١
ﺍﶈﺘﻮﻳﺎﺕ ﺍﻟﻔﺼﻞ ﺍﻷﻭﻝ
ﺍﳊﺎﻟﺔ ﺍﻟﺒﻠﻮﺭﻳﺔ ﻟﻠﺠﻮﺍﻣﺪ
.١ﻤﻘﺩﻤﺔ .٢ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ .١
ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ
...
387 downloads
826 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
١
ﺍﶈﺘﻮﻳﺎﺕ ﺍﻟﻔﺼﻞ ﺍﻷﻭﻝ
ﺍﳊﺎﻟﺔ ﺍﻟﺒﻠﻮﺭﻳﺔ ﻟﻠﺠﻮﺍﻣﺪ
.١ﻤﻘﺩﻤﺔ .٢ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ .١
ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ
.٣
ﺍﻟﻨﻅﻡ ﺍﻟﺒﻠﻭﺭﻴﺔ ﻭﺸﺒﻴﻜﺎﺕ ﺒﺭﺍﭭﻴﻪ
.٢ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ .٤
ﺹ ﺍﻟﻤﺘﻼﺼﻘﺈﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ ﺍﻟﺭ
.٣ﺃﻤﺜﻠﺔ ﻟﺒﻌﺽ ﺍﻟﺘﺭﻜﻴﺒﺎﺕ ﺍﻟﺒﻠﻭﺭﻴﺔ
.٤ﺍﻟﺘﻤﺎﺜل ﺍﻟﺒﻠﻭﺭﻱ
.١ﻋﻤﻠﻴﺎﺕ ﺍﻟﺘﻤﺎﺜل ﺍﻟﻨﻘﻁﻴﺔ .٢
ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ ﺍﻟﻨﻘﻁﻴﺔ
.٥ﺍﻟﺘﺭﺍﺒﻁ ﺍﻟﺒﻠﻭﺭﻱ .٦ﺇﻨﻤﺎﺀ ﺍﻟﺒﻠﻭﺭﺍﺕ
.٧ﺘﻌﻴﻴﻥ ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ .١ .٢
ﻗﺎﻨﻭﻥ ﺒﺭﺍﺝ
ﺍﻟﻁﺭﻕ ﺍﻟﻌﻤﻠﻴﺔ ﻟﺘﻌﻴﻴﻥ ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ
.٣ﺤﻴﻭﺩ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻭﺍﻟﻨﻴﻭﺘﺭﻭﻨﺎﺕ
ﺃﺴﺌﻠﺔ ﻭﻤﺴﺎﺌل ﻋﻠﻰ ﺍﻟﻔﺼل ﺍﻷﻭل
٢
ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻧﻲ ﺍﻟﱰﻛﻴﺐ ﺍﳊﻘﻴﻘﻲ ﻟﻠﺠﻮﺍﻣﺪ
.٨ﻤﻘﺩﻤﺔ
.٩ﺃﻨﻭﺍﻉ ﺍﻟﻌﻴﻭﺏ ﺍﻟﺒﻠﻭﺭﻴﺔ
.١ﺍﻟﻌﻴﻭﺏ ﺍﻟﻨﻘﻁﻴﺔ
.٢ﺍﻟﻌﻴﻭﺏ ﺍﻟﺨﻁﻴﺔ
.٣ﺍﻟﻌﻴﻭﺏ ﺍﻟﺴﻁﺤﻴﺔ ﺃﻭ ﺍﻟﻤﺴﺘﻭﻴﺔ
.١٠
.١١
.١٢
ﻨﻅﺭﻴﺎﺕ ﺍﻟﻌﻴﻭﺏ ﺍﻟﺒﻠﻭﺭﻴﺔ
.١ﺘﺭﻜﻴﺯ ﺍﻟﻌﻴﻭﺏ ﺍﻟﻨﻘﻁﻴﺔ ﻭﺤﺴﺎﺏ ﻁﺎﻗﺔ ﺍﻟﺘﻜﻭﻴﻥ
.٢ﻨﻅﺭﻴﺔ ﺍﻻﻨﺨﻼﻋﺎﺕ
ﺍﻟﺴﺒﺎﺌﻙ ﺍﻟﻔﻠﺯﻴﺔ
.١ﺍﻟﻤﺤﺎﻟﻴل ﺍﻟﺼﻠﺒﺔ
.٢ﻤﻨﺤﻨﻴﺎﺕ ﺍﻟﻁﻭﺭ )ﺍﻻﺘﺯﺍﻥ(
ﻨﻅﺭﻴﺔ ﺍﻻﻨﺘﺸﺎﺭ ﻓﻲ ﺍﻟﺠﻭﺍﻤﺩ .١ﻗﺎﻨﻭﻥ ﻓﻴﻙ ﺍﻷﻭل .٢ﻗﺎﻨﻭﻥ ﻓﻴﻙ ﺍﻟﺜﺎﻨﻲ
.٣ﺁﻟﻴﺔ ﺍﻻﻨﺘﺸﺎﺭ ﺍﻟﺫﺭﻱ
.٤ﺍﻟﺤﻴﻭﺩ ﻋﻥ ﻗﺎﻨﻭﻥ ﻓﻴﻙ
.٥ﺘﺄﺜﻴﺭ ﻜﻴﺭ ﻜﻨﺩﺍل
ﺃﺴﺌﻠﺔ ﻭﻤﺴﺎﺌل ﻋﻠﻰ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻲ ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻟﺚ
ﺩﻳﻨﺎﻣﻴﻜﺎ ﺍﻟﺸﺒﻴﻜﺔ ﻭﺍﳋﻮﺍﺹ ﺍﳊﺮﺍﺭﻳﺔ ﻟﻠﺠﻮﺍﻣﺪ .١٣
.١٤
ﻤﻘﺩﻤﺔ
ﺍﻟﺨﻁ ﺍﻟﺫﺭﻱ ﺍﻟﻤﺘﺠﺎﻨﺱ ٣
.١٥
ﺸﺒﻴﻜﺔ ﺃﺤﺎﺩﻴﺔ ﺍﻟﺫﺭﺍﺕ ﻓﻲ ﺒﻌﺩ ﻭﺍﺤﺩ
.١٦
ﺸﺒﻴﻜﺔ ﺜﻨﺎﺌﻴﺔ ﺍﻟﺫﺭﺍﺕ ﻭﺃﺤﺎﺩﻴﺔ ﺍﻟﺒﻌﺩ
.١٧
ﺍﻟﻔﻭﻨﻭﻨﺎﺕ
.١٨
ﺍﻟﺴﻌﺔ ﺍﻟﺤﺭﺍﺭﻴﺔ ﻟﻠﺠﻭﺍﻤﺩ
.١٩
ﻨﻤﻭﺫﺝ ﺃﻴﻨﺸﺘﻴﻥ ﻟﻠﺴﻌﺔ ﺍﻟﺤﺭﺍﺭﻴﺔ
.٢٠
ﻨﻤﻭﺫﺝ ﺩﻴﺒﺎﻱ ﻟﻠﺴﻌﺔ ﺍﻟﺤﺭﺍﺭﻴﺔ
.٢١
ﺍﻟﺘﻭﺼﻴل ﺍﻟﺤﺭﺍﺭﻱ ﻓﻲ ﺍﻟﻌﻭﺍﺯل
.١ﺘﻔﺎﻋﻼﺕ ﻓﻭﻨﻭﻥ ﻤﻊ ﻓﻭﻨﻭﻥ
.٢ﺍﻟﺘﺸﺘﺕ ﺒﺎﻟﻌﻴﻭﺏ ﺍﻟﺒﻠﻭﺭﻴﺔ
.٣ﺍﻟﺘﺸﺘﺕ ﻋﻨﺩ ﺤﻭﺍﻑ ﺍﻟﻌﻴﻨﺔ
.٢٢
ﻤﻌﺎﻤل ﺍﻟﺘﻤﺩﺩ ﺍﻟﺤﺭﺍﺭﻱ ﻓﻲ ﺍﻟﺠﻭﺍﻤﺩ ﺃﺴﺌﻠﺔ ﻭﻤﺴﺎﺌل ﻋﻠﻰ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻟﺙ
٤
اﻟﺤﺎﻟﺔ اﻟﺒﻠﻮرﯾﺔ ﻟﻠﺠﻮاﻣﺪ ﻣﻘﺪﻣﺔ: ﺘﺘﻜﻭﻥ ﺍﻟﻤﺎﺩﺓ ﻓﻲ ﺤﺎﻻﺘﻬﺎ ﺍﻟﺜﻼﺙ ﺍﻟﻤﻌﺭﻭﻓﺔ ،ﺍﻟﻐﺎﺯﻴﺔ ﻭﺍﻟﺴﺎﺌﻠﺔ ﻭﺍﻟﺼﻠﺒﺔ ،ﻤﻥ
ﺫﺭﺍﺕ ﺃﻭ ﺠﺯﻴﺌﺎﺕ ﺩﺍﺌﻤﺔ ﺍﻟﺤﺭﻜﺔ .ﻭﻴﻌﺯﻱ ﻭﺠﻭﺩ ﺍﻟﻤﺎﺩﺓ ﻓﻲ ﺇﺤﺩﻯ ﻫﺫﻩ ﺍﻟﺤـﺎﻻﺕ ﺇﻟﻰ ﻁﺒﻴﻌﺔ ﻭﺤﺩﻭﺩ ﺍﻟﺘﺄﺜﻴﺭﺍﺕ ﺍﻟﻤﺘﺒﺎﺩﻟﺔ ﺒﻴﻥ ﺫﺭﺍﺘﻬﺎ ﻭﺠﺯﻴﺌﺎﺘﻬﺎ .ﻭﻴﻤﻜﻥ ﺘﻤﻴﻴﺯ ﻜـل
ﺤﺎﻟﺔ ﻋﻥ ﺍﻷﺨﺭﻯ ﻓﻴﺯﻴﺎﺌﻴﺎ ﺒﺎﻟﻨﻅﺭ ﻓﻲ ﺨﺎﺼﻴﺔ ﺍﻟﺴﺭﻴﺎﻥ ﺃﻭ ﺍﻟﺘﺩﻓﻕ Flowﺤﻴـﺙ
ﺘﻜﻭﻥ ﺍﻟﻤﺎﺩﺓ ﻓﻲ ﺤﺎﻟﺘﻴﻬﺎ ﺍﻟﻐﺎﺯﻴﺔ ﻭﺍﻟﺴﺎﺌﻠﺔ ﻗﺎﺒﻠﺔ ﻟﻼﻨﺴﻴﺎﺏ ﻭﺍﻟﺘﺸﻜل ﺒﺸﻜل ﺍﻹﻨـﺎﺀ
ﺍﻟﺫﻱ ﺘﻭﻀﻊ ﻓﻴﻪ ،ﺒﻴﻨﻤﺎ ﺘﻔﻘﺩ ﺍﻟﻤﺎﺩﺓ ﺍﻟﻐﺎﺯﻴﺔ ﺃﻭ ﺍﻟﺴﺎﺌﻠﺔ ﻗﺩﺭﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺘﺩﻓﻕ ﻋﻨـﺩﻤﺎ
ﺘﺘﺤﻭل ﺇﻟﻰ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺼﻠﺒﺔ ﺒﻌﺩ ﺘﺒﺭﻴﺩﻫﺎ ،ﻭﺘﺘﺨﺫ ﺸﻜﻼﹰ ﻭﺤﺠﻤﺎﹰ ﺜﺎﺒﺘﻴﻥ. ﻭﻴﻤﻜﻥ ﺘﺼﻨﻴﻑ ﺍﻟﺠﻭﺍﻤﺩ ﺇﻟﻰ ﻨﻭﻋﻴﻥ ﺭﺌﻴﺴﻴﻴﻥ ﻫﻤﺎ:
ﺃ(
ﺍﻟﺠﻭﺍﻤﺩ ﺍﻟﺒﻠﻭﺭﻴﺔ :Crystalline Solidsﻭﻓﻴﻬﺎ ﻴﻨﺘﻅﻡ ﺘﺭﺘﻴﺏ ﺍﻟﺫﺭﺍﺕ ﻓﻲ ﺍﻟﻔﺭﺍﻍ ﺒﺤﻴﺙ ﺘﺸﻜل ﻨﻤﻁﺎﹰ ﻫﻨﺩﺴﻴﺎﹰ ﺩﻭﺭﻴﺎﹰ .ﻭﻋﻨﺩﻤﺎ ﻴﻨﺘﺸﺭ ﻫﺫﺍ ﺍﻟﻨﻤﻁ ﻟﻴـﺸﻐل
ﻜل ﺃﺠﺯﺍﺀ ﺍﻟﻤﺎﺩﺓ ،ﻓﺈﻥ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﻟﺩﻴﻨﺎ "ﺒﻠﻭﺭﺓ ﻭﺤﻴﺩﺓ" Single Crystal
ﺃﻤﺎ ﺇﺫﺍ ﺘﻭﻗﻑ ﺃﻁﺭﺍﺩ ﺩﻭﺭﻴﺔ ﺍﻟﻨﻤﻁ ﺍﻟﻬﻨﺩﺴﻲ ﻋﻨﺩﻤﺎ ﻴﺴﻤﻰ ﺒﺘﺨﻭﻡ ،ﺃﻭ ﺤـﺩﻭﺩ ﺍﻟﺤﺴﻴﺒﺎﺕ Grain – Boundariesﻓﺈﻥ ﺍﻟﻤـﺎﺩﺓ ﺤﻴﻨﺌـﺫ ﺘﻜـﻭﻥ "ﻤﺘﻌـﺩﺩﺓ
ﺍﻟﺒﻠﻭﺭﺍﺕ" Poly- crystallineﺃﻱ ﺘﺘﻜﻭﻥ ﻤﻥ ﻤﺠﻤﻭﻋﺎﺕ ﺼﻐﻴﺭﺓ ﺠﺩﺍﹰ ﻤﻥ ﺍﻟﺤﺒﻴﺒﺎﺕ ،ﺃﻭ ﺍﻟﺒﻠﻭﺭﺍﺕ ﺍﻷﺤﺎﺩﻴﺔ ﺍﻟﺼﻐﻴﺭﺓ ﻓﻲ ﺍﺘﺠﺎﻫﺎﺕ ﻤﺨﺘﻠﻔﺔ.
ﺏ( ﺍﻟﺠﻭﺍﻤﺩ ﻏﻴﺭ ﺍﻟﺒﻠﻭﺭﻴﺔ :Noncrystalline Solidsﻭﺘﻀﻡ ﺍﻟﻤﻭﺍﺩ ﺍﻟﺼﻠﺒﺔ
ﺍﻟﺘﻲ ﺘﺘﺨﺫ ﺫﺭﺍﺘﻬﺎ ﺃﻭ ﺠﺯﻴﺌﺎﺘﻬﺎ ﺘﻭﺯﻴﻌﺎﹰ ﻋﺸﻭﺍﺌﻴﺎﹰ ،ﺤﻴﺜﻤﺎ ﻴﺘﺴﻨﻰ ﻟﻬـﺎ ،ﻋﻨـﺩﻤﺎ
ﺘﺘﺤﻭل ﻤﻥ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻤﺎﺌﻌﺔ )ﺍﻟﻐﺎﺯﻴﺔ ﺃﻭ ﺍﻟﺴﺎﺌﻠﺔ( ﺇﻟﻰ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺼﻠﺒﺔ ﻭﺘﻭﺼﻑ ﻫﺫﻩ ﻟﺠﻭﺍﻤﺩ ﺍﻟﻼﺒﻠﻭﺭﻴﺔ ﺃﻴﻀﺎﹰ ﺒﺄﻨﻬﺎ "ﻻ ﺸﻜﻠﻴﺔ" ﺃﻭ "ﺃﻤﻭﺭﻓﻴـﺔ" Amorphous
ﺒﻤﻌﻨﻰ ﺃﻨﻬﺎ ﻻ ﺘﺘﺨﺫ ﺸﻜﻼﹰ ﻤﻤﻴﺯﺍﹰ ﻜﻤﺎ ﺘﻭﺼﻑ ﺒﺄﻨﻬﺎ "ﺯﺠﺎﺠﻴﺔ" Vitreous ,
٥
Glassyﻨﻅﺭﺍﹰ ﻷﻨﻬﺎ ﺘﺘﺸﺎﺒﻪ ﻤﻊ ﺍﻟﺯﺠﺎﺝ ﻓﻲ ﻋﺸﻭﺍﺌﻴﺔ ﺘﺭﺘﻴﺏ ﺍﻟﺫﺭﺍﺕ ﺍﻨﻅـﺭ ﺸﻜل ).(١-١
ﺘﺭﺘﻴﺏ ﺍﻟﺫﺭﺍﺕ ﻓﻲ ﻤﺎﺩﺓ )ﺃ( ﺒﻠﻭﺭﻴﺔ ﻭ )ﺏ( ﻤﻭﺭﻓﻴﺔ
ﻭﻫﻨﺎﻙ ﻤﻥ ﺍﻟﺠﻭﺍﻤﺩ ﻤﻭﺍﺩ ﻻ ﺘﻨﺘﻤﻲ ﺘﻤﺎﻤﺎﹰ ﻷﻱ ﻤﻥ ﺍﻟﻨﻭﻋﻴﻥ ﺍﻟﻤﺫﻜﻭﺭﻴﻥ ،ﺤﻴﺙ ﺃﻨﻬﺎ ﺘﻘﻊ ﺒﺩﺭﺠﺎﺕ ﻤﺘﻔﺎﻭﺘﺔ ﺒﻴﻥ ﺍﻟﺤﺎﻟﺘﻴﻥ :ﺍﻟﻜﺎﻤﻠﺔ ﺍﻟﺘﺒﻠﻭﺭ ﻭﻏﻴﺭ ﺍﻟﺒﻠﻭﺭﻴﺔ ،ﻭﻴﻤﻜـﻥ
ﻭﺼﻑ ﺍﻟﺘﺭﺘﻴﺏ ﺍﻟﺠﺯﺌﻲ ﻟﻠﺫﺭﺍﺕ ﻓﻴﻬﺎ ﺒﺘﻌﻴﻴﻥ ﻤﺎ ﻴﺴﻤﻰ " ﺒﺩﺭﺠﺔ ﺍﻟﺒﻠﻭﺭﺓ" Degree
of Crystallinityﻭﻴﻤﺘﺩ ﺍﻟﺘﺭﺘﻴﺏ ﺍﻟﻤﻨﺘﻅﻡ ﻓﻲ ﺒﻌﺽ ﻫﺫﻩ ﺍﻟﺠﻭﺍﻤﺩ ﺸﺒﻪ ﺍﻟﺒﻠﻭﺭﻴﺔ
ﺇﻟﻰ ﻤﺴﺎﻓﺎﺕ ﻗﺼﻴﺭﺓ ،ﻓﻴﻭﺼﻑ ﺒﺄﻨﻪ ﺫﻭ ﻤﺩﻯ ﻗـﺼﻴﺭ Short – Range Order
ﻤﻘﺎﺭﻨﺔ ﺒﺎﻟﺘﺭﺘﻴﺏ ﺫﻱ ﺍﻟﻤﺩﻯ ﺍﻟﻁﻭﻴل ﻓﻲ ﺍﻟﺠﻭﺍﻤﺩ ﻜﺎﻤﻠﺔ ﺍﻟﺘﺒﻠﻭﺭ Long – Range
.order
ﻭﻤﻥ ﺍﻟﺠﺩﻴﺭ ﺒﺎﻟﺫﻜﺭ ﺃﻥ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ ﻫﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻁﺒﻴﻌﺔ ﻟﻐﺎﻟﺒﻴﺔ ﺍﻟﻤـﻭﺍﺩ
ﺍﻟﺼﻠﺒﺔ ،ﻨﻅﺭﺍﹰ ﻷﻥ ﻁﺎﻗﺔ ﺍﻟﺘﺭﺘﻴﺏ ﺍﻟﻤﻨﺘﻅﻡ ﻟﻠﺫﺭﺍﺕ ﺘﻜﻭﻥ ﺃﻗل ﻤﻥ ﻁﺎﻗﺔ ﺍﻟﺘﻭﺯﻴـﻊ
ﺍﻟﻌﺸﻭﺍﺌﻲ ﻟﻬﺎ .ﻭﻋﻤﻭﻤﺎﹰ ﺇﺫﺍ ﻟﻡ ﺘﺘﺢ ﻟﺫﺭﺍﺕ ﺍﻟﻤﺎﺩﺓ ﻓﺭﺼﺔ ﺘﺭﺘﻴﺏ ﻨﻔﺴﻬﺎ ﻜﻤﺎ ﻴﻨﺒﻐﻲ، ﻜﺄﻥ ﺘﻜﺒﺢ ﺤﺭﻜﺘﻴﻬﺎ ﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺃﻥ ﺘﺘﻜﻭﻥ ﻤﺎﺩﺓ ﻏﻴﺭ ﺒﻠﻭﺭﻴﺔ .ﻤﺜﺎل ﺫﻟﻙ ﺍﻟﻜﺭﺒـﻭﻥ
"ﺍﻟﺯﺠﺎﺠﻲ" ﺍﻟﻨﺎﺘﺞ ﻤﻥ ﻋﻤﻠﻴﺔ ﺍﻟﺘﺤﻠل ﻋﻨﺩ ﺩﺭﺠﺎﺕ ﺤـﺭﺍﺭﺓ ﻤﻨﺨﻔـﻀﺔ ،ﻭﺒﻌـﺽ ﺍﻟﺒﻭﻟﻴﻤﺭﺍﺕ ﺍﻟﺘﻲ ﺘﺘﻜﻭﻥ ﻤﻥ ﻋﺩﺩ ﻜﺒﻴﺭ ﺠﺩﺍﹰ ﻤﻥ ﺍﻟﺠﺯﻴﺌﺎﺕ ﻏﻴﺭ ﺍﻟﻤﺘﻨﺎﺴـﻘﺔ .ﻭﻓـﻲ
ﺤﺎﻻﺕ ﺃﺨﺭﻯ ﻻ ﺘﺘﺎﺡ ﺍﻟﻔﺭﺼﺔ ﻟﻨﻤﻭ ﺒﻠﻭﺭﺍﺕ ﻤﻥ ﺴﻭﺍﺌل ﻋﺎﻟﻴـﺔ ﺍﻟﻠﺯﻭﺠـﺔ ﻋﻨـﺩ ٦
ﺘﺒﺭﻴﺩﻫﺎ ﺒﺴﺭﻋﺔ ،ﺤﻴﺙ ﻴﺅﺩﻱ ﺍﻟﺘﺒﺭﻴﺩ ﺍﻟﻔﺎﺌﻕ Supercoolingﺇﻟﻰ ﺘﺠﻤﻴﺩ ﺍﻟـﺴﺎﺌل ﺒﻨﻔﺱ ﺍﻟﻨﻤﻁ ﻏﻴﺭ ﺍﻟﺩﻭﺭﻱ ﻟﺘﺭﺘﻴﺏ ﺠﺯﻴﺌﺎﺘﻪ .ﻟﻜﻥ ﻤﺜل ﻫـﺫﻩ ﺍﻟﻤـﻭﺍﺩ "ﺍﻟﺯﺠﺎﺠﻴـﺔ"
ﻴﻤﻜﻨﻬﺎ ﺍﻜﺘﺴﺎﺏ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ ﺒﺼﻭﺭﺓ ﻜﻠﻴﺔ ﺃﻭ ﺠﺯﺌﻴﺔ ،ﻋﻥ ﻁﺭﻴـﻕ ﻤﻌﺎﻟﺠﺘﻬـﺎ ﺤﺭﺍﺭﻴﺎﹰ ﺒﻌﻤﻠﻴﺔ ﺘﺴﻤﻰ "ﺍﻟﺘﻠﺩﻴﻥ" ﺃﻭ "ﺍﻟﺘﺨﻤﻴﺭ" ،Annealingﻭﻫﻲ ﻋﻤﻠﻴﺔ ﺘـﺴﺨﻴﻥ
ﻴﻌﻘﺒﻪ ﺘﺒﺭﻴﺩ ﺒﻤﻌﺩﻻﺕ ﺒﻁﻴﺌﺔ ﻤﻨﺘﻅﻤﺔ.
ﺍﻟﺸﺒﻴﻜﺔ )ﺃ( +ﺍﻟﻘﺎﻋﺩﺓ )ﺏ( = ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ )ﺠـ( ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ :Crystal Structure
ﻴﺴﺘﺨﺩﻡ ﻓﻲ ﻟﻐﺔ ﻋﻠﻡ ﺍﻟﺒﻠﻭﺭﺍﺕ ﻋﺩﺩ ﻤﻥ ﺍﻟﻤﻔﺎﻫﻴﻡ ﻭﺍﻟﻤﺼﻁﻠﺤﺎﺕ ﺍﻟﺘﻲ ﺘﺴﺎﻋﺩ
ﻋﻠﻰ ﻭﺼﻑ ﻭﺘﺤﻠﻴل ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ ﺍﻟﺩﺍﺨﻠﻲ ﻟﻠﻤـﺎﺩﺓ .ﻭﺴـﻨﻘﺩﻡ ﻫﻨـﺎ ﺒﻌـﺽ ﺍﻟﺘﻌﺭﻴﻔﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ﻷﻫﻡ ﺍﻟﻤﻔﺎﻫﻴﻡ ﻭﺍﻟﻤﺼﻁﻠﺤﺎﺕ ﺍﻟﺒﻠﻭﺭﻴﺔ.
ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ :Crystal Lattice
ﻫﻲ ﻨﻭﻉ ﻤﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺭﻴﺎﻀﻲ ﻟﻨﻤﻁ ﺘﺭﺘﻴﺏ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺒﻨﺎﺌﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻠﻤﺎﺩﺓ
ﺍﻟﺒﻠﻭﺭﻴﺔ .ﻭﻴﺘﻡ ﻫﺫﺍ ﺍﻟﺘﻤﺜﻴل ﺒﻌﺩﺩ ﻻ ﻨﻬﺎﺌﻲ ﻤﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﻬﻨﺩﺴـﻴﺔ ﺍﻟﻤﺭﺘﺒـﺔ ﺘﺭﺘﻴﺒـﺎﹰ ﺸﺒﻴﻜﻴﺎ ﻤﺘﻭﺍﺯﻴﺎﹰ ﻴﺘﻤﻴﺯ ﺒﺎﻟﺘﻤﺎﺜل ﻭﺍﻟﺘﻜﺭﺍﺭ ﺍﻟﻤﻨﺘﻅﻡ )ﺍﻟﺩﻭﺭﻴﺔ( ﻓﻲ ﺍﻟﻔﺭﺍﻍ .ﻭﻴﺘﻜـﻭﻥ ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ ﺒﺈﻀﺎﻓﺔ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺒﻨﺎﺌﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ )ﺃﻭ ﺍﻟﻘﺎﻋﺩﺓ( ﻟﻜل ﻨﻘﻁـﺔ ﻤـﻥ
ﻨﻘﺎﻁ ﺍﻟﺸﺒﻴﻜﺔ ،ﻓﺘﻜﻭﻥ ﺍﻟﻌﻼﻗﺔ ﺍﻟﻤﻨﻁﻘﻴﺔ ﻫﻲ: ٧
ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﻔﺭﺍﻏﻴﺔ +ﺍﻟﻭﺤﺩﺍﺕ ﺍﻷﺴﺎﺴﻴﺔ )ﺍﻟﻘﻭﺍﻋﺩ( = ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﺒﻠﻭﺭﻱ ﻭﻓﻲ ﺃﺒﺴﻁ ﺍﻟﺘﺭﻜﻴﺒﺎﺕ ﺍﻟﺒﻠﻭﺭﻴﺔ ﺘﻭﺠﺩ ﺫﺭﺓ ﻭﺍﺤﺩﺓ ﻟﻜل ﻨﻘﻁﺔ ﺸﺒﻴﻜﻴﺔ ،ﻜﻤﺎ ﻫﻭ
ﺍﻟﺤﺎل ﻓﻲ ﺒﻠﻭﺭﺍﺕ ﺍﻟﻨﺤﺎﺱ ﻭﺍﻟﺫﻫﺏ ﻭﺍﻟﻔﻀﺔ ،ﻭﻗﺩ ﺘﻜﻭﻥ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺒﻨﺎﺌﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ
)ﺃﻭ ﺍﻟﻘﺎﻋﺩﺓ( ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻟﺫﺭﺍﺕ ،ﻭﻴﺸﺘﺭﻁ ﺤﻴﻨﺌﺫ ﺃﻥ ﺘﻜﻭﻥ ﺍﻟﻭﺤـﺩﺍﺕ ﺍﻟﺒﻨﺎﺌﻴـﺔ ﻤﺘﻁﺎﺒﻘﺔ ﻓﻲ ﺘﺭﻜﻴﺒﻬﺎ ﻭﺘﺭﺘﻴﺒﻬﺎ ﻭﺘﻭﺠﻴﻬﻬﺎ ،ﻜﻤﺎ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻟﻬـﺎ ﻨﻔـﺱ ﺍﻟﻤﻴـل
ﻭﺍﻻﺘﺠﺎﻩ.
ﻭﺘﺘﺭﻜﺏ ﺍﻟﺒﻠﻭﺭﺓ ﺍﻟﻤﺜﺎﻟﻴﺔ ﻤﻥ ﻭﺤﺩﺍﺕ ﺒﻨﺎﺌﻴﺔ ﺃﺴﺎﺴﻴﺔ ﻤﺭﺘﺒﺔ ﻋﻠـﻰ ﺸـﺒﻴﻜﺔ
ﺒﻠﻭﺭﻴﺔ ﻓﺭﺍﻏﻴﺔ )ﺜﻼﺜﻴﺔ ﺍﻷﺒﻌﺎﺩ( ﺒﺤﻴﺙ ﻴﺒﺩﻭ ﻫﺫﺍ ﺍﻟﺘﺭﺘﻴﺏ ﻋﻨﺩ ﺍﻟﻨﻅﺭ ﺇﻟﻴﻪ ﻤﻥ ﻨﻘﻁﺔ ﺸﺒﻴﻜﻴﺔ ﺫﺍﺕ ﻤﺘﺠﻪ ﻤﻭﻀﻊ ﻟﻠﻤﻌﺎﺩﻟﺔ:
→
r
ﻫﻭ ﻨﻔﺴﻪ ﻋﻨﺩ ﺍﻟﻨﻅﺭ ﺇﻟﻴﻪ ﻤﻥ ﻨﻘﻁﺔ ﺃﺨﺭﻯ
)(1-1 ﻭﻴﻌﺭﻑ ﺍﻟﻤﺘﺠﻪ ﺍﻻﻨﺘﻘﺎﻟﻲ
→
ﺤﻴﺙ
r
→
r' = r + T →
T
ﺒﺎﻟﻤﻌﺎﺩﻟﺔ:
→
)(1-2
→
→
ﻁﺒﻘﺎﹰ
ﺍﻟﺫﻱ ﻴﺼل ﺒﻴﻥ ﺃﻱ ﻨﻘﻁﺘـﻴﻥ ﻓـﻲ ﺍﻟـﺸﺒﻴﻜﺔ →
→
→
T = n1 a + n 2 b + n 3 c
→
→
→
c , b , a
ﺘﺴﻤﻰ "ﺍﻟﻤﺘﺠﻬﺎﺕ ﺍﻻﻨﺘﻘﺎﻟﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ" ﻭﻫﻲ ﻤﺤﺩﺩﺓ ﻭﺜﺎﺒﺘﺔ
ﻓﻲ ﺃﻴﺔ ﺸﺒﻴﻜﺔ ﺒﻠﻭﺭﻴﺔ ،ﻭﺘﻤﺜل n3 , n2 , n1ﺃﻋﺩﺍﺩﺍﹰ ﺼﺤﻴﺤﺔ ﺍﺨﺘﻴﺎﺭﻴﺔ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﻤﻭﻀﻊ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺸﺒﻴﻜﻴﺔ.
ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ )ﺍﻟﺨﻠﻴﺔ ﺍﻷﻭﻟﻴﺔ( :Unit Cell ﻴﻔﻴﺩ ﻤﻔﻬﻭﻡ ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ ﻜﺜﻴﺭﺍﹰ ﻓﻲ ﺩﺭﺍﺴﺔ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻟﺘﻨﻅـﻴﻡ
ﺍﻟﺫﺭﺍﺕ ﺩﺍﺨل ﺍﻟﺒﻠﻭﺭﺍﺕ ﻭﻓﻕ ﻤﺎ ﻴﻌﺭﻑ ﺒﻘﻭﺍﻨﻴﻥ ﺍﻟﻬﻨﺩﺴﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ.ﻭﻗﺩ ﻴﻜﻭﻥ ﻤﻨﺎﺴﺒﺎﹰ ﻓﻲ ﺒﻌﺽ ﺍﻷﺤﻴﺎﻥ ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﺘﺒﺴﻴﻁ ﺃﻥ ﺘﻜﻭﻥ ﺍﻷﻤﺜﻠﺔ ﺍﻟﺘﻭﻀﻴﺤﻴﺔ ﺃﻗـﺭﺏ ﺇﻟـﻰ ﺍﻟﻔﻬﻡ ﻭﺍﻻﺴﺘﻴﻌﺎﺏ ﻓﻲ ﺤﺎﻟﺔ ﺸﺒﻴﻜﺔ ﺃﺤﺎﺩﻴﺔ ﺍﻟﺒﻌﺩ ،ﺃﻭ ﺸﺒﻴﻜﺔ ﻓﻲ ﺒﻌﺩﻴﻥ ،ﺜﻡ ﻴﺠـﺭﻯ ﺍﻟﺘﻌﻤﻴﻡ ﺒﺴﻬﻭﻟﺔ ﻟﺤﺎﻟﺔ ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ ﺍﻟﻔﺭﺍﻏﻴﺔ )ﺜﻼﺜﻴﺔ ﺍﻷﺒﻌﺎﺩ(. ٨
ﻟﻨﻌﺘﺒﺭ ﺍﻵﻥ ﺠﺯﺀﺍﹰ ﻤﻥ ﺸﺒﻴﻜﺔ ﺒﻠﻭﺭﻴﺔ ﻓﻲ ﺒﻌﺩﻴﻥ ﻜﻤﺎ ﻓـﻲ ﺍﻟـﺸﻜل )(٣-١ ﻴﺘﻀﺢ ﻤﻥ ﺍﻟﺭﺴﻡ ﺃﻥ ﻨﻘﺎﻁ ﺍﻟﺸﺒﻴﻜﺔ D, C, B, Aﺘﻜﻭﻥ ﺭﺀﻭﺱ ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ABCDﺍﻟﺫﻱ ﻴﺅﺩﻱ ﺍﻨﺘﻘﺎﻟﻪ ﺍﻟﻤﺘﻜﺭﺭ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﺘﺠﻬﻴﻥ
→
a
ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻜﻠﻲ ﻟﻠﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ ﻭﻴﻁﻠﻕ ﻋﻠﻴﻪ "ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ".
ﻭ
→
b
ﺇﻟـﻰ ﺘﻜـﻭﻴﻥ
ﺠﺯﺀ ﻤﻥ ﺸﺒﻴﻜﺔ ﺒﻠﻭﺭﻴﺔ ﻓﻲ ﺒﻌﺩﻴﻥ ﺍﻟﻤﺘﺠﻪ ﺍﻻﻨﺘﻘﺎﻟﻲ
→
→
→
T =5a + b
ﻴﺭﺒﻁ ﺒﻴﻥ ﺃﻱ ﻨﻘﻁﺔ ﺸﺒﻴﻜﻴﺔ
ﻓﻲ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ ABCDﻭﺍﻟﻨﻘﻁﺔ ﺍﻟﻤﻜﺎﻓﺌﺔ ﻟﻬﺎ ﻓﻲ ﺨﻠﻴﺔ ﺃﺨﺭﻯ 'A'B'C'D
ﻭﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺒﻠﻭﺭﺍﺕ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﻤﻤﺜﻠﺔ ﺒﺸﺒﻴﻜﺔ ﻓﺭﺍﻏﻴﺔ )ﺜﻼﺜﺔ ﺍﻷﺒﻌﺎﺩ( ﺘﺤـﺩﺩ
"ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ" ﺒﻤﺘﻭﺍﺯﻱ ﺍﻟﺴﻁﻭﺡ ﺍﻟﻤﺠﺴﻡ ﺫﻱ ﺍﻟﻤﺤﺎﻭﺭ ﺍﻟﺜﻼﺜﺔ a , c, bﻭﺍﻟﺯﻭﺍﻴﺎ
ﺍﻟﻤﻘﺎﺒﻠﺔ ﻟﻬﺎ γ , β , αﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ) (٤-١ﻭﻟﻘﺩ ﺃﻤﻜﻥ ﺘﺼﻨﻴﻑ ﺍﻟﺒﻠﻭﺭﺍﺕ ﻋﻠﻰ
ﺃﺴﺎﺱ ﺍﻷﺸﻜﺎل ﺍﻟﻤﺤﺘﻤﻠﺔ ﻟﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ ﻭﻋﻨﺎﺼﺭ ﺘﻤﺎﺜﻠﻬﺎ ﺍﻟﺘـﻲ ﺘﺤﻘـﻕ ﺸـﺭﻭﻁ ﺍﻟﺸﺒﻴﻜﺔ ﺍﻟﺒﻠﻭﺭﻴﺔ. ﺜﻭﺍﺒﺕ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ ﻓﻲ ﺸﺒﻴﻜﺔ ﻓﺭﺍﻏﻴﺔ
٩
ﺍﻟﻨﻅﻡ ﺍﻟﺒﻠﻭﺭﻴﺔ ﻭﺸﺒﻴﻜﺎﺕ ﺒﺭﺍﻓﻴﺔ:
ﻴﻨﺴﺏ ﺇﻟﻰ ﻋﺎﻟﻡ ﺍﻟﺒﻠﻭﺭﺍﺕ ﺍﻟﻔﺭﻨﺴﻲ "ﺒﺭﺍﻓﻴﺔ" Bravaisﺘﺼﻨﻴﻑ ﺍﻟـﺸﺒﻴﻜﺎﺕ
ﺍﻟﺒﻠﻭﺭﻴﺔ ﺇﻟﻰ ﺃﺭﺒﻊ ﻋﺸﺭﺓ ﺸﺒﻴﻜﺔ ﻤﻭﺯﻋﺔ ﻋﻠﻰ ﺴﺒﻌﺔ ﺃﻨﻅﻤـﺔ ﺒﻠﻭﺭﻴـﺔ Crystal
Systemsﻴﻭﻀﺤﻬﺎ ﺍﻟﺠﺩﻭل ) (١-١ﻭﺍﻟﺸﻜل ) (٥ -١ﻭﻋﺩﺩ ﺸـﺒﻴﻜﺎﺕ ﺒﺭﺍﻓﻴـﺔ
ﺍﻷﺭﺒﻊ ﻋﺸﺭﺓ ﻭﺍﻟﻨﻅﻡ ﺍﻟﺒﻠﻭﺭﻴﺔ ﺍﻟﺴﺒﻌﺔ ﻤﺤﺩﻭﺩ ﺒﻌﺩﺩ ﺍﻟﻁﺭﻕ ﺍﻟﻤﻤﻜﻨﺔ ﻟﺘﺭﺘﻴﺏ ﺍﻟﻨﻘﺎﻁ
ﺍﻟﺸﺒﻴﻜﻴﺔ ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﺒﻴﺌﺔ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺄﻱ ﻨﻘﻁﺔ ﻤﻨﻬﺎ ﻤﻤﺎﺜﻠﺔ ﺘﻤﺎﻤﺎﹰ ﻟﻠﺒﻴﺌﺔ ﺍﻟﻤﺤﻴﻁﺔ
ﺒﺄﻴﺔ ﻨﻘﻁﺔ ﺃﺨﺭﻯ .ﻭﺘﻜﻭﻥ "ﺸﺒﻴﻜﺔ ﺒﺭﺍﻓﻴﺔ" ﺒﺴﻴﻁﺔ ﺇﺫﺍ ﻜﺎﻨﺕ ﻨﻘﺎﻁﻬﺎ ﻋﻨﺩ ﺍﻷﺭﻜـﺎﻥ
ﻓﻘﻁ ،ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺤﺭﻑ ،Pﻭﻋﻨﺩﻤﺎ ﺘﺸﺘﻤل ﻋﻠﻰ ﻨﻘﺎﻁ ﺇﻀﺎﻓﻴﺔ ﻓـﻲ ﻤﻭﺍﻀـﻊ ﺨﺎﺼﺔ ﻓﺈﻨﻬﺎ ﺘﻜﻭﻥ ﻤﻤﺭﻜﺯﺓ ﺍﻷﻭﺠﻪ ) ،(Fﺃﻭ ﻤﻤﺭﻜﺯﺓ ﺍﻟﺠـﺴﻡ ) (Iﺃﻭ ﻤﻤﺭﻜـﺯﺓ ﺍﻟﻘﺎﻋﺩﺓ ).(C
ﺍﻟﻨﻅﺎﻡ ﺍﻟﺒﻠﻭﺭﻱ ﺜﻼﺜﻲ ﺍﻟﻤﻴل Triclinic ﺃﺤﺎﺩﻱ ﺍﻟﻤﻴل Monoclinic ﻤﺴﺘﻁﻴﻠﻲ ﻤﺘﻌﺎﻤﺩ Orthorhombic ﻤﺭﺒﻌﻲ Tetragonal ﻤﻜﻌﺏ Cubic ﺜﻼﺜﻲ ﺍﻟﺘﻤﺎﺜل Trigonal
ﺸﺒﻴﻜﺎﺕ ﺒﺭﺍﻓﻴﻪ
ﺨﺼﺎﺌﺹ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ a≠b≠c α ≠ β ≠ γ ≠ 90° a≠b≠c
P P,C
α = γ = 90° ≠β P, C, I, F P,I P, I, F P
١٠
a≠b≠c α = γ = 90° = β a=b≠c α = β = γ = 90° a= b=c α = β = γ = 90° a=b=c α = β = γ < 120°,
ﺴﺩﺍﺴﻲ Hexagonal
≠90° a= b≠c α = β = 90° , γ =120°
P
ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ،ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺒﻠﻭﺭﻱ ﺍﻟﺘﻜﻌﻴﺒﻲ ﺘﻭﺠﺩ ﺜﻼﺙ ﺸﺒﻴﻜﺎﺕ
ﻓﺭﺍﻏﻴﺔ ﻫﻲ :ﺸﺒﻴﻜﺔ ﺍﻟﻤﻜﻌﺏ ﺍﻟﺒﺴﻴﻁ ) ،(Pﻭﺸﺒﻴﻜﺔ ﺍﻟﻤﻜﻌﺏ ﻤﺘﻤﺭﻜﺯ ﺍﻟﺠـﺴﻡ )،(I ١١
ﻭﺸﺒﻴﻜﺔ ﺍﻟﻤﻜﻌﺏ ﻤﺘﻤﺭﻜﺯ ﺍﻷﻭﺠﻪ ) (Fﻭﻴﻠﺨﺹ ﺍﻟﺠﺩﻭل ) (٢-١ﺃﻫﻡ ﺨـﺼﺎﺌﺹ ﻫﺫﻩ ﺍﻟﺸﺒﻴﻜﺎﺕ ﺍﻟﺜﻼﺙ.
ﺍﻟﺨﺎﺼﻴﺔ
ﺍﻟﻤﻜﻌﺏ
ﺍﻟﻤﻜﻌــــﺏ ﺍﻟﻤﻜﻌــــﺏ
ـﺯ ـﺯ ﻤﺘﻤﺭﻜـــ ﺍﻟﺒﺴﻴﻁ scﻤﺘﻤﺭﻜـــ ﺍﻟﺠﺴﻡ bcc
ﺍﻷﻭﺠﻪ fcc
ﺤﺠﻡ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ )ﻁﻭل ﺍﻟـﻀﻠﻊ
3
a
3
a
3
a
ﻋﺩﺩ ﻨﻘﻁ ﺍﻟﺸﺒﻴﻜﺔ ﻟﻜل ﺨﻠﻴﺔ ﻭﺤﺩﺓ
1
2
4
ﻋﺩﺩ ﻨﻘﻁ ﺍﻟﺸﺒﻴﻜﺔ ﻟﻜل ﻭﺤﺩﺓ ﺤﺠﻡ
1/ a3
2/ a3
4/ a3
(a
ﻋﺩﺩ ﺃﻗـﺭﺏ ﺍﻟﺠﻴـﺭﺍﻥ )ﺍﻟـﻨﻘﻁ ﺍﻟﻤﺤﻴﻁﺔ(ﻭﻴﻌﺭﻑ ﺒﻌﺩﺩ ﺍﻟﺘﻨﺎﺴﻕ ﺃﻭ
6
12
8
ﺍﻟﺠﻭﺍﺭ
ﺍﻟﻤﺴﺎﻓﺔ ﻷﻗﺭﺏ ﺍﻟﺠﻴﺭﺍﻥ )ﺍﻟـﻨﻘﻁ ﺍﻟﻤﺤﻴﻁﺔ(
ﻋﺩﺩ ﺍﻟﺠﻴﺭﺍﻥ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻟﻤﺴﺎﻓﺔ ﻷﻗﺭﺏ ﺍﻟﻨﻘﻁ ﺍﻟﺘﺎﻟﻴﺔ
a
3/2
12
6
6
a
a
a
2
a
2
a
ﻤﺜﺎل:١-١ : ﻴﺘﺒﻠﻭﺭ ﺍﻟﺤﺩﻴﺩ ﺒﺘﺭﺘﻴﺏ ﺫﺭﻱ ﺘﻜﻌﻴﺒﻲ ﻤﺘﻤﺭﻜﺯ ﺍﻟﺠﺴﻡ ) (bccﺍﺤﺴﺏ ﻤﻘـﺩﺍﺭ
ﺜﺎﺒﺕ ﺍﻟﺸﺒﻴﻜﺔ ) Lattice Constantﻁﻭل ﻀﻠﻊ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ (aﻋﻠﻤﺎﹰ ﺒﺄﻥ: ١٢
ﻜﺜﺎﻓﺔ ﺍﻟﺤﺩﻴﺩ ρ = 7.94 g/cm3ﻭﻭﺯﻨﻪ ﺍﻟـﺫﺭﻱ ) 55.85 = (wﻭﻋـﺩﺩ ﺃﻓﻭﺠﺎﺩﺭﻭ .NA = 6.02 × 1023
ﺍﻟﺤل:
ﺍﻟﻜﺜﺎﻓﺔ = ﻜﺘﻠﺔ ﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ =
ﻜﺘﻠﺔ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ
ﺤﺠﻡ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ
ﻭﺒﻤﺎ ﺃﻥ ﻋﺩﺩ ﺍﻟﺫﺭﺍﺕ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻜل ﺨﻠﻴﺔ ﻭﺤﺩﺓ ﻓﻲ ﺒﻠﻭﺭﺓ ﺍﻟﺤﺩﻴﺩ )2 = (n Rnw a3NA 2 × 55.85 = 2.86 ×10 −8 cm = 2.86 A° 7.94 × 6.07 ×10 23
3
nw = ρ NA
= ∴ρ
∴a =3
ﺍﻟﺭﺹ ﺍﻟﻤﺘﻼﺼﻕ :Close Packing
ﺇﺫﺍ ﺍﻋﺘﺒﺭﻨﺎ ﺍﻟﺫﺭﺍﺕ ﻜﺭﺍﺕ ﺼﻠﺒﺔ ﻤﺘﻤﺎﺜﻠﺔ ﻭﻤﺘﻤﺭﻜﺯﺓ ﺤﻭل ﻨﻘﻁﺔ ﺍﻟـﺸﺒﻴﻜﺔ،
ﻓﺈﻨﻪ ﺘﻭﺠﺩ ﻁﺭﻴﻘﺘﺎﻥ ﻟﺘﻨﻀﻴﺩﻫﺎ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺤﺠﻡ ﺍﻟﻔﺭﺍﻏﺎﺕ ﺍﻟﻤﺤﺼﻭﺭﺓ ﺒﻴﻨﻬﺎ ﺃﻗـل
ﻤﺎ ﻴﻤﻜﻥ .ﻭﻓﻲ ﻜﻠﺘﺎ ﺍﻟﻁﺭﻴﻘﺘﻴﻥ ﻨﺒﺩﺃ ﺒﺭﺹ ﺍﻟﻁﺒﻘﺔ ﺍﻷﻭﻟﻰ Aﺒﺤﻴﺙ ﺘﻼﻤـﺱ ﻜـل
ﺫﺭﺓ )ﻜﺭﺓ( ﺴﺕ ﺫﺭﺍﺕ ﺃﺨﺭﻯ ﺘﺤﻴﻁ ﺒﻬﺎ ،ﺜﻡ ﺘﻭﻀﻊ ﺍﻟﻁﺒﻘﺔ ﺍﻟﺜﺎﻨﻴﺔ Bﻓﻭﻕ ﺍﻷﻭﻟﻰ
ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ،ﺒﺸﺭﻁ ﺃﻥ ﺘﻼﻤﺱ ﺃﻱ ﺫﺭﺓ ﻓﻴﻬﺎ ﺜﻼﺙ ﺫﺭﺍﺕ ﻓﻲ ﺍﻟﻁﺒﻘﺔ ﺍﻷﻭﻟﻰ ،ﺃﻱ ﺘﻜﻭﻥ ﻜل ﺫﺭﺓ ﻓﻲ ﺍﻟﻁﺒﻘﺔ Bﻓﻭﻕ ﺃﺤﺩ ﺍﻟﻔﺠﻭﺍﺕ ﻓﻲ ﺍﻟﻁﺒﻘﺔ .A
ﻭﺍﻵﻥ ،ﻹﻀﺎﻓﺔ ﺍﻟﻁﺒﻘﺔ ﺍﻟﺜﺎﻟﺜﺔ Cﻨﺠﺩ ﺃﻥ ﻫﻨﺎﻙ ﺍﺤﺘﻤﺎﻟﻴﻥ ﻜﻤﺎ ﻓﻲ ﺸﻜل ):(٦-١
ﺃﻭﻻﹰ :ﺘﻭﻀﻊ ﺫﺭﺍﺕ ﺍﻟﻁﺒﻘﺔ Cﻓﻭﻕ ﺍﻟﻔﺠﻭﺍﺕ ﺍﻟﻤﻭﺠﻭﺩﺓ ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻁﺒﻘﺘﻴﻥ A,B ﻓﺘﻜﻭﻥ ﺍﻟﻁﺒﻘﺔ ﺍﻟﺭﺍﺒﻌﺔ ﻓﻭﻕ ﺍﻟﻁﺒﻘﺔ Aﺘﻤﺎﻤﺎﹰ ﻭﻨﺤﺼل ﻋﻠـﻰ ﺍﻟﺘﺭﺘﻴـﺏ ﺍﻟﻔﺭﺍﻏـﻲ
،ABC ABC….ﻭﻫﺫﺍ ﻴﺅﺩﻱ ﺇﻟﻰ ﺍﻟﺘﺭﻜﻴﺏ ﺍﻟﻤﻜﻌﺏ ﻤﺘﻤﺭﻜـﺯ ﺍﻟﻭﺠـﻭﻩ )(fcc
ﻭﻫﻭ ﻤﺘﻼﺼﻕ ﺍﻟﺭﺹ ﺒﻌﺩ ﺘﻨﺎﺴﻕ = ، 12ﻭﻤﻥ ﺃﻤﺜﻠﺘﻪ :ﺍﻟﻨﺤﺎﺱ ﻭﺍﻟﻔﻀﺔ ﻭﺍﻟﺫﻫﺏ ﻭﺍﻟﻨﻴﻜل.
ﺜﺎﻨﻴﺎﹰ :ﺘﻭﻀﻊ ﺫﺭﺍﺕ ﺍﻟﻁﺒﻘﺔ ﺍﻟﺜﺎﻟﺜﺔ ﻓﻭﻕ ﺫﺭﺍﺕ ﺍﻟﻁﺒﻘﺔ ﺍﻷﻭﻟـﻰ ﺘﻤﺎﻤـﺎﹰ ،ﻓﻴﻜـﻭﻥ ﺍﻟﺘﺭﺘﻴﺏ ﺍﻟﺫﺭﻱ ﻓﻲ ﺍﻟﻁﺒﻘﺎﺕ ﻋﻠﻰ ﻫﻴﺌـﺔ … ABABﻭﻫـﺫﺍ ﻴﻌﻁـﻲ ﺍﻟﺘﺭﻜﻴـﺏ ١٣
ﺍﻟﺴﺩﺍﺴﻲ ﻤﺘﻼﺼﻕ ﺍﻟﺭﺹ )ﺍﻟﺘﻌﺒﺌﺔ( ) (hcpﻭﻴﺘﻤﻴﺯ ﺒﺎﻟﻨﺴﺒﺔ
8 c = 3 a
= 1633
ﻭﻋـﺩﺩ
ﺘﻨﺎﺴﻕ = 12ﻭﻤﻥ ﺃﻤﺜﻠﺘﻪ :ﺍﻟﺯﻨﻙ ﻭﺍﻟﻜﺎﺩﻤﻴﻭﻡ ﻭﺍﻟﻤﻐﻨﺴﻴﻭﻡ. ﻭﻴﻌﺯﻱ ﻟﺨﺎﺼﻴﺔ ﺍﻟﺭﺹ ﺍﻟﻤﺘﻼﺼﻕ ﺃﻥ ﻤﻌﻅﻡ ﺍﻟﻔﻠﺯﺍﺕ ﺘﻤﻴل ﺇﻟﻰ ﺃﻥ ﺘﺘﺒﻠﻭﺭ
ﺒﺘﻨﻀﻴﺩ ﺫﺭﻱ ﺘﻜﻌﻴﺒﻲ ﺃﻭ ﺴﺩﺍﺴﻲ.
ﻤﺜﺎل:٢-١ :
ﻴﻌﺭﻑ ﻋﺎﻤل ﺍﻟﺘﻌﺒﺌﺔ )ﺍﻟﺭﺹ( Packing Factorﺒﺄﻨﻪ ﺃﻜﺒﺭ ﻨـﺴﺒﺔ ﻤـﻥ
ﺍﻟﺤﺠﻡ ﺍﻟﺫﻱ ﻴﻤﻜﻥ ﺃﻥ ﺘﺸﻐﻠﻪ ﺍﻟﺫﺭﺍﺕ ﺍﻟﻤﻭﺠﻭﺩﺓ ﻓﻲ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ .ﺍﺤﺴﺏ ﻋﺎﻤـل
ﺍﻟﺘﻌﺒﺌﺔ ﻟﻜل ﻤﻥ ﺸﺒﻴﻜﺎﺕ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺒﻠﻭﺭﻱ ﺍﻟﻤﻜﻌﺏ.
ﺍﻟﺤل:
ﻨﻔﺘﺭﺽ ﺃﻥ ﺍﻟﺫﺭﺍﺕ ﻋﺒﺎﺭﺓ ﻋﻥ ﻜﺭﺍﺕ ﺼﻠﺒﺔ ﻤﺘﺴﺎﻭﻴﺔ ﺍﻟﻘﻁﺭ ﻭﻤﺘﻤﺎﺴﻜﺔ ،ﺃﻱ
ﻤﺘﻼﺼﻘﺔ ﺍﻟﺭﺹ.
∴ ﻋﺎﻤل ﺍﻟﺘﻌﺒﺌﺔ )= (F
ﺤﺠﻡ ﺍﻟﺫﺭﺍﺕ ﺍﻟﻤﻭﺠﻭﺩﺓ ﻓﻲ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺤﺠﻡ ﺍﻟﻜﻠﻲ ﻟﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ
ﻭﻴﺴﻤﻰ ﺃﻴﻀﺎﹰ ﻨﺴﺒﺔ ﺍﻟﺭﺹ ﺃﻭ ﺍﻟﺘﻨﻀﻴﺩ .Packing Fraction
ﻓﺈﺫﺍ ﻜﺎﻥ ﻋﺩﺩ ﺍﻟﺫﺭﺍﺕ ﻓﻲ ﺨﻠﻴﺔ ﺍﻟﻭﺤﺩﺓ ،nﻭﺤﺠـﻡ ﻜـل ﺫﺭﺓ vﻭﻨـﺼﻑ
ﻗﻁﺭﻫﺎ ،rﻭﻁﻭل ﻀﻠﻊ ﺍﻟﻤﻜﻌﺏ aﻓﺈﻥ:
n×v a3
=F
١٤
ﻭﺒﺎﻟﺭﺠﻭﻉ ﺇﻟﻰ ﺸﻜل ) (٧-١ﻴﻤﻜﻥ ﺇﻴﺠﺎﺩ: 1× 4 π r 3 π = = 0.52 3 × 8r3 6 π 3 = 0.68 8 = 0.74
π
2 6
2 ×4 π r3
=
3
=
3
)3 ( 4 r / 3 4 ×4 π r3 )3 (2 2 r
= Fsc
= Fbcc = Ffcc
ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ :Miller Indices
ﺍﺼﻁﻠﺢ ﻋﻠﻰ ﺘﺤﺩﻴﺩ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﺒﻠﻭﺭﻴﺔ ﺒﺈﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ ﻁﺒﻘﺎﹰ ﻟﻠﺨﻁـﻭﺍﺕ
ﺍﻟﺘﺎﻟﻴﺔ: ﺃﻭﻻﹰ :ﺍﻤﺴﻙ ﺍﻟﺒﻠﻭﺭﺓ ﻓﻲ ﻭﻀﻊ ﺜﺎﺒﺕ ﻭﻋﻴﻥ ﺍﻷﻁﻭﺍل ﺍﻟﺘﻲ ﻴﻘﻁﻌﻬﺎ ﺍﻟﻤﺴﺘﻭﻯ ﻤـﻥ ﺍﻟﻤﺤﺎﻭﺭ ﺍﻷﺴﺎﺴﻴﺔ Z , Y, Xﺒﺩﻻﻟﺔ ﺜﻭﺍﺒﺕ ﺍﻟﺸﺒﻴﻜﺔ .c , b, a
ﺜﺎﻨﻴﺎﹰ :ﺨﺫ ﻤﻘﻠﻭﺏ ﻫﺫﻩ ﺍﻷﻁﻭﺍل ﻭﺍﺨﺘﺯﻟﻬﺎ ﺇﻟﻰ ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ،ﺒﺸﺭﻁ ﺃﻻ ﻴﻜـﻭﻥ ﺒﻴﻨﻬﺎ ﺃﻱ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ )ﺴﻭﻯ ﺍﻟﻭﺍﺤﺩ ﺍﻟﺼﺤﻴﺢ( ،ﻓﻴﻜـﻭﻥ ﺍﻟﻨـﺎﺘﺞ ﺤﻴﻨﺌـﺫ ﻫـﻲ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ ﻟﻠﻤﺴﺘﻭﻯ ﺍﻟﻤﻁﻠﻭﺏ ﻭﺼﻔﻪ ﺃﻭ ﺘﺤﺩﻴﺩﻩ ،ﻭﺘﻭﻀﻊ ﻫﺫﻩ ﺍﻟﻤﻌﺎﻤﻼﺕ ﺒﻴﻥ
ﻗﻭﺴﻴﻥ ﻋﺎﺩﻴﻴﻥ ﻭﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ (hkl) :ﻭﺇﺫﺍ ﻗﻁﻊ ﺍﻟﻤﺴﺘﻭﻯ ﺃﺤﺩ ﺍﻟﻤﺤـﺎﻭﺭ
ﻓﻲ ﻟﻨﺎﺤﻴﺔ ﺍﻟﺴﺎﻟﺒﺔ ،ﻓﺈﻥ ﺍﻟﻁﻭل ﺍﻟﻤﻘﻁﻭﻉ ﻴﻜﻭﻥ ﺴﺎﻟﺒﺎﹰ ﻭﺘﻭﻀﻊ ﻋﻼﻤـﺔ ) (-ﻓـﻭﻕ
ﺍﻟﻤﻌﺎﻤل ﺍﻟﻤﻨﺎﻅﺭ .ﻭﺇﺫﺍ ﻜﺎﻥ ﺃﺤﺩ ﺍﻷﻁﻭﺍل ﺍﻟﻤﻘﻁﻭﻋﺔ ﻻﻨﻬﺎﺌﻴﺎﹰ ﻓﻲ ﻁﻭﻟـﻪ ،ﺃﻱ ﺃﻥ
ﺍﻟﻤﺴﺘﻭﻯ ﻴﻭﺍﺯﻱ ﺃﺤﺩ ﺍﻟﻤﺤﺎﻭﺭ ،ﻓﺈﻥ ﻤﻌﺎﻤل ﻤﻴﻠﺭ ﺍﻟﻤﻨﺎﻅﺭ ﻴﺴﺎﻭﻱ ﺼﻔﺭﺍﹰ. ١٥
ﻋﻠﻰ ﺴـﺒﻴل ﺍﻟﻤﺜـﺎل :ﺍﻟﻤـﺴﺘﻭﻯ ABCﻓـﻲ ﺍﻟـﺸﻜل ﺍﻟﺘـﺎﻟﻲ ﻴﻘﻁـﻊ ﺍﻟﻤﺤﺎﻭﺭ Z,Y,Xﺒﻨﺴﺏ 2c:2b:3aﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ.
ﻨﻭﺠﺩ ﻤﻘﻠﻭﺒﺎﺕ ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ:
1 1 1 , , 2 2 3
ﺜﻡ ﻨﺨﺘﺯﻟﻬﺎ ﺤﺴﺏ ﺍﻟﻘﺎﻋﺩﺓ ﺇﻟﻰ ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﻓﺘﺤﺼل ﻋﻠﻰ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ
) (233ﻭﺘﻨﻁﻕ )ﺍﺜﻨﺎﻥ ﺜﻼﺜﺔ ﺜﻼﺜﺔ(.
ﻭﺒﺩﻴﻬﻲ ﺃﻥ ﺃﻱ ﻤﺴﺘﻭﻴﺎﺕ ﻤﻭﺍﺯﻴﺔ ﻟﻬﺫﺍ ﺍﻟﻤـﺴﺘﻭﻯ ﻓـﻲ ﺍﻟـﺸﺒﻴﻜﺔ ﻭﺘﻘﻁـﻊ
ﺍﻟﻤﺤﺎﻭﺭ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﻤﻀﺎﻋﻔﺎﺕ ﺃﺠﺯﺍﺀ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻷﻭل ﻴﻜﻭﻥ ﻟﻬﺎ ﻨﻔﺱ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ. ﻴﻭﻀﺢ ﺸﻜل ) (٩-١ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ ﻟﺒﻌﺽ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﻤﻬﻤﺔ ﻓﻲ ﺒﻠـﻭﺭﺓ
ﻤﻜﻌﺒﺔ.
١٦
ﻭﻴﺭﻤﺯ ﻟﻌﺎﺌﻠﺔ )ﻤﺠﻤﻭﻋﺔ( ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﻤﺘﻜﺎﻓﺌـﺔ ﺒﺎﻟﺘﻤﺎﺜـل ،ﻋﻠـﻰ ﺴـﺒﻴل
ﺍﻻﺨﺘﺼﺎﺭ ﻫﻜﺫﺍ } {hklﻓﻔﻲ ﺍﻟﺒﻠﻭﺭﺓ ﺍﻟﻤﻜﻌﺒﺔ ﺘﻀﻡ ﻋﺎﺌﻠﺔ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ } {001ﻜل ﺃﻭﺠﻪ ﺍﻟﻤﻜﻌﺏ
), (0 1 0) , (00 1 ) , (100) , (010) , (001
ﻨﻔﺱ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻴﻠﺭ ﺒﺘﺭﺘﻴﺏ ﻤﺨﺘﻠﻑ.
) ، ( 1 00ﺃﻱ ﺃﻨﻬﺎ ﺠﻤﻴﻌـﺎﹰ ﺘﺤﻤـل
ﻤﻥ ﻨﺎﺤﻴﺔ ﺃﺨﺭﻯ ،ﺘﺴﺘﺨﺩﻡ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻤﺎﺜﻠـﺔ ﻹﺤـﺩﺍﺜﻴﺎﺕ ﻤﻴﻠـﺭ ﻟﺘﺤﺩﻴـﺩ
ﺍﻻﺘﺠﺎﻫﺎﺕ ﺩﺍﺨل ﺍﻟﺒﻠﻭﺭﺓ ،ﻭﻫﻲ ﺃﻴﻀﺎﹰ ﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ ﻻ ﻴﻭﺠﺩ ﺒﻴﻨﻬﺎ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ،
ﻭﺘﺘﻨﺎﺴﺏ ﻤﻊ ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻤﺘﺠﻪ ﻟﻪ ﺍﻻﺘﺠﺎﻩ ﺍﻟﻤﻁﻠﻭﺏ ،ﻭﺘﻜﺘﺏ ﺒﻴﻥ ﻗﻭﺴﻴﻥ
ﻤﺭﺒﻌﻴﻥ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ] [u v wﻓﺎﻻﺘﺠﺎﻩ ﺍﻟﻤﻭﺠـﺏ ﻟﻠﻤﺤـﻭﺭ Xﻫـﻭ ]،[100
ﻭﺍﻻﺘﺠﺎﻩ Yﻫﻭ ] .[010ﻭﻴﺭﻤﺯ ﻟﻤﺠﻤﻭﻋﺔ ﺍﻻﺘﺠﺎﻫﺎﺕ ﺍﻟﻤﺘﻜﺎﻓﺌﺔ ﻋﻠﻰ ﺍﻟـﺼﻭﺭﺓ > . > lﻓﻴﻜﻭﻥ: )(2 - 5
!N )≅ (Nln N − n) − (N − n) ln (N − n) + (N − n) − (n ln n − n !(N − n)!n = N ln N - (-n) ln (n - n) - n ln n
٤٣
ln
ﻭﻴﺘﺤﺩﺩ ﻋﺩﺩ ﻋﻴﻭﺏ ﺸﻭﺘﻜﻲ nﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻥ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻲ ﺍﻟﺤﺭﺍﺭﻱ ﻋﻨﺩ ﺤﺠﻡ ﺜﺎﺒﺕ ﺤﻴﺙ ﺘﻜﻭﻥ Fﺃﻗل ﻤﺎ ﻴﻤﻜﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﺘﻐﻴﺭ ﻓﻲ nﻭﻴﻜﻭﻥ: )(2 − 6
∂F N−n ) T = E v − k T ln =0 ∂n n
(
أو N-n = Ev/ k T n
)(2 - 7
ln
ﻭﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ n