“ ” !#"$ % & ')( * @AB!,C+D-E.F/G! HI0F1J2 3124 !,5678*9 :;? E Y Z O [ \ < @ !) "K $] L!)M^ !,_ N O` PT Qa !, Rb Sc TdUe 9,[ Vf Wg P X h i j k ! lnmpopqp\p [ } f g h i j k ! |U÷ U Ô g hi Í u PXÍ ªÆ! fg q - c9 c! g * x u +-p ¡! Ë:¶!§ + -./* Æ ¬@ :]c!§q _ < q KBC` buc \ uW ! qpfg B x]¤c! q > 4yz d ÷ °p c! qc! ¡q
^ ý . n £! z WÅæ!, :9 W ¥¦ "K $9 £! ¢ *
ppFpEu§ £! ¨©b ;lnpppppp p l pý p ?lªAn ` «
¬ 9cB µuë ¶u ·8uu U¸®¹ ! uZ
ºz uu ^»¯¼ ° Z ±² p pw ³ u ! ¾G ¿ ´® v q t 9
! Å
z! [ [ < ÝÀÁ 9 !HcuÜ Â )½ : _ÃÄ ÅuÆ [ Ae Ç I È ¦ \< ÉF 9 ; Q g ÊWRR Ëj 9 Ì
Í
= 6 Î 30 e x K 2003
vii
ÏÑÐÑÒ
ÓÑÔÑÕÑÖ
×ÙØÙÚÙÛÙÜÙ×ÙØÙÝÙÞ : QPSRUT + - /UV ? !)+ - ;XWZYU[ u \ D] B; 9£ßà áâã ! Uúä !, U1äå£ßà á æ ¸ ! U 1, 2, · · · , 6 çå 110 èéê ë KdB 7 ` ¥ ~?Å@ 8Æoª> «¬*z9F0¬Ç0¨²¥ÉÈ/0IJ J~Ê~Ë~Ì~u? 3~ÐÅ~8Ñ~WÒ ¬~~®~±~²~Ó~Ó~Ô~I~Ó~Õ~±~²*ÐÆ~0_~ÐÓ~Õ±~²Æ~0J~Ê Í ^â oxy
l :ß¹º±² :@ à} 6 X;Í^oxyO h á Ω = {1, 2, 3, 4, 5, 6}; :ß¹º±² T^3ã Ω äå { HTl }, ^ > > 3AQ[Ù 1 ÝÞO HTÙ 0 ÝÞO Tã Ω äI {0, 1}; 45 110 GG 1 L+GGGGGGAGæGKç+èGqGaGéGèGGOGGAGGeGêGëGTuG3GÆGã Ω §1.1
1
ì íî ïðñò ó Iu}GAÚÛ) l 45G©ôõæGT^G3ã Ω ó Iu}HAÚÛ) l 45 CDæ+^3ã Ω ó Iu}¨AÚÛ)+--*+ök Ω ÷ø ùúûüýþÿ * Ì`§ l ±²xy }} GæGTÅ8GÑ Ω Æ ó Iu@ }W ^oxy ÚÛ*
@ Å8 ³´ 5 @ SU³´0» È
yÅ8 3 1 ÝÞ ÈT3 n 0 ÝÞ È Ω Æ0 o Ω = (a , · · · , a ) | a = 0 ® 1, j = 1, 2, 3, 4, 5 . @ ¥ :à} 32 :/0:ç 0 ® 1 å 5 }A* :[ Å8Ùä! ω ®"#}$ä! ω ÝÞ Ω @ *T
%è: } n Ω, Å8^3ã¥&' Ω = {ω | i = 1, 2, · · · , n} . G > ? %Gl èG :GG±G²G/GGoGO > Ωl @ G:GGxG@ y ω, uG3(GGx@ y ω :±² > 0»O 0 [! ø T ÁÂÃÄÅ «#$ ¯% O¯ÆÇ ¢ùú T'È ¬ «ùø S OÉ ) T &(ôÊ « ¬ úOéx Ë ¼ 1.2 1. ÌÎÍÎÏÎÐÎÑÎÒÔÓÎÕ×Ö “ØÎÙÎÚÎÛÎÜÎÝÎÞÎß×à 3” ÚÎáÎâÎã 2. ä 5 åÎæÎçÎèÎéÎÚÎêÎÑÎë×ì×í 4 îÎÒÔÓÎïÎðÎëÎñÎòÎó 2 îÎôÎõÎöÎåÎÚÎáÎâÎã 3. ÷ÎëÎó 9 øÎùÎÒ 4 ø ú'ùÎÒ 5 øÎûÎùÎÒüÙÎäÎëÎæÎý þ' ÿ ×íÎÍ×øÎã ×Ó (1) ÍÎø ú ùÎÚÎáÎâ (2) ÎùÎö ú'öÎûÎÚÎá×â (3) ñÎòÎóÎöÎøÎûÎùÎÚÎá×â×ã 4. ÎèÎ í×ö×ø Îè×é×Ò Ó ×ø×Ü ×æ×çÎÚ×á×â×ã (ÎøÎÜÎëÎÚ öÎø Îßé ÎÎëÎÿ×ì× í 0, 1, 2, · · · , 9) j=0
j
0
1
j=0
n−1
k
n+k 2 k
k
k
1 2n
n+k 2
n
n+k 2
n
8
û ü,ý þÿ + 5. öÎó 6 !ÎÒ"ÎÓ#$%×Õ×Ö×Ú×á×â (1) 6 ø& '( )*+ (2) 6 ø& 'Îæ )*+ (3) 6 ø& ''æ )*×+ ã 6. ÷ ,'ýÎóÎÍÎÏ-.ÎÚÎÒ0/×Ï .×ÚÎÞ-×ÏÎö× . Ú1×2 Ò0ì×íÎ3 ë 5 ÏÎÒ0ÓÎ4 Ü567Î8 ö 9
Îø Ü;ÎëÎæÎõ×öÎø 4 ?@ÎÜÎÚÎáÎâÎã 8. 1,2,3,4,5 -ÎøÎÜÎëAÎ ì B×íÎö×ø×ÒDC E$×Ú×ø×ëF×í×öÎø×ÒDGHI 20 øJÎóKÎçÎÚÎáÎâÎãLÎÓ#$%ÎÕÎÖ×ÚÎáÎâ ó×öÎøMÎÜ (1) NÎöOPQ (2) N OPQ (3) Í OPQÎã 9. RÎöÎÏSÎÚ12Î" Ò TQ×ï UV×Ø×ÙÎÍ OK×çÎÚ WXYÎ"Ò Z[\]^_`×"Ò a×Ó $b ÕÎÖÎÚÎáÎâ (1) c RNdOÎÝ eWf (2) ghR@ÎÜ OiWf×ã 10. Îöjklm (52 nÎÒ æ opqrsm ) ëÎìÎí 4 nÎÒ Ó (1) nmtuÎæ K×çÎÚ×á â (2) nmtuÎæ KÎç×Ú×á×âÎã 11. vwxyÎó 12 ø ?z>ÎõÎö bÎ"Ò ×Ó ó 8 ø ?zw{xÎ"Ò |_}×Ú 4 ø ?zU Îö ~ ÚÎáÎâÎã 12. `×ó 10 }×ä 1 Q 10 è×Ú
×ÒÔÙ×ß ×ÿ×ì 3 ø×æ×ç×Ú &×Ò 3
Îø ÚÎ&×è×"Ò éÎ.Dã × Ó (1) rÎèÎé 5 ÚÎáÎâ (2) qÎèÎé 5 ÚÎáÎâÎã 7.
13. 14.
ä
ÚÎáÎâÎã
0, 1, 2, · · · , 9
:
10
3 " 7 ¡15¢£¤¥ 10 6 9 ¦§¨ n n n £©ª «¬ m ® "n±©¯¢£° ²m³, m, m2r(m(2r+<mn) +m"=´m)µ¶·£¸¤¹¥£ ¤¥º (1) »¼±£² ³ (2) ±²³ (3) ½ ±²³ (4) r ±²³ ¾¿À£ÁÂÃÄÅ´ºÆÇ¿ÀÈÉ 1 Ê 33 ©Ë̬ 7 §ÍÎÏÐÑ Ó 7 §ÔßÕà ÖקØÖ (Ù©ËÌ ), ¿ÀÖßÚà ÅÛÜÔÕÖÝÞ ßÏàÒ¦ (©1á∼â33ã ),Î ° æ äÏ ßà 5 §ÔÕäÖÏ× ØÖ6§°ÔçÕäÖÏ×Øè¯Ö"É °Aå,äAÏ, A , A é6 §ê ÔÕÖå"° æ "çäÏ£¶·Dëìí£¤¥ 1
15. 16.
2
3
1
2
3
1
2
3
4
îðïðñðòðóðôðõ öø÷úùüûøýøþøÿ Ω ÿ ( ) !"#$% & ' () (* ). +, ýøþ .-/ 012345.67-
/ 8 01239:45; öø= ÷ ?=@=A=BCD=FEG Ω §1.3
/ 45 HI JKLM; N A, B, A , A , · · · O !"# ' P 8 = Ω Z[ P ;RQ $ {A } ' É 0x c /0 öø÷ 01Þß 45 I_^û LQF¿À ' R 1.3.1 N A, B, C O !"# ' S FV B ¥ C ª x F01 I_ G ' (1) A AB C ~ xA− B − C I~ _ A − (B ∪ C); ª (2) A ¥ B C F01 G ' ABC ~ AB − C ~ I_ AB − ABC; '
(3) S Ä F01 G '
lim inf An n→∞ ∞ T ∞ S = An
n
k=1 n=k
c
c
c
AB C ∪ A BC ∪ A B C; '
ù F01 I _ G ' (4) S Ä c
c
c
c
c
c
æjçmè éêëì
12
ABC ∪ AB C ∪ A BC ~ (AB ∪ BC ∪ CA) − ABC; m ' ª I _ ' (5) S F01G ABC;I_ '
(6) S ÉÊ F01 G ' ∪ (ABC ∪ AB C ∪ A BC) ∪ (AB C ∪ A BC ∪ A B C); [ A 0∪ B1 ∪IC_ G ~ ' (AABC B C ) . R 1.3.2 TU 110 VWX Y '[Z VW=Á\=;FÀ=% ö ÷ 1 A I=_ VW Á\ x Ê k Á ( B I_ VWÁ\Ä]G k Á ;F\] }¡¢ ' I_ VWÁ\Ê k Á ( B I_ VWÁ\ x k Á A ( B B = Φ, i 6= j; A ⊂ A , A = S B ; ·· ; ^ Z / 45 Ω / 45 1 v 45_V ý 45¹ºÀc45_V ' `a ' A ∪ B = B ∪ A, AB = BA; b a ' (A ∪ B) ∪ C = A ∪ (B ∪ C), (AB)C = A(BC); cd a ' (A ∪ B) ∩ C = AC ∪ BC, (AB) ∪ C = (A ∪ C)(B ∪ C); ®efg (De Morgan hi ): (A ∪ B) = A B , (AB) = A ∪ B . wk k 4 5 W kl 4 5km > 'on 2 Zkpkq k j u n pq u; öø÷[ 01 rs L fU µ 45/ 2p m > ;d01 t7 á De Morgan _VuG ' ' :ßx / G ÿy ; ±vͱvw±vͱv , -JKs z{ 1.3 1. | A × B } ~ § Ò¶·" ë Å´ä
¼ £ ¶· X: (1) AX = AB; (2) (A ∪ X) ∪ (A ∪ X) = B. 2. ë Ò¶· A × B, ÅÛº (1) A ∪ B = A ; (2) AB = A . 3. Ó £¶· X, (X ∪ A) ∪ (X ∪ A ) = B, ® A, B ° 嶷 ß 4. Ò¶· A × B, Å´
¡ ä º A ⊂ B, A ⊃ B , A ∪ B = B, A ∩ B = A, A − B = Φ. 5. | A × B } ~ § Ò¶·" ë Å´¶· £ º c
c
c
c
c
c
c
c
c
c
c
c
c
c
c c
k
k
c k
i
j
k+1
k
c k
∞
k
n
n=k
c
c
c
c
c
c
c
c
c
c
c
c
c
c c
c
(1) (A ∪ B)(A ∪ B c ) ∪ (Ac ∪ B)(Ac ∪ B c );
(2) (A ∪ B)(Ac ∪ B c ) ∪ (A ∪ B c )(Ac ∪ B);
6.
7.
(3) (A ∪ B)(Ac ∪ B)(A ∪ B c )(Ac ∪ B c ).
¦ [0,1] x, A = {0 ≤ x ≤ ë¡¢£ éê Å´¶·º 붷
(1) AB c ;
(2) A + B c ;
A 1 , · · · , A5
2 }, 3
(3) (AB)c ;
éê Å´¶·º
B = { 41 < x ≤ 43 } (4) (Ac B c )c ;
×
C = { 31 ≤ x < 1},
(5) (A + B)(A + C)c .
§1.4
çD ¡¢£¥¤
13
(1) B1 = {A1 , · · · , A5
(3) B3 = {A1 , · · · , A5
ʦ¸¹ 2 § }; ½¸¹ 2 § };
(2) B2 = {A1 , · · · , A5
(4) B4 = {A1 , · · · , A5
ʧ¸¹ 2 § ¨ ©¸¹ }.
©ª«¬®¯°±²³´µ·¶¸¹º» 1000 ¼½¾¿· 811 ÀÁÂÃÄÅÆÇÈÉ ÆÒÓ Ô 356 ÀÁÂÃÄÅ·ÆÇÊÌËÎÍÆ 348 ÀÁÂÈÉÆÇÊÌËÎÍÆÏÐ 297 ÀÁÂÑ ÆÕ·Ö×ØÙÚ 9. Û A, B, C ÜÝÞßà·áâ²ãäåæç»èéêëµ (1) ABC = A; (2) A ∪ B ∪ C = A; (3) AB ⊂ C; (4) A ⊂ (BC) . 10. ìÞßã {A } íîïðà·ñòóô n ∈ N , õ A ⊂ A , ö÷èéøùúûâ S 8.
c
n
∞
lim sup An =
n
n+1
An = lim inf An .
üýþÿ» Bernoulli ö·ÏÞß A “Þß A ¶ n ö à·Þß B Ü “Þß A ¶¶ n ö¿ m (1) öÏ A B ; (2) ö Þß B = T S B ; S T T (3) B = B . öºåæç A ⊆B A ⊆ B ÿ 12. ¿ õ ÇÌË à ¿ "!"#" n $à Ï A i $¸# »oË%» Þß (1 ≤ i ≤ n), ö÷ A ±²äÞßµ (1) &õ n $'o% Ë ( (2) )*õ× $o%Ë ( (3) +õ×$oË%( (4) ,- k $oË ( (5) ,*- k $o%Ë ( (6) +õ k $o%Ë ( (7) &õ n $./ 13. 01%2À ² 3à·Þß A 0%4à·Þß B 1%4·±²äÞß"5"6 ""7"8 ê9µ (1) A4B ; (2) A 4B; (3) A 4B ; (4) B \A; 5) A \B. 14. ì A, B, C ÜÞßà·ûâµ n→∞
n
n=1
11.
n
n,m
i
4,2
∞
m
n=m
k=0
m
∞
n,k
∞
m
n
m=1
∞
c
n=1
c n
n=1
i
i
c
c
c
c
c
c
(1) P (AB) + P (AC) + P (BC) ≥ P (A) + P (B) + P (C) − 1 ;
(2) P (AB) + P (AC) − P (BC) ≤ P (A).
ûâµ·±Õ A4B = C4D, : A4C = B4D. ûâµ·òóôÞß A, B, C, õ P (A4B) ≤ P (A4C) + P (C4B). 17. ûâµ P (A4B) = P (A) + P (B) − 2P (AB). 18. ûâµ P (A ∪ B) = P (A) + P (B) − P (AB). 15.
16.
; =?=@=A = BDCDEDFDGDHDEDIDJDKDLDMDNDODPQDRDSDTDUDVDWDXDYDZDEDFD[D\D]D^D_D` §1.4
a bDcDdDeDfDgDhDiDjDkDlDmDn D oDp ^DqDPrEDFDsDtvuwYDxDyD\D]DODzD{rWDyD| ” MD} ”, WDyD| ” D ~ ”. TDDDDD
D_DDDD}DDDvuw[DDxDyDODzD`DDWDyDDtD` 1.4.1 DwDDDDDDDDDDD Px WGD¡¢D£G [ D ¤ P YD¥D¦D§D¨D©D[D¢DG ¤ «ª §1.4.1
};
¬ w® ¯D°D±D² v ³µ´ Y µ¶
µ£µµyµsµtµ|µ·D¸µ[D}µDsµtD{%¹ µ u»ºD¼µx ¢D£µWDGµP½ QD[Dx ¢D£DWDGD¾ ³ `¿HD|DÀ IDÁD{¿Y C = 6 § ¤ D`¿ÂDÃDÄD|DÅDDÆDÇ«ª DÈ |DÄDÉD¡DTDDWDDÊÌËͨDÎDD¼DPWDÏDÐDYDDQ 3 §D¢DG ¤ D{ P } { P }; (2) { P } { P }; (3) { P } { P }. (1) { DyDÃDÄDÑvÒwPÓ}DDDDÔD¨DÕDÖDHDDyDsDtD`ÓY ³D´ ¶ sD{ÓD|D£µ×DØDÇ«ªÓ} DP}DDP¨DSD|DÖDTDÙDÚDMD}DD¢DDsDtD[DÛ«ª ÑD{ÜwÝD¨DÞDP}DD|DÖDT ÙDÚ “MD} ” “¢D ” sDtD[DPwÂD|DDßDàDÝDYDáDWDy ~D sDtD`DÜwÝDPwâDãD} DDDMD¼D[D}väwPÓåDzDæDçD|DèDY ~D [DPÓÂD|DéDODêD¼D[µ|D{ÓâD}Dëµ}DæDçDì í âDá ~D PîDïvðwñ “òDó ”! ôDõDöD÷ PâDãD}DDDDEIøDP EDI[| þ Q ¼DxDy ” [DúDYD¨D© ùDû F«üÓ`wýD Dþ ù ¼D[Dx ID£DWD}DPwÿ “ù [DxDy ID £ DWD}D ` D Ø wH “ù ¼ P P Q P ” “ù ¼ P P Q P ” |DxD§D¨D©D[ ù ¼ ¤ DPÓ¹DÿDâDD§DEDI ¤Dû uwPÓ S D I D|µxD§D¨D© DPHD|DSD Á DDQ 6 §DMD} ¤ D{ [ “MD} ” ¤ WD}D£D{ { P }; }D£D{ { P }; (1) WD}D£D{ { P }; }D£D{ { P }; (2) WD}D£D{ { P }; }D£D{ { P }; (3) WD}D£D{ { P }; }D£D{ { P }; (4) WD}D£D{ { P }; }D£D{ { P }; (5) WD}D£D{ { P }; }D£D{ { P }. (6) þ ú M¼[ } ò ó { ù ¼ [x y £ W S|ÑPâ§EI u P }DP½DQD[Dx £ }D[D`D S { P eDfDiDjD “eDf ” “D k DeDiDj ”, " jDh #%$ P &'()*+ eDk ,- " jDh #wg ./0 ` g !Dk De DSD|DÑDP éDOD N 1D
D_D}DDDD`Ó â 2DÖD}DDDDEµFDøD4P 35DøDø ö E 6 7D 7DMDâDWµyD}D[D¨µ© ¤ DPÓ ÿ 8 ÷ {ÓâDEDID¼D[DMD} ¤ DF«üwuwPÓ¨DÂD È 9 ÝD¡DE 6 :DyD}DæDçD[D¨D© òDóD¤ D` 2DÖ ;DVD
D_DP ³ < ¤= ¡DÙDÚDDQDsDtD{ 1.4.2 >? 6 y MD£ 3 }D P @D} 2 P M AD¹Dà 3 B ¨D © C D P DD M E ¤ DFD` F { ù ¼x ¹Ã 1 B CG PY C § ¤ G HI ù ¼x ¹Ã 2 B C DPY C § ¤ H½DQD[Dx ¹Dà 3 B C D`ú < WDÏDYD{ C ·C = = = 90 §D M E ¤ D` 14
2 4
2 6
2 4
2 6
2 4
6! 4! 4!·2! 2!·2!
6! 2!·2!·2!
% JKLMN 15 âDDßDP 3 B C D|D¨D©D[DPâO æDç 9 ÝD¡ í â á “D ~ ”, îDïvð ” ò M }GQRDM£ ó ”, ú < ÕDÖDHD}DDDD`PwHDMD¼D[D}DFD¥DHDxD}DP ú < ? D ST D ` §1.4
§1.4.2
DD
UDeDeDf
£ DÕ ô D§DMD£D¥Dy
“
¨D©D[
”
}D[DsDtDéDDP V ¢D¼DDQD[
“
¥D}D}
DeDeDfDiDj { Y n yD¨D©DåDzDP»O þ O MD£ k yD¨D©D[D}DPXWDÁ:D}Y U Z Y n , n , · · · , n yDåDzDP[vu n + n + · · · + n = n, \ WDÏDY ”:
1
2
k
1
2
k
n! n1 ! · n2 ! · · · · · n k !
(1.4.1)
]Dþ D §D¨D©DM û ` ¥ }D}DDD^D£ “Y D ò ó MD}DD ”. ÃDÄ;DP_DÖ` Z ù D ¼ [a ûbc P¾ ³ Á DDyDsDtD[deD{ n
n2 k−1 Cnn1 Cn−n · · · Cn−n = 1 1 −n2 −···−nk−2
n! . n1 ! · n2 ! · · · n k !
¥ }}|W§Gf õGgGh [EFPOGiGjG op úGkGl[} DDD` ÃD Ä ;DP õ k = 2 øD[D¥D}D}DDP»SD|mnD[D}DDDD`»ÿ “¹ n yD¨D©DåDz uwºD¼ k yDTD[DD ” sDtDP \ ³o £ ? n yD¨©DåDzDMD£ k + 1 ¨©D[D}DPW } :DY 1 yDåDzDP ÿ qr 1 yD}DY n − k yDåDzDPHD | w¥D}D}DDD Áp k yD ^DPÏDYD{ n! 1!·1!···1!·(n−k)!
=
n! (n−k)!
§DM û P ¾DD ¤ D`âDDßDP k yDåDzDæDçD[ ~Ds £D}DëD}DæDçD[ ~D ` Ttu ,vwxDyþ zDkDcDd sDtD` âD 1.2.5 [DÙ û 2 uþ { | ÖQD] §DEDFDDD` â DßDP Ð}%~DD©DWD§DåDz (¨ ³ M ), 3 Ð~ 7 D©DWD§DåDzD` HD|O ú ´ D[DúDYD¨D©DDF«üÓSD| þ 10 y
DM :DY 7 yD 3 y
D[DMD} ¤ DF«üÓ`PwHDMD[DxDyD}| “Y AD[ ”, ú < Õ ÖDHD}DDDD`" W D¡DP õ MD¼D[D}D£ k yDP k ≥ 2 øDP õ ÝDS ³< ÖD¥D}D}DD TÙÚ`ú < PG ¨ fGåz[G [ÄS| ? úY¨©G [ G
G M k y¨© [D}DP DÆDSD|DGD¥D}D}DDDD[DWD§ ô ÖD`r£ = H r ô ÖDP ? [ V ¢D£D{ P DH k yD¨D©D [ DP © DåDzDæDçD¨ , v w x y DkDcDdDiDj Y n yDåDzD z ³
D P :DåDzD M ADY n , n , · · · , n yD P [vu n + n + · · · + n = n, O þ O DWDDP \ WDÏDY 1
2
k
n! n1 ! · n2 ! · · · n k !
1
2
k
(1.4.2)
16
¬vw®
¯D°D±D²
` (2) 1 (n#
` ;p4W4444 8. { r :CD#jlm44(4* 1 n # n :n-b1jmn434*4454> #
A = { 0# r :n69j }; B = { 1n@ 1 j }; C = { 0#n6 ? m :j }.
2.
1
1
1
2
2
1
3
° 21 ` ;4p4W444 9. { 3 :4B4D4#4j4l4m44(4* 1,2,3,4 #4Q4:4n464-b14j4m44n434*4454> #
(1) ?Z:n (2) ?jn#(* 2. 10. .404748494:44#4E]47494:444H4
4H#4-b;Hp4H44H4#4
H4 (1) 12 :4 #%'] 12 :BD# (2) 6 :#%' ]Z4:46 ` 11. (¡ ) ¢0 30 :-b;p 12 :6? 6 : £¤Z4:4#4E-X? 6 : £ ¤ 3 :#%'#
` `®4¯ B4°±4²49f4>4ª«4¬- ¯4³ O´4µ¶ 12. 9:? n f¥¦-¨§©?9f>4ª«4¬ · ¥¦¸;« `X¹4º -b1494f4¥4¦4]41494x4;4»464¼H½64#4
444 n . ¾¿¤?Dr @#;»x,#ÀÁ5>zY44` CÂ#4-o¶4:4 4]à r xf¬ª«#
`È@¹A%º F 13. !Ä? 4 :ÅÆ-ÈÇɸÊËÌ ]ªÍ4# 4 :ËÌ6? 3 :ÅƪÍ# ÄÎÇÏ ` ÇÐ?4Ñ 4ÒÓ ¶4Ô4À4Õ4 %F;4`ëÖê × º ©² N ÷ ©¶©· K L 0J©¶©²©Ì©÷ Í M ©Î (1) )©¸ "¹ + (2) Ø©¸ "¹ 6©ß©Ã©Å Î a) n = 100, r = N = 3; b) n = 100, r = N = 10 N©O  7"PQR©Þ 3©¿ 0S%1©²±Ì±Í 12. ©¶©¸©Ø© #!± û 5!±Â§±¶ )±¸º¹¼» 8±÷±À±ù %±Ø±² !Äö±÷±Ê±Ë±²±Ì±Í P±®±Î (1) T ¨©÷©À©¨ù©4 ² !© Ó "!+ (2) Ï 9©¨©÷©À©ù©² !© Ó 5!U 13. ©¶©¸©Ø© ¨ 4 "!±û #!±Â§©¶±Ø±¸º¹¼»©½±À V!WX±Â V!±Ð±Ô©T ²±Ì±Í±·±¯ Y . 14. ©¶©¸©Ø a ÷ "!©û b ÷ #!©Â §©¶ )©¸ ¹» 8©÷©À©ù %©Ø±² ! Æ k ÷©À©ù©² !©Ó !©²©Ì© Í 15. ±¶±Ø a ÷ 5!±û b ÷ #! (a 6= b), §±¶ )±¸º¹¼» 8±÷±À±ù %±Ø±L ² !Äö±¨±÷±Ê±Ë±²±Ì Í P©®©Î (1) L © ¨ NZ%©À©ù©² 5!©ý &#!±ý '¼Û (©Â (2) ©¨ NZ©¶ [©È©² !©ý &#!©ý ' Û ( U5±Æ±ù \4±Ê±Ë²©Ì±Í 16. ]©Ø 2n Á ^_©Â Q©Ù©Ã©Å `abc 1 d 2n, à©Ø 2n ÷ ef©Â Lg©Ã©Å `±Ø \4bc ;©» D^_hef©i 2± ÷ efh 1 Á ^_i©Æ 2©÷ ef&h × j¼² ^_±² bc±ú©û ó©Ó©ü©ý©²©Ì©Í 17. Þ ©Û klm©»©É©ð©ñ©¨±ò±ó©ô±² no"©Æ±Î L ɱð±ñ n ï©ú 9©Â Þ ©ñ©ù©Û©Ð±ï±ý p Ù©²©Ì©Í 18. D©¨©ª©«©¬©©®©¯©°±²±³©´± µ qrs9t±ê©¨ u±  ±Æ©Ç±È±É±Ê©Ë±²±Ì±Í©Î (1) Ï Q©Ù 4 Á v©Ó A; (2) Ï Q©Ù©¨©Á©û©Ï©È©Ù±¨±Á©ó±Ó A; (3) É A ú wwx©Û©Ð©²©Á±ý l. 19. 2 z ¨ yz{z| Ø N z÷ }zb zç Ez~z  ]zvzP{©Ø n y  r z÷ z z² }zbzWzX Î T 1, 2, · · · , n y©Ã© Å ©Ø r , r , · · · , r ÷ ©² }b ( r = r) ²©Ì©Í©Ó 7.
1 2
n
1
2
n
j
j=1
r1 r2 rn CN + CN + · · · + CN . r CnN
20.
21.
22.
23.
©ù 17 ©Â ש¶ " 10 ©Â# 4 ©Â 3 ©Â L ¶%©Ø©² ²©Â$©¾D.\4 ±¨©÷±Ó 4 "©Â 3 #©û 2 © ²© ÂE%± ²±* Աǩý1© ²±Ì±Í±: îU D n |© ꩨ© ¨© Þ© ñÂi 9D%©1 ² 2n ©¡ ¯¢;©Ã©ê n é©Â2©é©ä£©ê ¨©¤ ² “ ”, Æ©¥ È©É©Ê©Ë©²©Ì©Í©Î (1) \ 2n ©¡ ¯¢v¦§¨©©êª«©²+ (2) ó©Ó© ²© Ã&© ²± Ã±ä£ ¬· a, b, c, d Ó©Ü a + b + c + d = 13 ²©Õ¡®¯©ý©Â L ¨©ï°©µ±²©¶±Â Ƴ´µ¶©É ¸ a, b, c, d ¹#º»¼½ p (a, b, c, d). ¾¿ÀÁ¡ÂÃÄÃÅÆÇÈ»ÉÊË Ì Ã©ÂÅ ÍÎÏÐÁ¡ÑÒÓ ÔÕÖλ×ØÙÚ¼½ p(a, b, c, d), ÛØÜ (1) a = 5, b = 4, c = 3, d = 1;
(2) a = b = c = 4, d = 1;
(3) a = b = 4, c = 3, d = 2.
§1.6
ÝßÞßàßá
27
â ãäåäæ ä çéèéêéëéìéíéîéï"ðéñéëéìéòßóéíßôéõßöé÷ßøéùßúéûßüéýßþßÿéëßìßí §1.6
1.6.1 ø 1 ÿéþéï x, y z ÿ 3 ß ï!"ßù#$% 3 & '()*+ßÿßë ,-/.012 ï ù#$ 43 (x, y, z) 567 89ßï4:ßó 3 ; ÿßí !ß ó@ßA ùßúßÿ8ß9 ÿBCDßó %ßó
; ÿßíEFG!HIßþ:ßóJK x + y + z = 1 > ÿßí)*+ L 9$ A 67 3 & éù#+)*+éÿHMßïONPHM A QRS ïOTA 3
Ω = {(x, y, z) | x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0} ,
@#UA
x + y > z, y + z > x, z + x > y.
y, z) | (x, y, z) ∈ Ω, x + y > z, y + z > x, z + x > y} , :ßòßóJK A x=+{(x, ÿßí)*+ (VWX 1.2). y+z =1 > Y éóZéÿßï/@#ßî[ (x, y, z) ÷ Ω > \] ^éïO_` .0 CaZb P (A) DUßP ø)*+ A ÿKcd)*+ Ω ÿKce?f4!ghiI jklm >n4o 12 ïp)*ß+ ÿKcßD óq Lebesgue r p@# .0 $ L(Ω) L(A) 67 Ω d A ÿKcßï!%s L ó Lebesgue ÿtu!ßóDA P (A) =
L(A) . L(Ω)
(1.6.1)
x yï z{|}~| vw ! Ω A y n
R ~ Lebesgue L(Ω) L(A) n
Lebesgue í 5 ïz÷ 1 ; ß C ï Ω d A óß ïp` S : 0 ÿ Lebesgue r Dßó ßÿ ÷ 2 ; ßC ï Ω d A óßN ÿJK X +ßï` S : 0 ÿ Lebesgue r DßóJK X ß+ ÿKc ÷ 3 ; ßC ï!N óc øßø L ß ` í 5 ï!ß ÷ 1.6.1 > A P (A) = = .
1.6.2 ¡¢4£¤ ¥§¦©¨ª 6 S« 7 S e =¬ ¥ß® ï!¯ ¤°± ÷²®³ ´ 10 µ!"¶ 0 ùß÷²®·ß¸ ÿßë ,- # (x, y) 67£¤¬ ²ß® ÿ S= ï!N¹ 1L 9# A 67£¤ ÷²Ω®=·{(x, ¸ ÿy)|Hß ß M 6 ≤ï!xN≤A 7, 6 ≤ y ≤ 7} , vw
n
(1.6.1)
L(A) L(Ω)
1 4
A = (x, y)| (x, y) ∈ Ω, |x − y| ≤ 61 .
28
ù#b £¤\ Zß÷ 6 S d 7 S e Âï Áßù$ßðßñßëßìÃeÂÄÅßï ]' ^ß 5/6 ÿ É*ßø Ê)*+eË
ßó Y4ÌÍ
ö
c
5 2 6
L(A) = 1 − L(Ac ) = 1 −
L(Ω) = 1, (1.6.1)
º?»4¼ ½¾¿À =óß¬í ²' ®ßï! @#ßÿîÆ[Ç +ß(x,ïÂÈ y) ÷ ΩóÉ>4\* Ω @1# A (VWX 1.3), L(A) L(Ω)
=
11 36 .
÷ þÎÏ > ï .0Ð $Ñ L(A) = L(Ω) − L(A ), %iéðéñÉÒéóÄÅéÿ é ÓÔ iß ë * 5 ß ï þÎHIßòßù# 6 Î P (A) =
11 36
=
.
c
L(Ω)−L(A) L(Ω)
.0ÕÖ× íØÚÙ ÛéëP (A) H=Iéþßóßí r= 1 −ïÜPË(AÝA ). P (Ω) = 1, @#²éø Í Þ ± ó r ûßßÿßíàá
1.6.3 ÷Úâ ãéþäå 3 A, B, C, " ∆ABC æ*)*+éÿéë ,ç- $ E 6ç7 ∆ABC çæç*ç)ç*ç+ ÿçHçMç!è ÷ ÿçéçê ó L ñ 6 Î Ω ÄçÅ ùç#çëçìíâ ÿçîçï ó 1, âñðç O. ó ∆ABC çæç*ç)ç*ç+ øçòç E. 90 , È%éô øòõ AB, BC, CA ÿ \ó π. ABC, BCA, CAB \ó ÄÅßù#ö÷ø?ù4ìßíßï Y ²®úû?â4ãßï?â4ãüÉßí & 2π ÿ !Åý ²þß ïÿþþ þ þ x, y z ÿ 3 & é ó ± % 3 & é ÿ °ó π, N ∆ABC éD óæ*)*+ é% îéí 5 ï 1 ù Õ Ω E 6 Î 6
6
c
_
◦
6
_
_
Ω = {(x, y, z) | x + y + z = 2π, x ≥ 0, y ≥ 0, z ≥ 0} ,
0 < x < π, 0 < y < π, 0 < z < π} . Y ßóA={(x, ßy,ÿßz)ï!| @x +#ßyî+[z = 2π, ÷ Ω \] ^ßï!Á Y4ÌÍ (1.6.1) (x, y, z) L(E) L(Ω)
. J þ K þ þ ÿ J þ þ É ï ²þJþKþþþ í þ 1.6.4 = a ÿ (l < a), " dÉ· ßÿßë %éê Buffon éßê ï óßë m > ÿßíéê (VWX 1.4). ,- # E 67 dÉ·ß ÿHM .0 5 L ñþÎ Ω E. ¹ 1 ï ßÿ ù Y :ßÿ > ¬ ÿÉßÿ ρ, #:dÉßÿ* θ ì!@# Ω = (ρ, θ) | 0 ≤ ρ ≤ , 0 ≤ θ ≤ È dÉ·ß ï!PÝßP ï ρ ≤ sin θ(VWX 1.5). @# .
P (E) =
1 4
=
a 2
øßî[
π 2
l 2
@# Y4ÌÍ
(1.6.1)
(ρ, θ)
L(Ω) =
πa 4 ,
÷
Ω
L(E) =
P (E) =
sin θ .
>4\R] ^ßï!@#$ßðßñßëßì!¹
E = (ρ, θ) | (ρ, θ) ∈ Ω, ρ ≤
L(E) L(Ω)
π 2
0
=
l 2
l 2
sin θ dθ = 2l .
2l πa .
l
§1.6
ÝßÞßàßá
29
¨K ë m > ÿßíAéêßï!@" Bertrand # m !:ßó$% l& 5 h Bertran 1889 '()5 ÿßï Bertran *) Ñ:ßÿ 3 ô çÃ$ßï!Ë ¬ Ñ 3 ôßç,+,é - ï%D,. éí ¤,/ P S ÿéë m > ÿßí ë0 Ç,$1 R Ñ,23Ü_ `4 # m
1.6.5 ÷5 â64÷ß7 íß8 ï!"8 g √3 ÿßë ,-/.0 # E 67 8 g √3 ÿHM!éßê ó L ñÎ Ω E. 9,:,; ,, A n o åéì ï éê j é ÷Úâ éã þå,é? í,> B. é ó Ω éD ó,@Úâ ã Y ,5 Oâ ÿA6CBÆ)*é+ ÿ' ø √3, @# Ô # í,D,7,5 Oâ ÿA6CBÆ)*+ ∆AM N , NPÝ,P,8 AB d' M N ·, é A S ïE8 AB ÿ # g √õ 3, Èï!` NS A > B õ5 Mâ Nÿ?þéâ4ï ã @# E éD óõ M N(V WÁ X Y ðß1.6(1)). L 67 L(Ω) = L ( )= 2π, L(M N) = . ñßëßìßë ÌÍ (1.6.1) _
_
_
2π 3
_
L(M N ) L(Ω)
= 31 .
9F; , d?Kâ4ð Tß÷²ÿ Éïßþ @#ßùï8 Éï Mÿ N 7 g Ω. √¹ 1 ïPÝP8 AB O ó S AB 3(VWX 1.6(2)). @# > K P (E) =
1 2
ßó
E = K| K ∈ M N, |KO| < 21 .
L(Ω) = |M N | = 2, L(E) = 1,
Á Y ðßñßëßìßë ÌÍ L(E) L(Ω)
= 21 .
L(E) L(Ω)
= 41 .
(1.6.1)
-
9,J,; ,, K ÿ , Ûìéï ¹ 1 ï PÝ,P > # 1/2 îïßÿßçð?â4eK6 S ïL8 AB ÿ g √3. @#ß÷%sßï Ω D K ó@5 â ï E Dßó# îïßÿßçð?â ï L Dßó: 0 ÿKc (VWX 1.6(3)). Á Y ðßñßëßìßë ÌÍ (1.6.1) P (E) =
1 2
%éô$ßçÃ,$ ¬ ßç8 m ÿ,M,Nßï .0,O ó,Pßí,Q¸ ¬ SR,T,UßþÎà +ÞVßïù 1 1 R ß ç8 m ÿW_ßó - êYX > ÿ “÷7ßí8 ” ÿZ[\]^ßï _ Èßù / q7_ßôßçaÃßï iÈ`a / î[ ÿZ[þ]þeþ®7þÑþ ç ÿcd ï.þeþþþ ç ÿ ëþþÏ ééê ï_`,1 R,),e ôß çéÿ8 m òDf # ÑéïÜ_: 0 HIßþéó / ßç éê@ *) ÿ+- gh 1.6 1. iLjL k Ò 1.6.2 ÈËmlLnLo 3 pLqLrLsLtLuLj Ówv ÙÛyxyzy{y|y}y~ Ü (1) 3 pLqLLL ÖLL|L}L~L (2) L
LnLLpLqLLy Öyy|y}y~ Ó P (E) =
º »4¼ ½¾¿À ? 2. LSLLLLLkLyLyÓEiyLyyLnyyykLyy|LyySyyLy y¡y¢E£¤ ¥ SL L¡L¦L§L¨ykLyyy© 3 ¥ 4 ªmOÓÙLnLL L¡Ly¨y«y¬L Úyyy|L}y~ Ó 3. ®SL¯Ð S | 4ABC SL°LL± P , Ù 4P BC |LL¯LªL² S/2 |L}L ~ Ó 4. kL³L´ÖLLµLL± A, B ¶L·LL¸L¢m¹LLµLL± C, D ¶L·LL ¸ ÓÙL¸ AB ¥ ¸ CD ºL» |L}L~Ó 5. kLL¼L½LnL¾L¿LÀLÁLÂL|LÃÖyÄLÅy°LÆyLÇyÈL É Ð 1 |LÊLË ÓÌvLÍL¢ÌÎL¿LÁLÏLÐ a ªL²LÑ
LL¢mÊLË ¥ ¿LÁLÒyºy»y|y}L~yªy² 1%? 6. kLÓLÔ (0, 1] SLµLLpLÕL ÚLÛLÜLÝ ² 0.2; (3) LÞLL¢ ßLÙLàLxyLÖLáLzyâL{yã |y}L~ Ü (1) LÕL×LØLªL² 1.2; (2) LÕL×LÙL| 7. äLÐLå l |LæLçLLèLéL· 3 çL¢êvLàLëLxL§LzL{L|L}L~Lì (1) LLLíL·LLpLîLïLÀL (2) LLðLñLÐL|LÒLòyó . 8. kLÓLÔ (−1, 1) ÞLLµLLÕ ξ, η, ôLõLöL÷L¿Lø x + ξx + η = 0 |LöLùL¢mvLàLëLxyzL{y| }L~Lì (1) LLLúLûLÕL (2) LüLLúL¾LÕLã 9. kLýLLÞL½LnLLþLºL ÿ LÈy|Lý yÈLæy ¢ yü yýL pLåy LÖyÏLÐ aØ b | LÀLã ® ¥ ýyyÄyÅ y° yyÇyÐ yå 2r | 2r < a + b − (a + b) − πab , vyà yy
L½LÈLæLºL»y|L}y~yã 10. LýLLÞL ½ ¥ LÔ yå a Lý LÈLæL¢m ® Lý yÇLÈyÉLå R LÊLË (R < a/2). LàLÊLË LLÈLæyºy» yã 11. ! "! #$%&')(*y ð +yè ,-y.ã yà -/$%&yð yã 12. ( LæLçL Þ +0 12 3 ,-L.ã Là 3 3 ,-/45,-67yã 13. 8 Lå a + a LæL ç 9-:8 ;yå a < a 5=L>ã ( LæLç +0 12 n ,-L.ã LàLì n ,-L ð ? m ,-/8 Lå a =Lð Lã 14. ( ,$%&L ð +0 3 ,-'@Là ALü &:BCLîyï &6D-Lì (1) ELîLï &F (2) $LîL ï &F (3) GLïLîLï &Lã
30
2l 3
2
2
1
2
1
2
1
H IJKJLJM J NPOPQPRPSPTPUPVPWPXZYP[P\P]PUP^P_PXZ`PaPbPcPdPUfeZgihPjPVikPXZlPmPn oqpqrqsqtqsqu Uq^q_qvqwqx sqtqsqyqz Uq{q|q}!~qqlqmqn yqz
{q|q ZPYP[PXPPPPXPkP\P]PX`PaPPnPxP`PPPPUPPPPPXPPPPP `qaq^q_qUqqqX!Qqqqqqq qqqUqNq¡q¢q£qxq¤qdq¥q¦qUq§q¨ª©qq« pqr ¬i UiViWi} limini®i¯i°²±)Yi[³´PQi yizqµi¶ X*·²³e.gP¸i¯PQiRPSiTPxP` aP¹Pº³»)UP°P¼P½P¾P¿PÀPUPPÁP} lPmPnPÂPÃq^P_PÄPPPX!q`PÅ r °PÆÇÈPUqÉqkPUq} 300 PÊPËPX!ÌPlPm nPÍPÍPÎPÏPÐPXZÑPPÒPÓPPÔPUP°P¼PÕPÖP}ZQPPP×P|PØPÙPXZÚPÛiÜPÝPÞiÞPßPßPU PÁPVPàPÒPÓPÐPXZáPÄ r PPâPãPäPåPUPæPçP})è)PéPêPâPãiëPìPXZíPÝiPîPU p ïPX´QPPðPñ r äP³»)UP¥P¦P} 17 òPó ÐPX´ÒPô³»)UP°PõPöP÷PøPUPQPùPú³û)üP Uqýq[qþqÿq}!ÌqÐqUq°qõqöqUqýq[qþ r ö
UqnqX ~ §1.7
§1.7
31
}ªèPÕP¹PlPmPn³»)UP°PõPUqlqX!ÜPÝq°Põ “ ¾  ” RPlPmPUPãP}Z ¬ UPÉ!PVPk³»)XZöPPP["PnPÅ ¾PÂ#iæPçPX%$ PnPÅPlPmPn³»P& ¼PlPU'(PdPæPçP}%)P~PXZöP½*PQ+PÅ,.-/0iUPð1P}%2 34PP³»)°PõPQPUPð1567 ð1" ,/0P8 ý P ¢9:P8 ý P ¢9:P; m Fermat, Pascal
Buffon
4040
2048
0.5069
De Morgan
4092
2048
0.5005
Feller
10000
4979
0.4979
Pearson
12000
6019
0.5016
Pearson
24000
12012
0.5005
Lomanovskii
80640
39699
0.4923
< = t>? °P2 üPPUPðP1 }~@PÜ 8,-/0³»9:PUP¢8PýPXCBD fn (A) =
A
3A,9:PXÜ
Nn (A)
3AP
n
Nn (A) n
4.Ei¯.9.:iU.i¢.;imi}è)Ô.F3.G³»´UPý.HIiXJ9:PU.P¢.;Pm f (A) ú.Ki viX ·.O.,.-.i 8 ý s iXPi; m f (A) 4 siµ M 0.5. Q °.R.S.3UTV7 (1) 0.5 L.M.N ,-/0PUPð1³»)X% PP¢9:PxP¢W:PU ¾PÂ#.XYPZiPU[ (2) N ¡Rq \ ^q¹qUq¾qÂq# q°q] ¾qÜqVqà^q_ U`aqb qUq_ XCqc Tq u ýq_ Ude ð³ 1 »Pf ÅP; m f (A) Wg t [ (3) P; m f (A) ¾PÜP®P¯PlPm P (A) U Mhi X ·OPÌPð18Pý n j >Pu ÐPX Mh k^PT Ã k } l PX QPP$ ½PÂP½mPn ÄPÔF3³ P F »)UP½opqr7tsu “,-P8 ý s PX ;Pm f (A) 4 sPµ M P (A)”? Qvw P½PÂP| “ε − δ x ì ” ty PF }CPz ¯ = ½PÂP{n|PU ε > 0, } ÄP°]fZPý n , ~ p P° n > n PÂP¸ n
n
n
n
n
0
0
|fn (A) − P (A)| < ε.
(1.7.1)
RSPÔPXZQPP Qv P$ ½P Q ]nPX Qv U “;Pm f (A) sPtPsPµ M P(A)” U {PÌP “NPO n U
u X (|f (A) − P (A)| ≥ ε) ^P¹PUP¾PÂ# sPtPs ”. ¿ "P X “NPO n U
u CX R\ {|f (A) − P (A)| ≥ ε} UP^P¹PlPm n
n
n
û)
P (|fn (A) − P (A)| ≥ ε)
(1.7.2)
° t XQP4 r °]PÜ N Uq³»7°: “;Pm µ M Q ilim ” 3U´ T limii°.].`.a.biiX*·.O.;PmP¾iÜP®i¯PlimPU Mh.i [Ji°.:PX ;Pm µ M PlPmPU ÷fPÅ “lPm 0” ty FP}!PPX!QPP½PÂ 0 .”
32
½ æP°7 “¨ ¡DPPlPm ”? ¢ PÔ Bertrand £ nPUP¢PX ~ p °PõPQPPÌPÐ P Uilimin²»´Ui°iõil.ix.iãPÕi¹ r.¤¥ }*iPX QPi½ p ½¦.§.:P Q ¼.¨:PX ©Pä ªPU «PãP%} Pä ªPU «PãPÑPöP°]PX Q 4P¬PlPmPn Z÷PUiPn®¯i}Z Êq U °±qýq[qþ u TqÔqX Hilbert ²³ qU 20 òqó {qäªqU 23 ]qýq[qæqç 1900 »)´ X 4µ Q ]PæP ç ¶PP³»)} ½PÅPX Hilbert µc¶PPýP[PÖPPæPçPR³»)UPX ÌP Ð ·¸PöP Q ¹¦PlPmPnPP ° ]PýP[ >º C X zP ¯ c·¸P ö opPUPýP[PP n ®¯P} lPmPnP U opPUPýP[PP n ®¯qP 20 òPó 30 Ê »¼YPUPC X cP { ½¾P KolqU Àqqd ÁÂq} Q ¼ Àqqd ÁÂqU ¿ Ã
½
ù ÄZ
nqx Å ^qn
U mogorov ²¿ ^q_qC X $Æf r lqmq n Çq ¢ »qýq[q c >º U ÈÂq} = Éq 2q ° ÊÌ » ËÍ Kol.U Àii.d Á.Âi}. Q ]ÀiPd Á.Âq2iX ² öPUPlim ÎP.ç p Ä r opPU mogorov ÏFPtX ÐÑ “;Pm µ M PlPm ” U ( X Q 4 ~ p QPP¾PÜ yPzP ×P| Q ° R S t ä ªPPPæPçP} ¢P 4 t ËÍP³»)UP ° ]P{P|P} ÒÓ ) 1.6.4 »)U ,ÔPæPçPX! B v p ÔÇÕÖ×ØÙÚqUPlqmP¯ P (E) = ×P| Q ° Û@Px “;Pm µ M PlPm ” U RSPÝ X ÜP ¾ Þß7 Ñ ,-P U 8Pý n j . > PCX ;Pm f (E) 4PT j >PPµ M PlPm P (E), à ì qPX!~ @P n 8,-³»)CX Ô Ç×ØÙÚ r m 8PCX BDPÌ n j >Pu CX 4PTPö 2l πa
n
n
áâPö
mn n
≈
2l πa ,
QPù4æãrä °= Öq¬PX!¸¾qÕPÜõfqÅ u {_çPdUeè,éPÔq} Xªè¼ÔPFãPÀåEP¯ π U Mhi } PQ ãP4q}¯ è)= Monte Carlo iãi¢i² oipiriy e ð.1i¾iÜ.fiÅ..i¡ tê.ë Si¢PQX ² Ü Monte Carlo u _.d.i ì |PXCP) ~P¾PÜP|c t P°PõíîPýP½ï3PUYð > X } z UP ; m µ M qlqm ”, 3ñT r lqmqU`aqb qXC$3ñT lqmq¾qÜfqÅ
ð1 t 1 q “ ò }%l Q ÑPPæPçPUP°]:P}Z{PÌPXZ·P½P ² öPUPlPm PÂ.fPÅPð.1 t 1 ò UP}VP ) ~PX´Õ]ódPô QPb ºPÐPõ Uö “Pb º 3 ]P÷ UP¾PÂP# ½Pø Å 15%” » U 15%, P 4 ½PP°P] ¾P| u _dPe ð1 t P Ü1 ò UPlPmP} Q ¼ö tù Pú ¹PU úP[ÞûPX%úüP`1PÜPÝPôPQôýPU r äPx þ öPXZ*.ÿPöaißPX ² Ü öPQµ Q RPlPmP E ¯aPlPmP} ÜPÔPU w p öPõP XP ÂPöP u þPPlPmPnPU r äP} π≈
2nl mn a .
§2.1
30 !"#$ Kolmogorov %&'()*+,-./012$34 &5-565758:95;5+5,5-5@%5A$53454B5CED5FG5HI%5&'5()5JK54L +5,5-58:M5N5O5P5Q5$5+5RS5&-58ET5MN5*45L+5,U5V$)5UW5XY5KZ5[$ 6 C Kolmogorov %&'()\"#G]^-S_`-$67a$Ccbdefg h 7 {4 |i } 0(j~k8Tl\3-}8nmpoqp$qC rstvu@wxyCnefzF45ijkl538nD[A _5`5-5$555s558:+5,5-$5%&5'(5)5
58:5j
i5t\5_5`$&-s+,&-0C 20
5 =5?8:5?5W555 5\¡5¢£5¤$5¥]58EQ5\5¦5~vN §5¨ T55N5
§5¨ $5=5©5ª5f5$]5^C:5«¬55 8:\*50W5Q5$5® N¯$g§°8±+,C²´³µ´¶8·ef } A ¸¹ 8$»ºn$´J=´t´\ [N¼½ P (A). G =v@8¾-i¿©+,ÀÁC Âà +Ávu@wÄÅ8ÆD[ÇȽ § A S¡¢£¤ Ω @$¡¢I3 } 0CËÊ@ÌG Ω =ÍDFFÎI¡¢8! }Ï Ω $Ð |A| S |Ω|, Évu@=vu@t Ñ ¥]8Ò }Ó § +,C Ñ +Áv@8Õ\[ A S Ω $ Lebesque _` L(A) S L(Ω) svu@C G Ô Ö ×i8 Ï ÌØÙ8Q$ Lebesque _`t\Ú`Û Ï ÌÜÝaÞ£¤v@$ßÕ $ä Ô Ñàá 8Q$ Lebesque _`t\ÝâÞ(âC! } Ñ´G à´ á=v@zFã êëiêå¡o$æçCÆFC=èì \á8í±î9 Ç ΩÂ\ï Ü$ÝÜaÝ $à=á I8ÆßQÕ$$ÝÔ â\ðñ8VQ´½$$ ¥´(]´GT_é´`\ ò@ó § Lebesque
_] ). efôQT½õ 8ömoQ$®+,t 𠽧 s0C*0÷HIøù8·´tDN´ô´´ δ/* Ω @$=ì } ñ ½ Ýâ$¥]C ú5û 55ü5[5ý5þ5ÿ | $5+,5ÀÁ58:üé5ã ä ©5$5C:! } [ Ï åo\ õ § =ìß/C §2.1.1
33
34
σ Gÿøùv@
Nô¡¢£¤ Ω $=I¥]Ò½õ 8! } 5[5s5¾5-5e Ñ /5555 5$C ²5³5µ5¶85 } ô Ω $}5ì& 5¥5]5½ õ Cc*d[s"#=ì!Õ8c"Hì!Õ[#$%8 Ì'C () 8[ô Ω ½õ 8+*J*Z ´Cb´*Q Êö=,´N´$´¦ ~ªf-Òr +Áv@8t\H¡ σ $C G A ). eG =8@Oef F S F \ Ω @$¿I σ O 8@" F ⊂ F , mo} t¶ F \ F $¥ σ 8 "¶ F u F °8 ÞI¶ F u F 8 T ¶ F u F gÞC e5f555G555¦5~?8:D=5© ¨ \D5®8Z$p} Ì5H© ¨ $5!O F NªfB=QS n − 1 3YXWZÈ 1 3[Z Ñ Ùï\>= '( \ò 1 3Z Ñ] ^_ 1 3YXWZ Ñ I6 Ö` k ïa` ? ,ðb k ïa`c\òPZ ú XWZPÇá ? " B E " b k ï"a"`"c\òP"Z ú XdZPMN ?1 ø Ω Z ú k ï\ @e Pf J Ñ 7 Ï |Ω| = n . ûú |E | !789 ð : ÑËÌ G E . ZP R S b k ïa`c\òPZ ú [ZPMN ? õ UV = 7 ÑÏ E * e Ö g S 1 3Ñ [ ^ _ Z Ò Ñ ú Ñ ú j Ñ õ ZBk *h çïÑin\oò p PÚ XWZ ú ô ù\Óc b g \òYXWÑ Z BR Ñ E lm k − 1 ï\PÚ XZ gS k ïq\[Z R |E | = (n − 1) , \r = 1− , P (E ) = 1 − P (E ) = 1 − 1− . P (E ) = Is PÞÊ DE Ø n F v W = ! Pyz @ B i 10 {| PÇá ? B E ù n 3Pyz @ B i 10 {|PMN Ñ 1 ø S 1 ≤ n ≤ 10. ÑËÌ g \*3v Ñ}~} v ú 0 c @ B i 10 {| Ñ R B n=1c P (E ) = . Ñ R!S00v00i!\!ò Ñ! Ì P0y0z0* E @ i 10 {0| Ñ R B P (E ) = 1. n = 10 c Ò ý=W{* | Ò | 0 È 5 Pý 8 3v>= x \ Ñ; P (An ) =
n
P (En ) = P (An ) + P (Bn ) =
GH ÑËÌ S
Ò
R B
E S Ñ} B lm c Ñ ! ? | 5 Ñ ý n − 1 3v @ 6 |B | = C , n
n
C9n−1 + C8n−1 , n C10
C98 +C88 9 C10
n−1 8
6 ≤ n ≤ 9.
= = 1. Ñ Ñ Ñ]~H \ò*3 E 2≤n≤5c B lm 5* i \ ò ? Ò 5 i\òPQ 45 æ 2.2.5 ( _ ) [ m 3!PZ L @eH^_ n 3!PT Ñ , ð ò % PÇá ? m > n. 0 [ 0 !ò % P!M!0 Ï Ω *04 @0e P ^ ã0 W Ñ S |Ω| = n . N ! ] E. 7 ûú |E| !7 ð : ? ËÌ ð P (E ). B A b k T ú PMN Ñ k = 1, 2, · · · , n. 7 Ï E = S A . ËÌ ¼½ Çá ã P (E ) = P S A . õ MN A · · · A P ú P Ñ R B MN 0 Z0Ú 0¡ý0 n − i 30!T 0 0 ? b WL j , · · · , j 0!T!Ú @ e ¿P¢£ Ï = §2.2
m
c
c
k
n
k
k=1
n
c
k
j1
k=1
1
i
B¤¥ _ Çá ã Ѧ:
P (Aj1 · · · Aji ) =
(n−i)m nm
= 1−
!
i m n
.
m m 1 2 = Cn1 1 − − Cn2 1 − n n k=1 m n−1 m X n−1 i n−2 n−1 i−1 1 + · · · + (−1) Cn 1− = (−1) Cn 1 − . n n i=1 c
P (E ) = P
n [
Ak
R B ò % PÇá]
S
Pn−1
i m n
s ô 3:;Ç=
p
B E 0 0§!ü!ç!¾080µ0.0½!P!M!N Ñ F G B A È B 0 0§!ü!ç!¾0ø0±08 0 µ0.0½0û0§!ü!ç!¾0ù08080µ0.0½!P!M!N Ñ õ ú Z S0§ü080µ0.½!PM!N E = A ∪ B.
Wb * × Þ 1.6.4 P Ï P (A) = , P (B) = . Ë!Ì ð ò P (AB). 1 ø!Ñ M!N AB 0 0§0ü!ü!ç!¾0ø0±080µ0.0½0ý!ü!ç!¾ ù88µ.½ Ñ ? B B ρ È δ F G § P>= üø±8 µ PÙÚJ Û È § üù88 !µõ P0ú Ù0Z Ú0J0Û θ 0 0! § ü0ø0±080! µ P0þ0ÿ (\0r0! § ü0ù08080! µ P0þ0! ÿ ] − θ). l Q
§2.2
R B
47
P (AB) =
L(AB) l2 = . L(Ω) πab
Çá ãE Ï P (E) = P (A ∪ B) = P (A) + P (B) − P (AB) = . I s w H « Ñ Ë Ì Ñ u é § É Ê ` M = P ! ô ¡ Å Æ
Ç P ØÉÊ ËÌ [ ¡ ãE P89 É ½ æ 2.2.8 ( _ ) ¼ Ñ M S n Ñ ì F G S 1, 2, · · · , n. %
Ò .0P !0P ¼P 0. Ñæ ÿ] !Ì0F G
j W
ò % “ Ø ”. , ð ò % 1 3 ØPÇá ò Ñ# $ ]S0* ¼ ú r s %
^ ! 0 Ø!ÿ!¿0 ! " v &
' ( ) P ; ¤ gUo6 ÑG Î* ¼P ^ !*() Ω Î* ¼PRS!P ^ !()P S |Ω| = n!. A ò % 1 3 ØP+N XY A Z ú Øò % P+N [ b ¼ ^ Òb j ! ÿ] “Ø ” ^ ! -,. Ñ-/0 |A | N 7 ð ò Ñxû j +] !N ø ð; : ] A Î* PRS ¼Ú! “Ø ” ^ ! Ñ ù ^ ã P ! 7 ËÌ H ú 89 G A . ^ !P*+N Ñ XY A Z Î B Î* * ¼ P b j ¼ Ø * 1 S** ¼Ø ^ ! Ñ S A = S B . ËÌE ½ ÇáP ã*2* ð 2l(a+b)−l2 πab
c 1
1
c 1
c 1
1
j
1
n
1
j
j=1
P(
n S
Bj ).
¾"¿ ã323 P "
ð àdD"E ØTRSPó"{" m ( 1 ≤ m ≤ n ) È 1 ≤ j < j < · · · < j ≤ n, ò3+N B PÇá + N"" "Î"* P b 1 ≤ j < j < ··· < j ≤ n ¼ 3 F 4 “Ø" ” ^ ! Ѧ"F34 ^ Ò"b Ñ ¤ c ý n − m ¼ Ò ý P n − m 1 ≤ j < j < · · · < j ≤ n ! 3
!0 x ¿ ^ ! Ñ R | T B | L õ ý0 n − m ¼!P!R!S0!0!P ^ ã 65 Ñ j=1
1
2
(2.1,1)
m
m
ji
i=1
1
1
¦ S
|
2
m T
i=1
2
m
m
m
\r Ï
ji
i=1
Bji | = (n − m)!,
P
m \
B ji
!
ùÓ * ú Ñ Ç áP ã2 ¦ð:
i=1
P (A1 ) = P
n [
j=1
Bj =
=
(n − m)! . n!
n X
m=1
(−1)m−1 Cnm
(n − m)! n!
RST
OPQ
48 =
]~HÏÐ
n X
(−1)m−1
¼Ú
S “Ø m=1
n
1 1 1 1 = 1 − + − · · · + (−1)n−1 . m! 2! 3! n! ”
^ !PÇá] 1 2!
1 3!
1 + · · · + (−1)n n! .
s *3ÞÊ ú
ØÉÊP¨©ÈÝ ½ æ 2.2.9 ( _° ) E7 n 38 9Û ÏÑ 3è F4Ò Û Ï l Û Ï? _:; ,ð s : ; < = j I Ñ ' ( > 8 ÿÈ ;A M +NPÇ : : ; Ï ? Ï ? Û Û á (1) çS k @ Ø (2) S m@ Ø : ; ½ E Ï ? Ñ S m @ Û Ï ½ Û ç S k@ Ø P + N A ? Ø :; P+N Ò Ê ËÌ>ÍQÎð ò A PÇá Ò +!N E c Ñ S k @ Û Ï Ø0 ^ ! Ñ ý0 n − k @ Û Ï !Ø!ò % ( l0m Ú ?B :; ). ð ò P (E ), Ë!Ì D 0 !ç 7 2 P n − k @ Û Ï !Ø!ò % P +!N ] õ ? Ø : ; P k @ Û Ï S C C ã Ñ R 0 e ð0: |D |, X!Y!Z S |E | = C |D |. E ð ò |D |. R D û!ú |D | !70809 ð0!: Ñ R !Ë!Ì D \ P (D ) . D 0! ç 7 2 P n − k @ Û Ï Û Ï !Ñ Ø!ò % F P½ +!N Ñ R D ! E0 !ûÑÏý0 k @ Û Û Ï!Ï Ñ r0g D00G!ù 7 2^ P n−k @ Ê P f n−k @ Ú
S “Ø ” ! P (A1 ) = 1 − P (A1 ) =
−
k
m
1
k
k
k
k n
k
k n
k
k
k
k
k
k
k
PÇá]
P (Dk ) =
1 1 1 − + · · · + (−1)n−k . 2! 3! (n − k)!
â ô ÑcÒ gØ ù7 2 P n − k @ Û ÏG ´ G PQ SÜP úÑ ËÌÒ JI n → ∞, :K ÕÇá] . Ñ õ A = S E , ~ +N E , E , · · · , E ! ½ Ñ R þ Ï Ù jú §2.2
49
1 ek!
n
k
m
m
m+1
n
k=m
P (Am ) =
n X
P (Ek ) =
n−k n n−k n X X X 1 X 1 1 (−1)j = (−1)j . k! j=0 j! k!j! j=0
\ * âLM NPOPQ (Ö 52 ) Wx ¿ \ò 13 Q , k ØR K-Q PÇá A \òP 13 Q ã çS Uk6 ØÑ R K-Q P+N 1 ø Ω Z ú \ \ 13 QPRS! \ P R |Ω| = C . Ñ Ñ õ ú g o \ ý 52 − 8 = 44 A lm c 4 Ø R K-Q Ú i \ ò Ñ
æ
k=m
k=m
k=m
ð ý çS S W x 52 Q } +N Q Wx \ 5 Q R 2.2.10
k
13 52
4
5 |A4 | = C44 ,
P (A4 ) =
5 C44 13 . C52
Ñ | S k ØR K-Q i\ò ÑH e c l m S j R T!P 8 K U 8 Q i \!ò Ñ ý 0 ≤ j ≤ 4 − k. Ë!Ì ½ B 0 !S j RTP8 K U8 Q i \òP+V Ñ XYZW A ⊂ S B . ùÓ * Ñ È Ï W 0 ≤ k ≤ 3,
} +N
Ak
j
4−k
k
j
j=0
Ak = A k
4−k S
Bj =
4−k S
Ak Bj .
7 Ï XYZ +V !½ Ñ\[Y ÇᬠZ ¿À j=0
Ë ] ð T ZÑ\[8
P (Ak ) =
4−k P
j=0
5◦ ,
¦ W Õ ¿ Ï
P (Ak Bj ) .
Ò + V A B c Ñ W k Ø0 R K-Q i^!ò Ñ H W Î0 j R l0]m ~HE Ñ K U8 Q i^ò \ý Z 44 Q ^ ò 13 − 2k − j j=0
|Ak Bj |.
k
ô Z ¦:
j
j 13−2k−j |Ak Bj | = C4k C4−k 2j C44 ,
P (Ak ) =
4−k X
P (Ak Bj ) =
j=0
=
4−k X j=0
4−k X j=0
j 13−2k−j C4k C4−k 2j C44 13 C52
13−2k−j 4! 2j C44 , 13 k!j!(4 − k − j)! C52
k = 0, 1, 2, 3.
W Ñ ú 4 RT Z Q Fabc ^ d KW f Z ;_ `W Ü Q( k e
RZh T ), 8 Z ^ d K U Q( j e R T ) f0ü g ^ d K ê g ^ d Q(W Z 4−k−j eRT ) e i “jkkl ” mnoqZ p m Q B no {:
AB = {3, 5}
|AB| 2 = . |A| 3
P (B|A) =
A { p @
J³ K u F ¡¢ iM 0 Ω = {1, 2, · · · , 6} < ³ ¦§|} (2.3.1)
(2.3.1)
¯
P (AB) =
|AB| |Ω|
= 26 ,
P (A) =
(2.3.1)
} d : O * d CD |A| |Ω|
=
3 6
.
P (AB) 2 = . P (A) 3
P (B|A) =
(2.3.2)
O 8 y c 2.3.2 s ³ ¡ 1, 2, · · · , 10 10 ¢£¤¥¦§¨ ¢ d© §, £¤ ¡¥ª@ 3, g >« ¡ ²³dM´ pµ P (B|A). °± (2.3.1) P (B|A) = = = . ¶· _¸¹ |AB| |A|
4 8
1 2
º ²³dM»¼½ µ P (B|A) = = = . ¾¿ÀÁÂÃÄ (2.3.2) ÅÆÇÈÉ ´ÊÊ P (AB) Ë P (A) ÌÍ uÎÏÐ ® P (B|A) ºÑÒÓÔÕÉ Ö× 2.3.1 Ø (Ω, F, P ) ήÙÚÛ A ∈ F, B ∈ F, «Ü P (A) > 0, ÝÞ °±
P (A) =
(2.3.2)
|A| |Ω|
=
8 10
= 45 ,
P (AB) =
P (AB) P (A)
P (B|A) =
2 4
|AB| |Ω|
=
4 10
= 52 .
1 2
P (AB) P (A)
(2.3.3)
ß Îàá:â A Æãºäåæ Û B Æ㺠ÏЮç èéê ¹ÛMÏЮ½ë ÔÕ à®ÙÚ (Ω, F, P ) ¾ º ®ìíÛ éî ½ï ð ® º 3 Ïñò Óó ÛMô ÉMõöÓ ÛM÷ø Óù ´ú´û Ó çMüýþ æÉ Öÿ 2.3.1 (2.3.3) ÔÕº ÏЮï ð ® ºõöÓ Û©÷ø Óù ´ú ´û Ó 3 Ïñò Óó ç É õöÓù ÷ø Ó î Û ý :´ú´û Ó ç ë úÀÀ º ÐÛ A ∈ F, P (A) > 0, Ý {AB , n ∈ N } Ø {B , n ∈ N } Ñ ½ë Ñ úÀÀ º ÐÛ ¶ ® ºÓó 3 ô´ú´û Ó â n
ྠÀ»Ê
n
P P (A),
∞ S
ABn
=
ô (2.3.3)
n=1
∞ P
n=1
◦
P (ABn ).
§2.3
53 P
∞ S
ABn |A
=
∞ P
P (ABn |A).
(2.3.3) ÔÕº ÏЮ½ï ð ´ú´û Ó ç Á Ô (2.3.3) GÔGÕGº P (B|A), B ∈ F º! ëG´GìGÙGÚ ¾ Á®ìíç#"$ÏЮ%&®ìí º & Óó 1 − 12 . èéê Ω, F ºÑ ¹Ûà (2.3.3) Ü:Çȯ ¸ P (A) > 0, ëÎ'(ý)* Î 0. à,+.- º è ±/0 Ü? ÛÏ Ð Ñ¯ ¸ ÑÒ1ç 2 ï ð çkà Þ34Ñ56789:;< Û ÇÈ=Þ4Ñ5> :;º:@ ´Ê Þ (2.3.3) AB Î n=1
n=1
◦
C Ð
A
ù
B
◦
P (AB) = P (A)P (B|A),
(2.3.4)
P (AB) = P (B)P (A|B).
(2.3.5)
ºDEºF ß Ó Û éî ½ èé &
G À Á 9G ¹'HIGÀGÁ ÐG» ÆGãGº:;GºJ MÛ ´GÊKL ÈMNGµO Á Ð ºPQ Û µ þ æºRS:;ºT ³ ÔÉ Öÿ 2.3.2 (UWVWXWYWZ Ö ÿ ) Ø (Ω, F, P ) Î :W; Ù Ú Û {A , k = 1, 2, · · · , n} ⊂ þ[ P ( T A ) > 0, Ý & F. k
n
k
k=1
P
n \
Ak
!
= P (A1 )P (A2 |A1 )P (A3 |A1 A2 ) · · · P (An |A1 A2 · · · An−1 ).
(2.3.6)
]É \^ (2.3.5) Ä_`³ô´ç Á ÔG ¹'HI O Á ÐG» ÆGãGº:;GºJ Ûa Ücbd ¹Gü º "Gà O ÎÏÐ :; ç"$Ûe ! HIÏÐ :;f )ghç iCj  2.3.1 ù  2.3.2 ºklmn Û ÇÈopµ ´Ê&GÀqHIGÏGÐ :;Gº r³ç Ñ që \ ^ (2.3.3) Û éî ë Ñ q s ÝÓº r³ç ÇÈ = è opt (2.3.1) GÛ Ð A ëzGÎ Ñ {´uv ¹ [ºwGÑ q¹rGü ³GçMÛà}x~ y Û HIGÏGëÐ K :; zP (B|A) μòÙÚ º Ûë 2 º | º Q º Ì G Ç È A xHIGÏGÐ :;GºJ3 HIGÏGÐ :; ç ë Ñ qGà
A ' º ¼GòGÙGÚ Ì ¾H IÏÐ : ;º r³ç q r³ N D ^ à O % /0º H I Ü Û - õ -rÛ ÇÈop ç æ3 ÁÂÃç 2.3.3 ÜC & 7 ÁC ù 3 ÁÛ Ü i D 3 Áçlá âa Ü:ÌÑ ëÛ¸a 1 ëC º:; ç É ÇÈ Ê A a Ü & Ñ ÁÎ º ÐÛ Ê B 3 ÁÎ 1 ÐÛh 3 HIÏÐ :; P (B|A). Î$ ÇÈ Ê Ω Ñ {´ 2º¡| [ 2 º k=1
¢£¤ ¥¦§
54
ºQ Û ¨â |Ω| = C , |B| = C C = 63. è é Ð a © FÁSÎ A, ¶ a op Ð Õ ç “& Ñ Á Î Á”à ®ëªCè é "k $Î “« ¬ & Ñ ¶ |A| = C”, − C F=85. ¯oA pÝ µ B ⊂“A, ° & 3 AB = B. üà ”,ÇÈ ± Ê|A¸ | = É C , , P (AB) = P (B) = . P (A) = = = ë x ² Ï Ð Û I S :;ºÔÕ 3 10
1 3
2 7
c
3 10
c
3 7
|A| |Ω|
|B| |Ω|
85 3 C10
³ ë Û Ç È ½ ± ÊK
63 3 C10
&
. Î ¼ ò Ù Ú Û x ² I A´ (2.3.1) µ¶ = = . P (B|A) = ç ÇÈ3· 0, k = 1, 2, · · · , n, ÝF ¼S B ∈ F, 1 & 58
6 13 .
1
5 13
2
7 12
1
4 13
3
2
6 13
1 6
5 13
1 4
n
4 13
64 156
n
k
k=1
1
2
n
k
P (B) =
à ± ú äBæ Ê è D & É P (B) =
n X
P (Ak B) =
∞ X
P (Ak B) =
k=1
n X
P (Ak )P (B|Ak ) .
∞ X
P (Ak )P (B|Ak ) .
(2.3.8)
k=1
Á Ô º ý C ðÛ (2.3.7) ëa n = 3 ºT ÂÛ ÇÈ á:àU ª G ¹' y º ýW VXçYZ ð,ÓW[ Û Àý :ç  2.3.7 ºklmn Û ÇÈ .'® :;Jº\ 4ç:à Î^ y J Û ß m èé op e !¡] Ω º )Q {A , k = 1, 2, · · · , n}. þ[ ¡] é Û Ý ðÊ^. Ú HI º"_kº ç æ3 Ñ/ ÂÃç 2.3.8 `babc ºWÉ Ñ Û Û H Íbd Ú ãe » Ñbef Û eWd # Þgbe d º , , ô f ; ) ý Î 1%, 1% ù 2%. ü y cefÜÒ Ñ ÐÛ]¸y ef ë ô fº :; ç É Ê Ω & ±2º| [ÛMÊ B ¹ ºef ëô fº Ðç / 0 Ûà S Û H âÍy deÚ f ë ÁdGÐÚ ç ãeGë º ç S ë ) ý ë Ê A , A , AÁ)Q Ûy ef & ë É Ñ ãeº S A , A , A F Ω ºÑ k=1
k=1
k
1 2
1
1
P (A1 ) =
Þ L È$ã
1 2,
2
P (A2 ) =
ÛMô (2.3.8)
ÇÈ3 ;ö ·
V U ÿ9 ú 6 ³ V â O èAUê V íêýâþêÿ 4Câ ´ ñµ â ¶ îÆ zpWX= 2.4.3 \ p §©Å V º»¼ à p = q = . ÐÑ À ©Å Á N ÒÓÔÅ O, > p ¸ ¹ I ÒÓ 9 Ë \ ÅÃ9: ¼ R; =< l>? R Ô @ÅA Õ\ ;t n lÌ = J k, 0 < |k| ≤ n O Wí n k éåæ ; 2 C −C , p = Wí n k î åæ . 0, { FG ä K n H k ' æ ª \ J ] IÆ [ à ÕG' å ª \ J ]\ L vwrs= [ | ïð t FG > de ¶ Lpo;o \ Ð u 2.4.6 (k §x©xÅ k \xºx»x¼ xà p = q = \ S ÅxV k Í k } k ~ k ) x ¸ ¹ I Ñ À 9©Å Á N ÒÓÔÅ O, 56Õ 9Ë n à # ? R ÒÓÔÅ O . ¸ J \ ;t 1 2
(n) k
1 2
−n
n+|k| −1 2
n−1
n+|k| 2
n−1
(n) k
^ _`a A @A ©Å 9Ë n à # ? R ÒÓÔÅ ¸ \ Á J\ ÒÓ ¾ UV C 9 à © Å 9 Ë A ÙÚ n K k^ + k ≡ 0 (mod 2), 0 < |k| ≤ n . =:
ê \ po M = n =n2m 9Ã l §2.4
P (A) = 2
m P
9Ã l k=1
(2m)
p2k
=2
m P
k=1
69
O
\ BCt ò ,
m+k−1 m+k m 2−2m C2m−1 − C2m−1 = 2−2m+1 C2m−1 ;
n = 2m − 1 m m P P (2m−1) m+k−2 m+k−1 m−1 P (A) = 2 p2k−1 = 2 2−2m+1 C2m−2 − C2m−2 = 2−2m+2 C2m−2 .
V!píà > k=1
k=1
[n]
2 P (A) = 2−n+1 Cn−1 .
X D m%ÐL M N rsl \ t u 2.4.7 § G j lkxlkXk! ] W \k O ]x\k ª g(x) \kT x= g(0) = 0, ¹ = g(j) + α (x − j), j ≤ x ≤ j + i, j = 0, 1, 2, · · · , n − 1, α = 1g(x) M $" » = l f T \ j l ª t FG # º» Ð ¯ −1. L ª à 6 º» BC A \ ;à A @A j \ ª g(x) N WX T = Ø (0, n] =< l v }. G = {g| g(x) ʹ 6 i§ £7Âj b (1) ¶Ëhʹ 6 i 6 (2) Æ9¶9Ë h99Ê9¹ 6 i 6 (3) 9à9Ë h99Ê9¹ 6 i 6 (4) k9È99à9Ë h99Ê9¹9Ú § i9¨ 6 (5) =99§ h99Ê9¹9Ú§ i¨6 (6) k9È9 9¶9Ë h99Ê9¹ 6 i9º 13. r 9è (r > 1) l m9 n o9£ ¸ píxõ9ö9£ ×9Ñ q9 Í89ðr9¯ ms t r − 1 9è99§ F9¶99º ¼ * u 9§ ²9³ b (1) m n Ñ9£ v9&$Bíxã9 6 (2) m n (n < r − 1) Ñ9£v99è w J9àÑ ( íxõ9ö9Ý q9 x y&jfw 1 Ñ ); (3) Æ n Ñ z&9íBm9¹9º 14. 3 999£jï9Æ j 99 #9 N x 9¡ M 9¢9 9£ j = 1, 2, 3. 9®9´9µ9¶99 9£j·9¸9 % #&$x¯²³ µà9 £`ÃĬ9¶y¶¢ºj»¼{à9 23ëÅxƶ£jÆ+ 9£jÆ99999§ º AºB19¸½9 15. ¶999 |9ë #9 N x 9¡ M 9¢9 9£ Ö } ~ 9¶99 £[ Ì % #&$x¯99®9µ9¹¶9 £`ÃÄ9¤¥gx º`»9¼}~ª ¬y § ²³ º 16. C999 m c9Ó 9Ï9Ð9£ n c9Ñ 9Ï9Ð (Ñ 9Ï9Ð9§9à9Ô9Í 9 ). ï C9 F9µ9¶ c9£ ¤
9Ê r Ñ9£j ×9Ñ ] º{c g g 17. ( ) A ] n B ] m n > m, ¡ ¢ £ ¤u ¥g8¦ r!§ ¨b© ª« A ¬ ® ¯ ° ± . 18. (² ) © x A ³ ´ µ ¶ · 19. ¸ ¹ 2n º » ¼ ½ ¿¾ ¼ ½ À Á  à p. ¼ Ä Å Æ Ç ¬ È É ¼ ½ Ê À Á Ë Ì À Á Í ¬  à n + m (0 ≤ m ≤ n) · 20. Î Ï Ð Ñ Ò ÔÓ ¾ Ñ ÕÖ ×Ø p Ù 1 − p Ú Ê Û Ü Ý Þ Û ·.ß ÑÒà á Æ n Û [¼ Ä â (1) Ó Ý ã ä å æ ç Ñ è n + 2i Õ é (2) Ó Ñ ê ë 0(Ý ã ) ä å ë N Û · 6.
1
1
2
2
1
1
2
2
1
2
n
j
n−m n+m
j
n
n
§2.5
ìîíðïòñîóîô
71
õ ö÷ø÷ù÷ú÷û ÷ üîýîþîÿ üîýîþ !#"$% &îü ýîþ ' ( ) * !,+-. /0123 4 îüîýîþ ! §2.5
56789:;< A = B ÿ?>? ???@?A (Ω, F, P B ?C?(?3?4?B ?D?E?F? P (A) G ÿH> !BI *JK/ L . EM (NO ! P (A|B); P (B) G P (B|A) P 2.5.1 QR ' 51 (>SBT 30 U 21 VWBRX 'YZ 17 [ BT 9 U !]\^_`a Rbc 1 [ ]def A = B gh a [ ÿ Ui= ÿYZ 34 ! 8V jklm n P (A) , P (B) , P (A|B) , P (B|A) . o n +- ' |Ω| = 51 , |A| = 30 , |B| = 17 , |AB| = 9 . p f §2.5.1
P (A) =
30 10 = , 51 17
P (B) =
30 10 = , 51 17
P (B) =
17 1 = , 51 3
P (A|B) =
17 1 = , 51 3
P (A|B) =
9 , 17
P (B|A) =
10 , 17
P (B|A) =
9 3 = . 30 10
Xqrstu v' P (A) 6= P (A|B) , P (B) 6= P (B|A). /wx* Dyz m B{4H|}{4 !B~ ÿ'N j M m Nn P 2.5.2 QR ' 51 (>ST 30 U 21 VWRX 'YZ 17 [ T 10 U !]\^_`a Rbc 1 [ ]def A = B gh a [ ÿ Ui= ÿYZ 34 ! 7V jklm n P (A) , P (B) , P (A|B) , P (B|A) . o n
' |Ω| = 51 , |A| = 30 , |B| = 17 , ~ ÿ' |AB| = 10 . "$ P (A) =
10 1 = . 30 3
X qrstu v' P (A) = P (A|B) , P (B) = P (B|A). /îÿ (
! / f 34 B iG &34 A i '34 ÿ &34 B i ' `- A “ üîý ”. A i
l u P (A) = P (A|B) , ¡ ' = P (A|B)P (B) = P (A)P (B) . ¡¢ s l u P (AB) = P (A)PP (AB) (B), P (A) = P (A|B) ,
P (B) = P (B|A) .
(2.5.1)
"$ (2.5.1) £ C(| £¤ >¥H ý ¤ >¥ ý !B+-§¦ X§q §¨© I
ªn l m
72
« ¬ ® ¯°±² ³ ´ 2.5.1 A = B ÿ> @A (Ω, F, P ) C(34 l u ' P (AB) = P (A)P (B) ,
(2.5.2)
µ¶ 34 A G 34 B üîýB· ¶ I üîý ! l Xp F A G B ü ý ¸¹ A º»¼½¾ B 9º»¿ÀÁÂÃÄ ! B º»¼½¾ A 9º»¿ÀÅÁÂÃÄ l uÇÆÉÈ§Ê E§Ë§M§ §M§Ì§Í§Î Ê §C§(§N§O§Bϧ'§Ð§} +§- ü ý þ§ §Ñ ª ! N 2.5.2 Ui = Ò R YZÓÔ , p f “ÿ I Ui ” & a i ÿ I Y§Z ” §§Õ þ§ §Ö§×§§'§§ ! w§ §B§N 2.5.1 É U§i É §Y§Z “ Ø N×}Ò R YZ Ø N "$ Ùv a i I Ui {4 m #ÚîÿYZ {4
Ï×}Ú ÿYZ {4 A * !ÜÝ ÖÞßàáÏTâ ã ! P (B|A) Û üîýîþ ªäåæ c m qt ! ³ç 2.5.1 A = B ÿ> @A (Ω, F, P ) C(34 µè 34 A G 34 B üîý¥ lmé &34 A üîýn (1) A G B ; (2) A G B ; (3)A G B . êë n P (A) = P (AB) + P (AB ), ì (2.5.2) £ B 1 3
c
c
C
c
c
$í g J A G B üîý ! T yzîïðJ !
ª 2.5.1 ÿ +- &}îüîýîþ p m ªòîÿóôC(34îÿ üîý X ñ
õö !÷ø è +- ` X ðJC(34 îüîý þ¥ ¡ùúûÈ ð J (2.5.2) £ Eü ! ìýþ a £ ý ÿ C(34 ¡ üîý ! P 2.5.3 A [0, 1) \^ (LBdef A = A gh a L A [0, ) = [ , ) 34 j B34 A G A ÿ üîý 0 §
}
§ ! å§ A A = [ , ), P (A A ) = P (A ) = o n /§
f (2.5.2) £ ý "$ A G A üîý ! P (A ) = . p è +- p fF “/0 } ”, ÿ "I “Lîÿ A [0, 1) ÿ \^ ”. % c ÿ ª 2.5.1 v 34 ü ý þ ÿ G @A
' ! NO +- p Ì@A Ω = [0, 1); 34 σ F
' Borel O P I Lebesgue !! ÿ/(@A p [0, 1) p q C(34 üîý #! "I & Ø +- ËEM m ñ NO ! P 2.5.4 Ì@A Ω = [0, 1); 34 σ F [0, 1) p ' Borel O ! &
$ O P (AB c ) = P (A) − P (AB) = P (A) − P (A)P (B) = P (A)(1 − P (B)) = P (A)P (B c ), c
1
1 3 4 4
1 2
1
1
2
[0, 1)
1 2
1
Borel
E,
2
1 1 4 2
2
2
%
P (E) = k:
X 1 2k
∈E
2
1 , 2k
1
2
1 4
1
ì íðïòñîóîô î 73 í 34 E |} E p '& l ' = ! H ( ð (Ω, F, P ) Kîÿ
(@A ! f A gh 34 [0, ), f A gh 34 [ , )( 34 σ
$ )Óîÿ34 ). j A G A ÿ üîý o n *+ £ +- ' P = , = + = . P (A ) = P 0, = ; P (A ) = P ~ ÿ' §2.5
1 2k
1 2
1
1
∞
1 2
1
k=2
`
1 3 4 4
2
2
1 2k
1 2
1 3 4 4
2
P (A1 A2 ) = P
1
1 4, 2
1 4
=
1 2
1 4
3 4
.
P (A A ) 6= P (A )P (A ) . H ý f (2.5.2) £ p A G A H üîý ! ,áâv +- f ûÈ Ì- þ.Eóô34 îü ýîþ0/1 f [ I _ ü ý þ 2 !,"I /yz m #f ` rs tu ÿ G34 5 )Eóôîüîýîþ )îþ ! P 2.5.5 6 798§[§§ ü ý _ é Û : ; § j§k §de n ? @BC [ c ñ ?' | ! o n/0B 678[ “üîý _ ” => è
îÿ ) ! f E gh 8[ c ñ ?' | 34 Ëdef A = B gA h v 6 = A 7 c k ? ñ 34 k = 0, 1, 2, · · · , n , å E = S A B , ìý è i 6= j ¥B3 4 A B G A B H B ' 1
1
2
1
2
2
k
n
k
k
k
k=0
i
i
j
j
P (E) =
n P
P (Ak Bk ) .
}C üîý _ => p f&C( k, 34 î [ > ÿ;¥ c * “ üîý ” = “ H B ” C(H> + - m D E c “ üîý ” = “ H ä ” /C( e ! P 2.5.6 A = B ÿ> @A (Ω, F, P ) v C(34 ý P (A)P (B) > µè 34 A G 34 B H ä¥ - ù H üîý W w è - üîý 0, ¥B ä ! êë n þ % - ” üîý ” è ýF è = P (A)P (B) > 0 ; - ” H ä ” è ýF Pè (AB) P (AB) = 0.
«¬ ®¯°±²
74
G6789:;< (34 îüîýîþîÿîH ýC(34 îüîýîþ IJ X ~ KL ! A , A , · · · , A ÿ> (@A (Ω, F, P ) n (34 l u - A + - ü' ý Tâv $ M d34 A ÿ è ÿ üîý ! f n = 3 I N §2.5.2
1
2
n
³ ´ 2.5.2 A , A , A ÿ > (@A üîý l u lm 4 (N £ Ó ý 1
2
(Ω, F, P )
3
3
(34 ¶ -
P (A1 A2 A3 ) = P (A1 )P (A2 )P (A3 ); P (A1 A2 ) = P (A1 )P (A2 ); P (A2 A3 ) = P (A2 )P (A3 ); P (A3 A1 ) = P (A3 )P (A1 ).
/0 è ýF è 4 (N £ ÓOPQÕF 3 (34 A , A , A üîý ! l u ' @ ñ 3 (N £ OP µ¶ 34 A , A , A 55:; . F ª üîý CCîüîý !~ DEFCCîüîýHÕRS X q üîý W ýT (| £ H Õæ c @ ñ 3 (| £ ! M UNO ! P 2.5.7 Ω = (0, 1); 3§4 σ F (0, 1) p ' Borel O W P I ! % Lebesgue 1
1
A1 =
1 0, 2
, A2 =
1 3 , 4 4
2
2
3
3
, A3 =
1 5 , 16 16
∪
9 13 , 16 16
.
jV 34 A , A , A ÿ üîý ! o n,å P (A ) = P (A ) = P (A ) = , P (A A ) = P (A A ) = P (A A ) = , ~ ÿ' P (A A A ) = 6= P (A )P (A )P (A ), p f34 A , A , A CCîüîý ~ H üîý ! A W§3§4 A , A > X §BË % A = ( , ).
j V §3§4 P 2.5.8 §§§@§
ÿ üîý ! A ,A ,A o n/(NO X,Y þB Z[ æ \ #! ]
B/0' P (A ) = P (A ) = P (A ) = , P (A A ) = , P (A A A ) = , P (A ∪ A ) = ~ ÿ' 1
2
3
1
1
2
2
3
1 2
3
1 16
1
2
1
1
1
p f
2
1
2
2
3
3
1
2
3
2
1 4
1
3
3 7 8 8
4
4
2
4
1 2
1
(3 34H üîý ! P (A A ) = $ +-^ BÌ' f X C(NO _` +- n 1
4
2
1 8
1 4
1
2
1 8
4
1
2
6= P (A1 )P (A4 ) . P ((A1 ∪ A2 )A4 ) =
3 8
= P (A1 ∪ A2 )P (A4 ).
3 4
,
ìîíðïòñîóîô 75 è ª 2.5.2 @ ñ 3 (N £ ý¥BH§ Õað T §( N £ (1) ý l N 2.5.7 ph ! w B ª 2.5.2 ] T (bbN £ H?ÕbRbSb@ ñ 3 (bbN £ ! 3 (2) õ§
§§Õ§' 3§X BN 2.5.8 ¡§g JÉ#ced§f§' §Pª (A A AÉ)
=f§P( (A )PN (A )P §(AH ), § ! ì§ý N £
£ g P (A A ) 6= P (A )P (A ). p 2.5.2 H HÕað 3 (34 üîý ý HÕa P (A A A ) = P (A )P (A )P (A ) F ð - CCîüîý ! N 2.5.8 ^ _` +- n íh 3 (34 A , A , A B' A G A ü (3) ý ìý A G A A üîý A G A ∪ A üîýBHÕað - üîý#/1HÕað - CCîüîý !Ba N A G A ¡ H üîý !B+- þ 'i i ¦j ª 2.5.2 f(N £ #Õklmn(34 üîýîþ ! /UNO g Jv#(34 A üîý þ' ¹op rqsS ùú &Ttu v ! m ñ +-w c n (34 îüîýîþª ! ³´ 2.5.3 A , A , · · · , A ÿ> (@A (Ω, F, P ) n (34 ¶ - üîý l u &$ x ' k, 2 ≤ k ≤ n, W$ x ' 1 ≤ j < j < ··· < j ≤ n , Ó' §2.5
1
1
4
1
2
1
4
2
4
1
4
4
1
2
4
1
4
2
1
2
4
1
2
2
1
2
2
4
1
4
1
n
1
2
k
P (Aj1 Aj2 · · · Ajk ) = P (Aj1 )P (Aj2 ) · · · P (Ajk ) .
(2.5.3)
è B X£ yz {* 2 − n − 1 (N £ ! ¡ ÿF n (34 ÿ
üîýîþ G / 2 − n − 1 (N £ >¥ ý|| !B÷ø § n (34 ü
ý R S§*§TÇ9$ M?d§3§4 § ü ý W ~ ÿ§w È E§ íbh TÇ9$
n − 1 3 4§Ó § ü ý§B§H§Õ a§ð n (B3§4§ x á X§§ ü ý ! §f } c & $
x ' T$ k (34Ó üîý ~ ÿ$ k + 1 (34ÓH üîý k, 1 < k < n
NO !
y & îï è 34 A , A , · · · , A üîý¥ ¦- $ G n=2
Md ¤ Òá ÷I ÿ &îý34@ p n (34 üîý ! +- w c 34 ~ îüîýîþª !
3 ³´ 2.5.4 A , A , · · · ÿ > ( @ A @ A (Ω, F, P ) ] b 4 ¶ - üîý l u & $ x ' n ≥ 2, T $ n (34Ó üîý ! /¥ +- 34~ {A , n ∈ N } ¶ Ia @A îüîý34~ ¤ üîý§3 4 ! å {A , n ∈ N } I üîý34 ~B| |}& $ x ' n ≥ 2, W$ x ' 1 ≤ j < j < · · · < j , Ó' n
n
1
1
2
n
2
n
n
1
2
n
P (Aj1 Aj2 · · · Ajn ) = P (Aj1 )P (Aj2 ) · · · P (Ajn ) .
«¬ ®¯°±²
76
+- E w c üîý34~ (NO ! P 2.5.9 §§§@§A l >§N 2.5.7, í Ω = (0, 1); 3§4 σ F (0, 1) p ' Borel
O W P I Lebesgue ! ˧ 0 < p < 1. & $
x ' n, a = 0 ,a =1, ì a =p; n, 2n
n, 0
1,1
a2,1 = p a1,1 = p2 ,
Ùª a)
2,3
= a1,1 + p (a1,2 − a1,1 ) = a1,1 + p(1 − p) = p(2 − p) ;
+- Ë ä å a M c l =ua % q, = a1−p, d Ø I C(× +- ª k+1,2m
a2,2 = a1,1 = p ,
k,m
ak,1 , ak,2 , · · · , ak,2k −1 ,
=
a I A (a
k+1,2m−1
p q
An =
L Ó ¦ A ) = (a
+ p (ak,m − ak,m−1 ) , m = 1, 2, · · · , 2k .
k,m−1
x = ak+1,2m−1
k+1,2m−2 , ak+1,2m−1
2n−1 [−1
(an,2m , an,2m+1 ) ,
(ak,m−1 , ak,m )
k+1,2m−1 , ak+1,2m ).
n = 1, 2, · · · .
} ÿ {A , n ∈ N } ÿ A (0, 1) v Î è
ÿ +- p @Aâv 34 ! fðJò&$ x ' n, Ó' P (A ) = p , ìý & &$ x ' n ≥ 2 = $ x ' 1 ≤ j < j < · · · < j , Ó' m=0
n
n
1
p f
2
n
ÿ (îüîý34~ !
P (Aj1 Aj2 · · · Ajn ) = pn = P (Aj1 )P (Aj2 ) · · · P (Ajn ) ,
{An , n ∈ N }
: ;9¿À cd&34 ü ý þ ùú u ¢ u ~ ÿ&} ü ý34 rs '+ /fFîÿîüîýîþ Cîþ 34 [ )§
þ §§f û§È§r§s§t§u§G 3 4 y ¦ ü ý þ "§I §§§ ! /§§§§
û
z 5 ) E (! è A , A , · · · , A ÿ> (@A (Ω, F, P ) n ( üîý 34¥ f· I §2.5.3
1
2
n
P
µ · I
n \
k=1
P
n [
k=1
Ak
!
Ak
!
=
=1−
n Y
P (Ak ) ,
k=1
n Y
k=1
(1 − P (Ak )) .
(2.5.4)
ì íðïòñîóîô î 77 · ü ý þ ª ! · £ æ lm n 34 A , A , · · · , A ü ý 34 A , A , · · · , A ü ý Ë De Morgan µ §2.5
1
2
n [
P
c 1
n
Ak
k=1
!
= 1−P
n \
Ack
k=1
!
=1−
c 2
n Y
k=1
c n
P (Ack ) = 1 −
n Y
k=1
(1 − P (Ak )) .
m ñ +- E12 rs U,á NO ! þ§§ ÿ ¡N ¢ ¤ N ¢§
£§4 ¤ " §§§§§ §&ÿ ÿ § §§ § §(§§ §d ¥ ! § þ§§ÇÉ ¦ £§4 ¤ " §§ ¶ I £§4§ þ ¦ N¢ ¤ " ¶ I N¢ îþ ! ìý Dyz m û N¢ é ( £4 ¤ " 34 Aîÿ üîý ! P 2.5.10 lmé N¢âv é ( £4 ¤ " 34 A üîý ìý ( £4 îþ I p , jké N¢ îþ ! T k k
¦§¨©ª
o ¬n «N¢ 1 ® £ 4 1 ¯ n °±® £ 4 ì"±³ ²3f4 Eåg h N¢ 1 ¤ " ³ 34 ® f ® (
2.1)
1
X q C ° £4 ¯ 2n ° ± ® = A d e gh C ° £ 4 ¤
n+1 A1
2
P (E1 ) = P (A1 ∪ A2 ) = P (A1 ) + P (A2 ) − P (A1 A2 ) =
n Y
pk +
k=1
2n Y
k=n+1
pk −
2n Y
pk .
k=1
«N¢ 2 s ® £4 k G n + k ì±® k = 1, 2, · · · , n. Xq n ´ì± °±² f N¢ 2 "³ 34 ® f A gh £4 j ¤ "³ 34 ® j = 1, 2, · · · , 2n. E gh ¤ å 2
j
P (E2 ) = P
f
n \
k=1
(Ak ∪ An+k )
!
=
n Y
k=1
P (Ak ∪ An+k ) =
n Y
k=1
(pk + pn+k − pk pn+k ).
" ³ 3 4 ® g h Ë Nbf ¢ 3 b¤ "b£³4 3 4 1 ® f A ³ g Oh N£ ¢ 4 k "b ³ ¤ 3b 4 ® f B k = 1, 2, · · · , 6 . B gh 1 4 ¤ gh £4 5 = 6 ³ ON¢ ¤ "³ 34 ² å E3
k
1
2
P (B1 ) = P (A1 (A2 A3 ∪ A4 )) = p1 (p2 p3 + p4 − p2 p3 p4 ) , P (B2 ) = P (A5 A6 ) = p5 p6 ,
³ µ [ ¶ £ í ² · E ¸b¹ Nb¢ 4 b¤ "b³bºb» ® · k = 1, 2, · · · , 5 . ¼½¾
Ë ¦
P (E3 ) = P (B1 ∪ B2 ) = P (B1 ) + P (B2 ) − P (B1 B2 ) = P (B1 ) + P (B2 ) − P (B1 )P (B2 ) , P (B1 ) 4
=
P (B2 )
Ak
¸b¹ £ »
k
b¤ "b³bºb» ®
¿ÀÁ
78
ÂÃÄÅÆ
P (E ) = P (A )P (E |A ) + P (A )P (E |A ) . ¢ ¢ 2 n = 2 ³ÎÏ ®#ÐÑ A ÇÈÉ ®#Ê 4 ËÌÍÊ ³2 +ÎpÏ −®#pÐpÑ ) . Ò « A ÇÈÉ ®#Ê P ¢ (E 4|AË)Ì=Í(pÊ ¢ + p1 − pn p=)(p
«
4
5
4
c 5
5
c 5
4
5
4
5
1
3
1 3
2
4
2 4
c 5
µ×
P (E4 |Ac5 ) = p1 p2 + p3 p4 − p1 p2 p3 p4 .
¶ÓÔÕÖ
P (A5 ) = p5 , P (Ac5 ) = 1 − p5
P (E4 )
³ ¸Ø ÕÙÚ ²
Û Ü 2.5 1. ÝQÞQßQàQáQßQâQáQãQäQåQæQçQèêéQëQìQèêíQî 3 ïQáQðQçQñQòQóQèêôQõQöQïQ÷QøQùQúQûQüQý E = {þQñQòQÿQî 1 ïQâQá }, F = {ñQòQóQîQàQáQî!â!á }. ô!î 2 ï!á!ð!ç ñQò 2. Q÷Qø A B ûQüQ è QöQ÷QøQó A Qß B QßQè B Qß A QßQç Qã . P (A)
1 4
P (B).
QïQ÷Qø A, B, C ûQüQè¬ëQì A ∪ B, A − B C ûQü ö ç ð è A = {!"# }, B = {$%"# }, C = {$&" ëQìQý¬÷Qø A, B, C öQöQûQü'(Q) û!ü 5. í*+ 2.3.21 óQè, A = { $ i ï-.Q / í0Q1 ð23 }, ëQì A , · · · , A ùQúQûQü 6. ë ì ý ÷ ø A , · · · , A ù ú û ü ç4567Q 8 ø ãQý:9; ï Aˆ = A < A (k = 1, · · · , n), Qî 3.
4.
i
1
1
n
k
n
c k
k
ˆ1 · · · A ˆn ) = P ( A ˆ1 ) · · · P ( A ˆn ). P (A
ëQìQý¬ô P (A|B) = P (A|B ), =Q÷Qø A B ûQü
Q÷Qø A >?0ûQüQè¬ëQì P (A) ä@ 0 < 1. 9. Q÷Qø A B ûQüQè, P (A ∪ B) = 1, ëQì A ABQ÷QøQûQü 10. 9CDEFGQûQü! ç HI!,è $%GHI!ç J!ó" 0.4, $&G" 0.5, $G" 0.7. C D K ! I ó % G L M ! N ç " 0.2, I!ó &GLMN!ç " 0.6, OKI!óG=CD6 P MNQ,è HIGL INCD! ç 11. Ý ;Qï QRSQó TUVWXQç " 0.004, YQï QRSQã ZTUVWXQùQúQûQü [ 100 ï QRS\]2TUVWX!ç 12. ^_ `bac/deac n ï fbg ÝQÞQí achi!ó $ i ï fbgjkQç " p , Y f gQã ZjkQùQúQûQ ü lQõ mQ÷!ø!ç Qý 1) achiQó nQ î fbgjko 2) ÿ p%Q ï f gjko 3) @%Q ï fbgjk 13. qrs K t rQè < rs K K uvt r v `bw t rx K , K , K t rQ ç yG ã 0.4, 0.5, 0.7, YrsQùQúQûQü ,z`{w t rQç 14. | 3 Q ç QðQè ÷Qø A }~$%Qè &Qö Qð Qù u ç Qè ÷Qø B }~$&Qè $ ð !ù u ç !è ÷ ø C }~$%!,è $ ð !ù u ç ¬é !÷ ø A, B, C ã Z"Qý (1) öQöQûQü o (2) ()QûQ ü 15. Q÷Qø A, B, C ()QûQüQ è
Qç !ä @ 0 ! 1. é Q÷Qø AB, BC ! AC æ Z"Qý (1) öQöQûQ ü o (2) ()QûQ ü 16. Q÷Qø A, B, C öQöQûQüQ è
Qç !ä @ 0 ! 1. é Q÷Qø AB, BC ! AC æ ü o (2) ()QûQ ü Z"Qý (1) öQöQûQ 17. A B "QùQúQûQüQ÷QøQ è LQ÷Qø C Q÷Qø AB ! A ∪ B QûQü é Qè ÷Qø A, B, C c
7.
8.
i
1
2
3
1
2
3
}.
§2.5
79
ãZ%QÞQöQöQûQüz
A, B, C, D "Q÷QøQè, A ! B C ! D ûQü¬ëQìQý¬ô AB = φ = A ∪ B C ∪ D ûQ ü 19. A, B, C "Q÷QøQ{ è 0Qó A ûQü@ BC ! B ∪ C, B ûQü@ AC, L C ûQü@ P (A),P (B) ! P (C) "¬ëQìQè¬÷Qø A, B, C ()QûQü 20. ëQìQ è A , A , A çQöQöQûQü %QÞ!æ
!ç!ù!ú!ûQü 21. ëQìQ è 0ä 18.
1
Qæ
2
3
P (A1 A2 A3 ) = P (A1 )P (A2 )P (A3 )
Qç öQöQûQü 22. ÝQÞQ÷Qø A, B, C öQöQûQüQè, A1 , A2 , A3
ABC = φ,
éQë
x
ç"
1 . 2
P (A) = P (B) = P (C) = x.
CD = φ, AB,
¡
¢ £¤¥¦§¨©×ª¦«¬ ¶ ¨¯° º»±²³´ ªµ 19 ¶·¸¹ Ç ® º¼»¾½À¿ÀÁ ¨ÀÂÀÃÀÄÀÅÀÆÀ© ×À¨ÀÇ ÈÀÉÀ¦À§À¨À© ×ÀÊÀËÀÌÀ¦À«À¬¼Í¾ÎÀÏÀÐÀÑÀÒÀÓ ÔÕ¨Ö× ±ÙØ ¢£¤¥¦§¨ÚÛÜ Ó ÇÙݪ 20 ¶· 30 Þ ÔÇÙµ¦«¬¨ßà Õâá Êâãâäâåâæâç à åâèâé ¨ ±bØ Íâêëâìí Åâî¦â«¬â¨ïâÇ{ðâñ Ìâòóâôõö ÷ ó ÚÛøù ö Ô ëúûüý ¢£¤¥¨¦§ ±
þ ÿ
§3.1
¢£¤¥¨ ôõ ¦§ Í ¢£ ì Ç ´ ó É¢£ ì ± 3.1.1 ¾ n ë 1 ë ±"! ó É ë É ë#$% Ç ô Ñ $%../&' Ü.Ç0.(*.)+ *¨ +¨ $,Ç2- 1.± â3 Ç ¨.4 ¢ £.5 Ò.6 Ç ²Ú.7 ª ξ $.= .Ò,.> - Ç=à=2=c=S=` 1000 á3Ü3Ý3â339;r=á=Ü=Ýq=ã=à=2=c=@=Ï=ä=J=K=L 0.0001, F3ã3à323c3@3Ï3ä3J=Ü=Ý3W=Ò=Ä=Ô ± 2 ¯ J3K3L3E 13. >3å3æ3¶3ç3è3X3{3é=ê3ë=ì=Ï3í =î=ï3ð 9 é=ê=©3Ú=W=í 3ñ T=ò3â==EͶ=ç3ó=ô 3í 3õ3ö é3ê3Ê ñ T3÷3J3K3L3 0.6, ¬33í Ê3÷3ø3ù3M3N3EúC3t3¼=û3K3L=â3=é3ê39 Q ¹ ¶3ç3ü3º3Æ3ì=Ï3í ¯3H=° ý=3þ=Æ=H¨Å 14. `953À3ÿ3 4 39 8 3S 4 39¦y3XÀ3ÿ 3@ 39 3Q=R=T3U={=I3E (1) >= Ì
= ; 9 = F = Q = R = T ¹ v 3 õ J39;ý= =` =U=«={=y I=¨J=Å K=L (2) >=Ì=M=N=Q=R 10 I=9;T=U 3 I=9 ¹ S39;F3Ñ=3> =@=S3w ={==239 ={ r 3J3K3L3E 15. Banach 16. Bernoulli !" o3p3{3Q3R3` r ?3x3y # ° A , · · · , A , $3¬ P (A ) = p , p + · · · + p = 1. X ö Q3R3M3N 3O=P n I3E;F A G3@3A k I3J3K3L39;e3S k ≥ 0, P k = n. 17. 3M3N3O3P3J3 _ % Bernoulli Q3R3S39;F A A &' @3A3J3K3L39;e=S i 6= j. n
2
k
i
2
1
i
1
i
i
i
1
r
n
i
r
i
i
i=1
i
j
1
§3.3
Ñ7Ò5Ó7ÔË)()*,+.-
99
/1012131415161718
§3.3
9 :);))?)@ ) ë ¢ ÝBABC ¡ ED ¬ ¯ £BF ¤¥)C º)G ³)HEI.J
û.KBC)H)L Æ
éê)M)N £)F ¤¥)C)O)P Å H Æ ÕÖ 3.3.1 Q)R ξ S Ÿòº»ó© (Ω, F, P ) Ý)C ¶ Ú)T ´ £)F -. ´ ω ∈ Ω, ²³ ξ(ω) ∈ R, ã䯰± x ∈ R, (ξ < x) ²)S §3.3.1
(ξ < x) = {ω | ξ(ω) < x} ∈ F,
¸ ¯ý (3.3.1)
Uå ξ S £)F ¤¥ Æ Å ¯ ½ ! " #£VF ¤¥WIXJ ½VY L Æ- Ý Z ξ S ! " # C Á £BF ¤¥B[ $ B \B] éB^ àB_)` é í ¶Æ QBR$ )\)] ^ à ³ éB^ ¶ ¯ ½ %Wa Cý a , (ξ = a ) = {ω | ξ(ω) = a } ²VS {a , a , · · · , a }, .Æb)c ) [ (ξ = a ), (ξ = a ), · · · , (ξ = a ) ï)Sd)H ¯ Ω C Â)e ´ ³ (ξ = a ) ∩ (ξ = a ) = Φ, i 6= j ; (ξ = a ) = Ω. ãä ¯°± x ∈ R, ³ 1
2
n
j
1
2
i
j
n
n j=1
j
(ξ < x) =
[
j
(ξ = aj ).
(3.3.2)
é í ¶ {a , n ∈ N } [ ³ô)f)C)g)R ´ {(ξ = a ), n ∈ N } ï Â)e ãä³ (3.3.2) Ù)dö Æ ê ¯ ½!"#£)F ¤¥ ξ, (3.3.1) ΩC ¯ ξ C°± é)^ ¶ a, ²³ (ξ = a) = {ω | ξ(ω) = a} ∈ F. ! " #V £ F ¤¥ VÝ j VÅ k ÿ µ Xû HVl FVmVnVU S Ÿº»óVo ÝVC Borel Vé )¼ phVÚ )½ T i Æ - Ý qVr m sÚ T V t é%ê ú1û ¯ ½ °%±sl Fsmsn ξ, (3.2.1) Ù ¯°± B ∈ B , ²³ %,a B )u )v Borel w (ξÆ ∈ B) = {ω | ξ(ω) ∈ B} ∈ F, é)ê x )y)z){ Q g)| i } 0 3.3.1 QVR ξ S Ÿò º»V ó o VÝ CVl FVmVn È g : R → R ~ é)pÚ)T η = g(ξ) è S Ÿ÷º»ó)o )Ý C)l F)m)nÆ Borel ×m B)Ú T m BÚ T |B])t CBB )BqBÆ r )p À |BC )¸ ) t ú5`)û~)Á r) { g)|
Æ ³BÆ ) |)C)) Þ Á g)| )
) A Á g)| ê a ½ F B m n D ® ÝF-.| ½ ) éê ¯ F)m)°n± Å l ÂÃ)Ú ξ,T )° i± T x, (ξ < x) ²)S)l S ¯)l $)C Q Z
é ê à ¯ d)¼) H h Ù )½ i ¯ ½ ÿ
j
ξ
j: aj <x
n
n
1
1
100
')(* 7Ñ Ò5Ó7Ô Õ Ö 3.3.2 Q)R ξ S Ÿòº»ó)o (Ω, F, P ) Ý)C)l F)m)n )å Fξ (x) = P (ξ < x) = P {ω | ξ(ω) < x},
x∈R
(3.3.3)
C ÂÃÚ)T Ƹ)_½)))) [ éê æ F (x) ))~ F (x). ) î))| ÂÃÚ)T C )Æb)c °±)l F)m)n C ÂÃÚ)T F (x) S Ÿ T w R Ý)C Ú)T Æ ) ³ i Õ) 3.3.1 °±)l F)m)n C ÂÃÚ)T F (x) ²×³)Q 3 ))i i£)¤)¥)¦ x < x , §)¨ F (x ) ≤ F (x ) ; (1) )¡)¢ i£)¤)¥)¦ x ∈ R , §)¨ lim F (t) = F (x) ; (2)©)ª)«)¢ i£ §)¨ (3)¬))¢ ~
ξ
ξ
1
2
1
2
t↑x
F (−∞) = lim F (x) = 0,
F (∞) = lim F (x) = 1 .
F)m)n ξ C)±)²)³ T £ F (x) = P (ξ < x), x ∈ R. F (x) S)l Z x < x [ ¨ (ξ < x ) ⊂ (ξ < x ), ´.µ)¶)C)·)¸)¹)º z F (x) C)·)¸)¹)» ¤)¥)¦ x ∈ R , -.)¼ {ξ < x − , n ∈ N } ~)·)¸)C)½)¾ ¼)¿À)Á)Â ½)¾)~ £)z F (x) = lim F (x − ) , ¤ Ã)Ç)±)È)É)Ã x C (ξ < x), Ã)S,´.µ)¶)C)Ä)Å)Æ)¹ z x − ≤ t < x − , Í)Î t < x , Ê)Ë n ∈ N , Ì ®)¯ i° 1
x→−∞
2
1
x→∞
2
1 n
1 n
F (x) = lim F (x −
£ ¨
n→∞
n→∞ 1 n+1
1 n
1 1 ) ≤ lim inf F (t) ≤ lim sup F (t) ≤ lim F (x − ) = F (x), n→∞ t↑x n n + 1 t↑x
lim F (t) = F (x),
Ï)Å)Æ)¹ z)Ð »
Ñ )¿Ò)Ó){ lim (ξ < x) = Φ, lim (ξ < x) = Ω, Í,´.µ)¶)C)Ô)Ä)Å)Æ)¹ z Õ)Ö ¹)» mVn ±V²V³ T SV×VjVl FVmVn CV±V² ÕVØ CVÙVVm)ÚVn Û ¿Ü VÝVÞVßV¿.àV V á V l â )¤)¥)¦)ð ï é ã)ä)å)æ)ç)è)é µ)¶)».ê)ë)ì.ë)í F (x) î)l)â ξ ±)²)³)ï a < b, ¨ t↑x
x→−∞
ñ ë ¤)¥)¦)ð ï
x→∞
P (a ≤ ξ < b) = P (ξ < b) − P (ξ < a) = F (b) − F (a) ; a,
(3.3.4)
§)¨
1 1 P (ξ = a) = lim P (a ≤ ξ < x+ ) = lim F (x+ )−F (a) = F (a+0)−F (a). (3.3.5) n→∞ n→∞ n n
ò)ó)ô)ð)õ,ö.¿ø÷ x = a î)±)²)³)ï F (x) é o)ù)ú)û)¿øü â)ý)þ ξ ã a ÿ è)é µ ¶)î F (x) Ë ú é ÷ x = a î)±)²) ³)ï F¿ (x))ü é Å)Æ ú)û)¿ü¥ ã a ÿ è)é µ)¶)ÿ 0; ë)í)±)²)³)ï F (x) Å)Æ ã â) ) ý þ ξ ) â ) ý þ ξ ¦ )ú è)é µ)¶)§)ÿ 0. (3.3.4) (3.3.5) æ à)á ü â)ý)þ ξ é)è é  é.é µ)¶)» à Â
! "#$%& ' 101 (B÷*) á ¿ ±B²B³Bï*+Bî*, ü âBý)þB±)² Õ)Ø ó å ×-BÚ)Û ¿/.Bó0Bü âBý)þ 1 ó0 ±)²)³)ï ¿32 î æ)ç)é ü â)ý)þ)Þ4)Û5 ç)é ±)²)³)ï (6789 5 çBé ±B² ). :*B ; Ë*< 3.1.1 = ?>A@BË ç ó*0 µB¶B ? CD á óB¼E æ 5 ç)é ü ¿ Ý; 1 89)çF)é ±)²)» ñ ë)ì Bernoulli â)ý)þ G 3.3.1 ° {ξ , n ∈ N } î*H 0 µB¶*B (Ω, F, P ) øé óB¼ i.i.d. é ß p = ÿ) I ï é Bernoulli ü â)ý)þ ¿ J §3.3
1 2
n
ζ1 =
KL
∞ X ξ2n−1 , 2n n=1
ζ2 =
∞ X ξ2n 2n n=1
0 æVç)é ü â)ý)þ ¿ Ý; 1 89 U [0, 1] ±)² ¿ OP Ý;Q)î ζ )îN M é ü ) i.i.d. â ý)þ)» §3.3.2 RSTUVWXYZ :;[\] ó^_`a ±)²)³)ï M ü â)ý)þb )écd » :*;?eAÕBB@ ÖÎ*f é¿ * ü âBýBþ é ±B²B³Bï 1 î*g*hBË ð ï*i ð R Ô*j*kB·B¸B¹ ¿ ÏBÅBÆB¹* j*k*7q r*Bs ¿ ÏBÅBÆ s ¹ ÕBÖ ³Bs ï)é*»mt)l ïË*¿/nK*oL \*ÝB)p îì u ë)ó í g)Fî*(x)H î*0Bg*ü hBâBË ý)þ ï*éi v*Rwt Ô*ïy z) { ó)ú)¿ î)u Ê)Ë ó0)| ÷ é}~ B (Ω, F, P ), Þ)ß)Ë)Ý)Ôgh ó0)ü â)x ý ÿy évwt ïyx þ ξ, Ì ξ ß F (x) ) ÿ ¿ :;
\ ó0 } 3.3.3 F (x) îg)h Ë ð ïi R Ô é jkq r)s ¿ Ï)Å)Æ s Õ)Ö s ét ï ¿ :; ζ1
2
F −1 (u) = inf {x | F (x) > u},
u ∈ (0, 1)
(3.3.6)
é n t ï Î ¿ ëgh é n t ï)î Ü é n t ï })é Ü ghn t ï û [ à**\ é*t * ï * * Ð, *ö v¢w*¡ t ï* 1 î*BÔ é / ß+*4*)ý Ü é gh n t ï æ gh é F (u) îgh)Ë (0, 1) (3.3.6) é £ Å)Æ t ï ÷ F (x) î)Ô é Å)Æ t ï û F (u) )î F (x) é ÔÜé)qÓ r h¤ é n t ï Ë < 3.2.4 = :;e @¥¦ ,§¨)ë (3.1.4) ét ï F (x), ó® Þ)0) ßü © }~ B (Ω, F, P ) ª«)ÿ (0,é 1)vÔ wé t ¬ O}P ~ B ò ËVå ÝVvÔw ®gh âVý þ¯° ξ, Ì ξ± ß F (x) )ÿy vw U (0, 1); ²89 ò å vï w)é ü â):ý);þ© )ÿ U (0,)1)ÿ ü â)ý)(0,þ 1) Ô é } :;)Þ)ß Ð,ö
) Ô - ô)ð n t ï ë ¤³´µ)ì ÿ
F (x)
−1
−1
¶· ¸ ! " ¹ 3.3.2 ººgºhsË ð ïºi R Ôºjºkºq rºsº Ϻ»º¼ s ÕsÖ s º é t ï 1 0)ü â)ý)þ évwt ï F (x) îH ½®¾ ì¿© }®~ B (Ω, F, P ) ªVÿ ® (0, 1) Ô é®¬ ® }®~ B
VV Ë ÝVÔ ü ó 0 J , Ð ö gh évwUt (0, 1)é ü â)ý)þ η, À ξ = F (η). :;\ ξ )î)ß F (x) ÿy ï â)ý)þ Á
¢¡ (3.3.6) Î 102
−1
F (x) > u ⇐⇒ x > F (u) . 1 ¡ η ÿ ü â)ý)þ)Î x ∈ R, F (x) ∈ R, Í ß ξ = F (η) î ó(ξ0)1.
ÿ  ßÊ:; ó + Í)á p(x) é q 0 v ð ý t ï´ï å ï f ghÓ R Ô é q r t ïµ òót »¼ t ï :; \â)á ó0 ê! 7 ö ï ,»¼ t ï b Q ó z ð üÓ »¼ é vwt ï ) G 3.3.2 ("#$%RSTU& G ) t ï F (x) é gh ë¤)ì Á
J
À J Ê J é' À J
F (x) = 0 , x ≤ 0 ;
F (x) =
F (x) =
F (x) =
(
F (x) = 1 , x > 1.
1 1 2 , <x< . 2 3 3 1 4 3 4
1 8 3 8 5 8 7 8
, ,
, , , ,
1 9 7 9
<x
0,
Z
D
£¤ +∞
[F (x + a) − F (x)]dx = a.
−∞
(
F (x) =
1 (1 3
+ 2x),
0 < x ≤ 1,
£ ¤ (1) F (x) W¥^_`a (2) F (x) ¦§]¨N©§eeeNeQ«ª¬e ®E¯°±²e^_e`eaeNeG³e´eµef 1,
x > 1.
¶¸·¸¹¸º¸»¸¼¸½¸¾¸¿¸À :;e @ éÁ µÂÃðñ vw lÓ[\Âû¼ vw : ;e @ïf »¼ vw F (x) 1Ä þtÅ p(x), jkÇÆÇ §3.4
p(x) ≥ 0,
F (x) =
Z
x
p(u)du, x ∈ R.
(3.4.1)
È Ó»¼ v w ûÊÉ @ §ËÌ þtÅ OP ÿ Â: + ú â Í þtÅ Ìq 0 v Ì Î −∞
Ï ÐÑÒÓìÔÕRS :;e @Ö×Ø [0, 1] - Ì ¯° vw U [0, 1].  : ; 3.4.1 a < b, ÙÚ vw F (x) Ä þ ÛtÅ §3.4.1
p(x) =
1 , b−a
a≤x≤b,
(3.4.2)
Ü Ý v wÞ [a, b] - Ì ¯ ° v w ± U [a, b]. Ù**g*h:Ì p(x) 4 :ß Â 0 }**~ þ:Û*t:Å Ü :à Í* *5 ( Ì vw*t:ÅÞ (á 3.3) F (x) =
0, x−a b−a ,
1,
x ≤ a,
a < x ≤ b, x > b.
4 È U [0, 1] ß ¯®° v®w U [a, b] Ì â ã á ä® ¡ § U [a, b] Ì v®w®t Å F (x) ´ß åæçèyóò Êè é x Óêë [a, b] Ììí ,ða î÷ø b ï- Ì ,»ð¼ áä Ó (3.6.2) ¦Ì F (x) ñ ÂæÌ ÉÊôõöÓêëÌ ö ßàù
úóûýüóþýÿ 107 à Ù Ù Ú à Ì Å !" Ó
# $ Å í % & 5 ' ( 6 ' : ?à @Ì A é ξ 1 2 3 /:UD (−5 × 10 , 5 × 10 ). 46587:9:; Ù # :BAC Y S a EFGHI AJKL F A R S T ö MN COPQ 4UVOPW CX O:Z [COë ξ 23êë (0, a) \] U (0, a). ^_ êë (0, 1) \] U (0, 1) 4`ab ]cdef @ ' ô h õ gi j kl ù §3.4
−5
−5
m nop q:r ::s:t e:f:]:`:a ? H 4 `:ab u:v:w e:f] @ 'ùHô:õx Wybz]{|} ~ ù a UV~ J σ > 0, §3.4.2
p(x) = √
1 (x − a)2 exp − , 2σ 2 2πσ
s:H {|}:~ùA k : ô : õ : f : W
< z ò Y h R p(x)dx = 1. Y ôõ _
∞ −∞
p(x)
R∞
x ∈ R.
: 4
R
(3.4.3)
\
Riemann
S::
p(x)dx . s p(x) ]}~ö } ~ ôõ J I . I=
−∞
2
Z ∞ Z ∞ 1 (x − a)2 (y − a)2 I = exp − dx · exp − dy 2πσ 2 −∞ 2σ 2 2σ 2 −∞ 2 2 Z ∞Z ∞ Z 2π Z ∞ 1 u + v2 1 r = exp − dudv = dθ exp − rdr = 1, 2π −∞ −∞ 2 2π 0 2 0 2
4\ ôõ xM è u = ,svH= , v èù I > 0, Z I = 1. (3.4.3) ] p(x) {|}~ù ¡ 3.4.2 ¢:£:¤:¥:¦ : (3.4.3) ] p(x) ::{:|:}:~ ¨§:©:ª : a î σ «~] qr N (a, σ ). qr = © Gauss ù q:r : ]::¬ N (a, σ ) V: Normal Distribution. _ q:r : v :7 : c @® qr N (a, σ ) ] }~¯{|}~ Φ (x) ¯ φ (x). qr a = 0, σ = 1 ]°± u cef] V² ³ õ ® ? © 4 ´ qr µ Φ(x) ¯ φ(x) Q¶ ´ qr N (0, 1) ] }~¯{|}~ù ·¸¹º (3.4.3) ]{|}~ φ (x) ]»± (» 3.4), S¼½³ õ ¾ MN wh¿ «~ a ¯ σ ]V²À _ x = a  © Z 1 φ (x) Á y−a σ
x−a σ
2
2
2
2
a,σ
a,σ
2
◦
a,σ
φa,σ (a − x) = φa,σ (a + x),
x ∈ R.
a,σ
ÃhÄÅ
108
ÆÇhÈÉ
@ ´ q r N (0, 1) ]{|}~ c φ(x) = e , x∈R _ © ³ Ë ® © Á x=0 Z Ê}~ù a 'Ì«~ù t Ï Ð # µÑ σ ] ÐÒ $ φ (x) ]Ó Ò 2 φ (x) 4 x = a ÍÎ . ÔÕÖ× ? σ ] ÐÒÏ φ (x) ]Ó ÒØÙÚ ³:Ë :Û ¢:£ ξ s 2:3 q:r : N (a, σ ) ]:Ü:Ý:Þ:ß à-:. Â:U:á x < a < x ,1 R P (x < ξ < x ) = ÒÏ × ? σ ] ÐÒÏ â Y σ ] ÐÒ $ -. `a P (x < ξ < x ) φ] Ð (u)du, 1 -. `a P (x < ξ < x ) ] Ð 1 Ò $ Ú â Y σ ] Ð×ã M ξ 4 x = a äåæ Ð ] ç è | Ú · 7 ® σ © qr N (a, σ ) ]±é«~ Ú qr N (a, σ ) ] }~ √1 2π
◦
2
− x2
√1 2πσ
a,σ
a,σ
a,σ
2
1
2
1
x2 x1
2
1
1
a,σ
2
2
2
2
φa,σ (x) = √
1 2πσ
w Ðê GÚ Â _ ´ qr
Z
x −∞
(u − a)2 exp − du, 2σ 2
N (0, 1) Z x
1 Φ(x) = √ 2π
] }~
u2 exp − 2
ëhì ]Qí Sîïw Ð (kð %]äQ −∞
Φ(−x) = 1 − Φ(x),
).
Φa,σ (x) = Φ(
x−a ), σ
ñ
(3.4.4)
x ∈ R, φ(x)
]Ê}~òó S
x > 0,
Q ô Â x > 0 õ G M Φ(x) ] ÐÚ H ö ] qr N (a, σ ) ] }~ ·¸ 4 Â _ 2
du,
x ∈ R,
(3.4.5)
(3.4.4)
Þß÷ Sk
x ∈ R,
(3.4.6)
Ð Ú â Y ñ ´ q r N (0, 1) ] Ð ]Qí S ø G Φ (x) ] 4: ´ Úq:r N (0, 1) ] ::Ð ]:_ Q:í õ # Φ(6) :ûù úµ:Ñ Φ(4) :Úû õ
ü 0, t > 0.
l
F (x) = 1 − F (x) = P (ξ ≥ x),
}~ Â _ g ~
“³´
l
”,
V
x > 0.
4 ê $ _ x ? %µ¥9´]`a Ú
w exp{λ} 23 ª ]ÜÝÞß ξ, w
(3.4.10)
ξ
}
“³´
ê y ( F (x) ²j] ê ¬ (ξ ≥ x) s¶· í l ~ ¤ ¥ ¤ ¸¹ l Sº ¸ (ξ > x). L / '¾ L ]2O) ( E 1ø ) 23«~ λ = 1 3.4.2 ¼ » æ ½ Ý 3 ] lg * ~ s # Ú (1)H¾¢ Ú+£#] ¿#p#À H#^#Á ¾ #L Í # #  E O#à ΠH#l ÄÆÅ#Í Ç ] æ#½ Ý#È#É# Ê E 2 ËÌ 1 ø#¿ 3 ]`a l YB O)Î % 3 à 6 l Ö ? )]`¿ L l uHÁ a (2) ¢£Ú ¿ à ÎO g ¾ Îæ½ Î [ Y Z\, ]`a g
F (x) = P (ξ ≥ x) = e−λx ,
x > 0.
§3.4
c
À
λ=
1 3
]
g
η
~
Q ¶#¿#ÚÈ#Ï H#Á
Î HI (1) j O)Ò s È HÁ ¾
l
L
¿
¾
L
É#Ê#Ð##¤
L ÂOÃÎ ÅÇ ¾ Y l+ª ÉÊÐ]O) ¤Z Á
f ] O#)
I V
111
l
]æ ½Ý l ¤ Ì Hs Á ]`aÒ ¾
η
Ð#Ñ « ~
L ] Í
p1 = P (η > 3) = e−1 = 0.368; p2 = P (3 < η < 6) = F (3) − F (6) = e−1 − e−2 = 0.233.
L ] Í O) s È HÁ ¾ L µ¥ÉÊÐ]O) l l HÁ Î HI (2) j Ì ¾ g l R ~ ]#: :ò: l ê bÈ HÁ ¾ L gÓÉÊ #j Ô O ) ]Ð µ¥ÉÊÐ Y l ] # O ) ]
#p#Ñ# #Õ#Ö#É#Ê#Ð# ] O#) ] Â ¤ ¤#Z ] ` a × o _ Y ÐÚ \, ØÙ 1. 2. 3. 4. 5. 6.
Ú Ú
ξ ÛÝÜÝÞÝßÝàÝá
(x3 , x4 ), (x4 , ∞)
0
(1) 7.
ξ ãÝäÝåÝæÝçÝèÝÛÝéÝêÝë (1) (6, 9); (2) (7, 12); (3) (13, 15).
N (60, 9), âìÜìí x1 , x2 , x3 , x4 î ξ ãìä (−∞, x1 ), (x1 , x2 ), (x2 , x3 ), ï Ûìéìêìð+ñòá 7 : 24 : 38 : 24 : 7. ì óòôìõìöìí M , ÷ìø AM ùìúìûìüþýìÿ BC N , ìëþí N Ûìä ä 4ABC BC ì Û ìÜ Þ ξ õ (0, 1) ï Û ü ô 0 < x < y < 1, ξ, ã ä (x, y) óòÛìéì ê ìý y − x !"ìë ξ #$ U (0, 1) (% (0, 1) ì Û ìÜìÞ ). ô ä (0, a) õ & í (& í Û '()*+,#$ U (0, a)). - â & í Û ./ Û Ü Þìßì à ξ
ÛìÜìÞìßìàìá
N (10, 4), â
3.4
â
ξ ∼ N (3, 22 ).
P (2 < ξ ≤ 5), P (−4 < ξ ≤ 10), P (|ξ| > 2), P (ξ > 3);
(2) 1ì 2 à c, î P (ξ > c) = P (ξ ≤ c). 0 ξ # $34ìÜìÞ N (110, 12 ), 156ìÛ7ìà 2
P (ξ > x) ≤ 0.05.
x,
î
8:9:;:@:AÝÛ:B:C ξ(D:6E:F ) #:$:3:4ÝÜÝÞ N (160, σ ), á:G:H:I:JÝâ P (120 < ξ ≤ 200) ≥ 0.80, -ì K ü σ Û5LMNOPQSR 9. 0 ξ #$ N (0, 1), η = ξ T −ξ, U |ξ| ≤ 1 T |ξ| > 1 V â η ÛìÜìÞ 10. ì öì W ÛXYE (Zì ' ë6E ) #$D λ = á[ìàìÛ\ìàìÜìÞ]- â ë (1) XY E ^_ 2 6ì E Ûìéìê` (2) ÚbadcYe 4 f6ìE ü âghJiQ 5 f6EjkYlìÛìé ê 11. 0 ξ #$ì [ àìá λ > 0 Ûì \ àìÜìÞìü â η = [ξ] ÛìÜìÞ (ìm ï [x] no x Ûìp àìq Ü ). 12. rs ξ #$ì \ àìÜìÞìÛt ÜuJvwOxOyz{ì| Û ü]% 8.
2
1 2
P {ξ > s + t|ξ > s} = P {ξ > t},
∀ s, t > 0.
}~
112
§3.5
Poisson
Poisson ¡¢£ ¤¦¥ ¦§¦¨¦©dª¦¦«¦¬¦¦®¦¦¯¦¦°±¦¦³²¦¦´¦µ¦¶¦·¶¦¸ ¦©¹¦º¦¦»¦¼¦½¦¾¦¿¦«¦®À¦Á¦ÂÃĦÅƦ²Ç¦È¦É§¨¦© ¼Ê«ËÌÍÎ B(n, p) ®b¹ºÏÐÑÒÓÔÕ b(k; n, p) = C p q , k = 0, 1, · · · , n . Ö Ì×ÒØÚÙ×£×Û×Ü×Ý×Þ×ß×b¬×à×á n ª k ¢×â×ã×ä×bå b(k; n, p) ×æ×ç×è××° é ©ê¦ë¦ Poisson 즦í¦î¦Ï¦¦¦¦¦ì¦ïðë¦ñòæ¦çÍΦ¦ó é ¿ôÕ 3.5.1 (Poisson × ) õ×£××ö×Í×Î×× B(n, p ), ÒØÚ×÷×Ý×ø×ù×ï ð Poisson
§3.5.1
k n
k n−k
n
lim npn = λ > 0 ,
ú åûüýþÿÝ
k
(3.5.1)
n→∞
¢£
lim b(k; n, pn ) = lim Cnk pn k (1 − pn )n−k = e−λ
Õbå¾ìýþÿÝ n→∞
ïð
n→∞
(3.5.1)
ëbåì ýþÿ Ý
lim (npn )k = λ .
n→∞
1 n
1−
2 n
k,
£
··· 1−
Ô
n→∞ k
k−1 n
(1 − pn )−k = 1
lim (1 − pn )n = e−λ .
¬b£
n→∞
lim (1 − nλ )n = e−λ .
n→∞
n
(3.5.3)
(3.5.3),
lim (1 − pn ) = lim (1 −
λ n n) .
¦£ |1−p | < 1, ¦á n ¦¦ã¦ä¦¦£ |1− | < 1. ¹¦ºé ¦ å £° |a − b | ≤ n|a − b| ! "Üïð (3.5.1), á n→∞
n→∞ λ n
n
n
ˆ
(3.5.2)
n! b(k; n, pn ) = pn k (1 − pn )n−k k! (n − k)! 1 2 k−1 1 = 1− 1− ··· 1− (1 − pn )−k (npn )k (1 − pn )n . k! n n n lim 1 −
£
k,
λk . k!
$ å÷Ý (3.5.3)
n
|a| ≤ 1, |b| ≤ 1,
n→∞
äb£
(1 − pn )n − (1 − λ )n ≤ n|pn − λ | = |npn − λ| → 0 . n n
!"bì#© λ > 0, ¹º%
p(k; λ) = e−λ
λk , k!
k = 0, 1, 2, · · · ,
(3.5.4)
§3.5 Poisson
ú (£
&'
113
p(k; λ) > 0 ,
∞ P
p(k; λ) = e−λ
∞ P
λk k!
= e−λ · eλ = 1 .
λ); k = 0, 1, 2, · · ·} *¦à+¦Ô¦¦¾¦¦¦¦¦¦Ó¹º ,¬¦à¦À¾)¦Ý¦Ý¦-ö Ô÷{p(k; ÝÔ λ Poisson © p(k; λ) .*࣠$ !/01© Ö Poisson ì*bá n 2ã p 23ä*àñò4!"Ë5 k=0
k=0
b(k; n, pn ) ≈
(np)k −np e . k!
(3.5.5)
n 6ã ú7Ö 8 63©ÔÏ9§ï×ð (3.5.1), ¹º: p 23bà; np ¦ã39?@¦º*¦àA¦¨ Poisson ¦¦»¦æ¦ç¦ª¦Í¦Î¦ £ËB C © ¤¥ §¨bê×Õ 110 FGH 24 3äIKJÑFGL Poisson £DEÔ Ý]ìäMIK N ÂOPQRL ÝSTUL Ý]V WXÝZY]\[]¦Ç^È ] ¸_` ÝZ]Y a ¢* ਠPoisson + ÔÒb © ¹ºc d « e[ K f ê “FGL Ý ”,“ OPQRL Ý ”,“ TUL Ý ” ¤¥9 ¨Ì Poisson g ©ahi j £ãk l æÝm n Poisson 9 ¨Çao êÕ å Ì “[]_ ` ÝZY ”, £pq Rutherford rs l æÝt Ô Õ k
νk
np (k, 3.87)
0
57
54.399
1
203
210.523
2
383
407.361
3
525
525.496
4
532
508.418
5
408
393.515
6
273
253.817
7
139
140.325
8
45
67.882
9
27
29.189
u æ
16
17.016
2608
2608.001
≥ 10
ñ vw^ wxwy Rutherford w@wA ¨wzw{ wrwsw|w}w~ ¬wNw] ¸ α _w` Ý w Y]©ºà 7.5 Ô¾äM|}Ï n = 2608 ¾äM%ëϾ äM ¬ |}Ñ α _`ÝZY]©bÀ 2608 ¾äMº|}Ñ 10097 ¾ α _`K ¾ α _`K © JDK º å læÑ Ý m+êë Õb¿ «
cä ¾Mä M¬ Ô |3.87 }Ñ× α _`Z Ý Y] c α _`Z Ý Y]Ô k ä M¾ Ý %+ ν . ¿« ºà 3.87 +Ô Poisson ÷Ý λ, O k
}~
114
ì ¾äM¬|}Ñ α _`ÝZY ξ ¼÷ÝÔ λ Poisson ¼ P (ξ = k) = p (k, 3.87), Åç¸ np (k, 3.87) .bö/åê©b/ ö-Ô.*าºª |}. ν Ü?á©ÚÀ/ + Ô[]_` ÝÜ9 © à Poisson ¹º» ¾ªo 3.2.1 £ËBC © 3.5.1 ¯H" H ×¾Ú × ¡ ´¢× £ ©× ¾ ä¤ X ¢ p = 0.01. ê¥ K¦ õ£ 200 H ?Ô> “£ °§¨ ä © X ” °ãÌ 0.02, ªB«¬ §á® ¯ ¬q@°±Z² ³ Õà η /n×±××ä¤××X×H×Ý×b¹×º η ×¼×Í×Î×× B(200, 0.01), §BC : ¸>? ë!" ´3) ÿÝ r: k
P (η > r) =
200 P
b(k; 200, 0.01) ≤ 0.02 .
×Ò.2µ:׸שb¹×º¶O×Ñ×Àw·×£ np = 200 × 0.01 = 2, ¸.×° × ã bÌ× (3.5.5) a * àñò¹ Ô η ¼÷ÝÔ 2 Poisson ©aº0/ á r = 5 ä »K º £ P k=r+1
P (η > 5) =
∞
p(k; 2) ≈ 0.0166 < 0.02.
¬ ম 5 q@°±¦¼¦ù¦à>? “£½ °§¨¦ä¦ ©¦X ¦ 3Ì 0.02. ꥾JÍÎ B(200, 0.01) æç ú £ k=6
§3.5.2
P (η > 5) = 1 −
5 P
¦¦
b(k; 200, 0.01) ≈ 0.0160 ,
q@°±© Poisson ¿ÀÁ à ÄÅÆ 5
k=0
”
¹ ºÇ»Æ Poisson Ó Ëôò|}ÌK.
p(k; λ)
êüÈ
p(k; λ) λk (k − 1)! e−λ λ = = , k−1 −λ p(k − 1; λ) λ k! e k
k
ÉÊÉÊ©ÚªÍÎ
k≥1.
(3.5.6)
Ö
" á k < λ ä p(k; λ) .È k ÍãÍãÎ Ð á k > λ ä p(k; λ) ú . È k ͦãÏ3¦©¼ Ð ¦ p(k; λ) .¦ k = [λ] Ñ´¦ã¦¼R¦á λ Ô¦ÿ Ýäb k = λ λ − 1 ÑÒ´ã.©b²º-Ô Poisson ´ã*§.© .?Ñ׸××× (3.5.6) × Poisson ×× Ò×£×Ç×ÈשbÀ× e bê¥ × ¾ Ó×£×÷×Ý λ > 0 *× à Ô׬ף×ý×þ×ÿ× Ý .××××××× ××Ò×ø×ù (3.5.6) $ÖÕ»×Ƹ ¾ B C© ì Poisson Ö© ¸ØÙ K+Ô ÚÛÜKÝÞß©
&' 115 3.5.2 õ%à[]Ç^ÈäMIÚ¬[]¸×_`ÝáY]©â» ²ãääMIK[ ] ¸_ ` ÝZY ν ¼÷ÝÔ λ > 0 Poisson ©æ å Ö Ì ç g ]Åý _[] ¸_` ¢*è% ë» $ \__`*è% ë é ¯_`§êè% ë»Q ðë× " ©ª:ã »¢ p, 0 < p < 1, Å ä äMIKè% ë»_` ÝZY ξ © ³ Õ\ bå_[]¸_`¢*ਾ÷ÝÔ p Bernoulli ÈìÉ k »/ n ²êè% ë»ÕêÖ ¥è% ë»Öí¸ Bernoulli Ék . Ô 1; îè% ë»í ÒÔ 0. ̯_`§êè% ë»Q ðë" b¬à ²¦º¦ i.i.d. Bernoulli Èìɦ k © ¼¦ áã¦ä äM½Ia[¦] ¸¦_¦` ÝïYK»a¦$ ä e obê Ô n äè%ë»_`ÝZYðñ×¼×ÍÎ× B(n, p). å ã¦ä äM½Ia[¦] ¸¦_` ÝïY\ ¦¾ÈìÉk ν. Õ¦× e ¹¦º¦§ ν .¦Ý ì ïðëòóè% ë»_` ÝZY ξ À á ν = n ä ξ ¼Í
¹ºô+ Î B(n, p). å §3.5 Poisson
P (ξ = k | ν = n) = b(k; n, p) = Cnk pk (1 − p)n−k ,
k = 0, 1, · · · , n.
(3.5.7)
À· (ν = n) ¾ÈìQð© Ö Ì ν ¼ Poisson ¬à ν *§Ôûü ýþÿÝ©bÀõ»bê¥% q = 1 − p, ¹º*àA¨ö÷?Ñ P (ξ = k) =
∞ X
n=0
P (ν = n)P (ξ = k | ν = n) =
∞ X nλ −λ e b(k; n, p) n! n=0
∞ X (λq)n−k 1 1 · · (λp)k = (λp)k e−λp , = e−λ (n − k)! k! k! n=0
k = 0, 1, 2, · · · .
À×××¾2×£ø× $ù b²/úÚ×å Poisson Ék ( ×¼ Poisson ××ÈìÉ k )ν +Ï Èìûü dý¼ Poisson © À¾ÇÈ-Ô Poisson Èì ûü ë° ÉÇ© ¼À ¾ o`¹ º þ* à ÿ¸¾ “Èì ù ” »©:Ê«»KºÑæ* àר×× ö "×±××××à p Ô×÷×Ý× Bernoulli ÈìÉk η , η , · · · /n×¯× ¾ _` êè%뻩 ¼ å Z ¾ ð\Ý n, S = η + η + · · · + η Ê n ¾ []¸ $ _`K è%ë» _`Z Ý Y]¹ º S ¼ÍÎ B(n, p). ¹º òó ãä ä MIKè%ë» _`Z Ý Y ξ. ãä ä MIK[]¸ _`Z Ý Y]Ô ν ¾b ¼ ÒK è%ë» _`Z Ý Y\§áÔ 1
n
1
2
2
n
n
£
Ì/ Ð
(3.5.8)
¾ÈìÉkÚ¬à S Èì¾ÈìÉk Ö (3.5.8) ν Ìùä ¬àc S - Ô ÄÅ Æ , ó-ÔÈ
ξ = Sν .
Ö Ì
Sν = η 1 + η 2 + · · · + η ν .
ν
ν
ν
}~
116
ì© Ö «ÆÚê¥ ä ν ¯ ¼÷ÝÔ λ Poisson ú S $¼ Poisson °µ÷ÝÉ Ô λp, Ͼ ” ` ”p. ` p ¸ 2Zð\ Ô ¾_`§ è%ë»Ô p. Èìù ¯ £ ¤¥ §¨©oêbê¥ η , η , · · · /n¯ ÝïY = ν ¦ ¦ J Ѧ ݦÕ× (3.5.8) S ¦¸¦ K J Ñ ÝZY\?Î ê¥ η ú, η , · · · /n÷ ¯ ÝZ]Y ν ¾Ø Ú¬× × Ý× (3.5.8) ØÚ S × ¸÷× ×¾Ø Ú¬ ÝZY\Î ©b°µ§á¶O ×bÀ× · ÈìÉk×ö η , η , · · · °ì Bernoulli Ékö ν î! Poisson Ék ¬à S "È # © o×ê×bú ×å× $ × % Á×××&' Ú ν ´(× ¼× ) ü×××× §×È× ì ù S è - Ô “) ü ”. “) ü ” ñ»§¨*&' ¾+XBC êü , æ S Ò¾-C © §3.5.3 Poisson ./01 3.5.1 2 b¹º¸ÌñòæçÍÎ××× e ÿ3 Ï Poisson © å Poisson Á £ÒZð4 ì5 ©bÔÏ Poisson Á ì 5 b¹º»6 ®ë Poisson µ7 © ¹º 8 110 H FG LL Ñ»Îð\TU LLN ÂÎñ[] ` ¾¾[] ¸Î 9 ©²º¢* àù ! e ÌÈì ä¤ Ñ» “ÈX 9Ç_”. À· “ÈX ” “ ” ¢: ôÅé “X ” Ñ»äMM; ¢ÈìÉ k ©bê¥ å t ≥ 0, ¹ºà ξ /n ä¤ t àÊÑ»ÈX ÝZ]Y =< / n äM>M [0, t) Ñ»ÈX ÝZ]Y b¹ºc" bìïðëbåû ü t ≥ 0, ÈìÉk ξ ¢ ¼ Poisson Åé Ò÷ݪ t £Ë©Ö å°± t, ξ °±ÈìÉ k b¼ {ξ , t ≥ 0} ? à t Ô÷ÝÈìÉk b¹ºÖ ÔÈ ì µù 7 © ÌÀ· t ¾äM ÷ݬà- {ξ , t ≥ 0} Ô “Èì µ7 ” ý(: ©K"@Ñ t °äM÷ÝAÜK 乺B ¨È ì µ7 q- © ¹º » Úìïðë “Èì ÈX 9 ” ÝZY4:! Poisson µ7 © n äM>M [0, t) Ñ»ÈX ÝZ]Y Ö êʬ e å t ≥ 0, ÈìÉk ξ /
å 0 ≤ t < t , £ ξ ≤ ξ , Åé ξ − ξ äM>M [t , t ) Ñ»È X ÝZ]Y © 3.5.2 õ “ÈìÈX 9 ” ÝZY]øùêë¾ïðÕ 1 CDEF × Â Õ×°× ¡ ×äM>Ø M ÚÑ×»××È× X ÝáYñë× " å×û×ü 0 ≤ t < t ≤ t < t , ¢£ÈìÉk ξ − ξ ª ξ − ξ ë " © ν
1
2
ν
1
2
ν
1
2
ν
ν
ν
t
t
t
t
t
t
1
2
t1
t2
t2
t1
1
◦
1
2
3
4
t2
t1
t4
t3
2
§3.5 Poisson
&'
117
GH Â×Õ È ìÉk ξ − ξ IJK Óת×äM>M ˪ÒMX a N Ëb¼*% 2◦
t+a
[a, a + t)
a
IL
MSRK££Q¾ÈX»ÑT åûü t > 0, ¢£ P P P (t) = P (ξ = k) = P (ξ < ∞) = 1 ; ÅéT=U J 3 I äMM; t RK´ ¯ »ÑV¾ÈXT £ P P (t) = o(t) , t → 0 ; éTb¹º®WXYNZX[\ I NO] I^ :T _ P (t) `ab 1. úcde fg h øùiT=!U(j λ > 0 >?kVl t > 0 mn 3◦
∞
∞
k
k=0
t
k=0
∞
k
k=2
0
Pk (t) = e−λt
opq krO)j t s
∆t,
c
Pk (t + ∆t) = k=0
k X
(λt)k , k!
k = 0, 1, 2, · · · .
tKöuv÷wsxÍky Pk−j (t)Pj (∆t) ,
j=0
iT e wÊ{
(3.5.9) 1◦ ,
z
k = 0, 1, 2, · · · .
(3.5.10)
P0 (t + ∆t) = P0 (t)P0 (∆t) .
(3.5.11)
P (t) |nUiM>M [0, t) R*NZX[\ I uvT=}~b t ãÍ t*b
} {j7 (3.5.11) I nãT=!Ó:w (nÛ ): =b, t≥0, R 0 ≤ b ≤ 1. d b b 1 P (t) e _ 3 0, ! P (t) b 1 0, T= b {b 1 I jT= 0 ¢z b = e . b£ 0
0
t
0
◦
−λ
P0 (t) = e−λt ,
t≥0.
|S¤ (3.5.9) wk k = 0 ¥x ¦ (3.5.9) w¨§k k = m − 1 ¥xT=©ª}«k ¯ T=kr° k > 2, n 0≤
± St
k P
Pk−j (t)Pj (∆t) ≤
e w z (3.5.10) s j=2
∞ P
(3.5.12)
k=m
Pj (∆t) = o(∆t) ,
j=2
Pm (t + ∆t) = Pm (t)P0 (∆t) + Pm−1 (t)P1 (∆t) + o(∆t) ,
t§*ª I
(3.5.12)
w ¯
P0 (∆t) = e−λ∆t = 1 − λ∆t + o(∆t) ,
¥x¬t®y
3◦
∆t → 0 .
∆t → 0 .
∆t → 0 ,
(3.5.13)
²S³*´ µ*¶S·*¸
118
¹º» ®y 3 z P P (∆t) = 1 − P (∆t) − P (∆t) = λ∆t + o(∆t) , ¼ e½ w¾¿ (3.5.13), z ◦
1
∞
0
∆t → 0 .
j
j=2
¼
*R T=ÀÁ k = m − 1 i I (3.5.9) w¾¿ Pm (t+∆t)−Pm (t) ∆t
+ λPm (t) = λPm−1 (t) + o(1) ,
∆t → 0 .
z + λP (t) = , e ËÌ ÍΣ ¯ (0) = 0(ÆÇÈÉ k ≥ 1), Ê ∆t → 0,
ÂÃ *¤ ~ I ÄÅ gh P . P (t) = e ÏÐÑÒÓ
_Ô ghÎZÕÖÎ×jØÍ {ξ , t ≥ 0} Ù{ÚÛ{ λ Î Pois¯Þ kr° t > 0 ßàáâ ξ mã ±ä j{ λt Î son ØͬtÜÝys (3.5.9) Ìå Þ n Poisson , k = 0, 1, 2, · · · . P (ξ = k) = e Ì å Èæçèéêë Poisson Î¥ àìík Poisson ØÍÎîïðñòóbß àØÍôÎSõ*ö ÷ø 3.5 1. ù=úüûþýþ ÿ 4 Poisson (1) 8 (2) 10 2. ù t !""#%$&' Poisson (! "()!* ). (1) þ% ù +&,- 12 !./- 3 !0213' (2) ù +&,- 12 !./- 5 !021.4? 5' % 3. 6þ ù 7 89:; 512 × 10 0 @ 1, A&BC0D9>,EFGHI0DJK 0 H 1, @K 1 H 0, 6HI 10 , 10 =%$&FG5 ? HI 4. þù 63 L,0 ù MNO (5 ∼ 9 P ) Q 180 R/ST025 ? NO,/STUVW 4 R 5. ù X 730 YZ[0\ ? Z[[%+&5L 365 R,]5R^_`a0\.45R dPm (t) dt
m
λm tm−1 −λt (m−1)! e
m
m
−λt (λt) m!
m
t
t
−λt (λt) k!
t
k
t 2
3
−7
b 4 YZ[[%+& 6. cd5e 500 fghQ 500 ?i 80\ ?i 8_`aMFG5fj\kd5 fj.4 3 ?i 8 7. lmnopqrs02t ù7uvwlmwxwulwmyz$|{w}w 0.005. G~F 7lx 1200 02lmno. 10 8. 6 ξ ξ
02 ξ λ > 0 Poisson 0 i = 1, 2, η = max{ξ , ξ }, η = min{ξ , ξ } 9. 6þ ù!""#þ ù ξ λ > 0 Poisson 0 ? ^ p, ? U^
01w!w"$|w η % 10. 02 ¡¢£¤¥¦ {p , k = 0, 1, · · · , } §¨©ª , k ≥ 1. « ,¬ λ > 0, ®^( λ =Poisson 1
2
1
2
i
2
1
1
2
k
pk
pk−1
λ k
¯
§3.6
Poisson
°²±²³²´¶µ²·¹¸²º²»
119
6ÅuƼþÇ ý½)!=úüû ^¾ λ = 60 Poisson W¿ÀÁÂÃ¤Ä 30 = H¼È 12. ÉW5þýÊË%Ì&ÍÎÏ`(ÐÈ^5 ? Poisson W¿Ñ 1 %$&3ÍÎÉW ^ 0.02, 2 %$& 1 ÒÍÎÉW 11.
§3.6
Ó
Poisson
ÔÖÕÖ×ÖØÖÙÖÚÖÛÖÜÖÝ
Þ ß²à²á ² ÏÐ §ãâåäåæåçåèåéزê²ë Ì å Þ2ì ä ÏÐåí ê²îåê²ë Ìå
§3.6.1
ï²ð²ñ
Poisson
ØÍÎ
¦ ßà²òÕÖÎײëØÍ {ξ , t ≥ 0} £ÚÛ²ó λ Î Poisson ØÍ Þ ζ ö ï²÷²òÕ² Î ø í²ù²ú Þ Ïвí²û ô²üÎ Ìå²ñ Þ þ t > 0, ÿ (ζ > t) ô õ ö ï ÷ ò Õ ä ù ú t ø í Þ ý ¯ % ù²ú t ó Þ ø í ² (ξ = 0) ô²õ ø Î ò² Õ ë ó 0, ÷²ÿ Þ ± t
1
t
P (ζ1 > t) = P (ξt = 0) = e−λt ,
ä ²ë ó λ βê²ë Ì å Î “ ²ë ó λ² Î ê²ë Ì å²ñ §3.6.2
ÏÐ ØÍ Þ ÷²ò² ! Õ r ä÷
Γ
t > 0.
Þ ” ï
1
ô²õ ÿ
æ
(3.6.1)
ζ1
Î Ìå æ£ ä ë
à²á
Ø Í ï²ð Îï Ìå £ Γ Ìå²ñ § â ¯ö Þ%þ òÕÖÎí²× ù²ëú ØÞÍ {ξ Þ%, þt ≥ 0} æ£ÚÛ ó λ Î Poisson ö r ζ ô²õ r ÷²òÕβø £ t > 0, ÿ (ζ < t) ô²õ ù²ú t ² æ²ø í Þ ÿ (ξ ≥ r) ô²õ ø ù²ú t ó Þ ø í ² Î òÕ²ë Þ È ÷²ÿ Þ ± æ
Poisson
t
r
r
t
Fr (t) = P (ζr < t) = P (ξt ≥ r) = e−λt
∞ X (λt)k
k!
,
t > 0.
(3.6.2)
"# £ t Î $%²ë Þ À$&'(% ñ þ ( %) Þ* pr (t) =
+, ¯Þ
∞
∞
k=r
k=r
X λk tk−1 X λk+1 tk d Fr (t) = e−λt − e−λt dt (k − 1)! k!
λr = e−λt tr−1 , (r − 1)!
Gamma
k=r
²ëÎ-.£/
Γ(r) =
R∞ 0
t > 0.
xr−1 e−x dx,
(3.6.3)
²S³*´ µ*¶S·*¸
120
01 Ì þ ï r > 0 23 ñ45 é Þ%þ 6 ë n, + 1) = nΓ(n) = · · · = n! , 798: ¯Þ (3.6.2) r
p(x) =
λr r−1 −λx x e , Γ(r)
x>0.
(3.6.4)
A B Ñ (3.6.4) 0Q r>0ó ST ÆÇ Þ U-. ; Î ä ë λ Q r $²óWVXY ß . Γ(1, r) Î Û 0, 3 a = −c, b = c. ø c > 0, -opqr ξ ? ±c Anzs{|mopqr η m}~ , Ø ξ m}~ , Ø F (x) ï ðë ñòó $-
η
÷ Ü
(3.7.5)
ξ
Fη (x)
ξ
Fη (x) =
x ≤ −c ,
0,
Fξ (x) − Fξ (−c), −c < x ≤ 0 , Fξ (x) + 1 − Fξ (c + 0), 0 < x ≤ c , 1, x>c.
(3.7.6)
Ý ô s . / F (x) ? x = 0 A ð w 2 CD s CDEF Ü F (0 + 0) − F (0) = F (0 + 0) − F (0) + F (−c) + 1 − F (c + 0). ./ ö ø opqrm@n#÷ Ü “ù ”. ù?
º mZ@ Ð ; / Ðê η
η
η
ξ
ξ
ξ
ξ
; ; ;xó ø t ∈ (0, 1), ξ
ξ
−1
−1
ξ
ξ
ξ
Fξ−1 (t) = inf {x | Fξ (x) > t} > y ⇐⇒ Fξ (y) ≤ t ; Fξ Fξ−1 (t) = inf {Fξ (x) | Fξ (x) > t} = t.
(3.7.8)
ð P (η < t) = P (η ≤ t) = P (F (ξ) ≤ t) = P F (t) > ξ = P ξ < F (t) = F (F Ý ô R η = F (ξ) ° }~ U (0, 1). wSq£§ 0 $Õ Û Ö× Í Ø}~?
© ;m «¬ ( Îê Ø 3.7.4 ëì }~ , Ø F (x) ÙÚÛÜó ξ
−1 ξ
−1 ξ
ξ
(3.7.9)
−1 ξ (t))
ξ
JÝxy * ]
F (x) < 1 ,
∀x ∈ R,
R(x) = − ln (1 − F (x)) = ln
1 , 1 − F (x)
(3.7.10)
x ∈ R.
(3.7.11)
=t.
8 9;: ; ; *àZ+ ¨©@ >áâãR(x) 6 Þ
s
s ß G H s R(−∞) = 0, R(∞) = ∞. R(x) ? äåæ
çè# ðæ ê{Ë?s{xyÖ· ¸ R(x) ð ñmwSq£m ðé +ê ê ¯ 3.7.2 ëì opqr ξ m}~ , Ø F (x) GHs ÙÚÛÜ (3.7.10), á 124
ξ
ë
η = Rξ (ξ) ,
(3.7.12)
0 ]ê $opqr η ° Ö× Í Ø}~ exp{1}. ÐÑxóë øç !F" (x) GHð sì R (x) Ü ÞmGH , Øsì á η = R (ξ) ≥ 0 . í6>s x > 0, P (η < x) = P (R (ξ) < x) = P (− ln (1 − F (ξ)) < x) = P (F (ξ) < 1 − e ) . ;]¨ 3.7.1 >s opqr F (ξ) ° }~ U (0, 1), â0î |
è
Rξ (x)
(3.7.11) ξ
ξ
ξ
ξ
ξ
ξ
−x
ξ
(η < x) = P (F (ξ) < 1 − e ) = 1 − e , x > 0 , ô í ¸ η = RP(ξ) ° Ö× Í Ø}~ exp{1}. ï 9ç ëô s Ö× Í Ø}~ exp{1} ? áâãäåð ñ çè ðñòæ ê §3.7.3 óôõöÏ÷øùú åâ ,Zû à mZ#Z ZwZü / æ mZª ðZ«Z¬ § 0 mZqZ£ê ËZ?ZxZyÖZýZ©ZoZpZq rmþ Øê Üξ opqrs á g(x) ]?ÿmÿþ å , Øs i η = g(ξ), JÝ Ü ξ mþ å , Øê 9çþ å , Ø# GH , Øsµw] Ü Borel * ms η ÷ á η = g(ξ) Ü opqrê xy ò Öý© η m}~ê ëxì ξ ° I}~sÒJÝ η = g(ξ) m}~ 6xí = êÒ ξ m}~ Ü ó −x
ξ
−x
ξ
a1 , a2 , · · · p1 ,
JÝs O
g(x)
···
p2 ,
ÙÚÛÜ g(x1 ) 6= g(x2 ),
,
∀x1 6= x2
Þ s η = g(ξ) m}~ ð (
g(a1 ), g(a2 ), p1 ,
!
p2 ,
···
···
!
.
!
,
(3.7.13)
ò P w ü s xöð m
xê ë s å Ù x Ú Þ s $
á ξ m}~ Ü ó g(x) = x , O ÛÜ
(3.7.13) 2
−2, −1, p1 ,
p2 ,
1,
2
p3 , p4
; ; ; JÝs η = ξ m}~ Ü ó §3.7
125
2
1,
!
4
p2 + p 3 , p1 + p 4
.
ñ ý©GHI}~m§ê xywüªê Ø 3.7.5 opqr ξ ° }~ U (− , ), η = tan ξ, T η m}~ , Ø@ F , Øê óÒ6>s ø!" ÿØ x, ð π π 2 2
π π Fη (x) = P (η < x) = P (tan ξ < x) = P ξ < arctan x, ξ ∈ − , 2 2 Z arctan x 1 1 1 = dt = arctan x + , π π 2 −π 2
!
η
m}~ , Øê ô | pη (x) =
!
Cauchi
η
m F , Ø Ü
d 1 Fη (x) = , dx π · (1 + x2 )
x∈R.
}~m «¬ §ê w'(s xy- F , Ø Ü p(x) =
1 λ2 π λ2 + (x − µ)2
(3.7.14)
mGHI}~÷ Ü Cauchy }~ê 3.7.5 ;m ðη ° " m+ ÈØ λ = 1, µ = 0 m Cauchy }~ê Cauchy }~
© ;mwSª í m}~ê â$# Ê$% s Û Ü ξ ∈ (− , ) ñ ò P æ êÝ Ü O t ∈ (− , ) Þ s ? , Ø u = tan t &$' â$( s á î$) ?$* w m ³ ,,+ t = arctan u, ô Þ x y ð 0 L î ê.- ø ! S/ N s xy² = ë ]¨ó (tan ξ < x) = (ξ < arctan x) mñò ¯ 3.7.3 o p q r ξ ° G H I } ~ F (x), ð m F ,0+01 p (x), a < á ,+ u = g(t) 2 (a, b) â m&'mGH ,+ s î m³ ,+ h(u) = x < b. 12 2 (α, β) â m * % ,+ s ´¶è% ,3+ h (u) = g (u) ?2 g (u) F ,+1 ó â (α, β) GHs $ η = g(ξ) GHIopqrsè π π 2 2
π π 2 2
ξ
ξ
0
−1
0
pη (x) = p ξ (h(x))|h (x)|,
ÐÑó54ÿ â s O g &' â(6 s xy ð O Fg &(x)' = PÞ (η6 <s x)x=y Pð (g(ξ) < x) = P (ξ < g η
−1
d −1 du
x ∈ (α, β).
(x)) = P (ξ < h(x)) = F ξ (h(x)),
< x) = P (ξ > g (x)) = P (ξ > h(x)) = 1 − F 7 F8 (x)æ ñ= òP (η0
ó 1 b > 0, $ p (x) = p = , x ∈ (a, a + b), ë ì ° ) ; η }~ U (a, a + b). b < 0, $ F ,+1 pη (x) =
= −p ξ (h(x))h (x) = p ξ (h(x))|h (x)|,
η
ξ
x−a b
1 b
1 |b|
x ∈ (α, β).
1 b
= , x ∈ (a + b, a), ° ) ; η } ~ U (a + b, a). O ξ ° N (0, 1) 6 s η : 1 GHIopqrs ëì b > 0, $ F ,+1 n o p (x) = p = exp − , x ∈ R, ëì b < 0, $ F ,+1 pη (x) = pξ
η
ξ
x−a b
x−a b
1 b
1 |b|
1 |b|
(x−a)2 2b2
√1 2πb
n o 2 exp − (x−a) , 2b2
x ∈ R, < ïs # ð η ° ï= }~ N (a, b ). Ë?s xy>ý©? 1 w'm§ê.:ê Ø 3.7.7 opqr ξ ° Ö× ï= }~ N (0, 1), η = ξ , T η m}~ê óÒ η 1 opqrs ð √F (x) = 0,√x ≤ 0. O √ x > 0 6 s √ xy ð F (x) = P (η < x) = P (ξ < x) = P (− x < ξ < x) = Φ( x) − Φ(− x) . η m F ,+1 pη (x) = pξ
x−a b
=
√ 1 2π|b|
2
2
η
2
η
√ d dx Φ( x)
√ d dx Φ(− x)
° ZGZHZIZ}Z~ F (x), ðZ m ZF ,3+31 p (x). á 3.7.8 ZoZpZqZr ξ ,+ @ F ,+ ê η = sin ξ, xy> η m}~ ó6>s −1ð ≤ η ≤ 1, @ ø x ∈ [−1, 1], AB F (x) @ p (x) mê
−1 < x < 1, xy Ø
pη (x) =
d dx Fη (x)
=
−
=
√1 2πx
exp{− x2 },
x>0.
ξ
ξ
η
η
Fη (x) = P (η < x) = P (−1 ≤ sin ξ < x) ∞ X = P ((2k − 1)π − arcsin x ≤ ξ < 2kπ + arcsin x) =
k=−∞ ∞ X
C ô s ð m F ,+1
k=−∞
{Fξ (2kπ + arcsin x) − Fξ ((2k − 1)π − arcsin x)} .
∞ X d d d pη (x) = Fη (x) = Fξ (2kπ + arcsin x) − Fξ ((2k − 1)π − arcsin x) dx dx dx k=−∞
; ; ;
§3.7
=
∞ X
k=−∞
√
127
1 {pξ (2kπ + arcsin x) + pξ ((2k − 1)π − arcsin x)} . 1 − x2
â#D Ee¹ ;s xy4ÿ â # 8 æ ,+ g(x) m³ ,+ mFG*w ? + @ *H+ s ø ô xyå· ¸;( 0,
−1,
x ≤ 0;
pξ (x) =
η3 = e−ξ pξ (x),
uQO
2x,
0 < x ≤ 1;
Qp qQr XQgQhQaQbQ` 0,
(2) g2 (x) =
(
x, 0,
.
|x| ≥ b,
|x| < b;
(3) g3 (x) =
b,
x,
−b,
x ≥ b,
|x| < b,
x ≤ −b.
QX YQZQm i = 1, 2, 3. 11. O.vxwQy I iQj 9 zQ{ 11 zQ|Q}QXQ~QQYQZQmQvwQ
2 Q X.vxQQmQQXQQf ^ \ W = 2I , W XQeQfQgQhQaQbQ` η = gi (ξ) 2
* Z?3¢Zw 2 Z
3£Z (Ω, F, P ) ¤Z]Z3¥ 2 (¦Z 2 j *3K Z x y ¥ Z 3 > Z ¡ s 2 ) opqr§©¨ª ! üopqrs xy« * F 2 ¬ym +ê @}~®s ¦ 6 Q ò¯ ¬y P1° r>¬ym± N +ê § © Ëÿ²³Ô{s Q
©´µs xy# * ² =¶ ¥ ò¯ ¬y P 1° r>± N +ê m§·s·¸ ξ ¹º w 2» mµ E së ξ ¹º¼  ñ s E ò ξ ξ F m 𽾿 ò & ·¸ ξ ξ }B 𹽺ÇÀÈÁ ¾ @ m mµ s JÝÃÄ3ÅZm " >ûZs.Æ3 Z 2 ξ° )3ξ ; m ¿ §.É·¸7?! 2 ¦ 2(0, 1) ¤,m+ Ê
£¤]w }Z~ U (0, 1) mo F (x) @ F (x), }BË F (x) @ F (x) ¹º ¬y pqr,+ η, 7 3 }~ ³Í » m s¾Ï ® ξ « = F (η), ξ = F (η),Í JÝ? ξ ξ ! ) ? ¦ " 2 S ¾¿ sÌÆ PÝ 1yάym ºm+§ ,B+ (m s.¦ ·2 ¸ opA q@ r Aξ = ¢I w
ξ £=I Ð;Îm §Lt m ¾¿4ÑÜs J| à ) §¾? ¿» áyâmãä Ò³ÓÔÕÖ³Ó×Ð;sxØ Í ÖÙÚ ¶ ¥ÛÜÝ¢Þ ! êß ª¦ ßðì ½ ä §å·æå·¸ðw½ çà ) Ò¾ÿ¿ 4ò3¥¯ èéêæåëÝ ° üä éê ξ , · · · , ξ íîïðª¦ñÜ æ.
¬3ò3óî3ç >3Ë3ô õ §,ö÷øù²ú áâ ° ä ßûü § §4.1.1 óôýöÏþÿ ò> áâ ° ä ßûü § ·3¸ ξ , · 1· · , ξ Í á â ¢3° î3ä ç û £3í (Ω, F, P ) ¤ ß Í n ç á3â3áã3âä æ ° ä ¯ (ξ , · · · , ξ æ ) ξ , · î· · ,ç ξ nÍ ¢î§ç û £æ í (ξ(Ω,, · F,· · ,Pξ ))¤ ß înç ç ná âãä § æ áâ ° ä æ ë¨Ý n ß Í (ξ , · · · , ξ ) îç n ö ÷ > æ · ¸ k Ô 1 ≤ j < · · · < j ≤ n , (ξ , · · · , ξ ) ð Í îç k áâ ° ä § !æ k = 1 "æ Í áâãä §.ÎËæ áâ ° ä ß Í îç#$ ûü § %'&'(') ô õ áâ ° ä ß Þ'*æ ò'+,'$'-.®îç/'01'23 áâ ° ä'4 Í'' ' ñç û' £í (Ω, F, P ) ¤ ß n áâ ° ä æ þ 5 4.1.1 (ξ , · · · , ξ ) 6 §4.1
1
1
2
2
1
1
1
−1 1
1
−1 2
2
1
1
2
A1
2
A2
n
1
1
−1 2
2
1
1
2
−1 1
2
2
n
n
1
1
n
n
1
1
n
k
1
j1
jk
n
{ω | ξ1 (ω) < x1 , · · · , ξn (ω) < xn } = (ξ1 < x1 , · · · , ξn < xn ) ∈ F,
128
∀ (x1 , · · · , xn ) ∈ Rn . (4.1.1)
7 89:;? 4A@B (ξ , · · · , ξ ) Í î3ç û C í (Ω, F, P ) D ß n á3âFE ä æ.ë Í G îç ûC íD ß n ç á âãä æ.ÎË ξ ,···,ξ T §4.1
1
1
n
n
n
(ξ1 < x1 , · · · , ξn < xn ) =
(ξj < xj ) ∈ F.
H I æ JKL n M Eä (x , · · · , x ), ðN (4.1.1) OóPQ.ëL ß M x, ËT M > 0, ðN k ÔRS T (ξ < M, · · · , ξ < M, ξ < x, ξ < M, · · · , ξ < M ) = (ξ < x) (ξ < M ) ∈ F. @BU M ↑ ∞, ë N 1
1
k−1
k
j=1 n
k+1
n
j
k
j6=k
T
(ξj < M ) ↑ Ω,
V D OWXYZ (ξ < x), [÷\Ú (ξ < x) ∈ F, ] ξ ^ áâãä Q _`a 0bcdefg 4 (4.1.1) OhiZL n Borel jk j6=k
k
k
k
B,
ðN
((ξ1 , · · · , ξn ) ∈ B) = {ω | (ξ1 (ω), · · · , ξn (ω)) ∈ B} ∈ F.
l mno páâãä îqæ ò,$ô õ áâEä ß rstu Q % ÷æ ò vSú n áâEä (ξ , · · · , ξ ) ßwxy ß 4 ñç û C í (Ω, F, P ) D ß n áâE þ ÿ 4.1.1 K (ξ , · · · , ξ ) ^ ä æ z{ §4.1.2
1
n
1
n
F (x1 , · · · , xn ) = P (ξ1 < x1 , · · · , ξn < xn ),
(x1 , · · · , xn ) ∈ Rn
(4.1.2)
% | áâEä ßwxy æ }{ F (x , · · · , x ) % (ξ , · · · , ξ ) ß~ k wx Q 4.1.1 æ n áâEä ßwxy ^ îç R ß n y Q HI æ òîç n y F (x , · · · , x ) % n wx æ @B ñç áâEä f % wxy Q p 1 wxy
æ n wxy NÞ* 4 þ5 4.1.2 n wx F (x , · · · , x ) NÞ* 4 ã 1 . F (x , · · · , x ) Lç ã W 2 . F (x , · · · , x ) Lç 1
n
1
n
n
1
n
1
◦
1
n
◦
1
n
3◦ .
lim F (x1 , · · · , xn ) = 0 ,
xj →−∞
lim
x1 →∞,··· ,xn →∞
ðN
n
4◦ . F (x1 , · · · , xn )
∀ 1 ≤ j ≤ n,
F (x1 , · · · , xn ) = 1 ;
NR D ß ä Þ 4 L'
(b ,···b )
∆(a11 ,···ann ) F =
X
±F (x1 , · · · , xn ) ≥ 0 ,
aj ≤ bj , j = 1, · · · , n
(4.1.3)
789: ð'N x = a b , jß = 1,ß · · · , n,%V ' x | = a + æ x =a j ç "æ è ß ¥¦ O 4 òSú n = 2 ¤ 3 " ∆ F
130
A N 2 ç'èæ îè æ ß j ß ç % "æ | è I % I % − Q % ¡¢&£ (4.1.3) Oæ n
j
j
j
j
j
j
j
(b1 ,···bn ) (a1 ,···an )
(b ,b )
∆(a11 ,a22 ) F = F (b1 , b2 ) − F (a1 , b2 ) − F (b1 , a2 ) + F (a1 , a2 ); (b ,b ,b )
∆(a11 ,a22 ,a33 ) F = F (b1 , b2 , b3 ) − F (a1 , b2 , b3 ) − F (b1 , a2 , b3 ) − F (b1 , b2 , a3 ) + F (a1 , a2 , b3 ) + F (a1 , b2 , a3 ) + F (b1 , a2 , a3 ) − F (a1 , a2 , a3 ).
>? 4 Þ* 1 ¤ j, 1 ≤ j ≤ n, x
§ gQ.Þ* 3 ߨ î穪hOóP«¬[ ^ 4 L → −∞ "æ.ðN T (ξ < x , · · · , ξ < x ) = (ξ < x ) (ξ < x ) → Φ. ¨ 穪hOóP«¬[z ^ 4 6 L®N« j, 1 ≤ j ≤ n, ðN x → ∞ "æ ¯N T ◦
1
2◦
◦
j
1
n
n
j
k
j
k
k6=j
j
n
(ξ1 < x1 , · · · , ξn < xn ) =
° *
4◦
óP«¬[ ^ 4
j=1
(ξj < xj ) → Ω.
(b ,···b )
∆(a11 ,···ann ) F = P (a1 ≤ ξ1 < b1 , · · · , an ≤ ξn < bn ) ≥ 0 .
G î±²îq³LZî´ ND 4 µ ° *« n y F (x , · · · , x ), ð|'e'f'¶'E·¼ î'´'w¸ x y « û'C í (Ω, F, P ), D'¹ ' î'´ n 'º'» EA¼ ³¾½'\ º» « ^ F (x , · · · , x ). p î±² ³ n wx }N¿ÀÁ wx ¤Á wx Q % øÃij f 6 f n = 2 %Å Q þÿ 4.1.2 @BÆÇ (Nª´ e Ç ´ ) M ÈÉ µÊ 4 1
1
n
n
∞ X ∞ X
pij ≥ 0,
pij = 1 ,
(4.1.4)
i=1 j=1
òwx {p@}B % Æ ´ 2 ¿rÀs Á wx% Q @ BÆ ´ 2 Ç º» E¼ (ξ , ξ V) Ë -¿À Á ³ ] (ξ , ξ ) « jk Nª jk e jk {(a , b )}, P (ξ = a , ξ = b ) = p , i, j = 1, 2, · · · , {p } %ÈÉ (4.1.4) O«M Ç ³ (ξ , ξ ) % (2 ) ¿ÀÁº» E¼ Q þy ÿ 4.1.3 @B F (x, y) ^ Æ ´ 2 wxy ³ V Æ ´ Lebesque eÌ « p(x, y), ½\ ij
1
1
2
i
1
i
2
ij
j
F (x, y) =
x −∞
Z
y
p(u, v)du dv , −∞
j
ij
1
Z
2
2
∀ (x, y) ∈ R2 ,
(4.1.5)
789:; 0 E (QGH 6. K (ξ, η) GH ( (1,1) (0,0)
−ax
−bx
◦
1
2
3
2 1
−(ax+bx)
◦
x1 x2 3
2 3
1
2
3
f (x+y) x+y
ce−(cx+4xy) ,
x > 0, y > 0
0, %R (1) S c; (2) &' F (x, y); (3)P {0 < ξ ≤ 1, 0 < η ≤ 2}. UTVR p(x, y) = Ke 7. GHWX@Y@Z √ a > 0, c > 0, b − ac < 0, K = ac − b . 8. K (ξ, η) &'GH y) = cxy , 0 < x < 2, 0 < y < 1. %R (1) S c; (2) ξ, p(x, η ?[A"\]^ _4 ϕ(x, y) =
−(ax2 +2bxy+cy 2 )
2
1 π
2
1 2
2
1 2
§4.2
`badcefghce
133
ikjklkmknkokpklkm q'ñsr 0,
P (ξ1 < x|a ≤ ξ2 < b) =
x ∈ R,
¾ðµÊ|}
P (ξ1 < x, a ≤ ξ2 < b) , P (a ≤ ξ2 < b)
(4.2.2)
7 89: Þ°ïgb¿³ ú Æ¡\·Æ « wx x« yyÀ À P (ξI ?@A è . x ∈ R, %Ô÷ P (η = x) = 0. # B7 n (n ≥ 2) C à á2â ãBDBEBF'BBGBHI ÞKJ JLBB. (x , · · · , x ) ∈ R ,e % ÷ P (ξ = x , · · · , ξ = x ) = 0, àeá âã (ξ , · · · , ξ ) Ùeêeëe×eØeòeó M N > ; < (OP èQR ýS ï Ù T U ). V Q
ñ
ξ
η
ξ2
ξ, η
η2
η
η
η
1
n
13.
1
1
n
n
1
ñ
s
a) b)
1+ xi , p(x1 , · · · , xs ) = i=1
ÔÒ Ó è XÔß Ô C àÔáâäã
p(x , · · · , x ) $ 1
s
s
.
s
(ξ1 , · · · , ξs )
ñ
*+!"Ôé
îÔô
1 2
≤ xi ≤ 12 , i = 1, 2, · · · , s;
0,
ï
Y
WÔìÔíÔòÔóÔé
(1) ξj ∼ U (− 12 , 12 ), j = 1, · · · , s ; (2)
−
2 ≤ q < s, ξ1 , · · · , ξs
n
.
ÔÝ ìÔíÔòÔó æ ÒÔÓ è ÔàÔáÔöÔãÔþ*+ !"eé
p(x1 , · · · , xs )
.
q
(3) ξ1 , · · · , ξs → − (1) → − (2) (4) ξ = (ξ1 , · · · , ξq )τ , ξ = (ξq+1 , · · · , ξs )τ , 1 ≤ q < s,
s (1) (2) 1 + Q xi , → − → − p ξ |ξ = i=1 0,
ñ
−
1 2
îÔô
:
≤ xi ≤ 12 , i = 1, 2, · · · , s; .
n
§4.3
14.
Z\[^]\_a`abacadðñ
145
JÔðeDÔÙÔ×ÔØÔ÷ * fÔÙ geÞ V F (x, y) $ àÔáâäã (ξ, η)æ ÙÔ×ÔØÔòÔó G(x) h H(y) ×1 $ G(x) h H(y) $ ; 0,
|r| < 1,
ì\í^î\ï
©aª
1 √ p(x, y) = × 2πσ1 σ2 1 − r2 −1 (x − a1 )2 2r(x − a1 )(y − a2 ) (y − a2 )2 exp − + ,(4.3.2) 2(1 − r2 ) σ12 σ1 σ2 σ22
¦ð«ð¬ðð® zðð|ð}ð~ðð𢠦 ð|ðâðãðð¢ 4¯ð¦
N (a1 , a2 ; σ12 , σ22 ; r),
ñóò
2
(x, y) ∈ R .
tau a å öa÷ R R p(x, y)dxdy = 1 . a z a ø ù a ² a ú a û ^ ù ü ça ø 6.1 ò\Èaýaþaÿ zaaø a® p(x, y) â ãa tauaà a|aâaãaa¢ N (a , a ; σ , σ ; r) zaÄaÅ «a¬a Ça¹ a ¢ z ò a Ú à a taua ôaõ
p(x, y) > 0 ,
∞ ∞ −∞ −∞
1
u=
p1 (x) =
Z
∞
4ä
p(x, y)dy =
−∞
t=
v−ru √ , 1−r 2
u2 1 e− 2 2πσ1
x−a1 σ1 ,
2 2
v=
y−a2 σ2
Z
1 √ 2πσ1 1 − r2
,
2 u − 2ruv + v 2 exp − dv , 2(1 − r2 ) −∞ ∞
" #) 2 1 v − ru 2 √ exp − +u dv 2 1 − r2 −∞ Z ∞ (x−a1 )2 t2 u2 1 1 1 2 e− 2 dt = √ e− 2 = √ e σ1 . ·√ 2π −∞ 2πσ1 2πσ1
1 √ p1 (x) = 2πσ1 1 − r2 =√
2 1
2
Z
(
∞
± aa ξ zaÄaÅaa¢ ²a|aâaãaa¢ N (a , σ ). µ η zaÄaÅ ð¢ ð ² |ðâðãðð¢ N (a , σ ). ±ðú Öð×ðØðÙ tðu  ð|ðâðãðð¢ðz ðúðÄðÅð ¢! ²aa | âaãaa¢ " Ç Íð «ð¬ p(x, y) ò$#ðº %ð® r, ¿ ðúðÄðÅ «ð¬óò ! & º %ð® r, ª´ Ía «a¬ p(x, y) Ú'^° ÿ zaúaÄaÅ «a¬ z(a/³ 041 æaçaå) $(*aú %a® z tau å+, 4ñ^ò %a® r -.aþ ξ Ã η ¬a Ú 3 Áaýða® p(x, y) Ç45aç Õ z6a7 4Öa× Õ ÒaÓ Õ ç z 2 ¶ tau º 1
2
Z
± a÷ þ
2 1
2 2
p(x, y)dy dx −∞ −∞ −∞ −∞ Z ∞ Z ∞ 1 (x − a1 )2 = p1 (x)dx = √ exp dx = 1 . σ12 2πσ1 −∞ −∞ ∞
(4.3.2)
Z
∞
p(x, y)dxdy =
8 Èaý z a®
Z
∞
p(x, y)
Z
∞
z( ²aú «a¬aa®a
ì í^î\ï9: ; \ ý ÉðÊ «ð¬a ° ¹ ðúaÄðÅ «ð¬ ÒaÓ Õ ç z 2 ¶ a < Ì >>? ¹ 0, @a¸ A y ∈ R, ! º §4.4
p(x, y) 1 =p exp p1 (x|y) = p2 (y) 2π(1 − r2 )σ1
(
µa Â
η
ÇaÈ ³
p1 (x)
(x − a1 − r σσ12 (y − a2 ))2 σ12
" ^ ñ ò z y aÖ à È ³az7 ª Õ 8 Â ²a|aa â ãaa¢ N (a1 + r
147
ξ
ÇaÈ ³
η=y
)
,
=
p2 (y)
x ∈ R.
Ñ zaÉaÊaa¢
σ1 (y − a2 ), σ12 (1 − r2 )) . σ2
(4.3.3)
σ2 (x − a1 ), σ22 (1 − r2 )) . σ1
(4.3.4)
Ñ zaÉaÊaa¢ ²a|aâaãaa¢
ξ=x
N (a2 + r
Õ 8 BC ¦ N (a , σ ) = N (a , σ ), D B Ã ξ = η zaÄaÅa · ¢/ a Ï Ñ Ía a « ¬a¹ aÄaÅ «a¬ zE6 0a¿ ξ Ã η /FGH ± a Ç ²a³ a´ ÕI þ%a® r J# ´ K ²L J# ´ åaÇ a²M ò NOa a¶
r = 0,
2 1
1
PQ
2 2
2
4.3
RTfhgSTUWVYX (ξ, η, ζ) ZT[T\Tfh]Tg ^ D = {(x, y, z) : x + y + z ξ `hihjhchdhk (2) ξ lhmhn η, ζ `hohphqhrhshthu 2. RhShUVvX (ξ, η) whqhr 2
1.
1 x2 + y 2 p(x, y) = exp − 2π 2
2
xy 1− (1 + x2 )(1 + y 2 )
2
< 1}
_T`TaTbTcTdTe
(1)
−∞ < x, y < ∞.
,
h` ihjhqhr{v|h}T~TuTT yTTT
TT xhyhzh 3. R ξ ξ |hShUhhXhe ζ = ξ + ξ , ζ = ξ − ξ . ζ , ζ |hhhhh` }h~hShUhhXhe ξ ξ |h}h~hfhShhUh hXhu 4. (ξ, η) Zh[hhh}h~hchd (4.3.2), ξ + η ξ − η hhhh`hhhohpTu xhy e h ξ + η 5. R ξ η hhhhchdh`hShUhhXhehqhrhshthh T¡ 0 ¢hwhh£h¤hthu ξ − η hhhhehShUhTX ξ, η, ξ + η, ξ − η ahZh[h}h~hchdhu 6. (ξ, η) Zh[hhh}h~hchd N (a, b, σ , σ , r), ¥ D(λ) h¦h§h¨h©h`ªv« xhyhz
1
ξ, η 2
1
1
1
2
1
2
1
2
2
2
fhgh¬h
2
2
(x − a)2 2r(x − a)(y − b) (y − b)2 − + = λ2 2 σ1 σ1 σ2 σ22 P {(ξ, η) ∈ D(λ)} .
® ¯°±°²°³°´°µ ° ¶¸·º¹¼»¸½¸¾¸¿ ¸ J ®¸ÀÂÁ Ç ¸½¾ ^ J a®¸ÃÅÄ ¶ ³a´ Ç ²aúaÆÇ Ü Õ J n úaaa À¼ÈÉ (ξ , · · · , ξ ) a ²aú §4.4
1
n
Ê a
ξ1 , · · · , ξn n
é^ê\ë
148
ì\í^î\ï ³a´ ) a
\ Ë µÌ a®ÀËÈÉ ζ =: g(ξ , · · · , ξ Ä Æ¶ Ç g(xÕ , · ·a· , x a) n ¶Ê ·Borel Ã Î ζ ©a¦ ± n úaaa Jaa®ÀÏÐ Ñ n Ê ÇÍ Ü J à a^\ (ξ , · · · , ξ ) Jaa®Ã ¶· JAÒa ° (ξ , · · · , ξ ) J ÍaÓa¢ Áaýañaa® J Óa¢ à J *¸Û ù 8J ®ÀÂÜÄ ÂÅÄ ¶ ξ , · · · , ξ ×¸Ô¸Õ¸Ö ò »¸× )¸Ø¸Ù¸Ú ú ¸ n ÝÞß^ ò Jàá 7 ÀÈÉ ζ =7 ξ + · · · + ξ a n ÝÞß^ò Jâàá 7 Æ ¿ ζ = max{ξ , · · · , ξ } a ã ? àá Æ äa¹ ζ = , k = 1, · · · , n * ·a ÝÞß^ò JàáaÇâàá^ò åæJç èÃTéêaÑÀTÄ ¶ ª (ξ, η) ëìí 1
n
1
1
n
1
n
n
1
1
1
n
n
n
k
ξk ξ1 +···+ξn
JîïðñÀÈÉ p ρ = ξ + η , θ = arctan ò¸Ó¸B¸ó¸ë¸ì¸í ð¸ñô í Jõ¸ =ö¸ïJ 7 À0¹ ó (ρ, θ) ò¸ó¸ë¸ì¸í J¸ö¸ð¸ñà ò Ú÷ø ) ÓB Øù ρ = θ, ¿a¨ ø )ØùúÊûüý þ (ρ, θ), äa¨ ø ) ¹ ° ó ¶· a ÍÿÓ Áaý (ρ, θ) J ÍÿÓ Ã ± JÜ µ ªaýÚà (ξ, η) J §4.4.1 ¶a · à ãa ¼J,à ¥ (ξ, η) ó úÊ û¶ üý þÀ ÿJ 7 § 7 ÿ ¦ ÿ {(i, õj) ó|i,j =0, 1, · · ·},ÿ äa¨ P (ξ = i, η = j) = p , Ä ζ = ξ + η, ÈÉ ζ J § Ð ®a§ À ä 2
η ξ
2
i,j
¨aº
P (ζ = k) = P (ξ + η = k) =
k X i=0
B ÀÄ ¶
ξ
Ã
i) = ai , P (η = j) = bj
P (ξ = i, η = k − i) =
k = 0, 1, · · ·(4.4.1) .
ó/FGH J ® 7 J û ü þ À4ä𨠦 , ÈÉ (4.4.1) 8 k X i=0
k X
pi,k−i ,
i=0
η
P (ζ = k) = P (ξ + η = k) =
=
k X
P (ξ =
P (ξ = i, η = k − i)
P (ξ = i)P (η = k − i) =
k X
ai bk−j ,
k = 0, 1, · · · .
(4.4.2)
a¤ 4.4.1 ¶·Î /FGH Jûü þJ=J Ó ©a¦%aÃaÁ=J ûü þ 6 8à B ÀWÄ ¶ %aÃðÁ= J û J Ó JÓ /6 À4¿ Î 8 ¶(4.4.2) a © ¦
ü þJ ÀÈÉ · ò Î ÿ · J=J Ó ©a¦Í ÛÓ J ! 6 à » 4.4.1 ¥ 0 < p < 1, û ü þ ξ à η / F G H À4ä ¨ ξ " ú Ý Ó#
úÝ Ó B(m; p), ÀaÁ ζ = ξ + η J Ó$ Ã B(n; p), η " i=0
i=0
§4.4
ì\í^î\ï9: ;
Ë Â¯
° 6 8
q = 1 − p,
P (ζ = k) = P (ξ + η = k) =
k X
149 (4.4.2)
%
ai bk−j =
i=0
= pk q m+n−k
k X
k X i=0
k−j k−i m−k+i Cni pi q n−i · Cm p q
k−j k Cni Cm = Cm+n pk q m+n−k ,
k = 0, 1, · · · .
(4.4.3)
ζ = ξ + η " úÝ Ó B(m + n; p). ±aú Ô(Ð Ñú Õ&2 ¶ × º ' À ÿ 6)* Ô À!+aÐ " À ±aá J%a® p ó ²aú Ã î, Õ F J n è ! Ã ` 4.4.2 aûü þ ξ , ξ , · · · , ξ /FGH (n ≥ 2), " % C λ > 0 Jb CÓ Ã4÷ À ξ + ξ + · · · + ξ " Γ(λ, n) Ó À?caD ñHI BC ó Â ξ1 +···+ξn
1
ξ1
ξn
n
∗n
ξ1 +···+ξn
∗n
1
1
2
2
n
pn (x) =
Ë Â ¶·aà ÒaÓ
åGÀ4Ð: ÷ Ð
n
(4.4.5)
λn n−1 −λx x e , Γ(n)
8d
p2 (x).
x>0.
"
e 0 < u < x ÑÀ?_ p (u)p (x − u) > 0,
p1 (u) = λe−λu ,
p2 (x) =
p1 (x − u) = λe−λ(x−u) ,
x > 0;
1
(
λ2
Rx 0
(4.4.7)
x − u > 0,
1
e−λu e−λ(x−u) du = λ2 xe−λx ; x > 0; x ≤ 0.
0
ú b CÓ 6ðÚ Õ&2 Q (4.4.7) 8aÇ n = 2 Ñ0 H À4ä:aØaÙ ¶·  a J C Ó À e ó Γ(λ, 2) Ó À4ÿ âfó % C λ > 0 J Poisson Ó gò J 2 ú ó b ( í h ÑaÜ J Ó Ã?ia k ú b CÓ J 6ó Γ(λ, k) Ó ÀD_ ¶¸·¸ . Ò Ó (4.4.5) 8¸À Ó¸p B(x)å =P (u)x= pe (x −, u)x>>00j8. k ñ ò¼À D8O % (4.4.7) 8aÇ n = k + 1 Ñ Ï0 H à k
λk k−1 −λx Γ(k) k
1
§4.4
ì\í^î\ï9: ;
151
l m n op úÊ;xv, v 0.
n
¬
η1 = max{ξ1 , · · · , ξn }, η2 = min{ξ1 , · · · , ξn }.
η1 (ω) = max{ξ1 (ω), · · · , ξn (ω)}, η2 (ω) = min{ξ1 (ω), · · · , ξn (ω)},
ω ∈ Ω,
ω ∈ Ω.
ξ 1 , · · · , ξn ,
ü
154
Ò)¹
η1
Ý
η2
%&(' ÅgÆ¿ÇgÈ
*+ ó Ô-,./Ú-0
(η1 < x) = (max{ξ1 , · · · , ξn } < x) n \ = (ξ1 < x, · · · , ξn < x) = (ξk < x) ∈ F,
(4.4.13)
(η2 < x) = (min{ξ1 , · · · , ξn } < x) =
(4.4.14)
k=1
1
2
η1
k=1
n \
349: ¯
(ξk < x)
k=1
!
=
n Y
P (ξk < x) =
k=1
(η2 ≥ x) = (ξ1 ≥ x, · · · , ξn ≥ x) =
5
n Y
P (ξk ≥ x) = 1 −
1
2
k=1
n Y
k=1
n Y
Fk (x); (4.4.15)
k=1
n T
k=1
(ξk ≥ x)
Fη2 (x) = P (η2 < x) = 1 − P (η2 ≥ x) = 1 − P = 1−
F1 (x), · · · , Fn (x)
η2
Fη1 (x) = P (η1 < x) = P
º
(ξk < x) ∈ F.
¹ Ûî1 1
åæçèÚ-â 1¢121314
η Ý η ¹ )Û î F (x) F (x). ,./Ú 6 (4.4.13), è7º8 ξ1 , · · · , ξn
n [
n \
k=1
(ξk ≥ x)
(1 − Fk (x)).
! (4.4.16)
;(< 0= ¹ ó (η , η ) ¹> øÛîÔ ) ? « çèéÛî@øA ¹ þÿÔ B Ò ÿ ξ , · · · , ξ ó çèéÛî ¹ Ú ¹C éÛîû F (x). 4.4.5 D 5 ¹ Ì! ¼ η ÝÌ"¼ η ¹> øÛîÔ Ò ÿEýÎÚ(FG F (x) ûHIJ ÛîÚ-ð K0 ùú p(x), D 5 (η , η¹) > ¹> øùúÔ â (4.4.14) ¯ Ú-N ñ L # ü G(x, y) ÞÓ (η , η ) ø Û î M Ô 6 (4.4.13) O # x ≤ y Ú-0 T 1
n
1
2
1
1
2
2
n
G(x, y) = P (η1 < x, η2 < y) = P (η1 < x) = P
x>y
Ðü
Ú-0
(ξk < x)
= F n (x);
k=1
G(x, y)= P (η1 < x,η2 < y) P (η1 < x) − P (η1 < x, η2 ≥ y) = n n T T n =P (ξk < x) − P (y ≤ ξk < x) = F n (x) − (F (x) − F (y)) .
¹> øÛîû ( k=1
(η1 , η2 )
G(x, y) =
k=1
F n (x) − {F (x) − F (y)}n , x > y, F n (x),
x ≤ y.
(4.4.17)
ÅgÆ¿ÇgÈ¿ÉÊgË û HIJÛ¯ îÚPò K0ùú > øùúF (x) MÚ 6 (4.4.17) Ú 0
§4.4
q(x, y) =
155 p(x)
ÚPü
q(x, y)
∂2 n−2 G(x, y) = n(n − 1) {F (x) − F (y)} p(x)p(y), ∂x∂y
ÞÓ
(η1 , η2 )
¹
x > y. (4.4.18)
QRSTUQRVWXY µ1Z Ö ó !1 ¹ 1 1 11 ª÷¹ 1 ¹µ1Z Ö [ 1 Ð 1 \ ] ^ Ô 1 _ 1 ` 1 a b Ô?ûcdefÚ-g h ¬ ª÷¹ µZ Ö Ô G ξ , ξ â ν ó ¹ ` éý¬ ÷ â (Ω, F, P ) / ¹ 3 ¬åæçè ¹ ¹ Ú?°¿² ξ Ý ξ Ûî ÛÜû F (x) F (x), ν ûiû p, 0 < p < 1 Bernoulli Ô-j ζ = ν ξ + (1 − ν) ξ , (4.4.19) )k ¹ ζ ülû ξ Ý ξ ¹ µZ Ö Ô?°$ ó §4.4.5
1
2
1
2
1
2
1
1
2
2
b5 ζ ¹ Û îÔM6
â ν gm 1
h 0 ¬¼Ú?Ðü
ζ(ω) = ν(ω) ξ1 (ω) + (1 − ν(ω)) ξ2 (ω) ,
ω ∈ Ω.
Fζ (x) = P (ζ < x) = P (ζ < x, ν = 1) + P (ζ < x, ν = 0) = P (ν ξ1 + (1 − ν) ξ2 < x, ν = 1) + P (ν ξ1 + (1 − ν) ξ2 < x, ν = 0) = P (ν ξ1 + (1 − ν) ξ2 < x|ν = 1)P (ν = 1) + P (ν ξ1 + (1 − ν) ξ2 < x|ν = 0)P (ν = 0) = P (ξ1 < x|ν = 1)P (ν = 1) + P (ξ2 < x|ν = 0)P (ν = 0) = P (ξ1 < x)P (ν = 1) + P (ξ2 < x)P (ν = 0) = p F1 (x) + (1 − p) F2 (x) .
Ò (4.4.19) ¹ ¹ µZ â ¹ Ûî n ó Ûî 1 ¯ Þ gÚ ? § ¹µZ â Ô oü p EýÎ ¹qr Ô G ξ , ξ â ν ó ¹ `éý¬ ÷ â (Ω, F, P ) / ¹ 3 ¬åæçè ¹ ¹ Ú?°¿² ξ Ý ξ Ûî ÛÜû F (x) F (x), ν ûiû p, 0 < p < 1 Bernoulli -Ô j (4.4.20)
1
2
1
2
1
η1 = max{ξ1 , ξ2 },
ü5º )k¹ ζ ¹ Û î
2
η2 = min{ξ1 , ξ2 },
ζ = ν η1 + (1 − ν) η2 . Fζ (x):
Fζ (x) = p Fη1 (x) + (1 − p) Fη2 (x)
= p F1 (x)F2 (x) + (1 − p) {1 − (1 − F1 (x))(1 − F2 (x))}
(4.4.20)
%&(' ÅgÆ¿ÇgÈ
156
= p F1 (x)F2 (x) + (1 − p) {F1 (x) + F2 (x) − F1 (x)F2 (x)}
¯ ² ¹ F (x) ws* ó 3 ¬8Û8îs s F (x), F (x) â F (x)F (x) s s s t s u 8 8 v Ú / ¹µZ â Ú-x óy < p < 1 k Ú-z0 F (x)F (x) ¹µZ : 2p − 1 < 0 , Ðü ) k F (x) { ó 3 ¬Ûî ¹ “ |(}ø ”. x ó ü~ )k F (x) Ûî
¹ 3 ¶ Ô /s hss
s ws*scsd8Úxszs¹ ssE8¹ ýÎs¹ 8Ûîs¹ ¹ s^Ú+ ý8 çè Ûî Ô §4.4.6 T 11 ÷ (Ω, F, P ) / ¹ n 111 Ú-1* Ú ó 1 G ξ ,···,ξ ` é ý ω ∈ Ω, ξ (ω), · · · , ξ (ω), ¾ ó n .Ú ) ü ;(< ¹ !"Ú {1«¬?1 ®ü ¯11 1Ò ¡£¢ ¹ Ì1! ¼ hâ Ì1" ¼Ú-1¤1 ü1¥ á 1¦ ¹ ë1"181! ¹1§1¨ªÒ © Ä°Ô ÿ±¢(0² å³ÚL´µ ü« ¶ " Ä`s·¾×ÒÚL)7 ¸ ÿ (¡ »1¼ Ä/1` ½1ξ1(ω)¾1¿ ¡· ξ (ω). ).ó ` ξ n ó ω ý / 11 ` Ω §1ξ (ω)¨ ¡=Íξ Ú-(ω),11 ¹ i 0;
'
rξ,η
a < 0.
¡ÁÂS 8 9 s ξ, η ∈ L , T UV W$X 0 Y (1) ξ ? η (2) Cov(ξ, η) = 0; (3) Eξη = EξEη ; (4) D(ξ + η) = Dξ + Dη. 0 v 4 rZ; ?[º¿ ~ s ²½ 5.2.9 ¡ÁÂS 89 s ξ, η ∈ L H\n
ξ ? η [ºn 5 Þ 0 Y(]
Þ 0 ^_`W[º v ÃÄ
ξ, η ∈ L , ÉËW[ºn¸512 ²½
5.2.8
2
2
2
¤ Þ 0 v 34 n¸ 3 a ì 5.2.6 ´ ξ × η s tubt p !
Cov(ξ, η) = E(ξ − Eξ)(η − Eη) = E(ξ − Eξ) · E(η − Eη) = 0,
ξ∼
−1
0
1
1 2
1 4
1 4
η∼
,
0
1
1 2
1 2
!
(5.2.23)
# ξ ? η 0 [ºn(c 0 v û ¹ ξ × η s"t"uGb n , Eξ = Eη = 0. dGe"p P (ξ · η = 0) = 1, ¤ 0 v ] E(ξ · η) = 0. ef Cov(ξ, η) = E(ξ · η) − Eξ · Eη = 0, , ξ ? η ÉË ¤
P (ξ · η = 0) = 1.
P (ξ = 1) = 14 ,
P (η = 1) = 12 ,
P (ξ = 1, η = 1) ≤ P (ξ · η = 1) ≤ P (ξ · η 6= 0) = 0,
P (ξ = 1)P (η = 1) = 6= 0 = P (ξ = 1, η = 1), 0 g ξ ? η [º v h ¢n( ξ ? η s tu×ij P (ξ · η = 0) = 1, 0kl w tub 1 8
pij
-1
0
1
pi·
0
1/4
0
1/4
1/2
1
0
1/2
0
1/2
(ξ, η)
sm
1/2 1/4 1 n ij P (ξ · η =p0) = 1/4 ¹
3 ao v ·pq 1, ¼ w t u b m t u b s rs sw Î$x 0 s m å t « á u t v p × p , Ø 0, 2 y i z 4 × $x p , y j ã 4 × $x p , ¼ {·|Ó} s ì ~v θ ÷ø tu U (0, 2π), H 5.2.7 ´ ·j
i·
·j
·j
i·
ξ = cos θ,
η = cos(θ + a),
¥¦§©¨«ª m) IJK ù+ òU V ù W òò X ùÿY ÷ø S = ξ + ··· +ξ Z T = ξ +ξ + ··· + ξ [\]^ ùU_º` ú ÷ d 8. H ξ ùºõºöaºú Ib aºúcW Eξ < ∞, |ξ| Z ξ eU_fgheUi JK 9. H (ξ, η) ùºõºöº a ú$ Eξ k , E(ξ k η l ) (k, l
1
n
2
3
n
2 i
i
n
i
1
2
n
i i
i=1
i=1
1
2
1
m+n
n
m+1
m+2
m+n
2
p(x, y) =
(
1 , π
0,
x2 + y 2 ≤ 1
x2 + y 2 > 1
÷ *kjlm ξ Z η e U_fghe JK ? º 10. H ξ Z η n Io [ ! ù íî÷ïd ð ÷dpq gheU_cr JK 11. H η = aξ + b, η = cξ + d, η , η ùU_`ºúst ξ , ξ ùU_`ºú 12. H ξ , ξ , ξ I íºîºïº ð ÷ uvp wx ]^ ù_`m 1
1
1
2
2
2
1
2
1
2
3
[[ eU_y (2)D(ξ + ξ + ξ ) = Dξ + Dξ + Dξ ; (3)Eξ ξ ξ = Eξ · Eξ · Eξ . Eξ = a, Dξ = 1, Eη = b, Dη = 1, dC m ξ Z 13. H ξ, η z{|}%~ úst r cos qπ, q= P {(ξ − a))η − b) < 0}. 14. ì (ξ, η) z{|}%~ Eξ = Eη = 0, Dξ = Dη = 1, r = r, ÷d (1)ξ1 , ξ2 , ξ3 1 2 3
1
1
2
2
3
1
2
3
3
ξη
E max(ξ, η) = 15.
ak = E|ξ|k ,
H
an < ∞,
÷d
√ k a ≤ k
r
1−r π
√ ak+1 , k = 1, 2, · · · , n − 1.
k+1
η
ùU_`
182
H
16.
ξ
ùºõºöaºú$ p(x) =
÷d t
17. 18.
z{ N (a, σ ), ÷ºø Pareto ùºõºöºa ú$ H
(
20. 21.
0,
|x| > e
,
a > 0, E|ξ|a = ∞. 2
ξ
E|ξ − a|k .
p(x) =
19.
1 , 2|x|(log |x|)2
(
1 rAr xr+1 ,
0,
x ≥ A,
x < A,
D r > 0, A > 0. ÷D ò p W p < r. òø 1 2 ù n { m ÷ (1) ò ¢¡£y (2) e ¢¡ (m ≤ n) |ø¤¦¥§ m § ]#\ ªùº«ÿ¬ 5.1 ù¨ 21 ©
ºù®ú ξ ùºÿ ìºíºî#" ð (ξ, η, ζ) ò¯°ºõºö ø± íºî#" ðºù²ÿ³p(x, y, z) = (x + y)ze , 0 < x, y < 1, z > 0. ø º ò N ´µ¶#·º µ ú τº $ íºîºïºð E(τ ) = n. {ºò #¡¸ m ´µ ·µº ´ ú ξ ùºúºûºüºý ì A, B I¹ * E º ù ([ ´º»W P (A) > 0, P((B) > 0, ¼º½ íºîºïºð ξ, η p m 1, H A¾¿ , η = 1, H B¾¿ , ξ= 0, H Ae¾¿ 0, H B e¾¿ ÷dC mH ρ = 0, r ξ Z η À¼Ui JK ì Eξ < ∞, a I¹ úÁ ( ξ, X ≤a , η= a, X >a dC m Dη ≤ Dξ. ì p (x), p (x) $ º} õºöºa ú p(x, y) = p (x) · p (y) + h(x, y). (1) $S p(x, y) Â$|º } õºöº a ú h(x, y) ÀÃW oÌ Ä OPÅÆÇ»ÉÈ (2) $S|}ºõºöaºú p(x, y) ù [ ´ }Ê˺õºö $ p (x) \ p (y), h(x, y) ÀÃW oÄ pOq PÅÆÇ»ÉÈ (3) íºî#" ð (ξ, ζ) p(x, y) @ $¯º° õºöÍ$S ξ Z η Ui JK h(x, y) ÀÃW oÄ pOq PÅÆÇ»#È (3) íºî#" ð (ξ, ζ) p(x, y) @ $¯°ºõºöÍ$S ξ Z η eU_ h(x, y) ÀÃW o Ä OPÅÆÇ»#È −z
22. 23.
ξη
24.
25.
2
1
2
1
2
1
2
Î ÏÐÑÐÒ Ð ÓÕÔÕÖÕ×ÕØÕÙÕÚÕÛÝÜßÞÕàâáÕãÕäÕåÕæÕçÕèÕéÕêÕë#ìÕíÕîÕïÕðÕñÕòÕÖÕ×ÕóÕôÕê õ÷öùøúæúÙúÚúûúüúëýúØúþúêõúÿúæ ñ úë Ó Ø ú å æ §5.3
æ Üë#øëÙÚÛêõáçèæûü! õ §5.3
183
" #$%&'( )+*+++,+-+.+/+0+ + ++ æ Ù+1+!2 ξ η Ø ä ü++3+4+5 Ù Ú+6+7 æ95 ë: i = √−1, ó; (Ω, F, P ) 8 ?@× t, §5.3.1
eitξ = cos ξ + i sin ξ
Ø45/0 !
(5.3.1)
A BC /0 ζ = ξ + iη D FEG æ×KLMNë#ó;< ABOPQ RS η T I J/0 ζ A[ Ö× g g Mõ 1
'( ]
5.3.1
Eζ = Eξ + Eη; 1
= ξ1 + iη1
ζ2 = ξ2 + iη2
,å!GHIëGIJ äü Eζ (ξ, η)
UV úëXWYZW>?
ξ
Borel
2
2
E (g1 (ζ1 )g2 (ζ2 )) = Eg1 (ζ1 )Eg2 (ζ2 ). F (x)
4\ñòÖ×ëS
f (t) =
æ ÓÔÖ×!IJ æÓÔÖ×ëabõ F (x)
(5.3.2)
Z
∞
eitx dF (x),
−∞
F (x)
Ø
t∈R ξ
(5.3.3)
æñòÖ×ë^_
f (t)
` ]
ξ
cGad,ë#ÓÔÖ×?ú@ × t úM õ |e | = 1, g B >?úñúòúÖú×úæúÓúÔúÖú×MN!hcùÓúÔ Ö×æäüijklmIJnop ξ æñòq P (ξ = a ) = p , n ∈ N , ó; f (t) = Eeitξ .
itx
n
IJrsp
f (t) = Eeitξ =
ξ
ætuÖ×
f (t) = Eeitξ =
∞ X
n
eitan pn .
(5.3.4)
eitx p(x)dx.
(5.3.5)
ó;
n=1
p(x), Z ∞
õb AB ñÓÔÖ×æ@v w vxyz{ëabõ −∞
,z{4|}ñòæÓÔÖ×!
f (t) = Eeitξ = E cos tξ + iE sin tξ.
184
~FG
FG
5.3.1 }nopñòæÓÔÖ×! (5.3.4), AB {l
a
æ æÓÔÖ×
Ó=úë 0 æ úæúÓúÔúfÖú(t)×= e f (t); = 1; × ñòæÓÔÖ× ita
49ñò (ñò Ó=ëIJ
f (t) = q + peit ; P (ξ = a) = p, P (ξ = b) = q, p + q = 1)
æ
^õ
P (ξ = 1) = P (ξ = −1) = 21 ,
æÓÔÖ× P (λ)
f (t) =
∞ P
f (t) = e−λ
æÓÔÖ× G(p)
eit +e−it 2
n=0
f (t) =
∞ P
= cos t;
(eit λ)n n!
= eλ(e
it
−1)
;
peit 1−qeit .
eitn pq n−1 =
5.3.2 ×ñò exp{λ} æÓÔÖ×! (5.3.5), Y ñÓÔÖ×æ@v w vxyz{ë A n=1
f (t) = λ
ñvñëk aë
Z
∞
e−λx cos txdx + λ
0
:= λ (J1 (t) + iJ2 (t)) .
J1 (t) = λt J2 (t),
J (t) = æ Ó ÔÖ× exp{λ}
g B ×ñò
1
f (t) = λ (J1 (t) + iJ2 (t)) =
J2 (t) =
"#$%& ' 5.3.1 >?ñòÖ×æÓÔÖ×
1◦ . |f (t)| ≤ f (0) = 1, ∀ t ∈ R; 3◦ . f (t)
R
8 4¦rs¥
¢ Ü
e−λx sin txdx
0
t λ2 +t2 .
λ(λ + it) λ = = 2 2 λ +t λ − it
§5.3.2
2◦ . f (−t) = f (t), ∀ t ∈ R,
∞
1−λJ1 (t) . t
J2 (t) =
λ λ2 +t2 ,
Z
f (t)
Ø
f (t)
1−
it λ
−1
MêõI¡l
f (t)
æ/£¤¥
Bernoulli
æÓÔÖ×
f (t) = peita + qeitb ;
ñò Poisson
?ñò
0°@× t
∆t,
õ
Z ∞ i(t+∆t)x |f (t + ∆t) − f (t)| ≤ − eitx dF (x) e −∞ Z ∞ ∆t i(t+ 21 ∆t)x i ∆t = e e 2 x − e−i 2 x dF (x) −∞ Z ∞ ∆t = 2 sin x dF (x). 2 −∞
A °²ñ³æ
´
ε > 0, A > 0, Z Z ∆t ε dF (x) < ; 2 sin x dF (x) ≤ 2 2 2 |x|>A |x|>A
°äæ
AB °¶·¸æ
| sin u| ≤ |u|, A > 0, |∆t|, Z Z ∆t ε 2 sin x dF (x) ≤ |∆t| |x|dF (x) < . 2 2 |x|≤A |x|≤A
¹º 8» ë
f (t)
R
8 4¦rs!¼¯
4◦ .
2
f (t) = Eeitξ ,
´
2 n X zj eitj ξ ≥ 0. zj zk f (tj − tk ) = E j=1 j=1 k=1
n X n X
' 5.3.2 Q Ö×æÓÔÖ×ëõI¡½Ûl f (t) = e f (bt). ©ª ¿l ¾@ 8 ëõ ita
a+bξ
ξ
fa+bξ (t) = Eeit(a+bξ) = eita Eeitbξ = eita fξ (bt).
äå 5.3.2 AB =z{>?ÀÁñòæÓÔÖ×! 5.3.3 2 ξ ÂÃ ÀÁñò U (a, b), ÄÅ ξ æÓÔÖ×! Æ l¿Ç2 ξ ÂÃ ÀÁñò U (a, b), È
^j cG
>û
n
>û±äæ ïµ
>û
n ∈ N,
185
ÀÁñò η ÂÃ fη (t) =
1 2
, i j U (−1, 1). Å R
η=
2 b−a
ξ−
1 itx dx −1 e
ξ=
a+b 2
=
+
a+b 2
eit −e−it 2it
b−a 2 η,
=
sin t t .
~FG
FG
186
g B c äå 5.3.2 f (t) = e t) = . f ( ,ÉÛÓÔÖ×æ Taylor ÊË ë a* D |ÌÍ! Î 5.3.1 4Ï x ∈ R ÐÑ× n, õ i a+b 2 t
ξ
©ª l¿W
η
b−a 2
eibt −eiat it(b−a)
n |x|n+1 ^ 2|x|n ix X (ix)k . e − ≤ k! (n + 1)! n!
(5.3.7)
k=0
n=0
bë4Òëøíõ
ix e − 1 ≤ 2;
Ó 4Òëj}
ix R R e − 1 = i x eiu du ≤ |x| du = |x|. 0 0
n = 0 bÔ!¿Ç2_ gæBØÙ(5.3.7) !ÚûabFÕG×õ
n=m
bÖÕf×Ôúë¿,d
n = m+1
m |x|m+1 ix X (ix)k . e − ≤ k! (m + 1)!
g B ëk
(5.3.8)
k=0
m m+1 |x|m+1 2|x|m+1 ix X (ix)k ix X (ix)k ≤ . ≤ e − + e − k! k! (m + 1)! (m + 1)!
Ó 4ÒëÚûk
k=0
k=0
ë A
eix − 1 = i
Rx 0
eiu du,
(ix)k+1 (k+1)!
=i
Rx 0
(iu)k k! du,
(5.3.8) Z ! Z m m m+1 x |x| X (ixu)k iu X (ixu)k ix X (ix)k iu e − du ≤ = i e − du e − k! 0 k! k! 0 k=0 k=0 k=0 Z |x| um+1 |x|m+2 ≤ du = . (m + 1)! (m + 2)! 0
¹º 8»Û ½Jë (5.3.7) n = m + 1 bÔ! n = 0, 1, 2 bæØÙÜ ë g B êÝÈîl (5.3.7)
cG>?
ix e − 1 ≤ |x| ∧ 2; 2 ix e − 1 − itx ≤ x ∧ (2|x|); 2 2 3 ix x |x| e − 1 − itx + ≤ ∧ x2 . 2 6
x ∈ R, (5.3.7)
æÞß
n→∞
bMà
(5.3.9) (5.3.10) (5.3.11) 0,
g B k
FG áâ 5.3.1
§5.3
187
eitx =
∞ X (itx)k
k!
∀ t, x ∈ R.
,
(5.3.12)
ÉÛÓÔÖ×æ Taylor ãËäåæ ! ' 5.3.3 IJ ξ æ>ûçèMNë Y t ∈ R ´
(5.3.7)
^
k=0
(5.3.12)
æÓÔÖ×êõ ÊË
ξ
|t|n E|ξ|n = 0, n→∞ n! lim
f (t) =
©ª l¿aéêë
∞ X (it)k
k!
(5.3.13)
Eξ k .
(5.3.14)
ì ¡ ë í z k=0
(5.3.13) n X (it)k k Eξ = E f (t) − k!
eitξ
k=0
k=0
|t|n+1 E|ξ|n+1 ≤ → 0, (n + 1)!
A
(5.3.7) ! n n X (itξ)k itξ X (itξ)k − ≤ E e − k! k! k=0
n → ∞.
Ô! ,z{¨îñòæïðñò! 5.3.4 õlǫ́î ñò N (0, 1) æïðñò
g B õ
(5.3.14)
t2
¨îñò
f (t) = e− 2 .
N (a, σ 2 )
(5.3.15)
æïðñò
f (t) = eita−
Æ l¿)*z{ǫ́îñò
σ 2 t2 2
.
(5.3.16)
æïðñò!ôcGïðñòæäü
N (0, 1) Z ∞ 1 x2 f (t) = √ exp itx − dx, 2 2π −∞
I J«¬z{ëõ^öz{F÷Gøñ!õ, äå 5.3.3 Üæ ÊË !+cGóÌ ¨î ξ ææ>ûçèMNë YFcGH 5.2.1 l g B >?
Eξ 2n−1 = 0, ∀ n ∈ N ; q E|ξ|2n−1 = π2 (2n − 2)!!,
∀ n ∈ N.
Eξ = E|ξ| = (2n − 1)!!, ∀ n ∈ N . ê ë Mù¶ëéaFcäå 5.3.3 t ∈ R, (5.3.13)
f (t) =
2n
2n
2 k ∞ ∞ ∞ X X (it)k k X (it)2k 1 t t2 Eξ = (2k − 1)!! = − = e− 2 . k! (2k)! k! 2 k=0
k=0
k=0
~ FG
FG W η Âà ¨îñò N (a, σ ) bë ¢ óÌ η Âà ̨îñ ò N (0, 1), Y η = a + ση , g B n o f (t) = e f (σt) = exp ita − . ,±ïðñò æ Aú êë! 2 ξ ëIJ k ∈ N , õ E|ξ| < ∞, ^ ξ æïðñò ' ç 5.3.4 Aú ë Y õ f (t) k 188
∗
2
∗
η
ita
σ 2 t2 2
η∗
k
©ª l¿*ûü c
f (k) (0) = ik Eξ k .
1
(5.3.17)
çýò!õ
f (t + ∆t) − f (t) ei∆tξ − 1 − i∆tξ − E(iξeitξ ) = E eitξ . ∆t ∆t
(5.3.10) i∆tξ 2 itξ ei∆tξ − 1 − i∆tξ − 1 − i∆tξ E eitξ e ≤ 2|ξ| ∧ |∆t|ξ , ≤ E e ∆t ∆t 2 E|ξ| < ∞,
Y
|∆t|ξ 2 2
|∆t|ξ 2 2
Bg c Lebeaque þÿ äå f (t) N→0,ë ∆tYõ → 0, cGa ë (5.3.17)f (t)! = E(iξe ). WÚûëf_äåæïÔ!f¾@ 8 ëfIJ f (t) æ 2k çýòNëf A B ξ æ 2k çèN# ýØW f (t) æ 2k + 1 çýòNbë ξ æ 2k çèN!® ï Û! c 8» äåë AB kïðñò t = 0 æ Taylor ÊË l áâ 5.3.2 2 ξ ëIJ n ∈ N , õ E|ξ| < ∞, ^ ξ æïðñò t = 0 AB ÊË f (t) 2|ξ| ∧
≤
0
0
itξ
n
f (t) = 1 +
n X (it)k k=1
k!
Eξ k + o(tn ),
t → 0.
(5.3.18)
©ª l¿éW E|ξ| < ∞ bëõ E|ξ| < ∞, k = 1, · · · , n, (5.3.17) Taylor ÊË äå (5.3.18) ! â §5.3.3 "#$%& Õ × ä å 5.3.1 Ü É Û ï ð ñ ò æ ë õ b | AB = ä 4 5 ñ ò Ø ï ð ñò ! HIl f (t) = sin t ïúØ ï ð ñ ò ë é f (0) = sin 0 = n
k
§5.3
FG
189
ýúØúë õ b ï! HIl “ g(t) = | cos t| ØúØïðñò ” 5 , : F
|x| ≤ 1, |y| ≤ 1.
fξ1 +ξ2 (t) = fξ1 (t)fξ2 (t).
H 5.3 1. Pascal f (k; r, p) 2. Γ(λ, r) k 3. F (x) !" # f (t), $%!&' x, () R 1 c→+∞ 2c
F (x + 0) − F (x) = lim
4.
c
*+,-./0 123" 45 6 (1) cos2 t,
(2) cos t − i sin t,
1−t (3) 1+t 2,
(4) sin t,
−c
mk .
f (t)e−itx dt.
1 (5) 1+it ,
(6) 2e−it − 1
−1
.
789;:=@A>@=B?:
198 g(u) = 1 − |u|, |u| < 1.
5.
C g(x) #DE F (2) GHIJC g(t) # DE 6. Laplace DE# p(x) = e , $K ˙ 7. LNM Cauchy N N NDNENNN# p(x) = , λ > 0, $N%NON N NNNN# e , PQRST%U Cauchy VWX 8. YZ[\] ξ ^_ Cauchy µ = 0, λ = 1, ` η = ξ, $%ab cde f (t) = f (t)f˙ (t). f 0 ξ g η hid 9. ξ , · · · , ξ #3jid Zk[k\k]klk^k_ Cauchy m µ = 0, λ = 1, ξ¯ = P ξ 10. $n g Γ− %U!bo)3kl λ p Γ− abq r )VWX 11. %UZ[\] ξ , · · · , ξ 3jid r stuv0Ow xy zb{}|~ 12. −1 < c < 1, Z[\] (ξ, η) xyDE# P (x, y) = [1 + cxy(x − y )], |x| < 1 m |y| < 1, $6 (1) xy f (s, t); (2) ~ f (s) g f (t); (3) ξ + η 13. %U!&'p f (t), C,
hzJcd 1 − f (2t) ≤ 4(1 − f (t)); 1 + f (2t) ≥ 2(f (t)) . 14. Z[\] ξ o)! 45DE!&' x ∈ R, () p(x) = p(−x). $6 !&' a > b )6 R (1)
1 −|x| 2
1 λ π λ2 +(x−µ)2
iµt−λ|t|
ξ+η
1 n
1 n
η
ξ
n
k
k=1
1
n
2
1 4
2
1
2
2
(1)F (−a) = 1 − F (a) =
1 2
−
a
0
p(x)dx,
(2)P (|ξ| ≤ a) = 2F (a) − 1,
(3)P (|ξ| ≥ a) = 2[1 − F (a)].
0Z[\] ξ T f (0) = 0, ξ s 0 PQLS% U a > 2 g(t) = exp {−|t| } h0 16. % 5.3.13.
15.
00
f (t)
a
¡¢£¤¥¦§¨© ð=ª?« Û?¬ ⮯ ?Û ¬°±² §5.4
ξ1
ξ2 → − ξ = ··· , ξn
a1
a2 → − a = ··· , an
³ ³ °µ´à¶ →−0 ·¸¹&Û?¬°µº»¼ ¦ ¬½¾ 0 « ?Û ¬ ¨ ®¿ ðÀÁ ° à ÄÅÆ=Ç ¬ «ÈÉÊíß →−ξ = (ξ , ξ , · · · , ξ ), ³³ ¨ τ
1
2
n
ËÌÍ=Î?ÏÐ 199 ç âÑÒÓ A « » Ñ £Ô ½¾ÕÖ׬°Nè õØ «ÚÙÛ ½ÜÝ ø ° Ú ² ï EA ·¸Þ A « » Ñ £Ô ½ß ÙÛ °áຠEA ¾=â A « » Ñ £Ô «ãäÙÛå Æ« ÒÓ ¨ ÞæÕÖ Ç ¬àçèé «êë ¨ Þæì £¤¥ ° =í?îïðñòó ã ¨ô Ý Å →−a = (a , a ) , §5.4
1
B=
õö
σ12
rσ1 σ2
rσ1 σ2
σ22
!
2
τ
,
Ç ¬ →−ξ «ãäÙÛ=Ç ¬÷ B ¾ Ø«øùú Ó ¨ò ª B ¾û Ñ ¾ ì ¼ Õ Ö ¤ ë ÒÚÓ °´ÚüÚì £Ú¤Ú¥ÚÚÚó ãýªþ«ÚÿÚã ½ÚÝ ØÚ«ÚãÚäÚÙÚÛýÇ ¬ ø ù ú Ó B ª ¨ ° B ÒÓ → − a
B −1 =
°¶ Ø ì £¤¥ − p(→ x)=
ò ª |B| ¾ ÒÓ ¢£ ¨
B
−r (1−r 2 )σ1 σ2 1 (1−r 2 )σ22
1 (1−r 2 )σ12 −r (1−r 2 )σ1 σ2
N (a1 , a2 ; σ12 , σ22 ; r)
.
« ó ãÅ ®
1 → τ −1 → − → − − → − ( x − a ) B ( x − a ) , exp − 1 2 2π|B| 2 1
« ¯ ¨ ì £¤¥ ó ã« ·¸ Ê ¶ ù
! " # $ % '&'(')'*'+ «','- . ¨0/'1 ξ , ξ , · · · , ξ ¾ 'ë 2 Ý è û'3'4'5'6 « 7 8 9 : « ¤¥ N (0, 1) ÕÖ׬° õö n ¼ ÕÖ Ç ¬ →−ξ = (ξ , ξ , · · · , ξ ) « ; < = ¾ n Ñ û¼ ¤¥ ? °º §5.4.1
n
1
2
n
1
@ A °B C
− p(→ x)=
1 1 − x21 + x22 + · · · + x2n , n exp 2 (2π) 2
→ − → − E ξ = 0,
øùú Ó®
´ü ¶ D < ó ãÅ ® − p(→ x)=
1
0
···
0
0 1 ··· 0 I= ··· ··· ··· ··· 0 0 ··· 1
n
£¤¥¦§ °Iç
n
τ
− → x ∈ Rn .
,
1 1→ 1 1→ τ→ τ → − − − − exp − x x = exp − x I x , n n 2 2 (2π) 2 (2π) 2
D E ¦ § F ® G H û J °
2
→ − N ( 0 , I).
→ − x ∈ Rn . (5.4.1)
789;:=@A>@=B?: K L 5.4.1 ² M A ® n × n N O ù Ó ° →−a ® n ¼ Ç ¬°QPÕÖ Ç ¬ →−ξ R ( G H n £¤¥¦§ N (→−0 , I), S D 200
→ − − → − η =Aξ +→ a
« ¦§ F ® n £¤¥¦§¨ @ T ° Þæ² ë 2« P →−η «øùú Ó®
(5.4.2)
→ − η, → − − − − E→ η = AE ξ + E → a =→ a,
→ − → − → − τ→ − − − − − B := E(→ η −→ a )(→ η −→ a )τ = E(A ξ )(A ξ )τ = AAτ · E ξ ξ = AAτ .
'U V ° AA ¾ û Ñ n W ¤ ë ù Ó ¨ D Ê ² (5.4.6) « Õ Ö Ç ¬ « ¦ § I ® n £ ¤¥ N (→−a , B), ò ª B = AA . ÿë 2« ÕÖ Ç ¬ →−η ¾ÕÖ Ç ¬ →−ξ « X Y × Z °[=â û \ ? â æ ² (5.4.6) ª?« ] A ^ °¶ : º _ `ÕÖ Ç ¬ →−η < ó ã ¨ K a 5.4.1 n £¤¥ N (→−a , B) « < ó ã ¾ τ
τ
− p(→ x)=
1 → τ −1 → − → − − → − exp − ( x − a ) B ( x − a ) . 1 n 2 (2π) 2 |B| 2 1
(5.4.3)
bdcde 1 Õ Ö Ç ¬ →−η R ( n £ ¤ ¥ N (→−a , B), S Ü ÝdR ( d G H n£ ¤ ¥ « Ç ¬ →−ξ , f ` (5.4.6) Æ : ° ò ª B = AA , P X Y ù g h → − N ( 0 , I) ÕÖ → − − − x = A→ s +→ a « i ® τ
Eã × Z « ®
Jaccobi
→ − − − s = A−1 (→ x −→ a ),
¯ ®
1
|A−1 | = |B|− 2 . − q(→ s)=
n
£¤¥
→ − N ( 0 , I)
→ − − 1 s τ→ s − , n exp 2 (2π) 2
j k ò ª ° ´ > ¶× Z « [ « D < (5.4.4) ó ã ¾
Jaccobi
¯ ° º A
n
£¤¥
τ −1 → 1 −1 → − → − − → − exp − A ( x − a ) A ( x − a ) n 1 2 (2π) 2 |B| 2 1 1 → τ −1 → − → − − → − = exp − ( x − a ) B ( x − a ) . n 1 2 (2π) 2 |B| 2
− p(→ x)=
â ë 2
â?æ G H
(5.4.4)
5.4.1
1
l @ ² mû n ¯ o p e
« < ó
− N (→ a , B)
§5.4
Ë ÌÍ=Î?ÏÐ K a 5.4.2 n £¤¥¦§
− N (→ x , B)
« q r ó ã ¾
1→ −τ → − → − → − − f ( t ) = exp i→ aτ t − t B t , 2
b c ets & °Þæ R ( G H
n
201
→ − ∀ t ∈ Rn .
£¤¥¦§ « ÕÖ Ç ¬
(5.4.5)
→ − ξ,
n 1X n τ o 1→ − → − → − → − τ→ − 2 f− tj = exp − t t , → ( t ) = E exp i t ξ = exp − ξ 2 2 j=1
( P=â ] n
(5.4.6)
º `
B = AAτ ,
n
o
n τ o → − − → − → − τ− → − f ( t ) = E exp i t → η = E exp i t Aξ +→ a n τ o n o − τ→ − → − − → − → − → − = exp i t → a · E exp i(Aτ t )τ ξ = exp i→ a t · f− → (Aτ t ) ξ − τ→ 1 − → − → − = exp i→ a t · exp − (Aτ t )τ Aτ t 2 1 → − → −τ → − − = exp i→ aτ t − t B t . 2
«u û k ¼vw ¦Ú§ ¾ k £Ú¤Ú¥Ú¦Ú§ ° ò ª 1 ≤ k < n. bce 1 ÚÕ Ö Ç ¬ →−η R ( n £Ú¤Ú¥ N (→−a , B), Þ 1 ≤ k < n, u ß 1 ≤ j < Ç ¬ (η , · · · , η ) « q r ó ã ¶ Ãñ Ý →−η « q r ó æ ¾ k ¼ÕÖ · · · < j ≤ n. ã=ªyx t = 0, t 6∈ {j , · · · , j } ` ¨ ² M I
K a
5.4.3 n
£Ú¤Ú¥
− N (→ a , B)
1
j1
k
j
j
1
jk
k
→ − tk = (tj1 , · · · , tjk )τ ,
− →k = (aj , · · · , aj )τ , a 1 k
ª?« z j , · · · , j £Ô ´¶ B ·¸=â B Ó ° õ ö (η , · · · , η ) « q r ó ã ° = ¾ k
1
j1
k
j1 , · · · , j k
¯ £Ô ÿåÆ«
k×k
{ Ò
jk
→ − f ( t ) tj =0,
tj 6∈{j1 ,···,jk }
1→ − −τ → − τ→ − → = exp iak tk − tk Bk tk , 2
âyBº A (η , · · · , η ) « ¦§ ¾ k £¤¥ N (−a→, B ). | } q r ó ã ~ ¦§ó ã« ûûÞ Y ° y (5.4.3) Å k ¼ÕÖ Ç ¬ ¤(η¥,¦· ·§· , η¨) « < ó ã ¨ âBÚ¶
n¨ £Ú¤Ú¥ « » ÚÊ « ¦Ú§ ½ ¾ çy ç ® ç K L §5.4.2 n ! " # $ % Ý ë2 5.4.1 ª Ú _ A ® NO « n × n «Úù Ó °º |A| 6= 0. ô Ý° n £¤¥¦§ «ë 2 çû ¨ j1
j1
jk
jk
k
k
y y K L 5.4.2 1 A ® u ¡ n × n ù Ó ° →−a ® n ¼ Ç ¬°QPÕÖ Ç ¬ →−ξ R ( G H n £¤¥¦§ N (→−0 , I), x 202
→ − − → − η =Aξ +→ a.
(5.4.6)
S'¢ ù Ó A« N'¦O'§ C F °£D →−η « « ¦ §'£F ¤® ¥n¦£ §¤ ¨ ¥ ¦ § ÷£¢ ù Ó A ¤'O'C (º'¢ |A| = 0 ® ¥ ¦ n C ), D →−η , § ¨ © p ¥ ¦ Ê ¨ l @ A ª °B C « E→−η = →−a , ´ü «¶ B = AA ® ø ùú Ó ° § ñ B ¾û Ñ n × n « N ¬ ë ÒÓ ¨ â?æ ë 5.4.2 «
ñ g=ª ´ ® ¯ ù Ó A « N O Y (B « ¤ ë Y ), ÿ ¶ õ °« ± « V ² ¨³ B ¥¦ « n £ ¤¥¦§ N (→−a , B) « q r ó ã èé · ´ (5.4.5). « ¾ e ¢ ÒÓ B ¤ ë (º |B| > 0) C° N (→−a , B) ¾ R ª?« û Ñ µ ¢ ¶ · ¦§ ° ò < ó ã â (5.4.3) ¨ P ¢ |B| = 0 C° N (→−a , B) ¾ R ª « µ ¶· ¦Ú§ °BC¸¹º» ÒÚÓ B « “¼ ”r (r < n). ¢ B « “¼ ” ® r CÚ° R « û Ñ r ¼ { 5 6 ª ¨ ±² e ¢ n = 1 C°² M |B| = σ = 0, − N (→ a , B) ¥ ¦ õ ö ¦ § N (a, 0) = ¾ +'½ a « ¥'¦ ¦ § ¨ Þ æ n = 2 £ ¤ ¥ ¦ § ° ²'M |B| = 0, e ² M r = 0, S¾ + ½ →−a = (a , a ) « ¥ ¦ ¦§ ÷² M S ¾ B « “¼ ”rª?« P ¿ ë ÀyX « ¥ ¦ ¦§¨ = ¾ ë2 5.4.2 ª?ÿ Á« ¥ ¦ ¤¥ r = 1, S¾ R ¦§ «  2 ¨ ° n £¤¥¦§ « u ¡ 1 ≤ k < n ¼ « v w ¦§ ½¾ ¥ ¦ « n £¤¥ ¦ § ° ³ ® Þ æ k ¼'{ Õ Ö Ç ¬ (η , · · · , η ) Á ° ²'M'D Ø « «'q'r ó ã « · ´ ª?« k W ¤ ëù Ó B à ² m ù Ä Å® û Ñ n W N ¬ ëù Ó B: B « » Æ Ç ç ® B « z j , · · · , j ° B « » ¯ Æ Ç ç ® B « z j , · · · , j ¯ °È D= ò É£Å Ô Ê Ë Ì Å«® Ê 0, Þ¨ Ç ¬ →−a àçèé Í ° õö (η , · · · , η ) « q r ó ã ¶ ® (5.4.5) Î Ï §5.4.3 n ! " # $ % 1 ÕÖ Ç ¬ →−ξ R ( n £¤¥¦§ N (→−a , B). K a 5.4.4 n ¼ ¤¥ Ç ¬ « » Ñ ¦ ¬ 7 8 9 : °¢ü Ð ¢ Ø Ñ Ñ 7 ] ¨ b'c'e ²'M n ¼ ¤ ¥ Ç ¬ →−ξ « » Ñ ¦ ¬ ξ , · · · , ξ 7 8'9': ° õ ö Ø ¢ V Ñ Ñ 7 ] ¨ Ò°µ² M ξ , · · · , ξ Ñ Ñ 7 ] ° õö = Cov (ξ , ξ ) = b , k 6= j, æ¾ →−ξ «øùú Ó B ¾Þ Ó Ó ° ( P (5.4.5) ª?« q r ó ã ¦® τ
n
n
n
2
1
2
2
j1
jk
k
k
1
k
k
1
j1
1
1
f (t1 , · · · , tn ) =
k
k
1
n
j
kj
Y n 1 exp iak tk − bkk t2k = fk (tk ), 2
âó ãë ÿ 5.4.3 ª?« ) Ô û Ñ Õ Ö 7 A 8 f 9 (t: ) ¨ = exp ia t ° ¶ · ξ , · · · , ξ k=1
jk
n
n
n Y
k
k
k k
k=1
− 21 bkk t2k
¾
ξk
« v w q r
§5.4
Ë ÌÍ=Î?ÏÐ K a 5.4.5 Þæ
n
¼ ¤¥ Ç ¬
→ − ξ
« u û ¦ × → − ! ξ1 , → − ξ2
→ − ξ =
¶Þ
→ − a
B
ç 7 « ¦ × → − a1 → − a2
→ − a =
!
,
203
B=
B11
B12
B21
B22
!
.
(5.4.7)
´ ü →−ξ ~ →−ξ 9 : « Å ¦ ¸ ¾ B = 0 ( B Cà B = 0). b c e ¶Þ →−a B ç 7 « ¦ × (5.4.7) ¾ U V « ¨ ² M →−ξ ~ →−ξ 9 : ° õ ö Ø « u ¡ û Ñ ¦ ¬ ξ ½ ~ Ô « u ¡ û Ñ ¦ ¬ ξ 9 : ° ( P b = b = 0, ³ → − → − → − ξ = ξ , ξ æ ¾ B = 0 B = 0. Ò°² M B = 0( P B = 0), S « ; q r ó ã ® 1
2
12
21
1
k
12
j
21
12
2
kj
jk
1
21
τ
2
n τ o − → − → − → − → − τ→ f ( t ) = E exp i t1 ξ1 + t2 ξ2 1→ 1→ − −τ → − − −τ → − τ→ τ→ → − → − = exp ia1 t1 − t1 B11 t1 · exp ia2 t2 − t2 B22 t2 , 2 2
Ù Ú ¾ →−ξ ~ →−ξ « v w q r ó ã « > ? ¤¥ ÕÖ Ç ¬ « ¡ ª ° î Ä Ý Þ ( n £¤¥¦§ N (→−a , B), P C = (c 1
2
° ÿ ¶ →−ξ ~ →−ξ 7 ¨ º » Ø« X Y ) ® m × n ÒÓ 1
jk
2
8 9 : ¨ × ò Z ª¨y1 ÕÖ Ç õ¬ ö ° m ≤ n,
→ − → − η =Cξ,
R
→ − ξ
(5.4.8)
= ¾ →−ξ « û Ñ X Y × Z ¨ U V ° →−η ¾û Ñ m ¼ « ÕÖ Ç ¬ ¨ â n £¤¥¦§ « q r ó ã l @ ` ² m o p ¨ K a 5.4.6 (" # $ % Û Ü Î Ý Þ ß à á â Ý ) (5.4.8) ª?« ÕÖ Ç ¬ →−η R ( £¤¥¦§ N (C →−a , CBC ). m b c e ¶ f (→−t ) ·¸ →−ξ « q r ó ã ° õö →−η « q r ó ã ® τ
n o n o → − − τ → − − − − − g(→ s ) = E exp {i→ s τ→ η } = E exp i→ s τ C ξ = E exp i (C τ → s) ξ 1− τ τ − − − − s (CBC τ ) → s , = f (C τ → s ) = exp i (C → a) → s − → 2
¤ ¾ m £¤¥¦§ N (C →−a , CBC ) « q r ó ã ¨ ¶ m « Ñ Ñ p Þæ ¡ n £¤¥¦§ ã¦ ä ¨ å 5.4.1 ² MÕÖ Ç ¬ →−ξ R ( n £¤¥¦§ N (→−a , B), SÜÝ ÒÓ C, f ` →−η = C →−ξ « » Ñ ¦ ¬ 7 8 9 : ¨ τ
n
¼ ¤ æ
y y b c e ³ ® Þæ u ¡ n ¼ N ¬ ë ÒÓ B, çÜÝ n ¼ ¤ æ ÒÓ C, f ` CBC ® Þ Ó Ó ¨ å 5.4.2 ² MÕÖ Ç ¬ →−ξ R ( n £¤¥¦§ N (→−a , B), ´ü →−ξ « » Ñ ¦ ¬ 9 : è ùú °SÞ u ¡ n ¼ ¤ æ ÒÓ C, →−η = C →−ξ « » Ñ ¦ ¬ 9 : è ùú ¨ b c e â?æ →−ξ « » Ñ ¦ ¬ 9 : è ùú °¢ÚüÐ ¢ Ø«ÚøÚùú Ó B = σ I. P Þæ u ¡ n ¼ ¤ æ ÒÓ C, CBC = Cσ IC = σ I. m è «ë é ê ¿ ë Õ û Ñ n ¼ÕÖ Ç ¬ R ( n £¤¥¦§ « ì ¨ K a 5.4.7 n ¼ Õ Ö Ç ¬ →−ξ R ( n £ ¤ ¥ ¦ § N (→−a , B), ¢ ü'Ð'¢ Þ u'¡ n ¼ Ç ¬ →−s , ½ η = →−s →−ξ R ( 1 £¤¥¦§ N (→−s →−a , →−s B→−s ). b c e Ý ë 5.4.6 ªyx C = →−s º ` ¸ Y ¨ Ò°þ² MÞ u ¡ n ¼ Ç ¬ ( 1 £¤¥¦§ N (→−s →−a , →−s B→−s ), õö η « q r ó → − → − − s , ÕÖ׬ η = → s ξ ½ R ã ® n o 204
τ
2
τ
2
τ
2
τ
τ
τ
τ
τ
ß
t = 1,
º `
τ
τ
1 −τ → → − − − − g(t) = E exp it→ s τ ξ = exp it (→ s τ→ a ) − t2 → s B− s . 2 n o 1− τ → → − − − − − E exp i→ s τ ξ = exp i (→ s τ→ a)− → s B− s := f (→ s ), 2
í · ´ (5.4.5), ÿ ¶ÕÖ Ç ¬ →−ξ R ( n £¤¥¦§ N (→−a , B). î 5.4.1 ¢ ° ë 5.4.7 ï ð e n ¼ÕÖ Ç ¬ →−ξ R ( n £¤¥¦ § °y¢ü Ð ¢ Ø« » Ñ ¦ ¬ ξ , · · · , ξ « u X Y h R ( 1 £¤¥¦§¨ ñ ò ó e ² M n ¼ÕÖ Ç ¬ →−ξ « » Ñ ¦ ¬ ξ , · · · , ξ ½ R ( 1 £¤¥¦§ ° = ¶ ô
→−ξ R ( n £¤¥¦§ ° ±² m e õ 5.4.1 1 ò ª
− f (→ s)
1
n
1
p(x, y) =
1 −1 1 − x2 +y2 2 + e e 2 I (|x| < 1, |y| < 1, xy > 0) 2π 2π 1 1 − e− 2 I (|x| < 1, |y| < 1, xy < 0) , (x, y) ∈ R2 . 2π
¤ ¥e ¦p(x,§ y) ¾ ¿ Ñ ÕÖ Ç ¬ H N (0, 1). b c e I q(x, y) =
S @ T e ¢
n
(ξ, η)
« < ó ã °?´üÕÖ׬
ξ
~
η
(5.4.9)
½ R ( G
1 −1 1 −1 e 2 I (|x| < 1, |y| < 1, xy > 0) − e 2 I (|x| < 1, |y| < 1, xy < 0) , 2π 2π (x, y) ∈ R2 . (5.4.10)
|x| < 1, |y| < 1
C°
1
1 −2 − 2π e < q(x, y)
2
1 − 12 . 2π e
C°
2
÷ ³ ® Þ u'¡ùø ë « y, ó ã ½¾ y « ¤ ó ã ° ÿ ¶ Z
¿ Ñ Õ Ö Ç ¬ p(x, y) ¾ −∞ −∞
Z
∞
R∞ R∞
2 +y2
« < ó ã ÷´ü=â (ξ, η)
∞
1 pη (y) = p(x, y)dx = 2π −∞
x,
ó ã
q(x, y)
∀ x ∈ R; (5.4.11)
−∞
p(x, y)dxdy =
1 pξ (x) = p(x, y)dy = 2π −∞ Z
2
Z ∞ q(x, y)dx = 0, ∀ y ∈ R; q(x, y)dy = 0, −∞ −∞ Z ∞ Z ∞ q(x, y)dxdy = 0. R∞ R∞
T
1 −x 2π e
∞
−∞
ÿ ¶
2 +y2
+ q(x, y) > 0. « ó ã ÷ Þ u'¡ùø ë « q(x, y) ½ ¾ x ¤
p(x, y) =
Z
∞
1 −x −∞ −∞ 2π e
∞
A
dxdy = 1,
(5.4.11)
x2 1 dy = √ e− 2 , 2π
∀ x ∈ R;
y2 1 dx = √ e− 2 , 2π
∀ y ∈ R.
x2 + y 2 exp − 2 −∞
Z
2
x2 + y 2 exp − 2 −∞
ÿ ¶ÕÖ׬ ξ ~ η ½ R ( G H ¤¥¦§ N (0, 1). ú ¾° â (5.4.9) A °Õ Ö Ç ¬ (ξ, η) ´ R ( 2 £¤¥¦§¨ È û Ñ ± { ¨ õ 5.4.2 1 ÕÖ׬ ξ ~ η 7 8 9 : °è R ( G H ¤¥¦§ N (0, 1), x ζ=
S
ζ
û R ( G H ¤¥¦§ ü e â ζ « ë 2 °`
(
N (0, 1),
|η|,
ξ ≥ 0,
(5.4.12)
−|η|, ξ < 0.
ú ¾ÕÖ Ç ¬
(η, ζ)
R (
2
£¤¥¦§¨
P (ζ < x) = P (ζ < x, ξ ≥ 0) + P (ζ < x, ξ < 0) = P (|η| < x, ξ ≥ 0) + P (−|η| < x, ξ < 0)
[ ¢
x≥0
C°
= P (|η| < x)P (ξ ≥ 0) + P (−|η| < x)P (ξ < 0). Z x u2 1 1 1 1 1 P (ζ < x) = P (|η| < x) + = √ e− 2 du + 2 2 2 2π −x 2 Z x Z x 1 u2 1 1 u2 =√ e− 2 du + = √ e− 2 du = Φ(x); 2 2π 0 2π −∞
y y
206
¢
C°
x −x)) = P (η < x) = Φ(x). ÿ ¶PÕ(ζÖ 0.
(5.5.5)
Ôu$ _ Ê´ m, n ∈ N , h µ “´ m, n v F yz ”(i  m n v jk 4 µ } 4 l'm'n'o'p ), Ó Ò F . F y z ë { À r s t u$v ¼ÊÁ yz } Pq øù 5.5.5 ú η η }Ôu η ∼ χ , ! η ∼ χ , Ü mn
1
ý
2
1
ζ=
ÿg à r· η η
}íg v Õ ¸ g y s nk (nx) ~ mk η 2
1 m 2
n
mn
¬
Z
2
2 m
1 m η2 , 1 n η1
ζ ∼ Fmn .
1
2 n
m
ë
g η × g Û (4.4.8), Þ ζ v Õ ¸ (my), 1 n η1
1 m η2
∞
tkn (nt)km (mtx)dt Z ∞ n−2 m−2 1 nt mtx te− 2 (nt) 2 e− 2 (mtx) 2 dt = mn m m n n Γ( 2 )2 2 Γ( 2 )2 2 0 Z ∞ m+n m n m 1 1 −1 2 2 2 = m+n m m n x e− 2 (mx+n)t x 2 −1 dt. n 2 2 Γ( 2 )Γ( 2 ) 0 0
Û u$v yt
u = 12 (mx + n)t, Z ∞ m+n m+n m+n m+n m+n m+n 2 2 (mx + n)− 2 e−u u 2 −1 du = 2 2 (mx + n)− 2 Γ . 2 0
d à ¥
(5.5.6)
1 n 1
Û } ²
ζ
vÕ ¸
fmn (x).
(5.5.6)
)*,+-./012 211 §5.5.4 uv wxyz{|}~ w x y z Ç íg À r s u Á } { ·r æg í YZvÊV WºYZ _ ÊÁvrs ú ξ , ξ , · · · , ξ yzv}Ü
§5.5
1
2
n
n
ξ=
n
1X ξk , n
S2 =
ý
k=1
1 X (ξk − ξ)2 , n−1
(5.5.7)
k=1
~ S Àrsu$ysµ
~ê}^{Ávrs^wxy zyz N (a, σ ) v
~êv · £ v ² " à ù 5.5.1 Ø Ù ξ , ξ , · · · , ξ
} û ü y z N (a, σ ). ý 2
ξ
2
1
√
ù
Ø Ù ý ξ S
ÿ à^ è √n · ξ ¼{ , ¬ 5.5.2
2
√1 n
2
n
n(ξ − a) ∼ N (0, 1). σ ξ 1 , ξ2 , · · · , ξn n P
k=1
η1
η2 ··· ηn
{
2
(ξk − ξ)2
} û ü y z
¼Êê ξ1
= O ξ2 ··· ξn
(5.5.8) N (a, σ 2 ).
O,
.
v¡
(5.5.9)
n
√ 1 X η1 = √ xk = n · ξ, n k=1
Ó· O ê} 4 éê~}í " ξ , ξ , · · · , ξ vÕ ¸ 1
2
n
n P
k=1
ηk2 =
n P
k=1
ξk2 .
( ) n 1 1 X 2 (xk − a) p(x1 , x2 , · · · , xn ) = √ exp − 2 2σ ( 2πσ)n k=1 ( !) n n X X 1 1 2 2 = √ exp − 2 xk − 2a xk + na . 2σ ( 2πσ)n k=1
k=1
(5.5.10)
îïðòñó$ôõöôõ÷$ñ
212
Ü
x1
x2 ··· xn
= Oτ
y1
y2 ··· yn
,
4 éê~}í P y = P x , Ó P x = √ny . ê v Û 1, í · ¡¢ ,$ (η , η , · · · , η ) vÕ ¸ n
n
2 k
k=1
2 k
k=1
k
1
=√
1 e 2πσ
·
1 √ e 2π
y2 − 2σk2
2
n X
1 1 q(y1 , y2 , · · · , yn ) = √ exp − 2 n 2σ ( 2πσ) n Y
1
n
1
k=2
í ý
n X
=
øù
√
n·ξ
n X
ηk2
k=1
n P
−
η12
2
k
ÿ àN
k=1
n X
=
ξk2
k=1
(ξk − ξ)2
Ø Ù 5.5.6
√ − 2a ny1 + na2
!)
.
k = 2, · · · , n.
2 k
ηk2
yk2
n
2
1
k=2
η1 =
2
n
k=1
Ê Ùçè$ η , η , · · · , η
} Ó √ η ∼ N ( na, σ ); η ∼ N (0, σ ), ü ! η P η { k=2
1
k=1
(
√ (y − na)2 − 1 2σ2
n
n X
1 − n
ξk
k=1
ξ 1 , ξ2 , · · · , ξn
!2
=
n X k=1
(ξk − ξ)2 ,
} û ü y z
n (n − 1)S 2 1 X (ξk − ξ)2 ∼ χ2n . = σ2 σ2
(5.5.11)
N (a, σ 2 ).
(5.5.12)
Û ¬}þ
k=1
(5.5.9)
2
(n − 1)S =
{
n X
k=1
2
(ξk − ξ) =
n X
ηk2
k=2
Ê
vûü N (0, σ ) vv~}í { n−1 n−1 Ê
vûü N (0, 1) vv~} h Þ ¿ øù 5.5.7 Ø Ù ξ , ξ , · · · , ξ
} û ü y z N (a, σ ). ý (n−1)S 2 σ2
2
1
√
ÿ à · ¤À
5.5.1,
§À
2
2
n
n(ξ − a) ∼ tn−1 . σS
5.5.6
~§À
5.5.4
²Þ
¡
'¢ £ À ¿ {'8'9 ¿ v Á '¤ '¥ y }Ô§¦ Ö'¨ y'©ª T'« l d ¬¼'¬ YZ® ú ξ ~ {ξ , n ∈ N } {§¨¼Ê89¯° (Ω, F, P ) ± } Ó ¾¿ {ξ , n ∈ N } ξ Ç°±²³´µ n
n
¶¸·¸¹¸º¸»¸¼¸½¸¾¸º¸»
§6.1
¿ ÀÁÂà Ä89´µÅ p {ξ , n ∈ N } Æ ÈÉ ±´µ øÊ 6.1.1 ØÙ 67 ε > 0, Ë §6.1.1
n
ξ
Ç°±¼³Ç ×
lim P (|ξn − ξ| ≥ ε) = 0,
(6.1.1)
©ÌÍþµ p {ξ , n ∈ N } Ä89´µß ξ, Ò ξ → ξ. á ÈÉ ³´µÎÍÏÐ89 P (|ξ − ξ| ≥ ε). í ? WÑÒ Ó ±89 4 3 Û Í I(A) ç:Ô A ±:β n→∞
p
n
n
n
I(A) =
(
1,
ω ∈ A;
0, ω ∈ Ac .
©ÌÎ ÕÖO A ⊂ B CÎ I(A) ≤ I(B). Ó P (A) = EI(A). øù 6.1.1 (Chebyshev ×ØÙ ) ú g(x) ŧ¨ [0, ∞) ±ËÚ±ËÛ
ÜÝ ÎØÙ Þßàá η, â Eg(|η|) < ∞, ©Ì 67ã Þ g(a) > 0 ± a > 0, Í Ëâ Eg(|η|) ÿ à ? WÎ ·
P (|η| ≥ a) ≤
g(x)
±ËÚ
g(a)
.
(6.1.2)
(|η| ≥ a) ⊂ (g(|η|) ≥ g(a)). d Ô ä I(A) Å''Ô I(|η|A ±'≥:'a) ≤Ü'I(g(|η|) § ¡'æ ≤Ê 4 3'I(g(|η|) ç'Å ·H'≥è g(a)), 'Ô (g(|η|) ≥ g(a)) Ý'å Ô§äH≥± g(a)) â 4 3 Û ÒÞ ≥ 1. · n o P (|η| ≥ a) = EI(|η| ≥ a) ≤ EI(g(|η|) ≥ g(a)) ≤ E I(g(|η|) ≥ g(a)) ≤ . 3 Å ¼ Ê Ë Ì ' Á ' é ± 3 Î ' 8 9 § ¿ ä ' ± ' ì ' í î ¯ Ø à 4 4 Û Û è â'ê'ë Chebyshev g(|η|) g(a)
g(|η|) g(a)
g(|η|) g(a)
213
Eg(|η|) g(a)
214
ô
6.1.1
ØÙ Þßàá
î,ï$ð ð,ñòó
õ Ìþ â
η ∈ Lr (r > 0),
P (|η| ≥ x) ≤ E|η|r · x−r ,
∀ x > 0.
(6.1.3)
öà è Chebyshev 4 3 Û ä$Ü g(x) = x ²Þî Chebyshev 4 3 Û÷øù Î úÍݺ¾¿ûü Ýý î øÊ 6.1.2 ú {ξ , n ∈ N } þÞßàá p Î S = P ξ . ØÙÿ è Ý p {a , n ∈ N } Ý p {b , n ∈ N }, ã Þ r
n
n
k
n
k=1
n
n
Sn − a n p → 0, bn
² lim P
(6.1.4)
Sn − a n ≥ ε = 0, bn
∀ ε > 0,
(6.1.5)
ú'Í þ {ξ , n ∈ N } û ü'û'ü Ý'ý î Ô§ä {a , n ∈ N } µ þ ä't Ý 'Î {b , n ∈ µ ýt Ý î N } þ ûü Ýý ± ÈÉ þÅ Þßàá p {ξ , n ∈ N } ÿ è ä t Ý {a , n ∈ N } ýt Ý {b , n ∈ N }, ã Þ (6.1.4) Û Ò± ÔîØÏÙ Ìúͼ þ U s a = ES , b = n, n ∈ N , Ó ¾¿ ã Þ ξ ∈ L , n ∈ N, õ n→∞
n
n
n
n
n
n
n
1
n
n
n
Sn − ESn p →0 n
Ò± Ôî úͺ¼ ûü Ýý ±î ô 6.1.2 (Markov v ) ØÙ Þßàá p lim
(6.1.6)
{ξn , n ∈ N },
DSn = 0, n2
õ Ìþ â Ø (6.1.6) Û ±ûü Ý ý Òî ÿ à è Chebyshev 4 3 Û ä$Ü g(x) = x , úÍÒ²Þ Î 67 CÎ Ëâ n→∞ n→∞
2
n P Sn −ES ≥ ε = P (|Sn − ESn | ≥ nε) ≤ n
E(Sn −ESn )2 n2 ε2
â (6.1.7)
ε > 0,
O
→ 0, í â Ø (6.1.6) Û ±ûü Ýý Òî û'ü Ý'ý ä â' p {ξ , n ∈ N } äH± Þ'ß'à'á Ç'°'±( è Markov ÷67 ÎíżÊL Û Ç þêë ± ¿î ô 6.1.3 (Chebyshev gv ) Ø Ù p {ξ , n ∈ N } är± Þgßgàgág_g_ 4 ÿ è Ì Ý C > 0, ã Þ Dξ ≤ C, ∀ n ∈ N , õ Ìþ â Ø (6.1.6) Û ±ûü Ý ý Òî n
n
n
=
1 DSn ε2 n2
!ö"#! 215 ÿ à$ {ξ , n ∈ N } ä± Þ ßàá__ 4 Îí P DS = Dξ ≤ nC, % â Ô (6.1.7) Òî h $ Markov ûü Ýý Þ Chebyshev ûü Ýý î ô 6.1.4 (Bernoulli v ) ØÙ ζ ç: n Á Bernoulli &' ä ± ä @ Ý Îý â ζ §6.1
n
n
n
k
k=1
n
n
n
p
→ p.
(6.1.8)
ÿ à úÍ " Ý( ζ = P ξ := S , Ô,ä {ξ } Å)*Ò±ûü+ Ý þ p ± Bernoulli Þßàá Î Ó Eξ = p, Dξ = pq ≤ 1. í$ Chebyshev û ü Ýý Þ â Ø (6.1.6) Û ±ûü Ýý ÒÎ % â (6.1.8) Òî úÍ,)Ê ýtÌ Ý b 6= n ±î ô 6.1.5 ú'â )'.-/'Î è0 k Ê.-/§ä1 â 1 Ê.23 k − 1 Ê43'î6587 Ê-!/,ä²)3Î ζ ç:í É ± n Ê3,ä±2!3Ê Ý îÑýO r > CÎ n n
k
n
n
k
k=1
k
k
n
1 2
n
â
ζn −Eζn lnr n
p
ÿ àNúÍ9 Þßàá ξ þ à ØÙ:5 0 k Ê-!/,ä É 2!3Î þÜ ξ = 1; ØÙ É 43ÎþÜ ξ = 0. Å {ξ } Å)*Ò± Bernoulli Þßàá Î Ó ûü+ Ý þ p = ± Bernoulli ; î ÕÖ â ζ = P ξ , Ó ξ →0.
k
k
â
k
Ô,ä í
k
n
1 k
k
Eξk = k1 ,
k
Dξk =
Ì Ý ³î ü ! $ C>0þ
n
1 k
−
1 k2
< k1 ,
Dζn =
n P
k
k=1 n P
Dξk
0,
≤ C ln n,
O
n→∞
CÎ Ë
ζn − Eζn Dζn C 1 P ≤ 2 2r−1 → 0, ≥ ε = P (|ζn − Eζn | ≥ ε lnr n) ≤ r 2r 2 ln n ε ln ε ln n n
i = ß
ζn −Eζn lnr n
p
è ,äÎ â ÿ à þ < Î ^ è ô
→ 0.
6.1.6
ζn p ln n →
1.
lim P (|ηn − ln n| ≥ ε ln n) = 0,
∀ ε > 0.
n→∞
lim (Eηn − ln n) = lim
n P
1 j
Ô,ä c þ Euler Ì Ý ÎíO n > üCÎ 67 ü ! O n > üCÎþ â ε ln n + (ln n − Eη ) > n→∞
n→∞
j=1
n
− ln n
!
= c > 0,
ε > 0, 1 2 ε ln n.
Ëâ
î,ï$ð ð,ñòó
216
P (|ηn − ln n| ≥ ε ln n) ≤ P (|ηn − Eηn | ≥ ε ln n + (ln n − Eηn )) ≤ P |ηn − Eηn | ≥ 21 ε ln n ,
ü ! t?î §6.1.2 @AÂà B è úÍ,CD Þßàá p ±EF)³´µî øÊ 6.1.3 ØÙ Þßàá ξ, ξ ∈ L , Ô,ä r > 0, Ó n
r
E|ξn − ξ|r → 0,
ýG g Þ ßC gÎJàgIá G p Ä{ξé, ´n µ∈ Î N } Ä Ò r H égg´gµ ß Þgßgàgá ξ, Ò ÷ r=1 þ Ó þ ξ → ξ. 67Þßàá ξ ∈PL , ØÙÜ ξ = P ≤ξ< , n ∈ N, Ìõ þ â n
L
(6.1.9)
O
L
ξn →r ξ.
n
n
∞
r
m=−∞
m−1 2n
m−1 2n
m 2n
∀ ω ∈ Ω, ü þ è Î ÿ é´µ´µß ξ ±LM ! â ξ −→ ξ. K 6 7 ξ∈L ,Ë è rH N Þßàá p î Äg8g9g´gµ O g´gµPg°gÿ èQR g(S ? WgÎT$ Chebyshev 4 3UgÒ è %VW S XY 6.1.2 r HO ´µZ[Ä89´µî ÅÎJ\P 4] îJ\ QR S ô 6.1.7 ^ 89¯° (Ω, F, P ) þ_ ° (0, 1) ` ± 7 N 89¯°Î % â n
a
|ξn (ω) − ξ(ω)|r ≤
Lr
r
Ω = (0, 1),
ξ(ω) = 0,
∀ ω ∈ (0, 1),
!
ξn (ω) =
bW JÎ c 6 7 ε > 0, O de ξ → ξ; Å p
1 2rn ,
n→∞
F = B1 ∩ (0, 1), n2 ω,
n2
2 n
CÎ Ëâ
P = L.
ω ∈ (0, n1 ];
− ω , ω ∈ ( n1 , n2 ];
0,
ω ∈ ( n2 , 1).
P (|ξn − ξ| > ε) ≤ P (ξn > 0) =
2 n
→ 0,
n
E|ξ − ξ| = Eξ ≡ 1, Ä ´ µ f 4 ξ O ξ. ! $ g d H Î ú Í é ,h < ) RO ´µ±isjkî Lebesque lm ´µ Q n Îpoq'´'µ n Fatou C n cg'ú'Íh ÔS ©ª 6.1.1 Q ÿ è α > 0, ã V k
n
{ξn }
)~î
n
sup E|ξn |1+α < ∞,
n∈N
« ï!¬ ð,ñòó , ©ª 6.1.2 Q ÿ èÞßàá η ∈ L , c
x > 0, Ëâ sup P (|ξ | > x) ≤ P (|η| > x), k {ξ } )~î e ` ¦§ 0, Þgßgàgá¼½ {|ξ | , n ∈ N } )~¾ ξ −→ ξ, k ξ ∈ L , ξ −→ ξ. \P¾ Q c r > 0, â ξ ∈ L , ξ −→ ξ, k ξ ∈ L , ξ −→ ξ. S þ¿¨¯!K § n ¾ úÀÁéìf Þßàá¼½® a.s. Âà r¾ÄtÅ g và ÜÝ < ä ®ÆÇ íí Âà ¾J È9ÉS ã V ÊU 218
1
n
n∈N
n
n
p
n
r
n
r
n
n
r
Lr
p
Lr
r
n
ξ (ω) = ξ(ω) ° Ë ® ω ®ÌÍ É)§xy þ lim Îî úÀÏ èÐÑ®0 4 h 0, Ü ÿØ ξ∈L . Ú V ¨ cξ
−→ ξ. Î P (A) < δ ® Î A, ÜÞ δ = δ(ε) > 0, Ý sup E (|ξ | I(A)) < ε, E (|ξ|I(A)) < ε. ß $!g ξ −→ ξ, de c ` ε > 0 δ > 0, ÿØ n ∈ N , Ý à n ≥ n , Þ de
r
n
k→∞ Lr
k→∞
n
n
n∈N
p
n∈N
r
r
n
0
$ ` n $
Cr
°á U¾ %V
0
P (|ξn − ξ| > ε) < δ.
E|ξn − ξ|r = E (|ξn − ξ|r I(|ξn − ξ| ≤ ε)) + E (|ξn − ξ|r I(|ξn − ξ| > ε))
de
L
r ξn −→ ξ.
≤ εr + Cr E ((|ξn |r + |ξ|r )I(|ξn − ξ| > ε)) < εr + 2Cr ε,
\P¾ Q ξ −→ ξ, k bW ξ −→ ξ ∈ L . $ C °á U V sup E|ξ | ≤ C sup E (|ξ − ξ| + |ξ| ) < ∞. E)âã¾!c
® ε > 0, Ü ÿØ n ∈ N , Ý à n ≥ n , Þ E|ξ − ξ| < ε, ä $ ξ , ξ ∈ L W ¾Jcå ® ε > 0, æ Ø δ = δ(ε) > 0, Ý Và P (A) < δ, Þ n
p
Lr
n
n
n∈N
r
r
r
r
r
n
n∈N 0
n
r
0
n
r
r
E(|ξ|r I(A)) < ε,
max E(|ξn − ξ|r I(A)) < ε,
KÙ ),¾ %W cçÎ P (A) < δ ® Î A, Þ I(A)) ≤ C (E(|ξ| I(A) + E(|ξ − ξ| I(A))) < 2C ε, ∀ n ∈ N , $!E(|ξ å n |6.1.4 W {|ξ | } )~è ©ª 6.1.3 Q ξ é {ξ } êëìíîïðñ ¾ Üæ Ø) Hò ¾ókÅ ξ ¾ QRô §õö÷ø áù S ξ× n
r
r
r
n
1≤n