Geometriae Dedicata 58: 53-62, 1995. © 1995 KluwerAcademic Publishers. Printed in the Netherlands.
53
4-Dimensional Co...
9 downloads
430 Views
507KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Geometriae Dedicata 58: 53-62, 1995. © 1995 KluwerAcademic Publishers. Printed in the Netherlands.
53
4-Dimensional Compact Projective Planes with Small Nilradical Dedicated to Prof. H. Salzmann on the occasion of his 65th birthday H A U K E KLEIN Mathematisches Seminar, Universitiit Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany (Received: 7 October 1994) Abstract. We consider 4-dimensional compact projective planes with a solvable 6-dimensional
collineation group E and with orbit type _> (2, 1), i.e. E fixes a flag v E W, acts transitively on /~v\ {W} and fixesno point in the set W\ {v }. We prove a series of lemmas concerning the action of invariant subgroups of E. These lemmas are applied to prove that the maximal connected nilpotent invariant subgroup of E has dimension at least 4. Mathematics Subject Classifications (1991): 51H 10, 51H20.
1. Introduction In the fundamental papers ([16], [17]), Salzmann studies 4-dimensional compact projective planes, i.e. topologicalprojective planes with point space homeomorphic to the classical plane over the complex numbers, We denote by E the connected component of the group of all continuous collineations of a 4-dimensional compact projective plane 7r. The plane is called flexible if E has an open orbit in the space of flags. Since this space has dimension 6 we have dim E _> 6 for such a plane. The group E is known to be a Lie group with dim E < 16. All planes with dim ~ _> 7 are completely classified ([4], [13]). All flexible translation planes (and hence also the dual translation planes) are classified ([2]) and also all flexible shift planes ([1], [11], [12], [3]). By [11] the plane 7r is a shift plane, a translation plane or a dual translation plane if and only if the group E contains a subgroup isomorphic to the vector group R 4. As a general reference for 4-dimensional compact projective planes see Chapter 7 of [18]. In this paper we will consider the remaining case that there is no 4-dimensional abelian subalgebra in ~(E) and dim ~ = 6. If Z is not solvable then ~ --- G L + R ~ (2, 1) in the sense of [5], i.e. ~ does not fix a line Y E L v \ { W } and dually ~ fixes no point u E W \ { v } and acts transitively on Z~v\{W} or on W \ { v } . Up to duality we may assume that Z acts transitively on £ v \ { W } , Next we denote by N the nilradical of E, i.e. the maximal connected nilpotent invafiant subgroup of E. By [14] we know dim N >_ 3. All planes with dim N >_ 5 are known ([6], [7]). By [14], a 6-dimensional solvable Lie algebra with a 3-dimensional nilradical is isomorphic to either 123or to Ic × 12, where 12 denotes the 2-dimensional, nonabelian Lie algebra and Ic is the analogous complex Lie algebra considered as a 4-dimensional real algebra. In order to exclude the possibility g(E) = 13 we consider the base ideal of £(E), i.e. the ideal generated by all 1-dimensional ideals of £(E) ([10, II.5]). We denote the corresponding invariant subgroup of E by B ( ~ ) . The Lie algebra 13 has a big base ideal and in Section 2 we will see that this leads to a contradiction. The most frequently used lemma on the structure of the set of fixed points of collineations q~ E ~ is the lemma on quadrangles: lfq~ E ~fixes a quadrangle, i.e. four points, no three of which are collinear, then q5 = 1. The organization of this paper is as follows. In Section 2 we prove a series of lemmas under the assumption of orbit type >_ (2, 1). These results hold independently of the structure of the nilradical N and they seem to be useful for the general classification in orbit type >_ (2, 1). In Section 3 we describe the subalgebra structure of the Lie algebra Ic × 12. This algebra occurs in Section 4 as the Lie algebra of ~ in the hypothetic case dim N = 3. In Section 4 we will exclude the group of type l c × 12, and thus prove that the nilradical N of ~ has dimension at least 4.
2. General Facts in Orbit Type _> (2, 1) Let 7r = (7~, £ ) be a 4-dimensional compact projective plane and denote by ~ the connected component of the group of all continuous collineations of 7r. We assume the following conditions: • ~r is neither a translation plane nor a dual translation plane, nor a shift plane, i.e. ~ contains no subgroup isomorphic to the vector group R 4. • The group ~ is 6-dimensional and solvable. By [5], ~ fixes a flag v E W. • ~ acts transitively on £ v \ { W ) and fixes no point of the set W \ { v } . In particular, ~, fixes no point in 7:'\{v) and no line in £ \ { W ) . We prove a series of lemmas in this situation. LEMMA 1. Let 1 # N 4. Assume that we are in the situation of the theorem but dim N < 4. We will show that these assumptions lead to a contradiction. LEMMA 1. We have g(S) TM 1c2 × 12. Proof Since d i m U _< 3 we have g(~) ~- 12c × 12 or g(~) ~ l 3. The latter possibility is excluded by Lemma 8 of Section 2. Lemma I implies that S = L 2,~ c × L2 for some n E N tO {c~}. LEMMA 2. E acts transitively on P \ W, and L~2 C_ S[~,w]. The invariant subgroup C i (L2,n) has a trivial centralizer in So for each affine point o E P \ W. Proof By Lemma 7 of Section 2 we know that L~ C S[~,w]. Let o E 79\W be an affine point. If C~o(L~n )' ¢ 1, then (L2,n) c , C ~[v,v] by Lemma 5 of Section 2. But then Lemma 3 of Section 2 implies that (Lz,n) c t = E[v,w], contradicting the fact that U2 C_ Sly,W]. If S is not transitive on P \ W , then there exists an affine point o E 79\W with dim So _> 3. By an inspection of the list of subalgebras of 12 c × 12 given in Section 3, we see that (Lz,n) c I = exp((B, C)) has a non-trivial centralizer in So; a contradiction.
LEMMA 3. Sly,W] = L2 and n = 1, i.e. S = Le2 × L2. Proof Choose an affine point o E P \ W . By Lemma 2 the stabilizer Eo is a 2-dimensional connected subgroup of E which contains no invariant subgroup of E, and the centralizer of (Lz,,~) c in Eo is trivial. By the list of 2-dimensional subalgebras of 12 c × 12 of Section 3 there are four possible cases for the subalgebra
g(Zo) (up to an automorphism of 1c × 12). These cases are:
1. (bs + f , R + b'S)(b, b' e R), 2. ( a R + b S , R + e ) ( ( a , b ) E R2\{0}), 3. ( S , R + f),
4 (a, s>. In any case, CEoL 2 • 1 and Lemma 5 and Lemma 3 of Section 2 imply L2 = ~[~,w]. By L e m m a 6 of Section 2, we know that Z(LC2,,~) C_ Z ( S ) C_ E[v,w] = L2, hence Z ( L ~ ) = 1, i.e. n = 1. Choose o E 79\W and let Y := o V v E £ ~ \ { W } . We choose the coordinates in g(S) in such a way that e(So) is one of the four subalgebras in the proof of Lemma 3. If we let C := C~oL2, then we have seen that d i m C > 1, and obviously C C_ L2c f3 S[r-]. The group M := exp(R, S) is 2-dimensional abelian with C M M # 1, hence M C S y . This implies S y = M × L2 i.e. g ( S v ) = (R, S, e, f ) . We describe L2c in the coordinates of Section 3, i.e. L c = { (z, b) : z E C\{0}, b E C}. In these coordinates we have M = {(z, 0)" z E C\{0}}. The
60
HAUI~ KLEIN
group L2 is described similarly as L2 = {(s, t) : s, t E R} (with multiplication
= (,1 + , 2 , e %
+ t2)).
L E M M A 4. E acts transitively on Wk {v} and £\£v. Proof Assume to the contrary that there exists a 1-dimensional orbit B of E on W \ { v ) . Since C C E[y], there exists a b E B with C ~ Eb, hence L c g Eb. By the list of 5-dimensional subalgebras, a 5-dimerlsional subalgebra of 1c × 12 which does not contain the subalgebra Ic contains the commutator of 1c x 12. This implies Eb = E[B] __DE'. Since L2 = E[v,w] is a regular normal subgroup of the action of Eb on L b \ { W ) , we get E[b] # 1. Since each element of Eb fixes B pointwise, we know E[b] = E[b,W] C_ E[w,w]. Therefore the group E[w,w] must be abelian ([15, 8.1 ]), but it contains L2; a contradiction. A dual application of Lemma 2 yields the last assertion. Let K := (LC)' = {(1,b): b E C} and A := K x L2 _