Übungsbuch Signale und Systeme
Ottmar Beucher
Übungsbuch Signale und Systeme Lösungsband zum Lehrbuch Signale und Systeme – Theorie, Simulation, Anwendung
123
Prof. Dr. Ottmar Beucher Hochschule Karlsruhe - Technik und Wirtschaft Fakultät Maschinenbau und Mechatronik Moltkestr. 30 76133 Karlsruhe Deutschland
[email protected] Zusatzmaterialien finden Sie unter http://extras.springer.com/2011/978-3-642-21187-4 ISBN 978-3-642-21187-4 e-ISBN 978-3-642-21188-1 DOI 10.1007/978-3-642-21188-1 Springer Heidelberg Dordrecht London New York Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. c Springer-Verlag Berlin Heidelberg 2011 Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Einbandentwurf: WMXDesign GmbH, Heidelberg Gedruckt auf säurefreiem Papier Springer ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)
Vorwort Der vorliegende Band enthält die Lösungen der im Buch Signale und Systeme – Theorie, Simulation, Anwendung vorgeschlagenen Übungsaufgaben. Die Bearbeitung der Übungsaufgaben ist für das Verständnis der im Lehrbuch besprochenen Begriffe und Methoden essentiell. Viele Aufgaben, insbesondere die zur stochastischen Signaltheorie und ihrer Anwendungen, sind unter Einsatz von MATLAB zu lösen. Die Bearbeitung der Aufgaben mit MATLAB ist sehr zu empfehlen, da nur ein korrektes Verständnis der Zusammenhänge eine Umsetzung in korrekte lauffähige Programme erlaubt. Insofern ist MATLAB auch ein gutes Werkzeug der Selbstkontrolle beim Erlernen des Stoffes. Um dem Leser eine Kontrolle seiner bearbeiteten Aufgaben zu ermöglichen, wurden die Lösungen zu den Übungsaufgaben ausführlich dokumentiert. Jedoch war aufgrund der Vielzahl der Aufgaben eine Auslagerung der Lösungen aus dem Lehrbuch in einen eigenen Lösungsband nötig geworden, um den Umfang des Lehrbuchs in einem vertretbaren Maß zu halten. Aus Gründen der besseren Lesbarkeit des Lösungsbandes und der bequemeren Zuordnung der Lösungen zu den Übungen, werden die Aufgabenstellungen des Lehrbuchs im vorliegenden Werk wiederholt. Dies erhöht nebenbei die Eigenständigkeit des Lösungsbandes und macht das Buch auch ohne das zugehörige Lehrbuch prinzipiell nutzbar. Danksagungen: Mein besonderer Dank gilt Frau Eva Hestermann-Beyerle und Frau Birgit Kollmar vom Springer-Verlag, die dieses Buch verlagsseitig betreut und dessen Veröffentlichung unterstützt haben.
Landau in der Pfalz im Mai 2011
O. Beucher
VI
Hinweise zum Gebrauch des Buches
Hinweise zum Gebrauch des Buches Im Folgenden sind einige Hinweise zusammengestellt, die bestimmte Besonderheiten des Buches erläutern sollen. Vorkenntnisse: Für die Lösungen der Übungen Kenntnisse vorausgesetzt, die den Inhalten des zugehörigen Lehrbuchs Signale und Systeme – Theorie, Simulation, Anwendung entsprechen. MATLAB-Vorkenntnisse: Der Leser sollte über Kenntnisse der grundlegenden MATLAB-Befehle verfügen und in der Lage sein, die Funktionsweise von MATLAB-Programmen zu verstehen. Idealerweise sollte er kleinere Programme selbst schreiben können, um die Übungsaufgaben selbstständig bearbeiten zu können. Die geforderten MATLAB-Kenntnisse entsprechen üblichen Einführungen in MATLAB, wie sie etwa im Einführungsbuch „MATLAB und Simulink“ des Autors zu finden sind. Weder im vorliegenden Buch noch im zugehörigen Lehrbuch wird eine Einführung in MATLAB gegeben. Begleitsoftware Alle in dem vorliegenden Lösungsband und in dem zugehörigen Lehrbuch verwendeten und teilweise abgedruckten Programme sind über die elektronische Seite des Buches auf der Homepage des Springer-Verlags http://extras.springer.com/2011/978-3-642-21187-4 verfügbar. Die Namen dieser Programme sind im Text durch Fettdruck hervorgehoben und der abgedruckte MATLAB-Code ist, mit einem grauen Hintergrund unterlegt, vom Fließtext abgesetzt. Die Original-Programme sind natürlich weit ausführlicher kommentiert als in den abgedruckten Auszügen. Um dem Leser das Auffinden der Programme im Text zu erleichtern, ist am Ende des Buches ein Begleitsoftwareindex abgedruckt. Wichtiger Hinweis zu den Simulink-Systemen: Die Simulink-Systeme der Begleitsoftware werden im Allgemeinen durch einen im Blockschaltbild integrierten Initialisierungsbutton initialisiert. Durch Drücken des Buttons wird ein zugehöriges MATLAB-Skript aufgerufen, welches die von Simulink-System benötigten Variablen im MATLABWorkspace definiert. Anschließend kann die Simulation gestartet werden. Es empfiehlt sich, Änderungen der Initialisierungsvariablen nur im Workspace vorzunehmen, nicht jedoch im Initialisierungsskript, um bei einer späteren erneuten Simulation die gleichen Voraussetzungen vorzufinden.
Lösungsband zu „Signale und Systeme“
VII
Referenztabellen Der Lösungsband enthält zwei Referenztabellen, die als Hilfestellung bei der Bearbeitung der Übungen gedacht sind. Zu Beginn des Buches ist eine Tabelle integriert, in der die wichtigsten Zusammenhänge aus dem Lehrbuch „Signale und Systeme – Theorie, Simulation, Anwendung“ zusammengefasst und komprimiert dargestellt werden. Am Ende des Buches findet man ferner eine Tabelle, in der die Übungen den darin behandelten Sachthemen zugeordnet sind. Übungen zu einem interessierenden Themengebiet können so leichter ausgewählt werden. Mathematische Formeln und Gleichungen Mathematische Formeln und Gleichungen sind entsprechend ihrer Seite nummeriert. So bedeutet die Referenz auf Gleichung (80.2), dass die entsprechende Gleichung auf der Seite 80 zu finden ist und dort die zweite (nummerierte) Gleichung ist. Marginalien Besonders schwierige Übungsaufgaben sind am Rand wie nebenstehend mit einem besonderen Symbol gekennzeichnet. Das Symbol weist auf besondere Herausforderungen bei der Lösung der Aufgabe hin.
Signale und Systeme - Kurzreferenz In den nachfolgenden Tabellen werden einige wichtige Zusammenhänge aus dem Lehrbuch „Signale und Systeme – Theorie, Simulation, Anwendung“ zusammengefasst und komprimiert dargestellt. Darstellungsformen für zeitkontinuierliche Systeme LTI-Systeme S im Zeitbereich Differentialgleichungen N X
ak
k=0
dk dtk
M X
y(t) =
LTI-Systeme S im Bildbereich Übertragungsfunktion im Bildbereich
bj
j=0
dj dtj
x(t)
PM j j=0 bj s H(s) = P N a sk k=0 k
LTI-Systeme S im Frequenzbereich Übertragungsfunktion im Bildbereich falls System stabil H(jω) = H(s)|s=jω
Zustandsraumdarstellungen d
x(t) = A · ~ ~ x(t) + B · ~ u(t),
dt y ~(t) = C · ~ x(t) + D · u ~ (t)
Eindeutige Charakterisierung durch die Impulsantwort h(t) y(t) = x(t) ∗ h(t) :=
∞ Z
~ ~ ~ (s), s · X(s) = A · X(s) +B·U
− −
~ (s) = C · X(s) ~ ~ (s) Y +D·U
Eindeutige Charakterisierung durch die Übertragungsfunktion
Eindeutige Charakterisierung durch Frequenzgang und Signalspektren
(x ∗ h)(t) = (h ∗ x)(t) ◦ − • H(s) · X(s)
x(τ )h(t − τ ) dτ
−∞
Y (jω) = H(jω) · X(jω) Y (s) = H(s) · X(s)
Darstellungsformen für zeitdiskrete Systeme LTI-Systeme S im Zeitbereich Differenzengleichungen N X
ak yn−k =
M X
bj xn−j ,
j=0
k=0
LTI-Systeme S im Bildbereich Übertragungsfunktion im Bildbereich
mit ak , bj ∈ C
PM −j j=0 bj z H(z) = P N ak z −k k=0 =
LTI-Systeme S im Frequenzbereich Übertragungsfunktion im Bildbereich, falls System stabil H(Ω) = H(z)|
z=ejΩ
∀ Ω ∈ [−π, π].
Y (z)
X(z)
Zustandsraumdarstellungen xn+1 = A · ~ ~ xn + B · u ~n
~ ~ ~ (z) z · X(z) = A · X(z) +B·U
−
~n = C · ~ y xn + D · u ~n
~ (z) = C · X(z) ~ ~ (z) Y +D·U
−
Eindeutige Charakterisierung durch die Impulsantwort hn
yn = hn ∗ xn =
∞ X
xk hn−k
Eindeutige Charakterisierung durch die Übertragungsfunktion Z (hn ∗ xn )n∈Z ←→ H(z) · X(z)
Eindeutige Charakterisierung durch Frequenzgang und Signalspektren, normierte Frequenz Y (Ω) = H(Ω) · X(Ω)
k=−∞ Y (z) = H(z) · X(z)
Ω = 2π
f fa
=
ω fa
,
fa =
1 T
X
Signale und Systeme - Kurzreferenz
Spezielle zeitkontinuierliche Signale Signale im Zeitbereich
Signale im Bildbereich
Signale im Frequenzbereich
Der Dirac-Impuls δ0 (t) Ausblendeigenschaft, Faltungseigenschaft, Translationseigenschaft:
δ0 (x(t)) =
∞ Z
δ0 (t)x(t) dt
−
1(ω) = 1
∀ω ∈ R
−∞ = x(0) δ0 (t) ∗ x(t) = x(t − τ )|τ =0
−
−
= x(t) δ0 (t − t0 ) ∗ x(t) e
= x(t − t0 )
−st0 X(s)
e
−jωt0 X(jω)
Sprung- und Impulsantwort h(t) Zt
H(s)
δ0 (τ ) dτ = σ(t),
Σ(s) =
d
d dt
Σ(jω) = π · δ0 (ω) −
j ω
σ(t) = δ0 (t)
yσ (t) := S(σ(t)) =⇒
1 s
−∞
dt
H(jω)
Yσ (s) =
yσ (t) = h(t)
Gleichwert und Schwingungen
1
−
H(s)
s
falls Signale kausal (d.h. 0 für t < 0)
1(t)
−
sin(ωt)
2πδ0 (ω)
ω/(s
2
2 +ω )
−jπδ0 (ω − ω0 ) + jπδ0 (ω + ω0 )
cos(ωt) s/(s
jωt e = cos(ωt) + j sin(ωt)
2
2 +ω )
1/(s − jω)
Rechtecksignale und Fensterung
rect T (t) :=
1 T
1
· rectT (t +
1 T := 0
1 − e−T s
sonst.
T
s
Gibbs’ Phänomen
2πδ0 (ω − ω0 )
sin(ω T ) −jω T 2 2 · T ·e ωT 2
)
2
−
sinc
ωT 2π
t ∈ [− T , T ], 2 2
Zeitfensterung
+ πδ0 (ω + ω0 )
Signalspektren
t ∈ [0, T ],
0
πδ0 (ω − ω0 )
sonst.
!
Spektrale Verschmierung, −
Spektralverbreiterung, spektrale Begrenzung, Bandbegrenzung
XI
Lösungsband zu „Signale und Systeme“
Spezielle zeitdiskrete Signale Signale im Zeitbereich
Signale im Bildbereich
Signale im Frequenzbereich
Der diskrete Impuls δ0 (n): Faltungseigenschaft, Translationseigenschaft
δ0 (n) =
1
n = 0,
0
n 6= 0,
1(z) = 1
n ∈ Z.
∀z ∈ C
1(Ω) = 1
−
δn ∗ xn = xn ∗ δn = xn
−
z −n0 X(z)
xn−n = xn ∗ δn−n 0 0
∀ Ω ∈ [−π, π]
e
−jΩn0
X(Ω)
Sprung- und Impulsantwort hn n X
H(z)
Σ(z) =
δ0 (k) = σn
H(Ω)
z
−
z−1
k=−∞
(σ) yn = S(σn ),
Yσ (z) =
z
−
H(z)
z−1
(σ) (σ) yn − y = hn n−1
Potenzfolgen und diskrete Schwingungen −n xn = a
falls Signale kausal (d.h. 0 für n < 0) az
∀ z, |z| >
az − 1
1
aejΩ
|a|
aejΩ − 1
∀ z,
|z| >
1
,
|a| |a| > 1
z jΩn e
jΩn j(Ωn+φ) S(e ) = A(ω) · e
z − ejΩ
∀ z, |z| >
=1
−
−
−
Endliche Folgen N −1 (xk ) , k=0
1 |ejΩ |
DFT/FFT-Spektren N die Zahl der Abtastwerte −
XDF T (m) =
NX −1
xk e
−jkΩm
k=0
Ωm =
−
−
−
∆Ω = ∆ω =
∆f =
2πm
,m ≤ N − 1
N
2π
rad,
N 2π
−
ωa N
1
fa
N Ta endlicher Signalausschnitt
=
N Ta
Leakage
=
N
rad/s,
Hz
XII
Signale und Systeme - Kurzreferenz
Abtastung und Abtasttheorem Abtastung
DTFT-Spektrum xn = x(n · Ta ),
Ta Abtastintervall
XDT F T (Ω) :=
∞ X
−jΩk xk e , Ω ∈ [−π, π]
∞ X
X(jω) ∗ δ0 (ω − kωa )
k=−∞
Äquivalente Impulsabtastung x ˜(t) :=
Abtastspektrum
∞ X
˜ X(jω) =
xn · δ(t − nTa )
= x(t) ·
∞ X
1
Ta k=−∞
n=−∞ δ(t − nTa )
n=−∞
Abtastspektrum Spektrale Überlappung
˜ X(jω) =
∞ X
1
Ta k=−∞
Abtasttheorem
X(j(ω − kωa ))
Abtastspektrum im Nyquist-Band
fn = f (nTa ), Ta =
1 fa
˜ X(jω) = X(jω) " # fa fa ω = 2πf, f ∈ − ,+ 2 2
, fa Abtastrate
fa > 2fmax
Stochastische Signale Stochastische Prozesse Xt , t ∈ R
(Zufallsvariablen)
−
Xn , n ∈ Z Stationäre stochastische Prozesse - Autokorrelationsfunktionen rXX (τ ) := E(Xt · Xt+τ )
Leistungsdichtespektrum SXX (jω) =
∞ Z
−jωτ rXX (τ )e dτ
−∞
rXX (n) := E(Xk · Xk+n )
ΦXX (Ω) = DT F T (rXX (n)) SXX (jω) = Ta · ΦXX (Ω),
Ergodischer Fall:
rXX (τ ) = r xx (τ ) :=
rXX (k) = r xx (k) :=
1 lim T →∞ 2T
ZT
Ω = ω · Ta ,
−
x(t)x(t + τ ) dt
−T
N X 1 lim xn xn+k N →∞ 2N + 1 n=−N
Leistung
Leistung V(Xt ) + E2 (Xt ) rXX (0)
Periodische Signale - Autokorrelationsfunktion ∞ X 2 c 2 cos(kω τ ) rxx (τ ) = c0 + 2 0 k k=1
1 2π
∞ Z
SXX (ω) dω
bzw.
−∞
∞ Z
SXX (f ) df
−∞
Leistungsdichtespektrum
Sxx (jω) = 2π
∞ X
k=−∞
c 2 δ (ω − kω ) 0 0 k
XIII
Lösungsband zu „Signale und Systeme“
Stochastische Signale Leistung
∞ X 2 c 2 rxx (0) = c0 + 2 k k=1
Leistung 1 2π
SXX (ω) dω
Z∞
SXX (f ) df
−∞
Spezialfall harmonische Schwingung mit Amplitude a:
rxx (0) =
Z∞
−∞
a2 2
Weißes Rauschen
Leistungsdichtespektrum rxx (τ ) = γ
2
· δ0 (τ )
Sxx (jω) = γ
2
∀ ω ∈ R
Wiener-Khintchine-Theorem XT (jω) Fourierspektrum der Musterfunktionen im Zeitintervall [−T , T ]
Übertragungsverhalten
SXX (jω) =
1 lim E( XT (jω) 2 ) T →∞ 2T
Wiener-Lee-Theorem Yt = h(t) ∗ Xt
SXY (jω) = H(jω) · SXX (jω) 2 SY Y (jω) = |H(jω)| · SXX (jω) ΦXY (Ω) = H(Ω) · ΦXX (Ω) ΦY Y (Ω) = |H(Ω)|
2
· ΦXX (Ω)
Inhaltsverzeichnis Vorwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V
Hinweise zum Gebrauch des Buches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI
Signale und Systeme - Kurzreferenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IX
1
Lösungen der Übungen zum Kapitel „Einführungsbeispiele und grundlegende Begriffe“ . . . . . . . . . . . .
2
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 mit den Abschnitten: 2.1 Einführungsbeispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Grundlegende Systemeigenschaften . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Signale und LTI-Systeme im Zeitbereich . . . . . . . . . . . . . . . . . . . . 20 2.4 Signale und LTI-Systeme im Bildbereich . . . . . . . . . . . . . . . . . . . 56 2.5 Signale und LTI-Systeme im Frequenzbereich . . . . . . . . . . . . . . . 95 2.6 Übertragungseigenschaften analoger LTI-Systeme und Filterentwurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 mit den Abschnitten: 3.1 Der Abtastvorgang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3.2 Das Abtasttheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mit den Abschnitten: 4.1 Einführungsbeispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Grundlegende Systemeigenschaften . . . . . . . . . . . . . . . . . . . . . . . 4.3 Signale und LTI-Systeme im Zeitbereich . . . . . . . . . . . . . . . . . . . . 4.4 Signale und LTI-Systeme im Bildbereich . . . . . . . . . . . . . . . . . . . 4.5 Signale und LTI-Systeme im Frequenzbereich . . . . . . . . . . . . . . . 4.6 Übertragungseigenschaften analoger LTI-Systeme und Filterentwurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
183 183 187 192 202 236 270
XVI
5
Inhaltsverzeichnis
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“ . . . . . . . . . . . . . . . . . . . . . . mit den Abschnitten: 5.1 Stochastische Signale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Das Leistungsdichtespektrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 LTI-Systeme bei stochastischer Erregung . . . . . . . . . . . . . . . . . . . 5.4 Berechnung des Leistungsdichtespektrums . . . . . . . . . . . . . . . . . 5.5 Experimente, Beispiele, exemplarische praktische Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
295 295 323 340 346 360
A
Symbole und Formelzeichen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
B
Tabellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.1 Tabelle der Laplace-und Z-Transformationen . . . . . . . . . . . . . . . . B.2 Tabelle der wichtigsten Fouriertransformationen . . . . . . . . . . . . B.3 Filterentwurfs(kurz)tabellen analoger und digitaler Filter . . . .
C
Zuordnung der Übungen zu Sachthemen (alphabetisch) . . . . . . . . 385
381 381 383 384
Begleitsoftware des Lösungsbandes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Verzeichnis der verwendeten MATLAB-Funktionen . . . . . . . . . . . . . . . . 394
1
Lösungen der Übungen zum Kapitel „Einführungsbeispiele und grundlegende Begriffe“
Übung 1 ( Lehrbuch Seite 31 ) Untersuchen Sie, ob die durch die nachfolgenden Gleichungen beschriebenen Systeme S : x(t) 7−→ y(t) linear sind: (a) y(t) = x(t), ˙ t−1 R (b) y(t) = x(τ) dτ . −∞
Lösung zu Übung 1 (a) Die Linearität des Systems „Differenzierer“ ergibt sich unmittelbar aus den bekannten Rechenregeln für die Differentiation. Wegen d d d (x1 (t) + x2 (t)) = x1 (t) + x2 (t) dt dt dt
(1.1)
d d (λx(t)) = λ x(t) dt dt
(1.2)
und
ist S linear! (b) Wie in Beispiel 1.4 ergibt sich die Linearität des Systems S aus den bekannten Rechenregeln für die Integration: Zt−1 Zt−1 S(a · x(t)) = a · x(τ ) dτ = a x(τ ) dτ = a · S(x(t)) −∞
(1.3)
−∞
und Zt−1 S(x1 (t) + x2 (t)) = [x1 (τ ) + x2 (τ )] dτ =
Zt−1
−∞
−∞
Zt−1 x1 (τ ) dτ + x2 (τ ) dτ = S(x1 (t)) + S(x2 (t)). −∞
O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_1, © Springer-Verlag Berlin Heidelberg 2011
(1.4)
2
Lösungen zum Kapitel „Einführungsbeispiele und grundlegende Begriffe“
Übung 2 ( Lehrbuch Seite 31 ) Betrachten Sie das System S mit S : x(t) 7−→ y(t) =
p x(t).
(2.1)
(a) Weisen Sie nach, dass es sich um ein nichtlineares System handelt. (b) Linearisieren Sie das System im Arbeitspunkt x0 = 1 und beschreiben Sie das resultierende linearisierte System S∗ analytisch, das heißt durch eine Gleichung. (c) Entwerfen Sie ein Simulink-System, welches S und S∗ miteinander vergleicht und führen Sie damit Experimente durch, bei denen Sie die Systeme einmal dicht um den Arbeitspunkt und zum anderen in einem großen Bereich um den Arbeitspunkt mit einem Sinussignal ansteuern. Stellen Sie die Ergebnisse grafisch dar. Lösung zu Übung 2 (a) Das System S mit der quadratwurzelförmigen Kennlinie ist nicht linear, denn es gilt etwa für das konstante Signal x(t) = 1 einerseits p S(x(t)) = x(t) = 1 = y(t) ∀ t ∈ R, (2.2) andererseits jedoch p p √ S(2x(t)) = 2x(t) = 2 6= 2 = 2 x(t) = 2S(x(t))
∀ t ∈ R.
(2.3)
Das Verstärkungsprinzip (vgl. Lehrbuch Gleichung (25.1)) ist also verletzt. Damit kann das System nicht linear sein! (b) Nach der Taylorformel f (x) = f(x0 ) + f 0 (x0 )(x − x0 ) + R2 (x, ξ) | {z } Restglied
(2.4)
gilt (Entwicklungspunkt x0 = 1):
√ √ 1 x = 1 + √ (x − 1) + R2 (x, ξ) | {z } 2 1 Restglied
(2.5)
1 1 1 ∼ = 1 + (x − 1) = x + . 2 2 2 bei x=1
S kann also im Arbeitspunkt durch das lineare System S∗ (x(t)) =
1 x(t) 2
(2.6)
3
Lösungsband zu „Signale und Systeme“
bzw. durch das inkrementell lineare System S∗ (x(t)) =
1 1 x(t) + 2 2
(3.1)
ersetzt werden! (c) Abbildung 1.1 zeigt√das Simulink-System s_syssqrt.mdl zur Simulation der Nichtlinearität x. x
sqrt(u )
x Sinussignal
sqrt(x )
sqrt(x)
sumapx Kennlinie
Linearisierung Mux
1
(Linearisierung x /2+1/2)
Scope
Linearisierung
Offset 1 /2
Eingangssignal: Sinus um Arbeitspunkt ap =1
Faktor
Sum
1 /2
Konstante
Abb. 1.1: Simulink-System zur Simulation einer Linearisierung von Arbeitspunkt
√
x um einen
In diesem Simulink-System wird eine sinusförmige Anregung der Form x(t) = ap + a · sin(2πf t)
(3.2)
um einen Arbeitspunkt ap = 1 herum erzeugt. Die Amplitude a kann zuvor (wie auch andere Parameter) mit dem Initialisierungsfile init_syssqrt.m (oder besser noch, nach der Initialisierung im Workspace) variiert werden, um den Effekt der (Nicht-)Linearität des Systems in Abhängigkeit der Amplitude des Eingangssignals x(t) zu studieren. Abbildung 1.2 zeigt das Ergebnis der Simulation für die Eingangssignale x(t) = 1 + 0.1 · sin(2πt)
(3.3)
(Betreiben in der Nähe des Arbeitspunkts - linke Grafik) und x(t) = 1 + 1 · sin(2πt)
(3.4)
(Übersteuerung des linearen Arbeitsbereiches, nichtlineares Verhalten rechte Grafik). Übung 3 ( Lehrbuch Seite 31 ) Ein System S habe das Ein-/Ausgangsverhalten y(t) = t · x2 (t).
(3.5)
4
Lösungen zum Kapitel „Einführungsbeispiele und grundlegende Begriffe“
1.06
1.6 1.4
1.04
1.2 1 Amplitude
Amplitude
1.02
1
0.8 0.6
0.98
0.4 0.96
0.94 0
0.2
1
2 Zeit/s
3
4
0 0
1
2 Zeit/s
3
4
√ Abb. 1.2: Vergleich eines Systems mit Kennlinie x und einer Linearisierung um einen Arbeitspunkt
(a) Zeigen Sie, dass S kein lineares System ist. (b) Linearisieren Sie das System im Arbeitspunkt x(t) ≡ 1. (c) Ist das linearisierte System zeitinvariant? Lösung zu Übung 3 (a) Das System kann nicht linear sein, denn ist S(x(t)) = y(t) und λ = 2, so gilt: yλ (t) := S(λ · x(t)) = t · λ2 · x2 (t) = 4 · t · x2 (t) 6= 2 · t · x2 (t) = λ · S(x(t)) = λ · y(t).
(4.1)
Das Verstärkungsprinzip ist also verletzt. (b) Nach Taylor gilt für x0 = 1: x2 = x20 + 2x0 · (x − x0 ) + O (x − x0 )2 = 1 + 2(x − 1) + O (x − 1)2 = 2x − 1 + O (x − 1)2 .
(4.2)
Man erhält als Linearisierung also das inkrementell lineare System S L mit SL (x(t)) = t · (2 · x(t) − 1) .
(4.3)
(c) Das linearisierte System (der lineare Anteil davon) ist nicht zeitinvariant, denn
5
Lösungsband zu „Signale und Systeme“
2t · x(t)
(5.1)
hängt wegen des nicht-konstanten Koeffizienten von der Zeit ab. Es ist 2t · x(t − h) 6= 2(t − h) · x(t − h). i.Allg.
(5.2)
Übung 4 ( Lehrbuch Seite 32 ) Eine Diode hat im Durchlassbereich die nichtlineare Kennlinie VD
ID = IS · (e VT − 1).
(5.3)
Dabei ist ID der Diodenstrom, VD die angelegte Spannung, VT die Temperaturspannung und IS der Sperrsättigungsstrom. (a) Plotten Sie mit Hilfe von MATLAB die Diodenkennlinie im Durchlassbereich für die Werte IS = 10−15 A, VT = 25 mV und den Arbeitspunkt VD = 0.7 V. (b) Linearisieren Sie die Kennlinie im Arbeitspunkt. (c) Plotten Sie mit MATLAB zur Probe Ihres Ergebnisses die Diodenkennlinie und die Linearisierung. (d) Entwerfen Sie ein Simulink-System, welches die Diode mit Hilfe eines sinusförmigen Eingangssignals ansteuert. Schätzen Sie dabei anhand der Grafik für die Linearisierung ab, wie groß die Amplitude des Sinus (um den Arbeitspunkt) sein muss, damit die Übertragung noch annähernd linear ist. Lösung zu Übung 4 (a) Die Diodenkennlinie kann mit folgenden MATLAB-Anweisungen geplottet werden (vgl. Datei diodkenn.m): I s = 10^ ( − 15); VT = 2 5 ;
% Sperrsättigungsstrom in A % Temperaturspannung in mV
% Kennlinie berechnen VD = ( 0 . 5 : 0 . 0 1 : 0 . 7 5 ) ; ID = I s * ( exp (VD/ (VT/ 1 0 0 0 ) ) − 1 ) ; % Arbeitspunkt berechnen IDa = I s * ( exp ( 0 . 7 / (VT/ 1 0 0 0 ) ) − 1 ) ; % Ergebnis plotten p l o t (VD, 1 0 0 0 * ID , ’ b ’ , ’ LineWidth ’ , 3 ) ;
6
Lösungen zum Kapitel „Einführungsbeispiele und grundlegende Begriffe“ % Arbeitspunkt markieren hold s c a t t e r ( 0 . 7 , 1 0 0 0 * IDa , 1 0 0 , ’k ’ , ’ f i l l e d ’ ) ; x l a b e l ( ’VD/ Volt ’ ) y l a be l ( ’ID /mA’ ) g r i d
Abbildung 1.3 zeigt die berechnete Diodenkennlinie und den Arbeitspunkt. 12
2 1.9
10
1.8 1.7
8 ID/mA
ID/mA
1.6 6
1.5 1.4
4
1.3 1.2
2
1.1 0 0.5
0.55
0.6 0.65 VD/Volt
0.7
0.75
1 0.695
0.7 VD/Volt
0.705
Abb. 1.3: Diodenkennlinie mit Arbeitspunkt und Linearisierung (rechts: Ausschnittsvergrößerung)
(b) Die Taylorentwicklung der Funktion f (x) = c · ex/b − 1 im Punkt x0 liefert: c f (x) = c · ex0 /b − 1 + ex0 /b (x − x0 ) + R2 (x, ξ) . (6.1) | {z } b Restglied
Mit c := IS = 10−15 A, b := VT = 25 mV = 0.025 V und x0 := VD = 0.7 V ergibt sich für die linearisierte Kennlinie IL : IL (VD ) = 10−15 · e28 − 1 + 4 · 10−14 · e28 · (VD − 0.7) (6.2) = 0.0014463 + 0.0578503 · (VD − 0.7) A. Gibt man die Ausgangsgröße, so wie in Abbildung 1.3, in mA an, so ist die Kennlinie durch IL (VD ) = 1.4463 + 57.8503 · (VD − 0.7) mA.
(6.3)
gegeben. (c) Die Linearisierung ist zusammen mit der Kennlinie in Abbildung 1.3 wiedergegeben.
7
Lösungsband zu „Signale und Systeme“
(d) An Hand der Abbildung 1.3 (s. Ausschnittsvergrößerung) lässt sich abschätzen, dass das Systemverhalten durch die Linearisierung noch sehr gut repräsentiert wird, wenn die Eingangsspannungen um nicht mehr als ±0.005 V, also ±5 mV, um 0.7 V schwanken. Dies lässt sich durch eine Abschätzung des Restgliedes R2 (x, ξ) untermauern. Für das Restglied gilt: 1 00 f (ξ)(x − x0 )2 2! (7.1) 1 c ξ/b 2 = e (x − x ) , ξ ∈ [x, x ], [x , x]. 0 0 0 2 b2 Betrachtet man nun nur Abweichungen von maximal ∆x = x − x0 = 5 mV (ε ≤ 1), so kann der Term eξ/b nach oben durch R2 (x, ξ) =
1
eξ/b = e(x0 ±ε·∆x)/b ≤ ex0 /b · e∆x/b ≤ ex0 /b e 5 = e28.2
(7.2)
abgeschätzt werden. Der Term bc2 liefert:
c 10−15 = = 1.6 · 10−12 , 2 b 0.000625 sodass das Restglied wegen
(7.3)
>> c = 10^ ( −15); >> b = 2 5 / 1 0 0 0 ; >> exp ( 2 8 . 2 ) * c / ( 2 * b^ 2) ans = 1.4132
mit |R2 (x, ξ)| ≤ 1.4132 · (∆x)2
(7.4)
abgeschätzt werden kann. Die maximale Abweichung der Linearisierung von der nichtlinearen Übertragungskennlinie kann damit für eine Abweichung der Eingangsspannung vom Arbeitspunkt von höchstens ∆x = 5 mV wegen >> dx = 5 / 1 0 0 0 ; >> 1 0 0 0 * exp ( 2 8 . 2 ) * c / ( 2 * b^ 2 ) * dx^2 ans = 0.0353
8
Lösungen zum Kapitel „Einführungsbeispiele und grundlegende Begriffe“
mit ca. 0.04 mA abgeschätzt werden. Dies entspricht in etwa dem, was anhand der Ausschnittsvergrößerung in Grafik 1.3 abgelesen werden kann1 . Das Simulink-System s_diode.mdl zur Simulation der Diode ist in Abbildung 1.4 wiedergegeben2 . VD
Is*(exp (u /VT )−1 )
VD Sinussignal
Diode
Diode
sumapx Kennlinie
Linearisierung Mux
(Linearisierung )
700
Scope
Linearisierung
Offset
Eingangssignal: Sinus um Arbeitspunkt bei 700 mV
Is/VT *exp (700 /VT )
Faktor
Is*(exp (700 /VT )−1)−700 *(Is/VT )*exp (700 /VT )
Sum
Initialisierung (bitte vor Start anklicken )
Konstante
Abb. 1.4: Simulink-System zur Simulation einer Diode und der Linearisierung in einem Arbeitspunkt
1
2
Man beachte, dass die zur Darstellung in diodkenn.m verwendete Schrittweite mit 10 mV etwas größer ist als ∆x. Daher ist die Abweichung in der Grafik sogar etwas größer als die Schätzung. Man beachte, dass alle Spannungen auf mV umgerechnet wurden!
2
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Übung 5 ( Lehrbuch Seite 43 ) Untersuchen Sie, ob die durch die nachfolgenden Gleichungen beschriebenen linearen Systeme S : x(t) 7−→ y(t) linear, zeitinvariant und kausal sind: (a) y(t) = x(t), ˙ t−1 R (b) y(t) = x(τ) dτ , −∞
(c) y(t) = t · x(t), (d) y(t) = x( 1t ).
Lösung zu Übung 5 (a) Bereits in Übung 1 (Lösung s. S. 1) wurde gezeigt, dass sich die Linearität des Systems Differenzierer aus den bekannten Linearitätsbeziehungen für die Differentiation ergibt. Nach den Rechenregeln der Differentialrechnung gilt darüber hinaus: d d d [x(t + h)] = x (t + h) · (t + h) (Kettenregel!) dt dt dt | {z } (9.1) 1
= x(t ˙ + h) = y(t + h).
Damit ist der Differenzierer auch zeitinvariant! Weiter gilt nach Definition der Ableitung, dass y(t) die momentane Änderung zum Zeitpunkt t des Eingangssignals x(t) ist. Damit hängt y(t) nur von Werten x(τ ), τ ≤ t (nämlich von t selbst) ab und S ist kausal! (b) Die Linearität des Systems ergibt sich wieder aus Übung 1. Für ein um h Zeiteinheiten verzögertes Signal xh (t) erhalten wir: Zt−1 Zt−1 S(xh )(t) = xh (τ)dτ = x(τ − h)dτ −∞
Substitution
=
t−h−1 Z −∞
−∞
(9.2)
x(τ 0 )dτ 0 = y(t − h).
Damit ist S zeitinvariant! S ist auch kausal, da y(t) nach Definition nur von Werten von x(τ ) zu (früheren!) Zeitpunkten τ ≤ t − 1 < t abhängt. O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_2, © Springer-Verlag Berlin Heidelberg 2011
10
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(c) Für zwei Signale x1 (t) und x2 (t) gilt nach Definition von S: S (x1 + x2 ) (t) = t · (x1 (t) + x2 (t)) = t · x1 (t) + t · x2 (t) = S (x1 ) (t) + S (x2 ) (t).
(10.1)
Ferner gilt für ein a ∈ R und ein Signal x(t): S (a · x) (t) = t · a · x(t) = a · (t · x(t)) = a · S (x) (t).
(10.2)
Superpositions- und Verstärkungsprinzip gelten somit und das System ist linear. Für ein um h Zeiteinheiten verzögertes Signal xh (t) errechnet man einerseits S (xh ) (t) = t · xh (t) = t · x(t − h),
(10.3)
S (x) (t − h) = y(t − h) = (t − h) · x(t − h) = t · x(t − h) − h · x(t − h).
(10.4)
andererseits ist
Beide Terme sind also i.Allg. nicht identisch1 . Das System ist damit nicht zeitinvariant 2 . Das System ist natürlich kausal, da es nach Definition nur vom aktuellen Wert des Signals zur Zeit t abhängt (und nicht von Werten zu Zeitpunkten τ > t). (d) Das System ist linear, denn für zwei Signale x1 (t) und x2 (t) gilt nach Definition von S: 1 1 1 S (x1 + x2 ) (t) = (x1 + x2 ) = x1 + x2 t t t (10.5) = S (x1 ) (t) + S (x2 ) (t). Ferner gilt für ein a ∈ R und ein Signal x(t): 1 1 S (a · x) (t) = (a · x) =a·x = a · S (x) (t). t t
(10.6)
Das System ist natürlich nicht zeitinvariant, denn für ein um h Zeiteinheiten verzögertes Signal xh (t) errechnet man einerseits 1 2
Es genügt ein Gegenbeispiel mit einem konkreten Signal x(t) und einem konkreten h anzugeben. Dies sei dem Leser überlassen. Dies ist nicht verwunderlich, da der Systemausgang direkt (multiplikativ) vom Zeitparameter t abhängt.
11
Lösungsband zu „Signale und Systeme“
S (xh ) (t) = xh
1 1 =x −h , t t
(11.1)
andererseits ist S (x) (t − h) = x
1 t−h
.
(11.2)
Beide Terme sind also i.Allg. nicht identisch. Das System ist aber auch nicht kausal. Der Wert y(t) zur Zeit t = 12 ist nach Definition des Systems gleich x(2), hängt also vom Wert des Eingangssignals zu dem späteren Zeitpunkt t = 2 ab. Übung 6 ( Lehrbuch Seite 43 ) Weisen Sie nach, dass das System S : x(t) 7−→ y(t), welches durch die Differentialgleichung y(t) ˙ + t · y(t) = x(t)
(11.3)
definiert ist, linear aber nicht zeitinvariant ist. Entwerfen Sie eine Simulink-Simulation für dieses System und prüfen Sie die zweite Behauptung anhand eines Beispiels nach. Lösung zu Übung 6 Seien die Signale x1 (t) und x2 (t) Eingangssignale des Systems S und y1 (t) und y2 (t) die zugehörigen Ausgangssignale. Die Signalpaare müssen jeweils die Differentialgleichung erfüllen, durch die das System S definiert ist. Somit gilt y˙1 (t) + t · y1 (t) = x1 (t), y˙2 (t) + t · y2 (t) = x2 (t).
(11.4)
Addiert man beide Gleichungen und berücksichtigt man die Linearität des Differenzieres (vgl. Übung 5), so folgt aus der Addition dieser beiden Gleichungen d (y1 + y2 ) (t) + t · (y1 + y2 )(t) = (x1 + x2 )(t), dt
(11.5)
was gleichbedeutend ist mit der Gültigkeit des Superpositionsprinzips S (x1 + x2 ) (t) = S (x1 ) (t) + S (x2 ) (t).
(11.6)
Ist des Weiteren y(t) Ausgangssignal des Systems zum Eingangssignal x(t), so muss nach Definition gelten:
12
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(12.1)
y(t) ˙ + t · y(t) = x(t).
Multipliziert man diese Gleichung mit einem a ∈ R und berücksichtigt man erneut die Linearität des Differenzieres, so folgt d (a · y) (t) + t · (a · y)(t) = (a · x)(t) dt
(12.2)
und damit auch die Gültigkeit des Verstärkungsprinzips. Das System ist also linear. Das System kann natürlich nicht zeitinvariant sein, da die Differentialgleichung die Zeit direkt als Parameter enthält. Formal lässt sich dies am besten mit der Lösung der linearen Differentialgleichung begründen. Wir wollen die Lösung numerisch berechnen. Dies kann am einfachsten mit MATLAB oder mit Simulink bewerkstelligt werden. Abbildung 2.1 zeigt das entsprechende Simulink-System (vgl. Datei s_nottinv.m).
1 s
u(t) y’’
Step1
sum 1
y1
y1
y1
Integrator1
Eingangssignal: Einheitsprung
y2 t*y Mux
t
Scope
Produkt 1
1 s
u(t−1) y’’
Step2
Eingangssignal: Einheitsprung verzögert
sum 2
y2
y2
Integrator2 t*y
t
Produkt 2
Clock
Abb. 2.1: Simulink-System zur Lösung der Differentialgleichung y(t) ˙ + t · y(t) = σ(t) bzw. y(t) ˙ + t · y(t) = σ(t − 1)
In dieser Implementierung wird das System durch die Einheits-Sprungfunktion (auch Heaviside-Funktion genannt) 1 für t ≥ 0, x(t) = σ(t) := (12.3) 0 für t < 0 und durch eine um h = 1 Zeiteinheiten verzögerte Version der Sprungfunktion angesteuert und jeweils das Ausgangssignal durch Lösung der Differentialgleichung berechnet.
13
Lösungsband zu „Signale und Systeme“
0.8 0.7 Reaktion auf u(t)
um h=1 verzögerte Reaktion auf u(t)
0.6 0.5 h=1
0.4 0.3
Reaktion auf u(t−1)
0.2 0.1 0 0
0.5
1
1.5 Zeit/s
2
2.5
3
Abb. 2.2: Systemantworten auf Einheitssprung und verzögerten Einheitssprung
Abbildung 2.2 zeigt das Ergebnis der Berechnung. Zusätzlich zu den berechneten Systemantworten ist dabei noch die verzögerte Version der Antwort des Systems auf den Einheitssprung dargestellt. Die um h = 1 verzögerte Version der Antwort des Systems auf den Einheitssprung weicht von der Antwort des Systems auf den um h = 1 verzögerten Einheitssprung deutlich ab. Das System kann, wie oben bereits erwähnt, nicht zeitinvariant sein. Übung 7 ( Lehrbuch Seite 43 ) Betrachten Sie folgende Signale 1 für t ≥ 0, (a) x(t) =: σ(t) = 0 sonst. 2 t e− 2 für t ≥ 0, (b) x(t) = 0 sonst. für t ∈ [0, 1], t (c) g(t) =
e
−(t−1)
0
für
t ≥ 1,
sonst.
Plotten Sie die Signale sowie dasjenige Signal y(t), welches durch Signalverzögerung um h = 2 entsteht, im Intervall [0, 4] mit MATLAB.
14
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Geben Sie bitte jeweils eine Formel für den Signalverlauf an. Lösung zu Übung 7 Eine Verschiebung um h = 2 Einheiten (Verzögerung) liefert folgende Signale: (a) xh (t) =: σ(t − 2) = (b)
1
für
t−2 xh (t) = x(t − 2) = e−(t−3) 0
(14.1)
sonst.
0
2 e− (t−2) 2 xh (t) = x(t − 2) = 0
(c)
t ≥ 2,
t ≥ 2,
(14.2)
sonst.
t ∈ [2, 3], t ∈ [3, ∞),
(14.3)
sonst.
Mit Hilfe der folgenden MATLAB-Anweisungen können die Signale geplottet werden (vgl. Datei lsg_verzsigs.m): zeit = ( 0 : 0 . 0 1 : 4 ) ; h = 2;
% Darstellungsbereich % Verzögerung
% Signal verzögerter Sprung u_h = z e i t >=h ; % Verzögerte Funktion x(t) = e^{-t^2/2} x_h = exp( −( z e i t −h ) . ^ 2 / 2 ) . * ( z e i t > = 2 ) ; % Verzögerte Funktion g(t) g_h = ( z e i t −h ) . * ( z e i t >=2 & z e i t < 3) + . . . exp( −( z e i t −h − 1 ) ) . * ( z e i t > = 3 ) ; % Signale plotten p l o t ( z e i t , u_h , ’k ’ , z e i t , x_h , ’ k−− ’ , . . . z e i t , g_h , ’ b ’ , ’ LineWidth ’ , 3 ) ;
15
Lösungsband zu „Signale und Systeme“
Die Signale haben im Zeitintervall [0, 4] die in Abbildung 2.3 skizzierte Gestalt. 1.2
1 u (t) 2
g2(t)
0.8
0.6
0.4 x (t) 2
0.2
0 0
0.5
1
1.5
2 Zeit/s
2.5
3
3.5
4
Abb. 2.3: Signale aus Aufgabe 7 im Intervall [0,4]
Übung 8 ( Lehrbuch Seite 44 ) Betrachten Sie das System S : x(t) 7−→ y(t), welches durch die Vorschrift y(t) = σ(t) · x(t)
(15.1)
definiert ist. Prüfen Sie, ob (a) (b) (c) (d)
das System S linear ist, das System S zeitinvariant ist, das System S kausal ist, das System S BIBO-stabil ist.
Lösung zu Übung 8 (a) Für zwei Signale x1 (t) und x2 (t) gilt nach Definition von S: S (x1 + x2 ) (t) = σ(t) · (x1 (t) + x2 (t))
= σ(t) · x1 (t) + σ(t) · x2 (t) = S (x1 ) (t) + S (x2 ) (t).
(15.2)
16
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Ferner gilt für ein a ∈ R und ein Signal x(t): S (a · x) (t) = σ(t) · (a · x(t)) = a · (σ(t) · x(t)) = a · S (x) (t).
(16.1)
Das System S ist somit linear. (b) Für ein um h Zeiteinheiten verzögertes Signal xh (t) erhalten wir: S(xh )(t) = σ(t) · xh (t) = σ(t) · x(t − h).
(16.2)
Andererseits gilt für die Verzögerung von y(t) um h Zeiteinheiten: y(t − h) = S(x)(t − h) = σ(t − h) · x(t − h). Für das Signal x(t) = cos(t) und h = 1 gilt also beispielsweise cos(t − 1) für t ≥ 0, S(xh )(t) = σ(t) · x(t − h) = 0 sonst,
(16.3)
(16.4)
aber
y(t − h) = S(x)(t − h) = σ(t − 1) · cos(t − 1) cos(t − 1) für t ≥ 1, = 0 sonst.
(16.5)
Beide Signale sind offensichtlich verschieden. Damit ist S nicht zeitinvariant! (c) Da y(t) nur vom Wert des Eingangssignals zur Zeit t abhängt, ist S kausal! (d) Das System S ist auch BIBO-stabil, da |S(x)(t)| = |σ(t) · x(t)| = σ(t) · |x(t)| ≤ |x(t)|
∀t ∈ R
(16.6)
ist. Ist x(t) also beschränkt, so ist es y(t) auch. Übung 9 ( Lehrbuch Seite 44 ) Betrachten Sie das System S : x(t) 7−→ y(t), welches durch die Vorschrift y(t) = σ(t − 1) + x(t − 1) definiert ist. Prüfen Sie, ob (a) (b) (c) (d)
das System S linear ist, das System S zeitinvariant ist, das System S kausal ist, das System S BIBO-stabil ist.
(16.7)
17
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 9 (a) Für das Signal x(t) = 0 gilt nach Definition von S: S (x) (t) = σ(t − 1) + x(t − 1) = σ(t − 1).
(17.1)
Das Nullsignal wird somit nicht in das Nullsignal überführt. Damit ist ein notwendiges Linearitätskriterium verletzt. Das System S ist nicht linear. (b) Für ein um h Zeiteinheiten verzögertes Signal xh (t) erhalten wir: S(xh )(t) = σ(t − 1) + xh (t − 1) = σ(t − 1) + x(t − h − 1).
(17.2)
Andererseits gilt für die Verzögerung von y(t) um h Zeiteinheiten: y(t − h) = S(x)(t − h) = σ(t − h − 1) + x(t − h − 1).
(17.3)
Für das Signal x(t) = 0 und h = 1 gilt also beispielsweise S(xh )(t) = σ(t − 1),
(17.4)
y(t − h) = S(x)(t − h) = σ(t − h − 1) = σ(t − 2).
(17.5)
aber
Beide Signale sind offensichtlich verschieden. Damit ist S nicht zeitinvariant! (c) Da y(t) nur vom Wert des Eingangssignals zur Zeit t − 1, also vom Wert des Eingangssignals zu einem früheren Zeitpunkt abhängt, ist S kausal! (d) Das System S ist auch BIBO-stabil, da |S(x)(t)| = |σ(t − 1) + x(t − 1)|
≤ σ(t − 1) + |x(t − 1)| ≤ |x(t − 1)| + 1
∀t ∈ R
(17.6)
ist. Ist x(t) also (mit einer Schranke M ) beschränkt, so ist es y(t) (mit einer Schranke K = M + 1) auch. Übung 10 ( Lehrbuch Seite 44 ) Ein System S : x(t) 7−→ y(t) sei für ein K > 0 und ein t0 > 0 durch die Gleichung y(t) = K · x(t − t0 ) definiert. Zeigen Sie, dass S ein LTI-System ist.
(17.7)
18
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Lösung zu Übung 10 Das System ist linear, denn für zwei Signale x1 (t) und x2 (t) gilt nach Definition von S: S (x1 + x2 ) (t) = K · (x1 + x2 ) (t − t0 ) = K · x1 (t − t0 ) + K · x2 (t − t0 )
(18.1)
= S (x1 ) (t) + S (x2 ) (t).
Ferner gilt für ein a ∈ R und ein Signal x(t): S (a · x) (t) = K · (a · x) (t − t0 ) = a · K · x (t − t0 ) = a · S (x) (t).
(18.2)
Das System ist auch zeitinvariant, denn für ein um h Zeiteinheiten verzögertes Signal xh (t) errechnet man: S (xh ) (t) = K · xh (t − t0 ) = K · x (t − t0 − h) = K · x (t − h − t0 ) = S (x) (t − h).
(18.3)
Insgesamt ist S also ein LTI-System. Übung 11 ( Lehrbuch Seite 45 ) Ein System S : x(t) 7−→ y(t) sei durch die Gleichung y(t) =
Z1
x(t − τ ) dτ
(18.4)
0
definiert. Zeigen Sie, dass S ein LTI-System ist und stellen Sie das Systemverhalten mit einer geeignet gewählten Funktion h(t) in der allgemeinen Form y(t) =
Z∞
−∞
x(τ )h(t − τ ) dτ
(18.5)
(entsprechend Gleichung (35.3) bzw. Gleichung (37.3) des Lehrbuchs) dar. Lösung zu Übung 11 Das System ist linear, denn für zwei Signale x1 (t) und x2 (t) gilt nach Definition von S und aufgrund der Linearität des Integrals:
19
Lösungsband zu „Signale und Systeme“
S (x1 + x2 ) (t) =
Z1
=
Z1
0
(x1 + x2 ) (t − τ ) dτ x1 (t − τ ) dτ +
0
Z1
(19.1) x2 (t − τ ) dτ
0
= S (x1 ) (t) + S (x2 ) (t). Weiterhin gilt für ein a ∈ R und ein Signal x(t): S (a · x) (t) =
Z1
(a · x)(t − τ ) dτ = a ·
0
Z1
x(t − τ ) dτ = a · S (x) (t).
(19.2)
0
Das System ist auch zeitinvariant, denn für ein um h Zeiteinheiten verzögertes Signal xh (t) errechnet man: S (xh ) (t) =
Z1
xh (t − τ ) dτ =
Z1
x([t − h] − τ ) dτ = S (x) (t − h).
0
=
Z1 0
x(t − τ − h) dτ (19.3)
0
Insgesamt ist S also ein LTI-System. Mit Hilfe der Einheits-Rechteckfunktion 1 für rect1 (t) =: 0
t ∈ [0, 1],
(19.4)
sonst
kann das System durch die Gleichung y(t) =
Z1
x(t − τ ) dτ =
0
Z∞
−∞
rect1 (τ ) · x(t − τ ) dτ
(19.5)
beschrieben werden. Substituiert man nun τ 0 = t − τ , τ = t − τ 0 und dτ = dτ 0 , so erhält man: y(t) =
Z∞
−∞
rect1 (t − τ 0 ) · x(τ 0 ) dτ 0 .
(19.6)
20
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Eine Umbenennung der Integrationsvariable liefert die gewünschte Darstellung y(t) =
Z∞
−∞
(20.1)
x(τ )h(t − τ ) dτ
mit h(t) := rect1 (t). Übung 12 ( Lehrbuch Seite 88 ) Der in Abbildung 2.4 dargestellte elektrische Schaltkreis repräsentiert ein LTI-System mit einem Eingangssignal, der Quellspannung x(t) und einem Ausgangssignal, der am Lastwiderstand abgegriffenen Spannung y(t).
x(t)
C1
C2
x1 (t)
x2 (t)
∼
R1
R2
y(t)
Abb. 2.4: Elektrisches Netzwerk
Zeigen Sie, dass das Ein-/Ausgangsverhalten (Systemverhalten) des Netzwerks durch die folgenden Gleichungssysteme beschrieben wird: −ρ x1 (t) γ x˙ 1 (t) = −γ · + · x(t) (20.2) 1 1 − T2 − T12 x˙ 2 (t) x2 (t) T2 y(t) =
−1 − 1
x (t) 1 + 1 · x(t). · x2 (t)
(20.3)
Dabei ist γ = T11 + R21·C1 und ρ = R21·C1 . Hinweis: Ermitteln Sie zunächst die Differentialgleichungen für die Kondensatorspannungen x1 (t) und x2 (t) und verwenden Sie die Spannungsteilerbeziehung y(t) = x(t) + x1 (t) + x2 (t), um den gewünschten Zusammenhang zwischen Ein- und Ausgangssignal des Systems herzustellen.
21
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 12 Zur Modellierung des Systems tragen wir zunächst in das in der Aufgabenstellung vorgegebene Schaltbild weitere benötigte Größen ein.
i1 (t)
(A)
i2 (t)
C1
C2 i3 (t)
x1 (t) x(t)
x2 (t)
∼
R1 M1
R2
y(t)
M2
Abb. 2.5: Elektrisches Netzwerk
Der in Abbildung 2.5 dargestellte elektrischen Schaltkreis enthält neben der Quellspannung x(t), der Ausgangsspannung y(t) und den Spannungen x1 (t) und x2 (t) an den Kondensatoren noch die im Knoten (A) zusammenlaufenden Ströme i1 (t), i2 (t) und i3 (t) sowie die Bezeichnungen für die Maschen M1 und M2 der Schaltung. Ohm’sches Gesetz, Spannungsteilerregel, Knoten- und Maschensätze sowie die Zusammenhänge für den Spannungsabfall an Kondensatoren liefern nun folgende Zusammenhänge: y(t) = x(t) − x1 (t) − x2 (t), i1 (t) = i2 (t) + i3 (t), i3 (t) · R1 = x2 (t) + y(t), i2 (t) · R2 = y(t), 1 x˙ 1 (t) = i1 (t), C1 1 x˙ 2 (t) = i2 (t). C2
(21.1) (21.2) (21.3) (21.4) (21.5) (21.6)
Aus den Gleichungen (21.4),(21.6) und (21.1) ergibt sich 1 1 1 i2 (t) = y(t) C2 C2 R2 1 = (x(t) − x1 (t) − x2 (t)) . T2
x˙ 2 (t) =
(21.7)
22
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Dabei ist die Zeitkonstante T2 durch T2 := C2 · R2 definiert. Aus den Gleichungen (21.4),(21.5) und (21.2) ergibt sich 1 1 i1 (t) = (i2 (t) + i3 (t)) C1 C1 1 1 1 y(t) + i3 (t). C1 R2 C1
x˙ 1 (t) =
(22.1)
Mit Gleichung (21.3) folgt: 1 1 y(t) + C1 R 2 1 1 = y(t) + C1 R 2
x˙ 1 (t) =
1 1 (x2 (t) + y(t)) C1 R 1 1 (x2 (t) + y(t)). T1
Dabei ist die Zeitkonstante T1 durch T1 := C1 · R1 definiert. Dies liefert mit Gleichung (21.1): 1 1 1 x˙ 1 (t) = x2 (t) + + y(t) T1 C1 R 2 T1 1 = x2 (t) + γ (x(t) − x1 (t) − x2 (t)) T1 = −γx1 (t) − ρx2 (t) + γx(t). Dabei ist γ :=
1 T1
+
1 C 1 R2
und ρ := γ −
1 T1
=
(22.2)
(22.3)
1 C 1 R2 .
Die Beziehungen zwischen den Spannungsänderungen an den Kondensatoren und den übrigen Spannungen können somit nach (22.1) und (22.3) durch das folgende Gleichungssystem beschrieben werden:
x˙ 1 (t) = −γ x˙ 2 (t) − T12
−ρ x1 (t) γ · + · x(t). 1 1 − T2 x2 (t) T2
(22.4)
Die Spannungsteilerregel (21.1) liefert die Beziehung der Ausgangsspannung zu den Kondensatorspannungen und der Eingangsspannung. Sie kann in vektorieller Form wie folgt geschrieben werden:
y(t) =
−1 − 1
·
x1 (t) + 1 · x(t). x2 (t)
(22.5)
Übung 13 ( Lehrbuch Seite 89 ) Ein LTI-System S sei im Zeitbereich durch die Zustandsraumdarstellung
23
Lösungsband zu „Signale und Systeme“
x ˙ (t) 1 x˙ 2 (t) = x˙ 3 (t)
und
0
1
0
0
0 x1 (t) 0 · + · u(t) 1 x2 (t) 0
−2 −4 −3
y(t) =
1 2
x3 (t)
(23.1)
1
x (t) 1 + 0 · u(t) 0 · x (t) 2
(23.2)
x3 (t)
gegeben. Weisen sie nach, dass es sich bei der Darstellung
˙ 1 (t) x ˜ 1 0 x˜˙ 2 (t) = −2 −2 x˜˙ 3 (t)
0 x˜1 (t) 0 · + · u(t), 0 x˜2 (t) 1
−1 −2 −1
y(t) =
3 2
1 2
− 21
·
x˜3 (t) 1 x˜1 (t) + 0 · u(t) x˜2 (t)
(23.3)
x˜3 (t)
um eine zu (23.1) und (23.2) äquivalente Darstellung von S handelt, indem Sie (ohne und mit Hilfe von MATLAB) nachrechnen, dass sich die jeweiligen Zustände des Systems auf eindeutige Weise ineinander überführen lassen. Prüfen Sie die Äquivalenz zudem durch eine geeignete Implementierung der Zustandsraumdarstellungen in Simulink und entsprechende Simulationen. Lösung zu Übung 13 Nach Gleichung (54.3)-(54.5) des Lehrbuchs sind die Darstellungen genau dann äquivalent, wenn sich die Zustandsmatrizen
A=
0
1
0
0
0 1
−2 −4 −3
0
1
und A˜ = −2 −2
durch eine Koordinatentransformationsmatrix
0 0
−1 −2 −1
(23.4)
24
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
p11 P = p21
p12 p22
p31
p32
p13 p23
(24.1)
p33
ineinander überführen lassen und sich die anderen Zustandsmatrizen ebenfalls mit P transformieren lassen. Eine denkbare Methode3 wäre es, aus diesen Bedingungen Bestimmungsgleichungen für die Komponenten pkj der Matrix P zu ermitteln. Für die Äquivalenz von A und A˜ muss gelten: −2p p − 4p p − 3p 13 11 13 12 13 P · A = −2p23 p21 − 4p23 p22 − 3p23 = A˜ · P (24.2)
=
−2p33
p31 − 4p33
p32 − 3p33
p21
p22
−2 (p11 + p21 )
−2 (p12 + p22 )
−p11 − 2p21 − p31
−p12 − 2p22 − p32
p23 . −2 (p13 + p23 )
−p13 − 2p23 − p33
Ferner muss gelten
p13
P · B = p23 p33
0
˜ = =B 1 .
(24.3)
1
Damit ist die letzte Spalte von P schon einmal festgelegt und in (24.2) eingesetzt erhält man: 0 p11 p12 P · A = −2 p21 − 4 p22 − 3 = A˜ · P
3
=
−2 p31 − 4
p32 − 3 p21
p22
−2 (p11 + p21 )
−2 (p12 + p22 )
−p11 − 2p21 − p31
−p12 − 2p22 − p32
1 . −2
(24.4)
−3
Es ist, betrachtet man sich die vorliegende Lösung, von vorne herein klar, dass diese Methode nicht für ein allgemein gültiges Berechnungsverfahren taugt. Zielführend ist i.Allg. nur der Umweg über die kanonische Normalform der Zustandsraumdarstellung.
25
Lösungsband zu „Signale und Systeme“
Daraus folgt:
1 1 P = 0 1 1 0
0 . 1
(25.1)
1
Die Zustände werden also (vgl. (54.3) Lehrbuch) nach der Vorschrift
˙ 1 (t) x ˜ x ˙ 2 (t) = P ˜ ˙x ˜2 (t)
x ˙ (t) 1 x˙ 1 (t) + x˙ 2 (t) · x˙ 2 (t) = x˙ 2 (t) + x˙ 3 (t) x˙ 2 (t)
x˙ 1 (t) + x˙ 3 (t)
(25.2)
eindeutig ineinander überführt! Die Zustandsraumdarstellungen sind daher äquivalent. Im Allgemeinen kann die Äquivalenz natürlich besser über die kanonische Normalform nachgewiesen werden. Zur Berechnung der Jordan-Matrix und der Transformationsmatrizen verwenden wir MATLAB: >> % Definition der Zustandsmatrizen >> A = [ 0 1 0 ; 0 0 1 ; −2 −4 −3]; >> At = [ 0 1 0 ; −2 −2 0 ; −1 −2 −1]; >> % Berechnung der Jordan-NF für A >> [V, J ] = jordan (A) V = 2.0000 −2.0000 2.0000
−0.5000 − 0 . 5 0 0 0 i 1.0000 −1.0000 + 1 . 0 0 0 0 i
−0.5000 + 0 . 5 0 0 0 i 1.0000 −1.0000 − 1 . 0 0 0 0 i
J = −1.0000 0 0
0 −1.0000 + 1 . 0 0 0 0 i 0
>> % Berechnung der Jordan-NF für At >> [ Vt , J t ] = jordan ( At )
0 0 −1.0000 − 1 . 0 0 0 0 i
26
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ Vt = 0 0 3.0000
0.5000 − 0.5000 i 0 + 1.0000 i −1.5000 + 0 . 5 0 0 0 i
0.5000 + 0.5000 i 0 − 1.0000 i −1.5000 − 0 . 5 0 0 0 i
Jt = 0 −1.0000 + 1 . 0 0 0 0 i 0
−1.0000 0 0
0 0 −1.0000 − 1 . 0 0 0 0 i
>> % Berechnung der Transformationsmatrix P >> P = Vt * inv (V) P = 1.0000 − 0.0000 i −0.0000 + 0 . 0 0 0 0 i 0.0000 + 0.0000 i
1.0000 − 0.0000 i 1.0000 + 0.0000 i −1.0000 + 0 . 0 0 0 0 i
0 − 0.0000 i 1.0000 + 0.0000 i 0.5000 + 0.0000 i
>> % Bessere Darstellung durch Elimination der >> % Imaginärteile (die ja alle =0 sind) >> P = r e a l ( Vt * inv (V) ) P = 1.0000 −0.0000 0.0000
1.0000 1.0000 −1.0000
0 1.0000 0.5000
1.0000 −2.0000 −2.0000
0.0000 −0.0000 −1.0000
>> % Probe >> P *A* inv ( P ) ans = 0.0000 −2.0000 −1.0000 >> At At = 0
1
0
27
Lösungsband zu „Signale und Systeme“ −2 −1
0 −1
−2 −2
Wir können die Äquivalenz der Zustandsraumdarstellungen beispielhaft auch mit den Simulink-Systemen s_uebZRD1.mdl und s_uebZRD2.mdl nachvollziehen, deren Aufbau in Abbildung 2.6 wiedergegeben ist. x (t)
A* u (d/dt)x (t) Gain
Add
1 s
x (t)
Initialisierung (bitte vor Start anklicken )
Integrator
B* u
u (t) InputSig
C* u Gain 1
y(t) Gain 2
Add 1
D* u
Scope u (t)
Gain 3
Abb. 2.6: Simulink-Blockschaltbild zu den Zustandsraumdarstellungen (23.1) bis (23.3)
In beiden Systemen wird die Reaktion auf ein um 1 Zeiteinheit verzögertes Sprungsignal (σ(t − 1)) simuliert. Das Ergebnis (die Sprungantwort) ist in beiden Fällen identisch. Übung 14 ( Lehrbuch Seite 90 ) Zeigen Sie, dass sich ein LTI-System S : u(t) −→ y(t), welches durch die lineare Differentialgleichung ... y (t) + 3¨ y(t) + 4y(t) ˙ + 2y(t) = u(t) + 2u(t) ˙
(27.1)
gegeben ist, durch die Zustandsraumdarstellung
x˙ 1 (t)
x˙ 2 (t) x˙ 3 (t)
=
0
1
0
0
0
x1 (t)
· 1 x2 (t)
−2 −4 −3
x3 (t)
0
+ 0 · u(t), 1
(27.2)
28
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
y(t) =
1 2
x (t) 1 + 0 · u(t) 0 · x (t) 2
(28.1)
x3 (t)
darstellen lässt. Lösung zu Übung 14 Wir definieren den „Zustand“ x1 (t) als Lösung der Gleichung ... x 1 (t) + 3¨ x1 (t) + 4x˙ 1 (t) + 2x1 (t) = u(t)
(28.2)
und die „Zustände“ x2 (t) = x˙ 1 (t) und x3 (t) = x˙ 2 (t) = x ¨1 (t). Differenziert man (28.2) auf beiden Seiten, so sieht man, dass x2 (t) eine Lösung der Gleichung ... x 2 (t) + 3¨ x2 (t) + 4x˙ 2 (t) + 2x2 (t) = u(t) ˙
(28.3)
ist. Damit ist aber die Linearkombination (28.4)
x1 (t) + 2x2 (t) eine Lösung der Differentialgleichung ... y (t) + 3¨ y(t) + 4y(t) ˙ + 2y(t) = u(t) + 2u(t) ˙
(28.5)
und da Lösungen von linearen Differentialgleichungen mit konstanten Koeffizienten eindeutig4 sind, ist
y(t) = x1 (t) + 2x2 (t) =
x (t) 1 + 0 · u(t). 2 0 · x (t) 2
1
(28.6)
x3 (t)
Aufgrund der Zustandsdefinitionen erhält man ferner
x ˙ (t) 1 x˙ 2 (t) = x˙ 3 (t)
0
1
0
0
0 x1 (t) 0 · + · u(t). 1 x2 (t) 0
−2 −4 −3
x3 (t)
(28.7)
1
und damit das in der Aufgabenstellung angegebene Zustandsraummodell. 4
Für gegebene Anfangswerte.
Lösungsband zu „Signale und Systeme“
29
Übung 15 ( Lehrbuch Seite 90 ) Bestimmen Sie eine Zustandsraumdarstellung für ein LTI-System S : u(t) −→ y(t), welches durch die lineare Differentialgleichung y(t) ˙ = u(t) ˙ + u(t)
(29.1)
definiert wird. Lösung zu Übung 15 Wir definieren einen „Zustand“ x(t) als Lösung der Gleichung z(t) ˙ = u(t).
(29.2)
x(t) ˙ = u(t)
(29.3)
x ¨(t) = u(t). ˙
(29.4)
x ¨(t) + x(t) ˙ = u(t) ˙ + u(t) = y(t). ˙
(29.5)
Damit ist also
und natürlich auch
Folglich ist:
Integriert man (29.5) auf beiden Seiten auf (die Anfangsbedingungen sind dabei alle 0), so erhält man: y(t) = x(t) + x(t) ˙ = x(t) + u(t).
(29.6)
Dies liefert die Zustandsgleichungen x(t) ˙ = 0 · x(t) + 1 · u(t), y(t) = 1 · x(t) + 1 · u(t)
(29.7)
mit den Zustands„matrizen“ A = 0, B = 1, C = 1, D = 1. Insbesondere haben wir hier ein Beispiel für ein System, bei dem die Durchgangsmatrix D nicht verschwindet.
30
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Übung 16 ( Lehrbuch Seite 90 ) Betrachten Sie ein LTI-System S, welches durch die Impulsantwort
h(t) = rect1 (t) :=
1
für
t ∈ [0, 1],
(30.1)
sonst
0
gekennzeichnet sei. Berechnen Sie die Systemantwort auf die Erregung mit den Rechteckimpulsen (30.2)
in (t) = n · rect n1 (t). Lösung zu Übung 16
Die Antwort eines LTI-Systems S auf die Erregung mit den Rechteckimpulsen in (t) kann durch die Faltung dieser Eingangssignale mit der Impulsantwort h(t) bestimmt werden: y(t) = h(t) ∗ in (t) =
Z∞
−∞
h(τ )in (t − τ ) dτ.
(30.3)
Zur Illustration der Berechnung ziehen wir Abbildung 2.7 heran. Zur Faltung von h(t) und in (t) und damit zu Berechnung der Systemantwort an der Stelle t muss die zu in (τ ) an der y-Achse gespiegelte (bzw. gefaltete) Funktion nach rechts über die Impulsantwort h(τ ) geschoben werden. Dabei wird stets das Integral über die resultierende Produktfunktion berechnet. Ist t < 0, so überlappen sich die Bereiche, für die in (t − τ ) und h(τ ) Werte ungleich 0 annehmen (die so genannten „Träger“ der Funktionen) nicht und das Integral (30.3) wird 0. Überlappen sich die Träger, so ist das Integral, wie in Abbildung 2.7 zu sehen, zunächst die Überlappungsdauer t mal der Höhe des Rechtecks in , also: h(t) ∗ in (t) = t · n,
falls t ∈ [0,
1 ]. n
(30.4)
Für die Dauer der Gesamtüberlappung der Träger ist das Integral gleich dem Integral über in selbst, also: h(t) ∗ in (t) = 1,
1 falls t ∈ [ , 1]. n
(30.5)
Beim Austritt des Trägers der Funktion in (t − τ ) aus dem Trägerbereich von h(τ) erhält man eine Situation symmetrisch zur Eintrittsphase. Es ergibt sich:
31
Lösungsband zu „Signale und Systeme“ in (t − τ )
h(τ )
τ t n h(τ ) · in (t − τ )
τ
t R∞
. . . dτ
−∞
h(t) ∗ in (t)
t t Abb. 2.7: Grafische Darstellung zur Faltung h(t) ∗ in (t)
h(t) ∗ in (t) = 1 − (t − 1) · n,
falls t ∈ [1, 1 +
1 ]. n
(31.1)
Ist der Träger von in (t − τ ) aus dem Intervall [0, 1] ausgetreten (dies passiert für t > 1 + n1 ), so ist der Wert des Faltungsintegrals wieder 0. Wir erhalten also als Systemantwort das Signal: 0 für t < 0, tn für t ∈ [0, n1 ], h(t) := (31.2) 1 für t ∈ [ n1 , 1], 1 − (t − 1)n für t ∈ [1, 1 + n1 ], 0 für t > 1 + n1 .
32
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Diese Funktion, welche in Abbildung 2.7 gestrichelt angedeutet ist, ähnelt dem Einheitsrechteck, also h(t), und zwar je mehr, desto größer n wird (die Flanken werden kürzer und steiler). Es gilt also für jedes t ∈ R: (32.1)
lim in (t) ∗ h(t) = h(t).
n→∞
Übung 17 ( Lehrbuch Seite 91 ) Realisieren Sie das LTI-System S aus Übung 16 in Simulink und verifizieren Sie mit Hilfe der Simulation das dort errechnete theoretische Ergebnis für die Erregung mit den Rechteckimpulsen in (t). Hinweis: Beachten Sie den Zusammenhang zwischen der Sprungfunktion σ(t) und dem Rechteckimpuls rect1 (t). Beachten Sie weiterhin Beispiel 2.9 des Lehrbuchs und das Ergebnis aus Übung 11. Lösung zu Übung 17 Zunächst einmal kann der Rechteckimpuls rect1 (t), wie man sich durch eine entsprechende Skizze leicht überzeugt, sehr einfach als Differenz der zwei Sprungfunktionen σ(t) und σ(t − 1) dargestellt werden: (32.2)
rect1 (t) = σ(t) − σ(t − 1).
Die Sprungfunktion σ(t − 1) ist dabei die um eine Zeiteinheit verzögerte Version der Sprungfunktion σ(t). Die Berechnungen in Beispiel 2.9 des Lehrbuchs und das Ergebnis aus Übung 11 zeigen, dass die Antwort eines Systems mit Impulsantwort σ(t) auf ein Eingangssignal x(t) durch y(t) =
Z∞
−∞
x(τ ) · σ(t − τ ) dτ =
Zt
x(τ ) dτ
(32.3)
0
gegeben ist. Das entsprechende LTI-System ist also ein Integrator! Das System mit der Impulsantwort σ(t − 1) ist ein Integrator mit Verzögerung um eine Zeiteinheit. Das System mit der Impulsantwort rect1 (t) lässt sich daher aufgrund von Gleichung (32.2) als Differenz zweier solcher Integratoren darstellen. Mit dem in Abbildung 2.8 dargestellten Simulink-System s_impantw.mdl, kann die Impulsantwort dieses Systems approximiert werden. Der DiracImpuls am Eingang wird dabei in der in Übung 16 beschriebenen Weise approximiert.
33
Lösungsband zu „Signale und Systeme“
1 s Systemantwort
Eingangssignal
Sum
Integrator 1
Eingangssignal
Dirac−Stoß
Systemantwort
Eingangssignal Mux
Scope
1 s
Integrator 2
Initialisierung (bitte vor Start anklicken )
Transport Delay
Abb. 2.8: Simulink-System zur Simulation der Impulsantwort des Systems aus Übung 16
Übung 18 ( Lehrbuch Seite 91 ) Mit dieser Aufgabe sollen die besonderen Eigenschaften verallgemeinerter Funktionen und insbesondere des Dirac-Impulses verdeutlicht werden. Halten Sie sich dazu noch einmal vor Augen, dass verallgemeinerte Funktionen über die „Wirkung“ auf (gewisse) reelle Funktionen x(t) definiert wurden und dass diese „Wirkung“ über das Integral φ(x(t)) =
Z∞
φ(t)x(t) dt
(33.1)
−∞
bestimmt wird, falls es sich bei der verallgemeinerten Funktion gleichzeitig um eine gewöhnliche reelle Funktion φ(t) handelt (vgl. Gleichung (76.3) des Lehrbuchs). Es wurde im Lehrbuch darauf hingewiesen, dass dieses Integral für echte verallgemeinerte Funktionen nur rein formaler Natur ist. Jedoch ist es trotzdem sinnvoll, die formale Integralschreibweise einzuführen, da die Rechentechniken für Integrale (wie Substitution, partielle Integration) auch für verallgemeinerte Funktionen gültig bleiben. Dies soll nun in dieser Aufgabe ausgenutzt werden, um durch eine geeignete Substitution den zeitskalierten Dirac-Impuls δ0 (bt) zu berechnen. Das Ergebnis der Aufgabe zeigt zugleich, dass die gängige Vorstellung des Dirac-Impulses als Funktion mit dem „Wert“ ∞ bei t = 0 zu groben Fehlschlüssen führen kann, denn natürlich ist δ0 (bt) nicht gleich δ0 (t) wie diese Vorstellung suggeriert. Berechnen Sie nun δ0 (bt), b 6= 0 (a) gemäß dem in der obigen Anleitung beschriebenen Ansatz mit Hilfe einer geeigneten Substitution innerhalb des formalen Integrals. Achten Sie dabei auf das Vorzeichen von b und gegebenenfalls auf die Veränderung der Integralgrenzen.
34
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(b) Kontrollieren Sie Ihr Ergebnis, indem Sie die Herleitung des DiracImpulses für δ0 (bt) noch einmal nachvollziehen, das heißt, indem Sie mit entsprechend zeitskalierten Rechteckimpulsen annähern. Lösung zu Übung 18 (a) Mit der Substitution t0 = bt,
t=
t0 , b
dt0 = bdt,
dt =
1 0 dt b
folgt, dass für jede Testfunktion x(t) gilt: Z∞
δ0 (bt)x(t) dt =
∞ 0 R δ0 (t0 )x tb 1b dt0
−∞
−∞ −∞ R
δ0 (t0 )x
∞ Z∞
0 t b
1 b
dt0
falls b > 0, falls
b 0, ! b n in (bt) = n · rect n1 (bt) = (34.2) n · rect 1 1 (−t) für b < 0. n |b|
Dann gilt für jedes x(t): Z∞
in (bt)x(t) dt =
−∞
Falls n sehr groß ist, folgt:
1 1 b n
n
n −
R
0 R0
x(t) dt
1 1 |b| n
x(t) dt
falls b > 0, falls b < 0.
(34.3)
35
Lösungsband zu „Signale und Systeme“
Z∞
−∞
n 1 1 x(0) bn in (bt)x(t) dt∼ = 1 1 n |b| n x(0)
falls b > 0, falls
b = 0 ) . * t . * exp(− t ) ; x = exp(−abs ( t ) ) ;
% Impulsantwort % Eingangssignal
y = conv ( h , x ) * dt ;
% Näherung des Faltungsintegrals % (beachte dt muss eingerechnet % werden!)
c t = ( −2 * endt : dt : 2 * endt ) ;
% Zeitbereich Faltung
% Exakter Wert der Systemantwort % laut berechneter Formel yexakt = ( 1 / 4 ) * ( exp(−abs ( c t ) ) . * ( c t < 0 ) + . . . ( c t > = 0 ) . * exp(− c t ) . * ( 2 * c t . ^ 2 + 2 * c t + 1 ) ) ; % Vergleichsplot subplot ( 1 2 1 ) p l o t ( c t , yexakt , ’b ’ , ’ LineWidth ’ , 3 ) grid axis ( [ −10 ,10 ,0 ,0.5] ) xlabel ( ’ Zeit / s ’ ) y l a be l ( ’ y ( t ) exakt ’ ) subplot ( 1 2 2 ) p l o t ( c t , y , ’k ’ , ’ LineWidth ’ , 3 ) grid axis ( [ −10 ,10 ,0 ,0.5] ) xlabel ( ’ Zeit / s ’ ) y l a be l ( ’ y ( t ) approximiert ’ )
Die sehr gute Übereinstimmung bestätigt die analytische Berechnung. Übung 27 ( Lehrbuch Seite 95 ) Ein LTI-System S habe die Impulsantwort 7
Da wir keine unendlich lange Folge von Funktionswerten erzeugen können, kann lediglich eine Näherung der zeitkontinuierlichen Faltung bestimmt werden.
54
0.5
0.5
0.45
0.45
0.4
0.4
0.35
0.35 y(t) approximiert
y(t) exakt
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
0.3 0.25 0.2
0.3 0.25 0.2
0.15
0.15
0.1
0.1
0.05
0.05
0 −10
−5
0 Zeit /s
5
10
0 −10
−5
0 Zeit /s
5
10
Abb. 2.21: Vergleich zwischen analytisch berechneter und mittels conv approximierter Systemantwort.
h(t) = cos(2πt).
(54.1)
(a) Bestimmen Sie die Sprungantwort des Systems. (b) Bestimmen Sie die Antwort des Systems auf rect1 (t). (c) Ist S realisierbar? Lösung zu Übung 27 (a) Die Impulsantwort ist die (distributionelle) Ableitung der Sprungantwort und damit ist wegen d 1 sin(2πt) = cos(2πt). (54.2) dt 2π das Signal
yσ (t) =
1 sin(2πt) 2π
(54.3)
die gesuchte Sprungantwort. (b) Da rect1 (t) = σ(t) − σ(t − 1)
(54.4)
ist und S ein LTI-System, folgt aus (54.3) für die Antwort y(t) auf das Einheitsrechtecksignal rect1 (t): y(t) =
1 (sin(2πt) − sin(2π(t − 1))) . 2π
(54.5)
55
Lösungsband zu „Signale und Systeme“
(c) Ein solches System ist nicht realisierbar, da es keine kausale Impulsantwort hat und somit kein kausales System ist. Übung 28 ( Lehrbuch Seite 95 ) Die Grafik aus Abbildung 2.22 zeigt die Impulsantwort h(t) eines LTISystems S.
1.4 1.2
Amplitude
1 0.8 0.6 0.4 0.2 0 −0.2 −1
−0.5
0
0.5
1 Zeit/s
1.5
2
2.5
3
Abb. 2.22: Impulsantwort eines LTI-Systems S
(a) Geben Sie in geschlossener Form8 eine Funktionsvorschrift für die Impulsantwort an. (b) Entwerfen Sie ein Simulink-System, mit dem S simuliert werden kann. (c) Bestimmen Sie mit Hilfe des Simulink-Systems experimentell die Antwort des Systems auf ein Eingangssignal der Form x(t) = δ0 (t) + σ(t) · sin(t). Hinweis: Überlegen Sie sich zu Teil (b) vorab, welches LTI-System die Impulsantwort σ(t) · t hat! Lösung zu Übung 28 (a) Die Impulsantwort hat die Funktionsvorschrift 1 − t falls t ∈ [0, 1], h(t) = 0 sonst. 8
Eine Funktionsvorschrift, die ohne Fallunterscheidung auskommt.
(55.1)
56
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Mit Hilfe des Einheitsrechtecksignals rect1 (t) bzw. des Sprungsignals σ(t) kann h(t) in geschlossener Form wie folgt dargestellt werden: h(t) = rect1 (t) · (1 − t)
= σ(t) · (1 − t) − σ(t − 1) · (1 − t) = σ(t − 1) · (t − 1) − σ(t) · (t − 1)
(56.1)
= σ(t − 1) · (t − 1) − σ(t) · t + σ(t). (b) Aufgrund des Hinweises wird zunächst untersucht, welches LTI-System die Impulsantwort σ(t) · t hat. Bekannt ist, dass der Integrator die Impulsantwort σ(t) hat! Integriert man diese Impulsantwort anschließend noch einmal auf (σ(t) als Eingangssignal eines weiteren Integrators), so ergibt sich als Ausgangssignal σ(t) · t. Das Signal σ(t) · t ist also die Impulsantwort zweier hintereinander geschalteter Integratoren! Aus (56.1) kann man entnehmen, dass h(t) sich aus der Impulsantwort σ(t)·t dieses Doppelintegrators, der um 1 Zeiteinheit verzögerten Impulsantwort σ(t − 1) · (t − 1) des Doppelintegrators und der Impulsantwort σ(t) eines Integrators zusammensetzt. Aus dieser Überlegung ergibt sich das in Abbildung 2.23 dargestellte Simulink-System s_uebimpantw2.mdl, mit welchem das Ergebnis verifiziert werden kann.
Dirac−Stoß Manual Switch
1 s
1 s
Integrator1
Integrator2
Transport Delay
Add Scope
Initialisierung (bitte vor Start anklicken )
Step
Abb. 2.23: Simulink-System zur Impulsantwort aus Übung 28.
(c) Mit Hilfe des Simulink-Systems lässt sich ein Eingangssignal der Form x(t) = δ0 (t) + σ(t) · sin(t) durch die Summation des Ausgangssignals des Dirac-Impuls-Blocks und eines Sinus-Blocks darstellen, bei dem die Frequenz aus 1 rad/s eingestellt ist9 (vgl. s_uebimpantw3.mdl). Die Antwort ist in Abbildung 2.24 grafisch dargestellt. 9
Das System wird aus Platzgründen nicht grafisch dargestellt.
57
Lösungsband zu „Signale und Systeme“
1
y(t)
0.5
0
−0.5 0
0.5
1
1.5
2
2.5 Zeit/s
3
3.5
4
4.5
5
Abb. 2.24: Antwort des Systems aus Übung 28 auf x(t) = δ0 (t) + σ(t) · sin(t)
Übung 29 ( Lehrbuch Seite 135 ) Berechnen Sie mit Hilfe der Rechenregeln der Laplace-Transformation die Transformierten von (a) x1 (t) = δ0 (t − 1) + σ(t − 1), (b) x2 (t) = 3t2 − 2t + 1, (c) x3 (t) =
(d) x4 (t) =
sin(t) t , 1−e−t . t
Alle Signale seien dabei kausale Signale, d.h. es soll gelten: xi (t) = 0 für t < 0. Überprüfen Sie anschließend Ihre Ergebnisse mit Hilfe der Symbolic Math Toolbox von MATLAB. Lösung zu Übung 29 Mit Hilfe der Rechenregeln und der Tabelle der Laplace-Transformationen (s. Anhang B.1) errechnet man: (a) X1 (s) = L (δ0 (t − 1)) (s) + L (σ(t − 1)) (s) =e
−s
(L (δ0 (t)) (s) + L (σ(t)) (s)) 1 −s =e 1+ . s
(Linearitätsregel) (Verschiebungssatz)
(57.1)
58
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(b) X2 (s) = 3L t2 (s) − 2L (t) (s) + L (1) (s)
(Linearitätsregel)
2
=3
d d L (σ(t)) (s) + 2 L (σ(t)) (s) + L (σ(t)) (s). ds2 ds
(58.1)
Bei der letzten Umformung wurde die Differentiationsregel im Bildbereich verwendet. Man beachte, dass es sich nach Voraussetzung um kausale Signale handelt und die einseitige Laplace-Transformation verwendet wird. Daher entspricht die (konstante) Funktion 1 dem Sprungsignal σ(t), ebenso wie mit t und t2 eigentlich tσ(t) bzw. t2 σ(t) gemeint sind. Wegen L (σ(t)) (s) = 1s folgt nun: X2 (s) = 6
1 1 1 s2 − 2s + 6 − 2 + = . s3 s2 s s3
(58.2)
(c) Mit Hilfe der Integrationsregel im Bildbereich erhält man X3 (s) =
Z∞
L (sin(t)) (p) dp =
s
Z∞
p2
1 dp +1
(58.3)
s
π 1 = lim arctan(p) − arctan(s) = − arctan(s) = arctan( ) p→∞ 2 s und ebenso (d) Z∞
Z∞
1 1 X4 (s) = L 1 − e (p) dp = − p p+1 s s p s = lim ln − ln p→∞ p−1 s+1 s s+1 = − ln = ln . s+1 s −t
Überprüfung der Ergebnisse mit MATLAB: >> syms t s p >> % Aufgabenteil (a) >> x1 = d i r a c ( t −1)+ h e a v i s i de ( t −1) x1 = d i r a c ( t −1)+ h e a v i s i d e ( t −1)
dp (58.4)
Lösungsband zu „Signale und Systeme“
>> X1 = l a p l a c e ( x1 ) X1 = exp(−s ) * ( 1 + 1 / s ) >> % Aufgabenteil (b) >> x2 = 3 * t ^2−2* t +1 x2 = 3 * t ^2−2* t +1 >> X2 = l a p l a c e ( x2 ) X2 = (6 −2 * s+s ^2)/ s ^3 >> % Aufgabenteil (c) >> x3 = s i n ( t )/ t x3 = sin ( t )/ t >> X3 = l a p l a c e ( x3 ) X3 = atan (1/ s ) >> % Aufgabenteil (d) >> x4 = (1−exp(− t ) ) / t x4 = (1−exp(− t ) ) / t >> X4 = l a p l a c e ( x4 ) X4 =
59
60
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
log ( ( s +1)/ s )
Übung 30 ( Lehrbuch Seite 135 ) Betrachten Sie das in Abbildung 2.25 wiedergegebene Simulink-Blockschaltbild eines Regelkreises. H_1(s)
H_2(s)
X(s) 1
PID Step
Add
0.5s+1
PID−Regler
VZ1−Glied
Y(s) 1 s Integrator
Scope
2 0.1s+1 Rueckkopplung
H_3(s)
Abb. 2.25: Regelkreis
Der PID-Regler habe die Übertragungsfunktion H1 (s) = 1 +
1 1 + s. 10s 2
(60.1)
(a) Bestimmen Sie mit Hilfe von MATLABs tf-Funktionen die Übertragungsfunktion H(s) des Gesamtsystems im Bildbereich. (b) Überprüfen Sie das Ergebnis aus Teil (a) mit Hilfe der Symbolic Math Toolbox. (c) Bestimmen Sie mit Hilfe von MATLABs tf-Funktionen numerisch Impuls- und Sprungantwort des Systems und stellen Sie diese grafisch dar. (d) Bestimmen Sie theoretisch den Endwert der Sprungantwort und vergleichen Sie diesen mit dem Ergebnis aus Teil (c). (e) Überprüfen Sie (ggf. mit MATLAB), ob der Regelkreis stabil ist. (f) Überprüfen sie Ihre Ergebnisse mit Simulink. Lösung zu Übung 30 Der MATLAB-Code zu den nachfolgenden Lösungen ist in dem Script-File uebHs1.m zusammengefasst.
Lösungsband zu „Signale und Systeme“
61
(a) Bestimmung der Übertragungsfunktion H(s) des Gesamtsystems im Bildbereich: >> s = t f ( ’ s ’ ) Transfer function : s >> % Übertragungsfunktionen der Blöcke >> H1 = 1 + 1 / ( 1 0 * s ) + s /2 Transfer function : 5 s ^2 + 10 s + 1 −−−−−−−−−−−−−−−− 10 s >> H2 = 1 / ( 0 . 5 * s + 1 ) * ( 1 / s ) Transfer function : 1 −−−−−−−−−−− 0 . 5 s ^2 + s >> % Vorwärtszweig berechnen >> Hvor = s e r i e s (H1 , H2) Transfer function : 5 s ^2 + 10 s + 1 −−−−−−−−−−−−−−−− 5 s ^3 + 10 s ^2 >> % Rückkopplung und Gesamt-Übertragungs>> %funktion H berechnen >> H3 = 2 / ( 0 . 1 * s +1) Transfer function : 2 −−−−−−−−− 0.1 s + 1 >> H = feedback ( Hvor , H3, −1) Transfer function : 0 . 5 s ^3 + 6 s ^2 + 1 0 . 1 s + 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 0 . 5 s ^4 + 6 s ^3 + 20 s ^2 + 20 s + 2
62
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
>> H = minreal (H) Transfer function : s ^3 + 12 s ^2 + 2 0 . 2 s + 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− s ^4 + 12 s ^3 + 40 s ^2 + 40 s + 4
(b) Überprüfung des Ergebnisses mit Hilfe der Symbolic Math Toolbox: >> syms p >> % Definition der Übertragungsfunktionen >> H1 = 1 + 1 / ( 1 0 * p) +p/2 H1 = 1+1/10/p+1/2 * p >> H2 = 1 / ( 0 . 5 * p + 1 ) * ( 1 / p ) H2 = 1/( 1/ 2 * p+1)/p >> H3 = 2 / ( 0 . 1 * p+1) H3 = 2/( 1/ 10 * p+1) >> % Definition der Gesamt-Übertragungsfunktion >> Hp = H1 * H2/(1+H1 * H2 * H3) Hp = (1+1/10/ p+1/2 * p ) / ( 1 / 2 * p+1)/ p/( 1+ 2 * ( 1+ 1/ 10/p+1/2 * p ) . . . / (1/2 * p+1)/p/(1/10 * p + 1 ) ) >> Hp = simple (Hp) Hp = 1 / 5 * ( p + 1 0 ) * ( 1 0 * p+1+5 * p^ 2 ) / ( p^4+12 * p^3+40 * p^2+40 * p+ 4)
Lösungsband zu „Signale und Systeme“
63
>> p r e t t y (Hp) 2 (p + 10) (10 p + 1 + 5 p ) 1/5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 4 3 2 p + 12 p + 40 p + 40 p + 4 >> % Zur Kontrolle: Umformung des Zählers >> Zaehl er = expand ( ( p + 1 0 ) * ( 1 0 * p + 1 + 5 * p^2 ) ) Zaehl er = 6 0 * p^2+101 * p+5 * p^3+10
(c) Bestimmung der Impuls- und Sprungantwort des Systems: >> H Transfer function : s ^3 + 12 s ^2 + 2 0 . 2 s + 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− s ^4 + 12 s ^3 + 40 s ^2 + 40 s + 4 >> % Impulsantwort bestimmen >> z e i t = ( 0 : 0 . 0 1 : 5 ) ; >> [ impant , t ] = impulse (H, z e i t ) ; >> % Sprungantwort bestimmen >> [ spant , t ] = s t e p (H, z e i t ) ; >> >> >> >> >>
% Antworten grafisch darstellen p l o t ( t , impant , ’ r ’ , t , spant , ’b ’ , ’ LineWidth ’ , 3 ) grid xlabel ( ’ Zeit ’ ) y l a be l ( ’Ampl . ’ )
Die berechneten Systemantworten sind in Abbildung 2.26 dargestellt. (d) Die Laplace-Transformierte der Sprungantwort ist die Übertragungsfunktion des Systems multipliziert mit der Laplace-Transformierten des Sprunges, d.h.: 1 Yσ (s) = H(s) · . s Aus dem zweiten Grenzwertsatz folgt dann:
(63.1)
64
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
1.2 1 0.8
Sprungantwort
Ampl.
Impulsantwort 0.6 0.4 0.2 0 −0.2 0
1
2
Zeit
3
4
5
Abb. 2.26: Impuls- und Sprungantwort des LTI-Systems
1 = lim H(s). s t→0
(64.1)
s3 + 12s2 + 20.2s + 2 2 = = 0.5. 3 2 + 12s + 40s + 40s + 4 4
(64.2)
lim yσ (t) = lim s · Yσ (s) = lim s · H(s) ·
t→∞
t→0
t→0
Im vorliegenden Fall erhält man: lim H(s) = lim
t→0
t→0 s4
Dies wird durch nachfolgende MATLAB-Berechnung bestätigt: >> g r o s s e r Z e i t w e r t = 1 0 0 ; >> santw = s t e p (H, g r o s s e r Z e i t w e r t ) ; >> endwert = santw ( end ) endwert = 0.5000
(e) Der Regelkreis hat eine rationale Übertragungsfunktion H(s) im Bildbereich und ist daher genau dann stabil, wenn die Polstellen von H(s) alle links der imaginären Achse liegen. Mit MATLAB errechnet man: >> pole (H) ans =
65
Lösungsband zu „Signale und Systeme“
−7.2121 −3.0594 −1.6163 −0.1122
Alle Pole sind reell und negativ. Infolgedessen ist das System stabil. (f) Die Ergebnisse können mit Hilfe des Simulink-Systems s_uebsysRegel.mdl der Begleitsoftware überprüft werden. Übung 31 ( Lehrbuch Seite 136 ) Ein LTI-System S werde durch das Blockschaltbild im Abbildung 2.27 definiert (vgl. dazu Übung 21).
x(t)
Σ
σ(t)
Σ
y(t)
2 · δ0 (t) Abb. 2.27: Signalflussdarstellung eines LTI-Systems S
In den Teilsystemen sind dabei jeweils die Impulsantworten angegeben. Bestimmen Sie mit Hilfe einer Transformation in den Bildbereich (a) (b) (c) (d) (e)
die Übertragungsfunktion H(s) des Gesamtsystems S im Bildbereich, die Impulsantwort des Gesamtsystems S, die Sprungantwort von S, eine Differentialgleichung, die S beschreibt, eine Zustandsraumdarstellung für S.
Vergleichen Sie Ihr Ergebnis mit dem aus Übung 21.
66
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Lösung zu Übung 31 (a) Für die Übertragungsfunktionen im Bildbereich der Blöcke gilt: 1 , s H2 (s) = L(2δ0 (t))(s) = 2. H1 (s) = L(σ(t))(s) =
(66.1)
Bezeichnet man das Signal nach dem ersten Additionsknoten mit u(t), so liest man aus dem Blockschaltbild folgende Beziehungen ab: 1 · U (s), s 1 Y (s) = H1 (s) · U (s) + H2 (s) · X(s) = · U (s) + 2 · X(s). s U (s) = X(s) + H1 (s) · U (s) = X(s) +
(66.2)
Dies liefert: s · X(s), s−1 1 s 2s − 1 Y (s) = · X(s) + 2 · X(s) = · X(s). ss−1 s−1 U (s) =
(66.3)
Die Übertragungsfunktion im Bildbereich des Gesamtsystems S ist somit: 2s − 1 . s−1
(66.4)
2s − 1 1 = 2+ s−1 s−1
(66.5)
h(t) = 2 · δ0 (t) + σ(t) · et .
(66.6)
H(s) =
(b) Die Impulsantwort des Gesamtsystems S ergibt sich aus der LaplaceRücktransformation von H(s). Wegen H(s) = folgt:
Dies entspricht der Lösung (41.4) aus Übung 21. (c) Die Sprungantwort des Gesamtsystems S ergibt sich aus der LaplaceRücktransformation von Yσ (s) = 1s H(s). Wegen 1 1 1 1 1 1 · H(s) = 2 · + = 2· − + s s s(s − 1) s s s−1
(66.7)
yσ (t) = 2 · σ(t) − σ(t) + σ(t) · et = σ(t) · (1 + et ).
(66.8)
Yσ (s) = folgt:
Dies entspricht der Lösung (41.5) aus Übung 21, S. 93.
Lösungsband zu „Signale und Systeme“
67
(d) Aus der allgemeinen Übertragungsgleichung Y (s) = H(s)·X(s) im Bildbereich folgt im vorliegenden Fall: (s − 1) · Y (s) = (2s − 1) · X(s)
⇐⇒
sY (s) − Y (s) = 2sX(s) − X(s).
(67.1)
Mit Hilfe des Differentiationssatzes folgt aus der Laplace-Rücktransformation von (67.1): y(t) ˙ − y(t) = 2x(t) ˙ − x(t).
(67.2)
Dies entspricht der Lösung (41.9) aus Übung 21. (e) Eine Zustandsraumdarstellung erhalten wir am einfachsten mit folgenden MATLAB-Anweisungen: >> s = t f ( ’ s ’ ) Transfer function : s >> H = ( 2 * s −1)/( s −1) Transfer function : 2 s − 1 −−−−−−− s − 1 >> ZRD = s s (H) a = x1
x1 1
x1
u1 1
y1
x1 1
y1
u1 2
b =
c =
d =
Continuous−time model .
68
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Die Zustandsraumgleichungen haben also die Form: z(t) ˙ = 1 · z(t) + 1 · x(t), y(t) = 1 · z(t) + 2 · x(t).
(68.1)
Offenbar ist also das in den vorangegangenen Berechnungen u(t) genannte Hilfssignal nach dem ersten Summationsknoten ein brauchbarer „Zustand“ z(t). Die gefundene Lösung entspricht der Lösung (42.6) aus Übung 21. Übung 32 ( Lehrbuch Seite 137 ) Bestimmen Sie mit Hilfe der Laplace-Transformation die Antwort des LTISystems mit der Übertragungsfunktion H(s) =
1 s2 + 2s + 9
(68.2)
auf eine (kausale) harmonische Schwingung x(t) = σ(t)·sin(ωt) der Frequenz ω = 2 rad/s. Berechnen Sie das Ergebnis zunächst „von Hand“ und überprüfen Sie dieses Ergebnis anschließend mit MATLAB und/oder Simulink. Interpretieren Sie das Ergebnis! Lösung zu Übung 32 Aus der allgemeinen Übertragungsgleichung Y (s) = H(s)X(s) im Bildbereich erhält man wegen X(s) = L(sin(ωt))(s) = L(σ(t) · sin(ωt))(s) =
s2
ω + ω2
(68.3)
mit ω = 2 rad/s für die Transformierte der Systemantwort: Y (s) =
1 2 · . s2 + 2s + 9 s2 + 4
(68.4)
Die Systemantwort y(t) im Zeitbereich ergibt sich aus der Laplace-Rücktransformation von Y (s). Zur Rücktransformation zerlegen wir (68.4) zunächst in Partialbrüche. Wegen √ √ (68.5) s2 + 2s + 9 = 0 ⇐⇒ s1/2 = −1 ± 1 − 9 = −1 ± j 8 und
69
Lösungsband zu „Signale und Systeme“
s2 + 4 = 0
⇐⇒
(69.1)
s3/4 = ±2j
kann die Partialbruchzerlegung wahlweise mit dem komplexen Ansatz Y (s) =
A B C D + + + , s − s1 s − s2 s − s3 s − s4
A, B, C, D ∈ C
(69.2)
oder mit dem reellen Ansatz As + B Cs + D + 2 , s2 + 2s + 9 s +4
Y (s) =
A, B, C, D ∈ R
(69.3)
durchgeführt werden. Aus dem Ansatz (69.3) erhält man die äquivalente Gleichung 2 = (As + B) · (s2 + 4) + (Cs + D) · (s2 + 2s + 9)
= As3 + 4As + Bs2 + 4B + Cs3 + 2Cs2 + 9Cs + Ds2 + 2Ds + 9D (69.4) = (A + C)s3 + (B + 2C + D)s2 + (4A + 9C + 2D)s + (4B + 9D).
Ein Koeffizientenvergleich liefert das lineare Gleichungssystem
0 4
0 9
4 0 0 1
A
2
B 0 9 2 · = . C 0 2 1
1 0
1 0
D
(69.5)
0
Die Lösung berechnen wir der Einfachheit halber mit Hilfe von MATLAB: >> M =
[0 4 0 1
, , , ,
4 0 1 0
, , , ,
0 9 2 1
, , , ,
9 ; 2 ; 1 ; 0]
M= 0 4 0 1
4 0 1 0
>> b = [ 2 ; 0 ; 0 ; 0 ] b =
0 9 2 1
9 2 1 0
70
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ 2 0 0 0 >> % Vorher in Preferences auf die Darstellungform >> % rational umstellen! >> x = inv (M) * b x = 4/41 −2/41 −4/41 10/41
Die Partialbruchzerlegung liefert also die Darstellung: 1 4s − 2 −4s + 10 Y (s) = + 2 . 41 s2 + 2s + 9 s +4
(70.1)
Mit Hilfe der Transformationstabelle aus Anhang B.1 oder mit folgenden MATLAB-Anweisungen >> syms s >> T1 = ( 4 * s −2)/( s ^2 + 2 * s + 9 ) T1 = ( 4 * s −2)/( s ^2+2 * s + 9) >> T2 = ( −4 * s + 1 0 ) / ( s ^2 + 4 ) T2 = ( −4 * s + 1 0) / ( s ^2+4) >> t 1 = i l a p l a c e ( T1 ) t1 = 1/2 * exp(− t ) * ( 8 * cos ( 2 * 2 ^ ( 1 / 2 ) * t ) − 3 * 2 ^ ( 1 / 2 ) * s i n ( 2 * 2 ^ ( 1 / 2 ) * t ) ) >> t 2 = i l a p l a c e ( T2 ) t2 =
Lösungsband zu „Signale und Systeme“
71
−4* cos ( 2 * t ) + 5 * s i n ( 2 * t )
erhält man als Systemantwort: √ 1 1 −t h y(t) = e · 8 cos(2 2t) 41 2 √ √ i −3 2 sin(2 2t) − 4 cos(2t) + 5 sin(2t) .
(71.1)
Die Systemantwort besteht also aus einem mit e−t abklingenden Teil und einer reinen harmonischen Schwingung der Frequenz ω = 2 rad/s. Im Abschnitt Signale und LTI-Systeme im Frequenzbereich des Lehrbuchs wird gezeigt, dass LTI-Systeme auf harmonische Schwingungen am Eingang mit harmonische Schwingungen gleicher Frequenz am Ausgang reagieren. Dies gilt jedoch nur, wenn diese „für alle Zeiten“ am Eingang anliegen! Da die obigen Berechnungen nur für kausale Signale gelten, d.h. eigentlich das Signal σ(t) · sin(ωt), t ∈ R und nicht das Signal sin(ωt), t ∈ R betreffen, enthält die Systemantwort einen Anteil, der auf die implizit vorhandene Sprungfunktion σ(t) zurückzuführen ist. Da dieser Einfluss offenbar abklingt, ist die Systemantwort „im eingeschwungenen Zustand“ y(t) =
1 (−4 cos(2t) + 5 sin(2t)) = 0.1562 sin(2t − 0.6747). 41
(71.2)
Die berechnete Lösung kann mit dem Simulink-System s_uebSinAntw.mdl der Begleitsoftware10 überprüft werden. Das Simulink-System liefert bei Aufruf an den MATLAB Workspace das Ausgangssignal SystAntwSchwing zurück, mit dem die in (71.1) berechnete Lösung verglichen werden kann: >> z e i t = SystAntwSchwing ( : , 1 ) ; >> sysaus = SystAntwSchwing ( : , 2 ) ; >> y = 1 / 4 1 * ( ( 1 / 2 ) * exp(− t ) . * . . . ( 8 * cos ( 2 * s q r t ( 2 ) * t ) −3 * s q r t ( 2 ) * s i n ( 2 * s q r t ( 2 ) * t ) ) . . . −4* cos ( 2 * t ) + 5 * s i n ( 2 * t ) ) ; >> [ sysaus , y ] ans = 1 . 0 e−005 * 0 10
0
Das System wird aus Platzgründen hier nicht dargestellt.
72
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ 0.0000 0.0003 0.0009 0.0021 0.0042 0.0072 0.0114 0.0170 0.0242 0.0332 0.0441 0.0573 0.0728 0.0908 0.1116 0.1354 0.1624 0.1926 0.2264 ...
0.0000 0.0003 0.0009 0.0021 0.0042 0.0072 0.0114 0.0170 0.0242 0.0332 0.0441 0.0573 0.0728 0.0908 0.1116 0.1354 0.1624 0.1926 0.2264
Offenbar erhält man identische Werte, was auch ein entsprechender Plot bestätigt. Übung 33 ( Lehrbuch Seite 137 ) Ein schwingungsfähiges System wird durch die Differentialgleichung y¨(t) − 3y(t) ˙ + 2y(t) = x(t)
(72.1)
beschrieben. (a) Bestimmen Sie die Übertragungsfunktion H(s) des Systems im Bildbereich. (b) Geben Sie die Impuls- und Sprungantwort des Systems an. (c) Bestimmen Sie eine Zustandsraumdarstellung im Bildbereich des Systems. (d) Überprüfen Sie Ihre Ergebnisse mit MATLAB. (e) Überprüfen Sie Ihre Ergebnisse mit Simulink. Lösung zu Übung 33 (a) Mit Hilfe des Differentiationssatzes der Laplace-Transformation erhält man aus der Differentialgleichung: s2 Y (s) − 3sY (s) + 2Y (s) = X(s) ⇐⇒
Y (s) =
1 X(s). s2 − 3s + 2
(72.2)
73
Lösungsband zu „Signale und Systeme“
Die Übertragungsfunktion H(s) des Systems im Bildbereich ist somit: H(s) =
s2
1 . − 3s + 2
(73.1)
(b) Wegen H(s) =
1 1 = 2 s2 − 3s + 2 s − 3s +
=
s−
1 3 2 2
−
1 4
=2
s−
9 4
1 2 3 2 2
−
1 4
−
1 4
(73.2)
entnimmt man der Laplace-Transformations-Tabelle aus Anhang B.1 die Impulsantwort: 3 1 t 2 h(t) = 2e sin t . (73.3) 2 Daraus ergibt sich die Sprungantwort: yσ (t) =
Zt
h(τ ) dτ
0
t 2 3 1 1 3 1 τ 2 = 9 1e − cos τ + sin τ 2 2 2 2 4 + 4 0 t 2 3τ 1 1 = e2 3 sin τ − cos τ 5 2 2 0 3 2 1 1 = e 2 t 3 sin t − cos t +1 . 5 2 2
(73.4)
(c) Definieren wir die Lösung y(t) der Gleichung y¨(t) − 3y(t) ˙ + 2y(t) = x(t)
(73.5)
als „Zustand“ z1 (t) und die Ableitungsfunktion dieser Lösung als „Zustand“ z2 (t), so gilt: z˙1 (t) = z2 (t) z˙2 (t) = z¨1 (t) = y¨(t) = 3y(t) ˙ − 2y(t) + x(t) = 3z2 (t) − 2z1 (t) + x(t).
(73.6)
Ferner ist nach Definition: y(t) = 1 · z1 (t) + 0 · z2 (t) + 0 · x(t).
(73.7)
74
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Das System wird also durch eine Zustandsraumdarstellung der Form
z ˙ (t) 0 1 z (t) 1 = 1 + 0 x(t), z˙2 (t) −2 3 z2 (t) 1 z1 (t) y(t) = 1 0 + 0 · x(t) z2 (t)
(74.1)
beschrieben. (d) Die Ergebnisse können mit den MATLAB-Funktionen tf, und ss wie folgt überprüft werden (vgl. Script-File uebHs2.m der Begleitsoftware): >> >> >> >>
s % s H
= tf ( ’s ’ ); Übertragungsfunktion im Bildbereich = tf ( ’s ’ ); = 1/ ( s ^2−3 * s +2)
Transfer function : 1 −−−−−−−−−−−−− s ^2 − 3 s + 2 >> >> >> >> >>
% Numerische Berechnung der Impulsantwort s = tf ( ’s ’ ); t = (0:0.01:1); s = tf ( ’s ’ ); [ i a nt , z e i t ] = impulse (H, t ) ;
>> % Numerische Berechnung der Sprungantwort >> s = t f ( ’ s ’ ) ; >> [ sant , z e i t ] = s t e p (H, t ) ; >> >> >> >> >> >> >>
% Vergleich mit der theortischen Lösung s = tf ( ’s ’ ); h = 2 * exp ( 3 * t / 2 ) . * s i n ( t / 2 ) ; s = tf ( ’s ’ ); p l o t ( t , i a n t , ’ r ’ , t , h , ’b ’ ) s = tf ( ’s ’ ); [ iant ( 1 : 1 0 ) , ( h ( 1 : 1 0 ) ) ’ ]
ans = 0 0.0102 0.0206 0.0314
0 0.0102 0.0206 0.0314
Lösungsband zu „Signale und Systeme“ 0.0425 0.0539 0.0657 0.0778 0.0902 0.1030 >> >> >> >> >>
0.0425 0.0539 0.0656 0.0777 0.0902 0.1030
ys = ( 2 / 5 ) * ( exp ( 3 * t / 2 ) . * ( 3 * s i n ( t /2)− cos ( t / 2 ) ) + 1 ) ; s = tf ( ’s ’ ); p l o t ( t , sant , ’ r ’ , t , ys , ’b ’ ) s = tf ( ’s ’ ); [ s a n t ( 1 : 1 0 ) , ( ys ( 1 : 1 0 ) ) ’ ]
ans = 0 0.0001 0.0002 0.0005 0.0008 0.0013 0.0019 0.0026 0.0035 0.0044
0 0.0001 0.0002 0.0005 0.0008 0.0013 0.0019 0.0026 0.0035 0.0044
>> % Bestimmung einer Zustandsraumdarstellung >> ZRD = s s (H) a = x1 x2
x1 3 1
x1 x2
u1 1 0
y1
x1 0
y1
u1 0
b =
c =
x2 −2 0
x2 1
d =
Continuous−time model .
75
76
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Die Zustandsraumdarstellungen sind äquivalent! Es genügt, im vorliegenden Fall einfach die Rollen der Zustände z1 (t) und z2 (t) zu vertauschen. (e) Die Ergebnisse können auch mit dem Simulink-System s_uebHs2.mdl der Begleitsoftware nachgeprüft werden. Das System wird hier aus Platzgründen nicht dargestellt. Übung 34 ( Lehrbuch Seite 138 ) Ein LTI-System wird durch die Differentialgleichung y¨(t) + 2y(t) ˙ − y(t) = x(t) ˙ + x(t)
(76.1)
beschrieben. (a) Bestimmen Sie die Übertragungsfunktion H(s) des Systems im Bildbereich. (b) Geben Sie die Impuls- und Sprungantwort des Systems an. (c) Bestimmen Sie eine Zustandsraumdarstellung im Bildbereich des Systems. (d) Überprüfen Sie Ihre Ergebnisse mit MATLAB. (e) Überprüfen Sie Ihre Ergebnisse mit Simulink. Lösung zu Übung 34 (a) Mit Hilfe des Differentiationssatzes der Laplace-Transformation erhält man aus der Differentialgleichung:
⇐⇒
s2 Y (s) + 2sY (s) − Y (s) = sX(s) + X(s) s+1 Y (s) = 2 X(s). s + 2s − 1
(76.2)
Die Übertragungsfunktion H(s) des Systems im Bildbereich ist somit: H(s) =
s+1 . s2 + 2s − 1
(76.3)
(b) Wegen s+1 s+1 = 2 s2 + 2s − 1 s + 2s + 1 − 2 s+1 √ = (s + 1)2 − 2
H(s) =
(76.4)
entnimmt man einer Laplace-Transformations-Tabelle aus Anhang B.1 die Impulsantwort:
77
Lösungsband zu „Signale und Systeme“
h(t) = e−t cosh Daraus ergibt sich die Sprungantwort: yσ (t) =
Zt
√ 2t .
(77.1)
h(τ ) dτ
0
√ √ 1 √ sinh 2 − 1 τ + cosh 2−1 τ + 2( 2 − 1) √ √ t (77.2) 1 √ sinh 1 + 2 τ − cosh 1 + 2 τ 2(1 + 2) 0 √ √ 1 = √ sinh 2 − 1 t + cosh 2−1 t + 2( 2 − 1) √ √ 1 √ sinh 1 + 2 t − cosh 1 + 2 t − 1. 2(1 + 2) =
(c) Definieren wir die Lösung y(t) der Gleichung y¨(t) + 2y(t) ˙ − y(t) = x(t)
(77.3)
als „Zustand“ z1 (t) und die Ableitungsfunktion dieser Lösung als „Zustand“ z2 (t), so gilt: z˙1 (t) = z2 (t) z˙2 (t) = z¨1 (t) = y¨(t) = −2y(t) ˙ + y(t) + x(t)
(77.4)
= −2z2 (t) + z1 (t) + x(t).
Differenziert man die Gleichung (77.3), so erhält man: ... x ¨(t) = y (t) + 2¨ y(t) − y(t) ˙
= z¨2 (t) + 2z˙ 2 (t) − z2 (t).
(77.5)
Damit sind z1 (t) und z2 (t) die Lösungen von z¨(t) + 2z(t) ˙ − z(t) = x(t)
(77.6)
z¨(t) + 2z(t) ˙ − z(t) = x(t). ˙
(77.7)
bzw. von
Addiert man beide (linearen) Gleichungen auf, so erkennt man, dass die Funktion z1 (t) + z2 (t) die Lösung der gegebenen Differentialgleichung ist. Daraus ergibt sich:
78
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
y(t) = z1 (t) + z2 (t).
(78.1)
Das System wird also durch eine Zustandsraumdarstellung der Form z ˙ (t) 0 1 z (t) 1 1 = + 0 x(t), z˙2 (t) 1 −2 z2 (t) 1 (78.2) z (t) 1 + 0 · x(t) y(t) = 1 1 z2 (t)
beschrieben. (d) Die Ergebnisse können mit den MATLAB-Funktionen tf und ss wie folgt überprüft werden (vgl. Script-File uebHs3.m der Begleitsoftware): >> % Übertragungsfunktion im Bildbereich >> s = t f ( ’ s ’ ) ; >> H = ( s + 1 ) / ( s ^2+2 * s −1) Transfer function : s + 1 −−−−−−−−−−−−− s ^2 + 2 s − 1 >> % Numerische Berechnung der Impulsantwort >> t = ( 0 : 0 . 0 1 : 5 ) ; >> [ i a nt , z e i t ] = impulse (H, t ) ; >> % Numerische Berechnung der Sprungantwort >> [ sant , z e i t ] = s t e p (H, t ) ; >> >> >> >>
% Vergleich mit der theoretischen Lösung h = exp(− t ) . * cosh ( s q r t ( 2 ) * t ) ; p l o t ( t , i a n t , ’ r ’ , t , h , ’b ’ ) [ iant ( 1 : 1 0 ) , ( h ( 1 : 1 0 ) ) ’ ]
ans = 1.0000 0.9139 0.8517 0.8085 0.7805 0.7646 0.7585
1.0000 0.9139 0.8517 0.8085 0.7805 0.7646 0.7585
Lösungsband zu „Signale und Systeme“ 0.7604 0.7689 0.7828
0.7604 0.7689 0.7828
>> ys = 1 / ( 2 * ( s q r t ( 2 ) − 1 ) ) * . . . ( sinh ( ( s q r t ( 2 ) − 1 ) * t )+ cosh ( ( s q r t ( 2 ) − 1 ) * t ) ) + . . . 1/(2*( sqrt ( 2 ) + 1 ) ) * . . . ( sinh ( ( s q r t ( 2 ) + 1 ) * t )− cosh ( ( s q r t ( 2 ) + 1 ) * t ) ) . . . − 1; >> p l o t ( t , sant , ’ r ’ , t , ys , ’b ’ ) >> [ s a n t ( 1 : 1 0 ) , ( ys ( 1 : 1 0 ) ) ’ ] ans = 0 0.0955 0.1836 0.2664 0.3458 0.4229 0.4990 0.5749 0.6513 0.7289
−0.0000 0.0955 0.1836 0.2664 0.3458 0.4229 0.4990 0.5749 0.6513 0.7289
>> % Bestimmung einer Zustandsraumdarstellung >> ZRD = s s (H) a = x1 x2
x1 −2 1
x1 x2
u1 2 0
y1
x1 0.5
y1
u1 0
b =
c =
x2 1 0
x2 0.5
d =
Continuous−time model .
79
80
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Die Zustandsraumdarstellungen sind äquivalent, wie die folgende MATLAB-Berechnung zeigt, bei der die Systemmatrizen auf die gleiche Jordan’sche Normalform zurückgeführt werden und damit eine Transformationsmatrix berechnet wird: % Systemmatrix theoretisch berechnet >> A =[ 0 , 1 ; 1 , −2] % Systemmatrix mit MATLAB berechnet >> a = ZRD. a % Jordansche Normalformen beider Matrizen >> [VA, JA ] = jordan (A) VA = 0.8536 0.3536
0.1464 −0.3536
JA = 0.4142 0 0 −2.4142 >> % Probe: >> VA* J a * inv (VA) ans = 0 1.0000
1.0000 −2.0000
>> [ Va , J a ] = jordan ( a ) Va = 0.1464 0.3536
0.8536 −0.3536
0.4142 0
0 −2.4142
Ja =
>> % Probe: >> >> Va * J a * inv ( Va )
Lösungsband zu „Signale und Systeme“
81
ans = 1.0000 0
−2.0000 1.0000
% Definition einer Transformationsmatrix P >> P = Va * inv (VA) P = 1.0000 0
−2.0000 1.0000
% Probe: >> P *A* inv ( P ) ans = 1.0000 −0.0000
−2.0000 1.0000 >> a a = −2 1
1 0
(e) Die Ergebnisse können auch mit dem Simulink-System s_uebHs3.mdl der Begleitsoftware nachgeprüft werden. Das System wird hier aus Platzgründen nicht dargestellt. Übung 35 ( Lehrbuch Seite 138 ) Betrachten Sie das System S, welches durch das Blockschaltbild in Abbildung 2.28 dargestellt wird: (a) Geben Sie das Ein-/Ausgangsverhalten des Systems in Form einer Differentialgleichung an. (b) Begründen Sie so einfach wie möglich, warum es sich bei dem System S um ein LTI-System handelt. (c) Bestimmen Sie die Übertragungsfunktion H(s) des Systems im Bildbereich. (d) Geben Sie die Sprungantwort des Systems an. (e) Berechnen Sie, für welche a ∈ R das System S stabil ist.
82
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
x(t)
R
+Σ −
a
y(t)
R
Abb. 2.28: Blockschaltbild zu Übung 35
Lösung zu Übung 35 (a) Bezeichnet man das Signal des Rückkopplungszweiges mit z(t), so gilt: y(t) =
Zt
(x(τ ) − z(τ )) dτ,
Zt
a · y(τ ) dτ.
−∞
z(t) =
−∞
(82.1)
Die Differentiation der beiden Gleichungen liefert: y¨(t) = x(t) ˙ − z(t), ˙ z(t) ˙ = a · y(t).
(82.2)
Das Gesamtsystem wird daher durch die Differentialgleichung y¨(t) + a · y(t) = x(t) ˙
(82.3)
beschrieben. (b) Da das System S durch eine lineare Differentialgleichung mit konstanten Koeffizienten beschrieben wird, handelt es sich um ein LTI-System! (c) Mit Hilfe der Differentiationsregel der Laplace-Transformation11 erhält man aus (82.3): s2 Y (s) + aY (s) = sX(s),
(82.4)
woraus für die Übertragungsfunktion im Bildbereich folgt: 11
Man beachte: da wir die einseitige Laplace-Transformation verwenden, gehen wir von kausalen Signalen und einem System aus, das zur Zeit t = 0 “in Ruhe“ ist (alle Anfangswerte sind 0).
83
Lösungsband zu „Signale und Systeme“
H(s) =
s . s2 + a
(83.1)
Alternativ kann man diese Übertragungsfunktion mit Hilfe der Transformierten der Signale und der Übertragungsfunktion 1s des Integrators auch direkt aus dem Blockschaltbild ablesen. Es gilt: 1 · (X(s) − Z(s)), s 1 Z(s) = a · Y (s), s
Y (s) =
(83.2)
woraus a 1 Y (s) 1 + 2 = · X(s) s s
(83.3)
und (82.4) sowie (83.1) folgen. (d) Die Sprungantwort des Systems S ist die Laplace-Rücktransformierte von 1s · H(s). Für a ≥ 0 gilt √ 1 1 1 1 a √ H(s) = 2 = (83.4) √ 2 = √ 2 2 2 s s +a a s + ( a) s + ( a) und man entnimmt der Tabelle12 (s. Anhang B.1):
Für a < 0 gilt
√ 1 yσ (t) = √ sin at . a 1 1 1 H(s) = 2 = 2 = s s +a s − |a| p |a| 1 =p p 2 |a| s2 − |a|
1 p 2 s2 − |a|
(83.5)
(83.6)
und man entnimmt der Tabelle:
Für a = 0 gilt 12
p 1 yσ (t) = p sinh |a|t . |a|
Man beachte, dass die Tabellensignale kausal sind, d.h. für t < 0 als 0 definiert sind!
(83.7)
84
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
1 1 H(s) = 2 s s
(84.1)
und man entnimmt der Tabelle: (84.2)
yσ (t) = t.
(e) Da die Übertragungsfunktion rational ist, ist das System S genau dann stabil, wenn alle Pole von H(s) in der Gauß’schen Zahlenebene links der imaginären Achse liegen. Wegen s2 + a = 0 ±j √a ⇐⇒ s = p ± |a|
falls a > 0
(84.3)
falls a ≤ 0
ist das System für kein a ∈ R stabil.
Dem Leser sei empfohlen, diese Resultate mit einem geeigneten SimulinkSystem zu überprüfen! Übung 36 ( Lehrbuch Seite 139 ) Betrachten Sie den analogen Tiefpass mit der Übertragungsfunktion H(s) =
1 . s2 + 2s + 1
Lösen Sie mit Hilfe von MATLAB folgende Aufgaben: (a) (b) (c) (d)
Bestimmen Sie die Impulsantwort des Systems. Bestimmen Sie die Sprungantwort des Systems. Bestimmen Sie eine Zustandsraumdarstellung des Systems. Entscheiden Sie, ob das System stabil ist.
Lösung zu Übung 36 (a) Bestimmung der Impulsantwort des Systems: >> syms p >> H = 1/ (p^2+2 * p+1) H = 1/(p^2+2 * p+1)
(84.4)
Lösungsband zu „Signale und Systeme“
>> h = i l a p l a c e (H) h = t * exp(− t )
(b) Bestimmung der Sprungantwort des Systems: >> Y = H* ( 1 /p ) Y = 1/(p^2+2 * p+1)/p >> ysigma = i l a p l a c e ( Y) ysigma = 1−exp(− t ) * ( 1 + t )
(c) Bestimmung einer Zustandsraumdarstellung des Systems: >> s = t f ( ’ s ’ ) ; >> H = 1/ ( s ^2+2 * s +1) Transfer function : 1 −−−−−−−−−−−−− s ^2 + 2 s + 1 >> ZRD = s s (H) a = x1 x2
x1 −2 1
x1 x2
u1 1 0
x2 −1 0
b =
c =
x1
x2
85
86
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ y1
0
y1
u1 0
d =
1
Continuous−time model .
(d) Entscheidung, ob das System stabil ist: >> pole (H) ans = −1 −1
Da die Übertragungsfunktion im Bildbereich rational ist und alle Pole negativen Realteil haben, ist das System stabil. Übung 37 ( Lehrbuch Seite 139 ) Bestimmen Sie mit Hilfe der Zustandsraumdarstellung (50.2) und (50.3) aus Abschnitt 2.3.2 des Lehrbuchs unter Verwendung von MATLAB die Übertragungsfunktion im Bildbereich H(s) des Feder-Masse-Dämpfer-Systems S aus Beispiel 2.3 des Lehrbuchs. Bestimmen Sie anschließend daraus die zugehörige Differentialgleichung höherer Ordnung, welche das System beschreibt. Lösung zu Übung 37 Definition der Zustandsraumdarstellung unter MATLAB: >> % Definition der Parameter (siehe init_viertelkfzDGL4.m) >> >> >> >> >> >> >>
% Werte nach Steffani (www.steffani.de/hfst %/simulation/folie.pdf) mA = 1 8 6 ; % Masse A (Aufbau in Kg) mR = 4 1 ; % Masse R (Rad in Kg) cA = 4 1 . 1 * 1 0 ^ 3 ; % Feder 1 (Aufbau in N/m) cR = 3 8 0 * 1 0 ^ 3 ; % Feder 2 (Rad in N/m) d = 25.0*10^2; % Dämpfung (Aufbau in Ns/m)
>> a1 = −cA/mA;
87
Lösungsband zu „Signale und Systeme“ >> >> >> >>
a2 = −d/mA; b1 = cA/mR; b2 = d/mR; gamma = cR/mR;
>> % Definition der Zustandsmatrizen >> A = [ 0 , 0 , 1 , 0 ; 0 , 0 , 0 , 1; a1 , −a1 , a2 , −a2 ; b1 , −b1−gamma , b2 , −b2 ] A = 1 . 0 e +004 * 0 0 −0.0221 0.1002
0 0 0.0221 −1.0271
0.0001 0 −0.0013 0.0061
0 0.0001 0.0013 −0.0061
>> B = [ 0 ; 0 ; 0 ; gamma] B = 1 . 0 e +003 * 0 0 0 9.2683 >> C = [ 1 , 0 , 0 , 0 ] C = 1
0
0
0
>> D = 0 D = 0 >> % Definition eines Zustandsraumobjekts >> ZRD = s s (A, B , C,D) a = x1
x1 0
x2 0
x3 1
x4 0
88
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ 0 −221 1002
x2 x3 x4 b = x1 x2 x3 x4
u1 0 0 0 9268
y1
x1 1
y1
u1 0
c =
d =
x2 0
x3 0
0 221 −1.027 e +004
0 −13.44 60.98
1 13.44 −60.98
x4 0
Continuous−time model . >> % Bestimmung der Übertragungsfunktion im >> % Bildbereich >> H = t f (ZRD) T r a n s f e r f u nc t i o n : 1 . 2 4 6 e005 s + 2 . 0 4 8 e006 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− s ^4 + 7 4 . 4 2 s ^3 + 1 . 0 4 9 e004 s ^2 + 1 . 2 4 6 e005 s + 2 . 0 4 8 e006
>> g e t (H)
num: den : ioDelay : Variabl e : Ts : InputDelay : OutputDelay : InputName : OutputName : InputGroup : OutputGroup : Name : Notes : UserData :
{ [ 0 0 0 1 . 2 5 e +005 2 . 0 5 e + 0 0 6 ] } { [ 1 7 4 . 4 1 . 0 5 e +004 1 . 2 5 e +005 2 . 0 5 e + 0 0 6 ] } 0 ’s ’ 0 0 0 { ’ ’} { ’ ’} [ 1 x1 s t r u c t ] [ 1 x1 s t r u c t ] ’’ {} []
Lösungsband zu „Signale und Systeme“
89
>> Nennerkoef fizienten = (H. den { 1 } ) ’ Nennerkoef fizienten = 1 . 0 e +006 * 0.000001000000000 0.000074416469971 0.010491699449253 0.124573826383425 2.047993705743505 >> Z a e hl e r k o e f f i z i e nt e n = (H. num{ 1 } ) ’ Z a e hl e r k o e f f i z i e n t e n = 1 . 0 e +006 *
0 0 0 0.124573826383425 2.047993705743506
Die Differentialgleichung 4. Ordnung, welche das System beschreibt, ist dann: ... y(4) (t) + 74.416469971 · y (t) + 10491.699449253 · y¨(t) (89.1) + 124573.826383425 · y(t) ˙ + 2047993.705743505 · y(t) = 124573.826383425 · x(t) ˙ + 2047993.705743506 · x(t).
Zur Kontrolle vergleichen wir die Koeffizienten mit denen der im Lehrbuch angegebenen Differentialgleichung ... y(4) (t) + (β2 − α2 ) y (t) + (β1 − α1 + γ) y¨(t) − γα2 y(t) ˙ − γα1 y(t) = −γα2 x(t) ˙ − γα1 x(t) : >> b2−a2 ans = 74.4165 >> b1−a1+gamma ans =
(89.2)
90
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
1 . 0 4 9 2 e +004 >> −gamma * a2 ans = 1 . 2 4 5 7 e +005 >> −gamma * a1 ans = 2 . 0 4 8 0 e +006
Übung 38 ( Lehrbuch Seite 139 ) Betrachten Sie ein LTI-System S, welches durch die Zustandsraumdarstellung x˙ 1 (t) = −x1 (t) − x2 (t) + u(t), x˙ 2 (t) = 2x1 (t) − x2 (t) + u(t),
(90.1)
y(t) = −x1 (t) + x2 (t)
gegeben ist. Bestimmen Sie mit Hilfe von MATLAB (a) eine Zustandsraumdarstellung im Bildbereich des Systems S, (b) die Transitionsmatrix Φ(s) im Bildbereich des Systems, (c) die Impulsantwort des Systems. Lösung zu Übung 38 (a) Für die Bestimmung der Zustandsraumdarstellung im Bildbereich benötigt man natürlich kein MATLAB, denn diese kann unmittelbar aus der Zustandsraumdarstellung im Zeitbereich abgelesen werden: sX1 (s) = −X1 (s) − X2 (s) + U (s), sX2 (s) = 2X1 (s) − X2 (s) + U (s),
(90.2)
Y (s) = −X1 (s) + X2 (s).
(b) Die Transitionsmatrix Φ(s) = (s − A)−1 des Systems im Bildbereich erhält man durch:
91
Lösungsband zu „Signale und Systeme“
>> A = [−1 −1; 2 −1] A = −1 2
−1 −1
>> syms p >> Phis = inv ( eye ( 2 ) * p−A) Phis = [ ( p+ 1 ) / (p^2+2 * p + 3 ) , −1/(p^2+2 * p+ 3 ) ] [ 2/(p^2+2 * p + 3 ) , ( p+ 1 ) / (p^2+2 * p+ 3 ) ] >> p r e t t y ( Phis ) [ p + 1 [−−−−−−−−−−−− [ 2 [p + 2 p + 3 [ [ 2 [−−−−−−−−−−−− [ 2 [p + 2 p + 3
1 ] − −−−−−−−−−−−−] 2 ] p + 2 p + 3] ] p + 1 ] −−−−−−−−−−−− ] 2 ] p + 2 p + 3 ]
(c) Die Impulsantwort des Systems ergibt sich aus: >> C = [−1 1 ] C = −1
1
>> B = [ 1 ; 1 ] B = 1 1 >> H = C * Phis * B H =
92
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ 3/(p^2+2 * p+3) >> C = [−1 1 ] C = 1
−1
>> B = [ 1 ; 1 ] B = 1 1 >> H = C * Phis * B H = 3/(p^2+2 * p+3) >> h = i l a p l a c e (H) h = 3 / 2 * 2 ^ ( 1/ 2 ) * exp(− t ) * s i n ( 2 ^ ( 1 / 2 ) * t ) >> p r e t t y ( h ) 1/2 3/2 2
1/2 exp(− t ) s i n ( 2
t)
Übung 39 ( Lehrbuch Seite 139 ) Betrachten Sie ein LTI-System mit der Übertragungsfunktion H(s) =
1 . s2 + 4π 2
(92.1)
Berechnen Sie mit Hilfe der Laplace-Transformation die Antwort des Systems auf eine harmonische Schwingung13 x(t) = sin(2πf t) der Frequenz f = 1 Hz. Vergleichen Sie diese Systemantwort mit der Sprungantwort und interpretieren Sie das Ergebnis. 13
Genauer gesagt, auf das kausale Eingangssignal x(t) = σ(t) · sin(2πf t)!
93
Lösungsband zu „Signale und Systeme“
Überprüfen Sie Ihr Ergebnis mit einer Simulink-Simulation. Lösung zu Übung 39 Da wir die einseitige Laplace-Transformation verwenden, gehen wir von kausalen Signalen und einem System aus, das zur Zeit t = 0 “in Ruhe“ ist (alle Anfangswerte sind 0). Man erhält aus der Tabelle (s. Anhang B.1) für die Laplace-Transformierte von x(t) = σ(t) · sin(2πf t) mit ω = 2πf = 2π: X(s) =
ω . s2 + ω 2
(93.1)
Damit gilt für die Systemantwort im Bildbereich: Y (s) = H(s) · X(s) = ω
1 2 s + ω2
2
.
(93.2)
Für die Rücktransformation zerlegen wir Y (s) zunächst mit Hilfe einer Partialbruchzerlegung. Der Ansatz
1 2 s + ω2
2
1 1 2 (s + jω) (s − jω)2 A B C D = + + + s + jω (s + jω)2 s − jω (s − jω)2 =
(93.3)
führt nach Multiplikation mit dem Hauptnenner auf: 1 = A(s + jω)(s − jω)2 + B(s − jω)2
+ C(s − jω)(s + jω)2 + D(s + jω)2 .
(93.4)
Das Einsetzen der Nullstellen s = ±jω liefert 1 = D(2jω)2 = −4Dω 2 ,
1 = B(−2jω)2 = −4Bω 2 ,
(93.5)
woraus folgt: D=−
1 , 4ω 2
B=−
1 . 4ω 2
(93.6)
Das Einsetzen von s = 0 liefert 1 = −jAω 3 − Bω 2 + jCω 3 − Dω 2 , woraus mit (93.6) folgt:
(93.7)
94
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
C −A =
1 . 2jω 3
(94.1)
Setzt man s = ω ein, so erhält man: 1 = Aω 3 (1 + j)(1 − j)2 + Bω 2 (1 − j)2
+ Cω 3 (1 − j)(1 + j)2 + Dω 2 (1 + j)2 ,
(94.2)
woraus A + C = 0 und damit A=j
1 , 4ω 3
C = −j
1 4ω 3
(94.3)
folgt. Man erhält
A B C D Y (s) = ω · + + + s + jω (s + jω)2 s − jω (s − jω)2 (94.4) 1 1 1 1 1 1 1 1 =j 2 − − j − . 4ω s + jω 4ω (s + jω)2 4ω 2 s − jω 4ω (s − jω)2 Die Tabelle liefert die Systemantwort: 1 −jωt 1 −jωt 1 1 jωt e − te − j 2 ejωt − te 4ω 2 4ω 4ω 4ω 1 1 jωt 1 −jωt 1 1 jωt 1 −jωt = e − e − t e + e 2ω 2 2j 2j 2ω 2 2 1 1 = sin(ωt) − t cos(ωt) 2ω 2 2ω 1 1 = sin(2πt) − t cos(2πt). 8π 2 4π
y(t) = j
(94.5)
Insbesondere erkennt man, dass die Systemantwort über alle Grenzen wächst. Das System ist also instabil! Die Sprungantwort ergibt sich zu yσ (t) =
Zt
h(τ ) dτ,
(94.6)
0
wobei h(t) die Impulsantwort ist, die sich mit Hilfe der Transformationstabelle aus H(s) zu h(t) = ergibt. Also folgt:
1 sin(ωt) ω
(94.7)
Lösungsband zu „Signale und Systeme“
t 1 1 1 yσ (t) = − 2 cos(ωτ ) = − 2 cos(ωt) + 2 ω ω ω 0 1 1 = 2 (1 − cos(ωt)) = (1 − cos(2πt)) . ω 4π 2
95
(95.1)
Insbesondere ist also die Sprungantwort beschränkt, obwohl das System instabil ist! Die Ergebnisse können auch mit dem Simulink-System s_uebResonanz.mdl der Begleitsoftware nachgeprüft werden. Das System wird hier aus Platzgründen nicht dargestellt. Übung 40 ( Lehrbuch Seite 179 ) Berechnen Sie mit MATLAB die Fouriertransformation des EinheitsRechteckimpulses rect1 (t). Hinweis: Verwenden Sie die MATLAB-Funktion für σ(t)! Lösung zu Übung 40 Da eine direkte Darstellung des Rechtecksignals rect1 (t) mit Hilfe der Symbolic Math Toolbox nicht möglich ist, wird der Umweg über die Darstellung rect1 (t) = σ(t) − σ(t − 1)
(95.2)
des Rechtecksignals gewählt, da es für die Sprungfunktion σ(t) die MATLAB-Funktion heaviside gibt. Man erhält: >> % Definition des Rechteckimpulses >> r e c t = he a v i s i de ( t ) − h e a v i s i d e ( t −1) rect = h e a v i s i d e ( t )− h e a v i s i d e ( t −1) >> % Fouriertransformation >> F r e c t = f o u r i e r ( r e c t ) Frect = i * ( exp(− i *w) −1)/w >> p r e t t y ( F r e c t ) ( exp(− i w) − 1 ) i −−−−−−−−−−−−−−−−− w
96
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Um das Ergebnis mit der im Lehrbuch berechneten Transformierten F
sin(ω T2 ) 1 T rectT (t) (jω) = e−jω 2 · T ω T2
(96.1)
im Falle T = 1 vergleichen zu können, formen wir um: 1 jω 12 e−jω − 1 · j 1 e − e−jω 2 = e−jω 2 ω jω sin ω 12 sin(ω 12 ) 1 1 −jω 2 =e ·2· = e−jω 2 · . ω ω 21
(96.2)
Übung 41 ( Lösungsteil Seite 96 ) Weisen Sie durch formale Anwendung der Rechenregeln der Integrationstheorie folgende Eigenschaften der Fouriertransformation nach: (a) den Multiplikationssatz, (b) die Skalierungs- und Translationseigenschaft im Zeitbereich, (c) die Skalierungs- und Translationseigenschaft im Frequenzbereich. Lösung zu Übung 41 Durch formale Anwendung der Rechenregeln der Integrationstheorie erhält man für Funktionen f (t) und g(t) mit den Transformierten F (jω) und G(jω) (a) mit F (f (t) · g(t)) (jω) =
Z∞
−∞
f (t) · g(t) · e−jωt dt
Z∞ 1 ˜ = f (t) · G(j ω ˜ )ej ωt d˜ ω · e−jωt dt 2π −∞ −∞ ∞ ∞ Z Z 1 ˜ = f (t) · G(j ω ˜ )ej ωt d˜ ω · e−jωt dt 2π Z∞
=
1 2π
1 = 2π
−∞ Z∞
−∞
Z∞
−∞ −∞
Z∞
−∞
f (t) · G(j ω ˜ )e−j(ω−˜ω )t d˜ ω dt
G(j ω ˜)
Z∞
−∞
f (t) · e−j(ω−˜ω)t dt d˜ ω
(96.3)
97
Lösungsband zu „Signale und Systeme“
1 = 2π
Z∞
−∞
G(j ω ˜ )F (jω − ω ˜ )d˜ ω
1 1 G(jω) ∗ F (jω) = F (jω) ∗ G(jω) 2π 2π
=
die Aussage des Multiplikationssatzes. (b) Die Skalierungseigenschaft im Zeitbereich folgt mit der linearen Substitution t˜ = at aus: F (f(at)) (jω) =
Z∞
−∞
1 = a
f (at) · e−jωt dt
±∞ Z ˜ t f (t˜) · e−jω a dt˜.
(97.1)
∓∞
Es müssen dabei allerdings zwei Fälle unterschieden werden. Ist a > 0, so liefert (97.1): 1 F (f(at)) (jω) = a
Z∞
−∞
ω˜ 1 ω 1 ω f (t˜) · e−j a t dt˜ = F j = F j . (97.2) a a |a| a
Ist a < 0, so liefert (97.1): F (f(at)) (jω) =
=
1 a
−∞ Z ω˜ f (t˜) · e−j a t dt˜
∞
1 |a|
Z∞
−∞
(97.3)
ω˜ 1 ω f (t˜) · e−j a t dt˜ = F j . |a| a
Die Translationseigenschaft im Zeitbereich folgt mit der linearen Substitution t˜ = t + a aus: F (f (t + a)) (jω) =
=
Z∞
−∞ Z∞ −∞
f (t + a) · e−jωt dt (97.4) ˜
f (t˜) · e−jω(t−a) dt˜ = ejωa F (jω) .
(c) Die Skalierungseigenschaft im Frequenzbereich folgt mit der linearen Substitution t˜ = bt aus:
98
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
F (bjω) =
Z∞
−∞
1 = b
f (t) · e−jbωt dt (98.1)
±∞ Z t˜ ˜ f · e−jωt dt˜. b
∓∞
Auch hier müssen wieder zwei Fälle unterschieden werden. Ist b > 0, so liefert (98.1): F (bjω) =
Z∞
1 f b
t˜
Z∞
1 f |b|
t˜
−∞
b
˜
· e−jωt dt˜.
(98.2)
Ist b < 0, so liefert (98.1): F (bjω) =
−∞
b
˜ · e−jωt dt˜.
In beiden Fällen ist F (bjω) somit die Transformierte von
(98.3)
1 |b| f
t˜ b
.
Die Translationseigenschaft im Frequenzbereich folgt einfach aus: F (j(ω − ω0 )) =
Z∞
−∞
f (t) · e−j(ω−ω0 )t dt
= ejω0
Z∞
−∞
(98.4) f (t) · e−jωt dt = ejω0 F (jω).
Übung 42 ( Lehrbuch Seite 179 ) Weisen Sie mit Hilfe der Fouriertransformierten der Sprungfunktion σ(t) und mit Hilfe des Faltungssatzes den Integrationssatz der Fouriertransformation nach. Lösung zu Übung 42 Mit Hilfe der Sprungfunktion kann das Integral
Rt
f (τ ) dτ wie folgt darge-
−∞
stellt werden: Zt
−∞
f (τ ) dτ =
Z∞
−∞
f (τ )σ(t − τ ) dτ
(98.5)
99
Lösungsband zu „Signale und Systeme“
Das letzte Integral entspricht jedoch dem Faltungsintegral für f (t) und σ(t). Aus dem Faltungssatz folgt damit: t Z j F f (τ ) dτ (jω) = F(f (t) ∗ σ(t))(jω) = F (jω) · πδ0 (ω) − ω (99.1) −∞ j = πF (0)δ0 (ω) − F (jω). ω Übung 43 ( Lehrbuch Seite 179 ) Betrachten Sie das Signal x(t), welches durch die Grafik in Abbildung 2.29 dargestellt wird. 2 1.5 1
Amplitude
0.5 0 2π −0.5 −1 −1.5 −2 −5
0
5
Zeit/s
10
15
20
Abb. 2.29: Kausales Signal
(a) Bestimmen Sie für x(t) eine Funktionsvorschrift in geschlossener Form14 . (b) Bestimmen Sie mit Hilfe der Rechenregeln für die Fouriertransformation das Spektrum X(jω) dieses Signals. (c) Skizzieren Sie das Amplitudenspektrum |X(jω)| des Signals. (d) Ist das Signal bandbegrenzt? Lösung zu Übung 43 (a) Mit Hilfe der Sprungfunktion σ(t) kann für das Signal x(t) in geschlossener Form folgende Funktionsvorschrift angegeben werden: 14
D.h. es soll keine Fallunterscheidung verwendet werden. Das Signal ist durch einen Funktionsausdruck zu beschreiben, der sich aus bekannten Funktionen zusammensetzt.
100
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
x(t) = cos(ω0 t) · σ(t)
mit
ω0 = 1.
(100.1)
(b) Aus dem Multiplikationssatz folgt
1 F (cos(ω0 t))(jω) ∗ F (σ(t))(jω) (100.2) 2π 1 1 = · (πδ0 (ω − ω0 ) + πδ0 (ω + ω0 )) ∗ + πδ0 (ω) 2π jω 1 1 = δ0 (ω − ω0 ) ∗ + πδ0 (ω) 2 jω 1 +δ0 (ω + ω0 ) ∗ + πδ0 (ω) jω
X(jω) =
und damit:
1 1 1 X(jω) = + πδ0 (ω − ω0 ) + + πδ0 (ω + ω0 ) 2 j(ω − ω0 ) j(ω + ω0 ) 1 1 π π = + + δ0 (ω − ω0 ) + δ0 (ω + ω0 ) 2j(ω − ω0 ) 2j(ω + ω0 ) 2 2 jω π π = 2 + δ0 (ω − ω0 ) + δ0 (ω + ω0 ). (100.3) ω0 − ω 2 2 2
(c) Das Amplitudenspektrum
|ω| π π + δ0 (ω − ω0 ) + δ0 (ω + ω0 ) |ω02 − ω 2 | 2 2 |ω| π π = + δ0 (ω − 1) + δ0 (ω + 1) |1 − ω 2 | 2 2
|X(jω)| =
(100.4)
ist in Abbildung 2.30 dargestellt. (d) Das Signal ist offenbar nicht bandbegrenzt, da es kein Intervall [ωu , ω0 ] gibt, außerhalb dessen X(jω) vollständig verschwindet. Die Werte von |X(jω)| fallen jedoch für große ω so rasch ab, dass x(t) als näherungsweise bandbegrenzt angesehen werden kann. Übung 44 ( Lehrbuch Seite 179 ) Betrachten Sie das folgende, pulsartig auftretende Schwingungssignal: cos(4πt) für t ∈ − 1 , 1 , 2 2 f (t) = (100.5) 0 sonst.
(a) Plotten Sie das Signal f(t) mit Hilfe von MATLAB. (b) Stellen Sie das Signal in geschlossener Form als Produkt zweier geeigneter Signale dar. (c) Bestimmen Sie mit Hilfe von Aufgabenteil (b) die Fouriertransformierte F (jω) des Signals.
101
Lösungsband zu „Signale und Systeme“
60 50
|F(jω)|
40 30 20 10 0 −2
−1
0 omega/rad/s
1
2
Abb. 2.30: Berechnetes Amplitudenspektrum |X(jω)|
Lösung zu Übung 44 (a) Das Signal f (t) lässt sich mit Hilfe von MATLAB durch folgende Anweisungen grafisch darstellen: >> >> >> >> >>
t = ( −2:0.01:2); f = cos ( 4 * pi * t ) . * ( t >=0−1/2 & t 0,
für
t≤0
(105.3)
das Spektrum
X(jω) =
1 1 + jω
(105.4)
besitzt. Kontrollieren Sie ihr Ergebnis mit MATLAB. Lösung zu Übung 48 Nach Definition der Fouriertransformation ist X(jω) =
=
Z∞
−∞ Z∞
x(t) · e−jωt dt =
e
Z∞
e−t · e−jωt dt
0
−(1+jω)t
0
Da
∞ 1 dt = − e−(1+jω)t . 1 + jω 0
lim e−(1+jω)t = 0
t→∞
(105.5)
(105.6)
ist, folgt: ∞ 1 e−(1+jω)t 1 + jω 0 1 1 −(1+jω)0 =0− − e = . 1 + jω 1 + jω
X(jω) = −
(105.7)
Dies kann mit den folgenden MATLAB-Anweisungen überprüft werden:
106
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
>> syms t >> x = he a v i s i de ( t ) * exp(− t ) x = h e a v i s i d e ( t ) * exp(− t ) >> X = f o u r i e r ( x ) X = 1/(1+ i *w) >> p r e t t y (X ) 1 −−−−−−− 1 + w i
Übung 49 ( Lehrbuch Seite 181 ) Abbildung 2.32 (vgl. Abbildung 2.33, S. 141 des Lehrbuchs) zeigt die Reaktion eines RC-Tiefpasses mit Zeitkonstante T = 1, also eines Systems mit der Übertragungsfunktion im Bildbereich H(s) =
1 , 1+s
(106.1)
auf die Erregung durch harmonische Schwingungen mit der Frequenz f = 0.2 Hz bzw. f = 2.0 Hz im eingeschwungenen Zustand. Die Eingangssignale haben jeweils die Amplitude A = 1. Rechnen Sie nach, dass die jeweiligen Ausgangssignale die in der Abbildung 2.32 eingetragenen Amplituden und Phasenlagen haben. Lösung zu Übung 49 Da die Übertragungsfunktion im Bildbereich H(s) =
1 1+s
(106.2)
auf der imaginären Achse existiert (das System RC-Tiefpass ist stabil!), ergibt sich die Übertragungsfunktion im Frequenzbereich durch Einsetzen von s = jω zu:
107
Lösungsband zu „Signale und Systeme“
1 0.5 0 0.715
−0.5 −1 10
11
12
0.715
13
14
15 Zeit/s
16
17
18
19
20
1 0.6227
0.5 0 −0.5 −1 10
11
12
13
14
15 Zeit/s
16
17
18
19
20
1 0.5 0 −0.5 −1 10
0.119
0.119 10.5
11
0.1
Zeit/s
11.5
12
12.5
11.5
12
12.5
0.0793
0.05 0 −0.05 −0.1 10
10.5
11
Zeit/s
Abb. 2.32: RC-Tiefpass-Antwort auf Sinusschwingungen mit Frequenz f = 0.2 Hz und f = 2.0 Hz (von oben nach unten).
H(jω) =
1 1 − jω = . 1 + jω 1 + ω2
(107.1)
Im eingeschwungenen Zustand ist die Reaktion des Systems auf ein harmonisches Eingangssignal A · sin(ωt)
(107.2)
|H(jω)| · A · sin(ωt + arg(H(jω))).
(107.3)
gleich Im vorliegenden Fall ist
1 1 · 1 + jω 1 − jω 1 = 1 + ω2
|H(jω)|2 =
(107.4)
108
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
und arg H(jω) = arctan = arctan
Im (H(jω)) Re (H(jω)) ! −ω 1+ω 2 1 1+ω 2
(108.1)
= arctan(−ω) = − arctan(ω).
Für die Frequenz ω = 2π · 0.2 rad/s erhält man r 1 |H(jω)| = = 0.6227 1 + 4π 2 · 0.04
(108.2)
und arg H(jω) = − arctan(2π · 0.2) = −0.8986. Für die Frequenz ω = 2π · 2 rad/s erhält man r 1 |H(jω)| = = 0.0793 1 + 4π 2 · 4
(108.3)
(108.4)
und arg H(jω) = − arctan(2π · 0.2) = −1.4914.
(108.5)
Die gefundenen Amplitudenwerte entsprechen den in der Abbildung eingetragenen simulierten Werten. Die gefundenen Phasen müssen zum Vergleich mit der Abbildung in einen entsprechenden zeitlichen Versatz umgerechnet werden. Allgemein gilt: φ sin(ωt + φ) = sin ω t + = sin (ω (t + t0 )) (108.6) ω mit einer Zeitverschiebung t0 = ωφ . Für die Frequenz ω = 2π · 0.2 rad/s erhält man t0 =
−0.8986 = −0.7151 s 2π · 0.2
(108.7)
−1.4914 = −0.1187 s. 2π · 2
(108.8)
und für die Frequenz ω = 2π · 2 rad/s erhält man t0 =
Diese Werte entsprechen den in der Abbildung der Signale eingetragenen Zeitverzögerungen zwischen Ein- und Ausgangssignal. Die soeben gefundenen Resultate können mit Hilfe von MATLABs Funktion bode leicht nachgerechnet werden:
Lösungsband zu „Signale und Systeme“
>> % Definition der Übertragungsfunktion >> s = t f ( ’ s ’ ) T r a n s f e r f u nc t i o n : s >> H = 1/(1+ s ) T r a n s f e r f u nc t i o n : 1 −−−−− s + 1 >> % Bestimmung der Frequenz in rad/s >> omega = 2 * pi * 0 . 2 ; >> % Aufruf von bode >> [ a , ph] = bode (H, omega ) a = 0.6227 ph = −51.4881 >> % Umrechnung der Phase in rad >> phr = 2 * pi * ph/360 phr = −0.8986 >> % Bestimmung der Frequenz in rad/s >> omega = 2 * pi * 2 ; >> % Aufruf von bode >> [ a , ph] = bode (H, omega ) a = 0.0793 ph =
109
110
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
−85.4501 >> % Umrechnung der Phase in rad >> phr = 2 * pi * ph/360 phr = −1.4914
Übung 50 ( Lehrbuch Seite 182 ) Ein RC-Tiefpass soll so ausgelegt werden, dass die Amplitude einer Sinusschwingung von 10 kHz um 15 dB gedämpft wird. Die Dämpfung bei 0 Hz soll auf 0 dB normiert sein. (a) Wie muss die Zeitkonstante gewählt werden, damit diese Bedingungen erfüllt sind? (b) Überprüfen Sie Ihr Ergebnis mit Simulink, indem Sie ein entsprechendes Testsystem entwerfen. (c) Überprüfen Sie Ihr Ergebnis mit MATLAB durch Anwendung der Funktion bode. Lösung zu Übung 50 Die Übertragungsfunktion eines allgemeinen RC-Tiefpasses ist im Bildbereich durch K 1 + Ts
(110.1)
K 1 − jT ω =K· 1 + jT ω 1 + T 2ω2
(110.2)
H(s) = und im Frequenzbereich durch H(jω) =
gegeben, wobei T die gesuchte Zeitkonstante und K > 0 ein Verstärkungsfaktor ist. (a) Wegen der Normierung der Dämpfung bei 0 Hz auf 0 dB ist K = K. 1 = |H(j · 0)| = 1 + jT · 0
(110.3)
Für ein harmonisches Eingangssignal der Frequenz 10 kHz entsprechend der Kreisfrequenz ω0 = 2π · 10000 rad/s soll (im eingeschwungenen Zustand) gelten:
111
Lösungsband zu „Signale und Systeme“
20 · log10 (|H(jω0 )|) = −15.
(111.1)
Diese Anforderung ist äquivalent zu 10−15/10 = |H(jω0 )|2 =
1 , 1 + T 2 ω02
(111.2)
woraus folgt 1 + T 2 ω02 = 1015/10 ⇐⇒
T2 =
1015/10 − 1 1015/10 − 1 = ω02 4 · π 2 · 100000000
(111.3)
= 7.7568 · 10−9 .
Damit ist die gesuchte Zeitkonstante: √ T = 7.7568 · 10−9 = 8.8073 · 10−5 s.
(111.4)
(b) Das Ergebnis kann mit dem Simulink-System s_RCTPSin.mdl der Begleitsoftware überprüft werden. (c) Das gefundene Resultat kann mit Hilfe von MATLABs Funktion bode leicht wie folgt überprüft werden: >> % Definition der Übertragungsfunktion >> s = t f ( ’ s ’ ) Transfer function : s >> % Definition der Zeitkonstanten >> T = 8 . 8 0 7 3 e −005; >> H = 1/(1+T * s ) Transfer function : 1 −−−−−−−−−−−−−−−− 8 . 8 0 7 e−005 s + 1 >> % Bestimmung der Frequenz in rad/s >> omega = 2 * pi * 1 0 0 0 0 ; >> % Aufruf von bode >> [ a , ph]= bode (H, omega ) a =
112
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
0.1778 ph = −79.7567 >> % Umrechnung der Amplitudendämpfung in dB >> adB = 2 0 * log10 ( a ) adB = −15.0000
Übung 51 ( Lehrbuch Seite 182 ) Betrachten Sie den Tiefpass aus Übung 50 erneut. (a) Welche Dämpfung erfährt eine Cosinusschwingung der Frequenz 1 kHz durch den Tiefpass? (b) Wie groß ist die Zeitverzögerung, die dieses Signal erfährt? (c) Überprüfen Sie Ihre Ergebnisse mit dem in Aufgabe 50 erstellten Simulink-System. (d) Überprüfen Sie Ihre Ergebnisse mit MATLAB durch Anwendung der Funktion bode. (e) Bestimmen Sie mit der Funktion bode das komplette Bode-Diagramm und stellen Sie dieses grafisch dar. Lösung zu Übung 51 (a) Mit der in Übung 50 ermittelten Zeitkonstanten T = 8.8073 · 10−5 s
(112.1)
ergibt sich für eine Frequenz von 1 kHz entsprechend ω0 = 2π·1000 rad/s: |H(jω0 )|2 =
1 = 0.7656. 1 + T 2 ω02
Dies liefert einen Amplitudenfaktor von √ |H(jω0 )| = 0.7656 = 0.8750 entsprechend
(112.2)
(112.3)
113
Lösungsband zu „Signale und Systeme“
20 · log10 (|H(jω0 )|) = 20 · log10 (0.8750) = −1.1602 dB.
(113.1)
Es ist dabei völlig unerheblich, ob die harmonische Schwingung eine Cosinus- oder eine Sinusschwingung ist, da sich beide Schwingungen nur um einen Phasenversatz von π/2 unterscheiden. (b) Die Zeitverzögerung, die das Cosinussignal erfährt, ergibt sich aus dem Phasengang. Es gilt: Im (H(jω0 )) arg H(jω0 ) = arctan (113.2) Re (H(jω0 )) −T ω0 ! = arctan
1+T 2 ω02 1 1+T 2 ω02
= arctan(−T ω0) = − arctan(T ω0 )
= − arctan(0.5534) = −0.5054. Wie in Übung 49 ergibt sich die Zeitverschiebung t0 = t0 =
−0.5054 = −8.0437 · 10−5 s. 2π · 1000
φ ω
zu: (113.3)
(c) Das Ergebnis kann mit dem Simulink-System s_RCTPSin.mdl der Begleitsoftware überprüft werden. (d) Das gefundene Resultat kann mit Hilfe von MATLABs Funktion bode folgendermaßen überprüft werden: >> % Definition der Übertragungsfunktion >> s = t f ( ’ s ’ ) Transfer function : s >> % Definition der Zeitkonstanten >> T = 8 . 8 0 7 3 e −005; >> H = 1/(1+T * s ) Transfer function : 1 −−−−−−−−−−−−−−−− 8 . 8 0 7 e−005 s + 1 >> % Bestimmung der Frequenz in rad/s >> omega = 2 * pi * 1 0 0 0 ; >> % Aufruf von bode >> [ a , ph]= bode (H, omega )
114
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ a = 0.8750 ph = −28.9592 >> % Umrechnung der Amplitudendämpfung in dB >> adB = 2 0 * log10 ( a ) adB = −1.1602 >> % Umrechnung der Phase in rad >> phr = 2 * pi * ph/360 phr = −0.5054 >> % Berechnung der Zeitverzögerung >> t 0 = − 0. 5054/(2 * pi * 1 0 0 0 ) t0 = −8.0437 e−005
(e) Das komplette Bode-Diagramm kann wie folgt ermittelt werden: >> omega = ( 0 : 1 : 2 * pi * 1 0 0 0 0 0 ) ; >> [ a , ph]= bode (H, omega ) ; >> % Vektoren aus den arrays erzeugen >> Ampl = a ( : ) ; >> phase = ph ( : ) ; >> % Bode-Diagramm plotten >> f r q = omega/2/ pi ; % Frequenzen in Hz >> >> >> >> >>
subplot ( 2 1 1 ) % Amplitudengang semilogx ( frq , 2 0 * l og10 (Ampl ) , ’ b ’ , ’ Linewidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ )
115
Lösungsband zu „Signale und Systeme“ >> y l a be l ( ’ |H( j \omega ) | / dB ’ ) >> >> >> >> >> >>
% Phasengang subplot ( 2 1 2 ) semilogx ( frq , phase , ’b ’ , ’ Linewidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ arg (H( j \omega ) ) / rad ’ )
0 |H(jω)|/dB
−15 dB −10
−1.1602
−20 −30 −40 −1 10
0
1
10
10
2
10 Frequenz/Hz
3
10
4
10
5
10
arg(H(jω))/grad
0 −28.9592 −50
−100 −1 10
−79.7567
0
1
10
10
2
10 Frequenz/Hz
3
10
4
10
5
10
Abb. 2.33: Bode-Diagramm
Das resultierende Bode-Diagramm ist in Abbildung 2.33 dargestellt. Die berechneten Amplitudendämpfungen und Phasen sind eingetragen. Es sollte an dieser Stelle noch bemerkt werden, dass das Bode-Diagramm direkt mit dem Befehl >> bode (H, omega ) ;
geplottet werden könnte, allerdings gestattet der Befehl keine individuelle Gestaltung des Diagramms und die Annotierungen sind in englischer Sprache. Übung 52 ( Lehrbuch Seite 182 ) Ein LTI-System S reagiert auf ein Eingangssignal x(t) = ejωt mit der Antwort
116
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
y(t) =
ejω(t−2) . 1 + jω
(116.1)
(a) Bestimmen Sie die Übertragungsfunktion des Systems im Frequenzbereich. (b) Bestimmen Sie die Impulsantwort des Systems. Lösung zu Übung 52 (a) Die Übertragungsfunktion im Frequenzbereich wird allein durch die Reaktion des Systems auf komplexe Schwingungen der Form x(t) = ejωt bestimmt. Es gilt für das Ausgangssignal y(t) in diesem Fall: y(t) = H(jω) · ejωt .
(116.2)
Im vorliegenden Fall ist: y(t) =
ejω(t−2) e−j2ω = · ejωt . 1 + jω 1 + jω
(116.3)
Daraus folgt, dass die Übertragungsfunktion des Systems gleich H(jω) =
e−2jω 1 + jω
(116.4)
ist. (b) Die Impulsantwort h(t) ist die Fourier-Rücktransformierte der Übertragungsfunktion im Frequenzbereich. Mit Hilfe der Translationseigenschaft folgt wegen 1 −1 F = σ(t) · e−at , (116.5) jω + a dass h(t) = F−1 (H(jω)) = σ(t − 2) · e−(t−2) .
(116.6)
Übung 53 ( Lehrbuch Seite 182 ) Betrachten Sie ein zeitkontinuierliches LTI-System mit folgendem Frequenzgang: H(jω) =
a − jω , a + jω
a > 0.
(116.7)
117
Lösungsband zu „Signale und Systeme“
(a) Berechnen Sie Amplituden- und Phasengang dieses Systems. Um welchen Filtertyp handelt es sich hier? Prüfen Sie Ihr Ergebnis grafisch mit Hilfe der MATLAB-Funktion bode. (b) Berechnen Sie die Impulsantwort des Systems. Prüfen Sie Ihr Ergebnis mit Simulink, indem Sie mit Hilfe eines Blocks, welcher die zugehörige Übertragungsfunktion im Bildbereich repräsentiert, und mit Hilfe des Simulink-Blocks aus der Datei dirac_Impuls.mdl der Begleitsoftware ein entsprechendes Testsystem aufbauen. (c) Berechnen Sie die Antwort des Systems auf x(t) = e−bt σ(t),
(117.1)
b > 0,
für b 6= a. Prüfen Sie Ihr Ergebnis mit Hilfe einer entsprechenden Modifikation des unter Aufgabenteil (b) entworfenen Testsystems. Lösung zu Übung 53 (a) Es gilt: |H(jω)|2 = H(jω)H(jω)∗ =
a − jω a + jω =1 a + jω a − jω
∀ ω ∈ R.
(117.2)
Das System ist somit ein Allpass ! Für den Phasengang erhalten wir aus a − jω a − jω a − jω (a − jω)2 = = 2 a + jω a + jω a − jω a + ω2 2 2 2 2 a − ω − 2jωa a −ω ωa = = 2 − 2j 2 , 2 2 2 a +ω a +ω a + ω2
(117.3)
ωa a2 + ω 2 arg(H(jω)) = arctan −2 2 a + ω 2 a2 − ω 2 ωa = arctan −2 2 . a − ω2
(117.4)
H(jω) =
dass
Die MATLAB-Funktion bode muss für die H(jω) entsprechende Übertragungsfunktion im Bildbereich H(s) = a−s aufgerufen werden. Für a+s den Parameter a = 1 beispielsweise lieferten die MATLAB-Kommandos: >> s = t f ( ’ s ’ ) ; >> H = (1− s ) / ( 1 + s )
118
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ Transfer function : −s + 1 −−−−−− s + 1 >> omega = ( 0 : 0 . 0 1 : pi ) ; >> [ a , ph]= bode (H, omega ) ; >> % Vektoren aus den arrays erzeugen >> Ampl = a ( : ) ; >> phase = ph ( : ) ; >> % Bode-Diagramm plotten >> f r q = omega/2/ pi ; % Frequenzen in Hz >> >> >> >> >> >> >>
subplot ( 2 1 1 ) % Amplitudengang semilogx ( frq , 2 0 * l og10 (Ampl ) , ’ b ’ , ’ Linewidth ’ , 3 ) grid axis ([0.001 ,1 , −20 ,10]) x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ |H( j \omega ) | / dB ’ )
>> >> >> >> >> >>
% Phasengang subplot ( 2 1 2 ) semilogx ( frq , phase , ’b ’ , ’ Linewidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ arg (H( j \omega ) ) / rad ’ )
das in Abbildung 2.34 dargestellte Übertragungsverhalten. Mit MATLAB lässt sich auch das Ergebnis der obigen Berechnung prüfen. Interessant ist im vorliegenden Fall nur der Phasengang, der mit den Kommandos >> omega = ( 0 : 0 . 0 1 : pi ) ; >> phs= atan ( −2 * omega./(1 − omega . ^ 2 ) ) ; >> >> >> >> >> >> >> >>
% Phase in Grad umrechnen phsG = phs * 3 6 0 / ( 2 * pi ) ; % Phasengang darstellen f r q = omega/2/ pi ; % Frequenzen in Hz semilogx ( frq , phsG , ’b ’ , ’ Linewidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ arg (H( j \omega ) ) / rad ’ )
119
Lösungsband zu „Signale und Systeme“
|H(jω)|/dB
10 0
−10 −20 −3 10
10
−2
−1
10
0
10
−2
−1
10
0
10 Frequenz/Hz
arg(H(jω))/grad
0 −50
−100 −150 −3 10
10 Frequenz/Hz
Abb. 2.34: Bode-Diagramm der Übertragungsfunktion
das in Abbildung 2.35 dargestellte Resultat liefert. Offenbar springt der so berechnete Phasengang bei einer bestimmten Frequenz von −90◦ auf +90◦ . Der Grund hierfür ist die Mehrdeutigkeit des Arcustangens. Will man diese Mehrdeutigkeit eliminieren, so muss man berücksichtigen, in welchem Quadranten der Gauß’schen Zahlenebene der komplexe Zeiger H(jω) =
a − jω a2 − ω 2 ωa = 2 − 2j 2 2 a + jω a +ω a + ω2
(119.1)
liegt und den Wert des Arcustangens mit einem entsprechenden Korrektursummanden versehen, sodass der berechnete Winkel stets von der positiven reellen Achse aus im Uhrzeigersinn berechnet wird. Mit dieser Definition gilt arg(H(jω)) = arctan(−2
ωa a2 + ω 2 ) a2 + ω 2 a2 − ω 2
120
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
100 80 60
arg(H(jω))/grad
40 20 0 −20 −40 −60 −80 −100 −3 10
−2
10
−1
Frequenz/Hz
10
0
10
Abb. 2.35: Mit (117.4) berechneter Phasengang der Übertragungsfunktion
ωa ) ∀ ω ∈ [0, a], a2 − ω 2 ωa arg(H(jω)) = arctan(−2 2 )−π ∀ ω ∈ [a, ∞], a − ω2 = arctan(−2
2
2
(120.1)
da aa2 −ω − 2j a2ωa für a > ω > 0 stets im 4. Quadranten liegt und für +ω 2 +ω 2 ω > a im 3. Quadranten. Berücksichtigt man dies, so erhält man für a = 1 mit >> omega1 = ( 0 : 0 . 0 1 : 1 ) ; >> phs1= at an ( −2 * omega1 ./(1 − omega1 . ^ 2 ) ) ; >> omega2 = ( 1 . 0 1 : 0 . 0 1 : pi ) ; >> phs2= at an ( −2 * omega2 ./(1 − omega2 .^2)) − pi ; >> omega =[omega1 , omega2 ] ; >> phs =[ phs1 , phs2 ] ; >> >> >> >> >> >> >> >>
% Phase in Grad umrechnen phsG = phs * 3 6 0 / ( 2 * pi ) ; % Phasengang darstellen f r q = omega/2/ pi ; % Frequenzen in Hz semilogx ( frq , phsG , ’b ’ , ’ Linewidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ arg (H( j \omega ) ) / rad ’ )
121
Lösungsband zu „Signale und Systeme“
den in Abbildung 2.34 dargestellten Phasengang. (b) Die Impulsantwort h(t) des Systems ist zunächst einmal die FourierRücktransformierte der Übertragungsfunktion im Frequenzbereich. Wegen a > 0 ist das System mit der Übertragungsfunktion im Bildbereich H(s) =
a−s a+s
(121.1)
stabil (Pol bei s = −a, Re(s) = −a < 0) und Fourier- und LaplaceTransformierte stimmen auf der imaginären Achse überein. Die Impulsantwort lässt sich somit auch durch Laplace-Rücktransformation von H(s) mit Hilfe der Transformationstabelle aus Anhang B.1 bestimmen. Es gilt zunächst: H(s) = a
1 1 −s . a+s a+s
(121.2)
Laut Tabelle ist 1 • − ◦ e−at . a+s
(121.3)
Ferner folgt aus dem Differentiationssatz s
1 d − e−at | t=+0 • − ◦ e−at = −ae−at a+s dt
(121.4)
und damit wegen e−at | t=+0 = 1 und 1 • − ◦ δ0 (t): 1 • − ◦ −ae−at + δ0 (t). a+s
(121.5)
H(s) • − ◦ h(t) = ae−at + ae−at − δ0 (t)
(121.6)
s Insgesamt ergibt sich
und die Impulsantwort15 somit zu: h(t) = 2ae−at σ(t) − δ0 (t).
(121.7)
Das Ergebnis kann mit MATLAB (etwa für den Fall a = 1) wie folgt überprüft werden: 15
Diese ist wie alle Rücktransformierten ein kausales Signal, daher wird σ(t) der Klarheit halber hinzugefügt!
122
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
>> syms s >> a = 1 ; >> % Definition der Übertragungsfunktion mit >> % der Symbolic Math Toolbox >> H = ( a−s ) / ( a+s ) H = (1− s ) / ( 1 + s ) >> % Berechnung der Impulsantwort >> h = i l a p l a c e (H) h = −d i r a c ( t ) + 2 * exp(− t )
Das Ergebnis kann auch mit dem Simulink-System s_impantwUeb.mdl der Begleitsoftware überprüft werden. Das entsprechende Blockschaltbild ist in Abbildung 2.36 dargestellt.
−s+a s+a Dirac−Stoß
Manual Switch Transfer Fcn
Scope
exp (− b *u) Clock
Fcn
Initialisierung (bitte vor Start anklicken )
Abb. 2.36: Simulink-System zur Simulation der Impulsantwort von H(s) =
a−s a+s
(c) Die Antwort des Systems auf x(t) = e−bt σ(t),
b > 0,
(122.1)
für b 6= a ergibt sich aus der Faltung mit der Impulsantwort: h(t) ∗ x(t) = 2a
Z∞
−∞
= 2a
Zt 0
e−aτ σ(τ )e−b(t−τ ) σ(t − τ ) dτ − e−bt σ(t)
e
(122.2) −aτ −b(t−τ )
e
dτ − e
−bt
σ(t).
123
Lösungsband zu „Signale und Systeme“
Man errechnet daraus: h(t) ∗ x(t) = 2ae
−bt
σ(t)
Zt 0
e(b−a)τ dτ − e−bt σ(t)
1 (b−a)t = 2ae σ(t) e − 1 − e−bt σ(t) b−a 2a −at −bt −bt = e −e −e σ(t). b−a −bt
(123.1)
Wir überprüfen die berechnete Impulsantwort mit MATLAB und dem Simulink-System s_impantwUeb.mdl für die Parameter a = 1, b = 2: >> >> >> >> >>
a = 1; b = 2; t = (0:0.001:3); y = ( 2 * a /(b−a ) ) * ( exp(−a * t )−exp(−b * t )) − exp(−b * t ) ; plot ( t , y )
Die in Abbildung 2.37 dargestellte Systemantwort erhält man auch bei Aufruf des Simulink-Systems mit den gleichen Parametern 0.4 0.2
Amplitude
0 −0.2 −0.4 −0.6 −0.8 −1 0
0.5
1
1.5 Zeit/s
Abb. 2.37: Antwort von H(s) =
2
2.5
1−s 1+s
3
auf e−2t σ(t)
Übung 54 ( Lehrbuch Seite 183 ) Betrachten Sie ein zeitkontinuierliches LTI-System mit folgendem Frequenzgang: H(jω) =
1 . (2 + jω)3
(123.2)
124
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(a) Konstruieren Sie eine Realisierung des Systems als Hintereinanderschaltung dreier Systeme 1. Ordnung. (b) Gibt es für dieses System eine Realisierung durch Parallelschaltung dreier Systeme 1. Ordnung? Lösung zu Übung 54 (a) Es gilt: H(jω) =
1 1 1 1 = . (2 + jω)3 2 + jω 2 + jω 2 + jω
(124.1)
Damit lässt sich das System als Hintereinanderschaltung dreier Tiefpässe 1. Ordnung realisieren. (b) Wenn es eine solche Realisierung als Parallelschaltung gäbe, so müssten Systeme mit den Übertragungsfunktionen Hj (s) =
bj aj + s
aj , bj ∈ R, j = 1, 2, 3
existieren, sodass b1 b2 b3 + + (124.2) a1 + s a2 + s a3 + s b1 (a2 + s)(a3 + s) + b2 (a1 + s)(a3 + s) + b3 (a1 + s)(a2 + s) = (a1 + s)(a2 + s)(a3 + s)
H(s) = H1 (s) + H2 (s) + H3 (s) =
wäre. Da die rationalen Funktionen rechts und links des Gleichheitszeichens dieselben Pole und Nullstellen haben müssen, folgt daraus sofort: a1 = a2 = a3 = −2. Setzt man dies in den Zähler der rechten Seite ein, so folgt:
⇐⇒ ⇐⇒
b1 (s − 2)2 + b2 (s − 2)2 + b3 (s − 2)2 = 1
(b1 + b2 + b3 )(s − 2)2 = 1 1 (s − 2)2 = = konst. (b1 + b2 + b3 )
(124.3) ∀ s ∈ C.
Die letzte Gleichung ist nicht erfüllbar, da ein quadratisches Polynom nicht konstant sein kann. Es gibt folglich keine Realisierung als Parallelschaltung von Systemen 1. Ordnung für H(s).
125
Lösungsband zu „Signale und Systeme“
Übung 55 ( Lehrbuch Seite 183 ) Ein akustisches Signal x(t) werde in einem Raum derart reflektiert, dass an einer bestimmten Stelle im Raum (Mikrofonstandort) seine Echos zu hören sind. Die Echolaufzeiten betragen kT für das k-te Echo (für ein vorgegebenes Zeitintervall T > 0). Die Echos sind gegenüber dem Signal entsprechend ihrer Laufzeit exponentiell gedämpft mit e−kT . Die Wirkung des Raumes (Signal am Mikrofonstandort) kann als Reaktion eines LTI-Systems auf das Eingangssignal x(t) aufgefasst werden. (a) Begründen Sie, warum ein LTI-System ein geeignetes Modell sein könnte. (b) Geben Sie die Impulsantwort dieses Systems an! (c) Berechnen Sie die Übertragungsfunktion H(jω) des Systems. (d) Bestimmen Sie ein Filter E(jω), welches die Echoverzerrung wieder aufhebt. (e) Bestimmen Sie die Impulsantwort dieses Systems. (f) Entwerfen Sie ein Simulink-System, mit dem Sie Ihre Ergebnisse testen können. Hinweis: Gehen Sie in der Modellierung von der (vereinfachenden) Annahme aus, dass das akustische Signal selbst keine Laufzeit zum Mikrofon benötigt (z.B. Mikrofon direkt neben der Quelle). Gehen Sie weiterhin davon aus, dass es unendlich viele Echos gibt. Lösung zu Übung 55 (a) Das System kann als eine Überlagerung von Systemen modelliert werden, die jeweils eine Amplitudendämpfung und eine Zeitverzögerung durchführen. Diese beiden Operationen sind jedoch linear und zeitinvariant. Somit ist das betrachtete Echo-Szenario durch ein LTI-System modellierbar! (b) Die Antwort eines einzelnen Verzögerungs-/Dämpfungsgliedes auf einen Impuls δ0 (t) (Einzelecho eines Impulses) ist: e−kT δ0 (t − kT ).
(125.1)
Damit folgt für das Gesamtsystem als Impulsantwort: h(t) =
∞ X
k=0
e−kT δ0 (t − kT ).
(125.2)
126
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(c) Die Übertragungsfunktion ergibt sich aus der Fouriertransformation der Impulsantwort des Systems. Mit Hilfe der Rechenregeln für die Fouriertransformation erhält man: H(jω) = F(h)(jω) = = =
∞ X k=0 ∞ X k=0 ∞ X
e−kT F(δ0 (t − kT )) e−kT F(δ0 (t))e−jωkT =
∞ X
e−kT e−jωkT (126.1)
k=0
(e
1
(−1−jω)T k
k=0
) =
1 − e(−1−jω)T
.
Die letzte Gleichung folgt aus der Reihensummen-Konvergenz der geometrischen Reihe, da |e(−1−jω)T | = |e−T ||e−jωT | = |e−T | < 1 für T > 0. (d) Gesucht ist ein System, dessen Übertragungsfunktion E(jω) durch die Eigenschaft E(jω)H(jω) = 1
(126.2)
gekennzeichnet ist! Durch eine einfache Division ergibt sich mit dem Ergebnis von Teil (c): E(jω) =
1 = 1 − e−T e−jωT . H(jω)
(126.3)
(e) Die Impulsantwort des Echoentzerrungssystems ist die Fourierrücktransformierte der obigen Übertragungsfunktion. Nach den Rechenregeln für die Fouriertransformation ist diese: e(t) = δ0 (t) − e−T δ0 (t − T ).
(126.4)
Das System muss also das Empfangssignal nochmals mit einer um e−T gewichteten und um T verzögerten Version des Empfangssignals korrigieren. (f) Das entsprechende Simulink-System zum Test dieses Ergebnisses, welches in Abbildung 2.38 dargestellt ist, finden Sie in der Begleitsoftware unter dem Namen s_uebsysEcho.mdl. Übung 56 ( Lehrbuch Seite 184 ) Berechnen Sie mit Hilfe von MATLAB die reelle Fourierreihenentwicklung (der periodischen Fortsetzung) von: π x(t) = 1 + 2 cos (t − 1) , t ∈ [1, 3]. (126.5) 2 Welche Fouriertransformation hat dann das Signal? Hinweis: Verwenden Sie die Symbolic Math Toolbox von MATLAB.
127
Lösungsband zu „Signale und Systeme“
Entzerrung
Out 1
In1
exp (−T) Add
Echos
Quelle
Verzoegerung
Dämpfung
Scope
Initialisierung (bitte vor Start anklicken )
Abb. 2.38: Simulink-System zur Simulation der Echoentzerrung
Lösung zu Übung 56 Die periodische Fortsetzung von x(t) = 1 + 2 cos
π 2
(t − 1) ,
t ∈ [1, 3]
(127.1)
kann mit MATLAB zunächst wie folgt dargestellt werden: >> >> >> >>
t0 t1 t2 t3
= = = =
( −3:0.1: −1); ( −1:0.1:1); (1:0.1:3); (3:0.01:5);
>> >> >> >>
x0 x1 x2 x3
= = = =
1+2 * cos ( ( pi / 2 ) * ( t 0 +4 −1)) ; 1+2 * cos ( ( pi / 2 ) * ( t 1 +2 −1)) ; 1+2 * cos ( ( pi / 2 ) * ( t2 − 1 ) ) ; 1+2 * cos ( ( pi / 2 ) * ( t3 −2 −1));
>> >> >> >> >>
t = [ t 0 , t 1 , t2 , t 3 ] ; x = [ x0 , x1 , x2 , x3 ] ; plot ( t , x ) xlabel ( ’ Zeit / s ’ ) y l a b e l ( ’ Amplitude ’ )
Der Plot ist in Abbildung 2.39 wiedergegeben. Bereinigt man das Signal um den Gleichanteil, so handelt es sich offenbar um eine ungerade Funktion der Periodendauer T = 2 entsprechend einer Grundfrequenz von ω0 = 2π = π rad/s. T Für ungerade Funktionen verschwinden die ak -Koeffizienten, sodass nur noch die bk -Koeffizienten zu berechnen sind. Mit Hilfe der Symbolic Math Toolbox von MATLAB erhalten wir für die bk -Koeffizienten
128
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ 3 2.5 2 Amplitude
1.5 1 0.5 0 −0.5 −1 −3
−2
−1
0
1 Zeit/s
2
3
4
5
Abb. 2.39: Periodische Fortsetzung von x(t)
>> syms t k >> x = 1+2 * cos ( ( pi / 2 ) * ( t − 1 ) ) ; >> sink = s i n ( k * pi * t ) sink = s i n ( k * pi * t ) >> % bk-Koeffizienten berechnen >> % hier: Faktor 2/T = 1,l da T = 2 !! >> bk = i n t ( x * sink , 1 , 3 ) bk = 4 * cos ( k * pi ) * . . . ( −1+4 * k^2 * cos ( k * pi )^2+ cos ( k * pi ) ^ 2 ) /k/pi / ( 4 * k^2−1) >> p r e t t y ( bk ) 2 2 2 cos ( k pi ) (−1 + 4 k cos ( k pi ) + cos ( k pi ) ) 4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2 k pi ( 4 k − 1 )
Für k ∈ N ist cos(kπ) = 1, falls k gerade ist und cos(kπ) = −1, falls k ungerade ist. Man erhält also für gerade k:
129
Lösungsband zu „Signale und Systeme“
bk = 4
−1 + 4k 2 + 1 4k 2 =4 . 2 kπ(4k − 1) kπ(4k 2 − 1)
(129.1)
−1 + 4k 2 + 1 4k 2 = −4 . 2 kπ(4k − 1) kπ(4k 2 − 1)
(129.2)
Man erhält für ungerade k: bk = −4 Damit folgt:
4 16 8 2 =− =− · , π(4 − 1) 3π π 3 4·4 64 32 8 4 b2 = 4 = = = · , 2π(4 · 4 − 1) 30π 15π π 15 4·9 48 8 6 b3 = −4 =− =− · , 3π(4 · 9 − 1) π · 35 π 35 b4 = .... b1 = −4
Addiert man den Gleichwert wieder hinzu, so ist 8 2 4 6 x(t) = 1 + − sin(πt) + sin(2πt) − sin(3πt) + . . . π 3 15 35
(129.3)
(129.4)
die Fourierreihenentwicklung des Signals x(t). Die Fouriertransformierte ergibt sich aus den komplexen Fourierkoeffizienten ak bk hier bk (129.5) ck = −j = −j 2 2 2 und dem Satz ∞ X F(x)(jω) = 2πck δ0 (j(ω − kω0 )) (129.6) k=−∞
zu
F(x)(jω) = −jπ
∞ X
k=−∞
bk δ0 (j(ω − kω0 )).
(129.7)
Übung 57 ( Lehrbuch Seite 184 ) Rechnen Sie nach, dass bei einer komplexen Fourierreihenentwicklung einer T -periodischen Funktion f (t) auch gilt: T
1 ck = T
Z2
f (t)e−jkω0 t dt.
− T2
Vergleichen Sie dazu die Aussage von Gl. (175.5) des Lehrbuchs! Hinweis: Substitution !
(129.8)
130
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Lösung zu Übung 57 Es gilt nach Definition: 1 ck = T
ZT
f (t)e−jω0 kt dt.
(130.1)
0
Es gilt weiterhin: 1 T
ZT
f (t)e
−jω0 kt
1 dt = T
T 2
Z0
0
f (t0 + T )e−jω0 k(t +T ) dt0
− T2
0
(Substituiere t = t + T, t0 = t − T, dt = dt0 ) Z0 Z0 1 1 0 −jω0 kt0 −jω0 kT = f (t ) e e| {z } dt = f (t)e−jω0 kt dt. | {z } T T =1
− T2
(130.2)
− T2
da f T -
periodisch
Daraus folgt: 1 ck = T
ZT
T
ZT
f (t)e−jω0 kt dt
T
T
Z2
1 T
Z2
1 f (t)e−jω0 kt dt = T
0
s.o.
=
1 T
Z0
− T2
Z2
+
0
+
f (t)e−jω0 kt dt =
0
T 2
(130.3) f (t)e−jω0 kt dt.
− T2
Übung 58 ( Lehrbuch Seite 184 ) Ein Algorithmus zum automatischen Erkennen planer (ebener) Werkstücke, beruht auf der Klassifikation der Werkstückumrisse mittels komplexer Fourierreihenentwicklung. Dabei werden die Werkstückumrisse statt in den R2 , wie es vielleicht naheliegend wäre, in die komplexe Ebene eingebettet und durch geschlossene Polygonzüge, wie in Abbildung 2.40 skizziert, approximiert. Durchläuft man nun den Polygonzug von z0 ab unendlich oft, so ergibt sich eine periodische komplexwertige Funktion, deren Periodendauer (approximativ) der Länge der Werkstückkontur entspricht. Entwickelt man eine solche Funktion in eine komplexe Fourierreihe, so ergeben sich charakteristische Fourierkoeffizienten (Vorstufe zu den so genannten Fourierdeskriptoren) für
131
Lösungsband zu „Signale und Systeme“ Im(z)
C
z1
Im(z)
C
z = m + R · ejφ R m
z2 z0
z3 Re(z)
Re(z)
Abb. 2.40: Konturdarstellungen in der komplexen Ebene Polygonzugapproximation (links) und Kreiskontur (rechts)
diesen Umriss, die zum automatischen Erkennen der Kontur anhand von gespeicherten Vergleichsdaten herangezogen werden können. Im Folgenden sollen Sie die Fourierdeskriptoren eines ideal kreisrunden Werkstücks bestimmen. Die Lage des Kreises im (Mess-)Koordinatensystem sei durch die zweite Skizze in Abbildung 2.40 beschrieben: (a) Beschreiben Sie zunächst den Kreisumfang in dieser Lage als komplexwertige Funktion des Kreiswinkels t, d.h.: x(t) : [0, 2π] −→ C. Hinweis: Tun Sie dies zunächst im R2 für einen Kreis um den Nullpunkt. Verwenden Sie dann die (x, y)-Koordinaten als Real- und Imaginärteil einer entsprechenden komplexen Funktion. Berücksichtigen Sie anschließend noch den tatsächlichen Kreismittelpunkt z. (b) Bestimmen Sie die komplexe Fourierreihe der Funktion. Hinweis: In dieser Rechnung ist es zweckmäßig, die Polardarstellung (Exponentialdarstellung) der Werte von x(t) zu verwenden! (c) Interpretieren Sie die berechneten Fourierkoeffizienten. Lösung zu Übung 58 Ein Kreis mit Radius R um den Nullpunkt im R2 kann wie folgt parametriert werden: g(t) = (R cos(t), R sin(t)),
t ∈ [0, 2π].
(131.1)
Ein entsprechender Kreis im Komplexen wird durch gC (t) = R(cos(t) + j sin(t)) oder entsprechend dem Hinweis in der Aufgabenstellung mit
(131.2)
132
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
(132.1)
gC (t) = Rejt bestimmt. Damit gilt für einen allgemeinen Kreis in der komplexen Ebene: f (t) = a + jb + Rejt = rejϕ + Rejt ,
t ∈ [0, 2π].
(132.2)
Zur Bestimmung der Fourierreihenentwicklung bestimmen wir die komplexen Fourierkoeffizienten ck dieser Funktion: 1 ck = T
ZT
(132.3)
f (t)e−jωkt dt.
0
Im vorliegenden Fall ist T = 2π, ω = 2π T = 1, d.h. Z2π Z2π Z2π 1 1 rejϕ e−jkt dt + Rejt e−jkt dt . ck = f (t)e−jkt dt = 2π 2π 0
0
(132.4)
0
Es ist
1 2π
Z2π
1 jϕ rejϕ e−jkt dt = re 2π
0
Z2π
e−jkt dt =
0
sowie 1 2π
Z2π
Rej(1−k)t dt =
0
Für k = 1 folgt: 1 2π
0
k 6= 0,
rejϕ
k=0
2π 1 1 R ej(1−k)t = 0, falls k 6= 1. 2π (1 − k)j 0
Z2π
Re
j(1−k)t
0
1 dt = 2π
Z2π
R dt = R.
(132.5)
(132.6)
(132.7)
0
Man erhält insgesamt: c0 = rejϕ
(Kreismittelpunkt),
c1 = R ck = 0
(Kreisradius), ∀ k 6= 0, 1.
(132.8)
Die Fourierkoeffizienten enthalten also ganz charakteristische Werte der Geometrie des (kreisrunden) Werkstücks. Der Gleichanteil c0 kennzeichnet die Lage des Zentrums der Werkstückes in der Ebene, der Koeffizient c1 den Radius. Die Tatsache, dass alle anderen Koeffizienten ck verschwinden, kennzeichnet die Eigenschaft kreisrund zu sein.
133
Lösungsband zu „Signale und Systeme“
Übung 59 ( Lehrbuch Seite 185 ) Berechnen Sie mit Hilfe direkter Berechnung die komplexe Fourierreihenentwicklung (der periodischen) Funktion f (t) =
1 (t − kT )2 , T2
t ∈ [kT, (k + 1)T ], k ∈ Z.
(133.1)
Geben Sie anschließend die reelle Darstellung des Signals an! Überprüfen Sie Ihre Berechnung mit der Symbolic Math Toolbox von MATLAB und mit einer numerischen Berechnung unter MATLAB. Lösung zu Übung 59 Nach Definition gilt für die komplexen Fourierkoeffizienten: ck =
1 T
ZT
f (t)e−jω0 kt dt,
ω0 =
2π . T
(133.2)
0
Im vorliegenden Fall gilt in [0, T ]: f (t) =
1 2 t . T2
(133.3)
Damit ist 1 c0 = 3 T
ZT
t2 dt =
1 3
(133.4)
0
und 1 ck = 3 T
ZT
t2 e−jω0 kt dt
0
T 1 2 2 2 −jω0 kt −jω0 kt −jω0 kt −ω0 k t e + 2jω0 kte + 2e jω03 k 3 0 1 2j −jω0 kT 2 2 2 = e ω0 k T − 2 − 2jω0 kT + 3 3 3 −jω03 k 3 T 3 ω0 k T j 1 1 2 2 = 2π k − 2jπk = j + 2 2. 4π 3 k 3 2πk 2π k 1 = 3 T
(133.5)
Es folgt:
f (t) =
∞ X 1 1 + jπk jω0 kt + e . 3 2π 2 k 2 k=−∞ k6=0
(133.6)
134
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Die reelle Darstellung ergibt sich aus: ak = 2Re(ck ) =
1 π2k2
bk = −2Im(ck ) = − a0 = 2Re(c0 ) =
1 πk
∀ k 6= 0, ∀ k > 1,
(134.1)
2 . 3
Damit erhält man: f (t) =
∞
a0 X + ak cos(ω0 kt) + bk sin(ω0 kt) 2 k=1
1 = + 3
∞ X cos(ω0 kt) k=1
π2 k2
sin(ω0 kt) − . πk
(134.2)
Mit der Symbolic Math Toolbox von MATLAB versuchen16 wir das Ergebnis zu überprüfen: >> % Definition der Funktion f(t) >> syms t T >> f = t ^2/T^2 f = t ^2/T^2 >> % Berechnung des a0-Koeffizienten >> a0 = ( 2/T ) * i n t ( f , 0 , T ) a0 = 2/3 >> % Berechnung der ak-Koeffizienten für k>=1 >> cosk = cos ( k * 2 * pi * t /T ) cosk = cos ( 2 * k * pi * t /T) >> ak = ( 2/T ) * i n t ( f * cosk , 0 , T) ak = 16
Das klappt natürlich nicht immer so gut, wie in diesem Beispiel.
135
Lösungsband zu „Signale und Systeme“
(− s i n ( k * pi ) * cos ( k * pi ) + 2 * s i n ( k * pi ) * cos ( k * pi ) * k^2 * pi ^ 2 + . . . 2 * cos ( k * pi ) ^ 2 * k * pi−k * pi )/k^3/ pi ^3 >> p r e t t y ( ak ) (− s i n ( k pi ) cos ( k pi ) + 2 s i n ( k pi ) cos ( k pi ) k + 2 cos ( k pi )
2
k pi − k pi )
/
/
(k
3
2
pi
2
3 pi )
>> % Berechnung der bk-Koeffizienten für k>=1 >> sink = s i n ( k * 2 * pi * t /T ) sink = s i n ( 2 * k * pi * t /T) >> bk = ( 2/T ) * i n t ( f * sink , 0 , T) bk = −(1−cos ( k * pi ) ^2+2 * cos ( k * pi ) ^ 2 * k^2 * pi^2−k^2 * pi ^ 2 − . . . 2 * s i n ( k * pi ) * cos ( k * pi ) * k * pi )/k^3/ pi ^3 >> p r e t t y ( bk ) 2 − ( 1 − cos ( k pi )
2 + 2 cos ( k pi )
2 k
2 pi
2 − k /
− 2 s i n ( k pi ) cos ( k pi ) k pi )
/ /
2 pi
3 (k
3 pi )
Weil k für die Symbolic Math Toolbox ein beliebiges Symbol ist, werden die Cosinus- und Sinusausdrücke natürlich nicht ausgewertet. Das Ergebnis muss daher manuell nachbearbeitet werden. Da für alle k ∈ N die Ausdrücke sin(kπ) = 0 und cos(kπ) = ±1 sind, folgt für die ak -Koeffizienten: ak =
2 cos2 (kπ) · kπ − kπ kπ 1 = 3 3 = 2 2. k3 π3 k π k π
Für die bk -Koeffizienten erhält man:
(135.1)
136
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
bk = −
2 cos2 (kπ) · k 2 π 2 − k 2 π 2 k2π2 1 =− 3 3 =− . 3 3 k π k π kπ
(136.1)
Dies bestätigt die analytische Berechnung (134.1). Nicht immer können die Koeffizienten exakt mit Hilfe der Symbolic Math Toolbox ermittelt werden, da MATLAB oft nicht in der Lage ist, die Integrale symbolisch auszuwerten. In diesem Fall können die Koeffizienten (zumindest approximativ) numerisch bestimmt werden: >> >> >> >> >> >>
% Periodizitätsintervall diskretisieren % Die Periodendauer T muss dafür numerisch % vorgegeben werden T = 1; deltat = 0.001; t = (0 : deltat :T) ;
>> % Funktion auswerten >> f = t . ^2/T^ 2 ; >> % Zur Integration können die Funktionen trapz >> % oder auch quad (s. MATLAB-Hilfe) verwendet werden >> a0 = ( 2/T ) * t r a pz ( t , f ) a0 = 0.6667 >> 2/3 ans = 0.6667 >> 2/3 ans = 0.6667 >> >> >> >> >>
% Berechnung der ak-Koeffizienten für einzelne % k>=1 k = 1; cosk = cos ( k * 2 * pi * t /T ) ; a1 = ( 2/T ) * t r a pz ( t , f . * cosk )
a1 =
137
Lösungsband zu „Signale und Systeme“ 0.1013 >> 1/(1^2 * pi ^ 2) ans = 0.1013 >> >> >> >> >>
% Berechnung der bk-Koeffizienten für einzelne % k>=1 k = 1; sink = s i n ( k * 2 * pi * t /T ) ; b1 = ( 2/T ) * t r a pz ( t , f . * sink )
b1 = −0.3183 >> −1/(1 * pi ) ans = −0.3183
Zu beachten ist lediglich, dass die Schrittweite deltat genügend klein gewählt wird, damit die Koeffizienten mit ausreichender Genauigkeit berechnet werden. Übung 60 ( Lehrbuch Seite 186 ) Berechnen Sie die Fourierreihenentwicklung und das Fourierspektrum des Ausgangssignals eines Quadrierers, wenn am Eingang das Signal sin(2πt) anliegt. Überprüfen Sie Ihre Berechnung mit der Symbolic Math Toolbox von MATLAB und mit einer numerischen Berechnung unter MATLAB. Lösung zu Übung 60 Das Ausgangssignal des Quadrierers ist offenbar: y(t) = sin2 (2πt).
(137.1)
Bevor wir die komplexen Fourierkoeffizienten mit Hilfe der Integralformel berechnen, werfen wir noch einen kurzen Blick in eine Formelsammlung und finden: sin2 (x) =
1 1 − cos(2x). 2 2
(137.2)
138
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Damit lässt sich das Ausgangssignal des Quadrierers in folgender Weise darstellen: y(t) =
1 1 − cos(4πt). 2 2
(138.1)
Offenbar ist dies eine Darstellung des Signals mit Hilfe eines Gleichwertes und harmonischen Schwingungen einer Grundfrequenz (hier ω0 = 4π) und ihrer Vielfachen (die hier nicht vorkommen). Da die reelle Fourierreihenentwicklung aber eine eindeutige Darstellung dieser Form ist, ist (138.1) bereits die gesuchte Fourierreihe mit den reellen Koeffizienten: 1 = 1, 2 1 a1 = − , 2 ak = 0 ∀ k > 1, a0 = 2 ·
(138.2)
bk = 0 ∀ k ≥ 1.
Für die komplexen Fourierkoeffizienten erhält man: a0 1 = , 2 2 1 1 1 c1 = a1 + b1 = − , 2 2j 4 1 ∗ c−1 = c1 = − , 4 1 1 ck = ak + bk = 0 ∀ k > 1. 2 2j c0 =
(138.3)
Dies liefert die komplexe Fourier„reihe“: 1 1 1 y(t) = − e−j4πt + − ej4πt . 4 2 4
(138.4)
Diese Darstellung hätte man mit der aus der Euler-Formel resultierenden, bekannten Identität cos(x) =
1 −jx e + ejx 2
(138.5)
im Übrigen auch schon direkt aus (138.1) gewinnen können. Mit der Symbolic Math Toolbox können wir das Ergebnis im vorliegenden Fall leicht überprüfen:
Lösungsband zu „Signale und Systeme“
>> % Definition der Funktion f(t) >> syms t k >> f = s i n ( 2 * pi * t ) ^2 f = s i n ( 2 * pi * t )^2 >> % Berechnung des a0-Koeffizienten (hier T=1/2 !!) >> T =1/2; >> a0 = ( 2/T ) * i n t ( f , 0 , T ) a0 = 1 >> % Berechnung der ak-Koeffizienten für k>=1 >> cosk = cos ( k * 4 * pi * t ) ; >> ak = ( 2/T ) * i n t ( f * cosk , 0 , T) ak = −1/k/pi / (k^2 −1) * s i n ( k * pi ) * cos ( k * pi ) >> p r e t t y ( ak ) s i n ( k pi ) cos ( k pi ) − −−−−−−−−−−−−−−−−−−− 2 k pi ( k − 1 ) >> >> >> bk
% Berechnung der bk-Koeffizienten für k>=1 sink = s i n ( k * 4 * pi * t ) ; bk = ( 2/T ) * i n t ( f * sink , 0 , T) =
(−1+ cos ( k * pi ) ^ 2 ) /k/pi /(k^2−1) >> p r e t t y ( bk ) 2 −1 + cos ( k pi ) −−−−−−−−−−−−−−− 2 k pi ( k − 1 )
139
140
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Wegen sin(kπ) = 0 und cos(kπ) = ±1 für alle k ∈ N folgt: ak = 0 ∀ k > 1, bk = 0 ∀ k > 1.
(140.1)
An dieser Stelle kann man sehr schön sehen, dass auch in einfachen Fällen die Ergebnisse der Berechnungen mit der Symbolic Math Toolbox der genauen Betrachtung bedürfen. Zunächst einmal werden die Berechnungen falsch, wenn man nicht bemerkt, dass die Periodendauer von y(t) nur halb so groß ist, wie die des Eingangssignals x(t). Es muss also mit T = 12 statt mit T = 1 gerechnet werden. Ferner sind natürlich die gefundenen Ausdrücke für ak und bk im Falle k = 1 nicht definiert, da k 2 − 1 im Nenner steht. Für diesen Fall muss also eine gesonderte Berechnung vorgenommen werden: >> coskg1 = cos ( 4 * pi * t ) ; >> a1 = ( 2/T ) * i n t ( f * coskg1 , 0 , T ) a1 = −1/2 >> sinkg1 = s i n ( 4 * pi * t ) ; >> b1 = ( 2/T ) * i n t ( f * sinkg1 , 0 , T ) b1 = 0
Damit stimmen alle gefunden Werte mit der analytischen Berechnung überein. Für eine numerische Berechnung der Koeffizienten sei an dieser Stelle auf die Vorgehensweise in der Lösung zu Übung 59 verwiesen. Übung 61 ( Lehrbuch Seite 186 ) Betrachten Sie ein Signal x(t) mit Spektrum X(jω). Sei ferner p(t) ein periodisches Signal mit Grundfrequenz ω0 rad/s und komplexen Fourierkoeffizienten (ck )k∈Z . (a) Wie lautet die Fouriertransformierte von y(t) = x(t) · p(t)? (b) Berechnen Sie mit Hilfe des Resultats aus Aufgabenteil (a) das Spektrum von y(t) für eine Dreiecksschwingung p(t) der Periodendauer T = 14 und der Amplitude 1 und für ein Signal x(t) mit einem rein reellen Spektrum entsprechend Abbildung 2.41.
141
Lösungsband zu „Signale und Systeme“
1
−1
0
1
Frequenz/ Hz
Abb. 2.41: Spektrum des Signals x(t)
Hinweis: Verwenden Sie ggf. eine Formelsammlung, welche Fourierreihenentwicklungen bekannter Standardfunktionen enthält. Lösung zu Übung 61 (a) Die Fouriertransformierte eines periodischen Signals p(t) mit Grundfrequenz ω0 ist eine Dirac-Impulsfolge mit Gewichten, die durch die komplexen Fourierkoeffizienten (ck )k∈Z bestimmt werden: P (jω) =
∞ X
k=−∞
2πck δ0 (j(ω − kω0 )).
(141.1)
Bezeichnet X(jω) die Fouriertransformierte von x(t), so hat das Ausgangssignal y(t) eines Multiplizierers, der x(t) und p(t) miteinander multipliziert, nach dem Multiplikationssatz die Fouriertransformierte: Y (jω) =
∞ X 1 X(jω) ∗ P (jω) = ck X(j(ω − kω0 )). 2π
(141.2)
k=−∞
(b) Eine Dreiecksschwingung der Periode 2π und der Amplitude π hat die reelle Fourierreihenentwicklung π 4 cos(3x) cos(5x) − (cos(x) + + + . . . ), 2 π 32 52
(141.3)
wie man ggf. einer Formelsammlung entnehmen kann. Transformiert man mit x := 2π t auf eine Periodendauer der Länge T und T skaliert die Amplitude mit π1 auf 1, so erhält man die Reihenentwicklung: cos(2π T3 t) cos(2π T5 t) 1 4 1 − 2 (cos(2π t) + + + . . . ). 2 π T 32 52 Für die reellen Fourierkoeffizienten gilt also
(141.4)
142
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
a0 1 = , 2 2 4 2 2 ak = k π 0
für
k>0
und k ungerade,
für
k>0
und k gerade.
(142.1)
Die b-Koeffizienten sind 0. Dies impliziert für die reellen Fourierkoeffizienten c0 = ck =
1 , 2
2 ak bk 2 2 + = k π 2 2j 0
für
k∈Z
und k ungerade,
für
k∈Z
und k gerade,
(142.2)
da in diesem Fall c−k = c∗k = ck gilt. Dies impliziert mit Teil (a), dass das Spektrum des Multiplikationssignals in diesem Fall Y (jω) =
∞ X 1 X(jω) ∗ P (jω) = ck X(j(ω − kω0 )) 2π k=−∞
1 = X(jω) + 2
∞ X
k=−∞
2 X(j(ω − (2k + 1)8π)) (2k + 1)2 π 2
(142.3)
ist, da für T = 14 s die Grundfrequenz ω0 = 2π = 8π rad/s ist. T 2 Das Spektrum von x(t) wird also, skaliert um die Faktoren (2k+1) 2 π , um das (2k + 1)4−fache nach rechts und links im Spektrum kopiert! Übung 62 ( Lehrbuch Seite 209 ) (a) Weisen Sie nach, dass sich die Gruppenlaufzeit eines stabilen LTISystems mit rationaler Übertragungsfunktion H(s) durch die Formel ( ) d H(s) ds tg (ω) = Re − (142.4) s = jω H(s)
bestimmen lässt! (b) Zeigen Sie, dass sich die Gruppenlaufzeit mit Hilfe des Frequenzgangs H(jω) direkt durch tg (ω) = bestimmen lässt.
d (−Im{ln(H(jω))}) dω
(142.5)
143
Lösungsband zu „Signale und Systeme“
(c) Berechnen Sie mit Hilfe von Aufgabenteil (a) die Gruppenlaufzeit des LTI-Systems mit Übertragungsfunktion H(s) =
s−1 . s+1
(143.1)
Verifizieren Sie das Ergebnis aus Aufgabenteil (c) durch direkte Berechnung mit Hilfe der Definition. Überprüfen Sie das Ergebnis aus Aufgabenteil (c) mit Hilfe von MATLAB, indem Sie mit der Funktion bode den Phasengang von H(s) berechnen. Hinweis zu Aufgabenteil (a): Betrachten Sie ln(H(s)) einerseits und ln(H(jω)) andererseits und erinnern Sie sich, was Sie über die Ableitungen von ln(f (x)) gelernt haben! Lösung zu Übung 62 (a) Nach Definition gilt für die Gruppenlaufzeit: tg (ω) = −
d arg H(jω). dω
(143.2)
Stellt man H(jω) in Exponentialform dar, so gilt: H(jω) = |H(jω)|ej arg(H(jω)) .
(143.3)
ln H(jω) = ln|H(jω)| + j arg H(jω)
(143.4)
d d d ln H(s) = ln|H(s)| + j arg H(s). ds ds ds
(143.5)
Es folgt:
und ferner
Also ist (System ist stabil!): d d d ln H(s)|s=jω = ln|H(jω)| + j arg H(jω) ds djω djω d d = −j ln|H(jω)| + arg H(jω). dω dω
(143.6)
Andererseits gilt: d f 0 (s) ln(f(s)) = ds f (s) Also ist:
∀ f differenzierbar.
(143.7)
144
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ d H(s) d ln H(s)|s=jω = ds |s=jω . ds H(s)
(144.1)
Insgesamt gilt damit: Re (b) Wegen
! − H(s) d H(s) ds
s=jω
=−
d arg H(jω) = tg (ω). dω
(144.2)
ln H(jω) = ln|H(jω)| + j arg H(jω)
(144.3)
−Im(ln H(jω)) = − arg H(jω).
(144.4)
gilt:
Daraus folgt die Behauptung! (c) Es gilt H 0 (s) =
1 · (s + 1) − (s − 1) · 1 2 = 2 (s + 1) (s + 1)2
(144.5)
und damit: −
H 0 (s) s+1 2 2 =− =− 2 . 2 H(s) s − 1 (s + 1) s −1
(144.6)
Also ist
H 0 (s) − H(s)
jω=s
=−
2 2 = 2 (jω)2 − 1 ω +1
(144.7)
und insgesamt: H 0 (s) 2 tg (ω) = Re − = 2 . H(s) jω=s ω +1
(144.8)
(d) Zur Überprüfung des Resultats bestimmen wir die Gruppenlaufzeit direkt mit Hilfe ihrer Definition. Wegen H(jω) = gilt:
jω − 1 jω − 1 1 − jω ω 2 − 1 + 2jω = · = jω + 1 jω + 1 1 − jω 1 + ω2
(144.9)
145
Lösungsband zu „Signale und Systeme“
arg H(jω) = arctan
= arctan
ImH(jω) ReH(jω) ! 2ω 1+ω 2 ω 2 −1 1+ω 2
= arctan
2ω 2 ω −1
(145.1) .
Es gilt: d 1 arctan(x) = . dx 1 + x2
(145.2)
Damit folgt aus (145.1):
Also ist:
d d 2ω tg (ω) = − arg H(jω) = − arctan dω dω ω2 − 1 2 1 2(ω − 1) − 2ω · 2ω =− . 2 · 2 (ω 2 − 1) 1 + ω2ω 2 −1
tg (ω) = −
1 1+
2ω ω 2 −1
2 ·
−2ω 2 − 2 (ω 2 − 1)
2
−2ω 2 − 2 2(ω 2 + 1) 2(ω 2 + 1) = = (ω 2 − 1)2 + 4ω 2 ω 4 + 2ω 2 + 1 (ω 2 + 1)2 2 = 2 . ω +1 =−
(145.3)
(145.4)
Das Ergebnis (144.8) ist damit verifiziert. (e) Das Ergebnis kann mit Hilfe der MATLAB-Funktion bode numerisch überprüft werden: >> s = t f ( ’ s ’ ) ; >> H = ( s −1)/( s +1) Transfer function : s − 1 −−−−− s + 1 >> domega = 0 . 0 0 1 ; >> omega = ( 0 : domega : 1 0 ) ; >> % Aufruf der Funktion bode >> [ Ampl , Phs ] = bode (H, omega ) ;
146
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ >> % Bestimmung de Phasengangs >> Phase = Phs ( : ) * 2 * pi / 3 6 0 ; >> >> >> >> >> >> >> >>
% Numerische Ableitung des Phasengangs % da die numerische Ableitungsfunktion % diff den Vektor um ein Element verkürzt % wird Phase am Anfang durch einen sinnvollen % Wert ergänzt. Dazu wird die "Ableitung" % des nächsten Punktes verwendet dp = Phase (1) − Phase ( 2 ) ; Ph = [ Phase ( 1 ) + dp ; Phase ] ;
>> % numerische Ableitung >> domPhase = d i f f ( Ph)/domega ; >> % Numerische Bestimmung der Gruppenlaufzeit >> tgnum = −domPhase ; >> % Theoretische Formel für die Gruppenlaufzeit >> t g = 2 . / ( omega . ^ 2 + 1 ) ; >> % Vergleich der beiden Vektoren >> t g = tg ’ ; >> [ t g ( 1 : 2 0 ) , tgnum ( 1 : 2 0 ) ] ans = 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 1.9999 1.9999 1.9999 1.9998 1.9998 1.9998 1.9997 1.9997 1.9996 1.9996 1.9995 1.9994
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 1.9999 1.9999 1.9999 1.9999 1.9998 1.9998 1.9997 1.9997 1.9996 1.9996 1.9995 1.9995
>> % Plot der beiden Ergebnisse >> p l o t ( omega , tg , ’b ’ , omega , tgnum , ’ r ’ )
147
Lösungsband zu „Signale und Systeme“
Die numerischen Werte und der Plot, der in Abbildung 2.42 wiedergegeben ist, zeigen erneut die Übereinstimmung der Berechnungen. 2 1.8
Gruppenlaufzeit/s
1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
2
4 6 Frequenz/rad/s
8
10
Abb. 2.42: Berechnete Gruppenlaufzeit von H(s)
Übung 63 ( Lehrbuch Seite 209 ) Simulieren Sie das System H(s) =
9 (s+3)2
mit Hilfe von Simulink und
(a) bestimmen Sie experimentell die Dauer tm der Impulsantwort, (b) bestimmen Sie rechnerisch die Dauer tm der Impulsantwort, (c) bestimmen Sie rechnerisch die Bandbreite und das Zeit-Bandbreite-Produkt, (d) bestimmen experimentell und rechnerisch die Einschwingzeit, (e) bestimmen Sie, um welchen Filtertyp es sich bei dem System H(s) handelt. Hinweis: Ein entsprechendes Simulink m-File finden Sie unter dem Namen s_uebFilterkenn.mdl in der Begleitsoftware. Lösung zu Übung 63 (a) Mit Hilfe des Simulink Files s_uebFilterkenn.mdl kann die Impulsantwort simuliert werden. Abbildung 2.43 zeigt das Ergebnis. Aus dem abgelesenen Maximum der Impulsantwort und der Übertragungsfunktion an der Stelle s = 0 ermittelt man17 : 17
Das gefundene Maximum hängt von den eingestellten Parametern ab. Experimentieren Sie mir schärferen Impulsen und stellen Sie ggf. auch von einem Fixed-Step- auf ein VariableStep-Verfahren bei der Simulation um.
148
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
1.4 1.2
X: 0.39 Y: 1.081
Impulsantwort
1 0.8 0.6 0.4 0.2 0 0
0.5
1
1.5
2
2.5 Zeit/s
3
3.5
4
4.5
5
Abb. 2.43: Impulsantwort von H(s)
tm =
1 · 1 = 0.9251. 1.081
(148.1)
(b) Nach Definition ist: tm
1 = h(t)max =
Z∞
−∞
h(t) dt =
1 F(h)(jω)|ω=0 h(t)max
(148.2)
1 1 9 1 H(0) = = . h(t)max h(t)max (0 + 3)2 h(t)max
Der Tabelle der Fouriertransformationen in Anhang B.2 entnimmt man: 2−1 9 a=3,n=2 −1 −3t t F = 9σ(t)e (jω + a)2 (2 − 1)! (148.3) = 9σ(t)e−3t t =: h(t). Die Analyse von h0 (t) = 0 ergibt ein Maximum bei t = 13 , also gilt: h(t)max = 9e−1
1 = 1.1036 3
(148.4)
und tm = 0.9061. (c) Für die 3 − dB-Grenzfrequenz erhält man zunächst
(148.5)
149
Lösungsband zu „Signale und Systeme“
|H(jωg )|
2
nach
=
Def. ωg
1 2
⇐⇒
|3 + jωg |2 9
2
=2
(149.1)
und damit: √ √ (3 + jωg )(3 − jωg ) = 9 2 ⇐⇒ 9 + ωg2 = 9 2 (149.2) q √ √ ⇐⇒ ωg2 = 9( 2 − 1) ⇐⇒ ωg = ±3 2 − 1 = 1.93
Aus (148.5) folgt dann:
tm ωg = 1.749 rad.
(149.3)
(d) Nach Definition ist: te =
yσ (∞) , max yσ0 (t)
yσ =Sprungantwort. ˆ
(149.4)
Wegen yσ0 (t) = h(t)
(149.5)
ist also gemäß Aufgabenteil (b) Gl. (148.4): max yσ0 (t) = 3e−1 .
(149.6)
Nach dem Endwertsatz der Laplace-Transformation ist: lim yσ (t) = lim sYσ (s).
t→∞
s→0
(149.7)
Also gilt wegen Yσ (s) = H(s) · 1s : yσ (∞) = lim sH(s) s→0
1 = lim H(s) = H(0) = 1. s s→0
(149.8)
Damit ist: te =
1 e = = 0.906 s. 3e−1 3
(149.9)
Mit Hilfe des Simulink Files s_uebFilterkenn.mdl kann die Sprungantwort simuliert werden, die in Abbildung 2.44 dargestellt ist. Experimentell erhält man für die Zeit zwischen dem Erreichen von 10% und 90% des Endwerts: te ≈ 1.2966 − 0.1773 = 1.1193 s.
(149.10)
150
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
1.2
Sprungantwort
1
0.8
0.6
0.4
0.2 0.1773 0 0
0.5
1.2966 1
1.5 Zeit/s
2
2.5
3
Abb. 2.44: Sprungantwort von H(s) mit Markierung der Zeitpunkte von 10% und 90% des Endwerts
(e) Das Filter ist ein Tiefpass! Mit >> s = t f ( ’ s ’ ) ; >> H = 9/ ( s ^2+6 * s +9) Transfer function : 9 −−−−−−−−−−−−− s ^2 + 6 s + 9 >> bode (H)
lässt sich dies anhand des Bode-Diagramms18 leicht überprüfen. Übung 64 ( Lehrbuch Seite 210 ) Entwerfen Sie einen Butterworth-Tiefpass für das Toleranzschema Toleranz im Durchlassbereich:
18
− 3 dB,
Toleranz im Sperrbereich: Durchlassbandgrenzfrequenz:
− 20 dB, 30 Hz,
Sperrbandgrenzfrequenz:
70 Hz
Hier aus Platzgründen nicht dargestellt.
151
Lösungsband zu „Signale und Systeme“
(a) mit Hilfe der in Unterabschnitt 2.6.4, S. 196 entwickelten Herleitung, (b) mit Hilfe der Entwurfstabelle aus Anhang C für den Entwurf analoger Butterworth-Filter. Überprüfen Sie Ihren Entwurf mit MATLAB. Hinweis: Achten Sie in dieser Aufgabe bei der Umrechnung der dB-Größen sorgfältig darauf, ob Sie Ihre Berechnung auf |H(jω)| oder |H(jω)|2 beziehen ! Lösung zu Übung 64 (a) Zunächst müssen die angegebenen dB-Größen auf die absoluten Größen δ1 und δ2 des Toleranzschemas umgerechnet werden. Für die angegebenen Dämpfungen gilt: 3 1 (1 − δ1 )2 = 10− 10 ∼ = 0.5 = , 2
20
δ22 = 10− 10 = 10−2 =
1 100
(151.1)
(151.2)
und 1 1 = ⇔ 2 = 1. 1 + 2 2
(151.3)
Anschließend erfolgt die Berechnung der notwendigen Filterordnung: Es gilt (beachte 2 = 1): 1 −1 2 δ2 log10 100−1 2 1 hier 1 log10 1 (151.4) = = 2.7116. N≥ ωs 2 log 2 log10 2π70 2π30 10 ωp Es muss also N = 3 als Filterordnung (minimale Ordnung) gewählt werden! Für die Pole der Übertragungsfunktion im Bildbereich dieses Filters erhalten wir dann: 1
sn = ωp − N ejπ
2n+N −1 2N
(n = 1, . . . , N )
jπ 2n+2 6
= 2π30 · 1 · e (n = 1, 2, 3) 60πejπ = −60π für n = 2, 2 = 60πejπ 3 für n = 1, jπ (− 23 ) jπ 43 60πe = 60πe für n = 3.
(151.5)
152
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Dies liefert die Übertragungsfunktion: H(s) =
60π )(s2
(s + |{z} ωp
(−1) · (60π)3 . − 2 · |{z} 60π cos π 23 s + (60π)2 ) | {z } ωp
(152.1)
ωp2
(b) Teilt man den Nenner durch ωp3 , so erhält man: H(s) =
s ωp
1 2 + 1 1 · ωsp + −2 cos
2π 3
Mit der Definition a1 = 1,
s ωp
. +1
(152.2)
(152.3)
b1 = 0
und mit a2 = −2 cos
2π 3
1 = −2 − = 1, 2
b2 = 1,
(152.4)
(152.5)
erhält man: 1
H(s) = a1 =
s ωp
s ωp
1
·
1
+ 1 b2
+1
·
s ωp
2
s ωp
+
2
1
+ a2
s ωp
s ωp
.
+1
+1
Dies entspricht genau dem geforderten Tabellenentwurf, denn die gleichen Koeffizienten liest man für die Filterordnung N = 3 aus der Entwurfstabelle ab. (c) Mit Hilfe der MATLAB-Funktion butter für den Butterworth-FilterEntwurf erhält man aufgrund folgender MATLAB-Anweisungen die folgenden Koeffizienten: >> % Grenzfrequenz definieren >> omegp = 2 * pi * 3 0 ; >> % Filterordnung definieren >> N = 3 ; >> % Koeffizienten berechnen >> % (man beachte den Zusatz ’s’ zur Bestimmung >> % ANALOGER Filter)
153
Lösungsband zu „Signale und Systeme“ >> [ B ,A] = b u t t e r (N, omegp , ’ low ’ , ’ s ’ ) B = 1 . 0 e +006 * 0
0
0
6.6974
0.0004
0.0711
6.6974
A = 1 . 0 e +006 * 0.0000
>> % Koeffizienten ein wenig nachnormieren >> A = A/B ( 4 ) A = 0.0000
0.0001
0.0106
1.0000
>> B = B/B ( 4 ) B = 0
0
0
1
Der Zählerkoeffizient lässt sich in (152.5) leicht identifizieren. Multipliziert man den Nenner von (152.5) aus, so erhält man mit ωp = 2π30 = 188.4956: ! 2 s s s +1 · + +1 ωp ωp ωp 3 2 (153.1) s s s = +2 +2 +1 ωp ωp ωp = 1.4931 · 10−7 s3 + 5.6290 · 10−5 s2 + 0.0106s + 1.
Dass die ersten beiden Koeffizienten korrekt sind überprüft man mit: >> A( 1 ) ans = 1 . 4 9 3 1 e−007
154
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
>> A( 2 ) ans = 5 . 6 2 9 0 e−005
Übung 65 ( Lehrbuch Seite 210 ) Entwerfen Sie mit Hilfe der Entwurfstabelle zum Entwurf analoger Filter (s. Anhang B) für eine Durchlassbandgrenzfrequenz von 50 Hz (3 dB-Grenze!) (a) ein Butterworth-Tiefpassfilter 4. Ordnung, (b) ein Tschebyscheff-Tiefpassfilter 1. Art 4. Ordnung mit 1 dB Welligkeit. Plotten Sie mit Hilfe des MATLAB-Befehls bode jeweils die Amplitudengänge zu den entworfenen Filtern und vergleichen Sie diese mit den Anforderungen. Lösung zu Übung 65 Es gilt: ωp = 2π50 = 100π
(154.1)
rad/s.
(a) Der Tabelle B.3 entnimmt man für ein Butterworth-Tiefpassfilter 4. Ordnung folgende Koeffizienten: a1 = 1.8478, b1 = 1.0,
(154.2)
a2 = 0.7654, b2 = 1.0. Daraus folgt nach Einsetzen in die auf die Tabellenwerte normierten Übertragungsfunktionen H(s) =
·
1 2 s 100π s 100π
+ 1.8478
2
1 + 0.7654
s 100π
s 100π
+1
+1
(154.3)
(b) Der Tabelle entnimmt man für ein Tschebyscheff-Tiefpassfilter 1. Art 4. Ordnung mit 1 dB Welligkeit die Koeffizienten: a1 = 2.5904, b1 = 4.1301, a2 = 0.3039, b2 = 1.1697.
(154.4)
155
Lösungsband zu „Signale und Systeme“
Daraus folgt für die Übertragungsfunktion: H(s) =
1 4.1301
2 s 100π
s 100π
+ 2.5904
·
1.1697
2 s 100π
+1 1
+ 0.3039
s 100π
. (155.1) +1
(c) Abbildung 2.45 zeigt die Amplitudengänge zu den in Aufgabenteil (a) und (b) entworfenen Tiefpassfiltern. Butterworth−Tiefpass
Amp.gang
0 −10 −20 −30
10
0
10 Frequenz/Hz Tschebyscheff−Tiefpass
1
10
2
10
0
10 Frequenz/Hz
1
10
2
Amp.gang
0 −10 −20 −30
Abb. 2.45: Amplitudengänge der entworfenen Tiefpass-Filter
Diese Diagramme erhält man mit den nachfolgenden MATLABKommandos (vgl. m-File uebFiltEntwurf.m ): % Butterworthfilter omegap=2 * pi * 5 0 ; N = 4;
% Grenzfrequenz % Filterordnung % Filterentwurf [ B ,A] = b u t t e r (N, omegap , ’ low ’ , ’ s ’ ) ;
% Tschebyscheff-Filter [ Bc , Ac ] = cheby1 (N, 1 , omegap , ’ low ’ , ’ s ’ ) ; % Übertragungsfunktionen definieren BW = t f ( B ,A ) ;
156
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“ Ch1 = t f ( Bc , Ac ) ;
% Darstellung der Amplitudengänge frq = ( 0 : 0 . 5 : 2 0 0 ) ; omega=2 * pi * f r q ; % Frequenzvektor zur % Plotdarstellung % Bode-Diagramme [ABW,PBW] = bode (BW, omega ) ; [ACh1 , PCh1 ] = bode ( Ch1 , omega ) ; ABW = ABW( : ) ; ACh1 = ACh1 ( : ) ; % Amplitudengänge plotten subplot ( 2 1 1 ) semilogx ( frq , 2 0 * log10 (ABW) , ’ r ’ , ’ LineWidth ’ , 3 ) grid a x i s ( [ 0 , 2 0 0 , −30, 5 ] ) x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’Amp. gang ’ ) t i t l e ( ’ Butterworth−T i e f p a s s ’ ) subplot ( 2 1 2 ) semilogx ( frq , 2 0 * log10 (ACh1 ) , ’ r ’ , ’ LineWidth ’ , 3 ) grid a x i s ( [ 0 , 2 0 0 , −30, 5 ] ) x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’Amp. gang ’ ) t i t l e ( ’ Tschebyscheff−T i e f p a s s ’ )
Übung 66 ( Lehrbuch Seite 210 ) Entwerfen Sie einen Butterworth-Tiefpass für folgendes Toleranzschema: Toleranz im Durchlassbereich: Toleranz im Sperrbereich: Durchlassbandgrenzfrequenz: Sperrbandgrenzfrequenz:
− 1 dB, − 25 dB,
30 Hz, 100 Hz.
Testen Sie Ihr Ergebnis mit Hilfe von MATLAB, indem Sie den berechneten Amplitudengang plotten.
157
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 66 Eine Toleranz im Durchlassbereich von −1 dB bedeutet für den Parameter δ1 des Toleranzschemas: −1 = 20 log10 (1 − δ1 )
1
10− 20 = 1 − δ1 δ1 = 0.108749.
⇐⇒ ⇐⇒
(157.1)
Für die Durchlassbandgrenzfrequenz ωp gilt dann aufgrund der Definition der Butterworth-Übertragungscharakteristik:
⇐⇒
|H(jωp )|2 = (1 − δ1 )2 1 2 2N = (1 − δ1 )
1 + ε2
ωp ωp
1 = (1 − δ1 )2 1 + ε2 1 1 + ε2 = (1 − δ1 )2 1 ε2 = −1 (1 − δ1 )2
⇐⇒ ⇐⇒ ⇐⇒
(157.2)
ε2 = 0.258925
⇐⇒ =⇒
ε = 0.508847.
Eine Toleranz im Sperrbereich von −25 dB bedeutet für den Parameter δ2 des Toleranzschemas: −25 = 20 log10 (δ2 )
⇐⇒
⇐⇒
25
10− 20 = δ2 δ2 = 0.056234133.
Für die zu wählende Ordnung N des Butterworth-Filters folgt: 1 1 1 1 1 log − 1 2 2 10 log10 0.258925 (316.227766 − 1) 2 ε δ 2 N≥ ≥ 2 log10 100·2π log10 ωωps 30·2π ≥
(157.3)
(157.4)
0.293413 + 1.249312232 = 2.950449688. 0.522878
Es ist also eine Ordnung N = 3 für den Entwurf zu wählen! Für einen stabilen Entwurf können diejenigen Pole 1
sn = ωp ε− 3 ejπ
2n+2 2·3
1
= ωp ε− 3 ejπ
n+1 3
,
n ∈ 1, 2, . . . , 6
verwendet werden, die in der linken komplexen Halbebene liegen.
(157.5)
158
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Im vorliegenden Fall sind dies: 1
2
s1 = ωp ε− 4 ej 3 π , 1
(158.1)
s2 = ωp ε− 3 ejπ , s3 = ωp ε
− 13
ej
4 3π
.
Für den Zähler der Übertragungsfunktion H(s) =
(−1)N s1 s2 s3 (s − s1 )(s − s2 )(s − s3 )
(158.2)
ergibt sich zunächst: 2
3
4
(−1)N s1 s2 s3 = −ωp3 ε−1 ej( 3 + 3 + 3 )π = −ωp3 ε−1 ej3π
(158.3)
= −ωp3 ε−1 (−1) = ωp3 ε−1 .
Die Übertragungsfunktion des gesuchten Filters lautet damit H(s) = = = = =
ωp3 ε−1 1
2
1
1
4
(s − ωp ε− 3 ej 3 π )(s − ωp ε− 3 ejπ )(s − ωp ε− 3 ej 3 π ) 1 1 13 ε (s ωp
1
2
1
1
1
1
1 ( ω1p ε 3 s
1
4
− ωp ε− 3 ej 3 π ) ω1p ε 3 (s − ωp ε− 3 ejπ ) ω1p ε 3 (s − ωp ε− 3 ej 3 π ) −e
2 ( ω12 ε 3 s2 p
2 ( ω12 ε 3 s2 p
j 23 π
1 )( ω1p ε 3 s
1
4
− ejπ )( ω1p ε 3 s − ej 3 π )
(158.4)
1
−
1 31 j 23 π ωp ε (e
−
1 31 2 ωp ε 2 cos( 3 π)s
4
1
+ ej 3 π )s + 1)( ω1p ε 3 s + 1)
1 1
+ 1)( ω1p ε 3 s + 1)
.
Mit ωp = 2π · 30 erhält man: 1 (0.1794 · 10−4 s2 + 0.4235 · 10−2 s + 1)(0.4235 · 10−2 s + 1) 1 = . −7 3 0.7598 · 10 s + 0.3588 · 10−4 s2 + 0.8471 · 10−2 s + 1
H(s) =
(158.5)
Abbildung 2.46 zeigt einen entsprechenden Plot des Amplitudengangs des berechneten Filters auf der Grundlage nachfolgender MATLAB-Kommandos (vgl. m-File uebFiltEntwurf2.m ): % Zählerkoeffizienten von H(s) B = [1];
159
Lösungsband zu „Signale und Systeme“ % Nennerkoeffizienten von H(s) A = [ . 7 5 9 8 e −7, 0 . 3 5 8 8 e −4, . 8 4 7 1 e −2, 1 ] ; % Frequenzvektor von 0 bis 120 Hz % in rad pro sec frq = ( 0 : 0 . 1 : 1 2 0 ) ; omega = 2 * pi * f r q ; % Frequenz und Phasengang im Intervall % 0 bis 120 Hz, Frequenzabstand 0.1 Hz [ betr ag , phase ] = bode ( B , A, omega ) ; b e t r a g = be t r a g ( : ) ; phase = phase ( : ) ; % Übertragungsfunktion in logarithmischer % Darstellung (nur Amplitudengang) semilogx ( frq , 2 0 * l og10 ( b e t r a g ) , ’ b ’ , ’ Linewidth ’ , 3 ) ; axis ([0 ,120 , −35 ,2]) grid x l a b e l ( ’ Frequenz / Hz ’ ) ; y l a be l ( ’|H( j \omega)| ’ ) ;
0 X: 30 Y: −1
−5
|H(jω)|
−10 −15 −20 −25 −30 −35 −1 10
10
0
10 Frequenz / Hz
1
10
2
Abb. 2.46: Amplitudengang des berechneten Butterworthfilters
Übung 67 ( Lehrbuch Seite 211 ) Transformieren Sie mit Hilfe von MATLAB das in Übung 65 entworfene Butterworth-Tiefpassfilter 4. Ordnung in ein Hochpassfilter mit Grenzfrequenz 50 Hz.
160
Lösungen der Übungen zum Kapitel „Analoge Signale und Systeme“
Testen Sie Ihr Ergebnis, indem Sie den Amplitudengang plotten. Hinweis: MATLAB-Funktion tp2hp. Lösung zu Übung 67 Der Filterentwurf kann mit Hilfe der MATLAB-Funktionen butter und der zugehörigen Transformationsfunktion tp2hp bewerkstelligt werden. Zunächst wird mit butter ein Prototyp-Butterworth-Tiefpassfilter entworfen. Dies ist stets ein Tiefpassfilter N -ter Ordnung mit normalisierter 3 dBGrenzfrequenz ωp = 1: >> omegap = 1 ; >> N = 4 ; >> [ B ,A] = b u t t e r (N, omegap , ’ s ’ ) B = 0
0
0
0
1.0000
1.0000
2.6131
3.4142
2.6131
1.0000
A =
Der Grund hierfür ist, dass die Funktion lp2hp einen Prototyp-Tiefpass als Ausgangsbasis hat. Die Transformation erhält man mit: >> omegap = 2 * pi * 5 0 ; >> [BHp,AHp] = lp2hp ( B , A, omegap ) BHp = 1.0000
−0.0000
0.0000
−0.0000
−0.0000
0.0000
0.0003
0.0810
9.7409
AHp = 1 . 0 e +009 * 0.0000
Wir überprüfen das Ergebnis durch Berechnung des Amplitudengangs, der in Abbildung 2.47 wiedergegeben ist: >> Hp = t f (BHp,AHp)
161
Lösungsband zu „Signale und Systeme“
0 X: 50.13 Y: −2.964
−20
Amplitudengang/dB
−40 −60 −80 −100 −120 −140 −160 −180 −200 −1 10
10
0
1
10 Frequenz/Hz
10
2
3
10
Abb. 2.47: Amplitudengang des berechneten Butterworth-Hochpass-Filters
T r a n s f e r f u nc t i o n : s ^4 − 1 . 5 6 3 e−015s ^3 + 2 . 8 4 e−009s ^2 − 1 . 6 6 e−008s − 1 . 1 0 e−013 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− s ^4 + 8 2 0 . 9 s ^3 + 3 . 3 7 e005 s ^2 + 8 . 1 0 2 e007 s + 9 . 7 4 1 e009 >> omega = ( 0 : 1 : 2 0 0 * 2 * pi ) ; >> [ B , P ] = bode (Hp, omega ) ; >> B = B ( : ) ; >> >> >> >>
semilogx ( omega/2/pi , 2 0 * log10 ( B ) , ’b ’ , ’ Linewidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’ Amplitudengang / dB ’ )
3
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
Übung 68 ( Lehrbuch Seite 232 ) Betrachten Sie das in Abbildung 3.1 dargestellte System.
x(t)
Abtaster mit Periode Ta
w(t)
wd (t)
y(t)
Abb. 3.1: Mischer und Abtaster
Die Signale x(t) und y(t) seien ideal bandbegrenzt mit den in Abbildung 3.2 dargestellten rein reellen Spektren. 1
−10
X(jω)
10
1
−5
Frequenz/rad/s
Y (jω)
5
Frequenz/rad/s
Abb. 3.2: Spektren zu den Signalen aus 3.1
(a) Sind die zugehörigen Signale reell? O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_3, © Springer-Verlag Berlin Heidelberg 2011
164
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
(b) Bestimmen Sie die Bandbreite des Spektrums des Produktsignals w(t) und plotten Sie mit Hilfe von MATLAB eine Grafik des Spektrums. (c) Für welche Abtastraten fa := T1a ist w(t) aus dem Abtastsignal wd (t) rekonstruierbar? (d) Skizzieren Sie für eine solche Abtastrate das Spektrum von wd (t) mit Hilfe des Ergebnisses von Aufgabenteil (b). (e) Geben Sie ein Rekonstruktionsfilter an, welches an das obige System nachgeschaltet werden kann und w(t) liefert. Lösung zu Übung 68 (a) Das skizzierte Spektrum X(jω) lässt sich mit Hilfe der RechteckimpulsFunktion rectT (t) wie folgt geschlossen darstellen: X(jω) = rect20 (ω + 10),
(164.1)
ω ∈ R.
Das skizzierte Spektrum Y (jω) besitzt folgende Funktionsvorschrift: 1 5 (ω + 5) für ω ∈ [−5, 0], Y (jω) =
1 (5 5
für
− ω)
(164.2)
ω ∈ [0, 5], sonst.
0
Die zugehörigen Signale x(t) und y(t) lassen sich mit einer Fourier-Rücktransformation leicht bestimmen. Es folgt aus sinc(ω0 t) ◦ − •
1 rect2πω0 (ω + πω0 ) ω0
(164.3)
mit πω0 = 10, dass: 10 x(t) = sinc π
10 t , π
(164.4)
t ∈ R.
Ferner ist: 1 y(t) = 2π
Z∞
Y (jω)ejωt dω
−∞
1 = 10π
Z0
−5
(ω + 5)e
jωt
1 dω + 10π
Z5
(5 − ω)ejωt dω
(164.5)
0
5 0 1 1 − 5jt − jωt jωt −1 − 5jt + jωt jωt = e + e . 10π t2 t2 −5 0
165
Lösungsband zu „Signale und Systeme“
Dies liefert: 1 1 − 5jt − e−5jt − e5jt + 1 + 5jt 2 10πt 1 = 2 − e5jt + e−5jt 2 10πt 1 − cos(5t) = . 5πt2
y(t) =
(165.1)
Die berechneten Signale sind in Abbildung 3.3 dargestellt. 3.5
0.8
3
0.7
2.5
0.6 0.5
1.5
y(t)
x(t)
2
1
0.4 0.3
0.5
0.2
0
0.1
−0.5 −1 −4
−2
0 t/Zeit
2
4
0 −4
−2
0 t/Zeit
2
4
Abb. 3.3: Berechnete Zeitsignale x(t) und y(t) zu den gegebenen Spektren.
Beide Signale x(t) und y(t) sind also reell und gerade. Man vergleiche dazu auch die Symmetrieeigenschaften der Fouriertransformation. (b) Das Spektrum des Produktsignals w(t) ergibt sich nach dem Multiplikationssatz der Fouriertransformation zu: W (jω) =
1 X(jω) ∗ Y (jω). 2π
(165.2)
Es lässt sich aufgrund der einfachen Struktur der beteiligten Spektren noch durch direkte Berechnung der Faltung bestimmen: 1 W (jω) = 2π
Z∞
−∞
1 = 10π
Z0
−5
(165.3)
Y (jρ) · X(j(ω − ρ)) dρ 1 (ρ + 5)X(j(ω − ρ)) dρ + 10π
Z5 0
(5 − ρ)X(j(ω − ρ)) dρ.
166
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
Es muss nun geprüft werden, für welche Kombinationen von ρ und ω der Faktor X(j(ω − ρ)) nicht 0 (und damit nach Definition von X(jω) gleich 1) wird. Für das erste Integral ist ω − ρ ∈ [−10, 10], genau dann wenn ω ∈ [−10, 10] + ρ,
(166.1)
ρ ∈ [−5, 0],
also für ω ∈ [−15, 10]. Für das zweite Integral ist ω − ρ ∈ [−10, 10], genau dann wenn ω ∈ [−10, 10] + ρ,
ρ ∈ [0, 5],
(166.2)
also für ω ∈ [−10, 15]. Außerhalb von [−15, 15] nimmt W (jω) folglich den Wert 0 an. Die Abbildung 3.4 verdeutlicht grafisch die Überlappung der Träger1 der Funktionen Y (jρ) und X(j(ω − ρ)) für ein ω ∈ [−15, −10]. X(j(ω − ρ))
ω = −11.66
Y (jρ)
Frequenz/rad/s
ω + 10
−5
Abb. 3.4: Funktionen Y (jρ) und X(j(ω − ρ)) für ein ω ∈ [−15, −10]
In dieser Konstellation erhält man offenbar: 1 W (jω) = 10π
ω+10 Z
(ρ + 5) dρ + 0 =
1 2 (ω + 15) 20π
−5
=
(166.3)
1 ω 2 + 30ω + 225 . 20π
Abbildung 3.5 verdeutlicht grafisch die Überlappung der Träger der Funktionen Y (jρ) und X(j(ω − ρ)) für ein ω ∈ [−10, −5]. In dieser Konstellation erhält man dann: 1 W (jω) = 10π = 1
1 20π
Z0
−5
1 (ρ + 5) dρ + 10π
ω+10 Z 0
(5 − ρ) dρ.
ω+10 2 0 2 (ρ + 5) −5 − (5 − ρ) .
(166.4)
0
Unter einem Träger versteht man das kleinste Intervall des Definitionsbereiches einer Funktion, außerhalb dessen die Funktion 0 ist.
167
Lösungsband zu „Signale und Systeme“
X(j(ω − ρ))
Y (jρ)
ω = −6.66
Frequenz/rad/s
ω + 10
Abb. 3.5: Funktionen Y (jρ) und X(j(ω − ρ)) für ein ω ∈ [−10, −5]
Also gilt in diesem Fall: W (jω) =
1 −ω 2 − 10ω + 25 . 20π
(167.1)
Die Abbildung 3.6 skizziert die Überlappung der Träger der Funktionen Y (jρ) und X(j(ω − ρ)) für ein ω ∈ [−5, 5]. X(j(ω − ρ))
Y (jρ)
Frequenz/rad/s
ω = 3.33
Abb. 3.6: Funktionen Y (jρ) und X(j(ω − ρ)) für ein ω ∈ [−5, 5]
In dieser Konstellation erhält man: Z0 Z5 1 1 W (jω) = (ρ + 5) dρ + (5 − ρ) dρ 10π 10π −5
0
(167.2)
1 50 = 52 − 02 − 02 − 52 = . 20π 20π
Aus der Überlappung2 der Träger der Funktionen Y (jρ) und X(j(ω −ρ)) für ein ω ∈ [5, 10] ergibt sich: 1 W (jω) = 10π
Z0
1 (ρ + 5) dρ + 10π
ω−10
= 2
1 −ω 2 + 10ω + 25 . 20π
Hier nicht skizziert, da symmetrisch zu Abbildung 3.5.
Z5 0
(5 − ρ) dρ.
(167.3)
168
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
Aus der Überlappung3 der Träger der Funktionen Y (jρ) und X(j(ω −ρ)) für ein ω ∈ [10, 15] ergibt sich: 1 W (jω) = 0 + 10π
Z5
(5 − ρ) dρ
(168.1)
ω−10
=
1 1 2 (ω − 15) = ω 2 − 30ω + 225 . 20π 20π
Mit Hilfe der folgenden MATLAB-Anweisungen (vgl. uebAbtastTh.m) kann das oben berechnete Ergebnis grafisch dargestellt werden (s. Abbildung 3.7). Zugleich wird das Ergebnis mit einer numerischen Approximation mit Hilfe der Faltungsfunktion conv abgeglichen: % Theoretisches Spektrum des Produktsignals deltaom = 0 . 0 1 ; omega = ( − 20: deltaom : 2 0 ) ; W1 = ( omega . ^ 2 + 3 0 * omega + 2 2 5 ) . * ( omega>=−15 & omega< −10); W2 = (−omega.^2 −10 * omega + 2 5 ) . * ( omega>=−10 & omega< −5); W3 = 5 0 * ( omega>=−5 & omega < 5 ) ; W4 = (−omega . ^ 2 + 1 0 * omega + 2 5 ) . * ( omega>=5 & omega < 1 0 ) ; W5 = ( omega.^2 −30 * omega + 2 2 5 ) . * ( omega>=10 & omega < 1 5 ) ; W = (W1+W2+W3+W4+W5) / ( 2 0 * pi ) ; % Numerische Faltung mit conv om = ( − 15: deltaom : 1 5 ) ; X = (om>=−10 & om< = 1 0 ) ; om = ( −5: deltaom : 5 ) ; Y = ( 1 / 5 ) * ( ( om+ 5 ) . * ( om>=−5 & om< 0 ) . . . +(5−om ) . * ( om>=0 & om< = 5 ) ) ; Wnum = ( 1 / ( 2 * pi ) ) * conv ( X , Y ) * deltaom ; % Grafische Darstellung p l o t ( omega , W, ’ b− ’ , omega , Wnum, ’ k−− ’ , ’ LineWidth ’ , 3 ) grid x l a b e l ( ’omega / rad / s ’ ) y l a b e l ( ’W( j \omega ) ’ )
3
Hier nicht skizziert, da symmetrisch zu Abbildung 3.4.
169
Lösungsband zu „Signale und Systeme“ 0.8 0.7 0.6
W(jω)
0.5 0.4 0.3 0.2 0.1 0 −20
−10
0 omega/rad/s
10
20
Abb. 3.7: Berechnetes Spektrum W (jω) des Produktsignals
(c) Nach dem Abtasttheorem ist w(t) aus dem Abtastsignal wd (t) rekonstruierbar, wenn fa > 2 · fmax ist. Dabei ist fmax die maximale Spektralfrequenz von W (jω) (bzw. 2 · fmax die Bandbreite von w(t)). Nach Aufgabenteil (b) muss also ωa > 30 rad/s sein, entsprechend einer Abtastfrequenz von fa >
30 = 4.7746 Hz. 2π
(169.1)
Dies entspricht einem Abtastintervall der Länge Ta < 0.2094 s. (d) Das Abtastspektrum ergibt sich als periodische Wiederholung des Signalspektrums vermöge Wa (jω) =
∞ 1 X W (j(ω − k · ωa )). Ta
(169.2)
k=−∞
Für ωa = 50 > 30 rad/s erhält man z.B. das Abtastspektrum gemäß Abbildung 3.8. (e) Als Rekonstruktionsfilter kann (im Beispiel mit ωa = 50 rad/s) jedes Tiefpassfilter verwendet werden, welches im Durchlassband −15 ≤ ω ≤ 15 rad/s die Verstärkung Ta = 2π 50 hat und dessen Sperrfrequenz im Bereich [15, 25] rad/s liegt. Übung 69 ( Lehrbuch Seite 233 ) Betrachten Sie das in Abbildung 3.9 dargestellte (reelle) Fourierspektrum X(jω). (a) Das zugehörige Zeitsignal x(t) werde mit einer Frequenz von 7 rad/s abgetastet. Skizzieren Sie das Spektrum des zugehörigen Abtastsignals
170
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
7 6
Wa(jω)
5 4 3 2 1 0 −200
−100
0 omega/rad/s
100
200
Abb. 3.8: Abtastspektrum Wa (jω) für ωa = 50 rad/s
1
−17
−15
X(jω)
15
17
Frequenz/rad/s
Abb. 3.9: Beispielspektrum zu Übung 69
x ˜(t) und begründen Sie, warum es nicht zu spektralen Überlappungen kommt. (b) Untersuchen Sie, ob das ursprüngliche Signal aus den Abtastwerten (xn )n∈Z wieder rekonstruiert werden kann und erläutern Sie gegebenenfalls wie. Lösung zu Übung 69 (a) Das zum dargestellten (reellen) Fourierspektrum X(jω) gehörende Zeitsignal x(t) besitzt bei Abtastung mit einer Abtastfrequenz von ωa = 7 rad/s das Abtastspektrum: ∞ 1 X ˜ X(jω) = X(j(ω − k · ωa )). Ta k=−∞
Dieses Spektrum ist in Abbildung 3.10 dargestellt.
(170.1)
171
Lösungsband zu „Signale und Systeme“ 7 2π
−20−17 −13 −10 −6 −3
˜ X(jω)
1
4
8
11
15 18 Frequenz/rad/s
˜ Abb. 3.10: Abtastspektrum X(jω)
Man erkennt, dass es nicht zu spektralen Überlappungen kommt, obwohl die Bedingung (171.1)
ωa > 2ωmax
des Abtasttheorems 1. Art verletzt ist. (b) Da es nicht zu spektralen Überlappungen kommt, kann das Signal x(t) gegebenenfalls gemäß dem Abtasttheorem 2. Art (Unterabtastversion des Abtasttheorems) wieder aus den Abtastwerten rekonstruiert werden. Nach einer Tiefpassfilterung mit einem Tiefpass der Grenzfrequenz ωg = ωa = 3.7 rad/s entsprechend fg = 0.557 Hz und einer Inbandverstärkung 2 von 2π 7 erhält man ein Analogsignal x(t) mit dem in Abbildung 3.11 dargestellten Spektrum. 1
−3
X(jω)
3
Frequenz/rad/s
Abb. 3.11: Spektrum X(jω) des Tiefpasssignals x(t)
Da der Frequenzabstand ω0 = 14 rad/s zwischen der Maximalfrequenz 3 rad/s von x(t) und der Maximalfrequenz des ursprünglichen Bandpasssignals x(t) bekannt ist, kann das Tiefpasssignal durch Multiplikation („Mischen“) mit der harmonischen Schwingung A · cos(ω0 t)
(171.2)
in den Bandpassbereich „hochgemischt“ werden. Das Spektrum des resultierenden Signals ergibt sich nach dem Multiplikationssatz der Fouriertransformation aus der Faltung von X(jω) mit dem Spektrum
172
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
(172.1)
Aπδ0 (ω − ω0 ) + Aπδ0 (ω + ω0 )
der harmonischen Schwingung. Dies entspricht einer Verschiebung des Spektrums von X(jω) um ±ω0 . Das resultierende Spektrum ist in Abbildung 3.12 dargestellt. Aπ
−17−15
˜ h (jω) X
15 17 Frequenz/rad/s
Abb. 3.12: Spektrum des hochgemischten Signals
Mit Hilfe eines Bandpassfilters mit Durchlassbereich [15, 17] rad/s und geeigneter Wahl von A kann das ursprüngliche Signal wieder rekonstruiert werden. Übung 70 ( Lehrbuch Seite 234 ) Betrachten Sie ein 1000 Hz Sinussignal der Amplitude 1. (a) Berechnen Sie die Abtastwerte dieses Signals für eine Abtastrate von 300 Hz. Skizzieren Sie das Spektrum des abgetasteten Signals. Welches Sinussignal unterhalb der Abtastrate/2 (der so genannten Nyquistfrequenz) hat identische Abtastwerte? (b) Begründen Sie, warum das Ausgangssignal aus den in Aufgabenteil (a) gewonnenen Abtastwerten eindeutig rekonstruiert werden kann, und entwerfen Sie das Blockschaltbild eines Systems, mit dem dies möglich ist. (c) Berechnen Sie die Abtastwerte dieses Signals für eine Abtastrate von 200 Hz. (d) Begründen Sie mit Hilfe des Ergebnisses von Aufgabenteil (c), warum die Bandpassunterabtastung hier nicht funktioniert, obwohl die Bedingung Abtastrate >2*Signalbandbreite erfüllt ist. Hinweis: Zu dieser Aufgabe steht Ihnen in der Begleitsoftware ein SimulinkBeispielsystem namens s_uebAbtastTh2.mdl zur Verfügung, mit dessen Hilfe die Ergebnisse der obigen Untersuchungen anhand eines akustischen Signals nachvollzogen werden können.
173
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 70 (a) Die Abtastwerte des Signals sind: 1 900 + 100 xn = sin 2π · 1000 · n · = sin 2π · n · 300 300 1 = sin 6π · n + 2π · 100 · n · 300 1 = sin 2π · 100 · n · . 300
(173.1)
Offenbar erhält man die gleichen Abtastwerte, wenn man das Signal (173.2)
y(t) = sin(2π100t)
abtastet. Dies erkennt man auch an dem in Abbildung 3.13 dargestellten Abtastspektrum. Nyquist-Band 300π
−2000π −1000
−1400π −700
−800π −400
−200π 200π −100 100
800π 400
1400π 700
2000π rad/s 1000 Hz
˜ Abb. 3.13: Abtastspektrum X(jω)
(b) Das ursprüngliche Signal kann aus den Abtastwerten xn rekonstruiert werden, da die Voraussetzungen des Abtasttheorems 2. Art (Unterabtastversion) erfüllt sind. Da die Bandbreite B des Signals 0 ist (harmonische Schwingung), es im Nyquist-Band [±150] Hz offenbar nicht zu spektralen Überlappungen kommt (vgl. Abbildung 3.13) und der Frequenzabstand zwischen Nyquistband und Hochpassbereich bekannt ist (ω0 = 2π900 rad/s entsprechend f0 = 900 Hz), kann das ursprüngliche Signal durch „Hochmischen“ (Multiplikation) mit einer Schwingung der Frequenz f0 = 900 Hz rekonstruiert werden. Das Simulinksystem s_uebAbtastTh2.mdl, welches in Abbildung 3.14 dargestellt ist, zeigt die Struktur eines solchen Systems. (c) Die Abtastwerte des Signals bei einer Abtastrate von von 200 Hz sind:
174
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“ Abtastung: hier simuliert durch einen Rate Transition Block Copy
Db _buf
butter
Eingangssignal Sinus
Abtastung mit fa RateTransition
Tiefpassfilter mit Grenzfrequenz fa/2 butter
Manual Switch Mischer
Sinus mit Frequenz f
To Audio Device 1
Bandpassfilter mit Mittenfrequenz f
Multiplikation(Mischung ) mit 2 *cos (omega 0*t) Oszillator
Scope
Initialisierung (bitte vor Start anklicken )
Abb. 3.14: System zur Rekonstruktion nach Unterabtastung
1 xn = sin 2π · 1000 · n · = sin (10π · n) = 0. 200
(174.1)
Man erhält die gleichen Abtastwerte wie für das Null-Signal. (d) Die Rekonstruktion des Signals scheitert, da das Signal durch die Abtastung annulliert wird. Dies ist eine Folge der „spektralen Überlappung“ bei der Frequenz 0. Übung 71 ( Lehrbuch Seite 234 ) Diese Aufgabe dient zur Erläuterung der Bedeutung des AusgangsTiefpassfilters aus Abbildung 3.1, S. 214 des Lehrbuchs und ist sehr wichtig für das Verständnis der Rekonstruktion im Zuge der D/A-Wandlung. (a) Skizzieren Sie für einen Sinus der Frequenz 1 Hz das zeitdiskrete Abtastsignal bei Abtastung mit Abtastfrequenz 4 Hz (Abtasttheorem4 eingehalten!). (b) Der D/A-Wandler erzeugt aus diesem Signal wieder ein Analogsignal durch „Halten“ der Werte. Skizzieren Sie dieses Signal. (c) Berechnen Sie ein Spektrum des D/A-Wandler Ausgangssignals und skizzieren Sie dessen Betrag. (d) Erläutern Sie, wie ein nachgeschaltetes Tiefpassfilter in diesem Beispiel gestaltet sein muss, damit man den Original-Sinus wieder erhält und begründen Sie, warum dieses Tiefpassfilter Harmonischenfilter genannt wird. 4
Soll heißen: die Bedingung zu Vermeidung von Aliasing ist eingehalten!
175
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 71 (a) Das zeitdiskrete Abtastsignal kann am besten mit Hilfe von MATLAB skizziert werden (Abbildung 3.15): >> >> >> >> >> >> >> >> >> >>
fa = 4; % Abtastfrequenz f = 1; % Frequenz dt = 1/ f a ; % Abtastintervall t = ( 0 : dt : 5 ) ; % Abtastzeitpunkte x = s i n ( 2 * pi * t ) ; stem ( t , x , ’b ’ , ’ Linewidth ’ , 3 ) grid axis ([0 , 5 , − 1. 2 , 1 . 2] ) xlabel ( ’n ’ ) y l a be l ( ’ x_n ’ )
1
0.5
0,5
xh(t)
1
x
n
0
−0.5
−0,5
−1 0
0
−1
1
2
n
3
4
5
0
1
2
t/Zeit
3
4
5
Abb. 3.15: Abgetastetes Signal und Abtast-Halte-Signal
(b) Auch das Abtast-Halte-Signal kann einfach mit Hilfe von MATLAB dargestellt werden (Abbildung 3.15): >> >> >> >> >>
s t a i r s ( t , x , ’ b ’ , ’ Linewidth ’ , 3 ) grid axis ([0 , 5 , − 1. 2 , 1 . 2] ) xlabel ( ’ t / Zeit ’ ) y l a be l ( ’ x_h ( t ) ’ )
(c) Wie man Abbildung 3.15 entnehmen kann, kann das Abtast-Halte-Signal x(h) (t) als eine Überlagerung von um Vielfache von Ta = f1a verschobenen, mit der Werten von xn gewichteten Rechteckimpulsen der Dauer Ta aufgefasst werden:
176
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
x(h) (t) =
∞ X
n=−∞
(176.1)
xn · rectTa (t − nTa ).
Mit Hilfe des Dirac-Impulses kann die Verschiebung der Rechtecksignale wie folgt dargestellt werden: (176.2)
rectTa (t − nTa ) = δ0 (t − nTa ) ∗ rectTa (t). Mit (176.1) liefert dies: x(h) (t) =
∞ X
n=−∞
=
xn · δ0 (t − nTa ) ∗ rectTa (t)
∞ X
n=−∞
xn δ0 (t − nTa )
!
(176.3)
∗ rectTa (t)
= x˜(t) ∗ rectTa (t). Dabei ist x ˜(t) das zu xn äquivalente zeitkontinuierliche Abtastsignal. Für das Spektrum des Abtast-Halte-Signals x(h) (t) folgt nach dem Faltungssatz der Fouriertransformation: ωTa (h) −jω T2a ˜ X (jω) = X(jω) · Ta e sinc . (176.4) 2π Da x(t) ein harmonisches Signal mit Spektrum X(jω) = −jπδ0 (ω − ω0 ) + jπδ0 (ω + ω0 ),
(176.5)
ω0 = 2π · 1
ist und da ∞ 1 X ˜ X(jω) = X(jω − nωa ), Ta n=−∞
(176.6)
ωa = 2π · fa
ist, folgt aus (176.4): X (h) (jω) =
∞ X
n=−∞
(176.7)
−jπδ0 (ω − ω0 − nωa ) + jπδ0 (ω + ω0 − nωa )
!
·e
−jω T2a
sinc
ωTa 2π
.
Wir erhalten also ein Dirac-Impuls-Spektrum mit Impulsen an den Stellen ω0 + nωa und −ω0 + nωa . Diese Impulse sind gewichtet mit
177
Lösungsband zu „Signale und Systeme“
(ω0 + nωa ) Ta 2π Ta ω0 Ta = −jπ · e−j(ω0 +nωa ) 2 sinc +n 2π
−jπ · e−j(ω0 +nωa )
Ta 2
sinc
(177.1)
bzw. (−ω0 + nωa ) Ta jπ · e sinc 2π Ta −ω0 Ta −j(ω0 +nωa ) 2 = −jπ · e sinc +n . 2π −j(ω0 +nωa ) T2a
(177.2)
Für den Betrag X (h) (jω) des Spektrums erhält man Dirac-Impulse an den Stellen ω0 + nωa und −ω0 + nωa , gewichtet mit ω0 Ta π · sinc + n (177.3) 2π bzw.
−ω0 Ta π · sinc + n . 2π
(177.4)
Mit Hilfe von MATLAB (vgl. Datei uebDAUSpect.m) kann dieses Betragsspektrum wie folgt dargestellt werden (s. Abbildung 3.16): % Signalfrequenz und Abtastfrequenz omega0 =2 * pi ; omegaa = 2 * pi * 4 ; T = 1/4; % Abtastintervall % eine Reihe von Harmonischenfrequenzen n = ( −3:1:3); f r q 1 = omega0+n * omegaa ; f r q 2 = −omega0+n * omegaa ; % Koeffizienten der Dirac-Impulse an diesen Stellen c o e f f 1 = pi * abs ( s i nc ( omega0 * T/ ( 2 * pi )+n ) ) ; c o e f f 2 = pi * abs ( s i nc (−omega0 * T/ ( 2 * pi )+n ) ) ; % Ergebnis nach Frequenzen aufsteigend sortieren f r q = [ frq1 , f r q 2 ] ; coeff = [ coeff1 , coeff2 ] ; [ frq , indx ] = s o r t ( f r q ) ; c o e f f = c o e f f ( indx ) ; % Ergebnis grafisch darstellen
178
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“ stem ( frq , c o e f f , ’ b^ ’ , ’ Linewidth ’ , 3 ) x l a b e l ( ’ Frequenz / rad / s ’ ) y l a b e l ( ’ Gewichte Dirac−Implulse ’ ) grid
3
Gewichte Dirac−Implulse
2.5 Nyquist−Band 2
1.5
1
0.5
0 −100
−50
−ωa/2 0 ωa/2 Frequenz/rad/s
50
100
Abb. 3.16: Betragsspektrum des Abtast-Halte-Signals X (h) (jω)
(d) Wie man anhand der Grafik in Abbildung 3.16 erkennt, enthält das Ausgangssignal der Abtast-Halte-Schaltung außerhalb des Nyquistbandes Harmonischenfrequenzen der Grundschwingung ω0 . Mit Hilfe eines nachgeschalteten Tiefpassfilters („Glättungsfilters“) mit Grenzfrequenz ω2a können diese eliminiert werden! Dieses Tiefpassfilter wird daher auch Harmonischenfilter genannt. Übung 72 ( Lehrbuch Seite 235 ) Diese Aufgabe dient zur Erläuterung des in Abbildung 3.5, S. 221 des Lehrbuchs dargestellten Überlappungseffekts. Es soll der fälschliche Eindruck vermieden werden, die Betragsspektren addierten sich immer. Dies ist in der Tat nicht so. Es können sogar Auslöschungseffekte auftreten. Allgemein handelt es sich um irgendeine Addition der (i.Allg. komplexen) Spektralanteile. Betrachten Sie das Signal x(t) = sin(2πt) + cos(2π3t)
(178.1)
bei Abtastung mit Abtastfrequenz 4 Hz (Abtasttheorem nicht eingehalten!).
179
Lösungsband zu „Signale und Systeme“
(a) Berechnen Sie das (komplexe) Fourierspektrum des abgetasteten Signals und skizzieren Sie das zugehörige Amplitudenspektrum. (b) Vergleichen Sie die Amplitude des Signalanteils bei 1 Hz des abgetasteten Signals mit der von der schematischen Abbildung 3.5, S. 221 des Lehrbuchs suggerierten Summe 2 (Summe der Amplituden des Sinusund Cosinus-Anteils von x(t)). Was stellen Sie fest? (c) Überprüfen Sie Ihr Ergebnis mit dem SimulinkSystem s_uebAbtastTh3.mdl der Begleitsoftware. Erklären Sie mit dem Ergebnis aus Teilaufgabe (c) von Übung 71 die in s_uebAbtastTh3.mdl beobachtete Amplitude des rekonstruierten Tiefpasssignals (Ausgangssignal nach D/AWandlung). Lösung zu Übung 72 (a) Das Signal x(t) hat das Fourierspektrum X(jω) = −jπδ0 (ω − 2π) + jπδ0 (ω + 2π) + πδ0 (ω − 6π) + πδ0 (ω + 6π).
(179.1)
Bei Abtastung mit Abtastfrequenz fa = 4 Hz erhält man das Abtastspektrum (fa = T1a ): ˜ X(jω) = −jπfa
∞ X
n=−∞
δ0 (ω − 2π + n · 4 · 2π) − δ0 (ω + 2π + n · 4 · 2π) (179.2)
∞ X
+ πfa
n=−∞
= −jπfa
∞ X
n=−∞
δ0 (ω + 2π(4n − 1)) + jπfa
∞ X
+ πfa
δ0 (ω − 6π + n · 4 · 2π) + δ0 (ω + 6π + n · 4 · 2π)
n=−∞
∞ X
δ0 (ω + 2π(4n + 1))
n=−∞
δ0 (ω + 2π(4n − 3)) + πfa
∞ X
δ0 (ω + 2π(4n + 3)).
n=−∞
Substituiert man nun in der ersten Reihe n durch n+1 und in der zweiten Reihe n durch n − 1 (Umindizierung der Reihen), so ergibt sich: ˜ X(jω) = −jπfa
∞ X
n=−∞ ∞ X
+ πfa
n=−∞
n=−∞
= fa
∞ X
n=−∞
+ fa
∞ X
δ0 (ω + 2π(4n + 3)) + jπfa δ0 (ω + 2π(4n − 3)) + πfa
n=−∞
δ0 (ω + 2π(4n + 3))
n=−∞
π(1 − j)δ0 (ω + 2π(4n + 3))
∞ X
∞ X
δ0 (ω + 2π(4n − 3))
π(1 + j)δ0 (ω + 2π(4n − 3)).
(179.3)
180
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
Für das Betragsspektrum ergibt dies mit fa = 4: √ ˜ X(jω) = 4 2π
∞ X
δ0 (ω + 2π(4n + 3))
n=−∞
+
∞ X
n=−∞
(180.1)
!
δ0 (ω + 2π(4n − 3)) .
Das Betragsspektrum ist in Abbildung 3.17 dargestellt. √ 4 2π
−18π −14π −10π −6π −9 −7 −5 −3
−2π −1
2π 1
Nyquist-Band
6π 3
10π 5
14π 7
18π 9
rad/s Hz
˜ Abb. 3.17: Betrag des Abtastspektrums X(jω)
(b) Die Abbildung 3.17 zeigt, dass sich bei der Frequenz 1 Hz eine Überlagerung des Frequenzanteils der positiven Frequenz des Sinus-Signals und des Frequenzanteils der negativen Frequenz (−3 Hz) des Cosinus-Signals einstellt. Es überlagern sich, entgegen dem in den schematischen Darstellungen vorherrschenden Eindruck, nicht die Beträge der Amplituden fa |π| und fa |jπ| zu 2πfa , sondern die komplexen Amplituden. Die Amplitude des harmonischen Frequenzanteils bei 1 Hz nach Tiefpassfilterung und Verstärkung mit Ta = f1a ist somit √ 2π 1 (180.2) = √ 2π 2 und nicht 2! Die Amplitude des entsprechenden reellen Signals ist folglich: √ 2 √ = 2 = 1.4142. (180.3) 2 Dieses Resultat kann auch durch folgende Überlegung erhalten werden. Wegen der gewählten Abtastrate von 4 Hz und 1 3 cos 2π · 3 · n · = cos 2π · · n − 2πn 4 4 (180.4) 1 = cos 2π · (−1) · n · 4
181
Lösungsband zu „Signale und Systeme“
hat der Cosinus-Anteil von x(t) die gleichen Abtastwerte wie 1 1 cos 2π · (−1) · n · = cos 2π · n · , 4 4
(181.1)
also ein Cosinus der Frequenz 1 Hz. Die Abtastwerte von x(t) sind also identisch mit denen von: x(t) = sin(2πt) + cos(2πt) π = sin(2πt) + sin 2πt + 2 π π = 2 cos − sin 2πt + 4 4 π π = 2 cos sin 2πt + . 4 4
(181.2)
Das überlagerte Signal hat daher die Amplitude: π 2 cos = 1.4142. 4
(181.3)
Ein Rekonstruktionsfilter (D/A-Wandlung) muss folglich ein harmonisches Signal der Frequenz 1 Hz und der Amplitude 1.4142 liefern. (c) In Abbildung 3.18 ist das Simulinksystem s_uebAbtastTh2.mdl dargestellt, mit welchem das Ergebnis der obigen Berechnung experimentell überprüft werden soll. Buf
Db _buf
ellip
Sinus mit Frequenz 1
Cosinus mit Frequenz 3
Add Abtastung mit fa=4
Summensignal
RateTransition
Tiefpassfilter mit Grenzfrequenz fa/2 =2
Tiefpasssignal
Abtast−Halte−Signal
Initialisierung (bitte vor Start anklicken )
Abb. 3.18: System zur D/A-Wandlung des abgetasteten Signals x(t)
Das Ausgangssignal des simulierten D/A-Wandlers, welches sich am Ausgang der Abtast-Halte-Schaltung und des nachgeschalteten Harmonischenfilters einstellt, ist in Abbildung 3.19 (im eingeschwungenen Zustand des Filters) dargestellt. Man erhält, wie in (b) berechnet, eine harmonische 1 Hz-Schwingung. Die Amplitude ist aber nicht 1.4142 sondern 1.2736.
182
Lösungen der Übungen zum Kapitel „Abtastung und Digitalisierung“
1.5 X: 14.8 Y: 1.274
1
DAU
0.5
0
−0.5
−1
−1.5 10
12
14
Zeit/t
16
18
20
Abb. 3.19: D/A-Wandler-Ausgangssignal des abgetasteten Signals x(t)
Der Unterschied lässt sich durch den in Teilaufgabe (c) von Übung 71 beobachteten Einfluss der Halte-Schaltung erklären. Gemäß (177.3) und (177.4) werden die Dirac-Impulse des harmonischen Signals im Nyquist-Band, also an den Stellen ω0 und −ω0 , mit dem Faktor sinc ω0 Ta (182.1) 2π gewichtet. Für ω0 = 2π und Ta = 14 ergibt sich ein Faktor von: sinc 2πT = sinc 1 = 0.9003. 2π 4
(182.2)
Statt der theoretischen Amplitude von 1.4142 hat das Ausgangssignal des ADU somit eine Amplitude von √ sinc 1 · 2 = 0.9003 · 1.4142 = 1.2732, (182.3) 4 was (bis auf die numerische Ungenauigkeit in der 4. Nachkommastelle) dem beobachteten Wert bei der Simulation entspricht.
4
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Übung 73 ( Lehrbuch Seite 245 ) Zeigen Sie, dass die Gleichung n
yn =
(nTa −kTa ) 1 X T Ta x(kTa )e− T
(183.1)
k=0
(siehe Gl. (238.1) des Lehrbuchs) in die äquivalente rekursive Gleichung yn − e−Ta /T yn−1 =
Ta xn T
(183.2)
überführt werden kann. Lösung zu Übung 73 Ausgehend von der Beziehung n
n
k=0
k=0
X (nTa −kTa ) 1 X T yn = Ta x(kTa )e− = xk T
Ta −(n−k) Ta T e T
(183.3)
erhält man zunächst: yn−1 =
n−1 X
xk
k=0
Ta −(n−1−k) Ta T e T
(183.4)
.
Damit folgt: e
− TTa
yn−1
n−1 X
Ta −(n−1−k) Ta − Ta T e T = xk e T k=0 n−1 X Ta −(n−k) TTa = xk e . T
(183.5)
k=0
Also ist: Ta
n X
Ta −(n−k) Ta T e T k=0 n−1 X Ta −(n−k) TTa − xk e T k=0 Ta −(n−n) Ta Ta T = xn e = xn . T T
yn − e− T yn−1 =
xk
O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_4, © Springer-Verlag Berlin Heidelberg 2011
(183.6)
184
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Übung 74 ( Lehrbuch Seite 245 ) Betrachten Sie nochmals die Simulation 0-ter Ordnung des RC-Tiefpasses aus Beispiel 4.1, S. 237 des Lehrbuchs. Entwerfen Sie analog zur dortigen Vorgehensweise eine so genannte Simulation 1. Ordnung, indem Sie den Integranden des Systemintegrals des RCTiefpasses nicht, wie im Beispiel, durch eine Treppenfunktion, sondern (nach Art der Trapezregel für die numerische Integration) durch einen Polygonzug approximieren. Schreiben Sie ein MATLAB-Programm, mit dem Sie Ihre Lösung simulativ überprüfen können. Lösung zu Übung 74 Wir gehen zunächst wieder von der Zeitdiskretisierung des Ausgangssignals mit einer Abtastrate entsprechend fa = T1a aus: 1 y˜n = T
nTa Z 0
(nTa −τ ) T
x(τ)e− | {z
(184.1)
dτ.
}
:=g(τ )
Zwischen zwei Abtastpunkten kT a und (k + 1)Ta approximieren wir nun (vgl. Abbildung 4.1) das Integral durch das Trapez
g(τ )
Zeit/s
(k + 1) · Ta
k · Ta
Abb. 4.1: Approximation 1. Ordnung in einem Diskretisierungsintervall
1 (g((k + 1)Ta ) + g(kTa )) · Ta 2 Ta Ta Ta = xk+1 e−(n−(k+1)) T + xk e−(n−k) T (184.2) 2 Ta Ta −(n−1−k) TTa = e xk+1 + e− T xk , k = 0, . . . , n − 1. |2 {z } def
=:ck (xk+1 +αxk )
−
mit α:=e
Ta T
185
Lösungsband zu „Signale und Systeme“
Daraus folgt: n−1 1 X y˜n ∼ ck (xk+1 + αxk ) = T
(185.1)
k=0
1 (c0 (x1 + αx0 ) + c1 (x2 + αx1 ) + · · · + cn−1 (xn + αxn−1 )) T 1 = (c0 x1 + c1 x2 + · · · + cn−1 xn + c0 αx0 + c1 αx1 + · · · + cn−1 αxn−1 ) T ! n−1 X 1 = αc0 x0 + (ck−1 + αck )xk + cn−1 xn . T =
k=1
Wegen ck α =
Ta −(n−k) Ta Ta −(n−1−(k−1)) Ta T = T = c e e k−1 2 2
∀ k = 1, . . . n
(185.2)
und c0 α =
Ta −(n−1) Ta − Ta Ta −n Ta T · e T = e e T 2 2
(185.3)
Ta −(n−1−(n−1)) Ta Ta T = e 2 2
(185.4)
und cn−1 = folgt: 1 yn ∼ = yn := T
n−1
X Ta − nTa Ta e T x0 + 2ck−1 xk + xn 2 2 k=1
!
.
(185.5)
Diese Formel für eine Simulation 1. Ordnung kann mit MATLAB verifiziert werden. Das Programm RCSimuOrd1.m berechnet die Approximation des RC-Tiefpass-Ausgangssignals gemäß (185.5) (ähnlich wie auch RCSimuOrd0.m) für ein sinusförmiges Eingangssignal und stellt sie dem exakten Ausgangssignal des Tiefpasses gegenüber. In Abbildung 4.2 ist das Ergebnis für zwei Abtastraten (f a = 10 Hz und fa = 25 Hz) dargestellt. Der Signalausschnitt ist so gewählt, dass sich das System im eingeschwungenen Zustand befindet. Die Darstellung der Werte der Simulation als Treppenfunktion ist im vorliegenden Fall ein wenig irreführend, da die Treppenfunktion dem exakten Ausgangssignal „nachzuhinken“ scheint. Dies ist jedoch nur ein optischer Effekt. Die simulierten Werte stimmen (zumindest für fa = 25 Hz ziemlich genau mit den exakten Werten überein. Dies erkennt man, wenn man die Werte, wie in Abbildung 4.2 ebenfalls dargestellt, linear verbindet (Standardeinstellung für plot)
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
0.08
0.08
0.06
0.06
0.04
0.04
0.02
0.02 Amp
Amp
186
0
0
−0.02
−0.02
−0.04
−0.04
−0.06
−0.06 −0.08
−0.08 4
Simuation
4.2
4.4
Zeit/s
4.6
4.8
exakt
4
5
4.2
4.4
Zeit/s
4.6
4.8
5
Abb. 4.2: Ausgangssignal für eine digitale Simulation 1-ter Ordnung des RC-Tiefpass für ein 2 Hz-Sinussignal am Tiefpasseingang bei einer Abtastrate von 10 Hz bzw. von 25 Hz
Übung 75 ( Lehrbuch Seite 245 ) Zeigen Sie, dass das System S : (xn )n∈Z 7−→ (yn )n∈Z , welches durch die Gleichung yn =
n X
xk
(186.1)
k=−∞
definiert ist, auch durch die rekursive Gleichung yn = yn−1 + xn
(186.2)
beschrieben werden kann. Lösung zu Übung 75 Da für ein n ∈ Z nach Definition yn−1 =
n−1 X
xk
(186.3)
k=−∞
ist, folgt: yn =
n X
k=−∞
xk =
n−1 X
k=−∞
xk + xn = yn−1 + xn .
(186.4)
187
Lösungsband zu „Signale und Systeme“
Übung 76 ( Lehrbuch Seite 250 ) Betrachten Sie das System S : (xn )n∈Z 7−→ (yn )n∈Z , welches, ähnlich wie das aus Gleichung (239.4) des Lehrbuchs, durch die Differenzengleichung yn − a · yn−1 = b · xn ,
a, b ∈ R
(187.1)
gegeben ist. Setzen Sie voraus, dass das System „in Ruhe“ ist und nur durch kausale Signale angeregt wird. Weisen Sie nach, dass das so definierte System zeitinvariant ist. Lösung zu Übung 76 Für das System S : (xn )n∈Z 7−→ (yn )n∈Z , das durch die Differenzengleichung yn − a · yn−1 = b · xn ,
a, b ∈ R
(187.2)
gegeben ist, wird gemäß Aufgabenstellung vorausgesetzt, dass yn = 0 für alle n < 0 ist und nur durch kausale Signale angeregt wird. Für eine um k0 ≥ 0 Zeiteinheiten verzögerte (kausale) Eingangssignalfolge (˜ xn )n∈Z = (xn−k0 )n∈Z gilt zunächst für alle n ≥ 0: y˜n − a · y˜n−1 = b · x ˜n = b · xn−k0 .
(187.3)
Da xn kausal ist, ist für k < n x ˜0 = x0−k0 . . . = x ˜k0 −1 = xk0 −1−k0 = x−1 = 0
(187.4)
und damit wegen der Anfangsbedingung y˜−1 = 0 auch y˜0 = . . . = y˜k0 −1 = 0.
(187.5)
Andererseits folgt aus (187.2) durch eine einfache Umindizierung yn−k0 − a · yn−k0 −1 = b · xn−k0 .
(187.6)
Zieht man nun (187.3) und (187.6) voneinander ab, so erhält man: (˜ yn − yn−k0 ) − a · (˜ yn−1 − yn−1−k0 ) = 0.
(187.7)
Für n < k0 ist jedoch nach (187.4) y˜n−1 − yn−1−k0 = 0. Damit folgt aber aus (187.7) induktiv auch für alle n ≥ k0 , dass gilt:
(187.8)
188
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
y˜n − yn−k0 = 0.
(188.1)
Insgesamt erhält man für alle n ≥ 0: y˜n = yn−k0 .
(188.2)
Damit entspricht das Antwortsignal von S auf ein um k0 Zeiteinheiten verzögertes Eingangssignal xn−k0 dem um k0 Zeiteinheiten verzögertes Antwortsignal auf xn . Das System ist zeitinvariant. Übung 77 ( Lehrbuch Seite 250 ) Weisen Sie nach, dass das durch Gleichung (187.1) aus Übung 76 definierte digitale System kausal ist. Lösung zu Übung 77 Der Definition des Systems entnimmt man y0 = a · y−1 + b · x0 = a · 0 + b · x0 = b · x0
(188.3)
und y1 = a · y0 + b · x1 = ab · x0 + b · x1 ,
y2 = a · y1 + b · x2 = a2 b · x0 + ab · x1 + b · x2
(188.4)
und weiter allgemein yn = a · yn−1 + b · xn
= an b · x0 + an−1 b · x1 + . . . + b · xn .
(188.5)
Nach (188.5) hängt nun aber der Wert von yn zum Zeitpunkt n ausschließlich von Werten des Eingangssignals xn zum Zeitpunkt n und früher ab. Das System ist kausal. Übung 78 ( Lehrbuch Seite 250 ) Untersuchen Sie, für welche Parameter a, b ∈ R das durch Gleichung (187.1) aus Übung 76 definierte digitale System stabil ist. Lösung zu Übung 78 Gemäß Gleichung (188.5) aus der Lösung von Übung 77 gilt für alle n ≥ 0:
189
Lösungsband zu „Signale und Systeme“
yn = a · yn−1 + b · xn
= an b · x0 + an−1 b · x1 + . . . + b · xn n X = ak b · xn−k .
(189.1)
k=0
Ist das Eingangssignal beschränkt, so gibt es ein M > 0, sodass |xn | ≤ M für alle n ≥ 0 ist. Damit folgt aus (189.1): |yn | ≤
n X
k=0
|a|k · |b| · |xn−k |
≤M ·b·
n X
k=0
(189.2)
k
|a| .
Da die geometrische Reihe n X
ak
(189.3)
k=0
absolut konvergiert, wenn |a| < 1 ist, ist das Ausgangssignal yn in jedem Falle für alle b ∈ R beschränkt, wenn |a| < 1 ist. Für |a| > 1 und das diskrete Sprungsignal σn als Eingangssignal erhält man laut (189.1): yn =
n X k=0
ak b · 1 = b ·
n X
ak .
(189.4)
k=0
Die geometrische Reihe ist für |a| > 1 absolut divergent und wächst über alle Grenzen, sodass die Antwort auf das (beschränkte!) diskrete Sprungsignal σn eine unbeschränkte Folge yn wäre. Das Sprungsignal liefert in diesem Falle also ein Gegenbeispiel für die Stabilität im Falle |a| > 1. Für a = 1 erhält man ebenfalls mit dem Sprungsignal σn als Eingangssignal yn =
n X k=0
ak b = b ·
n X
k=0
1 = b · n.
(189.5)
Damit wächst auch in diesem Falle yn über alle Grenzen. Für a = −1 erhält man ebenfalls mit dem beschränkten Eingangssignal xn = (−1)n
yn =
n X
k=0
ak b · xn−k = b ·
n X k=0
(−1)k · (−1)n−k
(189.6)
190
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
=b·
n X
k=0
(−1)n = b · (−1)n ·
= b · (−1)n · n.
n X
1
k=0
Für den Betrag von yn erhält man somit |yn | = |b| · n
(190.1)
und yn wächst für dieses (beschränkte!) Eingangssignal über alle Grenzen. Insgesamt ist das durch (187.1) beschriebene digitale System genau dann stabil, wenn |a| < 1 ist. Der Wert von b kann beliebig sein! Übung 79 ( Lehrbuch Seite 250 ) Finden Sie heraus, wie das durch durch Gleichung (187.1) aus Übung 76 definierte digitale System in der Form yn =
∞ X
k=−∞
xk · hn−k
(190.2)
geschrieben werden kann. Orientieren Sie sich dabei an der Lösung von linearen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten und gehen Sie folgendermaßen vor: (a) Bestimmen Sie eine Lösung der homogenen Differenzengleichung yn − a · yn−1 = 0
(190.3)
mit Hilfe eines „Exponentialansatzes“. Machen Sie sich dabei klar, wie der Exponentialansatz für Differentialgleichungen auf einen äquivalenten Ansatz für Differenzengleichungen übertragen werden könnte. (b) Bestimmen Sie anschließend eine Lösung der Differenzengleichung (187.1) mit Hilfe einer „Variation der Konstanten“. Machen Sie sich dabei klar, wie die Technik der Variation der Konstanten für Differentialgleichungen auf eine äquivalente Technik für Differenzengleichungen übertragen werden könnte. (c) Ermitteln Sie aus der Lösung die Darstellung (190.2). Lösung zu Übung 79 Beim Exponentialansatz für Differentialgleichungen wird eine Funktion der Form y(t) = C · eλ·t
(190.4)
191
Lösungsband zu „Signale und Systeme“
in die Differentialgleichung eingesetzt. Es liegt nahe, diesen Ansatz zu diskretisieren, um ihm auf Differenzengleichungen zu übertragen. Mit einem Abtastintervall Ta erhielte man n (191.1) yn = C · eλ·n·Ta = C · eλ·Ta := C · q n , also i.W. eine Potenzfolge q n mit q 6= 0 als Ansatz. Setzt man die Potenzfolge in die Differenzengleichung ein, so ergibt sich: yn − a · yn−1 = q n − a · q n−1 = q n−1 (q − a) = 0,
(191.2)
woraus die Bedingung (q − a) = 0
⇐⇒
q=a
(191.3)
folgt. Die Lösungen der homogenen Differenzengleichung sind also ynhom = C · an ,
C ∈ R.
(191.4)
Die Technik der Variation der Konstanten für Differentialgleichungen besteht darin, aus der Konstanten C in der homogenen Lösung eine Funktion C(t) zu machen (die Konstante „variabel“ zu machen) und in die inhomogene Gleichung einzusetzen. Übertragen auf die Differenzengleichung bedeutet dies, dass ynp = Cn · an
(191.5)
in die Differenzengleichung eingesetzt wird. Man erhält
⇐⇒
p ynp = a · yn−1 + b · xn
Cn · an = Cn−1 · an + b · xn ,
(191.6)
woraus folgt (o.E. a 6= 0): Cn = Cn−1 + a−n b · xn .
(191.7)
p y0p = C0 · a0 = C0 = y−1 + b · x0 = 0 + b · x0
(191.8)
Wegen
folgt C1 = C0 + a−1 b · x1 . = ba0 · x0 + a−1 b · x1 ,
C2 = C1 + a−2 b · x2 . = ba0 · x0 + a−1 b · x1 + a−2 b · x2
(191.9)
192
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
und weiter allgemein: n X
a−k b · xk .
(192.1)
yn := ynp = Cn · an n X = an−k b · xk .
(192.2)
Cn =
k=0
Für die partikuläre Lösung gilt dann:
k=0
Da für ein System „in Ruhe“ der homogene Lösungsanteil verschwindet, ist yn =
n X k=0
an−k b · xk
(192.3)
die Antwort auf die Systemerregung mit der Eingangssignalfolge xn . Setzt man nun b · am für m ≥ 0, hm := (192.4) 0 sonst, so lässt sich (192.3) in der allgemeinen Form yn =
∞ X
k=−∞
hn−k · xk
(192.5)
schreiben. Übung 80 ( Lehrbuch Seite 267 ) Zeigen Sie, dass das digitale System, welches auf dem Raum der kausalen Folgen durch die Differenzengleichung yn = yn−1 + xn ,
y−1 = 1
(192.6)
definiert ist, weder linear noch zeitinvariant ist. Lösung zu Übung 80 Betrachtet man als Eingangssignal xn den diskreten Impuls δn = δ0 (n), so gilt nach Definition:
193
Lösungsband zu „Signale und Systeme“
y0 = y−1 + x0 = y−1 + δ0 (0) = −1 + 1 = 0, y1 = y0 + x1 = y0 + δ0 (1) = 0 + 0 = 0, y2 = y1 + x2 = y1 + δ0 (2) = 0 + 0 = 0,
(193.1)
... yn = yn−1 + xn = 0 + 0 = 0. Betrachtet man dagegen als Eingangssignal xn den mit dem Faktor 2 skalierten diskreten Impuls 2 · δ0 (n), so gilt nach Definition: y0 = y−1 + x0 = y−1 + 2δ0 (0) = −1 + 2 = 1, y1 = y0 + x1 = y0 + 2δ0 (1) = 1 + 0 = 1, y2 = y1 + x2 = y1 + 2δ0 (2) = 1 + 0 = 1,
(193.2)
... yn = yn−1 + xn = 1 + 0 = 1. Die Systemantwort auf 2 · δ0 (n) ist offensichtlich nicht die mit dem Faktor 2 skalierte Systemantwort auf δ0 (n), d.h. das System genügt nicht dem Verstärkungsprinzip. Das System ist daher nicht linear! Betrachtet man weiter zum Eingangssignal δn = δ0 (n) den um einen Takt verzögerten Impuls xn = δ0 (n − 1), so gilt nach Definition für dieses Signal am Eingang des Systems: y0 = y−1 + x0 = y−1 + δ0 (−1) = −1 + 0 = −1, y1 = y0 + x1 = y0 + δ0 (0) = −1 + 1 = 0, y2 = y1 + x2 = y1 + δ0 (1) = 0 + 0 = 0,
(193.3)
... yn = yn−1 + xn = 0 + 0 = 0. Das Ausgangssignal ist offensichtlich nicht die um einen Takt verzögerte Version von (193.1)! Das System ist daher nicht zeitinvariant! Man mache sich jedoch klar, dass beide Argumente nicht mehr greifen, wenn das System „in Ruhe“ ist (y−1 = 0). In diesem Falle beschreibt die Differenzengleichung ein LTI-System. Übung 81 ( Lehrbuch Seite 267 ) Geben Sie zwei äquivalente Zustandsraumdarstellungen für das digitale System an, welches durch die Differenzengleichung yn = yn−1 + yn−2 + un , definiert ist.
y−1 = y−2 = 0
(193.4)
194
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Lösung zu Übung 81 Durch eine Umindizierung der Differenzengleichung erhält man zunächst (194.1)
yn+2 − yn+1 − yn = un+2 . (1)
Definiert man nun (willkürlich!) den „Zustand“ x ˜n als Lösung der Differenzengleichung (1)
(1)
(194.2)
x ˜n+2 − x ˜n+1 − x ˜(1) n = un+1 (2)
(1)
(1)
und x˜n := x˜n+1 als zeitverschobene Version von x ˜n , so erhält man: (1)
x ˜n+1 = x˜(2) n , (2)
(1)
(194.3)
(1)
x ˜n+1 = x˜n+2 = x ˜(1) ˜n+1 + un+1 n +x = x˜(1) ˜(2) n +x n + un+1 . Dies kann in Matrixschreibweise in der Form (1) (1) x˜n+1 = 0 1 · x˜n + 0 · un+1 (2) (2) x˜n+1 1 1 x˜n 1
(194.4)
geschrieben werden.
(1)
(1)
(2)
(2)
Definiert man anschließend neue „Zustände“ xn := x ˜n−1 und xn := x ˜n−1 , so erhält man aus (194.4): (1) (1) x 0 1 x n n+1 = · + 0 · un . (194.5) (2) (2) xn+1 1 1 xn 1 Ferner folgt aus (194.2), dass
(1)
(1)
(1)
(1)
(1)
(1)
un+2 = x ˜n+3 − x˜n+2 − x˜n+1 = xn+4 − xn+3 − xn+2
(194.6)
(1)
gilt. Somit ist yn = xn+2 eine Lösung von (194.1). Aufgrund von (194.3) gilt aber: (1)
(1)
(2)
x ˜n+1 = x ˜n−1 + x ˜n−1 + un ,
(194.7)
was nach Definition der neuen Zustände jedoch äquivalent zu (1)
(2) yn = xn+2 = x(1) n + xn + un
(194.8)
195
Lösungsband zu „Signale und Systeme“
ist. Damit ist yn =
1 1
(1) x n + 1 · un · (2) xn
(195.1)
und wir erhalten eine Zustandsdarstellung mit den Zustandsmatrizen 0 1 , B = 0 , C = 1 1 A= und D = 1. (195.2) 1 1 1 Eine „andere“ Zustandsraumdarstellung erhält man, wenn man einfach die Nummerierung der Zustände vertauscht! Übung 82 ( Lehrbuch Seite 267 ) Sei (hn )n∈Z die Impulsantwort eines digitalen LTI-Systems. Rechnen Sie nach, dass sich die Sprungantwort des Systems durch Aufsummieren der Impulsantwort ergibt, d.h. dass yn(σ) =
n X
hk
(195.3)
k=−∞
ist. Lösung zu Übung 82 Nach Definition der Impulsantwort ist hn = S(δ0 (n)). Das Sprungsignal σn lässt sich mit Hilfe von zeitverschobenen Impulsen wie folgt darstellen: σn =
∞ X
k=0
1 · δ0 (n − k).
(195.4)
Da S ein lineares System ist, folgt: yn(σ) = S (σn ) =
∞ X k=0
1 · S (δ0 (n − k)) .
(195.5)
Da S ein zeitinvariantes System ist, folgt: yn(σ) := S (σn ) =
∞ X k=0
1 · (S (δ0 ))n−k .
(195.6)
196
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Insgesamt also: yn(σ) =
∞ X
(196.1)
hn−k .
k=0
Da jedoch hm = 0 für alle m < 0 ist, folgt: yn(σ) =
n X
hn−k = hn + hn−1 + . . . + hn−(n−1) + h0
k=0
(196.2)
= h0 + h1 + . . . + hn−1 + hn n n X X = hk = hk . k=0
k=−∞
Übung 83 ( Lehrbuch Seite 268 ) Rechnen Sie das Assoziativgesetz der diskreten Faltung (Gl. (263.2) des Lehrbuchs) explizit nach, d.h. zeigen Sie dass für drei Folgen (xn )n∈Z , (yn )n∈Z und (zn )n∈Z gilt: (196.3)
(xn ∗ yn ) ∗ zn = xn ∗ (yn ∗ zn ). Lösung zu Übung 83 Nach Definition der Faltung gilt zunächst einmal: (xn ∗ yn ) ∗ zn = =
∞ X
m=−∞ ∞ X
∞ X
k=−∞ ∞ X
m=−∞ k=−∞
Daraus folgt1 : (xn ∗ yn ) ∗ zn =
∞ X
xk
k=−∞
xk · ym−k
!
· zn−m
xk · ym−k · zn−m .
∞ X
m=−∞
!
ym−k · zn−m .
Substituiert man nun j = m − k, so folgt wegen m = j + k: ∞ ∞ X X (xn ∗ yn ) ∗ zn = xk yj · z(n−k)−j k=−∞
=
∞ X
k=−∞ 1
(196.4)
j=−∞
(196.5)
(196.6)
xk · (y ∗ z)n−k = xn ∗ (yn ∗ zn ).
Die absolute Konvergenz der Reihen wird stets vorausgesetzt. Daher ist die Reihenfolge der Summationen stets vertauschbar.
197
Lösungsband zu „Signale und Systeme“
Übung 84 ( Lehrbuch Seite 268 ) Bestimmen Sie Impuls- und Sprungantwort des digitalen LTI-Systems S(N) , welches durch die Vorschrift yn =
N −1 1 X xn−k N
(197.1)
k=0
definiert ist. Überlegen Sie sich, was dieses System mit einem ganz allgemeinen (kausalen) Eingangssignal xn macht. Ist dieses LTI-System BIBO-stabil? Lösung zu Übung 84 Die Antwort des Systems auf den diskreten Impuls xn = δ0 (n) ist: hn =
N −1 1 X δ0 (n − k) N
(197.2)
k=0
1 1 = (0 + 0 + . . . + 1 + 0 + . . . + 0) = N N falls n ≤ N − 1 und 0 sonst. Die Antwort des Systems auf den diskreten Einheitssprung xn = σn ist: yn(σ) =
N −1 1 X σ(n − k) N
(197.3)
k=0
1 n = (1 + 1 + 1 + . . . + 0 + 0 + 0) = . N N falls n ≤ N − 1 und yn(σ) =
N −1 1 X σ(n − k) N
(197.4)
k=0
1 N = (1 + 1 + 1 + . . . + 1 + 1 + 1) = =1 N N sonst! Dieses Resultat kann auch mit Hilfe von Übung 82 bestimmt werden, denn daraus folgt, dass yn(σ) =
n X
k=0
hk =
n X 1 n = , N N
k=0
(197.5)
198
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
falls n ≤ N − 1 und yn(σ) =
n X
hk =
k=0
N −1 X k=0
n X 1 N + 0= +0=1 N N
(198.1)
k=N
sonst. Für ein ganz allgemeines Eingangssignal xn gilt: yn = hn ∗ yn = =
∞ X
k=−∞ N −1 X k=0
hk · xn−k
(198.2)
N −1 1 1 X · xn−k = xn−k . N N k=0
Das LTI-Systems S(N ) berechnet somit ganz allgemein zu jedem Zeitpunkt n das arithmetische Mittel der (einschließlich n) letzten N Werte des Eingangssignals, die vor dem Zeitpunkt n am Eingang des Systems angestanden haben. Für ein mit Schranke M > 0 beschränktes Eingangssignal xn gilt: |yn | ≤
N −1 1 X |xn−k | N
1 ≤ N
k=0
N −1 X k=0
(198.3)
M ·N M= = M < ∞. N
Das Ausgangssignal ist daher für ein beschränktes Eingangssignal stets beschränkt und das System ist BIBO-stabil. Übung 85 ( Lehrbuch Seite 268 ) Betrachten Sie ein digitales System, das durch folgende Differenzengleichung beschrieben ist: 5 1 yn = xn−1 − 2xn−2 + yn−1 − yn−2 , 8 3
(198.4)
y−1 = y−2 = 0
(a) Bestimmen Sie mit Hilfe von MATLAB die Impulsantwort (hn )n∈Z des Systems. (σ)
(b) Bestimmen Sie mit Hilfe von MATLAB die Sprungantwort (yn )n∈Z des Systems.
Lösungsband zu „Signale und Systeme“
199
Lösung zu Übung 85 Das nachfolgende MATLAB-Programm (vgl. Datei ueb1rec_formel.m ) realisiert die Antworten des Systems auf den diskreten Impuls und den diskreten Einheitssprung in einer Schleife. Zu beachten ist lediglich, dass die Vektorindizierung in MATLAB nicht bei 0 beginnt sondern bei 1. Dadurch wird eine Umindizierung gegenüber der üblichen Darstellung der Rekursionsformel erforderlich: % Vorinitialisierungen iantw = [ 0 , 0 , z e r o s ( 1 ,N ) ] ; spantw = [ 0 , 0 , z e r o s ( 1 ,N ) ] ; % Definition des diskreten Impulses % (beginnt mit \delta_0(-1) da in % der Rekursion darauf zurück gegriffen wird) d e l t a n = [ 0 , 0 , 1 , z e r o s ( 1 ,N ) ] ; % Definition des diskreten Sprunges % (beginnt mit \sigma(-1) da in % der Rekursion darauf zurück gegriffen wird) sigman = [ 0 , ones ( 1 ,N+ 1 ) ] ; % die Rekursionsformel (der Index ist aus programmier% technischen Gründen um 2 Takte verschoben) f o r k= 1 :N iantw ( k+ 2) = d e l t a n ( k+ 1) − 2 * d e l t a n ( k ) . . . + ( 5 / 8 ) * iantw ( k+ 1) − ( 1 / 3 ) * iantw ( k ) ; spantw ( k+2) = sigman ( k+ 1) − 2 * sigman ( k ) . . . + ( 5 / 8 ) * spantw ( k+ 1) − ( 1 / 3 ) * spantw ( k ) ; end
% Elimination der künstlich eingefügten Nullen % (entspricht Umindizierung) iantw ( 1 : 2 ) = [ ] ; spantw ( 1 : 2 ) = [ ] ;
Die Systemantworten sind in Abbildung 4.3 bis zum Index n = 14 grafisch dargestellt. Übung 86 ( Lehrbuch Seite 268 ) Entwerfen Sie zu dem System aus Übung 85 ein Signalflussdiagramm entsprechend Abbildung 4.5, S. 255 des Lehrbuchs und entwerfen Sie anschließend ein Simulink-System dazu.
200
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
1
h
n
0 −1 −2 0
2
4
6 8 Index/n
10
12
14
2
4
6 8 Index/n
10
12
14
1
n
y(σ)
0 −1 −2 0
Abb. 4.3: Impuls und Sprungantwort des digitalen Systems
Überprüfen Sie die Ergebnisse aus Übung 85 mit Hilfe dieses SimulinkSystems. Lösung zu Übung 86 Das Signalflussdiagramm ist in Abbildung 4.4 dargestellt. xn
z −1
z −1
xn−1
yn
Σ
xn−2 −2
5/8
−1/3
yn−1
yn−2
z −1
z −1
Abb. 4.4: Blockschaltbilddarstellung des Systems aus Übung 85
201
Lösungsband zu „Signale und Systeme“
Die Umsetzung in ein entsprechendes Simulink-System befindet sich in der Datei s_ueb1rec_formel.mdl und wird hier aus Gründen der Platzersparnis nicht dargestellt. Eine Simulation für die ersten 14 Werte liefert das in Abbildung 4.5 dargestellte Ergebnis. 1
h
n
0 −1 −2 0
2
4
6 8 Index/n
10
12
14
2
4
6 8 Index/n
10
12
14
1
y
(σ) n
0 −1 −2 0
Abb. 4.5: Impuls und Sprungantwort des digitalen Systems, simuliert mit Hilfe von Simulink
Die Darstellungen (4.3) und (4.5) stimmen offenbar, abgesehen davon, dass diskrete Signale im Simulink-Scope als Treppenfunktionen dargestellt werden, überein. Übung 87 ( Lehrbuch Seite 269 ) Zeigen Sie, dass es sich bei einem digitalen System S, welches ein Signal (xn )n∈Z in ein demgegenüber um einen Takt verzögertes Signal yn = xn−1 überführt, um ein LTI-System handelt. Bestimmen Sie anschließend die Impuls- und Sprungantwort dieses Systems und entscheiden Sie, ob das System BIBO-stabil und kausal ist. Lösung zu Übung 87 Das System ist linear, denn wegen
202
und
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
(2) S x(1) = S x(1) + x(2) n + xn n (1) (2) (1) (2) = x +x = xn−1 + xn−1 n−1 (2) = S x(1) + S x n n S (λ · xn ) = S ((λ · x)n )
= (λ · x)n−1 = λ · xn−1
(202.1)
(202.2)
= λ · S (xn )
genügt S dem Verstärkungs- und Superpositionsprinzip. Ferner ist für ein k0 ∈ N: S (xn−k0 ) = xn−k0 −1 = x(n−1)−k0 = yn−k0 = S (x)n−k0
(202.3)
und das System somit zeitinvariant. Die Impulsantwort ist laut Definition hn = S (δ0 (n)) = δ0 (n − 1)
(202.4)
und damit der um einen Takt verzögerte diskrete Impuls. Die Sprungantwort ergibt sich aus Übung 82 zu: yn(σ) =
n X
hk =
k=−∞
0 für = 1 für
n X
k=−∞
δ0 (k − 1) (202.5)
n ≤ 0, n ≥ 1.
Damit ist die Sprungantwort der um 1 Takt verzögerte diskrete Einheitssprung, was sich selbstverständlich auch unmittelbar aus der Definition des Systems ergibt. Das System ist ferner natürlich kausal, da nach Definition der Wert des Ausgangssignals yn zur Zeit n dem Wert der Eingangssignals zur Zeit n − 1 entspricht und somit nur von früheren Werten des Eingangssignals abhängt und nicht von späteren. Das System ist darüber hinaus BIBO-stabil, da für ein durch M > 0 beschränktes Eingangssignal xn gilt: |yn | = |xn−1 | ≤ M < ∞ ∀ n ∈ Z.
(202.6)
Die Antwort des Systems auf ein beschränktes Eingangssignal ist stets ein beschränktes Ausgangssignal.
203
Lösungsband zu „Signale und Systeme“
Übung 88 ( Lehrbuch Seite 302 ) Betrachten Sie die Folge hn =
n 1 (σn − σn−5 ) 2
∀ n ∈ Z.
(203.1)
(a) Bestimmen Sie auf direktem Wege mit Hilfe der Definition der Z-Transformation die Z-Transformierte der Folge (in geschlossener Form). (b) Bestimmen Sie die Z-Transformierte der Folge mit Hilfe von MATLAB. (c) Bestimmen Sie den Konvergenzbereich der Z-Transformierten und skizzieren Sie mit Hilfe von MATLAB ein Pol-Nullstellen-Diagramm. Lösung zu Übung 88 Zunächst ist: n 1 hn = (σn − σn−5 ) 2 1 n für n ≤ 4, 2 = 0 für n > 4, n < 0.
(203.2)
Mit dieser Vorüberlegung erhält man: (a) H(z) =
∞ X
hn z −n
n=0
1 = 1 + z −1 + 2
2 3 4 1 1 1 −2 −3 z + z + z −4 . 2 2 2
(203.3)
Erweitert man mit dem Faktor 16z 4/16z 4, so erhält man: 16z 4 + 8z 3 + 4z 2 + 2z + 1 16z 4 1 3 1 4 z + 2 z + 14 z 2 + 18 z + 16 = z4
H(z) =
(203.4) ∀ z 6= 0.
(b) Mit Hilfe der MATLAB Symbolic Math Toolbox erhält man >> syms n z >> hn = ( 1 / 2 ) ^ n * ( he a v i s i de ( n)− he a v i s i d e ( n−5)) hn =
204
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
( 1 / 2) ^n * ( h e a v i s i d e ( n)− h e a v i s i d e ( n−5)) >> H = z t r a n s ( hn ) H = 1+1/2/ z+1/4/ z^2+1/8/z^3+1/16/ z^4 >> simple (H) ... combine ( t r i g ) : 1 / 1 6 * ( 1 6 * z ^4+8 * z ^3+4 * z ^2+2 * z +1)/ z^4 ... >> p r e t t y ( 1 / 1 6 * ( 1 6 * z ^4+8 * z ^3+4 * z ^2+2 * z +1)/ z ^ 4) 4 3 2 z + 1/2 z + 1/4 z + 1/8 z + 1/16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 4 z
(c) Da H(z) lediglich die Polstelle z = 0 hat, „konvergiert“ die Z-Transformierte H(z) überall (außer an z = 0). Ein Pol-Nullstellen-Diagramm kann mit Hilfe der MATLAB-Funktion pzmap erzeugt werden: >> z = t f ( ’ z ’ , 1 ) Transfer function : z >> H = 1 / 1 6 * ( 1 6 * z ^4+8 * z ^3+4 * z ^2+2 * z +1)/ z^4 Transfer function : z^4 + 0 . 5 z^3 + 0 . 2 5 z^2 + 0 . 1 2 5 z + 0 . 0 6 2 5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− z^4
Lösungsband zu „Signale und Systeme“
205
Sampling time : 1 >> pole (H) ans = 0 0 0 0 >> zero (H) ans = 0.1545 0.1545 −0.4045 −0.4045
+ − + −
0.4755 i 0.4755 i 0.2939 i 0.2939 i
>> pzmap(H) >> a x i s equal
Auf die Darstellung sei hier aus Platzgründen verzichtet. Übung 89 ( Lehrbuch Seite 303 ) Betrachten Sie ein zeitdiskretes LTI-System, welches durch folgende Differenzengleichung beschrieben ist: 5 yn = xn − 2xn−1 + yn−1 − yn−2 . 2
(205.1)
(a) Bestimmen Sie analytisch die Übertragungsfunktion im Bildbereich des Systems. (b) Bestimmen Sie mit Hilfe von MATLAB die Übertragungsfunktion im Bildbereich des Systems. (c) Bestimmen Sie analytisch die Impulsantwort (hn )n∈Z des Systems. (d) Bestimmen Sie mit Hilfe von MATLAB Impulsantwort und Sprungantwort des Systems. (e) Untersuchen Sie, ob das System stabil ist. (f) Bestimmen Sie mit Hilfe von MATLAB eine äquivalente Zustandsraumdarstellung des Systems. Lösung zu Übung 89 (a) Die Z-Transformation der Differenzengleichung ergibt unter Verwendung des Verschiebungssatzes:
206
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
5 Y (z) = X(z) − 2z −1 X(z) + z −1 Y (z) − z −2 Y (z) 2 5 −1 −2 ⇐⇒ Y (z) 1 − z + z = X(z)(1 − 2z −1) 2 1 − 2z −1 (206.1) ⇐⇒ Y (z) = X(z) 1 − 52 z −1 + z −2 =
z 2 − 2z X(z). z 2 − 52 z + 1 | {z } :=H(z)
(b) Die Koeffizienten der rationalen Übertragungsfunktion im Bildbereich können direkt den Koeffizienten der Differenzengleichung in der Form yn −
5 · yn−1 + yn−2 = xn − 2 · xn−2 + 0 · xn−2 2
(206.2)
entnommen werden. Die Übertragungsfunktion kann dann mit Hilfe der tf-Funktionen in MATLAB wie folgt bestimmt werden: >> % y Koeffizienten (a-Koeffizienten) >> a = [ 1 −5/2 1 ] a = 1.0000
−2.5000
1.0000
>> % x-koeffizienten (b-Koeffizienten) >> b = [ 1 −2 0 ] b = 1
−2
0
>> % Übertragungsfunktion >> H = t f ( b , a , 1 ) Transfer function : z^2 − 2 z −−−−−−−−−−−−−−− z^2 − 2 . 5 z + 1 Sampling time : 1
(c) Analytisch kann die Impulsantwort mit Hilfe der Transformationstabellen (s. Anhang B) bestimmt werden. Dazu ist im allgemeinen Fall eine
207
Lösungsband zu „Signale und Systeme“
Partialbruchzerlegung der z-Übertragungsfunktion durchzuführen, um die tabellierten Funktionsausdrücke nutzen zu können. Die Polstellen von H(z) ergeben sich aus z 2 − 52 z + 1 = 0 zu: 5 z 21 = ± 4
Damit folgt:
r
25 5 −1= ± 16 4 5 3 2, = ± = 4 4 1 2.
H(z) =
r
9 16
z(z − 2) z = . 1 z − 2 (z − 2) z − 12
(207.1)
(207.2)
Im vorliegenden Fall erübrigt sich somit eine Partialbruchzerlegung, da sich ein Pol-Nullstellen-Paar herauskürzt und die Impulsantwort kann sofort aus der Tabelle B.1 abgelesen werden: 0 n < 0, (hn )n∈Z = (207.3) 1 n n ≥ 0. 2
(d) Unter Verwendung der Symbolic Math Toolbox von MATLAB erhält man: >> syms n z >> H = ( z^2 − 2 * z ) / ( z^2 − ( 5 / 2 ) * z + 1 ) H = ( z^2−2* z ) / ( z^2−5/2* z + 1) >> hn = i z t r a n s (H) hn = ( 1 / 2) ^n
Dies bestätigt die analytisch ermittelte Impulsantwort. Die Sprungantwort ergibt sich mit Hilfe der Impulsantwort aus: ynσ = hn ∗ σn .
(207.4)
Die Z-Transformation dieser Gleichung liefert nach dem Faltungssatz:
208
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Y σ (z) = H(z) · Σ(z) =
z z−
1 2
·
z . z−1
(208.1)
Die Sprungantwort ist die Z-Rücktransformierte von Y σ (z), die mit MATLAB wie folgt ermittelt werden kann: >> Ysgm = H * ( z /( z −1)) H = ( z^2−2* z ) / ( z^2−5/2* z + 1) >> sigman = i z t r a n s (Ysgm) sigman = 2 −(1/2)^n
Die Sprungantwort ist also: 2− ynσ =
0
1 n 2
für n ≥ 0,
(208.2)
für n < 0.
(e) Das System ist stabil, da die einzige Polstelle z = 12 von H(z) im Inneren des komplexen Einheitskreises liegt. (f) Eine äquivalente Zustandsraumdarstellung kann mit MATLAB wie folgt ermittelt werden: >> z = t f ( ’ z ’ , 1 ) Transfer function : z Sampling time : 1 >> H = ( z^2−2 * z ) / ( z^2−5/2* z + 1) Transfer function : z^2 − 2 z −−−−−−−−−−−−−−− z^2 − 2 . 5 z + 1 Sampling time : 1 >> H = minreal (H)
209
Lösungsband zu „Signale und Systeme“ Transfer function : z −−−−−−− z − 0.5 Sampling time : 1 >> ZRD = s s (H) a = x1
x1 0.5
x1
u1 0.5
y1
x1 1
y1
u1 1
b =
c =
d =
Sampling time : 1 D i s c r e t e−time model .
Übung 90 ( Lehrbuch Seite 304 ) Betrachten Sie das für einen Parameter 0 < T < gleichung
1 2
durch die Differenzen-
yn − yn−1 + T yn−2 = xn
(209.1)
beschriebene zeitdiskrete LTI-System. (a) Bestimmen Sie die Z-Übertragungsfunktion des Systems. (b) Bestimmen Sie die ersten 5 Werte der Impulsantwort des Systems. (c) Entscheiden Sie, ob das System stabil ist. Lösung zu Übung 90 (a) Eine Z-Transformation der Differenzengleichung ergibt unter Verwendung des Verschiebungssatzes: Y (z) − z −1 Y (z) + T z −2 Y (z) = X(z) ⇐⇒ Y (z) 1 − z −1 + T z −2 = X(z).
(209.2)
210
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Damit folgt: H(z) = =
Y (z) X(z) 1 z2 = 2 . −2 −1 Tz − z + 1 z −z+T
(210.1)
(b) Aus der Definition der Differenzengleichung ergibt sich mit dem speziellen Eingangssignal xn = δn : yn = yn−1 − T yn−2 + xn , y0 = 0 − 0 + 1 = 1,
y1 = 1 − 0 + 0 = 1, y2 = 1 − T + 0 = 1 − T,
(210.2)
y3 = 1 − T − T + 0 = 1 − 2T,
y4 = 1 − 2T − T (1 − T ) + 0 = T 2 − 3T + 1. (c) Das LTI-System ist stabil, falls die Pole der rationalen Übertragungsfunktion H(z) innerhalb des Einheitskreises liegen (|z| < 1). Für die Polstellen gilt zunächst: z 2 − z + T = 0 ⇔ z1/2 =
1 1√ ± 1 − 4T 2 2
(210.3)
Nach Voraussetzung ist 0 < T < 12 . Wir unterscheiden zwei Fälle: Fall 1: 0 < T ≤ 14 . Es gilt dann 0 ≤ 1 − 4T < 1 und q 1 1 1 2 < + (1 − 4T ) < 1, 2 2 2q 1 1 1 2 0< − (1 − 4T ) < . 2 2 2
Fall 2: 14 ≤ T < 12 . Es gilt dann 0 ≥ 1 − 4T > − 1 und q q 1 1 1 1 1 x 2 2 + (1 − 4T ) = + j (|1 − 4T |) := + j 2 2 2 2 2 2
(210.4)
(210.5)
mit |x| < 1. Damit folgt für den Betrag der (in diesem Fall komplexen Nullstellen): |z|2 =
1 x2 1 1 + = (1 + x2 ) ≤ (1 + 1) < 1. 4 4 4 4
(210.6)
Die Polstellen liegen also immer innerhalb des Einheitskreises und das System ist für jeden der zugelassenen Parameter T stabil!
211
Lösungsband zu „Signale und Systeme“
Übung 91 ( Lehrbuch Seite 304 ) Betrachten Sie die in Abbildung 4.6 dargestellten Blockschaltbilder zweier zeitdiskreter LTI-Systeme. xn
+
b0
+
z −1
−a0
yn
xn
b0
yn
+
z −1
b1
z −1
b1
−a0
Abb. 4.6: Blockschaltbilder zweier zeitdiskreter LTI-Systeme
(a) Weisen Sie mit Hilfe der Z-Transformation nach, dass beide Blockschaltbilder ein und dasselbe LTI-System beschreiben. (b) Geben Sie eine Beschreibung des Systemverhaltens in Form einer Differenzengleichung an. Hinweis: Definieren Sie in beiden Blockschaltbildern jeweils ein Zwischensignal in der Mitte des obersten Signalpfades! Lösung zu Übung 91 (a) Man definiere im linken Blockschaltbild im Verzweigungsknoten oberhalb des Verzögerungsgliedes das Signal vn . Dann gilt vn = xn − a0 vn−1 ,
(211.1)
yn = b0 vn + b1 vn−1 .
(211.2)
und
Aus (211.1) folgt:
⇐⇒
V (z) = X(z) − a0 z −1 V (z)
V (z)(1 + a0 z −1 ) = X(z) ⇐⇒
V (z) = X(z)
z . z+a | {z 0} H1 (z)
(211.3)
212
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Aus (211.2) folgt: Y (z) = b0 V (z) + b1 z −1 V (z) zb0 + b1 V (z). z } | {z
= (b0 + b1 z −1 )V (z) =
(212.1)
H2 (z)
Daraus folgt: Y (z) =
b0 z + b1 X(z). z+a | {z 0 }
(212.2)
:=H(z)
Definiert man im zweiten Blockschaltbild das Signal vn als linken Eingang des Summationsknotens, so erhält man vn = b0 xn + b1 xn−1 ,
(212.3)
yn = vn − a0 yn−1 .
(212.4)
und
Nach Z-Transformation ergibt sich aus (212.3) V (z) = b0 X(z) + b1 z −1 X(z) b0 z + b1 X(z) z } | {z
= (b0 + b1 z −1 )X(z) =
(212.5)
=H ˆ 2 (z) oben!
und aus (212.4):
⇐⇒
Y (z) = V (z) − a0 z −1 Y (z)
Y (z)(1 + a0 z −1 ) = V (z) ⇐⇒
Y (z) = V (z)
z . z+a | {z 0}
(212.6)
=H ˆ 1 (z) oben!
Damit folgt: Y (z) = H1 (z)H2 (z)X(z) =
b0 z + b1 X(z). z+a | {z 0 }
(212.7)
=H(z) ˆ
Die Berechnungen zeigen, dass beide Systeme identische Z-Übertragungsfunktionen haben und somit identisch sind!
213
Lösungsband zu „Signale und Systeme“
(b) Aus Aufgabenteil (a) ergibt sich H(z) = (b0 + b1 z −1 )
1 1 + a0 z −1
(213.1)
und somit: (1 + a0 z −1 )Y (z) = (b0 + b1 z −1 )X(z) Y (z) + a0 z −1 Y (z) = b0 X(z) + b1 z −1 X(z).
⇐⇒
(213.2)
Durch Z-Rücktransformation erhält man (213.3)
yn + a0 yn−1 = b0 xn + b1 xn−1
und damit die gesuchte Differenzengleichung, die das durch die Blockschaltbilder definierte System beschreibt! Übung 92 ( Lehrbuch Seite 305 ) Betrachten Sie das in Abbildung 4.7 dargestellte Blockschaltbild eines weiteren zeitdiskreten LTI-Systems. xn
+
+
vn
1 4
+
z −1
1 3
+
yn
z −1
− 12
− 12
Abb. 4.7: Blockschaltbild eines zeitdiskreten LTI-Systemes
(a) Bestimmen Sie mit Hilfe des Ergebnisses von Übung 91 die Z-Übertragungsfunktion des Systems. (b) Bestimmen Sie die Differenzengleichung, die dieses System beschreibt. (c) Entwerfen Sie ein Simulink-Modell zur Simulation des Systems. (d) Bestimmen Sie die Impulsantwort des Systems und überprüfen Sie Ihr Ergebnis mit Hilfe des Simulink-Systems. (e) Bestimmen Sie zum Vergleich (numerisch) die Impulsantwort des Systems mit Hilfe von MATLAB.
214
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Lösung zu Übung 92 (a) Das System besteht aus einer Hintereinanderschaltung zweier Blöcke, die sich mit Hilfe von Übung 91, Aufgabenteil (a) beschreiben lassen. Für den ersten Block ergibt sich: V (z) =
b0 z + b1 1 1 X(z) mit b0 = 1, b1 = − und − a0 = . z + a0 2 3
(214.1)
Der zweite Block wird durch Y (z) =
b0 z + b1 V (z) z + a0
mit
b0 =
1 1 , b1 = 1 und − a0 = − 4 2
(214.2)
dargestellt. Damit erhält man als Z-Übertragungsfunktion des Gesamtsystems: H(z) =
1 (z 4
+ 4) z − · z + 12 z−
1 2 1 3
=
1 2 z + 78 z − 12 4 z 2 + 16 z − 16
.
(214.3)
(b) Zur Bestimmung der Differenzengleichung erweitert man Zähler und Nenner von H(z) zunächst mit z −2 . Man erhält H(z) =
1 4
+ 78 z −1 − 12 z −2 1 + 16 z −2 − 16 z −2
(214.4)
und mit dem Zusammenhang Y (z) = H(z)X(z) folgt:
⇐⇒
1 1 1 7 1 yn + yn−1 − yn−2 = xn + xn−1 − xn−2 6 6 4 8 2 1 1 1 7 1 yn = − yn−1 + yn−2 + xn + xn−1 − xn−2 . 6 6 4 8 2
(214.5)
(c) Die Abbildung 4.8 gibt das Simulink-Modell s_uebZTfunkt.mdl wieder. Genau genommen sind zwei Möglichkeiten repräsentiert. Zum einen wird die Differenzengleichung (214.5) direkt mit Einzelblöcken umgesetzt, zum anderen wird parallel dazu mit Hilfe eines Discrete Transfer Fcn-Blocks die Übertragungsfunktion H(z) aus (214.4) realisiert. (d) Man kann zunächst versuchen, mit Hilfe der MATLAB Symbolic Math Toolbox einen geschlossenen Ausdruck für die Impulsantwort zu finden. Da die Impulsantwort die Z-Rücktransformierte der Übertragungsfunktion H(z) ist, berechnet man:
215
Lösungsband zu „Signale und Systeme“ 1
1
x_{n−1 } x_{n−2} z z Unit Delay Unit Delay1 x _n
−1 /2 Gain 2 y_n
7/8
Dirac−Stoß
Gain 1 1/4 Add Gain
Scope
Gain 6 −1/6
1/6 Gain 4
1
1
z z y_{n−2} y_{n−1} Unit Delay4 Unit Delay3
Initialisierung (bitte vor Start anklicken )
1/4z2 +7/8z−1 /2 z2 +1/6z−1/6 Discrete Transfer Fcn
Abb. 4.8: Simulink-Modelle zur Simulation von H(z)
>> syms z n >> H1 = ( ( 1 / 4 ) * ( z + 4 ) ) / ( z +1/2) H1 = ( 1 / 4 * z + 1 ) / ( z +1/2) >> H2 = ( z −1/2)/(z −1/3) H2 = ( z −1/2)/( z −1/3) >> H = H1 * H2 H = ( 1 / 4 * z + 1 ) / ( z + 1 / 2 ) * ( z −1/2)/( z −1/3) >> hn = i z t r a n s (H) hn = 3 * c h a r f c n [ 0 ] ( n) −21/10 * ( −1/2)^ n−13/20 * (1/3)^ n
Die Impulsantwort ist also:
216
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
hn =
3− 21 10
21 10
−
1 n
· −2
13 20
−
=
13 20
1 4
·
0
1 n 3
für n = 0, für n > 0,
(216.1)
für n < 0.
Für die ersten 10 Werte der Impulsantwort ergibt sich: >> hnnum = subs ( hn , n , ( 0 : 1 : 1 0 ) ) ; >> hnnum’ ans = 0.2500 0.8333 −0.5972 0.2384 −0.1393 0.0630 −0.0337 0.0161 −0.0083 0.0041 −0.0021
Dies lässt sich leicht mit Hilfe der aus dem scope-Block exportierten Variablen IALTISys überprüfen: >> IALTISys . s i g n a l s ( 1 ) . val ues ans =
...
0.2500 0.8333 −0.5972 0.2384 −0.1393 0.0630 −0.0337 0.0161 −0.0083 0.0041 −0.0021
Die berechneten Impulsantworten stimmen offenbar überein.
Lösungsband zu „Signale und Systeme“
217
(e) Die Impulsantwort kann numerisch auch mit Hilfe der tf-Funktionen der Control Systems Toolbox bestimmt werden. Es ist jedoch unbedingt darauf zu achten, dass diese Berechnungen nicht gleichzeitig mit den oben durchgeführten Berechnungen mit Hilfe der Symbolic Math Toolbox durchgeführt werden, da etwa die Variablen z und H im obigen Zusammenhang Symbole sind, im nachfolgenden aber transfer function-Objekte. Sollen die Berechnungen vermischt werden, so verwende man sorgfältig andere Variablennamen! >> z = t f ( ’ z ’ , 1 ) Transfer function : z Sampling time : 1 >> H1 = ( ( 1 / 4 ) * ( z + 4 ) ) / ( z +1/2) Transfer function : 0.25 z + 1 −−−−−−−−−− z + 0.5 Sampling time : 1 >> H2 = ( z −1/2)/(z −1/3) Transfer function : z − 0.5 −−−−−−−−−− z − 0.3333 Sampling time : 1 >> H = H1 * H2 Transfer function : 0 . 2 5 z^2 + 0 . 8 7 5 z − 0 . 5 −−−−−−−−−−−−−−−−−−−−−−−− z^2 + 0 . 1 6 6 7 z − 0 . 1 6 6 7 Sampling time : 1 >> H = minreal (H) Transfer function : 0 . 2 5 z^2 + 0 . 8 7 5 z − 0 . 5 −−−−−−−−−−−−−−−−−−−−−−−− z^2 + 0 . 1 6 6 7 z − 0 . 1 6 6 7
218
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ Sampling time : 1 >> [ iantw , k ] = impulse (H, ( 0 : 1 : 1 0 ) ) iantw =
...
0.2500 0.8333 −0.5972 0.2384 −0.1393 0.0630 −0.0337 0.0161 −0.0083 0.0041 −0.0021
Die berechnete Impulsantwort wird erneut bestätigt! Übung 93 ( Lehrbuch Seite 305 ) Betrachten Sie das in Abbildung 4.9 dargestellte Simulink-Blockschaltbild eines diskreten LTI-Systems (vgl. Datei s_uebZTfunkt2.mdl):
x_n u_n
y_n
Dirac−Stoß S1
S2 Scope
1/2 Verstärkung
1 z Verzögerung 1
Initialisierung (bitte vor Start anklicken )
1 z Verzögerung 2
Abb. 4.9: Simulink-Model eines diskretes LTI-Systems
(a) Bestimmen Sie die Übertragungsfunktion H(z) des Systems.
219
Lösungsband zu „Signale und Systeme“
(b) Bestimmen Sie (am besten mit dem in Teil (a) bestimmten H(z)) die Differenzengleichung, die das Ein-/Ausgangsverhalten des Systems im Zeitbereich beschreibt. (c) Bestimmen Sie die ersten vier Werte der Impulsantwort. (d) Entscheiden Sie, ob das System stabil ist. Lösung zu Übung 93 (a) Dem Blockschaltbild entnimmt man für die gekennzeichneten Signale folgende Zusammenhänge im Bildbereich: 1 −1 z U (z) + X(z) 2 1 ⇐⇒ X(z) = U (z) 1 − z −1 2 X(z) z ⇐⇒ U (z) = . 1 −1 = X(z) 1− 2 z z − 12 U (z) =
(219.1)
Ferner liest man aus dem Blockschaltbild ab: 1 Y (z) = U (z) + U (z) z −2 2 1 2z 2 + 1 ⇐⇒ Y (z) = U (z) 1 + z −2 = U (z) . 2 2z 2
(219.2)
Daraus folgt: Y (z) = X(z) ·
z z−
1 2
·
2z 2 + 1 2z 2
2z 2 + 1 = X(z) · 2 . 2z − z
(219.3)
Die Übertragungsfunktion ergibt sich also zu: H(z) =
2z 2 + 1 . z(2z − 1)
(219.4)
(b) Aus dem Zusammenhang Y (z) = H(z)·X(z) folgert man durch Z-Rücktransformation:
⇐⇒
(2z 2 − z) · Y (z) = (2z 2 + 1) · X(z)
2Y (z) − z −1 Y (z) = 2X(z) + z −2 X(z) 1 1 ⇐⇒ yn − yn−1 = xn + xn−2 . 2 2
(219.5)
220
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
(c) Durch Einsetzen von xn = δn erhält man aus (219.5): yn
=
1 y 2 n−1
+
δn
+
1 δ , 2 n−2
y0
=
0
+
1
+
0
=
1,
y1
=
1 2
+
0
+
0
=
1 , 2
y2
=
1 4
+
0
+
1 2
=
3 , 4
y3
=
3 8
+
0
+
0
=
3 8.
(d) Da H(z) nur die im Einheitskreis liegenden Pole z = 0 und z = das System stabil.
(219.6)
1 2
hat, ist
Übung 94 ( Lehrbuch Seite 305 ) Abbildung 4.10 zeigt das Pol-Nullstellen-Diagramm eines zeitdiskreten Filters (LTI-Systems). C H(z)
− 12
1 2
Abb. 4.10: Pol-Nullstellen-Diagramm eines digitalen Filters (LTI-Systems)
(a) Bestimmen Sie die Z-Übertragungsfunktion des Filters. (b) Bestimmen Sie mit Hilfe der Transformationstabellen aus der Z-Übertragungsfunktion des Filters dessen Impulsantwort. (c) Bestimmen Sie mit Hilfe von MATLAB numerisch die Impulsantwort des Filters. (d) Ist das Filter stabil? (e) Entwerfen Sie ein Simulink-Blockschaltbild des Filters.
221
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 94 (a) Der Abbildung entnimmt man die Nullstelle 0 und die Polstellen z = ± 12 . Damit ist z z H(z) = = 2 1 (221.1) (z + 12 )(z − 12 ) z −4 die gesuchte Übertragungsfunktion im Bildbereich. (b) Um die Impulsantwort durch Z-Rücktransformation aus der Übertragungsfunktion mit Hilfe der Transformationstabelle aus Anhang B.1 zu bestimmen, führen wir zunächst eine Partialbruchzerlegung von H(z) durch2 . Es gilt: A B + z + 12 z − 12 1 1 z =A· z− + B· z+ . 2 2
H(z) := ⇐⇒
Durch Einsetzen der Polstellen erhält man: 1 1 1 =B· + = B, 2 2 2 1 1 1 − =A· − − = −A. 2 2 2
(221.2)
(221.3)
Dies liefert: A=B=
1 2
(221.4)
und 1 H(z) = 2
1 z+
1 2
1 + 2
1 z−
1 2
.
Der Z-Transformationstabelle entnimmt man: z Z ←→ an · σ(n). z−a Damit folgt zunächst durch Rücktransformation von 1 z 1 z G(z) := z · H(z) = + , 2 z + 12 2 z − 12 2
(221.5)
(221.6)
(221.7)
Da der Zählergrad der rationalen Funktion H(z) kleiner ist als der Nennergrad, ist keine vorherige Polynomdivision erforderlich.
222
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
dass: n n 1 1 1 gn := σ(n) + − 2 2 2 1 n für n ≥ 0, n gerade, 2 = 0 sonst.
(222.1)
Wegen H(z) = z −1 G(z), ist die gesuchte Impulsantwort nach dem Verschiebungssatz die um einen Takt verzögerte Version von gn also: " n−1 # n−1 1 1 1 hn := σ(n − 1) + − 2 2 2 (222.2) 1 n−1 = 2 · 1 n für n > 0, n ungerade, 2 2 = 0 sonst. Die ersten Werte der Impulsantwort sind somit: h0 = 0, h2 = 0, h4 = 0, ···
1 = 1, 2 3 1 h3 = 2 · = 2 5 1 h5 = 2 · = 2 h1 = 2 ·
(c) Mit MATLAB erhält man: >> z = t f ( ’ z ’ , 1 ) Transfer function : z Sampling time : 1 >> H = z /( z −1/2)/( z +1/2) Transfer function : z −−−−−−−−−− z^2 − 0 . 2 5 Sampling time : 1
1 , 4 1 , 16
(222.3)
223
Lösungsband zu „Signale und Systeme“ >> [ iantw , n ] = impulse (H, ( 0 : 1 : 1 0 ) ) ; >> [ n , iantw ] ans = 0 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 ...
0 1.0000 0 0.2500 0 0.0625 0 0.0156 0 0.0039 0
Dies bestätigt das Ergebnis (222.3). (d) Da die Pole innerhalb des komplexen Einheitskreises liegen, ist das Filter stabil! (e) Die Abbildung 4.11 ein Simulink-Modell des diskreten Filters (vgl. Datei s_uebZTfunkt3.mdl). Umsetzung der Differenzengleichung
1
x _n
x_{n−1} z Unit Delay
y_n
Dirac−Stoß Add
1/4 Gain 4
1
1
Scope
z z y_{n−2} y_{n−1} Unit Delay4 Unit Delay3
Alternative: Verwendung des Transfer Function Blocks
Initialisierung (bitte vor Start anklicken )
z z2 +−1/4 Discrete Transfer Fcn
Abb. 4.11: Simulink-Model des Filters
Die direkte Umsetzung mit Hilfe der elementaren Blöcke ergibt sich dabei aus der mit Y (z) = H(z) · X(z)
⇐⇒
1 Y (z) − z −2 Y (z) = z −1 X(z) 4
durch Z-Rücktransformation gewonnenen Differenzengleichung:
(223.1)
224
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
1 yn − yn−2 = xn−1 . 4
(224.1)
Übung 95 ( Lehrbuch Seite 306 ) Betrachten Sie nochmals die Folge n 1 hn = (σn − σn−5 ) 2
(224.2)
∀n ∈ Z
aus Übung 88. (a) Fassen Sie (hn )n∈Z als Impulsantwort eines zeitdiskreten LTI-Systems auf und geben Sie für ein (kausales) Eingangssignal (xn )n∈Z eine Beschreibung des Ausgangssignals (yn )n∈Z im Zeitbereich an. (b) Bestimmen Sie mit Hilfe von MATLAB eine äquivalente Zustandsraumdarstellung des Systems. Lösung zu Übung 95 (a) Aus Gleichung (203.4) erhält man H(z) · X(z) 1 1 Y (z) = 1 + z −1 + z −2 + 2 4
mit dem Zusammenhang Y (z) = 1 −3 1 z + z −4 8 16
· X(z)
(224.3)
und damit für das Ein-/Ausgangsverhalten im Zeitbereich: 1 1 1 1 yn = xn + xn−1 + xn−2 + xn−3 + xn−4 . 2 4 8 16 (b) Mit Hilfe von MATLAB erhält man: >> z = t f ( ’ z ’ , 1 ) ; >> H = ( 1 6 * z ^4+8 * z ^3+4 * z ^2+2 * z + 1 ) / ( 1 6 * z ^4) Transfer function : 16 z^4 + 8 z^3 + 4 z^2 + 2 z + 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 16 z^4 Sampling time : 1 >> ZRD = s s (H) ; >> A = ZRD. a , B = ZRD. b , C = ZRD. c , D = ZRD. d A =
(224.4)
225
Lösungsband zu „Signale und Systeme“ 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
B = 1 0 0 0 C = 0.5000
0.2500
0.1250
0.0625
D = 1
Übung 96 ( Lehrbuch Seite 307 ) Ein zeitdiskretes System sei durch die Z-Übertragungsfunktion H(z) =
1 2 z 2
−z− z2
1 2
(225.1)
bestimmt. (a) Bestimmen Sie die Impulsantwort des Systems. Bestätigen Sie Ihr Ergebnis mit der MATLAB-Funktion impz und numerisch mit Hilfe der MATLAB-Funktion impulse. (b) Bestimmen Sie die Sprungantwort des Systems (i) ohne Verwendung der Impulsantwort, (ii) mit Verwendung der Impulsantwort. (c) Entscheiden Sie, ob das System stabil ist. Lösung zu Übung 96 (a) Die Impulsantwort des Systems ergibt sich durch Z-Rücktransformation Übertragungsfunktion H(z) =
1 1 − z −1 − z −2 2 2
(225.2)
226
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
zu: hn =
1 1 δn − δn−1 − δn−2 . 2 2
(226.1)
Die MATLAB-Funktion impz liefert mit den Anweisungen (vgl. Datei bspImpz.m) b = [ 0 . 5 −1 − 0 . 5 ] ; a =[ 1 0 0 ] ;
% Zählerkoeffizienten definieren % Nennerkoeffizienten definieren
% die ersten 10 Werte der Impulsantwort berechnen [ h , n ] = impz ( b , a , ( 0 : 1 : 9 ) ) ;
% Alternative Berechnung mit impulse und tf-Objekten z = tf ( ’z ’ ,1); H = ( ( 1 / 2 ) * z^2−z − ( 1 / 2 ) ) / ( z ^ 2 ) ; % die ersten 10 Werte der Impulsantwort berechnen [ h2 , nk ] = impulse (H, ( 0 : 1 : 9 ) ) ; % Ausgabe zu Vergleich [ h , n , h2 , nk ]
das Ergebnis: >> bspImpz ans = 0.5000 −1.0000 −0.5000 0 0 ...
0 1.0000 2.0000 3.0000 4.0000
0.5000 −1.0000 −0.5000 0 0
0 1.0000 2.0000 3.0000 4.0000
(b) Die Sprungantwort ergibt sich ohne direkte Verwendung der Impulsantwort aus der Differenzengleichung zu: (σ)
y0
(σ)
y1
(σ)
y2
1 1 ·1−0−0 = , 2 2 1 1 = ·1−1−0 =− , 2 2 1 1 = · 1 − 1 − = −1, 2 2 =
(226.2)
227
Lösungsband zu „Signale und Systeme“
1 ·1−1− 2 1 (σ) y4 = · 1 − 1 − 2 ··· (σ)
y3
=
1 = −1, 2 1 = −1, 2
Mit Hilfe der Impulsantwort und des allgemeinen Zusammenhangs (195.3) erhält man: 0 für n < 0, 1 für n = 0, n 2 X yn(σ) = hk = (227.1) − 21 für n = 1, k=−∞ −1 für n = 2, −1 für n > 2.
(c) Das System hat eine endliche Impulsantwort und ist somit stabil! Übung 97 ( Lehrbuch Seite 307 ) Betrachten Sie das digitale LTI-System mit der Impulsantwort 1 für n ≥ 0, n! hn = 0 für n < 0.
(227.2)
(a) Bestimmen Sie die Z-Übertragungsfunktion H(z) des Systems! (b) Weisen Sie nach, dass das LTI-System stabil ist! (c) Untersuchen Sie, ob das LTI-System in Form einer Differenzengleichung geschrieben werden kann. Lösung zu Übung 97 (a) Nach Definition ist die Z-Übertragungsfunktion die Z-Transformierte der Impulsantwort: n ∞ ∞ X X z −1 H(z) = hn z −n = . (227.3) n! n=0 n=0 Mit u := z −1 erhält man die bekannte Potenzreihendarstellung der Exponentialfunktion: eu =
∞ X un . n! n=0
(227.4)
228
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Damit folgt für die Übertragungsfunktion: 1
H(z) = e z ,
∀ z 6= 0.
(228.1)
Man beachte, dass insbesondere in diesem Fall die Z-Übertragungsfunktion keine rationale Funktion ist! (b) Für ein beliebiges Eingangssignal xn mit |xn | < M < ∞ gilt: ∞ X 1 |yn | = |hn ∗ yn | = · xn−k k! k=0 (228.2) ∞ ∞ X X 1 1 1 ≤ · |xn−k | ≤ M · ≤ M · e < ∞. k! k! k=0
k=0
Das System mit dieser Impulsantwort ist also stabil! (c) Das System kann nicht in Form einer Differenzengleichung dargestellt werden, da sonst die Z-Übertragungsfunktion eine rationale Funktion wäre. Die Exponentialfunktion kann aber bekanntlich nicht durch eine rationale Funktion dargestellt werden. Übung 98 ( Lehrbuch Seite 308 ) Zeigen Sie, dass ein digitales LTI-System, welches auf dem Signalraum aller beschränkten zeitdiskreten Signale durch eine kausale Impulsantwort hn definiert ist, genau dann stabil ist, wenn hn absolut summierbar ist, d.h. wenn die Reihe ∞ X
hn
(228.3)
n=0
absolut konvergent ist! Lösung zu Übung 98 Ist die Reihe
∞ P
hn absolut konvergent, d.h. ist
n=0 ∞ X
n=0
|hn | < ∞,
so gilt für ein beliebiges Eingangssignal xn mit |xn | < M < ∞:
(228.4)
229
Lösungsband zu „Signale und Systeme“
∞ X |yn | = |hn ∗ yn | = hk · xn−k k=0
∞ X
≤
k=0
|hk | · |xn−k | ≤ M ·
∞ X k=0
(229.1) |hk | < ∞.
Das System mit dieser Impulsantwort ist also stabil! Ist umgekehrt das System stabil, so ist insbesondere y0 =
∞ X
k=0
(229.2)
hk · x−k
für jedes beschränkte Eingangssignal xn definiert! Wählt man nun speziell das nicht kausale beschränkte Signal sgn (h ) für k ≥ 0, k x−k = 0 für k < 0,
(229.3)
so ist
y0 = =
∞ X k=0 ∞ X k=0
und damit die Reihe
∞ P
hk · x−k =
∞ X
k=0
hk · sgn (hk )
(229.4)
|hk | < ∞
hn absolut konvergent.
n=0
Übung 99 ( Lehrbuch Seite 308 ) Betrachten Sie ein digitales LTI-System, welches in der Zustandsraumdarstellung mit Hilfe der Zustandsmatrizen 0 1 0 −1 A= 0 , B = , 0 1 1 (229.5) C=
gegeben ist.
−2 −1 1
1 −1 −2
1
,
D=0
(a) Bestimmen Sie mit MATLAB die Übertragungsfunktion im Bildbereich des Systems. (b) Bestimmen Sie mit MATLAB die Impulsantwort des Systems. (c) Untersuchen Sie, ob das System stabil ist.
230
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Lösung zu Übung 99 (a) Mit Hilfe der tf-Funktionen aus MATLABs Control Systems Toolbox erhält man >> A = [ 0 , 0 , −2 , >> B = [ −1; >> C = [ 1 , >> D = 0 ;
1 , 0; 0 , 1; −1 , 1 ] ; 1; 1]; −1 , −2];
>> ZRD = s s (A, B , C,D, 1 ) ; >> H = t f (ZRD) Transfer function : −4 z^2 + 8 . 8 8 2 e−016 z + 1 −−−−−−−−−−−−−−−−−−−−−−−−− z^3 − z^2 + z + 2 Sampling time : 1 >> H = minreal (H) Transfer function : −4 z^2 + 8 . 8 8 2 e−016 z + 1 −−−−−−−−−−−−−−−−−−−−−−−−− z^3 − z^2 + z + 2 Sampling time : 1
und damit die Z-Übertragungsfunktion: H(z) =
−4z 2 + 1 . z3 − z2 + z + 2
(230.1)
(b) Zur Bestimmung der Impulsantwort kann man zunächst versuchen mit MATLABs Symbolic Math Toolbox die Z-Rücktransformierte von (230.1) zu bestimmen: >> syms u n
% Symbol un wird verwendet, um das % Objekt z der tf-Rechnung nicht zu % überschreiben >> Hz = ( −4 * u^2+1)/ (u^3 − u^2 + u + 2 ) Hz =
231
Lösungsband zu „Signale und Systeme“
( −4 * u^2+1) /(u^3−u^2+u+2) >> [ iantw ] = i z t r a n s ( Hz , ’u ’ ) iantw = 1/2 * c h a r f c n [ 0 ] ( u) −1/139 * sum ( ( 6 7 * _alpha +143 * _alpha ^2−60) * ( 1 / _alpha ) ^u/_alpha , _alpha = RootOf(1−_Z+_Z^2+2 * _Z ^ 3 ) ) 2 %1 := RootOf(1 - _Z + _Z
3 + 2 _Z )
Leider führt dies nicht zum gewünschten Erfolg, da die Rücktransformierte nicht geschlossen dargestellt wird. Mit Hilfe einer Partialbruchzerlegung kann H(z) auf einfachere Terme zurückgeführt werden: >> >> >> >>
% % B A
Bestimmung einer Partialbruchzerlegung Zähler- und Nennerkoeffizienten von H(z) = [−4 0 1 ] ; = [ 1 −1 1 2 ] ;
>> % Partialbruchzerlegung mit residue >> [R, P ,K] = r e s i du e ( B ,A) R = −1.8227 + 0 . 3 8 4 5 i −1.8227 − 0 . 3 8 4 5 i −0.3545 P = 0.9053 + 1.2837 i 0.9053 − 1.2837 i −0.8105 K = []
Man erhält mit b1 = −0.3545, a1 = −0.8105, b2 = −1.8227 + 0.3845 · j, a2 = 0.9053 + 1.2837 · j:
232
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
H(z) = b1
1 1 1 + b2 + b∗2 . z − a1 z − a2 z − a∗2
(232.1)
Die letzten beiden Terme könnten bei Bedarf zu einer reellen rationalen Funktion 2. Ordnung zusammengefasst werden. Aus z z z G(z) := zH(z) = b1 + b2 + b∗2 (232.2) z − a1 z − a2 z − a∗2 erhält man mit Hilfe der Tabelle aus Anhang B.1: gn := σn · (b1 · (a1 )n + b2 · (a2 )n + b∗2 · (a∗2 )n ) n
n
= σn · (b1 · (a1 ) + 2 · Re (b2 · (a2 ) ))
und damit b · (a )n−1 + 2 · Re b · (a )n−1 1 1 2 2 hn := 0
für n > 0, für n ≤ 0.
Wir können das Ergebnis numerisch überprüfen: >> % Manuelle Berechnung >> a2 = P ( 1 ) ; b2 = R ( 1 ) ; a1 = P ( 3 ) ; b1 = R ( 3 ) ; >> h1 = b1 * a1 ^0+2 * r e a l ( b2 * a2 ^ 0) h1 = −4 >> h2 = b1 * a1 ^1+2 * r e a l ( b2 * a2 ^ 1) h2 = −4 >> h3 = b1 * a1 ^2+2 * r e a l ( b2 * a2 ^ 2) h3 = 1 >> h4 = b1 * a1 ^3+2 * r e a l ( b2 * a2 ^ 3) h4 = 13
(232.3)
(232.4)
233
Lösungsband zu „Signale und Systeme“
>> % Berechnung mit tf-Funktion impulse >> H Transfer function : −4 z^2 + 8 . 8 8 2 e−016 z + 1 −−−−−−−−−−−−−−−−−−−−−−−−− z^3 − z^2 + z + 2 Sampling time : 1 >> [ impant , k ] = impulse (H, ( 0 : 1 : 4 ) ) ; >> [ k , impant ] ans = 0 1 2 3 4
0 −4 −4 1 13
(c) Stabil ist das System nicht, denn >> H Transfer function : −4 z^2 + 8 . 8 8 2 e−016 z + 1 −−−−−−−−−−−−−−−−−−−−−−−−− z^3 − z^2 + z + 2 Sampling time : 1 >> abs ( pole (H) ) ans = 1.5708 1.5708 0.81054
zeigt, dass es Pole außerhalb des Einheitskreises gibt. Übung 100 ( Lehrbuch Seite 308 ) Greifen Sie die Übung 81 noch einmal auf und geben Sie, diesmal mit Hilfe von MATLAB, zwei äquivalente Zustandsraumdarstellungen für das digitale System an, welches durch die Differenzengleichung
234
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
yn = yn−1 + yn−2 + un ,
y−1 = y−2 = 0
(234.1)
definiert ist. Lösung zu Übung 100 Zunächst einmal kann aus der Differenzengleichung die z-Übertragungsfunktion des LTI-Systems leicht bestimmt werden. Aus Y (z) · 1 − z −1 − z −2 = U (z) (234.2) ⇐⇒ Y (z) · z 2 − z − 1 = z 2 U (z) erhält man:
H(z) =
z2 . z2 − z − 1
Mit Hilfe von MATLAB berechnet man: >> z = t f ( ’ z ’ , 1 ) ; >> H = z ^2/( z^2−z − 1 ) ; >> ZRD = s s (H) ; >> A = ZRD. a , B = ZRD. b , C = ZRD. c , D = ZRD. d A = 1 1
1 0
B = 2 0 C = 0.5 D = 1
0.5
(234.3)
Lösungsband zu „Signale und Systeme“
235
Natürlich sollte dies mit dem auf andere Weise gewonnenen Ergebnis aus Übung 81 verglichen werden. Dort wurde die Zustandsraumdarstellung 0 1 0 A= , B = , C = 1 1 und D = 1 (235.1) 1 1 1 ermittelt. Am einfachsten kann die Äquivalenz der beiden Darstellungen dadurch nachgewiesen werden, dass man zeigt, dass beide auf die gleiche kanonische Normalform führen. Dies ist gleichbedeutend damit, dass die Zustandsmatrizen A auf die gleiche Jordan-Matrix führen. Das ist mit MATLAB leicht nachzuprüfen: >> % Für die oben ermittelte Zustandsmatrix >> A A = 1 1
1 0
>> [ V1 , J 1 ] = jordan (A) V1 = 0.72361 0.44721
0.27639 −0.44721
1.618 0
0 −0.61803
J1 =
>> % Für die in der führen Übung ermittelte >> %Zustandsmatrix >> Aalt = [ 0 1 ; 1 1 ] Aalt = 0 1
1 1
>> [ Valt , J a l t ] = jordan ( Aalt ) Valt =
236
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ 0.27639 0.44721
0.72361 −0.44721
1.618 0
0 −0.61803
Jalt =
Die Darstellungen sind offenbar äquivalent! Übung 101 ( Lehrbuch Seite 369 ) Weisen Sie für die DTFT den so genannten Differentiationssatz im Frequenzbereich (n · fn )n∈Z ◦ − • j
d FDT F T (Ω) dΩ
(236.1)
nach! Lösung zu Übung 101 Für die Folge f˜n := (n · fn )n∈Z erhalten wir gemäß der Definition der DTFT: F˜DT F T (Ω) = = =
∞ X
n=−∞ ∞ X n=−∞ ∞ X
f˜n · e−jΩn fn · n · e−jΩn
(236.2)
1 d −jΩn fn · − e . j dΩ n=−∞
Unter den üblichen Existenzbedingungen für die DTFT kann die Reihenfolge von Reihensummation und Differentiation vertauscht werden3 . Damit erhält man wegen 1j = −j: ∞ d X F˜DT F T (Ω) = j · fn · e−jΩn dΩ n=−∞
d =j· FDT F T (Ω) dΩ
3
was hier nicht im Einzelnen nachgewiesen werden kann und soll!
(236.3)
237
Lösungsband zu „Signale und Systeme“
Übung 102 ( Lehrbuch Seite 369 ) Berechnen Sie mit Hilfe von MATLAB näherungsweise die DTFT von
x(t) =
e−t sin(4t)
0
für
t ≥ 0,
für
t> uebDFTFTT(N)
für eine vorgegebene Anzahl von Signalwerten N liefert jeweils eine Bildschirm-Meldung zu Beginn und am Ende der jeweiligen Berechnungen, beispielsweise: >> uebDFTFTT( 4 * 1 0 2 4 ) 4 5
Vorsicht bei k ≥ 14 Additionen fallen bei Mikroprozessor-Berechnungen vergleichsweise kaum ins Gewicht.
241
Lösungsband zu „Signale und Systeme“ S t a r t der di r e k t e n Berechnung der DFT Ende der di r e k t e n Berechnung der DFT S t a r t der Berechnung mit e i n e r FFT Ende der Berechnung mit e i n e r FFT
Schon bei geringen Datenmengen von 4K bis 8K kann man6 deutlich den Berechnungszeitvorteil der FFT beobachten. Übung 105 ( Lehrbuch Seite 370 ) Betrachten Sie das Signal (241.1)
x(t) = sin(2πt).
(a) Berechnen Sie die ersten N = 4 Abtastwerte zum Abtastintervall T a = 1/4 s und eine zugehörige N -Punkt-DFT. (b) Skizzieren Sie Betrag und Phase der DFT. (c) Überprüfen Sie die Ergebnisse mit MATLAB. (d) Führen Sie die Aufgabenteile (a) und (b) mit dem Signal (241.2)
y(t) = sin(3πt)
und mit Hilfe von MATLAB nochmals durch. Was stellen Sie fest ? (e) Berechnen Sie mit Hilfe des MATLAB-Befehls fft eine 1 K-FFT für die beiden obigen Signale und vergleichen Sie das Ergebnis mit den von Hand berechneten Ergebnissen aus Aufgabenteil (a) bis (d). Lösung zu Übung 105 (a) Das Signal hat die Abtastwerte x(n · Ta ) = sin(2π · n · Ta ),
n = 0, . . . , N.
Für N = 4 und Ta = 1/4 s ergibt sich: x0 = sin (0) = 0, 6
x1 = sin
2π 4
= sin
je nach verwendetem Rechner natürlich etwas unterschiedlich
π 2
= 1,
(241.3)
242
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
4π = sin (π) = 0, 4 6π 3π x3 = sin = sin = −1. 4 2 x2 = sin
(242.1)
(b) Für die DFT Fm =
N−1 X
xk e−j·2π·
km N
,
m = 0, . . . , N
(242.2)
k=0
erhält man: F0 = F1 =
3 X
k=0 3 X
xk e−j·2π·0 = k
xk e−j·2π· 4 =
k=0
3 X
3 X
k
xk e−j·π· 2
k=0
π
= 0 + e−j 2 + 0 − e−j F2 =
xk = x0 + x1 + x2 + x3 = 0,
k=0 3 X
xk e−j·2π·
2k 4
=
k=0
3π 2
3 X
= 0 − j + 0 − j = −2j, xk e−jπk
(242.3)
k=0
= 0 + e−jπ + 0 − e−j3π = 0 − 1 + 0 − (−1) = 0, F3 =
3 X
xk e
−j·2π· 3k 4
=
k=0
= 0 + e−j
3 X
π
xk e−j3k 2
k=0 3π 2
+ 0 − e−j
9π 2
= 0 + j + 0 − (−j) = 2j.
(c) Die Darstellung in Abbildung 4.13 gibt Betrag und Phase der DFT wieder. (d) Mit Hilfe von MATLAB lassen sich die Ergebnisse wie folgt überprüfen: >> % Abtastung des Signals >> T =1/4; N = 4 ; >> tn = ( 0 : T : 3 * T ) ; >> x = s i n ( 2 * pi * tn ) x = 0
1.0000
0.0000
−1.0000
>> % Berechnung der DFT mit dem FFT-Algorithmus >> F = f f t ( x ,N) ; >> F ’
243
Lösungsband zu „Signale und Systeme“
|Fm |
2
0
π 2
π
3π 2
π 2
Frequenz/rad
arg (Fm )
π 2
− π2
2π
π
3π 2
2π
Frequenz/rad
0 Abb. 4.13: Betrag und Phase der DFT
ans = 0.0000 −0.0000 + 2 . 0 0 0 0 i 0.0000 −0.0000 − 2 . 0 0 0 0 i >> >> >> >> >> >> >> >> >> >>
% Plot von Betrag und Phase subplot ( 2 1 1 ) Omega = ( 0 : pi / 2 : 3 * pi / 2 ) ; stem (Omega , abs ( F ) , ’b ’ , ’ LineWidth ’ , 3 ) ; grid x l a b e l ( ’ Frequenz / rad ’ ) subplot ( 2 1 2 ) stem (Omega , angle ( F ) , ’ r ’ , ’ LineWidth ’ , 3 ) ; grid x l a b e l ( ’ Frequenz / rad ’ )
Auf die Darstellung des Plots wird an dieser Stelle verzichtet, da er der Abbildung 4.13 entspricht. (e) Für das Signal
244
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
(244.1)
y(t) = sin(3πt) liefern die MATLAB-Anweisungen
>> % Abtastung des Signals >> T =1/4; N = 4 ; >> tn = ( 0 : T : 3 * T ) ; >> x = s i n ( 3 * pi * tn ) x = 0
0.7071
−1.0000
0.7071
>> % Berechnung der DFT mit dem FFT-Algorithmus >> F = f f t ( x ,N) ; >> F ’ ans = 0.4142 1.0000 + 0.0000 i −2.4142 1.0000 − 0.0000 i >> >> >> >>
% Plot von Betrag und Phase subplot ( 2 1 1 ) ... x l a b e l ( ’ Frequenz / rad ’ )
das in Abbildung 4.14 dargestellte DFT-Amplituden- und Phasenspektrum. Deutlich ist der Leakage-Effekt zu erkennen, der es in diesem Fall unmöglich macht, dem Spektrum die genaue Signalfrequenz von 1.5 Hz entsprechend der normierten Frequenz 2π 1.5 4 = 2.3562 rad zu entnehmen. (f) Mit Hilfe der folgenden MATLAB-Anweisungen (vgl. Datei uebDTFLsg.m) T =1/ 4; N = 1 0 2 4 ; tn = ( 0 : T : ( N−1) * T ) ; x1 = s i n ( 2 * pi * tn ) ; x2 = s i n ( 3 * pi * tn ) ; F1 = f f t ( x1 ,N) ;
%s. Aufgabenstellung der Übung
245
Lösungsband zu „Signale und Systeme“
|DFT|
3 2 1
arg(DFT) /rad
0 0
1
2
3 4 Frequenz/rad
5
6
1
2
3 4 Frequenz/rad
5
6
2 0
−2 0
Abb. 4.14: Betrag und Phase der DFT von sin(3πt) F2 = f f t ( x2 ,N) ; % Darstellung der Betragsspektren df = 4/N; % Frequenzabstand in Hz subplot ( 2 1 1 ) f r q = ( 0 : df : ( N−1) * df ) ; p l o t ( frq , abs ( F1 ) , ’b ’ , ’ LineWidth ’ , 3 ) ; grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’|F_1| ’ ) subplot ( 2 1 2 ) p l o t ( frq , abs ( F2 ) , ’b ’ , ’ LineWidth ’ , 3 ) ; grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’|F_2| ’ )
erhält man die in Abbildung 4.15 dargestellten Betragsspektren. Zur besseren Ablesbarkeit der Signalfrequenzen ist die Frequenzskala diesmal in Hz angegeben. Deutlich ist zu erkennen, dass der Leakage-Effekt durch das engere Frequenzraster abgemildert wird. Die Signalfrequenzen sind anhand der Betragsspektren ohne Mühe abzulesen (man beachte dabei, dass der für die Ablesung relevante Bereich des Spektrums im Intervall [0, 2] Hz liegt).
246
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
400
1
|F |
600
200 0 0
1
2 Frequenz/Hz
3
4
1
2 Frequenz/Hz
3
4
600
|F2|
400 200 0 0
Abb. 4.15: Betragspektren der DFT von sin(2πt) und sin(3πt) für N = 1024 Abtastwerte
Übung 106 ( Lehrbuch Seite 370 ) Ein Signal werde mit einer Abtastfrequenz von 1 kHz abgetastet und es wird dabei folgende Abtastfolge aufgenommen: 2, 0, 1, 0, 0, 0, 1, 0.
(246.1)
(a) Berechnen Sie mit Hilfe von MATLAB eine DFT des Signals und skizzieren Sie das resultierende Amplitudenbetragsspektrum. (b) Führen Sie Aufgabenteil (a) nochmals durch, wobei das Signal diesmal jedoch aus einer 10 Hz Abtastung stammen soll. Welche Unterschiede stellen Sie fest? Lösung zu Übung 106 (a) Mit folgenden MATLAB-Anweisungen kann die DFT berechnet werden (auf die Darstellung des Plots wird an dieser Stelle verzichtet): >> % Signalwerte definieren >> s i g n a l = [ 2 , 0 , 1 , 0 , 0 , 0 , 1 , 0 ] ; >> N = 8 ; % Zahl der Abtastwerte >> %DFT mit FFT-Algorithmus berechnen
247
Lösungsband zu „Signale und Systeme“ >> sp1 = f f t ( s i g n a l , 8 ) sp1 = 4 >> >> >> >> >> >> >>
2
0
2
4
2
0
2
% Amplituden-Spektrum plotten fa = 1000; % Abtastfrequenz df = f a /N; % Frequenzabstand in Hz f r q = ( 0 : df : ( N−1) * df ) ; stem ( frq , abs ( sp1 ) , ’ r ’ , ’ LineWidth ’ , 3 ) ; x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ |DFT| ’ )
(b) Die MATLAB-Anweisungen lauten in diesem Fall: >> % Signalwerte definieren >> s i g n a l = [ 2 , 0 , 1 , 0 , 0 , 0 , 1 , 0 ] ; >> N = 8 ; % Zahl der Abtastwerte >> %DFT mit FFT-Algorithmus berechnen >> sp1 = f f t ( s i g n a l , 8 ) sp1 = 4
2
0
2
4
2
0
2
>> % Amplituden-Spektrum plotten >> f a = 1 0 ; % Abtastfrequenz >> df = f a /N; % Frequenzabstand in Hz ...
Die Abtastfrequenz hat auf die Berechnung der DFT gar keinen Einfluss, denn Sie geht dort als Parameter überhaupt nicht ein (in der Tat sind die Werte auf der Grundlage der normierten Frequenzen definiert. Verwendet man normierte Frequenzen, geht die Information über die zu Grunde liegende Abtastrate verloren). Lediglich für den Plot des Ergebnisses ist diese Information interessant, damit die DFT-Werte den „richtigen“ Frequenzanteilen zugeordnet werden können! Übung 107 ( Lehrbuch Seite 371 ) Ein Gebäudeschwingungssignal soll auf gefährliche Resonanzen im Bereich 0.8 Hz bis 1 Hz hin untersucht werden.
248
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Wieviel Abtastwerte N = 2k müssen bei einer Abtastfrequenz von fa = 5.4 Hz aufgenommen werden, damit die Auflösung in diesem Bereich mindestens 0.001 Hz beträgt? Wie lange dauert diese Datenaufnahme ? Lösung zu Übung 107 Aufgrund der Anforderung für die Frequenzauflösung erhält man: ∆f =
fa fa 5.4 = k = k < 0.001. N 2 2
(248.1)
Daraus folgt: 2k > 1000 5.4
⇐⇒
2k > 5400
⇐⇒
k > ln2 (5400) = 12.3987. (248.2)
Es müssen also N = 213 = 8192 Abtastwerte aufgenommen werden. Dies dauert T =
N 8192 = = 1517 s fa 5.4
(248.3)
entsprechend 25.284 Minuten7 . Übung 108 ( Lehrbuch Seite 371 ) Betrachten Sie die Abtastwerte des Signals f (t) = 2 cos(2πt) + cos(14πt)
(248.4)
für eine Abtastrate von fa = 5 Hz. (a) Skizzieren Sie (ohne vorherige Berechnung) die DFT des Signals für N = 10 und begründen Sie Ihre Skizze. Verwenden Sie Hz als Einheit für die Frequenzachse. (b) Welches Signal wird aus den Abtastwerten bei D/A-Wandlung und Beibehaltung der Taktrate rekonstruiert? (c) Wie muss die Abtastrate bei einer 1-K-FFT gewählt werden, damit kein Leakage-Effekt entsteht und die Voraussetzungen des Abtasttheorems eingehalten werden? (d) Welches Signal wird aus den Abtastwerten bei D/A-Wandlung rekonstruiert, wenn die Taktrate auf fa = 10 Hz erhöht wird? 7
Hoffentlich dauert das Erdbeben so lange;-))
249
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 108 (a) Das Signal (249.1)
f (t) = 2 cos(2πt) + cos(14πt)
besteht aus zwei harmonischen Schwingungen der Frequenz f0 = 1 Hz und der Frequenz f1 = 7 Hz. Wegen f1 > f2a = 2.5 Hz ist die Voraussetzung des Abtasttheorems nicht erfüllt und es kommt zu einer Überfaltung dieses Frequenzanteils in das Nyquist-Band [−2.5, 2.5] Hz. Dort erscheint im Abtastspektrum eine Linie bei ±(f1 − fa ) = ±2 Hz. 5 Wegen ∆f = fNa = 10 = 12 Hz liegen beide Frequenzanteile auf dem DFT-Frequenzraster, sodass kein Leakage-Effekt auftritt! Die Linienhöhe ist in diesem speziellen Fall das Produkt aus Fourierkoeffizient des harmonischen Anteils multipliziert mit der Anzahl der Abtastwerte, d.h.: 1 (0) N · c1 = 10 · 2 · = 10 für ± f0 , 2 (249.2) 1 (1) N · c1 = 10 · 1 · = 5 für ± (f1 − fa ). 2 Dies liefert das in Abbildung 4.16 skizzierte DFT-Amplitudenspektrum8 .
|DF T |
10
5
1
2
3
4
Frequenz/Hz
0 Abb. 4.16: Betrag der DFT
(b) Es wird das Tiefpasssignal rekonstruiert, welches sich aus der idealen Herausfilterung des Nyquistbandes ergäbe, also ˜ = 2 cos(2πt) + cos(2π · 2 · t). f(t) 8
(249.3)
Das Spektrum ist dabei nicht im Band [−2.5, 2.5] Hz sondern im Band [0, 5] Hz dargestellt, um eine bessere Vergleichbarkeit mit einem mit MATLAB berechneten Spektrum zu haben.
250
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
(c) Damit kein Leakage-Fehler entsteht, müssen die Signalfrequenzen f0 = 1 Hz und f1 = 7 Hz ein ganzzahliges Vielfaches des Frequenzrasters ∆f sein, d.h. es muss gelten: k1 · fa k1 · f a = , N 1024 k2 · fa k2 · f a 7 = k2 · ∆f = = . N 1024 1 = k1 · ∆f =
Daraus folgt ∆f =
1 k1
=
7 k2
(250.1)
und k2 = 7k1 sowie fa =
1024 . k1
(250.2)
Einer der Parameter k1 und k2 kann offenbar gewählt werden. Mit k1 = 1 erfüllt beispielsweise eine Abtastrate von fa = 1024 Hz die Anforderungen. Da zur Einhaltung der Bedingung des Abtasttheorems fa =
1024 > 2 · 7 = 14 k1
⇐⇒
k1
f2a = 5 Hz ist auch in diesem Fall die Voraussetzung des Abtasttheorems nicht erfüllt und es kommt zu einer Überfaltung dieses Frequenzanteils in das Nyquist-Band [−5, 5] Hz. Dort erscheint im Abtastspektrum eine Linie bei ±(f1 − fa ) = ±3 Hz. Es wird bei der D/A-Wandlung das Tiefpasssignal rekonstruiert, welches sich aus der idealen Herausfilterung des Nyquistbandes ergäbe, also: ˜ = 2 cos(2πt) + cos(2π · 3 · t). f(t)
(250.5)
Übung 109 ( Lehrbuch Seite 371 ) Betrachten Sie das Signal x(t) = cos(10πt).
(250.6)
(a) Bestimmen Sie für eine Abtastrate von 4 Hz die ersten 4 Abtastwerte von x(t). (b) Skizzieren Sie das Abtastspektrum von x(t). (c) Skizzieren Sie das 4-Punkt DFT-Spektrum von x(t). (d) Wie unterscheidet sich das 4-Punkt FFT-Spektrum vom 4-Punkt DFTSpektrum?
251
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 109 (a) Mit fa = 4 Hz und Ta =
1 4
s folgt
xn = x(nTa ) = cos(10π n Ta ) = cos
5 πn , 2
n = 0, ..., 3
(251.1)
und somit: x0 = 1,
x1 = 0,
x2 = −1,
x3 = 0.
(251.2)
(b) Das Abtastspektrum ergibt sich (i.W.) aus der ωa -periodischen Wiederholung des Fourierspektrums und ist in Abbildung 4.17 dargestellt.
4π
−10π
−2π
2π
10π
Frequenz/rad/s
Abb. 4.17: Abtastspektrum
Wegen ω0 = 10π > ωa = 8π rad/s ist die Voraussetzung des Abtasttheorems nicht erfüllt und es kommt zu einer Überfaltung dieses Frequenzanteils in das Nyquist-Band [−4π, 4π] rad/s. Dort erscheint im Abtastspektrum eine Linie bei ±2π rad entsprechend ±1 Hz. (c) Das 4-Punkt-DFT-Spektrum ist in Abbildung 4.18 dargestellt. Wegen ∆f = f4a = 1 Hz tritt kein Leakage auf, da die Aliasfrequenz bei 1 Hz liegt (s. Abbildung 4.17). Der Fourierkoeffizient des harmonischen Spektralanteils ist c1 = 12 , sodass die Linienhöhe 4 · 12 = 2 beträgt. (d) Es gibt keinen Unterschied. Die FFT ist lediglich ein schnellerer Berechnungsalgorithmus für die DFT. Übung 110 ( Lehrbuch Seite 371 ) Beantworten Sie folgende Fragen:
252
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
|DF T |
2
1
2
3
4
Frequenz/Hz
0 Abb. 4.18: Betrag der DFT
(a) Welcher Frequenz in Hz entspricht die normierte Frequenz π3 rad? (b) Was ist der Unterschied zwischen einer DFT und einer DTFT? (c) Wie viele Datenpunkte braucht man bei einer FFT mindestens, um bei einer Abtastrate von 1 kHz zwei Spektrallinien mit einem Abstand von 1 Hz aufzulösen? Lösung zu Übung 110 (a) Wegen Ω = 2π
f π = rad fa 3
⇐⇒
f=
fa π fa = Hz 3 · 2π 6
(252.1)
kann die Frequenz nur relativ zur Abtastfrequenz angegeben werden. (b) Die DFT ist für endliche Folgen von (N ) Abtastwerten eine frequenzdiskretisierte Version der DTFT. Der Wert der DFT entspricht dann dem Wert der DTFT an den Stellen k · ∆Ω mit ∆Ω = 2π N. Für prinzipiell unendlich lange Folgen von Abtastwerten ergeben sich, je nach Größe von N („Fensterlänge“) und den spektralen Eigenschaften des Signals, mehr oder weniger starke Unterschiede zwischen den Werten der DFT und den Werten der DTFT an den Stellen k · ∆Ω. (c) Wegen ∆f =
fa 1000 = 1000 Datenpunkte.
(252.2)
253
Lösungsband zu „Signale und Systeme“
Übung 111 ( Lehrbuch Seite 372 ) Betrachten Sie das in Abbildung 4.19 dargestellte (reelle!!) FFT-Spektrum eines Signals x(t), welches ohne Leakage und unter Einhaltung der Rekonstruktionsbedingung des Abtasttheorems berechnet wurde. 10 9 8 7
|FFT|
6 5 4 3 2 1 0 −3
−2
−1 0 1 Frequenz/rad
2
3
Abb. 4.19: FFT-Spektrum
(a) Wieviel Abtastwerte wurden verwendet? (b) Welches Signal x(t) wurde abgetastet? (c) Wie groß war die Abtastrate? Lösung zu Übung 111 (a) Bei einer FFT ist die Zahl der Frequenzpunkte immer gleich der Zahl der zu Grunde liegenden Abtastwerte. Da 16 Frequenzstellen zu sehen sind, wurden N = 16 Abtastwerte verwendet. (b) Da das Spektrum rein reell ist und kein Leakage-Effekt auftritt, handelt es sich um zwei sich überlagernde Cosinus- Schwingungen mit den Frequenzen: 2fa 1 = fa Hz, 16 8 3fa 3 f1 = 6∆f = = fa Hz. 16 8 f0 = 2∆f =
(253.1)
Da kein Leakage auftritt, ergibt sich die Linienhöhe aus den Fourierkoeffizienten A20 und A21 der Cosinus-Schwingungen multipliziert mit der
254
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Zahl der Abtastwerte N = 16. Dabei bezeichnen A0 und A1 jeweils die Amplituden. Der Grafik entnimmt man: A0 ·N 2 A1 2= ·N 2 8=
⇐⇒
A0 = 1,
⇐⇒
A1 =
1 . 4
Das abgetastete Signale war somit: 1 1 3 x(t) = cos π fa t + cos π fa t . 4 4 4
(254.1)
(254.2)
(c) Die Abtastrate kann der Darstellung des Spektrums nicht entnommen werden, da die Frequenzen normiert angegeben sind. Daher kann das Signal in (254.2) auch nur in Abhängigkeit einer unbekannten Abtastrate fa angegeben werden. Übung 112 ( Lehrbuch Seite 372 ) Schreiben Sie ein MATLAB-Programm zur Bestimmung der inversen DFT, welches zur Berechnung nur die Funktion fft verwendet und somit auf der Dualitätseigenschaft der DFT basiert. Testen Sie Ihr Programm mit einem beliebigen Signal und vergleichen Sie das Ergebnis mit dem, welches Sie durch Verwendung der Funktion ifft erhalten. Lösung zu Übung 112 Das nachfolgende MATLAB-Programm (vgl. Datei myIFFT.m ) nutzt die formale Ähnlichkeit zwischen der Formel zur Berechnung der DFT XDF T (m) :=
N−1 X
xk e−jkΩm ,
k=0
m = 0, . . . N − 1
(254.3)
und der Formel zur Berechnung der inversen DFT N −1 1 X xk = XDF T (m)ejkΩm , N m=0
k = 0, . . . , N − 1
(254.4)
aus. Betrachtet man nämlich die konjugiert komplexen Werte zu (254.4), so können diese wegen
255
Lösungsband zu „Signale und Systeme“
x∗k
N −1 X
1 = N
∗ −jkΩm XDF T (m)e
m=0
!
,
k = 0, . . . , N − 1
(255.1)
∗ als mit N1 normierte DFT der Folge XDF T (m) aufgefasst werden. Zur Berechnung kann also ebenfalls wieder der FFT-Algorithmus herangezogen werden:
f un c t i o n [ s i g n a l ] = myIFFT ( DFTdaten) % %... % DFT-Daten konjugieren N = lengt h ( DFTdaten ) ; y = conj ( DFTdaten ) ; % FFT berechnen sg = f f t ( y ,N) ; % Signalwerte durch Normieren und Konjugieren % bestimmen s i g n a l = conj ( sg )/N;
Anhand eines Beispiels soll die Korrektheit des Algorithmus durch Vergleich mit der MATLAB-Funktion ifft überprüft werden: >> s i g = [−1 3 5 2 −4 0 7 ] ; >> Spsig = f f t ( s i g ) ; >> Spsig ’ ans = 12.0000 5.9242 −8.9770 −6.4472 −6.4472 −8.9770 5.9242
+ 4.3506 i −10.7601 i + 0.2049 i − 0.2049 i + 1 0 . 7 60 1 i − 4.3506 i
>> % Inverse DFT mit MATLAB’S ifft >> i f f t ( Spsig ) ans = −1.0000 −4.0000
3.0000 0
5.0000 7.0000
2.0000
256
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
>> % Inverse DFT mit myIFFT >> myIFFT ( Spsig ) ans = −1.0000 −4.0000
3.0000 0
5.0000 7.0000
2.0000
Übung 113 ( Lehrbuch Seite 373 ) Betrachten Sie einen Sinus der Frequenz 4 Hz mit Amplitude 1 und Nullphase 0 rad. (a) Berechnen Sie die ersten vier Abtastwerte des Signals für eine Abtastfrequenz von 3 Hz. (b) Gibt es Sinussignale geringerer Frequenz mit denselben Abtastwerten und wenn ja, welche? (c) Berechnen Sie mit MATLAB eine 4−Punkt DFT des Signals mit Hilfe der obigen Abtastwerte. Ist Aliasing oder Leakage zu beobachten (Begründung)? (d) Für welche Sinussignale tritt bei der obigen Abtastfrequenz und 4 Abtastwerten weder Aliasing noch Leakage auf? Lösung zu Übung 113 (a) Mit fa = 3 Hz und Ta =
1 3
s folgt:
xn = x(nTa ) = sin(2π 4 n Ta + 0) = sin
8 πn , 3
n = 0, ..., 3 (256.1)
und somit x0 = 1,
x1 = 0.8660,
x2 = −0.8660,
x3 = 0.
(256.2)
(b) Da f2a = 1.5 < 4 ist, findet bei der Abtastung eine spektrale Überfaltung des Frequenzanteils bei f0 = 4 Hz auf die Frequenzanteile bei ± (f0 − fa ) = ±(4 − 3) = ±1 Hz des Nyquist-Bandes statt. Das Signal x ˜(t) = sin(2π · 1 · t) = sin(2πt)
(256.3)
hat somit die gleichen Abtastwerte, was mit MATLAB leicht überprüft werden kann:
257
Lösungsband zu „Signale und Systeme“
n = 0
1
2
3
>> s i n ( 2 * pi * 1 * n * ( 1 / 3 ) ) ans = 0
0.8660
−0.8660
−0.0000
(c) Man erhält mit MATLAB >> x = s i n ( 8 / 3 * pi * n ) ; >> sp = f f t ( x , 4 ) ; >> sp ’ ans = 0.0000 0.8660 + 0.8660 i −1.7321 0.8660 − 0.8660 i
Da f2a = 1.5 < 4 ist, sind die Voraussetzungen des Abtasttheorems nicht eingehalten und es tritt natürlich Aliasing auf. Es ist ganz offenbar ein Leakage-Effekt zu beobachten, denn ein Spektrum ohne Leakage dürfte für ein harmonisches Signal nur eine Spektralline (bzw. zwei, wenn man die negativen Frequenzen mit berücksichtigt) enthalten. Das ist offenbar nach der obigen Berechnung nicht der Fall. (d) Es tritt dann kein Alias-Fehler auf, wenn die Signalfrequenz f0 < f2a = 1.5 Hz ist. Es tritt dann kein Leakage-Fehler auf, wenn die Signalfrequenz f0 Hz ein ganzzahliges Vielfaches des Frequenzrasters ∆f = fNa Hz ist. Im vorliegenden Fall ist ∆f = 34 Hz. Da 2 · 34 = 1.5 Hz schon auf der Grenze des Nyquist-Bandes liegt, würde für die vorliegende Wahl von fa und N nur das Signal y(t) = sin(2π ·
3 · t) 4
ein DFT-Spektrum ohne Alias- und Leakage-Fehler haben. Dies soll mit MATLAB abschließend noch überprüft werden:
(257.1)
258
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
n = 0
1
2
3
>> x = s i n ( 2 * pi * 3 / 4 * n * ( 1 / 3 ) ) x = 0
1.0000
0.0000
−1.0000
>> sp = f f t ( x , 4 ) ; >> sp ’ ans = 0.0000 −0.0000 + 2 . 0 0 0 0 i 0.0000 −0.0000 − 2 . 0 0 0 0 i
Diese Berechnung bestätigt die theoretische Überlegung (man beachte, dass der letzte Wert zu Frequenz 3 · 34 = 2.25 Hz und damit zur negativen Frequenz 2.25 − 3 = −0.75 = − 34 Hz gehört!). Übung 114 ( Lehrbuch Seite 373 ) Untersuchen Sie, warum in Beispiel 4.42, S. 362 des Lehrbuchs eine Wertezahl von N = 4096 verwendet wurde und nicht die nächstliegende Zweierpotenz N = 1024. Berechnen Sie dazu mit Hilfe von MATLAB das Betragsspektrum des Doppeltons jeweils mit echten N Daten (also kein Zero-Padding). Interpretieren Sie die Ergebnisse! Lösung zu Übung 114 Das DFT-Spektrum des mit fa = 16 Hz abgetasteten Signals x(t) = sin(2πt) + sin(2π · 1.02t) wird mit Hilfe von MATLAB wie folgt berechnet: >> >> >> >>
% Abtastung mit 1024 Punkten f a = 16 ; Ta= 1/ 16; N = 1024; t = ( 0 : Ta : ( N−1) * Ta ) ;
(258.1)
259
Lösungsband zu „Signale und Systeme“ >> x = s i n ( 2 * pi * t )+ s i n ( 2 * pi * 1 . 0 2 * t ) ; >> % Spektrum mit 1024 Punkten >> sp = f f t ( x ,N) ; >> >> >> >>
% Abtastung mit 4096 Punkten N = 4096; t 1 = ( 0 : Ta : ( N−1) * Ta ) ; x1 = s i n ( 2 * pi * t 1 )+ s i n ( 2 * pi * 1 . 0 2 * t 1 ) ;
>> >> >> >> >>
% Spekrum mit 4096 Punkten sp1 = f f t ( x1 ,N) ; subpl ot ( 2 1 1 ) df = f a / 1 0 2 4 ; f r q = ( 0 : df : 1 0 2 3 * df ) ;
>> >> >> >> >> >> >> >> >> >> >> >> >> >>
% Grafische Darstellung p l o t ( frq , abs ( sp ) , ’ r ’ , ’ Linewidth ’ , 2 ) ; grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’ |DFT| ’ ) a x i s ( [ 0 . 6 , 1 . 4 , 0 , 6 0 0 ] ) % Ausschnitt vergrößern subpl ot ( 2 1 2 ) df = f a / 4 0 9 6 ; f r q = ( 0 : df : 4 0 9 5 * df ) ; p l o t ( frq , abs ( sp1 ) , ’ b ’ , ’ Linewidth ’ , 2 ) ; grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a b e l ( ’ |DFT| ’ ) a x i s ( [ 0 . 6 , 1 . 4 , 0 , 2 2 0 0 ] ) % Ausschnitt vergrößern
Das Ergebnis der Berechnung ist in Abbildung 4.20 grafisch dargestellt. Man erkennt, dass der Frequenzabstand von ∆f =
fa 16 = = 0.0156 Hz N 1024
(259.1)
nicht ausreicht, um die durch einen Frequenzabstand von 0.02 Hz getrennten harmonischen Teilsignale grafisch aufzulösen. Der Grund dafür ist der Leakage-Effekt, der ein „Zerlaufen“ der spektralen Peaks bewirkt. Mit einem Frequenzraster entsprechend ∆f =
fa 16 = = 0.0039 Hz N 4096
ist dies offenbar problemlos möglich!
(259.2)
260
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
|DFT|
600 400 200 0 0.6
0.7
0.8
0.9 1 1.1 Frequenz/Hz
1.2
1.3
1.4
0.7
0.8
0.9 1 1.1 Frequenz/Hz
1.2
1.3
1.4
|DFT|
2000 1500 1000 500 0 0.6
Abb. 4.20: Betrag des DFT-Spektrums für N = 1024 (oben) und N = 4096 (unten)
Übung 115 ( Lehrbuch Seite 373 ) Berechnen Sie mit Hilfe von MATLAB das Spektrum des Signals aus Beispiel 4.41, S. 360 des Lehrbuchs mit einer Hanning-Fensterung und vergleichen Sie das Ergebnis mit den Plots aus Abbildung 4.30, S. 362. Was schließen Sie daraus? Lösung zu Übung 115 Das im Beispiel betrachtete Signal x(t) = cos(2π3.7t)
(260.1)
wurde mit einer Abtastfrequenz entsprechend fa = 16 Hz diskretisiert. Der Berechnung lagen jeweils N = 32 Abtastwerte zu Grunde. Mit Hilfe folgender Anweisungen (vgl. Datei uebfensterDFTbsp.m). kann ein DFT-Spektrum mit Hanning-gefensterten Daten berechnet und grafisch dargestellt werden: N = 32; T = 1 / 1 6; f a = 1/T ; t = ( 0 : T : ( N−1) * T ) ; f r q = ( 0 : f a /N: ( N−1) * f a /N) ; fn = cos ( 2 * pi * 3 . 7 * t ) ;
% % % % %
Fensterlänge festlegen Abtastintervall/rate festlegen Abtastzeitpunkte festlegen Frequenzvektor festlegen Abtastwerte einer Cosinus-
261
Lösungsband zu „Signale und Systeme“ % schwingung mit % Frequenz 3.7 Hz bestimmen % DFT mit Hanning-Fensterung berechnen Spec = f f t ( fn . * ( hanning (N) ’ ) ) ; %%% Spektrum darstellen figure % Plot des Rechteck-Fensters stem ( frq , abs ( Spec ) , ’b ’ , ’ LineWidth ’ , 3 ) ; axis ( [ 0 , 1 6 , 0 , 8 ] ) % Grafikachsen anpassen grid x l a b e l ( ’ Frequenz / Hz ’ ) ; y l a be l ( ’|DFT| ’ ) ;
In Abbildung 4.21 ist ein Vergleich der Spektren mit Blackman- und Hanning-gefensterten Daten zu sehen. Man erkennt, dass die BlackmanFensterung eine stärkere Unterdrückung der Artefakte außerhalb eines gewissen Bereichs um die Signalfrequenz herum bewirkt. Allerdings ist dieser Bereich breiter als beim Hanning-Fenster. Übung 116 ( Lehrbuch Seite 373 ) Betrachten Sie das für einen Parameter 0 < T < chung
1 2
durch die Differenzenglei-
yn − yn−1 + T yn−2 = xn
(261.1)
beschriebene diskrete LTI-System (vgl. Übung 90). 2
(a) Bestimmen Sie für den Parameter T = π36 die Antwort des Systems (im nπ eingeschwungenen Zustand) auf die Eingangsfolge xn = ej 6 . (b) Überprüfen Sie das Ergebnis mit Hilfe der tf-Funktionen von MATLABs Control System Toolbox. (c) Überprüfen Sie das Ergebnis mit Hilfe der MATLAB-Funktion filter der Signal Processing Toolbox. (d) Entwerfen Sie ein Simulink-System, mit dem das Ergebnis aus Aufgabenteil (a) verifiziert werden kann. Lösung zu Übung 116 (a) Die Antwort eines LTI-Systems auf eine harmonische Schwingung ist (im eingeschwungenen Zustand) eine harmonische Schwingung gleicher Frequenz. Amplitude und Nullphase werden durch die Übertragungsfunktion des Systems („Bode-Diagramm“) festgelegt.
262
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ 8
|DFT|
6 4 2 0 0
5
10 Frequenz/Hz
15
5
10 Frequenz/Hz
15
8
|DFT|
6 4 2 0 0
Abb. 4.21: Betragsspektrum eines Cosinussignals der Frequenz 3.7 Hz: oben mit Blackman-, unten mit Hanning-Fensterung der Daten
Die Antwort auf xn = ej
nπ 6
= ejΩ0 n ist somit yn = A · ej[Ω0 n+Φ0 ]
(262.1)
mit: A = |H(Ω0 )|
und Φ0 = arg(H(Ω0 )).
(262.2)
Da die Z-Übertragungsfunktion H(z) =
z2
z2 −z+T
(262.3)
2
für T = π36 seine Pole innerhalb des Einheitskreises hat, kann H(Ω) mit Hilfe der Z-Übertragungsfunktion bestimmt werden: H(Ω)|z=ejΩ =
ej2Ω
ej2Ω . − ejΩ + T
(262.4)
263
Lösungsband zu „Signale und Systeme“
Also folgt: 1 2 |H(Ω0 )|Ω0 = π = π 6 j e 3 − ej π6 + T 2 1 = 2 √ √ 1 3 2 + j 2 − 23 − j 12 + T =
1 2
−
√
3 2
+
π2
36
= 7.0217.
1 2
+
√
3 2
−
(263.1) 1 2
2
Damit ist: A=
√ 7.0217 = 2.6498.
(263.2)
Ferner ist: arg (H (Ω0 )) = arctan
Im (H (Ω0 )) Re (H (Ω0 ))
.
(263.3)
Wegen π
H (Ω0 ) =
π
ej2 6
ej2 6 π − ej 6 +
π2 36
= 1.9033 − j · 1.8437
(263.4)
folgt: arg H (Ω0 ) = arctan
1.8437 1.9033
= −0.7695 rad.
(263.5)
Das Ausgangssignal des Systems ist somit: yn = 2.6498 · ej [ 6 n−0.7695] . π
(263.6)
(b) Mit Hilfe der tf-Funktionalität von MATLABs Control System Toolbox lässt sich das Ergebnis leicht nachprüfen: >> >> >> >>
% Z-Übertragungsfunktion definieren z= t f ( ’ z ’ , 1 ) ; T = pi ^2/36; H = z ^2/( z^2−z+T )
Transfer function : z^2 −−−−−−−−−−−−−−−−
264
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ z^2 − z + 0 . 2 7 4 2 Sampling time : 1 >> % Bode-Diagramm auswerten >> [A, phi ] = bode (H, pi /6) A = 2.6499 phi = −44.0898 >> % Winkel in rad umrechnen >> phi = phi * pi /180 phi = −0.7695
(c) Mit Hilfe der MATLAB-Funktion filter der Signal Processing Toolbox kann das Ausgangssignal des diskreten LTI-Systems für das Eingangsπ signal xn = ej 6 n berechnet werden: >> % Filterkoeffizienten definieren >> T = pi ^2/36; >> B = [ 1 0 0 ] ; >> A = [ 1 −1 T ] ; >> >> >> >>
% Zählerkoeffizienten % Nennerkoeffizienten
% Eingangssignal erzeugen (lange, damit % Einschwingvorgang abgeklungen) n = (0:1:1000); xn = exp ( j * pi /6 * n ) ;
>> % Signal filtern >> yn = f i l t e r ( B , A, xn ) ; >> % Amplituden des Ausgangssignals anschauen >> abs ( yn ) ’ ans = 1.0000 1.9319
% Einschwingvorgang
265
Lösungsband zu „Signale und Systeme“ 2.4984 2.7323 2.7673 2.7271 ...
2.6499 2.6499 2.6499 2.6499 2.6499 2.6499
% Eingeschwungener Zustand
Offenbar hat das Ausgangssignal die vorausberechnete Amplitude. Die Nullphase ist etwas komplizierter zu überprüfen. Dazu kann beispielsweise der Realteil der beiden Signale geplottet und ein Ausschnitt im eingeschwungenen Zustand betrachtet werden: >> p l o t ( n , r e a l ( xn ) , ’b ’ , n , r e a l ( yn ) , ’ r ’ , ’ LineWidth ’ , 2 ) >> g r i d >> a x i s ( [ 6 0 0 , 6 2 0 , − 2. 7 , 2 . 7 ] )
Das Ergebnis ist in Abbildung 4.22 grafisch dargestellt.
∆ t ≈ 1.4
2
∆ t ≈ 1.4
1 0 −1 −2 600
xn
yn 605
610 n
615
620
Abb. 4.22: Eingangssignal und Ausgangssignal im eingeschwungenen Zustand (Zwischenwerte sind linear interpoliert)
266
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Man kann für die zwischen den Stützstellen linear interpolierten Signale einen Zeitabstand der Nulldurchgänge von ∆t ≈ 1.4 „ablesen“. Bei einer normierten Frequenz von π6 rad, entsprechend einer Frequenz von π 1 = 12 Hz (und bei der in Abbildung 4.22 angenommenen Abtastrate 6·2·π von fa = 1 Hz) entspricht dies einer Phasenänderung von: −2 · π ·
1 · 1.4 = −0.7330 rad. 12
(266.1)
Dies entspricht zwar nur näherungsweise dem exakten Wert −0.7695 kann aber aus der Grafik nicht besser abgelesen werden. (d) Das Simulink-System, mit dem das LTI-System simuliert werden kann, ist in Abbildung 4.23 dargestellt (vgl. Datei s_uebDLTI.mdl). z2 z2 −z+T Cosinus
Real_yn Re Im Real−Imag to Complex 1
xn
Discrete Transfer Fcn
To Workspace 1 z2
Re yn
Im Real−Imag to Complex
To Workspace
z2 −z+T Sinus
Imag _yn Discrete Transfer Fcn1
Initialisierung (bitte vor Start anklicken )
Abb. 4.23: Simulink-System zur Simulation von H(z)
Da die transfer-function-Blöcke keine komplexen Signale verarbeiten können, müssen diese in Real- und Imaginärteil aufgeteilt werden. Wegen der Linearität des LTI-Systems S, welches durch H(z) repräsentiert wird, gilt für ein komplexes Signal (xn )n∈Z S(xn ) = S(Re(xn ) + jIm(xn )) = S(Re(xn )) + jS(Im(xn )),
(266.2)
sodass Real- und Imaginärteil, wie im Simulink-System realisiert, das Filter getrennt passieren können. Die korrekte Funktionsweise des Simulink-Systems kann mit einem Vergleich mit mit filter berechneten Werten überprüft werden. Übung 117 ( Lehrbuch Seite 374 ) Bestimmen Sie mit Hilfe von MATLAB die Übertragungsfunktionen H(Ω) für die RC-Tiefpass-Simulationen 0-ter und 1-ter Ordnung aus Gleichung (238.4) und Übung 74 und stellen Sie diese grafisch dar. Welche Information entnehmen Sie den Grafiken?
267
Lösungsband zu „Signale und Systeme“
Überprüfen Sie Ihr Ergebnis mit einer geeigneten Simulink-Simulation. Hinweis: Zeigen Sie zunächst, dass das Filter, welches die RC-TiefpassSimulation 1-ter Ordnung repräsentiert, durch die Differenzengleichung Ta
yn = e− T yn−1 +
T a − Ta Ta e T xn−1 + xn 2T 2T
(267.1)
beschrieben wird! Lösung zu Übung 117 Gemäß Übung 73 wird das Filter, welches die RC-Tiefpass-Simulation 0-ter Ordnung repräsentiert, durch die Differenzengleichung Ta
yn − e− T yn−1 =
Ta xn T
(267.2)
beschrieben. Nach Übung 74 wird das Filter, welches die RC-Tiefpass-Simulation 1-ter Ordnung repräsentiert, durch folgende Gleichung beschreiben: yn =
n−1 Ta −n Ta 1 X Ta e T x0 + 2ck−1 xk + xn . 2T T 2T
(267.3)
k=1
Dabei ist: Ta
ck = e−(n−1−k) T ·
Ta . 2
(267.4)
Ta
Multipliziert man (267.3) mit dem Faktor e− T , so ergibt sich: Ta
e− T y n =
Ta Ta −(n+1) Ta Ta −n Ta Ta T x + 2 e e T x1 + 2 e−(n−1) T x2 + . . . 0 2T 2T 2T (267.5) Ta −2 Ta T a − Ta . . . + 2 e T xn−1 + e T xn . 2T 2T
Schreibt man den letzten Summanden in der Form Ta − Ta T a Ta T a − Ta e T xn = 2 e− T xn − e T xn 2T 2T 2T
(267.6)
und addiert man 0 in der Form T a − Ta T a − Ta e T xn+1 − e T xn+1 2T 2T hinzu, so ergibt sich (267.5) zu:
(267.7)
268
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
e−
Ta T
yn =
Ta Ta −(n+1) Ta Ta −n Ta Ta T x + 2 e e T x1 + 2 e−(n−1) T x2 + . . . 0 2T 2T 2T T T Ta Ta T a − Ta a a . . . + 2 e−2 T xn−1 + 2 e− T xn + e T xn+1 2T 2T 2T T a − Ta T a − Ta − e T xn − e T xn+1 . (268.1) 2T 2T
Der Ausdruck in der eckigen Klammer entspricht jedoch gerade der linken Seite von Gleichung (267.3) für den Index n + 1, sodass sich aus (268.1) Folgendes ergibt: Ta
e− T yn = yn+1 −
T a − Ta Ta − Ta e T xn − e T xn+1 . 2T 2T
(268.2)
Das Filter, welches die RC-Tiefpass-Simulation 1-ter Ordnung repräsentiert, wird also durch folgende Differenzengleichung beschrieben: Ta
yn = e− T yn−1 +
T a − Ta Ta e T xn−1 + xn . 2T 2T
(268.3)
Für die Z-Übertragungsfunktionen erhält man damit im ersten Fall (Differenzengleichung (267.2)) H0 (z) =
Ta z · T z − e−Ta /T
(268.4)
und im zweiten Fall (Differenzengleichung (268.3)) H1 (z) =
Ta z + e−Ta /T · . 2T z − e−Ta /T
(268.5)
Das Übertragungsverhalten beider Systeme kann nun Hilfe von MATLAB leicht analysiert werden (vgl. Datei DigiSimuRCTP.m): f un c t i o n [ ] = DigiSimuRCTP( fa , T) % % Digitale Simulation des RC-Tiefpass mit Digitalfiltern, % die durch Approximation 0-ter und 1-ter Ordnung der % Integralgleichung gewonnen wurden. % % Aufruf: DigiSimuRCTP(fa,T) % Aufrufbeispiel: DigiSimuRCTP(100,1) % % Eingangsparameter: fa Abtastrate % T Zeitkonstante des RC-Tiefpass ...
269
Lösungsband zu „Signale und Systeme“ % Vorinitialisierungen Ta = 1/ f a ; z= t f ( ’ z ’ , Ta ) ; % Übertragungsfunktionen definieren % Digitale Approximation 0-ter Ordnung H0 = ( Ta/T ) * z / ( z−exp(−Ta/T ) ) ; % Digitale Approximation 1-ter Ordnung H1 = ( Ta / ( 2 * T ) ) * ( z+exp(−Ta/T ) ) / ( z−exp(−Ta/T ) ) ; % Bode-Diagramm plotten omega = ( 0 : 0 . 0 0 1 : pi ) * f a ; % % % % % %
% Frequenzen in rad/s
Bode-Diagramme. Auszug aus der Hilfe: For discrete-time models with sample time Ts, BODE uses the transformation Z = exp(j*W*Ts) to map the unit circle to the real frequency axis. The frequency response is only plotted for frequencies smaller than the Nyquist frequency pi/Ts
[AH0, PH0 ] = bode ( H0 , omega ) ; [AH1, PH1 ] = bode ( H1 , omega ) ; % Plot vorbereiten (nur Amplitudengang) AH0 = AH0 ( : ) ; AH1 = AH1 ( : ) ; semilogx ( omega , 2 0 * l og10 ( abs (AH0 ) ) , ’ r ’ , ’ Linewidth ’ , 2 ) hold semilogx ( omega , 2 0 * l og10 ( abs (AH1 ) ) , ’b ’ , ’ Linewidth ’ , 2 ) grid x l a b e l ( ’ Normierte Frequenz / rad / s ’ )
Mit Hilfe dieser Funktion können die Übertragungsfunktionen H(Ω) für die RC-Tiefpass-Simulationen 0-ter und 1-ter Ordnung grafisch gegenüber gestellt9 werden. Die Abbildung 4.24 zeigt das Ergebnis für den Aufruf >> DigiSimuRCTP ( 2 0 , 1 )
Deutlich ist zu sehen, dass es ich in beiden Fällen tatsächlich um einen Tiefpass handelt. Die 3 − dB-Grenzfrequenz beträgt Ωg = 1 rad/s und entspricht damit dem theoretischen Wert 1/T für den RC-Tiefpass. 9
Es wird nur der Amplitudengang dargestellt!
270
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ 2
10
Simu 0−ter Ord.
0
0
−10
−2
Simu 1−ter Ord.
−20
−4
−30
3 dB
−40
−6
−50
−8
−60 −70 −2 10
−1
0
10 10 10 Normierte Frequenz/rad/s
1
10
2
−10
−1
10 Normierte Frequenz/rad/s
10
0
Abb. 4.24: Amplitudengänge für die RC-Tiefpass-Simulationen 0-ter und 1-ter Ordnung
Dieses Ergebnis kann mit dem Simulink-System10 s_uebRCTPSimu0ter1ter.mdl nochmals überprüft werden. Die Simulation11 liefert beispielsweise für T = 1 und das harmonische Eingangssignal x(t) = sin(ω0 t) = sin(t)
(270.1)
mit einer Signalfrequenz entsprechend der 3 − dB-Grenzfrequenz (nach Abklingen der Einschwingphase) das korrekte Ausgangssignal 1 y(t) = √ sin(ω0 t − 0.7854) = 0.7071 sin(t − 0.7854). 2
(270.2)
Zu beobachten ist, dass die Simulation 1-ter Ordnung „besser“ einschwingt, denn der korrekte Amplitudenwert 0.7071 wird wesentlich schneller erreicht. Übung 118 ( Lehrbuch Seite 393 ) Untersuchen Sie, welche Impulsantwort ein digitaler Allpass mit der rein reellen Übertragungsfunktion H(Ω) = rect2π (Ω + π)
(270.3)
hat. 10 11
Hier aus Platzgründen nicht abgebildet! Man beachte, dass bei einer Simulation das Abtastintervall Ta immer eine Größenordnung kleiner als T gewählt werden sollte.
271
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 118 Die Übertragungsfunktion H(Ω) ist die DTFT der Impulsantwort (hn )n∈Z . Diese Impulsantwort lässt sich folglich durch Berechnung der inversen DTFT bestimmen: hn =
1 2π
Zπ
H(Ω)ejnΩ dΩ.
(271.1)
−π
Es folgt für alle n 6= 0: 1 hn = 2π =
Für n = 0 erhält man: 1 h0 = 2π
Zπ
1 2π
Zπ
−π Zπ
rect2π (Ω + π)ejnΩ dΩ
ejnΩ dΩ =
−π
π 1 1 jnΩ e 2π jn −π
(271.2)
1 1 jnπ = e − e−jnπ = 0. 2π jn
1 rect2π (Ω + π) dΩ = 2π
−π
Zπ
dΩ =
1 2π = 1. 2π
(271.3)
−π
Die Impulsantwort des idealen Allpass ist also (wie nicht anders zu erwarten war) der diskrete Impuls δ0 (n)! Übung 119 ( Lehrbuch Seite 394 ) Entwerfen Sie mit Hilfe zweier FIR-Tiefpässe, die durch Abschneiden der Impulsantwort des idealen Tiefpasses gewonnen werden (vgl. (377.1) Lehrbuch), einen FIR-Bandpass mit den Grenzfrequenzen Ω2 =
π π rad, Ω1 = rad 3 2
(271.4)
und überprüfen Sie Ihr Ergebnis mit MATLAB (Funktion freqz). Lösung zu Übung 119 Für den Tiefpass mit der Grenzfrequenz Ω2 = π3 rad erhält man als Impulsantwort: n 1 n Ω2 (2) (271.5) hT P (n) = sinc Ω2 = sinc ∀ n ∈ Z. π π 3 3
272
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Für den Tiefpass mit der Grenzfrequenz Ω1 = π2 rad erhält man als Impulsantwort: n 1 n Ω2 (1) (272.1) hT P (n) = sinc Ω2 = sinc ∀ n ∈ Z. π π 2 2 Die Impulsantwort des Bandpasses ist folglich: (1)
(2)
hBP (n) = hT P (n) − hT P (n) n 1 n 1 = sinc − sinc 2 2 3 3
∀ n ∈ Z.
(272.2)
Da die Impulsantwort unendlich ausgedehnt ist, kann die Realisierung (und damit auch die Überprüfung des Ergebnisses mit freqz) nur durch Abschneiden und Zeitverschieben von (272.2) erfolgen. Wählt man etwa ˜ BP (n) = 1 sinc n − 1 sinc n h 2 2 3 3
∀ n ∈ [−N, N ]
(272.3)
für N = 100 und verschiebt diese Folge um N Takte in den positiven Zeitbereich, so erhält man ein FIR-Filter, welches den gewünschten Bandpass approximieren sollte. Dies kann mit MATLAB wie folgt verifiziert werden (vgl. MATLABProgramm uebDigiFiltEntwurf.m): f un c t i o n [ hn , HOmega] = uebDigiFil tEntwur f (N) % % MATLAB-Programm zum Entwurf eines FIR-Filters % für einen Bandpass mit den normierten Grenzfrequenzen % pi/3 und pi/2 auf der Basis der Kleinsten-Quadrate% Approximation der Übertragungsfunktion (= Abschneiden % der idealen Impulsantwort) % ... % Impulsantwortausschnitt (Verschiebung % automatisch durch Zuordnung zum "Zeit"-Vektor % (0:1:2*N-1) bzw. (1:1:2*N) n = (−N: 1 :N) ; hn = ( 1 / 2 ) * s i n c ( n/2) −( 1/ 3) * s i n c ( n / 3 ) ; tn = n+N+ 1 ; % Bestimmung der Übertragungsfunktion auf dem % normierten Frequenzintervall [0,pi] % Da es sich um ein FIR-Filter handelt, gibt es nur % B-Koeffizienten (s. Definition freqz) und A=[1]. frqn = ( 0 : 0 . 0 1 : pi ) ; [HOmega, Omega] = f r e qz ( hn , 1 , frqn ) ;
273
Lösungsband zu „Signale und Systeme“ % Idealen Bandpass zum Vergleich berechnen BPideal = (Omega>=pi /3)&(Omega> Omega = ( 0 : 0 . 0 1 : pi ) ; >> T = 0 . 1 ;
% normierte Frequenzen % Beispiel für eine Konstante T
>> % Übertragungsfunktion berechnen >> H = ( exp ( j * Omega) − 1 ) . / (T * exp ( j * Omega ) ) ; >> >> >> >> >> >>
% Amplitudengang plotten p l o t (Omega , abs (H) , ’b ’ , ’ LineWidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / rad ’ ) y l a b e l ( ’ |H(\Omega)| ’ ) a x i s ( [ 0 , pi , 0 , max ( abs (H) ) ] )
Abbildung 4.26 zeigt den Amplitudengang für den gewählten Parameter T = 0.1. Der diskrete „Differenzierer“ hat offenbar eine Hochpass- Charakteristik. Übung 123 ( Lehrbuch Seite 395 ) Betrachten Sie die aus den numerischen Integrationsformeln Trapez- und Simpsonregel abgeleiteten rekursiven Filter
277
Lösungsband zu „Signale und Systeme“
18 16 14 |H(Ω)|
12 10 8 6 4 2 0 0
0.5
1
1.5 2 Frequenz/rad
2.5
3
Abb. 4.26: Amplitudengang für den gewählten Parameter T = 0.1
Ta (xn + xn−1 ) 2
(277.1)
Ta (xn + 4xn−1 + xn−2 ) . 3
(277.2)
yn = yn−1 + und yn = yn−2 +
(a) Bestimmen Sie die Z-Transformierten der Filter und skizzieren Sie jeweils ein Pol-Nullstellen-Diagramm. Was ist über die Stabilität der Filter zu sagen ? (b) Berechnen Sie die Frequenz-Übertragungsfunktionen der Filter und skizzieren Sie (unter Verwendung von MATLAB) den Amplitudengang der Filter. (c) Berechnen Sie (unter Verwendung von MATLAB) die ersten 10 Werte der Impulsantwort. (d) Erläutern Sie, warum das aus der Tapezregel abgeleitete Filter für höhere Frequenzen Tiefpasseigenschaften hat, das Simpson-Filter aber nicht. Geben Sie ein konkretes Beispiel an, das diesen Effekt erläutert. Lösung zu Übung 123 (a) Die Z-Transformierten Differenzengleichungen lauten Y (z) = z −1 Y (z) + ⇐⇒
Ta 1 + z −1 X(z) 2
Ta Y (z)(z − 1) = (z + 1) X(z) 2
(277.3)
278
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
resp. Ta 1 + 4z −1 + z −2 X(z) 3 (278.1) z 2 + 4z + 1 X(z).
Y (z) = z −2 Y (z) + Y (z)(z 2 − 1) =
⇐⇒
Ta 3
Daraus ergeben sich die Übertragungsfunktionen: Ta z + 1 , 2 z−1 Ta z 2 + 4z + 1 H2 (z) = . 3 z2 − 1 H1 (z) =
(278.2)
Pol-Nullstellen-Diagramme lassen sich am besten mit folgenden MATLAB-Anweisungen erstellen: >> >> >> >> >> >> >> >> >> >> >> >>
z = tf ( ’z ’ ,1); % H1 für Parameter T=2 H1 = ( z + 1 ) / ( z − 1 ) ; % H2 für Parameter T=3 H2 = ( z ^2+4 * z + 1 ) / ( z ^2 −1); figure subplot ( 1 2 1 ) pzmap( H1) a x i s equal subplot ( 1 2 2 ) pzmap( H2) a x i s equal
Die Wahl des Parameters Ta ist dabei offenbar für die Pole und Nullstellen völlig unerheblich (für die Berechnungen wurde Ta daher so gewählt, dass die Vorfaktoren wegfallen). In Abbildung 4.27 sind die berechneten Pol-Nullstellen-Diagramme12 wiedergegeben: Natürlich ist keines der beiden Filter stabil, da wegen >> pole (H1) ans = 1 >> pole (H2) ans = 12
wobei die Original-MATLAB-Plots nachgearbeitet wurden!
279
Lösungsband zu „Signale und Systeme“ H (z)
H (z)
1
2
5
1.5
0.5
Imaginärteil
Imaginärteil
1
0 −0.5
0
Pol Pol
−1 −1.5 −1
Pol
−5 0
Realteil
1
−4
−2
Realteil
0
2
Abb. 4.27: Pol-Nullstellen-Diagramme der Filter H1 (z) und H2 (z)
−1 1
alle Pole genau auf dem Stabilitätsrand liegen. (b) Mit Hilfe von MATLAB erhält man: >> Omega = ( 0 : 0 . 0 1 : pi ) ;
% Normierte Frequenzen
>> >> >> >>
% Bode-Diagramme bestimmen [ A1 , Ph1 ] = bode (H1 , Omega ) ; [ A2 , Ph2 ] = bode (H2 , Omega ) ; A1= A1 ( : ) ; A2 = A2 ( : ) ;
>> >> >> >> >> >> >>
% Amplitudengänge plotten subplot ( 2 1 1 ) p l o t (Omega , A1 , ’b ’ , ’ LineWidth ’ , 3 ) ; subplot ( 2 1 1 ) semilogx (Omega , 2 0 * l og10 ( A1 ) , ’b ’ , ’ LineWidth ’ , 3 ) ; a x i s ( [ 0 , pi , min ( 2 0 * l og10 ( A1 ) ) , max ( 2 0 * log10 ( A1 ) ) ] ) grid
280
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“ >> >> >> >> >> >> >>
x l a b e l ( ’ Frequenz / rad ’ ) y l a be l ( ’ |H_1 ( \Omega)| ’ ) subplot ( 2 1 2 ) semilogx (Omega , 2 0 * l og10 ( A2 ) , ’k ’ , ’ LineWidth ’ , 3 ) ; a x i s ( [ 0 , pi , min ( 2 0 * l og10 ( A2 ) ) , max ( 2 0 * log10 ( A2 ) ) ] ) x l a b e l ( ’ Frequenz / rad ’ ) y l a be l ( ’ |H_2 ( \Omega)|
Deutlich kann man an den berechneten Grafiken13 das TiefpassVerhalten der beiden Filter abgelesen werden. Ebenso erkennt man die Instabilität für konstante Anregungen bzw. im letzten Fall für harmonische Anregungen der normierten Frequenz π (korrespondierend zur Polstelle von H2 (z) bei −1!!) (c) Die ersten 10 Werte der Impulsantwort können mit MATLAB wie folgt bestimmt werden: >> >> >> >> >> >>
% Impulsantworten bestimmen t = (0:1:10) ’; h1 = impulse ( H1 , t ) ; h2 = impulse ( H2 , t ) ; % Werte der Impulsantworten [ t , h1 , h2 ]
ans = 0 1 2 3 4 5 6 7 8 9 10
1 2 2 2 2 2 2 2 2 2 2
1 4 2 4 2 4 2 4 2 4 2
Man erkennt, dass die Impulsantwort im ersten Fall ab dem zweiten Index konstant ist, im zweiten Fall um einen Mittelwert 6= 0 oszilliert. In beiden Fällen ergibt sich daraus, dass die Sprungantwort unbeschränkt ist. Die Filter sind, wie oben schon festgestellt, nicht stabil. (d) Wie oben bereits erwähnt, ergibt sich im Fall H2 (z) für harmonische Anregungen der normierten Frequenz π (korrespondierend zur Polstelle 13
Auf die Abbildung der Amplitudengänge soll hier aus Platzgründen verzichtet werden.
281
Lösungsband zu „Signale und Systeme“
von H2 (z) bei −1!!) ein instabiles Verhalten. Da H1 (z) dort keine Polstelle hat, ist das für dieses Filter nicht zu erwarten. Dies kann mit MATLAB wie folgt experimentell nachvollzogen werden: >> >> >> >>
% Signal der normierten Frequenz pi erzeugen t = (0:1:50); fa = 1; omega = 2 * pi * ( 1 / 2 ) / f a
omega = 3.1416 >> xn = cos ( omega * t ) xn = Columns 1 through 12 1
−1
1
−1
1
−1
1
−1
....
1
−1
1
−1
....
Columns 13 through 24 1
−1
1
−1
>> % Filter H2 mit Hilfe der Koeffizienten definieren >> B = [ 1 4 1 ] B = 1
4
1
>> A = [ 1 0 −1] A = 1
0
−1
>> % Filterantwort berechnen und darstellen >> yn = f i l t e r ( B , A, xn ) ; >> stem ( t , yn )
Abbildung 4.28 zeigt, dass der Ausgang des Filters mit der Frequenz des Eingangssignals oszillierend in der Amplitude immer größer wird. Der Filterausgang ist für dieses Eingangssignal nicht14 beschränkt. 14
Natürlich ist das obige Experiment kein Beweis für diese Tatsache sondern nur eine experimentelle Veranschaulichung.
282
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
60 40 20
y
n
0 −20 −40 −60 0
10
20 30 Index / n
40
50
Abb. 4.28: Antwort des Filters H2 (z) auf ein harmonisches Signal der normierten Frequenz π
Übung 124 ( Lehrbuch Seite 395 ) Betrachten Sie die durch folgende Impulsantworten definierten FIR-Filter:
gn =
hn =
−1, 2, −1
n = −1, 0, 1, n sonst,
0
(282.1)
−1, 0, 2, −1
für
0
für
n = −1, 0, 1, 2, n sonst.
(a) Formulieren Sie das zeitliche Übertragungsverhalten der kausalen Versionen dieser Filter (d.h. geben Sie den Ausgang yn in Abhängigkeit vom Eingang und der Impulsantwort an). (b) Berechnen Sie die Übertragungsfunktionen der kausalen Filter im Frequenzbereich und skizzieren Sie (unter Verwendung von MATLAB) deren Amplituden- und Phasengang. Welches qualitative Übertragungsverhalten ergibt sich daraus (Hoch-, Tief-, Bandpass, Bandsperre)? (c) Bestimmen Sie (ggf. mit Hilfe von MATLAB) die Gruppenlaufzeiten der Filter. Welches Filter hat konstante Gruppenlaufzeit?
283
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 124 (a) Die kausalen Versionen der Filter entstehen durch entsprechende Zeit˜ n der Impulsantworten und sind daher durch verschiebungen g˜n und h folgende Differenzengleichungen gegeben: yn = g˜n ∗ xn = −xn + 2xn−1 − xn−2 , ˜ n ∗ xn = −xn + 2xn−2 − xn−3 . yn = h
(283.1)
(b) Da beide Filter FIR-Filter und somit stabil sind (vgl. Übung 121), können die Übertragungsfunktionen im Frequenzbereich durch Substitution von ˜ ˜ z = ejΩ aus den Übertragungsfunktionen im Bildbereich G(z) und H(z) bestimmt werden. Wegen −z 2 + 2z − 1 ˜ G(z) = , z2 −z 3 + 2z − 1 ˜ H(z) = z3
(283.2)
−e2jΩ + 2ejΩ − 1 ˜ G(Ω) = , e2jΩ −e3jΩ + 2ejΩ − 1 ˜ H(Ω) = . e3jΩ
(283.3)
erhält man:
Mit MATLAB lassen sich die Bode-Diagramme leicht ermitteln (vgl. uebDigiFIR.m): % Vorinitialisierungen z= t f ( ’ z ’ , 1 ) ; % Übertragungsfunktionen im Bildbereich definieren G = (−z ^2+2 * z −1)/( z ^ 2 ) ; H = (−z ^3+2 * z −1)/( z ^ 3 ) ; % Bode-Diagramm plotten omega = ( 0 : 0 . 0 0 1 : pi ) ;
% Frequenzen in rad
[AG0, PG0 ] = bode (G, omega ) ; [AH1, PH1 ] = bode (H, omega ) ; % Plot vorbereiten (nur Amplitudengang) AG0 = AG0 ( : ) ; AH1 = AH1 ( : ) ; PG0 = pi * PG0 ( : ) / 1 8 0 ; PH1 = pi * PH1 ( : ) / 1 8 0 ;
284
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
% Bode-Diagramme plotten figure ...
Die Diagramme sind in Abbildung 4.29 wiedergegeben. Man erkennt, dass beide Filter eine Hochpass- Charakteristik haben.
0
−50
|H(Ω)|
|G(Ω)|
0
−100 −3
10
−2
−1
10 Frequenz Ω/rad
10
−40
0
0
0
−1
−2
−2 −3 10
−3
10
−2
−1
10 Frequenz Ω/rad
10
0
−3
10
−3
10
10
arg H(Ω)
arg G(Ω)
10
−20
−2
10 Frequenz Ω/rad
−1
10
−2
10 Frequenz Ω/rad
0
−1
10
−4 −6 10
0
Abb. 4.29: Bode-Diagramme der FIR-Filter
(c) Die Gruppenlaufzeit ist als negative Ableitung des Phasengangs definiert, d.h. es ist 2jΩ d d −e + 2ejΩ − 1 ˜ tG˜ (Ω) = − arg G(Ω) = − arg dΩ dΩ e2jΩ d =− arg −1 + 2e−jΩ − e−2jΩ dΩ ! (284.1) Im −1 + 2e−jΩ − e−2jΩ d =− arctan dΩ Re (−1 + 2e−jΩ − e−2jΩ ) d −2 sin(Ω) + sin(2Ω) =− arctan dΩ −1 + 2 cos(Ω) − cos(2Ω) und 3jΩ d d −e + 2ejΩ − 1 ˜ tH˜ (Ω) = − arg H(Ω) = − arg dΩ dΩ e3jΩ d =− arg −1 + 2e−2jΩ − e−3jΩ dΩ ! Im −1 + 2e−2jΩ − e−3jΩ d =− arctan dΩ Re (−1 + 2e−2jΩ − e−3jΩ ) d −2 sin(2Ω) + sin(3Ω) =− arctan . dΩ −1 + 2 cos(2Ω) − cos(3Ω)
(284.2)
285
Lösungsband zu „Signale und Systeme“
Diese Funktionen können am einfachsten mit Hilfe von MATLABs Symbolic Math Toolbox bestimmt werden: >> syms x % x repräsentiert omega >> g = atan (( − 2 * s i n ( x ) + s i n ( 2 * x ) )/( −1+2 * cos ( x)−cos ( 2 * x ) ) ) ; >> % Gruppenlaufzeit berechnen >> tgg = −d i f f ( g , x ) ; >> tgg = simple ( tgg ) tgg = 1 >> % Gruppenlaufzeit berechnen >> h = atan (( − 2 * s i n ( 2 * x ) + s i n ( 3 * x ) ) / . . . ( −1+2 * cos ( 2 * x)−cos ( 3 * x ) ) ) ; >> tgh = −d i f f ( h , x ) ; >> tgh = simple ( tgh ) tgh = 1 / 2 * ( 1 2 * cos ( x )^2+4 * cos ( x ) − 1 5 ) / ( 4 * cos ( x )^2 −5) >> p r e t t y ( tgh ) 2 12 cos ( x ) + 4 cos ( x ) − 15 1/2 −−−−−−−−−−−−−−−−−−−−−−−−−− 2 4 cos ( x ) − 5
Die Gruppenlaufzeit des ersten (um 0 symmetrisch herum definierten) FIR-Filters ist also konstant, die des zweiten FIR-Filters ist es nicht! Übung 125 ( Lehrbuch Seite 396 ) Entwerfen Sie mit Hilfe der Tabelle B.4 für digitale Butterworth-Tiefpass-Prototypen einen digitalen Butterworth-Tiefpass, der folgendem Toleranzschema genügt: Toleranz im Durchlassbereich: −3 dB, Toleranz im Sperrbereich:
−30 dB,
Durchlassbandgrenzfrequenz: π/6 rad, Sperrbandgrenzfrequenz:
3π/4 rad.
286
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Testen Sie Ihr Ergebnis mit Hilfe von Simulink oder plotten Sie das Übertragungsverhalten Ihres berechneten Filters mit geeigneten MATLABFunktionen. Hinweis: Beachten Sie, dass die Tabellen für die Filterkoeffizienten auf eine Durchlassgrenze von π/2 rad normiert sind! Lösung zu Übung 125 In einem ersten Schritt wird zunächst die Filterordnung des zu entwerfenden Butterworth-Filters bestimmt. Dazu müssen die Grenzfrequenzen in die zugehörigen Grenzfrequenzen eines analogen Entwurfs umgerechnet werden. Es gilt mit Ωp = π6 und Ωs = 3π 4 : π Ωp 0 Ωp = ωp = tan = tan = 0.2679, 2 12 (286.1) 3π 0 Ωs = ωs = tan = 2.4142. 8 1 Damit erhält man mit δ22 = 1000 (entsprechend −30 dB) folgende Abschätzung für die benötigte Filterordnung: 1 log − 1 2 10 1 δ2 1 log10 (999) = N≥ = 1.5708. (286.2) ωs 2 log 2 log10 (9.0116) 10
ωp
Als Filterordnung ist also N = 2 zu wählen! In einem zweiten Schritt wird nun mit Hilfe der Tabelle B.4 ein digitales Butterworth-Filter mit der Grenzfrequenz π2 entworfen. Der Tabelle entnimmt man für die Zähler-Koeffizienten a0 = 0.2929,
a1 = 0.5858,
a2 = 0.2929
(286.3)
und für die Nenner-Koeffizienten b1 = 0, b2 = 0.1716.
(286.4)
Die Z-Übertragungsfunktion ergibt sich damit zu: H(z) =
0.2929z 2 + 0.5858z + 0.2929 . z 2 + 0.1716
(286.5)
Zur Umrechnung auf die tatsächliche Grenzfrequenz π/6 rad kann eine Frequenztransformationstabelle (s. Lehrbuch) verwendet werden. Für eine Tiefpass-Tiefpass-Transformation muss in (286.5) die Substitution
287
Lösungsband zu „Signale und Systeme“
z −1 − d 1 − dz = 1 − dz −1 z−d z−d z ←− 1 − dz
z −1 ←− ⇐⇒
(287.1)
durchgeführt werden. Dabei15 ist d=
sin sin
π 4 π 4
− +
Man erhält das Filter: 2 z−d z−d a0 1−dz + a1 1−dz + a2 H(z) = 2 z−d + b2 1−dz
π 12 π 12
(287.2)
= 0.5774.
a0 (z − d)2 + a1 (z − d)(1 − dz) + a2 (1 − dz)2 (287.3) (z − d)2 + b2 (1 − dz)2 a0 z 2 − 2a0 dz + a0 d2 − a1 dz 2 + a1 (1 + d2 )z − a1 d + a2 − 2a2 dz + a2 d2 z 2 = z 2 − 2dz + d2 + b2 − 2b2 dz + b2 d2 z 2 (a0 − a1 d + a2 d2 )z 2 + (−2a0 d + a1 + a1 d2 − 2a2 d)z + a0 d2 − a1 d + a2 = (1 + b2 d2 )z 2 + (−2d − 2b2 d)z + d2 + b2 =
=
a0 −a1 d+a2 d2 2 z 1+b2 d2
2 −2a0 d+a1 +a1 d2 −2a2 d −a1 d+a2 z + a0 d1+b 2 1+b2 d2 2d d2 +b2 2d z 2 + −2d−2b z + 1+b2 d2 1+b2 d2
+
Mit >> >> >> >> >> >> >> >>
a0 = 0 . 2 9 2 9 ; a1 = 0 . 5 8 5 8 ; a2 = 0 . 2 9 2 9 ; b2 = 0 . 1 7 1 6 ; a_0 = ( a0−a1 * d+a2 * d^ 2) /(1+ b2 * d ^ 2 ) ; a_1 = ( −2 * a0 * d+a1+a1 * d^2−2* a2 * d) / ( 1 + b2 * d ^ 2 ) ; a_2 = ( a0 * d^2−a1 * d+a2 ) / ( 1 + b2 * d ^ 2 ) ; b_1 = ( −2 * d−2* b2 * d) / ( 1 + b2 * d ^ 2 ) ; b_2 = ( d^2+b2 ) / ( 1 + b2 * d ^ 2 ) ; [ a_0 , a_1 , a_2 ]
ans = 0.0495
0.0990
0.0495
>> [ 1 b_1 b_2 ] 15
In der Tabelle aus Anhang C.5 des Lehrbuchs ist die Grenzfrequenz des Standardentwurfs fg∗ ein Viertel der Abtastfrequenz, entsprechend der normierten Frequenz π/2. Die für die neue Grenzfrequenz gilt im vorliegenden Fall
2πfg fa
=
π . 6
Damit ist
πfg fa
=
π ! 12
288
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
ans = 1.0000
−1.2797
0.4776
erhält man folgendes Filter zweiter Ordnung: H(z) =
0.0495z 2 + 0.0990z + 0.0495 . z 2 − 1.2797z + 0.4776
(288.1)
Mit Hilfe von MATLAB kann nun nachgeprüft werden, ob das Filter die Anforderungen bezüglich des Amplitudengangs erfüllt: >> z = t f ( ’ z ’ , 1 ) ; >> H = ( a_0 * z^2+ a_1 * z+a_2 ) / ( z^2+b_1 * z+b_2 ) T r a n s f e r f u nc t i o n : 0 . 2 0 5 z^2 + 0 . 3 0 0 1 z + 0 . 1 5 0 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− z^2 − 0 . 6 0 0 3 z + 0 . 2 3 2 7 Sampling time : 1 >> omega = ( 0 : 0 . 0 0 1 : pi ) ; >> [A, P ] = bode (H, omega ) ; >> A = A ( : ) ; >> p l o t ( omega , 2 0 * l og10 (A) , ’b ’ , ’ LineWidth ’ , 3 ) ...
Abbildung 4.30 zeigt den berechneten Amplitudengang. Die Anforderung des Filterentwurfs werden erfüllt! Der Entwurf kann mit Hilfe der MATLAB-Funktion butter nochmals überprüft werden: >> >> >> >>
N = 2; % Filterordnung omg = pi / 6 ; % 3dB-Grenzfrequenz omgn = omg/pi ; % normiert mit pi für butter [ B ,A] = b u t t e r (N, omgn)
B = 0.0495
0.0990
0.0495
1.0000
−1.2796
0.4776
A =
289
Lösungsband zu „Signale und Systeme“
0
−3dB
−5
|H(Ω)|2/dB
−10 −15 −20 −25 −30 X: 2.256 Y: −35.84
−35 −40 0
0.5
1
π/6
1.5 2 Frequenz/rad
2.5
3
3π/4
Abb. 4.30: Amplitudengang des entworfenen Butterworth-Filters
Offenbar erhält man die gleichen Filterkoeffizienten. Übung 126 ( Lehrbuch Seite 396 ) Entwerfen Sie den digitalen Butterworth-Tiefpass aus Übung 125 mit Hilfe der MATLAB-Funktion butter. Testen Sie anschließend Ihr Ergebnis mit Simulink. Lösung zu Übung 126 In der Lösung zu Übung 125 wurde der Entwurf mit der MATLAB-Funktion butter bereits zu Verifikation des Tabellen-Entwurf verwendet. Abbildung 4.31 zeigt das Simulink-System s_uebbutterTP.mdl, mit dem die Wirkungsweise des Filters simuliert werden kann. Das Filter muss zuvor mit dem Initialisierungs-Button parametriert werden. Die Parameter im sind Initialisierungsfile init_uebbutterTP.m beispielsweise wie folgt festgelegt: stopt ime = 2 ;
% Simulationsdauer
fa = 1000;
% Abtastrate
f i x s t e p = 1/ f a ;
% Schrittweite einer Fixed-Step Simul.
290
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
a _0 .z2 + a _1.z+ a _2 z2 + b_1 .z+ b_2 Sinus
Digitales BW−Filter
Tiefpass / IO
Initialisierung (bitte vor Start anklicken )
Abb. 4.31: Simulink-System für das entworfene Butterworth-Filter f r q = pi /6 * f a / ( 2 * pi ) ; % 2*pi*frq/fa = pi/6 (3-dB-Grenzfr.) % Zählerkoeffizienten des Butterworth-Filters a_0 = 0 . 0 4 9 5 ; a_1 = 0 . 0 9 9 0 ; a_2 = 0 . 0 4 9 5 ; % Nennerkoeffizienten des Butterworth-Filters b_1 = − 1.2796; b_2 = 0 . 4 7 7 6 ;
Mit dieser Initialisierung wird das Filter mit einem Sinussignal angeregt, dessen Frequenz der 3 dB-Grenzfrequenz des Filters entspricht. Das Ausgangssignal sollte (und hat) demnach mit dieser Einstellung eine um den Faktor √1 = 0.7071 gegenüber dem Eingangssignal reduzierte Amplitude haben. 2
Durch Editieren des Initialisierungsfiles oder, besser noch, der Änderung des Parameters frq im Command-Window von MATLAB kann das Verhalten bei anderen Frequenzen leicht nachvollzogen und mit dem Ergebnis aus Übung 125 verglichen werden. Übung 127 ( Lehrbuch Seite 397 ) Entwerfen Sie den digitalen Butterworth-Tiefpass aus Übung 125 mit Hilfe des Filter Design& Analysis Tools fdatool. Vergleichen Sie Ihr Ergebnis mit denen aus Übung 125 und 126. Lösung zu Übung 127 Das Filter Design& Analysis Tool fdatool wird unter MATLAB mit dem Befehl >> f d a t o o l
Lösungsband zu „Signale und Systeme“
291
gestartet. In dem sich öffnenden GUI (vgl. Abbildung 4.32) können die Entwurfsparameter eingestellt werden.
Abb. 4.32: Entwurf des Butterworth-Filters mit dem Filter Design& Analysis Tool
Im vorliegenden Fall wurde ein Butterworth-Filter mit der normierten Grenzfrequenz π6 eingestellt. Da MATLAB in diesem Tool eine Normierung der Nyquistfrequenz (π) auf 1 verlangt, muss an der entsprechenden Stelle 1/6 eingetragen werden. Der Amplitudengang ist dann ebenfalls über der so normierten Frequenz wiedergegeben. Über den Menü-Eintrag File-Export... können die Filterkoeffizienten exportiert werden. Mit der in Abbildung 4.33 dargestellten Einstellung werden die Koeffizienten in Form von so genannten Second Order Sections (SOS) zurückgeliefert. Dabei werden jeweils Vektoren der Länge 6 mit den drei Koeffizienten des Zählers und des Nenners von Teilfiltern zweiter Ordnung zurückgeliefert. In einem weiteren Vektor werden zugehörige Verstärkungsfaktoren zurückgeliefert. Da im vorliegenden Fall das Filter selbst zweiter Ordnung ist, erhalten wir mit:
292
Lösungen der Übungen zum Kapitel „Digitale Signale und Systeme“
Abb. 4.33: Export der Koeffizienten des Butterworth-Filters mit dem FDA-Tool
>> whos Name G SOS
Size
Bytes
2 x1 1 x6
16 48
C lass
Attributes
double double
>> G G = 0.0495 1.0000 >> SOS SOS = 1.0000 0.4776
2.0000
1.0000
>> A = SOS ( 1 : 3 ) * G( 1 ) A = 0.0495
0.0990
0.0495
1.0000
−1.2796
Lösungsband zu „Signale und Systeme“ >> B = SOS ( 4 : 6 ) * G( 2 ) B = 1.0000
−1.2796
0.4776
die schon in der Lösung zu Übung 125 ermittelten Filterkoeffizienten.
293
5
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Übung 128 ( Lehrbuch Seite 423 ) Weisen Sie mit Hilfe der allgemeinen Rechenregeln für Erwartungswert und Varianz (vgl. Anhang A.7, Seite 559 des Lehrbuchs) nach, dass für einen diskreten1 stationären Prozess Xn stets gilt: rXX (0) = E(X 2 ) = V(X) + E(X)2 .
(295.1)
Folgern Sie daraus, dass für einen mittelwertfreien Prozess Xn der Wert von rXX (0) stets mit der Varianz übereinstimmt. Lösung zu Übung 128 Es gilt mit µ = E (Xn ) nach den Rechenregeln für Varianz und Erwartungswert: 2 V(X) = E (X − µ) = E X 2 − 2µX + µ2 (295.2) = E X 2 − 2µE (X) + µ2 = E X 2 − 2µ2 + µ2 2 2 = E X − E(X) . Dies ist äquivalent mit:
rXX (0) = E(X 2 ) = V(X) + E(X)2 .
(295.3)
Für einen mittelwertfreien Prozess Xn erhält man infolgedessen: rXX (0) = V(X) + 02 = V(X).
(295.4)
Übung 129 ( Lehrbuch Seite 424 ) Zeigen Sie, dass für einen einen diskreten stationären Prozess Xn stets gilt: max rXX (k) = rXX (0). k∈Z
(295.5)
Verwenden sie dabei die Tatsache, dass für den so genannten Korrelationskoeffizienten ρ(X, Y ) zweier Zufallsvariablen X und Y stets gilt: −1 ≤ ρ(X, Y ) :=
E((X − E(X)) · (Y − E(Y ))) ≤ 1. σ(X) · σ(Y )
(295.6)
Hinweis: Betrachten Sie zunächst nur einen mittelwertfreien Prozess und versuchen Sie danach das dafür gewonnene Ergebnis zu verallgemeinern. 1
Für einen realisierbaren zeitkontinuierlichen Prozess gilt dies, genau wie die Aussage (295.5) aus Übung 129, ebenfalls!
O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_5, © Springer-Verlag Berlin Heidelberg 2011
296
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Lösung zu Übung 129 Für einen mittelwertfreien Prozess Xn erhält man wegen rXX (k) = E (Xn · Xn+k )
(296.1)
aufgrund von −1 ≤
E (Xn · Xn+k ) ≤ 1, σ (Xn ) · σ (Xn+k )
(296.2)
dass |rXX (k)| = |E (Xn · Xn+k )|
≤ |σ (Xn ) · σ (Xn+k )| = σ (Xn ) · σ (Xn+k )
(296.3)
ist. Da Xn ein stationärer Prozess ist, sind die Streuungen von Xn und Xn+k identisch, sodass folgt: 2
|rXX (k)| ≤ σ (Xn ) = V (Xn ) = E Xn2 = rXX (0).
(296.4)
In der letzten Gleichung wurde dabei verwendet, dass Xn mittelwertfrei ist, weswegen die Varianz dem zweiten Moment entspricht. Ist Xn nicht mittelwertfrei, so ist Yn = Xn − µ mit µ = E (Xn ) mittelwertfrei. Ferner ist (s. Übung 129): rY Y (k) = E (Yn · Yn+k )
= E ((Xn − µ) · (Yn+k − µ))
(296.5)
2
= E (Xn · Xn+k ) − µ .
Damit folgt aus (296.4): |rXX (k)| = rY Y (k) + µ2 ≤ rY Y (0) + µ2 = rXX (0).
(296.6)
Die Autokorrelationsfunktion hat also stets ihren maximalen Wert zur Zeit 0! Übung 130 ( Lehrbuch Seite 424 ) Zeigen Sie, dass die Autokorrelationsfunktion eines stationären Prozesses eine gerade Funktion ist, d.h. dass folgende Symmetriebedingung gilt: rXX (τ ) = rXX (−τ )
∀ τ ∈ R.
(296.7)
297
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 130 Nach Definition ist die Autokorrelationsfunktion eines stationären Prozesses (297.1)
rXX (τ ) = E (Xt · Xt+τ )
von t unabhängig! Insbesondere liefert die rechte Seite von (297.1) für den Zeitpunkt t˜ = t − τ : rXX (τ ) = E Xt˜ · Xt˜+τ = E (Xt−τ · Xt−τ +τ ) = E (Xt · Xt−τ ) (297.2) = E Xt · Xt+(−τ ) = rXX (−τ ). Die Autokorrelationsfunktion ist damit eine gerade Funktion! Übung 131 ( Lehrbuch Seite 424 ) Betrachten Sie den Prozess (297.3)
Xt = a · sin(ωt + Φ0 ).
Dabei seien a ∈ R+ , ω ∈ R und die Phase Φ0 eine im Intervall [0, 2π] gleichverteilte Zufallsvariable! Dieser Prozess kann wie folgt interpretiert werden: eine Musterfunktion von Xt ist ein harmonisches Signal, welches ab einem beliebigen Startzeitpunkt (der dann auf t = 0 normiert werden kann) beobachtet wird. Die Nullphase zu diesem Zeitpunkt kann beliebig sein und keine Nullphase kommt dabei bevorzugt vor. Man bezeichnet diesen Prozess als Harmonischen Prozess. Zeigen Sie, dass es sich bei dem Harmonischen Prozess Xt um einen im weiteren Sinne stationären Prozess handelt. Überprüfen Sie anschließend mit Hilfe der MATLAB-Funktion HarmonProzess.m der Begleitsoftware experimentell, dass der Prozess als ergodisch angenommen werden kann! Hinweis: Verwenden Sie folgende trigonometrischen Identitäten: sin(a + b) = sin(a) · cos(b) + cos(a) · sin(b), 1 1 sin(a) · sin(b) = cos(a − b) − cos(a + b) ∀a, b ∈ R. 2 2
(297.4)
Lösung zu Übung 131 Wegen sin(a + b) = sin(a) · cos(b) + cos(a) · sin(b)
∀a, b ∈ R
(297.5)
298
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
kann der Prozess zunächst in folgender Form dargestellt werden: Xt = a · sin(ωt) · cos(Φ0 ) + a · cos(ωt) · sin(Φ0 ).
(298.1)
Allgemein gilt für eine Zufallsvariable X mit einer Verteilungsdichte fX (x) und eine reelle Funktion g(x), dass E (g(X)) =
Z∞
g(x)fX (x) dx
(298.2)
−∞
ist. Im vorliegenden Fall ist der Nullphasenwinkel Φ gleichverteilt im Intervall [0, 2π] und man erhält: 1 E (sin(Φ0 )) = 2π
Z2π
sin(x) dx =
1 (− cos(2π) + cos(0)) = 0 2π
(298.3)
1 (sin(2π) + sin(0)) = 0. 2π
(298.4)
0
und 1 E (cos(Φ0 )) = 2π
Z2π
cos(x) dx =
0
Damit gilt für alle t ∈ R: E (Xt ) = a · sin(ωt) · E (cos(Φ0 )) + a · cos(ωt) · E (sin(Φ0 )) = 0.
(298.5)
Insbesondere ist also der Erwartungswert konstant! Des Weiteren gilt für das zweite Moment von Y = g(X): E Y
2
=
Z∞
g 2 (x)fX (x) dx.
(298.6)
−∞
Ist der Erwartungswert von Y gleich 0, so stimmt das zweite Moment mit der Varianz überein, d.h. es ist: V (g(X)) =
Z∞
g 2 (x)fX (x) dx.
(298.7)
−∞
Im vorliegenden Fall haben cos(Φ0 ) und sin(Φ0 ), wie oben gezeigt, den Erwartungswert 0. Somit folgt:
299
Lösungsband zu „Signale und Systeme“
1 V (sin(Φ0 )) = 2π
Z2π
sin2 (x) dx (299.1)
0
1 = 2π
und 1 V (cos(Φ0 )) = 2π
2π 1 1 1 1 − sin(x) cos(x) + x = π= 2 2 2π 2 0
Z2π
cos2 (x) dx (299.2)
0
1 = 2π
2π 1 1 1 1 sin(x) cos(x) + x = π= . 2 2 2π 2 0
Weiterhin gilt nach (298.1) für alle t ∈ R: V (Xt ) = E Xt2
= E a2 · sin2 (ωt) · cos2 (Φ0 )
+2a2 · sin(ωt) · cos(Φ0 ) · cos(ωt) · sin(Φ0 ) +a2 · cos2 (ωt) · sin2 (Φ0 ) .
(299.3)
Also folgt für alle t ∈ R:
1 2 + 2a2 · sin(ωt) · cos(ωt) · E (cos(Φ0 ) · sin(Φ0 )) 1 + a2 · cos2 (ωt) · 2
V (Xt ) = a2 · sin2 (ωt) ·
(299.4)
a2 = + a2 · sin(ωt) · cos(ωt) · E (2 · cos(Φ0 ) · sin(Φ0 )) 2 a2 a2 = + a2 · sin(ωt) · cos(ωt) · E (sin(2Φ0 )) = . 2 2 Insbesondere ist die Varianz konstant! Zur Berechnung der Autokorrelationsfunktion kann folgende trigonometrische Identität verwendet werden: 1 1 sin(a) · sin(b) = cos(a − b) − cos(a + b) ∀a, b ∈ R. (299.5) 2 2 Man erhält damit: E (Xt Xt+τ ) = E a2 · sin(ωt + Φ0 ) sin(ω(t + τ ) + Φ0 )
a2 a2 E (cos(−ωτ )) − E (cos(2ωt + ωτ + 2Φ0 )) 2 2 a2 a2 = cos(ωτ ) − E (cos(2ωt + ωτ + 2Φ0 )) . 2 2 =
(299.6)
300
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Ähnlich wie in (298.1) bis (298.5) zeigt man nun, dass E (cos(2ωt + ωτ + 2Φ0 )) = 0
(300.1)
ist, woraus folgt, dass wegen rXX (τ ) = E (Xt Xt+τ ) =
a2 cos(ωτ ) 2
(300.2)
die Autokorrelation nicht von t abhängt. Der Prozess ist somit im weiteren Sinne stationär! Mit Hilfe der MATLAB-Funktion HarmonProzess.m des Begleitmaterials kann das Ergebnis experimentell überprüft werden. Die MATLAB-Funktion HarmonProzess.m berechnet die Schar-Kennwerte E (Xt ) und V (Xt ) auf der Grundlage vieler, mit Hilfe eines Zufallsgenerators generierter Mustersignale. Auch die Autokorrelationsfunktion wird über eine Schar-Mittelung berechnet. Insbesondere kann also für diese Berechnung nicht die auf einer zeitlichen Mittelung beruhende Funktion xcorr verwendet werden. Dem Leser sei empfohlen, den Quelltext zu studieren, um die Berechnungsgrundlage nachvollziehen zu können. Ein Aufruf von beispielsweise >> [EW,VAR, CrMat , c o r r S i g ] = . . . HarmonProzess ( 2 0 0 , 2 , 1 0 0 0 , s q r t ( 2 ) , 5 0 ) ;
erzeugt mit Hilfe eines Zufallsgenerators 200 Sinussignale der Frequenz √ 50 Hz und der Amplitude 2, wobei die Nullphase bei jeder Realisierung gleichverteilt zufällig im Intervall [0, 2π] rad gewählt wird. Die mit HarmonProzess.m erzeugten Grafiken sind in Abbildung 5.1 dargestellt. Man erkennt deutlich die Autokorrelationsfunktion rXX (τ ) =
a2 2 cos(2π50τ ) = cos(2π50τ ) = cos(2π50τ ) 2 2
(300.3)
und die (im Wesentlichen) konstanten Funktionen E (Xt ) und V (Xt ), auch 2 wenn die Konvergenz gegen die exakten Werte 0 und a2 = 22 = 1 sehr langsam2 ist. Mit den Anweisungen 2
Bei Werten > 200 Simulationen kann das Ergebnis u.U. lange auf sich warten lassen. Es können auch Speicherprobleme auftreten, da alle Musterfunktionen in einer Matrix zwischengespeichert werden.
301
Lösungsband zu „Signale und Systeme“
1 0.8
1 0.5
t
E(X )
0.6 0.4
0 −0.5 −1
rXX(τ)
0.2
0
0
2
−0.4
1.5 t
V(X )
−0.2
−0.6
0.5
1 Zeit t/s
1.5
2
0.5
1 Zeit t/s
1.5
2
1 0.5
−0.8 −1 0
0.02
0.04 0.06 Zeit τ/s
0.08
0.1
0 0
Abb. 5.1: (Schar-)Gemittelte Autokorrelationsfunktion (links) und (schar-)gemittelte Erwartungswerte und Varianzen (rechts) des Harmonischen Prozesses (297.3)
>> >> >> >> >> >> >> >>
T = 100; % Simulationszeit dt = 1 / 1 0 0 0 ; % Abtastintervall N = f l o o r (T/dt ) + 1 ; % Zahl der Werte t = ( 0 : dt : ( N−1) * dt ) ; % Abtastzeitpunkte stochPhase = 2 * pi * rand ( 1 , 1 ) ; % Zufallsphase % Mustersignal des harmonischen Prozesses erzeugen s i g n a l = s q r t ( 2 ) * s i n ( 2 * pi * 5 0 * t +stochPhase ) ; % Korrelationssignal berechnen c r s i g = x c o r r ( s i g n a l , ’ unbiased ’ ) ; >> % Zeitlicher Mittelwert >> EWz = mean( s i g n a l ) EWz = −9.0368 e−006 >> % Zeitliche Varianz >> VARz = var ( s i g n a l ) VARz = 1.0000
kann zum Vergleich eine lange Musterfunktion des Prozesses und die zugehörige (auf zeitlicher Mittelung mit xcorr beruhende) Autokorrelierte erzeugt werden. Diese Autokorrelierte ist ebenfalls cos(2π50τ ) und Erwartungswert und Varianz entsprechen den theoretisch ermittelten konstanten Kennwerten des Prozesses.
302
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Der so genannte Harmonische Prozess kann somit als ergodisch angenommen werden. Übung 132 ( Lehrbuch Seite 425 ) Betrachten Sie den Fall eines „Sinus in additivem Rauschen“ Xt = a · sin(ωt + φ) + Nt .
(302.1)
Dabei sei Nt ein stationäres ergodisches Rauschsignal. Nehmen Sie ferner an, auch der Prozess Xt sei stationär ergodisch. Berechnen Sie unter dieser Voraussetzung die Kennwerte E(X), V(X) und rXX (τ ) des Prozesses. Lösung zu Übung 132 Da der (deterministische) Sinusanteil und der Rauschanteil Nt im Prozess Xt stochastisch unabhängig sind, beschränken wir uns zunächst auf den deterministischen Anteil und setzen für den Moment: ˜ t = a · sin(ωt + φ). X
(302.2)
Da dieses Signal periodisch ist, genügt es, zur Berechnung der Kennwerte eine Periode zu betrachten, denn der Grenzwert fällt mit dem Wert über eine Periode zusammen, wie sich leicht klar machen lässt. Die Periodendauer beträgt: T =
2π s. ω
(302.3)
Man erhält:
˜t E X
1 = 2T
ZT
a · sin(ωt + φ) dt = −
−T
T a cos(2πt/T + φ) 2T 2π/T −T
(302.4)
a cos(2π + φ) a cos(−2π + φ) =− + = 0. 2T 2π/T 2T 2π/T Des Weiteren errechnet man: ZT 1 ˜ V Xt = a2 · sin2 (ωt + φ) dt 2T
−T
2
=
a 2T ω
T 1 1 1 − cos(ωt + φ) sin(ωt + φ) + ωt + φ) 2 2 2 −T
(302.5)
303
Lösungsband zu „Signale und Systeme“
a2 = 4π
T 1 2πt 2πt 1 2πt 1 − cos( + φ) sin( + φ) + + φ) 2 T T 2 T 2 −T
a2 1 2π 1 1 2π 1 − cos(φ) sin(φ) + + φ + cos(φ) sin(φ) + − φ 4π 2 2 2 2 2 2 2 2 a a = 2π = . 4π 2 =
˜ t , d.h. einer harmoniDies ist die Durchschnittsleistung des „Prozesses“ X schen Schwingung mit der Amplitude a! Für die Autokorrelationsfunktion errechnet man: 1 rX˜ X˜ (τ ) = 2T
ZT
a2 · sin(ωt + φ) · sin(ω(t + τ ) + φ) dt
−T
T τ 1 T t φT + πτ cos 2π t− sin 4π + 2 2 T 8π T T −T τ τ a2 1 1 = cos 2π T − cos 2π (−T ) 2T 2 T 2 T τ a2 a2 = T cos 2π = cos (ωτ ) . 2T T 2 a2 = 2T
Man beachte, dass die Nullphase φ im Ausdruck der Autokorrelationsfunktion nicht mehr vorkommt. Dies ist auch anschaulich klar, denn die Autokorrelationsfunktion „misst“ ja die Ähnlichkeit zwischen dem Sinus und einer verschobenen Version. Da in beiden Funktionen dieselbe Nullphase vorkommt, darf sie auf die Ähnlichkeit keinen Einfluss haben, sondern lediglich die Verschiebung τ ! Rechnet man nun den additiven Rauschterm mit ein, so erhält man: ˜ t ) + E(Nt ) = 0 + E(Nt ) = E(Nt ). E(Xt ) = E(X
(303.1)
Die Varianz (und damit auch die Signalleistung) erhöht sich um die Varianz des Rauschprozesses σ 2 , denn aufgrund der stochastischen Unabhängigkeit des deterministischen „Prozesses“ und des additiven stochastischen Anteils Nt gilt: 2 ˜ t ) + V(Nt ) = a + σ 2 . V(Xt ) = V(X 2
(303.2)
Für die Signalleistung gilt im Übrigen mit µ := E(Xt ): 2
˜ t ) + (E(Xt )) = LX := E(Xt2 ) = V(X
a2 + σ 2 + µ2 . 2
(303.3)
304
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Die Autokorrelationsfunktion erhält aufgrund der Unabhängigkeit von Sinus und Rauschen ebenfalls einen additiven Term, nämlich die Autokorrelierte des Rauschens. Genauer errechnet man: ˜ t + Nt · X ˜ t+τ + Nt+τ rXX (τ ) = E(Xt · Xt+τ ) = E X ˜tX ˜ t+τ + E X ˜ t · Nt+τ + E X ˜ t+τ · Nt + E (Nt Nt+τ ) =E X = rX˜ X˜ (τ ) + 0 · E (Nt+τ ) + 0 · E (Nt ) + rN N (τ )
(304.1)
2
= rX˜ X˜ (τ ) + rNN (τ ) =
a cos (ωτ) + rN N (τ ). 2
Übung 133 ( Lehrbuch Seite 425 ) Zeigen Sie, dass der in Übung 132, Gleichung (302.1) definierte Prozess „Sinus in additivem Rauschen“ streng genommen kein (im weiteren Sinne) stationärer Prozess ist. Begründen Sie, warum die Ergebnisse und Aussagen aus Übung 132, im Lichte von Übung 131 gesehen, trotzdem sinnvoll sind! Lösung zu Übung 133 Der Prozess Xt = a · sin(ωt + φ) + Nt
(304.2)
ist streng genommen kein (im weiteren Sinne) stationärer Prozess, denn für den Erwartungswert gilt E (Xt ) = E (a · sin(ωt + φ) + Nt )
= a · sin(ωt + φ) + E (Nt ) = a · sin(ωt + φ) + 0 = a · sin(ωt + φ),
(304.3)
da a · sin(ωt + φ) deterministisch ist. Der Erwartungswert ist somit nicht konstant, sondern hängt von t ab. Trotzdem sind die Überlegungen aus der Lösung zu Übung 132 gerechtfertigt, wenn man die Ergebnisse aus Übung 131 in Betracht zieht. Beobachtet man nämlich einen „Sinus in additivem Rauschen“ in der „freien Wildbahn“, so ist i.Allg. die Nullphase φ nicht bekannt. Sie kann zufällig jeden beliebigen Wert im Intervall [0, 2π] rad annehmen. Insofern beobachtet man eigentlich den Prozess Xt = a · sin(ωt + Φ0 ) + Nt ,
(304.4)
Lösungsband zu „Signale und Systeme“
305
wobei Φ0 eine im Intervall [0, 2π] gleichverteilte Zufallsvariable ist. Mit anderen Worten, man beobachtet einen mit additiven Rauschen überlagerten Harmonischen Prozess. Nach Übung 131 ist dieser Prozess jedoch ergodisch und somit auch der Prozess Xt . Die Berechnungen in Übung 132 sind also unter diesem Gesichtspunkt korrekt3 . Übung 134 ( Lehrbuch Seite 425 ) Erzeugen Sie mit Hilfe Simulink-Systems s_Rausch.mdl mehrere Musterfunktionen der Rauschsignale. Berechnen Sie anschließend die Autokorrelationsfolgen und bilden Sie jeweils die Mittelwerte dieser Folgen, um die eigentlich notwendige Erwartungswertbildung für die Autokorrelation zumindest approximativ nachzubilden. Berechnen Sie anschließend eine FFT der gemittelten Autokorrelationsfolgen und versuchen Sie, das Ergebnis zu interpretieren! Lösung zu Übung 134 Um das mehrfache Aufrufen des Simulink-Systems s_Rausch.mdl und die daran anschließenden Berechnungen zu automatisieren wurde die folgende MATLAB-Funktion IterRausch2.m programmiert: f un c t i o n [ c t , corrNoise , corrBP ] = . . IterRausch2 ( anz , simudauer , f i x s t e p ) % % Funktion IterRausch2 % % ... % % Mit Hilfe dieser Funktion wird das Simulink-System % s_Rausch2.mdl (mit den durch die Initialisierung % festgelegten Parametern) MEHRFACH (anz) aufgerufen. % Die Intitialisierung der Parameter des Simulink-Systems % muss vorher erfolgen! % % Nach jeder Simulation werden die Autokorrelationsfolgen % des Rauschsignals und des Bandpassausgangssignals % berechnet. Diese werden anschließend gemittelt. % % Die gemittelten Korrelationsfolgen werden darüber % hinaus geplottet. %.. % Initialisierung der Ausgabematrizen 3
Na, Gott sei Dank!
306
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
T = simudauer ; dt = f i x s t e p ; N = f l o o r (T/dt ) + 1 ; corrNoise = z e r o s ( 2 * N− 1 , 1 ) ; corrBP = z e r o s ( 2 * N− 1 , 1 ) ;
% % % % %
Simulationszeit Abtastintervall Zahl der Werte Vorinitialisierte Korrelationsfolgen
% Aufruf der Iterationsschleife für die Simulation f o r i = 1 : anz % Zufallsgenerator für den Rauschblock neu % initialisierenen z u f a l l = f i x ( rand ( 1 ) * 3 2 0 0 0 ) ; % Zufallszahl erzeugen set_param ( ’ s_Rausch2 / Rauschquelle ’ , ’ seed ’ , . . . num2str ( z u f a l l ) ) ; % Simulink-System aufrufen und Signale [ t , x , s i g n a l e ] = sim ( ’ s_Rausch2 ’ ) ; rsig0 = signale ( : , 1 ) ; rsigbp = s i g n a l e ( : , 2 ) ; % Korrelationssignale berechnen c r s i g 0 = x c o r r ( r s i g 0 , ’ biased ’ ) ; c r s i g b p = x c o r r ( rsigbp , ’ biased ’ ) ; % Korrekationssignale akkumulieren corrNoi se = corrNoise + c r s i g 0 ; corrBP = corrBP + c r s i g b p ; end ; % Korrelationen mitteln corrNoise = corrNoise /anz ; corrBP = corrBP/anz ; % Korrelations-Zeitvektor festlegen c t = (−T : dt : T ) ; % Autokorrelationsfunktion plotten figure ..
Diese Funktion ruft ein im Hinblick auf die mehrfache Ausführung leicht modifiziertes System s_Rausch2.mdl auf und führt die Berechnung der gemittelten 10 Autokorrelationen automatisch durch. Ein Aufruf mit [ c t , corrNoise , corrBP ] = I terRausch2 ( 1 0 , simudauer , f i x s t e p ) ;
307
Lösungsband zu „Signale und Systeme“
liefert die in Abbildung 5.2 dargestellten gemittelten Autokorrelationen (wobei hier nur der Bereich unmittelbar um 0 dargestellt ist). 12 1
−6
10
0.9
8
0.8
6
0.7
4 rBP(k)
0.6 rNN(k)
x 10
0.5
2 0
0.4
−2
0.3
−4
0.2
−6
0.1
−8
0 −0.05
−0.05
−0.03
−0.01
Zeit/s
0.01
0.03
0.05
−0.03
−0.01
0 0.01 Zeit/s
0.03
0.05
Abb. 5.2: Gemittelte Autokorrelationsfunktionen von Rauschsignal (links) und Bandpass-Ausgangssignal (rechts)
Die Ergebnisse können wie folgt interpretiert werden. Das Eingangsrauschen ist im Wesentlichen unkorreliert für Zeitverschiebungen τ 6= 0. Die Korrelationsfunktion hat daher Werte nahe 0. Die höchste Korrelation („Ähnlichkeit“) ergibt sich bei Zeitverschiebung 0. Die Korrelationsfunktion aus Abbildung 5.2 ist typisch für sehr unregelmäßige rauschartige Signale, wie etwa das (thermische) Widerstandsrauschen. Das stochastische Ausgangssignal des Filters weist dagegen deutlich periodische Zusammenhänge auf! Das rechte Signal aus Abbildung 5.2 ist cosinusförmig mit Periode 0.01 s entsprechend der eingestellten Filter-Mittenfrequenz von 100 Hz (man vergleiche dieses Ergebnis mit den Berechnungen aus Übung 132!). Mit Hilfe der MATLAB-Funktion CorrsigFFT können nun FFT-Spektren der Signale corrNoise und corrBP bestimmt werden. Da die Autokorrelationsfolgen an ihren Enden jeweils nur auf sehr wenigen Signalwerten beruhen, berechnet die Funktion CorrsigFFT eine 1-K-FFT beruhend auf 1024 Punkten, die aus der Mitte des Autokorrelationssignals herausgeschnitten werden. Die Aufrufe [ frq , CorrNoiseFFT ] = CorrsigFFT ( corrNoise , 1/ f i x s t e p ) ; [ frq , CorrBPFFT ] = CorrsigFFT ( corrBP , 1/ f i x s t e p ) ;
liefern die in Abbildung 5.3 dargestellten FFT-Spektren. Die FFT der Autokorrelierten des Rauschens liefert offenbar keine herausgehobenen Spektralanteile. Alle Frequenzanteile sind gleichermaßen vertreten.
308
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
1.4
x 10
1.2
1
1
0.8
0.8 |FFT|
|FFT|
−3
0.6
0.4
0.4
0.2
0.2 0 0
0.6
200
400 600 Frequenz/Hz
800
1000
0 0
200
400 600 Frequenz/Hz
800
1000
Abb. 5.3: FFT-Spektren der gemittelten Autokorrelationsfunktionen von Rauschsignal (links) und Bandpass-Ausgangssignal (rechts)
Dagegen sind beim Bandpass-Ausgangssignal die Spektralanteile der Autokorrelierten des Signals bei der Mittenfrequenz4 200 Hz des Bandpasses konzentriert! Übung 135 ( Lehrbuch Seite 425 ) Überprüfen Sie mit Hilfe von MATLAB Ihr Ergebnis aus Übung 132. Erzeugen Sie sich dazu ein Sinussignal in Rauschen, etwa indem Sie das Rauschsignal aus Übung 134 verwenden und ein Sinussignal aufaddieren. Lösung zu Übung 135 Mit Hilfe der nachfolgenden MATLAB-Anweisungen kann das Ergebnis von Übung 132 experimentell überprüft werden. Zunächst erzeugen wir (gemäß Aufgabenstellung) durch einen Aufruf des Simulink-Systems s_Rausch.mdl und die Anweisung
>> s i g r a u s c h = r s i g 0 ( : , 2 ) ;
ein Rauschsignal. Entsprechend den Voreinstellungen im Initialisierungsfile5 init_Rausch.m ist das Signal 10 s lang und mit fa = 1000 Hz abgetastet. Mit Hilfe des ebenfalls vom Simulink-System zurückgelieferten Zeitvektors t kann dann ein Sinussignal erzeugt und auf das Rauschen aufaddiert werden: 4 5
Die Linie bei 800 Hz entspricht bekanntlich dem Spektralanteil bei −200 Hz!! Da die Einstellungen editierbar sind, sollten diese vorab nochmal geprüft werden!
Lösungsband zu „Signale und Systeme“
309
% Sinussignal mit Amplitude sqrt(2) % und Frequenz 100 Hz (Periode: 0.01 s) % und einer willkürlich gewählten Nullphase % von pi/3 >> s s i g n a l = s q r t ( 2 ) * s i n ( 2 * pi * 1 0 0 * t +pi / 3 ) ; % Addition der beiden Signale >> x = s s i g n a l + s i g r a u s c h ;
Mit den folgenden Anweisungen werden die Kennwerte des stationären (ergodischen) Signals berechnet: % Erwartungswert >> EX = mean ( x ) EX = −0.0041
Der Mittelwert E(Xt ) des Prozesses muss laut Übung 132 E(Nt ) + 0 sein. Da % Erwartungswert Rauschen >> EN = mean ( s i g r a u s c h ) EN = −0.0043
ist, wird dieses Ergebnis (zumindest approximativ) bestätigt. Für die Schätzung der Varianz erhält man: % Varianz berechnen >> VX = var ( x ) VX = 1.9867
Laut Übung 132 muss die für die Varianz √ 2 2 a2 2 V(Xt ) = +σ = + V(Nt ) = 1 + V(Nt ) 2 2 gelten. Wegen
(309.1)
310
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
% Varianz Rauschen >> VN = var ( s i g r a us c h ) VN = 0.9749
wird dieses Ergebnis ebenfalls bestätigt. Im Falle der Autokorrelationsfunktion erhält man durch Aufruf von % Berechnung des Korrelationssignals >> c o r r x = x c o r r ( x , ’ unbiased ’ ) ; % Zeitbasis des Korrelationssignals >> T = t ( end ) ; >> c z e i t = (−T : f i x s t e p : T ) ; % Grafische Darstellung >> p l o t ( c z e i t , c o r r x , ’b ’ , ’ LineWidth ’ , 3 ) >> a x i s ( [ − 0 . 1 , 0 . 1 , − 1 . 5 , 2 . 5 ] ) >> g r i d >> x l a b e l ( ’ Z e i t / s ’ ) >> y l a b e l ( ’ r _ { XX } ’ )
das in Abbildung 5.4 dargestellte Autokorrelationssignal. Sehr gut zu erkennen ist der in Übung 132 prognostizierte Anteil a2 cos (ωτ ) = 2
√ 2 2 cos (ωτ ) = cos (ωτ ) 2
(310.1)
der theoretischen Autokorrelierten rXX (τ ) =
a2 cos (ωτ ) + rN N (τ ). 2
(310.2)
Die abzulesende Periodendauer von T = 0.01 s entspricht genau der Frequenz ω = 2π · 100 rad/s. Die Autokorrelationsfunktion des Rauschens ergibt sich aus % Berechnung des Korrelationssignals >> c o r r n = x c o r r ( sigrausch , ’ unbiased ’ ) ;
und mit
311
Lösungsband zu „Signale und Systeme“
2.5 2 1.5
r
XX
1 0.5 0 −0.5 −1 −1.5 −0.1 −0.075 −0.05 −0.025
0 0.025 0.05 0.075 Zeit /s
0.1
Abb. 5.4: Autokorrelationsfunktion einer Überlagerung von Sinussignal und Rauschsignal
>> c o r r n (10000 −5:10000+ 3) ans = 0.0042 0.0111 0.0142 0.0035 −0.0103 −0.0131 0.9748 −0.0131 −0.0103
oder einem entsprechenden Plot überprüft man, dass das Rauschsignal eine Autokorrelierte hat, die i.W. gleich 0 ist, außer an der Stelle t = 0, wo der Wert 0.9748 beträgt. Damit ist auch das Resultat (310.2) experimentell bestätigt. Es wird empfohlen, die Berechnung für eine längere Simulationsdauern zum Vergleich durchzuführen. Übung 136 ( Lehrbuch Seite 425 ) Betrachten Sie das Simulink-System s_delay.mdl der Begleitsoftware. Initialisieren Sie mit dem Initialisierungsfile init_delay.m eine Verzögerung des
312
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Signals durch den Transport Delay-Block. Nehmen Sie eine Signalprobe auf, wobei Sie den Zufallsgenerator mit Hilfe des Parameters seed im Rauschsignal-Block neu initialisieren. Berechnen Sie nach der Simulation die Kreuzkorrelation der beiden Signale, etwa durch c r o s s = x c o r r ( dsig ( : , 1 ) , dsig ( : , 2 ) , ’ unbiased ’ ) ;
Plotten Sie das Ergebnis und versehen Sie dabei die x-Achse mit dem richtigen Zeitmaß. Bei welcher Zeit finden Sie das Korrelationsmaximum? Lösung zu Übung 136 Mit Hilfe des Initialisierungsbuttons wird das Initialisierungsfile init_delay.m aufgerufen und die Signalverzögerung auf v*stime eingestellt, in der Voreinstellung etwa auf >> v * stime ans = 0.0050
Nach Simulation stehen im Workspace die Signale in der Matrix dsig zur Verfügung. Die erste Spalte enthält das Rauschsignal, die zweite das um 0.005 s verzögerte Rauschsignal. Die Kreuzkorrelation der beiden Signale ergibt sich aus c r o s s = x c o r r ( dsig ( : , 1 ) , dsig ( : , 2 ) , ’ unbiased ’ ) ;
Mit >> T = t ( end ) T = 10 >> c z e i t = (−T : stime : T ) ;
erhält man den zugehörigen Zeitvektor, sodass die Kreuzkorrelation mit
313
Lösungsband zu „Signale und Systeme“
>> g r i d >> a x i s ( [ − 0 . 0 3 , 0 . 0 3 , min ( c r o s s ) , 1 . 1 * max ( c r o s s ) ] )
im Bereich ±0.03 s geplottet werden kann (s. Abbildung 5.5). 5
x 10 10 8
4
r
XY
6
2 0 −2 −0.02
−0.005
0 Zeit/s
0.005
0.01
0.03
Abb. 5.5: Kreuzkorrelationsfunktion von Rauschsignal und um 0.005 s verzögertem Rauschsignal
Das Korrelationsmaximum liegt bei −0.005 s. Würde man c r o s s = x c o r r ( dsig ( : , 2 ) , dsig ( : , 1 ) , ’ unbiased ’ ) ;
berechnen, so läge es bei 0.005 s. In beiden Fällen liegt daher der das Korrelationsmaximum (bis auf das Vorzeichen) bei der eingestellten Verzögerungszeit! Offenbar kann man auf diese Weise die Verzögerungszeit messen. Übung 137 ( Lehrbuch Seite 426 ) Mit dieser und der folgenden Übung sollen die Begriffe stationär und ergodisch nochmals anhand eines MATLAB-Beispiels verdeutlicht werden. (a) Untersuchen Sie dazu zunächst den Programmquelltext der MATLABFunktionen rp1.m und rp3.m. In allen beiden Funktionen werden Zufallsprozesse simuliert. Beschreiben Sie diese Zufallsprozesse mit geeignet definierten Zufallsvariablen. (b) Bestimmen Sie anhand der Modellierung aus Aufgabenteil (a) die Kennwerte E(Xt ) und V(Xt ) der Prozesse.
314
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Hinweis: Verwenden Sie dabei die Resultate zu Berechnung der Kennwerte E(X) und V(X) aus Anhang A.7 des Lehrbuchs! Lösung zu Übung 137 (a) Untersucht man den Quelltext der Programme rp*.m, so stellt man fest, dass jedem der Zufallssignale ein gleichverteilter Rauschgenerator6 zu Grunde liegt. Der Erzeugungsmechanismus in rp1.m lautet: % fest gewählte Parameter a = 0.02; b = 5; % Zufallsprozess erzeugen MC = ones (M, 1 ) * b * s i n ( ( 1 :N) * pi /N) ; AC = a * ones (M, 1 ) * [ 1 :N] ; rauschprozess = ( rand (M,N) − 0 . 5 ) . *MC+AC;
Die erzeugten Werte können als mit Abtastrate fa = 1 Hz abgetastete (1) Werte7 eines Rauschprozesses Rt aufgefasst werden, der wie folgt definiert werden kann: 1 1 (1) Rt = Xt · b · sin 2π t + a · t = X · b · sin 2π t + a · t (314.1) 2N 2N Dabei ist X eine im Intervall [− 2b , 2b ] gleichverteilte Zufallsvariable. Betrachtet man den Erzeugungsmechanismus in rp2.m MR = rand (M, 1 ) * ones ( 1 ,N) ; rauschprozess = ( rand (M,N) − 0 . 5 ) . *MR+ 0 . 7 5 ;
so können die Werte offenbar als Abtastwerte eines Rauschprozesses aufgefasst werden, der durch (2)
Rt
= Xt · Y t + b = X · Y + b
(314.2)
definiert ist. Dabei ist X eine im Intervall [− 21 , 12 ] gleichverteilte Zufallsvariable und Y eine zu X stochastisch unabhängige und im Intervall [0, 1] gleichverteilte Zufallsvariable. Noch einfacher ist der Erzeugungsmechanismus in rp3.m zu analysieren: 6 7
D.h. die erzeugten Zufallszahlen folgen einer Gleichverteilung im Intervall [0, 1]. Man beachte: die Abtastrate kann nur anhand der Abtastwerte niemals ermittelt werden. Die Abtastrate kann aber durch Renormierung des Zeitmaßes immer auf fa = 1 Hz festgelegt werden.
315
Lösungsband zu „Signale und Systeme“
% fest gewählte Parameter a = 0.5; m = 3; % Zufallsprozess erzeugen rauschprozess = ( rand (M,N) − 0 . 5 ) *m+a ;
Hier kommt nur die im Intervall [− 12 , 12 ] gleichverteilte Zufallsvariable X vor und der Prozess kann mit (3)
Rt
= Xt · m + a = m · X + a
(315.1)
beschrieben werden. (b) Aus der Modellierung (314.1) folgt gemäß den allgemeinen Rechenregeln E(α · Z + β) = αE(Z) + β,
V(α · Z + β) = α2 V(Z)
(315.2)
für eine Zufallsvariable Z und α, β ∈ R, dass für den Erwartungswert 1 1 (1) E Rt = E(X) · b · sin 2π t +a·t= 0+a·t= t (315.3) 2N 50 und für die Varianz 1 (1) V Rt = V X · b · sin 2π t +a·t 2N 1 = V X · b · sin 2π t 2N b2 1 25 1 2 2 = sin 2π t = sin 2π t 12 2N 12 2N
(315.4)
gilt. Dabei wird verwendet, dass eine im Intervall [α, β] gleichverteilte Zu2 fallsvariable die Varianz (β−α) hat. 12 (2)
Für den zweiten Prozess Rt
gilt:
1 (2) E Rt = E(X · Y ) + b = E(X) · E(Y ) + b = 0 · + b = 0.75. (315.5) 2
Für die Varianz erhält man: (2) 2 V Rt = V(X · Y ) = E (X · Y − 0) = E X2 · Y 2 = E X2 · E Y 2 .
(315.6)
316
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
In dieser Berechnung wurde die stochastische Unabhängigkeit von X und Y ausgenutzt sowie die Tatsache, dass E(X · Y ) = 0 ist. Wegen V(X) = E X 2 − E(X)2 = E X 2 , 2 (316.1) 1 2 2 2 V(Y ) = E Y − E(Y ) = E Y − 2 folgt aus (315.6):
1 (2) V Rt = V (X) · V(Y ) + . 4
(316.2)
Die beiden gleichverteilten Zufallsvariablen X und Y haben jedoch beide 1 die Varianz 12 . Damit folgt: 1 1 1 (2) V Rt = · + = 0.0278. (316.3) 12 12 4 (3)
Für den dritten Prozess Rt gilt nach den oben schon verwendeten Rechenregeln für die Translation und Skalierung einer Zufallsvariablen: (3) E Rt = m · E(X) + a = 0 + a = 0.5, (316.4) m2 9 (3) V Rt = m2 V(X) = = = 0.75. 12 12 Übung 138 ( Lehrbuch Seite 426 ) Berechnen Sie mit Hilfe der in Übung 137 gewonnenen Modellierungen, sofern möglich, die Autokorrelationsfunktionen der in rp1.m und rp3.m definierten Prozesse. Entscheiden Sie, welche der Prozesse im weiteren Sinne stationär sind! Lösung zu Übung 138 Für den ersten Prozess (1) Rt
1 = Xt · b · sin 2π t +a·t 2N
(316.5)
erhält man: (1) (1) (1) rRR (τ ) := E Rt · Rt+τ 1 =E Xt · b · sin 2π t +a·t 2N
(316.6)
317
Lösungsband zu „Signale und Systeme“
· =
...
1 Xt+τ · b · sin 2π (t + τ ) + a · (t + τ ) 2N a2 · t · (t + τ ).
Die Autokorrelationsfunktion ist also nicht nur von τ , sondern auch von t abhängig! (1)
Dieses und die Ergebnisse aus Übung 137 zeigen, dass der Prozess Rt (im weiteren Sinne) stationärer Prozess ist. Für den zweiten Prozess (2)
Rt
kein
(317.1)
= Xt · Yt + b = X · Y + b
erhält man: (2) (2) (2) rRR (τ ) := E Rt · Rt+τ
(317.2)
= E ((Xt · Yt + b) · (Xt+τ · Yt+τ + b))
= E Xt · Yt · Xt+τ · Yt+τ + b · Xt · Yt + b · Xt+τ · Yt+τ + b
2
Sowohl die Variablen X und Y , als auch die Variablen X resp. Y zu verschiedenen Zeitpunkten (τ 6= 0) sind stochastisch unabhängig (vgl. den Erzeugungsmechanismus in rp2.m), sodass wegen E(X) = 0 gilt: (2)
rRR (τ ) := E (Xt ) · E (Yt ) · E (Xt+τ ) · E (Yt+τ ) 2
+ b · E (Xt ) · E (Yt ) + b · E (Xt+τ ) · E (Yt+τ ) + b2
(317.3)
2
= b = (0.75) = 0.5625.
Insbesondere entnimmt man dieser Berechnung, dass das Ergebnis nicht von t abhängt! Für gleiche Zeitpunkte (τ = 0) gilt (vgl.315.6): (2)
rRR (0) := E Xt2 · Yt2 + 2 · b · Xt · Yt + b2 = E Xt2 · Yt2 + 0 + b2 (2) = V Rt + b2
(317.4)
= 0.0278 + 0.5625 = 0.5903.
Da die Autokorrelationsfunktion nicht von t, sondern nur von τ abhängt und (2)
die Kennwerte E Rt
(2)
und V Rt
nach Übung 137 konstant sind, ist der
(2) Rt
Prozess im weiteren Sinne stationär! Für den dritten Prozess (3)
Rt
= Xt · m + a
(317.5)
318
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
erhält man: (3) (3) (3) rRR (τ ) := E Rt · Rt+τ
(318.1)
= E ((m · Xt + a) · (m · Xt+τ + a))
= E m2 · Xt · Xt+τ + a · m · Xt + a · m · Xt+τ + a
2
.
Die Variablen X zu verschiedenen Zeitpunkten (τ 6= 0) sind stochastisch unabhängig (vgl. den Erzeugungsmechanismus in rp3.m), so dass wegen E(X) = 0 gilt: (3)
rRR (τ ) := 0 + 0 + 0 + a2 = a2 = 0.25.
(318.2)
Für gleiche Zeitpunkte (τ = 0) gilt: (3)
rRR (0) := E m2 · Xt2 + 2 · a · m · Xt + a2 = E m 2 · X 2 + 2 · a · m · X + a2
(318.3)
m2 9 1 = m2 · V (X) + 0 + a2 = + a2 = + = 1. 12 12 4
Da die Autokorrelationsfunktion nicht von t, sondern nur von τ abhängt und (3)
die Kennwerte E Rt Prozess
(3) Rt
(3)
und V Rt
nach Übung 137 konstant sind, ist der
ebenfalls im weiteren Sinne stationär!
Übung 139 ( Lehrbuch Seite 426 ) Generieren Sie für die in rp1.m, rp2.m und rp3.m definierten Prozesse durch Aufruf der Funktionen, beispielsweise durch rauschpr ozess3 = rp3 ( 1 0 0 , 1 0 0 ) ;
jeweils eine 100 × 100-Matrix bestehend aus 100 Zeilenvektoren der Länge 100, welche jeweils eine diskrete Musterfunktion des simulierten Zufallsprozesses darstellen sollen. Bestimmen Sie mit Hilfe von MATLAB für die in den Übungen 137 und 138 als im weiteren Sinne stationär identifizierten Prozesse Schätzungen der Scharkennwerte und der Autokorrelationsfunktion und überprüfen Sie so die dort gewonnenen Ergebnisse. Prüfen Sie anschließend experimentell, ob die Prozesse auch als ergodisch angenommen werden können.
319
Lösungsband zu „Signale und Systeme“
Lösung zu Übung 139 (2)
Gemäß Übung 137 und Übung 138 sind nur die Prozesse Rt weiteren Sinne stationär. Ein Aufruf von
(3)
und Rt
im
>> rauschprozess2 = rp2 ( 1 0 0 , 1 0 0 ) ; >> rauschprozess3 = rp3 ( 1 0 0 , 1 0 0 ) ;
erzeugt jeweils 100 Musterfunktionen der Länge 100 der Prozesse. Als Musterfunktionen können die Zeilenvektoren aufgefasst werden. Mit Hilfe von folgenden Anweisungen können nun die Scharmittelwerte (2)
und damit Schätzungen von E Rt
(3)
und E Rt
bestimmt werden. Die
Schätzungen werden zusammen mit den in Übung 137 und Übung 138 ermittelten exakten Werten geplottet. >> >> >> >> >> >>
N = 100; % Rauschprozess 2 E2 = mean ( rauschprozess2 ) ; n = ( 1 :N) ; p l o t ( n , E2 , ’ r ’ , n , 0 . 7 5 * ones ( s i z e ( n ) ) , ’ b ’ , ’ LineWidth ’ , 3 ) ; hold
>> >> >> >> >> >> >>
% Rauschprozess 3 E3 = mean ( rauschprozess3 ) ; p l o t ( n , E3 , ’k ’ , n , 0 . 5 * ones ( s i z e ( n ) ) , ’b ’ , ’ LineWidth ’ , 3 ) ; a x i s ( [ 1 ,N, 0 , 1 ] ) grid x l a b e l ( ’ Index / n ’ ) y l a b e l ( ’E ( R_n ) ’ )
Abbildung 5.6 zeigt, dass die Scharmittel der beiden Prozesse als (annähernd) konstant aufgefasst werden können und dass sie die theoretischen Ergebnisse annähern. Mit Hilfe der folgenden Anweisungen werden die Scharvarianzen berechnet und zusammen mit den theoretischen Ergebnissen geplottet: >> >> >> >>
% Rauschprozess 2 V2 = var ( r auschprozess2 ) ; p l o t ( n , V2 , ’ r ’ , n , 0 . 0 2 7 8 * ones ( s i z e ( n ) ) , ’b ’ , ’ LineWidth ’ , 3 ) ; hold
>> % Rauschprozess 3 >> V3 = var ( r auschprozess3 ) ;
320
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“ 1
1
0.9
0.9
0.8
0.8
0.7
0.7 0.6 V(R )
0.5
n
E(Rn)
0.6
0.4
0.5 0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
20
40
60 Index/n
80
100
0
20
40
60 Index/n
80
100
Abb. 5.6: Scharmittelwerte (links) und Scharvarianzen (rechts) der Prozesse, welche mit rp2.m und rp3.m erzeugt werden >> >> >> >> >>
p l o t ( n , V3 , ’k ’ , n , 0 . 7 5 * ones ( s i z e ( n ) ) , ’ b ’ , ’ LineWidth ’ , 3 ) ; a x i s ( [ 1 ,N, 0 , 1 ] ) grid x l a b e l ( ’ Index / n ’ ) y l a b e l ( ’V( R_n ) ’ )
In Abbildung 5.6 ist zu sehen, dass wiederum nur die Scharvarianzen der beiden letzten Prozesse als (annähernd) konstant aufgefasst werden können. Schätzungen der Autokorrelationsfunktionen können mit Hilfe der MATLAB-Funktion xcorr bestimmt werden. Hat xcorr als Argument eine Matrix, so werden alle Kreuzkorrelationsfunktionen zwischen allen Spalten bestimmt. Transponiert man die Matrix vorher, so können alle Kreuzkorrelationsfunktionen der Zeilen bestimmt werden. Die Autokorrelationen befinden sich dann darunter und können durch eine geeignete Auswahl der Spalten ausgewählt und anschließend gemittelt werden. Mit Hilfe der folgenden Anweisungen werden die Schätzungen der Autokorrelationsfunktionen berechnet und zum Vergleich mit den theoretisch ermittelten Funktionen geplottet: >> >> >> >> >> >> >> >> >>
N = 100; % Rauschprozess 2 x y c o r r 2 = x c o r r ( rauschpr ozess2 ’ , ’ unbiased ’ ) ; % Auswahl der Autokorrelationsfunktionen xcorr2 = [ ] ; f o r k = 1 :N x c o r r 2 = [ x c o r r 2 , x y c o r r 2 ( : , ( k−1) *N+k ) ] ; end x c o r r 2 = mean( x c o r r 2 ’ ) ; % Mittelung
321
Lösungsband zu „Signale und Systeme“ >> >> >> >> >> >> >> >> >> >>
cn = ( −(N− 1 ) :N− 1 ) ; % Korrelations"zeit" x c o r r 2 t h e o r i e = 0 . 5 6 2 5 * ones ( s i z e ( cn ) ) ; x c o r r 2 t h e o r i e (N) = 0 . 5 9 0 3 ; % Wert bei Zeit 0 % Plot der geschätzten und der theoretischen % Autokorrelationsfunktion. p l o t ( cn , x c o r r 2 , ’ r ’ , cn , x c o r r 2 t h e o r i e , ’ b ’ , ’ LineWidth ’ , 3 ) ; axis ([ − 60 , 6 0 , 0. 5 5 , 0. 6 ]) grid x l a b e l ( ’ Index / n ’ ) y l a b e l ( ’ r ^ { ( 2 ) } _ {RR} ’ )
>> >> >> >> >> >> >> >> >> >> >> >> >> >> >>
% Rauschprozess 3 x y c o r r 3 = x c o r r ( rauschpr ozess3 ’ , ’ unbiased ’ ) ; % Auswahl der Autokorrelationsfunktionen xcorr3 = [ ] ; f o r k = 1 :N x c o r r 3 = [ x c o r r 3 , x y c o r r 3 ( : , ( k−1) *N+k ) ] ; end x c o r r 3 = mean( x c o r r 3 ’ ) ; % Mittelung x c o r r 3 t h e o r i e = 0 . 2 5 * ones ( s i z e ( cn ) ) ; x c o r r 3 t h e o r i e (N) = 1 ; % Wert bei Zeit 0 p l o t ( cn , x c o r r 3 , ’ r ’ , cn , x c o r r 3 t h e o r i e , ’ b ’ , ’ LineWidth ’ , 3 ) ; axis ([ −60 ,60 ,0 ,1.05]) grid x l a b e l ( ’ Index / n ’ ) y l a b e l ( ’ r ^ { ( 3 ) } _ {RR} ’ )
Abbildung 5.7 zeigt, dass die über die Schar gemittelten Autokorrelationsfunktionen der beiden Prozesse mit den theoretischen Ergebnissen annähernd übereinstimmen. 0.6
1
0.59
0.8
0.58 (3)
rRR
r(2) RR
0.6
0.57
0.4
0.56
0.2
0.55 −60
−40
−20
0 Index/n
20
40
60
0 −60
−40
−20
0 Index/n
20
40
60
Abb. 5.7: Autokorrelationsfunktionen der Prozesse rp2.m (links) und rp3.m (rechts)
Ob die beiden in rp2.m und rp3.m realisierten Prozesse als ergodisch angenommen werden können, kann zumindest experimentell untermauert werden.
322
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Dazu wird zunächst statt 100 Signale zu 100 Punkten jeweils ein Signal mit sehr vielen Abtastwerten (z.B. 100000) erzeugt: >> rauschprozess2b = rp2 ( 1 0 0 0 0 0 , 1 ) ; >> rauschprozess3b = rp3 ( 1 0 0 0 0 0 , 1 ) ;
Mit Hilfe dieser Daten können die Kennwerte im zeitlichen Mittel bestimmt werden: >> EXb = mean( rauschprozess2b ) EXb = 0.7501 >> VXb = var ( rauschprozess2b ) VXb = 0.0275 >>
EYb = mean( rauschprozess3b )
EYb = 0.5013 >> VYb = var ( rauschprozess3b ) VYb = 0.7519
Offenbar entsprechen diese Kennwerte (zumindest approximativ) den über die Scharmittel berechneten Kennwerten. Für die Autokorrelationsfunktionen erhalten wir: >> >> >> >> >> >> >> >> >>
N = 100000; % Rauschprozess 2 x c o r r 2 b = x c o r r ( rauschprozess2b , ’ unbiased ’ ) ; cn = ( −(N− 1 ) :N− 1 ) ; % Korrelations"zeit" x c o r r 2 t h e o r i e = 0 . 5 6 2 5 * ones ( s i z e ( cn ) ) ; x c o r r 2 t h e o r i e (N) = 0 . 5 9 0 3 ; % Wert bei Zeit 0 % Plot der geschätzten und der theoretischen % Autokorrelationsfunktion. p l o t ( cn , xcorr2b , ’ r ’ , cn , x c o r r 2 t h e o r i e , ’b ’ , ’ LineWidth ’ , 3 ) ;
323
Lösungsband zu „Signale und Systeme“ >> >> >> >>
axis ([ − 40 , 40 , 0. 5 62 , 0. 5 9 5]) grid x l a b e l ( ’ Index / n ’ ) y l a b e l ( ’ r ^ { ( 2 ) } _ {RR} ’ )
>> >> >> >> >> >> >> >> >>
% Rauschprozess 3 x c o r r 3 b = x c o r r ( rauschprozess3b , ’ unbiased ’ ) ; x c o r r 3 t h e o r i e = 0 . 2 5 * ones ( s i z e ( cn ) ) ; x c o r r 3 t h e o r i e (N) = 1 ; % Wert bei Zeit 0 p l o t ( cn , xcorr3b , ’ r ’ , cn , x c o r r 3 t h e o r i e , ’b ’ , ’ LineWidth ’ , 3 ) ; axis ([ − 40 , 4 0 , 0. 2 , 1. 0 5 ]) grid x l a b e l ( ’ Index / n ’ ) y l a b e l ( ’ r ^ { ( 3 ) } _ {RR} ’ )
Abbildung 5.8 zeigt, dass die über die Zeit gemittelten Autokorrelationsfunktionen der beiden Prozesse mit den theoretischen Ergebnissen gut übereinstimmen. 1 0.59
0.9
0.585
0.8 0.7
r(2) RR
r(3)
RR
0.58 0.575
0.5
0.57
0.4 0.3
0.565 −40
0.6
−20
0 Index/n
20
40
0.2 −40
−20
0 Index/n
20
40
Abb. 5.8: Durch zeitliche Mittelung berechnete Autokorrelationsfunktionen der Prozesse rp2.m (links) und rp3.m (rechts)
Insgesamt können also in rp2.m und rp3.m realisierten (diskreten) Prozesse als im weiteren Sinne stationär und ergodisch angesehen werden. Übung 140 ( Lehrbuch Seite 451 ) Zeigen Sie, dass für einen zeitkontinuierlichen stationären Prozess aus SXX (0) = 0 stets folgt: Z∞ 0
rXX (τ ) dτ = 0.
(323.1)
324
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Lösung zu Übung 140 Nach Definition des Leistungsdichtespektrums gilt: SXX (jω) =
Z∞
rXX (τ )e−jωτ dτ.
(324.1)
−∞
Insbesondere folgt hieraus für ω = 0: SXX (0) =
Z∞
rXX (τ )e
−j·0·τ
dτ =
−∞
Z∞
rXX (τ ) dτ.
(324.2)
−∞
Ist also SXX (0) = 0, so ist auch Z∞
(324.3)
rXX (τ ) dτ = 0.
−∞
Wegen rXX (−τ ) = rXX (τ ) 0=
Z∞
∀ τ ∈ R, folgt: rXX (τ) dτ = 2
−∞
Also ist
R∞
Z∞
rXX (τ ) dτ.
(324.4)
0
rXX (τ ) dτ = 0.
0
Übung 141 ( Lehrbuch Seite 451 ) Für einen zeitkontinuierlichen stationären Prozess Xt sei SXX (jω) = rect40π (ω + 20π) · cos das zugehörige Leistungsdichtespektrum.
ω 40
(324.5)
(a) Skizzieren Sie das Leistungsdichtespektrum. (b) Berechnen Sie die zugehörige Autokorrelationsfunktion. (c) Welche mittlere Gesamtleistung hat der Prozess? Lösung zu Übung 141 (a) Am einfachsten lässt sich eine Skizze des Leistungsdichtespektrums mit MATLAB erzeugen. Die Anweisungen
325
Lösungsband zu „Signale und Systeme“
>> >> >> >>
omega=( −30 * pi : 0 . 0 1 : 3 0 * pi ) ; Sxx = cos ( omega / 4 0 ) . * ( omega>=−20* pi&omega> 2 0 * s i n c ( 1 / 2 ) ans =
12.7324
Mit Hilfe der Symbolic Math Toolbox9 kann man dieses Ergebnis schnell überprüfen, indem man das Leistungsdichtespektrum integriert: >> syms omega >> f = cos ( omega/ 40) f = cos ( 1 / 4 0 * omega ) >> L = i n t ( f , −20 * pi , 2 0 * pi ) / ( 2 * pi ) L = 40/ pi >> double ( L ) ans = 12.7324
Übung 142 ( Lehrbuch Seite 452 ) Erzeugen Sie mit MATLAB Abtastwerte eines mit fa = 200 Hz abgetasteten, im Band [−50, 50] Hz bandbegrenzten weißen Gauß’schen Prozesses Nt mit Gesamtleistung 1. Gehen Sie dabei folgendermaßen vor: 8 9
d.h. f (−x) = f (x) ∀ x ∈ R. Geht in diesem einfachen Fall aber auch schnell „von Hand“.
Lösungsband zu „Signale und Systeme“
327
(a) Erzeugen Sie Abtastwerte eines geeigneten im Band [−100, 100] Hz bandbegrenzten weißen Gauß’schen Prozesses. Wählen Sie dazu mit der MATLAB-Hilfe eine passende MATLAB-Funktion. (b) Tiefpass-filtern Sie das Signal im Band [−50, 50] Hz. Wählen Sie dazu mit dem fdatool ein geeignetes diskretes Tiefpassfilter. (c) Überprüfen Sie das Ergebnis, indem Sie das diskrete Leistungsdichtespektrum des Filter-Ausgangssignals berechnen. Hinweis: Erzeugen Sie mit dem fdatool in Teil (b) mit File - Generate M-file zunächst ein MATLAB-Programm, welches bei Aufruf ein so genanntes Filter-Objekt erzeugt. Mit diesem Filterobjekt kann die Funktion filter die Filterung des Signals vornehmen. Lösung zu Übung 142 (a) Mit Hilfe der MATLAB-Funktion randn können standard-normalverteilte Zufallszahlen erzeugt werden. Diese Zufallszahlen können als Abtastwerte eines Gauß’schen weißen Rauschens aufgefasst werden. Da anhand der Abtastwerte die Abtastrate nicht zu ermitteln ist, können die Werte prinzipiell jeder Abtastrate zugeordnet werden. Weil die Leistungsdichte des zu konstruierenden Prozesses im Frequenzband [−50, 50] Hz konstant (=: γ) sein und darüber hinaus eine (mittlere) Gesamtleistung von 1 haben soll, und weil diese (mittlere) Gesamtleistung dem Integral über der Dichtefunktion SXX (jω) (s. Übung 141) ent1 spricht, hat der Prozess die konstante Dichte γ = 100 . Ein Prozess mit dieser Dichte hat im Frequenzband [−100, 100] Hz folglich die Leistung 200γ = 2. Diese Leistung muss der Varianz des mit randn simulierten mittelwertfreien Prozesses entsprechen. Mit folgenden Anweisungen wird zunächst eine lange Musterfunktion dieses stationären und ergodischen Prozesses erzeugt: >> s i g n a l = s q r t ( 2 ) * randn ( 1 , 1 0 0 0 0 ) ; >> % Varianz und damit Signalleistung überprüfen >> var ( s i g n a l ) ans = 2.0046 >> % das Signal ist mittelwertfrei >> mean( s i g n a l ) ans =
328
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
0.0015
(b) Mit dem fdatool kann nach Aufruf von >> f d a t o o l
ein Tiefpassfilter mit folgenden Einstellungen konstruiert werden: Response Type : Lowpass Design Method IIR E l l i p t i c Frequency Units Hz Fs : 200 Fpass : 49 Fstop : 51
Die Tiefpasscharakteristik wird nach dem Entwurf angezeigt. Mit File - Generate M-file kann ein MATLAB-Programm (hier TPFilterBLWN.m) erzeugt werden, welches bei Aufruf ein so genanntes Filter-Objekt generiert: >> Hd = TPFilterBLWN Hd = F i l t e r S t r u c t u r e : ’ Di rect −Form I I , Second−Order S e c t i o n s ’ Arit hmetic : ’ double ’ sosM at rix : [ 7 x6 double ] ScaleValues : [ 8 x1 double ] PersistentMemory : f a l s e
Mit diesem Filterobjekt kann die Funktion filter die Filterung des Signals vornehmen: >> f s i g n a l = f i l t e r (Hd, s i g n a l ) ;
(c) Das diskrete Leistungsdichtespektrum des Filter-Ausgangssignals wird nun wie folgt berechnet (vgl. TPFilterBLDS.m): >> % Berechnung des Autokorrelationssignals >> r x x = x c o r r ( f s i g n a l , ’ unbiased ’ ) ;
329
Lösungsband zu „Signale und Systeme“ >> >> >> >>
% N m K
Leistungsdichte mit Hilfe der FFT = 1024; % für 1-K-FFT = lengt h ( f s i g n a l ) ; = f l o o r (N/ 2 ) ;
>> r x x mi t t e = r x x (m−K:m+K− 1 ) ; % % >> Pxx = f f t ( r x x m i t t e ) ; % >> Pxx = f f t s h i f t ( Pxx ) ; % >> f a = 2 0 0 ; >> df = f a /N; >> f r q = (− f a / 2 : df : f a/2−df ) ; >> >> >> >> >> >> >> >>
N Werte SYMMETRISCH rausschneiden FFT berechnen Symmetrisch um 0
% FFT-Frequenzraster % Frequenzen in Hz
% Grafische Darstellung des ZEITKONTINUIERLICHEN % Leistungsdichtespektrums! Hierfür muss das DISKRETE % Leistungsdichtespektrum mit 1/fa sakliert werden!! p l o t ( frq , ( 1/ f a ) * abs ( Pxx ) , ’b ’ , ’ LineWidth ’ , 3 ) grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’ |S_ { XX } ( k)| ’ ) axis ([ −100 ,100 ,0 ,0.05])
In Abbildung 5.10 ist diese Schätzung des Leistungsdichtespektrums wiedergegeben. 0.05 0.045 0.04 0.035 |SXX(k)|
0.03 0.025 0.02
0.015 0.01 0.005 0 −100
−50
0 Frequenz/Hz
50
100
Abb. 5.10: Berechnete Leistungsdichtespektrum-Schätzung
330
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Man erkennt, dass die Dichte genau im Bereich [−50, 50] Hz die geforder1 te Leistungsdichte von ≈ 0.01 = 100 hat10 und außerhalb 0 ist. Mit >> mean( f s i g n a l ) ans = 0.0054 >> var ( f s i g n a l ) ans = 0.9752
kann man experimentell nachprüfen, dass das gefilterte Signal (i.W.) mittelwertfrei ist und ungefähr (wie gefordert) eine mittlere Gesamtleistung von 1 hat. Übung 143 ( Lehrbuch Seite 452 ) Betrachten Sie den Prozess Xt = 10 + sin(2π · 10 · t) + Nt .
(330.1)
Dabei sei Nt ein im Frequenzband [−50, 50] Hz bandbegrenztes Gauß’sches weißes Rauschen. (a) Berechnen Sie das Leistungsdichtespektrum SXX (jω) des Prozesses. (b) Überprüfen Sie Ihre Berechnung aus Aufgabenteil (a) durch eine MATLAB/Simulink-Simulation. Verwenden Sie dazu eine Abtastrate von 100 Hz. (c) Führen Sie eine weitere Simulation mit einem Signal durch, welches Sie mit der MATLAB-Funktion detrend um den Gleichwert bereinigt haben. Was stellen sie fest? Lösung zu Übung 143 (a) Das Leistungsdichtespektrum Sx˜x˜ (jω) des deterministischen periodischen Signalanteils x ˜(t) = 10 + sin(2π · 10 · t) 10
Die Schätzung ist allerdings noch sehr „verrauscht“.
(330.2)
331
Lösungsband zu „Signale und Systeme“
ist durch die einzigen nicht verschwindenden Fourierkoeffizienten c0 = 10 und c1 = c−1 = 12 über die Formel Sx˜x˜ (jω) = 2π
∞ X
k=−∞
|ck |2 δ0 (ω − kω0 )
π π = 200πδ0 (ω) + δ0 (ω − 20π) + δ0 (ω + 20π) 2 2
(331.1)
bestimmbar. Die Leistungsdichte des im Frequenzband [−50, 50] Hz bandbegrenzten weißen Rauschens ist nach Definition konstant und muss im Integral die Varianz σ 2 und damit die mittlere Gesamtleistung des (mittelwertfreien) Rauschsignals ergeben. Damit hat die Dichte in diesem Frequenzband σ2 den Wert γ = 100 W/Hz. Insgesamt ergibt sich für das Leistungsdichtespektrum des Prozesses X t : SXX (jω) = 200πδ0 (ω) + +
π π δ0 (ω − 20π) + δ0 (ω + 20π) 2 2
σ2 rect100π (ω + 50π). 100
(331.2)
(b) Mit Hilfe von MATLAB kann leicht eine Musterfunktion des (ergodischen) Prozesses erzeugt werden. Wir nehmen dabei einmal an, dass die mittlere Gesamtleistung des (mittelwertfreien) Rauschsignals Nt im Beispiel σ 2 = 0.1 beträgt: >> >> >> >> >> >> >>
% Mustersignal erzeugen fa = 100; dt = 1/ f a ; N = 10000; T = (10000 −1) * dt ; t = ( 0 : dt : T ) ; s i g n a l = 10 + s i n ( 2 * pi * 1 0 * t ) + . . . s q r t ( 0 . 1 ) * randn ( 1 , 1 0 0 0 0 ) ;
Anschließend wird damit das diskrete Leistungsdichtespektrum berechnet. >> % Berechnung des Autokorrelationssignals >> r x x = x c o r r ( s i g n a l , ’ unbiased ’ ) ; >> % Grafische Darstellung des Autokorrelationssignals >> % in einem Bereich um $0$ >> c t = (−T : dt : T ) ;
% Korrel.Zeitpunkte
332
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“ >> >> >> >> >>
p l o t ( c t , rxx , ’k ’ , ’ LineWidth ’ , 3 ) ; grid xlabel ( ’ Zeit / k ’ ) y l a be l ( ’ r _ { XX } ( k ) ’ ) axis ([ − 0 . 5 , 0 . 5 , 95 , 1 02 ])
>> % Leistungsdichte mit Hilfe der FFT >> . . . . % S. vorherige Übung
In Abbildung 5.11 ist diese Schätzung des Leistungsdichtespektrums wiedergegeben. 102
600
101
500
100
400
rXX(k)
|SXX(jω)|
99 98
200
97
100
96 95 −0.5
300
0 Zeit/k
0.5
0 −100
−50
0 Frequenz/Hz
50
100
Abb. 5.11: Berechnete Schätzung der Autokorrelationsfunktion (links) und des Leistungsdichtespektrums (rechts)
Der sinusoidale Anteil ist im Spektrum leider nicht zu erkennen, obwohl die Autokorrelationsfunktion diesen deutlich wiedergibt. (c) Das Signal kann mit der MATLAB-Funktion detrend um den Gleichwert und ggf. um (lineare) „Trends“ bereinigt werden: >> % Mit detrend "vorbehandeln" >> s i g = detrend ( s i g n a l ) ; >> % Berechnung des Autokorrelationssignals >> r x x = x c o r r ( si g , ’ unbiased ’ ) ; >> % Grafische Darstellung des Autokorrelationssignals >> . . . . % s. oben >> % Leistungsdichte mit Hilfe der FFT >> . . . . % s. oben
333
Lösungsband zu „Signale und Systeme“
In Abbildung 5.12 ist das Ergebnis dieser Berechnung zu sehen. 2.5
0.8 0.6
2
0.4
1.5
|S (k)|
0
XX
XX
r (k)
0.2
−0.2 −0.4
1
0.5
−0.6 −0.8 −0.5
0 Zeit/k
0 −30
0.5
−20
−10
0 10 Frequenz/Hz
20
30
Abb. 5.12: Berechnete Schätzung der Autokorrelationsfunktion (links) und des Leistungsdichtespektrums (rechts)
Deutlich ist jetzt der sinusoidale Anteil ist im Spektrum zu erkennen, der vorher durch den hohen Gleichanteil maskiert war. Das durch das additive Rauschsignal verursachte Spektrum ist anhand einer Ausschnittsvergrößerung sichtbar zu machen. Dabei sollte darauf geachtet werden, dass der Ausschnitt sich außerhalb des Bereiches befindet, der noch von Leakage-Spektralanteilen beeinflusst wird. Mit der Anweisung >> a x i s ( [ 3 5 , 5 0 , 0 , 0 . 0 0 5 ] )
wird die in Abbildung 5.13 wiedergegebene Grafik erzeugt. Der mittlere Dichtewert kann grob mit 0.0016 W/Hz abgelesen werden. 0.1 Da im Beispiel σ 2 = 0.1 gewählt wurde, wäre 100 = 0.001 W/Hz zu erwarten gewesen. Die Schätzung ist also noch nicht wirklich genau. Man kann insgesamt festhalten, dass wesentliche Spektralanteile durch einen großen Gleichanteil im Signal „maskiert“ werden können. Es empfiehlt sich daher in der Praxis meist, das Signal vorher um den Gleichanteil zu bereinigen. Übung 144 ( Lehrbuch Seite 452 ) Weisen Sie für reelle Signale der Form x(t) =
∞ X
k=−∞
ck ejω0 kt
(333.1)
334
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
5
x 10
−3
4.5 4
|SXX(k)|
3.5 3 2.5 2 1.5 1 0.5 0 35
40
Frequenz/Hz
45
50
Abb. 5.13: Ausschnitt des Leistungsdichtespektrums
(vgl. Gl. (450.1) des Lehrbuchs) nach, dass die Autokorrelationsfunktion, wie in (450.3) Lehrbuch angegeben, durch rxx (τ ) = c20 + 2
∞ X
|ck |2 cos(kω0 τ )
(334.1)
ck ejkω0 t
(334.2)
k=1
bestimmt ist. Lösung zu Übung 144 Sei x(t) =
∞ X
k=−∞
ein T0 -periodisches reelles Signal (ω0 = 2π/T0 ). Dann errechnet sich die Autokorrelationsfunktion definitionsgemäß11 mit 1 rxx (τ ) = T0
T Z0 /2
−T0 /2 11
∞ X
∞ X
ck ejkω0 t c∗m e−jmω0 (t+τ ) dt
(334.3)
k=−∞ m=−∞
Man beachte wieder: für komplexwertige Signalanteile ist der zweite Faktor zu konjugieren!
335
Lösungsband zu „Signale und Systeme“
=
∞ X
ck c∗m e−jmω0 τ
k,m=−∞
T Z0 /2
1 T0
ej(k−m)ω0 t dt.
−T0 /2
Da aber für alle m 6= k stets gilt, dass TZ0 /2
1 T0
ej(k−m)ω0 t dt = 0,
(335.1)
−T0 /2
verschwinden alle Terme außer denjenigen für m = k und man erhält aus (334.3): ∞ X
rxx (τ) =
ck c∗k e−jkω0 τ
k=−∞ ∞ X
=
k=−∞
1 T0
T Z0 /2
1 dt (335.2)
−T0 /2 2
|ck | e−jkω0 τ .
Für reelle Signale gilt jedoch in der Fourierreihenentwicklung stets, dass c−k = ck ∀k ≥ 1 ist. Damit können je zwei Terme der Reihe für ein positives k in der Form 2
2
2
2
|c−k | e−j(−k)ω0 τ + |ck | e−jkω0 τ = |ck | ejkω0 τ + |ck | e−jkω0 τ = 2 cos(kω0 τ )
(335.3)
zusammengefasst werden. Der Term für k = 0 kommt nur ein Mal vor (und ist immer12 reell), sodass (335.2) in der Form rxx (τ ) = c20 + 2
∞ X
|ck |2 cos(kω0 τ )
(335.4)
k=1
geschrieben werden kann. Übung 145 ( Lehrbuch Seite 453 ) Betrachten Sie den Prozess Xt = 8 sin4 (2π · 10 · t) + Nt .
(335.5)
Dabei sei Nt ein im Frequenzband [−50, 50] Hz bandbegrenztes Gauß’sches weißes Rauschen mit mittlerer Gesamtleistung 4 W. 12
Das ist ja der Gleichanteil des reellen Signals.
336
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
(a) Berechnen Sie das Leistungsdichtespektrum SXX (jω) des Prozesses. (b) Überprüfen Sie Ihre Berechnung aus Aufgabenteil (a) durch eine MATLAB-Simulation, wobei die verwendete Musterfunktion vorher mit der MATLAB-Funktion detrend um den Gleichwert bereinigt werden sollte. (c) Bestimmen Sie theoretisch und experimentell die mittlere Gesamtleistung des Signals. Lösung zu Übung 145 (a) Das Leistungsdichtespektrum des periodischen Signalanteils 8 sin4 (2π · 10 · t) ergibt sich aus der Fourierreihenentwicklung des Signals. Wegen >> syms x >> simple ( s i n ( x ) ^ 4 ) ... combine ( t r i g ) : 3/8+1/8 * cos ( 4 * x ) −1/2 * cos ( 2 * x ) ...
kann dieser Signalanteil in der Form 8 sin4 (2π · 10 · t) = 3 − 4 cos(2π · 20 · t) + cos(2π · 40 · t)
(336.1)
dargestellt werden. Dies ist zugleich die reelle Fourierreihe mit der Grundfrequenz ω0 = 2π · 20 rad/s und den Fourierkoeffizienten: a0 = 3, a1 = −4, a2 = 1, 2 bk = 0 ∀ k ≥ 1, ak = 0 ∀ k ≥ 3.
(336.2)
1 Aus der Rechenregel ck = 12 ak + 2j bk für die Umrechnung in die komplexen Fourierkoeffizienten ergibt sich:
c0 = 3,
c1 = −2,
c−1 = −2,
c−2 =
ck = 0 ∀ |k| ≥ 3.
1 , 2
c2 =
1 , 2 (336.3)
337
Lösungsband zu „Signale und Systeme“
Damit folgt für den Anteil des periodischen Signals am Leistungsdichtespektrum: 2π
2 X
k=−2
2
|ck | δ0 (ω − kω0 ).
(337.1)
Nach Definition von Nt ist dessen spektrale Leistungsdichte SN N (jω) =
σ2 rect2ωg (ω + ωg ) , 2fg
(337.2)
sodass insgesamt für das Leistungsdichtespektrum von Xt gilt: SXX (jω) =
π δ0 (ω − 80π) + 8πδ0 (ω − 40π) 2 π + 6π + 8πδ0 (ω + 40π) + δ0 (ω − 80π) 2 4 + rect200π (ω + 100π) . 100
(337.3)
(b) Mit folgenden MATLAB-Anweisungen soll das Ergebnis (näherungsweise) überprüft werden. Bei der Erzeugung des Mustersignals ist darauf zu achten, dass die gewählte Abtastrate fa der Bedingung des Abtasttheorems entspricht. Da die maximale Spektralfrequenz des harmonischen Anteils laut (336.1) bei 40 Hz und die Bandgrenze für das Rauschen bei 50 Hz liegen, reicht eine Abtastrate von fa = 100 Hz aus: >> >> >> >> >> >> >> >>
fa = 100; dt = 1/ f a ; N = 10000; T = (10000 −1) * dt ; t = ( 0 : dt : T ) ; s i g n a l = 8 * s i n ( 2 * pi * 1 0 * t ) . ^ 4 + 2 * randn ( 1 , 1 0 0 0 0 ) ; % Signal bereinigen s i g = detrend ( s i g n a l ) ;
Das Leistungsdichtespektrum wird nun wie in den Übungen 142 und 143 bestimmt und geplottet:
>> >> >> >> >>
% Berechnung des Autokorrelationssignals r x x = x c o r r ( si g , ’ unbiased ’ ) ; ... % Leistungsdichte mit Hilfe der FFT ...
338
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“ 40
20
35
10
30 0 |S (k)|/dB
20
−10
XX
XX
|S (k)|
25
15
−20
10 −30
5 0 −50
0 Frequenz/Hz
50
−40 −50 −40 −30 −20 −10 0 10 20 30 40 50 Frequenz/Hz
Abb. 5.14: Berechnete Schätzung des Leistungsdichtespektrums linear (links) und logarithmisch (rechts)
Abbildung 5.14 gibt das Leistungsdichtespektrum in linearer und in logarithmischer Darstellung wieder. Die logarithmische Darstellung ist besonders gut geeignet, weil hier auch der Rauschanteil sehr gut zu erkennen ist und nicht durch die hohen Signalpeaks bei 20 Hz und 40 Hz maskiert wird. Durch den die harmonischen Anteile betreffenden Leakage-Effekt ist der Wert der Rauschleistungsdichte nicht genau ablesbar. Der theoretische σ2 4 Wert der Dichte liegt bei 2f = 100 = 0.04. In dB entspricht dies einem g Wert von >> 1 0 * log10 ( 0 . 0 4 ) ans = −13.9794
also ca. −14 dB. Eine entsprechende Linie ist im rechten Teil von Abbildung 5.14 eingezeichnet. Der Gleichanteil muss getrennt betrachtet werden, da er durch detrend eliminiert wurde: >> mean( s i g n a l ) ans =
2.9867
Die Koeffizienten der Dirac-Impulse in (337.3) sind wegen des LeakageEffekts nur grob zu ermitteln. Bekanntlich steht die Linienhöhe eines
Lösungsband zu „Signale und Systeme“
339
harmonischen Signalanteils im FFT-Spektrum in direkter Beziehung zum komplexen Fourierkoeffizienten. Falls kein Leakage vorliegt, gilt: Linienhöhe = N · |ck |.
(339.1)
Für die Linienhöhen bei 20 Hz und 40 Hz lesen wir aus Abbildung 5.14 grob 40 und 2.5 ab. Zu beachten ist dabei allerdings, dass das FFTSpektrum mit dem Abtastintervall f1a skaliert wurde, um eine Schätzung des zeitkontinuierlichen Leistungsdichtespektrums SXX (jω) (statt ΦXX (Ω)) zu gewinnen. Die Linienhöhen der FFT sind also eigentlich um den Faktor 100 größer. Man erhält damit folgende Grobschätzung: >> N = 1 0 2 4 ; % FFT-Länge >> c_1quadrat = 40 * 100/N c_1quadrat = 3.9063 >> c_2quadrat = 2 . 5 * 1 0 0 /N c_2quadrat = 0.2441
Die Grobschätzung entspricht ungefähr den Quadraten |c1 |2 = 4 und |c2 |2 = 14 der theoretisch ermittelten Werte in (336.3) und bestätigt somit (näherungsweise) die theoretischen Berechnung. (c) Die mittlere Gesamtleistung des sinusoidalen Anteils ergibt sich aus der Summe der Quadrate der Fourierkoeffizienten: 2 ∞ X 1 1 1 2 2 2 |ck | = 3 + 2 · (−2) + 2 · = 9 + 8 + = 17 W. (339.2) 2 2 2 k=−∞
Dazu addiert sich die Gesamtleistung des Rauschanteils (4 W) zu insgesamt 21, 5 W. Da die mittlere Gesamtleistung des Prozesses dem zweiten Moment E(Xt ) entspricht, kann dies für das Mustersignal wegen E(Xt ) = V(Xt )+ E2 (Xt ) wie folgt experimentell überprüft werden: >> L = var ( s i g n a l )+mean( s i g n a l ) ^2 L =
21.5532
Das passt (zumindest ungefähr;-))!
340
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Übung 146 ( Lehrbuch Seite 465 ) Sei Xt ein im weiteren Sinne stationärer stochastischer Prozess und seien die Musterfunktionen x(t) dieses Prozesses Eingangssignal eines zeitkontinuierlichen LTI-Systems S mit Impulsantwort h(t). Zeigen Sie, dass der Prozess Yt der zugehörigen Ausgangssignale y(t) von S ein im weiteren Sinne stationärer Prozess ist. Lösung zu Übung 146 Ist y(t) Ausgangssignal des LTI-Systems S für eine Musterfunktion x(t) an dessen Eingang, so stehen die Signale in der Beziehung y(t) =
Z∞
−∞
(340.1)
x(ρ)h(t − ρ) dρ
zueinander. Für den Erwartungswert E(Yt ) erhält man: ∞ Z Z∞ E(Yt ) = E Xρ · h(t − ρ) dρ = E(Xρ ) · h(t − ρ) dρ. −∞
(340.2)
−∞
Nach Voraussetzung ist Xt im weiteren Sinne stationär. Somit ist der Wert µX := E(Xt ) konstant und (340.2) impliziert (substituiere ρ0 = t − ρ): E(Yt ) = µX
Z∞
−∞
h(t − ρ) dρ = µX
Z∞
h(ρ0 ) dρ0 .
(340.3)
−∞
Damit ist aber E(Yt ) ebenfalls von der Zeit t unabhängig, d.h. konstant. Für das zweite Moment E(Yt2 ) errechnet man: ∞ Z Z∞ E(Yt2 ) = E Xρ · h(t − ρ) dρ · Xγ · h(t − γ) dγ −∞
= E
Z∞ Z∞
−∞ −∞
=
Z∞ Z∞
−∞ −∞
−∞
Xρ Xγ · h(t − ρ)h(t − γ) dρ dγ
(340.4)
E (Xρ Xγ ) · h(t − ρ)h(t − γ) dρ dγ.
Da Xt im weiteren Sinne stationär ist, folgt E (Xρ Xγ ) = rXX (γ − ρ) und
341
Lösungsband zu „Signale und Systeme“
E(Yt2 )
=
Z∞ Z∞
−∞ −∞
rXX (γ − ρ) · h(t − ρ)h(t − γ) dρ dγ.
(341.1)
Substituiert man nun ρ0 = t − ρ und γ 0 = t − γ, so erhält man: E(Yt2 )
=
=
Z∞ Z∞
−∞ −∞ Z∞ Z∞ −∞ −∞
rXX (t − γ 0 − (t − ρ0 ) · h(ρ0 )h(γ 0 ) dρ dγ (341.2) rXX (ρ0 − γ 0 ) · h(ρ0 )h(γ 0 ) dρ dγ.
Das zweite Moment hat somit für alle t ∈ R den gleichen Wert. Folglich ist mit (340.3) auch die Varianz V(Yt ) = E(Yt2 ) − (E(Yt ))
2
(341.3)
von der Zeit t ∈ R unabhängig! Des Weiteren ist: ∞ Z Z∞ rY Y (t, τ ) = E Xρ · h(t − ρ) dρ · Xγ · h(t + τ − γ) dγ −∞
= E
Z∞ Z∞
−∞ −∞
=
Z∞ Z∞
−∞ −∞
−∞
Xρ Xγ · h(t − ρ)h(t + τ − γ) dρ dγ
(341.4)
E (Xρ Xγ ) · h(t − ρ)h(t + τ − γ) dρ dγ.
Substituiert man nun ρ0 = t − ρ und γ 0 = t + τ − γ, so erhält man: rY Y (t, τ ) =
=
Z∞ Z∞
−∞ −∞ Z∞ Z∞ −∞ −∞
rXX ((t − ρ0 ) + (t + τ − γ 0 )) · h(ρ0 )h(γ 0 ) dρ dγ (341.5) 0
0
0
0
rXX (τ − γ + ρ ) · h(ρ )h(γ ) dρ dγ.
Die Korrelationsfunktion rY Y (t, τ) hängt daher nur noch vom relativen Zeitversatz τ und nicht mehr von t ab. Es existiert somit die Autokorrelationsfunktion rY Y (τ ) und der Ausgangsprozess ist im weiteren Sinne stationär!
342
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Übung 147 ( Lehrbuch Seite 465 ) In der Begleitsoftware befinden sich die Dateien inputsig.mat und outputsig.mat. Die Datei inputsig.mat enthält ein im Nyquistband bandbegrenztes weißes Rauschsignal, welches als Eingangssignal eines zeitkontinuierlichen LTISystems S mit Übertragungsfunktion H(s) verwendet wurde. Die Datei outputsig.mat enthält das zugehörige Ausgangssignal. Die Signale wurden mit einer Abtastrate von fa = 2048 Hz diskretisiert. Bestimmen Sie auf der Grundlage des Wiener-Lee-Theorems eine Schätzung des Amplitudengangs des Systems. Um was für eine Art von System handelt es sich? Versuchen Sie ggf. die Übertragungsfunktion H(s) im Bildbereich zu erraten. Lösung zu Übung 147 Mit Hilfe der folgenden Anweisungen (vgl. Bsp_SysIdentUeb.m) kann der Amplitudengang des zu identifizierenden Systems auf der Grundlage des Wiener-Lee-Theorems geschätzt werden. Zunächst müssen die Signale in den Workspace geladen werden: % Laden der Signale load i n p u t s i g load o ut p ut s i g
Anschließend werden die Autokorrelationsfunktionen berechnet: % Berechnung der Autokorrelationsfunktionen xin = x c o r r ( i nput sig , ’ unbiased ’ ) ; xout = x c o r r ( out putsig , ’ unbiased ’ ) ;
Die diskreten Leistungsdichtespektren werden mit Hilfe einer FFT geschätzt: % Leistungsdichte der Signale mit Hilfe der FFT % der Autokorrelationssignale berechnen N = lengt h ( xin ) ; M = f l o o r (N/ 2 ) ; K = 4 * 1 0 2 4 ; % 4*1024 Werte aus der Mitte herausschneiden c i n m i t t e = xin (M−K+ 1 :M+K ) ; c o u t mi t t e = xout (M−K+ 1 :M+K ) ; Phixx = f f t ( c i n mi t t e , 2 *K ) ; Phiyy = f f t ( coutmi tt e , 2 *K ) ;
Das Betrags-Quadrat der Übertragungsfunktion ergibt sich nach Wiener-Lee aus dem Quotienten der Auto-Leistungsdichtespektren:
343
Lösungsband zu „Signale und Systeme“
% Schätzung des Betragsquadrats der % Übertragungsfunktion nach Wiener-Lee Hquad = Phiyy . / Phixx ;
Das Ergebnis wird in logarithmischer Darstellung geplottet: % Frequenzvektor definieren fa = 2048; % Abtastrate df = f a / ( 2 *K ) ; % Frequenzabstand f r q = ( 0 : df : f a/2−df ) ;
% Darstellung des Amplitudengangs % (nur für positive Frequenzen) semilogx ( frq , 1 0 * l og10 ( abs ( Hquad ( 1 :K ) ) ) , ’b ’ , ’ LineWidth ’ , 2 ) ; grid x l a b e l ( ’ Frequenz / Hz ’ ) y l a be l ( ’|H| / dB ’ )
In Abbildung 5.15 ist das Ergebnis dieses Plots zu sehen. Man erkennt, dass es sich bei dem zu identifizierenden LTI-System offenbar um einen Tiefpass handelt. 25
25
20
20 15
X: 15.75 Y: 17.06
15
|H|/ dB
|H|/ dB
10
10
5
5 0 −5
0
−10
−5
−10 −1 10
−15
0
10
1
10
2
10
Frequenz / Hz
3
10
4
10
−20 −1 10
10
0
10
1
2
10
Frequenz / Hz
3
10
4
10
Abb. 5.15: Schätzung der Übertragungsfunktion
Aus der Grafik kann abgelesen werden, dass die 3 dB Grenzfrequenz (bei 17 dB abzulesen) etwa bei 15.75 Hz entsprechend 111.5265 rad/s liegt. Die Verstärkung bei 0 Hz beträgt 20 dB, was einem Amplitudenfaktor von 10 entspricht. Die Flanke des Filters fällt ungefähr mit 20 dB pro Dekade, was (für ein Potenzfilter) einer Filterordnung von 1 entspricht.
344
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Aufgrund dieser Überlegungen kann die Übertragungsfunktion im Bildbereich wie folgt definiert werden: >> s = t f ( ’ s ’ ) ; >> H = 10/(1+ s / 1 1 1 . 5 2 6 5 ) T r a n s f e r f u nc t i o n : 10 −−−−−−−−−−−−−− 0.008966 s + 1
Zum Vergleich kann der Amplitudengang zu diesem Filter geplottet werden: >> om = 2 * pi * f r q ; >> [A, p ] = bode (H,om ) ; >> A = A ( : ) ; >> hold Current pl o t held >> semilogx ( frq , 2 0 * l og10 ( abs (A) ) , ’k ’ , ’ LineWidth ’ , 2 ) ;
Die rechte Seite von Abbildung 5.15 zeigt die gute Übereinstimmung zur Wiener-Lee-Schätzung. Übung 148 ( Lehrbuch Seite 466 ) Erzeugen Sie mit Hilfe von MATLAB einen stochastischen Prozess, dessen Autokorrelationsfunktion durch e−τ für τ ≥ 0, rXX (τ ) = (344.1) τ e für τ < 0 gegeben ist.
Lösung zu Übung 148 Ein Blick auf die Tabelle B.2 der Fouriertransformierten zeigt, dass das zur Autokorrelationsfunktion e−τ für τ ≥ 0, rXX (τ ) = e−|τ | = (344.2) τ e für τ < 0 gehörende Leistungsdichtespektrum die Form
345
Lösungsband zu „Signale und Systeme“
SXX (jω) =
ω2
2 2 = 2 +1 1 + ω2
(345.1)
hat! Es ist in diesem Fall möglich, ein stabiles Filter mit rationaler Übertragungsfunktion H(s) zu finden, für das |H(jω)|2 = |H(s)|2s=jω = H(s) · H ∗ (s)s=jω =
2 1 + ω2
gilt. Da die Nullstellen von 1 + ω 2 bei ±jω liegen, kann wegen √ √ 2 2 2 = · 2 1+ω 1 + jω 1 − jω
(345.2)
(345.3)
das stabile Filter H(s) =
√
2 1+s
(345.4)
nach Wiener-Lee als Formfilter verwendet werden! Mit Hilfe der folgenden MATLAB-Anweisungen (vgl. Bsp_FormFiltUeb.m und s_FormFiltUeb.mdl) soll nachgeprüft werden, ob das Formfilter die gewünschten Eigenschaften hat. Dazu werden mit Hilfe des Simulink-Systems s_FormFiltUeb.mdl 100 weiße Rauschsignale mit Rauschleistungsdichte 1 (Parameter Noise Power) erzeugt und als Eingangssignal eines Blocks mit der Übertragungsfunktion √ 2 verwendet (quasi-kontinuierliche Simulation). 1+s Für die Ausgangssignale werden die Autokorrelierten berechnet und zur besseren Approximation der idealen Autokorrelation (Schar-)gemittelt. Für die quasi-kontinuierliche Simulation wird eine Abtastrate (hier fa = 1024 Hz) so gewählt, dass die Übertragungsfunktion i.W. innerhalb des Nyquist-Bandes liegt, um Alias-Fehler zu vermeiden. % Initialisierung des Simulink-Systems % s_FormFiltUeb zur Formfilterung init _FormFilt Ueb open ( ’ s_FormFiltUeb ’ ) ; % Ausführung des Simulink-Systems [ t , x , s i g n a l ] = sim ( ’ s_FormFiltUeb ’ ) ; anz = 1 0 0 ; % Mittelung der Autokorrelierten xcout = x c o r r ( s i g n a l , ’ biased ’ )/ anz ;
346
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
f o r i = 2 : anz % Zufallsgenerator für den Rauschblock neu % initialisierenen rand ( ’ t w i s t e r ’ , f l o o r ( ( 2 ^ 3 2 − 1 ) * rand ( 1 , 1 ) ) + 1 ) ; z u f a l l = f l o o r ( rand ( 1 ) * 3 2 0 0 0 ) + 1 ; set_param ( ’ s_FormFiltUeb / Rauschquelle ’ , ’ seed ’ , . . . num2str ( z u f a l l ) ) ; % Ausführung des Simulink-Systems [ t , x , s i g n a l ] = sim ( ’ s_FormFiltUeb ’ ) ; % Berechnung der Autokorrelationsfunktion % des Ausgangssignals xc = x c o r r ( s i g n a l , ’ biased ’ ) / anz ; xcout = xcout+xc ; end
Die so geschätzte Autokorrelationsfunktion kann grafisch nun mit der gewünschten verglichen werden: % Zeitvektor dazu berechnen T = simudauer ; % s. init_FormFiltUeb dt = 1/ f a ; % s. init_FormFiltUeb c t = (−T : dt : T ) ; % Darstellung der Autokorrelationsfunktion p l o t ( c t , xcout , ’b ’ , ’ LineWidth ’ , 2 ) ; grid x l a b e l ( ’\t au / s ’ ) y l a be l ( ’ r _ {XX } ( \ tau ) ’ ) % Zum Vergleich die gewünschte Autokorrelationsfunktion hold p l o t ( c t , exp(−abs ( c t ) ) , ’k ’ , ’ LineWidth ’ , 2 ) ;
In Abbildung 5.16 ist zu erkennen, dass das Formfilter die gewünschte Eigenschaft hat! Übung 149 ( Lehrbuch Seite 475 ) Erzeugen Sie mit Hilfe des Simulink-Systems s_oneton.mdl ein Sinussignal der Amplitude 1 in Gauß’schem weißen Rauschen (mit Varianz 1). Ändern Sie dabei die im Initialisierungsfile init_oneton.mdl eingestellten Parameter simudauer = 1 0 ;
% Simulationsdauer
347
Lösungsband zu „Signale und Systeme“
1.2 1
rXX(τ)
0.8 0.6 0.4
gewünschte Autokorrelierte
geschätzte Autokorrelierte
0.2 0 −0.2 −10
−5
0 τ/s
5
10
Abb. 5.16: Schätzung der Autokorrelationsfunktion und ideale Autokorrelationsfunktion ampl = 1 ; frq = 5 0;
% Amplitude des Sinus % Frequenz des Sinus in Hz
stime = 1 / 2 0 0 ;
% Schrittweite einer Fixed-Step Simul. % (1/Abtastrate)
nach der Initialisierung im Command-Window von MATLAB auf simudauer = 1 6 . 3 8 3 0 ; % Simulationsdauer stime = 1 / 1 0 0 0 ; % Schrittweite
sodass insgesamt nach der Simulation 16-K Datenpunkte zur Verfügung stehen. Rufen Sie das System s_oneton.mdl anschließend auf und führen Sie mit Hilfe der MATLAB-Funktion cpsd die nachfolgenden Welch-PeriodogrammSchätzungen13 des erzeugten „Sinus in Rauschen“ durch: (a) Berechnen Sie das Leistungsdichtespektrum basierend auf einem 16 KFFT-Periodogramm. Plotten Sie das Ergebnis in dB. Vergleichen Sie da13
Verwenden Sie dabei Hanning-gefensterte Daten.
348
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
bei das Ergebnis mit dem Leistungsdichtespektrum, das theoretisch zu erwarten ist! (b) Berechnen Sie das Leistungsdichtespektrum basierend auf 16 nichtüberlappenden 1 K-FFT-Periodogrammen. Plotten Sie das Ergebnis in dB und vergleichen Sie es mit dem Ergebnis aus Teil (a). (c) Berechnen Sie das Leistungsdichtespektrum basierend auf überlappenden 1 K-FFT-Periodogrammen mit einem Überlappungsgrad von 256Punkten. Plotten Sie das Ergebnis in dB und vergleichen Sie es mit den Ergebnissen aus Teil (a) und Teil (b). Lösung zu Übung 149 Nach Initialisierung und Neuinitialisierung von Simulationsdauer und Abtastrate stehen im Workspace folgende Variablen zur Verfügung: >> whos Name ampl frq simudauer sinrsig stime t
Size 1 x1 1 x1 1 x1 16384 x1 1 x1 16384 x1
Bytes 8 8 8 131072 8 131072
Class double double double double double double
(a) Mit den Anweisungen >> N = 1 6 * 1 0 2 4 ; >> [ Pyy , F ] = cpsd ( s i n r s i g , s i n r s i g , . . . hanning (N) , 0 ,N, 1 / stime , ’ twosided ’ ) ;
wird das Leistungsdichtespektrum basierend auf einem 16 K-FFT-Periodogramm berechnet. Abbildung 5.17 stellt das Ergebnis grafisch dar. Aufgrund der Einstellungen ist ein Leistungsdichtespektrum mit zwei „Peaks“ bei ±50 Hz zu erwarten. In der gewählten Darstellung, die durch die Verwendung der Option ’twosided’ berechnet wird, befinden sich die Spektralanteile für die negativen Frequenzen spiegelbildlich im Intervall [500, 1000] Hz. Der „Peak“ bei −50 Hz muss daher, wie in Abbildung 5.17 zu sehen, bei 950 Hz erscheinen. Die Amplitude der Sinusschwingung kann aufgrund des Leakage-Effekts und aufgrund der Verwendung der Hanning-Fenster-Funktion nicht aus dem Plot abgelesen werden.
349
Lösungsband zu „Signale und Systeme“
10
0
0
−10
−10
−20
−20 PSD/dB
PSD/dB
10
−30 −40
−30 −40
−50
−50
−60
−60
−70
−70
−80 0
200
400 600 Frequenz/Hz
800
1000
−80 0
200
400 600 Frequenz/Hz
800
1000
Abb. 5.17: Berechnete Schätzungen des Leistungsdichtespektrums mit einem 16 K-FFT-Periodogramm (links) und 16 nichtüberlappenden 1 K-FFT-Periodogrammen (rechts)
Das bandbegrenzte weiße Gauß-Rauschen hat gemäß der Einstellung eine Varianz und damit (da das Signal mittelwertfrei ist) eine Leistung von 1. Die Bandbreite ist 1000 Hz, sodass die Leistungsdichte theoretisch konstant 0.001 W/Hz ist. Wegen 10 · log10 (0.001) = −30
(349.1)
ist eine konstante Dichtefunktion bei −30 dB zu erwarten. Abbildung 5.17 (links) zeigt, dass die Dichte des Rauschanteils i.W. richtig geschätzt wird. Die Schätzung ist aber sehr „verrauscht“, was mit der hohen Varianz der Schätzung auf der Basis von nur einem Periodogramm zusammenhängt! (b) Mit den Anweisungen >> N = 1 0 2 4 ; >> [ Pyy2 , F2 ] = cpsd ( s i n r s i g , s i n r s i g , . . . hanning (N) , 0 ,N, 1 / stime , ’ twosided ’ ) ; >> p l o t ( F2 , 1 0 * log10 ( Pyy2 ) , ’b ’ , ’ LineWidth ’ , 2 ) >> g r i d >> x l a b e l ( ’ Frequenz / Hz ’ ) >> y l a be l ( ’PSD/ dB ’ )
wird das Leistungsdichtespektrum basierend auf 16 1 K-FFT-Periodogrammen berechnet und grafisch dargestellt (s. Abbildung 5.17). Man erkennt im Vergleich zu der Schätzung auf der Basis von nur einem Periodogramm eine deutliche Verbesserung der Schätzung. Dies ist auf die Tatsache zurückzuführen, dass die Schätzung eine um den Faktor 16 geringere Varianz hat.
350
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
(c) Eine Schätzung des Leistungsdichtespektrums basierend auf überlappenden 1 K-FFT-Periodogrammen mit einem Überlappungsgrad von 256Punkten wird mit den Anweisungen >> N = 1 0 2 4 ; >> [ Pyy3 , F3 ] = cpsd ( s i n r s i g , s i n r s i g , . . . hanning (N) , 2 5 6 ,N, 1 / stime , ’ twosided ’ ) ;
−5
−5
−10
−10
−15
−15 PSD/dB
PSD/dB
erzeugt. In Abbildung 5.18 ist das Ergebnis grafisch der Berechnung für nichtüberlappende Blöcke gegenüber gestellt.
−20
−20
−25
−25
−30
−30
−35 0
200
400 600 Frequenz/Hz
800
1000
−35 0
200
400 600 Frequenz/Hz
800
1000
Abb. 5.18: Berechnete Schätzungen des Leistungsdichtespektrums mit 16 nichtüberlappenden 1 K-FFT-Periodogrammen (links) und mit 63 überlappenden 1 K-FFT-Periodogrammen (rechts)
Man erkennt im Vergleich zu der Schätzung auf der Basis von 16 nichtüberlappenden Periodogrammen eine weitere, wenn auch nicht mehr sehr deutliche Verbesserung der Schätzung. Wie von Welch gezeigt, kann durch Überlappung der Daten eine moderate Verbesserung der Güte der Schätzung erreicht werden. Übung 150 ( Lehrbuch Seite 476 ) Erzeugen Sie mit Hilfe des Simulink-Systems s_twoton.mdl zwei Sinussignale der Amplitude 1 in Gauß’schem weißen Rauschen (mit Varianz 1). Verwenden Sie dabei die im Initialisierungsfile init_twoton.mdl eingestellten Parameter simudauer = 1 0 ; stime = 1 / 2 0 0 0 ;
% Simulationsdauer % Schrittweite einer Fixed-Step Simul.
351
Lösungsband zu „Signale und Systeme“
ampl1 = 1 ; frq1 = 10 0; ampl2 = 1 ; frq2 = 10 1;
% % % % %
(1/Abtastrate) Amplitude des 1. Sinus Frequenz des 1. Sinus in Hz Amplitude des 1. Sinus Frequenz des 1. Sinus in Hz
sodass insgesamt nach der Simulation 20000 Datenpunkte zur Verfügung stehen. Rufen Sie das System s_twoton.mdl anschließend auf und führen Sie mit Hilfe der MATLAB-Funktion cpsd die nachfolgenden Welch-PeriodogrammSchätzungen14 des erzeugten „Zweitonsignals in Rauschen“ durch: (a) Berechnen Sie das Leistungsdichtespektrum basierend auf einem 16 KFFT-Periodogramm. Plotten Sie das Ergebnis in dB. (b) Berechnen Sie das Leistungsdichtespektrum basierend auf 8 nichtüberlappenden 2 K-FFT-Periodogrammen. Plotten Sie das Ergebnis in dB und vergleichen Sie es mit dem Ergebnis aus Teil (a). Untersuchen Sie dabei insbesondere die Wirkung der Berechnungsverfahren im Hinblick auf die spektrale Auflösung der Töne. Lösung zu Übung 150 Nach Initialisierung und Ausführung des Simulink-Systems stehen im Workspace folgende Variablen zur Verfügung: >> whos Name ampl1 ampl2 frq1 frq2 simudauer stime t zweit onsig
Size 1 x1 1 x1 1 x1 1 x1 1 x1 1 x1 20001 x1 20001 x1
Bytes 8 8 8 8 8 8 160008 160008
Class double double double double double double double double
(a) Mit den Anweisungen >> N = 1 6 * 1 0 2 4 ; >> [ Pxx1 , F1 ] = cpsd ( zweitonsig , zweitonsig , . . . hanning (N) , 0 ,N, 1 / stime , ’ twosided ’ ) ; >> p l o t ( F1 , 1 0 * log10 ( Pxx1 ) , ’b ’ , ’ LineWidth ’ , 2 ) 14
Verwenden Sie dabei wiederum Hanning-gefensterte Daten.
352
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“ >> g r i d >> x l a b e l ( ’ Frequenz / Hz ’ ) >> y l a be l ( ’PSD/ dB ’ )
wird das Leistungsdichtespektrum basierend auf einem 16 K-FFT-Periodogramm berechnet. Abbildung 5.19 stellt das Ergebnis grafisch dar. 20
10 0
0
−10 −20 PSD/dB
PSD/dB
−20 −40 −60
−30 −40 −50 −60 −70
−80
−80 −100 0
500
1000 Frequenz/Hz
1500
2000
−90 95
100 Frequenz/Hz
105
Abb. 5.19: Berechnete Schätzungen des Leistungsdichtespektrums mit einem 16 K-FFT-Periodogramm (links) und Ausschnittsvergrößerung um 100 Hz (rechts)
(b) Mit den Anweisungen >> N = 2 * 1 0 2 4 ; >> [ Pxx2 , F2 ] = cpsd ( zweitonsig , zweitonsig , . . . hanning (N) , 0 ,N, 1 / stime , ’ twosided ’ ) ; >> . . .
wird das Leistungsdichtespektrum basierend auf 16 1 K-FFT-Periodogrammen berechnet. Abbildung 5.20 zeigt die grafische Darstellung dieses Ergebnisses. Man stellt im Vergleich zu der ersten Berechnung fest, dass die Genauigkeit der Schätzung zwar (bezüglich der Varianz) erhöht wird, jedoch können die beiden Linien nicht mehr aufgelöst werden. Zwar beträgt die nominelle Frequenzauflösung im vorliegenden Fall ∆f =
fa 2000 = = 0.9766 Hz, N 2048
(352.1)
jedoch können zwei Sinustöne im Abstand von 1 Hz wegen des LeakageEffekts und auch wegen der verwendeten Fensterfunktion nicht aufgelöst werden.
353
Lösungsband zu „Signale und Systeme“
−10
−5 −10
−15
−15 PSD/dB
PSD/dB
−20 −25 −30
−25 −30
−35 −40 0
−20
−35
500
1000 Frequenz/Hz
1500
2000
−40 90
95
100 Frequenz/Hz
105
110
Abb. 5.20: Berechnete Schätzungen des Leistungsdichtespektrums mit 8 2 K-FFT-Periodogrammen (links) und Ausschnittsvergrößerung um 100 Hz (rechts)
Die verbesserte Varianz der Schätzung wird also durch eine geringere spektrale Auflösung erkauft! Bei der Planung einer Periodogramm-basierten Spektralanalyse ist dieser Effekt nach Möglichkeit sehr sorgfältig zu berücksichtigen. Übung 151 ( Lehrbuch Seite 477 ) Mit Hilfe des Simulink-Modells s_Rausch3.mdl und mit Hilfe des MATLABFiles VRausch3.m kann man automatisiert Leistungsdichtespektren des in Beispiel 5.15 des Lehrbuchs schon diskutierten Bandpass-gefilterten Rauschsignals berechnen. Untersuchen Sie die Güteaussagen V(LDSWelch (Ω)) ≈
Φ2XX (Ω) K
(353.1)
Φ2XX (Ω) K
(353.2)
und V(LDSWelch Ω)) ≈ α
für die Welch-Periodogramm-Schätzungen (vgl. Gleichungen (471.1) und (472.1) des Lehrbuchs) experimentell, indem Sie die folgenden Teilaufgaben bearbeiten: (a) Berechnen Sie mit Hilfe von VRausch3.m 200 Schätzungen des Leistungsdichtespektrums des Bandpass-Ausgangssignals auf der Basis von 1-K-Periodogrammen. Wählen Sie dazu eine Abtastrate von fa = 1024 Hz.
354
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Bestimmen Sie anschließend mit der MATLAB-Funktion distempStetig.m der Begleitsoftware die empirische Verteilung der Schätzung bei der Frequenz f0 = 200 Hz und bei der Frequenz f1 = 400 Hz und stellen Sie diese grafisch dar. Verwenden Sie dazu jeweils 10 Klassen. Vergleichen Sie die Ergebnisse im Hinblick auf die Formeln (353.1) und (353.2). (b) Berechnen Sie des Weiteren mit Hilfe von VRausch3.m 200 Schätzungen des Leistungsdichtespektrums des Bandpass-Ausgangssignals auf der Basis von 16 gemittelten 1-K-Periodogrammen. Wählen Sie dazu wieder eine Abtastrate von fa = 1024 Hz. Bestimmen Sie erneut mit der MATLAB-Funktion distempStetig.m der Begleitsoftware die empirische Verteilung der Schätzung bei der Frequenz f0 = 200 Hz und bei der Frequenz f1 = 400 Hz. Verwenden Sie ebenfalls wieder jeweils 10 Klassen. Vergleichen Sie abermals die Ergebnisse im Hinblick auf die Formeln (353.1) und (353.2). Lösung zu Übung 151 (a) Die Berechnung von 200 Schätzungen des Leistungsdichtespektrums des Bandpass-Ausgangssignals auf der Basis von 1-K-Periodogrammen kann durch folgende Anweisungen erfolgen: >> >> >> >>
anz = 2 0 0 ; M = 1; N = 1; fi x st e p = 1/1024;
% % % %
Anzahl der Simulationen Zahl der (gemitt.) Periodogramme Anzahl der K Daten für die FFT Abtastintervall
>> % Berechnung der Periodogramme >> [ F , PSDsBP ] = VRausch3 ( anz , M, N, f i x s t e p ) ;
Die Matrix PSDsBP enthält nun zeilenweise die berechneten Periodogramme. Wegen ∆f =
fa 1024 = = 1 Hz N 1024
(354.1)
entspricht die 201-te Zeile den Schätzungen bei f0 = 200 Hz und die 401te Zeile den Schätzungen bei f1 = 400 Hz. Mit >> LDS200 = PSDsBP ( 2 0 1 , : ) ; >> LDS400 = PSDsBP ( 4 0 1 , : ) ;
können diese Schätzungen zwei Vektoren zugeordnet werden. Wegen
355
Lösungsband zu „Signale und Systeme“
>> min ( LDS200 ) ans = 2 . 2 7 2 4 e−006 >> max ( LDS200 ) ans = 0.0061
und >> min ( LDS400 ) ans = 1 . 4 4 7 1 e−012 >> max ( LDS400 ) ans = 8 . 7 8 3 0 e−008
müssen die 10 Klassen für die Berechnung der empirischen Verteilung in verschiedenen Bereichen definiert werden. Die Anweisungen >> binsLDS200 = l i n s p a c e ( min ( LDS200 ) , max ( LDS200 ) , 1 0 ) binsLDS200 = Columns 1 through 7 0.0000 0.0034
0.0007 0.0041
0.0014
0.0020
0.0027
Columns 8 through 10 0.0048
0.0055
0.0061
>> binsLDS400 = l i n s p a c e ( min ( LDS400 ) , max ( LDS400 ) , 1 0 ) binsLDS400 =
356
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“ 1 . 0 e−007 * Columns 1 through 7 0.0000 0.4880
0.0976 0.5855
0.1952
0.2928
0.3904
Columns 8 through 10 0.6831
0.7807
0.8783
definieren jeweils 10 äquidistante Klassenmitten für die Verwendung in der Funktion distempStetig.m. Die empirischen Verteilungen können nun mit >> [ NLDS200 , XLDS200 , emdistLDS200 , cemdistLDS200 ] = di s t e mp S t e t i g ( LDS200 , binsLDS200 , >> [ NLDS400 , XLDS400 , emdistLDS400 , cemdistLDS400 ] = di s t e mp S t e t i g ( LDS400 , binsLDS400 ,
... 1); ... 1);
berechnet und dargestellt werden (s. Abbildung 5.21). Rel.Klh./Kl.breite
200
0
0
1
2 3 4 Werte von LDS200
5
6 x 10
1
0.5
0
0
1
2 3 4 Werte von LDS200
5
6 x 10
4
x 10
2
0
0
2
−3
−3
kumul. rel. Klassenh.
kumul. rel. Klassenh.
Rel.Klh./Kl.breite
7
400
4 6 Werte von LDS400
8 x 10
−8
1
0.5
0
0
2
4 6 Werte von LDS400
8 x 10
−8
Abb. 5.21: Empirische Verteilung der Schätzungen des Leistungsdichtespektrums mit 1 K-FFT-Periodogrammen bei 200 Hz (links) und 400 Hz (rechts)
Die Vermutung liegt nahe, dass beide Schätzungen einer logarithmischen Normalverteilung folgen, was bei Leistungsberechnungen von Gauß’schen Amplitudenverteilungen, wie im vorliegenden Fall, zu erwarten ist. Es ist im Hinblick auf die zu untersuchenden Varianzformeln interessant, empirische Varianz und empirischen Mittelwert der Schätzungen zu berechnen und gegenüber zu stellen:
357
Lösungsband zu „Signale und Systeme“
>> v200 = var ( LDS200 )
% emp. Varianz der Schätzung
v200 = 1 . 8 6 7 3 e−006 >> m200 = mean( LDS200 )
% emp. Mittelwert der Schätzung
m200 = 0.0016 >> % Verhältnis Varianz zum Quadrat des >> % Schätzwerts des LDS >> v a r r e l 2 0 0 = var ( LDS200 ) / ( mean( LDS200 ) ^ 2 ) varrel200 = 0.7089 >> v400 = var ( LDS400 )
% emp. Varianz der Schätzung
v400 = 3 . 5 6 7 2 e−016 >> m400 = mean( LDS400 )
% emp. Mittelwert der Schätzung
m400 = 1 . 6 0 3 1 e−008 >> % Verhältnis Varianz zum Quadrat des >> % Schätzwerts des LDS >> v a r r e l 4 0 0 = var ( LDS400 ) / ( mean( LDS400 ) ^ 2 ) varrel400 = 1.3880
Offenbar ist tatsächlich die Varianz mit einem Faktor von ca. 1 proportional zum Quadrat des Leistungsdichtespektrums. (b) Die Berechnung von 200 Schätzungen des Leistungsdichtespektrums des Bandpass-Ausgangssignals auf der Basis von 16 gemittelten 1-K-Periodogrammen kann durch folgende Anweisungen erfolgen:
358
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
>> >> >> >>
anz = 2 0 0 ; M = 16; N = 1; fi x st e p = 1/1024;
% % % %
Anzahl der Simulationen Zahl der (gemitt.) Periodogramme Anzahl der K Daten für die FFT Abtastintervall
>> % Berechnung der Periodogramme >> [ F , PSDsBP ] = VRausch3 ( anz , M, N, f i x s t e p ) ;
Mit >> LDS200 = PSDsBP ( 2 0 1 , : ) ; >> LDS400 = PSDsBP ( 4 0 1 , : ) ;
werden die Schätzungen an den interessierenden Frequenzen wieder zwei Vektoren zugeordnet. Die Anweisungen >> binsLDS200 = l i n s p a c e ( min ( LDS200 ) , max ( LDS200 ) , 1 0 ) ; >> binsLDS400 = l i n s p a c e ( min ( LDS400 ) , max ( LDS400 ) , 1 0 ) ;
definieren erneut 10 äquidistante Klassenmitten für die Verwendung in der Funktion distempStetig.m. Die empirischen Verteilungen werden wieder mit >> [ NLDS200 , XLDS200 , emdistLDS200 , cemdistLDS200 ] = di s t e mp S t e t i g ( LDS200 , binsLDS200 , >> [ NLDS400 , XLDS400 , emdistLDS400 , cemdistLDS400 ] = di s t e mp S t e t i g ( LDS400 , binsLDS400 ,
... 1); ... 1);
berechnet und dargestellt (s. Abbildung 5.22). Die Ähnlichkeit zur logarithmischen Normalverteilung ist nun (wohl begründet durch die besseren Schätzungen) noch deutlicher wahrzunehmen. Es werden nun erneut empirische Varianz und empirischen Mittelwert der Schätzungen gegenübergestellt: >> v200 = var ( LDS200 ) v200 = 1 . 9 2 7 9 e−007
% emp. Varianz der Schätzung
359
Lösungsband zu „Signale und Systeme“ 7
Rel.Klh./Kl.breite
800 600 400 200 0
1
1.5 2 2.5 Werte von LDS200
3 x 10
1
0.5
0
1
1.5 2 2.5 Werte von LDS200
3 x 10
2 1 0
2
−3
−3
kumul. rel. Klassenh.
kumul. rel. Klassenh.
Rel.Klh./Kl.breite
x 10 3
4 6 Werte von LDS400
8 x 10
−8
1
0.5
0
2
4 6 Werte von LDS400
8 x 10
−8
Abb. 5.22: Empirische Verteilung der Schätzungen des Leistungsdichtespektrums mit 16 gemittelten 1 K-FFT-Periodogrammen bei 200 Hz (links) und 400 Hz (rechts) >> m200 = mean( LDS200 )
% emp. Mittelwert der Schätzung
m200 = 0.0017 >> % Verhältnis 16 Mal Varianz zum Quadrat des >> % Schätzwerts des LDS >> v a r r e l 2 0 0 = 1 6 * var ( LDS200 ) / ( mean( LDS200 ) ^ 2 ) varrel200 = 1.0883 >> v400 = var ( LDS400 )
% emp. Varianz der Schätzung
v400 = 2 . 1 7 4 0 e−016 >> m400 = mean( LDS400 )
% emp. Mittelwert der Schätzung
m400 = 3 . 4 7 4 9 e−008 >> % Verhältnis Varianz zum Quadrat des >> % Schätzwerts des LDS v a r r e l 4 0 0 = 1 6 * var ( LDS400 ) / ( mean( LDS400 ) ^ 2 )
360
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
varrel400 = 2.8807
Nun ist die Varianz gemäß V(LDSWelch Ω)) ≈ α
Φ2XX (Ω) K
(360.1)
proportional zu ungefähr 1/16 des Quadrats des Leistungsdichtespektrums. Übung 152 ( Lehrbuch Seite 539 ) Das deterministische Signal x(t) = 4 · cos(2π30t) · cos(2π40t)
(360.2)
sei durch ein im Band [−100, 100] Hz bandbegrenztes weißes Rauschen mit Rauschleistungsdichte 0.2 W/Hz gestört. Beantworten Sie folgende Fragen: (a) Wie groß ist der Signal-Rausch-Abstand? (b) Wenn das Signal mit einem Tiefpass der Grenzfrequenz 20 Hz gefiltert wird, wie groß ist dann der Signal-Rausch-Abstand? (Gehen Sie von einem idealen Tiefpass aus!) Lösung zu Übung 152 (a) Es gilt: x(t) = 4 · cos(2π30t) · cos(2π40t) 1 1 =4· cos(2π10t) + cos(2π70t) 2 2 = 2 cos(2π10t) + 2 cos(2π70t).
(360.3)
Die Signalleistung ist folglich: 22 22 + = 2 + 2 = 4. 2 2 Die Rauschleistung des bandbegrenzten weißen Rauschens ist S=
N = 0.2 · 200 = 40
und somit der Signal-Rausch-Abstand: 4 SNR = 10 · log10 = −10 dB. 40
(360.4)
(360.5)
(360.6)
361
Lösungsband zu „Signale und Systeme“
(b) Die Signalleistung nach der Tiefpassfilterung ist S=
22 = 2, 2
(361.1)
da nur das 10 Hz-Signal den Tiefpass passiert. Die Rauschleistung des Inband-Rauschens ist N = 0.2 · 2 · 20 = 8 und somit der Inband-Signal-Rausch-Abstand: 2 SNRI = 10 · log10 = −6.021 dB. 8
(361.2)
(361.3)
Der Signal-Rausch-Abstand wurde durch die Filterung also um ca. 4 dB verbessert! Übung 153 ( Lehrbuch Seite 539 ) Das deterministische Signal x(t) = cos(2π20t)
(361.4)
werde mit einem 8-Bit ADU und der Rate fa = 100 Hz abgetastet. Der Aussteuerungsbereich des ADU beträgt ±5 V. Beantworten Sie folgende Fragen: (a) Wie groß ist der Signal/Quantisierungsrausch-Abstand? (b) Skizzieren Sie das Spektrum von Signal plus Quantisierungsrauschen im Nyquist-Band [− f2a , f2a ] = [−50, 50] Hz. (c) Wie ändert sich der Signal-Quantisierungsrausch-Abstand im Band [−50, 50] Hz wenn die Abtastrate fa = 10000 Hz beträgt („Oversampling“)? (d) Schlagen Sie auf dieser Basis eine Methode zur Reduzierung des Signal/Quantisierungsrausch-Abstandes vor! Lösung zu Übung 153 (a) Für die Quantisierungsrauschleistung NQ gilt (mit Aussteuerungsbereich R = 10): NQ =
∆2 R2 · 2−2n 100 · 2−2·8 = = = 1.2716 · 10−4 . 12 12 12
Für die Quantisierungsrauschleistungsdichte ρ gilt dann:
(361.5)
362
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
ρ=
NQ 1.2716 · 10−4 = = 1.2716 · 10−6 . fa 100
(362.1)
Die Signalleistung S ist S=
a2 1 = 2 2
(362.2)
und das SNR beträgt somit: 1 SNR = 10 · log 10 = 35.9463 dB. 2 · 1.2716 · 10−4
(362.3)
(b) Das Spektrum von Signal plus Quantisierungsrauschen im NyquistBand [− f2a , f2a ] = [−50, 50] Hz ist in Abbildung 5.23 wiedergegeben. W Hz
ρ
50
−20
20
−50
Hz
Abb. 5.23: Skizze des Signal- und Quantisierungsrausch-Spektrums
(c) Wenn die Abtastrate fa = 10000 Hz beträgt („Oversampling“ mit Faktor 100), dann wird die Rauschleistungsdichte um den Faktor 100 kleiner und somit auch die Rauschleistungsdichte im Band [−50, 50] Hz! Der Signal-Rausch-Abstand im Band [−50, 50]Hz erhöht sich daher um 10 · log10 (100) = 20 dB.
(362.4)
(d) Eine Methode zur Reduzierung des Signal-Quantisierungs-RauschAbstandes (in einem gewissen Nutzband) besteht in der Anwendung der „Oversampling“-Technik mit anschließender Filterung. Schaltet man etwa im eben betrachteten Beispiel (c) der Überabtastung ein Tiefpassfilter der Grenzfrequenz 50 Hz nach, so wird der SignalQuantisierungs-Rausch-Abstand um 20 dB erhöht. Die Idee des „Oversampling“ ist Grundlage für die Konstruktion spezieller hochauflösender ADUs, den so genannten Sigma-Delta-A/DWandlern.
363
Lösungsband zu „Signale und Systeme“
Übung 154 ( Lehrbuch Seite 539 ) Das deterministische Signal (363.1)
x(t) = 0.5 · cos(2π50t)
werde mit einer Abtastrate von fa = 1000 Hz durch einen ADU mit nominell 8 Bit diskretisiert. Der Aussteuerbereich des ADU beträgt ±5 V. Der ADU sei zusätzlich durch diverse Störquellen gekennzeichnet, die mit Hilfe eines zusätzlichen weißen Rauschens der Rauschleistungsdichte 2 · 10−5 W/Hz modelliert werden können. Beantworten Sie folgende Fragen: (a) Wie groß ist der Signal/Rausch-Abstand für das diskretisierte Signal? (b) Skizzieren Sie das Autokorrelationssignal zum diskreten Signal (xn )n∈Z im Zeitintervall [−0.04, +0.04] s. Lösung zu Übung 154 (a) Die Signalleistung beträgt: S=
A2 0.52 1 = = = 0.125. 2 2 8
(363.2)
Die Leistung des Störrauschens im Abtastband beträgt: (363.3)
N0 = 1000 · 2 · 10−5 = 2 · 10−3 = 0.002. Die Quantisierungsrauschleistung beträgt (mit ∆ = Nq =
R 2n
100 = 5.0863 · 10−4 12 · 216
=
10 ) 28
(363.4)
und somit der Signal-Rausch-Abstand: S SNR = 10 · log10 = 10 · log10 (6.095) = 7.8497 dB. (363.5) N0 + Nq (b) Abbildung 5.24 zeigt die Skizze der Autokorrelierten15 . Es überlagern sich dabei das cosinusförmige Autokorrelationssignal des Sinus und das impulsartige Autokorrelationssignal der (weißen) Rauschanteile. 15
Die Werte sind zwischen den Abtastzeitpunkten linear interpoliert!
364
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
0.15
0.125+0.0205 0.125
0.1
0.05
0
−0.05
−0.1
−0.04 −0.03 −0.02 −0.01
0 t/s
0.01
0.02
0.03
0.04
Abb. 5.24: Autokorrelierte des abgetasteten Signals
Übung 155 ( Lehrbuch Seite 540 ) Betrachten Sie das Simulink-System s_adu.mdl der Begleitsoftware. Dieses System produziert ein Quantisierungsfehlerrauschen für einen Quantisierer, der von einem weißen Rauschsignal angesteuert wird. (a) Begründen Sie, warum der Parameter Noise Power des RauschsignalBlocks auf stime/9 gesetzt wurde. Hinweis:beachten Sie die anschließende Begrenzung durch den Hard-Limiter! (b) Testen Sie das System für 3 verschiedene nominelle Auflösungen (n = 1, n = 8, n = 10) des Quantisierers. Berechnen Sie dabei jeweils die theoretische Quantisierungsrauschleistung und vergleichen Sie Ihr Ergebnis mit Hilfe des MATLABKommandos var. (c) Berechnen Sie für n = 8 das Leistungsdichtespektrum des Quantisierungsrauschsignals mit Hilfe von MATLAB, wobei Sie große Datenmengen verwenden sollten. Vergleichen Sie das Ergebnis mit den Berechnungen aus Übungsteil (b). (d) Führen Sie die Tests aus Übungsteil (b) mit dem Simulink-System s_adu2.mdl erneut durch. Dieses System produziert ein Quantisierungsfehlerrauschen für einen Quantisierer, der von einem Sinussignal vollausgesteuert wird. Interpretieren Sie das Ergebnis. Lösung zu Übung 155 (a) Der Rauschsignal-Block erzeugt mittelwertfreies, bandbegrenztes Gausssches weißes Rauschen. Dies bedeutet, dass die Amplituden normalverteilt sind mit Erwartungswert µ = 0 und Varianz σ 2 .
365
Lösungsband zu „Signale und Systeme“
Die Varianz entspricht in diesem Fall der Signalleistung, die über den Parameter Noise Power eingestellt werden kann. Die Signalleistung ergibt sich aus diesem Dichtewert mal der Bandbreite und beträgt somit bei der Einstellung stime/9: N = σ2 =
stime 1 1 · = . 9 stime 9
(365.1)
Die Streuung σ ist folglich 13 . Dies kann nach der Simulation durch >> 1/ var ( rauschen ) ans = 9.0341
leicht überprüft werden. Da die so genannten 3σ-Grenzen der Normalverteilung fast alle möglichen Werte der normalverteilten Zufallsvariablen enthalten, bewirkt diese Einstellung, dass sich fast alle vom Rauschsignal-Block erzeugten Werte innerhalb der Grenzen [−1, 1] des Hard-Limiters bewegen. Man erreicht damit ohne signifikante Abschneide-Effekte eine Vollaussteuerung des Quantisierers durch das Eingangssignal. (b) Durch Editieren des Initialisierungsfiles init_adu.m bzw. durch Anpassung der Variablen im Command-Window von MATLAB kann die Auflösungen des Quantisierers vor der Simulation auf die gewünschten Werte n = 1, n = 8, und n = 10 eingestellt werden. Die theoretische Quantisierungsrauschleistung für n = 1 ist: N1 =
R2 22 1 = = = 0.0833. 2n 2 12 · 2 12 · 2 12
(365.2)
Nach Initialisierung mit n = 1 und Simulation ergibt sich: >> var ( q f e h l e r ) ans = 0.0721
Die theoretische Quantisierungsrauschleistung für n = 8 ist: N8 =
R2 22 1 = = = 5.0863 · 10−6 . 2n 16 12 · 2 12 · 2 3 · 216
Nach Initialisierung mit n = 8 und Simulation ergibt sich:
(365.3)
366
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
>> var ( q f e h l e r ) ans = 5 . 1 4 2 6 e−006
Die theoretische Quantisierungsrauschleistung für n = 10 ist: N10 =
R2 22 1 = = = 3.1789 · 10−7 . 12 · 22n 12 · 220 3 · 220
(366.1)
Nach Initialisierung mit n = 10 und Simulation ergibt sich: >> var ( q f e h l e r ) ans = 3 . 1 5 3 8 e−007
Die simulierten Ergebnisse stimmen recht gut mit der Theorie überein. (c) Mit den Anweisungen >> n = 8 ; >> simudauer = 5 0 ;
können die Parameter für die Berechnung des Leistungsdichtespektrums des Quantisierungsrauschsignals für n = 8 eingestellt werden. Nach der Simulation erhält man mit >> [ Sxx , F ] = cpsd ( qfehler , qfehler , rectwin ( 1 0 2 4 ) , . . . 1024/2 ,1024 ,1/ stime , ’ twosided ’ ) ; >> p l o t ( F , Sxx , ’ b ’ , ’ LineWidth ’ , 3 ) >> a x i s ( [ 0 , 1 / stime , 0 , 0 . 5 e −7]) >> . . .
das in Abbildung 5.25 dargestellte Leistungsdichtespektrum. Das Leistungsdichtespektrum ist ganz offenbar (näherungsweise) konstant mit einem Dichtewert von: ρ ≈ 0.5 · 10−8 .
(366.2)
Die daraus resultierende Signalleistung ergibt sich mit der Bandbreite 1000 Hz zu:
367
Lösungsband zu „Signale und Systeme“
5
x 10
−8
4.5 4 3.5
Sxx
3 2.5 2 1.5 1 0.5 0 0
200
400 600 Frequenz / Hz
800
1000
Abb. 5.25: Leistungsdichtespektrum des Quantisierungsfehlers bei Auflösung n = 8
N = ρ · fa ≈ 0.5 · 10−8 · 1000 = 5 · 10−6 .
(367.1)
Dies entspricht ungefähr dem oben berechneten Wert. (d) Nach Initialisierung von s_adu2.mdl mit n = 1 und Simulation ergibt sich: >> var ( q f e h l e r ) ans = 0.0639 >> v t h e o r i e = 1/ 1 2 ; >> var ( q f e h l e r ) / v t h e o r i e ans = 0.7667
Nach Initialisierung mit n = 8 und Simulation ergibt sich: >> var ( q f e h l e r ) ans = 4 . 5 2 0 4 e−006
368
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
>> v t h e o r i e = 1 / ( 3 * 2 ^ ( 1 6 ) ) ; >> var ( q f e h l e r ) / v t h e o r i e ans = 0.8888
Nach Initialisierung mit n = 10 und Simulation ergibt sich: >> var ( q f e h l e r ) ans = 2 . 5 7 0 8 e−007 >> v t h e o r i e = 1 / ( 3 * 2 ^ ( 2 0 ) ) ; >> var ( q f e h l e r ) / v t h e o r i e ans = 0.8087
Die doch erhebliche Abweichung zur Theorie bedarf einer Erklärung. Die Theorie setzt die gleichmäßige Ansteuerung aller Bereiche zwischen den Quantisierungsstufen voraus. Dies kann bei Ansteuerung mit Rauschen gewährleistet werden. Bei Ansteuerung mit einem Sinussignal wird beispielsweise die obere Quantisierungsstufe immer exakt getroffen. Der Bereich des Nulldurchgangs wird (je nach Frequenz) schneller durchlaufen. Die Abweichungen zu den Quantisierungsstufen sind dann in der Summe geringer. Dies erklärt den systematisch kleineren Wert für die Quantisierungsrauschleistung. Übung 156 ( Lehrbuch Seite 540 ) Betrachten Sie das Simulink-System s_delay1.mdl der Begleitsoftware. Die√ ses System produziert ein sinusförmiges Testsignal der Amplitude 2 und ein zugehöriges verrauschtes Echosignal. Die Frequenz des Sinus, die Rauschleistung des Störsignals sowie die Signalverzögerung des Echosignals können über das Initialisierungsfile init_delay1.m eingestellt werden. (a) Schätzen Sie mit Hilfe einer Korrelationsanalyse die in s_delay1.mdl eingestellte Laufzeit (Signalverzögerung).
369
Lösungsband zu „Signale und Systeme“ Tabelle 5.1: Testkombinationen für Übung 156 SNR (dB) Messzeit (s)
0
-20
0
-20
1.0
1.0
10.0
10.0
Verwenden Sie dabei die in Tabelle 5.1 angegebenen Kombinationen für die Parameter Signal-Rausch-Abstand (am Empfangsort des laufzeitverzögerten Signals) und Messzeit. Verwenden Sie als Signalfrequenz 50 Hz. Verändern Sie bei jedem Versuch den Signal-Rausch-Abstand (im Nyquist-Band) durch Erhöhung bzw. Verminderung der Rauschleistung des White-Noise-Blocks. (b) Testen Sie die Laufzeitmessung für schlechtes SNR (−20 dB) und kurze Messzeit, indem Sie statt des Sinussignals ein Chirp-Signal verwenden. Ersetzen Sie dazu den Sinus-Block im obigen Simulink-System durch einen Chirp-Signal-Block (Sources-Blöcke). Wählen Sie dabei das ChirpSignal so, dass die Bandbreite etwa 50 Hz beträgt. Diese können Sie empirisch feststellen, indem Sie die FFT des Chirp-Signals berechnen. Vergleichen Sie das Ergebnis mit dem entsprechenden Sinus-Signal Experiment. Was stellen Sie fest? Lösung zu Übung 156 (a) Der Signal-Rausch-Abstand des Echosignals kann im Rauschblock durch Anpassung des Parameters Noise Power eingestellt werden. Die Signalleistung beträgt bei der gewählten Amplitude: A2 S= = 2
√ 2 2 2 = = 1. 2 2
(369.1)
Mit der Einstellung stime für den Parameter Noise Power erhält man N = stime ·
1 =1 stime
(369.2)
und somit ein SNR von 0 dB. Mit der Einstellung 100*stime für den Parameter Noise Power erhält man N = 100 · stime · und ein SNR von −20 dB. Mit
1 = 100 stime
(369.3)
370
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
>> >> >> >>
frq = 5 0; v = 10; simudauer = 1 ; N = 1;
werden die Parameter für den Versuch mit einem SNR von 0 dB und kurzer Messzeit eingestellt. Die Korrelationsmessung für die auf v = 10 Abtastintervalle (entspr. 0.01 s) eingestellte Verzögerung des Echosignals wird mit folgenden Anweisungen durchgeführt: >> T = t ( end ) ; >> cz = (−T : stime : T ) ;
% Messzeit % Korrelationszeitvektor % Korrelation >> c x s i g = x c o r r ( sindel , s i ns i g , ’ biased ’ ) ; >> [ y , ind ] = max ( c x s i g ) ; % Maximum-Suche >> l a u f z e i t = cz ( ind ) % geschätzte Laufzeit laufzeit = 0.0100
Mit >> simudauer = 1 0 ;
kann der Versuch für eine lange Messzeit wiederholt werden. Die Korrelationsmessung liefert in diesem Fall: >> T = t ( end ) ; >> cz = (−T : stime : T ) ;
% Messzeit % Korrelationszeitvektor % Korrelation >> c x s i g = x c o r r ( sindel , s i ns i g , ’ biased ’ ) ; >> [ y , ind ] = max ( c x s i g ) ; % Maximum-Suche >> l a u f z e i t = cz ( ind ) % geschätzte Laufzeit laufzeit = 0.0100
Die Laufzeit wird in beiden Fällen richtig geschätzt. Mit der Einstellung
371
Lösungsband zu „Signale und Systeme“
>> simudauer = 1 ; >> N = 1 0 0 ;
wird der Versuch nun mit einem SNR von −20 dB und kurzer Messzeit wiederholt. Man erhält: >> . . . >> l a u f z e i t = cz ( ind )
% geschätzte Laufzeit
laufzeit = 0.0300
Mit >> simudauer = 1 0 ; >> N = 1 0 0 ;
kann der Versuch nun mit einem SNR von −20 dB und langer Messzeit wiederholt werden. Man erhält: >> . . . >> l a u f z e i t = cz ( ind )
% geschätzte Laufzeit
laufzeit = 0.0300
Die Messungen sind in beiden Fällen unbrauchbar. (b) Das Simulink-System s_delay2.mdl der Begleitsoftware verwendet als Testsignal ein Chirp-Signal. Die Leistung eines Chrip-Signals berechnet sich mit der Amplitude A 2 ebenfalls zu A2 . Da im Chirp-Block eine Amplitude von 1 voreingestellt ist, beträgt die Signalleistung 12 . Dies kann nach der Simulation mit >> var ( c h i r p s i g ) ans = 0.4807
372
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
experimentell überprüft werden. Mit der Einstellung 50*stime für den Parameter Noise Power erhält in diesem Fall ein SNR von −20 dB. Mit >> >> >> >>
frq = 5 0; v = 10; simudauer = 1 ; N = 50;
werden die Parameter für die Simulation eingestellt. Der Parameter frq = 50 bestimmt die Bandbreite des Chirp-Signals. Dies kann durch Berechnung des Amplitudenspektrums mit >> >> >> >> >> >> >>
sp = f f t ( c h i r ps i g , 1 0 2 4 ) ; f a = 1/ stime ; df = f a / 1 0 2 4 ; F = ( 0 : df : 1 0 2 3 * df ) ; p l o t ( F , abs ( sp ) , ’b ’ , ’ LineWidth ’ , 3 ) ; axis ([0 , 20 0 , 0 , 9 0]) grid
überprüft werden. In Abbildung 5.26 ist dieses Amplitudenspektrum grafisch dargestellt. Die Grafik zeigt, dass das Signal bis zur Frequenz 50 Hz nahezu konstant16 ist. Das Spektrum ähnelt also dem eines bandbegrenzten weißen Rauschens. Die Korrelationsmessung liefert nun >> T = t ( end ) ; >> cz = (−T : stime : T ) ;
% Messzeit % Korrelationszeitvektor % Korrelation >> c x s i g = x c o r r ( sindel , s i ns i g , ’ biased ’ ) ; >> [ y , ind ] = max ( c x s i g ) ; % Maximum-Suche >> l a u f z e i t = cz ( ind ) % geschätzte Laufzeit laufzeit = 0.0100
und im Gegensatz zum Experiment mit dem Sinussignal das exakte Ergebnis. 16
Alles eine Frage der Sichtweise;-))
373
Lösungsband zu „Signale und Systeme“
90 80 70
|FFT|
60 50 40 30 20 10 0 0
50
100 Frequenz /Hz
150
200
Abb. 5.26: Amplitudenspektrum des verwendeten Chirp-Signals
Ein Plot des Korrelationssignals (s. Abbildung 5.27) mit >> p l o t ( cz , c x s i g ) >> g r i d >> a x i s ( [ − 0 . 1 , 0 . 1 , − 0. 6 , 1 ] )
zeigt, dass das Korrelationsmaximum selbst bei der kurzen Messzeit und dem schlechten SNR noch sehr ausgeprägt ist. Einmal mehr schlägt also, wie es die Theorie voraussagt, das breitbandige Signal das schmalbandige Signal bezüglich der Brauchbarkeit für Korrelationsmessungen. Übung 157 ( Lehrbuch Seite 541 ) In der Begleitsoftware befinden sich die Files inputsigH.mat und outputsigH.mat mit zwei diskretisierten Ein- und Ausgangssignalen eines zu identifizierenden LTI-Systems H(jω) resp. H(s). Die Signale wurden dabei mit einer Abtastrate von fa = 2048 Hz diskretisiert. Bestimmen Sie (numerisch und grafisch) den Amplitudengang des Systems auf der Grundlage des Wiener-Lee-Theorems. Stellen Sie anhand der grafischen Darstellung eine Vermutung darüber an, welche Übertragungsfunktion H(s) im Bildbereich das System hatte.
374
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
1
0.5
0
−0.5 −0.2
−0.1
0 Zeit / s
0.1
0.2
0.3
Abb. 5.27: Korrelationssignal bei Verwendung eines Chirp-Signals und −20 dB SNR
Lösung zu Übung 157 Mit >> load inputsigH ; >> load outputsigH ; >> whos Name inputsigH outputsigH
Size
32769 x1 32769 x1
Bytes 262152 262152
Class double double
können die Signale in den MATLAB-Workspace geladen werden. Auf der Grundlage des Wiener-Lee-Theorems kann mit den Anweisungen >> N = 1 0 2 4 ; % Verwendung von 1-K-FFTs >> f a = 2 0 4 8 ; % Abtastrate >> % Lestungsdichtespektren >> [ Sxxout , F ] = cpsd ( outputsigH , outputsigH , . . . hanning (N) ,N/2 ,N, fa , ’ onesided ’ ) ; >> [ Sxxin , F ] = cpsd ( inputsigH , inputsigH , . . . hanning (N) ,N/2 ,N, fa , ’ onesided ’ ) ; >> % Amplitudengang berechnen >> BHquad = Sxxout . / Sxxin ; >> Habs = s q r t ( BHquad ) ;
375
Lösungsband zu „Signale und Systeme“
der Amplitudengang des Systems bestimmt werden. Mit den Anweisungen >> semilogx ( F , 2 0 * l og10 ( Habs ) , ’b ’ , ’ LineWidth ’ , 3 ) >> . . .
erhält man die in Abbildung 5.28 (links) wiedergegebene grafische Darstellung.
15
15
10
10 |H|
20
|H|
20
5
5
0
0
gemessen
vermutet −5
−2
10
−1
10 Frequenz / Hz
0
10
−5
10
−2
−1
10 Frequenz / Hz
0
10
Abb. 5.28: Gemessener Amplitudengang des unbekannten LTI-Systems (links) und Amplitudengang des vermuteten Systems (rechts)
Auf der Grundlage dieses Plots kann vermutet werden, dass es sich wegen der mit ca. −20 dB pro Dekande abfallenden Flanke und der TiefpassCharakteristik um ein Verzögerungsglied 1. Ordnung (s. RC-Tiefpass) handelt. Für die 3 dB-Grenzfrequenz kann an der Grafik (bei 17 dB ablesen!!) ungefähr 5 · 10−2 Hz abgelesen werden, was auf eine Zeitkonstante von T = 1 2π·5·10−2 = 3.1831 s schließen lässt. Die Verstärkung bei 0 rad/s beträgt ca. 20 dB (entsprechend (Amplituden-)Faktor 10). Die vermutete Übertragungsfunktion des Systems lautet daher: H(s) =
K 10 = . Ts + 1 3.1831 · s + 1
(375.1)
Im linken Teil von Abbildung 5.28 ist die Übertragungskennlinie dieses Systems zusammen mit der gemessenen aufgetragen. Man erkennt eine brauchbare Übereinstimmung. Das System ist somit entsprechend (375.1) identifiziert. Übung 158 ( Lehrbuch Seite 541 ) In der Begleitsoftware befindet das File fahrbahn.mat mit einem Fahrbahnunebenheitssignal, welches die vertikale Auslenkung in mm einer Fahrbahn
376
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
in Abhängigkeit von einer in cm gemessenen Strecke angibt. Das Signal ist dabei in einem Abstand (Abtastintervall) von Ta = π cm diskretisiert. Berechnen Sie das Fahrbahnunebenheitsspektrum und stellen Sie es grafisch dar. Achten sie dabei auf die korrekte Beschriftung der Achsen (insbesondere die richtige Angabe der Einheiten). Gehen Sie dann davon aus, dass dieses Unebenheitsspektrum die Form w ρ0 (376.1) SXX (jρ) = φ0 · , w ∈ [1.75, 2.25] ρ (vgl. Gl. (531.2) des Lehrbuchs) hat, und schätzen Sie anhand der grafischen Darstellung des Spektrums für den Parameter ρ0 rad/cm entsprechend einer Wellenlänge von 1 m den Parameter φ0 ab. Ermitteln Sie anschließend experimentell den passenden Parameter w. Plotten Sie, wenn Sie den passenden Exponenten w gefunden haben, zum Vergleich die Charakteristik entsprechend (531.2) über das gemessene Fahrbahnunebenheitsspektrum. Lösung zu Übung 158 Mit >> load fahrbahn ; >> whos Name Size fahrbahn
Bytes
1 x16384
131072
Class double
wird das Signal zunächst in den MATLAB-Workspace geladen. Das Leistungsdichtespektrum kann mit >> T = pi ; >> f a = 1/T ; >> N = 1 0 2 4 ;
% Abtastintervall in cm % Abtastrate in 1/cm % FFT-Länge
>> % Berechnung des Leistungsdichtespektrums >> [ Sxx , F ] = cpsd ( fahrbahn , fahrbahn , . . . hanning (N) ,N/ 2 ,N, fa , ’ onesided ’ ) ;
berechnet werden. Abbildung 5.29 zeigt das Leistungsdichtespektrum über der Wellenzahl in rad/Wellenlange im doppelt logarithmischer Darstellung, welche mit den Anweisungen
377
Lösungsband zu „Signale und Systeme“
>> >> >> >>
semilogx ( 2 * pi * F , 1 0 * l og10 ( Sxx ) , ’b ’ , ’ LineWidth ’ , 3 ) ; x l a b e l ( ’ Wegfrequenz rad / cm ’ ) ; y l a b e l ( ’PSD mm^2/cm ’ ) ; grid
40
40
30
30
20
20 PSD mm2/cm /dB
PSD mm2/cm / dB
erzeugt werden kann.
10 0 −10
10 0 −10
−20
−20
−30
−30
−40 −3 10
−2
−1
10 10 Wegfrequenz rad/cm
0
10
−40 −3 10
−2
−1
10 10 Wegfrequenz rad/cm
10
0
Abb. 5.29: Gemessenes Fahrbahnunebenheitsspektrum (links) und Anpassung gemäß (377.1) (rechts)
Wir gehen nun davon aus, dass dieses Unebenheitsspektrum die Form w ρ0 (377.1) SXX (jρ) = φ0 · , w ∈ [1.75, 2.25] ρ hat und lesen an der grafischen Darstellung des Spektrums für den Parameter ρ0 rad/cm entsprechend einer Wellenlänge von 1 m den Parameter φ0 ab. 2π Der Wellenlänge von 1 m = 100 cm entsprechen ρ0 = 100 rad/cm und wegen 2π −1.2018 log10 100 = −1.2018 muss dieser Wert bei 10 abgelesen werden. 2
Approximativ kann so −2 dB entsprechend φ0 = 10− 10 = 0.6310 mm2/cm abgelesen werden. Wegen ρ0 10 · log10 (SXX (jρ)) = 10 · log10 (φ0 ) + w · 10 · log10 ρ (377.2) = 10 · log10 (φ0 ) + w · 10 · log10 (ρ0 ) − w · 10 · log10 (ρ) entspricht 10 · w der Steigung der Flanke in dB pro Dekade.
378
Lösungen der Übungen zum Kapitel „LTI-Systeme und Stochastische Signale“
Aus der Grafik kann man zwischen 10−2 und 100 ungefähr einen Abfall von 16 dB auf −28 dB ablesen. Dies entspricht einer Flankensteilheit von ca. 22 dB pro Dekade entsprechend: w=
22 = 2.2. 10
(378.1)
Ermitteln Sie anschließend experimentell den passenden Parameter w. Die Schätzungen können grafisch verifiziert werden, indem das ideale Spektrum gemäß (377.1) mit den ermittelten Parametern über das gemessene Spektrum geplottet wird (s. Abbildung 5.29): >> phi0 = 10^( −2/10); >> rho0 = ( 2 * pi ) / 1 0 0 ; >> w = 2 . 2 ; >> semilogx ( 2 * pi * F , 1 0 * l og10 ( Sxx ) , ’b ’ , ’ LineWidth ’ , 3 ) ; >> g r i d >> hold Current pl o t held >> semilogx ( 2 * pi * F , 1 0 * l og10 ( phi0 * ( rho0 . / ( 2 * pi * F ) ) . ^w) , . . . ’k ’ , ’ LineWidth ’ , 3 ) ;
A
Symbole und Formelzeichen
Symbol
Bedeutung
Symbol
Bedeutung
fa
Abtastfrequenz in Hz
Ta
Abtastintervall in s
ωa
Abtastfrequenz in rad/s
ω
Frequenz in rad/s
ωg
Grenzfrequenz in rad/s
fg
Grenzfrequenz in Hz
ωs
Sperrfrequenz in rad/s
fs
Sperrfrequenz in Hz
ω
Frequenz in rad/s
f
Frequenz in Hz
Ω
normierte Frequenz in rad
T
Zeitkonstante oder Zeitintervall in s
Ωg
Grenzfrequenz in rad
Ωs
Sperrfrequenz in rad
x(t), y(t)
zeitkontinuierliche Signale
xn , y n
zeitdiskrete Signale
δ0 (t)
Dirac-Impuls
δn , δ0 (n)
Diskreter Impuls
σ(t)
Einheitssprung-Signal
σn
Diskretes Einheitssprung-Signal
h(t)
Impulsantwort eines analogen LTI-Systems
hn
Impulsantwort eines digitalen LTI-Systems
yσ (t)
Sprungantwort eines analogen LTI-Systems
yn
Sprungantwort eines digitalen LTI-Systems
X(s), Y (s)
Laplace-Transformierte der Signale x(t), y(t)
X(z), Y (z)
Z-Transformierte der Signale xn , yn
H(s)
Übertragungsfunktion eines analogen LTI-Systems im Bildbereich
H(z)
Übertragungsfunktion eines digitalen LTI-Systems im Bildbereich
X(jω), Y (jω)
Fourier-Transformierte der Signale x(t), y(t)
X(Ω), Y (Ω), XDT F T (Ω)
DTFT-Transformierte der Signale xn , yn
H(jω)
Übertragungsfunktion eines analogen LTI-Systems im Frequenzbereich
H(Ω)
Übertragungsfunktion eines digitalen LTI-Systems im Frquenzbereich
S
System
~ x(t)
vektorielles zeitkontinuierliches Signal
(σ)
Fortsetzung auf der nächsten Seite
O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_6, © Springer-Verlag Berlin Heidelberg 2011
380
Kapitel A: Symbole und Formelzeichen
Symbol
Bedeutung
Symbol
Bedeutung
Ableitung einer Funktion x(t)
F (s) := L(f )(s)
Laplace-Transformierte einer Funktion f (t)
f (t) ◦ − • F (s)
Laplace- oder Fouriertransformation einer Funktion f (t)
F : f (t) 7−→ F (jω)
Fouriertransformation einer Funktion f (t)
x ˜(t)
Impulstabtastsignal eines Signals x(t)
˜ X(jω)
Abtastspektrum eines Signals x(t)
⊥ ⊥ ⊥ (t)
Impulskamm
F (z) := Z(f )(z),
Z-Transformierte eines Signals (fn )n∈Z
x(t) ∗ y(t)
Faltung zweier zeitkontinuierelicher Signale
xn ∗ y n
Faltung zweier diskreter Signale
−→
DFT
Diskrete Fouriertransformation
O(N 2 )
Landau-Symbol (Komplexität eines Algorithmus)
XT (jω)
Spektrum eines in [−T, T ] zeitgefensterten Signals
D
Raum der Testfunktionen (s. Distributionen)
d x(t), dt
x(t), ˙ x0 (t)
Z
fn ←→ F (z), Z(fn )
B
Tabellen
B.1 Tabelle der Laplace-und Z-Transformationen Tabelle B.1: Die wichtigsten Laplace- und Z-Transformationen
Laplace Transformation
Zeitfunktion
Z-Transformation (einseitige)
F (s) R∞ f (t)e−st dt
f (t)
F(z)
f (t)
F˜ (z) =
AF (s)
Af (t)
AF˜ (z)
F (s) + G(s)
f (t) + g(t)
˜ F˜ (z) + G(z)
sF (s) − f (0+)
–
d − ds F (s)
d f (t) dt Rt
tf (t)
F (s + a)
e−at f (t) ; a > 0
F˜ (zeaTa )
e−nsTa F (s)
f (t − nTa ) ; n > 0 f at ; a > 0
z −n F˜ (z)
1 s
σ(t) ; fm = 1 für m ≥ 0
z z−1
1 s2
t
Ta z (z−1)2
1 s3
1 2 t 2!
Ta2 z(z+1) 2(z−1)3
1 s4
1 3 t 3!
Ta3 z(z 2 +4z+1) 6(z−1)4
1 sk+1
1 k t k!
(−1)k ∂ k k a→0 k! ∂a
1 s−( T1a ) ln a
a Ta
z z−a
1 s+a
e−at
z z−e−aTa
1 (s+a)2
te−at
Ta ze−aTa (z−e−aTa )2
aF (as) 1
fm z −m
m=0
0
F (s) s
∞ P
–
f (τ )dτ
0
δ(t) ; fm =
t
d ˜ −Ta z dz [F (z)]
1 Ta
bei m = 0
F˜ (z) mit
Ta a
→ Ta
1 Ta
lim
z z−e−aTa
Fortsetzung auf der nächsten Seite O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_7, © Springer-Verlag Berlin Heidelberg 2011
382
Kapitel B: Tabellen Tabelle B.1: Die wichtigsten Laplace- und Z-Transformationen
Laplace Transformation
Zeitfunktion
Z-Transformation (einseitige)
F (s)
f (t)
F(z)
2
Ta2 e−aTa z 2(z−e−aTa )2
Ta2 e−2aTa z (z−e−aTa )3
1 (s+a)3
t 2
1 (s+a)k+1
tk −at e k!
(−1)k ∂ k k! ∂ak
a s(s+a)
1 − e−at
(1−e−aTa )z (z−1)(z−e−aTa )
a s2 (s+a)
t−
b−a (s+a)(s+b)
e−at − e−bt
z z−e−aTa
−
z z−e−bTa
(b−a)(s+c) (s+a)(s+b)
(c − a)e−at + (b − c)e−bt
(c−a)z z−e−aTa
+
(b−c)z z−e−bTa
ω s2 +ω2
sin(ωt)
z sin(ωTa ) z 2 −2z cos(ωTa )+1
s s2 +ω2
cos(ωt)
z(z−cos(ωTa )) z 2 −2z cos(ωTa )+1
ω s2 −ω 2
sinh(ωt)
z sinh(ωTa ) z 2 −2z cosh(ωTa )+1
s s2 −ω 2
cosh(ωt)
z(z−cosh(ωTa )) z 2 −2z cosh(ωTa )+1
ω (s+a)2 +ω 2
e−at sin(ωt)
s+a (s+a)2 +ω 2
e−at cos(ωt)
z 2 −ze−aTa cos(ωTa ) z 2 −2ze−aTa cos(ωTa )+e−2aTa
ωs (s+a)2 +ω 2
e−at (ω cos(ωt) − a sin(ωt))
ωz 2 −ze−aTa (ω cos(ωt)+a sin(ωTa )) z 2 −2ze−aTa cos(ωTa )+e−2aTa
ab s(s+a)(s+b)
1+
e−at
1−e−at a
b −at a−b e
Ta z (z−1)2
−
+
z z−e−aTa
(1−e−aTa )z a(z−1)(z−e−aTa )
ze−aTa sin(ωTa ) z 2 −2ze−aTa cos(ωTa )+e−2aTa
−
a −bt a−b e
z z−1
+
bz (a−b)(z−e−aTa )
az − (a−b)(z−e −bTa )
Hinweis zum Gebrauch der Tabelle Man beachte, dass die Zeitfunktionen alle kausal sind, das heißt, dass f (t) = 0 ist für alle t < 0! Für die Anwendung der Z-Transformations-Tabelle ist die Diskretisierung der in der mittleren Spalte angegebenen kausalen, zeitkontinuierlichen Funktion erforderlich. Das bedeutet, dass die in der dritten Spalte angegebene Z-Transformierte zur Folge fn := f (n · Ta ) gehört, wobei Ta der in der dritten Spalte vorkommende Parameter ist. z Beispielsweise ist die Funktion z−e−aT die Z-Transformierte der Folge a n fn := f (n · Ta ) = e−at = e−a·n·Ta = e−a·Ta =: bn , (382.1) |t=n·T a
also die Z-Transformierte einer Potenzfolge bn mit b = e−a·Ta .
383
Lösungsband zu „Signale und Systeme“
B.2 Tabelle der wichtigsten Fouriertransformationen Tabelle B.2: Ausgewählte Fouriertransformationen Zeitbereich
Frequenzbereich
δ0 (t)
1
1
2πδ0 (ω)
σ(t)
1 jω
1 T
rectT (t +
T 2
)
+ πδ0 (ω)
sinc( ωT ) 2π T
rectT (t)
T e−jω 2 sinc( ωT ) 2π
sinc(ω0 t)
1 ω0
cos(ω0 t)
πδ0 (ω − ω0 ) + πδ0 (ω + ω0 )
sin(ω0 t)
−jπδ0 (ω − ω0 ) + jπδ0 (ω + ω0 )
ejω0 t
2πδ0 (ω − ω0 )
e−a|t|
2a ω 2 +a2
σ(t)e−at
1 jω+a n−1
t σ(t)e−at (n−1)! ∞ P
n=−∞
δ0 (t − nT )
rect2πω0 (ω + πω0 )
1 (jω+a)n
ω0
∞ P
n=−∞
δ0 (ω − nω0 ) mit ω0 :=
dn δ (t) dtn 0
(jω)n
|t|
− ω22
tn
d 2πj n dω n δ0 (ω)
n
2π T
384
Kapitel B: Tabellen
B.3 Filterentwurfs(kurz)tabellen analoger und digitaler Filter Tabelle B.3: Entwurfskoeffizienten für analoge Butterworthfilter Filterordnung
Teilfilteranzahl
a-Koeffizienten
b-Koeffizienten
n
i
ai
bi
fgi /fg
Qi
1
1
1.0000
0.0000
1.000
–
2
1
1.4142
1.0000
1.000
0.71
3
1
1.0000
0.0000
1.000
–
2
1.0000
1.0000
1.272
1.00
1
1.8478
1.0000
0.719
0.54
2
0.7654
1.0000
1.390
1.31
4
Grenzfrequ.verhältnis
Güte
Tabelle B.4: Entwurfskoeffizienten für digitale Butterworth-Filter FilterTeilordnung filteranzahl
a0-Koeffizienten
a1-Koeffizienten
a2-Koeffizienten
b1-Koeffizienten
b2-Koeffizienten
N
i
a∗0i
a∗1i
a∗2i
b∗1i
b∗2i
1
1
0.5000
0.5000
0.0000
0.0000
0.0000
2
1
0.2929
0.5858
0.2929
0.0000
0.1716
3
1
0.5000
0.5000
0.0000
0.0000
0.0000
2
0.3333
0.6667
0.3333
0.0000
0.3333
1
0.2599
0.5198
0.2599
0.0000
0.0396
2
0.3616
0.7232
0.3616
0.0000
0.4464
4
Tabelle B.5: Entwurfskoeffizienten für digitale Tschebyscheff-Filter mit 1 dB Welligkeit im Durchlassbereich FilterTeilordnung filteranzahl
a0-Koeffizienten
a1-Koeffizienten
a2-Koeffizienten
b1-Koeffizienten
b2-Koeffizienten
N
i
a∗0i
a∗1i
a∗2i
b∗1i
b∗2i
1
1
0.5000
0.5000
0.0000
0.0000
0.0000
2
1
0.2595
0.5190
0.2595
-0.2862
0.3242
3
1
0.3110
0.3110
0.0000
-0.3780
0.0000
2
0.3636
0.7273
0.3636
-0.1496
0.6042
1
0.1295
0.2591
0.1295
-0.8109
0.3290
2
0.4043
0.8085
0.4043
-0.1372
0.7543
4
C
Zuordnung der Übungen zu Sachthemen (alphabetisch)
Thema Abtastspektrum
Abtasttheorem
Abtastung und Rekonstruierbarkeit
Aliasing
Allpass, digital
Übung
Lösung Seite
Übung 68
164
Übung 69
170
Übung 70
173
Übung 72
179
Übung 109
Thema LaplaceTransformation
Übung
Lösung Seite
Übung 29
57
Übung 39
93
Laufzeitmessung, Korrelation
Übung 144
334
Leakage
Übung 111
253
251
Übung 113
256
Übung 68
164
Übung 115
260
Übung 69
170
Leistung, stochastisches Signal
Übung 145
336
Übung 70
173
Leistungsdichtespektrum
Übung 141
324
Übung 72
179
Übung 142
327
Übung 108
249
Übung 143
330
Übung 68
164
Übung 145
336
Übung 69
170
Übung 149
348
Übung 70
173
Leistungsdichtespektrum, Berechnung, MATLAB
Übung 149
348
Übung 70
173
Leistungsdichtespektrum, Berechnung, MATLAB
Übung 150
351
Übung 72
179
Leistungsdichtespektrum, Berechnung, MATLAB
Übung 158
376
Übung 108
249
Lineare Systeme, analog
Übung 1
1
Übung 113
256
LTI-System, analog
Übung 10
18
Übung 118
271
Übung 11
18
Übung 120
274
Übung 17
30
LTI-System, analog, Simulink-System
O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1_8, © Springer-Verlag Berlin Heidelberg 2011
386 Thema
Kapitel C: Zuordnung der Übungen zu Sachthemen (alphabetisch) Übung
Lösung Seite
Thema
Übung
Lösung Seite
Amplitudenspektrum, Signal analog
Übung 43
99
LTI-System, digital
Übung 87
201
Autokorrelationsfunktion
Übung 128
295
Nichtlineare Systeme, Linearisierung
Übung 2
2
Übung 129
296
Übung 3
4
Übung 128
295
Übung 4
5
Übung 136
312
Übung 137
Übung 149
348
314
Übung 150
351
Übung 140
324
Übung 151
354
Übung 141
324
Übung 155
364
Übung 147
344
Pol-NullstellenDiagramm, LTI digital
Übung 94
221
Übung 157
374
Quantisierungsrauschen
Übung 153
361
Autokorrelationsfunktion, periodische Signale
Übung 144
334
Übung 155
364
Autokorrelationsfunktion, Rauschen
Übung 134
305
Übung 21
40
Bode-Diagramm, LTI analog
Übung 49
106
Übung 28
55
Übung 50
110
Übung 86
200
Übung 51
112
Übung 91
211
Übung 53
117
Übung 94
221
Übung 65
154
Übung 152
360
Übung 67
160
Übung 153
361
Übung 116
261
Übung 154
363
Übung 117
267
Übung 155
364
Autokorrelationsfunktion, Leistungsdichtespektrum
Bode-Diagramm, LTI analog, MATLAB
Bode-Diagramm, LTI digital, MATLAB
Periodogrammschätzung, Leistungsdichtespektrum
Signalflussdiagramm, LTI analog
Signalflussdiagramm, LTI digital
Signal-RauschAbstand
387
Lösungsband zu „Signale und Systeme“ Thema
Übung
Lösung Seite
ButterworthHochpass, analog
Übung 67
160
ButterworthTiefpass, analog
Übung 64
151
Übung 65
Thema
Übung
Lösung Seite
Übung 155
364
Übung 152
360
154
Übung 154
363
Übung 66
157
Übung 155
364
Übung 125
286
Übung 150
351
Übung 126
289
Übung 107
248
D/A-Wandlung
Übung 71
175
Übung 108
249
Darstellung von analogen Signalen mit MATLAB
Übung 7
14
Übung 110
252
DFT/DTFT
Übung 110
252
Übung 43
99
DFT/FFT
Übung 103
238
Übung 44
101
Übung 104
240
Übung 48
105
Übung 105
241
Übung 68
164
Übung 106
246
Sprungantwort, Differenzierer
Übung 20
39
Übung 107
248
Sprungantwort, LTI analog
Übung 21
40
Übung 108
249
Übung 22
43
Übung 111
253
Übung 23
44
Übung 112
254
Übung 24
48
Übung 113
256
Übung 25
51
Übung 105
241
Übung 27
54
Übung 109
251
Übung 30
60
Übung 21
40
Übung 31
66
Übung 22
43
Übung 33
72
Übung 23
44
Übung 34
76
Übung 31
66
Übung 35
82
Übung 33
72
Übung 36
84
ButterworthTiefpass, digital
DFT-Spektrum
Differentialgleichung, LTI analog
SNR
Spektrale Auflösung, DFT
Spektrum, Signal analog
388 Thema
Differenzengleichung, LTI digital
Digitale Simulation, LTI-Systeme Dirac-Impuls, Distributionen Discrete Time Fourier-Transform
Diskrete Fouriertransformation
Kapitel C: Zuordnung der Übungen zu Sachthemen (alphabetisch) Übung
Lösung Seite
Übung 34
76
Übung 35
82
Übung 37
86
Übung 73
183
Übung 75
Thema Sprungantwort, LTI digital
Übung
Lösung Seite
Übung 87
201
Übung 96
225
Sprungantwort, LTI digital, MATLAB
Übung 85
199
Stabilität, LTI analog
Übung 30
60
186
Übung 35
82
Übung 79
190
Übung 36
84
Übung 80
192
Übung 84
197
Übung 90
209
Übung 87
201
Übung 91
211
Übung 90
209
Übung 93
219
Übung 93
219
Übung 100
234
Übung 94
221
Übung 74
184
Übung 96
225
Übung 117
267
Übung 97
227
Übung 18
34
Übung 98
228
Übung 47
104
Übung 99
230
Übung 101
236
Übung 121
275
Übung 102
237
Übung 146
340
Übung 103
238
Übung 147
342
Übung 105
241
Übung 128
295
Übung 106
246
Übung 129
296
Übung 107
248
Übung 130
297
Übung 108
249
Übung 133
304
Übung 111
253
Übung 135
308
Übung 112
254
Übung 146
340
Übung 113
256
Übung 133
304
Stabilität, LTI digital
Stochastischer Prozess, LTI-Systeme
Stochastischer Prozess, stationär
Stochastischer Prozess, stationär im weiteren Sinne
389
Lösungsband zu „Signale und Systeme“ Thema
Übung
Lösung Seite
Distributionen
Übung 19
36
DTFT
Übung 101
236
Übung 102
237
Übung 132
Thema Stochastischer Prozess, stationär im weiteren Sinne, Kennwerte
Lösung Seite
Übung 137
314
Übung 139
319
Übung 5
9
302
Übung 6
11
Übung 139
319
Übung 8
15
Ergodischer Prozess, Kennwerte
Übung 137
314
Übung 9
17
FahrbahnunebenheitsdichteSpektrum
Übung 158
376
Übung 76
187
Faltungsdarstellung, LTI analog
Übung 24
48
Übung 77
188
Übung 26
52
Übung 78
188
Übung 83
196
Übung 80
192
Übung 79
190
Übung 148
342
Fensterungsfunktionen, digital
Übung 115
260
Übung 157
374
Filterentwurf, analog
Übung 62
143
Systemreaktion, LTI analog
Übung 39
93
Filterentwurf, analog, ButterworthHochpass
Übung 67
160
Transitionsmatrix, LTI analog
Übung 38
90
Übung 64
151
TschebycheffTiefpass, analog
Übung 65
154
Übung 65
154
Übertragungsfunktion im Bildbereich, LTI analog
Übung 31
66
Übung 66
157
Übung 35
82
Filterentwurf, analog, Einschwingzeit
Übung 63
147
Übung 36
84
Filterentwurf, analog, Gruppenlaufzeit
Übung 62
143
Übung 37
86
Ergodischer Prozess
Faltungsdarstellung, LTI digital
Systemeigenschaften, analog
Übung
Systemeigenschaften, digital
Systemidentifikation, Wiener-Lee
390 Thema
Kapitel C: Zuordnung der Übungen zu Sachthemen (alphabetisch) Übung
Lösung Seite
Filterentwurf, analog, TschebycheffTiefpass
Übung 65
154
Filterentwurf, digital, ButterworthTiefpass
Übung 125
286
Übung 126 Filterentwurf, digital, FIR FIR-Filter
Thema
Übung
Lösung Seite
Übung 39
93
Übung 30
60
289
Übung 32
68
Übung 119
271
Übung 33
72
Übung 119
271
Übung 34
76
Übung 120
274
Übung 90
209
Übung 120
274
Übung 93
219
Übung 121
275
Übung 94
221
Übung 124
283
Übung 97
227
Übung 56
127
Übertragungsfunktion im Bildbereich, LTI digital, MATLAB
Übung 89
205
Übung 57
130
Übertragungsfunktion im Frequenzbereich, LTI analog
Übung 49
106
Übung 58
131
Übung 50
110
Übung 59
133
Übung 51
112
Übung 60
137
Übung 52
116
Übung 144
334
Übung 53
117
Fourierreihen, Fourierspektrum
Übung 61
141
Übung 54
124
FourierTransformation, zeitkontinuierlich
Übung 40
95
Übung 55
125
Übung 41
96
Übung 65
154
Übung 42
98
Übung 53
117
Fourierreihen
Übertragungsfunktion im Bildbereich, LTI analog, MATLABBerechnung
Übertragungsfunktion im Bildbereich, LTI digital
Übertragungsfunktion im Frequenzbereich, LTI analog, Simulink
391
Lösungsband zu „Signale und Systeme“ Thema
Übung
Lösung Seite 99
Übung 44
Übertragungsfunktion im Frequenzbereich, LTI digital
Übung
Lösung Seite
Übung 116
261
101
Übung 117
267
Übung 45
102
Übung 118
271
Übung 46
103
Übung 122
276
Übung 47
104
Übung 123
277
Harmonischer Prozess
Übung 131
297
Übung 124
283
IIR-Filter
Übung 123
277
Übung 142
327
Impulsantwort, Differenzierer
Übung 20
39
Übung 143
330
Impulsantwort, LTI analog
Übung 16
32
Übung 147
342
Übung 21
40
Übung 157
374
Übung 22
43
Übung 103
238
Übung 23
44
Übung 114
258
Übung 24
48
Übung 88
203
Übung 25
51
Übung 90
209
Übung 27
54
Übung 89
205
Übung 30
60
Übung 90
209
Übung 31
66
Übung 92
214
Übung 33
72
Übung 93
219
Übung 34
76
Übung 97
227
Übung 35
82
Übung 38
90
Übung 36
84
Übung 12
21
Übung 38
90
Übung 13
23
Übung 52
116
Übung 14
28
Übung 55
125
Übung 15
29
Übung 82
195
Übung 21
40
Übung 84
197
Übung 31
66
Impulsantwort, LTI digital
Übung 43
Thema
Weißes Rauschen, bandbegrenzt
Wiener-LeeTheorem Zero-Padding
Z-Transformation
Z-Übertragungsfunktion, LTI digital
Zustandsraumdarstellung, analog, Bildbereich
392 Thema
Kapitel C: Zuordnung der Übungen zu Sachthemen (alphabetisch) Übung
Lösung Seite
Übung 87
201
Übung 89
205
Übung 95
Thema
Übung
Lösung Seite
Übung 38
90
Übung 33
72
224
Übung 34
76
Übung 96
225
Übung 36
84
Übung 97
227
Zustandsraumdarstellung, digital, Zeitbereich
Übung 81
194
Übung 118
271
Zustandsraumdarstellung, digital, Zeitbereich, MATLAB
Übung 89
205
Impulsantwort, LTI digital, MATLAB
Übung 85
199
Übung 95
224
Impulsantwort, LTI digital, MATLAB
Übung 99
230
Übung 96
225
Inverse DFT
Übung 112
254
Übung 99
230
Korrelationsfunktion, Laufzeitmessung
Übung 144
334
Übung 100
234
Zustandsraumdarstellung, analog, Zeitbereich, MATLABBerechnung
Begleitsoftware des Lösungsbandes Bsp_FormFiltUeb.m 345 Bsp_SysIdentUeb.m 342 bspImpz.m 226 CorrsigFFT.m 307 diedft.m 240 DigiSimuRCTP.m 268 diodkenn.m 5 dirac.m 117 distempStetig.m 354, 356, 358 HarmonProzess.m 297, 300 impantw3.m 47 init_ablDirac.m 38 init_delay1.m 368 init_impantw3.m 47 init_oneton.mdl 346 init_Rausch.m 308 init_syssqrt.m 3 init_twoton.mdl 350 init_uebbutterTP.m 289 inputsig.mat 342 IterRausch2.m 305 lsg_verzsigs.m 14 myIFFT.m 254 outputsig.mat 342 RCSimuOrd1.m 185 rp1.m 313 rp2.m 313 rp3.m 313 s_ablDirac.mdl 37 s_adu.mdl 364 s_adu2.mdl 364 s_delay.mdl 311 s_delay1.mdl 368 s_delay2.mdl 371 s_diode.mdl 8 s_FormFiltUeb.mdl 345 s_impantw.mdl 32 s_impantw2.mdl 45 s_impantw3.mdl 47 s_impantwUeb.mdl 122 s_nottinv.m 12 s_oneton.mdl 346 s_Rausch.mdl 305, 308
s_Rausch2.mdl 306 s_Rausch3.mdl 353 s_RCTPSin.mdl 111, 113 s_syssqrt.mdl 3 s_twoton.mdl 350 s_ueb1rec_formel.mdl 201 s_uebAbtastTh2.mdl 172, 173, 181 s_uebAbtastTh3.mdl 179 s_uebbutterTP.mdl 289 s_uebDLTI.mdl 266 s_uebFilterkenn.mdl 147, 149 s_uebHs2.mdl 76 s_uebHs3.mdl 81 s_uebimpantw.mdl 51 s_uebimpantw2.mdl 56 s_uebimpantw3.mdl 56 s_uebRCTPSimu0ter1ter.mdl 270 s_uebResonanz.mdl 95 s_uebSinAntw.mdl 71 s_uebstepantw.mdl 50 s_uebsysDarst.mdl 42 s_uebsysDarst2.mdl 42 s_uebsysEcho.mdl 126 s_uebsysRegel.mdl 65 s_uebZRD1.mdl 27 s_uebZRD2.mdl 27 s_uebZTfunkt.mdl 214 s_uebZTfunkt2.mdl 218 s_uebZTfunkt3.mdl 223 TPFilterBLDS.m 328 TPFilterBLWN.m 328 ueb1rec_formel.m 199 uebAbtastTh.m 168 uebDAUSpect.m 177 uebDigiFiltEntwurf.m 272 uebDigiFiltEntwurf2.m 274 uebDigiFIR.m 283 uebDTFFFT.m 240 uebDTFLsg.m 244 uebDTFT.m 237 uebDTFT2.m 238 uebfensterDFTbsp.m 260 uebFiltEntwurf.m 155 uebFiltEntwurf2.m 158 uebHs1.m 60 uebHs2.m 74 uebHs3.m 78 uebImpantConv.m 53 VRausch3.m 353
O. Beucher, Übungsbuch Signale und Systeme, DOI 10.1007/978-3-642-21188-1, © Springer-Verlag Berlin Heidelberg 2011
Verzeichnis der MATLAB-Funktionen Block State-Space 40 bode 110, 112, 117 butter 152, 160, 288 conv 51, 53, 168 detrend 330, 332, 336 fft 240, 254 filter 261 freqz 271–274 ifft 254, 255 impz 226 plot 185 pzmap 204 ss 74, 78 tf 74, 78, 261 tp2hp 160