2-GROUPS F.
WITH N.
NORMAL
NONCYCLIC
SUBGROUPS UDC 512.4
Liman
We study n e a r l y - h a m i l t o n i a n 2 - g ...
10 downloads
342 Views
388KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
2-GROUPS F.
WITH N.
NORMAL
NONCYCLIC
SUBGROUPS UDC 512.4
Liman
We study n e a r l y - h a m i l t o n i a n 2 - g r o u p s (H2-groups). A n o n a b e l i a n 2 - g r o u p h a v i n g at l e a s t one p r o p e r n o n c y c l i c s u b g r o u p is c a l l e d an I~2-grou p if all n o n c y c l i c s u b g r o u p s a r e n o r m a l .
A n o n a b e l i a n g r o u p h a v i n g at l e a s t one p r o p e r n o n c y c l i c s u b g r o u p is c a l l e d an Q - g r o u p if all nonc y c l i c s u b g r o u p s a r e n o r m a l . If a p - g r o u p is an l~-group, we shall b r i e f l y call it an ~ p - g r o u p . In the p r e s e n t a r t i c l e a t h e o r e m will be p r o v e d which fully d e s c r i b e s the s t r u c t u r e of I~2-groups, thus c o m p l e t i n g the i n v e s t i g a t i o n of I~-groups p o s s e s s i n g a n o r m a l s y s t e m with l o c a l l y finite f a c t o r s which has b e e n s t a r t e d in [1]. It is well known (see [2]) t h a t e v e r y infinite 2 - g r o u p contains an infinite a b e l i a n s u b g r o u p . H e n c e , an infinite I~2-group is an e x t e n s i o n of an a b e l i a n g r o u p by an a b e l i a n o r h a m f l t o n i a n g r o u p and, t h e r e f o r e , is l o c a l l y finite. It is obvious that all h a m i l t o n i a n 2 - g r o u p s , e x c e p t the q u a t e r n i o n groups, a r e H2-groups. The following t h e o r e m d e s c r i b e s the s t r u c t u r e of the n o n h a m i l t o n i a n H 2 - g r o u p s . THEOREM. A nonhamiltonian types :
2 - g r o u p r is an H 2 - g r o u p if and only if it is o f o n e of the following
1) r = {A} {B}; A 8= B 4= 1, A 4= B 2, B - l A B = A-i; 2) r = {C} {D}; C 8= Ds= 1, C 4= D 4, D-1CD = C-l; 3) r
{B}) • {C}; F 2 n = B 2 = C 2 = 1 , [F, B] = [F, C] = I, [B, C ] = f 2 n - 1 ;
4) r = (~I • {B}) • {C}; B 2 = C 2= A12 = 1, AlE ~I, ~I is a q u a s i c y c l i c 2 - g r o u p , []3, C] = A 1, [A, B] = [A, C] = 1 f o r all A 6 )I; 5) r = ( ~ • {B})• i (i = 1, 2);
~ = {S1, S2} is a q u a t e r n i o n group, B 2 = C 2 = 1, [B, C] = S12, [Si, B] = [Si, C] =
6) gt = {X} • {Y}; X 2n= Y 2m = 1, n >- 2, m ->- 1, IX, Y] = X 2n-1. 7) • = ({D} • {F}) {C}; D 4= F 4= C 4 = 1 , C 2=D2F 2, [C, F] = C 2, [D, C] = D2; 8) gt = ({D} • {F}) {C} {Y}; D 4= F 4 = C 4 = Y 4 = 1 , C 2 = y 2 = D 2 F 2, [D, C] = D 2, [C, F] = C 2, [Y, D] = y2, [F, Y] = F 2, [Y, C] = D2; 9) r = ~ x {C}; ~ is a q u a t e r n i o n g r o u p , C 2n= 1, n>-2; 10) ~t = ~ • ~; ~ is a q u a t e r n i o n g r o u p , ~l is a q u a s i c y c l i c 2 - g r o u p . E a c h of the g r o u p s o c c u r i n g in the above t h e o r e m is, o b v i o u s l y , an H2-group, and h e n c e , only the n e c e s s i t y of the t h e o r e m will be p r o v e d . We r e d u c e the p r o o f of the n e c e s s i t y to the p r o o f s of the s u b sequent lemmas. Obviously, the following a s s e r t i o n holds: A n o n - h a m i l t o n i a n H p - g r o u p does not contain an e l e m e n t a r y a b e l i a n s u b g r o u p of type (p, p, p). It will be u s e d in the p r o o f of the t h e o r e m . L E M M A 1. A n o n - h a m f l t o n i a n H2-group r e i t h e r is a g r o u p of type 1) o r 2) of the t h e o r e m a b e l i a n e x t e n s i o n of an a r b i t r a r y one of its e l e m e n t a r y a b e l i a n s u b g r o u p s , of type (2, 2).
o r is an
P r o o f . We a s s u m e that r contains a unique involution. Using the local f i n i t e n e s s of $, T h e o r e m 12.5.2 of [3], and the definition of an I~2-grou p we conclude that ~ is a g e n e r a l i z e d q u a t e r n i o n g r o u p of o r d e r 16. M a t h e m a t i c s Institute, A c a d e m y of S c i e n c e s of the U k r a i n i a n SSR. T r a n s l a t e d f r o m M a t e m a t i c h e s k i e Z a m e t k i , Vol. 4, No. 1, pp. 75-84, July, 1968. Original a r t i c l e s u b m i t t e d D e c e m b e r 25, 1967.
535
Now we a s s u m e $ :~ 9 = {A} • {B}, w h e r e A 2 =B 2= 1 and, m o r e o v e r , the f a c t o r g r o u p fit/91 is h a m iltontan. Then $/9l contains a q u a t e r n i o n group $i/91 = {X91, Y~}. F i r s t of all we show that 91 is not c o n tained in the c e n t e r ~(gtl) of $1- In fact, if 91~ ~{$I), then, in view of the above r e m a r k , all involutions of $1 a r e contained in 91. In addition, r = {X, Y, ~} = {X, Y}. Indeed, if {X, Y} r ~ , then {X, Y} has a unique involution and, b y T h e o r e m 12.5.2 of [3], is a g e n e r a l i z e d q u a t e r n i o n g r o u p of o r d e r 16. But then the following d e c o m p o s i t i o n holds @,---~ {X, Y} • {N}, N ~ _ ~ , which y i e l d s that
@~/~R~- {X, Y}/{X, Y} ~ ~R. F r o m this follows that $i/91 is a dihedral group of o r d e r 8, c o n t r a r y to the definition of $1/91. Since X291 -- y291~ we have X 2 = y2N 1, N 1 E 91, and the a b e l i a n s u b g r o u p s ~Il -- {X 2, Y} and ~I2 = {X, y2} a r e m a x i m a l s u b g r o u p s of ~ . But then 8($i) = ~Ii n 9~2, and, t h e r e f o r e , the F r a t t i n i s u b g r o u p of $1 c o i n c i d e s with 8($1)- F r o m this follows that $I is a g r o u p all of w h o s e p r o p e r s u b g r o u p s a r e a b e l i a n (in the sequel g r o u p s with this p r o p e r t y will be c a l l e d M - g r o u p s ) . By the d e s c r i p t i o n of the M - g r o u p s in [4], the c o m m u t a t o r s u b g r o u p $~ has the o r d e r 2, and, h e n c e , $1/91 is an a b e l i a n g r o u p , c o n t r a r y to the definition of $1/91. C o n sequently, 91~.~($1)- Since 91 N .~(~) ~ T , we m a y a s s u m e , without l o s s of g e n e r a l i t y , that AE ~($1) and We show now that $i is a m e t a c y c l i c group. L e t ~I be a m a x i m a l s u b g r o u p of $i- We a s s u m e that ~I does not c o n t a i n e l e m e n t s of o r d e r 8. Then it cannot be a g e n e r a l i z e d q u a t e r n i o n g r o u p of o r d e r 16 and, t h e r e f o r e , b y T h e o r e m 12.5.2 of [3], c o n t a i n s a n o r m a l s u b g r o u p 911={A} x {Bl} , A 2 = Bi2= 1, w h e r e in gene r a l 911, does not coincide with 91. It is not difficult to c o n v i n c e o n e s e l f that ~I ~91. Indeed, o t h e r w i s e BE ~I and, t h e r e f o r e , $ i ~--- ~ •
{B},
g3i/~ ~_ g / { A } .
9J/{A}, h o w e v e r , is g e n e r a t e d b y e l e m e n t s of o r d e r 2, which is i m p o s s i b l e f o r q u a t e r n i o n g r o u p s . C o n sequently, ~ID91. But then ~I/91 is an a b e l i a n g r o u p of type (2, 2) w h i c h is i m p o s s i b l e in the q u a t e r n i o n g r o u p $1/91- T h u s , ~I c o n t a i n s e l e m e n t s of o r d e r 8 and, t h e r e f o r e , is a m e t a c y c l i c group. C o n s e q u e n t l y , all p r o p e r s u b g r o u p s of $1 a r e m e t a c y c l i c . Using the d e s c r i p t i o n of the n o n - m e t a c y c l i c p - g r o u p s all whose p r o p e r s u b g r o u p s a r e m e t a c y c l i c as given in [5] we c o m e to the c o n c l u s i o n that $i is m e t a c y c l i c . A s s u m e that {C} = ~ - 2 and m - - 2 o r a g r o u p of t y p e 7) o r 8) of the t h e o r e m . P r o o f . By L e m m a 1 $/91 i s a b e l i a n . We d e n o t e b y ~d/91 the l o w e r l a y e r of $/91. We s e p a r a t e l y c o n sider three cases: 1) ~I/91 i s a g r o u p of t y p e (2,2). We c h o o s e a n a r b i t r a r y n o n a b e l i a n s u b g r o u p $I of $.
~/m={Xm}x
{Ym},
r
Y,
m}={x,
T h e n we h a v e
Y},
s i n c e , b y a s s u m p t i o n , $ d o e s not c o n t a i n a q u a t e r n i o n g r o u p . C o n s e q u e n t l y , the a b e l i a n s u b g r o u p s 9d1 = {X 2, Y} and ~I2 = {X, y2} a r e m a x i m a l s u b g r o u p s o f St- But t h e n 8($1) = ~/1 [1 ~I2, a n d , t h e r e f o r e , t h e F r a t t i n i s u b g r o u p of $1 c o i n c i d e s with t h e c e n t e r ~ ($1) of $1- T h i s y i e l d s t h a t $~ i s a n M - g r o u p of t y p e 6) of the
537
t h e o r e m with n ~ 2 and m->2. (The case n>-2 and m = 1 has been treated in L e m m a s 2 and 3.) Since @1 has been choosen a r b i t r a r i l y and since @ is locally finite, we get @ = @1. 2) ~I/3 is a group of type (2,2,2). Since @ does not contain an abelian subgroup of type (2,2,2) and since ~I is a subgroup of exponent 4, 9/is a nonabelian group of o r d e r 32. All subgroups of o r d e r 8 of ~I a r e abelian, and among the subgroups of o r d e r 16 there must be at least one M-group (otherwise, ~I is an Mgroup generated by two elements, c o n t r a r y to our assumptions). Consequently, ~I is a n o n - m e t a c y c l i c group all of whose p r o p e r subgroups are metacyclic. Usingthe description of these groups in [5] we conclude that ~Iis a group of type 7) of the theorem. It is not difficult to show that @ = ~I. 3) Finally, we consider the case where the lower l a y e r of @/3 contains an e l e m e n t a r y abelian subgroup of o r d e r 16. In ~I/3 we choose a subgroup @1/3 of o r d e r 8. Then @2 is a n o n - m e t a c y c l i c group all of whose p r o p e r subgroups are m e t a c y c l i c . As b e f o r e , we may a s s u m e that
~,
=
({D}
C a = D2F 2,
x
{ F } ) {C};
v ~ ---- F ' =
C - i D C = D-i,
C' =
1,
F - i C F = C -i.
We c o n s i d e r the factor group of @2 over {C2}. It may be r e p r e s e n t e d as follows:
$~!{C2 } = ~ = [ ( { d
~} x {c}) x (dc}l •
{id},
where d, f, and c a r e h o m o m o r p h i c images of the elements D, F, and C, such that c 2 = (de) 2= (fd) 2= 1. If ~t contains all involutions of @~=@/{CZ}, then, by L e m m a 2, ~] also contains all elements of o r d e r 4 of ~. But then all elements of o r d e r 4 of @a r e contained in @2, c o n t r a r y to our a s s u m p t i o n s . Consequently, there exists an involution yE ~ \ ~ . Using L e m m a 2 we conclude that ~=~
x {g}; [g, cl-~ [y, dc]~-~ [y, ] d ] ~ - d 2.
F r o m this we obtain the following possible relations for the g e n e r a t o r s D, F, C, and Y (where Y is an element of o r d e r 4 of the p r e - i m a g e of y): 1) C-IYC = YD2 or C - 2 Y C - YF 2, 2) D-2YD = Y or D-2YD=YC 2, 3) F-2YF = YF 2 or F - 1 y F -- YD 2. We show that {D, Y} is an M-group of o r d e r 16. In fact, if DY=YD, then {D, F, Y} must be a group of type 7) of the theorem. Since the cyclic subgroup {D} of o r d e r 4 is contained in the center of {D, F, Y}, this is not possible. Consequently, DY ~ YD. F r o m this and f r o m the fact that D 2 ~ y2 follows that {D, Y} is an M-group of o r d e r 16. It is not difficult to see that one of the subgroups {D} and {Y} is n o r m a l in {D, Y}. If Y-iDY= D -2, we obtain, using the relations given above, that D 2= C ~, c o n t r a r y to the relations holding in @i. Hence, D-2YD = y - t Similarly we establish that Y-1FY = F -2. Now we consider the f a c t o r group
where C, D, F, and Y are homomorphic images of the elements C, D, F, and Y. For the elements CF-and YDC the relation [2~,
C~] = d ~,
holds, which yields the relation C - 1 y c =YD 2. Thus, in case 3) we obtain a group of type 8). The lemma is proved. LEMMA 5. If a nonhamiltonian IT2-group @ contains a quaternion group ~ ={S 1, $2} and if its cent e r contains a subgroup 3 = {A} x {B} of type (2,2), then @ is a group of type 9) or 10) of the theorem. P r o o f . At f i r s t we note that the d i r e c t product of two quaternion groups: ~ = {BI, ]32} and ~ = {C1, C2} is not an H2-group, since it contains the n o n - n o r m a l quaternion subgroup {B2C1, B2C~}. F r o m the
538
condition 9 ~ ~(r follows that all involutions of r a r e contained in 9t. By L e m m a 1, the c o m m u t a t o r subgroup of $ i s contained in ~l, and, t h e r e f o r e , the s q u a r e of e v e r y element of $ is contained in the center of $. A s s u m e that ~ (] ~ =