CONTENTS CONTENTS OF VOLUMES 1 –38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CUMULATIVE SUBJE...
51 downloads
1508 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
CONTENTS CONTENTS OF VOLUMES 1 –38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1 – 38 . . . . . . . . . . . . 23 CONTRIBUTORS TO VOLUMES 1 –38 . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
CONTENTS OF VOLUMES 1 –38 VOLUME 1 The Status of Some Fossil Plants....................................................................
1
ALAN WESLEY Growth Regulation by Metals and Chelates ....................................................
73
HANS BURSTRO¨ M Comparative Anatomy as a Modern Botanical Discipline With special reference to recent advances in the systematic anatomy of monocotyledons............................................................................................
101
C. R. METCALFE Palynology.........................................................................................................
149
G. ERDTMAN Metabolism and the Transport of Organic Substances in the Phloem ...........
209
A. L. KURSANOV Water Relations of Plant Cells .........................................................................
279
JACK DAINTY Electron Paramagnetic Resonance in Photosynthetic Studies .......................
327
G. M. ANDROES
VOLUME 2 Some Phyletic Implications of Flagellar Structure in Plants............................
1
I. MANTON Fundamental Problems in Numerical Taxonomy ............................................
35
W. T. WILLIAMS and M. B. DALE Ultrastructure of the Wall in Growing Cells and its Relation to the Direction of the Growth .........................................................................
69
P. A. ROELOFSEN The Protein Component of Primary Cell Walls................................................ DEREK T. A. LAMPORT
151
2
CONTENTS OF VOLUMES 1–38
Embryology in Relation to Physiology and Genetics.......................................
219
P. MAHESHWARI and N. S. RANGASWAMY The Soft Rot Fungi: Their Mode of Action and Significance in the Degradation of Wood .............................................................................
323
JOHN LEVY VOLUME 3 Structural Aspects of Cell Membranes ............................................................
1
L. ANDREW STAEHELIN and M. C. PROBINE X-ray Structure Research on the Photosynthetic Membrane .........................
53
W. KREUTZ Some Aspects of Water Relations ...................................................................
171
P. E. WEATHERLEY Monocotyledons—Towards an Understanding of their Morphology and Anatomy ................................................................................
207
P. B. TOMLINSON VOLUME 4 Recognition, Resistance and the Role of Plant Lectins in Host –Parasite Interactions...........................................................................
1
J. A. CALLOW Paracoccus denitrificans Davis (Microscoccus denitrificans Beijerinck) as a Mitochondrion............................
51
P. JOHN and F. R. WHATLEY Stomatal Behaviour and Environment .............................................................
117
I. R. COWAN Evolutionary Patterns and Processes in Ferns ...............................................
229
J. D. LOVIS VOLUME 5 The Use of Fluorescence Emission at 778K in the Analysis of the Photosynthetic Apparatus of Higher Plants and Algae ......................... GO¨ TZ HARNISCHFEGER
1
CONTENTS OF VOLUMES 1–38
Receptors for Plant Hormones.........................................................................
3 53
MICHAEL A. VENIS Plant Cell Wall Synthesis .................................................................................
89
DAVID G. ROBINSON The Evolution of Vascular Land Plants in Relation to Supracellular Transport Processes..............................................................
153
J. A. RAVEN
VOLUME 6 Ecological Aspects of Nitrogen Assimilation....................................................
1
J. A. LEE and G. R. STEWART Physical Aspects of Water Relations of Plant Cells ........................................
45
U. ZIMMERMANN and E. STEUDLE Aspects of Chromosome Evolution in Higher Plants.......................................
119
KEITH JONES Cytogenetics, Biosystematics and Evolution in the Bryophyta .......................
195
A. J. E. SMITH Plant Resins—Their Formation, Secretion and Possible Functions ...............
277
B. DELL and A. J. MC COMB
VOLUME 7 Structure and Function of the Plastid Envelope ..............................................
1
ROLAND DOUCE and JACQUES JOYARD Sodium as an Essential Micronutrient Element for Plants and its Possible Role in Metabolism ................................................................
117
P. F. BROWNELL Aeration in Higher Plants..................................................................................
225
W. ARMSTRONG Population and Community Structure and Dynamics of Fungi in Decaying Wood............................................................................................. A. D. M. RAYNER and N. K. TODD
333
4
CONTENTS OF VOLUMES 1–38
Aspects of the Physiology of Orchids ..............................................................
421
JOSEPH ARDITTI
VOLUME 8 Picosecond Spectroscopy: Biological Applications .........................................
1
A. H. REYNOLDS and P. M. RENTZEPIS The Biochemistry of Lignification .....................................................................
25
G. G. GROSS The Measurement of Protein Turnover in Plants ............................................
65
D. D. DAVIES Phosphorus Uptake, Storage and Utilization by Fungi....................................
127
R. E. BEEVER and D. J. W. BURNS Plants in Relation to Salinity.............................................................................
221
S. J. WAINWRIGHT
VOLUME 9 Biochemistry of Storage Protein Synthesis and Deposition in the Developing Legume Seed ......................................................................
1
D. BOULTER Aspects of the Metabolism and Physiology of Gibberellins ............................
33
ALAN CROZIER The Control of the Patterned Differentiation of Vascular Tissues...................
151
TSVI SACHS
VOLUME 10 Light-harvesting Processes in Algae................................................................
1
A.W.D. LARKUM and JACK BARRETT Effects of Nutrient Stress on Susceptibility of Plants to Disease with Particular Reference to the Trace Elements ......................... ROBIN D. GRAHAM
221
CONTENTS OF VOLUMES 1–38
5
VOLUME 11 Laser Light Scattering in Biological Research .................................................
1
M. W. STEER , J. M. PICTON and J. C. EARNSHAW Transport and Fixation of Inorganic Carbon by Marine Algae ........................
71
N. W. KERBY and J. A. RAVEN Cell Wall Storage Carbohydrates in Seeds—Biochemistry of the Seed “Gums” and “Hemicelluloses”.......................................................
125
J. S. GRANT REID Welwitschia mirabilis—New Aspects in the Biology of an Old Plant .............. D. J.
VON
157
WILLERT
VOLUME 12 Light/Dark Modulation of Enzyme Activity in Plants ........................................
1
LOUISE E. ANDERSON Algal Toxins ......................................................................................................
47
WAYNE W. CARMICHAEL Plant Transposable Elements ..........................................................................
103
PATRICIA NEVERS , NANCY S. SHEPHERD and HEINZ SAEDLER The Dinoflagellate Chromosome......................................................................
205
D. C. SIGEE
VOLUME 13 Interactions Between Photosystems................................................................
1
N. R. BAKER and A. N. WEBBER Cyanobacterial Water-Blooms..........................................................................
67
C. S. REYNOLDS Determinants of Yield of Secondary Products in Plant Tissue Cultures ........ H. A. COLLIN
145
6
CONTENTS OF VOLUMES 1–38
VOLUME 14 Protein Targeting ..............................................................................................
1
R. J. ELLIS and C. ROBINSON Control of Isoprenoid Biosynthesis in Higher Plants .......................................
27
JOHN C. GRAY Dunaliella: A Green Alga Adapted to Salt........................................................
95
M. GINZBURG
VOLUME 15 Perception of Gravity by Plants........................................................................
1
THOMAS BJO¨ RKMAN Crassulacean Acid Metabolism: a Re-appraisal of Physiological Plasticity in Form and Function........................................................................
43
H. GRIFFITHS Potassium Transport in Roots..........................................................................
93
LEON V. KOCHIAN and WILLIAM J. LUCAS Sporogenesis in Conifers .................................................................................
179
ROGER I. PENNELL
VOLUME 16 Lipid Metabolism in Algae ................................................................................
1
JOHN L. HARWOOD and A. LESLEY JONES The Alternation of Generations ........................................................................
55
PETER R. BELL The Formation and Interpretation of Plant Fossil Assemblages .....................
95
ROBERT A. SPICER Primary Productivity in the Shelf Seas of North-West Europe........................ P. M. HOLLIGAN
193
CONTENTS OF VOLUMES 1–38
7
VOLUME 17 Plant Evolution and Ecology During the Early Cainozoic Diversification........
1
MARGARET E. COLLINSON Origin and Evolution of Angiosperm Flowers ..................................................
99
ELSE MARIE FRIIS and PETER K. ENDRESS Bacterial Leaf Nodule Symbiosis .....................................................................
163
IAIN M. MILLER Fracture Properties of Plants ...........................................................................
235
J. F. V. VINCENT
VOLUME 18 Photosynthesis and Stomatal Responses to Polluted Air, and the Use of Physiological and Biochemical Responses for Early Detection and Diagnostic Tools ........................................................
1
H. SAXE Transport and Metabolism of Carbon and Nitrogen in Legume Nodules .......
129
J. G. STREETER Plants and Wind................................................................................................
191
P. VAN GARDINGEN and J. GRACE Fibre Optic Microprobes and Measurement of the Light Microenvironment within Plant Tissues ...........................................................
255
T. C. VOGELMANN , G. MARTIN , G. CHEN and D. BUTTRY
VOLUME 19 Oligosaccharins ................................................................................................
1
S. ALDINGTON and S. C. FRY Are Plant Hormones Involved in Root to Shoot Communication? ..................
103
M. B. JACKSON Second-hand Chloroplasts: Evolution of Cryptomonad Algae ........................ G. I. MC FADDEN
189
8
CONTENTS OF VOLUMES 1–38
The Gametophyte –Sporophyte Junction in Land Plants ................................
231
R. LIGRONE , J. G. DUCKETT and K. S. RENZAGLIA
VOLUME 20 Global Photosynthesis and Stomatal Conductance: Modelling the Controls by Soil and Climate......................................................................
1
F. I. WOODWARD and T. M. SMITH In vivo NMR Studies of Higher Plants and Algae............................................
43
R. G. RATCLIFFE Vegetative and Gametic Development in the Green Alga Chlamydomonas ...............................................................................................
125
HERMAN VAN DEN ENDE Salicylic Acid and its Derivatives in Plants: Medicines, Metabolites and Messenger Molecules............................................................
163
W. S. PIERPOINT
VOLUME 21 Defense Responses of Plants to Pathogens ...................................................
1
E. KOMBRINK and I. E. SOMSSICH On the Nature and Genetic Basis for Resistance and Tolerance to Fungal Wilt Diseases of Plants ...........................................
35
C. H. BECKMAN and E. M. ROBERTS Implication of Population Pressure on Agriculture and Ecosystems ..............
79
A. H. EHRLICH Plant Virus Infection: Another Point of View....................................................
105
G. A. DE ZOETEN The Pathogens and Pests of Chestnuts ..........................................................
125
S. L. ANAGNOSTAKIS Fungal Avirulence Genes and Plant Resistance Genes: Unraveling the Molecular Basis of Gene-for-Gene Interactions ..................... P. J. G. M. DE WIT
147
9
CONTENTS OF VOLUMES 1–38
Phytoplasmas: Can Phylogeny Provide the Means to Understand Pathogenicity? ..........................................................................
187
B. C. KIRKPATRICK and C. D. SMART Use of Categorical Information and Correspondence Analysis in Plant Disease Epidemiology..........................................................
213
S. SAVARY , L. V. MADDEN , J. C. ZADOKS and H. W. KLEIN -GEBBINCK
VOLUME 22 Mutualism and Parasitism: Diversity in Function and Structure in the “Arbuscular” (VA) Mycorrhizal Symbiosis ..............................................
1
F. A. SMITH and S. E. SMITH Calcium Ions as Intracellular Second Messengers in Higher Plants ..............
45
ALEX A. R. WEBB , MARTIN R. MC AINSH , JANE E. TAYLOR and ALISTAIR M. HETHERINGTON The Effects of Ultraviolet-B Radiation on Plants: A Molecular Perspective...................................................................................
97
BRIAN R. JORDAN Rapid, Long-distance Signal Transmission in Higher Plants ..........................
163
M. MALONE Keeping in Touch: Responses of the Whole Plant to Deficits in Water and Nitrogen Supply ..........................................................................
227
A. J. S. MC DONALD and W. J. DAVIES
VOLUME 23 The Value of Indexing for Disease Control Strategies ....................................
1
D. E. STEAD , D. L. EBBELS and A. W. PEMBERTON Detecting Latent Bacterial Infections ...............................................................
27
S. H. DE BOER , D. A. CUPPELS and R. GITAITIS Sensitivity of Indexing Procedures for Viruses and Viroids ............................
59
H. HUTTINGA Detecting Propagules of Plant Pathogenic Fungi............................................ S. A. MILLER
73
10
CONTENTS OF VOLUMES 1–38
Assessing Plant-Nematode Infestations and Infections ..................................
103
K. R. BARKER and E. L. DAVIS Potential of Pathogen Detection Technology for Management of Diseases in Glasshouse Ornamental Crops ................... I. G. DINESEN and A.
VAN
Indexing Seeds for Pathogens ......................................................................... J. LANGERAK , R. W.
137
ZAAYEN
VAN DEN
171
BULK and A. A. J. M. FRANKEN
A Role for Pathogen Indexing Procedures in Potato Certification .................. S. H. DE BOER , S. A. SLACK , G.
VAN DEN
217
BOVENKAMP and I. MASTENBROEK
A Decision Modelling Approach for Quantifying Risk in Pathogen Indexing........................................................................................
243
C. A. LE´ VESQUE and D. M. EAVES Quality Control and Cost Effectiveness of Indexing Procedures ....................
279
C. SUTULA
VOLUME 24 Contributions of Population Genetics to Plant Disease Epidemiology and Management..............................................................................................
1
M. G. MILGROOM and W. E. FRY A Molecular View Through the Looking Glass: the Pyrenopeziza brassicae –Brassica Interaction........................................................................
31
A. M. ASHBY The Balance and Interplay Between Asexual and Sexual Reproduction in Fungi ......................................................................................
71
M. CHAMBERLAIN and D. S. INGRAM The Role of Leucine-Rich Repeat Proteins in Plant Defences .......................
89
D. A. JONES and J. D. G. JONES Fungal Life-Styles and Ecosystem Dynamics: Biological Aspects of Plant Pathogens, Plant Endophytes and Saprophytes ...............................
169
R. J. RODRIGUEZ and R. S. REDMAN Cellular Interactions between Plants and Biotrophic Fungal Parasites .......... M. C. HEATH and D. SKALAMERA
195
CONTENTS OF VOLUMES 1–38
Symbiology of Mouse-Ear Cress (Arabidopsis thaliana) and Oomycetes......
11 227
E. B. HOLUB and J. L. BEYNON Use of Monoclonal Antibodies to Detect, Quantify and Visualize Fungi in Soils .............................................................................
275
F. M. DEWEY , C. R. THORNTON and C. A. GILLIGAN Function of Fungal Haustoria in Epiphytic and Endophytic Infections............
309
P. T. N. SPENCER -PHILLIPS Towards an Understanding of the Population Genetics of Plant-Colonizing Bacteria .............................................................................
335
B. HAUBOLD and P. B. RAINEY Asexual Sporulation in the Oomycetes............................................................
353
A. R. HARDHAM and G. J. HYDE Horizontal Gene Transfer in the Rhizosphere: a Curiosity or a Driving Force in Evolution?.......................................................................
399
J. WO¨ STEMEYER , A. WO¨ STEMEYER and K. VOIGT The Origins of Phytophthora Species Attacking Legumes in Australia ..........
431
J. A. G. IRWIN , A. R. CRAWFORD and A. DRENTH
VOLUME 25 The Biogenesis of Vacuoles: Insights from Microscopy..................................
1
F. MARTY Molecular Aspects of Vacuole Biogenesis.......................................................
43
D. C. BASSHAM and N. V. RAIKHEL The Vacuole: a Cost– Benefit Analysis ............................................................
59
J. A. RAVEN The Vacuole and Cell Senescence..................................................................
87
P. MATILE Protein Bodies: Storage Vacuoles in Seeds....................................................
113
G. GALILI and E. M. HERMAN Compartmentation of Secondary Metabolites and Xenobiotics in Plant Vacuoles .............................................................................................. M. WINK
141
12
CONTENTS OF VOLUMES 1–38
Solute Composition of Vacuoles ......................................................................
171
R. A. LEIGH The Vacuole and Carbohydrate Metabolism ...................................................
195
C. J. POLLOCK and A. KINGSTON -SMITH Vacuolar Ion Channels of Higher Plants..........................................................
217
G. J. ALLEN and D. SANDERS The Physiology, Biochemistry and Molecular Biology of the Plant Vacuolar ATPase ....................................................................................
253
U. LU¨ TTGE and R. RATAJCZAK The Molecular and Biochemical Basis of Pyrophosphate-Energized Proton Translocation at the Vacuolar Membrane............................................
297
R.-G. ZHEN , E. J. KIM and P. A. REA The Bioenergetics of Vacuolar H+ Pumps .......................................................
339
J. M. DAVIES Transport of Organic Molecules Across the Tonoplast ...................................
365
E. MARTINOIA and R. RATAJCZAK Secondary Inorganic Ion Transport at the Tonoplast ......................................
401
E. BLUMWALD and A. GELLI Aquaporins and Water Transport Across the Tonoplast .................................
419
M. J. CHRISPEELS , M. J. DANIELS and A. WEIG
VOLUME 26 Developments in the Biological Control of Soil-borne Plant Pathogens.........
1
J. M. WHIPPS Plant Proteins that Confer Resistance to Pests and Pathogens ....................
135
PETER R. SHEWRY and JOHN A. LUCAS The Net Primary Productivity and Water Use of Forests in the Geological Past ...................................................................................... D. J. BEERLING
193
CONTENTS OF VOLUMES 1–38
Molecular Control of Flower Development in Petunia hybrida........................
13 229
LUCIA COLOMBO , ARJEN VAN TUNEN , HANS J. M. DONS and GERCO C. ANGENENT The Regulation of C4 Photosynthesis ..............................................................
251
R. C. LEEGOOD Heterogeneity in Stomatal Characteristics.......................................................
317
JONATHAN D. B. WEYERS and TRACY LAWSON
VOLUME 27 The Structure and Biosynthesis of Legume Seed Storage Proteins: A Biological Solution to the Storage of Nitrogen in Seeds .............................................................................................
1
D. BOULTER and R. R. D. CROY Inorganic Carbon Acquisition by Marine Autotrophs .......................................
85
J. A. RAVEN The Cyanotoxins...............................................................................................
211
W. W. CARMICHAEL Molecular Aspects of Light-harvesting Processes in Algae ............................
257
T. LARKUM and C. J. HOWE Plant Transposable Elements ..........................................................................
331
R. KUNZE , H. SAEDLER and W.-E. LO¨ NNIG
VOLUME 28 Protein Gradients and Plant Growth: Role of the Plasma Membrane H+-ATPase .....................................................................................
1
M. G. PALMGREN The Plant Invertases: Physiology, Biochemistry and Molecular Biology ........
71
Z. TYMOWSKA -LALANNE and M. KREIS Dynamic Pleiomorphic Vacuole Systems: Are They Endosomes and Transport Compartments in Fungal Hyphae? .......................................... A. E. ASHFORD
119
14
CONTENTS OF VOLUMES 1–38
Signals in Leaf Development ...........................................................................
161
T. P. BRUTNELL and J. A. LANGDALE Genetic and Molecular Analysis of Angiosperm Flower Development ...........
197
V. F. IRISH and E. M. KRAMER Gametes, Fertilization and Early Embryogenesis in Flowering Plants ...........
231
C. DUMAS , F. BERGER , J.-E. FAURE and E. MATTHYS -ROCHON
VOLUME 29 The Calcicole – Calcifuge Problem Revisited ...................................................
1
J. A. LEE Ozone Impacts on Agriculture: An Issue of Global Concern ..........................
31
M. R. ASHMORE and F. M. MARSHALL Signal Transduction Networks and the Integration of Responses to Environmental Stimuli...................................................................................
53
G. I. JENKINS Mechanisms of Na+ Uptake by Plants .............................................................
75
A. AMTMANN and D. SANDERS The NaCl-induced Inhibition of Shoot Growth: The Case for Disturbed Nutrition with Special Consideration of Calcium Nutrition ..........................................................................................
115
D. B. LAZOF and N. BERNSTEIN
VOLUME 30 Nitrate and Ammonium Nutrition of Plants: Physiological and Molecular Perspectives .............................................................................
1
B. G. FORDE and D. T. CLARKSON Secondary Metabolites in Plant –Insect Interactions: Dynamic Systems of Induced and Adaptive Responses................................................
91
J. A. PICKETT , D. W. M. SMILEY and C. M. WOODCOCK Biosynthesis and Metabolism of Caffeine and Related Purine Alkaloids in Plants............................................................................................. H. ASHIHARA and A. CROZIER
117
CONTENTS OF VOLUMES 1–38
Arabinogalactan-proteins in the Multiple Domains of the Plant Cell Surface ..................................................................................
15
207
M. D. SERPE and E. A. NOTHNAGEL Plant Disease Resistance: Progress in Basic Understanding and Practical Application ..................................................................................
291
N. T. KEEN
VOLUME 31 Trichome Diversity and Development ..............................................................
1
E. WERKER Structure and Function of Secretory Cells.......................................................
37
A. FAHN Monoterpenoid Biosynthesis in Glandular Trichomes of Labiate Plants ........
77
D. L. HALLAHAN Current and Potential Exploitation of Plant Glandular Trichome Productivity .......................................................................................
121
S. O. DUKE , C. CANEL , A. M. RIMANDO , M. R. TELLEZ , M. V. DUKE and R. N. PAUL Chemotaxonomy Based on Metabolites from Glandular Trichomes................................................................................
153
O. SPRING Anacardic Acids in Trichomes of Pelargonium: Biosynthesis, Molecular Biology and Ecological Effects ........................................................
175
D. J. SCHULTZ , J. I. MEDFORD , D. COX -FOSTER , R. A. GRAZZINI , R. CRAIG and R. O. MUMMA Specification of Epidermal Cell Morphology ....................................................
193
B. J. GLOVER and C. MARTIN Trichome Initiation in Arabidopsis ....................................................................
219
A. R. WALKER and M. D. MARKS Trichome Differentiation and Morphogenesis in Arabidopsis..........................
237
M. HU¨ LSKAMP and V. KIRIK Trichome Plasmodesmata: A Model System for Cell-to-cell Movement ........ E. WAIGMANN and P. ZAMBRYSKI
261
16
CONTENTS OF VOLUMES 1–38
VOLUME 32 Plant Protein– Serine/Threonine Kinases: Classification into Subfamilies and Overview of Function ............................................................
1
D. G. HARDIE Bioinformatics: Using Phylogenetics and Databases to Investigate Plant Protein Phosphorylation .......................................................
45
E. R. INGHAM , T. P. HOLTSFORD and J. C. WALKER Protein Phosphatases: Structure, Regulation, and Function ..........................
67
SHENG LUAN Histidine Kinases and the Role of Two-Component Systems in Plants .............................................................................................
109
G. ERIC SCHALLER Light and Protein Kinases ................................................................................
149
JOHN C. WATSON Calcium-Dependent Protein Kinases and their Relatives ...............................
185
ESTELLE M. HRABAK Receptor-Like Kinases in Plant Development .................................................
225
KEIKO U. TORII and STEVEN E. CLARK A Receptor Kinase and the Self-Incompatibility Response in Brassica .........
269
J. M. COCK Plant Mitogen-Activated Protein Kinase Signalling Pathways in the Limelight..................................................................................................
299
S. JOUANNIC , A.-S. LEPRINCE , A. HAMAL , A. PICAUD , M. KREIS and Y. HENRY Protein Phosphorylation and Dephosphorylation in Environmental Stress Responses in Plants .............................................................................
355
K. ICHIMURA , T. MIZOGUCHI , R. YOSHIDA , T. YUASA and K. SHINOZAKI Protein Kinases in the Plant Defense Response.............................................
379
GUIDO SESSA and GREGORY B. MARTIN SNF1-Related Protein Kinases (SnRKs) – Regulators at the Heart of the Control of Carbon Metabolism and Partitioning .................................... N. G. HALFORD , J.-P. BOULY and M. THOMAS
405
CONTENTS OF VOLUMES 1–38
Carbon and Nitrogen Metabolism and Reversible Protein Phosphorylation ...................................................................................
17
435
D. TOROSER and S. C. HUBER Protein Phosphorylation and Ion Transport: A Case Study in Guard Cells ...................................................................................................
459
JIAXU LI and SARAH M. ASSMANN
VOLUME 33 Foliar Endophytes and Their Interactions with Host Plants, with Specific Reference to the Gymnospermae ..............................................
1
W.-M. KRIEL , W. J. SWART and P. W. CROUS Plants in Search of Sunlight .............................................................................
35
D. KOLLER The Mechanics of Root Anchorage..................................................................
133
A. R. ENNOS Molecular Genetics of Sulphate Assimilation ..................................................
159
M. J. HAWKESFORD and J. L. WRAY Pathogenicity, Host-specificity, and Population Biology of Tapesia spp., Causal Agents of Eyespot Disease of Cereals ....................
225
J. A. LUCAS , P. S. DYER and T. D. MURRAY
VOLUME 34 Cereal Genomics ..............................................................................................
1
K. J. EDWARDS and D. STEVENSON Exploiting Cereal Genetic Resources ..............................................................
23
R. J. HENRY Transformation and Gene Expression .............................................................
59
P. BARCELO , S. RASCO -GAUNT , C. THORPE and P. A. LAZZERI Opportunities for the Manipulation of Development of Temperate Cereals....................................................................................... J. R. LENTON
127
18
CONTENTS OF VOLUMES 1–38
Manipulating Cereal Endosperm Structure, Development and Composition to Improve End-use Properties............................................
165
P. R. SHEWRY and M. MORELL Resistance to Abiotic Freezing Stress in Cereals ...........................................
237
M. A. DUNN , G. O’BRIEN , A. P. C. BROWN , S. VURAL and M. A. HUGHES Genetics and Genomics of the Rice Blast Fungus Magnaporthe grisea: Developing an Experimental Model for Understanding Fungal Diseases of Cereals .............................................................................
263
N. J. TALBOT and A. J. FOSTER Impact of Biotechnology on the Production of Improved Cereal Varieties............................................................................
289
R. G. SOLOMON and R. APPELS Overview and Prospects for Cereal Biotechnology .........................................
301
P. R. SHEWRY , P. A. LAZZERI and K. J. EDWARDS
VOLUME 35 Recent Advances in the Cell Biology of Chlorophyll Catabolism....................
1
H. THOMAS , H. OUGHAM and S. HO¨ RTENSTEINER The Microspore: A Haploid Multipurpose Cell .................................................
53
A. TOURAEV , M. PFOSSER and E. HEBERLE -BORS The Seed Oleosins: Structure, Properties and Biological Role ......................
111
J. A. NAPIER , F. BEAUDOIN , A. S. TATHAM , L. G. ALEXANDER and P. R. SHEWRY Compartmentation of Proteins in the Protein Storage Vacuole: A Compound Organelle in Plant Cells .............................................................
139
L. JIANG and J. C. ROGERS Intraspecific Variation in Seaweeds: The Application of New Tools and Approaches......................................................................................
171
R. WATTIER and C. A. MAGGS Glucosinolates and their Degradation Products .............................................. R. F. MITHEN
213
CONTENTS OF VOLUMES 1–38
19
VOLUME 36 Aphids: Non-persistent Transmission ..............................................................
1
T. P. PIRONE and K. L. PERRY Persistent Transmission of Luteoviruses by Aphids........................................
21
B. REAVY and M. A. MAYO Fungi .................................................................................................................
47
M. J. ADAMS Whitefly Transmission of Plant Viruses ...........................................................
65
J. K. BROWN and H. CZOSNEK Beetles ..............................................................................................................
101
R. C. GERGERICH Thrips As Vectors of Tospoviruses ..................................................................
113
D. E. ULLMAN , R. MEIDEROS , L. R. CAMPBELL , A. E. WHITFIELD , J. L. SHERWOOD and T. L. GERMAN Virus Transmission by Leafhoppers, Planthoppers and Treehoppers (Auchenorrhyncha, Homoptera)..........................................
141
E. AMMAR and L. R. NAULT Nematodes........................................................................................................
169
S. A. MAC FARLANE , R. NEILSON and D. J. F. BROWN Other Vectors....................................................................................................
199
R. T. PLUMB
VOLUME 37 Anthocyanins in Leaves and Other Vegetative Organs: An Introduction..................................................................................................
1
D. W. LEE and K. S. GOULD Le Rouge et le Noir: Are Anthocyanins Plant Melanins? ................................
17
G. S. TIMMINS , N. M. HOLBROOK and T. S. FEILD Anthocyanins in Leaves: Distribution, Phylogeny and Development.............................................................................................. D. W. LEE
37
20
CONTENTS OF VOLUMES 1–38
The Final Steps in Anthocyanin Formation: A Story of Modification and Sequestration.............................................................................................
55
C. WINEFIELD Molecular Genetics and Control of Anthocyanin Expression ..........................
75
B. WINKEL -SHIRLEY Differential Expression and Functional Significance of Anthocyanins in Relation to Phasic Development in Hedera helix L...............................................................................................
95
W. P. HACKETT Do Anthocyanins Function as Osmoregulators in Leaf Tissues? ...................
103
L. CHALKER -SCOTT The Role of Anthocyanins for Photosynthesis of Alaskan Arctic Evergreens during Snowmelt.................................................................
129
S. F. OBERBAUER and G. STARR Anthocyanins in Autumn Leaf Senescence .....................................................
147
D. W. LEE A Unified Explanation for Anthocyanins in Leaves?........................................
167
K. S. GOULD , S. O. NEILL and T. C. VOGELMANN
VOLUME 38 An Epidemiological Framework For Disease Management ............................
1
CHRISTOPHER A. GILLIGAN Golgi-independent Trafficking of Macromolecules to the Plant Vacuole .........................................................................................
65
DIANE C. BASSHAM Phosphoenolpyruvate Carboxykinase: Structure, Function and Regulation..................................................................................................
95
R. P. WALKER and Z.-H. CHEN Developmental Genetics of the Angiosperm Leaf ........................................... CATHERINE A. KIDNER , MARJA C. P. TIMMERMANS , MARY E. BYRNE and ROBERT A. MARTIENSSEN
191
CONTENTS OF VOLUMES 1–38
A Model for the Evolution and Genesis of the Pseudotetraploid Arabidopsis thaliana Genome ..........................................................................
21
235
Y. HENRY , A. CHAMPION , I. GY , A. PICAUD , A. LECHARNY and M. KREIS Age-related Resistance to Plant Pathogens....................................................
251
S. N. PANTER and D. A. JONES The Origin and Evolution of Tertiary Relict Floras .......................................... RICHARD I. MILNE and RICHARD J. ABBOTT
281
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38 b-Adaptin 25: 22 a-amylase 34: 147, 150, 151, 182, 196, 206 b-amylase 34: 182, 205– 207 a-Amylase inhibitors 26: 140, 141, 159, 160, 172 A. angustifolia, effect of sodium on growth 7: 161, 165 A. bambusifolia culture 7: 442 seed germination 7: 472 A. bilobum, seed morphology 7: 425 A. carterae 12: 216, 222, 223, 236 A. chinensis, vitamin production 7: 468, 494 A. cv. Deborah carbon fixation 7: 522 flowering period 7: 542 A. cv. Wendy Scott carbon fixation 7: 522, 528 flowering period 7: 542 A. cylindrica 12: 19 photosystem reaction centre "complexes 10: 82 phycobiliprotein 10: 115 A. eburneum pollination 7: 552 post-pollination phenomena 7: 570, 582 A. flavus sensitivity to acidity 6: 15 A. flos-aquae 12: 65, 68, 69 buoyancy control 10: 42 photosystem reaction centre complexes 10: 79 A. glabriuscula, effect of sodium on growth 7: 161, 165 A. graminifolia carbon fixation 7: 522, 528, 529, 533 post-pollination phenomena 7: 615 A. hastata, effect of sodium on growth 7: 121 A. inflata, effect of sodium on growth 7: 124, 138, 141, 160, 164, 190
A. leptocarpa, effect of sodium on growth 7: 160, 164 A. lindleyi, effect of sodium on growth 7: 160– 165 A. loddigesii carbon fixation 7: 522 seed morphology 7: 426 A. luteola, seed morphology 7: 426 A. maculata, seed morphology 7: 426 A. mediterranea chlorophyll-protein analysis 10: 106, 108 chloroplast movement 10: 29 photosystem reaction centre "complexes 10: 80, 89 A. nidulans, sodium requirement 7: 144, 168 A. nitida, aeration 7: 311 A. nummularia effect of sodium on enzyme activity 7: 123 growth 7: 124, 138, 141, 160, 164, 190 nitrogen fraction 7: 197, 198 physiology 7: 186– 188, 203, 204 respiration 7: 191, 193– 195 A. odoratum post-pollination phenomena 7: 593, 600, 603 seed morphology 7: 426 A. paludosa, effect of sodium on growth 7: 160, 164 A. paniculatus, adenosine triphosphatase 7: 206 A. pseudoplatanus, enzymes of lignin "biosynthesis 8: 46, 57 A. quinii, effect of sodium on growth 7: 150, 164 A. retroflexus, chloroplast-adenosine triphosphatase 7: 67 A. semibaccata, effect of sodium on growth 7: 160, 164
24
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
A. semilunalaris, effect of sodium on growth 7: 160, 165 A. sesquipedale carbon fixation 7: 522, 528 pollination 7: 555, 557 post-pollination phenomena 7: 570, 582 A. sewardii, fossil structure 4: 242, 243 A. spongiosa decarboxylation system 7: 197 effect of sodium on growth 7: 160, 165 A. sylhetense, seed morphology 7: 437 A. T71 H+/O ratio 4: 89 A. thomasii fossil record 4: 237– 242 fossil structure 4: 237– 239, 247 A. tricolor, effect of sodium on growth 7: 162, 164, 167, 197 A. tripolium, sodium content of seeds 7: 143 A. variabilis antenna chlorophyll 10: 94 phycobiliproteins 10: 63, 66, 109, 115 shading effects 10: 156, 160 A. vesicaria sodium content 7: 124, 142, 143, 191 effect at low concentrations 7: 149– 157 effect on yield 7: 151, 152, 165, 188– 190 requirement 7: 125, 126, 135, 138, 168 AA, see Ascorbic acid AAtDB database 24: 234, 235 ABA response complexes (ABRCs) 33: 204 ABA response element (ABRE) 33: 204 ABA responsive gene expression 33: 204, 205 ABA, see Absisic acid ABC transporter (ATP-binding cassette) 35: 28, 29 ABC transporters 30: 21 – 23 Aberrant RNA (abRNA) 34: 100 ABI3 35: 117 Abies 33: 9 Abies alba (fir) 18: 13, 14 air pollutants bioindication 18: 89 bioindication 18: 97 dieback 18: 102 O3 fumigations 18: 56, 57 O3/SO2 exposures 18: 75 SO2 exposure 18: 30
Abies alba 33: 6, 8, 15, 16, 19 Abies balsamea 33: 8, 18 Abies concolor volumetric elastic modulus 6: 75, 80 Abies fraseri (Fraser fir) 18: 54, 66 Abies grandis 31: 98 – 100, 102 Abiotic elicitors 19: 21 Abrasion and facts/fallacies/mysteries 18: 237, 238 Abscisic acid (ABA) 19: 105– 107, 145, 149– 166 Abscisic acid (ABA) 33: 198 Abscisic acid (ABA) 35: 32, 116, 117 chemical identification 19: 150 effect on stomata 4: 138, 139, 141, 143, 146, 184 evidence against ABA as positive message from roots 19: 161– 163 evidence for drying roots as source of apoplastic ABA 19: 155 evidence supporting ABA as positive message from roots 19: 163 in xylem root exudate 19: 158 mechanisms raising apoplastic ABA in leaves of droughted plants 19: 155 miscellaneous stress effects 19: 164– 166 physiological significance of in-shoot apoplast and xylem sap 19: 151– 155 physiological studies 19: 150 reconciliation of findings 19: 163, 164 soil flooding 19: 160– 164 synthesis 4: 139 water deficiency and leaf expansion 19: 159, 160 water deficiency and stomatal closure 19: 150– 159 Abscisic acid (ABA) in determination of leaf form 28: 173, 174 Abscisic acid (ABA), and membrane binding 5: 71, 84 Abscisic acid 37: 185 calcium ions 22: 69, 71, 81, 84, 86 signal transmission 22: 170, 182 synthesis 6: 303
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
UV radiation 22: 137 water and nitrogen supply 22: 232, 237, 240, 254– 256, 263, 268– 288 Abscisic acid and potassium transport 15: 164 Abscisic acid signal transduction 29: 68 Abscisic acid signalling 38: 268 Abscisic acid, and post-pollination phenomena in orchids 7: 584, 601, 619, 632 Abscisic acid-dependent/independent pathway 29: 35 Abscissic acid chromatography 9: 49 influence on conifer tracheids 9: 240 Abscission 17: 279, 282 Absidia glauca 24: 412– 415, 423 Absidia parricida 24: 412, 415 Absidia spinosa 24: 414 Absisic acid (ABA) 18: 59 Absorption spectra 5: 23 “Abunda” 18: 37 Abutilon 31: 15, 53 – 55; 36: 67 nectary trichomes 31: 265– 267 Abutilon mosaic virus (AbMV) 36: 67, 81, 86 Abutilon pictum 31: 47 Acacia 30: 228, 230; 31: 271; 38: 194 Acacia erioloba 11: 176 Acacia glutinosissima resin yield 6: 289 Acacia harpophylla, leaf conductance and water potentials 4: 147 Acacia laetia 30: 228 Acacia robusta 30: 212, 221 Acacia senegal 30: 211– 213, 227, 228 Acacia seyal 30: 228 Acacia, phyllodes 3: 212 Acalymma trivittatum 36: 102 Acanthamoeba 19: 201 apical dominance 3: 264 cell wall 3: 34 fixation with OsO4 3: 12 Agavaceae growth 3: 217 influorescence 3: 268, 269, 277, 282 vascular bundles 3: 246, 257 Acanthophippium bicolor, seed morphology 7: 427 Acaulospora 22: 14
25
ACC 18: 98 ACC oxidase (ethylene-forming enzyme ACCO) 21: 14 ACC synthase (ACCS) 21: 14 Acceptance angle 18: 258, 266– 268 fibre optic microprobe 18: 267 light reflection 18: 270 measurement tank 18: 267 probe sensitivity 18: 269 Acceptance widths of microprobes 18: 268 Accessory chromosomes (see Microchromosomes) Acclimation 34: 237, 238 Accumulation sites 31: 122– 126 ACD2 35: 34 Acer 19: 123; 22: 6, 7, 13; 38: 290, 293 pseudoplatamus 22: 15 saccharum 22: 15, 16 Acer palmatum 37: 113, 161 Acer palmatum var. atropurpureum 37: 150 Acer pennsylvanicum 37: 155 Acer platanoides 18: 57 Acer platanoides, lignin composition 8: 31 Acer platanoides, NMR studies, manganese 20: 78 Acer pseudoplanatus 31: 3 Acer pseudoplatanus (sycamore) 33: 10, 26 Acer pseudoplatanus 19: 142; 30: 284 glyphosate effects 20: 90 NMR studies 20: 69 Acer pseudoplatanus L. 25: 4, 7, 18 – 20, 22, 23, 263, 269, 307, 373, 411 Acer rubrum 37: 111, 114, 152, 154 Acer saccharinum (silver maple) 18: 72, 76 Acer saccharum (sugar maple) 18: 54, 71 O3/SO2 exposures 18: 78, 81 SO2 exposure 18: 29 Acer saccharum 33: 149; 37: 110 volumetric elastic modulus 6: 75, 80 Acer spp. 37: 112 Acer, cladistic analysis 17: 47, 48 Aceraceae 22: 13; 37: 153 Aceraceae, Early Tertiary 17: 44 Aceras anthropophorum carbon fixation 7: 522 phytoalexins 7: 512 thylakoı¨ds 7: 520 Aceratagallia 36: 153
26
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Aceratagallia constricta 36: 153, 154, 157, 159 Aceratagallia elimatus 36: 154 Aceratagallia sanguinolenta 36: 153, 154 Aceria ficus 36: 201 Aceria tosichella (tulipae) 36: 201 Acetabularia 22: 209, 210; 29: 80, 97, 101 chlorophyll-protein analysis 10: 105, 106 chloroplast shape and size changes 10: 30 photosystem II reaction centre "complex 10: 89 thylakoid extraction 10: 104 Acetabularia acetabulum 38: 196 Acetabularia mediterranea 11: 100; 20: 82 Acetabularia sp. HCO2 3 entry 27: 131 pH of vacuole 27: 167, 170 Acetate/mevalonate pathway 31: 93 – 95 Acetic anhydride, in measurement of protein degradation 8: 104– 106 Acetobacter suboxydans, cytochrome 4: 76 Acetobacter xylinum, in vitro cellulose synthesis 5: 138, 140, 141 Acetolactate synthase ALS 34: 75 Acetoxymethyl (AM) esters 22: 59 Acetyl CoA 35: 226 Acetyl CoA carboxylase (ACC), properties (table) 27: 95 Acetylcholine 22: 85 Acetyl-CoA synthesis 14: 55– 57 and chloroplasts 14: 55, 56 Achillea millefolium 31: 63, 168 Achlorophyllous plants 22: 25, 34 Achlya 24: 354, 358, 383, 388 Achlya bisexualis 24: 441 Acholeplasma 21: 190– 194, 195– 198, 206 granularum 21: 196 laidlawii 21: 193, 196, 197, 201 oculi 21: 198 Achromobacter, effect of sodium on amino acid uptake 7: 185 Achyla, isolation of cytokinin binding glycoprotein 5: 71 Acid fog 18: 81 Acid hydrolase a-galactosidase 25: 121 Acid invertase 25: 203, 204 Acid invertases 28: 76
Acid loading, dye 22: 56, 58, 59 Acid metabolism, see Crassulacean acid metabolism Acid mist 18: 94, 98 Acid phosphatase 25: 90, 103, 104, 123 Acid precipitation (AP) 18: 104 O3 18: 79 –82; 21: 94, 95 Acid rain 18: 97, 99 Acid rain, Early Cainozoic 17: 4 Acid-growth hypothesis 28: 34 Acids 25: 144 Aconta 2: 6 Acopyle pancheri karyotype 6: 174 ACP 31: 203 Acquisition threshold 36: 152 Acremonium 24: 176 Acremonium spp. 33: 5 Acremonium, colonization of wood 7: 416 Acremonium-Festuca system 24: 175 Acrobolbus 19: 257 Acrocarpia paniculata chlorophyll-fucoxanthin complex 10: 122, 124 photosystem reaction centre "complexes 10: 80, 90, 91, 130 spectral analysis 10: 97, 98, 100, 101, 123, 125– 127 Acrolaene punctata, seed morphology 7: 427 Acropera citrina, seed morphology 7: 426 Acrosiphonia arcta 35: 198 Acrostichum preaureum, fossil structure 4: 251 Act 1 promoter 34: 87 Actiniopteris, apomixis 4: 390 Actinocalyx, Late Cretaceous fossils 17: 116 Actinomycin D 21: 115; 24: 358 Actinostachys, cytology 4: 290 Action potentials (AP) 22: 186– 188, 201, 202– 209, 212, 213 Action potentials 15: 8, 9 and gravitropism 15: 9 Action spectra for photosynthesis in algae 10: 68 – 73 Activation energy of gravity perception 15: 5 Active oxygen species (AOS) 21: 164– 166
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Active oxygen species 30: 304, 305; 31: 231 Active regime 38: 32 Active transport in vitro 6: 64 – 67 salt transport 6: 65, 66 thermodynamic equations 6: 62 – 65 Acyclic monoterpenoid oxidoreductases 31: 106 acyl-ACP desaturases 31: 182– 185 Acylcyclohexanediones 34: 137 Acyltransferases 37: 62 Acyltransferases in chloroplast envelope 7: 89 Acyrthosiphon pisum 36: 31 Acyrthosiphon solani 31: 176 AcysC1 33: 189 Adaptor proteins 32: 311– 313 Additive responses and O3/SO2 exposures 18: 78 Adenine 22: 182 Adenine, metabolism of 30: 140, 157– 161 Adenosine 50 -diphosphoribose (cADPR) 22: 74, 78 –80, 88 Adenosine diphosphate (ADP), control of respiration 4: 91 – 97 Adenosine diphosphate 22: 47, 49 Adenosine monophosphate (AMP) 21: 10, 110 Adenosine monophosphate 22: 46, 47, 81, 85, 107 Adenosine triphosphatase (ATPase) inhibitor 4: 98, 99 location on membranes 4: 84, 85 stoichiometry 4: 87 Adenosine triphosphatase activity in chloroplast envelopes 7: 67 –69 sodium requirement 7: 205– 207 Adenosine triphosphate (ATP) 21: 165– 168; 22: 122; 32: 111 Adenosine triphosphate, transport from chloroplasts 7: 58 Adenosine-5-phosphosulphate (APS) 33: 183, 186–188 Adenosyl-L-homocysteine hydrolase (SHH) 21: 14
27
Adenosyl-L-methionine (SAM) 21: 18 Adenosyl-L-methionine synthetase (SMS) 21: 14 Adenosyl-L-methionine:xanthotoxol methyltransferase (XMT) 21: 14 Adenylate cyclase 24: 118 Chlamydomonas 20: 152, 153 Adenylate kinase, effect of sodium 7: 199, 200 Adenylate translocator in chloroplast envelope 7: 56, 64 – 74 Adenylates 18: 62 Adiantaceae base numbers and classification 4: 283 polyploidy 4: 322 Adiantum 19: 297; 32: 159, 161, 167; 33: 68, 104 A. caudatum complex, cytogenetics of A. incisum 4: 371– 376 A. indicum 4: 371, 376 A. malesianum 4: 371– 376 A. zollingerii 4: 371– 376 “B396” 4: 371– 376 A. caudatum, genome analysis 4: 333, 334, 337 A. poirettii, polyploidy 4: 329 A. reniforme, polyploidy 4: 324 apomixis 4: 390 fossil record 4: 234, 235, 252 polyploidy 4: 256, 322 Adiantum capillus-veneris 32: 159; 33: 72 Adiantum cuneatum 33: 70, 72 Adiantum, polarity of leaf veins 9: 194 ADP and O3 exposure 18: 64, 68 Adult Plant Resistance (APR) and the effect of copper 10: 230, 236 Aechmea nudicauis 25: 375 Aegiceras corniculatum, salt localization 8: 243 Aegilops 33: 245 Aegilops markgrafii 33: 246 Aegilops speltoides 33: 246; 34: 11, 32 Aegilops spp. 34: 32 grain hardness in 34: 209 Aegilops squarrosa 33: 228 Aegilops tauschii 34: 11 Aegilops ventricosa 33: 246
28
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Aegopodium podagraria nitrate reductase activity 6: 23 Aeluropus litoralis, effect of sodium on carbon fixation 7: 171 Aequorin 22: 49 – 60, 65 – 68, 87 Aequorin victoria 22: 65 Aerangis, flowering period 7: 535, 542 Aeration in unsaturated soil 7: 313– 324 in wetland condition non-wetland plants 7: 298–305 models calibration 7: 270 programming 7: 271, 272 the basic unit 7: 267– 270 wetland soil sink 7: 270, 271 trees 7: 305– 313 wetland plants 7: 278– 298 Aerenchyma induction and potassium uptake 15: 138– 140 Aerenchyma, and aeration 7: 189– 297 Aerides, flowering period 7: 427, 542 Aerobacter aerogenes P/O ratio 4: 85 respiratory control 4: 96 Aerodynamic resistance 18: 197 Aeruginosin 27: 214 Aesculus 38: 289, 290, 308 Affinity chromatography adsorbents benzyl adenine coupled to cyanogen bromide-activated agarose 5: 70 IAA-lysine coupled to cyanogen bromide-activated agarose 5: 70 isopentenyl adenosine coupled to epoxy-activated agarose 5: 71 2,4-D-lysine coupled to cyanogen bromide-activated agarose 5: 66 applications in auxin-binding effect of column eluates on RNA synthesis 5: 66 – 69 effects of rifampicin on isolated factor stimulation 5: 67, 68 isolation of protein factors from isolation of receptors from coconut 5: 70, 85 Maize 5: 66
mode of action of the isolated Pea 5: 66 protein factor 5: 68 – 70 Soybean 5: 70 applications in gibberellin and cytokininbinding 5: 70, 71 Affinity labelling techniques for probing hormone active binding sites amino auxin analogues diazo-chloramben (2,5-dichloro-3 aminobenzoic acid) 5: 81 –84 2-chloro-4-aminophenoxyaceticacid (CAPA)-diazo salt 5: 80– 84 photoaffinity labelling with arylazides 5: 80 Affluence, population pressure 21: 91, 92 Aflavonols 37: 184 Africa 21: 85, 86, 88, 92, 93, 97 African cassava mosaic virus (ACMV) 36: 84, 148 aG68 25: 54 Agallia constricta 36: 151, 153 Agalliopsis novella 36: 153, 157 Agamous 30: 234 Agapanthus 37: 61 Agaricus bisporus phosphate 8: 138, 197 phospholipid 8: 139 Agathis australis kauri production 6: 278 Agave growth 3: 222 influorescence 3: 268, 277 Age, influence of and O3 exposure 18: 65, 66 Age-related resistance current questions 38: 254, 255 definition 38: 252 mechanisms for 38: 265–267 model systems for 38: 268– 272 Arabidopsis – bacterial SPECK 38: 268 blue mould 38: 269 tobacco-black shank 38: 269 tomato-leaf mould 38: 269– 272 multiple resistance pathways 38: 267 novel defence pathways 38: 265– 267 onset, control of 38: 260– 262 non-specific 38: 261 race-specific 38: 260, 261
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
potential value to plant breeders 38: 252– 254 senescence 38: 263, 264 to bacteria 38: 255– 257 to fungi 38: 259, 260 to viruses 38: 255 Agglutinins, Chlamydomonas 20: 146– 149 Aglaia 33: 146 Aglaomorpha, polarity of leaf veins, 9: 194 Aglycone chlorophore 37: 19 Aglycones chemistry 6: 284, 285 Agmenellum quadruplicatum, phycobiliproteins 10: 66, 68 AGO 38: 205, 206 Agrichemicals 24: 185 Agricultural crops air pollutants bioindication 18: 87 bioindication 18: 91 O3 exposure 18: 67 SO2/NO2 mixtures 18: 49 Agricultural systems, fungal biology in 24: 183, 184 Agriculture, evolution 24: 184– 186 Agrobacterium 32: 384; 34: 61; 35: 33 Agrobacterium radiobacter 24: 416 Agrobacterium rhizogenes 24: 417 Agrobacterium spp. 26: 50, 66, 70, 82 Agrobacterium transformation vector, structure 34: 70 Agrobacterium tumefaciens 21: 61, 157; 23: 31, 44; 24: 48 – 51, 234, 401, 416– 418, 420; 28: 24, 108; 35: 81, 83, 84; 36: 75, 83; 32: 384 Agrobacterium-based recombinant DNA technology 31: 108, 137 Agrobacterium-mediated "transformation 34: 60, 61, 67 – 70, 80 – 83, 94, 106, 303 Agropyron 29: 132 Agropyron elongatum 29: 159 salt tolerance 8: 223 Agropyron intermedium 29: 129, 130 Agropyron sp. 33: 245 Agrostaphyllum sp., seed morphology 7: 427 Agrostis capillaris 29: 7 Agrostis sp. 33: 245
29
Agrostis stolonifera enzymes of nitrogen metabolism 6: 26 –28 salt tolerance and anaerobiosis 8: 239, 240 ion content 8: 233– 239 leaf-surface properties 8: 227–232 metal cotolerance 8: 256– 258 nitrogen metabolism 8: 245, 250, 251, 253, 254 plant growth 8: 225– 227 sodium chloride content 8: 227– 229, 245, 248, 249 ultrastructural damage 8: 224, 246, 247 water relations 8: 233, 235, 237, 241– 243 AHP 32: 135– 137 AIDS 21: 84 Ailanathus altissima, vascular ray development in relation to cambial growth 9: 226 pattern of development 9: 223, 224 Air flow and Populus leaf 18: 216 Air pollutants bioindication methods 18: 87 – 90 Air pollutants, specific 18: 104 Air pollution 18: 99 anthropogenic 18: 101 combinations 18: 82 – 85 exposure of plants 18: 4 –7 chamberless exposure 18: 4, 5 laboratory exposures 18: 6, 7 open/closed-top field chambers 18: 5, 6 prediction 18: 84 –104 bioindication 18: 85 – 101 bioindication and resistant plant selection 18: 104 early detection bioindications for novel forest decline 18: 101– 103 Airborne signals 22: 167– 170, 216 Air-exclusion system 18: 5 Ajmalcine production 13: 152, 154, 159, 167, 176 Ajuga reptans 25: 207– 209 AKIN10 genes 32: 406, 407, 409, 410, 414 AKIN20 genes 32: 407, 409, 410, 414 AKIN30 genes 32: 406, 407, 410 Akt protein kinases 32: 32 1AL/1RS translocation 34: 29 Alaria 35: 176, 177
30
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Alaria marginata 35: 176, 190 Alaria tenuifolia 35: 176 Albian, fossil flowers 17: 107– 111 Albinism 37: 22 Albino cereal plants 35: 75 – 78 Albizzia 33: 63 Albizzia julibrissin 33: 44, 63 Albizzia lophanta 33: 61 Albugo 24: 205, 322, 354 Albugo brassicae 35: 246 Albugo candida 24: 228, 235– 238, 240– 243, 265 Albumins 27: 28, 32 – 34 primary and subunit structure 27: 32, 33 secondary, tertiary and quaternary "structure 27: 33, 34 “Alcala SJ-2” 18: 54 Alcaligenes eutrophus 19: 212, 213; 24: 405, 407 Alcaligenes faecalis, respiratory control 4: 94 Alcaligenes sp. 27: 102, 105 Alcohol 21: 5 Alcohol dehydrogenase (ADH) 28: 178 Aldehydes 25: 142 Alder 19: 114 Alditols 25: 371, 372 Aldrovanda 22: 164, 186, 213– 216 vesiculosa 22: 202, 203 Aldrovanda vesiculose 28: 37 ale 1 (abnormal leaf-shape 1) mutant 32: 257 Aleurain 35: 142, 143; 38: 80 Aleurain vacuoles 25: 31 Aleyrodidae 36: 66 Alfalfa 21: 19, 46, 48, 49; 22: 118, 165 mosaic virus (AIMV) 21: 113 Alfalfa mosaic virus (AMV) 36: 3 Alfalfa, see Medicago sativa Alfamovirus 36: 2, 3 Algae see also Macrophytes; Marine autotrophs; Named species adaptations to incident light dissipative processes 27: 263, 264 rapid changes 27: 262 slow changes 27: 263 algae 27: 218– 220 anatoxins 27: 218
biogeography and phylogeography 35: 195 nuclear markers 35: 196– 198 plastid "markers 35: 199 molecular approaches physiological approaches 35: 195, 196 blue-green air vacuole surface 3: 21 freeze etching 3: 23 evolutionary hypotheses 27: 261, 262 gametogenesis 16: 57 – 59 isogamous forms 16: 57, 58 oogamous forms 16: 58, 59 glycolate metabolism 27: 107, 108 green, freeze etching 3: 23 hepatotoxins 27: 220– 227 life histories and variability 35: 178– 180 light-harvesting proteins 27: 256– 313 nodularins 27: 238 phylogeny 35: 172, 173 plasma membrane 3: 35 – 39 population genetics 35: 181– 195 (microsatellites) 35: 183– 188 breeding systems 35: 192– 195 DNA isolation 35: 182, 183 multinuclear markers 35: 188–190 plastid markers 35: 190– 192 single-locus nuclear microsatellites saxitoxins 27: 219, 220 species-level taxonomy 35: 175– 178 Algae, blue-green see also individually named algae Christensen’s survey 2: 3 – 5 diversity of flagellar bases 2: 18 growth 2: 98 list of 2: 4 membrane system 2: 4 microfibrillar arrangement 2: 92, 98, 103 microfibrillar components 2: 77 unity with major land plants 2: 7, 9 Algae, brown (Fucophyceae) 27: 89, 99, 100, 145 Algae, brown see also individually named algae flagellar spines 2: 13 growth 2: 98 microfibrillar arrangement 2: 98, 103, 105
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
microfibrillar components 2: 77 uniflagellate spermatozoid 2: 8 Algae, Early Cainozoic 17: 13 Algae, NMR studies 20: 69 – 72 Algae, red see also individually named algae absence of flagella 2: 4, 20 growth 2: 98 list of 2: 4 microfibrillar arrangement 2: 98, 103, 105 microfibrillar components 2: 77 Algae, red, down-regulation of RCII 27: 295, 296 Algae, see Chlorophyceae and Charaphyceae Algae, see Dunaliella Algal blooms, see Cyanotoxins Algal toxins 12: 47 – 101 characterization 12: 67 –91 Chrysophyta 12: 48, 52 – 59 Cyanophyta 12: 48, 64 – 67 dinoflagellate ciguatera toxins 12: 86 – 89 dinoflagellate paralytic shellfish poisons (PSP) 12: 82 – 86 dinoflagellate toxins 12: 61, 86 –91 environmental role of 12: 91 – 93 freshwater cyanophyte toxins 12: 68 – 78 growth 12: 52 – 67 isolation 12: 67 – 91 marine cyanophyte toxins 12: 78 – 82 naming 12: 52 occurrence 12: 52 – 67 prymnesium toxins 12: 67, 68 Pyrrophyta 12: 48, 59 – 64 toxicity 12: 52 – 67 toxinology 12: 67 – 91 Alginates, biocontrol formulation 26: 77 “Alibis” cv. 18: 55 Alisma 19: 306 Alisma brevipes karyotype 6: 143 Alismataceae, stomata 3: 284 Alkaloids 30: 93, 94; 31: 155 see also purine pyrrolizidine 30: 96, 99, 100 Alkenyl glucosinolate 35: 231, 233 Allagoptera, growth 3: 224 Allantodiopsis erosa, fossil record 4: 251 Allantoic acid, structure of 18: 157
31
Allantoin, structure of 18: 157 Allegheny Chinquapin 21: 126 Allele-specific oligonucleotides (ASOs) 34: 6 – 7 Allelochemicals 22: 165 Allelopathic interactions 25: 144 Allenrolfia, salt tolerance 8: 223 Allergic reactions 31: 155 Allergies 1: 150 Allium 22: 10, 13, 28, 32; 3: 214; 31: 264 A. cepa centromere misdivision 6: 141 DNA analysis 6: 125, 130 A. fistulosum DNA analysis 6: 130 cepa 22: 4 – 9, 15, 17, 28 chromosome size differences between species 6: 130, 189 porrum 22: 9, 28 stomata 3: 284 Allium cepa 25: 155, 410; 30: 80 Allium porrum 33: 137 Allium tuberosum 33: 192 Allium, chemical content of cell walls 2: 79 Allomyces 24: 357 Alloploidy in ferns 4: 320, 321 Allopolyploidy 6: 214, 215 Allosyndesis 4: 355 Allozymes 24: 337, 340 Alluring trichomes 31: 15, 16, 18 Almond orchard, wind velocity in 18: 203 Almond trees 19: 151 Alnus glandular hair anatomy 6: 296, 297 Alnus glutinosa 19: 114 Alnus spp. 33: 6, 8 Aloe¨ bud production 3: 264 inflorescence 3: 268 stomata 3: 284 Alocasia macrorrhiza, stomatal behaviour 4: 186, 187 Aloe 31: 54; 38: 144 Aloe rabaiensis chromosome centric fusion 6: 153 Aloineae fusion of acrocentric chromosomes 6: 152, 153
32
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Alopecurus myosuroides 33: 245 Alopecurus pratensis activity of ammonia-assimilating enzymes 6: 29 Alstroemeria, vascular bundles 3: 240, 253 “Alsweet” cv. 18: 71 Alteneria, effect of copper level on host infection 10: 231 Alternaria 33: 242 Alternaria alternata 33: 13, 22 Alternaria infection, effects ofsalicylates 20: 210 Alternaria porn 38: 252, 264 Alternaria solani 24: 125 Alternation of generations 16: 55 – 93 aberrant cycles 16: 70 – 77 induced 16: 72 – 77 natural 16: 70 – 72 causal approach to 16: 78 – 87 assumptions 16: 78 gametogenesis, 57 – 64 algae 16: 57 – 59 bryophytes/homosporous pteridophytes 16: 59 – 63 heterosporous pteridophytes/seed plants 16: 63, 64 Alternation of generations and macroevolution in the Bryophyta 6: 269 Alternation of generations, in evolution of vascular land plants 5: 199 Althea rosea, identification of gibberellins, 9: 43 Aluminium and acidity in soil 29: 4 – 10 effects on plasma membrane and cytosolic processes 29: 22 – 24 stimulation of malate synthesis 29: 22, 24 Aluminium kinetics, tea and hydrangea plants 20: 100 Aluminium tolerance 29: 6 – 10, 22 Aluminium toxicity 22: 264; 29: 5, 6, 18 –20 Aluminium toxicity, suppressive soils 26: 6, 7 Aluminium, effect on plant disease 10: 264, 265 Alyxia rubricaulis 29: 11 Amanita muscaria, PEPCK in 38: 113
Amanita muscaria, phosphorus content 8: 140 Amanita phalloides 12: 72 Amaranthaceae, secondary thickening 3: 265 Amaranthus edulis, C4 pathways 26: 296, 297 Amaranthus gangeticus, chloroplastadenosine triphosphatase 7: 67 Amaranthus hypochondriacus 38: 143 Amaryllidaceae, polyploidy 4: 326 “Ambassador” cv. 18: 36 Amber, and palaeoatmosphere 17: 88 Amblyanthus/Amblyanthopsis 17: 164, 165 Amblyopyrum muticum 33: 246 Amblysellus grex 36: 145 Amblystegiaceae cytotaxonomy 6: 243 genetics 6: 246 polyploidy and micro-evolution 6: 265 Amblystegium sp. A. serpens microchromosomes 6: 226 Apogamy 6: 252 Ambrosia 31: 162 American chestnut tree 21: 125– 143 American wormseed 31: 123 Amines 25: 142 Amino acid residues 28: 20, 21 Amino acid sequences from monocotyledons and dicotyledons 28: 94 Amino acid transport, in chloroplast 7: 71 – 73 Amino acids 22: 274, 275, 279, 280; 25: 46, 97, 144 Amino acids as a source of nitrogen 30: 3, 4 compartmentation 25: 382– 386 feedback inhibition 30: 14 – 18 in phloem 30: 63 –65 transport 25: 382– 386 transporters of 30: 31, 39 Amino acids in Dunaliella proteins 14: 129 Amino acids, essential 34: 201 Amino acids, legume seed storage "proteins 27: 4 – 6, 10, 11, 62, 63 Amino acids, reactions with fixatives 3: 13
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
7-Amino-4-chloromethylcoumarin (CMAC) 28: 121 3-aminobenzamide 34: 108 1-Aminocyclopropane-1-carboxylic (ACC) 28: 25 1-Aminocyclopropane-1-carboxylic acid (ACC) 25: 373, 386 1-Aminocyclopropane-1-carboxylic acid (ACC) 19: 30, 144, 145, 147, 148, 149 1-aminocyclopropane-1-carboxylic acid 35: 18 1-aminocyclopropane-1-carboxylic acid oxidase 35: 33 Aminocyclopropane-l-carboxylic acid (ACC) 21: 18 Aminoethoxyvinylglycine (AVG) 19: 31, 32, 144, 149 Aminoethoxyvinylglycine, see AVG Aminoglycosides 34: 74 Aminoimidazole ribonucleotide carboxylase (AIRC), properties 27: 96 Aminoisobutyric acid, effect of sodium on uptake 7: 184, 185 Aminomethylenediphosphonate (AMDP) 25: 300, 312, 329 Aminomethylenediphosphonate 25: 310 Amino-oxyacetic acid (AOA) 19: 149 Aminopeptidase, effect of manganese on enzyme activity 10: 244 Amino-terminal propeptides 25: 47 Aminotransferases, C4 photosynthesis 26: 282– 284 Ammonia 18: 93; 22: 4, 169, 243 and nitrogen acquistion to ecosystems 6: 12 diffusive uptake of 30: 41 – 43 in nitrogen metabolism 6: 6– 8, 12, 13 in the soil 6: 7, 18 – 24 oxidation by heterotrophs 6: 14 Ammonia assimilating enzymes and plant growth rate 6: 36, 37 distribution in plants 6: 26 – 32 kinetic characteristics 6: 32 – 35 Ammonia lyases, lignin biosynthesis 8: 33 – 36 assimilation 29: 22 channel in root nodules 30: 49
33
efflux 30: 57, 58 extractable, in soil 29: 2, 4 inhibition 30: 13 – 15 Ammonium acetate, use as a cryoprotective agent 5: 20 Ammonium sulphamate, effect on fungal colonization 7: 411, 414, 415 Ammonium uptake 30: 40 – 52 competitive interaction with potassium 30: 48, 49 intracellular, compartmentation of 30: 43, 44 kinetics of 30: 44 – 49 physiology of 30: 40 – 44 regulation by shoots 30: 61 – 67 thermodynamic considerations 30: 42 Ammonium vs. nitrate for Dunaliella 14: 109, 110 Ammonium, chemolithotrophism 27: 90 Ammophila arenaria activity of ammonia assimilating enzymes 6: 30, 33 Amoeba proteus 11: 6, 10 Amoeba, and bacterial symbiosis 4: 52 – 55, 106, 107 Amoeba, loss of lipids 3: 12 Amoebae, biocontrol 26: 17, 18 AMP 18: 64 AMP-activated protein kinases (AMPK) 32: 13 – 17 Amphidinium carterae 11: 113; 27: 299 blue light effects 10: 172 C uptake 27: 143 peridinum-chlorophyll-protein "complex 10: 119, 120 Amphidium 12: 209 A. lapponicum aneuploidy 6: 220 cytotaxonomy 6: 242, 243 Amphiporthe castanea 33: 19, 25 amplification fragment length poly"morphism (AFLP) analysis 34: 4, 42, 43, 290, 294, 301 Amplification, signals 21: 63 Amplified fragment length polymorphism (AFLP) 21: 171 Amplified fragment length polymorphisms (AFLPs) 35: 79, 174, 188– 190
34
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
AMPPCP 25: 384 AmtA 30: 50 Amycolatopsis 24: 405 a-Amylase 22: 83, 85 a-amylase 38: 85, 86 Amylase inhibitor 21: 25 a-Amylase, induction by gibberellins, 9: 34, 62 Amylogenin 34: 191 Amylograph 34: 179, 180 Amyloids 11: 126, 131, 144, 146 Amyloplast 35: 21 Amyloplasts, see Statolith gravity sensors Amylose in Dunaliella 14: 130 AN11 31: 226 An9 gene (Petunia) 37: 57 Anabaena 12: 15, 16, 18, 19, 48, 68 adaptive migratory behaviour 13: 113 akinete production 13: 125 bloom formation, historical aspects 13: 115 buoyancy regulation 13: 85, 86 chlorophyll-protein complex 10: 77 conditions favouring dominance 13: 114 density 13: 82 depth of mixing, buoyancy and 13: 118 distribution 13: 69, 70 diurnal migratory cycles 13: 84 fluorescence spectra 10: 100 growth rate, bloom conditions and 13: 125 nitrogen fixation 13: 106 nutrient levels, buoyancy and 13: 118 predation 13: 107 secondary structure 13: 73 stratification 13: 84 survival strategies 13: 131, 132 Anabaena circinalis 13: 133 akinete germination 13: 126 buoyancy regulation 13: 117 carbon dioxide limitation, buoyancy and 13: 119 flotation rates, aggregation and 13: 89 Anabaena circinalis, algal bloom 27: 219 Anabaena cylindrica culture medium 7: 144 effect of sodium on acetylene reduction 7: 181 carbon metabolism 7: 181–183
glycolate release 7: 183, 214 nitrate reductase 7: 126, 170, 174, 175 nitrogen metabolism 7: 172– 181 role of sodium 7: 211– 215 sodium requirement 7: 125– 127, 138, 145, 146, 168 Anabaena flos-aquae 27: 214, 216, 235 AnTx-a 27: 218 Anabaena flos-aquae 13: 133 gas vacuole 13: 81, 83 growth rate, temperature and 13: 96 light-dependent growth 13: 98 nutrients, buoyancy regulation and 13: 86, 117 Anabaena solitaria 13: 133 shape 13: 73 Anabaena spiroides akinetes 13: 126 Anabaena spp. gene probes 27: 234 lists and properties of microcystins 27: 214, 221–224 phycocyanin 27: 288 temperature effects 27: 233 Anabaena variabilis 11: 83, 84, 95 Anabaena, emission spectrum 5: 23 Anabaenopeptin 27: 214 Anabaenopsis, secondary structure 13: 73 Anacamptis pyramidalis, synthesis of phytoalexins 7: 512, 513, 516, 517 Anacardic acids 31: 175– 189 biochemistry 31: 178– 181 extraction from Pelargonium trichome exudate 31: 178 fatty acid desaturase molecular genetics 31: 182–185 prostaglandin metabolism inhibition 31: 186 structure 31: 179 Anacardium occidentale 31: 3 Anacystis montana, thylakoid structure 7: 16 Anacystis nidulans 12: 23; 13: 133; 19: 206; 24: 403; 30: 21, 25, 26, 28, 32, 33; 5: 41 chromatic adaptation 10: 166, 171, 172 photosynthetic rate 10: 151 photosystem reaction centre "complexes 10: 84, 90
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
phycobiliproteins 10: 66, 115 shading effects 10: 156 specific growth rate 13: 96 Anaectochylus setaceus, seed morphology 7: 427 Anaeorobiosis, signal transmission 22: 164 Anaeroplasma 21: 190–192, 195 Ananas 24: 448 inflorescence 3: 268 stomata 3: 284 Ananas comosis 31: 14 Anastomoses 24: 400 Anatomy, comparitive 1: 101 see also Monocotyledons Anatoxin (AnTx) 27: 216– 219 structure 27: 217 Anatoxins 12: 68 Anchoring proteins 32: 311– 313 Anchusa officinalis culture 13: 167, 175 Ancistrorhynchus, flowering 7: 535, 536, 538, 450, 547 and sodium chloride inhibition 14: 141, 142 Andraeobryum 19: 235 Andreaea 19: 235, 247, 263, 285, 287, 289, 293 cultivation experiments 6: 254 Andreaea rothii 19: 240 Andreaeales 19: 287, 293 Andreaeidae 19: 235 Andreaeobryum 19: 241 Andreaeopsida chromosome numbers 6: 199, 200, 204 micro-chromosomes 6: 225– 230 Andreana squalida, orchid pollination 7: 564 Androecium evolution 17: 128– 130, 152 Androgenesis 2: 300 Andromeda polifolia nitrate reductase activity 6: 22 Aneimia, polarity of leaf veins 9: 194 Anemia, polyploidy 4: 255, 322 Anemone 22: 13 nemorosa 22: 12 Anenome 24: 322 aneuploidy 6: 220
35
geographical distribution 6: 220 in Drosophila 4: 296 mechanisms 4: 296 origin 6: 221 significance in modern ferns 4: 295–307 Aneura 19: 265, 267, 293 Aneura pinguis 19: 279 Aneura pinguis, chloroplast membrane structure 7: 4 Angiocarpelly in Monimiaceae 17: 105 Angiopteris 22: 13 Angiopteris neglecta, fossil record 4: 236 Angiosperm flower development 28: 197– 230 floral organ identity genes in 28: 210–217 orthologues and paralogues of A class genes 28: 215, 216 orthologues and paralogues of B class genes 28: 216, 217 orthologues and paralogues of C class gene 28: 217 evolution 28: 200– 203 structure 28: 198– 200 Angiosperm origins 4: 253 Angiosperm phylogeny 28: 202 Angiosperms see also Dicotyledons, at K/T boundary; Flowers; Monocotyledons, Early Tertiary angiospermy advantages 17: 100, 101 Early Tertiary 17: 23– 27 Eocene/Oligocene 17: 26, 27 Palaeocene 17: 26 gymnosperm relations 17: 135– 144 Bennettitales 17: 135– 137 Gnetopsida 17: 137– 140 mesozoic pteridosperms 17: 140– 144 Pentoxylales 17: 136– 138 pollen, survival at K/T boundary 17: 5 Angiosperms 19: 305 transfer cells in 19: 302 Angiosperms and evolution of self-incompatibility (SI) systems 32: 285, 286 Angiosperms, anthocyanins in 37: 42 – 50 additional influences 37: 49, 50 development 37: 47 – 49
36
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Angiosperms, anthocyanins in (continued) environmental factors 37: 42, 43 phylogeny 37: 43 – 47 Angiosperms, in planta fertilization 28: 237, 238 Angraecum auxin transport 7: 621 flowering 7: 535, 540, 541, 547, 569 post-pollination phenomena 7: 574, 575, 602, 604, 619, 622 Anguillospora longissima 24: 278 Anguloa ruckeri, seed morphology 7: 437 ANGUSTIFOLIA (AN ) 31: 202, 249, 251 Anhydroeschscholtzxanthin 37: 41 Animal cells endocytic pathway in 28: 126 endosomal networks in 28: 124– 128 endosomes in 28: 125, 127 lysosomes in 28: 125, 127 Animal dispersal of fruit/seeds in Early Tertiary 17: 66 – 68 Animal endosomal – lysosomal networks 28: 124 Animal products 21: 96 – 98 Anion channels 25: 241– 243; 32: 467, 468 Anions 25: 408– 412 Anions, and linear potassium uptake 15: 121– 123 Anisohydric plants 22: 268 Anisothecium cytotaxonomy 6: 243 Ankistrodesmus braunii, phosphate uptake 7: 114 Annona karyotype 6: 189 Annona muricata 11: 131 Annonaceae chromosome morphology 6: 189 Annonaceae, flowers 17: 101– 103 Annonaceae, prophyll 3: 288 Annuals 18: 34 Anoxia resistance 37: 114, 115 Anoxic stress 37: 114, 115 Ansellia, flowering period 7: 536, 541, 547 ANT 38: 209 Antarctica Early Tertiary vegetation/climate 17: 79
Middle Eocene/End Oligocene 17: 10, 12 Antennapedia complex (ANT-C) 28: 184 Anther culture 2: 301 Allium cepa 2: 302 Datura stramonium 2: 301 effect of chemicals 2: 303, 304 growth media 2: 302– 304 Lilium longiflorum 2: 301 Lycopersicum esculentum 2: 301 male and female potency of pollen grains 2: 303 meiosis, initiation of 2: 302 Rhoeo discolor 2: 302 Tradescantia 2: 301–303 Trillium erectum 2: 302 Antheraxanthin 22: 143 Antheraxanthin, structure 27: 293 Anthocercis viscosa resin yield 6: 289 Anthoceros 19: 275, 279, 281, 295 Anthoceros A. husnotii sex chromosomes 6: 233 A. punctatus genetics 6: 246 apospory 6: 252 Anthocerotaceae 19: 295 Anthocerotes 19: 275– 283 placental cell walls in 19: 276 placental cells in 19: 276 Anthocerotopsida chromosome numbers 6: 199– 201 intra-specific polyploidy 6: 211 “Anthocorm” theory 17: 147 Anthocyanidin 37: 19, 150 Anthocyanidin synthase 37: 64, 65 Anthocyanin 5-aromatic acyltransferase 37: 68 Anthocyanin 22: 108– 110, 114, 116, 138, 144 Anthocyanin accumulation 32: 173, 174 Anthocyanin marker genes 34: 78 Anthocyanin methyltransferases 37: 83 Anthocyanin production 13: 157, 158, 172, 173 Anthocyanin rhamnosyl transferase 37: 83
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Anthocyanin vacuolar inclusions (AVIs)37: 70 Anthocyanins 25: 102, 142, 157; 31: 139, 224, 225 effect of NAA 7: 621 effect of pollination in orchids 7: 601, 602, 619 Anthocyanoplasts 37: 69 Anthopleura 12: 240 Anthopogenic tropospheric ozone, see O3 Anthostomella formosa 33: 4, 5 Anthostomella pedemontana 33: 4 Anthostrobilus theory 17: 144– 146 Anthoxanthum odoratum 24: 74; 29: 5, 22 Anthroquinone production 13: 152, 156, 157 Antibiosis, soil-borne pathogens 26: 20, 25 –32 see also Microbial pathogens, plant defence proteins Antibiotic selection 34: 74 Antibiotics 21: 13, 48 Antibody reaction, negative staining 3: 21 Antifeedants 30: 97– 99 Antifungal peptides (AFPs) 26: 151– 153 Antillatoxin 27: 214 Antimicrobial peptides (AMPs) 26: 151– 153 Antimicrobial proteins 21: 12, 13 Antimycin 12: 7 Antimycin A, inhibition of bacterial electron transport 4: 77 Antioxidant behaviour 37: 119 Antioxidant capacity 37: 27 –29 Antioxidant properties 37: 156, 157 Antioxidant protection 37: 10 Antioxidant system 18: 94 Antioxidants 22: 119– 121, 143 Antioxidants, anthocyanins as 37: 178– 184 hydrogen peroxide scavenging in vivo 37: 182– 184 mechanisms 37: 178– 180 red vs. green leaves 37: 180– 182 Antiquocarya, Late Cretaceous fossils 17: 116 Antirrhinum 22: 166; 24: 133; 28: 169, 181, 218– 220, 222; 31: 207
37
Antirrhinum genes 38: 198, 199 cycloidea (cyc) mutations 38: 207 phan mutation 38: 203, 208 Antirrhinum glabrous stem (angus) 31: 206 Antirrhinum majus 12: 138, 142, 156, 185– 188; 24: 126; 28: 198, 203– 210; 31: 195, 224; 35: 89, 143 DNA TE families 27: 351– 354 evolutionary aspects 27: 416– 418, 421, 424, 425, 435 Tam3 transposition 27: 357, 358, 378, 379 transposon tagging 27: 395, 399; 27: 400 verification of cloned genes, endogenous transposable elements 27: 401 Antirrhinum majus, chloroplast 3: 59, 74, 75 Antirrhinum majus, flower development 26: 230 meristem transition 26: 236 mutants 26: 233 organ identity genes 26: 237– 240 ovule development genes 26: 245 Antisense RNA (asRNA) 34: 100 Antisense technologies 37: 62 Antisense technology 34: 2, 97 Antithamnion 35: 193 Anti-g-TIP antibodies 35: 157 Anti-V-PPase 35: 157 AOP3 25: 423 AP, see Acid precipitation Apatunia senilis, seed morphology 7: 427 aPEP12 25: 53 Apera spica-venti 33: 245 Apglp 38: 83 Apg7p 38: 83 Apg13p 38: 83 Aph. flos-aquae 12: 65, 66 Aphanizomenon 12: 48 adaptive migratory behaviour 13: 113 akinete production 13: 125, 126 conditions favouring dominance 13: 114 distribution 13: 69, 70 diurnal migratory cycles 13: 84 extreme diurnal variations and 13: 115
38
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Aphanizomenon (continued) nitrogen fixation 13: 106 predation 13: 107 secondary structure 13: 73 shape 13: 73 survival strategies 13: 131, 132 Aphanizomenon flos-aquae 13: 133; 27: 216, 219 akinete germination 13: 126 compensation point 13: 103 flotation, aggregation and 13: 89 growth rate, temperature and 13: 96 overbuoyancy 13: 117 temperature effects 27: 233 Aphanizomenon spp., RUBISCOs, Kc values (table) 27: 104 Aphanocapsa photosystem primary electron "acceptor 10: 92 phycobiliproteins and nitrogen "starvation 10: 41 Aphanocapsa colonies 13: 73 Aphanomyces 24: 235, 354, 361, 386 Aphanomyces euteiches 24: 382, 387; 28: 130 Aphanothece colonies 13: 73 Aphantoxins 12: 69 Aphid transmission factor (ATF) 36: 5, 9 Aphids 30: 65, 94, 99, 100, 102– 105, 300 Aphis craccivora 36: 11 Aphis gossypii 36: 2, 3, 12 Apigenin 20: 182 Apiognomonia quercina 33: 26 Apion aestivum 36: 104 Apion aethiops 36: 104 Apion vorax 36: 104 Apis mellifera 30: 101 Apium graveolens, enzymes of lignin "biosynthesis 8: 57 Aplectrum hyemale, carbon fixation 7: 522 Aplysiatoxins 27: 216 Apoaequorin 22: 66 – 68 Apodachlya, phosphorus content 8: 141 Apodinium spp. 12: 233 Apogamous cycles, homosporous pteridophytes 16: 70, 71
Apogamy 6: 252, 253 in gametophyte/sporophyte shift, lower plant 16: 80 – 82 induced, and chromosome number 16: 82 natural cycles 16: 81, 82 parthenogenesis 16: 80, 81 induced, in pteridophytes heterosporous 16: 77 homosporous 16: 75 Apomixis in ferns reproductive apomixis 4: 387–398 vegitative apomixis 4: 398, 399 Apoplastic environment 24: 314– 316 Apoplastic fluid (AF) 21: 152 Apoplastic loading, pathway "implications 24: 321, 322 Apoplastic water movement and endodermal suberization 5: 175 in algal thalli 5: 159 Apoprotein Bl00 35: 128 Apoptosis 21: 25 Aposematic coloration 30: 99 Apospory 6: 252, 253 and sporophyte/gametophyte shift, lower plant 16: 82 – 84 induced in ferns 16: 75 in flowering plants 16: 77 Apoxogenesis 1: 25 Appalachian spleenwort complex, chromosome pairing 4: 330, 331 Apple 22: 239 Apple proliferation disease 21: 191, 193, 194 Apples, see Fruit: skin fracture properties; Parenchyma, fracture property testing Appressoria 22: 30 Appressorium 21: 5 Apricot trees 19: 151 Aprt mutant 30: 135 APS kinase 33: 185, 187 APS reductase 33: 185– 187, 193, 194, 197 APS sulphotransferase 33: 186, 195 APS1 33: 183 APS2, APS3 33: 202 Aqmenellum 13: 72 AQP1 25: 421, 425
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Aquaporins 22: 212; 25: 419– 432; 30: 20 activity in plants 25: 428 assay 25: 420– 422 development regulation 25: 427, 428 discovery in plants 25: 422, 423 evolutionary tree 25: 424 hourglass model 25: 426 oligomeric structure 25: 423– 425 role in water transport 25: 428, 429 seed-specific tonoplast 25: 426, 427 Aquaporins (PIP1) 33: 57 aquatic photosynthetic organisms 38: 144–152 Aquillapollenites 38: 284 Arabidopsis 18: 235; 19: 305, 306; 21: 8, 16 –18, 23; 22: 105, 111, 116, 118, 119, 126, 129, 135, 136, 140, 146; 24: 101, 102, 107, 109, 111, 135, 136, 141, 153; 25: 54, 227, 235, 242, 307, 308, 310– 312, 318, 322, 325, 327, 407, 412, 422, 427, 428; 28: 10, 19 – 22, 30, 44, 45, 97, 104, 164– 166, 168, 171, 172, 174– 178, 180, 181, 184, 214– 222, 249, 250, 252; 29: 56, 65, 67, 68, 81, 84, 100, 102; 30: 8, 9, 28 – 34, 38 – 40, 42, 46, 47, 49, 51, 55, 62, 68, 94, 128, 130, 131, 134, 135, 215, 233, 245, 247, 248, 253– 255, 263, 264, 273, 300, 303, 304, 306– 310, 313, 314; 31: 220, 221; 32: 2, 4, 5, 9, 12, 15 –19, 21, 22, 24 – 32, 34 – 36, 38, 39, 41, 43, 46, 48, 53, 56, 70, 73, 74, 79, 80, 82, 84, 86, 88– 91, 110, 116, 117, 119, 121– 124, 126, 128– 138, 142, 143, 150, 151, 154– 157, 159, 163, 165– 168, 171, 172, 174, 187, 192, 198, 201, 203, 205, 207, 209– 211, 214, 226, 230, 231, 235, 236, 241, 242, 245, 246, 248, 249, 251, 253, 257, 258, 260, 261, 283, 284, 286– 288, 313, 314, 320, 323, 324, 356– 358, 366–370, 383, 385, 392, 394, 396, 406, 407, 410, 412– 414, 417–419, 422, 424, 439, 443, 452, 468, 471, 473; 33: 51, 67, 104, 164, 175, 180, 183– 185, 187– 189, 191– 194, 196, 198,
39
201– 205, 207; 34: 129; 35: 25, 33, 79, 87, 91, 92, 113, 117, 118, 128, 130, 159; 37: 57, 76, 82, 106, 109– 111, 113; 38: 207 age-related resistance in 38: 255 Arabido-Brassica ancestor 38: 241, 242 AtELP 71 auxin in 38: 212 branching enzymes in 34: 189 CBF1 gene in 34: 255, 256 cell death in 38: 77, 78 chromomethylase (CHMET) protein in 34: 98 cyclin::GUS reporter 38: 209 CysEP in 38: 77 debranching enzymes 34: 190 ER bodies in 38: 80 FEY 38: 200 founder cells in 38: 197– 199, 209 freezing tolerance in 37: 7 fusion protein in 38: 73 GA4 gene 34: 139 genome 38: 110 genome, evolution of 38: 238, 239 gibberellin insensitive (GAI) genes 34: 135 green fluorescent protein (GFP) in 38: 77 homologs of yeast autophagy genes in 38: 83 –885 induced systemic resistance in 38: 263 KNAT2 in 38: 197 KNAT6 in 38: 197 KNATI in 38: 197, 199, 202, 203 knox genes in 38: 197, 199 leaf in 38: 194 leaf trichomes 31: 238– 253 leafy cotyledon gene (lec) 34: 79 LEP in 38: 208 LTR in 34: 251 MEDEA (MEA) gene product 34: 146 molecular phylogeny 38: 236, 237 mutants 37: 80 – 82, 84, 106 photoinhibitory responses of 37: 25 PROLIFERA::GUS genetrap reporter 38: 209 root hairs 31: 198, 199, 253– 257 segmental duplications 38: 240, 241 STM in 38: 197, 199
40
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Arabidopsis (continued) stomatal cells in 38: 215, 216 thaliana 21: 164, 169, 173, 175 transposons from maize in 34: 14 trichome differentiation/morphogenesis 31: 237– 257 trichome initiation 31: 219–233 trichome number/density 31: 137, 138 trichomes 38: 217, 218 vascular patterns 38: 213 veins in 38: 211 YABBY genes in 38: 204–206 Arabidopsis clavata 32: 233– 235 Arabidopsis erecta 32: 231– 233 Arabidopsis Genome Initiative (AGI) 38: 238 Arabidopsis Genome Initiative 33: 201 Arabidopsis genome sequencing project 34: 2 – 3, 48 Arabidopsis halleri 38: 237, 239, 241 Arabidopsis lyrata 38: 237, 239 Arabidopsis mutants 32: 235 Arabidopsis petrea 38: 237, 241 Arabidopsis thaliana 24: 126, 227– 273; 25: 44, 45, 53, 309, 379, 420, 423, 424; 28: 11 – 15, 19, 21, 24, 25, 29, 45, 89, 92, 93, 97 – 99, 103, 104, 198, 203– 210; 30: 7, 94, 128, 130, 131, 134, 135, 215, 233, 245, 247, 254; 31: 82, 106, 137, 138, 196, 198, 199; 32: 1, 34 – 41, 43, 44, 86, 89 –91, 132, 192, 199, 201, 205, 208, 286, 314, 320– 322, 329, 336; 33: 57, 71, 164, 176; 35: 16, 24, 26, 29, 30, 214, 222– 228, 230– 238, 245, 250; 37: 97; 38: 81 accession Columbia 24: 260 accession Wassilewskija 24: 261– 263 DNA transposable elements 27: 352– 354 Ac transposition 27: 403 En/Spm (enhancer/suppressor-mutator), CACTA superfamily 27: 405, 406 evolutionary aspects 27: 423 downy mildew 24: 258, 259 extrachromosomal forms of TEs 27: 360 future research 24: 262– 268 genes cloned by transposon tagging 27: 395
genetic analyses 24: 233–235 genetic analyses of RPP and RAC loci 24: 243– 246 genetic map 24: 258 genome model 38: 235– 272 genome size 27: 44 interaction phenotypes 24: 241 MRC regions 24: 265 MRPs (AtMRPs) 35: 29 mutations 24: 259– 262 RCCR (AtRCCR) 35: 27, 28 rebirth in plant pathology 24: 231, 232 relevant trends in modern biology 24: 230 research arena 24: 229– 233 retrotransposons 27: 336, 347– 349 Athila 27: 350 horizontal transmission 27: 350 mitochondrial 27: 345 non-LTR 27: 342, 344 symbiotic relationships with micro-organisms 24: 228 Tnt1 LTR 27: 348 verification of cloned genes, endogenous transposable elements 27: 401 Arabidopsis thaliana, flower development 26: 230 MADS box genes 26: 235 meristem transition 26: 236 mutants 26: 233 organ identity genes 26: 237– 240 ovule development genes 26: 244, 245 Arabidopsis thaliana, maize transposable elements in 34: 11, 12 Arabidopsis transparent testa mutants 37: 85 Arabidopsis – bacterial SPECK age-related resistance model 38: 268 Arabinogalactanprotein (AGP) carbohydrate component 30: 219 –225 cell wall 30: 238– 256 culture medium and 30: 236– 238 epitopes 30: 245– 251, 265– 270 gynoecium and 30: 230– 235 in gum 30: 266– 230 molecular shape 30: 221, 222 mucilages and 30: 266 plasma membrane 30: 244, 245, 256– 270 polypeptide component 30: 214– 219
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
soluble 30: 211– 238 structural characterization of 30: 212, 213 Arabinogalactans (AGP) 28: 234 Arabinose, transport in chloroplast 7: 73 Arabinosyl transferase 34: 173 Arabinosyltransferase 19: 12 Arabinoxylan AX 34: 174 Arabinoxylans 34: 170– 173 biosynthetic steps 34: 172 properties and impact on processing 34: 171, 17 structure and composition 34: 170, 171 synthesis and manipulation 34: 173 Arabis alpina activity of nitrate reductase 6: 23 Arabis mosaic nepovirus (ArMV) 36: 179, 183, 185 Araceae 22: 13; 31: 58 inflorescence 3: 266, 274, 276 stomata 3: 284, 285 Arachidonic acid, oxidation to formprostaglandins 20: 169, 170 Arachis 24: 319 Arachis hypogaea (peanut) 18: 132, 137 nodules 18: 131, 134, 155 Arachis hypogea 25: 269 Arachis hypogea, storage protein 9: 2, 7 Arachnis cv. Maggie Oei carbon fixation 7: 522 flowering period 7: 542 post-pollination 7: 615, 616 Aralia 38: 286, 289, 303 Araliaceae 22: 12, 34; 37: 45 Araliahispida 38: 303 Aranda carbon fixation 7: 532, 549 stomatal rhythm 7: 521 Aranda deborah 28: 215 Aranthera cv. James Storie, carbon fixation 7: 522 Araucaria resin exudation 6: 281 Araucaria araucana, lignin composition 8: 31 Araucariaceae, Early Tertiary 17: 17, 19
41
‘Arbuscular’ mycorrhizal symbiosis 22: 1 – 35 cheating by myco-heterotrophic plants 22: 25 costs and benefits 22: 26 – 29 development and control of 22: 29 –33 transfer of solutes 22: 3 – 9 variations in nutritional efficiency 22: 17 – 25 variations in structure 22: 9 – 17 Arbutin 20: 183 Arbutus menziesii 37: 114 Arbutus unedo 22: 241 Archaeanthus, Cretaceous fossils 17: 112 Archegoniates gametophyte/sporophyte shift, female gamete in 16: 79, 80 parthenogenesis 16: 81 Archidium 19: 235, 251, 283 Archinis, stomatal rhythm 7: 521 Arctium lappa glandular hair structure 6: 297 Ardisia leaf nodule symbiosis 17: 168– 200 reproductive organs 17: 190, 192– 197 bacteria incorporation in early work 17: 168–172 infection of young leaves 17: 177– 180 microsymbiont isolation 17: 218, 219 nodule development 17: 180– 186, 187, 188 shoot tip morphology/role 17: 172– 177 symbiont/floral shoot transfer 17: 189– 191 symbiotic cycle, early speculation on 17: 189 transfer to next generation 17: 197– 200 occurrence/distribution 17: 164– 167 Arid environment 18: 228 temperature differences 18: 232 transpiration rate 18: 232 Arisaema 22: 13 Aristida digantha allelopathic control of soil nitrogen 6: 18 Aristolochia 31: 56 Aristolochiaceae 22: 13; 31: 58
42
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
“Arlington” cv. 18: 54 Armillaria mellea biological control agents 7: 396 competitive ability in culture 7: 389, 390, 394, 396 in nature 7: 400, 401 decay of sapwood 7: 410, 412, 413 endophyte of orchid 7: 491 Armillaria mellea, intercellular gas spaces of rhizomorphs 5: 210 Armoracia 25: 373 Armoracia rusticana 25: 149, 150 Aroids, inflorescence maturation 20: 199– 203 Arrhenatherum elatius 29: 10, 11; 33: 245 Artemia salina and Dunaliella 14: 100 Artemisia 31: 162, 168 Artemisia annua 31: 9, 122, 127– 129, 131, 133, 135, 137, 140, 165 glandless chemotypes 31: 123– 125 Artemisia campestris ssp. maritima 31: 59 Artemisia dracunculus 31: 7, 29 Artemisia vulgaris 18: 69 Artemisinin 31: 124, 128, 131, 133, 135, 140 Arthraerua leubnitziae 11: 172 Arthropods, disease biocontrol 26: 18, 19 Artichoke Italian latent repovirus (AlLV) 36: 180 Arum 22: 13 maculatum 22: 8, 9 –17, 19– 20, 22, 28, 31, 32, 34 Arum maculatum nitrate reductase activity 6: 23 Arundina post-pollination phenomena 7: 580, 581, 607 promeristem development 7: 484 stomatal rhythm 7: 521 Arundinaria, stomata 3: 284 Arundo donax, lignin composition 8: 32 Aryloxyl radicals 37: 180 Asarum 22: 13; 38: 289– 291 Ascaris suum 38: 104, 155, 156 Ascocentrum ampullaceum, carbon fixation 7: 522, 528 Ascomycetes 33: 7, 8
Ascophyllum nodosum 11: 81, 83, 88, 99, 112, 115, 117; 35: 185, 186, 188; 38: 148– 151 chlorophyll a/c ratio 10: 121 Ascophyllum nodosum, C4 dicarboxylate 27: 100 Ascorbate 18: 78; 22: 119 see also Ascorbic acid Ascorbate peroxidase 18: 77, 95; 37: 180, 181 Ascorbic acid 25: 373, 374; 37: 178, 180 Asexual life cycle of Peronosporales 24: 362– 364 of Phytophthora 24: 436, 437 of Saprolegniales 24: 366– 369 Asexual reproduction in fungi 24: 80, 81 Asexual sporulation in fungi 24: 72, 73 of oomycetes 24: 353– 398 Ash yellows 21: 193, 194 Asia 21: 86, 92, 93 Asian Chestnut 21: 128 Asn-Pro-Ala (NPA) motif 25: 425 Asparagine 18: 131, 155, 156 Asparagine residues 25: 132 Asparaginyl endopeptidase 35: 147; 38: 75 Asparagus officinalis 11: 129 Asparate kinase gene 34: 79 Aspartate aminotransferase 38: 142 Aspartate kinase (AK) 34: 203 Aspergillus 19: 21; 24: 40, 75, 422; 33: 249 A. ficuum, phytic acid utilization 8: 185, 194 A. nidulans phosphatases 8: 184 phosphate 8: 130, 164, 170 A. niger culture 8: 194, 196 organic phosphorus utilization 8: 180, 186– 188 phosphate utilization 8: 138, 149– 151, 176, 179 phosphorus utilization 8: 130, 140, 198, 201 A. oryzae, phosphorus content 8: 142 nitrate reduction 6: 6 phosphate efflux 8: 158
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Aspergillus nidulans 21: 155; 24: 73, 77, 81, 357, 358, 410, 421; 30: 24 – 26, 28, 32, 33, 35; 34: 265, 276 Aspergillus niger 19: 25, 68, 69; 24: 124– 126, 421; 33: 28 Aspidistes beckerii, fossil structure 4: 242, 243 Aspidistra, vascular bundles 3: 239 Aspilia 37: 41 Aspirin see Salicylic acid and derivatives Aspleniaceae, cytogenetics 4: 360–371 Asplenium 31: 162 A. adiantum-nigrum, parentage 4: 361 A. adulterinum cytogenetic analysis 4: 362 distribution 4: 363 parentage 4: 361 A. aegaeum, intraspecific differentiation 4: 367 A. aethiopicum apomixis 4: 390, 391, 396 complex 4: 373, 374 A. aethiopicum polyploidy 4: 324 A. anceps distribution 4: 368 hybridisation 4: 369 A. balearicum, parentage 4: 361 A. billotii, cytogenetics 4: 363 A. bulbiferum, vegitative apomixis 4: 398 A. celtibericum, intraspecific differentiation 4: 367 A. creticum, parentage 4: 361 A. eberlei, parentage 4: 361, 362 A. flabellifolium, apomixis 4: 391 A. fontanum, intraspecific differentiation 4: 367 A. foresiense/macedonicum, parentage 4: 361, 367, 368 A. hassknechtii/lepidium cytogenetics 4: 368, 369 parentage 4: 361 A. heteroresiliens, apomixis 4: 394 A. majoricum cytogenetics 4: 369 genome analysis 4: 322 parentage 4: 362 A. monanthes, vegetative apomixis 4: 398
43
A. multiforme, cytogenetics 4: 374 A. petrarcheae ssp. bivalens, cytogenetics 4: 363 A. petrarcheae ssp. petrarcheae cytogenetics 4: 363 A. rhizophyllum, vegitative apomixis 4: 398 A. ruta-muraria, genome analysis 4: 335 A. ruta-muraria ssp. dolomiticum, cytogenetics 4: 364, 367 A. ruta-muraria ssp. ruta-muraria, cytogenetics 4: 363, 367 A. seelosii, intraspecific differentiation 4: 367 A. septentionale, cytogenetics 4: 363– 366, 369– 375 A. splendens ssp. splendens cytogenetics 4: 374 distribution 4: 373 A. trichomanes ssp. quadrivalens, cytogenetics 4: 364, 365, 367, 368 A. trichomanes ssp trichomanes, distribution 4: 363, 368 A. trichomanes, complex 4: 368– 371 A. trichomanes, cytogenetics 4: 364 A. tripteropus distribution 4: 368 vegetative apomixis 4: 398 A. viride, distribution 4: 363 fossil record 4: 234, 235, 249, 252 polyploidy 4: 322, 324, 328, 329 Assays, dot blot 23: 33 AST68 33: 175 AST77 33: 175 AST82 33: 175, 180 Astasia sp., glutamate-tRNA gene 27: 297 Aster tripolium enzymes of nitrogen metabolism 6: 23, 25, 27, 28, 30 Aster tripolium, effect of sodium on growth 7: 121, 161, 166 Aster yellows 21: 191– 194, 201– 205 Aster yellows mycoplasma-like organism (AY-MLO) 36: 159 Asteraceae 31: 11, 24, 162, 164– 166; 37: 45 Asterella 19: 255 Asterias 11: 51 Asteridae 19: 305
44
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Asteroleplasma 21: 190 anaerobium 21: 191 Asteromella sp. 33: 20 Asteroxylon fossil evidence for existence of homiohydry 5: 203 ratio of internal and external areas 5: 189 ASTI2 33: 175 Astragalus alpinus 18: 132 AtAMT1 transporter 30: 42, 51, 52 AtCS-C 33: 189 Atcys-3A 33: 189, 198 AtCys-B 33: 189 Athalmia pusilla apospory 6: 252 Athyrium, polyploidy 4: 322, 324 Atmosphere, and water relations 3: 195– 204 Atmospheric vapour pressure, ozone uptake and 29: 33 AtNRT2 30: 32 Atomic absorption measurement of sodium 7: 128– 133 ATP 18: 145 O3 exposure 18: 59, 62, 64, 68 ATP 19: 144 ATP 25: 75, 131, 218, 231, 340– 342, 369, 370, 384– 386, 412; 28: 5 and HMG-CoA reductase inhibition 14: 78 and nucleoplasmin targeting 14: 6 ATP and proton pump 15: 109 ATP hydrolysis 28: 6 ATP production in photosynthesis 27: 264 ATP sulphurylase 33: 183, 185, 187, 193– 195, 197, 205, 206 ATP synthesis in evolution 10: 176 in photosynthetic bacteria 10: 19, 20, 132, 176 in photosynthetic electron transport 10: 19, 38 ATP, cation influx across plasma membrane and 29: 102 ATP/GTP 24: 116, 119
ATPase 18: 138; 25: 231; 28: 2 calcium 22: 49, 80, 81, 82, 83 mycorrhizal symbiosis 22: 4, 6 – 9, 10, 15, 20, 32, 34 UV radiation 22: 129, 135 ATPase activity 21: 165– 168; 24: 199, 202, 203 ATPase deficiency coupled transport mechanism 24: 320 ATPase in proton potassium transport 15: 105– 111, 117, 118 AtPTR2 30: 31 Atrichum 19: 247 Atrichum angustatum cytotaxonomy 6: 252 Atrichum undulatum 19: 246 Atriplex 24: 322 Atriplex 29: 79, 80, 144; 31: 3, 15, 29 salt glands 31: 39, 40, 43 Atriplex albicans, effect of sodium on growth 7: 161, 165 Atriplex amnicola 29: 124, 136, 139, 140 Atriplex confertifolia 22: 20 Atriplex gmelini 25: 403 Atriplex halimus A. hastata kinetics of glutamine synthetase 6: 33 A. patula enzymes of nitrogen metabolism 6: 25, 33 volumetric elastic modulus 6: 79 Atriplex hastata, salt tolerance 8: 223 Atriplex sabulosa 18: 11 Atriplex spongiosa 25: 176; 29: 136, 140, 148 Atriplex triangularis 18: 11 Attalea, bracts 3: 276 Attractants 22: 166 AtVPS34 25: 54 Atvsp 38: 263 Aulacomnium palustre aneuploidy 6: 220 Aulacorthum solani 36: 28, 29 Aureobasidium apocryptum 33: 26 Aureobasidium pullulans 33: 4, 10 Australia, Early Tertiary floras 17: 81 – 85 vegetation/climate 17: 78
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Australopteris coloradica, fossil structure 4: 247 Austrobaileya chromosome size 6: 189 Austrobaileyaceae, flowers 17: 103, 104 Aut1p 38: 83 Aut7p 38: 83, 85 Autoallopolyploidy in ferns 4: 320, 321 Autofluorescence, dyes 22: 64 Autolysis 25: 94 in cell phenotypes 25: 103– 105 Autophagic activity 25: 92, 93 Autophagic internalization 25: 122 Autophagic pathway 25: 7 – 17 Autophagic sequestration of tonoplast 25: 126 Autophagy 35: 154, 155 and vacuole formation 38: 85 during seed germination 38: 78 leaf senescence and 38: 86, 87 pathways during seed germination 38: 78, 79 stress-induced 38: 79 – 83 in yeast and mammalian cells 38: 82, 83 morphological changes in plant cells 38: 81, 82 vacuolar protease activity 38: 79, 80 Autophosphorylation 32: 11, 27, 31, 58, 100, 113, 116, 121, 129, 171, 240, 243, 244, 250, 278, 385– 388, 414, 419, 460, 471 Autopolyploidy 4: 320, 321; 6: 213– 215 Autosyndesis 4: 335 Autoxidation of chlorophyll 3: 126 Autumn leaf senescence 37: 117, 118, 147– 163 function of anthocyanins in 37: 155– 161 history 37: 149 importance 37: 148, 149 pigment distribution 37: 152–155 climate 37: 154 ecological correlates 37: 154, 155 phenology 37: 152, 153 systemic variation 37: 153 Auxin 19: 15, 27; 22: 69, 84, 166, 201, 284; 38: 201, 202, 211, 212 and pattern of vascular
45
differentiation, 9: 174, 175, 179, 199, 200 and tissue polarity 9: 188– 192, 197, 198, 220, 221, 252 and vascular differentiation 9: 158, 161, 162, 184, 233 auxin production in cambium 9: 220 in differentiating cells 9: 178 auxin transport canalization 9: 181– 183, 185, 186, 192 induced by auxin 9: 186 polarity 9: 156, 167– 170, 174– 176, 181, 188, 192, 206, 207, 209, 210, 244, 247, 251, 252 control of parenchyma differentiation 9: 243, 244 effects on potassium flux 6: 108, 109 replacing the effect of leaves in differentiation 9: 165, 170, 246 Auxin and gravitropism polar transport 15: 11, 12 translocation of anion 15: 9 Auxin resistant2 (axr2) 31: 254 Auxin transport, polar 37: 82 Auxins 1: 75; 28: 34, 40 –42, 87 see also IAA, NAA, 2,4-D affinity chromatography 5: 66 – 70 anther culture 2: 302 benzoylmalate synthesis in pea 5: 55 – 57 binding to purified histones 5: 61, 62 cycloheximide, effect on auxin induced growth 5: 59 endosperm 2: 241, 244 flower sex 2: 305– 308 fruit development 2: 269 in determination of leaf form 28: 172, 173 in orchids 7: 569, 570, 602, 619, 621, 622 inhibition of root formation 2: 283 membrane binding specificity of sites 1 and 2 5: 72 – 75 orchid growth 7: 458, 459– 462 ovary culture 2: 266 parthenocarpy 2: 279, 308 pith cells 2: 204 rapid cell elongation 5: 58 sex expression 2: 305– 308
46
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Auxins (continued) specificity of N-acylaspartate synthetase of peas 5: 55, 56 stimulation of glucan synthetase 5: 61 synthesis in seeds 2: 238 wall plasticity 2: 154, 210 Avena 29: 155 Avena byzantina 34: 40 Avena coleoptiles, cell ultrastructure 2: 79, 87, 105, 107– 110, 114, 127 Avena nuda 34: 40 Avena saliva 30: 186 Avena sativa (oats) 18: 37, 89, 97 NOx exposure 18: 35 O3 exposure 18: 51 O3 fumigations 18: 52 Avena sativa (oats) 33: 245 Avena sativa 22: 12; 25: 259, 267– 269; 28: 86; 32: 325 DNA analysis 6: 125 Avena sativa see oats Avena sativa, chloroplast envelope 7: 34, 51, 75 Avena sativa, water movement in leaves 4: 123 Avena strigosa 34: 40 Avena, structure of cellulose 5: 96 AVG 18: 59, 97, 98 Avicennia germinans 31: 43 Avicennia marina 31: 40, 43 – 45 effect of sodium on growth 7: 121 salt tolerance and adenosine triphosphatase 7: 205 Avicennia salt glands 31: 40, 41, 43, 45, 66 Avirulence 24: 231 Avirulence determinants interacting with resistance genes encodingproteins containing extracytoplasmic LRRs 24: 97 – 99 interacting with resistance proteins "containing cytoplasmic LRRs 24: 113, 114 Avirulence genes 30: 297– 302 Avirulence (avr) genes 21: 2, 7, 8, 23 – 25 fungal 21: 65, 148–169, 172– 178 AVP 25: 309, 312– 314, 317, 329 Avr4 38: 254 Avr9 38: 270
Avr-9B 38: 271, 272 Avrainvillea 35: 176 Avrainvillea levis 35: 176 AvrPro 38: 253 AvrPto 38: 270 AvrXa7 38: 254 AvrXa10 38: 254 Avrxa5 38: 254 AWJL proteins 24: 131– 133 Axel Heiberg Island, Early Tertiary 17: 58 Axis, monocotyledons 3: 238– 266 branching and vascular development 3: 260– 265 methods of study 3: 241– 244 “palm-type” vascular construction 3: 244– 250 secondary thickening 3: 265, 266 vascular bundles, construction 3: 250, 251 vascular continuity 3: 258– 260 vascular development 3: 251– 257 AXX 19: 33 Azadirachia indica 30: 98 Azadirachtin 30: 98, 99 Azimuthal profile 18: 290 Azolla, microsporogenesis 16: 66 Azolla, Tertiary 17: 15, 18 Azorhizobium caulinodans 37: 82 Azospirillum 29: 9 Azosporillum 24: 293 Azotobacter vinelandii Azotobacter vinelandii 24: 403 cytochromes 4: 75, 76 membrane transport 4: 99 oxidative phosphorylation 4: 85, 86, 90, 99 respiratory control 4: 94 – 96 B. fumosa, competitive ability in culture 7: 389, 391, 392, 396 B. protein kinases 32: 32 1B(R) substitution 34: 29 B. alticola, flowering period 7: 542, 551 B. chromosomes isochromosome formation 6: 148, 150 origin 6: 156– 158, 161 structure 6: 158
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
B. cinerea, competitive ability in culture 7: 389, 396 B. cowanii, seed morphology 7: 426 B. distans, flowering period 7: 547 B. finlaysoniana carbon fixation 7: 522, 529, 551 flowering period 7: 542 B. gibbosum, carbon fixation 7: 522, 528 B. lobii, flowering period 7: 542 B. nodosa, flowering period 7: 542 B. perrinii, carbon fixation 7: 522 B. subtilis cytochromes 4: 78, 79, 81 H+/O ratio 4: 88 P/O ratio 4: 85 respiratory control 4: 96 B. verrucosa, flowering period 7: 542 Bacillariophyceae 27: 89 C3 + C1 carboxylases 27: 97 Bacillariophyta (diatoms), PEPCK in 38: 146– 1148 Bacillariophyta, LHC proteins 27: 276 Bacillariophytes 11: 75 Bacillus 24: 336, 337; 33: 22 subtilis 21: 193, 201 thuringiensis endotoxin 21: 25 Bacillus firmus 28: 13 Bacillus licheniformis 24: 343 Bacillus megaterium cytochromes 4: 75, 76, 79 H+/O ratio 4: 89 respiratory control 4: 99 Bacillus sp., thio-template system of toxin genetics 27: 234, 235 Bacillus spp. biocontrol 26: 50, 51, 56, 66, 68, 70, 78 Bt toxins 26: 169, 172 Bacillus stearothermophilus, negative staining 3: 21 Bacillus subtilis 24: 403, 407; 30: 23, 24; 38: 128, 132 Bacillus thuringiensis (Bt) toxin 34: 30, 65, 93 Backcross, chestnut trees 21: 140, 141 Bacteria 21: 5 – 7 see also Cyanobacteria see also individual species caffeine-degrading 30: 189, 190
47
cyanobacteria 30: 21 – 23, 209 freeze-etching 3: 23 H+/O ratios 4: 85 – 90 marine 27: 88 measurement of P/O ratios 4: 83 – 85 nitrifying 30: 3 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 plasma membrane 3: 21, 35 proton translocation 4: 87, 89,92– 93 thylakoid structure 3: 146–149 Bacteria and phytoplankton grazing 16: 226 Bacteria as recipients of foreign DNA 24: 401– 410 Bacteria, plant defence proteins 26: 136– 138, 171 see also Biocontrol of soil-borne pathogens antimicrobial peptides 26: 151– 153 lysozymes 26: 156, 157 phospholipid transfer 26: 155 polygalacturonase-inhibiting 26: 157 thionins 26: 148 Bacteria, see Leaf nodule symbiosis Bacteria, sodium requirement 7: 148 Bacterial artificial chromosome (BAC) 34: 10 – 11, 30 Bacterial parasitism 26: 33, 34 Bacterial respiratory chain adaptive components 4: 67, 71 constitutive components 4: 67 cytochromes 4: 74 – 78, 81, 83 dehydrogenases 4: 70, 71 quinones 4: 72 transhydrogenases 4: 69, 70 Bacterial virulence factors 30: 295, 296 Bacteriochlorophyll, reaction kinetics 8: 21, 22 Bacteriocins, and pathogenicity of "Agrobacterium tumefaciens 4: 31 Bacteriodes succinogenes, sodium requirement 7: 148 Bacteriophage P1 cre/lox 34: 106 Bacteriorhodopsin, ATP synthesis 10: 132, 176 Bacteriorhodopsin, reaction kinetics 8: 20, 21
48
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Bacteroids functions and carbon processing 18: 146– 152 functions and nitrogen processing 18: 153, 154 nodule anatomy and terminology 18: 139, 140 transport to 18: 146 Bactridae, growth 3: 224 Bactris, growth 3: 222 Badnaviridae 36: 199 Baeyer-Villiger reaction, in gibberellin biosynthesis 9: 124– 126 Bafilomycin 25: 354; 28: 26 Balansia 33: 21 Balansia cyperi 33: 20 Baldulus 21: 201 Balsamorhiza 33: 245 Bamboo, gregarious flowering 3: 268 Bambusa O-methyl transferase 8: 40, 41 b-Aminolaevulinic acid (ALA) 27: 296 Banana 21: 49 – 52, 68 Banana, growth 3: 220 Band-pass filter 18: 208 Bangia fusco-purpurea, chloroplast envelope structure 7: 6 Banksia 24: 448 Banksia, Early Tertiary, in Australia 17: 82, 84 BAP 33: 103, 104 Baptisia flavenoid chemotaxonomy 6: 286 Barbarea 35: 232 Barbula B. unguiculata microchromosomes 6: 226 micro-evolution 6: 263 genetics 6: 247 Barium 22: 72, 107 Bark, fracture properties 17: 274– 276 see also Wood Bark-based composts 26: 13, 14 Barkeria melanocaulon, seed morphology 7: 425 Barley 19: 105, 114; 21: 167; 22: 59,60, 116, 127, 131; 25: 176, 202, 206; 34: 34 – 36 see also entries under Hordeum
B and D hordein 34: 89 chymotrypsin inhibitor CI-2 34: 203, 204 Dwf 2 6A dwarfing insensitive gene 34: 47, 48 effects of salicylates 20: 211 ESTs in 34: 8 functional genomics 34: 14 gibberellin signalling, stature and 34: 132 ion uptake, and salicylates 20: 194 leaf scald 21: 160– 162 malting quality 34: 204– 207 molecular markers 34: 4 – 5 Per1 gene 34: 150 SnRK1 down-regulation gene 34: 103 structural genomics 34: 10 Barley aleurone bioassay for gibberellins 9: 62 – 65, 67, 94, 119, 131– 136, 138, 139 Barley mesophyll protoplasts 25: 92 Barley mild mosaic virus (BaMMV) 36: 57, 59, 60 Barley root epidermal cells 25: 180 Barley see Hordeum vulgare Barley yellow dwarf virus (BYDV) BYDV-MAV 36: 25, 28, 33 – 35 BYDV-PAV 36: 23, 25, 27 – 29, 31, 34, 35 BYDV-RMV 36: 28 BYDV-RPV 36: 25, 26 BYDV-SGV 36: 25 Barley yellow mosaic virus (BaYMV) 36: 56, 59, 60 Barley, nutrient effects on powdery mildew infection 10: 223, 224 yield and ergot 10: 237– 239 Barley, salt tolerance 8: 224, 225, 238, 239, 341 Barley, see Hordeum vulgare Bartramia pomiformis micro-evolution 6: 263 Bartsia alpina nitrate reductase activity 6: 23 Base numbers, see Basic chromosome numbers Basic chromosome numbers 4: 258, 259, 265– 282, 304 Basic incompatibility 21: 2
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Basic Logical Alignment Search Tool 32: 45– 49 Basidiomycetes 33: 8 Batrachospermum boryanum 35: 189 Bauhina 38: 194 b-carotene 31: 95 BCH1 30: 32 BCH2 30: 32 Beaches, plant debris deposition on 16: 144, 145 Bean 21: 173, 235; 22: 116, 127, 131 Bean a-amylase inhibitor 26: 160 Bean cell 19: 54 Bean crop 18: 194 Bean golden mosaic virus 36: 76, 84 Bean leafroll virus 36: 31 Bean plants 18: 76 Bean pod mottle virus (BPMV) 36: 102, 103, 107, 109 Bean yellow mosaic potyvirus 36: 108 Bean, response of mitochondria to anoxia 7: 278 Beaucarnea, inflorescence 3: 268, 277 Beech, see Fagus sylvatica “Beeson” cv. 18: 13, 90 SO2/NO2 exposures 18: 45 Beet curly top virus (BCTV) 36: 84, 147, 148 Beet leafhopper transmitted virescence agent (BLTVA) 21: 203– 205 Beet mild yellowing virus 36: 31 Beet necrotic yellow vein virus (BNYVV) 36: 56 – 60; 38: 29 Beet pseudoyellows virus 36: 70, 77 Beet rhizomania 23: 9, 15 Beet soil-borne mosaic virus (BSBMV) 36: 59 Beet soil-borne virus (BSBV) 36: 58, 60 Beet virus Q (BVQ) 36: 58 Beet western yellow virus 21: 119 Beet western yellows virus (BWYV) 36: 22, 26, 27, 29, 36 Beetles, plant defence proteins 26: 159– 164, 166– 168, 171, 172 Beetroot 25: 14, 15, 204 Beggiatoa 25: 62, 74
49
Begomoviruses 36: 67 – 69 determinants of specificity 36: 88, 89 persistent transmission 36: 75 – 77 vector specificity 36: 84 – 87 “Bel W3” cv. 18: 52 Bemisia afer 36: 92 Bemisia berbericola 36: 92 Bemisia tabaci 36: 30, 31, 33, 66, 68, 69 anatomy 36: 78 – 80 determinants of specificity 36: 88 – 90 in relation to transmission 36: 71 – 75 tracing begomovirus pathway in 36: 80 –84 viral-encoded determinants of transmission 36: 84– 88 Bennettitales 17: 135–137 Benson – Calvin cycle 26: 251– 253, 263, 268– 270, 290; 38: 141, 144, 147, 157, 174 Benyvirus 36: 59 Ben-Zioni model 30: 65, 66 Benzoic acid aspartate conjugate formation in peas pre-treated with auxin 5: 55 specificity of sites 1 and 2 of auxin binding 5: 75, 78 Benzoylmalate synthetase induction in pea 5: 55, 56 4-benzoylobutyl glucosinolates 35: 228 3-benzoylopropyl glucosinolates 35: 228 Benzoyloxyalkyl glucosinolates 35: 230, 231 Benzyl adenine, effect on orchids in "culture 7: 463 Benzyl glucosinolate 35: 221– 224, 232 Benzyladenine binding to ribosomes 5: 65 Benzylamino purine (BAP) 34: 73 Bepridil 22: 71, 72, 73 Berberis 22: 165, 215 Bermuda grass, nutrient effects on leaf spot disease 10: 225 Bertholletia excelsa 25: 52 Bertholletia excelsa, excelsin 27: 29 Beta 24: 319; 25: 346, 354, 356, 357 Beta vulgaris 19: 114; 25: 183, 268–270, 272, 307– 310, 312, 322, 344, 402, 405; 28: 75; 29: 124, 132; 32: 213, 463
50
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Beta vulgaris (continued) adenosine triphosphatases 7: 205 DNA analysis 6: 125 effect of sodium and potassium on enzymes 7: 123 effect of sodium on growth 7: 158, 160, 164 invertase 8: 116, 117 phenolase 8: 38, 39 sodium content of seeds 7: 142, 143 Beta, apoplastic phloem unloading 5: 197 Betacyanin 37: 41, 50, 149 beta-glucuronidase (GUS) reporter gene 29: 61 Betaine nitrogen storage 6: 10 Betalains 25: 142; 37: 110 Betanin 37: 40, 41 Betula 2: 61; 37: 97 Betula lutea (yellow birch) 18: 9 Betula papyrifera (paper birch) 18: 15 Betula pendula (European white birch) 18: 9, 15, 16, 90, 96 canopies 18: 101 SO2/NO2 exposures 18: 45 Betula pendula 19: 142; 22: 259; 31: 14, 29; 37: 108 Betula populifolia (gray birch) 18: 9 Betula pubescens var. tortuosa (mountain birch) 33: 7 Betulaceae 37: 47, 153 Betulaceae, Early Tertiary 17: 40, 41 Beyeria B. viscosa glandular hairs 6: 291, 295, 296 resin accumulation 6: 302 resin secretion and leaf anatomy 6: 290, 291, 303, 304 resin synthesis 6: 304 terpenoids 6: 290 resin synthesis in tissue culture 6: 307 surface resins and leaf reflectance 6: 308 b-Fructofuranosidase see Plant invertases b-Galactosidase 24: 45 b-Glucuronidase (GUS) 24: 45, 58; 28: 94, 97; 35: 130 b-hydroxyalkenyl glucosinolates 35: 215 Bialaphos 34: 75, 265
Bicarbonate in soil 29: 4, 22 toxicity 29: 11 – 13 Bicarbonate see carbon, as HCO2 3 Biddulphia aurita, blue-light effects 10: 172 Bidens 22: 166; 31: 13 Bifrenaria harrisoniae, post-pollination phenomena 7: 587 Bighorn Basin (USA), Early Tertiary 17: 56, 57Bryophytes Early Tertiary 17: 13 Bignonia 22: 165 Bignoniaceae 37: 45s Bilayers, reactions with OsO4 3: 11, 12, see also Lipids Biliverdin reductase 35: 28 Binding protein (BiP) 25: 29, 130, 131 Bioassay-driven discovery strategies 31: 134, 135 Bioassays for gibberellins 9: 60 –68, 128, 129, 132– 140 ‘biochemical partitioning of resources’ 33: 20 Biocontrol of soil-borne pathogens 26: 1 – 134 see also Plant defence proteins antagonist applications 26: 50 – 80 cuttings/roots 26: 66, 67 inoculation 26: 74 –80 screening 26: 69, 74, 80 seed/bulb/tuber 26: 51 – 55 selection 26: 68, 70 – 73 soil/growing media 26: 56 – 65 commercial antagonists 26: 7, 9, 69, 70 – 73, 81 direct action modes 26: 19 – 38 antibiotic production 26: 20, 25 – 32 infection site competition 26: 20, 21 iron competition 26: 23 – 25 nutrient competition 26: 21, 22 parasitism 26: 20, 32 – 38 plant residues competition 26: 22, 23 volatiles competition 26: 22 ecological considerations 26: 2, 3 – 19 chemical fumigation 26: 16 composts 26: 12 –14 crop rotation 26: 14, 15 fauna 26: 17 – 19, 81, 82
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
fertilizers 26: 15 flooding 26: 15 fungicides 26: 16, 17 heat treatment 26: 15, 16 mixed cropping 26: 15 monoculture 26: 9– 11 organic amendments 26: 11, 12 suppressive soils 26: 4 –9, 69 future approaches 26: 80 – 84 indirect action modes 26: 20, 38 – 47 cross protection and induced resistance 26: 20, 38 – 41 growth promotion 26: 20, 24, 25, 41 –47 registration 26: 81 rhizosphere competence 26: 47 –49 Biodiversity 21: 82, 89 – 91, 95 Bioenergetic circuits 28: 5 Biofin, effect on orchids in culture 7: 468 Biofumigation 35: 246 Biogenic isoprene rule 31: 93 Biogeochemistry 24: 179 Bioindication air pollution prediction 18: 86 – 101 anatomical/morphological analysis 18: 98, 99 endogenous elements 18: 92, 93 endogenous enzyme activity 18: 94, 95 endogenous metabolites 18: 93, 94 genetic analysis 18: 99 resistant plant selection 18: 104 Bioinformatics definition of 32: 45 Biolog GN Microplate system 23: 11 BIOLOG plate technique 29: 25 Biological control 21: 67 – 70, 132–137, 141 Biological species concept 35: 176, 177 Biomass assimilation, UV radiation 22: 141, 142 Biomass estimation 24: 289– 293 Biomass measurement in planta 24: 45 – 47 Biomass retention 25: 60 Biomes Amax (photosynthesis), predicted/observed 20: 15 Holdridge classification 20: 10 –14, 24, 25 soil C and N, and Amax, 20: 12, 13
51
temperature, irradiance, and water vapour deficit limitations 20: 24 – 33 Biometric methods 6: 260, 261 Biopriming 26: 80 Biosynthesis 31: 126– 128; 37: 55 – 71 capacity increase approaches 31: 139, 140 chemotaxonomy 31: 168, 169 plastids 31: 127 Biosynthesis of membranes 3: 45, 46 Biosynthetic pathway 25: 3 Biosystematics apogamy 6: 252, 253 aspory 6: 252, 253 biometric methods 6: 260, 261 breeding systems 6: 245– 248 definition 6: 244 diplospory 6: 252, 253 genetics 6: 245 hybridity 6: 250, 251 phyto chemistry 6: 259 Biosystematics of ferns introgression 4: 377, 378 apomixis 4: 387– 399 breeding systems 4: 378– 387 cytogenetics and species interrelationships in temperate ferns 4: 337– 371 in tropical ferns 4: 371– 377 genome analysis 4: 330– 337 Biotechnology impact of 34: 289– 297 overview and prospects 34: 301– 306 Biotechnology 21: 87; 35: 55 Biotechnology, legume seed storage "proteins 27: 56 – 69 Biotic elicitors 19: 21 Biotic stresses 19: 133– 235 Biotoxins 12: 48; 27: 213–227 microcystins and nodularins 27: 220– 227 neurotoxins 27: 216– 220 Biotransformation 13: 160– 164 Biotrophic fungal parasites 24: 195– 225 Biotrophic pathogens 24: 312 Biotrophic plant pathogenic fungi, growth habits 24: 312 Biotroph-invaded cells 24: 210– 218 Biotrophs 4: 2,3
52
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Biotrophy, strategy for 24: 311– 313 BiP 38: 69, 76 Birch 22: 264, see Betula pendula Birthrates 21: 83, 84, 92 Bisulphite 18: 78, 97 Bithorax complex (BX-C) 28: 184 Bjerkandera adjusta ammonium sulphamate treatment 7: 414 antagonism between synthesized dikaryons 7: 365 interspecific 7: 398 intraspecific 7: 351, 354, 356 competitive ability in culture 7: 388– 391, 393, 396, 403 di-mon matings 7: 369 fungal replacement 7: 400, 401 sporophore morphology 7: 361 wood colonization 7: 337, 357, 416, 383, 408 1BL/1RS wheat rye translocation 34: 29 Black oak (Quercus velutina) 18: 71 Black rot fungus and phytoalexin synthesis 14: 83, 84 “Black Valentine” cv. 18: 9 Blackcurrant 19: 121 Blackcurrent associated reversion virus 36: 200 Blackgram mottle virus (BmoV) 36: 107 Bladder cell 31: 39, 40 Blasia 19: 265, 267, 293 Blasia pusilla 19: 275 Blast 21: 158– 160 BLAST, see Basic Logical Alignment Search Tool Blasticidin S 19: 24 Blastocladiella 24: 357 Blastocladiella emersonii, phosphorus content 8: 141, 147 Blastodinium 12: 232 “Blaze” cv. 18: 10 Bleaching 35: 33, 34 Blechnum aneuploidy 4: 301 fossil record 4: 235 vegetative apomixis 4: 399 Blechnum, water content, NMR studies 20: 86
Bletia sheperdii, seed morphology 7: 426 Bletilla flowering period 7: 542 post-pollination phenomena 7: 578 seed germination 7: 424, 442 Blight fungus 21: 2 Blindia 19: 251 Blindia acuta 19: 264 Bloch equations 20: 54, 57 Blood flow 11: 60 – 62 BLOSUM (BLOCKS substitution matrix) 32: 49, 50 Blue blindness 18: 290 Blue light 33: 65 – 67 Blue light signal transduction pathway 29: 65 – 67 Blue mould, age-related resistance to 38: 269 Blue/UV-a photoreceptor 22: 105– 107, 110 Blue-green algae, sodium requirement 7: 144–146 Blue-light effects in algae 10: 172 Bn-NCC –1 25: 99, 100 Bn-NCC-1 and Bn-NCC-2 35: 13, 17 Bn-NCC –2 25: 99 Bn-NCC –3 25: 99 Bolusiella, flowering period 7: 538 Bombaceae 37: 43 ‘Bona fide endophytism’ 33: 23 Bondapak separation of gibberellins, 9: 57, 58 Bootstrapping 32: 53 Borago spp. sites of nitrogen assimilation 6: 8 Borassoideae, inflorescence 3: 274, 276 Bordeaux mixture and control of plant disease 10: 229, 238 Boreal forests 18: 81 Bornane 31: 78, 79, 85, 102 Borneol 31: 130 Bornyl diphosphate synthase 31: 100, 102 Boron biochemistry of deficiency 10: 241 effect on plant infection 10: 238– 243 Boron deficiency 37: 110 Boron in soil 29: 4, 20, 21 Borosilicate glass 18: 259
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Borrelia burgdorferi 36: 131 Bos taurus 28: 13 Boscia 35: 245 Bostrichia sp., photosynthesis 27: 174 Bostrychia 35: 174, 191, 194 Bostrychia bispora 35: 180 Bostrychia moritziana 35: 180, 194 Bostrychia radicans 35: 194 Bothrops jararaca 24: 101 Botrychium, cytology 4: 285 Botryosphaeria dothidea 33: 26 Botrytis cinerea 21: 23; 24: 124– 126; 35: 246 Botrytis species 30: 293 Botrytis, effect of calcium on infection 10: 228 Botrytis, wood colonization 7: 416 Boundary layer conductance 18: 215, 219, 220, 225, 228, 229 convection 18: 211 heat flux 18: 214 laminar 18: 211, 212, 215, 216 structure 18: 211–213 turbulent 18: 211, 212, 216 wind and energy transfer 18: 210– 215 Boundary layer measurement 4: 154 Bovine serum albumin, use as a cryo-protective agent 5: 20 Bowen ratio method 18: 197 Bowenia chromosome constitution 6: 172 Bowman-Birk inhibitors 26: 140, 160, 161, 166, 172 Boykinia 38: 293, 296 Boyle-Van’t Hoff equation 14: 153, 154 BP-80 25: 52; 35: 149– 153 b-pinene 31: 99, 100 Brachystegia 37: 104, 107, 116 Brachystegia spiciformi 37: 174 Brachytheciaceae cytotaxonomy 6: 243 Brachythecium 19: 251 B. rivulare aneuploidy 6: 220 cultivation experiments 6: 256
53
B. velutinum chromosome lengths 6: 228 meiotic abnormalities 6: 216 biometric investigation 6: 260 cultivation experiments 6: 253 cytotaxonomy 6: 242 Brachythecium velutinum 19: 251 Bract 3: 270 reduction in number, palms 3: 274–276 Bracteole 3: 270 Bradyrhizobium 24: 336 Bradyrhizobium japonicum 18: 148, 153, 162; 28: 13 Branching 31: 202, 248– 252 genetic analysis 31: 202, 248– 251 molecular analysis 31: 251, 252 Branching, monocotyledons and vascular development 3: 260– 265 axillary 3: 262–264 axillary, and apical dominance 3: 264, 265 dichotomous 3: 260– 262 in inflorescence, palms 3: 262 lateral inflorescence, palms 3: 262 in inflorescence 3: 269– 273 reduction, palm inflorescence 3: 274 Brassavola cordata, seed morphology 7: 427 Brassia, pollination 7: 553 Brassica 21: 66; 24: 319, 320, 422; 28: 165, 171, 215, 240; 32: 21, 43, 214, 226, 248, 254, 258, 259, 269– 274, 278, 281– 284, 286– 288, 291; 33: 164; 35: 66, 68, 73, 113, 214, 232, 233, 236, 237, 243, 245, 246; 38: 237 B. napus volumetric elastic modulus 6: 79 development of low-glucosinolate oilseed rape 35: 234, 235 enhancing glycosinolates in broccoli 35: 235 genetic modification of glucosinolates 35: 236 gibberellin metabolism 6: 311 glucosinolates in 35: 224, 225 Mendelian genes regulating chain "structure 35: 233, 234
54
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Brassica arabidopsis 32: 287 Brassica campestris 28: 234; 30: 247; 32: 471, 473; 35: 221, 227, 233 Brassica juncea 33: 184, 205; 35: 221, 224, 233 Brassica MOD gene 32: 284 Brassica napus 22: 115; 24: 40, 41, 421; 25: 405; 29: 58; 30: 31, 94, 216; 32: 70, 235, 274, 278, 279, 282, 283; 34: 249, 251; 35: 61 – 63, 66, 68 –74, 78 –80, 83, 84, 89, 221, 233, 235, 237, 240, 244; 38: 110, 263 LTRE in 34: 249 occurrence of circular vessels 9: 208 vascular differentiation induced by auxin 9: 168, 175 polarity changes 9: 196 Brassica napus (oil seed rape) 31: 229; 33: 144, 163, 183 Brassica napus L. subsp. oleifera 24: 33, 46 Brassica napus, cruciferin 27: 30 Brassica nigra 18: 88, 94, 280; 35: 221, 233; 38: 241 Brassica oleracea 24: 38, 262, 265; 28: 13; 29: 159; 30: 213, 242; 32: 35, 226, 230, 272, 282, 286, 288, 392; 35: 113, 221, 224, 228, 233, 235, 244 Brassica oleracea var. botrytis 25: 16 Brassica oleracea var. italica 35: 221 Brassica oleracea, effect of sodium on growth 7: 161, 166 Brassica oleracea, plasmodesmata 5: 196 Brassica rapa 32: 282, 288; 35: 221, 233, 236 Brassica S 32: 272 Brassica SLG gene 32: 285, 287 Brassica villosa 35: 235 Brassica, lignin biosynthesis 8: 43 – 45 Brassicaceae 21: 174; 37: 69 Brassicaceae, see individual species name Brassicae 30: 94, 102, 215, 247, 248 see also individual species name Brassicas 22: 29 – 30 Brassinosteroid signaling 32: 235– 237 Brassinosteroids 32: 255; 35: 87 Brassocattleya, seed germination 7: 472
Brassolaelia, post-pollination phenomena 7: 583, 585 Brassolaeliocattleya cv. Maunalani, carbon fixation 7: 522, 528 Breeding cycle of fruit trees 2: 258 Breeding systems in ferns homoeologous pairing 4: 381– 387 incompatibility 4: 379– 381 Brefeldin A (BFA) 25: 6, 55 Bremia 24: 322, 354 Bremia lactucae 24: 18, 80, 172, 266 Brevibacterium ammoniogenes, respiratory control 4: 96 Brevicoryne brassicae 36: 12 BRI1 gene 32: 4, 19, 22, 235, 236, 245, 260 Briggs-Haldane/Michaelis-Menten relationship 11: 76, 77, 79 Brine shimp and Dunaliella 14: 100 Broad bean, see Vicia faba Broadbean true mosaic virus 36: 104 Broadleaved trees 18: 33, 48 Brome mosaic virus (BMV) 36: 28, 106, 201 Brome mosaic virus 21: 114, 117 Bromelia, growth 3: 222 Bromeliaceae growth 3: 224, 226 inflorescence 3: 267– 270 leaf 3: 213 stomata 3: 284– 286 vascular construction 3: 246 Bromeliaceae 31: 14, 26 Bromeliads, carbon dioxide recycling in 15: 79 – 81 Bromheadia promeristem development 7: 484 stomatal rhythm 7: 521 Bromoaplysiatoxin 12: 80 Bromopsis benekenii 29: 9 Bromopsis erecta 29: 18 Bromoviridae 36: 3 Bromovirus 36: 101 Bromus 33: 245 Bromus diandrus 33: 236 Bromus erecta Bronowski block 35: 234, 235 Bronzing 18: 92 Brown algae 19: 210
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Brownian motion 11: 14 Bruchia B. drummondii interspecific polyploidy 6: 210 B. ravenelii interspecific polyploidy 6: 210 cytotaxonomy 6: 242 Bryales 19: 249– 253 Bryidae 19: 243 –245 Bryoceae genetics 6: 246 micro-chromosomes 6: 225– 230 Bryophyllum daigremontianum, identification of gibberellins 9: 43 Bryophyllum tubiflorum, effect of sodium on carboxylation 7: 200, 202, 208 on growth 7: 125, 159, 168– 170, 197, 199, 209 Bryophyta, C3 + C1 carboxylases 27: 97 Bryophytes 1: 8, 13, 153, 156, 157, 167 Bryophytes 19: 233, 234– 283 gametogenesis 16: 59 – 63 oogenesis 16: 59 – 63 spermatogenesis 16: 59 life cycles, aberrant induced 16: 73 – 75 natural 16: 70 placenta in 19: 283– 295 sporogenesis 16: 65 sporophyte/gametophyte shift, and apospory 16: 82, 83 Bryopsida chromosome numbers 6: 199, 200, 204, 208 interspecific polyploidy 6: 210 intraspecific polyploidy 6: 211 Bryopsis maxima 11: 91 Bryopsis sp., CO2 transport 27: 136 Bryopteris 19: 257 Bryum 19: 245, 251, 257, 287 Bryum bimum B. capillare interspecific polypoidy 6: 210 B. intermedium aneuploidy 6: 220 genetics 6: 248 Bryum capillare 19: 263
55
BSA see bovine serum albumin BTC dye 22: 53, 55 Bubonic plague model dynamics 38: 29 Buchnera 36: 28, 30– 32, 75 Buckleya 38: 292 Bud break 22: 166 Buffer coatings 18: 262 Bufo marinus 28: 13 Bulbochaete hiloensis, plasmodesmata 5: 160, 161 Bulbophyllum flowering period 7: 536– 541 post-pollination phenomena 7: 580 Bulbs, disease biocontrol 26: 51 – 55 Bulk elastic modulus determination pressure bomb method 6: 79, 85 – 87 vapour pressure equilibrium method 6: 79, 85, 86 Bulked segregant analysis (BSA) 34: 45 Buller phenomenon, in wood-decaying Basidiomycetes 7: 365– 372 Bumilleriopsis filiformis fluorescence spectra 10: 100 photosynthetic electron donor 10: 88 Bunyaviridae 36: 115, 116, 128 Bunyavirus 36: 116 Buoyancy 25: 75 – 78 Burmanniaceae 22: 13 “Bush Blue Lake 274” cv. 18: 72 3-butenyl glucosinolate 35: 221, 224, 228, 230, 232– 234, 244, 246 3-butenyl isothiocyanate 35: 244 Butomopsis 28: 251 4-butyl glucosinolates 35: 230 Buxbaumia 19: 251 Buxbaumia piperi 19: 249 Buxbaumiales 19: 287 Buxus sempervirens 37: 41 BVP1 25: 309– 311 BVP2 25: 309– 311 Bymovirus 36: 59, 70 Byttneria aculeata 37: 8 bz1 and bz2 mutant genes (maize) 37: 65, 66, 68 Bz1 gene (maize) 37: 65 Bz2 gene (maize) 37: 57, 59, 65
56
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
C. aucale, carbon fixation 7: 524, 528 C. aurantiaca carbohydrate metabolism 7: 450, 453, 454, 456, 457 chlorophyll level 7: 478, 479 development 7: 484 –486 effect of hormones 7: 459, 463 seed ultrastructure 7: 438, 439, 441 C. autumnalis, carbon fixation 7: 523 C. barbatum, seed morphology 7: 425 C. bicolor, carbon fixation 7: 523 C. bicolor, seed morphology 7: 426 C. blumei, procambium structure 9: 155 C. bowringiana carbohydrate content 7: 605, 606 carbon fixation 7: 528 leaf anatomy 7: 532 longevity of flowers 7: 543 respiration 7: 612 C. cactoides light harvesting by siphonoxanthin 10: 72, 108 photosystem complexes 10: 85, 89 C. calceolus culture 7: 442, 464, 465 germination 7: 473 C. calcitrans 11: 113 C. canaliculatum, protocorm-fungal interaction 7: 499, 500 C. chinense, carbon fixation 7: 524 C. closterium 11: 113 C. crispa v. purpurea, seed morphology 7: 427 C. cv. Bow Bells, carbon fixation 7: 523, 528 C. cv. Chelsea, carbon fixation 7: 534, 549 C. cv. Dupreana, longevity of flowers 7: 543 C. cv. Enid endogenous auxins 7: 569 longevity of flowers 7: 543 C. cv. In Memorium, effect of cytokinin 7: 463 C. cv. Independence Day, carbon fixation 7: 524, 531, 549 C. cv. Samarkand, effect of ethylene 7: 620 C. cv. “Sicily Grandee”, flowering period 7: 544
C. cv. Veitchii, longevity of flowers 7: 542 C. discolor isolation of fungus 7: 490 longevity of flowers 7: 569 C. ellipsoida, chlorophyll a/b-carotene ratio 10: 77 C. fimbriatum, carbon fixation 7: 523, 528 C. finlaysonianum post-pollination phenomena 7: 594 symbiotic specificity 7: 496 C. forbesii, carbon fixation 7: 523 C. forbesii, seed morphology 7: 427 C. fragile carotene type 10: 54 morphology and light harvesting 10: 28 photosystem reaction centre complex 10: 89 siphonaxanthin 10: 108 C. fusca chlorophyll-protein complex 10: 106, 107 photosystem reaction centre "complexes 10: 80, 89 C. gayana decarboxylation system 7: 197 response to sodium 7: 162, 163, 171 C. gigas, carbon fixation 7: 523 C. goeringii germination 7: 472 nitrogen metabolism 7: 447 C. hamata, flowering period 7: 535, 539, 541, 547 C. harrissonii, seed morphology 7: 427 C. insigne, effect of hormones 7: 463, 623 C. intermedia, carbon fixation 7: 523 C. kanran, effect of hormones 7: 459, 464 C. labiata carbohydrate content 7: 604 carbon fixation 7: 523, 528 longevity of flowers 7: 543 nitrogen content 7: 599, 604 C. lobata, seed morphology 7: 425 C. loddigesii, carbon fixation 7: 523 C. loddigesii, seed morphology 7: 427 C. lowianum carbohydrates 7: 604– 606, 607 enzymes 7: 614 floral respiration 7: 612, 613
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
C. lowianum cv. “Yorktown”, carbon fixation 7: 524 C. lueddemanniana, effect of ethylene 7: 623 C. macrorhizus, phosphorus and cell development 8: 197 C. maculata, interaction with rhizoctonia 7: 498 C. madidum, effect of auxin 7: 459 C. marina effect of potassium on growth 7: 149 effect of sodium on growth 7: 148, 149 C. massangeana, carbon fixation 7: 523, 529 C. mayeriana, carbon fixation 7: 524, 528, 529 C. mendelii, longevity of flowers 7: 543 C. mooreana, respiration 7: 612 C. mossiae, carbon fixation 7: 523 C. mundana, electron donor to P700 10: 88 C. obscurum fungal-protocorm interaction 7: 499 symbiotic specificity 7: 496 C. odontorrhizon, seed morphology 7: 426 C. odoratum enzymes of ammonia assimilation 6: 23 C. orobanchoides, seed morphology 7: 426 C. pachyrrhizum, carbon fixation 7: 530 C. pepo, see C. maxima C. percivaliana, longevity of flowers 7: 543 C. pumilum, nitrogen metabolism 7: 447 C. punctatum, post-pollination phenomena 7: 593, 594 C. pyrenoidosa, shading effects 10: 156 C. reginae culture 7: 464, 467, 470 germination 7: 473 C. reinhardtii absorption spectra 10: 97, 100 analysis of chlorophyll-protein "complex 10: 105, 106 chloroplast membrane fractionation 10: 104 photosystem reaction centre "complexes 10: 78, 80, 84, 86, 89, 91 –94 C. rochussenii, carbon fixation 7: 524, 528, 529 C. rosea, longevity of flowering 7: 542 C. rufescens, shading effects 10: 157
57
C. schroederae, longevity of flowers 7: 544 C. sinense carbon fixation 7: 524, 529 seed morphology 7: 427 C. skinneri carbon fixation 7: 523 longevity of flowers 7: 544 C. sp. indet, fungal-protocorm interaction 7: 499 C. speciosa, longevity of flowers 7: 569 post-pollination phenomena 7: 593, 604 C. speciosa, pollination 7: 560 seed morphology 7: 435 C. sphaerosporum, symbiotic specificity 7: 496 C. sterigmaticus, orchid endophyte 7: 492 C. tigrina, seed morphology 7: 426 C. tracyanum carbohydrates 7: 605, 606 post-pollination phenomena 7: 594, 599, 604 C. trianae carbon fixation 7: 523 longevity of flowers 7: 544 symbiotic specificity 7: 496 C. trianaei, seed morphology 7: 425 C. trifida, ultrastructure 7: 501 C. tropicalis phosphate uptake 8: 163, 168, 170, 191 phosphorus content 8: 131, 136 C. utilis, phosphate 8: 131, 136, 149 C. veratrifolia, seed morphology 7: 426 C. versicolor antagonism between synthesized dikaryons 7: 364, 365 di-mon matings 7: 365– 372 genetics of intraspecific antagonism 7: 359– 372 intraspecific antagonism 7: 356, 360– 362 population genetics 7: 352– 354 vegetative characteristics 7: 339 vegetative incompatibility 7: 349– 351 C. vestita carbon fixation 7: 522, 528 longevity of flowers 7: 543 C. virescens effect of hormones 7: 459, 464
58
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
C. virescens (continued) flowering period 7: 544, 569 germination 7: 443 C. viridi purpurea, seed morphology 7: 427 longevity of flowers 7: 569 C. vulgaris fluorescence spectra 10: 100, 137 photosynthetic rate 10: 151 quantum efficiency 10: 152 reaction centre electron acceptor 10: 93 C. walkeriana, carbon fixation 7: 523 C. warneri, carbon fixation 7: 523 C. warscewiczii, flowering period 7: 544 effect of vitamins in culture 7: 468 germination 7: 472 longevity of flowers 7: 568, 569 post-pollination phenomena 7: 572, 622 resupination 7: 554 stomatal rhythm 7: 521 C2H2, see Ethylene C3 photosynthetic pathway, and sodium requirement 7: 126, 169– 171 C4 dicarboxylic acid photosynthetic chloroplast membranes ATPase activity 7: 67, 68 structure 7: 16 – 18, 97 pathway species and sodium effect on growth 7: 157–160, 162, 163– 166, 169 effect on physiology and metabolism 7: 186– 207 requirement 7: 125, 126 role 7: 207– 212 protoplast preparation 7: 55 C4 photosynthesis 38: 119–124 C4 plants 38: 141– 143 NADP/NAD – malic enzyme type 38: 143 PEPCK/NAD – malic enzyme type 38: 141, 142 PEPCK/NADP –malic enzyme type 38: 142, 143 C4 plants, photosynthesis 26: 251– 316 C4 syndrome 26: 251– 268 bundle-sheath and mesophyll co-"operation 26: 254, 259– 265 see also regulation below bundle-sheath organelles 26: 267, 268 CO2 leakage 26: 262– 265
mesophyll chloroplasts 26: 265, 266, 268 metabolite gradients 26: 261, 262 metabolite transport 26: 259–268 pathway evolution 26: 254, 255 pathway subtypes 26: 256–258 plasmodesmatal frequency 26: 259 suberized lamella 26: 263 photorespiration 26: 290– 293 regulation 26: 268–297 aminotransferases 26: 282– 284 carbonic anhydrase 26: 271 carboxylation in mesophyll 26: 271–282 decarboxylation in bundle-"sheath 26: 285– 293 future studies 26: 295– 297 NAD– malic enzyme 26: 287, 288 NADP – malate dehydrogenase 26: 281– 284 NADP-malic enzyme 26: 285, 286 PEP carboxylase 26: 271– 276, 297 Phosphoenolpyruvate carboxykinase 26: 288, 289 pyruvate Pi dikinase 26: 277– 281 Rubisco 26: 290, 295, 296 starch synthesis 26: 293, 294 Ca2+ 18: 82 Ca2+ channels, depolarizationactivated 25: 235, 236 Ca2+ concentration 19: 36, 53, 54 Ca2+-induced Ca2+ release (CICR) 25: 243 CAB genes 29: 58, genes 29: 61 – 63 Cabbage leaf curl virus (CaLCV) 36: 81 Cabbage, sodium content of seed 7: 142, 143 Cabbages, leaf fracture properties 17: 267 Cacao swollen shoot virus 36: 199 Cactaceae 33: 58 a-cadinol 31: 131 Cadmium 22: 72, 146 Cadmium pollution 33: 197 Cadmium, effect on plant disease 10: 263, 264 cADPR function 25: 240, 241 ligand and voltage gating 25: 239, 240 permeation 25: 240
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
pharmacology 25: 240 selectivity 25: 240 Caenorhabditis albicans 32: 337 Caenorhabditis communis 32: 464 Caenorhabditis elegans 28: 13; 32: 304; 32: 2, 34, 55, 60; 34: 101 Caenorhabditis elegans, TEs 27: 360, 407 Caenorhabditis fulvum 32: 258 Caesium 22: 72 Caesium, potential as a probe 20: 106 Caffeic acid 21: 48 Caffeine 22: 75, 78; 30: 118, 119 see also decaflinated beverages, Camellia spp., Coffea spp. biosynthesis concentrations of intermediates of 30: 148, 150 from purine nucleotides 30: 157– 166 light and its effect on 30: 172, 173 methyl group donors in 30: 145– 147 routes of 30: 143– 145 sequence of methylation 30: 147– 151 tissue age and 30: 167– 172 catabolism of 30: 174, 175 variation in mechanisms 30: 175– 185 degradation 30: 186– 188 plants containing 30: 121– 123 production 30: 186– 188 subcellular distribution of 30: 150 synthase 30: 153– 156, 173, 191 Cainozoic, see Early Tertiary Cajanus cajan 29: 45 crop protein yield 9: 2 Calamus, growth 3: 217 Calanthe amethustina, seed morphology 7: 426 Calcineurin 32: 74, 80, 83– 85, 88, 89, 466 Calcium 11: 162– 166; 25: 406, 407; 32: 10 – 13, 185– 188, 447, 448 Crimson dye 22: 53 disturbed, in young tissues 29: 137, 138 effects on plasma membrane and cytosolic processes 29: 22 – 24 Green dye 22: 53, 54, 55, 56 in interactions between signalling pathways 29: 68 in soil 29: 2, 4, 14 – 17
59
induced calcium release 22: 79 – 82 influx across plasma membrane 29: 97 – 101 influx factor (CIF) 22: 82, 83 ions 21: 62 – 64, 110 ions, intracellular second messengers 22: 45 – 88 homeostatic apparatus 22: 69– 83 measurement of stimulus-induced changes in calcium 22: 68, 69 problem of specificity 22: 84 – 87 Orange dye 22: 53 recirculation in the shoot 29: 155, 156 release activated calcium channel (CRAC) 22: 83 salinization, transport and 29: 157, 158 signal transmission 22: 177, 180, 187 ‘signature’ 22: 85 – 87 soil management 21: 69, 70 translocation to the shoot 29: 129– 131 transport in growing shoot tissues 29: 144 UV radiation 22: 107, 108, 109 water and nitrogen supply 22: 280, 283, 284, 287 Calcium carbonate precipitation, extra/ intracellular, marine autotrophs 27: 171– 173 Calcium content, suppressive soils 26: 6 Calcium ion permeable channels 29: 5 Calcium ions and eye light adaptation 15: 13 in gravity perception 15: 14, 15, 37 translocation 15: 9, 10, 11 Calcium ions and Dunaliella growth 14: 108 Calcium, effect on plant disease 10: 228, 241 Calcium-dependent protein kinase (CDPK) 32: 7, 10 – 13, 48, 156, 186– 188, 406, 436, 443 activity in plants 32: 188–191 genes 32: 191– 204 expression regulation 32: 207– 211 related kinases (CRKs) 32: 204– 207 substrates 32: 211– 214 Calendula officinalis 31: 24, 25 California aster yellows (SAY) 21: 191– 193 “California Wonder” cv. 18: 80 Callistephus chinensis 12: 138, 142
60
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Callithamnion roseum phycobiliproteins 10: 65 shading effects 10: 161 Callitriche heterophylla 28: 174 Callose 19: 36; 21: 4, 13 fungal 21: 37, 44, 45, 56, 150, 164, 167 biological control 21: 67 molecular aspects 21: 59, 60, 62, 64 virus infection 21: 107, 111 Callose, staining of phloem 9: 231 Calluna vulgaris 37: 112 nitrate reductase activity 6: 22 Calmodulin 21: 64, 110; 22: 81, 83, 87, 108, 109; 32: 3, 8, 10 – 13, 56, 70, 72, 76, 82 – 84, 88, 151, 159, 186– 188, 190– 192, 198, 199, 204, 205, 330, 339, 362, 365, 406, 436, 443, 460, 464– 471 Calmodulin and gravity 15: 15, 16 Calobryales 19: 255, 269, 289, 293 Calobryales karyotypes 6: 240 Calobryum 19: 269 C. rotundifolium origin of polyploidy 6: 216 macro-evolution 6: 267 Calobryum blumei 19: 253, 269, 285, 286 Calobryum indictum Udar et Chandra 19: 253– 255 Calocedrus decurrens 33: 16 Caloda delevoryana, Cretaceous fossils 17: 112 Caloglossa 35: 174 Caloglossa leprieurii 35: 175, 177, 191, 192 Calonyction gladiata, presence of gibberellins 9: 41 Calopogon, promeristem development 7: 484 ‘Calorigen’ 20: 199 Calothrix gas vacuole 13: 81 Calothrix scopulorum, effect of sodium on release of nitrogen 7: 214 Calothrix sp., phycocyanins 27: 305, 306 Calreticulin 32: 454 Calvin cycle enzymes 18: 92 Calvin cycle, UV radiation 22: 141 Calycanthaceae 31: 58 Calycanthus 38: 293, 296
Calyculin, protein phosphatase "inhibition 27: 224, 226 Calypogeia genetics 6: 246 origin of polyploidy 6: 216 Calypogeia granulata culture 13: 166 Calypso bulbosa culture 7: 470 seed morphology 7: 434 Calyptrochilum, flowering period 7: 540 CAM plants, malate synthesis 20: 94 Camalexin 21: 23; 38: 265 Camarosporium 33: 6 Cambium, developmental processes dyna"mic aspects of cambium conclusions 9: 221, 222 introduction 9: 218 relations between cambial initials 9: 218, 219 responses of cambium to inductive signals 9: 219– 221 quantitative controls of cambial activity conclusions 9: 215, 216 introduction 9: 211– 213 magnitude of wound effect 9: 213– 215 ray formation control 9: 223– 227 introduction 9: 222 pattern of the rays 9: 222, 223 radial limitations of cambial grafts 9: 227, 228 summary 9: 210, 211 Camellia 30: 118, 120– 122 Camelina sativa 35: 221 Camellia assamica 30: 120, 122 Camellia irrawadiensis 30: 120, 166, 175, 186 Camellia ptilophylla 30: 154, 166, 167, 185, 187 Camellia sinensis 29: 8; 30: 119, 145, 146, 150, 154, 158, 167– 171, 176, 177, 183– 187, 189, 190 CAMP 24: 78 cAMP 25: 427 C-AMP regulatory element (CRE) 38: 112 CREB 112
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Campanula formation of chromosome iso rings 6: 146 Camphane 31: 102 Camphene synthase 31: 100 Campholenal 31: 130 Camponotus pennsylvanicus 21: 134 pennsylvanicus ferruginia 21: 134, 135 Campsis 38: 295 Campylocentrum fasciola, carbon fixation 7: 530 Campylomonas 19: 208 CaMV 35S promoter 34: 93 “Canadian Wonder” 18: 45 Canalization 38: 211 Canavalia ensiformis see also Legume seed storage proteins; Vicilin vicilin 27: 19 – 21 Canavalia ensiformis, urease storage 9: 4 Candida 12: 73; 33: 28 Candida albicans 28: 13, 27, 138; 32: 337; 33: 28 phosphatase 8: 193 phosphomannan 8: 139 Candida lipolytica, effect of phytoalexin on growth 7: 516, 518 Canker 21: 128– 137, 139, 141– 143 Cannabaceae 31: 11, 58, 157 Cannabinoids 31: 135 Cannabis secretion of cannabidiol 6: 304 Cannabis sativa 28: 200; 30: 218; 31: 15, 16, 18, 26, 59, 135 Cannabis sativa culture 13: 160 Cannabis sativa, edestin 27: 29, 30, 52 Cannaceae growth 3: 221, 222 influorescence 3: 278 Canonical correlation 21: 235 Canopy dominant algae and light "harvesting 10: 21, 22, 28 Canopy gas exchange, NPP model 26: 199– 202, 204– 206, 210, 212, 213, 215, 218 Cantharidin, Mylabris sp. 27: 226
61
Cap cell 31: 40, 41 Capacitative calcium entry 22: 82, 83 Capillary electrophoresis 31: 163 Capillary gel electrophoresis 34: 6 Capitate glandular trichomes 31: 2, 3, 11, 13, 58, 59, 85, 89, 165 Capparis 35: 245 Capparis spinosa 33: 74 “Capri” 18: 74 CAPRICE (CPC) 31: 198, 199, 210, 229 Caprifoliaceae 37: 47, 153 Capsaicin production 13: 162– 164 Capsella 19: 305, 306; 38: 242 Capsella bursa-pastoris DNA analysis 6: 125 Capsella rubella 38: 237, 239, 241 Capsicein 21: 164; 22: 174 Capsicum annuum (green pepper) 18: 80; 29: 130, 152; 30: 66; 37: 104, 108 C. fruitescence volumetric elastic modulus 6: 78 hydraulic conductivity 6: 96 volumetric elastic modulus 6: 75, 78, 83 Capsicum frutescens cv. annum culture 13: 162– 164 Capsicum frutescens, modification of sex expression by gibberellins 9: 34 Capsid protein (CP), role in virus transmissibility 36: 2 – 4 Capsid proteins 21: 111 Capsidiol 21: 167 Carambola 22: 165 Carane 31: 78 Carbamoyl phosphate synthetase (CPS), properties (table) 27: 95 Carbody-DFFDA 28: 121 Carbohydrate binding by lectins 4: 22, 23 elicitors of the hypersensitive response 4: 34, 35, 37, 39 in storage protein of legume seeds 9: 6– 10 transport by lectins 4: 28, 29 transport in wounded plants 9: 214 Carbohydrate metabolism 25: 195– 215 compartmental analysis 25: 197 methodological approaches 25: 196–198 preparation of isolated vacuoles 25: 198
62
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Carbohydrate supply to root 30: 66, 67 Carbohydrates 19: 46; 21: 5, 7, 47, 48, 59, 60, 71 compartmentation and transport 25: 367– 372 in seeds 11: 125– 155 low-molecular-weight 11: 169 mutualism and parasitism 22: 8, 9, 24, 31 subcellular distribution 25: 206, 208 UV radiation 22: 121, 130, 132, 141 water and nitrogen supply 22: 238, 243, 252, 259, 263, 264 Carbohydrates in Dunaliella from photosynthesis 14: 146, 147 soluble 14: 128, 130 Carbon see also CO2 see also Marine autotrophs, inorganic carbon acquisition as HCO2 3 , conversion in vacuole of marine autotrophs 27: 166– 171 C:N, Redfield ratio 27: 98 C4 plants 27: 157 evolution of RUBISCO-based inorganic carbon acquisition 27: 102, 103, 179– 181 mechanisms of entry into cells 27: 126– 134 as CO2 27: 128– 130 as HCO2 3 27: 130– 134, 160– 165 forms 27: 126 HCO2 3 -selective ion channel 27: 169 lipid solution transport 27: 127, 128 metabolism 18: 149 –152 legume nodules 18: 144 mutants of rhizobia 18: 150 processing 18: 140– 152 bacteroid functions 18: 146– 152 host functions 18: 141– 146 transport and metabolism 18: 129– 164 uptake and mutants of rhizobia 18: 147 uptake, mechanisms of 18: 146– 148 Carbon dioxide anthropomorphic sources, impacts 27: 178, 179
concentrating mechanisms in gas exchange 27: 114–119 fixation resistances in biochemical reactions 5: 186 flux and its relationship to water flux in plants 5: 170– 181 flux in C3 pathway ‘sun’ plants 5: 185, 186 physics and chemistry of inorganic C (table) 27: 109, 110 primary and secondary active "transport 27: 128–130 role of CO2/HCO2 3 conversion in "vacuole 27: 166– 169 signal transmission 22: 171 transport of inorganic C to plasmalemma 27: 121– 126 transport to RUBISCOs from bulk "medium, marine autotrophs 27: 120– 140 UV radiation 22: 102, 142, 143, 145, 146 water and nitrogen supply 22: 235– 238, 240– 245 Carbon dioxide as carbon source 14: 106, 107 Carbon dioxide recycling and acid metabolism and environment aquatic 15: 82, 83 terrestrial 15: 79 – 82 and intermediate CAM variants 15: 74 – 76 citric vs. malic acids 15: 83 – 85 regulation 15: 64 –67 Carbon dioxide transport, across chloroplast envelope 7: 66 – 70 Carbon dioxide, global warming 21: 95 Carbon fixation mechanisms, marine "autotrophs 27: 88 – 92 Carbon fluxes and phytoplankton productivity 16: 213– 215, 230, 234 Carbon isotope studies in acid metabolism 15: 55 –64 Carbon isotopes 27: 116, 140– 159 physics and chemistry of stable "isotopes 27: 140– 144
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
values of a (kinetic fractionation) (table) 27: 142 13 12 C/ C ratios 27: 144, 145 Carbon metabolism in marine algae 11: 71 – 123 Carbon metabolism, in Paracoccus denitrificans 4: 59, 60 Carbon partitioning 32: 426, 428 cascades 32: 448, 449 defense response and 32: 379– 386 effect of light on 32: 151– 153 prevention by substrates 32: 450, 451 protein 32: 459– 473 site sequences 32: 335– 338 SPS 32: 449 Carbon see Mycorrhizal symbiosis, Water and Nitrogen supply Carbon source and Dunaliella growth carbon dioxide, and sodium chloride 14: 106, 107 inorganic 14: 110, 111 organic 14: 112 Carbonic anhydrase extracellular, marine autotrophs 27: 125, 126 Gracilaria tenuistipatata 27: 125 Carbonic anhydrase in Dunaliella 14: 111 Carbonic anhydrase, C4 plants 26: 271 Carbonyl cyanide m-chlorophenylhydrazone (CCCP) 25: 368 6-Carboxyfluorescein fluorescence 28: 136, 137 b-Carboxylases 11: 109– 113 Carboxylate 22: 274, 275 Carboxylates 30: 65, 66 Carboxylation enzymes see also RUBISCOs marine autotrophs 27: 93 – 109 range and roles 27: 93 – 101 properties (table) 27: 94 – 97 various taxa 27: 97 Carboxylation reactions effect of cell composition 27: 98 gas exchange 27: 109– 114 Carboxylation, C4 plants 26: 271– 282 Carboxypeptidase 25: 90 Carboxypeptidase Y (CPY) 25: 46, 53
63
Carboxysomes 27: 159– 166 morophyly 27: 181 Carboxy-terminal propeptides 25: 47 Cardamine pratense 24: 266 Cardaminopsis 38: 237 Cardenolide production 13: 158 Cardiac glycosides 25: 151 Carex nigra activity of ammonia assimilating enzymes 6: 30 C. rostrata nitrate reductase activity 6: 22 Carex pilulifera 29: 13 Carica papaya 28: 86 Carlavirus 36: 2, 3 Carlaviruses 36: 68, 69 non-persistent transmission in 36: 77, 78 Carmovirus 36: 101 Carnation 21: 48, 49, 69 Carnitine and citrate acid metabolism 15: 84, 85 Carnivorous plants 22: 202, 203, 204, 213– 216; 31: 13, 15 see also Aldrovanda, Dionaea, Drosera Carotenes 18: 78 Carotenoid 18: 92 Carotenoid-protein complexes chlorophyll c and fucoxanthin-containing "complexes 10: 120– 129 peridinin-chlorophyllaprotein 10: 118– "120 Carotenoids 22: 114; 27: 289– 296 in Dunaliella 14: 131, 133 protective role 27: 291, 292 synthesis 14: 44, 45 synthesis 6: 303 and compartmentation, subcellular 14: 64 in ripening fruit 14: 83 vs. chlorophyll, and precursor channelling 14: 64 triplet chlorophyll and singlet oxygen formation 27: 289– 291 xanthophyll cycle 27: 263, 292– 294 Carotenoids in algae apoprotein binding 10: 59, 60 chemistry 10: 58
64
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Carotenoids in algae (continued) configuration and conformation 10: 60, "61 distribution in algae 10: 26, 27, 56, 57 energy transfer 10: 61, 62 photoprotective role 10: 62 spectra 10: 96 structure 10: 55, 58 Carotenoids, in chloroplast envelopes 7: 45 – 48 Caroteroids, in photosynthetic membrane 3: 125– 128 Carotinoids 25: 142 Carpenter ants 21: 134, 135 Carpenter worms 21: 134 Carpodiptera ameliae 37: 45 Carrot cells 19: 23 Carrot culture 13: 180 Carrot protoplasts 19: 15 Carrots 21: 61 Carrpos 19: 273, 291 Carrpos monocarpos 19: 291 Carrying capacity, population 21: 80 – 82 Carthamnus tinctorius 29: 152 Cartonema spicatum, influorescence 3: 280, 281 Carum carvi 11: 129 Carvacrol 31: 130 Carveol 31: 103, 130 Carvone 31: 81, 130 Carya 37: 97 Carya illinoensis (pecan) 18: 10 Carya illinoinensis 37: 113 Caryanthus, Cretaceous fossils 17: 116 Caryophyllales 37: 40, 41, 50, 110, 149 Caryophyllene 31: 131 Caryota, influorescence 3: 268 Caryotoideae, influorescence 3: 267 Casbene synthase 19: 21, 22 Casbene synthetase 14: 84, 85 and mRNA levels 14: 85 Casein protein kinase subfamilies 32: 26 – 28 Caspiocarpus, Cretaceous fossils 17: 110 Cassava brown streak virus 36: 69 Cassia fasciculata 33: 54, 61 Cassiope 37: 137, 139, 140 Cassiope tetragona 37: 133– 135, 138, 140 Cassytha chromosome sets 6: 189
Castanea 38: 289, 291 see also Chestnuts crenata 21: 126, 131, 137– 140 dentata 21: 125–137, 139, 141– 143 Henryi 21: 126, 139 japonica 21: 138– 140 mollissima 21: 126, 139 ozarkensis 21: 126 pumila 21: 126, 140 sativa 21: 126– 128, 132, 137– 139 seguinii 21: 126, 139– 141 Castanea sativa (European chestnut) 33: 6, 19, 20, 25 Castanea, lignification 8: 58 Castor bean 22: 280; 25: 127 Castor bean cell wall 19: 22 Castor bean, Rhizopus stolonifer infection 14: 84, 85 Castor bean, water potential 3: 201 Catalase 21: 19; 22: 144; 37: 180, 181 Catalase degradation effect of amino acid recycling 8: 80, 81 rate constant 8: 69 Catalese, in orchids following pollination 7: 614 Catascopium cytotaxonomy 6: 242, 243 Catasetum longevity of flowers 7: 543, 551, 552 pollination 7: 558, 563 post-pollination phenomenon 7: 574 Catechin 21: 51; 21: 18 Categorical analysis, epidemiology 21: 214 see also Correspondence analysis Categorization, epidemiology 21: 214 Catenularia, colonization of interaction zones 7: 405, 416 Catharanthus roseus 25: 377, 380, 402, 411; 30: 124, 128, 134, 141, 159, 160, 173, 186, 196, 200, 204, 205; 31: 103, 104, 106; 32: 231; 33: 185 Catharanthus roseus culture 13: 152, 155, 158, 159, 164, 167, 169, 174– 176 Cation channels 25: 226– 341 Cation influx across plasma membrane 29: 96 – 103 ATP 29: 102 cytosolic calcium and pH 29: 101
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
external and cytosolic sodium 29: 101, 102 external calcium and pH 29: 97 –101 voltage 29: 97 Cations 25: 402– 408 Catnip 31: 82 Cattleya carbon fixation 7: 530 Caulerpa 35: 197, 198 Caulerpa racemosa 35: 198 Caulerpa taxifolia 35: 174, 198 Caulerpa verticillata 11: 97 Caulerpa, chloroplast movements 10: 30 Caulerparacemosa 35: 197 Cauliflower 22: 66 Cauliflower mosaic virus (CaMV) 36: 5, 9 Caulimoviruses 36: 2 Caulobacter crescentus 32: 130 Caulome 38: 192 Cavia cobaya 28: 13 Cavicularia 19: 265 CAX1 25: 407, 413 CAX2 25: 407, 413 Caytoniales 17: 140, 141, 142 CCCP (carbonylcyanide-mchlorophenylhydrazone) 33: 95, 106, 107 CCR4 ligand molecule 32: 257 transcription process 32: 32 CDNA hybridization 34: 48 CDNA libraries 34: 241– 244 cDNA 21: 136; 25: 53, 54; 28: 240 CDSPs 35: 24 Ceanothus 37: 62, 63 Celeriac 21: 39, 48 Celery 21: 39, 48 Celery culture 13: 159, 172 Cell and water, see water relations cell walls and calcium 1: 93 Cell walls, action of boron 1: 94 chelates, effect of 1: 73 et seq. division in roots 1: 84, 90 elongation 1: 84, 92 – 97 membrane systems 2: 4
65
membrane, structure 3: 1 – 52 discussion 3: 39– 46 freeze-etching 3: 21 – 39 negative staining 3: 16 – 21 sectioning 3: 8 – 16 X-ray diffraction 3: 2 – 8 middle lamella synthesis 2: 117 migration of wall substances 2: 116 multiplication in darkness 1: 85, 91 origin of pores and perforations 2: 120 pit fields 2: 105, 117 plasmodesmata 2: 89, 105, 106, 113, 117 suspension cultures 2: 155 wall, water potential 3: 174, 180, 181 Cell competency 21: 119 Cell composition, effect on carboxylation reactions 27: 98 Cell culture 31: 83, 109, 136 Cell cycle 32: 9 Cell cycle and vacuole movements 28: 141 Cell cycle regulation 32: 328, 329 Cell death 24: 210– 218; 25: 87, 88, 105, 106 cellular mechanisms 24: 216– 218 following cell penetration 24: 211 in host and non-host plants 24: 212– 214 programmed 24: 214– 216 Cell differentiation 25: 103– 105 Cell division 32: 9 Cell fractionation studies analysis of cell wall protein fraction 5: 118, 119 analysis of polysaccharide-bearing fraction 5: 119– 125 identification of cell fractions 5: 112– 118 preparation of cell fractions 5: 111– 118 use of glutaraldehyde 5: 113, 114, 116 use of Mg2+, 114, 116, 117 Cell growth see also Microfibrils (which includes references to species) auxins 2: 154 collenchyma cells 2: 111 cytoplasmic element theories 2: 141 displacement of microfibrils 2: 114 effect on wall structure 2: 114 epidermal cells of apical meristems 2: 108 growth velocity 2: 73, 90, 121, 128 isodiametric cells 2: 91, 104
66
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cell growth (continued) latex vessels 2: 108, 113, 114, 128, 130 lengthening 2: 105 middle lamella synthesis 2: 117 multinet growth 2: 122, 132 multiplication of plasmodesmata and primary pit fields 2: 117 parenchyma cells of apical meristems 2: 105 passive growth by tissue tension 2: 128, 130 pectin metabolism 2: 154 perforation of growing walls 2: 90 pores and perforations, origin 2: 120 protein, role of 2: 153 protoplasm streaming theory 2: 134, 139 reorientation of microfibrils 2: 120 spiral growth in cells with helically crossed lamellate walls 2: 138 spiral growth in cells with multinet structure 2: 132, 136 tearing in conditions of rapid growth 2: 131 tip growth 2: 74, 96, 103, 113, 126 tubular cells growing both in tip and sidewalls 2: 103 tubular cells growing in sidewalls only 2: 98 tubular cells with tipgrowth only 2: 96 ultrastructure see Microfibrils wall extensibility 2: 83 wall stress 2: 70, 139 widening 2: 112, 127 Cell polarity 28: 34 – 36 Cell quota model for phytoplankton growth 16: 207, 208 Cell senescence 25: 87 – 112 functions of vacuoles 25: 88, 89 Cell surface antigens and the immune response human blood groups 4: 12 lectins 12, 13, see also lectins lymphocyte defence systems in vertebrates 4: 13 Salmonella anatum infection 4: 14 specificity of protein-carbohydrate interaction 4: 13, 14
Cell surface recognition, varietal specificity in bacterial infections 4: 31 fungal infections 4: 31 Cell types/tissues in nodule anatomy/ terminology 18: 131– 134 Cell wall 21: 4 – 6, 8, 13 amino acid composition 2: 168–171 cellulose content per cent 2: 82 definitions 2: 69, 152 elasticity 6: 72 enzymes 2: 81, 171, 194, 204– 208 form, role of protein 2: 202 fractions, isolation 2: 156, 157 fungal infection 21: 164 motabolism 2: 81, 204 nitrogen content 2: 160 protein 2: 81, 88, 151 for detailed entries see Protein site of synthesis of primary wall substances 2: 85, 88, 182 structure 6: 72 tensile strength 2: 200 transition layer (Uebergangslamelle) 2: 70 viral infection 21: 113, 119 water content per cent 2: 82 Cell wall components, nutritional properties 34: 174 Cell wall composition, oligosaccharininduced changes in 19: 28, 29 Cell wall microfibril intermediates, pathways of synthesis 5: 136 Cell wall storage carbohydrates in seeds 11: 125– 155 biological function 11: 148–151 structure 11: 126– 132 Cell wall, primary, constitution and morphology of microfibrils see also Microfibrils cellulose microfibrils 2: 70 chitin microfibrils 2: 76 microfibrils of other materials 2: 77 Cell wall, primary, constitution of amorphous matrix see also Hydroxyproline, Protein analysis 2: 78 meristematic cell walls 2: 78 protein component 2: 81, 88, 151
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cell wall, transport of inorganic C through 27: 123– 125 Cell walls 31: 12, 38 conical-papillate cell development 31: 208, 209 growth 31: 27 mutant phenotypes 31: 253 nectar-secreting cells 31: 50, 51 salt glands 31: 40, 41, 43, 45 Cell, interrelation between growth and wall ultrastructure effect of growth on wall structure 2: 114 effect of wall structure on direction of growth 2: 128 mechanism of orientated initial synthesis of cellulose microfibrils 2: 139 Cell – cell interaction Cell – cell recognition aggregation of embryonic cells 4: 16, 17 aggregation of slime-mould cells 4: 21, 22 aggregation of sponge cells 4: 16, 17 animal fertilization 4: 19 gamete fusion in algae 4: 19, 20 phagocytosis by Acanthamoeba 4: 16 pollen-style compatibility 4: 20, 21 sexual compatibility in yeasts 4: 20 Cell-cycle, UV radiation 22: 132, 133, 134 Cells, infected in nodule anatomy/ terminology 18: 134–139 Cell-to-cell molecular movement 31: 261, 262 see also plasmodesmata Cellular differentiation in leaf development 28: 170, 171 role of chloroplasts 28: 181– 183 Cellular interactions between plants and biotrophic fungal parasites 24: 195– 225 in symbiotic association 24: 233 Cellular rearrangements in parasite invasion 24: 206– 210 Cellular regulation in plants 32: 300 Cellulase 21: 4 – 6 Cellulomonas turbata 36: 83 Cellulose 21: 57; 22: 251, 258 composition of cellulose 5: 96, 97 demonstration of presence 5: 96
67
microfibrils 2: 70, 139 orientation of cellulose 5: 105– 111 structure of cellulose in Avena 5: 96 Cladophora 5: 97 Pisum 5: 96 Pleurochrysis scherffelii 5: 98 Valonia 5: 97 synthesis 2: 73, 85, 116, 139 Cellulose, fracture properties 17: 252 Cellulysin 19: 32 Cell-wall analysis see Protein Cell-wall breakdown and degradation see also Fungi Acer pseudoplatanus 2: 197 attack by fungal cellulase 2: 89 Centaurea cyanus 2: 197 chemical degradation 2: 193 enzymic degradation 2: 171, 194, 200 formation of plasmodesmata 2: 89 Gingko 2: 196 Lycopersicon esculentum 2: 197 meristematic cells 2: 89 Nicotinia tabacum 2: 197 perforation of Chaetomorpha cells 2: 89 physiological dissolution 2: 89 primary walls 2: 89 sycamore 2: 196, 198 yeasts 2: 90 zygotes of Phyomyces 2: 89 Cell-wall degrading enzymes 26: 26 bacterial parasites 26: 33, 34, 171 mycoparasites 26: 36 – 38, 171 polygalacturonase-inhibiting proteins 26: 157– 159 thaumatin-related proteins 26: 150 Cell-wall invertases 28: 73, 74, 76, 77, 88, 89, 94, 104– 106 Cell-wall plasticity auxins 2: 154, 204, 210 methyl ester content 2: 154 pectin 2: 154 Cell-wall ultrastructure see also Micra fibrils interrelation between growth and wall structure 2: 114 microfibrillar arrangement in different types of growing cells 2: 91
68
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cell-wall ultrastructure (continued) morphological aspects of constition, synthesis and breakdown of growing wall 2: 70, 177, 193 Cell-wall, secondary 2: 69 Cenangium 33: 7 Cenangium ferruginosum 33: 4, 12, 26 Centarurea scabiosa 29: 16 Centaurea cyanus 22: 116; 37: 112 Centaurium erythraea 22: 23 activity of ammonia assimiliating enzymes 6: 30 Central America 21: 88 Centric fusion B chromosome production 6: 157, 158 effects of centric fusion chiasma formation 6: 156 fewer linkage groups 6: 155, 156 mechanism 6: 152– 154 new linkage groups 6: 155 polyploidy interactions 6: 183– 186 Centris geminata, orchid pollination 7: 561 Centrolepidaceae, stomata 3: 283, 284 Centrolepis, stomata 3: 284 Centromere centric fission misdivision of acrocentrics 6: 142 misdivision of metacentrics 6: 140– 142 evolution 6: 136– 138 structure and position 6: 133– 135 Centrospermae 37: 40 – 42 Centrospermae, secondary thickening 3: 265 Cephalanthera pallens, seed morphology 7: 437 Cephalostemon riedelianus 31: 26 Cephalotaxine production 13: 182 Cephalotaxus harringtonia culture 13: 182 response to biotic stress 13: 182 Cephalozia 19: 263, 265 Cephalozia ambigua interspecific polyploidy 6: 210, 215 Cephalozia bicuspidata 19: 271 Cephaloziella exiliflora 37: 39, 168 Ceramide 32: 84 Ceramium virgatum 35: 190 Cerastium alpinum nitrate reductase activity 6: 25
Ceratium spp. 12: 230 Ceratobasidium cornigerum ethylene production 7: 506 fungal-protocorm interaction 7: 499 orchid endophyte 7: 490, 491 symbiotic specificity 7: 496 Ceratoctystis fimbriata infection and phytoalexin synthesis 14: 83, 84 Ceratodon purpureus 32: 158; 37: 39 genetics 6: 247 sex chromosomes 6: 230 Ceratonia siliqua (carob) 11: 126, 133, 141– 143 Ceratonia siliqua volumetric elastic modulus 6: 79 Ceratopteris 38: 206 C. pteridoides, hybridisation 4: 374, 376, 384 C. richardli, hybridisation 4: 374, 376, 384 C. thalictroides evolution 4: 374 geneology 4: 384– 386 cytogenetics 4: 374– 377 distribution 4: 374 Ceratopteris richardii 33: 67 Cerato-ulmin 21: 70, 71 Ceratozamia chromosome constitution 6: 172 Cercidiphyllales, Early Tertiary 17: 32 – 35 Cercidiphyllum japonicum 35: 13, 18 Cercis 38: 299 Cercis siliquastrum (Judas tree) 11: 130 Cercospora arachidicola 21: 226– 230, 233– 235 nicotianae 21: 23 Cercospora beticola 22: 147; 28: 27 Cercospora nicotianae 30: 294 Cercosporella herpotrichoides 33: 227 Cereal fields 18: 239 Cereal gene pool 34: 24, 25 Cereal genomes, relationships between 34: 46, 47 Cereal grain 34: 166– 170 structure 34: 167 Cereal lipids 34: 212, 213 Cereal superfamily, enzyme inhibitors 26: 140, 141, 159, 160
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cereal yellow dwarf virus-RPV(CYDVRPV) 36: 25, 28, 29,34, 35 Cereals exploitation of genetic resources 34: 26 –30 approaches to selecting 34: 26 – 29 expanding the cereal gene pool 34: 29 – 30 recombining cereal genomes 34: 29 genetic resources 34: 30 – 40 importance of 34: 24 – 26 major types in production 34: 25 relative sizes of genomes 34: 26, 27 Cerebrocides 24: 78 Ceropegia 31: 56 Cerotoma trifurcata 36: 102, 104, 106 Certification 23: 21 definition 23: 3 glasshouse ornamental crops 23: 137– 164 potato cyst nematodes 23: 235– 237 preparation for 23: 41, 42 scheme terminology 23: 2 Certified stock 23: 2 Cervical mucus 11: 50, 51 Ceterach officinarum, cytogenetics 4: 363 Ceutorhynchus 35: 243 Cf genes 21: 20, 149, 150, 165– 178 CF0 see Intrinsic coupling factor complex CF1 see Extrinsic coupling factor complex Cf-2 38: 265 Cf-4 38: 265, 269 Cf-5 38: 265 Cf-9 38: 261, 265, 269– 271 Cf-9 38: 270, 271 Cf-9 30: 300, 303, 314 Cf-9B 38: 261, 265, 267, 269; 38: 270, 271 Cf-9B-mediated resistance to tomato leaf mould 38: 259, 260 CFCS (chlorofluorocarbons) 21: 95 cGMP 28: 178 Ch b reductase 35: 22 Chablis (cha) 31: 253 Chaetoceros gracilis, photosynthetic rate 10: 151 Chaetoceros sp. 11: 102 Chaetocladium 24: 415 Chaetocladium brefeldii 24: 412
69
Chaetomin, biocontrol activity 26: 27 Chaetomium C. funicola, phosphorus content 8: 130 C. globosum, phosphomonoester utilization 8: 181 phosphorus translocation 8: 201, 202 Chaetomium globosum 19: 35; 24: 80; 26: 27, 58 Chaetomorpha 29: 80 Chaetomorpha crassa 11: 99 Chaetomorpha linum 12: 63 volumetric elastic modulus 6: 77 Chaetomorpha melagonium orientation of cellulose 5: 105 site of synthesis of cell wall components 5: 102 Chaetomorpha sp. pH of vacuole 27: 167, 168 stilbenes 27: 132 Chaetomorpha, freeze-etching 3: 34 Chalara 30: 310 Chalcogenide glass 18: 260 Chalcone isomerase (CHI) 22: 136; 37: 63, 64, 81 gene 37: 83, 84 mutant 37: 80 Chalcone reductase 37: 79 Chalcone synthase (CHS) 63, 64, 99 gene 37: 83, 84 mutant 37: 80, 81 Chalcone synthase (CHS) 22: 136, 137; 24: 174 Chalcone synthase (CHS) genes 29: 55, 56, 60 Chalcone synthase (Chs) genes 34: 99; 19: 31, 54 Chalcone synthase 31: 128 Chalcones 37: 63 Chamaecyparis 33: 9 Chamaecyparis lawsoniana 33: 16 Chamaedorea growth 3: 222 inflorescence 3: 274, 277 vascular bundles 3: 239 Chamaedoreae, growth 3: 224 Chamaengis, flowering period, 535, 536, 539, 547 Chamaerops, bracts 3: 276
70
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Chamber input concentration 18: 18 Chamberless exposure 18: 4, 5 “Champion” cv. 18: 72 Channel activation state 25: 222 Channel deposits abandoned channels 16: 130 crevasse splays 16: 129 Carboniferous, plant community reconstruction 16: 180, 181 fluvio-marine interdistributory embayments 16: 144 floodplains 16: 129, 130 lag deposits 16: 126, 127 levees 16: 128 point bars 16: 127 Channel rectification 25: 223 Chaperonin 36: 30 – 32, 40 Chara 11: 6, 55; 29: 81, 101; 30: 55, 56 C. corallina hydraulic conductivity 6: 91, 93, 94 reflection coefficients for nonelectrolytes 6: 951 volumetric elastic modulus 6: 76, 77 Chara 22: 210 corallina 22: 247 Chara australis 25: 382, 385 Chara australis, chemical content of cell walls 2: 79 Chara corallina 30: 41 Chara fragilis 30: 209 Chara inflata 29: 97 Chara, water uptake 3: 185 Charcoal filtering 18: 62 Charcoal, and palaeoatmosphere 17: 88 Charcoal, effect on orchid growth in culture, 475, 476 Charcoalification 16: 176 Chardonnay (cdo) 31: 253 Charge Coupled Device (CCD) 22: 61, 62, 63 “Charger” 18: 53 Charmorchis alpina, phytoalexin production 7: 512 Charophyceae Chaetosphaeridium, evolution of land plants 5: 157 Chara, structure 5: 159
Charales evolution of intercellular gas spaces 5: 192 evolution of land plants 5: 155, 156 zygospores 5: 199 Coleochaete structure 5: 157, 159 zygospores 5: 199 Klebsormidium, evolution of land plants 5: 157 Nitella, phenylalanine ammonia-lyase 5: 206 structure 156, 159 Zygnemetales, evolution of land plants 5: 157 Charophyceae, glycolate metabolism 27: 107, 108 Chauliodon, flowering period 7: 540 Cheilanthes argentea, structure 4: 238 Chelates aerobiosis, need for 1: 87 antagonism to auxins 1: 78, 79 antagonism, mutual 1: 76 –79 as bactericides 1: 74 as fungicides 1: 74 auxins, combined effect 1: 81 Brassica roots, deformation of 1: 85 calcium, removal from cell walls 1: 86 cell multiplication and elongation 1: 84, 90, 94 cell wall synthesis 1: 84 chelation with common cell constituents 1: 74 corn, growth promotion 1: 83 darkness, effect of 1: 84, 85, 90, 91, 95 diethyldithiocarbarmate (DIECA) 1: 74, 78, 83 duplicity of 1: 74 enzyme reactions, inhibition of 1: 75, 83 ethylenediaminetetraacetic acid (EDTA) 1: 73 – 83, 86, 87, 90, 91, 94, 95 fusaric acid action 1: 75 growth action, description of 1: 82 growth inhibition 1: 76 – 82, 87, 90 – 92 growth promotion 1: 77, 81, 83 IAA, interaction with 1: 76 – 82 iron 1: 73 – 75, 83, 91
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
iron chlorosis 1: 75 light-dependent action see darkness lycomarasmin action 1: 75 metabolism by the plant 1: 83 metal traces, removal of 1: 74 metals, identification of 1: 75 mineral nutrient deficiencies 1: 75 mode of action 1: 74 oxin (8-oxyquinoline) 1: 74, 76, 83 Pea curvatures 1: 77 RNA, destruction of 1: 84 root growth, effect upon 1: 80, 83 – 87, 90 root respiration, reduction of 1: 83, 84, 95 –97 shoots, effect upon growth of 1: 75, 77, 92, 93 similarity to auxins 1: 75, 87 Soybeans, growth promotion 1: 83 tomato epinasty 1: 77 uptake by the plant 1: 83 Chelex-isolated DNA 35: 183 Chelidonium majus 25: 146, 158 Chemical control 22: 268, 288 Chemical defences 22: 166 Chemical energy 28: 3– 5 Chemical etching 18: 260– 262 Chemical fixation 28: 123, 124 polyphosphate bodies as artefacts of 28: 145, 146 Chemical potential of water ascent of water 6: 56 mathematical expression 6: 54 Chemical protectants 18: 5 Chemical relationships in the plant 1: 209 et seq. Chemical signals 22: 167– 171 see also Hydraulic dispersal Chemiluminescence 23: 38 Chemiosmotic hypothesis, phosphate uptake 8: 170, 171 Chemiosmotic theory 4: 56, 57, 84 –87, 91 Chemolithotrophs ammonium oxidation 27: 88, 90 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 Chemostimulants 33: 28 Chemotaxonomy 31: 153– 169
71
biomolecules 31: 157– 160 biosynthetic pathways 31: 168, 169 problems 31: 167, 168 strategies 31: 160– 163 trichome exudate analysis 31: 163– 167 Chemotaxonomy, using flavonoids 6: 268, 287, 288, 307 surface resins 6: 266– 287, 303 terpenoids 6: 187– 288, 307, 308 Chemotropic responses 21: 42 Chemotypes 31: 84 Chenopodiaceae nitrate reductase 6: 25 nitrogen storage 6: 10 Chenopodiaceae, secondary thickening 3: 265 Chenopodium 22: 174; 24: 322; 25: 237; 29: 57, 58 album 22: 112 quinoa 22: 147 Chenopodium album 35: 17, 26, 27 nitrate reductase 6: 23, 25 Chenopodium album, chlorophyll-protein complex 10: 103 Chenopodium polyspermum 19: 121 Chenopodium quinoa 36: 183 Chenopodium rubrum 25: 276, 277, 344; 28: 87, 108 Chenopodium, sodium requirement 7: 158, 160, 164 Chenopods 22: 29 – 30 “Cherry Belle” cv. 18: 16, 56, 57 Cherry rosette nepovirus (CRV) 36: 180 Chestnut Bark Disease see Chestnuts-blight Chestnut blight 33: 27; 38: 41 Chestnut oak 18: 99 Chestnuts, pathogens and pests 21: 125– 127, 141– 143 blight 21: 128– 137, 139– 143 gall wasp 21: 141– 143 germplasm 21: 137–141 ink disease 21: 127, 128 Chickpea chlorotic dwarf geminivirus (CCDV) 36: 147 Chikusichloa 34: 34 Chilling injury manganese uptake 20: 79 NMR studies 20: 85
72
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Chiloscyphus pallescens interspecific polyploidy 6: 210 Chimaeric genes, tobacco 20: 216, 217 China 21: 88, 94, 97, 98 Chinese chestnut tree 21: 126, 131, 139– 141 Chinese Timber Chinquapin 21: 126 Chino de1 tomate virus 36: 76 Chiro-inositol 11: 169 Chironomus 12: 209 Chi-square tests 21: 217– 220, 227 Chitin 19: 73; 21: 22, 60, 62, 150 oligosaccharides of 19: 34, 35 Chitin synthetase, three forms 5: 139 Chitin, organic soil amendments 26: 12 Chitinase 21: 3, 4, 21, 22, 24, 25; 35: 142, 145, 159 fungal pathogens 21: 47, 150, 166 local defence response 21: 12 signals 21: 20 systemic defence response 21: 17 Chitinases 19: 12, 32, 73; 26: 26, 142, 171 antifungal properties 26: 143– 146 in mycoparasitism 26: 36 – 38 parasitic pathogens 26: 34, 36 Chitin-binding proteins, plant defence 26: 146, 147, 166– 168 see also Lectins Chitin-derived oligomers 19: 28 Chitosan 19: 28, 73; 21: 60, 62, 63, 65 Chitosan oligosaccharides 19: 35 – 37; 19: 44 Chl a oxygenase 35: 16 Chl b reductase 35: 16, 17 Chl cycle 35: 16 “chl oxidase” 35: 9 Chl see entries under chlorophyll Chl synthase 35: 14, 20 CHL1 25: 412 Chl1 30: 28 – 30, 38 CHL1 30: 9, 29, 30 Chl8 30: 29, 39 Chlamydomonas 11: 55; 20: 125– 161; 30: 11, 12, 18, 24 – 27, 32, 33, 35, 37, 39; 34: 190; 35: 9 Chlamydomonas carotenoid type 10: 54
cell cycle 20: 127–140 basal body complex 20: 127– 130 cell division 20: 131– 133 cell wall 20: 133, 134 daughter cell liberation 20: 135– 137 flagella 20: 134, 135 synchronization of cell cycle 20: 137– 140 characteristics 20: 125– 127 classification by chemotaxonomicmarkers 20: 136 emission spectrum 5: 23 gametic development 20: 140– 153 adenylate cyclase 20: 152, 153 agglutinins 20: 146– 149 cell wall lysin 20: 149– 152 gene expression, nitrogen stress 20: 146 induction of gametogenesis 20: 140– 146 gametogenesis 16: 58 life cycle 16: 56, 57 lipid metabolism 16: 45 – 47 photosystem structure 10: 137 polarization 5: 34 Chlamydomonas eugametos agglutinins 20: 148 cell wall lysin 20: 151, 152 induction of gametogenesis 20: 140– 143 synchronization of cell cycle 20: 138, 140 Chlamydomonas monoica cell division 20: 131 induction of gametogenesis 20: 145 Chlamydomonas reinhardtii 28: 181; 30: 24 – 27, 51; 32: 18; 33: 201, 202; 35: 76 ATP production 27: 267 blue light receptor gene 27: 301 cell wall 20: 133, 134 degrading enzymes 20: 136 growth-limiting PFDs 27: 151 pioneer1 insertion sequence 27: 342 plasmalemma PCO2 value 27: 140 retrotransposons 27: 338, 352 RUBISCOs, Kc values (table) 27: 104 singlet oxygen 27: 291 31 P NMR studies 20: 103
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Chlamydomonas reinhardtii, chloroplast membranes 7: 13, 81 Chlamydomonas, cell recognition in gamete fusion 4: 19 Chlamydospores 21: 37 Chlase 35: 20, 31 Chlide 35: 9 Chlide a 35: 20 Chloramphemical acetyltransferase (CAT) 21: 117 Chloramphenical acetyl transferase (CAT) reporter gene 34: 90 Chloramphenicol acetyltransferase (CAT) 25: 49, 50 Chloranthaceae and angiosperm evolution 17: 150 flowers 17: 105– 107 Chloranthistyemon endressii, Late Cretaceous fossils 17: 114 Chlorarachnion 19: 214– 216 Chlorarachnion reptans 19: 217 Chlorate resistance 30: 25, 28 – 30 Chlorella 30: 11, 13, 41; 33: 187; 35: 9, 29 chlorophyll 10: 52, 83 difference absorption spectra 10: 98 emission spectrum 5: 21, 23, 24, 27, 34, 35, 40 energy fixation 10: 20 excitation spectrum 5: 23, 24, 27 polarization 5: 34, 36 quantum efficiency spectra 10: 73 –75 spectral distortions 5: 11, 18, 19, 21 spectral modification 10: 14 Chlorella fusca 35: 31 NMR studies light-dependent effects 20: 71 N labelling 20: 96 polyphosphate metabolism 20: 104 Chlorella fusca, polyphosphate localization 8: 146 Chlorella protothecoides 35: 11, 12, 15, 16, 35 Chlorella pyrenoidosa cell size distributions 6: 102 Chlorella pyrenoidosa, vacuolar chloride pool 20: 105 Chlorella saccharophila 30: 263
73
Chlorella sp. number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 thylakoids 27: 270 Chlorella spp. lipid metabolism 16: 42 – 45 Chlorella, cell walls 3: 34, 35 Chloride (VCl) channels 25: 242 Chloride 11: 162– 166; 25: 408 Chloride ion and potassium uptake 15: 121– 123 Chloride levels, suppressive soils 26: 7 Chloride, soil management 21: 70 Chloride, stomatal response 22: 238 Chlorine 22: 187, 202, 210, 212 Chloris barbata, effect of sodium on growth 7: 162, 163 Chloris gayana 38: 144 Chlormequat chloride (CCC) 34: 136 1-chloro-2,4-dinitrobenzene 37: 66 Chlorobiaceae 27: 88 Chlorobium, chlorophyll 10: 83, 177 Chlorobotrys, shading effects 10: 163 Chlorococcales, growth rate 13: 109 Chloroflexaceae 27: 88 Chlorofluorocarbon (CFC) 22: 99 Chlorofluorocarbons 21: 95 Chlorogenic acid 21: 48 Chlorogloea fritschii, photosystem reaction centre complexes 10: 79, 87 Chlorogloea fritschii, thylakoı¨d – plasmalemma connections 7: 16 Chlorogonium, cell division 20: 131 Chloromercuribenzene sulfonicacid (PCMBS) 22: 189 5-Chloromethylfluorescein diacetate (CMEDA) 28: 121 Chlorophyceae Bulbochaete, structure 5: 159 Cladophora, localized growth 5: 159 orientation of cellulose 5: 105 structure of cellulose 5: 97 Draparnaldia, structure 5: 159 Dunaliella, phenylalanine ammonialyase 5: 206 Fritschiella tuberosa, structure 5: 157, 159
74
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Chlorophyceae (continued) Schizomeris evolution of intercellular gas spaces 5: 192 structure 5: 159, 162 Staurastrum, cell wall composition 5: 206 Stigeoclonium, structure 5: 159 Trentepholia, structure 5: 159 Chlorophyll a conversion of chlorophyll b to 35: 16, 17 conversion to phaeophorbide a 35: 13, 14 Chlorophyll see also Light-harvesting proteins see also Photosynthesis autoxidation 3: 126 bleaching 37: 178 chlorophyll-binding light-harvesting "proteins 27: 298– 302 chlorophyll – protein complexes 27: 283– 288 leaf appearance and 37: 8 proteins 27: 272, 276 stabilization in chloroplast 3: 46 synthesis 27: 296– 298 triplet chlorophyll state 27: 290 UV radiation 22: 119 water and nitrogen supply 22: 240, 241 Chlorophyll b, conversion to "chlorophyll a 35: 16, 17 Chlorophyll breakdown 25: 97 – 102 Chlorophyll breakdown biosynthesis and 35: 20, 21 catabolites 35: 9– 13 green pigments 35: 9 intermediary 35: 10 – 12 NCCs 35: 13, 18 in aquatic systems 35: 8, 9 in germination 35: 3, 4 In plant life cycle 35: 3 – 9 in reproductive development 35: 5, 6 in response to stresses 35: 8 in seasonal cycles 35: 7, 8 in vegetative growth 35: 4, 5 Chlorophyll catabolism biochemical pathway 35: 12 location of substrates and enzymes 35: 22, 23
traffic between membranes and compartments 35: 23, 24 Chlorophyll content/fluorescence 18: 92 chlorophyll degradation, evolution 35: 35, 36 Chlorophyll fluorescence decay 37: 6 Chlorophyll proteins curve deconvolution analysis 10: 96 – 98 difference absorption spectra 10: 98, 99 fluorescence spectra 10: 99 – 102 Chlorophyll synthesis 14: 46, 47 and compartmentation, subcellular 14: 64 vs. carotenoid, and precursor channelling 14: 79 Chlorophyll, and sodium requirement 7: 145 Chlorophyllase (clase) 35: 13, 14, 26, 27 Chlorophyllide (chlide) 35: 9 Chlorophyllides 22: 126 Chlorophylls assay and distribution 10: 26, 27, 51, 52 chiorophylls c and c2 10: 52, 53 chlorophyll a 10: 49 – 51 chlorophyll b 10: 51 chlorophyll d 10: 53, 54 evolution 10: 178 Chlorophyta (green algae), PEPCK in 38: 145 Chlorophyta 27: 89 C3 + C1 carboxylases 27: 97 carbon dioxide-concentrating mechanisms 27: 114– 119 life cycles 16: 57 parthenogenesis in 16: 80, 81 Chlorophytes 11: 75, 87, 91 Chlorophytum 38: 193 Chloroplast 19: 208– 213 chromosome 19: 210, 211 evolution 10: 183, 184 gene sequences 19: 211 genome 19: 210– 213 light scattering 10: 48 lipids 3: 46 membranes 19: 208 membranes 3: 20, 23, 31, see also Photosynthetic membrane movement and light harvesting 10: 29, 30 photosynthetic pigments 19: 208– 210
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
rRNA 19: 212, 213 second-hand 19: 189– 230 storage product 19: 208 X-ray diffraction 3: 7 Chloroplast endoplasmic reticulum (CER) 19: 196, 200, 203, 208, 218 Chloroplast envelope chemical composition peptides 7: 49 – 53 pigments 7: 44 – 49 polar lipids 7: 37 – 44 enzymes lipid synthesis 7: 81 – 95 metabolite transport 7: 54 – 74 protein transport 7: 74 – 81 isolation principles 7: 25 – 32 procedure 7: 32– 37 origin of membranes 7: 95 relationships with other cell membranes 7: 12 – 25 structure 7: 3 – 11 Chloroplast proteins 22: 108, 110, 111, 134– 136, 140 Chloroplasts see also Light-harvesting proteins; "Plastids; Thylakoids and HMG-CoA reductase activity 14: 58 and protein targeting 14: 13 – 19 binding of precursors 14: 15, 16 processing of precursors 14: 17 – 19 synthesis of proteins 14: 14, 15 transport and energy 14: 16, 17 C4 photosynthesis 26: 265, 266, 268 evolutionary hypotheses 27: 261, 262 genetic regulation of development 28: 179– 181 in acetyl-CoA synthesis 14: 55, 56 in spinach and prenylation catalysis 14: 46 integration of nuclear and plastid gene expression 27: 307, 308 isopentenyl diphosphates, permeability to 14: 66 isoprenoid formation in 14: 64 mevalonate kinase activity in 14: 62
75
NPP model, leaf gas exchange 26: 196–198, 202 of Dunaliella composition of, and temperature 14: 132 under electron microscope 14: 119, 120 under light microscope 14: 118 prenyl diphosphate synthesis in 14: 63, 64 role in cellular differentiation 28: 181– 183 Chloroplasts and gibberellin biosynthesis 9: 110, 111, 129 Chloroplasts in chlorophyll degradation 35: 21, 22 Chlorosis 18: 92; 35: 8 Chlorosis of oats 1: 92 Chlorosis, lime-induced 29: 12 Chlorosulpholipids 16: 3, 4 Chlorotetracycline 22: 109 Chloroxybacteria 27: 261 Chl-porphyrin 25: 97 Cholecystokinin 22: 85 Choline-O-sulphate 33: 200 Cholodny-Went Theory 22: 166 Chondrorhynca discolor £ Lycaste aromatica, effect of auxin in culture 7: 459 Chondrus 35: 174 Chondrus crispus 11: 80; 35: 177, 190 carbon dioxide-concentrating mechanisms in gas exchange 27: 115, 117, 118 transport of inorganic C to RUBISCOs 27: 121 Chondrus crispus, photosynthetic rate 10: 168 Chorda filmum, fucoxanthin/chlorophyll a ratio 10: 121 Christensen’s Phyletic scheme 2: 5 Chromatic adaptation in algae historical aspects 10: 165, 166 ontogenic complementary adaptation 10: 166, 167 phylogenic complementary adaptation 10: 167– 171 Chromenes 31: 162
76
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Chromista 27: 89 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 RUBISCOs 27: 101, 102 Chromium 18: 263 evaporated 18: 265, 266 Chromophores 33: 70, 71 Chromophyte algae 19: 201– 203 Chromoplasts in chlorophyll degradation 35: 21, 22 Chromoplasts, prenyl diphosphate synthesis in 14: 63, 64 Chromosomal DNA 24: 405 Chromosome (see also centric fusion) analysis 6: 120– 128, 186– 188 B chromosomes 6: 148, 150, 156– 158 evolution centromere position 6: 135 karyotype symmetry 6: 132, 133 size differences 6: 130– 132, 188, 189 structural mutations 6: 128– 130 isochromosome derivatives 6: 149–151 isochromosome origin 6: 138, 140, 145– 149 nomenclature 6: 135 telocentric chromosomes 6: 138– 141 Chromosome number 24: 180 Chromosomes in lower plants, apogamy and 16: 82 Chrondrostereum purpureum coloured zone formation 7: 395, 397 competitive ability 7: 388– 392, 396 wood colonization 7: 386, 400, 401 Chroococcoids distribution 13: 70, 130 size 13: 72 survival strategies 13: 131, 132 Chroococcus quantum efficiency of spectra 10: 73 – 75 spectral modification 10: 14 Chroococcus spp., form of colonies 13: 73 Chroococcus, sodium requirement 7: 144 Chroomonas 27: 288 shading effects 10: 157 thylakoid structure 10: 34 Chrysanthemum morifolium 31: 21, 91, 127, 271
Chrysanthemum morifolium, osmotic pressure of guard cells 4: 128 Chrysanthemum parthenium 31: 166 Chrysanthemum segetum, chloroplast membrane structure 7: 4 Chrysochromulina chiton, site of synthesis of cell wall components 5: 99 Chrysophyta, LHC proteins 27: 276 Chrysophytes 11: 75 CHS promoter activity 29: 61– 63 Cicadulina arachidis 36: 147 Cicadulina chinai 36: 150 Cicadulina ghaurii 36: 147 Cicadulina mbila 36: 147 Cicer 31: 15 Cicer arietinum 18: 89; 25: 146; 28: 123; 29: 45; 31: 43, 277 Cicer arietinum and crop protein yield 9: 2 Cichorium 35: 64 Cichorium intybus 19: 121, 122 Ciguatera 12: 62, 63, 86 – 89 Ciguatoxin (CTX) 12: 86 – 89 Cinchona ledgeriana culture 13: 156, 157, 171, 174 Cinchona pubescens culture 13: 157 Cincinni 3: 271 Cinclidium cytotaxonomy 6: 242 1,8-cineole 31: 84, 100, 129, 133 1,8-cineole synthase 31: 100, 102 Cinnamate 4-hydroxylase (C4H) 21: 14 Cinnamate 4-hydroxylase, lignin biosynthesis 8: 37, 38, 58 Cinnamate-4-hydroxylase (C4H) 37: 63, 64, 85, 86 Cinnamic acid 20: 189– 192; 22: 114; 37: 63, 85 activation and reduction 8: 41 – 50 enzyme specificity 8: 49, 50 hydroxycinnamate: CoA ligases 8: 43 –46 nomenclature 8: 28, 29 reduction of cinnamoyl-CoA esters 8: 46 – 50 Cinnamoyl alcohol dehydrogenases 8: 47 – 49, 57 Cinnamoyl putrescine production 13: 152– 154, 175
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cinnamoyl-CoA lignin biosynthesis 8: 42 – 46 reductases 8: 46, 47, 49, 57, 58 Cinnamyl alcohol, polymerization to lignin enzymes 8: 51 – 57 hydrogen peroxide 8: 54 –56 polymerization step 8: 51 – 54 Cinnamyl-alcohol dehydrogenase (CAD) 21: 14 CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene 32: 157 Circular dichroism (CD) spectroscopy 35: 119, 122– 124 Circulative non-propagative transmission 36: 21, 22 Circulative viruses 36: 2 Circulifer tenellus 21: 203– 205; 36: 148 ‘circumnutation’ 33: 4, 59 cis-9,10-epoxy-18-hydroxyoctadecanoic acid 34: 267 cis-9-octadecen-1-ol 34: 267 Citral 31: 81 Citrate 25: 374, 378 Citrate metabolism vs. malate 15: 83 – 85 carnitine and 15: 84, 85 Citrate synthase activation and change in enzyme conformation by IAA 5: 60 Citrobacter freundii 24: 407 Citronellol 31: 81, 98, 104 Citrullus vulgaris Sat gene 33: 201 Citrus 29: 161; 30: 238; 31: 53, 59, 83; 35: 14, 26, 27 C. poncirus anatomy of oil cavities 6: 300 C. sinensis essential oil glands 6: 300–303 Climacium C. dendroidesgenetics 6: 247 cytotaxonomy 6: 242 essential oil synthesis in tissue culture 6: 306 Citrus 22: 28 Citrus deliciosa 31: 61 Citrus limon 25: 263; 31: 98 Citrus limon var. Schaub Rough Lemon 25: 257 Citrus natsudaidai 33: 24
77
Citrus “polygalacturonic acid” 19: 17 Citrus reticulata 29: 117 Citrus reticulata, identification of gibberellins 9: 43 Citrus sinensis 25: 269, 279 Citrus stubborn 21: 190 Citrus tristeza virus 38: 17 CKI1 32: 27, 125, 138, 324 CKII 32: 157 Cladesporium resinae, Baeyer-Villiger reaction 9: 124 Cladina rangiferina 18: 80 Cladina stellaris 18: 80 Cladistic studies of Early Tertiary fossils 17: 45 –49 Acer 17: 47, 48 Cladophascum 19: 251, 283 Cladophascum gymnomitrioides 19: 264 Cladophora 35: 178, 196, 197 Cladophora albida 35: 196 Cladophora, chlorophyll a/b ratio 10: 52 Cladophorales, HCO2 3 entry into "vacuole 27: 169, 170 Cladophoropsis 35: 197 Cladophoropsis membranacea 35: 185, 186, 188 Cladorrhinum foecundissimum 26: 50, 58 Cladosporium cucumerinum 21: 23 fulvum 21: 7, 8, 10, 149– 158, 162, 165, 166, 169– 178 secalis 21: 169 Cladosporium cladosporioides 33: 13 Cladosporium cucumerinum 19: 28, 29, 3; 924: 179 Cladosporium cucumerinum, sterol activity 7: 511 colonization of interaction zones 7: 405, 416 Cladosporium fulvum 19: 24, 39, 49, 68, 74; 24: 91, 97, 172, 196, 213, 217, 313, 320, 326, 449; 28: 88, 171; 30: 295, 301, 303, 312; 32: 213, 230, 365, 392, 395; 34: 278; 38: 254, 269– 271 Cladostephus spongiosus, light-harvesting complex 10: 124 Clarkia breweri 31: 98, 99, 102
78
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Clarkia sp., bicalyx mutant 27: 434 Clarkia ungulata 24: 421 Clark-type oxygen electrode, algal action spectra 10: 69 Clarno plane, Early Tertiary 17: 55 Class, epidemiology 21: 214 Classification 31: 4 Classification see also Mathematical models in numerical taxonomy basic axioms 2: 37 hierarchical and non-hierarchical classifications 2: 42, 61, 62 maximization 2: 38 monothetic and polythetic classifications 2: 37, 63, 64 numerical taxonomy 2: 35 phyletic implications of flagellar structure in plants 2: 1 probabalistic and non-probabalistic classifications 2: 43 “similarity” analyses 2: 64 subjective classification of complex data 2: 59 “underlying factor” hypotheses 2: 60 unmeasured attributes 2: 61 Clathrin 25: 17, 25 Clathrin 28: 141 Clathrin-coated vesicles (CCVs) 35: 141 Clathrin-coated vesicles 27: 35 Clathropteris, fossil record 4: 237 CLAVATA1 (CLV1) 28: 166 CLAVATA1 32: 4, 9, 22, 35, 82, 255, 256, 259 Clavibacter michiganensis subsp. michiganensis 23: 28, 29, 35, 43 subsp. sepedonicus 23: 30, 31, 32, 33 –35, 43, 44 Claviceps alkaloid production 8: 196 C. purpurea, phosphorus content 8: 130, 138, 197 Claviceps purpurea 24: 313, 316 copper and boron effects on host "infection 10: 239 copper fertilizer effects on host "infection 10: 237, 238 Clear-winged moths 21: 134, 141 Cleome serrulata 35: 244
Climate impact on max 20: 15 – 35 temperature 20: 15 – 20 Climate, Early Tertiary 17: 8, 9 reconstruction 17: 68 – 80 leaf physiognomy in 17: 69 – 79 wood anatomy in 17: 79, 80 Climate—vegetation data, Holdridgeclassification 20: 10 –14 Climatic change 21: 89, 95 Clonal populations 24: 340– 343 Cloning 12: 151– 153 Closed-top field chambers 18: 6 Closterium, shading effects 10: 157 Closteroviridae 36: 69 Closterovirus 36: 69 Closteroviruses 36: 69, 70 Clostridium 21: 191 Clostridium acetobutylicum 24: 407 Clostridium termosulphurogenes 34: 206 Clostridium tetranomorphum, evolution of photosynthetic pigments 10: 179 Clover (Trifolium repens) 18: 54, 130, 132, 141 Clover 22: 165 Clover proliferation 21: 193, 194 Clusia minor 25: 373; 38: 124 Clusia rosea 25: 373; 38: 144 CLUSTAL 32: 50 Cluster analysis 21: 236 Clusters 24: 254– 256 CLV1 – receptor complex signaling, model for 32: 250 Cnacystis nidulans, photoinhibition of photosynthesis 10: 164 Cnicus benedictus 31: 168 CO2 18: 5, 23 bioindication 18: 86, 91 carbon processing 18: 143 flux/concentration over forest 18: 200 NOx exposure 18: 35, 38, 39, 40 O3 exposure 18: 59, 62, 64, 66, 69 SO2 exposure 18: 18, 19, 32 SO2/NO2 mixtures 18: 46, 48 CO2 concentrations C4 photosynthesis 26: 253, 254, 262– 265, 268– 271, 290– 293, 296, 297
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
NPP model canopy gas exchange 26: 204– 206 leaf gas exchange 26: 196–199, 202– 204 palaeodimates 26: 193, 194, 207, 208, 210, 212, 215, 216 CO2, atmospheric 25: 81 “CO43” 18: 88 Coal see also Charcoalification; Peats autochthonous formation coalification 16: 148 environmental conditions 16: 148 floating mire development 16: 149 quaking bogs 16: 149 raised mire development 16: 149– 151 carbonate nodules 16: 177, 178 Coal balls 16: 177, 178 Coal formation, vegetation model 26: 217– 219 Coat protein (Cp) 21: 25, 105, 107, 109, 110, 113, 114, 116– 120, 155 Coated pits 28: 131, 132 Coated vesicles 28: 131, 132 Coating fibre optic microprobes 18: 265, 266 Coating loss 18: 278, 279 Cobalt in soil 29: 4, 20 Cobalt, substitution for zinc 27: 180 Coccochloris sp. C-concentrating mechanisms (table) 27: 118, 119 RUBISCOs, Kc values (table) 27: 104 Coccomyxa sp., RUBISCOs, Kc values (table) 27: 104 Cochlear 15: 13, 14 Cochliobolus carbonum 21: 6, 8 heterostrophus 21: 5 – 7 Cochliobolus carbonum 30: 295, 309, 313 Cochliobolus heterostrophus 24: 52, 206 Cocoinae, bracts 3: 276 Coconut lethal yellowing 21: 193, 194 Coconut, shell fracture properties 17: 276– 278 Cocos 3: 211 Cocos nucifera 19: 124; 31: 18, 19 Codeine production 13: 162, 167, 170, 182
79
Codeinone, biotransformation to codeine 13: 162 Codium cactoides, chlorophyll a/b ratio 10: 52 Codium decorticatum chloride fluxes 6: 111 Codium fragile 11: 79 Codium fragile ssp. tomentosoides 35: 199 Codium sp., photosynthesis 27: 174 Coelia alba, seed morphology 7: 426 Coeloglossum viride effect of hormones in culture 7: 459, 463 phytoalexin production 7: 512 protocorm-fungal interaction 7: 499, 500 Coelogyne cristata carbon fixation 7: 523, 528 nitrogen content 7: 599, 604 Coelomycetes 33: 7 Coelosphaerium buoyancy regulation 13: 87 form of colonies 13: 73 survival strategies 13: 132 Coffea 30: 118, 119, 122, 167, 174, 175, 179, 183, 187– 189, 193, 194, 199, 203, 204; 37: 115 low caffeine-containing species 30: 179– 183 Coffea arabica (coffee) 11: 129, 132 Coffea arabica 30: 119, 154, 171, 172, 174– 179, 187– 190 Coffea bengalensis 30: 179, 181, 183, 185, 188, 189 Coffea canephora 30: 122, 188 Coffea dewevrei 30: 122, 175, 188 Coffea eugenoides 30: 179, 181, 183, 185, 187– 189 Coffea liberica 30: 122, 175, 187, 188 Coffea racemosa 30: 122, 188 Coffea salvatrix 30: 122, 179, 181, 183, 185, 188, 189 Coffee 30: 118, 119, 145, 149, 153– 155, 188– 190 Coherence time 11: 8 Coilodesme action spectrum of photosynthesis 10: 70 photosynthetic rate 10: 168
80
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cola 30: 120 Colaphis castaneae 21: 134 Colchicine 35: 67, 69, 70 Colchicine and cytoplasmic reorientation 9: 205 Cold stress 37: 112– 114 Coleochaete 19: 291 Coleone 37: 41 Coleone-E 37: 40 Coleoptera, plant defence proteins 26: 159– 164, 166– 168, 171, 172 Coleotrype, inflorescence 3: 282 Coleus 37: 10, 40, 41, 104, 170, 174 Coleus auxins and reversal of polarity 9: 190, 191 vascular differentiation 9: 171, 221, 241 Coleus blumei culture 13: 166, 175 Colicinogenic factors 24: 400 Colladonus montanus 21: 204– 206 Collecting cells 31: 9 salt glands 31: 41 Collection of trichomes 31: 180 Collembolans, biocontrol 26: 17 –19 Collenchyma, fracture properties 17: 252 Colletotrichum 24: 171, 173; 33: 6, 25, 242 Colletotrichum coccodes 24: 176, 180 Colletotrichum gloeosporioides 24: 172, 176; 33: 24 Colletotrichum graminicola 34: 271 Colletotrichum lagenarium 19: 29, 46, 73; 24: 127 Colletotrichum lindemuthianum 19: 24, 29, 32, 40, 52, 54, 55, 61, 68, 70; 24: 124, 127, 179, 196, 197, 205– 208, 311; 38: 259 Colletotrichum magna 24: 172, 178, 180– 182, 185 Colletotrichum musae 24: 173, 176 Colletotrichum phyllachoroides 33: 6 Colloids and organelles, cytoplasmic, hydration 3: 178 Collybia velutipes, phosphate translocation 8: 203, 204 Colonization quotient 21: 52 – 59, 61, 62, 71 Colonization ratio, disease 21: 46, 47 Colony-forming units 24: 293, 296
Colosia esculenta 30: 229 Colpoma quercinum 33: 24, 26 Colpomenia sinuosa, light-harvesting "complex 10: 124 Colpomenia sp., photosynthesis 27: 174 Colubrina elliptica 37: 41 Colutea brevialata 11: 133 Combretaceae 37: 45, 153 “Comet” cv. 18: 15 Commelina 22: 279; 24: 318 ocmmunis 22: 76 Commelina benghalensis 32: 464 Commelina communis 19: 152, 157; 25: 177, 178, 182; 29: 16; 32: 464 Commelina communis, prostaglandins causing stomatal closure 20: 193 Commelina, stomata 3: 284 C. diffusa, inflorescence 3: 280, 282 Commelinaceae growth 3: 224 inflorescence 3: 267, 278– 282 prophyll 3: 287 stomata 3: 284 vascular construction 3: 249 Commelinaceae, polyploidy 4: 326 Commercial products 31: 129– 135 Labiate essential oils 31: 82, 83 Common plant regulatory factors 22: 138 Common scab of potato, see Streptomyces scabies Comovirus 36: 101 Compactin and sterol synthesis inhibition 14: 34 Compartmental analysis by efflux 29: 154, 155, 163 Compartmentation amino acids 25: 382– 386 analysis 25: 91 and isoprenoid biosynthesis 14: 52– 68 and acetyl CoA formation 14: 55– 57 and isopentenyl diphosphate formation 14: 61 – 63 and isoprenoid formation 14: 64, 65 and membrane permeability 14: 65, 66 and mevalonate formation 14: 57 – 60 and prenyl diphosphate formation 14: 63, 64 hypotheses 14: 52 – 55
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
carbohydrates 25: 367– 372 in Dunaliella 14: 169 and cell volume regulation 14: 174, 175 metabolic 25: 196 organic acids 25: 372– 382 peptides 25: 386, 387 polyamines 25: 386, 387 secondary metabolites 25: 141– 169 Compositae 31: 58, 59; 33: 58 Compositae, polyploidy 4: 326 Composts, biocontrol 26: 11, 12 Compression testing of plant material 17: 249– 251 Computer models 18: 33 Concentration gradients 18: 196, 197 Conditioned medium 30: 236– 238 Conducive soils 21: 38, 67 – 69 Conducting tissues 1: 209 Confocal scanning laser microscopy (CSLM) 22: 55, 60, 64, 65 Conical-papillate cell development 31: 207– 209 Conidia 21: 40 Conifers air pollutants bioindication 18: 87 bioindication 18: 91, 93 O3 exposure 18: 67 Conifers, Early Tertiary 17: 16, 17, 19, 20 see also Gymnosperms Araucariaceae 17: 17, 19 Pinaceae 17: 20, 21 Podocarpaceae 17: 19, 20 Taxodiaceae 17: 16, 17, 21 Conifers, see Gymnosperms see also Trees, whole, fossil record Conifers, sporogenesis in 15: 179– 196 heterospory 15: 180 in pollen-bearing cone 15: 181– 190 archaesporium development 15: 181, 182 exine patterning 15: 185– 190 meiosis 15: 184, 185 sporogenous cells/tapetum 15: 182, 183 megasporogenesis 15: 190–194 megaspore viability 15: 193, 194 meiosis 15: 191– 193
81
reproductive cell origin 15: 190, 191 process of 15: 180 Coniferyl alcohol, and lignin composition 8: 28, 29, 31 – 49 Coniopteris, fossil record 4: 236, 245 Coniothyrium 33: 7 Coniothyrium spp., biocontrol 26: 58 – 59, 71 Conjugation 24: 408 Conocephalum 19: 255, 271, 273 Conopodium majus nitrate reductase 6: 22 Conostomum pusillum interspecific polyploidy 6: 210 “Conquest” cv. 18: 52 Consolida ambigua 37: 69 Constitutive promoters 34: 87, 88 CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1 ) 31: 199 Constitutively photomorphogenic (cop) 31: 229 Contact cells 21: 59, 60 Contamination, definition 23: 3 CONTIN 11: 27, 40 Continental drift, Early Cainozoic Late Cretaceous/Middle Eocene 17: 10 Middle Eocene/End Oligocene 17: 10 – 12 Contingency table, epidemiology 21: 214, 215, 218– 220 Continuous Plankton Recorder (CPR) 16: 198 Continuously stirred tank reactors (CSTR) 18: 6 Contorta £ banksiana 18: 88 Convallaria majalis nitrate reductase 6: 22 Convection boundary layer conductance 18: 211 forced 18: 215 free 18: 215, 216 sensible heat transfer 18: 235 Convective energy flux 18: 215– 217 Convicilin in legume seeds 9: 6, 20, 25 Convolvulaceae 33: 58 Cooksonia fossil structure 5: 162, 164, 165 poikilohydry 5: 202 xylem 5: 177
82
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Copepods grazing phytoplankton 16: 226 Copigmentation 37: 58, 60 – 62 glycosylation as method for 37: 61, 62 with flavonoids 37: 62 Copper 22: 72 effect on plant disease 10: 229– 238 interaction with other nutrients 10: 231– "234, 239, 255 involvement in phenol synthesis 10: 236, 237 Copper deficiency, chlorophyll "synthesis 27: 298 Copper ions and Dunaliella growth 14: 109 Copper oxychloride and control of plant disease 10: 229 Coprinus comatus, vegetative incompatibility 7: 349 Coprinus lagopus 25: 104 phosphatase production 8: 184 pyrophosphate utilization 8: 176 Copro-porphyrins 22: 126 Coptis japonica 25: 159 Copy RNA (cRNA) 34: 101 Corallina sp., calcification 27: 171 Corallorhiza innata carbon fixation 7: 520 endophyte of orchid 7: 490 seed morphology 7: 425 Cordycepin 34: 253, 254 Cordyline growth 3: 215, 217 influorescence 3: 268 Cori cycle 38: 155, 169 Coriandrum sativum 35: 116 Coridothymus capitatus 31: 2, 6, 84 Coriolus sterquilinus, and the “unit mycelium” 7: 350 Cormophyta cell wall substances 2: 77 structure of growing cells 2: 69, 106 Corn 21: 5; 22: 127, 131 stunt disease 21: 190, 201– 203 Corn root, freeze-etching 3: 34 Corn stunt spiroplasma 36: 159, 160 Corn, lipids in 34: 213 Corn, see Zea mays Cornacaeae 37: 47 Cornaceae 22: 12, 14, 34
Cornus stolonifera 37: 112, 117, 158 anthocyanins as photoprotectants in 37: 24, 25 light-induced radical production in leaves 37: 28, 29 Coronatine 35: 26 Correspondence analysis, epidemiology 21: 214, 215, 235– 238 groundnut disease 21: 226–230 methodology 21: 215– 226 production level and yield losses 21: 233– 235 rice tungro 21: 230– 233 Corsinia 19: 255, 271 Corticum catonii, thamine production 7: 469 Coryanthes rodriguezii, pollination 7: 560 Corycium crispum, seed morphology 7: 426 Coryleae, Early Tertiary 17: 41 Corylus 38: 287, 289– 291, 299, 300 Corylus avellana 37: 107 Corymborkis, flowering period 7: 537 Coryne sarcoides competitive ability in culture 7: 398, 396 effect of ammonium sulphamate 7: 414 replacement of fungi in stumps 7: 400 Corynebacterium DHDPS 34: 203 Corynebacterium glutamicum 30: 50 Corynebacterium glutamicum 38: 119, 125, 128, 132, 133, 156 Corynebacterium nephridii 12: 19 Corypha, influorescence 3: 267 Coryphoideae bracts 3: 276 inflorescence 3: 270 Corystospermales 17: 140– 142 Coscindiscus 19: 211 Cosmospora robusta 22: 9 Costaceae growth 3: 215, 222 influorescence 3: 278 Cost-benefit analysis 25: 59 –86 allocation of costs among various benefits 25: 78– 81 vacuolation 25: 78 – 81 costs of alternative means of performing 25: 71 – 73
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Costus growth 3: 221 influorescence 3: 269, 278 Costus speciosus culture 13: 156 Co-suppression 34: 92, 97 COT1 (cot1) 31: 202, 229 Cotinus 37: 107, 108, 112 CotMYBA 31: 226 Cotranslational disassembly 21: 9, 108 Cotton 21: 39, 44, 49, 50 root resistance 3: 188 transpiration and absorption 3: 194 water content 3: 200, 201 Cotton, effect of potassium on yield and wilt infection 10: 225 Cotton, low sodium culture 7: 137, 139, 142 Cotton, see Gossypium hirsutum Cotyledon orbiculata 37: 168, 174 Coulter counter cell size measurement 6: 100– 104 4-Coumarate:CoA ligase (4CL) 21: 12 – 15 r-coumaric acid 4 – coumaroyl-CoA 37: 63 4 – coumaroyl CoA ligase 37: 63, 64 Coumaroylglycosides 25: 149, 150 Counter-gradient position 18: 200 Coupling factors for photosynthetic enzymes 14: 140 Coupling ratio deduction 25: 349 determination 25: 340– 343 kinetic estimates 25: 340, 341 mechanistic implications 25: 357 non-integer 25: 356 thermodynamic determination 25: 341, 342 COW1 31: 255 Cowpea 18: 135 nitrogen processing 18: 156, 159 Cowpea chlorotic mottle virus (CCMV) 36: 14, 104, 106 Cowpea mild mottle virus 36: 69 Cowpea mosaic virus (CpMV) 21: 115 Cowpea mosaic virus (CPMV) 36: 28, 104 Cowpea pods 19: 25 Cowpea severe mosaic virus (CSMV) 36: 104, 107 Cowpea, effects of salicylates 20: 211
83
Cowpea, pest resistance 26: 165, 166 Coxsackievirus A9 (human) 36: 131 CpDNA 35: 176 CpDNA-RFLP 35: 190 CR4 gene 32: 230, 237, 257, 259 cr4 mutation 32: 237 Crassula stems 18: 276 Crassulacean acid metabolism (CAM) 124– 126, 129, 136, 143, 144, 214 Crassulacean acid metabolism (CAM) 15: 43– 92 carbon dioxide recycling 15: 78 – 85 aquatic environment 15: 82, 83 citric vs. malic acids 15: 83 –85 regulation 15: 64 – 67 terrestrial environment 15: 79 – 82 diel cycle 15: 46 – 50 and succulence 15: 49 organic acid fluctuation 15: 49, 50 phases in 15: 46 – 49 intermediate variants 15: 67 – 69 carbon dioxide recycling 15: 74– 76 occurrence/evolution 15: 70 – 74 physiology of transmission 15: 76 – 78 isotope ratio analysis 15: 55– 64 modification, environmental 15: 51 – 53 and photosynthetic radiation 15: 52 and temperature 15: 52, 53 and water stress 15: 52 occurrence/distribution 15: 45, 46 plant water relations 15: 53 – 55 regulation, biochemical 15: 50, 51 malic acid accumulation 15: 51 phosphoenolpyruvate carboxylase in 15: 50, 51 research integration 15: 85, 86 interest 15: 44, 45 Crassulacean acid metabolism (CAM) 22: 171; 27: 99, 100; 29: 22 C3 + C1 carboxylation 27: 100 plants 25: 60, 61, 185, 373, 375, 377, 378, 381, 382 Crassulacean acid metabolism and sodium requirement 7: 125, 126, 159, 168, 170, 171 effect of sodium on physiology and metabolism 7: 186– 207
84
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Crassulacean acid metabolism and sodium requirement (continued) in orchids 7: 521– 529 role of sodium 7: 207– 212 Craterostigma 37: 106 Craterostigma sp., retrotransposons 27: 338, 345 Cratoneuron filicinum intraspecific polyploidy 6: 211 Crepidotus variabilis, wood colonization 7: 416 Crepis macro-evolution 6: 266 Cretaceous flowers 17: 122, 123 androecium 17: 130 Early Cretaceous 17: 107– 111 gynoecium 17: 132, 133 Late Cretaceous 17: 113– 118 Mid-Cretaceous 17: 111–113 nectary 17: 134, 135 perianth 17: 127, 128 position of parts 17: 133 sex distribution 17: 125 size 17: 123 symmetry 17: 123, 124 Cretaceous period, net primary productivity and water use 26: 193– 195, 207– 219 Cretaceous/Tertiary boundary 17: 2, 4 – 7 leaves in climate reconstruction 17: 74, 75 megafossil evidence 17: 6, 7 palynological evidence 17: 5, 6 Crevasse splay deposits 16: 129 Carboniferous, plant community reconstruction 16: 180, 181 fluvio-marine interdistributory embayments 16: 144 Cricetulus griseus 28: 13 Criconemella spp. 23: 113 Crinivirus 36: 67 – 69 semipersistent transmission 36: 77 vector specificity 36: 87 Crinkly4 (Cr4), 171 CRINKLY4 gene, see CR4 Criteria for invasion 38: 33 – 39 applications 38: 38, 39
realistic 38: 34 –38 dual sources of infection 38: 34, 35 host response to parasite load and nonlinear transmission 38: 35 – 38 simple 38: 33, 34 Crithidia 19: 215 Crithidia fasciculata, cytochrome 4: 75 CrnA 30: 25, 28, 29 Crocus C. minimus chromosome evolution 6: 143 fusion of acrocentric chromosomes 6: 152, 153 karyotype variation 6: 129, 188 Cronartium quercuum f. sp. fusiforme 24: 198 Croomia, growth 3: 236– 238 C. pauciflora 3: 236 Crop rotation, for biocontrol 26: 14, 15 Cross protection, wilt disease 21: 67 Cross-over theory 38: 118, 119 Crotalaria 24: 432 Crown gall, effect on vascular differentiation 9: 157, 234, 249 Crown gall, surface receptors in gall induction 4: 31 Crozophora tinctoria Cruciferae 24: 238 Cruciferin 27: 30; 35: 72; 35: 116 cry1 mutant 32: 169 Cryoprotective agents ammonium acetate 5: 20 bovine serum albumin (BSA) 5: 20 dextran 5: 20 dimethylsulfoxide (DMSO) 5: 20, 21 glycerol 5: 20, 21 polyvinylpyrrolidone (PVP) 5: 20 sucrose 5: 20 use in prevention of freezing damage 5: 19 – 21 Cryosophila, bracts 3: 276 Cryphonectria (fluens) radicalis 21: 136 parasitica 21: 128– 137 Cryphonectria parasitica (chestnut blight) 33: 20, 21, 25 Cryphonectria parasitica 24: 7, 10, 16, 19 Crypthecodinium cohnii 12: 209, 233, 234, 237, 238
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cryptochrome 13: 52; 32: 151, 172, 173 Cryptochromes 33: 72 Cryptococcus albidus, phosphorus content 8: 131 Cryptogein 21: 162, 165, 167 Cryptomeria 37: 41 Cryptomeria japonica 37: 108 Cryptomonad algae see also Chloroplast; Nucleomorph evolution of 19: 189– 230 Cryptomonads ancestors of chromophyte algae 19: 201– 203 as endosymbionts 19: 213, 214 cell layout 19: 192, 193 overview of 19: 192 parasites of 19: 213, 214 rRNA genes 19: 200, 201 taxonomy 19: 219, 220 Cryptomonas 19: 208, 214 Cryptomonas ovata, shading effects 10: 157 Cryptophyta 27: 89 C3 + C1 carboxylases 27: 97 chlorophyll 10: 52, 53 down-regulation of RCII 27: 295, 296 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 RUBISCOs 27: 101, 102 thylakoid structure 10: 34, 35 thylakoids 27: 270 xanthrophylls 10: 55 Cryptophytes 11: 75 Cryptoploidy (see DNA periodicity) Cryptopodium paranaensis, carbon "fixation 7: 524 Cryptosphaeria populina 33: 26 Cryptosporiopsis 33: 20, 28 Cryptosporiopsis abietina 33: 20, 23 Cryptosporiopsis, interspecific competition 7: 385 Cryptothallus 19: 265, 267, 283, 285, 293 Giemsa C-band staining 6: 199 Cryptothallus mirabilis 19: 279, 281 Crystallization 25: 157, 159
85
CSTR, see Continuously stirred tank reactors Ctenocephalides felis 28: 13 C-terminal 25: 46 C-terminal regulatory domain 28: 45 CTPP-containing vacuolar protein tabacco chitinase 25: 52 CTR1/Raf-like protein kinase subfamily 32: 30, 122, 123 CTX, see Ciguatoxin Cucumber 21: 16 effects of salicylates 20: 211 as endogenous messenger 20: 212– 214 ‘plant immunization’ 20: 204 signal transmission 22: 165 UV radiation 22: 101, 116, 130, 143, 144, 146, 147 water and nitrogen supply 22: 256 water flow studies 20: 76, 77 Cucumber cell walls 19: 28, 29 Cucumber hypocotyl bioassay for gibberellins 9: 60, 62– 65, 132, 134, 136, 138– 140 Cucumber leafspot virus (CLSV) 36: 51, 55 Cucumber mosaic virus (CMV) 27: 349; 36: 2, 3 M-isolate (M-CMV) 36: 2, 3 Cucumber necrosis virus (CNV) 36: 50 – 52, 55 Cucumber plants 24: 179 Cucumber soil-borne virus (CSBV) 36: 51 Cucumber, see Cucumis sativus Cucumis 22: 174 melo 21: 49, 50 sativus 21: 16; 22: 147 Cucumis sativus (cucumber) 18: 15, 72 O3/SO2 exposures 18: 76 Cucumis sativus 25: 48; 33: 69; 37: 107 Cucumis sativus, leaf surface structure 5: 183 Cucumis sativus, modification of sex expression by gibberellins 9: 34 Cucumis vulgaris 33: 70 Cucumovirus 36: 2 Cucumovirus capsid protein 36: 12, 13 Cucurbit aphid-borne yellows virus (CABYV) 36: 22
86
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cucurbit yellow stunting disorder virus 36: 69 Cucurbita 24: 318 Cucurbita moschata 12: 91 Cucurbita pepo 18: 274, 275; 19: 132; 28: 46; 31: 49, 50, 52; 32: 36, 208, 210 aeration in seedlings 7: 226 cell-free synthesis of gibberellin 6: 311 cotyledons 18: 273, 277, 278, 281 etiolated 18: 279 light travel 18: 280 phytochrome content of plastid "membranes 7: 49 Cucurbita sp. 25: 262 Cucurbita texana 35: 89 Cucurbitaccae 22: 13 Cucurbitin 27: 29 Cucurbito 22: 13 “CUF101” 18: 15 Cultivar resistance 21: 2 Cultivated plants, origins 27: 435 Cunninghamella echinulata, phosphorus content 8: 140, 141 Cunninghamia lanceolata 37: 110 Cuphea 31: 9 Cupressaceae 33: 8 Cupressus 33: 9 Cupressus arizonica, gibberellins identification 9: 43 modification of sex expression 9: 34 Curacin 27: 214 Curculigo, growth 3: 222 Curcurbita maxima, gibberellin biosynthesis 9: 85, 88, 90, 92, 96 –99, 121, 122, 126, 127 Curcurbitaceae modification of sex expression by "gibberellins 9: 34 vascular network formation 9: 199 Current – voltage (I– V) relationship 25: 223, 225, 226, 342, 346, 348, 352, 357 Curtovirus 36: 84 Curtoviruses 36: 148 Cuscuta subinclusa 37: 82 Cuticle 18: 223; 21: 4 – 6, 106 development 18: 223, 224 wind damage 18: 224
Cuticle, structure chemistry and evolution 5: 189 Cuticular conductance 18: 220 wind and energy transfer 18: 223, 224 Cuticular resistance to CO2 movement 5: 186 to water movement 5: 185 Cutin 21: 4, 5 Cutinase 21: 4, 5; 24: 41, 47 Cutinases 30: 295 Cuttings, disease biocontrol 26: 40, 66, 67 Cvt (cytoplasm-to-vacuole transport) pathway 38: 82 Cwh6/gpi3 yeast mutant 30: 264 Cyanamide hydratase 34: 75 – 78 Cyanidin 37: 60, 70, 178 Cyanidin-3-glycoside 37: 8, 19, 40, 41, 66, 150, 178 structure 37: 3 Cyanidin-3 – glycoside-glutathione 37: 67 Cyanidium caldarium 19: 212 photosystem structure 10: 137 phycobiliprotein evolution 10: 181 phycobilisomes 10: 66, 142 shading effects 10: 157 Cyanidium caldarium, plasma membrane 3: 35 – 39 Cyperaceae, prophyll 3: 287 Cyanidium caldarum, phycobilin "synthesis 27: 297 1-cyano-2-hydroxy-3-butene 35: 247 Cyanobacteria see also Cyanotoxins; Plastids affinity-adapted species 13: 105, 112 aggregation, flotation/settling rates and 13: 89 akinete production 13: 125, 126 allelopathic metabolite secretion 13: 107 anoxygenic metabolism 13: 97 benthic accumulation 13: 126– 128 bloom formation see Water bloom formation buoyancy behaviour 13: 71, 72 diurnal variation 13: 84 buoyancy regulation 13: 83 – 87 photosynthetically-mediated changes 13: 83, 84 turgor and 13: 83
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
C3 + C1 carboxylases 27: 97 carbon dioxide, growth rate and 13: 107 cell wall, carbon dioxide transport 27: 123– 125 collonial forms 13: 72, 73 compensation point 13: 102, 103 conditions favouring dominance 13: 113 –115 density 13: 78, 81, 82 distribution 13: 69 –71, 130 down-regulation of RCII 27: 295, 296 dry mass 13: 78 entrainment in turbulent flow 13: 93 fatty acid composition 16: 7, 9 filamentous forms 13: 73 form resistance to intrinsic settling 13: 71, 72 gas vacuoles 13: 68, 72, 79 – 83 gas vesicle 13: 79, 80 critical pressure 13: 81 production, growth dilution mechanism 13: 83, 86 gas vesicle protein 13: 80, 83 glutamate-tRNA gene 27: 297 glycolipids in 16: 9 ideal environment 13: 108, 109 intrinsic velocities 13: 87 – 90 light, growth rate and 13: 97– 101, 110– 112 limnetic water movements and 13: 90, 91, 113 lipid metabolism 16: 13 – 19 and temperature 16: 17 – 19 fatty acid synthesis 16: 15 – 17 fatty acyl composition 16: 14 membrane composition 16: 13 low-light adaptation 13: 98 – 100 marine 27: 88 mixing times, distribution and 13: 93, 94 nutrients buoyancy regulation and 13: 86, 87 growth rate and 13: 103– 106, 112, 113 overwintering vegetative cells 13: 126, 127 perennation 13: 125– 128 pH range 13: 71, 107 phycobiliproteins, origins 27: 310, 311
87
population control by other organisms 13: 107, 108 respiration rates 13: 102, 103 seasonal re-establishment of planktonic population 13: 128, 129 settling velocities, size range and 13: 73, 78 size range 13: 73 specialized environments 13: 70, 71 storage-adapted species 13: 105, 112 stratification 13: 84 – 86 surface exposure, effects of 13: 123– 125 survival strategies 13: 130– 132 temperature and 13: 96, 71 thylakoids 27: 270 turbulent environments 13: 90 – 93 turgor-collapse model of buoyancy regulation 13: 83 – 86 unicellular forms 13: 72, 73 values of a (kinetic fractionation) 27: 143 velocity-adapted species 13: 105, 112 Cyanobacteria-like organisms (CLOs) 27: 236 Cyanobacterium antenna chlorophyll 10: 94 buoyancy control 10: 42 distribution and light quality 10: 23, 24 photosystem reaction centre "complexes 10: 82 phycobiliproteins 10: 48, 64, 109 thylakoid arrangements 10: 33, 35 Cyanodictyon distribution 13: 70 size 13: 72 Cyanopeptolin 27: 215 Cyanophora paradoxa, phycobiliproteins and associated proteins 27: 279 Cyanophyceae, as progenitors of eukaryotic chloroplasts 7: 95 – 97 Cyanophyta, life cycle 16: 56 Cyanopsis psoraliodes (guar) 11: 134, 139, 143 Cyanotoxins 27: 211– 240 see also Cyanobacteria classification biotoxins 27: 213– 227 cytotoxins 27: 212 detection 27: 228– 233
88
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cyanotoxins (continued) monitoring, control and management 27: 239, 240 production and genetic regulation 27: 233– 236 risk assessment 27: 236– 238 screening, summary 27: 230 Cyatheaceae cytology and phylogeny 4: 312– 315 morphology and cytology 4: 293– 295 polyploidy 4: 322 Cycads 1: 26, 30, 31, 38 – 41 Cycads, Early Tertiary 17: 20, 23 Cycas chromosome constitution 6: 172 evolution 6: 172, 173 Cycas revoluta, lignin composition 8: 31 Cyclamen eruopaeum 11: 146 Cyclamen persicum 30: 237 Cyclamen persicum, stomatal aperture and subsidiary cell turgor 4: 129 Cyclaneusma minus (autumn needle cast) 33: 4, 25 Cyclic ADP-ribose (cADPR) 25: 239 Cyclin-dependent kinase (CDK) subfamily 32: 25, 26 Cyclitols 18: 141; 25: 371, 372 Cyclobutane pyrimidine dimer (CPD) 22: 116–119 Cyclohexanoid monoterpenoids biosynthesis 31: 99 – 103 Cycloheximide 19: 24; 24: 358; 34: 253, 254 inhibition of nitrogen uptake 6: 3 Cycloheximide, effect on auxin-induced growth 5: 59 Cycloheximide, flagella regeneration arrest 20: 135 Cycnoches flowering period 7: 544, 551, 552 post-pollination phenomena 7: 574 Cylindrospermopsin 27: 213– 216 structure 27: 217 Cylindrospermopsis distribution 13: 70 nitrogen fixation 13: 106 survival strategies 13: 131, 132
Cylindrospermopsis raciborskii 13: 133 shape 13: 73 Cylindrotheca sp. 11: 91, 93 Cylindrotheca spp., RUBISCOs, Kc values (table) 27: 104 Cymbidium acid phosphatase production 7: 487 carbon fixation 7: 528, 530, 568 culture 7: 443, 446, 470, 481, 634, 635 Cymbispatha C. commelinoides karyotype constitution 6: 162, 164 karyotype evolution 6: 142, 143, 162 nombre fundemental 6: 162, 163 pseudo iso-ring formation 6: 147, 149 chromosome symmetry and evolution 6: 133 isochromosomes 6: 151 karyotype evolution and centricfusion 6: 161– 167, 190 polypoidy and centric fusion 6: 183, 184 telocentric chromosomes 6: 139 Cymodocea sp., d13C values 27: 151 Cynanchum 31: 51 Cynodon (Bermuda grass) salt glands 31: 41, 42 Cynodon dactylon decarboxylation system 7: 197 effect of sodium on growth 7: 162, 163 Cynorkis fastigiata, seed morphology 7: 433 Cynosurus cristatus 33: 245 Cyperus holocentric chromosomes 6: 136 Cyperus rotundus 33: 20 Cypripedium auxin in seeds 7: 462, 506 longevity of flowers 7: 569 post-pollination phenomena 7: 576, 578 Cyprodinil 33: 248 Cyrtomium falcatum, apomixis 4: 389 Cyrtomium, polarity of leaf veins 9: 194 Cyrtopeltis nicotianae 36: 201, 202 Cyrtorchis arcuata flowering period 7: 535 seed morphology 7: 436 Cys B 33: 199
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
cys14 33: 163 CYS3 protein 33: 200 CysG 30: 24 CysQ 30: 50 Cyst coat vesicles 24: 375, 376 Cystatins, plant defence 26: 140, 163– 166 Cysteine 21: 152, 153 Cysteine endopeptidase (CysEP) 38: 76, 77 ‘cysteine synthase’ complex 33: 192 Cysteine synthesis 33: 188– 191 Cystopteris, C. fragilis complex, cytogenetics of C. diaphana 4: 358 C. dickieana 4: 357– 360 C. fragilis 4: 356– 360 C. montana 4: 357, 358 C. protrusa 4: 358, 359 C. regia 4: 358, 359 C. tenuisecta 4: 357 polyploidy 4: 324 Cystoseira mediterranea, fluorescence spectrum 10: 100, 126 Cystoseira sp. 27: 214 Cyst-wall proteins 24: 138 CytG mutation (soybean) 35: 31 Cytochrome 22: 109, 134 Cytochrome b559 13: 8, 9, 46 Cytochrome b6 13: 11 high/low potential forms 13: 11, 12 Cytochrome b6 35: 25 Cytochrome b6-f complex 13: 5, 10 –13 cyclic electron transfer 13: 10, 13, 45 electron transport between PSII and PSI 13: 10 location within thylakoid membrane 13: 11, 15, 48, 49 non-cyclic electron transport and 13: 44, 48 Cytochrome f 13: 11, 12 location within thylakoid membrane 13: 13 Cytochrome f 35: 25, 77 Cytochrome oxidase, affinity for O2 5: 208 Cytochrome p450 enzymes 37: 58, 64 Cytochrome p450 hydroxylases 37: 86 Cytochrome P450, 106 Cytochrome-P-450 25: 144
89
Cytokines 22: 166, 263, 273, 279, 284, 285, 287 Cytokinesis 24: 357 Cytokinin 31: 198 production by roots 9: 248, 254 promotion of vascular differentiation 9: 171 Cytokinin responses 32: 125, 138 Cytokinin responses in plants 32: 125 Cytokinins 14: 43; 19: 123– 138; 24: 47 – 51; 35: 25 binding by ribosomes 5: 65 binding glycoprotein from Achyla 5: 71 biochemical analysis 24: 49 development in unstressed plants 19: 125– 128 early research 19: 123– 125 fungal-derived 24: 63 implications for disease control 24: 51 mediator protein in pea chromatin 5: 65 miscellaneous stresses applied to roots 19: 133– 138 molecular analysis 24: 49 – 51 responses to mineral nutrient shortage 19: 131– 133 role in pathogenicity 24: 51 root excision studies 19: 128– 131 Cytokinins in determination of leaf form 28: 171, 172 Cytokinins in leaf nodules 17: 228, 230 Cytokinins, and orchid seedlings 7: 462– 465 Cytological aspects of light harvesting in algae cell morphology 10: 28, 29 chloroplast movement 10: 29, 30 chromatophores 10: 30 – 36 Cytological techniques feulgen staining 6: 196– 198 Giemsa C-band staining 6: 198, 199 squash techniques 6: 196– 198 Cytology and phylogeny in ferns 4: 307– 319 of ancient ferns 4: 283– 292 of modern ferns 4: 282, 283 of tree-ferns 4: 292 –295
90
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Cytoplasm colloids and organelles, hydration 3: 178 –181 water potential 3: 175 Cytoplasmic invertase 28: 74 Cytoplasmic LRRs 24: 155 activation of plant defences by resistance proteins containing 24: 114– 119 avirulence determinants interacting with resistance proteins containing 24: 113, 114 gene encoding protein of unknown "function with 24: 137, 138 required for resistance gene to function 24: 109– 112 resistance genes encoding proteins with 24: 101– 119 Cytoplasmic serine/threonine protein kinase 32: 386 Cytoplasmic streaming 11: 6, 7, 38, 57 – 60; 28: 121 Cytoplasmic streaming, in giant cells of Algae 5: 159 Cytoplasmic streaming, lateral movement of respiratory gases 7: 239–242 Cytoskeleton displacement and gravity 15: 27, 28 shear and statolith motion 15: 21 – 24 Cytoskeleton role in vacuole and endosome movements 28: 141– 143 Cytoskeleton, changes in 24: 210 Cytoskeleton, UV radiation 22: 133, 134 Cytosolic invertase 28: 73 Cytosolic nitrates 30: 18, 19 Cytosolic phosphoenolpyruvate carboxylase 25: 377 Cytospora chrysosperma 33: 26 Cytotaxonomy 6: 242– 244 Cytotoxins, list 27: 213–215 2,4-D 19: 14, 15, 63 D values, typical 18: 195, 196 D. antennatum, seed morphology 7: 437 D. appecdiculatum, longevity of flowers 7: 568 D. bronkearti effects of pollination on ovaries 7: 630
D. D. D. D.
comatum, flowering period 7: 545 cornuta, seed morphology 7: 427 cretaceum, seed morphology 7: 427 crumenatum, flowering period 7: 545, 550, 551, 568, 569 D. cv. Jaquelyn Thomas, flowering period 7: 545 D. cv. Lady Fay, flowering period 7: 545 D. cv. Merlin, flowering period 7: 545 D. cv. Thwaitesiae, flowering period 7: 545 D. dicuphum, symbiotic specificity 7: 496 D. draconis, flowering period 7: 545 D. euchlora, photosynthetic rate 10: 151 D. findlayanum, flowering period 7: 545 D. flexuosa enzymes of nitrogen metabolism 6: 23, 25, 29 nitrate utilization in the presence of ammonium 6: 16 D. formosum, flowering period 7: 545 D. glaucescens, seed morphology 7: 426 D. incarnate, symbiotic specifity 7: 496 D. infundibulum, flowering period 7: 545 D. majus microchromosomes 6: 225, 226 sex chromosomes 6: 235 D. nobile effect of hormones in culture 7: 460, 465 flowering period 7: 545 symbiotic specificity 7: 496 D. parva, photosystem reaction centre 10: 87 D. phalaenopsis flowering period 7: 545 nitrogen metabolism 7: 446 D. plicatile, seed morphology 7: 427 D. pulchella, seed morphology 7: 427 D. purpurella carbon transport 7: 504, 505 culture 7: 442, 459, 460, 464, 470 protocorm-fungal interaction 7: 499, 500 symbiotic specifity 7: 496 ultrastructure of mycorrhiza 7: 501, 504 vitamin production 7: 494, 495 D. quercina coloured zone formation 7: 395, 397 competitive ability in culture 7: 354, 389– 391, 396 D. scabrilingue, flowering period 7: 545
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
D. subulata interspecific aneuploidy 6: 212 D. superbum, longevity of flowers 7: 569 D. tauricum heterochromatin 6: 238 D. taurinum, carbon fixation 7: 524 D. tenella, seed morphology 7: 426 D. tertiolecta 11: 98, 100, 113 antenna chlorophyll 10: 94 photosynthetic rate 10: 151 shading effects 10: 156, 160, 162 thylakoid structure 10: 34 D. thrysifolium, post-pollination phenomena 7: 607 Dacrydium chromosome constitution 6: 173 D. bidivillii karyotype morphology 6: 174 D. laxifolum karyotype morphology 6: 174, 175 karyotype evolution and centricfusion 6: 173 Dacrydium cupressinum 37: 170 Dactylis 33: 245 Dactylis glomerata (cocksfoot) 33: 245; 29: 130, 131 Dactylis glomerata 30: 57 enzymes of nitrogen metabolism 6: 23, 25, 27, 29 Dactylis glomerata, evolutionary pattern 4: 369 Dactylococcopsis buoyancy regulation 13: 86 form of colonies 13: 73 stratification 13: 85 Dactylococcopsis salina 13: 133 distribution 13: 70 Dactylorhiza, vitamin production 7: 468 Dactynotus gobonis 36: 11 Daedalea confragosa coloured zone formation 7: 395, 397 competitive ability in culture 7: 389, 390, 394, 396 pseudosclerotial plate formation 7: 395, 397 DAG 22: 74, 85, 88
91
Dalbulus 36: 155, 160 elimatus 21: 196 maids 21: 201– 203 Dalbulus elimatus 36: 154 Dalbulus maidis 36: 146, 151 Damping-off disease of radish (Rhizoctonia solani) 38: 7, 10, 25, 26 Danaus plexippus 25: 151 Daphne pseudomezereum 38: 211 Dark intrinsic protein 35: 143 Dark respiration 18: 42, 67 absolute 18: 68 SO2/NO2 mixtures 18: 47 Darkness and chelation 1: 84, 85, 90, 91, 95 DAS-ELISA 62 Dasineura brassica 35: 243 Dasya ocellata 35: 180 Dasypyrum villosum 33: 245– 247 Datura 35: 63 isochromosomes 6: 145 Datura innoxia 30: 143; 35: 59, 74, 84 Datura innoxia, DNA transposable elements, Ac transposition 27: 403 Datura metel 35: 63 Datura meteloides 35: 74 Datura stramonium 22: 165 Datura wrightii 31: 206 Daucus carota 22: 60; 25: 270, 272; 28: 75; 29: 159; 30: 275; 32: 191, 205; 37: 110 DNA analysis 6: 125 hydraulic conductivity 6: 97 Daucus carota culture 13: 157, 160, 162 Davallia fossil record 4: 234, 235 fossil structure 4: 245, 246 Dawsonia macro-evolution 6: 269 Dawsonia superba, leaf surface 5: 200 Dawsonia, lignin content 8: 29 Daylength 22: 166 Dbf2 protein kinases 32: 32 DCMU [N-(3,4-dichlorophenyl)-N0 dimethylurea] 33: 95, 105– 107 Dead Sea, Dunaliella in 14: 98, 99 Deamination 30: 135
92
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Debromoaplysiatoxin 12: 78 – 80 Decaffeinated beverages 30: 188–190 Decarbomethoxylase 35: 17 De-etiolation 32: 150 Defence mechanisms in plants 30: 294, 295 similarities with animals 30: 308, 311 response genes 30: 309– 311 Defence genes 21: 11, 20, 21 Defence genes, regulation of 29: 64, 65 Defence genes, UV radiation 22: 135– 138 Defence reactions 22: 165 Defence response 21: 2, 3, 24, 25 see also Fungi, Gene for generelationships, Virus infection classes of 21: 8 – 17 pathogen ingress and plant resistance 21: 3 –8 regulation of defence gene expression 21: 18 – 24 Defence responses 29: 59 – 61 Defence tissues 38: 171, 172 Defence-related (DR) proteins 38: 263 Defense pathways 32: 391 Defense signal transduction 32: 392– 397 Defensins 26: 151– 153 Defensins 30: 308, 309, 311 Defensive Signal Hypothesis 37: 160, 161 Deficiency and plant adaptation 10: 222, 223 involvement in plant disease 10: 224, 225 DEFICIENS 24: 133 Definitions 31: 1, 3, 199 Deforestation 21: 87 – 89, 91, 95 Degradation of wood see Fungi Dehiscence 17: 280– 282 and size of pod 17: 284 Dehydrins 22: 277 Dehydroascorbate (DHA) 18: 95 “Delaware” cv. 18: 70 Delayed light emission (DLE) 18: 100 Delesseria sanguinea, photosynthetic rate 10: 168 Delesseria sp. d13C values 27: 150 growth rate 27: 156 Deleterious cytoplasmic genomes (DCGs) 24: 74
Delia floralis 35: 243 Delila (del) 31: 224, 225 Delphinidin 37: 60 – 62, 70 Delphinium ajacis 12: 184 Delphinium sp. 33: 245 Deltas fluvio-lacustrine 16: 133– 140 formation model 16: 133– 135 Gilbert-type profile 16: 133 high-energy systems 16: 138– 140 in volcanic terrain lateral lakes 16: 170, 171 low-energy system 16: 135– 138 fluvio-marine 16: 140– 147 beaches 16: 144, 145 distributory mouth bars 16: 142 interdistributory embayments 16: 144 lower plain marshes 16: 145, 146 pro-delta slope 16: 141, 142 tidal flats 16: 143, 144 upper plain marshes 16: 146, 147 Demethylation inhibitors (DMIs) 33: 248 Demethyl-oFCC-1 35: 18 Demographic stochasticity 38: 10, 11, 14 Dendranthema grandiflora 37: 110 Dendrobium cv. Anne Marie, flowering period 7: 544 Dendroceros 19: 275, 279, 281, 295 Dendroceros tubercularis 19: 298 Dendrocerotaceae 19: 295 Dendroligotrichum, lignin content 8: 29, 30 Dendrophylax funalis, carbon fixation 7: 530 Dennstaedtia, fossil record and structure 4: 246, 247 Dennstaedtiaceae aneuploidy 4: 301– 307 polyploidy 4: 322 Dennstaedtiaceae, Early Cainozoic 17: 14 Dense vesicles 35: 148, 149 Density labelling, measurement of protein turnover 8: 93 – 95 Density of trichomes 31: 137, 138, 209, 210 3-deoxy anthocyanidin 37: 39 – 41 3-deoxy anthocyanin 37: 8, 76, 84, 186 Dephosphorylation 21: 168; 30: 135, 136; 32: 17, 25, 31, 69, 70, 76, 92, 207, 251, 340, 356– 359, 445, 448 Deplasmolysis 25: 26
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Depolarization 21: 62, 63 Depolymerization 21: 46 Deriphat 160, solubilization of chlorophyllprotein complexes 10: 104 Dermocystidium, phosphate uptake 8: 157, 172 Deschampsia alpina nitrate reductase 6: 23 Deschampsia caespitosa, metal cotolerance 8: 257, 258 Deschampsia flexuosa 29: 10, 11, 18; 30: 57 Desert shrubs 18: 20 Desertification 21: 87 Desmarestia spp., pH of vacuole 27: 167, 170 Desmarestia viridis (D willii) 35: 196 Desmatodon cernuus breeding systems 6: 246 D. randii apogamy 6: 252 Desmodium 24: 432 Desmodium intortum 24: 440 Desmotubule 31: 262, 263, 276, 277 Desoxyhemigossypol 21: 48 Desoxymethoxyhemigossypol 21: 48 Destabilization, viruses 21: 106– 114 Desulphoglucosinolate sulphotransferase 35: 224 Desulphoglucosinolates 35: 215 Desulphovibrio, cytochrome 4: 79 Detection bioindications, early 18: 101– 103 Detection, definition 23: 3 Detection, early parameter 18: 93 Detergents for fractionation of chlorophyllprotein complexes 10: 104, 105 Determination, definition 23: 3 Determinative phase, disease 21: 36, 38 – 51 Deterministic models 38: 41, 45 Deterministic thresholds 38: 39, 40 Detoxifying response 18: 95 Detrimental associations 33: 22 – 27 Detritivores and plant fossil record 16: 105, 106 phytoplankton consumption 16: 210 Deuteromycotina 24: 78 Development 31: 20 – 29, 89 – 91, 201– 209 see also epidermal cell specification cell wall growth 31: 27
93
initiation 31: 219– 233 timing 31: 27 –29 Development, UV radiation 22: 102, 139 Developmental pathways 32: 9 Developmentally regulated promoters 34: 88 – 90 Devonian land plants 5: 162, 163 Dextran gel, separation of gibberellins 9: 58, 59 Dextran, use as a cryoprotective agent 5: 20 Dextran-charcoal techniques in IAA binding 5: 64 D-Galacturonic acid 19: 21 D -glucuronic acid 34: 173 DHA, see Dehydroascorbate Dhurrin 30: 97, 98; 35: 223 Diabrotica undecimpunctata howardi (Spotted cucumber beetle) 36: 102– 104 Diacylglycerol 21: 64; 22: 46 – 49 Diacylglycerol acyltransferase (DAGAT) 35: 118, 128 Diaeretiella rapae 35: 244 Diagnosis, definition 23: 3 Diagnostic methods 23: 9, 10 Diagnostic techniques genetic 23: 8 phenetic 23: 8 bioassay 23: 8 biochemical 23: 8 morphological 23: 8 serological 23: 8 Diagnostic values 23: 180– 182 Diaheliotropic movements Dialytic (dl) 31: 206 Dianthalexin production 13: 179 Dianthramides 21: 49 Dianthus caryophyllus 28: 75; 37: 68; 13: 179 Diaphananthe, flowering period 7: 535, 538, 541, 547 Diaphototropic movement Diarrhetic shellfish poisoning (DSP) 12: 89 – 91 Diaspores, aquatic mechanical degradation 16: 124, 125 Diatoms see Named species Diatoxanthin 27: 292, 294
94
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Dicarboxylate translocator in chloroplast membrane 7: 56, 62 – 64 Dicarboxylic acids 18: 136, 146, 148, 149, 151, 163 transport 18: 140 2,4-dichloroacetic acid (2,4-D) 34: 73 Dichlorofluorescein 37: 183 2,6-Dichloroisonicotinic acid 21: 17 Dichloromethylenediphosphonate 25: 300 2,4-dichlorophenoxyacetic acid (2,4-D) induction of aspartate conjugates of NAA 5: 55, 56 inhibition of 3-MO reduction 5: 60 protein mediators in stimulation cf chromatin-bound RNA polymerase in soybean 5: 62, 63 in stimulation of RNA synthesis by tobacco and soybean nuclei 5: 62 stimulation of glucan synthetase activity of onion plasma membrane 5: 61 2,6-dichlorophenoxyacetic acid (2,6-D), induction of aspartate in conjugates of NAA 5: 55, 56 Dicksonia antarctica, fossil record 4: 236 Dicksoniaceae, structure and fossil record 4: 236, 245 Dicksoniales, see Cyatheaceae Dicotyledonous plants 25: 116–120 Dicotyledons, at K/T boundary, fossil evidence 17: 7 Dicranella cytotaxonomy 6: 243 D. palustris interspecific aneuploidy 6: 212 Dicranoloma sp. chromosome numbers 6: 206 Dicranoweissia cytotaxonomy 6: 243 D. cirrata aneuploidy 6: 220 Dicranum 19: 249, 251 cultivation experiments 6: 253 cytotaxonomy 6: 242 Dicranum majus 19: 263, 287 Dicrypta bauerii, seed morphology 7: 427 Dictamnus 31: 9, 26 anatomy of essential oil cavities 6: 300
Dictyophyllum, fossil record 4: 237 Dictyostelium 35: 63 Dictyostelium discoideum 25: 270 Dictyostelium discoideum, polyphosphate localization 8: 146 Dictyostelium discoidum 28: 13, 14 Dictyota dichotoma 11: 111; 12: 63; 19: 211 Dictyota dichotoma, chloroplast "movement 10: 29, 30 Dictyuchus 24: 354 Dicyclohexylcarbodimide (DCCD) 28: 23 Dicyma parasitica 24: 412 Didymoplexis pallens, flowering period 7: 437 Dieback zone 18: 237 Diel cycle in Crassulacean acid metabolism 15: 46 – 50 and organic acid fluctuation 15: 49, 50 and succulence 15: 49 phases in 15: 46 – 49 Diethylstilbestrol (DES) 22: 7; 25: 377 Diethylstilbestrol and ion flux in roots 15: 104 Differential scanning calorimetry (DSC) 34: 179 Differential senescence in tissues and organelles 25: 89, 90 Differential temperature treatment (DTT) 21: 118 Differential-display reverse-transcriptase (DDRT-PCR) 35: 79, 80 polymerase chain reaction Diffusion 11: 3 – 6, 14 definition 7: 242 diffusivities of atmospheric gases 7: 232, 233 Fick’s Law 7: 243, 244 movement of respiratory gases in plants 7: 227, 228 movement of respiratory gases in the gas-space 7: 228– 234, 239 Ohm’s law and the diffusion analogy 7: 247, 248 planar diffusion 7: 244– 247, 253– 256 pore-space resistance 7: 248, 249 radial diffusion 7: 250, 251, 256– 260 Diffusion boundary layers 27: 121, 122
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Diffusive resistance 18: 197 air pollution combinations, other 18: 84 NO2/SO2 mixtures 18: 43 – 49 NOx exposure 18: 34 – 42 long-term 18: 40 – 42 short-term 18: 38, 39 O3 18: 49 – 69 O3/acid precipitation 18: 79 – 82 SO2 exposure 18: 7 –34 long-term 18: 30 – 32 SO2/NO2 exposure, long-term 18: 48, 49 short-term 18: 47 SO2/O3 mixtures 18: 69 – 78 Digalactosyldiacylglycerol (DGDG) 22: 131 Digenea simplex 35: 197 Digital image analysis 18: 92 Digitalis lanata 25: 151 Digitalis lanata culture 13: 158, 172 biotransformation 13: 162, 164 Digitalis purpurea 31: 50, 271 Digitalis purpurea culture 13: 148, 150, 151, 156, 157, 166, 171 Digitalis ssp. culture 13: 174 Digitaria 21: 159 Digitaria exilis 34: 41 Digitaria iburua 34: 41 Digitaria sanguinalis, PEPCK in 38: 117 Digitonin 21: 62 Digitonin permeabilization, dyes 22: 56, 60 Digitonin, fractionation of reaction centres 10: 104 Digitoxin production 13: 148, 150, 151, 156, 157, 166, 171, 172, 174 biotransformation to digoxin 13: 162, 164 Digitoxin sensitivity 21: 190 Digoxin production 13: 162, 164 Dihydrodipicolinate synthase (DHDPS) 34: 203 Dihydroflavonol reductase (DER) 59, 64, 65, 99 genes 37: 83, 84 Dihydroflavonol reductase (DFR) 22: 136 Dihydroflavonols 37: 65, 184 1,4-Dihydropyridines 22: 71, 73, 78 Dihydroxyacetone kinase 14: 136 Dihydroxyacetone phosphate, transport in chloroplasts 7: 54, 57 – 60, 62
95
1,8-dihydroxynaphthalene 34: 267 Diindolylmethane 35: 239 3,30 -diinodolylmethane 35: 249 4,40 -Diisothiocyano-2,20 -stilbene disulfonic acid (DIDS) 25: 379 Dikaryotic rust infections 24: 319 Dill culture 13: 158 Diltiazem 22: 72 Dilution plating 23: 181, 196 Dimerization 32: 122, 123, 128, 236, 244, 390 modules 32: 247, 248 Dimethyl sulphate (DMS) 22: 137 9,10-dimethyl-1,2,-benzanthracene 35: 248 Dimethylsulfoxide, use as a cryoprotective agent 5: 20, 21 Dinoflagellate chromosome 12: 205– 264 central axial structures 12: 214 chromatin stabilization 12: 248 –250 chromosome changes during cell cycle 12: 222– 236 chromosome numbers 12: 209 DNA fibrils 12: 251, 252 DNA levels 12: 209–211 DNA transcription 12: 220– 222 electron microscopy 12: 212– 220 eukaryote affinities 12: 257, 258 fine structure 12: 211– 220 intermediate status and phylogeny 12: 258– 260 ionic composition 12: 241– 250 light microscopy 12: 211, 212 macromolecular composition 12: 236– 241 models 12: 251– 254 prokaryote affinities 12: 254– 257 synthesis of nuclear DNA 12: 222– 225 Dinoflagellates 25: 76 Dinomastigota dinoflagellates, PEPCK in 38: 145, 146 Dinophyceae 12: 207, 208 Dinophyta 27: 89 C3 + C1 carboxylases 27: 97 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 Dinophytes 11: 75
96
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Dinosaurs extinctions 17: 4 Palaeocene 17: 6 Dinosterol 12: 208 Diode 18: 271 Diodia vein chorosis virus 36: 70 Dionaea 22: 164, 165, 213– 216; 28: 36 muscipula 22: 186, 202, 203 Dionaea muscipula 28: 37 Dioon chromosome constitution 6: 172 Dioscoraceae 22: 13 Dioscorea deltoidea culture 13: 150, 151, 166, 167 response to biotic stress 13: 181 Dioscoreaceae 17: 164, 168 leaf gland symbiosis 17: 168, 213– 217 external infection 17: 223 microsymbiont isolation from 17: 220 Diosgenin production 13: 150, 151, 156, 166, 167, 181, 182 DIP organelles 35: 153 Diphenylbutylpiperidines 22: 71 1,1-Diphosphonates 25: 299– 300 Diphyscium 19: 249, 251, 253, 283, 287 Diphyscium foliosum 19: 264 Diphyscum 19: 257 Diplacus aurantiacus 18: 12, 20, 25 Diplaziopsis javanica, fossil record 4: 250 Diplazium apomixis 4: 390 polyploidy 4: 322 Diplodia maydis, phosphorus content 8: 140 Diplodina castaneae 33: 25 Diplodina salicorniae 33: 5 Diploid nucleomorph 19: 207 Diplopeltis petiularis glandular hair structure 6: 294 resin yield 6: 289 Diplophyllum 19: 263, 265 Diplophyllum albicans 19: 273 Diplospory 6: 253 Diplotaxis 35: 221 Dip-stick assays 24: 282, 283 Dipstick assays 23: 10 Diptera, plant defence proteins 26: 172
Dipteridaceae cytology and phylogeny 4: 310– 312, 314 fossil record 4: 237 Direct gene transfer (DGT) techniques 34: 61, 62 – 67, 80, 81 Direct gene transformation vector, structure 34: 63 Directionality of growth 31: 252, 253 Disa cernua, seed morphology 7: 427 DISCRETE 11: 33, 34, 36, 40 Discula quercina 33: 26 Discula umbrinella 33: 8 Disease management 38: 1 – 56 Disease resistance genes 30: 300, 303, 304, 306 Dispersal kernels 38: 41 Dispersal – vicariance analysis (DIVA) 38: 282 Distichium hagenii auto polyploidy 6: 214 interspecific polyploidy 6: 210 Distichlis 31: 41 DISTORTED1 (DIS1) 31: 252 DISTORTED2 (DIS2) 31: 252 Distribution of trichomes 31: 19, 20 genetic control 31: 138, 229 Diuris pedunculata, symbiotic specificity 7: 496 Diversity among fungal species 33: 7, 8 interspecific 33: 3, 4 intraspecific 33: 5– 7 of associations 33: 3 – 8 ecology 33: 10 – 19 geographic and climatic factors 33: 17 –19 growth promotion 33: 22 Gymnspermae as host plants 33: 9, 10 host interactions 33: 20 – 38 host plant phenology 33: 10 indirect enhancement of insect colonization 33: 26, 27 inhibition of host plant growth 33: 26, 27 latent pathogens 33: 22– 26 mutualistic associations 33: 20– 22 physiology 33: 9 protection from insect herbivory 33: 21, 22
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
resistance to diseases 33: 20, 21 sporulation, dispersal and infection 33: 11, 12 substrate utilization 33: 20 utilization and manipulation of associations 33: 27, 28 DLE, see Delayed light emission Dm11 resistance gene 24: 18 DMSO, see dimethylsulfoxide DNA content per genome in differentorganisms 6: 121– 123 palindromic sequences 6: 126 periodicity in organisms of differentcomplexity 6: 122, 123 quality 6: 123– 128 recombination technology 22: 66 – 68 UV radiation 22: 103, 104, 113, 117– 119, 132, 133, 139 DNA amplification fingerprinting (DAF) 34: 43 DNA encoding protein kinases 32: 3, 4 DNA fingerprinting 24: 337, 438; 34: 43, 44 DNA fragments 24: 400, 423 DNA genetic markers 35: 174 DNA genotyping chips 34: 6, 7, 9 DNA markers 35: 176 DNA melting temperature (Tm) alteration by hormones 5: 62 DNA modification 24: 415 DNA molecules 24: 400, 411 DNA oligonucleotide probes 34: 6 DNA restriction fragment polymorphisms (RFLPs) 24: 337 DNA sequence 24: 180, 450 DNA sequence analysis 24: 186, 337 DNA synthesis 7: 488; 28: 244, 245 effect of hormones 7: 459, 462, 624, 625, 629, 631 longevity of flowers 7: 568 pollination 7: 553 post-pollination phenomena 7: 572, 573, 583, 584, 595, 596, 598, 600– 611, 619, 630 DNA transfer 24: 405, 410, 416 DNA transposable elements 27: 350– 394 see also Zea mays
97
Ac superfamily in maize 27: 364–380 as genetic tools 27: 394– 409 reverse genetics 27: 407–409 transposon tagging 27: 394– 407 dominant inhibition of transposition 27: 363, 364 En/Spm (enhancer/suppressor-mutator), CACTA superfamily in maize 27: 352, 353, 380– 387, 405, 406 endogenous, verification of cloned genes 27: 401 epigenetic silencing of TEs and reactivation by genomic stress 27: 360– 363 evolution 27: 409– 436 and ecotypes 27: 434 and origin of cultivated plants 27: 434, 435 exon shuffling 27: 429 gene duplication 27: 423– 429 parasites and pacemakers of "evolution 27: 433– 435 silent genes 27: 429, 430 two groups of hypotheses 27: 414– 433 extrachromosomal forms of TEs 27: 359, 360 heterologous elements, gene tagging 27: 406, 407 induced sequence variation, types 27: 410 mechanism of transposition 27: 350– 360 models 27: 356– 358 mutation potential 27: 422 Mutator elements in maize 27: 351– 356, 387– 394 PDR-based identification of transposon insertion 27: 408 recombination signal sequences (RSSs) 27: 359 selfish DNA 27: 411, 412 structures 27: 355 DNA, dot blot hybridisation 23: 11 DNA, in developing legume seeds 9: 18, 19, 24 DNA:DNA hybridization 21: 188, 189, 192, 199, 201, 205 DNAase 25: 90, 94, 95 DNA-degrading bacteria 24: 402
98
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
DNA-degrading enzymes 24: 402 DNA-DNA hybridization 24: 342 Dnd1 mutant 30: 304 Documentary procedures 23: 20, 21 Dodeca-a-(1 ! 4)D-galacturonide 19: 22 Dodonaea viscos resin yield 6: 289 Dogger Bank phytoplankton productivity 16: 232 Dolichol phosphate, involvement in glycoprotein formation 9: 9 Dolichos lablab 33: 98 Domain databases 32: 59 ethylene-binding 32: 119– 121 examination 32: 58, 59 extracellular receptor 32: 230, 245– 248 fork-head associated (FHA) 32: 58 GAF 32: 121, 122 histidine kinase 32: 121, 130, 158 LOV 32: 159, 166, 167 LRR domain 32: 230, 236, 239, 246, 247, 383 protein kinase 32: 242–245 S 32: 226, 248 swapping 32: 56 targeting 32: 81, 82 transmembrane 32: 117– 119 Dombeya perrine 37: 45 Donax spp., growth 3: 230, 231 Donnan free space (DFS) 33: 50 Donnan pressure of cell proteins 14: 153 DOPA production 13: 156– 158 Dopamine 21: 51 Doppler shift 11: 2, 13, 15, 19, 21 Dormancy 2: 254, 259 Dorsal vesicles 24: 375, 376 Dosage 18: 7 Dose-response functions 18: 8 Dose-response relationship 29: 56 Dose-response, linear 18: 35 Dot immunobinding assay (DIA) 23: 155 Dot-blot assays 24: 282, 283 Dothiorella gregaria 24: 125 Double antibody sandwich (DAS) 23: 33 Double-antibody-sandwich (DAS) assays 24: 281 Doubled haploids (DHs) 34: 45
doubled haploids in plant breeding 35: 56, 57 anther/microspore cultures 35: 59 – 61 haploid parthenogenesis 35: 57, 58 hybridization 35: 58 microspore or male gametophyte "origin 35: 58, 59 pollination with irradiated pollen 35: 58 production methods 35: 57 – 59 spontaneous origin 35: 57 Double-stranded DNA 24: 403 Douglas fir 19: 135 Down-regulation of gene expression 34: 96 – 105 application in cereals 34: 101– 103 increasing efficiency in 34: 103– 105 mechanisms 34: 97 –101 Downstream target proteins 32: 251– 254 Downy mildew infections 24: 258, 259, 319 interception strategy 24: 322, 323 Dracaena 3: 214 branching 3: 264 growth 3: 215 influorescence 3: 268, 277 vascular system construction 3: 246 development 3: 257 secondary 3: 265 Drag coefficients 18: 205 Drag force 18: 196, 198 Drechslera sp. 33: 13 Drepanocladus exannulatus aneuploidy 6: 220 cultivation experiments 6: 210 interspecific polyploidy 6: 210 Drepanosiphum platanoides 33: 27 “Driselase” 19: 26 Drosera 28: 37; 31: 26 filiformis 22: 169 further research 22: 201, 202, 203, 214, 216 rotundifolia 22: 169 signal transmission 22: 164, 168, 169, 186, 187 Drosera binata 28: 123 Drosera intermedia nitrate reductase 6: 22 Drosophila 24: 115; 28: 165, 183, 184; 30: 308; 32: 29, 72, 74, 83, 85, 90, 249, 250, 258, 284, 309, 332, 339, 383– 385, 391; 35: 196
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Drosophila discoideum 32: 304, 337 Drosophila melanogaster 12: 158; 24: 423; 28: 13; 32: 9, 28, 304 DNA per genome 6: 126 TEs 27: 360, 407, 422 Drosophila shaggy 32: 29 Drosophila Toll protein 24: 108, 109 Drosophyllum DNA per genome 6: 122 Drought 18: 48; 19: 133– 135 stress 18: 66 Drought and Crassulacean acid metabolism 15: 52 Drought resistance 37: 9, 10, 106– 108 Drought stress 37: 105–108 DRT100 gene 24: 126, 127 Dryas integrifolia 33: 112 Dryas octopetala 33: 6, 19, 113 Dryocosmus kuriphilus 21: 141– 143 Dryopteris borreri, chloroplast envelope 7: 20 Dryopteris filix-mas, lignin composition 8: 31 Dryopteris, D. atrata, apomixis 4: 388 D. borrerii, apomixis 4: 388, 389, 393, 395 D. felix-mass complex, cytogenetic relationships in D. abbreviata 4: 338– 342 D. caucasia 4: 338– 342 D. marginalis 4: 338– 342 D. villarii 4: 338– 342 D. meeteecseana, fossil record 4: 251 D. remota, apomixis 4: 388 D. spinulosa complex, cytogenetic relationships D. clintoniana group 4: 345 D. dilatata group 4: 346–349 fossil record 4: 235 genome analysis 333, 334, 337 polyploidy 4: 322 Dryopteris, natural aberrant cycles 16: 71 Drypetes 35: 219 DSP, see Diarrhetic shellfish poisoning DsRHA formation 34: 99 – 101 DsRNA-dependent RNA polymerase (dsRdRP) 34: 100, 101
99
Duboisia myoporoides 12: 88 Dumortiera 19: 271 Dumortiera hirsuta intraspecific polyploidy 6: 211, 215 Dunaliella 14: 93 – 183 adaptation to high irradiance 10: 22 anatomy 14: 118– 126 and light and temperature 14: 125, 126 and salt 14: 123, 125 differences, intergeneric 14: 123, 124 differences, interspecific 14: 123 microscopy 14: 118– 122 cell volume regulation 14: 153– 175 and compartmentation 14: 174, 175 and glycerol metabolism 14: 173, 174 and ion concentrations 14: 167– 173 and osmotic pressure change 14: 153– 160 recovery after osmotic shock 14: 160– 167 chlorophyll a/b ratio 10: 52 composition 14: 126–134 carbohydrates, soluble 14: 128, 130 lipids and carotenoids 14: 131– 133 nucleic acids 14: 133 organic compounds 14: 126, 127 proteins 14: 128, 129 starch 14: 130 distribution and ecology 14: 98 – 101 enzymes 14: 134– 143 and sodium chloride 14: 141– 143 glycerol metabolism 14: 134– 137 glycerol, effects of 14: 143, 144 nitrate reduction 14: 137–139 phosphofructokinase 14: 140, 141 photosynthetic 14: 139, 140 starch metabolism 14: 140 structural modifications 14: 143 growth 14: 101–118 and artificial medium composition 14: 101, 102 and carbon source 14: 110–112 and cations, divalent 14: 108 and cations, monovalent 14: 106, 107 and copper 14: 109 and interactions of parameters 14: 116, 117 and light 14: 112– 115
100
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Dunaliella (continued) and nitrogen source 14: 109, 110 and phosphorous 14: 108 and salinity, total 14: 101, 103 and sodium chloride 14: 103– 107 and sulphate 14: 108 and temperature 14: 115, 116 photosynthesis 14: 143, 144– 153 and electron flow 14: 148 and light intensity 14: 148 and sodium chloride 14: 149– 153 products 14: 146– 148 rate, and sodium chloride concentration 14: 144 taxonomy 14: 95 – 98 Dunaliella acidophila 28: 13, 14, 27 Dunaliella bioculata 28: 13, 14 Dunaliella lipid metabolism and temperature 16: 22 – 24 galactosylation 16: 27 halotolerance 16: 20, 22 labelling studies 16: 24 – 26 microsomal phospholipid retailoring 16: 26, 27 Dunaliella parva hydraulic conductivity 6: 91, 99 – 103 Dunaliella parva, NMR studies 20: 69 Dunaliella salina 11: 83, 84 NMR studies immobilization 20: 69 light-dependent effects 20: 71 31 P NMR 20: 104 sodium uptake 20: 99 Dunaliella tertiolecta 28: 180 Dunaliella tertiolecta, sodium requirement 7: 147 Dunaniella sp. C-concentrating mechanisms (table) 27: 118, 119, 125 CO2 transport 27: 136 redox regulation of mRNA 27: 301 Durio 37: 115 Duripartic preservation 16: 176 Dutch elm disease 21: 71 Dutch elm disease 38: 40, 41 Dwarf maize leaf sheath bioassay for gibberellins 9: 64
Dwarf pea bioassay for gibberellins 9: 62 – 65, 132, 134– 136, 138 Dwarf rice bioassay for gibberellins 9: 67, 132, 134– 139 Dwarfing genes 34: 47, 48 D-xylose 19: 21 “Dylan” cv. 18: 9, 10 O3/SO2 fumigations 18: 71 Dynamic pleiomorphic networks 28: 120– 123 Dynamical landscapes 38: 50 – 52 Dysmicoccus brevipes 36: 200 E value 32: 47 E. alatum, carbon fixation 7: 524, 528 E. atropurpurea, stigmatic closure 7: 601 E. axyrioides effect of sodium on growth 7: 161, 165 sodium in seeds 7: 143 E. cinnabarinum, seed morphology 7: 426 E. cochleatum, seed morphology 7: 426 E. crassifolium, seed morphology 7: 427 E. ellipticum, carbon fixation 7: 524 E. erecta, longevity of flowers 7: 569 E. euglossa, flowering period 7: 541 E. falcata, longevity of flowers 7: 569 E. flabellifera, carbon fixation 7: 524 E. floribundum, carbon fixation 7: 525 E. gracilis electrophoresis of chloroplast proteins 7: 51 galactolipid synthesis 7: 87 isolation of chloroplast envelopes 7: 34 protein synthesis in chloroplasts 7: 53 E. gracilis, flowering period 7: 536 E. graminis lithium deficiency and disease 10: 264 silicon/manganese in disease 10: 262 E. graminis DC var. hordii macronutrient effects on host "infection 10: 223, 224 micronutrient effects on host "infection 10: 230– 232, 240 phenol synthesis and infection 10: 236 E. horsfallii, flowering period 7: 540 E. hybridum, polyploidy 4: 329
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
E. indica, effect of sodium on growth 7: 162, 163 E. keithii, carbon fixation 7: 525, 528, 529 E. lancifolium, seed morphology 7: 426 E. linza 11: 99 E. nigriabris, orchid pollination 7: 563 E. nocturnum, protocorm-fungal interaction 7: 499, 500 E. nutans, isolation of hymenomycetous fungus 7: 490 E. obrienianum, protocorm-fungal interaction 7: 499, 500 E. obrienii, interaction with rhizoctonia 7: 498 E. odoratissima, carbon fixation 7: 524 E. oppositifolia oil cavities 6: 300, 301 E. oraniensis, orchid pollination 7: 565 E. papillosa, longevity of flowers 7: 569 E. papillosum, seed morphology 7: 427 E. prolifera, properties of plastocyanin 10: 87 E. quatiniana, flowering period 7: 537 E. radicans carbon fixation 7: 525, 528 flowering 7: 545 protocorm-fungal interaction 7: 499, 500 seed morphology 7: 437 E. ramosum, seed morphology 7: 427 E. rubiginosa, carbon fixation 7: 520 E. schomburgkii, carbon fixation 7: 525 E. serrulata resin occurrence in arid conditions 6: 289 E. stamfortianum, seed morphology 7: 425 E. streptopetala, seed morphology 7: 426 E. superba, orchid pollination 7: 560 E. thunbergii, longevity of flowers 7: 569 E. tubulosa 11: 86 E. viridissima, orchid pollination 7: 559 E. xanthinum, carbon fixation 7: 525, 531 Ear, signal transduction in 15: 13, 14 Early leaf spot 21: 224, 226–230, 233–235 Early Tertiary 17: 1 – 98 animal-plant interactions 17: 61 – 68 flowers/pollination 17: 62 – 66 fruit/seed dispersal, and vertebrate diet 17: 66 –68 insect (other than pollination) 17: 68
101
Australian floras 17: 81 – 85 cladistic studies 17: 45 – 49 climate 17: 8, 9 climate reconstruction 17: 68 – 80 leaf physiognomy in 17: 69 – 79 wood anatomy in 17: 79, 80 community reconstructions 17: 53 –59 ecological anatomy 17: 59 – 61 family level reviews 17: 49 floral composition 17: 13 – 27 angiosperms 17: 23 – 27 conifers 17: 16, 17, 19– 22 cycads 17: 20, 23 Ginkgo 17: 23 lower plants/fungi 17: 13 pteridophytes 17: 13 – 16, 18 floristics 17: 12, 13 flowers 17: 62 – 66, 118, 119 geography 17: 9 – 12 late Cretaceous/Middle Eocene 17: 10 Middle Eocene/End Oligocene 17: 10 – 12 geological setting 17: 2, 3 major events 17: 3 – 8 Cretaceous/Tertiary boundary 17: 4 – 7 Eocene/Oligocene boundary 17: 4, 8 morphological systematics 17: 52, 53 Northern Palaeocene floras 17: 85, 86 numerical taxonomy 17: 53 plant physiology and the atmosphere 17: 86 – 88 geochemical studies 17: 88 isotope studies 17: 86 – 88 plant reconstructions 17: 31 – 44 Aceraceae 17: 44 Betulaceae 17: 40, 41 Ebenaceae 17: 43 Fagaceae 17: 36 – 40 Juglandaceae 17: 41, 42 monocotyledons 17: 31, 32 Platanaceae 17: 35, 36 Salicaceae 17: 42, 43 Trochodendrales/Cercidiphyllales 17: 32 – 35 Ulmaceae 17: 41 seed assemblages, image analysis 17: 49 – 52 study methods 17: 28 –30
102
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Earthworms, biocontrol 26: 17, 18 Eastern hemlock 18: 99 Eastern white pine, see Pinus strobus Ebelactones A and B 24: 41 Ebenaceae, Early Tertiary 17: 43 E-b-ocimene 31: 129 Eboracia, fossil record 4: 236 EC Schemes 23: 2 Eccrine secretion 31: 38, 39 nectar 31: 53 ECD, see Electrical conductivity Echelon method in picosecond spectroscopy 8: 8, 9 Echinochloa crusgalli 33: 245; 34: 41 Echinochloa frumentacea 34: 41 Echinochloa utilis 34: 41 effect of sodium on enzymes 7: 170, 177, 200, 201 effect of sodium on growth 7: 162, 163, 167 sodium uptake 7: 190, 197 Echinocystis macrocarpa, see Marah macrocarpus Ecklonia radiata chlorophyll-fucoxanthin-protein "complex 10: 124 photosystem reaction centre "complexes 10: 78 thylakoid structure 10: 34 Ecklonia sp., d13C values 27: 150 ECM (embryogenic cell mass) 35: 72 Ecological aspects of light harvesting in algae 10: 21 – 23 Ecological effects and O3, long-term 18: 69 Ecological effects and SO2, long-term 18: 34 Ecological phenomena 18: 237– 240 Ecosystem dynamics 24: 182, 183 Ecosystems, agriculture 21: 89 – 91, 99 Ecotype 24: 229 ECP2 38: 254 Ectocarpus siliculosus 35: 179 Ectodesmata 21: 110 Ectomycorrhizas 22: 5 Ectoparasites 23: 105, 114 ECTOPIC ROOT HAIR1 (ERH1) 31: 199 ECTOPIC ROOT HAIR3 (ERH3) 31: 245, 246, 253, 257 Edestin 27: 29, 30, 52
EDS-1 gene 30: 306 EDTA see Chelates EDU 29: 34, 41, 42 EFE 18: 97 Effective dose 18: 7 Eichhornia crassipes 37: 61 Eight stranded antiparallel b Barrels (ESABs) 21: 111 El Chicho´n (Mexico) 1982 eruptions lateral lakes 16: 170, 171 taphonomic considerations 16: 159, 160 vegetation preservation in tephra 16: 167, 168 vegetation recovery 16: 174, 175 Elaeis, influorescence 3: 277 Elaeocarpus edulis 31: 24 – 26 Elaphoglossum, polyploidy 4: 322 Elatostema repens 22: 241 Elatostema rugosum 37: 176, 180– 182, 186 ELCH (ELC ) 31: 248 Electric potentials 28: 34 – 37 Electrical conductivity (ECD) 18: 100 Electrical energy 28: 3 – 5 Electrical penetration graph (EPG) technique 36: 6 Electrical signalling 22: 167, 171, 186– 188 case studies 22: 190, 194, 196, 198 further research 22: 201– 216 Electrical signalling system 28: 36, 37 Electrochemical potential differences 25: 219– 221 Electrolyte leakage 21: 12 Electromorphs (ETs) 24: 338, 344 Electron diffraction, membrane structure 3: 43 Electron flow in Dunaliella photosynthesis 14: 148 Electron microscope studies cell membrane 3: 8 – 39 freeze-etching 3: 21 – 39 negative staining 3: 16 – 21 sectioning 3: 8 – 16 cross-section 3: 136– 140 photosynthetic membrane 3: 135– 151 surface 3: 140– 151 Electron microscopy 25: 2, 94 V-ATPase 25: 270– 276 Electron microscopy grid 18: 264
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Electron paramagnetic resonance (EPR) 37: 28 Electron paramagnetic resonance spectroscopy (EPR) 25: 380 Electron probe X-ray microanalysis (EPXMA) 29: 163, 167, 168 Electron spin-conservation rule 5: 3 Electron transfer, cyclic 13: 45, 46 Electron transfer, non-cyclic 13: 43, 44 light-limited activities and 13: 47 light-saturated activities and 13: 48, 49 oxygen as terminal electron acceptor 13: 44, 45 pseudocyclic electron transfer 13: 45 rate limiting steps 13: 48, 49 Electron transfer, photosynthetic membrane 3: 152, 153 Electronic entrance indicator 18: 271 Electropermeabilization, dyes 22: 56, 59 –60 Electrophoresis 23: 30, 63, 66, 68, 119, 159, 222 Electrophoresis in gravitropism 15: 9, 10 Electrophoresis of chloroplast proteins 7: 49 – 51 Electrophoretic markers 24: 337 Electro-physiological methods 1: 269 Electroporation 21: 198 Electroporation 35: 81 Electroporation, dyes 22: 56, 59 – 60 Electrostatic (ACCELL) gun 34: 65 Elemental deposition rates 29: 163– 166 Eleusine coracana (finger millet) 34: 40, 41, 279 Eleusine coracana, nitrate reductase in chloroplast envelope 7: 70 Eleusine indica 34: 265 Elicitins 21: 162–164 Elicitor secretion by Colletotrichum lindemuthianum 4: 34 Phytophthora megasperma var sorjae 4: 34 Elicitor treatment enzymatic activation 32: 362, 363 gene expression response 32: 363– 366 Elicitor-activated ERM kinase 32: 393, 394
103
Elicitors 21: 2, 4, 7 – 10; 30: 300– 304 abiotic 19: 21 biotic 19: 21 formation of pectic oligosaccharides as 19: 68 – 72 fungal pathogens 21: 59 – 65, 71, 164– 168 of phytoalexin synthesis 19: 20 – 23 receptor model 21: 2, 148 transport of 19: 76, 77 viral infection 21: 110 see Gene for gene relationships ELISA 6, 9, 10, 15, 18, 30, 31 – 34, 62, 81, 109, 154, 155–157, 176, 190, 193 sensivity 23: 33, 34 specificity 23: 33, 34 ELISA 33: 244, 246 Elm 21: 48, 49 yellows 21: 193, 194 Elodea 11: 6, 55, 60; 29: 81 Elodea canadensis 33: 95 Elymus arenaria nitrate reductase 6: 25, 30 Elymus repens 33: 245, 228 EMBL database 32: 1, 2 Embryo dependence on the endosperm 2: 239, 262 “embryo factor” in coconut milk 2: 241 embryo-endosperm transplantations 2: 240 growth in relation to seed development 2: 237 growth-regulating substances 2: 241 relationships 28: 252, 253 specificity of the endosperm 2: 239 substitutes for the endosperm 2: 239, 246, 262 versus endosperm 28: 251, 252 Embryo callus cultures 34: 72, 73 Embryo culture applications of embryo culture 2: 255 breeding cycle 2: 258– 260 cultural conditions 2: 247 dormancy, breaking of 2: 254, 259 excision 2: 247 growth media 2: 247, 250, 258, 259, 262 hybridization 2: 220, 238, 256 et seq. incompatibility with endosperm 2: 257 limitations of embryo culture 2: 262
104
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Embryo culture (continued) osmotic shock 2: 247 oxygen concentration 2: 250 post-germinal development 2: 250 pregerminal development 2: 247, 250 specific growth factors 2: 249 tumorous growths 2: 250 Embryo sac in vivo 28: 235– 237 isolation and manipulation 28: 244 Embryo, formation of 19: 233 Embryology in relation to physiology and genetics 2: 219 see also detailed individual entries, e.g. Anther, Pollen, etc. androgenesis 2: 300 anther culture 2: 301 embryo 2: 237 embryo culture 2: 246 endosperm 2: 240 fertilization 2: 231 ovaries and flowers, culture 2: 266 ovules, culture 2: 263 parthenocarpy 2: 273 parthenogenesis 2: 295 pollen 2: 221 polyembryony 2: 280 sex expression, control of 2: 304 Embryonic phase 19: 232 Embryophytes 19: 233 Emco5 24: 250 Emergences 31: 1 – 3 Emiliania huxleyi C-concentrating mechanisms (table) 27: 118, 119, 125 Emission spectrum 5: 18, 19, 21 – 27, 34 – 40 Emoy2 24: 246– 248 Empetrum hermaphroditum E. nigrum nitrate reductase 6: 22, 23 nitrate reductase 6: 23 Empetrum nigrum 37: 133 Encalypta 19: 245 Encalypta ciiata interspecific polyploidy 6: 210 Encephalartos chromosome constitution 6: 172 Encheiridion, flowering period 7: 535
Encyclia atropurpurea, carbon fixation 7: 524, 528 Encystment vesicles 24: 375, 376 End sequencing 34: 48 Endochitinase 34: 196 Endocytic pathway in animal cells 28: 126 in filamentous fungi 28: 128– 131 in fungal cells 28: 131– 135 in yeast 28: 139– 141 Endocytic pathways 25: 13, 17 – 27 Endocytic tracers 28: 129, 130 Endocytic-like plasma membrane resorption after secretion 25: 25 Endocytosis 21: 63 Endocytosis 28: 137–141 in plant protoplasts 28: 130, 131 Endodermis 21: 39 Endodermis, water movement 3: 184–186 Endodermoid layer 22: 214 ‘end-of-day’ (EOD) light 33: 37 Endohydrolases, antifungal properties 26: 143– 146 see also b-Glucans; Chitinases Endomembrane system, parasite-induced changes in 24: 207– 209 Endomycorrhizas 22: 9 Endoparasites 23: 108, 114 Endopeptidases 25: 90 Endophytes as bio-indicators of air pollution 33: 3, 14, 15 authenticity of endophytic character 33: 10, 11 biocontrol of weeds 33: 27, 28 colonization 33: 12 – 19 characteristics 33: 16, 17 environmental factors affecting 33: 14 – 16 species composition and canopy Endophytic pathogens 24: 313 Endoplasmic reticulum (ER) 24: 199, 208– 210, 321; 25: 2 – 7, 12, 13, 29, 30, 43 – 45, 114, 120, 123, 129, 130– 132 Endoplasmic reticulum (ER) and auxin binding 5: 78
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Endoplasmic reticulum (RER), protein "synthesis 27: 36 Endoplasmic reticulum compartmentation and potassium transport 15: 141– 143 displacement and gravity 15: 28, 29 Endoplasmic reticulum in Dunaliella 14: 121 Endoplasmic reticulum, freeze-etching 3: 28 Endoplasmic reticulum, in legume seeds and origin of protein bodies 9: 11 – 17 and storage protein synthesis 9: 8, 9 Endoplasmic reticulum-derived protein bodies 38: 67 – 69 induction of 38: 72, 73 Endopolygalacturonase (Endo-PG) 24: 41 Endopolygalacturonase 21: 6 Endopolygalacturonases (PGs) 24: 120 Endoreduplication 31: 202, 222, 246– 248 Endosomal networks in animal cells 28: 124– 128 Endosomal – lysosomal systems 28: 135– 137 Endosomes 21: 112, 113; 28: 132, 133 in animal cells 28: 125, 127 movements and fungal vacuolar networks 28: 141–143 role in intracellular transport 28: 144 Endosperm abortion of seeds 2: 242 chemical analyses 2: 242 constituents 2: 240 culture 2: 243 degeneration 2: 243 dependence of the embryo 2: 239, 262 embryo-endosperm transplantations 2: 240 “embryo-factor” in coconut milk 2: 241 formation 28: 245– 253 growth-regulating substances 2: 241, 242, 244 hormonal influence on plant metabolism 2: 243 role in seed development 2: 242, 262 versus embryo 28: 251, 252 Endosperm cell number, manipulation of 34: 143–146
105
Endosperm cell walls, composition 34: 170– 174 Endosperm development and double fertilization 28: 246, 247 and fertilization of central cell 28: 245– 248 approaches towards a better understanding 28: 250, 251 early 28: 249, 250 Endosperm development in cereals 34: 168– 170, 169 Endosperm, fracture properties 17: 278, 279 Endosymbionts, cryptomonads as 19: 213, 214 Endosymbiotic theory of mitochondrial evolution 4: 105–107 Endothia parasitica 21: 128– 137 Endothia parasitica, heterokaryon incompatibility 7: 347, 379 Endria inimica 36: 151 Endymion nutans 11: 129 Energy 21: 80 – 82, 91, 92, 95, 99 Energy balance equation 18: 208, 224– 232 Energy costs 25: 74, 76 Energy-transducing membranes 28: 4 Engelhardieae, Early Tertiary 17: 42 Engineering 21: 72 English Mechanic and World of Science 18: 232 Ensete, growth 3: 220, 221 Entamoeba histolytica 24: 421; 28: 13 Enterobacter cloacae 36: 83 Enterobacter faecalis 24: 407, 409 Enterobacter spp., biocontrol 26: 51, 56, 68, 79 Enterococcus 12: 73 Enterococcus hirae 28: 13 Enteromorpha 35: 174, 191, 197, 198 Enteromorpha compressa 35: 198 Enteromorpha intestinalis 11: 99; 35: 198 Enteromorpha muscoides 35: 198 Enteromorpha sp. C influx 27: 133 HCO2 3 entry 27: 131 stilbenes 27: 132 tracer effect of Cl2 27: 133, 134
106
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Enteromorpha, morphology and light "harvesting 10: 28 ent-kaurene, involvement in gibberellin biosynthesis 9: 85 – 87, 109, 110, 127, 128 Entner-Doudoroff pathway 18: 149 Entomoplasma 21: 190, 191 Entosthondon cytotaxonomy 6: 242 Environment NOx exposure 18: 38 O3 exposure 18: 61, 66, 67 O3/SO2 exposures 18: 74, 75, 78 parameters 18: 222 SO2, 20, 21, 23, 24, 29, 30, 31 SO2/NO2 mixtures 18: 47 stresses 18: 87 – 90 Environment, chemistry and 37: 62, 63 Environment, population pressure 21: 80, 81, 94 – 96, 98 Environmental conditions, effects of 32: 8 Environmental factors 24: 179 Environmental stochasticity 38: 10 Enzyme degradation, measurement affinity chromatography 8: 109– 113 density labelling 8: 118– 121 immunology 8: 109– 113 rate constant determination 8: 113–118 Enzyme-linked immunoassays see ELISA Enzyme-linked immunosorbent assays (ELISA) 24: 277, 280– 282, 290– 293, 296 Enzymes 21: 3– 6, 8; 25: 151, 205 see also Chitinase 21: 1 – 3, b-Glucanase see also individual enzyme names acting on chitin and chitosan 19: 73 biosynthesis-related 30: 97 cell wall degrading 30: 248, 249 cellulose 21: 57 composition of PSVs 25: 127, 128 copper-containing 30: 93, 94 cutinase 21: 4, 5 degradation of cell walls 2: 171, 194, 200 direct effects of oligosaccharides 19: 56 – 58 disease resistance and 30: 294– 297, 302, 305, 312, 314 fungal infection 21: 47, 48, 60, 164
glycan chain biosynthesis 30: 224, 225, 234 hydrolytic enzymes 21: 7, 56, 57, 150, 152 nutrient assimilatory 30: 2, 11 pectinase 21: 4, 6 protease 21: 4, 6, 111, 152, 153, 160 purine metabolism-related 30: 118, 124, 127– 132, 135– 139, 146, 151– 153, 155, 159– 161, 165, 167, 169, 173, 176, 177, 189 role in soft rot 2: 329, 352, 354 salvage 30: 125, 126, 133– 135, 141– 143, 157 stroma 30: 155 subcellular distribution 25: 206, 208 viral infection 21: 115 wall-bound enzymes 2: 81, 204, 206 xylanase 21: 4, 6, 7 Enzymes, and cell membrane 3: 44, 45, 47 Enzymes, inhibition by chelates 1: 75, 83 Eocene angiosperms 17: 26, 27 climate 17: 9 Oligocene boundary 17: 4, 8 EOD (‘end-of-day’) irradiation 33: 53 Eohostimella, sporophyte structure 5: 200 EP-B 34: 212 Ephedra 28: 248 Ephedra equisetina, lignin composition 8: 31 Ephemeraceae cytotaxonomy 6: 242 Ephemerum 19: 235 cytotaxonomy 6: 242 Epi isomer 30: 94, 95 Epicoccum 33: 6 Epicoccum nigrum 33: 4 Epidemics spatial structure 38: 41 – 56 variability in 38: 8 – 14 Epidemiological models biological and dynamical issues 38: 4, 5 biological complexity in 38: 14 –25 generalising between-season dynamics 38: 24, 25 host growth and dynamics of disease 38: 17 – 21
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
host growth, primary and secondary infection 38: 15, 16 linking dynamical cascade from inoculum to disease 38: 25 –27 primary infection and soil-borne/aerial epidemics 38: 16, 17 simple model 38: 5 – 7, 56 simplification of complicated models 38: 27 –33 variability and 38: 7– 14, 56 within-season dynamics and betweenseason dynamics 38: 21 –24 Epidemiology and population genetics 24: 13 – 24 Epidemiology see Correspondence analysis Epidendrum effect of vitamins in culture 7: 468 post-pollination phenomena 7: 574 vitamin production 7: 468 Epidermal cell specification 31: 193– 213 Arabidopsis trichomes 31: 201, 202 cell types 31: 196 conical-papillate cells 31: 207– 209 cotton (Gossypium hirsutum) fibres 31: 203, 204 environmental entrainment 31: 209, 210 interactions 31: 209 –212 multicellular trichomes 31: 204– 207 pavement cells 31: 195, 196 root hairs 31: 198, 199 stomatal guard cells 31: 197, 198 Epidermal cells 25: 26 Epidermal focussing 18: 286 Medicago sativa 18: 285 Oxalis 18: 285 Epidermal glands 31: 3 Epidermal growth factor (EGF) 32: 230, 231 Epidermis specification, role of RLk in 32: 237, 238 Epigeal germination 35: 3 Epihybridity associated with hybrid vigour 28: 251 Epilachna varivestis (Mexican bean beetle) 36: 102– 106 Epipactis post-pollination phenomena 7: 574 Epiphyte 23: 3
107
Epiphyte water absorption 31: 14, 15 Epiphytes 21: 190 Epiphytes, carbon dioxide recycling in 15: 75, 76, 79 – 81 Epiphytes, definition 33: 2 Epipogum aphyllum, endophyte of orchid 7: 490 Epistephium parviflorum, seed morphology 7: 426 Epithelial tissue, plasma membrane 3: 39 Epithionitriles 35: 240, 242 Epithiospecifier protein (ESP) 35: 240 E-pollen (embryogenic pollen) 35: 65 Epoxidation 22: 143 EPPO 23: 2, 20, 118, 142, 144 EPS (exopolysaccharide) 24: 418, 419 EPSPS/GIX 34: 75 EPXMA (electron probe X-ray microanalysis) 29: 163, 167, 168 Equisetum 19: 297; 31: 167 Eradication campaigns 23: 15, 16 Eragrostis curvula 34: 265, 279 Eragrostis tef 34: 41 ERECTA gene 32: 9, 22, 231– 233, 245, 259 Eremolactone structure 6: 283 Eremophila accumulation of resin components 6: 302 E. fraseri glandular hairs and resin production 6: 291– 293, 306 ontogeny 6: 295 structure 6: 295– 297, 299 E. georgii resin occurrence in arid conditions 6: 189 resin gland cells 6: 301, 302 secretion 6: 304 synthesis 6: 304– 307 resins and leaf expansion 6: 290– 295 and leaf reflectance 6: 308 chemotaxonomy 6: 287, 288 structure 6: 283 yield 6: 289–291 Eremosphaera 25: 221 Eremosphaera viridis 11: 93
108
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Ergastic substances 1: 121 Ergot, see Claviceps purpurea Eria flowering period 7: 545 post-pollination phenomena 7: 578 Eria ornata 31: 14 Erica tetralix nitrate reductase 6: 22 Ericaceae 29: 18, 24; 37: 132, 153 Ericales 22: 5, 10, 15 Eriocaulaceae, stomata 3: 283, 284 Eriophorum angustifolium aerenchyma characteristics 7: 291, 292, 296 effect of aeration on occlusion of stomata 7: 265 gas-space characteristics 7: 230, 291 photosynthesis and aeration 7: 298 Eriophorum angustifolium nitrate reductase 6: 22, 30 Eriophorum angustifolium, lignin composition 8: 31 Eriophorum vaginatum 37: 133– 135, 137, 143 Eriophyidae 36: 200 Eriosorus E. cheilanthoides, polyploidy 4: 329 E. hybridum, polyploidy 4: 329 polyploidy 4: 322 ERK (extracellular signal-regulated kinase) pathway 32: 308 Erodium 31: 13 Erosion, soil 21: 87, 88 Eruca 35: 221 Erwinia 21: 6; 30: 297 amylovora 21: 6, 10 Erwinia amylovora 30: 298, 299 Erwinia carotovora 19: 22, 68, 69; 28: 88; 29: 60, 61 Erwinia chrysanthemi 19: 49; 30: 297, 299, 311 Erwinia rubrifaciens 19: 24 Erwinia, spp. 23: 28 – 32, 34 – 36, 43, 44 Erysiphe 24: 198– 202 Erysiphe cichoracearum 24: 216 Erysiphe cochoracearum, boron deficiency and host infection 10: 240 Erysiphe cruciferarum 24: 265
Erysiphe graminis 24: 50, 202, 321; 34: 263 Erysiphe graminis f. sp. hordei 24: 11, 13, 17, 217 Erysiphe pisi 24: 315 Erysiphe spp. 38: 21 Erythrocytes freeze-etching 3: 23 negative staining 3: 19 proteins, fixatives 3: 13, 14 X-ray diffraction 3: 6 Erythronium 22: 13 ESAG4 gene 24: 118 Escherichia coli 11: 51, 112; 12: 18, 19; 19: 206; 21: 6, 199, 200, 203; 22: 118, 120; 24: 40, 126, 337, 341, 342, 400, 401, 406, 407, 421, 422; 25: 306, 330, 331, 421, 422; 28: 13; 30: 13, 23, 24, 33 – 35, 50, 32: 132, 136, 156, 167, 205, 244, 275, 419, 422, 445; 33: 180, 185– 187, 195, 198, 201; 34: 139, 203, 204; 35: 27, 77, 123, 124; 36: 30; 38: 105, 128, 132 cytochromes 4: 63 – 66, 69, 70, 74, 75, 77, 79 DNA analysis 6: 124, 125 growth rate and substrate 8: 194 membrane transport 4: 100 mutants 30: 130 oxidative phosphorylation 4: 86, 89 PEPCK-ATP from 38: 102 phosphatase 8: 185 protein degradation 8: 105 pyrophosphate uptake 8: 177 respiratory control 4: 94, 96 Escherichia coli K-12, sodium-dependent glutamate transport 7: 185 Eschscholtzia 19: 31 Essential oil cavities 31: 56 Essential oils 31: 59 sites of synthesis 31: 60 terpenes 31: 56 “Essex” cv. 18: 12 air pollutants bioindication 18: 88 O3/SO2 fumigations 18: 71 Ester loading, dye 22: 56, 59 Etching, chemical 18: 260– 262 Ethanol 22: 75
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Ethers 31: 81 Ethionine, effect on orchid flowers 7: 625 Ethmodiscus rex 25: 77 1-Ethyl – 3-(3-dimethylaminopropyl)carbodiimide (EDC) 25: 304 Ethylene (C2H4) 18: 59, 98 see also Stress ethylene emission 18: 103 formation from methionine 18: 97 Ethylene 19: 144– 149; 21: 14, 18; 22: 168, 189; 31: 198, 199; 35: 14, 27 Ethylene 37: 185 effect of flooding 19: 145– 149 effect on flowering 7: 551, 583, 584, 622– 631 effect on seed germination 7: 477, 506 fungal pathogens 21: 10, 49, 67, 70, 165– 167 post-pollination phenomena in orchids 7: 600, 604, 619, 624, 625 synthesis 19: 12 induction by pectic oligosaccharides 19: 30 – 32 Ethylene biosynthesis 13: 180 Ethylene diamine tetraacetic acid (EDTA) 25: 377 Ethylene in intercellular gas spaces 5: 207 Ethylene receptor-like genes 32: 123, 124 Ethylene receptors, interaction with CTR1: 122, 123 Ethylene resistant1, (etr1) 31: 254 Ethylene responses in plants 32: 117– 124 Ethylene signal transduction 29: 68 Ethylene signalling cascade 32: 322– 325 Ethylene, effect on lignification 8: 58 Ethylene, production inhibited bysalicylates 20: 194 “Ethylene-forming enzyme” (EFE) 19: 144 Ethylene-inducing xylanase (EIX) 19: 32, 33 Ethylnitrosourea (ENU) 35: 61 Etiolation 32: 149, 150 Etioplast permeability and gibberellins 9: 129– 131 Etioplasts 35: 21 Etr 1 – 1 gene 30: 310 Etythrina herbacea 33: 98 Euanthium Theory 17: 144– 146 see also Pseudanthium Theory
109
Euasteridae II 37: 45 Eucalyptus 24: 448; 37: 115 essential oil production 6: 279 oil cavities 6: 300 Eucalyptus citriodora 31: 130, 131 Eucalyptus frandis 37: 110 Eucalyptus globulus 37: 110 Eucalyptus marginata 19: 135; 37: 110 Eucalyptus spp. 33: 26 Eucalyptus urnigera 37: 106, 113, 117 Eucaryota 2: 3 Eucaryotes see also individual species name ammonium transport and 30: 50, 51 nitrate transport in 30: 24 – 28 Eucera longicornis, orchid pollination 7: 565 Euchuma 11: 99 Eucomis, influorescence 3: 268 Euglena 38: 98, 153, 156 PEPCK in 38: 113 Euglena gracilis 11: 53 – 55; 22: 109; 38: 146 absorption spectra analysis 10: 96 antenna chlorophyll 10: 95 chloroplast evolution 10: 183 electron donor to P700, 88 fluorescence spectra 10: 100– 102 LHCI and II 27: 299 PSII site 27: 264 RUBISCOs 27: 104 Euglena, chloroplast envelope structure 7: 6 Euglena, porphyrin-ring layer 3: 121, 122 Euglenophyta 27: 88 glycolate metabolism 27: 107, 108 LHC proteins 27: 276 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 RUBISCOs 27: 101, 102, 104 Euglenophyta, PEPCK in 38: 146 Euglossa dodsoni, orchid pollination 7: 559 Eukaryotes, evolution of LRR proteins 24: 138– 141 Eukaryotic cell structure 14: 2 Eukaryotic ribosomes around nucleomorph 19: 196– 200
110
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Eulaema cingulata, orchid pollination 7: 558 Eulophia cuculata, flowering period 7: 545 Eulophidium, flowering period 7: 541 Eumelanin 37: 20 Euonymous japonica O3/NO2 exposures 18: 84 O3/SO2 fumigations 18: 71 SO2 fumigation 18: 9 SO2/NO2 exposures 18: 44 Euonymus 37: 112, 117 Euonymus atropurpureus 37: 160 Eupatorium 38: 290 Eupatorium/Uncasia 38: 293 Eupenicillium 24: 75 Euphausia pacific 35: 9 Euphorbia characias L. 25: 10, 11 Euphorbiaceae 37: 45 Euploidy (see Polyploidy) Eupomatiaceae, flowers 17: 103, 104 Eurhynchium cytotaxonomy 6: 242 European and Mediterranean Plant Protection Organisation see EPPO European chestnut trees 21: 126– 128, 132, 137– 139 European Crop Loss Assessment Network 29: 35, 36 European wheat striate mosaic virus (EWSMV) 36: 158, 160 European white birch, see Betula pendula Eurychone, flowering period 7: 535 Eustigmatophyceae 27: 89 Eustoma grandiflorum (lisianthus)37: 62, 68, 70 Euteleaceae chromosome size 6: 189 Euterpe oleracea 33: 8 Evaluation of productivity estimates 16: 227– 238 see also Algae; Lipid metabolism in algae carbon fixation 16: 230 frontal regions 16: 235– 237 mixed waters 16: 231– 233 nutrient budgets 16: 228–230 spatial/temporal variations 16: 237, 238 stratified waters 16: 233– 235
plant material fate 16: 238– 240 biogeochemistry 16: 239, 240 sedimentation 16: 239 productivity estimation 16: 194– 196, 212– 217 biomass distributions 16: 215– 217 future approaches 16: 242 lack of advance 16: 241 models 16: 217 nutrient budgets 16: 212, 213 oxygen/carbon fluxes 16: 213–221 problems 16: 194 Evaporated chromium 18: 265, 266 Evaporated metal coating 18: 263– 266 Evapotranspiration, reduction of 37: 119 Evolution see also DNA transposable elements algae, hypotheses 27: 261, 262 CAB production light-harvesting "proteins 27: 260– 264 model 27: 274 DNA transposable elements 27: 409– 436 plastids 27: 261, 262, 311, 312 regressive 27: 433– 435 RUBISCO-based inorganic carbon "acquisition 27: 102, 103, 179– 181 transposable elements 27: 409– 436 and gene duplications 27: 425– 429 revision of neo-Darwinism 27: 430– 433 selfish DNA 27: 411, 412 two groups of hypotheses 27: 414– 433 transposons 27: 409– 436 as pacemakers 27: 412– 414, 424 Evolution of early photosynthetic prokaryotes 10: 180– 183 eukaryotic algae 10: 183– 187 photosynthesis 10: 174– 177 photosynthetic pigments 10: 177– 180 thylakoid stacking 10: 187, 188 Evolution of vascular land plants, an hypothesis 5: 199– 205 Evolution, mycorrhizal symbiosis 22: 24, 25, 27 Evolutionary aspects 25: 81, 82 Evolutionary perspectives 37: 10 – 12
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Evolvulus pilosus cv. Blue Daze 37: 61 Excelsin 27: 29 Excess resistance 18: 197 Excitation energy transfer coherent energy transfer 13: 23 incoherent energy transfer 13: 24 intersystem 13: 23, 24, 27, 28 intrasystem 13: 23, 24, 27 PSII complex interactions 13: 24 – 30 PSIIb intersystem 13: 27, 28 PSIIa/PSIIb intrasystem 13: 27 spatial distribution of pigment-protein complexes and 13: 23, 24 Excitation spectrum 5: 23, 24, 27, 28 Exine patterning in sporogenesis 15: 185– 190 mechanism 15: 187– 190 the process 15: 185– 187 Exodermes 22: 28 Exomis sodium requirement 7: 158 Exotleia pinifoliella resin ducts 6: 309 Expansins 22: 256 Experimental apparatus for fibre optic microprobes 18: 270– 272 Experimental measurements fibre optic microprobes 18: 273– 289 signal interpretation 18: 283– 289 tissue effects 18: 283 Exposure 18: 65, 66 chamber 18: 18 long-term 18: 39 – 42 short term 18: 35– 39 Exposure – response studies to ozone 29: 34 – 36 Expressed meiotic prophase repeat (EMPR) sequence 24: 131, 133 Expressed sequence tags (ESTs) 34: 2, 7 – 9, 30, 302 arrays 34: 9 in Magnaporthe grisea 34: 280 Expression analysis 32: 123; 34: 48 Expression patterns 21: 22 Expressive phase, disease 21: 36, 37, 38 –51, 70, 71 Extended ISIS-M camera 22: 61 Extensin see Hydroxypoline, Protein
111
External dose 18: 7 Extinction times 38: 46, 49 Extinction, biotic 21: 81, 89, 90 Extracellular DNA 24: 402, 403 Extracellular fungal enzymes 24: 180 Extracellular matrix (ECM) 24: 120, 126 Extracellular proteins (ECPs) 24: 326 Extrachromosomal DNA 21: 199 Extraction 31: 97, 98, 128 Extracytoplasmic LRRs avirulence determinants interacting with resistance genes encoding proteins containing 24: 97 – 99 defence-related genes encoding proteins with 24: 119– 131 genes encoding proteins of unknown function with 24: 131– 137 potential patterns of glycosylation 24: 147– 150 resistance genes encoding proteins with 24: 91 – 101 structure and interactions 24: 147– 150 Extrahaustorial matrix 24: 319 Extrahaustorial membrane (EHM) 24: 198– 202, 207– 209, 213, 321 maintenance 24: 199– 202 Extrinsic coupling factor complex (CF1) 13: 5 location in thylakoid membranes 13: 13, 15 Exuviella 12: 240 Eyes, signal transduction in 15: 13 F. assyrioca DNA per genome 6: 121 F. cristatus aneuploidy 6: 220 F. diplosiphon phycobilisome structure 10: 110 synthesis of light-harvesting proteins 10: 174 F. hygrometrica hybridity 6: 251 intraspecific polyploidy 6: 208, 211, 213
112
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
F. martii var. pisi, effect of micro"nutrients 10: 265 F. minutulus biometric investigation 6: 261 F. nigra karyotype evolution by centric fusion 6: 182 F. oxysporum var. lini effect of boron deficiency 10: 240 effect of zinc on host infection 10: 258 F. oxysporum var. lycopersici, nutrient effects on lycomarismin "toxicity 10: 255 F. serratus 11: 89, 99 F. solani, infection and phytoalexins 7: 517 F. udum, manganese deficiency and "infection 10: 243 F. vesiculosus chlorophyll a/c ratio 10: 121 chloroplast arrangement 10: 36 morphology 10: 30 movement 10: 30 Fabavirus 36: 2, 3 a-Factor 28: 139, 140 Facts/fallacies/mysteries 18: 231– 240 abrasion 18: 237, 238 ecological phenomena 18: 238– 240 thigmomorphogenesis 18: 233–236 Fagaceae, Early Tertiary 17: 36 – 40 Fagoideae 37: 153 Fagonia 31: 24, 56, 63, 66 Fagonia glutinosa 31: 63 – 65 Fagonia mollis 31: 10, 11, 62, 63 Fagopyrum esculentum 33: 103 Fagus 38: 290, 293, 296, 298 Fagus grandiflora (American beech) 33: 7 Fagus grandifolia 37: 152 Fagus sylvatica (beech) 18: 87, 91 air pollutants bioindication 18: 89 bioindication 18: 93, 103 Fagus sylvatica 30: 64; 33: 28; 35: 23 lignin composition 8: 31 mycorrhizal—phosphorus content 8: 132 Fagus sylvatica var. atropunicea 37: 150 Fallacies, see Facts/fallacies/mysteries False lens effects 18: 286, 287
False-negative results 24: 298, 299 False-positive results 24: 298 Family planning 21: 83, 84 Famine 21: 93 Far field 18: 201 Far red light 18: 290 Farnesene 31: 131 Farnesyl diphosphate formation 14: 38 – 42 FASS (FS ) 31: 252 Fast atom bombardment mass spectroscopy (MS) 35: 11 Fast vacuolar (FV) channels 25: 230 functions 25: 231 gating 25: 230 permeation 25: 230 selectivity 25: 230 F-ATPase 25: 254 phylogeny 25: 255– 257 Fats secretion 31: 56 Fatty acids 18: 94 in algae 16: 5– 9 marine 16: 28, 34, 35 in chloroplast envelope 7: 39, 42, 82, 92 in cyanobacteria 16: 7, 9 synthesis 16: 15– 17 in Dunaliella 14: 132 in Dunaliella spp. 16: 22 in thylakoı¨d 7: 39, 42, 92 long-chain, synthesis, mevalonate in 14: 50 – 52 metabolism 16: 12 Fatty acid desaturases 31: 182– 185 Fatty acids, reactions with OsO4 3: 10, 11 Fauna biocontrol 26: 17 – 19, 81, 82 plant defence proteins 26: 137, 139, 146, 147, 159– 168, 171, 172 FAXX 19: 33 Fayum of Egypt, Early Tertiary 17: 55 Feedback control theory of vascular differentiation 9: 247– 249, 250, 254 “Feltham First” cv. 18: 61 O3 fumigations 18: 52 Female gametes, 235– 237 Fen gene 30: 301, 302 Fenton reaction 37: 180, 185 Fermentation, biocontrol agents 26: 74 – 76
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fern 22: 60 Fern leaves, polarity of veins 9: 193, 194, 195 “Fern spike”, at Cretaceous/Tertiary boundary 17: 5 Ferns see also Pteridophytes, Early Tertiary at Cretaceous/Tertiary boundary, “fern spike” 17: 5 fossil evidence 17: 7 Early Cainozoic 17: 14, 15, 18 Ferns 19: 297, 299 see also Pteridophytes sporophyte/gametophyte shift and apospory 16: 82, 83 apogamous cycles and 16: 81, 82 Ferns, legumin 27: 6 Ferralterin 12: 15, 21 Ferredoxin 12: 8, 12, 13; 37: 23 cyclic electron transfer 13: 45 non-cyclic electron transport 13: 44 superoxide formation 13: 45 Ferredoxin-NADP oxidoreductase 13: 11, 13, 44 location on thylakoid membranes 13: 13, 15 Ferredoxin – NADP + reductase 27: 281 Ferredoxin – thioredoxin reductase 12: 14 – 16 Ferricytochrome c, binding to chloroplast envelopes 7: 7, 10 Ferritin 25: 24, 25 Ferruginol production 13: 166 Fertilization 28: 237–241 central cell 28: 248, 249 double, 245– 247 in planta 28: 237, 238 in vitro 28: 238– 241 Fertilization, control of diploid/tetraploid incompatibility 2: 234 hybrids 2: 233, 236 in vitro fertilization 2: 237 intraovarian fertilization 2: 234 treatment of the stigma 2: 232 treatment of the style 2: 232 Fertilizers 21: 85, 86, 95, 98 Fertilizers, and biocontrol 26: 15 Ferulate 19: 33
113
Ferulic acid 20: 194; 21: 48; 34: 173 Festuca 22: 259; 24: 176; 35: 25, 75 ovina 22: 23 Festuca arundinacea (grass) 18: 237 Festuca idahoensis 33: 245 Festuca ovina enzymes of ammonia assimilation 6: 27 Festuca pratensis 25: 97; 35: 9, 11, 14, 20, 30, 31, 34 Festuca rubra 29: 130, 131 Festuca rubra, salt tolerance 8: 222 Festuca – Lolium genome 35: 31 F-factor 24: 400 FHC (frozen hydrated cryofractured) EPXMA 29: 167, 168 Fibre differentiation effect of gibberellin 9: 240 in phloem 9: 240, 241 in xylem 9: 237– 240 Fibre optic microprobes acceptance angle 18: 267 cleaning 18: 265 coating 18: 265, 266 experimental apparatus 18: 270– 272 experimental measurements 18: 273– 289 fabrication 18: 261 grinding and polishing 18: 263– 265 light measurement 18: 287 measurement 18: 256– 271 probe sensitivity and acceptance angle 18: 266– 268 probes and optical properties 18: 268– 270 prognosis/future applications 18: 289–292 system 18: 270 terminology 18: 272, 273 Fibre optic sensor, spherical 18: 281 Fibrillins 35: 24 Fick’s law applied to membrane transport 6: 54 Ficus 37: 115 Ficus benhalensis 37: 42 Ficus pumila 37: 49 Field chambers 18: 27 Field reaction, epidemiology 21: 215– 226 Fiji disease virus (FDV) 36: 153, 155 Fijivirus 36: 150
114
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
FIL2 gene 24: 126, 133 Filamentous fungi, endocytic pathway in 28: 128– 131 Filicopsida, revised classification 4: 261– 263 Filipendula, isosalicin 20: 174, 184 Filuloporia vaillantii, moisture levels and growth 7: 407 Fir, see Abies alba Fireblight 23: 13, 14, 16, 17 Fischerella ambigua 27: 215 Fischerindole 27: 215 FISH 34: 48 Fish, population pressure 21: 90 Fissidens 19: 251 Fissidens adianthoides interspecific polyploidy 6: 210, 215 Fissidens crassipes 19: 251 Fistulina hepatica, competitive ability in culture 7: 389, 390, 396 Flacca mutant of tomato 18: 39 Flacourtiaceae 37: 45 Flagella abnormalities 2: 11 acronematic 2: 10, 12, 14 artifacts 2: 10, 14 bases 2: 17 distribution of 2: 9 + 2 type 2: 3 Flimmergeissel 2: 12, 14 – 16 “hairs”, 10, 14 heterokont and isokont conditions 2: 6 mastigoneme 2: 14 multiple 2: 9 pantonematic 2: 14 Peitschengeissel 2: 12, 14 phylectic implications 2: 1 roots 2: 19 scales 2: 17 shape 2: 10 spines 2: 13 stichonematic 2: 14 structure 2: 1 symmetry 2: 13 tomentum 2: 16 uniflagellation 2: 8 Flagella of Dunaliella 14: 121, 122 Flagellar axonemes 24: 385, 386 Flagellar motility 25: 76
Flagellate cells Allomyces 2: 8 Chaetomorpha 2: 19 Chilomonas 2: 16 Chlamydomonas 2: 9, 21, 26 Chlorochitridion tuberculata Vischer 2: 15 Chlorogonium rosae 2: 27 Chlorophyceae 2: 7, 8, 19, 21 Chlorophyta 2: 6 – 8, 15, 16, 21 Chordaria 2: 11 Chromophyta 2: 6, 7, 10, 18, 19, 21 Chrysochromulina 2: 8 Chrysophyceae 2: 18; 2: 6 – 8, 14 Cladophorales 2: 9 Coccolithophoridae 2: 8 Contophora 2: 6, 8, 21 Cryptomonads 2: 16 Cystoseira 2: 20 Dictyota 2: 8, 13, 19 Draparnaldia 2: 9, 19 Dryopteris 2: 10 euglenoids 2: 7, 8, 16, 21, 23 Fucus serratus 2: 11, 19 – 21 Haematococcus pluvialis 2: 16, 28 Halidrys 2: 20 Halosphaera 2: 16, 17, 29 Haptophyceae 2: 8, 18, 21 Heteromastix 2: 16, 17, 19, 29, 31 Himanthalia 2: 13, 14 Isochrysis 2: 8 Loxophyceae 2: 8, 12, 15, 17, 19, 21 Mallomonas 2: 8 Marchantia 2: 10 Micromonas pusilla 2: 3, 8, 10, 12, 17, 25 Micromonas squamata 2: 11, 15 – 17, 29 Monomastix 2: 8, 12, 25 Nephroselmis gilva 2: 17 Oedogonium 2: 9, 10, 19, 30 Olpidium 2: 8 Pedinomonas 2: 8, 10, 15, 19, 24 Phaeophyceae 2: 6, 14 Platymonas 2: 9 Polytoma 2: 18 Prasinophyceae 2: 8, 16, 17, 19, 21 Prosinoclaele platymonas 2: 17 Prymnesium 2: 8 Prymnesium parvum 2: 18, 31
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Pteromonas 2: 17 Pyramimonas 2: 9, 11, 17 Scytosiphon 2: 15, 22 Spermatozoopis 2: 9, 12, 26 Sphagnum 2: 9, 10 Stigeoclonium 2: 9, 19, 31 Thalassomonas 2: 14, 15 Ulothrix 2: 9, 19 Vaucheria 2: 6, 7, 10 Xanthophyceae 2: 6, 7, 14 Xiphophora 2: 13, 14 Flame photometer, measurement of sodium 7: 128, 129, 131 Flavanoids 21: 51; 37: 99 Flavanone 3-hydroxylase 37: 83 Flavanones 37: 39, 59 – 61, 63, 65, 76 Flaveria bidentis 38: 143, 144 Flavillium ion form 37: 63 Flavin 22: 105 Flavin adenine dinucleotide (FAD) 33: 72 Flavin mononucleotide (FMN) 32: 166, 167 Flavone synthase 37: 64 Flavone-3-hydroxylase (F3H) 37: 59, 64 Flavones 22: 110, 114 Flavonoid 3-hydroxylase 37: 83 Flavonoid aglycones 31: 56, 59 microsampling 31: 123 Flavonoid biosynthesis multi-enzyme complex 37: 86, 87 regulation of flux by pathwayintermediates 37: 84, 85 transcriptional regulation 37: 82 – 84 Flavonoid biosynthetic genes, genetic loci for 37: 78 Flavonoid biosynthetic pathway 29: 59 – 61 Flavonoid pathway 37: 39 Flavonoid signal 37: 82 Flavonoid synthesis 13: 158 flavonoid-30 50 -hydroxylase 37: 60, 61, 64, 65 Flavonoid-30 -hydroxylase 37: 60, 64, 65 Flavonoids 25: 142; 31: 160, 162, 163, 166 as antioxidants 37: 6 biosynthesis 6: 284, 285; 31: 128 chemistry 6: 284, 285 chemotaxonomy 6: 286– 288 enzymes 37: 86 in defence against herbivores 37: 7 suppression of fungal growth 7: 410
115
transport in endoplasmic reticulum 7: 19 types of 37: 76 UV-absorbing properties 37: 6 – 80 Flavonoids, UV radiation 22: 106, 112 effects on cellular processes 22: 122 effects on gene expression 22: 135, 136, 138 interactions with other stresses 22: 143, 144, 146, 147 protective mechanisms against 22: 110, 114– 117, 120 Flavonol aglycones 37: 81, 82 Flavonol glycosidase 37: 81 Flavonol synthase (ELS) 37: 62, 64, 83 Flavonols 22: 114; 35: 86; 37: 61, 62, 76, 83, 85, 184 Flavoprotein 22: 105 Flax hypocotyls 19: 15 Flax rust 21: 8, 148, 149, 169, 174 Flax see Linum spp. Flooding 19: 145– 149, 160– 164 Floodplain deposits 16: 129, 130 Floral development molecular genetic basis 28: 203– 210 molecular mechanisms in 28: 217– 222 Floral envelopes and fruit development 2: 268 Floral meristem, establishment of 28: 203– 207 Floral organ identities establishment of 28: 207– 210 in angiosperm flower development 28: 210– 217 “Florin” (wheat) 35: 57 Flower development 26: 229– 250 ABC model 26: 238– 241, 244 ABCD model 26: 244, 245 function 26: 234, 235 MADS box genes 26: 234– 245 meristem transition 26: 235– 237 morphology 26: 230– 232 mutants 26: 233, 234 organ identity genes 26: 237– 241 ovule development genes 26: 241– 244 structure 26: 234, 235 transposon system 26: 232, 233 Flower trichomes 31: 15 – 18 Flowering 19: 120, 121
116
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Flowering plants, PEPCK in 38: 114– 126 effects of phosphorylation in vitro 38: 115–11117 effects of phosphorylation on catalytic activity 38: 118– 126 PEPC-kinase 38: 117, 118 Flowering plants, RUBISCOs 27: 105 Flowering plants, see Seed plants Flowering, effect of salicylates 20: 195– 203 floral initiation in Lemnaceae 20: 197–199 influorescence maturation in aroids 20: 199– 203 Flowering, monocotyledons 3: 267 Flowering, UV radiation 22: 132 Flowering-induced resistance (FIR) 38: 266–268 Flowers 17: 99 – 162 see also Angiosperms derivation of organs 17: 144– 149 Euanthium Theory 17: 144–146 mixed theories 17: 146, 147 partial theories 17: 147– 149 Pseudanthium Theory 17: 146 Early Tertiary 17: 62 – 66, 118, 119 pollination 17: 63 – 66 evolution 17: 119– 135 androecium 17: 128– 130 gynoecium 17: 130– 133 nectary 17: 133– 135 number of parts 17: 121– 123 origin 17: 149– 151 perianth 17: 125– 128 phyllotaxis 17: 119– 121 position of parts 17: 133 sex distribution 17: 124, 125 size 17: 123 steps in 17: 152, 153 symmetry 17: 123, 124 fossil 17: 107– 119 Early Cretaceous 17: 107– 111 Early Tertiary 17: 118, 119 Late Cretaceous 17: 113– 118 Mid-Cretaceous 17: 111– 113 primitive extant 17: 101–107 Chloranthaceae 17: 105– 107
Eupomatiaceae/Austrobaileyaceae 17: 103, 104 Magnoliaceae/Annonaceae 17: 101– 103 Monimiaceae/Lauraceae 17: 105, 106 Winteraceae 17: 104, 105 primitive organization/appearance 17: 151, 152 Flows, nature of near plants 18: 201– 205 Fluence rate 18: 272, 273 internal 18: 268, 272, 274, 289 Fluid-phase endocytosis 28: 130 Fluo-3 dye 22: 53, 54, 55, 59, 60 Fluorescein isothiocyanate (FITC) 25: 24 Fluoresceine-conjugated glucuronidase 35: 83 Fluorescence 29: 170 basic features 5: 34 definition, 5: 3 determination of structure and composition of photosynthetic apparatus 5: 22 – 31 Fluorescence emission and photosynthesis in Dunaliella 14: 52 Fluorescence in situ hybridization (FISH) 28: 240 Fluorescence ratio imaging 22: 61 – 64 Fluorescence ratio photometry 22: 61 Fluorescence spectra of chlorophylls 10: 99 – 102 of phycobiliproteins 10: 112– 115 Fluorescent chl catabolites (FCCs) 35: 11 Hv-FCC-1 –4 35: 11 modification to 35: 17, 18 PFCC-1 and PFCC-2 35: 11 Fluorescent chlorophyll catabolites (FCCs) 25: 99 Fluorescent dyes, calcium 22: 49 – 56, 68 Fluorescent probes 28: 138 Fluoride 18: 260 Fluorochromatic reaction (FCR) 28: 233 Fluorometers 37: 6 Fluorometry for phytoplankton productivity 16: 197, 198, 216, 217 Fluphenazine 22: 109 Fluridone 22: 254, 256; 34: 150 Fluspirilene 22: 71
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Flux gradient analysis 18: 197, 198, 200, 201 failure 18: 199 one-dimensional 18: 240 Fog events 18: 81, 82, 102 Folioceros 19: 275, 279, 281, 295 Folioceros fuciformis 19: 305 Fomes annosus, manganese deficiency and infection 10: 243 Fomes cajanderi di-mon matings 7: 370 intraspecific antagonism 7: 348, 349 Fomes pinicola, phosphorus content 8: 132 Food and Agriculture Organisation 23: 4 Food safety 34: 305, 306 Food supplies see Population pressure Foot and mouth virus 36: 131 Foot-and-mouth disease 38: 17, 56 ‘Force fields’ 21: 60 Foreign DNA bacteria as recipients of 24: 401– 410 fungi as recipients of 24: 410– 416 plants as recipients of 24: 416– 420 ‘foreign’ molecules 32: 8 Forest 18: 239 see also Boreal forest; novel forest decline; replanting forest Forest productivity and water use see Net primary productivity and water use model Forrestia, inflorescence 3: 282 Fo¨rster resonance in algal photosynthetic systems 10: 131, 133– 135 Forsythia hydrogen peroxide occurrence 8: 54 lignin biosynthesis 8: 43 – 48 lignin composition 8: 50 Fossil assemblage formation/ interpretation 16: 95 – 191 aquatic processing 16: 114– 125 floating 16: 115– 119 leaf degradation 16: 122– 124 water column transport 16: 119– 122 dispersal by wind 16: 106– 112 air fall 16: 108, 109 fall velocity 16: 106– 108 post-descent 16: 109, 110 storm effects 16: 110– 112
117
fluvial transport 16: 125–130 channel deposits 16: 126– 130 fluvio-marine deltas/estuaries 16: 140– 147 beaches 16: 144, 145 deltaic environments and assemblage composition 16: 147 distributory mouth bars 16: 142 interdistributory embayments 16: 144 marshes, lower plain 16: 145, 146 marshes, upper plain 16: 146, 147 peats, detrital 16: 147 pro-delta slopes 16: 141, 142 tidal flats 16: 143, 144 forest floor litter degradation 16: 112– 114 heterogeneity 16: 100, 101, 102 assemblage complexity 16: 101, 102 stability, evolutionary/spatial 16: 100 integrated approach 16: 97, 98 lacustrine environments 16: 130– 140 fluvio-lacustrine deltas 16: 133– 140 isolated lakes 16: 132 montane lakes 16: 131, 132 ox-bow lakes 16: 133 plant representation 16: 131 leaf abscission 16: 104– 106 peat/coal assemblages 16: 147– 151 coalification 16: 148 environmental conditions 16: 148 floating mire development 16: 149 quaking bogs 16: 149 raised mire development 16: 149– 151 preservation/diagenesis 16: 175–179 casts/moulds 16: 178, 179 compression/impressions 16: 175, 176 duripartic preservation 16: 176 mineralization 16: 176– 178 quality of record 16: 98 – 100 and deposition 16: 99 and organ isolation 16: 99 and time-averaging 16: 98, 99 assemblages 16: 99, 100 sedimentary 16: 101, 103, 104 allochthonous/autochthonous assemblages 16: 101, 103 settling velocity 16: 103, 104
118
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fossil assemblage formation/ interpretation (continued) taphonomy 16: 98, 179–183 community reconstruction 16: 180, 181 community-suite/regional reconstruction 16: 181– 183 defined 16: 97 fossils in sedimentology 16: 183 morphology and taxonomy 16: 180 potential of 16: 184, 185 trees, whole, preservation of 16: 114 vulcanism 16: 151–175 and magma viscosity 16: 151, 152 debris flow 16: 160– 166 explosive, case studies 16: 152– 160 lateral lakes 16: 168– 171 tephra, preservation in 16: 166– 168 vegetation recovery 16: 172– 175 Fossil fuel 21: 80 – 82, 85, 99 Fossil monocotyledons 3: 214 Fossil plants see also Cone air-pores 1: 3 – 5 androgynophyll 1: 60 Angara flora 1: 62, 64 – 66 angiosperms 1: 58, 59, 201, 202 apocrats 1: 196– 198, 202 apoxogenesis 1: 25 Brachyblast theory 1: 44 Cambrian flora 1: 9, 60, 61, 198 Carboniferous flora 1: 9, 18, 19, 21, 29, 30, 44, 60, 61, 63 – 67 Cathaysian flora 1: 62 – 66 catkins 1: 37 Coal-Measure flora 1: 63, 68 cones see also strobilus 1: 31 – 34, 37 – 41, 43 –45, 47, 50 –52 coniferophytes, reproductive organs of 1: 41 conifers 1: 43, 63, 64, 66– 68 Continental drift 1: 65, 67 Cretaceous flora 1: 164, 180, 184, 192 cupules 1: 53 – 55, 57 cuticle 1: 35, 36, 39, 40 cycadophytes 1: 26, 30, 31, 33, 36, 67, 68 Devonian flora 1: 6 – 9, 13, 16, 18, 19, 30, 61
dichotomous branching 1: 6, 17, 18, 27, 43, 45, 52, 59 Dicroidium flora 1: 66 early vascular plants 1: 6 epidogenesis 1: 25 Euramican flora 1: 62 – 65 fructifications of Glossopteris 1: 53 gametophyte 1: 12 ginkgophytes 1: 66, 68 Glossopteris flora 1: 52, 53, 62, 64, 65 Gondwana flora 1: 52, 64– 66 gonophyll theory 1: 58 gymnosperms 1: 58, 201 Hermit Shale flora of Arizona 1: 65 Homologous Theory of sporophyte origin 1: 13 Jurassic flora 1: 3, 6, 37, 49, 67, 180, 201 Kusnezk flora see Angara flora lamina 1: 39 Late Glacial flora 1: 192, 197 leaves 1: 13, 15, 16, 18 – 21, 23, 25 – 29, 33, 34, 36, 37, 39, 40, 45, 50, 52 lepidodrendra 1: 22, 25 Lepidopteris flora 1: 66 Liassic flora 1: 3, 5, 66 Lower Cretaceous flora 1: 5 lycopsids 1: 6, 7, 9, 18, 22, 61, 64 medulla 1: 22 – 25 medullosan leaves 1: 28 megaphyllous plants 1: 20 meristems 1: 25 Mesozoic flora 1: 3 – 6, 35, 36, 39, 64, 66, 201 microfossils, contamination 1: 8, 9, 11 microphylls 1: 10, 20 Middle Old Red Sandstone flora 1: 6 Namurian flora 1: 63 Noeggerathiales 1: 31 nucellus 1: 39, 40, 42, 45 – 49, 51, 59 ontogenesis 1: 6 – 8, 11, 21, 41, 43, 45, 47, 49, 58 ontogenetic variability 1: 22 ovule see nucellus palaeobotanical techniques 1: 35 Palaeozoic flora 1: 9, 11, 18, 25, 31, 49, 60 palynology 1: 3, 8, 11, 17, 33, 36, 38, 40, 52, 58, 61, 150, 175, 180, 184, 195, 198
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
periderm 1: 24 Permian flora 1: 29, 33, 44, 47, 49, 63 – 67 pollen see palynology polyphylesis 1: 7, 9, 10 pre-Cambrian flora 1: 9 pre-Carboniferous flora 1: 18 pre-Devonian flora 1: 8 pre-Tertiary flora 1: 2, 59 protostele 1: 22– 24, 31 psilophytes 1: 6, 7, 11 – 13, 20, 30, 61 pteridophytes 1: 61 pteridosperms 1: 25, 57, 63, 64 Quaternary deposits 1: 150, 195 rachis 1: 39 reproductive organs of coniferophytes 1: 41 reproductive organs of Cordaitales 1: 41 reproductive organs of Glossopteridae 1: 53 reproductive organs of Pentoxyleae 1: 51 Rhaetic flora 1: 66 rhizoids 1: 2 – 5, 11, 12 rhizome 1: 12, 13, 15, 16, 19 scales of conifers 1: 41 – 49 seeds 1: 36, 38 – 40, 43, 46 – 49, 57, 64 Silurian flora 1: 7, 60 siphonostele 1: 22 – 24 sporangia 1: 6, 7, 12, 14 – 21, 32 – 34, 37, 40 –44, 47, 52, 57 – 59 spores see palynology sporophylls 1: 19, 20, 32 – 34, 37 – 39, 41 –49, 52, 57 sporophyte 1: 12 stelar morphology 1: 22, 23, 25, 50 stem see stelar morphology Stephanian flora 1: 44, 63, 65 stomata 1: 36, 39, 50 strobilus 1: 17, 34, 39, 40, 43, 45, 47, 57 taxonomy 1: 2, 22, 26, 34, 36, 52, 53, 56 telome systems 1: 20, 27, 29, 30, 43 Telome theory 1: 6, 20, 30 Tertiary flora 1: 164, 180, 188, 191, 198 Thaumatopteris flora 1: 66 Thinnfeldia flora 1: 66 tracheids 1: 9, 10, 39, 50, 61 tracheophytes 1: 61 Triassic flora 1: 49, 63, 66 trichotomous branching 1: 17, 18 vascular plants 1: 6, 60 ventral scales 1: 3 – 5
119
Westphalian flora 1: 63, 64 xylem 1: 22 – 29, 31, 43, 50 Fossil record of ferns, Mesozoic era 4: 235– 249 Tertiary period 4: 249– 253 Fossils Cretaceous flowers Early 17: 107– 111 Late 17: 113– 118 Mid 17: 111–113 Cretaceous/Tertiary boundary 17: 6, 7 study methods 17: 28 –30 Tertiary flowers 17: 118, 119 cladistic studies 17: 45 – 49 Fossombronia 19: 265, 267, 293 Fossombronia echinata 19: 273, 283 Founder cells 38: 197– 200 FOUR LIPS (FLP) 31: 197, 211 Fourier transform infra-red (FT-IR) spectroscopy 35: 121, 122, 124 Fourier transformation 18: 207 Fracture properties of plants 17: 235– 287 abscission mechanism 17: 279, 282 bark 17: 274– 276 cellulose 17: 252 crack initiation/propagation 17: 237 definitions 17: 236, 237 dehiscence mechanism 17: 280– 282 and size of pod 17: 284 endosperm 17: 278, 279 interaction with environment 17: 283 leaves 17: 266–270 grasses 17: 267– 269 in bending 17: 269, 270 legumes, and bloat 17: 267 levels of fracture, cell/tissue/organ 17: 282, 283 measurement 17: 239– 251 and imperfections 17: 242 comprehension difficulties 17: 239 compression/bending 17: 249– 251 cutting 17: 246– 249 graphical approach 17: 240– 242 machinery 17: 242, 243 tensile tests 17: 243– 246 uniformity of tests 17: 240 wedging 17: 246, 247 nuts 17: 276– 278
120
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fracture properties of plants (continued) parenchymatous tissue 17: 252– 261 and cell damage 17: 260, 261 and turgor 17: 258– 260 compression 17: 255– 260 crack opening tests 17: 253– 255 reasons for study 17: 236 scaling effects 17: 283, 284 seaweeds 17: 271– 273 skins 17: 261– 266 stems 17: 270, 271 toughness 17: 237, 238 wood 17: 273, 274 Fragaria £ anannassa 34: 253 Fragaria ananassa 28: 78 Fragilaria sp., number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 Fragilin 20: 180, 183 Fragrance production 31: 56 Fragrances 25: 142 Frankliniella occidentalis 36: 117, 118, 124– 135 Fraser fir (Abies fraseri) 18: 54, 66 Fraxinus americana (white ash) 18: 71 O3/AP 18: 81 O3/SO2 exposures 18: 78 SO2 exposure 18: 29 Fraxinus excelsior 18: 13 Fraxinus pennsylvanica 37: 110 volumetric elastic modulus 6: 80 Frazier River upper delta 16: 146 Free DNA 24: 402, 403 Free oxygen radicals 22: 119 Free proline 18: 93 Free radicals 18: 78, 94, 95 Freeze avoidance 37: 120 Freeze-etching of chloroplast envelope 7: 6 – 8, 13, 18 Freeze-etching, cell membranes 3: 45 appearance 3: 33 – 39 interpretation 3: 23 – 33 photosynthetic membrane 3: 135– 142 technique 3: 21 – 23 Freezing process and spectral distortion artefacts caused by freezing 5: 17 – 19 freezing of water 5: 14
ice-crystal formation 5: 14 – 17 use of cryoprotective agents 5: 19 – 21 Freezing resistance 37: 112– 114 Fremyella sp. see Calothrix sp. Fremyella, difference absorption spectra 10: 98 Freshwater habitats, productivity 27: 92 Freycinetia growth 3: 217 influorescence 3: 277 vascular construction 3: 246 Friabilin 34: 209 Fritillaria 28: 251 isochromosomes 6: 145, 146 Fritschiella, drought survival 5: 199 Frost damge 20: 79, 85 Frost injury 18: 67 Frost tolerance gene expression control 34: 246– 254 analysis by nuclear run-on transcription 34: 246, 247 post-transcriptional control 34: 253, 254 transcriptional control 34: 247– 253 genes isolated from cDNA libraries 34: 241–244 genetic analysis 34: 239, 240 low-temperature perception and signal transduction 34: 254, 255 LTR gene products, function of 34: 244– 246 late embryogenesis abundant proteins 34: 244, 245 lipid transfer proteins 34: 244, 245 RNA-binding protein BLT801 34: 245, 246 prospects for manipulating frost tolerance in crop plants 34: 255, 256 vernalization and interactions 34: 238, 239 Frozen hydrated cryofractured (FHC) EPXMA 29: 167, 168 Fructan exohydrolase (FEH) 25: 205 Fructan:fructan fructosyltransferase (FFT) 25: 205, 207 Fructans 25: 204–206 Fructose 6-phosphate 25: 199
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fructose 25: 199, 201, 202, 370, 371; 28: 72 Fructose bisphosphatase and stromal magnesium ion concentration 7: 66 Fructose, UV radiation 22: 130 Fructose-biphosphatase 12: 4, 6, 23, 25, 26 Fruit abscission 17: 279 dehiscence 17: 280 Early Tertiary evolution 17: 60 vertebrate dispersal 17: 66 – 68 size, and toughness 17: 284 skin fracture properties 17: 261– 266 Fruit Flag Hypothesis 37: 159, 160 Fruit ripening 32: 124 Fruit ripening and isoprenoid metabolism 83 Fruit set auxins 2: 238, 273– 279 chemical agents 2: 273– 279 parthenocarpy 2: 273– 279 Fruit trichomes 31: 18, 19 Frullania 19: 257 karyotype analysis 6: 240 sex chromosomes 6: 232 “FS-51” cv. 18: 51, 53 F-type H+ – ATPases 28: 7, 8 Fucophyceae 27: 89 C3 + C1 carboxylation 27: 99, 100 crassulacean acid metabolism (CAM), C3’+ C1 carboxylation 27: 100 20 -Fucosyl-lactose 19: 15 Fucoxanthin 27: 299 absorption of light 10: 59, 72 distribution in algal groups 10: 56, 57 energy transfer 10: 60 evolution in prokaryotes 10: 181 structure 10: 55, 59 Fucus 22: 86; 28: 164, 165, 239; 35: 74, 193, 194, 197; 38: 148 serratus 22: 58 Fucus evanescens 35: 188 Fucus gardneii 11: 99 Fucus serratus 35: 185, 188; 38: 150 chloroplast isolation 10: 123
121
fluorescence spectrum 10: 100, 125, 126, 128 Fucus spiralis, photosynthesis 27: 174 Fucus vesiculosus 38: 149, 150 Fucus zygote 28: 164 Fuerstia africana 37: 41 Fuerstione 37: 41 Fulgoroidea 36: 142 Fulvic acid (FA) 24: 285 Fumigation, soils 26: 15, 16 Funaria 19: 245, 251; 33: 67 cytotaxonomy 6: 243 Funaria hygrometrica, chloroplast envelope 7: 22, 81 Function in leaves 37: 6 – 10 Functional genomics 34: 2, 11 – 15 Functions of trichomes 31: 13 – 19, 79, 81, 82, 132, 133 location-dependent 31: 15 – 19 Fungal antigens, extraction from soil 24: 283– 286 Fungal cell walls 19: 12 components of 19: 8 Fungal cells, endocytic pathway in 28: 131–135 Fungal community structure factors influencing fungal growth host resistance 7: 410 interactions with other organisms 7: 413, 414 method of entry 7: 410– 413 moisture and aeration 7: 406, 407 nitrogen content 7: 408 nutrition 7: 404–406 pH 7: 409 temperature 7: 407, 408 toxic substances 7: 410 wood anatomy 7: 409, 410 interspecific antagonism interactions and their significance 7: 384– 388 interactions in nature 7: 399– 403 laboratory studies 7: 388– 399 succession and community development 7: 380– 384 intraspecific antagonism genetics 7: 359– 372 physiology 7: 372, 373
122
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fungal community structure (continued) unit mycelium concept 7: 349– 352, 376 schema for fungal community development 7: 415– 417 Fungal infection 19: 20 Fungal infections, salicylates and 20: 210 Fungal life cycle 36: 48, 49 Fungal life-styles 24: 169– 193 crossroads 24: 179– 183 Fungal oligo-b-glucans 19: 7 – 12 Fungal pathogen detecting propagules 23: 73 – 93 dot-blot 23: 83, 87 nucleic acid probes 23: 83 – 87 antibodies 23: 76 – 81 monoclonal 23: 78 – 81 polyclonal 23: 76 – 78 immunoassays 23: 81 – 83 ELISA 23: 81 immunofluorescence 23: 82 immunoassay 23: 74 nucleic acid-based techniquesz 23: 83 – 92 serological techniques 23: 75 – 83 importation of 23: 73 traditional methods 23: 74, 75 bait tests 23: 75 blotter method 23: 74 culture indexing 23: 75 direct plating on agar media 23: 74 growing-on test 23: 75 visual inspection 23: 74 Fungal pathogens, defence against 37: 7, 8 Fungal plant endophytes 24: 174, 175 Fungal plant pathogens 24: 171– 174 Fungal tubular vacuole systems as transport compartments 28: 143– 149 role in intracellular transport 28: 144 Fungal vacuolar networks and endosome movements 28: 141– 143 Fungal vacuolar systems nitrogen storage 28: 144 phosphorus storage 28: 144 storage in 28: 147
transport of stored phosphorus and nitrogen 28: 147– 149 Fungal vacuoles 28: 120– 123 and animal endosomes in 28: 128, 129 larger 28: 135 Fungi 18: 290; 30: 24, see also individual species name A. oryzae, cytochrome 4: 79 asexual and sexual reproduction 24: 71 – 87 Aspergillus nidulans, genetic analysis 4: 397 Botrytis cinerea, phytoalexin production 4: 6 Ceratocystis fimbriata, specificity 4: 10 chitin 2: 76, 77 Cladosporium cucumerinum, mechanical resistance 4: 5 Colletotrichum lindemuthianum, secretion of glucanase inhibitor 4: 5 comparisons of genetic variation, "physiological costs and fitness between asexual and sexual "systems 24: 73, 74 density and competition 24: 77, 78 effect of mycelial extracts and specific morphogens 24: 78 – 80 Erysiphe graminis, specificity 4: 9 flagella 2: 8 freeze-etching 3: 23 genotype-determined equilibria 24: 76 Helminthosporium sacchari, phytotoxin production 4: 4 in soils 24: 275– 308 initiation of asexual sporulation and sexual development 24: 72, 73 maintaining and changing balance between reproductive "processes 24: 74 – 80 microfibrillar arrangement 2: 91, 98 physical and nutritional factors 24: 77 plasma membrane 3: 35 seasonally maintained equilibria 24: 77 species-determined equilibria 24: 75 trade-off between asexual and sexual reproduction 24: 80 Ustilago sphaerogena, cytochrome 4: 79 Fungi, Early Cainozoic 17: 13
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fungi, pathogens 21: 2, 6, 7, 10, 36, 71, 72, 148, 149, 177, 178 models 21: 36 – 51 see also Gene for gene relationships biological control 21: 66 – 70 colonization 21: 54 – 58 expressive phase of disease 21: 70, 71 molecular aspects 21: 58 –66 relationship between vascular colonization and foliar symptoms 21: 51 – 54 Fungi, plant defence proteins 26: 26, 136– 138 see also Biocontrol of soil-borne pathogens antifungal peptides 26: 151–153 chitin-binding 26: 146, 147 endohydrolases 26: 143– 146 manipulation 26: 171 phospholipid transfer 26: 155 polygalacturonase-inhibiting 26: 157– 159 PR – 1 26: 148, 149 proteinase inhibitors 26: 157 ribosome-inactivating 26: 155, 156 thaumatin-related 26: 149, 150 thionins 26: 148 2S albumins 26: 153, 154 Fungi, roles of tubular vacuolar systems 28: 149, 150 Fungi, soft rot alkali solubility of decaying wood 2: 327 anatomical characteristics of timber 2: 328, 344, 349 Anona laevigata 2: 324, 325 Ascomycetes 2: 324, 325 attack, chemicals favouring 2: 326 attack, rate of 2: 328, 329, 340, 350, 352 attack, variation in mode of according to species of wood 2: 340 attack, variations according to species of fungus 2: 344 Basidiomycetes 2: 324, 326, 348, 353, 355 beech 2: 325– 327, 338– 340, 342, 349, 352 birch 2: 342, 344, 348, 353 brown rots 2: 324, 327, 354 Camarosporium ambiens 2: 344, 347
123
Caryota urens 2: 324, 342 cellulose 2: 327, 329 Cephalosporium sp. 2: 346, 347 Chaetomium globosum 2: 325– 329, 338– 340, 342, 344, 347, 349, 350, 353, 354 chemical analysis of degraded wood 2: 329 chemical nature of degradation process 2: 327, 354 coniferous woods 2: 325, 326, 328, 338 Coniophora cerebella 2: 327 Coniothyrium fuckelii 2: 344, 346 definition 2: 325 Dracaena draco 2: 324 enzymes, role of 2: 329, 352, 354 Epicoccum nigrum 2: 346 Fungi Imperfecti 2: 325 hardwoods 2: 328, 338 Hernandia sonora 2: 324 histology 2: 325 history 2: 323 leaching 2: 338, 350 lignin 2: 327– 329, 353 marine fungi 2: 325, 326 microscopic examination 2: 328 mode of action 2: 339 natural durability of timber 2: 326 penetration of medullary rays 2: 339, 350, 353 penetration, decay 2: 339, 349, 351 penetration, passive 2: 339, 342, 350 pentosans 2: 327 Phoma sp. 2: 346 Pinus sylvestris 2: 338– 340, 348, 350, 351, 353 Poria monticola 2: 327 posts in ground contact 2: 348 Pyrenomycetes 2: 325 Sabal umbracilifera 2: 325 Scots pine 2: 338–340, 348, 350, 351, 353 Sequoia sempervirens 2: 327 species, list 2: 348 species, variation in attack 2: 344 Sphaeronema sp. 2: 344, 347 Stachybotrys sp. 2: 328 Stysanus stemonitis 2: 344, 347 Taxodium distichum 2: 325
124
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Fungi, soft rot (continued) technique for study 2: 337 water cooling towers 2: 324– 326 white rots 2: 324, 327 wood-preserving substances 2: 326, 354 Fungi, soft rot, histology 2: 329 decomposition stages 2: 333– 337 fibres 2: 333, 337 geometric figures 2: 333, 336 hyphae penetration of cell wall 2: 329, 337 irregularly developed forms 2: 333, 337 parenchyma cells 2: 336 tracheids 2: 333, 337 vessel walls 2: 336 Fungicide resistance 24: 19 –21 Fungicides, with biocontrol agents 26: 16, 17 Fungitoxic and fungistatic compounds in disease resistance 4: 4 Fura Red dye 22: 53, 55 Fura-2 dye 22: 53, 54, 55, 57 Fura-BSA dye 22: 56 Fura-C18 dye 22: 56 Furanocoumarin 21: 13; 22: 110, 147 Furovirus 36: 59 Fusaclean 26: 9, 69 Fusarium 19: 21; 23: 6; 24: 74, 75, 181, 281, 283; 33: 6, 25 micronutrient effects on infection 10: 225, 227, 240, 255 oxysporum 21: 36 – 38, 68, 69, 150 f. sp. cubense 21: 52, 55 f. sp. dianthi 21: 48 f. sp. lycopersici 21: 43, 45, 53 f. sp. pisi 21: 52, 53, 55, 63 f. sp. radicis-lycopersica 21: 47 f. sp. vasinfectum 21: 44 pectinases 10: 241, 255 solani 21: 69 f. sp. phaseoli 21: 65 f. sp. pisi 21: 5 vasinfectum 21: 44 Fusarium graminearum 24: 76 Fusarium moniliforme 24: 124, 125 Fusarium oxysporum 19: 61; 24: 7, 12, 125; 28: 107; 33: 20 Fusarium oxysporum f. sp. lycopersici 24: 107, 125
Fusarium oxysporum f. sp. vasinfectum phosphate uptake 8: 156 phosphorus content 8: 131 Fusarium oxysporum, effect of phytoalexin 7: 512, 517 Fusarium solani 19: 36 Fusarium solani f. sp. pisi 24: 41 Fusarium spp. biocontrol antagonist applications 26: 50, 59, 60, 67, 71 inoculum formulation 26: 76, 77 suppressive soils 26: 4 – 9, 69 plant defence proteins defensins 26: 152, 153 endohydrolases 26: 144, 145 hevein 26: 146 phospholipid transfer 26: 155 proteinase inhibitors 26: 157 thaumatin-related 26: 149 thionins 26: 148 Fusarium wilt 21: 36 Fusca ( fus) 31: 229 Fused silica fibre 18: 259 Fusicoccin 18: 74; 21: 166; 28: 34, 42 –45 Fusicoccin and ion flux in roots 15: 104, 111, 112 Fusicoccum amygdali 28: 25 Fusicoccum quercus 33: 24 Fusion biotrophs 24: 401 FV (fast vacuolar) channels 33: 56 G protein calcium ions 22: 48, 74, 83, 84 UV radiation 22: 107– 110 G proteins 21: 64, 168 G. bufonia, seed morphology 7: 426 G. catenatum 12: 52 G. conopea phytoalexin production 7: 512 seed morphology 7: 425, 437 G. cucullata, longevity of flowers 7: 569 G. horichiana, orchid pollination 7: 559 G. indicum, 12: 209 G. javanka, isolation of hymenomycetous fungus 7: 490 G. longifolia, seed morphology 7: 425 G. lubiniensiforme 12: 234
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
G. maculata v. pallida, seed morphology 7: 426 G. monilis action spectra for photosynthesis 10: 71 phycobilisomes 10: 113, 118 photosystem reaction centre "complexes 10: 84, 85, 89 G. nelsoni 12: 236, 237 G. odoratissima, phytoalexin production 7: 512 G. pacifica phycobilisome structure 10: 111, 142 shading effects 10: 156 G. pulvisculus 12: 230 G. repens carbon fixation 7: 520 effect of hormones in culture 7: 460, 464 floral respiration 7: 612 protocorm-fungal interaction 7: 499, 500 seed morphology 7: 426, 437 G. repens var. ophioides, interaction with rhizoctonias 7: 498 G. saxatile nitrate reductase 6: 22 G. semipellucida, seed morphology 7: 427 G. septentrionalis, isolation of hymenomycetous fungus 7: 490 seed germination 7: 443, 477, 478 G. tamarensis 12: 225 G. toxicus 12: 63, 86 G-6-PDH 18: 100 GA 20-oxidase 34: 137– 139 GA 2-oxidase 34: 137, 139, 140 GA 3a-hydroxylase 34: 137, 139, 140 GacA gene, antibiosis 26: 29, 32 Gadolinium 22: 72, 73, 74, 81 Gaeumannomyces 33: 242 Gaeumannomyces graminis 24: 278; 26: 14, 15, 60, 71; 30: 294; 38: 15 chloride action mechanism 10: 265 host infection and concentration of copper 10: 231 lime 10: 227 manganese 10: 249– 254 manganese/iron 10: 256, 257 phosphorus 10: 225 GAF domain 32: 118, 131, 132, 139
125
Gal – 3 31: 230, 231 GalA12 19: 44 Galactan 11: 131, 132, 146– 148, 152 Galactolipids 22: 131 Galactolipids, origin in the chloroplast 7: 86 – 95 Galactomannan 11: 129– 131, 133– 143, 149, 153 hydrolysis 11: 143 Galactose 11: 126; 25: 312 Galactose, effect on orchid seedlings 7: 440, 447, 449, 450 Galactosylation in Dunaliella lipid metabolism 16: 27 Galactosyltransferase, activity in chloroplast envelope 7: 37 a-(1 ! 4)-D-galacturonic acid 19: 22 Galacturonic acid residues 19: 20 a-D-galacturonidase 19: 31 Galbulimima 31: 18, 19 chromosome sets 6: 189 Galeola hydra, isolation of hymenomycetous fungus 7: 490 “Gales County” Prov. 18: 80 Galium aparine enzymes of ammonia assimilation 6: 23, 29 Galium saxatile 29: 2, 13 Galium sterneri 29: 2 Gall wasp 21: 141– 143 Gallium mollugo culture 13: 152, 156 Gallocatechin 21: 51 Gambierdiscus 12: 52 Gamete fusion 28: 240 Gamete, female, and alternation of generations 16: 78 – 80 Gametic disequilibrium 24: 11, 17, 18 Gametic phase disequilibrium 24: 11 Gametogenesis 16: 57 – 64 algae 16: 57 –59 isogamous forms 16: 57, 58 oogamous forms 16: 58, 59 bryophytes/homosporous pteridophytes 16: 59 – 63 oogenesis 16: 59 – 63 spermatogenesis 16: 59 heterosporous pteridophytes/seed plants 16: 63 – 64
126
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Gametophyte/sporophyte shift, female gamete in 16: 78 – 80 Gametophyte/sporophyte shift, lower plants apogamy in 16: 80 – 82 female gamete in 16: 78 –80 life cycles, universality of 16: 56, 57 sporogenesis 16: 65 – 70 algae 16: 65 bryophytes 16: 65 heterosporous pteridophytes/seed plants 16: 66 –70 homosporous pteridophytes 16: 65, 66 sporophyte/gametophyte shift 16: 82 – 87 and apospory in lower plants 16: 83, 84 megasporogenesis 16: 84 – 87 phase change and meiosis 16: 82, 83 sporogenesis theory 16: 84 Gametophyte-sporophyte junction in land plants 19: 231–317 Gametophytic systems 32: 270 Gamma-radiation 31: 231 Gamoplexis orobanchoides, seed morphology 7: 427 Ganoderma adspersum competitive ability in culture 7: 389, 390, 396 pseudosclerotial plate formation 7: 393, 398 zone-line formation 7: 345 GARNET database 38: 219 Gas chromatography 31: 154, 163 Gas chromatography/mass spectometry (GC-MS) 19: 123, 125 Gas chromatography – mass spectrometry (GC– MS) 35: 215 Gas exchange carbon dioxide-concentrating "mechanisms 27: 114– 119 carboxylation reactions 27: 109– 114 Gas exchange, NPP model 26: 196– 206, 210, 212, 213, 215, 218 see also Stomatal heterogeneity Gas liquid chromatography-mass spectro-metry 21: 46 Gas phase transport in vascular land plants homiohydry and the intercellular space-cuticle-stomata complex cuticle 5: 189
general considerations 5: 182– 184 intercellular air spaces 5: 186– 189, 190, 191 resistance imposed by stomata and cuticle 5: 184– 186 stomata 5: 190, 191 poikilohydry 5: 181 Gas/heat exchange resistances 18: 220 Gas-space system characteristics 7: 228– 230 lateral movement of respiratory gases 7: 239 longitudinal diffusion of gases 7: 228, 229 longitudinal mass-flow movement 7: 229, 231 Gasteria 31: 53 Gasteria trigona 31: 51 Gating 25: 222 FV channels 25: 230 InsP3-dependent currents 25: 237, 238 ryanodine receptor homologues 25: 239– 241 SV channels 25: 226, 227 VK channels 25: 231 VMAL channels 25: 241 VVCa channels 25: 233, 234 GATT 23: 12, 59 Gattonia, stomata 3: 284 Gaultheria procumbens, cinnamic acid 20: 190 Gaussian distribution 18: 268 gca calculation 18: 213– 215 Gcn4p 33: 199, 200 GDH, see Glutamate dehydrogenase GDP 24: 116 Gel electophoresis 18: 138 Gel filtration studies of solubilized organelle fractions 5: 121 Gelasinospora reticulospora 24: 80 Gelidium sesquipedale 35: 189 Gel-permeation chromatography 19: 19, 25, 31 Gels 21: 49 – 51, 56 – 58, 67 GenBank database 35: 113 Gene banks 21: 89 Gene deployment 24: 17 Gene duplication 32: 55, 56, 329
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Gene expression 32: 9 drought-induced 32: 209, 210 hormone-induced 32: 209 light-intensity induced 32: 210 organ-specific induced 32: 207– 209 salt stress-induced 32: 209, 210 tissue-specific induced 32: 207– 209 transcription factors and regulation of 32: 254 Gene expression responses 29: 54, 55, 57 –59 control by metabolites 29: 57 – 59 Gene expression studies 28: 29 Gene flow 24: 15, 16 Gene for gene relationships, fungi 21: 2, 65, 148, 149, 177, 178 avirulence genes 21: 149–164 defense response induced by race-specific elicitors 21: 164– 167 receptors for race-specific elicitors 21: 167, 168 resistance genes 21: 169– 176 Gene transfer by free DNA 24: 402 conjugational 24: 401, 407 horizontal 24: 399– 401, 408, 409 interkingdom 24: 420– 422 lateral 24: 399– 401, 422, 423 Gene trees, see phylogenetic trees Gene-for-gene interaction 4: 30, 33 – 41 experimental approach 4: 42 – 44 model of gene control of resistance 4: 35 –41 Gene-for-gene resistance (GFGR) 38: 254, 264, 265 General adaptation syndrome 37: 185 General Agreement on Tariffs and Trade see GATT General circulation models (GCMs), palaeoclimates 26: 194, 195, 215 General concepts of interaction between light and matter 5: 3 – 5 General influence of low temperature on fluorescence 5: 5 Genes, UV radiation 22: 110, 111, 134– 141 Genetic engineering 21: 3; 35: 55 Genetic engineering and protein targeting 14: 21, 22
127
Genetic markers 24: 10 –13 predicting variation among individuals 24: 11 restrictions on using 24: 12 Genetic modification (GM) technology 34: 302, 305, 306 Genetic modifications 24: 180 Genetic structure 24: 340– 342 Genetic variation, analysis of 34: 44, 45 Geneticin G418 34: 74 Genetics 6: 247 see also Avirulence genes, Gene for gene relationships, Phylogeny, Resistance genes defence genes 21: 11, 20, 21 fungal wilt disease 21: 58, 59 single-dominant genes 21: 54 – 56, 65, 66, 71 Genetics and embryology 2: 219 Genetics of host-parasite interactions genefor-gene relationship 4: 3, 7, 8, 30 quadratic check 4: 7, 8 Geniculosporium serpens 33: 5 Genomes 21: 120 Genomic clones 32: 406 Genomic sequencing 34: 48 Genomics definition 34: 2 funding 34: 3 Genotypes 21: 46 Genotypes, direct tracking 24: 13 –15 Genotypic sensitivity to salinization 29: 131, 132 Genotypic variation 24: 181 Gentamicin 21: 197 Gentiana 22: 13, 14 Gentiana lutea 25: 208, 367 Gentiana triflora 37: 68 Gentianaceae 22: 13, 23, 25 Gentianaceae, Early Eocene flowers 17: 64 Gentianose 25: 208 Genyorchis, flowering period 7: 536 Geochemistry in palaeoenvironmental analysis 17: 88 Geoflora concept 17: 13 Geological past, NPP and water use 26: 193– 219
128
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Geonoma influorescence 3: 275 G. pinnatifrons 3: 275 vascular construction 3: 249 Geonomeae growth 3: 224 influorescence 3: 274 Geotropism 22: 166 Geraniaceae 31: 11, 58, 177 Geraniol 31: 81, 94, 98, 103, 104, 106 Geranium 24: 322 Geranium carolinianum 18: 10, 16, 21 SO2 exposure 18: 18, 25, 28 Geranium robertianum 31: 63, 177 nitrate reductase 6: 23 Geranyl diphosphate (GPP) synthase 31: 95 Geranyl diphosphate synthesis 14: 38 – 42 Geranylgeranyl diphosphate availability and isoprenoid synthesis 14: 79, 80 Gerbera 37: 109 GERL 25: 3 Germacrene D 31: 131 Germany 21: 84 Germination see also Fertilization, Pollen ambient humidity 2: 224– 227 dicarboxylic acids 2: 225 mass effect 2: 225, 230 metals 2: 224, 231 stored pollen 2: 223 Germination, isoprenoid metabolism in 14: 80, 81 Germination, UV radiation 22: 132, 133 Germplasm 21: 137– 141, 217, 218 Gerontoplasts in chlorophyll degradation 35: 21, 22 Gesneriaceae 37: 41 Geum montanum 37: 135 Geum urbarum nitrate reductase 6: 23 Giant algal cells hydraulic conductivity 6: 88 – 95, 100 phenomenological coefficients 6: 70 solute transport 6: 61 volumetric elastic moduli 6: 76, 77, 83, 84 Giardia lamblia 24: 138
Gibasis G. consobrina polyploidy and centric fusion 6: 185 G. schiedeana karyotype evolution by centric fusion 6: 160 polyploidy and centric fusion 6: 185 karyotype evolution by centric fusion 6: 160, 161 polyploidy and centric fusion 6: 183 Gibberelins 31: 230, 248 Gibberella fujikuroi 33: 235; 34: 130, 137 effect on growth of rice 9: 62 gibberellin biosynthesis 9: 42, 85, 88 – 90, 92 – 96, 99, 122– 127 production 9: 35, 36, 46 phosphate starvation 8: 149 phosphorus changes in culture 8: 196, 197 Gibberella pulicaris 21: 23 Gibberellic acid (GA) 22: 83, 132 in determination of leaf form 28: 173, 174 in invertase activity 28: 87 Gibberellic acid 19: 130 Gibberellin synthesis 14: 47, 48 Gibberellin, effect on lignification 8: 58 Gibberellins (GAs) 34: 130 production, blocking of 34: 136– 141 signalling 34: 131– 136 Gibberellins 19: 138– 144; 22: 284 analytical methods bioassays 9: 62 – 68 physicochemical methods 9: 68– 79 radioimmunological assays 9: 68 high performance liquid "chromatography 9: 52– 58 silica gel chromatography 9: 51, 52 extraction and partitioning 9: 46– 48 general observations 9: 44 – 46 group purification procedures identification procedures ion-exchange 9: 49, 50 reverse-phase 9: 50 separatory techniques steric-exclusion 9: 48 – 50 verification of accuracy 9: 79 – 85
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
and vascular differentiation differentiation of fibres 9: 240– 242, 254 differentiation of sieve tubes 9: 233, 234, 236 enhancement of cambial activity 9: 233 production by roots 9: 248 promotion of differentiation 9: 171, 179, 230, 234 biosynthesis ent-kaurene to GA12aldehyde 9: 88 – 92 mevalonic acid to ent-kaurene 9: 85 –88 pathways beyond GA12aldehyde, 9: 92 –121 sites of biosynthesis and "compartmentation 9: 127– 132 discovery 9: 34, 35 distribution in tissue 9: 41 – 43 effect on plant growth 9: 33, 34 effects of root excision and environmental stresses applied to roots 19: 142, 143 in orchid seedlings 7: 465, 466 in post-pollination phenomena 7: 584, 601, 619, 632 structure 9: 35 – 41 structure – activity relationships 9: 132– 140 studies of unstressed plants 19: 139– 142 Gigartina latissima 11: 99 Gigartina papillata, chlorophyll d 10: 53 Gigaspora calospora 22: 20 margarita 22: 14, 31 Gingko 22: 13 Gingkoacaeae 22: 13 Ginkgo G. biloba, lignin composition 8: 31 lignin composition 8: 50 O-methyl transferase 8: 41 Ginkgo biloba 25: 102, 103 Ginkgo biloba, legumin 27: 6, 45 Ginkgo plant 18: 22 Ginkgo, Early Tertiary 17: 23 Giraudyopsis stellifera 27: 294 GISH 34: 48 Gjffordia mitchellae 11: 91
129
GLABRA1 (GL1) 31: 137, 138, 201– 203, 210, 223, 224, 228, 229, 232, 246 TTG1 interaction 31: 225, 226 GLABRA2 (GL2) 31: 137, 196, 198, 199, 201, 202, 210, 211, 227, 245, 246, 253 GLABRA3 (GL3) 31: 137, 248 Gland cells similarities in glandular hairs and resin ducts 6: 301, 302 Gland head cell isolation techniques 31: 97 Glandless chemotypes 31: 123– 125 Glandular hairs and resin secretion 6: 290, 291, 296, 305 development 6: 295 essential oil secretion 6: 294 polysaccharide secretion 6: 297 structure 6: 291, 294– 296 Glandular trichomes 31: 4, 6 classification 31: 6 – 12 development 31: 20, 204, 205 exploitation of productivity 31: 121– 141 functions 31: 13 head cell isolation techniques 31: 97 Labiatae 31: 85, 89 – 93 lipophilic substances secretion 31: 56, 58 morphology 31: 8, 9 plasmodesmata 31: 264, 265 secretory materials classification 31: 11, 12 Glasshouse ornamental crops 23: 137–164 certification 23: 142, 143– 147 candidate material 23: 143 Danish 23: 146, 147 Dutch 23: 146, 147 in France 23: 150 in Holland 23: 151 in Italy 23: 148 nuclear stock 23: 143, 144 propagation stock 23: 144 national certification 23: 144– 147 OEPP/EPPO 23: 143, 144 sampling 23: 147– 152 sampling for detection elimination of plant pathogens 23: 161– 164 meristem culture 23: 161, 162 other treatments 23: 162, 163 re-infection 23: 164 EPPO 23: 142, 144
130
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Glasshouse ornamental crops (continued) foliage 23: 139 healthy plant material 23: 138– 140 plant quality 23: 140– 143 clonal selection 23: 140 quality control 23: 140– 143 varietal purity 23: 141 sampling for detection, of MLO’s 23: 151, 152 testing for pathogens 23: 152– 161 broth method 23: 152 isolation method 23: 153 shaking method 23: 153 bacterial diseases 23: 152– 155 dot immunobinding assay (DIA) 23: 155 ELISA 23: 154 immunofluorescence staining (IF) 23: 154 testing for viroids 23: 159, 160 electrophoresis 23: 159 pathogenic fungi 23: 161 viroids and MLO’s 23: 161 testing for viruses 23: 155– 159 immunosorbent (ISEM) 23: 159 incubation time 23: 157 Polla¨hne roller press 23: 156 bioassay 23: 158 electron microscopy 23: 158, 159 ELISA 23: 155– 157 tospoviruses 23: 139 vegetative propagation 23: 139, 140 Gleditsea 38: 290, 293, 296 Gleichenia, vegitative apomixis 4: 399 Gleicheniaceae cytology and phylogeny 4: 311, 314 polyploidy 4: 322 Gleicheniales, cytology 4: 288, 289 Gleicheniopsis fossil record 4: 243– 245 G. fecunda, sporangia 4: 243 G. sewardii, sporangia 4: 243 Gleichenites, fossil record 4: 244 Glenodinium action spectrum of photosynthesis 10: 71 chlorophyll c and fucoxanthin 10: 121, 122 peridinin-chlorophyll a-protein 10: 71, 119, 136
photosynthetic rate 10: 151 shading effects 10: 157 Glenodinium 11: 97 Glenodinium foliaceum 12: 212, 214, 216, 217, 238, 242, 243, 246–249 Gleotinia temulenta 24: 76 Gleotulasnella calospora, orchid endophyte 7: 490 a-gliadins 33: 162 g-gliadins 33: 162 v-gliadins 33: 162 Gliadins 34: 197, 199 Glinkgo biloba volumetric elastic modulus 6: 79 Gliocladium deliquescens 22: 67 Gliocladium spp. 26: 50, 54, 60, 61, 68, 71, 75, 77 Gliotoxin, antibiosis 26: 26, 27 Global warming 21: 94, 95 Globba, growth 3: 221 Globodera spp. 23: 235– 238 Globoid crystal 35: 144 Globulin storage proteins 25: 128, 129 Globulins, 2S 27: 32 – 34 phytohaemagglutinins (PHA) 27: 5, 6 primary and subunit structure 27: 32, 33 secondary, tertiary and quaternary "structure 27: 33, 34 Gloeocapsa 13: 72 Gloeocapsa NS4, thylakoid structure 10: 33 Gloeomonas kupfferi, cell division 20: 131, 132 Gloeothece 13: 72 Gloeotrichia akinete production 13: 125 distribution 13: 70 gas vacuole, buoyancy and 13: 81 nitrogen fixation 13: 106 secondary structure 13: 73 survival strategies 13: 131, 132 Gloeotrichia echinulata akinete germination 13: 126 akinete production 13: 125 Glomalean fungi 22: 2, 10, 14, 25 Glomerella cingulata 24: 76 Glomerella cingulata, effect of orchinol 7: 517
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Glomerella cingulata, phosphorus and spore germination 8: 198 Glomerella magna 24: 172 Glomerella musae 24: 173 Glomus 22: 32 etunicatum 22: 16 fasciculatus 22: 9, 20 macrocarpum 22: 27, 28 mosseae 22: 4, 5, 6 –9, 31 Glomus mosseae nucleic acid utilization 8: 187 polyphosphate granules 8: 148 Glomus occultum 24: 283 Glomus spp., biocontrol 26: 61, 62, 68 Glosslingia breconensis, fossil xylem structure 5: 168 Glossodia minor, seed morphology 7: 425 Glossopterid fructifications, Carboniferous 16: 180 Glossopteridales 17: 140, 142– 144 Glossy15 31: 206 b-glucan 34: 173, 174 Glucan synthetase stimulation by auxins 5: 61 b-glucanase 19: 32; 34: 196 b-D-glucanase 19: 73, 74 b-(1 ! 3)-D-glucanase 19: 22 Glucanase 35: 142, 145, 159 b-Glucans 26: 26, 142, 171 antifungal properties 26: 143– 146 in mycoparasitism 26: 36, 37 parasitic bacteria 26: 34 Glucans 21: 22, 150 Glucomannan 11: 129–131, 149 Glucone biosynthesis 35: 222– 225 Gluconeogenesis 38: 130– 139 CAM 38: 136 flowering plants 38: 133– 139 fruit 38: 136– 139 germinating seeds 38: 118, 119, 133, 134 micro-organisms 38: 132, 133 senescence 38: 134– 136 vertebrates 38: 130– 132 b-D-glucopyranose 19: 9 Glucosamine 19: 9 Glucose 6-phosphate 25: 199 Glucose 11: 126; 25: 198, 199, 201, 202, 370, 371; 28: 72
131
Glucose as Dunaliella carbon source 14: 112 Glucose oxidase, antibiosis 26: 27, 28 Glucose transport in chloroplasts 7: 73, 74 Glucose, UV radiation 22: 130, 141 Glucose-6-phosphate dehydrogenase 12: 27 a-glucosidase 34: 182, 206 b-glucosidase 25: 146, 150 Glucosidase 21: 47 Glucosidases 30: 104 Glucosinolates 31: 82 anticarcinogenic activity 35: 247–250 antinutritional effects in livestock and humans 35: 247 biosynthesis 35: 222– 232 cellular and subcellular location 35: 238 chain elongation: biochemistry 35: 225–227 molecular genetics and identification of MAM synthases 35: 227– 230 degradation 35: 237– 239 diversity in cruciferous crops 35: 221 environmental factors affecting expression 35: 236– 242 flavour 35: 246 metabolic pathways 35: 222 plant – animal interactions 35: 242– 245 plant – pathogen interactions 35: 245, 246 products 35: 238– 241 side-chain modification 35: 230– 232 sites of biosynthesis 35: 232 structure and biochemical diversity 35: 215– 221 distribution and evolution 35: 219– 221 side chains 35: 216– 218 variation in chain structure 35: 215– 219 b-glucuronidase marker gene 34: 78 Glufosinate 34: 75 Glutamate 18: 152 dehydrogenase (GDH) 18: 93, 96, 99, 155 oxaloacetate transminase (GOT) 18: 99, 100 synthase activity 18: 155 Glutamate dehydrogenase 38: 153 distribution in higher plants 6: 8, 27 – 32 kinetic characteristics 6: 32, 33, 35 regulation of activity 6: 12 role in ammonia assimilation 6: 7, 32 –35
132
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Glutamate synthase 22: 131 Glutamate synthetase distribution in higher plants 6: 7, 8, 27 – 32 kinetic characteristics 6: 34, 35 Glutamate transport in chloroplasts 7: 56, 62 Glutamine 18: 93 Glutamine and infection of potassium deficient plants 10: 226 Glutamine synthetase (GS) 30: 19, 41, 43, 44, 49 Glutamine synthetase 22: 131; 38: 158 distribution in higher plants 6: 27 – 32 kinetic characteristics 6: 32, 33 – 35 regulation by energy charge 6: 12 Glutamine synthetase/synthase(GS/GOGAT) cycle 20: 96 Glutaraldehyde 28: 123, 146 as EM fixative 3: 13 – 16 in freeze-etching 3: 26 Glutaredoxin (CPFC) 33: 186 glutathione S-transferase (OST) 37: 59, 64, 65 classification 37: 66 gene family 37: 57 Glutathione (GSH) 18: 78, 95 levels 18: 95 reductase (GR) 18: 94, 95 Glutathione (GSH) 22: 109, 119 Glutathione 19: 50; 21: 165; 25: 144, 155– 157; 33: 197, 198 Glutathione peroxidase 19: 50 Glutathione reductase (GR) 22: 119, 120, 138 Glutathione S-transferases (GSTs) 34: 90 Glutathione transferases 35: 248 Glutathione-S-transferase 35: 225, 249 Glutelin see Legumin Glutelins 34: 195, 196, 197 Glutenins 34: 197 Glyceollin 19: 50 Glyceollin production 13: 180 Glyceraldehyde-3-P dehydrogenase 12: 6, 27 Glyceraldehyde-3-phosphate dehydrogenase 38: 172 Glyceraldehyde-3-phosphate, transport in chloroplasts 7: 56, 69 Glyceria fluitans nitrate reductase 6: 22
Glycerol in Dunaliella 14: 126–128 and enzymes 14: 143, 144 dehydrogenase 14: 136, 137 nitrate reductase inhibition 14: 138, 139 and sodium chloride 14: 130, 131 as photosynthetic product 14: 146, 147 metabolism and osmoregulation 14: 173– 175 enzymes for 14: 134– 137 synthesis, and osmotic shock recovery 14: 162– 166, 167 Glycerol, use as a cryoprotective agent 5: 20, 21 Glyceroneogenesis 38: 139, 140 3 – glycerophosphate 38: 140 Glycerophosphatidylinositol 22: 76 Glycerophosphatidylinositol phosphate 22: 76 Glycine 19: 305; 22: 13, 174; 24: 319, 432; 29: 139, 140, 161 cinnamoyl-CoA reductase 8: 47 cinnamyl alcohol dehydrogenases 8: 48 hydroxycinnamate: CoA ligases 8: 44, 45 Glycine max 37: 111 Glycine max (soybean) 18: 13, 15 air pollutants bioindication 18: 88, 89, 90 bioindication 18: 94, 97, 101 carbon processing 18: 141, 142, 143, 152 carbon/nitrogen transport 18: 130, 131, 134 infected cells 18: 136 legume nodule structure 18: 131 nitrogen oxides fumigations 18: 37 nitrogen processing 18: 154, 156, 158, 159 nodule, cross-section 18: 133 nodule, infected/uninfected cell 18: 135 NOx exposure 18: 38, 42 O3 exposure 18: 58, 60, 65, 66, 68 O3 fumigations 18: 54, 56, 57 O3/NO2 exposures 18: 84 O3/SO2 exposures 18: 70, 76, 79 O3/SO2 fumigations 18: 71, 72, 73 SO2 exposure 18: 18, 25 SO2 fumigation 18: 9, 10, 12 SO2/NO2 exposures 18: 43, 44, 45, 47 strain, T219, 9
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Glycine max 19: 126, 142; 28: 46, 78; 29: 42, 120, 126, 136, 137, 141, 152, 159; 30: 17, 130; 33: 92, 97, 111, 112 see also Legume seed storage proteins crop yield 9: 2 DNA TEs 27: 353 DNA transposable elements, Ac transposition 27: 403 glycinin storage protein 9: 6, 7 urease-rich mutants 9: 26 vicilin 27: 22 Glycine max, leaf water potential and evaporation rate 4: 149 Glycine max, nitrate reduction inhibited by salicylates 20: 195 Glycine tomentella 29: 136, 159 Glycine wightii 29: 136, 159, 161 Glycine, total resistance to water flux 5: 173 Glycine-rich proteins (GRP) 21: 5, 12 Glycogen metabolism 22: 47 Glycogen synthase kinase-3 (GSK-3) subfamily 32: 28, 29 Glycolate metabolism 27: 106 –109 phylogenetic distribution of mechanisms (table) 27: 107 Glycolate, release in sodium deficient algal cells 7: 214, 215 Glycolipids 16: 2 in cyanobacteria 16: 9 Glycolipids as intermediates in cell wall polysaccharide synthesis 5: 140– 142 Glycolipids, in chloroplast envelope 7: 38 –41, 43, 81 Glycolytic enzymes 18: 148 Glycophytes, salt tolerance 8: 222– 224 Glycoprotein particles, negative staining 3: 20 Glycoprotein, carbohydrate binding (see lectins) Glycoprotein-derived oligosaccharins 19: 61, 62 Glycoproteins 19: 20, 38; 21: 7, 10, 57, 59, 71; 25: 118 synthesis 19: 12 Glycosidases 25: 90 Glycosidated substances 31: 155
133
Glycosides 30: 94, 97, 98, 301 Yariv phenylglycoside 30: 214, 215, 225, 226, 228, 238, 239, 242–244, 249, 251, 253, 256, 272 Glycosidic bond cleavage 30: 135, 136 Glycosmis pentaphylla salicyl alcohol derivatives 20: 183, 184 Glycosyl transferases, products of parasite avirulence genes 4: 34, 39 Glycosyl transfers in vitro, substrate concentration and glucanformation 5: 136, 137 Glycosylation and protein synthesis in legumes 9: 8, 9, 18, 26 Glycosyl-phosphatidylinositol 30: 260 lipid anchors 30: 260– 265 5-glycosyltransferase 37: 68 Glycosyltransferases 37: 60 Glyoxylate cycle 38: 135 Glyphosate 34: 75 effects on sycamore (Acer) 20: 90 shikimate accumulation 20: 90 Gnetopsida 17: 137– 140 and gymnosperm to angiosperm evolution 17: 150, 151 Goebelobryum 19: 257 Gold 18: 263 “Golden Cross Bantam” cv. 18: 12 Goldman – Hodgkin– Katz (GHK) equation 29: 83, 92 Golgi apparatus 25: 2 – 4, 7 – 9, 23, 24, 29, 31, 116– 121 Golgi apparatus 27: 34, 35; 28: 122, 126, 133, 141 identification from cell fractionation studies 5: 112– 114 polysaccharide content 5: 119 synthesis of cell wall components 5: 99, 100, 111, 119 various secretory functions 5: 101 Golgi apparatus and formation of protein bodies 9: 11, 16 Golgi apparatus in Dunaliella 14: 121 Golgi complex 28: 125 Golgi elements, freeze-etching 3: 28 Golgi membranes and auxin binding 5: 78 Golgi networks 28: 121, 132 Golgi processing 18: 137
134
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Golgi-mediated transport pathways 38: 66 – 73 Gomesa crispa, carbon fixation 7: 525 Gompertz model 38: 5 Gomphosphaeria buoyancy regulation 13: 87 form of colonies 13: 73 perennation 13: 127 survival strategies 13: 132 Gomphrena globosa 38: 144 Gongora armeniaca, orchid pollination 7: 559 Goniomonas 19: 192 “Gonophyll” theory 17: 147 Gonyaulax 12: 209, see also Protogonyaulax Gonyaulax polyedra chloroplast movement 10: 29 peridinin-chlorophyll a-protein 10: 119, 120 photosynthetic rate 10: 151 photosystem reaction centre "complexes 10: 78 shading effects 10: 157, 158 Gonyaulux tamarensis 11: 100 Gonyautoxin 12: 83 Goodyera discolor, seed morphology 7: 426 Gorse 19: 43 Gorytes campestris, orchid pollination 7: 563 Gossypium 33: 111 Gossypium arboreum culture 13: 181 Gossypium barbadense G. hirsutum hydraulic conductivity 6: 96 volumetric elastic modulus 6: 78 volumetric elastic modulus 6: 79 Gossypium hirsutum (cotton) 18: 54 O3 exposure 18: 56, 66 SO2/NO2 mixtures 18: 47 Gossypium hirsutum (cotton) 31: 27, 199 fibre development 31: 203, 204 glandless varieties 31: 125 nectary trichomes 31: 266, 269, 270 terpenes 31: 122– 125 Gossypium hirsutum 19: 107, 133; 21: 50; 25: 257, 259, 282; 29: 129, 139, 140, 159; 32: 192; 37: 45 assimilation rate 4: 185 water relations 4: 152, 153, 158, 159
Gossypium hirsutum, concentration of sodium in leaves 7: 191 Gossypium spp., retrotransposons 27: 337 Gossypium, water stress 3: 203 Gossypol 31: 124, 125 Gossypol production 13: 181 Gossyrubilone 31: 125 GOT, see Glutamate oxaloacetate transminase “GR3” cv. 18: 88 Gracilaria 35: 174 Gracilaria gracilis 35: 180, 183, 185– 188, 193, 194 Gracilaria tenuistipatata 27: 125 Gracilaria tikvahiae 35: 194 Gracilariopsis 35: 188 Graded index 18: 258, 259 Gradmann-Van den Honert catenary formation applied to CO2 flux 5: 185, 186 applied to water flux 5: 170, 171, 184, 185 Grafting 23: 8, 9 Gragaria 37: 106 Grain 21: 85, 86, 96 – 98 Gram negative bacteria 23: 31 Graminae stomata 3: 283, 284 vascular construction 3: 249 Gramineae 22: 12, 13 karyotype analysis 6: 239 Gramineae 35: 72 Gramineae salt glands 31: 40, 41, 65 Graminella nigrifrons 36: 144– 146 Graminella sonora 36: 158 Grammatophyllum speciosum, seedmorphology 7: 437 Gram-negative bacteria 18: 140; 24: 400, 403– 405 Granal stacking, and trans-D3-hexadecanoate 16: 7 Grant stain test 23: 231 Granularity, see Speckle Granule-bound starch synthase (GBSS) 34: 89, 102, 180, 291 Granulocrine secretion 31: 38, 39 nectar 31: 53 Grape 21: 23; 22: 165 Grape vine 19: 115
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Grape, Pierce’s disease 23: 10 Grape-fan-leaf virus 23: 109, 110 Grapes, see Fruit: skin fracture properties Grapevine fanleaf nepovirus (GFLV) 36: 179, 180, 183, 188 Grapevine, see Vitis vinefera Graphorkis lurida flowering period 7: 536, 547 seed morphology 7: 434 Graptopetalum 25: 242 Graptopetalum paraguayense 25: 241, 380 Grashof number 18: 214 Grass 22: 252 Grasses 18: 235 influorescence 3: 273 panicles 3: 270 SO2/NO2 mixtures 18: 48, 49 Grasses, leaf fracture properties 17: 267– 269 see also Monocotyledons, Early Tertiary and fibre content 17: 267, 268 and grazing 17: 268, 269 Grasslands, fossil, Early Tertiary 17: 58, 59 Graveolone production 13: 179 Gravitropic root response 28: 34 Gravitropism 15: 1 – 41 definitions 15: 2 perception 15: 12 –37 multiple systems 15: 16, 17 non-statolith 15: 32 –36 signal transduction 15: 1, 2, 12 – 16 statolith sensors 15: 16, 18 – 32, 37 susception 15: 3 – 7 and thermal noise 15: 4– 7 mechanism of sensing 15: 3, 4 transmission 15: 7 – 12 chemical 15: 10 – 12 electrical 15: 8 – 10 Gravity and wind in tree crown 18: 207 Gray birch (Betula populifolia) 18: 9 “Great Green Longpod” cv. 18: 9 Green fluorescence protein (GFP) 34: 78, 93, 94 Green fluorescent protein (GF) 35: 90, 91 “Green islands” 24: 48, 50 Green liver concept 25: 144 Green pepper (Capsicum annuum) 18: 80
135
Green revolution 21: 85 – 87, 89, 93 – 95, 97, 98 Greenflesh (tomato mutant) 35: 31 Greenhouse effect 17: 86; 22: 146, 147 Greenhouse gases 21: 91, 94, 95, 99 Greenhouse warming, palaeoclimates 26: 194, 208, 210 Grevillea arenaria 37: 109 Grevillea ilicifolia 37: 109 Greymold fungus 21: 23 Griffin cracks 17: 237 Griffithsia flosculosa, phycobilisomes 10: 109 Grinding and polishing holder 18: 264 Grinding and polishing of fibre optic microprobes 18: 263– 265 Griselinia 22: 14 Gross-Gerau bait plant technique 23: 15 Groundnut bud necrosis virus (GBNV) 36: 129 Groundnut ring spot virus (GRSV) 36: 129 Groundnut rust 21: 224, 226– 230, 233– 235, 237 Groundwater 21: 82 Growth dilution 29: 164 Growth directionality 31: 252, 253 Growth habits, monocotyledons 3: 214– 238 organization 3: 229– 238 palms 3: 222– 224 Scitaminae 3: 220– 222 “Spanish moss” 3: 224– 229 tree 3: 215– 220 Growth kinetics analysis (GKA) 29: 163– 166 Growth promoting organisms 26: 20, 24, 25, 41 – 47 and hormones 26: 41, 47 and nitrogen fixation 26: 47 Growth regulation, and leaf nodule microsymbionts 17: 226– 228 Growth regulators 19: 12 – 17; 21: 3 see also Phytohormones and potassium transport auxin anion translocation 15: 9 pumping in gravitropism 15: 11, 12 Growth rings, see Tree rings and Early Tertiary studies
136
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Growth, regulation by metals and chelates 1: 73 inhibition 1: 76 – 82, 87, 90 – 92 promotion 1: 77, 81, 83 Growth, signal transmission 22: 176, 177 see also Water and Nitrogen supply Growth-related movements 33: 40 GS-GOGAT cycle 30: 41, 49 GSH, see Glutathione GSSH 18: 94 GTP utilization 32: 27 GTPase 24: 115, 116 GTPase activating proteins (GAPs) 24: 116 GTPases Rho-type (Rops) 32: 253 GTP-binding proteins 25: 54 Guanidine triphosphate (GTP) 21: 10, 168 Guanine diphosphate (GDP) 21: 168 Guanine nucleotide 21: 168 Guanine, metabolism of 30: 141, 161 Guanine-nucleotide dissociation inhibitors (GDIs) 24: 116 Guanine-nucleotide exchange factors (GEFs) 24: 116 Guanosine diphosphate (GDP) 22: 74, 108 Guanosine monophosphate (GMP) 22: 47, 79, 85, 88, 109 Guanosine triphosphate (GTP) 22: 74, 108, 109 Guanosine, metabolism of 30: 141, 161 Guarana´ 30: 123 Guard cell metabolism malate synthesis 4: 140, 141 malic dehydrogenase 4: 141 phospho-enol pyruvate (PEP) carboxylase 4: 140, 141 Guard cells 32: 462, 463, 471– 475 modulated by phosphorylation 32: 465– 471 Guard mother cell (GMC) 38: 215, 216 Guignardia philoprina 33: 13 Gum and mucilage definition 6: 280 Gum arabic 30: 227, 228, 230 Gums 30: 266 Gums, disease 21: 49 – 51 GUS seedling test 33: 246
Gymnadenia albida, phytoalexinproduction 7: 512 Gymnocolea inflata 30: 252 Gymnodinium sp. 11: 113 Gymnodium breve 12: 237 Gymnospermae 33: 3, 9, 10, 28 Gymnosperms megasporogenesis 16: 68, 69 microsporogenesis 16: 66, 67 oogenesis 16: 64 spermatogenesis 16: 63 Gymnosperms, angiosperm relations 17: 135– 144 see also Conifers, Early Tertiary Bennettitales 17: 135– 137 Gnetopsida 17: 137– 140 mesozoic pteridosperms 17: 140– 144 Pentoxylales 17: 136– 138 Gynoecium 30: 230– 235 Gynoecium evolution 17: 130– 133, 152 Gyrodinium 12: 218, 232 Gyrodinium aureolum productivity in frontal regions 16: 236, 237 Gyrodinium, chlorophyll c-fucoxanthin 10: 121 H. discolor £ H. rubrovenia, seed morphology 7: 437 H. distichon, sodium and potassium in roots 7: 131, 132 H. fasciculare competition in culture 7: 388, 390, 391, 396, 399 formation of zone lines 7: 341 interspecific antagonism 7: 384 mycelial cord formation 7: 390, 391 vegetative characteristics 7: 339 H. filipendendula inhibitor of nitrification 6: 18 H. gracilis karyotype evolution by centric fusion 6: 179 H. hispidula, seed morphology 7: 426 H. javaricum, apomixis 4: 391 H. luridum microchromosomes 6: 226 H. macrandra, flowering period 7: 539
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
H. mollis nitrate reductase 6: 22 H. obtusata, interaction with rhizoctonias 7: 498 H. oryzae host infection and manganese level 10: 243 silica level 10: 261 H. platyphylla, carbon fixation 7: 525 H. psycodes, interaction with rhizoctonias 7: 498 H. ravenii karyotype evolution by centric fusion 6: 179 H. serpens, effect of ASM treatment 7: 414 H. tridentata, seed morphology 7: 426 H. turcicum, nitrogen supply and host infection 10: 228 H. victoriae toxin production 4: 32 toxin-host specificity 4: 32 H. vulgare cv. Pallidium, effect of sodium on growth 7: 158, 160 H. vulgare, gibberellin biosynthesis 9: 110, 111, 128– 131 H+ 18: 79 H+ extrusion 28: 23, 24 H+ gradients 28: 3 H+ pumps 25: 339– 363 H+-ATPase 25: 126, 156, 219, 254; 35: 158; 28: 6, 9 H+-PPase 25: 297–337 identification of catalytic subunit 25: 307, 308 molecular identity and sequence 25: 307– 311 reaction mechanism 25: 299– 306 H+-pyrophosphatase 25: 126 H2O flux over forest 18: 200 H2O2 18: 19, 94 H2S 18: 94 Habenaria englerana flowering period 7: 535 Habenaria, stomata 3: 284 Haematorchis altissima, seed morphology 7: 426 Haeme proteins, picosecond spectroscopy 8: 12 –14
137
Haemococcus 11: 55 Haemodoraceae, influorescence 3: 267 Haemoglobin degradation kinetics 8: 114 picosecond spectroscopy 8: 12, 13 Haemophilus 24: 337 Haemophilus influenzae 24: 341, 342; 28: 13 Haemophilus parainfluenzae, cytochromes 4: 75 Hagen-Poiseuille ‘law’ 22: 172, 182, 183 Hairless (hl) 31: 206 HAL genes 33: 206, 207 Halgania lavendulaceae resin yield 6: 289 Halimeda cylindricea 11: 79, 91, 93 Halimeda sp. d13C values 27: 151 calcification 27: 171 Halimeda tuna, chloroplast movements 10: 30 Halimione portuacoides enzymes of nitrogen assimilation 6: 30, 33 Haliption cuvieri, thylakoid structure 10: 34 Halobacterium holobium, photoreaction cycle 8: 20, 21 Halobacterium rubrum, bacteriorhodopsin 10: 132, 176 Halodule sp., d13C values 27: 151 Halogeton glomeratus sodium and growth 7: 127, 134, 138, 165, 190 sodium uptake 7: 190 Halogeton glomeratus, salt requirement 8: 222 Halophytes and nitrogen accumulation 6: 4, 10, 38, 39 salt cellular localization 8: 243 uptake 8: 223, 224 salt tolerance and nitrogen metabolism 8: 245, 250 mechanisms of tolerance 8: 224– 241 Halophytes, NaCl excretion 5: 198, 199 Halosaccion sp., photosynthesis 27: 174 Halotolerance in Dunaliella spp. and lipid metabolism 16: 20, 22 Halycistis parvula volumetric elastic modulus 6: 77, 83
138
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Halymenia durvillaei 11: 103 Hamamelididae Late Cretaceous fossils 17: 114, 115 Lower androecium 17: 128 perianth 17: 127 Hamamelis 38: 286, 289, 291, 296 Hamamelis virginiana 37: 155 Hammada scoparia, stomatal response to humidity 4: 169– 173 Hansenula H. holstii, phosphate starvation 8: 149 phosphate starvation 8: 149 phosphomannan release 8: 139 Hansenula polymorpha 30: 24, 27, 28, 32, 37 Hantavirus 36: 116 Hapalosiphon nitrogen fixation 6: 13 Hapalosiphon sp. hapalosin 27: 215 lists and properties of microcystins 27: 221– 224 Haploid parthenogenesis 35: 57, 58 Haploids Aegilops caudata x Triticum aestivum 2: 298 androgenesis 2: 300 angiosperms 2: 296 Antirrhinum majus 2: 296, 300 Beta vulgaris 2: 298 Capsicum frutescens 2: 300 Citrullus vulgaris 2: 299 Crepis tectorum 2: 300 cucumber 2: 296 Datura stramonium 2: 295 Ephedra foliata 2: 301 Ginko biloba 2: 301 Haplopappus 2: 299 Hordeum sp., 299, 300 in roots 2: 299 induction by abortive pollen 2: 296 induction by chemical treatment 2: 298 induction by delayed pollination 2: 298 induction by radioisotopes 2: 298 induction by X-ray treatment 2: 296, 299 maize 2: 298, 300 male sterility, avoidance 2: 300
Nicotiana 2: 296, 298, 300 Oenothera scabra 2: 300 Oryza sp. 2: 296 Petunia violacea 2: 298 Pharbitis nil 2: 296 Rhoeo discolor 2: 299 role of genotype 2: 299 somatic reduction 2: 298, 299 Taxus 2: 301 Torreya nucifera 2: 301 Tradescantia reflexa 2: 301 Trillium sp. 2: 299 Triticale 2: 298 Triticum sp. 2: 296, 298, 299 wheat 2: 298 Zea mays 2: 298, 300 Haplomitrium 19: 269, 289 Haplomitrium macro-evolution 6: 267 Haplomitrium gibbsiae Steph. 19: 253 Haplomitrium hookeri 19: 285 Haplopappus macro-evolution 6: 267 Hapten inhibition technique, for lectin specificity 4: 26 Haptophytes defined 27: 87 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 RUBISCOs 27: 101, 102 Hardwoods air pollutants bioindication 18: 87 bioindication 18: 91 O3 exposure 18: 67 “Hark” cv. 18: 13 “Harosoy 63” cv. 18: 72 Harpin 21: 6 Harrisela porrecta, carbon fixation by roots 7: 530 Hatch-Slack pathway plants Amaranthus viridis, assimilation rate 4: 178 Atriplex hymenelytra, assimilation (at high temperature and "irradiance) 4: 208 Atriplex rosea, assimilation rate 4: 178
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Atriplex spongiosa, assimilation rate 4: 178 Pennisetum purpureum, leaf conductance 4: 183 Pennisetum typhoides, leaf conductance 4: 183 Sorghum sudanense, CO2 feedback loop 4: 180, 181 “super-conductivity” 4: 205– 209 Tidestromia oblongifolia, assimilation rate 4: 178, 206– 208 Water use efficiency in C3 and C4 plants 4: 195–198 Zea mays 4: 132, 133, 141, 142, 149, 180, 184, 208 Haussmannia, fossil record 4: 237 Haustoria 24: 309– 333 alternative functions 24: 325, 326 evolutionary aspects 24: 324, 325 research priorities 24: 327, 328 roles of 24: 204, 205 in transfer intercept 24: 316– 325 Haustorium 19: 253 Haworthia icosiphylla pseudoisochromosomes 6: 148 Hay fever 1: 150 Haynaldia villosa 33: 245, 246 HC toxin 30: 295, 296, 313 HCN, biocontrol activity 26: 28 – 30, 32 HC-Pro 36: 13 Hcr 9 – 4E 38: 265 Heart, cell membrane 3: 19 Heat flux and boundary layer conductance 18: 214 Heat flux over forest 18: 200 Heat shock proteins 22: 148; 37: 185 Heat transfer estimation 18: 196, 197 Heat transfer, sensible 18: 235 Heat treatment, soils 26: 15, 16 Heat/gas exchange resistances 18: 220 Heating and probes 18: 261 Heating and stretching versus chemical etching 18: 260–262 Heavy metal chelation 37: 120 Heavy metals 25: 408 Heavy metals, and lipid metabolism in algae 16: 40 – 42 Heavy water (deuterium oxide) 28: 27
139
Hedera 33: 65, 68 Hedera helix 19: 142; 28: 173; 33: 65; 37: 50, 109, 112, 113, 116, 117 functional significance ofaccumulation 37: 100, 101 in juvenile/mature phase tissues 37: 99, 100 juvenile lamina tissue 37: 99, 100 organ and tissue localization 37: 98, 99 phasic accumulation 37: 95 – 101 Hedera helix, vascular tissue 4: 122 Helianthemum chamaecistus nitrate reductase 6: 22, 26, 36, 37 Helianthin 35: 116 Helianthinae 31: 163, 165 Helianthus 19: 305; 22: 174, 187, 206, 239; 24: 319; 33: 69, 78 annuus 22: 259, 260– 263 Helianthus annuus (sunflower) 18: 10, 11, 15, 276, 282; 33: 69, 72, 146 nitrogen oxides fumigations 18: 36 NOx exposure 18: 39, 40, 41 O3 exposure 18: 50, 58 O3 fumigations 18: 53 O3/NO2 exposures 18: 84 scattered light 18: 283, 284 SO2 fumigations 18: 10, 11, 12 Helianthus annuus 19: 131, 132, 135, 140, 155, 158, 160; 28: 37, 46; 29: 126; 31: 163 Helianthus annuus DNA analysis 6: 125 gibberellin synthesis 9: 128 vascular differentiation 9: 157 volumetric elastic modulus 6: 78 Helianthus annuus, helianthinin 27: 30 Helianthus annuus, leaf water potential and evaporation rate 4: 148– 150 Helianthus tuberosum, invertase activity 8: 116, 117 Helianthus tuberosus 25: 205; 28: 75 Helianthus, oxygen movement in proto-xylem 7: 237 Helianthus, total resistance to water flux 5: 173 Helianthus, water stress 3: 203 Helical roll vortices, hypothetical 18: 239 Helicobacter pylori 28: 13
140
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Heliconia, growth 3: 221 Heliconiaceae growth 3: 222 influorescence 3: 267, 270, 278 Helicteres hirsuta 31: 26 Heliobacteriaceae 27: 88 Heliothis viridis 37: 8 Heliothis viriscens 31: 177 Heliotropic movements (heliotropism) 33: 42 pulvinar 33: 110, 111 solar tracking by 33: 72 – 89 Helium-driven particle gun (PDS1000/He) 34: 65 Helminthosporium maydis 21: 7 Helminthosporium sacchari 4: 32 Helminthosporium, nickel stimulation of host fungitoxins 10: 261 Helminthosporoside 4: 32, 33 Helper component 36: 4, 5 Hematinic acid 35: 19 Hemerocallis 37: 116; 38: 77 Hemibiotrophs 24: 196, 197, 205, 207, 311 Hemicellulose 21: 5, 57; 22: 251; 11: 125– 155 Hemigossypol 31: 124, 125 Hemionites, apomixis 4: 390 Hemiptera, plant defence proteins 26: 163, 167, 171 Hemiselmis virescens, sodium tolerance 7: 147 Hemiselmis, phycobiliproteins 10: 65 Heparin 22: 75, 77, 81 Hepaticopsida chromosomes numbers 6: 199, 200, 201– 203 distribution of polyploids 6: 218 interspecific polyploidy 6: 210; 6: 211 micro-chromosomes 6: 224, 225 Hepatoenteritis 12: 74 Hepatotoxins, algal 27: 220– 227 microcystins 27: 221 Hepaxanthic flowering 3: 267– 269 Heptaglucoside 21: 10 Heptasaccharide 19: 9 Heptelidic acid 33: 21 Heptelidic acid chlorohydrin 33: 21
Heracleum mantegazzianum, enzymes of lignin biosynthesis 8: 57 Heracleum mantegazzianum, measurement of specific conductance 5: 174 Herberta 19: 263, 265, 269, 271, 291 Herbicide antidotes 25: 157 Herbicide resistance genes 34: 75 Herbicide selection 34: 75 – 78 Herbicides 21: 67, 86, 87 Herbivores, defence against 37: 7 – 9 Herrania 30: 123 Heterobasidion annosum 33: 20 biological control 7: 403 colonization of living wood 7: 412 competitive ability in culture 7: 389, 391, 395, 396 decay of sapwood 7: 410 hyphal interference 7: 394 interspecific amount in nature 7: 400, 403 moisture level and growth 7: 407 Heteroblasty 38: 207 Heterochromatin behaviour 6: 238 distribution 6: 237, 238 Giemsa C-band staining 6: 198, 237, 238 Heterodera 30: 300 Heterodera avenae 24: 102 Heterodera, copper level and host infection 10: 231 Heterodyne systems 11: 19, 21 Heterokont flagellation 2: 6, 21 Heterologous systems 28: 18, 19 Heteromeles arbutifolia 18: 12, 20 Heteroporus biennis, interspecific antagonism in nature 7: 400 trans-D3-Hexadecanoic acid, in chloroplasts 7: 44 Heterosigma akashiwo 28: 13, 14, 33 Heterospory in conifers 15: 180 Heterostyly evolution 17: 153 Hevea 22: 177 Hevea brasiliensis 25: 148, 373, 377, 379, 386, 407 Hevea brasiliensis latex 6: 282 Hevein, plant defence 26: 146 Hexadecadienoic acid 19: 37 1,16-hexadecanediol 34: 267
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Hexadecanoic acid 22: 131 Hexasaccharide 19: 9 Hexokinase, sugar signalling pathway and 29: 58, 59 Hexokinases PI and PII 38: 135 Hexosamine, in chloroplast envelope 7: 52 Hexose monophosphate, uptake by chloroplasts 7: 59 Hexoses 25: 200 Hibiscus 22: 133; 29: 144, 145; 31: 270, 271 Hibiscus cannabinus 29: 45, 124, 136, 138, 140, 141 Hibiscus esculentes 31: 5, 18 Hicoreae, Early Tertiary 17: 42 Hidden Markov models (HMMs) 32: 57 High molecular weight (HMW) prolamins 25: 129 High molecular weight glutenin subunit (HMW-GS) 34: 294– 296 High performance liquid chromatography of gibberellins detection of derivatives benzyl esters 9: 72, 73 methoxycoumaryl esters 9: 73 – 78 methyl esters 9: 76 p-bromophenacyl esters 9: 73, 74 normal phase 9: 52 – 57 reverse phase 9: 57, 58 High pressure liquid chromatography (HPLC) 37: 150 Higher plants, ammonium uptake in 30: 51, 52 High-performance liquid chromatography (HPLC) 31: 162– 164, 167; 12: 69; High-performance liquid chromatography reverse-phase 35: 11 (HPLC) 35: 215, 235 Himantoglossum hircinum, seed morphology 7: 425 HIR 33: 103, 104 Hircinol isolation 7: 510 specificity 7: 512, 516, 517 structure 7: 511 Hirschioporus abietinus, moisture level and wood colonization 7: 407 Hirsute (Hr) 31: 212
141
Histidine 21: 153 Histidine kinase cytokinin responses 32: 125 ethylene responses and 32: 117– 124 hybrid 32: 130 osmosensing and 32: 114– 116, 125, 126 phytochromes 32: 128– 130 plants and 32: 116– 130 pyruvate dehydrogenase kinases 32: 126, 127 related domain (HKRD) 32: 121, 130, 158 response regulators and 32: 130– 135 role of 32: 110, 111 signaling pathway integration 32: 139 two-component system and 32: 111– 114, 134, 141 Histidine-containing phosphotransfer (HPt) proteins 32: 135– 137 Histoplasma capsulatum 28: 13 History 37: 2 – 6, 38, 39 early 37: 2, 3 last fifty years 37: 5 late 19th and early 20th century 37: 3– 5 HKT1 25: 412 HMG-CoA reductase 32: 439–441 HMMER program 32: 57 HNO3 NOx exposure 18: 42 O3/SO2 exposures 18: 79 SO2/NO2 mixtures 18: 48, 51 “Hodgson” cv. 18: 54, 56 HOG (high osmolarity) pathway in yeast 32: 307, 308 Holarctic kingdom 17: 12, 13 Holcus lanatus (Yorkshire fog) 33: 236, 245 Holcus lanatus 29: 18, 130, 131 Holcus lanatus ammonia assimilating enzymes 6: 29 Holdridge classification, climate – vegetation 20: 10 – 14 Holoenzyme subunit 25: 267– 269 Holoinemum, salt tolerance 8: 223 Holttum, growth 3: 231 Homalothecium sericeum chromosome lengths 6: 228 intraspecific aneuploidy 6: 212, 220 meiotic abnormalities 6: 222, 223
142
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Homalothecium sericeum (continued) microchromosomes 6: 228, 230 micro-evolution 6: 263 Homeostasis, calcium 22: 46, 69 – 83, 87 Homeotic genes, UV radiation 22: 132 Homiohydry 5: 182– 184, 201– 203 Homo sapiens 28: 13 Homocysteine methyltransferase (HMT) 21: 14 Homogentisate prenylation and plastoquinone 14: 48 Homoharringtonine production 13: 182 Homologous genes 32: 46 receptors 32: 55 Homologous DNA 24: 403 Homology-dependent gene silencing (HDGS) 34: 97 Homophilic interaction 32: 91 Homosporous see also Ferns aberrant cycles, induced 16: 75, 76 aberrant cycles, natural 16: 70, 71 gametogenesis 16: 59 – 63 sporogenesis 16: 65, 66 Honey, pollen grains in 1: 150 Honeybee, see Apis mellifera Honkenya peploides 11: 169 Honkenya peploides ammonia assimilating enzymes 6: 27, 28, 30 Hookeria lucens meiotic abnormalities 6: 216, 224 Hordeins 34: 197, 204– 207 Hordeum 28: 240; 29: 121, 144, 145; 34: 35 Hordeum invagination of inner membrane of plastid envelope 7: 80 Hordeum arizonicum 34: 35 Hordeum bogdanni 34: 35 Hordeum brachyantherum 34: 35 Hordeum brevisubulatum 34: 35 Hordeum bulbosum 34: 35, 36 Hordeum capense 34: 35 Hordeum chilense 34: 29, 35 Hordeum comosum 34: 35 Hordeum cordobense 34: 35
Hordeum distichon, gibberellin "biosynthesis 9: 88, 110 Hordeum erectifolium 34: 35 Hordeum euclaston 34: 35 Hordeum flexuosum 34: 35 Hordeum fuegianum 34: 35 Hordeum guatemalense 34: 35 Hordeum halophilum 34: 35 Hordeum intercedens 34: 35 Hordeum jubatum 34: 35 Hordeum lechleri 34: 35 Hordeum leporium (barley grass) 33: 236, 245 Hordeum marinum 34: 35 Hordeum murinum 34: 35 Hordeum muticum 34: 35 Hordeum parodii 34: 35 Hordeum patagonicum 34: 35 Hordeum procerum 34: 35 Hordeum pubiflorum 34: 35 Hordeum pusillum 34: 35 Hordeum roshevitzii 34: 35 Hordeum secalinum 34: 35 Hordeum spontaneum 34: 34, 36 Hordeum stenostachys 34: 35 Hordeum tetraploidum 34: 35 Hordeum valgare DNA analysis 6: 125 Hordeum vulgare (barley) 18: 10, 13 NOx exposure 18: 41 O3/SO2 exposures 18: 75 Hordeum vulgare (barley) 33: 245 Hordeum vulgare (cultivated barley) 34: 34, 35, 197 Hordeum vulgare 19: 114, 137; 22: 259; 25: 48, 267, 269, 275, 308, 309, 322, 375; 28: 75 29: 123– 125, 129– 132, 137, 138, 141, 152, 153, 156, 161, 162; 32: 325; 35: 75 retrotransposons 27: 336 BARE-1, 348 Hordeum vulgare L. cv. Midas 19: 105 Hordeum vulgare ssp. spontaneum (wild barley) 34: 34 Hordeum, stomata 3: 284 Hordeurn depressum 34: 35 Horizontal stepping motor 18: 270
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Hormonal alteration of DNA melting temperature (Tm) 5: 62 Hormonal control of enzyme synthesis 5: 54 – 59 Hormonal regulation of cyclic AMP 5: 61 Hormone action sites effects on macromolecular synthesis 5: 54 – 56 evidence for two sites of auxin action 5: 58, 59 rapid effects of hormones 5: 56 – 58 Hormone receptors direct interaction with enzymes 5: 60, 61 in animals 5: 54 membrane-bound receptors binding of naphthylphthalamic acid (NPA) 5: 71, 72 model systems 5: 59, 60 recognition process 5: 54 ‘soluble’ nuclear/cytoplasmic receptors applications of affinity chromatography 5: 66 – 71 auxin mediator proteins 5: 62, 63 auxin-binding proteins 5: 63, 64 binding of gibberellins and cytokinins 5: 65, 66 early studies 5: 61 histones and DNA, 5: 61, 62 Hormone response 32: 322– 325 Hormonema dematioides 33: 22 Hormones 19: 74 – 77 Hormones see also Abscisic acid assessing developmental impact of messages 19: 111, 112 criteria for implicating regulation of naturally occurring developmental phenomenon 19: 111 effect on solute and water fluxes 6: 108– 111 evidence for regulation of root:shoot ratio by roots 19: 112–116 hormone-like action of roots on shoots 19: 117– 123 in root to shoot communication 19: 103– 187 message concept 19: 106– 112
143
quantifying messages in transpiration stream 19: 107– 111 signals 22: 168, 169, 171, 201 water and nitrogen supply 22: 276– 279 Hormones and potassium transport 15: 164 Hormones, and growth promotion organisms 26: 41, 47 Hormones, effect on lignification 8: 58 Hormosira banksii, light-harvesting "complex 10: 124 Hormothamnion sp., hormothamnin 27: 214 Hornworts 19: 275 Horseradish brittleroot 21: 190 Host functions and carbon processing 18: 141– 146 Host-neutral endophytes 33: 4 Host-plant resistance 31: 176 –189 Host-specific toxins 21: 3 Hoya 38: 144 HPLC 19: 125 HPLC, see High-performance liquid chromatography HRGP 19: 29 – 31 Hrp gene 30: 298, 299, 301, 302 Ha¨rtel-turbidity 18: 100 HsI prol 38: 260 HSP – 70, 130 Human immunodeficiency virus (HIV) 36: 132 Human placental ribonuclease inhibitor (HRI) 24: 150, 151 Humic acid (HA) 24: 285 Humic substances 24: 285 Humin 24: 285 Humulus lupulus 30: 99 Humulus lupulus, identification of gibberellins 9: 43 Huntleya violacea, seed morphology 7: 427 Hv-FCC-2 25: 100 Hv-NCC(RP14) 25: 100 Hv-NCC-1 (RP14) 35: 13 HvNRT2 30: 32 hvst1 33: 163 Hyacinthus orientalis DNA analysis 6: 125 Hyacinthus, stomata 3: 284
144
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Hybridization 2: 255; 21: 139– 141, 158 androgenesis 2: 300 Argamone mexicana 2: 236, 237 Argamone ochroleuca 2: 236, 237 barriers to 2: 220 Brassica/Raphanus 2: 238 by embryo culture 2: 220, 238, 255 Cassytha filiformis 2: 261 Cattleya 2: 262, 263 Chrysanthemum 2: 260 Corchorus 2: 260 cotton 2: 260 Cucurbita 2: 261 Cuscuta reflexa 2: 261 Datura 2: 233, 234, 242, 261, 290 Dendrophthoe falcata 2: 261 Elymus/Triticum 2: 255 Gossypium 2: 260 Hordeum hexapodium/Helminthosporium sativum 2: 256 Hordeum jubatum/Secale cereale 2: 256 Hordeum vulgare/Erysiphe graminis 2: 256 Iris 2: 259 jute 2: 260 Lathyrus 2: 233, 258 legumes 2: 257 Lilium 2: 260 Linum 2: 246, 247 Lupinus 2: 265 Lycopersicum 2: 259 Nicotiana 2: 233, 234 Oryza 2: 257 ovule culture 2: 265 Phaseolus 2: 258 pollen tube, growth 2: 227 pollen, germination 2: 223 pollen, longevity 2: 221 potato 2: 232 Prunus 2: 258 Santalum album 2: 261 Solanum 2: 234 style, length of 2: 233 Trifolium 2: 232 Vanda 2: 263 Hybridoma cell lines secreting specific antibodies 24: 279
Hybridoma technology 24: 277, 301 Hydathodes 21: 5 Hydrangea, aluminium kinetics 20: 100 Hydraulic conductance 30: 19, 20 Hydraulic conductivity 22: 273 cell suspensions 6: 99 – 104 giant algal cells 6: 88 – 95 higher plant cells 6: 95 – 99 Hydraulic dispersal signals 22: 167, 177– 188 case studies 22: 190– 200 further research 22: 200, 201, 204, 206, 207, 209– 216 Hydraulic pressure signals 22: 167, 171– 177, 190, 194, 216 Hydrilla verticillata 38: 141, 148 Hydrocharitaceae, growth 3: 215, 231, 236 Hydrocolloids 35: 173 Hydrocotyle vulgaris ammonia assimilating enzymes 6: 30 Hydrodictyon africanum, phosphate uptake 8: 191 Hydrodictyon, chemical content of cell walls 2: 79 Hydrofluoric acid 18: 260, 262 Hydrogen NMR properties 20: 47 1 H NMR 20: 88, 89 Hydrogen cyanide 30: 97 Hydrogen ion/potassium transport in roots 15: 99 – 119 see also Potassium channels; Proton pump charge balance maintenance 15: 100, 101 co-transport 15: 115– 119 and hydrogen ATPase 15: 117, 118 and PH 15: 119 hydrogen/potassium independence 15: 115, 116 membrane potential and potassium flux 15: 116, 117 dependence, inter-ion 15: 99 direct coupling 15: 101– 111 active system 15: 104 and ATPase activity 15: 105– 111 and pH 15: 102 electrogenic system 15: 104, 105 passive system 15: 103
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
indirect coupling 15: 111– 115 and fusicoccin stimulation 15: 111, 112 and potassium channels 15: 114, 115 ‘apparent’/’true’ proton flux, 15: 113 charge balance constraints 15: 114 Hydrogen peroxide 18: 77; 21: 11, 12, 19, 165, 166; 22: 109; 37: 27, 177 Hydrogen peroxide, involvement in lignification 8: 51 – 56 Hydrogenomonas eutropha H+/O ratio 4: 88 respiratory control 4: 96 Hydroheptelidic acid 33: 21 Hydrolases 35: 148 Hydrolytic enzymes 21: 7, 56, 57, 150, 152 see also Chitinase, 1,3-b-Glucanase Hydropassive effects, stomata 22: 175, 176 Hydrophilic amino terminus 24: 137 Hydrostatic and osmotic pressure (HOP)activated channels 25: 233 Hydrostatic pressure (see Turger pressure) Hydrothermal vents, vestimentiferan worm 27: 137 132-hydroxy chl a 35: 9 3-hydroxy flavanones 37: 39 8-hydroxy-2-methylquinazolin-4-"one 34: 108 2-hydroxy-3-butenyl glucosinolate 35: 234, 244, 246, 247 Hydroxyalkenyl glucosinolate 35: 233 Hydroxyalkyl glucosinolates 35: 231 Hydroxybenzyl glucosinolates 35: 222, 232 4-hydroxybutyl glucosinolates 35: 230 Hydroxycinnamate: CoA ligases, specificity 8: 44, 45, 57 Hydroxycinnamates 19: 29 Hydroxycinnamic acid 25: 150 Hydroxycinnamic acid conjugates 37: 7 Hydroxycinnamic acids 22: 120; 37: 181, 184 Hydroxycinnamoyl-CoA:tyramine hydroxycinnamoyltrafisferase (HTH) 21: 14 Hydroxyl radicals 37: 177 Hydroxylation 37: 59 – 60
145
13-hydroxylation gibberellin (GA) pathway 34: 138, 139 6-Hydroxymellein 19: 21 Hydroxymethylenediphosphonate 25: 300 Hydroxy-methylglutaryl coenzyme A formation 14: 28 – 30 mevalonate formation from 14: 30 – 34 Hydroxy-methylglutaryl coenzyme A reductase activity and cycloheximide/mercuric chloride treatment 14: 84 and light exposure 14: 81, 82 and location, subcellular 14: 57 – 60 and chloroplasts 14: 58 and mevinolin inhibition 14: 59, 60 and microsomal membranes 14: 57 and mitochondrial membranes 14: 58, 59 modulation 14: 76 by protein factors 14: 77 – 79 Hydroxynitrile lyase 25: 148 Hydroxyproline rich glycoproteins (HRGP) 21: 5, 12 – 14, 17 Hydroxyproline see also Protein chemical characterization 2: 167 distribution in the plant kingdom 2: 174 in cell walls 2: 151 variation of cell-wall content 2: 188 Hydroxyproline-rich glycoproteins (HPRGPs) 24: 127 Hydroxyproline-rich glycoproteins. See HRGP 3-hydroxypropyl glucosinolate 35: 228, 230, 231 Hygrohypnum eugyrium Aneuploidy 6: 200 Hygromycin 34: 74, 265 Hygromycin-mediated selection 34: 74 Hygroryza 34: 34 Hymenanthes 38: 289 Hymenochaete rubiginosa competitive ability in culture 7: 390, 396 hyphal interference 7: 394 Hymenophyllales, cytology 4: 285 Hymenophyllum aneuploidy 4: 295 fossil record 4: 286– 288
146
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Hyoscyamus niger 22: 132 Hyoscyamus spp. 33: 68 Hyparrhenia effect of roots on nitrification 6: 17, 18 Hyperforin 31: 132 Hypericin 31: 125, 126, 129, 132 Hypericum 31: 125, 129, 132 Hypericum perforatum 31: 132 Hypericum punctatum 31: 126 Hypersensitive response (HR) 24: 99, 174, 211, 214– 218, 448; 29: 65; 30: 292, 299, 300, 308; 32: 380; 38: 262, 264, 265 Hypersensitive response 4: 30, 33 – 35, 39; 21: 3, 7, 8, 12 – 16, 22, 25 fungal 21: 172 avirulence genes 21: 148– 158, 160 model 21: 43 – 45 race-specific elicitors 21: 164, 166 resistance genes 21: 169, 172, 174 Hypersensitivity, response and pathogenicity (hrp) genes 21: 6, 8 Hyphae coils, mycorrhiza 22: 2, 10, 14, 15 –17, 32, 34 see also Paris quadrifolia Hyphaene, branching 3: 260 Hyphal growth, disease 21: 39, 40 Hyphal tips 28: 130, 131, 137, 148, 149 Hypholoma capnoides moisture level and wood colonization 7: 407 Hypnaceae cytotaxonomy 6: 243 Hypnum cupressiforme Hypogeal germination 35: 3 Hypogymnia physodes, phosphate uptake kinetics 8: 175 Hypolepis, polyploidy 4: 322 Hypovirulence (H), chestnut blight 21: 132– 137, 141 Hypoxanthine 30: 136– 139, 142 Hypoxylon atropunctatum 33: 25 Hypoxylon mammatum 33: 26 Hypoxylon multiforme effect of ASM treatment 7: 407 formation of zone lines 7: 345, 355, 357, 406
interspecific antagonism 7: 384, 390 mode of nutrition 7: 404 Hypselodelphis violacea, growth 3: 230 Hyptis 31: 4 Hyrcantha karatcheensis, Cretaceous fossils 17: 110 I. myosuroides genetics 6: 247 I. sibirica 11: 129 “I-214” cv. 18: 51 IAA 21: 70 IAA metabolism and nickel concentration 10: 261 Iberis amara ammonia assimilating enzymes 6: 27 Identification, definition 23: 3 Idioblasts and resins 6: 279 Idioblasts 31: 56 ‘Idling’ in Crassulacean acid metabolism 15: 52 Idriella bolleyi 26: 54, 75 I-gene 21: 42, 43, 55, 58, 71 foliar symptoms 21: 51, 53 molecular aspects 21: 59, 65, 66 Ilex 30: 118, 120, 122, 123, 166, 167; 37: 108 Ilex paraguariensis 30: 171 Illicium chromosome size 6: 189 L floridanum karyotype evolution 6: 190 Imagene Green 35: 83 Imidazolinone herbicides 35: 61 Imidodiphosphate 25: 300 immediatepigmentdarkeningreaction 37:22 Immunoblotting technique 24: 301, 302 Immunocyctochemistry 25: 31 Immunoelectron microscopy (IEM) 23: 62 Immunofluorescence (IMF) assays 24: 280 Immunofluorescence 23: 30, 34 – 37 Immunofluorescence staining 23: 154, 181 Immunofluorescent light microscopy of protein bodies 9: 8 Immunogens, selection and preparations 24: 278, 279
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Immunoglobulins, IgA, IgD, IgE, IgG and IgM 24: 279, 280 Immunolocalization studies 28: 28 – 31 Immunoprecipitation analysis 32: 26, 253, 284, 361, 369, 415, 416 Immunosorbent electron microscopy (ISEM) 15 IMP synthesis 18: 159 Impatiens 31: 54 Impatiens balsamina 11: 131, 144 Impatiens capensis 24: 81 Impatiens glandulifera 19: 140; 33: 146 impatiens necrotic spot virus (INSV) 36: 114 Impatiens valeriana 22: 241 Importation of fungal pathogens 23: 73 In shoot apoplast 19: 151– 155 In vitro synthesis bacterial cellulase 5: 136, 137 chitin 5: 138, 139 higher plant cellulose 5: 136, 137 lipid intermediates 5: 140– 142 non-cellulose polymers 5: 139, 140 Inbred sets 24: 235 Incarvillea 22: 165 Increased chalcone synthase expression (icx) 31: 229 Index of association 24: 341 Indexing 23: 1 – 21 accurate diagnosis 23: 5 – 9 sensitivity 23: 6 –8 specificity 23: 6 time frame and cost 23: 8, 9 automated kits 23: 10, 11 biochemical methods 23: 6 cost analysis 23: 288, 289 cost effectiveness 23: 5, 279– 292, 289– 292 business objectives 23: 289, 290 cost benefits 23: 291, 292 pathogen avoidance 23: 290, 291 definition 23: 3 diagnostic methods 23: 9, 10 antisera 23: 9 antiserum specificity 23: 9 DNA probes 23: 9 ELISA formats 23: 9, 10
147
polymerase chain reaction 23: 9 profiling techniques 23: 9 ELISA 23: 6 eradication campaigns 23: 15, 16 Chenopodium foetidum 23: 15 import regulations 23: 15 Nicotiana clevelandii 23: 15 plum pox virus 23: 15 exclusion 23: 1 healthy stock schemes 23: 17, 18 back-up tests 23: 17 certification schemes 23: 17, 18, 19 ELISA 23: 18 nuclear stock 23: 17 nucleic acid tests 23: 18 nudear stock production 23: 18, 19 PCR 23: 18 slide agglutination test 23: 17 immunofluorescence 23: 6 in advisory work 23: 19, 20 international co-operation 23: 20 laboratory testing 23: 2 molecular methods 23: 6 pathogen eradication 23: 4 pest free areas 23: 16, 17 International Standard 23: 16 polymerase chain reaction (PCR) 23: 6 possible test outcomes 23: 280, 281 quality control 23: 279– 292 selection of threshold 23: 285, 286 tracking of control samples 23: 286 validation of parameters 23: 283– 285 auditing 23: 287 documentation of material tranfers 23: 283 documentation of procedures 23: 287 test optimization 23: 283, 283– 286 training of personnel 23: 282 work environment 23: 286, 287 value of 23: 4, 5 visual inspection 23: 2 Indexing procedures detection limits 23: 65 – 68 absorbance values 23: 65 nonspecific reactions 23: 65 immunoassays 23: 65 signal to noise ratio 23: 65
148
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Indexing procedures (continued) increasing signal 23: 66, 67 amplification product 23: 66 Polla¨hne-press 23: 67 signal to noise ratio 23: 66 selection of method 23: 67, 68 bi-directional electrophoresis 23: 68 hybridization dot blot test 23: 67 sensitivity 23: 59 –68 ELISA 23: 62 immunoelectron microscopy (IEM) 23: 62 monoclonal antibodies 23: 62 nucleic acid-based tests 23: 63 polyacrylamide-gel electrophoresis test 23: 63 polyclonal antibodies 23: 62 serology 23: 61, 62 expense 23: 60 time-consuming 23: 60 bioassay detection 23: 61 biological agents 23: 60 inoculation 23: 60 intrinsic properties 23: 61, 62 latent pathogens 23: 61 molecular hybridization 23: 63, 66 polymerase chain reaction (PCR) 23: 63 propagating material 23: 59 silver staining 23: 63 test plants 23: 60 virus detection 23: 60 virus identification 23: 59 viruses and viroids 23: 59 sensitivity v. specificity 23: 64 diagnostic 23: 64 Indexing seeds 23: 171–201 health testing in practice 23: 198 new detection methods 23: 196– 198 conductimetric assays 23: 198 dilution plating 23: 196 DNA probes 23: 196 image analysis 23: 198 purpose of testing 23: 174– 176 ELISA 23: 176 testing methods 23: 173, 174, 176– 190 ELISA 23: 190 plating 23: 190 agar tests 23: 189, 190
blotter test 23: 189 inspection 23: 183 seed washing 23: 189 staining techniques 23: 189 dot immunobinding test 23: 193 ELFA 23: 193 ELISA 23: 193 ISEM 23: 193 latex agglutination test 23: 193 ODD test 23: 193 RISA 23: 193 SSEM 23: 193 comparison of diagnostic values 23: 180– 182 diagnostic sensitivity 23: 173 diagnostic specificity 23: 173 dilution plating 23: 181 IF test 23: 181 interpretation of results 23: 179, 180 ISEM 23: 174 relevance of disease 23: 178, 179 sample size 23: 176, 177 seed-borne bacteria 23: 190– 192 seed-borne fungi 23: 183– 190 seed-borne viruses 23: 193– 196 standardization 23: 178 technology 23: 177, 178 Indexing techniques bacteria 23: 7 fungi 23: 7 nematodes 23: 7 phytoplasms 23: 7 viruses 23: 7 India 21: 88 Indicator plants 18: 85 Indigofera 24: 432 Indirect-magnetic microsphere-enzymeimmunoassay (MM-EIA) 24: 282 Indo-1 dye 22: 53, 54, 55 Indole acetic acid 24: 78 and vascular differentiation 9: 161 column chromatography 9: 51 Indole-3-acetaldoxime 35: 224 Indole-3-acetonitrile 35: 247 Indoleacetic acid (IAA) 19: 27, 28, 50, 51, 57, 58, 72, 130 Indoleacetic acid 21: 51
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Indoleacetic acid, effect on orchids in culture 7: 459– 461 Indolebutyric acid and peroxidase activity in orchids 7: 487 effect on orchids in culture 7: 460 transport in orchid flowers 7: 621, 622 Indolo[3,2-b]carbazole 35: 249 Indolyl glucosinolate 35: 232, 239, 240, 243, 246 biosynthesis 35: 224 degradation 35: 240 Indolyl-3-acetonitrile 35: 240 Indolyl-3-carbinol 35: 247 Indolyl-acetic acid (IAA) 28: 87 3-Indolylacetic acid (IAA) citrate synthase activation 5: 60 complexes with protein in pea 5: 61 glucan synthetase stimulation in pea 5: 61 plasma membrane ATPase activation 5: 60 protein mediator of stimulated RNA polymerase 5: 63 reactive intermediate, 3-methyleneoxindole (3-MO) 5: 60 receptor protein (IRP) and enhanced RNA synthesis 5: 63, 64 regulation of cellulase activity 5: 55 Indolylmethyl glucosinolate 35: 232, 249 Induced resistance to pathogens 26: 38 – 41 Induced resistance, wilt disease 21: 67 see also Systemic acquired resistance Induced systemic resistance (ISR) 26: 38, 40; 38: 255, 262, 263 Inducible promoters 34: 90 Industrialization 21: 92 – 94 Inernational Sporotheca 1: 153 Infected cells organization 18: 134– 139 Infection efficiency 21: 215– 226 Infection site competition 26: 20, 21 Infection, definition 23: 3 Inflourescence, monocotyledons 3: 266– 282 branching 3: 269– 273 Commelinaceae 3: 278– 282 other monocotyledons 3: 277, 278 palms 3: 273– 277 Scitaminae 3: 278 Infrared (IR) spectroscopy 35: 119, 123
149
Infra-red light, far 18: 274, 275 Ingestion – egestion hypothesis 36: 10 Inherent life history of the target species 38: 51 Inheritance, laws of 37: 3 Inhibition agents 23: 28 Inhibitors, chemical 32: 274 Initiation 31: 219 –233 active oxygen species 31: 231 gamma-radiation effects 31: 231 inhibitors 31: 229 leaf trichomes 31: 220– 223 light responses 31: 231 plant growth factors 31: 230, 231 position of trichomes 31: 222, 223 relative humidity response 31: 232 root hairs 31: 223 transcription factors 31: 223– 229 trichome spacing mutants 31: 227, 228 Injuries, plant 18: 87– 90 Ink disease 21: 127, 128, 137, 143 Inoculation process 36: 10, l1 Inoculation, biocontrol agents 26: 38 – 41, 74 – 81 Inoculum dynamics 38: 26 Inoculum sources 24: 14, 15 Inorganic carbon system 11: 72 – 75 Inorganic solutes 24: 315, 316 Inosine 30: 142 Inositol (1,3,4,5)-tetrakisphosphate 22: 70, 75, 76 Inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) 22: 47, 48, 70, 74 – 82, 85, 108 Inositol 1,4,5-trisphosphate (InsP3) 25: 236 binding and specificity 25: 236, 237 Inositol 1,4,5-trisphosphate-dependentcurrents, gating 25: 237, 238 Inositol 1,4,5-trisphosphate-gated Ca2+channels 25: 236– 239 function 25: 238, 239 permeation 25: 238 pharmacology 25: 238 selectivity 25: 238 Inositol 22: 130 Inositol phosphate receptor (IPR) 22: 75, 76 Inositol phosphate, UV radiation 22: 107
150
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Inositol phosphates 21: 10 Inositol phospholipids 21: 64 Inositol triphosphate 21: 64 Inositol, effect on orchids in culture 7: 448, 450, 460 Insect adaptability 30: 102 pheromone systems 30: 105 Insect repellant properties 31: 79, 81 Insect transmission (IT genes) 21: 200, 202– 205 Insectivorous plants adaptation to nitrogen supply 6: 37 Insect-plant interactions, Early Tertiary 17: 68 pollination 17: 63 – 66 Insects see Invertebrate pests Inside-out patch mode 25: 222 Instron apparatus 22: 248 Instrumentation for measurement of fluorescence emission 5: 7 –9 Instrumentation-driven discovery strategies 31: 134, 135 Integrin 21: 61 Intensity fluctuation spectroscopy 11: 21 Interaction mechanisms and O3/SO2 exposures 18: 77 Interactions between’photosystems 5: 37 –47 Intercellular gas spaces in evolution of homiohydry 5: 202, 203 in respiratory gas exchange 5: 207– 210 in subterranean organs 5: 208, 209 Intercellular hyphae role in transfer intercept 24: 316– 325 vascular association 24: 317, 318 Interfacial apoplast 18: 136 Intergenic spacer (IGS) region 35: 176, 177 Interleukin –1 receptor (IL– 1R) 24: 108, 109, 115 Intermediate resistance 21: 52 Internal fluence rate 18: 268, 272, 274, 289 Internal targeting signals 25: 49, 50 Internal transcribed spacer (ITS) sequences 35: 175, 178 ‘Internal winds’ 22: 167, 168 Internalization process 25: 21, 25, 27
International Plant Protection Convention of 1951 23: 12 International Seed Testing Association (ISTA) 23: 4, 20 International trade bananas 23: 12 export measures 23: 13, 14 diagnostic testing 23: 13 visual inspection 23: 13 import measures 23: 14 Plant Health Inspectors 23: 14 prohibition 23: 12 spread of pathogens 23: 11 – 14 Intersimple sequence repeats (ISSRs) 35: 174, 188– 190 Inter-simple sequences repeat (ISSR) amplification 34: 42 Interspecific diversity 33: 3, 4 Intestinal epithelial cells, membrane 3: 19, 34 Intracellular structures 24: 198– 206 associations with plant nucleus 24: 209, 210 Intracellular transduction 22: 164 Intracellular transport via tubules 28: 143, 144 Intraspecific diversity 33: 5 – 7 Intraspecific variation 35: 174– 178 Intrathylakoid spaces 13: 4 Intrinsic coupling factor complex (CF0) 13: 5 distribution in thylakoid membrane 13: 15 Introgression in ferns 4: 377, 378 Introgression of genomes 34: 50 Intron arrangements 24: 141– 143 Intron – exon splice junctions 34: 43 Inula graveolens 31: 7 Inula helenium 31: 165, 166 Inula viscosa 31: 9, 11, 20, 23, 29, 56, 59 Invasion 21: 105, 106 Invasion thresholds 38: 33, 47 Invasion, probability of 38: 45, 46 Invertase demonstration of active transport 6: 64 – 66 Invertase see Plant invertases; Vacuolar invertases
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Invertase, activity in storage tissue 8: 116, 117 Invertebrate pests biocontrol 26: 17 –19, 81, 82 plant defence proteins 26: 137, 159– 168, 171, 172 a-amylase 26: 159, 160, 172 Bowman-Birk inhibitors 26: 160, 161, 166, 172 Bt toxin 26: 169, 172 chitin-binding 26: 146, 147 cowpea 26: 165, 166 cystatins 26: 163–166 defence types 26: 139 defensins 26: 152 Kunitz inhibitors 26: 160– 162, 172 lectins 26: 166–168, 171, 172 lipoxygenases 26: 168 patatin 26: 168 potato inhibitors 26: 162, 163, 172 tomato inhibitors 26: 162, 163 Invisible injury, see Bioindication Inward-rectifying channels (IRCs) 29: 84 –88 Ion channel, mycorrhizal symbiosis 22: 6 Ion channels 25: 217 –247 definitions 25: 221, 222 experimental characterization 25: 222– 226 general properties 25: 221, 222 summary of properties 25: 243 Ion currents 28: 34 – 37 Ion excess hypothesis 29: 119, 133, 173, 174 Ion fluxes 21: 9– 11, 63, 64 Ion pumps, see Osmosis and Dunaliella Ion stores 25: 218, 219 ‘Ion trapping’ 22: 59 Ion traps 25: 157 Ionic currents 25: 221 Ionophores 21: 11 Ions see also Electrophoresis in gravitropism anions, and potassium uptake 15: 121– 123 channels, tension sensitive, and gravity 15: 33, 34 pumping in gravitropism 15: 10, 11
151
Ions, water and nitrogen supply 22: 279, 280, 283 Ion-selective microelectrodes 25: 177– 180 Iontophoretic injection 22: 57, 58 Ipomea 24: 318 Ipomeamarone synthesis and black rot fungus 14: 84 Ipomoea 24: 76 Ipomoea batalus 37: 69, 70; Ipomoea batatas 25: 46; 28: 89 Ipomoea purpurea 37: 11, 108 Ipomoea spp. culture 13: 160 Ipomoea tricolor 25: 94, 95 Ipomovirus 36: 70, 71 Iranian maize mosaic virus (IMMV) 36: 152, 160 Iridaceae, stomata 3: 284 Iridaea cordata 11: 99 Iridane 31: 79 Iridodial 31: 104, 107 Iridoid glycosides 31: 82 Iridophyccus flaccidum 11: 86 Iris 35: 190; 3: 211 stomata 3: 284 Iris ochroleuca 11: 129 Iris pseudacorus, effect on metabolism in anaerobic conditions 7: 280 Iris yellow spot virus (IYSV) 36: 117, 129 Irish potato famine 21: 2 Iron 22: 264 acquisition 29: 22 extractable, in soil 29: 4 Iron availability, biocontrol 26: 6, 23 – 25, 32 Iron deficiency 29: 11 –13 Iron level and plant disease 10: 254– 257, 267 Iron toxicity 29: 10, 11 Irradiance 18: 272 Irradiance and phytoplankton photosynthesis 16: 203 Irrigation 21: 87, 88 Irritability 22: 163, 164 Isochilus linearis, seed morphology 7: 427 Isochromosomes evolutionary significance 6: 151, 152 occurrence and origin 6: 138, 140, 145– 152
152
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Isochrysis galbana EM of thylakoids 10: 141 photosynthetic rate 10: 151 Isoenzymes 34: 3 Isoetales, Early Tertiary 17: 15, 16 Isoeteaceae, chromosome number and heterospory 4: 378 Isoetids, carbon dioxide recycling 15: 83 Isoflavone methyltransferase 37: 86 Isoflavone synthase 37: 79 Isoflavonoid signal 37: 81 Isoflavonoids 22: 114; 37: 76, 79 Isohydric plants 22: 268 Isokont flagellation 2: 6, 21 Isolated membrane vesicles, transportfunctions in 25: 198 Isolated vacuoles, preparations 25: 198 Isolation, definition 23: 3 Isoleucine 21: 153 Isoleucine, recycling 8: 89 Isopentenyl diphosphate (IPP) biosynthesis 31: 93 – 95 terpenoids derivation 31: 95, 96 Isopentenyl diphosphate chloroplasts, permeability to 14: 66 enzymes utilizing, and compartment"ation 14: 63, 64 formation 14: 34 – 38 and compartmentation 14: 61 – 63 in prenyl diphosphate formation 14: 38 –42 mevalonate kinase inhibition 14: 36 in isoprenoid metabolism 14: 27, 28 isomerase modulation 14: 75, 76 phenyl lipids, incorporation into 14: 77 Isopentenyl diphosphate isomerase 14: 38 – 40 Isopentenyl transferase 34: 79 Isopentenyl transferase (ipt) marker 34: 106 Isoprene 22: 166 biogenic isoprene rule 31: 93 structural aspects 31: 78 Isoprenoid biosynthesis 14: 25 – 91 compartmentation, subcellular 14: 52 – 68 and acetyl CoA formation 14: 55 – 57 and isopentenyl diphosphate formation 14: 60 –63 and isoprenoid formation 14: 64, 65
and membrane permeability 14: 65, 66 and mevalonate formation 14: 58 – 61 and prenyl diphosphate formation 14: 63, 64 hypotheses 14: 52 – 55 control 14: 68 – 86 competition for substrates 14: 79, 80 enzyme activity 14: 70, 72, 73 enzyme activity modulation 14: 74 –79 flux of metabolites 14: 69 – 71 in fruit ripening 14: 83 in germination 14: 80, 81 in leaf greening 14: 81 – 83 phytoalexin synthesis induction 14: 83 –85 substrate concentration 14: 73, 74 metabolic pathways 14: 27 – 52 carotenoids 14: 44, 45 chlorophyll 14: 46, 47 cytokinins 14: 43 gibberellins 14: 47, 48 HMG-CoA formation 14: 28 – 30 isopentenyl diphosphate formation 14: 34 – 38 mevalonate formation 14: 30 – 34 mevalonate shunt 14: 50 – 52 phylloquinone and tocopherols 14: 45, 46 plastoquinone 14: 48, 49 prenols, long-chain 14: 50 prenyl diphosphate formation 14: 38 – 42 sterols 14: 43, 44 ubiquinone 14: 48 – 50 structure 14: 26 Isoprenoids biosynthesis 31: 127, 128, 139 acetate/mevalonate pathway 31: 93 – 95 plastids 31: 95 pyruvate/glyceraldehyde-3-phosphate pathway 31: 95 Isopropylmalate synthase 35: 230 Isoquinolonone 34: 108 Isosalicin, lipendula 20: 184 Isothecium cytotaxonomy 6: 242
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Isothiocyanates 30: 94, 100, 102, 105; 35: 214, 241– 246, 248 metabolism and detoxification 35: 241, 242 Isotope studies in Crassulacean acid metabolism 15: 55 – 64 lipid metabolism 15: 63, 64 Isotope studies, and Early Tertiary climate 17: 86 – 88 Isotopically labelled hormones auxin transport 9: 185, 186, 247, 248, 253 gibberellin detection 9: 54, 55, 56, 61, 69, 71 Isozymes 32: 55, 57; 35: 176 “Ives” cv. 18: 70 Ixora 37: 110 J. gerardii, salt uptake 8: 224 Jablonski diagram 5: 4 Jack pine, see Pinus banksiana Jackbean 25: 127 Jackiella 19: 257 Jackknife test 32: 54 Jamesoniella microchromosomes 6: 226 phytochemistry 6: 259 Jania sp. 12: 52, 83 Janus tyrosine kinases (JAKs) 32: 311 ‘Japan Giant’, chestnut 21: 138– 140 Japanese chestnut tree 21: 126, 131, 137– 140 Japonicum 18: 147 Jasmonates 21: 63; 35: 243; 37: 185 Jasmonic acid (JA) 21: 19; 29: 55; 35: 116 Jasmonic acid signalling 38: 265 Java 21: 86 ‘Javart’ disease of European chestnut 33: 25 Javesella pellucida 36: 158, 160 Jerusalem artichoke 25: 205, 206 Jubula 19: 257 Jubulaceae 19: 291 Juglandaceae Early Tertiary 17: 41, 42 family level review 17: 49 Juglans 38: 290, 299
153
Juncaceae stomata 3: 284 vascular construction 3: 246 Juncus 33: 13 Juncus bufonius 33: 13 Juncus effusus, lignin composition 8: 31 Juncus squarrosus 29: 16 Juncus squarrosus nitrate reductase 6: 22, 36 Juncus, stomata 3: 284 Jungermaniidae 19: 289 Jungermanniales karyotypes 6: 240 Jungermanniales 19: 253, 257– 265, 267, 273, 285, 289, 293, 299 Juniperus 37: 108 Juniperus communis, lignin composition 8: 31 Juniperus occidentalis 33: 16 Juniperus scopulorum, identification of gibberellins 9: 43 Juvenile anthocyanins, functional roles 37: 116, 117 Juvenile leaf reddening 37: 115– 117 Juvenile nematodes, assessing 23: 113 K. childsii effect of sodium on growth 7: 162, 165, 167 effect of sodium on phosphoenolpyruvate carboxylase 7: 200 effect of sodium on respiration 7: 195, 197 sodium concentration in leaves 7: 191, 192 sodium content of seeds 7: 143 sodium requirement 7: 197 K. falcata chromosome numbers 6: 206 interspecific polyploidy 6: 210 K. pneumonia, H+/O ratio 4: 89 K. pyramidata, effect of sodium on growth 7: 161 K+ activity 25: 179, 180 K+ channels. See VK channels K+ concentration 25: 221 K+ efflux 18: 31 K+ flux 18: 236
154
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
K+-selective microelectrodes 25: 179 Kaempferol 22: 116; 35: 86; 37: 85, 99 KAKTUS (KAK ) 31: 247, 248, 251 Kalanchoe¨ 12: 15, 16, 18 Kalanchoe¨ blossfeldiana 25: 276 Kalanchoe¨ blossfeldiana cv. Tom Thumb 25: 275 Kalanchoe¨ calycinum 25: 373, 375 Kalanchoe¨ daigremontiana 25: 185, 241, 266, 269, 274– 277, 375– 378, 380, 381 Kalancho daigremontiana 38: 126 Kalancho tubiflora, malate synthesis 20: 91 – 2 Kalanchoe blossfeldiana, CAM metabolism 7: 168 Kalanchoe daigremontiana 28: 162 KANADI 38: 206 Kanamycin 34: 74 KAP1 21: 21 KAP2 21: 21 KAPP (kinase-associated proteinphosphatase) 32: 251– 253 Karyotype, analysis 6: 238– 242 Kaurene synthesis 14: 47, 48 and compartmentation 14: 64 and energy charge 14: 76 KCBP 31: 249, 252 KCN 18: 145 KDEL-containing protein 38: 73, 74 KDEL-tailed cysteine proteinaseaccumulating vesicles (KVs) 38: 74, 75 “Kennebec” cv. 18: 36 Kennedy pathway 35: 128, 129 Kerr Gapon equation 29: 128 2-keto-3-methylbutanoic acid 35: 226 a-ketoglutarate 38: 122, 126, 127, 129, 153, 158, 159, 164– 1167, 170 in vertebrates 38: 131 a-Ketoglutarate, transport across chloroplast envelope 7: 62, 63 Khaya 22: 13 Kidney bean, see Phaseolus vulgaris Kinase associated protein phosphatase (KAPP) 24: 135 Kinematic growth analysis 29: 163– 166
Kinetin 35: 14 effect on orchids in culture 7: 463, 464 in post-pollination phenomena 7: 619, 631, 632 Kinetin, effect on lignification 8: 58 Kirchoff’s law 18: 210 Kiseria cytotaxonomy 6: 242 Klebsiella aerogenes, cytochromes 4: 78 Klebsiella pneumoniae 18: 153; 24: 419 Kloeckera apiculata, phosphate efflux 8: 157 Klukia exilis, fossil record 4: 236 Kluyveromyces lactis 28: 13 Knotted – 1 (Kn1) 28: 165– 167, 170– 172 Knotted1 (kn1)gene of maize 38: 196, 197 knox gene 34: 143 Knox genes 38: 196– 198, 202 Knudson medium, in culture of orchids 7: 478– 481, 484– 486 Kochia sodium requirement 7: 158 Koeleria cristata nitrate reductase 6: 22 Koeleria macrantha 29: 11 Koeleria nitida 33: 245 Komma caudata 19: 194, 197, 199 Kor A 24: 406 Kor B 24: 406 Krebs cycle 18: 93 Kubelka-Munk equations 18: 277, 278, 280, 281, 292 Kunitz inhibitors 26: 140, 160– 162, 172 Kurthia zopfii, H+/O ratio 4: 89 Kurzia 19: 263, 265 Kurzia trichoclados 19: 267, 271 Kylikipteris, fossil record 4: 236 Kyllinga brevifolia, effect of sodium on growth 7: 162, 163 L. anceps, seed morphology 7: 427 L. angustifolius 11: 131, 146– 148 L. campestris vallesiaca compound polyploidy 6: 180 L. cinnabarina, carbon fixation 7: 525 L. crispa, carbon fixation 7: 525 L. divaricata resin chemotaxonomy 6: 288
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
L. esculentum cv. “Grosse Lisse” effect of sodium on growth 7: 158, 161 sodium content of seeds 7: 143 L. esculentum cv. “Marglobe” concentration of sodium in leaves 7: 191 effect of sodium on growth 7: 166 sodium content of seeds 7: 142, 143 L. esculentum Pollen Receptor Kinase 32: 240 L. flava, carbon fixation 7: 525 L. galeottiana, seed morphology 7: 427 L. hyperborea 11: 111, 114 L. lobata, symbiotic specificity 7: 496 L. longibracteatum, phytoalexin production 7: 512 L. luteus 11: 131, 146, 148 L. majuscula 12: 78 – 80 L. millerii, carbon fixation 7: 525 L. perenne DNA content 6: 130 L. perrinii v. major, seed morphology 7: 427 L. perrinii, carbon fixation 7: 525 L. peruvianum, relationship between endoplasmic reticulum and plastids 7: 20 L. pratensis activity of ammonia assimilating enzymes 6: 31, 32 L. purpurata, flowering period 7: 545 L. purpurea chromosome constitution 6: 179, 181 L. purpureum DNA analysis 6: 125 L. saccharina action spectrum for photosynthesis 10: 70 photosynthetic rate 10: 168 pigment levels and nitrogen 10: 42 L. sudetica chromosome constitution 6: 181 L. temulentum DNA content 6: 130 L. tigrinus, phosphorus translocation 8: 202, 203 L. tridentata resin chemotaxonomy 6: 288 L. verecundum, seed germination 7: 424
155
L. virginicum, chlorophyll-protein "complex 10: 103 L. xanthina, carbon fixation 7: 525 L6 gene 21: 170, 173 La Brosse virus (LACV) 36: 134 Labaria pulmonaria 18: 80 Labiatae (Lamiaceae) 31: 4, 11, 12, 16, 27, 157 chemotypes 31: 84 glandular trichomes 31: 13, 77, 85, 89 – 93 lipophilic substances secretion 31: 58 monoterpenoid biosynthesis 31: 93 – 99 monoterpenoids 31: 84, 85, 91 – 93 transgenic approaches 31: 109 trichomes development 31: 20, 21 Labiatae (Lamiaceae) essential oils 31: 84, 85 biological variability 31: 84, 85 commercial products 31: 82, 83 composition 31: 84 –88 monoterpenoid biosynthetic enzymes 31: 98 – 107 Labiateae, polyploidy 4: 326 Laboratory exposures 18: 6, 7 Lachnocaulon, stomata 3: 284 Lactalbumine hydrolysate 35: 86 Lactate 18: 152 Lactifer structure 6: 300, 301 Lactuca 24: 319; 29: 144, 145 Lactuca sativa (lettuce) 18: 36, 290 NOx exposure 18: 38, 40 Lactuca sativa (lettuce) 11: 132 Lactuca sativa 29: 120, 124, 125, 129– 131, 136, 139– 143, 154, 159; 37: 179 Lactuca serriola 33: 69 Lactuca sp., DNA transposable elements, Ac transposition 27: 403 Lacustrine environments and fossil record 16: 130– 140 fluvio-lacustrine deltas 16: 133– 140 formation model 16: 133– 135 Gilbert-type profile 16: 133 high-energy systems 16: 138– 140 low-energy systems 16: 135– 138 isolated lakes 16: 132
156
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Lacustrine environments and fossil record (continued) montane lakes 16: 131, 132 ox-bow lakes 16: 133 plant representation 16: 131 Laelia albida flowering period 7: 545 Laetiporus sulphureus competitive ability in culture 7: 389, 390 growth in acid medium 7: 409 Laetisaria arvalis, biocontrol 26: 54, 62, 77, 78 Lag deposits 16: 126, 127 Lagenidiales, zoospore components throughout asexual life cycle 24: 368, 369 Lagenidium 24: 386, 387 Lagenidium callinectes 24: 385 Lagenisma coscinodisci 24: 376, 377 Lagrangian specification 18: 201 Lakes, lateral, in volcanic terrains 16: 168– 171 see also Lacustrine environments and fossil record Laminar boundary layer 18: 211, 212, 215, 216 Laminar phototropism 33: 89, 99 – 101 Laminaria cichorioides, fucoxanthin/ "chlorophyll a ratio 10: 121 Laminaria digitata 11: 89; 35: 185– 188, 194; 38: 149 Laminaria hyperborea 38: 148– 151 Laminaria saccharina 38: 149, 150 Laminaria sp., d13C values 27: 150 Lamium album nitrate reductase 6: 23 Lamium purpureum 24: 322 LAMMER gene 32: 30 Land degradation 21: 97, 98 Land plants gametophyte-sporophyte junction in 19: 231– 317 life-cycle of 19: 232 Lanium avicula, carbon fixation 7: 525 Lanthanum 22: 72, 73, 74, 82, 107, 109 Laodelphax striatellus 36: 148, 156
Laplace transfer function mathematical theory 4: 217– 223 relating leaf conductance to evaporation rate 4: 159– 164 Larch plantation turbulence 18: 204 Lardizabalaceae chromosome size 6: 189 Larger vacuoles of fungi 28: 135 Larix 30: 229; 33: 9 Larix laricina (eastern larch) 33: 7 Larrea spp. resin chemotaxonomy 6: 288 production 6: 288 Larrea tridentata (shrub) 18: 12, 15, 20 Laser beams, properties of 11: 7, 8 Laser Doppler microscopy 11: 3, 28 – 37 instrument design 11: 28 – 33 Laser light scattering 11: 1 – 69 biological applications 11: 37 – 62 blood flow 11: 60 – 62 conventional 11: 10 – 12 dynamic 11: 12 – 15 membranes 11: 45 – 48 optical mixing spectroscopy 11: 2, 3, 16 – 25 particle characterization 11: 37 – 42 particle interaction 11: 42 – 45 principles of 11: 7 –28 Laser spectroscopy, picosecond 18: 280 Lasers, in picosecond spectroscopy 8: 2– 5 Lasiodiplodia theobromae 33: 25 LATE ELONGATED HYPOCOTYL (LHY) gene 32: 157 Late embryogenesis abundant proteins 34: 244 Late leaf spot 21: 224, 226– 230, 233– 235 Latent bacterial infections 23: 27– 46 antibodies, gold-labelled 23: 33 antigens 23: 30 enterobacterial 23: 30 canker of tomato 23: 29 controlled circumstances 23: 29 agar medium 23: 29 sample size 23: 29 definitions 23: 27 detection systems 23: 40
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
DNA labelling 23: 40 nucleotides 23: 40 radioisotopes 23: 40 hybridization formats 23: 39 colony blot 23: 39 dot/slot blot 23: 39 Gen-Probe kits 23: 39 Southern blot 23: 39 immunofluorescence 23: 34 – 37 acetone fixation 23: 34 phytobacteriology 23: 34 isolation 23: 28, 29 monoclonal antibodies 23: 31, 33 nucleic acid-based methods 23: 37 – 45 autoradiography 23: 38 chemiluminescence 23: 38 colorimetry 23: 38 definition 23: 38 hybridization protocols 23: 38 PCR 23: 38 PCR-based methods 23: 40, 41 primer pairs 23: 40, 41 probe detection limit 23: 41 target DNA 23: 41 polyclonal antibodies 23: 33 polyclonal antisera 23: 30 monospecific 23: 30 probe selection 23: 38, 39 genes 23: 38, 39 probe-based methods 23: 42 – 45 biotinylated probes 23: 42 dot blot hybridization 23: 42 mycoplasma like organisms 23: 42 PCR technology 23: 42 restriction fragment length polymorphism (RFLP) 23: 42 sample preparation 23: 41 CTAB extraction 23: 42 detection methods 23: 41 hybridization 23: 41 inhibitors 23: 42 serological procedures 23: 29, 30 –37 antiserum 23: 30 serological test results 23: 37 PCR 23: 37 Latent infection 23: 3, 8 definition 23: 3 Latent period 21: 215– 226
157
Lathyrus 12: 184; 24: 322; 31: 15 DNA content of different species 6: 127, 189 Lathyrus chrysanthus 37: 68 Latin America 21: 86, 92, 97 Lattice systems 38: 42 Lauraceae 31: 58 heterochromatin content of chromosomes 6: 189 Leaf physiology and resin production 6: 308 Lauraceae, flowers 17: 105, 106 Laurales, petals 17: 127 Laurencia nipponica 35: 193 Laurencia sp., d13C values 27: 151 Laurus 31: 56 Lauryldimethylamine oxide, fractionation of cytochrome oxidase 10: 104 Lavatera 33: 44, 78, 80, 85, 86, 89, 109, 111 Lavatera cretica 33: 76, 77, 79, 81, 82, 85 – 88 Lavendula 31: 78 Lavendula angustifolia 31: 84 Lavendula intermedia 31: 84 Lavendula latifolia 31: 84 Lavendula officinalis 31: 16, 17 Lavendula vera culture 13: 160 Lavetera cretica 31: 8 Laxaphysin 27: 215 Lc 31: 201 Leaf and root resistance 3: 187, 188 and water uptake 3: 182– 184 axis specification 38: 202– 207 cell division and expansion, control of 38: 208– 210 comparative anatomy 38: 193–195 conductance 18: 219 water vapour 18: 222 cross-sections 18: 279 determination and initiation 38: 196– 210 founder cells 38: 197– 200 leaf initiation and phyllotaxy 38: 200– 202 shoot apical meristem (SAM) 38: 196, 197 development and cambial activity 9: 177 differentiation 38: 210–218
158
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Leaf (continued) epidermis 38: 215– 218 ground tissues 38: 210–218 photosynthetic tissues 38: 213–215 stomata, patterning and 38: 215– 217 trichomes, patterning and 38: 217, 218 vasculature, development of 38: 210– 21213 dorsoventral patterning 38: 203– 207 abaxial determinants 38: 204, 205; 38: 203, 204 meristem connection 38: 205, 206 origin of polarity 38: 206, 207 effect of vascular tissues on leaf initiation 9: 179, 180 effect on vascular differentiation 9: 158– 161, 163– 170, 230, 242, 246, 252 form, control of 38: 207– 210 freeze-etching 3: 34 influence in ring porous trees 9: 238, 240 initiation and phyllotaxy 38: 200– 202 lamina, mediolateral expansion of 38: 208 monocotyledons 3: 212, 213 pigments 18: 92 polarity of veins 9: 193, 194 primordia, effect on location of phloem fibres 9: 240, 241 parenchyma formation 9: 242, 243, 254 stem differentiation 9: 160, 163, 164, 242, 243 proximal – distal axis 38: 202, 203 reflectance 18: 101 temperature 18: 226, 227, 228, 229, 230 Leaf ageing, reversibility of 35: 5 Leaf anatomy, C4 plants 26: 254– 256, 258, 260, 263 Leaf area index (LAI), NPP model 26: 199– 203, 215 Leaf base model 38: 195 Leaf base temperature 30: 61, 62 Leaf conductance units 4: 154,212 – 217 Leaf development 28: 161– 195 cellular differentiation in 28: 170, 171 nuclear – chloroplast interactions in 28: 179– 183 organogenesis in 28: 166– 171
Leaf expansion and water deficiency 19: 159 Leaf form determination 28: 168– 170 role of light in determination of 28: 174– 179 role of phytohormones in determination of 28: 171– 174 Leaf gas exchange, NPP model 26: 196– 199, 202– 204, 210, 212 see also Stomatal heterogeneity Leaf greening, isoprenoid metabolism in 14: 81 – 83 Leaf initiation 28: 163– 166 Leaf nitrogen as function of root N uptake 20: 9 as measure of photosynthesis 20: 3, 4 Leaf nodule symbiosis 17: 163– 234 see also Leaf physiognomy and Early Tertiary climate; Leaves cyclic nature 17: 164 functions 17: 224– 228 nitrogen fixation controversy 17: 224– 226 plant growth regulators 17: 226– 228 host plant occurrence/distribution 17: 164– 168 Dioscoreaceae 17: 164, 168 Myrsinaceae 17: 164– 167 Rubiaceae 17: 167, 168 in Ardisia 17: 168– 200 early work 17: 168–172 infection of young leaves 17: 177– 180 nodule development 17: 180– 188 shoot tip morphology/role 17: 172– 177 symbiotic cycle 17: 186, 189– 200 in Dioscorea 17: 213– 217 in Psychotria 17: 200– 213 bacteria distribution in flowering 17: 208– 211 early studies 17: 200, 201, 207, 208 microsymbiont isolation 17: 220 nodule development 17: 204– 206 nodule initiation 17: 201, 204, 205 nodule structure 17: 205, 207 seed in symbiotic cycle 17: 211– 213 shoot tip morphology/role 17: 201– 203
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
microsymbiont identity 17: 217– 224 and bacteria-free plant availability 17: 223, 224 and close cyclic relationship 17: 223 criticism of results 17: 220, 221 Dioscorea isolates 17: 220 Myrsinaceous isolates 17: 218, 219 Rubiaceous isolates 17: 219, 220 research difficulties 17: 229 directions 17: 229– 231 Leaf physiognomy and Early Tertiary climate 17: 69 – 79 application of method 17: 71, 72 Cretaceous/Tertiary boundary 17: 74, 75 global vegetational/climate patterns northern high latitudes 17: 75, 76 northern lower latitudes 17: 76 –78 southern hemisphere 17: 78, 79 methodology 17: 69, 70 requirements for reliability 17: 72– 74 Leaf resistances boundary layer resistance 7: 260, 261 gas-space resistance 7: 262, 263 leaf-wall resistance 7: 261, 262 ventilation of higher plants 7: 260– 263 Leaf senescence 19: 117– 119, 126; 25: 89 – 102 Leaf spot 21: 224, 226– 230, 233– 235 Leaf trichome morphogenesis 31: 238– 253 branching 31: 248– 252 differentiation regulation 31: 245, 246 endoreduplication 31: 246– 248 genetic analysis 31: 239– 245 growth directionality 31: 252, 253 initiation 31: 220– 223 maturation 31: 253 mutant phenotypes 31: 240– 244 wild-type 31: 238, 239 Leaf trichome plasmodesmata 31: 271– 277 Leaf warming 37: 7 Leaf, boundary layer conductance to CO2 20: 20 – 22 Leafhopper 21: 196 Leafy cotyledon (lec) 31: 229 LeAMT1 30: 45, 46, 51, 52
159
Leaves see also Leaf nodule symbiosis: Leaf physiognomy and Early Tertiary climate fracture properties 17: 266– 270 grasses 17: 267– 269 in bending 17: 269, 270 legumes, and bloat 17: 267 mining by insects, Early Tertiary 17: 68 Leaves abscission 16: 104– 106 degradation, aquatic 16: 122–125 biological 16: 122–124 mechanical 16: 124 delta deposition 16: 135– 138 and plant origins 16: 136– 138 dispersal by wind and fossil record air fall 16: 108, 109 post-descent 16: 109, 110 storm effects 16: 110– 112 floating 16: 115– 117 fluvial transport 16: 125, 126 settling velocity and water transport 16: 119, 120 calculation 16: 103, 104 factors in 16: 106– 108 Leaves, anthocyanins in 37: 37 – 50 coloration in defence against herbivores 37: 8, 9 function effects of anthocyanins on 37: 4 senescence, protective function in 37: 12 undersurface coloration 37: 43 Lecithin bilayers 3: 22, 26 – 28 egg, reaction with OsO4 3: 11 – 13 membranes, negative staining 3: 18 Lectin 35: 142 Lectin domain group 32: 21, 231 Lectin-gold conjugates 25: 24 Lectins 19: 43; 21: 21; 25: 151 Lectins detection and assay 4: 23 – 25 distribution 4: 24 – 26 effects on animal cells 4: 23 plant defence 26: 142, 146, 147, 166– 168, 171 plant pathogen parasitism 26: 35, 36
160
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Lectins (continued) role in plants 4: 27 –30 specificity of binding 4: 26, 27 Ledum 37: 137, 140 Ledum palustre 37: 133– 135, 138, 139 Leersia 34: 34 LeETR1 gene 32: 124 Legume nodules 18: 132, 164 carbon/nitrogen metabolism 18: 144 infected cells 18: 136 Legume seed storage proteins 27: 1 – 70 see also Albumins; Globulins; Legumins; Vicilins biotechnology 27: 56 – 69 characterisation and nutritional role 27: 4 – 7 deamidation and nitrogen mobilization 27: 54 – 56 genetics 27: 40 – 45 nomenclature 27: 10, 11 number of proteins 27: 4 nutritional role 27: 5, 59 – 69 seed formation 27: 36 – 40 structural features and constraints related to function 27: 45 – 56 sulphur content (table) 27: 7 –10 synthesis, processing targeting and "deposition 27: 34– 36 2S albumins and globulins 27: 32 – 34 Legume seeds biology 9: 3, 4 storage proteins biochemistry 9: 17 – 27 intracellular sites 9: 7, 8 post-translational modifications 9: 8 – 10 protein bodies 9: 7, 8, 10 – 17 convicilin 9: 6, 20, 25 legumin 9: 4 – 8, 20, 23, 25 separation techniques 9: 5 synthesis and deposition vicilin 9: 4 – 8, 20, 23, 25, 26 Legumes 24: 431–456 in Australia 24: 432, 433 Rhizobium interactions with 24: 418 Legumes, leaf fracture properties, and bloat 17: 267
Legumin storage protein deposition 9: 8 structure 9: 4– 7, 25 synthesis 9: 8, 20, 23 Leguminosae 31: 19; 33: 43, 58 Leguminosarum 18: 150 carbon uptake 18: 147 Leguminoseae 22: 13, 177 Legumins 27: 25– 32 biotechnology 27: 56 – 69 sequence alterations 27: 62, 63 conserved structures 27: 49 – 51 genetics 27: 40 – 45 hydration and packing 27: 51 –54 non-legume 27: 29 primary and subunit structure 27: 25 – 29 secondary, tertiary and quaternary "structure 27: 29 – 32 structural similarities with vicilin 27: 44, 45 Lehmannia marginata 21: 134 Leishmania 38: 152 Leishmania chagasi 32: 337 Leishmania donovani 28: 11, 13, 14 Leishmania major 24: 141 Lejeunaceae 19: 291 Lejeunea 19: 257 LEM (light effect modulation) system 12: 8 – 13 lemA gene, antibiosis 26: 29, 32 Lemmer manniella colonies 13: 73 Lemna 30: 41, 54; 33: 67 amino acid compartmentation 8: 70, 71 amino acid recycling 8: 89 amino acyl t-RNA charging 8: 77, 78 L. minor protein turnover 8: 96 – 99, 102, 107, 118, 121, 122 protein turnover measurement 8: 89 –91, 94, 95 Lemna gibba 30: 6 Lemnaceae, flowering, effect ofsalicylates 20: 196, 197– 199 LeNRT1 30: 31 Lens effects, false 18: 286, 287 plano-convex 18: 286, 287 signatures 18: 284– 286
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Lens culinaris 29: 45, 118 Lens culinaris and storage protein yield 9: 2 Lentinus lepideus, O-methyl transferase 8: 40 Leonotis 31: 20 Leonotis leonurus 31: 16, 18, 20, 24, 59, 63, 92, 125, 127, 165 Leontodon hispidus 29: 16 Lepidium 35: 224 Lepidium sativa 35: 221 Lepidium sativum 29: 130 Lepidium, absorption spectrum analysis 10: 97 Lepidocaryoideae, influorescence 3: 267 Lepidodendrids, Carboniferous, morphology 16: 180 Lepidodinium viridae 19: 215, 216 Lepidoptera 30: 94, 99 – 101, 103, 104 Lepidoptera, plant defence proteins 26: 160– 162, 164, 167, 168, 171, 172 Lepidozamia chromosome constitution 6: 172 Leptinotarsa decemlineata 30: 99 Leptochloa fusca 29: 152, 154 Leptodontium orchidicola 33: 22 Leptosphaeria maculans 35: 246 Leptostroma 33: 8, 12, 16, 21, 22 Leptotes bicolor, seed morphology 7: 426 Les22 mutant (maize) 35: 333 Lessonia 35: 188 Lessoniopsis 35: 177 Lettuce 22: 179 Lettuce big vein virus (LBVV) 36: 56, 57 Lettuce chlorosis virus 36: 69, 77 Lettuce hypocotyl bioassay for "gibberellins 9: 61 – 63, 67, 132, 134– 136, 138, 139 Lettuce infectious yellows virus (LIYV) 36: 69 Lettuce mosaic virus, case study 23: 252– 256 Lettuce, see Lactuca sativa Leucine, in protein-turnover measurement 8: 70 – 75, 78 – 82, 86, 87, 89, 91, 92, 95, 99, 100, 121
161
Leucine, transport across chloroplast envelope 7: 72 Leucine-rich repeat (LRR) groups 32: 19, 230, 246, see also domains Leucine-rich repeat (LRR) proteins. See LRR proteins Leucine-rich repeat 21: 172–176, 178 Leucine-rich repeat proteins (LRP) 24: 131 Leucine-rich-repeat (LRR) domains 30: 292, 300, 303, 312 Leucoanthocyanidin dioxygenase (LDOX) 37: 65, 83 Leucoanthocyanin 37: 99 Leucobryum albidium chromosome number 6: 206 sex chromosomes 6: 235 Levees 16: 128 Leveillula 24: 312 Levins model for metapopulations 38: 49 – 51 L-Fucose-containing oligosaccharide 19: 15 LHCII proteins 37: 100, 101 LHCPII (light-harvesting chlorophyll a/b protein complex of photosystem II) 32: 469 Lichens 18: 61 O3/AP 18: 81 phosphate uptake 8: 175 phosphorus content 8: 132, 146 Lichens, metabolism, NMR studies 20: 92, 93 Life cycles aberrant 16: 70 – 77 algae 16: 70 induced 16: 72 – 77 natural 16: 70 – 72 universality of 16: 56, 57 Life cycles, aberrant 16: 56, 57 induced 16: 72, 73 natural 16: 70 Lifespan (fate) of trichomes 31: 29, 90 Ligand binding in statolith location 15: 30 LIGAND domain database 32: 59 Light see also Photosynthesis adaptation index 18: 93 and lipid metabolism in algae 16: 35, 36, 37
162
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Light (continued) and phytoplankton growth 16: 202– 204 North West Europe shelf seas 16: 220– 223 nutrient interaction 16: 208, 209 distribution curves 18: 273, 277, 278 effects on plant invertases 28: 89 energy 28: 3 – 5 gradients 18: 290 Spinacia oleracea 18: 282 irradiance, impact on Amax (photosynthesis) 20: 20 – 22 measurement fibre optic probe 18: 287 probe acceptance width 18: 277 terminology 18: 272, 273 thick samples 18: 273– 277 migration 18: 292 mutualism and parasitism 22: 17, 18, 32 reflection acceptance angle 18: 270 regulation of plasma membrane H+ – ATPase 28: 47 role in determination of leaf form 28: 174– 179 signal transmission 22: 167 supply in NMR studies 20: 70 – 72 travel and Cucurbita pepo 18: 280 travel and Spinacia oleracea 18: 281 UV radiation 22: 103, 110, 132, 139, 141– 143 wavelengths 18: 277, 278 Light absorption 37: 8, 20, 171– 173 Light backscattering 37: 10 Light climate for algae air-water interface 10: 8 effect of algae on light attenuation 10: 12 – 14 light attenuation in water 10: 9 – 11 sunlight composition 10: 6 – 8 ultraviolet-B irradiance 10: 12 underwater light climates 10: 14 – 16 Light effects on gibberellins 9: 120, 121, 130, 131 Light harvesting strategies in algae biochemical strategies buoyancy control 10: 42 electron transport 10: 38 – 40 membrane structure 10: 38
nitrogen level 10: 41, 42 photosynthetic unit 10: 38 pigments 10: 36, 37 spatial constraints in chloroplasts 10: 40, 41 cytological aspects 10: 28– 36 ecological aspects 10: 21, 22 morphological aspects 10: 24 –28 physical strategies energy migration 10: 42 – 44 light scattering 10: 47 – 49 package effect 10: 44 – 47 Light intensity and Dunaliella anatomy and temperature 14: 125, 126 and carbon, organic, uptake 14: 112 and b-carotene synthesis 14: 133 and nitrogen uptake 14: 110 and photosynthesis 14: 148 growth 14: 112–115 and sodium chloride 14: 106, 107 and temperature 14: 116, 117 Light regulation 32: 242 Light responses 31: 231 Light screen hypothesis 37: 133, 138– 140, 142 Light/dark modulation 12: 1 – 46 CF1 – CF0 Mg ATPase 12: 37 changes in target enzyme 12: 30– 36 as result of dithioreitol treatment 12: 32 – 34 as result of light modulation 12: 30 –32 as result of thioredoxin – DTT-catalyzed modulation 12: 32 kinetic parameters 12: 34 – 36 cytosolic enzymes 12: 23, 24 dark modulation 12: 28 – 30 dark reversal of light modulation 12: 28, 29 enzyme activity 12: 4 – 6 ferralterin 12: 15, 21 ferredoxin – thioredoxin reductase, thioredoxin system 12: 14– 20 fructose – biphosphatase 12: 4, 6, 23, 25, 26 function of light modulation 12: 36 – 38 glucose-6-phosphate dehydrogenase 12: 27
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
glyceraldehyde-3-phosphate dehydrogenase 12: 27 inhibitor experiments 12: 6, 7 LEM system 12: 8 – 13 mechanisms 12: 6 – 24 NADP-linked malic dehydrogenase 12: 24 occurrence of 12: 3 – 6 osmotic stress 12: 38 photosynthetic carbon dioxide 12: 36, 37 pyruvic, Pi dikinase 12: 4, 21, 22 regulation of dark modulation 12: 30 regulation of light modulation 12: 24 – 27 ribulose-5-phosphate kinase 12: 27 sedoheptulose-biphosphatase 12: 6, 26, 27 sulfur dioxide 12: 38 thioredoxin in 12: 8, 17 –20, 28, 29 Light-harvesting chl a/b binding protein (LHCP II) 35: 20, 25 Light-harvesting chlorophyll, binding 14: 15 Light-harvesting complex PSII (LHCII) 13: 5, 9, 10 cation-induced changes 13: 38, 42 distribution in thylakoid membrane 13: 14, 15 excitation energy transfer and 13: 9, 10, 23, 35, 36 LHCIIa 13: 9, 35 LHCIIb 13: 9, 10, 35 phosphorylation see Light-harvesting complex PSII (LHCII) phosphorylation phytochrome, light regulated control and 13: 52 PSI energy transfer to 13: 35, 36 heterogeneity and 13: 36 PSII heterogeneity and 13: 17 –19, 35 interaction 13: 29, 30, 38, 39 shade plants 13: 51 State 1-State 2 transitions 13: 37, 38, 40 Light-harvesting complex PSII (LHCII) phosphorylation 13: 40 – 43, 53 cation effects 13: 42 control of kinase activity 13: 40, 53, 54 photoinhibitory damage and 13: 55
163
PSI interaction and 13: 41, 42 State 1: State 2 transition and 13: 40 stromal adenylate status and 13: 54 Light-harvesting proteins 27: 256– 313 CAB production, evolutionary model 27: 274 CAB/CAC genes and proteins 27: 271– 275 control of gene expression 27: 300, 301 efficiency 27: 281– 283 evolutionary aspects 27: 260– 264 integration with growth 27: 308, 309 LHCII, 3D model 27: 273 model 27: 309 peridinin chlorophyll-proteins (PCPs) 27: 277– 279 phycobiliproteins 27: 279, 280 phylogenetic implications 27: 310– 313 Prochlorophyte LHCs 27: 275– 277 role 27: 262 supramolecular chlorophyll – protein complexes 27: 283– 288 synthesis and control 27: 296– 309 chlorophyll-binding 27: 298– 302 pigment synthesis 27: 296– 298 Light-regulated genes 32: 157 Light-Repressible Receptor Protein Kinase (LRRPK) gene 32: 242 Lignification 19: 20, 28, 34; 21: 4, 5, 13, 17, 22 Lignification evolution 5: 201, 206, 207 fungal 21: 164, 166 model 21: 39, 43, 46, 47, 50, 51, 57, 58 in early vascular plants 5: 179, 180 mechanical support 5: 177– 181 tensile forces generated during transpiration 5: 180, 181 Lignification, involvement of boron 10: 241, 267 iron 10: 254, 255, 267 manganese 10: 247–249, 267 Lignin 19: 29 activation and reduction of cinnamic acids 8: 41 – 50 biosynthesis 5: 206; 8: 27, 28 composition 8: 29– 32
164
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Lignin (continued) phenylalanine—cinnamic acid pathway 8: 27, 33 – 41 polymerization of cinnamyl alcohols to lignin 8: 51 – 56 synthesis in chlorophytes and land plants 5: 155 Lignitubers 21: 39 Ligustrum lucidum volumetric elastic modulus 6: 79 Liliaceae 22: 13 apical dominance 3: 264 stomata 3: 284, 286 Liliaceae, polyploidy 4: 326 Liliflorae branching 3: 264 influorescence 3: 268 Lilium 12: 209; 3: 214 Lilium auratum 28: 75 Lilium longiflorum 28: 75, 78, 79, 234; 30: 248; 32: 13; 35: 67 Lilium longiflorum, alkali-insoluble b-l,3 glucan in pollen tubes 5: 125 Lilium sppl. retrotransposons 27: 337, 338 non-LTR 27: 342 Lilium superbum, lignin composition 8: 31 Lillum, microsporogenesis 16: 67, 68 Lilum 25: 104 Lime-induced chlorosis 29: 12 Limit-dextrinase 34: 182 Limnanthemum 33: 68 Limnanthes 35: 221 Limnobium stoloniferum 30: 6 Limnodorum abortivum carbon dioxide fixation 7: 520, 525 chlorophyll content 7: 520 seed morphology 7: 435, 437 Limodorum abortivum 31: 51 Limonene 31: 84, 99, 103 Limonene cyclase 31: 97 Limonene hydroxylase 31: 97, 102, 103 Limonene synthase 31: 99, 100, 102 Limonium 31: 3, 41 and drought protection 6: 39 Limonium, salt tolerance 8: 223 Limonoids 30: 98, 99
Limonum vulgare, arrangement of aerenchyma 7: 291 Limulus 11: 45 Linalool 31: 81, 99 Linalyl diphosphate (LPP) 31: 99 Linanthus parryae 37: 107 Linanthus parviflorus 37: 107, 111 Lindsaea cytology and polyploidy 4: 322 fossil record and structure 4: 245– 247 Linear dose-response 18: 35 Linear variable differential transformers (LVDTs) 29: 116 Linkage analysis 34: 45 b-(1 ! 3)-linked D-glucan 19: 42 b-(1 ! 3)-linked D-glucose residues 19: 36 Linoleic acid 24: 78 2-Linolenic acid, occurrence in chloroplasts 7: 42, 82, 84 Linolenic acid 21: 19; 22: 131 Linum spp. DNA transposable elements, Ac transposition 27: 403 genes cloned by transposon tagging 27: 396 Linum usitatissimum 21: 169; 24: 108 Lipaphis erysimi 36: 12 Liparis, flowering period 7: 535, 537, 540 Lipid anchors 30: 260 Lipid composition of chloroplast envelope membranes 7: 38 – 44 Lipid metabolism in algae 16: 1 – 53 see also Algae; Phytoplankton, North West Europe shelf seas Chlamydomonas reinhardtii 16: 45 – 47 Chlorella spp. 16: 42 – 45 complex lipids 16: 13 composition in algae 16: 5 – 12 classes 16: 9 – 12 fatty acids 16: 5 – 9 cyanobacteria 16: 13 – 19 and temperature 16: 17 – 19 fatty acid synthesis 16: 15 – 17 fatty acyl composition 16: 14 membrane composition 16: 13 Dunaliella spp. galactosylation 16: 27 halotolerance 16: 20, 22
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
labelling studies 16: 24 – 26 microsomal phospholipid retailoring 16: 26, 27 phospholipids and temperature 16: 22 – 24 fatty acid metabolism 16: 12 lipid structures 16: 2 – 5 marine 16: 28 – 42 and heavy metals 16: 40 – 42 and light 16: 35, 36, 37 and temperature 16: 36, 38 – 40 fatty acid positions 16: 33 –35 labelling chacteristics 16: 28 – 33 Lipid metabolism, isotope ratio studies of 15: 63, 64 Lipid peroxidation 18: 68; 19: 52 Lipid solution transport, mechanisms of carbon entry into cells 27: 127, 128 Lipid transfer proteins (LPTs) 31: 204 Lipid transfer proteins 34: 244, 245 Lipids 18: 68; 21: 7, 12, 46 –48, 165, 166 bilayers freeze-etching 3: 26 –28 reaction with OsO4 3: 11, 12 bimolecular lipid leaflet 3: 8, 14, 45, 46, 32, 33, 42 in thylakoid membrane 3: 87 –96 gross distribution 3: 133 inner structure 3: 122– 125 lipid-pigment distribution 3: 128– 130 layers, artificial, and gamma globulin 3: 44 membranes negative staining 3: 17, 18 reactions with fixatives 3: 10, 12 phospho-, reactions with OsO4 3: 10, 12 Lipids in Dunaliella 14: 131– 133 Lipids, UV radiation 22: 104, 116, 119, 131, 141, 147 Lipophilic materials secretion 31: 11, 13, 56, 58 – 65 cell compartments 31: 60 –65 intracellular transport 31: 61 secretory structures 31: 56, 58 Lipopolysaccharide 18: 137 Lipopolysaccharides 21: 57; 23: 30 Lipoproteins 21: 57 in membrane models 3: 40 – 42
165
reaction with OsO4 3: 13 X-ray diffraction 3: 2, 5 Lipoxygenase 19: 52; 21: 9, 12, 17, 19, 165; 22: 120; 34: 214 Lipoxygenases, plant defence 26: 168 Liquid chromatography (LC) 31: 154, 163, 167 Liquid fermentation, biocontrol agens 26: 74, 75 Liquidambar 22: 14; 35: 13, 18; 38: 290, 291, 295, 302, 303 Liquidambar styraciflua 37: 115 Liquidamber plants 18: 234 Liriodendron 22: 13, 14; 38: 286, 299, 303 Liriodendron tulipifera (yellow poplar) 18: 72 O3/AP 18: 80, 82 O3/SO2 exposures 18: 78 Listera, post-pollination phenomena 7: 578 Listeria 30: 302 Listeria monocytogenes 28: 13 Listrostachys, flowering period 7: 539 Literature review 1: 75 Lithium and plant disease 10: 264 Lithium ions and Dunaliella growth 14: 107, 108 Lithium, UV radiation 22: 108 Lithospermum erythrorhizon culture 13: 146, 148, 152, 156, 178 Lithospermum ruderale 33: 245 Lithothamnion sp., calcification 27: 171 Litsea cubeba 31: 130, 131 Litter degradation, and fossil record 16: 112– 114 “Little Marvel” cv. 18: 12, 13 Littorella uniflora, carbon dioxide recycling 15: 82, 83 Liver tumours and microcystins 27: 237, 238 cyanotoxin-induced 27: 236– 238 Liver, cell membrane 3: 19, 20, 34 Liverworts 19: 233, 253– 275 anacrogynous 19: 265 placenta in 19: 258 placental cells in 19: 260 Liverworts, induced aberrant cycles 16: 75 Living standards 21: 81 Loblolly pine see Pinus taeda
166
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
“Local” cv. 18: 88 Local response 21: 9, 12 – 16 Localisation, infection 21: 51, 52 Lockhart’s equation 22: 176, 246– 252 Lodgepole Pine, aeration under different conditions 7: 309– 312 Lodging 33: 141 Loganin 31: 94, 103, 104 Loganin production 13: 174 Logistic model 38: 5 Lolium 35: 31, 75 chromosome size in different species 6: 130, 189 Lolium multiflorum 30: 56, 212, 218, 221, 222 Lolium perenne (ryegrass) 18: 10, 13, 15 nitrite reductase activity 18: 47 SO2 exposure 18: 27, 31, 32 Lolium perenne 19: 131; 29: 130, 131; 30: 15, 99 Lolium sp. 33: 245 Lolium temulentum 25: 203; 28: 79; 35: 25 Lomariopsis, aneuploidy 4: 295– 299 Lomatium triternatum 33: 245 Lomentaria sp. d13C values 27: 151 photosynthesis 27: 174 London Clay, Early Tertiary community 17: 54, 55 Longevity of orchid flowers 7: 568, 569 Longidorae 36: 173– 175 Longidorus 36: l70, l73, 175, 178, 186, 190 Longidorus acrosoma 36: 180 Longidorus apulus 36: 180 Longidorus arthensis 36: 180 Longidorus attentuatus 36: 180, 187 Longidorus breviannulatus 36: 179 Longidorus elongatus 36: 179, 180, 185, 187 Longidorus fasciculus 36: 180 Longidorus macrosoma 36: 186 Longidorus striatellus 36: 159, 160 Long-term recirculation of nutrients 29: 151– 154 Lonicera 31: 53, 54 Lonicera japonica 31: 48, 49, 51 Lonicera sp., leaf, freeze-etching 3: 34 Lonicera tatarica culture 13: 174
Loofah witches’ broom 21: 193 Lophocolea 19: 263, 265 Lophocolea heterophylla 19: 269 biometric investigation 6: 260 cultivation experiments 6: 253, 257, 258 micro-evolution 6: 263 population differentiation 6: 249 Lophodermium 33: 7, 15 Lophodermium piceae 33: 13 Lophodermium pinastri 33: 4, 8, 16 Lophodermium seditiosum 33: 4 Lophopyrum elongatum 29: 131, 132; 34: 253 Loroglossol antifungal activity 7: 516 effect on germination of Monilia fructicola, 514, 518 isolation 7: 510 structure 7: 512 Loroglossum hircinum phytoalexin production 7: 510, 512 Loss-of-function analysis 32: 123, 124 Lotus 24: 432 Lotus corniculatus 22: 23 volumetric elastic modulus 6: 78 Lotus japonicus 30: 6, 12, 13, 17, 32 Lotus pedunculatus 18: 131, 132 Low molecular weight (LMW) glutenins 25: 129 Low molecular weight antioxidants (LMWAs) 37: 180, 181 Low-temperature response enzymatic activation 32: 369 gene expression response 32: 368, 369 Low-temperature-responsive (LTR) gene family wcs 120 34: 239, 241– 243 gene products, function of 34: 244– 246 Loxsomaceae, cytology 4: 292 LPS 24: 419 LPS formation 24: 416 L-Rhamnose 19: 21 LRR extensins 24: 127–130 LRR proteins 24: 89 – 167 see also Cytoplastic LRRs; "Extracytoplasmic LRRs activation of plant defences by resistance proteins containing cytoplasmic 24: 114–119
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
consensus amino acid sequences 24: 139 evolution 24: 138– 145 evolution of different specificities 24: 143, 144 interactions with ligands 24: 150– 153 resistance genes encoding proteins with cytoplasmic 24: 101– 119 resistance genes encoding proteins with extracytoplasmic 24: 91 – 101 and molecular specificity 24: 144– 153 lti gene 32: 366 Lubimin 21: 23 Lubium production 13: 179 Lucerne 18: 30 Lucifer Yellow CH 25: 27 Luciferae 35: 90 Luciferase 24: 45 Luciferase marker genes 34: 78 Luffa 22: 13 Luisia teretifolia, seed morphology 7: 426 Lunularia 19: 271 Lupanine 25: 159 Lupinus 22: 206; 29: 144, 145; 33: 44, 89, 102, 110 Lupinus albus 11: 131, 132, 146, 148; 19: 140, 157; 29: 131, 136, 138– 140, 152– 154, 156, 157, 161 phloem structure 5: 195 sieve plate structure 5: 196 Lupinus alpinus, see also Legume seed storage proteins Lupinus angustifolia, protein ratio 27: 43 Lupinus angustifolius 24: 440 Lupinus arizonicus 33: 102, 110 Lupinus luteus 25: 176; 29: 16, 130, 139, 159 Lupinus palaestinus 31: 7; 33: 85, 99, 100 Lupinus polyphyllus 25: 152 Lupinus spp., storage protein 9: 6, 7 Lupinus succulentus 33: 99 Lutein 31: 95; 34: 214 Luteolin 20: 182 Luteovirus 21: 116 Luteoviruses 36: 22, 23 accessory salivary gland barrier 36: 33 – 38 acquisition by vector aphids 36: 28 – 30 basal lamina 36: 34, 35
167
circulation of particles in the haemocoel 36: 30– 33 plasmalemma 36: 35 – 38 specificity in the transmission process 36: 24, 25 vector factors 36: 27, 28 virus factors in transmission 36: 25 – 27 Luziola 34: 34 Luzula evolution of apparent polyploidy 6: 136 karyotype evolution by centric fusion 6: 179– 181 Lycaste harrissonii, seed morphology 7: 427 Lycine, recycling 8: 89 Lycomarismin toxicity, effect of iron and copper 10: 255 Lycopene 37: 39 Lycoperdon lilacinum, phosphorus content 8: 132 Lycopersicon 22: 174, 187; 28: 215 Lycopersicon esculentum (tomato) 18: 36 Lycopersicon esculentum 19: 123, 137, 139, 161; 24: 320; 28: 13, 75, 98, 99, 123, 203, 220 Lycopersicon esculentum 32: 192, 213 volumetric elastic modulus 6: 79 Lycopersicon esculentum see Tomato Lycopersicon esculentum, genes cloned by transposon tagging 27: 396 Lycopersicon lycopersicum (tomato) 18: 37 Lycopersicon pimpinellifolium 28: 98; 32: 384 Lycopersicum 31: 26 Lycopersicum esculentum (tomato) 31: 201 cell-to-cell transport mechanisms 31: 277 recombinant DNA technology 31: 136 trichome mutants 31: 205, 206, 212 Lycopersicum esculentum, modification of sex expression by gibberellins 9: 34 Lycopersicum exulentum relationship between endoplasmic reticulum and plastids 7: 20 Lycopodium 19: 297 Lycopodium appressum 19: 299 Lycopodium cernuum L. 19: 299
168
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Lycopodium clavatum, lignin composition 8: 31 Lycopsids, Early Tertiary 17: 15, 16 Lycoris karyotype evolution by centric fusion 6: 176, 177 Lygodium japonicum, presence of gibberellin, GA9 9: 42 Lygodium, cytology and polyploidy 4: 290, 309, 322 Lygodium, Early Tertiary 17: 14 Lyngbya 12: 48 buoyancy regulation 13: 86 shape 13: 73 stratification 13: 85 Lyngbya majuscula 27: 214 Lyngbya wollei 27: 220 Lyngbya, thylakoid structure 10: 34 Lyngbyatoxin 12: 78 Lyso lipids 22: 46 Lysophosphatidylcholine (LPC) 33: 53 Lysophosphatidylcholine 34: 176 Lysophosphatidylethanolamine 34: 176 Lysophosphatidylglycerol 34: 176 Lysophospholipids 34: 176 Lysosomal proteins 25: 46 Lysosomes 25: 3 Lysosomes in animal cells 28: 125, 127 Lysozyme 19: 12; 21: 25; 26: 156, 157, 171 Lythraceae 37: 45, 153 Lytic enzymes see Cell-wall degrading enzymes M. aeruginosa 12: 64, 69 M. anceps, flowering period 7: 545 M. aquatica nitrate reductase 6: 22 M. buccinator, seed morphology 7: 425 M. crocea, seed morphology, 425 M. ioezlii, flowering period 7: 546 M. lutea, cytochromes 4: 75, 78 M. lysodeikticus ATPase activity 4: 99 membrane composition 4: 63, 65 respiratory control 4: 94 M. megalosporum cytotaxonomy 6: 242
M. oreades, vegetative incompatibility 7: 349 M. pardina, seed morphology 7: 425 M. piperita glandular hairs 6: 297 M. polymorpha enzymes of ammonia assimilation 6: 27 micro-evolution 6: 263 population differentiation 6: 249 M. ramannianus, phosphorus content 8: 141 M. spectabilis var. moreliana, effect of auxins, in culture 7: 460 M. spectabilis, flowering period 7: 546 M. viridiflora, seed morphology 7: 425 M13-fingerprinting 35: 174, 188– 190 Macadamia nut fracture properties 17: 276, 277 versus coconut 17: 278 MACC 18: 97 Macerase 19: 30 Macfedyena unguis-cati 37: 49 “Macginitiea plant”, Early Tertiary 17: 36 Macroautophagy 38: 79 Macrocystis 11: 103 Macrocystis pyrifera 35: 189 Macrocystis pyrifera, photosynthetic pigments 10: 122 Macrocystis sp. 27: 266 Macro-evolution alternation of generations 6: 269 in liverworts 6: 268 in mosses 6: 168, 169 Macromitrium sex chromosomes 6: 233, 235 Macromolecular ligands 25: 23 Macrophoma piceae 33: 20 Macrophytes emersed, inorganic carbon acquisition 27: 173– 175 transport of inorganic C to 27: 120, 121 13 12 C/ C ratio 27: 145 Macrophytes, aquatic, acid metabolism in 15: 69 Macroptilium 33: 99 Macroptilium atropurpureum 33: 94 Macrosiphum euphorbiae 36: 29 Macrosteles fascifrons 21: 191, 196, 202– 204
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Macrosteles quadralineatus (=furcifera) 36: 159 Macrothelypteris, structure 4: 239 Macrozamia chromosome constitution 6: 172 MADS box domain 28: 216, 217 MADS box genes 26: 234–245 FBP1 26: 235, 236, 238– 240 FBP11 26: 236, 241– 244 FBP2 26: 235– 237 FBP6 26: 236, 240, 241 FBP7 26: 236, 241– 244 function 26: 234, 235 meristem transition 26: 235– 237 organ identity 26: 237– 241 ovule development 26: 241 –244 pMADS1, 26: 236, 238– 240 pMADS3 (FBP14) 26: 235, 236, 240, 241 structure 26: 234, 235 MADS box-containing genes 28: 210– 215 Maerua 35: 245 Magnaporthe 33: 242 Magnaporthe grisea (rice blast fungus) 34: 263– 281 appressorium formation, genes involved in 34: 272– 276 appressorium-mediated plant infection, genes involved in 34: 276, 277 classical and molecular genetics 34: 264– 266 colonization of plant tissues, genes required for 34: 277, 278 durable control mechanisms 34: 281 gene-for-gene resistance to 34: 278, 279 genomic approaches 34: 279– 281 life history and epidemiology 34: 266– 272 pathogenicity, genes involved in 34: 274 Magnaporthe grisea 19: 25, 26, 33; 21: 149, 150, 158– 160; 24: 12, 19, 61, 76, 172, 196, 206; 30: 293; 33: 237, 240 Magnesium 18: 93; 25: 407, 408 see also Mg2+ deficiency 18: 102 extractable, in soil 29: 2 Green dye 22: 56
169
salinization and transport of 29: 139, 140, 158 translocation to the shoot 29: 130, 131 transport in growing shoot tissues 29: 144 UV radiation 22: 107, 129 water and nitrogen supply 22: 259– 260, 280 Magnesium deficiency 37: 110 Magnesium ions and Dunaliella growth 14: 108 Magnetic bead assays 24: 281, 282 Magnetic resonance experiments 1: 330, 347 area under curve 1: 331 control of external factors 1: 348 electron-nuclear double resonance (ENDOR), 345 g-values 1: 341 line shapes 1: 335 resonant energy absorption 1: 331 thermal relaxation 1: 343 Zeeman energy 1: 330 Magnetic resonance experiments, methods 1: 366 Magnetic resonance experiments, results of crystals 1: 350 extracts 1: 349 large fragments 1: 354 very small fragments 1: 351 whole systems 1: 354 Magnolia 38: 290, 299, 303 Magnolia sect. Rytidospermum 38: 293, 296 Magnoliacae 22: 13; 31: 58 Magnoliaceae flowers 17: 101, 102 Magnoliales petals 17: 127 Magnoliidae androecium 17: 128 Late Cretaceous fossils 17: 114 perianth 17: 127 Magnoliophyta 27: 28, 89 Mahonia 22: 165; 37: 107, 113 Mahonia repens 37: 112, 113 Maitotoxin (MTX) 12: 86 – 89 Maize 12: 16, 18; 19: 26, 114, 153, 154; 21: 8, 171; 34: 36, 197; 3: 208 bushy stunt (MBS) 21: 199, 201– 203, 205 calcium ions 22: 59, 72
170
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Maize (continued) domestication of 34: 36 Dwarf-8 gene 34: 135 ESTs in 34: 8 – 9 functional genomics 34: 14 –15 genes, introduced 34: 30 globulin (Glb1) promoter 34: 89 GST-27 gene 34: 90 high lysine mutants 34: 212, 213 lipid-binding proteins 34: 211, 212 molecular markers 34: 5 – 6 Mutator (Mu) transposons 34: 13, 15 mutualism and parasitism 22: 14, 15 nitrate reductase 6: 11 opaque-2 gene 34: 203 quality protein maize (QPM) 34: 203 root, water uptake 3: 186 signal transmission 22: 165, 175, 183 starch mutations 34: 194 structural genomics 34: 11 sugary-1 mutation 34: 189, 190 tapetum-specific promoters 34: 89 transposable elements 34: 11 – 12, 48, 49 UV radiation 22: 116, 138, 146 VP1 transcription factor 34: 151 water and nitrogen supply 22: 232, 254– 256, 268, 276, 282, 285, 286 Maize anthocyanins 31: 224 Maize chlorotic dwarf virus (MCDV) 36: 144– 146 Maize fine stripe virus 36: 151 Maize mosaic virus (MMV) 36: 152, 153, 155– 160 Maize rough dwarf virus (MRDV) 36: 152, 155 Maize see Zea mays Maize streak virus (MSV) 36: 146, 147 Maize stripe virus (MStV) 36: 151, 153, 155, 158– 160 Maize yellow stripe virus (MYSV) 36: 150, 151 Maize, NMR studies, mnganese 20: 78 Maize, see Zea mays Major Facilitator Superfamily (MFS) 30: 33 – 38 Major histocompatibility complex (MHC) class II transcriptional activator (CIITA) 24: 114
Majorana syriatica 31: 16 – 18, 84 Malate (VMAL) channels 25: 241, 242 Malate 18: 143; 22: 238, 274; 25: 374– 378, 383 dehydrogenase 18: 149 synthesis 18: 31 Malate dehydrogenase 38: 142, 151 and decarboxylate translocator of chloroplast envelope 7: 62 in orchid flowers, following pollinaition 7: 614 Malate dehydrogenase, in lignin biosynthesis 8: 54 – 57 Malate synthesis CAM plants 20: 94 via PEP carboxylase 20: 91 Malate, effect of aluminium on 29: 33 Malate, transport across chloroplast envelope 7: 56, 62, 63 Malate/citrate aluminium detoxification mechanisms 29: 25 Malaxia lilifolia, seed morphology 7: 427 Malaxis, flowering period 7: 535, 537, 541 Male gametes 28: 233– 235, 240 Male germ line transformation (MAGELITR) 35: 87 – 91 Male germ unit (MGU) 28: 233, 234 Maleimide-reactive cysteine residue 25: 321– 324 Malic acid 25: 374 Malic acid, see Crassulacean acid metabolism Malic enzyme (ME), properties (table) 27: 95 Mallinckrodt CC-4, chromatography of gibberellins 9: 51 – 53 Mallotus philipinensis 31: 9 Mallotus wrayi 33: 153 Malnutrition 21: 93 Malonate 18: 141, 149 Malonyltransferase 35: 17 Malpighiaceae 37: 45 Maltebrunia 34: 34 Malus 22: 174; 37: 97, 114 Malus cv. ‘Braeburn’ 107 Malus domestica 37: 112 Malus fruits 18: 236 Malva 33: 78, 89, 109, 111
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Malva neglecta 33: 46, 77, 89 Malvaceae 33: 43 Malvaceae, anthocyanin distribution in 37: 43 – 45 Malvastrum rotundifolium 33: 110 Malyngamide 27: 214 MAM synthases (methylthioalkylmalate synthases) 35: 228, 229, 232 Mamestra configurata 35: 243 Mammalian mitogen-response 32: 308– 311 Mandarin leaf stomata 18: 51 Manduca sexta 21: 20 Manganese 22: 264, 280 chilling injury 20: 79 NMR studies in wheat 20: 78 Manganese level and plant disease 10: 243– 254 in lignin biosynthesis 10: 247– 249 Manganese toxicity 29: 10, 11 Mangifera 37: 115 Mangifera indica 31: 60 Mangrove 16: 143 Mannan 11: 129– 131, 144, 149 Mannia 19: 271 Manningia, Late Cretaceous fossils 17: 116 Mannitol 35: 117 Mannose 6-phosphate receptor (MPR) 35: 161 Mannose 11: 126, 129 Mannose selection system 34: 79 Mannose, transport across the chloroplast envelope 7: 73 a-mannosidase 18: 139 Mansonones 21: 48 Mantoniella sp. chlorophyll sequence 27: 298 thylakoids 27: 268, 270 Map-based cloning, resistance genes 21: 169– 171 Mapping 34: 301, 302 Marafivirus (MRFV) 36: 149 Marah macrocarpus, gibberellin biosynthesis 9: 85, 88, 90, 127, 129 Maranta, stomata 3: 284
Marantaceae growth 3: 221, 222, 229– 231 influorescence 3: 278 paired flowers 3: 262 prophyll 3: 287 stomata 3: 284 vascular construction 3: 249 Marantochloa, growth 3: 221 M. cuspidata 3: 230 M. oligantha 3: 230, 231 Marasmius coniatus var. didymoplexis, endophyte of orchid 7: 490 Marattia anglica, fossil record 4: 236 Marattiaceae 22: 13 fossil record 4: 236 polyploidy 4: 322 Marattiales, cytology 4: 285 Marchantia 19: 255, 271; 32: 208 apospory 6: 252 origin of polyploidy 6: 216 Marchantia polymorpha, structure of thallus 5: 190 Marchantiales 19: 255, 271, 273, 289, 291 karyotypes 6: 240 Marchantiidae 19: 271– 275, 285, 291, 293, 305 Marchesta 19: 255 Marfey’s reagent 27: 222 Margarinomyces, colonization of interaction zones in wood 7: 405 Margravia rectiflora 37: 49 Marine algae 11: 71 – 123 carbon fixation 11: 85 – 88 carbon isotope discrimination 11: 101– 108 carbon metabolism in 11: 71 – 123 Marine autotrophs a’ values (table) 27: 141 calcification, extra/intracellular 27: 171– 173 carbon fixation mechanisms 27: 88 – 92 carbon isotope discrimination 27: 144 –159 carboxylation enzymes 27: 93 – 109 C-concentrating mechanisms (table) 27: 118, 119
171
172
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Marine autotrophs (continued) evolution of RUBISCO-based inorganic carbon acquisition 27: 179–181 genera, d13C values (table) genotypic differences 27: 150, 151 higher than 210% 27: 148, 149 lower than 2 30% 27: 146, 147 influence of supply on assimilation rates 27: 175–179 inorganic carbon acquisition 27: 85 – 183 intertidal macrophytes 27: 173– 175 models, 13C/12C ratios 27: 153– 159 Marine habitats, productivity 27: 92 Marker genes, eliminating 34: 105, 108 Marker-assisted selection 34: 45, 46 Marker-free transgenics 34: 105– 108 Marshes, delta plain see also Mires; Quaking bogs lower 16: 145, 146 upper 16: 146, 147 Marsileaceae, chromosome number and heterospory 4: 378 Marsupella 19: 263, 265 Marsupella funckii 19: 267 Mascarena, aecervulus 3: 276 Masculostrobus clathratus 17: 139, 140 Mass spectrometry of gibberellins 9: 68 – 71, 76 –78 Mass spectroscopy 31: 154, 167 Mass transfer estimation 18: 196, 197 Master genes 21: 65 Mastigocladus laminosus, phycobili proteins 10: 65, 66, 109, 181 Mastigocladus sp. 27: 288 Mastigonemes 24: 377 Mastocarpus 35: 174 Mastocarpus stellatus 35: 177, 179 Mastreviruses 36: 148 MATDB database 38: 219 Mate´, see Ilex Mathematical models in numerical taxonomy choice of model 2: 48 Euclidean model 2: 54 metric properties of pair-functions 2: 49 metrics 2: 48 non-Euclidean systems 2: 52 non-metric systems 2: 51
Mathiola isochromosomes 6: 145 Mating pheromone pathway 32: 304– 307, 311 Matoniaceae, fossil record 4: 237, 242 Matoniales, cytology 4: 290 Matonidium, fossil record 4: 237, 242 matrix attachment regions (MARs) 34: 95, 96 Matrix-assisted laser desorption/ionization – time of flight (MALDI-TOF) mass spectrometry-based genotyping 34: 6, 7 Matteuccia orientalis, facultative apomixis 4: 293 Matthiola incana 31: 227; 37: 69, 84 Maturation schedule hypothesis 38: 202 Maxillaria aromatica, carbon fixation 7: 525 Maximum likelihood estimation 38: 10 Maytenus bureaviana 29: 11 MBC fungicides 33: 226, 227, 248, 249 “McCall” cv. 18: 71 Mean-field models 38: 51 Mechanical impedance, soil 22: 233 Mechanical wounding in plants enzymatic activation 32: 359– 362 gene expression response 32: 356– 359 Medicago 28: 216, 237 Medicago lupulina enzymes of ammonia assimilation 6: 29, 31 Medicago sativa (alfalfa) 18: 10, 15, 58, 130, 280, 281 air pollutants bioindication 18: 87 coating loss 18: 289 epidermal focussing 18: 285 legume nodule structure 18: 132 nitrogen oxides fumigations 18: 36 nodules 18: 136, 155 NOx exposure 18: 35 O3 exposure 18: 66 SO2/NO2 mixtures 18: 43, 44 surging 18: 288 Medicago sativa 29: 45, 129, 171; 37: 87 Medicago sativa, retrotransposons 27: 337 Megaceros 19: 275, 279, 281, 295 Megaclinium, longevity of flowers 7: 569
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Megasporogenesis and sporophyte/gametophyte shift causal aspects 16: 85 – 87 features of 16: 84, 85 gymnosperms 16: 68, 69 seed plants 16: 69, 70 Meiosis 2: 302; 24: 180 in conifers 15: 180 female 15: 191– 193 male 15: 184, 185 in flowering plants 15: 183 Melampsora lini 21: 148, 149, 174; 24: 108, 213, 216, 448 Melampsora, boron deficiency 10: 240 Melanconiales, gibberellins 9: 42 Melanin 34: 267 in appressorium function 34: 270, 271 Melanins 37: 18 – 30 anthocyanins as plant equivalent of 37: 29, 30 semiquinone radicals in 37: 28 Melanocytes 37: 21, 22 Melanogenic hormones 37: 22 Melanomma pulvispyrius in wood decay 7: 337 mode of nutrition 7: 404 Melanosomes 37: 21 Melanospora destruens, phosphomonoester utilization 8: 181 Meliaceae 22: 13; 30: 97 Meliloti 18: 147, 150 Melilotus alba 25: 150; 33: 97 Melissa 31: 78 Melissa officinalis 31: 8, 84, 85, 92 Meloidogyne incognita 33: 20 Meloidogyne spp., assessing 23: 113 Melon 21: 17, 49, 50 Melon necrotic spot virus (MNSV) 36: 51, 55 Melons, HRGP biosynthesis in 19: 30 Membrane assays 24: 282, 283 Membrane binding at sites 1 and 2 function of site 1, 5: 78 localization 5: 78 negative co-operativity 5: 85 resolution 5: 75 – 79 specificity of auxin binding 5: 72 –75
173
Membrane binding of abscisic acid 5: 71, 84 auxins 5: 71 gibberellic acid 5: 71 morphactins 5: 71, 72 naphthylphthalamic acid 5: 71, 72, 75 Membrane depolarization 19: 46; 28: 36 Membrane potential 25: 221; 28: 23, 24, 36 Membrane proteins, 28: 5 Membrane proteins, transport to tonoplast 25: 54, 55 Membrane reception of effectors hormones 4: 15 toxins 4: 15 Membrane structure lipid-globular protein mosaic model 7: 6 unit membrane 7: 3, 4, 6 Membrane tension and gravity sensing 15: 33 – 35 Membrane transport 32: 9 active water transport 6: 62 – 66 description 6: 47, 48 energy conversion 6: 66 –69 folded membranes 6: 59 – 62 half-time of water exchange 6: 69, 71, 88 homogeneous planar membranes 6: 48 – 54 incongruent transport 6: 52 mathematical expression 6: 48 – 71 planar composite membranes 6: 57 – 59 Membrane transport, of phosphate in fungi 8: 169– 172 Membranes 1: 209 et seq., 279 et seq. bacterial membrane chemical composition 4: 63 – 66 biological, construction 3: 157, 158 cell, structure 3: 1 – 52 discussion 3: 39– 46 freeze-etching 3: 21 – 39 negative staining 3: 16 – 21 sectioning 3: 8 – 16 X-ray diffraction 3: 2 – 8 concepts, models 3: 32, 39 –42, 46, 47 micellar 3: 9, 25, 31 photosynthetic membrane 3: 61 – 63, 77, 145, 157, 158 unit 3: 8, 23 X-ray diffraction 3: 8
174
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Membranes (continued) evolutionary development of cristae 4: 106, 107 mitochondrial ATP-ase 3: 33 freeze-etching 3: 31 negative staining 3: 18, 19, 45 reaction with OsO4 3: 13 X-ray diffraction 3: 4 – 7 mitochondrial membrane origin 4: 52 structure and function 4: 61, 63 Paracoccus denitrificans, composition 4: 63 – 66 photosynthetic, X-ray structure 3: 53 – 159 electron microscopy 3: 135– 151 gross structure 3: 130– 135 layer structure, interpretation 3: 81 – 96 layer structure, thylakoid membrane 3: 64 –81 layers, inner structure 3: 96 – 130 structure and function 3: 151– 157 MEMSAT program 25: 317, 319, 320 Menadenium, post-pollination phenomena 7: 576, 587, 588 Menispermum 38: 295, 296 Mentha £ gracilis 31: 108 Mentha £ piperita 31: 58, 84, 85, 89, 90, 91, 95, 97, 100, 102, 103, 108, 123, 155 transgenic approaches 31: 109 Mentha (mint) 31: 78, 83, 91, 97, 99, 102, 127, 129, 137, 168 transgenic technology 31: 108, 109 Mentha resin synthesis in tissues culture 6: 307 Mentha aquatica 31: 102 Mentha arvensis 31: 102 Mentha candicans 31: 100 Mentha culture 13: 162 Mentha pulegium 31: 95, 102 Mentha spicata 31: 100, 102, 103, 108 Menthaceae 37: 41 Menthane 31: 78, 85, 100, 102, 103; 31: 84, 95 Menthone, biotransformation to neomenthol 13: 162 Menyanthes trifoliata 31: 94 MEP genes 30: 46, 50, 51
3 – mercaptopicolinic acid 38: 118, 122, 134, 145, 174 Mercenaria mercenaria 12: 62 Merckogel, chromatographic efficiency 9:53 Mercurialis perennis nitrate reductase 6: 23 Meria parkeri 33: 5, 8, 13, 22 Meriandra 31: 4 Merismopedia 13: 72 Meristem culture 23: 161, 162 Meristem identity functions, conservation 28: 218, 219 Meristem temperature 18: 218 Meristemoid mother cell (MMC) 38: 215 Meristemoids, origin 3: 286 Meristems 1: 25 Mesembryanthemum 25: 356 Mesembryanthemum crystallinum 37: 110; 12: 34, 35; 25: 266, 268– 271, 273– 277, 279– 282, 372, 404; 28: 32; 29: 79 acid metabolism in 15: 68 and carbon dioxide recycling 15: 75 hydraulic conductivity 6: 96, 98, 104, 111 volumetric elastic modulus 6: 74, 75, 78, 83 water exchange in bladder cells 6: 71, 74, 75 Mesembryanthenum crystallinum, induction of CAM habit by sodium 7: 171 Mesophyll 1: 209 Mesophyll cells 24: 318; 25: 101 Mesophyll protoplasts 25: 97 Mesophyll senescence 25: 98 Mesophyll, water and nitrogen supply 22: 240– 245 Mesoplasma 21: 190, 191 Mesotaenium caldariorum 32: 171 Mesotaenium, chloroplast movements 10: 30 Mesozoic – Cenozoic palaeosimulation 26: 193– 195, 207– 219 Messenger molecules 32: 7, 8 Messenger RNA (mRNA) 19: 21, 29, 41, 54, 55 Messengers see Calcium MET genes 33: 199, 200, 202 Metabolic compartmentation 25: 196 Metabolic enzymes 32: 470
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Metabolism and transport of carbon 18: 129– 164 Metabolism and transport of nitrogen 18: 129 –164 Metabolism and transport of organic substances in the phloem 1: 209 absorbing capacity of conducting tissues 1: 228 mass flow theory 1: 233 mechanism of transport 1: 223 metabolism of conducting tissues 1: 254 rate of transport 1: 250 substances transported 1: 209 theory of active transport 1: 237 transport of assimilates from mesophyll to phloem 1: 213 transport of assimilates in the whole plant 1: 263 uptake of assimilates from the phloem by growing and storing tissues 1: 224 Metabolism changes due to protein kinases 32: 8, 9 Metabolism, regulation of 1: 209 Metabolite transport, C4 photosynthesis 26: 259– 268 metabolites, secondary 30: 91 – 106, 123, 150 structure of 30: 95 –97 Metal toxicity 37: 111, 112 Metals 22: 146 boron 1: 94 calcium 1: 73, 84 – 86, 92, 97, 98 chromium 1: 92 cobalt 1: 73, 92, 96– 98 copper 1: 73, 86, 90, 92 identification 1: 86, 88 iron 1: 73, 75, 82, 83, 89 – 91, 95, 97, 98 magnesium 1: 73, 84, 85 manganese 1: 73, 92 nickel 1: 73, 92, 97 oats, chlorosis of 1: 92 position in the growth mechanism 1: 73 zinc 1: 73, 91, 92 Metals, see Heavy metals, and lipid metabolism in algae Metapopulation concept 24: 345– 347 Metapopulations 38: 42, 43 invasion and persistence in 38: 43 – 50 Metasequoia 33: 9
175
Metasequoia glyptostroboides, lignin composition 8: 31 Metazoa 2: 6 Meteoritic theory in Early Tertiary 17: 4 Methane 21: 95 Methanoccous jannaschii 35: 230; 28: 11, 13, 14 Methanosarcina thermophilia 27: 226 Methenyltetrahydrofolate 33: 72 Methionine 18: 96 Methods of investigating cell wall synthesis 5: 90 6-Methoxymellein 19: 21 6-Methoxymellein production 13: 180 Methyl benzimidazole (MBC) fungicides 33: 226, 227, 248, 249 Methyl esterase activity 24: 41 Methyl ethyl maleimide 35: 19 Methyl hydroxy maleimide 35: 19 Methyl jasmonate (MeJ) 22: 120, 168, 170, 189 Methyl jasmonate (MeJA) 21: 19 Methyl jasmonate (MeJA) signalling pathway 29: 63, 64 Methyl jasmonate 35: 26, 27 Methyl salicylate 30: 96, 102, 103 Methyl t-RNA, in measurement of protein turnover 8: 89 – 91, 121 Methyl vinyl maleimide dialdehyde 35: 19 Methyl viologen as nitrate/nitrite cofactor 14: 138 Methylation analysis 11: 128, 129 Methylation enzymes 30: 150– 157 Methylcrotonyl CoA carboxylase (MCCC), properties (table) 27: 96 Methylenediphosphonate 25: 300 8-methylsulphinoctyl glucosinolates 35: 228 Methylsulphinylalkyl glucosinolate 35: 230, 231, 233 Methylsulphinylalkyl isothiocyanates 35: 215, 248 Methylsulphinylalkyls 35: 240 4-methylsulphinylbutenyl glucosinolate 35: 230 4-methylsulphinylbutyl glucosinolate 35: 221, 228, 231, 244, 249 4-methylsulphinylbutyl isothiocyanate (sulphoraphane) 35: 248
176
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
10-methylsulphinyldecyl 35: 221 7-methylsulphinylheptyl glucosinolate 35: 228 7-methylsulphinylheptyl isothiocyanate 35: 248 9-methylsulphinylnonyl 35: 221 8-methylsulphinyloctyl isothiocyanate 35: 248 3-methylsulphinylpropyl glucosinolate 35: 221, 228 Methylsulphinyltransferase 35: 230 11-methylsulphinylundecyl glucosinolates 35: 221 Methylsulphonylalkyl glucosinolates 35: 230 50 -Methylthioadenosine 19: 144 Methylthioalkyl glucosinolate 35: 221, 230, 233 Methylthioalkylmalate synthases (MAM synthases) 35: 228, 229, 232 4-methylthiobutyl glucosinolate 35: 221, 244 Methylviologen 12: 7 Metopolophinum dirhodum 36: 28 Metroxylon, influorescence 3: 267, 269 M. amicarum 3: 269 M. sagu 3: 269 Metzgeriales 19: 257, 265–267, 273, 289, 291, 293 karyotypes 6: 240 Mevalonate concentration in vivo 14: 73, 74 formation and compartmentation, subcellular 14: 57 – 60 and HMG-CoA reductase 14: 30 – 34 and isopentenyl diphosphate formation 14: 34 – 38 incorporation inhibition 14: 75 Mevalonate diphosphate decarboxylase activity 14: 84 shunt 14: 50 – 52 translocation and plastid permeability 14: 65, 66 Mevalonate kinase activity 14: 78 and isopentenyl diphosphate formation 14: 36
and light exposure 14: 82, 83 and location 14: 60 – 63 in chloroplasts 14: 61 in mitochondria 14: 63 Mevalonic acid and resin synthesis 6: 290, 304, 305, 307, 311 Mevalonic acid and gibberellin biosynthesis 9: 85 – 87, 94, 96, 109, 110, 127, 129 Mevalonic acid pathway 31: 93, 94 Mevinolin inhibition of HMG-CoA reductase 14: 34, 59, 60 Mexico 21: 88, 92 Mg dechelatase 35: 13, 14, 23, 31 Mg2+ 18: 82 Mi gen 30: 300 Michaelis Menton model 24: 297 Michaelis – Menten relation and phytoplankton nutrient uptake 16: 208 Michigan aster yellows (O-MLO) 21: 191– 193 Microaerobic conditions restrictions 18: 161– 163 O2 and metabolism impact 18: 161– 163 O2 regulation system 18: 160, 161 Microautophagy 35: 154; 38: 79 Microautoradiography 29: 170, 171 Microbial pathogens, plant defence proteins 26: 26, 143– 159, 171 see also Biocontrol of soil-borne pathogens antifungal peptides 26: 151– 153 antimicrobial peptides 26: 151– 153 defensins 26: 151– 153 endohydrolases 26: 143–146 hevein 26: 146 lectins 26: 146, 147 lysozyme 26: 156, 157 phospholipid transfer 26: 154, 155 polygalacturonase-inhibiting 26: 157– 159 PR – 1 26: 148, 149 proteinase inhibitors 26: 157 ribosome-inactivating 26: 155, 156 thaumatin-related 26: 149– 151 thionins 26: 147, 148, 154, 155 2S albumins 26: 148, 153, 154
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Microchaete loktakensis 27: 214 Micro-chromosomes behaviour during meiosis 6: 225, 226 in liverworts 6: 224, 225 in mosses 6: 225– 230 Micrococcus denitrificans, see Paracoccus denitrificans Microcosm experiments 38: 27 Microcycas chromosome constitution 6: 172 chromosome evolution 6: 172, 173 Microcystilide 27: 215 Microcystins 27: 220– 227 antibodies 27: 231 as tumour promoters 27: 237 control 27: 239, 240 genetics 27: 234, 235 inhibition of protein phosphatase (PP) 27: 225, 226 isolation, detection and analysis 27: 228– 233 mechanism of action 27: 222– 226, 232 structure 27: 224 Microcystis adaptive migratory behaviour 13: 113 bloom formation, mathematical model 13: 116 buoyancy regulation 13: 87 compensation point 13: 102 conditions favouring dominance 13: 114 consumption by Thermocyclops spp. 13: 107 depth of mixing, buoyancy increase and 13: 118 distribution 13: 70 extreme diurnal variations and 13: 115 flotation rates 13: 88, 89, 94 gas vacuole 13: 82, 83 growth rate, bloom conditions and 13: 125 light-dependent growth and 13: 98, 111 mucilage layer 13: 78, 87 perennation 13: 127– 129 photic conditions, buoyancy and 13: 117 photosynthetic rate, light intensity and 13: 100 poly-b-hydroxybutyrate deposits 13: 105 respiration rate 13: 102 surface exposure and 13: 124, 125
177
survival strategies 13: 132 temperature, growth rate and 13: 96 wind stress at surface, vertical distribution and 13: 121– 123 Microcystis aeruginosa 13: 133; 27: 214, 215, 234, 235 form of colonies 13: 73 gas vesicle pressure 13: 81 surface exposure 13: 123 Microcystis sp. algal blooms 27: 222 lists and properties of microcystins 27: 221– 224 Microcystis wesenbergii 13: 133 form of colonies 13: 73 Microcystitis 12: 48, 69 – 72, 75 Microdissection 29: 166 Microelements in soil 29: 20, 21 salinization, transport and 29: 162 Micro-evolution in liverworts 6: 262, 263 in mosses 6: 263– 265 Microfibrils Acetobacter xylinum 2: 143, 144 Acrosiphonia 2: 92 algae, brown 2: 98 see also individually named algae algae, green 2: 92, 93, 98, 103 see also individually named algae algae, red 2: 93, 98, 103, 105 see also individually named algae Allomyces 2: 92, 98 apical meristems, epidermal cells 2: 108, 130 apical meristems, parenchyma cells 2: 105 apical meristems, pit fields 2: 117 Apium petioles, collenchyma cells 2: 111 apple, parenchyma cells 2: 104 arrangement in different types of growing cells 2: 91 Asclepias cornuti 2: 103 Asparagus, cortical fibres 2: 108 Asparagus, parenchyma cells 2: 104 Asparagus, wood fibre tips 2: 114 Avena coleoptile, epidermal cells 2: 108– 110, 114, 127, 130, 131
178
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Microfibrils (continued) Avena coleoptile, older walls 2: 110 Avena coleoptile, parenchyma cells 2: 105, 109 Avena coleoptile, phloem cells 2: 107, 114 Avena coleoptile, tracheary elements 2: 107, 114 avocado, parenchyma cells 2: 104 Brassica 2: 97 breakdown 2: 89 Bryopsis 2: 93, 103, 104 cambium initials 2: 107, 113, 116 Caulerpa 2: 93 Ceiba pentandra 2: 103 Chaetomorpha 2: 92, 98, 101, 102, 138– 140, 142, 144 Chara 2: 100, 142 chitin microfibrils 2: 76 Chlorella pyrenoidosa 2: 92 Cladophora 2: 92, 98, 101–103, 138, 139 coherence 2: 72, 80 – 82, 120 collenchyma cells 2: 111, 112, 116, 130 constitution and morphology 2: 70 cortical fibres 2: 116 cotton hair 2: 125, 126, 139 crystallinity 2: 72, 77 Cucurbita 2: 97 cytoplasmic element theories 2: 141 Dahlia tuber, parenchyma cells 2: 104 Dictyosphaeria 2: 92, 94, 95 displacement by growth 2: 114, 115 elementary fibrils 2: 72 epidermal cells 2: 108– 110, 114– 116, 127, 130, 131 Euphorbia, latex vessels 2: 108, 114 fibres of cortex, phloem and wood 2: 107, 108, 113 Fraxinus, phloem and wood fibres 2: 108, 113, 114, 130 Funaria hygrometrica 2: 97, 103 fungal hyphae 2: 98 Griffithsia flosculosa 2: 93 growth in thickness 2: 76 growth velocity 2: 73, 90, 121, 128 Halicystis 2: 93 Helianthus hypocotyls 2: 114, 130 Helminthocladia californica 2: 93
Heracleum petioles, collenchyma cells 2: 111, 112 Hydrodictyon africanum 2: 92, 100 in freely-growing more or less isodiametric cells 2: 91 in freely-growing tubular cells or parts of cells 2: 96 in tissue cells that predominantly widen 2: 112 in tissue cells with isodiametric growth 2: 104 in tissue cells with predominant growth in length 2: 105 Juncus effusus 2: 100, 104, 123, 131 Kallan`choe¨ leaves 2: 130 latex vessels during lengthening 2: 108, 113, 114, 128, 130 maize, phloem cells and tracheary elements 2: 107 microfibrils of sundry materials 2: 77 microtubules, role in microfibril synthesis 2: 142 morphology 2: 70 multinet structure 2: 100, 104, 106, 108– 110, 113, 122, 129, 132 Nitella 2: 93, 98, 100, 101, 104, 114, 123– 127, 134– 143 onion root, epidermal cells 2: 109, 110, 127 onion root, parenchyma cells 2: 105 orientation 2: 83, 90 – 144 Papuodendron, wood fibre 2: 108, 114, 126 parenchyma cells 2: 104, 105, 109, 115 Pellia, seta 2: 114, 121, 130 Petasites, collenchyma cells 2: 111, 112 Philodendron leaf cells 2: 113 phloem cells 2: 107, 114 Phycomyces sporangiophores 2: 93, 100, 103, 127– 129, 132, 133, 135, 136, 138, 139 Pinus, tracheid 2: 114 pollen tubes 2: 98 Polystictus 2: 94, 98 potato, parenchyma cells 2: 104 protoplasm streaming theory 2: 139 Raphanus 2: 97 Rhizoclonium 2: 101
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Rhizophydium 2: 92 Rhodymenia palmata 2: 93 rib thickenings 2: 115, 117 Ricinus, primary xylem 2: 107 root hairs 2: 97 Secale, perivascular fibres 2: 108 Secale, staminal filaments 2: 121 Sinapsis 2: 97 Siphonocladales 2: 101 spiral orientation 2: 132 Spirogyra 2: 100, 139 Spongomorpha 2: 92 synthesis 2: 85, 139 tip-growth 2: 74, 96, 103, 113, 126 Tollypellopsis 2: 100 Tolypella 2: 100 Tradescantia virginica 2: 100, 101, 103, 114, 121, 122, 132, 139 Trianea bogotensis 2: 97, 139 Triticum 2: 97 turgor pressure and orientation 2: 120, 140 Valonia 2: 92, 94, 95, 101, 102, 115, 139 vascular elements 2: 107, 113, 115 wall stress theory 2: 139 yeasts 2: 91, 94, 117 Microfluorometry and conifer sporogenesis 15: 182, 183 Microginin 27: 215 Microgonium, cytology 4: 285 Microheterotrophic organisms grazing phytoplankton 16: 226 plant carbon utilization 16: 211, 212 Microinjection studies 31: 262, 271– 274 Microinjection, dye 22: 56 – 58, 66, 71 Microlepia, polyploidy 4: 322 Micrometeorology limitations 18: 199– 208 Micrometeorology, classical 18: 193– 198 Micrometeorology, limitations 18: 199– 208 Micromitrium cytotaxonomy 6: 242 Micromonadophyta 27: 275, 276 Micromonas pusilla, LHC 27: 275 Micromonas squamata 11: 93 Micromonospora 24: 405 Micronutrients and plant disease boron 10: 238– 243 copper 10: 229– 238
179
iron 10: 254– 257 manganese 10: 243–254 nickel 10: 260, 261 silicon 10: 261– 263 zinc 10: 257– 260 Micropeptins 27: 215 Micropipette selective extraction/ microsampling 31: 123 Microplot experiments 38: 27 Microprobe acceptance widths 18: 268 fabrication 18: 260– 270 fibre optic 18: 261 heating and stretching versus chemical etching 18: 260– 262 grinding and polishing 18: 263– 266 sputter coating and probe tip truncation 18: 262, 263 Micropropagation 23: 4 Microsatellites 34: 3, 44, 301; 35: 174 Microscopy for Dunaliella electron microscope 14: 119–122 light microscope 14: 118, 119 Microsome membrane fractions 3: 19, 20 Microspore embryogenesis 35: 61 – 81 for plant transformation 35: 82 – 84 gene expression during 35: 78 –81 identification 35: 63 – 66 pattern formation 35: 73, 74 stress as trigger 35: 62, 23 Microspore-based transformation 35: 81 – 94 genetic transformation technologies 35: 81, 82 maturation-based transformation 35: 85 – 94 dependence of male germ line transformation on reproductive strategies 35: 91, 92 fertile pollen in vitro 35: 85 – 87 gene targeting using microspores 35: 92 – 94 male germ line transformation (MAGELITR) 35: 87 – 91 pollen selection 35: 89 – 91 mature pollen-based transformation 35: 84
180
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Microspores albino plants 35: 75– 78 diploidization 35: 66, 67 “star-like” 35: 64, 65 Microspores, embryogenic cell-cycle events and cytoskeletal changes 35: 66 – 69 embryogenesis 35: 72 fate of 35: 71 – 73 fate of daughter cells 35: 69 – 71 indirect embryogenesis 35: 72 Microsporogenesis pteridophytes 16: 66, 67 see plants 16: 67, 68 Microsporum gypseum phosphodiesterase 8: 188, 198 phosphorus content 8: 142 Microtubules, UV radiation 22: 133 Microviridin 27: 215 Micrutalis malleifera 36: 148 Middle East 21: 88 Miersia chilensis karyotype evolution by centric fusion 6: 143, 181 Migration 21: 94 Millet 34: 41 Miltonia culture 7: 451 flowering period 7: 545 Mimicry 21: 57, 59, 71 Mimics 22: 21 Mimosa 18: 235 Mimosa pudica 28: 36, 37; 33: 42, 44 Mimosa, signal transmission 22: 165, 182, 185, 186, 187, 202 case studies 22: 192, 196– 200, 202 further research 22: 212– 216 pudica 22: 167, 177, 196 spegazzinii 22: 179, 196 Mimulus 22: 165 Mineral nutrient shortage 19: 131–133 Mineral nutrient uptake in roots 28: 30 Mineralization of tissue 16: 176– 178 Minimal pollen 35: 86 Minimedusa polyspora 26: 50, 54 Minor vein closed type 24: 319, 320 open type 24: 318
Miocene, see Early Tertiary Mirabilis jalapa 12: 137, 185 Mircrocoelia, flowering period 7: 540, 541, 547 Mires see also Marshes; Quaking bogs floating 16: 149 raised 16: 149– 151 Mitchellia 38: 296 Mitochondria 18: 134–137 and protein targeting 14: 6 – 13 binding of precursors 14: 9, 10 cleavage of precursors 14: 12, 13 synthesis of proteins 14: 6, 8, 9 translocation 14: 10 – 12 genome, retrotransposons 27: 345 HMG-CoA reductase activity in 14: 58, 59 integration of nuclear and plastid gene expression 27: 307, 308 isopentenyl diphosphate utilizing enzymes in 14: 63 mevalonate kinase activity in 14: 63 of Dunaliella 14: 120 permeability to isoprenoid intermediates 14: 66 ubiquinone synthesis in 14: 64 Mitochondria sedimentation 15: 20 Mitochondrial membranes ATP-ase 3: 33 freeze-etching 3: 31 negative staining 3: 18, 19, 45 reaction with OsO4 3: 13 X-ray diffraction 3: 4 – 7 Mitochondrion adenine nucleotide translocation 7: 64 and chloroplast membrane continuity 7: 21, 22 bursting in low osmolarity medium 7: 26 carbon sources 4: 62 carotenoid content 7: 48 evolution hypothesis 4: 51, 52, 102– 107 H+/O ratios 4: 87 – 90 lipid composition 7: 41, 43 measurement of P/O ratio 4: 83– 85, 91 membrane caniers 4: 63, 84, 106 composition 4: 63, 66 transport 4: 100– 102
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
morphological response to changing osmolarity 7: 56 oxidative phosphorylation 4: 61, 62, 67 phosphate transport 7: 60 phospholipid synthesis 7: 84 proton translocation 4: 87, 89, 92, 93 respiratory chain 4: 61, 62, 67 – 83 structure and function 4: 60, 61, 63 Mitogen-aciivated protein kinase (MAPK) 32: 7, 23 –25, 30, 54, 92, 93, 300– 341 Mitogen-activated protein kinase kinase (MAPKK) 32: 7, 23 – 25, 30, 337 Mitogen-activated protein kinase kinase kinase (MAPKKK) 32: 7, 23 – 25, 30, 114– 116, 337, 369 Mitosis and spaceflight 15: 35 Mitosis, UV radiation 22: 133 Mixed cropping 21: 98 Mixed cropping, biocontrol 26: 15 MIXTA 31: 195, 201, 205, 207– 212, 226 MIXTA-LIKE1 (ML1) 31: 207 MMK4 gene 32: 327, 361, 367, 394 Mniaceae distribution of polyploids 6: 218 Mnium 19: 251 M. cinclidioides cytotaxonomy 6: 242 M. maximowiczii sex chromosomes 6: 233 M. menziesii cytotaxonomy 6: 242 M. pseudopunctatum cytotaxonomy 6: 242 M. punctatum cytotaxonomy 6: 242 M. undulatum chromosome investigation 6: 198 polyploidy 6: 213, 214 Mnium hornum 19: 251, 263 “Moapa” cv. 18: 87 Mobile Delta (Alabama) 16: 146 MOD gene 32: 284 Models see Fungi Moh hardness scale 18: 263 Molecular analysis of Pyrenopeziza "brassicae cytokinins 24: 49 – 51
181
Molecular aspects of vacuole biogenesis 25: 43 – 58 Molecular aspects, wilt disease 21: 58 – 66 Molecular biology 24: 32 Molecular chaperones 25: 130– 132 Molecular control, flower development 26: 229– 250 ABC model 26: 238– 241, 244 ABCD model 26: 244, 245 MADS box genes 26: 234– 245 meristem transition 26: 235– 237 morphology 26: 230– 232 mutants 26: 233, 234 organ identity 26: 237– 241 ovule development 26: 241– 244 transposon system 26: 232, 233 Molecular genetics of natural variation 24: 243– 259 Molecular markers 34: 2, 3 – 7, 27, 41 –43 Molecular mechanisms in floral development 28: 217– 222 Molinia 22: 13 Molinia caerulea nitrate reductase 6: 22, 25, 30 Mollicutes 21: 189– 195 Molluscs, cysteine proteinases 26: 164, 165 Molybdate 22: 7 Molybdenum deficiency 29: 20, 21 Monarda fistulosa 31: 15 Monensin 25: 55 “Money Maker” cv. 18: 36 Mongeotia chlorophyll a/b ratio 10: 52 chloroplast movements 10: 30 Monilia fructicola, effect of photoalexins on spore germination 7: 512, 514, 517 Monilinia fructicola, phosphorus trans location 8: 200 Monilinia fructigena, phosphorus content 8: 130 Monimiaceae flowers 17: 105, 106 Monochromator 18: 270 Monochrysis lutheri, sodium tolerance 7: 147 Monoclea 19: 255, 289 Monoclea forsteri Hook 19: 257 Monocleales 19: 253, 271, 291
182
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Monoclonal antibodies 18: 138; 23: 31; 24: 275– 308 assay formats 24: 280–283 choice of subclasses 24: 279, 280 immunological estimation of colonyforming units 24: 293– 295 interference from soil components 24: 286 production of species-specific and genus-specific 24: 278– 280 sample preparation 24: 283 –287 thresholds for detection and quantal assay systems 24: 296– 298 use for biomass determination 24: 289– 293 use in detection of fungi in soils 24: 287– 289 use in quantification of fungi in soil 24: 289– 300 visualization of temporal and spatial growth characteristics of soilborne fungi 24: 300– 302 Monoclonal anticalmodulin 22: 109 Monocotyledonous plants, transport of storage proteins to vacuoles 25: 120– 123 Monocotyledons, anatomy of 1: 104 air-spaces 1: 131 bulliform cells 1: 131, 132, 134 crystals see also raphides 1: 127, 142 ecology 1: 112 epidermis cells 1: 121, 122, 131, 137, 141 hairs, capacity to produce 1: 113, 120 hairs, taxonomic significance 1: 120, 140 heredity, delimitation of structural variation by 1: 110 historical background 1: 104 laticifers 1: 127 leaves 1: 113, 127, 129– 144 oil-cells 1: 127 ontogenesis 1: 116, 118 papillae 1: 120, 137 physical support 1: 115 physiology 1: 114 pollen morphology see Palynology raphides see also crystals 1: 127 sclerenchyma 1: 132, 134, 137
silica deposits 1: 109, 111, 114, 121, 131, 137, 142 stability 1: 115 starch 1: 127 stomata 1: 113, 119– 121, 131, 137, 140– 142 structure in relation to size 1: 115 tannin 1: 127, 132, 134 taxonomy 1: 101– 116, 127– 129, 142 tracheids 1: 116, 118, 141, 143 vascular bundles 1: 131, 132, 134, 137, 138, 142, 143 xerophytic grasses 1: 113 Monocotyledons, Early Tertiary 17: 31, 32 see also Grasses, leaf fracture properties; Palms, Early Tertiary Monocotyledons, morphology and anatomy 3: 207– 292 axis 3: 238– 266 growth habits 3: 214– 238 influorescence 3: 266– 282 prophyll 3: 286– 288 stomata 3: 282– 286 Monoculture 21: 86 Monoculture decline, biocontrol 26: 9 – 11 Monod equation 16: 207 Monogalactosyldiacylglycerol (MGDG) 22: 131 Monogramma trichoida, polyploidy 4: 322 Monolayers, reaction with OsO4 3: 11, 12 Monomolecular model 38: 5 “Monosa” cv. 18: 13 Monostroma sp., stilbenes 27: 132 Monoterpene alcohols 31: 80 Monoterpene aldehydes 31: 80 Monoterpene ketones 31: 81 Monoterpenoid biosynthetic enzymes 31: 98 – 107 cyclohexanoid monoterpenoids 31: 99 – 103 cyclopentanoid (iridoid) monoterpenoids 31: 103– 107 genetic manipulation 31: 107– 110 trichomes isolation techniques 31: 97, 98 Monoterpenoid cyclases 31: 99 Monoterpenoid synthases 31: 98
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Monoterpenoids 31: 84, 85 biosynthesis in Labiates 31: 93 – 97 compounds in essential oils 31: 79 – 81 peltate glandular trichome accumulation 31: 91 – 93 structural aspects 31: 78, 79 Monstera 33: 65, 68 Monstera gigantea 33: 65 Montane environment 18: 224, 225 temperature differences 18: 226 transpiration rates 18: 227 Montane lakes, and fossil record 16: 131, 132 Moricandia arvensis 25: 375 Morinda citrifolia culture 13: 156 Mormodes flowering period 7: 546, 551 post-pollination phenomena 7: 580, 581 Morphactins, effect on growth of cultures of Cymbidium, 7: 481 Morphine production 13: 167, 170, 182 Morphogenesis 31: 237– 257 see also epidermal cell specification leaf trichomes 31: 238– 253 root hairs 31: 253– 257 Morphological aspects of light harvesting in algae macroalgae 10: 24, 25, 28 unicellular algae 10: 24 Morphological markers 24: 337 Morphological species concept 35: 175– 177 Morus alba 37: 110 Mosses 19: 233, 235– 253 acrocarpous 19: 245 arthrodontous 19: 243 nematodontous 19: 243 placenta in 19: 236 placental cells in 19: 238 Motility 11: 6, 7, 48 – 62 algal 11: 53 – 55 spermatozoal 11: 49 – 53 Motor activity 22: 203, 212 Mougeotia 33: 62 Mount Saint Helens 1980 eruptions 16: 152– 158 blast effects 16: 153–158 debris flow 16: 160– 163, 164– 165 lakes, effects on 16: 171
183
mechanism 16: 152, 153 vegetation recovery 16: 172– 174 Mountainous needle yellowing 18: 102 Mouse-ear cress 24: 227– 273 Movement proteins (MPs) 31: 271, 272 MP73 38: 70 MRC regions 24: 256, 264, 265 mRNA 25: 12, 30 MS 34: 73 MTX, see Maitotoxin Mucilagenous substances 31: 11, 12, 14 seeds 31: 19 Mucilages 30: 266 Mucor 24: 415 Mucor racemosus phosphorus content 8: 130, 134, 135, 142 polyphosphate utilization 8: 138, 178 Mucor rouxii, in vitro chitin synthesis 5: 139 Mucor-like zygomycetes 24: 412 Mul alleles 32: 237 Ma¨ule test, for lignin 8: 32 Multi-auto-transformation (MAT) system 34: 106 multidrug and toxic compound extrusion (MATE) family of transporters 37: 67 Multidrug resistance (MDG) 35: 28 Multidrug resistance-associated protein (MRP) related ATP-binding cassette (ABC) liketransporters 37: 58, 66, 67 Multidrug resistance-associated protein (MRP1) 25: 156 Multidrug resistance-associated proteins (MRP) 35: 28 Multilocus enzyme electrophoresis (MLEE) 24: 337, 340– 342, 344 Multilocus population structure 24: 17, 19 Multimode step index 18: 258, 259, 260, 268 Multiple transcripts, encoding 32: 275 Multipolypeptide chain proteins 25: 127 Multi-protein complexes 32: 313 Multivesicular bodies (MVBs) 35: 149 Multivesicular bodies 25: 23; 28: 133– 135 Mung bean, mitochondria 3: 19 Mung-bean, see Vigna radiata Muntjac deer, chromosome number 27: 431
184
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Murdannia spp., influorescence 3: 279, 281 Mus musculus 28: 13 Musa growth 3: 220– 222 M. itinerans 3: 220 vascular development 3: 264 Musa acuminata 21: 49, 50 Musa paradisiaca var. sapientum 31: 54 Musaceae growth 3: 220 influorescence 3: 278 Mussels fw, saxitoxin accumulation 27: 219 marine, hepatoxin accumulation 27: 225 Mustard oil bomb 35: 238 Mustard oils 35: 214 Mutable alleles 12: 109 Mutants 30: 11, 18, 25, 27 – 30, 51, 130, 264, 273, 292, 294, 301, 305– 307, 309, 310, 312 C4 photosynthesis 26: 295– 297 Petunia hybrida 26: 233, 234 meristem transition 26: 236, 237 organ identity genes 26: 237– 240 ovule development 26: 243 transposon system 26: 232, 233 siderophore production 26: 23, 24 Mutations due to transposable elements 12: 109– 151 Mutator elements, maize 27: 351– 356, 362, 387– 394 Mutualism see ‘Arbuscular’ mycorrhizal symbiosis Mya arenaria 12: 62 MYB 33: 205 MYC 33: 205 Mycelial cord formation and nutrient level 7: 391 Mycena galericulata, competitive ability in culture 7: 389, 396 Mycobacterium leprae 28: 13 Mycobacterium phlei ATP synthesis 4: 90 ATPase activity 4: 99 cytochromes 4: 75, 76, 78 respiratory control 4: 94 transhydrogenase activity 4: 69 Mycobacterium tuberculosis 28: 13
Mycoherbicides 33: 27 Mycoparasitism 26: 34 –38; 7: 402 plant-pathogenic 26: 136– 138 Mycoplasma 21: 190, 192, 194, 198 gallisepticum 21: 197, 198 hominis 21: 191 iowae 21: 191 mycoides 21: 191 pneumoniae 21: 191 pulmonis 21: 196 Mycoplasma genitalium 28: 13 Mycoplasma like organisms (MLOs) 23: 42 Mycoplasma-like organisms (MLOs) see Phylogeny Mycoplasmas 23: 32, 43 Mycorrhiza series of host-plants 20: 9 soil nitrogen supply to photosynthesising plants 20: 4 – 15 Mycorrhiza, effect of zinc on development 10: 259 Mycorrhizal symbiosis see ‘Arbuscular’ mycorrhizal symbiosis Mycorrhizas phosphatase 8: 184 phosphate uptake 8: 172– 175 phosphorus translocation 8: 202 utilization 8: 189– 192 phytase 8: 186 Mycosphaerella 21: 5 Mycosphaerella graminicola 24: 16, 345; 34: 263 Mycosporines 24: 78 Mycostop 26: 7, 9, 69 Myelin, nerve freeze-etching 3: 28, 34 reaction with OsO4 3: 13 X-ray diffraction 3: 3 – 6, 11, 12, 34, 42, 43 Mylabris sp., cantharidin 27: 226 Myoglobin, picosecond spectroscopy 8: 12, 14 Myoporum beckeri resin production 6: 285, 286 Myrcene 31: 98 – 100 Myrcene synthase 31: 100 Myricetin 35: 86
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Myrionecta rubra 19: 213 Myristaceae chromosome size 6: 189 Myrmecocystus, methyl salicylate secretion 20: 178 Myrmeleotettix isochromosome derivatives 6: 150 Myrogenospora atramentosa 24: 312 Myrosinase-associated proteins (MyAP) 35: 237 Myrosinase-binding proteins (MBPs) 35: 237, 238 Myrosinases 35: 214, 237, 238 cellular and subcellular location 35: 238 Myrothamnus 37: 106 Myrothamnus flabellifolia (resurrection plant) 12: 2 Myrsinaceae, as leaf nodule host 17: 164– 167 microsymbiont isolation from 17: 218, 219 Myrtaceae 37: 45 Myrtaceae, influorescence 3: 268 Myrtales 37: 45 Myrtenal 31: 130 Mysteries, see Facts/fallacies/mysteries Mytilus edulis (blue mussel) 12: 61, 62 Myxoma virus 24: 10 Myxomycetes, spherulins 27: 7 Myzus antirrhinii 36: 28 Myzus ascalonicus 36: 12 Myzus dirhodum 36: 35 Myzus nicotianae 36: 28 Myzus persicae 36: 2, 8, 11 – 13, 22, 26 – 33, 36, 38, 39 N gene 32: 79, 364, 365, 383, 391, 395, 396 N,N 0 -Dicyclohexylcarbodiimide (DCCD) 25: 325, 326, 328, 329, 377 N. flexilis 11: 55 elastic extensibility 6: 81 hydraulic conductivity 6: 90, 93, 94 reflection coefficients for non-electrolytes 6: 95 turgor pressure relaxation process 6: 92 N. inodorum chromosome evolution 6: 144, 177
185
N. insecta interspecific polyploidy 6: 210 N. nidusavis carbon dioxide fixation 7: 520, 525 respiration by flowers 7: 612 seed germination 7: 424 symbiosis 7: 489 N. nigra, phytoalexin production 7: 512 N. opaca 11: 56 volumetric elastic modulus 6: 76 N. orchioides, seed morphology 7: 427 N. pseudonarcissus chloroplast envelope 7: 51 chromoplast envelope isolation 7: 34 electrophoresis of polypeptides of galactolipid synthesis of chromoplast envelope 7: 57 lipid composition of chloroplast envelope 7: 38 N. pubescens, seed morphology 7: 427 N. scalaris interspecific polyploidy 6: 210 N. speciosa, seed morphology 7: 426 N. sylvatica, effect on metabolism of anaerobic conditions 7: 280 N. tabacum difference absorption spectra 10: 98 photosystem reaction centre complexes 10: 77 N. translucens hydraulic conductivity 6: 91, 94 reflection coefficients for nonelectrolytes 6: 95 volumetric elastic modulus 6: 76 N. vitalis, seed morphology 7: 427 N2O5 18: 51 NA, see Numerical aperture Na+/K+ – ATPase 28: 3 N-Acetyglucosaminidase 21: 47 N-Acetylation 21: 62 N-acetylcysteine 35: 215 N-Acetylglucosamine 19: 9 N-acetylglucosamine and glycoprotein formation 9: 9 N-acetylserine 33: 199 N-acylaspartate synthetase induction by auxins in pea 5: 55, 56 NAD 18: 151
186
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
NAD(P)H:quinone reductase 35: 248 NAD-glyceraldehyde-3-phosphate dehydrogenase in chloroplast envelope 7: 58 NADH and potassium transport and wound response 15: 131, 132 exogenous, and potassium ion influx 15: 130, 131 integrated model 15: 132– 136 NADH GOGAT 38: 166 NADH/NAD ratios 18: 162 NAD – malic enzyme 38: 141, 142 NAD-malic enzyme, C4 photosynthesis 26: 252, 253, 257, 287, 288, 296 NADP 18: 68, 145, 151 NADP+ 37: 23 NADP-glyceraldehyde-3-phosphate dehydrogenase in chloroplast envelope 7: 58 NADPH 18: 68, 78 NADPH oxidase 24: 118 NADPH2 production in photosynthesis 27: 264 NADPH-dependent polyhydroxy-naphthalene reductase 34: 270 NADPH-protochlorophyllide oxidoreductase (POR) 35: 20 NADP-malate dehydrogenase, C4 photosynthesis 26: 281– 284 NADP-malic enzyme, C4 photosynthesis 26: 252, 253, 256, 257, 268, 285, 286 Nadsonia see Yeast NahG gene 30: 307 Nairovirus 36: 116 NAK subfamily 32: 31 Nakienones 27: 214 Nannochloris atomus, spectral modification 10: 14 Nannochloris oculata, sodium tolerance 7: 147 Nannochloropsis sp., HCO2 3 influx 27: 132 Nannorrhops 3: 214 influorescence 3: 267, 270, 273 N. ritchieana 3: 270– 272 Naphthaleneacetic acid effect on orchids in culture 7: 458, 459, 461
post-pollination effects on orchids 7: 584, 592, 596– 599, 603, 607, 609, 611, 617, 619– 621, 625, 631, 632 Napin 35: 116 NAR1 30: 24, 26 Nar2 protein 30: 26 Narbonin 27: 33 Narcissus poeticus, chromoplast structure 7: 15 Nardia geoscyphus interspecific polyploidy 6: 210 Nardus stricta nitrate reductase 6: 23, 26, 27 Naringenin 20: 182 NarK genes 30: 23, 24 Narthecium ossifragum nitrate reductase 6: 22 Nastic movements 33: 42, 45 Nastic movements, in orchid flowers 7: 602 National Crop Loss Assessment Network (NCLAN) (US) 29: 34, 35 “National Pickling” cv. 18: 72 Natural ecosystems, fungal biology in 24: 183, 184 Natural variation, molecular genetics of 24: 243– 259 Navicula minima, quantum efficiency spectra 10: 74 N -Benzyladenosine, effect on orchids in culture 7: 463 Near field 18: 201 Near infra-red wavelength 18: 101 Necrosis 18: 92; 21: 70, 157, 160– 162; 35: 8, 33, 34 Necrosis-inducing peptides (NIPs) 21: 160– 162, 164, 166, 167 Necrotrophs 4: 2, 3, 32, 38 Nectar 31: 46, 49, 50 Nectar secretion 1: 216 Nectaries 31: 15, 18, 46 – 56, 65 Abutilon plasmodesmata 31: 265– 267 floral/extrafloral 31: 46 Gossypium hirsutum plasmodesmata 31: 266, 269, 270 Hibiscus plasmodesmata 31: 270, 271 structure 31: 46 Nectariferous tissue 31: 46 nectar secretion 31: 53 – 56, 267
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
pre-nectar modification 31: 49, 266 pre-nectar transport processes 31: 49, 51 –53 Nectar-secreting cells 31: 50 – 52 Nectary evolution 17: 133–135 Nectria haematococca 21: 5, 6, 23; 24: 172; 30: 310; 33: 235, 237 Negative phototropism 33: 65 Negative staining, cell membranes 3: 16 – 21, 44 Neisseria 24: 337 Neisseria gonorrhoeae 24: 341, 343, 405 Neisseria meningitidis 24: 341 Nematode infections assessing 23: 103– 127 Bursaphelenchus spp. 23: 123 Ditylenchus spp. 23: 123 DNA technology 23: 121– 124 nematology 23: 122 RFLP 23: 122 Globodera spp. 23: 123 Heterodera spp. 23: 123 Meloidogyne spp. 23: 123 molecular methods 23: 118 PCR 23: 124 phenomes 23: 124, 125 Pratylenchus spp. 23: 123 protein and isozyme analyses 23: 119 gel electrophoresis 23: 119 Radopholus spp. 23: 123 serology 23: 120, 121 immunization 23: 121 monoclonal antibodies 23: 120, 121 polyclonal antibodies 23: 120, 121 Xiphinema spp. 23: 123 Baermann funnel 23: 112–114 below ground 23: 111, 112 determinant 23: 108 EPPO 23: 118 extraction 23: 111 GFLV 23: 109 habitats 23: 105 horizontal migration 23: 107, 108 hyperplasia 23: 107 hypertrophy 23: 107 necrosis 23: 107
187
North Carolina Differential Host potato cyst nematode 23: 117, 118 quarantines 23: 117, 118 reliability 23: 112 resistance 23: 107 root galls 23: 115 secondary pathogen 23: 108 Seinhorst mist 23: 114 stimulation 23: 107 Test 23: 115 bacterial wilt 23: 109 biotechnology 23: 118– 126 characteristics 23: 104 defining 23: 117 dispersal patterns 23: 107, 108 ELISA 23: 109 etiology 23: 108– 110 Heterodera schachtii 23: 104 identification 23: 115– 117 information transfer 23: 127 light microscopy 23: 103, 104 Meloidogyne incognita 23: 104 molecular diagnostic probes 23: 127 morphology 23: 103 opportunities 23: 126, 127 parasitism 23: 105– 107 regulatory issues 23: 117, 118 RT-PCR 109, 110 sampling 23: 103, 112 signs and symptoms 23: 111, 112 soil extraction 23: 112– 114 systematics 23: 105 tissue extraction 23: 114 traditional procedures 23: 110– 118 virus-vectoring 23: 109 Nematodes, biocontrol 26: 17 – 19, 137, 146, 164 Neocallimastix frontalis 38: 98 Neodymium 22: 72 Neomenthol 13: 162 Neomycin 22: 108 Neorosea 17: 168 Neoteny palms 3: 224 “Spanish moss” 3: 229 Neottia aestivalis, seed morphology 7: 426 Neottia nidus-avis, green light harvesting 10: 59
188
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Neotyphodium lolii 30: 99 Nepenthes 37: 110 Nepenthes spp. 38: 193 Nepeta 31: 12, 91, 92, 99, 107 cyclopentanoid (iridoid) monoterpenes 31: 82 Nepeta cataria 31: 85, 92, 94, 104, 106 Nepeta racemosa 31: 59, 60, 83, 85, 89, 90, 92, 105– 107, 123, 140 Nepetalactone 31: 82, 85, 92, 94, 106, 107 Nephilium 33: 146 Nephotettix cincticeps 36: 142, 154, 155, 160 Nephotettix nigropictus 36: 152 Nephotettix virescens 21: 230; 36: 144– 146 Nepovirus 36: 170, 178– 180– 182, 186, 187, 189, 190 Nerium 22: 238 Nerium oleander 31: 20 Nernst equation 28: 28 Nerol 31: 81, 94, 98, 103, 104, 106 Nerve bundles, X-ray diffraction 3: 2 myelin freeze-etching 3: 28, 34 reaction with OsO4 3: 13 X-ray diffraction 3: 3 – 6, 11, 12, 34, 42, 43 Nervilia, flowering period 7: 537 Net primary production (NPP) 21: 90, 91 Net primary productivity and water use model 26: 193– 227 canopy gas exchange 26: 199– 202, 204– 206, 210, 212, 213, 215, 218 description 26: 195– 203 leaf area index 26: 199– 203, 215 leaf gas exchange 26: 196– 199, 202– 204, 210, 212 palaeosimulations 26: 207– 219 coal formation 26: 217– 219 model tests 26: 216–219 productivity 26: 208– 210 tree ring studies 26: 216, 217, 219 water use efficiency 26: 210– 214 respiration function 26: 202 soil nutrient effects 26: 219 tests 26: 203– 207, 216, 217
vegetation types 26: 203, 206 water availability 26: 195, 219 N-Ethylmaleimide (NEM) 25: 304, 307, 308, 321– 324, 379 N -Ethylmaleimide, in measurement of protein degradation 8: 106, 107, 121, 122 N-ethylmaleimide – GS 35: 28 Neuronal membranes, negative staining 3: 19 Neurospora 25: 412 amino acid pools 8: 76 N. crassa nucleic acid utilization 8: 187 phosphatases 8: 151, 184 phosphate content 8: 135, 136, 142, 146, 149, 178 phosphate efflux 8: 157, 195 phosphate uptake 8: 156, 160– 162, 164– 166, 168, 170– 172, 191 phosphorus and spore germination 8: 197, 198 phosphorus content 8: 130, 135, 140 nitrate reduction 6: 6 reduction of benzoic and cinnamic acids 8: 42 Neurospora crassa 21: 155; 24: 56; 25: 270, 272, 381; 28: 13; 30: 7; 32: 159; 33: 163, 200, 202; 34: 264 Neurospora crassa, nitrogen assimilation 20: 96 Neurotoxins 27: 216– 220 Neutral theory 24: 338– 340 Neutron activation analysis of sodium 7: 129, 130 Nevado del Ruiz eruption 1985 16: 165 Newcastelia viscida glandular hairs anatomy 6: 295 –297 occurrence 6: 291, 294 resin accumulation 6: 302 in arid conditions 6: 289 secretion 6: 290, 291, 304 structure 6: 283 synthesis 6: 290, 304 terpenoid composition 6: 282 yield 6: 289, 291
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
NFD, see Novel forest decline NH3 assimilation 18: 145 NH4, 138 assimilation 18: 154, 155 Nia2 seedlings 30: 29 Niacin, effect on orchids in culture 7: 467– 469 Niacinamide 34: 107 NiaD 30: 25 Nicandra physalodes isochromosomes 6: 148 Nickel 22: 72 Nickel, effect on plant disease 10: 260, 261 Nicotiana 12: 138; 19: 119; 22: 133, 174; 28: 215; 30: 215, 218; 31: 9, 21; 32: 451 debneyi 21: 18 glutinosa 21: 18 leaf trichome plasmodesmata 31: 271– 277 tabacum 21: 16, 50 Nicotiana alata 30: 212– 216, 221, 222, 231– 233, 240, 241, 268 Nicotiana benthamiana 31: 274; 32: 467, 468; 38: 271 Nicotiana clevelandi 31: 269, 272–276 Nicotiana edwardsoniia 30: 254 Nicotiana glutinosa 30: 213, 257, 260, 266; 31: 127 Nicotiana glutinosa N 24: 101, 108 Nicotiana plumbaginifolia 28: 11– 13, 21, 29, 94 Nicotiana plumbaginifolia 30: 17, 32, 35 Nicotiana plumbaginifolia mitochondrial protein 14: 8 Nicotiana rustica 19: 117, 124, 129, 131; 35: 20, 81 Nicotiana spp. DNA transposable elements 27: 352, 353 Ac superfamily 27: 402–405 Ac transposition 27: 403 genes cloned by transposon tagging 27: 396 Slide 27: 380 transposon trapping 27: 400
189
LTR retrotransposons Tnt1 element 27: 336, 340, 341 Tto1 element 27: 341 retrotransposons 27: 336, 337 Nicotiana sylvestris 32: 450 Nicotiana tabacum £ N. otophora megachromosomes 6: 131 Nicotiana tabacum (tobacco) 31: 4, 109, 122, 123, 127, 200, 269, 273, 274 recombinant DNA technology 31: 136 trichome development 31: 205, 212 Nicotiana tabacum 18: 52; 19: 50; 25: 46, 308– 310, 322; 28: 75, 94, 97, 99, 198, 203, 218, 239; 29: 126; 30: 216, 231– 233, 242, 243, 263; 32: 44, 209– 211; 33: 202; 35: 26, 62, 74, 81, 84 chimaeric genes 20: 216, 217 fungal infections, effects of salicylates 20: 210 O3 exposure 18: 58, 59 pathogenesis-related proteins 20: 205– 207 prostaglandins causing stomatal closure 20: 193 salicylate-binding protein 20: 215 TMV infection and disease resistance 20: 205 effects of salicylates 20: 210 salicylate conjugates 20: 214, 215 salicylates as endogenousmessengers 20: 212– 214 vacuolar chloride pool 20: 105 Nicotiana tabacum, chloroplast envelope pores 7: 81 Nicotiana tabacum, gibberellins biosynthesis 9: 86 identification 9: 43 Nicotiana tomentosa 31: 200 Nicotiana, chlorophyll content 10: 83 Nicotianum 18: 59 Nicotinamide 34: 108 Nicotinamide adenine dinucleotide (b-NAD) 22: 78, 79 Nicotine 31: 9, 200
190
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Nicotine production 13: 150– 152, 156, 166, 176 Nifedipine 22: 71, 72, 81, 82, 109 Nigella doerfleri centromere misdivision 6: 142 telecentric chromosomes 6: 138, 142 Nigritella angustifolia, seed morphology 7: 425 NiiA 30: 25 Nilaparvata lugens 36: 150 NIP1 38: 253 Nir genes 30: 21, 24 NiRC– FocA – FdhC family 30: 24 Nit1 gene 30: 26 Nitella 11: 6, 55 – 57; 22: 202, 210; 25: 420; 29: 81 cell-wall synthesis 2: 85, 87 chemical content of cell walls 2: 79 microfibrillar arrangements 2: 93, 98, 100, 101, 104, 114, 123– 127, 134– 143 Nitella translucens, phosphate uptake 8: 191 Nitella, freeze-etching 3: 34 Nitella, orientation of cellulose 5: 110, 111 Nitellopsis 25: 178; 29: 97, 101 Nitellopsis obtusa 30: 53 elastic extensibility 6: 81 volumetric elastic modulus 6: 75, 77 Nitrate 18: 41; 22: 243– 245, 264– 266, 273– 275, 280, 284, 285; 25: 409– 411 as a nitrogen source 6: 14 – 24 assimilation 29: 22 control of nitrogen assimilation 6: 10 – 12 in soil 29: 4 in the soil 6: 14, 16 – 19 nitrogen acquisition by ecosystems 6: 12 – 14 utilization 29: 17, 18 Nitrate efflux 30: 52 – 57 effect on physical perturbation 30: 52 – 54 measurement of 30: 54 metabolic cost of nitrate absorption 30: 56, 57 role in uptake control 30: 55, 56 xylem loading and 30: 57 Nitrate fluxes and phytoplankton production 16: 235
Nitrate for Dunaliella metabolism 14: 137– 139 vs. ammonium 14: 109, 110 Nitrate induction 30: 11 – 13 Nitrate receptors 30: 11 – 13 Nitrate reductase 22: 130, 131, 244; 32: 441– 444 and nitrate uptake 6: 3 and plant yield 6: 35 – 37 as a measure of nitrate utilization 6: 19 –22 kinetics 6: 24, 25 turnover rates in different species 6: 26 Nitrate reductase activity and sodium requirement 7: 126 Nitrate reductase, inactivation 8: 111– 113 Nitrate respiration in Paracoccus denitrificans 4: 57, 59, 67, 74, 75, 77, 81 Nitrate transport 30: 11, 12, 16, 21 – 28, 30 – 40 genes 30: 30 – 38 mutants 30: 28 – 30 Nitrate uptake energetics of 30: 5 inhibition by ammonium 30: 13 – 15 kinetics of 30: 5 – 10 modelling 30: 60, 61 regulation 30: 11 –19 see also transporter genes, uptake systems shoots 30: 61 – 67 Nitrate, cytosolic 30: 18, 19 Nitrate –Nitrite Porter (NNP) family 30: 27, 33 – 38 Nitrendipine 22: 71 Nitric oxide (NO) 29: 42 Nitric oxide, see NO Nitrifiers, ammonium in chemolithotrophism 27: 90, 91 Nitrite 22: 243 Nitrite ions 18: 41 Nitrite reductase 18: 47, 84; 22: 244 Nitrite reductase in Dunaliella 14: 137, 138 sodium chloride inhibition 14: 138, 139 Nitrite transport 30: 21 – 24, 34, 35 Nitrobacter oxidation of nitrate 6: 14
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Nitrobacter, ATP synthesis 4: 90 Nitrogen 25: 77; 28: 147 see also Water and Nitrogen supply concentration and host susceptibility 10: 224, 226, 228, 231, 233, 262 content 18: 40 deficiency 30: 19 deficiency and plant adaptation 10: 222, 223 deficiency in algae, and lipid metabolism 16: 47 fixation 18: 148; 30: 49 for phytoplankton 16: 206, 207 excretion and grazing rate 16: 211 nutrient budgets 16: 212, 213 in soil 29: 17 – 20 in the environment acquisition of nitrogen by ecosystems 6: 12 – 14 assimilation 6: 35 – 39 ecological adaptations of nitrogen mineralization and nutrification 6: 14– 18 nitrogen source for plants 6: 12 – 24 metabolism 18: 144 mutualism and parasitism 22: 8, 23 North West Europe shelf sea availability 16: 223, 224 nutrition 30: 3, 4 oxide, see NO; NO2 processing 18: 153– 160 bacteroid functions 18: 153, 154 salinization, transport and 29: 160, 161 storage in fungal vacuoles 28: 144 supply and RuBPc’ase 10: 41 supply, manipulation of 30: 62, 63 transport and metabolism 18: 129– 164 transport in fungal vacuolar systems 28: 147– 149 uptake and assimilation ammonia assimilation 6: 6 –8, 26– 35 control of nitrogen assimilation 6: 8 – 10 nitrate reduction 6: 5, 6, 24 – 26, 35 – 37 nitrogen fixation 6: 4, 5, 12 – 14, 37, 38 sites of nitrogen assimilation 6: 10 – 12
191
the uptake of nitrogen and ammonia 6: 2 – 4 UV radiation 22: 130, 131 Nitrogen assimilation and pH regulation 5: 193, 198 Nitrogen content of orchid flowers after pollination 7: 599 Nitrogen deficiency 37: 110 Nitrogen dioxide as air pollutant 29: 39, 41, 45, 46 Nitrogen fixation 13: 70, 105, 106 Nitrogen fixation controversy in leaf nodules 17: 224–226 Nitrogen fixation, and growth promotion organisms 26: 47 Nitrogen metabolism 33: 195, 196 Nitrogen oxide emissions 29: 32, 46 – 48 Nitrogen source and Dunaliella, see also carbon metabolism 14: 146, 148 growth 14: 109, 110 Amino acids in Dunaliella Dunaliella for Dunaliella; Nitrate for Dunaliella; Nitrite reductase in proteins; Ammonium vs. nitrate Nitrogenase 18: 151, 152 and nitrogen fixation 6: 4, 5 Nitrogenase activity 13: 105, 106 Nitrogenous compounds 18: 41 Nitrogenous gases 18: 34 Nitrosomonas oxidation of ammonium to nitrate 6: 14 Nitrosomonas europaea, transhydrogenase activity 4: 69 Nitrous oxide 21: 95 NLT1 30: 39 N-methoxyindole-3-carbinol 35: 249 N-methoxyindolyl glucosinolate 35: 249 N-methyl nucleosidase 30: 156, 157 N-Methyl-D-aspartate (NMDA) 22: 73 N-methyltransferases 30: 150– 153 NMR 22: 87 NMR spectroscopy 31: 154, 162, 167, 168 NO 18: 34 bioindication 18: 91, 92, 97 fumigations, short and long-term 18: 36, 37 NOx exposure 18: 35, 38, 40, 42
192
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
NO2, 34 see also O3/NO2 exposures; SO2+NO2+ O3 bioindication 18: 91, 97, 101, 104 NOx exposure 18: 35, 38, 39, 40, 41, 42 O3 exposure 18: 61, 62, 68 O3/SO2 exposures 18: 70, 79 SO2 exposure 18: 43 –49 diffusive resistance 18: 47 long-term 18: 48, 49 respiration responses 18: 47, 48 short/long-term 18: 44, 45 SO2 fumigation 18: 46 sunflower leaves 18: 83 NO3 and O3/SO2 exposures 18: 79 NOD26 25: 423 Nodularia 12: 48 akinete production 13: 125, 126 distribution 13: 70 nitrogen fixation 13: 106 survival strategies 13: 131, 132 Nodularia spumigena 27: 224, 235, 238 Nodularia spumigenea 13: 133 distribution 13: 70 shape 13: 73 Nodularins 27: 220– 227 antibodies 27: 231 as tumour promoters 27: 237 isolation, detection and analysis 27: 228– 233 list and properties 27: 223 mechanism of action 27: 222– 226, 232 structure 27: 224 Nodulation of legumes by Rhizobium involving lectins 4: 31 Nodule anatomy and terminology 18: 131– 140 bacteroids 18: 139, 140 infected cells organization 18: 134– 139 tissues and cell types 18: 131– 134 Nodule, cross-section 18: 133 Nodule, infected/uninfected cell 18: 135 Nodules, see Leaf nodule symbiosis NOECK (NOK ) 31: 202, 249 Nonallelism 24: 248– 254 Non-aqueous fractionation 25: 197 Non-cellulosic components of cell walls composition of primary wall in sycamore 5: 93, 118
enzymic fractionation of cells 5: 92, 93 extraction from whole cells 5: 92, 93 structure of primary wall of sycamore 5: 94, 95 Non-circulative viruses 36: 2 Noncoding sequences 32: 63 Non-fluorescent chl catabolites (NCCs) 35: 13, 18 fragmentation 35: 18, 19 malonyltransferase 35: 17 modification to 35: 17, 18 Non-fluorescent chlorophyll catabolites (NCCs) 25: 99 Non-glandular trichomes 31: 4 classification 31: 6 functions 31: 13 Non-host resistance 21: 2 Non-persistent viruses, definition 36: 1, 47 Non-radiometric dyes, calcium 22: 49 – 56, 68 Non-renewable resources 21: 82 Non-specific lipid transfer proteins (nsLTPs) 34: 211, 212 Non-transport molecules 32: 469 Non-wetland plants adaptability 7: 299, 300 analogue data 7: 300– 302 critical oxygen pressures 7: 298, 299 oxygen transport in pea 7: 302–305 Nopaline synthase down-regulation 34: 97 Norbornadien 21: 18 Norflurazone 34: 254 Normalization, data 21: 236 Normapolles 38: 284 North American Plant Protection Organisation (NAPPO) 23: 20 North Carolina Differential Host Test 23: 115 Northern blot 35: 80 Northern blot analysis 21: 46 Northern red oak 18: 81 Northoscordum karyotype evolution by centric fusion 6: 177, 178 Norway spruce, see Picea abies Nos terminator 34: 94
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Nostoc 30: 209 photosystem reaction centre complexes 10: 79, 81 phycobiliproteins 10: 67, 68, 115 Nostoc commune 27: 235 Nostoc muscorum 27: 215 Nostoc spp., lists and properties of microcystins 27: 221– 224 Nostoc, emission spectrum 5: 23 Nostoc, gas vacuole 13: 81 Nostoc, life cycle 16: 56 Nostocales distribution 13: 70 nitrogen fixation 13: 70, 105, 106 perennation 13: 125 renewed growth following bloom dispersal 13: 125 secondary structures 13: 73 survival strategies 13: 131, 132 Nostocyclamide 27: 215 Nothofagus betuloides bulk modulus 6: 79 volumetric elastic modulus 6: 75 Nothofagus, Early Tertiary cladistic analysis 17: 48, 49 in Australia 17: 82 – 84 Notothyladaceae 19: 295 Notothylas 19: 275, 279, 281, 295 Notothylas orbicularis 19: 305 Novel forest decline (NFD) 18: 69, 86, 92, 93, 97 air pollutants, specific 18: 104 bioindication 18: 99 Novel genes 34: 49 – 50 Novel spruce decline 18: 91 NOx 18: 2, 3 bioindication 18: 97, 102 detoxification 18: 84 exposure, long-term 18: 40 – 42 exposure, short-term 18: 38, 39 O3/SO2 mixtures 18: 70 photosynthesis response and diffusive resistance 18: 34 –42 SO2/NO2 mixtures 18: 43 stomatal uptake 18: 38, 39, 41, 42 nph1 mutant 32: 169 NPP see Net primary productivity NPR1 signalling protein 38: 264, 265
193
NR gene 32: 124, 324 NrDNA-ITS 35: 176 Nrg mutants 30: 18 Nrt genes 30: 22, 23 NRT1, see transporter genes NRT2, see transporter genes NTPP-binding protein 25: 51, 52 NuCaGreen dye 22: 56 Nuclear DNA cleavage 24: 214, 215 Nuclear DNA, separation of 19: 203– 206 Nuclear envelope membranes, freeze-etching 3: 28 Nuclear magnetic resonance (NMR) 11: 4, 5 Nuclear magnetic resonance (NMR) spectroscopy 25: 17, 173, 174, 402; 35: 11 Nuclear magnetic resonance 20: 43 – 123 Bloch equations 20: 54, 57 chemical-shift imaging 20: 84 CP—MAS NMR 20: 53 experimental considerations 20: 60 – 72 high-resolution NMR spectroscopy see also Radioisotopes 27 Al NMR 20: 100 35 Cl and 37Cl NMR 20: 105 133 Cs NMR 20: 106 19 F NMR 20: 97, 98 1 H NMR 20: 88, 89 2 H NMR 20: 51 39 K NMR 20: 105, 106 14 N and 15N NMR 20: 94 – 97 23 Na NMR 20: 98, 99 13 NMR 20: 89 –94 31 P NMR 20: 88, 89, 100–105 information analytical 20: 80 – 84 dynamic 20: 84 –86 high-resolution NMR spectroscopy 20: 87 – 106 NMR imaging 20: 79 – 86 solid-state NMR, 20: 106, 107 water signals 20: 72 – 79 literature reviews 20: 45 physiological requirements of the tissue 20: 65 – 72 principle of NMR 20: 45 – 48 radioisotopes 20: 52
194
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Nuclear magnetic resonance (continued) see also—, high-resolution NMR spectroscopy signals 20: 53 – 60 frequency 20: 56 intensity 20: 54 – 56 line-shape and line-width 20: 57 – 59 relaxation times 20: 59, 60 water signals 20: 72 – 79 spectrometer design and sample choice 20: 60 – 65 techniques 20: 48 – 53 detection of water signal 20: 49, 50 high-resolution NMR spectroscopy 20: 51 – 53 imaging 20: 50, 51 solid-state NMR spectroscopy 20: 53 typical parameters, parts of plant 20: 81 water signals 20: 72 – 79 paramagnetic ions 20: 77 – 79 water content and compartmentation 20: 72 – 76 water flow 20: 76, 77 Nuclear-run-on transcription assays 37: 99 Nuclear stock production, definition 23: 3 Nuclear – chloroplast interactions in leaf development 28: 179– 183 Nucleic acid-based techniques 23: 37 – 45, 83 –92 Nucleic acids 25: 96 Nucleic acids bacterial and mitochondrial homology 4: 52 Nucleic acids in Dunaliella 14: 133, see also ATP Nucleic acids in legume seeds changes during seed development, 9: 18 – 21 control of protein synthesis 9: 21 – 24 Nucleic acids, UV radiation 22: 104 see also DNA, RNA Nucleomorph 19: 192– 207 derived from red algal nucleus 19: 201 DNA content 19: 195, 196 electrophoretic karyotype of 19: 207 eukaryotic ribosomes around 19: 196– 200 isolation of 19: 203– 207 nucleus-like characteristics 19: 192– 195
origin of 19: 200– 203 role of 19: 216– 218 structure 19: 192 Nucleomorph DNA 19: 216 separation of 19: 203– 206 Nucleoplasmin targeting 14: 4, 7 and ATP 14: 6 Nucleotide sugar donors in cellulose synthesis 5: 136, 137 in chitin synthesis 5: 138, 139 in synthesis of non-cellulosic materials 5: 139 orientation of cellulose 5: 105– 111 site of synthesis of cell wall components 5: 102, 103 Nucleus and protein targeting 14: 4 – 6 of Dunaliella 14: 120 “Nugget” cv. 18: 11, 53 Null alleles 35: 186, 187 Null hypothesis 21: 218 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 see also Phytoplankton, marine Number of trichomes 31: 137, 138 Numerical aperture (NA) 18: 257, 258 Nuphar advenum, photosynthesis and aeration 7: 297 Nuphar lutea 22: 168 Nusselt number 18: 213, 214 Nutricline 25: 77 Nutrient competition, biocontrol 26: 21, 22 Nutrient control theory 19: 112– 116 shortcomings of 19: 113– 116 Nutrient status and transport, microscale study 29: 162– 171 Nutrient stress and plant disease guidelines for experimentation 10: 268, 269 macronutrients nitrogen 10: 226– 228 phosphorus 10: 224, 225 potassium 10: 225, 226 sulphur, magnesium and calcium 10: 228
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
micronutrients boron 10: 238– 243 copper 10: 229– 238 iron 10: 254, 255 manganese 10: 243– 254 nickel 10: 260, 261 silicon 10: 261– 263 zinc 10: 257– 260 Nutrient transport 28: 28 Nutrients 18: 92, 102 Nutrients for phytoplankton, 16: 204– 209 growth models 16: 207 light interaction 16: 208, 209 nitrogen 16: 206, 207 limitation 16: 206 North West Europe shelf sea availability 16: 223– 225 nutrient budgets 16: 212, 213 and productivity estimates 16: 228– 230 sources 16: 205 steady state conditions 16: 208 Nutrients, biotrophic accumulation 24: 313– 316 Nutrition, strategy for 24: 311– 313 Nutritional security 21: 92 – 94 Nutritional status 18: 82 Nuts, fracture properties 17: 276– 278 Nyctaginaceae 37: 50 Nymphaea 37: 42 Nymphoides 31: 19 Nymphoides peltata 22: 168, 170 Nypa growth 3: 222, 224 influoresence 3: 277 Nyssa 38: 286 Nyssa aquatica, effect on metabolism in anaerobic conditions 7: 280 Nyssacaeae 37: 153 o-(a-L -rhamnopyranosyloxy)-benzyl glucosinolate 35: 219 O. acuminata, seed morphology 7: 426 O. apifera, pseudocopulation 7: 565 O. arachniformis, pseudocopulation 7: 564 O. arachnites, phytoalexin production 7: 512
195
O. aristata, symbiotic specificity 7: 497 O. bertolonii, labellum ultrastructure 7: 636 O. bictonense, flowering period 7: 546 O. bifolia, carbon fixation 7: 520 O. brevicornu, seed morphology 7: 425 O. citrosmum, flowering period 7: 546 O. coriophora phytoalexin production 7: 512 seed morphology 7: 425 O. dispar chromosome evolution 6: 144, 145, 155 O. flexuosum, carbon fixation 7: 526, 529 O. fragrans, seed morphology 7: 425 O. funerea, seed morphology 7: 427 O. fusca, pseudocopulation 7: 562, 565 O. grande, effect of auxin in culture 7: 460 O. insectifera pseudocopulation 7: 563 ultrastructure 7: 501 O. lactifolia carbon fixation 7: 520 phytoalexin production 7: 512 seed morphology 7: 425 UV flower image 7: 634 O. lanceanum, carbon fixation 7: 526, 528 O. limosa, photosystem reaction centre complexes 10: 78, 81, 85 O. longicornu, seed morphology 7: 425 O. lutea, pseudocopulation 7: 562 O. maculata phytoalexin production 7: 512 seed morphology 7: 425 O. mascula carbon fixation 7: 520 phytoalexin production 7: 512 O. militaris, phytoalexin production 7: 510– 513, 517, 519 O. morio carbon fixation 7: 520 phytoalexin production 7: 508, 509, 512 seed germination 7: 424 symbiotic specificity 7: 496 O. pescatorei, seed morphology 7: 425 O. planilabre, pollination 7: 561, 566 O. pulvinatum, seed morphology 7: 426 O. pumilum, carbon fixation 7: 526 O. rupestre intraspecific polyploidy 6: 211
196
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
O. schlieperianum, effect of auxin in culture 7: 460 O. speculum, pseudocopulation 7: 562 O. sphacelatum carbon fixation 7: 526 flowering period 7: 546 O. sphacelatum, seed morphology 7: 425 post-pollination phenomena 7: 576, 593, 600 O. sphecodes provincialis, pseudocopulation 7: 565 self-pollination 7: 566 O. splendida, photosystem reaction centre complexes 10: 79, 81, 85 O. splendidum, flowering period 7: 546 O. tenellum micro-chromosomes 6: 229 O. wahlenbergii chromosome number 6: 206 O2 uptake, C4 photorespiration 26: 290– 292 O2, 51 see also Superoxide carbon processing 18: 145 infected cells 18: 135, 136 microaerobic conditions restrictions 18: 161– 163 O3 exposure 18: 64 O3 18: 2, 3, 5 see also SO2+NO2+O3 acid precipitation 18: 79 – 82 bioindication 18: 91, 95, 97, 98, 99, 100, 101, 104 ecological effects, long-term 18: 69 endogenous metabolites 18: 94 fumigations 18: 71 – 73 long-term 18: 75 – 79 short-term 18: 70 – 75 fumigations short and longterm 18: 52 – 57 leaf pigments 18: 92 long-term response 18: 68 NO2 exposure 18: 84 NOx exposure 18: 39, 42 photosynthesis response 18: 49 – 69 long-term 18: 62 – 69 short-term 18: 51 – 62 poplar, hybrid 18: 67 respiration response 18: 67, 68
short-term 18: 50, 62 SO2 mixtures 18: 69 – 78 soybean 18: 60 stomatal uptake and plant response 18: 59 – 61 sunflower leaves 18: 83 tropospheric 18: 102 O-acetylserine (OAS) 33: 188, 192, 195, 196, 199 O-acetylserine (thiol) lyase (OASTL) 33: 188, 189, 191– 194, 196, 197, 206 Oak 19: 131; 21: 49 Oak wilt 33: 27 Oat blue dwarf Marafivirus (OBDV) 36: 159 Oat golden stripe virus (OGSV) 36: 56, 58 Oat mosaic virus (OMV) 36: 56 Oats (Avena sativa) 34: 40 lipids 34: 213 Oats 22: 59, 121, 146 Oats, chlorosis of 1: 92 Oats, see Avena sativa Occurrence anthocyanins 37: 18 – 20, 38, 39 melanins 37: 20 – 22 Oceans, population pressure 21: 90 Ochromonas dancia 19: 211 Ochromonas danica, porphyrin-ring layer 3: 122 Ochromonas malhamensis osmoregulation 6: 99, 100 Ochromonas malhamensis, myelinic stabilization 3: 12 Ochromonas sp., state transitions 27: 266 Ocimum (basil) 31: 78 Ocimum basilicum 31: 7, 28, 29, 89 Octadecylsilane, separation of gibberellins 9: 57 Octomeria lancifolia, seed morphology 7: 425 Octyl-b-D-glucopyranoside, thylakoid extraction 10: 104 Odontella 19: 211 Odonthalia sp., d13C values 27: 150 Odontoglossum culture 7: 451, 468 longevity of flowers 7: 569 Odontosoria, fossil record 4: 245, 248
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Oedogonium gametogenesis 16: 58, 59 Oenocarpus disticha, distichy 3: 224 Oenothera 28: 237 Oenothera hookeri, chloroplast envelope plastid membranes 7: 20 structure 7: 12 Oenotheraceae 33: 58 Ogallala Aquifer 21: 88 “Ogle” cv. 18: 89 OH 18: 77 3-OH-anthocyanidins 37: 65 Ohms’ law 18: 210 Oil body 35: 112 formation, ER insertion and 35: 131– 133 maize, structure 35: 126 Oil cells 31: 58 Oil-seed rape, see Brassica napus Okadaic acid 28: 45; 32: 87 pathway, tumours 27: 236 protein phosphatase inhibition 27: 224, 226 Oleanolic acid structure 6: 283 Olearia meulleri resin yield 6: 289 Oleoresins occurrence 6: 281 resistance to insect attack 6: 309, 310 Oleosin distribution 35: 113, 114 abundance and polymorphism of seed 35: 114, 115 breakdown during germination 35: 118 breakdown in developing seeds 35: 118, 119 sequences 35: 119 spectroscopic and predictive studies 35: 119–125 synthesis in developing seeds 35: 116– 118 Oleosin-b-glucuronidase 35: 123 Oleosins insertion into ER membrane 35: 131 organization at oil body surface 35: 125– 127 targeting in vitro and in vivo 35: 127– 129 targeting information 35: 130 Oleosomes see oil bodies
197
Oligo-b-(1 ! 3),(1 ! 6)-glucans 19: 58 Oligocene see also Early Tertiary angiosperms 17: 27 climate 17: 9 Eocene boundary 17: 4, 8 Oligogalacturonides 19: 19, 22, 23, 27, 28, 44, 50, 51, 70 Oligogalacturonides 21: 7, 10, 20 Oligo-b-glucans 19: 7 – 12, 22, 42, 43 receptors for 19: 41 – 43 Oligo-b-glucosides 19: 9, 10 Oligopeptides 21: 10 Oligosaccharides 19: 2; 21: 7, 47, 59, 60, 71; 22: 171; 25: 202 direct effects on enzymes 19: 56– 58 evidence for receptors 19: 41 – 46 fucose-free 19: 14 of chitin 19: 34, 35 of chitosan 19: 35– 37 of pectin 19: 17 – 32 purification and chemical characterization 19: 6, 7 raffinose-series 25: 207, 208 sequencing 19: 7 structure-activity relationships 19: 9 xyloglucan-derived 19: 12 – 17 Oligosaccharin-induced changes in cell wall composition 19: 28, 29 Oligosaccharins 19: 1 –101 artificial 19: 3 bioassays 19: 5, 6 diversity of 19: 38 from N-linked glycoproteins 19: 37, 38 glycoprotein-derived 19: 61, 62 mechanism of formation and degradation 19: 62 – 74 membrane depolarization 19: 46 mode of action 19: 41 – 58 movement within plant 19: 74 – 77 natural occurrence 19: 58 – 62 oligo-b-xylans as 19: 32 – 34 origin of concept 19: 2, 3 oxidative metabolism 19: 49– 52 physiology of effects 19: 7 –41 preparation 19: 3 –5 method 1: 19: 3
198
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Oligosaccharins (continued) method 2: 19: 3, 4 method 3: 19: 4 method 4: 19: 4, 5 protein phosphorylation 19: 52, 53 rapid effects of 19: 46 – 56 receptors for 19: 43 –46 second messengers 19: 53, 54 successful host or successful pathogen? 19: 39 synergism between 19: 40, 41 xylan-derived 19: 34 Oligotrichum 19: 247 Oligotrichum hercynicum 19: 249 meiotic abnormalities 6: 222 origin of polyploidy 6: 216 Oligo-b-xylans as oligosaccharins 19: 32 – 34 Olisthodiscus luteus 19: 211 Olisthodiscus spp., RUBISCOs, Kc values (table) 27: 104 Oliveonia pauxilla, symbiotic specificity 7: 496 Olpidium 24: 313; 36: 48 Olpidium bornovanus 36: 51, 52, 55 Olpidium brassicae 36: 48, 50 – 52, 55 –57 Olpidium brassicae, iron and host resistance 10: 255 Olpidium radicale 36: 50 Olson scheme 35: 7 Omeprazole 28: 27 4-O-methyl D -glucuronic acid 34: 173 4-O-Methyl ether 19: 32 O-Methyl transferases, in lignin biosynthesis 8: 39 –41, 49, 50, 58 Onchophorus virens chromosome number 6: 206 Oncidium longevity of flowers 7: 569 Oncogene 32: 88 Onion root, freeze-etching 3: 24, 34 stem, negative staining 3: 20 Onion see Allium Onobrychis viciifolia 18: 130 Onochlea fossil record 4: 234, 235 O. hesperia, fossil record 4: 251
O. inquirenda, fossil record 4: 247 O. sensiblis, heterozygosity 4: 379 Onsager reciprocity relation in membrane transport 6: 51, 53, 58 Ontogenesis fossil plants 1: 6 – 8, 11, 21, 41, 43, 45, 47, 49, 58 monocotyledons 1: 116, 118 Onychiopsis psilotoides, fossil record 4: 234, 235, 248 Onychium japonicum, structure 4: 234, 235, 248 Oodinium dogieli 12: 233 Oogenesis bryophytes/homosporous pteridophytes 16: 59 – 63 heterosporous pteridophytes/seed plants 16: 63, 64 Oomycetes 24: 227–273 see also Sporangiogenesis; Zoosporogenesis asexual sporulation 24: 353– 398 flagellar apparatus 24: 354 pathogenicity 24: 354 taxonomy 24: 354 zoospores 24: 354– 357 Oo¨mycetes 2: 70, 76 Oomycetous parasites 24: 198– 206 Oomycin A, biocontrol activity 26: 29, 31 Oospores 24: 23 formation 24: 16, 17 Open reading frame (ORF) 21: 153, 154, 157, 177 Open-reading frames (ORFs) 24: 42, 131, 132 Open-top chambers 18: 27, 62, 63 Open-top field chambers 18: 5, 6 Ophiobolus graminis, see Gaeumannomyces graminis Ophioglossales, cytology 4: 284, 285 Ophioglossum, cytology 4: 284, 285 Ophiognomonia sp. 33: 13 Ophiostoma novo-ulmi 24: 14, 19 Ophrys self-pollination 7: 566 Optical fibre 18: 257–260 acceptance angle 18: 258 buffer coatings 18: 262
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
general characteristics 18: 257, 258 guiding of light 18: 257 transmission characteristics 18: 259, 260 types 18: 258, 259 Optical mixing spectroscopy 11: 2, 3, 16 –25 Optical properties and probes 18: 268– 270 Opuntia 33: 44 Orchidaceae carbon fixation C3 photosynthesis 7: 522– 527, 529 C4 photosynthesis 7: 529, 530 Crassulacean acid metabolism 7: 521– 529 fixation by different plant organs 7: 530-532 history 7: 519– 521 flowers history 7: 534 introduction 7: 534– 552 pollination 7: 552– 566 post-pollination phenomena 7: 566– 617 induction of post-pollination phenomena abscisic acid 7: 632 auxin 7: 621, 622 cytokinins 7: 631, 632 emasculation 7: 619 ethylene 7: 622– 631 gibberellins 7: 632 hormone interactions 7: 623, 633 pollination 7: 619 photorespiration 7: 532 stomatal rhythms 7: 521 phytoalexins action spectrum and activity 7: 512– 517 biological role 7: 517– 519 chemistry production and distribution 7: 510– 512 history 7: 508– 510 seeds asymbiotic germination 7: 441– 489 external morphology 7: 438 history 7: 423– 437
199
longevity 7: 441 structure and ultrastructure 7: 438– 441 symbiotic germination 7: 489–506 tissue culture 7: 634, 635 Orchidaceae, stomata 3: 284 Orchidantha, growth 3: 221 Orchids 22: 5, 10, 15 Orchids, Crassulacean acid metabolism in 15: 69 Orchis 3: 214 nitrogen metabolism 7: 447 stomata 3: 284 Oregon Green 28: 121 Oreina 30: 100 Organ identity functions, conservation 28: 219– 222 Organ shape regulation 32: 231– 233 Organelles and colloids, cytoplasmic, hydration 3: 178 Organelles of endocytic pathway 28: 131– 135 Organic acids 18: 140–145 Organic acids, compartmentation and transport 25: 372– 382 Organic amendments biocontrol 26: 11, 12 Organic solutes 24: 114, 115 Organic substances in the plant 1: 209 Organogenesis in leaf development 28: 166– 171 Orientation of cellulose colchicine experiments 5: 105, 106, 108– 110 in Chaetomorpha 5: 105 in Cladophora 5: 105 in Nitella 5: 110, 111 in Oocystis solitaria 5: 105– 111 in Porteriochromonas stipitata 5: 105, 106 Orientation of pigments within photosynthetic apparatus determination of orientation using polarized light 5: 31 – 37 in Chlamydomonas 5: 33 in Chlorella 5: 34 in Mesotaenium 5: 33 Origanum £ intercedens 31: 19, 22
200
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Origanum 31: 78 Origanum dictamnus 31: 60, 89, 90 Origanum vulgare 29: 16; 31: 8, 16, 17, 22 Oritrophium limnophilum 33: 112 Ornithine decarboxylase (ODC) 33: 249 Orobanche 37: 82 Orobanche crenata 24: 313 Orosius orientalis 36: 147 Orthiopteris dominguensis, polyploidy 4: 322 Orthodicranum cytotaxonomy 6: 242 Orthologous genes 32: 46, 47 Orthophosphate 18: 68 Orthophosphate dikinase 38: 150 Orthophosphate, in fungal cells 8: 135, 136 Orthotrichum sp. distribution of polyploids 6: 218 Oryza (rice) 34: 29, 33, 34 Oryza 29: 144 Oryza alta 34: 33 Oryza australiensis 34: 33 Oryza barthii 34: 33 Oryza brachyantha 34: 33 Oryza breviligulata 34: 33 Oryza eichingeri 34: 33 Oryza glaberrima 34: 33, 34 Oryza grandiglumis 34: 33 Oryza latifolia 34: 33 Oryza longiglumis 34: 33 Oryza longistaminata 34: 33 Oryza meridionalis 34: 33 Oryza meyeriana 34: 33 Oryza minuta 34: 33 Oryza nivara 34: 33 Oryza O2 dependence in angiosperms 5: 207 Oryza officinalis 34: 33 Oryza perennis 34: 33 Oryza punctata 34: 33 Oryza rhizomatis 34: 33 Oryza ridleyi 34: 33 Oryza rufipogon 34: 33 Oryza sativa (rice) 18: 11, 88 Oryza sativa 25: 308– 311, 322; 28: 13, 14; 29: 117, 124, 130, 151; 32: 192, 204, 208, 210, 211, 320; 34: 33, 34; 35: 75
Oryza sativa DNA transposable elements, Ac "transposition 27: 403 effect of gibberellins on growth 9: 35 identification of gibberellins 9: 43 OsMuDR elements 34: 13 retrotransposons 27: 336 –338 DNA TEs 27: 353 SINE-like retrotransposons 27: 344, 345 Tos17 in 34: 13 Oryza schlechteri 34: 33 Oryza schweinfurthiana 34: 33 Oryzeae 34: 34 Osborne fractions 34: 195, 196 Oscillapeptin 27: 215 Oscillatoria 12: 48 buoyancy regulation 13: 85, 86 conditions favouring dominance 13: 114 distribution 13: 70, 130 flotation rates 13: 89, 94 gas vesicle pressure 13: 81 in metalimnetic layers 13: 70, 113 low light adaptation 13: 112 overwintering vegetative cells 13: 126, 127 shape 13: 73, 89 stratification 13: 84 – 86 survival strategies 13: 131 Oscillatoria agardhii 13: 133; 27: 215, 216 buoyancy regulation 13: 85, 86 compensation point 13: 102, 103 flotation rate, aggregation and 13: 89 gas vacuole, buoyancy and 13: 82 growth rate, temperature and 13: 96 light-dependent growth 13: 98 low-light adaptation 13: 100 photic conditions, buoyancy and 13: 117 stratification 13: 86 Oscillatoria agardhii var. isothrix 13: 133 carbon dioxide limitation, buoyancy and 13: 119 decreasing light, growth rate and 13: 111 grazing by Daphnia 13: 107 growth rate, bloom conditions and 13: 125 nutrients, buoyancy regulation and 13: 86, 118
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
overwintering vegetative cells 13: 127 stratification 13: 84, 113 Oscillatoria agardhii, phycobiliprotein structure 10: 66 Oscillatoria formosa 27: 218 Oscillatoria limnetica 13: 134 anoxygenic metabolism 13: 97 Oscillatoria redekei 13: 134 compensation point 13: 102 growth rate, temperature and 13: 96 light-dependent growth 13: 98 overwintering vegetative cells 13: 127 Oscillatoria rubescens 13: 134 bloom formation, historical aspects 13: 115 nutrients, buoyancy regulation and 13: 86 stratification 13: 84, 113 Oscillatoria spp., lists and properties of microcystins 27: 221– 224 Osmiophilic 21: 44 Osmium tetroxide 28: 146 reactions with phospholipids 3: 43 reactions, and EM fixation 3: 9 –16 Osmophores 31: 56 Osmoregulation 22: 210 Osmoregulatory/turgor hypothesis of salt tolerance 29: 117, 118, 173 Osmorhiza 38: 303 Osmosensing systems 32: 111, 114– 116, 138 Osmosis 1: 279 et seq. mechanism of 1: 291 Osmosis 3: 173 osmotic potential 3: 173 osmotic pressure 3: 172, 173 Osmosis and Dunaliella and compartmentation 14: 174, 175 and glycerol metabolism 14: 173, 174 and thylakoid membranes 14: 152, 153 Boyle-Van’t Hoff equation 14: 153, 154 ion concentrations 14: 167– 173 and hypertonic shock 14: 171– 173 constant salinity 14: 167– 169 regulation 14: 169– 171, 173 membrane permeability 14: 159, 160 recovery after shock 14: 160– 167 glycerol synthesis 14: 162– 166 water/ion movement 14: 157– 159
201
Osmosis see Water and Nitrogen supply Osmotic adaptation 28: 32 Osmotic energy 28: 3 – 5 Osmotic pressure mathemetical expression 6: 55 Osmotic pressure and Crassulacean acid metabolism 15: 53, 54 Osmotic regulation 37: 119 Osmotic regulation, and salt tolerance 8: 251, 254, 256 Osmotic resistance 37: 109– 112 Osmotic stress 28: 32; 32: 241; 37: 108– 112 enzymatic activation 32: 369 gene expression response 32: 368, 369 Osmotica, signal transmission 22: 164 Osmotin 29: 64 Osmotin 21: 21, 24, 25 Osmotins 26: 149, 150 OsMuDR elements 34: 13 Osmunda base number 4: 285 O. regalis heterozygosity 4: 379 incompatibility 4: 381 structure 4: 236 Osmunda regalis ammonia assimilating enzymes 6: 27 Osmundaceae cytology 4: 285 fossil record 4: 236 polyploidy 4: 322 Osmundaceae, Early Tertiary 17: 14 Osmundopsis, structure 4: 236 Osterobium, effects of shading 10: 163 Ostrinia nubilalis 30: 94 OTC, see Open-top field chambers Ouabain 28: 26 Ouchterlony double diffusion test (ODD) 23: 193 Oudemansiella radicata competitive ability in culture 7: 389, 391, 396 effect of ammonium sulphamate 7: 414 intraspecific antagonism 7: 348 pseudosclerotial plate formation 7: 393 Outside-out patch mode 25: 223 Outward-rectifying channels (ORCs) 29: 88 Ovaries 22: 132
202
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Ovary and flower culture in artificial media 2: 266 Allium cepa 2: 271 Anethum graveolens 2: 271 apomictic plants 2: 271 Aquilegia formosa 2: 272 barley 2: 269 Cucumis anguria 2: 266 Dendrobrium nobile 2: 272 Fragaria sp. 2: 260 growth media 2: 268 et seq. growth promoters 2: 271 Iberis amara 2: 269 Linaria maroccana 2: 271 Lycopersicum esculentum 2: 266 Nicotiana 2: 266, 271 partial sterile culture method 2: 272 Phaseolus vulgaris 2: 266 Phlox drummondii 2: 268 polyembryony 2: 271, 294 Ranunculus sceleratus 2: 271 Triticum 2: 268 Tropaeolum majus 2: 269 Overgrazing 21: 88, 89 OVP2 25: 311 Ovule 28: 235– 237 Ovule culture 2: 263 angiospermic parasites 2: 264 artificial induction of parthogenisis 2: 265 Cattleya 2: 263 Dendrobium phalaenopsis 2: 265 Epindrum 2: 263 growth media 2: 263 growth promoters 2: 264 Gynandropsis gynandra 2: 265 hybrids 2: 265 Impatiens balsamina 2: 265 Opuntia dillenii 2: 265 orchids 2: 263, 264 Orobanche 2: 264, 265 Papaver somniferum 2: 264 Striga 2: 264, 265 Vanda tricolor 2: 263 Oxalic acid 22: 165 Oxalidaceae 33: 43, 58 Oxalis 22: 165
Oxalis acetosella nitrate reductase 6: 23 Oxalis oregana 33: 59, 63, 112 Oxalis regnelii 33: 101 Oxalis, epidermal cells on 18: 285 Oxaloacetate, transport in chloroplast envelope 7: 56, 62, 63 Oxazolidine-2-thiones 35: 239 Oxazolidinethiones 35: 215 Ox-bow lakes formation 16: 130 plant deposition 16: 133 Oxidant stress 18: 94 Oxidative burst 21: 9 – 12, 165,167 Oxidative bursts by plants 30: 93, 94 “oxidative chl bleaching” 35: 20 Oxidative phosphorylation, stoichiometry 4: 84 – 90 Oxidative stress 22: 113, 129, 130, 141; 37: 184, 185 Oxides 18: 259; 31: 81 Oxygen NMR properties 20: 47, 47, 48 supply NMR studies 20: 66 – 70 Oxygen exchange reactions 25: 304– 306 Oxygen fluxes and phytoplankton productivity 16: 213, 214, 215 Oxygen isotope studies of respiration 15: 64 Oxygen regulation system 18: 160, 161 Oxygen source atmospheric diffusion 7: 260– 265 photosynthesis 7: 263– 265 Oxygen, singlet 27: 290, 291 Oxygen-hydrogen torch 18: 262 Oxyradicals 18: 58 O3/SO2 exposures 18: 77 Oxyria digyna nitrate reductase 6: 23 Oxyrrhis 12: 208 Oxytropis arctobia 18: 32 Oxytropis maydelliana 18: 132 Ozark Chinquapin 21: 126 Ozone 18: 103; 22: 98 – 101, 110, 120, 132, 146; 37: 27, 106 see also O3 adverse effects on crops 29: 39 – 42 bronzing 18: 92
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
exposure 18: 95 exposure –response studies 29: 34 – 36 field chamber studies 29: 34, 39 –41 formation reactions 29: 32 future concentrations 29: 46, 47 impacts on agricultural crops 29: 33 – 36 ozone protection chemicals studies 29: 34, 41, 42 response of tropical crops and cultivars 29: 43 –46 experimental studies 29: 43 – 45 field studies 29: 45, 46 rural levels in developing countries 29: 36 – 39 soybean 18: 65 Ozone depletion 21: 91, 94, 95 Ozone-induced drought 37: 108 P 680 13: 26 P 700 13: 5, 22, 23, 30, 31 P. (Gonyaulax) catenella 12: 59 P. affine genetics 6: 248 interspecific polyploidy 6: 210 P. albus, seed morphology 7: 425 P. amabilis carbon fixation 7: 526, 528 flowering period 7: 546, 569 post-pollination phenomena 7: 593, 600, 614, 615 P. amarus karyotype 6: 174 P. annua DNA analysis 6: 125 P. aureus, see Vigna radiata P. balsamifera volumetric elastic modulus 6: 80 P. barbatum, carbon fixation 7: 526, 528 P. bicolor, seed morphology 7: 426 P. bifolia culture 7: 461, 464 phytoalexin production 7: 512 P. carringtonii phytochemistry 6: 259 P. catholicum, seed morphology 7: 427
203
P. chiorantha, floral respiration 7: 612 P. cinnamoni, effect of micronutrients on infectivity 10: 258 P. coccineus, gibberellin biosynthesis 9: 111– 121 effect of light 9: 120, 121 identification 9: 35, 41, 43, 62, 66, 67 P. comosa light-harvesting complex 10: 124 photosystem reaction centre complex 10: 90 P. concavum 12: 63 P. cruda population differentiation 6: 249, 250 P. cruentum 11: 113 antenna chlorophyll 10: 94 chromatic adaptation 10: 171 fluorescence from phycobiliproteins 10: 114, 117, 133 phycobilisomes 10: 109, 111, 112 quantum efficiency spectra 10: 74, 75 shading effects 10: 156 spillover 10: 146 P. cultriformis, flowering period 7: 546 P. curtisii, seed morphology 7: 425 P. cuspidatum nitrate, reductase 6: 23 P. cv. Mildred Hunter, carbon fixation 7: 526 P. denitrificans, respiratory control 4: 94 P. denticulatum aneuploidy 6: 220 sex chromosomes 6: 233 P. drechsleria, effect of micronutrients on infectivity 10: 258 P. endiwifolia heretochromatin 6: 236 sex chromosomes 6: 232 P. esmeralda, carbon fixation 7: 528 P. excavata 12: 60 P. fabbroniana sex chromosomes 6: 232 P. graminis, iron concentration and host resistance 10: 255 P. grandifolius, seed morphology 7: 426 P. inconspicuum 12: 234
204
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
P. insigne carbon fixation 7: 526 effect of ethylene 7: 623 flowering period 7: 546 P. inversum, seed morphology 7: 427 P. laminosum, photosystem reaction centre complexes 10: 82, 87, 89 –91 P. laurocerasus, water movement in leaves 4: 123 P. legumin, genetics of storage protein formation in seeds 9: 25 P. luridium, photosystem reaction centre complexes 10: 77, 79, 82 P. maculatus, seed morphology 7: 426 P. maritima nitrate reductase 6: 23, 26 sorbitol accumulation 6: 39 P. medium genetics 6: 248 interspecific polyploidy 6: 210 P. merismoides antagonism 7: 356, 386, 388– 390, 396, 398– 400, 416 mating behaviour 7: 379 zone line formation 7: 345, 395, 396 P. mexicanum 12: 63 P. microstomum sex chromosomes 6: 236 P. milioides, effect of sodium on growth 7: 159, 162, 163 P. neesiana sex chromosomes 6: 232 P. nigra essential oil production 6: 280 P. nivalis £ P. halli chromosome constitution 6: 173, 174 P. nutans interspecific polyploidy 6: 208, 211, 213, 215 population differentiation 6: 249, 250 P. obovata interspecific polyploidy 6: 210 P. oleracea, effect of sodium on carbon fixation 7: 171 P. palustre enzymes of nitrogen metabolism 6: 30 P. parishii, seed morphology 7: 425
P. peisonis, salt tolerance 8: 239 P. polycephalum 11: 58 P. polyedra 12: 59 P. ponderosa resins and resistance to insect attack 6: 309 P. praemorsa sex chromosomes 6: 232 P. princeps, tracheids 5: 169 P. proligera biometric analysis 6: 260 cultivation experiments 6: 255– 257 P. pyriforme intraspecific polyploidy 6: 208, 211, 213 P. racemiflora, seed morphology 7: 432 P. saccharophila, ATP synthesis 4: 90 P. sativum gibberellins and growth 9: 34 biosynthesis 9: 85, 88, 90, 99 – 111 effect of light 9: 106, 108, 109 extraction 9: 46, 109 function in seeds 9: 42 identification 9: 43, 102, 103, 138 sites of biosynthesis 9: 127, 129 storage protein in seeds convicilin 9: 6, 20 legumin 9: 5, 7, 19, 20 nucleic acid changes during development 9: 18 – 20 protein body formation 9: 10 – 13 structure 9: 5, 6 synthesis 9: 18 – 20, 22 P. schilleriana carbon fixation 7: 526, 528 flowering period 7: 546 P. sessiliflorum, seed morphology 7: 427 P. sordidum, phycobilisomes 10: 112 P. specierum, seed morphology 7: 425 P. subulatum £ Ditrichum pallidum hybridity 6: 250 P. tabulatum 12: 209 P. tankervilliae effect of ethylene 7: 623 flowering period 7: 546 post-pollination phenomena 7: 583, 585
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
P. tricornutum chlorophyll-fucoxanthin-protein 10: 123 nitrogen starvation and fucoxanthin 10: 42 spectral modification 10: 14 P. triestinum 12: 225 P. triticina copper concentration and host infection 10: 231 lithium concentration and host infection 10: 264 P. trivialis DNA analysis 6: 125 P. trochoideum 12: 233, 237 P. undulatum sex chromosomes 6: 234, 235 P. ustus karyotype 6: 174 P. venustum anatomy 7: 532 carbon fixation 7: 526, 528 effect of ethylene 7: 623 P. viliosum carbon fixation 7: 526, 529 pollination 7: 554 P. violacea, flowering period 7: 569 P. viviparum nitrate reductase 6: 23 P. voluere, seed morphology 7: 427 P. vulgaris gibberellin biosynthesis 9: 111–121 storage protein in seeds 9: 6, 9, 17 P. wallichii, seed morphology 7: 427 P. willei 12: 230 P. yatabei, longevity of flowers 7: 569 P72 35: 150 P82 35: 150 PAC (dense) vesicles 35: 149, 150, 154– 156 PAC1 gene 37: 84 Pachysandra 38: 293, 296 PAD4 38: 263 Padina commersonnii, photosystem reaction centre complex 10: 90 Paecilomyces lilacinus 26: 55, 67 Paeonia 35: 65; 38: 293, 306 Paired cysteines 32: 247
205
PAL gene 32: 364; 37: 85 Palaeocene see also Early Tertiary angiosperms 17: 26 climate 17: 9 floras, northern hemisphere 17: 85, 86 Palaeosimulation, net primary productivity and water use 26: 193– 219 Paleozoic, atmospheric O2 concentration 5: 208 Pallavicinia 19: 265, 267, 293 origin of polyploidy 6: 216 Pallavicinia indica 19: 275, 283 Palm Arecoid 3: 274, 276 Borassoid 3: 262, 276, 277 Caryotoid 3: 276 Chamaedoroid 3: 276 Cocoid 3: 262, 274, 276, 277 coconut 3: 217, 218, 267, 269 Coryphoid 3: 262, 276 date 3: 217, 269 Geonomid 3: 274, 276 Iriartoid 3: 276 Lepidocaryoid 3: 276 Phoenicoid 3: 277 Phytelephantoid 3: 277 reduction in bract number 3: 274– 276 reduction in branching 3: 274 sexual segregation 3: 277 specialization 3: 276, 277 branching 3: 262, 264 growth habits 3: 215– 220, 222– 224 influorescence 3: 266– 268, 270, 271, 273– 277, 281, 289 Palmae, stomata 3: 284, 286 Palmaria mollis 35: 197 Palmaria palmata 11: 99; 35: 185 Palmoxylon 3: 214 Palms, Early Tertiary 17: 31, 32 Palynology see also Fossil plants absolute number of pollen grains 1: 164 allergies 1: 150 angiosperms 1: 153, 175, 201 apertures 1: 156, 170– 194 apocrats 1: 196–198, 202 bryophytes 1: 8, 13, 153, 156, 157, 167
206
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Palynology (continued) chemical characteristics 1: 169 collections 1: 152 copropalynology 1: 151, 203 cryocrats 1: 196 dicotyledons 1: 157, 160, 164, 169, 173 ferns 1: 156, 157, 167 forensic palynology 1: 151, 203 gymnosperms 1: 153, 156, 165, 194 history 1: 151 iatropalynology 1: 150 International Rules of Nomenclature 1: 200 International Sporotheca 1: 153 literature 1: 154 mellitopalynology 1: 150, 202 mesocrats 1: 196 microscopy 1: 154, 155 monocotyledons 1: 140– 142, 156, 184 morphology 1: 140– 142, 154, 156, 170 nomenclature 1: 200 orbicules 1: 165, 166 palaeopalynology 1: 3, 8, 11, 17, 33, 36, 38, 40, 52, 58, 61, 150– 164, 175, 180, 184, 188, 191, 192, 195, 198 pectic substances 1: 169 pharmacopalynology 1: 150, 203 polarity and symmetry 1: 156 pollen output per stamen 1: 165 protocrats 1: 196 Pteridophyta 1: 153, 156, 157 research centres 1: 152 shape and size 1: 164 sporoderm classification 1: 165 statocrats 1: 196 taxonomy 1: 150, 165, 166, 170 telocrats 1: 196 topocrats 1: 196 PAM (point-accepted-mutation) model 32: 49 pAN7– 1 24: 45 Panax 38: 291 Panax ginseng 38: 289 Panax ginseng culture 13: 156 Panax japonicus 38: 289 Panax quinquefolius 38: 289 Pandan, growth 3: 217
Pandanaceae branching 3: 264 growth 3: 217 influorescence 3: 268, 269, 282 leaf 3: 213 stomata 3: 284– 286 vascular construction 3: 246 Pandanus branching 3: 264 growth 3: 215, 217 P. utilis 3: 219 influorescence 3: 277 stomata 3: 284, 285 vascular construction 3: 246 Pangola stunt virus (PaSV) 36: 150 Panicum maximum 38: 96, 109, 144, 150, 213 PEPCK in 38: 115, 116 Panicum maximum, effect of sodium on growth 7: 162, 163 Panicum miliaceum 34: 41; 38: 144 Pantothenic acid, effect on orchids in culture 7: 467, 468 Papaver bracteatum culture 13: 159, 171 Papaver radicatum 33: 112 Papaver rhoeas 32: 258 Papaver somniferum 25: 146, 155, 158 Papaver somniferum culture 13: 162, 167, 170 response to biotic stress 13: 181, 182 Papaya 21: 5 Paper birch (Betula papyrifera ) 18: 15 Paphiopedilum carbon fixation 7: 528, 529 culture 7: 468, 471 flowering period 7: 546, 568, 569 germination 7: 473, 475 Papillae 21: 39; 31: 2, 3 PAPS reductase 33: 185– 187 PAR 18: 281 par genes 21: 151, 163 Paracoccus denitrificans anaerobic ‘nitrate’ respiration 4: 57, 59, 67, 74, 77, 81 ATP synthesis 4: 90 ATPase 4: 98, 99 effects of antibiotics and cations on respiration 4: 92 – 94
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
membrane composition 4: 63 – 66 membrane transport 4: 99, 105, 106 nutrition b-hydroxyaspartate cycle 4: 60 carbon metabolism 4: 59 60, 62 Entner-Doudoroff pathway 4: 59, 60 glyoxylate cycle 4: 60 pentose-phosphate pathway 4: 59, 60 tricarboxylic acid cycle 4: 60 oxidative phosphorylation 4: 85, 86, 88, 92 respiratory chain cytochromes 4: 67, 68, 72, 74 – 79, 81 –883, 90 dehydrogenases 4: 70, 71 quinone UQ-10 4: 72 stoichiometry 4: 88, 89 transhydrogenase 4: 69, 88 respiratory control 4: 92 – 97 structure 4: 57, 58 Paraffin wax 18: 264, 265 Paragalaktan 11: 131, 146 ‘Paragon’, chestnut 21: 138, 140 Paraheliotropic movements (paraheliotropism) 33: 42, 102 Paralogous genes 32: 46, 47 Paralongidorus 36: 170 Paralytic shellfish poisons (PSP) 12: 52, 59, 82 –86 Paralytic shellfish poisons (PSPs) see Saxitoxins Paramecium tetraurelia 28: 15; 32: 12, 43 Paramutation 12: 185 Paraquat 22: 120 Parasite invasion, defensive responses 24: 206, 207 Parasite-induced changes in endomembrane system 24: 207–209 Parasitella 24: 415 Parasitella parasitica. See Parasitella simplex Parasitella simplex 24: 412, 413 Parasitic plants nitrogen supply 6: 38 Parasitic symbiosis, Copernican-like perspective 24: 232, 233 Parasiticein 21: 162– 164, 166, 167
207
Parasitism 21: 37, 38; 23: 105– 107; 26: 137, 138 see also Viruses of plant pathogens 26: 20, 32 –38 Parasitism see ‘Arbuscular’ mycorrhizal symbiosis Parasitoids 22: 165; 30: 103, 104 Paratrichodorus 36: 170, 181, 182 Paratrichodorus allius 36: 176 Paratrichodorus anemones 36: 177, 182, 191 Paratrichodorus pachydermus 36: 181, 185, 187, 191 Paratrichodorus porosus 36: 176 Parenchyma fracture property testing 17: 252– 261 and cell damage 17: 260, 261 and turgor 17: 258– 260 compression 17: 255– 260 crack opening tests 17: 253– 255 Parenchyma, control of formation effect of leaf primordia 9: 242, 243, 254 relation between procambium and cambium 9: 244, 245 relative polarity of different parenchyma cells 9: 243, 244 timing of parenchyma formation and growth 9: 244, 245 Parenchymatous tissue, measurement of specific conductance 5: 175, 176 Paris 22: 13 quadrifolia 22: 8, 9 – 17, 19, 20, 22, 25, 31, 32, 34 Paris heterochromatin 6: 123 Paris quadrifolia, inversion heterozygosity 4: 384 “Park” cv. 18: 37, 52 Parnassia 22: 13 Paromomycin 34: 74 Parsley 21: 10, 13 –16; 22: 110, 114, 137, 147, 148 Parsley culture 13: 179, 180 Parsley ERM kinase 32: 394 Parthenium argentatum culture 13: 158 Parthenocarpy 2: 273 auxin 2: 279, 308 Cactaceae 2: 278
208
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Parthenocarpy (continued) chemically induced parthenocarpy 2: 273 et seq. cherry 2: 276 Citrus 2: 277 Cucurbitaceae 2: 272, 278 currants, red- and black- 2: 276 environmental parthenocarpy 2: 279 figs 2: 278 genetical parthenocarpy 2: 279 gooseberry 2: 276 Nicotiana 2: 279 orchids 2: 273 pollen extracts 2: 273 Prunus 2: 276 Psidium guajava 2: 278 Rosa 2: 276 Solanaceae 2: 273, 278, 279 strawberries 2: 276 tomato 2: 277 Vicia faba 2: 278 Vitis vinifera 2: 277 Zea mays 2: 279 Zephyranthes 2: 279 Parthenocissus 33: 65 Parthenogenesis 2: 295 see also Haploids abortive pollen 2: 296 androgenesis 2: 300 delayed pollination 2: 298 haploid sporophytes 2: 296 haploids, induction of 2: 296– 299 radioisotopes 2: 298 role of genotype 2: 299 somatic reduction 2: 298, 299 X-ray treatment 2: 296, 299 Parthenogenesis, and gametophyte/ sporophyte shift 16: 80, 81 Partially coated reticulum (PCR) 25: 22, 24 Particle bombardment (biolistic transformation) 34: 62, 65 – 67, 69 Particle bombardment-mediated gene transfer 35: 81 Particle inflow gun (PIG) 34: 65 Particulates 18: 84 Partisil, chromatographic efficiency 9: 53, 54 Paspalum commersoni 34: 41
Paspalum scrobiculatum 34: 41 Passioura-type pressure chamber 22: 233, 234 Patatin, plant defence 26: 168 Patch clamp studies 25: 342– 358 V-ATPase 25: 352– 358 V-PPase 25: 343– 352 Patch clamp technique 29: 24, 25 Patch dynamics 38: 51 Patch occupancy model 38: 51 Patch-clamp studies 22: 57, 71 –74, 84, 87 Path coefficient analysis 21: 235 Pathogen entry and infection 30: 23, 24 genes in plants 30: 313, 314 resistance mechanisms to 30: 294, 295 Pathogen avoidance 23: 290, 291 Pathogen indexing bulk sampling 23: 256– 261 Bayesian analysis 23: 258– 260 sample size 23: 256– 258 contamination 23: 261– 268 Bayesian analysis 23: 266– 268 detection 23: 261– 263 modelling costs 23: 268 number of samples 23: 263– 265 cost modelling 23: 261 risks in 23: 243– 269 sample size 23: 244 assays 23: 244 bulk sampling 23: 244 simple direct binomial sampling 23: 244, 245, 246 Bayesian analysis 23: 246– 250 costs 23: 250– 256 Pathogen infection enzymatic activation 32: 362, 363 gene expression response 32: 363– 366 Pathogenesis-related (PR) genes 24: 119 Pathogenesis-related (PR) proteins 26: 142, 143 Pathogenesis-related (PR) proteins 29: 60 antifungal peptides 26: 151– 153 chitin-binding 26: 146, 147 endohydrolases 26: 143–146 manipulation 26: 169 PR protein 1 26: 148, 149 thaumatin-related 26: 149– 151
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Pathogenesis-related (PR) proteins 21: 3, 4, 7, 21, 22, 24, 150, 152, 157 local defence responses 21: 12, 13, 15 regulation of defence 21: 18, 19 systemic defence response 21: 16, 17 Pathogenesis-related proteins 30: 311; 20: 205– 207; 32: 380 induction by exogenous chemicals 20: 207 induction by salicylates 20: 207– 209 PR-la promoter sequence 20: 215– 217 Pathogens mutualism and parasitism 22: 22 signal transmission 22: 166, 216 UV radiation 22: 102, 110, 139, 147, 148 Pathogens, hypersensitive response, and salicylates 20: 203– 217 Pathos, stomata 3: 284 Pathosystem see Correspondence analysis Pathozone assays 38: 26 P-ATPase 25: 254 Paullinia 30: 118, 120, 123 Paullinia cupana 30: 123 PAUP bootstrap analysis 21: 193, 201 Pavement cells 31: 195, 196 Pavetta 17: 168 microsymbiont isolation from 17: 219, 220 Pavlova lutheri 11: 113 Pavlova lutheri, chlorophyll/fucoxanthin complex 10: 122 Paxillus panuoides, humidity and growth 7: 406 p-Chloromercuribenzene sulfonate (pCMBS) 25: 368, 370, 379 p-Chloromercuribenzene sulphonate (PCMBS) 24: 323, 324 PCMBS 24: 323, 324 PCOC see Photorespiratory carbon oxidation cycle PCOC, see Photosynthetic carbon oxidation cycle p-Coumarate 3-hydroxylase, in lignin biosynthesis 8: 38, 39 p-coumaric acid 34: 173 p-Coumaryl alcohol, and lignin composition 8: 28, 29
209
PCR 23: 6, 18, 38, 63 detecting fungal pathogens 23: 87 – 92 application 23: 90, 91 cost 23: 91 specific primers 23: 88 –90 randomly primed (RAPD) 23: 91, 92 PCR assay 33: 231, 244, 249 PCR assays 34: 43 PCR markers 34: 43 PCRC, see Photosynthetic carbon reduction cycle PCR-SSCP 35: 191 P-cymen-8-ol 31: 130 PDK1 32 Pea 21: 5, 23, 52, 63, 49, 50, 235 calcium ions 22: 59 effects on cellular processes 22: 122, 123, 126, 127– 129 effects on gene expression 22: 135, 140, 141 enation mosaic virus (PEMV) 21: 115, 119 protective mechanisms against 22: 119 UV radiation 22: 101, 113 Pea early-browning tobravirus (PEBV) 36: 187, 188 Pea root, freeze-etching 3: 34 Pea seedborne mosaic virus 36: 4 Pea stem segments 19: 16, 27 Pea, see Pisum sativum “Peace” cv. 18: 51, 53 Peach 19: 130 Peach rosette mosaic nepovirus (PRMV) 36: 179 Peach yellow leaf roll system 21: 205, 206 Peak starch viscosity (PV) 34: 292 Peanut clump virus (PCV) 36: 56 Peanut mottle virus 36: 4 Peanut witches’ broom 21: 193, 194 Peanut, see Arachis hypogaea Pear 21: 173 Peat-based composts 26: 13 Peats see also Coal autochthonous formation 16: 147– 151 environmental conditions 16: 148 floating mire development 16: 149 quaking bogs 16: 149 raised mire development 16: 149– 151
210
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Peats (continued) carbonate nodule formation 16: 177, 178 deltaic, detrital 16: 147 lower marshes 16: 145, 146 upper marshes 16: 146 mangrove 16: 143 Pecan (Carya illinoensis ) 18: 10 Pecluvirus 36: 59 Pectates 21: 6, 57 Pectic oligosaccharides 19: 17 – 32 as elicitors of phytoalexin synthesis 19: 20 – 23 as growth regulators 19: 18 degradation in plant tissue 19: 72 formation as elicitors 19: 68 – 72 formation as wound signals 19: 66 – 68 formation in ripening fruit 19: 72 induction of ethylene synthesis 19: 30 – 32 morphogenesis-regulating activity 19: 27, 28 natural occurrence 19: 59 – 61 Pectic oligosaccharins hypersensitive response by 19: 23 –26 transcription of protease inhibitor genes 19: 48 Pectin lyase 19: 26 Pectin methyl esterase (PME) 24: 41 Pectin methyl esterase, effect of nutrient stress on activity 10: 243, 244, 255, 266 Pectinase 21: 4, 6 Pectinase-inhibiting proteins (PGIPs) 19: 61, 70, 71 Pectinases 19: 17, 20, 25, 33 Pectinmethylesterase 19: 26 Pectins 21: 5, 57 “Pectolyase” 19: 23 PEG 35: 81 Peganum harmala culture 13: 178 Pelagophyceae 27: 89 Pelagophycus porra 35: 176 Pelagophycus £ Macrocystis hybrid 35: 177 Pelargonidin 37: 60, 70
Pelargonium £ hortorum 18: 11; 31: 188 Pelargonium 18: 22, 23, 24; 28: 237; 31: 97, 177, 188 Pelargonium acetosum 31: 188 Pelargonium blight 23: 10 Pelargonium crispum 31: 108 Pelargonium frutetorum 31: 188 Pelargonium graveolens 31: 177 Pelargonium hortorum, osmotic pressure of guard cells 4: 128 Pelargonium inquinans 31: 188, 189 Pelargonium peltatum 31: 188 Pelargonium scabrum 31: 21, 24, 27 Pelargonium spider mite resistance 31: 176– 189 anacardic acids 31: 178–185 arthropod fecundity effects 31: 186 classical genetics 31: 181, 182 ecological effects 31: 187, 188 evolutionary aspects 31: 188 glandular trichomes 31: 177, 178 mechanism 31: 186, 187 molecular genetics 31: 182– 185 morphological investigations 31: 177 trichome collection method 31: 180 trichome exudate biochemistry 31: 178, 179 Pelargonium zonale, water uptake 3: 183 Pelargonium, water content, NMR studies 20: 86 Pelexia adnata, seed morphology 7: 427 Pellaea, polyploidy 4: 322 Pellia 19: 265, 267, 283, 293 discovery of heterochromatin 6: 196 Giemsa C-band staining 6: 199 intraspecific polyploidy 6: 211, 251 micro-evolution 6: 262 Pellia epiphylla 19: 273, 279 Peltaspermales 17: 140, 142, 143 Peltate glandular trichomes 31: 11, 13, 58, 59, 85, 165 Labiate plants 31: 89– 93 monoterpenoids accumulation 31: 91 –93 Pelvetia canaliculata 11: 99 PEmu promoter 34: 88 Penaeus stylirostris (blue shrimp) 12: 79 PENDANT database 32: 2
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Penduletin, structure 6: 283 Penicillia 24: 75 Penicillium P. chrysogenum, polyphosphate metabolism 8: 150 P. digitatum, ethylene and phosphorus concentration 8: 196 P. expansum phosphorus content 8: 131 polyphosphate content 8: 142, 143 P. filamentosa, phosphorus translocation 8: 200 P. megasporum, phosphorus content 8: 146 P. notatum, phosphorus content 8: 142 P. urticae, phosphorus translocation 8: 201 phosphate efflux 8: 158 phosphorus content 8: 131 polyphosphate content 8: 142 Penicillium expansum 24: 125 Penicillium megasporum, plasma membrane 3: 35 Penicillium spp., biocontrol 26: 50, 55, 62, 77 Penicillium verruculosum, b-1,2 glucanasehydrolysis of cell organelle fractions 5: 123, 124 Penman– Monteith equation 26: 201; 18: 217 Pennisetum 21: 159 Pennisetum americanum 34: 41 Pennisetum glaucum (pearl) 34: 40, 41 Pennisetum typhoides 34: 41 Pennisetum typhoides, midday closure of stomata 4: 151 P-enolpyruvate carboxylase 12: 4 Pentasaccharide 19: 36 4-pentenyl glucosinolate 35: 221, 224, 230, 233 4-pentenyl isothiocyanate 35: 244 Pentoxylales 17: 136–138 PEP 18: 145 concentration 18: 143 microaerobic conditions 18: 162 PEP 38: 104, 135 PEP carboxykinase (PCK) 26: 253, 257, 258, 288, 289
211
PEP carboxylase, C4 plants 26: 271– 276, 297 PEP12 25: 52, 53, 55 PEPC 18: 142, 143; 38: 96, 108, 135, 136 PEPC, see Phosphoenolpyruvate carboxylase PEPCK 38: 93 – 174 abundance, changes in 38: 111– 113 flowering plants 38: 113 micro-organisms 38: 112, 113 pH and 38: 157– 159 vertebrates 38: 111, 112 activity, rapid change in 38: 114– 129 flowering plants 38: 114– 126 micro-organisms 38: 128 vertebrates 38: 126, 127 amino acids importation 38: 152– 154 cells in multicellular organisms 38: 153, 154 kinetoplastid protozoa 38: 152, 153 anaerobic metabolism 38: 154– 157 distribution 38: 98 in flowering plants 38: 157 genes 38: 110, 111 historical perspective 38: 95 – 98 pH, metabolic regulation 38: 157– 174 photosynthetic carbon dioxide-concentrating mechanisms 38: 140–152 physiological role 38: 129– 174 reactions catalysed 38: 103–109 affinity for carbon dioxide 38: 107 carboxylation of PEP to OAA 38: 104 decarboxylation of OAA to PEP 38: 104 decarboxylation of OAA to pyruvate 38: 104, 105 effectors 38: 107 metal requirements 38: 105, 106 nucleoside phosphate specificity 38: 105 pH optima 38: 107, 108 problems in studying 38: 108, 109 specific activity 38: 105 substrate affinities 38: 106 regulation 38: 111–129 structure 38: 98 –103 catalytic mechanism 38: 103 quaternary 38: 102, 103 tertiary 38: 102
212
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
PEPCK (continued) subcellular location 38: 109, 110 PEPCK-ATP 38: 96 – 98, 156, 157 amino acid sequence 38: 99 – 101 carboxylase activity 38: 107 catalytic mechanism 38: 103 relationship between PEPCK-GTP and 38: 98 – 102 specific activity 38: 105 structure 38: 102, 103 PEPCK-GTP 38: 97, 98, 152, 157 amino acid sequence 38: 99 – 101 carboxylase activity 38: 107 catalytic mechanism 38: 103 N-terminal extensions in 38: 101, 102 relationship between PEPCK-ATP and 38: 98 – 102 specific activity 38: 105 structure 38: 102, 103 PEPC-kinase 38: 117, 118 PEPO 18: 145 Pepper ripening and phytoene synthetase activity 14: 83 Peptide growth factors in plants 32: 259 Peptides, cornpartmentation and transport 25: 386, 387 Peptides, reaction with fixatives 3: 13 Percolation 38: 42, 44, 52 – 56 Peregrinus maidis 36: 146, 151– 153, 155, 158– 160 Perennial shrub (Salvia mellifera ) 18: 16, 34 Perennials 18: 49 Pereskia spp., carbon dioxide recyling in 15: 75 Perianth evolution 17: 125– 128 Peribacteriod membrane (PBM) 30: 49 Peridinin absorption 10: 59 distribution in algal groups 10: 56, 57 evolution in prokaryotes 10: 181 Peridinin chlorophyll-proteins (PCPs), 277– 279 Peridinin-chlorophyll-protein complex 10: 118, 120, 135, 136 Peridinium cinctum 12: 223, 228, 237 Perilla frutescens 19: 128; 31: 84, 100, 102; 37: 68 Perilla ocimoides 19: 121
Peripheral cisternae 24: 384, 385 Periphyllus acericola 33: 27 Periplasmic space 18: 140 Peristeria elata, longevity of flowers 7: 569 Periwinkle 21: 189, 190 Perkinsiella saccharicida 36: 153 Permatins 21: 4, 21, 22 Permeability, biological membranes 3: 158 Permineralization 16: 177 Peronospora 38: 258; 24: 311, 322, 354 Peronospora destructor 24: 80 Peronospora effusa 24: 322 Peronospora infection, effects of salicylates 20: 210 Peronospora parasitica 24: 80, 109, 111, 228, 235– 238, 240– 245, 247, 250, 252, 254, 255, 258, 260, 262, 266, 267, 412– 415, 423; 30: 309; 38: 264 Peronospora pisi 24: 200 Peronospora schleideniana 24: 80 Peronospora tabacina 24: 14, 266; 38: 258 Peronospora viciae 24: 204, 317, 322– 324 Peronosporales, occurrence of zoospore components throughout asexual life cycle 24: 362– 364 Peroxidase (PO) 18: 95 Peroxidase (POX) 21: 9, 12, 14, 17, 39, 46, 48, 51 Peroxidase 22: 263 Peroxidase in lignin synthesis 10: 248, 251, 255 Peroxidase, in lignin biosynthesis 8: 51 –57 Peroxidase, in orchid flowers 7: 614, 615 “peroxidase – hydrogen peroxide” pathway 35: 20 Peroxidation 21: 19; 22: 131 Peroxide 21: 166 Peroxides 22: 119 Peroxynitrite 37: 180 Peroxysomes, association with chloroplasts 7: 21 – 23 Persea americana (avocado) 31: 106 Persea americana 29: 130–132 Persistence, probability of 38: 45, 46 Persistent viruses, definition 36: 1, 47 Pestalotia spp. 33: 6 Pestalotiopsis 33: 22
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Pestalotiopsis funerea 33: 7, 9, 23 Pests and pesticides 21: 85, 86, 89, 95, 96, 99 Petal epidermal cells 31: 207– 209 Petchia virginiana 21: 134 Petioles 25: 371 Petroselinum crispum DNA retrotransposons 27: 352 DNA transposable elements, Ac transposition 27: 403 Petroselinum hortense culture 13: 158 Petroselinum hortense, enzyme degradation 8: 117 Pettandra virginica, photosynthesis and aeration 7: 197 Petunia 18: 75; 19: 12; 28: 210, 215– 217, 221; 31: 208, 224, 226; 32: 241 cultivars 18: 74 Petunia 22: 107 Petunia chalcone synthase (Chs) genes 34: 98, 99 Petunia hybrida 12: 139, 140, 142, 167; 18: 71; 22: 132, 133; 28: 198, 203; 31: 201; 32: 35; 34: 98 DNA transposable elements, Ac transposition 27: 403 genes cloned by transposon tagging 27: 396 retrotransposons 27: 337 DNA TEs 27: 352, 353 reverse genetics 27: 408 transgenic 27: 53 transposon tagging 27: 395 verification of cloned genes endogenous transposable elements 27: 401 Petunia hybrida pollen tubes, X-ray diffraction studies of cellulose 5: 125 Petunia hybrida, flower development 26: 229– 250 ABC model 26: 238– 241, 244 ABCD model 26: 244, 245 MADS box genes 26: 234– 245 meristem transition 26: 235– 237 morphology 26: 230– 232 mutants 26: 233, 234 organ identity genes 26: 237–241 ovule development genes 26: 241– 244 transposon system 26: 232, 233 Petunia hybrida, RNA synthesis in flowers 7: 617
213
Petunia inflata 24: 136; 32: 238, 239, 244 Petunia rhoeas 32: 258, 259 Petunia syringae 32: 383 Petunia, enzymes of lignin biosynthesis 8: 44, 45, 50 Pezicula cinnamomea 33: 20, 24, 25 Pezicula sp. 33: 28 Pezizella ericae phosphorus translocation 8: 202 phytic acid utilization 8: 186 Pfam database 32: 59 PFCC 35: 14 – 16 PFCC hydroxylation 35: 17 PFCC-1 dcmethylation 35: 18 P-grains (anomalous pollen grains) 35: 65, 66 pH 25: 340, 341, 354, 359, 368, 401 calcium 22: 46, 56, 58, 59, 84 soil management 21: 69, 70 viral infection 21: 112, 113 water and nitrogen supply 22: 264, 279, 280, 283 pH and proton/potassium transport co-transport 15: 119 direct coupling 15: 102 pH compensation value 27: 113 pH drift 11: 99 pH effects 24: 316, 320, 321 pH regulation extracellular 28: 34 intracellular 28: 33 pH, and soil suppressiveness 26: 6, 7 pH, intracellular, 31P NMR studies 20: 101, 102 PH, metabolic regulation by PEPCK 38: 157– 15173 consumption and production of protons 38: 161– 165 defence tissues 38: 171, 172 homeostasis in maize roots fed ammonium 38: 165– 167 imported amino acids metabolism 38: 168– 171 developing seeds and other sinks 38: 169, 170 transport tissues 38: 170, 171 malate production from glucose 38: 162, 163
214
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
PH, metabolic regulation by PEPCK (continued) pH homeostasis in plants 38: 159– 161 proton consumption in roots and kidney 38: 167, 168 pyruvate synthesis from glucose 38: 163– 165 pyruvate synthesis from malate using malic enzyme 38: 163 pyruvate synthesis from malate using PEPCK 38: 163 PHAB 38: 206 Phaeide (phaeophorbide) 35: 9 Phaeide a 35: 11, 20, 31 Phaeide a oxygenase 35: 23 Phaeide b 35: 15, 31 Phaeoceros 19: 275, 279, 281, 283, 295; 22: 14 Phaeoceros carolinianus 19: 279 Phaeoceros laevis 19: 298, 305 Phaeodactylon tricornutum, sodium tolerance 7: 147 Phaeodactylum light absorption by fucoxanthin 10: 72 shading effects 10: 157 Phaeodactylum tricornutum 11: 87, 89, 93, 113, 114; 35: 27 d13C values 27: 151 C uptake 27: 132 C-concentrating mechanisms (table) 27: 118, 119 fucoxanthin chlorophyll protein 27: 299, 301 plastid origins 27: 311, 312 thylakoids 27: 268 transport from plasmalemma to RUBISCO 27: 135– 140 Phaeoisariopsis personata 21: 226– 230 Phaeolus schweinitzii, intraspecific antagonism 7: 348, 359, 373 Phaeophorbidase 35: 17, 18 Phaeophorbide (phaeide) 35: 9 Phaeophorbide a oxygenase (PaO) 35: 14 – 16, 29, 30 mutations affecting expression 35: 30, 31 pathway 35: 3, 4
Phaeophorbide a, conversion of chlorophyll a to 35: 13, 14 Phaeophyceae, gas bladders 5: 191 Phaeophyta (brown algae), PEPCK in 38: 148–151 Phaeophyta C3 + C1 carboxylases 27: 97 light harvesting 10: 23 photoprotective system 10: 62 photosynthesis rates 27: 174, 175 pyrenoids 27: 159 Phaeophyta, life cycles 16: 57 Phaeophytes 11: 75, 87, 88, 91, 117 C4 metabolism 11: 114, 115 Phaeophytin 35: 9, 13 Phaeoplasts, relationship with endoplasmic reticulum 7: 18, 19 Phaeosphaeria junicola 33: 13 Phajus post-pollination phenomena 7: 574, 575 Phalaenopsis carbon fixation 7: 526, 531 extracellular enzyme production 7: 451, 455 germination 7: 473, 475 longevity of flowers 7: 546, 568, 569 metabolism 7: 446, 450 post-pollination phenomena 7: 569, 572, 573, 586, 587, 619 Phalaris 32: 285 Phalaris arundinacea nitrate reductase 6: 22 Phalaris canariensis 33: 245 Phalloidin 12: 72 Phallus impudicus antagonism 7: 398– 400 effect of ammonium sulphamate 7: 414, 415 mycelial cord production 7: 411, 412 vegetative characteristics 7: 339, 341 Phanerochaete velutina culture 7: 396, 402 effect of ammonium sulphamate 7: 414, 415 mycelial cord formation 7: 391, 392 wood colonization 7: 409, 412, 416 Phanerogams 33: 3 Pharbitis nil 12: 184
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Pharbitis nil, gibberellins chromatography 9: 57, 58 function in seeds 9: 42 Pharbitis nil, verification of cloned genes, endogenous transposable elements 27: 401 Pharmacological agents 32: 85 Phasaeolus vulgaris 28: 13, 14 Phascum 19: 283 Phascum cuspidatum aneuploidy 6: 220 apogamy 6: 252 Phaseoli bacteroids 18: 153 Phaseolin 35: 142, 145 Phaseolus 19: 61, 306; 22: 174, 187, 277, 282; 24: 319, 320; 29: 155; 30: 310; 31: 15; 33: 46, 53, 54, 92, 94, 96, 99, 101, 103, 107; 37: 179 auxin transport 9: 186 carbohydrate transport in wounded plants 9: 214 effects of salicylates 20: 211 gibberellin extraction 9: 46 prostaglandins causing stomatal closure 20: 193 vascular system circular vessels 9: 208 differentiation 9: 160, 162, 163, 190, 239, 240 regeneration 9: 156 structure 9: 155 volatile salicylates 20: 188 Phaseolus coccineus 19: 142; 33: 52 Phaseolus multiflorus 33: 91 Phaseolus mungo 30: 140 Phaseolus radiatus 18: 94 Phaseolus vulgaris (bean) 12: 17 Phaseolus vulgaris (kidney bean) 18: 11, 12, 13, 14, 276 air pollutants bioindication 18: 88, 89 bacteroid functions 18: 151 bioindication 18: 94 carbon processing 18: 146 legume nodule structure 18: 132 nitrogen oxides fumigations 18: 36 nitrogen processing 18: 155 NOx exposure 18: 35, 39
215
O3 exposure 18: 58, 59, 61, 68 O3 fumigations 18: 52, 53, 54 O3/NO2 exposures 18: 84 O3/SO2 exposures 18: 77 O3/SO2 fumigations 18: 71, 73 SO2 exposure 18: 23 SO2 fumigation 18: 9 SO2 long-term effects 18: 28 SO2/NO2 exposures 18: 45, 48 Phaseolus vulgaris 11: 89; 19: 54, 70, 117, 123, 130, 134, 136, 137, 139, 146, 147, 161, 162, 164, 165; 24: 179, 321, 414; 25: 28, 152, 426; 29: 7, 36, 42, 58, 124, 125, 130, 131, 151; 32: 30, 214, 417; 33: 48, 59, 90 – 92, 98, 104; 35: 20; 37: 84 see also Legume seed storage proteins carotenoid content of chloroplast envelopes 7: 47 chloroplast envelope isolation 7: 35 legumin 27: 26 – 29 polypeptides of chloroplast envelope 7: 51 RuBPCase synthesis 7: 74 vicilin 27: 16 – 19, 24 Phaseolus vulgaris, effect of ABA on stomata 4: 138 Phaseolus vulgaris, salt localization 8: 243 Phaseolus, emission spectrum 5: 23 Phasic development 37: 95– 101 PHAST protein markers 24: 59 PHB 38: 206 Phegopteris polypodiodes, apomixis 4: 388 ‘phellophytes’ 33: 2, 5 Phenakospermum growth 3: 220, 221 influorescence 3: 269, 278 Phenanthrenes, antifungal activity 7: 511, 514, 515 Phenazine-carboxylic acid (PCA), biocontrol 26: 28, 29, 31, 32 Phenol esters 31: 81 Phenol, chromatography 9: 53 Phenolase, in lignin biosynthesis 8: 37 Phenolic compounds 22: 113 Phenolic esters 21: 5, 13
216
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Phenolics 21: 3 – 5, 39, 48, 49, 51; 31: 155, 157, 162 biosynthesis 31: 128 commercial uses 31: 131 Phenolics synthesis and resistance to infection 10: 233, 235– 237, 242, 247– 249, 261 Phenolics, excretion 5: 207 Phenoloxidase 21: 111 Phenols 18: 95; 31: 81 Phenomena, ecological 18: 238–240 Phenomena, wind-speed dependent 18: 234 Phenotypic variation 24: 181 Phenotypic variation among incompatible interactions 24: 240– 243 Phenylacetaldoxime 35: 224 Phenylalanine 22: 127; 37: 63 Phenylalanine ammonia lyase (PAL) 37: 63, 64, 84 – 86 Phenylalanine ammonia lyase (PAL) 24: 174; 19: 23, 31, 32, 48, 54, 70; 21: 12 – 15, 22, 23, 49; 22: 120, 136, 148 density labelling 8: 118, 120 inactivation 8: 108, 110– 113 lignin biosynthesis 8: 33 – 36, 58 Phenylalanine ammonia lyase 31: 128 Phenylalanine ammonia-lyase (PAL) gene 29: 55, 60 Phenylalanine ammonia-lyase, in lignin biosynthesis 5: 206 Phenylalanine, incorporation into protein 8: 71, 72 Phenylalanine—cinnamic acid pathway, in lignin biosynthesis 8: 27, 33 – 41 Phenylalkylamines 22: 71, 72 Phenylethyl glucosinolate 35: 221, 224, 229 Phenylethyl isothiocyanate 35: 247– 249 Phenylpropanoid biosynthetic pathway 29: 59 – 61 Phenylpropanoid enzyme 37: 86 Phenylpropanoid intermediates 37: 84 Phenylpropanoid metabolism 21: 9, 12, 13, 23 Phenylpropanoid pathway 37: 67, 77, 85, 86 Phenylpropanoids 22: 102, 114, 135, 136, 138, 140, 147, 148; 37: 98 Phenyltransferases 14: 40 – 42
Pheomelanins 37: 20, 21 Pheromones 22: 165, 166 Phialocephala 33: 7, 12, 16, 17, 22 Phialocephala fortinii 33: 22 Phialocephala scopiformis 33: 5 Phialophora cinerescens 21: 48 Phialophora sp., 26: 63, 72 Phialophora, colonization of wood 7: 405, 416 Phiebopteris, fossil record 4: 237 Philadelphus isochromosomes 6: 148, 149, 151 Phillyrea latifolia 31: 15 Philomycus carolinianus 21: 134 Phlebia gigantea, colonization of wood 7: 402, 403, 407 Phleomycin 34: 265 Phleum alpinum nitrate reductase 6: 23 Phleum pratense (Timothy grass) 18: 16, 30 SO2/NO2 exposures 18: 45, 48 Phleum pratense 33: 245 Phlobovirus 36: 116 Phloem 1: 209 Phloem 19: 106 auxin transport 9: 213 development and leaf formation 9: 159, 230, 232, 233 differentiation 9: 165, 171– 173, 230, 233 regeneration and cambial activity 9: 213, 214 relation between phloem and xylem development 9: 213– 237 Phloem delivery of amino acids 30: 63 – 65 Phloem import 18: 134, 164 Phloem loading 28: 30 Phloem loading and interception strategy 24: 318– 325 Phloem translocation 22: 167, 170, 171, 216 Phloem transport under salinity 29: 150– 157 adding tracer to mature shoot tissue 29: 152 calcium recirculation in the shoot 29: 155, 156 net fluxes and contents of xylem and phloem 29: 152– 154 pulsed/ labelling of roots 29: 151, 152
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
remobilization of nutrients from ageing shoot tissues 29: 151– 154 xylem/phloem transfer 29: 154, 155 Phloem unloading 28: 105, 106 Phloem, potassium recirculation in 15: 165– 167 Phlomis 31: 4, 5 Phlomobacter fragariae 36: 83 Phlonotis fontana cultivation experiments 6: 256 Phloroglucinol derivatives in rhizomes of D. spinulosa 4: 347, 348 Dryopteris felix-mas 4: 338, 340– 342 PHMYB1 31: 208 Pho84 mutant 30: 33 Phoca vitulina 38: 49 Phocine distemper virus 38: 49 Phoenix prophyll 3: 276 seedling growth 3: 218 Phoenix dactylifera (date palm) 11: 129, 144 Phoenix dayctlifera L 19: 305 Phomopsis 33: 19, 22 Phomopsis occulta 33: 23 Phorbol 12-myristate 22: 108 Phormidium 13: 73 Phormidium hypolimneticum 13: 134 anoxygenic metabolism 13: 97 distribution 13: 71 Phormidium, photosynthetic rate 10: 168 Phormium 13: 71 Phosphatase in legume protein bodies 9: 17 Phosphatase inhibitors 21: 11 Phosphatases, dark respiration 27: 116 Phosphatases, in fungi 8: 151, 152, 181– 185 Phosphate 22: 280 see also Mycorrhizal symbiosis NMR studies 20: 100–105 polyphosphate metabolism 20: 103, 104 Phosphate in soil 29: 4, 13, 14, 25 Phosphate shelf sea distributions 16: 233, 234 Phosphate uptake characteristics 8: 155– 159 control 8: 166, 169 kinetics 8: 159– 166, 172– 175 mechanisms 8: 169– 172 Phosphatidylcholine 22: 131
217
Phosphatidylglycerol 22: 131 Phosphatidylinositol (PtdIns) 22: 74, 76, 108 Phosphatidylinositol 4-phosphate (PTdlns(4)P) 22: 74, 76 Phosphatidylinositol diphosphate 21: 64 Phosphatidylinositol(4,5)bisphosphate (PTDIns(4,5)P2), 22: 48, 74 –78 Phosphatindylinositol-3-phosphate 5-kinase 35: 155 Phosphinothricin (PPT) 34: 75 30 -phosphoadenosine 50 -phospho sulphate (PAPS) 35: 224 30 -phosphoadenosine-50 -phosphosulphate (PAPS) 33: 185– 188, 207 Phosphodiesterase 25: 90 Phosphoenol pyruvate carboxykinase (PEPCK), properties (table) 27: 94 Phosphoenol pyruvate carboxylase (PEPC), properties (table) 27: 94 Phosphoenol pyruvate carboxylase in acid metabolism 15: 50, 51 Phosphoenolpyruvate (PEP) 25: 374 Phosphoenolpyruvate carboxykinase (PCK) 26: 253, 257, 258, 288, 289 Phosphoenolpyruvate carboxylase (PEPC) 25: 375; 11: 87, 102, 111, 117, 179, 185, 187, 188 Phosphoenolpyruvate carboxylase, see PEPC Phosphofructokinase in Dunaliella 14: 140, 141 Phosphoglucomutase(PGM) proteins 32: 57 3 – phosphoglycerate 38: 147 Phosphoglycolate phosphatase 27: 180 Phosphoinositide cycle 22: 48 Phosphoinositides 21: 63 Phosphoinositides in gravitropism 15: 15, 16 Phospholipase 2 (PLA2) 33: 53 Phospholipase A2 21: 164 Phospholipase A2, 46 Phospholipase 22: 121 Phospholipase C (PLC) 22: 48, 74, 77, 108 Phospholipase C 21: 64 Phospholipase C activity, inhibition of 29: 5, 6 Phospholipid modulation of enzyme activity 14: 77
218
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Phospholipid transfer proteins 26: 154, 155 Phospholipids 16: 2; 21: 62; 22: 131 Phosphomannose isomerase gene 34: 79 Phosphomolybdate, in negative staining 3: 16 Phosphonenolpyruvate carboxykinase see PEPCK Phosphonenolpyruvate carboxylase see PEPC Phosphorelays 32: 110, 112– 115, 127, 131– 133, 135, 137– 140 Phosphorus 22: 144 as phytoplankton nutrient 16: 206 nutrient budgets 16: 212 deficiency 29: 25 deficiency and plant adaptation 10: 222, 223 extractable, in soil 29: 4 involvement in plant disease 10: 224, 225 North West Europe shelf sea availability 16: 223, 224 salinization and transport of 29: 139, 140, 158– 160 short-term recirculation of 29: 154, 155 storage as polyphosphate 28: 145 storage in fungal vacuoles 28: 144 transport in fungal vacuolar systems 28: 147– 149 transport in growing shoot tissues 29: 144 uptake from soil 29: 22, 25 Phosphorus and Dunaliella growth 14: 108 Phosphorus deficiency 37: 110 Phosphorus in fungi analysis 8: 133, 134 chemical distribution 8: 133– 139 development 8: 196 –199 economy 8: 149– 153 growth yield 8: 193–195 metabolic products 8: 195, 196 soil-phosphorus utilization 8: 189– 192 sources inorganic 8: 176– 179 organic 8: 179– 189 spatial distribution 8: 139– 149 total content 8: 129– 132 translocation 8: 199 –205
Phosphorylation 21: 10, 11, 178; 25: 426, 427; 32: 68, 81, 459– 473 blue-light-induced 32: 163– 165 Phosphorylation/dephosphorylation of H+-ATPase 28: 46 Phosphosynthate 22: 3, 23, 24 Phosphotransferase 24: 409 Phosphotungstic acid (PTA) 18: 137 Phosphotungstic acid, in negative staining 3: 16, 17 Photinia 37: 108, 116, 117 Photoactive stomatal movement 4: 141, 142 Photoassimilate partitioning 28: 108, 109 Photodynamic bleaching 35: 8 Photoinhibition 22: 241; 37: 158, 176 Photoinhibition and carbon dioxide recycling 15: 81 Photoinhibition of photosynthesis 10: 163–"165 Photolyase 22: 105, 118 Photomorphogenesis 18: 290; 22: 105, 106; 32: 150; 33: 37 Photon correlation 11: 21 – 25 Photon migration 18: 280 Photon transfer, photosynthetic membrane 3: 151, 152 Photonastic pulvinar responses 33: 96, 97 Photo-organotrophy 27: 90 Photooxidation 37: 176– 178 Photoperception in determination of leaf form 28: 174– 176 Photoperiodism 22: 105, 132 Photophosphorylation 22: 121– 123, 129 Photoprotection 37: 22 – 27, 134– 142, 156– 158 by anthocyanins 37: 4, 10, 23 – 25 effects of leaf age 37: 140– 142 melanins 37: 25 – 27 microsites 37: 139, 140 photosynthesis and pigmentation 37: 138, 139 photosynthesis during snow melt 37: 134– 137 seasonal changes in pigment concentrations 37: 137, 138 subnivian microclimate 37: 134 Photoproteins see Aequorin Photoreceptor kinases 32: 157– 162
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Photoreceptors 32: 150, 151 Photoreceptors, UV radiation 22: 104– 107 Photoregulated protein kinase genes 32: 153– 156 Photorespiration 18: 42 O3 exposure 18: 68 SO2/NO2 mixtures 18: 47 Photorespiration and carbon dioxide-concentrating mechanisms 27: 116 RUBISCOs 27: 106– 109 Photorespiration, C4 plants 26: 290– 293 Photorespiratory carbon oxidation cycle (PCOC) 27: 99, 181 Photosynthesis 1: 213 et seq.; 11: 179– 188; 19: 120, 121; 21: 90; 37: 174, 175 see also Ultraviolet-B radiation, Amax prediction biomes 20: 12 – 15 model 20: 22 – 28 anthocyanins in photoprotection of 37: 4 as leaf nitrogen 20: 3, 4 C4 plants see C4 plants, photosynthesis CAM plants, malate synthesis 20: 94 climate, impact on Amax 20: 15 – 35 diffusive resistance 18: 86, 91 during snow melt 37: 134– 137 global mapping 20: 35, 36 mutualism and parasitism 22: 17 NPP model canopy gas exchange 26: 199, 201, 204– 206, 210 leaf gas exchange 26: 196–199, 203, 204 net primary productivity 26: 202, 203 pigmentation and 37: 138, 139 predicting influence of soil N 20: 3 – 15 response long-term 18: 39 – 42 short-term 18: 35 – 39 long-term 18: 76 – 78 short and long-term 18: 78 short-term 18: 70 – 75 short-term 18: 17 – 26 long-term 18: 48, 49 short-term 18: 43 – 48 air pollution combinations 18: 82 – 84 curves, dorsiventral 18: 292
219
mechanisms 18: 58, 64 NOx exposure 18: 34 – 42 O3 18: 49 – 69 O3 and acid precipitation 18: 79 – 84 O3/SO2 mixtures 18: 69 – 78 SO2 18: 7 – 34 SO2 and NO2 mixtures 18: 43 – 49 reversibility and visible symptoms 18: 21 stomatal heterogeneity 26: 332 stomatal responses 18: 2 – 105 Water and Nitrogen supply Photosynthesis by phytoplankton 16: 202– 204 see also Light carbon fixation, and productivity estimates 16: 230 estimation, and oxygen/carbon fluxes 16: 213– 215 in frontal regions 16: 237 light availability, North West Europe 16: 220– 223 Photosynthesis of Dunaliella 14: 143, 144– 153 and electron flow 14: 148 and light intensity 14: 148 and sodium chloride 14: 149– 153 fluorescence studies 14: 152 enzymes in 14: 139, 140 osmotic stress and thylakoid membranes 14: 152, 153 products 14: 146– 148 rate, and sodium chloride concentration 14: 144 Photosynthesis, electron paramagnetic resonance studies 1: 327 Photosynthetic apparatus, similarities between chlorophytes and land plants 5: 155 Photosynthetic carbon oxidation cycle (PCOC) 11: 94 – 100, 117 Photosynthetic carbon reduction (PCR) cycle 22: 242 Photosynthetic carbon reduction cycle (PCRC) 11: 85, 86 Photosynthetic carbon reduction cycle 10: 17 Photosynthetic electron transport chain 10: 17
220
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Photosynthetic membrane structure 10: 17 – 20 Photosynthetic membrane, X-ray structure 3: 53 –159 interpretation 3: 81 – 96 construction, membranes in general 3: 157, 158 electron microscopy 3: 135– 151 gross structure, membrane 3: 130– 135 layer structure, thylakoid membrane 3: 64 –81 membrane layers, inner structure 3: 96 –130 structure and function 3: 151– 157 Photosynthetic photon flux (PPFD) 37: 98 Photosynthetic pigment-protein complexes carotenoid-protein complexes fucoxanthin-containing complexes 10: 120– 129 peridinin-chlorophyll a –protein 10: 118– 120 chlorophyll-protein complexes chlorophyll a/b-protein 10: 105– 107 chlorophyll a/bsiphonaxanthin 10: 108, 109 LHCP and adjuvant lipids 10: 107 solubilization and fractionation 10: 104, 105 types of complex 10: 103, 104 phycobilisomes and biliprotein aggregates discovery 10: 109 fluorescence 10: 112– 115 interactions with thylakoids 10: 115– 118 structure 10: 109–112 Photosynthetic pigments 19: 208– 210 action spectra and quantum yields 10: 68 –73 carotenoids apoprotein binding 10: 59, 60 chemistry 10: 58 configuration and conformation 10: 60, 61 distribution 10: 54 – 58 energy transfer 10: 61, 62 photoprotection 10: 62 principle function 10: 58, 59
chlorophylls chlorophyll a 10: 49 –51 chlorophyll b 10: 51 chlorophyll c1 and c2 10: 52, 53 chlorophyll d 10: 53, 54 distribution in algal groups 10: 26, 27 phycobiliproteins 10: 63 – 68 quantum efficiency 10: 73 – 75 Photosynthetic pigments of higher Algae and plants % sugar radio composition of cell and cell wall fractions after 14C glucose labelling 5: 120, 121 cell fractionation studies 5: 114– 117, 119, 120 conversion of radiation 5: 6, 7 fluorescence spectra 5: 22 – 29 hypothetical model of distribution of chlorophyll species 5: 30 orientation of pigments within photosyntheticapparatus 5:31 –37 special features of the chloroplast system 5: 5 – 7 Pisum structure of cellulose 5: 96 symplastic phloem unloading 5: 197 transport of synthesized materials 5: 129, 132, 133 Photosynthetic reflectivity index (PRI) 37: 143 Photosynthetically active radiation (PAR) 33: 37, 38 Photosynthetically active radiation (PAR) 22: 102, 104, 112, 141– 143, 145 effects of cellular process 22: 121 effects of gene expression 22: 134, 139 protective mechanisms 22: 120 Photosystem I (PSI) 13: 5 – 7 cation-induced changes 13: 38 components 13: 5, 6 distribution in thylakoid membranes 13: 6, 14, 15 electron transfer 13: 6, 7, 44, 45, 48 excitation energy transfer 13: 6, 23, 30, 31 heterogeneity 13: 21 – 23 interactions between PSI complexes 13: 23, 30, 31 intrasystem energy transfer 13: 23, 30, 31
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
LHCII interaction 13: 10, 23, 35, 36 PSII interaction 13: 23, 31 – 35, 50 – 53 see also Photosystem II (PSII) superoxide formation 13: 44, 45 Photosystem II (PSII) 13: 5, 7 –9; 22: 240, 241; 37: 23, 26, 100 cation effects, PSI interaction and 13: 38 – 40 composition 13: 7, 8 distribution on thylakoid membranes 13: 15 electron transfer 13: 8, 9, 46 environmental fluctuation, PSI interaction and 13: 49, 50 excitation energy transfer to PSI 13: 23, 31 –35, 38 regulatory aspects 13: 38 – 43 heterogeneity 13: 16 – 21 intrasystem excitation energy transfer 13: 23 kinetics of chlorophyll fluorescence emission 13: 25 – 27 lateral segregation, PSI interaction and 13: 34, 39, 40 LHCII association, heterogeneity and 13: 17 – 19 LHCII in PSI interactions 13: 23, 34 – 36, 40 –43, 53, 54 LHCII, intrasystem energy transfer 13: 29, 30 long term changes, PSI interactions and 13: 50 – 53 membrane appression heterogeneity and 13: 19 –21 intrasystem energy transfer and 13: 28, 29, 35 non-cyclic electron transport and 13: 44, 48 photo-inhibitory damage 13: 55 PSIIa to PSIIb conversions 13: 19, 21, 35 quantum efficiency, intrasystem energy transfer and 13: 29, 30 shade plants 13: 51, 52 spillover to PSI 13: 31, 37, 38, 41, 42 State 1-State 2 transitions 13: 37, 38, 40, 53, 55, 56 superoxide formation 13: 44, 45
221
Photosystem reaction centre complexes analysis of chlorophyll proteins curve deconvolution 10: 96 – 98 difference absorption spectra 10: 98, 99 fluorescence spectra 10: 99 – 102 distribution of excitation energy 10: 143–149 Photosystems I and II algal adaptations to incident light 27: 262, 263 control of energy transfer 27: 267 molecular model 27: 284, 285 motorcycle model 27: 283 PSI, major polypeptides, arrangement 27: 286 PSII, major polypeptides of thylakoid membranes 27: 285 Phototransduction in determination of leaf form 28: 176– 179 Phototrophic symbioses 25: 81 Phototropic movements, growthmediated 33: 63 – 72 direct control 33: 64 – 68 indirect control 33: 68 –70 leaf movements 33: 90 – 107 photoreceptors for 33: 70 –72 Phototropin (NPH1) 151, 159, 162– 169 Phototropin 33: 71 Phototropism 18: 290, 291; 22: 105, 166; 32: 162, 163 Phrynium capitatum, growth 3: 230 PHYA – E genes 32: 150, 155, 242 Phycobilins evolution 10: 178 structure 10: 63 Phycobilins, synthesis 27: 297 Phycobiliprotein 19: 209; 27: 310, 311 and associated proteins 27: 279, 280 Phycobilisomes and biliprotein aggregates 10: 109– 118 assembly 27: 304 control of gene expression 27: 304– 307 mechanism of excitation transfer 10: 133, 134 occurrence in Cryptophyta 10: 35 Cyanobacteria 10: 32
222
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Phycobilisomes (continued) Rhodophyta 10: 35 protein synthesis 27: 302– 304 shading effects 10: 160, 161 structure 10: 134, 139; 27: 286– 288 Phycobilosome particles 3: 26 Phycocyanibilin, distribution 10: 63, 64 Phycocyanins allophycocyanin genes 27: 306 and phycoerythrins 27: 305 polypeptides 27: 304 Phycodrys rubens 35: 175 Phycodrys sp., d13C values 27: 150 b-Phycoerythrin 19: 209, 210 Phycoerythrobilin, distribution 10: 63, 64 Phycomyces P. blakesleeanus, phosphorus content 8: 130 phosphorus translocation 8: 201 polyphosphate content 8: 147 Phycomyces sporangiophore 18: 286, 290 p-hydroxybenzyl glucosinolate 35: 221, 232 p-hydroxyphenyl-acetaldoxime 35: 223, 224 Phylectic implications of flagellar structure in plants bases 2: 17 distribution of th 2: 9 + 2 type 2: 3 hairs 2: 14 heterokont, isokont conditions 2: 6 multiple condition 2: 9 roots 2: 19 scales 2: 17 shape 2: 10 spines 2: 13 uniflagellation 2: 8 Phyllactinia 24: 312 Phyllactinia guttata 24: 312 Phyllome 38: 192 Phylloquinone synthesis 14: 45, 46 and compartmentation 14: 64 Phyllosporum, chlorophyll a/c ratio 10: 121 Phyllostachys edulis, identification of gibberellins 9: 43 Phyllostachys, stomata 3: 284 Phyllosticta 33: 20, 21 Phyllosticta abietis 33: 20 Phyllosticta cryptomeriae 33: 20
Phyllosticta multicorniculata 33: 20 Phyllosticta pseudotsugae 33: 20 Phyllotaxis 22: 178 Phyllotaxis and pattern of vascular tissue 9: 158 Phyllotaxis evolution 17: 152, 153 floral 17: 119– 121 Phylogenetic profiles 32: 58 sequence analysis 32: 51, 54, 290 trees 32: 51 – 54 Phylogenetic inertia 37: 47 Phylogenetic relationships 30: 33 – 37 Phylogenetic species concept 35: 177 Phylogenetic structure 24: 342, 343 Phylogenetic tree P-type ATPases, cloned full-length 28: 13 P-type H+-ATPases, cloned full-length 28: 14 Phylogeny, and pathogenicity, MLOs 21: 188– 190, 206 candidate model systems for identifying phytoplasma plant pathogenicity, host range and insect transmission genes 21: 199– 206 Mollicutes and MLOS 21: 190– 195 prospects for characterizing and expressing phytoplasma genes 21: 195– 199 Phymatotrichum omnivorum, phosphate and cell development 8: 197 Phyoalexins 37: 7 Phyrma 38: 295 Physarum 11: 4, 6, 55, 58 – 60 Physcomitrella 35: 93 Physcomitrella patens 38: 206 breeding systems 6: 246 genetics 6: 245 hybridity 6: 251 Physcomitrium 19: 251, 297 Physcomitrium eurystomum hybridity 6: 251 Physical mapping 34: 48 Physiological races 21: 148 Physiology and embryology 2: 219 Physopella zeae 24: 204 Phytelephas macrocarpa (ivory nut) 11: 126, 129
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Phytelephas, growth 3: 224 Phytic acid and mineral availability 34: 213, 214 Phytoalexin production 33: 20 Phytoalexin synthesis 14: 83 – 85 Phytoalexins 13: 179– 183; 19: 8 – 10, 20 –23, 26, 36, 40, 42, 48, 50, 53; 21: 3, 4, 6, 8, 25; 30: 106, 304, 306, 309, 310 fungal pathogens 21: 47, 48, 57, 62, 150, 164 immediate responses 21: 9 – 11 in gene-for-gene systems 4: 30, 33, 35, 39, 40 local defence response 21: 13, 15 phytuberin 4: 10 resistance 21: 21 – 23 rishitin 4: 10, 37 wyrone acid 4: 6 Phytoalexins and nutrient status 10: 242, 261, 266, 267 Phytochrome 13: 52; 18: 290; 22: 105– 107, 110; 37: 5, 6 Phytochrome and gibberellins 9: 130, 131 Phytochrome genes 34: 141– 143 Phytochrome signal transduction 29: 55, 56, 61 –63 Phytochromes 27: 306; 32: 128– 130, 150, 158, 159, 169– 175 Phytoene in carotenoid synthesis 14: 44, 45 Phytoene synthetase activity and pepper ripening 14: 83 Phytohaemagglutinin (PHA) 25: 6, 7, 49, 55 Phytohaemogglutinins (see lectins) Phytohemagglutinin 35: 145 Phytohormone 18: 96 Phytohormones and potassium transport 15: 164 Phytohormones in determination of leaf form 28: 171– 174 Phytol 35: 23 Phytomer, delimitation 28: 167– 178 Phytophthora 19: 35, 39; 21: 163– 165; 24: 78, 217, 279, 288, 311, 358, 361, 370, 372, 375– 377, 379, 380, 386– 389, 431– 456; 32: 363 asexual life cycle 24: 436, 437
223
biological species and speciation 24: 442, 443 cambivora 21: 128 capsici 21: 164 cinnamomi 21: 128, 136 copper and iron effects on germination 10: 255 cryptogea 21: 162 evolution of host specificity 24: 443– 448 evolution of species 24: 442, 443 evolutionary relationships between species attacking legumes 24: 440– 442 genetic variation and possible origins of species attacking legumes 24: 437– 440 infestans 21: 2 megasperma 21: 10, 13 molybdenum and zoosporangia formation 10: 265 organic phosphorus utilization 8: 180, 186, 187 P. cinnamomi, phosphorus content 8: 141 P. erythroseptica, pyrophosphate utilization 8: 176 P. heveae, phosphorus content 8: 141 P. infestans, pyrophosphate utilization 8: 176 P. megasperma var. sojae, phosphorus content 8: 141 P. palmivora phosphoglucan content 8: 139 phosphorus content 8: 141, 149 P. parasitica phosphorus content 8: 141 pyrophosphate utilization 8: 176 parasitica 21: 149, 150, 162– 164, 169 potassium and host infection 10: 225 sexual life cycle 24: 437 taxonomy 24: 433– 436 Phytophthora cactorum 24: 370; 33: 20 Phytophthora capsici 24: 447 Phytophthora cinnamomi 19: 135; 24: 282, 284, 287, 355– 357, 360, 365, 370, 372, 373, 375– 377, 379– 381, 383, 386, 388, 441, 442, 444– 448 Phytophthora cryptogea 24: 442, 444, 447; 32: 381
224
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Phytophthora drechsleri 24: 442, 444, 445, 447, 448 Phytophthora fragariae var. rubi 23: 8 Phytophthora heveae 24: 447 Phytophthora infection, effects of salicylates 20: 210 Phytophthora infestans 19: 24, 40, 48, 51; 24: 12, 15 – 17, 19, 199, 200, 207, 210, 211, 216– 218, 235, 266, 311, 353, 385, 444, 446, 447; 32: 363; 34: 278; 38: 17, 252, 258 epidemiology and populations genetics 24: 21 – 24 genotypic diversity 24: 23 late blight management 24: 22 – 24 lineages 24: 23 population structure 24: 21, 22 Phytophthora macrochlamydospora 24: 440, 442, 446 Phytophthora meadii 24: 447 Phytophthora medicaginis 24: 439, 444, 446, 447, 449, 450 Phytophthora megakarya 24: 440, 447 Phytophthora megasperma 19: 40, 42, 50, 52, 74; 24: 172, 370, 441, 442, 444, 447; 29: 60 Phytophthora megasperma f. sp. glycinea 19: 46, 54 Phytophthora mirabilis 24: 447 Phytophthora nicotianae 24: 365, 448 Phytophthora palmivora 24: 359, 370, 379, 381, 388, 440, 447 Phytophthora parasitica 19: 32; 24: 385; 38: 258 Phytophthora parasitica var. nicotianae 19: 46 Phytophthora sojae 24: 438– 444, 449, 450; 32: 393; 38: 252, 258 age-related resistance in 38: 259 evolution of cultivar specificity 24: 448– 450 life cycle 24: 436 Phytophthora spp., biocontrol 26: 63, 147– 150 Phytophthora trifolii 24: 447 Phytophthora vignae 24: 439– 442, 444, 450
Phytoplankton blooms and irradiance 10: 14, 15 buoyancy control 10: 42 light attenuation 10: 12 – 14 package effect 10: 46 thylakoid structure 10: 33, 35 Phytoplankton, marine 27: 85 – 183 major taxa 27: 88, 89 planktophytes, defined 27: 87 taxonomy, phylogeny and ecology 27: 87 – 92 13 12 C/ C ratios 27: 145 Phytoplankton, North-West Europe shelf seas 16: 193–252 control of production 16: 202– 212, 241 grazing 16: 209– 212 light 16: 202– 204 nutrients 16: 202, 204– 209 temperature 16: 209 distributions 16: 196– 202 descriptive accounts 16: 196, 197 quantitative methods 16: 197, 198 temporal/spatial 16: 198– 202 variability 16: 241, 242 environmental conditions, NW Europe 16: 217– 227 annual production cycle 16: 226, 227 grazing 16: 225, 226 light availability 16: 220– 223 mixing processes/seasonal stratification 16: 217– 221 nutrient availability 16: 223– 225 Phytoplasma 21: 192 see also Phylogeny Phytoporphyria 35: 33, 34 Phytoreovirus (WTV) 36: 150– 154, 157, 159, 161 Phytotoxic root exudates 22: 166 Phytotoxic secondary metabolites 31: 79 Phytotoxic terpenes 31: 133 accumulation in trichomes 31: 124 Phytotoxins 25: 144 Phytotrons 18: 6, 7 Phytyl diphosphate and mevalonate incorporation 14: 75 concentration in vivo 14: 74 PI 3-kinase 25: 53, 54 Pib 38: 260
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Picea 33: 9 Picea abies (Norway spruce) 18: 13, 15, 16 air pollutants bioindication 18: 87, 88, 89, 90 bioindication 18: 98, 99, 100, 103, 105 nitrogen oxides fumigations 18: 37 NOx exposure 18: 38 O3 exposure 18: 58, 66 O3 fumigations 18: 52, 57 SO2 exposure 18: 30 SO2 fumigation 18: 11 SO2/NO2 exposures 18: 45 Picea abies 30: 64; 33: 5, 8, 15, 20, 142; 37: 108 Picea abies, lignin composition 8: 31 Picea abies, volatile salicylates 20: 188 Picea excelsa (spruce) 18: 14, 88, 92 air pollutants bioindication 18: 90 bioindication 18: 93 needles, bioindication 18: 94, 97 O3 exposure 18: 63 O3/SO2 exposures 18: 75 SO2 exposure 18: 27, 30 stressed 18: 100 tree acceleration, longitudinal 18: 209 wind, u/v/w components of 18: 209 Picea glauca 30: 4 Picea pungens 22: 112 Picea sitchensis 18: 236; 33: 15, 20 Picea sitchensis, identification of gibberellins 9: 43 Picea spp. 18: 82, 104 Pichia pastoris 32: 171 Picorna virus 21: 111– 113 Picosecond laser spectroscopy 18: 280 Picosecond spectroscopy applications (bacteriorhodopsin) 8: 20 – 22 (rhodopsin) 8: 20 – 22 haeme proteins 8: 12– 14 porphyrins 8: 14 –20 vision (bacteriochlorophyll) 8: 22, 23 experimental absorption spectroscopy 8: 7 – 10 emission spectroscopy 8: 10, 11 pulse generation 8: 2– 5 wavelength conversion 8: 5 – 7 Pieris 35: 243, 244
225
Pieris brassicae 30: 99 Pieris rapae 35: 243 Pigeon pea witches’ broom 21: 193, 194 Pigment determinations of phytoplankton 16: 197, 198 Pigmentation, UV radiation 22: 102, 103, 104, 112, 113, 114 effects on cellular processes 22: 122– 124, 132 effects on gene expression 22: 138– 140 interactions with other stresses 22: 141, 142, 143, 144, 147 protective mechanisms against 22: 114– 117 Pigments 21: 13 Pigments, photosynthetic membrane gross distribution 3: 133 lipid-pigment distribution 3: 128– 130, 150 position in thylakoid 3: 87 – 96 Pilayella littoralis 11: 89, 91, 93 Pilea 38: 207 Pimpinella anisum 35: 113 Pinaceae, Early Tertiary 17: 20, 21 Pinane 31: 78, 79, 102 Pine 18: 19, 81 grafts 18: 76 O3 exposure 18: 66 SO2 exposure 18: 28, 29 species 18: 93 Pine blister rust 33: 27 Pineapple closterovirus 36: 200 a-pinene 31: 99, 100 Pinene synthases 31: 100 Pinguicula 25: 104 Pink Lake, Dunaliella in 14: 100 Pinocarveol 31: 130 Pinocarvone 31: 130 Pinocytosis 21: 112, 113 Pinto beans 18: 62 “Pinto” cv. 18: 11, 12 O3 fumigations 18: 53, 54 Pinus 19: 306; 22: 102; 31: 56; 33: 4, 8, 9, 17, 25; 37: 97, 112 lignin composition 8: 50 oleoresin production 6: 281 O-methyl transferase 8: 40, 41
226
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Pinus (continued) resin ducts 6: 300, 305 resin secretion 6: 303 resin synthesis 6: 302 Pinus attenuata, gibberellin extraction 9: 49, 50 identification 9: 43 Pinus banksiana (Jack pine) 18: 13, 15 SO2 fumigation 18: 9 Pinus banksiana 30: 4; 33: 4, 16; 37: 41, 101, 112, 113, 158 Pinus brutia 33: 22 Pinus contorta 37: 113 Pinus densiflora 33: 4, 7, 8, 12, 16, 22 Pinus elliottii 18: 55, 65 Pinus elliottii var. elliotti 37: 108 Pinus halepenis 31: 60, 61 Pinus longaeva 35: 4 Pinus muricata 29: 20, 21 Pinus nigra 18: 11 Pinus pinaster (maritime pine) 33: 148 Pinus pinea 18: 11 Pinus ponderosa 18: 16, 69; 35: 114 SO2 exposure 18: 30 Pinus radiata 33: 10 Pinus resinosa 33: 4, 8, 16 Pinus serotina 19: 118 Pinus spp. 18: 90 hybrid 18: 88 populations 18: 105 Pinus spp., retrotransposons 27: 337 Pinus strobus (eastern white pine) 18: 53, 54, 55, 65, 69, 99 air pollutants bioindication 18: 89 O3/SO2 exposures 18: 81 Pinus sylvestris (Scots pine) 18: 13, 15, 16 air pollutants bioindication 18: 87, 88, 89 bioindication 18: 96, 99, 103 nitrogen oxides fumigations 18: 37 NOx exposure 18: 41, 42 O3 exposure 18: 67 O3 fumigations 18: 53, 56 SO2 exposure 18: 27, 29, 31, 32 SO2 fumigations 18: 11, 12 Pinus sylvestris (Scots pine) 33: 4, 15, 26, 28
Pinus taeda (loblolly pine) 18: 55, 65 NOx exposure 18: 38 O3/AP exposures 18: 80 Pinus taeda 19: 118; 30: 246; 32: 192; 37: 107 Pinus thunbergii 33: 4, 7,8, 12, 16 PIP 25: 423 Piperaceae 31: 58 Piptocephalis 24: 415 Piricularia oryzae copper effect on infection 10: 231 glutamine and spore germination 10: 226 silica and infection 10: 261 Pisatin 21: 6, 23 Pisatin production and nickel 10: 261 Pisolithus tinctorius 28: 120, 122, 136, 141, 142, 146, 148, 212 Pistil, recognition of self-pollen 32: 277, 278, 285 Pisum 19: 306; 22: 9, 174, 187; 24: 319, 320; 28: 218; 29: 101; 35: 9; 37: 107 seed morphology 9: 3 vascular differentiation cytoplasmic strands 9: 204, 205 phloem fibres 9: 240, 241 sieve tubes 9: 233 xylem 9: 215, 216 anatomy of vascular system 9: 154 differentiation from parenchyma 9: 166 effect of auxin 9: 166, 183, 198, 243 influence of leaf primordia 9: 164, 240, 241 interaction with seedling organs 9: 160 polarity of leaf veins 9: 194 wound production of Pisum arvense 18: 132 Pisum sativum 37: 85 Pisum sativum (pea) 18: 13, 15, 130, 138 bioindication 18: 97 carbon processing 18: 144 frost injury 18: 67 legume nodule structure 18: 132 O3 exposure 18: 61 O3 fumigations 18: 52, 53 O3/SO2 exposures 18: 70, 74, 75 O3/SO2 fumigations 18: 71 SO2 exposure 18: 25, 31, 32
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
SO2 fumigation 18: 11, 12 SO2/NO2 exposures 18: 44 Pisum sativum (pea) 12: 3, 4 Pisum sativum 19: 138, 140, 161, 163, 164, 210; 21: 49, 50; 24: 323, 324; 25: 259, 325; 29: 126; 32: 42, 214, 396, 464, 474; 33: 134 see also Legume seed storage proteins chloroplast envelope 7: 51, 57, 67, 68 DNA analysis 6: 125 DNA TEs 27: 352, 353 DNA transposable elements, evolutionary aspects 27: 423 glutamine synthetase 6: 7 oxygen transport 7: 302– 305, 308 retrotransposons 27: 337 RFLPs 27: 43, 44 root growth and oxygen pressure 7: 288 vicilin 27: 21, 22 Pisum sativum, curve deconvolution analysis 10: 96 Pisum, chemical content of cell walls 2: 79 Pitch pine 18: 99 Pithomyces chartarum, phosphorus content 8: 142 Pithomyces chartarum, plasma membrane 3: 35 Placenta 19: 233 in bryophytes 19: 283–295 in liverworts 19: 258 in mosses 19: 236 Placental cell walls in anthocerotes 19: 276 Placental cells in anthocerotes 19: 276 in liverworts 19: 260 in mosses 19: 238 Placopecten magellanicus 12: 62 Plagiochasma 19: 271 Plagiochila asplenioides phytochemistry 6: 259 sex chromosomes 6: 232 Plagiogyriaceae, cytology 4: 292 Plagioheliotropic movement (plagioheliotropism) 33: 42, 75 Plagiomnium cultivation experiments 6: 253, 254, 256 Plagioselmis palustris 19: 195
227
Plagiotheciaceae cytotaxonomy 6: 243 Plagiothecium genetics 6: 246 Planktonic algae 25: 78 Planktonic diatoms 25: 77 Plano-convex lens 18: 286, 287 Plant breeding for crop improvement 35: 54 genetic engineering, biotechnology and 35: 55 Plant cell 28: 3– 13 Plant defence activation signal 24: 120 Plant defence proteins 26: 26, 135– 192 defence types 26: 139, 140 enzyme inhibitor families 26: 140– 142 general properties 26: 140– 143 invertebrate pests 26: 139, 146, 159– 168, 171, 172 manipulation 26: 169– 172 microbial pathogens 26: 143– 159, 171 potential pathogens 26: 136– 138 Plant defense strategies 32: 379, 380 Plant enzymes 32: 73 – 76 Plant growth 28: 1 – 70 invertase role 28: 106, 107 Plant growth factors 31: 230, 231 Plant growth retardants 34: 136– 141 Plant growth-promoting rhizo-bacteria (PGPR) 26: 41, 42 Plant Health Inspectors 23: 14 Plant hormones. See Hormones Plant host range (PHR genes) 21: 200, 202, 203, 205 Plant invertases 28: 71 – 117 cellular localization 28: 73 comparison of amino acid sequences dicotyledons 28: 94 from monocotyledons and differential gene expression 28: 97 –99 diversity within gene family 28: 89 – 92 factors modulating activity 28: 83 gene evolution 28: 102– 104 gene expression in different organs during plant development 28: 80 –82 genes and cDNAs 28: 90, 91 genes characterized to date 28: 89 gibberellic acid in 28: 87 gravity effects 28: 88
228
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Plant invertases (continued) in pathogen infection and wounding 28: 87, 88 inhibitors 28: 89 isoenzymes 28: 74 – 78 light effects on 28: 89 manipulation of gene expression in transgenic plants 28: 99 – 102 matrix of clustal scores 28: 96 molecular biology 28: 89 – 104 molecular masses 28: 76 N-terminal amino acid sequences 28: 77 promoter analysis of genes 28: 92 – 97 reactions catalysed by 28: 78 response to pathogen infection 28: 107 role at tissue and organism levels 28: 105– 109 role in plant growth 28: 106 temperature effects 28: 88, 108 tissue and cell type distribution 28: 79 – 83 types 28: 72, 74 – 78 Plant movements adaptations to terrestrial environment 33: 107 adaptive strategies 33: 107– 113 biological clock and 33: 59 circadian control of ion fluxes 33: 52, 53 concept 33: 38 control of 33: 41 – 43 de-etiolated seedlings 33: 69, 70 diurnal control of ion fluxes 33: 53 – 55 diurnal movements 33: 107, 108 flowers and influorescences 33: 58 functional analysis 33: 106 generation 33: 38, 39 gravity and light 33: 63, 64 leaves 33: 58 – 63, 68, 69, 73 – 77 morphological constraints 33: 97, 98 motor for turgor-mediated movements 43 –58 nocturnal phase 33: 77, 78 of seedlings 33: 64, 65 operational aspects 33: 46 – 52 perception of directional light 33: 90 – 94 photoreceptor genes 33: 71, 72 role of cytoskeleton 33: 67, 68 shoot apices 33: 72, 73 solar signal perception 33: 78 – 89
stress and 33: 101, 102, 111, 112 structural features 33: 43 – 45, 97 Plant nucleus 24: 209, 210 Plant protoplasts, endocytosis in 28: 130, 131 Plant Quarantine Act 21: 128, 129 Plant resistance 32: 314 Plant resistance genes 30: 17, 28 – 30, 106, 292– 300, 312, 313 Plant storage vacuoles compartment biogenesis 38: 72 ER-derived protein bodies, induction of 38: 72, 73 protein transport during seed development 38: 66 – 73 seed storage protein transport by vacuolar autophagy 38: 67 – 69 storage protein transport in precursoraccumulating vesicles 38: 69 – 72 transport during seed germination 38: 73 – 78 Plant symptomatology (PS genes) 21: 200, 204, 205 Plant transposable elements 12: 103– 203 at molecular level 12: 151– 170 chromosomal anomalies 12: 141 cloning 12: 151–153 definition of 12: 105 dosage effects 12: 181– 183 excision of 12: 171, 172 gene expression 12: 161– 164 genomic instabilities 12: 188– 193 integration of 12: 172 interaction between 12: 177– 188 large-scale rearrangements 12: 176, 177 multiple copies of 12: 159, 160 mutable alleles 12: 109 mutations 12: 109– 151 origin of receptor elements 12: 137 proteins encoded by 12: 164 reversion events 12: 137– 139 segregation ratios 12: 109, 133– 137 specificity of integration 12: 177 structural features 12: 153– 159 transposition 12: 144– 151 variegation 12: 104– 108 Planta 18: 233 Plantaginales 19: 305
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Plantago 19: 116 Plantago coronopus enzymes of ammonia assimilation 6: 27, 28 Plantago major 19: 132 Plantago major, water movement in leaves 4: 123 Plantago maritima 25: 403 Plantago maritima, salt tolerance 8: 251 Plantago media 25: 403 Plantago sp. 11: 169 Plant – animal reactions 37: 81 Plant – haustorium interfaces 24: 198, 199 Plant – insect interaction 30: 91 – 106 Plant – microbe interactions 37: 81, 82 Plant – parasite interface, solute transport 24: 202– 204 Plant – plant interactions 37: 82 Plants and wind 18: 189– 240 Plants, waving 18: 205– 208 Plasma bridges 24: 401 Plasma membrane ATPase activation by IAA, 58, 60 Plasma membrane H+-ATPase 31: 203 C-terminal regulatory domain 28: 19, 20 electrochemical H+ gradient 28: 37, 38 extrapolating from in vitro to in vivo 28: 27, 28 generation of plants with altered amounts 28: 24, 25 identification of single amino acid residues involved in regulation 28: 20, 21 in the living plant 28: 23 – 27 in vitro and in model systems 28: 15 – 23 isoforms 28: 19 proposed physiological roles 28: 27 – 37 purification 28: 17, 18 reconstitution 28: 17, 18 regulation by 14 – 3 – 3 proteins 28: 44 regulation by changing amount of H+-ATPase 28: 38 – 41 regulation by changing H+-ATPase activity 28: 41 – 47 regulation by light 28: 47 regulation by protein kinases/phosphatases 28: 45, 46 regulation of activity 28: 37
229
role for phospholipases in activation 28: 46 solubilization 28: 17, 18 stimuli activating/inhibiting 28: 41 tools used to increase activity in vivo 28: 25, 26 tools used to inhibit activity in vivo 28: 26, 27 transcriptional regulation 28: 40 transport coupling ratio 28: 22 Plasma membrane H+-ATPase-based electrical signalling system in plants 28: 36, 37 Plasma membrane internalization in waterstressed cells 25: 25 – 27 Plasma membrane vesicles 28: 16 Plasma membrane, structure and recognition phenomena 4: 11, 12 Plasma membranes 28: 6 purification 28: 15 – 17 Plasma membranes, cyanobacteria, lipid composition 16: 13 Plasma(endo)membrane 28: 15 Plasmalemma identification from cell fractionation studies 5: 112, 117 synthesis of cell wall components 5: 99, 100, 102– 105 transport of inorganic C through 27: 121–126, 166–170 transport of inorganic C to active site of RUBISCO 27: 134–140 Plasmalemma in root potassium transport 15: 94 – 129 and hydrogen ion transport 15: 99 – 119 charge balance maintenance 15: 100, 101 co-transport 15: 115– 119 dependence, inter-ion 15: 99 direct coupling 15: 101– 111 indirect coupling 15: 111– 115 carrier-kinetic approach 15: 94 – 99 dual isotherm hypothesis 15: 95, 96 limitations 15: 98, 99 ‘low-salt’ roots 15: 94, 95 linear uptake and anions 15: 121–123 and potassium channels 15: 123, 124
230
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Plasmalemma in root potassium transport (continued) and root salt status 15: 124, 125 physiological role 15: 127, 128 reaction kinetic model 15: 125– 127 redox-coupled 15: 129– 136 and exogenous NADH 15: 130, 131 and wound response and NADH 15: 131, 132 integrated NADH model 15: 132– 136 Plasmalemma, freeze-etching 3: 28 Plasmalemma, viral infection 21: 106, 108, 117 Plasmid pAHC25 34: 94 Plasmid vectors, phytoplasmas 21: 196, 198, 199 Plasmodesmata 21: 106, 107, 111, 115, 116, 118; 22: 202; 31: 261– 278 Abutilon nectary trichomes 31: 265– 267 cell-to-cell molecular transport 31: 261, 262 Cicer arietinum trichomes 31: 277 desmotubule 31: 262, 263, 276, 277 fixation artefacts 31: 263, 264 formation of 2: 89 glandular trichomes 31: 264, 265 Gossypium hirsutum nectaries 31: 269, 270 Hibiscus nectaries 31: 270, 271 in parenchyma cells of apical meristems 2: 105, 106, 117 in tip cells 2: 113 microinjection studies of molecular transport 31: 272– 274 movement protein (MP)-mediated transport 31: 271 Nicotiana leaf trichomes 31: 271– 277 routes of molecular transport 31: 264, 267 size exclusion limit (SEL) 31: 267– 269 structure 31: 262– 264 tomato trichomes 31: 277 trichome/mesophyll comparison 31: 272– 277 virus interaction 31: 272 Plasmodesmata and root potassium uptake 15: 140, 141
Plasmodesmata, structure and function in multicellular chlorophyta 5: 158, 160, 161 Pleurochrysis scherffelii site of synthesis of cell wall components 5: 99 structure of cellulose 5: 98 Plasmodiophora 24: 313 Plasmodiophora brassicae 24: 279, 421; 35: 246 Plasmodiophora brassicae, effect of boron and calcium on host infection 10: 241 Plasmodiophoromycetes 36: 56 Plasmodium 32: 201 Plasmodium falciparum 28: 13; 32: 12, 198 Plasmodium yoelii 28: 13 Plasmopara 24: 322, 354, 375 Plasticity, cell wall 22: 248– 251 Plastid membrane permeability 14: 65, 66 Plastids 18: 164; 31: 60, 61, 127 see also Chloroplasts defined 27: 261 evolutionary hypotheses 27: 261, 262, 311, 312 integration of nuclear and plastid gene expression 27: 307, 308 parasites and pacemakers of evolution 27: 433–435 Plastocyanin 13: 13, 44, 45, 48 Plastocyanin precursor processing 14: 18 Plastocyanin, electron donor to P700 10: 87, 88 Plastoglobuli 35: 21 – 24 Plastoglobuli, in chloroplast stroma 7: 28, 29, 32, 34, 35, 46, 47 Plastoquinol 13: 44, 48, 49 Plastoquinone 13: 8, 9, 15, 44, 45, 48, 53; 22: 125, 126, 143 Plastoquinone synthesis 14: 48, 49 and compartmentation 14: 64 Plastoquinones, in photosynthetic membrane 3: 125– 128 Plastoquinones, redox state 27: 301 Platanaceae, Early Tertiary 17: 35, 36 Platanids, Cretaceous fossils 17: 108, 109 Platanoids, Early Tertiary 17: 119
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Platanthera post-pollination phenomena 7: 578 Plate-trapped-antigen (PTA) assays 24: 281 Platinum 18: 263 Platycaryeae, Early Tertiary 17: 41, 42 Platymonas subcordiformis osmoregulation 6: 99, 100 Platyzoma, morphology and cytology 4: 291 Platyzoma, sporogenesis 16: 66 Plectocolea hyalina interspecific polyploidy 6: 210 Plectonema boryanum, RUBISCOs, Kc values (table) 27: 104 Plectonema, phosphorus content 8: 146 Plectophomella sp. 33: 20 Pleiotropic Regulatory Locus Protein 1 (PRL1) 32: 452 Pleonanthic flowering 3: 261– 269 Pleopeltis, polyploidy 4: 322 Pleospora bjorlingii 33: 5 Pleospora salicorniae 33: 5 Pleuridium cytotaxonomy 6: 242 Pleurochloris sp., state transitions 27: 266, 268 Pleurococcus sp., thylakoids 27: 270 Pleuroplaconema sp. 33: 7, 9 Pleurothalis ophiocephalus, carbon fixation 7: 526 Pleurotus ostreatus competitive ability in culture 7: 389, 391, 396 zone formation 7: 395, 396 Pleurozium schreberi aneuploidy 6: 220 centromere evolution 6: 136, 137 Plocamium sp., d13C values 27: 150 Plum pox virus 23: 15; 36: 4 Plumaria sp., d13C values 27: 150 Plumbago 28: 234, 237 Plumbago capensis 31: 2, 26, 58– 60 Plumbago zeylanica 28: 239, 240, 248 Plums, see Fruit: skin fracture properties Pluronic F-l27 22: 59 Plutella xylosa 35: 243 PMSF 24: 41 Pneumocystis carinii 28: 13 PNH 38: 206
231
p-Nitrophenylbutyrate 24: 41 PO, see Peroxidase Poa 33: 245 Poa alpina nitrate reductase 6: 23 Poa annua (couch) 33: 245 Poa pratensis, effect of sodium on growth 7: 159, 162, 163 Poaceae 29: 123, 136, 137, 149, 150; 34: 2, 129 evolution of 34: 31 Podangis, flowering period 7: 536 Podocarpaceae 22: 13 chromosome evolution by centric fusion 6: 173– 176 Podocarpaceae, Early Tertiary 17: 19, 20 Podocarps 1: 67 Podocarpus 22: 13; 33: 9 chromosome constitution 6: 173 chromosome evolution 6: 173 Podocarpus macrophyllus, lignin composition 8: 31 Podophyllotoxin production 13: 165, 166 Podophyllum peltatum culture 13: 166 Pogonatum 19: 247 Pogonatum aloides apospory 6: 252 karyotype formula 6: 241 meiotic abnormalities 6: 223 Pogonatum neesii 19: 246 Pogostemon (patchouli) 31: 78, 89, 91 Pohlia cultivation experiments 6: 253, 254 phytochemistry 6: 259 Poikilohydry and production of dessication-resistant spores 5: 199 in evolution of vascular land plants 5: 199 Poinsettia cultivars 18: 32 Point bars 16: 127 Polarity convention 25: 343 Polarity of tissue in relation to vascular differentiation 9: 187– 199 Polarization of Chlamydomonas 5: 33 of Chlorella 5: 34, 36 of Mesotaenium 5: 33
232
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Polarization (continued) use of plane polarized light in determination of orientation of pigments 5: 31 – 37 Polhausen relationship 18: 213 Polio virus 21: 112, 113 Polishing and fibre optic microprobes 18: 263– 265 Pollen 22: 132, 133 androgenic haploidy 2: 300 anther culture 2: 301 bud pollinations 2: 227 formation of embryo sacs 2: 303, 304 germination, ambient humidity 2: 224, 226, 227 germination, boron, calcium, magnesium and potassium 2: 224, 231 germination, dicarboxylic acids 2: 225 germination, mass effect 2: 225, 230 germination, stored pollen 2: 223 induction of sterility 2: 308 irradiated pollen 2: 296, 300 longevity 2: 221 male and female potency 2: 303 methods of prolonging vitality 2: 221 mutual stimulation of pollens 2: 225 pantothenic acid (coenzyme A) content 2: 223 parthenogenesis 2: 296, 298, 299 Paspalum dilatatum 2: 221 pectin synthesis 2: 225 pollen growth factor 2: 230 self-sterility 2: 226, 230 sexual incompatibility 2: 229 storage, humidity 2: 221– 223 storage, nutrients 2: 223 storage, temperature 2: 221 stored pollen, field use 2: 223 Pollen and male gametes in situ 28: 233 Pollen development 32: 238, 239 Pollen dimorphism 35: 65 Pollen see Palynology, Fossil plants, Monocotyledons Pollen tubes, growth influence of chemicals and natural abstracts 2: 229, 231 influence of temperature 2: 229 inhibition of 2: 229– 231
mode of 2: 96, 98 relation to structure 2: 228 Pollen tubes, microflbrils 2: 98 Pollen, see Meiosis Pollen, survival at Cretaceous/Tertiary boundary 17: 5 Pollen-coat protein 32: 258 Pollen – pistil interaction 32: 240, 241 Pollen-style compatibility, cell-cell recognition 4: 20, 21 Polla¨hne-press 23: 67 Pollination 31: 18, 49; 32: 270, 271 Pollination, Early Tertiary vectors 17: 63 – 66 Pollution 21: 86, 88 – 90, 94, 95 Pollution, see Heavy metals, and lipid metabolism in algae Poly (ADP-ribose) polymerase (PARP) inhibitors 34: 107, 108 Polyacetylene 21: 13 Polyacetylenes 31: 162 Polyacrylamide-gel electrophoresis test 23: 63, 66 Polyamines 18: 93; 22: 120, 121, 143 Polyamines, compartmentation andtransport 25: 386, 387 Polycarpicae karyotype evolution 6: 189, 190 POLYCHOME (PYM) 31: 247, 248, 251 Polychromatic action spectrum 22: 103 Polyembryony adventive embryony 2: 280 Anethum graveolens 2: 271, 294 angiospermic parasites 2: 292 avocado 2: 286 carrot 2: 283, 294 chemical promoters 2: 280 et seq., 287 Citrus 2: 281 cultivation of excised nucellar tissue 2: 281 Cuscuta reflexa 2: 292 Cymbidium 2: 292 Datura 2: 290 Daucus carota 2: 281 Dendropthoe falcata 2: 294 embryonal budding 2: 286 Eranthis hiemalis 2: 286 Foeniculum vulgare 2: 271, 295
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Hordeum vulgare 2: 290 irradiation of developing caryopses 2: 290 Kalanchoe pinnata 2: 285 Nicotiana 2: 285 orchids 2: 290, 292 Orobanche aegyptiaca 2: 294 ovary and flower culture 2: 271, 294 Persea grattisima 2: 286 pseudobulbils 2: 281 Pteris vittata 2: 286 Ranunculus scleratus 2: 271, 294 somatic fertilization 2: 280 somatic tissues, differentiation-dedifferentiation-redifferentiation 2: 286 totipotency of carrot root cells 2: 283– 285, 294 Vanda tricolor 2: 290 Polyethylene glycol (PEG) 21: 196– 198 Polygalacturonase 34: 129 Polygalacturonase-inhibiting proteins (PGIPs) 21: 4, 12, 20, 173, 174; 24: 90, 120– 127, 150, 151; 26: 157– 159 Polygalacturonases (PGs) 24: 150, 151 Polygalacturonic acid 19: 28 Polygenic resistance 21: 51 –56, 58, 71, 72 Polygonaceae 37: 45 Polygonum aviculare nitrate reductase 6: 23 Polygonum cuspudatum 37: 69 Polygonum viviparum 24: 81 Polyhydric alcohol, accumulation and water stress 8: 255 Polyhydroxynaphthalene reductase 34: 267 Polyketide synthases 34: 270 Polykrikos spp. 12: 233 Polymerase chain reaction (PCR) 21: 110, 168, 177, 189, 193, 194; 24: 11, 41, 337, 400; 25: 257; 34: 29 Polymerase chain reaction see PCR Polymerization 21: 48, 51 Polymorphism 32: 280, 281 Polymyxa betae 36: 57, 58; 38: 29, 30, 32, 43 Polymyxa graminis 36: 57, 59, 70 life cycle 36: 50 Polyneura lastissima 11: 99 Polyols 25: 371
233
Polyoxyethylene sorbitan, differential solubilization of thylakoids 10: 104 Polypeptides 25: 124, 128 Polyphenol oxidase 30: 93, 94 Polyphenol oxidase and nutrient status 10: 233, 236, 238, 239, 241, 261 Polyphenol oxidase, in orchids, following pollination 7: 615, 617 Polyphenoloxidase 21: 39, 51 Polyphenols 21: 48, 51; 37: 27 Polyphenols, effect on nitrification 29: 20 Polyphosphate bodies as artefacts of chemical fixation 28: 145, 146 Polyphosphate kinase, in fungi 8: 150 Polyphosphate, in fungi 8: 136– 138, 142– 144, 146– 153, 157, 173, 177, 178, 198, 199, 201, 204, 205 Polyphosphate, phosphorus storage as 28: 145 Polyploidy and centric fusion 6: 18 – 186 buffering influence 6: 182, 183 distribution 6: 216– 218 interspecific polyploidy 6: 208, 210, 212– 218 intraspecific polyploidy 6: 208, 211– 218 micro-evolution mosses 6: 264 origins 6: 215, 216 Polyploidy in ferns 4: 255 first discovery 4: 256 geographical distribution of polyploids 4: 323– 330 levels of polyploidy 4: 265– 281 Polypodiaceae, polyploidy 4: 322 systematic distribution of polyploids 4: 319– 323 “Polypodiaceous” fern origins 4: 253– 255 Polypodium 19: 297 fossil record 4: 234, 249 P. dispersum apomixis 4: 391, 392 cytogenetics 4: 350 vegitative apomixis 4: 399 P. vulgare complex, cytogenetic relationships in P. australe 4: 350, 352, 353 P. calafornicum 4: 351– 353
234
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Polypodium (continued) P. glycyrrhiza 4: 350– 353 P. hesperium 4: 350– 353 P. interjectum 4: 351– 353 P. virginianum 4: 350– 353 P. vulgare, stomatal movement 4: 122, 169 polyploidy 4: 322 Polysaccharide 18: 139 Polysaccharides distribution 11: 128– 132 hydrolysis 11: 127, 128 types 11: 128– 132 Polysaccharides 21: 59; 25: 202 Polysaccharides, extracellular 30: 296, 297 Polysiphonia harveyi 35: 199 Polysiphonia japonica 35: 177 Polysiphonia, gametogenesis 16: 59 Polysomes 22: 166 Polystachya, flowering period 7: 535– 541, 547 Polystichum apomixis 4: 390 cytogenetics and species interrelationships in P. acrostichoides 4: 355 P. aculeatum 4: 353– 356 P. braunii 4: 353– 356 P. calafornicum 4: 355, 356 P. dudleyi 4: 356 P. falcinellum, polyploidy 4: 324 P. kruckebergii 4: 356 P. lonchitis 4: 353– 355 P. mohriodes 4: 356 P. setiferum 4: 353– 355 P. setiferum, structure 4: 237, 243 polyploidy 4: 322, 324 Polystictus, reduction of aromatic acids 8: 42 Polystyrene latex microspheres 11: 33 – 37, 57 Polytrichales 19: 245– 247, 263, 285, 287, 293 Polytrichum 19: 245, 247, 285 karyotype formula 6: 241 Polytrichum formosum 19: 249 Polytrichum, lignin content 8: 29 Polyunsaturated fatty acids (FPFA) 33: 53
Polyvinyl chloride (PVC) 24: 284– 286 Polyvinylidene difluoride (PVDF) 24: 282, 283 Polyvinylpyrrolidone, use as a cryo-protective agent 5: 20 Pommier organism (PPAV) 21: 191 Pomovirus 36: 59 Pomoviruses, vector specificity 36: 89, 90 Poncirus trifoliata 37: 112, 113 monoterpene production in plastids 6: 303 Poplar 22: 165 Poplar, see Populus euramericana Population characteristics varying among 24: 18, 19 concept of 24: 5 – 8 definition of 24: 6 genetic variation 24: 8– 10 predicting variation among 24: 13 Population genetics and epidemiology 24: 13 – 24 bacterial 24: 335– 351 contribution to epidemiology and plant disease management 24: 5 – 19 evolutionary inferences 24: 15 – 18 fundamental concepts 24: 5 – 19 historical background 24: 338– 340 history 24: 4 neutral theory 24: 338– 340 use of term 24: 3, 4 variation in 24: 337, 338 Population pressure, agriculture 21: 79, 80 agriculture’s resource base 21: 87 – 89 carrying capacity, technology andsustainability 21: 80 –82 ecosystems and agriculture 21: 89 – 91 feeding the billions 21: 84 – 87 measuring impacts 21: 91, 92 nutritional security 21: 92– 94 outlook 21: 95 – 100 population growth 21: 82 –84 rich-poor gap, global change 21: 94, 95 Population structure 24: 340– 345 multilocus 24: 17, 19 Population time bomb 34: 2 Populus 19: 143, 162; 31: 56 glandular hairs 6: 296, 297 hydrogen peroxide and lignification 8: 54
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
O-methyl transferase 8: 41 P. tremula, enzymes of lignification 8: 57 Populus X euramericana 37: 108 Populus candicans, water uptake 3: 183 Populus deltoides £ trichocarpa 18: 16, 72 Populus deltoides 19: 136 Populus euramericana (poplar) 18: 11, 87 air flow 18: 216 air pollutants bioindication 18: 88 bioindication 18: 9, 95 hybrid 18: 54, 55 clone 18: 76 O3 18: 67 O3 fumigations 18: 57 O3/SO2 exposures 18: 81 O3 exposure 18: 50, 51, 58 O3 fumigations 18: 53 SO2 exposure 18: 19 Populus maximowizii 18: 16 Populus spp. 37: 106, 107, 110 Populus tremuloides (aspen) 33: 7 Populus tremuloides 18: 12; 25: 102; 37: 152 Populus trichocarpa 19: 136; 37: 113 Populus, Early Tertiary 17: 42, 43 POR 35: 26 Porcine ribonuclease inhibitor (PRI) 24: 144–147 Porellaceae 19: 291 Porphyra 35: 174, 176, 191 Porphyra leucosticta 35: 179 Porphyra perforata action spectra for photosynthesis 10: 71 fluorescence spectra 10: 101 Porphyra perforata, state III, PSI and II 27: 266 Porphyra umbicalis 11: 99 Porphyra yezoensis 33: 186 Porphyridium chlorophyll of P700 10: 83 difference absorption spectra 10: 98 Porphyridium aerugineum 19: 212 Porphyridium cruentum, chloroplast membrane 3: 26 Porphyridium sp. 11: 98 Porphyridium spp. C-concentrating mechanisms (table) 27: 118, 119
235
RUBISCOs, Kc values (table) 27: 104 thylakoid membrane area 27: 163 Porphyrin-ring layer, photosynthetic membrane 3: 114– 122 Porphyrins, energy relaxation mechanisms 8: 15 – 19 Porteresia 34: 34 Porteriochromonas stipitata, orientation of cellulose 5: 105, 106 Portulaca grandiflora, effect of sodium on growth 7: 162, 166, 197 Positive selection 34: 78 – 80 Postelsia palmaeformis 35: 189 Post-transcriptional gene silencing (PTGS) 34: 97, 98 – 101 Post-translational modification of proteins 32: 81 Potamogeton 37: 41 Potamogeton lucens 28: 36 Potamogetonaceae, stipules 3: 211 Potamophila 34: 34 Potamophila parviflora 34: 34 Potassium 11: 162– 167; 25: 343, 344, 404, 405 accumulation 25: 359 calcium ions 22: 72, 73, 77, 81 in soil 29: 4 mutualism and parasitism 22: 4 salinization, transport and 29: 157 shoot accumulation 29: 129 signal transmission 22: 180, 187, 210, 212 translocation to the shoot 29: 129, 130 transport in growing shoot tissues 29: 144 transport in young tissue 29: 133– 137 UV radiation 22: 107, 109 vectorial activation 25: 344– 346 water and nitrogen supply 22: 238, 258, 259, 274, 280, 283 Potassium channels 15: 114, 115; 32: 466, 467 and linear uptake 15: 123, 124 and medium concentration 15: 124 and tetraethylammonium chloride 15: 123, 124 Potassium ion channels 29: 5 Potassium ions and Dunaliella growth 14: 107
236
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Potassium permanganate, reactions amino acids, peptides, proteins 3: 13 lipids 3: 12 proteins, erythrocytes 3: 13, 14 Potassium transport in roots 15: 93 – 178 plasmalemma in 15: 94 – 129 and hydrogen ion transport 15: 99 – 119 carrier-kinetic approach 15: 94 – 99 linear uptake component 15: 120– 128 redox-coupled 15: 129– 136 and exogenous NADH 15: 130, 131 and wound response 15: 131, 132 integrated NADH model 15: 132– 136 regulation 15: 151, 152 ‘bulk’ levels 15: 151, 152 by transport to xylem 15: 161– 163 hierarchy of 15: 152 reaction kinetic model 15: 161 sites 15: 152 regulation, allosteric 15: 152– 161 carrier synthesis/degradation 15: 154, 155 criticism of 15: 156– 161 feedback 15: 152– 154 tonoplast fluxes 15: 155, 156 regulation, multicomponent 15: 163– 168 and environmental factors 15: 164 and growth factors 15: 165 and transpiration 15: 165 feedback control in 15: 164 phloem recirculation 15: 165– 167 research directions 15: 169, 170 to xylem 15: 136– 151 electrogenic mechanisms 15: 145– 151 lag phase in 15: 143– 145 radial pathway 15: 140– 143 site of entry 15: 137– 140 Potassium, interactions with ammonium 30: 48, 49 Potassium, soil management 21: 70 Potato brown rot 23: 10, 15 ring rot 23: 5, 9, 10, 20, 43 spindle tuber 23: 61 spindle tuber viroid 23: 5, 15 Potato 18: 36; 21: 2, 17, 235; 22: 165, 188, 189; 24: 211, 216, 217 virus X (PVX) 21: 155
Potato aucuba mosaic potexvirus 36: 2 Potato certification 23: 217– 238 bacterial ring rot 23: 226 –232 Canada 23: 231, 232 ELISA 23: 228 Gram stain test 23: 231 immunofluorescence 23: 228, 231 monoclonal antibody 9A1 23: 228, 231 recent developments 23: 232 success of 23: 232 biology of 23: 227 certification program 23: 226 detection 23: 229 indexing 23: 227– 232 blackleg 23: 233– 235 growing conditions 23: 233 indexing results 23: 234, 235 Netherlands 23: 233, 234 potato cyst nematodes certification 23: 235 identification of 23: 237 indexing 23: 235– 238 Netherlands 23: 235 sampling techniques 23: 235– 237 test results 23: 237, 238 viruses in USA 23: 218–226 gel electrophoresis 23: 222 limited generation 23: 221, 222 alfalfa mosaic virus 23: 218 contamination 23: 224 curly top virus 23: 219 indexing 23: 221– 225 leafroll virus 23: 218– 225 outlook 23: 225 tobacco rattle virus 23: 219 Virus A 23: 218– 225 virus biology 23: 220, 221 Virus M 23: 218– 225 Virus S 23: 218– 225 Virus X 23: 218– 225 Virus Y 23: 218– 225 Potato cyst nematodes 23: 117, 118, 235– 237 Potato inhibitors I and II 26: 143, 162, 163, 172
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Potato leafroll virus (PLRV) 36: 22, 23, 36, 88 PLRV-PAT 36: 28, 29 Potato mop-top virus (PMTV) 36: 56, 58, 60 Potato protoplasts 19: 12 Potato see Solanum tuberosum Potato tuber disks 19: 51 Potato virus 22: 147 Potato virus C (PVC) 36: 4 Potato virus Y (PVY) 36: 4, 5 Potato yellow dwarf virus (PYDV) 36: 153, 154, 159, 161 Potato yellow vein virus 36: 70 Potatoes, see Parenchyma, fracture property testing Potential matric, and bound water 3: 174– 178 solute 3: 173, 179– 181 Potential leucine zippers 24: 102– 108 Potentilla erecta enzymes of ammonia assimilation 6: 23, 30 Potentilla fruticosa 33: 22 Poterium sanguisorba enzymes of ammonia assimilation 6: 27, 28 nitrate reductase 6: 22, 26 Potting mixes, biocontrol 26: 12 –14 POTY virus 21: 132 Potyviridae 36: 70, 201 Potyvirus 36: 2, 70 Potyvirus helper component 36: 11, 12 Potyviruses 36: 68, 70, 7l, 89, 90 non-persistent transmission in 36: 3, 4, 77, 78 vector specificity 36: 87, 88 Poverty 21: 92 –95, 99 PP1/2A 32: 86 – 88 PP2B, see calcineurin PP2C 32: 89 – 91 PPBs 35: 71, 72 PPM family 32: 70, 72, 73 PPP family 32: 69– 72 pPROT1 24: 42 – 45 PR protein 1, plant defence 26: 148, 149 PR proteins see Pathogenesis-related proteins
237
Prasinophyceae, ancestors of land plants 5: 155 Prasium majus 31: 89 Prasophyllum, post-pollination phenomena 7: 580 Pratylenchus penetrans 21: 235 Pratylenchus spp. 23: 113 Precision, epidemiology 21: 237 Precursor-accumulating vesicles 38: 69 –72 Predators 22: 165 Pre-harvest sprouting 34: 147– 152 Preinoculation 21: 67 Preissia 19: 255, 271 Pre-maturity a-amylase (PMAA) 34: 151 Pre-nectar modification 31: 49, 266 transport processes 31: 49, 51 –53, 265 Prenols, long-chain, synthesis 14: 50 Prenyl diphosphate formation 14: 38 –42 and compartmentation 14: 63, 64 and isopentenyl diphosphate isomerase 14: 38 – 40 and prenyltransferases 14: 40 – 42 Prenylquinones 35: 24 Prenyltransferases and prenyl diphosphate formation 14: 40 – 42 location, subcellular 14: 63 Pressure chambers 22: 233, 234, 247, 276 Pressure injection 22: 57, 58, 66 Pressure signals 22: 175– 179 Pre-transformation proof of concept 34: 294– 297 Prf 38: 270 PRH proteins 33: 186 Primary productivity geological past, C limitation 27: 176– 179 various habitats 27: 92 Primary response to salinization 29: 115 Primeveroside 20: 179 Primula glandular hairs 6: 296 Primula acaulis, cinnamic acid 20: 190 Primula kewensis 31: 128 Primula obconica 31: 155, 156 Principal component analysis 21: 235 Principal Control Point Hypothesis 35: 68 Prionoxystus robiniae 21: 134
238
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Prionum 3: 214 vascular system 3: 246, 257, 265 Prisca reynoldsii, Cretaceous fossils 17: 111, 112 PRK1 (pollen receptor-like kinase1) clone 32: 238, 239 Pro25 32: 21 Proanthocyanidins 37: 76, 83 Probability of invasion 38: 45, 46 Probability of persistence 38: 45, 46 Probability theory 38: 44 Probable amylase/proteinase inhibitor (PAPI) 34: 211 Probe acceptance width 18: 269 light measurements 18: 277 etching/stretching/heating 18: 261 optical properties 18: 268– 270 orientation 18: 273– 277 sensitivity and acceptance angle 18: 266– 269 tip coating loss 18: 278, 279 grinding/polishing, microprobe fabrication 18: 263– 266 light reflection 18: 270 truncation and sputter coating 18: 262, 263 Probe-based methods 23: 42 – 45 Procaryota 2: 3 Procaryotes see also individual species name ammonium transport and 30: 49, 50 nitrate transport in 30: 21 – 24 Procentrum 12: 52 Procentrum micans, thylakoid structure 10: 34 “Processor” cv. 18: 13, 15 Prochloraz 33: 237 Prochlorococcus marinus and plastid origins 27: 312 LHCs 27: 275– 277 Prochloron algal evolution 10: 183– 185, 188 thylakoid membrane 10: 32, 33 Prochloron didemni, LHCs 27: 275– 277, 312
Prochlorophytes chlorophylls and relationships to chloroplasts 27: 312, 313 LHCs 27: 275– 277 number and origins of membranes between cytosol and RUBISCO (table) 27: 138, 139 Prochlorothrix hollandica 27: 312 LHCs 27: 275– 277 ProCysEP 38: 76 Production level, correspondence analysis 21: 233– 235 Productivity improvement 31: 83, 135– 141 biosynthetic capacity increase 31: 139, 140 cell/tissue culture 31: 136 heterologous production ofmetabolites 31: 140, 141 monoterpenoid biosynthetic enzymegenetic manipulation 31: 108 selective breeding 31: 135 transgenic approaches 31: 136, 137 trichomes number/density 31: 137, 138 Proendoproteinase B (proEP-B) 25: 48 Profiling techniques 23: 9 Progenitors of vascular land plants 5: 155– 162 Proglobulin 25: 131 Progoitrin 35: 239 Programmed cell death 31: 90, 91 Programmed cell death, plant storage vacuoles and 38: 76, 77 “Progress” 18: 11 Prokaryotes 12: 153, 170, 171; 25: 60, 62 Prolamin protease-containing vesicles 38: 74 – 78 protein disulphide isomerase (PDI) 38: 76 pseudo-mass-action transmission 38: 41 Pseudomonas cichoru¨ 38: 252, 264 Pseudomonas syringae pathovars 38: 256, 269 Pseudomonas syringae pv. maculicola 38: 256 Pseudomonas syringae pv. tomato 38: 256 Puccinia graminis f. sp. tritici 38: 260 Puccinio striiformis 38: 17, 264 PV72 38: 71
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
pyramiding 38: 254 pyrrhophyta, PEPCK in 38: 145, 146 pyruvate carboxylase 38: 96 transport by autophagy 38: 67, 69 transport in precursor-accumulating vesicles 38: 69 – 72 Prolamins 25: 29, 30, 128– 131; 34: 195, 196, 197 Prolegumin 35: 148 Prolegumines, proteolytic processing 25: 132, 133 Proline 11: 170– 172; 22: 144, 254, 258 accumulation and water stress 8: 255 incorporation into protein 8: 72 Proline knot 35: 119 Prolyl hydroxylase 19: 12 Promenaea stapelioides, seed morphology 7: 426 Pronase E 19: 23 Propagative transmission 36: 21 2-propenyl 4-methylsulphinylbutyl isothiocyanate 35: 249 2-propenyl glucosinolate 35: 221, 224, 228, 233, 238 2-propenyl isothiocyanate 35: 244, 247, 249 Propeptides 25: 46 C-terminal (CTPP) 25: 48, 49 N-terminal, (NTPP) 25: 46 – 48 Prophyll, monocotyledons 3: 210, 211, 270, 276, 286– 288 Propionyl CoA carboxylase (PCC) properties (table) 27: 96 Proplastids 35: 21 3-propyl glucosinolates 35: 230 Prorocentrum lima 27: 235 Prorocentrum micans 12: 211, 212, 218, 220– 223, 225– 237 cell division 12: 230– 236 interphase cells 12: 227–230 Prosphytochloa 34: 34 prostaglandin endoperoxide synthase 31: 186 Prostaglandin metabolism 31: 186 Prostaglandins, causing stomatal closure 20: 193 Prostanthera grylloana resin yield 6: 289 Prosthecochloris aestuarii chlorophyll-protein structure 10: 132, 133
239
P700 complexes 10: 84 Protease 21: 4, 6, 111, 152, 153, 160; 24: 42 – 45, 47 Protease inhibitor 18: 139 “Protease inhibitor inducing factor” (PIIF) 19: 19, 48, 75 Protease inhibitors 19: 19, 20; 25: 151 Protease production 24: 41 Protective functions 31: 13, 14, 16, 79, 81, 82, 131, 133, 134, 155, 201, 220 Pelargonium spider mite resistance 31: 186 Protein 30K 21: 116 factor, and enzyme modulation 14: 77 –79 in Dunaliella 14: 128 amino acid composition 14: 129 lamella, thylakoid membrane 3: 81 – 87 gross distribution 3: 133 inner structure 3: 96 – 114 reaction with fixatives 3: 13, 14 synthesis, mitochondrial 14: 6, 8, 9 Protein biosynthesis, UV radiation 22: 132 Protein bodies 25: 113– 140 Protein bodies in legume seeds formation 9: 10 – 16 occurrence 9: 7, 8 proteolysis 9: 16, 17 Protein BP-80 35: 141 Protein component of cell walls 2: 151 Acer pseudoplatanus 2: 175, 190 amino acids 2: 168– 171 analytical techniques 2: 158 Apium graveolens 2: 175 ascorbic acid oxidase 2: 204 Avena sativa 2: 175 biosynthesis 2: 177 Camellia sinensis 2: 175, 190 cell extension 2: 193, 210 cell suspension cultures 2: 155 Centauria cyanus 2: 175, 189 chemical degradation 2: 193 chromatography 2: 158 Citrus paradisi 2: 175 collagen 2: 169 cysteine 2: 169 Daucus carota 2: 175 degradation of sycamore primary cell wall 2: 171, 193
240
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Protein component of cell walls (continued) disulphide bridges 2: 172, 211 electrophoresis 2: 158 enzymic degradation and characterization 2: 171, 194, 200 enzymic wall protein 2: 204 Eruca sativa 2: 175 experimental materials and methods 2: 155 Festuca sp. 2: 175 Galega officinalis 2: 175 Ginkgo biloba 2: 175, 176, 188, 190, 191 Helianthus annuus 2: 175 history 2: 152 hydrolyases 2: 205 hydrolysis 2: 158 hydroxyproline 2: 160, 172, 174, 177 Lepidium sativum 2: 175 Lupinus albus 2: 176, 177 Lycopersicon esculentum 2: 175 Malus sylvestris 2: 190 Nicotiana tabacum 2: 175, 190 Oryza sativa 2: 175, 190 Phaseolus vulgaris 2: 175, 188 Pisum sativum 2: 175 Populus tremula 2: 190 proline hydroxylation 2: 184 Pyrus communis 2: 175 resistance to proteolytic attack 2: 172 Rosa 2: 175 Santalum album 2: 176 Solanum tuberosum 2: 175 sulphur amino acids 2: 169 sycamore cells 2: 157, 171, 173, 174, 178, 179, 191, 193, 196, 198 tensile strength 2: 200 variations in composition between species 2: 168 wall form 2: 202 wall-bound enzymes 2: 204– 208 Zea mais 2: 175 14 C-proline, uptake and incorporation 2: 177 Protein Data Bank (PDB) 32: 63 Protein disulfide isomerase (PDI) 25: 130, 131 Protein factors 21: 21 Protein gene phylogeny 19: 212, 213
Protein in cell walls, biosynthesis 2: 88, 177 changes of 14C distribution with time 2: 181 chick-embryo system 2: 186 collagen 2: 187 elastin 2: 187 inhibition by proline analogues 2: 180 oxygen fixation 2: 184 oxygen tension, effect of 2: 184 proline hydroxylation 2: 184 site of synthesis 2: 88, 182 sycamore cell cultures 2: 178 14 C-proline, uptake and incorporation by intact cells 2: 177 Protein in cell walls, variation of content 2: 188 arabinose/galactose ratio 2: 199 arabinose/xylose ratio 2: 190 cambial cultures 2: 189 control by the plant 2: 191 control over cell extension 2: 193, 210 correlation with general growth form 2: 192 cultural conditions, influence of 2: 189 effect of disturbed biosynthesis 2: 191 effect on leaf morphogenesis 2: 191 Gramineae 2: 192 in different regions of the same plant 2: 188 Juncus 2: 193 list of species 2: 175 maize 2: 192 peas 2: 191, 192 pollen cultures 2: 189 secondary wall, contamination by 2: 190 seeds 2: 191 soybean 2: 192 sugar molar ratios 2: 190 sycamore cambial tissues 2: 191 Protein kinase 21: 11, 64, 110, 167, 173, 178 activity regulation 32: 447 classification of 32: 4, 5, 49 cloning 32: 3, 4 EMBL database of 32: 2 functions of 32: 5 – 9, 48 inhibitors 32: 27
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
light signals and 32: 149– 175 phylogenetic tree (phenogram) of 32: 6, 7 regulation of 32: 451–453 Protein kinase C 22: 49, 108 Protein kinase C 28: 45 Protein kinases/phosphatases 28: 45, 46 Protein phosphatase (PP) inhibitors assay (PPIA) 27: 232, 233 effect of microcystins/nodularins 27: 232 list and properties 27: 227 microcystins 27: 225, 226 Protein phosphatases activators 32: 84, 85 catalysis 32: 69 – 79 distribution of 32: 68 function 32: 69, 85 – 94 inhibition of 32: 84, 85 regulation of 32: 79– 85 structure 32: 69 – 79 Protein phosphorylation 19: 52, 53 Protein profile analysis of developmentally regulated genes 24: 57, 58 Protein storage 25: 27 – 31 Protein storage vacuoles (PSVs) Protein storage vacuoles (PSVs) 35: 159– 162 deposition of constituents in dicotyledonous plants 25: 116– 120 environment within 35: 147, 148 enzyme composition 25: 127, 128 functional implications 35: 162– 164 general organization 35: 141– 144 globoid cavity 35: 156– 159 in dicotyledonous seeds 25: 132 in seeds 25: 113– 140 morphology 35: 145 ontogeny 25: 114– 116 structural organization in seeds 35: 144– 147 tonoplast developmental regulation 25: 123– 126 traffic of integral membrane proteins 35: 151– 154 receptor-like proteins that traffic via the Golgi complex 35: 152–154 to PSV crystalloid 35: 152 traffic of storage proteins 35: 148–151
241
in wheat endosperm 35: 150. 151 precursor-accumulating vesicles 35: 149, 150 to dense vesicles 35: 148, 149 Protein synthesis 24: 358 Protein synthesis by chloroplast in vitro 7: 52, 53 Protein synthesis in developing legume seed biochemical mechanism 9: 17 – 21 control 9: 21 – 24 Protein targeting 14: 1 –24 and conformation during transport 14: 19 and genetic engineering 14: 21, 22 chloroplasts 14: 13 – 18 binding of precursors 14: 15, 16 processing of precursors 14: 17, 18 synthesis of proteins 14: 14, 15 transport and energy 14: 16, 17 mitochondrial 14: 6 –13 binding of precursors 14: 9, 10 cleavage of precursors 14: 12, 13 synthesis of proteins 14: 6, 8, 9 translocation 14: 10 – 12 nuclear 14: 4 – 6 presequence origin 14: 20, 21 principles 14: 3, 4 receptor origin 14: 20 review, historical 14: 2, 3 structural setting 14: 2 Protein three-dimensional structures 32: 63 Protein transport 25: 46, 50 – 54 Protein turnover measurement (methods) amino acid incorporation 8: 83 –89 amino acyl t-RNA 8: 89 –91 chemical modification 8: 104– 107 density labelling 8: 118– 121 double isotope method 8: 99 – 102 enzyme degradation 8: 107– 118 heavy water 8: 93, 94 secreted protein 8: 91 – 93 tritiated water 8: 94 – 98 measurement (problems) amino acid recycling 8: 78 – 83 compartmentation 8: 69 – 80 terminology 8: 67 – 69
242
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Protein, analysis of primary cell wall ascorbic acid oxidase 2: 204 cellulase 2: 195 enzymic degradation 2: 194 Ginkgo 2: 196 hemicellulase 2: 195 hydrolase 2: 205 pectinase 2: 195 sugar molar ratios 2: 193, 195 sycamore 2: 196 uridine diphosphoglucose pyrophosphorylase 2: 205 Proteinase 22: 165 Proteinase inhibitor 22: 188– 196, 197 proteinase inhibitor II 32: 359 Proteinase inhibitors (PI) 21: 4, 8, 12, 17, 19, 20, 25, 62 Proteinase inhibitors in mycoparasitism 26: 36 parasitic bacteria 26: 34 plant defence 26: 26, 140–142, 143, 157, 160– 166, 169, 171, 172 Proteinase-inhibitor inducing factor (PIIF) 22: 188, 191, 196 Proteinases 34: 196 Protein – carbohydrate link 2: 198 Protein – protein interaction 33: 192, 193 Proteins 18: 20, 68, 94; 34: 194– 212 see also Coat protein defensive proteins 34: 195, 196 fungal pathogens 21: 48, 57, 59, 71, 149, 150 G protein 21: 64, 168 gluten proteins 34: 198, 199 high-lysine protein and nutritional quality 34: 201– 204 HMW subunits and breadmaking quality 34: 199– 201 manipulation of HMW subunits 34: 201 storage proteins 34: 196 structural and metabolic proteins 34: 195 types and properties 34: 194– 196 viral infection 21: 118 Proteins, resistance conferring see Plant defence proteins Proteins, UV radiation 22: 104
Protein – tyrosine phosphatases (PTPases) 32: 76 – 80, 91 – 95 Proteobacteria 27: 88 Proteolipids, pigment-binding 35: 24, 25 Proteolysis 30: 3; 32: 257 Proteolytic processing of prolegumins 25: 132, 133 Proteromonas steinii 19: 214 Proteus mirabilis, P/O ratio 4: 85 Protochlorophyllide a 35: 20; 35: 21 Protogonyaulax 12: 52, 59 Proton circuits 28: 3 – 13 Proton gradients 28: 1 – 70 Proton pump 15: 10 ATP dependent 15: 109 ‘Proton pump’ hypothesis in rapid cell elongation 5: 58, 60 Proton pumps 28: 3, 5 Proton transport, photosynthetic membrane 3: 153– 157 Protoplasm weight and gravity sensing 15: 32 Protoplast fusion, biocontrol agents 26: 82 Protoplast transformation 34: 62, 63 Protoplasts 21: 110; 30: 57, 249, 255, 256, 298, 302 Protoplasts, UV radiation 22: 107, 108 Protoporphyrin 22: 126 Protozoa 2: 6 Protozoan proteins, LRR consensus sequences 24: 140 Provacuoles 25: 8, 9, 12, 122, 123 Provicilin 35: 148 Prunin 35: 116 Prunus 32: 313 Prunus amygdalus 35: 116 Prunus armeniaca mid-day closure of stomata 4: 151, 203 stomatal behaviour and environment 4: 203– 205 stomatal response to humidity 4: 169– 173 Prunus armenica 19: 151 Prunus dulcis 19: 151 Prunus persica 19: 130; 37: 112 Prunus serotina 37: 155 Prymnesiophyceae, C3 + C1 carboxylases 27: 97
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Prymnesium parvum 12: 48, 52, 58, 59, 67, 68 Prymnesophytes 11: 75 Psathyrella 24: 77 Pseudanthium Theory 17: 146 see also Euanthium Theory Pseudoanabaena chromatic adaptation 10: 166 phycobilisomes 10: 112 Pseudocercosporella (Ramulispora) 33: 230 anamorphs 33: 234 Pseudocercosporella aestiva 33: 228– 230 Pseudocercosporella anguioides 33: 228– 230 Pseudocercosporella herpotrichoides 24: 287; 33: 226, 227, 229– 232, 243 Pseudocercosporella herpotrichoides var. acuformis 33: 228, 229 Pseudocercosporella herpotrichoides var. herpotrichoides 33: 228, 229 Pseudococcidae 36: 199 Pseudococcus calcolariae 36: 200 Pseudococcus longispinus 36: 200 Pseudogenes 32: 56 Pseudomonads 21: 67 – 69 Pseudomonas 21: 6; 24: 344, 345; 30: 297 syringae 21: 8, 23, 65, 66, 174, 175 syringae pv. tomato 21: 66 Pseudomonas aeruginosa, cytochromes 4: 79, 82, 83 Pseudomonas cepacia 30: 189, 190 Pseudomonas fluorescens 24: 346 Pseudomonas putida 30: 175, 189, 307 Pseudomonas savastanoi 24: 48, 49 Pseudomonas sp., control of micro cystins 27: 239, 240 Pseudomonas spp. 23: 5, 6, 8, 15, 30 – 32, 35, 36, 43 – 45 Pseudomonas spp. antagonist applications 26: 50, 51 – 53, 57, 58, 66 – 68, 70, 71, 80 antibiotic production 26: 28 – 32 inoculation 26: 75, 77, 78, 80 plant defence proteins 26: 148, 152, 153, 155 suppressive soils 26: 5, 7
243
Pseudomonas stutzeri, effect of sodium, on growth 7: 148, 185 Pseudomonas syringae 19: 49, 69; 24: 110, 113, 153, 260, 265, 342; 30: 296, 298, 299, 308, 309, 312; 32: 21, 383, 386 Pseudomonas syringae pv. Glycinea 29: 65 Pseudomonas syringae pv. maculicola 24: 102, 111 Pseudomonas syringae pv. tomato 24: 91, 101, 102, 109, 111, 342 Pseudomonas syringae pv. syringae 28: 26 Pseudomonas syringae, host infection and nitrogen supply 10: 227, 228 Pseudomonas tabaci 12: 255 Pseudopanax crassifolius 37: 50 Pseudoparmelia caperata 18: 53, 54 Pseudoperonospora 24: 354, 379 Pseudophegopteris, structure 4: 239, 240 Pseudosclerotial plate formation 7: 364, 388, 389, 393, 398 Pseudotrametes gibbosa competitive ability in culture 7: 389– 391, 394– 396, 398, 399, 403 mycoparasitism 7: 383, 392, 396 Pseudotsuga 18: 90 Pseudotsuga menziesii (Douglas fir) 33: 4, 8, 13, 19 Pseudotsuga menziesii 19: 135 Pseudotsuga menziesii, identification of gibberellins 9: 43 Pseudowintera colorata 37: 183 PSI antenna cells 10: 84, 85 chlorophyll of P700 10: 83, 84 molecular weight 10: 85, 86 primary electron acceptor 10: 86 – 88 properties 10: 76 – 82 PSII general properties 10: 88 – 90 polypeptides 10: 90, 91 primary electron donor and acceptors 10: 91 –94 size of antenna and reaction centres 10: 94, 95 Psilophyton, ratio of water movement through xylem and parenchyma 5: 176, 177
244
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Psilotaceae 22: 13 Psilotales, cytology 4: 283, 284 Psilotum 22: 13 P. triquetrum chromosome counts 4: 255 cytology 4: 284 polyploidy 4: 320 Psilotum triquetrum, lignin composition 8: 31 Psilotum, sporogenesis 16: 66 PSO1130 33: 164 Psoralea 24: 432 Psoralen production 13: 179 PSP, see Paralytic shellfish poisons PsPK gene 32: 154– 156, 162 Psychotria leaf nodule symbiosis in 17: 200– 213 bacteria distribution in flowering 17: 208– 211 early studies 17: 200, 201, 207, 208 microsymbiont isolation 17: 220 nodule development 17: 204– 206 nodule initiation 17: 201, 204, 205 nodule structure 17: 205, 207 seed in symbiotic cycle 17: 211– 213 shoot tip morphology/role 17: 201– 203 occurrence/distribution 17: 167, 168 Psychotria bacteriophila 31: 12 Psychotria ulviformis 37: 8 Psychrometer 22: 247 Psylliodes 35: 243 Psylliodes chrysocephala 35: 243 PTA, see Phosphotungstic acid Ptd 30: 299– 301, 303, 304, 306, 312 Pteridaceae 22: 13 Pteridaceae, base numbers and classification 4: 283 Pteridium 19: 297; 22: 13 Pteridium aquilinum complex, incompatibility 4: 379–381 Pteridium aquilinum, lignin composition 8: 31, 32 Pteridophytes 19: 233, 295– 301; 33: 3 heterosporous aberrant cycles, induced 16: 76, 77 aberrant cycles, natural 16: 71, 72 gametogenesis 16: 63, 64
megasporogenesis 16: 68, 69 microsporogenesis 16: 66, 67 Pteridophytes, Early Tertiary 17: 13 – 16 see also Ferns Pteridosperms, Mesozoic 17: 140– 144 Pteris fossil record 4: 249, 253 introgression 4: 377, 378 P. biaurita, apomixis 4: 395 P. confusa, apomixis 4: 394 P. cretica, apomixis 4: 388 P. multiaurita, introgression 4: 377,378 P. otaria, introgression 4: 377 P. quadriaurita, introgression 4: 377, 378 polyploidy 4: 256, 291, 322 Pteris vittata, chloroplast envelope 7: 20 Pterocarpans 21: 48 Pterostylis nutans, symbiotic specificity 7: 496 Pterygodium caffrum, seed morphology 7: 426 PthA gene 30: 296 Ptil 32: 386 Ptilota sp., d13C values 27: 150 Pto 32: 4, 22, 42, 383, 384, 388, 391 Pto gene 21: 65, 66 Pto protein kinase 32: 383– 386 downstream effectors 32: 386 PTR family 30: 31 – 37 Ptychodiscus 12: 89 Ptychomitrium cytotaxonomy 6: 243 P-type ATPases 28: 8 – 11, 13 P-type plasma membrane H+-ATPase gene family 28: 11 – 14 Puccinellia graminis, salt tolerance 8: 223 Puccinellia maritima enzymes of ammonia assimilation 6: 28 nitrate reductase 6: 23, 25 Puccinia 19: 61; 24: 208 arachidis 21: 226– 230, 233–235 graminis f. sp. tritici 21: 148 Puccinia coronata, zinc concentration and vesicle formation 10: 258 Puccinia graminis 19: 38, 45; 24: 317 Puccinia graminis f. sp. tritici 24: 6, 14, 17, 19, 74
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Puccinia graminis tritici 24: 213 Puccinia graminis tritici, phosphorus and spore germination 8: 199 Puccinia hordei 24: 315, 317, 320 Puccinia poarum 24: 200 Puccinia recondita 24: 326 Pulegone 31: 81, 95 Pullularia pullulans, phospholipid content 8: 139 Pulsed field gel electrophoresis (PFGE) 21: 202, 204 Pulvinar chloroplasts, role in plant movement 33: 106, 107 Pulvinar phototropism in trifoliate leguminous leaves 33: 97 – 99 spectral independence 33: 102– 107 Pulvinus 28: 32, 37 Pumpkin 25: 125, 262 Pumpkin yellow mosaic virus 36: 69 Pumpkin, response of mitochondria to anoxia 7: 278 “Pure Gold Wax” cv. 18: 36 Purine 30: 118, 119 see also caffeine, theobromine bases, metabolism of 30: 140– 143 catabolism of nucleotides 30: 135–140 de novo nucleotide biosynthetic pathway 30: 126– 131, 143 interconversion of nucleotides 30: 131, 132 nucleosides, metabolism of 30: 140– 143 nucleotide metabolism in higher plants 30: 123–126 occurrence in plants 30: 120– 123 ring 30: 126 methylation of 30: 143– 150 salvage 30: 131– 135 specialized 30: 143 Purines, synthesis of 18: 158 Puroindolines (pins) 34: 208, 209 Purpurein 20: 183 Puya, vascular construction 3: 246 PVDF 24: 302 PVP see polyvinylpyrrolidone PVPK1 protein kinase subfamily 32: 30, 31 PWL gene 21: 151, 158– 160, 164 Pylaiella littoralis 19: 210 Pyocyanin 12: 7
245
Pyoluteorin (Plt), biocontrol 26: 28, 29, 31, 32 Pyracantha 37: 108 Pyrenoid-nucleomorph complexes 19: 206 Pyrenoids 27: 159– 166 absence 27: 159 CO2/HCO2 3 ratio 27: 163, 164 function in supply of C to RUBISCO 27: 165, 166 thylakoids in matrix 27: 161 Pyrenopeziza brassicae 24: 32, 33, 77, 78 analysis of sexual morphogenesis 24: 51 –60 biochemical analysis of cytokinin production 24: 49 biochemical analysis of sexual morphogenesis 24: 52, 53 cloning of mating-type loci 24: 56 complementation of developmental mutants 24: 53 – 56 disease dissemination 24: 38 disease epidemiology 24: 34 – 38 heterogeneity of resistance 24: 38 life cyde in planta 24: 61 mating-type loci and pathogenicity 24: 56, 57 molecular analysis of cytokinins 24: 49– 51 molecular analysis of sexual morpho genesis 24: 53 – 60 molecular life cycle 24: 61 pathogenesis 24: 33 pathways of development 24: 36 protein profile analysis of developmentally regulated genes 24: 57, 58 sexual morphogenesis in 24: 36, 58 – 60, 63, 64 Pyrenopeziza brassicae-Brassica interaction 24: 31 – 70 analysis of hemibiotrophic phase 24: 47 – 51 implications for disease control 24: 47 molecular analysis of pathogenesis 24: 40, 41 molecular techniques in analysis 24: 38, 39 molecular view 24: 60 – 64
246
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Pyrenopeziza brassicae-Brassica interaction (continued) proposed role of extracellular protease in pathogenicity 24: 47 role of cutinase 24: 41 role of cytokinins 24: 47– 51 role of protease 24: 42 – 45 sexual morphogenesis 24: 33, 34 subcuticular growth 24: 42 –45 surface growth and penetration 24: 41 Pyrenophora teres 24: 19 – 21 Pyricularia oryzae 34: 264 Pyricularia oryzae, phosphorus content 8: 131 Pyridoxine, effect on orchids in culture 7: 467, 468 Pyrimidine dimer 22: 104, 116, 140 Pyrimidine-(6-40 )-pyrimidone photoproducts 22: 117– 119 Pyritization 16: 178 Pyro pigments 35: 17 Pyrocystis 25: 77 Pyrocystis, chloroplast movement 10: 29 Pyrodinium bahamense var. compressa 12: 52 Pyrola rotundifolia, seed morphology 7: 425 Pyrolysis-mass spectroscopy 21: 48 Pyro-phaeide a 35: 19 Pyro-phaeides 35: 17 Pyrophaeophorbide 35: 9 Pyrophaeophytin 35: 9 Pyrophosphatase 22: 80, 81 Pyrophosphatases (PPases) 25: 219, 298 Pyrophosphate 25: 298 Pyrophosphate hydrolysis 28: 6 Pyrophosphate, utilization by fungi 8: 176, 177 Pyrrolnitrin (Pln), biocontrol 26: 28 –31 Pyrrophyta, LHC proteins 27: 276 Pyrrosia, polyploidy 4: 322 Pyrus 37: 114, 115 Pyrus communis 25: 267, 269 Pyruvate carboxylase (PC), properties (table) 27: 95 Pyruvate dehydrogenase in acetyl-CoA synthesis 14: 55, 56 Pyruvate dehydrogenase kinases 32: 126– 128
Pyruvate orthophosphate dikinase, effect of sodium 7: 199, 200 Pyruvate Pi dikinase (PPDK), C4 photosynthesis 26: 277–281 Pyruvate Pi dikinase 12: 4, 21, 22 Pyruvate/glyceraldehyde-3phosphatepathway 31: 95 Pythium 24: 267, 288, 311, 353, 361, 370, 372, 375– 377, 379, 386, 387, 389, 442 Pythium aphanidermatum 24: 279, 370 Pythium butleri, phosphorus content 8: 141 Pythium mastophorum 30: 310 Pythium middletoni 24: 381, 382 Pythium proliferum 24: 381 Pythium spp. 23: 10 antagonist applications 26: 50, 55, 63, 72 inoculation 26: 74, 75, 77 –79 Pythium sulcatum 24: 281 Pythium ultimum 24: 279; 33: 20 Pythium ultimum, effect of orchinol on germination and growth 7: 517 Pythium violae 24: 281 QTLs (quantitative trait loci) 35: 32, 33, 234, 235 Quaking bogs 16: 149 see also Marshes; Mires Quality assurance 34: 294 Quality protein maize (QPM) 34: 203 Quantasomes 3: 141 negative staining 3: 21 Quantitative trait loci (OTLs) 34: 46, 128, 186 Quantum 35: 57 Quantum efficiency spectra in algae 10: 73 – 75 Quantum flux density 18: 20, 26, 29 Quarantine 21: 143 Quenching 38: 7 Quercetin 35: 86; 37: 85, 99 Quercetin-3 – p-coumarolytriglucoside 37: 85 Quercoideae 37: 153 Quercus (oak) 31: 200 Quercus 33: 24; 37: 107; 38: 290, 296, 298 Quercus coccifera 37: 107
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Quercus Quercus Quercus Quercus Quercus Quercus Quercus Quercus Quercus
emoryi 33: 13 garryana 33: 22 ilex (holly oak) 33: 4 ilex 37: 107 marilandica 37: 116, 117 palustris 37: 110 petraea (sessile oak) 33: 7 robur 37: 107 rubra (red oak) 33: 25; 19: 131; 37: 7, 153 Quercus velutina (black oak) 18: 72 Quercus, Oligocene 17: 38, 40 Quiescent regime 38: 32 Quin-2 dye 22: 53, 59 Quinidine production 13: 171 Quinine production 13: 171, 174 Quinnoidal base forms 37: 63 Quinoline production 13: 157 Quinones, UV radiation 22: 104 Quintinia serrata 37: 169, 171– 175, 181, 182, 186 Quorum sensing 38: 257 R protein 34: 191 R. acetosa ammonia assimilating enzymes 6: 27 R. communis sieve plate structure 5: 194, 195 stem structure 5: 178 xylem structure 5: 172, 173 R. communis, gibberellin biosynthesis 9: 85, 129 R. confertum aneuploidy 6: 220 R. crispus nitrate reductase 6: 23 R. duplex autopolyploidy 6: 214 interspecific polyploidy 6: 210 sex chromosomes 6: 236 R. fluitans autopolyploidy 6: 214 genetics 6: 248 interspecific polyploidy 6: 210 R. gigantea, flowering period 7: 546 R. goodyerae repentis, isolated from orchids 7: 491
247
R. graveolens volatile oil synthesis in culture 6: 306 R. Gwynne-Vaughanii, reconstruction from fossil evidence 5: 167 R. languinosa, isolated from orchids 7: 490 R. major O2 supply to subterranean organs 5: 209 ratio of internal and external areas 5: 189 structure of axis 5: 167 structure of phloem 5: 169 structure of tracheids 5: 180 R. oryzae, phosphorus translocation 8: 200 R. punctatum interspecific polyploidy 6: 210 R. repens isolated from orchids 7: 490 nitrogen source 7: 491 phytoalexins 7: 509, 511 R. retusa effects of pollination and auxin on ovaries 7: 603 flowering period 7: 546 longevity of flowers 7: 569 R. ripanoides aneuploidy 6: 220 R. robrum, configuration of carotenoid component 10: 60, 61 R. sanguineus nitrate reductase 6: 23 R. solani fungal-protocorm interactions 7: 500 isolated from orchids 7: 490, 493 R. spheroides, sodium requirement 7: 148 R. squarrosus interspecific polyploidy 6: 210 R. stolonifer phosphorus translocation 8: 200– 203 uptake of phosphomonoesters 8: 180 Race-specific elicitors 21: 164– 167, 177, 178 receptors for 21: 167, 168 Rachilla, monocotyledons 3: 270 Radioisotopes NMR properties 20: 52 see also Nuclear magnetic resonance, high-resolution NMR spectroscopy
248
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Radiometric dyes, calcium 22: 49 – 56, 68 Radish 21: 49, 50, 162; 22: 126, 130, 143, 144 Radish and isoprenoid metabolism 14: 34 Radish root freeze-etching 3: 34 membrane surface 3: 30 Radish, see Raphanus sativus Radula 19: 257, 263, 265, 291 aneuploidy 6: 219 Radula complanata 19: 273 Radulaceae 19: 291 Raffinose-series oligosaccharides 25: 207, 208 Ralstonia solanacearum 30: 297 Ramalina menziesii 18: 53, 54 Raman scattering, in picosecond spectroscopy 8: 5– 7 Rana 11: 5 Random amplified polymorphic DNA (RAPD) 21: 171; 24: 10, 11, 13, 20, 438 Random amplified polymorphic DNA (RAPD) markers 34: 4, 43 Random amplified polymorphic DNA (RAPDs) 33: 8, 230, 243 Random amplified polymorphic DNAs (RAPDs) 35: 174, 176, 188– 190 “Ranger” cv. 18: 10 nitrogen oxides fumigations 18: 36 SO2/NO2 exposures 18: 44 Ranunculaceae chromosome size differences 6: 130 karyotype analysis 6: 239 Ranunculaceae 22: 13 Ranunculus 22: 13 Raphanus 35: 230 Raphanus sativus (radish) 18: 15, 16, 56 bioindication 18: 101 O3 fumigations 18: 56, 57 O3/SO2 exposures 18: 76 O3/SO2 fumigations 18: 72 Raphanus sativus 21: 49, 50; 28: 45, 75; 31: 82; 35: 219 circular vessels in storage root 9: 208 effect of wounding on xylem formation 9: 215 Raphia, influorescence 3: 267
Raphidophyta C3 + C1 carboxylases 27: 97 LHC proteins 27: 276 Rapid visco-analyser (RVA) 34: 28, 179, 180 Raspberry ringspot virus (RpRSV) 36: 179, 180, 187 Raspberry ringspot virus 23: 13, 14 Raspberry, abscission 17: 279 RASTAFARI (RFI) 31: 247, 248, 251 Rattus norvegicus 28: 13 Rauwolfia serpentina 31: 104, 107 Ravenala growth 3: 217, 220, 221 influorescence 3: 269, 278 Rayleigh criterion 11: 11 Rayleigh scattering 18: 259 RCC 35: 11, 35 RCC reductase (RCCR) 35: 7, 14 – 16, 23, 27, 28 RD21 protease 38: 77 RD294 33: 203 Reaction type 21: 216– 226 Reaction/diffusion model 38: 212 Reactive oxygen species (ROS) 37: 22, 27, 157, 176– 178, 180, 182– 184 Readthrough (RT) protein 36: 22, 23 Reb1-1 mutant 30: 255 Reboulia 19: 255, 271, 273 Reboulia hemisphaerica 19: 291, 293 Reboulia hemisphaerica var. macrocarpa Zodda 19: 273 Receptor kinase complex 32: 278–280 Receptor serine/threonine kinases 24: 90 Receptor tyrosine kinases (RTKs) in plants 32: 226 classification of 32: 226– 231 structural topology of 32: 227 Receptor-like kinase (RLK) 32: 18 – 23, 289, 290 flower-specific 32: 241 involvement in development 32: 239– 241 ligands for 32: 254– 259 mode of action 32: 248– 250 properties of 32: 442– 448 response to environmental cues 32: 241, 242
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
role in regulating plant development 32: 231– 239 signaling 32: 250– 259 Receptor-like kinases 32: 391, 392 Receptor-like protein kinases (RLPKs) 21: 173 Receptor-like protein kinases 24: 135 Receptor-operated channels 22: 48, 69, 71, 73 Recilia dorsalis 36: 142 Recognition specificities 24: 239, 240, 242 Recognition, pathogens 21: 2, 3, 9 – 12, 57, 71 Recombinant aequorin 22: 66 – 68 Recombinant antifreeze protein (rAP) 34: 296, 297 Recombinant DNA technology 31: 136 Recombinant DNA technology, calcium 22: 66 – 68 Recombinant inbred lines (RILs) 34: 45 Recombinant sets of inbred lines 24: 235 Recombination 24: 16 – 18, 20 in bacterial populations 24: 340 within and between populations 24: 342 Red algae 19: 201, 202, 217, 219, 233 Red clover necrotic mosaic virus (RCNMV) 36: 55 “Red Kidney” cv. 18: 11 Red light 18: 290 Red spruce 18: 98 Red tides 12: 59, 206 Red:far red effects 37: 6 Redfield ratio, C:N 27: 98 Redfield ratios 16: 206, 212 Redox energy 28: 5, 6 REDUCED TRICHOME NUMBER (RTN) 31: 202, 228 Reductase 21: 8 Reeds, bending failure 17: 269, 270 Re-F-B-a 35: 153, 158, 159 Re-F-B-B 35: 157– 159 Refractive index 18: 258, 283, 284 Re-F-R-R 35: 153 Refugees 21: 94 Regnellidium diphyllum 22: 169 Regreening 35: 5, 7, 25, 26 Regression analysis 21: 235 Regulated expression 32: 79, 80
249
Regulators 21: 20, 21 Regulatory domains 30: 37, 38 Regulatory proteins 32: 451– 455 Regulatory subunits 32: 82 – 84 Relative growth rate (RGR) 22: 235, 260, 265, 266 Relative humidity 31: 232 ReMembR-H2 proteins 35: 153 Remote sensing bioindication 18: 101 Renanthera imschootiana, flowering period 7: 546 Renealmia, influorescence 3: 278 Renewable resources 21: 82 Reoviridae 36: 150 Repellants 31: 13 Replanting forest 18: 86 Replicating DNA 24: 416 Replication, viral infection 21: 105– 107, 114, 115, 117, 119 Reporter gene 28: 28 – 31 Reporter gene/promoter fusion studies 28: 29 Reporter genes 24: 45 Repressor of gal-3 (rga) 31: 230 Reproductive biology, UV radiation 22: 131– 133 Reseda odorata 35: 219 Resinous substances 31: 14, 59, 133, 157 sites of synthesis 31: 60 terpenes 31: 56 Resins Chemistry flavenoids 6: 284, 285 other components 6: 285 terpenoids 6: 281– 283 internal resins accumulation 6: 302, 303 function 6: 309, 310 secretion physiology 6: 290, 291 sites of synthesis glandular hairs 6: 305 in tissue cultures 6: 306, 307 internal secretory structures 6: 305, 306 surface resins chemotaxonomy 6: 286– 288, 303 function 6: 307– 309 secretion 6: 302, 303 yields 6: 288– 291
250
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Resin-secreting glands structure of glands secreting internal resins 6: 300, 301 structure of glands secreting surface resins 6: 291– 299 Resistance (R) genes 21: 2, 7, 8, 24, 25 fungal pathogens 21: 148, 149, 169– 178 Resistance genes 24: 232 Resistance genes 32: 382, 383 concept of 24: 231 encoding protein with cytoplasmic LRRs required for resistance gene to function 24: 109 –112 encoding proteins containing extracytoplasmic LRRs 24: 99 – 101 encoding proteins with cytoplasmic LRRs 24: 101– 119 encoding proteins with cytoplasmic LRRs and homology to the cytoplasmic domains of Toll and interleukin – 1 receptor 24: 108, 109 encoding proteins with extracytoplasmic LRRs 24: 91 – 101 Resistance mechanisms in host-parasite interactions defence phytotoxin production 4: 4 polygalacturonase inhibition 4: 4 ethylene production 4: 5 hypersensitivity 4: 5 – 7, see also phytoalexins protection Resistance proteins containing cytoplasmic LRRs activation of plant defences by 24: 114– 119 avirulence determinants interacting with 24: 113, 114 Resistance transfer factors (RTFs) 24: 400 Resistance, acquired see also Pathogenesis-related proteins induction by exogenous chemicals 20: 207 induction by salicylates 20: 207– 209 Resistance, dual nature 24: 231, 232 Resistance, pests 21: 85 – 87, 89 Resonance 5: 6 Resorption efficiency 37: 156
Resources 21: 80 – 82 Respiration and the ventilation process in higher plants 7: 251– 260 control 4: 91 – 97 in orchid flowers 7: 611–613 stoichiometry 4: 84 – 90 Respiration by phytoplankton 16: 204 and carbon fixation estimates 16: 230 Respiration inhibitors 21: 56 Respiration of conducting tissues 1: 255 et seq. Respiration response NOx exposure, long-term 18: 42 NOx exposure, short-term 18: 39 O3 exposure, long-term 18: 67, 68 O3 exposure, short-term 18: 61 SO2 exposure 18: 25, 26 SO2 exposure, long-term 18: 32, 33 SO2/NO2 exposure 18: 47, 48 Respiration response, see Dark respiration; photorespiration Response regulators 32: 56 Response regulators in plants 32: 130– 135 Response, long term to SO2 and NO2 mixtures 18: 48, 49 Resting studies, parasites 21: 36 – 38 Restrepia 31: 63 Restriction analysis 34: 48 Restriction enzyme-mediated insertional mutagenesis (REMI) 34: 265 Restriction fragment length polymorphism (RFLP) 21: 65, 153, 171, 188– 190, 194, 202 Restriction fragment length polymorphism (RFLP) 23: 42, 122 Restriction fragment length polymorphisms (RFLPs) 24: 12, 14, 342, 438; 34: 3, 35, 42, 43, 290, 301 Resveratrol 21: 23 Reticulate fungal vacuole systems 28: 135– 137 Reticulate networks 28: 121 Reticulate vacuolar networks 28: 123 Retina, cell membrane 3: 7, 8, 20 Retrotransposons 27: 333– 350 horizontal transmission 27: 350 in mitochondrial genome 27: 345
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
LINE-like 27: 334, 335, 338, 339 model for transposition 27: 342, 343 LTR 27: 334– 342 and MITEs 27: 419, 420 tobacco Tnt1 element 27: 340, 341 tobacco Tto1 element 27: 337, 341 Ty3/gypsy group 27: 337, 341, 342 Tyl/copia group 27: 336, 340, 341 mechanism of retrotransposition 27: 347– 349 non-LTR (LINE-like) 27: 334, 335, 342– 344 SINE-like 27: 334, 335, 338, 339, 344, 345 species, size and characteristics 27: 336– 338 virus-like (VLPs) 27: 334– 339 Retroviruses, gene transduction 27: 349, 350 Retsina (rts) 31: 253 REV 38: 205 Reversal potential (Erev) 25: 223 Reverse Northern blotting 35: 80 Reverse photonastic movements 33: 42 Reverse transcriptase (RT) PCR 132 Reverse variegation 12: 139– 141 Reverse-genetic experiments 32: 248 Reverse-phase high-performance liquid chromatography (HPLC) 35: 11 Reversion events 12: 137– 139 at molecular level 12: 165– 167 Reynold’s number 18: 212 RFLP 35: 181, 235 RFLPs 33: 229, 247 R-genes 24: 263, 264 Rhabdocline parkeri 33: 4, 8, 13, 14, 26 Rhabdocline-Pseudotsuga system 24: 175 Rhabdoviridae 36: 149, 150 Rhacomitrium heterostichum cultivation experiments 6: 255 Rhamnogalacturonan I 22: 182 Rhamnogalacturonans I and II (RG-I and RG-II) 19: 17, 20, 26 Rhapis excelsa 3: 214 branching 3: 262, 264 growth 3: 217, 222– 224 influorescence 3: 274, 276
251
vascular system construction 3: 243– 250 continuity 3: 258– 260, 263 development 3: 251– 257 primary 3: 265 Rhinocladiella spp. colonization of interaction zones 7: 405, 406, 416 effect of ASM 7: 414 Rhizobacteria-mediated induced systemic resistance (ISR) 38: 262, 263 Rhizobia 18: 140, 148 carbon metabolism mutants 18: 150 carbon uptake mutants 18: 147 cultured 18: 149 genotype 18: 143 infected cells 18: 136 microaerobic conditions 18: 162 nitrogen fixation in culture 6: 5 nitrogen processing 18: 153 Rhizobitoxine, and longevity of orchid flowers 7: 623 Rhizobium 18: 146; 19: 43; 24: 336, 337, 341, 343, 432; 29: 20; 35: 64 interactions with legumes 24: 418– 420 mutants 18: 139, 164 strains 18: 160 Rhizobium leguminosarum 18: 146, 153; 24: 344, 406 Rhizobium meliloti 18: 153; 19: 37; 24: 343, 406; 28: 13 Rhizobium spp., biocontrol 26: 58, 75 Rhizobium trifolii 24: 420 Rhizobium, binding to legume roots 4: 25, 29 Rhizoctonia 24: 276, 288, 411 niacin production in culture 7: 469 potassium concentration and "infection 10: 225 resistance mechanism 10: 253 thiamine production 7: 469 Rhizoctonia oryzae 33: 20 Rhizoctonia solani 23: 10; 24: 280– 282, 286, 291, 292, 294, 296–298, 300– 303; 33: 20; 34: 49; 38: 7, 9 – 11, 13, 17 – 21, 42, 259 percolation in 38: 54, 55 phosphorus and cell development 8: 197 phosphorus translocation 8: 201, 202
252
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Rhizoctonia, biocontrol 26: 55, 63, 145, 146, 156 Rhizomania disease 38: 17, 18, 29, 43 Rhizome 38: 192 Rhizomnium pseudopunctatum interspecific polyploidy 6: 210 Rhizomorphs and translocation 8: 200, 201, 203 phosphorus content 8: 132 Rhizomorphs, and the colonization of wood 7: 410, 412, 413 Rhizophera mucranata, identification of gibberellins 9: 43 Rhizophora 19: 306 Rhizophora mangle 37: 110 Rhizophytes, defined 27: 90 Rhizopogon luteolus, phytase activity 8: 186 Rhizopus 30: 310 Rhizopus arrhizus, b-l,3 glucanasehydrolysis of cell organell fractions 5: 123, 124 Rhizopus nigrans, phosphorus content 8: 130 Rhizopus stolonifer 19: 68 Rhizopus stolonifer infection and phytoalexin 14: 83 – 85 Rhizosolenia 25: 77 Rhizosphaera kalkhoffi 33: 15 Rhizosphere competence, biocontrol agents 26: 47 – 49 Rhizosphere, horizontal gene transfer 24: 399– 429 Rhod-2 AM dye 22: 53, 56 Rhodella 19: 217 Rhodella violacea, state transitions 27: 267 Rhododendron 37: 98, 107, 108, 113; 38: 289, 290, 296, 303 Rhododendron maximum 38: 296 Rhododendron, leaf, matric potential 3: 178 Rhodomonas lens, action spectrum of photosynthesis 10: 70 Rhodomonas salina 19: 204– 207 Rhodophysema elegans 35: 180 Rhodophyta (red algae), PEPCK in 38: 145
Rhodophyta 2: 5, 7; 27: 89 action spectra 10: 69 C3 + C1 carboxylases 27: 97 distribution and light quality 10: 23, 24 phycobiliproteins 10: 64 pyrenoids 27: 159 RUBISCOs 27: 101, 102 thylakoid arrangement 10: 34, 35 Rhodophyta, life cycles 16: 57 aberrant, induced 16: 72, 73 Rhodophytes 11: 75, 87, 88 Rhodopseudomonas sodium requirement 7: 148 Rhodopseudomonas sphaeroides 12: 19 Rhodopseudomonas sphaeroides, "RUBISCOs, Kc values (table) 27: 104 Rhodopseudomonas spheroides, configuration of carotenoid component 10: 61 Rhodopseudomonas spheroides, cytochrome 4: 75 Rhodopsin activation 15: 5, 13 Rhodopsin, proton translocation 8: 20, 21 Rhodospirillum molischianum, thylakoid membrane 10: 31 Rhodospirillum rubrum 11: 90; 25: 298, 301, 309, 310, 325, 329 amino acid sequence of cytochrome c 4: 82, 83 cytochromes 4: 75, 79 Rhodospirillum rubrum, RUBISCOs, Kc values (table) 27:104 Rhodotorula rubra phosphate balance 8: 157– 159, 163 phosphorus and growth 8: 194– 196 Rhodoxanthin 37: 39 – 41 Rhodymenia palmata 11: 99 Rhopalosiphum maidis 36: 25, 26, 28, 34 Rhopalosiphum padi 36: 25, 26, 28, 29, 31, 34, 35 Rhus glabra resin ducts 6: 302 Rhus spp. 37: 112, 117, 159 Rhynchoryza 34: 34
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Rhynchosporium secalis 21: 10, 149, 150, 160– 162, 166, 167; 24: 13, 111; 28: 26; 34: 278 Rhynchostegium cytotaxonomy 6: 242 Rhynchostylis post-pollination phenomena 7: 580, 581 Rhynia fossil evidence for existence of homiohydry 5: 203 ratio of water movement through xylem and parenchyma 5: 176 Rhytidiadelphus loreus interspecific polyploidy 6: 210 Rhytidospermum 38: 303 Rhytisma acerinum 33: 26 Ribautodelphax notabilis 36: 152 Ribes nigrum 19: 121 Ribes nigrum, identification of "gibberellins 9: 43 Ribes sanguineum glandular hairs 6: 297 Ribes sanguineum, water uptake 3: 183 Riboflavin, effect on orchids in culture 7: 467, 468 Ribonuclease A (RNase A) 24: 151, 152 Ribonuclease A 19: 21; 21: 25 Ribonuclease inhibitors (RI) 24: 150– 153 Ribonucleases 24: 150– 153 Ribonucleoprotein (RNP) 21: 119 Ribosomal gene markers 34: 43 Ribosomal RNA (rRNA) 19: 196, 200, 212, 213, 216, 219 Ribosome cycle in meiosis 15: 183 Ribosome-inactivating proteins 21: 21, 22; 26: 142, 155, 156 Ribosomes attachment 3: 20 binding of benzyladenine 5: 65 binding of cytokinins 5: 65 freeze-etching 3: 23, 26 Ribulase bisphosphate carboxylase (RuBPc’ase) nitrogen level 10: 41 photosynthetic bacteria 10: 31 radiation level 10: 40, 41 shading effect 10: 154, 155
253
Ribulose 1,5-diphosphate carboxylase, in cultured orchid seedlings 7: 479, 480, 487 Ribulose 1,5-bisphosphate carboxylase (Rubisco) UV radiation 22: 109, 146 effect on cellular processes 22: 121, 122, 126– 130 effect on gene expression 22: 135, 137, 141 water and nitrogen supply 22: 242, 243 Ribulose 1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) 38: 86, 87, 107, 149, 213 Ribulose bisphosphate (RuBP) 22: 146, 242, 243 Ribulose bisphosphate carboxylase "oxygenases see RUBISCOs Ribulose bisphosphate carboxylase effect of magnesium ions 7: 66 transport across chloroplast envelope 7: 74 – 75, 78, 79 Ribulose bisphosphate carboxylase in Dunaliella 14: 139, 140 Ribulose diphosphate carboxylase, affinity for CO2, 208 Ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) 25: 90 Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) 35: 77 Ribulose-1,5-bisphosphate carboxylase/oxygenase 19: 211 Ribulose-5-phosphate kinase 12: 27 Ribulose-biphosphate carboxylase 12: 3, 4 Riccardia 19: 265, 267, 285, 293, 295 chromosome numbers 6: 203 Giemsa C-band staining 6: 199 polyploidy 6: 215 Riccardia multifida 19: 275, 279, 281, 283 Ricca’s factor 22: 198, 212 Riccia 19: 255, 271, 273, 291 Riccia chromosome number 6: 203 Riccia sorocarpa 19: 293 Ricciocarpos natans 37: 39 Riccionidin A 37: 39, 40 Riccionidin B 37: 39 Rice (Oryza sativa) 18: 11, 88
254
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Rice 21: 10, 85 –87, 158 –160; 22: 101, 102, 113, 145, 146; 34: 34 see also entries under Oryza ADP-glucose pyrophosphorylase (AGP) 34: 89 aerenchymatous structure 7: 292– 295 Daikoku dwarfs 34: 135 effect on mitochondria of anoxic culture 7: 278, 279 En/Spm elements in 34: 13 ESTs in 34: 8 functional genomics 34: 12 –13 gas-space characteristics 7: 230 glutelin 34: 89 knox genes 34: 143 lacuna production in roots 7: 290 molecular markers 34: 4 Osg6B gene 34: 89 root growth in relation to oxygen pressure 7: 288 structural genomics 34: 10 sucrose synthase 34: 89 tapetum-specific promoters 34: 89 tungro 21: 230– 233, 236 yellow dwarf 21: 193, 194 Rice bacterial blight, ARR to 38: 267 Rice blast pathogen 19: 25 Rice dwarf virus (RDV) 36: 142, 150, 160 Rice gall dwarf virus (RGDV) 36: 152, 155, 158, 160, 161 Rice grassy stunt virus 36: 150 Rice hoja blanca virus (RHBV) 36: 153, 158 Rice ragged stunt virus (RRSV) 36: 150 Rice see Oryza sativa Rice stripe necrosis virus (RSNV) 36: 56 Rice stripe virus (RStV) 36: 148, 156– 158, 160 Rice transitory yellowing virus (RTYV) 36: 149, 150, 155 Rice tungro bacilliform virus (RTBV) 36: 144– 146 Rice tungro bacilliform virus (RTBV) sequences 34: 89 Rice tungro spherical virus (RTSV) 36: 144– 146 Rice tungro virus disease 38: 48 Rice wilted stunt virus 36: 150
Rice Xa21 receptor-like kinase 32: 389, 390 Rice yellow mottle virus (RYMV) 36: 110 Ricinosomes 38: 76 Ricinus 31: 271 emission spectrum 5: 13 leaf, matric potential 3: 178 R. communis, water potential 3: 202, 203 root resistance 3: 187 spectral distortions 5: 13 Ricinus communis 25: 259; 28: 75; 29: 155, 159, 161; 31: 49, 50, 184; 35: 149; 38: 76, 169 Ricinus, vascular tissue in seedling quantitative aspects of xylem 9: 212 wound formation of cambium 9: 245 Rieske iron-sulphur centre 13: 11 – 13 Riftia 25: 74 Riftia sp., CO2 transport 27: 137 Rime ice 18: 238 Ring porous trees, control of vessel and fibre distribution 9: 237– 240 Rishitin 21: 23, 48, 56 Rishitin production 13: 179 Rivers see also Deltas aquatic processing of plant debris 16: 114– 125 floating 16: 115– 119 leaf degradation 16: 122– 124 water column transport 16: 119– 122 channel deposits 16: 126– 130 abandoned channels 16: 130 crevasse splays 16: 129 floodplains 16: 129, 130 lag deposits 16: 126, 127 levees 16: 128 point bars 16: 127 nutrient discharge 16: 242 and phytoplankton productivity 16: 232, 233 transport of plant debris 16: 125, 126 RKF1 – 3 clones 32: 241 RLK3 group 32: 22 RMR proteins 35: 153, 154 RNA 19: 54, 196 RNA 22: 111, 113, 115, 117, 134, 136
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
RNA blot analysis 37: 99, 100 RNA in conifer sporogenesis cell development 15: 183 meiosis 15: 184 RNA in legume seeds changes during germination 9: 18 – 21 control of storage protein synthesis 9: 21 – 24 RNA polymerase 21: 109, 114, 115 RNA synthesis 24: 358 RNA synthesis and zinc deficiency 10: 259 RNA transcription 18: 234 RNA viruses see Virus RNAase 25: 90, 94, 95 RNA-binding protein BLT801 34: 245, 246 RNA-dependent RNA polymerase (RdRP) 34: 100 RNases 21: 111 Robinia 33: 61 Robinia pseudoacacia 33: 50, 91 “Robusta” cv. 18: 88 Root absorption, transpiration and deficits 3: 189–195 and soil-plant-atmosphere system 3: 195– 204 cortex, water uptake 3: 184– 186 freeze-etching 3: 23, 24, 34 resistance, variable 3: 186– 189 Root aeration in the unsaturated soil 7: 313– 324 Root anchorage adventitious roots 33: 139 coronal and prop root systems 33: 146 costs of 33: 138, 139 experimental study methods 33: 137, 138, 142, 143 in crop plants 33: 150, 151 intermediate systems 33: 146, 147 mature plants 33: 140, 141 mechanics 33: 143– 147 misconceptions 33: 134, 135 models, use of 33: 147– 151 morphology 33: 147, 148 numerical models 33: 152, 153 plate systems 33: 143, 144 resistance to overturning 33: 141– 147 resistance to uproots 33: 135– 141
255
root branching 33: 249 single root extraction 33: 135– 137 soil properties and 33: 151, 152 strengthening only basal areas 33: 138 tap roots 33: 144– 146 theory 33: 141, 142 using basal root hairs 33: 138 ‘Root collar’, chestnuts 21: 128, 131 Root crops 21: 85 ROOT EPIDERMAL BULGER1 (REB1) 31: 199 Root excision studies 19: 128– 131 Root hair defective1 (rhd1) 31: 255 ROOT HAIR DEFECTIVE2 (RHD2) 31: 255 ROOT HAIR DEFECTIVE3 (RHD3) 31: 255– 257 Root hair defective4 (rhd4) 31: 255 Root hair defective6 (rhd6) 31: 254, 255 ROOT HAIR DEVELOPMENT1 (RHD1) 31: 199 Root hair morphogenesis 31: 253– 257 genetic analysis 31: 253, 254 molecular analysis 31: 255– 257 wild-type 31: 253 ROOT HAIRLESS1 (RHL1) 31: 228, 245, 246, 253, 257 ROOT HAIRLESS2 (RHL2) 31: 245, 246, 253, 257 ROOT HAIRLESS3 (RHL3) 31: 245, 246, 253, 257 Root hairs 31: 4, 14, 196, 220 epidermal cell specification 31: 198, 199, 211 initiation 31: 223 Root hairs, mode of growth 2: 96, 97 Root nodules adaptation to nitrogen supply 6: 37 enzymes of ammonia assimilation 6: 31, 32, 34 Root pavement cells 31: 196 Root pressure, transport of solutes in xylem 5: 192 Root signal hypothesis 29: 118, 119 Root systems, maximization of nitrogen capture 30: 62 Root zone temperature 30: 61, 62 Root, signal transmission 22: 164 Root:shoot ratio of plants 19: 112– 116
256
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Roots auxins and chelates, combined effect 1: 81 auxins, inhibition of roots 1: 80 auxins, inhibition of seminal roots 1: 81, 82 auxins, promotion of adventitious roots 1: 81, 82 calcium, effect of 1: 92, 98 chelates, antagonism with auxins 1: 77 – 79 chelates, destruction of RNA 1: 84 chelates, effect of darkness 1: 84, 85, 90, 91, 95 chelates, effect on respiration 1: 83, 84, 95 –97 chelates, inhibiting effect of 1: 76 – 82, 87, 90 –92 chelates, promotion of growth 1: 77, 81, 83 cobalt, effect of 1: 97, 98 cytokinin production 9: 248 deformation of Brassica roots by chelates, oxalates and auxinic compounds 1: 85 effect on vascular differentiation 9: 170– 172, 246 iron, effect of 1: 95, 98 sugar synthesis by sugar beet 1: 244 transport of assimilates to the roots 1: 264 Roots, disease biocontrol 26: 40, 41, 66, 67, 77, 78 Roots, gravity sensing by 15: 36 see also Potassium transport in roots Rosa damascena culture 13: 179 Rosa rugosa 31: 168 Rosa, effect of ABA on stomata 4: 138 Rosaceae 37: 47 Rosaceae, salicylates 180Flavonoids 20: 182 Rosimarinus 31: 78 Rosimarinus officinalis 31: 2, 4, 52 Rosmarinic acid production 13: 166, 167, 175 Rot see Fungi Roughness length 18: 195 Rozella allomycis, polyphosphate content 8: 147, 199 RP14 (Hv-NCC-1) 35: 13 RPKI gene 32: 241, 242 Rrs gene 21: 160– 162 RSIP 38: 80 Rubber production 13: 158, 159
Rubiaceae as leaf nodule host 17: 167, 168 microsymbiont isolation from 17: 219, 220 RUBISCO (ribulose-1,5-biphosphate carboxylase/oxygenase) 11: 72, 79, 80, 85, 87, 88 – 94, 116, 117, 179, 187 Rubisco (ribulose-1,5-bisphosphate carboxy"lase/oxygenase) 33: 194 Rubisco phylogeny 19: 211, 212 Rubisco see Ribulose 1,5-bisphosphate carboxylase Rubisco spacer sequences 35: 175 Rubisco turnover 37: 23 Rubisco, C4 photosynthesis 26: 290, 295, 296 Rubisco, measured as leaf nitrogen 20: 3, 4 RUBISCOs and HCO2 3 entry into vacuole 27: 166– 170 carbon dioxide concentration at active site 27: 111 carbon fixation in marine autotrophs 27: 91 carboxysomes 27: 159– 166 CO2/HCO2 3 ratio 27: 163 evolution 27: 102, 103, 179– 181 excess activity 27: 93 – 98 Kc values (table) 27: 104 origins 27: 179 oxygenase activity and photorespiration 27: 106– 109 phylogeny and range of kinetic properties 27: 101– 106 properties (table) 27: 94 transport of inorganic C to 27: 120– 140 13 12 C/ C ratio 27: 155–159 RuBPC alfalfa foliage 18: 58 bioindication 18: 103 carboxylation activity 18: 64 NOx exposure 18: 40 O3 exposure 18: 62 SO2 exposure 18: 19, 20, 26, 28, 29, 32, 33 RuBPo (ribulose biphosphate oxygenase) 11: 72, 94 – 100, 116, 117 Rubus 19: 15
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Rubus chamaemous nitrate reductase 6: 21, 22 Rudbeckia tricolour 19: 121 Ruderal algae and light harvesting 10: 21, 22 Rumex Rumex acetosa 22: 23 Rumex leaf senescence bioassay for "gibberellins 9: 64 Rumex palustris 19: 146 Rumex, salicylates, pregerminator effects 20: 188 Ruscus 22: 13 Rush, influorescence 3: 273 Russia 21: 84, 98 “Russian Mammoth” cv. 18: 10, 11, 12, 15 nitrogen oxides fumigations 18: 36 O3 exposure 18: 58 O3 fumigations 18: 53 Ruta essential oil cavities 6: 300 Ruta graveolens culture response to biotic stress 13: 183 Rutacridine epoxide production 13: 182 Ryanodine 22: 78 – 82 Ryanodine receptor homologues 25: 239– 241 Ryanodine receptor isoform (RYR2) 25: 239 Rye (Secale cereale) 34: 40, 197 Rye 22: 146 Ryegrass, see Lolium perenne Rymovirus 36: 70, 200 2S albumins, plant defence 26: 148, 153, 154, 171 S alleles 32: 270 S locus genes 32: 23, 272– 275, 277, 278, 280– 283, 285– 288, 291, 292 S. aurea, seed morphology 7: 425 S. auriculatum autopolyploidy 6: 214 biometric investigation 6: 260 S. bicallosum, seed morphology 7: 427 S. calcicola 12: 80 S. carneum, seed morphology 7: 427 S. cerevisiae cak1 32: 26 S. cerna, symbiotic specificity 7: 496
257
S. crispa, carbon fixation 7: 527, 528 S. cytalidium biological control of wood decay 7: 384, 385, 404 wood colonization 7: 416 S. donnellii genetics, sex chromosomes 6: 230, 231 S. furcata, phosphorus content 8: 147 S. glutinosa glandular hairs 6: 297 S. hirsutum antagonism interspecific 7: 386, 400, 401 intraspecific 7: 354– 356 colonization of wood 7: 410, 416 competitive ability in culture 7: 389, 390, 396, 398, 399 hyphal interference 7: 394 population structure 7: 352, 353, 357– 359 zone-line formation 7: 345, 355, 360, 395, 397 S. insignis, seed morphology 7: 426 S. lacrymans mycelial cord formation 7: 413 temperature requirement 7: 408 S. lostatus 11: 87 S. maxima, isolation of carotenoprotein 10: 60 S. neglecta, phytoalexin production 7: 512 S. nepalense, seed morphology 7: 427 S. obliquus caroteno-polypeptide 10: 59 photosynthetic rate 10: 151 photosystem reaction centre complexes 10: 78, 87, 90, 95 shading effects 10: 156, 158, 160 S. oculata, seed morphology 7: 426, 437 S. orientalis culture 7: 467, 470 seed germination and development 7: 473 S. pannonicus, site of synthesis of cell wall components 5: 104 S. parviflora, culture 7: 470
258
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
S. plicata carbon fixation 7: 527– 529, 533 hormones in culture 7: 461, 464 protocorm-fungal interactions 7: 499, 500 S. rolfsii, boron nutrition and disease "resistance 10: 240 S. sinensis, symbiotic specificity 7: 496 S. speciosa, carbon fixation 7: 527–529 S. subsecundum autopolyploidy 6: 214 biometric investigation 6: 260 S. tibicinis, post-pollination phenomena 7: 583, 585 S. tigrina var. superba, seed morphology 7: 425 S. undulata, seed morphology 7: 437 S. violacea, seed morphology 7: 427 S. vomeracea, phytoalexin production 7: 512 S. warczewitzii, seed morphology 7: 425 “S23” cv. 18: 10, 13, 15 S6 kinase homologues 32: 31 Sabal growth 3: 218 S. minor 3: 218 S. palmetto 3: 218 influorescence 3: 273 S. minor 3: 281 Sabarlis 35: 65 Sabinene 31: 129 Sabinene hydrate 31: 129 Sabinene synthase 31: 100, 102 SAC3 protein 33: 203 Saccharomyces 32: 425 amino acid pools 8: 76 phosphorus content 8: 141 S. bisporus var. mellis phosphatase 8: 182, 185 phosphate content 8: 136– 138 phosphate uptake 8: 157 S. carlsbergensis, phosphate efflux 8: 157, 158 S. cerevisiae phosphatases 8: 177, 181– 184, 195 phosphate content 8: 135– 138, 142– 145, 151, 152 phosphate uptake 8: 149, 156– 158, 160, 162, 168, 171, 172, 191
phosphorus content 8: 130, 134, 135, 140 polyphosphate kinase 8: 150 utilization of organic P 8: 180, 181, 186 S. chevalieri, phosphatases 8: 177, 182 S. rouxii, phosphatase 8: 182 Saccharomyces cerevisiae 24: 118, 135, 407, 422; 25: 301, 306, 312, 313, 317, 322, 323, 327, 407; 28: 2, 11, 13, 18, 20, 23, 27, 38, 122, 138, 140; 29: 78; 30: 27, 33, 46, 50, 51, 68, 263; 32: 3, 6, 8, 13, 23 – 25, 27, 43, 44, 114, 171, 187, 304, 307, 320, 332, 337, 356, 415, 420; 33: 202, 207; 35: 130; 38: 135 genome 38: 240 PEPCK 38: 112 Saccharomyces cerevisiae budding 31: 208 Saccharomyces cerevisiae, freezeetching 3: 23, 35 Saccharopolyspora 24: 405 Saccharum officinarum (sugarcane) 11: 86 Saccharum officinarum 28: 75; 38: 144 Saccharum spp. hybrid 19: 128 Saccharum, stomata 3: 284 S-adenosyl methionine decarboxylase (samdc) gene 34: 103 S-Adenosyl-L-methionine:bergaptol O-methyltransferase (BMT) 21: 13 – 15 S-adenosylmethionine (AdoMET) 33: 199 S-Adenosylmethionine (SAM) 19: 144 Safener-induced promoters 34: 90 Saffronin production 13: 173 SAG-13, 264 Sage scrub 18: 34 Sagebrush 31: 123 Sagittaria karyotype 6: 144 Sagittaria, stomata 3: 284 Sainfoin 18: 130 Salicaceae, Early Tertiary 17: 42, 43 Salicin 20: 180– 183 Salicornia europaea enzymes of nitrogen metabolism 6: 23 – 25, 30 Salicornia perennis 33: 5
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Salicortin 20: 180, 183 herbivory, generation of unpalatablesubstances 20: 185 Salicylate hydroxylase 21: 18 Salicylic acid (SA) 21: 17 – 19, 165; 29: 55, 61 Salicylic acid 22: 170 Salicylic acid and derivatives 20: 163– 235 biosynthesis and biotransformations 20: 189– 192 ecological effects 20: 184– 188 allelopathic interactions 20: 187, 188 volatiles 20: 188 effects on other plants 20: 211 esters 20: 177, 178 glycosides of esters 20: 179 flowering 20: 195– 203 floral initiation 20: 197– 199 influorescence maturation in aroids 20: 199– 203 free and bound forms 20: 174– 177 historical aspects 20: 165, 166, 174, 179, 180 human diets 20: 188, 189 hypersensitive responses to pathogens 20: 203– 217 occurrence in plants 20: 174– 184 pharmacology 20: 166– 174 mechanism 20: 168–171 prostaglandin synthase and its inhibition by salicylates 20: 171– 174 plant physiological and metabolic effects 20: 192– 195 pregerminator effects 20: 188 salicaceous plants 20: 179– 183 salicyl alcohol derivatives 20: 183, 184 salicylate-activated genes, molecular control 20: 215– 217 toxic and unpalatable substances 20: 184– 188 Salicylic-acid-induced protein (SIP) kinase 32: 396, 397 Salidroside 20: 183 Salinity 19: 133– 135 in situ elemental and isotopic analysis 29: 174, 175 model systems 29: 173, 174
259
nutrient transport to growing shoot tissue 29: 132– 146 phloem transport and 29: 150– 157 reassessment of current status 29: 171– 173 shoot growth inhibition 29: 115– 121 shoot meristems 29: 146– 150 Salinity and growth ion toxicity and cotolerance 8: 256– 258 salt localization 8: 243–256 tolerance mechanisms 8: 224– 241 uptake 8: 223, 224 water relations 8: 241– 243 Salinity tolerance 29: 76, 77 Salinity toxicity 29: 76, 77 Salinity, defence against 28: 32 Salinization cell division in leaves 29: 125, 126 cell extension 29: 123 in dicots and monocots 29: 121– 126 nutrient transport disruptions 29: 126– 132 primordium formation and leaf emergence 29: 123–125 timing of growth inhibition 29: 121– 123 whole shoot nutrient accumulation 29: 128–132 Salix 31: 19 Salix and Populus, salicylates 20: 179– 183 Salix glauca 33: 22 Salix viminalis 19: 120; 22: 259; 28: 37 Salix, lignin biosynthesis 8: 42, 43, 48 S-alkylthiohydroximate 35: 224 Salmonella 24: 337, 341, 342 Salmonella typhimurium 12: 73; 28: 13; 33: 198 Salpa 16: 55, 56 Salpichlaena anceps, see Allantodiopsis erosa Salsola kali ammonia assimilating enzymes 6: 30 Salsola soda 12: 34 Salt glands 31: 3, 9, 15, 65 accumulation of salt in vacuole 31: 39, 40 Atriplex 31: 39, 40, 43 dicotyledonous plants 31: 41 – 45 distribution 31: 39
260
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Salt glands (continued) elimination of salt outside cells 31: 40 – 45 Gramineae 31: 40, 41 ion transport from xylem 31: 45 membrane transport processes 31: 43 secretory processes 31: 39 – 45 Salt stress 37: 109 Salt tolerance 29: 103, 117, 118, 171– 174 Salt, see Dunaliella; Sodium chloride and Dunaliella Salt, signal transmission 22: 164 Salt-sensitive genotypes/cell lines 29: 103 Salvia (sage) 31: 16, 78, 99, 123, 133 Salvia terpenoid chemotaxonomy 6: 287 Salvia aurea 31: 92 Salvia dominica 31: 9, 16 Salvia fruticosa 31: 8 Salvia mellifera (shrub) 18: 16, 34 Salvia miltiorrhiza culture 13: 166 Salvia officinalis 31: 85, 95, 97, 100, 102 Salvia sclarea 31: 2, 9, 16, 17 Salviniaceae, chromosome number and heterospory 4: 378 Salyrium caproic acid content 7: 423 pollination 7: 552 Samanea 28: 36; 33: 46, 52, 54, 60, 95 Samanea saman 33: 47, 54 Sambucus 31: 46 Sanguinarine production 13: 181 “Sanilac” cv. 18: 14, 71 Saponin production 13: 156 Saprolegnia 24: 354, 356, 361, 370, 373, 375, 376, 383, 386, 388 Saprolegnia diclina-parasitica 24: 370 Saprolegnia ferax 24: 370, 381 Saprolegnia ferax, phosphorus content 8: 141 Saprolegnia parasitica 24: 370 Saprolegniales, occurrence of zoospore components throughout asexual life cycle 24: 366– 369 Saprophytes 24: 176–178 Saprophytic bacteria 23: 28 Saprophytism 21: 37, 38 SAR-52 33: 201
Sararanga 3: 214 influorescence 3: 277, 278 Sarcanthus rostratus, seed morphology 7: 426 Sarco(endo)plasmatic reticulum 28: 15 Sarcochilus luniferus, carbon fixation 7: 530 Sargassum Light-harvesting complex 10: 124 photosystem centre complexes 10: 80 Sargassum muticum 11: 79, 81, 99, 100 Sarracenia 31: 13 SAT1 33: 188 Sat-52 33: 188 SAT-A 33: 188 Satellite tobacco necrosis virus (STNV) 36: 48, 50, 51 Saturation vapour pressure deficit (SVPD) 18: 224, 225, 226, 227 stomatal conductance 18: 221, 222 temperature 18: 218 transpiration 18: 219 Satureja thymbra 31: 8, 18, 84 Sauromatum guttatum 31: 63 Sauromatum, floral development 20: 199– 203 Saurunus cernuus oil cell development 6: 300 Saururaceae 31: 58 “Saxa” cv. 18: 52 Saxidomus gigentus 12: 82 Saxifraga sarmentosa, oxygen movement in phloem 7: 235 Saxifragaceae 22: 13 Saxitoxin (STX) 12: 82 – 86 Saxitoxins antibodies 27: 230, 231 properties 27: 213, 219, 220 structure 27: 217 SBM, see Symbiosome membrane SBS, see Symbiosome space Scabiosa columbaria 29: 5 enzymes of ammonia assimilation 6: 27 nitrate reductase 6: 22 Scaffold attachment region (SAR) elements 34: 95 Scaffolding proteins 32: 311– 313 Scalar irradiance and phytoplankton photosynthesis 16: 203
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Scaling up 18: 231, 232, 240 Scapania 19: 263, 265 cultivation experiments 6: 254 phytochemistry 6: 259 Scapania gracilis 19: 271 Scaphyglotis vestita, seed morphology 7: 425 Scaritoxin 12: 87 Scatchard analysis of auxin binding data 5: 71, 72 Scattered light isotropy 18: 278– 282, 283 thick samples 18: 278– 280 thin samples 18: 280– 282 Scenedemus 12: 18 Scenedesmus b-carotene 10: 58, 59 chlorophyll 10: 52, 83 electron donor to P700 10: 88 light attenuation and the package effect 10: 46, 47 photosystem reaction centre complex 10: 77 quantum efficiency 10: 152 RuBPc’ase 10: 41 Scenedesmus obliquus, RUBISCOs, Kc values (table) 27: 104 Scenedesmus obliquus, site of synthesis of cell wall components 5: 104 Scenedesmus sp., light regulation 27: 301 Schefflera arboricola 38: 252, 264 Schistosoma mansonii 28: 13 Schizaea, polyploidy 4: 322 Schizaeales, cytology 4: 290– 292 Schizaphis graminum 36: 25, 28, 34, 35 Schizeaceae cytology 4: 290, 309, 310, 314 fossil record 4: 236 Schizeaceae, Early Tertiary 17: 14 Schizoloma, fossil record 4: 245 Schizophyllum commune 34: 92 Schizophyllum commune, pioneer wood colonization 7: 46 Schizosaccharomyces pombe 24: 135, 407, 422; 28: 11, 13; 29: 78; 31: 208; 32: 6, 25, 26, 425 Schizosaccharomyces pombe, induction of gametogenesis 20: 144 Schizothrix 12: 48
261
Schizothyrium sp. 33: 14 Schizotrix sp., schizotrin 27: 215 Schombocattleya, carbon fixation 7: 526, 529 Schomburgkia carbon fixation 7: 526 post-pollination phenomena 7: 576, 577 Sciarid larvae, biocontrol 26: 19 Scilla maritima 30: 120 Scilla nonscripta 11: 129 Scirpus validus, photosynthesis and aeration 7: 297 Scitaminae growth 3: 220–222 influorescence 3: 268, 269, 278 stomata 3: 285 sympodial rhizomes 3: 262 Sclerenchyma cells 18: 131, 132 Sclerenchyma, fracture properties 17: 252 Sclerophoma pythiophila 33: 4 Sclerospora 24: 354 Sclerotinia 24: 288 Sclerotinia minor 38: 21 – 24, 32, 46 Sclerotinia sclerotiorum 24: 9, 11, 12, 126 Sclerotinia, copper level and infection of peanuts 10: 231 Sclerotium rolfsii, phosphorus utilization 8: 179, 187 Sclerotium, calcium level and host "infection 10: 227 SCON1, SCON2 protein 33: 200 Scopelin production 13: 148, 152, 155– 157 Scopoletin 37: 183 Scopoletin production 13: 148, 152, 155– 157 Scorable gene-mediated selection 34: 78 Scots pine, see Pinus sylvestris Scrofularia arguta 19: 121 Scrophularia aquatica nitrate reductase 6: 22 Scrophulariales 19: 305 Scutellospora calospora 22: 20, 21 Scytalone dehydratase 34: 270
262
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Scytosiphon light-harvesting complex 10: 124 photosystem reaction centre "complexes 10: 80 S-domain group 32: 21 SDS-PAGE 34: 186, 188 SDS-polyacrylamide gel electrophoresis 23: 30 Sea level, Early Tertiary 17: 9, 10 Sea, see Phytoplankton, North-West Europe shelf seas Seagrasses 27: 89, 173– 175 d13C values 27: 150 Seal distemper virus 38: 49 Seas and seawater anthropomorphic sources of CO2, impacts 27: 178, 179 physics and chemistry of inorganic C (table) 27: 109, 110 primary productivity, geological past, C limitation 27: 176– 179 transfer of carbon dioxide 27: 144 13 12 C/ C ratios 27: 144, 145 Season, and lipid metabolism in algae 16: 38, 39 Seaweeds, fracture properties 17: 271– 273 Secale cereale (rye) 33: 245 Secale cereale 34: 40, 197; 37: 85 DNA analysis 6: 125 Secale vavilovii 34: 40 Secalins 34: 197 Secchi disc 16: 221 Secologanin production 13: 174 Second messenger operated channels 22: 48, 69, 71, 74, 75 see also Calcium ions Second messengers 19: 53, 54 Second messengers, signals 21: 63 – 65 Secondary biosynthesis 12: 47, 48 Secondary compounds, vacuolar storage 25: 145– 151 Secondary inorganic ion transport 25: 401– 417 Secondary ion mass spectrometry (SIMS) 29: 163, 167– 170 Secondary metabolites 25: 102; 31: 79 see also secretory materials
as defence and signal compounds 25: 141– 143 chemotaxonomy 31: 153– 169 compartmentation 25: 141– 169 defence hypothesis 25: 143 functional aspects 31: 79, 81, 82 mechanisms for uptake and sequestration 25: 158 signal functions 25: 143 transport 25: 388– 390 use in plants 25: 142 Secondary plant products excretion 5: 198 in relation to vascular plant evolution 5: 206, 207 Secondary thickening, monocotyledons 3: 265– 266 Second-hand chloroplasts 19: 189– 230 Secretory canals 31: 59 Secretory cells 22: 177; 31: 37 – 66 pathways of secretion 31: 38, 39 Secretory materials see also secondary metabolites biosynthesis 31: 126– 128 classification 31: 11, 12 commercial uses 31: 129– 135 discovery strategies 31: 134, 135 exploitation 31: 121– 141 production improvement strategies 31: 135–141 storage/accumulation 31: 85, 89, 122– 126 Secretory tissues 31: 38 Sectioning, EM studies, membrane 3: 8 –39 Sedges, influorescence 3: 273 Sedimentation of plant debris from water flow 16: 121, 122 Sedoheptulose-biphosphatase 12: 6, 26, 27 Sedum album 18: 88, 94, 95 Sedum praealtum 12: 34 Sedum spp., carbon dioxide recycling in 15: 76 Sedum telephium, Crassulacean acid metabolism in 15: 76 –78 See also Lipid metabolism in algae; Phytoplankton, North-West Europe shelf seas See Coffea spp.
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Seed dispersal 31: 19 Seed gums 11: 125– 155 Seed plants 19: 301– 306 aberrant cycles induced 16: 77 natural 16: 72 gametogenesis 16: 63, 64 megasporogenesis 16: 69, 70 microsporogenesis 16: 67, 68 Seed proteins see Legume seed storage proteins Seed trichomes 31: 18, 19 Seed washing 23: 189 Seed-borne bacteria 23: 190– 192 fungi 23: 183– 190 Seeds cell wall storage carbohydrates in 11: 125– 155 Early Tertiary evolution 17: 60, 61 image analysis 17: 49 – 52 vertebrate dispersal 17: 66 – 68 in leaf nodule symbiotic cycle Ardisia 17: 197–200 Psychotria 17: 211– 213 leguminous 11: 130, 133– 143 toughness 17: 283, 284 Vitaceae, Early Tertiary, dispersal 17: 66, 67 Seeds and lectins 4: 25, 28 – 30 Seeds germination, isoprenoid metabolism in 14: 80, 81 Seeds, disease biocontrol 26: 40, 51 – 55, 77 –80 enzyme inhibitors 26: 141, 142, 144, 152 Seeds, floating times 16: 117, 118 Seeds, indexing 23: 171– 201 Seeds, protein storage vacuoles (PSVs) in 25: 113– 140 SEF4 33: 201, 202 Segmental alloploidy in ferns 4: 320, 321 Segregation ratios 12: 109, 133– 137 SEIR model 38: 14, 42, 49 Seiridium juniperi 33: 23 SEIRX models 38: 40 Selaginella 19: 301; 35: 35; 33: 65, 67 Selaginella erythropus 37: 39
263
Selaginella martensii, lignin composition 8: 31, 32 Selaginella, Early Tertiary 17: 15 Selaginella, megasporogenesis 16: 68 Selaginellaceae, chromosome number and heterospory 4: 378 Selected ion current monitoring for analysis of gibberellins 9: 69 Selection system 34: 74 – 80 Selective breeding 31: 135 Selective extraction 31: 122, 123 Selectivity hypothesis 29: 119 Selenipedium schlimmii, seed morphology 7: 427 Self-incompatibility (SI) systems 32: 270– 292 Selfish DNA hypotheses 27: 414 transposable elements 27: 411, 412 Self-pollen rejection, genetic control of 32: 272, 273 Semiochemicals 30: 103, 104, 106 Semi-permeable membrane solute and water flow 6: 69 Semiquinone radicals in melanin andanthocyanin 37: 28 Sempervivum spp., carbon dioxide recycling in 15: 76 Senecio 24: 319, 320 Senecio jacobaea 30: 99 Senecio umbrosus 31: 24, 25 Senecio vulgaris 24: 74 DNA analysis 6: 125 Senecionine 30: 96, 99 Senescence in cell phenotypes 25: 103– 105 Senescence of orchid flowers 7: 587– 600 Senescence, foliar 35: 5, 6 Senescence-induced resistance 38: 266 Sense suppression 34: 92 Sensible heat transfer 18: 235 Sensitivity variation 22: 280– 286, 288 Sepia 37: 20 Septoria tritici 33: 247 Sequence analysis 32: 45, 48, 54, 58 see also noncoding sequences, phylogenetic sequence analysis programs for 32: 59– 61
264
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Sequence (continued) comparison 32: 46 – 54 databases 32: 46, 47, 57, 61, 62, see also Basic Logical Alignment Search Tool, EMBL Sequence data 35: 181 Sequestration proteins 37: 69 Sequoia 22: 13; 33: 6 Sequoia sempervirens (coastal redwood) 33: 7, 9 Serapias lingua, phytoalexin production 7: 512 Seratia italica 31: 10, 11 Serenoa, growth 3: 224 Serine acetyltransferase (SAT) 33: 188, 192, 193 Serine/threonine phosphatases 32: 67 – 76, 79, 80, 86 – 91 Serine/threonine protein kinase 24: 109 Serine/threonine protein phosphatase 24: 135 Serine/threonine protein phosphatases inhibitors of 32: 461 Serine-theonine kinase 21: 66 SERK gene 32: 240 SERK-promoter::Luciferase-reporter transgene 32: 240 Serological techniques 23: 8, 29, 30 – 37, 75 –83, 120, 121 Serologically specific electron microscopy (SSEM) 21: 114 Serotonin production 13: 178 Serpentine production 13: 152, 154, 158, 159, 167, 169, 175, 176 Serpula himantoides, moisture level and wood colonization 7: 407 Serpula lacrymans, phosphorus translocation 8: 202– 204 Serratia marcescens 24: 400, 409; 30: 189 Serratia marcescens, respiratory control 4: 96 Sesbania rostrata 18: 132, 152 Sesleria albicans nitrate reductase 6: 22, 26 Sesquiterpene lactones 31: 160, 162, 163, 165, 166, 168 Sesquiterpenoid production 13: 166 Sesquiterpenoids 21: 48
Setaria italica 34: 41 Setcreasea purpurea 31: 269 Settling velocity of plant debris calculation 16: 103, 104 factors in 16: 106– 108 in water 16: 119, 120 Sewage sludge, composted 26: 13 Sex chromosomes in liverworts 6: 231– 233 in mosses 6: 233– 235 Sex expression, control of 2: 304 Antirrhinum majus 2: 308 auxins 2: 305– 308 Cannabis sativa 2: 305 chemical control 2: 306 et seq. Citrullus vulgaris 2: 307 cotton 2: 307 Cucumis 2: 305– 308 Cucurbita pepo 2: 305 foliar spray 2: 308 gametocides 2: 307 growth substances, role of 2: 304 et seq. Luffa acutangula 2: 306 Lycopersicum esculentum 2: 307 maize 2: 307 male sterility, induction of 2: 307, 308 Melandrium dioicium 2: 304 Mercurialis ambigua 2: 308 photoperiodic control 2: 306 plant hormones 2: 304 pollen sterility, induction 2: 308 sex reversal 2: 305, 308 Silene pendula 2: 308 Soft rot see Fungi Solanum melongena 2: 308 soybeans 2: 308 tissue and organ culture 2: 307 tomato 2: 307 Sexual development in fungi 24: 72, 73 Sexual life cycle, Phytophthora 24: 437 Sexual morphogenesis analysis of 24: 51 – 60 GUS as tool to study 24: 58 MAT genes in 24: 60 P. brassicae 24: 36, 51 – 64 P. brassicae-Brassica interaction 24: 33, 34 Sexual reproduction 24: 16, 23, 80, 81
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
SF17 24: 137 S-H mixture, organic amendments 26: 12 Shade algae and light harvesting 10: 21, 22, 155, 165 Shade plants chloroplast characteristics 13: 51 light capture for PSII reaction centres 13: 29, 30 photo-inhibitory damage to PSII 13: 55 PSI to PSII stoichiometric ratio 13: 51, 52 Shaggy-related protein kinase 32: 28, 29 Shaker class of ion channel 29: 84 Shape descriptors 31: 4, 5 Shelter 18: 218 SH-EP 74 –76 Sherwood number 18: 213 Shigella flexneri 12: 73 Shikimate pathway 38: 172 Shikimate, accumulation triggered byglyphosate 20: 90 Shikimic acid 21: 49 Shikonin production 13: 146, 148, 152, 156, 178 Shistosoma mansoni 25: 133 Shoot apical meristem (SAM) 28: 163, 164, 186; 32: 233– 235; 38: 196, 197 and leaf initiation 28: 165, 166 maintenance 28: 166 Shoot base temperature 30: 61, 62 Shoot extension 19: 120, 121 Shoot growth, manipulation of 30: 61, 62 Shoot response 22: 164 Shoot:root ratios 30: 6, 61, 62, 67 Shoot-derived signals 30: 63 – 67 Shoots auxin effect upon growth 1: 76, 77, 83, 97 chelate effect upon growth 1: 75, 77, 92, 93 Short-term recirculation of nutrients 29: 151– 154 Shrub (Larrea tridentata) 18: 12, 15, 20 Shrub (Salvia mellifera) 18: 16, 34 SHST1, SHST2 and SHST3 transporter 33: 163, 164 SHST3 25: 413 shstl, shst2, shst3 33: 163 Sida golden mosaic virus 36: 84 Siderophore production and iron concentration 10: 256, 257, 266, 267
265
Siderophores, biocontrol 26: 23 – 25, 32 Siegert relation 11: 18 Sieglingia decumbens nitrate reductase 6: 23 Sieve cells 1: 209 et seq. Sieve elements 38: 171 Sieve tube differentiation and auxins 9: 167, 168, 175, 210, 233, 252 and gibberellins 9: 233, 234, 236 formation of closed rings 9: 207 polarity 9: 192, 196 regeneration 9: 213 Siganus fuscescens (rabbitfish) 12: 79 Signal interpretation and experimental measurements 18: 283–289 Signal recognition 32: 383– 386 Signal recognition particle (SRP) 35: 127, 128 Signal to noise ratio 23: 65, 66 Signal transduction 15: 1, 2, 12 – 16; 30: 305– 307; 32: 67 in ears 15: 13, 14 in gravitropism, calcium ions in 15: 9, 14, 15, 37 phosphoinositides in 15: 15, 16 Signal transduction networks ‘appropriate’ response 29: 56, 57 gene expression control by metabolites 29: 57 – 59 gene expression responses and 29: 54, 55 interactions within 29: 57 – 67 mechanisms in interactions between 29: 67 – 69 negative regulation 29: 57 –63 networks vs. pathways 29: 55, 56 phytochrome signal transduction pathways 29: 61 – 63 plant defence responses 29: 59 – 61 synergism 29: 63 – 67 Signal transmission rapid, long-distance 22: 163–216 case studies 22: 188– 200 further research 22: 200– 216 mechanisms of 22: 167– 188 UV radiation 22: 107– 111, 140, 141 water and nitrogen supply 22: 267– 275, 276, 287, 288
266
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Signaling 21: 3, 8 – 13, 16 – 20, 24, 25 fungal infection 21: 58 –65, 71, 148, 149, 169, 173, 174, 178 viral infection 21: 110 Signal-to-noise ratio, dyes 22: 64 Silene 19: 61, 121 Silene dioica nitrate reductase 6: 23 Silene latifolia 28: 215, 218, 220 Silica 18: 259 Silica gel chromatography of hormones 9: 51 Silica in monocotyledons 1: 109, 111, 114, 121, 131, 137, 142 Silicon carbon fibre (whisker) vortexing 34: 62, 64, 65 Silicon concentration and disease 10: 261– "263 Silicon deficiency in algae and lipid metabolism 16: 47 Silification 16: 177 Silphium spp. 33: 69 Silurian algal fossil record 5: 162 land plant fossil record 5: 162, 163 Silver conductance paint 18: 270 Silver fir, see Abies alba Silver maple (Acer saccharinum) 18: 72, 76 Silver staining 23: 63 Simmondsia chinensis, effect of stomatal aperture on assimilation rate 4: 185 Simple sequence repeat (SSR) analysis 34: 42 Sinaloa tomato leaf curl virus 36: 76 Sinapate esters 22: 114; 37: 80, 85 Sinapate pathway 37: 85 Sinapis 35: 232, 237 Sinapis alba (white mustard) 31: 229, 231 Sinapis alba 24: 421; 33: 66; 35: 221, 232 Sinapsis alba, chlorophyll-protein "complex 10: 107 Sinapyl alcohol, and lignin composition 8: 28, 29, 31, 32, 50 SINGED (SNE) 31: 255, 257 Single mode fibre 18: 258, 259, 262, 268 Single nucleotide polymorphisms (SNPs) 34: 43
Single-cell sampling and analysis (SiCSA) 25: 175, 180– 182 Single-dominant genes 21: 54 – 56, 65, 66, 71 Single-strand conformational polymorphism (SSCP) 35: 174, 182, 191 Singlet oxygen (1O2) 23, 27, 177 Sink strength 22: 263, 264 Siphonaxanthin chlorophyll-protein complex 10: 108, 109 distribution in algal groups 10: 56, 57 light absorption 10: 59, 72 structure 10: 55 Siphonochlamys 38: 287, 291 Siphonocladales, HCO2 3 entry into "vacuole 27: 169, 170 SIPK gene 32: 326, 361, 364, 365, 396 SIR model 38: 5, 6 Sitanion hystrix 33: 245 Sites of synthesis of cell wall components golgi apparatus 5: 99 – 101, 119 in Chaetomorpha melagonium 5: 102 in Chrysochromulina chiton 5: 99 in Oocystis apiculata 5: 102, 103 in Pleurochrysis scherffelii 5: 99 in S. obliquus 5: 104 in Scenedesmus pannonicus 5: 104 in Zea mays 5: 104 plasmalemma 5: 99, 100, 102– 105 Sitobion (Macrosiphum) avenae 36: 25, 27, 28, 31, 33 – 35 Sitona lineatus 36: 104 Size exclusion limit (SEL) 21: 106, 107, 116 Skeletonema costatum 11: 99 d13C values 27: 151, 152 antenna chlorophyll 10: 94 C-concentrating mechanisms (table) 27: 118, 119 chlorophyll c 10: 122 photosynthetic rate 10: 151 shading effect 10: 157, 160, 162 Skotonastic movements 33: 42 Skototropism 33: 65 SLA gene 32: 282, 283 Slave genes 21: 65 SLG gene 32: 274, 275, 277, 278, 280, 281, 283, 285– 289
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
SLG/SRK (S-Locus Specific Glycoprotein/S-locus Receptor Kinase) 21: 174, 175 Slime-moulds cell aggregation in Dictyastelium discoideum 4: 21, 22 in Polysphondiluim pallidum 4: 21, 22 S-linalool synthase 31: 98, 99 Slow vacuolar (SY) channel 22: 80 Slowly activating vacuolar (SV) channels 25: 223 function 25: 229, 230 gating 25: 226, 227 pharmacology 25: 229 selectivity 25: 227– 229 SLR1 gene 32: 287– 289, 291 SLR2 gene 32: 287, 288 Slugs, cysteine proteinases 26: 164, 165 SMART domain database 32: 59 ‘smart plant’ technology 33: 161 Smilacina 22: 13 stellata 22: 113 Smilax, growth 3: 217 Snap bean 18: 47 SNF1 gene 32: 14, 16, 33, 406, 412, 417, 423, 425, 426 SNF1-related kinase (SnRK) subfamily 32: 13 – 18 SNF1-related protein kinase (SnRK) 32: 406–413 activity regulation 32: 414, 415 complex 32: 417 functions of 32: 419– 426 gene expression regulation 32: 423– 425 immunodetection and measurement of 32: 412, 413 interacting proteins 32: 417– 421 substrate identification 32: 421 sn-Glycerol-3-phosphate synthesis 7: 91 Snow melt challenges to plants during 37: 130– 132 photosynthesis 37: 134– 137 tundra evergreen plants 37: 132, 133 SnRK1 gene 32: 15, 407, 410, 414, 418, 423, 425, 426 SO2 18: 2, 3, 92 see also O3/SO2 mixtures bioindication 18: 100, 104 chlorophyll fluorescence 18: 93
267
endogenous elements 18: 93, 94 exposure 18: 8 diffusive resistance 18: 30 – 32 respiration response 18: 32, 33 responses 18: 33 bioindication 18: 96 diffusive resistance 18: 22 – 25 long-term 18: 26 –33 respiration response 18: 25, 26 short term 18: 17 – 26 transpiration response 18: 8 fumigations, short and long-term 18: 9 –16 NO2 exposure long-term 18: 48, 49 respiration responses 18: 47, 48 short/long-term 18: 44, 45 short-term 18: 47 NO2 fumigation 18: 46 NO2 mixtures 18: 43 – 49 interaction mechanisms 18: 47 short term 18: 43 – 48 NOx exposure 18: 39, 42 O3 exposure 18: 58, 62, 63, 68 photosynthesis response 18: 69 – 79 O3/NO2 exposures 18: 84 Phaseolus vulgaris 18: 28 response of photosynthesis 18: 7 – 34 long-term SO2 exposures 18: 26 – 34 stomatal uptake 18: 24, 25, 31, 32 sunflower leaves 18: 83 toxicity 18: 96 Vicia faba photosynthesis 18: 21 SO2+NO2+O3 exposure 18: 84 SO3 18: 79 SO2 4 18: 79 Sobemovirus 36: 101 Social constraints, population pressure 21: 81 Socratea, growth 3: 217, 218 SOD, see Superoxide dismutase Sodium : calcium ratios 29: 127, 128 Sodium 11: 162– 166; 22: 202, 264, 280, 287; 25: 402– 404 carrier-mediated entry 29: 80 – 82 channel-mediated entry 29: 82 – 91 control levels of ions 29: 127 co-residency of different channel types 29: 89 – 91
268
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Sodium (continued) effect of different channel types on rate of uptake 29: 95, 96 electrochemical potential differences 29: 78 – 80 exclusion and genotypic tolerance 29: 120, 121 exclusion, uptake and sequestration of 29: 77 influx across plasma membrane 29: 101, 102 ion selectivity of ion channels 29: 82 – 84 semiquantitative dissection of fluxes 29: 91 – 95 shoot accumulation 29: 120 transport in growing shoot tissues 29: 144 transport in young tissue 29: 133–137 Sodium absorption ratios (SARs) 29: 128 Sodium chloride disturbed photosynthesis 29: 117 inhibition of shoot growth by 29: 116– 119, 173, 174 nutritional effect on shoot growth 29: 119– 121 Sodium chloride and Dunaliella and glycerol 14: 130, 131 and growth and carbon dioxide as carbon source 14: 106, 107 and light 14: 106, 107, 116, 117 and temperature 14: 106 and photosynthesis 14: 149– 153 fluorescence studies 14: 152 and starch vs. glycerol synthesis 14: 131 concentration and cell anatomy 14: 123, 125 and growth 14: 103– 107 and photosynthesis rate 14: 144 enzyme inhibition 14: 141–143 nitrate reductase 14: 138, 139 Sodium dodecyl sulphate, solubilization of chlorophyll-protein complex 10: 104 Sodium pump 28: 3 Sodium tungstate, use in negative staining 3: 16 Sodium uptake, NMR studies 20: 98, 99
Sodium, and plant metabolism metabolic and physiological effects of low sodium Anabaena cylindrica 7: 172–183 C4 and CAM plants 7: 184– 207 responses to low sodium Atriplex vesicaria 7: 149– 157 C4 pathway species 7: 157– 159, 163– 167 CAM species 7: 159– 168 lower plants 7: 144– 149 schemes for the role of sodium 7: 207– 212 Soft globoid region 35: 144 Sogatella furcifera 36: 150 Sogatella vibix 36: 152 Sogatodes orizicola 36: 153 Soil acidic 30: 3 conducive soil 21: 38, 67 – 69 effect on uptake 30: 60, 61 management 21: 67, 69, 70, 72 population pressure 21: 82, 85 – 88, 99 solarization 21: 67, 69 suppressive soil 21: 38, 67 – 70, 71, 72 Soil acidification 18: 102 Soil and water relations 3: 195– 204 Soil C and N, and Amax 20: 24 –33 predicting influence on photosynthesis 20: 3 – 15 Soil extraction 23: 112– 114 Soil flooding 19: 145– 149, 160– 164 Soil flooding, biocontrol 26: 15 Soil moisture stress 18: 75 Soil organisms, relationships between 24: 400 Soil sterilization, biocontrol 26: 15, 16 Soil substrates, inoculum production 26: 76 Soil water stress, ozone uptake and 29: 33 Soil waterlogging 19: 135– 138 Soil(s) acidic 29: 4 calcareous 29: 4 extractable elements 29: 2 – 4 Soil-borne plant pathogens see Biocontrol of soil-borne pathogens Soil-borne wheat mosaic virus (SBWMV) 36: 56, 58 – 60
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Soils extraction of antigens 24: 283– 286 fungi in 24: 275– 308 Soils, disease-suppressive 26: 4 – 9, 69 Solanaceae 35: 72 Solanaceae 31: 11, 58, 157; 37: 45 Solanum 31: 26, 131 Solanum andigena 19: 130, 131 Solanum carolinense 35: 73 Solanum jasminoides culture 13: 166 Solanum melongena, modification of sex expression by gibberellins 9: 34 Solanum nigrum culture 13: 152 Solanum pennelli 19: 134 Solanum spp. 23: l6 Solanum tuberosum 19: 132; 21: 2; 22: 273; 28: 75, 89, 220; 29: 41 DNA transposable elements Ac transposition 27: 403 En/Spm (enhancer/suppressor-mutator), CACTA superfamily 27: 405, 406 retrotransposons 27: 337, 346 DNA TEs 27: 352, 353 Solanum tuberosum, endoplasmic reticulum 7: 20 Solar energy 21: 81 Solar protection 37: 120 Solar timekeeping 33: 58 –63 pulvinar photoreceptors for 33: 62, 63 ‘solar tracking’ 33: 42, 98, 99 by heliotropism 33: 72 – 89 Solarization 21: 67, 69 Solarization, soil heat treatment 26: 16 Solasodine production 13: 152, 166 Solavetivone production 13: 179 Solid matrix priming (SMP) 26: 79, 80 Solidago canadensis 18: 69 Solidago virgaurea nitrate reductase 6: 23 Soluble vacuolar proteins 25: 45 – 50 Solutes, accumulation and export 25: 96, 97 Somaclonal variation 27: 349 Somatic embryogenesis 32: 239, 240 Somatic Embryogenesis Receptor Kinase (SERK) clone 32: 240 “Sonja” cv. 18: 10 Sonneratia apetala, gibberellins 9: 43
269
Sophronitis cerna, carbon fixation 7: 527 Sorbitol 25: 371 Sordaria brevicollis 24: 80 Sorghum £ almum 34: 39 Sorghum £ drummondii 34: 39 Sorghum (Sorghum bicolor) 18: 12 Sorghum 25: 146, 149; 29: 144, 145; 31: 14, 133; 32: 192; 34: 37 – 39 Sorghum amplum 34: 37 Sorghum angustum 34: 37 Sorghum arundinaceum 34: 37 Sorghum australiense 34: 38 Sorghum basutorum 34: 37 Sorghum bicolor 29: 124, 132, 137– 141, 149, 164 Sorghum bicolor 34: 39, 37 Sorghum bicolor ssp. arundinaceum 34: 37 Sorghum bicolor ssp. drummondii 34: 38 Sorghum bicolor, see Sorghum Sorghum brachypodum 34: 37 Sorghum brevicallosum 34: 38 Sorghum bulbosum 34: 38 Sorghum caffrorum 34: 37 Sorghum caudatum 34: 37 Sorghum cernuum 34: 37 Sorghum conspicuum 34: 37 Sorghum controversum 34: 38 Sorghum coriaceum 34: 37 Sorghum dimidiatum 34: 38 Sorghum dochna 34: 37 Sorghum durra 34: 38 Sorghum ecarinatum 34: 38 Sorghum elegans 34: 37 Sorghum exstans 34: 38 Sorghum fulvum 34: 38 Sorghum gambicum 34: 37 Sorghum grande 34: 38 Sorghum guineense 34: 37 Sorghum halepense (Johnson grass) 34: 38, 39 Sorghum hewisonii 34: 38 Sorghum interjectum 34: 38 Sorghum intrans 34: 38 Sorghum japonicum 34: 37 Sorghum lanceolatum 34: 37 Sorghum laxiflorum 34: 38 Sorghum leiocladum 34: 38
270
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Sorghum macrochaeta 34: 37 Sorghum macrospermum 34: 38 Sorghum malaleucum 34: 37 Sorghum margaritiferum 34: 37 Sorghum matarankense 34: 38 Sorghum mellitum 34: 37 Sorghum membranaceum 34: 37 Sorghum miliaceum 34: 38 Sorghum miliforme 34: 37 Sorghum nervosum 34: 37 Sorghum nigricans 34: 37 Sorghum niloticum 34: 38 Sorghum nitidum 34: 38 Sorghum notabile 34: 37 Sorghum plumosum 34: 38 Sorghum propinquum 34: 39, 38 Sorghum pugionifolium 34: 37 Sorghum purpureosericeum 34: 38 Sorghum roxburghii 34: 37 Sorghum saccharatum 34: 37 Sorghum saccharum 19: 121 Sorghum simulans 34: 37 Sorghum splendidum 34: 37 Sorghum stapfii 34: 37 Sorghum stipoideum 34: 39 Sorghum stripe virus 36: 152 Sorghum stunt mosaic virus (SSMV) 36: 158 Sorghum subglabrescens 34: 37 Sorghum sudanense 34: 38 Sorghum technicum 34: 37 Sorghum timorense 34: 39 Sorghum tricolor 25: 388 Sorghum usambarense 34: 37 Sorghum versicolor 34: 39 Sorghum verticilliflorum 34: 37 Sorghum virgatum 34: 37 Sorghum vogelianum 34: 37 Sorghum vulgare 19: 135; 32: 174; 34: 37; 38: 108, 126, 144 PEPC in 38: 118 Sorghum vulgare var. drummondii 34: 38 Sorghum vulgare var. sudanense 34: 38 Sorghum, lignin content 8: 29, 30 Sorghum, salicylates, pregerminator effects 20: 188 Source –sink transition 28: 108
South America, Early Tertiary vegetation/climate 17: 78 Southern bean mosaic virus (SBMV) 36: 102– 104, 107– 110 CP-SBMV 36: 108 Southern blot analysis 21: 192, 197, 202 Soviet Union 21: 84, 98 Soya bean 25: 25, 116, 119, 121, 126, 127, 130 Soya bean dehiscence 17: 280– 282 toughness 17: 283, 284 Soyabean culture 13: 180 Soybean 19: 21, 36, 44, 126, 128; 21: 10; 22: 101, 127, 142, 144, 145, 166, 258; 30: 17, 32, 49, 65– 67, 127, 128, 130, 138, 298, 303, 306 Soybean effects of salicylates 20: 211 nitrate reduction inhibited bysalicylates 20: 195 standing osmotic gradient hypothesis 6: 60 – 62 transfer cells 6: 60 Space irradiance 18: 272 Spaceflight and mitosis 15: 35 Spacer region 21: 194, 195, 201 Spacing of trichomes 31: 222, 223 mutants 31: 227, 228 Spaeropsis malorum, iron concentration and host infection 10: 255 “Spanish moss”, evolutionary history 3: 224– 229 Sparmania 22: 165 Sparmannia africana 33: 68 Spartina 31: 40, 41, 43 Spartina alterniflora, chlorophyll a/b ratio 10: 52 Spartina anglica enzymes of ammonia assimilation 6: 30, 34 nitrate reductase 6: 23 Spartina townsendii, gas-space characteristics 7: 291 Spartocytisus filipes 31: 15 Spathoglottis promeristem development 7: 484 stomatal rhythm 7: 521
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Spatial heterogeneity 38: 44 Spatial resolution degradation 18: 289 Spatial structure 24: 343– 345 Spatially explicit models 38: 51 Spatoglossum pacificum 11: 91 Spearmint 31: 123 Species concepts 35: 174– 178 Specificity 21: 3, 6, 7; 22: 21, 22, 46, 84 – 87 Specificity of host-parasite interactions induced susceptibility 4: 10 non-host resistance 4: 9, 10 Speckle 11: 8, 9 Spectral analysis 33: 102– 104 Spectral distortions chlorophyll concentration 5: 10 – 12 destruction of organelles 5: 12, 13 freezing techniques 5: 10, 13 – 21 the effect of scatter 5: 10, 11 Spectrometer, design and sample choice, NMR 20: 60 – 65 Spectrum analysis 11: 3, 21 Spergularia 29: 80 Spergularia media 11: 169 nitrate reductase 6: 23, 25 Sperm cell isolation and characterization 28: 234 Sperm head, plasma membrane 3: 35,39 Spermatogenesis bryophytes 16: 59 heterosporous pteridophytes/seed plants 16: 63 Spermatozoa 11: 15, 49 – 53 Sphacelaria, shading effects 10: 157 Sphaceloma manihoticola, gibberellins 9: 42 Sphaerocarpales 19: 255, 271, 289, 291 karyotypes 6: 240 Sphaerocarpos 19: 271 origins of polyploidy 6: 216 sex chromosomes 6: 193, 233 Sphaeropsis sapinea 33: 25 Sphaerotheca fuliginea 24: 311 Sphaerotrichia divaricata 35: 175 Sphagnidae 19: 241– 243 Sphagnopsida chromosome numbers 6: 199, 200, 203 interspecific polyploidy 6: 210 intraspecific polyploidy 6: 211 Sphagnorubin 37: 39, 40
271
Sphagnum 19: 235, 241, 263, 283, 285, 287, 295, 299; 37: 39 cultivation experiments 6: 254 Sphagnum cuspidatum 19: 241, 243, 245 Sphagnum fallax 19: 241 Sphagnum fimbriatum 19: 241, 243 Sphagnum subnitens 19: 241 Sphenomeris, polyploidy 4: 322 Sphenopsids, Tertiary 17: 16 Sphenopteris, fossil record 4: 235 Spherical sensor 18: 272 Spherulins, mycomycetes 27: 7 Spider mite resistance see Pelargonium spider mite resistance Spinacea oleracea, gibberellins 9: 43 Spinach 12: 14, 22, 23; 18: 92, 281; 25: 202 chloroplasts and prenylation catalysis 14: 46 photosynthetic products and nitrogen source 14: 146, 148 Spinach, emission spectrum 5: 12, 23, 25, 39 Spinach, potential regulatoryphosphorylation sites 32: 437 Spinacia 22: 174 Spinacia oleracea 18: 13, 279, 280; 25: 375; 30: 54; 32: 36 chloroplast envelope ATPase activity 7: 67 lipid composition 7: 38 – 40, 44 phosphate translocator 7: 57 pigment composition 7: 47 preparation 7: 29 – 37 proteins 7: 29, 50, 51 RuBPCase transport 7: 79 structure 7: 5, 6, 24 sulphate transport 7: 71, 72 light gradients 18: 282 light travel 18: 281 phosphatidylcholine synthesis 7: 82 SPINDLY (SPY )/spindly 31: 230, 247, 248 Spiraea filipendula chromosome evolution by centric fusion 6: 144 Spiranthes australis, longevity of flowers 7: 569 Spirillum itersonii, cytochrome 4: 79 Spirodela 22: 263 polyrhiza 22: 130
272
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Spirodela oligorrhiza 30: 263 Spirodela oligorrhiza, photosystem electron acceptor 10: 91 Spirogyra 33: 67 holocentric chromosomes 6: 136 Spiroplasma 21: 190, 191, 194 citri 21: 190, 196, 203– 205 kunkelii 21: 190, 201– 203 melliferum 21: 196 phoenicium 21: 190 Spiroplasma citri 23: 10, 32 Spiroplasma virus (SpV4) 21: 196 Spirulina distribution 13: 70 shape 13: 73 stratification 13: 85 Spirulina platensis photosystem reaction centre complexes 10: 81 phycobiliprotein structure 10: 66 shading effects 10: 163 Spirulina, difference absorption spectra 10: 98 Splus language functions 23: 271– 277 Spodoptera 22: 184 Spongospora subterranea 24: 279, 287; 36: 48, 57 Sporamin 35: 142 Sporangial development in apomictic ferns 4: 388 Sporangiogenesis cyst coat vesicles 24: 375, 376 dorsal vesicles 24: 375, 376 encystment vesicles 24: 375, 376 induction 24: 357– 359 K-bodies or ventral vesicles 24: 373– 375 large peripheral vesicles or fibrillar vesicles 24: 365– 373 mastigonemes 24: 377 morphological development 24: 359– 361 synthesis of zoospore-specific components during 24: 361– 377 Sporangioles 22: 12 Spores see Palynology, Fossil plants Sporidesmium sclerotivorum 26: 63, 75; 38: 2, 1 –3, 24, 34, 46
Sporobolomyces, phosphogalactan release 8: 139 Sporobolus 33: 175 Sporobolus stapfiana 33: 164 Sporogenesis 16: 65; 16: 65 – 70 algae 16: 65 and sporophyte/gametophyte shift 16: 84 bryophytes 16: 65 pteridophytes, heterosporous megasporogenesis 16: 68, 69 microsporogenesis 16: 66, 67 pteridophytes, homosporous 16: 65, 66 seed plants megasporogenesis 16: 69, 70 microsporogenesis 16: 67, 68 Sporophyte. See Gametophyte-sporophyte junction Sporophytic systems 32: 270, 281 Sporopollenin in Wenlockian aerial spores 5: 199 synthesis in chlorophytes and land plants 5: 155 Sporormiella 33: 6 Sporulation intensity 21: 215– 226 Spread of disease 23: 2 international 23: 2 national 23: 2 Spring barley 18: 31 see also Hordeum vulgare Spring sap in woody plants 19: 125, 126 Spruce budworm 33: 21 Spruce, lignin structure 8: 29, 30 Spruce, see Picea excelsa Sputter coating and probe tip truncation 18: 262, 263 Squalene synthesis 14: 43, 44 Squash 21: 49 Squash 22: 165 Squash hybridization 23: 87 Squash leaf curl virus (SLCV) 36: 76, 81, 82 Squash mosaic virus 36: 102 Squash necrosis virus (SqNV) 36: 51 Squash yellow leaf curl virus 36: 70 Sr2 – mediated resistance to wheat stem rust 38: 260 SRK gene 32: 274, 275, 277, 278, 280, 281, 285– 289, 291, 292
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
STACHEL (STA) 31: 202, 249, 251 Stachypteris spicans, fossil record 4: 237 Stachys 25: 367, 368 Stachys sieboldii 25: 207, 208, 367, 369 Stachys sylvatica 33: 75 nitrate reductase 6: 23 Stagnospora innumerosa 33: 13 Stagonospora 33: 5 Stagonospora nodorum 24: 14 Staining, negative, cell membranes 3: 16 –21, 44 Stangeria chromosome constitution 6: 172 Stangeria eriopus, lignin composition 8: 32 Stanhopea longevity of flowers 7: 569 post-pollination phenomena 7: 576 Staphylococcal a-toxin, negative staining 3: 21 Staphylococcal transposon 21: 197 Staphylococcus 35: 124 Staphylococcus aureus 12: 73; 24: 409; 28: 13; 33: 28 amino acid uptake 4: 100 cytochromes 4: 75, 78 Staphylococcus carnosus 30: 24 Starch 22: 130, 141, 242; 34: 175– 194 breakdown during malting 34: 182 content 34: 177, 178 environment and synthesis and physicochemical" properties 34: 182, 183 functional properties 34: 178– 182 chemical modification 34: 181 foods and nutritional properties 34: 181, 182 gelatinization and melting 34: 179 gel-forming ability 34: 181 pasting and viscosity, and impact of a-amylases 34: 179, 180 retrogradation and staling 34: 181 starch damage and its consequences 34: 178, 179 swelling 34: 180 granule size, shape and structure 34: 177 structure and physical properties 34: 175– 177 amylose:amylopectin ratio 34: 175, 176 lipids and phosphate 34: 176, 177
273
synthesis and manipulation 34: 183–194 ADP glucose pyrophosphorylase 34: 185 branching enzymes (BE) 34: 188, 189 debranching enzymes 34: 189, 190 enzyme activities in starch biosynthesis 34: 190, 191 genetic engineering approaches 34: 194 granule proteins 34: 185, 186 granule-bound starch synthase 34: 186– 189 localization of starch biosynthetic enzymes 34: 183– 185 manipulation of starch properties 34: 193 mutant identification 34: 193, 194 precursors of starch biosynthesis 34: 183 starch granule initiation and development 34: 191– 193 starch synthases (SS) 34: 187, 188 sucrose delivery to endosperm 34: 183 sucrose, transformation to direct Starch degradation 38: 85, 86 Starch depletion and gravity sensing 15: 16 see also Statolith gravity sensors Starch in Dunaliella 14: 126, 130 metabolism, enzymes for 14: 140 vs. glycerol and sodium chloride 14: 131 Starch swelling power (SWP) 34: 292 Starch synthesis, C4 plants 26: 293, 294 Starch synthesis, control by phosphate translocator, 7: 59, 60 Starvation 21: 93 Starvation-induced cellular autophagy 25: 13– 17 Statistical evaluation methods 32: 53, 54 Statolith gravity sensors 15: 16, 18 – 32, 37 action 15: 21 displacement 15: 26 – 29 cytoskeleton stretching 15: 27, 28 of endoplasmic reticulum 15: 28, 29 identifying intracellular 15: 19 – 21 intramembrane 15: 18, 19 in multiple systems 15: 17 motion 15: 21 – 25 cytoskeletal shear 15: 21 – 24
274
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Statolith gravity sensors (continued) electrical field 15: 25 kinetic energy 15: 25 position 15: 29 – 32 and electrostatic attraction 15: 30 and ligand binding 15: 30, 31 chemical/electrostatic interactions 15: 31 Staurosporine 32: 27, 359, 363, 366, 381 Stay-greens 35: 30 – 33 Steam treatment, soils 26: 15, 16 Stelar tissue, movement of respiratory gases in phloem 7: 234, 235 in xylem 7: 236– 238 Stellaria 19: 306 Stellaria media DNA analysis 6: 125 Stemonaceae, growth 3: 236 Stems, fracture properties 17: 270, 271 Sterculia 35: 118 Sterculiaceae 37: 43 Stereological analysis 25: 197 Stereum gausapatum, competitive ability 7: 389, 396 Steric energy flux, relative 18: 273, 276, 281 Steric exclusion chromatography of gibberellins 9: 48, 49 Sternbergia clusiana 31: 10, 11, 18 Steroids 35: 86, 87 Sterol biosynthesis-inhibiting fungicides (SBIs) 24: 19– 21 Sterol synthesis 14: 43, 44 inhibition and conpactin 14: 34 rate of, radiolabelling studies 14: 69, 70 Stevia rebaudiana, gibberellins 9: 43, 81 –83, 95, 96 STICHEL (ST1) 31: 249 Stigmas expressing encoded proteins 32: 275– 277 Stilbene promoter 34: 90 Stilbene synthase 21: 23 Stimulatory– inhibitory response 38: 35 Stimulus-induced changes in calcium 22: 68, 69 Stimulus– response pathways 29: 56, 57 Stipules, Potamogetonaceae 3: 211 Stizolobium hassjoo culture 13: 156– 158
Stochastic thresholds 38: 39, 40 Stochasticity 38: 43, 45, 46 Stolbur 21: 193, 194 Stomata 1: 36, 39, 50, 113, 120, 131; 21: 5 see also Water and Nitrogen supply and transpiration 3: 196, 198 control of water loss 5: 182– 186 evolution 5: 190 guard cell osmotic pressure 5: 191 gymnosperms 3: 282, 283 homiohydry 5: 202, 203 monocotyledons 3: 282– 286 signal transmission 22: 164, 166, 175, 176, 178, 179 UV radiation 22: 141, 143, 144 Stomatal conductance 18: 220 changing 18: 228, 229 variation 18: 221 wind and energy transfer 18: 221– 223 density 18: 32 pollutant uptake 18: 75 resistance 18: 70 – 75 response and photosynthesis 18: 2 – 105 response mechanisms 18: 59, 64, 65 uptake 18: 67 Stomatal aperture changes 32: 464 Stomatal behaviour in the intact plant direct response to humidity dynamic behaviour and the hydraulic loop feed-back hypothesis of control 4: 162, 163, 211 model for oscillation 4: 155, 156 oscillation 4: 152– 155 transfer function 4: 164, 165 dynamic response to light and CO2 4: 187– 194 feed-back hypothesis of control 4: 170– 173 peristomal transpiration 4: 170 –173 quasisteady behaviour and plant – water relations evaporation rate 4: 147 midday stomatal closure 4: 151, 152 rhizosphere resistance 4: 150, 151
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
threshold level of water potential 4: 145– 147 quasisteady response to light and CO2 4: 174– 187 the concept of environmental gain 4: 166– 169 Stomatal closure and water deficiency 19: 150– 159 Stomatal closure, prostaglandins 20: 193 Stomatal complex 25: 27 Stomatal conductance model global mapping 20: 36 testing 20: 28, 29 testing against remotely sensed information 20: 29 – 34 Stomatal conductance, NPP model canopy gas exchange 26: 199, 201, 212, 213, 215, 216 leaf gas exchange 26: 198, 199, 202, 203 Stomatal control, feed-back hypothesis 4: 162, 163, 170– 173, 211 Stomatal development and vascular differentiation 9: 197 Stomatal guard cells 31: 197, 198, 211, 222 Stomatal heterogeneity 26: 317– 352 assessment methods 26: 325– 333 anatomy 26: 326– 328 aperture measurement 26: 330 conductance measurement 26: 330, 331 infiltration 26: 331 leaf temperature 26: 331, 332 photosynthesis rates 26: 332 stomatal behaviour 26: 328– 332 causes 26: 341– 344 frequency 26: 342 index 26: 342 size 26: 342 spacing 26: 341, 342 stomatal behaviour 26: 342– 344 data analysis 26: 332, 333 evidence 26: 333– 341 anatomical 26: 333– 346 leaf surface differences 26: 339 leaf temperature 26: 340 stomata behaviour 26: 336– 341 stomatal conductance 26: 339, 340
275
future research 26: 345, 346 history 26: 321, 322 macro-variation 26: 323– 325, 337– 339 micro-variation 26: 322, 323, 336, 337 noise 26: 322, 323 patches 26: 323–325 relevance 26: 344, 345 terminology 26: 322– 325 trends 26: 323– 325 Stomatal indices, and Early Tertiary atmosphere 17: 86 Stomatal mechanism active movement 4: 139– 143 epidermal water relationships 4: 121– 126 hydroactivated movement 4: 126– 139 Stomatal movement 32: 461– 467 Stomatal resistance in vascular plants 5: 184 Stomatal response 22: 238– 240 carbon dioxide uptake 22: 235– 238 Stomatal vapour diffusion, electrical analogue 4: 123– 126 Storage of secondary products 31: 122– 126 Storage protein genes, expression intransgenic plants 25: 133–135 Storage proteins assembly and processing 25: 129– 133 transport 25: 120– 123 Storing tissues 1: 209 Storms and plant dispersal, and fossil record 16: 110– 112 Stratiotes, Palaeocene, seed image analysis 17: 50 –52 Strawberry 22: 165 Strawberry latent ringspot nepoviruses (SLRSV) 36: 180, 183, 185 Streaming, see Cytoplasmic streaming Strelitzia growth 3: 220, 221 influorescence 3: 269, 278 S. resinae 3: 220, 221 vascular construction 3: 246 Strelitziaceae aerenchyma 3: 212 growth 3: 220, 222, 224 influorescence 3: 269, 271, 278 vascular construction 3: 246 Streptococcal transposon 21: 197
276
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Streptococcus 24: 403 Streptococcus faecalis, ATPase activity 4: 99 Streptococcus lactis 24: 407 Streptococcus pneumoniae 24: 403 Streptolirion, influorescence 3: 281 Streptomyces 24: 402, 405, 406 Streptomyces fradiae 24: 409 Streptomyces lipmanii 24: 421 Streptomyces lividans 24: 282 Streptomyces mediocidicus 12: 80 Streptomyces QMB814 sp, -1,4 glucanasehydrolysis of cell organelle fractions 5: 123, 124 Streptomyces scabies lime and host infection 10: 227 manganese and disease development 10: 243– 247, 251, 252 Streptomyces spp. antagonist applications 26: 50, 53, 54, 58, 67, 68, 71 monoculture decline 26: 10 suppressive soils 26: 7– 9, 69 Streptomyces, phenylalanine ammonia lyase structure 8: 36 Streptomycetes 24: 400, 405 Streptothricins 34: 74 Stress 37: 19, 24 anoxic 37: 114, 115 cold 37: 112– 114 drought 37: 105– 108 osmotic 37: 108– 112 oxidative 37: 184, 185 responses, plant 37: 184, 185 salt 37: 109 sugar 37: 109 water 37: 9, 10 Stress ethylene 18: 59, 78 formation 18: 104 production 18: 96, 97 Stress injury, diagnostic methods for 18: 85 – 104 Stress responses in plants 32: 325– 328, 367– 369 Stress responses, plant storage vacuoles and 38: 77, 78 Stress see Water and Nitrogen supply
Stresses, environmental 18: 87 – 90 Stress-response pathways 32: 308– 311 Stretch activated channels (SAC) 22: 73, 74 Stretching in microprobe fabrication 18: 260–262 Striga hermonthica 19: 106, 135 Stromathe, growth 3: 231 Stromatopteris, cytology 4: 288, 289 Strong Ion Difference 30: 7 Strongylodon macrobotrys 37: 45 Structural genomics 32: 63; 34: 2, 9 –11 Structure anthocyanins 37: 18 – 20, 59 melanins 37: 20 – 22 Structured metapopulation 38: 49 Stunt disease 22: 27, 28 Sturmia loeselii, seed morphology 7: 425 STX, see Saxitoxin Stylidium 22: 165 Stylocheilus longicauda (sea hare) 12: 79 Stylosanthes 33: 175, 194 Stylosanthes hamata 25: 411; 33: 163 Styrax 38: 286, 289, 299, 300 Suaeda fruticosa 33: 6 Suaeda maritima 25: 183; 29: 152 enzymes of ammonia assimilation 6: 27, 30 nitrate reductase 6: 19, 20, 23, 25, 26 Suberin 21: 4, 5, 13 fungal pathogens 21: 43, 46 – 48, 50, 51, 58 Subnivian microclimate 37: 134 Subsidiary mother cells (SMC) 38: 216 Substitution models 32: 49 – 51 Subtracted hybridization 35: 79, 80 Succinate dehydrogenase 18: 144 Sucrose 11: 169; 18: 145; 22: 130, 141, 182, 242, 264; 25: 196, 198– 204, 369, 370; 28: 72 component hexoses 25: 198– 204 gradient centrifugation 18: 134 hydrolysis and cleavage 28: 72 – 74 metabolism 25: 199 synthesis 25: 198 Sucrose in Dunaliella 14: 128, 130 Sucrose synthase (SuSy) 32: 212, 444–447 Sucrose synthase 25: 203; 28: 73, 74, 108, 109; 34: 183
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Sucrose, effect on phloem differentiation 9: 234– 236 Sucrose, use as a cryoprotective agent 5: 20 Sucrose:sucrose fructosyltransferase (SSFT) 28: 78 Sucrose:sucrose fructosyltransferase (SST) 25: 205 Sucrose-metabolizing enzymes 25: 202– 204 Sucrose-phosphate synthase 25: 198; 32: 436– 439 Suction force 3: 172, 173 Sugar 22: 6 Sugar beet 19: 114 Sugar beet 22: 147 Sugar cane 19: 128 Sugar maple 22: 15,16 Sugar maple, see Acer saccharum Sugar sensing in plant cells 32: 424 Sugar stress 37: 109 Sugar transport 37: 120 Sugars 18: 141– 145; 25: 144, 210 Sugars in gene expression 28: 83 –87 Sulfite 12: 8, 38 Sulfonylurea 34: 265 Sulfonylurea compounds 34: 75 Sulfur deficiency 37: 110 Sulfur dioxide 12: 38 Sulphate 18: 97; 22: 243 activation 33: 183– 185 control of flux 33: 191, 192 environment sensing 33: 198– 207 environmental regulation and interaction 33: 191– 207 in transgenic plants 33: 200– 204 long distance transport 33: 182, 183 reduction of 33: 185– 188 reductive pathway of assimiliation 33: 183– 191 regulation of expression 33: 180– 182 sites of expression 33: 175–179 subcellular transport 33: 179, 180 uptake and translocation 33: 163– 183 Sulphate and Dunaliella growth 14: 108 Sulphate transporters 33: 163– 175 Sulphate, transport across chloroplast envelope 7: 70 – 72
277
Sulphite 18: 78, 94, 96 SO2 exposure 18: 20 Sulphite reductase 33: 185, 187 Sulpholipid 22: 131 Sulpholipid, location in chloroplast envelope 7: 7, 9, 43 1-sulphonate-3-indolylmethyl glucosinolate 35: 232 Sulphoquinovosyldiacylglycerol 22: 131 Sulphoraphane (4-methylsulphinylbutyl isothiocyanate) 35: 248 Sulphotransferases 35: 248 Sulphur 18: 93 see also SO3; SO4 crop quality and yield 33: 161, 162 status 33: 198– 200 in agriculture 33: 160, 161 Sulphur containing lipids 16: 3 Sulphur deficiency 33: 161, 207 Sulphur dioxide emissions 29: 32, 41, 48 Sulphur dioxide, see SO2 Sulphur fertilization 33: 161 Sulphur level and disease 10: 228, 244 Sulphur metabolism salt tolerance and 33: 206, 207 studies on 33: 160– 162 Sulphur pollution 33: 161 Sulphur sinks 33: 162 Sulphur supply 33: 193– 195 Sulphur, chemolithotrophism 27: 90 Sundew see Drosera Sunflower 22: 146, 238, 264, 280 matric potential 3: 178 root resistance 3: 188 water potential 3: 201 Sunflower, see Helianthus annuus Sunhemp 21: 193, 194 Sunn hemp mosaic virus 36: 105 ‘sun-tracking’ 33: 42 Superoxide (O2– ) 23, 177, 178, 180 Superoxide 18: 78; 21: 11, 12, 165 Superoxide dismutase (SOD) 18: 78, 95, 96 Superoxide dismutase 22: 119, 120, 138, 144; 37: 180, 181 Superoxide dismutase in the evolution of photosynthesis 10: 176 Supply-limitation 22: 231
278
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Suppressive soils 21: 38, 67 – 70,71, 72; 26: 4 –9 Suppressors 21: 4, 6, 7 Surface temperature calculation 18: 217, 218 Surface temperature energy balance equation 18: 224–232 Surging 18: 287, 288 Susception in gravitropism 15: 3 – 7 and thermal motion 15: 4 –7 mechanism of sensing 15: 3, 4 Sustainability, population pressure 21: 80 – 82 ‘Sustainable’ development 21: 81, 82 SV (slow vacuolar) channel 33: 56 SV40 large T antigen and nuclear targeting 14: 4, 5 SVPD, see Saturation vapour pressure deficit Swaying 18: 207, 208 Sweet corn, see Zea mays Sweet potato chlorotic stunt virus 36: 69 Sweet potato mild mottle virus (SPMMV) 36: 70 Sweet potato sunken vein virus 36: 69 Sweet potato, black rot infection 14: 83, 84 Swimmer’s itch 12: 48, 66, 78 Sycamore cells 19: 25 Sycamore see Acer Sycamore. See Acer pseudoplatanus L. Syctothamnus australis, light harvesting complex 10: 124 Symbiodinum sp. 11: 99 Symbionidium sp. C uptake 27: 132, 176 CO2 transport 27: 137, 139, 140 symbiosis with clam 27: 140 Symbionin 36: 30 – 33, 39, 40 Symbiosis 22: 1, 2; 24: 230 three Rs (recognition, response and reproduction) 24: 238– 240 Symbiosis theory of chloroplast evolution 7: 95 – 97 Symbiosis, see Leaf nodule symbiosis Symbiosome membrane (SBM) 18: 136, 137– 139, 146, 155, 164 microaerobic conditions 18: 161 Symbiosome space (SBS) 18: 136, 139, 141, 146
Symbiosomes 18: 134– 137 terminology/definitions 18: 136 Symbiotic organisms, growth promotion 26: 47 Symphonia clusioides 31: 3 Symphytum officinale leaf, freeze-etching 3: 34 membrane surface 3: 29, 30 Symplastic water movement, specific conductivity 5: 176 Symplocarpus 38: 293, 296 Symplocarpus foetidus, metabolic regulation of tissue temperature 4: 120 ‘symptomless endophytes’ 33: 3 Synanthedon castaneae 21: 134, 141 Synchytrium endobioticum, boron nutrition and disease resistance 10: 240 Synechococcus 12: 18; 25: 76; 30: 21 – 24; 33: 180 distribution 13: 70, 130 glutamate pathway 10: 183 photosystem reaction centre complex 10: 79, 81, 90 phycobiliprotein 10: 41, 66 phycobilisome structure 10: 111, 112, 181 size 13: 72 survival strategies 13: 131 Synechococcus elongatus 27: 284 Synechococcus PCC7942 28: 13 Synechococcus spp. 11: 80, 83, 84, 91, 93 – 96 Synechococcus spp. C-concentrating mechanisms (table) 27: 118, 119 cpcE, cpcF genes 27: 304 down-regulation of RCII 27: 296 ferredoxin – NADP+ reductase 27: 281 nblA gene 27: 304 phycobilisome structure 27: 286– 288 RUBISCOs, Kc values (table) 27: 104 Synechocystic 13: 72 Synechocystis 32: 120, 121, 129, 130, 141, 171 chromatic adaptation 10: 166 phycobilisome structure 10: 110 Synechocystis PCC 6830 24: 407 Synechocystis PCC6803 28: 13
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Synechocystis sp. 27: 214, 298 phycocyanins 27: 305 Synergism 29: 63 – 67 Synergism and the ventilation of higher plants 7: 251–260 Synomones 30: 103, 104 Synteny 34: 10, 46 – 48 Syringodium sp., d13C values 27: 151 Syringolides 30: 301, 303, 304 Syringomycin 28: 46 Systematic acquired resistance (SAR) to pathogen infection 28: 102 Systematics see Taxonomy Systemic acquired (induced) resistance (SAR, SIR) 26: 38 – 41, 81, 82 Systemic acquired resistance (SAR) 21: 8, 9, 15 –19, 25; 22: 165, 200, 201; 32: 380; 38: 255, 262 Systemic acquired resistance (SAR) genes 24: 119 systemic acquired resistance 30: 94, 307, 308 Systemic infection 21: 70 Systemic response 21: 15 – 17 Systemin 21: 17, 20; 22: 170, 180, 189, 191 Systems analysis 21: 214 Syzygium 37: 174 T toxin 21: 7 T. andreuxii telocentric chromosomes 6: 138, 142 T. asymmetrica, symbiotic specificity 7: 496 T. calaspora ethylene production 7: 506 fungal-protocorm interaction 7: 500 nitrogen source 7: 491 symbiotic specificity 7: 496 vitamin requirement 7: 494 T. commelinoides chromosome evolution by centric fusion 6: 144, 156 T. cruciata fungal-protocorm interaction 7: 500 specificity 7: 496 T. filiforme, carbon fixation 7: 532 T. fluviatilis 11: 100 T. grandiflora, symbiotic specificity 7: 496
279
T. intermedia interspecific polyploidy 6: 210 T. ixioides, seed morphology 7: 426 T. lepidozioides karyotype formula 6: 239 T. lorbeeriana interspecific polyploidy 6: 210 T. micrantha chromosome evolution 6: 145, 169 telocentric chromosomes 6: 139, 140 T. momoccun DNA analysis 6: 125 T. muralis biometric investigation 6: 260 cultivation experiments 6: 255 polyploidy 6: 213 T. orchidicola, fungal-protocorm interaction 7: 499 T. pseudonama 11: 98, 113 T. roseum effect of sodium on physiology 7: 186 sodium requirement 7: 148 T. sterigmaticus fungal-protocorm interaction 7: 499 specificity 7: 496 T. texpoxtlana £ Setcreasea pallida pseudo iso-ring formation 6: 147, 150 T. tonalamonticola (see Cymbispatha plusiantha) T. violea, symbiotic specificity 7: 496 T. vulgare nitrate efflux, T. zebrina, stomatal aperture and subsidiary cell turgor 4: 129 T. zollingen, carbon fixation 7: 530 “T3” cv. 18: 89 TAA, see Ascorbic acid Taeniophyllum promeristem development 7: 484 TAG synthesis 35: 128, 129 Tail currents 25: 225 Tainia penangiana, carbon fixation 7: 527– 529 TAIR database 38: 219 Takakia 19: 235, 241, 263, 269, 285, 289 macro-evolution 6: 266, 267 micro-evolution 6: 262
280
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Takakia ceratophylla 19: 243 Takakiales 19: 293 Take-all disease in wheat 38: 15, 16 Take-all, see Gaeumannomyces graminis Talaromyces spp. 26: 64, 75 Tamarindus indica 11: 131 Tamarix 31: 3, 19, 41, 43, 66 Tamarix aphyhlla 31: 40, 41, 44 Tamus 22: 13 Tanacetum vulgare 31: 166 Tanginbozu dwarf rice bioassay for gibberellins 9: 60, 62 – 64, 66, 133, 135 Tannins 11: 89 Tannins, condensed 37: 76 Tannins, restriction of fungal growth 7: 410 Tansy 31: 123 Tapeinochilus, influorescence 3: 269 Tapesia breeding system 33: 232 geographic variation 33: 238 host range 33: 244, 245 host resistance 33: 245– 247 infection plaques 33: 240– 242 infection process 33: 239– 440 isolate variation 33: 227, 228 molecular analysis 33: 229– 231 pathogenicity 33: 238– 244 pathogens 33: 227– 231 population biology 33: 234, 235 sexual stage 33: 231– 238 spore dispersal and adhesion 33: 238, 239 taxonomy 33: 234, 235 tissue colonization 33: 242, 243 Tapesia acuformis 33: 226, 234, 235, 237– 245, 247, 248 Tapesia livido-fusca 33: 5 Tapesia yallundae 33: 226, 231, 232, 235– 240, 242– 249 Tapetum-specific promoter 34: 89 Taphonomy and fosil record 16: 98, 179– 183, 184, 185 community reconstruction 16: 180, 181 community-suite/regional reconstruction 16: 181– 183 defined 16: 97 fossils in sedimentology 16: 183 morphology and taxonomy 16: 180
Taphrina 24: 313 Taraxacum officinale 31: 5 nitrate reductase 6: 23 Taraxacurn seeds 18: 290 Target enzymes 32: 436– 447 Targets for SnRK1, targets for 32: 427 Targioina hypophylla interspecific polyploidy 6: 210 Targionia 19: 255, 271 Targionia hypophylla 19: 271 Tasmania, Early Tertiary floras 17: 82 – 84 vegetation/climate 17: 78 Tautomycin, inhibition of protein phosphatase (PP) 27: 225, 226 Taxaceae 22: 13 Taxodiaceae 22: 13 Taxodiaceae, Early Tertiary 17: 16, 17, 21 Taxonomic classification 23: 11 Taxonomic relationships 18: 136 Taxonomy 2: 1, 35, 168; 31: 154 based on tropical plants 1: 107 epidermal cells 1: 121 fossil plants 1: 2, 22, 26, 34, 36, 52, 53, 56 hairs 1: 120, 140 histology 1: 107 leaf-sections 1: 108 methods of investigation 1: 107 monocotyledons 1: 101– 116, 127–129, 142 palynotaxonomy 1: 150, 165, 166, 170 papillae 1: 120 roots 1: 110 selection of material 1: 108 stems 1: 109 stomata 1: 120 vascular bundles 1: 116 Taxonomy, numerical see also Mathematical models in numerical taxonomy classifications, nature and properties of 2: 37 Euclidean model 2: 54 mathematical model, choice of 2: 48 statistical approach 2: 35 strategy of analysis 2: 59 Taxus 22: 13 33: 13 Taxus baccata, lignin composition 8: 31
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Taxus species 30: 94 TCA cycle 18: 145, 149 microaerobic conditions 18: 162 T-DNA 24: 417 T-DNA transfer 34: 67, 68, 94 TE 31: 205 Tea 30: 118, 122, 125, 138, 143, 145– 149, 151– 157, 160– 166, 190, see also Camellia spp. Tea plant, aluminium kinetics 20: 100 Technology, population pressure 21: 80 – 82, 87, 91, 92, 98, 99 Tecteria, polyploidy 4: 322 Teleocidin 12: 80 Telome 38: 207 Temperate environment 18: 225, 226 temperature difference 18: 228, 236 transpiration rate 18: 229, 230, 237 Temperature and lipid metabolism in algae 16: 36, 38– 40 in cyanobacteria 16: 17 – 19 in Dunaliella spp. 16: 22 – 24 and phytoplankton growth 16: 209 calculation, surface 18: 217, 218 differences arid environment 18: 232 montane environment 18: 226 temperate environment 18: 228, 236 tropical environment 18: 230 energy balance equation 18: 224– 232 flux over forest 18: 200 meristem 18: 218 mutualism and parasitism 22: 17, 18, 32 signal transmission 22: 164 UV radiation 22: 146, 147 vapour pressure 18: 220 water and nitrogen supply 22: 264, 285, 286 wind and energy transfer 18: 217– 220 Temperature and Crassulacean acid metabolism 15: 52, 53 Temperature and Dunaliella anatomy and light intensity 14: 125, 126 chloroplast composition 14: 132 growth 14: 115, 116 and light 14: 116, 117
281
and nutrient supply 14: 117 and sodium chloride 14: 106 Temperature regulation 37: 4, 42, 43 Temperature, impact on Amax (photosynthesis) 20: 15 – 20 Temporal structure 24: 343–345 Tensile testing of plant material 17: 243– 246 Tension theory of xylem transport 6: 55, 56 Tenuivirus 36: 150, 151, 158 Teosinte tb1 gene 34: 142 Tephra, vegetation preservation in 16: 166–168 Terminalia catappa 37: 109, 111, 112, 117, 153 Terminology in fibre optic microprobes 18: 272, 273 Terpenes 25: 142; 31: 56, 160 accumulation 31: 122, 123 biosynthetic sites 31: 126, 127 commercial uses 31: 129– 131 fragrance production 31: 56 synthesis from turpentine/citrus oil 31: 130, 131 Terpenoid 21: 13 Terpenoid pathway 37: 39 Terpenoids chemistry 6: 281– 283 chemotaxonomy 6: 286, 287 production in tissue cultures 6: 306, 307 synthesis in plastids 6: 303 Terpenoids 31: 155; 33: 23 see also monoterpenoids Labiate genera 31: 78 protective functions 31: 79, 81 structural aspects 31: 78 Terpenoids production 13: 159, 172 Terpenoids, see Isoprenoid biosynthesis Terpin-4-ol 31: 130 a-terpinene 31: 129 a-terpineol 31: 81, 130 Terpinolene 31: 130 Tertiary period, net primary productivity and water use 26: 193–195, 207– 219 Tertiary relict floras 38: 281– 309 disjunction of evergreen and deciduous taxa 38: 295– 298 causes of different rimes of disjunction 38: 296– 298
282
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Tertiary relict floras (continued) differences in time of disjunction 38: 295, 296 disjunction of taxa between East Asia and America 38: 292–295 accuracy of molecular estimates of divergence times 38: 294, 295 causes of variation 38: 293, 294 floristic similarities and differences 38: 285, 286 morphological stasis, causes of 38: 302–309 genetic constraints and stabilising selection 38: 302– 304 mode of speciation 38: 305, 306 stasis and mode of migration 38: 307, 308 North Atlantic land bridge, lifespan 38: 298– 302 alternative migration routes 38: 300– 302 divergence times of transatlantic disjuncts 38: 299, 300 geological evidence 38: 298, 299 origin 38: 284, 285 phytogeographic divides within refugia 38: 286– 292 divide between ‘Japan’ and ‘China’ regions 38: 287 East Asia 38: 287– 292 molecular phylogenetic evidence 38: 287– 28290 North America and Southwest Eurasia 38: 286, 287 Pacific and Atlantic track relationships 38: 290– 292 variation in times of disjunction 38: 292, 293 Tertiary, see Early Tertiary Tetraclinis articulata, lignin composition 8: 31, 32 Tetracycline 21: 197– 199, 206 Tetragamestus modestus, seed morphology 7: 425 Tetragoniomyces uliginosus 24: 411 Tetragonolobus purpureus 11: 133 Tetramerae 17: 167 Tetramethylethylenediamine 12: 7
Tetranortriterpenoids 30: 97 Tetranychus urticae 31: 176 Tetranychus urticae 36: 200 Tetraphidales 19: 247– 249 Tetraphis 19: 287 Tetraphis pellucida 19: 247, 249, 251 Tetraplodon mnioides aneuploidy 6: 220 Tetrapyrrole biosynthesis pathway 27: 297 Teucrium marum 31: 104 Teucrium scorodonia nitrate reductase 6: 23 Texas red dye 22: 53, 54, 55 Thalassia 3: 214 branching of rhizome 3: 262 growth 3: 231–236 T. testudinum 3: 232– 234 Thalassia sp., d13C values 27: 152 Thalassiosira pseudonana, d13C values 27: 151 Thalictrum rugosum 19: 12 Thallassiosira 11: 97 Thallophyta, structure of growing cells 2: 69 Thanatephorus cucumeris fungal-protocorm interaction 7: 499 infection of Dactylorhiza purpurella 7: 502 specificity 7: 491, 496 Thapsigargin 28: 26 Thaumatin-like, proteins 21: 4, 17, 21 Thaumatin-related proteins 26: 142, 149– 151 Thaumatococcus danielli, growth 3: 230 Thaumetopoea pityocampa (pine processionary moth) 33: 22 Thebaine production 13: 159, 167, 170, 171 Thecodiplosis japonensis (pine needle gall midge) 33: 22 Thelymitra aristata, symbiotic specificity 7: 496 Thelypteridaceae aneuploidy 4: 301 base numbers and classification 4: 282 Thelypteris T. grandis, introgression 4: 378 T. serra, introgression 4: 378 T. tomentosa, polyploidy 4: 329 T. viscosus, structure 4: 238, 239
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Theobroma bicolor 30: 123 Theobroma cacao 30: 123, 166, 187; 31: 18, 19 Theobroma grandiflorum 30: 123 Theobromine 30: 118, 120, 122, 123, 143– 148, 150, 151, 153– 155, 158– 160, 163– 167, 169– 177, 179, 184– 190 Theophylline 30: 118, 120, 122, 123, 154, 166, 167, l74– 183 Thermal motion and gravity sensing 15: 4 – 7 activation energy 15: 5 presentation time 15: 6, 7 threshold response 15: 7 Thermodynamics description of membrane processes 6: 47 – 49 Thermodynamics of irreversible processes 1: 286 Thermoplasma 21: 190 Thermonospora 24: 405 Thiamine, effect of orchids in culture 7: 467– 469 Thiarubrin-A 37: 40, 41 Thick samples and scattered light isotropy 18: 278– 280 Thick samples, light measurements in 18: 273– 277 Thielaviopsis basicola 24: 280 Thielaviopsis basicola, effect of orchinol 7: 517 Thigmonastic movements 33: 42 Thigmorphogenic responses 33: 148, 149 Thigomorphogenesis 18: 232– 235 Thin layer chromatography (TLC) 31: 162, 163 Thin samples and scattered light isotropy 18: 280– 282 Thiobacillus intermedius 11: 90 Thiobacillus novellus, transhydrogenase activity 4: 69 Thioglucosidases 35: 214 Thiohydroximate 35: 224 Thiohydroximate-O-sulphonate 35: 238, 240 Thionins 21: 4, 21, 22 Thionins, plant defence 26: 142, 147, 148, 154, 155, 171
283
Thioplaca 25: 62, 74 Thioredoxin (CGPC) 33: 186 Thioredoxin 12: 8, 17 – 20, 28, 29 Thioredoxin family 32: 253, 254 Thiosulphonate reductase 33: 185, 187 Thio-template system of toxin genetics, Bacillus 27: 234, 235 Thismia 22: 13 “Thompson Seedless” cv. 18: 53 Thraustochytrium globosum, sodium requirement 7: 148 Thraustochytrium roseum, phosphate uptake 8: 157, 172 Thraustotheca 24: 375 “Three Fold White” cv. 18: 10 Threonine 21: 153 Threshold population densities 38: 35 – 38 Thresholds, data 21: 237 Thrips palmi 36: 129 Thrips setosus 36: 127, 130 Thrips tabaci 36: 127–129 Thrips –tospovirus pathosystem 36: 115– 131 Thrixspermum, flowering period 7: 546 Thuja 33: 9 Thuja plicata 33: 16 Thujane 31: 78, 79, 85, 102 a-thujene 31: 129 Thunia marshalliana, carbon fixation 7: 527 Thylakoı¨d association with chloroplast envelope 7: 12 – 18 plastoglobuli 7: 28, 29 carotenoid composition 7: 45, 47 lipid composition 7: 39, 42, 43 polypeptide composition 7: 49, 50 Thylakoid arrangement of pigment-proteins 10: 135, 136, 138– 143 evolution of stacking 10: 187, 188 in algal groups 10: 26, 27, 32, 34, 35 in photosynthetic bacteria 10: 31 – 33, 34 membrane electron transport 10: 19, 38 – 40 fractionation 10: 104 light harvesting 10: 20, 21 light scattering 10: 48
284
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Thylakoid (continued) phycobilisomes 10: 109– 112, 115– 118 PSU 10: 38 Thylakoid electron transport 18: 92 Thylakoid membrane 22: 119– 121, 123– 126, 131, 142, 143, 242 Thylakoid membrane 28: 5, 6 Thylakoid membrane see Photosynthetic membrane Thylakoid membranes 13: 2, 4 appression 13: 4 lipid: protein ratios and 13: 15, 16 protein heterogeneity and 13: 13 – 15 light regulated control 13: 52, 53 lipid 13: 4, 13, 15 protein 13: 5, 13 – 15 Thylakoid membranes appression 27: 268– 271 CO2/HCO2 3 ratio 27: 163, 164 in matrix of pyrenoids 27: 161 molecular model 27: 285 PSI/PSII separation and energy distribution 27: 270 scheme for carbon dioxide generation 27: 162 state transitions and absorption cross-section 27: 265– 268 structure and function 27: 264, 265 Thylakoid membranes in Dunaliella and osmotic stress and photosynthesis 14: 152, 153 chloroplasts 14: 119, 120 in endoplasmic reticulum 14: 121 Thylakoid membranes, cyanobacteria, lipid composition 16: 13 Thylakoids 21: 51 Thymol 31: 95 Thymus (thyme) 31: 78, 123 Thymus vulgaris 31: 95, 100, 168 TIA, see Total included acceptance angle Tidal flats, plant debris deposition 16: 143, 144 TIGR database 38: 219 Tiliaceae 37: 43 Tillandsia 31: 14, 50 evolutionary history T. balbisiana 3: 228
T. circinnata 3: 226– 229 T. fasciculata 3: 226– 228 T. recurvata 3: 226– 228 T. usneoides 3: 224– 229 T. utriculata 3: 226– 228 growth 3: 220 Time-response functions 18: 8 Time-space model, disease 21: 40 – 51 Timmiella 19: 251 Timothy grass, see Phleum pratense a-TIP 25: 6, 7, 30, 31, 54, 55, 116, 124– 126, 426, 427 b-TIP 25: 425 g-TIP 25: 9, 12, 116, 124– 126, 421, 422, 425, 427 TIP 25: 5, 423 TIP1 31: 255 TlP-Ma27, 31 Ti-plasmid 24: 416, 418, 420 Tipogandra disgrega, influorescence 3: 280 Tissue culture 31: 136 biotransformation 13: 160– 164 callus 13: 165– 170 cell immobilization 13: 160– 164 cell suspension 13: 165– 170 clone stability 13: 176–179 differentiation, secondary product production and 13: 170– 173 greening 13: 171, 172 growth, secondary product formation and 13: 164, 165 light 13: 157– 159 media see Tissue culture media response to biotic stress 13: 181– 183 selection methods 13: 173– 176 temperature 13: 159, 160 Tissue culture media 13: 147– 157 carbon 13: 150– 152 growth regulators 13: 156, 157 nitrogen 13: 147– 150 phosphate 13: 152– 156 two-phase 13: 169 Tissue culture methodology 34: 70 – 73 Tissue culture of orchids 7: 634, 635 Tissue effects 18: 283 Tissue/cell electroporation 34: 62, 64 Tissues and cell types 18: 131– 134 Tissue-specific promoters 34: 88 –90
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
“Titus” cv. 18: 52 “TKM9” cv. 18: 88 Tmesipteris 19: 301 Tobacco 21: 17 – 19, 23, 24, 50, 162, 174; 22: 27, 28, 117, 120, 165; 30: 20, 67, 125, 134, 222, 234, 247, 252, 257, 294, 296, 302–310, 312, 314 see also Nicotiana budworm 30: 105, 248 mosaic virus (TMV) 21: 8, 17, 110, 111, 113, 115– 119 necrosis virus 21: 111 pollen tubes 30: 248 rattle virus (TRV) 21: 117 Tobacco black shank disease, ARR to 38: 267, 269 Tobacco callus 18: 62 Tobacco culture 13: 148, 150– 157, 166, 175, 176 Tobacco etch virus (TEV) 36: 9, 12 Tobacco leaf 19: 27 Tobacco mosaic virus (TMV) 31: 272, 274; 36: 107, 189 CP-TMV 36: 108 Tobacco mosaic virus (TMV), age-related resistance to 38: 255 Tobacco mosaic virus 24: 108 Tobacco mosaic virus movement protein (TMV-MP) 31: 272, 274, 275 Tobacco necrosis virus (TNV) 36: 48 Tobacco rattle virus (TRV) 31: 274 Tobacco RB7 MAR 34: 95, 96 Tobacco ringspot nepovirus 36: 108 Tobacco ringspot virus (TRSV) 36: 105, 107, 109, 180, 181 Tobacco see Nicotiana spp. Tobravirus 36: 170, 180– 182, 186, 187, 189, 190 Tobravirus primitivus 36: 187, 191 Tobravirus similis 36: 181 Tobravirus tobacco rattle (TRV) 36: 180– 182, 187– 189 a-tocopherol 18: 78 Tocopherol 18: 94 Tocopherol synthesis 14: 45, 46 and compartmentation 14: 64 Todea, structure 4: 236 Todites, fossil structure 4: 236
285
Tolerance, disease 21: 52, 55, 56 Tolypothrix gas vacuole 13: 81 Tolypothrix tenuis. chromatic adaptation 10: 166, 174 Tolytoxin 27: 212 Tomatin 21: 62 Tomatine 21: 48; 30: 295 Tomato (Lycopersicon esculentum) 18: 36 Tomato (Lycopersicon lycopersicum) 18: 37 Tomato 19: 19, 36, 109; 21: 8, 10, 17, 19, 20, 235 case studies 22: 188– 196, 197, 198 chlorine requirement 7: 124, 149 chromoplast structure 7: 15 fungal pathogens 21: 36, 46, 49, 50, 65 avirulence genes 21: 150 resistance genes 21: 169, 171, 173,174 future research 22: 204, 205, 207, 209, 211 low sodium culture 7: 136– 139,141– 143 mechanisms of 22: 180, 182, 183, 185, 186 mitochondrial response to anoxia 7: 278 signal transmission 22: 165, 166, 180, 183, 184, 185 silicon requirement 7: 136 sodium requirement 7: 130, 136, 138, 149, 159 UV radiation 22: 108, 127 water and nitrogen supply 22: 276 Tomato aspermy virus (TAV) 36: 2 Tomato black ring nepoviruses (TBRVs) 36: 179, 180, 187 Tomato bushy stunt virus cherry strain (TBSV-Ch) 36: 52 Tomato canker 23: 29 Tomato chlorosis virus (ToCV) 36: 69, 70, 77 Tomato chlorotic spot virus (TCSV) 36: 129 Tomato disease-resistant proteins 32: 258 Tomato epinasty 1: 77 Tomato infectious chlorosis virus (TICV) 36: 70 Tomato inhibitors I and II 26: 162, 163 Tomato leaf curl virus (ToLCV-In) 36: 76 Tomato leaf mould, ARR to 38: 267, 269– 272 Tomato mottle virus (ToMoV) 36: 81 Tomato mutant 18: 25, 39
286
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Tomato plants 24: 180 Tomato pseudo-curly top virus (TPCTV) 36: 146, 148 Tomato ripening and carotenoid synthesis 14: 83 Tomato see Lycopersicon esculentum Tomato spotted wilt virus (TSWV) 36: 113, 114, 116, 118, 124, 125, 129– 131, 133– 135 Tomato vein mottling virus (TVMV) 36: 3, 4 Tomato yellow leaf curl virus (TYLCV) 36: 81 – 84, 88, 89 – Israel (TYLCV-IS) 36: 75 – 77, 89 – Sardinia (TYLCV-Sar) 36: 76, 77 – Spain (TYLCV-ES) 36: 74 Tombusviridae 36: 48, 52, 55 Tombusvirus 36: 52 Tonicity 3: 173 Tonoplast autophagic sequestration 25: 126 membrane protein transport to 25: 54, 55 PSV 25: 123–126 secondary inorganic ion transport 25: 401– 417 transport of organic molecules across 25: 365– 400 uptake across 25: 154 water transport across 25: 419– 432 Tonoplast developmental regulation, proteinstorage vacuoles (PSVs) 25: 123– 126 Tonoplast in potassium regulation 15: 155, 156 Tonoplast intrinsic protein. See TIP tonoplast intrinsic proteins (TIPs) 35: 142, 143 d-TIP 35: 143, 157 a-TIP 35: 142, 143, 151 g-TIP 35: 143, 156, 157 TIP-Ma27 35: 142, 143 Tonoplast membrane, role in nitrate adsorption 30: 10, 18 Tonoplast, role in plant movements 33: 55 – 57 TOO MANY MOUTHS (TMM ) 31: 197, 211 Tor 38: 83 Torreya 38: 290, 292, 296
Tortula cultivation experiments 6: 254 Tospoviruses 36: 113– 135 Total fertility rate 21: 83, 84 Total included acceptance angle (TIA) 18: 258 Total ozone mapping spectrometer (TOMS) 22: 98 Touch stimulation in plants 32: 362 Toxalbumins 25: 151 toxic mechanisms of plant defence 30: 93 – 97 Toxic phytochemicals 31: 155, 156 Toxicant sequestration 30: 99, 100 Toxins 21: 3, 4, 6, 7, 21, 71 Toya propinqua 36: 152 Tracheid structure, in fossil vascular plants 5: 180 Tracheophyta, C3 + C1 carboxylases 27: 97 Trachycarpus, bracts 3: 276 Tradescantia 22: 22, 166; 31: 197 Tradescantia ambigua £ T. crassifolia pseudoisochromosomes 6: 147 Tradescantia virginiana 11: 6, 39; 32: 205 stomatal movement by turgor manipulation 4: 128, 129 vascular tissue 4: 122 Tradescantia, stomata 3: 284 Tradescantia, stomata development in 38: 216 Trans-auto-phosphorylation 32: 278 trans-cinnamic acid 37: 84, 85 Transcription factors 34: 141– 143 regulation 31: 225 trichome initiation 31: 223– 229 Transcriptional gene silencing (TGS) 34: 97, 98 Transduction 24: 408 Transfer cells folded membranes 6: 59, 60 solute and water transport 6: 60 – 51 Transfer cells in angiosperms 19: 302 Transfer cells, for symplast-apoplast solute exchanges 5: 197, 198 Transfer coefficients 18: 196 Transfer functions 18: 208
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Transfer intercept infections 24: 316– 325 Transferred DNA (T-DNA) 28: 24 Transformation 24: 408 Transforming DNA 24: 403 Transfusion areas 31: 41 Transgene delivery 34: 61 –70 Transgene expression 34: 83, 86 – 96 improving 34: 93 – 96 promoters 34: 86 –90 stability 34: 63, 90 –96 Transgene integration 34: 80 –86 factors affecting patterns 34: 83 – 86 locus and insertion number 34: 82, 83 pattern 34: 82 – 86 via Agrobacterium and DGT methods 34: 80, 81 Transgene silencing 34: 63, 83, 91 Transgenes 21: 115, 116; 32: 239, 240, 248, 252, 365 Transgenic plants 32: 16, 32, 89, 90, 95, 157, 171, 172, 174, 239, 241, 248, 249, 253, 274, 277– 279, 329, 340, 360, 365, 370, 383, 386, 392, 395, 410, 419, 422– 424, 426, 437, 468, 469 yeast systems 32: 119, 121, 122, 129 Transgenic approaches 31: 136– 137 monoterpenoid biosynthetic enzymes 31: 107, 108 Transgenic plants 25: 133– 135; 30: 67, 68, 118, 189– 191, 210, 234, 273, 292, 294– 296, 302, 303, 305, 307, 309– 315 biocontrol agents 26: 36, 37, 82 – 84 C4 photosynthesis 26: 295, 297 defence proteins 26: 169– 172 Bowman-Birk inhibitor 26: 161 endohydrolases 26: 145, 146 lysozymes 26: 156, 157 polygalacturonase-inhibiting 26: 159 ribosome-inactivating 26: 156 thaumatin-related 26: 150, 151 flower development 26: 236, 237, 239 invertase gene expression 28: 99 – 102 yeast-derived invertase gene expression 28: 100, 101 Trans-Golgi network (TGN) 38: 67
287
Trans-Golgi network (TGN) 25: 3 – 9, 12 Translation flow 11: 30 – 32 Translocation in fungi 8: 199– 204 Transmission characteristics 18: 259, 260 Transmission of gravity perception 15: 7 – 12 chemical 15: 10 – 12 growth regulator pumping 15: 11, 12 ion pumping 15: 10, 11 electrical 15: 8 – 10 action potentials 15: 8, 9 electrophoresis 15: 9, 10 gradient 15: 9 Transmission spectra of optical fibre 18: 260 TRANSPARENT TESTA GLABRA (TTG) 31: 137, 138, 196, 198, 199, 201, 210, 211 Transparent testa glabra (ttg1 – 10) 31: 228 TRANSPARENT TESTA GLABRA1 (TTG1) 31: 225, 228, 229, 232 GL1 interaction 31: 225, 226 TRANSPARENT TESTA GLABRA2 (TTG2), trans-p-coumaric acid 37: 85 Transpiration and absorption and deficits 3: 189– 195 and pathway of water 3: 181– 186 and soil-plant-atmosphere 3: 195 –204 and variable root resistance 3: 186– 189 energy balance equation 18: 224– 232 fluxes 18: 218– 220 rate arid environment 18: 232 calculation 18: 219 montane environment 18: 227 temperate environment 18: 229, 230, 237 wind and energy transfer 18: 218– 220 Transpiration and potassium flux 15: 165 Transplant studies 35: 176 Transport amino acids 25: 381– 386 carbohydrates 25: 367– 372 organic acids 25: 372– 382 peptides 25: 386, 387 polyamines 25: 386, 387 secondary metabolites 25: 388– 390 Transport coupling ratio 28: 22
288
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Transport functions in isolated membrane vesicles 25: 198 Transport molecules 32: 465 Transport of carbon 18: 129– 164 Transport of dissolved solutes excretion 5: 198, 199 phloem 5: 193– 197 symplast and apoplast 5: 197, 198 xylem 5: 192, 193 Transport of nitrogen 18: 129–164 Transport of organic substances in the phloem 1: 209 absorbing capacity of conducting tissues 1: 228 mass flow theory 1: 233 mechanism of transport 1: 223 metabolism of conducting tissues 1: 254 rate of transport 1: 250 substances transported 1: 209 theory of active transport 1: 237 transport of assimilates from mesophyll to phloem 1: 213 transport of assimilates in the whole plant 1: 263 uptake of assimilates from the phloem by growing and storing tissues 1: 224 Transport of respiratory gases lateral transport 7: 239–242 longitudinal transport through gas-space system 7: 228–234 through stele 7: 234– 238 Transport of synthesised cell wall materials determination of site of synthesis 5: 125– 127 effect of cyclohexamide on transport in animal tissue 5: 128 effect of glycolytic inhibitors 5: 129 effect of inhibitors of oxidative phosphorylation on transport 5: 129 effect of respiratory inhibitors on transport 5: 129– 131 physiology of secretion in animal cells 5: 128, 135 physiology of secretion in plant cells 5: 129– 135 rate of transport 5: 126– 128 Transport of water in the plant 1: 279
Transport role and wind regimes 18: 193– 208 Transport vesicles 25: 2 Transport, viral infection 21: 115– 120 Transportation 37: 66, 67 Transporter genes 30: 68 ammonium 30: 45, 46, 49 – 52 NarK 30: 21, 23, 24, 33 – 35 nitrite reductase (NiR) 30: 11, 21, 24, 25, 28 nrt genes 30: 21, 22 NRT1 30: 9, 12, 29 – 32, 37 – 40 NRT2 30: 12, 13, 17, 24 – 26, 29, 32, 33, 37 – 40 YNT1 28, 32 Transposable elements 27: 331– 436 see also DNA transposable elements classes and families 27: 333 evolution 27: 409– 436 parasites and pacemakers of evolution 27: 433–435 two groups of hypotheses 27: 414– 433 MITEs (miniature inverted-repeat TEs) 27: 419, 420 mutation potential 27: 422 retrotransposons 27: 333 –350 Transposable elements/transposons 34: 2, 12, 48, 49 Transposition 12: 144– 151; 24: 408 at molecular level 12: 160, 161 model 12: 170–177 of Mp(Ac) in detail 12: 148– 151 of receptor element 12: 145, 146 of regulatory element 12: 146–148 replicative 12: 144 Transposon system, Petunia hybrida 26: 232, 233 Transposons 21: 150, 169, 171–176, 196– 200 Trap systems 22: 214– 216 Trapaeolum majus DNA analysis 6: 125, 126 Trapping reactions 25: 157 ‘Traumatin’ 22: 187 “Trebi” cv. 18: 10 Tree acceleration, longitudinal 18: 209 broadleaved, see Broadleaved trees
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
crown 18: 207 SO2/NO2 mixtures 18: 49 vibrations, spectral method of analysis 18: 208 wind tunnel 18: 206 Tree bark composts 26: 13, 14 Tree rings and Early Tertiary studies atmosphere 17: 86 climate 17: 80 Tree, monocotyledonous, growth 3: 215– 220 Trees, whole, fossil record 16: 114 Trehalose 18: 139, 142 Trematodon cytotaxonomy 6: 242 Tremulacin 20: 180, 183 herbivory, generation of unpalatable substances 20: 185 Triacylglycerol 35: 128 Trialeurodes 36: 92 Trialeurodes abutilonea 36: 66, 70, 77, 92 Trialeurodes vaporariorum 36: 66, 70, 75, 77, 81, 89, 91, 92 Tribophyceae 27: 89 Triceratella drummondii, influorescence 3: 280, 281 Trichoderma 24: 77, 276 biological control of wood decay 7: 384, 404 colonization of wood 7: 416 phosphorus content 8: 131 T. harzianum, phosphorus content 8: 131 Trichoderma harzianum 24: 278, 279 Trichoderma spp. biocontrol antagonist applications 26: 50, 55, 64, 65, 68, 72, 73 inoculation 26: 75, 77 – 80 protoplast fusion 26: 82 plant defence proteins, 144– 147, 149, 150, 156 Trichoderma viride 19: 33; 32: 363, 381; 38: 6, 9 –11 pathozone dynamics 38: 10, 13 Trichodesmium buoyancy regulation 13: 86 extreme diurnal variation and 13: 115
289
flotation rate, aggregation and 13: 89 shape 13: 73 Trichodesmium spp. 27: 219 Trichodesmium thiebautii 13: 134 gas vesicle pressure 13: 81 Trichodorus 36: 170, 181 Tricholomopsis platyphylla, wood colonization 7: 412 Trichomanes cytology 4: 286, 287 T. holopterum, vegetative apomixis 4: 399 T. insigne apomixis 4: 391, 396 T. pinnatum, apomixis 4: 389 T. proliferum, apomixis 4: 391 Trichome birefringence (tbr) 31: 253 Trichome density 18: 32 Trichomonas 19: 218 Trichophyton mentagrophytes 33: 28 Trichopilia albida, seed morphology 7: 426 Trichoridae 36: 175, 176 Tricyclazole 34: 267, 271 Tricyclene 31: 129 Tridacna spp., C-concentrating mechanisms (table) 27: 118, 119 Tridactyle, flowering period 7: 536– 538, 541 Trifluoroethanol (TFE) 35: 123 Trifolieae, storage proteins 9: 5 Trifolium 22: 13, 31; 38: 211 subterraneum 22: 14, 20, 21 Trifolium alexandrinum 29: 129 Trifolium parviflorum 24: 420 Trifolium pratense 18: 130; 29: 129– 131 Trifolium repens (clover) 18: 54, 130, 132, 141 Trifolium repens 30: 56 enzymes of ammonia assimilation 6: 31, 32 Trifolium repens cv. ‘Palestine’, effect of sodium on growth 7: 161, 166 Trifolium spp. 18: 147, 150, 236 Trifolium subterraneum 37: 110 Triglochin maritima enzymes of ammonia assimilation 6: 27, 28, 30, 32 nitrate reductase 6: 23, 25 Triglochin maritimum 11: 170
290
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Trigonella 24: 432 Trigonella foenumgraecum (fenugreek) 11: 133– 141, 149– 151, 153 Trigonia 31: 19 Trigonobalanus 38: 296, 298, 300 Trigonopsis variabilis, phosphorus content 8: 142 Triiodobenzoic acid, inhibition of auxin transport 9: 174 cambial activity 9: 178, 220 closed vascular ring formation 9: 207 vessel induction 9: 191 Trillium 22: 13 heterochromatin 6: 123 Trimenia chromosome size 6: 189 Trimerophytales, fossil record and structure 5: 162, 163 Trimmatostroma salicis 33: 5 Trinexapac ethyl 34: 137 Trinity Lake (California) delta deposition 16: 138– 140 Triosteum 38: 289, 292 Triphora pendula, seed morphology 7: 426 Triphysaria versicolor 37: 82 Triple-barrelled microelectrodes 25: 179 TRIPTYCHON (TRY ) 31: 137, 138, 201, 202, 227– 229, 232, 246– 248 Trisporic acid 24: 78 Triticale 34: 40 Triticum (Aegilops) tauschii 33: 164, 246, 247 Triticum 22: 174; 25: 359; 28: 240; 29: 117, 132; 33: 245 Triticum aestivum (bread wheat) 33: 146, 245 Triticum aestivum (winter wheat) 18: 14, 54, 55, 72, 88 Triticum aestivum 19: 142, 152, 155; 28: 75; 29: 8, 131, 137, 139, 161; 34: 31, 32; 35: 73, 75 Triticum aestivum DNA analysis 6: 125 DNA transposable elements, Ac transposition 27: 403 retrotransposons 27: 336 Triticum aestivum, gibberellins 9: 46, 131 Triticum aestivum, lignin composition 8: 31
Triticum aestivum, water movement in leaves 4: 123 Triticum dicoccoides 33: 246 Triticum durum 33: 246; 34: 31, 32; 35: 75; 37: 111 Triticum monococcum 33: 246; 34: 11, 187 Triticum sativum isolation of etioplast envelopes 7: 34 lipid composition of chloroplast envelopes 7: 38, 44 Triticum tauschii 34: 188 Triticum turgidum 33: 246 Triticum urartu 34: 11 Triticum X Lophopyrum 29: 120 Triticum, sucrose flux in the symplast during phloem loading 5: 193 Triton X-100 isolation of phycobilisomes 10: 109 solubilization of chlorophyllprotein 10: 104, 106, 124, 126 Trochodendrales, Early Tertiary 17: 32 – 35 Trochodendron araloides, lignin composition 8: 31, 32 Trolox 37: 178 Tropaeolum 19: 306 Tropaeolum major 31: 54, 56, 57 Tropaeolum majus (nasturtium) 11: 126, 131, 144, 146 Tropaeolum spp. 33: 68, 80 Tropic movements 33: 42 Tropical environment 18: 226– 228, 230 Tropics, agriculture 21: 86, 87 Trouser tear test 17: 245, 246 Truffles, phosphorus content 8: 130 Tryblidiopsis pinastri 33: 5, 13 Trypanasoma mega, cytochrome 4: 75 Trypanosoma brucei 24: 141 Trypanosoma brucei 28: 13 Trypanosoma brucei 38: 152, 153 genes 38: 110 PEPCK genes 38: 110 PEPCK in the kinetoplastids 38: 109 PEPCK-ATP from 38: 106 subcellular location of PEPCK 38: 109 Trypanosoma cruzi 38: 103, 150, 153 PEPCK genes 38: 110 PEPCK in the kinetoplastids 38: 109
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
PEPCK-ATP in 38: 102 subcellular location of PEPCKJ 38: 109 Trypanosoma equiperdum 24: 141 Tryptophan 21: 51, 194; 22: 127 TST, see Turban shell toxin ttst1, ttst2 33: 164 Tubers, disease biocontrol 26: 51– 55 Tubular provacuoles 25: 10, 11 Tubular vacuolar systems, role in fungi 28: 149, 150 Tubular vacuole networks 28: 123, 124 Tubules, intracellular transport via 28: 143, 144 Tubulin 22: 133 Tulasnella allantospora, symbiotic specificity 7: 496, 497 Tulip tree 22: 13, 14 Tulipa 25: 385 Tulipa gesneriana 28: 89 Tulipa Kaufmannia DNA analysis 6: 125 Tumor necrosis factor/nerve growth factor (TNF/TGF) 32: 55 Tumour necrosis factor (TNF) 28: 171 Tumour necrosis factor receptors (TNFR) 28: 171 Tungro 21: 230– 233, 236 Turban shell toxin (TST) 12: 83 Turbinaria turbinata 12: 63 Turbulence 18: 204 measured 18: 202– 204 statistics 18: 202 Turbulent boundary layer 18: 211, 212, 216 Turgor signal transmission 22: 166, 172, 176, 177, 179, 182, 211– 213 water and nitrogen supply 22: 237, 238, 246– 263 Turgor dependent processes 6: 104– 111 Turgor establishment 28: 30, 31 Turgor pressure existence of negative pressures 6: 55, 56 Turgor pressure 3: 172 Turgor pressure sensing 15: 32, 33 ‘Turgorin’ 22: 187 Turgor-related movements 33: 40 Turnip 21: 162 yellow mosaic virus (TYMV) 21: 115
291
Turnip mosaic virus (TuMV) 36: 5, 12 Turnip, vascular differentiation 9: 215, 233 Tussilago farfara 24: 74 TVP31 25: 310 TVP5 25: 310 TVP9 25: 310 Tween, see polyoxyethylene sorbitan Two-component systems 32: 111–114, 134, 141 Tyl/copia group retrotransposons, "heterogeneity 27: 345– 347 Tylose 21: 49 – 51, 56, 57, 67 Tymovirus 36: 101 Type II error 24: 298 Typha latifolia 30: 41 Typha latifolia, photosynthesis and aeration 7: 297 Typhaceae, stomata 3: 285 Typhonium membrane secretion of resins 6: 303 Tyria jacobaeae 30: 99 Tyrosinase 37: 22 Tyrosine 21: 153; 22: 127 Tyrosine ammonia lyase (TAL), in lignin biosynthesis 8: 33 – 36 Tyrosine decarboxylase (TyrDC) 21: 14, 15 Tyrosine kinase 22: 74 Tyrosine phosphatases 32: 68 U. acrisp £ U. drummondii hybridity 6: 250 U. crispa biometric analysis 6: 261 cultivation experiments 6: 255 population differentiation 6: 249 U. lactuca 11: 99 chloroplasts and light harvesting change in morphology 10: 30 movement 10: 29 photosynthetic rate 10: 168 U. taeniata action spectrum for photosynthesis 10: 70 photosynthetic rate 10: 168 U. urens DNA per genome 6: 121 u/v/w components 18: 240
292
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Ubiquinone production 13: 150 Ubiquinone synthesis 14: 48 – 50 in mitochondria 14: 64 Ubiquitin (Ubi 1) promoter 34: 87, 88, 94 Udotea flabellum 38: 145, 148 C3 + C1 carboxylation 27: 99, 100 CO2 transport 27: 135 Udotea petiolatum, CO2 transport 27: 135 Udotea sp., calcification 27: 171 UDP-dependent 3-O-glycosyltransferase 37: 64, 65 UDP-galactose incorporation into galactolipids 7: 86 synthesis 7: 91 UDPglucose 25: 199, 302 UDP-glucuronylsyltransferases 35: 248 Ulex europaeus 19: 43 Ulmaceae, Early Tertiary 17: 41 Ulota bruchii population differentiation 6: 249 Ultraviolet irradiance and algal photosynthesis 10: 12, 36 Ultraviolet light spectroscopy 31: 154, 167 Ultraviolet signal transduction pathway 29: 65 – 67 Ultraviolet-B radiation 22: 97 – 149 effect on cellular processes 22: 121– 134 effect on gene expression 22: 134– 141 interaction with other stresses 22: 141– 148 perception of 22: 103– 114 protective mechanisms against 22: 114– 121 Ulva 35: 174, 176 Ulva expansa 11: 99 Ulva japonica, light harvesting by siphonaxanthin 10: 72 Ulva lactuca, 31P NMR studies 20: 104 Ulva mutabilis 35: 192 Ulva sp. C influx 27: 133 carbon dioxide-concentrating mechanisms in gas exchange 27: 114– 119 C-concentrating mechanisms (table) 27: 118, 119 HCO2 3 entry 27: 131 tracer effect of C12 27: 133, 134 Ulvophyceae, C assimilation 27: 99
Umbilicariaceae 31: 162 Umbravirus 21: 116 Umezakia natans 27: 213 Uncoating, protein 21: 105, 107– 114, 117, 119 Uncoupling agents, effect on respiration rates 4: 92, 94 Underdeveloped trichome (udt) 31: 253 Unguicularia cfr. raripila 24: 56 Uniflagellation 2: 8 Unilateral excitation 33: 42 Unit membrane 7: 3, 4, 6 United States 21: 84, 87, 88, 91 Unmasking hypothesis 37: 150, 151 Uptake activity along root system 30: 58 –61 Uptake systems 30: 4 high-affinity 30: 5, 39, 40, 44 – 47 constitutive 30: 5, 9, 10 inducible 30: 5 – 8 low-affinity 30: 5, 8, 9, 39, 40, 46, 47 role of tonoplast membrane 30: 10 Uranyl acetate, in negative staining 3: 16 Uranyl formate, in negative staining 3: 16 Uranyl versene chelate, in negative staining 3: 16 Urbanization 21: 87, 94 Urea amido-lyase (UAL), properties 27: 96 Ureaplasma 21: 190, 191, 194 Urease in Canavalia ensiformis 9: 4 in Glycine max 9: 26 Uredinales 33: 3 Ureide exporting nodules 18: 143 Ureide synthesis 18: 134, 157– 159 Urginea maritima, pattern and size of root xylem 9: 235 Uricate 30: 139 Urochloa panicoides genes 38: 110, 111, 121 Uromyces appendiculatus 24: 204, 213 Uromyces phaseoli 30: 293 Uromyces phaseoli, phosphorus and spore germination 8: 198, 199 Uromyces vicae-fabae 24: 205, 320; 28: 132 Uromyces vignae 24: 199, 207– 209, 213, 217– 219 Uronic acids 11: 127, 128, 131
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Uroporphyrin 35: 33 Uro-porphyrins 22: 126 Urtica 31: 7, 24 Urtica dioica 19: 132; 28: 75; 31: 24, 25, 155 nitrate reductase 6: 23 Urtica spp. 33: 68 Ustacystis waldsteiniae 24: 208 Ustilago maydis 24: 172 Utetheisa ornatrix 30: 99 Utricularia 22: 164, 202 UV protectants 21: 13 UV-B protection 37: 6, 7 UV-B region 18: 259 V. aromatica, carbon fixation 7: 527 V. coerulea, seed morphology 7: 427 V. cracca karyotype evolution by centric fusion 6: 181 V. faba DNA analysis 6: 125 karyotype evolution by centric fusion 6: 181, 182 V. faba, leaf structure 5: 182 V. fragrans, carbon fixation 7: 527, 528 V. myrtillus nitrate reductase 6: 23 V. planifolia carbon fixation 7: 527 culture 7: 442, 446 seed morphology 7: 426, 432 V. suavis, carbon dioxide fixation 7: 531 V. tesselata, carbon fixation 7: 527 V. tricolor, leaf anatomy 7: 532 V. unguiculata, storage protein 9: 2, 6, 10, 11 V. urticularis chloride fluxes 6: 111 hydraulic conductivity 6: 91 – 94, 104 potassium fluxes 6: 105, 106, 108 reflection coefficients for nonelectrolytes 6: 95 volumetric elastic modulus 6: 74, 75, 77, 108 V. vulgaris glandular hair structure 6: 297
293
Vaccinium 37: 137, 139, 140 Vaccinium angustifolium nitrate reductase 6: 21 Vaccinium corymbosum 37: 7 Vaccinium myrtillus 33: 28 Vaccinium myrtillus 37: 107, 108 Vaccinium vitis-idaea 37: 133– 135, 138, 139 Vaccinium witches’ broom 21: 199 Vacuolar biogenesis 25: 1 – 42 molecular aspects of 25: 43 – 58 Vacuolar channel activity integration 25: 243–246 Vacuolar costs. See Cost-benefit analysis Vacuolar functions 25: 60, 61 and alternative means of performing these functions 25: 62 – 70 Vacuolar H+-ATPase 31: 203 Vacuolar hydrolases 25: 90 – 92 Vacuolar invertase 38: 80 Vacuolar invertases 28: 73, 74, 76, 77, 94 Vacuolar pathways 25: 13 Vacuolar precursors 25: 3 – 7 Vacuolar processing enzyme 38: 80 Vacuolar pyrophosphate (V-Ppase) 35: 156, 158 Vacuolar sap, direct sampling 25: 197, 198 Vacuolar sequestration against concentration gradient 25: 155–159 mechanisms underlying 25: 154– 159 of defence and signal compounds 25: 147, 148 Vacuolar solute composition 25: 171– 194 ion-selective microelectrodes 25: 177– 180 model 25: 187–189 single-cell sampling and analysis (SiCSA) 25: 180–182 variability 25: 172– 182 X-ray microanalysis 25: 175– 177 Vacuolar solute pools, regulation 25: 182– 187 Vacuolar sorting receptor (VSR) protein family 35: 141, 150 Vacuolar storage proteins, diversity 25: 128, 129 Vacuolar storage, xenobiotics 25: 152
294
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Vacuolar targeting signals 25: 47 Vacuolar transport 25: 51 – 54 Vacuolar voltage-gated Ca2þ (VVCa) channels. See VVCa channels Vacuolate (EU) bacteria 25: 62 – 74 Vacuolation 25: 60, 61 cost-benefit analysis 25: 78 – 81 Vacuole membrane 3: 28, 45 water potential 3: 174 Vacuole motility in yeasts 28: 138 Vacuole movements and events in cell cycle 28: 141 Vacuole storage 31: 125 Vacuole, role of CO2/HCO2 3 conversion 27: 166– 169 Vacuole, sequestration in 37: 67 –71 Vacuole-attached mode 25: 222 Vacuoles 25: 2 definition 25: 2 specialized in protein storage 25: 27 – 31 Vacuoles in Dunaliella 14: 121 Vacuoles, see Tonoplast in potassium regulation Vacuole-to-cytoplasm ratio 25: 75 Valeriana locusta, stomatal movement 4: 122, 169 Valerianella 25: 385 Valine, and protein synthesis 8: 76, 77 Vallisneria 29: 81 Valonia 25: 420 turgor pressure –dependent processes 6: 105– 111 Valonia, structure of cellulose 5: 97 Vanada carbon fixative 7: 527 culture 7: 446, 471 development 7: 487 effect of auxin in culture 7: 461 effect of cytokinin in culture 7: 464 gibberellic acid 7: 465 peroxidase activity 7: 487 Vanadate 22: 7; 28: 26; 37: 67 Vanda DNA synthesis 7: 487, 488 effect of ethylene 7: 623 flowering period 7: 546, 569 resupination 7: 554
Vanilla effect of b-naphthoxyacetic acid on flowers 7: 621 seed morphology 7: 425 Vanillic acid 21: 48 Vapour pressure 18: 220 Vapour pressure deficit (VPD) 18: 82, 222, 229, 230 Vapour pressure deficit, impact on Amax (photosynthesis) 20: 20 – 22, 23 Variability of trichomes 31: 4 – 20, 199– 201 Variability, persistence and 38: 39 – 41 Variable number of tandem repeat (VNTR) 35: 182 Variables, epidemiology 21: 237 Variation potential (VP) 22: 187, 188, 203– 209 Variegation 12: 104– 108; 37: 9 chloroplast mutations 12: 107, 108 chromosomal anomalies 12: 141 mitochondrial mutations 12: 107, 108 reverse 12: 139– 141 Variovorax paradoxus 24: 405 Vascular infection 24: 319 Vascular loops, occurrence 9: 193, 195, 197, 253 Vascular plants, fossil structures 5: 162– 169 Vascular rays control of formation 9: 211, 225– 227 control of ray distance and initiation 9: 223– 225 pattern 9: 225, 254 radial limitations of cambial grafts 9: 227, 228 radial polarity of cambium 9: 222 Vascular strands control of tissue differentiation 9: 229, 230 “sink effect” 9: 182– 185 Vascular tissue differentiation cambial developmental processes dynamic changes 9: 218–222 quantitative controls 9: 211– 218 ray formation 9: 222–228 summary 9: 210, 211 cell polarization by a flux of signals stability of polarity 9: 187– 192 strand formation 9: 182– 187
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
summary 9: 180, 181 vascular networks 9: 192– 199 cellular complexity of the vascular system control of fibre differentiation 9: 237– 242 control of parenchyma formation 9: 242–245 relation between xylem and phloem 9: 231– 237 summary 9: 228– 230 cellular responses involved in orientation of differentiation determination and differentiation 9: 200– 205 signal flux 9: 205– 210 summary 9: 199, 200 control by flux from leaves to roots additional controls 9: 176– 180 induction by leaves and auxin 9: 158– 170 orientation of signal flux by roots 9: 170– 172 signal flux 9: 172– 176 summary 9: 155, 158 problems 9: 152, 153, 155 relation to other aspects of plant morphogenesis effects of leaves and auxins 9: 246, 247 hormonal feedback 9: 247– 249 the problem 9: 246 summary 9: 251– 255 Vascular tissue regeneration cambium 9: 213, 227, 228 effect of auxin 9: 165, 167, 201– 203, 205 effect of leaves 9: 163, 165, 167, 178, 233 parenchyma differentiation 9: 159, 243 polarity 9: 188 relation between xylem and phloem 9: 232– 237 signal flux 9: 153, 173– 176, 182, 183 xylem regeneration 9: 156, 214– 216 Vascular tissue, intercellular hyphae in association with 24: 317, 318 Vascular tissue, monocotyledons 3: 209, 212, 238– 266 branching in relation to 3: 260– 265 bundles, construction 3: 250, 251
295
continuity 3: 258–260 development 3: 251– 257 methods of study 3: 241– 244 “palm-type” construction 3: 244– 250 root resistance 3: 189 secondary thickening 3: 265, 266 Vicia faba water uptake 3: 185 V-ATPase 25: 5, 253–296, 340, 341 acidification by 25: 358 cell physiological regulation 25: 281– 284 complexes 25: 6 ecophysiological responses 25: 276– 281 electron microscopy 25: 270– 276 holoenzyme subunit 25: 267– 269 ontogeny 25: 257– 262 patch clamp studies 25: 352– 358 phylogeny 25: 255– 258 physiological functions 25: 276–281 properties 25: 262– 267 pump current isolation 25: 352– 354 reversal voltage 25: 354 subunit sequences 25: 256 Vaucheria 19: 211; 33: 67 Vaucheria sessilis 33: 67 Vaucheria, chlorophyll c 10: 52, 120 VCl channels 25: 242 Vectorial excitation 33: 42 after-effects 33: 86 in laminar heliotropism of pulvinated leaves 33: 78 – 86 remote phototropic control by 33: 86 –89 Vegetative compatibility genes (v-c) 21: 132, 133, 135 Velvet tobacco mottle virus 36: 201 Venturia inaequalis 24: 7, 50 Venturia inaequalis, effect of orchinol 7: 517 Venus flytrap 22: 186, 202, 203 Verapamil 22: 71 – 73, 82, 107 Verbascum thapsus 38: 307 Verbenaceae 37: 45 Verbenone 31: 130 Vernalization 34: 238, 239 Vernonia 31: 162 Veronica officinalis 29: 13 Veronica persica DNA analysis 6: 125
296
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Verticillium 21: 36 – 39 albo-atrum 21: 39, 46 dahliae 21: 48, 68, 69, 235 Verticillium dahliae 19: 44, 50 Verticillium spp., 26: 65, 67 Verticillum dahliae, effect of orchinol 7: 517 Vesicles 11: 37, 38, 41, 42 Vesicular-arbuscular mycorrhiza phosphatases 8: 184 phosphate uptake 8: 173, 174, 190 phosphorus content 8: 130, 140, 146, 147, 205 translocation 8: 202, 203 Vesicular-arbuscular mycorrhizas see ‘Arbuscular’ mycorrhizal symbiosis Vibrations, tree and spectral method of analysis 18: 208 Viburnum 37: 107, 113 Viburnum opulus 37: 107 Vicia 12: 209; 22: 13, 174, 187; 24: 319, 320, 322; 25: 227, 359; 33: 101 chromosome size differences 6: 130 DNA and plant development 6: 131 faba 22: 73, 81 Vicia faba (broad bean) 18: 10, 13 air pollutants bioindication 18: 88 O3/SO2 fumigations 18: 71 O3/SO2 mixtures 18: 70 SO2 exposure 18: 19, 22, 23, 24, 26, 31 SO2 fumigation 18: 9, 12 SO2 inhibition 18: 21 Vicia faba 19: 210; 25: 49, 225; 28: 13, 89; 29: 45; 31: 26, 47, 51; 32: 41, 78, 210, 214, 464– 468, 470– 474; 33: 53, 63; 37: 184 see also Legume seed storage proteins; vicilin galactolipid content of mitochondria 7: 43 hydraulic pressure in guard cells 4: 127, 128, 140 isolation of envelope enriched fraction 7: 25, 26, 35 nodulin 27: 34 photoactive stomata movement 4: 142 retrotransposons 27: 334, 337, 346 stomatal aperture and leaf water potential 4: 130, 131, 133
structure of proplastid in root tip cell 7: 13 synthesis of amino acids 7: 72, 73 water movement in leaves 4: 123 Vicia faba minor 36: 104 Vicia faba seeds protein bodies formation 9: 10, 11, 14, 15 proteolysis 9: 16, 17 protein synthesis during development DNA 9: 24 protein changes 9: 18 RNA 9: 23 storage protein legumin 9: 5 – 7 vicilin 9: 5 Vicia faba, protein turnover 8: 104 Vicia narbonensis 24: 313; 33: 162 Vicia narbonensis, narbonin 27: 33 Vicia pannonica 27: 33 Vicia sativa 24: 323; 27: 33 Vicia, sucrose flux in the symplast during phloem loading 5: 193 Viciae bacteroids 18: 153 Vicieae, storage protein 9: 5, 6 Vicilin 25: 29; 38: 73 Vicilin, storage protein deposition 9: 8 structure 9: 4 –7, 10, 25 synthesis 9: 8, 20, 23, 26 Vicilins 27: 11 – 25 biotechnology 27: 56 – 69 sequence alterations 27: 62, 63 conserved structures 27: 45 – 49 genetics 27: 40 – 45 hydration and packing 27: 51 –54 primary and subunit structure 27: 11 – 16 secondary, tertiary and quaternary structure 27: 16 – 25 structural similarities with legumin 27: 44, 45 Vicinal dithiol 12: 8 Video microscopy 25: 26 Vidicon camera, in picosecond spectroscopy 8: 3, 7, 9 – 11 Vigna 19: 25; 24: 432; 30: 130; 31: 271 Vigna aconifolia 30: 130 Vigna mungo 29: 45; 30: 186; 38: 86 storage protein mobilization in 38: 74 –76
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Vigna radiata (Mung-bean) 18: 132 SO2/NO2 mixtures 18: 45, 48 Vigna radiata 25: 259, 263, 301, 303, 305, 307– 309, 311, 312; 28: 75; 29: 45; 32: 209– 211 Vigna radiata, storage protein 9: 6, 9, 17 Vigna sinensis 22: 148 Vigna unguiculata 18: 132, 146; 25: 232; 29: 45 Vigna, effects of salicylates 20: 211 Viguiera 31: 162 Viguiera robusta 31: 166 Viloxanthin distribution in algal groups 10: 56, 57, 59 structure 10: 55 Vinca 31: 53 Vinca rosea 30: 256 Vines 18: 70 see also Vitis vinefera 5-vinyloxazolidine-2-thione 35: 234, 247 Viola 22: 13 Violacacae 22: 13 Violaxanthin 22: 143; 27: 294; 37: 39 structure 27: 293 Violaxanthin-to-antheraxanthin ratio 18: 92 Violutin 20: 179 Viral coat protein 21: 25 Viral infections, salicylates and 20: 209– 10 Viral movement proteins (MPs) 31: 271, 272 Viridiplantae 27: 89 glycolate metabolism 27: 107, 108 Rubisco 27: 101, 102 Viroid-induced LRR protein 24: 131 Viroids, testing for 23: 159, 160 Viropexis 21: 112 Virulence genes 24: 337 Virulence, function, pathogens 21: 3 – 7 Virus acquisition 36: 5, 6 Virus infection 21: 5, 105, 106, 119, 120 level I interactions 21: 107– 114 level II interactions 21: 114, 115 level III interactions 21: 115– 119 replication 21: 106, 107 Virus retention 36: 6 – 9 Viruses 11: 38
297
Viruses, plant defence proteins 26: 137, 138 PR – 1 26: 148 ribosome-inactivating 26: 155, 156 thaumatin-related 26: 150, 151 Viruses, testing for 23: 155– 159 Virus-like particles (VLP) 36: 36 – 38, 39, 145, 146 Virus-specific informosome-like ribonucleoprotein (vRNP) 21: 119, 120 Viscaria alpina nitrate reductase 6: 23 Viscosity 11: 4, 41, 42 Visible injury, see Indicator plants Visual inspection 23: 2, 3 Visual light spectroscopy 31: 154, 167 Vitaceae, Early Tertiary, seed dispersal 17: 66, 67 Vitamin D synthesis 37: 22 Vitamin D3, synthesis of 37: 25 – 27 Vitamins effect on orchids in culture 7: 466– 469 orchid endophyte requirements 7: 494 Vitis 22: 14 Vitis labruscana 18: 70 Vitis labrussa, ABA levels in leaves 4: 146 Vitis vinifera (grapevine) 18: 51, 53, 63 Vitis vinifera 19: 115, 130, 140, 151; 25: 350, 405; 37: 110 Vitis vinifera, ABA concentration in excised leaves 4: 138 Vitreousness of cereals 34: 207– 211 Vitronectin 21: 60, 61 VK channels 25: 231– 241; 33: 56 distribution 25: 232 function 25: 232 gating 25: 231 inward-rectifying 25: 232, 233 permeation 25: 231, 232 selectivity 25: 231, 232 VMAL channels function 25: 242 gating 25: 241 permeation 25: 242 selectivity 25: 242 VmVSR 38: 75 Vochysia 31: 19
298
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Voigt model in leaf fracture testing 17: 267 Volatiles produced by plants 30: 100– 103 Voltage operated calcium channels (VOC) 22: 48, 69 – 73 Voltage-independent Ca sensitive K influx channel (VK) 22: 80, 81 Voltage-independent channels (VICs) 29: 88, 89 Volumetric elastic modulus as a function of turgor and volume 6: 75 –83 definition 6: 71 – 73 determination by indirect methods 6: 83, 84 determination in single cells 6: 73 – 83 Volvocales 2: 16 Von Karman’s constant 18: 193 “Vona” cv. 18: 54, 72 Vorlu¨ferspitzer 38: 195 Voucher procedures 23: 20, 21 VP24 70 VPD, see Vapour pressure deficit gVPE protease 38: 77 V-PPase 25: 340, 341, 343, 344 and K+ accumulation 25: 359 biochemical validation 25: 350– 352 coupling ratio 25: 349 future research 25: 329– 331 homomultimeric structure 25: 314– 317 in vivo studies 25: 300– 302 isoforms of substrate-binding subunit 25: 310, 311 maleimide-reactive cysteine residue 25: 321– 324 modelling as (Kþ/Hþ) symporter 25: 346 molecular cloning of cDNAs encoding 25: 308– 310 observed reversal voltage 25: 346– 349 oxygen exchange reactions 25: 304– 306 patch clamp studies 25: 343– 352 potential coupling sites 25: 324– 329 revised topological model 25: 317– 321 steady state kinetics of substrate hydrolysis 25: 302– 304 structure-function relations 25: 311– 329 VPS34 25: 54 V-type ATPases 28: 8
Vulcanism and plant fossil record 16: 151– 175 and magma viscosity 16: 151, 152 debris flow 16: 160– 166 El Chicho´n 16: 163, 164 Mount Saint Helens 16: 160– 163, 164, 165 Nevado del Ruiz 1985 16: 165 explosive, case studies 16: 152– 160 El Chicho´n 16: 159, 160 Mount Saint Helens 16: 152– 158 lateral lakes 16: 168– 171 tephra, preservation in 16: 166–168 vegetation recovery 16: 172– 175 El Chicho´n 16: 174, 175 Mount Saint Helens 16: 172– 174 Vulcanism, at Cretaceous/Tertiary boundary 17: 4 VVCa channels 25: 233– 236 function 25: 235 gating 25: 233, 234 permeation 25: 234, 235 pharmacology 25: 235 selectivity 25: 234, 235 W. controversa genetics 6: 246, 247 microchromosomes 6: 226, 227, 229 sex chromosomes 6: 233 W. crispa interspecific polyploidy 6: 210 W. exserta interspecific polyploidy 6: 210 W. micra 12: 233 W. rutilans intraspecific polyploidy 6: 211 Wak genes 32: 21 Wakes of individual plants 18: 204, 205 Wall-associated protein kinase 32: 21 Wallichia disticha, distichy 3: 224 Walnut witches’ broom 21: 199, 205 Warburg effect 11: 98 Water absorptive function 31: 14 Water and Nitrogen supply 22: 230– 288 acclimation of extension growth 22: 246– 263 acclimation of uptake 22: 235– 245
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
implications 22: 263– 267 information transfer 22: 267– 275 manipulating supply 22: 231– 235 xylem sap 22: 275–286 Water bloom formation 13: 115– 125 carbon limitation of photosynthesis and 13: 119 climatic factors and 13: 69 depth of mixing and 13: 118 disentrainment and 13: 120 –123 gas vesicle content, light-dependent fluctuation and 13: 117, 118 historical aspects 13: 115, 116 latitude and 13: 69 nutrient levels and 13: 118– 120 photic conditions and 13: 116, 117 population senescence and 13: 119 size of individual units and 13: 120 sporulation and 13: 126 wind-mixing of surface layers and 13: 122, 123 Water channel proteins, assay 25: 420– 422 Water channels 32: 468, 469 Water channels, role in plant movements 33: 57, 58 Water deficiency and leaf expansion 19: 159, 160 and stomatal closure 19: 150– 159 Water expulsion vacuoles 24: 384 Water free space (WFS) 33: 47, 51 Water movement 25: 419, 420 Water potential (see chemical potential of water) Water relations 3: 171– 206 intra-cellular heterogeneity 3: 174– 181 movement through cells 3: 181–189 soil-plant-atmosphere 3: 195– 204 terminology 3: 172– 174 transpiration, absorption and deficits 3: 189–195 Water relations of plant cells 1: 279 basic theory of transport processes 1: 285 electro-osmosis 1: 313 equilibrium water relations of plant cells 1: 282 mechanism of osmosis 1: 291 polarity of water movement 1: 320 reflection coefficient of membranes 1: 279
299
swelling and shrinking of plant cells 1: 279 unstirred layers 1: 279 Water stress 18: 61; 37: 9, 10 Water stress and Crassulacean acid metabolism 15: 52 Water stress, UV radiation 22: 102, 143– 145 Water transport in homogeneous systems 6: 48 – 54 in inhomogeneous systems 6: 56, 57 Water transport across tonoplast 25: 419– 432 Water transport energy provision 28: 31 –33 Water transport in plants apoplastic movement 5: 175 cell to cell movement 5: 175 hydraulic conductivity 5: 174 pathway and resistances 5: 172– 174 symplastic movement 5: 176 Water use efficiency (WUE) 18: 64, 221, 222 Water use, forests see Net primary productivity and water use model Water vapour 18: 222; 22: 167 Water, population pressure 21: 85, 87,88, 89 Water, wilt disease 21: 70, 71 Watermelon mosaic virus 36: 2 (WMV2) 36: 11 Watermelon silver mottle virus (WSMV) 36: 129 Water-use efficiency 4: 118– 120, 195– 198; 22: 267 Wavelength extinction coefficients 37: 8 Wavelengths of light, strongly/weakly absorbed 18: 277, 278 Wave-regeneration forests 18: 239 Wave-regeneration pattern 18: 237 Wax 21: 4, 5; 22: 102, 112, 116, 117 Waxes secretion 31: 56 “Wayne” cv. 18: 10 Websites 32: 61, 62 Wedge testing of plant material 17: 246, 247 Weeping lovegrass 21: 158, 159 Weigela 38: 290 Weigela/Diervilla 38: 293, 296, 303 Weinmannia trichosperma volumetric elastic modulus 6: 80 Weissia sp. hybridity 6: 250
300
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Welfia, growth 3: 224 “Wells” cv. 18: 10 Welwitschia 38: 196 Welwitschia mirabilis 11: 157– 191; 35: 4 carbon balance 11: 179– 188 chemical composition 11: 162– 172 distribution 11: 157– 159 life cycle 11: 159– 162 osmoregulation 11: 162– 172 photosynthesis 11: 179– 188 transpiration 11: 173– 179, 189 water economy 11: 172– 179 WEREWOLF 31: 199 Western X-disease (WX) 21: 191– 194, 199, 202, 205, 206 Western X-diseased mycoplasma-like organisms (MLO) 36: 159 Westiellopsis sp. 27: 215 Wetland plants in the wetland condition aerenchyma and aeration 7: 289– 297 critical oxygen pressure 7: 284– 288 oxygen pressure and root growth 7: 288, 289 photosynthesis and aeration 7: 297, 298 radial oxygen loss and phytotoxins 7: 281–284 responses to anoxia 7: 278– 281 Wheat 18: 93; 21: 148, 235; 24: 131– 133; 34: 31 – 34 see also entries under Triticum see also Winter wheat Akakomugi 34: 131 calcium ions 22: 60 ESTs in 34: 8 functional genomics 34: 14 gibberellin signalling, stature and 34: 131– 136 grain hardness in 34: 207– 210 growth, effect of auxins and chelates 1: 76 –82 molecular markers 34: 5 Norin 10 34: 131 quality testing 34: 28 relationships between cultivated/wild 34: 32 RFLPs 34: 7 signal transmission 22: 173, 175, 178, 181, 187, 207, 208
structural genomics 34: 11 TaVp1 transcripts 34: 151, 152 UV radiation 22: 116, 145 vitreousness 34: 210, 211 water and nitrogen supply 22: 277 Wheat American striate mosaic rhabdovirus (WASMV) 36: 149– 151 Wheat endosperm cells 25: 118 Wheat see Triticum aestivum Wheat spindle streak mosaic virus (WSSMV) 36: 56 Wheat storage proteins 25: 122 Wheat streak mosaic virus (WSMV) 36: 201 White ash, see Fraxinus americana “White Cascade” cv. 18: 71, 74 White oak 18: 38 White pine, see Pinus strobus Whitefly see Bemisia tabaci Whole-vacuole currents 25: 225 Whole-vacuole mode 25: 222 Wild rice (Zizania palustris) 34: 34, 50 Wild tomato 22: 165; 31: 123 “Williams” cv. 18: 37, 56 Willow 19: 120 Willow, transpiration and absorption 3: 193, 194 Wind and energy transfer 18: 208– 232 boundary layer conductance 18: 210– 215 convective energy flux 18: 215– 217 cuticular conductance 18: 223, 224 energy balance equation 18: 208– 210, 224– 232 stomatal conductance 18: 221– 223 temperature 18: 217– 220 transpiration 18: 218– 220 and gravity 18: 207 and plants 18: 189– 240 damage 18: 224 patterns 18: 237 plants, waving 18: 205–208 profiles above vegetation 18: 193– 195 heat/mass transfer estimation 18: 196, 197 within canopy 18: 198 regimes and transport role 18: 193– 208
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
speed 18: 196 dependent phenomena 18: 234 mean 18: 193 stomatal conductance 18: 222, 223 throw 18: 206 tunnel 18: 200, 205, 206 u/v/w components 18: 209 velocity 18: 203 Wind dispersal of plant organs 16:106– 112 air fall 16: 108, 109 fall velocity 16: 106– 108 post-descent 16: 109, 110 storm effects 16: 110–112 Windthrow 33: 141 “Winsor Harlington” cv. 18: 12, 13 Winter anthocyanins 37: 118 Winter wheat (Triticum aestivum) 18: 14, 54, 55, 76 Winteraceae chromosome size 6: 189 Winteraceae, flowers 17: 104, 105 Within-patch dynamics 38: 51 Woelm silica gel chromatography of gibberellins 9: 51, 52 Woloszynskia hiemale 12: 209 Wood see also Bark, fracture properties; Tree rings and Early Tertiary studies anatomy in Early Tertiary ecology 17: 61, 79, 80 climate reconstruction 17: 80 fracture properties 17: 273, 274 Wood decay analysis 7: 337– 345 hyphal interactions, 7: 339– 345 Wood degradation see Fungi Woodsia aneuploidy 4: 299– 301 fossil record 4: 235, 282 Woodwardia fossil record 4: 235, 248 W. arctica, fossil record 4: 251 Woody rose 22: 166 Woolly (Wom) 31: 205, 212, 213 World Food Programme 21: 93 Wound hormones 19: 18 – 20 Wound response, membrane transport and 15: 131– 133
301
Wound signals 19: 18 – 20, 66 – 68 non-transport of 19: 75 – 77 Wound-induced promoters 34: 90 Wounding fungal pathogens 21: 37 –39, 68 viral infection 21: 105, 107– 111, 115 Wounding-activated MAP kinases 32: 394– 5 Wounds, signal transmission 22: 165, 166 hydraulic dispersal 22: 179– 186, 188, 206– 209, 213 WUE, see Water use efficiency X. polymorpha interspecific amount in nature 7: 400, 401 zone line-formation in decaying wood 7: 344 Xa1 38: 260 Xa21 38: 261, 267 Xanthine 30: 136– 139, 142 Xanthium pennsylvanicum nitrogen uptake 6: 3 sites of nitrogen assimilation 6: 8 Xanthium stromarium 19: 128, 156 Xanthium strumarium 33: 73, 75 Xanthium strumarium, effect of CO2 and ABA on stomatal aperture 4: 141 Xanthomonas 21: 6; 24: 98; 30: 301; 38: 255 campestris pv. amoraciae 21: 162 Xanthomonas campestris 30: 298 Xanthomonas campestris pv. malvacearum 24: 98, 111 Xanthomonas campestris pv. vesicatoria 24: 98, 111 Xanthomonas campetris 24: 265 Xanthomonas citri 24: 98, 111 Xanthomonas citri 30: 296 Xanthomonas lryzae 32: 22, 230, 249, 389, 390 Xanthomonas malevacearum 19: 24 Xanthomonas oryzae 24: 137; 30: 300 Xanthomonas oryzae pv. oryzae 38: 257 Xanthomonas spp. 23: 5, 6, 29, 31 – 36, 43, 44 Xanthopan morganii praedicta, orchid pollination 7: 557
302
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Xanthophyll 22: 143 Xanthophyll cycle 27: 263, 292– 294 down-regulation of RCII 27: 295, 296 Xanthophyll de-epoxidation cycle 33: 38 Xanthophylls 37: 149 carotenoids 37: 24 cycle 37: 24 in gymnosperms 37: 41 light absorbances in 37: 39 loss 37: 161 Xanthophylls in algae 10: 55, 59 Xanthoria, metabolism, NMR studies 20: 92 – 3 Xanthorrhoea resin production 6: 278, 285 Xanthorrhoea gracilis 31: 20 Xanthorrhoeaceae, influorescence 3: 277 Xanthosine 30: 142, 148, 157 Xanthotoxin production 13: 179 Xanthoxin 33: 64 Xenobiotic detoxification 37: 59 Xenobiotics 25: 141– 169 fate in plants 25: 143– 145 mechanisms for uptake and sequestration 25: 158 Phase 1 25: 144 Phase 2 25: 144 Phase 3 25: 145 vacuolar storage 25: 152 Xenon arc lamp 18: 271 Xenopus 21: 110; 25: 412, 420– 422, 427, 428; 28: 143; 30: 25, 26, 30 – 32, 39, 47; 32: 80, 88, 466, 468, 469 Xenopus laevis 28: 13; 32: 25 Xerophyta 37: 106 Xerophytes and resin production 6: 307 Xerophytes, cuticular resistance 5: 185 Xerotus javanicus, orchid endophyte 7: 490 XET 19: 65, 66 XG5 19: 15 XG7 19: 16 XG8 19: 14, 16 XG9 19: 14 – 16, 33, 44, 45, 63, 64, 66, 73, 75 XG9n 19: 16 Xiphinema 36: 170, 173, 175, 178, 179, 181, 182, 185, 186
Xiphinema americanum 36: 178, 180, 181, 189 Xiphinema americanum sensu lato 36: 180 Xiphinema americanum sensu stricto 36: 181 Xiphinema diversicaudatum 36: 180, 183, 185, 189, 190 Xiphinema index 36: 169, 183, 185 Xiphinema spp. 23: 113 X-ray crystallography 22: 87 X-ray diffraction, cell membrane 3: 2 – 8, 11, 42, 43 X-ray microanalysis 25: 175– 177 X-ray microprobe for potassium in roots 15: 141, 142 X-ray structure of cytochrome C2 of Rhodospirillium rubrum 4: 82, 83 of cytochrome C550 of Paracoccus denitrificans 4: 82, 83 of cytochrome C551 of Pseudomonas aeruginosa 4: 82, 83 X-ray studies, photosynthetic membrane, see Photosynthetic membrane Xylan synthase 34: 173 Xylanase 19: 26, 32, 33; 21: 4, 6, 7 b-(1 ! 4)-D-xylanases 19: 32 Xylan-derived oligosaccharins 19: 34 Xylaria hypoxylon effect of ASM 7: 414, 415 Xylaria spp. 33: 8 Xylariaceae 33: 13, 19 Xylella fastidiosa 23: 32 Xylem 19: 107, 119; 30: 19, 57, 61, 63, 64, 245, 246, 268, 269 see also Water and Nitrogen supply signal transmission 22: 171– 186 Xylem and liquid-phase water transport as a low resistance pathway for mass flow 5: 171– 177 significance of lignification 5: 177– 181 transpirational flux of water 5: 170– 172 Xylem development differentiation 9: 153, 156, 165– 167, 172 maturation pattern 9: 173, 174 quantitative aspects 9: 211, 212, 214– 216
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
relation between xylem and phloem 9: 231– 237 Xylem export 18: 134, 164 Xylem sap 19: 106– 112, 123– 126, 128, 133, 135, 148, 151–155, 158, 162 Xylem, disease 21: 38– 51 Xylem, root, potassium transport to 15: 136– 151 and potassium regulation 15: 161–163 electrogenic mechanisms 15: 145– 151 lag phase in 15: 143– 145 radial pathway 15: 140– 143 and endoplasmic reticulum compartmentation 15: 141– 143 symplasmic 15: 140, 141 site of entry 15: 137– 140 and aerenchyma induction 15: 138– 140 epidermis/cortex 15: 137, 138. Xylem/phloem transfer 29: 154, 155 Xylem-to-xylem contacts 24: 313 Xylobium squalens, seed morphology 7: 427 Xyloglucan 11: 131, 144, 146, 149, 152; 19: 41; 22: 259, 264 sugar residues in 19: 13, 14 Xyloglucan endotransglycosylase 19: 56, 57, 64 Xyloglucan endotransglycosylase (XET) 22: 256– 258, 263 Xyloglucan oligosaccharides degradation of 19: 66 natural occurrence 19: 58, 59 synthesis of 19: 62 – 66 transport of 19: 75 Xyloglucan-derived oligosaccharides 19: 12 – 17 Xylose 11: 126 Xylose isomerase gene 34: 79 Xylose, transport across chloroplast envelope 7: 73 ‘xylotropic endophytes’ 33: 2 Xyridaceae, stomata 3: 283 Yeast 22: 60; 25: 259 cell wall breakdown 2: 90 chemical content of cell walls 2: 77, 79 endocytic pathway in 28: 139– 141
303
glucan microfibrils 2: 78 microfibrillar arrangement 2: 91, 94 pheromones 28: 139 protein content of cell wall 2: 82 vacuole motility in 28: 138 vacuoles 28: 137– 141 Yeast ARS1 MAR 34: 95 Yeast artificial chromosome (YAC) library 34: 10 – 11, 30 Yeast cadmium factor protein (YCF1) 25: 156 Yeast channel 25: 229 Yeast Flp/Frt recombinase 34: 106 Yeast invertase 25: 204 Yeast vacuole 25: 50 Yeast, 58, see also individual species name Yeast, plant protein toxicity to 26: 148 Yeast, plasma membrane 3: 34, 35 branching 3: 262, 264 influorescence 3: 268, 277 Yucca Yeasts 24: 401 “Yecora Rojo” 18: 88 Yellow birch (Betula lutea) 18: 9 Yellow poplar, see Liriodendron tulipifera Yellow rust 21: 148 Yellowing in reproductive development 35: 6 Yellows disease 21: 188 Yellowstone National Park (USA), Early Tertiary 17: 56, 58, 59 Yersinia 32: 91 Yersinia pseudotuberculosis 30: 298 Yield losses, correspondence analysis 21: 233– 235 Yield threshold, cell 22: 246 YNT1 gene 30: 28, 32 “Young” cv. 18: 57 Young modulus of stems 17: 271 Young’s modulus 18: 206 Yucca 11: 132 “Z” scheme of photosynthetic electron transport 10: 17, 18, 36 Z. flocculosa karyotype 6: 168 karyotype evolution 6: 170, 171
304
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Z. intermedium, seed morphology 7: 426 Z. mackaii, seed morphology 7: 426 Z. mays, gibberellin biosynthesis 9: 86 –88 effect on growth 9: 34, 109 Z. pendula karyotype evolution 6: 170, 171 Z. purpusii karyotype 6: 168 Zamia chromosome constitution 6: 172 chromosome evolution 6: 172, 173 Zannichelliaceae, growth 3: 215Zea prophyll 3: 287 stomata 3: 284 ZAPS 18: 4, 5 Zea 29: 144, 145 polarity of leaf veins 9: 194 root size and sugar concentration 9: 234 Zea 22: 13 mays 22: 72, 122 Zea mays (maize) 33: 146, 194, 195 Zea mays (maize/corn) 18: 15 air pollutants bioindication 18: 88, 89 bioindication 18: 94 coleoptile 18: 283, 290 NOx exposure 18: 38 O3/NO2 exposures 18: 84 SO2 exposure 18: 9, 32 SO2 fumigation 18: 9, 11, 12 Zea mays 12: 132, 133, 156; 19: 114, 121, 124, 153, 154, 159, 160; 24: 321; 25: 259, 260, 263, 268, 269, 307; 28: 13, 14, 89, 221; 29: 117, 120, 121, 127, 130, 132, 138– 141, 159, 161; 30: 221; 32: 41, 42, 192, 204, 205, 210, 211, 214, 321; 37: 97, 109, 113; 38: 144; 3: 208, 211, 214 Agamous-like MADS-box 27: 429 cell fractionation studies 5: 118–120 chloroplast structure 7: 16, 38 DNA analysis 6: 125 DNA transposable elements 27: 352– 354 Ac and Ds, chromosome breakage 27: 373, 374 Ac superfamily 27: 364–380, 402– 405 Ac Tpase 27: 366– 371 Ac transposition 27: 403–405
Ac transposon structure 27: 371 Bg transposon 27: 380 Ds elements 27: 364, 366 En/Spm (enhancer/suppressor-mutator), CACTA superfamily 27: 352, 353, 380– 387, 405, 406 host factors involved 27: 377, 378 linked sites 27: 374– 377 Mutator elements 27: 351– 356, 362, 387– 394 effect of ABA on stomata 4: 138 effect of assimilation rate on stomatal aperture 4: 184 effect of humidity, light and CO2 on stomatal aperture 4: 208 effect of sodium 7: 171 endosperm and aleurone development 27: 393 etiochloroplast membrane structure 7: 14 evolutionary aspects 27: 419, 421 germ cell development 27: 393, 394 hydraulic conductivity 6: 97 intercellular CO2 concentration 4: 180 leaf water potential and evaporation rate 4: 149 percentage radiocomposition of cell and cell wall fractions 5: 120, 121 photoactive stomatal movement 4: 142 polysaccharide content of golgi bodies 5: 119, 120 polysaccharide production of extracellular slime 5: 119– 121 retrotransposons 27: 336 –338 Bs1 27: 349 non-LTR 27: 342 Zeon-1 27: 348 reverse genetics 27: 408, 409 R-r complex, gene duplications 27: 428, 429 site of synthesis of cell wall components 5: 99, 100, 126 stomatal aperture and CO2 concentration 4: 141 stomatal response to water potential 4: 132, 133 subsp. teosinte 27: 354 transport of synthesized materials 5: 133
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
transposon tagging 27: 395 Tourist elements 27: 398 Verification of cloned genes, endogenous transposable elements 27: 401 volumetric elastic modulus 6: 79 Zea mays see maize Zea mays, endosperm fracture properties 17: 278, 279 Zea mays, rate of protein degradation 8: 69, 105, 106 Zearalenone 24: 78 Zeatin 19: 131; 34: 73 Zeatin riboside (ZR) 24: 49; 19: 126, 127, 131, 136 Zeaxanthin 22: 143; 27: 294 structure 27: 293 Zebrina chromosome evolution 6: 145, 146 karyotype evolution and centric fusion 6: 183 polyploidy and centric fusion 6: 183 telecentric chromosomes 6: 139 Zebrina pendula, influorescence 3: 280 a-zein 35: 155 g-zein 34: 210, 211 g-zein sequences 34: 89 Zeins 34: 197 Zelkova 37: 108 Zerna erecta enzymes of ammonia assimilation 6: 27, 28 Zero plane displacement length 18: 195 Zero-current voltage 25: 223 Zeuxine elongata, flowering period 7: 537 Zinc 22: 4, 72, 81 Zinc deficiency 37: 110 Zinc, effect on plant disease 10: 257– 260 Zingiber, influorescence 3: 269 Zingiberaceae 22: 22 growth 3: 215, 221, 222 influorescence 3: 267 Zingiberales, aerenchyma 3: 212 Zinnia 25: 103, 104; 30: 246 Zinnia elegans 25: 94, 96 Zizania 34: 34 Zizania latifolia 34: 50 Zizania palustris 34: 34, 50 Zizaniopsis 34: 34
305
Zo values, typical 18: 195, 196 Zone lines in decaying wood 7: 341, 343– 345 pseudosclerotial plate formation 7: 344, 345 resulting from a single mycelium 7: 344 resulting from mycelial interaction 7: 345 Zonocerus variegatus 30: 100 Zoopsis 19: 263, 265, 291 Zoospore discharge 24: 386–389 Zoosporogenesis 24: 357 cortical cleavage vacuole 24: 381, 382 flagellar axonemes 24: 385, 386 induction 24: 377, 378 involvement of large central vacuole 24: 381 involvement of sporangial plasma membrane 24: 381 patterns of cleavage membrane formation 24: 378– 383 peripheral cisternae 24: 384, 385 polarization of zoosporic organelles 24: 386 progressive extension of cleavage vacuoles around or between nuclei 24: 382, 383 spatial regulation of cleavage 24: 383, 384 synthesis of zoospore-specific components during 24: 384– 386 vesicles 24: 379– 381 water expulsion vacuoles 24: 384 Zooxanthellae, photosynthetic rate 10: 151 Zostera 27: 89, 150, 173– 175 Zostera marina 28: 13, 14, 29, 32 Zosterophyllum fossil structure 5: 162 ratio of water movement through xylem and parenchyma 5: 176, 177 stomatal structure 5: 166 Zucchini lethal chlorosis virus 36: 117 Zucchini yellow mosaic virus (ZYMV) 36: 8, 9 ZWITCHEL (ZWI) 31: 202, 248, 249, 251, 252 Zwittergen, solubilization of chlorophyllprotein complexes 10: 104 Zwittergent 12: 9
306
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 1– 38
Zygogynum karyotype 6: 189, 190 Zygopetalum flowering period 7: 546 post-pollination phenomena 7: 572, 578 Zygophyllum dumosum, stomatal response to humidity 4: 170
Zygophyllum stapfi 11: 172, 173 Zygosaccharomyces rouxii 28: 13, 40 Zygote development 28: 241– 245 isolation 28: 241, 242 manipulation 28: 242– 245 produced in planta 28: 241, 242
CONTRIBUTORS TO VOLUMES 1 –38 R. J. Abbott Harold Mitchell Building, Division of Environmental and Evolutionary Biology, School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, Scotland, UK 38: 287 M. J. Adams Plant Pathogen Interactions Division, IACR – Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 36: 47 S. Aldington Centre for Plant Science, University of Edinburgh, Daniel Rutherford Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JH, Scotland, UK 19: 1 L. Alexander IACR – Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS4I 9AF, UK 35: 111 G. J. Allen The Plant Laboratory, Biology Department, University of York, PO Box 373, York YO1 5YW, UK 25: 217 E. Ammar Department of Economic Entomology, Faculty of Agriculture, Cairo University, Giza, Egypt 36: 141 A. Amtmann The Plant Laboratory, Biology Department, PO Box 373, University of York, York YO1 5YW, UK 29: 75 S. L. Anagnostakis The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504-1106, USA 21: 125 Louise E. Anderson Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60680, USA 12: 1 G. M. Androes Physics Department, American University of Beirut, Beirut, Lebanon 1: 327 G. C. Angenent Department of Developmental Biology, DLO-Centre for Plant Breeding and Reproduction Research, CPRO-DLO, P.O. Box 16, 6700 AA Wageningen, The Netherlands 26: 229 R. Appels CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia 34: 289 J. Arditti Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92717, USA 7: 421 W. Armstrong Department of Plant Biology, University of Hull, Hull HU6 7RX, England, UK 7: 225 A. M. Ashby Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK 24: 31 A. E. Ashford School of Biological Science, The University of New South Wales, Sydney, NSW 2052, Australia 28: 119 H. Ashihara Department of Biology, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan 30: 117 M. R. Ashmore Department of Environmental Science, University of Bradford, West Yorkshire BD7 1DP, UK 29: 31 S. M. Assmann Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA 32: 459
308
CONTRIBUTORS TO VOLUMES 1 –38
N. R. Baker Department of Biology, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK 13: 1 P. Barcelo DuPont Wheat Transformation Laboratory, c/o Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, UK 34: 59 K. R. Barker Plant Pathology Department, North Carolina State University, Box 7616, Raleigh, North Carolina 27695-7616, USA 23: 103 J. Barrett Department of Plant Industry, CSIRO, Canberra, ACT 2601, Australia 10: 1 D. C. Bassham MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA 25: 43 D. C. Bassham Department of Botany and Centre for Plant Responses to Environmental Stresses, 353 Bessey Hall, Iowa State University, Ames, IA 50011, USA 38: 65 F. Beaudoin IACR – Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 35: 111 C. H. Beckman Department of Plant Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA 21: 35 D. J. Beerling Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK 26: 193 R. E. Beever Plant Diseases Division, Department of Scientific and Industrial Research, Auckland, New Zealand 8: 127 P. R. Bell Department of Botany and Microbiology, University College, London WC1E 6BT, UK 16: 55 F. Berger Ecole Normale Supe´rieure de Lyon, UMR 9938CNRS-Inra-ENS, 46 Alle´e d’Italie, F-69364 Lyon Cedex 07, France 28: 231 N. Bernstein Institute of Soil Water, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel 29: 115 J. L. Beynon Department of Biological Sciences, Wye College, University of London, Wye, Ashford, Kent TN25 5AH, UK 24: 227 Thomas Bjo¨rkman Department of Botany, University of Washington, Seattle, Washington, USA 15: 1 E. Blumwald Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada 25: 401 D. Boulter Department of Biological Sciences, University of Durham, South Road, Durham DH1 3LE, UK 9: 1; 27: 1 J.-P. Bouly Laboratoire de Biologie du De´veloppement des Plantes, Institut de Biotechnologie des Plantes, UMR CNRS 8618, Baˆtiment 630, Universite´ de Paris-Sud, 91405 Orsay Cedex, France 32: 405 G. W. van den Bovenkamp General Inspection Service for Agricultural Seeds and Seed Potatoes (NAK), P.O. Box 51, 6710 BB Ede, The Netherlands 23: 217 A. P. C. Brown School of Biochemistry and Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK 34: 237 D. J. F. Brown Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK 36: 169
CONTRIBUTORS TO VOLUMES 1 –38
309
J. K. Brown Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA 36: 65 P. F. Brownell Department of Botany, James Cook University of North Queensland, Townsville, Queensland, Australia 7: 117 T. P. Brutnell Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK 28: 161 R. W. van den Bulk Centre for Plant Breeding and Reproduction Research (CPRO-DLO), Droevendaalsesteeg 1, P.O. Box 16, 6700 AA Wageningen, The Netherlands 23: 171 D. J. W. Burns Plant Diseases Division, Department of Scientific and Industrial Research, Auckland, New Zealand 8: 127 Hans Burstro¨m Institute of Plant Physiology, Lund University, Lund, Sweden 1: 73 D. Buttry Chemistry Department, University of Wyoming, Laramie, WY 82071, USA 18: 255 M. E. Byrne Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA 38: 191 J. A. Callow Department of Plant Sciences, University of Leeds, England, UK 4: 1 L. R. Campbell Department of Entomology, Kansas State University, Manhattan, KS 53602, USA 36: 113 C. Canel USDA, ARS, Natural Products Utilization Research Unit, P.O. Box 8048, University, Mississippi 38776, USA 31: 121 W. W. Carmichael Department of Biological Sciences, Wright State University, Dayton, Ohio 45435, USA 12: 47; 27: 211 L. Chalker-Scott Division of Ecosystem Sciences, College of Forest Resources, Box 354115, University of Washington, Seattle, WA 98195, USA 37: 103 M. Chamberlain (previously known as M. Jurand) Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, UK 24: 71 A. Champion Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du De´veloppement des Plantes (BDP), Baˆtiment 630, UMR, CNRS/UPS 8618, Universite´ de Paris-Sud, F-91405 Orsay Cedex, France 38: 235 G. Chen Chemistry Department, University of Wyoming, Laramie, WY 82071, USA 18: 255 Z.-H. Chen Plant Molecular Sciences Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK 38: 95 M. J. Chrispeels Department of Biology 0116, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA 25: 419 S. E. Clark Department of Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109-1048, USA 32: 226 D. T. Clarkson Department of Plant Sciences, IACR-Long Ashton, University of Bristol, Long Ashton, Bristol BS18 9AF, UK 30: 1 J. M. Cock Reproduction et De´veloppement des Plantes, UMR 9938 CNRS-INRAENSL, Ecole Normale Supe´rieure de Lyon, 46 alle´e d’Italie, 69364 Lyon Cedex 07, France 32: 270
310
CONTRIBUTORS TO VOLUMES 1 –38
H. A. Collin Department of Botany, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK 13: 145 M. E. Collinson Division of Biosphere Sciences, King’s College London, Kensington Campus, Campden Hill Road, London W8 7AH, UK 17: 1 L. Colombo Department of Developmental Biology, DLO-Centre for Plant Breeding and Reproduction Research, CPRO-DLO, P.O. Box 16, 6700 AA Wageningen, The Netherlands 26: 229 I. R. Cowan Department of Environmental Biology, Research School of Biological Sciences, Australian National University, Canberra, Australia 4: 117 D. Cox-Foster Department of Entomology, College of Agricultural Science, The Pennsylvania State University, University Park, PA 16802, USA 31: 175 R. Craig Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA 31: 175 A. R. Crawford CRC for Tropical Plant Pathology, The University of Queensland, Brisbane 4072, Australia 24: 431 P. W. Crous Department of Plant Pathology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa 33: 1 R. R. D. Croy Department of Biological Sciences, University of Durham, South Road, Durham DH1 3LE, UK 27: 1 A. Crozier Plant Products and Human Nutrition Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK 9: 33; 30: 117 D. A. Cuppels Pest Management Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada 23: 27 H. Czosnek Department of Field Crops and Genetics, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel 36: 65 Jack Dainty Biophysics Department, University of Edinburgh, Scotland 1: 279 M. B. Dale Department of Botany, The University, Southampton, England, UK 2: 35 M. J. Daniels Department of Biology 0116, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA 25: 419 D. D. Davies School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, England, UK 8: 65 J. M. Davies Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK 25: 339 W. J. Davies Division of Biological Sciences, IEBS, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK 22: 227 E. L. Davis Plant Pathology Department, North Carolina State University, Box 7616, Raleigh, North Carolina 27695-7616, USA 23: 103 S. H. De Boer Pacific Agriculture Research Centre, Agriculture and Agri-Food Canada, 6660 N.W. Marine Drive, Vancouver, British Columbia V6T 1X2, Canada 23: 27 B. Dell School of Environment and Life Sciences, Murdoch University, Murdoch, Western Australia 6153, Australia 6: 277
CONTRIBUTORS TO VOLUMES 1 –38
311
F. M. Dewey Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 24: 275 I. G. Dinesen The Danish Plant Directorate, Skovbrynet 20, Lyngby, DK-2800, Denmark 23: 137 H. J. M. Dons Department of Developmental Biology, DLO-Centre for Plant Breeding and Reproduction Research, CPRO-DLO, P.O. Box 16, 6700 AA Wageningen, The Netherlands 26: 229 R. Douce Laboratoire de Biologie Ve´ge´tale, Commissariat a` l’Energie Atomique, Centre d’Etudes Nucleaires de Grenoble, 85 X, 38041 Grenoble Cedex, France 7: 1 A. Drenth CRC for Tropical Plant Pathology, The University of Queensland, Brisbane 4072, Australia 24: 431 J. G. Duckett School of Biological Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, UK 19: 231 M. V. Duke USDA, ARS, Southern Weed Science Research Unit, P.O. Box 350, Stoneville, MS 38776, USA 31: 121 S. O. Duke USDA, ARS, Natural Products Utilization Research Unit, P.O. Box 8048, University, Mississippi 38776, USA 31: 121 C. Dumas Ecole Normale Supe´rieure de Lyon, UMR 9938CNRS-Inra-ENS, 46 Alle´e d’Italie, F-69364 Lyon Cedex 07, France 28: 231 M. A. Dunn School of Biochemistry and Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK 34: 237 P. S. Dyer Microbiology Division, School of Biological Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 33: 225 J. C. Earnshaw Department of Pure and Applied Physics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland, UK 11: 1 D. M. Eaves Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada 23: 243 D. L. Ebbels Central Science Laboratory, Ministry of Agriculture, Fisheries and Food, Hatching Green, Harpenden, Hertfordshire AL5 2BD, UK 23: 1 K. J. Edwards IACR – Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 34: 301 A. H. Ehrlich Department of Biological Sciences, Stanford University, Stanford, California 94305, USA 21: 79 R. J. Ellis Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK 14: 1 H. van den Ende Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands 20: 125 P. K. Endress Department of Systematic Botany, University of Zurich, Zurich, Switzerland 17: 99 A. R. Ennos School of Biological Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK 33: 133
312
CONTRIBUTORS TO VOLUMES 1 –38
G. Erdtman Palynological Laboratory, Nybodagatan, Stockholm-Solna, Sweden 1: 149 A. Fahn Department of Plant Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel 31: 37 J.-E. Faure Ecole Normale Supe´rieure de Lyon, UMR 9938CNRS-Inra-ENS, 46 Alle´e d’Italie, F-69364 Lyon Cedex 07, France 28: 231 T. S. Feild Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA 37: 17 B. G. Forde Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 30: 1 A. J. Foster School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, UK 34: 263 A. A. J. M. Franken Centre for Plant Breeding and Reproduction Research (CPRO-DLO), Droevendaalsesteeg 1, P.O. Box 16, 6700 AA Wageningen, The Netherlands 23: 171 E. M. Friis Department of Palaeobotany, Swedish Museum of Natural History, Stockholm, Sweden 17: 99 S. C. Fry Centre for Plant Science, University of Edinburgh, Daniel Rutherford Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JH, Scotland, UK 19: 1 W. E. Fry Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA 24: 1 G. Galili Department of Plant Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel 25: 113 P. van Gardingen University of Edinburgh, Institute of Ecology and Resource Management, Darwin Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JU, UK 18: 191 A. Gelli Department of Botany, University of Toronto, 25 Willcocks Street, Ontario M5S 3B2, Canada 25: 401 R. C. Gergerich Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA 36: 101 T. L. German Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA 36: 113 C. A. Gilligan Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK 24: 275; 38: 1 M. Ginzburg Botany Department, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 14: 95 R. D. Gitaitis Department of Plant Pathology, University of Georgia, Coastal Plain Station, Tifton, Georgia 31793, USA 23: 27 B. J. Glover Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK 31: 193 K. S. Gould School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 37: 1
CONTRIBUTORS TO VOLUMES 1 –38
313
J. Grace University of Edinburgh, Institute of Ecology and Resource Management, Darwin Buildings, King’s Buildings, Mayfield Road, Edinburgh EH9 3JU, UK 18: 191 R. D. Graham Department of Agronomy, Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, South Australia 5064 10: 221 John C. Gray Botany School, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK 14: 27 R. A. Grazzini Center Analytical Laboratories, State College, 487 Nimitz Avenue State College, PA 00016, USA 31: 175 H. Griffiths Department of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK 15: 43 G. G. Gross Universita¨t Ulm, Abteilung Allgemeine Botanik, D – 7900 Ulm, Germany 8: 25 I. Gy Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du De´veloppement des Plantes (BDP), Baˆtiment 630, UMR, CNRS/UPS 8618, Universite´ de Paris-Sud, F-91405 Orsay Cedex, France 38: 235 W. P. Hackett Department of Environmental Horticulture, University of California, Davis, CA 95616, USA 37: 95 N. G. Halford IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 32: 405 D. L. Hallahan Biochemical Sciences and Engineering, Central Research and Development, The Dupont Company, P.O. Box 80328, Wilmington, DE 198800328, USA 31: 77 A. Hamal Institut de Biotechnologie des Plantes, Laboratoire de Biologie du De´veloppement des Plantes, Ba´timent 630, UMR/CNRS 8618, Universite´ de Paris-Sud, 91405 Orsay, France 32: 299 A. R. Hardham Plant Cell Biology Group, The Research School of Biological Sciences, The Australian National University, P.O. Box 475, Canberra 2601, Australia 24: 353 D. G. Hardie Biochemistry Department, Dundee University, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK 32: 1 Go¨tz Harnischfeger Lehrstuhl fu¨r Biochemie der Pflanze der Universita¨t Go¨ttingen, 34 Go¨ttingen, Germany 5: 1 J. L. Harwood Department of Biochemistry, University College, Cardiff CF1 1XL, UK 16: 1 B. Haubold Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 24: 335 M. J. Hawkesford IARC-Rothamsted, Biochemistry and Physiology Department, Harpenden, Hertfordshire AL5 2JQ, UK 33: 159 M. C. Heath Department of Botany, University of Toronto, Toronto, Ontario M5S 1A1, Canada 24: 195 E. Heberle-Bors Vienna Biocenter, Institute of Microbiology and Genetics, Vienna University, Dr. Bohrgasse 9, A-1030, Vienna, Austria 35: 53
314
CONTRIBUTORS TO VOLUMES 1 –38
R. J. Henry Cooperative Research Centre for Molecular Plant Breeding, Centre for Plant Conservation Genetics, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia 34: 24 Y. Henry Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du De´veloppement des Plantes (BDP), Baˆtiment 630, UMR, CNRS/UPS 8618, Universite´ de Paris-Sud, F-91405 Orsay Cedex, France 32: 299; 38: 235 E. M. Herman Plant Molecular Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA 25: 113 A. M. Hetherington Division of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, UK 22: 45 N. M. Holbrook Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA 37: 17 P. M. Holligan Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK 16: 193 T. P. Holtsford Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA 32: 45 E. B. Holub Plant Pathology and Weed Science Department, Horticulture Research International –Wellesbourne, Warwickshire CV35 9EF, UK 24: 227 S. Ho¨rtensteiner Institute of Plant Biology, University of Zu¨rich, Zollikerstrasse 107, CH-8008 Zu¨rich, Switzerland 35: 1 C. J. Howe Department of Biochemistry and Cambridge Centre for Molecular Recognition, University of Cambridge, Cambridge CB2 1QW, UK 27: 257 E. M. Hrabak Department of Plant Biology, University of New Hampshire, Durham, NH 03824, USA 32: 185 S. C. Huber United States Department of Agriculture, Agricultural Research Service and Departments of Crop Science and Botany, North Carolina State University, Raleigh, NC 26795, USA 32: 435 M. A. Hughes School of Biochemistry and Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK 34: 237 M. Hu¨lskamp Institut fu¨r Entwicklungsgenetik, Auf der Morgenstelle 1, D-72076 Tu¨bingen, Germany 31: 237 H. Huttinga Research Institute for Plant Protection (IPO-DLO), Binnenhaven 5, P.O. Box 9060, 6700 GW Wageningen, The Netherlands 23: 59 G. J. Hyde School of Biological Science, University of New South Wales, Kensington, NSW 2033, Australia 24: 353 K. Ichimura Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan 32: 355 E. R. Ingham Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA 32: 45 D. S. Ingram Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, UK 24: 71
CONTRIBUTORS TO VOLUMES 1 –38
315
V. F. Irish Department of Biology, Yale University, New Haven, CT 06520, USA 28: 197 J. A. G. Irwin CRC for Tropical Plant Pathology, The University of Queensland, Brisbane 4072, Australia 24: 431 M. B. Jackson Department of Agricultural Sciences, University of Bristol, AFRC Institute of Arable Crops Research, Long Ashton Research Station, Bristol BS18 9AF, UK 19: 103 G. I. Jenkins Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK 29: 51 L. Jiang Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China 35: 139 P. John Botany School, University of Oxford, South Parks Road, Oxford, England 4: 51 A. L. Jones Department of Biochemistry, University College, Cardiff CF1 1XL, UK 16: 1 D. A. Jones The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK 24: 89 D. A. Jones Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia 38: 251 J. D. G. Jones The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK 24: 89 K. Jones Jodrell Laboratory, Royal Botanical Gardens, Kew, Richmond, Surrey TW9 3DS, England, UK 6: 119 B. R. Jordan New Zealand Institute of Crop and Food Research Limited, Levin Research Centre, Kimberley Road, Private Bag 4005, Levin, New Zealand 22: 97 S. Jouannic Laboratoire de Biologie du De´veloppement des Plantes, Institut de Biotechnologie des Plantes, UMR/CNRS 8618, Baˆtiment 630, Universite´ de Paris-Sud, 91405 Orsay, France 32: 299 J. Joyard Laboratoire de Biologie Ve´ge´tale, Commissariat a` l’Energie Atomique, Centre d’Etudes Nucleaires de Grenoble, 85 X, 38041 Grenoble Cedex, France 7: 1 N. T. Keen Department of Plant Pathology, University of California, Riverside, CA 92521, USA 30: 291 N. W. Kerby A. F. R. C. Research Group on Cyanobacteria, Department of Biological Sciences, The University, Dundee DD1 4HN, Scotland, UK 11: 71 C. A. Kidner Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA 38: 191 E. J. Kim Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA 25: 297 A. H. Kingston-Smith Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB, UK 25: 195 V. Kirik Institut fu¨r Entwicklungsgenetik, Auf der Morgenstelle 1, D-72076 Tu¨bingen, Germany 31: 237
316
CONTRIBUTORS TO VOLUMES 1 –38
B. C. Kirkpatrick Department of Plant Pathology, University of California, Davis, California 95616, USA 21: 187 H. W. Klein –Gebbinck IRRI, Department of Plant Pathology, PO Box 933, 1099 Manila, Philippines. Present address: Department of Plant Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada 21: 213 Leon V. Kochian US Plant, Soil and Nutrition Laboratory, USDAARS, Cornell University, Ithaca, New York, USA 15: 93 D. Koller Plant Biophysics Laboratory, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel 33: 35 E. Kombrink Max-Planck-Institut fu¨r Zu¨chtungsforschung, Abteilung Biochemie, Carl-von-Linne´-Weg 10, D-50829 Ko¨ln, Germany 21: 1 E. M. Kramer Department of Biology, Yale University, New Haven, CT 06520, USA 28: 197 M. Kreis Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du De´veloppement des Plantes (BDP), Baˆtiment 630, UMR, CNRS/UPS 8618, Universite´ de Paris-Sud, F-91405 Orsay Cedex, France 28: 71; 32: 299; 38: 235 W. Kreutz Max-Volmer-Institut, I. Institut fu¨r Physikalische Chemie, Technische Universita¨t, Berlin, Germany 3: 53 W.-M. Kriel Department of Plant Pathology, University of the Orange Free State, Bloemfontein 9300, South Africa 33: 1 R. Kunze Ludwig-Maximilians-Universita¨t Mu¨nchen, Institut fu¨r Genetik und Mikrobiologie, Maria-Ward-Str. 1A, 80638 Mu¨nchen, Germany 27: 331 A. L. Kursanov Institute of Plant Physiology, K. A. Timiriasev, Academy of Sciences, Moscow, USSR 1: 209 Derek T. A. Lamport Now at the Michigan State University Atomic Energy Commission Plant Research Laboratory, RIAS, Baltimore, Maryland, USA 2: 151 J. A. Langdale Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 28: 161 C. J. Langerak Centre for Plant Breeding and Reproduction Research (CPRODLO), Droevendaalsesteeg 1, P.O. Box 16, 6700 AA Wageningen, The Netherlands 23: 171 A. W. D. Larkum School of Biological Sciences, University of Sydney, NSW 2006, Australia 10: 1 T. Larkum School of Biological Sciences, University of Sydney, NSW 2006, Australia 27: 257 T. Lawson Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK 26: 317 D. B. Lazof Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA 29: 115 P. A. Lazzeri DuPont Wheat Transformation Laboratory, c/o Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, UK 34: 301 A. Lecharny Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du De´veloppement des Plantes (BDP), Baˆtiment 630, UMR, CNRS/UPS 8618, Universite´ de Paris-Sud, F-91405 Orsay Cedex, France 38: 235
CONTRIBUTORS TO VOLUMES 1 –38
317
D. W. Lee Department of Biological Sciences, Florida International University, Miami, FL 33199, USA, and Fairchild Tropical Garden, Miami, FL 33156, USA 37: 37 J. A. Lee Department of Botany, University of Manchester, Manchester M13 9PL, England, UK 6: 1 J. A. Lee Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK 29: 1 R. C. Leegood Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK 26: 251 R. A. Leigh Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 25: 171 J. R. Lenton IACR –Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 34: 127 A.-S. Leprince Institut de Biotechnologie des Plantes, Laboratoire de Biologie du De´veloppement des Plantes, Baˆtiment 630, UMR/CNRS 8618, Universite´ de Paris-Sud, 91405 Orsay, France 32: 299 C. A. Le´vesque Pacific Agriculture Research Centre, Agriculture and Agri-Food Canada, 6660 N.W. Marine Drive, Vancouver, British Columbia V6T 1X2, Canada 23: 243 John Levy Botany Department, Imperial College, University of London, SW7 2: 323 Jiaxu Li Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA 32: 459 R. Ligrone Dipartimento di Biologia Vegetale, Universita` di Napoli, Via Forla 223, I-80139 Napoli, Italy 19: 231 W.-E. Lo¨nnig Max-Planck-Institut fu¨r Zu¨chtungsforschung, Carl-von-Linne´-Weg 10, 50829 Ko¨ln, Germany 27: 331 J. D. Lovis Department of Plant Sciences, University of Leeds, England, UK 4: 231 Sheng Luan Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA 32: 67 J. A. Lucas IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS18 9AF, UK 26: 135; 33: 226 William J. Lucas Department of Botany, University of California, Davis, California, USA 15: 93 U. Lu¨ttge Technische Hochschule Darmstadt, Institut fu¨r Botanik, Schnittspahnstrasse 3-5, D-64287 Darmstadt, Germany 25: 253 S. A. MacFarlane Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK 36: 169 L. V. Madden Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 –4096, USA 21: 213 C. Maggs School of Biology and Biochemistry, Medical Biology Centre, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK 35: 171
318
CONTRIBUTORS TO VOLUMES 1 –38
P. Maheshwari Department of Botany, University of Delhi, Delhi, India 2: 219 M. Malone Horticultural Research International, Wellesbourne, Warwicks CV35 9EF, UK 22: 163 I. Manton Botany Department, University of Leeds, England, UK 2: 1 M. D. Marks Department of Genetics and Cell Biology, University of Minnesota, St Paul, MN 55108, USA 31: 219 F. M. Marshall Centre for Environmental Technology, Imperial College of Science, Technology and Medicine, 48 Princes Gardens, London SW7 2PE, UK 29: 31 R. A. Martienssen Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA 38: 191 C. Martin Department of Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK 31: 193 G. Martin Botany Department, P.O. Box 3165, University of Wyoming, Laramie, WY 82071, USA 18: 255 G. B. Martin Boyce Thompson Institute for Plant Research and Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA 32: 379 E. Martinoia Ge´ne´tique Physiologique et Mole´culaire, Baˆtiment de Botanique, 40, Avenue du Recteur Pineau, F-86022, Poitiers, France 25: 365 F. Marty Laboratoire de Phytobiologie Cellulaire, Universite´ de Bourgogne, BP 138, 210 Dijon Cedex, France 25: 1 I. Mastenbroek General Inspection Service for Agricultural Seeds and Seed Potatoes (NAK), P.O. Box 51, 6710 BB Ede, The Netherlands 23: 217 P. Matile Institut fu¨r Pflanzenbiologie, Universita¨t Zu¨rich, Zollikerstrasse 107, CH-8008 Zu¨rich, Switzerland 25: 87 E. Matthys-Rochon Ecole Normale Supe´rieure de Lyon, UMR 9938CNRS-InraENS, 46 Alle´e d’Italie, F-69364 Lyon Cedex 07, France 28: 231 M. A. Mayo Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK 36: 21 M. R. McAinsh Division of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, UK 22: 45 A. J. McComb Botany Department, University of Western Australia, Nedlands, Western Australia 6009, Australia 6: 277 A. J. S. McDonald Department of Plant and Soil Science, Aberdeen University, Cruick Shank Building, St. Machar Drive, Aberdeen, AB9 2UD, UK 22: 227 G. I. McFadden Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville VIC 3052, Australia 19: 189 J. I. Medford Department of Biology, Colorado State University, Fort Collins, CO 80523, USA 31: 175 R. Meideros Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA, and Department Fitopatologia, Universidade de Brasilia, Brasilia DF 70910-900, Brazil 36: 113 C. R. Metcalfe The Jodrell Laboratory, Royal Botanic Gardens, Kew, England, UK 1: 101
CONTRIBUTORS TO VOLUMES 1 –38
319
M. G. Milgroom Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA 24: 1 I. M. Miller Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA 17: 163 S.A. Miller Plant Pathology Department, Ohio State University, Wooster, Ohio 44691, USA 23: 73 R. I. Milne Harold Mitchell Building, Division of Environmental and Evolutionary Biology, School of Biology, University of St Andrews, St Andrews Fife KY16 9TH, Scotland, UK 38: 281 R. F. Mithen School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK 35: 213 T. Mizoguchi Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan 32: 355 M. Morell CSIRO Division of Plant Industry, Institute of Plant Production and Processing PO Box 1600, Canberra, ACT 2601, Australia 34: 165 R. O. Mumma Department of Entomology, College of Agricultural Science, The Pennsylvania State University, University Park, PA 16802, USA 31: 175 T. D. Murray Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA 33: 225 J. A. Napier IACR – Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 35: 111 L. R. Nault Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA 36: 141 S. O. Neill School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 37: 167 R. Neilson Scottish Crop Research Institute, Invergowrie, Dunde, DD2 5DA, UK 36: 169 Patricia Nevers Max-Planck-Institut fu¨r Zu¨chtungsforschung, Egelspfad, D-5000 Ko¨ln 30, Germany 12: 103 E. A. Nothnagel Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA 30: 207 S. F. Oberbauer Department of Biological Sciences, Florida International University, Miami, FL 33199, USA 37: 129 G. O’brien School of Biochemistry and Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK 34: 237 H. Ougham Cell Biology Department, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK 35: 1 M. G. Palmgren Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensveg 40, DK-1871 Frederiksberg, Denmark 28: 1 S. N. Panter Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia 38: 251 R. N. Paul USDA, ARS, Southern Weed Science Research Unit, P.O. Box 350, Stoneville, MS 38776, USA 31: 121
320
CONTRIBUTORS TO VOLUMES 1 –38
A. W. Pemberton Central Science Laboratory, Ministry of Agriculture, Fisheries and Food, Hatching Green, Harpenden, Hertfordshire AL5 2BD, UK 23: 1 Roger I. Pennell John Innes Institute and AFRC Institute of Plant Science Research, Colney Lane, Norwich NR4 7UH, UK 15: 179 K. L. Perry Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA 36: 1 M. Pfosser Vienna Biocenter, Institute of Microbiology and Genetics, Vienna University, Dr. Bohrgasse 9, A-1030, Vienna, Austria 35: 53 A. Picaud Institut de Biotechnologie des Plantes (IBP), Laboratoire de Biologie du De´veloppement des Plantes (BDP), Baˆtiment 630, UMR, CNRS/UPS 8618, Universite´ de Paris-Sud, F-91405 Orsay Cedex, France 32: 299; 38: 235 J. A. Pickett Department of Biological and Ecological Chemistry, IACRRothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 30: 91 J. M. Picton Department of Botany, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland, UK 11: 1 W. S. Pierpoint Department of Biochemistry and Physiology, AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, UK 20: 163 T. P. Pirone Department of Plant Pathology, University of Kentucky, Lexington, KY 40502, USA 36: 1 R. T. Plumb IACR– Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 36: 199 C. J. Pollock Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB, UK 25: 195 M. C. Probine Biophysics Section, Physics and Engineering Laboratory, D.S.I.R., Lower Hutt, New Zealand 3: 1 N. S. Rangaswamy Department of Botany, University of Delhi, Delhi, India 2: 219 S. Rasco – Gaunt DuPont Wheat Transformation Laboratory, c/o Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, UK 34: 59 R. G. Ratcliffe Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 20: 43 J. A. Raven Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK 5: 153; 11: 71; 27: 85 A. D. M. Rayner School of Biological Sciences, University of Bath, Claverton Down, Bath BA2 7AY, England, UK 7: 333 B. Reavy Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK 36: 21 J. S. Grant Reid Department of Biological Science, University of Stirling, Stirling FK9 4LA, Scotland, UK 11: 125 P. M. Rentzepis Bell Laboratories, Murray Hill, New Jersey 07974, USA 8: 1 K. S. Renzaglia School of Biological Sciences, Box 23590A, East Tennessee State University, Johnson City, TN 37614, USA 19: 231 A. H. Reynolds Bell Laboratories, Murray Hill, New Jersey 07974, USA 8: 1 C. S. Reynolds The Freshwater Biological Association, Windermere Laboratory, Ambleside, Cumbria LA22 0LP, UK 13: 67
CONTRIBUTORS TO VOLUMES 1 –38
321
A. M. Rimando USDA, ARS, Natural Products Utilization Research Unit, P.O. Box 8048, University, Mississippi 38776, USA 31: 121 E. M. Roberts Department of Plant Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA 21: 35 C. Robinson Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK 14: 1 David G. Robinson Pflanzenphysiologisches Institut der Universita¨t Untere Karspa¨le 2, D-34 Go¨ttingen, Germany 5: 89 P. A. Roelofsen Laboratory of General and Technical Biology, Technological University, Delft, The Netherlands 2: 69 J. C. Rogers Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 – 6340, USA 35: 139 T. Sachs Department of Botany, The Hebrew University, Jerusalem, Israel 9: 151 Heinz Saedler Max-Planck-Institut fu¨r Zu¨chtungsforschung, Egelspfad, D-5000 Ko¨ln 30, Germany 12: 103 H. Saedler Max-Planck-Institut fu¨r Zu¨chtungsforschung, Carl-von-Linne´-Weg 10, 50829 Ko¨ln, Germany 27: 331 D. Sanders The Plant Laboratory, Biology Department, PO Box 373, University of York, York YO1 5YW, UK 29: 75 S. Savary ORSTOM Visiting Scientist at International Rice Research Institute, Entomology and Plant Pathology Division, PO Box 933, 1099 Manila, Philippines 21: 213 H. Saxe Ministry of the Environment, National Environmental Research Institute, Division of Terrestrial Ecology, Vejlsøvej 11, DK-8600 Silkeborg, Denmark 18: 1 G. E. Schaller Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA 32: 109 D. J. Schultz Department of Botany and Plant Pathology, 166 Plant Biology Laboratory, Michigan State University, East Lansing, MI 48824, USA 31: 175 M. D. Serpe Department of Biology, Boise State University, Boise, ID 83725, USA 30: 207 G. Sessa Boyce Thompson Institute for Plant Sciences, Tower Road, Ithaca, NY 14853, USA 32: 379 Nancy S. Shepherd Max-Planck-Institut fu¨r Zu¨chtungsforschung, Egelspfad, D-5000 Ko¨ln 30, Germany, Present address: E. I. DuPont de Nemours & Company. Inc., Central Research and Development Department, Wilmington, Delaware 19898, USA 12: 103 J. L. Sherwood Department of Plant Pathology, University of Georgia, Athens, GA 30602-7274, USA 36: 113 P. R. Shewry IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS18 9AF, UK 26: 135; 34: 301; 35: 111
322
CONTRIBUTORS TO VOLUMES 1 –38
K. Shinozaki Laboratory of Plant Molecular Biology, The Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan 32: 355 D. C. Sigee Departments of Botany and Zoology, University of Manchester, Manchester M13 9PL, England, UK 12: 205 S. A. Slack Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, New York 14853-4203, USA 23: 217 C. D. Smart Department of Plant Pathology, University of California, Davis, California 95616, USA 21: 187 D. W. M. Smiley Department of Biological and Ecological Chemistry, IACRRothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 30: 91 A. J. E. Smith School of Plant Biology, University College of North Wales, Bangor LLS7 2UW, Gwynedd, North Wales, UK 6: 195 F. A. Smith Department of Botany, The University of Adelaide, SA 5005, Australia 22: 1 S. E. Smith Department of Soil Sciences, The University of Adelaide, SA 5005, Australia 22: 1 T. M. Smith Department of Environmental Sciences, Clark Hall, University of Virginia, Charlottesville, Virginia 22903, USA 20: 1 R. G. Solomon CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia 34: 289 I. E. Somssich Max-Planck-Institut fu¨r Zu¨chtungsforschung, Abteilung Biochemie, Carl-von-Linne´-Weg 10, D-50829 Ko¨ln, Germany 21: 1 R. A. Spicer Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK 16: 95 O. Spring Institut fu¨r Botanik, Universita¨t Hohenheim (210), Postfach 70593, Stuttgart, Germany 31: 153 G. Starr School of Forestry Resources and Conservation, University of Florida, Gainesville, FL 32611, USA, and Department of Biological Sciences, Florida International University, Miami, FL 33199, USA 37: 129 L. Andrew Staehelin Biophysics Section, Physics and Engineering Laboratory, D.S.I.R., Lower Hutt, New Zealand, Present address: Biological Laboratories, Harvard University, Cambridge, Massachusetts, USA 3: 1 D. E. Stead Central Science Laboratory, Ministry of Agriculture, Fisheries and Food, Hatching Green, Harpenden, Hertfordshire AL5 2BD, UK 23: 1 M. W. Steer Department of Botany, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland, UK 11: 1 E. Steudle Institute of Biophysical Chemistry, Nuclear Research Centre, Ju¨lich, Germany 6: 45 D. Stevenson IACR –Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 34: 1 G. R. Stewart Department of Botany, University of Manchester, Manchester M13 9PL, England, UK 6: 1
CONTRIBUTORS TO VOLUMES 1 –38
323
J. G. Streeter Department of Agronomy, Ohio State University and Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA 18: 129 C. Sutula Agdia Inc., 30380 County Road 6, Elkhart, Indiana 46514, USA 23: 279 W. J. Swart Department of Plant Pathology, University of the Orange Free State, Bloemfontein 9300, South Africa 33: 1 N. J. Talbot School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, UK 34: 263 A. S. Tatham IACR – Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, UK 35: 111 J. E. Taylor Division of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, UK 22: 45 M. R. Tellez USDA, ARS, Natural Products Utilization Research Unit, P.O. Box 8048, University, Mississippi 38776, USA 31: 121 H. Thomas Cell Biology Department, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK 35: 1 M. Thomas Laboratoire de Biologie du De´veloppement des Plantes, Institut de Biotechnologie des Plantes, UMR CNRS 8618, Baˆtiment 630, Universite´ de Paris-Sud, 91405 Orsay Cedex, France 32: 405 C. Thorpe DuPont Wheat Transformation Laboratory, c/o Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, UK 34: 59 M. C. P. Timmermans Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA 38: 191 G. S. Timmins College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA 37: 17 N. K. Todd Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, England, UK 7: 333 P. B. Tomlinson Fairchild Tropical Garden, Miami, Florida 33156, USA 3: 207 K. U. Torii Department of Botany, University of Washington, Seattle, WA 98195, USA 32: 226 D. Toroser United States Department of Agriculture, Agricultural Research Service, and Departments of Crop Science and Botany, North Carolina State University, Raleigh, NC 26795-7631, USA 32: 435 A. J. van Tunen Department of Developmental Biology, DLO-Centre for Plant Breeding and Reproduction Research, CPRO-DLO, P.O. Box 16, 6700 AA Wageningen, The Netherlands 26: 229 Z. Tymowska-Lalanne Laboratoire de Biologie du De´veloppement des Plantes, Institut de Biotechnologie des Plantes, CNRS, URA 1128, Universite´ de ParisSud, Baˆtiment 630, F-91405 Orsay Cedex, France, and Laboratory of Plant Molecular Biology, Warsaw University/IBB PAN, Pawinskiego 5A, 02-106, Poland 28: 71 D. E. Ullman Department of Entomology, University of California at Davis, Davis, CA 95616, USA 36: 113
324
CONTRIBUTORS TO VOLUMES 1 –38
Michael A. Venis Shell Research Ltd., Woodstock Laboratory, Sittingbourne Research Centre, Sittingbourne, Kent ME9 8AG, England, UK 5: 53 J. F. V. Vincent Biomechanics Group, Departments of Zoology and Engineering, University of Reading, Whiteknights, PO Box 228, Reading, UK 17: 235 T. C. Vogelmann Botany Department, P.O. Box 3165, University of Wyoming, Laramie, WY 82071, USA 18: 255 T. C. Vogelmann Department of Botany and Agricultural Biochemistry, The University of Vermont, Burlington, VT 05405, USA 37: 167 S. Vural School of Biochemistry and Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK 34: 237 E. Waigmann Department of Biochemistry, University of Vienna, Dr Bohrg. 9, A-1030, Austria 31: 261 S. J. Wainwright Department of Botany and Microbiology, University College Swansea, Singleton Park, Swansea SA2 8PP, Wales, UK 8: 221 A. R. Walker Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK 31: 219 J. C. Walker Division of Biological Sciences, University of Missouri, 308 Tucker Hall, Columbia, MO 65211, USA 32: 45 R. P. Walker Department of Plant and Animal Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK 38: 95 J. C. Watson Department of Biology, Indiana University – Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA 32: 149 P. E. Weatherley Department of Botany, University of Aberdeen, Scotland, UK 3: 171 A. A. R. Webb Division of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, UK 22: 45 A. N. Webber Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA 13: 1 E. Werker Department of Botany, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel 31: 1 Alan Wesley Department of Botany, The University, Leeds, England, UK 1: 1 J. D. B. Weyers Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK 26: 317 F. R. Whatley Botany School, University of Oxford, South Parks Road, Oxford, England, UK 4: 51 J. M. Whipps Plant Pathology and Microbiology Department, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK 26: 1 D. J. von Willert Institut fu¨r Angewandte Botanik, Universita¨t Mu¨nster, D-4400 Mu¨nster, Germany 11: 157 W. T. Williams Department of Botany, The University, Southampton, England, UK 2: 35
CONTRIBUTORS TO VOLUMES 1 –38
325
C. Winefield New Zealand Institute for Crop and Food Research Ltd, Private Bag 11600, Palmerston North, New Zealand and current address: Biology Department, University of York, P.O. Box 373, Heslington Road, York YO10 5YW, UK 37: 55 B. Winkel-Shirley Department of Biology, Virginia Tech, Blacksburg, VA 24061-0406, USA 37: 75 P. J. G. M. de Wit Department of Phytopathology, Wageningen Agricultural University, PO Box 8025, 6700 EE Wageningen, The Netherlands 21: 147 C. M. Woodcock Department of Biological and Ecological Chemistry, IACRRothamsted, Harpenden, Hertfordshire AL5 2JQ, UK 30: 91 F. I. Woodward Department of Animal and Plant Sciences, University of Sheffield, PO Box 601, Sheffield S10 2UQ, UK 20: 1 J. L. Wray Plant Sciences Laboratory, Sir Harold Macmillan Building, Division of Environmental and Evolutionary Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK 33: 159 R. Yoshida Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan 32: 355 T. Yuasa Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan 32: 355 A. van Zaayen Inspection Service for Floriculture and Arboriculture (NAKB), Johan de Wittlaan 12, 2517 JR Den Haag, The Netherlands 23: 137 J. C. Zadoks Department of Phytopathology, Wageningen Agricultural University, PO Box 8025, 6700 EE Wageningen, The Netherlands 21: 213 P. Zambryski Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA 31: 261 U. Zimmermann Institute of Biophysical Chemistry, Nuclear Research Centre, Ju¨lich, Germany 6: 45 G. A. de Zoeten Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA 21: 105