Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
1042 Allan Gut Klaus D. Schmidt
Amarts and Set Function ...
63 downloads
621 Views
9MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
1042 Allan Gut Klaus D. Schmidt
Amarts and Set Function Processes
Springer-Verlag Berlin Heidelberg New York Tokyo 1983
Authors Allan Gut Department of Mathematics, University of Uppsala Thunbergsv~.gen 3, 75238 Uppsala, Sweden Klaus D. Schmidt Seminar f(~r Statistik, Universit~t Mannheim, A 5 6800 Mannheim, Federal Republic of Germany
AMS Subject Classifications (1980): 6 0 G 4 8 ; 6 0 G 4 0 , 6 0 G 4 2 ISBN 3-540-12867-0 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-12867-0 Springer-Verlag New York Heidelberg Berlin Tokyo This work is subject to copyright.All rights are reserved,whetherthe whole or partof the material is concerned, specificallythose of translation,reprinting, re-useof illustrations,broadcasting, reproduction by photocopying machineor similar means,and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payableto "VerwertungsgesellschaftWort~, Munich. © by Springer-VerlagBerlin Heidelberg 1983 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 214613140-543210
Ama
r t s
set
F u n c t i o n
Allan An
and
Gut:
introduction
asymptotic
Klaus Amarts
Allan Amarts
P r o c e s s e s
D.
to
theor~
of
....................
Schmidt:
- a measure
Gut
the
martingales
and
Klaus
theoretic
D.
- a bibliography
approach
51
Schmidt: ...................
237
AN INTRODUCTION TO THE THEORY OF
ASYHPTOTICHARTINC~ES
By Allan Gut
Contents
page
Preface
4
Introduction
5
I. History
9
2. Basic properties
14
3. Convergence
23
4. Some examples
31
5. Stability
35
6. The Riesz decomposition
40
7. Two further generalizations of martingales
44
References
46
Preface The material of these notes is based on a series of lectures on real-valued asymptotic martingales
(amarts) held at the Department of
Mathematics at Uppsala University in spring 1979. The purpose of the lectures (and now also of these notes) was (is) to introduce an audience~ familiar to martingale theory~ to the theory of asymptotic martingales. A most important starting point for the development of amart theory was made by Austin, Edgar and Ionescu Tulcea (1974), who presented a beautiful device for proving convergence results. In Edgar, and Sucheston (1976a) the first more systematic treatment of asymptotic martingales was made. Since then several articles on asymptotic martingales have appeared in various journals, l~i~ book therefore ends with a list of references containing all papers related to the theory of asymptotic martingales that wehave been able to trace, whether cited in the text or not.
Introduction We begin by defining asymptotic martingales (amarts) and by briefly investigating how they are related to martingales, submartingales, quasimartingales and other generalizations of martingales. This is then followed by a section on the history of asymptotic martingales after which the more detailed presentation of the theory begins. In this introductory part we consider, for simplicity, only the so called ascending case. Let ~= {Tnl 1
(~,9",P) be a probability space and let
be an increasing sequence of sub-c-algebras of ~ .
(The descend-
ing case corresponds to the index set being the negative integers.) Further, let
T
T C T
be the set of bounded stopping times (relative to if and only if
integer
M
T(~) ~ ( ~ ) A net
(depending on
(aT)TE T
for all
n
and
P ( T ~ M ) =I
T) . The convention that
for almost all
only if for every all
{T=n} E T n
~ E ~,
~-}00
T ~ C
if and only if
defines a partial ordering on
of real numbers is said to converge to
g > 0
) , i.e. i for some
there exists
TO E T
such that
a
T .
if and
IaT-a I < E
for
T E T , T ~ TO . For further details about net convergence, see Neveu
(1975), page 96 (and Remark 2.4 below).
Definition. Let adapted to
{Xn}n= I
be an integrable sequence of random variables,
{~n}~=l . We call
and only if the net
(EXT)T ET
{Xn, ~'n}n=l ~
an asymptotic martingale if
converges.
The very first question is of course: Is a martingale an asymptotic martingale? The answer is yes, since, if Doob's optional sampling theorem, net
(EXT)TC T
~ {Xn, Tn}n=l E X T = EX I
is a martingale, then, by for all
T E T,
i.e. the
is constant and hence, in particular, convergent.
However, more is true. Suppose that
{ X n }I~=n
is adapted to
~ {T n}n=l
and suppose that pick
A E ~m
a.s. and
EX 7 = constant for all
7 E T . Let
m < n
be arbitrary,
arbitrarily and define the bounded stopping times
72
=
T2(~0) --
if
By assumption,
~0 ¢ A
EXTI = E X n = ~ X n d P +
71 = n
~ X ndP Ac
EXz2 = ~ XmdP + ~ X n d P . Ac Since
EXTI = EXT2 , subtraction yields
S XndP A
= S XmdP A
for
A C~m,
which is the defining relation for a martingale, i.e.
{Xn,~n}n= I
is a
martingale. The term asymptotic martingale thus enters in a natural way: Martingales, T C T
{Xn,~rn}~= I , are characterized by
and asymptotic martingales,
(EXT)7 C T
EX T = oonstc~zt
for all
{Xn,~n}~= I , are characterized by
being oonvePgent (i.e. "asymptotically constant").
Next, let
1
he a submarti
ale
ust as above one notices
that the classical definition is equivalent to: If EX 7 ~ E X .
It follows that an
7, o C T , 7 ~ ~,
then
Ll-bounded submartingale is an asymptotic
martingale. Similarly for supermartingales. A quasimartingale
(F-process) is defined as an adapted sequence
=o E EIXn- E ~ n ,,X+iI < =o, see Fisk (1965), 0rey n=l (1967) and Rao (1969). Every martingale is thus trivially a quasimartingale.
{X~'~}-~-I'L.-n~
such that
The following computations (see Edgar and Sucheston (1976a), page 200) show that every quasimartlngale is an asymptotic martingale. Choose
E > 0
and
E
.IXn-
n=n 0 and let
T C T,
T > n 0.
no
such that
Xn+ll < Since
T
is bounded there exists
n I,
such that
P ( n o ~ e ~ n I)
=
Now,
1.
nI IEXe-EXnl I= k--noY E(X~-..Xnl)l{e=k} I nl-i nl-I =I
E E E(Xn-Xn+l)l{e=k}l = k=nO n=k nl-i n
=
E E E(Xn - Xn+l) I{T n=n 0 k=n0
=k}
=
I nl-I n ETn 1 Y Z E(XnXn+l)l{T=k} n o . Let
T C TN
Xn O
it follows that
IEXTI_ O} +EXTI • I{XTI < O} . By subtracting
(2.4)
from
(2.3)
we obtain
EXTI - E X I =EX~I - E X I{XTI > O} , which together with
(2.1)
yields
E X+TI_< E+EXI{XTI_>O}_°}-< E+EX+.o We have thus proved that (2.5)
EX + < e +EX: T I --
which together with
(2.6)
(2.2)
for
~ > T1 ,
yields
IEX: -EX~I T 1 > TO • 1 By performing the same calculations with
and
~1
replaced by
~' we obtain 1
~
(2.6) with
replaced by ~
~' > T 1
replaced by
a'
and
19
thus that (2.7)
] ~ x ~ - ~ x ~ ,+ I ~ 2 ~ + ~XT)T CT
i.e. the net
for
o, a' ¢ T,
~, ~'_> t o ,
is Cauchy and hence convergent
(cf. Remark 2.4).
This proves the assertion. D = -N.
In several instances the proofs for the cases
D = N
and
D = -N
are identical except for "obvious" changes. This time, however, this is not so, which is seen as follows. If, given such that and
e > 0,
(2.1)
o I 6 T_N
one chooses
and
(2.2)
TO, T I
hold for
O
T, ~ ~ T 0
as above, it turns out that
This is so because the order between
and
T1
and
T_N, @ ~ TI
with
TI~T 0
respectively
is no% a stopping time.
OI and
in
~
has been reversed.
To prove the desired results we thus have to modify the above proof so that rSles of fact that
~I o
will be a stopping time. This is accomplished by reversing the and
(EX~)T E T
Thus, given (2.8)
T1
in the definition of
(and by using the (trivial)
is bounded beZow).
E > 0
IEX T -EX~I
there exists
tO £ T
such that
~ £
T, ~ T
0.
for all
~ X +T)T £ T
Further, since
@i
is bounded below there exists
such that (2.9)
EX + >EX + - e ~-TI Now, choose
01 =
~ < T1
{
for all
o < T I.
arbitrarily and define
~
on
{x o > o}
TI
on
{X o < O} .
~i 6 T
Calculations like those above yield (2.10)
EXTI =EXTI.I{X c >__ 0} +EXTI'I{X O < O}
(2.11)
EX~I = E X ~
+ E X T I - I { X ~ < O} ,
by
T 1 < tO
20
from which it follows by subtraction and (2.12)
(2.8)
that
E X $ < E X + + e. TI - -
By combining
(2.12)
and
(2.9)
IE xa+ -Ex~ 1 I ~ e
(2.13)
we obtain
for all
Finally, to prove that the net
C ~ T I ~ TO •
(EX~) T E~T_N
is Cauchy, one proceeds
exactly as in the ascending case. The proof is complete. The second part of the following result is a "maximal" lemm~, cf. Chacon and Sucheston (1975), Lemm8 1 for
D = N
and Edgar and Sucheston
(1976 a) , Le~ma I.i. Le~8 is
2.10. Assume that
Ll-bounded if
(i)
is a semi~m, rt, which, in addition,
{Xn'~n}n 6 D
D = N . Then
sup Eix~i < ® T
X- P( sup IXnl >X) e sup EIXTI
(ii)
nED (iii)
IXnl < ~
sup nCD
Proof. (i)
a.s.
is immediate from Lermm 2.6.a.
The proof of set
T
A = {
(ii)
sup IXnl >I}
follows "the usual pattern". Let
O 6 T
= k - P(
and
o
o
on
Ac
and
IXnl > k} on
A
o
if
D = -N.
sup EIXTI [E[Xql ~ EIXsI'I{A} ~ I P ( A ) = T IXnI > k) . The conclusion follows by letting n o
sup
be fixed,
and define
Inl~n° I min{n C D; Inl ~ n 0
Then
nO £ N
~>
increase
Inl ~no to infinity. (iii)
follows immediately from
(ii)
by letting
1
tend to infinity.
21
From the theory of martingales martingales
(D =-N)
it is well known that reversed
behave more "nicely" than ordinary ones
(D = N).
In
contrast to the latter ones they are always uniformly integrable and converge almost surely and in
L I . It is therefore not surprising that in
the results above the assumption about the case
D = N
the case
D = -N
Ll-boundedness was made only for
and that this condition is automatically satisfied for (el. e.g. Lemma 2.10 (i), according to which
sup EIXnl n
sup EIXT[ < ~) . We further observe that in the proof of L e ~ 2.6.c T the fact that {X +n'~n}nE D is a semiamart was explicitly used only for D = N , since for ÷ ~ X T ) T E T_ N
the (obvious) existence of a lower bound of
was used (formula (2.9)).
Further, if {Xn}n C - N
D = -N
{Xn'~n}nE-N
is a (super) martingale,
uniformly integrable,
in fact
{XT}T E T_ N
then not only is
is uniformly inte-
grable (see e.g. Meyer (1966), page 126). The object of the final result of this section is to establish this uniform integrability for descending semiamarts, but before stating the result we make the following definition and some comments. Definition 2.11. Let {Xn}nCD
is
integrable,
(2.14)
{Xn}nE D
be adapted to
T-uniformly integrable i.e. if for any given
if the set
E > 0
sup EIX~I" ~IxTI > ~ < c
{~n}nED " We say that (XT}T E T
there exists
for all
is uniformly
%0 ' such that
~ > ~0"
T It is trivially seen that every
T-uniformly integrable sequence also
is uniformly integrable. For the ascending case we further know that every uniformly integrable (super)martingale
is, in fact, T-uniformly integrable
(see Meyer (1966), page 126) and also that every uniformly integrable amart is
T-uniformly integrable
(see Edgar and Sucheston (1976 a), page 210). For
the descending case, however, more is true. Theorem 2.12. I) = -N. Every semiamart is
T-uniformly integrable.
22
This is Theorem 2.9 of Edgar and Sucheston (1976 a) . Proof. It follows from Lemm~ 2.10 that for every TO C T_N
e > 0
there exists
such that
EIx~I ~ EIX~oI + c for all T c T_N,
(2.1s)
and, further, n o ~ T O
(2.16)
E
Now, let
and
X0
such that
max IXnl.l{suplXn[ >l} < E no n'
I n'}
P(A) > i - 2£/3 , where
for some
n,
n' < n < n"}.
by
I min{n; n' < n < n " n" and
such that
IXn(0~)-Y'(~0)l 2e/3) +
P(IY'-YI
>e/3) < e.
This concludes the proof.
Theorem 3.2. Let
{Xn}n 6 D
E sup IXnl < ~ . n
(i)
Xn
(ii)
{Xn}n C D
be an adapted sequence and suppose that
The following statements are equivalent:
converges
a.s.
In I " "
as
is an asymptotic martingale.
Remark 3.3. This is Proposition D =N
2.2 of Edgar and Sucheston (1976 a) . For
the result was earlier proved by Austin, Edgar and lonescu Tulcea
(1974), page 19. Compare also Baxter (1974), (Theorem 1.13 above). Note that, for uniformly bounded sequences of random variables the supremum is trivially integrable and thus Theorem I.I is an immediate corollary.
Proof. D = N . {Tn}n C N as
(i) ~ (ii)
Suppose that
Xn~
Y
a.s.
as
n ~.
Let
be a sequence of bounded stopping times increasing to infinity
n ~.
~ Y a.s. as n ~ , which together with the inten grability of the supremum (IX T I ~ supIXnl) and dominated convergence n n implies that E X T ~ E Y as n ~ , from which the assertion follows in n view of Remark 2.4. (ii) ~ (i)
Then,
XT
X* = limsup X n and X, = liminf X n . According to Lemma n~ n~ 3.1 there exist two sequences of increasing bounded stopping times, {rn}nEN (3.5)
Set
and
{Gn}n£N' X
T
~ X*
such that
and
X
n
~ X,
a.s.
as
n ~.
n
Since
IX~ - X T I ~} , whose measure can be made arbitrarily small by choosing n % large enough (see L ~ a 2.10), we conclude that X n converges almost surely too. Some immediate corollaries are: 3.7. Every reversed martingale and every
Ll-bounded reversed submartingale
is almost surely convergent. 3.8. Every
Ll-boundedmartingale
almost surely convergent.
and every
Ll-bounded submartingale is
27 3.9. Every descending amart converges in
L I . This follows from the
uniform integrability (Theorem 2.12). It is worth mentioning that the proof of the amart convergence theorem differs from the proofs used to prove martingale convergence. The following result (see Gut (1982), Theorem 4.1), which will be used in the sequel, is a minor strengthening of Theorem 3.2. Theorem 3.10. Let
{Xn}nED
be adapted to
{~n}nED
and
T-uniformly inte-
grable. The following assertions are equivalent: (i)
Xn
converges
(ii)
{Xn'Yn}nC D
a.e.
as
Inl
~
is an asymptotic martingale.
For a related result for the case
D =N,
continuous time and finite
stopping times, see Mertens (1972), T Ii. Corollaire. Since, by Theorem 2.12, the above uniform integrability condition is satisfied for every descending semiamart, the following corollary is immediate. Corollary 3.11. Let
{Xn'~rn}ne -N
{Xn'~rn}n£ -N
be an
a.s.
convergent samiamart. Then
i s an amart.
Remark 3.12. There exist
a.s.
convergent ascending semi~m~rts that are
not amarts. See Austin, Edgar and lonescu Tulcea (1974), page 19 and Example 4.2 below.
Remark 3.13. Since
{XTI i
X (p) s 0 2n
When
p=l,
and
and
n E N,
X~Pn)+I(~)
..(I), ~r(1)} {An n n£N
let
Io
if
~0 C [2-n,l) .
is an a.s. convergent semiamart that
fails to be an amart, see Austin, Edgar and lonescu Tulcea (1974), page 19. E suplXnl ffi Y. 2n/P. 2-(n+l) < ~o. Since the sequence n kffil is a.s. convergent, an application of Theorem 3.2 shows that If
p > I, then
Y(P) ~ P ) "~n " n }nEN
is an smart.
Example 4.3. This example is related to that of Sudderth (1971), page 2145. Let
p > 112
and define [| n I/p
if
co C
y n(~)
for
i=l,2,...,n
ffi I 0
otherwise
and
n =1,2, ....
2 '
32
The s e q u e n c e 2 YI'
{x(P)}nn EN
Y22 ''''' Y In '
(4.1)
x,p,C~ -~ O n Define
i s now d e f i n e d a s t h e sequence
Y2n ''''' ~n ' .... It is easily verified that a.s.
{Tn}nEN
and in
+ min{k ~ n ;
Tn(~) ffi n ( n + l )
among
if
C T
and
n
(4.2) Let
~k(~) ÷ 0~
X
Y
among
T 7~
for
1 < k < n.
which corresponds to the first
that is non-zero and
that corresponds to the last zero. Clearly, T
n ~o.
~k(w) = O
equals the index of the
Yln ,..., Ynn
as
as follows:
(n-2 1)n
Thus, Tn
LI
as
Tn
equals the index of the
YIn ~ ' " ' n ~.
ynn
Y X
if the latter are all
Furthermore,
n
EX T (p) ffi E max{Y~ . . . . . Y~} ffi n ( 1 / p ) - I n 1/2 < p < 1 .
yields
Then E x ( P ) - ~ + ~
as
n ~,
an example o f a u n i f o r m l y i n t e g r a b l e
which t o g e t h e r w i t h a.s.
(4.1)
c o n v e r g e n t s e q u e n c e which
fails to he a semiamart. Next, let that
{X~ 1)
a.s.
as
'
p = 1 . Then
E X (1) = I and in view of Tn fails to be an amart. Further,
~(I)} n nCN
n ~ =,
it follows that
(4.1)
it follows
since
X (I) ~ 0 Tn
= -~X(1)~ T n -nffil ' and hence that
{X$1)}T E T ' i~ not uniformly integrable. Finally,
let
it follows that
E suplX~P)l < ~ , n
Theor. 3 2 shows that Example 4 . 4 . L e t
p~
P)>nCN 1 , nE-N
x ( p ) ( ~ ) ffi I 2 n / p -n
-
1 P(sup]X~(p) i ffik l / P ) ffi n which together with (4.1) and
p > I . Then, since
[O
We first note that
is an
and d e f i n e
if
~ £ (0,2 -n)
if
~ E [2-n,1).
33
(4.3) Let
x,p,t~ , 0 n p=i
a.s.
as
n ~m
and that
~_{x,p,} _ t n n £ -N
and introduce the (finite) stopping time
T
is
Ll-bounded.
by
inf{kq-N; x~P)(~) # O}
if an and the sequence
{Tn}nCN'
Tn C T_N
Tn = T v ( - n ) . A simple compu-
by
tation yields (4.4)
E X (I) = n + l
Tn
which shows that If
---~
~
n ~ ~,
as
{X~ I) , ~ n l ) } n C _ N
p > i , then
it follows that
~
is not a semiamart.
E s~p IXn(P) I < ~
~r(P) ~nE-N {X~ p) '~ n ~
and so, by
(4.3)
and Theorem 3.2,
is an amart.
Remark 4.5. Note the difference between Example 4.1 and Example 4.4 with p = I . Just as in Remark 3.17 the different behaviours for D •-N
D =N
and
are due to the different sets of (bounded) stopping times. In the
present case we observe in particular that it is possible to stop at
sup X (I) n n
D=-N
~X(1)~ " n ~£ D
(which is not integrable) with a finite stopping time if
(i.e.
%
in Example 4.4), something that is not possible when
D =N.
A difference between the present case and the case discussed in Remark 3.17 is, however, that here the "better" behaviour occurs when Example 4.6. Let 4.3 and define
p > 1/2 , define {X (p)
n
{Y~; I < i < n, n ~ l } •
as
}nE-N
D=N .
yn
"" '
n
n
as in Example 2
2
i
n''''' Y2 "YI ''''' Y2 'YI 'YI "
We have (4.5)
X (p) ~ 0
a.s.
and in
LI
as
n ~-~.
n
To continue the analogy with Example 4.3 define n
equal the index of the
Yln ,... , Ynn
X
which corresponds to the ~z8t
that is non-zero and by letting
that corresponds to the ~irst
{Tn}n6 N
Y
among
Tn
by letting Y
among
equal the index of the
YIn ''''' yn n
X
if the latter are all
34
zero. Thus
Tn C T_N,
Tn + - ~
(4.6)
E X (p) = n (I/p)-I T n Just as above the case
and
1/2 < p < I
yields an example of a uniformly
integrable a.s. convergent sequence which fails to be a semiamart. When p=i
•
~X (I) }
~ n
n E -N
is uniformly integrable but not
grable, in particular, {X(1) n '~n i) } n C - N 2.12). Finally, for
T-uniformly inte-
is not a semiamart (by Theorem
p > i , {X(p)n'~nP)}nC-N
is an amart.
For the construction of amarts and semlamarts we also refer to Krengel and Sucheston (1978), pages 217-223.
5. Stability This section deals with the following problem: Given an smart ~: R ~
and a function
R,
{~(Xn)'~n}nED
when is
an ~m~rt?
The first result of this kind is that the conclusion holds for +
~O(x) = Ixl , x (L~a
and
x
, provided
2.6). For the case
D •N,
and sufficient conditions on Here the case
D =-N
{Xn}nCD
is
Ll-bounded when
D=N
Bellow (1976 b, 1977 ) gives necessary
~
for the conclusion to hold in general.
will also be covered. The proofs differ slightly
from those given in Bellow (1977) . We also investigate which further assumptions on the amart one needs for the conclusion to remain valid when the necessary conditions on
~
no longer are satisfied.
Following Bellow (1976b, 1977 )
such problems are called stability
problems. Theorem 5.1. Let that
{Xn}nEN
(5.1)
is
~
(5.2)
{Xn'~n}nED
be an amart. If
Ll-bounded. Let
D = N , assume, in addition, be a function such that
~: R ~ R
is continuous and
lim
~(x)
and
lim
~(x)
X
exist and are finite.
X
X ~
X ~ --~
Then, {~(Xn),~n} n C D
is an
Ll-bounded amart. +
Remark 5.2. The cases obviously included. For
~(x) = Ix[, D = N,
x
and
x
mentioned above are
Bellow (1977) , Theorem 2, shows that
(5.1) and (5.2) are necessary and sufficient for an
{~(Xn)'~n}nCN
to be
Ll-bounded amart.
Proof. We first assume that
X
> O, n
~(O) = 0
and
lim ~,x~ = O.
--
x x ~ m
By the amart convergence theorem we know that In[ ~ m (5.3)
and thus, by o(x)
(5.1), also that
converges
a.s.
as
Ini '" ® .
In
converges a.s. as
36 By invoking Theorem 3.10 and Corollary 3.11 it therefore remains to show that (5.4)
{~(Xn)'~n}nE-N
(5.5)
{~(XT)}T q T N
is a semiamart.
is uniformly integrable.
We first consider the
Ll-boundedness of
By assumption, x-l-l~(x)l < E if
0 < x < M.
if
{~(XT)}Z E T "
and
x > M
I~(~)[ ~ 0 '
say,
Thus,
E[~(XT) [ = E[~(XT)['I{X T ~ M} + EI~(XT)['I{XT>M} ~ ~o'P(XT ~M) + EEXT'I{XT>M} ~ 0
+ E supEX T < =, T
since every ~m~rt is a semiamart. Thus, {~(Xn),~n} n E D and, in particular, if Now, let
D = N.
D =-N
is a semiamart
we are done.
A similar argument together with the maximal inequa-
lity, Lemma 2.10 (ii), yields
Z[~(Xz)['X{[~(Xz) [ > A} = s[~(xz)[.z([~(xz) [ > A,
= x z ~ M} + z[~(xz)[.z{[~(xz) [ > A,
~ o ' P ( I ~ ( X T ) I > A) + S E X T ~ o ' A - I ' s u p T
x z >M}
O, n--
~(x) = ~(x) - ax.
X
> 0, n--
~(0) = 0
Bellow (1977)).
~(0) = 0
Then, since
and that
x-l.~(x) ~
x-l.~(x) ~ 0
as
~ 0
as
x ~.
x ~,
{~ (x) '~.}n c D is an ~m~rt and because of the linearity is too.
and
{~(Xn)'~n}n E D
37
+ ~(0) = 0 . Be Lemma 2.6, {X n,~rn}ncD
Next, suppose only that {Xn'~n}nE D
are non-negative a~-rts. From what has been shown so far, it
follows that that Since
{~(X~),~n}nC D
{~l(Xn),Srn}nC D ~(X)
and
and
is an amart, where
= ~(X~) + ~l(Xn)
{~(Xn) ' ~ } n C D Finally,
(because
are amarts and thus a l s o
~l(X) ffi~(-x) ~(0) = O)
for all
x C R.
we conclude that
is an a m a r t .
if
{*(Xn)'~n}neD
{~(Xn),~n}nE D
~(0) ~ 0
we p u t
~ ( x ) = ~ ( x ) - ~ ( 0 ) . Then
is an amart and thus
{~(Xn) ,~n}neD
~(0)
= O,
is too.
This terminates the proof. Now, suppose that
~: R ~ R
is a function for which
hold. As pointed out in Bellow (1977) , sequence of real numbers
(5.1)
does not
page 286 one can always find a
{an} , which is an amart and such that
{~(an)}
is not. We therefore turn to the problem of finding what additional assumptions on the amart are needed (together with Theorem 5.1 to remain valid when Theorem 5.3. Let
{Xn'~n}nED
tinuous functions such that
(5.2)
(5.1)) for the conclusion of
no longer holds.
be an amart and let lim q0(x) x x-++~
and
~0: R-~ R
be a con-
lim q~(x) do not exist x x-~ - ~o
(finitely).
(a)
D =N. Assume in addition that {~(XT)}TC T
{Xn}nE N
is
Ll-bounded and that
is uniformly integrable. Then, {~(Xn),~n}nE N
is an
Ll-bounded amart.
(b)
D =-N. Assume further that {~(Xn)'Yn}nE-N
{~(Xn)'~n}nE-N
is a semiamart. Then,
is an amart.
Proof. The amart convergence theorem and the continuity of imply that
~(Xn)
converges a.s. as
n ~ ~
(n ~ - ~ )
~
. The conclusion now
follows immediately from Theorem 3.10 and Corollary 3.11. Remark 5.4. After reduction to the case
X
together
> O , ~(0) = O n--
and
38
lim x-l-to(x) = 0 x ~ +~ validity of (5.4)
the proof of Theorem 5.1 consisted of s h o ~ n g the and
(5.5)
above. In the present theorem the corre-
sponding properties are ~ p p o s e d to hold. However, following these remarks, some examples are presented to show that the theorem is (essentially) the best possible. Remark 5.5. D =N. It is easily seen by an estimate related to those used to show
(5.4)
and
(5.5)
that the assumption that
{Xn}nE N
is
Ll-bounded can be dropped if
~I -- lim inf Ix-l.to(x)[ and u 2 = x -~+~ = lim inf Ix-l-to(x)l both are positive, because the Ll-boundedness then x-~-~ follows from the uniform integrability of {to(XT)}TC T . However, if
C~l = ~2 = 0 Let
this cannot be done as is seen by the following example:
{~n}nEN
be a sequence of i.i.d, random variables such that 1 n Y ~k and ~n = G{Xk; k < n}, P(~n = w) = P(~n=-W) = ~ . Put X n = k=l n=l,2,....
Then
ZiXnl ~ /~n
as
{Xn,Tn}nC N
n~--,
is a martingale (and hence an amart),
{ X } n £ N i s not
Ll-bounded. Now, choose
~I =(12 = O
lim suplx-l-to(x)I = i) .
i.e.
tO(x) = I x . sinxl , (for which
and
Ixl
- ®
Clearly, to(Xn) m O
for all
n,
in particular, {to(XT)}T E T
is uniformly
integrable. Remark 5.6. If one of the limits
lim X~
x-l-to(x)
and
--~
lim
x-l-to(x)
X~
exists, finite and the other does not, then, by considering the positive and negative parts separately, the assumptions on {to(Xn)}nC-N ' for
D =N
and
D =-N
{to(XT)}T E T
and
respectively, can be reduced to
assumptions on one part only, by applying Theorem 5.1 to the other part. Similarly, if e.g.
~i > 0
and
~2 = 0,
where
~I
and
~2
are defined
as in Remark 5.5. As an example, consider x
if
x ~ 0
if
x < 0 .
to(x) = Then, f o r
D=N,
if
{Xn,~n}nE N i s an amart, {to(Xn),~n}nC N i s an
39
Ll-bounded amart, provided
{Xn}ne N
is
Ll-bounded and
{(X~)2}Te T
is
uniformly integrable. In the remainder of this section we use the examples from Section 4 to produce the examples that were promised at the end of Remark 5.4. First, let
D =N .
Suppose that the assumption that is replaced by the assumption that
{~(XT)}T £ T
{~(Xn)}n E N
is uniformly integrable
is uniformly integrable and
consider Example 4.3 together with the function ~(x) = Ixlp , p > 1 . Then, {X (p) ~ P ) } n ' n n£N
(with
p > I)
is an
~(X~ p)) = X(1)n it follows that that
{~(X~p)) ,~nP)}nqN
{~(Xn)}n E N
Ll-bounded amart. Further, since
{~(x~P))}n6 N
is uniformly integrable and
fails to be an amart. The condition that
is uniformly integrable is thus not sufficient for Theorem 5.3
to hold in general (if
D =N) .
Next, consider a possible replacement with the assumption that {~(Xn)'~rn}nq N
is an
Ll-bounded semlamart (or, equivalently, that
{~(x)}~ £ T is Ll-bounded) and apply Example 4.2 together with the function ~(x) ~ [ x l P ,
and
~Y(P) p > 1 . Then, ~ - n "~nP ) ~" n e N
{,~,cx(P)~n "'~P)}nn EN
is an
(p > I)
Ll-bounded ~m~rt
Ll-bounded semiamart but not an amart.
Note that, since none of the conditions integrable" and "{~(XT)} T E T
is an
is
Example 4.1 and Example 4.3 with
"{~(Xn)}n 6 N
is uniformly
Ll-bounded'' imply each other (combine 1/2 < p < i) both conditions had to be
investigated. Now, let
D=-N.
Suppose that the assumption that
{~0(Xn),~n}nE_N
weakened (cf. Theorem 2.12) to the assumption that
is a semiamart is
{~0(Xn)}nC_N
is uni-
formly integrable and consider Example 4.6 together with the function ~0(x) -- Ix[p , p > i. Then, ^'X p) } ~ n ~ nE-N an amart.
;X (p) ~ P ) } n 'n n6-N'
is uniformly integrable but
where
p > i
is an ~m~rt,
{~P(Xn(P)),~P)} n n6-N
is not
6~The
Riesz decomposition
The Riesz decomposition theorem for amarts was first proved in Edgar and Sucheston (1976 a), Theorem 3.2 for the case
D=N
and, independently,
in Krengel and Sucheston (19781 (except for the problem of uniqueness) and Gut (1982) ,
Theorem 6.1 for the case
of semi~m~rts,
D =-N.
For the Riesz decomposition
see Ghoussoub and Sucheston (1978) and Krengel and Sucheston
(1978). We consider amarts only. First, let
D = N . Instead of presenting the
original proof we use the following lemma from Astbury (1978), where a Riesz decomposition theorem for amarts indexed by directed sets was proved. Lemma 6.1. Let T0 6 T
{Xn'grn}nCN
be an smart and let
E > O . Then there exists
such that
zlx~ - S ~'~XoI
(6.1) Consequently,
the net
~E
for
(E~XT)T C T
~ > T > TO .
converges in
LI
for any
~ E T.
Remark 6.2. Here we have used net convergence in a more general form than described in Section 2. For details, see Neveu (19751, page 96. Proof. Since the net (6.2)
(EXT)T £ T
IEX 0 - E X a l ~ ~/2 Let
T E T,
T O < T < ~, T
p = where
converges we can choose for all
~, O ~ T
TO C T
such that
O-
and define
on
A
on
AC
A £ ~T" It follows from
(6.2)
that
IE I{A} (X T - EgrTxG) 1 = 1E I{A}XT -E I{A}Xffl =
= IE (I{A)XT + I{Ac}X~) -E(IfAC}x~÷ I{A}X~)I = ZEX~- EXal ~ E/2. Set
A = {X T - E ~ X ~
O} . Then, by applying the previous inequality
41 to the sets
A
and
E IXT-E which proves
A c , we obtain
"Xol = E I { A } ( X T - E
(6.1).
As to the second conclusion of the l e m m a w e use that for
~
T, TO, P £ T T -E
which, since
< E,
Xo)- EI{AC}(x T - E ~ X O )
LI
such that
(6.1)
to observe
~ > • > TO, p
X~I =EIETO(XT - E
XG) I e E IXT -
XO
_ E ,
is complete, completes the proof.
We are now ready to state and prove the Riesz decomposition theorem. Theorem 6.3. Let written as {Zn'%}n£N and in
be an amart. Then
Xn = Yn + Zn " where is a
{Yn'~rn}n£N
X
n
(E~OXT)T £ T
is a martingale and
T-uniformly integrable amart, such that
p 6 T
Zn ~ O
a.s.
be arbitrary. It follows from Lemm~ 6.1 that the net
converges in
LI
e > 0 , there exists
(6.3)
to TO
E[Yo -E~0XTI < e
YO ' say. In particular this implies that, such that
for all
T > T 0.
Our next goal is to show that for
p E T,
(6.4)
O £ T , such that
Let
can be uniquely
LI .
Proof. Let
given
{Xn'~n}n6N
Y 0 < p < T
= E vY and
EIYa-
O
for all
T ~ TO.
In view of
eEIYo - E XTI + E I E
fixed,
(6.3)
XT -
~ < 0-
we obtain
01 =
= EIY-E~r~XTI + m IE~(E ~0XT-yp) I ~ e + E I E ~-OXT-YoI ~ 2e, from which
(6.4)
follows because of the arbitrariness of
We have thus e s t a b l i s h e d
that
{Y ' ~ " } n E N n n
g.
is a martingale.
42
. Since (~-%'Zn"n~n£ N is the n difference of two amarts it is itself an amart. Next, given e choose T O To complete the proof, set
and
c > r > TO
that
such that
EIYT- EYTXGI ~ e
Zn = X n - Y
(6.1)
is satisfied for
and such
(ZT)T£T
(cf. (6.3)). Then, since
E~TZ = E~(X
-Y~) = EYTX -yT
we obtain
ZlZTI'I IZTI> }_<EIZ I_<EIZ-E ZoI +zlE Xo-Y I_ ]R
class is a n
form
k g
where are
scalars.
functions. vector
which
With
lattice
AM-space
An
with
be
unit
called
[
F
be
unit X~
of
Q
in
F
and
~I'
~2'
X~
, and
its
. Following each
set
universal
{ Fn
~
sup-norm
Graves
A 6 F
vector
a stochastic
:=
is a n
I n 6~
will
U n £~ algebra
"'''
~k
]) d e n o t e t h e c l a s s of a l l F - m e a s u r a b l e simple o to t h e s u p - n o r m , t h e c l a s s D o is a n M - n o r m e d
its
[79],
completion the
map
characteristic
measure
on
F
D X
be
: F
.
}
called
basis
on
Fn
on
~
.
a stochastic
~
. Define
basis
on
is a n
function
sequence
on
F F
the
,
is a p a r t i t i o n
Let
with
:=
of a l g e b r a s
Then
~iXA. l
respect with
associates
increasing
Let
Z i=1
{ A I , A 2 ..... A k} (real)
will
=
Q
.
• • XA
, ,
80
A map
T
: ~
> ~U
{T=p}
holds
f o r all
for
[
Let
, and
T
as w e l l
it is b o u n d e d
denote with
containing
F
time
for
F
if
if the v a l u e
~(~)
. Endowed
lattice
is a s t o p p i n g
6 Fp
p 6~
sup~
is finite.
{~}
~
:=
the c l a s s
of all b o u n d e d
the p o i n t w i s e
defined
. For each bounded
{ A£
F
I A n { T = p } 6 Fp
stopping
order,
times
the c l a s s
stopping
time
for all
p6~
T
T 6 T
}
is a
, define
,
as
l~(r)
:=
{ n q]N
[ T < n )
T(T)
:=
{ (~£T
I T < c }
and .
Then F is an a l g e b r a on ~ , and T(T) T For a stopping time T £ T U {~} a n d a set FT(A) and
and
PT(A)
in the
o 6 T(~) U {~}
Almost
all
on a p a r t i c u l a r define,
n 6~
K(n)
:=
Now define
~
algebra
[0,1)
on
:=
Bn, k
k 6 K(n) standard
. The
stochastic
basis
and,
which
we
• £ T
and
PT(A)
processes
shall
,
will
construct
A 6 FT
~ Pa(A)
be b a s e d now.
First
.
for all
n 6~
is g e n e r a t e d
basis
it w i l l
basis
~
on
[0,I)
:= { F n
set.
F
n
to be
the
sets
,
I n 6~
}
will
be c a l l e d
.
a l s o be c o n v e n i e n t
on a o n e - p o i n t
, define
b y the
[ ( k - l ) 2 - n , k 2 -n)
stochastic
basis
Fa(A)
set f u n c t i o n
{I ,2,... ,2 n}
which
:=
Fr(A ) ~
~(T)
the classes
,
[0,1)
stochastic
In some c a s e s ,
concerning
stochastic
for all
have
containing
, define
T F o r all
same w a y as above.
, we then
examples
is a l a t t i c e A £ F
to c o n s i d e r
the
trivial
the
2.
Real
The theory sense,
ama
r t s .
of real amarts
the b e s t p o s s i b l e
may be r e g a r d e d solution
of all b o u n d e d m a r t i n g a l e s pointwise
convergence
to a B a n a c h
obtains.
as a s a t i s f a c t o r y
lattice
This e x t e n s i o n
of p r o c e s s e s
and it is o n l y p a r t l y
submartingales
In the f r a m e w o r k
amarts
2.3),
of set f u n c t i o n structure
(Section
2.5).
on
derivative
(finitely
we shall
properties
and q u a s i m a r t i n g a l e s
The s t r u c t u r e
martingales
to
successively of m a r t i n g a l e s
(Section
t h e o r y of g e n e r a l i z e d results
measure.
process
We shall c o n c l u d e 2.7.
will be i n t r o d u c e d
additive)
measures
the c o n s t r u c t i o n
of a b o u n d e d
probability
Section
processes,
by some a d d i t i o n a l
processes
which also c o n t a i n s
function
from
fails to be
2.4),
and
martingales
on s e m i a m a r t s
in
2.6.
Set function results
solved by g e n e r a l i z i n g
and c o n v e r g e n c e
submartingales
will be c o m p l e m e n t e d Section
for w h i c h
or q u a s i m a r t i n g a l e s .
study the b a s i c (Section
usually
in some
the class
problem originates
the fact that the c l a s s of all b o u n d e d m a r t i n g a l e s a lattice,
and,
to the p r o b l e m of e x t e n d i n g
measure
with
The g e n e r a l i z e d
will be the o b j e c t
this c h a p t e r w i t h
in Section
2.2. The n e c e s s a r y
will be d e v e l o p e d
of the g e n e r a l i z e d respect
to a
(countably
Radon-Nikodym
2.1
additive)
derivatives
of all p o i n t w i s e
some remarks
in Section
Radon-Nikodym
of a set
convergence
and c o m p l e m e n t s
theorems.
in
2.1.
The
M e a s u r e s .
principal
generalized measure This
purpose
with
respect
construction
measures, measures norm.
which
to a
on an a l g e b r a
operator
the A L - s p a c e
F
with
additive)
on the L e b e s g u e
of all
each bounded
measure
extension
~(A+B)
=
> ~
~(A)
for e a c h p a i r
fact
the b o u n d e d
to the v a r i a t i o n
in p r o v i n g
its g e n e r a l i z e d
of the c l a s s i c a l vector
measure. for b o u n d e d
that
respect
additive)
that
the
Radon-Nikodym
Radon-Nikodym
lattice
homomorphism
on
measures.
on a set
: F
probability
also crucial
continuous)
bounded
be an a l g e b r a
~
with
are
of the
(finitely
decomposition
f r o m the
f o r m an A L - s p a c e
(necessarily
A set f u n c t i o n
holds
(countably
of A L - s p a c e s
is the u n i q u e
to a
is the c o n s t r u c t i o n of a b o u n d e d
is b a s e d
The properties
derivative
section
derivative
in t u r n c a n be d e d u c e d
map associating
Let
of this
Radon-Nikodym
~
.
is a d d i t i v e
if the
identity
+ ~(B}
of d i s j o i n t
sets
A,
B £ F , and
it is b o u n d e d
if
the v a l u e
suPF is finite. Let
with
In the
a(F, ~)
ba(F, ~ )
tit(A) i sequel,
denote
denote
these
2. I. I. The c l a s s
the c l a s s
the c l a s s
the p o i n t w i s e
order,
additive
defined
classes
are
set f u n c t i o n s
of all m e a s u r e s
of all b o u n d e d addition,
ordered
will F ....~
measures
in
multiplication
vector
by
be c a l l e d , and
scalars,
Lemma. ba(F, 3R)
is a v e c t o r
lattice,
a n d the
(~v~) (A)
=
suPF(A )
(~(B) +~0(A~B))
(~t^~) (A)
=
infF(A)
(B(B) + ~0(A~B) )
identities
and
hold
for all
~, ~ £ ba(F, ~ )
I
;
I~1 (~)
and
A £ F . Moreover,
let
a(F, ~ )
spaces.
the map
measures.
. Endowed and
63 is a l a t t i c e
Proof.
Then
~
n o r m on
Consider
B, ~ 6 ba(F, 3~)
~(A)
supF(A )
: F
:= > ]R
is a d d i t i v e , BE
F(A)
ba(F, ~ )
,
A £ F
B I := A I N B ~(B)
set
and
and
+ ~(A~B)
A £ F , define
(~(B) + ~(A~B))
is a b o u n d e d
fix
. F o r all
function.
B 2 := A 2 N B
=
In o r d e r
{ A I , A 2} £ P(A)
to see t h a t
. T h e n w e have,
for all
,
~(B I) + ~(AI~B I) + ~(B 2) + ~(A2~B 2) ~ ( A I ) + ~ ( A 2)
,
hence
~(A)
Conversely,
~
~ ( A I) + ~ ( A 2)
for all
C I £ F(A I)
,
,
C 2 E F(A 2)
~(C I) + ~ ( A I ~ C I) + ~ ( C 2)
and
+ ~ ( A 2 ~ C 2)
C
:= C I + C 2 , we h a v e
=
~(C)
~
that a c o u n t a b l y
additive
if the i d e n t i t y
~( E A n) n=l
for each s e q u e n c e 6 F . Let
n measures
F
is c o u n t a b l y
denote
, and define additive
disjoint
sets
An £ F
satisfying
the class
of all c o u n t a b l y
bca(F, ~)
:= ba(F, ~) A ca(F, ~)
. Note
need not be b o u n d e d
unless
measure
F
> ~
additive
is a a-algebra.
2.1.5.
Theorem.
The class
bca(F, ~)
is an A L - s p a c e
and a p r o j e c t i o n
band
in
ba(F, ~)
We omit the easy proof.
Let
~
denote
the o - a l g e b r a
ca(F, JR)
The map a s s o c i a t i n g extension
=
by
F . Then we have
bca(F, JR)
w i t h each p o s i t i v e
to a p o s i t i v e
positively
generated
homogeneous.
measure
in
measure
ca(F, ~)
It t h e r e f o r e
in
bca(F, ~ )
is c l e a r l y
has a u n i q u e
its u n i q u e
additive
extension
and
to a p o s i t i v e
linear m a p
J
2.1.6.
Proof.
bca(F, ~)
> ca(~, ~)
Theorem.
The map onto
:
J
is an isometric
vector
lattice
isomorphism
of
bca(F, ~)
ca(T, ~)
Consider
~£bca(F,
~+(A)
(J~)+(A)
Conversely,
for
E}) holds for all Proof.
e £ (0,~)
k 6~
suPT(k ) I ~ I (Q)
.
Define
Ak and, for all
An For each
and
~
=
n 6~(k+I)
:=
m £~(k)
m
This yields
{Ivk~l>E}
(~)
C
;k
,
{ lDn~ nl > ~} n
n 1{ ) ~ IDp~pl < E } p=k
, define a stopping
time
n
,
if
~£ An
m
,
if
~6~
:=
6
{m 6 T(k)
and m Z A n=k n
Fn by letting
k < n < m
102
(~_)
m
¢(J l)
An
=
c
Z n=k
n-k
(JnRn l) (An )
m I
--< nZ--k A IDn~nl d(JnRnl) n m :
I~nl (A n)
~-
n=k
m
suPT(k) by Lemma 2.5.11. Letting
m
l~Ti(n)
,
tend to infinity, we obtain
~(J A ) ( { s u b ( k ) , D n ~ n l
> ¢})
=
E(J l)( ~
An)
\n=k
suPT(k)
IBTI(Q)
,
as was to be shown. From this maximal inequality, easily deduced: 2.5.13. If
~
theorem is
Theorem. is a potential, lim Dn~ n
Proof.
the potential convergence
Fix
0
a.e.
e, 6 £ (0,~)
suPT(k) Now the maximal
=
then
IUTI(~)
and choose ~
k £~
such that
e6
inequality yields
(J A) ( { s u b ( k } IDn~nl > E})
~
~(A)
~
.
is a d d i t i v e
if t h e
identity
+ B(B)
f o r e a c h p a i r of d i s j o i n t
sets
A, B 6 F , a n d
it is b o u n d e d
if t h e
value
sup F
is f i n i t e . measures. and
lJ ~(A)
In t h e Let
b a ( F , ]E)
a(F, ~ )
. Endowed
scalars,
these
i
is a n o r m although
on
sequel,
a(F, ~ )
let
by
with
sup F
ba(F, ~)
measure
set functions
the class
the class
are vector
Jl ~(A)
be called
of all vector
measures
vector
vector F
measures
> ~ in
defined
addition
and multiplication
spaces.
Clearly,
the map
H
, but we
norm
will
of all b o u n d e d
the pointwise
classes
>
additive
denote
denote
equivalent
For a vector
11
on this
~ 6 a(F, ~ )
shall
see that there
space.
, define
a map
is a m o r e
natural
,
126
III ~ III
:
,.I-
by l e t t i n g
III ~ Ill(A)
for all
:=
A E F , where
sup
II Z ~i~(Ai)
II
,
the s u p r e m u m
is t a k e n o v e r all p a r t i t i o n s
and scalars
~I' ~2 . . . . .
{ A I , A 2 ..... ~ }
E P(A)
Then
is a s u b a d d i t i v e
set f u n c t i o n w h i c h w i l l be c a l l e d
of
~ . F o r all
A E F , we h a v e
li ~(B) II
III ~ III(A)
III ~ III
semivariation
supF(A) [49; P r o p o s i t i o n
I.I.11].
]E
by letting
To(Z~i~A
1
)
:=
for e a c h s i m p l e f u n c t i o n operator
]Do
(A) for all
> ~
=
Z ~i~(Ai) Z ~iXAi
£ ]Do " T h e n
T
o
satisfying
ToX A
A q F . Furthermore,
SUPu (]Do)
,
we have
TO( X ~iXA'I )
=
III ~ III(Q)
,
is the u n i q u e
linear
127
w h i c h means case,
To
is b o u n d e d if and only if B is bounded. o has a u n i q u e e x t e n s i o n to a b o u n d e d linear o p e r a t o r that
the s u p - n o r m c o m p l e t i o n representin~
denote
X
T0X
Do
" This e x t e n s i o n
of the b o u n d e d in
on
~
the
, and it
satisfying
,
vector measure
X
> ~ ( m , ~)
:
T
will be c a l l e d
vector measure
~ ( D , ~)
is the u n i v e r s a l
ba(F, ~)
the map a s s o c i a t i n g
its r e p r e s e n t i n g
3.1.1.
of
linear operator
=
where
D
linear o p e r a t o r
is the u n i q u e
In this
T
on
w i t h each b o u n d e d
linear operator.
F . Let
vector measure
F
>
T h e n we have:
Theorem.
The class the map
ba(F, ~) X
Proof.
is an isometric
The m a p
E b a ( F , ~) III U I]1 ( f i )
is a B a n a c h
and
=
X
for the n o r m
isomorphism
is c l e a r l y
T£~(
space
D , ~)
of
III. lll(fi) , and
ba(F, ~)
onto
linear and b i j e c t i v e .
satisfying
~ = T 0X
~ ( D , ~)
Moreover,
for
, we have D
I] T I[
L e t us n e x t c o n s i d e r
vector measures
For a v e c t o r m e a s u r e
II~II
"
6 a(F, ~)
of b o u n d e d v a r i a t i o n .
, define
a map
> ~+
F
by letting
II ~ II ( A ) for all called
: =
A6 F . Then the v a r i a t i o n
variation
is bounded,
finite dimension; vector measures
sup?(A ) Z II ~ II
of
is an a d d i t i v e . Clearly,
Let
In or d e r to c h a r a c t e r i z e
set f u n c t i o n
in
vector measures
linear operators,
w h i c h w i l l be of b o u n d e d
n e e d not be true unless
bva(F, ~)
of b o u n d e d v a r i a t i o n
,
each vector measure
b u t the c o n v e r s e
see below.
of their r e p r e s e n t i n g defin i t i o n :
~
II ~ ( A i) II
denote
~
has
the class of all
a~F, ~)
of b o u n d e d v a r i a t i o n let us recall
in terms
the f o l l o w i n g
128
If
~
linear
is a B a n a c h
lattice
operator
........>......~..
~
and
~
is a B a n a c h
is c o n e
absolutely
summable
sequences
in the p o s i t i v e
summable
sequences
in
absolutely such
summing
cone
. A linear
if a n d o n l y
of
~
into
operator
if t h e r e
then a bounded if it m a p s
the a b s o l u t e l y
S 6 ~ ( ~ , ~)
exists
the
is c o n e
a constant
p 6~+
that
Z holds
II Sx i II
for e a c h
absolutely smallest
where
constant
the
is a n o r m
collection
=
is t a k e n
~
[109;
over
c~+
, let
. For a cone
II S II1
inequality.
denote
the
T h e n we h a v e
,
all
finite
collections
II Z x i Hi = I . M o r e o v e r ,
the m a p
II S II1
> ~
Section
3.1.2.
> ~
the a b o v e
satisfying
>
If' (x i) I
{Xl,X2,...,Xk} :~
II S x i II
sup Z
on the c l a s s
operators
S
satisfying
c~+
I
P SUPu ( IF ' ) Z
operator
supremum
{Xl,X2,...,Xk}
S
_
norm
of t h i s
lattice
order bounded
A £ F o Moreover,
the map
II l~i (n) II on
oba(F, ~)
lemma
It can also be proven Banach
and
~, ~ £ o b a ( F , ~ )
is t h e
by direct
for the norm vector
s a m e a s in t h e r e a l c a s e
measures
methods
II l.t(~) II
that the class if
are bounded,
~
is o r d e r
(Lemma
2.1.1).
oba(F, ~) complete.
they can be represented
is a Since by
170
b o u n d e d linear o p e r a t o r s on the s u p - n o r m c o m p l e t i o n of the class of all simple functions,
and we shall use this a p p r o a c h for proving further
results on order b o u n d e d vector measures.
In order to c h a r a c t e r i z e order b o u n d e d v e c t o r m e a s u r e s in terms of their r e p r e s e n t i n g linear operators,
let us recall the f o l l o w i n g definition:
If
is a B a n a c h lattice and
~
then a b o u n d e d linear o p e r a t o r
~
~
order b o u n d e d sets in operator
~
S 6 ~ ( ~ , ~)
is an order c o m p l e t e B a n a c h lattice, • R
is regular if it maps the
into the order b o u n d e d sets in
~
iSi
is regular if and only if its m o d u l u s
exists in the o r d e r e d v e c t o r space of all linear o p e r a t o r s For a regular o p e r a t o r bounded,
. A linear
S 6 ~ ( ~ , ~)
, the m o d u l u s
ISi
~
> ~
.
is a u t o m a t i c a l l y
and we define
II s I1
:=
r
11 Isl
11
Then the map
S
I
>
II s IIr
is a n o r m on the class
~ r ( ~ , ~)
of all regular o p e r a t o r s
~
• R
,
w h i c h is an order c o m p l e t e B a n a c h lattice for this norm. For details, see
[109; Section IV.l].
4.1.2.
Theorem.
Suppose
~
is order complete.
Then the class norm
oba(F, ~)
il i.l(~) II , and the map
i s o m o r p h i s m of
oba(F, ~)
III~ III(~) holds for all
Proof.
is an o r d e r c o m p l e t e B a n a c h lattice for the
... [ 0 , 1 ]
be a fixed p r o b a b i l i t y measure.
let
4.3.
S U b
m a r t i n ~ a 1 e s .
S u b m a r t i n g a l e s c e r t a i n l y c o n s t i t u t e the m o s t important class of set function p r o c e s s e s w h i c h are defined in terms of the partial o r d e r i n g of the B a n a c h lattice.
P a r t i c u l a r l y i n t e r e s t i n g are, of course, p o s i t i v e
s u b m a r t i n g a l e s since they may arise as the modulus of a martingale. We shall see that p o s i t i v e s u b m a r t i n g a l e s have many p r o p e r t i e s w i t h u n i f o r m amarts. For n e g a t i v e submartingales, is quite different:
Usually,
however,
in common the situation
these p r o c e s s e s only share the p r o p e r t i e s
of strong amarts but not those of u n i f o r m amarts, e x c e p t for the case w h e r e the B a n a c h lattice is an AL-space.
A set f u n c t i o n p r o c e s s if the net
{ ~z(Q)
~
is a s u b m a r t i n ~ a l e
I ~ E T }
is increasing
is a Doob p o t e n t i a l if the net
{ ~T(~)
(resp. supermartin~ale)
(resp. decreasing),
I T £T }
The following c h a r a c t e r i z a t i o n of s u b m a r t i n g a l e s real case
(Theorem 2.4.1):
4.3.1.
Theorem.
For a set f u n c t i o n process (a)
~
d e c r e a s e s to
and it 0 .
is the same as in the
, the f o l l o w i n g are equivalent:
~
is a submartingale.
(b)
~
~ R ~O
holds for all
T £ T
and
o6T(T)
(c)
~n ~ RnBm
holds for all
n 6~
and
m £ ~ (n)
(d)
~n ~ Rn~n+1
holds for all
n E~
.
Let us first study p o s i t i v e submartingales.
4.3.2. If
~
II ~ II Proof.
Theorem. is a p o s i t i v e submartingale,
then the set function process
is a real submartingale.
For all
II ~T li(A)
as was to be shown.
T 6T
,
o C T(~)
and
A C F T , we have
=
suppT(A)
Z
II ~T(Ai)
II
e)
~ E (0,~)
i n t r o d u c e d by Blake a mil. Therefore,
=
0
. Games which b e c o m e fairer w i t h time were
[135]. Every game w h i c h b e c o m e s fairer w i t h time is
there exist games w h i c h b e c o m e fairer w i t h time w h i c h
fail to be a pramart.
In the real case, the fact that every a m a r t is a mil was first proven by Edgar and Sucheston o r i g i n a t e s from the Mucci
[61]; see also Blake
[21]. The interest in mils
(real) mil c o n v e r g e n c e t h e o r e m w h i c h is due to
[99] and g e n e r a l i z e s the a m a r t c o n v e r g e n c e theorem; a n o t h e r
c o n v e r g e n c e t h e o r e m for mils was given by Y a m a s a k i
[131]. U n l i k e amarts,
however, mils have u n s a t i s f a c t o r y stability properties. B e l l o w and D v o r e t z k y
It was shown by
[17] t h a t the class of all L 1 - b o u n d e d mils need not
form a vector lattice. Furthermore,
it was shown by Edgar and S u c h e s t o n
[61] that mils need not have a Riesz decomposition,
and that the optional
stopping t h e o r e m as well as the o p t i o n a l s a m p l i n g t h e o r e m may fail for mils. As to pramarts,
it seems to be u n k n o w n w h e t h e r or not the class of
all L l - b o u n d e d p r a m a r t s forms a v e c t o r lattice. However, M i l l e t and Sucheston Thus,
[96] p r o v e d that p r a m a r t s have the o p t i o n a l sampling property.
since p r a m a r t s g e n e r a l i z e amarts,
decomposition;
see Edgar and Sucheston
In the v e c t o r - v a l u e d case,
they need not possess a Riesz [61], or T h e o r e m 2.7.4.
it seems to be an open q u e s t i o n w h e t h e r or
not every L 1 - b o u n d e d mil in a Banach space h a v i n g the R a d o n - N i k o d y m p r o p e r t y c o n v e r g e s a.e. However,
e x t e n s i o n s of the u n i f o r m amart
c o n v e r g e n c e theorem were proven by M i l l e t and S u c h e s t o n of class
[95] for pramarts
(B), w h i c h is the c o n d i t i o n of T - b o u n d e d n e s s for s t o c h a s t i c
processes,
and by P e l i g r a d
lim s U b ( n )
I~
[103] for m i l s s a t i s f y i n g the c o n d i t i o n
II X n - E n X m II dP
=
0
Further c o n v e r g e n c e theorems for v e c t o r - v a l u e d p r a m a r t s and mils were o b t a i n e d by B e l l o w and Dvoretzky, Edgar
[54], Egghe
see B e l l o w and Egghe
[65], M i l l e t and S u c h e s t o n
[18,19], and by
[95], and Mucci
[98].
As a c o m m o n a b s t r a c t i o n of real p r a m a r t s and submartingales, M i l l e t and Sucheston
[96] also i n t r o d u c e d subpramarts.
Egghe
[67] and Slaby
[138]
214 studied
subpramarts
in a B a n a c h
real and v e c t o r - v a l u e d
lattice.
subpramarts,
There are also g e n e r a l i z a t i o n s
For a d e t a i l e d
see E g g h e
discussion
of
[68].
of amarts w h i c h
concern
the range of
these processes:
Amarts
in a F r ~ c h e t
nuclear Fr~chet
space w e r e
spaces
are c h a r a c t e r i z e d
to the c h a r a c t e r i z a t i o n Bellow
[7].
In
space,
as well
in a F r ~ c h e t
Multivalued The v a l u e s
space h a v i n g
amarts were
convex
embedding
convex [101]
sets).
Finally, respect
theorem
Earlier,
are
let us r e m a r k
that a m a r t s
set.
a rich l i t e r a t u r e
In r e c e n t years,
aspects
amarts
Dam and N g u y e n
Duy Tien
[120],
of
it follows in a
in the case of c l o s e d b o u n d e d
martingales
had b e e n
approach,
studied by N e v e u
see C o s t ~
have also b e e n g e n e r a l i z e d
interest
directed
we have c o n f i n e d integers,
the final part of this volume.
has b e e n d e v o t e d
set.
of a m a r t t h e o r y may be f o u n d
[44].
convex
From a refinement
[43].
with
ourselves
but there also
on a m a r t s w h i c h are indexed by d i f f e r e n t
increasing
are i n d e x e d b y a g e n e r a l
Fr~chet
sequential
as strong a m a r t s
to a m a r t s w h i c h are indexed by the p o s i t i v e exists
similar g i v e n by
to be c l o s e d b o u n d e d
theoretic
In these notes,
[62,63],
property.
space.
(with unit,
multivalued
spaces
in a n u c l e a r
for w e a k
[105], g i v e n by S c h m i d t
for the m e a s u r e
to the index
supposed
may be c o n s i d e r e d
cone of an A M - s p a c e
and others;
theorem
sets in a B a n a c h
In
and a strong c o n v e r g e n c e
studied by Bui Khoi
amarts
Banach
strong a m a r t s
the R a d o n - N i k o d y m
of these p r o c e s s e s
that m u l t i v a l u e d generating
decomposition
for c e r t a i n
[62,63,66].
in terms of amarts,
dimensional
as a w e a k c o n v e r g e n c e
sets or c o m p a c t R~dstr~m's
of finite
[66], a Riesz
t h e o r e m are o b t a i n e d
s t u d i e d by E g g h e
References
sets.
to a m a r t s w h i c h
to p a p e r s
in the b i b l i o g r a p h y
on these
on a m a r t s
in
A p p e n d i x
In this appendix, Banach
A Banach
A Banach
lattice
to
0
every d o w n w a r d
B a n a c h
~
is
~
l a t t i c e s
some d e f i n i t i o n s and further
and by L i n d e n s t r a u s s
(countabl~)
(countable)
lattice
decreasing
For proofs
[109]
every n o n - e m p t y
to
we recall
lattices.
by Sch a e f e r
on
and p r o p e r t i e s
details,
we refer
and T z a f r i r i
order complete
majorized
set
A c ~
directed
family
in
to
~
of specific
to the books
[91].
if
sup A
exists
for
.
is c o u n t a b l ~ o r d e r c o n t i n u o u s
is n o r m c o n v e r g e n t
.
if every
sequence
in
0 , and it is order c o n t i n u o u s
with
infimum
0
if
is n o r m c o n v e r g e n t
0 .
For a B a n a c h
lattice
(a)
~
, the f o l l o w i n g
is order
(b)
is o r d e r c o m p l e t e
are equivalent:
continuous. and e v e r y
continuous
linear f o r m on
~
is
o r d e r continuous.
(c) (d)
is c o u n t a b l y
order complete
and c o u n t a b l y
order continuous.
is c o u n t a b l y
order complete
and no B a n a c h
sublattice
is v e c t o r
lattice
isomorphic
(e)
Under
evaluation,
(f)
Every
order bounded
~
to
1~
is i s o m o r p h i c increasing
of
. to an ideal
sequence
in
~
in
~"
.
is n o r m
convergent. (g)
Every order
A Banach
lattice
isomorphic Every
~
interval
in
has p r o p e r t y
~
lattice h a v i n g
compact.
(P) if it is, u n d e r evaluation,
to the range of a p o s i t i v e
Banach
is w e a k l y
property
contractive
projection
(P) is o r d e r complete.
in
~"
.
216
A Banach
lattice
is a K B - s p a c e
For a Banach
lattice
(a)
~
is a KB-space.
~
(b)
~
is o r d e r c o n t i n u o u s
if it is w e a k l y
, the f o l l o w i n g
(c)
No Banach
(d)
Under evaluation,
sublattice
(c)
Every norm bounded
~
complete.
are e q u i v a l e n t :
and has p r o p e r t y
of
~
sequentially
is v e c t o r
is isomorphic
increasing
(P).
lattice
isomorphic
to a b a n d
sequence
in
in
~
~"
to
c
o
.
is n o r m
convergent. Every B a n a c h
lattice h a v i n g
in particular, Furthermore,
every
is r e f l e x i v e isomorphic
A Banach li x + y
reflexive
a KB-space
is or d e r dentable,
see G h o u s s o u b
~
is a KB-space. property
and T a l a g r a n d
if no B a n a c h
is an A L - s p a c e
II x II + II y il
holds
For a B a n a c h
lattice
(a)
is i s o m o r p h i c
~
lattice
is a KB-space;
if and only if it
[78], and a K B - s p a c e
sublattice
of
~
is v e c t o r
lattice
11
lattice
II =
Banach
property
has the R a d o n - N i k o d y m
if and only
to
the R a d o n - N i k o d y m
~
if the identity
for all
x, y 6 ~ +
, the f o l l o w i n g
are e q u i v a l e n t
(as a t o p o l o g i c a l
vector
(Schlotterbeck) :
lattice)
to an
AL-space. (b)
Every positive
Every A L - s p a c e (Q,Z,~)
to
s e q u e n ce LI(Q,Z,~)
in
~
is a b s o l u t e l y
, for some m e a s u r e
summable.
space
(Kakutani).
Furthermore,
every A L - s p a c e
Radon-Nikodym
property
for some index
set
A Banach
lattice
II =
contains
~
is an A M - s p a c e holds
an A L - s p a c e
to
has the II(F)
is r e f l e x i v e
, if and
(with unit)
for all
x, y 6 2 +
if the identity (and the unit ball
element).
For a B a n a c h
lattice
(a)
is isomorphic
~
and an A L - s p a c e
if it is i s o m o r p h i c
dimension.
11 x il v li y II
a largest
is a KB-space,
if and only
F ; in p a r t i c u l a r ,
only if it has finite
li x v y
summable
is isomorphic
~
, the f o l l o w i n g
are e q u i v a l e n t
(as a t o p o l o g i c a l
vector
(Schlotterbeck) :
lattice)
to an
AM-space. (b) Every
Every null
sequence
(order complete)
for some
(Stonian)
Furthermore, isomorphic property
(F)
is o r d e r bounded. is i s o m o r p h i c
space
K
is o r d e r c o n t i n u o u s
, for some index
o (P) if and only
in pa r t i c u l a r , dimension.
c
~
with unit
compact Hausdorff
an A M - s p a c e
to
in
AM-space
set
F
is a K B - s p a c e
C(K)
,
(Krein-Kakutani). if and only
if it is
, and an A M - s p a c e
if it is an o r d er c o m p l e t e
an A M - s p a c e
to
if and only
AM-space
has
w i t h unit;
if it has
finite
R e f e r e n c e s .
[I]
E.S.
Andersen
Some
limit
Danske
[21
Vid.
[3]
Selsk.
E.S.
Andersen
Some
limit
Danske
D.G.
on i n t e g r a l s Mat.-Fys.
Selsk.
Austin,
Medd.
G.A.
Edgar,
convergence
look
J. Math.
Medd.
a n d A.
in t e r m s
J.R.
Proc.
14
(1946).
Ionescu
5
(1948).
Tulcea:
of e x p e c t a t i o n s . Gebiete
3-6, 17-26
J.R.
Adv.
Appl.
23,
theorem.
551-557
(1968).
Baxter: in t e r m s
Amer.
Math.
of w e a k Soc.
46,
convergence. 395-398
(1974).
Baxter:
Convergence
[7]
25, no.
verw.
at the m a r t i n g a l e
Anal.
Pointwise
[6]
no.
L. B a e z - D u a r t e : Another
[5]
22,
set.
on s e t - f u n c t i o n s . Mat.-Fys.
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e
[4]
in an a b s t r a c t
a n d B. J e s s e n :
theorems
Vid.
Pointwise
a n d B. J e s s e n :
theorems
Math.
of
stopped
random
21,
112-115
(1976).
variables.
A. B e l l o w : On vector-valued
asymptotic
Proc.
Sci.
Nat.
Acad.
U.S.A.
martingales. 7_~3, 1 7 9 8 - 1 7 9 9
(1976).
(1974).
218
[8]
A.
Bellow:
Stability properties of the class of asymptotic martingales. Bull. Amer. Math. Soc. 82, 338-340 [91
(1976}.
A. Bellow: Several stability properties of the class of asymptotic martingales. Z. Wahrscheinlichkeitstheorie
[lO]
verw. Gebiete 37, 275-290
(1977).
A. Bellow: Les amarts uniformes. C.R. Acad. Sci. Paris S~rie A 284,
[11]
1295-1298
(1977}.
A. Bellow:
Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains. Z. Wahrscheinlichkeitstheorie
[12]
A.
verw. Gebiete 41, 177-191
(1978).
Bellow:
Some aspects of the theory of vector-valued amarts. In: Vector Space Measures and Applications
I.
Lecture Notes in Mathematics, vol. 644, pp. 57-67. Berlin - H e i d e l b e r g - N e w York: Springer 1978.
[13]
A.
Bellow:
Submartingale characterization of measurable cluster points. In: Probability on Banach Spaces. Advances in Probability and Related Topics, vol. 4, pp. 69-80. New York - B a s e l :
[14]
Dekker 1978.
A. Bellow:
Sufficiently rich sets of stopping times, measurable cluster points and submartingales. In: S~minaire Mauray-Schwartz
1977-1978,
S~minaire sur la
G~om~trie des Espaces de Banach, Appendice no. Palaiseau:
[15]
A.
Ecole Polytechnique,
I, 11 p.
Centre de Math~matiques,
Bellow:
Martingales,
amarts and related stopping time techniques.
In: Probability in Banach Spaces III. Lecture Notes in Mathematics, Berlin-Heidelberg-New
vol. 860, pp. 9-24.
York: Springer 1981.
1978.
219
[16]
A. Bellow and A. Dvoretzky: A characterization In: Probability Lecture Notes
of almost sure convergence.
in Banach Spaces II.
in Mathematics,
Berlin-Heidelberg-New [17]
York:
709, pp. 45-55.
Springer
1979.
A. B e l l o w and A. Dvoretzky: On m a r t i n g a l e s Ann.
[18]
vol.
in the limit.
Probability 8, 602-606
(1980).
A. Bellow and L. Egghe: In~galit~s de Fatou g~n&ralis~es. C.R. Acad.
[19]
Sci. Paris S~rie I 292, 847-850
A. Bellow and L. Egghe: Generalized Ann.
[20]
Fatou inequalities.
Inst. H. Poincar~
Y. Benyamini C.R. Acad.
Section B 1-8, 335-365
probabiliste
Soc.
in the limit.
(2) 18, 381-384
(1978}.
S. Bochner: Partial ordering Ann. Math.
62,
in the theory of martingales.
162-169
(1955).
S. Bochner and R.S. Phillips: Additive
set functions and vector lattices.
Ann. Math. [24]
(1978).
L.H. Blake: J. London Math.
[23]
de 11 .
Sci. Paris S~rie A 286, 795-797
Every amart is a m a r t i n g a l e
[22]
(1982).
and N. Ghoussoub:
Une c a r a c t & r i s a t i o n
[21]
(1981).
42, 316-324
(1941).
B. Bru: Esp&rance d'ordre. C.R. Acad.
[25]
Sci. Paris S~rie A 290,
111-114
(1980).
B. Bru and H. Heinich: Sur l'esp~rance C.R. Acad.
des variables
al~atoires
Sci. Paris S~rie A 288,
65-68
vectorielles. (1979}.
220
[26]
B. Bru and H. Heinich: Sur les suites de mesures vectorielles C.R. Acad.
[27]
Sci. Paris S~rie A 288 ,, 363-366
(1979).
B. Bru and H. Heinich: Sur l'esp~rance Ann.
[28]
adapt~es.
des variables
Inst. H. Poincar~
al~atoires
vectorielles.
Section B I_66, 177-196
(1980).
B. Bru and H. Heinich: Sur l'esp~rance
des variables
al~atoires
~ valeurs dans les
espaces de Banach r~ticul~s. Ann. [29]
Inst. H. Poincar~
Section B 16, 197-210
(1980).
A. Brunel and L. Sucheston: Sur les amarts faibles ~ valeurs vectorielles. C.R. Acad.
[30]
Sci. Paris S~rie A 282,
1011-1014
(1976).
A. Brunel and L. Sucheston: Sur les amarts ~ valeurs vectorielles. C.R. Acad.
[31]
Sci. Paris S~rie A 283,
1037-1040
(1976).
A. Brunel and L. Sucheston: Une c a r a c t ~ r i s a t i o n
probabiliste
de la s~parabilit~
du dual
d'un espace de Banach. C.R. Acad. [32]
Sci. Paris S~rie A 284,
1469-1472
(1977).
R.V. Chacon: A "stopped" proof of convergence. Adv. Math.
[33]
I__4, 365-368
(1974).
R.V. Chacon and L. Sucheston: On convergence
of v e c t o r - v a l u e d
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e [34]
[35]
asymptotic
martingales.
verw. Gebiete
3_33, 55-59
(1975).
S.D. Chatterji: Martingale c o n v e r g e n c e Banach spaces.
and the R a d o n - N i k o d y m
Math.
(1968).
Scand.
22, 21-41
S.D. Chatterji: Differentiation Manuscripta
along algebras.
Math. 4, 213-224
(1971).
theorem in
221
[36]
S.D. Chatterji: Les m a r t i n g a l e s et leurs a p p l i c a t i o n s analytiques. In: Ecole d'Et~ de Probabilit~s:
P r o c e s s u s Stochastiques.
L e c t u r e Notes in Mathematics, vol. Berlin - H e i d e l b e r g - N e w
[37]
York:
307, pp. 27-164.
S p r i n g e r 1973.
S.D. Chatterji: D i f f e r e n t i a t i o n of measures. In: M e a s u r e Theory, O b e r w o l f a c h L e c t u r e N o t e s in Mathematics, Berlin -Heidelberg -New
[38]
1975.
vol.
541, pp.
York: S p r i n g e r
173-179.
1976.
R. Chen: A g e n e r a l i z a t i o n of a theorem of Chacon. Pacific J. Math.
[39]
64, 93-95
(1976).
R. Chen: A simple proof of a t h e o r e m of Chacon. Proc. Amer. Math.
[40]
Soc. 6_O0, 273-275
(1976).
R. Chen: Some inequalities for r a n d o m l y stopped v a r i a b l e s w i t h a p p l i c a t i o n s to p o i n t w i s e convergence. Z. W a h r s c h e i n l i c h k e i t s t h e o r i e verw. Gebiete 3_~6, 75-83
[41]
Y.S. Chow: On the e x p e c t e d value of a stopped submartingale. Ann. Math.
[42]
Statist.
38, 608-609
(1967).
Y.S. Chow, H. Robbins, and D. Siegmund: G r e a t Expectations:
The Theory of Optimal Stopping.
New York: H o u g h t o n M i f f l i n 1971.
[43]
A. Cost~: Sur les m a r t i n g a l e s multivoques. C.R. Acad.
[44]
B.K.
Sci. Paris S~rie A 29__~0, 953-956
Dam and N.D. Tien:
On the m u l t i v a l u e d a s y m p t o t i c martingales. Acta Math. Vietnam.
6, 77-87
(1981).
(1980).
(1976).
222 [45]
[46]
R.B. Darst: A decomposition
of finitely additive
J. reine angew.
Math.
W.J. Davis,
210, 31-37
N. Ghoussoub,
A lattice renorming
set functions.
(1962).
and J. Lindenstrauss:
theorem and applications
to v e c t o r - v a l u e d
processes. Trans. Amer. [47]
Math.
Soc.
263, 531-540
(1981).
W.J. Davis and W.B. Johnson: W e a k l y convergent
sequences of Banach space valued random
variables. In: Banach Spaces of Analytic Functions. Lecture Notes
in Mathematics,
Berlin- Heidelberg-New [48]
York:
vol.
604, pp. 29-31.
Springer
1977.
J. Diestel and B. Faires: On vector measures. Trans. Amer. Math.
[49]
Soc.
198, 253-271
(1974).
J. Diestel and J.J. Uhl jr.: Vector Measures. Providence,
[5o]
Rhode Island:
Amer. Math.
Soc.
1977.
L.E. Dubins and D.A. Freedman: On the expected value of a stopped martingale. Ann. Math.
[51]
Statist.
N. Dunford and J.T. Linear Operators. New York:
[52]
37,
1505-1509
(1966).
Schwartz:
Part I: General Theory.
Interscience
1958.
A. Dvoretzky: On stopping time directed convergence. Bull. Amer. Math.
[531
Sco. 82, 347-349
(1976).
A. Dvoretzky: Generalizations Adv. Appl.
of martingales.
Probability 9, 193-194
(1977).
223
[54]
G.A. Edgar: Uniform semiamarts.
[55]
Ann.
Inst. H. Poincar~
G.A.
Edgar:
A s p l u n d operators
10, 460-466
(1980).
G.A. Edgar and L. Sucheston: Les amarts: C.R. Acad.
[57]
(1979).
and a.e. convergence.
J. M u l t i v a r i a t e Anal. [56]
Section B 1_55, 197-203
Une classe de martingales Sci. Paris S~rie A 282,
asymptotiques.
715-718
(1976).
G.A. Edgar and L. Sucheston: Amarts:
A class of asymptotic
martingales.
A. Discrete
Parameter. J. M u l t i v a r i a t e
[58]
Anal. 6, 193-221
G.A. Edgar and L. Sucheston: The Riesz d e c o m p o s i t i o n Bull. Amer. Math.
[59]
Soc.
for v e c t o r - v a l u e d 82, 632-634
for v e c t o r - v a l u e d
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e
(1976).
verw. Gebiete
39, 213-216
(1977).
G.A. Edgar and L. Sucheston: Martingales
in the limit and amarts.
Proc. Amer.
Math.
Soc. 6"7, 315-320
(1977).
L. Egghe: Caract~risations C.R. Acad.
[63]
36, 85-92
amarts and dimension of Banach spaces.
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e
[62]
amarts.
verw. Gebiete
G.A. Edgar and L. Sucheston: On v e c t o r - v a l u e d
[61]
amarts.
(1976).
G.A. Edgar and L. Sucheston: The Riesz d e c o m p o s i t i o n
[6O]
(1976).
de la nucl~arit~
Sci. Paris S~rie A 287,
dans les espaces de Fr~chet. 9-11
(1978).
L. Egghe: Characterizations J. Functional
of n u c l e a r i t y
Anal.
35, 207-214
in Fr~chet (1980).
spaces.
224
[64]
L. Egghe: Some new Chacon-Edgar-type processes, Ann.
[65]
inequalities
and c h a r a c t e r i z a t i o n s o f
Inst. H. Poincar~
Section B 16, 327-337
Strong convergence
of pramarts
in Banach spaces. (1981).
L. Egghe: Weak and strong convergence
of amarts in Fr~chet spaces.
J. M u l t i v a r i a t e Anal. 12, 291-305 [67]
(1982).
L. Egghe: On sub- and superpramarts In: Measure Theory,
[68]
(1980).
L. Egghe: Canadian J. Math. 33, 357-361
[66]
for stochastic
Vitali-conditions.
with values
Oberwolfach
in a Banach lattice.
1981.
Lecture Notes in Mathematics,
vol.
Berlin - H e i d e l b e r g - N e w
Springer
York:
945, pp. 352-365. 1982.
L. Egghe: Extensions
of the M a r t i n g a l e C o n v e r g e n c e
Theory in Banach
Spaces. Leuven: Wouters [69]
1983.
B. Faires and T.J. Morrison: The Jordan d e c o m p o s i t i o n Proc. Amer. Math.
[701
of v e c t o r - v a l u e d measures.
Soc. 60,
139-143
(1976).
D.L. Fisk: Quasi-martingales. Trans. Amer.
[711
Math.
Soc.
120, 369-389
(1965).
N. Ghoussoub: Banach lattices valued amarts. Ann.
[72]
Inst. H. Poincar~
Section B 13,
159-169
(1977).
N. Ghoussoub: Orderamarts:
A class of asymptotic martingales.
J. M u l t i v a r i a t e
Anal. 9, 165-172
(1979).
225
[73]
N. Ghoussoub: S u m m a b i l i t y and v e c t o r amarts. J. M u l t i v a r i a t e Anal. 9,
[74]
173-178
(1979).
N. Ghoussoub: Riesz spaces v a l u e d m e a s u r e s and processes. Bull.
[75]
Soc. Math. F r a n c e
110, 233-257
(1982).
N. G h o u s s o u b and L. Sucheston: A r e f i n e m e n t of the Riesz d e c o m p o s i t i o n for amarts and semiamarts. J. M u l t i v a r i a t e Anal. 8,
'[76]
146-150
(1978).
N. G h o u s s o u b and M. Talagrand: A generalized Chacon's
i n e q u a l i t y and order c o n v e r g e n c e of
processes. In: S ~ m i n a i r e C h o q u e t 1977-1978, 17e annie, C o m m u n i c a t i o n no.
I n i t i a t i o n ~ l'Analyse,
13, 4 p.
Paris: U n i v e r s i t ~ Pierre et M a r i e Curie,
Institut H. Poincar~,
1978.
[77]
N. G h o u s s o u b and M. Talagrand: C o n v e r g e n c e faible des p o t e n t i e l s de Doob vectoriels. C.R. Acad.
[78]
Sci. Paris S~rie A 288, 599-602
(1979).
N. G h o u s s o u b and M. Talagrand: Order d e n t a b i l i t y and the R a d o n - N i k o d y m p r o p e r t y in B a n a c h lattices. Math. Ann.
[79]
243 , 217-225
(1979).
W.H. Graves: On the T h e o r y of V e c t o r Measures. Memoirs of the Amer. Math. Providence,
[80]
P.R.
Soc., no.
195.
Rhode Island: Amer. Math.
Soc.
1977.
Halmos:
Measure Theory. Berlin- Heidelberg-New
[81]
York:
Springer
1974.
H. Heinich: M a r t i n g a l e s a s y m p t o t i q u e s p o u r l'ordre. Ann.
Inst. H. P o i n c a r ~ Section B I_~4, 315-333
(1978).
226
[82]
H. Heinich: Convergence des sous-martingales positives dans un Banach r~ticul~. C.R. Acad. Sci. Paris S~rie A 286, 279-280
[83]
(1978).
H. Jarchow: Locally Convex Spaces. Stuttgart:
[84]
Teubner 1981.
T. Jeulin: Partle positive d'une quasimartingale. C.R. Acad. Sci. Paris S~rie A 287, 351-352
[85]
(1978).
S. Johansen and J. Karush: On the semimartingale convergence theorem. Ann. Math. Statist.
[86]
34, 1120 (1963).
S. Johansen and J. Karush: On the semimartingale convergence theorem. Ann. Math.
[87]
Statist.
3/7, 690-694
(1966).
U. Krengel: On asymptotic martingales and dominated estimates in the theory of optimal stopping. In: Second Vilnius International Conference on Probability Theory and Mathematical Statistics Vilnius:
[88]
1977, vol.
2, pp. 115-116.
Akademija Nauk SSSR 1977.
U. Krengel and L. Sucheston: Semiamarts and finite values. Bull. Amer. Math. Soc. 83, 745-747
[89]
(1977).
U. Krengel and L. Sucheston: On semiamarts, amarts, and processes with finite value. In: Probability on Banach Spaces. Advances in Probability and Related Topics, vol. 4, pp.
197-266.
New York -Basel: [90]
Dekker 1978.
C.W. Lamb: A ratio limit theorem for approximate martingales. Canadian J. Math.
25, 772-779
(1973).
227 [91]
J. L i n d e n s t r a u s s and L. Tzafriri: C l a s s i c a l B a n a c h Spaces II. Berlin- Heidelberg -New
[92]
York:
S p r i n g e r 1979.
J.F. Mertens: Th~orie des p r o c e s s u s s t o c h a s t i q u e s g~n~raux;
a p p l i c a t i o n s aux
surmartingales. Z. W a h r s c h e i n l i c h k e i t s t h e o r i e verw. G e b i e t e 22, 45-68
[93]
(1972).
P.A. Meyer: Le r e t o u r n e m e n t du temps, d'apr~s Chung et Walsh. In: S ~ m i n a i r e de P r o b a b i l i t ~ s V.
[94]
Lecture N o t e s in M a t h e m a t i c s ,
vol.
Berlin -Heidelberg -New
S p r i n g e r 1971.
York:
191, pp. 213-236.
A. M i l l e t and L. Sucheston: Classes d ' a m a r t s f i l t r a n t s et c o n d i t i o n s de Vitali. C.R. Acad.
[95]
Sci. Paris S~rie A 286, 835-837
(1978).
A. M i l l e t and L. Sucheston: C h a r a c t e r i z a t i o n s of V i t a l i c o n d i t i o n s w i t h o v e r l a p in terms of c o n v e r g e n c e of c l a s s e s of amarts. C a n a d i a n J. Math.
[96]
3_!1, 1033-1046
(1979).
A. M i l l e t and L. Sucheston: C o n v e r g e n c e of classes of amarts indexed by d i r e c t e d sets. C a n a d i a n J. Math. 32, 86-125
[97]
A.G. Mucci: Limits for m a r t i n g a l e - l i k e Pacific J. Math. 48,
[98]
(1980).
sequences.
197-202
(1973).
A.G. Mucci: R e l a t i o n s h i p b e t w e e n M a r t i n g a l e s and R a d o n - N i k o d y m T h e o r e m s for V e c t o r V a l u e d Functions. C o n f e r e n z e del S e m i n a r i o di M a t e m a t i c a d e l l ' U n i v e r s i t ~ di Bari, vol.
137.
Bari: Gius. L a t e r z a & Figli 1975.
[99]
A.G. Mucci: A n o t h e r m a r t i n g a l e c o n v e r g e n c e theorem. Pacific J. Math. 64, 539-541
(1976).
228
[100]
J. Neveu: Martingales
~ Temps Discr@t.
Paris: Masson
[101]
J. Neveu: Convergence Ann.
[102]
1972.
presque s~re de martingales
Inst. H. Poincar~
multivoques.
Section B 8, I-7
(1972).
S. Orey: F-processes. In. Proc. Fifth Berkeley vol.
Berkeley,
[103]
Symp. Math.
California:
1967.
M. Peligrad: Rev. Roum. Math.
Pures AppI.
sequences.
2_!I, 733-736
(1976).
A. Pietsch: Operator
Ideals.
A m s t e r d a m - New York - Oxford:
[105]
Probability,
U n i v e r s i t y of C a l i f o r n i a Press
A limit theorem for m a r t i n g a l e - l i k e
[104]
Statist.
2, part 1, pp. 301-313.
North-Holland
1980.
H. R~dstr~m: An embedding theorem for spaces of convex sets. Proc. Amer. Math.
[106]
K.M.
Soc. ~, 165-169
(1952).
Rao:
Quasi-martingales. Math. [107]
M.M.
Scand.
24, 79-92
(1969).
Rao:
A b s t r a c t nonlinear prediction J. M u l t i v a r i a t e Anal. !,
and operator martingales.
129-157
(1971);
Erratum. J. M u l t i v a r i a t e
[108]
F.S.
Anal. 9, 614
(1979).
Scalora:
Abstract m a r t i n g a l e Pacific J. Math.
convergence
I_!I, 347-374
theorems.
(1961).
229
[109]
H.H. Schaefer: Banach L a t t i c e s and P o s i t i v e Operators. Berlin -Heidelberg -New
[110]
York:
S p r i n g e r 1974.
K.D. Schmidt: Sur l ' e s p ~ r a n c e d'une s e m i - a m a r t i n g a l e arr@t~e. C.R. Acad.
[111]
K.D.
Sci. Paris S~rie A 287, 663-665
(1978).
Schmidt:
Sur la valeur d'un p r o c e s s u s de fonctions d'ensembles. C.R. Acad.
[112]
Sci. Paris S~rie A 288, 431-434
(1979).
K.D. Schmidt: Espaces v e c t o r i e l s r~ticul~s, d ~ c o m p o s i t i o n s de Riesz, et c a r a c t ~ r i s a t i o n s de c e r t a i n s p r o c e s s u s de fonctions d'ensembles. C.R. Acad.
[113]
K.D.
Sci. Paris S~rie A 289, 75-78
(1979).
Schmidt:
Sur la c o n v e r g e n c e d'une a m a r t i n g a l e born~e et un t h ~ o r ~ m e de Chatterji. C.R. Acad.
[114]
Sci. Paris S~rie A 289,
181-183
(1979).
K.D. Schmidt: On the value of a stopped set f u n c t i o n process. J. M u l t i v a r i a t e Anal.
[1,15]
I_~0, 123-134
(1980).
K.D. Schmidt: T h ~ o r ~ m e s de structure pour les a m a r t i n g a l e s en p r o c e s s u s de fonctions d ' e n s e m b l e s ~ v a l e u r s dans un espace de Banach. C.R. Acad.
[116]
K.D.
Sci. Paris S~rie A 290,
1069-1072
(1980).
Schmidt:
T h ~ o r ~ m e s de c o n v e r g e n c e pour les a m a r t i n g a l e s en p r o c e s s u s de fonctions d ' e n s e m b l e s ~ v a l e u r s dans un espace de Banach° C.R. Acad.
[1t7]
Sci. Paris S~rie A 290,
1103-1106
(1980).
K.D. Schmidt: On the c o n v e r g e n c e of a b o u n d e d amart and a c o n j e c t u r e of Chatterji. J. M u l t i v a r i a t e Anal.
I!I, 58-68
(1981).
230
[118]
K.D. Schmidt: Generalized martingales and set function processes. In: Methods of Operations Research, vol. 44, pp. 167-178. K6nigstein:
[119]
Atheneum 1981.
K.D. Schmidt: On the Jordan decomposition for vector measures. In: Probability in Banach Spaces IV. Lecture Notes in Mathematics, Berlin-Heidelberg-New
[120]
vol. 990, pp. 198-203.
York: Springer 1983.
K.D. Schmidt: On R~dstr~m's embedding theorem. In: Methods of Operations Research,
vol. 46, pp. 335-338.
K6nigstein: Atheneum 1983.
[121]
J.L. Snell: Applications of martingale system theorems. Trans. Amer. Math. Soc. 73, 293-312
[122]
(1952).
C. Stricker: Quasimartingales,
martingales
locales,
semimartingales et
filtration naturelle. Z. Wahrscheinlichkeitstheorie [123]
(1977).
L. Sucheston: Les amarts
(martingales asymptotiques).
In: S~minaire Mauray-Schwartz Palaiseau: [124]
verw. Gebiete 39, 55-63
1975-1976, Expos~ no. VIII, 6 p.
Ecole Polytechnique,
Centre de Math~matiques,
1976.
J. Szulga: On the submartingale characterization of Banach lattices isomorphic to 11 . Bull. Acad. Polon. 65-68
[125]
Sci. S~rie Sci. Math. Astronom.
Phys. 26,
(1978).
J. Szulga: Boundedness and convergence of Banach lattice valued submartingales. In: Probability Theory on Vector Spaces. Lecture Notes in Mathematics, vol. 656, pp. 251-256. Berlin-Heidelberg-New
York: Springer 1978.
231 [126]
J.
Szulga:
Regularity of Banach lattice valued martingales. Colloquium Math. 41, 303-312 [127]
(1979).
J. Szulga and W.A. Woyczynski: Convergence of submartingales Ann. Probability 4, 464-469
[128]
in Banach lattices.
(1976).
J.J. Uhl jr.: Martingales of vector valued set functions. Pacific J. Math. 30, 533-548
[129]
(1969).
J.J. Uhl jr.: Pettis mean convergence of vector-valued asymptotic martingales. Z. Wahrscheinlichkeitstheorie
[130]
verw. Gebiete 37, 291-295
(1977).
M.A. Woodbury: A decomposition theorem for finitely additive set functions. Bull. Amer. Math. Soc. 56,
[131]
171-172
(1950).
M. Yamasaki: Another convergence theorem for martingales TShoku Math. J. 33, 555-559
[132]
in the limit.
(1981).
C. Yoeurp: Compl~ments sur les temps locaux et les quasi-martingales. Ast~risque 52-53,
[133]
197-218
(1978).
K. Yosida: Vector lattices and additive set functions. Proc. Imp. Acad. Tokyo 17, 228-232
[134]
(1941).
K. Yosida and E. Hewitt: Finitely additive measures. Trans. Amer. Math. Soc. 72, 46-66
(1952).
2~
Additional [135]
references: L.H.
Blake:
A generalization of martingales and two consequent convergence theorems. Pacific J. Math. [136]
35, 279-283
(1970).
D.I. Cartwright: The order completeness of some spaces of vector-valued functions. Bull. Austral. Math. Soc. I!, 57-61
[137]
(1974).
M. Slaby: Convergence of submartingales and amarts in Banach lattices. Bull. Acad. Polon. Sci. S~rie Sci. Math.
[138]
30, 291-299
(1982).
M. Slaby: Convergence of positive subpramarts and pramarts in Banach spaces with unconditional bases. Bull. Pol. Acad. Sci. Math.
3_!1, 75-80
(1983).
I n d e x
.
absolutely additive
summing set
function
AL-space
216
AM-space
216
amart amart
operator
129
62,
125
89 in p r o b a b i l i t y
asymptotic
bounded
212
martingale
89
set
function
62,
bounded
set
function
process
bounded
stopping
cone
absolutely
time
theorem: 103
2.5
14.
-
amart
2.3
9.
-
martingale
80
3.3
9.
-
martingale
144
72
60
summing
convergence
125
operator
4.6
9.
-
order
amart
4.7
I.
-
order
potential
4.6
12.
-
positive
4.3
6.
-
positive
submartingale
4.5
5.
-
positive
weak
2.5
13.
-
potential
3.6
9.
-
strong
3.5
12.
-
uniform
3.5
11.
-
uniform
potential
3.6
8.
-
uniform
weak
204 208
hypomartingale
182
potential
102
amart
163
amart
155
amart
206
154 162
197
128
2S4
3.6.7.
-
u n i f o r m weak p o t e n t i a l
4.5.2.
-
weak a m a r t
3.6.11.
-
weak
196
sequential
amart
additive
measure,
countably
order complete
countably
order continuous
difference amart
4.6.2.
-
order a m a r t
Banach
lattice
Banach
-
semiamart
-
strong a m a r t
-
uniform amart
145 149 190
Doob p o t e n t i a l
82,
enveloppe
179
de Snell:
semiamart
107-108
game w h i c h b e c o m e s
fairer w i t h time
generalized
Radon-Nikodym
derivative
generalized
Radon-Nikodym
operator
hypomartingale
205
decomposition
207
KB-space
216
Krickeberg
decomposition
190
decomposition:
2.3.6.
-
martingale
77
3.3.6.
-
martingale
143
2.1.4
-
measure
3.1 .9.
-
vector measure
64
limit measure
martingale martingale maximal
215
106
Doob c o n d i t i o n
Lebesgue
215
lattice
200-201
2.6.2.
Jordan
65,
94
3.4.3.
-
vector measure
property:
-
2.6.3.
164
countably
2.5.5.
3.5.1.
162
75,
74,
133 142
142
in the l i m i t
212
ingquality:
2.5.12.
-
set f u n c t i o n
process
101
3.5.10.
-
set f u n c t i o n
process
154
213 68, 68,
134
134
133
2S5
measure mil
62
212
~-bounded ~-norm
o-lim
71, 137
set f u n c t i o n process 72
200
o p t i o n a ~ sampling theorem: 2.7.3.
amart
-
117
o p t i o n a l s t o p p i n g theorem: 2.7.2.
amart
-
115
order amart
200
o r d e r b o u n d e d set function
169 215
o r d e r c o m p l e t e B a n a c h lattice
215
order c o n t i n u o u s B a n a c h lattice order p o t e n t i a l
partition
203
59
p o s i t i v e set function potential pramart property
169
95 212 (P)
215
p u r e l y f i n i t e l y a d d i t i v e measure,
quasimartingale
84,
155
Radon-Nikodym operator regular o p e r a t o r
67, 134
170
r e p r e s e n t i n g linear o p e r a t o r restriction
127
70, 137
r e s t r i c t i o n map
70, 137
Riesz decomposition: 2.5.8.
-
amart
4.3.11.
-
negative submartingale
4.6.7.
-
order a m a r t
4.6.10.
-
positive hypomartingale
4.3.4.
-
positive submartingale
2.4.7.
-
quasimartingale
85
2.7.1.
-
quasimartingale
114
2.6.6.
-
semiamart
3.4.4.
-
strong amart
2.4.2.
-
submartingale
96 186
203
110 146 82
205 180
vector m e a s u r e
112, 165
236
4.3.15.
-
submartingale
2.4.2.
-
supermartingale
3.5.3.
-
uniform amart
3.6.6.
-
u n i f o r m weak a m a r t
semiamart
71,
simple
stopping
process
basis
basis
145 146 81,
supermartingale
179
81,
179
set f u n c t i o n
process
71,
137
72
topological
orthogonal
stochastic
uniform amart
u n i f o r m weak
system
basis
60
150
amart
157
u n i f o r m weak p o t e n t i a l
160
uniformly
l-continuous
universal
vector measure
variation
197
149
uniform potential
martingale
77,
143
59
127
vector measure
w-lim
60
59
potential
submartingale
trivial
136
60
strong a m a r t
T-norm
69,
59
time
T-bounded
160-161
126
stochastic
stochastic
strong
150
function
standard
82
137
semivariation set f u n c t i o n
188
125
157
weak
amart
weak
potential
157
weak
sequential
Yosida-Hewitt
~-continuous ~-singular
196 amart
163
decomposition
measure,
measure,
112,
165
vector measure
vector measure
64, 64,
132
132
Allan
Gut
A m a r t s
a
and
Klaus
D.
Schmidt:
-
b i b l i o g r a p h y
239
Amart theory has rapidly grown since its "foundation" J.R. Baxter
[I], R.V. Chacon
A. Ionescu Tulcea
[I], and D.G. Austin,
[I]. The principal
in 1974 by
G.A. Edgar,
and
purpose of the present b i b l i o g r a p h y
is to list the literature on amarts.
It also contains papers which led
to or were inspired by amart theory,
as well as a small number of papers
concerning
further generalizations
of m a r t i n g a l e s
whose relation to
amarts may be subject to further research.
K.A. Astbur[ [I]
Amarts
indexed by directed
sets.
Ann. P r o b a b i l i t y 6, 267-278 [2]
Order convergence
(1978).
of m a r t i n g a l e s
in terms of countably
additive and purely finitely additive martingales. Ann. P r o b a b i l i t y 9, 266-275 [3]
The order convergence
(1981).
of m a r t i n g a l e s
indexed by directed
sets. Trans. Amer.
D.G. Austin, [I]
Math.
G.A. Ed@ar,
Soc.
265, 495-510
(1981).
and A. Ionescu Tulcea
Pointwise c o n v e r g e n c e
in terms of expectations.
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e
verw. Gebiete 3_~0, 17-26
J.R. Baxter [I]
[2]
Pointwise
in terms of weak convergence.
Proc. Amer.
Math.
Convergence
of stopped random variables.
Adv. Math.
Soc.
2!, 112-115
46, 395-398
(1974).
(1976).
A. Bellow
[i]
On v e c t o r - v a l u e d
asymptotic
Proc. Nat. Acad.
Sci. U.S.A.
martingales. 7_~3, 1798-1799
(1976).
(1974).
240 [2]
Stability properties of the class of asymptotic martingales. Bull. Amer. Math. Soc. 82, 338-340
[3]
(1976).
Several stability properties of the class of asymptotic martingales. z. Wahrscheinlichkeitstheorie
[4]
verw. Gebiete 37, 275-290
Les amarts uniformes. C.R. Acad. Sci. Paris S~rie A 284,
[5]
(1977).
1295-1298
(1977).
Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains. Z. Wahrscheinlichkeitstheorie
[6]
verw. Gebiete 41, 177-191
(1978).
Some aspects of the theory of vector-valued amarts. In: Vector Space Measures and Applications I. Lecture Notes in Mathematics,
vol. 644, pp. 57-67.
Berlin - H e i d e l b e r g - New York: Springer 1978. [7]
Submartingale characterization of measurable cluster points. In: Probability on Banach Spaces. Advances in Probability and Related Topics, vol. 4, pp. 69-80. New Y o r k - B a s e l :
[8]
Dekker 1978.
Sufficiently rich sets of stopping times, measurable cluster points and submartingales. In: S~minaire Mauray-Schwartz
1977-1978,
S~minaire sur la
G~omAtrie des Espaces de Banach, Appendice no. 1, 11 p. Palaiseau: [9]
Ecole Polytechnique,
Martingales,
Centre de Math~matiques,
amarts and related stopping time techniques.
In: Probability in Banach spaces III. Lecture Notes in Mathematics,
vol. 860, pp. 9-24.
Berlin - H e i d e l b e r g - New York: Springer 1981.
A. Bellow and A. Dvoretzk~
[1]
A characterization of almost sure convergence. In: Probability in Banach Spaces II. Lecture Notes in Mathematics,
vol. 709, pp. 45-65.
Berlin - H e i d e l b e r g - N e w York: Springer 1979.
1978.
241
[2]
On m a r t i n g a l e s
in the limit.
Ann. Probability 8, 602-606
(1980).
A. Bellow and L. Egghe
[1]
[2]
In~galit~s
de Fatou g~n~ralis~es.
C.R. Acad.
Sci. Paris S~rie I 292, 847-850
Generalized Ann.
Y. Ben[amini [I]
(1981).
Fatou inequalities.
Inst. H. Poincar~
Section B I-8, 335-365
(1982).
and N. Ghoussoub
Une c a r a c t ~ r i s a t i o n C.R. Acad.
probabiliste
de 11 .
Sci. Paris S~rie A 286,
795-797
(1978).
L.H. Blake
[1]
A generalization
of martingales
and two consequent
convergence
theorems. Pacific J. Math. [2]
3_~5, 279-283
A note concerning
(1970).
the L l - c o n v e r g e n c e
of a class of games which
become fairer with time. G l a s g o w Math. J. [3]
1_~3, 39-41
Further results concerning
(1972). games which become
fairer with
time. J. London Math. [4]
Soc.
A note concerning
(2) 6, 311-316
(1973).
first order games which become fairer with
time. J. London Math.
[5]
(2) 9, 589-592
Every amart is a m a r t i n g a l e J. London Math.
[6]
Soc.
Soc.
Weak submartingales J. London Math.
Soc.
(1975).
in the limit.
(2) 18, 381-384
(1978).
in the limit. (2) I_~9, 573-575
(1979).
242
[7]
C o n v e r g e n t processes, martingale
projective
Glasgow Math. J. 20, 119-124
[8]
systems of measures
and
decompositions. (1979).
T e m p e r e d processes and a Riesz d e c o m p o s i t i o n martingales
for some
in the limit.
G l a s g o w Math.
J. 22, 9-17
(1981).
B. Bru and H. Heinich
[1]
Sur l'esp&rance C.R. Acad.
[2]
Sci. Paris S&rie A 288, 65-68
vectorielles. (1979).
adapt&es.
Sci. Paris S&rie A 288, 363-366
Sur l'esp~rance Ann.
[4]
al&atoires
Sur les suites de mesures v e c t o r i e l l e s C.R. Acad.
[3]
des variables
des variables
Inst. H. Poincar&
Sur l'esp&rance
al&atoires
(1979).
vectorielles.
Section B I-6, 177-196
des variables
al&atoires
(1980).
~ valeurs dans les
espaces de Banach r&ticul&s. Ann.
Inst. H. Poincar~
B. Bru, H. Heinich, [I]
Section B 16, 197-210
(1980).
and J.C. L o o t ~ i e t e r
Lois des grands nombres pour les variables &changeables. C.R. Acad.
Sci. Paris S&rie I 293,
485-488
(1981).
A . Brunel and U. Krengel
[1]
Parier avec un proph~te dans le cas d'un processus sous-additif. C.R. Acad.
Sci. Paris S&rie A 288, 57-60
(1979).
A. Brunel and L. Sucheston [I]
Sur les amarts faibles ~ valeurs vectorielles. C.R. Acad.
Sci. Paris S~rie A 282,
1011-1014
(1976).
243
[2]
Sur les amarts ~ valeurs vectorielles. C.R. Acad. Sci. Paris S~rie A 283, 1037-1040
[3]
(1976).
Une caract~risation probabiliste de la s~parabilit~ du dual d'un espace de Banach. C.R. Acad. Sci. Paris S~rie A 284, 1469-1472
(1977).
R.V. Chacon [I]
A "stopped" proof of convergence. Adv. Math. 14, 365-368
(1974).
R.V. Chacon and L. Sucheston [1]
On convergence of vector-valued asymptotic martingales. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 33, 55-59
(1975).
S.D. Chatterji
[1]
Differentiation along algebras. Manuscripta Math. 4, 213-224
[2]
(1971).
Les martingales et leurs applications analytiques. In: Ecole d'Et~ de Probabilit~s: Lecture Notes in Mathematics, Berlin-Heidelberg-New
[3]
Processus Stochastiques.
vol. 307, pp. 27-164.
York: Springer 1973.
Differentiation of measures. In: Measure Theory, Oberwolfach Lecture Notes in Mathematics, Berlin-Heidelberg-New
1975.
vol. 541, pp. 173-179.
York: Springer 1976.
R. Chen
[1]
A generalization of a theorem of Chacon. Pacific J. Math. 64, 93-95
(1976).
244
[2]
A simple proof of a theorem of Chacon Proc. Amer. Math. Soc. 60, 273-275
[3]
(1976).
Some inequalities for randomly stopped variables with applications to pointwise convergence. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 36, 75-83
(1976).
B.D. Choi
[1]
The RieSz decomposition of vector-valued uniform amarts for continuous parameter. Kyungpook Math. J. 18,
119-123
(1978).
B.D. Choi and L. Sucheston
[1]
Continuous parameter uniform amarts. In: Probability in Banach Spaces III. Lecture Notes in Mathematics, vol. 860, pp. 85-98. B e r l i n - Heidelberg - N e w York: Springer 1981.
Y.S. Chow
[1]
On the expected value of a stopped submartingale. Ann. Math. Statist. 38, 608-609
(1967).
B.K. Dam and N.D. Tien [I]
On the multivalued asymptotic martingales. Acta Math. Vietnam. 6, 77-87
W.J. Davis, N. Ghoussoub,
[1]
(1981).
and J. Lindenstrauss
A lattice renorming theorem and applications to vector-valued processes. Trans. Amer. Math. Soc. 263, 531-540
(1981}.
245
W.J. Davis and W.B. Johnson
[1]
Weakly c o n v e r g e n t
sequences of Banach space valued random
variables. In: Banach Spaces of Analytic
Functions.
Lecture Notes in Mathematics,
vol. 604, pp.
Berlin - H e i d e l b e r g - N e w
Springer
York:
29-31.
1977.
L.E. Dubins and D.A. F r e e d m a n [I]
On the expected value of a stopped martingale. Ann. Math.
A. Dvoretzky
[1]
Statist.
[1]
Generalizations
(see also:
Soc. 82, 347-349
of martingales.
P r o b a b i l i t y 2, 193-194
(1977).
D.G. Austin)
Inst. H. Poincar~
A s p l u n d operators
Section B 15,
Additive
197-203
(1979).
and a.e. convergence.
J. M u l t i v a r i a t e Anal. 10, 460-466 [3]
(1976).
U n i f o r m semiamarts. Ann.
[2]
(1966).
On stopping time directed convergence.
Adv. AppI.
G.A. Edgar
1505-1509
(see also: A. Bellow)
Bull. Amer. Math.
[2]
37,
(1980).
amarts.
Ann. P r o b a b i l i t y 10,
199-206
(1982).
G.A. Edgar and L. Sucheston [I]
Les amarts: C.R. Acad.
Une classe de m a r t i n g a l e s
asymptotiques.
Sci. Paris S~rie A 282, 715-718
(1976).
246
[2]
Amarts:
A class of asymptotic martingales.
A. Discrete
parameter. J. M u l t i v a r i a t e Anal. 6,
[3]
Amarts:
193-221
A class of a s y m p t o t i c
(1976).
martingales.
B. Continuous
parameter. J. M u l t i v a r i a t e Anal. 6, 572-591 [4]
The Riesz d e c o m p o s i t i o n Bull. Amer. Math.
[5]
Soc.
for v e c t o r - v a l u e d 82, 632-634
The Riesz d e c o m p o s i t i o n
On v e c t o r - v a l u e d
[8]
[I]
in the limit and amarts. 315-320
39, 213-216
(1977).
(1977).
de lois des grands nombres par les
Caract~risations
descendantes.
de la nucl~arit~
(1981).
of n u c l e a r i t y
Anal. 35, 207-214
Some new C h a c o n - E d g a r - t y p e Ann.
A new c h a r a c t e r i z a t i o n in L(LI,X)
Simon Stevin 54,
(1978).
in Fr~chet spaces. (1980).
inequalities
and characterizations
Inst. H. Poincar~
operator
dans les espaces de Fr~chet.
Sci. Paris S~rie A 287, 9-11
Characterizations
processes,
[4]
Soc. 67,
Sci. Paris S~rie I 292, 967-969
J. Functional [3]
(1976).
(see also: A. Bellow)
C.R. Acad.
[2]
Gebiete
Math.
C.R. Acad.
Egghe
verw.
Proc. Amer.
sous-martingales
L.
verw. Gebiete 36, 85-92
Martingales
D~monstrations
amarts.
amarts and dimension of Banach spaces.
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e [7]
amarts.
(1976).
for v e c t o r - v a l u e d
Z. W a h r s c h e i n l i c h k e i t s t h e o r i e
[6]
(1976).
for stochastic
of Vitali-conditions.
Section B 16, 327-337
(1980).
of Banach spaces X for which every
is c o m p l e t e l y continuous.
135-149
(1980).
247
[5]
Strong c o n v e r g e n c e of p r a m a r t s in B a n a c h spaces. C a n a d i a n J. Math. 33, 357-361
[6]
(1981).
W e a k and strong c o n v e r g e n c e of amarts in F r ~ c h e t spaces. J. M u l t i v a r i a t e Anal. 12, 291-305
[7]
(1982).
On sub- and s u p e r p r a m a r t s w i t h values in a B a n a c h lattice. In: M e a s u r e Theory, O b e r w o l f a c h
1981.
L e c t u r e N o t e s in Mathematics,
vol.
Berlin -Heidelberg -New
Springer
York:
945, pp. 352-365. 1982.
A. E n @ e l b e r t and H.J. E n g e l b e r t
[1]
Optimal stopping and almost sure c o n v e r g e n c e of r a n d o m sequences. Z. W a h r s c h e i n l i c h k e i t s t h e o r i e verw. Gebiete 48, 309-325
[2]
(1979).
On a g e n e r a l i z a t i o n of a t h e o r e m of W. S u d d e r t h and some applications. In: M a t h e m a t i c a l Statistics. B a n a c h C e n t e r Publications, Warsaw:
H.J. E n g e l b e r t
vol. 6, pp.
Polish Scientific Publishers
111-120.
1980.
(see: A. Engelbert)
D.L. Fisk
[1]
Quasi-martingales. Trans. Amer. Math.
Soc.
120, 369-389
(1965).
J.P. F o u q u e
[1]
R ~ g u l a r i t ~ des t r a j e c t o i r e s des amarts et h y p e r a m a r t s r~els. C.R. Acad.
[2)
Sci. Paris S&rie A 290,
107-110
(1980).
E n v e l o p p e de Snell et th~orie g ~ n ~ r a l e des processus. C.R. Acad.
Sci. Paris S~rie A 290, 285-288
(1980).
248
J.P. Fouque and A. Millet [I]
R~gularit~
~ gauche des martingales
C.R. Acad.
Sci. Paris S~rie A 290, 773-776
D.A. Freedman
N. Ghoussoub
[I]
(see also: Y. Benyamini,
Orderamarts:
9, 165-172
(1977).
martingales.
(1979).
Summability and vector amarts. Anal. 9,
173-178
Riesz spaces valued measures Bull.
N. G h o u s s o u b
[1]
Section B 1_~3, 159-169
A class of asymptotic
J. M u l t i v a r i a t e [4]
W.J. Davis)
Banach lattices valued amarts.
J. M u l t i v a r i a t e Anal. [3]
indices.
(1980).
(see: L.E. Dubins)
Ann. Inst. H. Poincar~ [2]
fortes ~ plusieurs
Soc. Math. France
(1979).
and processes.
110, 233-257
(1982).
and L. Sucheston
A refinement
of the Riesz d e c o m p o s i t i o n
fDr amarts and
semiamarts. J. M u l t i v a r i a t e Anal. 8,
146-150
(1978).
N. Ghoussoub and M. T a l a @ r a n d
[1]
A g e n e r a l i z e d Chacon's
inequalitiy
and order c o n v e r g e n c e
of
processes. In: S~minaire Choquet
1977-1978,
17e annie, C o m m u n i c a t i o n Paris:
Universit~
no.
Initiation ~ l'Analyse,
13, 4 p.
Pierre et Marie Curie,
Institut H. Poincar~,
1978. [2]
Convergence C.R. Acad.
faible des potentiels Sci. Paris S~rie A 288,
de Doob vectoriels. 599-602
(1979).
249 A. Gut
[1]
A contribution to the theory of asymptotic martingales. Glasgow Math. J. 23, 177-186
[2]
(1982).
An introduction to the theory of asymptotic martingales. In: Amarts and Set Function Processes. Lecture Notes in Mathematics,
vol.
1042, pp. 1-49.
Berlin - Heidelberg - N e w York: Springer 1983.
H. Heinich
[1]
(see also: B. Bru) Martingales asymptotiques pour l'ordre. Ann. Inst. H. Poincar& Section B 14, 315-333
[2]
(1978).
Convergence des sous-martingales positives dans un Banach r&ticul~. C.R. Acad. Sci. Paris S&rie A 286, 279-280
L.L. Helms
(1978).
(see: G. Johnson)
T.P. Hill and R.P. Kertz
[11
Ratio comparisons of supremum and stop rule expectations. Z. Wahrscheinlichkeitstheorie
[2]
verw. Gebiete 56, 283-285
(1981).
Additive comparisons of stop rule and supremum expectations of uniformly bounded independent random variables. Proc. Amer. Math. Soc. 83, 582-585
[3]
(1981).
Comparisons of stop rule and supremum expectations of i.i.d. random variables. Ann. Probability 10, 336-345
A. Ionescu Tulcea
(see: D.G. Austin)
(1982).
250
T. Jeulin
[1]
Partie positive d'une quasimartingale. C.R. Acad. Sci. Paris S&rie A 287, 351-352
(1978).
G. Johnson and L.L. Helms [I]
Class D supermartingales. Bull. Amer. Math. Soc. 69, 59-62
W.B. Johnson
R.P. Kertz
(1963).
(see: W.J. Davis)
(see: T.P. Hill)
A. Korzeniowski
[1]
A proof of the ergodic theorem in Banach spaces via asymptotic martingales. Bull. Acad. Polon. Sci. S&rie Sci. Math. Astronom. 1041-1044
(21
Phys. 26,
(1978).
Martingales in Banach spaces for which the convergence with probability one, in probability and in law coincide. Colloquium Math. 39,
U. Kren~el
[1]
153-159
(1978).
(see also: A. Brunel) On asymptotic martingales and dominated estimates in the theory of optimal stopping. In: Second Vilnius International Conference on Probability Theory and Mathematical
Statistics
Vilnius: Akademija Nauk SSSR 1977.
1977, vol. 2, pp. 115-116.
251
U. Kren@el and L. S u c h e s t o n
[1]
Semiamarts and finite values. Bull. Amer. Math.
[2]
On semiamarts,
Soc. 83, 745-747
amarts,
(1977).
and p r o c e s s e s with finite value.
In: P r o b a b i l i t y on B a n a c h Spaces. A d v a n c e s in P r o b a b i l i t y and R e l a t e d Topics, vol. pp.
New York-Basel:
[3]
4,
197-266. Dekker
1978.
Temps d ' a r r ~ t et t a c t i q u e s pour des p r o c e s s u s index&s par un e n s e m b l e ordonn~. C.R. Acad.
[41
Sci. Paris S~rie A 290,
193-196
(1980).
S t o p p i n g rules and tactics for p r o c e s s e s indexed by a d i r e c t e d set. J. M u l t i v a r i a t e Anal. 11,
199-229
(1981).
C.W. Lamb
[1]
A ratio limit t h e o r e m for a p p r o x i m a t e martingales. C a n a d i a n J. Math. 25, 772-779
J~ L i n d e n s t r a u s s
J.C. L o o t ~ i e t e r
(1973).
(see: W.J. Davis)
(see: B. Bru)
J.F. M e r t e n s
[1]
T h ~ o r i e des p r o c e s s u s s t o c h a s t i q u e s g~n~raux;
applications
aux
surmartingales. Z. W a h r s c h e i n l i c h k e i t s t h e o r i e verw.
Gebiete 22, 45-68
(1972).
252
P.A. M e y e r
[1]
Le r e t o u r n e m e n t du temps, d'apr~s C h u n g et Walsh. In: S ~ m i n a i r e de P r o b a b i l i t ~ s V. Lecture N o t e s in M a t h e m a t i c s , vol. Berlin -Heidelberg -New
A. M i l l e t
[1]
191, pp. 213-236.
York: S p r i n g e r 1971.
(see also: J.P. Fouque)
Sur la c a r a c t & r i s a t i o n des c o n d i t i o n s de V i t a l i par la c o n v e r g e n c e e s s e n t i e l l e des martingales. C.R. Acad.
[2]
Sci. Paris S~rie A 287, 887-890
(1978).
C o n v e r g e n c e and r e g u l a r i t y of strong submartingales. In: P r o c e s s u s A l & a t o i r e s ~ Deux Indices.
[3]
Lecture Notes in Mathematics,
vol.
Berlin-Heidelberg-New
S p r i n g e r 1981.
York:
863, pp. 50-58.
Sur l ' e x i s t e n c e de points d ' a r r ~ t o p t i m a u x dans le plan. C.R. Acad.
Sci. Paris S&rie I 295, 587-590
(1982).
A. M i l l e t and L. S u c h e s t o n
[i]
C l a s s e s d ' a m a r t s filtrants et c o n d i t i o n s de Vitali. C.R. Acad.
[2]
Sci. Paris S~rie A 286,
835-837
(1978).
Sur la c a r a c t ~ r i s a t i o n des c o n d i t i o n s de V i t a l i par la c o n v e r g e n c e e s s e n t i e l l e de classes d'amarts. C.R. Acad.
[3]
Sci. Paris S&rie A 286,
1015-1017
(1978).
La c o n v e r g e n c e e s s e n t i e l l e des m a r t i n g a l e s b o r n ~ e s dans L 1 n ' i m p l i q u e pas la c o n d i t i o n de V i t a l i V. C.R. Acad.
[4]
Sci. Paris S~rie A 288, 595-598
(1979).
C h a r a c t e r i z a t i o n s of Vitali c o n d i t i o n s w i t h o v e r l a p in terms of c o n v e r g e n c e of classes of amarts. C a n a d i a n J. Math. 31,
[5]
1033-1046
(1979).
C o n v e r g e n c e of classes of amarts indexed by d i r e c t e d sets. C a n a d i a n J. Math.
32, 86-125
(1980).
253
A characterization of Vitali conditions on terms of maximal
[6]
inequalities. Ann. Probability 8, 339-349
(1980).
On covering conditions and convergence.
[7]
In: Measure Theory, Oberwolfach Lecture Notes in Mathematics, Berlin-Heidelberg-New
[8]
1979.
vol. 794, pp. 431-454.
York: Springer 1980.
Convergence et r&gularit~ des martingales ~ indices multiples. C.R. Acad.
Sci. Paris S~rie A 291, 147-150
On convergence of L1-bounded martingales
[9]
(1980).
indexed by directed
sets. Probability Math. Statist. ~, 151-169
[10]
On regularity of multiparameter amarts and martingales. Z. Wahrscheinlichkeitstheorie
[11]
Demi-convergence C.R. Acad.
R.
(1980).
verw. Gebiete 56, 21-45
(1981).
des processus ~ deux indices.
Sci. Paris S&rie I 293, 435-438
(1981).
Morkvenas
[I]
On the Riesz decomposition for two-parameter amarts. Litovsk.
Mat. Sb. 21,
147-151
(Russian).
(1981).
A.G. Mucci
[11
Limits for martingale-like
sequences.
Pacific J. Math. 4_88, 197-202 [2]
(1973).
Relationship between Martingales and Radon-Nikodym Theorems for Vector Valued Functions. Conferenze del Seminario di Matematica dell'Universit~ di Bari, vol.
137.
Bari: Gius. Laterza & Figli 1975. [3]
Another martingale convergence theorem. Pacific J. Math. 6_44, 539-541
(1976).
254 S~ Orey
[1]
F-processes. In: Proc. Fifth Berkeley vol.
Symp. Math.
Statist.
Probability,
2, part 1, pp. 301-313.
Berkeley,
California:
University
of California
Press
1967.
M. Peligrad [I]
A limit theorem for m a r t i n g a l e - l i k e Rev. Roum. Math.
[2]
Pures Appl.
Local convergence
sequences.
2_~I, 733-736
for sums of dependent
(1976). random variables
and
the law of large numbers. Rev. [3]
Roum. Math.
Limit theorems martingale-like Math. Nachr.
Pures Appl.
2_55, 89-98
(1980).
and the law of large numbers for sequences.
9_99, 211-216
(1980).
V.C. Pestien [1]
An extended Fatou equation and continuous-time Adv. Appl. P r o b a b i l i t y
K.M.
[1]
1_44, 309-323
gambling.
(1982).
Rao
Quasi-martingales. Math.
Scand.
2_44, 79-92
(1969).
J.P. Raoult
[1]
G~n~ralisation martingale. C.R. Acad.
[2]
de la notion de sous-martingale:
D~finition
Asympto-sous-
de convergence
Sci. Paris S~rie A 26__~3, 738-741
Asympto-martingales C.R. Acad.
et th&or~mes
(1966).
et contiguitY.
Sci. Paris S&rie A 26_~4, 329-332
(1967).
en moyenne.
255
H. Robbins and D. Siegmund
[i]
A c o n v e r g e n c e t h e o r e m for non n e g a t i v e almost s u p e r m a r t i n g a l e s and some applications. In: O p t i m i z i n g Methods in Statistics, New Y o r k - L o n d o n :
A c a d e m i c Press
pp.
233-257.
1971.
M. R u b i n s t e i n
[I]
P r o p e r t i e s of u n i f o r m i n t e g r a b i l i t y and c o n v e r g e n c e for families of random variables. Rend. Accad. Naz. dei Lincei Classe Sci. Fis. Mat. Nat. Serie VIII 5_/7, 95-99
K.D.
[i]
Schmidt
Sur l'esp~rance d'une s e m i - a m a r t i n g a l e arr~t~e. C.R. Acad.
[2]
Sci. Paris S~rie A 287, 663-665
(1978).
Sur la v a l e u r d'un p r o c e s s u s de fonctions d'ensembles. C.R. Acad.
[3]
(1974).
Sci. Paris S~rie A 288, 431-434
Espaces v e c t o r i e l s r~ticul~s,
(1979).
d ~ c o m p o s i t i o n s de Riesz, et
c a r a c t ~ r i s a t i o n s de c e r t a i n s p r o c e s s u s de fonctions d'ensembles. C.R. Acad. [4]
Sci. Paris S~rie A 289, 75-78
(1979).
Sur la c o n v e r g e n c e d'une a m a r t i n g a l e born~e et un t h ~ o r O m e de Chatterji. C.R. Acad.
[5]
Sci. Paris S~rie A 289,
(1979).
On the value of a stopped set f u n c t i o n process. J. M u l t i v a r i a t e Anal.
[6]
181-183
I_~0, 123-134
(1980).
T h ~ o r ~ m e s de structure pour les a m a r t i n g a l e s en p r o c e s s u s de fonctions d ' e n s e m b l e s ~ valeurs dans un espace de Banach. C.R. Acad.
Sci. Paris S~rie A 290,
1069-1072
(1980).
256
Th~or~mes
[7]
de c o n v e r g e n c e
de fonctions C.R.
[8]
Acad.
pour
d'ensembles
Sci.
Paris
On the c o n v e r g e n c e
les a m a r t i n g a l e s
~ valeurs
S~rie A 290,
of a b o u n d e d
en p r o c e s s u s
dans un espace de Banach. 1103-1106
(1980).
amart and a c o n j e c t u r e
of Chatterji. J. M u l t i v a r i a t e
Generalized
[9]
[10]
Anal.
I!I , 58-68
martingales
In: M e t h o d s
of O p e r a t i o n s Atheneum
- a measure
In: Amarts Lecture
D. S i e @ m u n d
[I]
Research,
theoretic
and Set F u n c t i o n
Notes
vol.
processes. 44, pp.
167-178.
1981.
approach. Processes.
in M a t h e m a t i c s ,
Berlin-Heidelberg-New
M.
and set function
K~nigstein:
Amarts
(1981).
York:
vol.
1042,
Springer
pp.
51-236.
1983.
(see: H. Robbins)
Slaby
Convergence
of s u b m a r t i n g a l e s
and amarts
in B a n a c h
Bull.
Polon.
Sci.
3_O0, 291-299
Acad.
Sci.
S~rie
Math.
lattices. (1982).
R. S u b r a m a n i a n
[I]
On a g e n e r a l i z a t i o n Pacific
L. S u c h e s t o n
J. Math.
(see also:
N. Ghoussoub,
[i]
Les amarts In:
4_88, 275-278
A. Brunel,
R.V.
U. Krengel,
(martingales
S~minaire
Palaiseau:
of m a r t i n g a l e s
due to Blake.
(1973).
Chacon,
B.D.
Choi,
G.A.
Edgar,
A. Millet)
asymptotiques).
Mauray-Schwartz
Ecole Polytechnique,
1975-1976, Centre
Expos~
no. VIII,
de M a t h ~ m a t i q u e s ,
6 p. 1976.
257
W.D.
Sudderth
[I]
A "Fatou equation" Ann. Math.
J.
for randomly
Statist.
42,
stopped variables.
2143-2146
(1971).
Szulga
[I]
On the submartingale isomorphic
[2]
of Banach lattices
to 11 .
Bull. Acad. Polon. 65-68
characterization
Sci.
S~rie Sci. Math. Astronom.
Boundedness
and convergence
of Banach lattice valued
submartingales. In: Probability Lecture Notes
Theory on Vector Spaces.
in Mathematics,
Berlin-Heidelberg-New [3]
Regularity
vol 656, pp. 251-256.
York:
Springer
1978.
of Banach lattice valued martingales.
C o l l o q u i u m Math. 41,
303-312
(1979).
J. Szulga and W.A. Woyczynski [1]
Convergence
of submartingales
Ann. Probability
M. Talagrand
N.D. Tien
4, 464-469
in Banach lattices. (1976).
(see: N Ghoussoub)
(see: B.K. Dam)
R.J. Tomkins [I]
Phys. 26,
(1978).
Properties
of m a r t i n g a l e - l i k e
Pacific J. Math. 61,
521-525
sequences. (1975).
258
J.J. Uhl jr.
[I]
Pettis mean c o n v e r g e n c e of v e c t o r - v a l u e d asymptotic martingales. Z. W a h r s c h e i n l i c h k e i t s t h e o r i e verw. Gebiete 37, 291-295
W.A. W o y c z Y n s k i
M.
[I]
(1977).
(see: J. Szulga)
Yamasaki
A n o t h e r c o n v e r g e n c e theorem for m a r t i n g a l e s in the limit. TShoku Math.
J. 33, 555-559
(1981).