A 3-Fold Vector Product in R '
By P E T E R
ZVENGROWSKI
An r-fold vector p r o d u c t in R ~ is, according to ECKMAN...
75 downloads
273 Views
139KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
A 3-Fold Vector Product in R '
By P E T E R
ZVENGROWSKI
An r-fold vector p r o d u c t in R ~ is, according to ECKMANN map X:R ~'=R "• R "• • ~-~R" satisfying
(i)
X(al,
a 2.....
(ii)
[I X ( a l ,
as
.....
[2], a
continuous
ar)" ai = 0, 1 g i g n , ar) ll 2 = lai " a i l .
I t can be deduced from [2] and [4] t h a t R n admits an r-fold v e c t o r p r o d u c t in precisely the following cases: a) r = 1 and n is even, b)
r~-n--l,
c) r := 2 a n d n =
3,7,
d) r = 3 a n d n =
8.
Explicit formulas for these vector p r o d u c t s are k n o w n in all b u t the last case, and the purpose of this n o t e is to give a simple formula for the last case, taking a d v a n t a g e of the CAYLEY numbers. Such a formula was useful to the a u t h o r in examining h o m o t o p y classes of v e c t o r fields on S 7 (cf. [5]).
1. The Cayley Numbers We t a k e the CAYLEY n u m b e r s C to be the 8-dimensional algebra over the reals having basis vectors ex, ea . . . . . es and suitably defined products. I n particular, ex-----1 is the unit and for i , j >
1 one has
eie ~ =
{-1, i--j
--ejei, i Cj. The subspace o f C o r t h o g o n a l to ea is called the pure CAYLEV numbers. Conjugation is defined b y writing a n y CAYLEY n u m b e r x as x = re~ q- x', where x' is pure, and setting x = r e 1 - - x ' . T h e CAYLSY n u m b e r s inherit the n o r m and scalar p r o d u c t of R s, a n d
=
Ixl
150
l~r~
Zrs~oRowsxI
Lemma 1 . 1 . For any CAYLEY numbers a, b, one has a : a , and a b + ba ~ 2(a. b).
ab:
,
Proo/: By linearity it suffices to prove these when a, b are the units e 1 . . . . , es, and these cases follow from the above remarks on multiplication. Corollary: -ab + ba : 2 ( a . b-) : 2(a. b). The multiplication in C can be explicitly defined by regarding C as a 2dimensional algebra over the quaternions H , with basis 1, It, and setting f
(q~ + qsk)(q~ + qJc) :
t
-!
f
(q~ql --q2q2) + (q2ql + q2q~)k.
We shall need this formula to prove the next lemma. Lemma 1.2. For any CAYLEY numbers a, b, c, a(bc) + b ( a c ) :
2(a. b)c.
Proo/: Let a -~ a 1 + ask, b ~ b 1 + bJc, c ~- c 1 ~- C2k , where a 1, a2, bl, b2,
c~, cs are quaternions. B y direct computation, a(-bc) + b ( a c ) :
(bla ~ + albl)C 1 + c~(a~b2 + b-2a.,) +
+ [cs(albl + blab) + (b2a2 + asb-2)c2]k.
Applying Lemma 1.1 and its corollary, this equals 2[(b1- al)c 1 + cl(a ~. b~) + (c 2 (a 1. bl) + (b2. a2)c2)k] --~ 2(a~ .bl + as .bs)(Cl + c2k) -~ 2 ( a . b ) c .
According to [1], the subalgebra of C generated b y any two elements (and their conjugates) is associative. In particular, for any CAYLEY numbers a, b, c, the product a ( b c ) a is well defined, and according to [3], we have a ( b c ) a -~ = (ab)(ac). Lemma 1 . 3 .
For any CAYL~r numbers a, b, c, one has
(i)
a . (a(bc)) = l a l 2 ( b . c ) ,
(ii)
c. (a (b-c)) ---- Ic I~(a. b), and
(iii)
b.(a(bc)) = --]b]2(c.a) + 2(a.b)(b.c).
A 3-Fold Vector P r o d u c t in R s
151
P r o o f of(i): 2 a . ( a ( b c ) ) ~ a(a(bc)) ~- ( a ( b c ) ) a z a ( ( ~ b ) a ) ~ (a(-bc))-a. Since a, a , c b, a n d c b ~- bc generate an associative subalgebra, this equals
a(-cb)-a ~- a ( b c ) a z a(~b -~ -bc)a : 2a(b . c ) a : 21a]2(b .c). P r o o f of (ii): 2 c . (a(-b-c)) : c ( ( ~ b ) a ) + (a(bc)) c -~ 2r, say, where r m u s t be a real number. T h e n making use of the preceding results w i t h o u t specific mention, we have rc : c((cb)-a)c + (a(bc))[c[ 2
~- (c(-cb))(-ac) + (a(bc))[c[ ~ :
Icl~(b(-dc) -[- a(bc))
: 21c[2(a.b)c. P r o o f of (iii):
2 5 . ( a ( b c ) ) ~-- b ( ( v b ) a ) ~- (a(bc))b
: b [ ( - - b c -[- 2 b . c ) a ] + [ a ( - - c b -t- 2b.c)]b ~-- 2 ( 5 . c ) ( b a + a~b) - - b ( ( b c ) a ) = 4(b .c)(a .b) - - 2 r ,
- - (a(cb))-b
for some real n u m b e r r.
Computing rb as in (ii), one finds r ----[bl2(c.a).
2. Applications to Vector Products A 2-fold vector p r o d u c t in R 7 is o b t a i n e d (cf. [2]) b y identifying R 7 with the pure CAYLEY numbers, a n d for a n y two vectors b, c in R 7 p u t t i n g X2 (b, c) ----b c ~- b . c . We shall now define a 3-fold v e c t o r p r o d u c t in R 8, which in a certain sense generalizes X 2. Theorem 2 . 1 . L e t a , b, c be vectors in R s, regarded as the CAYLEY numbers. Then X s ( a , b, c) ~- - - a(bc) + a(b .c) - - b(c .a) -~ c(a .b) defines a 3-fold v e c t o r p r o d u c t in R%
Proo/: L e m m a 1.3 will be f r e q u e n t l y used w i t h o u t specific mention, and we write X -~ Xa(a, b, c). The c o n t i n u i t y o f X3 is obvious. T h u s a . X ~ la]~(b.c) + la]2(b.c) - - ( a . b ) ( c . a ) + ( a . c ) ( a . b ) -~ O, and the proofs t h a t b . X ~ O, c . X -~ 0, are entirely similar. Finally, writing d --~ (a(bc)), have
we
152
I~R
IXI ~ = X.X
= Idl a -}- [al~(b.c) ~ ~- I b l ~ ( a . c ) ~ ~- I c l 2 ( a . b ) 2 - - 2 ( a . d ) ( b . c )
-}- 2 (b . d) (c . a) - - 2 ( c . d ) ( a . b ) :
Zv~GRowa~
-}- ( - - 2 -~ 2 - - 2) (a . b) (b . c) (c . a)
lal2]b[2]c[ ~ -~ ]a[2(b'c) ~ -b I b [ ~ ( a ' c ) ~ ~- [ c l 2 ( a ' b ) 2 - - 2 [ a l 2 ( b . c ) 2 - - 21b[~(a.e) 2 ~- 4 ( a . b ) ( b . c ) ( c . a )
- - 2[c{2(a.b) ~
- - 2 (a- b) (b. c) (c. a) ~-- ]a]21bl21c] 2 - - ] a l ~ ( b . c ) 2 - - [b[2(a.c) ~ - - [ c l ~ ( a . 5 ) 2 + 2 ( a . b ) ( b . c ) ( c . a ) [a[ ~ a . b Iillc :
b.a
[bl ~ b . c
c.a
c.b
W h e n r e s t r i c t e d t o t h e STIEFEL m a n i f o l d VT,~, t h e 2-fold p r o d u c t X2 gives a cross section X~ : V~,2 -~ V~,8. S i m i l a r l y , X 3 gives a cross section X3 : Vs,3 -> -~ Vs,4. T h e n t h e f a c t t h a t X3(el, b , c ) -~ bc ~- b . c = X 2 ( b , c ) , where (el, b, c) 9 Vs,a (and h e n c e b, c a r e pure), i m p l i e s t h a t t h e following d i a g r a m commutes: i
VT,~
* Vs.3
i' 9
F u r t h e r d e t a i l s on t h e s e v e c t o r p r o d u c t s c a n be f o u n d in [5]. The University o/Illinois REFERENCES [1] DICXSON L. E. : Linear Algebra~, Cambridge Univ. Press (1914). [2] EC~rUA~rNB. : Ste~ige L~sungen linearer Gleichunyasy~em~, Comment. Math. Holy. 15, 358-366 (1942). 13] TODA H., S~rro Y. a n d YOKOTA I. : Note on the Generator of ~ (SO (n)), Kyoto Univ. Memoirs Vol. X X X Math., No. 3, 227-230 (1957). 14] W m ' ~ A D G. W. : N o ~ on Cross Sections of Stiefd Manifolds, Comment. Math. Helv. 37, 239-240 (1963). [5] ZV~NOROWSXI P.: Vector Fields and Vector Products, Chapter 4: Vector Products, Thesis, Univ. of Chicago (1965).
( R e c e i v e d April 5, 1965)