, a n d 1.70 x lo5, r e s p e c t i v e l y ) s h a r e some i m m u n o c h e m i c a l ch a r a c t e r i s t ics o f 1am i n i n. A 7 s c o l l a g e n h a s been i d e n t i f i e d a s a c r o s s l i n k i n g domain o f
mouse t u m o u r m a t r i x t y p e I V c o l l a g e n . 2 7 0 Transformed e p i t h e l i a l b o v i n e l e n s c e l l s s y n t h e s i z e and s e c r e t e i n t h e c u l t u r e medium o n l y type
I V
collagen.271
Like
the
interstitial
molecule i s a disulphide-bonded collagenous and a non-collagenous
procollagen,
the
glycoprotein containing both a domain.
The absence o f m a t u r a t i o n o f c o l l a g e n c r o s s - l i n k s
i n fish skin
has been r e p o r t e d . 2 7 2 A c l o s e s i m i l a r i t y e x i s t s between o c t o p u s s k i n c o l l a g e n and
c a l f s k i n t y p e I collagen.273
B o t h c o l l a g e n s r e s e m b l e each o t h e r ,
n o t o n l y i n c h a i n c o m p o s i t i o n b u t a l s o i n chemical composition. The m o l e c u l a r o r g a n i z a t i o n of t h e c o l l a g e n o u s components o f t h e i n t e s t i n a l basement membrane o f A s c a r i s suum has been i n v e s t i g a t e d by c h a r a c t e r i z a t i o n o f t h e i r p h y s i c a l p r o p e r t i e s i n b o t h t h e n a t i v e and denatured states.274
The c o l l a g e n o u s domain c o n s i s t s m a i n l y o f
a component composed o f t w o e s s e n t i a l l y i d e n t i c a l t r i p l e - h e l i c a l s u b u n i t s j o i n e d e n d t o end by d i s u l p h i d e b o n d s w i t h e a c h s u b u n i t being cross-linked
by
disulphide
bonds b e t w e e n a l l
constituent
chains. A
study
of
collagen-sulphated
glycosaminoglycuronan
i n t e r a c t i o n s i n d e v e l o p i n g r a t t a i l t e n d o n has been r e p o r t e d i n 75
t e r m s o f f ib r i11oge ne s i s and f ib r e mat u r a t i on.
Bovine corneal e n d o t h e l i a l c e l l s synthesize predominantly type I11 collagen, V
i n culture
w i t h l e s s e r amounts o f t y p e s I a n d
and a p p a r e n t l y l i t t l e i f any o f t y p e I
V
.
~
~
~
,
~
~
~
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
201
M3A, a d e r i v a t i v e o f the c l o n a l s k e l e t a l m u s c l e myoblast l i n e secretes i n t o t h e c u l t u r e medium a n a b n o r m a l f o r m of c o l l a g e n ( m o l . w t . 5.6 x l o 4 ) a n d a g r e a t l y r e d u c e d a m o u n t o f h i g h - m o l e c u l a r w e i g h t c o l l a g e n a-chains.278 I n a d d i t i o n M 3 A does n o t secrete u n s u l p h a t e d c h o n d r o i t i n w h i l e L6 d o e s . Comparison of the behaviour o f 1e u c i n e am i n o p e p t i d a s e a n d ca r bo x y p e p t i d a s e - m o d i f i e d c o 11 a g e n s suggests that the carboxyl telopeptide has a major r o l e i n the grow t h s t a g e s o f s e l f -assem b l y 2 7 9 M a t r i x - f r e e cells f r o m c h i c k embryo t e n d o n s s y n t h e s i z e pro-y c o l l a g e n c h a i n s which are either not triple-helical o r are i n an u n s t a b l e t r i p l e-he1 i c a l c o n f o r m a t i on.28o These c h a i n s c o n t a i n l e s s h y d r o x y - & - p r o l i n e t h a n t h e t r i p l e - h e l i c a l p r o c o l l a g e n s e c r e t e d by t y e cells. Their content o f glycosylated hydroxy-L-lysine is, h o w e v e r , g r e a t e r t h a n t h a t o f t h e p r o c o l l a g e n s e c r e t e d by t h e c e l l s . The b i o s y n t h e s i s a n d p r o c e s s i n g o f t y p e V p r o c o l l a g e n s i n s e v e r a l c h i c k t i s s u e s p r o d u c e p r o c o l l a g e n s ( p r ~ a l V ) (~p r, o a 2 V I 2 , a n d (proalV)3.281 A comparative b i o s y n t h e t i c s t u d y o f these g l y c o p r o t e i n s by c h i c k t e n d o n f i b r o b l a s t s a n d by h a m s t e r l u n g c e l l c u l t u r e s h a s b e e n r e po r t e d . 82 The N - g l y c o s y l a t i o n o f I - l y s i n e a n d h y d r o x y - l - l y s i n e r e s i d u e s i n t y p e I c o l l a g e n from s t r e p t o z o t o c i n - d i a b e t i c r a t s has been c o n f i r m e d , a n d t h e s t a b i l i t y o f t h e c o m p l e x h a s b e e n s h o w n t o be d u e t o a n Amadori rearrangement.283 This type of glycosylation does not represent an acceleration of the normal maturation process i n collagen involving the reducible cross-links. Post-translational modifications i n the biosynthesis of type I V c o l l a g e n by a h u m a n t u m o u r c e l l l i n e h a v e b e e n s t u d i e d . 2 8 4 The d i f f e r i n g e x t e n t s o f m o d i f i c a t i o n s s h o w n by t h i s c e l l l i n e a n d n o r m a l h u m a n s k i n f i b r o b l a s t s a r e e x p l a i n e d by d i f f e r e n c e s i n t h e a c t i v i t i e s o f L-lysy l h y d r o x y l a s e and hydroxy-k-lysyl-g1 ucosy 1 t r a n s f e r a s e s between t h e two types. Collagen hydroxylases and glycosyltransferases o f cultured human-foetal l u n g f i b r o b l a s t s m i g h t n o t be c o - o r d i n a t e l y regulated.285 Regardless of hydroxylation events, glycosylation of t h e p e p t i d e might be l i m i t e d t o a s p e c i f i c f r a c t i o n of t h e hydroxyI-lysine residues during the post-translational modification of collagen. L6,
.
Carbohydrate Chemistry
202 Glycogen
6
A review d e a l i n g w i t h t h e comparative biochemistry o f s t a r c h and g l y c o g e n has been p u b l i s h e d . 2 8 6
A h i g h l y b r a n c h e d , p o l y d i s p e r s e , h i g h - m o l e c u l a r - w e i gh t g l yco gen from
rat
liver
has
been i s o l a t e d
using centrifugation,
gentle
h e a t i n g , a n d g e l c h r ~ m a t o g r a p h y . ~U~s ~ ing a d u l t fasted rats, t h i s g l y c o g e n was shown t o water-ethanol
be b e t t e r t h a n h i g h - m o l e c u l a r - w e i g h t
extracted
glycogen
for
the
binding of
cold
glycogen
m e t a b o l i z i n g e nz ymes. The
simultaneous
demonstration o f
glycogen and p r o t e i n i n
c a r d i a c t i s s ue g l y co some s has been a c h i e ve d h i s t o chem i c a l l y . 2 8 8 An a b n o r m a l u r i n a r y o l i g o s a c c h a r i d e i n patients with
glycogen storage
p a t t e r n h a s been o b s e r v e d
disease type
III.289 No
ch a r a c t e r i z a t i o n o f t h e o l i g o sa c c h a r i de s was a t t e m p t e d . S t r u c t u r a l aspects o f the c a t a l y t i c and r e g u l a t o r y f u n c t i o n o f g l y c o g e n p h o s p h o r y l a s e have been reviewed.290
The r e g u l a t i o n o f
g l y c o g e n p h o s p h o r y l a s e a n d g l y c o g e n s y n t h a s e by a d r e n a l i n i n S o l e u s
m us c l e in ph o sp h o r y 1as e k i na se - de f ic i ent m ice h a s be e n r e pa r t e d
.
D a t a have been p r o d u c e d w h i c h a r e n o t c o n s i s t e n t w i t h t h e t h a t i n s u l i n a c t i v a t e s g l y c o g e n s y n t h a s e by
91
view
producing an i n h i b i t o r
o f 3’5’ c y c l i c a d e n o s i n e m o n o p h o s p h a t e - d e p e n d e n t
protein
kinase i n
Nor do t h e y s u p p o r t t h e h y p o t h e s i s t h a t
r a t s k e l e t a l muscle.292
i n s u l i n a c t s by d e c r e a s i n g t h e a c t i v i t y o f a n i n h i b i t o r o f a m u l t i s u b s t r a t e p h o s p h o p r o t e i n k i nase. Bovine
heart
glycogen
with
heart.293
combination o f
The
a
synthase
phosphorylated
glycogen
has
synthase
the
been
kinase
specifically isolated
e n z y m e a n d 3’5’
from
c y c l i c AMP-
dependent p r o t e i n k i n a s e l e a d s t o s p e c i f i c p h o s p h o r y l a t i o n i n t h r e e enzyme s i t e s .
Each f o r m o f t h e g l y c o g e n s y n t h a s e , p h o s p h o r y l a t e d i n
s p e c i f i c enzyme s i t e s , A
protein
has b e e n i s o l a t e d a n d s t u d i e d k i n e t i c a l l y .
kinase
from
phosphorylate t h e 8-subunit
rabbit
reticulocytes,
able
i f not
and glycogen synthase k i n a s e from r a b b i t s k e l e t a l muscle are,
.
i d e n t i c a l , c l o s e l y r e 1a t e d p r o t e i n s 2 9 4 Yea s t 1,4 -a -Q - g l u c o s i da s e
, hom o l o go u s
against isolated r a t hepatocytes
have
a 1bum i n , a n d
I gG r a is e d
been c r o s s - l i n k e d
glutaraldehyde t o produce a stable, a c t i v e enryme-polymer (mol.
wt.
1.0
x 106).295
t o
o f e u k a r y o t i c i n i t i a t i o n f a c t o r 2 (IF2),
using
complex
After intravenous i n j e c t i o n i n t o rats,
the
complex
i s p r e f e r e n t i a l l y associated w i t h the Kupffer c e l l s o f
liver.
The p r o c e d u r e h a s b e e n u s e d a s a m o d e l f o r e n z y m e t h e r a p y
the
203
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
f o r t h e p o s s i b l e l o w e r i n g o f h e p a t o c y t e g l y c o g e n c o n t e n t i n t y p e I1 glycogenesis
(Pompe’s
Glycosaminoglycans and P r o t e o g l y c a n s
7
-
Analysis. of
free
disease).
A semi-quantitative micromethod f o r the determination
glycosaminoglycans
i n
serum
has
been
developed as
a
s c r e e n i n g m e t h o d f o r m u c o p o l y s a c c h a r i do s i s . ~ ’ ~ G l y c o s a m i n o g l y c a n s a r e adsorbed i n DEAE-cellusose paper b e f o r e s t a i n i n g w i t h A l c i a n B l u e a n d m e a s u r e m e n t o f t h e o p t i c a l d e n s i t y o f t h e r e s u l t i n g dye complex. G l y c o s a m i n o g l y c a n s have been i d e n t i f i e d and measured a f t e r a s e l e c t i v e and stepwise
sequence
of
treatments w i t h hyaluronidase,
c h o n d r o i t i n s u l p h a t e l y a s e A C a n d ABC, nitrous procedure
To the
determine
remaining
the
@-B-&-galactanase,
result of
each
and
degradative
glycosaminoglycans are subjected t o
cellulose acetate electrophoresis. H y a l u r o n i c a c i d and t h e i s o m e r i c c h o n d r o i t i n s u l p h a t e s have been s i m u l t a n e o u s l y d e t e r m i n e d a f t e r h y d r o l y s i s w i t h c h o n d r o i t i n a s e ABC
( E C 4.2.2.4.).298
( d e t e c t i o n l i m i t 0.02
The m e t h o d i s r e p r o d u c i b l e a n d s e n s i t i v e p m o l d i s a c c h a r i d e 1.
The s p e c i f i c i t y o f a r a d i o i m m u n o a s s a y m e t h o d f o r m e a s u r i n g h u m a n a r t i c u l a r c a r t i l a g i n o u s p r o t e o g l y c a n s h a s been reported.”’ T h e a n t i b o d i e s u s e d show a s p e c i e s s p e c i f i c i t y s i n c e t h e r e i s n o c r o s s - r e a c t i o n w i t h t h e c o r r e s p o n d i n g r a t o r dog p r o t e o g l y c a n s . A n t i g e n i c s i t e s a p p e a r t o be l o c a t e d i n t h e p r o t e i n r e g i o n a n d n o t i n t h e glycosaminoglycan r e g i o n o f t h e molecule. C o m p l e x e s f o r m e d b e t w e e n serum p o l y - a n i o n s a n d c e t y l p y r i d i n i u m c h l o r i d e h a v e been q u a n t i f i e d by l a s e r n e p h e l ~ r n e t r y . ~ ~ ’Measurement o f t h e c o m p l e x e s i n serum b e f o r e a n d a f t e r d i g e s t i o n w i t h s p e c i f i c enzymes e n a b l e s t h e m e a s u r e m e n t o f h y a l u r o n i c a c i d a n d c h o n d r c d t i n s u l p h a t e i n s m a l l v o l u m e s o f serum. c h o n d r o i t i n 4-
and 6 - s u l p h a t e s
The
uronic acid levels i n
and d e r m a t a n s u l p h a t e have been
determined a f t e r electrophoresis o f the l i b e r a t e d uronic acids on T i t a n 111 c e l l u l o s e a c e t a t e An h.p.1.c.
plate^.^"
m e t h o d has
been d e s c r i b e d f o r
the analysis o f
r e d u c e d u n s a t u r a t e d d i s a c c h a r i d e s d e r i v e d f r o m e n z y m i c d i g e s t i o n and sodium borohydride r e d u c t i o n o f c h o n d r o i t i n sulphates, sulphate,
heparan sulphate,and heparin.302
possibility
of
obtaining
anomeric
dermatan
The m e t h o d a v o i d s t h e
forms
of
unsaturated
204
Carbohydrate Chemistry
d i sa ccha r i d e s
.
A modification of measure
the
an amino
sulphaminohexose
s u g a r a n a l y s i s h a s been u s e d t o content
of
heparin
and
heparan
~ u l p h a t e . ~ 'P ~o l y m e r - b o u n d N - s u l p h a t e d 2-amino-2-deoxyhexoses s p e c i f i c a l l y d e a m i n a t e d t o y i e l d f r e e 2,5-anhydro-g-mannose, t h e n measured u s i n g t h e 3 - m e t h y l - 2 - b e n z o t h i a z o l i n o n e The culture
degradation of may
be
m o n i t o r i n g the
proteoglycan
and
release of
soluble
reagent.
collagen
measured simultaneously
are
which i s cells
i n
i n a p l a t e assay
by
by
r a d i o a c t i v e degradation
products
from a d i s h c o a t e d w i t h a g e l c o n t a i n i n g 3 H - l a b e l l e d p r o t e o g l y c a n and 1 4 C - l a b e l l e d c o l l a g e n . 3 0 4
S y n o v i a l c e l l s a r e a b l e t o degrade
both substrates, owing t o the release o f a proteoglycan-degrading n e u t r a l p r o t e i n a s e and o f co lla g e n a se . A
monodimensional c e l l u l o s e a c e t a t e e l e c t r o p h o r e s i s
capable of r e s o l v i n g k e r a t a n sulphate, sulphate,
heparin,
t h e b a s i s of chloride acid,
c h o n d r o i t i n 4-sulphate,and
The e l e c t r o p h o r e t i c b e h a v i o u r
desulphated chondroitin,
sulphate w i t h two d i f f e r e n t buffer concentration, examined.306
A
is
dermatan
h y a l u r o n i c a c i d , on
t h e i r d i f f e r e n t i a l m i g r a t i o n i n H4-e.d.t.a.
so 1u t ions. 305
system
heparan sulphate,
and l i t h i u m o f h y a luronic
heparan sulphate, and c h o n d r o i t i n
b u f f e r s under v a r y i n g c o n d i t i o n s o f
electrophoresis
two-buffer
t i m e , and v o l t a g e has been
monodirectional
electrophoresis
t e c h n i q u e , w h i c h o f f e r s some o f t h e a d v a n t a g e s o f r e s o l u t i o n s e e n w i t h two-dimensional
methods
y e t r e t a i n s t h e a d v a n t a g e s o f band
comparison and q u a n t i t a t i v e dimensional electrophoresis, Intact
chick
flexible.308
limb
analysis
characteristic
of
one-
h a s been p r o p o s e d .
bud
Restrictions
proteoglycan
on
chain
monomer
flexibility
i s
occur
highly i n
the
n e i g h bo u r h o o d o f t h e l i n k a g e b e t w e e n p r o t e i n a n d p o l y s a c c h a r i d e c h a i n s where h i g h l o c a l c h a i n c o n c e n t r a t i o n s cause c o l l i s i o n s and entanglements.
Proteoglycans
from
bovine
nasal,
bovine a r t i c u l a r ,
a n d r a t c h o n d r o s a r c o m a c a r t i l a g e have been a n a l y s e d by h.p.1.c.
or a
s i l i c a - b a s e d m a t e r i a l bonded w i t h a n amide phase.307 Cation binding t o
m u l t i - c h a i n and s i n g l e - c h a i n
g l y c a n p e p t i d e s has been s t u d i e d b y 23Na+ n.m. r. Hyperlipidemic
rabbit
serum
impairs
the
glycosamino-
s p e c t r o s c o p y .309 precipitation
of
g l y c o samino g l y c u r o n a n s f r o m t i s s u e - c u l t u r e medium by c e t y l p y r i d i nium chloride.310 of
samples
derivatives
The i n t e r f e r i n g compounds c a n be r e m o v e d by e x t r a c t i o n i n l i p i d solvents. thereof
on low-density
have
Various
g l y c o s a m i n o g l y c a n s and
been s u b j e c t e d t o a f f i n i t y
l i p o p r o t e i n - s u b s t i t u t e d agarose.311
chromatography By u s e o f
a
205
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
v a r i e t y o f m o d i f i c a t i o n and degradation procedures, t h e chemical c h a r a c t e r i s t i c s t h a t maximize the a f f i n i t y o f a glycan f o r the l i p o p r o t e i n have been assessed.
The i n t e r a c t i o n b e t w e e n t h e t w o
c l a s s e s o f m a c r o m o l e c u l e s i s dependent o n t h e p r e s e n c e o f s u l p h a t e groups and i n c r e a s e s w i t h charge d e n s i t y .
The i n t e r a c t i o n o f serum
l i p o p r o t e i n s and a proteoglycan from
bovine aorta
reported.312
has
been
P o s i t i v e charges o n t h e p r o t e i n moiety o f low-densi t y
l i p o p r o t e i n s are r e q u i r e d f o r the i n t e r a c t i o n , as are presence o f the
protein
core
.
p r o t eo g l y ca n
and
the
glycosaminoglycan
chains
o f
the
P u r i f i e d p r o t e o g l y c a n s f r o m human a r t i c u l a r c a r t i l a g e have b e e n used
i n
the
development
of
a
radioimmunoassay
procedure.313
C o n d i t i o n s f o r l a b e l l i n g and subsequently p u r i f y i n g t h e p r o t e o g l y c a n are described,
Occurrence,
and o p t i m a l c o n d i t i o n s f o r t h e assay a r e d e t a i l e d .
I s o l a t i o n , and S t r u c t u r e .
-
The
f r a c t i o n a t i o n and
c h a r a c t e r i z a t i o n o f p r o t e o g l y cans i s o l a t e d from chondro c y t e c e l l cultures
have
been d e s c r i b e d . 3 1 4
The
proteoglycans
were
compared
with the proteoglycans extracted from bovine nasal o r t r a c h e a l cartilage.
P r o t e o g l y c a n s h a v e been p r e p a r e d f r o m human f e m o r a l - h e a d
a r t i c u l a r cartilage.315 scattering,and proteoglycan
As a r e s u l t o f g e l c h r o m a t o g r a p h y ,
ultracentrifugal studies, molecule
i n cartilage
light
a p h y s i c a l model o f t h e
has
been
proposed.
Three
p r o t e o g l y c a n f r a c t i o n s p r o d u c e d by human-em b r y o l u n g f i b r o b l a s t s h a v e b e e n i s o l a t e d a n d ~ h a r a c t e r i z e d . ~T h~e~ f r a c t i o n s c o n t a i n w t . 4.0 x l o 4 ) , c h o n d r o i t i n
m a i n l y heparan s u l p h a t e c h a i n s (mol. s u l p h a t e c h a i n s (mol. (mol.
2.5
wt.
x
lo4),
lo4),
w t. 4.0 x
respectively.
and dermatan sulphate chains
Glycosaminoglycans i s o l a t e d from
t r y p t i c d i g e s t s o f a t r i a o f t h e human h e a r t have been i d e n t i f i e d a s containing hyaluronic acid, sulphates,
heparan sulphate,
and dermatan sulphate.317
human m e n i s c u s a p p e a r t o be o f t w o types.318 a t
high
buoyant
density
on
caesium
c h o n d r o i t i n 4- and 6 -
The p r o t e o g l y c a n s o f a d u l t Preparations i s o l a t e d
chloride
density-gradient
c e n t r i f u g a t i o n c o n t a i n molecules o f l a r g e hydrodynamic s i z e t h a t a r e composed o f p r o t e i n ,
chondroitin sulphate,
k e r a t a n sulphate, and
neuraminic acid
possess
aggregate
comparable Preparations
and
with from
de rma t a n s u l pha t e,
those low
o f
subunit
and
hy a l i ne- c a r t i l a g e
buoyant
density,
which
are
co n t a i n sm a l l e r- m o l e c u l a r- w e i g h t
w h i c h do n o t i n t e r a c t w i t h h y a l u r o n i c a c i d .
structures
p r o t e o g l y cans. enriched i n p r o t e o g l y cans
The g l y c o s a m i n o g l y c a n
c o m p o s i t i o n s o f c a n i n e m e n i s c i have been reported.319
Although the
Carbohydrate Chemistry
206
c o m p o s i t i o n i s t h e same i n d i f f e r e n t r e g i o n s o f t h e m e n i s c i , t o t a l amounts vary baboons
considerably.
( P a ~ i gp a p i o )
electrophoretic
Articular
contains
mobility
on
a
the
c a r t i l a g e o f young
proteoglycan
large-porosity
gels
c h a r a c t e r i z e d as h a v i n g a high p r o t e i n content.320
of
high
and
i s
Proteoglycans
f r o m p i g a o r t a have b e e n e x t r a c t e d s e q u e n t i a l l y w i t h i n o r g a n i c s a l t s o l u t i o n s under a s s o c i a t i v e and d i s s o c i a t i v e c o n d i t i o n s , fractionation
by
f o l l o w e d by
g e l permeation chromatography i n order
t o
c h a r a c t e r i z e and compare t h e i r c h e m i c a l p r o p e r t i e s and h y d r o d y n a m i c sizes.321 fraction
Low-buoyant-density proteoglycans found i n the l i n k from, a v i a n c a r t i l a g e c o n t a i n some o f t h e a n t i g e n i c However, t h e r e i s
d e t e r m i n a n t s f o u n d o n t h e p r o t e o g l y c a n monomer.322
a t l e a s t one monomer d e t e r m i n a n t w h i c h i s n o t p r e s e n t i n t h e l i n k fraction. Proteoglycan
subunits
of
bovine
nasal
cartilage
contain
phosphate e s t e r groups t h a t a r e s e n s i t i v e t o a c i d phosphatase and are considered t o molecule.323
be a r e g u l a r c o n s t i t u e n t o f
the proteoglycan
S t r u c t u r a l studies on the E-xylosyl-L-serine
linkage
i n p r o t e o g l y c a n s o f human, p o r c i n e , a n d s h a r k c a r t i l a g e s h a v e b e e n reported.324
The f i n d i n g t h a t human a n d p o r c i n e p r o t e o g l y c a n s have
t h e same a m i n o a c i d sequence i n t h e l i n k a g e r e g i o n a s t h a t r e p o r t e d p r e v i o u s l y f o r b o v i n e p r o t e o g l y c a n s u g g e s t s t h a t t h e r e i s a common s t r u c t u r a l f e a t u r e i n t h e core p r o t e i n s o f these mammalian c a r t i l a g e p r o t eo g l y cans. Z o n a l - r a t e c e n t r i f u g a t i o n i n s u c r o s e g r a d i e n t s h a s been u s e d t o study i n t e r a c t i o n s i n proteoglycan aggregation.325
The l i n k p r o t e i n
was shown t o i n t e r a c t w i t h t h e i s o l a t e d h y a l u r o n i c a c i d - b i n d i n g r e g i o n o f t h e p r o t e o g l y c a n monomer. isolated hyaluronic
acid,
the
Since i t also i n t e r a c t s with binding o f
proteoglycans
hyaluronate i n the presence o f l i n k p r o t e i n s i s t r i f u n c t i o n a l .
to The
b i n d i n g p r o p e r t i e s o f c a r t i l a g e l i n k p r o t e i n and t h e hyaluronatebinding region of
cartilage
proteoglycan t o
hyaluronic acid
i m m o b i l i z e d o n a g a r o s e h a v e been c o m p a r e d a n d shown t o h a v e s i m i l a r properties.326
A
gross physical characterization o f the hyaluronic
acid-binding r e g i o n o f proteoglycan from p i g l a r y n g e a l c a r t i l a g e has been a c h i e v e d
using
densitometric
and
small-angle
neutron
s t u d i e s . 327 P l a t e l e t f a c t o r 4 i s a basic t e t r a m e r i c p r o t e i n which i n t e r a c t s w i t h sulphated polymers.328
The t r a n s f e r o f t h i s f a c t o r f r o m i t s
p r o t e o g l y c a n c a r r i e r t o n a t u r a l and s y n t h e t i c p o l y m e r s h a s been reported.
The r e s u l t s o f e l e c t r i c
b i r e f r i n g e n c e s t u d i e s show
that
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
207
c h o n d r o i t i n 4 - s u l p h a t e m o l e c u l e s have a very high d e g r e e o f m o b i l i t y
.
w i t h i n t h e p r o t eo g l y c a n str u c t u r e 329 A novel low-molecular-weight
chondroitin sulphate proteoglycan ( m o l . w t . 7.6 x l o 4 ) h a s b e e n i s o l a t e d f r o m b o v i n e n a s a l c a r t i l a g e , and i n d i f f e r e n t l a y e r s o f bovine h i p a r t i c u l a r cartilage.330 The p r o t e o g l y c a n c o n t a i n s two o r t h r e e c h o n d r o i t i n s u l p h a t e c h a i n s a n d some o l i g o s a c c h a r i d e s , and h i g h c o n t e n t s o f L - l e u c i n e and I - c y s t e i n e as compared w i t h o t h e r proteoglycans. The i n h i b i t o r o f Clq, a s u b u n i t o f t h e f i r s t component o f complement, has been i d e n t i f i e d a s a c h o n d r o i t i n 4-sulphate proteoglycan.331 Unlike the major species o f c a r t i l a g e p r o t e o g l y c a n , the serum p r o t e o g l y c a n does n o t form a complex w i t h h y a l u r o n i c acid. Rat b r a i n c o n t a i n s a s i n g l e p o l y d i s p e r s e m a c r o m o l e c u l e i n w h i c h c h o n d r o i t i n s u l p h a t e c h a i n s and o l i g o s a c c h a r i d e s are both covalently l i n k e d t o a common p r o t e i n c o r e . 3 3 2 The E a n d 2 - g l y c o s i d i c a l l y l i n k e d o l i g o s a c c h a r i d e s of t h e g l y c o p r o t e i n a p p e a r t o be r a n d o m l y The b r a i n p r o t e o g l y c a n appears t o d i s t r i b u t e d i n the proteoglycan. be c a p a b l e o f a t l e a s t a l i m i t e d d e g r e e o f i n t e r a c t i o n w i t h h y a l u r o n i c a c i d t o p r o d u c e l a r g e r a g g r e g a t e s . Some b o v i n e a o r t i c c h o n d r o i t i n s u l p h a t e- a n d d e rma t a n s u l p h a t e- co n t a i n i n g p r o t e o g l y c a n s have been i s o l a t e d and c h e m i c a l l y characterized.333 Disaccharides l i b e r a t e d from c h o n d r o i t i n s u l p h a t e s a n d d e r m a t a n s u l p h a t e by d i g e s t i o n w i t h c h o n d r o i t i n l y a s e A C o r c h o n d r o i t i n l y a s e ABC a r e c o m p l e t e l y s e p a r a t e d o n c e l l u l o s e a c e t a t e p l a t e s by e l e c t r o p h o r e s i s i n barium acetate or c a l c i u m acetate.334 G l y c o s a m i n o g l y c a n s have b e e n i s o l a t e d f r o m t h e f e m u r s o f o e s t r o g e n t r e a t e d male J a p a n e s e Chondroitin 4-sulphate and keratan s u l p h a t e were f o u n d i n t h e f e m u r s , b u t o n l y t h e k e r a t a n s u l p h a t e c o r r e l a t e s w i t h m e d u l l a r y bone p r o d u c t i o n . A proteoglycan isolated f r o m a s c i t e s f l u i d p r o d u c e d by a r a t y o l k - s a c t u m o u r h a s b e e n partially characterized as a chondroitin sulphate p r ~ t e o g l y c a n . ~ ~ ~ De rma t a n s u l p h a t e p r o t e o g l y c a n s h a v e b e e n i s o l a t e d a n d cha r a c t e r i z e d ’ proteoglycans, d i f f e r i n g with respect t o f r o m b o v i n e ~ c l e r a . ~ ~Two the nature o f t h e i r p r o t e i n cores and the co-polymeric s t r u c t u r e of Isopycnic centrifugation studies t h e i r s i d e c h a i n s , were i s o l a t e d . u s i n g caesium c h l o r i d e and caesium s u l p h a t e have been r e p o r t e d o n t h e s e p r o t e o g l y c a n s . 338 B o v i n e s c l e r a c o n t a i n s t w o p r o t e o d e rm a t a n sulphates, the l a r g e r exhibiting self-association i n both gel c h r o m a t o g r a p h y and l i g h t - s c a t t e r i n g e x p e r i m e n t s , and t h e smaller It is showing aggregation only i n l i g h t - s c a t t e r i n g experiments.339 p r o p o s e d t h a t t h e a g g r e g a t i o n i s s o l e l y o r p a r t l y m e d i a t e d by
208
Carbohydrate Chemistry
interaction forms
of
between dermatan s u l p h a t e s i d e
self-association,
e d .
protein-protein interactions,
& v
chains,
although other
polysaccharide-protein
three or four
C a l f s k i n p r o t e o d e r m a t a n s u l p h a t e i s composed o f
wt.
chains o f dermatan s u l p h a t e (mol.
wt.
t o a core p r o t e i n (mol. A
proteodermatan sulphate
5.6 x
lo4)
from
rat
1.7 x l o 4 ) c o v a l e n t l y l i n k e d 2-glycosidic
wt.
3.6
via
46% p r o t e i n w h i c h i s bound t o d e r m a t a n s u l p h a t e Rat
t a i l tendon has
linkages.340
s k i n has been i s o l a t e d and
~ h a r a c t e r i z e d . ~ T h~e ~ p r o t e o g l y c a n ( m o l . linkage.
and
h a v e n o t been e x c l u d e d .
been s t a i n e d
x
lo4)
contains
an 2 - g l y c o s i d i c
with
a
cationic
p h t h a l o c y a n i n dye, C u p r o m e r o n i c B l u e , t o d e m o n s t r a t e t h e l o c a t i o n o f A dermatan s u l p h a t e - r i c h
p r o t e o g l y c a n by e l e c t r o n m i c r o s c o p y . 3 4 2 proteoglycan
i s
distributed
orthogonal array,
about
the
collagen
the transverse elements o f
fibrils
which are
i n
an
located
a l m o s t e x c l u s i v e l y a t t h e d b a n d i n t h e gap zone. Several different proteoglycan species, a Q-glucuronic acidr i c h and an L - i d u r o n i c with two different human
skin
acid-rich
fibroblast
cultures.343
dermatan p o l y s u l p h a t e p e p t i d e s notochord,
proteodermatan sulphate,
proteoheparan sulphates,
Three
I, 11, and
different
a l l contain I-serine,
x y l o s e , a n d Q - g a l a ~ t o s e . ~T~h e~ a - x y l o s y l - g - s e r y l
of
linkage
Rwas
I c o n t a i n s an 2 - g l y c o s y l
d e t e c t e d i n p o l y p e p t i d e 111. P o l y p e p t i d e
l i n k a g e between 2-acetamido-2-deoxy-P-galactose on SephadexR G-50
types
111, i s o l a t e d f r o m h a g f i s h
h a g f i s h skin, and s h a r k s k i n ,
Chromatography
together
have been i s o l a t e d f r o m
and L - s e r i n e .
results i n optimal isolation
o f a h e p a r i n component t h a t i s h i g h l y a c t i v e as m e a s u r e d by s e v e r a l assay
methods.345
highly
The b i n d i n g o f
co-operative,
factors.346
An
exothermic,
examination
of
Methylene Blue t o heparin i s and
stabilized
fundamental
by
entropic
conditions
for
h y d r o p h o b i c - i n t e r a c t i o n c h r o m a t o g r a p h y o f h e p a r i n on h y d r o p h o b i c g e l s has been r e p o r t e d . 3 4 7 applied,
flow
rate,
and t e m p e r a t u r e ,
Column d i m e n s i o n s , amount o f h e p a r i n
e l e c t r o l y t e a n d a c i d i t y o f t h e e l u t i o n medium,
i n f l u e n c e t h e d i s t r i b u t i o n o f h e p a r i n among t h e
f r a c t i o n s s e p a r a t e d on t h e g e l . A d i r e c t m e t h o d h a s been d e v e l o p e d f o r t h e d e t e r m i n a t i o n o f t h e dissociation constant
b e t w e e n h e p a r i n and b o v i n e s e r u m a l b u m i n ,
by
u s i n g f l u o r e s c e n t l y l a b e l l e d h e p a r i n and m o n i t o r i n g t h e f l u o r e s c e n c e i n t e n s i t y change i n d u c e d by t h e p r o t e i n . 3 4 8 Gel f o r m a t i o n o f thymus lymphocytes, c e l l s w i t h h e p a r i n has been observed.349 only,
source o f h e p a r i n i s t h e mast
spleen
or bone marrow
Since the major,
cell,
i f not
and s i n c e h e p a r i n i s
209
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
r e l e a s e d a l o n g w i t h h i s t a m i n e d u r i n g c e r t a i n t y p e s o f a l l e r g i c and inflammatory reactions, i t i s suggested t h a t heparin promotes the a c c u m u l a t i o n o f l e u c o c y t e s i n t h e ex t r a v a s c u l a r space. Heparin
and
chondroitin
glycosaminoglycans which
6-sulphate
a t p H 6.0
are
the
l i p o p r o t e i n f r o m aqueous s o l u t i o n s a n d i n t h e p r e s e n c e of However,
chondroitin 6-sulphate
immobilized low-density same pH.
The
only
p r e c i p i t a t e low-densi t y
i s the only
one t h a t
Ca2+.350 binds
to
l i p o p r o t e i n i n t h e p r e s e n c e o f Ca2+ a t t h e
binding o f
Ca2+ a n d M g 2 + i o n s t o h e p a r i n i n t h e
p r e s e n c e o f added u n i v a l e n t s a l t s has been s t u d i e d u s i n g a dye s p e c t r o s c o p i c method.351 The i n t e r a c t i o n o f M g 2 + w i t h h e p a r i n a p p e a r s t o be i n d e p e n d e n t o f t h e n a t u r e o f t h e c h a r g e d g r o u p s o n t h e polyanion,
b u t Ca2+ b i n d i n g i s c o n s i d e r a b l y s t r o n g e r t h a n Mg2+
b i n d i n g and i s i n excess o f t h e o r e t i c a l p r e d i c t i o n s , s u g g e s t i n g a l o c a l i z e d o r s p e c i f i c i n t e r a c t i o n with heparin.
A selective binding
o f Zn2+ i o n s t o h e p a r i n r a t h e r t h a n t o o t h e r g l y c o s a m i n o g l y c a n s has been observed.352
This observation suggests that,
between
the
negatively
charged
carboxy
g l y c o Sam ino g l y c a n s a n d Z n 2 + c a t i o n s c a n n o t b in d in g
.
Some
chemical,
disaccharides
enzymic,
derived from
d e g r a d a t i o n f o l l o w e d by reported.353 from
which a
Heparin,
and
beef
sodium yields
groups
physical
properties by
c l ea ve s t h e 2-&
conditions
of
of
the
heparin,
been p a r t i a l l y
before for
and a f t e r
sulpham i d a s e ,
to
characterized.354
acid
hydrolysis
that
s u l p h o - l - i d o py r a no s i d i c 1i n ka ge s. 355
substrates
prior
l a r g e r - molecular-w eight fragments,
p u r i f i e d r a d i o - l a b e l l e d d i - s a c c h a r i d e s (5-13) evaluated
o f
b o r o t r i t i d e r e d u c t i o n have been
t e t r a s a c c h a r i d e has
under
the
nitrous acid
a f t e r c a r b o x y l r e d u c t i o n w i t h sodium b o r o t r i t i d e ,
degraded
of
ex p l a i n t h e o b s e r ve d
lung heparin
P a r t i a l tj-desulphation
de g r a da t i ve deam i n a t i o n ,
contrary to a
s i m p l e e l e c t r o s t a t i c in t e r a c t i o n s
p r e v i o u s l y p r o p o s e d hypo t h e s i s,
tj-acetylation
h a s been
selectively The r e s u l t i n g
were c h a r a c t e r i z e d and
o r tj-sulphation,
as
ace t y l c o e n z y m e A:2-am i n o - 2 - d e o x y - a - p -
g l u c o s i de tj- a c e t y 1t r a n s f e r a se , 2 - ace t am i d o -2-deox y-a -Q-g1 uco s i da se,
-
o r 2- a c e t am ido 2 - de ox y f ib r o b l a s t s
.
Tritiated di-
-n-
gl uco s e 6- s u l pha t e s u l pha t a s e in h um a n s k i n
and t e t r a - s a c c h a r i d e s ,
v a r i o u s r e p e a t sequences o f heparin,
evaluated as substrates for the estimation o f present i n s k i n fibroblasts, t y p e A syndrome.356
representative o f the
have been p r e p a r e d and sulphamidase a c t i v i t y
and f o r the d e t e c t i o n o f S a n - f i l l i p 0
Carbohydrate Chemistry
210
A s i m p l e m e t h o d f o r f r a c t i o n a t i n g h e p a r i n uses a n t i t h r o m b i n I 1 1 w h i c h i s n o n c o v a l e n t l y b o u n d t o i m m o b i l i z e d c o n c a n a v a l i n A.357
Active antithrombin i s e l u t e d from the immobilized l e c t i n using m e t h y l a-9-glucoside.
An e l e c t r o p h o r e t i c m e t h o d u s i n g a g a r o s e beads
has been d e v e l o p e d f o r t h e d e t e r m i n a t i o n o f h e p a r i n f r a c t i o n s h a v i n g a h i g h a f f i n i t y f o r a n t i t h r o m b i n III.358 A high-molecular-weight
heparin fraction that
includes
components w i t h a s much a s f i v e t o t e n t i m e s t h e a c t i v i t i e s o f t h e o r i g i n a l h e t e r o g e n e o u s p r e p a r a t i o n s has been i s o l a t e d f r o m lung.359
beef
The f r a c t i o n was c h a r a c t e r i z e d w i t h r e s p e c t t o i t s m o l e c -
u l a r w e i g h t (3.5
lo4),
x
c o m p o s i t i o n , and b i n d i n g t o a n t i t h r o m b i n
HOQoJQ HO NH2
*
'
(5)
R 1 = R2 = H
(6)
R1 = SO3-,
(7)
R1 = H,
OR2
NH2
R2 = H
R2 = SO3-
(8) R1 = R 2 = SO3-
R2
(9) (10)
R 1 = R2 =
(11)
R1
(12)
R 1 = R2 = S0-j-
R1 = SO3-,
= H,
H R2 = H
R2 = S O 3 -
CH20H
H NHAc
111.
OH
Hog rnucosal h e p a r i n , a f t e r p a r t i a l N - d e s u l p h a t i o n ,
co nj uga t e d t o f 1uo r e s c e i ny 1t h io ca r bam oy 1 g r o up s. 3 6 0 h e p a r i n was s e p a r a t e d i n t o l o w - a f f i n i t y w i t h respect
t o a n t i t h r o m b i n 111.
has been
The f 1uo r e s c e n t
and h i g h - a f f i n i t y
Substitution of
fractions
the heparin
m o l e c u l e s h a d no e f f e c t o n t h e b i o l o g i c a l i n t e r a c t i o n w i t h a n t i t h r o m b i n 111.
Evidence f o r a 3 - s - s u b s t i t u t e d
glucosyl residue i n the antithrombin-binding
T h i s s u l p h a t e d amino s u g a r i s a u n i q u e component
been r e p o r t e d . 3 6 1 o f high-affinity
2-amino-2-deoxy-Q-
sequence o f h e p a r i n has
heparin,
antithrom bin-binding
located a t a specific position i n the
sequence o f t h e m o l e c u l e .
Confirmation o f the
e x i s t e n c e o f t h i s component has been o b t a i n e d f r o m 1 3 C n.m.r. r o s c o p i c studies.362
spect-
A h i g h l y a c t i v e and a r e l a t i v e l y i n a c t i v e f o r m
o f w h a l e h e p a r i n have been s u b j e c t e d s e p a r a t e l y t o e n z y m i c d e g r a d a t ion.363
The
disaccharide
2-acetamido-2-deoxy-3-O-(4-deoxy-L-threo-
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
21 1
p y r a n o s y l u r o n i c acid)-!-glucose was f o r m e d e x c l u s i v e l y f r o m t h e h i g h l y a c t i v e f o r m a n d may a r i s e f r o m a n e s s e n t i a l b i n d i n g s e c t i o n f o r a n t i t h r o m b i n 111. Binding constants f o r t h e binding of high-affinity heparin t o a n t i t h r o m b i n 111 a t d i f f e r e n t i o n i c s t r e n g t h s h a v e b e e n d e t e r m i n e d by f l u o r e s c e n c e t i t r a t i o n s a n d e s t i m a t e d f r o m d i s s o c i a t i o n c u r v e s o f t h e h e p a r i n - a n t i t h r o m b i n I11 c o m p l e x . 3 6 4 A thermodynamic e v a l u a t i o n o f t h e d i s s o c i a t i o n o f t h e complex s u g g e s t s t h a t m a x i m a l l y f i v e t o six charged groups are involved i n t h e interaction. The b i n d i n g o f a n t i t h r o m b i n I11 t o h e p a r i n f r a c t i o n s w i t h d i f f e r e n t m o l e c u l a r Binding c o n s t a n t s and s t o i c h i o m e t r i e s w e i g h t s has b e e n s t u d i e d . 3 6 5 f o r t h e b i n d i n g o f t h e s e f r a c t i o n s t o a n t i t h r o m b i n I11 a r e p r e s e n t e d and c o r r e l a t e d with t h e a n t i c o a g u l a n t activities of the f r a c t i o n s . P o r c i n e i n t e s t i n a l h e p a r i n has been p a r t i a l l y degraded t o p r o d u c e a n o c t a s a c c h a r i d e w i t h h i g h a f f i n i t y f o r a n t i t h r o m b i n III!66 T h e o c t a s a c c h a r i de e x h i b i t e d m o r e p o t e n t i n a c t i v a t i o n a c t i v i t i e s f o r t h r o m b i n , f a c t o r Xa, a n d p l a s m a c o a g u l a t i o n t h a n t h e n a t i v e h e p a r i n . T h e h i g h - a f f i n i t y b i n d i n g o f h e p a r i n t o a n t i t h r o m b i n I11 r e q u i r e s t h e p r e s e n c e o f t w o c o n s e c u t i v e t j - s u l p h a t e d 2-am i n o - 2 - d e o x y - p glucosyl residues i n s p e c i f i c positions of the antithrombin-binding sequence.367 Loss o f e i t h e r o n e o f t h e s e N - s u l p h a t e g r o u p s , w i t h o r without tj-acetylation, r e s u l t s i n a d i s t i n c t and appreciable decrease i n binding a f f i n i t y and i n anticoagulant a c t i v i t y . P o r c i n e h e p a r i n h a s b e e n c l e a v e d r a n d o m l y by c h e m i c a l t e c h n i q u e s t o p r o d u c e h e x a saccha r i de s, o c t a s a ccha r i des, de ca sa ccha r i d e s, a n d f r a g m e n t s c o n t a i n i n g 1 4 a n d 16 r e s i d u e s t h a t a r e a b l e t o c o m p l e x with protease inhibitors.368 As a r e s u l t o f s t u d i e s o n t h e a v i d i t y of t h e s e f r a c t i o n s f o r p r o t e a s e i n h i b i t o r s , t h e i r b i n d i n g t o a n t i thrombin, a n d t h e c a t a l y s i s of t h e F a c t o r Xa-antithrom b i n i n t e r a c t ion, i t i s proposed that h e p a r i n p o s s e s s e s m u l t i p l e discrete s t r u c t u r a l d o m a i n s t h a t m o d u l a t e d i f f e r e n t f u n c t i o n s o f a n t i t h r o m b i n 111. T h e c h e m i c a l c o m p o s i t i o n a n d 1 3 C n.m.r. s p e c t r a o f h e p a r i n o c t a s a c c h a r i d e s h a v i n g h i g h a f f i n i t y f o r a n t i t h r o m b i n 111 a n d h i g h a n t i ( f a c t o r X a ) a c t i v i t y , a n d p r e p a r e d by t h r e e i n d e p e n d e n t a p p r o a c h e s , have been s t u d i e d and compared w i t h t h o s e of t h e corresponding i n a c t i v e species.369 Combined w i t h c h e m i c a l d a t a , t h e s p e c t r a of t h e active oligosaccharides and of their fragmentation products afforded information on composition and sequence. The e f f e c t s o f h i g h - a c t i v i t y h e p a r i n f r a c t i o n s of d i f f e r i n g m o l e c u l a r w e i g h t o n a n t i t h r o m b i n I11 i n h i b i t i o n o f e a c h o f t h e s e r i n e p r o t e a s e s known t o o c c u r i n t h e i n t r i n s i c pathway of t h e
212
Carbohydrate Chemistry
c o a g u l a t i o n cascade have been r e p o r t e d . 3 7 0 I n h i b i t i o n o f thrombin, F a c t o r IXa, a n d F a c t o r X I a showed s i m i l a r i t i e s i n t h e dependence o n molecular
weight
of
heparin,
and was
found
to
decreasing molecular weight o f the polysaccharide. F a c t o r Xa,
Factor XIIa,and
decrease
with
Inactivation o f
k a l l i k r e i n was l e s s dependent o n t h e s i z e
o f t h e p o l y sa ccha r i de. Low-molecular-weight
h e p a r i n o f l o w a n t i c o a g u l a n t a c t i v i t y and
h i g h - m o l e c u l a r - w e i g h t h e p a r i n o f c o r r e s p o n d i n g h i g h a c t i v i t y have been s u b j e c t e d t o N - d e s u l p h a t i o n
and t h e r e s u l t i n g amino groups r e -
a c y l a t e d w i t h d a n s y l c h l o r i d e o r r h o d a m i n e B i s ~ t h i o c y a n a t e . ~The ~ ~ results o f binding studies o f the modified heparins t o antithrombin I11 a r e c o n s i s t e n t w i t h t h e p r o p o s a l t h a t a s i n g l e h i g h - m o l e c u l a r weight high-activity
h e p a r i n o c c u p i e s t w o s i t e s when i t b i n d s t o
a n t i t h r o m b i n I11 w h e r e a s l o w - m o l e c u l a r - w e i g h t
low-activity
heparin
binds t o t h e two s i t e s s e p a r a t e l y . P r o t e o h e p a r a n s u l p h a t e p r e p a r e d from
r a t l i v e r p l a s m a membranes
i n h i b i t s t h e g r o w t h o f AH-130 a s c i t e s h e p a t o m a c e l l s . 3 7 2
Heparan
sulphate i s l e s s active. A has
non-collagen
been
occurring
protein,
identified rat
as
basement
a
i n a s s o c i a t i o n w i t h heparan sulphate, normal
constitutent
mem b r a n e . 3 7 3
The
a
naturally
material
of
resembles
p r o t e o g l y c a n s r e c e n t l y i s o l a t e d f r o m t h e EHS sarcoma a n d f r o m b o v i n e g l o m e r u l a r basement membrane. Heparan
sulphate
has
been
i d e n t i f i e d
as
the
major
g l y co s a m i n o g l y can i n b o v i n e r e t i n a l c a p i l l a r y b a s e m e n t m em brane.374 The b i n d i n g o f g l y c o s a m i n o g l y c a n s t o f i b r o n e c t i n a t a d h e s i o n s i t e s o f m u r i n e f i b r o b l a s t s has been r e p o r t e d . 3 7 5 s u l ph a t e p r o t eo g l y ca n s , co n t a in i n g h i gh 1y
l-s u l ph a t e d
Only heparan s e q ue nce s o n
t h e h e p a r a n s u l p h a t e , m e d i a t e s u b s t r a t u m a d h e s i o n t o t h e c e l l s by co-ordinate b i n d i n g t o
f i b r o n e c t i n o n t h e c e l l surface and serum
f i b r o ne c t i n. S e l f - a s s o c i a t i on
be t w een
various
hepa r a n s u l p h a t e s p e c i e s a n d
o l i g o s a c c h a r i d e f r a g m e n t s t h e r e o f h a v e b e e n s t u d i e d by a f f i n i t y
.
ch rom a t o g r a p h y 376 ,377
Se gm e n t s co m p r i s i n g bo t h
L - i d u r o na t e
and
g-
g l u c u r o n a t e may s e r v e a s c o n t a c t z o n e s f o r t h e s e l f - a s s o c i a t i o n , and t h e s t r e n g t h o f b i n d i n g i s dependent on c o o p e r a t i v e i n t e r a c t i o n s b e t w e e n a number o f s u c h zones.
However, v a r i o u s h e p a r a n s u l p h a t e
s u b f r a c t i o n s f r o m t r a n s f o r m e d c e l l s h a v e no a f f i n i t y f o r a g a r o s e g e l s s u b s t i t u t e d w i t h t h e c o r r e s p o n d i n g h e p a r a n s u l p h a t e species.378 T h e l a c k o f a s s o c i a t i o n o f t h e h e p a r a n s u l p h a t e may be c a u s e d by m i n o r changes i n t h e s e q u e n t i a l a r r a n g e m e n t s o f L - i d u r o n a t e -
and
0-
213
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides g l u c u r o n a t e - b e a r i n g r e p e a t i n g segments o f t h e p o l y s a c c h a r i d e . Heparan s u l p h a t e - c l e a v i n g o f a n a s c i t e s h e p a t o m a AH66, sulphate
at
the
cell
enzyme h a s been u s e d t o t r e a t c e l l s f o r which t h e occurrence o f heparan
surface
of
the
plasma
membrane has
been
e s t a b l i s h e d .379 Two p o o l s o f h e p a r a n s u l p h a t e p r o t e o g l y c a n s w i t h d i f f e r e n t b u o y a n t d e n s i t i e s h a v e been s e l e c t i v e l y s o l u b i l i z e d f r o m r a t l i v e r plasma
membranes
detergent.380
by
successive
incubations
with
heparin
and
The d e t e r g e n t - e x t r a c t e d h e p a r a n s u l p h a t e r e p r e s e n t s a
p r o t e o g l y c a n s p e c i e s t h a t has i t s c o r e p r o t e i n i n t h e l i p i d b i l a y e r o f t h e p l a s m a membrane. high
The p r e s e n c e o f h e p a r a n s u l p h a t e h a v i n g a
metabolic activity
has
been d e m o n s t r a t e d i n i s o l a t e d r a t
i n t e s t i n a l e p i t h e l i a l cells.381
A h i g h degree o f s u l p h a t i o n o f i t s
c h a i n s was d e t e c t e d . synthesis.382
H e p a r a n s u l p h a t e i s a p o t e n t i n h i b i t o r o f DNA
The i n h i b i t i o n i s n o t s i m p l y r e l a t e d t o g r o s s c h a r g e
density. B o v i n e v i t r e o u s body h y a l u r o n i c a c i d h a s been p u r i f i e d , t h e use o f
p r o t e o l y t i c enzymes,
by i o n - e x c h a n g e
without
~hromatography.~~~
1251 - L a b e l l e d
h y a l u r o n a t e- b i n d i n g
prepared.384
T h e i r a d s o r p t i o n on an i m m o b i l i z e d h y a l u r o n a t e g e l i n
p r o t e i n s f r o m c a r t i l a g e h a v e been
t h e p r e s e n c e o f f r e e c o m p e t i n g h y a l u r o n i c a c i d has been used as an assay f o r f r e e h y a l u r o n i c a c i d . o f 'H n.m.r. s p e c t r a i n {2H6}-dimethylsulphoxide dodecyltrimethylammonium s a l t s of c h o n d r o i t i n s u l p h a t e s and h y a l u r o n a t e o r s o d i u m s a l t s o f o l i g o m e r s f r o m h y a l u r o n a t e show u n a m b i g u o u s NH s i g n a l s . 3 8 5 some NH,
A s e c o n d a r y s t r u c t u r e i n h y a l u r o n a t e and
chondroitin sulphates, was o b s e r v e d .
i n v o l v i n g a hydrogen-bonded
homologous s e r i e s o f
oligosaccharides
t e s t i c u l a r h y a l ~ r o n i d a s e . ~C.d. ~~ showed t h a t t h e c.d.
acetamido
Sodium h y a l u r o n a t e has been c l e a v e d i n t o an by
the
a n a l y s i s of
action of
bovine
the oligosaccharides
s p e c t r u m o f h y a l u r o n a t e i n aqueous s o l u t i o n a t
n e u t r a l pH d o e s n o t r e f l e c t t o a n y s u b s t a n t i a l d e g r e e a p o l y m e r c o n f o r m a t i o n which r e q u i r e s c o o p e r a t i v e i n t e r a c t i o n between s e v e r a l repeating residues f o r stabilization. The s e q u e n t i a l h y d r o l y s i s o f r o o s t e r comb h y a l u r o n i c a c i d by e-glucuronidase
and f3-Q-2-acetarnido-2-deoxy-glycosidase
B-
has f a i l e d
t o d e m o n s t r a t e t h e p r e s e n c e o f any b r a n c h i n g i n t h e p o l y s a c c h a r i d e chain.387 sugars.
No e v i d e n c e
was
found for
the presence o f
neutral
The t e m p e r a t u r e dependence o f b i n d i n g h y a l u r o n a t e o l i g o m e r s
t o b o v i n e n a s a l p r o t e o g l y c a n has been reported.388 Hyalurononectin,
a human b r a i n g l y c o p r o t e i n c a p a b l e o f b i n d i n g
Carbohydrate Chemistry
214 t o hyaluronic acid, by
hyaluronic
hyaluronidase
has been i s o l a t e d . 3 8 9
acid
and
by
the
but
not
by
either
The b i n d i n g i s i n h i b i t e d
products
hydrolysis
by
glycosaminoglycans
of
or
monosaccharides. The
interactions of
s u l p h a t e d p o l y s a c c h a r i d e s s u c h as
s u l p h a t e and c h i t i n s u l p h a t e
w i t h Solanum t u b e r o s u m
wheat germ a g g l u t i n i n have been r e p o r t e d . 3 9 0
keratan
a g g l u t i n i n and
The p r e s e n c e o f t h e
sulphate groups i n these polysaccharides d i d n o t i n t e r f e r e w i t h t h e i r s p e c i f i c i n t e r a c t i o n s with the l e c t i n s . The d e g r a d a t i o n o f k e r a t a n s u l p h a t e h a s b e e n a c h i e v e d by B - 2 -
For
a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s i d a s e s A a n d 8 (EC 3.2.1.52).391 e n z y m ic a c t i v i t y a s u b s t r a t e w i t h exposed n o n- s ulphat ed 2-deoxy-g-glucosyl
residues a t
t h e non-reducing
end o f
2-acetamidothe polymer
i s required. Keratan
-----Pseudo m o nas glucose
sulphate
=.
has
been
degraded
by
an
extract
of
a
t o g i v e 2 - a c e t a m ido -2-deox y-3-g-Q -ga l a c t o s y 1-B-0-
6 - s ~ l p h a t e . ~ ' ~T h i s
disaccharide
after
reduction with
s o d i u m b o r o t r i t i d e can be u s e d as a s u b s t r a t e f o r t h e measurement o f 2-acetamido-2-deoxy-q-glucose
6-sulphate
sulphatase,
w h i l s t the
d e s u l p h a t e d r e d u c e d d i s a c c h a r i d e c a n be u s e d as a s u b s t r a t e f o r t h e measurement
of
(1+3)-2-acetamido-2-deoxy-B-~-glucosidase.
keratan sulphate from hydrazinolysis,
bovine cornea,
deamination
and
d e g r a d e d by
sodium
releases two t e t r a s a c c h a r i d e f r a c t i o n s , which
(14)
has
been e s t a b l i s h e d . 3 9 3
borohydride
reduction,
t h e s t r u c t u r e o f one o f
80th
r e s i d u e s bear k e r a t a n s u l p h a t e ch a in s.
Peptido-
desulphation,
terminal
rj-mannosyl
A s t r u c t u r e i n w h i c h an
I-
a-Q-Manp-(l+6)-B-q-Mane-(l+?)-g-GlcENAc-L-Asn -
3
I 1 a-E-Manp (14) f u c o s y l r e s i d u e and an N " - d i a c e t y l c h i t o b i o s y l
2-acetamido-2-deoxy-~-glucosyl has
also
been
proposed.
sequence r e p l a c e t h e
residue attached t o the p r o t e i n chain Studies
on t h e
p o l y d i s p e r s i t y and
h e t e r o g e n e i t y o f p r o t e o k e r a t a n s u l p h a t e f r o m c a l f and p o r c i n e c o r n e a have
been
reported.394
The
linkage
region
of
bovine
corneal
p r o t e o k e r a t a n s u l p h a t e i s b r a n c e d a t a Q-mannose r e s i d u e (15).395 The s t r u c t u r a l c h a r a c t e r i s t i c s show t h a t t h e r e i s a g r e a t s i m i l a r i t y
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
m
I
n
n
I
hl 4 .-I
v
1
hl
u
9
E?
d
n
In 4
v
hl
n
v
hl I
0
n
I
a - m
v
u
n CI
v
I
u
I
c311
M
0
-
215
Carbohydrate Chemistry
216
E-
b e t w e e n t h e l i n k a g e r e g i o n o f t h e p r o t e o k e r a t a n s u l p h a t e and t h e g l y c o s i d i c a l l y l i n k e d L - a s p a r a g i n e m o i e t y o f many g l y c o p r o t e i n s .
--
Biosynthesis. ectodermal effects
H y a l u r o n i c a c i d s y n t h e s i s by t h e
ridge of
of
chick
phase
of
l i m b bud has
growth,
c e l l
apical
been r e p o r t e d . 3 9 6
density
and
also
The serum
c o n c e n t r a t i o n a r e i m p o r t a n t c o n t r i b u t o r s f o r t h e i n c o r p o r a t i o n o f 2amino-2-deoxy-9-{
3H1 - g l u c o s e
t i c smooth m u s c l e c e l l s . 3 9 7
i n t o g l y c o s a m i n o g l y c a n s by r a b b i t a o r The s y n t h e s i s o f s u l p h a t e d g l y c o s a m i n o -
in
glycans i n r a t l i v e r explants prepared from regenerating tissue, which the f a c t o r s of
c e l l n e c r o s i s and c o n s e c u t i v e i n f l a m m a t i o n
a s s o c i a t e d w i t h most models o f e x p e r i m e n t a l h e p a t i c f i b r o s i s a r e shows a d e p r e s s i o n by a b o u t 50% o f t h e i n c o r p o r a t i o n o f 2-
excluded,
amino-Z-deoxy-Q-{ 14C) - g l u c o s e i n t o t o t a l
glyco~aminoglycan.~~~
R a t l i v e r p a r e n c h y m a l c e l l s have been e v a l u a t e d f o r
their
a b i l i t y t o s y n t h e s i z e and a c c u m u l a t e h e p a r a n s u l p h a t e as t h e m a j o r component and l o w - s u l p h a t e d c h o n d r o i t i n s u l p h a t e , chondroitin sulphate
dermatan sulphate,
and h y a l u r o n i c a c i d as t h e
minor
ones.399
G l y c o s a m i n o g l y c a n s a r e s y n t h e s i z e d by r a t g l o m e r u l i a n d t r a n s p o r t e d t o g l o m e r u l a r basement membranes. product synthesized, chondroitin
sulphates
are
also
produced.400
The
transfer
of
f a c t o r 4, a b a s i c t e t r a m e r i c p r o t e i n c o m p l e x e d w i t h a
platelet series of studied
Heparan s u l p h a t e i s t h e major
a l t h o u g h s m a l l e r amounts o f h y a l u r o n i c a c i d and
glycosaminoglycans,
by
derivative
measuring of
changes
platelet
factor
t o h e p a r i n has been d e t e c t e d and i n
the
anisotropy
4.401
The
f a c t o r 4 - p r o t e o g l y c a n complex f r o m t h e p l a t e l e t the t r a n s f e r o f the p r o t e i n t o heparin.
of
release
in
the of
dansyl
platelet
vivo results i n
voderate quantities o f
d e r m a t a n s u l p h a t e o r h e p a r a n s u l p h a t e do n o t p r e v e n t t h e t r a n s f e r . The e f f e c t o f c y c l o h e x i m i d e on t h e s y n t h e s i s o f p r o t e o g l y c a n s by c u l t u r e d c h o n d r o c y t e s f r o m t h e Swarm r a t c h o n d r o s a r c o m a h a s been reported.402
The c u l t u r e d c h o n d r o c y t e s c o n t a i n a l a r g e p o o l o f c o r e
protein available for
the addition o f
chondroitin sulphate
chains.
I n t h e absence o f e n t r y o f n e w l y s y n t h e s i z e d c o r e p r o t e i n i n t o t h i s pool following
cycloheximide treatment,
the remaining core p r o t e i n
molecules are processed t o completed proteoglycans w i t h n e a r l y f i r s t order
exponential
synthesis o f
kinetics.
The
biochemical pathways
for
the
c h o n d r o i t i n s u l p h a t e w e r e n o t d r a s t i c a l l y a f f e c t e d by
cycloheximide.
I n h i b i t i o n o f p r o t e i n s y n t h e s i s by c y c l o h e x i m i d e
reduces t h e i n c o r p o r a t i o n of { 35S)-sulphate i n t o heparan s u l p h a t e t o
217
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides about
5% o f
untreated hepatocytes.
4-Nitrophenyl f3-Q-xyloside
p a r t i a l l y reverses the i n h i b i t o r y effect.403 chains
not
bound t o
core p r o t e i n were
Free heparan sulphate
synthesized under
these
conditions. The p a t t e r n o f g l y c o s a m i n o g l y c a n s y n t h e s i s b y s m o o t h - m u s c l e c e l l s f r o m p i g a o r t i c media has been studied.404 s y n t h e s i z e d by media c e l l s e x h i b i t d i f f e r e n t
Proteoglycans
glycosaminoglycan
d i s t r i b u t i o n patterns according t o t h e i r l o c a l i z a t i o n . Cultured c e l l s from red dermal tissue,
containing a large
p r o p o r t i o n o f c e l l s from the h a i r f o l l i c l e s . , produce h y a l u r o n i c acid, dermatan sulphate, sulphate.405
The
c h o n d r o i t i n 4-sulphate,
patterns
of
synthesis
h e p a r i n and heparan
and s u l p h a t i o n
of
the
g l y c o s a m i n o g l y c a n s changed w i t h c o n t i n u e d t i m e i n c u l t u r e . Proteoglycan
synthesis
hydrocortisone-suppressed reported.406
i n
rabbit
normal
articular
and
chronically
cartilage
has
been
The r e p o r t c o n f i r m s t h a t h y d r o c o r t i s o n e c a n e f f e c t
p o o l s i z e s , and a l s o t h e l e v e l o f
UDP-2-acetamido-2-deoxy-p-hexose
a-galactosyltransferases, b u t n o t a - x y l o s y l t r a n s f e r a s e i n v o l v e d i n the synthesis of linkage region.
the chondroitin sulphate carbohydrate-protein
The m a j o r e f f e c t i s t h e d e p r e s s i o n o f p r o t e o g l y c a n
core-protein synthesis.
No n e t change i n t h e p r o t e o g l y c a n s t r u c t u r e
was o b s e r v e d . Insulin
and
r a t-derived,
multiplication-stimulating
somatomedin-like
activity
stimulates
s y n t h e s i s i n r a t c h o n d r o s a r c o m a c h o n d r o c y t e s .407
polypeptide proteoglycan
The s t r u c t u r e s o f
t h e p r o t e o g l y c a n s s y n t h e s i z e d i n response t o t h e hormones compared w i t h t h o s e s y n t h e s i z e d i n t h e medium a l o n e a r e s i m i l a r , chondroitin sulphate chains, hormones,
increase
i n
but the
synthesized i n the presence o f
molecular
weight
by
25-30%.408
The
d i s t r i b u t i o n o f g l y c o s a m i n o g l y c a n s y n t h e s i s by r a t g l o m e r u l i i n v i v o and
in
v i t r o has been reported.409
A d m i n i s t r a t i o n o f a s i n g l e dose o f
2-amino-2-deoxy-g-galactose
t o r a t s causes time-dependent b i p h a s i c changes g l y c o s a m i n o g l y c a n s y n t h e s i s i n l i v e r .410 A rapidly
o f t o t a l occurring
i n h i b i t i o n i s f o l l o w e d by a s i g n i f i c a n t l y enhanced p r o d u c t i o n o f { 35Sl-labelled
glycosaminoglycans i n l a t e r
stages.
Undersulphated
f3-e-xy 10s i d e g l y c o s a m i n o g l y c a n s a r e s e c r e t e d f r o m c h i c k - e m b r y o chondrocytes
i n the
presence o f
the
i o n o p h o r e monensin.411
S t i m u l a t e d p e r i p h e r a l b l o o d monocytes c o n t a i n a f a c t o r c s ) which affects synovial cells i n culture,
depressing markedly collagen
synthesis w h i l e enhancing glycosaminoglycan production.412
The
218
Carbohydrate Chemistry
i n v o 1 vem e n t o f s u c h b i o l o g i c a 11y a c t i v e m o n o c y t e - d e r i ve d s u b s t a n c e (s ) i n c o n n e c t i ve-tiss u e me t a b o l i sm o f i n f 1am ma t o r y l e s i o n s i s discussed. The assembly of proteoglycan a g g r e g a t e s i n c u l t u r e s o f c h o n d r o c y t e s from b o v i n e t r a c h e a l c a r t i l a g e has been studied.413 P r o t e o g l y c a n monomers and h y a l u r o n i c acid a r e e x p o r t e d s e p a r a t e l y The s i z e o f t h e a g g r e g a t e s i n c r e a s e s and combined e x t r a c e l l u l a r l y . g r a d u a l l y w i t h time as t h e p r o p o r t i o n o f monomers bound t o Immunochemical a n a l y s i s of t h e hyaluronic acid increases. proteoglycans h a s i d e n t i f i e d c r o s s - r e a c t i v i t y of molecules i s o l a t e d from d i f f e r e n t species.414 The i n t r a c e l l u l a r p r e c u r s o r p o o l of c o r e p r o t e i n i n t h i s c h o n d r o c y t e system h a s been i d e n t i f i e d and p a r t i a l l y c h a r a c t e r i z e d .415 A s t u d y o f a c c e p t o r s a n d primers f o r c h o n d r o i t i n s u l p h a t e - c h a i n b i o s y n t h e s i s by m i c r o s o m a l p r e p a r a t i o n s f r o m c h i c k - e m b r y o e p i p h y s e a l Incorporation of sugars into c a r t i l a g e has been reported.416 g l y c o s a m i n o g l y c a n s has b e e n u s e d t o o b t a i n i n f o r m a t i o n o n t h e e n t i r e proteoglycan s t r u c t u r e a t t h e s i t e o f glycosaminoglycan synthesis. A s o l u b l e e n z y m e f r o m q u a i l o v i d u c t i n c o r p o r a t e s s u l p h a t e a t 06 o f t h e no n- r e d u c i n g 2 - a c e tam i d o - 2 - d e o x y - ~ - g a l a c t o s y 1 4 - s u l p h a t e r e a c t i o n c a t a l y s e d by t h i s r e s i d u e o f c h o n d r o i t i n ~ u l p h a t e . ~ ~ The ’ e n z y m e i s d i f f e r e n t f r o m t h e s u l p h a t i o n m e d i a t e d by o t h e r k n o w n s u l p h o t r a n s f e r a s e s. The f o r m a t i o n o f C-idopyranosyluronic acid during t h e s y n t h e s i s o f d e r m a t a n s u l p h a t e h a s been s t u d i e d i n human f i b r o b l a s t c u l t u r e s a n d m i c r o s o m e s o f t h e same c e l l s . 4 1 8 E p i m e r i z a t i o n o f ag l ucopy r a n 0 s y l u r o n i c a c i d t o L - i dopy r a n 0 s y l u r o n i c a c i d r e s i d u e s during the biosynthesis o f dermatan sulphate involves an abstraction o f t h e C-5 h y d r o g e n o f t h e u r o n o s y l r e s i d u e . S u b s t r a t e s f o r 2- ace tam i d o - 2 - d e o x y-Q-gl uco s y 1t ra n s f e r a se , w h i c h acts i n conjunction with Q-glucuronosyl transferase i n the b i o s y n t h e s i s o f h e p a r i n , h a v e b e e n p r e p a r e d f r o m a l o w s u l p h a t e d , aglucuronic acid-rich heparan sulphate fraction.419 U s i n g these o l i g o s a c c h a r i d e s , t h e products o f t h e r e a c t i o n have been c h a r a c t e r i z e d a n d some o f t h e k i n e t i c parameters o f t h e enzyme have been determined. S o m e o f t h e o l i g o s a c c h a r i d e s were s h o w n t o s u b s t i t u t e f o r t h e endogenous s u b s t r a t e s and s e r v e as p r i m e r s i n po 1y s a c c h a r i de c h a i n e l o n g a t i o n . T h e s e c r e t i o n o f h e p a r a n s u l p h a t e by c u l t u r e d r a t h e p a t o c y t e s i s i n c r e a s e d i n t h e p r e s e n c e of t h e f l a v e n o i d (+) ~ a t e c h i n . ~ ” T h i s i n c r e a s e i s d u e t o a new s p e c i e s o f h e p a r a n s u l p h a t e l a c k i n g t h e
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
219
c a r b o h y d r a t e - p r o t e i n l i n k a g e b e t w e e n I)-xylose and I - s e r i n e i n t h e no rm a1 h e p a r a n s u l p h a t e p r o t e o g l y c a n . E x t r a c e l l u l a r h y a l u r o n i c acid i s t h e major glycosaminoglycan s y n t h e s i z e d by t h e e p i d e r m i s w h e n i n t a c t s k i n s l i c e s a r e m a i n t a i n e d i n organ culture.421 I n t h e a b s e n c e o f t h e dermis t h i s s y n t h e s i s i s considerably reduced, and the synthesis of sulphated g l yco s a m i n o g l y c a n s , main1y hepa r a n s u l p h a t e , i s u n a f f e c t e d . T h e f o r m a t i o n o f b o t h N- a n d g - s u l p h a t e g r o u p s ( s u l p h a m i d o a n d ester s u l p h a t e groups, r e s p e c t i v e l y ) o f t h e 2-amino-2-deoxy-eg l u c o s y l r e s i d u e s i n p o r c i n e a o r t a h a s b e e n d e m o n s t r a t e d by t h e s t u d y o f s u l p h a t e i n c o r p o r a t i o n from l a b e l l e d 3’-phosphoadenyl sulphate t o heparan sulphate of microsomal f ractions.422 The p r e f e r e n t i a l N-sulphation is obtained f o r incorporation o f labelled precursor over a short period, with P-sulphation occurring on previously 3-sulphated heparan sulphate. The s t i m u l a t i o n o f h y a l u r o n i c a c i d s y n t h e s i s i n mouse s k i n i n r e s p o n s e t o e s t r o g e n t r e a t m e n t i s mediated through e s t r o g e n r e c e p t o r s and i n v o l v e s t h e i n d u c t i o n o f hy a 1 u r o n i c a c i d s y n t h e t a s e . 4 2 3 G l y c o Sam i no g l y c a n s e c r e t i o n from perfused monolayer c u l t u r e s o f r a b b i t ear c h o n d r o c y t e s has been r e p o r t e d . 4 2 4 C o l c h i c i n e has been shown t o a f f e c t t h e l e v e l of glycosaminoglycan synthesis and transport. A short-term incubation system, developed f o r the study of glycosaminoglycan synthesis during t h e early stages o f medullary bone f o r m a t i o n i n J a p a n e s e q u a i l i n t h e p r e s e n c e o f e s t r o g e n , h a s i d e n t i f i e d k e r a t a n s u l p h a t e and c h o n d r o i t i n ~ u l p h a t e . ~ ’ ~
-
The p o l y d i s p e r s i t y p r e s e n t i n a g g r e g a t i n g p r o t e o g l y c a n s n e w l y s y n t h e s i z e d by c h o n d r o c y t e s f r o m r a t chondrosarcoma has been a t t r i b u t e d t o t h e amount of c h o n d r o i t i n sulphate/core p r o t e i n and n o t t o any d e t e c t a b l e d i f f e r e n c e s i n t h e s i z e of t h e c o r e protein.426,427 Glycosaminoglycans i n u r i n e from p a t i e n t s representing t h e major d i f f e r e n t mucopolysaccharidoses have b e e n s e p a r a t e d a n d m e a s u r e d by u s e o f a p r o c e d u r e r e q u i r i n g s m a l l volumes of urine.428 Approximately h a l f t h e p a t i e n t s e x c r e t e d small amounts of heparin. T h e k e r a t a n s u l p h a t e i n samples f r o m M o r q u i o ’ s disease p a t i e n t s m i g r a t e d d i f f e r e n t l y from a u t h e n t i c k e r a t a n s u l p h a t e u n l e s s d i g e s t e d w i t h c h o n d r o i t i n s u l p h a t e l y a s e ABC. Total sulphated glycosaminoglycan l e v e l s i n commercially available preparations of hyaluronic acid and i n the urine of normal individuals and the synovial f l u i d o f individuals w i t h rheumatoid a r t h r i t i s and o s t e o a r t h r i t i s have been measured Pathology.
220
Carbohydrate Chemistry
s p e c t r o p h o t o m e t r i c a l l y as t h e i r A l c i a n b l u e Lowe’s syndrome r e s u l t s i n an u n d e r s u l p h a t i o n o f c h o n d r o i t i n ~ u l p h a t e s . ~ ~ ’ T h i s i s now s h o w n t o be a c o n s e q u e n c e o f a l o w e r l e v e l o f a c t i v e sulphate
(adenosine 3’-phosphate
syndrome
fibroblasts,
caused
pyrophosphatase a c t i v i t y
5’-phosphosulphate) by
i n
an e l e v a t i o n o f
degrading
adenosine
Lowe’s
nucleotide
3’-phosphate
5’-
phosphosulphate. A
low
urinary
e x c r e t i o n o f heparan sulphate i n t h r e e p a t i e n t s
w i t h Lowe’s s y n d r o m e has b e e n o b s e r v e d , a l t h o u g h u r i n a r y e x c r e t i o n o f total
i s o m e r s shows no
g l y c o s a m i n o g l y c a n and c h o n d r o i t i n s u l p h a t e
significant
differences
b e t w e e n Lowe’s
syndrome s u b j e c t s
a n d age-
m a t c h e d c o n t r o l s . 431 A new D,
disease,
tentatively
has been r e c o r d e d . 4 3 2
designated Sanfilippo
It i s
f e a t u r e s o f t h e S a n f i l i p p o syndrome,
c h a r a c t e r i z e d by
disease type the
clinical
excessive e x c r e t i o n o f heparan
s u l p h a t e , a n d t h e i n a b i l i t y t o r e l e a s e i n o r g a n i c s u l p h a t e f r o m 2a c e t a m i d o - 2 - d e o x y - a - g 1 uco sy 1 6 - s u l p h a t e sulphate-derived oligosaccharides.
residues i n heparan
However, t h e r e q u i r e m e n t s f o r
e n z y m a t ic h y d r o 1y s i s o f 2 - a c e t am ido - 2-deox y - g - g 1 uco sy 1 6 - s u l p h a t e linkages are d i f f e r e n t f o r heparan sulphate and k e r a t a n sulphate, when c o m p a r e d w i t h t h o s e p o l y s a c c h a r i d e s f r o m
ordinary
Sanfilippo
syndrome p a t i e n t s . Glycosaminoglycan ne p h r o t i c
s y n drom e has
excretion
i n
urine
been i n ves t i g a t e d.433
from
patients
with
p r ot e i n-asso c i a t e d
A
l o w - c h a r g e f o r m o f c h o n d r o i t i n s u l p h a t e w h i c h i s n o t e x c r e t e d by n o r m a l s u b j e c t s was i d e n t i f i e d . C h o n d r o i t i n 6-sulphate w i t h low sulphate content i s e x c r e t e d i n t h e u r i n e o f p a t i e n t s w i t h an u n u s u a l f o r m o f s p o n d y l o e p i p h y s e a l d y ~ p l a s i a . ~ The ~ ~s e r a o f t h e s e p a t i e n t s show a l o w a c t i v i t y o f 3’phosphoadenos i ne 5’-phosphos u l phat e sulphotransferase, w h i l e the sulphate
i s
a much
urinary
better acceptor
chond r o it in
s u l p h a te
undersulphated chondroit i n of
sulphate
than
standard
c h o n d r o i t i n s u l p h a t e o n i n c u b a t i o n w it h 3 ’-p h o s p h o a d e no s i n e 5 ’pho sphos u l p h a t e a n d norm a1 s u l p h o t r a n s f e r a s e s . P r e c i p i t a t i o n w i t h c e t y l p y r i d i n i u m c h l o r i d e f o l l o w e d by u r o n i c
acid
assay
has
been
used
to
study
urinary
glycosaminoglycan
e x c r e t i o n i n normal subjects and calcium-stone
formers.435
No
s i g n i f i c a n t d i f f e r e n c e i n d a i l y l e v e l s o f g l y c o s a m i n o g l y c a n s was detected. P r o t e o g l y c a n s p r e s e n t i n norm a 1 and a t h e r o s c l e r o t i c human a o r t a s have been i s o l a t e d a n d p a r t i a l l y ~ h a r a c t e r i z e d . ~ ~ ~
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
22 1
The g l y c o s a m i n o g l y c a n c o m p o s i t i o n o f s a m p l e s o f l i v e r f r o m p a t i e n t s w i t h a l c o h o l i c c i r r h o s i s has been compared w i t h t h a t o f no rmal l i v e r . 4 3 7 I n c r e a s e d l e v e l s o f h y d r o x y - l - p r o 1 i n e , h y a l u r o n i c a c i d , h e p a r a n s u l p h a t e , c h o n d r o i t i n 4- a n d 6 - s u l p h a t e s , a n d d e r m a t a n s u l p h a t e were d e t e c t e d i n t h e c i r r h o t i c l i v e r s a m p l e s . Age-related changes i n hydrodynamic s i z e of the proteoglycan monomers o f human c a r t i l a g e a n d o f t h e s p e c i f i c { 3 5 S ) - l a b e l l i n g o f t h e i r chondroi t i n s u l p h a t e and k e r a t a n s u l p h a t e c h a i n s have been de s c r i be d. 4 3 I n o r d e r t o e x c l u d e de g e n e r a t i o n ( 0s t e o a r t h r o t i c ) processes that i n t e r f e r e w i t h age-specific changes, c a r t i l a g e of the p r o c e s s u s x y p h o i d was i n v e s t i g a t e d . A u t o l o g o u s h u m a n k n e e a n d s h o u l d e r c a r t i l a g e show a g e - r e l a t e d changes: t h e p r o t e o g l y c a n c o n t e n t decreases i n c o n t e n t a n d p r o t e o g l y c a n s u b u n i t s decrease i n s i z e . 4 3 9 In contrast, the p r o p o r t i o n s of keratan s u l p h a t e t o c h o n d r o i t i n s u l p h a t e , p r o t e i n t o glycosaminoglycan, and c h o n d r o i t i n 6 - s u l p h a t e t o c h o n d r o i t i n 4s u l p h a t e a l l i n c r e a s e w i t h age. The s t r u c t u r e s o f t h e p r o t e o g l y c a n s o f a r t i c u l a r c a r t i l a g e s o f b o v i n e f o e t u s e s a t v a r i o u s s t a g e s of development have been compared During f o e t a l l i f e , with those of the c a l f and a d u l t a r t i c u l a r c a r t i l a g e proteoglycans are rich i n c h o n d r o i t i n s u l p h a t e a n d c o n t a i n a t a l l a g e s some k e r a t a n s u l p h a t e a n d 2 - g l y c o s i d i c a l l y linked oligosaccharides i n both a keratan-rich region and i n the remainder o f the polysaccharide attachment region. An a n a l y s i s o f c h a n g e s o f s u l p h a t e d g l y c o s a m i n o g l y c a n s a n d related glycosidases during f o e t a l development shows t h a t c h o n d r o i t i n 6 - s u l p h a t e i n c r e a s e s i n c o n c e n t r a t i o n up t o f i f t y d a y s o f f o e t a l d e v e l o p m e n t , and t h e n decreases p r o g r e s s i v e l y u n t i l i t s complete disappearance i n a d u l t tissues.441 The l e v e l s o f h e p a r a t i n s u l p h a t e a n d d e r m a t a n s u l p h a t e do n o t c h a n g e d u r i n g t h i s p e r i o d . The m a j o r p r o t e o g l y c a n s i n t h e a r t i c u l a r c a r t i l a g e o f f o e t a l , calf, and a d u l t a n i m a l s d i f f e r i n t h e c o n t e n t , t y p e s o f s t r u c t u r e o f the chondroitin sulphate, keratan sulphate, and oligosaccharide constituents.442 These changes i n s t r u c t u r e r e f l e c t t h e g r o s s agerelated changes i n t h e chemical composition of t h e t i s s u e . Proteoglycans of t h e nucleus pulposus and annulus f i b r o s u s o f normal a n d d e g e n e r a t e i n v e r t e b r a l d i s c s have been examined.443 A l a r g e p r o p o r t i o n o f t h e proteoglycans found i n d i s c undergo a degree of d e g r a d a t i o n i n t h e h y a l u r o n a t e - b i n d i n g r e g i o n i n d e g e n e r a t e tissue. Glycosaminoglycans o f c u l t u r e d human-foetal melanocytes have
222 been
Carbohydrate Chemistry compared with
cells.444
those
p r o d u c e d by
c u l t u r e d human melanoma
By m a n i p u l a t i n g c e l l s u r f a c e s w i t h enzymes s p e c i f i c f o r
c l e a v i n g glycosaminoglycans from c e l l s , functional
i t i s p o s s i b l e t o change t h e impairment
r e l a t i o n s h i p s such a s adhesion and adhesion
among b o n e - m a r r o w
fibroblast-like
fi
cells cultured
vitro,
mature
l e u c o c y t e s and b l a s t s f r o m n o r m a l marrow and p e r i p h e r a l b l o o d o f leukaem i a p a t i e n t s . 4 4 5 The a b s e n c e o f p r o t e o g l y c a n c o r e p r o t e i n i n c a r t i l a g e f r o m omd/cmd
( c a r t i l a g e m a t r i x d e f i c i e n c y ) mouse446 a n d i n c a r t i l a g e
m u t a n t n a n ~ m - e l i ah ~a s~ ~been r e p o r t e d .
Cell and T i s s u e Glycoproteins
8
Glycoproteins from a d u l t - r a t
b r a i n s y n a p t i c v e s i c l e s h a v e been
f r a c t i o n a t e d by s e q u e n t i a l a f f i n i t y
chromatography i n t h e
presence
o f sodium d o d e c y l s u l p h a t e o n f o u r d i f f e r e n t i m m o b i l i z e d l e ~ t i n s . ~ ~ Nine f r a c t i o n s c o n t a i n i n g o n l y g l y c o p r o t e i n s and d i f f e r i n g i n t h e i r t e r m i n a l s u g a r s were com p o s i t i o n
and
s e p a r a t e d and a n a l y s e d f o r t h e i r c a r b o h y d r a t e
e l e c t rophor et i c
profiles.
considerable
A
h e t e r o g e n e i t y o f t h e g l y c o p r o t e i n p o p u l a t i o n was o b s e r v e d w h i c h c a n n o t be e x p l a i n e d s o l e l y by t h e m i c r o h e t e r o g e n e i t y o f t h e
glycans
o f the synaptic vesicle glycoproteins. A g r o u p of
s t r u c t u r a l l y r e l a t e d g l y c o p r o t e i n s f r o m human b r a i n
and f i b r o b l a s t s ,
which account f o r a l l t h e Thy-1
species cross-
r e a c t i v e antigenic a c t i v i t y present i n these tissues, purified.449
has
been
The i s o l a t e d p r o d u c t s a r e c l o s e l y
r e l a t e d t o each
o t h e r a n d c o u l d be t h e p r o d u c t o f a s i n g l e gene.
T h e y s h o w many
properties antigen.
i n common w i t h
p u r i f i e d forms o f
Human b r a i n g l y c o p r o t e i n s d e p l e t e d of Thy-1
been used f o r
monoclonal antibody
i n t e r a c t s with a determinant (cerebral,
the
production.450
rodent
Thy-1
a n t i g e n have The a n t i b o d y
p r e s e n t o n a l l human b r a i n s u b r e g i o n s
c o r t i c a l grey matter,
white matter,
caudate,
thalmus,
d e n t a t e n u c l e u s , putamen,and c e r e b e l l a r c o r t e x ) b u t i s a b s e n t f r o m a wide range o f o t h e r t i s s u e s (heart,
liver,
spleen).
The d e t e r m i n a n t
i s c o n s e r v e d i n mammalian e v o l u t i o n , a s t h e b r a i n s o f r a t a n d dog have amounts e q u a l t o t h a t f o u n d i n human b r a i n . Some b i o c h e m i c a l c h a r a c t e r i s t i c s , compositions,
examined and compared w i t h s i m i l a r
.
m o us e 45 1
i n c l u d i n g the carbohydrate
o f b r a i n T h y - 1 g l y c o p r o t e i n o f dog a n d man h a v e been c h a r a c t e r i s t i c s i n r a t and
223
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides A new
caprine n e u r o c e r v i c a l storage disease i n r e l a t e d Nubian
g o a t s h a s been c h a r a c t e r i z e d by t h e p r e s e n c e i n b r a i n t i s s u e o f t h e t r i s a c c h a r i d e O-B-g-mannopy r a n 0 sy 1-( 1+4) - 2 - a c e t a m i d o - 2 - d e o x y - Q--
(B-E-
g l u c o p y r a n o s y 1- ( 1 + 4 ) - 2 - a c e t a m id o - 2 - d e o x y - g - g l u c o s e
m a n n o s y l c h i t o b i o s e ) .452 The a c c u m u l a t i o n o f t h e t r i s a c c h a r i d e s u g g e s t s t h e p o s s i b i l i t y o f a g e n e t i c d e f e c t i n B-D=-mannosidase i n the
catabolic
pathway
for
d e f i c i e n c y o f B+-mannosidase
N-linked
complex
glycopeptides.
A
a c t i v i t y was d e m o n s t r a t e d i n a number
o f t i s s u e s f r o m t h e a f f e c t e d goats.453 The l e v e l s o f N - a c e t y l n e u r a m i n i c
a c i d i n w a t e r - s o l u b l e and
membrane f r a c t i o n s o f v a r i o u s r a t b r a i n c o r t e x t i s s u e s have been
.
m ea s u r e d 45 D e v e l o p m e n t a l changes i n t h e b i o s y n t h e s i s a n d c o n c e n t r a t i o n o f i n d i v i d u a l i-f u c o s y l - a n d !-ace t y l n e u r a m i n o s y l - c o n t a i n i n g glycoproteins
associated w i t h
s y n a p t i c membranes and s y n a p t i c
j u n c t i o n s have been r e p o r t e d . 4 5 5 The i n c o r p o r a t i o n o f L - f u c o s e
i n t o s y n a p t i c m i t o c h o n d r i a 1 and
p l a s m a-m em b r a n e g l y c o p r o t e i n s h a s b e e n r e c o r de d .456 mitochondria
s i t u have a g r e a t e r c a p a c i t y
Sy n a p t o som a 1
for the incorporation
o f &-fucose i n t o p r o t e i n t h a n f r e e mitochondria. S y n a p t i c membranes from
sheep b r a i n c o r t e x
incorporate
i n o r g a n i c s u l p h a t e i n t o a range o f g l y c o p r o t e i n s (mol.
lo4
-
1.6
wts.
1.6
x
1 0 ~ 1 . ~ 5 ~
E v i d e n c e h a s been p r e s e n t e d f o r
t h e i n c o r p o r a t i o n o f C-fucose
a n d t h e i d e n t i f i c a t i o n o f I - f u c o s y l g l y c o p r o t e i n s i n sheep c o r t e x sy na p t o som e s .458 The c a r b o h y d r a t e s t r u c t u r e o f g l y c o p r o t e i n s a s s o c i a t e d w i t h r a t c e n t r a l - n e r vo u s - s y s t em my e l i n i s de v e l a pme n t a l l y Although
r e g u l ated.459
t h e p r e c i s e a s s o c i a t i o n o f t h e s e membrane c o m p o n e n t s w i t h
t h e axolemma,
t h e o l i g o d e n d r o g l i a l p l a s m a membrane, o r m y e l i n has n o t
been d e t e r m i n e d ,
t h e o b s e r v e d changes t h a t o c c u r d u r i n g development
s u p p o r t a p r o b a b l e f u n c t i o n a l r o l e f o r many o f them i n t h e m e c h a n i s m o f m y e l i n o g e n e s i s. F l u o r e s c e n t - l a b e l l e d l e c t i n s have been u s e d t o examine t h e g l y c o p r o t e i n compo s i t i o n o f
sub fraction^.^^^
The
r a b b i t p e r i p h e r a l - n e r vo u s - s y s t em my e l i n
g l y c o p r o t e i n composition o f two major
f r a c t i o n s i s more complex t h a n p r e v i o u s l y r e p o r t e d . The s e q u e n c e o f e v e n t s i n t h e d e s t r u c t i o n o f m y e l i n p r o t e i n s and g l y c o p r o t e i n s i n experimental demyelination o f the r a b b i t o p t i c n e r v e h a s been r e p o r t e d . 461 The
presence
of
myelin-associated
glycoprotein
i n the
224
Carbohydrate Chemistry
p e r i p h e r a l nervous system of rats has been demonstrated.462 The presence of t h i s g l y c o p r o t e i n i n t h e periaxonal region o f both peripheral and c e n t r a l m y e l i n s h e a t h s i s c o n s i s t e n t w i t h a similar i n v o l v e m e n t o f the g l y c o p r o t e i n i n axon-sheath c e l l i n t e r a c t i o n s i n t h e p e r i p h e r a l n e r v o u s system a n d t h e c e n t r a l n e r v o u s s y s t e m . Rat brain myelin contains several major glycoproteins i n addition t o t h o s e ( m o l . w t . 1 . 2 x l o 5 a n d 2.7 x l o 4 ) a l r e a d y ~ h a r a c t e r i z e d . ~ ~ ~ F o u r a d d i t i o n a l m a j o r g l y c o p r o t e i n s a n d many m i n o r g l y c o p r o t e i n s a r e r e v e a l e d a f t e r t r e a t m e n t o f i s o l a t e d m y e l i n membrane w i t h n e u r a m i n i dase b e f o r e ox i d a t i o n w i t h g a l a c t o s e ox i da se a n d subsequent r e d u c t i o n w i t h sodium b o r o t r i t i d e . A glycoprotein s o l u b l e i n o r g a n i c s o l v e n t s i s o l a t e d from r a t m y e l i n has b e e n p a r t i a l l y purified and characterized as a sulphated I-fucosyl g 1y c o p ro t e i n .464 The m a j o r g l y c o p r o t e i n (PO) o f c h i c k s c i a t i c - n e r v e m y e l i n h a s been p u r i f i e d and p a r t i a l l y characterized.465 The amino a c i d c o m p o s i t i o n i n d i c a t e s a d e f i n i t e s p e c i e s d i f f e r e n c e when compared w i t h mammalian PO g l y c o p r o t e i n s . Dopamine B-hydroxylase ( E C 1.14.2.1) i s a tetrameric g l y c o p r o t e i n w i t h s u b u n i t s o f m o l . w t . 7.5 x 104.466 I t i s p r e s e n t i n catecholamine s t o r a g e v e s i c l e s o f both a d r e n a l m e d u l l a and sympathetic nerve terminals. The p r e s e n c e o f n e u r a m i n i c a c i d residues on oligosaccharide chains g r e a t l y increases t h e resistance of t h e e n z y m e t o t r y p t i c p r o t e o l y s i s . An a g e - r e l a t e d i n c r e a s e o f n o n - e n z y m a t i c g l y c o s y l a t i o n i n It appears to normal bovine l e n s c r y s t a l l i n s has been observed.467 be a g e n e r a l c h a r a c t e r i s t i c o f t h e a g e i n g p r o c e s s . Bovine thyro g l o b u l i n has been s u b j e c t e d t o s e q u e n t i a l t r e a t m e n t w i t h glycohydrolases i n order t o define t h e components o f the oligosaccharide chain which are important i n binding the g l y c o p r o t e i n t o bovine t h y r o i d membranes.468 Preparations of a s i a l o g a l a c t o t h y r o g l o b u l i n e x h i b i t t h e best b i n d i n g , s u g g e s t i n g t h a t exposed 2-acetamido-2-deoxy-~-glucose r e s i d u e s o n t h e B c a r b o h y d r a t e chain of t h e hormone are i m p o r t a n t i n t h e i n t e r a c t i o n w i t h t h e t h y r o i d membranes. i - T y r o s i n e r e s i d u e s p l a y an i m p o r t a n t r o l e i n The t h y r o g l o b u l i n i n t e r a c t i o n s w i t h t h y r o i d membranes.469 attachment of carbohydrate t o thyroglobulin involves an intermediate (0-G 1 ce3 -p - M a n e g -p- G 1 ceNA c2- py r o pho s p h o r y 1d o 1 i c h o 1) a n d i s f o l 1ow e d r a p i d l y by t h e i n i t i a t i o n o f m o d i f y i n g r e a c t i o n s i n c l u d i n g t h e The r e m o v a l of Q - g l u c o s y l - a n d some Q-mannosyl r e s i d u e s . 4 7 0 i n h i b i t i o n o f i n c o r p o r a t i o n o f c a r b o h y d r a t e i n t o t h y r o g l o b u l i n by
n-
225
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides t u n i carny c i n has been r e p o r t e d .471 Parathyroid secretory protein c o n t a i n i n g 18% c a r b o y d r a t e )
(mol.
wt.
6.7
has been p u r i f i e d f r o m
x
lo4
and
extracts of
b o v i n e p a r a t h y r o i d glands.472 p r o t e i n I, a g l y c o p r o t e i n ( m o l .
Secretory unknown
biological activity,
c h a r a c t e r i z e d from ca r bo h y d r a t e
.
been
wt.
7.0
x 104) o f
isolated
and
partially
b o v i n e p a r a t h y r o i d glands.473
The ! - t e r m i n a l ACTH/LPH
has
fragment
precursor,
i s
a
of
porcine
major
I t c o n t a i n s 2.6%
pro-opiomelanocortin,
product
of
the
m a t u r a t i o n and
i s
g l y ~ o s y l a t e d . ~The ~ ~ a m i n o a c i d sequence i s h o m o l o g o u s t o s i m i l a r p e p t i d e s i n ox a n d man, L --Thr-45
w i t h two s i t e s o f g l y c o s y l a t i o n probably a t
and I - A s n - 6 5 .
Some
of
the
relationships
between
protein
synthesis,
g l y c o s y l a t i o n , cleavage, and s e c r e t i o n o f pro-ACTH-endorphin
i n mouse
p i t u i t a r y tumour c e l l s h a v e been d e s c r i b e d . 4 7 5 B-D-Glucuronidase gland.476
Two
has
been i s o l a t e d f r o m
oligosaccharide
r e d u c t i v e a 1ka 1i n e h y d r o 1y s i s,
alditols
rat preputial
(16-17),
released
by
have be e n c h a r a c t e r i zed.
P-Man3-a-{ ( a-Q-Mane-Q-GlcQNAc )-Q-Mang) -8 -Q-GlcgNA c-8 -Q-GlcNA c - 0 1 ( 16)
Q -M an^^ -4 -a {Q -M a ng2-a -Q -M an e} -B -Q - G 1CQ NA c - 8 -Q - G 1c NA c- 01 (17) Glycoproteins and pepsinogen a r e a s s o c i a t e d i n t h e secretory granules
of
fundic
epithelial
cells
isolated
from
guinea-pig
stomach.477 I n c o r p o r a t i o n o f monosaccharides i n t o r a t l i v e r f e r r i t i n can o c c u r n o n - e n z y m i c a l l y u n d e r p h y s i o l o g i c a l c o n d i t i o n s o f pH a n d i o n i c strength,
i n a process which i s dependent o n t h e c o n c e n t r a t i o n o f
monosaccharides, temperature.478
the
concentration
of
ferritin,
time,
and
Varying degrees o f g l y c o s y l a t i o n m i g h t account f o r
t h e occurrence o f i s o f e r r i t i n s . The s t r u c t u r e a n d d y n a m i c b e h a v i o u r o f t h e o l i g o s a c c h a r i d e s i d e c h a i n o f b o v i n e p a n c r e a t i c r i b o n u c l e a s e B have b e e n s t u d i e d b y 13C n.m .r.
spectroscopy.479
The c o n c l u s i o n s a b o u t t h e p r i m a r y s t r u c t u r e
of t h e c a r b o h y d r a t e s i d e c h a i n s a r e c o n s i s t e n t w i t h r e s u l t s b a s e d o n c h e m i c a l methods. Chem i c a l a n a l y s e s ,
t o g e t h e r w i t h h i s t o c h em i c a l a s s e s s m e n t s ,
226
Carbohydrate Chemistry
have been o b t a i n e d f o r specimens of adenocarcinoma o f t h e colon and histologically normal c o l o n i c epithelium.480 In epithelial g l y c o p r o t e i n s o f normal t i s s u e , t h e m a j o r i t y of t h e n e u r a m i n i c a c i d r e s i d u e s c o n t a i n a s i d e - c h a i n g - a c y l s u b s t i t u e n t a t C - 8 , whereas s i d e - c h a i n s u b s t i t u t i o n o f t h e n e u r a m i n i c a c i d s of t u m o u r Differences i n the glycoproteins i s markedly reduced. s u s c e p t i b i l i t y t o n e u r a m i n i d a s e t r e a t m e n t were a l s o noted between t h e two s o u r c e s of g l y c o p r o t e i n s . Human c o l o n t u m o u r a n t i g e n w h i c h i s r e c o g n i z e d b y l e u c o c y t e adherence i n h i b i t i o n assay i s u n r e l a t e d t o c a r c i n o e m b r y o n i c a n t i g e n (CEA).481 The f o r m e r a n t i g e n , b u t n o t C E A , b i n d s s p e c i f i c a l l y t o immobilized human B2-microglobulin a n t i b o d i e s . B l o o d - g r o u p d e t e r m i n a n t s h a v e b e e n f o u n d on f i v e C E A p r e p a r a t i o n s . 4 8 2 One of t h e p r e p a r a t i o n s h a s an A 1 d e t e r m i n a n t , a n o t h e r h a s a B d e t e r m i n a n t , and a l l h a v e H , L e a , Leb,and MN b l o o d group d e t e r m i n a n t s . The f i n d i n g s a r e c o n s i s t e n t w i t h t h e i d e a t h a t incomplete o r unexpected glycosylation p a t t e r n s occur i n g l y c o p r o t e i n s produced by tumour c e l l s . Since antibodies d i r e c t e d a g a i n s t blood-group s u b s t a n c e s c r o s s - r e a c t w i t h c a r b o h y d r a t e d e t e r m i n a n t s on C E A , c l i n i c a l d e t e r m i n a t i o n s of C E A o r anti-CEA l e v e l s i n serum may be a d v e r s e l y a f f e c t e d . Concurrent measurements o f c a r c i n o e m b r y o n i c a n t i g e n , !-glucose phosphate isomerase, yg l u t a m y l t r a n s f e r a s e , and l a c t a t e dehydrogenase i n m a l i g n a n t , normal a d u l t , and f e t a l colon t i s s u e s g i v e r e s u l t s t h a t a r e c o n s i s t e n t w i t h e a r l i e r o b s e r v a t i o n s t h a t t h e a c t i v i t i e s of t h e s e m a r k e r s a r e i n c r e a s e d s i g n i f i c a n t l y i n t h e serum of p a t i e n t s w i t h m e t a s t a t i c colon cancer.483 Carcinoembryonic a n t i g e n - r e l a t e d a n t i g e n s have been p u r i f i e d and c h a r a c t e r i z e d i n normal a d u l t f a e c e s . 4 8 4 Glycoproteins metabolically l a b e l l e d w i t h 2-amino-Z-deoxy-g{ 3H}-glucose and i s o l a t e d from human r e n a l cancer and normal kidney e p i t h e l i a l c e l l c u l t u r e s h a v e been c o m p a r e d by t w o - d i m e n s i o n a l p o l y a c r y l a m i d e g e l e l e c t r o p h ~ r e s i s . ~Although ~~ o v e r a l l p r o f i l e s of g l y c o p r o t e i n s from tumours and normal c e l l s were e x t r e m e l y s i m i l a r , s e v e r a l s i g n i f i c a n t d i f f e r e n c e s were observed t h a t were c o n s i s t e n t even among a l l o g e n e i c comparisons. A g l y c o p r o t e i n i n h i b i t o r (mol. w t . 1 . 3 3 x l o 4 ) of c a l c i u m o x a l a t e m o n o h y d r a t e c r y s t a l g r o w t h h a s been i s o l a t e d f r o m human kidney t i s s u e c u l t u r e medium.486 T h i s g l y c o p r o t e i n c o n t a i n s 39.4% c a r b o h y d r a t e , c o n s i s t i n g of r e s i d u e s of I=-fucose, Q - g l u c o s e , Eg a l a c t o s e , and neuraminic a c i d . Studies a t the ultrastructural level indicate that the
227
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
g l y c o p r o t e i n GP-2 i s b o t h a c e l l m e m b r a n e a n d a b a s e m e n t m e m b r a n e p r o t e i n i n mouse k i d n e y c e l l s . 4 8 7 L - F u c o s e c a n be i n c o r p o r a t e d i n t o a s e r i e s o f l o w - m o l e c u l a r w e i g h t amino a c i d I - f u c o s i d e s i n normal r a t kidney cells.488 The m o n o s a c c h a r i d e sequence a n d p o s i t i o n o f t h e l i n k a g e o f one o f t h e fucosides
(18) and t h e anomeric c o n f i g u r a t i o n s o f
linkages o f three other L-fucosides
(19-21)
the
I-
carbohydrate
h a v e been i d e n t i f i e d . 4 8 9
T e n t a t i v e evidence i s given t o suggest t h a t these unusual glycosides a r e d e r i v e d f r o m an i - f u c o p r o t e i n .
a -L-Fucp-l+L-Thr (19) a --FucpI 1+I-Se r (20) B - Q - G l c e ( 1+)- a - & - F u c p - l + i - T h r (21) A p a r t i c u l a t e f o l a t e - b i n d i n g p r o t e i n f r o m human p l a c e n t a h a s
been is o l a t e d a n d c h a r a c t e r i z e d.490
I m m u n o f l uo r e s c e n t s t u d i e s u s i n g
antibody d i r e c t e d against t h i s g l y c o p r o t e i n demonstrate t h a t an i m m u n o l o g i c a l l y s i m i l a r p r o t e i n i s p r e s e n t o n t h e p l a s m a membrane o f human e r y t h r o c y t e s ,
s u g g e s t i n g t h a t i t may f u n c t i o n a s a f o l a t e
receptor. Some p h y s i c o c h e m i c a l
properties o f
an a c i d i c g l y c o p r o t e i n
s e c r e t e d by r a t e p i d i d y m a l c e l l s h a v e b e e n ~ h a r a c t e r i z e d . ~ ’ ~The g-galactose,
2-
unexpectedly,
Q-
From amino a c i d sequence s t u d i e s o f g l y c o s y l a t e d component
C3
c a r b o h y d r a t e m o i e t y c o n t a i n s r e s i d u e s o f Q-mannose, a c e t a m i do-2-deox y-1- g l ucose,
neuram in i c a c i d , and,
g l uco se. of
r a t p r o s t a t i c b i n d i n g p r o t e i n , a g l y c o p e p t i d e c o n t a i n i n g 77 amino
acids
has
been c h a r a c t e r i z e d . 4 9 2
An o l i g o s a c c h a r i d e c h a i n i s
a t t a c h e d t o t h e p e p t i d e by a n N - g l y c o s i d i c b o n d t o I - A s n - 1 7 . Bovine c a r t i l a g e m a t r i x g l y c o p r o t e i n (mol. co n t a i n s
three
s u b u n i t s.4 9 3
G l y c o p e p t i de s
wt.
1.48
isolated
x
lo5)
after
p r o t e o l y t i c d i g e s t i o n a r e heterogeneous o n g e l chromatography and c o n t a i n Q-manno s y l a n d 2 - a c e t a m i d o - 2 - d e o x y - a - g l uco s y l r e s i d u e s ,
228
Carbohydrate Chemistry
p r o b a b l y d e r i v e d from o l i g o s a c c h a r i d e s o f the high-Q-mannose t y p e b o u n d t o p r o t e i n by 2 - g l y c o s i d i c l i n k a g e s . Tw o n o n - c o l l a g e n o us i n s o l u b l e s t r u c t u r a l g l y c o p r o t e i n f r a c t i o n s from u n c a l c i f i e d canine-puppy r i b c a r t i l a g e a r e both a s s o c i a t e d w i t h lipid.494 T h e c o m p l e x e s f o r m e d a r e s t a b l e e n o u g h t o be o f p o s s i b l e s i g n i f i c a n c e i n t h e metabolism of connective t i s s u e s . An i n t r i n s i c g l y c o p r o t e i n ( m o l . w t . 5.3 x l o 4 ) o f t h e s a r c o p l a s m i c r e t i c u l u m of r a b b i t s k e l e t a l m u s c l e has been separated f r o m t h e Ca2+ + Mg2+ a d e n o s i n e t r i p h ~ s p h a t a s e . ~ ' ~T h e g l y c o p r o t e i n c o n t a i n s 48% n o n p o l a r a m i n o a c i d s i n a d d i t i o n t o t w o g l y c a n c h a i n s , each c o n t a i n i n g n i n e Q-mannosyl a n d t w o 2 - a c e t a m i d o - Z - d e o x y - Qg l uco s y 1 r e s i d ue s A s u l p h a t e d g l y c o p r o t e i n , e n t a c t i n ( m o l . w t . 1.58 x l o 5 ) , h a s b e e n i s o l a t e d f r o m a n e x t r a c e l l u l a r b a s e m e n t mem b r a n e - l i k e m a t r i x e l a b o r a t e d i n c e l l c u l t u r e by a m o u s e e n d o d e r m a l c e l l l i n e . 4 9 6 I m m u n o e l e c t r o n m i c r o s c o p i c s t u d i e s show t h a t t h e m o u s e k i d n e y antigen is predominantly localized a t the surface o f e p i t h e l i a l c e l l s o f t u b u l e s a n d g l o m e r u l i a d j a c e n t t o t h e b a s e m e n t membrane. Laminin, p r e s e n t i n t h e l a m i n a l u c i d a o f t h e basement membrane, i s c l e a v e d by t h r o m b i n a n d p l a ~ m i n . ~ ' F~r a g m e n t s c l e a v e d by t h e enzymes have been assessed f o r t h e i r a b i l i t y t o m e d i a t e b i n d i n g o f e p i t h e l i a l c e l l s t o t y p e IV c o l l a g e n . P r o t e o l y s i s o f laminin from human p l a c e n t a l and r e n a l b a s e m e n t membranes has been a c h i e v e d w i t h The b i n d i n g o f l a m i n i n t o g l y c o s a m i n o g l y c a n s pepsin.498 (aggregating and non-aggregating subsets o f heparan sulphates and dermatan s u l p h a t e s a s well a s h e p a r i n , c h o n d r o i t i n s u l p h a t e s , and h y a l u r o n i c a c i d ) h a s b e e n s t u d i e d by a f f i n i t y c h r ~ m a t o g r a p h y . ~ ~ ' The b i n d i n g i s s p e c i f i c a n d o c c u r s o n a s i n g l e b i n d i n g s i t e o f laminin. S t u d i e s o n t h e b i o s y n t h e s i s o f l a m i n i n by m u r i n e p a r i e t a l endoderm cells have been r e p ~ r t e d . ~ " Evidence is given f o r the p r e s e n c e o f !-linked oligosaccharide side chains on a l l four p o l y p e p t i d e com po n e n t s o f t h i s g l y c o p r o t e i n . Two e x t r a c e l l u l a r m a t r i x g l y c o p r o t e i n s , s i m i l a r t o l a m i n i n , h a v e been i s o l a t e d from c u l t u r e s o f a mouse e n d o d e r m a l c e l l l i n e . 5 0 1 A s t r u c t u r a l g l y c o p r o t e i n from bovine ligamentum muchae exhibits a dual amine oxidase activity.502 If exposed t o copper i o n s t h e g l y c o p r o t e i n i s c a p a b l e o f f o r m i n g f i b r i l s a b o u t 11 nm i n diameter a n d o f t h e same s i z e a s t h e m i c r o f i b r i l s a s s o c i a t e d m a i n l y with e l a s t i c f i b r e s i n both embryonic and mature t i s s u e s . M o d i f i c a t i o n s i n the l e v e l s of glycosylamines and c r o s s l i n k s observed i n glomerular basement membranes i n s t r e p t o z o t o c i n d i a b e t i c
.
229
5: Glycoproteins, Glycopeptides, Proteoglycans, dnd Animal Polysaccharides
r a t s have been reported.503 Enhanced g - g l y c o s y l a t i o n o f in t e r m o l e c u l a r c r o s s l i n k s a n d i n c r e a s e d f o r m a t i o n o f g l y co s y l am ine c o u l d a f f e c t t h e p h y s i o c o c h e m i c a l p r o p e r t i e s o f t h e membrane. A
glycoprotein
endothelial
(mol.
wt.
1.9
c e l l s i n culture.504
x
lo5)
i s s e c r e t e d by
Immunological
aortic
and s t r u c t u r a l
studies i n d i c a t e t h a t the glycoprotein i s e i t h e r i d e n t i c a l t o o r c l o s e l y r e l a t e d t o thrombospondin,
which i s contained i n p l a t e l e t
granules and r e l e a s e d i n response t o thrombin-induced aggregation. A n t i b o d i e s t o human s e r u m a m y l o i d P b i n d i m m u n o s p e c i f i c a l l y t o the p e r i p h e r a l m i c r o f i b r i l l a r m a n t l e o f e l a s t i c f i b r e s i n s k i n and blood vessels o f normal adults.505 A s i a l o g l y c o p r o t e i n f r a c t i o n f r o m h e r r i n g eggs c o n t a i n s b o t h
a 1 k a l i - l a b i l e a n d a 1k a l i - s t a b l e c a r bohy d r a t e u n i t s .506
Each p e p t i de
c h a i n has an average o f f o u r o l i g o s a c c h a r i d e chains 2 - g l y c o s i d i c a l l y linked r e s i due s A
via
.
2-acetamido-2-deox
probable
structure
y-a- g a l a c t o s y l o f
the
glycan
and
L- t h r e o n i n e
portion
o f
a
s i a l o g l y c o p e p t i d e f r a c t i o n i s o l a t e d f r o m t h e s k i n o f t h e f i s h Labeo r o h i t a h a s been s u g g e s t e d f r o m m e t h y l a t i o n a n a l y s i s and e n z y m i c a n a 1y si s da t a. O7 The p r o t e i n c o m p o s i t i o n o f i s o l a t e d human p l a t e l e t a - g r a n u l e s has
been cha r a ~ t e r i z e d . ~ ' ~C r o s s e d a f fi n it y
i m m u n o e l e c tr o p h o r e s i s
u s i n g l e c t i n s i d e n t i f i e d a t l e a s t seven g l y c o p r o t e i n s , a p p e a r e d t o be s i a l o g l y c o p r o t e i n s . o r i g i n of
The a - g r a n u l e
s i x o f which
component i s t h e
t h e i r enhanced h a e m a g g l u t i n a t i o n a c t i v i t y . 5 0 9
insufficiency
of
the platelet-bound
An
l e c t i n may be t h e cause o f t h e
i n a b i l i t y o f gray p l a t e l e t s t o aggregate n o r m a l l y i n response t o thrombin. T h r o m b o s p o n d i n i s one o f t h e g l y c o p r o t e i n s r e l e a s e d f r o m human A hydrodynamic model o f
b l o o d p l a t e l e t s i n r e s p o n s e t o thrombin.510 thrombospondin i s proposed from molecular weight,
physical
s o l u t i o n measurements o f
p a r t i a l s p e c i f i c volume,
sedimentation coefficient,
and i n t r i n s i c v i s c o s i t y . P l a t e l e t g l y c o p r o t e i n s have been shown t o be u s e f u l p h e n o t y p i c markers
for
cells
o f m e g a k a r y o c y t e lineage.511
Immunofluorescent
s t a i n i n g w i t h an a n t i s e r u m t o h i g h l y p u r i f i e d p l a t e l e t g l y c o p r o t e i n s e x c l u s i v e l y l a b e l s human m e g a k a r y o c y t e s , p l a t e l e t s , a n d a p o p u l a t i o n o f s m a l l human bone-marrow m o n o n u c l e a r c e l l s . Differences
b e t w e e n human l e u c o c y t e a n d f i b r o b l a s t i n t e r f e r o n s
have been reviewed.512 dealing
w i t h
the
A book on i n t e r f e r o n i n c l u d e s a chapter
p u r i f i c a t i o n
and
characterization
of
230
Carbohydrate Chemistry
.
in t e r f e r o n s 5 1 3 Human f i b r o b l a s t
i n t e r f e r o n h a s been p u r i f i e d
chromatography,514
as
well
as
by
S e p h a r ~ s e ~ .E ~ v i d~ e~n c e f o r t h e e x i s t e n c e o f dimer
(mol.wt.
reported. chelate
A
x
4.0
lo4>
and a f f i n i t y
on
Blue
t h i s i n t e r f e r o n as a
a s w e l l a s a monomer
com b i n a t i o n o f h y d r o p h o b i c
chromatography,
by z i n c - c h e l a t e
chromatography (2.0
lo4)
x
chromatography,
chromatography
i s
copper on
Blue
Sepharose* h a s been used i n t h e p u r i f i c a t i o n o f human l y m p h o b l a s t o i d i n t e r f e r o n .516 Size
characteristics
of
human
leucocyte
interferon
r e d u c i n g an d no n- r e d u c i n g co n d i t i o n s ha ve been de t e r m ine d
. l7
under
M e t a b o l i c c a r b o h y d r a t e l a b e l l i n g i n t h e mouse system shows t h a t n o t o n l y m i t o g e n - a c t i v a t e d T a n d B l y m p h o c y t e s , b u t some o f t h e i r subpopulations
can be
d i s t i n g u i s h e d by
display s p e c i f i c sets o f glycoproteins, metabolic
specific glycoprotein
Human l y m pho cy t e s u b p o p u l a t i o n s a 1 so
l a b e l l i n g p a t t e r n s .518 ,519 by
their
carbohydrate
which a r e e a s i l y d e t e c t a b l e
l a b e l l i n g
and
electrophoretic
techniques.520 The b i n d i n g p a t t e r n o f h o r s e r a d i s h p e r o x i d a s e - c o n j u g a t e d p e a n u t l e c t i n o n s e c t i o n s o f l y m p h o i d t i s s u e f r o m d i f f e r e n t s o u r c e s has been
investigated.521
dependent,
The
binding,
which
i s
highly
species-
i s g r e a t e s t t o lymphocytes i n t h y m i c c o r t e x and g e r m i n a l
c e n t r e s i n man, guinea pig,and
mouse, a n d s h e e p .
Lymphoid t i s s u e from hamster,
r a b b i t d i d n o t r e a c t , w h i l s t i n r a t o n l y weak b i n d i n g
t o c e l l s i n t h e t h y m i c c o r t e x and g e r m i n a l c e n t r e s was d e t e c t e d . The o x i d a t i o n o f human p e r i p h e r a l m o n o n u c l e a r c e l l s w i t h sodium periodate r e s u l t s i n lymphocyte activation.522 of
the
oxidant
i s
accompanied
by
the
The m i t o g e n i c e f f e c t
oxidation
of
membrane-
a s s o c i a t e d neuraminosy 1, ! - g a l a c t o s y 1, and I - f u c o s y l r e s i d u e s . The by
r e c e p t o r - m e d i a t e d p i no cy t o sis o f
Q-mannosyl
and
macrophages has been reviewed.523 L-fucosyl
o r P-mannosyl
by macrophages and
uptake o f
g l y copro t e i n s
2-acetam i d o - 2 - d e o x y - q - g l
ucosyl
terminated
r e s i dues
by
Glycoconj ugates b e a r i n g t e r m i n a l
residues are
r e c o g n i z e d and i n t e x n a l i z e d
t h e same r e c e p t o r t h a t m e d i a t e s p l a s m a c l e a r a n c e lysosomal
glycosidases.524
The macrophage
receptor
h a s a b r o a d s p e c i f i c i t y and i s a b l e t o b i n d v a r i o u s g l y c o c o n j u g a t e s . I n human f i b r o b l a s t s , c e l l - s u r face
receptors
i s
t h e r e c o g n i t i o n o f l y s o s o m a l enzymes by mediated
by
g-manno s y l
6-pho spha t e
residues l o c a t e d on oligosaccharide
c h a i n s o n t h e s e enzymes.525
B o t h c a t h e p s i n D and B-hexosaminidase
c o n t a i n t h e phosphate groups
w h i c h a r e d i e s t e r - l i n ke d t o 2-a ce t a m i do-2-de ox y
-a- g l uco s y l
residues.
I
23 1
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides Developmental
changes i n t h e
g l y c o p r o t e i n s s y n t h e s i z e d by
n o r m a l a n d d y s t r o p h i c s a t e l l i t e mouse c e l l s g r o w n i n c u l t u r e h a v e been
observed.526
glycoproteins
Similar,
appear
to
be
but
m u l t i n uc 1e a t e d m y o l u b e s , b u t
not
identical,
synthesized no t
by
I-fucosylated
exclusively
by
normal
dup 1ic a t i n g m ono n uc 1e a t e d
s a t e l l i t e c e l l s o r by o t h e r n o n - m y o g e n i c c e l l s f r o m b o t h s o u r c e s . Changes i n g l y c o p r o t e i n s (mol.
wts.
1.0
x
lo5
a n d 9.0
x lo4,
r e s p e c t i v e l y ) i n m a l i g n a n t t r a n s f o r m a t i o n have been shown t o
be
d i r e c t l y r e l a t e d t o t h e u p t a k e o f P - g l u c o s e by t h e s e c e l l s . 5 2 7 The
purification
and
partial
structures
of
the
major
g l y c o p e p t i d e s i s o l a t e d f r o m c u l t u r e d human melanoma c e l l s a n d f r o m t h e c u l t u r e m e d i a have been r e p o r t e d . 5 2 8 from
The g l y c o p e p t i d e s o b t a i n e d
t h e h i g h l y t u m o r i g e n i c human melanoma c e l l s a r e m a r k e d l y
d i f f e r e n t f r o m t h o s e o b t a i n e d f r o m n o n t u m o r i g e n i c human f e t a l u v e a l me1ano cy t e s . The p l a s m i n o g e n a c t i v a t o r s e c r e t e d by human melanoma c e l l s i n c u l t u r e i s very s i m i l a r to, activator
found
i n
normal
o r i d e n t i c a l with, tissue,
~ r o k i n a s e . ~ ~ The ’ g l y c o p r o t e i n (rnol. i m m o b i l i z e d c o n c a n a v a l i n A,
wt.
exists
but 7.2
as a
the
i s x
plasminogen
different
lo4),
from
p u r i f i e d using
dimer.
Receptors f o r
D o l i c h o s b i f l o r u s a g g l u t i n i n on e m b r y o n a l c a r c i n o m a c e l l s have been i s o l a t e d a n d s h o w n t o be g l y c o p r o t e i n s ( m o l .
wt.
The l e c t i n does n o t b i n d t o d i f f e r e n t i a t e d c e l l s . the content o f neuraminic acid of
x 1
>7.0
0 ~ 1 . ~ ~
Differences i n
low cancer c e l l s ,
high cancer
c e l l s , a n d n o r m a l mouse l u n g c o u n t e r p a r t s have been observed.531 Normal l u n g c e l l s c o n t a i n h i g h e r neuraminic a c i d l e v e l s per c e l l i n c o m p a r i s o n w i t h t h e t r a n s f o r m e d ones. Three
t y p e s o f mononucleosomes i s o l a t e d f r o m
Ehrlich ascites
n u c l e i have been c h a r a c t e r i z e d . 5 3 2 Specific glycoproteins are a s s o c i a t e d w i t h t w o of t h e m o n o n u c l e o s o m e t y p e s w i t h t h e p r i n c i p a l g l y c o p r o t e i n h a v i n g a n apparent mol. w t . A carbohydrate-rich,
lo4)
water-soluble
o f 1.3
x
lo5.
g l y c o p r o t e i n (mol.
wt.
4.5
x
has been i s o l a t e d f r o m d e l i p i d a t e d l u n g l a v a g e f l u i d f r o m a
patient
with pulmonary
alveolar proteinosis.533
The v e r y
high
c a r b o h y d r a t e c o n t e n t i s made up of r e s i d u e s o f n e u r a m i n i c a c i d ( 2 4 ) ,
-
2 ace t a m ido -2 -de o x y -p - g l uco se
ga 1a c t o se ( 23 1 , 2- ace tam ido - 2 -de o x y --!
( 6 1 , g - g a l a c t o s e ( 1 9 1 , p - m a n n o s e (41, I - f u c o s e (11, a n d ! - g l u c o s e (11, p e r m o l e c u l e o f g l y c o p r o t e i n . U n l i k e a number o f c o l l a g e n -
r e l a t e d g l y c o p r o t e i n s w h i c h have been i s o l a t e d f r o m i n s o l u b l e l u n g c o n t e n t s i n pulmonary
proteinosis,
this
g l y c o p r o t e i n does
co n t a i n hy d r oxy-&- p r o l i n e o r hy d r ox y - k - l y s i n e .
not
Carbohydrate Chemistry
232 c v)
I
Q I
. + I nil
u
I nit I
I
m
m I
n
U
t
4 U
I
9 m
I
I L=yI
I
m I
n
M
t
4 v
A m
I I
v ) -
4
I
u
CJ t
I
II
I1
4
4
4
I
0
I
4 u
I
0 Q
z
2
4
U
I a 1 I
m I
n
U
t
4 v
AJ
4
m
U
I 0 1 1 I
m
I n v)
CJ
U
I
0
Q
-
1
b
C c m c z
b
cv t
l
w
oll
-
a
cv3
I K a I n Z
I
m n I
U
t
4 W
AI
4
m
U I
Ul I
m I
4
E
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
233
A g l y c o p r o t e i n (mol. w t . 6 . 2 x l o 4 ) , i s o l a t e d f r o m t h e l u n g l a v a g e m a t e r i a l of p a t i e n t s w i t h a l v e o l a r p r o t e i n o s i s , c o n t a i n s 72 r e s i d u e s of g l y c i n e and 5 r e s i d u e s o f hydroxy-I=-proline per m o l e c u l e , i n a d d i t i o n t o Q-mannose, a - g a l a c t o s e , I - f u c o s e , 2acetamido-2-deoxy-Q-glucose, and n e u r a m i n i c a c i d i n t h e m o l a r r a t i o o f 5:4:1:7:3.534 P a r t i a l amino a c i d sequence a n a l y s i s of p e p t i d e s d e r i v e d from t h e d i g e s t i o n o f t h e g l y c o p r o t e i n i n d i c a t e s t h e p r e s e n c e of a l t e r n a t i n g c o l l a g e n o u s and non-collagenous r e g i o n s i n t h e same p o l y p e p t i d e chain. A human a l v e o l a r g l y c o p r o t e i n r e l e a s e s two major g l y c o p e p t i d e f r a c t i o n s on p r o t e ~ l y s i s . ~From ~ ~ s t r u c t u r a l a n a l y t i c a l studies t h e t e n t a t i v e s t r u c t u r e s (22-23) have been proposed. Human a l - a n t i c h y m o t r y p s i n h a s been p u r i f i e d from human p l e u r a l f l u i d a n d from human serum.536 The g l y c o p r o t e i n (mol. w t . 5.8 x l o 3 ) i s o l a t e d from t h e two s o u r c e s h a s t h e same c h e m i c a l composition. A g l y c o p r o t e i n (mol. w t . 3.6 x l o 3 ) w i t h s i m i l a r p r o p e r t i e s t o c o l l a g e n has been i s o l a t e d from t h e l u n g l a v a g e of normal rabbit.537 B 1ood - gro up - spe c i f i c g l yco pro t e i n s o bt a i n e d from ova r i a n- cy st f l u i d s o f A1 a n d A 2 p e r s o n s h a v e b e e n s u b m i t t e d t o a l k a l i n e bo ro h y d r i de e l i m i n a t i on, de -! ace t y 1a t i on, pa r t i a 1 a c i d h y dro 1y s i s , and s u b s e q u e n t l y r e - i - a ~ e t y l a t i o n . ~The ~ ~ t r i s a c c h a r i d e s (24-26) w e r e c h a r a c t e r i z e d f r o m b o t h t h e A1 a n d A 2 m a t e r i a l s . O l i g o s a c c h a r i d e ( 2 6 ) h a s n o t p r e v i o u s l y been d e t e c t e d i n human g l yco pro t e i n s .
a-Q-GaleWc-( 1 + 3 ) - @ 3 - G a l p (1+3) -Q-GlcNAc (24)
-
a -Q Ga lgNA c- ( 1+3 ) -6 -Q - Ga le- ( 1+4) -Q - G 1 c NA c
(25) a-p-GaleNAc-( 1+3) -B-p-Galp( 1+3)-GalNAc-ol 26)
L u b r i c a t i n g g l y c o p r o t e i n 1 h a s been p r e p a r e d from b o v i n e synovial fluid.539 E l e c t r o n - m i c r o s c o p i c s t u d i e s show t h a t t h e g l y c o p r o t e i n i s an a s y m m e t r i c molecule. The m o l e c u l a r model t h a t best f i t s t h e m o l e c u l a r dimensions (222 nm l o n g and 1-2 nm d i a m e t e r ) i s t h a t o f a p a r t i a l l y extended f l e x i b l e rod. Human a m n i o t i c f l u i d c o n t a i n s an i r r e v e r s i b l e t i s s u e i n h i b i t o r
Carbohydrate Chemistry
234 of
c ~ l l a g e n a s e . ~A~l t h~o u g h t h i s g l y c o p r o t e i n i s c l o s e l y a s s o c i a t e d
with
it
fibronectin,
does
not
cross-react
with
antibodies
to
f ib r o ne c t in.
The m i c r o h e t e r o g e n e i t y o f purified
rat
the d i f f e r e n t
a-fetoprotein
variants
carbohydrate chains o f
has
been s t u d i e d . 5 4 1
The
methodology used i n c l u d e s t h e r e l e a s e o f c a r b o h y d r a t e c h a i n s f r o m t h e g l y c o p r o t e i n by h y d r a z i n o l y s i s ,
-N - a c e t y l a t i o n labelled
with
{14C)-acetic
oligosaccharides
the l a b e l l i n g of
anhydride,
on
g l y c a n s by r e -
the f r a c t i o n a t i o n of
immobilized
concanavalin
c h a r a c t e r i z a t i o n o f t h e l a b e l l e d g l y c a n s by t.1.c. has been i s o l a t e d f r o m human a s c i t e s f l u i d . 5 4 2 (27-29)
were r e l e a s e d from
a-Fetoprotein
t h e p o l y p e p t i d e c h a i n by h y d r a z i n o l y s i s .
accumulated duodenal f l u i d , (mol.
wts.
x
5.4
lo4,
contains
1.02
the
and
Oligosaccharides
Human e n t e r o k i n a s e ( e n t e r o p e p t i d a s e EC 3.4.21.91,
subunit
the
A,
p u r i f i e d from
contains three glycosylated subunits x 105,and
1.4
active-site
x 10
1.5 4 3
i-serine
The s m a l l e s t
residue, and
the
o l i g o s a c c h a r i d e c h a i n s o f t h i s u n i t a p p e a r t o be b J - g l y c o s i d i c a l l y linked. The
NAO glycohydrolase
from
Bungarus
fasciatus
(banded k r a i t )
venom h a s b e e n p u r i f i e d t o e l e c t r o p h o r e t i c enzyme
i s a
glycoprotein
(mol.
wt.
1.2
The
lo5)
x
containing
two
s u b u n i t s.
-
Ce 11 s ur Pa ce G 1y Mp r o tei ns
9
with
Two r e c e n t l y p u b l i s h e d t r e a t i s e s h a v e i n c l u d e d c h a p t e r s d e a l i n g c a r b o h y d r a t e s and c e l l membranes,545 and w i t h t h e s t r u c t u r e s
a n d f u n c t i o n s o f t h e c a r b o h y d r a t e m o i e t i e s o f membrane g l y c o p r o t e i n s a n d g l y ~ o l i p i d s . ~R~e v~i e w s T-cell of
recognition,547
n o r m a l and cancerous
importance
of
membrane
and
dealing with glycosyltransferases
cells,548
glycoconjugates the
and
a n d w i t h g l y c o c o n j u g a t e s o f s u r f a c e membranes
multiple
i n
have
been p u b l i s h e d .
the organization
roles
played
co n s t i t ue n t s in m a 1ig na n t t r a n s f o r m a t i o n s
by
of
these
the
The cell
membrane
ha ve bee n r e v i ew e d .549
A
d e t a i l e d account o f h i s t o c h e m i c a l methods f o r c h a r a c t e r i z i n g complex cell-surface
glycoconjugates
by
l i g h t
microscopy
has
been
published. 550 Electron
microscopy
has
been
used
to
map
the
l o c i
of
i m m uno ch em ic a l a c t i ve s i t e s o n i n d i v i d u a l g l y cop r o t e i n m o l e c u l e s.551
This i n v o l v e s t h e complexing o f a g r o u p - s p e c i f i c macromolecule,
such
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
4
0 I
u
Q Z 0
4 u J - 4
CI
n
Ql 3
LL. I
Q:
z
Ql
4
U I
CYI
m n I
e t
4 U
I
I
U I
I
m
I n - 4
n
ul
t
4 v
I
al (0
r
I CYI I
d n I
N
t
4
v
-+ b I
N 4
U
I
0 Q
z
Ql
4
u I
U I
I
0
a .
z
?
4
U I
UI I
cn
n I
+
U 4 U
I
ca n I
U
t
4
v
I
a
4
m
U
I UI
I
I
4
CL
I Ul I
m I
hl
LL
235
236
Carbohydrate Chemistry
a s a l e c t i n o r an a n t i b o d y , w i t h an a s y m m e t r i c g l y c o p r o t e i n f o l l o w e d by t h e d i r e c t v i s u a l i z a t i o n o f t h e c o m p l e x i n t h e e l e c t r o n m i c r o s co pe A procedure f o r d e t e r m i n i n g membrane p u r i t y of i s o l a t e d c e l l s h a s been r e p ~ r t e d . ” ~ I n t a c t c e l l s a r e l a b e l l e d w i t h p e r o x i d a s e c o n j u g a t e d wheat-germ a g g l u t i n i n . A f t e r d i s r u p t i o n o f t h e i n t a c t l a b e l l e d c e l l s , p l a s m a membrane p u r i f i c a t i o n can be m o n i t o r e d by u l t r a s t r u c t u r a l h i s t o c h e m i c a l ex am i n a t i on o f t h e pe rox i d a s e conjugated l e c t i n . H i s t o c h e m i c a l f i x a t i o n o f c e l l g l y c o p r o t e i n s using p e r i o d a t e oxidation, followed by complexing w i t h L - l y s i n e and p a r a f o r m a l d e h y d e , h a s p r e v i o u s l y been a s s u m e d t o c r o s s l i n k s p e c i f i c a l l y p l a s m a r e s u l t s of an e v a l u a t i o n u s i n g membrane g l y c ~ p r o t e i n s . ’ ~ The ~ Novikoff r a t a s c i t e s h e p a t o c e l l u l a r carcinoma c e l l s suggest a com p l e x i n t e r a c t i o n b e t w e e n p e r i o d a t e - o x i d i z e d g l y c o p r o t e i n s a n d po 1ym e r i c com p l ex e s o f form a 1 de h y de and & - l y si ne C e l l - s u r f a c e g l y c o p r o t e i n s , b u t not g l y c o l i p i d s , from e r y t h r o c y t e s , c o l o n i c t u m o u r c e l l s , and s k i n f i b r o b l a s t s , b i n d t o i m m o b i l i z e d R i c i n u s communis a g g l u t i n i n . 5 5 4 The l a c k of b i n d i n g of t h e s o l u b i l i z e d g l y c o l i p i d s t o t h e i m m o b i l i z e d l e c t i n c o u l d be due t o t h e f a c t t h a t t h e i r m o n o v a l e n c y r e s u l t s i n t o o low a n a f f i n i t y f o r t h e l e c t i n t o c a u s e r e t e n t i o n on t h e column. A p p a r e n t m i n o r c h a n g e s i n c e l l - p r e p a r a t i o n m e t h o d s have been found t o r e s u l t i n major a l t e r a t i o n s i n c e l l b e h a v i o u r , r e f l e c t i n g d i f f e re nce s i n c e l l - s u r f a ce pro pe r t i e s of r a t h e pa t o cy t e s 555 P l a s m a membrane g l y c o p r o t e i n s from r a t h e p a t o c y t e s t h a t had been exposed t o s u b e n d o t h e l i a l s p a c e s of D i s s e have been s e l e c t i v e l y l a b e l l e d w i t h Q - g a l a c t o s e ox i d a s e - s o d i um b o r o t r i t i i d e . Approximately f o r t y gly c o p r o t e i n s were r e s o l v e d by two-dimensional e l e c t ro ph o r e si s. D i f f e r e n t c e l l - s u r f a c e g l y c o p r o t e i n s seem t o be i n v o l v e d i n t h e i n i t i a l r e a c t i o n s of c e l l - c e l l a n d c e l l - c o l l a g e n a d h e s i o n of r a t hepa tocy t e s . 5 5 7 G l y c o p e p t i d e s o b t a i n e d by pronase d i g e s t i o n o f r a t l i v e r plasma m e m b r a n e s have been f r a c t i o n a t e d by a f f i n i t y c h r o m a t o g r a p h y on i m m o b i l i z e d c o n c a n a v a l i n A.558 The primary s t r u c t u r e (29) of a b i a n t e n n a r y glycan from one of t h e f r a c t i o n s has been i d e n t i f i e d by h i g h - r e s o l u t i o n ‘H n.m . r . s p e c t r o s c o p y and m e t h y l a t i o n a n a l y s i s . T h e k i n e t i c behaviour of t r y p s i n i n non-covalent e l e c t r o s t a t i c i n t e r a c t i o n w i t h a s i a l o g l y c o p e p t i d e f r a c t i o n i s o l a t e d from major hepatoma c e l l s u r f a c e s has been reported.’”
.
.
.
5: Glycoproteins, Glycopeptides, Proteeglycans, and Animal Polysaccharides
237
Immunological evidence f o r t h e transmembrane nature o f t h e rat l i v e r r e c e p t o r f o r a s i a l o g l y c o p r o t e i n s has been presented.560 The r e c e p t o r i s exposed on t h e cytoplasmic, as well as t h e e x t e r n a l , s u r f a c e s o f t h e h e p a t o c y t e p l a s m a membrane, a n d d e t e r m i n a n t s o n e a c h s u r f a c e a r e a n t i g e n i c a l l y d i s t i n g u i s h a b l e . The b i o s y n t h e s i s a n d i n s e r t i o n of the r e c e p t o r i n t o endoplasmic reticulum membranes have been s t u d i e d u s i n g a n t i b o d y m o n o s p e c i f i c f o r t h e b i n d i n g protein.561 The b i n d i n g p r o t e i n i s e x c l u s i v e l y s y n t h e s i z e d o n t h e m e m b r a n e - b o u n d r i b o s o m e s and s p a n s t h e m i c r o s o m a l membrane, p r o b a b l y e x p o s i n g t h e C-terminal segment on the cytoplasmic surface and the N-terminal segment containing carbohydrate m o i e t i e s on t h e luminal surface. D e m o n s t r a t i n g a new r o u t e o f c l e a r a n c e o f g l y c o p r o t e i n s f r o m r a t p l a s m a , a b i n d i n g p r o t e i n s p e c i f i c f o r p - m a n n o s y l a n d / o r 2acetamido-2-deoxy-~-glucosyl r e s i d u e s has been i s o l a t e d from rat liver.562 This protein is analogous t o the binding protein s p e c i f i c f o r a s i a l o g l y c o p r o t e i n s , which m e d i a t e s t h e o r i g i n a l r o u t e of clearance, i n its predominant l o c a l i z a t i o n i n t h e l i v e r and i n its r eq u i r eme n t o f c a l c i um b i n d i n g. T h e a s i a l o g l y c o p r o t e i n r e c e p t o r , r e q u i r i n g Ca2+ f o r l i g a n d b i n d i n g , h a s been i d e n t i f i e d o n a c o n t i n u o u s human h e p a t o m a c e l l l i n e , Hep G2.563 There a r e a p p r o x i m a t e l y 150,000 l i g a n d m o l e c u l e s bound p e r c e l l a t 4OC. D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y h a s been used t o examine t h e t h e rm a 1 d e n a t u r a t i 0 n o f r a b b i t h e p a t i c 9 - g a l a c t o s y l - b i n d i n g Ca2+ a n d l i g a n d b i n d i n g i n f l u e n c e t h e d e n a t u r a t i o n protein.564 process. H u m a n a s i a l o t r a n s f e r r i n s , t y p e s 1 , 2, a n d 3 , a n d r a b b i t a s i a l o t r a n s f e r r i n exhibit unequal binding with p u r i f i e d rat l i v e r p l a s m a membranes.565 The a s i a l o g l y c o p r o t e i n r e c e p t o r o n c u l t u r e d rat h e p a t o c y t e s mediates t h e t o x i c e f f e c t s o f a c o n j u g a t e of a s i a l o f e t u i n and fragment A of d i p h t h e r i a toxin.566 A s i a l o g l y c o p r o te i n s b u t n o t t h e corresponding s i a l o gly coprot e i n s are able t o block t h e a c t i o n o f t h e conjugate. v i v o h e p a t i c u p t a k e by t h e p a r e n c h y m a l Evidence f o r the cells of a Q-galactosyl-terminated glycoprotein (asialofetuin) i n f i s h (Salmo a l p i n u s ) has been r e p o r t e d . 5 6 7 The l e c t i n - d e p e n d e n t r e c o g n i t i o n o f d e s i a l y l a t e d e r y t h r o c y t e s by K u p f e r c e l l s h a s b e e n d i s c u s s e d .568 The s p e c i f i c i t y and k i n e t i c s o f endocy t o s i s o f g l y c o p e p t i d e s a n d g l y c o p r o t e i n s by i s o l a t e d r a t r e t i c u l o e n d o t h e 1 i a l c e l l p r e p a r a t i o n s have been examined.569 The c e l l r e c e p t o r i s h i g h l y
238
Carbohydrate Chemistry
selective
i n i t s
recognition of
subsequently internalized,
oligosaccharides
which
are
and t h e minimum s t r u c t u r e (30) r e q u i r e d
f o r r e c o g n i t i o n and e n d o c y t o s i s i s proposed. R - ( 1+6)-a-P-Mane-(
1+6)-B-B-Man~-( 1+4) -B-Q-GlceNAc-(
1+4)
-
8 -Q-GlceNAc-i-Asn
3
I 1 a -Q -Mane (30)
R = a-Q-Mane o r B-Q-GlCQNAC
The c e l l - s u r f a c e
glycoconjugates of
and o f
four
use o f
1251-substituted
and
by
the
ricin-resistant use o f
baby-hamster
kidney c e l l s
v a r i a n t s h a v e b e e n i n v e s t i g a t e d by t h e
r i c i n which binds t o 1-galactosyl
l e c t i n s which
bind t o
a c e tam ido - 2 -deox y -Q- g l uco sy 1 r e s id ue s .5 70 number o f l e c t i n a n d / o r r i c i n
of
the
2-
r i c i n r e c e p t o r s were found between t h e c e l l
resistance
mo d i f i c a t i o n s
and
M a j o r d i f f e r e n c e s in t h e
surface o f wild-type c e l l s and t h a t o f r i c i n - r e s i s t a n t The
residues,
neuraminosyl
o f
variant
concentration
cells of
i s
variants.
concomitant
certain
to
g l y c o c o nj u g a t e
structures which are accessible t o the sugar-binding proteins. Monkey k i d n e y c e l l s i n f e c t e d w i t h Yaba t u m o u r pox v i r u s e x h i b i t p l a s m a membrane a l t e r a t i o n s when t r e a t e d w i t h b o t h f l u o r e s c e i n l a b e l l e d a n d u n l a b e l l e d c o n c a n a v a l i n A.571 A c o m b i n a t i o n o f i m m u n o l o g i c a l and b i o c h e m i c a l methods have
been u s e d t o i d e n t i f y s u r f a c e membrane c o m p o n e n t s i n v o l v e d i n . c e l l substratum
adhesion.572
Highly p u r i f i e d adhesion-related
wt.
c o n s i s t i n g o f i n t e g r a l membrane g l y c o p r o t e i n s ( m o l .
materials 1.4
x
lo5)
t h a t a r e exposed t o the e x t r a c e l l u l a r environment were i s o l a t e d . Their r o l e i n the process o f cell-substratum adhesion i s n o t y e t un de r s t o o d. Mutant Chinese-hamster ovary c e l l s s e l e c t e d f o r r e s i s t a n c e t o a h a v e a l t e r e d Q-
c o n j u g a t e o f r i c i n and o-(6-phospho)-P-mannopentaose mannose 6 - p h o s p h a t e r e c e p t o r s . 5 7 3
These m u t a n t s e x h i b i t r e d u c e d
u p t a k e and a l t e r e d b i n d i n g o f exogenously added a c i d h y d r o l a s e . mutants
secrete
glucuronidase, and
two
L-f
to
six
times
more
ucosidase than the
a-Q-mannosidase, parent
e l e v a t e d s e c r e t i o n i s n o t due t o a l t e r a t i o n o f p h o s p h a t e r e c o g n i t i o n m a r k e r o n t h e enzymes,
cells.574
The
B-QThis
t h e Q-mannose 6 -
b u t appears t o r e s u l t
f r o m a l t e r a t i o n s i n t h e P-mannose 6 - p h o s p h a t e r e c e p t o r . A r e v i e w has been p r e s e n t e d o n t h e c e l l - s u r f a c e
properties o f
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides the
glycoconjugate
patterns o f
normal,
239
d i f f e r e n t i a t i n g , and
n e o p l a s t i c p a n c r e a t i c a c i n a r c e l l s .5 75 S o l u b i l i z a t i o n w i t h sodium d o d e c y l s u l p h a t e and subsequent e l e c t r o p h o r e t i c f r a c t i o n a t i o n has d e m o n s t r a t e d t h e h e t e r o g e n e i t y o f p r o t e i n s and g l y c o p r o t e i n s i s o l a t e d from
i n t h e i n t e s t i n a l b r u s h b o r d e r membrane
tadpole,
G l y c o p r o t e i n bands t h a t
y o u n g a n d a d u l t Rana c a t e s b e i a n a . 5 7 6 co-migrate
with
maltase,
glucoamylase, a n d
a l k a l i n e p h o s p h a t a s e a c t i v i t y have been i d e n t i f i e d . Sucrase-isomaltase,
an i n t e g r a l membrane g l y c o p r c t e i n t h a t
a p p e a r s i n i n t e s t i n a l m i c r o v i l l u s membranes d u r i n g d i f f e r e n t i a t i o n of intestinal epithelial cells,
has been p u r i f i e d o n i m m o b i l i z e d
m o n o c l o n a l a n t i b o d y - p r o t e i n A columns.577
The m a j o r p a r t o f
the
carbohydrate associated w i t h the g l y c o p r o t e i n i s i n t h e form o f complex o l i g o s a c c h a r i d e s l i n k e d t o A - a s p a r a g i n e . Lectin
binding t o
sealed and d i s r u p t e d d i s c
membranes o f
v e r t e b r a t e r e t i n a l r o d c e l l s supports t h e view t h a t r h o d o p s i n i s a transmem brane p r o t e i n w i t h i t s o l i g o s a c c h a r i d e
components o r i e n t e d
toward t h e i n t e r i o r o f the discs.578
I n d i r e c t evidence favouring
the
a
transmembrane
disposition o f
r o d outer-segment
disc
g l y c o p r o t e i n i s a l s o considered. A human s p e r m a t o z o a 1 a n t i g e n ,
acid,
amino sugars, a n d hexose,
containing residues o f neuraminic
has been p u r i f i e d . 5 7 9
The a n t i g e n
r e a c t s w i t h i m m u n o g l o b u l i n G and i m m u n o g l o b u l i n M a n t i b o d i e s a n d w i t h both types o f antisera. The m a j o r g l y c o p r o t e i n o n t h e p l a s m a membrane o f r a t t e s t i c u l a r
wt.
x
1.1
spermatozoa
(mol.
spermatozoa
pass through
lo5)
has
been i s o l a t e d . 5 8 0
the epididymis,
this
As
glycoprotein
d i s a p p e a r s a n d i s r e p l a c e d by a n o t h e r g l y c o p r o t e i n ( m o l . w t . 3.2 x lo4), which i s a m a j o r component o f e p i d i d y m a l s e c r e t i o n s . A g l y c o p r o t e i n (mol.
ga l a c t o s e
-
,
Q - m a nno s e
,
wt.
1.6
x
lo5)
containing residues o f
e-
2 - a c e t a m ido - 2 - d e o x y - E - g l uco se , a n d 2 -
a c e t am i do 2 -de ox y -9- g a l a c t o se has bee n ide n t i f i e d a s a c e l l - s u r f a ce r e c e p t o r o f b o a r spermatozoa f o r c o n c a n a v a l i n A.581 E n z y m i c r e m o v a l of c e l l - s u r f a c e unmasking and s t i m u l a t i o n o f
n e u r a m i n i c a c i d l e a d s t o an
gonado t r o p h i n - r e c e p t o r
p l a s m a membranes of b o v i n e c o r p u s l u t e u m .582 go na do t r o p h i n - r e c e p t o r
activity i n
A r e l a t i o n s h i p between
i n t e r a c t i o n and g l yco p r o t e i n-bo un d ne uram i n i c
a c i d has been d e m o n s t r a t e d . The sodium c h a n n e l s a x i t o x i n - b i n d i n g s a r c o l emma c o n t a i n s r e s i d u e s of 9-manno se, 2-deox y - Q - g a l a c t o s e ,
component o f r a t h i n d - l i m b
s- g a l a c t o se , 2-ace tam ido-
2-acetam i d o -2-deoxy-e-gl
ucose, and n e u r a m i n i c
Carbohydrate Chemistry acid.583
The t o x i n - b i n d i n g
s i t e i s s p a t i a l l y separated from b i n d i n g
s i t e s f o r l e c t i n s s u c h a s c o n c a n a v a l i n A,
wheat-germ
a g g l u t i n i n , and
R i c i n u s communis. The b i n d i n g s i t e s f o r agglutinin, have
been i d e n t i f i e d . 5 8 4
different 5.0
x
wheat-germ
agglutinin,
R i c i n u s communis
a n d c o n c a n a v a l i n A o n mouse n e u r o b l a s t o m a c e l l membranes glycopeptides,
lo4,
but four
major cell-surface
Concanavalin most
A
binds
w i t h molecular
to
over
weights
twenty
greater
than
of these g l y c o p e p t i d e s were i d e n t i f i e d a s t h e
receptors f o r the lectin.
D e t e r g e n t s have been u s e d t o s o l u b i l i z e t r a n s f e r r i n - t r a n s f e r r i n r e c e p t o r c o m p l e x e s from
r a b b i t r e t i c u l o c y t e membrane.585
Estimates
o f t h e m o l e c u l a r w e i g h t o f t h e t r a n s f e r r i n r e c e p t o r depend o n t h e conditions o f electrophoresis. p a r t i a l l y modified,
I t is s u g g e s t e d t h a t t h e r e c e p t o r i s
p e r h a p s by g l y c o s y l a t i o n .
A s o l u b l e h a e m a g g l u t i n a t i o n a c t i v i t y has b e e n o b t a i n e d f r o m
t e r a t o c a r c i n o m a stem c e l l s . 5 8 6
This haemagglutinin i s s e n s i t i v e t o
t r y p s i n a n d i s i n h i b i t e d by s p e c i f i c c a r b o h y d r a t e s s u c h a s [)-mannans and I - f u c a n s ,
indicating that i t i s a lectin.
The c a r b o h y d r a t e -
and
erythrocyte-binding
s p e c i f i c i t i e s o f t h e s o l u b i l i z e d l e c t i n a r e very
similar to
the cell-surface
that of
o n i n t a c t stem c e l l s , The
effect
of
carbohydrate-binding
component
s u g g e s t i n g i d e n t i t y o f t h e two components. dexamethazone
on
cell-surface
glycoprotein
a c c u m u l a t i o n i n HeLa c e l l s i s r e l a t e d t o i n c r e a s e d s u g a r - l i n k e d do 1i c h o l s y n t h e s i s . The
major
87
plasma
membrane
sialoglycoprotein
a s c i t e s mammary a d e n o c a r c i n o m a
of
13762 r a t
c e l l s i s released from
non-
x e n o t r a n s p l a n t a b l e a n d x e n o t r a n s p l a n t a b l e s u b l i n e s by p r o t e o l y t i c cleavage.588
The s i a l o g l y c o p r o t e i n p r o b a b l y
binds to
t h e membrane
v i a a hydrophobic p o r t i o n o f the p o l y p e p t i d e which remains w i t h t h e
membrane o n r e l e a s e . E v i d e n c e h a s been p r e s e n t e d f o r t h e i n v i v o a s s o c i a t i o n o f t w o c e l l g l y c o p r o t e i n s o f mammary a s c i t e s t u m o u r studies
on
the
redistribution
Redistribution of presence
of
concanavalin A
peanut
o f
cells,
fluorescent
based upon lectins.589
r e c e p t o r s was o b s e r v e d i n t h e
agglutinin, but
a g g l u t i n i n r e c e p t o r s was o b s e r v e d o n l y
redistribution of
peanut
upon t r e a t m e n t o f t h e c e l l s
w i t h c o n c a n a v a l i n A. A pea l e c t i n r e c e p t o r
f r o m 6C3HED m u r i n e a s c i t e s t u m o u r c e l l s
has been d e g r a d e d by t r y p s i n t o r e l e a s e a g l y c o p e p t i d e ( m o l . x
1 0 ~ ) .T h~ is ~ h i g~h - m o l e c u l a r - w e i g h t
wt.
g l y c o p e p t i d e i s absent
non-specific protease digests o f viable cells.
2.0 from
Sequential l e c t i n
24 1
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
a f f i n i t y chromatography o f detergent e x t r a c t s o f c e l l s has p e r m i t t e d the probable i d e n t i f i c a t i o n of the native glycoprotein. C e l l - f r e e m a t r i x m a t e r i a l f r o m human f i b r o b l a s t contains a cell-surface
glycoprotein
wt.
(mol.
lo5)
x
1.4
cultures which
seems t o be c l o s e l y a s s o c i a t e d w i t h t h e p e r i c e l l u l a r f i b r ~ n e c t i n . ~ ~ ~ Like fibronectin,
t h i s g l y c o p r o t e i n can f o r m a n e x t e n s i v e d i s u l p h i d e
crosslinked structure,
wt.
(mol.
2.5
covalent
x l
bonds
p o s s i b l y w i t h a s e c o n d g l y c o p r o t e i n component
~ The) p o. s s ~ i b i l i~ ty th ~a t c o v a l e n t and/or
~ bind
a l l
three
glycoproteins
i n
a
non-
matrix
was
discussed. Rat
Thy-1
antigen,
a glycoprotein o f
111 amino a c i d r e s i d u e s ,
i s a m a j o r membrane m o l e c u l e o f t h y m o c y t e s and b r a i n . 5 9 3 amino
acid
reported.
sequence o f
rat
An
sequence and
apparent
brain
i m m u n o g l o b u l i n was o b s e r v e d .
Thy-1
The f u l l
glycoprotein
structural
Evidence
for
has
been
homology
with
an evolutionary
r e l a t i o n s h i p b e t w e e n Thy-1 a n t i g e n and i m m u n o g l o b u l i n s has been p r e s e n t e d and a h y p o t h e s i s f o r t h e f u n c t i o n a l s i g n i f i c a n c e o f t h e Thy-1 a n t i g e n proposed.594 either
The a n t i g e n e x i s t s i n t w o a l l e l i c f o r m s ,
o r Thy-1.2.595
Thy-1.1
The T h y - 1 . 2
antigen has
been
i d e n t i f i e d by m o n o c l o n a l - a n t i b o d y t e c h n i q u e s a n d shown t o be l o c a t e d on t h e T h y - 1 g l y c o p r o t e i n . Metabolic
carbohydrate
labelling
for
the
analysis
of
g l y c o p r o t e i n s f r o m a c t i v a t e d human l y m p h o c y t e s has been u s e d i n a s t u d y of
the responding c e l l population.596
Numerous g l y c o p r o t e i n s ,
i s o l a t e d f r o m lymp h o cyte s u b s e t s a f t e r s t i m u l a t i o n w i t h m i t o g e n and alloantigen,
have been d e t e c t e d .
moieties of
h i gh-m o l e c u l a r - w e i g h t
lymphocytes
of
T
and
B origins
Differences i n the carbohydrate gly coproteins
have
been
monoclonal a n t i b o d i e s w i t h a n t i - I and a n t i - i
from
human
demonstrated
using
s p e c i f i ~ i t i e s . ~The ~ ~
c h i c k e n a n t i - ( bo v i ne a 2 - m a c r o g l o b u l i n ) a n t i bo d i e s t o
b in d i ng o f
N a m a l v a l y m p h o b l a s t o i d c e l l s has been d e m ~ n s t r a t e d . ~ ’ ~The p o s s i b l e r o l e o f t h e g l y c o p r o t e i n o n t h e c e l l s i s discussed. Treatment
of
c u l t u r e d human l y m p h o c y t e s w i t h
tunicamycin
r e s u l t s i n a decrease o f i n c o r p o r a t i o n o f c a r b o h y d r a t e i n t o p r o t e i n , together
with a
decrease i n the
hormone t o t h e c e l l s . 5 9 9 i n receptor-binding at
surface
functions
human
T
x
inhibit
Antibodies
cytolytic
lymphocytes.600
lo5
i n s u l i n and g r o w t h
t h e decreases a r e m o s t l y
c a p a c i t y and n o t a f f i n i t y .
glycoproteins
of
binding o f
F o r t h e hormones,
A
but
not
monoclonal
directed
suppressor antibody,
m o l e c u l a r w e i g h t f o r m o f T200 ( t h e m a j o r
specific for
t h e 2.2
cell-surface
glycoprotein on lymphoid cells),
has been u s e d t o show
242
Carbohydrate Chemistry
t h a t t h e g l y c o p r o t e i n i s expressed o n l y on B c e l l s and a subset o f bone-marrow
c e l l s w h i c h i n c l u d e s B c e l l precursors.601
A comparison o f
b i n d i n g s i t e s f o r wheat-germ
agglutinin on R a j i
l y m p h o b l a s t o i d c e l l s a n d t h e i r i s o l a t e d n u c l e i a n d p l a s m a membranes i n d i c a t e s s i m i l a r i t i e s i n t h e l e c t i n r e c e p t o r s on t h e o u t e r surface o f lymphoblastoid c e l l s and the c e l l nuclei.602
D i f f e r e n c e s were
o b t a i n e d w i t h i s o l a t e d membranes, a n d t h e s e may be due t o i n v e r s i o n of
t h e membrane v e s i c l e s o r t o t h e i r d e c r e a s e d r i g i d i t y as c o m p a r e d
with the i n t a c t cell. bo r o h y d r ide r e d u c t i on, a n d a c i d h y d r o 1y s i s
P e r i oda t e ox ida t i on,
o f human p e r i p h e r a l lymphocytes, b u t n o t mouse s p l e n o c y t e s o r c a l f l y m p h node c e l l s ,
release
glycerol,
propan-1 ,Z-diol,
carbon analogue o f n e u r a m i n i c acid.603 a r i s e from residues.
Q-galactosyl,
and t h e s e v e n
These f r a g m e n t s p r o b a b l y
I-fucosyl,
and N - a c e t y l n e u r a m i n o s y l
A subpopulation o f chicken B lymphocytes t h a t reacts w i t h
t h e I - f u c o s e - s p e c i f i c l e c t i n f r o m L o t u s t e t r a g o n o l o b u s has been identified.604
The d i s t r i b u t i o n o f t h e l e c t i n - r e a c t i v e
w i t h t h e age o f t h e c h i c k e n .
c e l l s varies
D i f f e r e n t i a l glycosylation o f murine B
c e l l a n d s p l e e n a d h e r e n t c e l l t A a n t i g e n s h a s been r e p o r t e d . 6 0 5 Three p r e d o m i n a n t g l y c o p r o t e i n s have been i s o l a t e d f r o m r a t t h y m o c y t e p l a s m a membranes.606
Two o f t h e g l y c o p r o t e i n s h a v e a
ca r b o h y d r a t e com po s i t i on c h a r a c t e r i s t ic o f The o t h e r
glycoprotein,
carbohydrate similarities to erythrocytes.
units
1-g l yco sy l a t e d
containing about
per
100
glycophorin,
amino
acids,
the major
p r o t e i ns.
twenty 2-glycosylated shows
structural
sialoglycoprotein
o f human
The m o n o c l o n a l a n t i b o d i e s a n t i - T 1 a n d a n t i - T 3 b o t h
r e a c t w i t h a l l human p e r i p h e r a l t h y m u s - d e r i v e d l y m p h o c y t e s a n d w i t h 1 0 % of
t h y m o ~ y t e s . ~Each, ~ ~ however,
surface structures, g l y c o p r o t e i n (mol. glycoprotein
wt.
(mol.
g l y c o p r o t e i n (mol.
recognizes
wt.
6.9
x
wt. 1.0
lo4>
1.9 x
x
lo5>
as
a
receptor
for
cell-
being a
and t h a t o f t h e a n t i - T 3 b e i n g a
lo4>.
A
human
cell-surface
t h a t i s s e l e c t i v e l y e x p r e s s e d by
p r o l i f e r a t i n g human l e u k a e m i c t h y m u s - d e r i v e d identified
different
with the target antigen o f anti-T1
serum
c e l l s has
transferrin.608
been This
g l y c o p r o t e i n c o n t a i n s b o t h complex and h i g h g-manno-oligo s a c c h a r i d e s linked
to
L-asparagine.60g
Glycosylation
i s
not
an
absolute
requirement f o r the receptor t o a c t as an acceptor f o r f a t t y acid, nor f o r transport t o the c e l l surface. Two Q a - 1 a n t i g e n s f r o m m i c e s p l e n o c y t e s have been i s o l a t e d f r o m both b i o s y n t h e t i c a l l y l a b e l l e d c e l l s and from surface i o d i n a t e d cells.610
These g l y c o p r o t e i n s have been shown t o
be d i s t i n c t f r o m
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
243
TL a n t i g e n s .
Primary s t r u c t u r e s of t h e t r a n s p l a n t a t i o n a n t i g e n o f t h e murine m a j o r h i s t o com p a t i b i l i t y c o m p l e x h a ve b e e n r e v i ewe d . 6 1 Partially purified, papain-solubilized mouse l i v e r H-2a h i s t o c o m p a t i b i l i t y a n t i g e n s h a v e b e e n p u r i f i e d f u r t h e r by r e v e r s e p h a s e h.p. 1.c. u n d e r a c i d c o n d i t i o n s , y i e l d i n g B 2 - m i c r o g l o b u l i n a n d H-2a h e a v y c h a i n s . 6 1 2 An a m i n o a c i d s e q u e n c e o f t h e f i r s t 98 a m i n o acid residues a t the N-terminus of the murine major h i s t o c o m p a t i b i l i t y a n t i g e n 6 1 3 a n d o f 98 r e s i d u e s o f t h e m u r i n e h i s t o c o m p a t i b i l i t y a n t i g e n H-2Kd h a s b e e n d e t e r m i n e d . 6 1 4 Comparison of t h e s e q u e n c e s w i t h H-2Kb a n d H-2Db a n t i g e n s r e v e a l s e x t e n s i v e localized differences. Comparison o f t h e primary s t r u c t u r e s o f m u r i n e H-2 a n t i g e n s a n d h u m a n HLA m o l e c u l e s s u g g e s t s a n e v o l u t i o n a r y o r i g i n o f m a j o r h i s t o c o m p a t i b i l i t y products.615 Data p r e s e n t e d o n t h e amino acid sequence o f a n intramembranous hydrophobic segment of t h e H-2Kb m u r i n e h i s t o c o m p a t i b i l i t y a n t i g e n b l 6 a n d o f t h e C t e r m i n a l h y d r o p h o b i c r e g i o n 617 h a v e p r o v i d e d t h e c o m p l e t e p r i m a r y s t r u c t u r e of the glycoprotein. Evidence f o r the existence o f three carbohydrate prosthetic g r o u p s o n m o u s e h i s t o c o m p a t i b i l i t y a n t i g e n s H-2kd a n d H-2Db h a s b e e n r e p o r t e d . l8 P u r i f i e d HLA-A2 a n t i g e n f r o m l y m p h o b l a s t o i d c e l l m e m b r a n e s which h a s been f l u o r e s c e n t l y l a b e l l e d s p e c i f i c a l l y i n i t s C - t e r m i n a l r e g i o n i n t e r a c t s w i t h l y m p h o b l a s t o i d c y t o s k e l e t a l p r o t e i n s when r e c o m b i n e d i n ~ i t r o T. h ~i s ~s y ~s t e m a l l o w s s t u d y o f t h e i n t e r a c t i o n s o f a m e m b r a n e p r o t e i n w i t h c y t o s k e l e t a l e l e m e n t s , a n d may be u s e d t o explore the structural basis and regulation of such interactions. A number o f unusual p r o p e r t i e s o f t h e i n v a r i a n t ( I i ) c h a i n o f t h e m u r i n e Ia a n t i g e n s has been described.620 While a l l of t h e Ia polypeptide chains p o s s e s s N-linked o l i g o s a c c h a r i d e u n i t s , they a l s o show t h a t t h e i n v a r i a n t c h a i n d i f f e r s f r o m t h e p o l y m o r p h i c c h a i n s i n C e l l - s u r f a c e HLAboth t h e number and t y p e o f c a r b o h y d r a t e u n i t s . DR, HLA-ABC a n t i g e n s , a n d g l y c o p h o r i n a r e a l l e x p r e s s e d a t d i f f e r e n t stages during erythroid di fferentiation.621 I n t h e b i o s y n t h e s i s o f HLA a n t i g e n s i n t w o l y m p h o b l a s t o i d c e l l l i n e s , Oaudi a n d Raji, t h e a n t i g e n heavy c h a i n s i n Daudi cells are s y n t h e s i z e d normally, but,although core g l y c o s y l a t i o n t a k e s place, t e r m i n a l g l y c o s y l a t i o n d o e s not.622 The b i o s y n t h e s i s o f t h e h e a v y c h a i n s o f mouse l y m p h o b l a s t o i d h i s t o c o m p a t i b i l i t y a n t i g e n s a n d o f i m m u n o g l o b u l i n M i n v o l v e s t h e same i n t r a c e l l u l a r p a t h w a y a s secretory proteins.623 These p o l y p e p t i d e s p a s s through t h e Golgi
H-2
244
Carbohydrate Chemistry
subsi te,
d e f i n e d by monensin,
and a c q u i r e t e r m i n a l
2
residues d i s t a l to t h i s site.
neuraminic a c i d
v i t r o t r a n s l a t i o n studies on the
b i o s y n t h e s i s o f HLR-DR a n t i g e n s i n d i c a t e t h a t t h e a - a n d $ - c h a i n s a r e s y n t h e s i z e d a s p r e c u r s o r s w i t h s i g n a l sequences,
i n common w i t h
many o t h e r membranes and s e c r e t e d g l y c ~ p r o t e i n s . ~I n~ ~ t h e presence o f a h e t e r o l o g o u s m i c r o s o m a l system, t h e s i g n a l p e p t i d e i s c l e a v e d and ' c o r e '
o l i g o s a c c h a r i d e u n i t s a r e added.625
The e v e n t s i n v o l v e d
i n t h e b i o s y n t h e s i s a n d m a t u r a t i o n o f t h e a n t i g e n s i n v i v o have a l s o been d e s c r i b e d . The
histocompatibility
(H-Y)
Y
antigen
i s
a
minor
h i s t o c o m p a t i b i l i t y antigen detected on the c e l l surface from the h e t erogam e t i c sexes o f species.626
b i r d s , am p h i bian, and i n v e r t e b r a t e
mamm a1 s,
The s e r o l o g i c a l d e t e r m i n a n t o f
the antigen resides i n
t h e carbohydrate p o r t i o n o f the glycoprotein. Three
cell-surface
antigens,
two
g l y c o p r o t e i n s and a p r o t e i n ,
s t r u c t u r a l l y r e l a t e d t o t h e m a j o r human h i s t o c o m p a t i b i l i t y a n t i g e n s h a v e b e e n c h a r a c t e r i z e d f r o m t h e l e u k a e m i c T c e l l l i n e MOLT-4.627 One a n t i g e n i s a g l y c o p r o t e i n (mol.
w t . 4.9 x l o 4 ) and i s a s s o c i a t e d The o t h e r g l y c o p r o t e i n (mol. w t . 4.3 x l o 4 )
w i t h B2-microglobulin. i s also
associated w i t h
B2-microglobulin
d i s t i n c t from t h e h i g h e r - w e i g h t
but
glycoprotein.
i s
serologically
The p r e s e n t s t a t e o f
knowledge o f the primary s t r u c t u r e o f the murine H-2 a l l o a n t i g e n s has been r e v i e w e d . 6 2 8
A speculative model o f the a n t i g e n on the
membrane i s p r e s e n t e d , and i n t e r p r e t a t i o n s o f t h e r e s u l t s o f p r i m a r y s t r u c t u r a l comparisons a r e used t o probe p o s s i b l e answers t o t h e questions
of
the
generation
of
polymorphism
and
genetic
r e l at i o nships. Wax-bean
agglutinin
mimics
the
activities
of
insulin
by
m e d i a t i n g a n t i l i p o l y s i s and t h e o x i d a t i o n o f Q - g l u ~ o s e . ~I ~t ~does not
appear
receptor,
to
compete w i t h
but
exerts
i t s
the
binding of
insulin-like
the
hormone
action
iia
glycoproteins which are d i s t i n c t from insulin-binding
to
i t s
membrane sites.
The
p o s s i b i l i t y that a glycoprotein effector molecule i s an i n t e g r a l p a r t o f t h e h o r m o n a l m e d i a t e d s y s t e m and t h a t t h e l e c t i n - m e d i a t e d o x i d a t i o n of
Q-glucose and a n t i l i p o l y s i s
may
be t r i g g e r e d
via
d i f f e r e n t g l y c o p r o t e i n r e c e p t o r s i s discussed. The p r e v i o u s l y o b s e r v e d i n h i b i t i o n by c o n c a n a v a l i n A o f i n s u l i n b i n d i n g t o i n t a c t r a t f a t c e l l s may be due t o t h e i n t e r a c t i o n o f t h e l e c t i n w i t h a carbohydrate-containing moiety on the d i s t i n c t from,
but capable o f modifying,
p r e v i o u s l y postulated.630
c e l l membrane
the i n s u l i n r e c e p t o r as
I n s u l i n r e c e p t o r s f r o m human p l a c e n t a and
245
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides cultured IM-9
lymphocytes display
similar
specificites for
twelve
i m m o b i l i z e d l e ~ t i n s . Based ~ ~ ~ on b i n d i n g s t u d i e s w i t h l e c t i n s t h e ca rbohy d r a t e m o i e t y o f t h e r e c e p t o r c o n t a i n s 2-ace tam ido-2-deox y-pglucosyl,
a-Q-mannosyl,
and $ + - g a l a c t o s y l
residues.
The i n c r e a s e
i n a f f i n i t y o f the i n s u l i n receptor f o r i n s u l i n a f t e r i t s desorption from l e c t i n s may be due t o t h e r e m o v a l o f an a s s o c i a t e d i n h i b i t o r . Tunicamycin,
which i n h i b i t s N-linked oligosaccharide chain
a d d i t i o n t o nascent polypeptides, i n s u l i n receptor receptors.632
interrupts glycosylation o f the
adipocytes
giving rise to inactive
The i n a c t i v e a g l y c o i n s u l i n r e c e p t o r a c c u m u l a t e s p o s t -
translationally re-enters
i n 3T3-Ll
d u r i n g c h r o n i c t r e a t m e n t w i t h t u n i c a m y c i n and t h e n
t h e g l y c o s y l a t i o n pathway when t h e i n h i b i t o r i s removed,
g i v i n g r i s e t o a f u n c t i o n a l i n s u l i n receptor. A
wt.
1.6
guinea-pig x
lo5)
sensitivity
p e r i t o n e a l macrophage s u r f a c e g l y c o p r o t e i n (rnol.
i s u n i q u e among m a j o r s u r f a c e c o m p o n e n t s i n i t s
to
m i l d t r y p s i n treatment.633
Neuraminic a c i d
r e s i d u e ( s ) w e r e l o c a t e d s o l e l y i n one o f t h e f r a g m e n t s (rnol.
wt.
8.5
x 104).
Heterogeneity
i n s u r f a c e g l y c o p r o t e i n s o f mouse p e r i t o n e a l
macrophage p o p u l a t i o n s has been observed.634 m a c r o p h a g e s w i t h t h e c u l t u r e medium o f fluid,
a new
expressed.
surface
glycoprotein
Upon a c t i v a t i o n o f
the
c e l l - f r e e tumour a s c i t e s
(rnol.
wt.
x
1.35
10')
is
The p o s s i b i l i t y t h a t t h i s m o l e c u l e i s m e r e l y a v a r i a t i o n
o f a pre-existing protein d i f f e r i n g i n i t s extent o f glycosylation,
o r even o n l y a h i g h e r r a t e o f s y n t h e s i s o f a n o r m a l l y m i n o r s u r f a c e g l y c o p r o t e i n , was n o t excluded. Two p r e v i o u s l y unknown macrophage-speci f i c a n t i g e n s (rnol.
wts.
x l o 4 a n d 1.1 x l o 5 ) h a v e b e e n i s o l a t e d by u s e o f a c o m b i n a t i o n o f c e l l h y b r i d i z a t i o n and r e m o v a l o f p r e v i o u s l y r e c o g n i z e d a n t i g e n s
3.2
by immunoadsor be n t s .635 On t h e b a s i s o f a g g l u t i n a t i o n s t u d i e s w i t h a number o f l e c t i n s , guinea-pig
phagocytic
v e s i c l e s have
been shown
r e c e p t o r s o n t h e i r cy t o p 1 asm i c s i d e . 636
Q - m a nno s y 1,
2-deox y -Q- g a l a c t o s y l , deoxy-D - g l ucosy 1, and
N, " - d i a c e
to
Q - G a l a c t o s y 1,
D- g l uco sy 1,
have l e c t i n . 2-acetam i d o -
2 - a c e tam i do-2-
t y l c h i t o b i o s y 1 residues are probably
present on the receptors. L e c t in- l i k e
r e c e p t o rs c a p a b l e o f
b i n d ing Staphylococcus a l b us
h a v e been d e m o n s t r a t e d i n t h e m e m b r a n e s o f p h a g o c y t e s i n c l u d i n g macrophages,
n e u t r o p h i l s , and e o s i n o p h i l s f r o m
v a r i o u s s o u r c e s and
species.637 These r e c e p t o r s a r e l i k e l y t o c o n t r i b u t e t o adherence and p h a g o c y t o s i s i n t h e non-immune a n i m a l .
bacterial
246
Carbohydrate Chemistry
Four independent monoclonal a n t i b o d i e s p r e c i p i t a t e a m u r i n e c e l l - s u r f a c e g l y c o p r o t e i n w h i c h has been i d e n t i f i e d a s a p o l y m o r p h i c d i f f e r e n t i a t i o n a n t i g e n o f m u r i n e mesenchymal c e l l s . 6 3 8 Treatment
of
melanoma
cells with
tunicamycin selectively
inh ib i t s t h e sh e d d i n g o f m e l ano m a- asso c i a t e d g l yco p r o t e i ns w it h o u t a f f e c t i n g t h e i r c e l l - s u r f a c e e x p r e s s i o n .639 K-562 c e l l s ,
o r i g i n a t i n g from the p l e u r a l e f f u s i o n o f a c h r o n i c
my e l o ge no u s l e u k a e m i a pa t i e n t , (erythroglycan, surface
mol.
wt.
e x p r e s s e s a n N - l i n ke d o l i go s a c c h a r i d e
lo3 -
x
7.0
g y ~ o p r o t e i n . ~T h~ e~ e a r l y
biosynthesis
are
the
by
specific cell-
of
erythroglycan
the transferrin-type
maturation o f the oligosaccharide
so
protein structure
that
expressed o n s p e c i f i c glycoproteins. foetal
lo4>,
stages
same a s t h o s e o f
o l i g o ~ a c c h a r i d e . ~H~o w ~ ever, influenced
1.1 x
i s
erythroglycan i s only
The K - 5 6 2 c e l l s e x p r e s s t h e
t y p e (L) a n t i g e n o n d i f f e r e n t g l y c o p r o t e i n s f r o m t h o s e o f
e r y t h r o c y t e s .642 Carbohydrate m o i e t i e s o f r e c e p t o r s f o r immunoglobulin E on r a t b a s o p h i l i c leukaemia c e l l s and r a t mast located i n the
binding s i t e o f
the
c e l l s are not
receptor.643
directly
However,
r e c e p t o r c a r b o h y d r a t e may p l a y a p a r t i n t r a n s p o r t o f
the
the
receptor
t o t h e p l a s m a membrane o r i n i t s o r i e n t a t i o n t h e r e a f t e r .
Cell-
i m m u n o g l o b u l i n E have been i s o l a t e d f r o m r a t
surface receptors f o r
basophilic leukaemia cells.644 The e f f e c t o f t u n i c a m y c i n o n t h e m o l e c u l a r p r o p e r t i e s o f t h e r e c e p t o r have been e v a l u a t e d . The u s u a l diffuse
r e c e p t o r b a n d (rnol.
so d i um
do de c y l s u l p h a t e
r e p l a c e d by one (rnol. i n d i ca t e
that
wt.
wt.
4.5
lo4
x
p o l y a c r y l a m ide
3.8
x lo4),
-
6.2
gel
lo4)
observed on
A number o f l i n e s o f e v i d e n c e
l o w e r - m o l e c u l a r- w e i g h t
this
x
electrophoresis i s protein
represents
ca r b o h y d r a t e-de f ic i e n t r e c e p t o r . Characteristic
g lycoprot e in
prof i l e s
and
carbohydrate
s t r u c t u r e s a r e expressed on d i f f e r e n t l e u k a e m i c c e l l l i n e s blocked at
different
s t a g e s of
stages of
m y e l o i d c e l l d i f f e r e n t i a t i ~ n . ~D ~i f ~f e r e n t
g r a n u l o c y t e d i f f e r e n t i a t i o n can be i d e n t i f i e d by s p e c i f i c
cell-surface
structures.
A murine cell-surface
g l y c o p r o t e i n (rnol.
wt.
8.0
x
lo4)
been i d e n t i f i e d a n d s t u d i e d by u s e o f m o n o c l o n a l a n t i b o d i e s . 6 4 6 d e t e r m i n a n t s o f t h i s m a j o r plasma-membrane by
the antibodies,
are allospecific,
constituent,
differentiation
cells.
The
recognized
and t h e expression o f
glycoprotein i s specific t o certain types o f
has
the
During
r e c e p t o r s f o r c o n c a n a v a l i n A have been shown t o
be
d i s t r i b u t e d i n patches over t h e e n t i r e cell-surface neuroblastoma
247
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides c e l l s . 647
The i m p o r t a n c e o f t h e p l a t e l e t - i s o l a t i o n t e c h n i q u e t o p l a t e l e t r e c o v e r y and p l a t e l e t - membrane i n t e g r i t y h a s b e e n s t r e s s e d . 6 4 8 The
loss o f p l a t e l e t - m e m b r a n e g l y c o p r o t e i n s d u r i n g w a s h i n g p r o c e d u r e s i s p r o b a b l y t h e r e s u l t o f membrane loss f r o m p l a t e l e t s a n d i s n o t due t o the i s o l a t i o n o f a selected p l a t e l e t subpopulation.
Membrane
g l y c o p r o t e i n s h a v e been i s o l a t e d f r o m human p l a t e l e t s a f t e r a f f i n i t y chromatography on i m m o b i l i z e d wheat-germ
a g g l u t i n i n ,649 a n d by h i g h -
voltage free-flow e l e c t r o p h o r e ~ i s . ~ ~ ~ Monoclonal antibodies
have
been
q u a n t i t a t i o n o f the platelet-membrane
used
i s o l a t i o n and
i n
glycoprotein deficient
i n
Glanzmann’s
t h r ~ m b a s t h e n i a . ~ The ~ ~ membrane g l y c o p r o t e i n i s a
complex o f
t w o p l a t e l e t g l y c o p r o t e i n s d e s i g n a t e d I I b and I I I a .
Membrane g l y c o p r o t e i n s o f p l a t e l e t s f r o m n o r m a l and Glanzmann’s thrombasthenic subjects are i d e n t i c a l i n terms o f i s o e l e c t r i c p o i n t s and m o l e c u l a r w e i g h t s ,
and d i f f e r o n l y i n t h e amount o f c e r t a i n
g l y c ~ p r o t e i n s . ~The ~ ~ molecular with
this
disease
i s
due
defect i n p l a t e l e t s from p a t i e n t s
t o
a
deficiency
of
two
membrane
g l y c ~ p r o t e i n s . ~ The ~ ~p o s s i b i l i t y o f a d d i t i o n a l membrane d e f e c t s i n thrombasthenic
platelets
g l y c o p r o t e i n (mol. membranes
from
may
be r e l a t e d t o a n o t h e r s u r f a c e
9.3 x lo4). The g l y c o p r o t e i n s o f p l a t e l e t n o r m a l p a t i e n t s and t h o s e w i t h Glanzmann’s wt.
or
t h r o m b a s t h e n i a have been compared u s i n g c a r b o h y d r a t e - s p e c i f i c protein-specific
l a b e l l i n g techniques
and h i g h - r e s o l u t i o n
d i m e n s i o n a l g e l e 1 e ~ t r o p h o r e s i . s . ~I ~n~ Glanzmann’s
two-
thrombasthenia
t h e absence o r r e d u c t i o n o f t w o m a j o r membrane g l y c o p r o t e i n s i s observed, w h i l e a number o f o t h e r g l y c o p r o t e i n s c o n t a i n i n c r e a s e d l e v e l s o f neuraminic acid. The e x i s t e n c e
i n human p l a t e l e t p l a s m a
m a c r o m o l e c u l a r component (mol.
wt.
>4.0
x
lo6)
membranes o f
c o m p o s i t i o n of a p h o s p h o g l y c o p r o t e i n has been confirmed.655 p h o s p h o g l y c o p r o t e i n i n h i b i t s t h e ADP, thrombin-induced plasma-membrane
a
with the chemical
epinephrine,
The
collagen, and
p l a t e l e t r e a c t i o n w i t h c o n c o m i t a n t changes of
the
structure.
A n a l y s i s of t h e g l y c o p r o t e i n s and p r o t e i n s o f p l a t e l e t s o f f o u r Bernard-Soulier possess
patients
a specific
lesion.656
has
established that
and c h a r a c t e r i s t i c
these
platelets
membrane-glycoprotein
A comparison w i t h t h e r e s u l t s obtained f o r
platelets after
treatment
control
w i t h n e u r a m i n i d a s e has shown t h a t
d e c r e a s e d n e u r a m i n i c a c i d c o n t e n t c a n n o t a l o n e a c c o u n t for observed Bernard-Soulier s u r f a c e a l t e r a t i o n s .
a
the
248
Carbohydrate Chemistry R e c e p t o r s f o r b o v i n e von W i l l e b r a n d f a c t o r have been i d e n t i f i e d
o n w h o l e human p l a t e l e t s , The k i n e t i c s o f
a s w e l l a s o n p l a t e l e t membranes.657
formation o f factor IXa-factor
V I I I complex o n
t h e s u r f a c e o f human p l a t e l e t s h a v e been r e p o r t e d . 6 5 8 T h r o m b i n - i n d u c e d p l a t e l e t a g g r e g a t i o n h a s been i n h i b i t e d by d e r i v a t i v e o f wheat-germ
agglutinin.659
the affinity-chromatographic
used f o r
membranes o f
a g l y c o p r o t e i n (mol.
a
The i m m o b i l i z e d l e c t i n was i s o l a t i o n from 7.4
w t .
i n h i b i t i n g p l a t e l e t a g g r e g a t i o n by t h r o m b i n .
lo4)
x
platelet
capable of
T h i s g l y c o p r o t e i n may
be a p h y s i o l o g i c r e c e p t o r o f t h r o m b i n i n human p l a t e l e t s a n d d i f f e r s the r i s t o c e t i n o r r i s t o c e t i n - v o n
from
Willebrand factor
Platelet
p l a s m a membranes r e t a i n f u n c t i o n a l
following
c e l l l y s i s a n d membrane i s o l a t i o n . 6 6 0
receptor.
aggregation
sites
Isolated platelet
plasma-mem b r a n e g l y c o p r o t e i n s h a v e a g r e a t e r a f f i n i t y f o r t h r o m b i n activated platelets
than control
An i m m u n o l o g i c a l
platelets.
p r o c e d u r e has been u s e d t o e x p l o r e t h e c o n c e p t t h a t a r e d i s t r i b u t i o n of
membrane
secretion.661 agglutinin
receptors
has
may
be
involved
non-agglutinating
A
been
prepared
i n
human
derivative o f
that
precipitates an antibody t o the lectin.
binds
to
platelet
wheat-germ
platelets
and
Pla'telets treated with this
i n a c t i v e d e r i v a t i v e r e l e a s e 5 - h y d r o x y t r y p t a m i n e when e x p o s e d t o bivalent antibody
.
(but
not
monovalent)
fragments
of
the
lectin
A s i a l o g l y c o p r o t e i n I b and a s i a l o g l y c o c a l i c i n have been i s o l a t e d from
the
membranes a n d
from
the
supernatant,
n e u r a m i n i d a s e - t r e a t e d human p l a t e l e t s . 6 6 2
respectively,
of
The t w o g l y c o p r o t e i n s
have been shown t o be c l o s e l y r e l a t e d ,
and evidence s u p p o r t i n g the
idea
from
that
glycocalicin
i s
derived
the
membrane-bound
glycoprotein i s reported. has
been
d e m o n s t r a t e d a t t h e e x t e r n a l s u r f a c e o f human p l a t e l e t s . 6 6 3
The
presence
of
ectosialyltransferase
activity
The
m a j o r endogenous a c c e p t o r i s t h e plasma-mem b r a n e g l y c o p r o t e i n G P I I b . Platelet-membrane
g l y c o p r o t e i n s I I b a n d I I I a h a v e been i s o l a t e d a n d
p u r i f i e d f r o m h u m a n p l a t e l e t mem b r a n e . 6 6 4
The g l y c o p r o t e i n s a r e
a n t i g e n i c a l l y d i f f e r e n t a n d s t r u c t u r a l l y d i s t i n c t g l y c o p r o t e i ns, w h i c h i n t h e n a t i v e s t a t e may f o r m a m a c r o m o l e c u l a r c o m p l e x w i t h a role
i n
mediating
platelet-platelet
c o n s t i t u e n t s o f human p l a t e l e t membranes
interactions.
The
major
G P I I b a n d G P I I I a have been
p u r i f i e d , and the
generation o f monospecific a n t i s e r a t o these a n t i ge n i ca 11y d i f f e r e n t a n d s t r u c t ur a 11y d i s t in c t g l y co p r o t e i n s h a s been d e ~ c r i b e d . ~ M ~ o~r p, h ~o l ~o g~ i c a l e v i d e n c e
demonstrating
249
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides macromolecular complex
formation o f these glycoproteins i n t h e
p l a t e l e t membrane a f t e r t h r o m b i n s t i m u l a t i o n i s a l s o r e p o r t e d . P l a t e l e t g l y c o p r o t e i n I11 and a - a c t i n i n have
been
d i f f e r e n t i a t e d on the basis o f the a b i l i t y o f the former to bind to immobi 1i t e d whea t-germ
a g g l u t i n i n. 6 6 7
F u r t h e r e v i d e n c e h a s been s h o w n t o s u p p o r t t h e h y p o t h e s i s t h a t y o u n g r a b b i t p l a t e l e t s a r e h e m o s t a t i c a l l y m o s t e f f e c t i v e when t h e y a r e r e l e a s e d f r o m bone marrow and t h a t t h e y undergo s i g n i f i c a n t changes i n
the
circulation as
decreased size,
they
age.668
This i s
shown
s y m m e t r i c a l l o s s o f membrane g l y c o p r o t e i n s ,
by and
decreased h e m o s t a t i c e f f e c t i v e n e s s o f the p l a t e l e t s .
wt.
1.1 x 10')
carrying binding
s i t e s f o r c o n c a n a v a l i n A and soybean a g g l u t i n i n
has been p u r i f i e d
A
m a j o r g l y c o p r o t e i n (mol.
f r o m m o s q u i t o p l a s m a membranes.669
The p r e s e n c e o f N - g l y c o s i d i c a l l y
l i n k e d o l i g o s a c c h a r i d e c h a i n s composed o f r e s i d u e s o f e-mannose a n d
2-acetamido-2-deoxy-Q-glucose
(in
the
molar
r a t i o 9:2)
g l y c o s i d i c a l l y l i n k e d 2-acetamido-2-deoxy-q-galacto
and
0-
s y l r e s i d u e s was
e s t a b l i s h ed. Concanavalin A binds t o a surface-membrane
receptor o f the
i n s e c t t r y p a n o s o m a t i d C r i t h i d i a f a s ~ i c u l a t a . ~ ~ The ' receptor
wt.
1.4
x
lo4>
(mol.
may be i d e n t i c a l t o a p r e v i o u s l y r e p o r t e d Q - m a n n a n
from t h a t source. The
in
v i v o synthesis,
membrane i n s e r t i o n , a n d g l y c o s y l a t i o n o f
a m u l t i s u b u n i t i n t e g r a l membrane p r o t e i n o f t h e T o r p e d o e l e c t r o p l a x acetylcholine
r e c e p t o r have
been studied.671
Each o f
s u b u n i t s i s synthesized as an i n d i v i d u a l polypeptide,
the
four
and a l l f o u r
p o l y p e p t i d e chains are independently i n t e g r a t e d i n t o dog pancreas m i c r o s o m e s as transmembrane p r o t e i n s . appears t o
The mechanism o f i n t e g r a t i o n
i n v o l v e a c o t r a n s l a t i o n a l process analogous t o t h a t
d e s c r i b e d f o r v i r a l membrane g l y c o p r o t e i n s .
10
G l y m p r o t e i n Hormones
The s t r u c t u r e a n d f u n c t i o n o f g l y c o p r o t e i n h o r m o n e s , 6 7 2 a n d t h e r e g u l a t i o n o f g l y c o p e p t i d e hormone s y n t h e s i s i n c e l l culture,673 A book d e a l i n g w i t h t h e e v o l u t i o n o f p r o t e i n have been reviewed. s t r u c t u r e and 74
ho rmo ne s
.
function
includes a
chapter
on
glycoprotein
Four g o n a d o t r o p h i n c o m p o n e n t s have been p u r i f i e d f r o m t h e b a s i c p r o t e i n f r a c t i o n o f b u l l f r o g p i t u i t a r y glands.675
The a m i n o a c i d
250
Carbohydrate Chemistry
c o m p o s i t i o n o f t h e four components i s a p p r e c i a b l y d i f f e r e n t f r o m t h a t o f mammalian l u t e i n i z i n g hormone. The b i n d i n g s i t e s o f human g o n a d o t r o p h i n i n t h e i n t r a c e l l u l a r organelles of compared
bovine corpora
with
l u t e a have been c h a r a c t e r i z e d and
plasma-membrane
sites.676
The
synthesis o f
g l y c o p r o t e i n hormone a - s u b u n i t and p l a c e n t a l a l k a l i n e phosphatase has been f o l l o w e d i n t h e p r e s e n c e o f t u n i c a m y c i n , 2-deoxy-P-arabinohexose, and s o d i u m b ~ t y r a t e . ~ ” The g l y c o s y l a t i o n i n h i b i t o r s r e d u c e d t h e b u t y r a t e - s t i m u l a t e d s y n t h e s i s o f t h e s u b u n i t and a l k a l i n e phosphatase t o a greater e x t e n t than t h e i r b a s a l l e v e l s o f synthesis. P r e g n a n t - m a r e s e r u m g o n a d o t r o p h i n d i s s o c i a t e s a t a c i d pH w i t h a p a r a l l e l l o s s o f f o l l i c l e - s t i m u l a t i n g hormone and l u t e i n i z i n g hormone a c t i v i t i e s , s u p p o r t i n g t h e h y p o t h e s i s t h a t t h e same molecular e n t i t y bears the two binding s i t e s for the receptors o f
.
f o 11ic l e -s t im u l a t in g h o r m o n e a n d l u t e i n iz i n g h o r mone 678
Mo l e c u l a r
w e i g h t s t u d i e s o f t h e g o n a d o t r o p h i n i n d i c a t e a v a l u e o f 4.5 o p p o s e d t o p r e v i o u s l y r e p o r t e d v a l u e s o f (5.3-6.4)
x
lo4
x
as
lo4.
A book d e a l i n g w i t h t h e c h e m i s t r y o f a n d h o m o l o g y b e t w e e n human c h o r i o n i c g o n a d o t r o p h i n and p i t u i t a r y l u t e i n i z i n g h o r m o n e h a s been published.679
The
current
understanding
of
immunological
s p e c i f i c i t y o f t h e B - s u b u n i t o f HCG i s e l u c i d a t e d . The
human s e r u m h o r m o n e s
by
immobilized
lutrophin
wheat-germ
agglutinin,
f o l l i t r o p h i n and t h y r o t r o p h i n . 6 8 0 produced
i s
suitable
radioimmunoassay o f immunoassay
and t h e
B-subunit
of
a r e a d s o r b e d by i m m o b i l i z e d c o n c a n a v a l i n A and
choriogonadotrophin
f o r
as
a
matrix
t h e s e hormones. human
which
also
The h o r m o n e - f r e e for A
chorionic
adsorbs
serum thus
standards
i n
highly specific
the
enzyme
gonadotrophin has
been
e s t a b l i s h e d . 681 C u l t u r e d human c h o r i o c a r c i n o m a c e l l s s y n t h e s i z e h i g h 0 - m a n n o s y l
o l i g o s a c c h a r i d e - c o n t a i n i n g f o r m s o f t h e a - s u b u n i t ( m o l . w t . 1.5 x
l o 4 and lo4) o f and
1.8 x
lo4>
and B - s u b u n i t f o r m s (mol.
human c h o r i o n i c g o n a d o t r o p h i n . 6 8 2
B-subunits
of
the
hormone
wt.
1.8 x
involves
the
The f r e e a - s u b u n i t
a n d 2.4 x
formation
accumulation o f incompletely processed forms o f intracellularly.
lo4
The s e c r e t i o n o f t h e aand
these subunits
produced by t h e c e l l s i s a
l a r g e r p o l y p e p t i d e and has a d i f f e r e n t c a r b o h y d r a t e c o m p o s i t i o n t h a n the
corresponding
a-subunit
of
the
placental
human
chorionic
gonadotrophin. A one-step
procedure f o r
the
i s o l a t i o n o f human c h o r i o n i c
gonadotrophin i n m i l l i g r a m amounts, u s i n g s e l e c t i v e s t e a d y - s t a t e
25 1
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides s t a c k i n g o n p o l y a c r y l a m i d e gel,
has been r e p o r t e d . 6 8 3
The p r o d u c t i o n o f human c h o r i o n i c g o n a d o t r o p h i n s u b u n i t s by h o r m o n e - p r o d u c i n g human c a n c e r c e l l s g r o w i n g i n n u d e m i c e i s s i m i l a r but n o t i d e n t i c a l t o t h a t observed i n culture.684
There a p p e a r s t o
be a s h i f t t o w a r d more c o m p l e t e hormone p r o d u c t i o n a n d a d e c r e a s e i n free
s u b u n i t p r o d u c t i o n a s compared t o t h e p a t t e r n i n c u l t u r e d
cells.
A e r o b i c t u m o u r - a s s o c i a t e d b a c t e r i a have been i s o l a t e d a n d
i d e n t i f i e d from m a l i g n a n t t i s s u e s from patients.685 the
i s o l a t e s were
capable o f
A l l b u t one o f
producing t h e B-subunit
o f human
c h o r i o n i c gonadotrophin. D i f f e r e n c e s i n t h e m o l e c u l a r w e i g h t s o f t h e a - s u b u n i t o f human chorionic
gonadotrophin e x c r e t e d i n the
c e l l s have been r e p o r t e d . 6 8 6
u r i n e and s e c r e t e d
by HeLa
The s u b u n i t s e c r e t e d by t h e t u m o u r
c e l l s h a s a h i g h e r m o l e c u l a r w e i g h t a n d may be d u e t o a n i n c r e a s e i n t h e neuraminic a c i d content o f the protein. H um a n cho r i o n i c
to
i t s receptor
go na d o t ro p h i n has
i n r a t testes.687
bee n co v a l e n t l y
c r o s s l i n ke d
Analysis o f the crosslinked
c o m p l e x e s i n d i c a t e s t h a t t h e m e m b r a n e r e c e p t o r may c o n s i s t o f a dimer o f two binding subunits which binds t o the a-subunit o f the hormone. An
assessment
has
b e e n made
o f
the
effects o f
various
m o d i f i c a t i o n s o f t h e t e r m i n a l Q - g a l a c t o s y l r e s i d u e s o f human a s i a l o choriogonado trophin.688
The p r e p a r a t i o n o f t h e d e r i v a t i v e s and t h e
i n f l u e n c e o f d e r i v a t i r a t i o n on t h e i r r a t e s o f plasma clearance, u p t a k e by t h e l i v e r , described.
i m m u n o - r e a c t i v i t y , and t a r g e t t i s s u e b i n d i n g a r e
The r o l e o f c a r b o h y d r a t e i n t h e s u b u n i t i n t e r a c t i o n s a n d
i n t h e b i n d i n g t o t h e r e c e p t o r h a s been a s s e s s e d by d e g l y c o s y l a t i o n of
i n d i v i d u a l a- and B - s u b u n i t s o f human c h o r i o n i c gonado t r ~ p h i n . ~ ~
Removal o f a b o u t 9 0 % and 8 0 % o f t h e c a r b o h y d r a t e f r o m t h e a - and Bs u b u n i t s , r e s p e c t i v e l y , had no e f f e c t o n t h e i m m u n o l o g i c a l a c t i v i t i e s , o n t h e apparent m o l e c u l a r weights, o r on t h e a b i l i t y o f t h e s u b u n i t s
-
F 1uo r e s c e n t l a b e l l e d a-sub u n i t s o f hum an
t o unde r g o r e a s s o c i a t i on. chorionic
gonadotrophin recombine
n o r m a l l y w i t h n a t i v e B-subunits.
L a b e l l i n g p r o c e d u r e s appear t o compromise t h e a b i l i t y o f t h e Bs u b u n i t s t o recombine.690 fluorescent
Since the method o f i n t r o d u c i n g the
label involves p r i o r periodate oxidation o f
the i n t a c t
i t i s p o s s i b l e t h a t p r i m a r y amino g r o u p s o f t h e p r o t e i n compete w i t h added f l u o r e s c e n t amines f o r t h e g e n e r a t e d aldehyde groups t o produce c o v a l e n t c r o s s l i n k i n g between subunits.
hormone,
The p r e s e n c e o f t h e B-subuni t o f human c h o r i o n i c g o n a d o t r o p h i n on
various
tumours
i s
reported to
be
rare on
the
basis
of
252
Carbohydrate Chemistry v a r i o u s t u m o u r s w i t h a n t i - B -HCG
i m m u n o h i s t o chem i c a l s t a i n i n g o f antibodies.691 I-Methionine
residues
of
the
a- a n d B - s u b u n i t s
l u t r o p h i n and b o v i n e t h y r o t r o p h i n have w i t h i o d o a c e t i c acid.692
of
been s p e c i f i c a l l y
bovine
alkylated
The m o d i f i e d r e s i d u e s w e r e i d e n t i f i e d a n d
t h e effects of m o d i f i c a t i o n on recombination with the unmodified c o u n t e r p a r t s u b u n i t , r e c e p t o r - b i n d i n g a c t i v i t y , and c o n f o r m a t i o n w e r e assessed.
Terminal 2-sulphated
deoxy-Q-glucose
residues o f 2-acetamido-2-
h a v e b e e n i d e n t i f i e d i n b o v i n e l u t r ~ p h i n . Human ~ ~ ~
p i t u i t a r y l u t r o p h i n i s a t l e a s t p a r t i a l l y sulphated, i t s placental counterpart,
i n contrast to
LCG.
Evidence f o r t h e amino a c i d sequence o f t h e a - s u b u n i t s o f o v i n e f o l l i c l e - s t i m u l at i n g hormone
a n d 1u t e i n i z i n g h o r m o n e
has
been
presented.694 S i m i l a r s t u d i e s o f t h e amino a c i d sequence o f t h e B - s u b u n i t o f o v i n e f o l l i c l e - s t i m u l a t i n g h o r m o n e have shown a r e m a r k a b l e d e g r e e o f p r e s e r v a t i o n o f s t r u c t u r a l i n f o r m a t i o n i n t h e B - s u b u n i t o f t h i s and o t h e r hormones.695
Two f o r m s o f e q u i n e f o l l i c l e - s t i m u l a t i n g hormone
have b e e n i s o l a t e d . 6 9 6
A h i g h l y s p e c i f i c homologous r a d i o r e c e p t o r
assay f o r t h e hormone i s described. follicle-stimulating
covalently attached to hormone.697
A
An enzyme immunoassay f o r human
h o r m o n e h a s been d e v e l o p e d u s i n g t h e hormone 8-glucose
oxidase and antiserum
radioimmunoassay
to
the
p r o c e d u r e f o r human t h y r o i d -
s t i m u l a t i n g h o r m o n e h a s b e e n i m p r o v e d by r e d u c i n g t h e h e t e r o g e n e i t y o f t h e 1251-human
t h y r o i d - s t i m u l a t i n g hormone t r a c e r . 6 9 8
The c e l l u l a r p r o c e s s i n g , a s s e m b l y , a n d r e l e a s e o f s u b u n i t s i n
-
-
t h y r o id s t im ul a t in g h o r m one b i o sy n t h e s i s h a ve a- and B - s u b u n i t s
are
initially
bee n s t u d ie d.
99 The
s y n t h e s i z e d i n e q u i v a l e n t amounts.
A subsequent excess o f a-subunits
i s observed,
r e s u l t i n g from the
It i s proposed t h a t t h i s n e t production and s e c r e t i o n o f the subunits
i n t r a c e l l u l a r d e g r a d a t i o n o f B-subunits. imbalance i n the
originates a t the level of post-translational
degradation rather
than a t the t r a n s l a t i o n a l process level. The b i o s y n t h e s i s o f c a l c i t o n i n , w t. of
3.5 a
x
lo3),
newly
a 32-amino
a c i d hormone (mol.
i n v o l v e s the g l y c o s y l a t i o n and p r o t e o l y t i c cleavage
synthesized precursor.700
e x t e n s i v e co- a n d p o s t - t r a n s l a t i o n a l
The
precursor
undergoes
p r o c e s s i n g t o t h e s m a l l e r non-
gl y co sy 1a t e d h orm one. Sim i l a r
i - g l u c o sy l - c o n t a i n i n g
o l i g o s a c c h a r i de
lipids
are
s y n t h e s i z e d by t h y r o i d r o u g h m i c r o s o m e s a n d by t h y r o i d c e l l s . 7 0 1 The t r a n s f e r o f Q - g l u c o s e t o t h e s e o l i g o s a c c h a r i d e l i p i d s i s
253
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides d e p r e s s e d b y t h e a d d i t i o n o f GDP-a-mannose. k i n e t i c experiments,
From t h e r e s u l t s o f
i t seems u n l i k e l y t h a t t h e s o l e p a r t i c i p a t i o n
o f newly synthesized oligosaccharide l i p i d s r e s u l t s i n the extensive transfer
o f p-glucose
f r o m UDP-a-glucose
t o t h y r o i d endogenous
p r o t e i n s .702 Two l a r g e g l y c o p r o t e i n f r a g m e n t s r e l a t e d t o t h e N - t e r m i n a l p a r t o f t h e adrenocorticotrophin-8-lipoprotein
p r e c u r s o r a r e t h e end
products of t h e maturation process i n t h e r a t pars intermedia.703 A n o v e l human p i t u i t a r y g l y c o p e p t i d e composed o f 39 a m i n o a c i d
r e s i d u e s a n d one o l i g o s a c c h a r i d e c h a i n h a s been i s o l a t e d f r o m w h o l e pituitaries.704
T h i s g l y c o p e p t i d e e x h i b i t s masked s e q u e n c e h o m o l o g y
t o p i g posterior p i t u i t a r y glycopeptide, g l y c o p e p t i d e s i s o l a t e d f r o m ox,
and t o w h o l e p i t u i t a r y
sheep, a n d p i g .
The i s o l a t i o n and p u r i f i c a t i o n o f a human g l y c o p e p t i d e r e p r e s e n t i n g t h e m a j o r i m m u n o r e a c t i v e f o r m o f t h e p i t u i t a r y N-
It
t e r m i n a l segment o f p r o - o p i o m e l a n o c o r t i n h a v e been r e p o r t e d . 7 0 5 b e a r s an 2 - g l y c o s y l a t i o n
s i t e a t L-Thr-45
and an N - g l y c o s i d i c s i t e
a t L-Asn-65. Human a n d
rhesus-monkey
immunocytochemically
p i t u i t a r i e s have
with antibodies against
been s t a i n e d
the B-subunits
of
p i t u i t a r y g l y c o p r o t e i n h o r m o n e s .706
11
M i l k Glycoproteins
The s t r u c t u r e s ( 3 1 ) o f a h o m o l o g o u s s e r i e s o f o l i g o s a c c h a r i d e s f r o m t h e m i l k o f t h e tamar w a l l a b y (Macropus e u g e n i i ) have been e l u c i d a t e d m a i n l y by 13C n.m.r.
Interactions
of
spectroscopy.707
substrates
g a l a c t o s y l t r a n s f e r a s e have spectroscopy.708
The
and
been
conversion
of
a-lactalbumin
measured
by
with
p-
difference
native a-lactalbumin
to
a
c o n f o r m a t i o n I or D and a l s o t h e c o n v e r s i o n o f It o D have been s t u d i e d by
U.V.
d i f f e r e n c e s p e c t r o s c o p y a n d c.d.
spectroscopy.709
The d a t a h a v e been u s e d t o c a l c u l a t e s t a n d a r d f r e e - e n e r g y
changes
f o r each of t h e t r a n s i t i o n s .
Laser photo-chemically
n u c l e a r p o l a r i z a t i o n n.m.r.
studies f o r f i v e a-lactalbumins from
different
induced dynamic
a n i m a l species c o n f i r m a h i g h degree o f homology f r o m
Carbohydrate Chemistry
254
species t o species with only minor differences i n chemical-shift e n v i r o n m e n t b e t w e e n them.710
A t i g h t l y bound i m p u r i t y f r o m m i l k h a s
a pronounced e f f e c t on t h e &-tryptophan fluorescence o f goat a1a c t a 1b um in. 71
'
The b i n d i n g o f o n e Ca2+ i o n t o b o v i n e a - l a c t a l b u m i n c a u s e s a c o n f o r m a t i o n a l change r e f l e c t e d i n a d e c r e a s e of t h e k - t r y p t o p h a n f l u o r e s c e n c e and a s p e c t r a l s h i f t towards s h o r t e r wavelengths.712 The
s i t e
of
crosslinking
on
a-lactalbumin
Q-
f o r
g a l a c t o s y l t r a n s f e r a s e i n t h e l a c t o s e s y n t h e t a s e complex has been s t u d i e d using t h e mutual e x c l u s i v i t y o f a c e t y l a t i o n and a m i d a t i o n w i t h b i s ( i m i d o e s t e r s ) .713 s i t u a t e d 6.1
4
t o 7.3
-
The r e s u l t s i n d i c a t e t h a t C - l y s i n e - 1 0 8
from
is
an a m i n o g r o u p o n g a l a c t o s y l t r a n s f e r a s e
i n t h e c r o s s l i n k e d complex. Electrophoretic examination (Bibos)
javanicus
has l e d t o
electrophoretically distinct
of
milk
B-lactoglobulins,
Bali cattle three
d e s i g n a t e d E,
Bas new
F, a n d
D e l e t i o n s o r s u b s t i t u t i o n s o f s p e c i f i c amino a c i d s i n the
G.714
p r o t e i n are responsible for the different of
from
the identification of
these
variants.
A
new
electrophoretic properties
a-lactalbumin
variant
was
also
iden t i f i e d. 715 G l y c o p e p t i d e s h a v e been p r e p a r e d f r o m b o v i n e c o l o s t r a l K - c a s e i n a f t e r t r e a t m e n t w i t h cyanogen b r o m i d e a n d pro tease^.^^^ A sequence o f t h i r t e e n amino a c i d r e s i d u e s o n one o f established.
t h e g l y c o p e p t i d e s was
Three o f f o u r L - t h r e o n i n e r e s i d u e s i n t h i s sequence
a r e t h o u g h t t o be t h e s i t e s o f a t t a c h m e n t o f t h r e e p o l y s a c c h a r i d e chains i n t h e casein.
Glycopeptides released from bovine colostrum
K - c a s e i n g l y c o p e p t i d e o b t a i n e d i m m e d i a t e l y a f t e r c a l v i n g c o n t a i n one a d d i t i o n a l p r o s t h e t i c sugar group l i n k e d t o L-threonine i n s t e a d o f o n l y one,
a n d up t o t e n i n t h e c a s e o f b o v i n e ( n o r m a l ) a n d h u m a n
.
ca s e i no g l y co pe p t i de s, r e s pe c t iv e l y 71 been
isolated
from
bovine
Th e t e t r a sa c c ha r i de ( 3 2 ) has
colostrum
K-casein
after
alkaline
One n e u t r a l bo r o h y d r i d e t r e a t m e n t o f c a s e i no g l y c o p e p t i de.718 o l i g o s a c c h a r i d e a l d i t o 1 (33) a n d t h r e e a c i d i c o l i g o s a c c h s a c c h a r i de a l d i t o l s (34-36) taken s i x
have b e e n i d e n t i f i e d f r o m b o v i n e c o l o s t r u m K - c a s e i n
hours a f t e r parturition.719
O l i g o s a c c h a r i d e s (33-34)
-
-
are
ch a r a c t e r is t ic o 1igo sa c ch a r ide s h a v i n g 2 ace t a m ido 2 -de ox y - 3 -2-0 Q galactosyl-g-glucosyl been r e p o r t e d t o
groups a t the non-reducing end occur
i n
normal
K-casein.
-
a n d have n o t
The o t h e r
two
o l i g o s a c c h a r i d e s (35-36) have a l r e a d y been i d e n t i f i e d i n K - c a s e i n from
normal
bovine
milk.
H c h a r a c t e r i z e d i n a 500 M H t '
Oligosaccharide n.m.r.
study.720
(34)
has also
been
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
255
The l o c a l i z a t i o n of g l y c o s y l a t e d K - c a s e i n i n i s o l a t e d b o v i n e c a s e i n m i c e l l e s has been s t u d i e d a t the u l t r a - s t r u c t u r a l l e v e l u s i n g g o l d g r a n u l e s l a b e l l e d w i t h R i c i n u s cgmmunis l e c t i n , w h i c h s p e c i f i c a l l y i n t e r a c t s w i t h 8 - Q - g a l a c t o s y l residues.721 No evidence was o b t a i n e d f o r t h e p r e s e n c e of g l y c o s y l a t e d K - c a s e i n o n t h e s u r f a c e o f g l u t a r a l d e h y d e - f i x e d m i c e l l e s w h e t h e r o r n o t t h e y had The g l y c o p r o t e i n was m a i n l y been t r e a t e d w i t h n e u r a m i n i d a s e . l o c a t e d i n t h e b r i d g i n g n e t w o r k i n t e r c o n n e c t i n g t h e m i c e l l e s , and appeared t o be l o o s e l y a s s o c i a t e d w i t h t h e m i c e l l e s . B-Q-GlceNAc-( 1+3) -g-Gale-( 1+3) -g-GalNAc-ol 6
I 2 a -Ne
ue5 Ac
(32)
B-Q-Galp-( 1+4) -B-Q-GlCeNAC-( 1+6) -Q-GalNAc-01 3
I 1
6 -Q-Galg 3
I 2
R
a -Ne ue5 Ac- ( 2+3 -8
(33)
R = H
(34)
R = a-Neue5Ac
-9 -Gale-
( 1+3)
-a -Gal NA c- 01 6
I 2 R
(35)
R = H
(36)
R = a-Neup5Ac
The i n t e r a c t i o n between bovine K-casein and 6 - l a c t o g l o b u l i n h a s been examined.722 The o l i g o s a c c h a r i d e p o r t i o n o f the g l y c o p r o t e i n i n f l u e n c e s complex formation, and Ca2+ i o n s have an i n h i b i t o r y e f f e c t o n the interaction.
256
Carbohydrate Chemistry S u b c e l l u l a r f r a c t iona t i o n o f o v i ne m am m a r y - g l a n d m em b r a ne s
i n d i c a t es
that
2 - a c e t am id o - 2 - d e o x y -Q- g a l a c t o s y 1 : p o l y p e p t i de
t r a n s f e r a se a n d Q - g a l a c t o s y 1 : 2 - ace t a m i d o - 2 - d e o x y-a-D=-galactosy 1 transferase,
which a r e i n v o l v e d i n t h e assembly o f disaccharide
u n i t s o f x-casein,
a r e l o c a l i z e d c h i e f l y i n G o l g i membranes.723
n e u r a m i n o s y l t r a n s f e r a s e a l s o o c c u r s i n t h e same f r a c t i o n ,
A
probably
s u g g e s t i n g a p o s t - t r a n s l a t i o n a l g l y c o sy l a t i o n p r o c e s s o f x - c a s e i n occurring simultaneously w i t h
lo4)
from
rat
the transport
A c a s e i n component
the Golgi region.
m i l k has
(C-2
been p u r i f i e d
.
by
of
these molecules
casein,
wt.
mol.
ion-exchange
to
3.4
and
x
gel
f i1t r a t i on ch rom a t o g r a phy 7 2 4
only
sugar
detected
i n
2- Ace tam i d o -2-deox y - p - g l uco se w as t h e this glycoprotein. Alkali-labile
o l i g o s a c c h a r i d e s l i b e r a t e d f r o m t h e g l y c o p e p t i d e s o f human m i l k f a t g l o b u l e membrane have been c h a r a c t e r i z e d and compared w i t h t h e corresponding o l i g o s a c c h a r i d e s i s o l a t e d from bovine m i l k f a t g l o b u l e The f o r m a t i o n o f l i p i d - l i n k e d s u g a r s i n t o e x p l a n t s o f
membranes.725
d e v e l o p i n g r a b b i t mammary g l a n d ,
stimulated t o differentiate i n
c u l t u r e w i t h hormones, a n d t h e a p p e a r a n c e o f n o v e l g l y c o p r o t e i n s , whose
synthesis
described.726
i s
dependent
on
this
pathway,
have
I n c u b a t i o n o f a membrane p r e p a r a t i o n from
been
lactating
bo v i ne mam m a r y t i s s u e w i t h UDP - 2 - ace t a m i d o -2-deox y-n-gl ucose and GDP-Q-mannose linked
r e s u l t s i n t h e s y n t h e s i s o f an e n t i r e range o f l i p i d -
saccharides
that
differ
from
one
another
by
one
m o n o s a c c h a r i d e u n i t.727 They a p p e a r t o be p r e c u r s o r - p r o d u c t t y p e o f i n t erm e d i a t e s
for
glycoproteins.
Two i s o m e r i c s t r u c t u r e s
-
the
g l y c o s y l a t i o n o f I - a s p a r a g i ne- l i n k e d for
t h e l i p i d - l i n k e d hexa-
a n d h ep t a sa ccha r i de s a r e p r o PO se d. 7 2 The e l u c i d a t i o n o f t h e s t r u c t u r e s o f t w o c a r b o h y d r a t e u n i t s (37-38),
1-glycosidically
lactotransferrin,
de s c r ibe d
.
l i n k e d t o an &-asparagine
u s i n g 5 0 0 MHz 'H
n.m.r.
residue o f
spectroscopy
has been
S t r u c t u r a l r e l a t e d n e s s b e t w e e n human l a c t o t r a n s f e r r i n a'nd
human
c e r u l o p l a s m i n has been e ~ t a b l i s h e d . ~ ~ The ' comparison o f amino a c i d sequences o f t w o c e r u l o p l a s m i n f r a g m e n t s c o r r e s p o n d i n g t o a t o t a l o f 5 6 4 a m i n o a c i d r e s i d u e s a n d 70% o f t h e l a c t o t r a n s f e r r i n m o l e c u l e (445 r e s i d u e s ) i n d i c a t e s t e n h o m o l o g o u s a r e a s i n c l u d i n g 1 3 3 a m i n o acids.
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
c v)
Q
I J I
t
4
I
4
u I
4'
cn I
.j
t
4
u I
0 Q
z al
4
u I
4' cn
II
U
t
n n
r.03
4
9
M
u
a
m w - 4 m w - - 4 m h l - 4 m I ZE I
4'
m I
4' ?
n
n
4
4
4l
4'
+
M
I
M
t
I
n
n
4 v
u
+
N
I
4' I
n
hl
-4 U
I
a
II
a a
I
n
+
hl
-4
$ m
5
4'
a
v
I
7'
M
u
257
258
Carbohydrate Chemistry 12
Serum G l y c o p r o t e i n s
R a t a 2 - r n a c r o g l o b u l i n h a s been p u r i f i e d f r o m s e r a by s e q u e n t i a l use o f
dextran
sulphate,
ion-exchange
chromatography, and g e l -
p e r m e a t i o n ~ h r o m a t o g r a p h y . ~An ~ ~a n t i s e r u m p r e p a r e d a g a i n s t t h e g l y c o p r o t e i n was u s e d t o a s s a y t h e c o n c e n t r a t i o n o f a 2 - m a c r o g l o b u l i n i n t h e s e r a of n o r m a l r a t s and i n t h e s e r a o f r a t s undergoing an i n f l a m m a t o r y response. Evidence for which
i s
t h e e x i s t e n c e o f t w o t y p e s o f c o m p l e x e s , one o f
covalent
and
the
m a c r o g l o b u l i n and p r o t e a s e s ,
other
of
which
i s
not
has been reported.732
between
a2-
The c o n v e r s i o n
of t h e non-covalent t o t h e covalent form r e q u i r e s t h e presence o f u n b l o c k e d amino groups. Soybean t r y p s i n i n h i b i t o r h a s been u s e d t o a s s e s s t h e d e g r e e o f i n a c c e s s i b i l i t y of porcine t r y p s i n w i t h i n t h e a2-macroglobulint r y p s i n complex.733
Proteinase-binding
on t h e a 2 - m a c r o g l o b u l i n do
not
appear
arranged.
to
surface.
be i d e n t i c a l ,
Evidence
for
the
s i t e s h a v e been i d e n t i f i e d
The t w o s u b u n i t s o f t h i s p r o t e i n
or they
cleavage
are not
of
a
macroglobulin during proteinase-complex discussed.734
thiol
symmetrically
i n a2-
ester
f o r m a t i o n has been
The n a t i v e human g l y c o p r o t e i n c o n t a i n s one r e a c t i v e
l a b i l e t h i o l e s t e r i n each o f i t s four i d e n t i c a l subunits.735
The
c y s t i n e r e s i d u e c o n s t i t u t i n g one p a r t o f t h e t h i o l e s t e r s t r u c t u r e i s l o c a t e d i n an i d e n t i c a l sequence t o c o m p l e m e n t c o m p o n e n t C3. of
a2-macroglobulin
that
f o u n d i n human
Trypsin-induced a c t i v a t i o n o f t h i o l esters
generates
a short-lived
intermediate that
can
r e a c t r a p i d l y t o i n c o r p o r a t e n o t o n l y methylamine or p u t r e s c i n e b u t also
proteins
interaction of
lacking trypsin
protease with
activity.736
this
protease
A
model
inhibitor
for has
the been
p r o p o s e d i n w h i c h t h e i n h i b i t o r can b i n d t o t h e enzyme i n t h r e e d i s t i n c t modes. 737 Human
a2-macroglobulin,
after
derivatization
m o n o d a n s y l c a d a v e r i n e by t r a n s g l u t a m i n a s e - c a t a l y s e d
with
incorporation,
contains two y-glutamyl residues per conjugated molecule,
a n d shows
n o d i f f e r e n c e s i n t r y p s i n b i n d i n g o r m e t h y l a m i n e i n a c t i v a t i o n when compared w i t h t h e n a t i v e a2-macroglobulin.738 methylamine
treatment,
the
a2-macroglobulin
A f t e r t r y p s i n or conjugate
e f f e c t i v e l y r e c o g n i z e d by i t s c e l l u l a r r e c e p t o r . binding o f t r y p s i n t o a2-macroglobulin g r o u p on t h e p r o t e a s e ,
The
i s
not
covalent
o c c u r s by a p r i m a r y a m i n o
a n d i s i n h i b i t e d b y p r i m a r y a m i n e s when
p r e s e n t d u r i n g complex f o r m a t i o n . 7 3 9
Covalent i n c o r p o r a t i o n o f t h e
259
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
same p r i m a r y a m i n e s d u r i n g t r y p s i n b i n d i n g t o a 2 - m a c r o g l o b u l i n indicates transient activation o f the methylamine-reactive s i t e during complexation. The c o v a l e n t l i n k a g e o f n o n - p r o t e o l y t i c proteins t o a2-macroglobulin
d u r i n g i t s r e a c t i o n w i t h p r o t e a s e s has
been f u r t h e r c h a r a c t e r i z e d . 7 4 0 The a m i n o a c i d s e q u e n c e l o c a t i o n o f a p u t a t i v e t r a n s g l u t a m i n a s e c r o s s l i n k i n g s i t e i n human a 2 - m a c r o g l o b u l i n h a s b e e n i d e n t i f ied.741 The a m i n o a c i d s e q u e n c e o f a 3 5 - r e s i d u e i n t e r n a l s t r e t c h o f h u m a n a2-macroglobulin, one
site
cleaved
established.742
w h i c h c o n t a i n s t w o s i t e s c l e a v e d by e l a s t a s e and by t r y p s i n , plasmin, and t h r o m b i n , has been T r y p s i n cleaves a I - L y s - i - L e u bond i n a2-macro-
g l o b u l i n , w h i l e S t a p h y l o c o c c u s a u r e u s V8 p r o t e i n a s e c l e a v e s a n Glu-Gly
I-
bond .743
al-Acid
g l y c o p r o t e i n h a s been m e a s u r e d b y l a s e r n e p h e l o m e t r y i n
a q u i c k and p r e c i s e m e t h o d f o r
d e t e c t i o n and f o l l o w - u p
i n f e c t i o n s i n newborn infants.744 o f r a t al-acid
of
bacterial
The c o m p l e t e n u c l e o t i d e s e q u e n c e
g l y c o p r o t e i n m e s s e n g e r RNA h a s b e e n d e s c r i b e d . 7 4 5
The i n f e r r e d a m i n o a c i d sequence h a s b e e n c o m p a r e d t o t h e p r e v i o u s l y reported
sequence
focusing
has
of
human a l - a c i d
glycoprotein.
been used t o r e v e a l t h e t w o
p o p u l a t i o n s s e p a r a t e d by a f f i n i t y
Isoelectric
al-acid
glycoprotein
chromatography on i m m o b i l i z e d
c o n c a n a v a l i n A and d e r i v e d from w h o l e n o r m a l serum and s e r a f r o m patients
u n d e r g o i n g an
significant
difference
i s
acute
i n f lammatory
observed
response.746
A
between p a t t e r n s o b t a i n e d f r o m
n o r m a l and i n f l a m m a t o r y s e r a . al-Acid
glycoprotein
produces
immunoaffinoelectrophoresis dimension,
thus
with
implying a
three
peaks
concanavalin
degree
of
A
on i n
crossed
the
heterogeneity
first i n
the
These carbohydrate p o r t i o n o f t h i s g l y ~ o p r o t e i n . ~ ~ ~ v a r i a t i o n s have been s t u d i e d under c o n d i t i o n s a s s o c i a t e d w i t h a l t e r a t i o n s i n serum concentration
of
female
sex
hormones.
A
new
type
o f
m i c r o h e t e r o g e n e i t y w i t h r e g a r d t o t h e p o s i t i o n o f a t t a c h m e n t o f an I - f u c o s y l r e s i d u e o n al-acid
g l y c o p r o t e i n h a s been o b s e r v e d f r o m t h e
i m p r o v e d r e s o l v i n g p o w e r a n d e n h a n c e d s e n s i t i v i t y o f 5 0 0 MHz l H n.m.r.
spectroscopy.748 al-Acid
glycoprotein
and
i t s
deglycosylated
derivatives,
p r o d u c e d by e n z y m a t i c c l e a v a g e of n e u r a m i n o s y l , B - g a l a c t o s y l , mannosyl, t o
and 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s y l r e s i d u e s ,
regulate
immune responses
p a t h o l o g i c a l conditions.749
i n
various
Q-
may f u n c t i o n
physiological
and
The p r e c u r s o r f o r m s o f p l a s m a p r o t e i n s
s y n t h e s i z e d i n human l i v e r h a v e been i n v e s t i g a t e d . 7 5 0
By c o m p a r i n g
260
Carbohydrate Chemistry
t h e chromatographic behaviour of t h i r t e e n d i f f e r e n t plasma p r o t e i n s i s o l a t e d from e i t h e r l i v e r o r blood, f i v e i n t r a c e l l u l a r precursor p r o t e i n s can be i d e n t i f i e d .
Two o f t h e m , t r a n s f e r r i n a n d a l - a c i d
g l y c o p r o t e i n , were p u r i f i e d and c h a r a c t e r i z e d by c o m p a r i n g t h e i r s t r u c t u r e s w i t h those of t h e corresponding plasma forms. forms o f b o t h g l y c o p r o t e i n s l a c k e d n e u r a m i n i c acid, two l i v e r forms
of
al-acid
The l i v e r
and i n a d d i t i o n
g l y c o p r o t e i n are described as h a v i n g
l o w e r n e u t r a l and a m i n o s u g a r c o n t e n t . Rat a - l - a n t i t r y p s i n
has been c h a r a c t e r i z e d w i t h r e s p e c t t o i t s
a m i n o a c i d and c a r b o h y d r a t e c o m p o s i t i o n . 7 5 1
Some o f
i t s chemical
p r o p e r t i e s h a v e b e e n c o m p a r e d t o t h o s e o f human a - l - a n t i t r y p s i n . A n t i b o d i e s p r e p a r e d t o t h e r a t g l y c o p r o t e i n h a v e b e e n s h o w n t o be monospecific.
a-l-Antitrypsin
h a s been f r a c t i o n a t e d on i m m o b i l i z e d
concanavalin A i n t o t w o components which d i f f e r i n t h e degree o f branching
of
their
oligosaccharide
side
chains.752
One
form
c o n t a i n s t h r e e b i a n t e n n a r y s i d e c h a i n s and t h e o t h e r c o n t a i n s t w o b i a n t e n n a r y and one t r i a n t e n n a r y s i d e c h a i n . s t r u c t u r e s have been t e r m e d i s o f o r m s ,
These a l t e r n a t i v e
a t e r m used t o d i f f e r e n t i a t e
them from v a r i a n t s o f g e n e t i c o r p o s t - s e c r e t o r y o r i g i n . A l a t e n t t r y p s i n i n h i b i t o r i s r e l e a s e d f r o m d e n a t u r e d human s e r u m p r o t e i n s b y d i g e s t i o n w i t h t h e r m ~ l y s i n . I~m~m~u n o l o g i c a l c r o s s - r e a t i o n i d e n t i f i e d t h i s i n h i b i t o r as a complex between t h e i n h i b i t o r y a c t i v e p a r t o f t h e g l y c o p r o t e i n and i m m u n o g l o b u l i n G. al-Protease
i n h i b i t o r f r o m r a t serum e x i s t s i n f i v e
These m u l t i p l e f o r m s laser
nephelometric
p r o c e d u r e 7 5 5 and
i m m u n o a ~ s a yh~a v~e~ b e e n d e v e l o p e d f o r The t h e r m a l d e n a t u r a t i o n o f h e p a r i n and a l s o e.d.t.a.757
by
a
sandwich
enzyme
m e a s u r i n g a n t i t h r o m b i n 111.
a n t i t h r o m b i n 111
anions
by
A m o d i f i e d end-
s e q u e n t i a l a d d i t i o n o f n e u r a m i n i c a c i d t o e a c h one. point
forms.754
are derived from three o r i g i n a l forms
such as
i s
s t a b i l i z e d by
phosphate,
sulphate, and
The e f f e c t s o f d i t h i o t h r e i t o l o n t h e m o d u l a t i o n o f
a n t i t h r o m b i n I11 a c t i v i t y by s u l p h a t e d p o l y s a c c h a r i d e s have been reported.758
K i n e t i c analysis o f the heparin-enhanced plasmin-
a n t i t h r o m b i n 111 r e a c t i o n s u p p o r t s t h e t h e o r y t h a t h e p a r i n m u s t b i n d t o
the
enzyme
reaction.759
t o
accelerate
the
plasmin-antithrombin
The b i n d i n g o f h i g h - a f f i n i t y
111
heparin t o antithrombin
I 1 1 h a s been i n v e s t i g a t e d f o l l o w i n g c h a r a c t e r i z a t i o n o f t h e p r o t e i n fluorescence
enhancement
of
I-tryptophan
residues
a n t i t h r o m b i n i n t h e presence and absence o f heparin.760 flow
i n
the
Stopped-
k i n e t i c s t u d i e s o f t h e b i n d i n g i n t e r a c t i o n have a l s o been
reported.761
26 1
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
I n a study o f t h e plasma o f p a t i e n t s c o n g e n i t a l l y d e f i c i e n t i n
a n t i t h r o m b i n 111, o n l y t w o o f f o u r e l e c t r o p h o r e t i c a l l y s e p a r a t e d f o r m s i d e n t i f i e d i n n o r m a l p a t i e n t s ’ p l a s m a c o u l d be detected.762 Isoelectric-focusing
profiles
of
human
antithrombin
demonstrated heterogeneity i n l y o p h i l i z e d s a l t - f r e e
have
111
p r o d u c t s and i n
aged p r o d u c t s .763 A s i n g l e p r o t e o l y t i c c l e a v a g e s i t e i n human a n t i t h r o m b i n h a s
been i d e n t i f i e d between L-Arg-385 w i t h human t h r o m b i n . 7 6 4 -
and I - S e r - 3 8 6
following digestion
T h i s i s a t a p o s i t i o n homologous t o t h a t
observed f o r t h e bovine glycoprotein. The s t r u c t u r e a n d f u n c t i o n o f f a c t o r V I I I c o m p l e x h a v e b e e n r e v i e w e d .765 Factor
VIII-related
f luoroimmunoassay.766
anti-factor with
antigen
The a s s a y ,
has
been
measured
using
a
which uses a f l u o r e s c e n t - l a b e l l e d
V I I I a n t i b o d y as t h e s i n g l e m a j o r r e a g e n t , c o r r e l a t e s
an e x i s t i n g method.
The
molecular
forms
of
factor
V I I I
c o a g u l a n t a n t i g e n i n c l i n i c a l c o n c e n t r a t e s o f f a c t o r I X have been measured u s i n g 1 2 5 1 - l a b e l l e d
factor VIII:C
antibodies.767
Factor
c l o t t i n g a n t i g e n has been measured w i t h t w o d i f f e r e n t
V I I I
i m m u n o r a d i o m e t r i c assays,
one u t i l i z i n g t w o a c q u i r e d a n t i b o d i e s and
one a h a e m o p h i l i c a n t i b o d y . 7 6 8
The r e s u l t s c o n f i r m t h e d i v i s i o n o f
b o t h m o d e r a t e and m i l d h a e m o p h i l i a A i n t o t h r e e sub-groups. h a e m o p h i l i a A,
I n
there i s a quantitative reduction rather than a
q u a l i t a t i v e defect i n the p r o t e i n responsible f o r the f a c t o r V I I I clotting activity. A r a d i o r e c e p t o r assay
factor
VIII/von
f o r q u a n t i t a t i n g p l a s m a l e v e l s o f human
Willebrand’s
factor
has
r e c e p t o r s i t e s o n human p l a t e l e t s . 7 6 9
been
developed
using
The p l a s m a g l y c o p r o t e i n
c o n c e n t r a t i o n s c o r r e l a t e w i t h l e v e l s m e a s u r e d by t h e r i s t o c e t i n i n d u c e d p l a t e l e t - a g g r e g a t i o n method. Aluminium hydroxide but not barium chloride absorption o f factor
VIII p r o c o a g u l a n t
antigen
i s
associated
with
variable
r e c o v e r i e s o f t h e antigen.770 Immobilized p u r i f i c a t i o n of
11, V I I I ,
phospholipid
a number o f
vesicles
have
been
coagulation factors,
used
in
the
including factors
I X , a n d X.771
F i b r i l s u s p e n s i o n s o f t y p e s I,
II,and
111 c o l l a g e n a r e a l l
c a p a b l e o f a d s o r b i n g r i s t o c e t i n c o f a c t o r a c t i v i t y and f a c t o r V I I I r e l a t e d a n t i g e n a c t i v i t y f r o m n o r m a l plasma.772
The b i n d i n g o f
factor VIII/von
W i l l e b r a n d f a c t o r h a s b e e n d e t e c t e d by f o l l o w i n g t h e
adsorption
the
of
labelled
antigen
to
collagen
films.773
In
262
Carbohydrate Chemistry
c o n t r a s t t o r e p o r t s f r o m o t h e r workers, b i n d i n g t o bovine tendon f i b r e s was a l s o d e t e c t e d . The a p p l i c a t i o n o f a f f i n i t y - c h r o m a t o g r a p h i c t e c h n i q u e s f o r s e p a r a t i o n s and s t u d i e s o n molecular i n t e r a c t i o n s of t h e components of t h e blood-coagulation system has been reviewed.774 An e l e c t r o p h o r e t i c sys tern , employing l a r ge-pore polyacry lam i d e g e l s i n n e u t r a l b u f f e r i n t h e absence of s o d i u m d o d e c y l s u l p h a t e , has been used t o f r a c t i o n a t e s i n g l e s p e c i e s o f f a c t o r V I I I m u l t i m e r s under c o n d i t i o n s where b i o l o g i c a l p r o p e r t i e s of f a c t o r V I I I a r e p r e s e r v e d . 7 7 5 F a c t o r V I I I : C , f a c t o r VIII:RCof, and f a c t o r VII1:Ag a c t i v i t i e s a r e e x t r a c t a b l e from t h e g e l s a f t e r e l e c t r o p h o r e s i s and can be a s c r i b e d t o i n d i v i d u a l f a c t o r VIII m u l t i m e r s . Human a n t i - h a e m o p h i l i c f a c t o r (mol. w t . 1.16 x l o 5 ) , c o n t a i n i n g n o d e t e c t a b l e von Willebrand f a c t o r , has been prepared from normal human p l a s m a . 7 7 6 P a r t i a l r e d u c t i o n w i t h d i t h i o t h r e i t o l e x p o s e s c r i t i c a l s u l p h y d r y l g r o u p s , which when a l k y l a t e d m a i n t a i n t h e a n t i - h a e m o p h i l i c f a c t o r w i t h o u t i n a c t i v a t i n g procoagulant a c t i v i t y . F u r t h e r p u r i f i c a t i o n of t h e a n t i - h a e m o p h i l i c f a c t o r was a c h i e v e d a f t e r c o n v e r s i o n of p r o t e i n - 2 - p y r i d y l mixed d i s u l p h i d e c o n j u g a t e s f o l l o w e d b y a f f i n i t y chromatography o n t h i o p r ~ p y l - a g a r o s e . ~ ~ ~ F r a c t i o n a t i o n of p a r t i a l l y p u r i f i e d b o v i n e f a c t o r V I I I o n c a l c i u m c i t r a t e c o l u m n s p r o d u c e s a m a t e r i a l which c o n t a i n s h i g h l e v e l s of f a c t o r VIII procoagulant a c t i v i t y and f a c t o r V I I I - r e l a t e d a n t i g e n b u t d o e s n o t a g g r e g a t e human p l a t e l e t s . 7 7 8 The a p p a r e n t molecular weight of t h e procoagulant f a c t o r is s i g n i f i c a n t l y lower t h a n t h a t of t h e f o r m s of f a c t o r VIII which c o n t a i n p l a t e l e t a g g r e g a t i n g a c t i v i t y , and i t e x h i b i t s a h i g h e r m o b i l i t y o n electrophoresis. Bovine f a c t o r VIII h a s been p r e p a r e d f r e e from p l a t e l e t a g g r e g a t i n g a c t i v i t y . 7 7 9 The p r e p a r a t i o n migrated a s a t r i p l e t on sodium dodecylsulphate-polyacrylamide gel electrophoresis w i t h a p p a r e n t m o l . wts. 9 . 3 x L O 4 , 8.8 x l o 4 , and 8.5 x l o 4 . B o t h p l a s m i n and t h r o m b i n d e s t r o y a p r o t e i n ( m o l . w t . 8.5 x l o 4 ) , p r e s e n t i n h i g h l y p u r i f i e d f a c t o r VIII/von Willebrand f a c t o r , a t a r a t e t h a t p a r a l l e l s t h e loss of f a c t o r V I I I C . 7 8 0 T h i s protein may be n e c e s s a r y f o r f u l l e x p r e s s i o n o f f a c t o r V I I I C and may be d e f e c t i v e i n c a s e s o f haemophilia. The l e v e l s o f f a c t o r V I I I c o a g u l a n t a n t i g e n i n n o r m a l , t h r o m b i n - t r e a t e d , and haemophilic plasma have been a n a l y ~ e d . The ~~~ a n t i g e n d e t e c t e d i n normal plasma i s n o t c o v a l e n t l y l i n k e d t o f a c t o r V I I I / v o n Willebrand f a c t o r m u l t i m e r s and is a b s e n t i n plasma from a
263
5: Glycoproteins, Glycopeptides, ProteoRlycans, and Animal Polysaccharides
number o f h a e m o p h i l i a p a t i e n t s . Thrombin-induced p r o t e o l y s i s o f t h e a n t i g e n has been o b s e r v e d i n n o r m a l plasma. Thrombin i s more e f f e c t i v e
i n potentiating factor
V I I I
p r o c o a g u l a n t a c t i v i t y when t h e a m o u n t o f t h r o m b i n r e l a t i v e t o t h e concentration
of
stoichiometric
rather
activation,
the
factor than
VIII/von
Willebrand
catalytic.782
I n
factor
contrast
the i n a c t i v a t i o n o f thrombin-activated
factor
to
i s i t s
VIII/von
W i l l e b r a n d f a c t o r i s n o t a p r o t e o l y t i c p r o c e s s , and a c t i v a t i o n o f t h i s factor i s a prerequisite for i t s inactivation. F u r t h e r e v i d e n c e o f t h e f o r m a t i o n o f s t a b l e immune complexes b e t w e e n human f a c t o r V I I I a n d i t s h o m o l o g o u s a n t i b o d i e s h a s b e e n published.783
Some e v i d e n c e i s a l s o p r o v i d e d w h i c h s u p p o r t s t h e
view t h a t f a c t o r V I I I c o n s i s t s o f two d i s s i m i l a r subunits which a r e noncovalently linked. Heterogeneity o f molecular size o f factor
i n von Willebrand’s
factor
disease has
VIII/von
Willebrand
been d e m o n s t r a t e d by
a
c o m b i n a t i o n o f SDS p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s and c r o s s e d -
i m m u n o e l e c t r ~ p h o r e s i s . ~ T~h~e
factor
g l y c o p r o t e i n c o n s i s t s o f a s e r i e s of i n m o l e c u l a r w e i g h t f r o m 2.4
x
lo6
VIII/von
Willebrand
multimeric structures ranging t o g r e a t e r t h a n 1 0 x 106.785
Differences i n the s p e c i f i c a c t i v i t y o f the polymeric forms are a f u n c t i o n n o t o n l y of
t h e i r s i z e but also o f quaternary conformation
t h a t may b e d i c t a t e d by d i s u l p h i d e b o n d a r r a n g e m e n t s . A
technique
relationship
has
been
between f a c t o r
developed
i n
VIII-related
order
t o
study
the
a n t i g e n ( V I I I R A g ) and
The V I I I C p a r t o f t h e f a c t o r V I I I c l o t t i n g a n t i g e n (VIIICAg).786 complex i s pre-incubated w i t h 1251-anti-VIIICAg prior to immunoelectrophoresis. Autoradiography o f the immunoprecipitin l i n e produced w i t h a n t i - V I I I R A g i n d i c a t e d t h e presence o r absence o f VIIICAg ( V I I I C )
a s s o c i a t e d w i t h VIIIRAg.
Human f a c t o r
V I I I procoagulant a c t i v i t y i n t e r a c t s w i t h c e r t a i n
phospholipid^.^^^
F u r t h e r e v i d e n c e h a s shown t h a t t h i s a c t i v i t y and
the
factor
VIII/von
Willebrand
factor
V a r i a n t forms of p r o c o a g u l a n t - l i k e f a c t o r
are
separate
entities.
V I I I i n haemophiliacs have
b e e n r e p o r t e d .788 The a c t i v a t i o n o f blood-coagulation
factor
X
t h e i n t r i n s i c pathway i n t h e
s y s t e m i n v o l v e s p h o s p h o l i p i d and f a c t o r
VIII.789
The s t i m u l a t i n g e f f e c t o f p h o s p h o l i p i d i n f a c t o r X a c t i v a t i o n i s m a i n l y due
t o
an e f f e c t
stimulatory effect increase i n the
of
ymax
factor
on t h e V I I I
Km f o r
factor
X,
while
the
i s e x p l a i n e d by i t s 2 0 0 , 0 0 0 - f o l d
o f f a c t o r Xa f o r m a t i o n .
264
Carbohydrate Chemistry
A metal-ion-catalysed conformational change a f f e c t i n g f a c t o r X i s a p r e r e q u i s i t e f o r g l y c o p r o t e i n - l e c t i n p r e c i p i t i n i n t e r a c t i o n . 79b
When Ca2+ o r Mn2+, b u t n o t Mg2+, i s p r e s e n t , s p e c i f i c s u g a r s o n t h e c a r b o h y d r a t e c h a i n s o f f a c t o r X1 b e c o m e a c c e s s i b l e t o w h e a t - g e r m agglutinin. Whether t h i s c a t i o n - g l y c o p r o t e i n i n t e r a c t i o n t a k e s p l a c e t h r o u g h a d i r e c t i n t e r a c t i o n between c a r b o h y d r a t e m o i e t i e s and c a t i o n or by a d i r e c t i n t e r a c t i o n b e t w e e n p r o t e i n m o i e t y a n d c a t i o n , o r b o t h , i s n o t known. A three-step method h a s been developed f o r t h e d e t e r m i n a t i o n o f f a c t o r VII u s i n g a c h r o m o g e n i c s u b s t r a t e . 7 9 1 A p r e p a r a t i v e scheme f o r t h e i s o l a t i o n o f m u l t i p l e c o m p o n e n t s o f complement from one l a r g e p o o l o f human p l a s m a i n which t h e p u r i f i e d p r o d u c t s are c h a r a c t e r i z e d f u n c t i o n a l l y , physicochemically, a n d i m m u n o c h e m i c a 1l y h a s b e e n d e s c r i b e d . 792 The p u r i f i e d s u b c o m p o n e n t C l q o f t h e f i r s t c o m p o n e n t o f m o u s e complement c o n t a i n s h y d r o x y - i - p r o l i n e , h y d r o x y - k - l y s i n e , g l y c i n e , and ~ a r b o h y d r a t e . ” ~ T h e i n t e r a c t i o n o f i s o l a t e d h u m a n c o m p l e m e n t c o m p o n e n t s Clr a n d Cls w i t h c e l l - b o u n d a n d f l u i d - p h a s e C l q h a s b e e n r e p o r t e d . 7 9 4 The b i n d i n g of Clq t o t h e F c p o r t i o n of an a n t i b o d y i n f l u e n c e s i t s a c t i v i t y t w o a r d s Clr a n d Cls a n d i t s a b i l i t y t o a c t i v a t e t h e s e C 1 components. B i n d i n g o f Clr a n d C l s t o C l q i n t h e f l u i d p h a s e a p p e a r s t o change or f i x t h e C l q c o n f o r m a t i o n so t h a t Clq is t h e n able t o bind only t o t h o s e binding sites which can t r i g g e r t h e internal activation. The i n i t i a l r e a c t i o n o f b i n d i n g o f h u m a n c o m p l e m e n t C 3 a n d C 4 t o s u r f a c e s i n v o l v e s similar mechanisms f o r both p r o t e i n s , w i t h t h e b i n d i n g b e i n g by m e a n s o f a c o v a l e n t b o n d ( e s t e r o r a m i d e ) o f w h i c h t h e c a r b o x y l g r o u p i s d o n a t e d by C 3 o r C4.795 Haemolytically active C 3 a n d C4 u n d e r g o p e p t i d e - b o n d c l e a v a g e i n t h e a - c h a i n when incubated under denaturing conditions. I n e a c h case o n l y a s i n g l e p e p t i d e bond i s s p l i t . T h e n o n c o v a l e n t l y a s s o c i a t e d a- a n d B - s u b u n i t s o f t h e e i g h t h component o f human complement ( C 8 ) r e c o m b i n e i n s o l u t i o n t o f o r m n a t i v e C8 w i t h c o n c o m i t a n t a p p e a r a n c e o f C 8 h a e m o l y t i c a c t i v i t y . 7 9 6 S t r u c t u r a l domains which mediate s p e c i f i c i n t e r a c t i o n o f C 8 with its n a t i v e c y t o l y t i c complex are l o c a t e d i n t h e B-subunit. Direct c h e m i c a l e v i d e n c e s h o w s t h a t n o n - e n z y m a t i c g l y c o s y l a t i o n of haemoglobin i n v o l v e s the i n i t i a l f o r m a t i o n o f a r e v e r s i b l e a l d i m i n e ( S c h i f f b a s e ) p r e c u r s o r which s l o w l y r e a r r a n g e s t o a stable k e t o a m i n e by t h e A m a d o r i r e a r r a n g e m e n t . 7 9 7 An e s t i m a t e o f t h e
265
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
d i s t r i b u t i o n o f l a b i l e a l d i m i n e and s t a b l e k e t o a m i n e i n e r y t h r o c y t e s f r o m n o r m a l and d i a b e t i c s o u r c e s i s o b t a i n e d f r o m t h e r a t e c o n s t a n t s f o r t h e p r o d u c t i o n o f t h e two forms. Unless s t r i c t l y standardized conditions are a p p l i e d t o the measurement o f n o n - e n z y m i c a l l y g l y c o s y l a t e d serum p r o t e i n s u s i n g t h e t h i o b a r b i t u r i c a c i d a s s a y , e r r o n e o u s r e s u l t s may b e o b t a i n e d . 7 9 8 The
accuracy
of
the
modifications t o
method has
assay
been
i m p r o v e d by
conditions.
a
number
The c o n d i t i o n s f o r
of the
t h i o b a r b i t u r i c a c i d a s s a y f o r n o n - e n z y m i c g l y c o s y l a t i o n o f human serum a l b u m i n have been examined, and t h o s e o f o p t i m a l s e n s i t i v i t y and r e p r o d u c i b i l i t y a r e r e p o r t e d . 7 9 9 A
colorimetric
haemoglobin, carbohydrate,
based
method on
for
the
the
acid
glycosylated reaction
of
i s c l a i m e d t o be more r e l i a b l e a n d more s e n s i t i v e t h a n
t h e t h i o b a r b i t u r i c a c i d method.800 carbohydrate
estimation of
phenol-sulphuric
content
of
I n a d i f f e r e n t approach,
the
g l y c o s y l a t e d h a e m o g l o b i n i s d e t e r m i n e d by
measuring t h e r e l e a s e o f formaldehyde f o l l o w i n g p e r i o d a t e o x i d a t i o n o f t h e carbohydrate moieties.801
The f o r m a l d e h y d e i s e s t i m a t e d a s
t h e f l u o r e s c e n t c o n d e n s a t i o n p r o d u c t f o r m e d w i t h a c e t y l a c e t o n e and ammonia.
An
improved colorimetric
assay
for
glycosylated
h a e m o g l o b i n depends o n t h e c o n v e r s i o n o f t h e p - g l u c o s e m o i e t y t o 5h y d r o x y m e t h y l f u r f u r a l d e h y d e by o x a l i c a c i d , estimation
of
t h i o b a r b i t u r i c acid.802 a f f e c t e d by
with
2-
The u t i l i t y o f g l y c o s y l a t e d - h a e m o g l o b i n
measurement as an i n d e x o f adversely
f o l l o w e d by c o l o r i m e t r i c
5-hydroxymethylfurfuraldehyde
the
chronic control i n diabetes
interference
from
a
labile
can be
glycosylated
f r a c t i o n t h a t changes r a p i d l y w i t h b l o o d Q - g l u c o s e c o n c e n t r a t i o n . 8 0 3 T h i s f r a c t i o n may b e m e a s u r e d b y h.p.1.c.
or by
electrophoresis.
I n t e r f e r e n c e by Q - g l u c o s e i n t h e c o l o r i m e t r i c e s t i m a t i o n o f g l y c o s y l a t e d p l a s m a p r o t e i n h a s b e e n e l i m i n a t e d by p r e c i p i t a t i o n o f t h e p r o t e i n s w i t h t r i c h l o r a c e t i c acid.804 G l y c o s y l a t e d m i n o r c o m p o n e n t s o f human f e t a l h a e m o g l o b i n h a v e been s e p a r a t e d by ion-exchange
chromatography,
functionally
Sources o f v a r i a t i o n i n t h e i o n -
characterized.805
exchange column
chromatographic
identified,
determination
of
and
glycosylated
h a e m o g l o b i n (HbA) h a v e b e e n d e s c r i b e d . 8 0 6 A
simple,
commercially
a v a i l a b l e method f o r separating
g l y c o s y l a t e d haemoglobin e l e c t r o p h o r e t i c a l l y been
assessed.807
The
method
correlated
on a g a r - g e l well
chromatographic technique. 8-Glucose a l s o b i n d s c o v a l e n t l y t o €-amino
with
f i l m s has a
column
groups o f I - l y s i n e
Carbohydrate Chemistry
266 o f human a p o l i p o p r o t e i n s . 8 0 8
The l e v e l o f g l y c o s y l a t e d a p o p r o t e i n
B o f l o w - d e n s i t y l i p o p r o t e i n s i s i n c r e a s e d i n serum f r o m d i a b e t i c patients. Nonenzymatic g l y c o s y l a t i o n o f p r o t e i n s i n d i a b e t i c s extends beyond h a e m o g l o b i n t o t h e p r o t e i n s o f t h e e r y t h r o c y t e membrane, probably affects
and
o t h e r p r o t e i n s t h a t have s l o w t u r n o v e r a n d a r e
exposed t o h i g h c o n c e n t r a t i o n o f ~ - g l u c o ~ e . ~ ~ ~ Human p l a s m a c o n t a i n s a f a c t o r , factor,
terminal autorosette i n h i b i t i o n
w h i c h can i n h i b i t t h e a b i l i t y o f m u r i n e l y m p h o c y t e s t o b i n d
a u t o l o g o u s e r y t h r o c y tes.810
The p u r i f i e d f a c t o r h a s been i d e n t i f i e d
w t . 8.0 x l o 4 ) , b e i n g a l a r g e r - m o l e c u l a r f r o m w h i c h h i s t i d i n e - r i c h g l y c o p r o t e i n and,
a s a g l y c o p r o t e i n (mol. weight
precursor
possibly,
p l a s m i n o g e n - b i n d i n g p r o t e i n a r e d e r i v e d by p r o t e o l y s i s
during purification. H i s t i d i n e - r i c h g l y c o p r o t e i n f r o m r a b b i t serum b i n d s Cu2+, Zn2+, Hg2+, Cd2+, N i 2 + , consistent
a n d Co2+, w i t h h i g h a f f i n i t y ,
with
t h i s protein having a
vitro, which i s
role i n transport
or
h o m e o s t a s i s o f m e t a l s i n serum.811 Human B 2 - m i c r o g l o b u l i n glycoprotein.812 complex
(mol.
forms
After injection wt,
x
5.5
lo4
-
in
vivo
the
lo4),
x
6.7
with
complexes
serum
rat
with
but
serum
contains a
i;
vitro
i n c u b a t i o n t h e B 2 - m i c r o g l o b u l i n f o r m s a d d i t i o n a l c o m p l e x e s (rnol. 2.0
wt.
lo5). A
com pa r i so n
of
serum
a n a l y s i s by e n z y m e - l i n k e d
pregnancy- s p e c i f i c
B, - g l y c o p r o t e i n
i m m u n o s o r b e n t assay a n d r a d i o i m m u n o a s s a y
has g i v e n good c o r r e l a t i o n between t h e t w o methods.813 A g l y c o p r o t e i n (mol. w t . 5.0 x l o 4 > a s s o c i a t e d w i t h m a l i g n a n c y h a s been i s o l a t e d f r o m human s e r a from c a n c e r p a t i e n t s . 8 1 4 Reaction
of t h i s glycoprotein w i t h various antisera
directed against
normal
serum g l y c o p r o t e i n s h a s e s t a b l i s h e d t h a t i t i s n o t one o f t h e m a j o r ac u t e-phase r e a c t a n t g l y co p r o t e i n s a s s o c i a t e d w it h m a 1 ig n a n cy a n d can be d i s t i n g u i s h e d f r o m c a r c i n o e m b r y o n i c a n t i g e n and a - f e t o p r o t e i n by i t s m o l e c u l a r w e i g h t and c h r o m a t o g r a p h i c b e h a v i o u r . The i n f l u e n c e o f t e m p e r a t u r e ,
pH,
and v a r i o u s enzymes o n t h e
i n t e rme d i a t e s t r u c t u r e s f o r m e d i n t h e t r a n s f o r m a t i o n o f t o f i b r i n h a s been r e p o r t e d . 8 1 5 rod-like
intermediates are
a g g r e g a t i o n p r o c e s s when Babroxobin
(an enzyme
Light-scattering formed a t
fibrinogen
preparation
the
from
the
venom
of
the
beginning
i s treated with
for
the
B o t h r o p s a t r o x m a j o e n s i s l , and C o n t o r t r i x
f i b r i n o gen
s t u d i e s show t h a t
venom
of
of
the
thrombin, the
snake
(an enzyme p r e p a r a t i o n
copperhead snake Ancistrodon c o n t o r t r i x
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
.
261
contortrix) E x t e n s i v e i n a c t i v a t i o n o f t h e i r o n - b i n d i n g c a p a c i t y o f human t r a n s f e r r i n o c c u r s when a p p r o x i m a t e l y f o u r & - t y r o s i n e r e s i d u e s a r e o x i d i z e d w i t h sodium periodate.816 The c o r r e l a t i o n o f d e s t r u c t i o n of t h i s amino a c i d w i t h t h e l o s s o f i r o n - b i n d i n g a c t i v i t y s u g g e s t s t h a t t h e & - t y r o s i n e r e s i d u e s are t h o s e t h a t f u n c t i o n a s l i g a n d s t o metal i o n s bound t o the p r o t e i n . Human s e r u m t h y r o x i n e - b i n d i n g g l o b u l i n h a s b e e n a f f i n i t y l a b e l l e d w i t h N - b r om o a c e t y 1-I- t h y r o x i n e . &-Met h i o n i n e was i d e n t i f i e d as t h e major residue labelled. M i c r o h e t e r o g e n e i t y of a - f e t o p r o t e i n i n human s e r u m has been A practical and d e m o n s t r a t e d by l e c t i n a f f i n o e l e c t r o p h o r e s i s . 8 1 8 e c o n o m i c enzyme immunoassay f o r human a - f e t o p r o t e i n h a s been developed and its performance evaluated.819 Some s t u d i e s o n b i n d i n g a n d i n t e r n a l i z a t i o n o f a s i a l o g l y c o p r o t e i n s by i s o l a t e d r a t h e pa t o cy t e s h a v e b e e n r e p o r t e d .820 The c o nf orm a t i o n s o f t h e N-gl y c o s y l a t e d o l i g o sa c c h a r i d e c h a i n s o f a glycopeptide derived from f e t u i n h a v e b e e n e x a m i n e d by hydrogen-exchange techniques.821 Eight acetamido hydrogens are p r e s e n t , o ri gina t i n g from f i v e 2-acetamido-2-deoxy-eglucosyl r e s i d u e s a n d from three N - a c e t y l n e u r a m i n i c a c i d r e s i d u e s , t o g e t h e r w i t h one hydrogen from t h e oligosaccharide-peptide linkage. Seven of t h e hydrogens exchange a t a rate i n d i c a t i n g free c o n t a c t w i t h s o l v e n t , b u t t h e r e m a i n i n g t w o hydrogens exchange a t a s i g n i f i c a n t l y s l o w e r rate, i m p l y i n g t h e i r i n v o l v e m e n t i n i n t r a m o l e c u l a r hydrogen bonds. The t o t a l carbohydrate content and t h e monosaccharide c o m p o s i t i o n of p l a s m a a p o l i p o p r o t e i n s i s o l a t e d f r o m n o r m a l a n d 2am i no -2 - d e ox y -Q - ga 1a c t o se - t rea t e d r a t s h a ve be e n r e c o r de d. 8 2 2 Radioimmunoassay t e c h n i q u e s have been used t o e v a l u a t e t h e contribution of the carbohydrate moiety t o the immunological r e a c t i v i t y o f human serum l o w - d e n s i t y l i p o p r o t e i n . 8 2 3 Neuraminic a c i d a n d p-mannose, t h e t e r m i n a l r e s i d u e s o f low-density l i p o p r o t e i n g l y c o p e p t i d e s I a n d 11, a r e i m p l i c a t e d i n t h e a n t i g e n i c s i t e ( s ) . The i n t e r a c t i o n s o f f i b r i n o g e n and a s i a l o f i b r i n o g e n w i t h concanavalin A and the blood-clotting properties of the complexes have been described.824 Two o f t h e f o u r p o s s i b l e b i n d i n g s i t e s o n t h e fibrinogen molecule are not a c c e s s i b l e t o concanavalin A tetramers. Asialofibrinogen and its concanavalin A complexes c o a g u l a t e twice a s f a s t a s t h o s e o f f i b r i n o g e n . The t r a n s l a t e d p r o d u c t s o f r a t l i v e r m e s s e n g e r RNA, t o t a l p o l y s o m e s , a n d r o u g h
Carbohydrate Chemistry
268
microsomes i n c l u d e g l y c o s y l a t e d s u b u n i t s o f fibrinogen.825 Both t h e BB- a n d t h e y - c h a i n s a r e g l y c o s y l a t e d I-asparagine moieties and t h e Aa-chains are n o t g l y c o s y l a t e d . The y - c h a i n i s g l y c o s y l a t e d a s a n e a r l y c o t r a n s l a t i o n a l e v e n t , w h i l e t h e BB-chain i s g l y c o s y l a t e d a t o r s l i g h t l y a f t e r t h e t e r m i n a t i o n of p o l y p e p t i d e s y n t h e s i s o f t h a t chain. The p r e s e n c e o f o l i g o s a c c h a r i d e c h a i n s o n I - a s p a r a g i n e - 2 8 8 o f human p l a s m i n o g e n d e c r e a s e d the b i n d i n g o f f r a g m e n t s c o n t a i n i n g t h e h i g h - a f f i n i t y L - l y s i n e - b i n d i n g s i t e ( r e s i d u e s 79-337 o r 7 9 - 3 5 3 ) t o both a2-antiplasmin and fibrin.826 A technique f o r the i d e n t i f i c a t i o n o f glycoprotein antigens i n immune c o m p l e x e s i s o l a t e d from sera of p a t i e n t s w i t h B u r k i t t ' s lymphoma and n a s o p h a r y n g e a l c a r c i n o m a h a s been reported.827 Two c l o s e l y r e l a t e d g l y c o p r o t e i n s were i d e n t i f i e d i n 80% o f t h e s e r a e x a m i n e d f r o m p a t i e n t s w i t h t h o s e t w o d i s e a s e s , b u t were n o t p r e s e n t i n p a t i e n t s w i t h a v a r i e t y of u n r e l a t e d tumours o r i n sera of heal t h y i n d i v i d u a l s . The c o m p a r a t i v e a n a l y s i s o f t h e l e c t i n - b i n d i n g p r o p e r t i e s o f p l a s m a g l y c o p r o t e i n s f r o m c o n t r o l a n d c y s t i c - f i b r o s i s p a t i e n t s has been reported.828 The r e s u l t s o f a comparison o f plasma g l y c o p r o t e i n s f r o m n o rm a 1 c o n t r o l s , c y s t i c - f i b r o s i s p a t i e n t s, a n d c y s t i c - f i b r o s i s h e t e r o z y g o t e s do n o t s u p p o r t t h e h y p o t h e s i s o f a g e n e r a l i z e d d e f e c t i n g l y c o p r o t e i n metabolism a s the b a s i c defect i n c y s t i c fibrosis.829 However, t h e p o s s i b i l i t y o f a m o r e l i m i t e d d e f e c t i n t h e metabolism of c e r t a i n o t h e r t y p e s o f glycoproteins, possibly those involved i n t h e processes o f exocrine excretion, is considered. T r a n s c o r t i n , t h e m a j o r human p l a s m a g l u c o c o r t i c o i d , h a s been i s o l a t e d a n d p a r t i a l l y c h a r a ~ t e r i z e d . ~ ~ 'S o m e o f i t s phy si c o chem i c a 1 pa ram e t e r s, pa r t i c u l a r l y i t s m i c r o h e t e r o g e n e i t y a n d i t s propensity f o r aggregation, are described. Isopiestic data indicate that fish antifreeze glycoproteins b i n d s i g n i f i c a n t l y m o r e water t h a n h a e m o g l o b i n o r c y t o c h r o m e c , o b s e r v a t i o n s w h i c h a r e c o n s i s t e n t w i t h n.m.r. spectroscopic s t u d i e s 831 An i m p r o v e d p r o c e d u r e f o r t h e d e t e r m i n a t i o n o f a n t i f r e e z e g l y c o p r o t e i n a c t i v i t y u s i n g a f r e e z i n g - p o i n t o s m o m e t e r has b e e n described.832 The s e n s i t i v i t y o f t h e m e t h o d h a s a l l o w e d t h e identification of a hitherto overlooked antifreeze a c t i v i t y i n the A t l a n t i c cod (Gadus morhua).
.
269
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides I m m urn g l o b u l i n s
13 A
r a p i d method f o r simultaneously
complexes o f numerous sera
for
the
a n t i g e n h a s been developed.833
s c r e e n i n g t h e immune
p r e s e n c e o f an
unsuspected
An a n t i b o d y - e n z y m e r e a g e n t c a n
i d e n t i f y f r e e x - c a s e i n when no a n t i b o d y i s p r e s e n t a n d a l s o x - c a s e i n i f i t i s bound i n a n immune complex a b s o r b e d o n t o R a j i c e l l s .
level of sensitivity
allowed the demonstration o f
The
the development
and subsequent d i s a p p e a r a n c e o f x - c a s e i n immune complexes i n t h e sera o f e i t h e r immunoglobulin A-deficient o r m i l k - a l l e r g i c p a t i e n t s who h a v e i n g e s t e d a s m a l l amount o f m i l k . I s o e l e c t r i c f o c u s i n g o f a n t i b o d i e s i n agarose g e l s has been r e p o r t e d u s i n g i n e x p e n s i ve l a b o r a t o r y - s y n t h e s i z e d am p h o l y t e s . 8 3 4 The r e s o l v i n g p o w e r o f
these and commercially a v a i l a b l e ampholytes
a r e compared, a n d t h e a d v a n t a g e s o f s u b s t i t u t i n g a g a r o s e g e l s b o n d e d t o p l a s t i c f i l m s f o r polyacrylamide g e l s a r e discussed.
Soluble
immune c o m p l e x e s h a v e been s t u d i e d u s i n g a p r o c e d u r e o f b i n d i n g t o i m m o b i l i z e d p r o t e i n A f o l l o w e d by i s o e l e c t r i c f o c u s i n g t o d e s o r b a n d separate
the
immune
complexes.835
By
this
approach
IgG-type
i m m u n o g l o b u l i n s a n d p u t a t i v e a n t i g e n s can be d e t e c t e d i n b i o l o g i c a l
f l u i d f r o m human specimens. Differences i n binding o f r a t immunoglobulin G sub-classes (IgG1,
IgG2,
IgGZb,
reported.836
a n d I g G 2 c ) t o s t a p h y l o c o c c a l p r o t e i n A have been
A p r o c e d u r e f o r t h e i s o l a t i o n o f p u r e I g G l and I g G 2 c
f r o m n o r m a l r a t s e r u m was d e v e l o p e d .
Immunoglobulins associated
w i t h human p l a t e l e t s b i n d t o i m m o b i l i z e d p r o t e i n A, o f the platelets.837 thrombocytopenic
with r e t e n t i o n
T h i s t e c h n i q u e may be o f v a l u e i n t h e s t u d y o f patients
where
greatly
increased
amounts
o f
a s s o c i a t e d I g G a r e found. The
covalent
attachment
of
and
immunoglobulin G
F(aby)2
f r a g m e n t s t o l i p o s o m e s i s a c h i e v e d by t h e p r i o r p e r i o d a t e o x i d a t i o n o f g l y c o s p h i n g o l i p i d s i n liposomes t o produce aldehyde groups o n t h e vesicle surface,
f o l l o w e d by
protein coupling
a m i n a t i ~ n . ~ U n~d ~ e r t h e c o n d i t i o n s used, external glycolipid, Encapsulated g l y c e r o l v e s i c l e s and r e t a ine d
.
but not internal glycolipid, l-phosphate
encapsulated
The F ( a b ’ I 2
by
fragment
i s
not
goat
i s oxidized.
oxidized
carboxyfluorescein i s o f
reductive
a large proportion o f the within
the
substantially
i m m u n o g l o b u l i n G h a s been
co v a l e n t l y c o u p l e d t o pho s p h a t i d y l e t h a n o l a m i n e w i t h s u b s e q u e n t
Carbohydrate Chemistry a s s o c i a t i o n of t h i s complex w i t h liposomes.839 B i n d i n g assays w i t h antigen-coated Staphylococcus aureus c e l l s a r e used t o e v a l u a t e t h e i m m u n o l o g i c a l l y s p e c i f i c r e c o g n i t i o n and t h e membrane s t a b i l i t y o f t h e liposomes.
Comparative k i n e t i c s t u d i e s o f
ligand dissociation
and D20-induced f l u o r e s c e n t enhancement have been p e r f o r m e d w i t h b o t h h e t e r o g e n e o u s and homogeneous a n t i f l u o r e s c e i n y l i m m u n o g l o b u l i n G antibodies.840
The a n t i - f l u o r e s c e i n
antibody active s i t e contains
b o t h s o l v e n t - a c c e s s i b l e and r e l a t i v e l y - i n a c c e s s i b l e components,
with
t h e b i n d i n g o f l i g a n d i n v o l v i n g b o t h exchangeable hydrogen atoms and other
as
yet
unresolved
interactions.
The
mechanism
of
020
fluorescence enhancement i s discussed i n t e r m s o f i t s c o m p l e x i t y i n v o l v i n g h e t e r o g e n e o u s r a t e mechanisms. Several b i o l o g i c a l effector F c r e g i o n of variant
f u n c t i o n s m e d i a t e d by s i t e s on t h e
human i m m u n o g l o b u l i n G 1 h a v e b e e n s t u d i e d i n t w o
i m m u n o g l o b u l i n G1K
monoclonal
proteins
which
contain
d e l e t i o n s corresponding t o t h e e n t i r e hinge r e g i o n o f t h e heavy chains.841
The f u n c t i o n a l l a c k o f p o t e n c y o f t h e s e i m m u n o g l o b u l i n s
i s r e l a t e d t o t h e c l o s e a s s o c i a t i o n between Fab and Fc r e g i o n s i n t h e s e m o l e c u l e s and t h e l i m i t e d degree o f s e g m e n t a l f l e x i b i l i t y p e r m i t t e d i n t h e absence o f t h e h i n g e r e g i o n .
A major r o l e f o r t h e
C-y2 d o m a i n i n m e d i a t i n g e f f e c t o r f u n c t i o n s i n n o r m a l i m m u n o g l o b u l i n G 1 i s proposed. A model system,
b a s e d on t h e d e s i a l y l a t i o n o f i m m u n o g l o b u l i n G
and g e n e r a t i n g one o f t h e s e r o l o g i c a l changes n o r m a l l y a s s o c i a t e d w i t h t h e p a t h o l o g i c a l c o n d i t i o n o f r h e u m a t o i d a r t h r i t i s , has been developed.842
Rabbit asialo-immunoglobulin
i s immunogenic i n autologous hosts.
G
t e n d s t o a g g r e g a t e and
The n e u r a m i n i c a c i d c o n t e n t o f
r h e u m a t o i d f a c t o r i s o l a t e d f r o m t h e serum o f a r h e u m a t o i d p a t i e n t and i d e n t i f i e d as i m m u n o g l o b u l i n G and i m m u n o g l o b u l i n M i s a l s o lower than t h a t o f the corresponding normal immunoglobulins. I m m o b i l i z e d p e p s i n has been used f o r t h e l i m i t e d c l e a v a g e o f human i m m u n o g l o b u l i n G.843
The F ( a b ’ ) 2 - r i c h
f r a c t i o n was
isolated
f o r i n t r a v e n o u s use. Proximity
relationships
within
the
Fc
segment
of
rabbit
i m m u n o g l o b u l i n G h a v e been a n a l y s e d b y r e s o n a n c e - e n e r g y t r a n s f e r . 8 4 4 The
principle
forces
maintaining
the
integrity
of
the
native
f u n c t i o n a l Fc fragment are t h e strong noncovalent i n t e r a c t i o n s of t h e CH3 d o m a i n s a n d t h e s i n g l e i n t e r - h e a v y - c h a i n
d i s u l p h i d e bond.
T h e c a r b o h y d r a t e s t r u c t u r e s ( 3 9 , 40) a n d t h e c o m p l e t e a m i n o a c i d s e q u e n c e o f a human X - t y p e Sm,
have been determined.845
immunoglobulin l i g h t chain,
One g - g l y c o s i d i c a l l y
protein
l i n k e d c h a i n (40)
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
o u
LL I JI I
Q : I 011
z
a
4
a I
1311
m I
h
U
+
4
u
AJ
m m - 4
r
I 1311
m
r
I LYI
m
a
n
n
I
UJ 4
u I
2
r
I 1311 I
I
0
ct
z al
rl
U I 1311
I
@l
4
4
u
I
o
Q:
z
3
4
U I
+
4
u I
al
4
(II
U I
011
m
m
CI
n
I
U 4
4
I
UJ
t
@l
u
u
4
q:
A m
U I
I
0
m
9
I
z
I
c4
a n v)
4
@l
u I
u
27 1
272
Carbohydrate Chemistry
i s attached t o I-Ser-21.
T h i s a p p e a r s t o be t h e f i r s t r e p o r t o f a
tetrasaccharide containing two neuraminic a c i d residues i n the l i g h t c h a i n o f an i m m u n o g l o b u l i n . O l i g o s a c c h a r i d e s o f s i m i l a r s t r u c t u r e o c c u r i n human X - t y p e m o n o c l o n a l i m m u n o g l o b u l i n l i g h t c h a i n s .846
~-N~UQ~AC-(~+~)-B-Q-G~~Q-(~+~)-~-G~~QNAC-L-S~~ 6
I 2 o - Ne u ~ 5 cA
(40) A human m o n o c l o n a l i m m u n o g l o b u l i n G 1 p o s s e s s e s t w o s p e c i e s o f
l i g h t c h a i n ( m o l . w t s . 2.3 x l o 5 a n d 2.8 x lo5, r e ~ p e c t i v e l y ) . ~ ~ ’ The d i f f e r e n c e i n mass is due t o t h e p r e s e n c e o f a c a r b o h y d r a t e m o i e t y on t h e 2.8 K-chains.
x lo4 species, attached w i t h i n the J region o f the
Not a l l of
t h e K-chains
differences i n the primary
are glycosylated,
e v e n t h o u g h no
s t r u c t u r e between the
two
L-chains
s p e c i e s c o u l d be f o u n d . mouse myeloma c e l l l i n e p r o d u c e s an i m m u n o g l o b u l i n G2b w i t h
A
two carbohydrate attachment sites.848 also
occur
i n
two
variant
cell
Alterations i n glycosylation
lines.
The
complete
s t r u c t u r e o f the constant r e g i o n o f L-chains homogeneous
Balilea
rabbit
antibody
primary
derived from
specific
for
type
a I1
pneumococcal p o l y s a c c h a r i d e h a s been e ~ t a b l i s h e d , ~ a ~ s’ h a s t h e a m i n o a c i d s e q u e n c e o f an e u g l o b u l i n - l i k e
X Bence-Jones p r o t e i n NIG-
58. 850 Antibodies
have
been r a i s e d t o
glycolipids,and polysaccharides.
numerous
glycoproteins,
Those a n t i b o d i e s k n o w n t o i n t e r a c t
w i t h carbohydrate d e t e r m i n a n t s on t h e a n t i g e n molecule a r e l i s t e d i n T a b l e 11. Further studies of
the
inhibition of
the monoclonal a n t i -
Ma(group 1) a n t i b o d y i n q u a n t i t a t i v e p r e c i p i t i n a s s a y s h a v e been reported.852 o f
a
I t i s confirmed t h a t the antibody binds t o a portion
B-~-galactopyranosyl-(1+4)-~-B-~-2-acetamido-2-deoxy-
glucopyranosyl-(1+6)-~-~-~-galactopyranosylunit oligosaccharide
structure
i n
a
specific
conformational requirements indicate
that
of
conformation. the
an The
determinant
is
accepted i n t o the antibody-com bining s i t e along a hydrophobic portion of the structure
which includes t h e regions about
C6-Cl’-
;-Galactan
(Continued o v e r l e a f )
Glc~-(1+6)-a-~-Glc~-(1+3)-~-Glc B-(l+6)-!-galactopyranan
1+6)-g-Glc,
a-p-Glce-(
1+3)-a-!-Glce-(
m e t h y l a-g-ManQ
O e x t r a n 81355
Polysaccharides D e x t r a n 8512
!-Gal,
a-g-
p-GlcNAc,
g l ycopro te i n R e t r o v i r u s envelope g l y c o p r o t e i n
Monoclonal
Polyclonal
Monoclonal
Polyclonal
Po l y c l o n a l
I n t a c t oligosaccharide chain
Bovine leukaemia envelope v i r a l
856
855
854
21
12,
13
853
852
Mono c l o n a 1
Ma ( g r o u p 1)
Polyclonal
851
Ref.
Monoclonal
6-g - G a l e - ( 1+4)- 8-9-G lceNA c - ( 1+6 ) - 8-g - G a l e
;-Mane
a-g -Mane
Neue5Ac, a,B-Q-Galg, -
Antibody type
Glucoamy l a s e
a-g-Mane,
on a n t i g e n
g l y c o l i p i d or polysaccharide antigens
Determinant(s)
Antibodies i n t e r a c t i n g with glycoprotein,
Glycoproteins H i s t o c o m p a t i b i l i t y a n t i g e n (H-2K)
Antigen
Table I1
E
E.
3
w
N 4
8
s5
c,
5
h
k 2-
"2 g
0
s
2
Q.
-8
B=.
s
%-
Q
"
a
a-L -F u c~
1
I
3
1 a-L-F u c ~
I
a-~-Fuc~-(1+2)-B-~-Gale-(1+3)-B-~-Glc~NAc-~-~-Gal~-(l~4)-~-Glc 4
SSEA-1
B-g-Gale-(1+4)-g-Glc~NAc, a - L-- F u c e - ( l + Z ) B-q-Galp-(1+4)-q-GlcpNAc B-g-Galp-(1+4)-B-g-Glc~NAc
a - L-- F u c p - ( 1 + 4 ) - g - G l c e " c
Glycosphingolipids
See
Lewisb blood group
below
D e t e r r n i n a n t ( s ) on a n t i g e n
Lewis2 blood group
Glycolipids
Antigen
T a b l e I1 (Continued)
Monoclonal
Monoclonal
Polyclonal
Monoclonal
Antibody t y p e
860
859
858
857
Ref.
P
4
N
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
275
C3’-05”-C6” a s r e p r e s e n t e d i n S c h e m e 2. I t is a s s u m e d t h a t 03’ is i n t r a m o l e c u l a r l y h y d r o g e n b o n d e d t o 05’’ a n d t h a t t h e o t h e r h y d r o x y l groups o f t h e determinant remain engaged in bonding with solvent water. I
I I
combining site .hydrophobic
edge
D i s p l a y s h o w i n g t h a t t h e c o n f o r m a t i o n o f t h e I Ma a n t i genic determinant possesses a region along C6Cl’-C3’-05’’-C6’’ w h i c h c a n b e e x p e c t e d t o be compatible with a hydrophobic region f o r t h e combining site Scheme 2 R a b b i t a n t i - d e x t r a n €31355 h a s b e e n s e p a r a t e d i n t o t w o Gfractions.855 Antibodies of a non-binding f r a c t i o n t o Sephadex 75 are d i r e c t e d a g a i n s t ~-a-Q-glucopyranosyl-(l+6)-~-a-~glucopyranosyl-(1+3)-~-glucosyl r e s i d u e s . The a f f i n i t i e s of t w o m o n o c l o n a l anti-!-galactan immunoglobulin Fab’ fragments have been measured with a linear and a highly b r a n c h e d Q - g a l a ~ t a n . ~A~f f~i n i t y d a t a s h o w t h a t t h e i m m u n o g l o b u l i n s c a n bind i n t e r c a t e n a r i l y t o a (1+6)-B-Q-galactopyranan b u t n o t t o a ( 1+3)-B-~-galactopyranan. F o u r m o n o c l o n a l a n t i b o d i e s p r o d u c e d by hybridomas o b t a i n e d from a mouse immunized with a human a d e n o c a r c i n o m a c e l l l i n e a r e d i r e c t e d a g a i n s t t h e Leb a n t i g e n o f t h e T h e i r s p e c i f i c i t i e s w e re h u m a n Lewis b l o o d - g r o u p s y s t e m . 8 5 7 e s t a b l i s h e d by b i n d i n g s t u d i e s u s i n g p u r i f i e d Leb - a c t i v e g l y c o l i p i d s a n d by h a p t e n i n h i b i t i o n s t u d i e s w i t h o l i g o s a c c h a r i d e s o b t a i n e d f r o m h u m a n milk. T h e a n t i g e n s p e c i f i c i t i e s o f d i f f e r e n t a n t i - L e w i s z sera h a v e b e e n e x a m i n e d by i m m u n o a d s o r p t i o n s t u d i e s u s i n g a d s o r b e n t s w i t h well d e f i n e d c a r b o h y d r a t e u n i t s c o v a l e n t l y b o u n d t o a n i n o r g a n i c
276
Carbohydrate Chemistry
matrix.858 I n c o n t r a s t t o t h o s e of normal a n t i - L e a and a n t i - L e i s e r a , t h e a n t i b o d y - b i n d i n g s i t e o f L e r a n t i b o d i e s was f o u n d t o b e c o n s i d e r a b l y smaller , c o m p r i s i n g t h e s t r u c t u r e a - & - F u c e - ( 1 + 4 ) - Q G lceNAc Two monoclonal a n t i c a r b o h y d r a t e a n t i b o d i e s d i r e c t e d t o w a r d t h e c a r b o h y d r a t e m o i e t y o f g l y c o s p h i n g o l i p i d s c o n t a i n i n g a lacto-!O n e is s p e c i f i c f o r g l y c o s y l T y p e I1 c h a i n h a v e b e e n p r e p a r e d . 8 5 9 t h e T y p e I1 c h a i n H d e t e r m i n a n t ( 4 1 ) a n d t h e o t h e r is d i r e c t e d t o t h e n o n - r e d u c i n g t e r m i n a l 2 - a c e t a m i d o - 2 - d e o x y -4-0-13- Q - g a l a c t o s y l - Q glucosyl disaccharide.
.
a-~-Fucp-(1+2)-B-Q-Gal~-(l+4)-~-Q-GlcpNAc-l+R (41) R = r e s t o f o l i g o s a c c h a r i d e chain A monoclonal antibody r e a c t i n g with e a r l y mouse embryos and m u r i n e e m b r y o n a l c a r c i n o m a cells d e f i n e s t h e s t a g e - s p e c i f i c e m b r y o n i c a n t i g e n ( S S E A - 1 ) a n d is s p e c i f i c f o r t y p e 2 b l o o d - g r o u p antigens.860 T h e c o m b i n i n g s i t e o f t h e a n t i b o d y is c o m p l e m e n t a r y t o t h e s e q u e n c e (42). The a n t i g e n has b e e n i d e n t i f i e d as a complex g l y c o l i p i d .861 ,862 A cold agglutinin resembling anti-I antibodies has been i s o l a t e d from a p a t i e n t s u f f e r i n g from i m m u n ~ b l a s t o m a . ~ ~ ~ H i g h - t i t r e a n t i s e r a s p e c i f i c f o r Lewisa, b, a n d d d e t e r m i n a n t s h a v e b e e n o b t a i n e d by t h e i m m u n i z a t i o n o f r a b b i t s w i t h a r t i f i c i a l a n t i g e n s p r e p a r e d by c o u p l i n g c h e m i c a l l y s y n t h e s i z e d h a p t e n s t o These r e a g e n t s h a v e b e e n u s e d i n t h e bovine serum albumin.864 immunohistochemical analysis of t h e s e antigens i n t h e mucosa of t h e human s t o m a c h a n d d u o d e n u m o f H g r o u p i n d i v i d u a l s .
B-Q-Gale-(1+4)-B-g-Glc~NAc-(l+6)R 3
I 1
-F u c p (42) R = remaining oligosaccharide chain
a-
Monoclonal antibodies, which bind t o an a n t i g e n p r e s e n t i n highly purified carcinoembryonic antigen (CEA) from various tumours, T h e y are c o n s i s t e n t with t h e c o n c e p t t h a t h a v e been isolated.865
277
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides different
immunological
distinguished
by
forms
appropriate
i m munlogical heterogeneity of
many
conventional
of
CEA
antisera. CEA
anti-CEA
exist
which
How e v e r ,
and t h e
sera,
the
in
can
be
of
the
view
polyspecific nature o f possibility
that
these
monoclonal sera are n o t recognizing a unique antigen n o t r e l a t e d t o CEA c a n n o t be excluded. Evaluation
of
a
baboon
antiserum
to
CEA
has
given
similar
r e s u l t s t o a c o m m e r c i a l l y a v a i l a b l e g o a t anti-CEA.866 S p e c i f i c antibody t o a - f e t o p r o t e i n has been prepared t o bind s p e c i f i c a l l y t o a-fetoprotein-producing Human antibodies t o f a c t o r
VIII h a v e b e e n i s o l a t e d f r o m n i n e
Subsequent i m munological c h a r a c t e r i z a t i o n s
h a e m o p h i l i c plasmas.868
revealing restricted heterogeneity i n both light-chain heavy-chain
sub-class
antigen
been
assays,
has
and f o u n d
tumour c e l l s .867
have been described.
measured
with
two
Factor
t y p e and
VIII c l o t t i n g
i m munoradiometric
different
one u t i l i z i n g t w o acquired antibodies and one a haemophilic
a n t i b o d y .768 Monoclonal antibodies i s o l a t e d and t h e i r
to
von
Willebrand’s
with
reactivity
factor
have
been
porcine and human antigens
reported.869 Monoclonal
antibodies
against
human a c i d
a-glucosidase
have
b e e n ~ r e p a r e d . ~ ” T h e a n t i b o d i e s w e r e u s e d t o show t h a t t w o m a j o r c o m p o n e n t s of
the
purified
enzyme
c o n t a i n a t l e a s t one a n t i g e n i c
component i n common. An e n z y m e i m munoassay f o r a u t o a n t i b o d i e s t o t h y r o g l o b u l i n i n h u m a n s e r u m h a s b e e n developed.871 comparison
with
an
indirect
E v a l u a t i o n o f t h e technique by
haemagglutination test
for
anti-
t h y r o g l o b u l i n a n t i b o d i e s gave a c o r r e l a t i o n c o e f f i c i e n t o f 0.85. Sera
from
patients
with
Graves’
disease
contain
antibodies
w h i c h i n h i b i t t h e b i n d i n g o f t h y r o t r o p h i n t o t h y r o i d membranes.872 Immunoglobulin
i s o l a t e d from
G,
t h e sera,
inhibits the binding o f
t h e hormone by b i n d i n g d i r e c t l y t o t h e hormone r e c e p t o r . Antibodies used i n an enzyme immunoassay f o r human c h o r i o n i c gonadotrophin ( h C G ) after
affinity
have been i s o l a t e d i n a h i g h l y
chromatography
on
colums
of
purified form i m mobilized
t r i c o s a p e p t i d e o f t h e hC G Rabbit
transferrin
methionine sulphone
has
been
modified
hydrazide either into
by
introduction
i t s neuraminic
of
acid
r e s i d u e s or i n t o b o t h n e u r a m i n i c a c i d and Q - g a l a c t o s y l residues.873 Rabbits i m munized with t h e modified t r a n s f e r r i n produced antibodies which r e a c t e d w i t h t h e n a t i v e antigen.
278
Carbohydrate Chemistry Mouse i m m u n o g l o b u l i n
G 3 antibodies t o t h e phosphocholine
d e t e r m i n a n t of p n e u m o c o c c a l C c a r b o h y d r a t e a n d t o t y p e 3 pneu m o c o c c a l c a r b o h y d r a t e a r e h i g h l y p r o t e c t i v e against experimental type 3 pneumococcal infection. 874 that
antibodies
of
the
against bacterial infections. ag a inst
A n t ib o d i e s
glucosyltransferase
from
ability to inhibit the The
cross-reactivity
This i s one o f t h e f i r s t r e p o r t s
immunoglobulin D=
G3
protect
- 1 y s y 1: D= -
embryos have been t e s t e d f o r t h e i r
e n r y me r e a c t i o n w i t h the
can
- g a l a ct 0 sy l - hy d r o x y -
chick
of
sub-class
v a r i o u s substrates.875
glucosyltransferase
between
different
species i s low. Monoclonal r a t immunoglobulin G2b
antibody,
a g a i n s t t h e Thy 1.2 a n t i g e n , h a s b e e n c o v a l e n t l y Addition
of
lactose
saturates
the
r i c i n and i n h i b i t s t h e t o x i n f r o m
P_-galactosyl-containing
which i s d i r e c t e d bound t o
Q-galactosyl- binding
sites
b i n d i n g and k i l l i n g c e l l s & a
receptors.
Ricin-monoclonal
h y b r i d s o f t h i s t y p e combine a h i g h degree o f c e l l - t y p e
on the
antibody selectivity
and may have p h a r m a c o l o g i c a l use as a n t i t u m o u r r e a g e n t s . H i gh l y
sp ec i fi c
antibodies
dire c ted
against
c e l l - s u r f ace
i m m u n o g l o b u l i n s on n o r m a l o r n e o p l a s t i c murine B l y m p h o c y t e s have been c o v a l e n t l y molecules
coupled t o
maintain
t o x i c properties.
both
the
their
A
chain
of
r i ~ i n . T~h e~ h~y b r i d
antigen-binding
capacity
and
their
Minute amounts o f t h e conjugates are e f f e c t i v e i n
k i l l i n g target cells i n vitro. The
8aB5-9
antibody
Lab,
deficient
in
cloned hybridoma c e l l l i n e produces a
d i r e c t e d against a major platelet-surface platelets
monoclonal antibody,
of
patients
with
monoclonal
glycoprotein
t h r o m b a ~ t h e n i a . ~ T~h i~s
which i s d i r e c t e d against a platelet-mem brane
complex consisting o f glycoproteins I I b and I I I a ,
has been used t o
enumerate t h e number o f t h e s e complexes o n n o r m a l p l a t e l e t s and t o indicate the
v i r t u a l absence
of the
complex on t h e s u r f a c e
of
thrombasthenic p l a t e l e t s . Four independent
monoclonal antibodies that
recognize
an
m urine cell-surface glycoprotein have been used t o c h a r a c t e r i z e t h e c o m p l e x i t y o f p r o t e i n polymorphism.879
alloantigenic s t r u c t u r e on a
E a c h o f t h e a n t i b o d i e s a p p e a r s t o r e a c t w i t h t h e same o r a c l o s e l y r e l a t e d e p i t o p e on t h e g l y c o p r o t e i n . The
localization
components i n t h e
i m munochemically a n t i s e r a. 880
of
chitosan
pea-Fusarium with
and
other
fungal
cell-wall
i n t e r a c t i o n have been studied
anti-chitosan
and a n t i - f u n g a l
cell-wall
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
279
Monoclonal antibodies specific f o r subunit 1 o f t h e l e c t i n from
--
Dolichos biflorus combine with t h e C -ter minal portion o f t h e s u b u n i t a n d may b e i n t e r a c t i n g w i t h t h e a c t i v e s i t e o r w i t h a d e t e r m i n a n t This antibody, c o n f o r m a t i o n a l l y i n d e p e n d e n t o f t h e a c t i v e site.155
w h i c h d o e s n o t r e a c t w i t h a n o t h e r l e c t i n - l i k e p r o t e i n f r o m t h e stems a n d l e a v e s o f t h e plant,156 c a n d i s t i n g u i s h s u b u n i t 1 f r o m s u b u n i t 2 o f t h e s e e d l e c t i n . 157 The binding o f human immunoglobulin t o t y p e C retroviruses has b e e n a n a l y s e d by r a d i o i m m u n o a s s a y . 1 2 B i n d i n g is d i r e c t e d t o t h e o l i g o s a c c h a r i d e c h a i n s o f t h e v i r a l g l y c o p r o t e i n s a n d is n o n specific in character. Cytotoxic antibodies present in bovine leukaemia virus-infected a n i m a l s are mostly directed a g a i n s t t h e c a r b o h y d r a t e p a r t O P t h e v i r a l e n v e l o p e g 1 y ~ o p r o t e i n . l ~I m m u n e s e r a p r e p a r e d f r o m p u r i f i e d e n v e l o p e g l y c o p r o t e i n s are d i r e c t e d a g a i n s t d e t e r m i n a n t s o f t h e polypeptide backbone of t h e antigen. The majority o f , i f n o t all, n o r ma1 h u m a n s e r a c o n t a i n n a t u r a l l y o c c u r r i n g h e t e r o p h i l a n t i b o d i e s t h a t react with t h e c a r b o h y d r a t e moieties of r e t r o v i r u s envelope glycoproteins.21 T h e s e a n t i v i r a l a n t i b o d i e s are n o t d e t e c t a b l e i n c o r d sera b u t show a n a g e - d e p e n d e n t p e a k i n e a r l y c h i l d h o o d a n d s u b s e q u e n t l y p e r s i s t l i f e -lo n g Monoclonal antibodies d i r e c t e d against herpes simplex virus g l y c o p r o t e i n s h a v e b e e n u s e d t o p r o t e c t mice a g a i n s t a c u t e v i r u s induced neurological disease.29 Virus glycoprotein g c expresses t y p e - s p e c i f i c a n t i g e n i c d e t e r m i n a n t s , w h e r e a s g l y c o p r o t e i n gD e x p r e s s e s t y p e - c o m mon d e t e r m i n a n t s . Monoclonal antibodies t o h e r p e s simplex virus t y p e 2 have been prepared and found t o precipitate t w o d i f f e r e n t v i r a l g l y c o p r o t e i n s . 33 The major glycoprotein (Gp 350/220) o f Epstein-Barr virus h a s b e e n d e t e c t e d b o t h o n t h e p l a s m a m e m b r a n e a n d i n t h e c y t o p l a s m by i m m u n o f l u o r e s c e n c e w i t h a n t i b o d i e s .’O T w o m o n o c l o n a l a n t i b o d i e s r e a c t i n g w i t h A K R l e u k a e m i c cells r e c o g n i z e c l o s e l y r e l a t e d , if n o t i d e n t i c a l , a n t i g e n i c d e t e r m i n a n t s o n t h e Glx g l y ~ o p r o t e i n . ’ ~ Monospecific antibodies t o e a c h of t w o envelope glycoproteins The of paramyxovirus h a v e been p r e p a r e d and characterized.74 e f f e c t s of t h e s e a n t i b o d i e s o n t h e i n f e c t i o u s p r o c e s s a n d t h e o t h e r biological a c t i v i t i e s of t h e virions and of t h e i s o l a t e d glycoproteins are discussed. Amino a c i d s e q u e n c e d i f f e r e n c e s i n t h e V r e g i o n o f murine antibodies t o a(l+3)-P-glucans (dextrans) have been correlated with
.
Carbohydrate Chemistry
280 the
expression o f
cross-reactive
and i n d i v i d u a l i d i o t y p e s ,
an analysis o f t w e l v e d i f f e r e n t d e x t r a n antibodies.881 r e a g e n t s can r e c o g n i z e t w o amino a c i d d i f f e r e n c e s w i t h segments
of
variable
I n anti-dextran
regions.
antibodies,
r e a c t i v e i d i o t y p e s i n v o l v e V-region determinants, idotype determinants secretory The
correlate
immunoglobulin A
hinge
region
variation.
has been i s o l a t e d f r o m
containing
four
cross-
whereas i n d i v i d u a l
D -segment
with
through Idiotype V and D
human
Pure
milk.882
Q-glycosidically
linked
o l i g o s a c c h a r i d e s i s r e l e a s e d en b l o c a f t e r p r o t e o l y t i c d i g e s t i o n . The s t r u c t u r e s ( 4 3 - 4 6 ) to
I=-serine
of t h e s e oligosaccharides,
which are l i n k e d
or I - t h r e o n i n e residues, have been i d e n t i f i e d .
oligosaccharides are oligosaccharides
more complex
linked
to
I-serine
These
and heterogeneous t h a n t h e residues
of
the
hinge
region
f r o m myeloma s e r a i m m u n o g l o b u l i n A. A
partially
characterized
immunoglobulin glycopeptides
has
A
(47-50)
been
glycopeptide
shown
t o
be
from
a
human
mixture
of
milk four
f o l l o w i n g h y d r a t i n o l y s i s and nitrous acid
d e a m i n a t i o n o f t h e g l y c o p e p t i d e . 883 The
membrane
receptor
for
immunoglobulin
A,
isolated
from
r a b b i t l i v e r a n d mammary g l a n d , i s s t r u c t u r a l l y r e l a t e d t o s e c r e t o r y component.884 groups
of
The
membrane s e c r e t o r y
amphiphilic
molecules
component which
is composed o f t w o
are
synthesized
transmem b r a n e p r e c u r s o r s and i n s e r t e d i n t h e c e l l - s u r f a c e
as
membrane
where t h e y a c t as r e c e p t o r s f o r p o l y m e r i c i m m u n o g l o b u l i n A .
R1-(2+3)-B-g-Galp-(1+3)-g-GalNAc 6
I 1
(44)
R 1 = H,
(45)
R 1 = H , R 2 = B-Q-Gale-(1+4)-B-a-Glce"c
(46)
R1 = a-Neup5Ac,
Spectroscopic properties MOPC-315
immunoglobulin
b e t w e e n c.d.
R2
R 1 = R2 = H
(43)
A
of
R2 = @ - g - G l C e N A C R2 = H
light-chain
derivatives o f
h a v e been reported.885
A
m urine
comparison
spectra o f t h e t h r e e f r e e and hapten-bound light-chain
derivatives demonstrates the existence o f conformational transitions i n t h e s e p r o t e i n s i n d u c e d by h a p t e n b i n d i n g . B i o s y n t h e t i c and
fi
v i t r o t r a n s l a t i o n studies have demonstrated
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
4
2 L
I J I
I
M
t
4 U
I
2 m
N
t
4 U
I
0
rI QII
a
h
+
'N 4 U
I
0 4 Z
?
4
U
I 011
m I
n
U
t
4
v
I
al
4
m u
I ail
I
m n I v)
t
N U
I
0
Q:
In
9 a,
z U
m n I
U
t
4
v
I
nl m u
4
4
-
4
4
m u r Y 1 3 :
4
n n n n
I
u u u u
CYl I
m
I 4
13:
F Q o \ O
u e e m
28 1
282
Carbohydrate Chemistry
t h a t membrane-bound and secreted i m m u n o g l o b u l i n A m o l e c u l e s c o n t a i n d i f f e r e n t a - p o l y p e p t i d e c h a i n s t h a t a r e e n c o d e d by d i f f e r e n t a-
m R N A ’s . -
V a r i a n t s h a v e b e e n i s o l a t e d f r o m t h e 3558 B a l b / c m o u s e m y e l o m a (immunoglobulin A,X: anti-a-(1+3)-dextran) with altered g l y c o s y l a t i o n of its heavy c h a i n and decreased r e a c t i v i t y w i t h d e ~ t r a n . T~ h~e ~c a r b o h y d r a t e m u t a n t i m m u n o g l o b u l i n c o n t a i n s m o r e neuraminic acid than does t h e carbohydrate of t h e wild-type immunoglobulin. However, t h e mutant immunoglobulin a p p e a r s t o have t h e same r e a c t i v i t y p a t t e r n w i t h o l i g o s a c c h a r i d e s a s d o e s t h e w i l d t y p e immunoglobulin, and t h u s t h e s i z e o f t h e antibody-combining s i t e s may b e s i m i l a r . By m e a s u r i n g t h e a f f i n i t i e s a t v a r i o u s t e m p e r a t u r e s b e t w e e n a n t i - e - g a l a c t a n i m m u n o g l o b u l i n A 5539 a n d a n t i d e x t r a n i m m u n o g l o b u l i n A W3129, a n d t h e i r r e s p e c t i v e l i g a n d s , t h e e n t h a l p i e s a n d e n t r o p i e s The i n t e r p r e t a t i o n o f t h e of binding have been determined.888 r e s u l t s i s i n a g r e e m e n t w i t h p r e v i o u s w o r k s h o w i n g t h a t 5539 h a s a g r o o v e - t y p e c o m b i n i n g r e g i o n a n d W3129 h a s a c a v i t y - t y p e r e g i o n . The i n t e r a c t i o n of s a c c h a r i d e h a p t e n s w i t h three homogeneous i m m u n o g l o b u l i n A mouse myeloma p r o t e i n s which h a v e s p e c i f i c i t y f o r s a c c h a r i d e s h a s b e e n i n v e s t i g a t e d i n a 270 MHz n . m . r . study.889 D i f f e r e n c e s p e c t r a show t h a t c o m p a r a t i v e l y few p r o t e i n r e s o n a n c e s are p e r t u r b e d on b i n d i n g h a p t e n , s u g g e s t i n g t h a t a c c o m p a n y i n g c o n f o r m a t i o n a l changes are l i m i t e d t o t h e combining s i t e . The primary s t r u c t u r e of t h e I-asparagine-563-linked carbohydrate chain of an immunoglobulin M from a p a t i e n t w i t h W a l d e n s t r o m ’ s m a c r o g l o b u l i n e m i a h a s b e e n r e i n v e s t i g a t e d u s i n g 500 MHz n . m . r . s p e c t r o s c o p y , a n d a new s t r u c t u r e (51) h a s b e e n N o e v i d e n c e was o b t a i n e d t o s u p p o r t a n e a r l i e r proposed.890 claim891 t h a t o n l y o n e a m i n o s u g a r r e s i d u e i s p r e s e n t i n a n u n u s u a l core structure. I n t h e p r e s e n t w o r k t h e n.m.r. spectrum shows a l l t h e s p e c t r a l features c h a r a c t e r i s t i c of an N”-diacetylchitobiosyl u n i t w i t h h e t e r o g e n e i t y e x i s t i n g i n both t h e c a r b o h y d r a t e and peptide moieties. G l y c o s y l a t i o n is n o t r e q u i r e d f o r membrane l o c a l i z a t i o n or s e c r e t i o n o f i m m u n o g l o b u l i n M i n a mouse B c e l l lymphoma.892 However, g l y c o s y l a t i o n d o e s c o n f e r i n c r e a s e d i n t r a c e l l u l a r s t a b i l i t y and r e s i s t a n c e t o p r o t e o l y t i c d i g e s t i o n . The m o l e c u l a r w e i g h t o f t h e h i g h g-mannose c o r e o l i g o s a c c h a r i d e o f i m m u n o g l o b u l i n M h a s been m e a s u r e d by f i e l d - d e s o r p t i o n ~ I . s . ~ ’ ~ High-affinity monoclonal immunoglobulin M antibodies d i r e c t e d
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
n
I
n
0 0
CJ
I
z
v
C
I
h--
I
I JII
-
C
m -
u
I
4 1
I
4
I
u
4
U I
4' ?
n
U
4
I
U
I
I4
0
0
4
a I
4'
m
II
a n 4
v I
m
U
4' m n
M
t
4 U
I
4 ((I
t I
a n
hl
t .+ U
I
2 m
I I
I
n
hl .t +
U
I
a
I: I
9'
283
284
Carbohydrate Chemistry
towards e p i t o p e s on h e p a t i t i s B s u r f a c e a n t i g e n have been used i n t h e i m m u n o d i a g n o s i s o f h e p a t i t i s B.894 A P-mannose-rich g l y c o p e p t i d e (52) from a human p a t h o l o g i c a l immunoglobulin M c o n t a i n s o n l y Q-mannosyl and 2-acetamido-2-deoxy-Pg l u c o s y l r e s i d u e s ( m o l a r r a t i o 10:2).895 The r e c o v e r y o f o n e m o l e c u l e o f t h i s g l y c o p e p t i d e per m o l e c u l e of heavy c h a i n a n d t h e d e t e r m i n a t i o n of t h e amino acid s e q u e n c e l e d t o the l o c a t i o n o f t h e g l y c o p e p t i d e o n L-Asn-402 o f t h e Fc p o r t i o n o f t h e h e a v y c h a i n p o f t h e immunoglobulin. The a m i n o a c i d s e q u e n c e a n d l o c a t i o n o f t h r e e g l y c o p e p t i d e s i n t h e Fc r e g i o n o f t h e y c h a i n o f h u m a n i m m u n o g l o b u l i n I g D h a v e b e e n These g l y c o p e p t i d e s h a v e o l i g o s a c c h a r i d e c h a i n s identified.896 l i n k e d t j - g l y c o s i d i c a l l y t o I - A s n - 6 8 , L-Asn-159, a n d I - A s n - 2 1 0 . A t e n t a t i v e a m i n o a c i d s e q u e n c e o f t h e JH r e g i o n , t h e C y l domain, and the hinge r e g i o n of t h e y heavy c h a i n of t h e immunoglobulin h a s been published.897 The h i n g e r e g i o n o f t h e y c h a i n has an u n u s u a l s t r u c t u r e , i n which f o u r or f i v e o l i g o s a c c h a r i d e s c o n t a i n i n g 2-amino-2-deoxy-!-galactose residues a r e a t t a c h e d a t t h e N - t e r m i n a l h a l f o f t h e c h a i n , w h e r e a s t h e Ct e r m i n a l h a l f lacks c a r b o h y d r a t e , is d i s s i m i l a r i n sequence,and has a high charge. A h y b r i d mouse c e l l l i n e (61-8) secretes i m m u n o g l o b u l i n D which i s h e a v i l y g l y c o s y l a t e d , a s i n d i c a t e d by t h e f a c t t h a t t h e u n g l y c o s y l a t e d a c h a i n h a s a m o l e c u l a r w e i g h t o f 4.4 x l o 4 a s c o m p a r e d t o t h e v a l u e o f 6.1 x l o 4 f o r t h e m a j o r s p e c i e s o f g l y c o s y l a t e d y chain.898 A l k a l i - e x t r a c t e d h u m a n e r y t h r o c y t e g h o s t m e m b r a n e s f r o m Rho(D)p o s i t i v e d o n o r s c o m p l e x w i t h human i m m u n e a n t i - R h o ( D ) i m m u n o g l o b u l i n D.899 T h e a n t i b o d y was s h o w n t o b i n d t o b a n d 3 g l y c o p r o t e i n s o f t h e e r y t h r o c y t e membrane.
14
Erythrocyte Glycoproteins
A review dealing with t h e red-cell membrane and its c y t o s k e l e t o n has been publishedgo0 A new a p p r o a c h f o r t h e i s o l a t i o n o f l e c t i n r e c e p t o r s w i t h o u t t h e use of detergents involves t h e mechanical shearing of cells bound t o l e c t i n - c o a t e d macroporous a g a r o s e beads, whereupon t h e r e c e p t o r s r e m a i n a t t a c h e d t o t h e b e a d s and are r e l e a s e d s p e c i f i c a l l y by i n h i b i t o r y s u g a r s . 9 0 1 I n t h i s way a g l y c o p r o t e i n r e l e a s e d f r o m
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
d
U
m n
U
t
4 U
I
u
n
U
t
4 U
I
2
+$
4' m n
? M t d
u I ~
2
5 I
U n
N
t
d U
I
I: I
7' I
n
N
t
4 U
C al M
m \ -
Pul
4
4"' P
s n
t
4
I
I
2
T
Q'
U
2 P
n
N
t
4
L
m
z
4' I
n
N
t
4
I:
285
286
Carbohydrate Chemistry
n e u r a m i n i d a s e - t r e a t e d human e r y t h r o c y t e s a f t e r b i n d i n g t o immobilized peanut a g g l u t i n i n or t o immobilized soybean a g g l u t i n i n was c h a r a c t e r i z e d a s a s i a l o g l y c o p h o r i n . B l o o d - g r o u p H s i t e s o f h u m a n 0 c e l l s h a v e b e e n c o n v e r t e d in v i t r o i n t o g r o u p A s i t e s by t r a n s f e r o f 2 - a c e t a m i d o - 2 - d e o x y - g - { 14c}g a l a c t o s y l r e s i d u e s u s i n g t h e b l o o d - g r o u p A g e n e - d e p e n d e n t a-Q-2a c e t a m i d o - 2 - d e o x y - g a l a c t o s y l t r a n s f e r a s e f r o m h u m a n A1 p l a s m a . 9 0 2 The m a j o r i t y o f t h e r a d i o a c t i v i t y i s t i g h t l y bound t o t h e m e m b r a n e s a n d i s o n l y r e l e a s e d by p r o t e o l y s i s , i m p l y i n g t h a t t h e b u l k o f b l o o d g r o u p H d e t e r m i n a n t s a r e bound t o g l y c o p r o t e i n m a t e r i a l . T h e human e r y t h r o c y t e r e c e p t o r f o r t h e I - f u c o s e - s p e c i f i c l e c t i n p r o d u c e d by S t r e p t o m y c e s s p e c i e s b i n d s t o human e r y t h r o c y t e s b e a r i n g ABO d e t e r m i n a n t s. ’03 I n a h a e m a g g 1u t i n a t i o n - i n h i b i t i o n a s s a y p o l y ( g l y c o s y 1 ) - c e r a m i d e was t h e b e s t i n h i b i t o r w i t h a g l y c o p r o t e i n f r a c t i o n showing only s l i g h t i n h i b i t o r y a c t i v i t y . The d i s t r i b u t i o n o f A a n d B d e t e r m i n a n t s i n t h e p o l y g l y c o s y l p e p t i d e s o f human r e d c e l l s o f b l o o d g r o u p AB h a s b e e n s t u d i e d by i s o l a t i n g b l o o d - g r o u p AB ABH-active c o m p o n e n t s f r o m d e l i p i d a t e d human b l o o d - g r o u p e r y t h r o c y t e mernbranes.’O4 The A and B a n t i g e n i c sites a r e l o c a t e d i n d i f f e r e n t p o l y g l y c o s y l c h a i n s . A p p r o x i m a t e l y h a l f o f t h e bloodg r o u p ABH-active g l y c o p e p t i d e s c a r r y b l o o d - g r o u p A d e t e r m i n a n t s and h a l f c a r r y blood-group 8 d e t e r m i n a n t s . Human e r y t h r o c y t e s h a v e b e e n l a b e l l e d a t t h e c e l l - s u r f a c e a g a l a c t o s y 1 a n d 2 - a c e t a m i d o - 2 - d e o x y - g a l a ct o sy 1 r e si d u e s w i t h s o d i u m b ~ r o t r i t i d e . ~ ’ A~ s i g n i f i c a n t d e c r e a s e i n t h e n u m b e r o f r e s i d u e s d u r i n g a g e i n g o f t h e e r y t h r o c y t e s was d e t e c t e d . Two h e r e d i t a r y p l a t e l e t d i s o r d e r s , Glanzmann’s t h r o m b a s t h e n i a a n d B e r n a r d - S o u l i e r s y n d r o m e , a r e c h a r a c t e r i z e d by d e f e c t s i n v o l v i n g a d h e s i o n a n d a g g r e g a t i o n a n d a r e a s s o c i a t e d w i t h d i f f e r e n t membrane g l y c o p r o t e i n d e f i c i e n ~ i e s . ~ ’ N~ o g l y c o p r o t e i n d e f e c t s h a v e b e e n o b s e r v e d on a n a l y s i s o f t h e e r y t h r o c y t e membrane g l y c o p r o t e i n s of p a t i e n t s o f both d i s o r d e r s . Immunochemical evidence f o r t h e e x i s t e n c e of hybrid s i a l o g l y c o p r o t e i n s o f human e r y t h r o c y t e s h a s b e e n r e p o r t e d . ” ’ U s i n g human e r y t h r o c y t e m e m b r a n e s a s a m o d e l s y s t e m , t h r e e related procedures, based on t h e s p e c i f i c i n t e r a c t i o n of l e c t i n s w i t h membrane c a r b o h y d r a t e , h a v e b e e n d e v e l o p e d f o r t h e i s o l a t 5 o n o f i n s i d e - o u t v e s i c l e s from h e t e r o g e n e o u s p o p u l a t i o n s o f membrane fragments.908 The t e c h n i q u e s s h o u l d p r o v e a p p l i c a b l e t o o t h e r b i o l o g i c a l m e m b r a n e s where i t i s n o t p o s s i b l e t o i n d u c e c o n t r o l l e d s e a l i n g o f membrane f r a g m e n t s i n a d e f i n e d o r i e n t a t i o n a s i s t h e
-e
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
0 Q
z al
4
(3
w -
I
4'
n
e 4
-I U
I
u
Q
z
al
0
4
(3
1
4'
m
n
e 4
4
9' I
4'
m
n (v
n
4
4
4
4
4
4'
4'
4.
U I
9' m
n
e 4
4
e 4.
U I
m
(3
I
m
n
e 4
U
4 v
4
4
& (11
& (11
I
U I
m
m
(3
4"
4'
287
288
Carbohydrate Chemistry
case f o r e r y t h r o c y t e membranes. Glycophorin A h a s been r e c o n s t i t u t e d i n small l i p i d v e s i c l e s ( 2 5 0 - 300 I! i n d i a m e t e r ) by u s i n g c h o l a t e d e t e r g e n t s o l u b i l i z a t i o n f o l l o w e d by r a p i d r e m o v a l o f c h o l a t e o n a m o l e c u l a r - s i e v e c o l u m n . 9 0 9 Incorporation is i n a transbilayer fashion, with a high concentration of the molecules orientated with t h e carbohydrateInteraction of the c o n t a i n i n g N-terminus t o t h e v e s i c l e e x t e r i o r . p r o t e i n w i t h t h e h y d r o p h o b i c p o r t i o n o f t h e b i l a y e r c a n be s h o w n by 1~ n.m.r. spectroscopy. The t r a n s l a t i o n a l m o b i l i t y o f g l y c o p h o r i n i n b i l a y e r membranes o f dimyristoylphosphatidylcholine h a s b e e n reported.’1° Evidence f o r m u l t i p l e components of blood-group A and B a n t i g e n s i n human e r y t h r o c y t e m e m b r a n e s - s u g g e s t i v e o f d i f f e r e n t c a r b o h y d r a t e s t r u c t u r e s - h a s been reported.911 An L- - a s p a r a g i n e - l i n k e d o l i g o s a c c h a r i d e c h a i n ( 5 3 ) h a s b e e n i s o l a t e d f r o m a t r y p t i c f r a g m e n t o f h u m a n g l y c o p h o r i n A.912 S t r u c t u r a l similarities between t h i s o l i g o s a c c h a r i d e and t h e s u g a r c h a i n s of immunoglobulin A are e v i d e n t . The b l o o d - g r o u p M a n d N s p e c i f i c d e t e r m i n a n t s o f human e r y t h r o c y t e g l y c o p h o r i n A h a v e t h r e e i d e n t i c a l c a r b o h y d r a t e m o i e t i e s ( 5 4 ) p e r ~ e p t i d e . T~h e~ M~ o r N determinant is t h e N-terminal amino a c i d and a neuraminic a c i d r e s i d u e ( s ) . The a u t h o r s a r g u e t h a t t h e r e i s no c h e m i c a l b a s i s f o r a s s e r t i o n s i n t h e l i t e r a t u r e that M and N a n t i g e n s d i f f e r i n t h e i r oligosaccharide s t r u c t u r e or that t h e N antigen is b i o s y n t h e t i c a l l y t r a n s f o r m e d t o t h e M a n t i g e n by s i a l y l a t i o n . a-Neu~5Ac-(2+3)-B-~-Gal~-(l+3)-~-~-Gal~NAc-l-~-~-Ser/~-Thr 6
I
2 a - Ne u p 5 A c (54) The g - g l y c o s i d i c a l l y l i n k e d o l i g o s a c c h a r i d e c h a i n s o f g l y c o p h o r i n from bovine e r y t h r o c y t e membranes h a v e been i s o l a t e d as r e d u c e d o l i g o s a c c h a r i d e s by a l k a l i n e b o r o h y d r i d e t r e a t m e n t , a n d p u r i f i e d by i o n - e x c h a n g e c h r o m a t o g r a p h y f o l l o w e d by g e l The s t r u c t u r e s o f t h r e e o l i g o s a c c h a r i d e s (55-571, a filtration.914 ~-Gal~-(1+3)-g-Gal~-(l+4)-g-Glc~NAc-(1+3)Q-Gal~-(1+3)-g-GalNAc-o1 (551
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
rl
0 I
0
Q:
z I
4'
n
M
4 t
rl
0 I
0
m
U I
n
M
t
4
v
U
rl
4
U I
U I
n
n
u
U
&
m
M .+ t I
0
& m
M
t
4
I
u
z
a z
Q
-I
rl
4'
4'
3
U I
n
U t
3
U I
n
e
+
4
-I
0
u n
&:
u
4 u
&
a Z n b
4
U
U
m I
4'
n
M
t
m m - 4 4 I
n
n
4' v3
t
4
4
u
J
0
0
I
a z al rl
U I
4'
n
U t .+
v I
m
I
z Q
n
-4 v
U
t
4 U
&
rl
m I
n
M
t
4
4
U
u
rl
.-I
U
U
1311
1311
&
m I
m
U
n
4'
t
&
0-l
I
4'
4' M
U t
-4 v
I
U
U
n
4'
rl
U I
$2
U I
&
m I
M
t
b
289
290
Carbohydrate Chemistry
penta-,
a hepta-, a n d a d e c a - s a c c h a r i d e o b t a i n e d as m a j o r c o m p o n e n t s
o f a n e u t r a l f r a c t i o n , have been e s t a b l i s h e d . acid
of
sequence
established.’15
porcine
erythrocyte
The c o m p l e t e a m i n o
glycophorin
has
been
The t w e l v e o l i g o s a c c h a r i d e c h a i n s a r e l o c a t e d a t
t h e N - t e r m i n a l e n d o f t h e m o l e c u l e . Ten o f t h e s e o l i g o s a c c h a r i d e s are l i n k e d g-glycosidically
t o L-threonine
o r I - s e r i n e r e s i d u e s and
the remaining two are attached N-glycosidically residues
.
Horse
erythrocyte
membranes
contain
t o L-asparagine two
d i s t i n c t
glyc~phorins.’T ~ h~e m a j o r c o m p o n e n t h a s a b l o c k e d N - t e r m i n u s a n d consists
of
70% p r o t e i n and 30% c a r b o h y d r a t e ,
while
the
minor
component has I - t h r e o n i n e . The c h e m i s t r y a n d b i o c h e m i s t r y o f g l y c o p h o r i n A a s a m o d e l membrane g l y c o p r o t e i n h a v e b e e n reviewed.’17 Amino
acid
erythrocyte
and
carbohydrate
glycoproteins
structural
have
been
variants
of
major
reported.918
The
M M ( M i 1 t e n b e r g e r 111) g l y c o p r o t e i n a p p e a r s t o be a p r o d u c t o f t h e M gene and c o n t a i n s g - g l y c o s i d i c a l l y l i n k e d o l i g o s a c c h a r i d e c h a i n s partially
i d e n t i f i e d by t h e s t r u c t u r e (58). The
o f t h e M-N
locus,
i n t h e N gene.
M 9 i s an a l l o m o r p h
p r o b a b l y e v o l v e d f r o m a s i n g l e base s u b s t i t u t i o n
The r e s u l t i n g s i n g l e a m i n o a c i d s u b s t i t u t i o n a f f e c t s
the post-translational
glycosylation o f neighbouring i-serine
o r I-
threonine resides. The a m i n o a c i d s e q u e n c e o f a N - t e r m i n a l t r y p t i c g l y c o p e p t i d e of the
blood-group
MQ-specific
major
human
s i a l o g l y c o p r o t e i n has been reported.919
erythrocyte
membrane
The a m i n o a c i d s e q u e n c e a n d
t h e s i t e s o f g l y c o s y l a t i o n o f t h e t w e l v e a m i n o a c i d s a t t h e Nterminus
of
blood-group
Ms-specific
major
s i a l o g l y c o p r o t e i n have been established.920 represents
an
evolutionary
link
erythrocyte
The
between blood-group
variant M-
Mc
a n d N-
s p e c i f i c glycoproteins.
Neu~5Ac-Q-Gal~-(1+3)-Q-Gal~NAc-l+~-Thr
I P - G lCQNAC
(58) T h e h u m a n l e u k a e m i a c e l l l i n e K562 s y n t h e s i z e s g l y c o p h o r i n A.921
An i s o l a t e d m e s s e n g e r RNA f r a c t i o n f r o m t h e c e l l s h a s b e e n
used i n a r a b b i t r e t i c u l o c y t e c e l l - f r e e system f o r t h e s y n t h e s i s o f the glycoprotein.
The p r e s e n c e o f m e m b r a n e s i s r e q u i r e d f o r
N-
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
4
0
Q
z ?
4 - u
f4
0
u
U I
1311
m n I
u t
4 v
I
0
Q
Z
4
4
U I
1311
m I
n
u
4 u I
m n I
v)
t
4
u
c; m
ZE I
CIII
d I
hl
t
4
u I
0 4 Z
2
4
I
1311
m t
4
a
&I
d
oll
m
291
2 92
Carbohydrate Chemistry
g l y c o s y l a t i o n and 2 - g l y c o s y l a t i o n o f t h e a p o p r o t e i n . Despite t h e i r heterogeneous appearance a f t e r sodium dodecyl sulphate
gel electrophoresis,
glycoprotein o f
band 3 ( t h e
human e r y t h r o c y t e s )
a r e homogeneous p o l y p e p t i d e s . 9 2 2
and i t s
major
transmembrane
p r o t e o l y t i c fragments
The a p p a r e n t h e t e r o g e n e i t y o f b a n d
3 and i t s C - t e r m i n a l r e g i o n may r e f l e c t v a r i a b i l i t y o f g l y c o s y l a t i o n on s o d i u m d o d e c y l s u l p h a t e b i n d i n g .
The c h a r a c t e r i s t i c d i f f u s i o n o f
band 3 g l y c o p r o t e i n as s e e n by S D S - p o l y a c r y l a m i d e g e l e l c t r o p h o r e s i s has
been a t t r i b u t e d t o
heterogeneity
o l i g o s a c c h a r i d e chains.923 further been
of
o l i g o s a c c h a r i d e s o r i g i n a t i n g from
established.924
glycoprotein
The
i s similar
the
molecular
The s t r u c t u r e s ( 5 3 , mechanism
to
that
of
59,
size of
60) o f t h r e e
band 3 g l y c o p r o t e i n have
of
biogenesis
of
cotranslationally
g l y c o p r o t e i n s l i k e v e s i c u l a r s t o m a t i t i s v i r u s G,
band
3
inserted
a n t i g e n , and
HLA-A
g l y c ~ p h o r i n . ~ T h~e ~m a j o r s i a l o g l y c o p r o t e i n s o f r a t e r y t h r o c y t e membrane h a v e been p u r i f i e d by h o t p h e n o l p a r t i t i o n i n g f o l l o w e d by cation-exchange
chromatography.926
Further
chromatographic
r e s o l u t i o n has y i e l d e d a s i n g l e p u r i f i e d g l y c o p r o t e i n (mol. x
lo4)
and a
accounting
mixture of
for
at
least
higher- molecular- weight 23% o f
the
wt.
1.9
glycoproteins
rat-erythrocyte-membrane
neuraminic acid.
15
S a l i v a r y and Mucous G l y c o p r o t e i n s
The f o l l o w i n g a s p e c t s o f t h i s a r e a h a v e been r e v i e w e d :
gastric
m u c o s a l p r o t e c t i o n and g a s t r i c g l y c o p r o t e i n s ,927 n e u r a m i n i c a c i d and mucous
rheology,928
and t h e
neutral oligosaccharides cystic-fibrosis A
i s o l a t i o n and
characterization
of
f r o m human b r o n c h i a l g l y c o p r o t e i n s o f
patients.929
gel-filtration
method has
been
developed
t o
isolate
s i m u l t a n e o u s l y and q u a n t i t a t e s p e c i f i c a l l y r a d i o l a b e l l e d mucous g l y c o p r o t e i n f r o m m u l t i p l e s a m p l e s o f c u l t u r e media.930 Mucin,
i s o l a t e d from a p a t i e n t w i t h c y s t i c f i b r o s i s ,
consists
o f an e x t e n s i v e l y g l y c o s y l a t e d c o r e p r o t e i n w h i c h i s l i n k e d t o a t l e a s t two other proteins.931
D i r e c t evidence f o r the r o l e o f the
m u c i n s i n t h e r h e o l o g i c a l b e h a v i o u r o f s p u t u m h a s been s u m m a r i z e d . Human p a r o t i d I - p r o l i n e - r i c h
g l y c o p r o t e i n (mol.
wt.
3.6
x
lo4)
contains a biantennary oligosaccharide structure s i m i l a r t o that d e s c r i b e d f o r s e v e r a l serum c ~ l y c o p r o t e i n s . ~ ~ ~ M i l d a c i d h y d r o l y s i s has
been used t o
cleave
a
sulphated
293
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
m o n o s a c c h a r i d e f r o m s a l i v a r y m u c i n o f t h e s t u m p t a i l monkey (Macaca a r ~ t o i d e s ) . T~ h~e ~m o n o s a c c h a r i d e was p u r i f i e d b y i o n - e x c h a n g e chromatography
and
identified
sulphate. The i n c o r p o r a t i o n o f { 14C)-mannose
into
as
2-amino-2-deoxy-Q-glucose
L-{ 3 H ) - l e u c i n e
proteins
4-
and 2-acetamido-2-deoxy-P-
and g l y c o p r o t e i n s
submandibular, and s u b l i n g u a l g l a n d s o f
the
of
the
mouse
parotid, has
been
compared. 934 novel
A
neuraminic
acid,
4-g-acetyl-9-g-lactyl-N-
a c e t y l n e u r a m i n i c a c i d , h a s b e e n i d e n t i f i e d as a c o n s t i t u e n t o f h o r s e submandibular- gland
g l y c ~ p r o t e i n s . ~The ~ ~ structure
has
been
e s t a b l i s h e d b y g.1.c.-m.s. A
fluorimetric
porcine
method f o r
submaxillary
mucine
measuring a-h-fucose by
(A')
released from
a-I=-fucosidase
has
been
developed.936 A l k a l i n e borohydride r e d u c t i v e cleavage o f hog submaxillary glycoproteins from three immunologically results
i n
the
release
of
a
series
determined phenotypes
of
neutral
and
acidic
o l i g o s a ~ c h a r i d e - a l d i t o l s . ~A~ l~ l h a v e b e e n i d e n t i f i e d a s p a r t i a l structures
r e p r e s e n t i n g t h e p o s s i b l e c o m p l e t e and b i o s y n t h e t i c a l l y
i n c o m p l e t e s t a g e s o f t h e c h a i n o f t h e p e n t a s a c c h a r i d e (611,
present
in
The
the
glycoprotein
with
blood-group
glycolylneuraminic acid residues,
A activity.
when p r e s e n t ,
2-
are only linked t o
2 - a c e t a m i d o - 2 - d e o x y - Q - g a l a c t it o 1 r e s i d u e s a n d n o t t o P - g a l a c t o s y l r e s i d u e s , as h a d b e e n p r e v i o u s l y r e p o r t e d .
a-Q-Gal~NAc-(1+3)-B-Q-Galp-(1+3)-~-GalNAc-o1 2
6
1
2
I
I
a-i-Fucp
a-N e up5A c
(61) A 2-acetamido- 2- de oxy- 9- gluc osyltr a nsf e r a s e
which a c t s on mucin
s u b s t r a t e s has been d e t e c t e d i n c a n i n e s u b m a x i l l a r y glands.938 Using mucin
o r b e n z y 1 2 - a c e t a m i d o - 2 - d e o x y -3-g-B-P-galactosyl-a-Pt h e t r a n s f e r o f a 2-acetamido-2-deoxy-9-
g a l a c t o s i d e as acceptors,
g l u c o s y l r e s i d u e t o e i t h e r 0-4 o r 0 - 6 o f t h e 2 - a c e t a m i d o - 2 - d e o x y - P galactosyl residue o f the acceptor
occurs.
Detailed substrate
s p e c i f i c i t y of
t h e 2-acetamido-2-deoxy-~-glucosyltransferase
t e s t e d with a
variety
of
when
p o t e n t i a l g l y c o p r o t e i n and s y n t h e t i c
Carbohydrate Chemistry
2 94 disaccharide
a c c e p t o r s has been reported.939
Porcine l i v e r
m i c r o s o m e s c a n i n t r o d u c e r e s i d u e s o f n e u r a m i n i c a c i d f r o m CMPneuraminic a c i d i n t o porcine submaxillary asialo-afuco-mucin, a gg a l a c t o s y l o v i n e s u b m a x i l l a r y a s i a l o m u c i n a n d g a n g l i o s i d e GH1.940
No e v i d e n c e was o b t a i n e d t o i n d i c a t e any t r a n s f e r o f n e u r a m i n i c a c i d t o 2-acetamido-2-deoxy-D-galactosyl residues, and t h e enzyme t r a n s f e r s n e u r a m i n i c a c i d s o l e l y b y f o r m a t i o n o f a n a(2+3)glycosidic linkage t o e-galactosyl
residues.
Rat submaxillary
mucous g l y c o p r o t e i n has been p u r i f i e d a f t e r aqueous e x t r a c t i o n o f t h e g l a n d s f o l l o w e d by r e c y c l i n g g e l - f i l t r a t i o n
~hromatography.~~~
The c h e m i c a l c o m p o s i t i o n o f t h i s m u c i n r e s e m b l e s t h a t o f t h e human c o u n t e r p a r t and i s d i s s i m i l a r t o t h e c o m p o s i t i o n o f r a t s u b l i n g u a l glycoprotein. Chemical
properties of
and a f f i n i t y
of
lectins
for
human
b r o n c h i a l mucous g l y c o p r o t e i n s h a v e been compared.942 The a c t i o n s o f
m e r c a p t o e t h a n o l on s o l u b l e mucous g l y c o p r o t e i n s
o b t a i n e d f r o m b o t h c y s t i c - f i b r o t i c and c h r o n i c - b r o n c h i t i c sputum h a v e been c ~ m p a r e d . ~ The ~ ~ ,e ~ f f e~ c ~t o f t h e r e d u c i n g a g e n t u n d e r n o n - r e d u c i n g c o n d i t i o n s o n t h e g l y c o p r o t e i n s c a n n o t be e x p l a i n e d solely
by
the
disulphide
bond-breaking
action,
but
appears
i n v o l v e t h e e x i s t e n c e o f a mercaptoethanol-inducible
to
mucolytic
s y s t e m w h i c h v a r i e s f r o m one s p u t u m t o a n o t h e r . O l i g o s a c c h a r i d e s o b t a i n e d b y a l k a l i n e d e g r a d a t i o n o f human b r o n c h i a l mucous exchange,
glycoproteins
have been f r a c t i o n a t e d
gel-permeation chromatography,
by
ion
and h . p . l . ~ . ’ ~ ~
S u l p h a t e d g l y c o p r o t e i n s f r o m human g a s t r i c j u i c e h a v e b e e n i s o l a t e d a f t e r a f f i n i t y c h r o m a t o g r a p h y on c o l u m n s o f i m m o b i l i z e d l y ~ i n e . Two ~ ~ m ~ ajor glycoprotein f r a c t i o n s d i f f e r i n g i n t h e i r
LO-
s u l p h a t e a n d n e u r a m i n i c a c i d c o n t e n t were i s o l a t e d . The
nature
of
the
non-covalent
interactions
g l y c o p r o t e i n m o l e c u l e s o f human and p i g g a s t r i c mucous s t u d i e d by mechanical spectroscopy,
between has
been
u s i n g s t o r a g e and l o s s m o d u l i t o
.
c h a r a c t e r ize, r e s p e c t i v e ly, so l i d - 1ik e a n d l i q u i d - 1ik e be h a v i o u r 947 Oligosaccharides having blood-group
Ii a c t i v i t y
have been
i s o l a t e d f r o m sheep g a s t r i c g l y c o p r o t e i n s w h i c h h a d been e n r i c h e d
f o r t h e s e b l o o d - g r o u p a c t i v i t i e s b y a f f i n i t y c h r o m a t o g r a p h y o n an a n t i - I a d s o r b e n t column.948
The f r a c t i o n s o f s m a l l e s t m o l e c u l a r
w e i g h t w i t h b o t h I and i a c t i v i t i e s a r e m i x t u r e s o f h e x a - a n d o c t a saccharides.
From s t u d i e s on t h e hexa- t o o c t a - s a c c h a r i d e
a s t r u c t u r a l model (62) i s proposed which c o n s i s t s o f region,
(b)
a b a c k b o n e r e g i o n h a v i n g (1+3)-
fractions
(2)
a cor,e
and ( 1 + 6 ) - l i n k e d
2-
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides al
0
$1
Q
Q
z
m n - 4
:
o
U
c311
rill I
n
V
I
n
n I
M
V)
t
-4
+I
t
-4
v
v
I
I
0
0
z 4 4
a I I
Ep
I
n I
n
U -4 t
U
t
-4 v
U
rl
4
U
U
m
m
n
n I
A
A
m
m
I a 1
I
011
I
M
M
-4 v I
-4 v I
Q
Q
t
t
0
0
z
z 4
al
.--I
d
ci
u
011
011
m
m
I
n I
h
U
Q
-4
-4 v
t
t
v
A
4
m
U I 011 I
m
m
v
A
4
I
I
Q Z
4
m
4 0
I
I
U
U I 011 I
M
+I
+I
al
4
-
> w
V)
r
011 n
I
)
m U 1 - 4 m I
I
u I
M
4
z 4
0
Q
z
al
4
U I
295
2 96
Carbohydrate Chemistry
acetamido-2-deoxy-4-~-B-Q-galactosyl-~-glucosyl b r a n c h e s w i t h I a c t i v i t i e s and l i n e a r r e p e a t i n g (l+3)-linked 2-acetamido-2-deoxy-4-O - 8 - ~ - g a l a c t o s y l - ~ - g l u c o s e u n i t s w i t h i a c t i v i t i e s , a n d (c) a p e r i p h e r a l r e g i o n w i t h b l o o d - g r o u p i s o t y p e a c t i v i t i e s . 949 A p r o t e i n ( m o l . w t . 7.0 x l o 4 ) i s l i n k e d t o p i g g a s t r i c m u c o u s g l y c o p r o t e i n by d i s u l p h i d e b r i d g e s . 9 5 0 On d i s s o c i a t i o n o f t h e g l y c o p r o t e i n i n t o s u b u n i t s by r e d u c t i o n o r p r o t e o l y s i s , t h e p r o t e i n is e i t h e r r e l e a s e d i n t h e reduced form or l o s t on p r o t e o l y t i c digestion.951 P i g g a s t r i c a n d s m a l l - i n t e s t i n a l mucous g l y c o p r o t e i n s a r e c l e a v e d i n t o f o u r s u b u n i t s by p r o t e o l y t i c enzymes.952 A model f o r t h e g a s t r i c mucous g l y c o p r o t e i n (mol. w t . 2 x l o 6 ) , w h e r e on a v e r a g e f o u r s u b u n i t s a r e e a c h j o i n e d t o a p r o t e i n ( m o l . w t . 7.0 x l o 4 ) by d i s u l p h i d e b i n d i n g , i s p r o p o s e d . The i n t e s t i n a l g l y c o p r o t e i n probably h a s a similar o v e r a l l s t r u c t u r e . Rat g a s t r i c m u c o s a l c e l l s a r e c a p a b l e o f t h e s y n t h e s i s and s e c r e t i o n o f a t l e a s t t w o f a m i l i e s o f mucous g l y c o p r o t e i n s o f w i d e l y d i f f e r e n t m o l e c u l a r w e i g h t s a n d r h e o l o g i c a l p r o p e r t i e s .953 Oligosaccharide chains bearing t h e Forssman a n t i g e n i c d e t e r m i n a n t are a s s o c i a t e d w i t h g l y c o p r o t e i n s of t h e dog g a s t r i c mucous.954 Enzymic and immunological evidence i n d i c a t e s t h a t t h e s e g l y c o p r o t e i n s , l i k e F o r s s m a n g l y c o s p h i n g o l i p i d s , c o n t a i n t h e 2a c e t a mido-2-deoxy-3 -O-(2-acetamido-2-deoxy-a-~ - g a l a c t o sy l ) - Q g a l a c t o s e s t r u c t u r e , which d e t e r m i n e s t h e immunological s p e c i f i c i t y of the Forssman a n t i g e n . The v i s c o s i t y a n d g e l - f o r m i n g p o t e n t i a l o f p i g s m a l l - i n t e s t i n a l mucous i n c r e a s e w i t h p r o g r e s s i v e r e m o v a l o f n o n - c o v a l e n t l y bound protein during isolation.955 T h i s g l y c o p r o t e i n ( m o l . w t . 1.7 x l o 6 ) e x h i b i t s A a n d H b l o o d - g r o u p a c t i v i t y a n d c o n t a i n s r e s i d u e s o f If u c o s e , 2 - m a n n o s e , Q - g a l a c t o s e , 2 - a c e t a m i d o - 2 - d e o x y - Q - g l u c o s e , 2acetamido-2-deoxy-Q-galactose, a n d n e u r a m i n i c a c i d . The u n d e g r a d e d g l y c o p r o t e i n c o n t a i n s i n t e r c h a i n d i s u l p h i d e b r i d g e s and is d i s s o c i a t e d by p r o t e o l y s i s o r r e d u c t i o n i n t o s u b u n i t s t h a t a r e d i f f e r e n t i n s i z e and s t r u c t u r e from p i g g a s t r i c mucous gly~oprotein.9~6 Rat c o l o n i c mucous g l y c o p r o t e i n s h a v e b e e n s o l u b i l i z e d i n t h e The absence of p r o t e o l y t i c enzymes or d e n a t u r i n g solvents.957 presence of s e v e r a l high-molecular-weight components, varying i n t h e i r c a r b o h y d r a t e and s u l p h a t e c o n t e n t s , blood-group a n t i g e n i c i t y , a n d n e t c h a r g e , was o b s e r v e d . Evidence f o r the e x i s t e n c e o f two immunochemically d i s t i n c t m u c i n s i s o l a t e d a f t e r p r o t e o l y t i c d i g e s t i o n o f human c o l o n i c m u c i n
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
I
n
M
U
I
4 v
I
n
M
t
4 v
I
0 I
011 n
M i
n
4
v
I
011 n
M i
4
A
4
cr)
CJ I
U
b
4
m
U CY1 n
A
d cr)
aI
rill
297
298
Carbohydrate Chemistry I t i s n o t c l e a r whether these two mucin a s i n g l e mucin molecule or from t w o
h a s been reported.958 fragments o r i g i n a t e d i f f e r e n t mucins.
from
G l y c o p r o t e i n s f r o m t h e p e r i o v u l a t o r y phase mucins o f t h e b o n n e t monkey,
Macaca
enzymes.959
radiata,
have
been
The p a r t i a l s t r u c t u r e s
degraded
(63-64)
with
proteolytic
o f two oligosaccharide
c h a i n s were i d e n t i f i e d .
Urinary G l y c o p r o t e i n s , Oligosaccharides
16
Some
biochemical
sialidoses,
findings
Glycopeptides,and
concerning
four
different
types
of
on t h e b a s i s o f t h e s p e c i f i c a - n e u r a m i n i d a s e d e f i c i e n c y
and t h e n a t u r e o f t h e s t o r a g e m a t e r i a l , h a v e been r e v i e w e d . 9 6 0 From t h e knowledge o f t h e numerous s t r u c t u r e s o f g l y c o p r o t e i n g l y c a n s , i t i s p o s s i b l e t o d e m o n s t r a t e t h a t t h e o l i g o s a c c h a r i d e s and g l y c o a s p . a r a g i n e s a c c u m u l a t i n g i n t i s s u e s and u r i n e s o f p a t i e n t s w i t h diseases c h a r a c t e r i z e d by o r i g i n a t e from
a
lack
i n lysosomal glycosidases,
g l y c o p r o t e i n g l y c a n s i n c o m p l e t e l y c a t a b ~ l i z e d . ~A ~ ~
scheme f o r t h e n o r m a l a n d p a t h o l o g i c a l c a t a b o l i s m o f g l y c o p r o t e i n s h a s been p r o p o s e d . Three s i a l o g l y c o p r o t e i n s (mol. x
5.3
lo3,
urine.962
of
r e s p e c t i v e l y ) have
been
w t s . 7.79 X lo4, 3.7 x 104,and isolated
from
normal
human
Alkaline borohydride degradation o f the sialoglycoprotein
lowest molecular
weight yielded two s i a l y l a t e d oligosaccharides
w h i c h were p a r t i a l l y c h a r a c t e r i z e d . Patients with tubular or e x c r e t e an a l - m i c r o g l o b u l i n
mixed glomerular-tubular
proteinuria
w h i c h has been shown t o have t h r e e
g l y c o s i d i c a l l y l i n k e d carbohydrate chains o f
l-
structural similarity
t o t h o s e d e r i v e d f r o m many o t h e r s e r u m g l y c o p r ~ t e i n s . ~ ~ ~ A g l y c o p r o t e i n ( m o l . w t . 2.0 x lo4) w h i c h c o m p l e t e l y i n h i b i t s t r y p s i n a t a 1:l m o l a r r a t i o h a s b e e n i s o l a t e d f r m human u r i n e . 9 6 4
I t i s generated from a precursor molecule which i n t u r n i s d e r i v e d from
plasma
inter-a-trypsin
i n h i b i t o r (mol. w t . Kunitz-type
3.0
domains.965
x
inhibitor.
lo4) The
An a c i d - r e s i s t a n t
trypsin
f r o m human u r i n e i s c o m p o s e d o f t w o C-terminal
domain i s r e s p o n s i b l e f o r
a n t i t r y p t i c a c t i v i t y b u t no i n h i b i t o r y a c t i v i t y h a s b e e n d e s i g n a t e d t o t h e o t h e r domain.
B o t h t h e N - t e r m i n a l e x t e n s i o n p e p t i d e and t h e
l a t t e r domain are l i n k e d g - g l y c o s i d i c a l l y respectively.
The 0 - g l y c o s y l
and N - g l y c o s i d i c a l l y ,
residues are attached t o I-serine-10
299
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides w h i l e t h e N--glycosyl
residues are t o I-asparagine-24
on t h e f i r s t
K u n i t z - t y p e domain. 966 G l y c o p e p t i d e s have been i s o l a t e d f r o m p r o t e o l y t i c d i g e s t s o f human T a m m - H o r s f a l l g l y c o p r o t e i n a n d i t s a s i a l o d e r i v a t i v e . 9 6 7 glycoprotein
contains
at
least
five
I-asparagine
The
residues
s u b s t i t u t e d by complex c a r b o h y d r a t e m o i e t i e s ,
t h r e e b e i n g o f one
type,
and t w o c o n t a i n i n g
r e l a t i v e l y r i c h i n ;-galactosyl
residues,
l e s s g - g a l a c t o s e b u t more n e u r a m i n i c a c i d . The
structures
(65-67)
of
three oligo-Q-mannoside-type
h_-
a s p a r a g i n e s i s o l a t e d f r o m t h e u r i n e o f a p a t i e n t w i t h Gaucher's disease
have
been
elucidated
using
MHz
500
'H
n.m.r.
s p e c t r o s c o p y .968 A
reduction or
absence o f
degrading lysosomal amidase
activity of
the glycoprotein
l-aspartamido-$-2-acetamido-2-deoxy-~-
g l u c o s e a m i d o h y d r o l a s e (EC 3.5.1.26)
i s t h e b a s i c enzymic d e f e c t i n
a s p a r t y l g l y c o ~ a m i n u r i a . ~U~r ~i n a r y s i a l y g l y c o c o n j u g a t e s h a v e b e e n s t u d i e d i n a number o f p a t i e n t s w i t h t h i s i n h e r i t e d d e f i c i e n c y . levels
of
the
main
metabolite,
i n v a r i o u s n e u r a l and e x t r a n e u r a l t i s s u e s o f a s p a r t y l g l y c o s a m i n u r i a have been measured
asparaginyl-Q-glucose, a patient suffering by
The
2-acetamido-2-deoxy-l-$-~-
from
g . l . ~ . ~ ~ OC o r r e l a t i o n o f
the
results
with
the
clinical
m a n i f e s t a t i o n s o f t h e d i s e a s e d i d n o t r e v e a l any d i r e c t r e l a t i o n s h i p between t h e amount of
2-acetamido-2-deoxy-l-f3-l=-asparaginyl-~-
g l u c o s e s t o r e d and t h e degree o f o r g a n d y s f u n c t i o n . Six
mono-
and
simultaneously Improvements
in
components a l l o w
di-saccharides
by
h.p.1.c.
a
detector
have
been
determined
o f d e i o n i z e d human urine.971 based on o p t i c a l a c t i v i t y o f t h e
t h e d e t e c t i o n o f 100 n g o f s u g a r .
R1-(1+3)-$-Q-Man~-(1+4)-$-~-G1c~NAc-(1~4)-$-~-G1c~NAc-1+~-Asn 6
I 1 R2-(1+3)-a-g-Mang 6
I 1 R3 (65)
R 1 = R2 = R3 = H R2 = R 3 = H
(66)
R1 = a-Q-Mane,
(67)
R1 = R 2 = R 3 = a-Q-Mane
3 00
Carbohydrate Chemistry The s t r u c t u r e o f
an o l i g o s a c c h a r i d e ( 6 8 ) c o n t a i n i n g n i n e Q -
m a n n o s y l r e s i d u e s and i s o l a t e d f r o m p a t i e n t s w i t h m a n n o s i d o s i s has been s i m i l a r l y a s s i g n e d . 9 7 2
Excessive g i n g i v a l hyperplasia with
s t o r a g e o f Q - m a n n o s e - r i c h o l i g o s a c c h a r i d e s a p p e a r s t o be a u n i q u e feature
present i n a p a t i e n t e x h i b i t i n g mannosidosis.973
c h a r a c t e r i s t i c 0-manno-oligosaccharides
Eight
each t e r m i n a t e d a t
r e d u c i n g end w i t h a 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s y l r e s i d u e i s o l a t e d from the patients' which
a trisaccharide
urines.
the were
I n contrast t o the urine i n
i s predominant,
tetrasaccharides
and
p e n t a s a c c h a r i d e s a r e more abundant i n g i n g i v a . The u n i q u e s t r u c t u r e ( 6 9 ) o f a t r i s a c c h a r i d e f r o m a p a t i e n t w i t h m a n n o s i d o s i s h a s b e e n d e d u c e d b y 13C n.m.r. terms o f sugar composition,
r i n g forms,
spectroscopy i n
anomeric configurations,
sequence, and i n t e r - r e s i d u e l i n k a g e p o s i t i o n s . 9 7 4 I n a c a s e o f f e l i n e m a n n o s i d o s i s , a m a r k e d d e f i c i e n c y o f a-D-
mannosidase i n b r a i n ,
kidney,and
l i v e r t i s s u e i s accompanied by h i g h
A a_concentrations o f n e u t r a l oligosaccharides i n t h e urine.975 m a n n o s y l - r i c h h e x a s a c c h a r i d e was f o u n d t o be t h e p r e d o m i n a n t
oligosaccharide. A s e t o f procedures f o r s c r e e n i n g o f p a t i e n t s '
urine t o detect
o l i g o s a c c h a r i d e - s t o r a g e d i s e a s e s h a s been d e s c r i b e d . 9 7 6 patients
with
U r i n e s from
mucolipidosis
aspartylglycosaminuria,
I, m a n n o s i d o s i s , f u c o s i d o s i s , and t y p e I g l y c o g e n - s t o r a g e d i s e a s e can be
d i s t i n g u i s h e d b y t.1.c.
B-Q-Galactosidase d e f i c i e n c y i n p a t i e n t s
c a n be d e t e c t e d by e x a m i n a t i o n o f t h e u r i n e u s i n g a c o m b i n a t i o n o f
a-P-Mane-(1+2)-a-a-Mang-(l+2)-a-Q-Man~ 1
I 3 B-B-Manp(l+4)-g-GlcNAc
6
I 1 a-Q-Mane-(1+2)-a-g-Man~-(l+3)-a-p-Manp 6
I 1 a-P-Man~-(1+2)-a-Q-Mang
(68)
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides ion-exchange
c h r o m a t o g r a p h y a n d t.1.c.
301
Excess s i a l y l o l i g o s a c c h a r i d e
e x c r e t i o n i s d e t e c t e d by g e l f i l t r a t i o n f o l l o w e d by e s t i m a t i o n of neuraminic acid. O l i g o s a c c h a r i d e p a t t e r n s o b t a i n e d by g e l f i l t r a t i o n o f u r i n e o f GMl
gangliosidosis
gangliosidosis
(Type
(Type
1) p a t i e n t s d i f f e r
2)
p a t i e n t s . 977
from
The
those
amount
of
of
GM1
total
o l i g o s a c c h a r i d e excreted i n t h e u r i n e of
Type 2 p a t i e n t s i s 10-20%
o f t h a t i n t h e u r i n e o f Type 1 p a t i e n t s .
Oligosaccharides having
t h e s t r u c t u r e s (70-84) o c c u r i n t h e u r i n e o f Type 1 p a t i e n t s .
The
same o l i g o s a c c h a r i d e s w i t h t h e e x c e p t i o n o f ( 7 6 , 7 7 , 7 9 , 8 4 ) a r e e x c r e t e d i n t h e u r i n e s o f Type 2 p a t i e n t s .
a-g-ManQ-(1+3)-B-;-ManE-(l+4)-g-GlcNAc (69)
Four p o s i t i o n a l isomers o f neuraminosyl o l i g o s a c c h a r i d e s have been i s o l a t e d from
t h e u r i n e of
a patient
with sialidosis
with
p a r t i a l d e f i c i e n c y o f B - ~ - g a l a c t o ~ i d a s e . T~h ~e i~r s t r u c t u r e s a r e identical to
oligosaccharides
(70-71)
neuraminosyl or (2+6)-a-neuraminosyl
bearing either
(2+3)-a-
t e r m i n a l residues.
Two s i b l i n g s w i t h n e u r o n a l c e r o i d l i p o f u c o s i n o s i s e x c r e t e d t h e b l o o d - g r o u p A t r i s a c c h a r i d e , 3-g-(2-acetamido-2-deoxy-a-;-galactopy r a n o s y 1) -2-2- (a-C-f u c o p y r a n o s y 1)-;-ga
17
.
l a c t o s e , i n t h e u r i n e 979
Avian Glycoproteins
Absorption spectra,
c.d.
spectra, and sedimentation-equilibrium
v a l u e s have been r e p o r t e d f o r
complexes
of
l u t e i n with
egg
o v a l b u m i n .980 Ovalbumin has been s u b f r a c t i o n a t e d on i m m o b i l i z e d c o n c a n a v a l i n A.981
A
d i s t i n c t i v e carbohydrate
fractions
was n o t e d .
used
demonstrate
t o
H i g h - f i e l d 'H
composition n.m.r.
heterogeneity
i n each
of
four
spectroscopy has been o f
chick
ovalbumin
g l y c ~ p e p t i d e s . ~An~ ~u n a m b i g u o u s a s s i g n m e n t o f a l l C1-H a n d Q m a n n o s e C2-H r e s o n a n c e s was made, e n a b l i n g t h e s t r u c t u r e s o f t h e g l y c o p e p t i d e s t o be assigned.983 The c o m p l e t e a m i n o a c i d s e q u e n c e o f
385 r e s i d u e s ,
has been determined.984
postsynthetic modification: terminus,
hen o v a l b u m i n ,
comprising
Ovalbumin has f o u r s i t e s o f
in addition t o
the
a c e t y l a t e d N-
t h e c a r b o h y d r a t e m o i e t y i s l o c a t e d a t I-Asn-292,
and t h e
3 02
Carbohydrate Chemistry
0
a
z
0
4
U I
nil I
n
t
0
0
4
I 1311 I
011
a I
n
n
t
t
U
U
I
0
4
U
z
z
U
4
2
4
z
4
I
0
4
b
(0
z
U
4
4
U
M I
m
ai
m
n
n v)
I
m t
4
u
b
I
t
4 U
b
n
U
t
4
v
I
n I
0 1I I
m I
a n
N
N
4 v
4
4
U
U
t
).
n I
N
a
4
n I
t
4
t
U
U
I
I
0 U
z
2
4
0
4
2
2
4
U I
m
m
nil m
n
n
n
t
t
t
U
,-I
I
e
4-.
I
U
4
2
4
m
m
n i t I
I
n
U
t
4 v
4
4
a I
U I
a
U I
011
0
m
m
m
m
UI I
I
AI (II
I
(II
U I
4
m
b
4
U I
v
b
t
v
z
U
m
U 4
0
a
u
b
I 011 I
I
I
I
t
hl
n
.-I
2
N I
U
4
n
0
I
z
I
n v)
4
0
a
m
U
Q
oil I
m
n
t
I
nit I
I
I 011 I
2 4 0 U
m
nil
I
0
a
b
4 (II
U I
I
1
nII I
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
0 Q
0 Q
z
Z 0 4 U
0
4 (3
I
CYI
MI
n I
I
n
U
U
0 -
4 v
Q
m
5 I
(311
I
( v -
rl
z 4 0
4 U
I MI
a
m
n v)
n (v
n
4 v
4 v
t
I
1
t
I 0
I
U
t
rl
v
A
4
m
4
U
n (v
t
-4
v I
0
a Z al
I (311
m I
n
U
t
rl
m
I
t
4 v
A
4
m
m
z I
CYI
fill
m
m
\D
t
rl U
I
a
m ( v
rI
a
n I
\D
t
4 U
I
0
U
I nil I
till
m n I
U
t
d v
A
4
m
U
U
I MI
I
m
I 0 1 1
m
m
n I
ca
m U
M I ll U
I
2 m m
Al
A
n
U n I U
t
4 U
U
0 4 U I
303
I
0 Q
z 4 4 4 u U I
0 I1 1
m
4
4
4
m
U 0 1I I
m
n In
I-
U
3 04
Carbohydrate Chemistry
d U I
4'
n
0
U
t
z Q 0
-I v
$
d
U I
4'
n
U
t
.+
2z
4'
cn I
n v)
t .+
$
U
m
I
4'
P
n
v)
- 4
5
I
0
P
5
hl
9' P
t
4 v
cn
4
n
t
al 0
U
I
d
(3
I
U
v
n
b
t -
.+ v
hr
)
al u
4
rl
U I
7'
mI
r-.
4
I
(3
I
m
n
n
t
t
&
d ([I
(3
I
4' m
M
4 v
U
t
hr (0
I
7'
cn
I
n
0
M
8
v
s
d
U I
4'
m I
n
U
t
4 U
hr
d
cm .!l I
4'
cn
t
4 v
4l
m
I
e
0 Q
z
I
cn
-4
I
4'
hl
4 v
U
c.!l
z
0 Q
U
U
al
d
n
.-i
9'
3
I
9 I
t
4 U
U
4
hl
U
m
n
m
u
n
-4
I
4'
n
Q Z
t
m
d U
I:
4' ?
c \
hl
t
2z
4' m I
u I
2 a n
al
m m - c r m
t
4
I 0 Q Z
al
4 U I
4'
cn I
n
U
t
4 U
&
.+
m
(3
I
4" m
I
q m
U n I t -
4' rm
U
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
u
a
0
Z
a z
u
0
-4
U
4
I
U
4'
I
4'
U
n
t
U f
0
4
3
a z
U
m m I
0"'
4
4
U
4'
4'
-
m
m
v)
t
0
4
0"'
4.4-
U I
7' m I
n
U
t
-4
v
b
4
m
U I
4" m
+
-4
v
hl
n
U
t
U
t
CUM--
I
4"'
m I
v)
t
. I
4
-4
U
U
U
I
I
0
m
I
4' P
n
+
-4
U
b
4
f
4'I
3
a z
t
U
b
t
U
I
u
al
3 4
-4
4
I
U I
I
U
4'
m I
m
m
c1
4'
m
n
n
U
.-I
-I v
U
U
b
4
t
b
4
m
m
U
I
4'
c1
4'
m
4
n
4
U
t
4 v
-4
0
I
U
4' m
I
n
CJ
-4 v
t
T 4l 9
U I
u m
m h l -
2 n
n v)
a
-4
I
m I
4 [ I
I
U
t
d U
&
4
m
U I
41
m I
hl
[ I
d
305
Carbohydrate Chemistry
3 06
0 Q:
I
z
c \
M
4
0
I CI
M 4
I
n
M 4
1
4
4
4
U I
U
U
U
I
4'
0
mI
I
u
Q:
CK
1 U I
1
al
n
I
0
z
z
2
U I
4'
4'
n
n
m
U
m I
4
U 4
U
U
1
I
4
n v)
4
4 U
I
4 - h l
F m
5: I
4' P
n v)
4
4 U
I
0
z a
3
1 U I
4'-
mhl
1 0 3
n u
U
4
1 U
&
1
a m I
4'
4' m
n
LT
m
U 4
4 U
&
1
m
U I
4'
m I
4
LT
I M
M
-
u
u
n
Q
u
W
307
5: Glycoproteins, Glycopeptides, Proteoglycaris, and Animal Polysaccharides t w o p h o s p h o r y l a t e d L - s e r i n e s a r e a t r e s i d u e s 6 8 a n d 344. Two
glycopeptides
have
been i s o l a t e d f r o m
chicken ~ v a l b u m i n . ~ ’ B ~ oth h i g h Q-mannose-type
pepsin-treated and h y b r i d - t y p e
o l i g o s a c c h a r i d e s w e r e r e l e a s e d by an a l m o n d e m u l s i n g l y c o p e p t i d a s e . N a t u r a l - a b u n d a n c e 1 3 C n.m.r.
s p e c t r o s c o p y h a s been u s e d t o show
t h a t some a - Q - m a n n o p y r a n o s y l - ( 1 + 3 ) - Q - m a n n o p y r a n o s y l ovalbumin
glycopeptides
are
cleaved
much
l i n k a g e s i n hen faster
than
the
c o r r e s p o n d i n g ( 1 + 6 ) - l i n k a g e s b y j a c k - b e a n a - P - m a n n o ~ i d a s e . ~ I~n~ addition the
technique
was
used t o
examine
the
structures o f
p a r t i a l l y cleaved species produced d u r i n g t h e a c t i o n o f glycosidases on o l i g o s a c c h a r i d e s ,
glycopeptides,and glycoproteins.
Ovotransferrin,
i n a d d i t i o n t o human s e r u m t r a n s f e r r i n ,
i s
o x i d i z e d by s o d i u m p e r i o d a t e w i t h a r e s u l t i n g d e s t r u c t i o n o f I=t y r o s i n e r e s i d u e s and a loss o f i r o n - b i n d i n g a c t i v i t y . The
structural
determination o f
one
of
the
glycopeptides
o b t a i n e d by p r o t e o l y s i s o f t u r t l e - d o v e ovomucoid has r e v e a l e d t h e p r e s e n c e o f a t e r m i n a l t r i s a c c h a r i d e (851,
a s p e c i f i c blood-group
P1
a n t i g e n i c d e t e r m i n a n t p r e v i o u s l y d e s c r i b e d f o r human e r y t h r o c y t e P1 antigen.9e7 The (20%),
secondary
structures of
B-structure
(46%), a n d
chicken ovomucoid c o n t a i n a - h e l i x
random
coil
s t r u c t u r e p r e d i c t i o n s f o r chicken egg-white p~blished.~”
and d i s c u s s i o n i n c l u d e s c o n f o r m a t i o n a l
characteristics o f the glycoprotein,
18
Secondary-
ovomucoid have been
Some o f t h e e a r l i e r p r e d i c t i o n s o n s t r u c t u r e a r e
i n c o r p o r a t e d i n t h i s model, reactive site,
(18%).988
t h e secondary s t r u c t u r e a t t h e
a n d t h e s t r u c t u r a l homology among t h r e e domains.
M i s c e l l a n e o u s G l y c o p r o t e i n s and C h i t i n
The s t r u c t u r e s o f f i f t e e n o l i g o s a c c h a r i d e s ( 8 6 - 1 0 0 ) i s o l a t e d f r o m
B-Q-Gale-(1+3)-Q-GlcNAc (86) B-Q-Gale-(1+3)-Q-GalNAc (87)
3 08
Carbohydrate Chemistry B-Q-GalQ-( 1+4) -g-GlcNAc 3
I
1 a-C-Fucg
(88) R - ( 1+2) -B -Q-Gale-( 1+4) -Q-Glc
3
I 1 a-L-Fucp
(89) R = H (90) R = a-L-Fuce
1+-4) -B-Q-GlcpNAc-( 1+3) + - G a l B-Q-Galp-( 92) R1-(
1+2) -a-Q-Mane 1
I 6 R 2 - ( 1+2) -a-Q-Manp-(
1+3) -B +-Mane-(
1+4) -B-Q-GlcNAc
4
I 1 B-Q-GlCQNAC A = a-Neup5Ac-(2+6)-B-Q-Gale-(
B = B-Q-GlCeNAC C = B-Q-Galg-( 1+4) -B-P-GlcpNAc
1-41
-B-Q-GlceNAc
309
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides newborn meconium have been i d e n t i f i e d . ’ ”
I t i s proposed t h a t
e n d o g l y c a n a s e s a r e i n v o l v e d i n t h e p r o d u c t i o n o f t h e s e compounds from glycoproteins. Q - G a l a c t a n s have been i s o l a t e d f r o m t h e albumen g l a n d s f r o m s n a i l s o f t h e g e n u s B i ~ m p h a l a r i a . ~T h~e~ r e s u l t s o f m e t h y l a t i o n a n a l y s i s and p e r i o d a t e o x i d a t i o n d a t a i n d i c a t e t h e p r e s e n c e o f a multibranched
structure
c o n t a i n i n g [1+3)-
Polysaccharides containing b o t h
9-
and (1+6)-linkages.
and l = - g a l a c t o s y l r e s i d u e s have
been i s o l a t e d f r o m t h e a l b u m e n g l a n d s o f f o u r s p e c i e s o f A n t i s e r a t o t h e f o u r g a l a c t a n s showed v a r i o u s degrees o f c r o s s reactivity,
indicating structural differences, ascribable i n part t o
d e t e r m i n a n t s i n v o l v i n g g a l a c t o s e p h o s p h a t e , and p r o b a b l y a l s o t o t h e A B-
l i n k a g e and p o s i t i o n o f I - g a l a c t o s y l r e s i d u e s i n t h e m o l e c u l e . Q-galactopyranan,
--Pomacea
i s o l a t e d from t h e albumen gland o f t h e s n a i l
l i n e a t a , c o n t a i n s 3,4-Q-(l-carboxyethylidene)
groups, as
s h o w n by t h e l i b e r a t i o n o f p y r u v i c a c i d o n a c i d h y d r o l y s i s a n d b y m e t h y l a t i o n data.993
The s t r u c t u r e o f t h e 5-membered a c e t a l g r o u p s spectroscopy.
o f p y r u v i c a c i d was s t u d i e d by 1 3 C n.m.r.
The r o l e o f g l y c o s y l a t i o n i n t h e s e c r e t i o n o f v a r i o u s a v i a n and m a m m a l i a n p r o t e i n s s y n t h e s i z e d i n Xenopus l a e v i s o o c y t e s u n d e r t h e d i r e c t i o n of
heterologous
messenger RNA h a s been r e p o r t e d . 9 9 4
The
presence o f 3 - g l y c o s y l chains on t h e p r o t e i n s d i d n o t appear t o facilitate
secretion.
O l i g o s a c c h a r i d e s w i t h a new t y p e o f c o r e
s t r u c t u r e ( 1 0 1 ) h a v e been i s o l a t e d f r o m t r o u t egg glycoprotein.’’5 The o c c u r r e n c e o f N - g l y c o l y l n e u r a m i n i c a c i d l i n k e d (2-3) i n t e r n a l 2-acetamido-2-deoxy-Q-galactosyl
r e s i d u e has
t o the not
been
d e s c r i b e d i n o t h e r g l y c o p r o t e i n s or g l y c o l i p i d s . Neug5G 2
I 3
8-~-Gal~NAc-(1+4)-B-~-Gal~NAc-(l+4)-8-p-Gal~NAc-(l+3)8-g-Galp-(1+3)-GalNAc-ol (101) B o v i n e h y p o t h a l m i c mRNA t r a n s l a t e d i n a r e t i c u l o c y t e l y s a t e s y s t e m y i e l d s a common p r e c u r s o r [ m o l .
wt.
2.1
x
lo4)
by m i c r o s o m a l
membranes f r o m dog p a n ~ r e a s . ~ ’ ~T h i s p r e c u r s o r b i n d s t o i m m o b i l i z e d c o n c a n a v a l i n A and i s s e n s i t i v e t o t r e a t m e n t w i t h a-p-mannosidase. Purified variant-specific
g l y c o p r o t e i n a n t i g e n s o f Trypanosoma
310
Carbohydrate Chemistry
brucei exist
i n
solution
as
dimers
and o c c a s i o n a l l y as h i g h e r
T.
Two v a r i a n t s u r f a c e g l y c o p r o t e i n s o f b r u c e i have o 1 igo m e r s .99’ been shown t o h a v e a c o n s e r v e d C - t e r m i n a l a m i n o a c i d sequence.998 The g l y c o s y l a t i o n o f t h e m a j o r v a r i a b l e s u r f a c e c o a t g l y c o p r o t e i n o f
-T. b r u c e i
i s i n h i b i t e d by t u n i c a m y ~ i n . N ~ -~L i~n k e d g l y c o s y l a t i o n
occurs subsequent t o s y n t h e s i s o f t h e p r o t e i n . V a r i a n t a n t i g e n s o f Trypanosoma c o n g o l e n s e h a v e b e e n p u r i f i e d by l e c t i n a f f i n i t y c h r o m a t o g r a p h y . loo0 A
molecular- weight
glycopeptides
of
the
analysis of protozoan
the
major
p o l y p e p t i d e s and
Toxoplasma g o n d i i
has
been
r e p o r t e d . lool A s u l p h a t e d g l y c o p r o t e i n (mol.
wt.
1.85 x
lo5)
i s synthesized
i n t h e m u l t i c e l l u l a r organism Velvox c a r t e r i o n l y d u r i n g t h e l i m i t e d p e r i o d o f embryogenesis.1002 function o f t h i s cell-surface
E v i d e n c e f o r an e m b r y o n i c c o n t r o l glycoprotein i s provided.
S m a l l a m o u n t s o f c h i t i n i n a r t h r o p o d c u t i c l e s c a n be m e a s u r e d b y e s t i m a t i n g t h e d e r i v a t i z e d s o l u b l e c h i t o ~ a n . The ~ ~ ~m e~ t h o d i s n o t a f f e c t e d by t h e p r e s e n c e o f n o n - c h i t i n o u s c u t i c u l a r components. C o v a l e n t l y bound c h i t i n - p r o t e i n complexes o f s e v e r a l s p e c i e s o f marine
invertebrates
deproteinization,
a l l
the
have
been
samples
isolated.1004
contained
small
After
amounts
of
r e s i d u a l amino a c i d s w i t h marked s p e c i e s v a r i a t i o n i n t h e i r i d e n t i t y and c o n t e n t . A c o m p a r a b l e s e r i e s o f c h i t i n s d e r i v e d f r o m b l u e , r e d , stone, and h o r s e s h o e c r a b s by t r e a t m e n t w i t h m i l d a c i d ,
H 4 e.d.t.a.,
and
a l k a l i h a v e b e e n i s 0 1 a t e d . l ~ ~The ~ polysaccharides comprise a family
of
closely related
molecular weight,
products
with
variable
solubility,
o p t i c a l r o t a t i o n , and a c e t y l v a l u e s , w h i c h a r e a
f u n c t i o n o f b o t h t h e s p e c i e s f r o m w h i c h t h e y o r i g i n a t e d and t h e i r method o f p r e p a r a t i o n . I n c r e a s e d r a t e s o f h y d r o l y s i s by c h i t i n a s e and l y s o z y m e o f c h i t i n and c h i t o s a n a f t e r o x i d a t i o n w i t h s o d i u m m e t a p e r i o d a t e h a v e been o b s e r v e d . l o o 6 19
The
Analysis o f Glycoproteins
structure,
carbohydrate
elucidation of
structures,
and f u n c t i o n s
of
r e s i d u e s on g l y c o p r o t e i n s have been r e v i e w e d . l o o 7
M e t h o d s f o r a n a l y s i n g c o m p l e x m i x t u r e s o f a n t i g e n s and g l y c o p r o t e i n s have been r e v i e w e d . l o o 8 S i a l o g l y c o p r o t e i n s h a v e been f r a c t i o n a t e d o n an i m m o b i l i z e d
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
31 1
neuraminic acid-binding l e c t i n from the horseshoe crab Carcinoscorpius rotunda ~auda.~"' The r e s o l u t i o n o f t h e i s o e n z y m e s o f a l k a l i n e p h o s p h a t a s e was a c h i e v e d . Polyacrylamide g e l e l e c t r o p h o r e s i s has been used t o r e s o l v e f l u o r e s c e i n - d e r i v a t i z e d asialoglycopeptides.lolo Specific e x o g l y c o s i d a s e d i g e s t i o n of t h e g l y c o p e p t i d e s g e n e r a t e s a series o f d e g r a d a t i o n p r o d u c t s t h a t are r e s o l v e d . A method f o r m o n i t o r i n g t h e r e m o v a l o f poly-e-mannosyl c h a i n s f r o m g l y c o p r o t e i n s by e n d o - 2 - a c e t a m i d o - 2 - d e o x y - Q - g l y c a n a s e H has been described.l15 A f t e r p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s o f t h e g l y c o p r o t e i n s and t h e i r e n z y m i c a l l y degraded p r o d u c t s , t h e g e l s are overlaid with iodinated lectins. The d e g r e e t o which these l e c t i n s b i n d i s t h e n m e a s u r e d by a u t o r a d i o g r a p h y . A peptide:!-glycanase h a s been p u r i f i e d from almond e m u l s i n and its s p e c i f i c i t y examined w i t h glycopeptides prepared from ovalbumin Both high g-mannose and complex and immunoglobulin M.l0l1 g l y c o p e p t i d e s are h y d r o l y s e d a t t h e B-I=-aspartylglycosylamine linkage. A method f o r t h e f l u o r e s c e n t l a b e l l i n g o f s i a l o g l y c o p r o t e i n s i n v o l v e s o x i d a t i o n w i t h s o d i u m p e r i o d a t e f o l l o w e d by c o n d e n s a t i o n w i t h f l u o r e s c e i n a m i n e o r m o n o d a n s y l - 1 , 2 - d i a m i n o e t h a n e f o l l o w e d by s t a b i l i z a t i o n o f t h e S c h i f f ' s b a s e s by r e d u c t i v e a m i n a t i ~ n . ~ ~ ' L e c t i n s have been used f o r t h e d e t e c t i o n of g l y c o p r o t e i n s transferred t o nitrocellulose sheets, a f t e r t h e i r electrophoretic s e p a r a t i o n on p o l y a c r y l a m i d e g e l s . l0l2 O l i g o s a c c h a r i d e s d e r i v e d f r o m g l y c o p r o t e i n s by e n z y m i c r e l e a s e w i t h e n d o g l y c o s i d a s e s or chemical r e l e a s e by h y d r a z i n o l y s i s h a v e b e e n r e d u c e d by s o d i u m b o r o t r i t i d e a n d s e p a r a t e d by h . p . l . c . 1 ° 1 3 T r e a t m e n t of g l y c o p r o t e i n s w i t h trifluoromethanesulphonic acid a t room t e m p e r a t u r e r e s u l t s i n t h e r a p i d c l e a v a g e o f p e r i p h e r a l s u g a r s , a s l o w loss o f I - s e r i n e a n d I - t h r e o n i n e - l i n k e d 2 - a c e t a m i d o 2-deoxy-p-galactosyl r e s i d u e s , and r e t e n t i o n o f 2 - g l y c o s i d i c a l l y l i n k e d 2-acetamido-2-deoxy-~-glucosyl residues.1°14 The r e a g e n t is safer t o u s e t h a n e i t h e r hydrogen f l u o r i d e or its p y r i d i n e complex. Glycoproteins have been i o d i n a t e d using t h e solid-phase o x i d i z i n g a g e n t 1,3,4,6-tetrachloro-3a,6a-diphenylglycouril ( i o d ~ g e n ) . ' ~ ' ~ The method c o m p a r e s f a v o u r a b l y w i t h t h e s o l i d - p h a s e l a c t o p e r o x i d a s e and c h l o r a m i n e T methods. A method f o r d e t e r m i n a t i o n of p 1 volumes o f g l y c o p r o t e i n u s i n g s p o t a n a l y s i s on c e l l u l o s e acetate l a y e r s i s described.1°16 W i t h pg l u c o s e o x i d a s e and f l u o r e s c e i n - l a b e l l e d c o n c a n a v a l i n A s e n s i t i v i t y
Carbohydrate Chemistry
312 o f 10 n g i s r e a c h e d .
This l e v e l of d e t e c t i o n i s lowered t o 1 ng o f
Q - g l u c o s e o x i d a s e when t h e r e a g e n t s a r e u s e d i n c o m b i n a t i o n w i t h horse-radish
peroxidase.
. .r . s p e c t r o s c o p ic
3C n m
da t a f o r 3 -0- ( 2-ace t a m ido - 2 - de o x y -a-p
-
galactopyranosy1)-N-acetyl-L-serine, 3-0-(2-acetamid0-2-deoxy-a-D- g a l a c t o p y r a n o s y l l - N - a c e t y l - i - t h r e o n i n e , 3-g-a9B-Q-galactopyranosylL_- - s e r i n e, a n d 3 -g-a,B-g - g a 1a c t o p y r a n o s y 1-L- - t h r e o n in e h a v e , b e e n recorded.1°17
These m o d e l compounds r e p r e s e n t common c a r b o h y d r a t e -
p r o t e i n l i n k a g e r e g i o n s of
many g l y c o p r o t e i n s .
The s t r u c t u r e s o f t h e o l i g o s a c c h a r i d e c o m p o n e n t s o f a number o f g l y c o p e p t i d e s have been e s t a b l i s h e d f o l l o w i n g h y d r a z i n o l y s i s - n i t r o u s a c i d deamination,
w h i c h l e a d s t o t h e s p e c i f i c c l e a v a g e o f 2-amino-2-
deoxy-g-glucosyl
l i n k a g e s .883
T h e d e r i v e d 2,5-anhydro-Q-mannose-
c o n t a i n i n g o l i g o s a c c h a r i d e s a r e r e d u c e d w i t h s o d i u m b o r o h y d r i d e and a n a l y s e d by g.1.c.-m.s.
o f t h e i r methylated ethers.
The f l e x i b i l i t y o f b i acetyl-lactosamine
and t r i - a n t e n n a r y
N-
glycans o f the
t y p e has been s t u d i e d by s p i n - l a b e l l i n g
the
n e u r a m i n i c a c i d r e s i d u e s i n g l y c o p e p t i d e s o f known s t r u c t u r e . l o l 8 A
detailed
analysis
of
the
360
MHz 'H
n.m.r.
spectral
p a r a m e t e r s f o r t h e a n o m e r i c a n d C2-H r e s o n a n c e s o f a l a r g e number o f g l y c o p e p t i d e s and o l i g o s a c c h a r i d e s of
known s t r u c t u r e r e v e a l s a
g e n e r a l method f o r t h e d e t e r m i n a t i o n of t h e p r i m a r y s t r u c t u r e o f g l y c o p e p t i d e s f o r m o s t c u r r e n t l y known c l a s s e s o f s t r u c t u r e s . 1 0 1 9 two-dimensional
d i s p l a y formed by p l o t t i n g q-mannosyl
C1-H
A
against
C2-H c h e m i c a l s h i f t s d e m o n s t r a t e s t h a t t h e s e p a i r s o f v a l u e s a r e s e n s i t i v e t o long-range
p e r t u r b a t i o n by r e m o t e s u b s t i t u t i o n by
hexoses as w e l l as t o d i r e c t s u b s t i t u t i o n forty-one
o f these chemical-shift
characterize unique s t r u c t u r a l microenvironments. s e q u e n c e and b r a n c h i n g p a t t e r n f o r
A total of
effects.
c l u s t e r s have been d e f i n e d w h i c h On t h i s b a s i s t h e
most s t r u c t u r e s
can be d e r i v e d .
The h y d r o d y n a m i c b e h a v i o u r o f r e d u c e d g l y c o p o l y p e p t i d e s h a s been
studied
conjunction
by
gel
with
filtration
h.p.l.c.lo2'
in
guanidine
Although
hydrochloride
i n
carbohydrate-rich
g l y c o p o l y p e p t i d e s may o c c a s i o n a l l y y i e l d u n d e r e s t i m a t e d v a l u e s o f molecular weights,
t h e method i s s u i t a b l e f o r t h e r a p i d e s t i m a t i o n
o f m o l e c u l a r w e i g h t s o f s i m p l e p o l y p e p t i d e s and g l y c o p o l y p e p t i d e s . Neuraminic immunodiffusion glycoprotein.1021
acid but
residues not
are
involved i n
the
the r a d i a l immunodiffusion
electro-
of
al-acid
D i f f e r e n t i a l d e t e r m i n a t i o n o f t h e g l y c o p r o t e i n by
t h e t w o i m m u n o l o g i c a l methods o f f e r s a method f o r t h e e s t i m a t i o n o f t h e d e g r e e o f s i a l y l a t i o n o f t h i s and o t h e r s e r u m g l y c o p r o t e i n s .
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
313
T h e s t r u c t u r e s o f s i a l o - o l i g o s a c c h a r i d e s a s d e t e r m i n e d b y 'H n.m.r. s p e c t r o s c o p y t o g e t h e r w i t h m e t h y l a t i o n a n a l y s i s h a v e b e e n shown t o vary w i t h t h o s e d e r i v e d from p e r i o d a t e o x i d a t i o n d a t a alone.1022 E x a m i n a t i o n o f a c i d i c t e t r a s a c c h a r i d e s o b t a i n e d f r o m A', ,'H a n d A - H - h o g s u b m a x i l l a r y m u c i n i n d i c a t e s t h a t n e u r a m i n i c a c i d r e s i d u e s a r e n o t r e l e a s e d f r o m o l i g o s a c c h a r i d e s when p e r i o d a t e o x i d a t i o n i s c a r r i e d o u t a t pH 4.5. The a n i o n i c p r o p e r t i e s o f t h e n e u r a m i n i c a c i d r e s i d u e s were u s e d t o s e p a r a t e t h e p e r i o d a t e o x i d a t i o n p r o d u c t s , t h e r e b y g i v i n g i n f o r m a t i o n on t h e l o c a t i o n of n e u r a m i n i c a c i d on t h e o l i g o s a c c h a r i d e c h a i n . The monosaccharide components of g l y c o p r o t e i n s have been reacted w i t h d a n s y l h y d r a z i n e and the r e s u l t i n g d e r i v a t i v e s s e p a r a t e d b y h . p . l . ~ . l ' ~ ~F l u o r e s c e n t d e t e c t i o n p r o v i d e s a s e n s i t i v i t y o f 10 p m o l per i n j e c t i o n . P a r t i a l l y methylated 2-methyl 2-acetyl methyl glycosides o b t a i n e d by m e t h a n o l y s i s a n d a c e t y l a t i o n o f g l y c o p r o t e i n s h a v e b e e n i d e n t i f i e d by g.1.c.-m.s. analysis.1024 A scheme f o r t h e r a p i d d e t e r m i n a t i o n o f t h e p o s i t i o n o f t h e m e t h y l and a c e t y l r e s i d u e s is proposed. T h e m e t h o d was a p p l i e d t o s i a l o g l y c o p e p t i d e s i s o l a t e d from al-acid glycoprotein. Methylation techniques used i n t h e s t r u c t u r a l a n a l y s i s of g l y c o p r o t e i n s and g l y c o l i p i d s have been reviewed.1025 A m o d i f i c a t i o n o f a g.1.c. m e t h o d a l l o w i n g s i m u l t a n e o u s s e p a r a t i o n o f n e u t r a l and amino s u g a r a l d i t o l acetates has been described.1026 The m e t h o d h a s b e e n a p p l i e d t o t h e m o n i t o r i n g o f t h e f r a c t i o n a t i o n o f complex mixtures of g l y c o p r o t e i n s and glycosaminoglycans. A r a p i d i s o c r a t i c h.p.1.c. method f o r t h e e s t i m a t i o n o f n e u r a m i n i c acid i n serum h a s been described.lo2' S e p a r a t i o n is a c h i e v e d on a c a t i o n - e x c h a n g e r e s i n u s i n g a 0.006N s u l p h u r i c a c i d m o b i l e p h a s e . Reviews d e a l i n g w i t h g l y c o s y l t r a n s f e r a s e s and their u s e i n a s s e s s i n g o l i g o s a c c h a r i d e s t r u c t u r e and s t r u c t u r e - f u n c t i o n r e l a t io n s h i p s h a v e b e e n p u b 1i s h e d l o28 9 02' Lysosomal enzymes contain e-mannosyl 6-phosphate m o i e t i e s which mediate t h e i r t r a n s l o c a t i o n t o lysosomes.1030 A new a s s a y f o r a-Q2-acetamido-2-deoxy-glucosyl p h o s p h o t r a n s f e r a s e using a-methyl-emannoside as a c c e p t o r has been r e p o r t e d . A c o u p l e d e n z y m e a s s a y f o r 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s e : UDPa - g a l a c t o s e a - g a l a c t o s y l t r a n s f e r a s e h a s been developed t h a t a l l o w s t h e enzyme t o be assayed s p e c t r o p h o t o m e t r i c a l l y and i n d e n a t u r i n g p o l y a c r y l a m i d e gels.1031 I n a sequence o f l i n k e d enzyme r e a c t i o n s t h e l i b e r a t e d UDP i s s u c c e s s i v e l y c o n v e r t e d t o UTP, U D P - a - g l u c o s e ,
.
Carbohydrate Chemistry
314
and f i n a l l y UDP-a-glucuronic a c i d w i t h t h e s u b s e q u e n t p r o d u c t i o n o f NADH. N A D H may t h e n be e s t i m a t e d s p e c t r o p h o t o m e t r i c a l l y o r d e t e c t e d i n polyacrylamide g e l s fluorimetrically.
20
B i o s y n t h e s i s o f Glycoproteins
A r e v i e w of t h e transmembrane a s s e m b l y of membrane and s e c r e t o r y
g l y c o p r o t e i n s h a s b e e n p ~ b 1 i s h e d . l ~ ~ B’ l o o d - g r o u p a n t i g e n s a n d t h e enzymes i n v o l v e d i n t h e i r s y n t h e s i s h a v e been reviewed.1033 Exposure of rat hepatoma t i s s u e c u l t u r e cells t o dexamethasone r e s u l t s i n t h e a p p e a r a n c e o f a new g l y c o p r o t e i n ( g p 3 5 - 5 0 , m o l . w t . 3.5 x l o 4 - 5.0 x l o 4 ) a n d i n c r e a s e d s y n t h e s i s o f a n o t h e r g l y c o p r o t e i n ( m o l . w t . 5.0 x 1 0 ~ 1 . ~ T’h e~ f~o r m e r g l y c o p r o t e i n i s e x p r e s s e d i n n o r m a l l i v e r , whereas t h e l a t t e r i s e x p r e s s e d i n h e p a t o m a c e l l s a n d i s r e g u l a t e d d i f f e r e n t l y by s t e r o i d h o r m o n e s . T r e a t m e n t o f human k i d n e y t u m o u r c e l l s w i t h b u t y r a t e i n c r e a s e s markedly t h e synthesis and sulphation of tumour-cell u n t r e a t e d c u l t u r e d cells release most o f g 1 y ~ o p r o t e i n s . l ~Whereas ~~ t h e i r s u l p h a t e d g l y c o p r o t e i n s i n t o t h e medium, b u t y r a t e - t r e a t e d cells p r e f e r e n t i a l l y accumulate t h e s e products i n t o t h e cell layer. The s y n t h e s i s and a c c u m u l a t i o n of Q - m a n n o s e - c o n t a i n i n g g l y c o p e p t i d e s i n human f i b r o b l a s t c e l l s h a v e been studied.1036 R e s u l t s are c o n s i s t e n t w i t h t h e h y p o t h e s i s t h a t m u l t i p l e pathways f o r L - a s p a r a g i n e - l i n k e d g l y c o p r o t e i n b i o s y n t h e s i s a r e p o s s i b l e . The i n c o r p o r a t i o n of Q-mannose, Q-glucose, and 2-acetamido-2-deoxy-Qg l u c o s e i n t o endogenous membrane p r o t e i n s i n calf p i t u i t a r y has been r e p o r t e d . lo3’ Glycosylation of proteins i n the protozoan Crithidia ----------fasciculata does not involve glucosylated lipid-bound oligosaccharides a s intermediates.1038 An o l i g o s a c c h a r i d e c o n t a i n i n g s e v e n P-mannosyl and t w o 2-acetamido-2-deoxy-~-glucosyl residues is t r a n s f e r r e d t o protein before undergoing processing. Carbohydrate-depleted or c h e m i c a l l y d e n a t u r e d g l y c o p r o t e i n s or s y n t h e t i c C-Asn-X-&-Ser/L-Thr-containing p e p t i d e s have been g l y c o s y l a t e d u s i n g hen o v i d u c t membranes as t h e enzyme source.1039 T r i p e p t i d e s may b e g l y c o s y l a t e d b u t t h e l e v e l o f g l y c o s y l a t i o n The i n c r e a s e s as t h e l e n g t h o f t h e p e p t i d e c h a i n i n c r e a s e s . p e p t i d e s were e x a m i n e d b y c . d . i n a q u e o u s l i p i d m i x t u r e s , w h e n i t was o b s e r v e d t h a t t h e p r e s e n c e o f s e c o n d a r y s t r u c t u r e i n t h e l i p i d state promotes the level of glycosylation. The s y n t h e s i s and
315
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides processing
of
I=-asparagine-linked
reviewed.lo40
The
assembly
of
o l i g o s a c c h a r i d e s have been
the
oligosaccharide through i t s transfer
lipid-linked
precursor
t o p r o t e i n and i t s c o n v e r s i o n
t o t h e d i v e r s e a r r a y o f f i n a l products i s discussed.
Glycoprotein
b i o s y n t h e s i s i n mouse L c e l l s i n v o l v e s l i p i d - l i n k e d s a c c h a r i d e s i n the synthesis o f L-asparagine-linked
glycoproteins.1041
The
f o r m a t i o n o f h i g h Q - m a n n o s y l o l i g o s a c c h a r i d e bound t o p r o t e i n can occur
independently o f
higher
lipid-linked
oligosaccharide
synthesis. D o l i c h o l phosphate appears
t o c o n t r o l t h e r a t e of
g l y c o s y l a t i o n d u r i n g t h e development o f sea-urchin
protein
embryos.1042
C o m p a c t i n , an i n h i b i t o r o f p o l y i s o p r e n o i d b i o s y n t h e s i s ,
inhibits A
d o l i c h o l p h o s p h a t e s y n t h e s i s and t h u s g l y c o s y l a t i o n o f p r o t e i n .
second e f f e c t o f t h e i n h i b i t o r i s t h a t a s i g n i f i c a n t f r a c t i o n o f t h e o l i g o s a c c h a r i d e chains synthesized i n t h e presence o f t h e i n h i b i t o r a n d t r a n s f e r r e d t o p r o t e i n a p p e a r t o b e a l t e r e d so t h a t t h e y a r e more n e g a t i v e l y charged.
B o t h de novo s y n t h e s i s o f d o l i c h o l
w e l l as i t s phosphorylation
as
may p l a y a n i m p o r t a n t r o l e i n t h e
i n c r e a s e i n g l y c o p r o t e i n s y n t h e s i s d u r i n g embryonic development o f t h e sea urchin.1043
The p o s s i b l e r o l e o f d o l i c h o l k i n a s e i n t h e
a c t i v a t i o n o f s t o r e d d o l i c h o l , and p e r h a p s t h e pathway f o r i t s
---novo
biosynthesis
i n this
and o t h e r
b i o l o g i c a l systems,
& is
discussed. Turpentine-induced
inflammation
in
rats
causes
increased
s y n t h e s i s o f g l y c o s y l a t e d d o l i c h o l phosphate d e r i v a t i v e s , which a r e intermediates glycoproteins,
i n
the
biosynthesis
of
I-asparagine-linked
and a l s o i n c r e a s e d l e v e l s o f a CTP-dependent
dolichol
k i n a s e . 1044 Immature chick oviduct responsible for
membranes c o n t a i n a t r a n s f e r a s e
transfer o f oligosaccharide pyrophosphoryl d o l i c h o l
t o p r o t e i n acceptors.1045
The enzyme i s s t i m u l a t e d b y e s t r o g e n
treatment. The
metabolism of
lipid-linked
B-mannose
intermediates i n
g l y c o p r o t e i n s y n t h e s i s d u r i n g l i v e r r e g e n e r a t i o n h a s been s t u d i e d i n rat
liver
micro some^.^^^^
i n c o r p o r a t i o n of
p-{
F o l l o w i n g p a r t i a l hepatectomy,
the
1 4 ~ 1 - m a n n o s e f r o m GDP-Q-{ 1 4 ~ 1 - m a n n o s e i n t o
d o l i c h y l p h o s p h o r y l e-mannose a n d p r o t e i n d e c r e a s e s a s c o m p a r e d w i t h controls.
E v i d e n c e i s g i v e n s u g g e s t i n g t h a t t h e i n c o r p o r a t i o n o f Q-
mannose i n t o g l y c o p r o t e i n i n r e g e n e r a t i n g r a t l i v e r may b e r e g u l a t e d a t t h e s t e p of
oligosaccharide transfer.
U s i n g t h e Thy-1'
m u t a n t mouse l y m p h o m a c e l l s o f t h e c l a s s E
316
Carbohydrate Chemistry
c o m p l e m e n t a t i o n g r o u p w h i c h l a c k GDP-Q-mannose : d o l i c h o l phosphoryl mannosyltransferase and which are t h e r e f o r e unable t o i n t e r c o n v e r t GDP-Q-mannose a n d g - m a n n o s y l p h o s p h o r y l d o l i c h o l , f u r t h e r e v i d e n c e h a s been p r o v i d e d t h a t f i v e o f t h e n i n e e-mannosyl r e s i d u e s which are added t o the growing l i p i d - l i n k e d o l i g o s a c c h a r i d e s a r e d o n a t e d d i r e c t l y by G D P - Q - m a n n o s e . l o 4 ’ The r e m a i n i n g f o u r r e s i d u e s a r i s e from Q-mannosyl p h o s p h o r y l d o l i c h o l . The r e a c t i o n s i n v o l v e d i n t h e a d d i t i o n o f g - g l u c o s y l r e s i d u e s t o t h e o l i g o s a c c h a r i d e - l i p i d i n t e r m e d i a t e s by t h y r o i d m i c r o s o m e s have been studied.1048 The p r o p e r t i e s o f t h e enzymes i n v o l v e d i n t h e t r a n s f e r o f !&glucose f r o m i t s p h o s p h o r y l d o l i c h o l d e r i v a t i v e t o endogenous a c c e p t o r s are d e s c r i b e d and t h e p r o d u c t s are c h a r a c t e r i z e d i n terms o f t h e i r s t r u c t u r e a n d c a p a c i t y t o s e r v e a s d o n o r s i n t h e glycosylation of proteins. The b i o s y n t h e s i s and p a r t i a l c h a r a c t e r i z a t i o n of a P-glucose-containing i n s e c t l i p i d - l i n k e d o l i g o s a c c h a r i d e have been reported.lo4’ Its p r o p e r t i e s are c l o s e l y r e l a t e d t o t h e g-glucosylated d o l i c h y l oligosaccharide obtained from mammalian s y s t e m s . A m p h o m y c i n i n h i b i t s t h e t r a n s f e r o f Q - m a n n o s e , g - g l u c o s e , a n d 2acetamido-2-deoxy-!-glucose l-phosphate from their r e s p e c t i v e n u c l e o t i d e d e r i v a t i v e s t o d o l i c h o l p h o s p h a t e by m e m b r a n e p r e p a r a t i o n s f r o m c a l f b r a i n membranes.1050 O t h e r g-mannosyl-, g l u c o s y l - , 2-acetamido-2-deoxy-Q-glucosyl-transferases associated w i t h t h e same p r e p a r a t i o n a r e n o t a f f e c t e d by t h e a n t i b i o t i c . UDP-2-Deoxy-Q-arabino-hexose (UDP-2-deoxy-~-glucose) i n h i b i t s t h e formation o f P-glucosylphosphoryl d o l i c h o l i n chick-embryo cell m e m b r a n e s , b u t h a s n o e f f e c t o n t h e f o r m a t i o n o f N”d i a c e t y l c h i t o b i o s y l p y r o p h o s p h o r y l d 0 1 i c h o l . l ~ ~G~D P - 2 - D e o x y - P ------arabino-hexose inhibits the formation of both the lipid i n t e r m e d i a t e s by c o m p e t i t i o n w i t h p h y s i o l o g i c a l n u c l e o t i d e s u g a r s f o r d o l i c h o l phosphate. The i n f l u e n c e o f v a r i o u s a r y l p h o s p h a t e s and p h o s p h o n a t e s on t h e s y n t h e s i s o f g l y c o s y l p h o s p h o r y l d o l i c h o l , o l i g o s a c c h a r i d e s , and g l y c o p r o t e i n s by r a t l i v e r m i c r o s o m a l f r a c t i o n s h a s b e e n investigated.1052 Phenyl phosphate d i r e c t l y e f f e c t s t h e s y n t h e s i s o f a-mannosyl p h o s p h o r y l d o l i c h o 1 , a n d t h e i n h i b i t i o n o f l i p i d - l i n k e d o l i g o s a c c h a r i d e s a n d g l y c o p r o t e i n s may b e a c o n s e q u e n c e o f t h e effect. The a n t i b i o t i c t s u s h i m y c i n i n h i b i t s t h e f o r m a t i o n o f Qg l u c o s y l - , a-mannosyl-,and 2-acetamido-2-deoxy-~-glucosyl p h o s p h o r y l dolichol, but allows the incorporation of sugars i n t o lipid-linked
a-
317
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides oligosaccharides aorta.1053
i n a particulate
enzyme
The m a j o r o l i g o s a c c h a r i d e
preparation
from
pig
f o r m e d f r o m GDP-D-mannose
in
t h e p r e s e n c e o f t h e a n t i b i o t i c i s (Q-Man~),-(g-GlceNAc)~. T u n i c a m y c i n h a s l i t t l e e f f e c t on t h e p r o t e i n s i n t h e e p i d e r m i s when p i g s k i n s l i c e s a r e m a i n t a i n e d i n o r g a n c u l t u r e ,
although the
synthesis o f s p e c i f i c epidermal glycoconjugates i s affected.1054 The g l y c o s y l a t i o n o f p a r t i c u l a t e g l y c o p r o t e i n s i s d e c r e a s e d , that o f soluble glycoproteins i s hardly affected.
whereas
Inhibition of
s u l p h a t e d g l y c o s a m i n o g l y c a n s b u t n o t o f h y a l u r o n i c a c i d was a l s o noted. The p e p t i d e a n t i b i o t i c t r i d e c a p t i n s t i m u l a t e s t h e i n c o r p o r a t i o n o f g-mannose f r o m GDP-;-(
14C)-mannose
glucose i n t o l i p i d - l i n k e d p i g aorta.1055
and ;-glucose
f r o m UDP-!-{
3H}-
m o n o s a c c h a r i d e s by enzyme f r a c t i o n s f r o m
The a n t i b i o t i c a l s o s t i m u l a t e s t h e i n c o r p o r a t i o n o f
sugars i n t o l i p i d - l i n k e d oligosaccharides. E p i t h e l i a l c e l l s of
the r a t
mannosyl phosphoryl d o l i c h o l dolicho1,which tissues.1056
small intestine synthesize
9-
and o l i g o s a c c h a r y l p y r o p h o s p h o r y l
are s i m i l a r t o those found i n a v a r i e t y o f other The
importance o f
m o n i t o r i n g and c o n t r o l l i n g t h e
d e g r a d a t i o n o f n u c l e o t i d e s u g a r s when g l y c o s y l t r a n s f e r a s e a c t i v i t i e s a r e b e i n g compared i n d i f f e r e n t i a t i n g c e l l s i s d e m o n s t r a t e d . Incubation o f cell-free s a l i n a ) w i t h GDP-g-mannose
e x t r a c t s of
the brine shrimp (Artemia
o r UDP-!-glucose
results i n the formation
o f t h e c o r r e s p o n d i n g d o l i c h y l d e r i v a t i v e s o f t h e sugars.1057
The
enzymic a c t i v i t i e s were d e t e c t e d e a r l y i n t h e development o f t h e e n c y s t e d A r t e m i a embryos. S t a r v a t i o n o f !-glucose
alters lipid-linked oligosaccharide
b i o s y n t h e s i s i n Chinese h a m s t e r o v a r y cells.1058
The c e l l s q u i c k l y
c e a s e s y n t h e s iz i n g t h e (Q- G I c e ) 3(D, - M ane)9-(P-GlceNAc)2 i n s t e a d make p r e d o m i n a n t l y
the
(p-Ma~),(g-GlceNAc)~
s p e c i e s and
species, w h i c h
i s g l u c o s y l a t e d and t r a n s f e r r e d t o p r o t e i n w h e r e i t i s s u b s e q u e n t l y processed,
t h u s d e m o n s t r a t i n g t h e use of
an a l t e r n a t e g l y c o s y l a t i o n
pathway. An o l i g o s a c c h a r y l p y r o p h o s p h o r y l l i p i d f r o m p o r c i n e l i v e r i s composed o f a t e t r a s a c c h a r i d e w i t h e q u a l q u a n t i t i e s o f g-mannose and 2-acetamido-2-deoxy -B-glucose. Q - M a n n o s y l t r a n s f e r a s e I 1 has been p u r i f i e d f r o m r a b b i t l i v e r microsomes.1060
The enzyme c a t a l y s e s
direct transfer
mannose t o o l i g o s a c c h a r y l - p y r o p h o s p h o r y l f o r m a t i o n of
from
GDP-P-
l i p i d s with the resulting
ct(1+3)-~-mannosyl-~-mannose l i n k a g e s .
A number o f c e l l l i n e s o f r i c i n - r e s i s t a n t
baby- h a m s t e r k i d n e y
318
Carbohydrate Chemistry
c e l l s h a v e been a s s a y e d f o r g r o s s c a r b o h y d r a t e c o m p o s i t i o n of c e l l u l a r g l y c o p r o t e i n s , f o r g l y c o s i d a s e and g l y c o s y l t r a n s f e r a s e a c t i v i t y . l o 6 1 None of t h e changes i n g l y c o s y l - t r a n s f e r r e a c t i o n s i n t h e s e l i n e s i s due t o e n h a n c e d g l y c o s i d a s e or s u g a r n u c l e o t i d a s e a c t i v i t i e s i n t h e mutant c e l l s . L a c t o s e s y n t h e t a s e A p r o t e i n from human serum h a s been p u r i f i e d and c h a r a c t e r i z e d 1062 The r e mar kab l e i m muno l o g i c a l d i s s i m i l a r i t y between bovine serum g a l a c t o s y l t r a n s f e r a s e and t h i s enzyme may be r e l a t e d t o major d i f f e r e n c e s i n t h e c a r b o h y d r a t e m o i e t i e s of t h e two enzymes. The b i o s y n t h e s i s of e r y t h r o g l y c a n - l i k e p r o d u c t s b y i n c u b a t i o n of a microsomal f r a c t i o n d e r i v e d from c h r o n i c myelogenous leukaemiad e r i v e d c e l Is w i t h UDP -2-ace t a m i d o -2-deoxy - 9 4 6-3H} - g l u c o s e and UDPQ-{ 6 - 3 H } - g a l a c t o s e h a s been d e s c r i b e d . 1 0 6 3 The h i g h - m o l e c u l a r w e i g h t p r o d u c t s o f t h e t r a n s f e r a s e - c a t a l y s e d r e a c t i o n s were p a r t i a l l y c h a r a c t e r i z e d a f t e r enzymic d e g r a d a t i o n a s a d i - , t r i - , and unidentified oligo-saccharide. The p r e s e n c e of g l y c o s y l t r a n s f e r a s e s on c h r o m a t i n a c c e p t o r s i n monkey l i v e r n u c l e a r membranes h a s b e e n d e m 0 n ~ t r a t e d . l ' ~ ~The e v e n t u a l r o l e of these enzymes i n t h e g l y c o s y l a t i o n of n o n - h i s t o n e proteins is discussed. An a - k - m a n n o s e : B 1 , 2 - ( 2 - a c e t a m i d o - 2 - d e o x y - Q - g l u c o s y l ) t r a n s f e r a s e h a s been i s o l a t e d and p u r i f i e d f r o m p o r c i n e t r a c h e a l mucosa.1065 The enzyme f o r m s 8 1 , 2 bonds b e t w e e n 2 - a c e t a m i d o - 2 d e o x y - Q - g l u c o s e and t e r m i n a l b r a n c h e d p - m a n n o s y l r e s i d u e s o f g l y c o p r o t e i n s and g l y c o p e p t i d e s . I o d i n e i s r e a d i l y i n c o r p o r a t e d f r o m i o d i n e c h l o r i d e i n t o 2g a l a c t o s y l t r a n s f e r a s e from bovine m i l k w i t h t o t a l loss of e n z y m a t i c activity.1066 S u b s t r a t e s and a - l a c t a l b u m i n p r o t e c t a g a i n s t i n a c t i v a t i o n and t h e only amino a c i d modified i s L - t y r o s i n e . An a-Q-galactosyltransferase a c t i v i t y i n E h r l i c h a s c i t e s tumour c e l l s h a s been c h a r a c t e r i z e d . l o 6 ' T h e enzyme h a s b e e n shown t o t r a n s f e r Q - g a l a c t o s y l r e s i d u e s f r o m U D P - Q - g a l a c t o s e t o yacetyl-lactosamine i n t h e s y n t h e s i s of t h e unique t r i s a c c h a r i d e ( 9 9 ) . The e n d o g e n o u s l o c a l i z a t i o n o f U D P - g a l a c t o s e : a s i a l o m u c i n galactosyltransferase a c t i v i t y i n r a t l i v e r endoplasmic reticulum and Golgi a p p a r a t u s has been reported.1068 P a r t i a l l y p u r i f i e d U D P - g a l a c t o s y l t r a n s f e r a s e from bovine m i l k h a s b e e n u s e d t o s y n t h e s i z e m i l l i m o l a r a m o u n t s o f 4-0-B-ggalactopyranosyl-!-glucose, 2-acetamido-2-deoxy-4-~-8-Q-galactosylp- - g l u c o s y l - B - h e x a n o l a m i n e , a n d ~ - 8 - Q - g a l a c t o s y l - ( l + 4 ) - ~ - 8 - 2 -
.
319
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
acetamido-2-deoxy-~-glucosyl-(l~4)-2-acetamido-2-deoxy-~-~glucose.1069 13C-Enriched Q - g a l a c t o p y r a n o s y l m o i e t i e s o f o l i g o s a c c h a r i d e were a l s o s y n t h e s i z e d . Peptides containing a t r i - & - p r o l y l
t h e same
sequence c a r b o x y l t o an
t h r e o n i n e r e s i d u e c a n be 2 - g l y c o s y l a t e d
&-
by crude e x t r a c t s o f p o r c i n e
s u b m a x i l l a r y g l a n d s c o n t a i n i n g UDP-2-acetamido-2-deoxy-Q-galactose p o l y p e p t i d e 2-acetamido-2-deoxy-~-galactose
t r a n s f erase. l o 7 0
:
Using
i t i s revealed t h a t I-threonine
eleven synthetic peptide substrates,
c a n n o t be g l y c o s y l a t e d w i t h o u t a c a r b o x y l t r i - l - p r o l y l
sequence
and
w i t h o u t b l o c k i n g o f t h e N - t e r m i n a l group o f t h e L-threonine. One f o r m o f 2 - a - C - f u c o s y l t r a n s f e r a s e a n d o n e f o r m o f 3 - a - & f u c o s y l t r a n s f e r a s e h a v e b e e n d e t e c t e d i n h u m a n serum.1071 m i l k c o n t a i n s t h r e e f o r m s o f 3-a-L-fucosyltransferase
Human
and one f o r m
o f 4-a-&-fucosyltransferase. Three a - L - f u c o s y l t r a n s f e r a s e single
enzyme.
a c t i v i t i e s have been p u r i f i e d f r o m
The t h r e e a c t i v i t i e s a p p e a r t o b e c o n t a i n e d i n a
human milk.1072
Evidence
for
two
distinct
3-a-L-fucosyltransferase
a c t i v i t i e s i n h u m a n s a l i v a h a s b e e n r e ~ 0 r t e d . l ' ~ B~ o t h e n z y m e s appear t o c a t a l y s e t h e t r a n s f e r o f I - f u c o s e t o 2 - 3 of 2-acetamido-2deoxy-6-Q-glucosyl
residues o f
blood-group
glycoproteins,
t h e t r a n s f e r a s e dependent on t h e e x p r e s s i o n o f t h e
but only
gene h a s t h e
c a p a c i t y t o t r a n s f e r C-fucose t o 0 - 3 o f g - g l u c o s y l r e s i d u e s . E v i d e n c e f o r t h e e x i s t e n c e o f t h e p o s t u l a t e d UDP-2-acetamido-2: g l y c o p r o t e i n 2-acetamido-2-deoxy-~-glucose
deoxy-e-glucose
phosphotransferase involved
the
i n
has
been
e ~ t a b 1 i s h e d . l ' ~ ~T h i s
phosphorylation
o f
the
high
enzyme
1-
i s
e-mannose
o l i g o s a c c h a r i d e u n i t s o f l y s o s o m a l enzymes. The D - m a n n o s y l 6 - p h o s p h a t e on
lysosomal
m o i e t i e s a c t as r e c o g n i t i o n m a r k e r s The
sequential action o f
marker
i s
synthesized
UDP-2-acetamido-2-deoxy-~-glucose
enzyme 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s e
Q-2-acetamido-2-deoxyglucosyl
l-phosphotransferase
phosphodiesterase.
by
the
: lysosomal
and an a-
I t is p r o p o s e d
t h a t t h e t r a n s f e r a s e c a t a l y s e s t h e i n i t i a l d e t e r m i n i n g s t e p by which newly synthesized acid hydrolases are distinguished from other newly synthesized
glycoproteins
and
thus
are
eventually
targeted to
lysosomes. Glycosylated derivatives o f substrates
for
the
lysozyme have been used as
determination
o f
the
s p e c i f i c i t y
o f
s i a l y l t r a n s f e r a ~ e s . ~C~h~a ~ r a c t e r i s t i c d i f f e r e n c e s between v a r i o u s s i a l y l t r a n s f e r a s e s were d e m o n s t r a t e d . Fetal-calf
liver,
embryonic-chicken
brain,
human p l a c e n t a , a n d
320
Carbohydrate Chemistry
s e v e r a l o t h e r t i s s u e s c o n t a i n C M P - t j - a c e t y l n e u r a m i n y l : 6-ggalactosyl-(l+ 4~-2-acetamido-2-deoxy-~-glucosyl-a-(2~3)-sialylt r a n ~ f e r a s e . " ~ ~T h i s s i a l y l t r a n s f e r a s e a c t i v i t y a p p e a r s t o be due t o an enzyme w h i c h i s d i s t i n c t from a l l o t h e r known s i a l y l transferases. E l e v a t e d s i a l y l t r a n s f e r a s e a c t i v i t i e s have been d e t e c t e d i n t h e i n t e s t i n a l l y m p h of c o l c h i c i n e - t r e a t e d r a t s . 1077 Enterectomy does not p r e v e n t t h e r i s e of serum s i a l y l t r a n s f e r a s e , s u g g e s t i n g t h a t t h e i n t e s t i n e i s not t h e m a j o r s o u r c e of t h e serum enzyme. C o l c h i c i n e has an e f f e c t o n g l y c o p r o t e i n s y n t h e s i s i n r a t l i v e r G o l g i membranes b y a f f e c t i n g g l y c o ~ y l t r a n s f e r a s e s . ~A~l t~h~o u g h b o t h s i a l y l - and g a l a c t o s y l - t r a n s f e r a s e s a r e i n h i b i t e d , t h e i r s e n s i t i v i t y t o t h e drug d i f f e r s . ( R e f e r e n c e s begin o p p o s i t e )
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
32 1
Ref erenes
1 B.P. Wasserman and H.P. H u l t i n , Arch. Biochem. Biophys., 1981, 212, 385. 2 A. Ross and I.E.P. Taylor, I n f e c t i o n and Imnunity, 1981, 31, 911. 3 K. Toda, K. On0 and H. O c h i a i , J. Biochem. (Tbkyo),1981, 90, 1429. 4 W. Breuer and C.H. S u i , Proc. Natl. Acad. S c i . USA, 1981, 78, 2115. 5
6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Y. Tamai, H. S h i n m o t o a n d M. Takakowa, Kgric. B i o l . Chem. ( J p n ) , 1981, 45, 2713. W.J. Zhang and C.E. Ballou, J. Biol. Chem., 1981, 256, 10073. D. Pang, L. B a l l o u , W.J. Zhang a n d C.E. B a l l o u , J. B i o l . Chem., 1981, 256, 10080. H.D. Klenk, C e l l Membranes and V i r a l Envelopes, 1981, 2, 519. W.J. G r i m e s , G.N. I r w i n and L.M. P a t t , C e l l Membranes and V i r a l Envelopes, 1980, 2, 541. V.S. Hinshaw, R.G. Webster and R . J . Rodriguez, Arch. V i r o l . , 1981, 67, 191. H.F. L o d i s h , A. Z i l b e r s t e i n and M. P o r t e r , P e r s p e c t i v e s i n V i r o l o g y X I , ed. M. P o l l a r d , A.R. L i s s ( N e w York) p31. E.A. Cardoso, B r i t . J. Cancer, 1981, 43, 517. D. P o r t e t e l l e , C. Bruck, M. M a m m e r i c k x a n d A. Burny, V i r o l o g y , 1980, 105, 223. M.J.F. S c h m e r r , J.M. Miller a n d M.J. van der Maaten, V i r o l o g y , 1 9 8 1 , 109, 431. J.C. N e i l , J.E. Smart, M.J. Hayman and 0. Jarrett, V i r o l o g y , 1980, 105,250. J.K. C o l l i n s and B. Chesebro, J. V i r o l . , 1981, 37, 161. M.R. R o s n e r , J.S. Tung, N. H o p k i n s a n d P.W. R o b b i n s , Proc. N a t l . Acad. S c i . USA, 1980, 77, 6420. A.M. S c h u l t z S.M. L o c k h a r t , E.M. R a b i n a n d S. O r o s z l a n , J. V i r o l . , 1981, 38, 518. M.C. K a n p , N.G. F'amulari and R.W. Ccanpans, J. Virol., 1981, 3, 463. D.S. Lyles and K.A. M&nnell, J. V i r o l . , 1981, 39, 263. J. E w e r , E.A. Davidson, N.M. T e i c h , R.A. Weiss, A.P. J o s e p h a n d R. K u r t h , Virology, 1981, 109, 409. G. H u n s ~ n n , J. Schneider and A. Schulz, Viroloqy, 1981, 602. R. K o r n f e l d a n d W.S.M. Wold, J. V i r o l . , 1 9 8 1 , 40, 440. H. P e r s s o n , H. J o r n v a l l a n d J. Z a b i e l s k i , Proc. N a t l . Acad. S c i . USA, 1980, 77, 6349. Q.S. Kapoor, W.S.M. wold and G. Chinnadurai, Virology, 1981, 780. D . I . Peterson, J. B i o l . Chem., 1981, 256, 6975. V.P. K a r e l i n and V.M. Zhdanov, ml. Imnml., 1981, 237. R. E b e r l e and R.J. Courtney, I n f e c t i o n Imnunity, 1981, 31, 1062. R.D. Dix, L. P e r e i r a a n d J.R. B a r i n g e r , I n f e c t i o n a n d I m m u n i t y , 1981, 34, 192. V.C. C a r t e r , P.A. S c h a f f e r and S.S. Tevethia, J. Imnunol., 1981, 126,1655. L. Haar and H.S. Marsden, J. Gen. V i r o l . , 1981, 52, 77. S. Olofsson, S. Jeansson and E. Lycke, J. V i r o l . , 1981, 2, 564. N. B a l a c h a n d r a n , D. H a r n i s h , R.A. K i l l i n g t o n , S. B c c h e t t i a n d W.E. R a w l s , J. V i r o l . , 19811 39, 438. R. Datema and R.T. Schwarz, J. Biol. Chem. , 1981, 256, 11191. M.M. Sveda and C.J. Iai, Proc. Natl. Acad. S c i . USA, 1981, 78, 5488. G. Herrler, A. Nagele, H. Meier-Ewert, AS. &own and RW. Compans, Virology, 1981, 439. A.K. G i t e l m a n , V.A. B e r e z i n a n d I.G. K a r i t o n e n k o v , Arch. V i r o l . , 1 9 8 1 , 62, 253. I.A. Wilson, J.J. Skehel and D.C. Wiley, Nature, 1981, 289, 366. 373. D.C. Wiley, I.A. Wilson and J.J. Skehel, Nature, 1981, S. Basak, D.G. P r i t c h a r d , A.S. %own a n d R.W. Compans, J. V i r o l . , 1981, 37, 549. D.C. Jackson, L.E. Brawn and D.O. White, J. Gen. V i r o l . , 1981, 52, 163.
113,
112,
and
9,
113,
289,
322
Carbohydrate Chemistry
42 T.A. Dopheide and C.W. Ward, J. Gen. V i r o l . , 1980, 50, 329. 43 C.W. Ward and T.A. Dopheide, Biochan. J., 1981, 193, 953. 337. 44 C.W. Ward and T.A. Dopheide, Biochan. J., 1981, 45 C.W. Ward, L.E. Brown, J.C. Downie and D.C. Jackson, Viroloqy, 1981, 108,71. 46 W. Gerhard, J. Yewdell, M.E. Frankel and R. Webster, Nature, 1981, 290, 713. 47 W. Garten, T. Kohama and H.D. Klenk, J. Gen. V i r o l . , 1980, 51, 207. 364. 48 T. KDhama, W. Garten and H.D. Klenk, Viroloqy, 1981, 49 A. Helenius, M. Sarvas and K. Simns, Eur. J. Biochen., 1981, 115, 27. 50 K. Hashimoto, S. E r d e i , S. Keranen, J. S a r a s t e and L. Kaarianen, J. V i r o l . , 1981, 38, 34. 51 M. Personen, J. Saraste, K. Hashimoto and L K W r i h e n , Virology, 1981, 1981, 109, 165. 52 K T c m a s i and A. Loyter, FEBS Lett., 1981, 131, 381. 53 H. Yoshima, M. Nakanishi, Y. Okada and A. Kobata, J. B i o l . Chem., 1956, 256, 5355. 1981, 256, 2557. 54 M. Hsu, A. Scheid and P.W. a o p p i n , J. B i o l . 55 J. Hakimi and P.H. Atkinson, Biochemistry, 1980, 19, 5619. 56 L.A. Hunt, Virology, 1981, 113,534. 57 P.A. Chatis and T.G. Morrison, J. V i r o l . , 1981, 37, 307. 58 W.A. p e t r i and R.R. Wagner, Virology, 1980, 107, 543. 59 J.E. Bergman, K.T. Tokuyasu and S.J. S i n g e r , Proc. N a t . Acad. S c i . USA, 1981, 78, 1746. 60 EL. Thimmig, J.V. Hughes, R.J. Kinders, A.G. Milenkovic and T.C. Johnson, J. Gen. Virol., 1980, 50, 279. 61 J.R. Etchison, D.F. Summers and C. Georgopoulos, J. B i o l . Chem., 1981, 256, 3366. 62 S. Turco, Arch. Biochem. Biophys., 1981, 205, 330. 63 H. Fried, L.D. Cahan and J.C. Paulson, Virology, 1981, 109, 188. 64 D. Mathieu-Mahul, J.P. Barque, M. Mauchauf f e , L. Peraudeau and C.J. Larsen, Biochimie, 1981, 63, 403. 65 R.W. Green and J.H. Shaper, Biochim. Biophys. A c t a , 1981, 668, 439. 66 D.A. McPhee and E.G. Westaway, J. Gen. V i r o l . , 1981, 54, 149. 67 D.H. du P l e s s i s and P. Snith, Virology, 1981, 109, 403. 68 R.J. Feighny, B.E. Henry and J.S. Pagano, J. V i r o l . , 1981, 3,651. 69 G.J. Bayliss and H. Wolf, J. Gen. V i r o l . , 1981, 54, 397. 70 D.A. m o r l e y l a w s o n and K. G e i l i n g e r , Proc. N a t . Acad. Sci. USA, 1980, 77, 5307. 71 R.S. Fbulke, R.R. Rosato and G.R. French, J. Gen. V i r o l . , 1981, 53, 169. 72 M. P i e r o t t i , A.B. d e Leo, A. P i n t e r , P.V. O'Donnell, U. Hammerling and E. Fleissner, Virology, 1981, 112, 450. 73 P. Casali, J.G.P. S i s s o n s , R.S. F u j i n a m i and M.B.S. Oldstone, J. Gen. V i r o l . , 1981, 54, 161. 74 D.C. W r z , A. Scheid and P.W. Choppin, Virology, 1981, 109, 94. 75 A. Anilionis, W.J. Wunner and P.J. Curtis, Nature, 1981, 294, 275. 76 L.A. Hunt, W. Larrq?h and S.E. Wright, J. Virol, 1981, 37, 207. 77 L.A. H u n t and S.E. Wright, J. V i r o l . , 1981, 2, 646. 78 J.T. Reynolds and S. panan, V i r o l o q y , 1981, 113, 214. 79 H.J. T h i e l , T.J. Matthews, E.M. Broughton, A.W. Butchko a n d D.P. Bolognesi, Virology, 1981, 112, 642. 80 M. Yoshida and H. Yoshikura, J. Gen. V i r o l . , 1981, 52, 183. 81 S.K. Ruscetti, J.A. F e i l d and E.M. Scolnick, Nature, 1981, 294, 663. 82 I. Ulmanen, P. Seppala and R.F. Pettersson, J. V i r o l . , 1981, 37, 72. 56. 83 H. Shida and S. D a l e s , V i r o l o g y , 1981, I&, 84 M. O i e and Y. Ichihashi, Virology, 1981, 113, 263. 85 C. G r o s e , B.J. Edmond and W.E. Friedrichs, Infection and Immunity, 1981, 3, 1044. 86 K. Y a m m t o , K. Suzuki and B. Simizu, Virology, 1981, 109, 452. 87 S.M.M. Basha and R.M. Roberts, P l a n t Physiol., 1981, 67, 936. 88 U. Bergner and W. Tanner, FEES Lett., 1981, 131, 68. 89 T.E. F e r r a r i , D. Bruns a n d D.H. Wallace, P l a n t Physiol., 1981, 67, 270. 90 D.S. B a i l e y , V. Deluca, M. Durr, D.P.S. V e r m a and G.A. MacLachlan, P l a n t
195,
111,
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
323
Physiol., 1980, 66, 1113. E.M. Schneider and A. Sievers, Planta, 1981, 152, 177. B.J. Howlett and A.E. Clarke, .B J., 1981, 197, 707. B. J. Hwlett and A.E. Clarke, Biochem. J. , 1981, 695. H.M. Davies and D.P. Delmer, Plant Physiol., 1981, 68, 284. C.A. Jasalavich and A.J. Andersen, Can. J. Bot., 1981, 59, 264. N. Bar-Nun, A.M. Mayer and N. Sharon, Phytochemist , 1981, 20, 407. R. Gilles, C. B i t t n e r and L. Jaenicke, FEES Lett.,?981, 124757. H. L i s and N. Sharon, i n ' L e c t i n s i n Higher P l a n t s : Bioch=istry of P l a n t s , ed. A. Marcus, Acad. P r e s s (New York), 1981, V o l 6. S.H. Barondes, Annu. Rev. Biochem., 1981, 50, 207. C.A. Rossi, A. F a l a s c a , C. F r a n c e s c h i and F. S t i r p e , Bull. M o l . B i o l . Med., 1979, 4, 59. H. L i s and N. Sharon, J. Chranatcgr., 1981, 215, 361. I. Matsumoto, H.. K i t a g a k i , Y. h i , Y. I t o and N. Seno, Anal. Biochem., 1981, 116,103. V. Horejsf and M. Tichd, Anal. Biochem., 1981, 116, 22. B.J. Hcrwlett and A.E. Clarke, Biochem. I n t . , 1981, 2, 553. B.S. R a t h a u r , G.S. K h a t r i , K.C. Gupta, C.X. N a r a n g a n d N.K. N a t h u r , -1. Biochem., 1981, 112, 55. J.F. Crcwley and I.J. Goldstein, FEES Lett., 1981, 130, 149. L. Bhattacharyya, P.K. Das and A. Sen, Arch. Biochem. Biophys., 1981, 211, 459. T.K. D a t t a and P.S. Basu, Biochen. J., 1981, 197, 751. T. Mazumber, N. Gaur and A. Surolia, Eur. J. Biochem., 1981, 113,463. Biochen., 1981, 113,253. P.S. Appokattan and D. Basu, -1. Y. Konami, T. T s u j i , I. Matsumoto and T. O s a w a , Hoppe S e y l e r ' s 2. Physiol. Chem., 1981, 362, 983. n r a n z , P. G k a and A. Kindt, Biochem. J., 1981, 195, 481. G. Levi and V.L. Teichberg, J. Biol. Chem., 1981, 156, 5735. R.B. Mellor, G.M. Gadd, P. Rowel1 and W.D.P. Stewart, B i d e m . Bioghys. Res. -Comm., 1981, 99, 1348. F.K. Chu, F. Maley and A.L. Tarentino, Anal. Biochen., 1981, 116, 152. J.L. Ochoa, J. ChraM r., 1981, 215, 251. K. Ek, E. Gianazza a 2 P . G . R i g h e x i , Biochem. Biophys. A c t a , 1980, 626, 356. C.A. Jasalavich and A.J. Anderson, Can. J. BOt., 1981, 59, 264. R.J. G i b b n s and I. Dankers, Appl. Environ. Microbiol., 1981, & 4 880. S.G. P u e p p k e , T.G. F r e u n d , B.C. S c h u l z a n d H.P. Friedman, Can. J. Microbiol., 1980, 26, 1489. R. Gansera, H. Schurz and H. Riidiger, Hoppe S e y l e r ' s Z. Physiol. Chem., 1979, 360, 1579. D.J. Bowles and S. Marcus, FEBS L e t t . , 1981, 129, 135. H. Debray, D. Decout, G. S t r e c k e r , G. S p i k and J. M o n t r e u i l , Eur. J. Biochem., 1981, 117,41. M.I. Khan, N. S u r o l i a , M.K. Mathew, P. Balaram and A. S u r o l i a , Eur. J. Biochem., 1981, 115,149. K.D. Hapner and M.A. Jennyn, Ann. Bot. (London), 1981, 48, 89. M. Caron, J. Ohanessian, A. Faure and M. Felon, C.R. HeM. Seances Acad. S c i . Ser. 111, 1981, 292, 183. S.G. pueppke, Arch. B m e n . Biophys., 1981, 12, 254. K.J. Neurohr, N.M. Young and H.H. Mantsch, J.Biol. olem., 1980, 255, 9205. K.J. Neurohr, N.M. Young, I.C.P. Smith a n d H.H. Mantsch, Biochemistry, 1981, 20, 3499. M.Decastel, R. Rourrillon and J.P. Frenoy, J. B i o l . Chem. , 1981, 256, 9003. D. Nonnemacher and R. Rrossner, Biochh. Biophys. A c t a , 1981, 668, 149. J.E. Lamb, F.L. Bookstein, I.J. G o l d s t e i n and L.E. Newton, J. B i o l . Chem., 1981, 256, 5874. H. D e Boeck, F.G. Loontiens, F.M. D e l m o t t e and C.K. D e Bruyne, FEBS Lett., 1981, 126,227. I.J. G o l d s t e i n , D.A. Blake, S. Ebisu, T.J. W i l l i a m s and L.A. Murphy,
197,
324 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
Carbohydrate Chemistry J. B i o l . Chem., 1981, 256, 3890. Y. Oda, K . I . Kasai and S.I. I s h i i , J. Biochem. (Tbkyo), 1981, 89, 285. B. Karkstam, J. C h r m r., 1981, 211, 233. D.F. Senear and D.C. W?er, Bioch&&try, 1981, 20, 3076. D.F. Senear and D.C. Teller, B i o c h d s t r y , 1981, 3, 3083. T.J. W i l l i a m s , L.D. H o m e r , J.A. S h a f e r , I.J. G o l d s t e i n , P.J. Garegg, H. H u l t b e r g , T. I v e r s o n a n d R. J o h a n s s o n , Arch. Biochem. Biophys., 1 9 8 1 , 209, 555. R.M. Clegg, F.G. L o o n t i e n s , A. van L a n d s c h o o t a n d T.M. Jovin, B i o c h e m i s t r y , 1981, 20, 4687. N. O c h a n , B i o c h h . Biophys. A c t a , 1981, 643, 220. M. Toselli, E. Battistel, F. Manca a n d G. R i a l d i , Biochim. Biophys. A c t a , 1 9 8 1 , 667,99. M. Dani, F. Manca and G. Rialdi, B i o c h h . Biophys. A c t a , 1981, 667,108. A.D. S h e r r y , M.A. L i n d o r f e r , P. Adams-Stemler a n d J.H. Oppenheimer, Biochemistry, 1981, 20, 3492. F. Obata, R. Sakai and H. Shiokawa, J. Biochem. (Tokyo), 1981, 89, 1475. P.C. Harrington, R. Moreno and R.G. Wilkins, Isr. J. Chem., 1981, 21, 48. E. K o t t g e n , C. B a u e r , U. E h l e r d i n g a n d W. Gerok, Biochem. J., 1 9 8 1 , 193, 659. I. Tanaka, Y. Abe, T. Hamada, 0. Y o n e m i t s u a n d S. I s h i i , J. Biochem.(Tokyo), 1981, 89,1643. C.J. Louis and R.G. Wyllie, w r i e n t i a , 1981, 37, 508. H. Debray a n d J. M o n t r e u i l , i n ' L e c t i n s - B i o l o g y , B i o c h e m i s t r y , C l i n i c a l , 221. Biochemistry, ed. T.C. Bog-Hansen, Walter de Gruyter, B e r l i n , 1981, I K.K. Banerjee and A. Sen, Arch. Biochem. Biophys., 1981, 212, 740. N.N. Desai, A.K. A l l e n and A. Neuberger, Biochem. J., 1981, 197, 345. C.A.K. Borrebaeck, B. Z n n e r d a l and M.E. E t z l e r , FEBS Lett., 1981, 130, 194. M.E. Etzler, S. Gupta and C.A.K. Borrebaeck, J. B i o l . Chem., 1981, 256, 2367. C.A.K. Borrebaeck and M.E. Etzler, J. Biol. Chem., 1981, 256, 4723. M.E. E t z l e r and C.A.K. Borrebaeck, Biochem. Biophys. Res. Commun., 1980, 96, 92. M.E. E t z l e r , S. G u p t a a n d C.A.K. B o r r e b a e c k , J. B i o l . Chem., 1981, 256, 2367. C.A.K. B o r r e b a e c k , B. L o n n e r d a l a n d M.E. E t z l e r , B i o c h e m i s t r y . , 1 9 8 1 , 20, 4119. N. Gilboa-Barber and L. Mizrahi, Can. J. Biochem., 1981, 2, 315. W. Gade, M.A. J a c k , J.B. D a h l , E.L. S c h m i d t a n d F. Wold, J. B i o l . Chem., 1981, 256, 12905. S.G. Pueppke, H.P. Friedman and L.-C. Su, P l a n t Physiol., 1981, 68, 905. J. Nov&ov& M. T i c h d a n d J. Kocourek, Biochem. Biophys. Acta, 1 9 8 1 , 670, 401. A. F o r i e r s , E. Lebrun, R. van RaDenbusch, R. de Neve a n d A.D. S t r o s b e r -. s, J. B i o l . Chem., 1981, 5550. K. Kornfeld, M.L. Reitman and R. Kornfeld, J. Biol. Chen., 1981, 256, 6633. J.N. Bausch, J. Richey and R.D. P o r e t z , Bio&emistry, 1981, 20, 2618. M. Sarkar, A.M. Wu and E.A. Kabat, Arch. Biochem. Bio@ys., 1981, 209, 204. P. Z i s k a and H. Franz, E x p e r i e n t i a l 1 9 8 1 3 7 , 219. M.K. Das, M . I . Khan and A. S u r o l i a , Biochem. J., 1981, 195,341. M.I. Khan, T. Mazumber, D. P a i n , N. Gaur a n d A. S u r o l i a , Eur. J. Biochem., 1981. 113. 471. R.L.- F e x t e d , J. L i , G. Pokrywka, M.J. E g o r i n , J. S p i e g e l a n d R.M.K. Dale, I n t . J. Biochem., 1 9 8 1 , 13,549. A. P u s z t a i , E.M.W. C l a r k e , G. G r a n t a n d T.P. King, J. Sc. Food Agric., 1981, 32. 1037. R.L. F e l s t e d , R.D. L e a v i t t , C. Chen, N.R. Bachur a n d R.M.K. D a l e , Biochim. Biophys. Acta, 1981, 668, 132. 31. L.M. Roberts and J.M. Lord, Eur. J. Biochen., 1981, N. Toda, A. D o i , A. J i m b o , I. Matsumoto a n d N. Seno, J. B i o l . Chem., 1 9 8 1 , 256, 5345. D. A s h f o r d , R. Menon, A.K. A l l e n a n d A. N e u b e r g e r , Biochem. J., 1 9 8 1 , 199,
&,
-
119,
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
325
299. 176 A.M. Wu, E.A. Kabat, F.G. Gruezo and R.D. P o r e t z , Arch. Biochem. Biophys., 1981, 2,191. 177 A. Ndulue, J.P. F l a n d r o i s and D. M a r m e t , J. Chromatogr., 1981, 209, 323. 178 F. Jordan, H. F!ahr, J. P a t r i c k and P.W.K. Woo, Arch. Biochem. Biophys., 1981, 207, 81. 179 K.J. Neurohr, N. L a c e l l e , H.H. Mantsch and I.C.P. Smith, Biophys. J., 1980, 32, 931. 180 TYamamoto, T. T s u j i , I. Matsumoto and T. Osawa, Biochemistry, 1981, 20, 5894. 181 M. Duk and E. Lisawska, Eur. J. Biochem., 1981, 118, 131. 182 G. Gebauer, E. S c h i l t z and H. Riidiger, Eur. J. B m e m . , 1981, 113, 319. 183 D. Haass, R. Frey, M. Thiessen and H. Dams, Planta, 1981, 151, 490. 184 E. del Campillo, L.M. Shannon and C.N. Hankins, J. B i o l . Chem., 1981, 256, 7177. 185 M.S. Hernrann and W.D. Behnke, Biochim. Biophys. A c t a , 1981, 667,397. 186 L.S. S i m e r a l , W. Kapmeyer, W.P. MacConnell and N.O. Kaplan, J. B i o l . Chem., 1980, 255, 11098. 187 R.A. Roth, B.A. Maddux, K.Y. Wong, Y. Iwamoto and I.D. G o l d f i n e , J. Biol. Chem., 1981, 256, 5350. 188 A. Raz nd R. Iatan, Cancer Res., 1981, 41, 3642. 189 G. U h l e n b r u c k , J. S B l t e r , E. H a n s s e n a n d H. H a u p t , HoppeSeyler's Z. Physiol. Chem., 1981, 362, 1167. 190 G.J. Montelione, S. C a l l a h a n and T.R. P o d l e s k i , Biochim. Biophys. ACTA, 1981, 670, 110. 191 D.T. Connolly, C.A. Hoppe, M.K. Hobish and Y.C. Lee, J. B i o l . Chem., 1981, 256, 12940. 192 G. Steer, E.S. K q n e r and G. Ash-11, J. B i o l . Chem., 1981, 256, 5851. 193 J.L. Denburg, Biochem. Biophys. Res. m u n . , 1980, 97, 33. 194 K. Drickamer, J. B i o l . Chgn., 1981, 256, 5827. 195 H. Den and J.H. Chin, J. B i o l . Chem., 1981, 256, 8069. 196 M.J. P i t t s and D.C.H. Yang, Biochem. Biophys R e s . Cunnun., 1980, 95, 750. 197 M.J. P i t t s and D.C.H. Yang, Biochem. J.., 1981, 195,435. 198 D.T. Dorai, B.K. Bachhawat, S. Bishayee, K. Kannan and D.R. Ras, Arch. Biochem. Biophys., 1981, 209, 325. 199 R. Maget-Dana, R.W. Vem, M. Sander, A.C. Roche, R. Schauer and M. Monsigny, Eur. J. Biochem., 1981, 114,11. 200 M.E.A. Pereira, A.F.B. Andrade and J.M.C. R i b e i r o , Science, 1981, 211, 597. 201 H. KaMno, D. Mizuno and S. Natori, J. B i o l . Chm. , 1981, 256, 7 0 8 r 202 W.E.G. M u l l e r , R.K. Zahn, B. Kurelec, C. Lucu, I. Miiller and G. Uhlenbruck, J. Bact., 1981, I&, 548. 203 M.G. Cunrsky and D.R. Z u m , J. B i o l . Chem., 1981, 256, 12581. 204 D.R. Nelson, M.G. Cumsky and D.R. Zusnan, J. B i o l . Chem., 1981, 256, 12589. r i e n t i a , 1980, 36, 1285. 205 R. E i f l e r and P. Ziska, kida, A g r i c . B z l . Chem. (Jpn), 1981, 45, 557. 206 F. Ishikawa, K. Oishi an% 207 F. Ishikawa, T. Kameyama, A. Takenaka, K. O i s h i and K. Aida, A g r E . B i o l . Chem. ( J p n ) , 1981, 45, 2105. 208 D.N. Cooper and S.H. Barondes, J. B i o l . Chem., 1981, 256, 5046. 209 T. Tsivion and N. Sharon, Biochim. B i o s. A c t a , 1981, 642, 336. R e l a t e d Res., 1981, I , 95. 210 E. Ruoslahti and E. Engwall, Collagen d$ 211 R.E. Weiss and A.H. R e d d i , Biochem. J, 1981, 197, 529. 212 D.L. Scott, P.A. Bedford and K.W. Walton, J. Im~~unol. Methcds, 1981, 43, 29. 213 E. R u o s l a h t i , E. Engvall, E.G. Hayman and R.G. S p i r o , Biochem. J., 1981, 193, 295. 214 C P e a r l s t e i n and L. Baez, Anal. Biochem., 1981, 116, 292. 215 S.I. Rennard, M.L. Wind, A.T. H e w i t t and H.K. Kleinman, Arch. Biochem. Biophys., 1981, 206, 205. 216 M.R. Stampfer, I. Vlodavsky, H.S. Smith, R. Ford, F.F. Becker a n d J. Riggs, J. Nat. Cancer I n s t . , 1981, 67, 253. 217 I.U. A l i and T. Hunter, J. B z l . Chem., 1981, 256, 7671. 218 E. R u o s l a h t i , H. J a l a n i c o , D.E. Comings, A.M. N e v i l l e and D. Raghavan,
Carbohydrate Chemistry
326 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 24 2 24 3 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
27, 763. F.C. d e Beer, M.L. B a l t z , S. Holford, A. F e i n s t e i n and M.B. Pepys, J. Exp. 1981, 154,1134. M.P. Bevilacqua, D. Amrani, M.W. Mosesson and C. Biano, J. Exp. Med., 1981, 153, 42. S.R. Gonda and J.R. S h a i n o f f , Thrombosis Res., 1980, 20, 581. V.E. K o t e l i a n s k y , M.A. Gludhova, M.V. B e j a n i a n , V.N. S m i r n o v , V.V. Filimonov, O.M. Zal!Lte and S.Y. Venyaminov, Eur. J. Biochem., 1981, 19, 619. K. Sekiguchi, M. Fukuda and S.I. HaJcmri, J. Biol. Chm., 1981, 256, 6452. D.G. Wallace, J.W. Donovan, P.M. Schneider, A.M. Meunier and J.L. Lundblad, Arch. Biochem. Biophys., 1981, 212, 515. J.A. McDonald, T.J. Broedelmann, D.G. K e l l e y and B. V i l l i g e r , J. B i o l . Chem., 1981, 256, 5583. H. Richter, M. Seidl and H. Hormann, How-Seyler's 2. Physiol. Chem., 1981, 362, 399. E. R u o s l a h t i , E.G. Hayman, E. Engvall, W.C. Cothran and W.T. B u t l e r , J. B i o l . Chem., 1981, 256, 7277. R. Ehrismann, M. Chiquet and D.C. Turner, J. B i o l . Chen., 1981, 255, 4056. J. Keski4ja and K.M. Y a m a d a , Biochem. J., 1981, 193,615. J. Keski-Oja, E. R u o s l a h t i and E. Engvall, Biochem. Biophys. R e s . Commun., 1981, 100, 1515. M. Hayashi and K.M. Yamada, J. B i o l . Chem., 1981, 256, 11293. A. Rephaeli, M. Spector and E. Racker, J. Biol. olem., 1981, 256, 6069. E.F. Plow and M.H. Ginsberg, J. B i o l . Chan., 1981, 256, 9477. B.D. Smith and C.K. S i l b e r t , Biochem. Biophys. Res. Cartnun., 1981, 100, 275. D.R. Kahn a n d I. Cohen, Biochim. Biophys. Acta., 1981, 668, 490. R.P. McDonagh, J. M c D o M ~ ~ , T.E. Petersen, H.C. Tnogersen, K. Skorstengaard, L. S o t t r u p J e n s e n and S. Magnuson, FEBS Lett., 1981, 127, 174. J. Keski-Oja, G.J. Todaro a n d A. V a m e r i , Biochim. Biophys. A c t a , 1981, 673, 323. V.E. K o t e l i a s k y , V.L. L e y t i n , D.D. S v i r i d o v and V.N. Smirnov, FEBS Lett., 1981, 123,59. H. H5rmann and V. JeliniC, Hoppe-Seyler's Z. Physiol. am., 1981, 362, 87. H. Kleirman, C.M. Wilkes and G.R. Martin, B i o c h e m i s t r y , 1981, 20, 2325. A.M. Rich, E. P e a r l s t e i n , G. Weissmann and S.T. H o f f s t e i n , N a t u r e , 1981, 293, 224. LT. Furcht, D. Smith, G. Wendelschafer-crabb, D.F. Mosher and J.M. Fbidart, J. Histochem. Cytochem., 1980, 3,1319. T. Vartio and A. Vaheri, J. B i o l . Chem., 1981,256, 13085. L.D. Johnson, Clin. Biochem., 1980, 2, 204. Clin. Biol. Res., 1981, 54, (1). Pr Bi2ogy of Collagen, ed. A. V i n i k and J. Vuust, Acad. Press (Iondon), 1980. V.I. L h , FEBS Lett., 1981, 132, 1. P.F. Davis and Z.M. Mackle, Anal. Biochem., 1981, 115, 11. J.W. Stock, M.C. Henning and J.F. Collins, Anal. B m m . , 1981, 110, 323. 1981, 668, 357. S.C. Meredith and F.J. Kezdy, Biochim. Biophys. A&, J. R i s t e l i , H. Rohde and R. T W l , Anal. Biochem., 1981, 113, 372. G.J. Laurent, P. C o c k e r i l l , R.J. McAnulty and J.R.BFHastings, Anal. Biochem., 1981, 113,301. S. Kimura, T. Kamimura, Y. Takema a n d M. Kubota, Biochim. Biophys. A c t a , 1981, 669, 251. W.G. -=and D. C h m , Biochem. J., 1981, 197, 377. D.M. Pesciotta, LA. Dickson, A.M. Showalter, Eikenberry, B. de Crombrugghe, P.P. F i e t z e k and B.R. Olsen, FEBS Lett., 1981, 125,170. B. Steinmann, L. Tuderman, L. Peltonen, G.R. M a r t i n , V.A. McKusik and D.J. Prockop, J. Biol. Chm., 1980, 255, 8887. M.D. Grynpas, D.R. Eyre and D.A. Kirschner, Biochim. Biophys. A c t a , 1980, 626, 346. S.C.G. Tseng, N. Savion, D. Gospodarowicz and R. S t e r n , J. B i o l . Chem., 1981, 56, 3361. R.K. Rhides, K.D. Gibson and E.J. M i l l e r , Biochemistry, 1981, 20, 3117. I n t . J. Cancer, 1981,
e.,
-
.
-
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides 260 261 262 263 264 265 266 267 268 269 270 271 27 2 273 274 275 276 277 278 279 280 281 282 28 3 284 285 286 28 7 288 289 290 291 29 2 293 29 4 295 29 6 29 7 29 8 29 9 300
327
S. G a r b i s a , L.A. L i o t t a , K. Tryggvason a n d G.P. S i e g a l , FEBS Lett., 1981, 127, 257. R.Xander, J. R a u t e r b e r g , B. Voss a n d D.R. von Bassewitz, Eur. J. Biochem., 1981, 1 4 , 17. D.K. F u i u t o a n d E.J. M i l l e r , J. Biol. Chem., 1980, 255, 290. S. Ayad, M.Z. Abedin, S.M. Grundy and J.B. Weiss, FEBS L e t t . , 1981, 123, 195. D.C. Dean, B.D. Peczon, M.E. Noelken and B.G. Hudson, J. B i o l . Chem., 1981, 256, 7543. R.J. Butkowski, G.S. B r u n c p r d t , J.J. Grantham and B.G. Hudson, J. B i o l . Chem., 1981, 256, 7603. J. Glowacki and J. Cross, Biochim. Biophys. A c t a , 1981, 668, 216. R. Ouazana and D. Herbage, Biochim. Biophys. A&, 1981, 669, 236. A. Torre-Blanco and I. Toledo, J. B i o l . Chem., 1981, 256, 5926. K.K. Smith a n d S. S t r i c k l a n d , J. Biol. Chem., 1981, 256, 4654. K. Kuhn, H. Wiedemann, R. Timpl, J. R i s t e l i , H. D i e r i n g e r , T. V o s s a n d R.W. Glanville, FEBS Lett., 1981, 125, 123. M. L a u r e n t , P. Kern a n d F. Regnault, I n t . J. Biochem., 1981, 2,63. L. Cohen-Solal, M. l e Lous, J.C. A l l a i n a n d F. Meunier, FEBS Lett., 1981, 123, 282. S. Kimura, Y. Takema a n d M. Kubota, J. Biol. Chem., 1981, 256, 13235. C.H. Hung, M.E. Noelken and B.G. Hudson, J. B i o l . Chem., 1981, 256, 3822. J.E. S c o t t , C.R. O r f o r d and E.W. Hughes, Biochem. SOC. Trans., 1981, 9, 226. E.A. Sankey, F.E. Brown, L.F. Morton, D.M. S c o t t a n d M.J. Barnes, Biochem. J., 1981, 707. S.C.G. Tseng, N. Savion, D. Gospodarowicz and R. S t e r n , J. Biol. Chem., 1981, 256, 3361. D. S c h u b e r t and M. La C o r b i e r e , J. B i o l . Chem., 1980, 255, 11557. D.L. H e l s e t h and A. V e i s , J. Biol. Chem., 1981, 256, 7118. V.J. U i t t o , J. U i t t o and D.J. Prockop, Arch. Biochem. Biophys., 1981, 210, 445. L.I. F e s s l e r , C.A. Kumamoto, M.E. M e i s and J.G. F e s s l e r , J. Biol. Chem., 1981, 56, 9640. L.I. F e s s l e r , W.J. Robinson and J.H. F e s s l e r , J. Biol. Chem., 1981, 256, 9646. A. l e Pape, J.P. Muh and A.J. B a i l e y , Biochem. J., 1981, 405. T. P i h l a j a n i e m i , R. M y l l y l a , K. A l i t o l o , A. Vaheri a n d K.I. K i v i r i k k o , Biochemistry, 1981, 3, 7409. H.H. C a r n i c e r o , A.M. Adamany and S. Englard, Arch. Biochem. Biophys., 1981, 210, 678. J. P r e i s s and D.A. Walsh i n 'Biology of Carbohydrates', ed. V. G i n s b u r g and P. R o b i n s , John Wiley, New York, V o l 1, p199. D.M. H a v e r s t i c k and A.H. Gold, Anal. Biochem., 1981, 137. K. Rybicka, J.Histochem. Qto& em., 1981, 2, 4. J. McLaren, W.G. Ng and R. Toe, C l i n . Clem., 1980, 26, 1924. V. Dombri%i, I n t . J. Biochem., 1 9 8 1 , & 125. P.T.W. Cohen, Y. l e Marchand B r u s t e l a n d P. Cohen, Eur. J. Biochem., 1981, 115, 619. H. Shikama, J.L. Chiasson and J.H. Ekton, J. Biol. Chem., 1981, 256, 4450. J.W. M i t c h e l l and J.A. Thomas, J. Biol. Chem., 1981, 256, 6160. A.A. de Paoli-Roach, P.J. Roach, K. Pham, G. K r a m e r a n d B. Hardesty, J. B i o l . Chem., 1981, 256, 8871. M.J. Poznansky and D. Bhardwa j , Biochem. J., 1 9 8 1 , 1 9 6 , 89. J. Melet, G.J.M. Hoogh Winkel, M.A.H. Giesberts a n d H.H. van Geldern, Clin. 1980, 108, 179. Chim. A&, M. Breen, P.A. Knepper, H.G. W e i n s t e i n , L.J. B l a c i k , D.G. Lewandowski and B.M. Baltros, Anal. Biochem., 1981, 416. T.O. K l e i n e a n d B. Merten, Analyt. Biochem., 1981, 118, 185. P. Gysen, G. Heynen a n d P. Franchimont, C.R. Seances SOC. Biol. S e s 1981, 538. C. W a r r e n and G. Manley, Clin. Chim. A c t a , 1981, 369.
198,
197,
111,
113,
175,
a,
116,
328
Carbohydrate Chemistry
301 1.Miyamto and S.Nagase, Anal. Biochem., 1981, 115, 308. 302 G.J.L. Lee, D.W. Liu, J . W X v n Tieckelmann, J. Chromatogr., 1981, 212, 65. 303 R.E. H u r s t and J.M. S e t t i n e , Anal. Biochem., 1981, 115,88. 304 C. P e e t e r s J o r i s , X Emonds-Alt and G. Vaes, Biochem. J., 1981, 196, 95. 305 E.H. Schuchman a n d R.J. Desnick, Anal. Biochem., 1981,117, 419. 306 J.E. Morris, M.W. Canoy and L.S. Rynd, J. Chromatogr., 1981, 224, 407. 307 ER Schwartz, J. Stevens and D.D. Schmidt, Anal. Biochem., 1981, 112, 170. 308 D.A. Torchia, M.A. Hasson and N.C. Hascall, J. B i o l . Chem., 1981, 256, 7129. 309 H. Gustavsson, G. S i e g e l , B. Lindman and L.A. Fransson, Biochem. Biophys. 1981, 677,23. 310 K. P i e t i l Z and T. N i k k a r i , Anal. Biochem., 1981, 116,317. 311 L.A. Fransson and B.G. Johansson, I n t . J. Biol. Macromol., 1981, 2, 25. 312 P. Vijayagopal , S.R. S r i n i v a s a n , B. Radhakrishnamurthy and G.S. Berenson, J. B i o l . Chem., 1981, 256, 8234. 313 P. Gysen, G. Heynen and P. Franchimont, C.R. Seances SOC. B i o l . S e s 1980, 174,867. 314 S. Bjornsson and D. Heinegard, Biochem. J., 1 9 8 1 , 1 9 7 , 249. 315 D.W. Bullimore, C.F. P h e l p s and M.I.V. Jayson, Biochem. J., 1981, 199, 433. 316 K.G. Vogel a n d D.W. P e t e r s o n , J. B i o l . Chem., 1981, 256, 13235. 317 H. Masuda and S. S c h i c h i jo, I n t . J. Biochem., 1981, 13, 603. 318 P.J. Roughley, D. McNicol, V. S a n t e r and J. BuckwalGr, Biochem. J., 1981, 197, 77. 319 M.E. A d a m s and H. Muir, Biochem. J., 1981, 197,385. s. A c t a , 1981, 673, 101. 320 V. Stanescu and M.B.E Sweet, Biochim. B i o 1981, 63, 515.321 M. Breton, J. P i c a r d and E. Berrou, Biochi?:, 322 P.J. McKeown-Longo, K.J. Sparks and P.F. Goetinck, Arch. Biochem. Biophys., 1981, 212, 216. 323 C. P e t e r s , J. Schwermann, A. Schmidt and E. Buddecke, Biochim. Biophys. A c t a , 1981, 673, 270. 324 M. Isemura, T. Hanyu, H. Kosaka, T. On0 and T. Ikenaka, J. Biochem. (Tokyo), 1981, 89, 1113. 325 A. Fransen, S. Bjornsson and D. Heinegard, Biochem. J., 1981,197, 669. 326 A. Tengblad, Biochem. J., 1981, 199, 297. 32 7 S.J. P e r k i n s , A. Miller, T.E. Hardingham and H. Muir, J. M o l . B i o l . , 1981, 150, 69. 328 M. Luscombe, S.E. M a r s h a l l , D.S. Pepper and J.J. Holbrook, Biochim. Biophys. A d a , 1981, 678, 137. 329 K. Kikuchi, B.R. J e n n i n g s and M. Isles, I n t . J. B i o l . , 1981, 3, 53. 330 D. Heinegard, M. Paulsson, S. I n e r o t and C. Carlstriim, B i o a e m . J., 1981, 197, 355. 331 L. S i l v e s t r i , J.R. Baker, L. Roden and R.M. S t r o u d , J. Biol. Chem., 1981, 256, 7383 332 W.L. Kiang, R U . M a r g o l i s and R.K. Margolis, J. Biol. Chem., 1981, 256, 10529. 333 R. Kapoor, C.F. Phelps, L. C S s t e r and L.A. Fransson, Biochem. J., 1981, 197, 259. 334 I. Miyamoto, H. Watanabe and S. Nagase, Anal. Biochem., 1981, 110, 39. 335 L.W. Fisher and H. Schraer, Arch. Biochem. Biophys., 1980, 205, 396. 336 A. l d b e r g , E. Ghayman and E. R u o s l a h t i , J. B i o l . Chem., 1981, 256, 10847. 337 L. C o s t e r and L A . Fransson,Biochem. J., 1981,193, 143. 338 J.K. Sheehan, I. C a r l s t e d t , L. C o s t e r , A. M a l m s t r i j m and L.A. Fransson, Biochem. J., 1981, 199, 581. 339 L. CSster, L.A. Fransson, J. Sheehan, I.A. Nieduszynski and C.F. Phelps, Biochem. J., 1981, 197, 483. 340 N. F u j i i and Y. Nagai, J. Biochem. (Tokyo), 1981, 90, 1249. 341 I. Miyamoto and S. Nagase, J. Biochem. (Tbkyo), 1980, 88, 1793. 342 J.E. S c o t t and C.R. O r f o r d , Biochem. J., 1981, 197,213. 343 I. Carlstedt, L CiSster and R Malmstrom, Biochem. J., 1981, 197, 217. 344 F. Akiyama and N. Sem, Biochim. Biophys. A c t a , 1981, 674, 289. 34 5 R. L o s i t o , H. G a t t i k e r and G. Bilodeau, J. Chromatogr., 1981, 226, 61.
a.,
w.,
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
329
346 S. Kaibkura, T. Miyamoto and H. I m g a k i , B i o p l y m e r s , 1981, 2, 1113. 347 A. Ogamo, K. M a t s u z a k i , H. Uchiyama a n d K. Nagasawa, J. Chromatogr., 1981, 213, 439. 348 C O s h i m a , H. Uchiyama and K. Nagasawa, Anal. Biochem., 1981, 111, 366. 349 A.P. A l m e i d a and M.A. Beavan, L i f e Sci., 1980, 26, 549. 350 P.A.S. Mourdo, S. P i l l a i , a n d N. D i F e r r a n t e , Biochim. Biophys. Acta, 1981, 674, 178. 351 J. Mattai and J.CT. Kwak, Biochim. Biophys. A c t a , 1981, 677, 303. 352 R.F. P a r r i s h and W.R. F a i r , Biochem. J., 1981, 193,407. 353 B. Weissmann, H. Chao a n d P. Chow, Carbohydr. Res., 1981, 92, 239. 354 B. Weissmann a n d H. Chao, Carbohydr. Res., 1981, 92, 255. 355 J.J. Hopwood a n d H. E l l i o t t , Carbohydr. Res., 1981, 91, 165. 356 J.J. Hopwood and H. E l l i o t t , C l i n . Chim. Acta, 1981, 112, 55. 357 J. Denton, W.E. L e y i s , I.A. N i e d u s z y n s k i a n d C.F. P h x p s , Anal. Biochem., 1981, 118,388. 358 H.K. T a k a h a s h i , H.B. Nader a n d C.P. D i e t r i c h , Anal. Biochem., 1981, 116, 456. 359 S. R a d o f f a n d I. D a n i s h e f s k y , Thromb. Res., 1981, 22, 353. 360 H. Uchiyama and K. Ndgasa~a, J. Biochem. (Tokyo), 1981, 89, 185. 361 U. L i n d s h i , G. Backstrom, L. Thunberg and I.G. L e d e r , Proc. N a t l . Acad. S c i . USA, 1980, 77, 6551. 362 B. Meyer, L. Thunberg, U. L i n d a h l , 0. Larm a n d I.G. L e d e r , Carbohydr. Res., 1981, 88, C1. 363 N. O t O G i , M. Kikuchi and Z. Yosizawa, J. Biochem. (Tokyo), 1981, 90, 241. 364 B. Nordenman and I. B j k k , Biochim. Biophys. A c t a , 1981, 672, 227. 365 A. D a n i e l s s o n a n d I. B j o r k , Biochem. J., 1981,193, 427. 366 N. O t o t a n i and 2. Yosizawa, J. Biochem. (Tokyo), 1981, 90, 1553. 367 J. R i e s e n f e l d , L. Thunberg, M. HZjijk and U. L i n d a h l , J. B i o l . Chem., 1981, 256, 2389. 368 G.M. O o s t a , W.T. G a r d n e r , D.L. Beeler a n d R.D. R o s e n b e r g , P r o c . N a t l . Acad. S c i . USA, 1981, 2, 829. 369 B. Casu, P. Oreste, G. T o r r i , G. Zoppetti, J. Choay, J.C. Lormeau, M. P e t i t o u a n d P. S i n a y , Biochem. J., 1981, 197, 599. 370 E. H o l m e r , K. K u r a c h i and G. S 5 d e r s t o o m , Biochem. J., 1981,193, 395. M.W. P i e p k o r n , D. Lagunoff a n d G. Schmer, Arch. Biochem. Biophys., 1980, 371 205, 315. 372 H. Kawakami and H. Terayama, Biochim. Biophys. A c t a , 1981, 646, 161. 373 M.P. Cohen, V.Y. Wu a n d M.L. Surma, Biochim. Biophys. A c t a , 1981, 678, 322. s. Acta, 1981, 674 400. 374 M.P. M e n and CJ. Cibrowski, Biochim. Bi Natl. Acad. S c T b S A , 1980, 375 J. L a t e r r a , R. A n s b a c h e r a n d L.A. Culp, Pr% 77, 6662. 376 L.A. F r a n s s o n , Eur. J. Biochem., 1981, 120, 251. 377 L.A. F r a n s s o n , B. Havsmark and J.K. Sheehan, J. B i o l . Chem., 1981, 256, 13039. 378 L.A. F r a n s s o n , I. S j S b e r g a n d V.P. C h i a r u g , J. B i o l . Chem., 1981, 256, 13044. 379 Y. Ohkubo, I. F u n a k o s h i a n d I. Yamashina, J.Biochem. (Tokyo), 1981, 89,161. 380 L. K j e l l b , I. P e t t e r s s o n a n d M. H a k , Proc. N a t l . Acad. S c i . USA., 1981, 78, 5371. 381 P. Levy, J. P i c a r d a n d A. B r u e l , FEBS Lett., 1981, 131,257. 382 D.J. Winterbourne and J.G. S a l i s b u r y , Biochem. Biophys. Res. Commun., 1981, 101, 30. 383 0.Sdmut and H.Hofmann, Biochim. Biophys. A c t a , 1981, 673, 192. 384 A. T e n g b l a d , Biochem. J., 1981, 185,101. 385 J.E. Scott, F. H e a t l e y , D. M o o r c r o f t a n d A.H. O l a v s e n , Biochem. J., 1981, 199, 829 386 M.K. Cowman, E.A. Balazs, C.W. Bergmann a n d K. Meyer, B i o c h e m i s t = , 1981, 20, 1379 387 M.O. Longas a n d K. Meyer, Biochem. J., 1981,197, 275. 388 R.L. Cleland, Arcfi. Biochem. Biophys., 1981, 210, 565. 389 B. Delphech a n d C. H a l a v e n t , J. Neurochem., 1981, 36, 855.
-
330 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
Carbohydrate Chemistry N. Toda, A. Doi, A. J i m b o , I. Matsumoto and N. Seno, J. B i o l . Chem., 1981, 256, 5345. T L u d o l p h , E. Paschke, ,J. G l o s s 1 and H. Kresse, Biochem. J., 1981, 193, 811. S. Toma, D.T. d i F e r r a n t e , R. Tenni, N. d i F e r r a n t e and Y.M. Y i c h e l a c c i , C a r b h y d r . Res., 1981, 88, 93. A. B r e k l e and G. Mersmann, Biochim. Biophys. A c t a t 1981, 675, 322. H.W. S t u h l s a t z , F. H i r t z e l , R. Keller, S. C o s m a a n d H. G r e i l i n g , HoppeS e y l e r ' s 2. Physiol. Chem., 1981, 362, 841. R. Keller, T. S t e i n , H.W. S t u h I s a t z , H. G r e i l i n g , E. Ohst, E. Miiller and H.D. Scfiarf, Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 327. R.A. Kosher and M.P. Savage, Nature, 1981, 291, 231. K. P i e t i l a , Biochim. Biophys. A c t a , 1981, 677, 318. A.M. G r e s s n e r , J.E. Cadenbach a n d H. G r e i l i n g , J. C l i n . Chem. C l i n . Biochem., 1981, 19, 465. Y. Ninomiya, RI.Hata and Y. Nagai, Biochim. Biophys. A c t a , 1981, 675, 248. M.C. Lemkin, M.G. Farquhar, Proc. Nat. Acad. Sci. USA, 1981, 78, 1726. M. Luswmbe, S.E. Marshall, D.S. Pepper and J.J. Holbrook, Biochim. Biophys. A c t a , 1981, 678, 137. J.H. Kimura, C.B. Caputo and V.C. Hascall, J. B i o l . Chem., 1981, 256, 4368. P.R. Sudhakaran, W. S i n n and K. von F i g u r a , Hoppe-Seyler's 2. Physiol. Chem., 1981, 362, 39. E. Deudon, M. Breton, E. Berrou and J. P i c a r d , Biochimie, 1981, 62, 811. R. F r a t e r a n d D. Hewish, Aust. J. B i o l . Sci., 1981, 34, 171. T.R. Oegema and F. Behrens, Arch. Biochem. Biophys., 1981, 206, 277. R.L. S t e v e n s , S.P. N i s s l e y , J.H. Kimura, M. R e c h l e r , A.I. Kaplan and V.C. Hascall, J. Biol. Chem., 1981, 256, 2045. R.L. S t e v e n s and V.C. Hascall, J. Biol. Chem., 1981, 256, 2053. D.M. Brown, A.F. Michael and T.R. Oegema, Biochim. Biophys. A C t a , 1981, 674, 96. A.M. G r e s s n e r and W. K o s t e r e i s e r f u n k e , J. Clin. Chem. Clin. Biochem., 1981, 19, 363. KKajiwara and M.L. Tanzet-, FEBS Lett., 1981, 134, 43. M. Daireaw, H. P e n f o r n i s , M. L a n g r i s , J. B o c q z t , J.P. P u j o l , R. B e l i a r d and G. T;oy3Up FEBS Lett., 1981, 132,93. S. Bjornsson and D. Heinegard, Biochem. J., 1981,199, 17. J. Wieslander and D. Heinegard, Biochem. J., 1981, 199, 81. J.H. Kimura, E.J.M. Thonar, V.C. Hascall, A. R e i n e r and R. Poole, J. B i o l . Chem., 1981, 256, 7890. C.R. F a l t y n e k and J.E. S i l b e r t , J. B i o l . Chem., 1981, 256, 7202. Y. Nakanishi, M. Shimizu, K. Otsu, S. Kato, M. T s u j i a n d S. Suzuki, J. B i o l . Chem., 1981, 256, 5443. A. M a l m s t r o m , Biochem. J., 1981, 198, 669. W.T. F o r s e e and L. Roden, J. B i o l . Chem., 1981, 256, 7240 W. Sinn, P.R. Sudhararan and K. von F i g u r a , B i o c K m . J., 1981, 200, 51. I J L King, Biochim. Biophys. A c t a , 1981, 674, 87. P. Levy, J. P i c a r d and A. B r u e l , Eur. J. Biochem., 1981, 115,397. M. Uzuka, K. Nakajima, S. Ohta and Y. Mori, Biochim. Biophys. A c t a , 1981, 673, 387. F M a d s e n , Arch. Biochem. B i s., 1981, 211, 368. s., 1981, 210, 647. S.J. Hunter and Biochem. B i o S.A. F e l l i n i , J.H. Kimura and.1-CV . Chem., 1981, 256, 7883. J.H. K i m u r a , E.J.M. Thonar, V.C. Hascall, A. R e i n e r a n d A.R. P o o l e , J. B i o l . Chem., 1981, 256, 7890. R.W. Burlingame, G.H. Thomas, R.i4. Stevens, K. Schmid and H.W. Moser, Clin. Chem., 1981, 27, 124. E.W. Gold, Biochim. Biophys. Acts, 1981, 673, 408. S. Fukui, H. Yoshida, T. Tanaka, T. Sakano, T. Usui and I. Yamashina, J. Biol &em., 1981, 256, 10313. T. Yokoi, T. Uozaki, T K a s e i , T. S a t 0 and N. TanFguchi, Clin. Chim. Acts, 1981, 116, 153.
d.
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
331
H. Kresse, E. Paschke, K.Von Ficjurs, W. G i l b e r g and W. Fuchs, Proc. N a t . Acad. Sci. USA., 1980, 77, 6822. I. S t r a p r a n s , S.J. Garon; J. Hopper and J.M. F e l t s , Biochim. Biophys. A c t a , 1981, 572, 414. P.A.S. Mourao, S. Kato and P.V. Donpelly, Biochem. Biophys. R e s . C o m E . , 1981, 98, 388. C l i n . Chim. Acta, 1981, 117, 63. CT. iiii%uell, B.G.J. S a l i s b u r y and W.D. Wagner, J. B i o l . Chem., 1981, 266, 8050. H.W. S t u h l s a t z , S. Vierhaus and K . m Z . AnalytTChem., 1980, 361, 102. G P . Triphaus, A. Schmidt and E Buddecke, Hoppe-Seyler's Z. Physiol. Chem., 1980, 361, 1773. P.J. Roughley, R.J. White and V. S a n t e r , J. B i o l . Chem., 1981, 256, 12699. E.J.M.A. Thonar and M.B.E. Sweet, Arch. Biochem. Biophys., 1981, 208, 535. L.O. Samaio and C.P. D i e t r i c h , J. B i o l . Chem., 1981, 256, 9205. H.G. Garg and D.A. Swann, Biochem. J.., 1981, 193,4 5 r G. Lyons, S.M. E i s e n s t e i n and M.B.E. Sweet, Biochim. Biophys. A c t a , 1981, 673, 443. V.P. Ehavanandan, Biochemistry, 1981, 20, 5595. M. del ROSSO, R. C a p p a l e t t e , G. Dini, G. F i b b i , S. Vannuchi, V. C h i a r u g i and 1981, 676, 129. C. Guazzelli, Biochim. Biophys. A&, K. K i m a t a , H.J. Barrach, K.S. Brown and J.P. Pennypacker, J. B i o l . Chem., 1981, 256, 6961. W.S. Argraves, P.J. McKeown-Longo, and P.F. Goetinck, FEBS Lett., 1981, 131, 265. J.P. Zanetta, A. R e e b e r and G. Vincendon, Biochim. Biophys. A c t a , 1981, 670, 393. S.F. Cotmore, S.A. Crowhurst, and M.D. Waterf i e l d , Eur. J. Immunol., 1981, 11, 597. K.H. Lakin, and J.W. Fahre, J.Neurochem., 1981, 37, 1170. J.L. McKenzie, A.K. A l l e n and J.W. Fabre, Biochem. J., 1981, 197,629. M.Z. J o n e s and R.A. Laine, J. B i o l . Chem., 1981, 256, 5181. M.Z. J o n e s andG. Dawson, J_.-Biol. Chem., 1981, 256, 5185. A.A. N e o k e s a r i i s k i i and V.S. T u r o v s k i i , B i o c h e m i s t r y (U.S.S.R.), 1980, 5, 1385. S.C. Fu, T.F. Cruz a r d J.W. Gurd, J. Neurochem., 1981, 36, 1338. C.J.B. White and D.J. M u l l i n s , Biochem. SOC. Trans., 1980, g, 619. C.J.B. White, Biochem. J., 1981, 200, 373. C.J.B. White, ed. J.M. Dawson, J. x u r o c h e m . , 1981, 37, 1155. J.F. Poduslo, J. Neurochem., 1981, 36, 1924. C. Linington and T.V. Waehneldt, J. Neurochem, 1981, 36, 1528. J. Reigner, J.M. Matthieu, R. Kraus-Ruppert, H. Lassman and J.F. Poduslo, J. N e ~ r o c h e ~ ~1981, ~., 36, 1986. D.A. F i g l e w i c z , R.A. Q u a r l e s , D. J o h n s o n , G.R. Barharash a n d N.H. Sternberger, J. Neurochem., 1981, 37, 749. E.E. Mena, B.W. Moore, S. Hagen and H.C. Agrawal, Biochem. J., 1981, 195, 525. C.J.B. White and M.E. Hounslow, Biochem. SOC. Trans., 1980, 8, 618. C. Mezei and J.A. Verpoorte, J. Neurochem., 1981, 37, 550. D.Auino, R. Wong, R.U. M a r g o l i s and R.K. M o r g o l i z FEBS Lett., 1980, 112, 195. S.H. Chiou, L.T. Chylack, W.H. Tung and H.F. Bunn, J. B i o l . Chem., 1981, 256, 5176. E. C o n s i g l i o , S. S h i f r i n , Z. Yavin, F.S. Ambesi-Impiombato, J.E. R a l l , G. S a l v a t o r e and L.D. Kohn, J. B i o l . Chem., 1981, 256, 10592. S. S h i f r i n and L.D. Kohn, J. B i o l . Chem., 1981,256, 10600. D. Godelaine, M.J. S p i r o andR.G. S p i r o , J. B i o l . Chem., 1981, 256, 10161. F. Monaco, R. Dominici, F. C a r l i n i , C. Carducci, R. D e p i r r o , K F e l l i and J. Roche, C.R. Seances SOC. B i o l . S e s Fil., 1981, 175, 446. K. T a k a t s u k i , A.B. Schneider, K.Y. S h i n a n d L.M. Sherwood, J. B i o l . Chem., 19811 255, 2342.
332 473 4 74 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
511 512 513
Carbohydrate Chemistry D.V. Cohn, J.J. M o r r i s s e y , J.W. H a m i l t o n , R.E. S h o f s t a l l , F.L. Smardo a n d L.L.H. Chu, B i o c h e m i s t r y , 1 9 8 1 , 20, 4135. N. L a r i v i g r e , N.G. S e i d a h , G. DeSerres, J. Rochemont a n d M. C h G t i e n , FEBS E., 1980, 122, 279. M A P h i l l i p s , M L . Budarf and E. Herbert, B i o c h e m i s t , 1981, 20, 1666. J.C. Byrd and 0. Touster, Biochim. Biophys. A c t a , 1981: 677, 69: D. Bouhours, J.F. Bouhours and P.A. Bryon, Biochim. Biophys. A c t a , 1981, 6 2 1 288. Z. Z e m a n and RL. Verwilghen, Biochim. Biophys. A c t a , 1981, 669, 120. E. Berman, D.E. Walters a n d A. A l l e r h a n d , J. B i o l . Chem., 1 9 8 1 , 256, 3853. P.E. Reid, C.F.A. C u l l i n g , W.L. Dunn, C.M. Ramey, A.B. Magi1 a n d M.G. C l a y , J. H i s t o c h e m . Cytochem., 1980, 28, 217. D.M.P. Thompson, D.N. T a t a r y n , J.C. W e a t h e r h e a d , P. F r i e d l a n d e r , J. Rauch, R. S c h w a r t z , P. G o l d a n d J. S c h u s t e r , Eur. J. C a n c e r , 1 9 8 0 , 16,539. R. Pompecki, J.E. S h i v e l y a n d C.W. Todd, C a n c e r Res., 1 9 8 1 , 41, 1905. D.D. M u n j a l , C l i n . Chem., 1980, 26, 1809. M. K u r o k i , Y. Koga and Y. Matsuoka, C a n c e r Res., 1 9 8 1 , 41, 713. S.I. Ogata, R. Ueda, K.O. L l o y d , P r o c . Natl. Acad. S c i . USA, 1 9 8 1 , 78, 770. Y. Nakagawa, H.C. Margolis, S. Yokoyama, F.J. Kkzdy, E. Kaiser a n d F.L. Coe, J. B i o l . Chem., 1981, 256, 3936. T.D. Oberley, A.E. Chung, J.E. M u r p h y - U l l r i c h a n d D.F. Mosher, J.Histochem. Cytochm., 1981, 29, 1237. D.P. V i a , S. Sramek, G. L a r r i b a a n d S. S t e i n e r , J. C e l l . B i o l . , 1 9 8 0 , 84, 225. M.M. K l i n g e r , R.A. L a i n e a n d S.M. S t e i n e r , J. B i o l . Chem., 1 9 8 1 , 256, 7932. A.C. Antony, C. U t l e y , K.C. van Horne a n d J.F. K o l h o u s e , J- B i o l . Chem., 1981, 256, 9684. O.A. Lea a n d F.S. F r e n c h , Biochim. Biophys. A c t a , 1 9 8 1 , 668, 370. B. P e e t e r s , W. Rombauts, J. Mous and W. Heyns, Eur. J. Biochem., 1 9 8 1 , 15, 115. M. Paulsson and D. Heineg&-d, Biochem. J., 1981, 197, 367. R.K. Chopra a n d J.M. Bowness, Can. J. Biochem., 1 9 8 1 , 2, 191. K.P. C a m p b e l l a n d D.H. MacLennan, J. B i o l . Chem., 1 9 8 1 , 256, 4626. B. C a r l i n , R. J a f f e , B. Bender a n d A.E. Chung, J. B i o l x h e m . , 1 9 8 1 , 256, 5209. L.A. L i o t t a , R.H. G o l d f a r b a n d V.P. T e r r a n o v a , Thromb. Res., 1 9 8 1 , 21, 663. L. R i s t e l i a n d R . T i m p l , Biochem. J., 1 9 8 1 , 193, 749. M. D e l Rosso, R. C a p p e l l e t t i , M. V i t i , S. Vannucchi a n d V. C h i a r u g i , J., 1 9 8 1 2,699. Biochem. A.R. Cooper, M. K u r k i n e n , A. T a y l o r a n d B.L.M. Hogan, Eur. J. Biochem., 1 9 8 1 , 119,189. S. S a k a s h i t a and E. R u o s l a h t i , Arch. Biochem. Biophys., 1980, 205, 283. A. S e r a f i n i - F r a c a s s i n i , G. V e n t r e l l a , M.J. F i e l d , J. H i n n i e , N.I. O n y z i l i and R G r i f f i t h s , Biochemistry, 1981, 20, 5424. A. l e Pape, J.D. G u i t t o n a n d J.P. M u h , Biochem. Biophys. R e s . C=m_., 1981, 1 0 0 , 1214. r M c P h e r s o n , H. S a g e a n d P. B o r n s t e i n , J. B i o l . Chem., 1 9 8 1 , 256, 11330. S.M. B r e a t h n a c h , S.M. Melrose, B. Bhogal, F.C. de B e e r , R.F. Dyck, G. T e n n e n t , M.M. B l a c k a n d M.B. P e p y s , N a t u r e , 1981, 293, 652. M. I w a s a k i and S. Inoue, J. Biochem. (Tokyo), 1981, 89, 1067. S.K. S i k d e r a n d A. D a s , Carbohydr. Res., 1981, 95, 249. G.O. G o g s t a d , I. Hagen, R. Korsmo and N.O. Solum, Biochim. Biophys. A c t a , 1 9 8 1 , 70, 150. T.K. G a r t n e r , J.M. Gerrard, J.G. W h i t e a n d D.C. W i l l i a m s , Blood, 1 9 8 1 , 58, 153. S.S. Margossian, J.W. L a w l e r a n d H.S. S l s y t e r , J. B i o l . Chem., 1 9 8 1 , 255, 7495. E.M. Mazur, F. Hoffman, J. C h a s i s , S. M a r c h e s i a n d E. Bruno, Blood, 1981, 57, 277. T G . Hayes, Arch. V i r o l . , 1981, 67, 267. E. K n i g h t i n " I n t e r f e r o n " , ed. I. Gresser, Acad. P r e s s , (London), 1 9 8 0 ,
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 5 34 535 536 537
538
539 540
541 542 54 3
544 545 546 547 548 549 550 551 552 553 554 555
333
v01.2, p.l. J.W. Heine, J. Vandamme, M. Deley, A. B i l l i a u and P. Desomer, 4. Gen, V i r o l . , 1981, 54, 47. E. Knight and D. Fahey, J. B i o l . Chem., 1981, 256, 3609. S. Yonehara, Y. Yanase, T. Sano, Y. Imai, S. N a k a w a w a and H. Mori, J. B i o l . Chem., 1981, 3,3770. I.A. Braude, L.S. L i n and W.E. S t e w a r t , Biochem. J., 1981, 193,947. R.V.W. van E i j k and P.F. Miihlradt, Eur. J. Immunol., 1979, 9, 506. R.V.W. van E i j k , G. R o s e n f e l d e r and P.F. Miihlradt, Eur. J. Biochem, 1979, 101, 185. E . W . van E i j k and P.F. Miihlradt, Eur. J. Biochem., 1981, 115,23. M.L. Rose and F. Malchiodi, Immunology, 1981, 42, 583. J.F.J. Banchereau, D.M. Danois, M. Guenounou, G.M. Durand and J.C.L. Agneray, Biochim. Biophys. A c t a , 1981, 678, 98. P.D. S t a h l and P.H. S c h e s i n g e r , Trends Biochem. Sci., 1980, 2, 194. V.L. S h e p h e r d , Y.C. L e e , P.H. S c h l e s i n g e r , P.D. Stahl, Proc. Natl. Acad. S c i . USA, 1981, 78, 1019. A. H a s i l i k , U. K l e i n , A. Waheed, G. S t r e c k e r , K. Von F i g u r a , Proc. Natl. Acad. S c i . USA, 1980, 77, 7074. G. Cossu, M. P a c i f i c i , M. Marino, B. Zani, M. Coletta and M. Molinaro, Exp. C e l l ReS., 1981, 132,349. M.E. Bramwell, Biochem. Soc. Trans., 1980, 3, 697. V.P. Bhavanandan, A.W. Katlic, J. Banks, J.G. Kemper and E.A. Davidson, Biochemistry, 1981, 20, 5586. D.C. R i j k e n and D. Collen, J. B i o l . Chem., 1981, 256, 7035. T. Muramatsu, H. Muramatsu and M. Ozawa, J. Biochm. ( T b b O ) , 1981, 89, 473. M.J. V i l a r e m , J. Jouanneau and R. B o u r r i l l o n , Biochem. Biophys. R e s . Commun., 1981, 98, 7. B.L.A. Miki, J.W. Gurd and I.R. Brown, Can. J. Biochem., 1980, 58, 1261. R.H. G l e w , J.U. Balis, S. S h e l l e y , T. Kuhlen Schmidt and R. J a f f e , Biochim. Biophys. A c t a , 1981, 670, 101. S.N. E?httacharyya, Biochem. J., 1981, 193, 447. S.C. Sahu and W.S. Lynn, Carbohydr. Res., 1981, 90, 251. A. Laine and A. Hayem, Biochim. Biophys. ACta, 1981, 668, 429. S.N. Bhattacharyya and W.S. Lynn, Biochim. Biophys. A c t a , 1980, 626, 451. A.S.R. Donald, Eur. J. Biochem., 1981, 120,243. D.A. Swann, H.S. S l a y t e r and F.H. S i l v e r , J. B i o l . Chem., 1981, 256, 5291. J. Aggeler, E. Engvall and Z. Werb, Biochem. Biophys. R e s . Commz., 1981, 100, 1195. B. Bayard and J.P. K e r c k a e r t , Eur. J. Biochem., 1981,113, 405. H. Yoshima, T. Mizuochi, M. I s h i i a n d A. Kobata, Cancer Res., 1980, 40, 4776 * A.G. Magee, D.A.W. G r a n t and J. Herman-Taylor, Clin. Chem. A C t a , 1981, 115, 214. A. Yost and B.M. Anderson, J. B i o l . Chem., 1981, 256, 3647. RC. Hunt and N.F. Moore, i n "Cell M e m b r a n e s and V i r a l Envelopes, Vol.1, ed. H.A. Blough and J.M. T i f f a n y , Acad. P r e s s (London), 1980, p.277. C.G. Gahmberg i n "Membrane Structure, New Comprehensive Biochemistry", ed. J.B. Finean and R.H. M i c h e l l , E l s e v i e r , 1981, 1, 127. C.R. P a r i s h , H.C. O ' N e i l and T.J. Higgins, Immunology Today, 1981, 2, 98. H. Debray, Bull. Cancer, 1979, 66, 353. L. Warren and C.A. Buck, Clin. Biochem., 1980, 13,191. S.S. S p i c e r , D.A. Baron, A. Sat0 and B.A. S c h u l t e , J. Histochem. Cytochem., 1981, 29, 994. H.S. S l T y t e r and J.F. Codington, Biochem. J., 1981, 193,203. J.P. Banga, P. P e n f o l d and I.M. R i o t t , Biochem. J., 1981, 198, 421. D.C. H i x s o n , J.M. Yep, J.R. G l e n n e y , T. Hayes a n d G.F. W a l b o r g , J. Histochem. Cytochem., 1981, 29, 561 D. Tsao and Y.S. K i m , J. B i o l . Chem., 1981, 256, 4947. S.A. C a r l s e n , E. Schmell, P.H. Weigel and S. Roseman, J. B i o l . Chem., 1981, 256, 8058.
Carbohydrate Chemistry
334
Struc. Function, 1980, 5, 347. 556 T. Sasaki and T. Sakagami, 557 C. Ocklind, K. Rubin, B. Obrink, FEBS Lett., 1980, 121, 47. 558 H. Debray, B. Fournet, J. M o n t r e u i l , L. Dorland and J.F.G. V l i e g e n t h a r t , 559. Eur. J. Biochem., 1981, 559 C. B o n f i l s , F. Nato, R. B o u r r i l l o n , C. Balny, FEBS Lett., 1981, 123,222. 560 J. Harford and G.G. Ashwell, Proc. Natl. Acad. Sci. USA, 1981, 3,1557. 135. 561 H. Nakada, T. Sawamura and Y. W h i r o , J. Biochem. (Tokyo), 1981, 9, 562 Y. Mizuno, Y. Kozutsumi, T. Kawasaki and I. Yamashina, J. Biol. olem., 1981, 256, 4247. 563 A.L. Schwartz, S.E. F r i d o v i c h , B.B. Knowles and H.F. Lodish, J. B i o l . Chem. 1981, 256 8878. 564 D.K. Strickland, T.T. Andersen, R L H i l l and F.J. Castellino, Biochemistry, 1981, 20, 5294. 565 M.T. Debanne, P.A. Chindemi and E. Regoeczi, J. B i o l . Chem., 1981, 256, 4928. 566 D.B. Cawley, D.L. Simpson and H.R. Herschman, Proc. N a t l . Acad. Sci.USA., 1981, 78, 3383. 56 7 BJI. Dannevig, H. Tolleshaug and T. Berg, Biochim. Biophys. A c t a , 1981, 667, 501. 568 J. Schlepper-Schafer, V. Kolb-Bachofen and H. Kolb, Biochem. J., 1980,186, 827. 569 Y. Maynard and J.U. Baenziger, J. B i o l . Chem., 1981, 256, 8063. 570 R Obrenovitch, C. Sen&, A.C. Roche, M. Monsigny, P. V i s h e r and R.C. Hughes, Biochimie, 1981, 63, 169 s. Acta, 1980, 600, 301. 571 H. Rouhandeh and J.C. R i c h a r d s , Biochim. B i o 572 K.A. Knudsen, P.E. Rao, C.H. D a m s d N a t l . Acad. Sci. USA., 1981. 78. 6071. 573 R R . ' R a b i n s , R. Myerowitz, R.J. Youle, G.J. Murray and D.M. N e v i l l e , J. B i o l . Chem., 1981, 256, 10618. 574 AR. Robbins and R Myerowitz, J. Biol. Chem., 1981, 256, 10623. 575 J.D. Jamieson, D.E. Ingber, V. Muresan, B.E. H u l l , M.P. S a r r a s , M.F. MayliePfenniger and V. Iwanij, Cancer, 1981, 47, 1516. 576 M. D a n a , J. Hourdry, J.S. Hugon, D. Menard, Comp. Biochem. Physiol. B., 1981, 69, 15. 577 A. Herscovics, A. Q u a r o n i , B. Bugge and K. Kirsch, Biochem. J., 1981, 197, 511. 578 S.P. C l a r k and R.S. Molday, Biochemistry., 1 9 7 9 , g , 5868. 579 A.B. Czuppon, L. Mettler, R. Schauer and V. P a w a s s a r a t , Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 963. 580 R. J o n e s , C. Pholpramool, B.P. S e t c h e l l and C.R. Brown, Biochem. J., 1981, 200, 457. 581 J. Herman and B. K d l , Biochim. Biophys. A c t a , 1981, 643, 30. 582 S. Azhar and K.M.J. Menon, Eur. J. Biochem., 1981, 118,25. 583 S. &hen and FLL Earchi, Biochim. Biphys. Acta, 1981, 645, 253. .S. Molday, Biochim. Biophys. Acta, 1981, 647, 259. 584 P. Maher and R 585 M.T. Nunez, J. Glass and E.S. Cole, Biochim. Biophys. A c t a , 1981,673, 137. 586 L.B. G r a b e l , C.G. G l a b e , M.S. S i n g e r , G.R. M a r t i n and S.D. Rosen, Biochem. Biophys. Res. Commun, 1981, 102, ll65. 587 C.K. Ramachandran, C.E. H i g n i t e , S.L. Gray and G. Melnykovych, Biochem. J., 1 9 8 1 , 1 9 8 , 23. 588 S.C. Howard, A.P. Sherblom, J.W. Huggins, C.A.C. Carraway and K.L. Carraway, Arch. Biochem. Biophys., 1981, 207, 40. 589 R.M. H e l m and K.L. Carraway, Exp. C e l l Res., 1981,135, 418. 590 H.J. A l l e n and E.A.Z. Johnson, Biochim. Biophys. A c t a , 1980, 600, 320. 289. 591 V.P. Lehto, T. Vartio a n d I. V i r t a n e n , FEBS Lett., 1981,,&I 592 W.G. Carter and S.I. Hakomori, J. Biol. Chem., 1981, 256, 6953. 593 D.G. Campbell, J. Gagnon, K.B.M. Reid and A.F. W i l l i a m s , Biochem. J., 1981, 195,15. 594 F.E. Cohen, J. Novotnv, M.J.E. S t e r n b e r s_, . D.G. Campbell and A.F. W i l l i a m s , Biochem. J., 1981, 195; 31. M.E. MacDonald, A. B e r n s t e i n and P. Lake, Can. J. 59 5 M. L e t a r t e , J. Add=
=,
-
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
335
Biochem., 1980, 58, 1026. 59 6 R.V.W. van E i j k and P.F. Muhlradt, Eur. J. Biochem., 1981, 115, 23. 59 7 R.A. C h i l d s and T. F e i z i , Biochem. Blophys. R e s . CommE, 1981, 102, 1158. 59 8 J. Ivanyi and .I M c y e s , M o l . Immunol., 1981, 17, 1545. 599 L.M. Keefer and P. De Meyts, Biochem. Biophys. Res. Commun., 1981, 101, 22. 60 0 E.L. Reinherz, R.E. Hussey, F. F i t z g e r a l d , P. Snow, C. T e r h o r s t and S.F. Schlossman, Nature, 1981, 3, 168. 601 R.L. Coffman and I.L. Weissman, Nature, 1981, 289, 681. 602 M. Jett and G.A. Jamieson, Biochemistry, 1981, 20, 5221. 60 3 J. Banchereau, D. Danois, M. Guenounou, G. Durand and J. Agneray, C. R. Hem Seances Acdd. Sci., 1980, 290, 191. 604 U P . Flower ans G.E Wilcax, J. Immunol. Methods, 1981, 46, 347. 605 S.E. C u l l e n , C.S. Kindle, D.C. S h r e f f l e r and C. Cowing, J. Immunol., 1981, 127, 1478. Brown, A.N. Barclay, C.A. S u t h e r l a n d and A.F. W i l l i a m s , Nature, 606 W.R.A. 1981, 289, 456. V a n a g t h o v e n , C. T e r h o r s t , E. R e i n h e r z a n d S. S c h l o s s m a n , 607 A. Eur. J. Immunol., 1981, 11,18. 608 I.S. Trowbridge and KB. Omary, Proc. Natl. Acad. Sci. USA, 1981, 78, 3039. 609 M.B. Omary and I.S. Trowbridge, J. B i o l . Chem., 1981, 256, 12888. 610 R.G. Cook, R.R. Rich and L. F l a h e r t y , J. Immunol., 1981, 127, 1894. 611 S.G. Nathenson, H. Uehara, B.M. Ewenstein, T.J. Kindt and J.E. Coligan, Annu. Rev. Biochem., 1981, 50, 1025. 612 V.L. Alvarez, C.A. R o i t s c h and 0. Henriksen, Anal. Biochem., 1981, 115,353. 613 W.L. Maloy, S.G. Nathenson and J.E. Coligan, J. Biol. Chem., 1981, 256, 2863. 614 ES. K h b d l l , S.G. Nathenson and J.E. Coligan, Biochemistry, 1981, 20, 3301. 615 J.E. Coligan, T.J. Kindt, H. Uehara, J. Martinko and S.G. Nathenson, Nature, 1981, 291, 35. 616 H. U e h a x , J.E. Coligan a n d S.G. Nathenson, Biochemistry, 1981, 20, 5936. 617 H. Uehara, J.E. Coligan and S.G. Nathenson, Biochemistry, 1981, 3, 5940. 618 E.S. K i m b a l l , W.L. Maloy and J.E. Coligan, M o l . Immunol., 1 9 8 1 , g , 677. 619 J.S. Pober, B.C. Guild, J.L. S t r o m i n g e r and W.R. Veatch, Biochemistry., 1981, 20, 5625. 620 E. Sung and P.P. J o n e s , Mol. Immunol., 1981, 18,899. 621 J. Robinson, C. S i e f f , D. Delia, P.A.W. Edwards and M. Greaves, Nature, 1981, 289, 68. 622 K. Sege, L. Rask and P.S. P e t e r s o n , Biochemistry, 1981, 20, 4523. 623 A. T a r t a k o f f , D. Hoessli and P. Vassalli, J. M o l . B i o l . , 1981, 150, 525. 624 A.J. Korman, L.L. Ploegh, J.F. Kaufmann, M.J. Owen and J.L. S t r o m i n g e r , J. Exp. Med., 1980, 152, 655. 625 M.J. Owen, A.M. K i s s o n e r g h i s , H.F. Lodish a n d M.J. Crumpton, J. B i o l . Chem., 1981, 256, 8987. 62 6 M. S h a p i r o a n d R. P. Erickson, Nature, 1981, 290, 503. 627 T. Cotner, H. Mashimo, P.C. Kung, G. G o l d s t e i n and J.L. S t r o m i n g e r , Proc. N a t l . Acad. Sci. USA, 1981, 78, 3858. 628 S.G. Nathenson, H. Uehara, B.M. Ewenstein, T.J. K i n d t and J.E. Coligan, Annu. Rev. Biochem., 1981, 50, 1025. 629 Y. Shecfiter and B.A. Sela, xochem. Biophys. Res. Commun., 1981, 98, 367. 630 H.M. Katzen, D.D. Soderman and B.G. Green, Biochem. Biophys. R e s . Commun., 1981, 98, 410. 631 J.A. H e d o , L.C. H a r r i s o n and J. Roth, Biochemistry, 1981, 2,3385. 632 G.V. R o n n e t t and M.D. Laine, J. Biol. Chem., 1981, 256, 4704. Med., 1980, 152, 1699. 633 E Remold-O'Donnell, J. 634 G. Kaplan and R. O l s t a d , Exp. C e l l Res., 1981, 135,379. 635 T.A. S p r i n g e r , J. B i d . Chem., 1981, 256, 3833. 636 F. Aman, and D. Mizuno, J. Biochem. (Tbkyo),1981, 89, 1149. 637 E G l a s s , J. Stewart and DM. W e i r , Immunol , 1981, 44, 529. 1981, 209, 638 G. Mengod, E.N. Hughes and J.T. August, Arch?Biochem.-&ophys., 718.
w.
336 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
Carbohydrate Chemistry A.C. Morgan, D.R.
126, 365. S. TUTCO,J.S.
Galloway, K. I m a i and R.A.
R e i s f e l d , J. Immunol.,
1981,
Rush a n d R.A. Laine, J. Biol. Chem., 1980, 255, 3266. J.S. Rush, S.J. T u r m and R.A. Laine, Biochem. J., 1981, 193,361. M. Fukuda, Nature, 1980, 285, 405. A.R. Pecoud, S. Ruddy and D.H. Conrad, J. Immunol., 1981, 126,1624. B.L. Hempstead, C.W. P a r k e r and A. Kulczycki, J. B i o l . Chem., 1981, 256, 10717. M. Fukuda, H.P. Koeffler a n d J. Minowada, Proc. N a t l . Acad. S c i . USA., 1981, 78, 6299. E.N. Hughes, G. Mengod and J.T. August, J. Biol. Chem., 1981, 256, 7023. M.C. Fishman, P.R. D r a g s t e n and I. S p e c t o r , Nature, 1981, 2,781. J.N. George, L.L. Thoi a n d R.K. Morgan, Thromb. Res., 1981, 23, 69. A. Rotman and S. L i n d e r , Thromb. Res., 1981, 22, 227. S. Menashi, H. Weintroub and N. Crawford, J.xiol. Chem., 1981, 256, 4095. R.P. McEver, N.L. Baenziger and P.W. Majerus, J. Clin. Invest., 1980, 66, 1311. D.M. P e t e r s o n and B. Wehring, Thromb. Res., 1981, 22, 53. J.R. Holahan a n d G.C. White, Blood, 1981, 57, 174. J.L. McGregor, K.J. Clemetson, E. James, A. C a p i t a n i o , T. Greenland, E.F. Liischer and M. Dechavanne, Eur. J. Biochem., 1981, 116, 379. R. Apitz-Castro, G. Fonesca, V. Michelena a n d X R . Cruz, Thrombosis Hamstatis, 1981, 45, 130. A.T. Nurden, D. D u p z s , T.J. Kunicki a n d J.P. Caen, J. Clin. Invest., 1981, 67,1431. L.P. Thuy, R.F. Baugh, J.E. Brown and C. Houghie, Biochim. Biophys. Acta, 1981, 678, 187. S. Elodi,K. Varadi and E. V i i r o s , Thromb. Res., 1981, 2, 695. P. Ganguly a n d N.G. F o s s e t t , Blood, 1981, 57, 343. H.R. Prasanna, H.H. Edwards a n d D.R. P h i l l i p s , Blood, 1981, 57, 305. P. Ganguly and N.G. Fossett, Biochm. Biophya. Res. Commun., 1981, 99, 176. K J . Clemetson, H.Y. N a i m , E.F. Liischer, Proc. N a t l . Acad. S c i . USA, 1981, 78, 2712. B. Bauvois, R. Cacan, AT. Nurden, J. Caen, J. M o n t r e u i l , A. V e r b e r t , FEBS Lett., 1981, 125,277. L.L.K. Leung, T. K i n o s h i t a and RL. Nachman, J. Biol. Chem., 1981, 256, 1994. M.J. P o l l e y , L.L.K. Leung, F.Y. C l a r k and R.L. Nachman, J. Exp. Med., 1981, 154, 1058. L.L.K. Leung, T. K i n o s h i t a and R.L. Nachman, J. Biol. Chem., 1981, 256, 1994. G.O. Gogstad, N.O. Solum and I. Hagen, Thromb. Res., 1981, 24, 157. M.A. Blajchman, A.F. S e n y i , J. H i r s h , E. Genton and J.N. George, J. C l i n . Invest., 1981, 68, 1289. T.D. Butters and RC. Hughes, Biochim. Biophys. A c t a , 1981, 640, 655. N. F r a n t z i s and C. Vakirtzi-Lemonias, Biochem. Soc. Trans., 1981, 9, 135. D.J. Anderson a n d G. B l o b e l , Proc. N a t l . Acad. S c i . USA, 1981, 2, 5598. J.G. P i e r c e and T.F. Parsons, Annu. Rev. Biochem., 1981, 50, 465. , 15. R.P. Cox and D.G. Day, Adv. C e l l C u l t u r e , 1981, I J.G. P i e r c e and T.F. P a r s o n s i n " E v o l u t i o n of p r o t e i n s t r u c t u r e a n d f u n c t i o n " , ed. D.S. Sigman and M.A.B. B r a z i e r , Acad. P r e s s (New York), 1980, p. 99. H. Takahashi and Y. Hanaoka, J. Biochem. ('Ilokyo), 1981, 90, 1333. C.V. Rao, S. Mitra and F.R. Carmian, J. Biol. Chem., 1981, 256, 2628. G.S. Cox, B i o c h e m i s t r y , 1981, 20, 4893. Y. Cambarnous, R Salesse and J. Garnier, Biochim. Biphys. A c t a , 1981, 667, 267. o l o r i o n i c gonadotrophin, ed. SJ. Segal, Plenum Publishing Corp., New York, 1980. M.C. S t u a r t , S. E l l i s , L. Gowlland and S. T u f f , C l i n . Chem., 1981, 27, 52. S. Iwasa, C. K i t a d a , I. Y o s h i d a , K. Kondo, M. Hori a n d M. F u j i n o ,
5: Glycoproteins, Glycopeptides, Protwglycans, and Animal Polysaccharides 682 683 684
337
J. Biochem. (Tokyo), 1981, 89, 1091. R.W. Ruddon, A.H. Bryan, C.A. Hanson, F. P e r i n i , L.M. C e c c o r u l l i and B.P. 1981, 256, 5189. Peters, J. B i o l . Chem:, G. Kapadia, J. Vaitukaitis and A. Ohrambach, Prep. Biochem., 1981, 11, 1. R.W. Ruddon, A.H. Bryan, K.S. Meade-Cobun and V.A. P o l l a c k , Cancer Res., 1980., 40. 4007. ~BiT.-Basus and L.F. A f f r o n t i , I n f e c . Immun., 1981, 32, 1211. G.S. Cax, Biochem. Biophys. Res. Comm., 1981, 98, 9 4 x R.V. Rebois, F. Omedeo-Sale, R.O. Brady and P.H. Fishman, Proc. N a t l . Acad. Sci. USA, 1981, 78, 2086. H.M. Madnick, N.K. K a l y a n , H.L. S e g a l a n d O.P. B a a l , Arch. Biochem. Biophys., 1981, 212, 432. N.K. Kalyan and O.P. Bahl, Biochem. Bioph s. Res. Commun., 1981, 102, 1246. K.C. Ingham and SJL Brew, Biochim. Bio&s. A&, 1981, 670, 1 8 1 7 D. B e l l e t , J.M. Arrang, G. Contesso, J.M. C a i l l a u d and C. Bohaun, Eur. J. Cancer, 1 9 8 0 , E , 433. J.M. Governman and J.G. P i e r c e , J. B i o l . Chem., 1981, 256, 9431. T.F. P a r s o n s and J.G. P i e r c e , Proc. N a t l . Acad. Sci. USA, 1980, 77, 7089. M.R. Sairam, Biochem. J., 1981,197, 535. M.R. Sairam, N.G. Seidah and M. Chrgtien, Biochem. J., 1981, 197, 541. Y. Cambarnous and M.H. Heng6, J. B i o l . Chem., 1981, 256, 9 5 6 7 7 J.A. Dias, W.J. D r i s k e l i and L.E. R e i c h e r t , Anal. Biochem., 1981, 114,268. CA. Spencer and J.T. N i c o l o f f , Clin. Chim. A c t a , 1980,108, 415. W.W. Chin, F. Maloof and J.F. Habener, J. B i o l . Chem., 1981, 256, 3059. J.W. J a c o b s , P.K. Lund, J.T. P o t t s , N.H. B e l l and J.F. Habener, J. Biol. Chem., 1981, 256, 2803. C. Ronin, C. Caseti and S. Bouchilloux, Biochim. Biophys. Acta, 1981, 674, 48. C. Ronin and C. Caseti, Biochim. Biophys. A c t a t 1981, 674, 58. P. C r i n e , N.G. Seidah, L. J e a n o t t e and M. Chr&ien, Can. J. Biochem., 1980, 58, 1318. N.G. Seidah, S. Benjannet and M. Chrgtien, Biochem. Biophys. Res. Commun., 1981, 100, 901. N.G. Seidah, J. Rochemont, J. Hamelin, M. L i s and M. Chr&ien, J. Biol. Chem., 1981, 256, 7977. N.S. H a l m i , J. Histochem. Cytochem., 1981, 2, 837. J.G. C o l l i n s , J.H. Bradbury, E. T r i f n o f f and M. Messer, Carbohydr. Res., 1981, 92, 136. K. Takase and K.E. Ebner, J. B i o l . Chem., 1981, 256, 7269. C.C. Contaxis and C.C. Bigelaw, Biochemistry, 1981, 20, 1618. LJ. Berliner and R Kaptein, Biochemistry, 1981, 20, 799. P.B. Sommers and M.J. Kronman, Biochim. Biophys. Acta, 1980, 626, 366. E.A. Permyakov, V.V. Yarmolenko, L.P. Kalinichenko, L.A. Morozova and E.A. 1981, ., 100, . 191. Burstein, - Biochem. Biophys. Res. & ~ ~ u I I S.K. Sinha and K. B r e w , J. Biol. Chem., 1981, 256, 4193. K. B e l l , H.A. McKenzie and D.C. Shaw, Aust. J. Biol. Sci., 1981, 34, 133. K. B e l l , K.E. Hopper and H.A. McKenzie, Aust. J. B i o l . Sci., 1981, 34, 149. H. D o i , H. Kobatake, F. I b u k i and M. KanaChem., 1980, 44, 2605. A.M. F i a t , J. J O l l B S , M.H. Loucheux-Lafebvre, C. A l a i s and P. JollBs, HoppeSeyler's 2. physiol. Chem., 1981, 362, 1447. T. S a i t o , T. I t o h and S. Adachi, Biochim. Biophys. Acta, 1981, 673, 487. T. S a i t o , T. I t o h , S. Adachi, T. Suzuki and T. Usui, Biochim. Biophys. 1981. 678. 257. H. v a n y a l b e e k , L. Dorland, J.F.G. V l i e g e n t h a r t , A.M. F i a t , P. Joll&s, FEBS Lett., 1981, 133,45. M. Horisberger and M. Vonlanthen, J. D a i R e . , 1980, 47, 185. H. D o i , F. I b u k i and M. K a M m O r i , Agric. ziol. Chem., 1981, 45, 2351. S. S o u l i e r and P. Gaye, Biochimie, 1981, 63, 619. M. Hirose, T. K a t o , K. O m o r i , M. Maki, M. Yoshikawa, R. S a s a k i and H. Chiba, B i o c h i m . Biophys. A c t a , 1981, 667, 309. ~~
685 686 687 688 689 690 69 1 69 2 69 3 694 69 5 696 697 698 699 700 701 702 70 3 704 705 706 7 07 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
e,
338
Carbohydrate Chemistry
725 A. S a f i and R. H a r r i s o n , Biochem. SOC. Trans., 1981, 9, 436. 726 J.P. Bradshaw and D.A. White, Biochem. J., 1981, 198, 683. 727 I.K. V i j a y , G.H. Perdew a n d D.E. Lewis, J. Biol. Chem., 1980, 255, 11210. 728 I.K. V i j a y and G.H. Perdew, J. Biol. Chem., 1980, 255, 11221. 729 H. van Halbeek, L. Dorland, J.F.G. V l i e g e n t h a r t , G. Spik, A. Cheron a n d J. Montreuil, Biochim. Biophys. A c t a , 1981, 675, 293. 730 M.H. Metz-Boutigue, J. Joll&s, J. Mazurier, G. S p i k , J. M o n t r e u i l a n d P. Joll&s, FEBS Lett., 1981, 132, 239. 731 H. Okubo, 0. Miyanaga, M. Nagano, H. I s h i b a s h i , J . Kudo, T. I k u t a and K. Shibata, Biochim. Biophys. A c t a , 1981, 668, 257. 732 K. Wu, D. Wang and R.D. Feinman, J. B i o l . Chem., 1981, 256, 10409. 733 J.B. B i e t h , M. Tourbez-Perrin and F. Pochon, J. B i o l . Chem., 1981, 256, 7954. 734 L. S o t t r u p - J e n s e n , T.E. P e t e r s e n a n d S. Magnusson, FEBS Lett., 1980, 121, 275. 735 L. S o t t r u p - J e n s e n , H.F. Hansen, S.B. Mortensen, T.E. P e t e r s e n and S. Magnusson, FEES Lett., 1981, 123, 145. 736 L. S o t t r u p J e n s e n , T.E. P e t e r s e n a n d S. Magnusson, FEBS Lett., 1981, 128, 123. 737 L. S o t t r u p - J e n s e n , T.E. P e t e r s e n a n d S. Magnusson, FEBS Lett., 1981, 128, 127. 738 F. van Leuven, J.J. Cassiman and H. van den Berghe, J. Biol. Chem., 1981, 256, 9016 739 F. van Leuven, J.J. Cassiman a n d H. van den Berghe, J. B i o l . Chem., 1981, 256, 9023. 740 G.S. S a l v e s e n , C.A. S a y e r s and A.J. Barrett, Biochem. J., 1981, 195,453. 741 S.B. Mortensen, L. S o t t r u p - J e n s e n , H.F. Hansen, D. R i d e r , T.E. P e t e r s e n , S. Magnusson, FEES Lett;, 1981, 129, 314. 742 L. S o t t r u p - J e n s e n , P.B. Lphblad, T.M. S t e p a n i k , T.E. P e t e r s e n , S. Magnusson a n d H. J o r n v a l l , FEBS Lett., 1 9 8 1 , 1 2 7 , 167. 743 P.K. H a l l , L.P. Nelles, J. T r a v i s and R.C. Roberts, Biochem. Biophys. Res. Commun., - 1 9 8 1 , 1 0 0 , 8. 744 J. Bienvenu, L. Sann, F. Bienvenu, C. Lahet, P. Divry, J. C o t t e and M. Bethenod, Clin. Chem., 1981, 27, 721. 745 GA. Ricca and J.M. T a y l o r , J. B i o l . Chem., 1981, 256, 11199. 746 I. Nicollet, J.P. Lebreton, M. F o n t a i n e and M. Hiron, Biochim. Biophys. Acta, 1981, 668, 235. 747 C. Wells, T z w g - H a n s e n , E.H. C o o p e r and M.R. Glass, C l i n . Chim. Acta, 1981, 109, 59. 748 H. van Halbeek, L. Dorland, J.F. V l i e g e n t h a r t , J. M o n t r e u i l , B. F o u r n e t and K. Schmid, J. B i o l . Chem., 1981, 256, 5588. 749 M. Bennett and K. Schmid, Proc. Natl. Acad. Sci. USA, 1980, 77, 6109. 750 G. S c h r e i b e r , H. Dryburgh, K. Weigand, M. S c h r e i b e r , I. W i t t , H. Seydewitz and G. H o w l e t t , Arch. Biochem. Biophys., 1981, 212, 319. 751 D.E. R o l l a n d R.H. G l e w , J. Biol. Chem., 1981, 256, 8190. 752 L. Vaughan a n d R. C a r r e l l , Biochem. Int., 1981, 2, 461. 753 K. Hochstrasser, O.L. Schijnherger, K. Lempart and M. Metzgar, HoppeSeyler's 2. Physiol. Chem., 1981, 362, 1363. 754 Y. I k e h a r a , M. Miyasoto, S. Ogata and K. O d a , Eur. J. Biochem., 1981, 115, 253. 755 2. Parvez, J. Fareed, H.L. Messmore and R. Moncada, Thromb. Res., 1981, 24, 367. 756 M. Tanaka a n d K. Kato, Thromb. Res., 1981, 22, 67. 757 T.F. Busby, D.H. Atha and K.C. Ingham, J. B i o l . Chem., 1981, 256, 12140. 758 W.F. Long a n d F.B. W i l l i a m s o n , Biochem. SOC. Trans., 1981, 2, 68. 759 R. Machovich, P.I. Bauer, P. A r a y i , E. Kecskes, K.G. Biichi a n d I. Horvath, Biochem. J., 1981, 199, 521. 760 S.T. Olson and J.D. Shore, J. Biol. Chem., 1981, 256, 11065. 761 S.T. Olson, K.R. S r i n i v a s a n , I. Bjork a n d J.D. Shore, J. Biol. Chem., 1981, 256, 11073. 762 L W i l l i a m s and G. Murano, Blood, 1981, 57, 229.
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 79 0 79 1 79 2 79 3 794 79 5 79 6 79 7 79 8 799 800 801 802 803 804 805 806
339
G. Murano, M. Miller-Anderson and L W i l l i a m s , Thromb. Res., 1981, 24, 489. I. B j o r k , A. Danielsson,J.W. F e n t o n a n d H. J o r n v a l l , FEBS L e t t . , 1 9 8 1 , 126, 257. L.W. Hoyer, Blood, 1 9 8 1 , 58, 1. J.M. Yoder, L.A. S c h i c k and R.P. More, Thromb. Res., 1981, 24, 51. M.J. S e g h a t c h i a n a n d I.J. Mackie, Thromb. Res., 1981, 24, 473. R. L j u n g a n d L. Holmberg, Thromb. Res., 1981, 24, 45. K.J. Kao, S.V. P i z z o a n d P.A. M c K e e , Blood, 1 9 8 1 , 57, 579. G. Kemball-Cook, R.A. F u r l o n g , I.R. P e a k e a n d T.W. Barrowclif f e , Thromb. Res., 1 9 8 1 , 23, 193. L.O. A n d e r s s o n , L.P. Thuy a n d J.E. Brown, Thromb. Res., 1981, 23, 481. S.A. S a n t o r o , Thromb. Res., 1981, 21, 689. D.M. S c o t t , B. G r i f f i n , D.S. P e p p e r a n d M.J. B a r n e s , Thromb. Res., 1981, 24, 467. L.O. A n d e r s s o n , J. Chromatogr., 1981, 215, 153. B.A. P e r r e t , M. F u r l a n , F. Kneubeuhl a n d E.A. Beck, Biochim. Biophys. A c t a , 1 9 8 1 , 669, 98. R.B. H a r r i s , J. Newman and A.J. Johnson, B i o c h i m . Biophys. Acta., 1981, 668, 456. R.B. Harris, RJ. J o h n s o n a n d L.T. H o d g i n s , Biochim. Biophys. Acta., 1981, 668, 471. EP. Kirby, Thromb. Haemostatis, 1981, 46, 479. G.A. Vehar a n d E.W. Davie, B i o c h e m i s t r y , 1980, 19,401. C.G. Cockburn, R.J. Debeau Fre-Apps, J. W i l s o n a n d R.M. H a r d i s t y , Thromb. Res., 1981, 21, 295. M. W e i n s t e i n , L. C h u t e and D. Deykin, Proc. N a t l . Acd. S c i . USA, 1 9 8 1 , 78, 5137. M.E.P. S w i t z e r a n d P.A. McKee, J. B i o l . Chem., 1980, 255, 10606. M.I. Kavanagh, C.N. Wood a n d J.F. Davidson, Thromb. Haemostasis, 1981, 45, 267. S. Mikami, Y. T a k a h a s h i , M. N i s h i n o , Y. Okubo a n d H. F u k u i , Thromb. Haemostasis, 1981, 45, 272. S.E. M a r t i n , V.J. M a r d e r , C.W. F r a n c i s a n d G.H. B a r l o w , Blood, 1981, 57, 313. B.L. D a v i e s , R.A. F u r l o n g a n d I.R. Peake, Thromb. Res., 1 9 8 1 , 22, 87. A. La j m a n o v i c h , G. Hudry-Clergeon, J.M. F r e y s s i n e t a n d G. M a r g u e r i e , 132. Biochim. Biophys. A c t a , 1981, G. Rock, W.H. C r u i c k s h a n k a n d D.S. P a l m e r , Thromb. Res., 1981, 21, 53. G. van D i e i j e n , G. T a n s , J. R o s i n g a n d H.C. Hemker, J. B i o l . Chem., 1 9 8 1 , 256s 3433. J.M. F r e y s s i n e t , FEBS L e t t . , 1 9 8 1 , 1 2 4 , 48. P. Margaritella and E. Deutsch, Thromb. Res., 1981, 21, 585. C.H. H a m m e r , G.H. W i r t z , L. R e n f e r , H.D. Gresham a n d B.F. Tack, J. B i o l . Chem., 1981, 256, 3995. K. Yonemasu and T. S a s a k i , Biochem. J., 1 9 8 1 , 1 9 3 , 621. M.D. G o l a n , T. H i t s c h o l d and M. Loos, FEBS L e t t . , 1981, 128,281. R.B. Sim a n d E. Sim, Biochem. J., 1981, 193,129. J.B. Monahan a n d J.M. S o d e t z , J. B i o l . Chem., 1980, 255, 10579. P.J. H i g g i n s a n d H.F. Bunn, J. B i o l . Chem., 1981, R. Dolhofer and O.H. Wieland, C l i n . Chim. A&, 1981, 112, 197. KA. Ney, K.J. C o l l e y a n d S.V. P i z z o , Anal. Biochem., 1 9 8 1 , 118,294. S.S. Nay& and T.N. Pattabiraman, Clin. Chim. A c t a , 1981, 109, 267. P.M. Gallop, R. F l i i c k i g e r , A. Hanneken, M.M. M i n i n s o h n n d K.H. Gabbay, Anal. Biochem., 1981, 117, 427. K.M. P a r k e r , J.D. England, J. da C o s t a , R.L. Hess a n d D.E. G o l d s t e i n , C l i n . Chem., 1981, 27, 669. D.M. Nathan, C l i n . Chem., 1 9 8 1 , 27, 1261. A. M a , M.A. Naughton a n d D.P. Cameron, C l i n . Chim. Acta, 1981, 115,111. E.C. Ahraham, Biochim. Biophys. A c t a , 1981, 667, 168. A.P.M. S c h e l l e k e n s . G.T.B. S a n d e r s , W. T h o r n t o n a n d T. van G r o e n e s t e i n . C l i n . Chem., 1 9 8 1 , 94.
678,
2E%?E%5204.
a,
340
Carbohydrate Chemistry
807 A. Read, L. T i b i andA.F. Smith, Clin. Chim. A c t a , 1981, 108,487. 808 E. S c h l e i c h e r , T. Deufel and O.H. Wieland, FEBS L e t t . , 1981, 129, 1. 809 J.A. Miller, E. Gravallese and H.F. Bunn, J. C l i n . I n v e s t . , 1980, 65, 896. 810 D.B. R y l a t t , D.Y. S i a , J.P. Mundy and C.R. P a r i s h , Eur. J. Biochem., 1981, 119, 641. . . Morgan, Biochemistry, 1981, 2, 1054. 811 WT 8 12 C. Vincent, J.P. R e v i l l a r d and B. C h a r p e n t i e r , C.R. H e b d . Seances, Acad. S c i . Ser. 111, 1981, 292, 755. 813 D.R. P l e d g e r , A. B e l f i e l d and P. Stromberg, J. Clin. Chem. Clin. Biochem., 1981, 19,943. 814 S.D. Bolmer and EA. Davidson, Biochemistry, 1981, 3, 1047. 815 M . M i i l l e r , H. Lasarcyk and W. Burchard, I n t . J. Biol. Macromol., 1981, 3, 19. 816 K.F. Geoghegan, J.L. Dallas and R.E. Feeney, J. B i o l . Chem., 1980, 255, 11429. 817 F. Erard, S.Y. Cheng and J. Robbins, Arch. Biochem. Biophys., 1981, 206, 15. 818 J. Breborowicz, A. Macklewicz and D. Breborowicz, Scand. J. Immunol., 1981, 14, 15. 819 #I. Halliday and G.B. Wisdom, Biochem. Soc. Trans., 1981, 9, 330. 820 H. Tolleshaug, I n t . J. Biochem., 1981, 13,45. 821 J.C. O b e r h o l t z e r , S.W. Englander and A.F. Horwitz, B i o c h e m i s t r y , 1981, 20, 4785. 822 P. K i s s , F. S h a r b e r t and R. Kattermann, Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 897. .. Chapman, Biochemistry, 1981, 20, 1025. 823 S. Goldstein and MJ 824 T. Diaz-MauriTlo and A. Albert, Biochim. Biophys. A c t a , 1981, 677, 381. 825 J.M. Nickerson and GM. Fuller, Biochemistry, 1981, 20, 2818. 826 H.R. L i s t e n , B. van Hoef and D. Colien, Eur. J. Biochem., 1981, 120, 149. 827 Y. Gazitt, 2. Gilead, G. Klein and D. Sulitzeanu, J. Immunol. M e t h o d s , 1981, 43, 49. 828 F. Halliman and E. Tempany i n Current Problems New Trends i n Cystic Fibrosis: Monographs i n P a e d i a t r i c s , v o l 14, ed. M. Schoni and R. Kraemer, S. Karger (Basel) 1981, 14,40. 829 F. Hallinan and E. Tempany, Biochem. Soc. Trans., 1981, 2, 328. 830 W.W. M u e l l e r and J.M. P o t t e r , Biochem. J., 1981, 197, 645. 831 J.G. Duman, J.L. P a t t e r s o n , J.J. Kozak and A.L. Deyries, Biochim. Biophys, A c t a , 1980, 626, 332. 832 D . l a u g h t e r a n d C.L. Hew, Anal. Biochem., 1981,115, 212. 833 C. Cunningham-Rundles, Eur. J. Immunol., 1981, 11, 504. 834 S. Binion and L.S. Rodkey, Anal. Biochem., 1981,112, 362. 8 35 B.W. Maidment, L.D. Papsidero, M. Gamarra, T. Nemoto and T.M. Chu, Anal. 336. Biochem., 1981, 836 J. Rousseaux, M.T. Picque, H. Bazin and G. Biserte, M o l . Immunol., 1 9 8 1 , & 639. 837 D.J. McVeigh and C.N. Chesterman, Thromb. Res., 1981, 23, 559. 838 T.D. Heath, B.A. Macher and D. Papahadjopoulos, Biochim. Biophys. Acta, 1981, 640, 66. 839 V.K. J a n s o n s and P.L. Mallett, Anal. Biochem., 1981,111, 54. 840 D.M. Kranz, J.N. Herron, D.E. G i a n n i s and E.W. Voss, J. Biol. Chem., 1981, 256, 4433. 841 M. K l e i n , N. H a e f f n e r c a v a i l l o n , D.E. Isenman, C. R i v a t , M.A. Navia, D.R. Davies and K J . Dorrington, Proc. Natl. Acad. Sci., USA, 1981, 78, 524. 842 M.D. W o n and G.A. Quash, Immunology, 1981,%, 401. 843 T. Tomono, T. Suzuki and E. Tokunaga, Biochim. Biophys. Acta, 1981, 660, 186. 844 R. Luedtke, C.S. Owen, J.M. Vanderkooi and F. Karush, B i o c h e m i s t r y , 1981, 20, 2927. Mendicino, E.V. Chandrasekaran, T. 84 5 F.A. Garver, L.S. Chang, C.R. K i e f e r , Isobe and E.F. Ossennan, Eur. J. Biochem., 1981, 115, 643. 846 E.V. Chandrasekaran, R Mendicino, F.A. Garver and J. Mendicino, J. B i o l . Chem., 1981, 256, 1549.
111,
J.
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
341
Dorrington, 84 7 G. S a v v i d o u , M. K l e i n , C. H o r n e , T. Hofman a n d K.J. M o l . Immunol., 1981, 18, 793. 848 S. Weitzman and J. Pf&tmore, J. Immunol., 1981, 127, 2095. 849 I. Garcia a n d J.C. J a t o n , Biochem. J., 1981, 197,177. 850 T. Takayasu, N. Takashi, T. Shincda, T. Okuyama and H. Tbmioka, J. Biochem. (Tokyo), 1981, 89, 421. 851 H.C. O ’ N e i l l , C.R. P a r i s h a n d T.J. Higgins, M o l . Immunol., 1981, 18,663. 852 E.A. Kabat, J. L i a o , M.H. Burzynska, T.C. Wong, H.Thdgersen a n d R.U. Lemieux, M o l . Immunol., 1981, 18, 873. 853 J.H. P a z u r , K.R. F o r r y , Y. Tominaga a n d E.M. B a l l , Biochem. Biophys. R e s . Commun., 1981, 100, 420. 854 J. S h a r o n , E.A. K a b a t a n d S.L. M o r r i s o n , Mol. Immunol., 1 9 8 1 , 18,831. 855 M. T o r i i , B.P. A l b e r t 0 a n d S. Tanaka, J. Biochem. (Tokyo), 1 9 8 0 , 88, 1855. 856 A. Roy, B.N. M a n j u l a a n d C.P.J. Glaudemans, M o l . Immunol., 1 9 8 1 , 18,79. 857 M. B l o c k h a u s , J.L. Magnani, M. B l a s z c z y k , 2. S t e p l e w s k i , H. Koprowski, K.A. Karlsson, G. Larson and V. Ginsburg, J. B i o l . Chem., 1981, 256, 13223. 858 H. S c h e n k e l - B m e r and P. Hanflard, Vox Sanguinis, 1981, 40, 358. 859 W.W. Young, J. P o r t o u k a l i a n a n d S.I. Hakomori, J. B i o l . Chem., 1981, 256, 10967. 860 E.F. H o u n s e l l , H.C. Gooi a n d T. F e i z i , FEBS L e t t . , 1 9 8 1 , 131,279. 8 6 1 E. Nudelman, S.I. Hakomori, B.B. Knowles, D. S o l t e r , R.C. N o w i n s k i , M.R. Tam and W.W. Young, Biochem. Biophys. Res. Commun., 1980, 97, 443. 862 E. Nudelman, S.I. Hakomori, B.B. Knowles, D. S o l t e r , R.C. N o w i n s k i , M.R. Tam and W.W. Young, Biochem. Biophys. Res. Commun., 1981, 98, 348. 863 D. R o e s c k e , Vox Sanguinis, 1981, 41, 98. R.U. Lemieux, D A . B a k e r , W.M. W e i n s t e i n a n d C.M. S w i t z e r , B i o c h e m i s t r y , 864 1 9 8 1 , 20, 199. 865 G.T. Rogers, G A . R a w l i n s a n d K.D. Bagshawe, B r i t . J. C a n c e r , 1 9 8 1 , 43, 1. 866 D.E. Haagensen, C.E. Cox, W.G. D i l l e y , M. H a n s l e y , J. Murdoch, E.S. Newman a n d S.A. W e l l s , C l i n . Chem., 1980, 26, 1787. 867 H. H i r a i , Y. Tsukada, A. Hara, N. H i b i , S. N i s h i , H.T. Wepsic, T. Koji a n d N. I s h i i , J. Chromatogr, 1981, 215, 195. 868 M.L. Kavanagh, C.N. W o o d a n d J.F. Davidson, T h r o m b o s i s Haemostatis, 1 9 8 1 , 45, 60. 869 J.A. Katzmann, D.K. Mujwid, R.S. M i l l e r a n d D.N. F a s s , Blood, 1 9 8 1 , 58, 530. 8 70 J. H i l k e n s , J.M. T a g e r , F. B u i j s , B. Brouwer-Kelder, G.M. van T h i e n e n , F.P.W. Tegelaers and J. H i l g e r s , Biochim. Biophys. A c t a , 1981, 678, 7. 871 J.M. Gallagher and G.B. Wisdom, Biochem. Soc. Trans, 1981, 2, 331. 872 C. R i c k a r d s , P. Buckland, B.R. S m i t h a n d R. H a l l , FEBS L e t t . , 1 9 8 1 , 127,17. 873 A.L. Barsoum a n d E.A. Davidson, Mol. Immunol., 1981, g, 367. 874 D.E. B r i l e s , J.L. C l a f l i n , K. S c h r o e r a n d C. Forman, N a t u r e , 1 9 8 1 , 294, 88. 875 R. Myllyla, Biochim. Biophys. A c t a , 1981, 658, 299. 876 R.J. Y o u l e a n d D.M. Neville, P r o c . N a t l . Acad. S c i . USA, 1980, 77,5483. 877 K A . K r o l i c k , C. V i l l e m e z , P. I s a k s o n , J.W. Uhr a n d E.S. V i t e t t a , Proc. Natl. Acad. Sci. USA, 1 9 8 0 , 77, 5419. 878 R.P. McEver, N.L. B a e n z i g e r a n d P.W. M a j e r u s , J. C l i n . I n v e s t . , 1 9 8 0 , 66, 13ll. 879 G. Mengod, E.N. Hughes a n d J.T. A u g u s t , Arch. Biochem. Biophys., 1 9 8 1 , 209, 718. 880 L.A. H a d w i g e r , J.M. Beckman a n d M.J. A d a m s , P l a n t . Ph siol., 1 9 8 1 , 67, 170. Med., 1 9 8 0 , 151, 881 B. C l e v i n g e r , J. S c h i l l i n g , L. H o o d a n d J.M. Davie, J.’Exp. 1059. 882 A. P i e r c e - C r e t e l , M. Pamblanco, G. S t r e c k e r , J. M o n t r e u i l a n d G. S p i k , Eur. J. Biochem., 1981, 114,169. 883 G. S t r e c k e r , A. P i e r c e - C r e t e l , B. F o u r n e t , G. S p i k a n d J. M o n t r e u i l , Anal. Biochem., 1981, 111,17. 884 L.C. Kiihn a n d J.P. K r a e h e n b u h l , J. B i o l . Chem., 1 9 8 1 , 256, 12490. 885 R. Z i d o v e t z k i , 0. F a r v e r a n d I. P e c h t , Eur. J. Biochem., 1 9 8 1 , 114,97. 886 H. K i k u t a n i , R. S i t i a , R.A. Good a n d J. S t a v n e z e r , Proc. N a t l . Acad. Sci., USA, 1981, 78, 6436. 887 L Matsuuchi, LA. W i m s and S.L. Morrison, Biochemistry, 1981, 3, 4827.
342
Carbohydrate Chemistry
888 A.K. B h a t t a c h a r j e e , M.K. Das, A. Roy and C.P.J. Glaudemans, M o l . Immunol., 1981, 18, 277. 889 P. G e t t i n s , J. Boyd, C.P.J. G l a u d e m a n s , H. P o t t e r a n d R.A. Dwek, Biochemistry, 1981, 20, 7463. 890 H. van Haalbeek, L. Dorland, J.F.G. V l i e g e n t h a r t , J. Jouanneau and R. Bourillon, Biochem. Biophys. Res. Commun., 1981, 99, 886. 891 J. Jouanneau and R. B o u r i l l o n , Biochem. Biophys. R e s . Commun., 1979, 91, 1057. 89 2 C.H. S i b l e y and R.A. Wagner, J. Immunol., 1981,126, 1868. 893 M. Lindsheid, J. D'Angona, A.L. Burlingame, A. D e l l and C.E. Ballou, Proc. N a t l . Acad. Sci. USA, 1981, 3,1471. 894 J.R. Wands, R.I. Carlson, H. Schoemaker. K.J. I s s e l b a c h e r and V.R. Zurawski. Proc. Natl.-Acad. Sci. USA, 1981, 2, 1214. 89 5 J. Jouanneau, B. F o u r n e t and R. B o u r r i l l o n , Biochim. Biophys. Acta, 1981, 667, 277. 896 T. Takayasu, N. Takashi and T. Shinoda, Biochem. Biophys. Res. Commun., 1980, 97, 635, 89 7 F.W. Putman, N. Takahashi, D. T e t a e r t , B. Debuire and L.C. L i n , Proc. N a t l . Acad. Sci. USA, 1981, 3, 6168. 898 KS. Neuberger and K. Rajewsky, Proc. Natl. Acad. Sci. USA, 1981, 78, 1138. 899 E.J. Victoria, L.C. Mahan and S.P. Masouredis, Proc. N a t l . Acad. Sci. USA, 1981, 78. 2898. 900 W.B. G r a t z e r , Biochem. J., 1981, 198,1. 9 01 A. Jakobovits, Y. Eshdat and N. Sharon, Biochem. Biphys. Res. Commun., 1981, 100, 1484. 1980, 104, 529. 902 H. Schenkel-Brunner, Eur. J. Bi&em., T. Kameyama, K. O i s h i and K. A i d a , Agric. B i o l . Chem., 1981, 45, 975. 903 904 J. Viitala, K.K. Karhi, C.G. Gahmberg, J. Finne, J. J a r n e f e l t , G. M y l l y l a and T. Krusius, Eur. J. Biochem., 1981, 113,259. 905 L. Gattegno, G. P e r r e t , F. F a b i a , D. B l a d i e r and P. C o r n i l l o t , Carbohydr. Res., 1981, 95, 283. 906 E.Nurden, D. Dupuis, D. P i d a r d and T.J. Kunicki, Biochem. SOC. Trans., 1981, 8, 698. 907 W.J. Mcwbry, D.J. Anstee and M.J.A. Tanner, Nature, 1981, 291, 161. 9 08 J.G. Lindsay, G.P. Reid and M.P. D'Souza, Biochim. Biophys. A c t a , 1981, 640, 791. 909 R.L. Ong, V.T. Marchesi and J.H. P r e s t e g a r d , Biochemistry, 1981, 20, 4283. 9 10 W.L.C. Vaz, H.G. K a p i t z a , J. S t u m p e l , E. Sackmann a n d T.M. J o v i n , Biochemistry, 1981, 20, 1392. 911 H. F u j i i and A. Yoshida, Proc. N a t l . Acad. Sci. USA, 1980, 77, 2951. 9 12 T. I r i m u r a , T. T s u j i , S. Tagami, K. Yamamoto and T. O s a w a , Biochemistry, 1981, 20, 560. 913 R. Prohaska, T.A.W. Koerner, I.M. Armtage and H. Furthmayr, J. B i o l . Chem., 1981, 256, 5781. 914 K. Fukuda, M. Tbmita and R Hamada, Biochim. Biophys. A c t a , 1981, 677, 462. 915 K. Honma, M. Tbmita and R Hamada, J. Biochem. (Tokyo), 1980, 88, 1679. 916 J. Murayama, K. T a k e s h i t a , M. Tomita and A. Hamada, J. Biochem. (Tokyo), 1981, 89, 1593. 917 H. Furthmayr, i n 'Biology of Carbohydrates' ed. V. Ginsburg and P. Robbins, John Wiley, New York, vol.1, p.123. 918 0.0. Blumenfeld, A.M. Adamany, K.V. P u g l i a , Proc. N a t l . Acad. Sci. USA, 1981, 78, 747. 919 W. Dahr, K. Beyreuther, E. G a l l a s c h , J. Kriiger and P. Morel, Hoppe-Seyler's 2. Physiol. Chem., 1981, 362, 81. 920 W. Dahr, M. Dordowicz, K. Beyreuther and J. Kriiger, Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 363. 921 M. Jokinen, I. Ulmanen, L.C. Andersson, L. KaariZnen and C.G. Gahmberg, Eur. J. Biochem., 1981, 114,393. 922 S. Markowitz and V.T. Marchesi, J. B i o l . Chem., 1981, 256, 6463. 923 T. T s u j i , T. I r i m u r a and T. O s a w a , Carbohydr. Res., 1981, 92, 328. 924 T. T s u j i , T. I r i m u r a and T. O s a w a , J. Biol. Chem., 1381, 256, 10497.
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides 925 9 26 927 928 929
930 931 9 32 933 934 935 936 937 938 9 39 940 941 9 42 943 944 945 946 947 948 9 49 9 50 951 952 953 954 955 9 56 957 9 58 959 960 961 962
343
W.A. Braell and H.F. Lodish, J. B i o l . Chem., 1981, 256, 11337. A.S.B. Edge and P. Weber, Arch. Biochem. Biophys., 1981, 209, 697. K. H o t t a , Seikagaku, 1981, 53, 101. M. G u s l a n d i , Clin. mim. ~ c t a ,1981, 117, 3. G. Lamblin, M. Ihermitte, A. Boersma, P. Roussel, H. van Halbeek, L Dorland and J.F.G. V l i e g e n t h a r t , i n 'Current problems and new t r e n d s i n c y s t i c f i b r o s i s ' . Monographs in P a e d i a t r i c s , ed. M. Schoni and R. Kraemer, S. Karger (Basel), 1981, 14,46. P.W. Cheng, J.M. Sherman, T.F. Boat and M. Bruce, Anal. Biochem., 1981, 117, 301. N.F. Tabachnk, P. Blackburn and A. C e r a m i , J. B i o l . Chem., 1981, 256, 7161. A. BOersma, M. L h e r m i t t e , G. Lamblin and P. Degand, Carbohydr. Res., 1981, 95, 227. L A . Tabak and M.J. Levine, Arch. Oral B i o l . , 1981, 26, 315. A.V. Nieuw Amerongen, M.E.G. Aarsman, A.P. Vreugdenhil and PA. Roukema, Arch. O r a l Biol., 1981, 3,651. G. R e u t e r , R. P f e i l , J.P. Kamerling, J.F.G. V l i e g e n t h a r t and R. Schauer, Biochim. Biophys. Acta, 1980, 630, 306. M.A. Cohenford, J.C. Urbanowski and J.A. Dain, Anal. Biochem., 1981, 112, 76. H. van Halbeek, L. Dorland, J. Haverkamp, GA. Veldink, J.F.G. V l i e g e n t h a r t , B. Fournet, G. Ricart, J. M o n t r e u i l , W.D. Gathmann and D. Aminoff, Eur. J. Biochem, 1981, 118, 487. D. W i l l i a m s and H. Schachter, J. Biol. Chem., 1980, 255, 11247. D. W i l l i a m s , G. Longmore, K.L. Matta and H. schachter, J. Biol. Chem., 1980, 255, 11253. M.L.E. Bergh, GJ.M. Hoogfiwinkel and DJI. van den Eijnden, Biochim. BioNys. A=, 1981, 660, 161. C.E Malinowski and R Herp, a m p . Biochem. Physiol., 1981, 69 (111, 605. M. L e h r m i t t e , G. Lamblin, L a f i t t e , P. Degand, P. R o u s s e l and M. Mazzuca, Carbhydr. Res., 1981, 92, 333. A. Le T r e u t , G. Lamblin, N. Houdret, P. Degand and P. Roussel, Biochimie, 1981, 63, 425. H. Houdret, A. Le T r e u t , M. L h e r m i t t e , G. Lamblin, P. Degand and P. Roussel, Biochim. Biophys. Acta, 1981, 668, 413. A. BOersma, G. Lamblin, P. Degand and P. Roussel, Carbohydr. Res., 1981, 94, c7. K. Hotta and K. Goso, Anal. Biochem., 1981, 110, 338. A.E. B e l l , A. Allen, E. Morris andD.A. Rees, Biochem. SOC. Trans., 1980, 8, 716. E. W o o d , E.F. Hounsell a n d T. F e i z i , Carbohydr. Res., 1981, 90, 269. E.F. Hounsell, E. Wood, T. F e i z i , M. Fukuda, M.E. Powell and S. Hakomori, Carbohydr. Res., 1981, 90, 283. J.P. Pearson and A. Allen, Biochem. SOC. Trans., 1980, 8, 388. J.P. PBarson, A. A l l e n and S. P a r r y , Biochem. J., 1981, 197, 155. M. M a n t l e , J. Pearson and A. A l l e n , Biochem. SOC. Trans., 1980, 8, 715. C. Decaens, J. Bara, D. Waldron-Edward and J. Labat-Robert, I n t . J. Biochem., 1981, 13,261. B.L. Slomiany, Z. Banas-Gruszka, K. K o j i m a , A. Herp and A. Slomiany, E., 1981, 130, 201. M. M a n t l e a n d A. A l l e n , Biochem. J.., 1981, 195, 267. M. Mantle, D. Mantle and A. Allen, Biochem. J., 1981, 195,277. J.T. LaMont and AS. Ventola, Biochim. Biophys. Acta, 1980, 626, 234. D.V. Gold, D. Schochat and F. Miller, J. Biol. Chem., 1981, 256, 6354. Nasir-ud-Din, R.W. J e a n l o z , J.R. Vercelotti and J.W. M c A x u r , Biochim. Bi@ys. A c t a , 1981, 678, 483. G. Strecker i n 'Structure and Function of Gangliosides' ed. L Svennerholm, H. Dreyfus and P.F. Urban, Plenum P u b l i s h i n g Corp., 1980, p.371. J. M o n t r e u i l , C.R. Seances SOC. B i o l . Ses Fil., 1981, 175,694. I. B e r g g k d , B. Ekstrom, E. Lisowska and A. Lundblad, Eur. J. Biochem., 1981, I & , 183.
-
J.J.
Carbohydrate Chemistry
344
963 D. E k s t r o m , A. L u n d b l a d a n d S. S v e n s s o n , Eur. J. Biochem., 1 9 8 1 , 1 1 4 , 663. 9 64 G. F a , A. Grubb, C. L o e f f l e r a n d J. L a r s s o n , Biochim. Biophys. A c t a , 1 9 8 1 , 667, 303. 965 EL Wachter and K. Hochstrasser, Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 1351. 966 H. H o c h s t r a s s e r , O.L. S c h o n b e r g e r , I. R o s s m a n i t h a n d E. W a c h t e r , HoppeS e y l e r ' s Z. Physiol. Chem., 1981, 362, 1357. 967 A.M.M. Afonso, P.A. Charlwood a n d R.D. M a r s h a l l , Carbohydr. Res., 1981, 89,
309.
V l i e n g e n t h a r t , J.C. 968 H. van H a l b e e k , L. D o r l a n d , G.A. V e l d i n k , J.F.G. M i c h a l s k i , J. M o n t r e u i l , G. S t r e c k e r a n d W.E. H u l l , FEBS L e t t . , 1981, 121, 65. 9 69 C.P.J. Maury, C l i n . Chim. A c t a , 1 9 8 1 , 1 0 9 , 219. C l i n . Chim. A c t a , 1980, 108,293. 970 C.P.J. Maury a n d J. P a u l o , 971 J.C. Kuo a n d E.S. Yeung, J. Chromatogr., 1 9 8 1 , 223, 321. 9 72 H. van H a l b e e k , L. D o r l a n d , G.A. V e l d i n k , J.F.G. V l i e g e n t h a r t , G. S t r e c k e r , J.C. M i c h a l s k i , J. M o n t r e u i l a n d W.E. H u l l , FEBS L e t t . , 1 9 8 0 , 1 2 1 , 71. 973 P.F. D a n i e l , D.F. D e f e u d i s a n d I.T. Lott, Eur. J. Biochem., 1981, 114,235. 974 &A. Nunez, F. Matsura and C.C. Sweeley, Arch. Biochem. Biophys., 1981, 212, 638. 975 L.J. B u r d i t t , K. C h o t a i , S. H i r a n i , P.G. Nugent, B.G. W i n c h e s t e r a n d W.F. Blakemore, Biochem. J., 1980, 189, 467. 976 A.C. S e w e l l , C l i n . Chem., 1 9 8 1 , 27, 243. 9 77 K. Y a m a s h i t a , T. Ohkura, S. Okada, H. Yabuuchi a n d A. Kobata, J. B i o l . Chem., 1981, 256, 4789. 978 M. Kuriyama, T. Ariga, S. Ando, M. S u z u k i , T. Yamada a n d T. M i y a t a k e , J. B i o l . Chem., 1981, 3, 12316. 979 M.H. F i s c h e r , BAA.L e w i s a n d W.N. A d k i n s , C l i n . Chim. Acta, 1 9 8 1 , 1 1 4 , 11. 9 80 S. T a k a g i , M. S h i r o i s h i a n d T. T a k a g i , Agric. B i o l . Chem., 1 9 8 0 , 44, 2111. 981 H. Iwase, Y. Kato, K. Hotta, J. B i o l . Chem., 1 9 8 1 , 256, 5638. 9 82 P.H. A t k i n s o n , A. Grey, J.P. C a r v e r , J. H a k i m i a n d C. C e c c a r i n i , Biochemistry, 1981, 20, 3979. 983 J.P. C a r v e r , A.A. Grey, F.M. Winnik, J. H a k i m i , C. C e c c a r i n i a n d P.H. Atkinson, Biochemistry, 1981, 20, 6600. 9 84 AD. N i s b e t , R.H. S a u n d r y , A.G. Moir, L.A. F o t h e r g i l l a n d J.E. F o t h e r g i l l , Eur. J. Biochem., 1 9 8 1 , 115,335. 985 H. I s h i h a r a , N. T a k a h a s h i , J. Ito, E. T a k e u c h i a n d S. T e j i m a , Biochim. Biophys. A c t a , 1981, 669, 216. 986 E. Berman a n d A. A l l e r h a n d , J. B i o l . Chem., 1 9 8 1 , 256, 6657. 987 C. F r a n c o i s - G e r a r d , J. B r o c t e u r , A. Andre, C. Gerday, A. P i e r c e - C r e t e l , J. M o n t r e u i l a n d G. S p i k , Blood T r a n s f u s i o n a n d Immunohaematoloqy, 1980, 23, 579. 988 K. Watanabe, T. Matsuda a n d Y. S a t o , Biochim. Biophys. A c t a . , 1981, 667, 242. 989 T. Matsuda, K. Watanabe a n d Y . S a t o , A g r i c . B i o l . Chem., 1 9 8 1 , 45,417. 990 M.C. H a l a n t - P e e r s , J. M o n t r e u i l , G. S t r e c k e r , L. D o r l a n d , H. v a n H a l b e e k , G A . V e l d i n k a n d J.F.G. V l i e g e n t h a r t , Eur. J. Biochem., 1 9 8 1 , 117,291. 991 M. Iacomini, G.R. Duarte, E.R. D u a r t e , H.S. D u a r t e , J.D. F o n t a n a a n d J.H. Duarte, Agric. Biol. Chem., 1981, 45, 1373. 992 H. B r e t t i n g , K. KiSnigsmann-Lange, H.J. miem, N F . Whittaker and FA. Kabat, Carbohydr. Res., 1 9 8 1 , 98, 213. 99 3 P.A.J. G o r i n , M. Mazurek, H.S. Duarte a n d J.H. D u a r t e , Carbohydr. Res., 1981, 92, C1. 994 A. Colman, C.D. Lane, R. C r a i g , A. B o u l t o n , T. Mohun a n d J. Morser, Eur. J. Biochem., 1 9 8 1 , 113,339. 99 5 S. Inoue, M. Iwasaki and G. Matsumura, Biochem. Biophys. Res. Commun., 1981, 1 0 2 , 1295. 99 6 n v e l l , H. S c h m a l e a n d D. R i c h t e r , Biochem. Biophys. R e s . Commun., 1981, 1 0 2 , 1230. 997 C.A. A u f f r e t a n d M.J. T u r n e r , Biochem. J., 1 9 8 1 , 193,647. 998 G. M a t t h y s s e n s , F. M i c h i e l s , R. Hamers, E. P a y s a n d M. S t e i n e r t , N a t u r e ,
5: Glycoproteins, Glycopeptides, Proteoglycans, and Animal Polysaccharides
345
1981, 93, 230. 999 J.E. S t r i c k l e r and C.L. P a t t o n , Proc. Natl. Acad. Sci. USA, 1980, 77, 1529. 1000 E. Reinwald, P. Rautenberg and H.J. R i s s e , Biochim. Biophys. A c t a , 1981, 668, 119. 1001 A.M. Johnson, P.J. Mcmnald and S.H. Neoh, Biochem. Biophys. R e s . Commun., 1981, 100, 934. 1002 S. Wenzl and M. Sumper, Proc. Natl. A c i d Sci. USA, 1981, 1981, 3,3716. 1003 R.H. Hackman and M. Goldberg, Anal. B i d e m . , 1981, 110, 277. 173. 1004 C.J. B r i n e and P.R. A u s t i n , Comp. Biochem. Physiol., 1981, 1005 C.J. B r i n e and P.R. Austin, Comp. Biochem. Physiol., 1981, E,283. 1006 S . Hirano and Y. Yagi, Carbohydr. Res., 1981, 92, 319. 1007 P.V. Wagh and O.P. Bahl, C.R.C. C r i t i c a l Rev. Biochem., 1981, 10,307. , 122. 1008 B.H. Anderton and R.C. T h o r p , Immunol. Today, 1980, I 1009 D.T. Dorai, B.K. Bachhawat and S. Bishayee, Anal. Biochem., 1981, 115,130. 1010 R.D. P o r e t z and G. P i e c z e n i k , Arch. Biochem., 1981,115, 170. 1011 T.H. Plummer andA.L. T a r e n t i n o , J. B i o l . Chem., 1981, 256, 10243. 1012 W.F. G l a s s , R.C. Briggs and L.S. H n i l i c a , Anal. Biochem.,l981, 115,219. 1013 S.J. Mellis and J.U. Baenziger, Anal. Biochem., 1981, 114,276. Edge, C.R. F a l t y n e k , L. Hof, L.E. R e i c h e r t a n d P. Weber, 1014 A.S.B. Anal. B i d e m . , 1981, 118, 131. 1015 P.R.P. S a l a c i n s k i , C. McLean, J.E.C. Sykes, V.V. C l e m e n t J o n e s and P.J. Lowry, Anal. Biochem., 1981, 117, 136. 1016 V. Neuhoff, E. mars and G. Huether, Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 1427. 1017 K. D i l l , B. F e r r a r i , J.M. Lacombe and L A . Pavia, Carbohydr. Res., 1981, 98, 132. 1018 J. Davoust, V. Michel, G. Spik, J. M o n t r e u i l and P.F. Devaux, FEBS L e t t , 1981, 125,271. 1019 J.P. Carver and L A . Grey, Biochemistry, 1981, 20, 6607. 1020 N. U i , J. Chromatogr., 1981, 3,289. 1021 M.C. Bordas, D.R. Biou, J.M. Feger, G.M. Durand, D.H. J o z i a s s e and D.H. van den E i j d e n , sin. a i m . A c t a , 1981, 116, 17. Biochem. Biophys. Res. Commun., 1981, 100, 1022 W.D. Gathmann-f, 1453. 1023 W.F. Alpenfels, Anal. Biochem., 1981, 114, 153. 1024 B. Fournet, G. S t r e c k e r , Y. LeRoy and J. M o n t r e u i l , Anal. Biochem., 1981, 116, 489. 1025 H. R a u v a l a , J. F i n n e , T. K r u s i u s , J. K a r k k a i n e n a n d J. J a r n e f e l t , Adv. Carb. Chem. Biochem., 1981, 2, 389. 1026 T. A n a s t a s s i a d e s , R. P u z i c and 0. Puzic, J. Chromatogr., 1981, 225, 309. S i l v e r , K.A. K a r i m , M.J. Gray and F.A. S a l i n a s , J. Chromatogr., 1027 H.K.B. 1981, 224, 381. 1028 T.A. Beyer, J.E. S a d l e r , J.I. Rearick, J.C. Paulson and R.L. H i l l , & Enzymol, 1981, 52, 24. 1029 RL. H i l l i n "Emlution of Protein Structure and Function", ed. D.S. Sigman and M.A.B. B r a z i e r , Acad. P r e s s , New York, 1980, p.63. 1030 M.L. Reitman and S. Kornfeld, J. B i o l . Chem., 1981, 256, 11977. 1031 M. P i e r c e , R.D. Cummings and S. Roth, Anal. Biochem., 1980, 102, 441. 1032 J.A. Hanover and W.J. Lennarz, Arch. Biochem. Biophys., 1981, 211, 1. 1033 W.M. Watkins, A.D. Yates and P. Greenwell, Biochem. SOC. Trans., 1981, 9, 186. 1034 H. Baumann and W.A. Held, J. B i o l . Chem., 1981, 256, 10145. 1035 A. H e i f e t z and M.D. P r a g e r , J. Biol. Chem., 1981, 256, 6529. 1036 P. Cammarata, L Chan and C. Ceccarini, Biochim. Biophys. Acta, 1981, 674, 128. 1037 J.A. Henner, M.J. Kessler and O.P. Bahl, J. B i o l . Chem. 1981, 256, 5997. 1038 A.J. P a r o d i , L.A.Q. A l l u e and J.J. Cazzulo, Proc. N a t l . Sci. U K 1 9 8 1 , 78, 6201. 1039 J.P. Aubert, N. Helbecque and M.H. Loucheux-Lefebvre, Arch. Biochem. Biophys, 1981, 208, 20. 1040 S.C. Hubbard and R.J. I v a t t , Annu. Rev. Biochem., 1981, 50, 555.
E,
346
Carbohydrate Chemistry
1041 D.S. B a i l e y , J. Burke, R. S i n c l a i r and B.B. Mukherjee, Biochem. J., 1981, 195, 139. Carson and W.J. Lennarz, J. B i o l . Chem., 1981, 256, 4679. 1042 1043 D.P. Rossignol, W.J. Lennarz and C.J. Waechter, J. B z l . Chem., 1981, 256, 10538. 1044 T. Coolbear and S. Mcokerjea, J. B i o l . &em., 1981, 256, 4529. 1045 B.N. Singh and J.J. Lucas, J. B i o l . Chem., 1981, 256, 12018. 1046 Y. Okamoto and N. Akamatsu, Int. J. Biochem., 1981, 2, 791. 1047 J.I. Rearick, K. F u j i m o t o and S. Kornfeld, J. B i o l . Chem., 1981, 256, 3762. 1048 L.A. Murphy and R.G. S p i r o , J. B i o l . Chem., 1981, 256, 7487. 1049 L.A.Q. A l l u e , M o l . C e l l . Biochem., 1980, 33, 149. 1050 D.K. Banerjee, M.G. a a e r and C J . Waechter, Biochemistry, 1981, 20, 1561. 1051 R. Datema, R.P. Lezica, P.W. Robbins and R.T. Schwarz, Arch. Xochem. Bio h s., 1981, 206, 65. 1052 S. M. T s u j T Y . Nakanishi and S. Suzuki, Biochem. J., 1981, 196,71. 1053 A.D. E l b e i n , Biochem. J., 1981, 193,477. 1054 L A . King and A. Tabiowo, Biochem. J., 1981, 198,331. 1055 A.D. E l b e i n , Biochem. J., 1981, 195,191. 1056 A Herswvics and B. Bugge, Biochim. Biophys. A c t a , 1980, 617, 122. 1057 L.A. Qallue, Biochem. J., 1981, 198,429. 1058 J.I. R e a r i c k , A. Chapman and S. Kornfeld, J. B i o l . Chem., 1981, 256, 6255. 1059 J.W. J e n s e n , J.D. S p r i n g f i e l d and J.S. Schutzbach, J. B i o l . Chem., 1980, 255, 11268. 1060 3.J e n s e n and J.S. Schutzbach, J. B i o l . Chem., 1981, 256, 12899. 1061 P. Vischer and R.C. Hughes, Eur. J. Biochem., 1981, =>75. 1062 Y. Fujita-Yamaguchi and R Yoshida, J. Biol. Chem., 1981, 256, 2701. 1063 T.Z. Russin, R.A. L a i n e and S.J. T u r m , Biochem. J., 1981, 197, 327. 1064 G. B e r t h i l l i e r , J.P. Benedetto and R. G o t , Biochim. Biophys. Acta, 1980, 603, 245. K.R. Anumula a n d M. D a v i l l a , 1065 T M e n d i c i n o , E.V.Chandrasekaran, Biochemistry, 1981, 20, 967. 1066 J.S. S i l v i a and K.E. Ebner, J. B i o l . Chem., 1980, 255, 11262. 1067 D.A. Blake and I.J. G o l d s t e i n , J. B i o l . Chem., 1981, 256, 5387. 1068 G.N. Anderson and L.C. E r i k s s o n , J. Biol. Chem., 1981, 256, 9633. 1069 H.A. Nunez and R. Barker, Biochemistry, 1980, 19, 489. 1070 J.P. Briand, S.P. Andrews, E. C a h i l l , N.A. Conway and J.D. Young, J. B i o l . Chem., 1981, 256, 12205. 1071 C. Clamagirand-Mulet, J. Badet and J.P. C a r t r o n , FEBS Lett., 1981, 126, 123. 1072 J.P. P r i e e l s , D. Monnom, M. Dolmans, T.A. Beyer and R.L. H i l l , J. B i o l . Chem., 1981, 256, 10456. 1073 P.H. Johnson, A D . Yates and W.M. Watkins, Biochem. Biophys. Res. Commun., 1981,100, 1611. 1074 M.L. Reitman and S. Kornfeld, J. B i o l . Chem., 1981, 3,4275. 1075 R. Schauer, E. Moczar and M. W e m b e r , Hoppe-Seyler's Z. Physiol. Chem., 1979, 360, 1587. 1076 D.H. van den Eijnden and W.E.C.M. S c h i p h o r s t , J. B i o l . Chem., 1981, 256, 3159. 1077 S . Ratman, I.H. F r a s e r , J.M. C o l l i n s , J.A. Lawrence, J.A. Barrowman and S. Mookerjea, Biochim. Biophys. A c t a , 1981, 673, 435. 1078 M.M. M i t r a n i c , J.M. Boggs and M.A. M o s c a r e l l o , Biochim. Biophys. A c t a , 1981,672, 57.
m.
fatyo,
Enzymes BY J. F. KENNEDY AND D. P. ATKINS
1
Introduction
--
G e n e r a l A s p e c t s and N o m e n c l a t u r e .
V o l u m e 1 o f ‘Enzymes’ c o v e r s
t h e d e v e l o p m e n t o f enzymology f r o m i t s b e g i n n i n g s i n t h e e i g h t e e n t h century,
r e p r e s e n t e d by t h e s t u d i e s o n d i g e s t i o n by Reaumur a n d
Spallanzani,
t o t h e modern o r g a n i c s y n t h e s i s o f r i b o n u c l e a s e by
M e r r i f ie1d.l
The p a p e r s s e l e c t e d emphasize t h e c h e m i c a l n a t u r e and
mode o f a c t i o n o f e n z y m e s r a t h e r t h a n t h e f i e l d o f i n t e r m e d i a r y metabolism.
More
than
twenty
classic
papers
appear
translation for the f i r s t time,
i n c l u d i n g the work of
P e r s o z on enzyme p u r i f i c a t i o n ,
Schwann on p e p s i n ,
here
i n
Payen and
Berzelius
on
c a t a l y s i s , L i e b i g on t h e n a t u r e o f f e r m e n t a t i o n , Buchner o n c e l l free
fermentation,
F i s c h e r on s t e r e o s p e c i f i c enzyme r e a c t i o n s ,
and
S o r e n s e n on pH. The
publication
I n t e r n a t i o n a l Union o f
by
the
Nomenclature
Biochemistry
(NC-IUB)
Committee
‘Enzyme
Recommendations 1978’ has seen a f u r t h e r s u p p l e m e n t .
of
the
Nomenclature, ‘Supplement
2:
C o r r e c t i o n s and A d d i t i o n s ’ i s t h e second l i s t i n g o f amendments t o ‘Enzyme
N o m e n c l a t u r e 1978’ (Academic P r e s s ,
s u p p l e m e n t was p u b l i s h e d i n Eur.J.Biochem., M e t h o d s o f Assay.
-- ‘M e t h o d s
continues t h e coverage
of
p r e s e n t e d i n Volume 70,
New York, 1980,
1979); t h e f i r s t
104, 1.2
i n E n z y m o l o g y ’ , V o l u m e 73, P a r t B,
general P a r t A.3
immunochemical techniques The p a p e r s i l l u s t r a t e t h e
i n g e n u i t y c h a r a c t e r i s t i c o f w o r k e r s who h a v e a d a p t e d t h e a n t i g e n antibody
reaction to
develop
a variety
of
assays which
are
a p p l i c a b l e t o numerous b i o c h e m i c a l and c l i n i c a l p r o b l e m s . The P r o c e e d i n g s o f t h e 4 t h I n t e r n a t i o n a l Symposium, The N e t h e r l a n d s ,
22-26 June,
1981,
and
t h e s t a t u s o f a f f i n i t y chromatography, increasing importance of a f f i n i t y techniques
b i omedical/diagnos t i c a p p l i c a t i o n s .
Veldhoven,
g i v e a s u r v e y o f new d e v e l o p m e n t s i l l u s t r a t i n g the i n i n d u s t r i a l and
Carbohydrate Chemistry
I n Volume 74 o f ‘Methods i n Enzymology’ immunochemical t e c h n i q u e s a r e d e s ~ r i b e d . ~O n e s e c t i o n o f t h i s v o l u m e i s p a r t i c u l a r l y concerned w i t h t h e u s e o f a n t i b o d i e s t o s t u d y enzymes. The l a t e s t v o l u m e i n t h e s e r i e s ‘ A d v a n c e s i n Enzymology a n d R e l a t e d Areas o f M o l e c u l a r B i o l o g y ’ c o n t a i n s a c h a p t e r w h i c h describes t h e use of g l y c o s y l t r a n s f e r a s e s i n t h e assessment o f oligosaccharide structure.6 Kinetics. -- A v e r s a t i l e BASIC p r o g r a m h a s b e e n d e s c r i b e d f o r Direct c u r v e - f i t t i n g i s u n c o n t e s t e d a s t h e ‘Analyzing K i n e t i c method o f c h o i c e f o r e v a l u a t i n g k i n e t i c e x p e r i m e n t s . I f carried o u t by c o m p u t e r , t h e n u m e r i c a l s o l u t i o n o f s u c h p r o b l e m s i s s u p e r i o r t o customary g r a p h i c a l p r o c e d u r e s i n any r e p s e c t . However, most p r o g r a m s a v a i l a b l e t o d a t e c a n n o t b e e x e c u t e d by s m a l l s y s t e m s . T h e a u t h o r s describe a BASIC program f o r d e s k - t o p m i c r o c o m p u t e r s t h a t p e r f o r m s l i n e a r and n o n - l i n e a r r e g r e s s i o n a n a l y s i s o f k i n e t i c data. I t may be d i r e c t l y a p p l i e d t o a n u m b e r o f p r o b l e m s common i n e n z y m e k i n e t i c s , and is e a s i l y modified t o handle f u r t h e r ones. The p e r f o r m a n c e o f t h e p r o g r a m i s i l l u s t r a t e d by s o m e t y p i c a l applications. I n a d d i t i o n , fundamental s t a t i s t i c a l methods are discussed t h a t allow a critical examination of the r e s u l t s obtained. Mechanisms o f A c t i o n . -- A b o o k h a s b e e n p u b l i s h e d o n e n z y m e i n h i b i t o r s w h i c h d e r i v e s f r o m t h e p a p e r s p r e s e n t e d a t t h e 1980 s p r i n g symposium of t h e S w i s s Chemical Society.8 The program c o n s i s t e d o f 21 f u l l p a p e r s a n d 3 a b s t r a c t s f r o m i n d u s t r i a l a n d u n i v e r s i t y l a b o r a t o r i e s r e p o r t i n g on theory, s t r u c t u r e s , syntheses and v i t r o a s well as 2 v i v o e f f e c t s o f mechanism-based enzyme i n h i b i t o r s . These i n c l u d e s u i c i d e s u b s t r a t e s , t r a n s i t i o n - s t a t e a n a l o g u e s , p a r a c a t a l y t i c s e l f i n a c t i v a t o r s , a n d a number o f compounds b e l o n g i n g t o t h e class o f s u b s t r a t e and coenzyme a n a l o g s . The f u l l y indexed publication o f f e r s a wealth of valuable information t o i n v e s t i g a t o r s s e e k i n g novel s t r u c t u r e s i n t h e d e s i g n o f enzyme inhibitors.
-- V o l u m e 5 o f t h e s e r i e s e n t i t l e d ‘ E c o n o m i c M i c r o b i o l o g y ’ c o v e r s m i c r o b i a l e n z y m e s a n d b i o c o n v e r ~ i o n s . ~T h i s volume d i f f e r s from t h e p r e v i o u s volumes i n t h a t i t is concerned o n l y w i t h t h e d e v e l o p m e n t f o r i n d u s t r y o f i n d i v i d u a l e n z y m e s or s h o r t s e q u e n c e s o f enzymes. P a r t i c u l a r l y r e l e v a n t s e c t i o n s are amylases, amyloglucosidases and related glucanases, Q-glucose
Applications.
6: Enzymes
349
o x i d a s e , Q - g l u c o s e d e h y d r o g e n a s e , Q - g l u c o s e i s o m e r a s e , B-Eg a l a c t o s i d a s e and i n v e r t a s e , p e c t i c enzymes, c e l l u l a s e s , immobilized enzymes. A book on c e l l u l a s e and o t h e r n a t u r a l polymer s y s t e m s c o n t a i n s , i n a d d i t i o n t o c h a p t e r s on t h e b i o s y n t h e s i s and s t r u c t u r e o f c e l l u l o s e , c h a p t e r s which d e a l w i t h B-q-glucanases i n h i g h e r p l a n t s and c e l l u l o s e d e g r a d a t i o n . lo The p r o c e e d i n g s of t h e 2 n d Symposium o n Enzyme T h e r a p y i n G e n e t i c D i s e a s e s c o v e r : human t r i a l s : c e l l and o r g a n t r a n s p l a n t a t i o n / o t h e r t h e r a p e u t i c a p p r o a c h e s ; human t r i a l s : d i r e c t enzyme r e p l a c e m e n t ; enzyme m a n i p u l a t i o n : mechanisms and t h e r a p e u t i c t r i a l s ; a n i m a l model s t u d i e s : enzyme e n t r a p m e n t , n e u r a l d e l i v e r y and t r a n s p l a n t a t i o n , enzyme r e c o g n i t i o n and m o d i f i c a t i o n ; enzyme a v a i l a b i l i t y : p u r i f i c a t i o n and c h a r a c t e r i z a t i o n . "
-- A book on t h e u s e s o f i m m o b i l i z e d enzymes f o r food p r o c e s s i n g c o v e r s t h e f o l l o w i n g a r e a s : i m m o b i l i z e d enzyme e n g i n e e r i n g ; r e q u i r e m e n t s u n i q u e t o t h e f o o d and b e v e r a g e i n d u s t r y ; manufacture of h i g h - f r u c t o s e corn s y r u p u s i n g i m m o b i l i z e d g l u c o s e i s o m e r a s e ; p o t e n t i a l and use of i m m o b i l i z e d c a r b o h y d r a s e s ; a p p l i c a t i o n o f l a c t o s e and i m m o b i l i z e d l a c t a s e ; i m m o b i l i z e d p r o t e a s e s - p o t e n t i a l a p p l i c a t i o n , a p p l i c a t i o n and p o t e n t i a l o f aminoacylase, a s p a r t a s e , o t h e r enzymes i n f o o d p r o c e s s i n g : fumarase, glucose o x i d a s e - c a t a l a s e , s u l p h y d r y l o x i d a s e , and c o n t r o l l e d - r e l e a s e enzymes. l 2 I n t h e p r o c e e d i n g s of t h e 1 8 t h Prague IUPAC Micro Symposium on Macromolecules, p u b l i s h e d i n a s e r i e s of j o u r n a l i s s u e s , t h e r e i s a s e c t i o n which d e s c r i b e s t h e i m m o b i l i z a t i o n of enzymes t o d i f f e r e n t p o l y s a c c h a r i d e s by g r a f t cop0 l y mer i za t i o n . l 3 The use of r e v e r s i b l e enzyme i m m o b i l i z a t i o n h a s been r e p o r t e d t o f a c i l i t a t e t h e r e c o v e r y o f p e p t i d e a n t i b i 0 t i ~ s . l ~P r a c t i c a l a s p e c t s o f t h e f a c i l e i m m o b i l i z a t i o n of e n z y m e s on h y d r o u s m e t a l o x i d e s , a w e l l e s t a b l i s h e d means of enzyme-movement r e s t r i c t i o n , a r e described. Various enzymes (e.g. g l u c o a m y l a s e , p e r o x i d a s e , d e x t r a n a s e ) h a v e been i m m o b i l i z e d b y c h e l a t i o n o f s e v e r a l h y d r o u s m e t a l o x i d e s , t h o s e of t i t a n i u m ( 1 V ) and zirconium(1V) p r o v i n g t o be t h e most s a t i s f a c t o r y f o r p r a c t i c a l purposes. M o d i f i c a t i o n of t h e g e l i n t o a g r a n u l a r f o r m c o u l d be a c h i e v e d s u c c e s s f u l l y w i t h good enzyme-immobilization c h a r a c t e r i s t i c s by u s i n g ion-exchange r e s i n a s an i n t e r n a l m a t r i x . The i m m o b i l i z a t i o n p r o c e s s was h i g h l y e f f i c i e n t f o r t h e r e l a t i v e p r o p o r t i o n s of hydrous o x i d e t o enzyme used, w i t h
Enzyme I m m o b i l i z a t i o n .
350
Carbohydrate Chemistry
u s u a l l y > 90% of t h e a v a i l a b l e p r o t e i n b e i n g i n s o l u b i l i z e d . R e t e n t i o n o f e n z y m e a c t i v i t y was g e n e r a l l y v e r y g o o d a n d t h e e n z y m e was s t a b l e t o r e u s e a n d t o c o n v e n t i o n a l b u f f e r c o n d i t i o n s . A c t i v i t i e s o f t h e i m m o b i l i z e d e n z y m e s were p a r t i a l l y s t a b l e t o l y o p h i l i z a t i o n or d r y i n g of the hydrous o x i d e g e l s . M o d i f i c a t i o n o f t h e h y d r o u s m e t a l o x i d e s u r f a c e by d r y i n g o r t r e a t m e n t w i t h p h o s p h a t e o r c a r b o n a t e l e d t o a decrease i n c o m p l e x i n g a b i l i t y . The e f f e c t o f c a r b o n a t e c a n b e c i r c u m v e n t e d b y l o w e r i n g t h e pH o f t h e s o l u t i o n t o a r o u n d 5 a n d r e m o v i n g a n y c a r b o n d i o x i d e f o r m e d , by a e r a t i o n . Such t r e a t m e n t a l l o w e d compounds t o c h e l a t e t o hydrous zirconium oxide(1V) i n t h e presence of carbonate, and t h e r e f o r e t h e h y d r o u s o x i d e c o u l d be a p p l i e d s u c c e s s f u l l y t o t h e c o n c e n t r a t i o n o f p e p t i d e a n t i b i o t i c s f r o m t h e f e r m e n t a t i o n medium i n w h i c h t h e y are b e i n g p r o d u c e d , i n c l u d i n g p r o d u c t i o n a t low c o n c e n t r a t i o n s . A s i m p l e a n d n o v e l m e t h o d f o r t h e i m m o b i l i z a t i o n o f e n z y m e s by their c o i m m o b i l i z a t i o n i n hen egg-white u s i n g g l u t a r a l d e h y d e h a s been described.15 Films of highly polymerized collagen prepared under i n d u s t r i a l c o n d i t i o n s by t h e C e n t r e T e c h n i q u e d u C u i r , L y o n , F r a n c e , h a v e b e e n r o u t i n e l y used after a c y l azide a c t i v a t i o n f o r the c o v a l e n t i m m o b i l i z a t i o n o f n u m e r o u s e n z y m e s f r o m d i f f e r e n t classes.16 T h e s t a b i l i t y of t h e r e s u l t i n g membranes t o o p e r a t i o n a l and s t o r a g e conditions and their e x c e l l e n t mechahical s t r e n g t h and r e s i s t a n c e t o bacterial degradation allowed their use for several purposes. Fundamental a s p e c t s of t h e i r heterogeneous enzymology, including The d i f f u s i o n a l e f f e c t s a n d s u b u n i t i n t e r a t i o n s , were e x a m i n e d . e n z y m e - e n g i n e e r i n g a s p e c t was d e v e l o p e d w i t h p o l y m e m b r a n e b i o r e a c t o r s and enzyme e l e c t r o d e s . Besides t h e protein environment p r o v i d e d by t h e c o l l a g e n m a t r i x w h i c h p r e v e n t s e n z y m e i n a c t i v a t i o n , t h e f o r m o f these m e m b r a n e s i s a d v a n t a g e o u s f o r i n d u s t r i a l p u r p o s e s and f o r fundamental research.
2
B-Q-2-Acetamido-2-deoxygalactosidases, 2-deoxyglucosidases, and
B-g-2-Acetamido-
B-Q-2-Acetamido-P-
deoxyhexosidases
The bulk of rat b r a i n n e u t r a l B-Q-2-acetamido-2d e o x y h e x o s i d a s e s h a v e b e e n shown t o be p r e s e n t i n t h e c y t o s o l f r a ~ t i 0 n . l ~ T h e y were n o t b o u n d by c o n c a n a v a l i n A - S e p h a r o s e w h i l e t h e a c i d B-Q-2-acetamido-2-deoxyhexosidases were a l l b o u n d . The
351
6: Enzymes
h a d a pH o p t i m u m o f 5.2
n e u t r a l B-~-2-acetamido-2-deoxyglucosidase andKm
of
0.57
while
mM,
the
neutral
B-Q-2-acetamido-2-
d e o x y g a l a c t o s i d a s e h a d t h e h i g h e s t r e a c t i o n r a t e a t pH 6.0 o f 0.12
No d i v a l e n t
mM.
lost
B-Q-2-acetamido-2-deoxyglucosidase a c t i v i t y
i n
min
30
deoxygalactosidase activity
after
a t
at
The
5OoC.
more
The
5OoC.
was h e a t - s t a b l e h
3
with a
i o n s a c t i v a t e d e i t h e r o f t h e enzymes. than
90% o f
5, The the
€4-D-2-acetamido-2-
and l o s t o n l y 10-20% o f neutral
i t s
B-g-2-acetamido-2-
d e o x y g l u c o s i d a s e was i n h i b i t e d b y f r e e 2 - a c e t a m i d o - 2 - d e o x y - B - Q glucose
but
by 2-acetamido-2-deoxy-B-~-galactose.
not
The r e v e r s e
was f o u n d f o r t h e n e u t r a l ~ - ~ - 2 - a c e t a m i d o - 2 - d e o x y g a l a c t o s i d a s e . Two enzymes were s e p a r a t e d a l m o s t chromatography.
completely
by h y d r o x y a p a t i t e
Heat s t a b i l i t y o f t h e separated a c t i v i t y peaks
s u g g e s t e d t h a t t h e n e u t r a l B-g-2-acetamido-2-deoxygalactosidase, w h i c h was n o t b o u n d t o h y d r o x y a p a t i t e , may,
may b e s p e c i f i c t o t h e Q -
The n e u t r a l B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e
galacto substrate.
o n t h e o t h e r h a n d , h a v e some a c t i v i t y t o w a r d t h e Q - g a l a c t o
substrate.
B o t h o f t h e n e u t r a l enzyme a c t i v i t i e s w e r e shown t o be
h i g h e s t d u r i n g t h e f i r s t p o s t n a t a l week i n r a t b r a i n , t h e a c i d i c enzyme,
i n contrast t o
w h i c h showed peak a c t i v i t i e s d u r i n g t h e second
a n d t h i r d weeks. Activity
levels
i n v e s t i g a t e d
i n
Dugesia lugubris.18
and
cytochemical
i n t a c t
localization
regenerating
have
been
p l a n a r i a n
I n 24 h o u r r e g e n e r a t i n g p l a n a r i a n s t h e 6-B-2-
acetamido-2-deoxyglucosidase lysosomes o f
and was
dedifferentiating
found t o
cells.
be
localized i n the
T h i s B-E-2-acetamido-2-
d e o x y g l u c o s i d a s e l o c a l i z a t i o n c o r r e l a t e d w i t h t h e i n c r e a s e i n B-9-2-
acetamido-2-deoxyglucosidase
and
B-D-2-acetamido-2-
deoxygalactosidase a c t i v i t i e s during the regeneration,
f i r s t
24 h o u r s o f
confirming the involvement o f the d e d i f f e r e n t i a t i o n i n
t h e o r i g i n o f blastema.
I n non-regenerating
acetamido-2-deoxyglucosidase
activity
demonstrated i n t h e lysosomes o f
has
a n i m a l s t h e B-Q-2-
been
cytochemically
g a s t r o d e r m a l c e l l s and i n t h e
mucous g r a n u l e s o f b a s o p h i l i c s e c r e t o r y c e l l s .
This l a t t e r finding
is i n t e r p r e t e d a s p r o o f o f a s i m i l a r i t y b e t w e e n p l a n a r i a n a n d v e r t e b r a t e mucous s e c r e t i o n . High lysozyme
and c h i t i n a s e a c t i v i t i e s have been f o u n d i n
L e y d i g ’ s o r g a n o f E t m o p t e r u s s p i n a x , Z m n i o s u s m i c r o c e p h a l u s , and Tonpedo n o b i l i a n a ,
i n Leydig’s
and e p i g o n a l o r g a n s and s p l e e n o f
R a j r a d i a t a , and i n t h e e p i g o n a l o r g a n o f R h i n o p t e r a bonasus.” S t r o n g c h i t i n a s e a c t i v i t y w i t h l i t t l e o r n o l y s o z y m e a c t i v i t y was
Carbohydrate Chemistry
352 n o t e d i n Leydig's i n
the
and e p i g o n a l o r g a n s o f S c y l i o r h i n u s c a n i c u l a ,
epigonal
organ
GiX.slymostom c i r r a t u m
of
----__-____---------__ Heterodontus francisci.
Very
high
and and
B-Q-2-acetamido-2-
d e o x y g l u c o s i d a s e a c t i v i t y was f o u n d i n l y m p h o m y e l o i d o r g a n s o f a l l s p e c i e s i n v e s t i g a t e d and i n t h e pancreas o f Z m n i o s u s m i c r o c e p h a l u s . Thirteen other and
glycoside hydrolases
d i g e s t i v e
t i s s u e s
were
o f
assayed i n
lymphomyeloid
cLf;at21~,
G i n g L y ~ ~ o s t o m a
H e t e-r o d o~ n t u s -f r a ~ n c i s c-i , a n-d E t m o p t e r u s s p i n a x . A c t i v i t i e s o f a-Qmannosidase, B - g a l a c t o s i d a s e , B-~-2-acetamido-2-deoxygalactosidase, B-!-glucuronidase,
and a- a n d B - n - g l u c o s i d a s e
u s u a l l y were h i g h e r i n
lymphomyeloid t i s s u e s than i n d i g e s t i v e tissues. Nine
glycoside
hydrolases
Trypanosoma b r u c e i b r u c e i S42 h a v e a-Q - -Glucosidase to
those o f
i n
bloodstream
been p a r t i a l l y
forms
o f
characterized.20
had s i m i l a r p h y s i c o c h e m i c a l and e n z y m i c p r o p e r t i e s
a-Q-galactosidase,
- -2-acetamido-2B-Q
f3-g-glucosidase,
d e o x y g l u c o s i d a s e , and B-;-2-acetamido-2-deoxygalactosidase.
I t was
s u g g e s t e d t h a t t h e g l y c o s i d a s e s s t u d i e d may p l a y a r o l e i n t h e turnover o f trypanosomal glycoproteins,
i n particular the variant-
s p e c i f i c surface antigen. a-;-Galactosidase
deficiency
h a s been d e m o n s t r a t e d i n l y m p h o i d
c e l l l i n e s e s t a b l i s h e d by E p s t e i n - B a r r v i r u s t r a n s f o r m a t i o n o f Blymphocytes from a Fabry p a t i e n t , lymphocytes.21
as i n b l o o d w h o l e l e u k o c y t e s a n d
The r e s i d u a l a c t i v i t y
was h e a t s t a b l e .
a-p-2-
A c e t a m i d o - 2 - d e o x y g a l a c t o s i d a s e was p r e s e n t a t n o r m a l l e v e l i n leukocytes, lymphocytes, o r lymphoid c e l l s from n o r m a l and Fabry p a t i e n t s a n d was h e a t s t a b l e i n a l l c a s e s .
a-e-2-Acetamido-2-
d e o x y g a l a c t o s i d a s e e l e c t r o f o c u s i n g p r o f i l e s p r e s e n t e d one m a j o r p e a k (PI 4.5)
and
one
minor
peak
Blood
(PI 5.1).
lymphocytes
and
l y m p h o i d c e l l l i n e s f r o m F a b r y d i s e a s e showed s i m i l a r d e f e c t s o f a l l the forms o f a-g-galactosidase
g r o u p A and t h e r e s i d u a l a c t i v i t y
proceeded f r o m t h e a-!-galactosidase
acetamido-2-deoxygalactosidase.
f o r m 11, w h i c h i s an a-e-2-
I n the
absence
of
animal
models,
t h o s e e s t a b l i s h e d l i n e s seemed t o be an a c c u r a t e c e l l u l a r s y s t e m f o r
-i n vitro
e x p e r i m e n t a l s t u d i e s o f Fabry disease.
The p h y s i o l o g i c a l a c t i v a t o r p r o t e i n f o r t h e d e g r a d a t i o n o f g a n g l i o s i d e GM2 by B-Q-2-acetamido-2-deoxygalactosidase employed t o assess t h e c a p a b i l i t y
of
extracts t o catabolize t h i s ganglioside.22 more
reliable
diagnosis
of
the
T h i s method p e r m i t s a
different
g a n g l i o s i d e s t h a n t h e m e t h o d s h i t h e r t o used. a r t i f i c i a l substrates or,
has been
c u l t u r e d human f i b r o b l a s t variants
of
GM2
These e i t h e r r e l y on
when n a t u r a l s u b s t r a t e s a r e used,
on
6: Enzymes
353
d e t e r g e n t s . The p r e s e n t method avoids a number of p o s s i b l e s o u r c e s o f e r r o r i n t r o d u c e d by t h e u n p h y s i o l o g i c a l d e t e r g e n t s , such a s a l t e r a t i o n o f t h e isoenzymes’ s u b s t r a t e s p e c i f i c i t y o r i n a c t i v a t i o n o f t h e enzymes. The r a n g e o f a p p l i c a t i o n of t h e new method i s discussed. The p a t t e r n s o f B - g - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e excretion a f t e r r e n a l t r a n s p l a n t a t i o n have been i n ~ e s t i g a t e d . ~8-Q-2~ A c e t a m i d o - 2 - d e o x y g l u c o s i d a s e a c t i v i t y was a s s a y e d i n 750 e a r l y morning u r i n e samples from 25 r e n a l - t r a n s p l a n t p a t i e n t s d u r i n g t h e p o s t - o p e r a t i v e p e r i o d . Eighty-four per c e n t of a l l a c u t e r e j e c t i o n e p i s o d e s were p r e c e d e d o r a c c o m p a n i e d b y a g r e a t e r t h a n t w o - f o l d Similar r i s e i n B-~-2-acetamido-2-deoxyglucosidase a c t i v i t y . i n c r e a s e s were caused by d i a l y s i s , gentamicin therapy, and u r e t e r i c dehiscence. O n l y 9% of a l l s i g n i f i c a n t i n c r e a s e s i n B-g-acetamido2 - d e o x y g l u c o s i d a s e e x c r e t i o n c o u l d n o t be a c c o u n t e d f o r b y any o f t h e s e four p r o c e s s e s . Analysis of t h e day-to-day p a t t e r n o f B-g-2a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e a c t i v i t y a s opposed t o i n d i v i d u a l B-Q2-acetamido-2-deoxyglucosidase values provided a c l u e t o t h e o c c u r r e n c e of r e j e c t i o n d u r i n g i m m e d i a t e p o s t - t r a n s p l a n t a t i o n oligur ia. Urinary e x c r e t i o n of B-~-2-acetamido-2-deoxyglucosidase and La l a n i n e a m i n o p e p t i d a s e h a s been measured i n p a t i e n t s r e c e i v i n g a m i k a c i n o r c L ~ - p l a t i n u m . ~U~r i n a r y e x c r e t i o n of a l a n i n e aminopeptidase and B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e was determined f o r 25-70 days i n f i v e p a t i e n t s r e c e i v i n g *-platinum and f o r 8-53 days i n s i x p a t i e n t s r e c e i v i n g amikacin. T h i s s t u d y was performed t o i n v e s t i g a t e i f t h e e x c r e t i o n o f u r i n a r y enzymes r e p r e s e n t s a s e n s i t i v e parameter f o r t h e e a r l y d e t e c t i o n o f t o x i c kidney damage. I n b o t h p a t i e n t g r o u p s an i n c r e a s e i n t h e e x c r e t i o n of t h e t w o enzyme a c t i v i t i e s c o u l d be d e m o n s t r a t e d . I n patients receiving a m i k a c i n , t h e e x c r e t i o n of a l a n i n e aminopeptidase was always h i g h e r t h a n t h a t o f B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e , whereas i n t h r e e p a t i e n t s r e c e i v i n g c i s - p l a t i n u m i t was t h e o p p o s i t e . I n t w o cisp l a t i n u m p a t i e n t s t h e e x c r e t i o n o f b o t h enzymes was o f t h e same s i z e . The c h a n g e s d u r i n g a m i k a c i n t h e r a p y seem t o be r e v e r s i b l e , p a t i e n t s t h e s e c h a n g e s seemed t o be whereas i n f o u r =-platinum partly irreversible. Serum c r e a t i n i n e c o n c e n t r a t i o n was l e s s s e n s i t i v e than t h e u r i n a r y enzyme e x c r e t i o n f o r d e t e c t i o n of kidney damage. P r e d i c t i v e v a l u e s of u r i n a r y B-Q - -2-acetamido-2deoxyglucosidase, i - a l a n i n e aminopeptidase,and B-2-microglobulin
3 54
Carbohydrate Chemistry
have been used i n e v a l u a t i n g t h e n e p h r o t o x i c i t y o f g e n t a m i c i n . 2 5 I-slanine
C o n c e n t r a t i o n s o f B-e-2-acetamido-2-deoxyglucosidase, a m i n o p e p t i d a s e , and 1 3 - 2 - m i c r o g l o b u l i n
were
determined
daily
i n the
u r i n e o f 28 p a t i e n t s t r e a t e d w i t h g e n t a m i c i n ( 2 - 3 mg k g - l day-') a mean o f activity
15 days.
A l l
had n o r m a l r e n a l f u n c t i o n .
i n B-Q-2-acetamido-2-deoxyglucosidase
2 o r 3 days o f t r e a t m e n t .
serum
creatinine
levels.
This
The r e s u l t s w e r e c o m p a r e d w i t h
concentrations
study
and I - a l a n i n e
e i t h e r immediately or
a m i n o p e p t i d a s e was o b s e r v e d f o r a l l p a t i e n t s , after
for
Increased
indicates
and a
urinary
B-2-microglobulin
relationship
between
the
n e p h r o t o x i c i t y o f g e n t a m i c i n and i n i t i a l u r i n a r y e n z y m i c a c t i v i t y o f
B-Q-2-acetamido-2-deoxyglucosidase p r i o r t o any t r e a t m e n t . The degree o f B-Q-2-acetamido-2-deoxyglucosidase response d u r i n g the first
t e n d a y s o f t r e a t m e n t a p p e a r e d as a s e c o n d p r o g n o s t i c f a c t o r .
Renal f a i l u r e
was o b s e r v e d f o r o n e o u t
o f the 12 p a t i e n t s w i t h
n o r m a 1 B - Q - 2 - a c e t a m i d o - 2 - d e o x y g 1u c o s id a s e deoxyglucosidasei
< 200 p m o l day").
(B-D,
- 2 - a c e t am i do - 2 -
Seven o f t h e m showed a m a r k e d
enzyme a c t i v i t y r e s p o n s e ( > 1 5 0 0 p m o l day-')
w i t h an i n c r e a s e i n B-
2-microglobulin
the
activity.
Eleven out
of
16 p a t i e n t s
with
elevated
6-Q-2-acetamido-2-de~xyglucosidase~ (6-Q-acetamido-2d e v e l o p e d r e n a l f a i l u r e and d e o x y g l u c o s i d a s e i > 2 0 0 p m o l day") showed an e l e v a t e d m a x i m a l r e s p o n s e .
aminopeptidase
appears
to
be o f
The c o n c e n t r a t i o n o f C - a l a n i n e l i t t l e prognostic value.
v a r i a t i o n i n i n d i v i d u a l maximal urinary
enzyme
The
responses observed
among t h e 28 p a t i e n t s d u r i n g t h e f i r s t t e n days o f t r e a t m e n t p o i n t s t o the existence o f individual s e n s i t i v i t i e s t o gentamicin,
the
e x a c t mechanism o f w h i c h r e m a i n s u n c l e a r . T h e c o n d i t i o n s f o r m a x i m a l a c t i v i t y (pH, substrate concentration, enzyme
activity
concentration)
i n
versus the
range o f
buffer,
saturating
l i n e a r r e l a t i o n s h i p s between
incubation
time
f l u o r i m e t r i c assay
and versus of
several
enzyme
glycoside
h y d r o l a s e s o f l y s o s o m a l o r i g i n i n human p l a s m a and serum h a v e been e ~ t a b l i s h e d . ~T~h e
following
enzymes
were
g a l a c t o s i d a s e , B-Q-2-acetamido-2-deoxyglucosidase, B-Q-glucuronidase,
a-Q-mannosidase,
studied:
a-Q-
8-~-glucosidase,
a-C-fucosidase.
A l l examined
e n z y m e s t u r n e d o u t t o b e m o r e o r l e s s u n s t a b l e u p o n s t o r a g e a t 37'C, 4OC,
a n d -2OOC i n b o t h s e r u m a n d p l a s m a .
Generally t h e degree o f
i n s t a b i l i t y was g r e a t e r i n s e r u m t h a n i n p l a s m a .
The l e v e l s o f some
enzymes, i n c l u d i n g B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e , h i g h e r i n serum t h a n i n plasma. enzymes i n p l a t e l e t - f r e e
were markedly
C o n v e r s e l y t h e l e v e l s o f t h e same
serum e q u a l l e d those i n plasma.
This
6: Enzymes
355
s t r e s s e s t h e n e c e s s i t y t o use f r e s h l y p r e p a r e d p l a s m a f o r l y s o s o m a l g l y c o h y d r o l a s e assay. for
the
assay
the
Under t h e p r o c e d u r a l c o n d i t i o n s recommended methods
for
the
determination of
g l y c o h y d r o l a s e s i n p l a s m a a p p e a r e d t o be s i m p l e ,
lysosomal
s e n s i t i v e , and
reproducible. A
spectrophotometric
assay
for
u r i n a r y B-Q-2-acetamido-2-
d e o x y g l u c o s i d a s e a c t i v i t y h a s been d e v e l o p e d . 2 7
I t i n v o l v e s (a) g e l
f i l t r a t i o n t o s e p a r a t e t h e enzyme f r o m i n h i b i t o r s i n u r i n e , enzy mi c
g l u c o p y r a n o s i d e a t pH 4.4,and 4-nitrophenate.
(c) spectrophotometry o f the l i b e r a t e d
M e a s u r e m e n t s o f a c t i v i t y o f t h e enzyme i n 58 u r i n e
specimens c o r r e l a t e d c l o s e l y e s t a b l i s h e d procedure. was 3.7%.
(b)
4 - n i t r o p h e n y l 2-acetamido-2-deoxy-B-Q-
hydrolysis of
(2
= 0.998)
The w i t h i n - r u n
The b e t w e e n - r u n
with results
by
coefficient of variation
a v e r a g e d 6.8%.
an
( 2 3
Reference values f o r
t h e a c t i v i t y w e r e e s t a b l i s h e d by a s s a y s o r u r i n e s p e c i m e n s f r o m 135 h e a l t h y persons, for
aged t w o weeks t o 5 2 y e a r s .
d e t e c t i o n o f n e p h r o t o x i c i t y was
experimental induction o f
E f f i c a c y o f t h e assay
demonstrated i n r a t s a f t e r
reversible
r e n a l i n s u f f i c i e n c y by
intraperitoneal i n j e c t i o n o f nickel chloride.
Clinical application
o f t h e a s s a y i n a p p r o x i m a t e l y 1000 p a t i e n t s c o r r o b o r a t e d i t s u t i l i t y
f o r d e t e c t i o n and m o n i t o r i n g o f r e n a l d i s o r d e r s . The d i g e s t i o n o f
I-asparagine-linked
B-Q-2-acetamido-2-deoxyglucosidase obtained
from
substrate
fucosidosis
s p e c i f i c i t y
patients
o f
o l i g o s a c c h a r i d e s by e n d o -
i n t h e human s k i n f i b r o b l a s t s has
been
reported.28
The
human m d g - B - & - Z - a c e t a m i d o - 2 -
d e o x y g l u c o s i d a s e was s t u d i e d b y u s i n g t h e h o m o g e n a t e o f c u l t u r e d s k i n f i b r o b l a s t s o f f u c o s i d o s i s p a t i e n t s as an enzyme s o u r c e . results indicate that
biantennary-complex-type
s u g a r c h a i n s as w e l l as h i g h - P - m a n n o s e - t y p e by t h e enzyme a c t i o n .
The
I-asparagine-linked
sugar chains a r e cleaved
None o f t h e s u g a r c h a i n s w i t h a f u c o s y l
r e s i d u e on t h e p r o x i m a l 2 - a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s e d i a c e t y l c h i t o b i o s e m o i e t i e s was c l e a v e d .
o f t h e i r N,"-
These r e s u l t s p r o v e d
e n z y m i c a l l y t h e mechanism o f p r o d u c t i o n o f o l i g o s a c c h a r i d e s d e t e c t e d i n t h e u r i n e o f various %-glycosidase
Degradation o f
deficiencies.
mucin oligosaccharides
of
human c o l o n s y s t e m s
has been f o u n d t o be a s s o c i a t e d w i t h e x t r a c e l l u l a r , cell-bound, and
neuraminidase.29
Among
but not with
B-Q-2-acetamido-2-deoxyglucosidase,
B-P-galactosidase,
the
seven
subjects
studied,
the
e s t i m a t e d m o s t p r o b a b l e n u m b e r s (MPN) o f f a e c a l b a c t e r i a p r o d u c i n g e x t r a c e l l u l a r B-Q-galactosidase,
B-~-2-acetamido-2-deoxyglucosidase,
and n e u r a m i n i d a s e r a n g e d f r o m
106-1010g-1
dry
faecal
w t , were
Carbohydrate Chemktry
356 comparable
to
significantly
the
MPN
of
mucin-degrading
bacteria,
and
s m a l l e r t h a n t h e MPN o f t o t a l f a e c a l b a c t e r i a .
were These
f i n d i n g s were i n t e r p r e t e d as e v i d e n c e f o r t h e e x i s t e n c e o f b a c t e r i a l sub-populations
i n
the
normal
faecal
flora
that
produce
e x t r a c e l l u l a r g l y c o s i d a s e s , and t h a t t h e s e s u b - p o p u l a t i o n s have a m a j o r r o l e i n d e g r a d i n g t h e complex o l i g o s a c c h a r i d e s o f m u c i n i n t h e g u t lumen. Adjuvant-induced
a r t h r i t i s i n r a t s has been s t u d i e d by t h e
changes i n serum and u r i n a r y p r o t e i n - b o u n d
carbohydrate metabolites,
changes i n serum and t i s s u e l y s o s o m a l g l y c o h y d r o l a s e s and l y s o s o m a l fragility.30
The
investigated, & v
free
activities of
B-Q-glucuronidase,
-
lysosomal glycohydrolases
B-Q-acetamido-2-deoxygluco-
s ida s e , B -Q - a c e t a m ido 2 - d e o x y g 1u c o s id a s e , B - Q - g a l a c t 0 s idase , a-9mannosidase,and
c a t h e p s i n D , a r e i n c r e a s e d i n l i v e r and s p l e e n i n
t h e a c u t e phase.
The f r e e a c t i v i t i e s o f B - Q - g l u c u r o n i d a s e ,
acetamido-2-deoxyglucosidase, change,
whereas
increased. of
and c a t h e p s i n
those o f B-a-galactosidase
D of
kidney
B-a-
showed
and a-p-mannosidase
no are
I n t h e c h r o n i c phase o f t h e d i s e a s e t h e f r e e a c t i v i t i e s
a l l glycohydrolases
are s i g n i f i c a n t l y
Serum g l y c o h y d r o l a s e s a r e s i g n i f i c a n t l y c h r o n i c phases.
increased i n a l l tissues.
i n c r e a s e d i n b o t h a c u t e and
S t u d i e s i n l y s o s o m a l p r e p a r a t i o n s showed i n c r e a s e d
f r a g i l i t y of l y s o s o m e s d e r i v e d f r o m l i v e r and k i d n e y o f a r t h r i t i c r a t s i n b o t h phases o f t h e d i s e a s e . The s u b u n i t a n d p o l y p e p t i d e s t r u c t u r e o f B - Q - 2 - a c e t a m i d o - 2 d e o x y g l u c o s i d a s e s f r o m human p l a c e n t a has been r e p o r t e d . 3 1
Previous
r e p o r t s have i n d i c a t e d t h a t t h e B-~-2-acetamido-2-deoxyglucosidases a r e t e t r a m e r i c enzymes composed o f e i t h e r t w o d i m e r s o f @ - c h a i n s (B-
Q - 2 - a c e t a m i d o - 2 - d e o x ~ y g l u c o s i d a s e B) o r a B - c h a i n d i m e r and an a c h a i n d i m e r ( B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e A). 6-a-2Acetamido-2-deoxyglucosidase S c o n t a i n s o n l y a-chains. The a p p a r e n t m o l e c u l a r w e i g h t o f b o t h a- and B - c h a i n s i s 25,000 d a l t o n . 8-e-2Acetamido-2-deoxyglucosidase A and 6 were i s o l a t e d and p u r i f i e d more A prepared t h a n 6 0 0 0 - f o l d f r o m B-Q-2-acetamido-2-deoxyglucosidase and a more a n o d i c a l l y S,
m i g r a t i n g B-~-2-acetamido-2-deoxyglucosidase
which contained o n l y a-chains.
After either extensive reduction
and a l k y l a t i o n o r p e r f o r m i c a c i d o x i d a t i o n ,
B-Q-2-acetamido-2-
d e o x y g l u c o s i d a s e B gave o n l y a s i n g l e p r o t e i n band i n p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s i n sodium dodecyl sulphate. deoxyglucosidase
A
consistently
gave
two
B-a-2-Acetamido-2-
bands,
c o n t a i n e d chains o f two d i f f e r e n t m o l e c u l a r weights.
indicating
it
Other r e p o r t s
have n o t e d t w o bands i n B-Q-2-acetamido-2-deoxyglucosidase
A but
357
6: Enzymes have d i s m i s s e d t h e h i g h - m o l e c u l a r - w e i g h t either
band as a d i m e r c a u s e d by
h y d r o p h o b i c i n t e r a c t i o n o r an u n b r o k e n d i s u l p h i d e bond.
r u l e out
hydrophobic interaction,
the
molecular
weight
d e t e r m i n e d by g e l f i l t r a t i o n i n 6 M g u a n i d i n i u m c h l o r i d e . complete disulphide-bond
breakage,
To was
To e n s u r e
a h a r s h e r r e d u c t i o n and
a l k y l a t i o n p r o c e d u r e t h a n p r e v i o u s l y e m p l o y e d b y o t h e r s was u s e d . The r e s u l t s w e r e t h e n c o n f i r m e d b y t h e u s e o f t w o p e r f o r m i c a c i d o x i d a t i o n techniques, t h e s t r o n g e r method r e s u l t i n g i n e x t e n s i v e Samples o f B-Q-2-acetamido-2-deoxygluco-
peptide-bond oxidation. sidase A
under
either
r e d u c t i o n and
a l k y l a t i o n or
the
weaker
p e r f o r m i c a c i d o x i d a t i o n p r o c e d u r e a g a i n c h r o m a t o g r a p h e d as t w o approximately
e q u a l peaks
(50,000
B-D-2-Acetamido-2-
and 25,000).
d e o x y g l u c o s i d a s e B and t h e B - Q - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e prepared from 25,000
$-~-2-acetamido-2-deoxyglucosidase
d a l t o n peak.
S chromato-
The a u t h o r s c o n c l u d e t h a t e i t h e r
i n B-~-2-acetamido-2-deoxyglucosidase w i t h one a - c h a i n
w e i g h t o f 50,000
B
r e s u l t e d i n one
B-~-2-Acetamido-2-deoxyglucosidase
g r a p h e d a s a s i n g l e 50,000 p e a k . the a-chain
A
per a-subunit
d a l t o n c h a i n s a r e u n i t e d by a n o n - d i s u l p h i d e
has a m o l e c u l a r
o r t h a t t w o 25,000 c r o s s l i n k (-
an
i s o p e p t i d e bond). The d i s a c c h a r id e 2 - a c e t a m i d o -2-deox y - B - Q - g l u c o p y r a n o s y l - ( 1 + 3 ) -
a-{ l - 3 H ) - g a l a c t i t o l ,
prepared from keratan sulphate,
h a s been f o u n d
t o be r a p i d l y h y d r o l y s e d by t h e A a n d B i s o e n z y m e s o f n o r m a l human l i v e r B-~-2-acetamido-2-deoxyglucosidase and by t h e B i s o e n z y m e p r e p a r e d f r o m t h e l i v e r o f a Tay-Sachs
disease patient.32
The
d i s a c c h a r i d e s u b s t r a t e was a l s o h y d r o l y s e d b y e x t r a c t s o f n o r m a l , cultured-skin fibroblasts, Sachs d i s e a s e ,
and f i b r o b l a s t s o f p a t i e n t s w i t h Tay-
w h e r e a s i t was n o t h y d r o l y s e d by f i b r o b l a s t e x t r a c t s
of p a t i e n t s w i t h Sandhoff disease.
Thus,
defective degradation o f
k e r a t a n sulphate, secondary t o a d e f e c t o f t h e subunits present i n the
A
and B i s o e n z y m e s o f B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e ,
contribute
to
the
appearance
of
skeletal
lesions
i n
may
patients
a f f e c t e d by Sandhoff disease. The p h o s p h o l i p i d a c y l - c h a i n
d e p e n d e n c e o f t h e membrane-bound
l y s o s o m a l B-Q-2-acetamido-2-deoxyglucosidase c o n t r o l membranes f r o m r a t
h a s been e x a m i n e d on
b r a i n p r i m a r y c e l l c u l t u r e s and on
membranes m o d i f i e d by c u l t u r i n g t h e c e l l s i n m e d i a s u p p l e m e n t e d w i t h polyunsaturated fatty
a c i d s .33
acetamido-2-deoxyglucosidase acyl-chain
The r e l a t i o n s h i p b e t w e e n $ - Q - 2 -
a c t i v i t y and t h e membrane p h o s p h o l i p i d
c o m p o s i t i o n has been e v a l u a t e d .
An i n c r e a s e i n t h e
u n s a t u r a t i o n l e v e l of p h o s p h a t i d y l e t h a n o l a m i n e s and p h o s p h a t i d y l -
Carbohydrate Chemistry cholines,
t h e m o s t a b u n d a n t p h o s p h o l i p i d s i n t h i s membrane f r a c t i o n ,
i s r e l a t e d t o the enzymic reaction.
The A r r h e n i u s p l o t o f t h e
enzyme a c t i v i t y i n m o d i f i e d membranes showed break-temperatures, s t a r t i n g f r o m a p p r o x i m a t e l y 1 5 'C. below
and above t h e
The a p p a r e n t a c t i v a t i o n e n e r g y
break-temperature
was
not correlated with
phospholipid acyl-chain unsaturation.
Q -Man n o s e , m e t h y 1- a - g
- man n o p y r a n o s i d e ,
mannose have
been f o u n d t o
inhibit
glucosidase B
p u r i f i e d from
both
and 2 - a m i n o -2-deox y -#-
B-Q-2-acetamido-2-deoxy-
porcine
placenta
and
bovine
e p i d i d y m i ~ . ~The ~ i n h i b i t i o n i s c o m p e t i t i v e and t h e i n h i b i t o r y c o n s t a n t s a r e a b o u t 20 m M f o r
g-mannose and m e t h y l - a - 1 - m a n n o p y r a n o -
s i d e and 2 m M f o r 2 - a m i n o - 2 - d e o x y - ~ - m a n n o s e . o f t h i s i n h i b i t o r y e f f e c t i s discussed. The c h a n g e s
of
sulphate-containing
The p h y s i o l o g i c a l r o l e glycosaminoglycans
and
g l y c o s a m i n o g l y c a n a s e s d u r i n g b o v i n e f o e t a l development have been
t was shown t h a t a n a l y ~ e d . ~I ~
chondroitin 6-sulphate
increases i n
c o n c e n t r a t i o n up t o t h e 5 0 t h day o f f o e t a l d e v e l o p m e n t a n d t h e n decreases p r o g r e s s i v e l y u n t i l i t s complete disappearance i n most adult tissues.
Likewise,
h y a l u r o n i d a s e a l s o r e a c h e s a p e a k on t h e
5 0 t h day and d e c r e a s e s i n a c t i v i t y u n t i l i t s d i s a p p e a r a n c e i n a d u l t tissues.
On t h e o t h e r hand,
as w e l l as B - P - g l u c u r o n i d a s e
heparan s u l p h a t e and d e r m a t a n s u l p h a t e and B-~-2-acetamido-2-deoxyglucosidase
r e m a i n w i t h o u t s i g n i f i c a n t changes d u r i n g t h e w h o l e p e r i o d . f o e t a l chondroitin 6-sulphate molecular
weights
properties of described.
depending on t h e t i s s u e o f
foetal
The
i s tissue specific with different
m u s c l e - and
origin.
brain-hyaluronidase
Some
are
The p o s s i b l e r o l e o f c h o n d r o i t i n 6 - s u l p h a t e
also and
h y a l u r o n i d a s e i n t h e p r o c e s s e s o f d i f f e r e n t i a t i o n and d i v i s i o n i s discussed i n view o f these f i n d i n g s . The a - k - f u c o s i d a s e , mannosidase,
a-l-arabinofuranosidase muscle o f
B-~-2-acetamido-2-deoxyglucosidase,
B-p-glucuronidase,
B-;-xylosidase,
activities
of
d e v e l o p i n g and a d u l t
B-Q-glucosidase,
a-p-
and
n o r m a l and a t r o p h i c s k e l e t a l
r a t s have been c o l l e c t i v e l y
i n v e s t i g a t e d . 36
B-;-2-Acetamido-2-deoxyglucosidase mouse t e s t e s .
h a s been c h a r a c t e r i z e d f r o m
Only one o f t h e t w o i s o z y m e s o f B-Q-2-acetamido-2-
d e o x y g l u c o s i d a s e i n t e s t e s was o b t a i n e d i n t h e f i n a l p r e p a r a t i o n , having a specific
activity
of
4.44
p u r i f i e d e n z y m e s h o w e d a I&, o f 0.24 mg-l
protein.
u n i t s mg-l mM and
The o p t i m u m t e m p e r a t u r e
t e m p e r a t u r e (L112)
protein.37
The
lmax o f 0.165 pM m i n - '
i s 6OoC a n d t r a n s i t i o n
f o r h e a t d e n a t u r a t i o n i s 63OC.
The o p t i m u m pH o f
359
6: Enzymes the
enzyme
i s
filtration, potent
4.5.
The
molecular
inhibitors
weight,
dalton.
c o r r e s p o n d s t o 178,000
by
Ag',
G-200
a n d PCMB a r e
o f B-~-2-acetamido-2-deoxyglucosidase,
e t h y l m a l e i m i d e and 2 - a c e t a m i d o - 2 - d e o x y - Q - g l u c o s e enzyme a c t i v i t y .
Sephadex
Hg2',
though
3-
also i n h i b i t the
P r o t e c t i v e a c t i o n by L - c y s t e i n e f o r t h e i n h i b i t i o n
by HgC12 s u g g e s t s t h e r o l e o f a t h i o l g r o u p a t t h e c a t a l y t i c s i t e o f t h e enzyme.
The p u r i f i e d e n z y m e d o e s n o t c r o s s - r e a c t i n i m m u n o -
d i f f u s i o n p l a t e s w i t h anti-mouse t e s t i c u l a r h y a l u r o n i d a s e serum, s u g g e s t i n g t h a t B-Q-2-acetamido-2-deoxyglucosidase
does n o t have
common a n t i g e n i c d e t e r m i n a n t s i n h y a l u r o n i d a s e o f h y a l u r o n i d a s e - B - g complex o f acrosome o r t e s t e s .
2- a c et am i d o - 2 - d eo x y g l u c o s i d a s e
The a c t i v i t i e s o f v a r i o u s g l y c o s i d a s e s i n h o m o g e n a t e s o f t h e small
i n t e s t i n a l mucosa o f
wallabies
eurgenii)
(M.
two
aged
adults from
6
a n d 1 8 s u c k l i n g tamrnar to
i n v e ~ t i g a t e d . ~B ~- g - G a l a c t o s i d a s e , deoxyglucosidase,
a-k-fucosidase,and
50
weeks
have
been
B-Q-2-acetamido-2-
neuraminadase a c t i v i t i e s were
h i g h d u r i n g t h e f i r s t 3 4 weeks p o s t p a r t u m and t h e n d e c l i n e d t o v e r y low levels.
a-p-Glucosidase,
aa-trehalase
a c t i v i t i e s were v e r y l o w or a b s e n t d u r i n g t h e f i r s t 34
weeks,
l i m i t dextrinase,
and t h e n i n c r e a s e d .
a-p-glucosidase,
The B - Q - g a l a c t o s i d a s e
activity
and was
unusual i n being greater i n t h e d i s t a l than t h e middle or p r o x i m a l thirds o f the intestine,
a n d i n i t s l o w pH o p t i m u m ( p H 4.6),
i n h i b i t i o n by 4-chloromercuribenzene t h e l a c k o f 6-0-glucosidase
i t s
s u l p h o n a t e b u t n o t by T r i s ,
activity.
and
These p r o p e r t i e s w e r e t h o s e
o f a lysosomal a c i d B-Q-galactosidase r a t h e r than o f a brush border n e u t r a l B-g-galactosidase. characteristics
of
a
The a - q - g l u c o s i d a s e
lysosomal
acid
a c t i v i t y had t h e
a-a-glucosidase
early
l a c t a t i o n and o f a b r u s h b o r d e r n e u t r a l a - Q - g a l a c t o s i d a s e animals.
The s i g n i f i c a n c e o f
these findings
was
in
i n adult
discussed
i n
r e l a t i o n t o changes i n d i e t a r y c a r b o h y d r a t e s d u r i n g w e a n i n g and t o t h e mode o f d i g e s t i o n o f m i l k c a r b o h y d r a t e s by t h e p o u c h young. The
bulk
of
r a t
brain
neutral
B-g-2-acetamido-2-
deoxyhexosidases
have been shown t o
be p r e s e n t
f r a ~ t i 0 n . l ~ They
w e r e n o t bound by c o n c a n a v a l i n A-Sepharose
t h e a c i d B-P-2-acetamido-2-deoxyhexosidases
i n the
cytosol while
were a l l bound.
The
n e u t r a l B-~-2-acetamido-2-deoxyglucosidase h a d a pH o p t i m u m o f 5.2 and
Em
of
0.57
mM,
while
the
neutral
B-Q-2-acetamido-2-
d e o x y g a l a t o s i d a s e h a d t h e h i g h e s t r e a c t i o n r a t e a t pH 6.0 of
0.12
mM.
B-Q-2-acetamido-2-deoxyglucosidase a c t i v i t y
with a
No d i v a l e n t i o n s a c t i v a t e d e i t h e r o f t h e enzymes.
i n
30
min
a t
5OoC.
lost The
more
than
90%
of
Em The the
B-D-2-acetamido-2-
Carbohydrate Chemistry
360 deoxygalactosidase activity
after
3
was h e a t - s t a b l e h
at
5OoC.
and l o s t o n l y
The
neutral
10-20% o f
i t s
B-Q-2-acetamido-2-
d e o x y g l u c o s i d a s e was i n h i b i t e d b y f r e e 2 - a c e t a m i d o 2 - d e o x y - B - Q-glucose but not
by
The r e v e r s e
2-acetamido-2-deoxy-B-~-galactose.
was f o u n d f o r t h e n e u t r a l B-~-2-acetamido-2-deoxygalactosidase. enzymes were s e p a r a t e d a l m o s t chromatography.
Heat s t a b i l i t y
completely
by
Two
hydroxyapatite
o f t h e separated a c t i v i t y peaks
suggested t h a t t h e n e u t r a l B-g-2-acetamido-2-deoxygalactosidase, w h i c h was n o t b o u n d t o h y d r o x y a p a t i t e , may,
on t h e o t h e r hand,
substrate.
may b e s p e c i f i c t o t h e Q -
The n e u t r a l B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e
galacto substrate. Both of
h a v e some a c t i v i t y t o w a r d t h e Q - g a l a c t o
t h e n e u t r a l enzyme a c t i v i t i e s w e r e shown t o be
h i g h e s t d u r i n g t h e f i r s t p o s t n a t a l week i n r a t b r a i n , i n c o n t r a s t t o t h e a c i d enzyme,
w h i c h showed peak a c t i v i t i e s d u r i n g t h e s e c o n d and
t h i r d weeks. The
separation
and
properties
of
B-e-2-acetamido-2-
d e o x y g l u c o s i d a s e A , B, a n d I f r o m h o r s e b r a i n h a v e b e e n r e p ~ r t e d . ~ ’ Three forms
of
B-~-2-acetamido-2-deoxyglucosidase
been s e p a r a t e d f o r chromatography
(A,
B, and
I) h a v e
t h e f i r s t t i m e f r o m h o r s e b r a i n by i o n - e x c h a n g e on
DEAE-cellulose.
Form
I has
properties
i n t e r m e d i a t e i n t h e e l u t i o n p o s i t i o n f r o m D E A E - c e l l u l o s e PI and thermal s t a b i l i t y , f o r m s A a n d B.
under t h e assay c o n d i t i o n s ,
between those o f
A f t e r i s o e l e c t r i c f o c u s i n g , e s p e c i a l l y f o r m s A and I
a r e t r a n s f o r m e d i n t o more t h e r m o s t a b l e f o r m s . deoxy-a-mannose,
Q-Mannose, 2 - a m i n o - 2 methy1-a-Q-
2-acetamido-2-deoxy-Q-g1ucose,and
mannopyranoside have been f o u n d t o i n h i b i t t h e t h r e e above-mentioned forms.
Q-Glucose
inhibitors
for
and 2-amino-2-deoxy-!-galactose
B-!-2-acetamido-2-deoxyglucosidase
w e r e weak
B a n d I.
52-
G l u c u r o n i c a c i d was an i n h i b i t o r f o r f o r m s A and I. The m e t a b o l i c r o l e o f t h e s e i n h i b i t i o n s on s p e c i f i c i t i e s o f B-e-2-acetamido-2deoxyglucosidase towards n a t u r a l s u b s t r a t e s i s discussed. The i n d u c t i o n o f B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e
activity in
t h e s u b m a x i l l a r y g l a n d s o f s t r e p t o z o t o c i n d i a b e t i c m i c e has been reported.40
S t r e p t o z o t o c i n d i a b e t e s s t r o n g l y r e d u c e d t h e B-Q-2-
a c e t a mido-2-deoxyg lucosidase mice.
a c t i v i t y i n the submaxillary glands o f
A r e c i p r o c a l change was o b s e r v e d b e t w e e n t h e enzyme a c t i v i t y
and b l o o d s u g a r i n d i a b e t e s .
I n s u l i n t r e a t m e n t o f t h e d i a b e t i c mice
returned the reduced a c t i v i t y t o t h e normal l e v e l . f o c u s i n g a n a l y s i s showed t h a t t h e s u b m a x i l l a r y - g l a n d
Isoelectrice n z y m e was
composed o f t w o i s o z y m e s h a v i n g i s o e l e c t r i c p o i n t s (PI) o f 4.8 8.8.
O n l y t h e PI 8.8 i s o z y m e was a f f e c t e d by t h e d i a b e t e s .
and
361
6: Enzymes Two
major
isoenzymes,
and
A
of
B,
B-Q-2-acetamido-2-
d e o x y g l u c o s i d a s e have been p u r i f i e d f r o m a d u l t - r a t muscle.41
gastrocnemius
S t u d i e s w e r e a l s o done o n a d u l t - r a t
a t r o p h i c muscle a f t e r
u n i l a t e r a l neurectomy o f t h e s c i a t i c nerve.
I n b o t h n o r m a l and
a t r o p h i c t i s s u e s t h r e e a d d i t i o n a l m i n o r f o r m s o f t h e enzyme w e r e identified. Sucrose
density
lysosome-containing
-----calcitrans
L.42
galactosidase,
B-e - g l u c u r
gradients
have
been
used t o
fractions from 0 h white
The a c i d i c g l y c o s i d a s e s a-;-mannosidase,
o n i dase, a n d
characterize
prepupae o f
Stomoxys
(a-Q-glucosidase,
B-g-glucosidase,
a-Q-
B-P-galactosidase,
B-Q-2-acet amido-2-deoxyglucosidase)
e q u i l i b r a t e a t t h e same d e n s i t y a s d o e s a c i d p h o s p h a t a s e .
The
m i t o c h o n d r i a 1 m a r k e r enzyme c y t o c h r o m e o x i d a s e a l s o e q u i l i b r a t e s a t t h e same d e n s i t y .
Gomori s t a i n i n g showed t h e p r e s e n c e o f
acid
phosphatase i n t h e lysosomes. B-~-2-Acetamido-2-deoxyglucosidase from
the digestive gland of
Mercenaria
h a s been p a r t i a l l y p u r i f i e d
t h e t h r e e c o a s t a l New E n g l a n d b i v a l v e s
m e r c e n a r i a , S p i s u l a s o l i d i s s i m a , a n d blya a r e n a r i a a n d
t h e i r p r o p e r t i e s h a v e been compared.
H e a t - i n a c t i v a t i o n s t u d i e s on
t h e B-Q-2-acetamido-2-deoxyglucosidase
p r e i n c u b a t e d a t 45OC r e v e a l e d
t h a t t h e p r e p a r a t i o n f r o m S. w h i l e t h a t f r o m M.
s o l i d i s s i m a was s t a b l e u p t o 6 0 min,
a r e n a r i a and M.
m e r c e n a r i a l o s t 47 a n d 9 1 % o f
t h e i r o r i g i n a l a c t i v i t i e s under these c o n d i t i o n s ,
respectively.
I n h i b i t i o n s t u d i e s i n d i c a t e d t h a t ~ - g l u c u r o n o - 6 , 3 - l a c t o n e i s more i n h i b i t o r y t o w a r d s t h e M. a r e n a r i a enzyme,
w h i l e HgC12 a p p e a r s t o be
l e s s i n h i b i t o r y t o w a r d s t h e S. s o l i d i s s i m a enzyme. for
B-~-2-acetamido-2-deoxyglucosidase Other
deoxyglucosidase
M.
The
lma value
mercenaria
was
g r e a t e r t h a n t h a t f r o m S. s o l i d i s s i r n a a n d
approximately 2.5-fold
M. a r enaria.
from
characteristics
such
as
pH
of
the
Km,
optimum,
B-Q-2-acetamido-2mol.
wt.,
energy
o f
a c t i v a t i o n , and e f f e c t o f i o n i c s t r e n g t h o n enzyme a c t i v i t y w e r e f o u n d t o be s i m i l a r f o r a l l t h r e e s p e c i e s . B-;-2-Acetamido-2-deoxyglucosidase
and B-g-2-acetamido-2-deoxy-
g a l a c t o s i d a s e a c t i v i t y l e v e l s and c y t o c h e m i c a l l o c a l i z a t i o n have been
investigated i n
Dugesia Lugubris.18
i n t a c t
and
regenerating
planarian
I n 2 4 h r e g e n e r a t i n g p l a n a r i a n s t h e B-Q-2-
acetamido-2-deoxyglucosidase
was
lysosomes of
cells.
dedifferentiating
found
to
be
localized i n the
The B-Q-2-acetamido-2-deoxy-
glucosidase l o c a l i z a t i o n i n d e d i f f e r e n t i a t i n g c e l l s , correlated w i t h a n d B-Q-2i n c r e a s e i n B-Q-2-acetamido-2-deoxyglucosidase a c e t a m i d o - 2 - d e o x y g a l a c t o s i d a s e a c t i v i t i e s d u r i n g t h e f i r s t 24 h o f
the
362
Carbohydrate Chemistry
r e g e n e r a t i o n , c o n f i r m s t h e involvement o f t h e d e d i f f e r e n t i a t i o n i n t h e o r i g i n of b l a s t e m a . I n n o n - r e g e n e r a t i n g a n i m a l s t h e B-Q-2acetamido-2-deoxyglucosidase a c t i v i t y h a s been c y t o c h e m i c a l l y d e m o n s t r a t e d i n t h e l y s o s o m e s o f g a s t r o d e r m a l c e l l s and i n t h e mucous g r a n u l e s of b a s o p h i l i c s e c r e t o r y c e l l s . T h i s l a t t e r f i n d i n g i s i n t e r p r e t e d a s p r o o f of a s i m i l a r i t y b e t w e e n p l a n a r i a n and v e r t e b r a t e mucous s e c r e t i o n . Nine g l y c o s i d a s e s i n b l o o d s t r e a m f o r m s of Trypanosoma ------------b r u c e i b r u c e i S42 have been p a r t i a l l y c h a r a c t e r i z e d . a-gG l u c o s i d a s e had s i m i l a r p h y s i o c h e m i c a l and e n z y m i c p r o p e r t i e s t o t h o s e o f a - Q - g a l a c t o s i d a s e , B - Q - g l u c o s i d a s e , B-Q-Z-acetamido-2d e o x y g l u c o s i d a s e and B - ~ - 2 - a c e t a r n i d o - 2 - d e o x y g a l a c t 0 s i d a s e . ~ ~ a-QMannosidase was c l e a r l y d i s t i n c t from t h e o t h e r g l y c o s i d a s e s w i t h r e s p e c t t o pH optimum, t h e r m o s t a b i l i t y , s p e c i f i c a c t i v i t y d u r i n g t h e c o u r s e of p a r a s i t a e m i a , and s u b c e l l u l a r l o c a t i o n . I t was s u g g e s t e d t h a t t h e g l y c o s i d a s e s s t u d i e d may p l a y a r o l e i n t h e t u r n o v e r of trypanosomal glycoproteins, i n p a r t i c u l a r t h e v a r i a n t - s p e c i f i c s u r f ace a n t i g e n . A c o m p a r a t i v e s t u d y of B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e from M e r c e n a r i a m e r c e n a r i a , Mya a r e n a r i a , a n d S p i s u l a s o l i d i s s i m a h a s been made.43 A marked i n c r e a s e i n B - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e a c t i v i t y h a s b e e n o b s e r v e d i n t h e g e r m i n a t i n g c o t y l e d o n of c o t t o n s e e d s . 4 4 The enzyme was i s o l a t e d 3 5 , and 2 0 % was i n s o l u b l e m a t e r i a l t h a t r e s e m b l e d yeast-bud s c a r s m i c r o s c o p i c a l l y . C e l l - f r e e e x t r a c t s , membranous f r a c t i o n s , and c e l l - w a l l p r e p a r a t i o n s from Schizosaccharomyces p o m k were examined f o r t h e p r e s e n c e of (1 + 3 ) - a - and (1 + 6)-B-D-glucanase a c t i v i t i e s . 3 8 1 The v a r i o u s g l u c a n a s e s were assayed i n c e l l s a t d i f f e r e n t growth s t a g e s . O n l y ( 1 + 3)-B-;-glucanase a c t i v i t y was f o u n d , a n d t h i s w a s associated with the cell-wall fraction. Chromatographic f r a c t i o n a t i o n of t h e c r u d e enzyme r e v e a l e d t w o e n d o - ( 1 + 3>-8-Qg l u c a n a s e s , d e s i g n a t e d a s g l u c a n a s e I and g l u c a n a s e 11. Glucanase I c o n s i s t e d o f two s u b u n i t s o f m o l e c u l a r w e i g h t s 7 8 , 5 0 0 and 8 2 , 0 0 0 , and g l u c a n a s e I 1 was a s i n g l e p o l y p e p t i d e o f 7 5 , 0 0 0 . A l t h o u g h b o t h enzymes had s i m i l a r s u b s t r a t e s p e c i f i c i t i e s and s i m i l a r h y d r o l y t i c a c t i o n on l a m i n a r i n , g l u c a n a s e I 1 had much h i g h e r h y d r o l y t i c On t h e b a s i s of a c t i v i t y on i s o l a t e d c e l l w a l l s of S. pombe. d i f f e r e n t i a l l y t i c a c t i v i t y on c e l l w a l l s , g l u c a n a s e I1 was shown t o be p r e s e n t i n c o n j u g a t i n g c e l l s and h i g h e s t i n s p o r u l a t i n g cells. Glucanase I1 appeared t o be s p e c i f i c a l l y i n v o l v e d i n c o n j u g a t i o n and s p o r u l a t i o n s i n c e v e g e t a t i v e c e l l s and n o n - c o n j u g a t i n g and nons p o r u l a t i n g c e l l s d i d n o t c o n t a i n t h i s enzyme. The a p p e a r a n c e o f g l u c a n a s e I 1 i n c o n j u g a t i n g c e l l s may be due t o de novo enzyme s y n t h e s i s s i n c e no a c t i v a t i o n c o u l d b e d e m o n s t r a t e d b y c o m b i n i n g e x t r a c t s from v e g e t a t i v e and c o n j u g a t i n g c e l l s . I n c r e a s e d g l u c a n a s e a c t i v i t y o c c u r r e d when w a l l s from c o n j u g a t i n g c e l l s were combined w i t h w a l l s from s p o r u l a t i n g c e l l s . S t u d i e s w i t h t r y p s i n and p r o t e o l y t i c i n h i b i t o r s s u g g e s t t h a t g l u c a n a s e 11 e x i s t s a s a zymogen i n conjugating c e l l s . A t e m p e r a t u r e - s e n s i t i v e mutant of S. pombe was i s o l a t e d which l y s e d a t 37OC. Glucanase a c t i v i t y was h i g h e r i n v e g e t a t i v e c e l l s h e l d a t 3 7 O C t h a n c e l l s h e l d a t 25'C. Unlike t h e w i l d - t y p e s t r a i n , t h i s mutant c o n t a i n e d g l u c a n a s e I1 a c t i v i t y d u r i n g v e g e t a t i v e growth and may be a r e g u l a t o r y mutant.
502
Carbohydrate Chemistry 25
=-(
1
+
3)-8-g-Glucanases
I t h a s been r e p o r t e d t h a t g l y c o s y l a t i o n i s n o t n e c e s s a r y f o r the secretion of gxg-(l + 3 ) - B - D = - g l u c a n a s e by ----Saccharomyces c e r e v i s i a e p r o t o p l a s t s . 3 8 2 I t was shown t h a t t h e normal s y n t h e s i s and s e c r e t i o n of t h e major z - ( l + 3)-B-D-glucana s e s e c r e t e d b y S. c e r e v i s i a e p r o t o p l a s t s w e r e a f f e c t e d b y t u n i c a m y c i n , and a new, presumably n o n - g l y c o s y l a t e d form i s e x p o r t e d t o t h e c e l l u l o s e medium. A s i m i l a r f o r m was a l s o s e c r e t e d i n t h e p r e s e n c e of 2-deoxy-q-glucose. P a r t i a l p u r i f i c a t i o n of e n d o - and a - ( l + 3 ) - B - Q - g l u c a n a s e enzymes from Zea mays s e e d l i n g s and t h e i r involvement i n c e l l - w a l l a u t o h y d r o l y s i s have been i n v e s t i g a t e d . 3 8 3 Molecular-sieve chromatography of t h e c e l l - w a l l p r o t e i n r e s o l v e d endo-B-Q-glucanase and g ~ - ( +l 3 ) - B - Q - g l u c a n a s e a c t i v i t i e s when Avena g l u c a n and l a m i n a r a n , r e s p e c t i v e l y , were employed a s s u b s t r a t e s . The exoenzyme ( m o l . w t . 6 0 , 0 0 0 ) was s t r o n g l y i n h i b i t e d b y i n o r g a n i c m e r c u r y a t a c o n c e n t r a t i o n which s u p p r e s s e d t h e r e l e a s e of monosaccharide from a u t o l y t i c a l l y a c t i v e c e l l w a l l . The e n d o - B - Q - g l u c a n a s e ( m o l . w t . 26,000) showed a marked p r e f e r e n c e f o r s u b s t r a t e s of mixed-linkage and e x h i b i t e d f e a t u r e s i n d i c a t i n g t h a t i t i n i t i a t e s t h e a u t o l y t i c s o l u b i l i z a t i o n of w a l l glucan. * 3)-B-EThe p u r i f i c a t i o n and some p r o p e r t i e s of an = - ( l g l u c a n a s e f r o m b a s i d i o m y c e t e s p e c i e s h a v e been d e s c r i b e d . 3 8 4 An e x o - ( 1 + 3)-B-!-glucanase was p u r i f i e d f r o m t h e c o m m e r c i a l enzyme K i t a l a s e , w h i c h i s a y e a s t c e l l - w a l l l y t i c enzyme p r e p a r a t i o n , b y ammonium s u l p h a t e f r a c t i o n a t i o n , ion-exchange chromatography, and gel filtration. The optimum pH v a l u e was 5 . 8 , and t h e optimum t e m p e r a t u r e was 5 5 ' C . The enzyme was s t a b l e i n t h e pH r a n g e of 5.1 - 9.8 and a t t e m p e r a t u r e s below 53'C. The i s o e l e c t r i c p o i n t and t h e m o l e c u l a r w e i g h t w e r e e s t i m a t e d t o b e pH 9 . 3 a n d 7 3 , 0 0 0 , respectively. The enzyme was shown t o b y p a s s ( 1 -* 6 ) - l i n k a g e d b r a n c h e s t o c l e a v e ( 1 + 3 ) - l i n k a g e s when s c l e r o g l u c a n was u s e d a s s u b s t r a t e . T h e Em v a l u e s f o r l a m i n a r i n , l a m i n a r i p e n t a o s e , l a m i n a r i t e t r a o s e , and l a m i n a r i t r i o s e w e r e 0 . 1 6 , 2 . 0 1 , 2.24, a n d 1.34 m M , respectively.
503
6: Enzymes 26
endo-( 1
*
4)-B-p-Glucanases
The s p e c i f i c p r o p e r t i e s h a v e been e x a m i n e d o f t h e ( 1
4)-8-n-
+
g l u c a n a s e component o f T r i c h o d e r m a k o n i n q i i t h a t p a r t i c i p a t e s i n an e a r l y a n d e f f e c t i v e s t a g e o f random b r e a k d o w n o f n a t i v e c e l l u l o s e t o s h o r t fibres.385 components that
of
The enzyme was p u r i f i e d and f r e e d f r o m a s s o c i a t e d t h e c e l l u l a s e complex
s u c h enzymes.
B-q-glucosidase)
P u r i f i c a t i o n increased the s p e c i f i c a c t i v i t y 25-fold
over c u l t u r e f i l t r a t e s .
The enzyme h y d r o l y s e d C M - c e l l u l o s e
t h a n t h e p u r i f i e d B-g-glucosidase any
(particularly
i n t e r f e r e w i t h and c o m p l i c a t e i n t e r p r e t a t i o n o f t h e a c t i o n o f
of
i t s
substrates
specificity
of
d e r i v a t i v e s of
the
(cellobiose
glucanase
cellulose.
faster
f r o m t h e same o r g a n i s m h y d r o l y s e d was
or
cellodextrins).
directed
towards
The
soluble
The g l u c a n a s e ( t e m p e r a t u r e o p t i m u m 6 O o C )
attacked larger c e l l o d e x t r i n s (cellohexaose t o cellotetraose, i n t h a t o r d e r ) much m o r e r e a d i l y t h a n s m a l l d e x t r i n s ( c e l l o b i o s e a n d c e l l o t r i o s e ) and r e l e a s e d a m i x t u r e o f p r o d u c t s , cellopentaose.
Q - g l u c o s e up t o
S i m i l a r examination o f hydrolysates o f t h e reduced
c e l l o d e x t r i n s showed c l e a r l y t h e h i g h s p e c i f i c i t y o f t h e enzyme f o r t h e c e n t r a l bond o f i t s n a t u r a l s u b s t r a t e s ( t h e c e l l o d e x t r i n s ) , whatever t h e i r chain length,
and i n d i c a t e d t h e n a t u r e o f t h e enzyme
as an e n d o - g l u c a n a s e . A new u l t r a s o n i c m e t h o d h a s been d e v e l o p e d f o r
c o m p o s i t i o n and p r o p e r t i e s of
determining the
i n d i v i d u a l components o f
s y s t e m s w i t h o u t t h e i r p r e l i m i n a r y separation.’’’
polyenzyme
The m e t h o d i s
b a s e d on d e t e r m i n a t i o n o f t h e pH dependence o f t h e r a t e c o n s t a n t s o f i n a c t i v a t i o n o f i n d i v i d u a l c o m p o n e n t s o f t h e enzyme s y s t e m u n d e r t h e a c t i o n of c a v i t a t i o n a l ultrasound.
T h e m e t h o d was u s e d t o s t u d y
c e l l u l a s e complex from t h e fungus G e o t r i c h u m candidum. contains at glucanase,
least
exo-(l
-+
four
c e l l u l o l y t i c enzymes,
4)-B-!-glucanase,
T h i s complex
endo-(1
B-Q-glucosidase,
+
4)-B-g-
and a r y l - B - g -
g l u c o s i d a s e , w h i c h d i f f e r i n v a l u e s o f pK o f t h e i o n o g e n i c g r o u p s , c o n t r o l l i n g t h e pH p r o f i l e s o f
ultrasonic inactivation,
as w e l l as
i n values o f t h e r a t e constants o f i n a c t i v a t i o n o f the form o f the a c t i v e s i t e most s t a b l e t o t h e a c t i o n o f u l t r a s o u n d .
endo-(1
-------mocellum
-+
by
4)-B-!-Glucanase
was p u r i f i e d f r o m C l o s t r i d i u m t h e r -
centrifugation,
p r e c i p i t a t i o n , ion-exchange,
u l t r a f i l t r a t i o n ,
selective
Sephadex c h r o m a t o g r a p h y , a n d p r e p a r a t i v e
g e l e l e c t r o p h o r e ~ i s . T~h~e ~2 2 - f o l d - p u r i f i e d
enzyme behaved as a
homogeneous p r o t e i n under n o n - d e n a t u r i n g c o n d i t i o n s . The e n z y m e r e p r e s e n t e d a s i g n i f i c a n t component ( > 25%) o f t o t a l e x t r a c e l l u l a r
5 04
Carbohydrate Chemistry
e n d o - g l u c a n a s e a c t i v i t y , b u t was p u r i f i e d i n low y i e l d b y t h e p r o c e d u r e s employed. The n a t i v e m o l e c u l a r weight of t h e endo-(1 + 4 ) - B - e - g l u c a n a s e was d e t e r m i n e d b y u l t r a c e n t r i f u g a t i o n a l a n a l y s i s , amino a c i d c o m p o s i t i o n , and p o l y a c r y l a m i d e - g e l e l e c t r o p h o r e s i s and T h e enzyme c o n t a i n e d 11.2% v a r i e d b e t w e e n 8 3 , 0 0 0 and 9 4 , 0 0 0 . c a r b o h y d r a t e and was i s o e l e c t r i c a t pH 6.72. The pH and t e m p e r a t u r e o p t i m a of t h e endo-glucanase were 5.2 and 62'C, r e s p e c t i v e l y . The enzyme l a c k e d B - c y s t e i n e and was low i n s u l p h u r - c o n t a i n i n g a m i n o acids. The p u r i f i e d e n d o - ( 1 + 4 ) - B - Q - g l u c a n a s e d i s p l a y e d : h i g h a c t i v i t y towards carboxymethylcellulose, celloheptaose, cellohexaose, and c e l l o p e n t a o s e , low a c t i v i t y t o w a r d s A v i c e l m i c r o c r y s t a l l i n e c e l l u l o s e and c e l l o t e t r a o s e , no d e t e c t a b l e a c t i v i t y t o w a r d s increased a c t i v i t y towards c e l l o c e l l o t r i o s e or cellobiose, The o l i g o s a c c h a r i d e s w i t h i n c r e a s i n g d e g r e e of p o l y m e r i z a t i o n . i n t e r n a l g l y c o s i d i c bonds of c e l l o - o l i g o s a c c h a r i d e s were c l e a v e d b y t h e enzyme i n p r e f e r e n c e t o e x t e r n a l l i n k a g e s . K m and l m a f ox r c e l l o p e n t a o s e and c e l l o h e x a o s e h y d r o l y s i s were 2.30 m M and 39.3 pmol m i n - l p e r mg o f p r o t e i n and 0.56 m M and 58.7 umol m i n - ' p e r mg of protein, respectively. The k i n e t i c p r i n c i p l e s of t h e f o r m a t i o n of !-glucose and c e l l o b i o s e i n t h e h y d r o l y s i s of m i c r o c r y s t a l l i n e c e l l u l o s e under t h e a c t i o n of c e l l u l a s e complexes from e i g h t d i f f e r e n t s o u r c e s have By s u c c e s s i v e a d d i t i o n of been s t u d i e d e x p e r i m e n t a l l y . 1 9 4 i n d i v i d u a l c o m p o n e n t s of t h e c e l l u l a s e c o m p l e x ( e n d o - ( 1 + 4 ) - B - q g l u c a n a s e and B - a - g l u c o s i d a s e ) t o t h e r e a c t i o n s y s t e m , t h e s t e p s l i m i t i n g t h e r a t e of e n z y m a t i c h y d r o l y s i s of m i c r o c r y s t a l l i n e c e l l u l o s e were r e v e a l e d . I t was shown t h a t i n most o f t h e c a s e s s t u d i e d t h e s t e p d e t e r m i n i n g t h e r a t e of f o r m a t i o n o f Q - g l u c o s e w i t h t h e p a r t i c i p a t i o n of i n t e r m e d i a t e c e l l o b i o s e i s t h e a c t i o n of O n l y i n one c a s e (complex from A s p e r g i l l u s f o e t i B-g-glucosidase. &, e n r i c h e d w i t h B-g-glucosidase) i s t h e r a t e o f f o r m a t i o n of g l u c o s e from m i c r o c r y s t a l l i n e c e l l u l o s e l i m i t e d by t h e a c t i o n of t h e I n accordance endo-(1 * 4)-B-Q-glucanase of t h e c e l l u l a s e complex. w i t h t h e k i n e t i c p r i n c i p l e s d e v e l o p e d , i t was shown t h a t when an e x c e s s of B-2-glucosidase i s added t o t h e r e a c t i o n s y s t e m t h e s t e p l i m i t i n g t h e r a t e of h y d r o l y s i s of m i c r o c r y s t a l l i n e c e l l u l o s e under t h e a c t i o n of a l l t h e c e l l u l a s e complexes s t u d i e d becomes t h e a t t a c k on t h e i n i t i a l i n s o l u b l e s u b s t r a t e b y e n d o - ( 1 + 4 ) - B - Q - g l u c a n a s e . U n d e r t h e same c o n d i t i o n s , a l i n e a r c o r r e l a t i o n was f o u n d b e t w e e n t h e s t e a d y - s t a t e r a t e o f f o r m a t i o n of Lj-glucose f r o m m i c r o c r y s t a l l i n e c e l l u l o s e u n d e r t h e a c t i o n of a l l t h e c e l l u l a s e c o m p l e x e s
e-
6: Enzymes
505
s t u d i e d , on t h e one h a n d , and t h e a c t i v i t y of e n d o - ( 1 + 4 ) - 8 - Q g l u c a n a s e i n t h e s e c o m p l e x e s , on t h e o t h e r . I t was shown t h a t t h e a c t i o n of a l l t h e c e l l u l a s e c o m p l e x e s s t u d i e d ( s e l e c t e d r a t h e r a r b i t r a r i l y ) i s d e s c r i b e d by e s s e n t i a l l y t h e same k i n e t i c p r i n c i p l e s , which i s e v i d e n c e o f t h e same m e c h a n i s m s of t h e h y d r o l y s i s of i n s o l u b l e c e l l u l o s e b y c e l l u l a s e r e p a r a t i o n s of different origin. During growth of B a c t e r i o d e s s u c c i n o g e n e s i n a l i q u i d medium w i t h c e l l u l o s e a s t h e s o u r c e of c a r b o h y d r a t e , g r e a t e r t h a n 8 0 % of t h e endo-( 1 + 4)-B-Q-glucanase , x y l a n a s e , and a r y l - B - a - x y l o s i d a s e and 5 0 % o f t h e a r y l - 6 - Q - g l u c o s i d a s e was r e l e a s e d from c e l l s i n t o t h e c u l t u r e fluid.227 B y u s i n g QAE-Sephadex A50 chromatography i n t h e p r e s e n c e of 6 M u r e a , i t was p o s s i b l e t o s p l i t t h e g l u c a n a s e complex o f C l o s t r i d i u m thermocellum i n t o d i s t i n c t p r o t e i n f r a c t i o n s . 3 8 7 One of t h e s e f r a c t i o n s c o n t a i n e d an e n d o - ( 1 + 4 ) - B - e - g l u c a n a s e which was i s o l a t e d a t a h i g h d e g r e e of p u r i t y and was i d e n t i f i e d b y i t s a b i l i t y t o h y d r o l y s e t r i n i t r o p h e n y l a t e d c a r b o x y m e t h y l c e l l u l o s e . The enzyme i s o f monomeric n a t u r e , w i t h a m o l e c u l a r w e i g h t o f 5 6 , 0 0 0 . I t h a s an i s o e l e c t r i c pH of 6 . 2 and an optimum pH of 6.0. It h y d r o l y s e d c a r b o x y m e t h y l c e l l u l o s e and, a t a s l o w e r r a t e , c e l l u l o s e powder. The m a j o r e n d - p r o d u c t s o f c e l l u l o s e d e g r a d a t i o n w e r e 9 g l u c o s e , c e l l o b i o s e , and c e l l o t r i o s e . C e l l o t e t r a o s e i s formed a s an i n t e r m e d i a t e product. T h e f o r m a t i o n and l o c a t i o n of (1 + 4 ) - B - Q - g l u c a n a s e s and ( 1 + 4)-B-!-glucosidases h a v e been s t u d i e d i n c u l t u r e s of P e n i c i l l i u m j a n t h i n e l l u m grown on A v i c e l , sodium carboxymethyl c e l l u l o s e , c e l l o b i o s e , g l u c o s e , mannose, and m a l t o s e . 2 2 2 e n d o - ( 1 + 4 ) - B - k Glucanases were c e l l f r e e , and t h e i r f o r m a t i o n was induced by c e l l o biose. (1 + 4)-B-P-Glucosidases, on t h e o t h e r h a n d , w e r e f o r m e d c o n s t i t u t i v e l y and were p r i m a r i l y c e l l f r e e , b u t w i t h a s m a l l amount strongly associated w i t h the c e l l wall. A rotational viscosimetric method was developed t o measure t h e t o t a l endo-(1 + 4)-B-Q-glucanase a c t i v i t y o f t h e c u l t u r e ( b r o t h and s o l i d s ) . B y t h i s method, i t was p o s s i b l e t o d e t e r m i n e t h e endo-(1 + 4)-B-Q-glucanase a c t i v i t y not o n l y i n t h e s u p e r n a t a n t o f t h e c u l t u r e b u t a l s o on t h e s u r f a c e of t h e m y c e l i u m o r a b s o r b e d on r e s i d u a l A v i c e l . D u r i n g a 70 l i t r e b a t c h c u l t i v a t i o n of P. j a n t h i n e l l u m , t h e a d s o r p t i o n of e n d o - ( 1 + 4 ) - B - Q - g l u c a n a s e s b y r e s i d u a l and newly a d d e d 1 0 % A v i c e l was m e a s u r e d . The a d s o r p t i o n o f s o l u b l e p r o t e i n and e n d o - ( 1 + 4)-B-Qg l u c a n a s e b y A v i c e l was f o u n d t o be l a r g e l y i n d e p e n d e n t of t h e pH
Carbohydrate Chemktry
506 v a l u e b u t d e p e n d e n t on t e m p e r a t u r e . The k i n e t i c s o f
g r o w t h and e x t r a c e l l u l a r
cellulase production
by Talaromyces e m e r s o n i L grown on c e l l u l o s i c measured.198
material
were
The enzyme s y s t e m was f o u n d t o b e c o m p r i s e d o f f o u r t o
f i v e f o r m s o f ~ g - (+l 4 ) - B - Q - g l u c a n a s e a n d a t l e a s t t w o f o r m s o f + 4)-B-P-glucanase and t h r e e 6 - Q - g l u c o s i d a s e s . One o f t h e
endo-(1
l a t t e r , t e r m e d B - Q - g l u c o s i d a s e 111, i s i n d u c e d c o n c u r r e n t l y w i t h t h e c e l l u l a s e s b u t d i s a p p e a r s f r o m t h e medium b e c a u s e o f t h e l o w pH t h a t develops d u r i n g growth. stable.
The c e l l u l a s e s b y c o n t r a s t a r e m o r e a c i d
The p o s s i b l e f u n c t i o n s o f t h e s e enzymes a r e d i s c u s s e d .
Production o f
-F-u-s a r i u m
sp.
extracellular
cellulase
by
an
has been s t u d i e d i n shake c u l t u r e s ,
isolate of
appearance o f c e l l u l a s e components (8-g-glucosidase day,
endo-(1
third
day
*
4)-B-;-glucanase
of
growth
on
and
on t h e f i r s t
s-(l + 4I-B-g-glucanase
insoluble
cellulose)
a
and s e q u e n t i a l
was
on t h e
observed.211
Maximum p r o d u c t i o n o f a l l t h e s e c o m p o n e n t s was a c h i e v e d on t h e f i f t h day.
The i n f l u e n c e o f d i f f e r e n t n i t r o g e n a n d c a r b o n s o u r c e s on
c e l l u l a s e p r o d u c t i o n was
investigated.
Crude
cellulolytic
enzyme
was u s e d f o r h y d r o l y s i s o f common a g r i c u l t u r a l w a s t e s b o t h w i t h and w i t h o u t sodium hydroxide pretreatment.
Analysis o f hydrolysates
i n d i c a t e d g l u c o s e as t h e m a j o r c o n s t i t u e n t ( a b o u t
83% o f
total
r e d u c i n g s u g a r 1. P u r i f i c a t i o n and c h a r a c t e r i z a t i o n o f t h e e x t r a c e l l u l a r and intracellular
--Talaromyces
6-g-glucosidases
t h a t B-g-glucosidase glucosidases
of
the
thermophillic
e m e r s o n i i have been d e s c r i b e d . while
fungus
The a u t h o r s c o n c l u d e
I a n d B - g - g l u c o s i d a s e I V a r e t r u e B-a-
B-g-glucosidase
111
i s
an
=-[l + 4)-B-Q-
g l u c a n a s e .199
27
endo-( 1
An e n d o - ( 1 the
*
+
6)-B-P-Glucanases 6)-B-Q-glucanase
o f F l a v o b a c t e r i u m M64 h y d r o l y s e s
octasaccharide repeating u n i t
tetra saccharide^.^^^
An
endo-(1
+
of
succinoglycan
6)-B-Q-glucanase
t o
capable
two of
hydrolysing the octasaccharide repeating u n i t o f succinoglycan t o t w o t e t r a s a c c h a r i d e s h a s been i s o l a t e d f r o m c e l l s o f F l a v o b a c t e r i u m . One t e t r a s a c c h a r i d e was c o m p o s e d o f Q - g l u c o s e , p y r u v i c a c i d (4:1:1,
molar r a t i o ) ,
g l u c o s e and P - g a l a c t o s e (3:1, t h e (1 + 6 ) - B - Q - g l u c o s i d i c
s u c c i n i c acid, and
and t h e o t h e r was composed of
molar r a t i o ) .
l i n k a g e t o t h e (1
a-
T h i s enzyme h y d r o l y s e d
*
6 ) - l i n k e d B-Q-glucose
507
6: Enzymes
r e s i d u e i n t h e o c t a s a c c h a r i d e r e p e a t i n g u n i t o f s u c c i n o g l y c a n and also
hydrolysed
the
octasaccharide
p o l y s a c c h a r i d e s p r o d u c e d by
many
repeating units
strains
of
of
similar
Agrobacterium
and
Rhizobium species. The
structure
succinoglycan
of
the
extracellular
from Alcaligenes
faecal&
acidic
polysaccharide
has been e l u c i d a t e d by
s u c c e s s i v e f r a g m e n t a t i o n o f t h e p o l y s a c c h a r i d e w i t h e x t r a c e l l u l a r Be - g l y c a n a s e ( s u c c i n o g l y c a n d e p o l y m e r a s e ) and i n t r a c e l l u l a r e n d o - ( 1 + 6)-8-P-glucanase tetrasaccharides
from
12
Flavobacterium
sp.
M64
i n t o
two
i t s o c t a s a c c h a r i d e r e p e a t i n g u n i t and t h e n
m e t h y l a t i o n a n a l y s i s and e n z y m i c h y d r o l y s i s o f t h e p r o d u c t s . 3 8 9
P-Glucanases (Miscellaneous)
28 The
use
of
dye-polysaccharide
interactions
has
i n v e s t i g a t e d f o r a $-!-glucanase
assay.390
i n p a r t i c u l a r c e r e a l B-8-glucans
and s u b s t i t u t e d c e l l u l o s e s ,
been
Certain polysaccharides, induce
b a t h o c h r o m i c s h i f t s i n t h e a d s o r p t i o n s p e c t r a o f s u c h d i r e c t dyes as Congo
Red.
interaction,
As
cello-oligosaccharides
showed
it
followed
of
that
formation
complexes m i g h t be u s e f u l i n s t u d i e s of
l i t t l e
or
no
dye-polysaccharide
B-e-glucanase
action.
This
p o s s i b i l i t y h a s been i n v e s t i g a t e d by m o n i t o r i n g t h e d i g e s t i o n o f sample of o a t B-Q-glucan w i t h p u r i f i e d B-Q-glucan-endohydrolase S o l u t i o n s o f oat B-Q-glucan
Bacillus subtilis.
a
from
(pH 6.5)
(0.5% w/v)
w e r e t r e a t e d w i t h e n z y m e a n d t h e i r v i s c o s i t y was m o n i t o r e d ,
and
aliquots
dye
were removed a t
intervals,
i n t e r a c t i o n and r e d u c i n g s u g a r . r e l a t i o n s h i p between
The
heated,
and t e s t e d f o r
results
clearly
showed a
loss i n v i s c o s i t y and l o s s i n d y e i n t e r a c t i o n ,
whereas measurements of
r e d u c i n g sugar were n o t u s e f u l u n t i l l a t e r
s t ages o f d e g r a d a t i o n . P a r t i a l p u r i f i c a t i o n o f endo-
and E-B-Q-glucanase
enzymes
f r o m Zea mays s e e d l i n g s h a s b e e n d e s c r i b e d and t h e i r i n v o l v e m e n t i n c e 11- w a 1 1 a u t o h y d r o l y s is
i n v e s t i g a t e d . 391
chromatography o f t h e c e l l - w a l l and exo-B-g-glucanase
a c t i v i t i e s when A v e n a g l u c a n and l a m i n a r a n ,
r e s p e c t i v e l y , were e m p l o y e d as s u b s t r a t e s . w e i g h t 60,000)
M o l e c u l a r - s i eve
p r o t e i n r e s o l v e d endo-B-g-glucanase The exoenzyme ( m o l e c u l a r
was s t r o n g l y i n h i b i t e d b y H g 2 + a t a c o n c e n t r a t i o n
which suppressed t h e r e l e a s e o f active c e l l wall.
monosaccharide f r o m
The e n d o - B - Q - g l u c a n a s e
(mol.wt.
autolytically
26,000),
which
Carbohydrate Chemistry
508 showed
a
marked
exhibited
for
preference
features
substrates
it
indicating that
of
mixed
initiates
the
linkage, autolytic
s o l u b i l i z a t i o n o f w a l l glucan. (1
+
3),(1
+
4 ) - B - ~ - G l u c a n a s e has been p u r i f i e d 1 4 2 - f o l d f r o m
B a c i l l u s s u b t i l i s by c h r o m a t o g r a p h y on c e l l u l o s e and SE-Sephadex
C-
50 f o l l o w e d b y g e l f i l t r a t i o n t o h o m o g e n e i t y t h r o u g h A c r y l e x P SOS
60.392
electrophoresis
w e i g h t s f o r t h e enzyme o f
and
30,000
gel
filtration
a n d 33,000,
4.5) does n o t c o n t a i n t r y p t o p h a n , enzyme (PI
gave
molecular
respectively.
The
f r e e s u l p h y d r y l groups,
or carbohydrates. I t h a s been shown t h a t c e l l o b i o s e , i n c o n t r a s t t o a - g l u c o s e ,
is
a r e g u l a t o r o f t h e a c t i v i t y o f endoglucanases o f c e l l u l a s e complexes f r o m v a r i o u s sources.393 molecular-weight
C e l l o b i o s e i s an a c t i v a t o r o f t h e l o w -
m-;-glucanase
f r o m T.
k o n i n g i i and an i n h i b i t o r
o f t h e h i g h - m o l e c u l a r - w e i g h t endo-p-glucanases Kinetic
of
analysis
c e l l o b i o s e or
the
reaction
showed
rnethylcellobiose t o the
f r o m t h e same s o u r c e . that
the
binding
low-molecular-weight
of
e - 9 -
g l u c a n a s e l e a d s t o a s i x f o l d i n c r e a s e i n t h e r a t e o f d e g r a d a t i o n of carboxymethylcellulose.
The a c t i v a t i n g a c t i o n o f c e l l o b i o s e i s due
t o i t s a b i l i t y t o play t h e r o l e o f a supplementary n u c l e o p h i l i c agent
i n
the
reaction
of
transglycosylation
of
intermediate
oligosaccharides i n the enzymatic hydrolysis o f cellulose. A new Q - g l u c a n a s e p r o d u c e d b y a m a r i n e B a c i l l u s s p e c i e s h a s been r e p o r t e d . 3 9 4
An i s o l a t e o f b a c t e r i a f r o m m a r i n e mud was f o u n d
t o p r o d u c e a new enzyme c a p a b l e o f h y d r o l y s i n g i n s o l u b l e g - g l u c a n s produced by o r a l s t r e p t o c o c c i .
The s u b s t r a t e s p e c i f i c i t y o f t h e
enzyme i n d i c a t e d t h a t t h e enzyme was a new a - Q - g l u c a n a s e . The
structure
of
the
extracellular
s u c c i n o g l y c a n f r o m A l c a l i g e n e s f a e c a l i s var. e l u c i d a t e d by
successive
ex t r a c e 1l u l a r intracellular
fragmentation
a-Q-gly canase
endo-B-(1
+
i n t o two tetrasaccharides
polysaccharide
myxoqenes 10C3 h a s been the
polysaccharide
with
( s u c c i n o g l y c a n d e p o l y m e r a s e ) and
6)-Q-glucanase
via
of
acidic
of
F l a v o b a c t e r i u m sp.
M64
i t s octasaccharide r e p e a t i n g unit.389
Polyacrylamide g e l electrophoresis o f
t h e c e l l u l o l y t i c system
f r o m t h e c u l t u r e s u p e r n a t e s o f A c e t i v i b r i o c e l l u l o l y t i c u s h a s shown t h e p r e s e n c e o f f o u r m a j o r enzymes:
a B-Q - -glucosidase,an
g l u c a n a s e , and t w o & - ~ - g l u ~ a n a s e s . ~ ~ ~
w-Q-
509
6: Enzymes
Glucoamylases
29
method
A
for
the
automatic
measurement
of
a-amylase
and
g l u c o a m y l a s e a c t i v i t i e s d u r i n g f e r m e n t a t i o n h a s b e e n d e v e l o p e d . 314 F o r f u r t h e r d e t a i l s see i n i t i a l c i t a t i o n o f
endo-
ref.314.
A k i n e t i c equation which represents a s y n e r g i s t i c action of
and exo-enzyme
tested
by
upon p o l y s a c c h a r i d e s ,
experiments
using
adequacy
immobilized
has been
a-amylase
and
g l u c o a m y l a s e .268 P h y s i c a l e n t r a p m e n t h a s b e e n u s e d a s an a p p r o a c h t o a c h i e v e t h e r m a l s t a b i l i z a t i o n o f Q - g l u c o s e o x i d a s e and g l u ~ o a m y l a s e . ~The ~~
-t
values
for
the t h e r m o i n a c t i v a t i o n of
!-glucose
oxidase
and
g l u c o a m y l a s e were i n c r e a s e d s e v e r a l - f o l d by t h e i r e n t r a p m e n t i n polyacrylamide
gels.
I n polyacrylate
behaved d i f f e r e n t l y ,
probably
gels
owing t o
the
i n d i v i d u a l enzymes
microenvironmental effects
a r i s i n g by t h e p o l y e l e c t r o l y t e n a t u r e o f t h e c a r r i e r . I n t r i n s i c k i n e t i c constants
for
pore-diffusion-limited
i m m o b i l i z e d enzyme r e a c t i o n s have been e s t i m a t e d . 3 9 6
A simple
method u s i n g t h e A r i s - B i s c h o f f
intrinsic
rate
parameters
when
slow
modulus
that
establishes
pore d i f f u s i o n
of
substrate
limits
i m m o b i l i z e d enzyme r e a c t i o n s t h a t obey M i c h a e l i s - M e n t e n k i n e t i c s has been p r e s e n t e d .
Data a t h i g h s u b s t r a t e c o n c e n t r a t i o n s , where t h e
enzyme w o u l d b e s a t u r a t e d i n t h e absence o f d i f f u s i o n l i m i t a t i o n , and a t l o w s u b s t r a t e c o n c e n t r a t i o n s ,
where e f f e c t i v e n e s s f a c t o r s a r e
i n v e r s e l y p r o p o r t i o n a l t o r e a c t i o n modulus, maximum
rate
and
Michaelis
constant,
were used t o d e t e r m i n e respectively.
Because
M i c h a e l i s - M e n t e n and L a n g m u i r - H i n s h e l w o o d k i n e t i c s a r e f o r m a l l y identical,
this
parameters of
m e t h o d may
be used t o e s t i m a t e
many h e t e r o g e n e o u s
catalysts.
demonstrated u s i n g experimental data
from
intrinsic rate
T h e t e c h n i q u e was of
maize
d e x t r i n w i t h d i f f u s i o n - l i m i t e d immobilized glucoamylase.
This
system y i e l d e d a M i c h a e l i s constant of
the hydrolysis
0.14%,
c o m p a r e d t o 0.11% f o r
s o l u b l e g l u c o a m y l a s e and 0.14% f o r i m m o b i l i z e d g l u c o a m y l a s e f r e e o f diffusional effects. The e n t r a p m e n t calcium
alginate
of
chemical derivatives o f
g e l s has
retained i n calcium alginate gels, enzyme was i n c r e a s e d , intermolecular
glucoamylase
been i n ~ e s t i g a t e d . ~ ~ G ’ lucoamylase
when t h e m o l e c u l a r w e i g h t o f t h e
9. by a t t a c h m e n t
cross-linking.
t o p o l y m e r i c s u p p o r t s o r by
Alternatively,
the
enzyme
r e t a i n e d by c o v a l e n t a t t a c h m e n t t o t h e a l g i n a t e m a t r i x . majority
of
the
i n was
c o u l d be I n the
g l u c o a m y l a s e d e r i v a t i v e s m o r e t h a n 50% o f
the
510
Carbo hy d ra re Chemistry
i n i t i a l a c t i v i t y d e t e r m i n e d w i t h m a l t o s e or p a r t i a l l y h y d r o l y s e d s t a r c h s u c h as s u b s t r a t e was r e c o v e r e d , w h i l e u p o n e n t r a p m e n t i n g e l p a r t i c l e s l e s s t h a n 40% a n d 6% o f t h e i n i t i a l a c t i v i t y t o w a r d s m a l t o s e a n d p a r t i a l l y h y d r o l y s e d s t a r c h , r e s p e c t i v e l y , was r e c o v e r e d . Thus, d i f f u s i o n a l and s t e r i c l i m i t a t i o n s on s u b s t r a t e access a p p e a r e d t o i n f l u e n c e t h e a p p a r e n t e n z y m i c a c t i v i t y , i n s p i t e of t h e high permeability of calcium a l g i n a t e g e l s . Dextran-coupled g l u c o a m y l a s e e n t r a p p e d i n c a l c i u m a l g i n a t e g e l s h a s b e e n u s e d as a packed-bed r e a c t o r f o r c o n t i n u o u s h y d r o l y s i s of o l i g o d e x t r i n s d u r i n g a p e r i o d of t w o months w i t h no change i n a c t i v i t y . The t h e r m a l s t a b i l i t y o f i m m o b i l i z e d g l u c o a m y l a s e from R h i z o p u s n i v e u s e n t r a p p e d i n p o l y a c r y l a m i d e g e l s a n d b o u n d t o SPS e p h a d e x C-50 h a s b e e n i n v e s t i g a t e d . 3 9 8 The t h e r m a l s t a b i l i t y o f i m m o b i l i z e d g l u c o a m y l a s e e n t r a p p e d i n p o l y a c r y l a m i d e g e l s was e n h a n c e d s l i g h t l y c o m p a r e d w i t h g l u c o a m y l a s e i n f r e e s o l u t i o n , and was i n d e p e n d e n t o f t h e a c r y l a m i d e m o n o m e r c o n c e n t r a t i o n a n d N,"methylene-bis(acrylamide1 c o n t e n t . To e x p l a i n t h i s p h e n o m e n o n , t h e c e l l u l a r s t r u c t u r e o f p o l y a c r y l a m i d e g e l was t a k e n i n t o c o n s i d e r a t i o n i n a d d i t i o n t o i n t e r a c t i o n s between g l u c o a m y l a s e and g e l a n d a d e c r e a s e i n d i e l e c t r i c c o n s t a n t i n t h e g e l . On t h e o t h e r h a n d , i m m o b i l i z e d g l u c o a m y l a s e b o u n d t o S P - S e p h a d e x by i o n i c i n t e r a c t i o n s h o w e d l o w e r s t a b i l i t y t h a n f r e e g l u c o a m y l a s e , a n d much greater stability than glucoamylase i n the presence of dextran s u l p h a t e , a c o n s t i t u e n t of SP-Sephadex. T h e rm al s t a b i l i t i e s f o r t h e . f r e e a n d i m m o b i l i z e d e n z y m e s were a l s o c o m p a r e d a t t h e pH n o t i n t h e b u l k s o l u t i o n b u t i n t h e SP-Sephadex. The thermal s t a b i l i t y of i m m o b i l i z e d g l u c o a m y l a s e i n t h e p r e s e n c e o f a s u b s t r a t e h a s b e e n i n v e s t i g a t e d u s i n g a mass b a l a n c e The a p p l i c a b i l i t y o f t h i s method t o a m a l t o s e - i m m o b i l i z e d g l u c o a m y l a s e s y s tem was e x a m i n e d . The p H - d e p e n d e n t u n f o l d i n g o f g l u c o a m y l a s e f r o m r a b b i t s m a l l i n t e s t i n e by m e t h a n o l h a s b e e n d e s c r i b e d . 4 0 0 Glucoamylase from the b r u s h b o r d e r s o f t h e r a b b i t s m a l l i n t e s t i n e w a s s o l u b i l i z e d by p a p a i n a n d T r i t o n X-100. T h e T r i t o n - s o l u b i l i z e d f r a c t i o n , when In t h e presence f r e e d of T r i t o n , assumed a m i c e l l e - l i k e s t r u c t u r e . o f m e t h a n o l , t h e enzyme micelle as well as t h e p a p a i n - s o l u b i l i z e d e n z y m e monomer u n f o l d e d , o b e y i n g t h e f i r s t - o r d e r r a t e law. U n f o l d i n g o f t h e m i c e l l e was d e s c r i b e d b y t w o t i m e c o n s t a n t s (k = s-l), whereas p a p a i n - s o l u b i l i z e d enzyme had s-l a n d k = s-'). T h e r a t e was s i n g l e - p h a s e k i n e t i c s o f u n f o l d i n g (k = d e p e n d e n t on pH a n d t h e v a l u e o f a c t i v a t i o n e n e r g y l i e s b e t w e e n 1-6
511
6: Enzymes k c a l mol"
a t v a r i o u s pHs.
M e t h a n o l was d e v o i d o f a n y e f f e c t o n t h e
a c t i v i t y o f p a p a i n - s o l u b i l i z e d g l u c o a m y l a s e a t v a r i o u s pHs, w h e r e a s b o t h T r i t o n - 1 0 0 - s o l u b i l i z e d enzyme a n d enzyme m i c e l l e w e r e i n h i b i t e d t o t a l l y b y 3 0 % m e t h a n o l b e t w e e n pHs 4 a n d 8 . An u n u s u a l t y p e o f
g l y c o p r o t e i n s t r u c t u r e h a s been i d e n t i f i e d
f o r a glucoamylase.401
Glucoamylase occurs i n two isoenzyme forms
( g l u c o a m y l a s e I and g l u c o a m y l a s e 11) i n e x t r a c t s f r o m c e r t a i n f u n g i . The i s o e n z y m e s f r o m A s p e r g i l l u s n i g e r a r e g l y c o e n z y m e s C o n t a i n i n g Qmannose,
Q-glucose, and
components.
Q-galactose
as
integral structural
8-
New d a t a f r o m e x p e r i m e n t s o n r e d u c t i v e a l k a l i n e
e l i m i n a t i o n and f r o m m e t h y l a t i o n a n a l y s i s show t h a t t h e c a r b o h y d r a t e chains o f glucoamylase I a r e l i n k e d Q - g l y c o s i d i c a l l y
f r o m c-mannose
- - s e r i n e or I - t h r e o n i n e r e s i d u e s o f t h e p r o t e i n m o i e t y . residues t o L t h e c a r b o h y d r a t e r e s i d u e s a r e p r e s e n t as 20 s i n g l e
I n t h i s enzyme,
p-mannose
residues,
11 d i s a c c h a r i d e c o m p o n e n t s h a v i n g t h e s t r u c t u r e
2-Q-~-mannopyranosyl-~-mannose, 8
trisaccharides,
5
and
0-
t e t r a s a c c h a r i d e s composed o f v a r i o u s c o m b i n a t i o n s o f Q-mannose, glucose,
and e - g a l a c t o s e
glycosidic linkages.
r e s i d u e s j o i n e d by ( 1 + 3 ) a n d ( 1
+
6)
Such an a r r a y o f c a r b o h y d r a t e c h a i n s i n a
g l y c o p r o t e i n i s unusual,
a n d may a c c o u n t f o r some o f t h e u n i q u e
p r o p e r t i e s e x h i b i t e d by g l u c o a m y l a s e . A m y l o l y t i c enzymes p r o d u c e d by a s t r a i n o f A s p e r g i l l u s n i g e r c u l t i v a t e d on c a s s a v a s t a r c h i n l i q u i d o r s o l i d c u l t u r e w e r e f o u n d t o b e m a i n l y g l u c o a m y l a ~ e s . ~F o ~ r~ t h e same i n i t i a l a m o u n t o f s u b s t r a t e , t h e g l u c o a m y l a s e a c t i v i t y i n c r e a s e d e v e n a f t e r 60 h o f c u l t u r e o n s o l i d medium w h e r e a s i t d e c r e a s e d i n l i q u i d c u l t u r e .
The
pH o p t i m a a n d t h e r m o s t a b i l i t i e s f o r e n z y m e s p r o d u c e d i n s o l i d a n d l i q u i d c u l t u r e s were
different.
s o l u b l e s t a r c h (100 m l ) "
The
Xm
values
e x p r e s s e d as
c u l t u r e and 0.057% f o r c r u d e enzyme f r o m l i q u i d c u l t u r e . active-site-directed
mg
w e r e 0.1% f o r c r u d e e n z y m e f r o m s o l i d Studies o f
i r r e v e r s i b l e i n h i b i t i o n o f g l y c o s i d a s e s by t h e
c o r r e s p o n d i n g glycosylmethyl-(4-nitrophenyl)triazines
show t h a t t h e y
h a v e no a c t i o n on g l u c o a m y l a s e f r o m A s p e r g i l l u s r ~ i g e r . ~ ~ A m a j o r g l u c o a m y l a s e o f A s p e r g i l l u s n i g e r h a s been p u r i f i e d 2 3 fold
(21% y i e l d )
by
ultrafiltration
c h r o m a t o g r a p h y on DEAE-Sephadex, The
purified
enzyme
polyacrylamide
gel
was
f o l l o w e d by
successive
U l t r o g e l AcA 44, a n d S P - S e p h a d e ~ . ~ ~ ~
proved
homogeneous
electrophoresis,
as
isoelectric
judged
by
focusing,
u l t r a c e n t r i f u g a t i o n , and a l s o f r o m t h e absence o f t h e g l y c o s i d a s e activities.
The enzyme was a g l y c o p r o t e i n c o n t a i n i n g n e u t r a l s u g a r
(18%) and 2-amino-2-deoxy-Q-glucose
(0.77%),
and i t s
molecular
512
Carbohydrate Chemistry
weight
was
(90,000)
estimated
by
polyacrylamide
SDS
gel
e l e c t r o p h o r e s i s and a m i n o a c i d c o m p o s i t i o n . The N - t e r m i n a l a m i n o a c i d was I - a l a n i n e . The pH o p t i m u m o f t h e p u r i f i e d enzyme was 4.5 w i t h s o l u b l e s t a r c h as a s u b s t r a t e .
The enzyme was s t a b l e b e t w e e n
p H 2.5
a n d 7.5
5OoC.
The e n z y m e a c t i v i t y was i n h i b i t e d b y H g 2 + a n d ,
extent,
and r e t a i n e d f u l l a c t i v i t y
by Pb2+ and Mn2+.
The
vmax v a l u e
c.
value w i t h
xi
thus resulting i n the
The k i n e t i c p a r a m e t e r s f o r
o t h e r s u b s t r a t e s s u c h as s o l u b l e s t a r c h , w e l l as t h e
t o a lesser
s u b s t r a t e i n glucose u n i t
2,
increased with
lmax/Km
increase i n the
up t o
value f o r m a l t o - o l i g o m e r ,markedly
decreased w i t h i n c r e a s i n g c h a i n l e n g t h of
( 5 ) and t h e
a t temperatures
g l y c o g e n , a n d i s o m a l t o s e as
v a l u e s f o r some s a c c h a r i d e s w e r e a l s o d e t e r m i n e d .
A t h e r m o s t a b l e g l u c o a m y l a s e has been p u r i f i e d from
the culture
f i l t r a t e s o f Thermomyces l a n u g i n o s u s a n d h a s b e e n e s t a b l i s h e d t o be homogeneous
by
glycoprotein
(mol.
10.12%.
a
number wt.
of
criteria.404 with
57,000)
a
The
enzyme
carbohydrate
The enzyme h y d r o l y s e d s u c c e s s i v e
9-glucose
was
content
residues
a of
from
t h e n o n - r e d u c i n g ends o f t h e s t a r c h m o l e c u l e b u t d i d n o t e x h i b i t any glucosyltransferase activity. m a l t o t r i o s e by t h e m u l t i - c h a i n optimum linkages
7 O o C ) was of
unable
isomaltose
increase i n the
The e n z y m e a p p e a r e d t o h y d r o l y s e mechanism.
to h y d r o l y s e
and
dextran,
The enzyme ( t e m p e r a t u r e
(1
and
-*
the
enzyme
lmax a n d d e c r e a s e i n Em v a l u e s
chain l e n g t h o f t h e s u b s t r a t e molecule.
exhibited
with increasing
The enzyme was i n h i b i t e d by
t h e s u b s t r a t e analogue q-glucono-l,4-lactone manner.
6)-a-Q-glucosidic
i n a non-competitive
The enzyme e x h i b i t e d r e m a r k a b l e r e s i s t a n c e t o w a r d s c h e m i c a l
and t h e r m a l d e n a t u r a t i o n . The
-R h
thermal
stability
and
kinetics
of
glucoamylase
i z w ---s n i v e u s has been i n v e s t i g a t e d i n t h e presence of
DEAE-dextran,
dextran sulphate,
t e m p e r a t u r e r a n g e f r o m 52.0
p o l y e t h y l e n e glyco1,and
t o 60.0°C.405
from
dextran,
Ficoll i n a
Protective effects of
t h e s e p o l y m e r s a g a i n s t t h e r m a l i n a c t i v a t i o n o f t h e enzyme i n c r e a s e d i n t h e order polyethylene g l y c o l < F i c o l l < dextran.
The o r d e r was
t h e same a s t h a t o f a f f i n i t i e s b e t w e e n g l u c o a m y l a s e a n d e a c h o f polymers two-phase
d e t e r m i n e d by
partition of
glucoamylase i n l i q u i d - l i q u i d
systems c o n s i s t i n g o f these polymers.
glucoamylase
with
dextran
sulphate
On t h e o t h e r hand,
e x h i b i t e d an i n t e r e s t i n g
phenomenon w h i c h was a t y p i c a l e l e c t r o s t a t i c i n t e r a c t i o n e x p l i c a b l e i n t e r m s o f an e l e c t r i c a l d o u b l e l a y e r . A F l a v o b a c t e r i u m s p e c i e s which produces c y c l o d e x t r i n - d e g r a d i n g g l u c o a m y l a s e has been i s o l a t e d . 4 0 6
The i n d u c i b l e , c e l l - b o u n d
enzyme
513
6: Enzymes was p u r i f i e d a b o u t 1 0 - f o l d t o 7 5 % p u r i t y i n 5 7 % y i e l d . o f t h e enzyme w i t h c y c l o h e x a - a m y l o s e , octa-amylose
and t y p i c a l
The a c t i o n
cyclohepta-amylose,and c y c l o -
glucoamylase s u b s t r a t e s
always
gave
D-
g l u c o s e as t h e f i n a l d e g r a d a t i o n p r o d u c t .
S m a l l amounts o f m a l t o s e ,
w h i c h c o u l d be d e t e c t e d i n t h e c o u r s e o f
cycloamylose degradation,
were h y d r o l y s e d a t a l o w e r r a t e .
A p p a r e n t l y t h e enzyme p r e f e r r e d
s h o r t e r a-Q-glucopyranosyl chains, p r o v e d t o be
and a m y l o p e c t i n and g l y c o g e n
very poor substrates.
30 Glycanases ( M i s c e l l a n e o u s ) The
occurrence
of
high
and
Mr
low
forms
p h o s p h o r y l a s e i n e x t r a c t s o f human b r a i n h a s Accorinding t o gel-exclusion
of
glycogen
been r e p ~ r t e d . ~ ”
c h r o m a t o g r a p h y and s u c r o s e d e n s i t y
g r a d i e n t s e d i m e n t a t i o n b o t h p h o s p h o r y l a s e s a and b a p p e a r i n a high
Mr
f o r m o f 400,000 a n d a l o w
d i f f e r s w i t h t h e method o f
Mr
to exist
f o r m whose a p p a r e n t s i z e
determination.
The
l o w blr
form
i s
p r o b a b l y an e q u i l i b r i u m m i x t u r e o f d i m e r a n d monomer w h i c h g i v e s different
apparent
Yr
values
depending
upon
the
position
of
equilibrium. The
assignment
of
the
human
gene
for
liver-type
6-
p h o s p h o f r u c t o k i n a s e i s o e n z y m e t o chromosome 2 1 h a s been a c h i e v e d by u s i n g s o m a t i c c e l l h y b r i d s and m o n o c l o n a l a n t i - L a n t i b o d y . 4 0 8 Substrate specificty
o f t h e glycanase a c t i v i t y associated w i t h
p a r t i c l e s o f K l e b s i e l l a b a c t e r i o p h a g e N0.6 h a s b e e n i n v e s t i c ~ a t e d . ~ ’ ~ The g l y c a n a s e c a t a l y s e s c l e a v a g e o f g - B - Q - g l u c o p y r a n o s y l - ( l
+
3)-
4 , 6 - ~ - ( 1 - ~ a r b o ~ y e t h y l i d e n e ) - ~ - ~ - m a n n o p y r a n o sl ei n k a g e s i n K l e b s i e l l a serotype-6
capsular
polysaccharide.
O f
74 h e t e r o l o g o u s
Klebsiella
p o l y s a c c h a r i d e s and t w o d e r i v a t i v e s o f t h e t y p e - 6 g l y c a n o n l y t h e t y p e - 1 a n d t y p e - 5 7 p o l y m e r s w e r e a d d t i o n a l l y d e g r a d e d by t h e phage-6 enzyme. 3eq,
The r e p e a t i n g u n i t s i n t h e t h r e e s u b s t r a t e s h a v e a l a x -
leg-eq-linked
chain g-gluco-
or Q-galacto-pyranosyl
common ( w h i c h c o n s t i t u t e s t h e r e d u c i n g e n d a f t e r
residue i n
glycanase a c t i o n )
and a c a r b o x y l group on t h e n e x t h e x o p y r a n o s y l r e s i d u e .
O f t h e 72
p o l y s a c c h a r i d e s n o t a f f e c t e d by t h e v i r a l enzyme, a t l e a s t t h e t y p e 11 a n d t y p e - 2 1 g l y c a n s a l s o c o n t a i n t h e same h o m o l o g y o f p r i m a r y s t r u c t u r e . T h i s i n d i c a t e s t h a t t h e c o n f o r m a t i o n of recognition site substrates.
also
constitutes
an
important
the glycanase
feature
of
the
514
Carbohydrate Chemistry 31 H e p a r i n Hydrolases
Purification
of
heparinase
and
heparitinase
c h r o m a t o g r a p h y on g l y c o s a m i n o l y c a n - b o u n d A H - S e p h a r o s e reported.410 heparinase
The and
respectively,
recoveries
of
heparitinase
the
were
purified
estimated
to
by
affinity
48 has been
preparations be
and
39
of 50%,
f r o m t h e c r u d e enzyme f r a c t i o n s o b t a i n e d by t h e f i r s t
column chromatography on h y d r o x y a p a t i t e . An e n & - Q - g l y c o s i d a s e
( h e p a r i n l y a s e ) a c t i n g on h e p a r i n and
h e p a r a n s u l p h a t e was p a r t i a l l y p u r i f i e d ( - 3 0 0
t i m e s ) f r o m human
p l a t e l e t s by a f f i n i t y c h r o m a t o g r a p h y on h e p a r a n s u l p h a t e - s u b s t i t u t e d S e p h a r ~ s e . ~ O n~l y~ h e p a r i n - l i k e t h e enzyme. intermediates requirement
p o l y s a c c h a r i d e s were degraded by
The s u s c e p t i b i l i t y indicated
for
that
sulphamino
of
the
but
various
biosythetic heparin
platelet
not
ester
heparitanase sulphate
had
groups.
a
No
a c t i v i t y toward other uronic acid-containing glycosaminoglycans A l t e r n a t e l i n k a g e s i n h e p a r i n or h e p a r a n
c o u l d be d e m o n s t r a t e d .
s u l p h a t e w e r e a t t a c k e d by t h e e n z y m e a s s h o w n b y a n a l y s i s o f
the
reducing
The
sugar
moiety
i n
oligosaccharide
anticoagulant a c t i v i t y o f heparin, a c t i v a t i o n assay, heparin lyase.
products.
d e t e r m i n e d i n an a n t i t h r o m b i n I 1 1
was m a r k e d l y r e d u c e d a f t e r
treatment with the
T h e e n z y m e was r e l e a s e d f r o m i t s s t o r a g e s i t e i n
platelets a f t e r induction of the platelet-release reaction. physiological function of
p l a t e l e t heparin lyase i s not
may be t o m o d i f y e x t r a c e l l u l a r h e p a r i n - l i k e
The
known b u t
polysaccharides i n the
v a s c u l a r system. H e p a r i n h y d r o l a s e p r o d u c t i o n by F l a v o b a c t e r i u m h e p a r i n u m i n c o m p l e x p r o t e i n d i g e s t medium,
w i t h h e p a r i n e m p l o y e d as t h e i n d u c e r ,
h a s b e e n i m p r o v e d 1 5 6 - f 0 l d . ~ l ~R a p i d d e a c t i v a t i o n o f h e p a r i n a s e activity,
b o t h s p e c i f i c and t o t a l ,
s t a t i o n a r y phase.
p r o d u c t i o n showed an o b l i g a t e vitamin
requirement.
h i s t i d i n e requirement. ammonium s u l p h a t e ,
was o b s e r v e d a t t h e o n s e t o f
requirement for
L-Methionine
I-histidine
partially
t h i s m e d i u m was 0.21 h - l ,
relieved
and the
no
I-
A d e f i n e d medium c o n t a i n i n g P_-glucose,
basal salts,
L-methionine,
and L - h i s t i d i n e
d e v e l o p e d f o r g r o w t h and h e p a r i n a s e p r o d u c t i o n . medium.
the
N u t r i t i o n a l s t u d i e s on g r o w t h and h e p a r i n a s e
was
The g r o w t h r a t e i n
w h i c h i s 40% h i g h e r t h a n t h a t i n c o m p l e x
The maximum v o l u m e t r i c p r o d u c t i v i t y
d e f i n e d m e d i u m was i n c r e a s e d t o 1,475
o f heparinase i n the
U 1-1 h - l ,
p r o v i d i n g a 640-
f o l d i n c r e a s e o v e r t h a t a c h i e v e d by p r e v i o u s l y p u b l i s h e d methods.
313
6: Enzymes No r a p i d d e a c t i v a t i o n was o b s e r v e d .
An e x a m i n a t i o n o f a l t e r n a t e
i n d u c e r s f o r h e p a r i n a s e showed t h a t h e p a r i n d e g r a d a t i o n p r o d u c t s , h y a l u r o n i c acid, h e p a r i n monosulphate, B-g-2-acetamido-2-deoxyg l u c o p y r a n o s e , and m a l t o s e , i n d u c e h e p a r i n a s e i n c o m p l e x medium.
An
A z u r e A a s s a y was d e v e l o p e d t o m e a s u r e t h e h e p a r i n c o n c e n t r a t i o n d u r i n g f e r m e n t a t i o n and t h e h e p a r i n a s e s p e c i f i c a c t i v i t y of c r u d e extracts of
heparinum obtained from sonication,
thus negating the
need f o r f u r t h e r p u r i f i c a t i o n t o measure a c t i v i t y .
32
Hyaluronidases
P u r i f i e d bovine t e s t i c u l a r butane-2,3-dione
h y a l u r o n i d a s e i s i n a c t i v a t e d by
i n e i t h e r b o r a t e o r H e p e s b u f f e r , pH 8.3.413
p r e s e n c e o f b o r a t e enhanced t h e i n a c t i v a t i o n p r o c e s s , pseudo-first-order
k i n e t i c s w i t h a c a l c u l a t e d second-order
c o n s t a n t o f 13.54 M - l
min-l.
The
which f o l l o w e d rate
U s i n g k i n e t i c d a t a i t was e s t i m a t e d
t h a t t h e m o d i f i c a t i o n o f 1 m o l L - a r g i n i n e p e r m o l e n z y m e was t h a t s u f f i c i e n t f o r i n a c t i v a t i o n t o occur, whereas amino a c i d a n a l y s i s i n d i c a t e d t h a t 4 m o l & - a r g i n i n e h a d been m o d i f i e d . process
was
partially
prevented
by
using
i n h i b i t o r s o r s u b s t r a t e s o f t h e enzyme, essential
L-arginine
hyaluronidase.
residue
i s
The i n a c t i v a t i o n
either
competitive
thus indicating that the
close
to
the
active
site
of
A f u l l k i n e t i c a n a l - y s i s o f t h e enzyme w i t h e i t h e r
hyaluronic acid or chondroitin 6-sulphate
as s u b s t r a t e showed t h a t
t h e a c t i v i t y o f h y a l u r o n i d a s e was u n c o m p e t i t i v e l y a c t i v a t e d b y either
H+ or
NaC1.
The
product
obtained
by
r e d u c t i o n of
the
c a r b o x y l groups o f h y a l u r o n i c a c i d t o t h e corresponding a l c o h o l groups
was
a competitive
inhibitor.
The p o s s i b i l i t y t h a t
the
m i c r o e n v i r o n m e n t o f h y a l u r o n i c a c i d was r e s p o n s i b l e f o r t h e o b s e r v e d k i n e t i c e f f e c t s o f pH and i o n i c s t r e n g t h was d i s p e l l e d . conclude t h a t these i n v o l v e s an
data are compatible
with a
The a u t h o r s
mechanism t h a t
i o n i c i n t e r a c t i o n between a c a r b o x y l group on t h e
s u b s t r a t e and an L - a r g i n i n e r e s i d u e on t h e enzyme. A
procedure has been d e s c r i b e d f o r
testicular
hyaluronidase
a d m i n s t r a t i o n of
the
enzyme.414
the reported non-specific presence of
t h e assay
i n human b l o o d f o l l o w i n g I n h i b i t a t i o n of
of
bovine
intravenous
h y a l u r o n i d a s e by
serum i n h i b i t o r i s m i n i m a l .
However,
the
human s e r u m does a l t e r t h e pH p r o f i l e o f h y a l u r o n i d a s e
and enhances
the
activity
of
the
enzyme
at
low
pH
values.
P r e l i m i n a r y d a t a i n d i c a t e t h e e f f e c t s c a u s e d b y s e r u m o n t h e pH
516
Carbohydrate Chemistry
o p t i m u m and t h e p r e s e n c e o f endogenous serum h y a l u r o n i d a s e .
The
a c t i v a t i o n e f f e c t i s n o t s p e c i f i c f o r any p a r t i c u l a r b l o o d t y p e and A i s i n d e p e n d e n t o f w h e t h e r serum o f c i t r a t e d p l a s m a i s used. similar
effect
produced
by
to
that
of
different It
concentration.
serum
on
buffer
i s
hyaluronidase
or
mixtures
recommended
h y a l u r o n i d a s e be m e a s u r e d a t pH 4.0
that
activity
increased
bovine
i s
NaCl
testicular
i n 0.1 M sodium c i t r a t e b u f f e r
M NaC1, as u n d e r t h e s e c o n d i t i o n s t h e a d d i t i o n o f
c o n t a i n i n g 0.15
human serum o r c i t r a t e d p l a s m a does n o t a l t e r t h e pH o p t i m u m o f t h e enzyme. C o m p a r a t i v e k i n e t i c s t u d i e s h a v e b e e n p e r f o r m e d o n mouse a n d b o v i n e t e s t i c u l a r h y a l ~ r o n i d a s e . ~The ~ ~ mouse enzyme has an o p t i m u m pH o f
4.3
testicular
with
a b r o a d pH s p e c t r u m
hyaluronidase.
h y a l u r o n i d a s e s show energy
of
While
maximum a c t i v i t y
activation
are
mg m l - l
that
mouse
different
Arrhenius
f r m
of
for the
values
b o v i n e enzyme. The m o s t
HgC12 a t
M concentration.
the
value
testicular
mouse t e s t i c u l a r
that
Xm
for
enzyme i s m o r e s t a b l e t h a n t h e b o v i n e e n z y m e a t 55OC. for
reveal
for
plots
mouse
potent i n h i b i t o r s
experiments
bovine
testicular
Mouse h y a l u r o n i d a s e has a
as c o m p a r e d t o 2.1 mg m l - '
Thermal-denaturation
to
and
a t 37OC,
obtained
degradation o f hyaluronic acid. o f 0.9
similar
bovine
h y a l u r o n i d a s e a r e CuS04 and
L-Cysteine
appeared t o p r o t e c t t h e
enzyme i n h i b i t i o n caused by HgC12. A
r a p i d p u r i f i c a t i o n o f b o v i n e t e s t i c u l a r h y a l u r o n i d a s e by
c h r o m a t o g r a p h y on d e r m a t a n s u l p h a t e - s u b s t i t u t e d
AH-Sepharose
46
f o l l o w e d by c h r o m a t o g r a p h y o n a c e t y l a t e d A H - S e p h a r o s e 48 h a s b e e n reported.416
The p r o c e d u r e y i e l d e d a p u r i f i e d h y a l u r o n i d a s e w i t h a
specific activity of SDS-polyacrylamide
19.1
u n i t s pmol m i n - l
g e l electrophoresis of
r e v e a l e d t h e p r e s e n c e o f t w o c l o s e bands w i t h w e i g h t s o f 61,000
mg-l
i n high yield.
the purified material approximate molecular
and 67,200.
C h a r a c t e r i z a t i o n o f B-c-2-acetamido-Z-deoxyglucosidase
from
mouse t e s t e s s h o w e d t h a t t h e e n z y m e d o e s n o t c r o s s - r e a c t i n immunodif f u s i o n p l a t e s with anti-mouse t e s t i c u l a r hyaluronidase serum,
suggesting t h a t
have common a n t i g e n i c
% - ~ - 2 - a c e t a m i d o - 2 - d e o x y g l u c o s i d a s e does n o t determinants i n hyaluronidase or
hyalurono-
g l u c o s a m i n i d a s e complex o f acrosome o r t e s t e s . 3 7 H y a l u r o n i d a s e h a s b e e n p u r i f i e d 9 4 - f o l d f r o m mouse t e s t e s b y ion-exchange
chromatography,
chromatography.417 10-20% o f
gel
filtration,
and
affinity
The enzyme was r e l a t i v e l y h e a t s t a b l e and l o s t
i t s a c t i v i t y a t 50-55OC
for
10 min.
La
f o r heat
517
6: Enzymes d e n a t u r a t i o n o f e n z y m e was 4 2 - 4 5
k c a l b e t w e e n 45 a n d 63OC.
The
M i c h a e l i s c o n s t a n t o f mouse t e s t i c u l a r h y a l u r o n i d a s e was 1.1 mg m l - I hyaluronic acid. A n t i b o d i e s t o t h e p u r i f i e d enzyme showed a s i n g l e precipitin
line
by
Ouchterlony
h y a l u r o n i d a s e i n h i b i t e d enzyme mouse
testicular
gel
diffusion.
activity
hyaluronidase
by
was
Antiserum
to
Immunologically,
25%.
species
specific.
Tissue
e x t r a c t s o f mouse v i t a l o r g a n s , e x c e p t t e s t e s a n d e p i d i d y m i s , d i d not react w i t h the antisera, occur
though n o n - s p e c i f i c
precipitation did
between i n t e s t i n a l e x t r a c t s and a n t i - h y a l u r o n i d a s e
H y a l u r o n i d a s e was
localized i n testis
immunof luorescence. localized
on
spermatids
cell
and
A
specific
boundaries
appeared
on
sections
dark-green
extending
the
sperm
by
serum.
indirect
f l u o r e s c e n c e was
from
spermatogonia
acrosome.
to
Cytoplasm o f
s p e r m a t o g o n i a and s p e r m a t o c y t e s showed l i g h t - g r e e n f l u o r e s c e n c e w h e r e a s i n t e r s t i t i a l t i s s u e was d e v o i d o f f l u o r e s c e n c e . I n a s i m p l e p l a t e assay
for
hyaluronidase a c t i v i t y hyaluronic
a c i d i s i n c o r p o r a t e d i n t o a g a r o s e g e l s a n d t h e enzyme i s a l l o w e d t o d i f f u s e f r o m punched wells.418
The u n d i g e s t e d h y a l u r o n i c a c i d i s
t h e n p r e c i p i t a t e d w i t h c e t y l p y r i d i n i u m c h l o r i d e and t h e d i a m e t e r s o f t h e c l e a r c i r c l e s a r e p r o p o r t i o n a l t o t h e l o g a r i t h m o f t h e enzyme concentration applied t o
the
well.
The
assay
e x a m i n e c o m m e r c i a l l y a v a i l a b l e h y m e n o p t e r a venoms, use
i n
allergy
diagnosis
and
h y a l u r o n i d a s e as a measure o f permits
the
analyses
reproducibility,
of
without
a
treatment, lot-to-lot
large
for
ut'ilized t o
manufactured f o r their
content
consistency.
number
t h e need f o r
was
of
of
The a s s a y
samples
with
good
any s p e c i a l i n s t r u m e n t a t i o n .
Based on t h e q u a n t i t y o f p u r i f i e d h y a l u r o n i d a s e r e p o r t e d i n h o n e y b e e venom
(T.P.
Lichenstein,
King,
1976, A r c h .
i s estimated t o
detect
A.K.
Sobotka,
Biochem.
L.
70 ng m l - l
of
Kochoumain,
172, 661-671),
Biophys.,
a n d L.M. t h e assay
p u r i f i e d honey-bee
venom
hyaluronidase. The d e g r a d a t i o n p r o c e s s o f h y a l u r o n i c a c i d b y S t r e p t o m y c e s h y a l u r o n i d a s e has been i n v e s t i g a t e d . 4 1 9
S a t u r a t e d and
unsaturated
h y a l u r o n a t e o l i g o s a c c h a r i d e s w e r e p r e p a r e d f r o m human u m b i l i c a l - c o r d h y a l u r o n i c a c i d by p a r t i a l d i g e s t i o n w i t h b o v i n e t e s t i c u l a r
-Streptomyces
hyaluronidase, respectively.
Streptomyces hyaluronidase,
the d i s t r i b u t i o n o f degradation products
f r o m t h e s e o l i g o s a c c h a r i d e s was d e t e r m i n e d . s a t u r a t e d or
unsaturated,
T e t r a - and h e x a - s a c c h a r i d e s as f i n a l p r o d u c t s .
and
After treatment with Octasaccharides, e i t h e r
were s u b s t r a t e s o f were n o t
t h e minimum size.
degraded f u r t h e r
and r e m a i n e d
This i n d i c a t e s t h a t a t l e a s t f o u r succeeding
3-
518
Carbohydrate Chemistry
a c e t y l h y a l o b i u r o n o s y l r e s i d u e s were r e q u i r e d f o r t h i s e n z y m a t i c degradation. S i n c e u n s a t u r a t e d o l i g o s a c c h a r i d e s were more s u s c e p t i b l e t o t h i s enzyme t h a n s a t u r a t e d o n e s of t h e same p o l y m e r i z a t i o n d e g r e e , and i n n e r l i n k a g e s were c l e a v e d i n p r e f e r e n c e t o t h o s e a t t h e o u t e r m o s t s i t e s , some g r o u p s a d j a c e n t t o t h i s segment seemed t o i n f l u e n c e t h e s u s c e p t i b i l i t y of t h e o l i g o s a c c h a r i d e t o t h i s enzyme. Some p r o p e r t i e s of bovine f o e t a l b r a i n h y a l u r o n i d a s e have been described.35 The p o s s i b l e r o l e of c h o n d r o i t i n s u l p h a t e C and h y a l u r o n i d a s e i n t h e p r o c e s s e s o f d i f f e r e n t i a t i o n and d i v i s i o n i s discussed.
33
Inulinases
T h e s e p a r a t i o n and p u r i f i c a t i o n of B - Q - f r u c t o f u r a n o s i d a s e and an i n u l i n a s e f r o m g e r m i n a t i n g g a r l i c ( A l l i u m s a t i v u m ) b u l b s have been d e s c r i b e d . 8 0 Both t h e e n z y m e s ( m o l . wts. 7 6 , 0 0 0 b y g e l chromatography) were i n a c t i v a t e d b y 4 - c h l o r o m e r c u r i b e n z o a t e , 5,5'dithiobis(2-nitrobenzoic a c i d ) , and h e a t t r e a t m e n t a t 5 5 O C f o r 5 m i n a t pH 7.0. The i n u l i n a s e h y d r o l y s e d i n u l i n , s u c r o s e , and r a f f i n o s e . The K m v a l u e s f o r i n u l i n a n d s u c r o s e w e r e 1 0 m M a n d 25 m M , respectively. While i n t h e e a r l y s t a g e s of p l a n t growth ( u p t o 6 days) t h e i n u l i n a s e and B - Q - f r u c t o f u r a n o s i d a s e a c t i v i t i e s i n c r e a s e d i n a p a r a l l e l fashion i n t h e b u l b s ; a t l a t e r stages the increase i n a c t i v i t y was more t h a n t h a t of i n u l i n a s e a c t i v i t y . The p r o d u c t i o n o f a l c o h o l f r o m f e r m e n t a b l e e x t r a c t s o f J e r u s a l e m a r t i c h o k e h a s been i n v e s t i g a t e d u s i n g y e a s t s w i t h i n u l i n a s e a c t i v i t y .420
34
Isoamylases
Immunoreactive t r y p s i n and p a n c r e a t i c i s o a m y l a s e a c t i v i t y i n s e r u m of p a t i e n t s w i t h c h r o n i c r e n a l f a i l u r e o r h e p a t i c c i r r h o s i s h a s been i n v e s t i g a t e d . 4 2 1 I n 121 p a t i e n t s w i t h e i t h e r l i v e r c i r r h o s i s o r c h r o n i c r e n a l f a i l u r e p a n c r e a t i c enzymes i n serum were I n r e n a l i n s u f f i c i e n c y a d e c r e a s e d r a t e of a frequent finding. enzyme e l i m i n a t i o n i s t h e most l i k e l y c a u s e of t h e a b o v e - n o r m a l v a l u e s observed f o r serum and p a n c r e a t i c i s o a m y l a s e .
519
6: Enzymes 35
Laminaranases comparative
A
invertebrates
has
study been
of
carbohydrase a c t i v i t i e s
performed.299
invertebrates belonging t o 7 types, Arhropoda,
Mollusca,
103
species
Spongia, Coelenterata,
Echinodermata,
Chordata,
were
i n
marine
of
marine
Annelida,
tested
for
l a m i n a r i n a s e , c e l l u l a s e , a n d amylase a c t i v i t i e s .
36
Lysozymes
A s i m p l e method f o r t h e u l t r a s e n s i t i v e q u a n t i t a t i o n o f l y s o z y m e
has
been
developed.422
The
l y t i c
a c t i v i t y
against
M i c r o c o c c u s l y s o d e i k t i c u s was m e a s u r e d s p e c t r o p h o t o m e t r i c a l l y a f t e r an 18 h i n c u b a t i o n p e r i o d .
The m e t h o d i s c a p a b l e o f q u a n t i t a t i n g
l y s o z y m e a t c o n c e n t r a t i o n s as l o w as 5 pg m l - l
a n d is a p p l i c a b l e t o
d e t e r m i n a t i o n s o f t h e enzyme i n c o m p l e x b i o l o g i c a l m i x t u r e s . A radioimmunoassay d e v e l o p e d f o r serum and u r i n a r y l y s o z y m e i n v o l v e s use o f an a n t i b o d y , u r i n e from
a patient
d i l u t e d 4000-fold,
raised i n rabbits,
with monocytic
leukemia.423
t o lysozyme from This antiserum,
i s incubated w i t h r a d i o l a b e l l e d lysozyme f o r
2 h
and a n t i b o d y - b o u n d l y s o z y m e is s e p a r a t e d f r o m f r e e l y s o z y m e w i t h dextran-coated charcoal.
V a l i d a t i o n o f t h e assay i n c l u d e d p r e c i s i o n
and p a r a l l e l i s m s t u d i e s w i t h s e r u m a n d u r i n e s a m p l e s f r o m p a t i e n t s w i t h m o n o c y t i c l e u k e m i a and a n a l g e s i c n e p h r o p a t h y .
Results o f the
radioimmunoassay and t h o s e o b t a i n e d w i t h a M i c r o c o c c u s l y s o d e i k t i c u s l y t i c assay c o r r e l a t e d w e l l assay
are
i t s
(r =
0.94).
The m a i n a d v a n t a g e s o f t h e
good p r e c i s i o n and r e p r o d u c i b i l i t y and i t s h i g h
sensitivity. A new l y s o z y m e a s s a y b a s e d o n f l u o r e s c e n c e p o l a r i z a t i o n o r fluorescence
-M i c r o c o c c u s
intensity u t i l i z i n g a peptidoglycan substrate from l y s o d e i k t i c u s subsequently l a b e l l e d w i t h fluorescein
i s o t h i o c y a n a t e (FITC) a t t h e amino group o f t h e p e p t i d e has been reported.424
When t h e F I T C - l a b e l l e d
lysozyme digestion, decrease of
an i n c r e a s e o f
fluorescence
s u b s t r a t e was s u b j e c t e d t o fluorescence intensity or a
p o l a r i z a t i o n value
(p
value)
was a p p a r e n t
i n f i v e m i n u t e s a t a l y s o z y m e c o n c e n t r a t i o n a s l o w a s 0.1 o r 0 . 0 1 p g ml-', respectively. The e f f e c t o f o t h e r h y d r o l y t i c enzymes, i n c l u d i n g a-P-mannosidase, p r o t e a s e s , a n d r i b o n u c l e a s e , o n t h e p v a l u e was f o u n d t o be n e g l i g i b l e . The m e a s u r e d v a l u e s r e p r e s e n t e d t h e s p e c i f i c i t y
Carbohydrate Chemistry
520 and dose o f l y s o z y m e added.
Apparent
lmax and K m v a l u e s f o r t w o
d i f f e r e n t lysozymes, chicken egg-white d e t e r m i n e d by t h i s method.
and human,
c o u l d be
A s t u d y h a s b e e n made o f t h e r a t e s o f s t r u c t u r a l f l u c t u a t i o n s
of lysozyme i n t h e range of t h e r m a l - u n f o l d i n g t r a n s i t i o n . 4 2 5 hydrogen-deuterium
exchange
reaction for
The
the &-tryptophan residues
i n l y s o z y m e h a s b e e n f o l l o w e d i n 4.5M L i B r a t p H 7 . 2 i n t h e t e m p e r a t u r e range of
the unfolding t r a n s i t i o n
a n c e c h a n g e a t 2 9 3 nm.
by m e a s u r i n g t h e t r a n s m i t t -
The e x c h a n g e r e a c t i o n p r o c e e d e d i n t h r e e
r e l a t i v e l y exposed t r y p t o p h a n r e s i d u e s on t h e m o l e c u l a r s u r f a c e . The t h i r d p h a s e c o r r e s p o n d e d t o t h e H - D three buried i-tryptophan
residues.
exchange r e a c t i o n o f t h e
The H-D
exchanges
o f three
I-
t r y p t o p h a n r e s i d u e s b u r i e d i n f o l d e d m o l e c u l e s w e r e c a u s e d by f l u c t u a t i o n between t h e folded
and u n f o l d e d s t r u c t u r e o f t h e p r o t e i n
The r a t e s o f s u c h a f l u c t u a t i o n w e r e d e t e r m i n e d f r o m t h e
molecule.
r a t e s of t h e exchange r e a c t i o n a t v a r i o u s t e m p e r a t u r e s .
These r a t e s
agreed very w e l l w i t h those determined from the temperature-jump method.
T h i s means t h a t a p r o t e i n m o l e c u l e i n s o l u t i o n f l u c t u a t e s
b e t w e e n t h e Nion region,
and D - s t a t e s
a t every temperature w i t h i n t h e t r a n s i t -
where t h e N-form
i s the t i g h t l y folded native structure
and t h e D - f o r m t h e r a n d o m l y c o i l e d c h a i n . thermal unfolding of
ester-108-lysozyme
From measurements o f
and t h e b i n d i n g c o n s t a n t o f
i t was f o u n d t h a t a l m o s t a l l
(Q-GlcNAc)3,
t o ester-108-lysozyme,
cross-linked
m o l e c u l e s a r e i n t h e f o l d e d s t a t e n e a r 5OoC and pH 7.2
i n 4.5M
LiBr,
where i n t a c t m o l e c u l e s a r e u n f o l d e d .
A s t u d y was a l s o
In the
made o f t h e H - D e x c h a n g e r e a c t i o n o f e s t e r - 1 0 8 - l y s o z y m e . temperature
region
of
43-50°C,
about
t r y p t o p h a n r e s i d u e s of ester-108-lysozyme immediately after
the
m i x i n g of
D20,
70% o f
the
exchangeable
were exchanged w i t h i n 1 s i n spite of the fact that
almost a l l molecules are i n the folded state.
T h i s was c o n s i d e r e d
the p r e m e l t i n g o f t h e surface o f a cross-linked molecule. The
interaction of
,
lysozyme
with
mixed 1,2-dipalmitoyl-Q-
-I-phosph a t idy l c h o 1i n e
p h o s p h a t id ic a c id /1 2 - d im y r is t oy 1 has been i n v e s t i g a t e d by
laser
Raman s p e c t r o s c o p y . 4 2 6
l i p o s o mes
Substantial
changes were observed i n t h e s p e c t r a o f b o t h t h e l i p i d and p r o t e i n i n t h e m i x e d l i p o s o m e s o v e r t h e r a n g e 10-62OC. b e l o w 27OC,
A t temperatures
i n t e r a c t i o n w i t h l i p i d appears t o i n c r e a s e s l i g h t l y the
amount o f h e l i c a l s t r u c t u r e i n l y s o z y m e a t t h e expense o f random conformation.
A t t e m p e r a t u r e s above 3OoC, c o n s i d e r a b l e B-sheet i s Onset o f B - f o r m a t i o n a p p e a r s t o c o i n c i d e w i t h
i r r e v e r s i b l y formed. the
formation
of
disordered
lipid
side
chains
in
the
acidic
52 1
6: Enzymes component o f t h e l i p i d .
A t a l l temperatures,
t h e 0-P-0
diester
s t r e t c h i n g mode a t 7 8 2 cm-' i s much m o r e i n t e n s e i n t h e l i p i d p r o t e i n m i x t u r e than i n l i p i d alone. I t i s observed t h a t the d i m y r i s t o y l phosphatidylcholine chain-disorder t r a n s i t i o n i s lowered by 3 O C ,
w h i l e t h a t o f t h e p h o s p h a t i d i c a c i d i s l o w e r e d by 12'C,
yet
the post-transition conformation contains a s i g n i f i c a n t l y higher p r o p o r t i o n o f t r a n s segments i n t h e presence of lysozyme.
These
(1) a p o l a r i n t e r a c t i o n between
r e s u l t s are interpreted i n terms o f
a c i d i c p h o s p h o l i p i d and l y s o z y m e a t t e m p e r a t u r e s b e l o w e i t h e r c h a i n disorder transition,
i n which lysozyme i s e s s e n t i a l l y excluded from
the hydrophobic p o r t i o n o f
the
higher
involves
temperatures
dipalmitoyl
which
phosphatidic
acid
l i p i d , and (2) i n
the
the
an i n t e r a c t i o n a t
lipid
side
disordered
chains
state
and
of i s
m a n i f e s t e d by a s u b s t a n t i a l c o n f o r m a t i o n a l change. The e f f e c t s o f d e t e r g e n t s o r f a t t y a c i d s o n p r o t e o l y s i s o f lysozymes
have
been
studied.427
Low
concentrations
of
ionic
d e t e r g e n t s w i t h 0 o r more c a r b o n s i n t h e a l k y l c h a i n w e r e p r e d i c t e d t o s h i f t t h e native-denatured t r a n s i t i o n i n the lysozyme t o the denatured state.
F a t t y a c i d s were f o u n d t o e x e r t a s i m i l a r e f f e c t ,
a n d t h e i r p a r t i c i p a t i o n was p r o p o s e d i n p r o t e o l y s i s o f a l i m e n t a r y c a n a l d i g e s t i o n and i n t r a c e l l u l a r c a t a b o l i s m . Lysinoalanine
formation
i n
lysozyme has
dependent on a l k a l i c o n c e n t r a t i o n , time.428
The u p p e r
limits of
pH,
been found
to
be
t e m p e r a t u r e , and e x p o s u r e
lysinoalanine
f o r m a t i o n i n lysozyme
and a - l a c t a l b u m i n were r e l a t e d t o t h e number o f I - l y s i n e r e s i d u e s w i t h a c y s t i n e d i s u l p h i d e bond i n t h e a d j a c e n t p o s i t i o n r a t h e r t h a n t o the i n d i v i d u a l contents o f these residues. P r e p a r a t i o n s and i m m u n o l o g i c a l c h a r a c t e r i z a t i o n s o f lysozyme d e r i v a t i v e s d i n i t r o p h e n y l a t e d a t I - l y s i n e - 3 3 96,
r e s p e c t i v e l y , have been r e p o r t e d . 4 2 9
egg-white
Two d e r i v a t i v e s o f h e n
lysozyme w i t h s i n g l e s u b s t i t u t i o n s of
(DNP) r e s i d u e w e r e p r e p a r e d . f o l d molar excess of mono-DNP-substituted by i o n - e x c h a n g e presence of derivative
2,4-dinitrobenzene
chromatographies.
cellulose.
a 7-fold This
After
s u l p h o n i c a c i d p r o v i d e d one lysozyme),
amino
material
dinitrobenzene sulphonic
was
lysozyme)
m a l e y l a t i o n o f lysozyme i n the maleic anhydride,
the
g r o u p was p u r i f i e d o n OE-52 dinitrophenylated with
a c i d and t h e
d e r i v a t i v e was p u r i f i e d o n DE-52.
w h i c h was p u r i f i e d
The o t h e r one (DNP1-96
molar excess of
w i t h one f r e e
a 2,4-dinitrophenyl
T h e r e a c t i o n o f l y s o z y m e w i t h a 10-
l y s o z y m e (DNP1-33
was p r e p a r e d a s f o l l o w s .
two
and I - l y s i n e -
DNP1-96
2,4-
mono-DNP-substituted l y s o z y m e was f i n a l l y
Carbohydrate Chemistry
522 p u r i f i e d on SE-Sephadex
C-25,
a f t e r d e m a l e y l a t i o n a t pH 3.5,
a t 37OC
f o r 5 days. DNP1-33 l y s o z y m e and DNP1-96 l y s o z y m e b o t h m i g r a t e d as On a s i n g l e band w i t h s l o w e r m o b i l i t y t h a n t h a t o f n a t i v e l y s o z y m e . reduction,
c a r b o x y m e t h y l a t i o n , a n d c h y m o t r y p s i n d i g e s t i o n , b o t h mono-
DNP-substituted lysozymes y i e l d e d a s i n g l e yellow peptide. amino a c i d compositions o r indicated
that
p a r t i a l sequence
C-lysine-33
and
of
these
I-lysine-96
were
the
d i n i t r o p h e n y l a t e d r e s i d u e s i n DNP1-33 l y s o z y m e and DNP1-96 respectively. antigenic antisera
DNP1-33
lysozyme
reactivities to
lysozyme.
a c c e s s i b l e t o anti-DNP lysozyme t o anti-DNP lysozyme.
equal
This
The
to
and
DNP1-96
that
DNP
of
residues
antibodies,
on
the
only
lysozyme,
lysozyme
native
The
peptides
showed
lysozyme
with
protein
were
b u t t h e a f f i n i t i e s o f DNP1-33
a n t i b o d i e s w e r e l o w e r t h a n t h o s e o f DNP1-96
result
i s
discussed with respect t o
the
local
e n v i r o n m e n t s o f t h e DNP r e s i d u e s i n t h e s e p r o t e i n s . Lysozymes f r o m hen,
duck 11, and goose e g g - w h i t e
lysozyme were compared a t t h e l e v e l o f using the solvent
a n d human
t h e i r L-tryptophyl
perturbation technique
and f l u o r e s c e n c e
residues emission
i n a d d i t i o n t o t w o c h e m i c a l m o d f i c a t i ~ n s . ~The ~ ~three C-tryptophyl r e s i d u e s o f goose l y s o z y m e were found
completely exposed t o the
solvent.
The s t u d y o f t h e s i t u a t i o n o f t h e a r o m a t i c r e s i d u e s o f hen,
duck 11,
and human l y s o z y m e s p r o v i d e d a d d i t i o n a l e v i d e n c e t h a t t h e
three-dimensional although
an
s t r u c t u r e s o f t h e s e enzymes a r e v e r y s i m i l a r ,
unexpected r e a c t i v i t y
of
~-tryptophan-28 of
human
lysozyme t o w a r d s N - b r o m o s u c c i n i m i d e c o u l d be evidenced.
As p a r t o f a s t u d y o f t h e whey p r o t e i n s o f v a r i o u s m a m m a l s a c o m p a r i s o n h a s been made o f t h e a - l a c t a l b u m i n s and l y s o z y m e s o f t h e kangaroo and horse.431 rufa)
there i s only
lactation,
b u t no
I n t h e m i l k o f t h e r e d kangaroo (Megaleia and i t o c c u r s
one a - l a c t a l b u m i n
l y s o z y m e has been d e t e c t e d .
throughout
T h e r e a r e t w o a-
l a c t a l b u m i n s i n t h e m i l k o f t h e g r e y kangaroo (Macropus g i g a n t e u s ) : one,
designated
lactation,
a-lactalbumin
and t h e second,
Zone
B,
i s
present
designated a-lactalbumin
present only i n l a t e lactation.
throughout Z o n e A,
One l y s o z y m e i s a l s o p r e s e n t .
i s The
m i l k o f t h e h o r s e (Equus c a b a l l u s ) c o n t a i n s one a - l a c t a l b u m i n and a t l e a s t one l y s o z y m e .
P a r t i a l amino a c i d sequences a r e p r o p o s e d f r o m
sequence
determination
compared
w i t h t h e known sequences o f
and
from
analyses other
of
tryptic
peptides
a-lactalbumins
and
lysozymes. M u l t i p l e forms of
l y s o z y m e found i n t h e r a t l i v e r have been
i s o l a t e d and c h a r a c t e r i z e d f r o m
cellular
organelles.432
Isolation
523
6: Enzymes of
the
e n z y m e s was a c h i e v e d b y Sephadex
gel
f i l t r a t i o n and
chromatography on carboxymethylcellulose. The p u r i t y o f t h e p r e p a r a t i o n s was e x a m i n e d by e l e c t r o p h o r e s i s on p o l y a c r y l a m i d e g e l . The n u c l e a r l y s o z y m e moved as a s i n g l e band, i n d i c a t i n g h o m o g e n e i t y , whereas
other
subcellular
lysozymes
t h e p r e s e n c e o f m o r e t h a n o n e band,
appeared heterogeneous
due
to
thus showing p a r t i a l p u r i t y .
Although t h e s u b c e l l u l a r lysozymes were s i m i l a r w i t h r e s p e c t t o e n z y m a t i c p r o p e r t i e s , pH, mobility,
b u f f e r m o l a r i t y optima,and
electrophoretic
d i f f e r e n c e s were o b s e r v e d i n e l u t i o n p a t t e r n s ,
t o n u c l e a r i n h i b i t o r , and h e a t s e n s i t i v i t y . distinctly
different
by
these
criteria
responses
N u c l e a r l y s o z y m e was as
compared
to
other
s u b c e l l u l a r lysozymes. E v o l u t i o n a r y i m p l i c a t i o n s h a v e b e e n made a b o u t t h e r e l a t i o n b e t w e e n h e n e g g - w h i t e l y s o z y m e and b a c t e r i o p h a g e T4 l y ~ o z y m e . ~ ~ Hen e g g - w h i t e
l y s o z y m e a n d T 4 b a c t e r i o p h a g e l y s o z y m e h a v e t h e same
c a t a l y t i c f u n c t i o n , b u t have non-homologous amino a c i d sequences. Notwithstanding the differences i n t h e i r primary structures,
the two
l y s o z y m e s have s i m i l a r i t i e s i n t h e i r o v e r a l l backbone c o n f o r m a t i o n s , in their
modes
of
b i n d i n g substrates, and p r o b a b l y
mechanisms o f a c t i o n . t h e f o l d i n g of
By d i f f e r e n t c r i t e r i a ,
in their
t h e s i m i l a r i t y between
t h e t w o enzymes can be shown t o be s t a t i s t i c a l l y
significant.
A l s o t h e t r a n s f o r m a t i o n w h i c h o p t i m i z e s t h e agreement
between t h e
backbones
the t w o
of
accurately t h e i r active-site clefts, i n the A,
8,
C,and
molecules
i s
D s u b s i t e s o f hen egg-white
w i t h i n 0.1
t o 0.2
lysozyme.
Furthermore,
shown t o
align
so t h a t s a c c h a r i d e u n i t s bound lysozyme coincide
nm w i t h a n a l o g o u s s a c c h a r i d e s
bound t o phage
a number o f t h e s p e c i f i c i n t e r a c t i o n s
b e t w e e n enzyme and s u b s t r a t e w h i c h w e r e o b s e r v e d f o r h e n e g g - w h i t e l y s o z y m e , and t h o u g h t t o be i m p o r t a n t f o r c a t a l y s i s , a r e f o u n d t o o c c u r i n a s t r u c t u r a l l y a n a l o g o u s way i n t h e phage enzyme. four
atoms from
equivalent,
i n c l u d i n g saccharides
superimpose w i t h a root-mean-square structural
and
Fifty-
t h e r e s p e c t i v e a c t i v e s i t e s w h i c h a p p e a r t o be
functional
bound i n t h e
and C
B
d i s c r e p a n c y o f 1.35
similarities
suggest
sites,
nm.
that
These
the
two
l y s o z y m e s h a v e a r i s e n b y d i v e r g e n t e v o l u t i o n f r o m a common precursor.
This
i s
completely different probability,
the
first
case
i n which
two
proteins
a m i n o a c i d s e q u e n c e h a v e b e e n shown,
of
with high
t o h a v e e v o l v e d by d i v e r g e n t r a t h e r t h a n c o n v e r g e n t
evolution. The b i n d i n g mode o f s o d i u m d o d e c y l s u l p h a t e t o l y s o z y m e a n d t h e accompanying s t r u c t u r a l change o f
l y s o z y m e by b i n d i n g h a v e been
524
Carbohydrate Chemistry
i n v e s t i g a t e d b y means o f t h e b i n d i n g i s o t h e r m ,
the precipitation
and t h e CD s p e c t r a i n p u r e w a t e r ,
and b o r a t e b u f f e r
curve,
solutions.434
NaC1,
The p r e c i p i t a t i o n p h e n o m e n a c o u l d b e e x p l a i n e d i n
t e r m s o f t h e n e u t r a l i z a t i o n o f t h e n e t c h a r g e o f l y s o z y m e due t o dodecyl s u l p h a t e - i o n b i n d i n g .
The a n a l y s i s o f t h e b i n d i n g i s o t h e r m s
by t h e u s e o f t h e B E T e q u a t i o n g a v e t h e s i t e n u m b e r o f t h e f i r s t l a y e r c o r r e s p o n d i n g t o t h e p o s i t i v e l y c h a r g e d r e s i d u e s a t t h e pH studied. helix
The c o n f o r m a t i o n a l change f r o m t h e B - s t r u c t u r e
has
been
environmental
observed
change
of
i n
the
the
second-layer
side-chain
t o t h e a-
binding.
residues
has
also
The been
observed. F l u o r e s c e n c e p o l a r i z a t i o n s t u d i e s h a v e been made o f s a c c h a r i d e binding
to
wheat-germ
- -glucopyranose deoxy-Q i n
the
polarization
saturating
levels
agglutinin
and
l y s o ~ y m e . ~2 ~ - A~c e t a m i d o - 2 -
has been shown t o c a u s e o n l y s l i g h t i n c r e a s e s of
wheat-germ
whereas
the
agglutinin
disaccharide
fluorescence
and
p r o d u c e d i n c r e a s e s i n t h e p o l a r i z a t i o n v a l u e f r o m 0.116 t o 0.151
0.154, r e s p e c t i v e l y .
at
trisaccharide and
These i n c r e a s e s have s u g g e s t e d t h a t r o t a t i o n a l
m o t i o n s o f t h e & - t r y p t o p h a n r e s i d u e a t t h e b i n d i n g s i t e s were b e i n g r e s t r i c t e d by an i n t e r a c t i o n b e t w e e n t h e s e t r y p t o p h a n s and t h e bound sugars.
A m o d e l o f t h e n a t u r e and l o c a t i o n o f t h e s e i n t e r a c t i o n s
was d i s c u s s e d .
Comparable r e s u l t s were o b t a i n e d w i t h l y s o z y m e ,
w h i c h showed a l a r g e r e f f e c t deoxy-P-glucopyranose
but
a
upon t h e b i n d i n g o f 2 - a c e t a m i d o - 2 -
maximal
increase
in
p o l a r i z a t i o n upon
b i n d i n g the corresponding disaccharide or trisaccharide. Bindings o f
calcium t o
l y s o z y m e and i t s d e r i v a t i v e s h a v e been
The s t u d i e d by UV d i f f e r e n c e s p e c t r o s c o p y a t v a r i o u s b i n d i n g c o n s t a n t was 40 M ' l a t n e u t r a l pH. The b i n d i n g c a u s e d p r o t o n r e l e a s e f r o m l y s o z y m e and d i d n o t i n h i b i t t h e b i n d i n g o f t r i -
2 - a c e t a m i d o - 2 - d e o x y - B - ~ - g l ~ ~ 0 p y r a n o s et o l y s o z y m e .
I n t h e presence
o f 0.2M Ca2+, l y s o z y m e s h o w e d 2 6 % o f t h e a c t i v i t y o f t h e f r e e e n z y m e t o w a r d h e x a - 2 - a c e t am id o -2-deox y - B - P - g l u c o p y r anose b u t t h e c l e a v a g e I t was p r e d i c t e d
p a t t e r n was s i m i l a r t o t h a t o f t h e f r e e e n z y m e .
t h a t c a l c i u m bound n e a r t h e c a t a l y t i c c a r b o x y l s c a u s e d i n h i b i t i o n o f lysozyme a c t i v i t y . digestion
that
I t was
calcium
found from
the r e s u l t s o f
binding shifted
the
protease
native-denatured
t r a n s i t i o n i n lysozyme t o w a r d t h e n a t i v e s t a t e . Oxindolealanine-62
lysozyme e q u i l i b r i u m ,
calorimetric,
and
k i n e t i c s of i t s r e a c t i o n w i t h B-~-acetamido-2-deoxyglucopyranose oligosaccharides
have
been
studied.437
r e a c t i o n w i t h N-bromosuccinimide
The
enzyme,
formed
by
and p u r i f i e d by u s i n g a f f i n i t y
525
6: Enzymes chromatography,
was
examined
i n
i t s
binding of
homologous
o l i g o s a c c h a r i d e s o f B-a-acetamido-2-deoxyglucopyranose catalysis
o f
hydrolysis
and
of
and i n i t s
transglycosylation
h e x a s a c c h a r i d e o f B-Q-acetamido-2-deoxyglucopyranose. binding constants
were
determined
by
changes
fluorescence associated with ligand binding.
of
the
Equilibrium
i n absorbance
or
Enthalpies of binding
The p a t t e r n o f v a r i a t i o n o f AGO a n d
were measured c a l o r i m e t r i c a l l y .
A H o o f b i n d i n g w i t h l i g a n d c h a i n l e n g t h a n d pH was d i f f e r e n t f o r oxindolealanine-62
lysozyme compared w i t h
native
lysozyme.
These
r e s u l t s i n d i c a t e t h a t t h e i n t e r a c t i o n s o f t h e ABC r e g i o n o f active
site
with
substrates
tryptophan-62
oxidation,
tryptophan-62
interactions.
intermediate
between
are
substantially
more t h a n e x p e c t e d f o r
oxidation o f I-tryptophan-62. hexasaccharide,
by
the
I-
l o s s o n l y o f t h e L-
The p a r t i t i o n i n g o f t h e g l y c o s y l enzyme
reaction
with
( t r a n s g l y c o s y l a t i o n ) and r e a c t i o n the
altered
a
with
Similarly,
predominantly t o
saccharide
water
i s
the p a t t e r n of
t e t r a - and
acceptor
unaffected
by
cleavage o f
di-saccharide,
is
u n a f f e c t e d by o x i d a t i o n o f I - t r y p t o p h a n - 6 2 .
The 2 0 0 0 - f o l d s l o w r a t e
of
enzyme
catalytic reaction
(relative
to
free
apparently r e f l e c t s a s t e r i c a l l y hindered f i t of t h e a c t i v e s i t e of
and
substrate)
the substrate i n t o
t h e m o d i f i e d enzyme and n o t a s p e c i a l c a t a l y t i c
i m p o r t a n c e o f I=-tryptophan-62.
The g e o m e t r y o f t h e t r a n s i t i o n s t a t e
f o r o l i g o s a c c h a r i d e h y d r o l y s i s i s i n f e r r e d t o be t h e same f o r n a t i v e and o x i d i z e d enzymes. Oxygen-18 l e a v i n g - g r o u p been measured f o r a s e t o f
kinetic isotope effects glycosyl transfer
n i t r o p h e n y l B-Q-glycosides
as
substrates.206
h y d r o l y s i s and a l k a l i n e h y d r o l y s i s e x h i b i t
-+
0.0015
and
1.0386
g l u c o s i d a s e A show
-+
0.0015
and 1.0377
0.0032,
K I E s on
2
Acid-catalysed
K I E s o f k1&18
respectively.
= 1.0355
Lysozyme and B-a-
respectively.
lmax/srn(!/K)o f
0.0061,
( K I E s ) have
r e a c t i o n s w i t h 4-
(2/5)1,/(1/5)18
= 1.0467
The l a r g e m a g n i t u d e o f
t h e s e K I E s r e q u i r e s t h a t c a r b o n - o x y g e n bond s c i s s i o n be f a r a d v a n c e d i n the t r a n s i t i o n states for these reactions.
Therefore,
i n the
t r a n s i t i o n states for the f i r s t i r r e v e r s i b l e steps i n these reaction sequences,
s c i s s i o n of
t h e g l y c o s i d i c bond must
be e s s e n t i a l l y
c o m p l e t e f o r t h e r e a c t i o n s c a t a l y s e d by l y s o z y m e and B - P - g l u c o s i d a s e A,
which
are
respectively.
thought
to
proceed
Acid-catalysed
fia
gN1
a t r a n s i t i o n s t a t e i n v o l v i n g a t l e a s t 80% C - 0 p a r t i a l proton transfer
and SN2
mechanisms,
h y d r o l y s i s i s shown t o p r o c e e d t h r o u g h bond c l e a v a g e and o n l y
t o t h e l e a v i n g 4 - n i t r o p h e n y l o x y g e n atom.
Binding o f 4-methylumbelliferyl
c h i t o t e t r a o s i d e t o hen lysozyme
526
Carbohydrate Chemistry
h a s been s t u d i e d by m e a s u r i n g changes i n f l u o r e s c e n c e a t 375 nm.438 4-methylumbelliferyl lj-acetyl-chitotetraoside
Hydrolysis of
c a t a l y s e d b y l y s o z y m e was s t u d i e d b y m e a s u r i n g t h e r e l e a s e o f 4 methylumbelliferone
from
4-methylumbelliferyl
chitotetraoside fluorimetrically,
N-acetyl-
and t h e k i n e t i c c o n s t a n t s were
d e t e r m i n e d i n t h e pH r a n g e o f 2 t o 8 a t 0.1
i o n i c s t r e n g t h and 42’C.
The b i n d i n g a n d k i n e t i c d a t a s h o w e d t h a t 4 - m e t h y l u m b e l l i f e r y l acetyl-chitotetraoside
y-
binds t o subsites A t o E (productive binding)
and s u b s i t e s A t o D w i t h t h e n o n - r e d u c i n g s u g a r r e s i d u e e x t e n d i n g beyond s u b s i t e A (non-productive k i n e t i c constants
binding).
a t p H 8.5.
p r o d u c t i v e c o m p l e x was 0.77
The f r a c t i o n o f t h e
T h e pH d e p e n d e n c e o f t h e
was a n a l y s e d a s s u m i n g t h a t t h e m o l e c u l a r s p e c i e s
w i t h i o n i z e d I - a s p a r t i c a c i d - 5 2 and p r o t o n a t e d I - g l u t a m i c a c t i v e and I - a s p a r t i c a c i d - 1 0 1
pK v a l u e s o f t h e s e g r o u p s were d e t e r m i n e d . aspartic-52, a n d 4.20,
!=-glutamic-35,
respectively,
respectively, respectively,
acid-35 i s
participates i n the binding,
and t h e
The pK v a l u e s o f
a n d L - a s p a r t i c - 1 0 1 a c i d s w e r e 3.60, for
free
lysozyme,
3.40,
f o r t h e p r o d u c t i v e c o m p l e x , a n d 3.95, f o r t h e n o n p r o d u c t i v e complex.
6.55,
I-
6.20,
a n d 3.40,
6.55,and
3.30,
The pK v a l u e s f o r f r e e
lysozyme were i n e x c e l l e n t agreement w i t h t h o s e o b t a i n e d by a n a l y s i s of
for 4-methylumbelliferyl N-acetyl-
the kinetic constants
chitotrioside. pH 5.2.
The f r e e e n e r g y o f a c t i v a t i o n was 24 k c a l m o l ”
Comparison w i t h
the
corresponding
value
obtained
at for
h y d r o l y s i s o f c h i t o h e x a o s i d e suggests t h a t t h e i n t e r a c t i o n s o f 2-
acetamido-2-deoxy-~-glucopyranose r e s i d u e s w i t h s u b s i t e s E and F i n t h e t r a n s i t i o n s t a t e are i m p o r t a n t i n lysozyme c a t a l y s i s . Binding
of
4-methylumbelliferyl
methylumbelliferyl studied
by
chitotetraoside to
fluorescence
methylumbelliferyl
chitotrioside human
measurement.439
chitotrioside
and
and
4-
l y s o z y m e has been Hydrolysis
of
4-
4-methylumbelliferyl
c h i t o t e t r a o s i d e c a t a l y s e d by human l y s o z y m e was s t u d i e d by m e a s u r i n g the
release of
4-methylumbelliferone
fluorimetrically,
and t h e
k i n e t i c c o n s t a n t s w e r e d e t e r m i n e d i n t h e pH r a n g e o f 2 t o 8 a t 0.1 i o n i c s t r e n g t h a n d 42’C.
On t h e b a s i s o f b i n d i n g and k i n e t i c d a t a ,
i t was shown t h a t 4 - m e t h y l u m b e l l i f e r y l c h i t o t r i o s i d e b i n d s m a i n l y t o s u b s i t e s A t o D w i t h t h e t e r m i n a l m e t h y l u m b e l l i f e r y l g r o u p bound t o subsite D (non-productive
b i n d i n g ) and t h a t 4 - m e t h y l u m b e l l i f e r y l
c h i t o t e t r a o s i d e b i n d s t o s u b s i t e s A t o E [ p r o d u c t i v e b i n d i n g ) and s u b s i t e s A t o D w i t h t h e n o n - r e d u c i n g s u g a r r e s i d u e e x t e n d i n g beyond subsite A kinetic
(non-productive constants
for
binding). hydrolysis
The o f
pH d e p e n d e n c e s o f t h e 4-methylumbelliferyl
527
6: Enzymes chitotrioside
and
4-methylumbelliferyl
c h i t o t e t r a o s i d e were
analysed, assuming t h a t non-productive b i n d i n g occurs c o m p e t i t i v e l y , that
an i o n i z a b l e g r o u p i n a d d i t i o n t o t h e c a t a l y t i c g r o u p s
a s p a r t i c - 5 2 and & - g l u t a m i c - 3 5 ) that
the
molecular species
(L-
p a r t i c i p a t e s i n t h e c a t a l y s i s , and
with ionized &-aspartic
acid-52
and
protonated I-glutamic acid-35 i s active.
Analyses of t h e k i n e t i c
constants
chitotrioside
for
4-methylumbelliferyl
and
4-
m e t h y l u m b e l l i f e r y l c h i t o t e t r a o s i d e b o t h gave t h e same p E v a l u e s o f the
c a t a l y t i c groups
s t r e n g t h a n d 42OC).
( p K 5 2 = 3.63
a n d p 5 3 5 = 6.68
a t 0.1
ionic
These p E v a l u e s were v e r y c l o s e t o t h e v a l u e s
d e t e r m i n e d p r e v i o u s l y by s p e c t r o s c o p i c methods. A lysozyme-catalysed r e a c t i o n o f c h i t o - o l i g o s a c c h a r i d e s has
been d e s c r i b e d . 4 4 0
The t i m e - c o u r s e s
of
substrate
c o n s u m p t i o n and
p r o d u c t f o r m a t i o n i n t h e l y s o z y m e - c a t a l y s e d r e a c t i o n were d e t e r m i n e d w i t h c h i t o t e t r a o s e and c h i t o p e n t a o s e as s u b s t r a t e t o a c c u m u l a t e d a t a s u i t a b l e f o r t h e e s t i m a t i o n o f r a t e c o n s t a n t s by n u m e r i c a l a n a l y s i s .
o r h.p.1.c.
The l y s o z y m e - c a t a l y s e d r e a c t i o n s w e r e f o l l o w e d by t.1.c.
C h i t o t e t r a o s e decomposed a p p a r e n t l y t o s m a l l o l i g o s a c c h a r i d e s w i t h i n 5 h,
and c h i t o p e n t a o s e decomposed w i t h i n 15 m i n a t pH 5.0
The t e m p e r a t u r e
dependence o f
the rate of
i n i t i a l s u b s t r a t e showed a d i f f e r e n t
and 5 O o C .
disappearance of
the
p r o f i l e from t h a t observed w i t h
g l y c o l c h i t i n as s u b s t r a t e by t h e r e d u c i n g p o w e r method.
The o r d e r
( o r d i s t r i b u t i o n ) o f t h e amount o f p r o d u c t f o r m e d f r o m c h i t o p e n t a o s e i n the r e a c t i o n time-course d e t e r m i n e d by h.p.1.c. t h a n t h a t i n t.l.c., thought
d e t e r m i n e d by t.1.c.
d i f f e r e d from that
The r e l a t i v e e r r o r i n h.p.1.c. and t h e t i m e - c o u r s e
was much l e s s
d e t e r m i n e d by h.p.1.c.
was
t o be o f s u f f i c i e n t a c c u r a c y f o r t h e e s t i m a t i o n o f r a t e
c o n s t a n t s by c o m p u t e r a n a l y s i s . High
l y s o z y m e and c h i t i n a s e a c t i v i t i e s have been f o u n d i n
Leydig's organ of Etmopterus spinax
-Tompedo
nobiliana,
i n Leydig's
, Somniosus
m i c r o c e p h a i u s , and
and e p i g o n a l o r g a n s and s p l e e n o f
R a j a r a d i a t a , and i n t h e e p i g o n a l o r g a n o f R h i n o p t e r a bonasus.19 An
enzyme
s t r e p t o c o c c u s of
actively
lysing the
c e l l walls
of
a haemolytic
g r o u p A was shown t o be a l y s o z y m e mucopeptide-l\l-
acetylmuranoylhydrolase.441
I t was i s o l a t e d f r o m t h e c u l t u r e l i q u i d
of
ammonium
A c t i n o m y c e s l e v o r i s by
further
purification
chromatography.
by
gel
sulphate
f i l t r a t i o n
The m o l e c u l a r w e i g h t (12,5001,
p r e c i p i t a t i o n and and
ion-exchange
isoelectric point
(10.61, and a m i n o a c i d c o m p o s i t i o n o f t h e enzyme w e r e d e t e r m i n e d .
A
peptidoglycan
A
obtained
from
the
c e l l
walls
o f
a
group
s t r e p t o c o c c u s was u s e d a s t h e s u b s t r a t e i n a d e t e r m i n a t i o n o f t h e
Carbohydrate Chemistry
528
s p e c i f i c i t y o f t h e enzyme. Lysozyrne a c t i v i t y h a s b e e n o b s e r v e d i n b a c t e r i o p h a g e T4 ghosts.442 T h i s enzyme is p r o b a b l y r e s p o n s i b l e f o r the l y s i s from w i t h o u t , observed a t high m u l t i p l i c i t y of i n f e c t i o n , a p r o c e s s independent of the p r e s e n c e of the e gene product which is a l s o a lysozyme. The g h o s t l y s o z y m e a n d e l y s o z y m e d i f f e r e d w i t h r e s p e c t t o t h e i r r e q u i r e m e n t s f o r maximal c a t a l y t i c a c t i v i t y and t o some extent in substrate specificity. The g h o s t l y s o z y m e w a s r e l e a s e d f r o m p h a g e p a r t i c l e by t h e a c t i o n o f T r i t o n X-100. B a c i l l u s c e r e u s peptidoglycan w i t h !-unsubstituted glucosamine r e s i d u e s has b e e n f o u n d t o b e i n s e n s i t i v e t o t r e a t m e n t w i t h b a c t e r i o p h a g e T 4 l y s o ~ y m e . ~A f~t e~r N - a c e t y l a t i o n w i t h a c e t i c a n h y d r i d e , T 4 l y s o z y m e - c l e a r e d s o l u t i o n s of t h e p e p t i d o g l y c a n and T h e d i g e s t i o n p r o d u c t s were m a i n l y r e d u c i n g s u g a r s were l i b e r a t e d . o f h i g h m o l e c u l a r w e i g h t , s i n c e t h e p e p t i d o g l y c a n is p e p t i d e c r o s s linked t o a great extent. !-Propylation d i d not convert the p a r t i a l l y !-unsubstituted p e p t i d o g l y c a n t o a s e n s i t i v e form. I t is concluded t h a t the acetarnido g r o u p s are r e q u i r e d f o r b i n d i n g and/or c a t a l y s i s by T4 l y s o z y m e .
37
~~~gO-1,6-~-Glucosidases
Detergent-solubilized pig intestinal sucrose-a-P- - g l u c o s i d a s e h a s b e e n p u r i f i e d 40 t o glucohydrolase-oligo-(1 + 6)-Q 100 t i m e s w i t h a y i e l d o f 1 0 t o 20% by a r a p i d i m m u n o a d s o r b e n t technique.444 T h e p u r i f i e d e n z y m e was s h o w n t o b e h o m o g e n e o u s by i m m u n o e l e c t r o p h o r e s i s a n d was e s s e n t i a l l y f r e e f r o m o t h e r k n o w n brush-border peptidases and disaccharides. It c o n s i s t e d o f two p o l y p e p t i d e c h a i n s w i t h a p p a r e n t m o l e c u l a r w e i g h t s o f 140,000 and 150,000, r e s p e c t i v e l y . I n c o n t r a s t , t h e enzyme isolated from p i g s i n w h i c h t h e p a n c r e a s was c o m p l e t e l y d i s c o n n e c t e d f r o m t h e duodenum 3 days before k i l l i n g migrated in polyacrylamide gel e l e c t r o p h o r e s i s i n d o d e c y l s u l p h a t e as a s i n g l e p o l y p e p t i d e c h a i n w i t h a n a p p a r e n t m o l e c u l a r w e i g h t o f 260,000. Treatment with pancreatic proteases i n v i t r o converted t h e large polypeptide chain i n t o bands w i t h m o l e c u l a r w e i g h t s e q u a l t o or somewhat l a r g e r t h a n t h o s e o f sucrose-a-e-glucohydrolase-oligo-(1 + 6 ) - P - g l u c o s i d a s e from normal pigs. I t was s u g g e s t e d t h a t t h e s i n g l e c h a i n r e p r e s e n t s a precursor, which is converted t o the f i n a l sucrose-a-kg l u c o h y d r o l a s e - o l i g o - ( 1 + 6 ) - Q - g l u c o s i d a s e i n v i v o by p a n c r e a t i c p r o t e o l y t i c e n z y m e s . T h i s i s o n e o f t h e few e x a m p l e s i n v e r t e b r a t e s
6: Enzymes of
529
a single polypeptide chain carrying two enzymatically active
sites.
The s i g n i f i c a n c e o f t h e r e s u l t f o r of
b i o s y n t h e s is
t h e mechanism o f t h e
s u c r 0 s e - a - Q - g l u c o h y d r o l a s e - 0 1ig o - ( 1
-c
6)-Q-
glucosidase i s discussed.
Pectate,
38
Pectin,
and P o l y - Q - G a l a c t u r o n a t e Lyases
P e c t a t e l y a s e h a s been p u r i f i e d t o a n e a r l y homogeneous s t a t e from the c u l t u r e f i l t r a t e o f Streptomyces nitrosporeus.445 m o l e c u l a r w e i g h t was e s t i m a t e d t o b e a b o u t 4 1 , 0 0 0 . p o i n t was pH 4.6.
The
Isoelectric
The e n z y m e was m o s t a c t i v e a t pH 10.0 a n d 5OoC,
a n d was r e l a t i v e l y s t a b l e a t a pH r a n g e o f 4 - 1 1 ( a t 2OC f o r 48 h ) and b e l o w
4OoC ( a t
pH 7.0
maximum a c t i v i t y .
for
10
min).
T h e e n z y m e was a n
Ca2+ was
required for
e n d o p e c t a t e l y a s e w h i c h was
more a c t i v e o n l o w m e t h o x y l p e c t i n t h a n on p o l y - P - g a l a c t u r o n i c
acid
and h a d m a c e r a t i n g a c t i v i t y on p o t a t o t i s s u e and G a n p i b a r k . The d e g r a d a t i o n o f p o l y - Q - g a l a c t u r o n i c a c i d b y r u m e n c i l i a t e p r o t o z o a has been i n v e s t i g a t e d . 4 4 6
The d e p o l y m e r a s e a c t i v i t y o f
c e l l - f r e e e x t r a c t s o f n i n e s p e c i e s o f r u m e n c i l i a t e p r o t o z o a and t w o mixed protozoal preparations, poly-Q-galacturonic
grown i n v i v o
a c i d was e x a m i n e d .
and i n v i t r o ,
towards
The h i g h e s t a c t i v i t y was
found w i t h E r e m o p l a s t r o n b o v i s and O s t r a c o d i n i u m o b t u s u m b i l o b u m while
there
was
none
i n
the
spined
or
spineless
forms
E n t o d i n i u m c a u d a t u m and l i t t l e i n P o l y p l a s t r o n m u l t i v e s i c u l a t u m . the b a s i s of t h e r a p i d drop i n v i s c o s i t y , p r o d u c t i o n of
u.v.-absorbing
material,
i n h i b i t i o n by EDTA,and
t h e enzymes
from
o f On the
a l l active
s p e c i e s were d e s i g n a t e d as e n d o p e c t a t e l y a s e s a l t h o u g h some p o l y - P galacturonase
may
be
present.
Neither
pectin
nor
poly-Q-
g a l a c t u r o n i c a c i d s u p p o r t e d t h e s u r v i v a l o r g r o w t h o f any o f t h e protozoal species tested. High-performance investigate
pectic
liquid
chromatography
enzymes.447
preparations Pectinex
Technical
has
been
pectic
used
to
multienzyme
U l t r a and Rohament P w e r e c h r o m a t o g r a p h e d on
an a n a l y t i c a l s c a l e u s i n g m e d i u m - p r e s s u r e l i q u i d c h r o m a t o g r a p h y on a g l y c o l methacrylate r i g i d macroreticular gel, ion-exchange derivatives. gradient
elution
(with
e m p l o y e d and f r a c t i o n s
S p h e r o n 1000 and i t s
A c o m b i n a t i o n o f i s o c r a t i c and l i n e a r -
gradients
i n
ionic
strength or
w e r e m o n i t o r e d by m e a s u r e m e n t s o f
c o n d u c t i v i t y , pH, and enzyme a c t i v i t y . (A285 a n d A_254), f o r r a p i d s e p a r a t i o n s of p e c t i c enzymes a r e e l a b o r a t e d .
pH)
was
absorbance Conditions The r e s u l t s
530
Carbohydrate Chemistry
i n d i c a t e t h e p o s s i b i l i t i e s of s e p a r a t i n g t h e t e c h n i c a l l y undesirable p e c t i n - e s t e r a s e a c t i v i t y f r o m t h e o t h e r enzyme a c t i v i t i e s , and o f a more d e t a i l e d b i o c h e m i c a l i n v e s t i g a t i o n o f t h e s e enzymes, i m p o r t a n t f o r the .food i n d u s t r y . The s i m u l t a n e o u s s y n t h e s i s o f p e c t i n l y a s e a n d c a r o t o v o r i c i n n a l i d i x i c acid, or u l t r a v i o l e t l i g h t
has been i n d u c e d by m i t o m y c i n C,
irradiation i n e i n i a c a r o t ~ v o r a . ~ When ~ ~ K i n i a carotovora Er, a bacteriocinogenic ultraviolet mitomycin
l i g h t or
or
nalidixic
C
(designated
strain,
(UV)
was
induced a f t e r
inhibitors
carotovoricin)
acid,
of
pectin
activity
i r r a d i a t i o n by
DNA s y n t h e s i s , lyase
and
such as
bacteriocin
appeared i n t h e c u l t u r e
fluid.
The o p t i m a l d o s e o f e a c h o f t h e s e a g e n t s f o r p r o d u c i n g t h e e n z y m e o r b a c t e r i o c i n was essentially
identical,
t h e same.
and t h e
time-courses
for
b o t h were
The s y n t h e s e s o f t h e enzyme and b a c t e r i o c i n
w e r e a s s u m e d t o b e r e g u l a t e d b y t h e same m e c h a n i s m ,
i n which a
r e p r e s s o r i n a c t i v a t e d by UV l i g h t ,
m i t o m y c i n C , o r n a l i d i x i c a c i d was
involved.
bacteriocinogenic
E.
The
other
three
carotovora a l s o formed p e c t i n lyase,
i n
the
presence o f
syntheses
of
mitomycin
pectic
lyase
indicating that
C,
and
strains
of
i n addition t o carotovoricin
carotovoricin
simultaneous
were
widespread
phenomena i n b a c t e r i o c i n o g e n i c s t r a i n s o f E. c a r o t o v o r a . The p e c t i c enzyme a c t i v i t i e s o f b a c t e r i a a s s o c i a t e d w i t h r o t t e d o n i o n s h a v e been i n v e s t i g a t e d . 4 4 9 with soft
as a V i b r i o sp., Acinetobacter
-----Bacillus
The
aerobic bacteria associated
r o t i n o n i o n s ( A l l i u m cepa) were Micrococcus epidermidis,
sp.,
a
megaterium.
Xanthomonas
sp.,
With the cup-plate
i s o l a t e d and i d e n t i f i e d Pseudomonas c e p a c i a ,
and
B a c i l l u s polymyxa,
and
assay method, no p e c t i n
h y d r o l a s e c o u l d b e d e t e c t e d f r o m any o f t h e s e i s o l a t e s w h e n t h e y w e r e c u l t u r e d i n p e c t i n medium, detectable. for
P.
b u t l y a s e a n d p e c t i n e s t e r a s e s were
O n i o n t i s s u e c u l t u r e s showed p e c t i n h y d r o l a s e a c t i v i t y
c e p a c i a a n d B.
polyfiyza
and l y a s e and p e c t i n e s t e r a s e
a c t i v i t i e s for a l l of the isolates,
u s u a l l y a t h i g h e r l e v e l s of
a c t i v i t y t h a n t h o s e o f t h e p e c t i n medium c u l t u r e f i l t r a t e s . culture
media,
Vibrio
sp.
pectinesterase activities.
showed
the
highest
In the viscometric test,
I n both
lyase
i s o l a t e s a c h i e v e d a t l e a s t a 50% d e c r e a s e i n v i s c o s i t y f o r enzyme,
w i t h L e p i d e r m i d i s a n d V i b r i o sp.
d e c r e a s e s a s h i g h as 83%.
lyase
recording viscosity
The a b i l i t y t o c a u s e s o f t r o t i n o n i o n
b u l b s was d e m o n s t r a t e d b y P. a c i d a t a c o n c e n t r a t i o n o f 0.8 enzyme p r o d u c t i o n ,
and
a l l o f the
c e p a g a and Xanthomonas sp. mg m l - l
Benzoic
caused t o t a l suppression of
whereas sodium benzoate a t t h i s c o n c e n t r a t i o n
53 1
6: Enzymes
r e d u c e d p e c t i n e s t e r a s e p r o d u c t i o n by 71% and l y a s e p r o d u t i o n b y 72%. The p o s s i b l e u s e o f t h e s e p r e s e r v a t i v e s i n t h e c o n t r o l o f s o f t r o t i n o n i o n s is n o t e d .
P o l y-Q-Galacturonases
39
The d e g r a d a t i o n o f p o l y - Q - g a l a c t u r o n i c p r o t o z o a has been i n v e s t i g a t e d . 4 4 6 cell-free
a c i d by rumen c i l i a t e
The d e p o l y m e r a s e a c t i v i t y o f
e x t r a c t s of n i n e s p e c i e s o f rumen c i l i a t e p r o t o z o a and t w o
mixed protozoal preparations, poly-Q-galacturonic
g r o w n i n v i v o and i n v i t r o ,
a c i d was e x a m i n e d .
towards
The h i g h e s t a c t i v i t y was
f o u n d w i t h E r e m o p l a s t r o n b o v i s and O s t r a c o d i n i u m o b t u s u m b i l o b u r n , while
there
was
none
i n
the
or
spined
spineless
forms
E n t o d i n i u m c a u d a t u m and l i t t l e i n P o l y p a s t r o n m u l t i c e s i c u l a t u m . the basis o f the r a p i d drop i n viscosity, t h e p r o d u c t i o n o f u.v.-adsorbing
i n h i b i t i o n by H4 e d t a ,
material,
may b e p r e s e n t .
On and
t h e enzymes f r o m a l l
a c t i v e s p e c i e s w e r e d e s i g n a t e d as e n d o p e c t a t e l y a s e s , poly-Q-galacturonase
of
a l t h o u g h some
Neither p e c t i n nor poly-p-
g a l a c t u r o n i c a c i d s u p p o r t e d t h e s u r v i v a l o r g r o w t h o f any o f t h e protozoal species tested. The a p p l i c a t i o n o f c a r b o h y d r a s e s i n c l u d i n g p o l y - B - g a l a c t u r o n a s e t o
the
extraction
investigated.349
of
For
proteins further
from
details
wheat see
bran
has
been
i n i t i a l citation of
r e f .349. The e f f e c t o f i m m o b i l i z a t i o n o f A s p e r g i l l u s n i q e r e x t r a c e l l u l a r poly-a-galacturonase i n v e s t i g a t e d .450
on
kinetics
and
action
pattern
The e x t r a c e l l u l a r p o l y - B - g a l a c t u r o n a s e
was c o v a l e n t l y bound t o 4 - a m i n o b u t a n o i c a c i d , a m i n o h e x a n o i c a c i d , r e s p e c t i v e l y , as s p a c e r s . enzyme i n v a r i a b l y
has
been
o f A.
glycyl-glycine,
niqer and 6 -
Immobilization o f the
l e d t o decreased a c t i v i t y ,
the extent of
the
decrease being i n v e r s e l y p r o p o r t i o n a l t o t h e chain l e n g t h o f t h e spacer.
This fact,
as w e l l a s a p p a r e n t k i n e t i c p a r a m e t e r s o f t h e
i m m o b i l i z e d enzyme, i n d i c a t e d t h a t diffusion
s t e r i c hindrance
and,
probably,
e f f e c t s a r e r e s p o n s i b l e f o r t h e decrease i n a c t i v i t y .
c o v a l e n t b i n d i n g a l s o c a u s e d an a l t e r a t i o n o f
The
the action pattern o f
t h e enzyme on p o l y m e r i c and o l i g o m e r i c s u b s t r a t e s .
I n t h e case o f
t h e p o l y m e r s t h e r a n d o m n e s s i n d e g r a d a t i o n was l o w e r e d b e c a u s e o f restriction
of
the
s u b s t r a t e molecule.
enzyme
action
to
peripheral
Among o l i g o m e r i c s u b s t r a t e s ,
c h a n g e was o b s e r v e d i n t e t r a - ( g - g a l a c t o s i d u r o n i c
areas
of
the
t h e most i m p o r t a n t acid),
i n which (2
532 +
Carbohydrate Chemistry
2) d e g r a d a t i o n
occurred
as
well
as
the
(1 +
3)
degradation
c h a r a c t e r i s t i c o f t h e s o l u b l e enzyme. The changes i n P o l Y - q - g a l a c t u r o n a s e ripening
of
normal
investigated.451
and
mutant
is
There
a
a c t i v i t y which occur d u r i n g tomato
sequential
have
been
of
two
during ripening.
These
i s o e n z y m e s h a v e been p u r i f i e d and t h e i r p r o p e r t i e s compared.
Poly-
isoenzymes,
1 and 2,
f r u i t
appearance
poly-Q-galacturonases
g-galacturonase
1 h a s a btr
and has a d e n s i t y
of
galacturonase 2 has a has a d e n s i t y of
1.343
Mr
1.300
1,000,000,
of
g cm-3
m
Poly-Q-
i s 5 0 % i n a c t i v a t e d a t 57'C,and
i ' n ~c a e s i u m c h l o r i d e .
i s o g e n i c l i n e s homozygous f o r ripen normally
i n caesium c h l o r i d e .
o f 42,000, g ~
i s 50% i n a c t i v a t e d a t 78OC
and c o n t a i n r e d u c e d a m o u n t s o f
F r u i t s from
m u t a t i o n do n o t
the ever-ripe (Nr)
poly-n-galacturonase.
O n l y p o l y a - g a l a c t u r o n a s e 1 was p r o d u c e d i n N r f r u i t .
Tomatoes f r o m
i s o g e n i c l i n e s homozygous f o r t h e r i p e n i n g i n h i b i t o r ( r i n ) m u t a t i o n do n o t r i p e n n o r m a l l y a n d p r o d u c e v e r y l i t t l e d e t e c t a b l e p o l y - a galacturonase. properties,
Although poly-0-galacturonases they
b o t h gave
rise
t o
a
1 and 2 had d i f f e r e n t
single
p o l y p e p t i d e on
e l e c t r o p h o r e s i s i n polyacryamide g e l s i n t h e presence o f sodium dodecylsuphate
(Mr
- 46,000).
p r o d u c e d by l i m i t e d with
chymotrypsin
A comparison o f
the major
fragments
p r o t e o l y s i s of poly-e-galacturonases suggests t h a t
isoenzymes were s i m i l a r .
the
polypeptides
from
1 and 2 the
two
The same c o n c l u s i o n was r e a c h e d f r o m a
comparison o f poly-P-galacturonases
1 and 2 by r a d i o i m m u n o a s s a y ,
using antibody prepared against poly-E-galacturonase
2 a n d 1251-
l a b e l l e d p o l y -g-ga l a c t u r o n a s e 2. Some p r o p e r t i e s o f
t h e p o l y g-galacturonase-elicitor
from
the
f i l t r a t e s o f R h i z o p u s s t o l o n i f e r c u l t u r e s h a v e been e x a m i n e d i n an a t t e m p t t o u n d e r s t a n d i t s mode o f a c t i o n as an e l i c i t o r o f casbene synthetase a c t i v i t y
i n castor-bean
seedlings.452
Both t h e poly-Q-
g a l a c t u r o n a s e a c t i v i t y and t h e e l i c i t o r a c t i v i t y a r e h e a t l a b i l e with
similar
heat-sensitivity
profiles.
a c t i v i t y o f t h e enzyme i s l o s t on t r e a t m e n t as h a d b e e n s h o w n p r e v i o u s l y f o r
Also,
the
the e l i c i t o r
activity.
o p t i m u m o f t h e enzyme a c t i v i t y w i t h p o l y - g - g a l a c t u r o n i c s u b s t r a t e i s 4.9.
catalytic
w i t n sodium periodate, T h e pH
a c i d as t h e
Exposures o f g e r m i n a t i n g castor-bean s e e d l i n g s t o
the e l i c i t o r for short-term
p e r i o d s of
w a s h i n g and i n c u b a t i o n i n s t e r i l e ,
1 t o 1 0 m i n u t e s f o l l o w e d by
d i s t i l l e d water are p a r t i a l l y
e f f e c t i v e i n e l i c i t a t i o n i n comparison w i t h t h e continuous exposure
o f t h e s e e d l i n g s o v e r 11 h o u r s t o t h e same a m o u n t o f t h e e l i c i t o r . The i n i t i a l r a t e o f r e a c t i o n c a t a l y s e d b y t h e enzyme is a b o u t 3
6: Enzymes
533 a c i d as a s u b s t r a t e t h a n w i t h
times faster w i t h poly-g-galacturonic partially
(50%) m e t h y l a t e d p o l y - e - g a l a c t u r o n i c
Em v a l u e
acid
o f t h e enzyme f o r p o l y - q - g a l a c t u r o n i c
(pectin).
The
a c i d i s a b o u t 4.2
m i l l i m o l a r i n t e r m s o f m o n o m e r i c u n i t s and a b o u t 0.07
millimolar i n
terms
the
of
polymer
concentration.
Examination of
types
of
p r o d u c t s f o r m e d by t h e a c t i o n o f t h e enzyme s u g g e s t s t h a t i t i s an
-endo-hydrolase.
The
amino
acid composition of
this
enzyme i s
s i m i l a r t o those o f other e x t r a c e l l u l a r fungal proteins reported. The c a r b o h y d r a t e m o i e t y o f t h e g l y c o p r o t e i n p o l y - ! - g a l a c t u r o n a s e e l i c i t o r i s c o m p o s e d o f 9 2 % q - m a n n o s e a n d 8 % 0 - g l u c o s a m i n e by g a s chromatography-mass
spectrometry
analysis.
The
linkage-group
a n a l y s i s o f t h e c a r b o h y d r a t e m o i e t y showed t h a t q - m a n n o s y l r e s i d u e s which
are
1,2-linked
comprise
about
70% o f
the
total
r e s i d u e s a n d d e m o n s t r a t e d t h e p r e s e n c e o f some 1 , 3 , 6 -
glycosyl
a n d 1,2,6-
l i n k e d b r a n c h i n g D-mannosyl r e s i d u e s .
t ur o n a s e e l i c i t or p u r i f i e d
A p p a r e n t 1y h o m o g e n e o u s p o 1y -;-galac
f r o m t h e f i l t r a t e s o f R h i z o p u s s t o l o n i f e r c u l t u r e s has been f o u n d t o stimulate
germinating castor-bean
increased
levels
of
casbene
seedlings t o produce g r e a t l y
synthetase
activity.453
The
p u r i f i c a t i o n procedure i n v o l v e d g e l - f i l t r a t i o n chromatography on Sephadex
G-25
a n d G-75
columns
followed
c h r o m a t o g r a p h y o n a Sephadex CM C-50 column. purified preparation
was
i n d i c a t e d by
the
by
cation-exchange
Homogeneity o f t h e results of
cationic
p o l y a c r y l a m i d e d i s c g e l e l e c t r o p h o r e s i s and i s o e l e c t r i c f o c u s i n g (PI = 8.0).
The i d e n t i t i e s o f t h e casbene e l i c i t o r a c t i v i t y and p o l y - Q -
galacturonase
were
i n d i c a t e d by
the
coincidence o f
the
two
a c t i v i t i e s a t a l l stages of p u r i f i c a t i o n , the coincidence o f both activities
with the single protein-staining
band d e t e c t e d on a
c a t i o n i c p o l y a c r y l a m i d e d i s c g e l and an i s o e l e c t r i c - f o c u s i n g g e l , and t h e i d e n t i c a l b e h a v i o u r o f b o t h a c t i v i t i e s on an agarose g e l affinity
column.
The p u r i f i e d p o l y - P - g a l a c t u r o n a s e
elicitor
i s
a
g l y c o p r o t e i n w i t h a p p r o x i m a t e l y 20% c a r b o h y d r a t e c o n t e n t a n d a n estimated molecular weight of
32,000
by p o l y a c r y l a m i d e d i s c g e l
electrophoresis. The
variability
isoelectric-focusing ~
of
poly-g-galacturonase
patterns
has
been
and
protein
investigated
i n
B o t 9 t i s cinerea isolates.454
Acetone p r e c i p i t a t e s f r o m c u l t u r e
filtrates
of
I _ I _
of
three
isolates
B. c i n e r e a w e r e r e s o l v e d b y
i s o e l e c t r i c f o c u s i n g on p o l y a c r y l a m i d e g e l s t o d e t e c t d i f f e r e n c e s i n the poly-Q-galacturonase four
and p r o t e i n p a t t e r n s .
Only a few
bands
-
i n t h e p r o t e i n p a t t e r n s and t w o i n t h e p o l y - E - g a l a c t u r o n a s e
534
Carbohydrate Chemistry
p a t t e r n s - were common t o a l l t h e i s o l a t e s . D i f f e r e n c e s were a l s o detected i n poly-;-galacturonase and p r o t e i n p a t t e r n s o f a l l t h e s a m e i s o l a t e a t d i f f e r e n t a g e s of c u l t u r e ( 7 , 1 4 , a n d 21 d ) . I d e n t i c a l p o l y - g - g a l a c t u r o n a s e p a t t e r n s w e r e o b t a i n e d when i s o e l e c t r i c f o c u s i n g was a p p l i e d t o an a c e t o n e p r e c i p i t a t e e i t h e r d i r e c t l y o r a f t e r f u r t h e r p u r i f i c a t i o n by ion-exchange chromatography.
40
exo-Poly-Q-Galacturonate
Lyases
An m g - p o l y - Q - g a l a c t u r o n a t e l y a s e h a s been p u r i f i e d t o a homogeneous s t a t e from t h e c u l t u r e f i l t r a t e of S t r e p t o m y c e s m a s s a s p ~ r e u s . ~The ~ ~m o l e c u l a r weight was e s t i m a t e d t o be a b o u t 5 4 , 0 0 0 and t h e i s o e l e c t r i c p o i n t was pH 5 . 5 . The enzyme was most a c t i v e a t pH 9.5 and 4 O o C , and was r e l a t i v e l y s t a b l e a t pH Ca2+ was r e q u i r e d f o r maximum a c t i v i t y . The enzyme 3.0 f o r 10 m i n . was most a c t i v e on t r i - q - g a l a c t u r o n i c a c i d and had h i g h e r a c t i v i t y on low m e t h o x y l p e c t i n s r a t h e r t h a n on p o l y - q - g a l a c t u r o n i c a c i d . The enzyme removed t e r m i n a l u n s a t u r a t e d d i - Q - g a l a c t u r o n a t e u n i t s from t h e Q - g a l a c t u r o n i d e c h a i n s .
41
Pullulanases
The p r o p e r t i e s of two a m y l a s e s which d i f f e r i n t h e i r s u b s t r a t e s p e c i f i c i t y and s u b c e l l u l a r l o c a t i o n a s w e l l a s a c h l o r o p l a s t a s s o c i a t e d R-enzyme ( d e b r a n c h i n g a c t i v i t y ) have been r e p o r t e d . 3 0 1 The c o n v e r s i o n o f a c t i v e and i n a c t i v e d e b r a n c h i n g e n z y m e s i n r i c e s e e d s h a s been r e p o r t e d . 4 5 6 D e b r a n c h i n g - e n z y m e a c t i v i t y i n r i c e s e e d s i n c r e a s e d d u r i n g t h e e a r l y s t a g e of r i p e n i n g and t h e n d e c r e a s e d , and i n c r e a s e d a g a i n d u r i n g g e r m i n a t i o n . The i n a c t i v e enzyme accumulated r a p i d l y i n r i p e n i n g from t h e t w e n t i e t h day a f t e r flowering. R a d i o a c t i v e amino a c i d s were r e a d i l y i n c o r p o r a t e d i n t o t h e a c t i v e d e b r a n c h i n g enzyme a f t e r t h e i r a b s o r p t i o n i n t o immature r i c e seeds. Subsequently, t h e r a d i o a c t i v i t y increased i n the It i n a c t i v e enzyme, accompanying a d e c r e a s e i n t h e a c t i v e enzymes. was c o n c l u d e d t h a t t h e d e b r a n c h i n g enzyme i n r i c e s e e d s i s s y n t h e s i z e d d u r i n g r i p e n i n g i n a c t i v e form and t h a t i t a c c u m u l a t e s i n i n a c t i v e form, which can be r e a c t i v a t e d d u r i n g g e r m i n a t i o n . The i d e n t i f i c a t i o n o f an i n a c t i v e d e b r a n c h i n g enzyme i n r i c e
6: Enzymes
535
seeds
and i t s a c t i v a t i o n have been r e p o r t e d . 4 5 7
flour
with
1,4-dithiothreitol
pullulanase
activity.
Maximum
i n c u b a t i o n w i t h 6mM t h i o l .
I n c u b a t i o n of r i c e
(dithiothreitol) activity
generated
occurred
after
high 24
h
A l l of t h e t h i o l s a t l O m M a c t i v a t e d t h e
d e b r a n c h i n g enzyme, s u g g e s t i n g t h a t t h e p r o c e s s i n v o l v e d c l e a v a g e o f t h e d i s u l p h i d e bonds. other reductants. effective,
T h i s v i e w was c o n f i r m e d by t h e e f f e c t
b u t s o d i u m b o r o h y d r i d e was m o d e r a t e l y e f f e c t i v e i n s p i t e
o f t h e pH (-10) w h i c h was u n f a v o u r a b l e f o r e n z y m e s t a b i l i t y . debranching proteases,
of
S o d i u m s u l p h i t e and s o d i u m d i t h i o n i t e w e r e v e r y
enzyme
was
9. papain,
also
activated
a-chymotrypsin,
to
similar
extents
The by
and t r y p s i n .
D e b r a n c h i n g enzyme h a s been p u r i f i e d f r o m m a t u r e r i c e seeds.458 The enzyme was e x t r a c t e d f r o m
a supernatant s o l u t i o n o f r i c e f l o u r
f o l l o w i n g i t s homogenization i n l O m M sodium d i t h i o n i t e s o l u t i o n . DEAE-cellulose enzyme
was u s e d a s t h e e x t r a c t i o n m e d i u m f r o m w h i c h t h e
protein
was
eluted
with
P u r i f i c a t i o n was a c h i e v e d by t h e u s e o f a C M - c e l l u l o s e column.
sodium
phosphate
buffer.
a Sephadex G-100 c o l u m n a n d
The p u r i f i e d enzyme h a d no a m y l a s e ,
maltase,
and Q-enzyme a c t i v i t i e s and was homogeneous i n g e l f i l t r a t i o n , d i s c electrophoresis,
(c. 70,000) were
and i s o e l e c t r i c
focusing.
The
molecular
weight
d e t e r m i n e d by g e l f i l t r a t i o n and t h e o p t i m u m pH o f 5 . 6
i d e n t i c a l t o those of
the milky-stage
enzyme.
Substrate
s p e c i f i c i t i e s o f t h e enzyme w e r e a l s o s i m i l a r t o t h o s e o f t h e m i l k y s t a g e enzyme.
The enzyme r a p i d l y h y d r o l y s e d p u l l u l a n b u t s c a r c e l y
hydrolysed phytoglycogen, enzymes.
s i m i l a r t o other higher-plant
debranching
K i n e t i c d a t a s i m i l a r t o t h o s e o f t h e m i l k y - s t a g e enzyme
were a l s o obtained. B a c i l l u s a m y l o l y t i c u s produces a-amylase, glucosidase.
By s e l e c t i o n o f
p u l l u l a n a s e , and a-g-
c a r b o n s o u r c e i n t h e g r o w t h medium a-
Q - g l u c o s i d a s e was p r o d u c e d p r e f e r e n t i a l l y a n d w i t h e x c l u s i o n o f t h e other two activities.la2
42
Sucrose-a-g-Glucohydrolase
The a c t i v i t i e s o f a-!-glucohydrolase
various glycosidases
e.i n c l u d i n g
i n homogenates o f t h e s m a l l - i n t e s t i n a l
t w o a d u l t and 18 s u c k l i n g tammar w a l l a b i e s ( M .
e u q e n i i ) aged f r o m 6
t o 5 0 w e e k s h a v e b e e n i n ~ e s t i g a t e d . ~F ~o r f u r t h e r i n i t i a l c i t a t i o n o f ref.38. The
amounts
of
sucrosemucosa o f
sucrose-a-Q-glucohydrolase
d e t a i l s see
i n tangentially
Carbohydrate Chemistry
536
s e c t i o n e d b i o p s i e s from j e j u n u m have been s t u d i e d by q u a n t i t a t i v e i m m u n o e l e c t r o p h o r e s i s and e n z y m i c a s s a y s . 1 2 9
For further
details
see i n i t i a l c i t a t i o n o f r e f . 1 2 9 . S u c r o s e -cr-q-g l u c o h y d r o l a s e -0 l i g o - ( 1 been p u r i f i e d from i n j e c t i o n of
rat
+
6)-a-!-glucosidase
intestinal microvillus
;-(2-3H)mannose
and & - ( 6 - 3 H ) f u c o s e ,
has
membranes
after
u s i n g a column o f
m o n o c l o n a l a n t i b o d y p r o t e i n A - S e p h a r ~ s e . ~A~f t~e r p r o n a s e d i g e s t i o n and
gel
f i l t r a t i o n
precursors,
of
the
glycopeptides
a major p a r t of
l a b e l l e d from
the radioactivity
a s p a r a g i n e - l i n k e d complex o l i g o s a c c h a r i d e s ,
was
both
recovered i n
a n d a s m a l l e r amount i n
p a r t i a l l y a l k a l i - l a b i l e high-molecular-weight
glycopeptides.
Only a
s m a l l a m o u n t o f ( 3 H ) m a n n o s e was f o u n d i n e n d o - B - Q - 2 - a c e t a m i d o - 2 d e o x y g l u c o s i d a s e H - s e n s i t i v e high-a-mannose
oligosaccharides.
D e t e r g e n t - s o l u b i l i z e d p i g i n t e s t i n a l sucrose-a-g-glucohydrolase oligo-(1
6 ) - Q - g l u c o s i d a s e h a s been p u r i f i e d 40 t o 100 t i m e s w i t h a
+
y i e l d o f 1 0 t o 20% by a r a p i d i m m u n o a d s o r b e n t t e c h n i q u e . 4 4 4
For
f u r t h e r d e t a i l s see i n i t i a l c i t a t i o n o f r e f . 4 4 4 .
43
aa- and B B - T r e h a l a s e s
The a c t i v i t i e s o f v a r i o u s g l y c o s i d a s e s i n h o m o g e n a t e s o f t h e small-intestinal wallabies
mucosa
(M. e u g e n i i )
of
two
aged
adult
from
and
6
t o
18 50
suckling weeks
tammar
have
been
i n ~ e s t i g a t e d . ~a a~- T r e h a l a s e a c t i v i t y was v e r y l o w o r a b s e n t d u r i n g t h e f i r s t 34 weeks,
and t h e n i n c r e a s e d .
I n order t o establish the s p e c i f i c i t y o f aa-trehalases t h e i r a c t i o n on m o n o m o d i f i e d a s y m m e t r i c a l d e r i v a t i v e s o f the
purification of
may-bug
(Melolontha vulgaris coleopterae)
t r e h a l a s e h a s been p u r i f i e d 1 6 , 0 0 0 - f 0 l d . ~ ~ The ~ was 307 u n i t s mg-'
of proteins,
previously reported. studied:
and
trehalose,
specific
z-
activi;ty
a p p r o x i m a t i v e l y 78 t i m e s h i g h e r t h a n
Some o f t h e p r o p e r t i e s o f t h e enzyme h a v e been
molecular weight,
isoelectric point,
a c t i o n of
various
e f f e c t o r s and i n h i b i t o r s . Effects
o f
a c r y l o n i t r i l e
T r i b o l i u m castaneum
I _ -
studied.461
and
on
trehalase
Trogoderma g r a n a r i u m
a c t i v i t y
everts
has
i n been
A c r y l o n i t r i l e i n h i b i t e d t r e h a l a s e and p h o s p h o r y l a s e s i n
l a r v a e and a d u l t s o f T r i b o l i u m c a s t a n e u m . l a r v a e p h o s p h o r y l a s e s a l o n e were i n h i b i t e d .
I n Trogoderma q r a n a r i u m
537
6: Enzymes 44
endo-( 1
The
mode o f
4)-B-a-Xylanases
+
action
of
an e n d o - ( 1
4)-B-Q-xylanase
-+
from
a
B a s i d i o m y c e t e S p o r o t r i c h u m d i m o r p h o s p o r u m h a s been r e p o r t e d and i t s utility
for
pattern
the structural investigation including substitution
o f
the
branched
me t h y 1g 1u c u r o no ) -9 been s t u d i e d . 4 6 2 region
of
the
- x y 1a n
L-afabing-(4-g-
water-soluble
f r o m r e d w o o d ( S e q u o ia s e mper v i r e n s ) h a s
The a c t i o n o f
t h e P-xylanase
polysaccharide
backbone
appears t o i n v o l v e a
having
three
P_-xylosyl
A mode o f a c t i o n t h a t r e q u i r e s u n s u b s t i t u t e d h y d r o x y l
residues.
C-3,
g r o u p s a t C-2,
a n d C-2’
o f a x y l o b i o s y l r e s i d u e was p r o p o s e d .
The b i n d i n g s i t e s e e m s t o c o r r e s p o n d t o a s h a l l o w
cavity.
The
c o m p o s i t i o n and s t r u c t u r e o f t h e f i n a l r e s i d u e o f a t t a c k shows t h a t the
enzyme
through
h a s no are
0-2
a c t i o n when t h e 2 - x y l o s y l
separated
by
only
residue.
This pattern o f action,
products,
and
the
production of
one
residues
branched
unsubstituted
P_-xylose
the nature of a
final
the dialysable
residue
i n
which
the
s u b s t i t u e n t s a r e a c c u m u l a t e d s u g g e s t t h a t t h e C - a r a b i n o s y l and
9-
g l u c o s y l u r o n i c groups a r e i r r e g u l a r l y d i s t r i b u t e d on t h e main c h a i n o f t h e 9 - x y l a n f r o m r e d w o o d a n d t h a t i n some r e g i o n s t h e y a r e i n c l o s e v i c i n i t y when n o t a c t u a l l y o n a d j a c e n t g - x y l o s y l r e s i d u e s . The
extracellular
endo-(1
+
4 ) - B - Q- - x y l a n a s e
of
the
yeast
C r y p t o c o c c u s a l b i d u s has been f o u n d t o c a t a l y s e t h e d e g r a d a t i o n o f aryl
B-q-xylosides
cleavage.463
by
reactions
Liberation
of
corresponding B-P-xylosides
other
phenol
or
than
simple
hydrolytic
4-nitrophenol
from
the
was a c c o m p a n i e d by f o r m a t i o n o f g - x y l o s e
o l i g o s a c c h a r i d e s and o n l y s m a l l a m o u n t s o f 2 - x y l o s e . of p h e n y l B-g-{U-14C)-xyloside
With the a i d
it
s y n t h e s i z e d f r o m P-{U-14C)-xylose,
was e s t a b l i s h e d t h a t t h e r e a c t i o n f o l l o w e d a c o m p l e x p a t t e r n w i t h t h e r a t e of
phenyl B-g-xyloside
d i g e s t i o n and a p p e a r a n c e o f v a r i o u s
products v a r y i n g markedly w i t h time.
The r e a c t i o n i n v o l v e d m u l t i p l e
transglycosylic reactions leading f i r s t t o phenyl-g-glycosides xylo-oligosaccharides,
of
9-
which are subsequently hydrolysed m a i n l y t o
g - x y l o b i o s e and P - x y l o t r i o s e . The a c t i o n p a t t e r n and r e a c t i o n mechanism o f t h e e n d o - ( 1 B-e-xylanase
of
the
yeast
i n v e s t i g a t e d u s i n g reducing-end
(1
+
was
4)-B-Q-xylo-oligosaccharides found
to
catalyse
Cfyptococcus
I l-3H)-labelled
albidus
xylotriose,
-+
4)-
been
and { U - 1 4 C ) - l a b e l l e d
up t o x y l ~ p e n t a o s e . ~The ~ ~ enzyme
degradation o f
oligosaccharides
pathways other than a simple h y d r o l y t i c cleavage. frequency of
have
xylotetraose,and
also
by
Bond-cleavage
x y l o p e n t a o s e was f o u n d t o
538 be
Carbohydrate Chemistry concentration
dependent.
r e a c t i o n s s u c h as x y l o s y l ,
high
A t
substrate
concentration
x y l o b i o s y l , and x y l o t r i o s y l t r a n s f e r o c c u r
and r e s u l t i n t h e f o r m a t i o n o f p r o d u c t s l a r g e r t h a n t h e s t a r t i n g substrate. reaction
g - X y l o s e and x y l o b i o s e t o a s i g n i f i c a n t e x t e n t e n t e r t h e p a t h w a y s as
glycosyl
acceptors.
None
of
the
g l y c o s y l i c r e a c t i o n s observed w i t h reducing-end-labelled
trans-
substrates
o r a c c e p t o r s was a c c o m p a n i e d by a s i g n i f i c a n t l a b e l r e d i s t r i b u t i o n from t h e reducing-end u n i t , intermediates effective
suggesting t h a t the enzyme-glycosyl
i n t h e t r a n s f e r r e a c t i o n s can be f o r m e d f r o m
the non-reducing-end u n i t s o f oligosaccharides.
Evidence for the
f o r m a t i o n o f a t e r m o l e c u l a r s h i f t e d complex o f 6-Q-xylanase
with
x y l o t r i o s e has a l s o been o b t a i n e d .
A l l features o f the degradation
o f o l i g o s a c c h a r i d e s by 6 - P - x y l a n a s e
were f o u n d t o be c o n s i s t e n t w i t h
t h e l y s o z y m e - t y p e r e a c t i o n mechanism. The s u b s t r a t e - b i n d i n g
s i t e o f endo-(1 + 4)-B-Q-xylanase
y e a s t C r y p t o c o c c u s a l b i d u s h a s been i n v e s t i g a t e d u s i n g (1 xylo-oligosaccharides Evaluation of
{ l-3H)-labelled
at
the
of the
+
reducing
4)-6-Qend.465
the a f f i n i t i e s o f t e n imaginary subsites pointed out
t h a t t h e s u b s t r a t e - b i n d i n g s i t e o f t h e enzyme i s composed o f f o u r s u b s i t e s and t h a t t h e c a t a l y t i c groups a r e l o c a l i z e d i n t h e c e n t r e . The i m a g i n a r y s u b s i t e s o n t h e l e f t - h a n d s i d e o f t h e b i n d i n g s i t e (non-reducing-end x y l o s y l residues.
s i d e ) s h o w e d l i t t l e o r no a f f i n i t y t o b i n d
b i n d i n g s i t e ('reducing-end' obtained,
9-
F o r t h e s u b s i t e s on t h e r i g h t - h a n d s i d e of the
s i d e ) n e g a t i v e v a l u e s o f a f f i n i t y were
w h i c h means t h i s r e g i o n o f t h e enzyme i s u n f a v o u r a b l e f o r
complexing
with
Q-xylosyl residues.
As
a
consequence
of
the
asymmetric d i s t r i b u t i o n o f n e g a t i v e values o f a f f i n i t y around t h e binding site,
t h e enzyme d i s p l a y s a s t r o n g p r e f e r e n c e f o r a t t a c h i n g
n e a r t h e r e d u c i n g end o f t h e s u b s t r a t e . {
l-3H)-xylo-oligosaccharides,
Regardless of t h e l e n g t h of
{ l-3H)-xylobiose
was t h e p r e v a i l i n g
r e a c t i o n p r o d u c t a t an e a r l y s t a g e o f h y d r o l y s i s ,
and frequency
d i s t r i b u t i o n o f bond c l e a v a g e decreased f r o m t h e second g l y c o s i d i c b o n d t o w a r d s t h e n o n - r e d u c i n g end. A d d i t i o n a l i n f o r m a t i o n on t h e s u b s t r a t e - b i n d i n g s i t e o f C. a l b i d u s B - p - x y l a n a s e w a s o b t a i n e d b y evaluating the
efficiency
of
p-xylose,
xylobiose,
m e t h y l 8-e-
x y l o p y r a n o s i d e , and p h e n y l 6 - Q - x y l o p y r a n o s i d e t o s e r v e as g l y c o s y l acceptors
i n
the
transglycosylic
concentrations of xylotriose.
reaction
proceeding
at
high
539
6: Enzymes 45
Xylanases (Miscellaneous)
The a c c u r a c y improved.466
of
a Q-xylanase
assay
has been t e s t e d and
The assay was u s e d t o m o n i t o r Q - x y l a n a s e p r o d u c t i o n by
a C e l l u l o m o n a s i s o l a t e and t o d e m o n s t r a t e t h a t t h i s a c t i v i t y i s d i s t i n c t f r o m t h e f 3 --p - x y l o s i d a s e
a c t i v i t y o f t h e organism.
The a p p l i c a t i o n o f c a r b o h y d r a s e s t o t h e e x t r a c t i o n o f p r o t e i n s from
wheat
b r a n has i n c l u d e d t h e e f f i c a c i o u s p r e t r e a t m e n t w i t h
xy l a n a s e .349 An e x t r a c e l l u l a r
9-xylanase
f r o m a s o i l fungus
( F u s a r i u m sp.)
g r o w n o n a medium c o n t a i n i n g g r o u n d n u t h e m i c e l l u l o s e B was p u r i f i e d 76-fold
by
ammonium
sulphate
fractionation,
c h r o m a t o g r a p h y , and g e l f i l t r a t i o n . 4 6 7
ion-exchange
The enzyme was homogeneous by
d i s c g e l e l e c t r o p h o r e s i s a t pH 8 a n d showed o p t i m a l a c t i v i t y a t pH 5.6
and
It
37'C.
hemicellulose B respectively)
by
was
were
observed degraded
that
groundnut
considerably
t h e p u r i f i e d Q-xylanase,
and
sesame
and
(-80
58%,
w h e r e a s g-gluco-!-mannan
and g - x y l a n f r o m g r o u n d n u t were c o m p a r a t i v e l y p o o r l y h y d r o l y s e d (-30-40%) The p r o d u c t i o n and c h a r a c t e r i z a t i o n o f t h e r m o s t a b l e R - x y l a n a s e f r o m T a l a r o m y c e s b y s s o c h l a f i y d o i d e s YH-50 h a v e b e e n d e s c r i b e d . 4 6 8 T h i s s t r a i n i s o l a t e d f r o m c o m p o s t heaps p r o d u c e d t h e h i g h e s t amount of
t h e r m o s t a b l e e - x y l a n a s e among 1 8 0 i s o l a t e s t e s t e d .
cultivated i n solid
wheat-bran
a d d i t i v e carbon source, was p r o d u c e d a f t e r
When i t was
medium c o n t a i n i n g
xylan
as
an
t h e m a x i m a l amount o f t h e r m o s t a b l e x y l a n a s e
3 d a y s a t 5OoC.
90% o f q - x y l a n t o g - x y l o s e .
This culture f i l t r a t e hydrolysed
The enzyme (pH o p t i m u m 5.5,
o p t i m u m 7 O o C ) was q u i t e s t a b l e a f t e r h e a t i n g a t 65'
temperature
f o r 5 min a n d
r e t a i n e d 55% o f o r i g i n a l a c t i v i t y a f t e r h e a t i n g a t 95OC f o r 5 min. T r i c h o d e r m a r e e s e i R u t C-30 high cellulase activities,
B-Q - -glucosidase. concentration, r a t i o of
The
organism
produced,
together
c o n s i d e r a b l e amounts o f i - x y l a n a s e s effect
of
temperature,
pH,
with and
Tween-80
c a r b o n s o u r c e , and s u b s t r a t e c o n c e n t r a t i o n on t h e
m y c e l i a l g r o w t h and e x t r a c e l l u l o s e enzyme p r o d u c t i o n was
d e s c r i b e d .208 A s p e r g i l l u s n i g e r s t r a i n 110.42 h a s been s e l e c t e d as a p r o d u c e r
of h i g h 0-xylanolytic a c t i v i t i e s . 4 6 9 The t i m e - c o u r s e o f x y l a n a s e a n d B - Q - x y l o s i d a s e p r o d u c t i o n a s w e l l a s t h e e f f e c t o f pH a n d t e m p e r a t u r e o n t h e a c t i v i t y o f t h e s e enzymes w e r e s t u d i e d . a n a l y s i s of
the enzymatic degradation of
H.p.1.c.
a r a b i n o x y l a n showed a
n e a r l y complete conversion t o pentose sugars.
The a u t h o r s d i s c u s s
540
Carbohydrate Chemistry
t h e use o f c r u d e p - x y l a n a s e p r e p a r a t i o n s f o r t h e s a c c h a r i f i c a t i o n o f Q - - x y l a ns. The enhanced c e l l u l o l y t i c a c t i v i t y o f a C e l l u l o m o n a s m u t a n t has been shown t o
apply
also to
t o hydrolyse g-xylan-
i t s ability
c o n t a i n i n g h e m i c e l l u l o ~ e s . ~The ~ ~ h y d r o l y t i c a c t i v i t y was d i r e c t l y proportional t o the g-xylose content i n the hemicellulose substrate. A Cellulomonas s t r a i n , sugar-cane
bagasse,
has
carbohydrase a c t i v i t i e s
with potential for saccharification o f been
found
t o
possess
a
w h i c h c o u l d be n e c e s s a r y f o r
range
of
effective
h y d r o l y s i s o f t h e h e m i c e l l u l o s e f r a c t i o n o f bagasse.471 Inducible c o n s t i t u e n t of
B-xyloside
permease
has
been
reported
as
a
the e-xylan-degrading
enzyme s y s t e m o f t h e y e a s t
C r y p t o c o c c u s a l b i d ~ s . The ~ ~ y~e a s t ,
depending on whether i t i s
g r o w n on Q - x y l a n o r !-glucose, t a k e up i n d u c e r s synthesis.
of
d i f f e r s remarkably i n the a b i l i t y t o
extracellular
I n washed,
endo-(1
2-glucose-grown
*
4)-B-g-xylanase
c e l l s the i n i t i a l l y low
a b i l i t y t o t a k e up x y l o b i o s e o r m e t h y l B - 0 - x y l o p y r a n o s i d e
increases
d u r i n g i n c u b a t i o n w i t h t h e s e compounds a f t e r a l a g phase s h o r t e r than t h e i n d u c t i o n t i m e o f t h e e x t r a c e l l u l a r B-Q-xylanase.
Using
m e t h y l B - ~ - { U - 1 4 C ~ - x y l o p y r a n o s i d e as a v e r y s l o w m e t a b o l i z a b l e i n d u c e r o f B - 0 - x y l a n a s e i t h a s been e s t a b l i s h e d t h a t t h e i n c r e a s e i n t h e r a t e o f x y l o b i o s e o r m e t h y l x y l o s i d e u p t a k e i s due t o i n d u c t i o n o f an a c t i v e t r a n s p o r t s y s t e m f o r m e t h y l B - g - x y l o s i d e
P-xylo-oligosaccharides. permease. i t s
syste'm
The p e r m e a s e a c t i v i t y o f
absence o f B - 0 - x y l a n a s e
as
The
inducers.
inactivation
cycloheximide;
and ( 1
* 41-8-
c a l l e d B-e-xylosidase
induced c e l l s decreases i n t h e
The i n d u c t i o n o f p e r m e a s e as w e l l
(degradation)
can
be
prevented
with
t h u s b o t h e v e n t s a p p e a r t o b e d e p e n d e n t o n de n o v o
p r o t e i n synthesis. f3-e-xyloside
i s
I n analogy w i t h o t h e r a c t i v e t r a n s p o r t systems,
permease
function
can
be
blocked
effectively
by
i n h i b i t o r s o f energy metabolism i n t h e c e l l s . The
importance
of
cellulase
------------------B a c t e r o i d e s s u c c i n o g ---enes investigated.223
and
p-xylanase
release
from
i n t h e rumen e n v i r o n m e n t has been
During growth o f
B.
succinogenes i n a l i q u i d
medium w i t h c e l l u l o s e as t h e s o u r c e o f c a r b o h y d r a t e , g r e a t e r t h a n 80% o f t h e x y l a n a s e was r e l e a s e d f r o m c e l l s i n t o t h e c u l t u r e f l u i d .
F o r f u r t h e r d e t a i l s see i n i t i a l c i t a t i o n o f r e f . 2 2 3 . Cultures
of
Streptomyces f l a v o g r i s E have
p r o d u c e c o n s i d e r a b l e amounts o f c o n t a i n i n g media.260
p-xylanase
been
found
to
when g r o w n on Q - x y l a n -
C o m p a r a t i v e l y l o w e r y i e l d s o f t h i s enzyme w e r e
o b t a i n e d when h a y o r A v i c e l s e r v e d as m a i n c a r b o n s o u r c e .
54 1
6: Enzymes Q - X y l a n a s e i n d u c t i o n by B - P - x y l o s i d e
was i n v e s t i g a t e d i n non-
g r o w i n g c o n d i t i o n s u s i n g non-induced m y c e l i a o f Streptomyces s p e c i e s h a r v e s t e d f r o m i - g l u c o s e medium.473 Q-xylanase w i t h o u t of
P-xylanase synthesis
x y l o s i d e added t o constants
of
the
various
inducing culture
mM,
mM,
The
induction
calculated from
i s o p r o p y l , b u t y l , and
Some a - D - -xylosides
respectively.
The r a t e
w e r e 10.53 m M , 3.83 m M , 0.55
mM,
repressed g-xylanase
Q-xylanase synthesis decreased suddenly
a f t e r the a d d i t i o n o f a-p-xyloside. methyl,
were
and t h o s e o f m e t h y l ,
The r a t e o f
synthesis.
medium.
B-g-xylopyranosides
Lineweaver-Burk p l o t s ,
was added.
d e p e n d e n t on t h e c o n c e n t r a t i o n o f 6-E-
was
ethylenecyanohydrin B-g-xylosides a n d 0.25
The m y c e l i a s t a r t e d t o p r o d u c e
l a g t i m e when B-;-xyloside
The i n h i b i t i o n c o n s t a n t s o f
e t h y l , and i s o p r o p y l a - q - x y l o p y r a n o s i d e s
a n d 33.33 m M , r e s p e c t i v e l y .
w e r e 8.80
mM,
12.50
T h e x y l a n a s e i n d u c t i o n was a l s o
r e p r e s s e d by P - g l u c o s e u n t i l c o n s u m p t i o n o f t h e a d d i t i o n a l g - g l u c o s e was c o m p l e t e . The p r o d u c t i o n o f x y l a n a s e by a S t r e p t o m y c e s s p e c i e s u s i n g n o n -
I t was f o u n d t h a t a
m e t a b o l i z a b l e i n d u c e r has been described.474 variety
of
non-metabolizable
B-g-xylosides
possessed a
marked
i n d u c i n g a b i l i t y i n comparison t o Q-xylan or i t s r e l a t e d m a t e r i a l s . I n t h e p r o d u c t i o n of difficulty basis.
P-xylanase u s i n g such a s y n t h e t i c i n d u c e r ,
i n preparing the inducer
the
i s c o n s i d e r e d on an e c o n o m i c a l
A s u i t a b l e c u l t u r e c o n d i t i o n f o r 0-xylanase p r o d u c t i o n by
methyl 6-g-xyloside
i n S t r e p t o m y c e s s p e c i e s No. 3 1 3 7 a n d a m e t h o d
f o r r e - u s i n g t h e i n d u c e r were i n v e s t i g a t e d .
46
C a r b o h y d r a t e Isomerases
Q-Xylose I s o m e r a s e s @ - G l u c o s e o f some p o l y o l s ( g - m a n n i t o l , x y l i t o l )
on
A-ctinomyces
the
-
Isomerase).
a c t i v i t y
~
--
The i n h i b i t o r y e f f e c t
Q-arabitol, Q-glucitol,
-
o f
--xylose Q
o l i v o c i n e r e u s has been studied.475
f o r g-mannitol,
0.200,
0.140,
g-arabitol,
0.030,
0.024,
g-glucitol, a n d 0.020
ribitol, M,
from
A l l the polyols
studied are purely competitive reversible inhibitors.
Xi
r i b i t o l , and
isomerase
The v a l u e s o f and x y l i t o l a r e
respectively.
The
i n h i b i t i o n i s p a r t i a l l y e l i m i n a t e d b y a n i n c r e a s e i n t h e Mg2+ a n d Co2+ c o n c e n t r a t i o n t o 5 x 1 0 - 2 and l ~ l O -M,~ r e s p e c t i v e l y .
The k i n e t i c p r o p e r t i e s o f
i m m o b i l i z e d and n o n - i m m o b i l i z e d
Q-
x y l o s e i s o m e r a s e c o n t a i n i n g A r t h r o b a c t e r s p e c i e s c e l l s have been i n ~ e s t i g a t e d . ~ ’ ~I n b o t h c a s e s t h e k i n e t i c s c o u l d b e d e s c r i b e d by a
Carbohydrate Chemistry
542 modified
Michaelis-Menten
expression.
that i t was shown t h a t t h e p e r m e a b i l i t y o f t h e c e l l membrane was i n c r e a s e d by h e a t and toluene treatments. g - X y l u l o s e , an i n t e r m e d i a t e o f k - x y l o s e c a t a b o l i s m , h a s been i m m o b i l i z a t i o n c a u s e d no d e a c t i v a t i o n .
It
appeared
Furthermore,
o b s e r v e d t o be f e r m e n t a b l e t o e t h a n o l and c a r b o n d i o x i d e i n a y i e l d o f g r e a t e r t h a n 80% by y e a s t s ( i n c l u d i n g i n d u s t r i a l b a k e r ’ s y e a s t )
condition^.^"
under f e r m e n t a t i v e
T h i s c o n v e r s i o n a p p e a r s t o be
c a r r i e d o u t by many y e a s t s k n o w n f o r Q - g l u c o s e f e r m e n t a t i o n . some y e a s t s , xylulose. g-xylose
xylitol,
i n addition t o ethanol,
I n
was p r o d u c e d f r o m
!-
Fermenting yeasts are a l s o able t o produce e t h a n o l from when ! - x y l o s e - i s o m e r i z i n g
enzyme i s p r e s e n t .
The r e s u l t s
i n d i c a t e d t h a t e t h a n o l c o u l d be p r o d u c e d f r o m P - x y l o s e i n a y i e l d o f greater
than
8 0 % by
a
converted t o g-xylulose
two-step
process.
by g - x y l o s e
First,
isomerase.
Q-xylose
g-Xylulose
i s
i s then
f e r m e n t e d t o e t h a n o l by y e a s t s . C u l t u r e s o f S t r e p t o m y c e s f l a v o g r i s e u s has been f o u n d t o p r o d u c e i n t e r a l i a 9 - x y l o s e i s o m e r a s e when i n d u c e d by g - x y l o s e . 2 6 0 The e f f e c t o f g a m m a - i r r a d i a t i o n on Q - x y l o s e i s o m e r a s e p u r i f i e d f r o m t h e c e l l s o f S t r e p t o m y c e s phoeochromogenus i n d i l u t e s o l u t i o n has been i n ~ e s t i g a t e d . ~ ’ ~ The a c t i v i t y o f t h e e n z y m e d e c r e a s e d e x p o n e n t i a l l y w i t h t h e dose u n d e r a l l c o n d i t i o n s i n v e s t i g a t e d . i n a c t i v a t i o n y i e l d s (Go v a l u e ) i n n e u t r a l s o l u t i o n w e r e 0.069 a n d 0.115
i n nitrogen.
The
in air
The r o l e o f t h e r a d i c a l s p r o d u c e d by w a t e r
r a d i o l y s i s i n t h e i n a c t i v a t i o n o f a - g l u c o s e i s o m e r a s e was e s t i m a t e d by u s i n g n i t r o u s o x i d e o r t e r t - b u t a n o l scavengers.
as s e l e c t i v e r a d i c a l
Under t h e s e c o n d i t i o n s , t h e h y d r o x y l r a d i c a l and t h e
h y d r o g e n a t o m w e r e f o u n d t o be i m p o r t a n t i n t h e enzyme i n a c t i v a t i o n , and t h e h y d r a t e d e l e c t r o n c o n t r i b u t e d v e r y l i t t l e . The
radiosensitivity
i n v e s t i g a t e d under
i n a c t i v a t i o n o f !-glucose was e x p o n e n t i a l , an
oxygenated
of
various
E-xylose
irradiation
isomerase
has
been
conditions.479
The
isomerase i r r a d i a t e d i n a cell-bound s t a t e
and an i n c r e a s e i n i n a c t i v a t i o n was r e c o g n i z e d i n condition.
The
cell-free
enzyme
was
highly
r a d i o s e n s i t i v e and h a d a s m a l l o x y g e n e f f e c t c o m p a r e d t o t h a t i n a cell-bound state.
The o x y g e n enhancement r a t i o (OER) d e c r e a s e d w i t h
a d e g r e e i n enzyme p u r i f i c a t i o n .
R e l e a s e d Q - g l u c o s e i s o m e r a s e was
p r o t e c t e d by t h e a d d i t i o n o f g l u t a t h i o n e , and t h e i n a c t i v a t i o n c u r v e i n n i t r o g e n almost agreed w i t h t h a t i n t h e c e l l .
The p r o t e c t i v e
e f f e c t o f g l u t a t h i o n e i n oxygen d e c r e a s e d a t h i g h e r doses because g l u t a t h i o n e i n o x y g e n was e a s i l y decomposed b y i r r a d i a t i o n .
6: Enzymes
543
The s u b u n i t s t r u c t u r e h a s been d e t e c t e d i n g - x y l o s e
isomerase
f r o m S t r e p t o m y c e s q r i s e o f u s c u s by u s i n g d e n a t u r a n t s . 4 8 0 The enzyme was q u i t e s t a b l e t o s o d i u m d o d e c y l s u l p h a t e u n d e r m i l d c o n d i t i o n s , a n d d i s s o c i a t i o n i n t o s m a l l e r s u b u n i t s was d e p e n d e n t A t a c i d i c pH and h i g h t e m p e r a t u r e ,
temperature.
rapid dissociation
and i n a c t i v a t i o n .
The
o n pH a n d
t h e enzyme showed
dissociation
into
c o n s t i t u e n t s u b u n i t s p a r a l l e l e d t h e loss o f e n z y m a t i c a c t i v i t y .
The
enzyme was a l s o d i s s o c i a t e d i n t o a s i n g u l a r t y p e o f s u b u n i t b y 6 M g u a n i d i n i u m c h l o r i d e w h i c h gave a s i n g l e s y m m e t r i c a l e l u t i o n p e a k o n Sepharose 68 column chromatography i n t h e p r e s e n c e o f 6 M g u a n i d i n e hydrochloride,
and t h e e l u a t e showed n o a c t i v i t y .
estimations of
the subunit,
Molecular-weight
u s i n g both sodium dodecyl sulphate
polyacry1ami.de g e l e l e c t r o p h o r e s i s and g e l f i l t r a t i o n , was
w e r e t h e same
The N - t e r m i n a l a m i n o a c i d was i d e n t i f i e d as L - s e r i n e
(43,000).
estimated t o
derivatives.
be 43 p e r
cent
from
analyses
of
The s e q u e n c e f r o m t h e N - t e r m i n a l was f o u n d t o b e
....
Ser-L-Asp-L-Gln
enzyme as 180,000
and
PTH a n d DNP
i-
Considering the molecular weight o f the n a t i v e
and t h e r e s u l t s o b t a i n e d i n t h e e x p e r i m e n t s h e r e ,
i t was c o n c l u d e d t h a t n a t i v e ! - g l u c o s e
i s o m e r a s e was c o m p o s e d o f
f o u r i d e n t i c a l or very s i m i l a r s u b u n i t s w i t h e q u a l m o l e c u l a r w e i g h t s and d i m e n s i o n s . Some p h y s i c o c h e m i c a l p r o p e r t i e s o f
p u r i f i e d g-xylose
f r o m S t r e p t o m y c e s g r i s e o f u s c u s h a v e been examined.481
(gi&,)
coefficient 11.4
and
4.0,
coefficient
and i s o e l e c t r i c p o i n t
respectively.
( 5 j O w ) ,p a r t i a l
The
(PI) were d e t e r m i n e d t o be
values
specific
for
sedimentation
(I), d i f f u s i o n
volume
c o e f f i c i e n t ( g 2 0 w ) , a n d i n t r i n s i c v i s c o s i t y ({tj))
lo7
isomerase
The e x t i n c t i o n
w e r e 8.50 S, 0.73
m l g-l, respectively. The m o l e c u l a r w e i g h t was e s t i m a t e d t o b e 1 8 0 , 0 0 0 b y t h e s e d i m e n t a t i o n e q u i l i b r i u m m e t h o d a n d 185,000 by a g e l e l e c t r o p h o r e t i c a l method.481 Cm3
g-l,
4.6
x
cm2 S-l,
a n d 3.7
T h e e n z y m e was f o u n d t o c o n t a i n f o u r
cobalt ions per molecule i n
atomic-absorption spectrophotometrical analysis. d i c h r o i s m spectrum i n t h e f a r - u l t r a v i o l e t 280 nm a n d a m a x i m u m a t 1 9 8 nm.
The c i r c u l a r -
r e g i o n showed a m i n i m u m a t
Mean r e s i d u e e l l i p t i c i t y ( ( 0 ) )
at
220 nm was e s t i m a t e d t o b e - 1 1 , 2 0 0 deg.cm2/d mol. The c o m p u t e d v a l u e s f o r t h e c o n t e n t s o f t h e s e c o n d a r y s t r u c t u r e w e r e as f o l l o w s : a-helix
40%,
8-form
36%,
a n d r a n d o m c o i l 24%.
The enzyme showed a
v i s i b l e c i r c u l a r - d i c h r o i s m s p e c t r u m h a v i n g n e g a t i v e p e a k s a t 530 nm a n d 4 3 0 nm.
This suggested t h e f o r m a t i o n of a co-ordinated m e t a l
compound, Co-amino a c i d complex.
The m o l e c u l a r d i m e n s i o n o f t h e
enzyme was e x a m i n e d by m e a s u r i n g t h e h y d r o d y n a m i c p a r a m e t e r s .
The
544
Carbohydrate Chemistry
(a/b)
frictional ratio
was 5 . 0
f o r p r o l a t e e l l i p s o i d a n d 0.2
for
0
S t o k e s ' r a d i u s was c a l c u l a t e d t o b e 47 A f o r a
oblate ellipsoid.
h y d r a t e d h y p o t h e t i c a l sphere. The p u r i f i c a t i o n a n d e n z y m a t i c p r o p e r t i e s o f E - x y l o s e i s o m e r a s e f r o m S t r e p t o m y c e s g r i s e o f u s c u s h a v e been d e s c r i b e d . 4 8 2 was p u r i f i e d 4 . 3 - f o l d ammonium
sulphate,
electrophoresis a c t i v i t y was 8.5
was
and
homogeneous
on
ultracentrifugation.
i n a c t i v e i n t h e absence o f
respectively,
!-glucose,
while
Vmax
values
The enzyme was q u i t e The enzyme c a t a l y s e d
b y
The
17.6
umol min-'
c o n t e n t t o !-glucose
s u g a r s ,
Em
x 10-1 M and 5.4 x
a t reaction equilibrium.
1.0
i n h i b i t e d
pH
and ! - r i b o s e .
were
The r a t i o o f [-I - f r u c t o s e
was a p p r o x i m a t e l y was
for
optimum
m e t a l i o n s b u t was r e m a r k a b l y a c t i v a t e d
v a l u e s f o r Q - g l u c o s e a n d c - x y l o s e w e r e 2.2 M,
gel
The
magnesium o r c o b a l t i o n s .
t h e i s o m e r i z a t i o n o f !-xylose,
respectively.
polyacrylamide
and o p t i m u m t e m p e r a t u r e 85OC.
by t h e a d d i t i o n o f
The enzyme
a n d o b t a i n e d i n c r y s t a l l i n e f o r m , by a d d i n g
mg-l,
content
The enzyme a c t i v i t y
s u g a r
a l c o h o l s ,
a n d
The Ei Q - s o r b i t o l 1.1 x 10-2
tris(hydroxymethy1)aminomethane i n a c o m p e t i t i v e manner. v a l u e s w e r e as f o l l o w s : g - m a n n i t o l 8.3
M,
3.2
x 10-1 M ,
g - x y l i t o l 1.2 x
x 1 0 - 2 M,
I - a r a b i n o s e 2.3
Chloromercuribenzoate, cyanide, effect
M,
x 10-1 M,
x 1 0 - 1 M, a n d T r i s 6.2
n-galactose x
i o d o a c e t i c a c i d , sodium azide,
sodium fluoride,and
M.
4-
potassium
2 - m e r c a p t o e t h a n o l h a d no i n h i b i t o r
on t h e a c t i v i t y o f !-glucose
a s i g n i f i c a n t l o s s of
lo3
n-mannose 3.4
isomerase,
w h i l e H4 e d t a c a u s e d
activity.
The i n v e s t i g a t i o n b y
'H
n.m.r.
spectroscopy o f the s i t e o f
p r o t o n e x c h a n g e c a t a l y s e d by p o l y ( g - m a n n u r o n i c
a c i d ) C-5 e p i m e r a s e ,
which c a t a l y s e s t h e conversion o f g-mannuronic a c i d r e s i d u e s i n t o
L-
g u l u r o n i c a c i d r e s i d u e s p r o v i d e d t h e s u b s t r a t e i s a glycuronan of
at
least
10 u n i t s ,
has been r e p o r t e d . 4 8 3
I n f o r m a t i o n i s l a c k i n g as t o
t h e enzyme's s p e c i f i c i t y f o r a p a r t i c u l a r l o c a l a r r a n g e m e n t o f u n i t s i n t h e chain.
I-Ribose
Isomerases.
--
I n d u c t i o n o f I - r i b o s e i s o m e r a s e by I - r i b o s e
i n M y c o b a c t e r i u m smegmatis has been i n v e s t i g a t e d . 4 8 4 which u n l i k e a-ribose
a growth substrate for isomerase possibly
i-Ribose,
was n o t a s u b s t r a t e o f t h e enzyme a n d a l s o n o t the organism,
i n d u c e d t h e same Q - r i b o s e
due t o t h e c h a r a c t e r i s t i c
conformation o f t h e r i b o s e molecule.
c o n f i g u r a t i o n and
545
6: Enzymes
Carbohydrate O x i d a s e s
47
--
0-Glucose O x i d a s e s .
e-Glucose o x i d a s e and an o x i d i z e d v e r s i o n o f
t h e enzyme h a v e been i m m o b i l i z e d c o v a l e n t l y t o t w o b a s i c t y p e s o f
-
sorbents
g l y c i d y l m e t h a c r y l a t e c o p o l y m e r s and bead c e l l u l o s e . 4 8 5
The p r o p e r t i e s o f t h e s a m p l e s t h u s o b t a i n e d were compared w i t h t h o s e o f i m m o b i l i z e d a-glucose
o x i d a s e bound on t o some common c a r r i e r s .
Samples w h i c h p o s s e s s e d n o t o n l y a h i g h a b s o l u t e a c t i v i t y adequate
m e c h a n i c a l and
flow
properties
were
but also
characterized
in
g r e a t e r d e t a i l w i t h r e s p e c t t o t h e i m m o b i l i z a t i o n e f f i c i e n c y and k i n e t i c p r o p e r t i e s o f bound i - g l u c o s e o x i d a s e . New
findings
i n
the
oxidation
of
glucose
by
means
i m m o b i l i z e d Q - g l u c o s e o x i d a s e have been r e p o r t e d . 4 8 6 p r o c e e d i n g p u b l i c a t i o n s t h e paper shows r e c e n t a s p e c t s , to
be
of
B a s e d on w h i c h seem
f o r an e c o n o m i c a l and t e c h n i c a l u s e o f t h e
important
i m m o b i l i z e d !-glucose
oxidase-catalase
system.
t r i a l s i n c o n t i n u o u s p r o c e s s i n g were n e g a t i v e ,
The r e s u l t s
of
since the conversion
r a t e s w e r e s u f f i c i e n t and t e c h n i c a l d i f f i c u l t i e s a r o s e i n k e e p i n g back
the
enzyme
processing
with
particles
i n
the
r e p e a t e d enzyme
reaction
vessel.
application
Batchwise
showed
the
major
i m p o r t a n c e o f o p t i m a l oxygen s u p p l y and k e e p i n g l o w t e m p e r a t u r e s o f a b o u t 2OC.
D i f f e r e n t types o f s t i r r e d - t a n k
r e a c t o r s were t e s t e d and
c l a s s i f i e d concerning t h e i r s u i t a b i l i t y .
The c h a n c e s f o r l a r g e -
scale a p p l i c a t i o n o f the immobilized g-glucose oxidase-catalase s y s t e m a r e j u d g e d t o be good. A m o d i f i e d l e c t i n m a t r i x has been u s e d t o s t u d y t h e t h r e e -
dimensional structure of
a dimeric glycoprotein,
g-glucose
w h i c h was a l l o w e d t o r e a c t w i t h I - l y s i n e - s p e c i f i c both
when
immobilized
on
a
succinoylated
oxidase,
cross-linkers,
lectin
matrix
at
a
c r i t i c a l l y l o w d e n s i t y and a l s o a t a h i g h d e n s i t y i n s o l u t i o n . 4 8 7 Analysis of the cross-linked following inferences Of
complexes t h u s o b t a i n e d l e d t o t h e
with regard t o the s t r u c t u r e o f t h i s protein.
t h e 1 5 I - l y s i n e r e s i d u e s on each g - g l u c o s e
oxidase protomer,
i s a v a i l a b l e on t h e n o n - i n t e r f a c i a l s u r f a c e s . protein
possesses
subunits,
C2
symmetry
with
none
Assuming t h a t t h i s
isologous
bonding
between
i t may be i n f e r r e d t h a t o n e a c h p r o t o m e r t h e r e a r e a t
least two I - l y s i n e clusters along or close t o the interprotomeric interface.
These i n t e r f a c i a l I - l y s i n e r e s i d u e s on each p r o t o m e r a r e
so o r i e n t e d t h a t t h e € - a m i n o g r o u p s o f L - l y s i n e r e s i d u e s 2 and protomer 1 face, lysine residues
and a r e very c l o s e t o ,
b'
and
s',
respectively,
t h e &-amino groups o f o n p r o t o m e r 2.
on
I-
General
546
Carbohydrate Chemistry
i n f e r e n c e s on t h e g e o m e t r y o f d i m e r i c p r o t e i n s d e r i v a b l e f r o m an a n a l y s i s o f t h e c r o s s - l i n k e d c o m p l e x e s o b t a i n e d ( a s w e l l as t h o s e n o t seen) by u s i n g t h i s low - d e n s i t y m a t r i x c r o s s - l i n k i n g approach were enumerated. prove
useful
glycoproteins,
I t was s u g g e s t e d t h a t m o d i f i e d l e c t i n m a t r i c e s may
i n
studying
the
three-dimensional
structure
of
p a r t i c u l a r l y non-crys t a l l i z a b l e oligomers.
The e n h a n c e m e n t
of
oxygen a b s o r p t i o n by m a g n e t i t e - c o n t a i n i n g
beads of i m m o b i l i z e d g - g l u c o s e o x i d a s e has been i n v e s t i g a t e d . 4 8 8 R a t e s o f oxygen a b s o r p t i o n o f Q - g l u c o s e s o l u t i o n s were measured u s i n g an i m m o b i l i z e d - e n z y m e
reactor,
i n which m a g n e t i t e - c o n t a i n i n g
b e a d s o f i m m o b i l i z e d g - g l u c o s e o x i d a s e w e r e moved b y a r e v o l v i n g magnetic f i e l d t o reduce t h e mass-transfer l i q u i d i n t e r f a c e and a r o u n d t h e bead.
resistances at
t h e gas-
D a t a were a l s o o b t a i n e d f o r
solutions containing soluble
oxygen a b s o r p t i o n i n t o !-glucose
immobilized glucose oxidase (without magnetite),
or
as w e l l as f o r
p h y s i c a l a b s o r p t i o n f o r t h e r u n s w i t h t h e m a g n e t i t e - c o n t a i n i n g beads m e c h a n i c a l s t i r r i n g caused by s p i n n i n g o f
i n c r e a s e d because o f
beads a t t h e g a s - l i q u i d i n t e r f a c e . enhancement f a c t o r s
the
I n t h i s case t h e e x p e r i m e n t a l
were found t o be l a r g e r t h a n t h o s e p r e d i c t e d on
t h e b a s i s o f t h e f i l m t h e o r y f o r gas a b s o r p t i o n w i t h a p s e u d o - f i r s t order reaction. P h y s i c a l e n t r a p m e n t h a s b e e n u s e d as an a p p r o a c h t o a c h i e v e t h e r m a l s t a b i l i z a t i o n o f ;-glucose
oxidase.395
t h e t h e r m o i n a c t i v a t i o n o f e-glucose
for
I n polyacrylate gels the
f o l d by e n t r a p m e n t i n p o l y a c r y l a m i d e g e l s . enzyme behaved d i f f e r e n t l y ,
to.5 value
The
o x i d a s e was i n c r e a s e d s e v e r a l -
probably owing t o a microenvironmental
e f f e c t of t h e p o l y e l e c t r o l y t e n a t u r e of
the carrier.
I t has been r e p o r t e d f o u n d t h a t i n a d d i t i o n t o oxygen s i x r e d o x i n d i c a t o r s can s e r v e
as
Pencillium
The pH dependence o f t h e r a t e o f t h e r e a c t i o n
ita ale.^^'
c a t a l y s e d by g - g l u c o s e oxygen
and
substrates
for
Q-glucose
with
from
o x i d a s e was i n v e s t i g a t e d i n t h e p r e s e n c e o f
artificial
electron
I n contrast
acceptors.
r e a c t i o n w i t h o x y g e n , whose o p t i m u m pH i s 5.6, reactions
oxidase
phenazine
methosulphate,
to
the
t h e o p t i m u m pH o f
basic
dark
blue
2K,
p o l y v i o l o g e n , and t h e i o n - r a d i c a l s a l t o f b4,N,","-tetramethyl-4p h e n y l e n e d i a m i n e was o b s e r v e d a t pH 7.5. t h e r e d u c e d enzyme deprotonated)
can
exist
differing i n rate
i n of
The r e s u l t s i n d i c a t e d t h a t
two
forms
(protonated
o x i d a t i o n by
oxygen
and
and i n
a b i l i t y t o b i n d and r e d u c e a r t i f i c i a l e l e c t r o n a c c e p t o r s w i t h t h e f o r m a t i o n o f t h e semiquinone form of t h e c o f a c t o r . The u s e o f ! - g l u c o s e
oxidase-catalase
system
i n measuring
547
6: Enzymes aeration
capacity
of
fermenters
has
been
investigated
c o m p a r i s o n made o f t h e d y n a m i c a n d s t e a d y - s t a t e measurement.490
The
conditions
spontaneous h y d r o l y s i s o f
have
been
and
specified
where
l a c t o n e was s u f f i c i e n t l y r a p i d ,
thus I n Q-
e l i m i n a t i n g i n h i b i t o r y a c t i o n o f l a c t o n e on t h e o x i d a t i o n . glucose o x i d a s e - f r e e batches,
kla
the
a
kla
methods o f
v a l u e s were d e t e r m i n e d u s i n g
v a r i o u s m o d i f i c a t i o n s o f t h e dynamic method.
The d y n a m i c m e t h o d s i n
w h i c h gas i n t e r c h a n g e was e f f e c t e d w i t h o u t i n t e r r u p t i n g a e r a t i o n and
kla
agitation o f the batch yielded erroneously lower compared t o t h e r e s u l t s o f s t e a d y - s t a t e v a l u e was h i g h e r t h a n 0 . 0 3 s - ' .
v a l u e s as
methods i f t h e measured
kla
The v a l u e y i e l d e d b y t h e d y n a m i c
m e t h o d i n w h i c h t h e g a s i n t e r c h a n g e was e f f e c t e d a t t h e same t i m e w i t h t u r n i n g on a e r a t i o n and a g i t a t i o n of values r e s u l t i n g from the steady-state measured
kla
t h e b a t c h agreed w i t h
method,
provided that the
v a l u e s w e r e l o w e r t h a n 0.08 s - l a n d t h e s i m u l t a n e o u s
i n t e r f a c i a l t r a n s p o r t o f n i t r o g e n and oxygen had been t a k e n i n t o account i n the evaluation.
A t
kla
v a l u e s h i g h e r t h a n 0.08s"
kla
m o d i f i c a t i o n o f t h e dynamic method a l s o y i e l d e d l o w e r compared w i t h t h e outcome o f t h e s t e a d y - s t a t e experiments
performed
did
not,
however,
u n a m b i g u o u s l y on w h e t h e r t h e s e l o w e r
kla
allow
this
v a l u e s as
method. one
to
The
decide
v a l u e s w e r e due t o f a i l u r e
o f t h e adopted model t o descibe adequately t h e dynamic behaviour o f t h e system o r whether they were t r u e values d i f f e r i n g f r o m those y i e l d e d by t h e s t e a d y - s t a t e
m e t h o d on a c c o u n t o f d i f f e r e n t
physical
p r o p e r t i e s o f compared batches. The k i n e t i c s o f o x i d a t i o n o f ! - g l u c o s e o x y g e n i n t h e p r e s e n c e o f !-glucose been s t u d i e d b o t h t h e o r e t i c a l l y
s o l u t i o n by d i s s o l v e d
o x i d a s e and e x c e s s c a t a l a s e h a v e
and
experiment all^.^^^
The k i n e t i c
m o d e l u s e d was b a s e d o n t h e d e t a i l e d mechanism o f t h e r e a c t i o n .
The
d e s c r i p t i o n o f t h e m o d e l was g i v e n by t h e M i c h a e l i s - M e n t e n e q u a t i o n f o r t h e case o f t w o s u b s t r a t e s . a closed reactor commercial
at
enzymes.
The e x p e r i m e n t s w e r e c a r r i e d o u t i n
a t e m p e r a t u r e o f 25OC a n d p H 5 . 5 5 Kinetic
constants
of
the
using
reaction
were
e v a l u a t e d by f i t t i n g t h e oxygen c o n c e n t r a t i o n p r o f i l e s c a l c u l a t e d f r o m t h e model t o t h o s e f o u n d e x p e r i m e n t a l l y , by t h e method o f nonlinear
regression.
d i s t o r t i o n of
The r a t e o f
p r o b e were t a k e n i n t o account. the
reaction
were
i n
good
m u t a r o t a t i o n and
The d e t e r m i n e d k i n e t i c c o n s t a n t s o f agreement
l i t e r a t u r e f o r p u r i f i e d enzymes. data of
Q-glucose
d a t a caused by t h e dynamics o f t h e a p p l i e d oxygen with
those
given
i n
the
Adoption o f l i t e r a t u r e k i n e t i c
t h i s r e a c t i o n t o t h e d e t e r m i n a t i o n of
aeration capacity o f
548
Carbohydrate Chemistry
f e r m e n t e r s by t h e Q - g l u c o s e o x i d a s e s y s t e m p r o v e d p o s s i b l e . A t pH 7 . 4 , i n 0 . 1 M p h o s p h a t e b u f f e r , Q - g l u c o s e o x i d a s e a n d B l u e D e x t r a n i n t e r a c t s t r o n g l y w i t h each o t h e r . 4 9 2 Under these c o n d i t i o n s a s o l u b l e c o m p l e x i s f o r m e d , as s h o w n by u l t r a f i l t r a t i o n e x p e r i m e n t s u s i n g a D i a f l o XM-300 m e m b r a n e ( n o m i n a l m o l e c u l a r w e i g h t c u t - o f f 300,000). I n t h i s c o m p l e x , t h e e n z y m e i s a b o u t 40% m o r e a c t i v e t h a n when f r e e i n s o l u t i o n , a n d i s a l s o m o r e s t a b l e t o w a r d s a c i d denaturation. Comparative s t u d i e s with a high-molecular-weight d e x t r a n d e v o i d o f dye r e s i d u e s ( D e x t r a n T - 2 0 0 0 ) s u g g e s t e d t h a t t h e dye moiety of Blue Dextran is d i r e c t l y i n v o l v e d i n t h e b i n d i n g of t h e p r o t e i n , and p o s s i b l y a l s o i n t h e enhancement o f i t s e n z y m a t i c activity. Q-Glucose o x i d a s e p u r i f i e d from A s p e r g i l l u s n i g e r on s u b j e c t i o n t o i s o e l e c t r i c f o c u s i n g a n d g e l e l e c t r o p h o r e s i s was f o u n d t o b e c o m p o s e d o f a t l e a s t s i x c o m p o n e n t e n z y m e s ( P I 3 . 9 t o 4.3).493 They a l l p o s s e s s an i d e n t i c a l p r o t e i n moiety, s i n c e the amino acid compositions, C-terminal sequences, catalytic parameters, q u a n t i t a t i v e and q u a l i t a t i v e immunological p r o p e r t i e s , and t h e e l e c t r o p h o r e t i c p a t t e r n s o f t h e p e p t i d e f r a g m e n t s o b t a i n e d by CNBr c l e a v a g e were p r a c t i c a l l y t h e s a m e . On t h e o t h e r h a n d , t h e c a r b o h y d r a t e c o n t e n t s o f t h e e n z y m e s were f o u n d t o b e d i f f e r e n t , a n d t h e s e d i f f e r e n c e s were a s s o c i a t e d i n t h e m a i n w i t h a p a r t i c u l a r peptide fragment. L-Galactonolactone Oxidases. -- L - G a l a c t o n o l a c t o n e o x i d a s e h a s b e e n f o u n d t o b e i n a c t i v a t e d by v a r i o u s s u l p h y d r y l r e a g e n t s : t h e o r d e r o f i n a c t i v a t i o n r a t e w a s HgC12, 4 - c h l o r o m e r c u r i b e n z o a t e , 4,4’dipyridyldisulphide, 2,2’-dipyridy l d i s u l p h i d e , 5 ,S9-dithio-bis-(2nitrobenzoate), and fj-ethylmaleimide iodoacetamide.494 The i n a c t i v a t i o n by 4,4’-dipyridyldisulphide w a s s t u d i e d i n d e t a i l , a n d i t was f o u n d t h a t t h e maximum d e g r e e o f i n a c t i v a t i o n a t t a i n e d w i t h i n c r e a s i n g r e a g e n t c o n c e n t r a t i o n was 93% a n d t h a t t h e k i n e t i c s o f i n a c t i v a t i o n were f i r s t o r d e r w i t h r e s p e c t t o r e a g e n t c o n c e n t r a t i o n . T h e pH d e p e n d e n c e o f t h e s e c o n d - o r d e r r a t e c o n s t a n t o f t h e i n a c t i v a t i o n r e v e a l e d t h a t a s u l p h y d r y l g r o u p w i t h a pKa o f 9.8 was involved i n the i n a c t i v a t i o n process. T h e v a l u e o f pKa i s h i g h compared w i t h t h a t of low-molecular-weight t h i o l s , i n d i c a t i n g t h a t t h e i o n i z a t i o n o f t h e s u l p h y d r y l g r o u p i s a f f e c t e d by t h e e l e c t r i c f i e l d of a n e g a t i v e l y charged group l o c a t e d i n its v i c i n i t y . The v a l u e s o f K m a n d lmax for the C-galactonolactone oxidase reaction d i d n o t c h a n g e g r e a t l y a r o u n d pH 9.8. This is consistent with the
549
6: Enzymes
v i e w t h a t t h e s u l p h y d r y l g r o u p does n o t p a r t i c i p a t e i n t h e c a t a l y t i c process.
The v e l o c i t y o f i n a c t i v a t i o n i n t h e p r e s e n c e o f s u b s t r a t e
was c o n s i d e r a b l y g r e a t e r
It
t h a n t h a t o b s e r v e d i n i t s absence.
a p p e a r s t h a t t h e s u l p h y d r y l g r o u p becomes more r e a c t i v e d u r i n g t h e catalytic
cycle of
the
enzyme.
I t was
also noted that
the
a b s o r p t i o n spectrum of t h e f l a v i n p r o s t h e t i c group ( t h e o x i d i z e d was m o d i f i e d b y a d d i n g 4 - c h l o r o m e r c u r i b e n z o a t e .
form)
I-Gulonolactone
--
Oxidases.
The
activity
of
I-gulonolactone
o x i d a s e i n l i v e r s o f 49 s p e c i e s o f e u t h e r i a n mammals h a s been f o u n d to
vary
intraspecifically
v a r i a t i o n w e r e 0.2
t o 0.4
--
Cellobiose Oxidases. produced
cellobiose
cellulose.496
among
individuals:
coefficients
of
i n many s p e c i e s . 4 9 5 A s p e c i e s o f t h e i m p e r f e c t fungus M o n i l i a
oxidase
extracellularly
when
grown
on
The i n d u c i b l e enzyme was b o t h bound t o t h e m y c e l i u m
and r e l e a s e d i n t o t h e g r o w t h medium and showed a h i g h d e g r e e o f specificity for
cellobiose,
but
a l s o o x i d i z e d l a c t o s e and 4-;-8-!-
glucopyranosyl-q-mannose.
The s p e c i f i c i t y
was
compounds
restricted V.
+0.22
t o those
4-Benzoquinone
n o t reduced.
of
the electron acceptor
having a redox
and s e v e r a l o t h e r q u i n o n e s ,
weight
48,000
of
t e c h n i q u e was d e v e l o p e d f o r polyacrylamide gels focusing
&-Fructose
Oxidases. the
study
enzymes
i m m o b i l i z e d on
can
assessed
be
and
by
-of
a
PI of
An
runs
The
which
zymogram
and
isoelectric
c a t a l y s e d by
kinetic allow
behaviour
a
the surface kinetics,
separate and t h e
The m e t h o d h a s b e e n a p p l i e d i n t h e
s t u d y o f s u c r o s e i n v e r s i o n by 8 - & - f r u c t o s e
o x i d a s e i m m o b i l i z e d on
resin.
2-Galactose Oxidases. of
new
reactions
s u p p o r t s .497
experimental
f l u i d - p a r t i c l e mass t r a n s f e r .
A
e x p e r i m e n t a l p r o c e d u r e has been
liquid-phase
porous
The enzyme h a d a
cellobiose oxidase i n
electrophoresis
evaluation o f the internal diffusion,
IRA-93
5.4.
the detection o f
following
.
proposed for
were
O x y g e n was n o t c o n s u m e d n o r was h y d r o g e n p e r o x i d e
p r o d u c e d by c e l l o b i o s e o x i d a t i o n o f c e l l o b i o s e . molecular
potential of however,
glycosidases
!-Galactose
and
oxidase
--
The s t e r i c f a c t o r s i n v o l v e d i n t h e a c t i o n
g-galactose
o x i d a s e have been i n ~ e s t i g a t e d . ” ~
i s s t e r i c a l l y hindered by c e r t a i n types of
branching i n substrate oligosaccharide chains
and w i l l n o t o x i d i z e
550
Carbohydrate Chemistry
t h e 4 - g a l a c t o s e r e s i d u e i n t r i s a c c h a r i d e ( 5 ) b u t w i l l i n ( 6 ) . PG a l a c t o s e a s i n ( 7 ) i s not s u s c e p t i b l e t o o x i d a t i o n w i t h !-galactose oxidase u n t i l a f t e r t h e a p p l i c a t i o n of B-Q-2-acetamido-2deoxygalactosidase. a-NeuNGL 2
I 6
B-g-Gal-( 1+3)-!-GalNAcol (5)
B-Q-Gal-(1+3)-g-GalNAcol 2
I 1 ? - L-- F u C
(6)
B-Q-GalNAc-(1+3)-B-g-Gal-(l+3)-~-GalNAcol 2
I 1
a-i-Fuc (7)
48
Carbohydrate Transferases
A review of t h e a f f i n i t y chromatography of g l y c o s y l t r a n s f e r a s e s summarizes t h e use o f b i o s p e c i f i c chromatography t e c h n i q u e s i n t h e ~~ that are p u r i f i c a t i o n of mammalian g l y c o s y l t r a n ~ f e r a s e s . ~Ligands analogues of donor o r a c c e p t o r s u b s t r a t e s have been l i n k e d t o cyanogen b r o m i d e - a c t i v a t e d a g a r o s e f o r use a s a f f i n i t y a d s o r b e n t s . Immobilized l e c t i n s have been employed t o r e c o g n i z e t h e c a r b o h y d r a t e m o i e t i e s o f g l y c o s y l t r a n s f e r a s e and remove them f r o m complex m i x t u r e s . The a p p l i c a t i o n of these methods has p e r m i t t e d e x t e n s i v e p u r i f i c a t i o n of many membrane-bound g l y c o s y l t r a n s f e r a s e s , some t o homogeneity. T h e p o s s i b i l i t y t h a t murein g l y c o s y l t r a n s f e r a s e of E s c h e r i c h i a c o l i may f u n c t i o n a s an exoenzyme t o c l e a v e t h e j u r e i n
551
6: Enzymes s a c c u l u s i n a s y s t e m a t i c f a s h i o n has been i n v e s t i g a t e d . 4 9 9
Two
m o l e c u l a r s p e c i e s o f t h i s h y d r o l y t i c enzyme h a v e b e e n i s o l a t e d and characterized:
one i s a s s o c i a t e d w i t h t h e s o l u b l e f r a c t i o n
o t h e r w i t h t h e e n v e l o p e f r a c t i o n o f r u p t u r e d E.
and t h e
c o l i cells.
The
s o l u b l e enzyme was e m p l o y e d t o d i g e s t m u r e i n s a c c u l i t h a t h a d b e e n uniformly
l a b e l l e d w i t h { 3H)diaminopimelic
acid.
The
analysis
of
t h e r e a c t i o n p r o d u c t i n d i c a t e d t h a t t h e enzyme d i d n o t c l e a v e t h e glycan
c h a i n s random l y
.
To
d e t e r m i n e whet h e r
g l y c o s y l t r a n s f e r ase
from t h e 2-acetamido-2-deoxy-~-glucosyl
r e l e a s e d muropeptide f i r s t
or t h e 1 , 6 - a n h y d r o m u r a m y l e n d s o f t h e g l y c a n c h a i n s ,
t h e {3H)-
d i a m i n o p i me l a t e - l a b e l l e d s a c c u li w e r e f u r t h e r r a d i o l a b e l l e d a t t h e i r
2-acetamido-2-deoxy-~-glucosyl ends w i t h { 14)-Q-galactose galactosyltransferase reaction.
by a Q-
The g l y c o s y l t r a n s f e r a s e r e l e a s e d Q-
g a l a c t o s e - l a b e l l e d X + X’ m u r o p e p t i d e s ( w h e r e X = 2 - a c e t a m i d o - 2 deoxy-~-glucosyl-1,6-anhydro-~-acetylmuramyl-~-alanyl-~-~-glutamylmeso-diaminopimelic o f digestion,
= X-2-alanine)
a c i d , X’
e a r l y d u r i n g t h e course
suggesting exoenzymatic cleavage of t h e glycan chains
preferentially from the 2-acetamido-2-deoxy-~-glycosyl
ends.
The
k i n e t i c s o f t h e a c t i v i t y o f t h e membrane-bound enzyme w e r e f o u n d t o b e i d e n t i c a l t o t h o s e o f t h e s o l u b l e enzyme, molecular species of
indicating that both
g l y c o s y l t r a n s f e r a s e f u n c t i o n as exoenzymes
i n vitro. I n a c t i v a t i o n of
-----mutans
and S .
by
from o r a l Streptococcus
photochemical
oxidation
has
been
C e l l - f r e e Q - g l u c o s y l t r a n s f e r ase of Q-glucose-grown
r e p o r t e d .500 S.
P-glucosyltransferases
sanggL5
m u t a n s AHT was c o m p l e t e l y i n a c t i v a t e d i n t h e p r e s e n c e o f 0.002%
o f M e t h y l e n e B l u e a t 25OC a n d pH 7.0 a f t e r i l l u m i n a t i o n w i t h a 1 5 0 W i n c a n d e s c e n t lamp. v a l u e s (7.0.
T h e r a t e o f i n a c t i v a t i o n was d e c r e a s e d a t pH
i-Histidine
was t h e o n l y a m i n o a c i d r e s i d u e m o d i f i e d
t o a s i g n i f i c a n t e x t e n t , and t h e r a t e s o f o x i d a t i o n o f I - h i s t i d i n e and loss o f enzyme a c t i v i t y c l o s e l y a g r e e d .
Production o f both
w a t e r - i n s o l u b l e and - s o l u b l e
f r o m s u c r o s e by t h e
oxidized
k-glucan f r a c t i o n s
1-glucosyltransferase
inhibited.
preparations
was
significantly
P h o t o - o x i d a t i o n w i t h 0.002% Rose B e n g a l a t pH 7.0
also
induced complete i n a c t i v a t i o n o f t h e Q-glucosyltransferase. These r e s u l t s s t r o n g l y suggest t h a t t h e i m i d a z o l e p o r t i o n o f I - h i s t i d i n e may
function
as
part
glucosyltransferase responsible for
o f
the
active
isoenzymes of
t h e s y n t h e s i s o f (1
+
S.
s i t e s
o f
m u t a n s AHT,
both
Q-
which are
3 ) - and (1 + 6 ) - a - Q - g l u c o s i d i c
linkages.
I t has
been r e p o r t e d
that
the
glucosyltransferases
of
Carbohydrate Chemistry
552 S t r e e --------------tococcus mutans ----
have
been r e s o l v e d i n t o t w o components
e s s e n t i a l t o w a t e r - i n s o l u b l e glucan synthesis.501
Collagen-D=-galactotransferase
and
collagen-Q-
g l u c o s y l t r a n s f e r a s e a c t i v i t i e s h a v e been s t u d i e d i n c u l t u r e d human f o e t a l l u n g WI-38
and I M R - 9 0 d i p l o i d f i b r o b l a s t s . 5 0 2
functioned i n concert hydroxylysine membranes, UDP-!-Gal
units
t o
as
found
naturally
i n
collagens,
and c e r t a i n serum g l y c o p r o t e i n s . and UDP-g-Glc
These enzymes
s y n t h e s i z e Q-glucosyl-Q-galactosyl-L-
as g l y c o s e d o n o r s ,
basement
The t r a n s f e r a s e s u s e d c o l l a g e n s and c o l l a g e n -
d e r i v e d p e p t i d e s o r g l y c o p e p t i d e s as g l y c o s e
acceptors,
and w o r k e d
b e s t i n t h e p r e s e n c e o f m a n g a n e s e as a r e q u i r e d d i v a l e n t c a t i o n . Two pH o p t i m a , b e t w e e n pH 6 a n d 6 . 5
a n d b e t w e e n pH 7 . 5
noted for
and t h e s e o p t i m a ,
each t y p e o f
transferase,
i n t h e case o f Q - g l u c o s y l t r a n s f e r a s e , s i z e of
were e v i d e n t r e g a r d l e s s o f
a c c e p t o r employed i n t h e assay.
a c t i v i t y of
and 8, were particularly
About 35% o f t h e t o t a l
e a c h enzyme was f o u n d i n t h e s o l u b l e f r a c t i o n s o f
cell
homogenates, and about 50% of t h e p a r t i c u l a t e f r a c t i o n a c t i v i t i e s c o u l d be r e l e a s e d by m i l d s o n i c a t i o n o r by t r e a t m e n t w i t h T r i t o n X100.
Assessment o f t r a n s f e r a s e a c t i v i t i e s as a f u n c t i o n o f c e l l u l a r
a g e i n g i n c u l t u r e r e v e a l e d t h a t s i g n i f i c a n t d e c r e a s e s i n enzyme l e v e l s o c c u r r e d a s t h e c e l l a p p r o a c h e d s e n e s c e n c e ( l a t e p h a s e II), a n d t h e s e e f f e c t s w e r e r e v e r s e d when t h e c e l l a t t a i n e d s e n e s c e n c e ( p h a s e 111). conditions
A d d i t i o n of known
hydroxylation,
the
glycosyltransferases
a s c o r b i c a c i d t o young c u l t u r e s ,
increase
caused
glycosyltransferases suggested t h a t
t o
no
endogenous
on
effects
the
activities
t o w a r d exogenous a c c e p t o r s . activities
of
under
collagen-peptide of
collagen-hydroxylases
m i g h t n o t be c o - o r d i n a t e l y
regardless o f t h e h y d r o x y l a t i o n events,
the
These r e s u l t s and
r e g u l a t e d and t h a t ,
g l y c o s y l a t i o n of t h e peptide
m i g h t be l i m i t e d t o a s p e c i f i c f r a c t i o n o f i - h y d r o x y l y s i n e r e s i d u e s during the post-translational
m o d i f i c a t i o n of collagen.
Bovine g l y c o p r o t e i n B-E-galactosyltransferase have two metal-binding
h a v e been e s t a b l i s h e d by u s i n g k i n e t i c , structural
s p e c t r o s c o p i c , and a f f i n i t y -
M e t a l s i t e I,
c h r o m a t o g r a p h i c approaches.503 maintaining the
h a s b e e n shown t o
the f u n c t i o n a l properties o f which
sites,
integrity
of
which i s i n v o l v e d i n
the
protein,
must
be
l i g a n d e d p r i o r t o o t h e r s u b s t r a t e s b i n d i n g and p r i o r t o a second m e t a l b i n d i n g t o s i t e 11, w h i c h n- - g a l a c t o s e b i n d i n g .
i s shown t o be a s s o c i a t e d w i t h UDP-
B o t h m e t a l s i t e s can b i n d a v a r i e t y o f
metals.
However,
c a l c i u m and i t s f l u o r e s c e n t a n a l o g u e e u r o p i u m b i n d o n l y t o
s i t e I I.
F 1u o r es c e n t r e s o n a n c e - e n e r gy t r a n s f e r m e a s u r e m e n t s b e t w e e n
553
6: Enzymes
e u r o p i u m i n s i t e I1 and c o b a l t i n s i t e I i n d i c a t e a d i s t a n c e o f 18 0
3 A between t h e two s i t e s .
mercuric-N-dansylcysteine
2
C h e m i c a l - m o d i f i c a t i o n s t u d i e s w i t h 5i n d i c a t e t h a t one ( o f a t o t a l o f t h r e e
e x p o s e d s u l p h y d r y l g r o u p s ) c a n be s p e c i f i c a l l y d a n s y l a t e d and t h a t t h i s s u l p h y d r y l group i s i n or near t h e UDP-a-Salactose-binding site.
Resonance-energy
transfer
measurements
i n t r o d u c e d s u l p h y d r y l group and c o b a l t distance of
2
19
3
dl
between t h i s
i n metal s i t e I
between these p o i n t s ,
give
a
consistent with the
i n t e r p r e t a t i o n t h a t the UDP-a-galactose-binding
site,
which
i s
a s s o c i a t e d w i t h m e t a l s i t e 1 1 , i s l o c a t e d some d i s t a n c e f r o m t h e s t r u c t u r a l m e t a l s i t e ( s i t e 1). A !-galactose
protein),
B-galactosyltransferase (lactose synthetase A
w h i c h t r a n s f e r s Q - g a l a c t o s e f r o m UDP-D-galactose
t o 2-
a c e t a m i d o - 2 - d e o x y - ~ - g l u c o s e , was p u r i f i e d 2 8 6 , 0 0 0 - f o l d t o h o m o g e n e i t y w i t h 40% y i e l d f r o m human p l a s m a by r e p e a t e d a f f i n i t y c h r o r n a t o g r a p h y o n a - l a c t a l b u m i n - S e p h a r ~ s e . ~ ~S~o d i u m d o d e c y 1 s u l p h a t e p o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s of
t h e p u r i f i e d enzyme
showed a s i n g l e p r o t e i n band w i t h a m o l e c u l a r w e i g h t o f 49,000.
The
enzyme i s a g l y c o p r o t e i n w i t h 11% by w e i g h t c a r b o h y d r a t e w h i c h h a s o n l y 2-acetamido-2-deoxy-glucose-~-asparagine g l y c o p e p t i d e l i n k a g e s . The enzyme showed c h a r a c t e r i s t i c changes i n a c t i v i t y a t d i f f e r e n t alactalbumin concentrations,
i n d i c a t i n g t h a t t h e enzyme i s t h e A
Km v a l u e s f o r t h e s u b s t r a t e s were rnM f o r U D P - Q - g a l a c t o s e and 0.20 m M f o r Mn2+. The
p r o t e i n of lactose synthetase. f o u n d t o be 0.056
a c t i v i t y o f t h e enzyme was n e u t r a l i z e d b y a n t i - e n z y m e a n t i b o d y ,
but
the antibody d i d not neutralize the bovine m i l k Q-galactosyltransferase (A p r o t e i n ) a c t i v i t y . Bovine
a-lactalburnin
enzymatically f u l l y
active,
has
been
highly
dansylated
fluorescent
t o
derivative
on t h e N - t e r m i n a l I - g l u t a m i c a c i d residue.505
give
an
labelled
This fluorescent
d e r i v a t i v e of
a - l a c t a l b u m i n has been c o v a l e n t l y
glycoprotein
B-P-galactosy ltransferase
p i me lirn id a t e.
Resonance - e n e r gy t r a n s f e r
by
crosslinked t o
using
dirnethy 1
me as u r e rnents u s i n g c o b a I t
b o u n d t o t h e t r a n s f e r a s e as t h e a c c e p t o r o f e n e r g y t r a n s f e r f r o m t h e d a n s y l g r o u p on t h e a - l a c t a l b u m i n 32 of
A"
i n d i c a t e t h a t t h e d a n s y l group i s
A model o f the a c t i v e s i t e f r o m t h e c o b a l t on t h e t r a n s f e r a s e . t h e t r a n s f e r a s e and i t s i n t e r a c t i o n w i t h a - l a c t a l b u r n i n i s
proposed on t h e b a s i s of
t h e s e and p r e v i o u s s t u d i e s .
have a l l o w e d an e x t e n s i o n o f s y n t h e t a s e and g i v e g r e a t e r
the active-site
These s t u d i e s
mapping o f l a c t o s e
i n s i g h t i n t o t h e i n t e r a c t i o n o f a-
l a c t a l b u m i n w i t h t h e t r a n s f e r a s e and i t s r o l e i n l a c t o s e s y n t h e t a s e .
554
Carbohydrate Chemistry
G1ycoprotein:C-fucosyltransferase from sheep b r a i n , s o l u b i l i z e d and p r e p u r i f i e d by hydrophobic chromatography on e t h y l - a g a r o s e , has been f u r t h e r p u r i f i e d by chromatofocalization.506 T h i s p r o c e d u r e y i e l d e d f o u r isoenzymes. The s o l u b l e & - f u c o s y l t r a n s f e r a s e o f t h e r a t s m a l l - i n t e s t i n a l mucosa p u r i f i e d b y g e l f i l t r a t i o n on S e p h a d e x G-100 h a s b e e n r e s o l v e d i n t o two i s o e n z y m e s F1 ( P I = 4 . 4 7 ) and F 2 ( P I = 4.96) b y i s o e l e c t r i c focusing.S07 The u s e of D E A E - c e l l u l o s e i n s t e a d of S e p h a d e x G-100 l e a d s t o a n o t h e r component F 3 ( P I = 8 . 7 0 ) . K i n e t i c p a r a m e t e r s (5, and ymax)f o r t h e t h r e e isoenzymes were d e t e r m i n e d . The e n z y m a t i c mechanism s e e m s t o be a b i - b i random t y p e f o r t h e t h r e e isoenzymes, and F 3 a p p e a r s a s t h e most a c t i v e s p e c i e s . T h e i s o e l e c t r o f o c u s i n g p a t t e r n s o f 2 - a - i - , 3 - a - i - , and 4-a-Cf u c o s y l t r a n s f e r a s e s from human m i l k serum have been r e p o r ted.’08 The s p e c i f i c i t y of s i a l y l t r a n s f e r a s e has been i n v e s t i g a t e d w i t h r e f e r e n c e t o t h e s i a l y l a t i o n of o v i n e s u b m a x i l l a r y mucin i n v i t r o which was { 1 4 C ) s i a l y l a t e d i n v i t r o u s i n g a p o r c i n e l i v e r c e l l - f r e e p r e p a r a t i ~ n . ’ ~ ~The o l i g o s a c c h a r i d e c h a i n s were c l e a v e d from t h e p r o d u c t g l y c o p r o t e i n by B - e l i m i n a t i o n under r e d u c t i v e c o n d i t i o n s , f r a c t i o n a t e d by g e l f i l t r a t i o n on Bio-Gel P-2, and c h a r a c t e r i z e d by t h i n - l a y e r chromatography. The s t r u c t u r e o f t h e product c h a i n was s t u d i e d by p e r i o d a t e o x i d a t i o n and a n a l y s i s of t h e p e e l i n g p r o d u c t s formed i n t h e B - e l i m i n a t i o n s t e p . I t appeared t h a t { 1 4 C ) s i a l i c a c i d had been i n t r o d u c e d e x c l u s i v e l y t o t h e Q - g a l a c t o s e r e s i d u e s o f Q G a l - ( 1 + 3)-Q-GalNAc d i s a c c h a r i d e u n i t s o c c u r r i n g on t h e mucin a s minor c h a i n s . No i n d i c a t i o n f o r a t r a n s f e r t o 2-acetamido-2-deoxyIn g - g a l a c t o s y l r e s i d u e s on t h i s g l y c o p r o t e i n was o b t a i n e d . agreement w i t h t h i s r e s u l t s i a l y l t r a n s f e r a s e a c t i v i t i e s of p o r c i n e , r a t , human, and c a n i n e l i v e r w i t h B - G a l - ( l + 3 ) - Q - G a l N A c - p r o t e i n a c c e p t o r s w e r e i n v a r i a b l y much h i g h e r t h a n t h o s e w i t h o v i n e submaxillary asialomucin. When t h e a s i a l o m u c i n had been { 1 4 C ) s i a l y l a t e d b y an o v i n e s u b m a x i l l a r y g l a n d c e l l - f r e e p r e p a r a t i o n , a n a l y s i s of t h e p r o d u c t o l i g o s a c c h a r i d e c h a i n r e v e a l e d t h e i n t r o d u c t i o n o f { 1 4 C ) s i a l i c a c i d t o p o s i t i o n C - 6 on t h e 2acetamido-2-deoxy-!-galactose r e s i d u e s . The s p e c i f i c i t y o f t h i s t r a n s f e r was r e f l e c t e d by t h e very high s i a l y l t r a n s f e r a s e a c t i v i t i e s of g l a n d p r e p a r a t i o n s w i t h g-Gal-(l + 3)-Q-GalNAc-protein a s w e l l a s a-GalNAc-protein a c c e p t o r s . Mixed-enzyme e x p e r i m e n t s i n d i c a t e d t h a t t h e d i f f e r e n c e i n l i v e r and g l a n d o v i n e s u b m a x i l l a r y a s i a l o m u c i n s i a l y l t r a n s f e r a s e a c t i v i t i e s was n o t d u e t o t h e p r e s e n c e o f a s p e c i f i c i n h i b i t o r i n t h e l i v e r o r an a c t i v a t o r i n t h e g l a n d . It w i t h T r i t o n X-100
555
6: Enzymes
was c o n c l u d e d t h a t l i v e r s o f man, p i g , r a t , a n d dog c o n t a i n a a - G a l s i a l y l t r a n s f e r a s e which i s involved i n the
(1 + 3)-g-GalNAc-protein
sialylation o f g-glycosidically glycoproteins.
l i n k e d c a r b o h y d r a t e c h a i n s on serum
g-GalNAc-protein
sialyltransferase activity,
which
r i c h l y o c c u r s i n o v i n e s u b m a x i l l a r y g l a n d , h o w e v e r , a p p e a r s t o be lacking from l i v e r tissue. A t e c h n i q u e h a s been d e s c r i b e d by a f f i n i t y c h r o m a t o g r a p h y o f
o r o t a t e p h o s p h o r i b o s y l t r a n s f e r a s e f r o m E s c h e r i c h i a c o li K - 1Z?'
I-Iduronic Acid 2 - S u l p h a t e S u l p h a t a s e s
49
A m o r e s e n s i t i v e assay h a s been d e v e l o p e d f o r t h e I - i d u r o n i c 2 sulphate
sulphatase
which
i s
deficient
i n cases o f
the Hunter
The s u b s t r a t e i s 2 - ( a - C - i d o p y r a n o s y l u r o n i c
syndrome.511 su1phate)-( 1
.+
a c i d 2-
4) - 2 , 5 - a n h y d r o -Q-{ 3 H - l } r n a n n i t o 1 6 - s u l p h a t e
a f t e r incubation,
,
and,
i t i s s e p a r a t e d f r o m t h e p r o d u c t by i o n - e x c h a n g e
r a t h e r t h a n by c h r o m a t o g r a p h y o n a m i c r o - c o l u m n o f Dowex 1 x 2 (Cl') h i g h - v o l t a g e e l e c t r o p h o r e s i s o r ECTEOLA c e l l u l o s e c h r o m a t o g r a p h y . S i n c e t h e b l a n k c o r r e c t i o n i s t h e n much s m a l l e r ,
a shorter
i n c u b a t i o n t i m e c a n be u s e d and c o n v e r s i o n o f t h e s u b s t r a t e r e d u c e d f r o m a p p r o x i m a t e l y 50% down t o l e v e l s w h e r e c o m p l i c a t i o n s r e s u l t i n g f r o m s u b s t r a t e d e p l e t i o n and p r o d u c t i n h i b i t i o n a r e m i n i m a l .
Using
With w h o l e s e r u m t h e a p p a r e n t 5, f o r t h e s u b s t r a t e i s 0.2 n m o l 1-l. a n i n c u b a t i o n t i m e o f 20 m i n , s e r a f r o m h e t e r o t y g o t e s e x h i b i t e d a p p r o x i m a t e l y 35% o f t h e n o r m a l l e v e l s of L - i d u r o n a t e 2 - s u l p h a t e sulphatase carriers, females).
(0.11-0.61, 0.24-2.35,
mean 0.34, mean 0.94,
nmol h'l
n m o l h'l
mg-l
protein for
21
m g - l p r o t e i n f o r 37 n o r m a l
S e r u m a n a l y s e s c a n t h u s be u s e d t o s u p p l e m e n t t h o s e on
h a i r r o o t s i n t h e d e t e c t i o n o f c a r r i e r s o f t h e H u n t e r syndrome. The L - i d u r o n i c a c i d 2 - s u l p h a t e s u l p h a t a s e o f human p l a c e n t a h a s been s e p a r a t e d by ion-exchange and g e l - f i l t r a t i o n c h r o m a t o g r a p h y i n t o t w o components, a l e s s a c i d i c f o r m A and a more a c i d i c f o r m The t w o f o r m s have d i f f e r e n t m o b i l i t i e s on g e l e l e c t r o p h o r e s i s a n d d i f f e r e n t i s o e l e c t r i c p o i n t s ( A PI 5.0, B PI 4.5).
similar
They show t h e same pH o p t i m a i n s o d i u m a c e t a t e b u f f e r a n d
Em v a l u e s
f o r { 3H)disulphated disaccharide substrate.
f o r m i s more heat l a b i l e t h a n t h e B form.
w e i g h t s w e r e f o u n d by g e l f i l t r a t i o n w h i l e s i m i l a r estimated
by
sucrose
gradient
The A
Different molecular
centrifugation.
values were
Neuraminidase
t r e a t m e n t o f t h e t w o f o r m s g i v e s e v i d e n c e t h a t t h e s e enzymes c o n t a i n
Carbohydrate Chemistry
556 s i a l i c a c i d residues.
Human u r i n e h a s been shown t o c o n t a i n a n o v e l s u l p h a t a s e w h i c h i s
specific
2-deoxy-2-sulphamido-4-glucopyranoside
for
3-
~ u l p h a t e . O~ f ~t h~ e t h r e e i s o m e r i c s u l p h a m a t e d e r i v a t i v e s , 3-g-,
0-,
and 6 - g - s u l p h a t e
enzymatic
esters,
activity
only t h e 3-g-ester
required that
4The
t h e a m i n o g r o u p be s u l p h a t e d .
S u l p h a t e i s n o t r e l e a s e d ift h e a m i n o g r o u p
i s
free or acetylated.
I t h a d a pH o p t i m u m o f 6.3 a n d was
The e n z y m e was p u r i f i e d 7 0 - f o l d . i n h i b i t e d by
was h y d r o l y s e d .
i n o r g a n i c s u l p h a t e and p h o s p h a t e .
t h i s enzyme s u g g e s t e d t h a t a 3 - g - s u l p h a t e d
The s p e c i f i c i t y
of
2-amino-2-deoxy-~-glucose
m o i e t y may h a v e a r o l e i n t h e p h y s i o l o g i c a l a c t i v i t y o f
or
heparin
heparan sulphate.
50
Arylsulphatases
A s t u d y h a s b e e n made o f l y s o s o m a l - e n z y m e a c t i v i t i e s i n c l u d i n g
A
arylsulphatase disease.60
i n
serum
For further
and
in
leukocytes
chronic
hepatic
d e t a i l s see i n i t i a l c i t a t i o n o f r e f . 6 0 .
A v a r i a n t f o r m o f a r y l s u l p h a t a s e A h a s been i d e n t i f i e d i n human u r i n e derived d i r e c t l y from the r e n a l pelvis. t h e enzyme was f o u n d i n n e p h r o s t o m i c u r i n e , form,
The v a r i a n t
w h i c h i s t h e s o l e component o f a r y l s u l p h a t a s e A i n v o i d e d
urine.514
The
n e p h r o s t o m i c enzyme
enzyme w i t h r e s p e c t
differed
from
t o the k i n e t i c parameters,
the
p o i n t s of t h e voided-urine respectively. and
5,
The i s o e l e c t r i c
a n d n e p h r o s t o m i c e n z y m e s w e r e 4.7
and
The n e p h r o s t o m i c enzyme was more h e a t l a b i l e a t
62.5OC t h a n t h e v o i d e d - u r i n e (130,000)
voided-urine
the isoelectric
p o i n t , h e a t s t a b i l i t y , and i m m u n o l o g i c a l r e a c t i v i t y . 5.3,
form o f
i n a d d i t i o n t o the minor
values
of
s u l p h a t e as s u b s t r a t e were
enzyme. the
Although the molecular weights
two
enzymes
a l m o s t t h e same,
with the
nitrocatechol
1
value o f the
n e p h r o s t o m i c enzyme was 10% t h a t o f t h e v o i d e d - u r i n e enzyme. d e m o n s t r a t e d by v a r i o u s methods, p u r i f i e d voided-urine
enzyme,
I t was
using IgG antibody against the
t h a t the nephrostomic
e n z y m e was
a n t i g e n i c a l l y d i s t i n c t f r o m t h e v o i d e d - u r i n e enzyme. R a b b i t l i v e r a r y l s u l p h a t a s e A i s a g l y c o p r o t e i n c o n t a i n i n g 4.6% carbohydrate g l u c o s e (71, 140,000).515 chains.
c o m p r i s i n g p-mannose
(25),
2-acetamido-2-deoxy-Q-
and s i a l i c a c i d ( 3 r e s i d u e s p e r enzyme monomer m o l .
The p r o t e i n h a s a r e l a t i v e l y h i g h c o n t e n t o f
glycine,and
wt.
E a c h monomer c o n s i s t s o f t w o e q u i v a l e n t p o l y p e p t i d e I-leucine,
&-proline,
I-
and t h e a m i n o a c i d c o m p o s i t i o n i s s i m i l a r t o
557
6: Enzymes that
of
other
known
liver
sulphatases.
The
arylsulphatase A
catalyses the h y d r o l y s i s o f a wide v a r i e t y o f sulphate esters, although i t appears t h a t cerebroside sulphate i s a p h y s i o l o g i c a l s u b s t r a t e f o r t h e enzyme b e c a u s e t h e
Em i
s very low (0.06
The
mM).
turnover r a t e f o r hydrolysis of nitrocatechol sulphate or related synthetic
substrates
i s
much
higher
than
the
rate
with
most
n a t u r a l l y o c c u r r i n g s u l p h a t e e s t e r s s u c h as c e r e b r o s i d e s u l p h a t e , s t e r o i d sulphates,
$-tyrosine
sulphate, or B-Q-glucopyranose
6-
sulphate.
t h e turnover r a t e with ascorbate 2-sulphate
i s
However,
comparable t o t h e r a t e s measured u s i n g most s y n t h e t i c s u b s t r a t e s . These r e s u l t s a r e d i s c u s s e d i n r e l a t i o n s h i p t o s e v e r a l p r e v i o u s l y d e s c r i b e d s u l p h a t a s e enzymes w h i c h were c l a i m e d t o have u n i q u e specificities. A r y l s u l p h a t a s e has been p u r i f i e d 2 1 9 - f o l d species."6
and i m m u n o l o g i c a l a n a l y s i s . weight
f r o m Pseudomonas
The f i n a l p r e p a r a t i o n was homogeneous by e l e c t r o p h o r e t i c
about
51,000,
The enzyme i s a monomer o f m o l e c u l a r
w i t h a Stokes r a d i u s of
f r i c t i o n a l r a t i o o f 1.2,
3.0
x
cm,
and a s e d i m e n t a t i o n c o e f f i c i e n t o f
a
4.1 S.
I t h a s been r e p o r t e d t h a t a r y l s u l p h a t a s e a c t i v i t y i s s t i m u l a t e d by
arylamines
produced.517
and
evidence
number
A
of
for
substrate
arylamines
tryptamine) increased the i n v i t r o a c t i v i t y Pseudomonas sp.
(2.9.
s t r a i n C12B.
I-tyrosine
and
a c t i v a t i o n has
(including of
been
tyramine
arylsulphatase
and from
Amino a c i d a n a l o g u e s o f t h e s e a m i n e s
I-tryptophan)
failed
t o exert
an e f f e c t .
S t i m u l a t i o n o f a c t i v i t y by t y r a m i n e c o u l d n o t be a c c o u n t e d f o r i n t e r m s o f s u l p h o t r a n s f e r a s e a c t i v i t y f o r t h i s p h e n o l , a n d no s h i f t i n the
pH o p t i m u m
tryptamine. enzyme
for
Increased
concentration
concentration.
the
enzyme
occurred
i n
lmax due t o t h e s e a m i n e s but
varied
the
presence
of
was i n d e p e n d e n t o f
significantly
with
substrate
Evidence i s presented which suggests t h a t arylamines
enhance a r y l s u l p h a t a s e a c t i v i t y by f o r m i n g a s a l t l i n k a g e w i t h t h e s u b s t r a t e and r e n d e r i n g i t more s u s c e p t i b l e t o e n z y m a t i c and a c i d catalysed hydrolyses.
The r e c r y s t a l l i z e d t r y p t a m i n e s a l t o f t h e
s u b s t r a t e e x h i b i t e d a reduced a f f i n i t y
for
the
h y d r o l y s e d more r a p i d l y t h a n t h e p o t a s s i u m s a l t ,
enzyme
but
was
which i s n o r m a l l y
e m p l o y e d as t h e a s s a y s u b s t r a t e . The s t i m u l a t i o n o f a r y l s u l p h a t a s e s y n t h e s i s i n P s e u d o m o n a s a e r u g i n o s a by exogenous n u c l e o t i d e s has been r e p o r t e d . 5 1 8
558
Carbohydrate Chemistry 51
2-Acetamido-2-deoxy-Q-glucose 6 - S u l p h a t e S u l p h a t e s
A d e f i c i e n c y of 2-acetamido-2-deoxy-g-glucose 6-sulphate r e q u i r e d f o r heparan s u l p h a t e degradation has been r e p o r t e d i n p a t i e n t s w i t h S a n f i l i p p o d i s e a s e t y p e D.519 Skin f i b r o b l a s t s from t w o p a t i e n t s who h a d s y m p t o m s o f t h e S a n f i l i p p o s y n d r o m e ( m u c o p o l y s a c c h a r i d o s i s 111) a c c u m u l a t e d e x c e s s i v e a m o u n t s o f h e p a r a n s u l p h a t e a n d were u n a b l e t o r e l e a s e s u l p h a t e f r o m 2 - a c e t a m i d o - 2 deoxy-g-glucose 6-sulphate l i n k a g e s i n heparan sulphate-derived oligosaccharides. Keratan sulphate-derived oligosaccharides bearing t h e same r e s i d u e a t t h e n o n - r e d u c i n g e n d a n d 4 - n i t r o p h e n y l 2 acetamido-2-deoxy-Q-glucopyranoside 6 - s u l p h a t e were d e g r a d e d normally. K i n e t i c d i f f e r e n c e s between the s u l p h a t a s e activities of T h e s e o b s e r v a t i o n s s u g g e s t t h a t 2n o r m a l f i b r o b l a s t s were f o u n d . acetamido-2-deoxy-a-glucose 6-sulphate a c t i v i t i e s degrading heparan s u l p h a t e and k e r a t a n s u l p h a t e , r e s p e c t i v e l y , can be d i s t i n g u i s h e d . It is the a c t i v i t y directed towards heparan s u l p h a t e t h a t is d e f i c i e n t i n these p a t i e n t s . The a u t h o r s propose t h a t t h i s d e f i c i e n c y c a u s e s S a n f i l i p p o d i s e a s e t y p e D.
52
Miscellaneous E n z y m e s
Dextransucrase. -- D e x t r a n s u c r a s e f r o m L e u c o n o s t o c m e s e n t e r o i d e s has been p r o d u c e d i n a s e m i c o n t i n u o u s c u l t u r e w i t h s l o w a d d i t i o n o f a concentrated sucrose solution.520 The r e s u l t i n g h i g h a c t i v i t y o f t h e f e r m e n t a t i o n b r o t h a l l o w e d a o n e - s t e p p u r i f i c a t i o n m e t h o d , by g e l - p e r m e a t i o n c h r o m a t o g r a p h y i n 96.4% y i e l d . This procedure r e s u l t e d i n 140-fold purification, with s p e c i f i c a c t i v i t y of 122 U mg-l. The e n z y m e was i m m o b i l i z e d o n t o a n a m i n o - S p h e r o s i l s u p p o r t activated with glutaraldehyde. Preparations with dextransucrase a c t i v i t i e s a s h i g h a s 4 0 . 5 U g - l o f s u p p o r t were o b t a i n e d w h e n l o w s p e c i f i c a r e a s u p p o r t s were u s e d a n d m a l t o s e was a d d e d d u r i n g t h e enzyme c o u p l i n g . D i f f u s i o n a l l i m i t a t i o n s were f o u n d d u r i n g e n z y m e r e a c t i o n , a s s h o w n by a k i n e t i c s t u d y . As a c o n s e q u e n c e o f immobilization, the average molecular weight of dextrans appeared t o increase. I m m o b i l i z e d d e x t r a n s u c r a s e c o u l d be p r o m i s i n g f o r l o w molecular-weight dextran production. C l i n i c a l d e x t r a n was s y n t h e s i z e d when t h e p o l y s a c c h a r i d e s p r o d u c e d i n t h e p r e s e n c e o f The m a l t o s e were u s e d a s a c c e p t o r s o f a s e c o n d s y n t h e s i s r e a c t i o n . m o l e c u l a r - w e i g h t d i s t r i b u t i o n of t h e r e s u l t i n g p r o d u c t i o n was less
559
6: Enzymes
d i s p e r s e d t h a n when c l i n i c a l d e x t r a n was p r o d u c e d by a c i d h y d r o l y s i s
-
-
o f h i g h mo l e c u l a r w e i g h t dex t r an. S t u d i e s have been c a r r i e d o u t on t h e a c c e p t o r s p e c i f i c i t y o f
d e x t r a n s u c r a s e
w h i c h
h a d
been
i s o l a t e d
f r o m
Streptococcus ~ a n g u i s . R ~ a~d ~ i o a c t i v e a c c e p t o r s were e m p l o y e d i n r e a c t i o n s w i t h c o l d s u c r o s e and t h e c o u n t s i n c o r p o r a t e d were t a k e n as a m e a s u r e o f a c c e p t o r a c t i v i t y .
An o r d e r o f r e l a t i v e a c t i v i t y
was f o u n d t o be p o l y s a c c h a r i d e > o l i g o s a c c h a r i d e > g l y c o s i d e > monosaccharide.
An e v a l u a t i o n o f t h e t i m e - c o u r s e o f t h e r e a c t i o n
w i t h methyl a-q-glucopyranoside,
or maltose,
homologous s e r i e s o f o l i g o s a c c h a r i d e s
was f o r m e d f r o m
showed t h a t each.
a
This
s u g g e s t e d t h a t t h e i n d i v i d u a l members o f t h e s e r i e s were r e l a t e d as precursors different
and
products.
The
kinetics
a c c e p t o r s were s t u d i e d .
of
the
reaction
with
A l l a c c e p t o r s s t u d i e d caused an
a c t i v a t i o n o f t h e enzyme and changes i n t h e
5,
f o r sucrose.
The
k i n e t i c c o n s t a n t s o b t a i n e d were a l s o used t o compare t h e v a r i o u s acceptors.
I t has been d e m o n s t r a t e d t h a t a - g - 1 - f l u o r o g l u c o s e
i s a glucosyl
donor f o r d e x t r a n s u c r a s e i s o l a t e d f r o m S t r e p t o c o c c u s ~ a n q = . ~ ~ * The d e t a i l s o f t h e r e a c t i o n have been e s t a b l i s h e d as w e l l as p r o v i n g t h a t t h e mechanism o f 1 - f l u o r o g l u c o s e t r a n s f e r i s c o m p a r a b l e t o t h a t of p - g l u c o s y l t r a n s f e r f r o m s u c r o s e . the reaction i s reported,
A new p r o c e d u r e f o r m o n i t o r i n g
and i s based on t h e measurement o f p r o t o n
f o r m a t i o n u s i n g t h e pH i n d i c a t o r 6 r o m c r e s o l P u r p l e . F-
Production o f
was f o u n d t o be s t o i c h i o m e t r i c w i t h p r o t o n p r o d u c t i o n .
studies
with
the
substrate
indicate
undergoes spontaneous h y d r o l y s i s , presence of
When { 1 4 C ) m a l t o s e a n d a - q - 1 -
f l u o r o g l u c o s e o r a-l-Q-{ 1 4 C ) f l u o r o g l u c o s e observed.
a series
Rate
a-g-1-fluoroglucose
w h i c h is g r e a t l y i n c r e a s e d i n t h e
nucleophilic buffers.
w i t h dextransucrase,
that
of
and m a l t o s e were i n c u b a t e d
oligosaccharide
products
was
The r e s u l t s i n d i c a t e t h a t t h e c - g l u c o s y l m o i e t y o f a-e-1-
f l u o r o g l u c o s e t r a n s f e r r e d t o t h e acceptor.
The n a t u r e o f f o r m a t i o n
of t h e products i s c o n s i s t e n t w i t h a s e r i e s o f precursor-product reactions.
P r o d u c t a n a l y s i s of
the
r e d u c t i o n a n a l y s i s demonstrated t h a t t o t h e non-reducing
end o f
maltose.
saccharides the g-glucosyl
When e i t h e r
by
borohydride
u n i t was added
1-{1 4 C ) f r u c t o s e or
a - Q - l - { 1 4 C ~ f l u o r o g l u c o s e was i n c u b a t e d w i t h enzyme, a r e a c t i o n was o b s e r v e d w h i c h was a n a l o g o u s t o t h e i s o t o p i c - e x c h a n g e r e a c t i o n c a t a l y s e d by t h e enzyme i n t h e p r e s e n c e o f
g-{l4C}fructose
and
sucrose. S t u d i e s on d o n o r - s u b s t r a t e
s p e c i f i c i t y have been p e r f o r m e d w i t h
Carbohydrate Chemistry
560 dextrans~crase.~~P ' revious studies
-Proc.
S O C . Exp.
linked
B i o l . Med., 1 9 7 2 , f l u o r i n e atom a t C - 1 o f
activation to permit this dextransucrase.
s e r v e d as
competitive
A comparison o f
importance of
specific
several
for
a t the donorhas been
of
sucrose,
the
natural
p r o v i d e d i n f o r m a t i o n about t h e
changes i n t h e !-glucose
moiety
w i t h regard
S i m i l a r k i n e t i c s t u d i e s were c a r r i e d out and
the
corresponding free
These w e r e f o u n d t o be n o n - c o m p e t i t i v e i n h i b i t o r s ,
and t o b i n d p o o r l y . substrates
exception of
inhibitors t h e sis
l-fluoro-B-Q-sugars
monosaccharides. donor
substrate
a s e r i e s o f l - f l u o r o - a - Q -- s u g a r s
t o b i n d i n g t o t h e enzyme. with
a n a l o g u e t o be a d o n o r
I n k i n e t i c e x p e r i m e n t s , i t has been d e t e r m i n e d t h a t
synthesized. substrate.
glucose
Hehre,
h a v e s h o w n t h a t a n aprovided sufficient
I n order t o study the s p e c i f i c i t y
substrate-binding site, they
G e n g h o f f and E.J.
(D.S.
l40,1 2 9 8 )
The l - f l u o r o - a - ! - s u g a r s i n reactions
w e r e a l s o e x a m i n e d as
w i t h known
l-fluoro-a-!-glucose,
acceptors.
none o f
With the
t h e s e a n a l o g u e s was
active i n t h i s capacity. Several carbohydrates, designed, synthesized,and
i n c l u d i n g sucrose
analogues,
h a v e been
t e s t e d as d e x t r a n s u c r a s e i n h i b i t o r s . 5 2 4
C e r t a i n c a r b o h y d r a t e s c o n t a i n i n g an a m i n o g r o u p w e r e s hown t o be p o t e n t i n h i b i t o r s o f dextransucrase. M u l t i p l e f o r m s o f L e u c o n o s t o c m e s e n t e r o i d e s d e x t r a n s u c r a s e have b e e n s e p a r a t e d by g e l f i l t r a t i o n a n d e l e c t r o p h o r e t i c a n a l y s e s . 5 2 5 Two c o m p o n e n t s o f e n z y m e , h a v i n g d i f f e r e n t a f f i n i t i e s f o r d e x t r a n gel,
were
s e p a r a t e d by a c o l u m n o f
component
was
treated
with
Sephadex
dextranase
e l e c t r o p h o r e t i c a l l y homogeneous s t a t e . m o l e c u l a r w e i g h t o f 64,000-65,000, 17% o f c a r b o h y d r a t e .
The
G-100.
and
The
purified
major to
an
p u r i f i e d enzyme had a
PI v a l u e o f 4.1,
and c o n t a i n e d
H 4 - e d t a showed a c h a r a c t e r i s t i c i n h i b i t i o n on
t h e enzyme w h i l e s t i m u l a t i v e e f f e c t s w e r e o b s e r v e d by t h e a d d i t i o n o f exogenous d e x t r a n t o t h e i n c u b a t i o n m i x t u r e . was s t i m u l a t e d b y v a r i o u s d e x t r a n s a n d i t s
w i t h i n c r e a s i n g c o n c e n t r a t i o n of showed no a f f i n i t y
for
a Sephadex
dextran. G-100
The enzyme a c t i v i t y
Km v a l u e
was d e c r e a s e d
The p u r i f i e d enzyme
g e l and r e a d i l y a g g r e g a t e d
a f t e r p r e s e r v a t i o n a t 4OC i n a c o n c e n t r a t e d s o l u t i o n .
S y n t hases.
--
C o n c e n t r a t i o n s o f ADP-Q-glucose:a-1,4-Q-glucan-4-
g l u c o s y l t r ans f e r a s e ( s t a r c h s y n t h a s e
glucan-6-glycosyltransferase seeds
of
Pisum sativum
have
a n d a - 1 ,4-O_- - g l u c a n : a - l , 4 - Q --
( b r a n c h i n g enzyme) f r o m d e v e l o p i n g been
measured.526
Primed
starch
s y n t h a s e a c t i v i t y i n c r e a s e d f r o m 0 t o 1 4 d a y s a f t e r a n t h e s i s and
561
6: Enzymes d e c r e a s e d by 50% a t 26 days.
C i t r a t e - s t i m u l a t e d s t a r c h synthase
a c t i v i t y was h i g h e s t a t 10 d a y s a f t e r a n t h e s i s , d e c r e a s i n g t o l o w l e v e l s by 22 days. B r a n c h i n g - e n z y m e a c t i v i t y i n c r e a s e d f r o m 8 t o 18 d a y s a f t e r a n t h e s i s and d e c r e a s e d l i t t l e by 26 days.
Two f r a c t i o n s
o f s t a r c h s y n t h a s e w e r e r e c o v e r e d b y g r a d i e n t e l u t i o n f r o m DEAEcellulose of
extracts
fractions differed
from
12- and 1 8 - d a y - o l d
Em f o r
i n primer specificity,
r e l a t i v e amount o f c i t r a t e - s t i m u l a t e d a c t i v i t y .
seeds.
The
two
ADP-Q-glucose, a n d
A m a j o r and
a
minor
f r a c t i o n o f b r a n c h i n g enzyme w e r e o b s e r v e d i n e x t r a c t s f r o m b o t h 1 2 and 1 8 - d a y - o l d
seeds.
Marked d i f f e r e n c e s i n t h e r e l a t i v e a b i l i t i e s
of t h e two branching-enzyme f r a c t i o n s t o s t i m u l a t e phosphorylase and t o b r a n c h a m y l o s e as w e l l as i n pH o p t i m a w e r e f o u n d .
Although
t h e c o n t e n t o f t h e s t a r c h s y n t h a s e and branching-enzyme f r a c t i o n s v a r i e d w i t h s e e d age,
l i t t l e d i f f e r e n c e was s e e n i n t h e p r o p e r t i e s
o f chromatographically s i m i l a r fractions. s t a r c h synthase
and b r a n c h i n g - e n z y m e
T h e r e f o r e , t h e changes i n activity
d u r i n g pea
seed
development r e s u l t e d f r o m changes i n t h e c o n c e n t r a t i o n s o f a few enzyme f o r m s b u t n o t t h e a p p e a r a n c e of d i f f e r e n t enzyme f o r m s . The h o r m o n a l r e g u l a t i o n o f g l y c o g e n s y n t h a s e p h o s p h o r y l a t i o n i n p e r f u s e d r a t s k e l e t a l m u s c l e h a s b e e n i n v e ~ t i g a t e d . ~ ~U’ s i n g t h e r a t hind-limb p e r f u s i o n technique, k i n e t i c evidence t h a t glycogen synthase i s s u b s t a n t i a l l y
phosphorylated i n c o n t r o l s k e l e t a l muscle
a n d t h a t e p i n e p h r i n e c a u s e s f u r t h e r p h o s p h o r y l a t i o n was o b t a i n e d . The p h o s p h a t e c o n t e n t o f
t h e enzyme p u r i f i e d f r o m
control
and
h o r m o n e - t r e a t e d m u s c l e has been measured and a good c o r r e l a t i o n b e t w e e n t h e p h o s p h o r y l a t i o n s t a t e o f t h e enzyme and a c t i v i t y has been found. The a m i n o a c i d s e q u e n c e o f a r e g i o n i n r a b b i t s k e l e t a l m u s c l e g l y c o g e n s y n t h a s e p h o s p h o r y l a t e d by c y c l i c A M P - d e p e n d e n t p r o t e i n k i n a s e h a s been r e p o r t e d . 5 2 8
Analogues of
t h e amino a c i d sequence
s u r r o u n d i n g s i t e l a d e m o n s t r a t e d t h a t s i t e s l a and l b a r e s e p a r a t e d by o n l y 1 3 a m i n o a c i d s i n t h e p r i m a r y s t r u c t u r e o f g l y c o g e n s y n t h a s e , w h i c h c o m p r i s e s 770 r e s i d u e s . The i n h i b i t o r y e f f e c t s
*
31-B-q-glucan
gated.529
o f p a p u l a c a n d i n B and a c u l e a c i n A o n (1
synthase from
G e o t r i c h u m l a c t i s h a v e been i n v e s t i -
The i n h i b i t i o n i s s p e c i f i c
and o c c u r s n o t o n l y i n v i t r o
but also i n vivo since the addition o f the antibiotics t o a culture leads t o c e l l - f r e e
e x t r a c t s with a p a r t i a l l y i n a c t i v e synthase.
Some c h a r a c t e r i s t i c s o f t h e i n h i b i t i o n a r e d e s c r i b e d . C h i t i n synthase i n t h e s t i p e of
--b i s e ---orus
has
been
isolated
and
the basidiomycete Agaricus i t s
properties
have
been
Carbohydrate Chemistry
562 i n v e s t i g a t e d .530
--
Lyases. has
been
Heparan s u l p h a t e p u r i f i e d
by
l y a s e from
repeated
Flavobacterium heparinum
hydroxyapatite
column
c h r o m a t o g r a ~ h y . ~The ~ ~ enzyme was u s e d t o d e g r a d e h e p a r a n s u l p h a t e o c c u r r i n g on t h e s u r f a c e s o f
a s c i t e s hepatoma c e l l s ,
AH66,
and was
f o u n d t o be more e f f e c t i v e t h a n t r y p s i n i n r e m o v i n g h e p a r a n s u l p h a t e from
the
cells.
Furthermore,
on a n a l y s i n g
g l y c o s a m i n o g l y c a n s and
g l y c o p e p t i d e s from t h e enzyme-treated c e l l s and c o n t r o l c e l l s , i t was c o n c l u d e d t h a t h e p a r a n s u l p h a t e was e x c l u s i v e l y p r e s e n t on t h e c e l l s u r f a c e and a c c e s s i b l e t o t h e h e p a r a n s u l p h a t e l y a s e whereas o t h e r c e l l - s u r f ace c o m p l e x c a r b o h y d r a t e s r e m a i n e d i n t a c t . The c h a n g e s i n t h e c a t a l y t i c a c t i v i t y o f N - a c e t y l n e u r a m i n a t e l y a s e h a v e been s t u d i e d as a f u n c t i o n o f t e m p e r a t u r e i n t h e p r e s e n c e
o r absence of
i t s substrates.532
The
l y a s e was f o u n d t o
was s u g g e s t e d t h a t t h i s p r o t e c t i v e e f f e c t
be
and i t
e f f e c t i v e l y p r o t e c t e d a g a i n s t h e a t i n a c t i v a t i o n by p y r u v a t e ,
c a n b e u s e d i n a new
s i m p l e s t e p i n t h e p u r i f i c a t i o n o f t h e enzyme. A m u l t i f u n c t i o n a l enzyme, a c t i v e o n b o t h p o l y s a c c h a r i d e s and
glycosides, P.
has
placenta.533
A
been
isolated
from
molecular weight
the
wood-decay
o f 185,000
fungus
was d e t e r m i n e d w i t h
l o w e r - m o l e c u 1a r - w e i g h t s u b u n i t s c h a r a c t e r ized on SDS po 1y a c r y l a m ide g e l electrophoresis.
An u n u s u a l PI o f 1.8
was e s t a b l i s h e d f o r t h i s
protein.
--
Dehydrogenases.
The g e n e t i c and b i o c h e m i c a l c h a r a c t e r i z a t i o n o f
Q-arabinose
dehydrogenase
reported.534
The enzyme was p u r i f i e d t o h o m o g e n e i t y f r o m w i l d - t y p e
N.
c r a s s a 74-A
from
Neurozeora crassa
and f r o m t w o c o l o n i a l m u t a n t s ,
o f t h e enzyme.
has
been
f o u n d t o c o n t a i n more
The e n z y m e s w e r e c h a r a c t e r i z e d b y m e a s u r e m e n t o f
s e v e r a l k i n e t i c and p h y s i c o c h e m i c a l p a r a m e t e r s and w e r e t h e same i n a l l characteristics
studied.
Immunological studies performed w i t h
enzyme p r e p a r a t i o n s f r o m t h e t h r e e s t r a i n s showed a n t i g e n i c i d e n t i t y and
indicated that
enzyme,
those
colonial
strains
c o n t a i n more n o r m a l
r a t h e r t h a n t h e u s u a l amount o f an a l t e r e d ,
i m p r o v e d enzyme.
Q u a n t i t a t i o n o f t h e enzyme i n c r u d e e x t r a c t s , p e r f o r m e d by s i n g l e r a d i a l immunmodiffusion, the
l e v e l
o f
enzyme
characterization, heterokaryosis,
showed t h a t t h e c o l o n i a l s t r a i n s h a v e t w i c e as
the
performed
and r e v e r s i o n s ,
by
wild-type analysis
of
strain. meiotic
Genetic products,
indicated that the difference i n
p-
a r a b i n o s e d e h y d r o g e n a s e a c t i v i t y d e t e c t e d among t h e t h r e e s t r a i n s i s
563
6: Enzymes p r o b a b l y d e t e r m i n e d by one gene.
D - F r u c t o s e dehydrogenase o f G l u c o n o b a c t e r i n d u s t r i u s has been i s o l a t e d and c h a r a c t e r i z e d f o r t h e e n z y m a t i c m i c r o d e t e r m i n a t i o n o f Q-Fructose
dehydrogenase
p u r i f i e d f r o m t h e membrane f r a c t i o n o f
was
solubilized
g l y c e r o l - g r o w n G.
and
industrius
by s o l u b i l i z a t i o n o f t h e e n z y m e w i t h T r i t o n X - 1 0 0 a n d s u b s e q u e n t f r a c t i o n a t i o n by i o n - e x c h a n g e c h r o m a t o g r a p h i e s . was
tightly
bound
to
a c-type
The p u r i f i e d enzyme
cytochrome
e x i s t i n g as a d e h y d r o g e n a s e - c y t o c h r o m e
and a n o t h e r
complex.
peptide
The p u r i f i e d enzyme
was deemed p u r e by a n a l y t i c a l u l t r a c e n t r i f u g a t i o n as w e l l as by g e l f i l t r a t i o n on a Sephadex G-200 column. 140,000)
on
sodium
electrophoresis
The enzyme complex ( m o l .
sulphate
showed t h e p r e s e n c e o f
molecular weights and 19,700
dodecyl
of
67,000
50,800
Only p - f r u c t o s e
dichlorophenolindophenol, or phazine methosulphate. dinucleotide,
n i c o t i n a m i d e adenine
and oxygen d i d n o t f u n c t i o n of
!-fructose
fructose)
was s t a b l e a t pH 4.5
The o p t i m u m pH
The e n z y m e ( K m lO’*rnM
t o 6.0.
2,6-
Nicotinamide
d i n u c l e o t i d e phosphate,
as e l e c t r o n a c c e p t o r s .
o x i d a t i o n was 4.0.
c),
(cytochrome
was r e a d i l y o x i d i z e d
b y t h e enzyme i n t h e p r e s e n c e o f d y e s s u c h as f e r r i c y a n i d e , adenine
gel
t h r e e components h a v i n g
(dehydrogenase),
(unknown f u n c t i o n ) .
wt.
polyacrylamide
for
p-
S t a b i l i t y of the p u r i f i e d
enzyme was much enhanced by t h e p r e s e n c e o f d e t e r g e n t i n t h e enzyme Removal o f d e t e r g e n t f r o m t h e enzyme s o l u t i o n f a c i l i t a t e d
solution.
t h e a g g r e g a t i o n o f t h e enzyme and caused i t s i n a c t i v a t i o n .
Levansucrase.
--
Levansucrase,
t h e p o l y s a c c h a r i d e l e v a n from
which
catalyses
the g-fructosyl
the
synthesis
of
r e s i d u e s o f sucrose,
was i s o l a t e d f r o m t h e c u l t u r e f l u i d o f G l u c o n o b a c t e r o x y d E a n d p u r i f i e d t o a homogeneous s t a t e by c h r o m a t o g r a p h y on h y d r o x y a p a t i t e and g e l f i l t r a t i o n . 5 3 6
According t o t h e data of electrophoresis,
t h e m o l e c u l a r weight of
l e v a n s u c r a s e i s e q u a l t o 58,000.
m o l e c u l e c o n t a i n s 25.86% a c i d i c a m i n o a c i d s , acids, per
and 12.77% a r o m a t i c amino a c i d s ,
mole.
The u l t r a v i o l e t
The enzyme
13.74% b a s i c a m i n o
and one m o l e o f m e t h i o n i n e
absorption spectrum
of
purified
l e v a n s u c r a s e h a s a maximum a t 280 nm a n d a m i n i m u m a t 254 nm.
By
measuring
by
the
l e v a n s u c r a s e of
i n i t i a l G.
rates
of
the
reactions
catalysed
oxydans i n t h e p r e s e n c e o f { 1 4 C } s u c r o s e ,
i t was
e s t a b l i s h e d t h a t t h i s enzyme c a t a l y s e s a r e a c t i o n o f h y d r o l y s i s o f sucrose,
a
reaction
of
synthesis
of
levan,
and
a reaction
of
exchange o f t h e l a b e l l e d Q - g l u c o s e h a l f o f s u c r o s e w i t h f r e e Qglucose. The i n i t i a l r a t e s o f l i b e r a t i o n o f E - g l u c o s e a n d p -
5 64
Carbohydrate Chemistry
f r u c t o s e d u r i n g t h e t r a n s f r u c t o s y l a t i o n r e a c t i o n were d e t e r m i n e d . levan t o the r e a c t i o n m i x t u r e a s a p r e c u r s o r of p o l y s a c c h a r i d e s y n t h e s i s l e a d s t o a d o u b l i n g of t h e i n i t i a l r a t e of l i b e r a t i o n of l a b e l l e d p_-fructose and an i n c r e a s e i n t h e y i e l d o f l e v a n from 41 t o 69%. I t was shown t h a t t h e a d d i t i o n of low-molecular-weight
P e c t i n e s t e r a s e s . -- T e c h n i c a l p e c t i c m u l t i e n z y m e p r e p a r a t i o n s , P e c t i n e x U l t r a and Rohament P , were chromatographed on an a n a l y t i c a l s c a l e u s i n g m e d i u m - p r e s s u r e l i q u i d c h r o m a t o g r a p h y on a g l y c o l m e t h a c r y l a t e r i g i d m a c r o r e t i c u l a r g e l , S p h e r o n 1 0 0 0 , and i t s i o n e x c h a n g e d e r i v a t i v e s . 4 4 7 A c o m b i n a t i o n o f i s o c r a t i c and l i n e a r g r a d i e n t e l u t i o n ( w i t h g r a d i e n t s i n i o n i c s t r e n g t h o r p H ) was employed and f r a c t i o n s were monitored by measurements o f absorbance Conditions (4285 and A2541, c o n d u c t i v i t y , pH, and enzyme a c t i v i t y . f o r r a p i d s e p a r a t i o n s of p e c t i c enzymes a r e e l a b o r a t e d . The r e s u l t s i n d i c a t e t h e p o s s i b i l i t i e s of s e p a r a t i n g t h e t e c h n i c a l l y u n d e s i r a b l e p e c t i n e s t e r a s e a c t i v i t y from t h e o t h e r enzyme a c t i v i t i e s , and o f a more d e t a i l e d b i o c h e m i c a l i n v e s t i g a t i o n of t h e s e enzymes, i m p o r t a n t f o r t h e food i n d u s t r y . The aerobic b a c t e r i a associated w i t h s o f t r o t i n onions ( A l l i u m c e p a ) w e r e i s o l a t e d and i d e n t i f i e d a s a V i b r i o s p e c i e s , M i c r o c o c c u s e p i d e r m i d i s , Eudomonas c e p a c i a , an A c i n e t o b a c t e r s p e c i e s , Xanthomonas s p e c i e s , B a c i l l u s polyrnyxx, and B a c i l l u s m e g a t e r i ~ m . ~W~i t~h t h e c u p - p l a t e assay method, no p e c t i n h y d r o l a s e could b e d e t e c t e d from any of t h e s e i s o l a t e s when they were c u l t u r e d i n p e c t i n medium, b u t l y a s e and p e c t i n e s t e r a s e s w e r e d e t e c t a b l e . Onion t i s s u e c u l t u r e s showed p e c t i n h y d r o l a s e a c t i v i t y f o r P . c e p a c i a and B. polymyxa and l y a s e and p e c t i n e s t e r a s e a c t i v i t i e s f o r a l l of t h e i s o l a t e s , u s u a l l y a t h i g h e r l e v e l s o f a c t i v i t y than I n both c u l t u r e t h o s e of t h e p e c t i n medium c u l t u r e f i l t r a t e s . m e d i a , V i b r i o s p e c i e s showed t h e h i g h e s t l y a s e and p e c t i n e s t e r a s e activities. I n t h e v i s c o m e t r i c t e s t , a l l of t h e i s o l a t e s achieved a t l e a s t a 50% d e c r e a s e i n v i s c o s i t y f o r l y a s e e n z y m e , w i t h M . e p i d e r m i d i s and V i b r i o s p e c i e s r e c o r d i n g v i s c o s i t y d e c r e a s e s a s h i g h a s 8 3 % . The a b i l i t y t o c a u s e s o f t r o t i n o n i o n b u l b s was d e m o n s t r a t e d b y P. c e p a c i a and Xanthomonas s p e c i e s . Benzoic a c i d a t a c o n c e n t r a t i o n o f 0.8 mg m 1 - l c a u s e d t o t a l s u p p r e s s i o n of enzyme p r o d u c t i o n whereas sodium b e n z o a t e a t t h i s c o n c e n t r a t i o n reduced p e c t i n e s t e r a s e p r o d u c t i o n b y 71% and l y a s e p r o d u c t i o n by 72%. The p o s s i b l e use of t h e s e p r e s e r v a t i v e s i n t h e c o n t r o l o f s o f t r o t i n o n i o n s i s noted.
6: Enzymes
565
References
1 Enzymes, M. Herbert C. Friedmann, Hutchinson R o s s P u b l i s h i n g Co., 1981, 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30
31 32 33
34
1,
716. Supplement 2 to Enzyme Nomenclature, Eur. J. Biochem., 1981, 116, 423-435. Methods i n Enzymology, Ed. S.P. Colowick and N.O. Kaplan, 2, Immunochemical T e c h n i q u e s , Pt.B, Ed. 3.5. Langone a n d H. v a n V u n a k i s , 1981. A f f i n i t y Chromatography a n d R e l a t e d T e c h n i q u e s , Ed. T.C.J. G r i b n a u , J. Visser a n d R.J.F. N i v a r d , A n a l y t i c a l C h e m i s t r y Symposia S e r i e s , V o l 9 , Amsterdam, 1981. Immunochemical Techniques, Pt. C, a.J.J. Langone and H. van Vunakis, 1981. Advances i n Enzymology a n d R e l a t e d Areas of M o l e c u l a r B i o l o g y , 52, Ed. A. Meister , Wiley , 1981 I. Kmck and K.-H. R d m , Hoppe-Seyler's Z. Physiol. Chem., 1981, 362, 1119. Enzyme I n h i b i t o r s ed. U. Brcdbeck, 1980, 19. M i c r o b i a l Enzymes a n d B i o c o n v e r s i o n s , Economic M i c r o b i o l o g y , 5, Ed. A.H. R o s e , Acadenic P r e s s , London , 1980. C e l l u l o s e a n d O t h e r N a t u r a l Polymer S y s t e m s , B i o g e n e s i s , S t r u c t u r e a n d Degradation, Ed. R.M. Brown, Jr., Plenum, 1982. B i r t h Defects: O r i g i n a l Article Series, 3, 1, 2nd Symp. on Enzyme Therapy i n G e n e t i c Diseases, H i l t o n Head Isl., Ed. R.J. D e s n i c k , A.R. L i s s InC., New York , 1 9 80. Imnobilized Ehzymes €or Food Processing, W.H. P i t c h e r Jr. , CRC P r e s s , 1980. Polymer C a t a l y s t s and A€€ i n a n t s P o l y m e r s i n Chromatography , Ed. B. SedldESek, C.G. O w r b e r g e r and H.F. Mark. Wiley, 1981. J.F. Kenndy, J.D. Humphreys and S.A. Barker, Enzyme Microb. Technol., 1981, 3, 129. S.F. D'Souza and G.B. Nadkarni, Biotechnol. Bioeng., 1981, 23, 431. P.R. Coulet and D.C. Bautheron, J. C h r m t o g r . , 1981, 215, 65. T. I z h and K. Suzuki, Biochim. Biophys. AcQ, 1980, 615, 402. R. Vazquez P e r n a s , I. Ramos M a r t i n e z a n d M. F r e i r e Rama, Comp. Biochem. Ph siol., 1981, 69, 851. R.%ange, G. Lundblad, K. S l e t t e n g r e n a n d J. L i n d , Comp. Biochem. P h y s i o l . Pt.B, 1980, 67, 527. T C a r r o l l and P. McCrorie, Canp Biochem. Physiol. Pt.B, 1980, 67,685. R S a l w y r e , A. Negre, A. Maret, G. Lenoir and L DouSttrB1az.y (Toulouse and Lyon, France), Biochim. Biophys. A C b , 1981, 659, 445. A. E r z b e r g e r , E. Conzelmann a n d K. S a n d h o f f , C l i n . Chim. Acta, 1981, 108, 361. P.H. W h i t i n g , A.J. N i c h o l l s , G.R.D. Catto, N. Edward a n d J. E n g e s e t , Clin. Chim. A h , 1980, 180, 1. U. D i e n e r , E. K n o l l , B.%ger, H. R a u t e n s t r a u c h , D. R a t g e a n d H. Wisser, C l i n . Chim. A C b , 1981, 112, 149. R. Gibey, J.L. Dupond, D. A l b e r , R. L e c o n t e de F l o r i s a n d J.C. Henry, C l i n . Chim. , -A 1981, 116,25. A. Lombardo, L. C a i m i , S. M a r c h e s i n i , G.C. G o i a n d G. T e t t a m a n t i , C l i n . Chim. Acta, 1980, 1 0 8 , 337. E. Horak, S.M. H o p f e r a n d F.W. Sunderman, C l i n . Chem. (Winston-Salem N.C.), 1981, 27, 1180. Y. T a c h i b a n a , K. Y a m a s h i t a , M. Kawaguchi , S. A r a s h i m a a n d A. Kobata,J. Biochan. (To 01, 1981, 90, 1291. L.C. Hoskins%d E.T. m a d i n g , J. C l i n . I n v e s t . , 1981, 67,163. S. Anrmugham and S.M. I%=, IQl. J. Biochem. I 1980, 2, 27. D. Mahuran and J.S. -den, Can. J. Biochem., 1980, 58, 287. S. Toma, G. Coppa, P.V. D o n n e l l y , R. Ricci a n d N.D. Ferrante, Carbohydr. Res., 1 9 8 1 , 96, 271. A. O r l a c c h i o , C. M a f f e i , L. B i n a g l i a a n d G. P o r c e l l a t i , Biochem. J., 1981, 195, 383. A. Reglero, I n t . J. Biochem., 1979, 10, 285.
-
.
-
Carbohydrate Chemistry
5 66
35 L.O. Sampaio and C.P. D i e t r i c h , J. B i o l . Chem., 1981, 256, 9205. 36 J.A. Khan and M.H.R. Lewis, Biochan. Soc. Trans., 1980, 8, 447. s., 1981, 18, 187. 37 G.S. G u p t a and D.K. Kapur, Indian J. Biochan. Bio 33, 521, 38 P.J. W a l c o t t and M. Messer, A u s t . J. B i o l . Sci. , !i%O, 39 A. Reglero, M. Esteban and J.A. Cabezas, I n t . J. Biochem., 1981, Q, 837. 40 K. Hatakryama, M. Hiramatsu and N. Minami, J. Biochem. (Tokyo), 1980, 88, 613. 4 1 J.A. Khan and M.H.R. Lewis, Biochem. Soc. Trans., 1981, 9, 322. 42 J.R. DeLoach, H.H. Mollenhauer and R.T. Mayer, Comp. Biochem. Physiol. Pt.B., 1981, 69, 279. 43 P.F. Santoro and J.A. &in, cclmp Biochem. Physiol. Pt.B, 1981, 69, 337. 44 C.K. Y i , Plant Physiol., 1981, 67, 68. 45 G.L. Gustapson and L.A. M i l n e r , Biochem. Biophys. R e s . Commun., 1980, 94, 1439. 46 R.L. Dimond, R.A. Burns and K.B. Jordan, J. B i o l . Chem., 1981, 256, 6565. 47 D.A. Knecht and R.L. Dimond, J. Biol. &em., 1981, 256, 3564. 48 H. Yoshioka and S. Hayashida, Agric. B i o l . Chem., 1981, 45, 571. 49 J.O. Berg, L. Lindquist and C.E. Nord, App. Envir. Microbiol., 1980, 40, 40. 50 B.K. S p a k e , D.J. Malley and F.W. Hemming, Arch. Biochem. Biophys., 1981, 210, 110. 51 G. Lundblad, G. Huldt, M. Elander, J. Lind and K. S l e t t e n g r e n , Comp. Biochem. Ph siol., 1981, 68, 71. 52 I.D.J. wlrdztt, J. Gen. f i r o b i o l . , 1980, 120, 35. 53 G. Constantopoulos, S. Rees, B.G. Cragg, J.A. Barranger and R.O. Brady, Biochem. Biophys. Res. Camnon., 1981, 101,1345. 54 S.C. L i , Y. Hirabayashi and Y.T. L i , J. B i o l . Chem., 1981, 256, 6234. 55 A. Frisch and E.F. Neufeld, J. Biol. Chan., 1981, 256, 8242. 56 E.A. Neuwelt, J.A. Barranger, R.O. Brady, M. Pagel, F.S. F u r b i s h , J.M. Quirk, G.E. Maok and E. Frenkel, Proc. N a t l . Acad. Sci. USA, 1981, 78, 5838. 57 A.L. M i l l e r , B.C. Kress, R. S t e i n , C. Kinnon, H. Kern, J.A. S c h n e i d e r and E. Harms, J. B i o l . Chem., 1981, 256, 9352. Halley, N. Sacchi, A. d'Azzo, A.J.J. Reuser and H. G a l j a a r d , 58 D.J.J. C e l l Res., 1980,129, 383. A. H a s l i k and K. von F i g u r a , Eur. J. Biochem., 1981,121, 125. 59 60 Y. Deugnier, A. l e T r e u t , D. Glaise, P. Brissot, J.Y. le G a l l , Clin. Chim. 1980, 108,385. 61 RL. Miller, B.C. Kress, L. Lewis, R. S t e i n and C. Kinnon, Biochem. J., 1980, 186, 971. 62 T. L u d x p h , E. Paschke, J. G l i j s s l and H. Kresse, Biochem. J., 1981, 193, 811. 63 A.A. Farooqui and P.N. Srivastava, I n t . J. Biochen., 1981, Q, 893. Lisman and G.J.M. Hooghwinkel, 64 D.H. Joziasse, D.H. Van den Eiinden, J.J.W. I ,174. Biochim. Biophys. A c t a , 1981, & 65 P.M. K h b l l , M.G. Brattain and W.E. White, Biochem. J., 1981, 193, 109. Can. J. Biochem., 1981, 59, 237. 66 D. Mahuran and J.A. -den, 67 S. Jacobs, E. Hazum and P. C u a t r e c a s a s , Biochem. Biophys. Res. COmmUn., 1980, 94, 1066. 68 S. Kyosaka, S. Yamashiro and M. Tanaka, Chem. Pharm. Bull. (Japan), 1980, 28, 2658. 69 K H . Freeze, A.L. Miller and A. Kaplan, J. B i o l . chem., 1980, 255, 11081. 70 J.A. C a b e z a s , A. R e g l e r o , A. d e P e d r o , T. D i e z a n d P. C a l V O , I n t . J. Biochem., 1981,-13, 389. 71 K. Yamashita, T. Ohkura, H. Yoshima and A. Kobata, Biochem. Biophys. Res. Commun., 1981, 100, 226. 72 P.J. Marshall, M.L. Sinnott, P.J. S m i t h a n d D. Widdows, J. Chem. Soc. Perkin Trans 1, 1981, 366. 73 J.A. Khan and M.H.R. Lewis, Biochan. Soc. Trans., 1980, 8, 447. 74 M. Tanaka, A. A t e and T. Uchida, Biochim. Biophys. A c t a , 1981, 658, 377. 75 A. Kaji, M. Satp and Y. Tsutsui, Agric. B i o l . Chem., 1981, 45, 925. 76 W. Hansen and D. Schreyer, J. Clin. Chm. Clin. Biochem., 1981, 19, 39. 77 AM. Ugolev, LF. Smifnova, N.N. Iezuitova, N.M. Thofeeva, NH. Mityushova,
.
m,
567
6: Enzymes 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120 121 122 123
104,
35. V.V. Egorova and E.M. Parshkov, FEW L e t t . , 1979, A. Mahmood and S. Ansari, Indian J. Biochen. Biophys., 1981, 18 198. J. Synowiecki, Z.E. S i k o r s k i and M. Naczk, Biotechnol. Bioenq., 1981,
23.
231. P.G. Bhat and T.N. Battabiraman, Indian J. Biochem. Biophys., 1980, 17, 338. M.A. Vattuone, F.E. Prado and A.R. Sampietro, Phytochenistry, 1981, 20, 189. H. Masuda and S. Sugawara, Agric. B i o l . Chen., 1978, 42, 479. L. Faye, Anal. Biochem., 1981, 112, 90. L. Faye, C. Berjenneau and P. Rollin, Plant Sci. L e t t . , 1981, 22, 77. L. Faye and C. Lambert, Biochim. B i o s. A c t a , 1980, 615, 392. F.C. L a r g i t t e , Biochim. Biophys. A 2 1981, 668, 4 8 1 7 R.C.F. Baker and A.G. Dickerson, J. Gen. Microbiol., 1980, 121, 267. L. Lehle, R.E. m e n and C.E. Ballou, J. B i o l . Chgn., 1979, 254, 12209. M. Beja da Costa and N. van Uden, Biotechnol. Bioenq., 1980, 22, 2429. K. Marshall and H. Weigel, Carbohydr. Res., 1980, 83, 315. H. Nakagawa, S. I s h i g a m i , K. S e k i g u c h i , K. K u r a t a a n d N. Ogura, PhytochGistry, 1981, 20; 1229. J.W.D. G r o o t Wassink and S.E. Fleming, Enzyme Microb. Technol., 1980, 2, 45. E. Vanschaftingen and H.G. Hers, Proc. N a t l . Acad. Sci., USA, 1981, 78, 2861. A.L. Majunder, FEBS Lett., 1981, 133, 189. Y. f i j i t a and E. Freese, J. Bacteriol., 1981, 145, 760-767. M.M. Hosey and F. Marcus, Proc. Natl. Acad. Sci. USA, 1981, 78, 91. G. Ya. Wiederschain, E.M. Beyer, B.A. K l y a s h c h i t a s k y and A.S. Shaskov, Biochim. Biophys. A c t a , 1981, 659, 434. B. Colas, Biochim. Biophys. A c t a , 1981, 657, 535. B. Colas, Biochim. Biophys. A c t a , 1980, 613, 448. P. Watkins and J.A. Alhadeff, Comp. Biochem. and Physiol., Pt.B, 1981, 68, 509. E.M. Beier, B A Klyashchitshkii and G. Ya. Vindershain, Biochemistry, 1979, 44, 1533. S.F. Chien and G. -on, Biochim. Biophys. A c t a , 1980, 614, 476. T.F. Scanlin and M.C. Glick, Clin. Chim. A c t a , 1981, 114,269. T. Maler, M. Duthie, J.R. Riordan, FEBS Lett., 1980, 121,153. A. Haris and D. Swallow, Clin. Chim. A&, 1981, 116,171. R. Thorpe and D. Rcbinson, Clin. C h h . A c t a , 1978, 86, 21. J.A. Alhadeff and F.L. Andrews-Smith, Biochim. Biophys. Acta, 1980, 614, 466. M. Bernard, M.J. F o g l i e t t i and F. Percheron, Clin. Chim. A c t a , 1981, 116, 91. W.D. Gathmann and D. Aminoff, Biochem. Biophys. Res. Carmun., 1981, 103,68. R.A. d i Cioccio, C. P i s k o r z , G. Salamida, J.J. B a r l o w and K.L. Matta, Anal. Biochem., 1981, 111 176. J.S. Mayes, J.B. S c h e e r e r , R.N. S i f e r s and M.L. Donaldson, Clin. Chim. A c t a , 1981, 112, 247. R Vazquez Perms, I. Ramos Martinez, M. Rodriguez Lopex and M. F r e i r e Rama, Canp. Biodxm. and Physiol., Pt.B., 1981, 68, 141. P.M. Dey and H. Kauss, Phytochanistry, 1981, 3,45. E. d e l Campillo, L.M. Shannon and C.N. Hankins, J. B i o l . Chem., 1981, 256, 7177. I. Chinen, T. Nakamura and N. Fukuda, J. Biochem. (Tokyo), 1981, 90, 1453. P.M. D q , p h y t o c h d s t r y , 1981, 3, 1493. E.L. a r t and D.M. Pharr, Plant Physiol., 1980, 66, 731. D.W.M. Leung and J.D. Bewley, Planta, 1981, 152, 436. D.W.M. LRung and J.D. Bewley, Nature (London), 1981, 289, 587. I.G. Flor&z, P.S. Lazo, A.G. Ochoa and S.Gascon, Biochim. Biophys. Acta, 1981, 674, 71. C.M. Heyworth, E.F. Neurmnn and C.H. Wynn, Biochem. J., 1981, 193, 773. G. L e r a y , L. G e u n e t , A. L e T r e u t a n d J - Y v e s le G a l l , Biochem. Biophys. R e s . Commun., 1981, 100, 1491. M. Naoi and K. Yagi, Anal. B i o d e m . , 1981, 116,98.
568
Carbohydrate Chemistry
124 A. Hoogeveen, A. d'Azzo, R. B r o s s m e r a n d H. G a l y a a r d , Biochen. Biophys. Res. Cmmun., 1981, 103, 292. 125 Y. Suzuki, H. Sakuraba, K. Hayasgum, K. Suzuki and K. I m a h o r i , J. Biochem. (Tokyo), 1981, 90, 271. 126 A.L. M i l l e r , Biochim. Biophys. A c t a , 1978, 522, 174. 127 C.M. Heyworth, S. Kirkham and C.H. Wynn, Biochem. SOC. Trans., 1981, 9, 397. 128 B.K. Burton, Y. Ben-Yoseph and H.L. Nadler, Clin. Chh. A c t a , 1978, 88, 483. 129 H. Skovbjerg, Biochan. J., 1981, 193, 887. 130 S. Taguchi, H. Kouyama and N. Yago, J. Biochem. (Tbkyo), 1981, 89, 483. 1 3 1 R. P a s c o l i n i , A. O r l a c c h i o and A.M. Gargiulo, Comp. Biochem. and Physiol., Pt.B, 1981, 69, 869. 132 m a p and D. H e s s , Phytochemistry, 1981, 20, 973. 133 J.L. E t c h e b e r r i g a r a y , M.A. Vattuone and A.R. Sampietro, Phytochemistry, 1981, 20, 49. 134 R Mustranto, E. Karvonen, H. O j a m o and M. Linko, Biotechnol. Lett., 1981, 3, 333. 135 N i e l , F. Delmaere and J.-B. Guillaume, Compt. Rend., Ser.D., 1980, 291, 771. 136 B.J. Macris and P. Markakis, A p p l . Envir. Microbiol., 1981, 41, 956-958. 137 E V . L e t u n o m , A.S. T i k h o m i r o m , S.D. Shiya, V.A. Markin, A. Ya. Khorlina and A.M. Bezbrodov, Biochemistry, 1981, 46, 745. 138 K.M. H e l e n a Nevalainen, App. and Envir. Microbiol., 1981, 41, 593-599. 139 S. HjerGn, Y. Kunquan and M. Ogunlesi, J. olranatogr., 1981, 215, 25. 140 D.E. Kohlbey and M. Cheryan, Enzyme Microb. Techml., 1981, 2, 64. 141 C.M. J o r s t a d and D.R. Morris, Biochen. Biophys. R e s . Carmun., 1981, 98, 556. 142 S.K. Pal and R.K. Poddar, Biochan. Biophys. Res. Carmun., 1980, 95, 1341. 143 I. Ya Kalachev, B.N. Gershanovich and G.I. Burd, Biochemistry, 1980, 45, 670. 144 S. Rcsenberg and J.F. Kirsoh, Biochemistry, 1981, 20, 3189. 145 R.E. H u b e r , K.L. Hurlburt, C.L. Turner, Can. J. Biochem. , 1981, 2, 100. 146 W. Mandecki, A.V. Fawler and I. Zabin, J. Bacteriol., 1981, 147, 694. 147 D. Foley, P. Dennis and J. Gallant, J. Bacteriol., 1981, 145, 641. 148 J.D. Noti and H.E. Umbarger, J. Bacteriol., 1981, 145, 673. 149 M. Rose, M . J . C a s a d a b a n , D. B o t s t e i n , P r o c . N a t l . Acad. S c i . USA B i o l . Sci., 1981, 78, 2460. 150 J.K. Welply, A.N. F m l e r and I. Zabin, J. B i o l . Chen., 1981, 256, 6804. 151 J.K. Welply, A.V. Fowler and I. Zabin, J. B i o l . Chen., 1981, 256, 6811. 152 R.S. Accolla, R. Cina, E. Montesoro and F. Celada, Proc. N a E A c a d . Sci. USA - B i o l . Sci., 1981, 78, 2478. 153 J.L. McKni9htandV.A. F r i e d , J. B i o l . Chem., 1981, 256, 9652. 154 R . E . Huber, R. Pisko-Dubienski and-K.L. Hurlburt, Biochem. Biophys. R e s . Commun., 1980, 96, 656. 155 N. Chaubet, V. Pgtiard and A. Pareilleux, Plant Sci. Lett., 1981, 22, 369. 156 M.N. Fukuda, J. B i o l . Chen., 1981, 256, 3900. 157 J. Sanchez, M.E. Arias and C. Hardisson, E x p r i e n t i a , 1981, 37, 469. 158 T.D. Thomas and K.W. Turner, Appl. Envir. Microbiol., 1981, 41, 1289. 159 J.F. Frank and G.A. Sankuti, App. Emir. Microbiol., 1979, 38, 534. 160 M. K i t a m i k a b , M. Ito and Y.T. Li, J. B i o l . Chem., 1981, 256, 3906. and S. Gatt, Clin. C h h . A c t a , 1981, 110, 19. 161 G.T.N. -ley 162 F. Martiniuk and R. Hirschhorn, Biochim. Biophys. A c t a , 1981, 658, 248. 163 C. C a s t i l l a . M. Rousset. M. F r a i s s e , A. Cresm, G. C h e v a l i e r , A. Zweibaum and J.C. M u r a t , I n t . J. Biochan., 1981, 13, 38i.. 164 J. Hilkens, J.M. Tager, F. B u i j s , B. Brouwer-Kelder, G.M. van Thienen, F.P.W. Tegelaers and J. Hilgers, Biochan. B i o s. A c t a , 1981, 678, 7. P o t t e r , H.B. R o b i n s o n , J.D. KTime-nd I.A.Schafer, 165 J.L. Clin. Chem. (Winston-Salem N.C.), 1980, 26, 1914. 166 R.F. Parrish and W.R. F a i r , Clin. Chen. (Winston-Salem N.C.), 1981, 2, 641. 167 A. Maret, R. S a l v a y r e , A. N & r e and L. Dauste-Blazy, Eur. J. Biochem., 1981, 115, 455. 168 L. P o e ~ r u ,M.C. Vinet and J.C. Dreyfus, C l i n . Chan. A c t a , 1981, 117,53. 169 C. Castilla, H. Paris, A C r e s p and J.C. M u r a t , Comp. Biochem. Physiol.,
c.
~~
~
6: Enzymes
569
G, 1980, 67,653. 170 P.R. D a r l i n g , J.M. H o w e l l and J.M. Gawthorne, Biochem. J., 1981, 198,409. 1 7 1 C. Dissous, J.F. A n s a r t , A. Cheron a n d J. K r e m b e l , Anal. Biochem., 1981, 116, 35. 172 U. R e i s s and B. S a c k t o r , Arch. Biochem. Biophys., 1981, 209, 342. 173 R.A. U g a l d e , R. J. S t a n e l o n i and L.F. Leloir, Eur. J. Biochem., 1980 , 113,97. 174 M. m u n i a s and I. Kruk, Cunpt. Rend. Soc. Biol., 1981, 175, 46. 175 M. C a r r o l l a n d P. M c C r o r i e , Comp. Biochem. a n d P h y s i o l . , Pt.B., 1981, 70, 319. 176 H. Matsui, I. Yazawa and S. oliba, Agric. & B i o l . Chem., 1981, 45, 887. 177 Y. Y a m a s a k i and Y. Suzuki, Agric. & B i o l . Chm., 1980, 44, 707. 178 Y. Yamasaki and Y. Suzuki, Agric. & Biol. Chem., 1979, 43, 481. 179 Y. Ueno, T. I k a m i , R. Yamauchi a n d K. Kato, grit. & B i o l . Chem., 1980, 44, 2623. 180 S. C h a t t e r j e e and L.C. Vining, Can. J. Microbiol., 1981, 27, 639. 1 8 1 Y. S u z u k i a n d R. Tanaka, Eur. J. Appl. M i c r o b i o l . B i o t e c h n o l . , 1981, 11, 161. 182 C.T. K e l l y , M.E. H e f f e r n a n a n d W.M. F o g a r t y , B i o t e c h n o l . L e t t . , 1980, 2, 381. 183 A.A. Glemzha, R.P. K r a k e n a i t e a n d K.K. Y a n u l a i t e n e , B i o c h e m i s t r y , 1 9 8 1 , 46, 363. 184 D.E. O l i v e i r a , A. L k i a , C. S a n t o s N e t 0 a n d A.D. Panek, Anal. Biochem., 1981, 113,188. 185 S. C h i b a , M. Murata, K. M a t s u s a k a a n d T. Shimomura, Agric. & B i o l . Chem., 1979, 3,775. 186 A.A. S i b i r n y i , G.M. S h a v l o v s k i i , G.P. Ksheminskaya a n d A.G. O r l o v s k a y a , Biochemis USSR, 1980, 44, 1226. d J. Subik, Biochhn. Biophys. A c t a , 1981, 673, 10. 187 Z. M b v 4 Y E ~ X k o v and M.R. Kula, 188 R. Wichmann, U. Oden and C. W a n d r e y , Biochenie, 1980, 62, 523. R. Qlerian and A.S. Balasubramnian, C l i n . C h h . A c t a , 1981, 110,169. 189 190 L.B. D a n i e l s , R.H. G l e n , W.F. Diven, R.E. Lee a n d N.S. R a d i n , C l i n . Chim. g, 1981, 115,369. 191 S.L. Berent and N.S. W i n , Arch. Biochen. Biophys, 1981, 208, 248. 192 D.W. H a n k e , D.A. W a r d e n , J.O. E v a n s , F.F. F a n n i n a n d D.F. D i e d r i c h , B i o c h h . Biophys. A d a , 1980, 599, 652. 193 G. m i s t e r and W. HZjsel, P l a n t a , 1981, 152, 578. 194 A.A. K l e s o v a n d I.V. C h u r i l o v a , B i o c h e m i s t r y (Engl. T r a n s l . 1, 1980, 3, 1282. 1 95 M.G. Shepherd, C.C. Tong and A.L. Cole, Biochm. J., 1981, 193,67. 196 M. Desrochers, L. J u r a s e k and M.G. Paicz, Appl. and Envir. Microbiol., 1981, 41, 222. 197 A.A. Klesov and L.V. Churilova, Biochemistry (mgl. Transl. 1, 1980, 45, 1. 198 A McHale and M.P. Coughlan. Biochim. Biophys. A c t a , 1981, 662, 145. 199 A M c H a l e and M.P. m g h l a n , Biochim. Biophys. A c t a , 1981, 662, 152. 200 A. Margaritis and E. Crees?, Biotechml. Lett., 1981, 3, 471. 201 H.-P. Meyer a n d G. C a n e v a s c i n i , A p p l . Environ. M i c r o b i o l . , 1 9 8 1 , 41, 924931. S a n y a l , R.K. Kundu, S. D u b e a n d D.K. Dube, S a h a , A. 202 S.C. Biochim. Biophys. A c t a , 1981, 662, 22. 20 3 J.G. Shewale and J. Sadana, Arch. Biochem. Biophys., 1981, 207, 185. 2 04 H. Ycshida and S. Hayashida, A g r i c . B i o l . olen., 1980, 44, 1729. 20 5 T.A. H s u , C.S. Gmg and G.T. Tsao, Biotechnol. Bicenq., 1980, 22, 2305. 206 S. Rosenberg and J.F. K i r s c h , Biochemistry, 1981, 20, 3196. 207 T.K. Ng and J.G. Zeikus, 1. Envir. Microbiol., 1981, 42, 231. Bioenq., 1981, 2 08 S.K. Tangnu, H.W. Blanch-technol. 1837. N e v a l a i n e n , E.T. P a l v a a n d M.J. B a i l e y , Enzyme Microb. Technol., 209 K.M.H. 1980, 2, 59. 210 I. Labudov& V. F a r k a 8 , S. Bauer, N. K o l a r o v & A. Brb'lyik, Eur. J. Awl. Microbiol. and Biotechnol., 1981, 12, 16. 211 L.S. T r i v e d i and K.K. Rao, Biotechol. L e t t . , 1981, 2, 281.
a,
Carbohydrate Chemistry
570 212 213 2 14 215 216 2 17 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 2 34 235 236 237 238 239 240 241 242 243 244 245 246 24 7 248 249 2 50 25 1 252 253 254 255
144,
D. S t e r n b e r g and G.R. Mandels, J. Bacteriol., 1980, 1197-1199. D.W. S u n d s t r o m , H.C. K l e i , R.W. C o u g h l i n , G.J. B i e d e r m a n a n d C.A. Brouwer, Biotechnol. Bioenq., 1981, 23, 473. J. Wooltward and S.L. A r n o l d , Biotechnol. Bioenq., 1981, 23, 1553. J. Hong, M.R. L a d i s c h , G.S. Gong, P.C. Wankat a n d G.T. T s a o , B i o t e c h n o l . Bioeng., 1981, 23, 2779. K.R. Roeser and G. L e g l e r , Biochim. Biophys. A c t a , 1981, 657, 321. s. A c t a , 1980626, 459. E. Bause and G. Legler, Biochim. Bio S.K. S r i v a s t a v a , K.B. Ramachandran%d K. GopalkrishrJln, Biotechnol. Lett., 1981, 31 477. A. A l l % and D. S t e r n b e r g , Biotech. Bioen 1980, 10, 189. s. Mum and R. S a w t o , Agric. is B i o l . &emTp1979, 43, 1791. R.D. K i l k e r , B. S a u n i e r , J.S. T r a c z and A. H e r s c o v i c s , J. B i o l . Chem., 1981, 256, 5299. P. Rapp, E. Grote a n d F. Wagner, Appl. E n v i r . M i c r o b i o l . , 1 9 8 1 , 41, 857. C.W. F o r s b e r g , T.J. B e v e r i d g e a n d A. Hellstrom, A p p l . E n v i r . M i c r o b i o l . , 1981, 41, 886. J.N. Saddler and A.W. Khan, Can. J. Microbiol., 1981, 27, 288. E.R. Allcock and D.R. W o o d s , Appl. Envir. Microbiol., 1981, 41, 539. G.M. Umzurike, Biochem. J., 1981, 199, 203. D.Herr, Biotechnol. Bioeng., 1980, 22, 1601. M.J. Bailey, Biotechnol. L e t t . , 1981, 3, 695. LD. Bowers and P.R Johnson, Biochim. Biophys. A c t a , 1981, 661, 100. M. M i l o n e , R.K. R a s t o g i , F. D e l s o r b o , A. C o r v i n o , M.F. C a l i e n d o , E x p e r i e n t i a l 1981, 2, 1115. H. K o s a k a , M. I s e m u r a , T. O n o , Y. N i s h i m u r a a n d K. Kato, J. Biochem. (Tokyo), 1980, 88, 69. W.H. C u r l e y , G.W. L u c i e r a n d C.M. S c h i l l e r , Comp. Biochem. a n d P h y s i o l . Pt.B, 1981, 6 8 , 1. J.W. Coffey %d R.A. Salvador, Biochim. Biophys. A c t a , 1981, 677,243. M.M. Everett andW.A. M i l l e r , Biochem. Pharmacol., 1980, 3,2143. J.A. Brown, G.P. Jahreis a n d R.T. Swank, Biochem. Biophys. R e s . Corn=., 1981, 99, 691. T. M i z u o c h i , Y. N i s h i m u r a , K. Kato and- A. K o b a t a , Arch. Biochem. Biophys., 1981, 209, 298. R. Myerawitz and E.F. Neufeld, J. B i o l . &em., 1981, 256, 3044. I.V. T a v e t k o v a , E.L. R o s e n f e l d a n d I.G. P r i g o z i n a , C l i n . Chim. A c t a , 1980, 1 0 7 , 37. 347. J.Wlttemrth, C l i n . Chim. A c t a , 1980, A.F. Van Elsen and J.G. Leroy, C l i n . C h h . A c t a , 1981, 112, 159. W.T. Forsee and J.S. S c h u t z k c h , J. B i o l . Chem. , 1981, 256, 6577. L.J. B u r d i t t , K. C h o t a i , S. H i r a n i , P.G. Nugent, B.G. W i n c h e s t e r a n d W.F. Blakemore, Biochem. J., 1980, 189, 467. E. Berman and A. Allerhand, J. B i o l . Chan., 1981, 256, 6657 J.L. Macleod and W.F. Loanis, J. Gen. Microbiol., 1980, 120, 273. E. I c h i s h i m a , M. A r a i , Y. S h i g e m a t s u , H. Kumagai a n d R. Sumida-Tanaka, Biochim. Biophys. A c t a , 1981, 658, 45. R. L e p r a t and Y. Michel-Briard, m l e s de Microbiolcqie, 1980, 209. M. Zeigler and G. Bach, Biochem. J., 1981, 505. O.T. Mueller and D.A. Wenger, Clin. Chim. A c t a , 1981, 109, 313. S. Thanpson and A.H. Maddy, FEES L e t t . , 1981, 1 6 5 7 N. Hong, G. B e a u r e g a r d , M. P o t i e r , M. B e l i s l e , L. M a m e l i , R. G a t t i a n d P. Durand, Biochim. BioMys. A c t a , 1980, 616, 259. J.A. Alhadeff and S. Wolfe, I n t . J. Biochem., 1981, 13,975. S. Inoue, M. Iwasaki and G. Matsumma, Biocfiem. Biophys. Res. Commun., 1981, 102, 1295. S. G a t t , B. Gazit and Y. Barenholz, Biochem. J., 1981, 267. Yu. V. V e r t i e v a n d Yu. V. Ezepchuk, Hoppe-Seyler's Z. P h y s i o l . Chem., 1981, 362, 1339. H. von Nicolai, P. E s s e r a n d E. L a u e r , Hoppe-Seyler's Z. P h y s i o l . Chem., 1981, 362, 153.
.
.,
108,
m,
198, 133,
193,
6: Enzymes
571
256 G.H. Frank and L.B. Tabatabai, I n f e c t i o n and Imnunity, 1981, 32, 1119. 257 D.J.S. Arora and J. J i l l - S c h u b e r t , Can. J. Microbiol., 1980, 26, 1369. 258 J.A. C a b e z a s , P. C a l m , P. E i d , J. M a r t i n , N. P e r e z , A. Reglero and C. 1980, 616, 228. Hannoun, Biochim. Biophys. A-, 2 59 D. Conrad, Biotechnol. L e t t . , 1981, 3, 345. 260 M. Ishaque and D. Kluepfel, Biotechnol. L e t t . , 1981, 2, 481. 261 S.-C. L i , M. A s a k a w a , Y. H i r a b a y a s h i a n d Y.-T. L i (USA), Biochim. Biophys. g, 1 9 8 1 , 660, 278. 262 A. H a s i l i k and K. w n F i g u r a , Eur. J. Biochem., 1981, 121,125. 263 S. Kawagishi, Y. A p a k i and E. It0, Eur. J. Biochm., 1980, 112, 273. 264 B. O v e r d i j k , W.M.J. van der K r o e f , J.J.W. L i s m a n , R.J. P i e r c e , J. M o n t r e u i l , G. Spik, FEW. Lett., 1981, 128, 364. 265 H. Iwase, T. Morinaga, Y.-T. L i and S.-C. L i , Anal. Biochem., 1981, 113, 93. 266 H. M a l r q v i s t , Biochem. Biophys. A c t a , 1978, 537, 31. Agric. BiOl. am., 1980, 44, 2587. 267 T. M ~ r m t S uand K. -vA, 2 68 M. F u j i i , S. M u r a k a m i , Y. Yamada, Y. O n a a n d T. N a k a m u u a , Biotechnol. Bioeng., 1981, 23, 1393. 269 Y. Kobayashi and K. Horikoshi, Agric. Biol. Chem., 1980, 44, 2991. 270 H. Akedo, K. Y o s h i o k a , M. E h a r a a n d T. K i t a m u r a , C l i n . Chim. Acta, 1981, 115, 333. 271 J.P. B r e t a u d i e r e , R. R e e l , P. Drake, A. V a s s a u l t a n d M. B a i l l y , C l i n . Chem., 1981, 27, 806. 272 W. Hmig, E Moshudis and K. Oette, J. Clin. Umn. Clin. Biochem., 1981, 2, 1057. 273 S.A. Lacks and S.S. Springhorn, J. Biol. Chem., 1980, 255, 7467. 2 74 B. S h i w i r a j and T.N. Pattabiraman, 275 M.A. Y e t t e r , R.M. Saunders and H.P. Boles, Cereal Chem., 1981, 56, 243. 276 S. M u r a o and K. Ohyaxm, A ric. & B i o l . Chem., 1979, 43, 679. a n d S. Ueda, Agric.Bio1. Chem., 1 9 8 1 , 45, 277 H. Nakano, T. T a j i r i , Y.'Koba 1053. 27 8 H. Aschauer, L Vertesy and G. B r a u n i t z e r , Hoppe-Seylerls Z. PhySiOl. Chem., 1981, 362, 465. 279 N. Kashlan and M. Richardson, Ffiytochemistry, 1981, 3,1781. s. A c t a , 1981, 658, 397. 280 C.M. O'Connor and K.F. M c G e e n e y , Biochbn. Bio S c i . Food Agric., 281 G. C h a n d r a s e k h e r , D.S. R a j .nJ-dna 1981, 32, 9. 282 M. I r s h a d a n d C.B. Sharma, Biochim. Biophys. Acta, 1981, 659, 326. 283 B. S h i v a r a j a n d T.N. P a t t a b i r a m a n , I n d i a n J. Biochem. Biophys., 1980, 17, 181. s. A c t a , 1981, 658, 387. 284 C.M. O1cOnnor and K.F. McGeney, Biochim. Bio K. Y a m a s h i t a , Y. T a c h i b a n a , T. T a k e u c h i.J-a Biochem. (Tokyo), 285 90, 1281. 286 T. T a k a u c h i , H. F u j k i a n d T. Kameya, C l i n . Chem., 1 9 8 1 , 27, 556. 2 87 E.J. Sampson, P.H. Duncan, D.M. F a s t , V.S. W h i t n e r , S.S. McNeally, M.A. Baird, M.L. M a c n i e l a n d D.D. Bayse, C l i n . Chem., 1 9 8 1 , 27, 714. Haegele, E. S c h i a c h , E. R a u s c h e r , P. L e h m a n n a n d M. G r a s s l , 288 E.-0. J. Chranatogr., 1981, 223, 69. 289 N. Saito and T. Horiuchi, C a r b h y d r . Res., 1981, 96, 138. 29 0 J.E. Hodes, M.T. H u l l , R.C Karn, A.D. Merritt, M.E. Hodes, E x p e r i e n t i a , 1981, 37, 184. 29 1 0. Awad, E. Amin and N. M c h d , I n t . J. Siol. Macrml., 1981, 3, 272. 292 J. Hutney arid M. Ugorski, Arch. Biochm. Biophys., 1981, 206, 29, 29 3 L. P a s e r o , B. A b a d i e , Y. C h i c h e p o r t i c h e , Y. M a z z e i , D. M o i n i e r , J.P. Bizzozem, M. Fougereau and G. Marchis+ouren, Biochimie, 1981, 63, 71. 294 P.H. B u r r i l l , P.M. Brannon and N. Kretchmer, Anal. Biochm., 1981, 117,402. 295 T.L. Brown and F. Wold, J. Biol. Chm., 1981, 256, 10743. 29 6 R.C. K a r n , T.E. P e t e r s e n , J.P. H j o r t h , J.T. N i e l s e n , P. R o e p s t o r f f , FEBS. L e t t . , 1981, 126, 292. 29 7 S. Murao, A. Goro and M. mi, Agric. B i o l . Chm., 1980, 44, 1683. 298 T.Tanaka, E.W. G r e s i k and T. B a r k , J. H i s t o c h m . Cytochem., 1981, 29, 1189.
57 2 29 9 300 301 302 30 3 304 305 3 06 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 32 5 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
Carbohydrate Chemistry LJL Elyakova, N.M.
Shevchenko and S.M. Avaeva, Comp. Biochem. and Physiol., 1981, 69, 905. B.T. O'Connell, G.L. Rubenthaler and N.L. Murbach, Cereal Chem., 1980, 57, 411. T.W. O k i t a and J. P r e i s s , Plant Physiol., 1980, 66, 870. B.D. Singh, R.P. Singh and R.B. Singh, EKperentia, 1981, 37, 363. A.J. McCrate, M.T. Nielsen, G.M. Paulsen and E.G. Heyne, Cereal Chem., 1981, 58, 424. A. Beleia and E. V a r r i a n d l a r s t o n , Cereal Chem., 1981, 58, 433. K.F. Finney, 0. Natsuaki, L.C. Bolte, P.R. Mathewson and Y. Pomeranz, Cereal Chem., 1981, 58, 355. J.E. Kruger and K.H. Tipples, Cereal Chem. , 1981, 58, 271. B.G. O s b o r n e , S. D o u g l a s , T. F e a r n , C. Moorhouse a n d M.J. H e c k l e y , Cereal Chem., 1981, 3, 474. M. Irshad and C.B. S h a m , Phytochemistry, 1981, 20, 1205. M. Irshad, M. Goel and C.B. S h a m , Phytochemistry, 1981, 20, 2123. T. Koshiba and T. Minamikawa, Plant and C e l l Physiol., 1981, 22, 979. S. Shinomiya, K. Yamane and T. Oshima, Biochem. Biophys. Res. Commun., 1980, 96, 175. Y. Nagata, S. Suga, A. Kado and B. Maruo, Agric. B i o l . Chem., 1980, 44, 215. H. Yamauchi, Y. N a g a t a and B. Ma-, A g r i c . B i o l . Chen., 1980, 44, 1291. M. L e i s o l a , H. O j a m o , V. Kauppinen, M. L i n k o a n d J. V i r k k u n e n , Ehzyme Microb. Technol., 1980, 2, 121. M.B.M. Oliveira and G.T. Zancan, J. Bacteriol., 1981, 145, 171. M. S i p p l a and P. MSntsala, FEMS Microbiol. Lett., 1981, 10, 303. S. Shinomiya, K. Yamane, T. Mizukami, F. Kawamura and H. Sib, Aqric. B i o l . Chem., 1981, 45, 1733. T. Takagi, J. Biochem. (To 01, 1981, 89, 363. K. Moori, M. O h n i s h i a n d K. H i r o m i , T. Suganuma, T. Mizuk?mi J. Biochem. (Tokyo), 1980, 88, 131. M. Gmsekaran, Microbios, 1980, 29, 37. F. Clementi, J. Rossi, L. Costamagna and J. R o s i , J. Microbiol. Serol., 1980, 46, 399. P.E. Davis, D L . Cohen and A. Whitaker, J. Microbiol. Serol., 1980, 46, 391. J.E. Kruger, Cereal Chem., 1981, 56, 298. J. Daussant, B. Zbaszyniak, J. Sadowski and I. Wiatroszak, P l a n t a , 1981, 151, 176. B. M i k a m i , S. A i r b a r a and Y. M o r i t a , J. Biochem. (Tbkyo),1980, 88, 103. E. Mori, B. M i k a m i , Y. Morita and B. J i r g e n s o n s , Arch. Biochem. Biophys., 1981, 211, 382. T. S u g z m a , M. O h n i s h i , K. H i r o m i and Y. Morita, Agric. B i o l . Chem., 1980, 44, 1111. S. Murao, K. Ohyam and M. A r a i , Agric. B i o l . Chem., 1979, 43, 719. A. Azhar and M.K. Ham&, Biotechnol. Bioen 1981, 23, 1297. B.K. G i l l a r d , R.C. White, R.A. Zingaro :nd T.E. Nelson, J. B i o l . Chem., 1980, 255, 8451. D.D.Y. Ryu and M. Mandels, Enzyme Microb. Technol., 1980, I , 91. A. M a r z e t t i , B. Focher, L. D'Angiuro and V. S a r t o , C e l l u l . Chem. Technol., 1981, 15, 3. A.W. m y n , D. W a l l and L. van den Berg, Appl. Environ. Microbiol., 1981, 41, 1214. M. Castanon and C.R. W i l k e , Biotechnol. B i o e n 1981, 23, 1365. A. Cabello, J. Contie and M.A. Otem, Biotech21. Bioenq., 1981, 23, 2737. A.A. Klesov and S. Yu. Grigorash, B i o c h d s t r y , 1981, 46, 86. T. Kanda, K. Wakabayashi and K. N i s i z a w a , J. Biochem. (Tokyo), 1980, 87, 1635. A.A. Klesov and S. Yu. Grigorash, Biochemistry (USSR), 1980, 45, 166. A.R. White, R.M. Brown, Proc. Natl. Acad. Sci. USA, 1981, 1047. L.T. Fan, Y.H. Lee and D.R. B e a r b r e , Biotechnol. Bioenq., 1981, 23, 419. M. Nummi, M L Niku-Paamla, T.M. E n a r i and V. Raunio, Anal. Biocfiem., 1981, 116, 137. -
.,
.,
2,
573
6: Enzymes 342 34 3
G. Canevascini and C. G a t t l e n , Biotechnol. Bioeng., 1981, 23, 1573. E. Galas, R. Pye, K. PyC a n d K. S i w i f k k a , Eur. J. A p p l . Microbiol. a n d
Biotechnol., 1981, 11, 229. 34 4 A. Vardanis and M. Knkelman, Anal. Biochem., 1981, 115, 78. 345 M. Nummi, P.C. Fox, M.L. Niku-Paavola a n d T.M. E n a r i , Anal. Biochem., 1981, 116, 133. 34 6 A. M c H a l e and M.P. Coughlan, Biochem. J., 1981, 199, 267. 347 M. L e i s o l a , J. Virkkunen, E. Karvonen a n d A. Meskanen, Enzyme Microb. Technol., 1 9 7 9 , I , 117. 34 8 P.C. Mishra and M.C. Dash, E x p e r i e n t i a , 1980, 36, 1156. 349 N. Waszczynskys, C.S. R a o and R.S.F. Da S i l m , Cereal Chm., 1981, 58, 264. 350 D.E. K o e h l e r , L.N. L e w i s , L.M. Shannon a n d M.L. D u r b i n , P h y t o c h e m i s t r y , 1981, 20, 409. 351 M. M a n d e l s , J.E. Medeiros, R.E. A n d r e o t t i a n d F.H. B i s s e t t , B i o t e c h n o l . Bioenq., 1981, 23, 2009. 352 S.N. M u k h o p a d h y ~and R.K. Malik, Biotechnol. Bioenq., 1980, 22, 2237. 353 N. Choudhury, N.W. Dunn and P.P. Gray, Biotechnol. L e t t . , 1981, 3, 493. 354 E.T. R e e s e and D.Y. Ryu, Enzyme Microb. Technol., 1980, 2, 239. Pettersson, 355 B.S. M o n t e n e c o u r t , T.J. K e l l e h e r , D.E. E v e l e i g h a n d L.G. B i o t e c h n o l . Bioeng. Symp. N0.10, 1980, 15. 356 I.V. C h u r i l o v a , V.I. Maksimov a n d A.A. K l e s o v , B i o c h e m i s t r y (USSR), 1 9 8 0 , 45, 516. 357 A.R. Moreira, J.A. P h i l l i p s a n d RE. Humphrey, B i o t e c h n o l . Bioenq., 1981, 23, 1339. 358 S. Hayashida and H. Yoshioka, Agric. Biol. olan., 1980, 44, 1721. & , 1310. 3 59 T.H.D.Jones and M. Gupta, Biochan. Biophys. Res. Cannun., 1981, I 360 M.A. Folan and M.P. Caughlan, I n t . J. Biochem., 1981, 13,243. 361 I. Vanae, S.L. Blayden and J. Tanpion, Biotechnol. L e t t . , 1981, 3, 45. 362 S. Murao and R. sakamoto, A g r i c . & B i o l . Chan., 1979, 43, 1789. 363 T. Kanda, K. Wakabayashi a n d K. N i s i z a w a , J. Biochem. (Tokyo), 1980, 87, 1625. 364 A.W. Khan, J. Gen. Microbiol., 1980, 121, 499. 365 J.N. S a d d l e r , A.W. Khan and S.M. Martin, Microbios, 1980, 28, 97. 366 T.K. N g , A. Ben-Bassat a n d J.G. Z e i k u s , A p p l . E n v i r o n M i c r o b i o l . , 1981, 41, 1337. 367 S.P. Antai and D.L. Crawford, Appl. Ehvir. Microbiol., 1981, 42, 378. 368 M. Taya, T. K o b a y a s h i a n d S. S h i m i z u , Agric. B i o l . Chem., 1980, 44, 2225. 369 P. Fahnrich and K. I r r g a n g , Biotechnol. L e t t . , 1981, 3, 201. 370 A. E n r l q u e z , R. M o n t a l v o a n d M. C a n a l e s , B i o t e c h n o l . Bioenq., 1 9 8 1 , 23, 1431. 371 N. choudhury, P.P. Gray and N.W. Dunn, Biotechnol. L e t t . , 1980, 2, 427. 372 M.L. Bade and A. S t i n s o n , Arch. Biochan. Biophys., 1981, 206, 213. 373 F. Ishikawa, K. O i s h i and K. A i d a , Agric. Biol. Chem., 1981, 45, 2361. 3 74 J.D. Reid and D.M. Orgrydziak, Appl. Envir. Microbiol., 1981, 41, 664. 375 D. Y e l l o w l e e s , C a r b h y d r . Res., 1980, 83, 109. 3 76 A. Hattori and K. I s h i b a s h i , Agric. Biol. Chan., 1981, 45, 2347. 377 Y. M i t s u i s h i , M. Kobayashi and K. Matsuda, C a r b h dr. Res., 1980, 83, 303. -dP e. Gaugler, Anal. 3 78 B.L. L a m b e r t s , L.G. Simonson, ED. W Biochem., 1 9 8 1 , 1 1 7 , 320. 379 T. Takehara, M. Inoue, T. Morioka and K. Yokogawa, J. Bacteriol., 1981, 145, 729. 380 T.W. J e f f r i e s and J.D. Macmillan, C a r b h y d r . Res., 1981, 95, 87. 38 1 B.Y. R e i c h e l t and G.H. F l e e t , J. B a c t e r i o l . , 1981, 147, 1085. 382 A. Sanchex, G. L a r r i b a , J.R. V i l l a n u e v a a n d T.G. V i l l a , FEBS. L e t t . , 1980, 1 2 1 , 23. 383 D.J. H u b e r and D.J. Nevins, P l a n t a r 1981, 151,206. 384 Y. T s u j i s a k a , N. H a m a d a a n d R. K o b a y a s h i , A g r i c . B i o l . Chem., 1981, 45, 1201. 409. 385 G. H a l l i w e l l and R. Vincent, Biochan. J., 1981, 386 T.K. Ng and T.G. Z e i k u s , 387 J. P e t r e , R. Longin and J. M i l l e t , Biochimie, 1981, 63, 629.
a,
Carbohydrate Chemistry
574 388 389
J. A&, A. Amenura arid T. Harada, Agric. B i o l . Chen., 1980, 44, 1877. M. H i s a m a t s u , J. A b e , A. Amemura a n d T. H a r a d a , Agric. B i o l . Chem., 1980,
44, 1049. 39 0 P.J. Wood, Carbohydr. Res., 1981, 94, C19. 391 D.J. H u b e r and D.J. Nevi=, P l a n t a . , 1981, 151, 206. 39 2 R.K. F i r a n t e n e , V. Yu. A v i z h e n i s a n d N.A. T i u n o v a , B i o c h e m i s t r y , 1 9 8 1 , 46, 502. 39 3 I.V. C h u r i l o v a , V.I. Maksimov a n d A.A. K l e s o v , Biochemistry Engl. Transl.), 1979, 44, 1663. 394 Y. O k a m i , S. Kurasawa a n d Y. Hirose, A q r i c . B i o l . Chem., 1 9 8 0 , 44, 1191. P.V. Subba R a o , Biochem. J., 1981, 193, 395 V. Basaveswara R a o , N.V.S.Sastri, 389. 39 6 G.K. Lee, R.A. Lesch and P.J. R e i l l y , Biotechnol. Bioenq., 1981, 2, 487. 397 B. Svenson and M. O t t e s a n , C a r l s b e r g R e s . Camnun., 1981, 3, 13. 398 S. Moriyam, A. Noda, K. Nakanishi, R. Matsuno and T. Kamikubo, Agric. B i o l . Chem., 1980, 44, 2047. 399 S. Moriyama, S. K a t a o k a , K. N a k a n i s h i , R. Matsuno a n d T. Kamikubo, A g r i c . B i o l . Chem., 1980, 44, 2737. 400 S. Sivakami and D. Chatterji, I n d i a n J. Biochem. Biophys., 1980, 17,327. 401 J.H. P a z u r , Y. Tominaga, L.S. F o r s b e r g a n d D.L. Simpson, Carbohydr. Res., 1980, 84, 103. 402 D. A l a z a r d , M. R a i m b a u l t , Eur. J. A p p l . M i c r o b i o l . B i o t e c h n o l . , 1 9 8 1 , 12, 113. 40 3 T. Takahashi, N. Imkuchi and M. Irie, J. Biochem. (Tokyo), 1981, 89, 125. 4 04 V. B a s a v e s w a r a Rao, N.V.S.Sastri a n d P.V. Subba Rao, Biochem. J., 1981, 193, 379. 40 5 S. Moriyama, R. Matsuno, K. N a k a n i s h i a n d T. Kamikubo, A q r i c . B i o l . Chem., 1980, 44, 2763. 406 H. Bender, Eur. J. Biochm. 1981, 115, 287. 407 C. Ponzetto-Zhmmnan and A.M. Gold, FEES. L e t t . , 1981, 132, 179. 408 S. V o a r a a n d U. F r a n c k e , Proc. Natl. Acad. S c i . USA, 1 9 8 1 , 78,3738. 409 U. Els&ser-Beile and S. Stirm, Carbohydr. Res., 1981, 88, 315. 410 N. O t o t a n i , M. Kikuchi and Z. Yosizava, Carbohydr. R e s . , 1981, 88, 291. 411 A. Oldberg, C.-H. H e l d i n , A. W a s t e s o n , C. Busch a n d M. H g k , B i o c h e m i s t r y , 1980, 19, 5755. 412 P.M. C l l i h e r , C.L. Cooney, R. L a n g e r a n d R.J. L i n h a r d t , Appl. E n v i r . Microbiol., 1981, 41, 360. 413 P. Gacesa, M.J. S a v i t s k y , K.S. Dodgson a n d A.H. O l a v e s e n , Biochim. Biophys. 1981, 661, 205. S a v i t s k y , K.S. Dodgson a n d A H . O l a v e s e n , Anal. Biochem., 414 P. Gacesa, M.J. 1981, 18,76. 415 F.N. Kolisis, T.G. S o t i r o u d i s , A.E. E v a n g e l o p o u l o s , FEBS. L e t t . , 1 9 8 0 , 280. 416 M. Lyon and C.F. Phelps, Biochm. J., 1981, 199, 419. 417 G.S. Gupta and E. Goldberg, Biochim. Biophys. A c t a , 1981, 657, 364. 418 P.G. Richman and H. Baer, Anal. Biochem., 1980, 109, 376. 4 19 E. S h i m & and G. Matslanura, J. Biocfim. ('Ib 01, 1980, 88, 1015. 420 J.P. G u i r a n d , J. Daurelles d t e c h n o l . Bioenq., 1 9 8 1 , 23, 1461. 421 J. Fahrenkrug, P. Staun-Olsen and E Magid, Clin. Chem., 1981, 27, 1655. M.E. S e l s t e d and R.J. Martinez, Anal. Biochem., 1980, 109, 67. 422 423 M.J. Thomas, A. RUSSO, P. C r a s w e l l , M. Ward a n d I. S t e i n h a r d t , C l i n . Chem. , 1981, 27, 1223. 424 H. Mae&, J. Biochem. (Tokyo), 1980, 88, 1185. 425 S.-I. Segawa, M. Nakaya~mand M. Sakane, Biopolymers, 1981, 20, 1691. 426 J.L. L i p p e r t , R.M. L i n d s a y a n d R. S c h u l t z , Biochim. Biophys. A c t a , 1980, 599, 32. 427 TImtO, S. Sumi and K. Y a g i s h i t a , Agric. Biol. olm., 1980, 44, 1031. 4 28 K. Hasegawa, N. Okamoto, H. Ozawa, S. Kitajima a n d Y. Takado, Agric. B i o l . Chem.. 1981, 45, 1645. 429 R H i r a y a m a , H. F u j i o , Y. Kohi, Y. T a k a g a k i , K. Kondo a n d T. Amano,
e,
121,
575
6: Enzymes 430 431 432 433 434 435 436 437 438 4 39 440 441 442 443 444 44 5 446 44 7 44 8 449 450 4 51 452 453 454 455 4 56 457 458 459 460 461 462 463 464 465 466 467 468 469 4 70 471 472 473 474 4 75
J. Biochen. ("b 0 1 , 1981, 89, 963. J.Perraudin, Y.?mze, J . V i G e n t e l l i , and J.Leonis, Comp. Biochem. Physiol., P t B, 1980, 65, 127. K.Bel1, H.A.McKensie, V.Muller, and D.C.Shaw, M o l . C e l l . Biochem., 1980, 29, 3. V. Sidhan and S. Gurnani, Agric. B i o l . Chgn., 1981, 45, 1817. B.W. Matthews, S.J. Remington, M.G. G r i i t t e r and W.F. Anderson, J. M o l . B i o l . , 1981, 147, 545. m u s h i m a , Y. Murata, N. Nishikido, G. Sugihara and M.Tanaka, Bull. Chem. Sec. Jpn., 1981, 54, 3122. P.J. S t e i n and K. C r a i g Heehn, Biochem. Biophys. R e s . C o m E . , 1980, 95, 547. T. Imoto, T. Om and H. Yamada, J. Biochen. ("bkyo),1981, 90, 335. A. Shrake and J.A. Rupley, Biochemistry, 1980, 19, 4044. Y. Yang and K. Hamaguchi, J. Biochen. (Tokyo), 1980, 88, 829. Y. Yaw, S. Kurarrtitsu and K. Hamguchi, J. Biochem. (Tokyo), 1981, 89, 1357. A. Masaki, T. Fdcamizo, A. Otakara, T. T o r i k a t a , K. Hayashi and T. Imoto, J. Biochgn. ("bkyo), 1981, 90, 527. E.P. Savel'ev, G.I. P e t r o v , Z.F. Shmakova and S.A. Bitko, Biochemistry (Engl. Transl.), 1980, 5, 247. B. Szewczyk and T. Skorko, Biochim. Biophys. A c t a , 1981, 662, 131. G. Kleppe, E. Vasstrard and H.B. Jensen, Eur. J. Biochm., 1981, 119, 589. H. Sjijstrom, 0. Nor&, L. C h r i s t i a n s e n , H. Wacker and G. Semenza, J. B i o l . Chen., 1980, 255, 11332. M. Sat0 and A. Kaji, A ric. B i o l . Chem., 1980, 44, 1345. J. Gen. Microbiol. , 1980, 120, 295. G.S. Coleman, D.C., - aS D. Mikeg, J. S e d l s k o v a , L. Rexov&Benko-v& J. Chromatoqr. , 1981, 207, 99. Y. Itoh, K. Izaki and H. Takahashi, Agric. B i o l . Chem., 1980, 44, 1135. S.K.C. Obi and G.M. Umezurike, 1. Ehvir. Microbiol., 1981, 42, 585-589. Rex~vd-Benk~vdand M. .M -okd ~ Res. I 1981, 98, 115. G.A. Tucker, N.G. Robertson and D. G r i e r s o n , Eur. J. Biochem., 1980, 119. S.C. Lee and C.A. W e s t , Plant Physiol., 1981, 67,640. S.C. Lee and C.A. W e s t , Plant Physiol., 1981, 67, 633. P. Magro, P. Dilenna, P. Marciano and C. P a l l a v i c i n i , J. Gen. Microbiol., 1980, 120, 105. M. Sat0 and A. Kaji, Agric. B i o l . Chem., 1980, 44, 717. J. Yamada, Agric. B i o l . Chen., 1981, 45, 747. J. Y m d a , Carbohydr. Res., 1981, 90, 153. J. Yamada, Agric. B i o l . Chen., 1981, 45, 1269. A. H e r s m v i c s , A. Quaroni, B. Bugge and K. Kirsch, Biochem. J., 1981, 197,
E.
112,
5ll.
E. Bar-Guilloux, D. Robic and J.-E. Courtois, Biochimie, 1980, 62, 719. S. Rajendran and M. Muthu, Experi e n t i a , 1981, 37, 886. J. C o m t a t and J.P. J o s e l e a u , Carboh d r . Res., 1981, 95, 101. P. B i e l y , M. Vrganskdand 2. KrdtkqIyEur. J. Biochem., 1980, 112, 375. P. Biely, M. V&anovd and 2. K r d w , Eur. J. Biochem., 1981, 119,565. and M. V&anskd, Eur. J. Biochen., 1981, 559. P. Biely, 2. -tJ@ P.A.D. R i c k a r d and T.A. Laughlin, Biotechnol. Lett., 1980, 2, 363. D.B. Wankhede, K.R. Vijayalakshmi and M.R.R. R a o , Carbohydr. Res., 1981, 96, 249. H. Yoshioka, S. Chavanich, N. Nilubol and S. Hayashida, Agric. B i o l . Chem., 1981, 45, 579. D. m r a d , Biotechnol. Lett., 1981, 2, 345. P.A.D. Rickard and S.P. P e i r i s , Biotechnol. Lett., 1981, 3, 39. P.A.D. Rickard, M.I. Rajoka and J.A. Ide, Biotechnol. Lett., 1981, 2, 487. Z. K r d w and P. Biely, Eur. J. Biochem., 1980, 112, 367. K. Nakanishi and T. Yasui, Agric. B i o l . men., 1980, 44, 1885. 2729. K. Nakanishi and T. Yasui, Aqric. B i o l . Chem., 1980, A.V. Ananichev, I.V. Ulezlo, A.M. Egorov, A.M. Bezborodov, E.V. Berezin,
119,
44,
Carbohydrate Chemistry
576 476 477 478
Biochemistry, 1980, 45, 753. M.A. Van K e u l e n , K. V e l l e n g a a n d G.E.M. JOOSten, B i o t e c h n o l . Bioenq., 1 9 8 1 , 23, 1437. C.-S. Gong, L-F. Chen, M.C. F l i c k i n g e r , L.-C. C h i a n g a n d G.T. T s ~ o , A p p l . Envir. Microbiol., 1981, 41, 430. T. Kume, H. Watanabe, S. Aoki a n d T. S a t o , Agric. B i o l . Chem., 1 9 8 1 , 45,
1311.
T. Kume, H. Watanabe, M. T a k e h i s a a n d T. S a t o , Agric. B i o l . Chem., 1981, 45, 1351. 480 T. Kasumi, K. H a y a s h i , N. Tsumura a n d T. T a k a g i , Agric. B i o l . Chem., 1981, 45, 1097. 481 T. Kasumi, K. H a y a s h i , N. TsUmUra a n d T. T a k a g i , Agric. B i o l . Chem., 1981, 45, 1087. 482 T. Kasumi, K. Hayashi and N. T m u r a , Agric. B i o l . Qlem., 1981, 45, 619. 483 B. Larsen and H. Grasdalen, Carboh dr. Res., 1981, 92, 163. 484 K. I z u m o r i , S. S u g i m o t o a n d B. k A g r i c . B i o l . Chem., 1980, %(1), 223. 48 5 0. Valentovd, M. Marek, F. g v e c , J. gtamberg a n d 2. V c d r & k a , B i o t e c h n o l . Bioenq., 1981, 23, 2093. 486 W. Hartmeier, S t a r c h , 1981, 33, 97. 487 S. P i l l a i , Biochan. J., 1981, 193, 825. 1981, 23, 1037. 488 E. Sada, S. Katoh and M. T e r a s h h , Biotechnol. Bioen 489 Ya.A. A l e k s a n d r o v s k i i , L.V. B e z h i k i n a a n d Yu.V. Rozionov, B i o c h e m i s t r y , 1981, 46, 593. 49 0 V. L i n r k , P. Benei?, F. Hovorka a n d 0. H o l e z e k , B i o t e c h n o l . Bioenq., 1981, 23, 1467. 49 1 V. L i n e k , P. Beneg, J. S i n k u l e , 0. H o l e z e k and V. Malq, B i o t e c h n o l . Bioenq., 1980, 22, 2515. 49 2 B. Solomon, N. L o t a n a n d E. K a t c h a l s k i - K a t z i r , J. Chromatogr., 1 9 8 1 , 215, 121. 49 3 S. Hayashi and S. Nakamura, Biochim. Biophys. A&, 1981, 657, 40. 494 E. N a p c h i , M. Nishikimi and K. Yagi, J. Biochen. (Tbkyo), 1981, 90, 33. 49 5 R. J e n n e s s , E.C. B i r n e y a n d K.L. Ayaz, Comp. Biochem. P h y s i o l . , 1980, 67, 479
c
.,
49 6 497 49 8 499 500 501 50 2 503 504 505 506 50 7 508 5 09 510
511 512 513 514 515
195.
R.F.H.Dekker, J. e n . Microbiol., 1980, 120, 309. L. Tom and D. Gaudioso, Can. J. Biochan., 1980, 58, 667. J.E. Sadler, T.A. Beyer and R.L. H i l l , J. Chrmtogr., 1981, 215, 181. E.H. Beachey, W. Keck, M.A. D e P e d r o a n d U. S c h w a r z , Eur. J. Biochem., 1981, 116, 355. T. Koga and M. I m u e , C a r b h y d r . Res., 1981, 93, 125. K. Fukushima, R. Motoda, K. Takada a n d T. I k e d a , FEBS L e t t . , 1981, 128, 213. HH. Carnicero, A.M. Adaamany and S. Ehglard, Arch. Biochem. Biophys., 1981, 210, 678. E.T. O'Keeffe, R.L. H i l l and J.E. Bell, Biochemistry, 1980, 19, 4954. Y. F'ujita-Yamaguchi and A. Yoshida, J. Biol. Chan., 1981, 256, 2701. E.T. O'Keeffe, T. Mordick and J.E. Bell, Biochemistry, 1980, 19, 4962. P. B r q u e t and P. Louisot, Biochimie, 1981, 63, 803. A, M a r t i n , M.C. B i o l , E. A r r a m b i d e , M. R i c h a r d a n d P. L o u i s o t , B i o c h i m i e , 1981, 63, 241. C. C-Mulet, J. Badet, J.P. Cartron, FEBS. L e t t . , 1981, 126, 123. D.H. van d e n E i j n d e n , M.L.E. Bergh, B. D i e l e m a n a n d W.E.C.M. S c h i p h o r s t , Hoppe-Seyler's 2, Physiol. Chan., 1981, 362, 113. G. Dodin, FEBS. L e t t . , 1981, 134, 20. I.M. A r c h e r , P.S. Harper a n d F.S. Wusteman, C l i n . Chim. Acta, 1981, 107. I.G. Leder, Biochan. Biophys. Res. (3m'mun., 1980, 94, 1183. P. D i Natale and L. R o n s i s v a l l e , Biochim. Biophys. A c t a , 1981, 661, 106. T. I s h i b a s h i , A. M a r u , Y. I m a i , A. M a k i t a a n d I. T s u j i , Biochim. Biophys. A c t a , 1980, 616, 218. A. Waheed and R.L. van E t t e n , Biochim. Biophys. A&, 1980, 2,92.
112,
6: Enzymes
577
516 J.R. George and J.W. F i t z g e r a l d , J. B a c t e r i o l . , 1981, 145, 1428. 517 J . R . George and J.W. F i t z g e r a l d , J. Bacteriol., 1981, 147,69. 518 J.W. F i t z g e r a l d , RB. Kellogg and G.J. S t e w a r t , FEMS Microbiol. Lett., 1981, 11, 93. F i g u r a , W. G i l b e r g a n d W. F u c h s , 519 H. Kresse, E. P a s c h k e , K.V. Proc. Natl. Acad. S c i . USA - B i o l . Sci., 1980, 77, 6822. 520 P. Monsan and A. Lopez, Biotechnol. Bioenq., 1981, 23, 2027. 5 21 M.M. M a t t h e w s , C.L. F u t e r m a n , V.K. P a r n a i k a n d S.M. J u n g , Arch. Biochem. Biophys., 1981, 208, 278. 522 S.M. Jung and R.M. Mzyer, Arch. Biochem. Biophys., 1981, 208, 288. 523 T.J. Greir and R.M. Mayer, Arch. Biochen. Biophys., 1981, 212, 651. Doyle, 524 S. T h a n i y a v a r a n , S. S i n g h , C.M. Maynard, K.G. T a y l o r a n d R.J. Carbohydr. R e s . , 1981, 96, 134. s. A c t a , 1980, 614, 46. 52 5 M. Kobayashi and K. Matsuda, Biochim. B i o 526 G.L. Matters and C.D. & y e , P h y t o c h a n i s g 1980, 20, 1805: 52 7 J.-L. C h i a s s o n , J.H. Aylward, H. Shikama a n d J.H. E x t o n , FEBS. L e t t . , 1 9 8 1 , 127, 97. 528 P.J. P a r k e r , A. A i t k e n , T. Bilham, N. Embi a n d P. Cchen., FEBS. L e t t . , 1981, 123, 332. 529 P. P a e z , R. VXOM, I. G a r c i a - M a , A. W a n , FEBS. L e t t , 1981, 129, 249. 530 G.D. Craig, D.A. W o o d and K. G u l l , FEMS Microbiol. Lett., 1981, 10, 43. 531 Y. Ohkubo, I. F u n a k o s h i and I. Yamashina, J. Biochem. (Tokyo), 1981, 89, 161. 532 F.N. Kolisis, T.G. S o t i r o u d i s a n d R E . E v a n g e l o p o u l o s , FEBS. L e t t . , 1980, 121. 533 K.E. W o l ter , T.L. H i g h l y a n d F.J. Evans, Biochem. Biophys. R e s . Commun., 1980, 97, 1499. 534 A. Carrasw, G. P h c h e i r a and T. Ureta, J. B a c t e r i o l . , 1981, 145, 164. 535 M. Ameyama, E. S h i n a g a w a , K. M a t s u s h i t a a n d 0. A d a c h i , J. Bacteriol., 1981, 145, 814. 536 fi.E l i s a s h v i l i , Biochemistry (Engl. Transl. 1, 1980, 45, 14.
7
Glycolipids and Gangliosides BY I. M. MORRISON 1 Introduction
Various aspects of glycolipids are reviewedin the second of a twovolume book on cell membranes and viral envelopes.’ The structure and function of plant lipids occupy Volume 4 of the comprehensive treatise on the biochemistry of plants.2 A review on the role of lipids in biological membranes has appeared .3 2 Analytical and General Methods 1.r.
photoacoustic spectroscopy has been used to study skin Using CHC13-MeOH (2: 1 ) extracts, the results were similar to those obtained by i.r. transmission spectroscopy,but only l o - * times the amount of material was required. The phenol-sulphuric acid method for the estimation of sugars in lipids has been modified by keeping the products at 100°C for 5 More reproducible results were obtained. A dry-column method for the quantitative extraction and simultaneous separation of lipid classes has been developed.6 The tissue sample, anhydrous sodium sulphate,and diatomaceous earth are ground together and packed in a column. Total lipid or lipid classes are then eluted by isocratic or sequential elution, respectively. A two-stage, one-dimensional t.1.c. method has been developed for the separation of lipid classes.’ Lecithin was found to influence the chromatography of steroid glucosiduronates .8 It was concluded that hydrogen bonds were formed between the phosphodiester group of lecithin and the hydroxy groups of the steroid conjugates. D-Galactose oxidase is able to oxidize the hydroxymethyl group of lipids containing 9-galactose or 2-acetamido-2-deoxy-Dg a l a c t o ~ e .These ~ sugar residues can then be labelled by reduction with radiolabelled borohydride. Conditions are described for the most efficient production of product. Methylation techniques for the structural analysis of
lipid^.^
7: Glycolipids and Gangliosides
579
glycolipids have been reviewed. It has been shown that particles, previously observed in freeze-fracture replicas of mixed phospholipid dispersions, occur in dispersions of mixed ~ - 3 - ~ - g a l a c t o p y r a n o s y l d i a c y l - g l y c e r o l s l. 1 These particles correspond to lipid micelles sandwiched within a membrane bilayer.
3 Gangliosides The gangliosides GM1 and GD have been specifically oxidized at la the +position of the sphingosine moiety with 2,3-dichloroo f Triton X-1 00.l 2 5,6-dicyanobenzoquinone in the presence Subsequent reduction with borohydride restored the ganglioside to its original form, and if a radiolabel was used 99% of the radioactivity was incorporated. Proof of the reaction was obtained by reoxidation when the label was removed. The interaction of gangliosides with Ca2+ ions and some polar head-group requirements for the establishment of particular interactions with phosphatidylcholine have been studied in monolayers at the air-0.145M NaCl interface. l 3 The gangliosideCa2+ interaction depended on the position occupied by the neuraminosyl residues in the oligosaccharide chain. Favoured interactions o f polyneuraminosylgangliosides with phosphatidylcholine may result from a configuration which allows a partial matching of two oppositely orientated electrical vectors contributed by the zwitterionic phosphocholine group and particular neuraminosyl groups. The gangliosides G D ~and GT were biosynthesized as secondary la products from lactosylceramide and GM1,respectively.l 4 By a series of reactions involving periodate oxidation, borohydride reduction, and hydrolysis, the linkage between the two neuraminic acid residues was identified as (2+8). 'H n.m.r. spectroscopy has demonstrated that N-acetyl-aacid is the first product released by the D-neuraminic neuraminidases of both Clostridium perfringens and Arthrobacter ureafaciens when hydrolysing neuraminic acid-containing carbohydrate chains. l 5 Spectrofluorimetric techniques have been used to study various The studies ganglioside and ganglioside-lecithin dispersions. l 6 indicate that the ultimate and/or penultimate carbohydrate moieties of the neutral sugar backbone of gangliosides and the
580
Carbohydrate Chemistry
topographical difference in the locations of the neuraminic acid linkage influence the integrity of the membranes including the hydrophobic region. The micellar properties of gangliosides in aqueous solutions have been investigated by quasi-elastic light - scattering The scattered intensity data allowed the measurements. l 7 derivation of an upper limit to the critical micelle concentration and the evaluation of the molecular weight of the micelle from GMl and GDla. Aqueous dispersions of G M 1 and Triton X-100, in different proportions, have been analysed for some physicochemical properties and their susceptibility to ;-galactose oxidase. l8 Differences in the molar ratio gave well defined transitions between different micellar species as measured by the physicochemical methods, and these transitions were also evident in the kinetics of the !-galactose oxidase. The properties of these micelles were further studied using light-scattering methods. The ;-galactose oxidase acted very poorly on homogeneous G *1 micelles,but at fixed G M , concentrations the rate was increased by increasing Triton X-100 concentrations. The formation of statistical micelle aggregates was followed by inhibition of the ?-galactose oxidase activity. H and 13C n.m.r. spectroscopy, laser-light scattering,and differential scanning microcalorimetry have been used to study the influence of GH, and G D l a on the structural and thermotropic properties of sonicated small 1,2-dipalmitoyl-a-~-phosphatidylcholine vesicles.” Since the average dimensions of all vesicles were the same, differences in the temperature dependence of heat capacity in the presence of the gangliosides were attributed to differences in interaction of the hydrophobic parts of the molecules. The higher content of C20 sphingosines in G D l a as compared to GM was considered to be one possible source of 1 difference. Trineuraminosylgangliosides are spontaneously incorporated into 1,2-dipalmitoyl-a-~-phosphatidylcholine vesicles and, since the ganglioside, on incorporation, is susceptible to neuraminidase action, it is concluded that incorporation occurs only on the outer face of the bilayer.*l Calorimetric studies have indicated that the ganglioside stabilizes the vesicular structures by inhibiting the fusion of small vesicles that occurs below the phase-transition temperature. Cholesterol enhanced the binding of thyrotropin to 1,2-dipalmitoyl-a-~,~-phosphatidylcholine liposomes containing G, 1
7: Glycolipids and Gangliosides
581
ganglioside but not those containing the gangliosides G, and 1 The role of gangliosides in the binding and action of GDla' thyrotropin has been re-evaluated by comparing thyrotropin binding with cholera-toxin binding in a cloned line of normal rat thyroid cells and neuraminidase-treated cells . 2 3 The results indicate that more complex gangliosides do not serve as a component of the thyrotropin receptors nor are they involved in the transmission of the hormone signal across the cell membrane of these cells. Gangliosides that bind cholera toxin have been detected by the direct binding of 1251-labelled toxin on t.l.c.24 The method is and should be applicable to other sensitive to 70 fmol G M ~ carbohydrate-binding materials. The preparation of a receptorspecific affinity chromatographic matrix for the large-scale purification of cholera toxin has been described.25 The ganglioside G M ~is hydrolysed to lyso GM,, which is coupled, via stabilized Schiff's bases, to porous silica beads. The amount of toxin bound was proportional to the amount of lyso G M ~used. Ganglioside affinity filters have been used to identify toxigenic strains of Clostridium botulinum types C and D but could be used on a general procedure for identifying botulinal toxin and toxigenic Antibodies to the gangliosides G D ~ and G M ~ have been prepared and their properties determined.27 The antibodies to G, were 3 highly specific while those to G M 1 reacted with many other A periodate-oxidized gangliosides and their derivatives. itself. derivative of GM, cross-reacted almost as readily as G, 1 The specificity of limulin and wheat-germ agglutinin towards neuraminic acids has been studied using lipid vesicles containing GM3. 2 8 Limulin binds specifically to E-glycoloyl derivatives of G but the hydroxy group at C-4 and the carboxy group must also 3, be free. The side chain is not involved in binding. Wheat-germ agglutinin only binds when the hydrophilic tail is removed. The acetamido group but not the carboxy group is involved. The ganglioside GM,, incorporated in a planar lipid bilayer, interacts specifically with Ricinus toxin.29 A fourteen-fold increase in conductance was observed. An interspecies comparison of the brain ganglioside patterns from fish, amphibians, birds,and mammals has been studied by twodimensional t. 1 .c .30 Over 30 components were detected in mammalian neural samples. Differences were observed between the vertebrate classes,but greater similarity exists between the lower and higher
**
582
Carbohydrate Chemistry
classes than had previously been noted. Various surfactants have been shown to be able to replace the requirements f o r the activator protein in the hydrolysis of G M ~ ganglioside by the B-~-2-acetamido-2-deoxy-hexosidase A from human liver.31 In the presence of saturating concentrations of the activator, the enzymatic hydrolysis of the substrate was further stimulated. The surfactants had no effect on the enzymatic 2-acetamido-2-deoxy-B-Dhydrolysis of 4-methylumbelliferyl glucose. A model for this reaction is discussed. A mononeuraminosylganglioside has been shown to be the antigen of a monoclonal antibody that is specific for cells from carcinoma of the human colon.32 The surface distribution of the ganglioside G, on human blood 1 cells and the effect of endogenous GM, and neuraminidase on cholera-toxin surface labelling have been demonstrated by an immunocytochemical study.33 Neutrophils were the most heavily labelled blood cells while lymphocytes, erythrocytes,and platelets were only labelled to a limited extent. The labelling was significantly altered on neuraminidase treatment. The lymphocytes of human peripheral mononuclear cells have been activated by oxidation with periodate .34 The neuraminosyl group was converted to a 7-carbon analogue, but the L-fucose and !-galactose residues were also oxidized. The response to periodate was reduced 5 50% by pretreatment with neuraminidase. The gangliosides from human peripheral blood lymphoctyes and neutrophils have been isolated and their structures determined by mass spectrometry and glycosidase hydrolysis results.35 The three were found in both types with ( 1 ) being the structures ( 1 ) - ( 3 ) major ganglioside in lymphocytes and ( 3 ) the major ganglioside in (2) may be a leukocyte-specific neutrophils. Structure glycosphingolipid. Large gangliosides with the general structure (4) were also isolated. The gangliosides in human leukocytes have been characterized and differences were observed between types of leukocyte .36 More ganglioside was present in normal leukemic cells than in granulocytes, while the complex gangliosides were more abundant in myelogenous cells than lymphocyte cells. Concanavalin A was shown to increase the incorporation of labelled 2-amino-2-deoxy-~-glucose into the gangliosides . 3 7 Thus, associated with cellular ganglioside synthesis is not only division but also occurs within a short time of lymphocyte activation.
583
7: Gfycolipids and Gangliosides
$4
aJ
n U 7
4
c W
$I
F;
TI1
W
$1
TII
4
m n I
m I
n
d
Y 9"
E
W
m I
n C.
1.
N
W
n C.
1.
N
W
I
584
Carbohydrate Chemistry
Anti-asialoganglioside sera has been shown to cross-react with human blood-group N antigen .38 An immunocytochemical study of the surface ganglioside GM in 1 haemic cell lines of normal human bone marrow has been carried out similarly to ref. 33.39 The extent of incorporation was related to specific cell types and to their stage of maturation. The ganglioside patterns of horse, donkey,and mule brains have been deter~nined.~' Forebrains contained the highest concentration with the brain stern of the mule having the lowest value. The N-glycoloylneuraminic acid content was (3% of the total neuraminic acid. G M l , GDla, and G D l b were the major gangliosides. The gangliosides from equine kidney and spleen have been characterized as haematoside, GM2, G M ~ ,and G D , ~4.1 G D ~was found in the kidney and G D l b in the spleen. The relative proportions of 1-acetyl and N-glycoloyl neuraminic acids were also determined. Liposomes, composed of gangliosides from bovine brain and dipalmitoyllecithin, have been studied by e.s.r. spectro~copy.~~ At temperatures above the transition temperature ( 4 7 ° C ) the gangliosides diffuse freely in the lipid matrix,but at 19'C, in the gel state, the gangliosides cluster together. Gangliosides from bovine brain have been modified by attaching biotin hydrazide to the aldehydo group after periodate oxidation.43 The modified gangliosides were incorporated into mature rat thymocytes,and the results suggested that gangliosides may be involved in transmembrane communication during lymphocyte stimulation. A sulphated ganglioside has been isolated from bovine gastric mucosa, and its structure (5) was elucidated by partial acid hydrolysis, specific glycosidase degradation, periodate oxidation, and methylation analyses.44 71% of the neuraminic acid was the N-acetyl derivative. A sulphated ganglioside from bovine gastric mucosa had the structure (6) confirmed by the usual procedure^.^^ 65% of its neuraminic acid was the 1-acetyl derivative. A non-specific lipid-transfer protein, purified from bovine liver, will stimulate the transfer of the ganglioside GM, and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts .46 E-Glycoloylhaematoside and a ganglioside, containing N-glycoloyl-neurarninic acid and having an oligosaccharide chain identical to that of erythrocyte neuraminosylparagloboside, have been isolated from both normal and leukemic bovine blood were identified in lymphocytes. 47 Three other gangliosides
7: Glycolipids and Gangliosides
&
al u
r\
c
4
585
bl d
7
v
B
nil
rn I
A
U
0 m
v
7 I3
TI1
m I
586
Carbohydrate Chemistry
leukemic lymphocytes. The gangliosides have been isolated from bovine optic nerve and were found to be GM (1291, G D (~9 8 1~, G D l b ( 9 7 1 , G T ( 8~0 1 ~, G D ~ 1 (311, and Gq, (121, the concentrations being ug g-l wet tissue.48 Together they accounted for 97% of the total neuraminic acid present. The three L-fucogangliosides ( 7 ) - ( 9 ) have been isolated from porcine nervous tissue.49 A l l three were found in dorsal-root ganglia and spinal cord but only ( 7 ) and ( 9 ) in the forebrain. The chemical analyses were confirmed by mass-spectral analysis. The specificity of the neuraminosyltransferase from bovine liver microsomes has been determined.50 The transfer was solely to C-3 of E-galactose residues with no transfer to 2-acetamido-2deoxy-;-galactose residues. Eight gangliosides have been identified as constituents of ovine testis, with GMg, GD3, GMl,and GD , respectively, being the la most abundant.5 1 A new solvent system has been developed for t.1.c. of the gangliosides of rat ~ e r e b e l l u m . ~The ~ separation takes 1 h and virtually no tailing occurs. The considerable heterogeneity of this material was demonstrated by identifying 28 separate gangliosides. 2-Acetamino-2-deoxy-~-glucose has been shown to be incorporated 2-3 times higher into undernourished rats than normal rats.53 This enhanced incorporation was found in all brain areas. The turnover of the gangliosides was slower in young undernourished rats, relative to the controls, but greater in older rats. Microsomal gangliosides in rat brain have a higher initial incorporation of 2-acetamido-2-deoxy-~-mannose than synaptosomal g a n g l i ~ s i d e s . ~ ~ The gangliosides G T l b and G q l b were more highly labelled than other gangliosides,but a decrease in incorporation was observed on treatment with the convulsant pentylenetetrazol. The role of neuraminosyl compounds on choline uptake by synaptosomes has been studied.55 Neuraminidase treatment of synaptosomal fractions brought about a reduction in the uptake of choline. The activation of (Na+, K+) ATPase by the ganglioside G M ~has been shown to follow biphasic kinetics.56 The break is at 50nM G,l with a stable complex below that value and a loosely bound one above it. It was suggested that the activation was a specific phenomenon not related to the amphiphilic and ionic properties of the ganglioside but due to a modification of the membrane lipid
587
7: Glycolipids and Gangliosides
TI1
m I
n U h
I
-
n N
W
588
Carbohydrate Chemistry
environment around the enzyme. The highest degree of labelling in homogenized neuronal perikarya from rat brain with f3Hl-5-acetylneuraminic acid has been found in subcellular fractions that also showed the highest specific activities for several ganglioside glycosyltransferases.57 The neuraminic acid-containing glycoconjugates remained associated with the membrane after all treatments tried except sodium deoxycholate extraction. Some of the results suggested that the gangliosides change their accessibility to added enzymes in the process of transport through the axon and incorporation into the synaptic membrane. An increased threshold for electrical stimulation to induce somatosensory-evoked potentials in peripheral nerves followed the transection and rejoining of the nerve in rats.58 The amount of this increase was diminished by treatment with gangliosides s o it was concluded that gangliosides enhance the rate of nervous regeneration. (UDP-2-acetamid0-2-deoxy-~-galactose-G~~-2GM2-Synthase acetamido-2-deoxy-D-galactosyltransferase) has been studied in Golgi-rich fraction from rat liver.59 Many requirements of this enzyme were demonstrated along with its physical properties. Methods for the chemical detection of gangliotetraosylceramide, the rat T lympohocyte macrophage-associated antigen, have been reported along with its cellular distribution.60 The glycolipids of murine lymphocyte subpopulations have been investigated. A neuraminosyl derivative of asialo GM,, which is sensitive to neuraminidase treatment, is increased in concentration in splenic lymphocytes.61 Asialo G M , is a normally occurring lipid and not an acid-hydrolysed product of G M ~ . The total glycolipids from thymocytes of leukemic A K R / J murine thymus have been shown to be greater than those of non-leukemic thymocytes.62 Of the individual gangliosides, GM3, GM2, GDla,and G D l b contents were higher while GM and G, were lower. Parallel 1 1 with these findings were the observations that two neuraminosyltransferases were also at an elevated level. During cells from mice into the differentiation of leukemia MI macrophages, the ganglioside content has been shown to change markedly.63 A several-fold increase in GM content (confirmed by lb neuraminidase treatment) was noted with a concomitant decrease in the dineuraminosylganglioside fraction. The glycolipid content of a murine cell line ( J L S - V 9 ) and its ouabain-resistant mutant clone ( J L S - V g OR) have been compared.64 The ganglioside, G M ~ ,content of
7: Glycolipids and Gangliosides
589
the mutant cells was 1.14 times that of the parent cells but, whereas 98% of the neuraminic acid in the parent cells was in the N-acetyl form, only 69% of that in the mutants was in the same form The ganglioside pattern of rabbit brain has been studied by twodimensional t .1 .c. and a ~ t o r a d i o g r a p h y . ~ ~Numerous minor components, representing previously uncharacterized gangliosides, were identified, several of which were novel L-fucose-containing gangliosides. The gangliosides of rabbit thymus have been analysed by a ganglioside mapping procedure.66 The G M gangliosides and the for 76.6 and 23.3%, combined G, and G , species accounted respectively, of the lipid-bound neuraminic acid. The gangliosides (10) and ( 1 1 ) accounted for 38.4 and 31.3%,respectively,of the total fraction while G D 3 (11.8%) and G M ~( 1 7 % ) accounted for the remainder. The GD3 and 62% of GM3 were in the N-glycoloyl form. The lacto-N-neotetraose backbone of ( 1 0 ) and ( 1 1 ) has been shown to be tissue specific for thymus with 70% of all thymus gangliosides possessing it.67 In addition the N-glycoloyl derivative of neuraminic acid represents 90% of that species. The mononeuraminosyl gangliosides of rabbit skeletal muscle have been analysed with G M representing 73% of the fraction.68 A 3 novel ganglioside, 5-acetylneuraminosyl lacto-N-noroctaosylceramide (12),constituted 5% of the fraction. Addition of gangliosides has induced a statistically significant increase in the number of neurites in the outgrowth zone of guinea-pig spinal ganglia.69 However, only a slight increase in neurite length was observed. Three novel gangliosides (13)-(15) have been isolated from frog fat body and their structures confirmed by the usual methods. 7 0 During phylogeny and early ontogeny of higher vertebrates the number of ganglioside fractions was reduced especially with regard to the more polar ~pecies.~'Arranging the different ganglioside fractions subsequent to their paths of formation, it has become apparent that in elasmobranch fish and embryonic chicken the third pathway is used whereas in the adult chicken there is a switch to the first and second pathway. The results are taken as further evidence of the recapitulation principle according to Haeckel's biogenetic rate. An unusual pattern of myelin gangliosides has been observed in avian central nervous system. 7 2 The total concentration was
.
Carbohydrate Chemistry
590
n I
f c W
kl
rl
U 4
TI1
m n I
-
m
v
uI
2al rl
c3 nii
m n I
U I
c W
n
0
n
rl
4
Y
m n I
m
rl
u nil
m I
n I
m
N v v
bl
4
Ynil m n I
0
.f
N
v
I
rl
u
L n
4'
z b
I
n m
N
W
591
7: Glycolipids and Gangliosides
rl
0
c:
11
m I
-
n
'
3
V
0 a?
. .
a .f
PJ v I
ril
I n
rl
7
rl
V c
-
n
m
TII
v
m n I
m
1.
-
kl
rl
c3 m
7
n
+
m 7
W
kl
rl
Q
nil
m I
-
h
m
W
bl
rl
m
YP b
II
kI TI1
Q
m I
4' J
a
V
11
W
rl
I c3 n
I
n m
m I
m
n
Carbohydrate Chemistry
5 92
considerably higher than in other mammalian species,with GM3 being present in concentrations similar to G M ~ . A new t.1.c. system has been used to separate complex gangliosides from embryonic chicken brain. 73 Ten fractions were detected, eight of them also being present in the brain of rays. Six of these were similar to the gangliosides GT39 GT2’ GTlc9 G Q l c , GPlc,and GPlb identified in cod brain. Four of these have been partially characterized and they contain neuraminic acid: sphingosine ratios of 4: 1 , 5: 1 , 6:1, and 7: 1. 7 4 Mild neuraminidase treatments yield G T and ~ G ~ D transiently ~ ~ but G M ~finally. During brain development the amounts of the forms with ratios of 6 and 7 decreased. The brain gangliosides of the ice fish Trematomus hansoni have an extremely high content of neuraminic acid which confers a high degree of polarity on the neuronal membrane and maintains their temperature^.^^ At least four gangliosides functionality at low were detected which were more highly substituted than the pentaneuraminosyl ganglioside G, 1 Two novel gangliosides have been isolated and characterized from the sea urchin Strongylocentrotus intermedius.76 The first had the structure ( 1 6 ) and the second was similar except that it contained a sulphate ester group at C-8 of the terminal neuraminic acid residue. The neuraminidation of gangliosides has been studied during maturation of cultured neurons.77 During the first 4 h GM and GD 3 3 are produced, after 12 h GD and GD are produced,and finally la lb and G T l b are produced. GD3 does not appear to be incorporated G M ~ into the membranes formed during the period of synaptogenesis in the same way as GDla and polyneuraminosylgangliosides. The ganglioside contents of SV40-transformed Balb/c3T3 cells (SV3TC cells) and concanavalin A-selected SV3T3 revertant cells have been determined and compared with untransformed cells. 7 8 There was a decrease in the concentration of higher gangliosides in transformed and revertant cells, but the content of GM3 in revertant cells was higher than in transformed or original cells. GM3 may have a role in growth control.
.
4 Animal GlvcoliDids A new solvent system coupled with
been
developed
a porous silica-gel column has for separating glycolipids containing mono- to
7: Glycolipids and Gangliosides
593
tetrakaidecasaccharide chains in 60 min. 79 The separation and microdetection ( 1 0 pmol) of oligosaccharide chains of glycolipids have been achieved on high-performance cellulose t.1.c. and autoradiofluorography .80 Differential scanning calorimetry and X-ray diffraction of anhydrous and hydrated N-palmitoyl-D-galactosylsphingosine have provided evidence for a complex polymorphic behaviour and interconversions between stable and metastable structural forms.8 The anhydrous glycolipid exhibits three lamellar crystal forms below 143°C and a liquid-crystal form between 1 4 3 and 180°C. The 360 MHz ' H and 90.5 MHz 13C n.m.r. spectra of Q-galactosylceramides have been recorded in DMSO and show a 4 C l configuration of the sugar ring.82 In contrast to an aqueous solution, the hydroxymethylene group at C-6 can freely rotate A series of glycolipids has been around the C-6 : C-5 bond. analysed by 360 MHz I H n.m.r. s p e c t r o ~ c o p y .The ~ ~ resonance of all H-1 and H-2 as well as most H-3 and H-4 and some H-5 protons could be assigned with the aid of spin-decoupling difference spectroscopy. Regularities were observed in the type, anomeric configuration, site of glycoside linkage,and sugar residues which could be used for the structure of more complex glycolipids. Mass spectrometry has been used for the sequencing of the oligosaccharide chain of a dodecaglycosylceramide.84 This is the largest saccharide conclusively identified. Mass spectrometry, after t.l.c., has been used to identify the structures of glycolipid mixtures from a variety of species.85 The anomalous thermotropic phase-transition behaviour of 1 , 2 distearoyl-p-galactolipids has been investigated .86 The penetration of melittin and myelin basic protein into glycosphingolipid monolayers depends on the lipid polar head group, the protein concentration, and the initial surface pressure.87 The interaction leads to a modification of the surface properties of both the glycosphingolipid and the protein. Glycolipid synthetases have been measured in a two-phase scintillation assay carried out in a small The method should be suitable for many assays but the specific enzyme determined in this investigation was ceramide : UDP-E-glucose q-glucosyltransferase. has been derivatized for use as the D-Galactosylcerebroside ligand in affinity chromatography by ozonolysis of the sphingosine The ant i -gdouble bond followed by oxidation. 89
'
Carbohydrate Chemistry
5 94
galactosylcerebroside antibodies purified on this materia.1 were highly specific. Proteins can be covalently bound to liposomes after periodate oxidation of the glycosphingolipids in the vesicle membrane. The method has potential for the antibody-mediated targeting of vesicles to cells. The synthetic glycolipids lactosyland melibiosylphosphatidylethanolamine can be incorporated into unilamellar l i p o ~ o m e s . ~ Both are agglutinated by Ricinus communis lectin but only the latter by Banderiaea simplicifolia isolectin I. Efficient fusion of phospholipid vesicles with monolayer cultures of eukaryotic cells has been accomplished by attaching glycolipid-containing vesicles to the cell surface by using a lectin displaying binding for both the cell surface and the glycol ipid Single bilayer vesicles of glycosphingolipids and phosphatidylcholine have been prepared and their physical Incubations with high-density properties determined.9 3 lipoprotein-3 resulted in the transfer o f the glycolipid, a process which did not occur in the absence of phosphatidylcholine. The complex has been further characterized,and only 69% of the lipid is transferred from the vesicles.94 The lipid compositions of axolemma-enriched fractions and myelin from human brains have been determined . 9 5 D-Galactolipid accounted for 25.8% of the lipid in the axolemma fractions, 83% of this being cerebrosides. The q-galactosylceramidase of human brain is activated by phosphatidylserine but the G M , ganglioside 8-P-galactosidase is not activated . 9 6 A review of sulpho-2-galactosylceramide has suggested that this glycolipid possesses multifunctional properties in biological membranes. The characteristic deposits of glycolipid in tissues from patients with Fabry’s disease have been studied by electron microscopy.9 8 Fourier transformation for the analysis of the distribution periodicity of the inclusions showed that, in synovial membrane and muscle, the inclusions had a monocrystalline character while in the other tissues they were amorphous or polycrystalline. The crystalline morphology of the trihexoside ceramide inclusions characteristic of Fabry’s disease have been Image processing further examined especially in synovial tissue
.
.”
confirmed
the
membrane-like
structure
of
trihexoside ceramide
7: Glycolipids and Gangliosides
595
inclusions and corroborated the proposed classification. (Gaucher's storage material) have been D-Glucosylcerebrosides shown to stimulate the release of lymphocyte activating factor from macrophages. l o o Other ceramides had no effect. The importance of these observations to Gaucher's disease was discussed. The complete structure of a trisaccharide ( 1 7 ) from a patient l3 C n.m.r. with mannosidosis has been established by spectroscopy.lol One of the features of a patient with mannosidosis has been excessive gingival hyperplasia with storage oligosaccharides . ' 0 2 The trisaccharide ( 1 7 ) was of D-mannose-linked the predominant material in the urine, but tetraand pentasaccharides were more abundant in gingiva. The neutral glycolipid compositions of human gastric and colonic cancer tissues have been compared with those from normal The cancerous tissues had elevated levels of tissues. Io3 lactosylceramide and 4-fucoglycolipids. The 4-fucoglycolipids contained both 3-0- and 4-g-substituted residues o f 2-acetamido2-deoxy-P-glucose. Similar studies have confirmed these results, especially those of the L-fucoglycolipids, and further showed that the levels of sulpho-E-galactolipids were also elevated. lo4 Blood group A-active glycolipids were present in cancer tissue from two patients with blood group 0 but not in the associated healthy tissue. The liver and kidney of a patient with I-cell disease have been di- and tri-hexoside found to contain elevated levels of This was associated with a B-P-galactosidase ceramide. lo5 deficiency. It was concluded that the B-8-galactosidase deficiency in I-cell disease is a more specific phenomenon rather than a secondary inhibition as found in mucopolysaccharidoses. Evidence has been presented that Niemann-Pick disease, type C, is caused by the deficiency of an activating factor stimulating sphingomyelin and P-glucocerebroside degradation in the spleen of these patients. Io6 The glycolipids o f the meconium of a human 0 Le (a-b+) secretor have been characterized by structural and immunological The dominating species were E-glucosyl- ( 1 5 % ) and methods . I o 7 (30%). Of the higher saccharides, the lacto Ij-galactosyl-ceramide (30% of total weight) was represented by series lactotetraosylceramide and H-active, Lea-active, and Leb-active Similar studies, involving more glycolipids of the lacto series. detailed separations and characterization methods, have suggested
596
Carbohydrate Chemistry
t4
V a,
! I
W
a,
0 I
-
h c
1.
W
I
-
h
m .f
v
-
n
m
n
m
v
-
n
m
I.
W
h
Pl
597
7: Glycolipids and Gangliosides
that meconium is a rich source of glycolipids which allows the chemical fingerprinting of the blood-group type in individuals.' O 8 The, non-acidic glycosphingolipids of human cord blood erythrocytes from blood groups 0 and A have been characterized.lo9 Lactosylceramide and globoside were the major components. Increased amounts of penta- and hexa-glycosylceramides, which lacked L_-fucose substituents, were present and could be A and H biosynthetic precursors of ordinary blood - group glycosphingolipids. The glycosphingolipids of human plasma lipoproteins have been reviewed with specific interest in the way the different glycolipids exchange between the lipoproteins and erythrocytes. l o The identification of a blood-group Leb-active glycosphingolipid in plasma by m.s. and n.m.r. spectroscopy has suggested a new method of chemical blood-typing of human individuals.' A series of papers has been published on the immunochemistry o f the Lewis blood-group system. In the first, the complete structures of the oligosaccharide chains of the Lea-, Leb-, and H-type 1-active glycolipids have been established as (18)-(201, respectively. 1 1 * The second and third papers consider the m.s. analysis113 and 'H n.m.r. spectroscopy,ll 4 respectively, which have been used to establish these structures. Neutral glycosphingolipids have been isolated from the hairy cell leukemia and comprise cells of a patient with hairy lactosylceramide,and two higher glycolipids of g-glucosylceramide, the globo series which are similar to those found in human lymphocytes and chronic lymphocytic leukemia cells. The glycolipid pattern may be useful in classifying leukemias of uncertain origin. A high incidence of an autoantibody against the neutral glycolipid asialo G p l l has been observed in patients with systemic lupus erythematosus. l 6 Since no activity was shown against other glycolipids or gangliosides it was suggested that the antibody played a role in the pathogenesis of such neurological disorders. The glycosphingolipids of normal human lymphocytes have been separated by h.p.1.c. The major component was lactosylceramide with others being detected in smaller amount^."^ Purified B- and T-cell fractions had a similar complement of glycolipid but the B-cells contained significantly more of each component. Similar studies have been carried out on human peripheral blood lymphocytes and the lymphoid cells of a patient with B-cell
'
-
'
598
''
Carbohydrate Chemistry
chronic lymphocytic leukemia. The glycol ipids were the same as those in ref. 114. A blood-group A-specific tetrasaccharide (21) has been isolated and characterized from human urine.ll9 The sugar had A activity almost as great as that of the most active oligosaccharide isolated from soluble blood-group A substance. The alkyl-q-galactolipids from calf brain have been separated by h .p. 1 .c . 1 2 0 The two oligosaccharides B-~-mannopyranosyl-(l+4)-2-acetamido2-deoxy-;-glucose and 42-g- 6-D-mannopyranosylchitobiose accumulated in the kidney of a goat with mannosidosis.12' The amounts represented three times those found in the brain,but while lesions of the brain caused profound neurological disorders functional impairment of the kidney was not evident. Using an epithelial cell line derived from monkey kidney, it has been shown that E-galactosylcerebroside is present in the cytoplasm in close association with colchicine-sensitive microtubule-like subcellular structures.' The distribution of glycero-g-glucolipids in the mucous barrier of dog stomach fundus, body, and antrum has been investigated. 1 2 3 The content of neutral glycero-8-glucolipid in the antral portion was higher than that in the other two areas,but the content of sulphated glycolipid was even higher. The localization of q-galactosylcerebroside in distal tubules, ascending limbs of Henle's loops and collecting tubules of kidney, periportal bile ducts and hepatic parenchyma of liver, and bronchioles and alveoli of lungs has been demonstrated by an immunological method in these organs from hamsters.l 2 4 The existence was further confirmed by chemical analysis. The presence of SV40-specific glycolipid antigens in the plasma membrane, the nuclear membrane,and probably other inner membranes of SV40-transformed cells from hamsters has been indicated by immunofluorescence methods. 2 5 Incubation of NIL 2 c l cells, a cloned hamster cell line, with an equilibrium mixture of radioactive UDP-P-glucose and UDP-9-galactose has suggested that this is a useful method for determining the glycolipid composition of cultured cells. 26 Using the same cell line, the sequential glycosylations of endogenous glycosphingolipids have been studied using nucleotide sugars. 27 Differences were noted in the sequential glycosylation between cells harvested from confluent cultures and sparse cultures.
'
'
'
7: Glycolipids and Gangliosides
-
n
m
v
U I
2 $1
599
600
Carbohydrate Chemistry
Furthermore, there was an indication that two distinct pools of each glycolipid were present. Precursor-product relationships do not exist among the main pool of each glycolipid. of UDP-q-galactosylceramide: The specific localization P-galactosyltransferase in heavy-myelin and membrane fractions of rat brain at an early age when myelination is just beginning has been suggested as a site for the myelination process.128 The turnover of glycolipids in the adult rat brain has been studied vivo by determining the half-life of the carbohydrate portion. 12’ These half-lives were much shorter than that of the total carbon pool, Since lactosylceramide had the shortest half-life, it was suggested that this glycolipid may serve as a branch point for the biosynthesis of cerebral gangliosides in vivo and not as a degradation product of more complex molecules. In various rat neural tumours, the contents of lactosylceramide were up to 80 g kg-l compared with normal neural tissue values of 10 g kg-l.130 The changes in lipid-bound surface carbohydrates during cell differentiation have been studied in the small intestine of rats. 1 3 ’ The g-glucosylceramide content increased 2-3 fold. There was little change in many of the complex glycolipids. In similar studies, the content of trihexosylceramide has been shown to increase up to about 13 days after p a r t ~ r i t i 0 n . l ~ ~ A novel sulphoglycosphingolipid ( 2 2 ) has been isolated from rat kidney and characterized by the usual methods. 3 3 The clearance of D-glucocerebrosidase by rat liver has shown the presence of two distinct enzyme forms with different recognition characteristics, 3 4 Neuraminosyl, q-galactosyl, and 2-acetamido-2-deoxy-~-glucosyl residues are important in the uptake of the enzyme. Modification of the enzyme to expose some of these residues results in increased delivery to specific cell and types. The disaccharides cx-~-mannopyranosyl-(l+2)-~-mannose a-E-mannopyranosyl-(l+3)-g-mannose have been synthesized from dolichyl-D-mannosylphosphate and g-mannose by rat liver membrane systems. 1 3 5 The proportion of each product was dependent on the assay conditions. and dolichyl The formation of dolichylphosphate-D-glucose diphosphate oligosaccharides in rat spleen lymphocytes has been studied. 136 It was observed that the phospho-oligosaccharide populations contain far fewer products which had been E-glucosylated than the dolichyldiphosphate oligosaccharides from
7: Glycolipids and Gangliosides
60 1
which they are derived, suggesting that the p-glucosyl units inhibit the reaction. Sulpho-D-galactosylacylalkyl glycerol is enriched in a plasma membrane fraction from adult rat testis.137 By comparing 11 separate tissues from rats, the presence of this lipid has been shown to be restricted to the testis.'38 Several novel sulpholipids were detected during this study. L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages where the uptake of 6-P-glucuronidase is blocked. 3 9 An anti-glycosphingolipid antibody has been prepared and purified and has been used to demonstrate the localization of asialo G M ~ on the tips of the surface membrane of rat ascites hepatomas, 4 0 Analogues of ceramides which inhibit ;-glucocerebroside synthetase in mouse brain have been in~estigated.'~' The most potent compound tested was 2-decanoylamino-3-morpholino-1-phenylpropanol. An examination of the effects suggested that the active region of the enzyme contains four active sites, one of them being an anionic moiety that binds the 9-glucose residue in an activated form. The concentrations of myelin-characteristic D-galactolipid in organotype cultures of newborn mouse cerebellum have been determined by h . p.l.~.'~~ These lipids are detectable at 9 days and increase steadily in concentration until the explants are more than 3 weeks old. The g-galactosylceramide sulphotransferase activity of the cerebrum and cerebellum of normal and jimpy mice has been measured during postnatal development. 1 4 3 The activity was related to net sulphatide synthesis and was 25-505 lower in the brain parts of the mutants when myelination was taking place in the controls. The effective antibody in an antiserum having anti-natural killer cell activity and raised against mouse brain tissue is directed against the cell-surface glycolipid asialo G M .144 ~ The distribution of the same glycolipid in the small intestine of the mouse has been determined using an immunofluorescence staining method.145 Clear staining o f the brush border and basolateral membranes of epithelial cells, cell membranes of cryptic cells,and some secretory granules was observed. q-Glucosylceramide, on intravenous injection in mice, is stored predominantly in the liver and has a half-life of 3.5 days.146 High levels of this lipid were found in the bile of one patient
Carbohydrate Chemistry
602
and the liver of two patients with a biliary obstruction,which suggests a relationship between the biliary excretion of this lipid and Gaucher's disease. The glycolipid on the surface of natural killer cells from mouse spleen has been identified as asialo G, 147 1' A method has been developed for the extraction of carbohydrate-defined Ia antigens from murine spleen and serum cells.14* The antigen appeared to have a glycolipid structure with the antigenic activity residing in an oligosaccharide unit containing more than seven monosaccharide residues. Two marker glycolipids of alloantigen-activated murine T-lymphocytes have been partially characterized as a-E-galactosyl6-IJ-galactosyl-P-glucosylceramide and the same ceramide with a 2-acetamido-2-deoxy-~-~-glucosyl residue at the non-reducing terminal position. 149 A monoclonal antibody, directed to the stage-specific embryonic antigen in mice, has been shown to react with a branched glycosphingolipid similar in structure to Ii antigen. 150 Two related sublines of the mouse lymphoma L5178Y, which were selected for their different susceptibility to natural killer cell-mediated lysis, have different glycolipid patterns. 15' The ~ was not sensitive line contains a high level of asialo G M which detected in the resistant line. However, there was no correlation between asialo G M ~ content and sensitivity in sublines. Modification of the surface of distearoylphosphatidylcholine vesicles with synthetic glycolipids has dramatically affected the rate of uptake of these vesicles by murine peritoneal The high rate of uptake of 6-amino-6-deoxy-Pmacrophage. 15' mannose-modified vesicles is inhibited by cytochalin B and chloroquine but not by colchicine, indicating that the mechanism is phagocytosis. These vesicles remain intact after phagocytosis as aggregates of fused and intact vesicles surrounded by a single bilayer membrane structure. Several blood-group-type glycolipids from the small intestine of an individual rabbit have been identified by select-ion monitoring. 5 3 The dominating species was a hexaglycosylceramide group B-type sequence, while a second with a blood hexaglycosylceramide having a blood-group A-type sequence was also found. into lipid-linked The incorporation of [ 2-3H]-g-mannose is stimulated by oligosaccharides of rabbit mammary gland
-
7: Glycolipids and Gangliosides
603
hormones.154 An I-active ceramide decasaccharide (23) has been isolated and chacterized from rabbit erythrocyte membranes.155 The homologous series isomaltose to isomaltoheptaose can be coupled to stearylamine by reductive amination using cyanoborohydride ion. 1 5 6 The stearyl oligosaccharides from isomaltotriose to the heptasaccharide, when incorporated into rabbit liposomes, were agglutinated in the presence of specific antibodies and were lysed if complement was also present. As the disaccharide conjugate was not agglutinated, it may not protrude far enough from the surface to react with the antibody. The specificities and the sizes and shapes of the antibody combining sites in the above systems have been investigated by quantitative precipitin and precipitin-inhibition studies.157 The sizes of 15 antisera have been determined and all had combining sites in the range isomaltotriose to isomaltohexaose. One of the antisera to stearylisomaltopentaose has been separated into IgM and IgG fractions, and the antibody binding sites were studied.158 Both were similar to unfractionated antibodies with sites complementary to isomaltotetraose. Another antiserum had two site sizes, one for isomaltopentaose and the other for isomaltotetraose. The specific antibodies elicited in rabbits against D-glucosylceramide did not cross-react with E-galactosylceramide or ~ u 1 p h a t i d e . l ~ ~ They did react with the natural hapten present in red-blood-cell membranes of sheep. Very low levels of glycolipid have been found in chick embryonic brain yet nearly adult levels were reached by the 5th day. 160 The deposition of mono-D-galactosyldiglyceride in the cerebrum was unique in that all the secretion occurred between the 16th day of embryonic life and the 5th day after hatching, a period characterized by a high rate of myelination. The spermatozoa of the fresh-water bivalve Hyriopsis schlegelii have a complex spectrum of neutral glycolipids. Two of the minor components (24) and (251,which accounted for
8
f?.
? g.
?
E nz yme
Table 7 continued
EC No.
G 1u t a raldehyde-me d i a t e d r e a c t i o n
c h l o r i d e membrane
Adsorption on porous p o l y v i n y l
w i t h n y l o n 6 6 t o f o r m a membrane
Glutaraldehyde-mediated r e a c t i o n
Entrapment i n p o l y a c r y l a m i d e g e l
t i o n w i t h c e l l u l o s e beads
G l u t a raldehyde-me d i a t e d r e a c -
t i o n w i t h P t gauze
glutaraldehyde-me d i a t e d reac-
C o - i m m o b i l i z e d w i t h c a t a l a s e by
coated glass microbeads
Adsorption on polyethyleneimine-
v i n y l a t i o n o f t h e enzyme
a n d mode o f c o u p l i n g
M a t r i x o r macromolecule coupled
analysis
o f enzymic a c t i v i t y A c t i v e i m m o b i l i z e d enzyme
,
study o f mechanical c o n t r o l
A c t i v e i m m o b i l i z e d enzyme,
o n l y when m e c h a n i c a l l y s t retched
Membrane w i t h enzyme a c t i v i t y
t h e a c t i v e i m m o b i l i z e d enzyme
Study o f t h e r m a l s t a b i l i t y o f
i n serum
f o r measurement o f q - g l u c o s e
u t i1i z i n g chem i 1um i n e sce n c e
I m m o b i l i z e d enzyme s e n s o r
i n fermentation broths
t r o d e f o r ;-glucose
O x y g e n - s t a b i l i z e d enzyme e l e c -
A c t i v e i m m o b i l i z e d enzyme
Use o f p r o d u c t
723
722
721
716
70 0
698
6 97
Ref.
2
2
2
2.
3
s
&
s
m
c1
o\
w
4
3.2.1.31
1.2.1.12
6-E-Glucuronidase
G l y c e r a l d e h y d e 3-
g i l i s cells
Kluyveromyces
Inulinase
fra-
dehydrogenase
3a-Hydroxysteroid
-
3.2.1.7
1.1.1.50
phosphate dehydrogenase
EC No.
Enzyme
Table 7 continued
or macromolecule coupled
Enbrapment i n a l g i n a t e g e l
A d s o r p t i o n on D E A E - c e l l u l o s e
activated cellulose
R e a c t i o n w i t h cyanogen b r o m i d e -
a c t i v a t e d agarose
R e a c t i o n w i t h cyanogen b r o m i d e -
with alkylamine glass
Glutaraldehyde-mediated r e a c t i o n
membrane
asymmetric a c e t y l c e l l u l o s e
w i t h t h e p o r o u s s i d e o f an
and mode o f c o u p l i n g
Matrix
Ref.
continu-
lactose t o ethanol
Continuous conversion o f
syrup from i n u l i n
ous p r o d u c t i o n o f f r u c t o s e
i m m o b i l i z e d enzyme,
Study o f p r o p e r t i e s o f a c t i v e
3a-hydroxysteroids
Continuous f l o w a n a l y s i s o f
i m m o b i l i z e d enzyme
Study o f p r o p e r t i e s o f a c t i v e
h.p.1.c.
g a t e s p r i o r t o a n a l y s i s by
Analysis o f glucuronide conju-
enzyme
i t y o f active immobilized
618
726
47 6
168
167,
725
S t u d y o f p r o p e r t i e s a n d s t a b i l - 724
ment o f E - g l u c o s e i n human serum o r w h o l e b l o o d
enzyme e l e c t r o d e f o r m e a s u r e -
Use o f p r o d u c t
w 4
3 ~
p5
a
0
i;.
2
zs
R
3
$
??
1.1.1.27
L a c t a t e dehy d r o -
L y s o z yme
Luciferase
3.2.1.17
-
-
L e u c o n o s t o c mesen-
teroides c e l l s
-
La c t o p e r o x i dase
ge na se
EC No.
E nz yme
Table 7 continued
a c t i va t e d a ga r o se
R e a c t i o n w i t h cyanogen bromide-
d i a l y s i s membrane
l i n k i n g w i t h albumin onto a
Glutaraldehyde-me d i a t e d cross-
cellulose f i l t e r
Entrapment i n a g a r on an a c e t y l -
a c t i v a t e d agarose
or with co n ca na V a l in A - a ga r o s e
interaction with a n i o n i c d e t e r ge n t s
Study o f
creatine kinase a c t i v i t y
Microscale analysis of
serum
o f I - p h e n y l a l a n i n e i n human
lactate electrode f o r analysis
Used i n c o n j u n c t i o n w i t h a
a c t i v e immobi 1i z e d enzymes
enzyme immobi 1i z a t i on Comparison o f p r o p e r t i e s o f
for
S t u d y o f new s u p p o r t
p a c k e d i n h.p.1.c. columns R e a c t i o n w i t h cyanogen bromide-
i m m o b i l i z e d enzyme
artichoke tubers Study o f p r o p e r t i e s o f a c t i v e
e t h a n o l from J e r u s a l e m
Repeated b a t c h p r o d u c t i o n o f
Use o f p r o d u c t
A d s o r p t i o n o n PTFE p a r t i c l e s
Adsorption on alumina
a n d mode o f c o u p l i n g
M a t r i x o r macromolecule coupled
171
729
99
170
72 0
727
619
Ref.
$4
23
L
oL1
w
4
-
3.6.1.22
NAD+ pyrophosphatase
Nocardia e r y t h r o p o l i s o r opaca c e l l s
3.2.1.18
-
-
-
E C No.
Neuraminidase
Naringinase
Methanosarcina barkeri c e l l s Mycobacterium p h l e i cells
Enzyme
Table 7 continued
A d s o r p t i o n on DEAE-cellulose o r s i l i c a entrapment i n p o l y acrylamide g e l
Adsorption on p h o s p h o c e l l u l o s e
R e a c t i o n w i t h cyanogen bromidea c t i vated aga r o s e
w i t h alkylamine g l a s s
Adsorption on DEAE-cellulose o r s i l i c a , e n t r a p m e n t i n polyacrylamide g e l G 1 u t a r a 1de h yde -me d i a t ed r e a c t i o n
reaction w i t h gelatin-agarose Entrapment i n a l g i n a t e g e l
d i t h i o )pro p i ona te-me d i a t ed
-N-S u c c i nim i d y 1-3 -( 2- py r i d y 1-
Matrix o r macromolecule coupled and mode o f c o u p l i n g
3
730
6 21
620
410
w 4
0
g.
g5
$
2 g.
E
k
En
Ref. k
Desi a 1 y l a t i on o f a n g i o t e n s i n172 c o n v e r t i n g enzyme D e s i a l y l a t i o n o f human 173 platelets Enzyme r e a c t o r f o r p r o d u c t i o n 4 95 o f n i co t i nam i d e mono nucl eo t i d e L i v i n g immobilized c e l l s f o r 621 steroid transformations
Act i ve i m m o b i 1i z e d e nz ym e
Development of a new method f o r p r e p a r a t i o n o f immunoadso r be n t s Conversion o f methanol t o methane L i v i n g immobilized c e l l s f o r steroid transformations
Use of p r o d u c t
3
R
? 0
philus cells Papain
Pachysolen tanno-
n u c l ea s e
M ic r o co c ca 1 e n d o-
Nuclease P
Enzyme
Table 7 continued
3.4.22.2
-
3.1.31.1
-
EC No.
carbodi-
Ti4+-complexation
c r o s s l i n k i n g w i t h 4-amino-
T e r e p h t h a 1ic d i az i d e -me d i a t e d
a c t i v a t e d agarose
R e a c t i o n w i t h cy ano gen b r om i d e
e t h y l - agarose
Reaction with succinylamino-
Entrapment i n a l g i n a t e g e l
a c t i v a t e d agarose
R e a c t i o n with cyanogen bromide-
r e s i n s y&
Reacti o n with ion-exchange
complex
reaction with Ti4+-cellulose
anion-exchange c e l l u l o s e , o r
imide-mediated r e a c t i o n w i t h
activated cellulose,
R e a c t i o n w i t h cyanogen b r o m i d e -
a n d mode o f c o u p l i n g
M a t r i x o r macromolecule coupled
Study o f p r o p e r t i e s o f a c t i v e i m m o b i l i z e d enzyme
enzyme i n a c o l u m n r e a c t o r
Use o f a c t i v e i m m o b i l i z e d
A c t i v e i m m o b i l i z e d enzyme
- -xylose Q
Production o f ethanol from
i m m o b i l i z e d enzyme
a c i d h y d r o l y s i s by a c t i v e
Study o f k i n e t i c s o f n u c l e i c
A c t J. ve i m m o b i 1iz e d e nz ym e
A c t i v e i m m o b i l i z e d enzyme
Use o f p r o d u c t
467
175
174
622
732
7 31
47 7
Ref.
3
3
2
a-
&
-
4 P 0
Pepsin
enzyme
Penicillium duponti
3.4.23.1
-
3.5.1 .ll E n t r a p m e n t i n g e l a t i n
w i t h 6-aminohexyl-agarose
G 1u t a r a 1de h y de -me d i a t e d r ea c t ion
l i n k i n g onto collagen
G1 u t a r a 1de h yde - m e d i a t e d c r o s s -
e l e c t r o l y t e complexes
t i o n w i t h w a t e r - so 1ub 1e po 1y-
Cyan u r i c c h l o r i de-me d i a t e d r e a c -
mide g r a f t c o p o l y m e r s
t i ve s o f a 1g i na t e- p o l y a c r y 1a-
Reaction w i t h hydrazide deriva-
r e a c t i o n w i t h CM- c e l l u l o s e
methacrylate esters o r
Reaction with r e a c t i v e poly-
activated cellulose
R e a c t i o n w i t h 4 -be n z o q u i no ne
benz y l - c e l l u l o s e
-
o r macromolecule coupled
a n d mode o f c o u p l i n g
P e n i c i l l i n amidase
Matrix
EC No.
Enzyme
Table 7 continued
F(ab’)2
fragments f o r
Digestion o f IgG t o obtain
A c t i v e i m m o b i l i z e d enzyme
A c t i v e i m m o b i l i z e d enzyme
M i c h a e l i s-Me n t e n c o n s t a n t
f o r determining the
V a l i d a t i o n o f m o d i f i e d method
enzyme immo b i l i z a t i o n
S t u d y o f new s u p p o r t f o r
A c t i v e i m m o b i l i z e d enzyme
A c t i v e i m m o b i l i z e d enzyme
Use o f p r o d u c t
176
7 35
734
6 80
733
693
471
Ref.
P
4
0
2.
$
R,
Q
s
$
PP n
l a t a chroma t o pho r e s -
Rhodopseudomonas c a p s u -
cells
Rhizopus n i g r i c a n s
ficans c e l l s
Pseudomonas d e n i t r i -
cells
-
-
-
-
1.11.1.7
Perox i d a s e
Pseudomonas dacunhae
EC No.
__
E nz yme
~~
T a b l e 7 continued
hyde-crosslin king
-
l i n k i n g w i t h albumin and with/
G 1 u t a r a 1de h y de -me d i a t e d c r o s s
agar g e l
Entrapment i n p o l y a c r y lamide o r
Entrapment i n a l g i n a t e g e l
Entrapment i n k-carrageenan g e l
w i t h a l k y l a m i n e g l a s s beads
625
624
6 23
736
7 00
I n v e s t i g a t i o n o f t h e i n f l u e n c e 626 o f immobilization on l i g h t -
p r o ge s t e r o n e
lla-Hydroxylation o f
Living immobilized c e l l s
Living immobilized c e l l s
A c t i v e i m m o b i l i z e d enzyme
f o r measurement o f serum
g- g l u c o se
a f i l m f o l l o w e d by g l u t a r a l d e G 1 u t a r a l d e h y d e -me d i a t e d r e a c t i o n
u t ili z in g c h em i1um ine s ce n c e
I m m o b i l i z e d enzyme s e n s o r
o f enzyme i m m o b i l i z a t i o n
crosslinkable prepolymer i n t o
Copolymerization w i t h a photo-
i n g v i n y l a t i o n o f t h e enzyme
e r e n t p o l y s a c c h a r i d e s f 0 1 1 ow-
512
411
D e v e l o p m e n t o f a new m e t h o d
Graft polymerization t o d i f f -
Ref.
A c t i v e i m m o b i l i z e d enzyme
i n t r a v e n o u s use
Use o f p r o d u c t
Reaction with chitosan
a n d mode o f c o u p l i n g
M a t r i x o r macromolecule coupled